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Zusammenfassung

Diese Dissertation widmet sich der Entstehung von Sternen, von Galaxien-weiten Skalen (ca.
10 000 pc) bis zu Sub-Sternhaufen Skalen (ca. 0.1 pc). Ich entwickle und teste ein Verfahren
zur Bestimmung der Sternentstehungsgeschichten von Galaxien aus deren Sternhaufenpop-
ulation, insbesondere deren schwerste Sternhaufen. Es folgt die Anwendung dieser Meth-
ode auf die Große Magellansche Wolke, wo die Ergebnisse der neuen Methode bestätigt wer-
den durch die Ergebnisse die man erhält vom Zählen einzelner Sterne. Sterne entstehen in
Gruppen, in der Basisieinheit eines Sternhaufens, so daß sowohl die Massenfunktion von
Sternen, die sich in einem Sternhaufen gebildet haben, als auch die Massenfunktion von
Sternhaufen in einer Galaxie bestimmt werden müssen um galaxien-weite Sternentstehung
quantitativ zu Beschreiben. Diese Massenfunktion folgen Potenzgesetzen, für welche ich
statistische Methoden zur Parameterschätzung und Hypothesentests entwickle unter beson-
derer Berücksichtigung des oberen Massenbereichs. Die statistischen Methoden werden ange-
wandt auf die Sternhaufen der Galaxie M51 um die Form der anfäglichen Haufenmassen-
funktion und deren frühe Entwicklung zu untersuchen. Ich untersuche ebenfalls den oberen
Massenbereich der stellaren Anfangsmassenfunktion, sowohl in Beobachtungen und in The-
orie. Die Analyse einer numerischen Simulation der Entstehung eines Sternhaufens (Zeiten-
twicklung von Substruktur, Massensegregation und stellare Massenfunktion) beschließt diese
Dissertation.



4



Summary

This thesis is devoted to star formation from galaxy-scales (≈ 10 000 pc) to sub-star cluster-
scales (≈ 0.1 pc). I develop and test a new method to derive star formation histories of Galax-
ies from their star cluster content, in particular the most massive star clusters. This is followed
by an application of this method to the Large Magellanic Cloud, where the results of this new
method are confirmed with results obtained from counting individual stars. Stars form in a
grouped way, in the basic unit of a star cluster, so that both the mass function of stars formed
within a star cluster and the mass function of star clusters in a galaxy need to be known for a
quantitative description of galaxy-wide star formation. These mass functions have a power-
law functional form, for which I develop statistical tools to estimate the parameters and to
perform goodness-of-fit tests, with a particular emphasis on the upper mass end. The statisti-
cal methods are applied to the star clusters in M51 to investigate the shape of the initial star
cluster mass function and the early evolution of it. I also investigate the upper mass end of
the stellar initial mass function, both in observations and theory. The analysis of a numerical
simulation of star cluster formation (time-evolution of substructure, mass segregation, stellar
mass function) concludes this thesis.
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Chapter 1

Prologue

Quippe mihi non multo minus admirandae
videntur occasiones, quibus homines in
cognationem rerum coelestium deveniunt; quam
ipsa Natura rerum coelestium.
Johannes Kepler?

“For me the circumstances under which man comes to understand
the celestial things appear not less admirable as the nature of these
celestial things themselves.” — Following this sentence of Kepler I
would like to share in this Prologue my fascination for the histor-
ical development of Astronomy —inspired by the library in Bonn
which holds among other originals Kepler’s Harmonices Mundi,
Huyghen’s Systema Saturnium, the Astronomicum Caesareum by
Apian or Hevelius’ Machinae Coelestis— by giving an outline how
our current picture of star formation emerged in time.

The sky at night is a spectacular display of sparkling stars, which were already in antiq-
uity grouped into constellations representing mythological characters. Orion, the hunter, is a
prominent feature of the northern sky, and Ptolemy catalogued in the Almagest 38 stars, one
of which is classified as “nebulous” (Ptolemaius, 1816). Galilei (1610) chose Orion as one of
the first targets for his telescope, and he found that the “nebulous” star in Orion’s head was
actually a group of 21 stars (The open cluster Collinder 69 around λ Orionis, see e.g. Murdin
& Penston, 1977). Surprisingly, he did not find the famous “Orion Nebula” in the sword as
it should be detectable with his telescope, his drawing leaves this region empty, which Hum-
boldt commented with “Es war derselbe ohnedies wenig zur Annahme von Nebeln geneigt”
— “He was anyhow hardly inclined to accept nebulae” (Humboldt, 1850, p. 336). Indeed,
Galilei writes “Stellae ab Astronomis singulis in hanc usque diem NEBULOSAE appellatae,
Stellularum mirum immodum consitarum greges sunt” (All stars that until this very day have
been called “nebulous” by every single astronomers are swarms of small stars placed exceed-
ingly closely together. Galilei, 1610, opposite p. 17). The nebula in the sword was presumably

∗Kepler (1609, to Chapter XLV in Argumenta singulorum capitum)
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14 CHAPTER 1. PROLOGUE

described for the first time by Peiresc in 1610, but only noted in his unpublished observational
notes which where brought to the public by Bigourdan (1916, recently the discovery of Peiresc
has been questioned by Siebert, 2009).

Cysat (1619) mentions the nebula in a book on a comet, and the first drawing of the nebula
appears in the unfortunately never widely recognised work by Hodierna (1654, brought to
wider attention by Foderà Serio et al., 1985). Huyghens independently discovered the nebula
again and described and drew in the Systema Saturnium (Huyghens, 1659), and this work is
still often quoted as the first observation of the nebula. He describes that three stars near to
each other, and four others shine as if through a cloud, which appears much brighter than all
“the other very black rest of the sky”. He saw this, “quidquid est” — “whatever it may be”,
several times at the same location. The Orion nebula appears in the perhaps first catalogue of
nebulae by Halley (1716, containing six nebulae), where Huyghens is given credit for discov-
ering the first nebula at all. A Nebula is understood by Halley as “extraordinary great Space
in the Ether”, in which a medium “shines with its own proper Lustre” (Halley, 1716).

The number of observed nebulae increased with time, Messier’s first catalogue contains 45
nebulae (Messier, 1771, the Orion Nebula, M42, is individually described after the catalogue),
and his last catalogue comprises 103 nebulae (Messier, 1784). Messier was more interested
in Comets, and he only searched for nebulae “so that astronomers would not confuse the
same nebulae with faint comets” (Messier, 1801, translation form Gingerich, 1987). The first
astronomer to observe nebulae for their own sake is William Herschel, turning to Astronomy
after a prolific career in music (he wrote 24 symphonies, for example), and becoming a maker
of excellent telescopes. A few years after Messier, Herschel published his catalogues of in total
2500 nebulae (Herschel, 1786, 1789, 1802). The list of Herschel was extended by his son John
to a catalogue of 5079 objects (the “General Catalogue”, Herschel, 1864), and later to the“New
General Catalogue” (Dreyer, 1888), whose NGC-numbers are still widely in use today.

William Herschel is the first to classify nebulae according to their appearance. His classes
are: I Bright nebulae, II Faint nebulae, III Very faint nebulae, IV Planetary Nebulae (a term
he coined), V Very large nebulae, VI Very compressed and rich clusters of stars, VII Pretty
much compressed clusters of large or small stars, and VIII Coarsely scattered clusters of stars
(Herschel, 1786). A few years later he discusses nebulosity and states about Orion that it is
an object “where we are still inclined to remain in the once adopted idea, of stars exceedingly
remote, and inconceivably crowded, as being the occasion of that remarkable appearance“
(Herschel, 1791, p. 73). However, in the cited work he also argues that they are most likely
consisting of a “shining fluid”.

The gaseous nature of nebulae could only be observationally established after the tech-
nique of spectroscopy has been introduced to Astronomy. A pioneer on this field is W. Hug-
gins, who obtained the first spectra of nebulae in 1864 (Huggins, 1864, amongst the first spec-
troscopically observed nebulae are a number of planetary nebulae, among them M57 and
M27, two star clusters and the galaxy Andromeda with its companion). He was very puz-
zled when he saw the first nebular spectrum: “At first I suspected some derangement of the
instrument had taken place; for no spectrum was seen, but only a short line of light perpen-
dicular to the direction of dispersion. I then found that the light of this nebula [GC. 4373, 37
H IV.] , unlike any other ex-terrestrial light which had yet been subjected by me to prismatic
analysis, was not composed of light of different refrangibilities, an therefore could not form
a spectrum” (Huggins, 1864, p. 438). The Orion Nebula was the test-case for Huggins (1865)
to investigate whether a nebula containing several stars would entirely consist of closely ag-
gregated stars, as this was strongly supported by observations with Lord Rosse’s “Leviathan”
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telescope (Hoskin, 1990). From his observations he finds that gas is present in the nebula,
which establishes the Orion Nebula as the first (gas-) embedded star cluster. Interestingly,
Huggins also connects his finding to W. Herschel’s ideas of star formation.

The (theoretical) connection of nebulae with star formation, in particular the formation of
the solar system, the nebular hypothesis, goes back to Kant (1755) and, independently, Laplace
(1796). William Herschel comes to a surprisingly modern sounding conclusion in his thoughts
about the nature of nebulae: “If, therefore, this matter [the nebulous fluid] is self-luminous,
it seems more fit to produce a star by its condensation than to depend on the star for its exis-
tence” (Herschel, 1791, p.85). The intent of these early theories is to explain the solar system,
even though Jeans’ work on the stability of gas clouds is motivated by the idea of forming
planets from a meteorite swarm, which could be approximated as a gas (Jeans, 1902). It is
perhaps typical for the working of the human mind that the understanding of the star forma-
tion process emerged in reverse to the time-arrow of the physical events. After realising that
nuclear processes provide the energy of a star to shine and understanding the main sequence
of stars (around 1930-1940), the pre-main-sequence of stellar evolution was first modelled
by Henyey et al. (1955) and Hayashi (1961). The first object discovered to show a pre-main-
sequence of stars is the Orion Nebula (Parenago, 1954 in Russian, Parenago & Sharov, 1961 in
English), although the results in NGC 2264 became better known as they were not published
in Russian (Walker, 1956). An even earlier stage of stellar evolution, protostars, were also first
discovered in Orion (Becklin & Neugebauer, 1967; Kleinmann & Low, 1967).

Further ingredients in the star formation recipe were mentioned by McNally (1971): 1) col-
lapse under gravity (Jeans, 1902), 2) random accretion (McCrea, 1960; von Weizsäcker, 1951)
3) gravitational clustering (Layzer, 1964), 4) the ideas of Ambartsumian (1960) combining star
formation, formation of clouds and galaxy evolution. But McNally (1971) still states “Never-
theless the mechanism whereby stars form is still unknown” . Only in the recent years has
it become possible to follow the hydrodynamical collapse and fragmentation of a gas cloud
forming more than one star in detail (and three dimensions). Examples are the simulations
of Bonnell et al. (2003), forming one star cluster like the Orion Nebula Cluster from an initial
cloud of 1000 M�, and Bonnell et al. (2008) which, starting with 10000 M� of gas, illustrates
evolution of a larger star forming region that contains several clusters. A star forming region
is perhaps the basic unit of star formation from a galactic point of view. Star clusters are regu-
lar characters appearing in star forming regions. For a better overview it is best to study them
not in the Milky Way, but in external galaxies.

The first discovered extragalactic nebula was 30 Doradus in the Large Magellanic Cloud
(La Caille, 1755), although at that time he assumed that the Magellanic Clouds are just sep-
arated parts of the Milky Way. By coincidence this is also a star forming region, about ten
times larger than the Orion Nebula Cluster. Dunlop (1828) and John Herschel (1847) discov-
ered many more nebulae and star clusters in the Large Magellanic Cloud, and by the early
20th century the Magellanic Clouds were recognised as galaxies, small Milky Ways of their
own. Hodge (1988) in his catalogue of 255 new star clusters in the Large Magellanic Cloud
gives a list of star cluster searches and comes to the number of 2053 catalogued star clusters
in the Large Magellanic Cloud. He also estimates that the Large Magellanic Cloud may host
about 4200 star clusters in total.

The connection between galaxy-wide star formation and the star cluster population is the
starting point of this thesis, from which we go on to increasingly smaller scales to end with
an investigation of the formation of an individual star cluster like Orion.
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Chapter 2

Introduction

This thesis is devoted to star formation physics from galaxy-wide scales (≈ 10 000 pc) down
to sub-star-cluster scales (≈ 0.1 pc). The galaxy-wide star formation and its connection with
star clusters is the starting point of the research presented in this work (Ch. 3 & 4). From there
we continue to discuss the evolution of star cluster populations (Ch. 6) and the stellar “pop-
ulation” in a star cluster (Ch. 7 & 8). The means for our investigation are mass distribution
functions, for whose analysis we develop statistical techniques (Ch. 5). Finally, we finish with
the detailed properties of an individual star forming region (Ch. 8). The following Sections
elaborate the connections between the covered subjects.

2.1 Galaxy-wide star formation

The first part of this thesis (Chapters 3 and 4) lays out and applies a method to derive star
formation histories of galaxies from their star cluster content. Detailed star formation histories
trace the stellar mass build-up of a galaxy, and are an important link of observational and
speculative cosmology. The choice of star clusters to derive a star formation history has an
important practical implication, as they can be observed up to distances where individual
stars are not resolvable any more, such that potentially a larger and more varied sample of
galaxies can be studied than has been possible until now.

Massive star clusters have life-times comparable to that of a galaxy, so that in the star
cluster population the star formation history of a galaxy is quasi frozen-in. In Chapter 3 we
develop and test a method based on the most massive star cluster in the time-interval chosen
to discretise the star formation history. The basis for the conversion of star cluster masses into
star formation rates is the observed relation between the brightest cluster in a galaxy (which
is very likely the most massive) and its present star formation rate as determined from far-
infrared fluxes, which serves as a proxy for the total star formation rate (Billett et al., 2002;
Larsen, 2002). With the probabilistic nature of the star cluster mass function the most massive
star cluster also follows a distribution function, which has to be taken into account. Thus,
rather than having to just invert a function, a probability distribution has to be inverted in
order to derive star formation rates from the cluster masses. Chapter 3 is devoted to the
procedure of this method, accounting for the statistical aspects as well as for the dynamical
evolution of star clusters and observational restrictions. Using Monte-Carlo simulations of
star cluster populations, the performance and limitations of the method are shown, finding
that the star cluster ansatz has the potential to derive star formation histories.

17
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A “real world” example is given in Chapter 4, where we compare the star cluster re-
sults with the results of the standard technique based on individual stars and their colour-
magnitude diagram. The Large Magellanic Cloud serves us as a “guinea pig”, it has a large
star cluster population and is sufficiently nearby to allow one to resolve stars. Both the star
formation history derived from either the most-massive star clusters or the colour-magnitude
diagram show a similar structure and absolute star formation rate; however, the agreement
starts to disappear for ages larger than one Gyr. The gap in the star cluster population of the
Large Magellanic Cloud between roughly 1 and 10 Gyr is well known, but it is puzzling that
there was a time of enhanced star formation without producing the appropriate number of
star clusters. Perhaps the incomplete spatial coverage may account for this and the missing
clusters are located in the regions that are not observed. Also, the star cluster sample has
not very well defined selection criteria, there are for example numerous young star clusters
missing, among them the prominent cluster R136 in 30 Doradus.

Due to the proximity of the Large Magellanic Cloud star clusters can be detected down to
a few hundred M�at young ages. Therefore it is possible to straightforwardly calculate the
amount of mass in star clusters and compare this to the mass of all stars in the selected age
range. The star formation rates derived in this way are lower by a factor ≈ 10. This discrep-
ancy can be explained by two arguments; firstly, not all stars need to form in compact star
clusters; and secondly, star clusters undergo a phase of violent evolution shortly after their
formation that leads to their dissolution. The second proposed solution should be evident
from the star formation histories, the discrepancy should increase within the first, say, 30 Myr,
as star clusters dissolve caused by gas expulsion. Unfortunately, we cannot do this as the star
cluster sample in the Large Magellanic Cloud is just missing the youngest clusters. A further
discussion of the early star cluster evolution is given in Chapter 6.

The observational basis for deriving the star formation histories is, as already said above,
the relation between the brightest cluster and the galaxy-wide star formation rate. To under-
stand this relation several ideas have been proposed which could be distinguished observa-
tionally from the properties of the star cluster mass function. The extent to which the star
cluster mass function (a power law) is populated depends on the star formation rate in the
galaxy. Under the hypotheses that the brightest cluster is the most massive one and that all
stars form in star clusters, and with choosing a time scale, this correlation is equivalent to a
correlation of the most massive cluster with the total mass of the cluster population. The total
mass follows simply as a product of the star formation rate and the time scale, and, with a uni-
versal cluster mass function and thus a universal mean mass, the total mass is proportional to
the total number of star clusters. A correlation of the most massive star cluster with the total
number of star clusters is expected; this is usually coined “size-of-sample effect”. The upper
limit of the star cluster mass function is universal in this scenario.

The purely statistical explanation has been questioned by Weidner et al. (2004), suggesting
that actually the upper limit of the star cluster mass function depends on the star formation
rate of the galaxy. In this scenario the formation of a massive star cluster is prohibited at low
star formation rates, even when one waits for a very long time. Weidner et al. (2004) need
a rather steep exponent of the cluster mass function (β = 2.4) to reproduce the observed re-
lation. As the star cluster mass function follows from the mass function of giant molecular
clouds (which has a smaller exponent), it has been suggested that the star cluster mass func-
tion has analogously an exponential turn-down at the high mass end (a Schechter function,
Gieles et al., 2006a), such that β = 2 for most of the cluster mass function. Bastian (2008)
investigated the size-of-sample effect in the Mmax–Ntot relation for a Schechter function, and
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find a high (universal) truncation mass, but also stated that the truncation mass might vary
from galaxy to galaxy. Larsen (2009) pursues the question of a varying truncation mass by
analysing several spiral galaxies, and also finds that a universal truncation is unlikely. The
Mmax–Ntot relation is perhaps not the best way to answer the question, as a varying and uni-
versal upper limit lead to very similar appearances of this relation, so that a large number of
galaxies is needed to arrive at a statistically significant conclusion. Therefore, we investigate
more appropriate statistical methods in Chapter 5, and apply them to the star cluster mass
function of M51 in Chapter 6, with an emphasis on the upper mass end.

2.2 Statistical methods

The star cluster mass function is, as seen above, one ingredient in an explanation of the bright-
est cluster–star formation rate relation. For the maximum exploitation of the available data it
is necessary to have good statistical techniques. As the masses of stars and star clusters obey
a power-law distribution function, we therefore present and test in Chapter 5 statistical tech-
niques for power laws. Power-law distributions seem to be an ubiquitous feature in nature.
The statistical analysis has two aspects, estimating the parameters and goodness-of-fit tests.
For a power law the parameters needing estimation are the exponent and also the upper limit.
By simply performing a linear regression to a histogram of constant logarithmic bin size a
substantial bias in the estimated exponent can be introduced. This can be remedied by using
variable-size bins with a constant number of data points in them (Maı́z Apellániz & Úbeda,
2005), but binning does not directly lead to an estimate for the upper limit. An estimate for
the upper limit can be obtained with the Maximum Likelihood method, although it is very
biased (the estimate is only the largest data point). But we found a way to correct for this bias.

As a second step in the data analysis the assumption of a power law as the parent dis-
tribution function has to be verified using a goodness-of-fit test. A histogram is a first and
simple way to do this, but by grouping the data much information is lost. Especially the up-
per mass end is often hidden in only one or two bins, and a histogram is no statistical test.
An alternative graphical display of all available data is the stabilised probability–probability
plot, discussed in detail in Chapter 5. The formal “measurement” for agreement of model
and data is done with a goodness-of-fit test, the Kolmogorov-Smirnov test is one of the more
widely known. The behaviour of the star cluster mass function at the upper mass end is an
important question, on which a goodness-of-fit test should shed light. Unfortunately the hy-
potheses between which should be distinguished are very similar, a (universal) truncation at
a high mass, a truncation at a lower mass (depending on the star formation rate), or an expo-
nential turn-down. Not all goodness-of-fit tests possess the necessary power to distinguish
between them, the Kolmogorov-Smirnov test, for example, is not a good choice. Therefore,
Chapter 5 contains a comparative study of a number of goodness-of-fit tests for finding the
best choice, and a method to improve standard tests, such as the Kolmogorov-Smirnov test.

Applications follow in Chapter 6 with the star cluster mass function in the galaxy M51
and in Chapter 8 where the predictions for the stellar mass function from hydrodynamical
simulations are discussed.
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2.3 Star cluster mass function

The star cluster mass function holds information about both the global, galaxy-wide and local,
cluster-wide star formation. The variations of the shape of the (initial or embedded) star clus-
ter mass function of different galaxies give evidence of different star forming environments.
Equally, a universal star cluster mass function (or more specifically a universal exponent)
shows that star cluster formation is a local process. The upper end of the star cluster mass
function is perhaps where an environment dependence can be detected. As described above,
from the Mmax–ntot relation, the upper limit presumably varies with star formation rate. Un-
fortunately the cluster sample of the Large Magellanic Cloud cannot be used for a statistical
analysis as it has selection issues. However, in Chapter 6 we analyse the star cluster popu-
lation of M51. We investigate whether an infinite, a (sharply) truncated or an exponentially
decaying power law fits the data. Also, we investigate how much the choice of isochrones
and metallicities for the age and mass determination influences the results for the star cluster
mass function.

Cluster-internal aspects of star formation can be obtained from the time-evolution of the
star cluster mass function, which is expected due to the dynamical evolution of star clusters,
also investigated in Chapter 6. Massive clusters evolve slower than less massive clusters, so
that the mass function becomes flatter in time. The speed of flattening is set by the environ-
ment in the galaxy, the tidal field, encounters with clouds and spiral arms etc. In the first,
say, thirty million years the evolution of star clusters is mainly determined by the transition
from the embedded to the gas-free state. If this transition depends on the star cluster mass,
then the star cluster mass function should also change. The changes could be gradual, so that
the overall appearance of a power law is unchanged, only the exponent changes. Alterna-
tively there is the scenario of Kroupa & Boily (2002): Low-n clusters have no massive stars
and therefore gas expulsion occurs gradually and the star cluster survives. Similarly, in very
massive clusters several supernovae are necessary to expel the gas, which thus also happens
gradually. However, in the intermediate mass range the gas is removed violently with a sin-
gle supernova, which likely destroys the cluster. The cluster mass function in this scenario
would exhibit a feature in the mass range around a few 103M� and a broad maximum at 105

M�.

2.4 Stellar initial mass function

The stellar initial mass function (IMF) is an important phenomenological distribution func-
tion with a wide range of applications. It has been found to be very similar in diverse environ-
ments, so that its universality is assumed (Kroupa, 2001, 2002). We focus on the “high”-mass
regime (m > 0.5 M�) where the distribution follows a power law with the Salpeter exponent
of 2.35 (Salpeter, 1955) up to masses of≈ 150 M� (the physical upper limit for stars Weidner &
Kroupa, 2004; Figer, 2005; Oey & Clarke, 2005). Whereas the universality of the IMF exponent
is generally agreed upon the universality of the upper limit has been questioned (Kroupa &
Weidner, 2003; Weidner & Kroupa, 2006). A possible explanation could go as follows. The
build-up of massive stars occurs via accretion starting from lower-mass seeds leading to a
power law mass distribution, with an ever increasing upper mass limit. At some point the
accretion is stopped by feedback, such as radiation, stellar winds or even a supernova, which
freezes-in the mass function. The effectiveness of feedback depends on the amount of gas
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and the number of massive stars. These two quantities, however, scale with each other, so
that an upper limit of the IMF depending on the number of stars formed may be expected.
The details of this are further discussed in Chapter 8.

Observationally a “richness”-dependent upper mass limit can be investigated in two ways.
In Chapter 7 we follow the method of Weidner & Kroupa (2006), analysing the relation be-
tween maximum stellar mass and cluster membership number. We extend their sample of
data with data from the literature and present a new way to statistically analyse the data.
The advantage of this approach is its simplicity —only counting stars and one mass deter-
mination per cluster— but a major drawback is the difficulty in obtaining a homogeneous,
complete sample of star clusters. The predictions for a universal upper limit and a cluster-
dependent upper limit differ only slightly, so that a very large sample of clusters is necessary
for a distinction (Selman & Melnick, 2008, state that 4000 clusters of 75 stars each would be
needed). However, the additional data presented by Weidner et al. (2010) are not consistent
with a universal upper limit (for clusters in the mass range 1000–10000 M�). Even with in-
voking some selection bias it is hard to explain that 97% of the data lie below the median. A
solution to this puzzle can probably only be found by an individual inspection of each of the
clusters.

The most direct way to study the upper mass limit is to statistically analyse the upper
stellar mass function in a star cluster. We follow this twice, in Chapter 5 we use the stars
of R136 in 30 Doradus to test for a truncation at the physical upper mass limit. For a mass-
dependency a number of star clusters need to be analysed, a project for which pilot studies
have been commenced (see Chapter 9). In Chapter 8 we apply the methods of Chapter 5 on
the outcome of hydrodynamical simulations of star cluster formation.

A further reason to investigate the upper limit of the star cluster mass function in Chapter
6 and the upper limit of the stellar mass function in Chapters 7 and 8 are the consequences
of the integrated galactic initial mass function (IGIMF) concept (Kroupa & Weidner, 2003; Wei-
dner & Kroupa, 2005), which have important implications for the evolution of galaxies with
small star formation rates. A varying upper stellar limit implies that the mass distribution
of all newly formed stars together (the IGIMF) differs from the initial mass function within
a star forming region. This follows because there are many more small star clusters without
massive stars than massive clusters with massive stars, so that in the sum the massive stars
are underrepresented in the total sample, i.e. the integrated galactic initial mass function has
a steeper massive end. The extent of this effect depends on the distribution of star cluster
masses. With the upper limit of the star cluster mass function depending on the star forma-
tion rate, this effect is strongest for small star formation rates. Consequences of this effect are
a non-linear dependence of the Hα luminosity (Pflamm-Altenburg et al., 2007a) and metal
yields (Weidner & Kroupa, 2005, supernova rate) on the star formation rate in a galaxy.

2.5 Formation of a star cluster

The last research Chapter of this work (Chapter 8) is concerned with the small-scale properties
of star formation within an individual star forming region. We have mentioned the analysis
of the upper mass function already above. In this Chapter we analyse hydrodynamical simu-
lations of a single star cluster and a larger star forming region. The general picture is that the
initial cloud fragments into filaments which contain subclusters of newly-formed stars that
later merge into larger entities.
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We consider here several aspects of the initial stellar mass function (or, more precisely,
the sink particle mass function as proxy for the stellar mass function). We can follow the
time-evolution of the mass function, and we find that the exponent decreases in time. This
flattening is caused by the continuous formation of new stars and accretion of matter onto
them. Also, the exponents are smaller than the empirical Salpeter exponent, caused by mass
segregation and, presumably, by the missing feedback, which has not been included for com-
putational feasibility. Not only the exponent, but also the upper limit of the mass function
increases with time and increasing number (and mass) of stars, and a universal upper limit of
150 M� is not compatible with the simulation results.

The larger simulation leads not only to the formation of a single cluster, but is designed
to mimic the Orion region with several star clusters and an unbound region of gas with more
dispersed star formation. The stellar mass function of this whole simulation is not compatible
with a power law truncated at a mass similar to what would be expected from an individual
cluster of that size. It rather shows a deficiency of massive stars compared to a truncated
power law. The turn-down in the mass function is a signature of the IGIMF effect, and it is
very interesting to see that it manifests itself in a model of a larger star forming region. The
results of the simulations are a strong incentive for an observational project to look for similar
behaviour.

A further investigated feature of the simulations is the development of mass segregation.
Massive stars are found to be the stars that first form in a subcluster, further stars form around
them. This and the fast dynamical evolution times lead to subclusters that are already mass
segregated. During mergers of subclusters the mass segregation is disturbed for a short while,
but quickly re-establishes itself. The positions of the massive stars are important for the evo-
lution of a star cluster. For example, a system of only a few massive stars in the centre of a
star cluster is dynamically very unstable, and three-body interactions can lead to ejections of
massive stars from the star cluster. Similarly, if massive stars as main sources of feedback are
in the central parts of a cluster, the time-scales of gas expulsion could be shorter than in the
case of an extended population of massive stars. Future research will perhaps reveal that only
certain configurations of star clusters survive the gas expulsion phase. The ratio of surviving
vs. destroyed star clusters after gas expulsion is the ratio of clustered vs. field star formation,
discussed Chapter 4.



Chapter 3

A new method to derive
star formation histories of galaxies
from their star cluster distributions

Th. Maschberger & P. Kroupa
MNRAS 379:34–42 (2007)

Star formation happens in a clustered way which is why the star clus-
ter population of a particular galaxy is closely related to the star for-
mation history of this galaxy. From the probabilistic nature of a mass
function follows that the mass of the most-massive cluster of a com-
plete population, Mmax, has a distribution with the total mass of the
population as a parameter. The total mass of the population is con-
nected to the star formation rate (SFR) by the length of a formation
epoch.
Since due to evolutionary effects only massive star clusters are observ-
able up to high ages it is convenient to use this Mmax(SFR) relation for
the reconstruction of a star formation history. The age-distribution of
the most-massive clusters can therefore be used to constrain the star
formation history of a galaxy. The method, including an assessment of
the inherent uncertainties, is introduced with this contribution, while
following papers will apply this method to a number of galaxies.

3.1 Introduction

During the last few years it has been recognised that most and probably all stars form in
embedded clusters (Lada & Lada, 2003). The observational work, notably by Larsen (2002),
has established that star clusters ranging from the oldest globular clusters to the youngest
low-mass objects have to be regarded as a continuous distribution by mass — globular clus-
ters are not fundamentally different from open clusters but merely the upper mass end of
the distribution. This has been shown explicitly by Kroupa & Boily (2002) on the example of
the Milky Way population II spheroid. Today star clusters must be viewed as the “fundamen-
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tal building blocks” of galaxies because they also determine the morphological appearance of
whole galaxies through the physics of their formation (Kroupa, 2005).

Star formation is therefore closely connected to the star cluster distribution in a galaxy
and thus it is expected that the star formation history of a galaxy leaves its imprint on the star
cluster distribution. Since star clusters can live for a long time the star cluster distribution of
a galaxy can be compared to a diary: Events like interactions of galaxies lead to an enhanced
star formation activity. From this results a larger number of clusters being formed during
the interaction time. This qualitative statement is well known and in this work we present a
quantitative method to derive the star formation history (SFH) of a galaxy directly from its
star cluster content.

Until now detailed SFHs can be determined only for galaxies which are at a distance al-
lowing individual stars to be resolved, i.e. within the local group up to ≈ 1 Mpc away. The
colour-magnitude diagram (CMD) which is thusly obtained then allows the construction of a
SFH using theoretical isochrones.

In distant galaxies, however, star clusters appear as compact sources whereas the individ-
ual stars give a homogeneous distribution over the area. Modern instruments like the Hubble
space telescope make it possible to obtain a cluster age- and mass-distribution for galaxies
beyond the distance where individual stars can be resolved, e.g. for M51 (Bastian et al., 2005;
cluster formation rate: Gieles et al., 2005) and M101 (Bianchi et al., 2005). These galaxies lie
at a distance of about 7 Mpc (M51: Takáts & Vinkó, 2006; M101: Kelson et al., 1996) which
demonstrates the potential of our new method.

A first approach to derive the star formation history from a cluster age- and mass-distribution
could simply be to use all observed clusters in given time intervals. But this would lead to
wrong results, clusters evolve and thus there are fewer clusters at higher ages. However,
massive clusters evolve slowly, clusters with masses ' 105 M� have lifetimes comparable to
a Hubble time (Baumgardt & Makino, 2003). Weidner et al. (2004) found a relation which
establishes the connection between massive clusters and the galaxy-wide star formation rate:
During a formation epoch a complete population of star clusters is formed, for which the mass of
the most massive cluster, Mmax, depends on the star formation rate (the Mmax(SFR) relation).
Consequently, the star formation history of a galaxy can be regarded as a sequence of such
formation epochs, in which the most massive cluster carries the information about the star
formation rate.

Since Weidner et al. (2004) used a deterministic law for the Mmax(SFR) relation, we briefly
re-analyse their argumentation, allowing a distribution of the most massive cluster rather
than a fixed value for a given SFR. Then we present the new method and conclude with
testing it for some typical cases.

3.2 Complete Populations and the Mmax(SFR)-Relation

3.2.1 Complete Populations

The distribution of star clusters in a star cluster population is characterised by the shape of the
distribution function (shown to be a power law, e.g. Weidner & Kroupa (2006) and references
therein), the mass of the population, Mtot, and the mass limits, ML and MU. The cluster mass
function can be written as

ξcl(M) =
dN
dM

= kM−β , (3.1)
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where the normalisation constant k is determined by Mtot, ML and MU.
In this context complete population denotes a statistically meaningful representation of the

embedded cluster mass function. The underlying distribution function is defined on a mass
interval appropriate to the mass of the population. This is a very general concept which is
applicable to other cases where objects obey a distribution function, e.g. stars in a star cluster.

The lower mass limit, ML, is given by the physical minimum mass of a star cluster and is
independent of the mass of the population. Until now, the physical minimal mass of a star
cluster is not well known, here it is assumed to be 5 M� corresponding to groups of about a
dozen stars such as those forming in Taurus-Auriga (Briceño et al., 2002).

For the upper mass limit, MU, two cases have to be distinguished: If a complete population
has a mass which is larger than the limiting physical maximum cluster mass, then the distri-
bution function is defined up to the physical maximum mass, a hitherto not well understood
quantity. Star clusters with masses larger than about 106 M� show complex stellar popula-
tions and are probably distinct from the “normal” star cluster content of a galaxy (Weidner
et al., 2004). Such arguments based on the structural properties of clusters would imply the
same physical maximum mass in all galaxies. Gieles et al. (2006a) derived maximal cluster
masses from the cluster luminosity function, obtaining masses between 0.5–2.5× 106M� for
NGC 6946, M51 and the “Antennae” (NGC 4038/39). Thus, while arguments exist for a lim-
iting maximum star-cluster mass below which stellar populations are simple (mono-metallic
and -age), Mieske et al. (2002) and Martini & Ho (2004) show that ultra-compact dwarf galax-
ies (M ' 106 M�) may be an extension of the “cluster” formation process to large masses. Con-
sequently, we do not limit the “cluster” masses but allow these to formally reach MU = 109 M�
for sufficiently high SFRs.

The case that Mtot is smaller than the physical maximal mass implies that no star clusters
more massive than Mtot can exist in this population. Therefore Mtot is the upper mass limit
of the cluster mass function. This includes the case that a population can consist only of one
cluster with the mass Mtot, but this is very improbable.

Thus by using the total mass as the normalisation criterion,

Mtot =

∫ MU

ML

Mξcl(M)dM, (3.2)

the normalisation constant becomes

k =
Mtot(2−β )

M2−β

U −M2−β

L

. (3.3)

The total number of clusters in a population, Ntot, follows from Ntot(Mtot) =
∫ MU

ML
ξcl(M)dM.

Weidner et al. (2004) argued that a complete population of star clusters is not made up
by all clusters ever formed in a galaxy, but by a subset of clusters formed during a formation
epoch. Assuming that all stars form in star clusters the total mass of a complete population is
then given by the product of the SFR and the length of the formation epoch,

Mtot = SFR×δ t. (3.4)

Thus, given a certain (short) δ t, the total mass and thereby implicitly the upper mass limit of
the distribution function depend on the current SFR. With this description massive clusters
can only form if there is much star forming activity, while quiescent phases only produce
low-mass clusters.
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Figure 3.1: Masses of the bright-
est clusters vs. presen-day SFR in
galaxies, data from Larsen (2002)
(absolute magnitudes converted to
masses by Weidner et al., 2004). The
lines shown with the data are based
on our statistical point of view, pre-
sented in Sec. 3.2.2. The parameters
δ t and β are chosen to fit to the data
with δ t = 10 Myr, β = 2.4, and ML =
5 M�. The solid line is the expec-
tation value for the distribution of
the most massive cluster (eq. 3.6) in
dependence of the total mass of the
population. The dashed lines are the
borders of the region in which 2/3rd
of all most massive clusters are ex-
pected, calculated using eq. 3.5.

3.2.2 The Mmax(SFR) relation

Observations give evidence that the brightness of the brightest cluster in a galaxy depends
on the present-day SFR in the galaxy (Larsen, 2002). Since the brightest cluster in a galaxy
is usually young it can be interpreted as the most massive cluster of the current formation
epoch. Weidner et al. (2004) converted the luminosities to masses, as shown in Fig. 1. The
data show a large scatter which in our interpretation results from the distribution of the most
massive cluster. Since the distribution of Mmax for a given Mtot is known the data can be used
to determine the length of the formation epoch.

In our description of star cluster populations the upper mass limit, MU and the most mas-
sive cluster, Mmax, are not identical. For an ensemble of populations with the same total mass,
Mmax has a distribution parametrised by Mtot and β (cf. Oey & Clarke, 2005). This distribution
can be written as a probability density,

φ(Mmax) =

(
1

Ntot

∫ Mmax

ML

ξcl(M)dM
)Ntot−1

ξcl(Mmax), (3.5)

where Ntot and the normalisation of ξcl depend on Mtot. This is different to the ansatz of Wei-
dner et al. (2004) where Mmax was assumed to be identical for all populations with the same
Mtot, i.e. not distributed. The distribution of Mmax is asymmetric because of the asymmetric
cluster mass function and is characterised by the average mass of the most massive cluster,
Mmax, given by

Mmax =

∫ MU

ML

M′maxφ(M′max)dM′max. (3.6)

Figure 3.2 shows the distribution of Mmax and the location of Mmax. Due to the asymmetry
the median, M1/2, does not have the same location as the average, Mmax, but lies below it.
Therefore it is expected that in an ensemble more Mmax lie below Mmax than above.
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Figure 3.2: The distribution of Mmax
for a population with Mtot = 104 M�,
β = 2.4, and ML = 5 M�. The num-
ber of Mmax expected to lie below
and above the average Mmax is differ-
ent due to the asymmetry. The me-
dian, M1/2, has a different value than
the average. 2/3rd of all Mmax are
expected in the region delimited by
lines marked with 1/6→ and← 1/6.

The observations shown in Fig. 3.1 are an ensemble of most massive clusters of popula-
tions with different total masses. Since φ(Mmax) is parametrised by Mtot it is possible to derive
the average Mmax in dependence of Mtot and via eq. 3.4 also in dependence of the SFR. This
analytical curve could be compared to a line derived from observations e.g. by least squares
fitting. The least squares fitting procedure would give a line that leads through the region
where most of the Mmax are, but this does not match Mmax due to the asymmetry of φ(Mmax).
Most of the Mmax lie below Mmax.

To constrain δ t from the observations it is more convenient to use the region where a
certain fraction of the data is expected. The location of this region —at high or low values
of Mmax— depends on the duration of the formation epoch: A long formation epoch pushes
the region towards high masses, a short formation epoch to lower. A larger β steepens the
relation. The best fitting region where 2/3rd of the most massive clusters are expected is
shown in Fig. 3.1. As found by Weidner et al. (2004) the values of δ t = 10 Myr and β =
2.4 provide a good fit to the data. Complete populations of star clusters form in formation
epochs lasting for 10 Myr which is comparable to the time-scale of the emergence of cluster
populations from spiral arms (Egusa et al., 2004; Bonnell et al., 2006b).

3.3 A method to derive star formation histories using star clusters

3.3.1 Concept and restrictions

The analysis of the Mmax(SFR) relation suggests that the SFH of a galaxy can be interpreted
as a sequence of formation epochs lasting for ≈ 10 Myr. A star cluster population with a
total mass determined by the current SFR emerges during each formation epoch. Therefore it
should be possible to infer the SFR from the properties of this population, but for the largest
part of the lifetime of a galaxy only a small fraction of coeval clusters is observable making
the determination of the population mass difficult.



28 CHAPTER 3. STAR FORMATION HISTORIES OF GALAXIES

On this account we propose a different approach using only the most massive clusters
of each formation epoch. The mass of the most massive cluster also depends on the current
SFR, but the distribution of them does not allow the derivation of the SFR from only one most
massive cluster. If it is assumed that the galaxy-wide SFR changes significantly only on a
time-scale that includes a number of formation epochs, then the clusters of this set of forma-
tion epochs can be seen as an ensemble of identical cluster populations. For the ensemble
average of the most massive clusters the mass of the population can be calculated using the
Mmax(SFR) relation: The probability density φ(Mmax) is parametrised by Mtot = SFR×δ t and β

and consequently also Mmax, written symbolically as

Mmax = f (SFR), (3.7)

where f (SFR) is given by the integral of eq. 3.6. Thus the SFR corresponding to this ensemble
follows by inversion of the previous equation,

SFR = f−1(Mmax). (3.8)

The inversion of the integral ( f ) is done numerically.
This gives the general idea to reconstruct SFHs: The lifetime of a galaxy is divided into

time windows containing a number of formation epochs. For each of the windows the average
mass of the most massive clusters is calculated and from this mass the underlying SFR is
derived.

The age determinations of available cluster data for galaxies, as e.g. the Large Magellanic
Cloud (de Grijs & Anders, 2006), usually have uncertainties of ≈ 0.4 dex. If the observational
situation is optimal, i.e. observations in the most suitable filters could be made, then the age
uncertainty can be much smaller. de Grijs et al. (2005) obtained ∆ log(age/yr) / 0.15 “in the
majority of cases” for conditions as for NGC 3310. Since it does not make any sense to try to
detect variations of the SFR on time-scales shorter than the age uncertainties of the data, the
averaging window has to be chosen to have the same length (or longer) than the available age
uncertainty. Because the error is constant in logarithm the length of the averaging window
depends on the age. We chose a length of 0.5 dex for the averaging window. A sequence of
neighbouring, independent averaging windows leads to a SFH determined at discrete points
in time over the lifetime of a galaxy. For a continuous SFH the averaging window is moved
in 10 Myr-steps. At old ages the length of the averaging window is reduced to ensure that
the oldest formation epoch used in the averaging window contains a cluster. An averaging
window filled only halfway would lead to a systematically underestimated SFR.

As the averaging window increases with age, the minimum duration of resolvable events
in the SFH also increases. This is an inherent restriction of our proposed method. Short bursts
of star formation which happened at large ages cannot be resolved.

3.3.2 Corrections for dynamical cluster evolution

The cluster ages and masses for large samples of clusters are usually determined by fitting
models to observed spectral energy distributions. The age and the “initial” mass of a cluster
are parameters for the fitting routine. In all cases the cluster mass is determined by scaling a
model “initial” mass. Since the applied models usually only consider mass loss due to stellar
evolution and not due to dynamical evolution, the fitted mass of a cluster does not correspond
to the initial cluster mass for which the Mmax(SFR) relation is valid.
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Star clusters are no isolated static objects: the gravitational force keeps the stars in constant
motion with respect to the centre of mass, which itself moves on an orbit through the host
galaxy. Stars can evaporate from the region dominated by the cluster potential and leave
their star cluster. This mass loss of the cluster due to dynamical evolution depends on the
eccentricity of the orbit and the distance to the galactic centre. Furthermore, it depends on the
mass of the host galaxy which determines the strength of the tidal field.

Since these parameters are mostly not available, the analytic model from Lamers et al.
(2005a) for the average mass loss suffered by a cluster in a galaxy is used. Lamers et al. (2005a)
find a good agreement of their model with the results of Baumgardt & Makino (2003), who
give a formula derived from N-body experiments.

For the statistical model adopted here it is assumed that cluster disruption depends only
on the initial mass (Boutloukos & Lamers, 2003). In this case, the initial mass can be calculated
from the observed mass and age using

Mi(t) =

((
M

M�

)γ

+
γt
t0

) 1
γ

, (3.9)

where γ = 0.62 is identical for all galaxies. t0 describes the tidal field and can be determined
from the dissolution time of a 104 M� cluster,

t0 =
( t4

660

) 1
0.967

. (3.10)

The parameter t4 has been determined for a number of galaxies (cf. Boutloukos & Lamers,
2003; Lamers et al., 2005b).

3.3.3 Upper and lower limit for the SFH

The observed cluster content of a galaxy usually does not provide a cluster for every forma-
tion epoch. The number of observed clusters older than a few Gyr is much smaller than the
number of formation epochs. de Grijs & Anders (2006) found only ≈ 10 clusters older than
4 Gyr in the Large Magellanic Cloud, as similarly Bastian et al. (2005) for M51. This originates
from a SFR which was so low that no clusters were formed being massive enough to be visible
today. The brightness limit of the observations is therefore an upper limit for the brightness of
the actually formed most massive cluster. With a cluster evolution model the brightness limit
at a given time can be converted to an initial mass which then is the upper mass limit for the
most massive cluster. The GALEV models (Schulz et al., 2002) give the luminosity evolution
M (t) of a “simple stellar population” (i.e. single burst, single metallicity) with a mass of
1.6× 109 M� for different photometric bands. By scaling M (t) to the limiting magnitude of
the observation, Mlim, with the band chosen according to the bands used in the cluster-mass
fitting, the limiting mass can be derived (cf. Hunter et al., 2003):

Mlim(t) = 1.6×109+0.4(M (t)−Mlim) M�. (3.11)

The GALEV models do not take dynamical evolution into account, therefore Mlim has also to
be corrected for dynamical evolution as described in the previous section (M = Mlim in eq. 3.9).

Now the SFH can be derived with Mlim as the most massive cluster in those formation
epochs that do not contain any clusters, leading to the upper estimate of the SFH. Since Mlim in-
creases for older ages due to the internal evolution of clusters, the derived SFR also increases,
which does not necessarily reflect the underlying SFH.
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Figure 3.3: Test of the new method
for a modelled constant input SFR
(dashed line in the lower part). In
the upper part the most massive
clusters of each 10-Myr formation
epoch are shown (dots). The solid
line in the lower part is the recon-
structed SFH using the method de-
scribed in the text.

The lower limit of the SFH is given by using Mmax = 0 in the epochs containing no cluster,
corresponding to the assumption that during these epochs no star formation took place at all.

3.3.4 Self-consistency checks

In the next section tests to analyse the systematic errors of our method are made using mod-
elled SFHs. For an observed nearby galaxy the obtained results can be compared to indepen-
dently determined quantities. The SFH derived using star clusters should be similar to the
one obtained using colour-magnitude diagrams. This comparison can be difficult if the used
regions of the galaxy differ.

The total mass of stars in a galaxy can be calculated since with our method a SFH for
an entire galaxy is derived. For each 10-Myr epoch a SFR has been determined, from which
the mass of the formed stars can be calculated. The sum over all epochs gives the mass of
the stellar content of the galaxy. When deriving this mass, stellar evolution is not taken into
account, i.e. all stars that ever formed are counted regardless of whether they still exist or not.
This can be compared to independent determinations of the stellar content of a galaxy.

Furthermore, the cluster formation rate should reflect the structures found in the SFH.
For each most massive cluster an appropriate total number of clusters should exist. This
comparison of the cluster formation rate (i.e. number of clusters per time) and the SFH can
be done e.g. by using a cluster formation rate also derived using a moving time window.

3.4 Modelled star formation histories

To test our method synthetic star cluster populations were generated for different SFHs. The
aim is to verify if an input SFH can be re-extracted and to study the effects of the averaging.
For this purpose we first consider the simplest case with optimal data, i.e. a constant SFR
and no measurement uncertainties for the age. Models with a varying SFR that include the
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Figure 3.4: Same as Fig. 3.3 but for
a slowly linearly decreasing input
SFH. Here an age uncertainty with
στ = 0.15 dex was included, leading
to the decline at high ages as dis-
cussed in the text.

age uncertainties show the capacity of our method. For clarity and to focus on the effects of
the averaging and age uncertainties, cluster evolution is only considered in the last model
(Fig. 3.9).

The general procedure of our models is as follows: In time steps of 10 Myr complete
cluster populations are generated with a total mass given by eq. 3.4 and the mass limits
ML = 5 M� and MU = min(Mtot,MU,phys) with MU,phys = 109 M�. Then an age uncertainty is
assigned to each cluster with age τ , drawn randomly from a Gaussian in logarithmic age,
N (log10 τ ′; µ = log10 τ,στ). The values chosen for the variance στ are 0.15 dex and 0.35 dex,
corresponding to the typical uncertainty range of the SED fitting method (de Grijs et al., 2005).
Uncertainties larger than 0.5 were rejected and generated again until they are smaller than 0.5.
The procedure for synthetic cluster evolution is described in the Section of the respective
model. For each 10 Myr interval only the most massive cluster is shown in Figs. 3.3–3.5.

3.4.1 Constant SFR

Figure 3.3 shows the distribution of the most massive clusters for a constant input SFR (dashed
line in the lower part) not including age uncertainties. It appears as if the masses of the most
massive cluster increase with age, which is a size-of-sample effect. Due to the logarithmic
axis 90 % of the clusters are in the age range 9 ≤ log10 τ ≤ 10, therefore the probability to get
a very massive cluster by chance is higher in this range. Similarly the probability to sample
clusters in the mass range below the average mass of the most massive cluster (Mmax, eq. 3.6)
increases. This leads to the wedge-like shape of the distribution of the most massive clusters.

The derived SFH (solid line) only shows a large variation at young ages, where the large
averaging window of 0.5 dex in log age contains only a few 10 Myr formation epochs. There-
fore the reconstructed SFH is calculated from too few clusters. For ages older than ≈ 100 Myr
the reconstructed SFH agrees within the expected statistical variations (as discussed in Sec-
tion 3.4.3) with the input SFH. The features in the reconstructed SFH at an age of 10 Gyr are



32 CHAPTER 3. STAR FORMATION HISTORIES OF GALAXIES

Figure 3.5: Same as Fig. 3.4 but
for a SFH with three well-separated
bursts.

artefacts due to the shrinking averaging window.

3.4.2 Varying SFR

Figure 3.4 shows the SFH obtained from a linearly decreasing SFR. In this model an age uncer-
tainty with στ = 0.15 dex was included as described above. This causes a systematic deviation
of the reconstructed SFH towards smaller SFRs at old ages. Although cluster populations
were only generated up to an age of 10 Gyr the ages of individual clusters can be allocated
up to maximally log10 τ = 10+0.5. Thus, for many old formation epochs not the actual most
massive cluster corresponding to it is used but the second or third etc. most massive. There-
fore the SFR is underestimated. Besides this effect introduced by the age uncertainties the
behaviour of the reconstructed SFH is similar to the one of the previous model: The recon-
structed SFH follows the slow change of the input SFH within the same degree of deviations.
There is a large scatter in the SFH for ages younger than ≈ 100 Myr. Also as in the constant
case the artefacts at the oldest ages (log10 τ ' 10.3) are visible. This model allows to conclude
that our method is capable of reproducing slowly changing SFHs.

The modelled SFH shown in Fig. 3.5 has three well-separated bursts lasting from 0–200 Myr,
1 000–1 200 Myr, and 8 800–10 000 Myr. During the bursts the SFR is increased by a factor of
10. Again the cluster ages were generated with an age uncertainty with στ = 0.15 dex. Our
method results in an undulating SFH with peaks roughly coinciding with the centres of the
bursts. The oldest burst is affected by the decline of the reconstructed SFH due to the way
how the age uncertainties are assigned. Thus the maximum is shifted towards younger ages.
In the reconstruction the shape of the SFH is much less pronounced than in the original. The
age uncertainties and the averaging procedure lead to a larger width of the recovered bursts.
As the most massive clusters of a burst are spread over an interval longer than the burst the
amplitude of a recovered burst also decreases.

In Figures 3.3 to 3.5 the input SFHs guide the eye to see the appropriate structure in the
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Figure 3.6: Averaged reconstructed
SFHs (thick solid lines) of a sam-
ple of 1000 synthetic cluster popula-
tions for different input SFHs (thin
solid lines). Also shown are the cor-
responding deviations, σSFR+ and
σSFR−, as discussed in the text (dot-
ted lines, eq. 3.13 and 3.14).
a) constant input SFH, no age error.
b) three well separated bursts, age
error στ = 0.15 dex.
c) three well separated bursts, age er-
ror στ = 0.35 dex.
d) one burst per Gyr, age error στ =
0.15 dex.

SFHs derived from the cluster distributions. The distribution of the most massive clusters, the
age uncertainties, and the averaging process in our method lead to a much less distinct struc-
ture in the reconstructed SFH than in the initial one. In Section 3.4.4 we present a criterion to
decide which features in a reconstructed SFH are caused by variations in the initial SFH and
are not merely due to systematic effects. For this purpose it is necessary first to investigate
the systematic effects of our method, which is the object of the next Section.

3.4.3 Statistical scatter in the reconstructed SFH

The models presented above show that the input and the reconstructed SFHs differ, espe-
cially for ages younger than ≈ 100 Myr. Due to the small number of clusters used for the
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reconstructed SFH in the respective formation epochs the scatter in the reconstructed SFH in-
creases. To investigate the expected scatter in the reconstructed SFHs, a sample of star cluster
populations with the same SFH was created. For each of the input SFHs, 1000 synthetic clus-
ter populations (i.e. 1000 galaxies) were generated with different initial random seeds and the
SFH was re-extracted from the clusters. Then the sample average, SFR(t), was calculated for
each formation epoch,

SFR(t) =
1

1000

1000∑
i=1

SFRi(t), (3.12)

where SFRi(t) is the SFH of an individual cluster population i. To achieve an estimate of the
statistical spread we calculated the positive and nevative deviation, σSFR+ and σSFR−, from
the average SFR at a given time,

σSFR+(t) =
1

N+(t)

∑
SFRi(t)−SFR(t)>0

|SFRi(t)−SFR(t)| (3.13)

σSFR−(t) =
1

N−(t)

∑
SFRi(t)−SFR(t)<0

|SFRi(t)−SFR(t)|, (3.14)

where N±(t) is the number of SFRs larger or smaller than SFR(t) at a given time t. This partic-
ular choice of an individual positive and negative average deviation will be discussed after
the average SFHs.

Figure 3.6 shows the results of the experiments. For the experiment presented in panel a)
a constant SFH without age errors was chosen. The sample average and the input SFH agree
well, differences occur only for young ages. This is because of the small number of formation
epochs used for reconstructing the SFH at these ages. Since the averaging window contains
few epochs the scatter in the reconstructed SFH increases, which is also visible in the progress
of σSFR±. The average deviations decrease with age because the number of formation epochs
used for the reconstructed SFH increases as a consequence of the averaging window which
moves in logarithmic time. At the oldest ages the average deviation increases again since the
averaging window contains a decreasing number of formation epochs with a cluster, which
is the same effect as for young ages. As described in Section 3.4.1 the SFH ends at the oldest
ages with an artifact.

Panels b) and c) of Fig. 3.6 show the results for the SFH with three bursts and different
age uncertainties. For the smaller age uncertainty, στ = 0.15 dex, all three epochs of enhanced
star formation can be identified, i.e. the variation of SFR(t) is comparable or larger than
σSFR±(t). However, the reconstructed shape of the second and third burst is much wider
and less pronounced. The larger age uncertainties (στ = 0.35 dex) lead to a reconstructed
SFH where the SFR decreases with age and only allow the reconstruction of the youngest
burst. Due to the age uncertainties SFR(t) drops at old ages, as discussed in Section 3.4.2. The
average deviations σSFR± behave similarly to the constant case.

In the case of one burst every Gyr, lasting for 200 Myr, (Fig. 3.6, panel d) with the small age
uncertainty (στ = 0.15 dex) only the youngest burst can be detected. Then the reconstructed
SFH declines until a minimum between the first and second burst is reached. From the second
burst on only a constant SFR with an intermediate value can be recovered. σSFR± has the same
features as before.
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Table 3.1: Original and recon-
structed total masses of the stellar
content for the different input SFHs.
Output Mtot is the ensemble aver-
age of the 1000 galaxies with the
average deviation.

Model: input Mtot output Mtot
[log10 M�] [log10 M�]

Fig. 3.7 a) Constant SFR
no age error

0.01 M�/yr 8.00 8.02 +0.02
−0.02

0.1 M�/yr 9.00 9.01 +0.03
−0.03

1 M�/yr 10.00 10.01 +0.04
−0.04

10 M�/yr 11.00 11.01 +0.05
−0.04

Fig. 3.7 b) Three bursts
στ = 0.15 dex 9.39 9.40 +0.05

−0.04
Fig. 3.7 c) Three bursts

στ = 0.35 dex 9.39 9.41 +0.06
−0.04

Fig. 3.7 d) One burst / Gyr
στ = 0.15 dex 10.45 10.48−0.07

−0.05

A comparison of the averaged recovered SFHs and the input SFHs of these models show
the capabilities of our method. Due to the averaging process structures in the SFH on time
scales shorter than the averaging window cannot be reconstructed. In the other cases the
sensitivity for structures in the SFH depends on the quality of the age determination. For the
situation of a SFH only slowly varying or with bursts that are well separated and small age
errors, the shape of the underlying SFH can be extracted with our method. Large age errors
of the star clusters or highly variable SFHs do not allow us to recover all of the initial features
in the derived SFH. However, even in these cases the absolute value of the recovered SFR is
of the same order of magnitude as the actual one.

Thus, the total recovered stellar mass (Mtot,rec =
∫

SFR(t)dt) corresponds to the underlying
SFH, summarised in Table 3.1. The ensemble average of Mtot,rec (average of the 1000 galaxies)
equals to the input value and no bias is introduced.

The second aim of the models is to investigate the scatter in the reconstructed SFHs. Two
properties of the average deviations, σSFR+ and σSFR−, are noticeable: First, in the log-log
diagram the positive and negative deviation have for a certain age approximately the same
distance to SFR(t). A reason for this effect could lie in the asymmetric distribution of the
most massive star cluster (Fig. 3.2). Thus, using the average of σSFR+ and σSFR− would lead
to a wrong uncertainty estimate. The second property of both average deviations is that their
values relative to SFR are independent of the value of SFR. This is visible in Fig. 3.7, where
the quantities

σ̂SFR±(t) =
σSFR±(t)
SFR(t)

, (3.15)

the relative average deviations, are plotted. To show the independence of σ̂SFR± from the
shape of a SFH the SFHs from Fig. 3.6, panels b)–d), are used. The model with a constant
SFR of 0.1 M�/yr (Fig. 3.6, panel a)), and additional models with 0.01 M�/yr, 1 M�/yr, and
10 M�/yr demonstrate the invariance from the absolute value of the SFR. The independence
of the relative average deviations from the shape and absolute value of the SFH makes this
quantity suitable for estimating the uncertainties of the method. For the implementation in
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Figure 3.7: Relative errors (thin
solid lines) for different constant
SFHs with a SFR of 0.01 M�/yr,
0.1 M�/yr, 1 M�/yr and 10 M�/yr
and for the bursting cases as above,
Fig. 3.6. The thick solid line shows
an upper envelope of the relative er-
ror as described in the text (eqs. 3.16
and 3.17).

our method for deriving SFHs of individual galaxies we used the analytic fitting formulae

σ̂SFR+(τ) =
45

1+ exp1.3(log10 τ−5.4)
(3.16)

and

σ̂SFR−(τ) =
1

1+ exp1.2(log10 τ−8.0)
. (3.17)

These fits are a conservative estimate and lie slightly above the experimental data. In the
method the absolute average deviation is then calculated by

σSFR±(τ) = σ̂SFR±(τ)×SFR(τ). (3.18)

It will be used in the criterion to detect significant variations in a SFH, discussed next.

3.4.4 A criterion to detect significant variations in a SFH

Due to the probabilistic distribution of the most massive cluster scatter in the reconstructed
SFH is expected. As visible in Figs. 3.3 and 3.4 the reconstructed SFH can mimic periods of
reduced or enhanced star formation. However, the variations generated in this way are not
caused by real events. The average deviations derived in the previous Section can be used to
give the region of SFHs compatible with the reconstructed one. But to verify variations in a
SFH we suggest to disproof the hypothesis that there are no variations. This is done by setting
up the null hypothesis of a constant SFH with a SFR equal to the time-averaged SFR, 〈SFR〉, of
the reconstructed SFH. If the reconstructed SFH leaves significantly the 1σSFR±-region of the
null hypothesis, a constant SFH, can hardly be supported. Thus the actual SFH of the galaxy
has to have variations. This is our suggested criterion of significance. Note that this criterion
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Figure 3.8: Reconstructed SFHs
from Figs. 3.3, 3.4, and 3.5 (top to
bottom: constant, linearly decreas-
ing, with three bursts; thick lines),
shown with the null hypothesis
of a constant SFH (thin solid lines,
〈SFR〉). For a significant variation of
the reconstructed SFH it has to cross
the 1σSFR± line (inner dotted lines).
The outer dotted lines are at 2σSFR±.

implies that troughs and maxima that result from a truly variable SFR differ by more than
2σSFR±.
〈SFR〉 is given by the integral over the SFH, divided by the time. With our method two

SFHs are reconstructed, the lower limit with gaps where no cluster was observed, and the
upper limit with the fading limit mass used in the gaps. Therefore 〈SFR〉 has to be calculated
as the mean of the average SFR of both limits. In reality these limits start to differ for older
ages, caused by incompleteness due to cluster evolution and observational limits. Especially
in galaxies with strong cluster evolution the upper limiting SFH can shift 〈SFR〉 towards un-
reasonable values if it is integrated over all ages. To prevent this we integrate only up to the
age where the logarithms of the upper and lower limit differ by less than 0.2.

The outcome of this procedure is displayed in Figs. 3.8 and 3.9. Figure 3.8 shows again the
SFHs of Figs. 3.3, 3.4, and 3.5, now with the criterion for variations. Since in these models no
cluster evolution was incorporated, we integrated up to an age of 6 Gyr (where the thin solid
line stops) to obtain 〈SFR〉. In the constant case the input SFR (0.1 M�/yr) and the average
(〈SFR〉 = 0.12 M�/yr) are in good agreement. The extremes of recovered SFH barely exceeds
the 1σSFR± region. Thus the null hypothesis of a constant SFH cannot be rejected, as is correct
in this case.

The reconstructed linearly decreasing SFH lies, during most times, far away from the
average. At young ages the recovered SFH lies sometimes even below 2σSFR−, and before
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Figure 3.9: Recovered SFH for a
LMC-type cluster model that in-
cludes dynamical evolution and the
missing of clusters due to the ob-
servational flux limit (dashed line
in the upper part). As previ-
ously the upper panel shows the
cluster distribution, whereby here
each cluster is shown with its cur-
rent mass after evolving it dynam-
ically, and the lower panel con-
tains the reconstructed SFH (thick
lines). Due to missing clusters
the reconstructed SFH branches in
two parts, as described in Section
3.4.5. The thin solid line is the con-
stant SFH (〈SFR〉)used to detect sig-
nificant variations of the true SFH
and stops when the averaging is
stopped. Dotted lines indicate the
1σSFR± and 2σSFR± regions.

the decline due to the age uncertainties at old ages it rises above 2σSFR+. From this can be
deduced that the null hypothesis is not consistent with the reconstructed SFH. A clear trend
of increase with age is visible.

The bursting case is harder to identify. Only the first burst (0–200 Myr), and the last dip
(1.2–8.8 Gyr) leave unambiguous traces, albeit the shape is less pronounced than that of the
underlying SFH. The two other bursts and the first dip merely allow an “educated guess” of
the shape of the actual SFH. As above a constant SFH is not consistent with the reconstructed
SFH. However, the exact structure of this SFH cannot be determined with sufficient certainty,
although it is visible.

The above cases show that our suggested criterion of significance allows us to distinguish
between features in the actual SFH and artefacts due to the method.

3.4.5 Constant SFR including cluster evolution and an observational limit

The models described above do not account for cluster evolution and the observational limit-
ing magnitude for cluster detection. To show the consequences of these effects a galaxy-model
with conditions similar to the Large Magellanic Cloud (LMC) was generated. The stellar mass
of the LMC was determined by Kim et al. (1998) to be 2.0×109 M�. Assuming a constant SFH
leads to a SFR of≈ 0.1 M�/yr, which we used in our model. The cluster-disruption parameter
is t4 = 7.9×109 yr (Boutloukos & Lamers, 2003) and the flux limit is Mlim =−3.5 mag (Hunter
et al., 2003) in the V Band. The generated data and the results are shown in Fig. 3.9.

Because of the weak tidal field clusters evolve only slowly and the high mass-end of the
clusters is similar to the case without cluster evolution. The effect of the observational limit is
clearly visible as a cut-off in the lower part of the cluster distribution. The minimum observ-
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able mass increases with time due to the luminosity evolution of the clusters.
As in the previous models the reconstructed SFH deviates from the input value at young

ages because of the small number of formation epochs used for averaging. Then there is a
period of good agreement, until some formation epochs contain no clusters any more. Due
to the cluster evolution the clusters of these epochs are dissolved or have lost such a large
fraction of their stellar content that they cannot be detected. Therefore the reconstructed SFH
now shows two branches corresponding to the upper and lower limit. Assuming that no
detection of a cluster means that there was no star formation activity leads to the lower limit.
Using the detection limit as the mass of the most massive cluster gives the upper limit. The
true SFH lies between both limits, which is indeed confirmed: Until the branching of the
upper and lower limit the 1σSFR±-region contains the reconstructed SFH. From this point on
only a rough estimate of the SFH can be obtained. From the input SFH a total stellar mass
of 1× 109 M� was built up. The upper and lower limit reconstructed 0.78× 109 M� and
1.74× 109 M�, embracing the model value. That the reconstructed mass range contains the
known input value constitutes a consistency check.

3.5 Conclusions and Summary

Based on the assumption that all stars form in star clusters it is possible to explain the relation
between the brightest clusters in a galaxy and the present star formation rate, assuming that
the brightest cluster is also the most massive. During a formation epoch lasting for ≈ 10 Myr
a complete population of star clusters is formed. The mass of the most massive cluster obeys
a distribution function that can account for the scatter in the Mmax(SFR) relation. The SFH of
a galaxy can then be seen as a sequence of formation epochs. Starting from this we presented
a new method to derive SFHs using star clusters taking into account the statistical properties
of the most massive cluster as well as their dynamical evolution.

The method was tested for a number of model SFHs for which synthetic cluster popula-
tions were created. The tests show that our method is capable of reproducing the modelled
SFHs if they are only slowly varying or have bursts which are well separated. To be resolved,
the time between two short-time bursts needs to be longer than 0.5 dex, the time over which
is averaged. However, the typical uncertainties in the age determination and the need for
averaging do not allow a shorter averaging window. Artefacts result from averaging over too
few small age bins and from missing data at high ages. The example SFHs show to which
degree our method can be used to make confident statements about the SFH of a galaxy.

A model including realistic conditions for observation and cluster evolution also leads to
good agreement between the input and the reconstructed SFH. In following contributions we
will apply this method to the galaxies LMC (this thesis Chapter 4), SMC, M51 and M101. For
the LMC we will compare this new method to the results obtained using the CMD method.
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Chapter 4

The star formation history of the
Large Magellanic Cloud as seen
by star clusters and stars

Th. Maschberger & P. Kroupa
MNRAS 411:1495–1502 (2011)

In this work we derive the star formation history of the Large Magel-
lanic Cloud from its star cluster population. We follow two methods,
either using only the most massive clusters (following Maschberger &
Kroupa, 2007, this thesis Chapter 3) or using the whole cluster popula-
tion, albeit then only for a shorter age span. We compare these results
with the star formation history derived from colour-magnitude dia-
grams and find good overall agreement up to ≈ 1 Gyr. For later ages,
especially the “cluster age gap”, there is a deficiency of star clusters in
relation to the star formation rate derived from the colour-magnitude
diagram. The star formation rates following from the whole cluster
population lie a factor of≈ 10 lower than the star formation rates from
the colour-magnitude diagram, suggesting that only≈ 10% of all stars
form in long-lived bound star clusters.

4.1 Introduction

The understanding of galaxy evolution is a major goal of astrophysics. Every large-scale event
in the life of a galaxy, as e.g. an interaction with another galaxy, has its own pattern of star
formation. Since stars can have long lifetimes, the stellar population preserves information of
such events, allowing one to re-trace the galaxy’s evolution from the present stellar content.
In this work we focus on the star formation history, the progression of the star formation rate
in time. This study has two main aspects, the comparison of two different methods to obtain a
star formation history, from colour-magnitude diagrams and from the star cluster population
using the method of Maschberger & Kroupa (2007, this thesis Chapter 3). Furthermore we
discuss the star formation history of the Large Magellanic Cloud, which serves as a “guinea
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pig” for the comparison.
The common method to obtain a detailed star formation history is to observe the stars in

a galaxy (or a part of it). From the distribution of the stars in a colour-magnitude diagram
(CMD) the star formation rate at a given time can be derived using modelled tracks of stellar
evolution. To get a result which is representative for the whole galaxy it is necessary to ob-
serve a significant fraction of the stars in the galaxy, distributed over a large area. This leads
to limitations of this method: since individual stars need to be resolved, only nearby galaxies
can be examined. Also, a large number of stars and a large area demand a big observational
effort. Fortunately, the Large Magellanic Cloud has been extensively observed, so that a set
24 million stars is available from which Harris & Zaritsky (2009) derive the star formation
history.

Another approach to infer a star formation history was presented by Maschberger &
Kroupa (2007, this thesis Chapter 3). Here the fact is used that practically all stars form
in star clusters. The notion of a star cluster is here taken in a wider sense, denoting stellar as-
semblies from the smallest size, say a dozen stars, up to classical globular clusters, and does
not necessarily imply a bound system. Whereas small clusters will disperse their stars rather
quickly into the galactic field, massive clusters have lifetimes comparable to a Hubble time.
Since the time distribution of massive clusters is related to the star formation rate at their
birth, they can be used to find the star formation history of their host galaxy. This approach
using the most massive star clusters has been investigated by Maschberger & Kroupa (2007,
this thesis Chapter 3) from a theoretical point of view, applying Monte-Carlo models to study
how reliable the massive clusters trace the star formation history. The value of this method
is that, as (massive) star clusters are observable up to much further distances than individual
stars, the star formation history of a wider range and number of galaxies can potentially be
obtained.

Additionally the time-sequence star formation occurring in star clusters can be deter-
mined by simply tanking all star clusters into account, given that also a large fraction of
lower-mass star clusters is observed. Subramaniam (2004) compared in six regions of the
Large Magellanic Cloud the cluster formation rates and star formation rates (derived from
colour-magnitude diagrams), and found that in general the number of formed clusters fol-
lows the “field” star formation rates. Cluster formation rates only have also been derived by
Girardi et al. (1995), Pietrzyński & Udalski (2000), Hunter et al. (2003), and de Grijs & Anders
(2006) Our approach is slightly different, we use the total mass in clusters per time instead of
number of clusters per time. With the diminishing brightness of star clusters as they age the
number of older star clusters decreases, so that only a shorter fraction of the galaxy’s life-time
can be investigated in this way.

The Large Magellanic Cloud has been the target of many research projects and is ideal to
compare the CMD and star cluster methods. In the literature there are a number of studies
available on the star formation history of the Large Magellanic Cloud, which are based on
the CMD approach (e.g. Harris & Zaritsky, 2009; Olsen, 1999; Holtzman et al., 1999; Dolphin,
2000; Smecker-Hane et al., 2002; Subramaniam, 2004; Javiel et al., 2005). Furthermore, the
star cluster population of the Large Magellanic Cloud has been investigated, and ages and
masses of a large fraction of the star clusters have been determined (Pietrzyński & Udalski,
2000; Hunter et al., 2003; de Grijs & Anders, 2006). This enables us to study the star formation
history of a galaxy with two independent methods.

These introductory remarks outline the structure of this work, in summary: After first dis-
cussing the star cluster data set, we derive the star formation history of the Large Magellanic
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Figure 4.1: Overview of the observed regions in the Large Magellanic Cloud (background
image from Bothun & Thompson, 1988, with astrometry by Parker et al., 1998). The dots mark
the centres of the fields observed by Harris & Zaritsky (2009) and for which a star formation
history was derived using a colour-magnitude diagram. The squares are the boundaries of
the regions observed by Massey (2002), in which de Grijs & Anders (2006) derived star cluster
ages and masses. The open dots are the fields of Harris & Zaritsky (2009) which we selected
for comparison.

Cloud from the most-massive clusters (Sec 4.2.2) and from the total population (Sec. 4.2.3).
Then we describe the results obtained from colour magnitude diagrams (Sec. 4.3). We finish
with a comparison of the results (Sec. 4.4) and a summary (Sec. 4.5).

4.2 The star formation history of the Large Magellanic Cloud as
seen by star clusters

4.2.1 Data

The ages and masses of the star clusters we use for the analysis are taken from de Grijs &
Anders (2006), which re-analysed the photometry of Hunter et al. (2003), which itself is based
on the observations by Massey (2002). The rectangles in Fig. 4.1 show the spatial coverage of
the observed regions with star clusters. The star cluster ages and masses were derived by de
Grijs & Anders (2006) from broad-band spectral energy distributions using their AnalySED
tool which is based on the GALEV single stellar population models (Kurth et al., 1999; Anders
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Figure 4.2: Age-Mass diagram of
the star clusters in the Large Mag-
ellanic Cloud(grey circles original
data from de Grijs & Anders, 2006).
The cluster masses have been cor-
rected for dynamical evolution us-
ing eq. 4.1 with t4 = 8 Gyr (black
dots, top panel) and t4 = 1 Gyr
(black dots bottom panel). 30Dor is
not included in this Figure.

& Fritze-v. Alvensleben, 2003; Anders et al., 2004). The age uncertainties for the 922 star
clusters are in the range ∆ log10(τ/yr) ≤ 0.35 (de Grijs et al., 2005). Due to discrete isochrones
the age-mass diagram in Fig. 4.2 shows columns of star clusters of the same age. The lower
mass limit for detection of clusters increases with increasing cluster age, as clusters fade due
to stellar evolution and dynamical loss of stars, leading to the wedge-like shape of the data in
Fig. 4.2.

The AnalySED tool provides “initial” masses of the star clusters which are corrected for
mass loss due to stellar evolution. However, the mass of a star cluster diminishes in time also
because stars are lost in consequence of dynamical evolution. As we need true initial masses
for the star clusters we correct for the dynamical evolution using the formulae of Lamers et al.
(2005a). Given the dissolution time of a 104 M� star cluster, t4, the initial star cluster mass of
age t is given as

Mini =

[(
M(t)
M�

)0.62

+
0.62× t

(t4/660)1.034

]1.61

(4.1)

(This follows from combining eqq. 7 and 11 of Lamers et al. (2005a), with γ = 0.62 and omit-
ting the term for stellar evolution in eq. 11). For the Large Magellanic Cloud Boutloukos
& Lamers (2003) found log10 t4 = 9.7 (using a smaller data set) and de Grijs & Anders (2006)
gave the slightly larger value of log10 t4 = 9.9 (8 Gyr). Parmentier & de Grijs (2008) carefully
performed a reanalysis of the dissolution time and concluded that it is with the current data
set only possible to constrain t4 to be larger than 1 Gyr. Therefore we use two values for t4, 1
Gyr and 8 Gyr, to correct for dynamical evolution. To visualise the difference between these
values we show in Fig. 4.2 the not back-evolved masses as grey circles, and the “true” initial



4.2. THE STAR FORMATION HISTORY AS SEEN BY STAR CLUSTERS 45

cluster masses as dots, using t4 = 8 Gyr in the top panel and t4 = 1 Gyr in the bottom panel.
For us a larger t4 seems to be more realistic, as the Small Magellanic Cloud has a similar value
(log10 t4 = 9.9, Lamers et al., 2005b), and more massive spiral galaxies with a deeper gravita-
tional potential have smaller values. We will, however, discuss below the implications of both
values when determining the star formation history from the most massive clusters.

Further features in the age-mass diagram besides the typical wedge-like shape were pointed
out by de Grijs & Anders (2006):
(1) The large densities of clusters at log10 τ of 6.6 and 7.2: These are caused by the fitting
procedure. There are no isochrones for clusters younger than 4 Myr (log10 τ = 6.6), and at
log10 τ = 7.2 the isochrones are discrete due to rapid evolution. This does not have a large
influence on the determined SFH.
(2) The under-density of data points between ≈ 3 Gyr and 13 Gyr (≈ 9.5 ≤ log10 τ ≤ 10.1),
which is the “well-known LMC cluster age-gap”.
(3) Overdensities at 7.8≤ log10 τ ≤ 8.0, 2.8≤ log10(M/M�)≤ 3.4 and 8.2≤ lgτ ≤ 8.4, all masses.
This feature could be caused by the last encounter between the Large and Small Magellanic
Cloud, but this cannot be concluded with sufficient certainty because of the lack of better age
resolution and lack of orbital information for the galaxies.

It has also to be noted that this star cluster sample does not contain the 30Dor region,
containing the young star cluster R136. It was classified as a newly formed star cluster (“NC”)
by Bica et al. (1999) and so in a group of objects which were not selected by Hunter et al. (2003).
However, R135 is a massive star cluster having a mass of ≈ 5.5×104 M� (Hunter et al., 1995),
and is the most massive star cluster recently formed. The inclusion of this cluster is therefore
crucial to the method used in the next Section.

4.2.2 Star Formation History using the most massive star clusters

In Maschberger & Kroupa (2007, this thesis Chapter 3) we presented and tested a method to
derive the star formation history of a galaxy using the most massive clusters. This method
is based on the observation that the brightness of the brightest young cluster in a galaxy is
correlated with the (present) star formation rate (Larsen, 2002; Weidner et al., 2004; Bastian,
2008). This can be understood following the argument of Weidner et al. (2004). Within a
certain time span of the galaxy’s lifetime, δ t, the amount of mass assembled in stellar clusters
is proportional to the star formation rate,

Mclusters = A SFR δ t (4.2)

(A is the proportionality constant). This mass in clusters is related to a number of clusters that
have formed,

Nclusters =
Mclusters

M
, (4.3)

where a universal cluster mass function is assumed to calculate the average mass of a star
cluster, M. Interpreting the star cluster mass function as a probability distribution, this then
allows one to calculate the distribution of the most massive star cluster, Mmax, that would
be expected for the given Nclusters . From this model follows a relation of the mass of the
most massive star cluster with the star formation rate within δ t. This can be inverted to
SFR = f (Mmax) which can be used to determine the star formation rate over time, discretised
by δ t.
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In general Mmax follows a probability distribution, related to the star cluster mass func-
tion, which has to be taken into account for the inversion (details of this can be found in
Maschberger & Kroupa, 2007, this thesis Chapter 3). To minimise the number of assump-
tions, especially the exact form (pure power law or Schechter function as suggested by Gieles
et al., 2006b) and parameters of the cluster mass function, we use the relation of the mean
mass of the most massive cluster and the star formation rate. The Mmax–SFR relation can be
directly calibrated with the observed relation of the brightest young cluster and the star for-
mation rate in a galaxy (assuming that the brightest cluster is also the most massive one of
the most recent time interval, an assumption which is discussed in more detail below). This
Mmax–SFR relation is then applied to a mean mass of the observed most massive clusters over
several δ t (choosing the number of used δ t such that during the whole time of averaging the
star formation rate in the galaxy is not changing significantly). By using a moving averaging
window (moved in steps of δ t) the time resolution of the obtained star formation history can
be increased. The length of the averaging window is essentially constrained by the age un-
certainties of the star clusters, which are constant in logarithmic space, so that we keep the
averaging window also constant in log10.

By using Mmax and the empirical calibration we have avoided the need of the exact knowl-
edge of the star cluster mass function. However, another crucial ingredient in this method is
the formation epoch, δ t, which needs more explanation. In this context the often mentioned
“size-of-sample” effect has to be discussed. The “size-of-sample” effect is simply the increase
of the mass of the most massive cluster with increasing sample size. With the general assump-
tions of an unchanging cluster mass function and constant cluster formation rate (number per
time) a logarithmic age-mass diagram has the characteristic upper envelope of an increasing
mass with time. Equally-spaced time intervals in logarithmic space contain more physical
time, thus more clusters are formed and subsequently the mass increases. However, this is
not the full picture as the cluster (or star-) formation rate can change with time, leading for
example to the “age gap” in the Large Magellanic Cloud where barely clusters are found. A
mathematically more correct description would be a star cluster mass function depending on
both mass and time, which is however not very practical. Here the formation epoch, δ t, comes
into the play: this is the time by which the time evolution of a galaxy is discretised. With a
reasonable choice of δ t the star formation rate in the galaxy can be assumed to stay constant,
simplifying the statistical treatment. The increasing envelope in the log(age)-log(mass) dia-
gram is preserved with using δ t (shown in fig. 3, top panel, of Maschberger & Kroupa, 2007,
this thesis Fig. 3.3). The difference to the established understanding of the “size-of-sample”
effect is that one does not increase the size of a single sample, but one instead increases the
number of samples.

The question is now what a reasonable size for δ t is. Already mentioned was the need
for the star formation rate to be constant over δ t, which gives an upper limit for δ t of ≈ 100
Myr, the dynamical time of a galaxy. In fact, the star formation rate should be constant over
several δ t so that it can be averaged over several Mmax. A lower limit is given by the need for
a not too meagre number of clusters that form during δ t, so that the distribution of Mmax is
not too broad. We follow here the choice of Weidner et al. (2004) and Maschberger & Kroupa
(2007, this thesis Chapter 3) of 10 Myr, for the practical reason that most clusters are of this
age in the observational Mmax−SFR plot, as the luminosity of a star cluster peaks at about 10
Myr. Thus the brightest cluster is in many cases of this age and at the same time the most
massive. With a different choice of δ t the brightest cluster would have to be replaced by the
actual most massive cluster in the normalisation, i.e. a true Mmax-SFR diagram would have
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Figure 4.3: Star formation history of the Large Magellanic Cloud derived from the most mas-
sive clusters. In the top panel we shows the age-mass diagram of the star clusters (with
dynamically back-evolved masses, t4=8 Gyr), including 30Dor as the open circle and high-
lighting the most massive clusters of each formation epoch with bigger circles. The dashed
line is the fading limit. The lower panel shows the star formation history derived from the
most massive clusters (with back-evolved masses and t4=8 Gyr) as thick solid lines, split-
ting into two branches, the upper using the fading limit mass in gaps and the lower using
Mmax = 0 M�. The thick dashed branch at early ages follows with including 30Dor. The gray
area is the uncertainty propagated from the uncertainty in the cluster masses. A horizontal
line marks the average star formation rate and is enclosed by the 1σ and 2σ curves (solid and
dashed) derived from the statistical spread of the Mmax.

to be observed. One possible interpretation of δ t = 10 Myr would be that it is the typical
time-scale on which the inter-stellar medium rearranges itself into a coeval population of star
clusters that are distributed according to the star-cluster initial mass function (cf. Weidner
et al., 2004). Anyway, the comparison of the star cluster results with the CMD results will give
an indirect check if our normalisation is correct.

In Fig. 4.3 we show in the upper panel the age-mass diagram of the star clusters, where
the clusters identified as Mmax are the large dots. R136 is shown as an open circle, as it is
not contained in the de Grijs & Anders (2006) sample. The dashed line is the fading limit,
the mass that a cluster with the lowest observed brightness would have (calculated with the
GALEV models). In the lower panel the bold solid curve that splits into two gives the solution
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Figure 4.4: Influence of t4 on the
star formation history of the Large
Magellanic Cloud using star clus-
ters. For the solid line t4 = 8 Gyr and
for the dashed line t4 = 1 Gyr was
used.

for the star formation history (calculated with t4 = 8 Gyr). For the youngest ages the dashed
branch follows by including R136 in the star cluster sample. Generally the obtained star
formation history follows the distribution of the star clusters for about one Gyr, when the
number of clusters starts thinning out. As there are formation epochs during which no star
cluster is detected we can only estimate a lower and upper limit for the star formation rate,
giving the two branches of the bold solid line. The lower limit is simply no star formation at
all (SFR = 0 M�/yr and thus Mmax = 0 M�) and the upper limit is given by the fading limit,
no cluster more massive than the fading limit has formed (else it would have been observed).
The uncertainty in the star formation rate introduced by the uncertainties in the cluster masses
is is visualised as a grey region. It is calculated by using the Mmax values plus/minus their
uncertainty in mass.

The peaks in the star formation rate are somewhat displaced when compared to the loci
of the massive clusters. This is caused by the way we accommodate for the age uncertainties
of the star clusters. The length of the formation epoch δ t can become shorter than the age
uncertainties, which seems to be an over-interpretation of the data. Therefore we chose an
averaging window with the size of the age uncertainties, that is constant in logarithmic time
(0.5 dex), at the expense of time resolution and time-offsets.

Due to the probabilistic nature of Mmax the stochastical scatter in the recovered star forma-
tion rate is very large for young ages, as averaging occurs only over a few δ t, and decreases
with increasing time. To assess the significance in variations of the star formation rate we
show a constant star formation rate (the thick solid line at≈ 0.1 M�/yr) which is embraced by
the statistical 1σ and 2σ scatter (thin solid lines and dashed lines). The amount of statistical
scatter has been determined from Monte-Carlo experiments by Maschberger & Kroupa (2007,
sec. 4.3, eqq. (16) and (17), this thesis Chapter 3, Section 3.4.3, eqq. 3.16 and 3.17). For ages
between 100 Myr and 1 Gyr the star formation rate shows indeed variations at the ≈ 1σ level.

We now turn to discuss the effects of the two values for t4. Figure 4.4 shows this, with
the star formation history using t4 = 8 Gyr as the solid line and t4 = 1 Gyr as the dashed line.
Our results use only massive clusters, which are significantly affected by dynamical evolution
only after a long time. Therefore the two solutions for the star formation history differ only
at large ages. Essentially, the shorter t4 implies a stronger dynamical evolution of the clusters,
which consequently had larger initial masses, leading to a higher derived star formation rate.
The differences in the star formation histories for ages younger than ≈ 1 Gyr are only small.
For larger ages the star formation rates are by a factor of ≈ 10 larger for the smaller t4.
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Figure 4.5: Recent history of star for-
mation in star clusters, derived by
adding up all cluster masses above
a completeness mass, Mc and re-
normalised as described in the text
(Cluster masses were dynamically
back-evolved using t4=8 Gyr). Var-
ious values for Mc have been chosen
to demonstrate the dependence of
the result on the completeness. The
top panel shows the location of the
constant and time-variable Mc in the
cluster age-mass diagram. For the
constant Mc the star formation histo-
ries are shown in the middle panel.
The bottom panel contains the star
formation histories for time variable
Mc, also showing the results from
the middle panel as grey lines for
comparison.

4.2.3 Star Formation History using total mass in star clusters

As the Large Magellanic Cloud is very near to the Milky Way not only high-mass but also
intermediate-mass clusters (with masses down to a few thousand M�) can be detected over
an extended time span. This allows us to use not only the most massive clusters to derive star
formation rates, but also the whole cluster population. The fraction of star formation in star
clusters in a given time interval is simply the ratio of the total mass of star clusters and the
length of the interval,

S̃FR(t,Mc) =
1
∆t

∑
Mi>Mc

t(Mi)∈∆t

Mi, (4.4)

where Mc is the completeness mass which follows from the detection limit.
We derive the history of star formation in star clusters by moving a time interval of con-
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stant logarithmic size (0.35 dex) in steps of 1 Myr until its boundary reaches an age of 400
Myr. For older ages the number of star clusters is too small to reach reasonable results. We
use dynamically back-evolved cluster masses with t4=8 Gyr.

Because the observations do not reach down to the lowest masses which star clusters can
have, S̃FR gives only a fraction of the total star formation rate in star clusters. Thus the mass
in star clusters has to be extrapolated to a total mass of stars in star clusters by assuming
a star cluster mass function, ζ ∝ M−β , a power law parametrised by an exponent (β ) and a
lower and upper mass limit (ML and MU). ζ is here normalised as a probability density, i.e.∫ MU

ML
ζ dM = 1. The normalisation factor follows from the observed fraction of star clusters,

Mobs

Mtot
=

∫ MU
Mc

Mζ dM∫ MU
ML

Mζ dM
, (4.5)

as

a(Mc) =

∫ MU
ML

Mζ dM∫ MU
Mc

Mζ dM
. (4.6)

The correct star formation rate in clusters is then

SFR(t,Mc) = a(Mc)S̃FR(t,Mc). (4.7)

The derived star formation history depends on the chosen completeness mass and parameters
of the star cluster mass function.

In order to explore the robustness of the obtained results we turn first to the completeness
mass, as it seems not to be too well constrained in our data set (see e.g. the discussion in
Parmentier & de Grijs, 2008 and Maschberger & Kroupa, 2009, this thesis Chapter 5) To cir-
cumvent this problem we choose various possibilities for Mc, shown as lines in the top panel
of Fig. 4.5, the age-mass diagram. For a minimal dependence on the parameters of the cluster
mass function we choose Mc constant in time, with different values. Therewith one prohibits
systematic effects in the shape of the star formation history caused by wrong parameters for
the cluster mass function as the normalisation factor is constant for all age bins. The results
are shown in the middle panel of Fig. 4.5, for a better comparison re-scaled such that the
star formation histories lie near together (actually using in all cases β = 2, ML = 100 M� and
MU = 106 M�). The general structure is the same for all star formation histories, except for
the very youngest ages because of a lack of massive clusters. Further, small variations appear
around ≈ 15 Myr, ≈ 60–90 Myr and after ≈ 300 Myr. The first two small variations are caused
by an insufficiently small number of clusters more massive than Mc. The discrepancy after 300
Myr is almost certainly caused by a too low mass for the lowest Mc, leading to an incomplete
data set at these ages.

For an optimal use of the available data we choose a time-variable Mc, running parallel
to the lower envelope of the star clusters in Fig. 4.5, top panel. Now each age bin has an
individual normalisation constant, potentially introducing time-dependent systematics. The
lower panel of Fig. 4.5 shows the obtained star formation histories with the results for the
constant Mc (i.e. the results of the middle panel) plotted in grey for comparison. The overall
structure of the star formation history is the same as for constant Mc, with the exception that
the peak at 90–150-Myr is more like a plateau. The small variations at ≈ 15 Myr, ≈ 60–90
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Figure 4.6: Influence of the param-
eters of the star cluster mass func-
tion on the normalisation of the
star formation history, derived from
the complete cluster population
(dynamically back-evolved cluster
masses with t4 = 8 Gyr and time-
variable completeness mass Mc, the
middle in Fig. 4.5, top panel). The
top panel shows the changes caused
by different exponents β of the clus-
ter mass function, especially on the
older-age history. The choice of
the lower limit ML (bottom panel)
has only minor influence on the ab-
solute value of the star formation
rates.

Myr disappear with the larger number of clusters used, but the feature at ≈ 300 Myr is still
present. The agreement for the different choices of Mc is better than for constant Mc, which
is rather surprising as the influence of the star cluster mass function is changing over time.
This indicates that the results are robust and no systematical effects are introduced by the
time-variable Mc.

For the correction of S̃FR we used β = 2, ML = 100 M� and MU = 106 M�. These values,
especially β , are chosen such that the different Mc all lead to the same result. As there are
various values reported for β in the literature (e.g. Maschberger & Kroupa, 2009, this thesis
Chapter 5, Gieles, 2009 and references therein and Weidner et al., 2004) we show in the top
panel of Fig. 4.6 star formation histories corrected with different values of β (1.6, 2.0 and
2.4). Mc is variable in time, starting with 260 M�(which is the second to lowest line in the top
panel of Fig. 4.5). For larger β the fraction of star clusters below Mc increases, so that the star
formation histories start at higher star formation rates. The increase of the star formation rates
for different β is also time-dependent for time-variable Mc, so that for older ages the amount
by which the star formation rates are corrected increases. This leads to the growing difference
between the curves in Fig. 4.6, top panel. The overall structure, however, remains the same
within our range of β , and no additional features are introduced.

The lower limit of the cluster mass function only has minor influence on the absolute level
of star formation histories, as evident in the lower panel of Fig. 4.6. Here we varied ML, using
ML = 5 M�, 50 M� and 500 M� (β = 2.0 and MU = 106 M�). The star formation rates are a
factor of 1.6 higher for ML = 5 M� compared to their values for ML = 500 M�.
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Figure 4.7: Star formation history
derived by Harris & Zaritsky (2009)
using the colour-magnitude dia-
gram method. The solid line is
the SFH for the regions with in the
Massey fields only (open circles in
Fig. 4.1), with the uncertainty given
by the grey region. The dotted
line above is for the whole of the
Large Magellanic Cloud with the
uncertainty.

4.3 The star formation history derived from colour-magnitude dia-
grams

For the comparison of our star cluster results with the results utilising colour-magnitude dia-
grams we use the work of Harris & Zaritsky (2009). They presented the star formation history
derived with the StarFISH software (Harris & Zaritsky, 2001) in a grid of fields covering the
whole Large Magellanic Cloud (the coverage is shown in Fig. 4.1). Their photometric cat-
alogue contains 24 million objects, so that each of the individually analysed fields contains
some 104 stars. For the synthetic colour magnitude diagrams the isochrones of the Padova
group were used (Girardi et al., 2002). The temporal resolution of the star formation history is
given by age bins of 0.3 dex size for ages younger than 100 Myr and bins of 0.2 dex for older
ages. Solutions for the star formation history were obtained for four metallicities, Z = 0.001,
Z = 0.0025 (interpolated and used only for ages larger than 100 Myr), Z = 0.004 and Z = 0.008.

As their photometry does not reach the main sequence turnoff point for the old population
the extraction of the early star formation history was difficult. Therefore Harris & Zaritsky
(2009) restricted StarFISH to fit only a single age bin covering all ages older than 4 Gyr in the
bar region. Within the bar region they used the typical star formation history from solutions
for the star formation history derived using HST data (Olsen, 1999, Holtzman et al., 1999 and
Smecker-Hane et al., 2002, which widely agree with each other).

Figure 4.7 shows the star formation history, derived by Harris & Zaritsky (2009). The star
formation history of the fields within the regions of Massey (2002) (open circles in Fig. 4.1) in
which star clusters have been observed is shown as the solid line, with the grey area being its
uncertainty. This partial star formation history follows the total star formation history (for the
whole area of the Large Magellanic Cloud, dotted line) at about half the star formation rate.

4.4 Comparison of the Methods

In Figure 4.8 we summarise the solutions for star formation history of the Large Magellanic
Cloud derived from colour-magnitude diagrams, the most massive star cluster or the total
star cluster mass. As before in Fig. 4.7 the dashed line within the grey shaded area gives the
star formation history with uncertainty derived from colour-magnitude diagrams within the
Massey (2002) fields. In the following we refer to the peaks in this star formation history, at
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Figure 4.8: Comparison of the results for the star formation history in the Large Magellanic
Cloud. The dashed line within the grey shaded region (its uncertainty) is derived from colour
magnitude diagrams for the parts lying in the Massey (2002) fields (as in Fig. 4.7, Sec. 4.3).
The thick solid lines are the solution using the most massive clusters, with the upper and
lower limit for older ages, assuming no cluster formation or the maximum non detectable
cluster mass in empty age bins (Fig. 4.3 bottom panel, Sec. 4.2.2). The lowest dotted line is
derived from the total star cluster mass (time variable Mc, middle choice from top panel of
Fig. 4.5, Ml = 100 M�, β = 2, for details see Sec. 4.2.3). Cluster masses have been dynamically
back-evolved using t4 8 Gyr.

≈ 15 Myr, 100 Myr, 400-600 (500) Myr, 2 Gyr and more than 10 Gyr ago.
The thick solid lines give the upper and lower limits for the star formation history derived

from the most massive star clusters (Sec. 4.2.2). It branches at young ages into a solution in-
cluding R136 (upper branch) and omitting R136 as in the original data set (lower branch), and
again at ages > 1 Gyr, either assuming the fading limit as upper limit for the star formation
rate (upper branch) or no star formation at all (lower branch). The agreement with the CMD
solution is reasonable, especially if R136 is included, except for ages older than≈ 1 Gyr, where
the lack of star clusters suggests a significant decrease of the star formation rate. Although
there are some clusters at 2 Gyr with ≈ 105 M� (which lead to some kind of “peak” there),
many more would be needed to produce a signal. It also seems to be odd that no clusters
with lower masses are present, as would be expected for a normal sampling from the cluster
mass function assuming the CMD star formation rates, and which would be detected because
of the sufficiently low completeness limit. There is currently no plausible explanation for this
difference, unless the Large Magellanic Cloud hat a very different mode of star formation
at ages older than 1 Gyr, producing field stars without forming the corresponding clusters.
That is, the cluster mass function would have been very bottom-heavy, which is not observed
in any known galaxy. The peak at 10 Gyr is caused by the single very massive star cluster
(106 M�) and an increased star formation rate at this age is confirmed by the CMD results.

Compared to the CMD solution the most massive cluster solution shows an offset of the
peaks in star formation. This is perhaps accounted for by the moving averaging window,
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although different isochrone sets could also account for this. If the ages of the star clusters
could be more accurately determined the moving window could be reduced, by at the same
time including not only the most massive star cluster but also the second, third etc. most
massive and thus keeping the sample of data points used large enough for the statistically
necessary averaging. An investigation in this direction is beyond the scope of this work.

The absolute value for the star formation rate (up to 1 Gyr), derived from the most mas-
sive clusters, is at the level of the CMD star formation rate within the Massey (2002) fields.
However, as the most massive cluster-method is intended to give the star formation rate of
an entire galaxy, and the spatial coverage of the star clusters contains most of the area recently
active in star formation, it is perhaps more appropriate to compare to the galaxy-wide star
formation rate. In this case the star formation rate would be underestimated by a factor of 2
(compared to the dotted line in Fig. 4.7) and the normalisation in eq. 4.2 would need adjust-
ing. As long as the spatial coverage is incomplete it is unfortunately impossible to disentangle
inappropriate normalisation and effects of spatial incompleteness. In any case the absolute
values and relative changes of the star formation rate derived from the most massive clusters
are comparable, which is very promising and suggests further exploration of the star cluster
method (cf. Maschberger & Kroupa, 2007, this thesis Chapter 3).

The star formation rate derived from the total mass in star clusters peaks at 10–40 Myr
and again at 90–150 Myr, although the second peak is less clear. These peaks coincide with
the peaks of the CMD solution. The fraction of star formation in star clusters, i.e. the ratio
between the CMD curve and the dotted curve for all clusters, appears for the whole age
range to be at a 10–20% level. If indeed all stars form within star clusters we would expect
an increase by up to a factor of 10 in the star formation rate for the very youngest ages, as
star clusters in the process of dissolving caused by gas expulsion could still be detected. Our
result, however, does not show this feature, rather it shows the opposite. This is likely because
very young clusters are in a class of objects not selected by Hunter et al. (2003). Therefore it is
only possible to determine the fraction of star formation which leads to (presumably bound)
open star clusters, which is ≈ 10–20 %. Assuming that indeed all stars form in a clustered
way, this can also be stated that star clusters have an infant mortality of 80–90%.

4.5 Summary and Conclusions

We derived the star formation history of the Large Magellanic Cloud from its star cluster pop-
ulation, either following the method of Maschberger & Kroupa (2007, this thesis Chapter 3),
using the most massive clusters only, or using the whole mass range of clusters (but then only
for the most recent 400 Myr). We found that the results using the most massive clusters, both
the absolute value for the star formation rate and the structure of the star formation history,
agree well for the first Gyr with the star formation history derived from a colour-magnitude
diagram. For older ages the number of detected star clusters is too small compared to ex-
pectations from the star formation rate following from CMDs. One possibility to resolve this
discrepancy would be that additional clusters are contained in the area which is not observa-
tionally covered. Furthermore we derived the star formation history using all available star
clusters, which, however, is only feasible for the most recent 400 Myr. As the star cluster
data set is likely to be incomplete for young ages we can only state that the fraction of star
formation in (presumably bound, open) star clusters after gas expulsion is at a 10–20% level.
Alternatively, this means (assuming that all stars form in a clustered way), that star clusters
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have an infant mortality of 80–90%.
Our results show that star clusters are a powerful means to investigate the star formation

history of a galaxy and invite further investigation in that direction.
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Chapter 5

Estimators for the
exponent and upper limit,
and goodness-of-fit tests for
(truncated) power-law distributions
Th. Maschberger & P. Kroupa
MNRAS 395:931–942 (2009)
A computer program for data analysis is available from
http://www.astro.uni-bonn.de/downloads

Many objects studied in astronomy follow a power law distribution
function, for example the masses of stars or star clusters. A still used
method by which such data is analysed is to generate a histogram
and fit a straight line to it. The parameters obtained in this way can
be severely biased, and the properties of the underlying distribution
function, such as its shape or a possible upper limit, are difficult to ex-
tract. In this work we review techniques available in the literature and
present newly developed (effectively) bias-free estimators for the ex-
ponent and the upper limit. Furthermore we discuss various graphical
representations of the data and powerful goodness-of-fit tests to assess
the validity of a power law for describing the distribution of data. As
an example, we apply the presented methods to the data set of mas-
sive stars in R136 and the young star clusters in the Large Magellanic
Cloud. For R136 we confirm the result of Koen (2006) of a truncated
power law with a bias-free estimate for the exponent of 2.20± 0.78 /
2.87± 0.98 (where the Salpeter-Massey value is 2.35) and for the up-
per limit of 143±9 M� / 163±9 M�, depending on the stellar models
used. The star clusters in the Large Magellanic Cloud (with ages up
to 107.5 yr) follow a truncated power law distribution with exponent
1.62±0.06 and upper limit 68±12×103 M�. Using the graphical data
representation, a significant change in the form of the mass function
below 102.5 M� can be detected, which is likely caused by incomplete-
ness in the data.

57



58 CHAPTER 5. ESTIMATORS AND GOODNESS-OF-FIT TESTS FOR POWER LAWS

5.1 Introduction

Many astronomical objects are distributed according to a power law. The probably most
prominent example is the mass function of stars more massive than 0.5 M� with the Salpeter-
Massey exponent of 2.35. Further examples are the mass functions of young star clusters and
of molecular clouds. Modern observational techniques and state-of-the-art models provide
data such as stellar masses with unprecedented accuracy. However, the statistical analysis of
those data is not yet always optimal. The technique of binning the data suffers from losing a
lot of information. The grouping of data into cells instead of using every data point obscures
details of the observed distribution. This is an especially serious problem in the upper range,
where the bins are only sparsely filled. Furthermore the obtained estimates of the slope can
be severely biased (see e.g. Maı́z Apellániz & Úbeda, 2005). A method based on a particu-
lar graphical display of the data which avoids grouping and allows one an estimate of the
upper limit was given by Koen (2006). Another successful approach is to use the Maximum
Likelihood method, which has been applied by Jauncey (1967) on extragalactic radio sources.
Crawford et al. (1970) derived a Maximum Likelihood estimator for the exponent without
grouping the data and including an upper limit.

A further step in data analysis, equally important as estimating the parameters, is the val-
idation of the assumed power law form of the distribution. The simplest way to do this is to
look at the histogram of the data in a double logarithmic plot. If this plot appears to be linear
then the consistency of the data with a power law is concluded. But the significance of devia-
tions from linearity are hard to state in an objective way by mere visual inspection. A further,
more elaborate way is to apply a goodness-of-fit test such as the Kolmogorov-Smirnov test. If
the calculated test statistic lies in some acceptance range then also consistency is concluded.
But it is possible that the test statistic calculated with data stemming from an alternative hy-
pothesised distribution similar to the power law might as well fall in the acceptance range.
The test then fails to produce the right result since it has not enough “power” to discriminate.
Therefore the “power” properties of a goodness-of-fit test have likewise to be examined. Such
a study is – to our knowledge – not yet available in the astronomical literature.

In this work we describe estimation methods and compare their biases and variances (Sec-
tion 5.3). Since the data may stem from a truncated power law we focus on estimators which
can be used in this case. In the second part (Section 5.4) we investigate the question whether
the data are consistent with the assumed power law distribution. As informal aids to answer
this we discuss various plotting recipes (Section 5.4.1). For an objective decision we present
goodness-of-fit tests with a study of their discrimination power (statistical power) under the
hypotheses of a truncated and infinite power law. Finally, in Section 5.5, we will apply the
introduced methods on the massive stars in R136 and the young star clusters in the Large
Magellanic Cloud.

5.2 General results, definitions and notation

5.2.1 The power law distribution

In this work we only consider power law distribution functions (DF) with a negative expo-
nent, −α (α > 1). By convention the sign is separated from the absolute value. Besides the
exponent such a distribution is further parametrised by the lower and upper limit, xL and xU.
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The probability density is then given by

p(x;α,xL,xU) =
1−α

x1−α

U − x1−α

L
x−α , (5.1)

and the cumulative distribution function (DF) is

P(x) =
x1−α − x1−α

L

x1−α

U − x1−α

L
. (5.2)

The family of distributions given by eq. 5.1 includes the “infinite” or “not truncated”
distributions with infinite upper limit, p(x;xU = ∞) := p∞(x), which is also known in the (non-
astronomical) literature as the Pareto distribution. The density function reads then

p∞(x) = −1−α

x1−α

L
x−α , (5.3)

and the cumulative distribution is

P∞(x) = 1−
(

x
xL

)1−α

. (5.4)

An useful property of the power law distribution is its relation to the exponential distribu-
tion. By a logarithmic transformation the power law distribution becomes proportional to an
exponential, x−α = e−α loge x. Due to this proportionality it is possible that some techniques for
estimation and testing, which were developed for the exponential distribution, can be used
for the power law distribution.

5.3 Estimating the parameters

There exist in the literature a variety of methods to estimate the parameters, exponent and
upper limit, of a power law distribution. In this first part of the paper we describe them and
compare their properties.

5.3.1 Methods

Binning

A particularly simple method is to fit a linear relation to the data grouped in bins of constant
size in logarithmic space. As shown by Maı́z Apellániz & Úbeda (2005) this method can yield
biased results, i.e. results which systematically deviate from the actual parameter, and do not
allow one to estimate a possible upper limit.

A solution to avoid biased results was given by Maı́z Apellániz & Úbeda (2005), which
modified the binning scheme to a constant number of data points per bin and fitted the ex-
pected number instead of performing a linear regression. In this way the estimate for the
exponent, α̂ , can be obtained, together with an estimate of its uncertainty, which is consistent
with the sampling variance of α̂ . In extension of their work we investigate the properties of
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Figure 5.1: Complementary cumula-
tive DF (CCDF) plot for an infinite
(dotted line) and truncated (solid
line) power-law pdf (α = 2.35, xL =
1, xU = 150, shown by the vertical
thick bar). For the truncated case a
characteristic turn-down appears at
the upper end.

the estimate for the upper limit, derived from the normalisation constant of the frequency
distribution, k̂ = n(1−α)/(x1−α

MAX− x1−α

MIN), which is given by

x̂U =

(
n

1− α̂

k̂
+X1−α̂

(1)

) 1
1−α̂

, (5.5)

where the smallest observation (X(1)) is used as an estimate for xL.
Not only the choice of constant-size or variable-size bins has influence on the results of

binning, but also the number of bins. D’Agostino & Stephens (1986) give as the optimal
number of bins 2n2/5 for n data points. A smaller number of bins reduces the bias but increases
the standard deviation (cf. Table 1 to 3 of Maı́z Apellániz & Úbeda, 2005).

Complementary cumulative distribution function plot

Koen (2006) presented a method to estimate both the exponent and the limits of a power law.
This method is based on a particular graphical representation of the data, the complementary
cumulative DF (CCDF) plot (Fig. 5.1). Data stemming from an infinite power law follow a
linear relation with slope 1−α in a plot of log(1−P∞(x)) versus logx, as can be seen easily by
taking the log of eq. 5.4. For a truncated power law, a turn-down appears at the high end.
Estimates for the exponent and limits are obtained by fitting log(1−P(X(i))) (with P(x) from
eq. 5.2 and the ordered data X(i)) to log(1− i−0.5

n ), with using i−0.5
n for the empirical cumulative

distribution function.

Beg’s estimator

A power-law distribution is closely related to the exponential distribution. Therefore it is pos-
sible to apply the uniformly minimum variance unbiased estimators for the slope and limits of
a truncated exponential distribution, developed by Beg (1982, 1983) to log-transformed power
law data, as shown by Beg (1983). Although these estimators are theoretically an optimal so-
lution, they are only partially practicable, since their computation is numerically difficult and
impossible for large data sets. We therefore developed a recursive form which is applicable
to arbitrarily large data sets. The original and recursive formulae are given in the Appendix.

Maximum Likelihood (ML) estimator

The Maximum Likelihood estimator for the exponent was given by Crawford et al. (1970),
who also included an upper limit. In our case the upper limit is intrinsic to the distribution
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function, i.e. the upper limit needs to be estimated simultaneously with the exponent. The
likelihood function for a random sample of size n from a truncated power law DF is

L =
n∏

i=1

p(xi;α;xL,xU) (5.6)

=

(
1−α

x1−α

U − x1−α

L

)n n∏
i=1

x−α

i (5.7)

The estimator for the exponent is obtained by maximising the log-likelihood,

logL = n log(1−α)−n log(x1−α

U −x1−α

L )−α

n∑
i=1

logxi. (5.8)

The maximisation can be performed by finding the root of the derivative with respect to α of
eq. 5.8. The estimator α̂ML is then the solution of

− n
1− α̂ML

+n
Z1−α̂ML logZ−Y 1−α̂ML logY

Z1−α̂ML−Y 1−α̂ML
−T = 0, (5.9)

with Y = minXi, Z = maxXi and T =
∑n

i=1 logXi.
The ML estimates for the upper limit X̂U = maxXi (see e.g. Aban et al., 2006). It is obvious

that this estimate will be biased since the upper limit is larger than the largest data point.

Bias-free estimators based on the maximum likelihood estimator

It is possible to construct a minimum variance unbiased estimate of the exponent from the
maximum likelihood estimate, as shown by Crawford et al. (1970) or Baxter (1980). For the
infinite case the ML estimator for the exponent is given by

α̂−1 =
n

T −n logeY
, (5.10)

with Y = minXi or the given lower limit, and T =
∑n

i=1 loge Xi. The unbiased estimator is then

α̂
′−1 =

n−1
n

(α̂−1) (5.11)

(if both the exponent and the lower limit should be estimated then (n− 2)/n has to be used
(Baxter, 1980)).

The simple relation between the ML estimator and the unbiased estimator for an infinite
power law suggests a similar relation for the truncated case. However, for a truncated power
law a closed form of the ML estimator is not available. This makes a proof of an unbiased esti-
mator very difficult and maybe even impossible, since the distribution of the estimate cannot
be calculated analytically. Nevertheless, it is not unreasonable to assume that a simple mod-
ification of the ML estimate also leads to unbiased results. A different pre-factor, depending
only on the number of data, should give the expected result. We found that

α̂MML−1 =
n

n−2
(α̂ML−1). (5.12)
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Figure 5.2: Distributions of the mod-
ified ML estimates for the exponent
(histogram), derived from Monte-
Carlo samples of size 1000 for three
input values (1.5, 2.0, and 2.5). They
follow a Gaussian with mean and
variance derived from the samples.
For larger exponents the variance
increases.

(MML = Modified Maximum Likelihood) provides quasi-bias-free estimates. The pre-factors
n−2

n of Baxter (1980) or n−3
n (n− 3 because there is an additional parameter, the upper limit)

lead to biased results. The distribution of the exponents estimated using this method follows
a Gaussian, as can be seen in Fig. 5.2, with an increasing variance for an increasing exponent.

The bias of the ML estimate for the upper limit can also be significantly reduced by appro-
priate modifications. Hannon & Dahiya (1999) developed such a modified estimator for the
exponential distribution. This estimator can also be used for the power law distribution and
takes then the form (with the ML estimate of the exponent replaced with the bias-reduced
form)

x̂U = X(n)

(
1+

eG−1
n

) 1
1−α̂MML

, (5.13)

with

G = (1− α̂MML) loge

(
X(n)

X(1)

)
, (5.14)

where X(1) is the smallest and X(n) is the largest data point. The properties of the modified
estimate are discussed in the next Section.

5.3.2 Performance of the estimators

After introducing a number of methods of estimation, we compare their properties. The qual-
ity and usability of an estimator is determined by several factors. A main demand is that an
estimate is on average equal to the actual parameter, i.e. bias-free. Also, the variance of the
estimate should be as small as possible and it should be numerically robust.

To study these properties we carried out a set of Monte-Carlo experiments, each of size
1000, with parameters in the typical range of astronomical applications. The values for the ex-
ponent range from 1.6 to 2.85 in steps of 0.25. For each exponent four pairs of limits were used
({0.5,150} and {10,150} corresponding to the stellar mass function, {103,105} and {104,106}
corresponding to the mass function of young star clusters). The last varied parameter was
the number of data (50, 100, 300). For the binning methods the number of bins was chosen
according to D’Agostino & Stephens (1986) (2n2/5), which gave 9, 12 and 19 bins, respectively.

As diagnostics for the performance in estimating the exponent we choose the average bias
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Figure 5.3: In the left panel the results for the exponent are shown, on top the average bias
(calculated using eq. 5.15, the horizontal lines mark ±0.025) and below the average standard
deviation (eq. 5.16) of the estimated exponents. In the right panel, average estimates of the
upper limit (lines mark the true values) are displayed in the upper part and below the average
relative bias is shown (eq. 5.17). The parameter combinations are given in the text, Sec. 5.3.2.
The symbols refer to: N constant size binning using linear regression; H variable size binning
using χ2; �CCDF plot fitting. ♦ML estimator without including truncation; • Beg’s estimator;
(This estimator starts to fail for n≥ 150, dots below the x-axis indicate a failed experiment); ◦
Beg’s estimator in the recursive form; ×ML estimator;FModified ML estimator;

of an estimator for a given parameter set,

B(α) =
1

1000

1000∑
i=1

(
α̂i−α

)
, (5.15)

and the standard deviation,

S(α) =

√√√√ 1
1000

1000∑
i=1

(
α̂i−α

)2
. (5.16)

The left panel of Figure 5.3 summarises the results for the bias. Two horizontal lines at
±0.025 embrace the region, in which we consider the bias as negligible. The general trend is
that the bias decreases with an increasing number of data (except for the ML estimator wich
does not include a truncation). The corresponding results for the standard deviation also
decrease with larger size of the data set.

Variable-size binning gives effectively bias-free exponents for samples having a moder-
ate size or larger. The method of Koen is biased towards lower exponents. The results from
Beg’s estimator are very good, but the method fails for large data sets, even in the recursive
form. A maximum likelihood estimate without considering the truncation can lead to a sig-
nificantly overestimated exponent. But when the truncation is considered, the bias is small
and effectively vanishes if our modified version is used.
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Figure 5.4: Distribution of the esti-
mated upper limits for the differ-
ent methods (histograms; param-
eters: α = 2.0; n = 100; solid:
limits {10,150}, dashed: limits
{1000,100000}.) The x-axis has been
scaled such that a unbiased esti-
mate should follow a Gaussian of
zero mean and unit variance (dot-
ted). Also shown is a Gaussian with
mean and variance derived from the
estimates.

The results for the estimates of the upper limit are shown in the right part of Fig. 5.3.
Generally it can be observed that a larger upper limit leads to larger absolute deviations in
the estimate. Because the upper limits used in this study span a wide range of values it is
not convenient to compare the absolute biases as for the exponents. The relative bias (also
displayed in Fig. 5.3),

B̃(xU) =
1

1000

1000∑
i=1

(
x̂U,i− xU

xU

)
, (5.17)

is a better measure of trends. Furthermore the normalised distributions of the estimates are
shown in Fig. 5.4, for two parameter sets (α = 2.0, n= 100, limits {10,150} and {1000,100000}).
The histogram and a Gaussian with mean and variance (σ ) calculated from the Monte-Carlo
sample are rescaled by x′ = x−xU

σ
and the y-axis is scaled such that the peak of the Gaussian is
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1. If the estimator is not biased and can be approximated by a Gaussian, then the normalised
distribution should follow a Gaussian with zero mean and unit variance.

The upper limit is underestimated by using the normalisation constant of the variable-size
binning method. The results of fitting the CCDF plot are peaked around the input value, but
can have a long tail of very high estimates (for the limits {1000,100000}). If in the CCDF plot
the data show no strong curvature at the upper end, then the estimated upper limit is very
large. The distribution of estimates obtained with Beg’s estimator are in reasonable agreement
with a Gaussian, but not completely symmetric around the mean. If the largest data point is
used (i.e. the direct ML estimate), then the upper limit is underestimated, with a distribution
limited by the actual value. With the modification (eq. 5.13) the distribution becomes similar
to the one of Beg’s estimator, spreading around the true value. Although not completely
symmetric around the mean it can be sufficiently approximated by a Gaussian, and has no
outliers as fitting the CCDF plot.

In summary, when both the exponent and the upper limit of a truncated power law should
be estimated, our modified ML method performs best in terms of bias and stability, being
similar to Beg’s uniformly minimum variance unbiased estimator, but without the numerical
instability. gives the best results in terms of bias and stability.

5.4 Is a power law consistent with the data?

For a thorough analysis of data which are assumed to stem from a power-law distribution
it is not sufficient just to estimate the parameters. The parameter estimation answers the
question which power-law fits the data best, but leaves open whether the data are originating
from a power law at all. Or to put it differently: is the (truncated) power law a good parent
distribution function of the data? The need to answer this question has already been stressed
by Crawford et al. (1970). This question can be addressed by a graphical inspection of the
data, which is discussed in the next Section. After the informal visual methods more objective
goodness-of-fit techniques are discussed.

5.4.1 Graphical inspection of the data

A common approach to find the parent DF of a data set is to use a histogram as a non-
parametric estimate of the form of the parent DF. If in a logarithmic plot the histogram of
e.g. stellar masses is a straight line, a power-law is usually assumed as the parent DF. How-
ever, a power-law is a heavy-tailed distribution and has only a few counts per bin in the tail.
Thus the scatter in a histogram is large in the upper regime and makes deviations from a
power-law hard to detect. Alternative, heavy-tailed distributions lead to nearly indistinguish-
able histograms. It is for example not possible to decide whether the power-law is truncated
or not. Therefore a histogram only allows us to roughly determine the parent DF.

A display of the data which avoids grouping them into cells is the probability-probability
(or percentile-percenile, PP) plot. For the PP plot the data have first to be sorted in ascend-
ing order, X(i) < X(i+1). The x-values then follow as the “theoretical” percentiles, which are
the values of the cumulative DF for the i-th data point, P(X(i), α̂, x̂L, x̂U), calculated with the
estimated parameters. As y-values the “empirical” percentiles are used, given by i−0.5

n . Both
axes range from 0 to 1, and when the data lie on the diagonal then they agree with the null-
hypothesis. Hypotheses other than the null hypothesis can be shown by plotting the pairs
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Figure 5.5: Example for a percentile-percentile plot (PP, left) and a stabilised percentile-
percentile plot (SPP, right) for the null hypothesis of an infinite power law (=diagonal), us-
ing 100 data points sampled from a truncated power law (α = 2.35, xL = 1 and xU = 150).
Also shown are the curves for a truncated power law (solid line, parameters as estimated,
α̂ = 2.35 and x̂U = 149). The acceptance region of the (in the right plot stabilised) Kolmogorov-
Smirnov statistic (significance level 5%) is given by the two parallels to the diagonal. The data
lie within this region in the PP plot, wherefore from the PP plot the infinite power law cannot
be significantly rejected. After stabilisation the KS test is more powerful and thus allows us
to detect truncation in contrast to the PP plot.

{x=alternative cumulative DF,y=null cumulative DF}. An example for a PP plot with an in-
finite power law as null hypothesis (diagonal) is shown in Fig. 5.5, but with data generated
from a truncated power law. The curve for the alternative hypothesis of a truncated power
law (of the same exponent, solid line) barely deviates from the diagonal and does not allows
one to distinguish the infinite and truncated versions. In this plot the acceptance region of
the Kolmogorov-Smirnov (KS) test can be directly shown as parallels to the diagonal, in Fig.
5.5 calculated with a significance level of 5%. The data do not exceed this region, not even in
the tails, giving evidence for the known insensitivity in the tails of the Kolmogorov-Smirnov
statistic.

Before showing a way to improve the insensitivity of the PP plot in the tail we shortly
compare it with other possible plots which show all available data (see e.g. Chambers et al.
(1983) or Wilk & Gnanadesikan (1968)). A plot which uses e.g. the X(i) as x-values (the “empir-
ical cumulative density plot”) has a curved reference line for both an infinite and truncated
power law, with only small and not well perceptible differences between them. Following the
suggestion of Koen (2006), in a plot of log(1−P(X)) against logX (the CCDF plot, see Fig. 5.1
and Sec. 5.3.1) the data should only show a curvature for a truncated power law. But from the
results for the estimator based on this plot, the scatter in the highest data points can be large,
and a graphical goodness-of-fit criterion would not be very sensitive. A third alternative to
the PP plot would be a plot of the inverse cumulative DF (P−1( i−0.5

n ), giving the expected
value for the data point X(i)) against the ordered data X(i) (“quantile-quantile” plot). This plot
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has a linear reference, the upper tail would be curved when constructed for the infinite null
hypothesis but with truncated data. Again, as for the complementary cumulative density plot
there is large scatter, and additionally the inverse cumulative DF has to be calculated.

5.4.2 The stabilising transformation and the SPP plot

Goodness-of-fit methods based on the empirical cumulative DF, such as the PP plot or the KS
test, have the advantage that their intrinsic properties do not depend on the actual choice of
the null hypothesis. A PP-plot for e.g. Gaussian variates looks identical (modulo the random
scatter) to a PP plot for power-law data. The reason for this is that by taking the cumulative
DF the data are transformed to uniformly distributed variates, if they are following the null
hypothesis. Therefore the location and variances of the points in the PP plot are independent
of the null hypothesis distribution, as is the distribution of the KS statistic. This transforma-
tion reduces the goodness-of-fit task from arbitrary DFs to testing for uniformity. However,
the variances of uniform ordered variates are not independent from their position: the scatter
in the PP plot is larger in the middle than in the tails. Thus a test which measures the dif-
ferences between the expectation and the empirical values of uniformly distributed ordered
data will be dominated by the points with the larger variances. Hence the insensitivity of the
KS-test in the tails.

A way to overcome the unequal variances was introduced by Michael (1983). The stabilis-
ing transformation of uniform variates u (= the cumulative DF),

S0(u) =
2
π

arcsin(
√

u) (5.18)

gives asymptotically equal variances of the transformed ordered variates. In a stabilised PP
(SPP) plot every part of the plot has the same weight and no region is particularly emphasised.
Although the distribution of the S0(u) is not uniform any more, tests based on the differences
between expectation and empirical value can still be used (as long as they do not use other
properties of the uniform distribution). These transformed tests are equally sensitive to every
part of the distribution function.

However, for testing the tail-behaviour of a DF it is useful to emphasise the tail. This can
be achieved by using only a half transformation, which is possible because S0 is symmetric
around the point {0.5,0.5} and the interval [0.5,1] is mapped onto [0.5,1]. A one-sided trans-
formation of the percentiles to stabilise a right-tailed distribution consists then of three steps.
First, map the interval [0,1] on [0.5,1], then use S0, and lastly map [0.5,1] back on [0,1]. The
formula for this is

S(u) = 2S0(0.5+0.5u)−1. (5.19)

We use S instead of S0 in the SPP plot (Fig. 5.5) and in the goodness-of-fit tests which are
related to it, because of the one-tailed power law distribution.

5.4.3 Goodness-of-fit Tests

A goodness-of-fit test provides an objective way to “measure” the agreement of the fit with
the data. We follow here the Neyman-Pearson ansatz of hypothesis tests. At first the type
I error probability or significance level needs to be specified. This is the rate at which the
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test is allowed to falsely declare a data set as too discrepant to be compatible with the null
hypothesis (the assumed distribution function), even though it is in reality consistent. There
is a value of the distribution of the test statistic, the critical value, which corresponds to this
rate. If the value of the test statistic calculated from the data set then exceeds the critical value
the null hypothesis is rejected for the data set.

For some tests, the distribution of the test statistic can be calculated analytically for a fully
specified null hypothesis, i.e. if no parameter is estimated. If parameters are estimated, the
distribution of the test statistic is not universal any more, but depends on the properties of
the specific estimator. The distribution of the test statistic can then be obtained using a Monte-
Carlo approach, of which follow the critical values. Typically the such derived critical values
are larger than for a fully specified hypothesis (cf. Lilliefors, 1967, 1969, for the Kolmogorov-
Smirnov test for the normal and exponential distribution). Therefore, if the critical values
for the fully specified hypothesis are used when parameters are estimated, the results are
conservative with an actually smaller type I error, but also less powerful.

The significance level is not the only quantity characterising a statistical test. It can happen
that a data set is not too discrepant to be rejected, but actually does not stem from the null
hypothesis, i.e. a type II error occurs. The probability that a type II error does not occur is the
(statistical) power of the test. If the power of the test is small then it is not very selective and
the alternative hypothesis cannot be strongly excluded. For a given test the power can differ
for various alternative hypotheses of the distribution. A demand for a general purpose test is
to be powerful against a wide variety of alternative hypotheses.

In order to be able to evaluate the “strength” of a statement concluded from a statistical
test, it is therefore necessary to know the type I and type II error rates (the significance level
and the power). However, not every test has the same power, therefore we conduct in what
follows a power study which has the purpose of finding a powerful goodness-of-fit test to de-
cide between infinite and truncated power laws. The astrophysical motivation for the choice
of these hypotheses is the discussion in the literature about an upper mass limit for the distri-
bution of stars in a star cluster (cf. Weidner & Kroupa, 2004; Oey & Clarke, 2005; Koen, 2006)
or about an upper limit for the star cluster luminosity function (cf. Gieles et al., 2006b).

5.4.4 Description of the goodness-of-fit test statistics

Goodness-of-fit tests can roughly be classified as tests based on the empirical DF (EDF), based
on distance measures (e.g. the KS test) or the correlation coefficient, tests especially developed
for a chosen null hypothesis (e.g. the Shapiro-Wilk test for exponentiality), and tests to dis-
tinguish between two hypotheses (e.g. the Likelihood Ratio). Below we describe the test
statistics used for a comparison.

For the selection of the tests included in the comparison the properties of tests for expo-
nentiality can be used, which can be found in the studies of Stephens (1978), D’Agostino &
Stephens (1986) and Gan & Koehler (1990). Gan & Koehler (1990) which use EDF based tests
included the alternative hypothesis of a truncated exponential, finding only very low powers.
With the stabilising transformation Kimber (1985) finds a larger power for the KS test, but
did not include the truncated alternative. We include some EDF based tests in the original
and stabilised version, as well as some tests based on tests for exponentiality, and two tests
explicitly for truncation.
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n β D SD C2 SC2 A2 r2 k2 k2
0 Sk2 Sk2

0 W T Λ X
10. 150.
33 1.7 54.1 72.0 59.9 69.4 60.4 51.7 7.7 59.9 17.4 65.9 47.4 56.1 64.6 100.0
50 1.7 70.9 88.3 75.0 86.0 78.7 69.9 5.1 75.3 16.3 87.3 68.7 78.6 86.3 100.0
99 1.7 93.8 100.0 96.8 99.8 98.6 98.2 3.7 96.3 40.3 99.9 96.7 98.6 99.9 100.0
33 2.0 23.3 29.6 24.4 28.2 26.0 22.9 4.5 26.2 7.0 28.2 22.2 23.9 29.8 53.4
50 2.0 25.0 58.2 32.8 46.3 36.2 31.3 3.7 32.4 7.8 50.4 38.8 43.5 61.0 100.0
99 2.0 39.1 93.7 50.7 80.4 63.7 58.7 3.1 50.3 11.5 85.2 68.9 74.8 94.9 100.0
33 2.3 7.8 11.5 8.9 10.5 9.2 5.9 5.4 9.7 5.5 10.5 10.7 11.7 11.3 11.4
50 2.3 8.5 18.3 8.8 14.1 9.3 4.0 2.9 9.2 3.7 15.0 14.2 15.0 18.9 22.3
99 2.3 11.9 48.9 11.5 30.4 15.6 4.8 4.2 14.1 4.9 31.1 29.3 33.4 53.5 80.4
10000. 1000000.
33 1.7 14.3 18.5 15.3 19.1 14.5 18.8 6.6 15.3 7.5 19.3 20.0 17.9 17.6 19.5
50 1.7 12.7 33.3 14.9 25.6 17.8 28.3 5.2 18.4 6.5 26.5 23.8 25.6 31.3 50.9
99 1.7 19.9 77.4 29.1 57.3 40.1 60.1 4.2 30.9 8.0 61.8 52.1 58.0 76.9 100.0
33 2.0 5.3 5.7 4.8 5.6 5.8 5.9 6.5 4.8 5.1 5.9 7.0 6.8 5.4 6.2
50 2.0 6.8 8.4 7.6 7.8 7.2 5.5 5.7 8.3 4.1 7.3 8.2 8.8 8.6 8.7
99 2.0 3.4 14.5 3.4 6.2 3.9 5.3 3.9 3.7 5.0 9.8 12.0 11.7 16.6 12.6
33 2.3 5.4 4.9 4.9 4.4 4.5 3.3 4.7 4.1 4.5 4.2 4.4 4.6 4.9 4.9
50 2.3 4.2 6.0 5.2 5.9 5.3 2.2 3.4 4.4 3.9 5.5 4.6 4.9 6.5 5.5
99 2.3 5.8 7.0 6.8 6.9 7.2 1.1 6.5 6.0 6.0 6.9 8.6 8.6 7.8 6.8

Table 5.1: Results of the power study. Tests are conducted under the null hypothesis of an
infinite power law against the alternative hypothesis of a truncated power law with a type
I error level of αI = 0.05. The first column gives the size of the data set, n, and the second
column the value of the exponent, α . The other columns give the power of the test statistic
indicated in the top row in percent. The power is the fraction of the time in which the data
drawn from the alternative hypothesis would be rejected (at the 5% level) as coming from
the null hypothesis. The numbers on top of each group are the lower and upper limit of the
parent distribution function.

EDF statistics based on distance measures

The most prominent goodness-of-fit test is the Kolmogorov-Smirnov (KS) statistic (Stephens,
1978; D’Agostino & Stephens, 1986; Gan & Koehler, 1990),

D = max
1≤i≤n

∣∣∣∣ i−0.5
n
− P̂(i)

∣∣∣∣+ 1
2n

, (5.20)

which is the largest vertical distance between the data and the diagonal in the PP plot (Rejec-
tion for D > Dcrit). The largest distance can also be measured in the stabilised PP plot, leading
to the stabilized Kolmogorov-Smirnov statistic (Michael, 1983; Kimber, 1985),

SD = max
1≤i≤n

∣∣∣∣S( i−0.5
n

)
−S(P̂(i))

∣∣∣∣ , (5.21)

Kimber (1985) found that for the exponential distribution these statistics are more powerful
than the originals, but used a complete stabilising transformation (for both tails, S0, eq. 5.18).
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Here only a right-tail-stabilising transformation (S, eq. 5.19) is used, since it is more appropri-
ate for the right-tailed power law and gives a better power.

Another “measure of discrepancy” is the sum of the squared distances from the diago-
nal to the data point in a PP plot, the Cramér-von Mises statistic (Anderson & Darling, 1952;
Stephens, 1978; D’Agostino & Stephens, 1986; Gan & Koehler, 1990),

C2 =
n∑

i=1

(
P̂(i)−

2i−1
2n

)2

− 1
12n

. (5.22)

Like the KS statistic, this measure can be used in the stabilised PP plot, yielding the new
stabilised Cramér-von Mises statistic,

SC2 =

n∑
i=1

(
SP̂(i)−S

(
2i−1

2n

))2

. (5.23)

A modified form of the Cramér-von Mises statistic is the Anderson-Darling statistic, (Anderson
& Darling, 1952; Stephens, 1978; D’Agostino & Stephens, 1986; Gan & Koehler, 1990)

A2 = −
n∑

i=1

(2i−1)
n

(
loge(P̂(i))−loge(1− P̂(n+1−i))

)
−n, (5.24)

which gives more weight to the tails of the distribution.

EDF statistics based on the correlation coefficient

The correlation coefficient is a measure for linearity, given by

R2(X ,Y ) =

(∑n
i=1(Xi−X)(Yi−Y )

)2∑n
i=1(Xi−X)2

∑n
i−1(Yi−Y )2

. (5.25)

For perfect linearity R2 has the value 1 or −1 and for uncorrelated points R2 = 0. If the points
{X ,Y} are always positive as in our cases then R2 lies in the interval [0,1]. The rejection crite-
rion is R2 < R2

crit.
The correlation coefficient can for example be used in the quantile-quantile plot,

r2 = R2
(

X(i), P̂
−1
(i)

)
, (5.26)

but has, as the quantile-quantile plot, the disadvantage of needing the inverse distribution
function.

Another possibility is to use the correlation coefficient in the PP plot (PP correlation statistic;
Gan & Koehler, 1990),

k2 = R2
(

P̂(i),
i−0.5

n

)
, (5.27)

or in the stabilised PP plot (stabilised PP correlation statistic, first proposed here),

Sk2 = R2
(

SP̂(i),S
(

i−0.5
n

))
. (5.28)
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The PP correlation statistic can be modified, as suggested by Gan & Koehler (1990), to force
the points to go through {0.5,0.5}. This is done by replacing in eq. 5.25 X and Y by 0.5,
denoting the modified version R2

0. Gan & Koehler (1990) found that the modified PP correlation
statistic,

k2
0 = R2

0

(
P̂(i),

i−0.5
n

)
, (5.29)

is somewhat more powerful than k2. Again, the analogous procedere is possible in the sta-
bilised PP plot, giving the stabilised modified PP correlation statistic,

Sk2
0 = R2

0

(
SP̂(i),S

(
i−0.5

n

))
. (5.30)

Statistics based on tests for exponentiality

Due to the connection of the power law and exponential distribution, the various tests for
exponentiality available in the literature are applicable for our purposes (cf. e.g. Beirlant et al.,
2006). Since there is only a proportionality between p(x) and pe(loge x) most of the derived
(exponential) null distributions for the following statistics are no longer valid for an infinite
power law.

The Shapiro-Wilk statistic (Shapiro & Wilk, 1972; Stephens, 1978; D’Agostino & Stephens,
1986),

W =
n

n−1
(X ′−X ′(1))

n∑
i=1

(X ′i −X ′)2, (5.31)

(X ′i = loge Xi) is originally a two-sided statistic with minimum (n− 1)−2 and maximum 1 for
the exponential case. For the use with a power law the rejection criterion for the alternative
hypothesis of a truncated power law distribution is W >Wcrit in one-sided use.

The Jackson statistic (Jackson, 1967; Stephens, 1978; D’Agostino & Stephens, 1986; Beirlant
et al., 2006),

T =

∑n
i=1 ti,nX ′′(i)∑n

i=1 X ′′i
, (5.32)

with X ′′i = loge(Xi/x̂L) and ti,n =
∑i

j=1
1

n− j+1 , is primarily the product of the ordered data and
their expectation values λE(X(i)) = ti,n, comparable to correlation type statistics. The division
by
∑n

i=1 Xi removes the dependence on the scale parameter λ . For a truncated power law
alternative in one-sided use the rejection criterion is −T >−Tcrit.

Other tests for exponentiality are the the statistics of Brain & Shapiro (1983), the Moran
statistic (Stephens, 1978; D’Agostino & Stephens, 1986), and the Greenwood statistic (Bartholo-
mew, 1957; Stephens, 1978; D’Agostino & Stephens, 1986). We have also tested their powers
when used for a power law, but they are not more powerful than the Shapiro-Wilk or Jackson
statistic, and so we do not include details on them here.
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5.4.5 Tests for truncation

The above described tests only allow one to distinguish whether the data are described by the
null hypothesis or not. When the null hypothesis is rejected the test has to be made again, now
with the alternative hypothesis as new null hypothesis. The Likelihood Ratio test combines this
two-stage procedure into one test, by which can be decided whether of the two hypotheses is
favourable. We use here the Likelihood ratio in the same way as the test statistics above. The
test statistic is given by

Λ =

∏n
i=1 p∞(Xi; α̂∞)∏n
i=1 p(Xi; α̂, x̂U)

. (5.33)

For the infinite case we used the ML estimate which does not include a truncation to estimate
the exponent and for the truncated case the modified ML for the exponent and upper limit.
For numerical reasons the logarithm of eq. 5.33 is evaluated.

An answer to the problem of estimating parameter and simultaneously deciding between
hypotheses can also be given in the Bayesian framework of statistics which is, however, not
in the scope of this article.

A further specific test for truncation is the exceedance statistic,

X = max
i≤1≤n

Xi (5.34)

(the largest data point), is only designed to test whether the distribution function is truncated
or not. It cannot be used to detect a deviation from the power-law assumption. Furthermore
it is one-sided with rejection criterion −X >−Xcrit.

5.4.6 Power comparisons

The power of the various statistics was calculated at a significance/type I error level of αI =
0.05 with parameters for the power law as given in Table 5.1. The critical points for the null
hypothesis of an infinite power law were calculated as follows. For each of the parameter com-
binations, but with xU = ∞, a Monte-Carlo sample containing 1000 data sets was generated.
For each data set the parameters were estimated using the modified ML estimator (exponent
eq. 5.12, upper limit eq. 5.13). Then the test statistics were calculated using the estimates
when necessary. This gives the distribution of the respective test statistic, from which the
critical value follows as the 95% quantile.

For the power again a sample of 1000 data sets was generated, but now from a truncated
power law. As before the parameters were estimated and the statistics calculated. The power
is then the percentage of data sets with a test statistic smaller than the critical value.

The obtained powers are shown in Table 5.1. The exceedance statistic, X , is the most
powerful test for truncation. However, it cannot be used for detecting deviations from the
power law distribution. Thus it has to be used in conjunction with one or more of the other
tests which include a test for the power law family as the parent distribution function.

A general effect appearing for all statistics is that the power decreases with increasing
slope and range of the limits. By such changes the truncated distribution becomes – infor-
mally speaking – more similar to the infinite distribution and thus harder to discriminate.
Above α = 2 the performance of the tests drop significantly and therefore strong statements
on truncation can barely be made. Unfortunately for the Salpeter value of the slope, α = 2.35,
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Figure 5.6: Truncated SPP plot of the
massive stars in R136 with masses
according to the model of Chle-
bowski & Garmany (1991) and pa-
rameters estimated using the modi-
fied ML method. Also shown is the
curve for a infinite power law (dot-
ted). The parallels to the diagonal
limit the acceptance region of the sta-
bilised KS test, null hypothesis of
a truncated power law, significance
level 5%.

the studied tests are mostly not powerful enough to decide whether an upper truncation is
present or not. However, in some not so extreme real cases such as the data set of massive
stars in R136 a sufficient power can be achieved. Furthermore, even if a truncation cannot be
detected then deviations from a power law might still be discoverable.

Besides the general performance behaviour of the test statistics a further, rather surpris-
ing trend exists in the power. The most powerful tests are not necessarily the tests derived
especially for the power law distribution from tests for exponentiality. The stabilising trans-
formation (eq. 5.19) strongly enhances the power of general-purpose ECDF or correlation
statistics so that they outperform the specialised tests. The Kolmogorov-Smirnov statistic
which is known to be not very powerful (cf. Gan & Koehler, 1990) becomes, after stabilisation,
more powerful than all other tests except for the exceedance test. In their not stabilised forms
the general-purpose tests are, as expected, less powerful than the specialised tests. This en-
hanced power is a useful property since general-purpose statistics can easily be modified to
tests for a different null hypothesis, e.g. a two-part power law.

In summary, the best test for truncation is the exceedance test, X . To confirm the hypothe-
sis of a power law and for better significance this test should be followed by some of the most
powerful remaining tests. These are, loosely ordered in descending power, the stabilised
Kolmogorov-Smirnov test SD, the stabilised PP correlation test Sk2

0, the stabilised Cramér-von
Mises test SC2 and the Jackson statistic T .

When a truncation is detected, then the hypothesis of a truncated power law has to be
confirmed by again applying the respective statistics with this distribution (the truncated
power law) as the null hypothesis.
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Data using Chlebowski & Garmany (1991)
Estimate for Slope α̂ Bias slope M̂U Bias M̂U

[M�]
Const. Bins, LR 3.38±0.72 0.43
Var. Bins, χ2 2.42±0.75 -0.01 134±12 -11
CCDF 2.02±0.88 -0.11 140±9 -1.9
Beg 2.17±0.77 <0.01 142±8 -0.4
Beg, recursive 2.17±0.77 0.01 142±8 -0.4
ML∞ 3.51±0.35 1.34
ML 2.11±0.73 -0.06 136±7 -8
Mod. ML 2.20±0.78 0.02 143±9 < 0.1
Results of Koen (2006)
CCDF 2.10 143.9
ML 2.11 136

Table 5.2: Estimates for the 29 most massive stars in R136. The standard deviations of the esti-
mators were calculated using a Monte-Carlo sample of size 10 000. For the binning methods 5
bins are used. The bias was calculated using the results of the modified ML method as input
values.

5.5 Examples

5.5.1 The massive stars in R136

As a first exemplary application of the presented statistical techniques, in particular of the
estimators, we chose the data set of massive stars in R136 published by Massey & Hunter
(1998). They gave for the 29 most massive stars the masses based on two different stellar
models (Chlebowski & Garmany, 1991, with masses ranging from 56 M� to 136 M�, and
Vacca et al., 1996, 75− 155 M�). The results of the estimators are shown in Table 5.2 where a
Monte-Carlo sample of size 10000 was used to calculate the standard deviations.

Beg’s estimator and the modified ML method agree well (α̂ = 2.2), the ML estimate is
slightly smaller (α̂ = 2.1). In reasonable agreement with this value are also the results of
variable-size binning and fitting the complementary cumulative DF plot. For comparison
the results of Koen (2006) are also given in Table 5.2. The ML estimates are equal, only the
CCDF result differs, likely due to a different definition of the empirical DF (Koen uses i/(n+1)
whereas here (i− 0.5)/n is used). The ML method without including an upper limit gives a
much larger exponent (α̂ = 3.5) which shows the effect of a model mismatch. A comparison of
this value only with a constant-size histogram, where a linear regression gives α̂ = 3.4, would
not give any indication of the mismatch.

The upper limit is determined as ≈ 140 M� by Beg’s estimator, the ML and the CCDF
method. The results from variable-size binning are not consistent with the data set, because
this upper limit is smaller than the largest data point.

For the goodness-of-fit analysis an SPP plot with a truncated power law as null hypothesis
is shown in Fig. 5.6. The curve for the infinite power law is clearly not fitting the data. The
stabilised Kolmogorov-Smirnov, Cramér-von Mises and SPP correlation coefficient test all
give a strong disagreement of the data with an infinite power law and no disagreement with
a truncated power law.
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Figure 5.7: Infinite SPP plot of the
LMC star clusters (age < 107.5 yr)
with the lower mass limit of de Grijs
& Anders (2006), 102.2 M�. (Dot-
ted line: infinite hypothesis, α̂MML =
1.47; solid curve: truncated hypoth-
esis, parameters as estimated (α̂ =
1.47, M̂U,MML = 64200 M� ); dashed
curve: truncated hypothesis, α =
2, M̂U,MML = 64200 M�; dash-dotted
lines: limits of the acceptance re-
gion of the stabilised Kolmogorov-
Smirnov test, significance level 5%).

Figure 5.8: Truncated SPP plot of the
LMC star clusters (age < 107.5 yr)
starting at 102.5 M�. (Dotted line: in-
finite hypothesis, α̂MML = 1.62; solid
line: truncated hypothesis, param-
eters as estimated (α̂MML = 1.62,
M̂U,MML = 68000 M� ); dashed: trun-
cated hypothesis, α = 2, M̂U,MML =
68000 M�; dash-dotted: limits of the
acceptance region of the stabilised
Kolmogorov-Smirnov test, signifi-
cance level 5%).

The modified ML estimates from the data set using the models of Vacca et al., 1996 are
α̂ = 2.87±0.98 and M̂U = 163±9 M�. The goodness of fit tests indicate a truncated power law
with high significance too.

5.5.2 The young star clusters in the Large Magellanic Cloud

The second example for the methods presented above, with an emphasis on the advantage
of the SPP plot, is the analysis of the mass distribution of young star clusters in the Large
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Figure 5.9: Influence of the com-
pleteness (dotted line) on the ob-
servable mass function (solid line),
based on an assumed power law
(dashed line) as the underlying dis-
tribution function. The parameters
were chosen to match the situation
for the Large Magellanic Cloud, see
text. The vertical lines correspond to
a: 101.58 M�, b: 101.98 M�, c: 102.2 M�,
and d: 102.5 M�. The mass func-
tion is scaled arbitrarily for better
visibility.

Magellanic Cloud. We use a part of the data set given by de Grijs & Anders (2006), the star
clusters with ages younger than 107.5 yr and masses larger than 102.2 M�.

Based on an inspection of the shape of a histogram of the data de Grijs & Anders (2006)
concluded that there is a significant flattening of the mass function for M < 103 M� (see their
fig. 8). Indeed, also an SPP plot with an infinite null hypothesis, Fig 5.7, shows that the
empirical curve of the data is strongly bent in the lower mass range (M . 102.5 M�, estimated
exponent ≈ 1.5). In the upper mass range the infinite SPP plot reveals that the data are better
described by a truncated power law (solid line). This indicates that above≈ 102.5 M� the data
presumably will be consistent with a truncated power law.

With an SPP plot using only the star clusters more massive than≈ 102.5 M� this hypothesis
is confirmed (Fig. 5.8), the stabilised Kolmogorov-Smirnov acceptance region is not exceeded.
Thus, a change in the slope or shape of the mass function in the mass range 102.5–103 M�, as
stated by de Grijs & Anders (2006), cannot be deduced using our techniques. Only the mass
range 102.2–102.5 M� seems to deviate from the power law. The slope which is derived from
the data with masses larger than 102.5 M� is α̂ = 1.6±0.06 and an upper limit 68±11×103 M�
is obtained by the modified Maximum Likelihood method. This exponent is smaller than the
value determined by de Grijs & Anders (2006), α = 1.8±0.1, who used constant-size binning
and star clusters more massive than 103 M� (for this mass range the modified maximum
Likelihood estimate is α̂ = 1.63±0.1).

The feature in the mass range 102.2–102.5 M� could be caused by an actual change of the
mass function. However, since it is at the lower mass end, it could also be caused by an
incomplete data set. The completeness limit adopted by de Grijs & Anders (2006) was derived
by Hunter et al. (2003) from the behaviour of the luminosity function (see fig. 4 of Hunter
et al., 2003). They used as the brightness limit the brightness where the luminosity function
reaches at the faint side half of its peak value, obtaining MV = −3.5 mag or 101.58 M� (using
M = 106+0.4(−14.55−MV ) M�, Hunter et al., 2003, eq. 1). The mass related to the brightness limit
is valid for clusters of an age of 10 Myr. In a similar way Parmentier & de Grijs (2008) derive —
starting from the mass distribution of a chosen age interval older than 10 Myr— from the mass
which separates the lower 25% from the upper 75% a completeness limit of MV = −4.7 mag.
If we use this value also for younger clusters, then a completeness mass of 102.06 M� would
result (However, for unknown reasons an application of their method to clusters younger
than 10 Myr leads to a different completeness mass of 102.35 M�, Parmentier, priv. comm.).
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A completeness limit derived in such a way coincides approximately with the peak of the
observed mass function. But the transition from no detection to complete detection is smooth
and has a certain broadness in which only a fraction of all sources is detected which can
affect a wide mass range, illustrated in Fig. 5.9. The observable mass function (solid line)
is the product of the actual mass function (dashed, exponent α = 1.6) and the completeness
function (dotted). As the functional form for the completeness function we chose

c(M) = 1−

(
1+
(

M
M0

)φ
)−1

. (5.35)

The parameters of the completeness function were chosen such that the half peak point of the
observable mass function is at 101.58 M� (or MV = −3.5 mag, as Hunter et al., 2003, point a
in Fig. 5.9) and the peak mass is ≈ 102 M� (MV ≈ −4.5 mag, point b in Fig. 5.9). It is just
a coincidence that for the used parameters (log10 M0 = 1.98 and φ = 3.12) the 50% complete-
ness mass of the completeness function coincides with the peak mass of the observable mass
function. With these empirically determined parameters the observable mass function is shal-
lower than the actual power law in the mass range below ≈ 102.5 M�. This strongly supports
the argument that the deviation of the data from the power law in Fig. 5.7 is caused by in-
completeness. The distribution of star clusters with ages < 107.5 yr are well consistent with a
single power law with α̂ = 1.6, starting from 102.5 M�.

5.6 Summary and conclusions

In this work we compared methods to estimate the exponent and upper limit of a truncated
power law distribution. We reviewed graphical methods to represent the data. Finally we
studied goodness-of-fit tests, specifically to test for truncation.

Our results are:

1. A generally working estimator for the exponent and upper limit is our modified maxi-
mum likelihood method. It performs well with respect to bias and standard deviation.

2. A maximum likelihood estimate of the exponent without considering a truncation can
lead to biased results if the data stem from a truncated power law.

3. The estimator of Beg (1983) is also performing well but is numerically not stable. Vari-
able-size binning as introduced by Maı́z Apellániz & Úbeda (2005) performs well for
the exponent. The estimate for the upper limit based on the normalisation constant is
biased.

4. The stabilising transformation introduced by Michael (1983) enhances plots and good-
ness-of-fit tests. For one-sided distributions only a half transformation should be made
to achieve optimal results.

5. The stabilised PP plot is a particular useful display of the data.

6. The stabilised Kolmogorov-Smirnov statistic (SD), the stabilised PP correlation test (Sk2),
the stabilised Cramér-von Mises statistic (SC2), the Jackson statistic (T ) and the QQ cor-
relation (r2) test are powerful goodness-of-fit tests for the truncated power law.
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7. The exceedance statistic (X) is the most powerful test for truncation. Since it does not
test for power-law behaviour it has to be used in combination with a powerful goodness-
of-fit test for the truncated power law, as the ones mentioned in the previous point.

8. The massive stars in R136 are well described by a truncated power law with α̂ = 2.20±
0.78 and M̂U = 143± 9 M�, using the Chlebowski & Garmany (1991) stellar models for
mass determination, or α̂ = 2.87±0.98 and M̂U = 163±9 M�, using the Vacca et al. (1996)
stellar models.

9. The young star clusters in the Large Magellanic Cloud (ages younger than 107.5 yr) with
masses larger than 102.5 M� are well described by a truncated power law with α̂ =
1.62±0.06 and M̂U = 68.8±11.6 ×103 M�.

10. A change in shape of the star cluster mass function in the Large Magellanic cloud in the
low mass range M < 103 M�, as reported by de Grijs & Anders (2006), cannot be verified.
For M > 102.5 M� the observed distribution follows a truncated power law, a flattening
below 102.5 M� is most likely caused by an underestimated completeness limit.
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5.7 Appendix: Beg’s estimator

The estimator for the exponent (Beg, 1983) is given in its original form as

θ̂ =
(n−3)!

∑ j?
j=0(−1) j

(n−2
j

)
Kn−4

j+1

(n−4)!
∑ j?

j=0(−1) j
(n−2

j

)
Kn−3

j+1

, (5.36)

where θ̂ = α̂−1 and K j = T −nY − j(Z−Y ) with Y = loge X(1), Z = loge X(n) and T =
∑n

i=1 loge X j.
The terminating index of the sum, j?, is determined by the condition T −nY − j(Z−Y )> 0, as
shown by Beg (1983). The estimate for the exponent is then α̂ = θ̂ +1.

The direct evaluation of eq. 5.36 involves the calculation of
(n−2

j

)
, which is only practica-

ble for less than about 170 data points in double precision arithmetic. This problem can be
handled with a recursive implementation of the estimator, feasible for any number of data, as
follows.

To abbreviate we introduce L j =
(
1− j Z−Y

T−nY

)
which leads to

Kn−4
j = (T −nY )n−4Ln−4

j . (5.37)

With changing the limits of the sum and omitting (n−3)! the numerator of eq. 5.36 reads

−(T −nY )n−4
j?∑

j=1

(−1) j
(

n−2
j−1

)
Ln−4

j . (5.38)

Omitting the prefactor (T −nY )n−4 , the expanded sum reads

− (n−2)!
0!(n−2)!︸ ︷︷ ︸

=1

Ln−4
1 +

(n−2)
1

Ln−4
2 − (n−2)(n−3)

1 ·2
Ln−4

3 + . . . . (5.39)

Starting with the second term this can be written as

n−2
1

Ln−4
2 −n−3

2
(
Ln−4

3 −− . . .
)

︸ ︷︷ ︸
=:S(n−4)

3


︸ ︷︷ ︸

=:S(n−4)
2

. (5.40)

The superscript (n− 4) should only indicate the exponent and is not used as an exponent in
S(n−4)

j . From this the recursion can easily be seen:

S(n−4)
j′−1 =

n− j′

j′−1

(
Ln−4

j′ −S(n−4)
j′

)
, (5.41)

where j′ descends from j? to 2 and S j? = 0. The last step is

S(n−4) := S(n−4)
1 = Ln−4

1 −S(n−4)
2 . (5.42)
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The recursion for the denominator in eq. 5.36 is as for the numerator, but replacing the ex-
ponent n−4 by n−3 in equations 5.41 and 5.42. The estimator of θ is then (remembering all
omitted factors)

θ̂ =
n−3

T −nY
S(n−4)

S(n−3) . (5.43)

The estimators for the upper limit in the form of Beg (1983) is

x̂U = X(n)

(
1+

1
n(n−1)

∑ j?
j=0(−1) j

(n−1
j

)
Kn−2

j∑ j?
j=0(−1) j

(n−2
j

)
Kn−3

j+1

)
. (5.44)

The recursion formula for the sum in the numerator follows by analogous steps as before with

S
′(n−2)
j =

n− j
j

(
Ln−2

j −S
′(n−2)
j

)
, (5.45)

the last step

S
′(n−2) = 1−S

′(n−2)
1 . (5.46)

and

x̂U = X(n)

(
1+

(T −nY )
n(n−1)

S
′(n−2)

S(n−3)

)
, (5.47)

with S(n−3) from the estimator for the exponent above.
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On the mass function of young star
clusters in M51
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We analyse the mass function of young star clusters in M51. For the
initial star cluster mass function (ages up to 12 Myr) we test the agree-
ment of the data with the functional forms of an infinite power law, a
truncated power law and a Schechter function which all fit the data,
although with different parameters. Also, we investigate the depen-
dence of the results on the choice of isochrones (Geneva and Padova),
and the choice of metallicity (solar or free). For the power law an ex-
ponent of ≈ 2.6 fits the data, the exponent for a Schechter function is
smaller and not well constrained. The turnover mass of the Schechter
function, M? ,lies at ≈ 104 M�. The older clusters (age range 12–25
Myr) have a flatter mass function, which could be caused by infant
evolution but is also consistent with the strong dynamical evolution
found e.g. by Gieles et al. (2005) for clusters in M51. For older ages
(up to 100 Myr) only age/mass fitting with the Padova isochrones pro-
vides a sufficient number of clusters for analysis. There the mass func-
tion steepens again to reach values similar to the ones of the initial
mass function. This could be the sign of cluster revirialisation in a
galaxy with dynamical evolution of star clusters as expected for spiral
galaxies.

6.1 Introduction

The galaxy M51 is one of the few galaxies in which a large part of the young star cluster
population has been observed and their properties have been subject to a number of stud-
ies (Bik et al., 2003a; Bastian et al., 2005; Gieles et al., 2005; Scheepmaker et al., 2007; Haas
et al., 2008). We investigate in this work the initial cluster mass function, the mass function
of young star clusters which just have ended their embedded phase. Several functions have

81
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been proposed for the form of the initial cluster mass function, an infinite power law, a trun-
cated power law or a Schechter function (a power law with exponential decay at high masses,
Gieles et al., 2006a). The shape of the initial cluster mass function can give insights on prop-
erties of galaxy-wide star formation. Are, for example, different star formation rates leading
to varying parameters, especially upper truncation limits (see e.g. Weidner et al., 2004), or
does the range of massive clusters follow purely from random sampling (e.g. Bastian, 2008)?
To shed light on this question we estimate the parameters for all propositions and perform
goodness-of-fit tests to establish or refute one or the other function using the statistical appa-
ratus of Maschberger & Kroupa (2009).

A further central topic of our work is to investigate in how much results on the cluster
mass function depend on the choice of isochrones and metallicities. Scheepmaker et al. (2009)
found that especially in the first≈ 100 Myr the fitted ages and masses are strongly dependent
on the isochrone/metallicity choice. Therefore we perform our analysis for two isochrone sets
(Padova and Geneva) and for each of these for two metallicities (solar and free).

The time-evolution of the star cluster mass function follows the dynamical evolution of
the star clusters. For the earliest times (up to ≈ 30 Myr) the transition from embedded to
gas-free star clusters can leave it’s imprint on the mass function, especially if this transition is
mass-dependent (Kroupa & Boily, 2002; Weidner et al., 2007; Parmentier et al., 2008). For older
ages clusters follow their normal path of dynamical evolution via two-body relaxation lead-
ing to an increasingly shallower mass function. The degree of flattening is dependent on the
galactic environment, e.g. the tidal potential (e.g. Baumgardt & Makino, 2003). A convenient
description of the dynamical evolution is given by Lamers et al. (2005b), where the dynami-
cal environment is parametrised by t4, the life-time of a 104 M� cluster. t4 is typically derived
from the total age-mass distribution assuming a cluster (number) formation rate (Gieles et al.,
2005, finding t4 ≈ 108 yr). By considering only a restricted age range but performing an esti-
mate of the exponent the necessity of assuming a cluster formation rate can be avoided when
determining t4.

After describing the data (Sec. 6.2), the functional forms of the cluster mass function (Sec.
6.3) and the methods for data analysis (Sec. 6.4) we first analyse in Section 6.5 the initial
cluster mass function and its dependence on isochrones and metallicity. In Section 6.6 we
discuss the time-evolution of the cluster mass function with respect to it’s relation to cluster
infant mortality/evolution and dynamical evolution. We finish with our conclusion and a
summary in Sec. 6.7.

6.2 Observations and derivation of ages and masses

For our analysis we utilize the data sets of Scheepmaker et al. (2009) which contain 1850 star
clusters of M51. The data set is based on HST observations in the B, V and I bands (described
in Scheepmaker et al., 2007) and in the U band (Scheepmaker et al., 2009). The selection
criteria for any one of the 5502 resolved sources with photometry to be classified as a star
cluster were 1) photometry brighter than the 90% completenes limit of Scheepmaker et al.
(2007), 2) photometric accuracy better than 0.2 mag and 3) U < 22 mag. Ages and masses were
estimated using the GALEV simple stellar population models (Schulz et al., 2002; Anders &
Fritze-v. Alvensleben, 2003) together with the ANALYSED tool (Anders et al., 2004). The typical
age uncertainty is < 0.4 dex (Anders et al., 2004; de Grijs et al., 2005; de Grijs & Anders, 2006).
ANALYSED gives masses for the star clusters that have been corrected for stellar evolution,
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Figure 6.1: Age-mass diagrams
for the M51 star clusters where
ages and masses have been de-
rived with Geneva or Padova
isochrones, either with fixed
(solar) or free metallicity. Clus-
ter masses have only be cor-
rected for stellar evolution.

but not for dynamical mass loss. For the fit of the ages and masses isochrones were used
either of the Geneva group (Charbonnel et al., 1993; Schaerer et al., 1993) or the Padova group
(Bertelli et al., 1994; Girardi et al., 2000). The metallicity was either taken to be constant at
solar metallicity or allowed within the range of 0.4–2,5 Z�

The age-mass diagrams are given in Fig. 6.1, with the typical lower envelope which fol-
lows the observational limiting magnitude. The Padova isochrones have less resolution at
young ages which leads to the typical ‘chimneys’ in the age-mass diagrams. The choice of
fixed or free metallicity has a comparably small impact on the age-mass distributions com-
pared to the disturbingly large discrepancies for different isochrone sets. For example, with
the Geneva isochrones there is a cluster desert between 20 and 100 Myr, a region which is well
populated with Padova isochrones.

The data anlysed by us are

6.3 Models for the star cluster mass function

The most widely adopted functional form of the (initial) star cluster mass function is a power
law, ranging up to infinity,

p∞(M;β ,ML) =
β −1

M1−β

L

M−β . (6.1)

L is the lower mass limit, usually given by observational completeness. We use all mass
functions as probability densities, i.e. normalised such that

∫
∞

ML
p(M)dM = 1.

As star clusters of potentially infinite mass are physically not possible the power law can
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be truncated at an upper limit U , giving the truncated power law probability density,

pU(M;β ,ML,MU) =
1−β

M1−β

U −M1−β

L

M−β (6.2)

A third possibility is to introduce an exponential truncation near M?, what leads to the
Schechter function (Gieles et al., 2006a),

p?(M;β ,ML,M?) =
1∫

∞

ML
M−β exp(−M/M?)dM

M−β e−
M

M? (6.3)

For the Schechter function the integral in the normalising constant has no analytic form and
has to be evaluated numerically.

6.4 Methods for data analysis

The analysis of the star cluster data has two aspects: determining the parameters of the distri-
bution function and verifying the assumed functional form of the distribution function.

To estimate the parameters of a truncated power law or a Schechter function we perform
Maximum-Likelihood fits. For the infinite power law the exponent is approximately the same
as for a truncated power law. To minimise the bias occurring with small samples the Maxi-
mum Likelihood method is modified for the truncated power law, following Maschberger
& Kroupa (2009, Chapter 5 this thesis). The given uncertainties are the intrinsic statistical
scatter of the method (derived from 1000 simulated data sets) and do not account for obser-
vational uncertainties. As the likelihood surface does not show a pronounced peak for the
Schechter function the usual methods to derive the maximum do not converge well. There-
fore we search for the maximum on a grid of β and M? values (β ranging from 1.5-3 in steps
of 0.025, M? from 103 M� to 107 M� in logarithmic steps of 0.025).

It should be noted that both the estimate for the upper limit of the truncated power law
(U) and the turnover mass of the Schechter function (M?) cannot be determined very well.
They both can show a deviation of up to 1 dex, usually lying below the actual value.

To assess informally the agreement of the data with the assumed distribution function
we use the stabilised percentile-percentile (PP) plot, examples of which are shown in Fig.
6.2. For this plot an empirical and a theoretical cumulative probability is calculated for each
data point (star cluster), which is transformed to a stabilised cumulative probability. The
empirical cumulative probability for a cluster of a certain mass is derived from the position of
the mass in the sorted set of all masses. In the ascendingly sorted data set of size n the value
PE(M(i)) = (i− 0.5)/n is assigned to the i-th most massive star cluster, e.g. for the smallest
mass 0.5/n and for the largest mass (n− 0.5)/n. The corresponding theoretical cumulative
probability for the null hypothesis , PH, is calculated using the mass of cluster i and either
specified or estimated parameters. In absence of stochastic noise the pairs of PE(M(i)) and
PH(M(i)) have values between zero and unity and lie on the diagonal, the reference line for
any null hypothesis in this plot. Alternative hypotheses can also be shown in the SPP plot,
e.g. the left panel of Fig. 6.2, constructed with an infinite power law as null hypothesis, shows
as solid line a truncated power law. It is clear that in this figure the truncated power law is a
better description of the data.

Compared to a histogram a plot of the empirical against the theoretical probability has
the advantage of showing every data point individually without a need for grouping, at the
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Figure 6.2: SPP plots of the clusters in
the youngest age range (0–12 Myr), with
ages and masses derived using the Padova
isochrones and free metallicity. The parallels
to the diagonal give the 2σ acceptance region
of the stabilised KS test. The top left SPP plot
uses an infinite power law as null hypothe-
sis, in the top right one a truncated power
law and in the one below a Schechter func-
tion. The estimated values are used as param-
eters. In each plot the alternative hypotheses
are shown as well, using dashed lines for an
infinite power law, solid lines for a truncated
power law and dotted lines for a Schechter
function.

price of a more complex construction. Another convenient property of this plot is that an ac-
ceptance region of the Kolmogorov-Smirnov (KS) test can easily be shown as parallels to the
diagonal, allowing one to visualise a formal goodness-of-fit criterion. Since it is well known
that the KS test is not so significant in the tails we apply a (variance-) stabilising transfor-
mation to both the empirical and the theoretical probabilities (see Maschberger & Kroupa,
2009, Chapter 5 this thesis). The appearance of the SPP plot is essentially unchanged by the
transformation. The stabilising transformation can be used either as a half transformation,
emphasising particularly the upper mass end, or as a full transformation, giving every data
point the same weight. To distinguish between an infinite and a truncated power law we
use the half transformation, as this has a higher decisive power for these alternatives (see
Maschberger & Kroupa, 2009, Chapter 5 this thesis). For the Schechter function we apply the
full transformation, as a wide mass range can be affected by the exponential component.
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Age range Mll βPL MU βSch M? n βPL MU βSch M? n

Geneva Z� Geneva Z free
1 – 12 Myr 3.50 2.74±0.13 11.02 1.86 1.73 205 2.54±0.10 9.37 1.70 1.60 247
1 – 12 Myr 3.70 3.09±0.23 13.10 2.30 23.27 101 2.97±0.19 11.13 2.32 22.86 137

12 – 25 Myr 3.70 2.30±0.09 21.58 1.60 3.45 258 2.14±0.09 20.74 1.65 6.03 205
12 – 25 Myr 3.80 2.49±0.12 23.40 1.77 4.58 203 2.25±0.12 21.52 1.74 7.87 163

Padova Z� Padova Z free
1 – 12 Myr 3.50 2.43±0.16 9.55 1.90 4.75 114 2.10±0.08 4.90 1.58 2.35 351
1 – 12 Myr 3.70 2.57±0.24 9.94 1.89 19.88 64 2.22±0.13 4.93 1.63 2.61 211

12 – 25 Myr 3.70 2.16±0.10 11.22 1.61 4.13 212 1.89±0.11 10.98 1.60 6.52 151
12 – 25 Myr 3.80 2.23±0.13 11.36 1.62 4.29 162 1.98±0.14 11.11 1.62 6.32 123
12 – 50 Myr 3.70 2.06±0.06 56.45 1.57 6.68 409 1.94±0.06 54.58 1.57 9.03 321
12 – 50 Myr 3.80 2.19±0.07 60.94 1.62 6.88 339 2.08±0.07 58.66 1.58 8.15 276
25 – 50 Myr 3.90 2.22±0.11 73.00 1.76 13.60 157 2.14±0.12 70.81 1.70 14.35 134
25 – 50 Myr 4.00 2.34±0.13 80.52 1.90 25.47 127 2.20±0.14 73.93 1.70 15.47 107

25 – 100 Myr 4.10 2.29±0.11 61.83 1.67 11.80 182 2.24±0.11 61.89 1.88 34.34 159
25 – 100 Myr 4.30 2.70±0.17 77.47 2.22 93.89 120 2.49±0.17 70.54 2.18 209.90 98
50 – 100 Myr 4.20 2.39±0.21 32.66 1.75 16.99 72 2.38±0.21 82.30 2.05 196.23 60
50 – 100 Myr 4.30 2.66±0.26 35.60 2.06 72.41 60 2.46±0.26 85.47 2.09 254.95 47

Table 6.1: Estimates of the parameters of the cluster mass function for the combinations of
isochrones and metallicities. The table gives the analysed age range and lower mass limit of
the fit (Mll in log1 0), the estimated exponent and upper limit of the power law (βPL and MU),
and the exponent and turnover mass of the Schechter function (βSch and M?). MU and M? are
given in 104 M�.

In the stabilised PP plot the KS test can analogously be defined as the largest distance
between a data point and the diagonal, but now a new null distribution of the test has to
be calculated for which we use the Monte-Carlo approach. The null hypothesis can then be
rejected when the stabilised KS distance is larger than e.g. the 95% quantile of the null distri-
bution, which corresponds to a significance level of 5%. Using the stabilising transformation
the statistical power of the KS test can be significantly increased. It is as effective in deciding
between an infinite and truncated power law as a likelihood ratio test, with the added bonus
of a graphical representation.

When agreement or disagreement of the data with the functional form of the cluster mass
function, evaluated using the estimated parameters, is established, the data analysis is in prin-
ciple finished. However, as we find below agreement of the data with exponents and turnover
masses which are commonly believed to be rather extreme, we extend our analysis. Because
the error bars in the estimates can be large it is possible that the “canonical” parameter values
are fitting the data as well. Therefore a (parametric) goodness-of-fit test should be made with
the “canonical” parameters in order to establish their suitability for the data. For this purpose
we performed stabilised KS tests for the infinite power law, the truncated power law and
the Schechter function on a grid of exponents, truncation masses and turnover masses. The
results are shown in Figs. 6.3 and 6.4, with a dot representing agreement of this parameter
combination with the data. The sizes of the dots correspond to different significance levels:
large dots for a significance of 32% or 1 σ , medium-sized dots for 5% or 2 σ , and small dots
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for 1% or ≈ 2.6σ . The open circle is situated at the location of the maximum likelihood esti-
mates. The plots for the Schechter function also include as grey dots the estimates from 1000
realisations of a data set with the estimates from the data as input values. This is to indicate
the typical scatter of the maximum likelihood method, as well as to show the potential bias in
the estimates.

6.5 Initial cluster mass function

To investigate the initial cluster mass function we derived the exponents for the age range
up to 12 Myr, selecting the only the first three chimneys in the Padova data and their less
pronounced analoga in the Geneva data. To be reasonably above the completeness limit we
start the analysis with a minimum mass of 103.5M� for a cluster. The results for the exponents
with the different isochrones and metallicities are given in Table 6.1. We give also the results
starting from 103.7M� for a rather informal assessment of their robustness. With larger starting
masses the number of available clusters becomes very small so that no good results can be
obtained.

We now first turn to the question about the functional form of the initial cluster mass func-
tion. As visible from Figs. 6.3 and 6.4 all assumptions about the functional form are consistent
with the data, except for the Padova isochrones with free metallicity. For the moment we ex-
clude the Padova/free metallicity data from our discussion and return to them below. The
exponent for an infinite or truncated power law is generally much larger than the canonical
value of 2. The estimated upper limit of a truncated power law, M̂U, lies only a little above the
most massive cluster. This is the typical behaviour of the fitting method. However, with the
stabilised KS test larger values for MU, or even an infinite power law cannot be excluded.

Schechter functions with the same exponent as the pure power law and a high M? also fit
the data, as they are essentially power laws in this case. For the clusters fitted with Geneva
isochrones allowing free metallicity, however, the agreement with such parameters is on less
than a 2σ level. In analogy to the pure power law essentially any value of M? is allowed. The
Schechter functions fit as well with a lower exponent and a lower M?, interestingly for a broad
range of β with a narrow range of M?. This behaviour means that the data are essentially fitted
by the exponentially decaying tail, so that the value of β becomes unimportant. The estimated
parameters of the Schechter function always lie in this part of the β -M? plane, but this can be
a systematic effect of the Maximum Likelihood method.

After the general shape of the initial cluster mass function we address the influence of
the isochrones and metallicity on the parameters. If a range of metallicities is allowed the
exponent decreases compared to fixed solar metallicity, by about 0.1–0.3. This occurs for both
isochrone sets With free metallicity some kind of truncation seems to be favoured by the
data, especially when the Padova isochrones are used. This truncation either manifests in a
sharp truncation or a small M? of the Schechter function A Schechter function with the same
exponent as the power law and a large M? is not fitting the data well.

As the last point of our discussion of the initial cluster mass function we discuss the data
set derived with Padova isochrones and free metallicity. In contrast to the other data sets these
data do not support an infinite power law. As visible in the age-mass diagram (Fig. 6.1, right
panel, the three youngest “chimneys”) the cluster masses are densely packed over the whole
range and do not thin out with increasing mass. This is first by-eye evidence that some trun-
cation must be present. As visualisation of a more objective way to reject the infinite power



88 CHAPTER 6. MASS FUNCTION OF YOUNG STAR CLUSTERS IN M51

Figure 6.3: Goodness-of-fit plots for the M51 star clusters in the age ranges 0–12 Myr and 12–
25 Myr. Shown is the β -U plane for the power law or the β -M? plane for the Schechter function.
The estimated parameters are marked with an open circle. If a parameter combination is in
agreement a dot is shown, with a small size for agreement at the ≈ 2.6σ significance level,
a medium size at 2σ and a large dot at 1σ level. In the plots for the Schechter function the
small grey dots show estimates which have been derived from a Monte-Carlo simulation with
the estimated values as input parameters, which should visualise the quality of the fitting
method.
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Figure 6.4: Goodness-of-fit plots for the M51 star clusters as Fig. 6.3, but for Padova
isochrones.
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Figure 6.5: Dynamical evolution of
the star cluster mass function from
an initial power law with β = 2.6
(dotted line) where t4 = 108 yr. Af-
ter 25 Myr the mass function (solid
line) has become shallower and can
be fitted by a power law with β ≈ 2.5
(dashed line).

law we show in Fig. 6.2 (left panel) an SPP plot with the infinite power law as null hypothesis
(using estimated parameters). Clearly the data bend away from the diagonal and leave the
5% significance region, rather following the truncated power law (solid line). We also show in
Fig. 6.2 SPP plots constructed with a truncated power law (middle) and a Schechter function
(right), both using estimated parameters. In these two the data do not exceed the acceptance
region. By mere visual inspection the truncated power law seems to be in better agreement
with the data, as for the Schechter function some trend in the upper half seems to be present.
However, as both cannot be rejected the preference of one to the other is more a matter of
taste and perhaps practicality.

6.6 Time evolution of the cluster mass function

The star cluster population of M51 is sufficiently rich that our statistical methods can also be
applied to older clusters. In the age range τ = 12 Myr to τ = 25 Myr with all isochrone/metall-
icity combinations the number of clusters is sufficient for an analysis. The lower mass limit of
the analysis has to be increased to 103.7 M� to be well above the observational completeness
limit. As before we constructed goodness-of-fit plots in the β -MU or β -M? plane, which are
shown in the upper parts of Figs. 6.3 and 6.4. The picture with respect to agreement with the
functional form is similar to the younger age range, although with less support for Schechter
functions with large β and large M?. The acceptable parameter range is shifted from β = 2.5–
2.7 (1–12 Myr) to β = 2.3–2.5 (12–25 Myr). For the Schechter function with small exponent M?

is increased from 104 M� to 105 M�, as more clusters of higher mass are present. This shift im-
plies that there is presumably no universal M?. Again the combination of Padova isochrones
and free metallicity falls out of the consensus, with a lower exponent and an infinite power
law now being in an agreement with these data.

The natural explanation for the shift in the exponent is the dynamical evolution of the
young clusters. The gas that is not converted into stars (perhaps 70% or more of the total
initial gas mass) accounts for a large fraction of the potential, so that clusters that expell this
gas are left in a dynamically unstable state and loose stars in reaction to this rapid change
of the potential. After, say, a few tens of millions of years they reach again a “stable” state
and continue with their “normal” dynamical evolution. As the time-scale of the dynamical
evolution of a star cluster depends on the number of stars (or total mass), the mass function
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Figure 6.6: Time-evolution of the ex-
ponent of the cluster mass function.
The dots show the estimates for a
power law, the open circles for a
Schechter function. Solid lines give
the theoretical evolution of the expo-
nent, starting with β = 2.6 or β = 2.2
for t4 = 108 yr and dashed lines for
t4 = 109 yr.

of a star cluster system changes in time.
To describe the dynamical evolution we use the analytic models by Lamers et al. (2005a).

The age-dependence of a cluster mass is there given by

M(t) = Mi

(
1− γt

t0

(
M�
Mi

)γ) 1
γ

, (6.4)

with typically γ = 0.62. Mass loss due to stellar evolution is not included in the above equation
as in the mass determination of our data this has been accounted for. t0 parametrises the
influcence of the environment, such as the galactic potential, spiral arms, molecular clouds
etc. It is usually transformed into t4 which is the dissolution time of a 104 M� cluster, using

t4 = 660× t0.967
0 . (6.5)

By using eq. 6.4 and d t4 = 1× 108 yr as found for M51 by Gieles et al. (2005) we can
calculate the time-evolution of the star cluster mass function. Figure 6.5 shows the evolved
mass function after 25 Myr. It is somewhat shallower at the low mass end compared to the
initial mass function (dotted line, β = 2.6). With some offset for visibility a power law with
an fitted exponent is also shown (dashed line). The fitted exponent, which has been derived
using a linear regression in logarithmic space, has a value of ≈ 2.4, comparable to what is
found in the observational data. The structure that is introduced in the cluster mass function
by dynamical evolution is not sufficiently pronounced to be seen in the data.

The value of 100 Myr for t4 is much shorter than expected for M51, as it is comparable to
the Milky Way. Dynamical models show that the typical dissolution time scale of a cluster
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Figure 6.7: Goodness-of-fit plots showing the time-evolution of the cluster mass function, us-
ing the Padova isochrones and free metallicity. The left figure is for the infinite and truncated
power law and the right figure for a Schechter function. The symbols in the plots are as in Fig.
6.3. A version of this plot with solar metallicity can be found in the Appendix (Fig. 6.8).

containing 10 000 stars is of the order of one to a few Gyr, assuming it resides in a Milky Way-
type galaxy (see Baumgardt & Makino, 2003). There have been several explanations for this
discrepancy, as for example the collisions with molecular clouds (Gieles et al., 2005).Until now
the methods to derive t4, by using the cluster (number) formation rate (Boutloukos & Lamers,
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2003; Gieles et al., 2005) or by using the most massive cluster (Gieles & Bastian, 2008), have
both the drawback that a (constant) cluster formation history has to be assumed. However,
by the direct analysis of the mass function this serious limitation can be circumvented.

For the Padova isochrones the number of clusters older than 25 Myr is still large enough
for an analysis. The parameters and results of the analysis are shown in Table 6.1, where
we also included overlapping time bins to assess the stability of the fits. With this we can
construct the time-evolution of the exponent, shown in Fig. 6.6 with dots for the power law
and open circles for the Schechter function. Surprisingly the exponent does not monotonously
decrease with time, but has a minimum at ≈ 20− 30 Myr to increase again to values even
slightly higher than for the youngest ages (but consistent within the error bars). Additional
to the data we give the expected evolution of the exponent, based on t4 = 108 yr (solid) and
109 yr (dashed) and starting with β = 2.6 and β = 2.2.

Various explanations can be given for this behaviour of the mass function. By taking the
error bars of the exponents into account and looking at the goodness-of-fit plots (Fig. 6.7,
showing only the free metallicity case. The Z� plots are more homogeneous.) it could be
deduced that the evolution of the exponent is less drastic than suggested by the changes
from 1− 12 Myr 12− 25 Myr only. M51 would then have a t4 comparable to what would be
expected for a spiral galaxy (109 Myr). Alternatively one could argue that, as only for the
Padova isochrones this effect appears it might well be possible that the cluster sample for
older ages is affected by systematics of the fitting, especially as a increase of the exponent
disagrees with the typical physical processes. In this case the results for the older ages would
be considered as being not very trustworthy and a small t4 would be given the preference. A
third explanation could be that star clusters pass through a state of low surface brightness as
they expand after gas expulsion (see fig. 2 in Kroupa et al., 2001). In this case they would
drop out of the observational sample, particularly at the lower mass end, so that for a time an
apparent decrease of the exponent would be detected. When the clusters are not completely
unbound they would fall back to a higher surface brightness and reappear in the sample
again, which gives an apparent increase of the exponent. This middle age range would have
to be neglected for determining t4.

Unfortunately the available data do not allow us to favour or reject any of the possible
explanations. However, the main point of this exercise is perhaps not to find exact numbers.
Rather, we could show that it is possible to directly analyse the star cluster mass function
without any prior assumptions about the cluster formation history. The puzzling behaviour of
the exponent shows that the data set has properties not yet understood which were concealed
until now. Results obtained from global properties of the cluster mass function (number of
clusters per age or most massive cluster) are presumable also affected by these properties.
Hopefully new observations and improved age/mass fitting will shed light on this issue in
the future.

6.7 Summary and conclusions

We analysed the star cluster population of M51, with ages and masses determined using
Geneva and Padova isochrones with solar or free metallicity. The results for the initial cluster
mass function show a dependence on the choice of isochrones and metallicities, with the very
particular case of Padova isochrones and free metallicity. Generally an inifinite power law,
truncated power law or a Schechter function with large M? all fit the data, with a rather steep
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exponent of β ≈ 2.6. A Schechter function with smaller exponent and a small M? fits the data
as well, with no strong constraint of the exponent as one fits only with the exponentially de-
caying part. The value found for M?, 104 M�, is by an order of magnitude smaller than found
by Gieles (2009), presumably caused by the differently selected set of clusters.

The time-evolution of the cluster mass function is somewhat ambiguous. All combina-
tions of isochrones and metallicities show a decrease in the exponent by ≈ 0.2 in the age
range 12–25 Myr. Assuming the generally accepted value for the parameter of star cluster
evolution, t4 = 108 yr, this decrease is in accordance with normal dynamical evolution of star
clusters and not caused by the transition from the embedded to gas-free phase.

For the Padova isochrones the number of star clusters older than 25 Myr is sufficiently
large to also analyse older age ranges. Surprisingly, here the exponent does not continue to
decrease, but increases again to similar values as at 1–12 Myr. This may be the first direct
evidence for cluster revirialisation after residual gas expulsion.
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6.8 Appendix

Figure 6.8: Goodness-of-fit plots, as Fig. 6.7, showing the time-evolution of the cluster mass
function, using the Padova isochrones and solar metallicity.
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Chapter 7

Maximum stellar mass versus cluster
membership number revisited

Th. Maschberger & C. J. Clarke
MNRAS 391:711–717 (2008)

We have made a new compilation of observations of maximum stellar
mass versus cluster membership number from the literature, which
we analyse for consistency with the predictions of a simple random
drawing hypothesis for stellar mass selection in clusters. Previously,
Weidner and Kroupa have suggested that the maximum stellar mass
is lower, in low mass clusters, than would be expected on the basis of
random drawing, and have pointed out that this could have impor-
tant implications for steepening the integrated initial mass function of
the Galaxy (the IGIMF) at high masses. Our compilation demonstrates
how the observed distribution in the plane of maximum stellar mass
versus membership number is affected by the method of target selec-
tion; in particular, rather low n clusters with large maximum stellar
masses are abundant in observational datasets that specifically seek
clusters in the environs of high mass stars. Although we do not con-
sider our compilation to be either complete or unbiased, we discuss
the method by which such data should be statistically analysed. Our
very provisional conclusion is that the data is not indicating any strik-
ing deviation from the expectations of random drawing.

7.1 Introduction

It is well known (following Weidner & Kroupa (2004, 2006) and Oey & Clarke (2005)) that
in the case of clusters containing fewer than ≈ 100 OB stars (i.e. those with mass < a few
× 104 M�) the maximum stellar mass increases with cluster mass. At higher cluster mass
scales, the value of the maximum stellar mass saturates at around 150–200 M� for reasons that
are not entirely clear (see e.g. Zinnecker & Yorke, 2007). In this paper, we restrict ourselves to
considering the lower mass regime. In Section 7.2 we review why the statistics of maximum

97
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stellar masses in clusters of various scales can place constraints on high mass star formation
in a cluster context and how rather subtle differences in assumed algorithms for cluster build-
ing are imprinted on the integrated galactic IMF (the IGIMF). We emphasise that analysis of
the statistics of maximum stellar mass versus cluster mass offers the best prospects for an
observational determination of whether the IGIMF should be different from that measured in
individual clusters (see e.g. Weidner & Kroupa, 2006; Elmegreen, 2006). We also stress that
competing algorithms can only be distinguished through proper statistical analysis of the ob-
served distributions and that selecting algorithms according to how they reproduce the mean
trend can be misleading. In Section 7.3 we present a new (but in all likelihood still incomplete
and biased) compilation of observational information on this issue and highlight the sensitiv-
ity of the distribution obtained to the method of target selection. In Section 7.4 we discuss the
statistical inferences that can be drawn from the current dataset and conclude (Section 7.5)
with an appeal for further observational information to be used in future analyses.

7.2 The importance of maximum stellar mass data and its statistical
analysis

The simplest interpretation of the fact that the maximum stellar mass is lower, on average, in
lower mass clusters is that this just derives from the statistics of random sampling. To take a
simple analogy, the average height of the tallest inhabitants of large cities is likely to be greater,
on average, than the average height of the tallest individuals in small villages. It would
however to be incorrect to infer from this that there is, for example, a nutritional deficiency
among village dwellers. On the other hand, a better analogy might be with the wealth of
richest individuals in settlements of various sizes, since in this case this might reflect the size
of the local economic base. This is the sort of argument used by Weidner & Kroupa, who point
out that in the case of cluster formation, the stars acquire their mass directly from the available
gas reservoir. Their simple Monte-Carlo simulations build the finite size of the gas reservoir
into their algorithms for stellar mass selection and reject any star whose formation causes the
total designated cluster mass to be exceeded. This ‘rejection’ element preferentially affects
more massive stars and is chiefly manifest through a statistical lowering of the maximum
stellar mass compared with its value in random sampling experiments. Another plausible
algorithm was proposed by Elmegreen (2006), motivated by the fact that the fraction of the
initial gas in a protocluster that ends up in stars may be significantly less than unity. In
this algorithm, therefore, although stellar mass selection is terminated once the total stellar
mass exceeds the designated total mass, the last star is only rejected if this takes the total
cluster mass over a value equal to the sum of the designated cluster mass and the mass of
an additional gas reservoir. Since this is a softer rejection criterion, this algorithm produces
results that are closer to random sampling than a strictly mass constrained algorithm.

Since in all these cases the maximum stellar mass follows quite a broad distribution (at
fixed cluster scale), these differences cannot be discerned from a single observational data-
point. Instead it is necessary to compare observed distributions (at given cluster scale) with
the results of simulations (or, in the case of the simplest, random drawing, hypothesis, with
the results of analytic predictions). Some care is needed when considering the best property of
the distribution that should be compared with observational data, as is demonstrated in Fig-
ure 7.1 which illustrates the probability density function of maximum stellar mass at given
cluster mass scale in the case of the random drawing hypothesis. Clearly, this distribution
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Figure 7.1: Probability density of the
most massive star, p(mmax) (eq. 7.5
in Appendix 7.6) for a star cluster
containing n = 30 stars. Character-
istic quantities are the mean, mmax,
and the median, m1/2. The 1/6th and
5/6th quantiles limit the shaded re-
gion containing 2/3rd of the most
massive stars.

is highly asymmetric, with the mean significantly exceeding the median. This means that in
the case of sparsely sampled observational data (i.e. not many clusters at given mass scale),
the observed mean is likely to be lower than the true mean. A better approach is instead to
compute the predicted distribution (as a function of cluster mass) and use a non-parametric
method (e.g. a Kolomogorov-Smirnov test) to compare these with the distribution of observa-
tional datapoints in the plane of cluster mass versus maximum stellar mass (see Oey & Clarke
(2005) and Section 7.3).

Thus far we have discussed the interpretation of these statistics in terms of what light
they may shed on cluster formation (obviously the algorithms described above are simple
‘toy models’ but a clear signature in favour of one of them could be useful, for example, in
determining how much stellar mass assignments are shaped by strict limitations in available
gas supply). Another implication is purely empirical: we have stressed that the steepening
of the upper IMF (and the resulting reduction in maximum stellar mass) in the case of non-
random mass selection algorithms are too subtle to be detectable in any given cluster (i.e.
each cluster is statistically consistent with being drawn from the input IMF). However, when
one combines the results of many clusters (i.e. —on the assumption that the galactic field
is composed of dissolved clusters— if one turns an IMF into an IGIMF) the signature of al-
gorithms that preferentially reject high mass stars is seen in a steepening of the IGIMF. This
important insight was first discussed in this way by Kroupa & Weidner (2003) (though see
Vanbeveren (1982) for an earlier version of the argument). The reason why such star rejection
algorithms —which are only important in the lower mass clusters that we discuss here— have
a discernible effect on the IGIMF is simply that, given the steepness of the observed cluster
mass function, low mass clusters make an important contribution to the galactic field.

Naturally, a steeper IGIMF has implications for how a range of quantities (such as super-
nova rate or ionising luminosity or chemical enrichment) relate to the galactic star formation
rate. Weidner et al. (2004) also extended the argument by positing that similar considerations
apply to star cluster maximum masses in galaxies of different masses. This means that in
lower mass galaxies, the field population would be more dominated by lower mass clusters,
and therefore that the IGIMF would be more steepened by the effect described above. Indeed,
Pflamm-Altenburg et al. (2007b) have gone on to argue that this has important implications
for the mapping between Hα luminosity and star formation rate in dwarf galaxies and would
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Figure 7.2: Mass of the most massive star versus the number of stars in the cluster (for better
visibility, a small random scatter was applied to the (discrete) masses). The data are collected
from the literature, with the main sources Testi et al. (�) and Weidner & Kroupa (�). The
references for the other points are given in Appendix 7.7. The solid line is the mean value of
mmax depending on n. The dotted lines follow the 1/6 and 5/6 quantiles, and should confine
2/3rd of the observed data.

lead to the systematic under-estimation of the SFR in dwarfs.
Observationally, opinion is strongly divided as to whether there is good evidence that the

IGIMF is steeper than Salpeter (or if it varies between galaxies): see e.g. Elmegreen (2006),
Pflamm-Altenburg et al. (2007b), Selman & Melnick (2008) and discussion in Clarke (2008).
We may, however, be able to turn this question around: if we can use cluster data to deter-
mine whether the maximum stellar mass statistics are indeed compatible with random draw-
ing models then we can immediately learn whether the IGIMF should be equal to the IMF
(without recourse to any Galaxy-wide or extragalactic data). Although, as we shall see in the
following Section, it is not straightforward to achieve an unbiased sample for analysis, it is
obviously attractive to be able to use rather simple, local observations to constrain a quantity
which is potentially of extragalactic significance.

7.3 Observational data

In what follows, we attempt a simple test and enquire: is observational data on maximum
stellar mass as a function of cluster scale compatible with the hypothesis of random drawing
from a universal IMF (i.e. the same exponent and mass limits for all clusters)? Incompatibil-
ity would have important consequences for the IGIMF, as we have seen above and we would
then need to enquire what other algorithms could achieve consistency. On the other hand,
compatibility (at whatever desired significance level) would not necessarily imply that ran-
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dom drawing is the ‘best fit model’; it would however remove much of the motivation for
finding more complex alternatives.

The analytical model for random drawing of stellar masses (see Oey & Clarke (2005) or
Selman & Melnick (2008), and Appendix 7.6 of this paper that recapitulates the main results)
is based on the expected distribution of maximum stellar masses in the case that one makes a
given number, n, of selections from a given mass function. It therefore makes sense to make n
the independent variable (unlike in the case of mass constrained models where cluster mass
is the obvious choice). In order to obtain a homogeneous sample the data are renormalised
to a common lower limit because of differing observational lower mass limits for each cluster.
Each cluster is designated by the expected number of stars that it would contain down to
0.08 M� (i.e. not including brown dwarfs), given the observed number and mass limit, and
assuming an IMF for the missing range.1 We employ a two-part power law IMF (Kroupa,
2001, 2002) with a scaling as m−2.35 (Salpeter, 1955) for stars > 1 M�. In order to compare
the completeness magnitude of a particular set of observations with the lower mass limit
of our analysis, we use the conversion between K magnitude and mass given by Carpenter
et al. (1993) (m = 10−0.24mK+0.24 or m = 10−0.25mH+0.44). All clusters are corrected (at least in a
statistical sense) for background or foreground contamination. Furthermore we demanded
that the observed region was large enough to contain the whole cluster area.

As far as the maximum stellar mass is concerned, we either use values quoted in the litera-
ture or else estimate masses from listed spectral types using the conversion given in Schmidt-
Kaler (1982) (the masses for spectral types not contained in the list being interpolated).

Our criterion for including a cluster is only that we have found it to be possible to derive
estimates of both n and mmax in this way. As we discuss below, it is unlikely to be either a com-
plete or an unbiased sample and this makes any conclusions that we draw from this dataset
extremely preliminary. Figure 7.2 compares all the data that we have assembled with the
predicted centiles of the random drawing model (i.e.the mean and the 1/6 and 5/6 contours
of the cumulative distribution). The data is coded according to source: � for the data tabu-
lated in Weidner & Kroupa,� for that obtained by Testi et al and • for miscellaneous other
observations (see Appendix 7.7).

One of the hardest aspects of constructing Figure 7.2 is the assignment of realistic error-
bars (in n; errors in mmax are negligible by comparison, since we include only clusters which
are young enough for their most massive members not to have expired as supernovae). We
have drawn one-sided errorbars, on the grounds that we are probably missing stars that are
located at large distances from the most massive star where the density of sources on the sky
falls below the local background value, either as a result of initial conditions or dynamical
evolution. We are interested here in the total population of stars that was formed with the
most massive object, irrespective of whether these stars are currently bound to the natal clus-
ter. Dynamical evolution in small n clusters can however cause significant expansion over
a few Myr (Bonnell & Clarke, 1999) and this effect increases the likelihood that we may be
missing stars at large distances. In order to estimate the possible error introduced in this
way, we really need dynamical simulations on a cluster by cluster basis, which limit the range
of original configurations (cluster n and size) that are compatible with the present census of
background corrected objects. To our knowledge, this exercise has only been undertaken in
one cluster (η Cha, Moraux et al., 2007) where the total n lies in the range of 18 (as observed)

1Note that the choice of this lower limit is arbitrary, provided that it is self-consistently applied to all the
observational data and to the analytic predictions.
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to 40 (the maximum number that is compatible with leaving a cluster with the parameters ob-
served). With this in mind, we add one-sided errorbars of a factor of 2 in Figure 7.2, although
note that this is pessimistic (i.e. too large) for the larger n clusters where the rate of dynamical
dispersion is probably lower.

An obvious feature of Figure 7.2 is that different regions of the {n,mmax} plane are popu-
lated by clusters obtained through different observing strategies. Evidently, the squares are
low compared with the centiles, explaining why Weidner & Kroupa found it necessary to in-
voke a non-random algorithm for stellar mass selection. The data of Testi et al. is apparently
discrepant in the opposite direction — i.e. maximum stellar masses are, if anything, rather
large, given the number of stars in the clusters. The reason why these two datasets are com-
plementary (and both necessary to the statistical analysis) is simply one of the order in which
the properties of the systems were determined. Weidner & Kroupa sought data on regions
recognised as ‘star clusters’ and then found the maximum recorded mass. Testi et al. instead
first identified massive stars (including those that are apparently isolated) and then under-
took deep infrared imaging of the environs in order to identify any surrounding over-density
of low mass stars. Unsurprisingly, the ratio of maximum stellar mass to cluster number is
considerably higher in the latter case.

7.4 Analysis of the dataset

The observational data contained in Figure 7.2 is highly incomplete and biased and so great
care must be taken in its statistical analysis. In this section we discuss whether a subset of
the data can be used to settle whether the results are consistent with the expectations of the
random drawing hypothesis. We here remind the reader that acceptance (rejection) of this
hypothesis means that the high mass tail of the IGIMF should be identical to (steeper than)
the input Salpeter IMF.

If we simply took all these datapoints at face value, we could evaluate a cumulative prob-
ability for each datapoint (i.e. evaluate the probability that the maximum mass is less than
or equal to the datapoint value, according to the theoretical distribution for that particular
value of n): if the observations match theoretical expectations, these probabilies should be
uniformly distributed between 0 and 1. We can then use a KS test to compare the probability
distribution with a uniform distribution. The probability that data generated through ran-
dom drawing would be as discrepant from the theoretical prediction as is that observed is
10−17 (adopting the membership numbers denoted by symbols in Figure 7.2) and 10−8 (if one
instead adopts twice these values, i.e. corresponding to the upper end of the errorbars shown
in Figure 7.2). At face value, therefore, one would overwhelmingly reject the hypothesis of
random drawing. The reason for the discrepancy (as can be seen from Figure 7.2) is that the
lower range of the cumulative distribution function is actually under-populated by the data.

This conclusion is however highly misleading — the discrepancy is strongly driven by the
very large number of datapoints in Figure 7.2 (from Testi et al.) which populate the upper
regions of the cumulative distribution. However, it needs to be remembered that we simply
do not have complete data.

One way forward is to define a stellar mass, mcpl, such that we deem that we have the
information on all clusters (of all n), for which the maximum mass is > mcpl. By retaining all
the data with mmax > mcpl, however, we then have data which is complete down to different
values of the cumulative distribution depending on the value of n, which is impractical for a
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Figure 7.3: A plot of the ordered cu-
mulative probabilities versus the ob-
served cumulative probabilities de-
rived from the distribution of mmax
for a particular n. The shown data
fullfill the selection criterion dis-
cussed in Section 7.4, i.e. they lie in
the dashed wedge in Fig. 7.2. The
filled symbols follow with the ob-
served n, whereas for the open sym-
bols 2n was used, corresponding to
the right end of the error bars in Fig.
7.2 (�: Weidner & Kroupa; � Testi
et al.). If the data were uniformly
distributed they should follow the
diagonal.

statistical test and its interpretation. A more convenient approach is to select the data such
that they are complete down to the same cumulative probability Pcut. By this criterion all
data points are selected which lie above the mass mcut(n) which corresponds to Pcut in the
cumulative distribution of mmax(n).

Furthermore, we do not take into account the very small n data, because of their presum-
ably large error bars. Thus we introduce a minimum number of stars in a cluster, ncpl, which
are needed to ensure the quality of the selected data. The selection parameter Pcut follows then
as the cumulative probability of mcpl for the given ncpl. The choice for the values of mcpl and
ncpl is discussed below.

We demonstrate the selection criterion in Figure 7.2 for the case mcpl = 3 M�,ncpl = 30,
where the diagonal dashed line tracks the values of mcut(n) with Pcut = 0.53. By restricting
ourselves to data within the wedge of the diagram above the dashed line, we are obviously
not using a lot of the data, but have now defined a sample which is complete down to a
fixed point in the cumulative distribution at every value of n included. We can therefore test
whether these cumulative probabilities are uniformly distributed in the range Pcut to 1.

If we, for the moment, disregard any physical or observational ground for choosing par-
ticular values of mcpl and ncpl, we can use different values of these parameters so as to explore
various aspects of the two dimensional distribution. As expected, the KS probabilities are sen-
sitive to the values of the {mcpl,ncpl} adopted, with probabilities being higher if the choice is
such (e.g. through high mcpl or either very high or very low ncpl) that the number of datapoints
retained is small.

We are particularly looking for evidence for a lack of data at the upper end of the cumu-
lative distribution (as this would imply mmax was less than that implied by random drawing);
we are however finding in general that this is not a striking feature of the distribution. In fact,
a significant dearth of high mmax values is only recorded if one selects mcpl and ncpl so as to just
include the clump of datapoints at around 10 M� and n ≈ 60, since in this case the very top
of the cumulative distribution is slightly under-represented (for example, for mcpl = 9 M� and
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ncpl = 60, there are many more datapoints with cumulative probabilities slighly larger than
Pcut (= 0.75) compared with those at higher values, and this is reflected in a relatively low
KS probability of around 2%). In general, however, the feature of the plot that is generally
flagged as most discrepant by the KS test is not a dearth of the highest values, but instead the
lack of systems at around 3 M� < mmax < 10 M� and n≈ 50−100, which is readily visible as a
data hole in Figure 7.2.

It is obviously unsatisfactory if we tune the values of mcpl and ncpl so as to retroactively
highlight a particular aspect of the data. Therefore, as our best guess of plausible parameter
values, we adopt mcpl = 3 M� and ncpl = 30. The choice of ncpl is motivated by the fact that
we consider the errorbars in membership number of smaller clusters to be very high: both
because dynamical evolution is more rapid in smaller n systems (Bonnell & Clarke, 1999)
and also because the ejection of even a few stars to radii where they cannot be distinguished
from the background causes relatively large fractional errors in n. The choice of mcpl reflects
the mass of a moderately luminous Herbig Ae star as targeted by Testi et al 1998. We have
cautioned above that we must not go to much lower masses, since young stars of close to
solar mass and below have not been systematically targeted for surrounding clusters.

The distributions derived from the data, for this choice of mcpl and ncpl, are represented
graphically in Figure 7.3. For each retained datapoint, we calculate the position in the theoret-
ical cumulative distribution function (plotted on x-axis) and on the y-axis we plot the ranked
position of the datapoint. (Note that this latter quantity has been renormalised to lie in the
interval [Pcut,1] instead of [0,1]) The filled symbols use membership numbers denoted by the
symbols in Figure 7.2, whereas the open symbols correspond to the case when values of n a
factor two larger are adopted. Note that the number of datapoints are not the same in the two
cases, since shifting n by a factor of two moves data values in and out of the region above
the dashed line in Figure 7.2. If the data conforms to the random hypothesis, then the data
plotted in Figure 7.3 should be following the diagonal.

A KS test performed on this data yields a KS probability of nearly 20%, implying quite
adequate agreement with the random drawing hypothesis 2. Although both curves in Figure
7.3 are somewhat above the diagonal at the uppermost end (implying a mild deficit of data
values at the top of the predicted cumulative distribution function), this discrepancy is not
significant in this sample (and, as discussed above, the feature in the filled curve that is most
discrepant is actually the mild deficit of data around ≈ 0.6 in the cumulative distribution,
corresponding to the ‘data hole’ at mmax ≈ 3−10 M�,n≈ 50−100 in Figure 7.2).

7.5 Conclusions

We have high-lighted the difficulty in analysing the data contained in Figure 7.2 owing to
difficulties to assigning regions of the diagram where the data is believed to be complete.

Nevertheless, our preliminary conclusion is that we are not seeing strong evidence for a
systematic suppression in maximum stellar mass in small n clusters in addition to that ex-
pected on the basis of the statistics of random drawing (see also the complementary analysis
of the statistics of isolated stars by Parker & Goodwin (2007), which reached similar conclu-
sions). Indeed, if anything, the feature of Figure 7.2 that seems to be most discrepant with the

2We also tested the sensitivity of our results to the mapping employed between spectral type and mass by
noting that if one uses the calibration of Martins et al. (2005), two of the O-stars in our sample are significantly
reduced in mass. This adjustment however does not change the reasonable agreement with the null hypothesis.
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random drawing model is the data hole in the range mmax ≈ 3− 10 M�,n ≈ 50− 100. We are
however aware that this might indeed be filled in if we have under-estimated the incomplete-
ness in smaller n clusters (particularly due to the effects of dynamical evolution).

Our conclusion (in support of the random drawing hypothesis) remains provisional. Al-
though we have set out what we believe to be a statistically correct methodology for analysing
the problem, we are highly aware of the difficulties of properly quantifying observational se-
lection effects. We therefore seek further input from observers in compiling a good sample
for this kind of analysis.
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7.6 Appendix: The distribution of mmax

The IMF used in this work is according to Kroupa (2001, 2002) with a Salpeter exponent for
massive stars (Salpeter, 1955; Massey, 1998),

ξ (m) ∝

{
m−1.3 mMIN ≤ m < 0.5 M�
m−2.35 0.5 M� ≤ m < mMAX

, (7.1)

where the lower limit mMIN = 0.08 M� and brown dwarfs are not included. Since we consider
‘pure’ random sampling the upper limit does not depend on the total mass of the star cluster
(mMAX = 150 M�). We use the IMF as a probability density, i. e. normalised to∫ mMAX

mMIN

ξ (m)dm = 1. (7.2)

In a sample of “identical” star clusters (with the same n) the mass of the most massive star
in each cluster will not be the same but follow its own distribution function. For this kind of
Monte-Carlo experiment the distribution of the most massive star can analytically be derived.
The probability for the most massive star to lie in the mass interval mmax,mmax +dm is

P(m ∈ [mmax,mmax +dm]) = ξ (mmax)dm. (7.3)

All other stars must have a mass smaller than m. The probability to pick randomly n−1 stars
from the mass range mMIN,m is

P(m1...n−1 ∈ [mMIN,mmax]) =

(∫ mmax

mMIN

ξ (m′)dm′)
)n−1

(7.4)

The probability distribution of the most massive star is then the product of eqns. 7.3 and 7.4,
multiplied with the factor n because every star could be the most massive star. To obtain the
probability distribution the product has to be differentiated with respect to m. This gives

p(mmax) = n
(∫ mmax

mMIN

ξ (m′)dm′
)n−1

ξ (mmax) (7.5)
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7.7 Appendix: Data of the used clusters

In the compilation of Weidner & Kroupa (2006) the total mass of a cluster down to 0.01 M�
is given. We converted this mass into a membershp number by dividing with the average
stellar mass (0.36 M�), and subtracted the expected number of brown dwarfs (ξ (m) ∝ m−0.3

for 0.01 M� ≤ m < 0.08 M�) . In the cases where numbers are given we used them.

From the list of Testi et al. we took the IC values, which are background-corrected total
numbers and range down to the limiting magnitude M c

K . One particular star/cluster, MWC
300 (mmax ≈ 5 M�), is quite distant (15.5 kpc) and has a very high limiting mass (≈ 2.4 M�).
Therefore the observed number of 21 stars is corrected to 740 stars. This is the far right outlier
in Fig. 7.2, and the correctness of this data point is questionable, but included to be complete.

Name mmax n Ref
Taurus-Auriga 2.2 68 1
Ser SVS 2 2.2 52 1
ρ Ophiuchi 8.0 174 1
IC 348 6.0 241 1
IC 348 5.9 265 2
NGC 2024 20.0 1447 3 4
NGC 2024 20.0 392 1
σ Orionis 20.0 392 1
Mon R2 10.0 538 1
Mon R2 10.0 1568 5 6
NGC 2264 25.0 679 1
NGC 6530 20.0 1421 1
NGC 6530 80.0 2337 7
Ber 86 40.0 2682 1
USco 22.0 2859 8
IRAS 00494+5617 14.0 105 9 10
IRAS 02575+6017 14.0 210 11
IRAS 02575+6017 14.0 254 9 10
IRAS 02593+6016 19.0 77 11
IRAS 02593+6016 17.5 93 9 10
IRAS 03064+5638 16.0 34 9 10
IRAS 05100+3723 17.5 203 9 10
IRAS 05197+3355 16.0 170 9 10

Name mmax n Ref
IRAS 05274+3345 10.0 18 9 10
IRAS 05275+3540 16.0 179 9 10
IRAS 05377+3548 14.0 39 9 10
IRAS 05490+2658 10.0 58 9 10
IRAS 05553+1631 10.0 82 9 10
IRAS 06056+2131 10.0 202 9 10
IRAS 06058+2138 10.0 99 9 10
IRAS 06068+2030 16.0 81 9 10
IRAS 06073+1249 16.0 412 9 10
IRAS 06155+2319 14.0 48 9 10
IRAS 06308+0402 16.0 45 9 10
MWC 1080 17.5 78 12
η Cha 3.5 18 13
M20 27.0 196 14
IRAS 01546+6319 14.0 47 11
IRAS 02044+6031 17.5 129 11
IRAS 02232+6138 16.0 180 11
IRAS 02245+6115 16.0 106 11
IRAS 02461+6147 10.0 101 11
MWC 137 17.5 96 12 15
MWC 297 21.0 14 12
NGC 7129 10.0 66 12
NGC 7129 10.0 70 16
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NGC 7129 10.0 82 17
NGC 7129 10.0 88 18
MaC H12 2.0 4 12
VX Cas 2.9 4 12
RNO 1B 5.0 8 12
XY Per 5.2 7 12 15
MWC 480 2.5 3 12
HD 245185 2.7 3 12
HD 37490 7.6 7 12 15
VY Mon 3.8 22 12
VV Ser 3.5 11 12
LkHα 257 3.8 5 12
HD 216629 10.0 26 12
BD+40 4124 10.0 13 12 15
V645 Cyg 30.0 134 12
IP Per 2.3 3 12
MWC 300 5.0 739 12
AS 310 17.5 147 12
HD 200775 7.6 1 12
LkHα 233 1.6 1 12
Elias 1 1.9 1 12
V1012 Ori 3.5 2 12
MWC 758 2.3 2 12
RR Tau 2.3 1 12
LkHα 208 2.3 2 12
BHJ 71 17.5 3 12
LkHα 215 4.6 4 12
HD 97048 3.4 6 17
BD+46 3474 17.5 209 17
BD+46 3471 7.3 9 17
RNO 6 14.0 17 12 15
HD 52721 10.0 21 12 15
HD 259431 5.9 1 12 15
LkHα 25 4.6 15 12 15
HD 250550 4.6 2 12 15
LkHα 218 3.5 2 12 15
AB Aur 2.9 2 12 15
T Ori 2.3 1 12 15
HK Ori 2.1 2 12 15
BF Ori 1.6 1 12 15

References:
1: Weidner & Kroupa (2006);
2: Luhman et al. (2003);
3: Lada et al. (1991);
4: Bik et al. (2003b);
5: Carpenter et al. (1997);
6: Carpenter (2000);
7: Prisinzano et al. (2005);
8: Preibisch et al. (2002);
9: Carpenter et al. (1993);
10: Carpenter et al. (1990);
11: Carpenter et al. (2000);
12: Testi et al. (1998);
13: Moraux et al. (2007);
14: Rho et al. (2001);
15: Testi et al. (1997);
16: Gutermuth et al. (2004);
17: Wang & Looney (2007);
18: Gutermuth et al. (2005);



Chapter 8

Properties of hierarchically forming
star clusters
Th. Maschberger, C.J. Clarke, I.A. Bonnell & P. Kroupa
MNRAS 404:1061–1080 (2010)

We undertake a systematic analysis of the early (< 0.5 Myr) evolution
of clustering and the stellar initial mass function in turbulent frag-
mentation simulations. These large scale simulations produce up to
thousands of stars in clusters that can individually contain up to sev-
eral hundred stars and thus for the first time offer the opportunity for
a statistical analysis of IMF variations and correlations between stellar
properties and cluster richness.
The typical evolutionary scenario involves star formation in relatively
small-n clusters which then progressively merge; the first stars to form
are seeds of massive stars and achieve a headstart in mass acquisition.
These massive seeds end up in the cores of clusters and a large frac-
tion of new stars of lower mass is formed in the outer parts of the
clusters. The resulting clusters are therefore mass segregated at an
age of 0.5 Myr, although the signature of mass segregation is weak-
ened during mergers. We find that the resulting IMF has a smaller
exponent (α =1.8–2.2) than the Salpeter value (α = 2.35). The IMFs
in subclusters are truncated at masses only somewhat larger than the
most massive stars (which depends on the richness of the cluster) and
an universal upper mass limit of 150 M� is ruled out. We also find that
the simulations show signs of the IGIMF effect proposed by Weidner
& Kroupa, where the frequency of massive stars is suppressed in the
integrated IMF compared to the IMF in individual clusters.
We identify clusters in the simulations through the use of a minimum
spanning tree algorithm which is readily applied to observational data
and which allows easy comparison between such survey data and
the predictions of turbulent fragmentation models. In particular we
present quantitative predictions regarding properties such as cluster
morphology, degree of mass segregation, upper slope of the IMF and
the relation between cluster richness and maximum stellar mass.
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8.1 Introduction

Recent years have seen a proliferation of simulations of star and cluster formation involving
a range of theoretical assumptions and physical ingredients (e.g. Bonnell et al., 2003; Schmeja
& Klessen, 2004; Bonnell et al., 2004; Jappsen et al., 2005; Bate & Bonnell, 2005; Dale et al.,
2005; Bonnell et al., 2006a; Dale & Bonnell, 2008; Bate, 2009b). Whereas the choice of model
ingredients is set by a mixture of theoretical prejudice and numerical feasibility, it has already
proved useful to undertake detailed comparisons between the output of such simulations and
observational data. For example, the over-production of brown dwarfs in the original simu-
lations of Bate et al. (2002) pointed to shortcomings in the treatment of gas thermodynamics
which appears to have been largely remedied in subsequent simulations incorporating radia-
tive transfer (Bate, 2009b).

The simulations of choice for the analysis of the larger scale clustering properties of stars
are however those of Bonnell et al. (2003) and Bonnell et al. (2008) which, at the expense of
being able to resolve the formation of the smallest objects, are able to follow the formation of
hundreds of stars and track the hierarchical assembly of stellar clusters. Qualitatively, these
simulations demonstrated how clusters grow through a combination of merging, the forma-
tion of new stars through fragmentation and the accretion of gas onto existing stars during
cluster merging. Bonnell et al. (2003, 2004) were thus able to use these simulations in order to
take a first look at how the mass of the most massive star in a cluster changes as the cluster
grows through successive merger events.

In this paper we return to these simulations and their successors in order to analyse the
properties of the resulting clusters and to take a more detailed look at issues such as the rela-
tionship between maximum stellar mass and cluster growth (the mmax−ntot relation; Weidner
& Kroupa, 2004, 2006; Weidner et al., 2010; Maschberger & Clarke, 2008, this thesis Chapter 7),
the degree of mass segregation (primordial vs. dynamical, cf. Bonnell & Davies, 1998; McMil-
lan et al., 2007; Allison et al., 2009a) and other cluster diagnostics such as fractal dimension,
ellipticity and slope of the upper IMF.

We here have the luxury of simulations which produce large numbers of stars: in partic-
ular, the large scale simulation discussed here produces thousands of stars, with individual
clusters that contain up to hundreds of members. It thus becomes possible to analyse the
statistical properties of the resulting ensemble. Apart from the superior statistics offered by
the large scale simulation, the main difference between our analysis and the preliminary de-
scription given in Bonnell et al. (2004) is that we here identify subclusters through use of a
minimum spanning tree technique, in contrast to Bonnell et al. (2004) who instead employed
the ad hoc device of identifying a cluster as being all the stars within 0.1 pc of a massive star.
The obvious advantage of our present analysis is that the clusters in the simulations are identi-
fied in precisely the same way as observers would extract clusters from maps of star forming
regions and thus allows a much more direct comparison with observations (indeed, param-
eters such as cluster morphology, mass segregation and the cluster membership number, n,
can only be explored if one has a generalised algorithm for defining clusters). This exercise is
particularly timely given the accumulating survey data on stellar distributions in star forming
regions (see the two substantial volumes on star forming regions edited by Reipurth, 2008a,b
or the recent survey by Gutermuth et al., 2009); in particular, the use of Xray observations
(for example of the ONC Getman et al., 2005; Prisinzano et al., 2008 or NGC 6334 Feigelson
et al., 2009 and further regions mentioned in Feigelson et al., 2009) allows one to distinguish
young stars from foreground/background sources and will this provide a good census of the
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clustering properties of stars at birth.
The structure of the paper is as follows. In Section 8.2 we recapitulate the main features

of the simulations to be analysed and in Section 8.3 describe the algorithm used for cluster
extraction. In the following we describe the results for the cluster assembly history (Sec. 8.4),
for the structure and morphology of subclusters (Sec. 8.5), for the locations of newly formed
stars and for the initial mass segregation (Sec. 8.6) and finally for the initial mass function
(Sec. 8.7).

8.2 Calculations

We analyse the data of two SPH simulations, the 103 M� simulation by Bonnell et al. (2003)
and the 104 M� simulation by Bonnell et al. (2008).

The initial condition for the 103 M� simulations (Bonnell et al., 2003) is a uniform-density
sphere containing 1000 M� of gas in a diameter of 1 pc at a temperature of 10 K, using 5×105

SPH particles. Supersonic turbulent motions are modelled by including an initial divergence-
free, random Gaussian velocity field with a power spectrum P(k) ∝ k−4. The velocities are
normalised such that the cloud is marginally unbound, and the thermal energy is initially 1%
of the kinetic energy.

Protostars are replaced by sink-particles (Bate et al., 1995) if the densest gas particle and
its ≈ 50 neighbours are a self-gravitating system (exceeding the critical density of 1.5×10−15

g cm−3), sub-virial and occupy a region smaller than the sink radius of 200 AU. Accretion
onto the sink particles occurs i) in the case of gas particles moving within a sink radius (200
au) and being gravitationally bound or ii) in the case of all gas particles moving within the
accretion radius of 40 AU. The mass resolution for sink particles is ≈ 0.1 M�. Gravitational
forces between stars are smoothed at 160 AU.

For the 104 M� calculation (Bonnell et al., 2008) 104 M� of gas are initially distributed
in a cylinder of 10 pc length and 3 pc diameter, with a linear density gradient along the
main axis, reaching a maximum of 33% higher than the average density at one end, and
33% lower at the other. For computational reasons a particle-splitting method was employed
(Kitsionas & Whitworth, 2002, 2007), which gives an equivalent of 4.5×107 SPH particles for
the calculation, and a mass resolution of 0.0167 M�. Turbulence is modelled using an initial
velocity field with power spectrum P(k) ∝ k−4. For the whole cloud the kinetic energy equals
the gravitational energy, which results in one end of the cloud being bound and the other
unbound. The gas follows a barotropic equation of state of the form

P = kρ
γ (8.1)

where

γ = 0.75; ρ ≤ ρ1
γ = 1.0; ρ1 ≤ ρ ≤ ρ2
γ = 1.4; ρ2 ≤ ρ ≤ ρ3
γ = 1.0; ρ ≥ ρ3

(8.2)

and ρ1 = 5.5×10−19 g cm−3, ρ2 = 5.5×10−15 g cm−3 and ρ3 = 2×10−13 g cm−3.
Again, star formation is modelled via sink particles, with a critical density of 6.8× 10−14

g cm−3, a sink radius of 200 AU and an accretion radius of 40 AU. The smoothing radius for
gravitational interactions is 40 AU, a quarter of that for the 103 M� calculation.
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Figure 8.1: Influence of dbreak on the detected subclusters (large dots), sink particles not in
subcluster are shown as small dots. With dbreak = 0.025 pc the five detected subclusters have
properties similar to a detection by eye. A too small dbreak (0.01 pc) cuts off the lower-density
outer regions. With a too large dbreak (0.05 pc) only 2 subclusters are detected, with the larger
one being highly substructured.

8.3 Cluster identification

For the identification of subclusters we employ a minimum spanning tree. The minimum
spanning tree is a network of connections between points, not containing any closed loops,
with the minimum possible total length of the connections (for the relation between the min-
imum spanning tree and clustering identification, the properties of the minimum spanning
tree in general and algorithms for the construction see e.g. Zahn, 1971). The minimum span-
ning tree and and its properties have previously been used to determine the level of substruc-
ture in a star cluster, e.g. the Q measure of structure by Cartwright & Whitworth (2004) or the
Λ measure of mass segregation by Allison et al. (2009b). A minimum spanning tree does not
only characterise the degree of substructure, but can also be used to identify the sub-clusters
themselves. A clustering-algorithm based on the minimum spanning tree has the advantage
that the subclusters can have arbitrary shapes, that small-n subclusters can be found and only
one parameter, the break distance dbreak, needs to be specified.

Once the minimum spanning tree containing all sinks has been constructed, subclusters
can be identified by splitting the global minimum spanning tree into sub-trees by removing all
edges which have a length larger than dbreak. The break distance can be related to a minimum
density of points per area which is required that groups remain connected. The remaining
sub-trees are then identified as a subcluster if they contain more than nmin = 12 sink particles.
Sinks of subtrees with a smaller n are attributed to the “field”. To each subcluster we assign
an identification number which is unique to the most massive sink particle in it. Sometimes
it can occur that another sink particle in the same physical subcluster has accreted so much
that it takes over the position as the most massive particle. In this case we assign a new
identification number to the cluster.

The clustering algorithm using the minimum spanning tree is not scale-free, as a particu-
lar length scale, dbreak, is needed. The choice of dbreak is somewhat arbitrary, as experiments
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following ideas by Zahn (1971) to determine a reasonable dbreak self-consistently from e.g. the
edge length distribution gave no robust scale-independent criteria. Thus we chose dbreak such
that the subclusters found by the clustering algorithm have properties similar to subclusters
which are selected by eye. For the effects of various dbreak we analysed the 103 M� data set
with dbreak = 0.01 pc, 0.025 pc and 0.05 pc and show a snapshot made at 3× 105 yr in Fig.
8.1. Clearly one sees that too large a value of dbreak (0.05 pc) identifies objects as subclusters
that themselves contain considerable substructure. On the other hand, a very small dbreak cuts
off low-density regions of the actual subclusters. We found that dbreak = 0.025 pc gives the
best results, as all reasonably rich subclusters are detected with a sufficient quantity of their
low-density outskirts, and mergers do not occur prematurely. We however emphasise that
the main utility of this approach is that it allows one comparisons with observations that are
analysed with the same value of dbreak.

As by observations only a projection is available, we also project the simulation data onto
two dimensions, for both calculations in the x-y plane. To exclude projection effects caus-
ing artefacts in the results we did all our analyses in other projections as well (x-z and y-z).
Different choices of the plane of projection do not affect our results qualitatively, and not
significantly quantitatively.

8.4 Cluster assembly history

We start our analysis of the simulations by constructing the merging history of the subclusters
and the general properties of the simulation, such as the evolution of the total number of sinks
and their total mass.

The overall evolution of the two simulations is illustrated by Figure 8.2, showing the pro-
jected distributions of the sink particles at different times. The small scale simulation (top
row) simply demonstrates a history of hierarchical merging, with the final outcome being the
creation of a single merged entity and a smaller population of sinks that are identified as ‘field
stars’ by our clustering algorithm. The bottom row shows the global evolution of the large
scale simulation: as is consistent with globally unbound state of this simulation, one sees that
merging does not go to completion and that there are instead regions of local merging and a
pronounced field population in between. On the other hand, when one homes in on a dense
region of this large scale simulation (the box shown in the lower panels) we see (middle row)
an evolutionary sequence that is very similar to that shown in the small scale simulation (top
row). In general terms we will find in all our subsequent analysis that significant differences
between the two simulations all relate to parameters that take into account the dispersed pop-
ulation and the survival of multiple clusters in the larger (unbound) simulation.

8.4.1 Merging history

Figure 8.3 depicts merger trees for cluster assembly. Each subcluster is denoted by the iden-
tification number of its most massive sink particle, with a symbol size corresponding to the
number of sinks in the subcluster. The arrows at the end of a lifeline correspond to merger
events where the merged subcluster is given the identification number of the subcluster that
had previously contained the most massive member of the new combined entity. The upward
pointing arrows connecting the end of one lifeline with the start of a new one correspond to
cases where the identity of the most massive sink particle changes (i.e. one sink overtakes
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Figure 8.2: Time-evolution of the projected spatial distribution of the sink particles, with large
dots representing sinks in subclusters (whose labels correspond to the identification numbers
in Fig. 8.3) and small dots for “field” sinks. The snapshots start at different global times of
the two calculations, but at similar structures. The top row shows the central 0.6× 0.6 pc of
the 103 M� calculation, the middle row the corresponding section in the 104 M� calculation
(large ticks = 0.1 pc). In the bottom row displaying the whole area of the 104 M� calculation
(6×6 pc, large ticks = 1 pc) a box marks the location of the detail section.

another in mass as a result of accretion). The subcluster is then assigned a new identification
number (and lifeline), but this is only a re-labelling. Subclusters that are registered as sub-
clusters on less than five occasions do not appear on this plot. We also see occasional gaps
in the lifelines of particular subclusters: these are usually small or low density subclusters
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Figure 8.3: Merging history of the subclusters, left for the 103 M� and right for the 104 M�
calculation. Each dot marks the detection of a subcluster, with the size of the dot scaling with
the richness of the subcluster (only subclusters which have been detected more than 5 times
are shown). Arrows at the end of a lifeline mark mergers of subclusters, or, if they point to the
beginning of a new lifeline, a change of the most massive sink particle as the most massive
sink is overtaken by another.

where the relatively modest rearrangement of its members due to few body dynamical effects
changes whether or not the grouping is classified as a subcluster.

Depending on the size of the subclusters involved, it can take up to ≈ 5× 104 yr for a
merger to produce a single, stable new structure, as can for example be seen from the sporadic
detections of subcluster # 4 during its merger with # 2 in the 103 M� simulation. Fellhauer
et al. (2009) investigated the time scales for mergers of a spherically symmetric distribution
of subclusters embedded in a background potential (typically more than ≈ 5×105 yr for sys-
tems comparable to ours). The time scale for mergers we find are perhaps somewhat quicker
than theirs, as the subclusters are not distributed isotropically but along filaments, which also
direct their motion.

Overall, Figure 8.3 describes a situation of hierarchical merging; in the small simulation
the system evolves towards a single merged entity whereas in the large simulation (which is
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Figure 8.4: Histogram of the sub-
clusters of the composite population
(i.e. all subclusters of all time steps)
by their number of sinks, for the
103 M� (top) and the 104 M� (bot-
tom) calculation. The peak at n =
102.5 in the left hand panel corre-
sponds to the formation of a long-
lived central cluster in the 103 M�
simulation, similar to the large-n
peaks of the 104 M� calculation.
Note that these distributions do not
correspond to what would be seen
in a single snapshot in time, for this
see Fig. 8.5.

globally unbound) the system is tending to several merged structures which (from inspection
of the simulation) are unlikely to undergo further merging. We note that the change of iden-
tity of the most massive sink particle in a cluster occurs relatively frequently. This is rather
surprising in the case of a power law mass distribution: in this case the expected spacings in
mass between sinks are relatively large and it is not expected that differential accretion would
cause one sink to overtake another. In fact, we shall see later that the masses of the most mas-
sive sink particles in a cluster are rather well correlated so that relatively minor changes in
accretion history can change the identity of the most massive member.

8.4.2 Cluster population

In later Sections we will look at various properties of the subclusters, as for example their
shape, mass segregation etc. In an individual time step the number of detected subclusters
is not very large, therefore we sometimes use the subclusters from all time steps together for
the analysis, which we term the ‘composite population’. As they can be at different stages of
evolution one has to be careful when interpreting the results.

Figure 8.4 shows a histogram of subclusters in the composite population by their number
of sink particles. The composite population is dominated by rather small clusters (n < 30–50)
which are usually very young subclusters (< 105 yr since their first detection), or subclusters
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Figure 8.5: Number spectrum of
subclusters at the end of the 104 M�
simulation. We show for compari-
son a line corresponding to a num-
ber spectrum ∝ n−2.

which have never merged (compare with the merging history, Fig. 8.3, where the symbols’
sizes reflect the number of sinks). The large-n peaks in the 103 M� histogram is produced by
the formation of a cluster of ≈ 300 sinks which, being long-lived, appears in many time steps.
We emphasise that the distributions in Fig. 8.4 are provided in order to interpret results based
on the composite population and should not be interpreted as spectra of cluster richness at a
given time.

In order to get an idea of the latter we plot in Fig. 8.5 a histogram of the cluster number
spectrum at the end of the 104 M� simulation. For comparison we show the n−2 spectrum
found by Lada & Lada (2003) for the embedded star clusters in the Milky Way (with mcluster
between 50-1000 M�).

8.4.3 Build-up of stellar number and mass

Figure 8.6 shows that the fraction of all sinks formed by a given time rises more steeply by
number (solid curves) than by mass (dotted curves, both normalised to the total number or
mass at the end of the simulation). Later on, fewer new sinks are formed but all accrete mass
so that the mean stellar mass increases during the simulation (and hence, by implication, the
mass function evolves during the simulation). The thin curves in Figure 8.6 refer to the sinks
that are classified as being in subclusters at any time (also normalised to the total number or
mass at the end of the simulation): they start to increase later than the thick curves (for all
sinks) what shows that the classification of clusters is delayed with respect to formation of
the first sinks. This can be seen more directly in Figure 8.7, which shows that, after an initial
delay, the fraction of sinks in clusters rises to 60–80% (note that the fraction of sinks in clusters
is higher in the bound simulation, as expected). The initial delay is comprehensible since we
imposed a minimum cluster membership number of 12; the first sinks form in small-n clusters
that do not register as clusters until they have acquired enough members by cluster merging.
In the 103 M� simulation the fraction of sinks in subclusters reaches a maximum and then
decreases slightly, which is caused by dynamical evolution.



118 CHAPTER 8. PROPERTIES OF HIERARCHICALLY FORMING STAR CLUSTERS

Figure 8.6: Assembly by number
(solid) and mass (dotted) for the
whole system (thick symbols) and
for all sinks in subclusters (thin
symbols), respectively, normalised
to the total number/total mass of
all sinks at the end of the simu-
lation. The top panel is for the
103 M�, the bottom one for the
104 M� calculation.

8.5 Cluster structure and morphology

8.5.1 Structure

Figure 8.8 illustrates the effect of the cluster merging history on a structural parameter of the
stellar distribution. Here we use the Q parameter, introduced by Cartwright & Whitworth
(2004), which is defined as the ratio of the mean edge length in the minimum spanning tree to
the correlation length of the the stellar distribution. Fig. 8.8 shows the time-evolution of the
Q parameter for the whole simulation (big dots) and for individual subclusters containing a
minimum number of 48 sinks (lines). As discussed by Cartwright & Whitworth (2004) small
values of this parameter (< 0.8) correspond to fractally distributed points (the small value
reflecting the fact that the existence of multiple nuclei tends to increase the correlation length
more than the mean edge length). On the other hand, higher Q values correspond to centrally
concentrated distributions, with the Q value rising with the degree of central concentration.1

1We do not correct our interpretation of Figure 8.8 for the fact that our stellar distributions are not spherically
symmetric, since Cartwright & Whitworth (2008) found that such corrections were negligible for aspect ratios
less than ≈ 3; we show below that extreme ellipticities are rare in our data. In the normalisation a geometrical
factor is implicitly contained by choosing a circle as circumference for the uniform distribution, as in Cartwright
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Figure 8.7: Evolution of the frac-
tions of sinks in subclusters at a
given time by number (solid) and
mass (dotted), for the 103 M� cal-
culation (top) and the 104 M� cal-
culation (bottom). The fraction in
subclusters increases by a mixture
of sink formation within the sub-
clusters and the accretion of isolated
sinks or small groupings onto the
subclusters. The modest decrease in
the fraction of sinks in subclusters
at late times in the 103 M� calcula-
tion results from the formation of
one large cluster with a low-density
halo.

Figure 8.8 shows that in the small simulation, the total stellar distribution is characterised
by monotonically increasing Q values, indicating the formation of a single centrally concen-
trated cluster through hierarchical merging. The recovery from a substructured subcluster
to a radially concentrated system occurs over about 0.5–1.0× 105 yr, which can be seen as
the time for a merger. The large simulation remains in the fractal regime throughout, since
(being globally unbound) it retains a multiply clustered structure. In both simulations, the
Q values of individual clusters fluctuate, exhibiting periods of increase (as isolated clusters
become more centrally concentrated as a result of two body relaxation) followed by abrupt
reductions of Q into the fractal regime during episodes of cluster mergers. The range of Q
values that we recover from our whole simulations is similar to that found in observations
by Cartwright & Whitworth (2004) and Schmeja & Klessen (2006), where fractal dimension as

& Whitworth (2004) (Schmeja & Klessen, 2006 instead use the convex hull of the data set).
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Figure 8.8: Time-evolution of the Q
parameter, see Section 8.5.1. The
horizontal line marks Q= 0.8, which
corresponds to a uniform distribu-
tion (radial exponent = 0, D0.0, or
fractal dimension = 3, F3.0). Frac-
tally subclustered systems have Q <
0.8 and radially concentrated sys-
tems Q > 0.8. The fractal dimen-
sion (F) and the radial exponent (D)
can be read off the right axis. The
whole system (big dots) starts frac-
tal and evolves towards a centrally
concentrated system in the bound
103 M� calculation (top panel) and
stays fractal in the unbound 104 M�
calculation (bottom panel). The sub-
clusters (lines) evolve in both cal-
culations towards concentrated sys-
tems when they are not disturbed.
Mergers lead to the more or less pro-
nounced jumps towards smaller Q.
The thick line is for the richest sub-
cluster that is formed in each of the
calculations.

low as 1.5 (Q = 0.47) are found for Taurus and radial concentrations following r−2.2 (Q = 0.98)
for IC 348. The Orion Nebula Cluster has Q = 0.82 (considering only stars; Kumar & Schmeja,
2007). Schmeja et al. (2008, 2009) derived Q in subclusters identified within larger regions
(Perseus, Serpens, Ophiuchus and NGC346) and obtained values of 0.59≤ Q≤ 0.93.

In the 103 M� simulation the Q parameter reaches values of ≈ 1.4 at the end of the cal-
culation, which implies a very steep radial density following r−3, but the central subcluster
appears to have a uniform density. In order to resolve this apparent contradiction we inves-
tigate the density profile of the whole system at the end of the simulation. For power-law
distributed data the cumulative distribution function provides a convenient way of visually
assessing all available data without the need of grouping them as in a histogram. The prob-
ability density of a power law distribution from l to ∞ is given by p(x) = −1−α

l1−α x−α , and the
cumulative density is P(x) = 1− x1−α

l1−α . Therefore, a plot of log(1−P(x)) (the logarithm of the
complementary cumulative density) vs. logx should be a straight line. We show such a plot
for the data in Figure 8.9. The radial density distribution does not follow a straight line but
falls into three segments, a flat/uniform central region, a main region from 0.1 pc to 1 pc pro-
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Figure 8.9: Double-logarithmic plot
of the complementary cumulative
radial density, 1− P(r), against dis-
tance measured from the geomet-
rical cluster centre containing all
sinks at the end of the 103 M� calcu-
lation. Power-law distributed data
follow straight lines in this kind of
plot.

portional to r−1.9 and an outer halo having r−3.5 or even a larger exponent. The halo is formed
by low-mass sinks which have left the main region due to dynamical interactions (an effect
which is also responsible for the decreasing fraction of sinks in subclusters in Fig. 8.7). Most
of the mass in this merged cluster is contained in a region whose density profile is close to the
isothermal ρ ∝ r−2 profile. We thus see that the Q parameter method of estimating the radial
exponent is unduly influenced by the steeper distribution in the halo.

8.5.2 Morphology

In Figure 8.10 we plot a histogram of the ratio of the projected major axis to projected minor
axis for our clusters. This quantity has been derived by fitting a two-dimensional normal
distribution to the projected number density distribution. The eigenvalues of the covariance
matrix then give an elliptical contour of equal values of probability density containing ≈ 30%
of the sink particles.2

We see in Figure 8.10 that most clusters are mildly elongated: the distribution peaks at 1.5
and most clusters have an axis ratio of less than 2. Subclusters form in dense nodes along the
filaments of gas, as dense small-n systems which shortly after their formation attain a spheri-
cal shape, which gives the peak in Fig. 8.10. One filament can contain several subclusters, so
that the distribution of subclusters is elongated, but not the subclusters themselves, as visible
in the snapshots in Fig. 8.2. During a merging event the resulting object is naturally elongated,
leading to the tail of large ellipticities in Fig. 8.10. An example is the cluster with #5 in the
104 M� simulation at 6× 105yr, which has an ellipticity of 3.86 and Q = 0.46 (see the middle
right panel in Fig. 8.2 for the projection) and is currently merging with cluster # 20.
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Figure 8.10: Histogram of the el-
lipticities of the subclusters (de-
rived from fitting a 2D Gaussian
distribution), using the composite
population of subclusters (from all
times). The top panel shows the re-
sult for the 103 M� calculation and
the bottom panel for the 104 M�
calculation.

8.6 Formation sites of stars and (primordial?) mass segregation

8.6.1 Formation sites of stars

It has already been mentioned in Bonnell et al. (2004) that sinks do not necessarily form close
to the centres of existing clusters (with the centre defined using the most massive sink par-
ticle, an assumption we test below). With our definition of a subcluster we find that only
50–60% of all sinks form within a subcluster. Within the subclusters the distribution of the
formation sites follows the same distribution as existing sinks in the subclusters (with only
a very mild concentration towards the inner region), as visible in the histogram of the radial
ranking (Figure 8.11). The sinks forming outside of subclusters form either in the immediate
neighbourhood of a subcluster or as the centres of new subclusters.

Significantly, we find that the most massive sink particles avoid formation within existing
subclusters: indeed virtually no sinks which end up with masses > 1 M� form within the
half-number radius of an existing cluster. It is thereby more correct to say that clusters form
around (seeds of) massive stars than massive stars form in clusters.

2Note that - in contrast to some previous algorithms for deriving cluster shapes - we are not unduly sensitive
to the locations of the outermost points in the dataset (cf Schmeja & Klessen, 2006; Cartwright & Whitworth, 2008).
This can be particularly problematical since the definition of clusters through splitting a minimum spanning tree
can lead to ‘hairs’ at the end of the cluster (sub-trees that reach out of the cluster body and have no branches) and
so it is important to avoid an algorithm that gives undue importance to these outlying protrusions.
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Figure 8.11: Histogram of the
fractional radial ranking of newly
formed sinks in the subcluster
to which they are assigned, mea-
sured at the time of formation (top
103 M�, bottom 104 M� calculation).
Sinks which are born in the field
(≈ 30–40% of all sinks) are not
included.

8.6.2 Development of mass segregation

We now turn to the question of where stars of various masses end up within the subclusters
(as opposed to where they form). We emphasise that since the entirety of the simulations
correspond to the deeply embedded phase (age < 0.5 Myr) then even the final state of the
simulations can be used to assess what is usually termed primordial mass segregation.

We have looked at a variety of mass segregation diagnostics and find that mass segrega-
tion usually applies to the ten to fifty most massive sinks. For example, cumulative radial
distributions within clusters for stars in different mass bins rarely reveal consistent evidence
for mass segregation apart from its existence in some clusters which are spherically symmet-
ric. Bate (2009a) finds no mass segregation in his data using cumulative distributions whereas
Moeckel & Bonnell (2009) using their (non-parametric) technique find mass segregation in the
same data.

We use the Λ measure of Allison et al. (2009b) which is based on the minimum spanning
tree and allows one to detect mass segregation also if only a few stars are involved. For the
ith most massive star it is defined as

Λ(i) =
li

l(i)
± σi

l(i)
. (8.3)
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Figure 8.12: Evolution of mass segregation for a particular subcluster during a merging event
(# 2 in the 103 M� calculation). The left panels show the projection distribution of the sink par-
ticles at the snapshots with the analysed subcluster marked with black dots. The right panels
display the Λ measure (eq. 8.3, Allison et al., 2009b) for the 100 most massive sinks. The index
of the sinks can be read off the top axis of the uppermost panel and is the same throughout.
As the subcluster grows in number we show the percentages for the massive sinks of the to-
tal number at the bottom axis of each panel. Before the merger (top row) the subcluster is
already mass segregated, Λ is larger than unity for the ≈ 60 most massive sinks (40%). Dur-
ing the merger (middle panel) the ≈ 15 most massive sink particles are not mass segregated
as they are still in the centres of the merging subclusters, but not randomly distributed (Λ
exceeds unity). After the merger (bottom row) the ≈ 10 most massive sinks quickly reach a
state of strong central concentration (large Λ) and general mass segregation is at a 10% level.
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li and σi are the mean length and its standard deviation of a minimum spanning tree con-
structed from a sample of i stars which are randomly drawn from the total sample of stars in
the subcluster. l(i) is the length of the minimum spanning tree containing the i most massive
stars. Λ(i) = 1 means that the i most massive stars are distributed as the other stars and there
is no mass segregation. Mass segregation is detected if Λ is significantly larger than unity
(in terms of standard deviations), and the absolute value of Λ reflects the degree of spatial
concentration (i.e. the larger Λ the more spatially concentrated). Λ has the big advantage of
being non-parametric, i.e. knowledge about the shape or density profile is not necessary.

The typical states of mass segregation in a rich subcluster are shown in Fig. 8.12, which
follows the time evolution of mass segregation in an individual cluster during a merging
event. The left panel shows the projected spatial distribution and the right panel Λ. A sub-
cluster that has never undergone a merging event or had a merging event a long time ago
(top panel) shows a monotonic decrease of Λ extending over a large fraction of the massive
sinks: in our example about 40 per cent of all sinks (by number) are significantly segregated.
The snapshot is taken just before a number of subclusters will merge into the analysed sub-
cluster. During the merger (middle panel) the merging clusters are gradually dissolved and
incorporated in the merger product, so that for some time the detected subcluster actually
has multiple centres. These centres still hold the massive sinks, so that they are spatially more
widely distributed than a random sample of sinks, which will contain mostly sinks from the
richest previous cluster. However, as soon as with an increasing random sample size sinks
are also chosen from the other centres, the massive sinks show a concentration within these
centres. This explains the typical behaviour of Λ during a merger, which is increasing from
unity for the ≈ 10 most massive sinks until it reaches a maximum, in our example at 5% of
the sinks, from which it gradually decreases again. The total percentage of sinks that are mass
segregated is smaller compared to before the merger. When the merged subcluster has settled
down to a system with a single centre (bottom panel), the ≈ 10 most massive sinks quickly
form a close, concentrated system in the centre, leading to large values of Λ. The less massive
sinks are more randomly distributed so that in total a smaller fraction of the sinks is mass
segregated (≈ 10%).

This quick development of mass segregation after a merger has already been found in
nbody simulations of merging subclusters by McMillan et al. (2007) and Allison et al. (2009a).
The feature of mass segregation (i.e. that it involves of the order of ten stars shortly after a
merger) is the same as found by Moeckel & Bonnell (2009) in the simulation of Bate (2009a).
Allison et al. (2009a) analysed the evolution of mass segregation in a cluster evolving from
fractal initial conditions to a centrally concentrated system, but without mass segregation of
the subclusters. At an age of ≈ 500 000 yr they find values of Λ for the whole cluster which
are comparable to the values we derived. For the Orion Nebula Cluster (analysed by Allison
et al., 2009b) only the nine most massive stars are mass segregated which is comparable to the
post-merger state we find.

In the previous paragraph we gave examples of rich subclusters that are mass segregated
if they have not undergone a merger recently. In order to establish what is the observational
norm we turn to the composite population of the 104 M� calculation (Sec. 8.4.2 and Fig. 8.4)
and have split our sample between subclusters according to their richness (n ≤ 30, 30 < n ≤
50, 50 < n ≤ 100 and n > 100). As subclusters gain new sinks during their evolution this
sequence of increasing richness can also be seen as a sequence in time. In Figure 8.13 we
plot histograms of the fractional radial rankings of the most massive, second and third most
massive sinks. In the absence of mass segregation these histograms should be flat, which is
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Figure 8.13: Histogram of the fractional radial ranking of the most massive (top), second most
massive (middle) and third most massive (bottom) sink particle in its associated subcluster,
split up by the number of sinks in the subcluster. The composite population of the 104 M�
calculation is used to make the histograms. In the absence of mass segregation the histogram
would be flat: the peak at small values shows that the massive sinks are preferentially found
near the cluster centre. The second peak with a ranking of ≈ 1, especially for the second and
third most massive sink, is due to mergers, where two centres are still present.

roughly the case for the very small clusters (n < 30), although already for them a weak trend
of central concentration is present. These systems already contain the seeds of massive sinks
(they have a large average stellar mass, see Fig. 8.17, and will become the central parts of
richer subclusters. For the larger clusters there is clear evidence that the most massive sink
particle is concentrated towards small radii, being rarely located beyond the inner 25% of
sinks (we emphasise that this radial ranking is based on distance from the geometrical cluster
centre, rather than centre of mass). The second (and also third) most massive sink particle
is also frequently found in the inner regions of populous subclusters, but there is a second
peak in the upper quartile, corresponding to the case where the second most massive sink is
located in the nucleus of a subcluster that is in the process of merging.

Over all, therefore, we conclude that the most massive sinks are indeed segregated to-
wards the centres of populous (n ≥ 30) subclusters. We will also see that the most massive
sinks are preferentially located in subclusters as opposed to the field as evidenced by the
steeper slope of the upper tail of the IMF for the entire population as opposed to the total
population contained in subclusters (see Fig. 8.16).
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8.7 Evolution of the sink particle mass function

The mass distribution of the stars describes the end product of the star formation process. In
this Section we analyse the sink particle mass distribution as proxy for the stellar mass func-
tion at each time step, with a focus on the high-mass tail of the mass distribution. We would
like to stress that the results presented in this Section are not directly comparable to the ob-
served stellar IMF, as a complete modelling of the star formation process is computationally
not possible at the present time. Thus the actual mass of a star formed is not the sink par-
ticle mass, but lower because of simplifications in the computations. Firstly, star formation
is modelled by sink particles with radii larger than the proto-stellar radii, so that fragmenta-
tion could also occur within the sinks (formation of close binaries). The sink particle mass
function is closer to being a system mass function since the observed distribution of binary
separations implies that most binary companions would be located within the sink radius
(200 au). (Weidner et al., 2009) found that the system and individual mass function have
only slightly different exponents (difference < 0.2). Furthermore, feedback by stellar winds
or radiation is not included in the model, so that accretion is not hindered or stopped. These
(zero-feedback) calculations thus overestimate system masses. Also, the gravitational force
between sink particles is softened on a scale of a few sink radii, so that close encounters and
binary formation is suppressed, which could influence the accretion history of the sink par-
ticles involved. Thus, the actual mass function of individual stars will have a smaller upper
mass limit.

Our reference hypothesis for the stellar mass distribution to compare with the sink particle
mass function is the two-part power law parametrisation of the mass function by Kroupa
(2001, 2002),

ξ (m) ∝

{
m−αbody ; αbody = 1.3; 0.08≤ m/M� < 0.5
m−αtail ; αtail = 2.35; 0.5≤ m/M� < 150.

(8.4)

As upper limit or truncation mass for the IMF, valid for all clusters unless estimated, we
adopt the physical upper limit for stellar masses, above which stars do not appear to exist
(mu = 150M�, Weidner & Kroupa, 2004; Oey & Clarke, 2005; Koen, 2006) We use the stellar
mass function as a probability density, i.e. normalised such that

∫ mu
ml

ξ (m)dm = 1. The choice
of methods for the analysis of the mass function depends on the number of data points. If the
dataset contains a sufficiently large number of data (n ' 100) direct methods can be applied,
i.e. parameters can be estimated and goodness-of-fit tests can be carried out. For meagre
datasets one has to rely on indirect methods, which are usually comparisons of quantities
derived using the data with expectations derived using a hypothesis for the distribution, fully
specified with all parameters.

The most detailed information about the high-mass tail of the stellar mass distribution
can be obtained at the end of the calculation, when the dataset has the largest number of
data points. Thus we start at this point with our analysis of the mass function and proceed
then to the time-evolution, which due to the small sample size can only be studied via more
indirect methods. The findings from the final state will facilitate the interpretation of the time
evolution.
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n ntail α̂tail m̂u m(n)
103 M� calculation, richest subcluster:

372 110 1.67±0.10 23±2 M� 21 M�
104 M� calculation, richest subcluster:

476 98 1.93±0.11 39±8 M� 30 M�
104 M� calculation, second richest subcluster:

174 31 1.69±0.36 19±6 M� 15 M�

103 M� calculation, all sinks:
563 148 1.79±0.11 24±2 M� 21 M�

104 M� calculation, all sinks:
1945 459 2.18±0.08 33±4 M� 30 M�

104 M� calculation, all sinks in all subclusters:
1645 267 1.92±0.07 34±4 M� 30 M�
104 M� calculation, all sinks not in subclusters:

(“field stars”):
890 202 2.55±0.14 9±1 M� 8 M�

Table 8.1: Estimated parameters of
the mass functions for sinks in the
high mass tail. n is the total number
of sinks in the object, ntail the num-
ber with m > 0.8M�. α̂tail and m̂u are
the estimated exponent and trunca-
tion mass, respectively. m(n) is the
mass of the most massive sink par-
ticle, given for comparison. The es-
timates were derived at the end of
the simulations, with τ = 2.5 tff and
τ = 1.0 tff for the 103 M� and 104 M�
calculation, respectively.

8.7.1 Final mass function

For the analysis of the final mass distribution we just assume for the high-mass tail (m >
0.8 M�) that the mass distribution is following a power law truncated at some value, not
imposing any assumption about the exponent or the truncation mass. To estimate the expo-
nent, α̂tail, and truncation mass, m̂u we use the bias-corrected maximum likelihood method of
Maschberger & Kroupa (2009, this thesis Chapter 5). The results are given in Table 8.1. In the
most populous subclusters we find α̂tail in the range from ≈ 1.7–1.9. These are much smaller
values than the Salpeter value, αtail = 2.35, which can be explained by the preference of mas-
sive sinks to be in subclusters. With only three estimates and considering the size of the error
bars it is not unreasonable to assume a universal exponent αtail ≈ 1.8, valid within the dense
subclusters. There is no apparent dependence of the exponent on the number of sinks in the
tail.

The estimated truncation masses are only marginally higher (up to ≈ 10 M�) than the
most massive sink particles in the clusters (15–30 M�), see also Table 8.1. m̂u increases with
increasing (total) number of sinks in the subcluster. This could indicate that the truncation
mass of the mass function increases as the number of sinks increases. The truncation mass
of a power-law distribution is difficult to estimate, and it is possible that despite the bias
correction the “true” truncation mass can be underestimated by up to 50%.

Using a graphical goodness-of-fit technique, the SPP plot (stabilised probability-probability
plot) described in Maschberger & Kroupa (2009, this thesis Chapter 5), it can be assessed
whether the data could be consistent with alternative hypotheses of a larger exponent or a
larger truncation mass, and also if the data are obeying the assumed null hypothesis (in our
case the power law with the estimated exponent and estimated truncation mass). The SPP
plot is constructed by first sorting the data ascending in mass and then calculating for each
data point the empirical cumulative density and the hypothetical cumulative density. The
empirical cumulative density is given by PE(m(i)) =

i−0.5
n , where i is the rank of the data point

in the ordered sample and n the sample size. The cumulative density for the null hypothesis,
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PH0(m(i)), is in our case simply the cumulative density of a truncated power law, where the
estimated values are used for the parameters. For a data set perfectly obeying the null hypoth-
esis the pairs {PH0(m(i)),PE(m(i))}would in a plot exactly lie on the {0,0}−{1,1} diagonal. An
additional bonus of this plot is that the Kolmogorov-Smirnov test has the direct graphical in-
terpretation as parallels to the diagonal with their distance depending on the KS probability.
However, a direct plot of PH0 and PE is not the best display of the data because the main em-
phasis lies in the middle region of the plot. But if the cumulative densities are transformed
using the stabilising transformation of Maschberger & Kroupa (2009, this thesis Chapter 5)
this disadvantage can be overcome, and a transformed version of the KS test can be overplot-
ted. This significantly reduces the likelihood of wrongly classifying data stemming from an
alternative hypothesis as being from the null hypothesis.

The SPP plots, using a truncated power law as the null hypothesis (= diagonal in the plot),
are shown for the most massive subclusters in Fig. 8.14, using the estimated exponent and
truncation mass. For all massive clusters the data are following the diagonal and show no
systematic trends. They do not exceed the 95% acceptance region of the stabilised version of
the KS test, so that indeed a truncated power law describes the data well. As the truncation
mass could be underestimated, we also show the alternative hypothesis of a power law with
the same, estimated exponent, but with a truncation mass of 150 M� (solid line). The data
show no trend to bend in the same direction so that an underestimate of the truncation mass
is not likely; instead the mass distribution is indeed truncated only slightly above the most
massive sink particle. A power law with αtail = 2.35 and mu = 150 M� gives the dotted line
in Fig. 8.14, which has a curvature completely in disagreement with the data. The standard
parameters (eq. 8.4) can therefore be excluded for our data.

The SPP plots for the whole systems are shown in Fig. 8.15. For the 103 M� calculation
the estimated parameters are α̂tail = 1.79± 0.11 and m̂u = 23.5± 2.1 M�. Bonnell et al. (2003),
analysing the same simulation, already mention that the tail of the mass distribution could be
fitted with either an overall exponent of αtail = 2.0, or with a smaller slope in the intermediate-
mass range and a steeper slope in the high-mass range. A strong truncation of the mass
function can mimic in a histogram a two-part power-law behaviour of the data. From Fig.
8.15 we find that a single power law fits the data well and signs of a two-part power law are
not present. Compared to the largest central subcluster the exponent of all sinks is somewhat
larger, which means that the sinks in the “field” and the other subclusters (containing < 12
sinks) contribute mostly to the low-mass end of the tail and the massive sinks are preferen-
tially found in the central region. Thus the steeper of the mass function for the whole system
is a sign of mass segregation.

In the 104 M� calculation we estimated for all sinks α̂tail = 2.18±0.08 and m̂u = 33.0±3.7,
which is again steeper than for the subclusters. Here the data deviate from the assumed
truncated power law in a sense that implies a gradual steepening of the mass function at the
high mass end. We shall discuss this behaviour in Section 8.7.4 as a possible manifestation of
the IGIMF effect.

Finally, we draw attention to the fact that all our IMFs are too flat compared to observed
distributions, i.e. high-mass (m > 0.8 M�) are over-abundant. Internal fragmentation within
the sink particles will decrease the number of massive sinks and increase the number of lower-
mass sinks. Also, feedback from a massive sink could diminish the amount of accretion of
sinks in it’s surroundings, so reducing the relative masses of massive sinks. Both fragmen-
tation and feedback can lead to a steeper exponent, so that the agreement with the Salpeter
exponent can be reached. Those effects do not alter our conclusion that a strong truncation is
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Figure 8.14: SPP-plots for the massive clus-
ters at the end of the calculation (bottom
panel: richest subcluster of the 103 M� cal-
culation; top panel, right and left: richest
and second richest subcluster of the 104 M�
calculation). The plots are constructed with
a truncated power law as the null hypothe-
sis (diagonal) using the estimated exponent
and upper limit; data corresponding to this
hypothesis should lie on the diagonal. The
parallels to the diagonal confine the 95% ac-
ceptance region. Also shown are the alterna-
tive hypotheses of a power law with the esti-
mated exponent and a truncation at 150 M�
(solid curve), as well as a curve for the “stan-
dard” Salpeter parameters (dotted, α = 2.35
and mu = 150 M�).

needed as internal fragmentation and feedback will push the truncation masses even lower.
They also do not affect our finding that the mass function is steeper in the 104 M�simulation,
in which regions of the initial gas are unbound. This change of initial conditions prevents clus-
ter merging from going to completion and prevents the over-production of massive sinks.

8.7.2 Time-evolution of the exponent

After the detailed discussion of the mass function at the end of the simulations we now turn
to the dependence of the mass function on time and the number of sinks. We first look at the
time-evolution of the exponent starting with the larger clusters, which allow us to estimate
the parameters, shown in Fig. 8.16. The estimates are made if more than 24 sinks with m >
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Figure 8.15: SPP plots as in Fig. 8.14 for all sinks at the end of the simulations (103 M� left and
104 M� right), with a truncated power law as null hypothesis (diagonal) using the estimated
exponent and truncation mass. Also shown are the alternative hypotheses of a power law
with the estimated exponent and a truncation at 150 M� (solid curve) and with the “standard”
Salpeter parameters (dotted, α = 2.35 and mu = 150 M�).

0.8 M� are present. The small filled symbols are for the entire sample and the open points
for the individual subclusters. For the whole system the exponent is initially relatively large
(αtail > 2.5) consistent with the lack of time available for sinks to grow much by accretion. As
sinks gain mass by accretion, the slope rapidly declines over about 5× 104 years, and then
stabilises at about 1.8 in the small simulation and 2.2 in the large simulation. The subclusters
only appear when the stable part of the evolution is reached, and their αtail stays roughly
constant with similar values in both simulations. The small symbols denote the values of
αtail for the whole population of sinks in subclusters together. The fact that these values are
smaller (i.e. a flatter IMF) than for the whole population, including the field, is a sign of mass
segregation. In addition we note that in the 104 M� simulation the values of αtail for individual
clusters lie below that for the aggregate cluster population. We however emphasise that the
open symbols in Fig. 8.16 are not independent data points and actually only correspond to
one (103 M� simulation) and up to three (104 M� simulation) clusters. Thus whereas the
fact that they lie below the solid symbols is interestingly suggestive of a flatter IMF within
individual clusters the result is compromised by small number statistics. We return to this in
our discussion of possible IGIMF effects in Section 8.7.4 below.

When the number of sinks does not suffice to estimate the exponent, the mean stellar
mass, m, can be used. In Figure 8.17 we show m as a function of n. The value derived from
the reference mass function is the horizontal thin line with the expected scatter for random
sampling (thin lines at the 1/6th and 5/6th quantiles). For the total stellar sample (thick line)
the mean mass increases (by a factor 2–3) over the duration of the simulation as a result of
accretion, already deduced from Fig. 8.6. It only falls out of the 1/6-5/6 region for larger n,
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Figure 8.16: Time evolution of the
exponent in the tail (m > 0.8M�), es-
timated when more than 24 sinks
are in the sample (103 M� calcu-
lation top, 104 M� calculation bot-
tom). The exponent was estimated
for the whole systems (subclusters
and field, big filled dots) and the in-
dividual subclusters (big open dots).
The small filled symbols show the
exponent estimated from all sinks
in subclusters together (without the
field).

interestingly at the point in the simulations at which the maximum stellar mass is around 10
M�. It is again tempting to speculate that stellar feedback associated with the steep increase
in the ultraviolet output of stars at around 10 M� could remedy this situation.

An increasing m is also compatible with the decreasing exponent of the tail that is found
in Fig. 8.16 for the larger-n subclusters. A similar trend of an increasing heaviness of the tail
is present if only all sinks in subclusters are considered, shown as blue line. The mean mass
of the total population in clusters is generally higher than for the whole system, which is a
consequence of mass segregation. The data points are instantaneous values for individual
clusters and demonstrate that the mean values are not at all consistent with the expectations
of random sampling from an invariant reference mass function. Even the smallest clusters can
often have large mean stellar masses as would be expected in a scenario where subclusters
form around massive sinks.



8.7. EVOLUTION OF THE SINK PARTICLE MASS FUNCTION 133

Figure 8.17: Mean mass of sinks
in the calculations (103 M� calcu-
lation top, 104 M� calculation bot-
tom), derived for the whole sys-
tem (thick line), all sinks in sub-
clusters (dashed line) and the indi-
vidual subclusters (dots). The thin
lines are the expected mean from
the reference IMF (eq. 8.4), and the
1/6th and 5/6th quantiles for ran-
dom sampling.

8.7.3 Evolution of the truncation mass

The analysis of the three subclusters at the end of the simulations already gave a tentative
indication that the truncation mass of the mass function depends on the number of sinks in
the subcluster. Figure 8.18 illustrates this further by showing the estimated truncation mass
as a function of the cluster richness, again with the solid dots for the whole systems and
open symbols for the subclusters. The actual most massive sink particle in each cluster is also
plotted. As above, the deduced truncation mass is always only marginally larger than the
largest datapoint, so that a much larger truncation mass is not likely. The points for the whole
system are shifted to the right, as it contains many more sinks. We see clear evidence that the
truncation mass is a systematic function of the cluster membership number.

We can further test whether the mass functions within individual subclusters are trun-
cated, by examining the distribution of the most massive, second most massive and third
most massive sink particle within each subcluster. These three quantities are plotted in the
three panels of Figure 8.19 as a function of cluster membership number. These data show
the qualitative trend (increasing maximum stellar mass with cluster richness, together with a
large scatter in maximum stellar mass at a given cluster n) that is seen in observational data
(Weidner & Kroupa, 2004, 2006, Maschberger & Clarke, 2008, this thesis Chapter 7, Weidner
et al., 2010) and which is predicted by the statistics of random drawing. The solid and dot-
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Figure 8.18: Estimated truncation
mass as a function of the number of
sinks (top 103 M� calculation, bot-
tom 104 M� calculation), on a clus-
ter by cluster basis (large open dots)
and for the whole population (large
filled dots). The small symbols are
the corresponding values of the ac-
tual maximum stellar mass in each
cluster (small open) or in the popu-
lation as a whole (small filled). The
line is an estimate of the total stel-
lar mass as a function of n (i.e. m =
mn, with the mean stellar mass m =
0.54M� as implied by the reference
IMF eq. 8.4). The number of sinks
can serve as a proxy for time.

ted lines on the plot correspond to the mean and 1/6th and 5/6th contours in the cumulative
distribution that is predicted by random sampling from the reference IMF, eq. 8.4.

We see that the simulation data lie progressively higher with respect to the theoretical
quantiles as one proceeds from most massive to second and third most massive members: in
other words, the masses of the three most massive sink particles are more bunched together
than one expects from the models. We illustrate how the form of the IMF affects the relative
distributions of the most massive three cluster members in Figure 8.20 where we plot the ex-
pectation values of the mass of the three most massive members in the case of three ‘toy’ IMF
models. The solid and dotted lines correspond, respectively, to power law distributions with
slopes of 1.8 and 2.35 which are truncated at a mass of 150 M�. As expected, the flatter power
law implies higher means of all three quantities at a given n, but the relative spacing between
the most massive and the second and third most massive members is not very different in the
two cases. In both cases, the three lines would start to converge only for much richer clusters
where the expected masses of the three most massive sink particles approached the cut-off at
150 M�. The dashed curves, which are provided for purely illustrative purposes, correspond
to an input distribution with a slope of 1.8 but where the upper limit is a function of cluster
richness,

mu(n) =
1
5

n M�. (8.5)

In this case, truncation is important in all clusters and the effect of this is to make the three
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Figure 8.19: Evolution of the mass of the most massive, second and third most massive sink
particle (top to bottom) as a function of the total number of sinks (left 103 M�calculation, right
104 M�calculation). The thick solid line shows the evolution of the total system (all sinks), the
thick dashed line is the track for all sinks in subclusters and the individual subclusters are
represented by dots. The solid and dashed lines represent the predicted expectation value of
the mass of the nth ranked sink along with the 1/6th and 5/6th quantiles for random sampling
from the IMF given in eq. 8.4. Note that the simulation data sits progressively higher with
respect to the predicted quantiles, as one proceeds from first to second to third most massive
sink particle down the page.

dashed lines much closer together than for the other (fixed truncation) cases. We therefore
deduce, at a qualitative level, that the effect seen in Figure 8.19 (whereby the difference in
mass between the three most massive sinks is unexpectedly small) may be a hint that the
mass functions are truncated even in the lower-n subclusters.
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Figure 8.20: Location of the mean
mass for the most massive, second
and third most massive star for dif-
ferent parameters of the mass func-
tion (from top to bottom in each
group of lines). The solid lines use
αtail = 2.35 and mu = 150 M�, the dot-
ted lines αtail = 1.8 and mu = 150 M�.
For the dashed lines again αtail = 1.8
is used, but the truncation mass is a
function number of stars, eq. 8.5.

8.7.4 An IGIMF effect?

The IGIMF (integrated galactic IMF) is a concept introduced by Kroupa & Weidner (2003)
and further developed in Weidner & Kroupa (2005) (a similar notion is already present in
Vanbeveren, 1982, 1983). If the truncation mass of the IMF in star forming regions (i.e. star
clusters) depends on the richness of the region (by number or mass), then the IMFs in the
regions are not completely identical any more, and thus the stars of all star forming regions
in a galaxy together can have a distribution function, the IGIMF, that differs from the IMF
within individual clusters. The IMF (here defined as IMF within an individual star forming
region) and IGIMF disagree only in the high-mass tail. For example, if there are 1000 M� in
stars of many small star forming regions, with a truncation mass of, say, 10 M�, and 1000 M�
from star forming regions with mu = 100 M�, then the combined sample of 2000 M� will have
a deficiency of stars between 10–100 M�, compared to a sample of 2000M� with mu = 100 M�.
For a more realistic case the general trend is that the IGIMF is steeper than the IMF in the
high mass tail (αIGIMF >αIMF) where the exact relationship depends on the spectrum of cluster
masses. This effect can influence for example the relation between the star formation rate and
the Hα flux of galaxies (Pflamm-Altenburg et al., 2007a; Pflamm-Altenburg & Kroupa, 2008;
Pflamm-Altenburg et al., 2009) and the metallicity of a galaxy (Köppen et al., 2007).

The 104 M� calculation covers a region that is sufficiently large and massive that it pro-
duces not just a single cluster but a population of objects which may evolve into individual
star clusters. To our surprise we found that the mass function of this calculation shows signs
of the IGIMF effect, as already mentioned in the Sections above. In the SPP plot containing all
sinks of the simulation (Fig. 8.15) the high-mass end of the data bends upwards away from
the diagonal, implying a steepening of the mass function. This effect is not only due to the
fact that the entire population contains extra (field) sinks that are not included in the cluster
and which (due to mass segregation) are of lower mass. Fig. 8.21 is an SPP plot for the aggre-
gate population of sinks in subclusters and here again the upward curvature is a hallmark of
a progressive steepening of the IMF. As noted above we expect to see this effect since we have
already seen evidence that the IMFs in individual clusters are truncated. Although the ob-
servational reality of such IGIMF effects is controversial (e.g. Elmegreen, 2009a and Parker &
Goodwin, 2007 on the theoretical side, or Parker et al., 1998; Chandar et al., 2005; Hoversten &
Glazebrook, 2008; Meurer et al., 2009, further discussed in Elmegreen, 2009b), it is interesting
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Figure 8.21: SPP plots using all
sinks in subclusters together at the
end of the 104 M� simulation. Also
shown are the alternative hypothe-
ses of a power law with the esti-
mated exponent and no upper trun-
cation (dashed curve) and a trunca-
tion at 150 M� (solid curve), as well
as curve for the “standard” Salpeter
parameters (dotted, α = 2.35 and
mu = 150M�). The data show a cur-
vature that implies a suppression of
high masses.

that the large simulation indeed appears to manifest this behaviour.
Although we stress that the process by which the stellar mass function is built up cannot

be seen physically as a random drawing experiment, the net effect of the cluster assembly
process is to produce clusters that are mathematically describable as follows: random drawing
from a mass function with an upper cut-off that depends on cluster richness. In this sense, the
simulations show a behaviour that is qualitatively similar to the Monte-Carlo simulations of
Weidner & Kroupa (2006), who constructed model clusters under a similar assumption. The
reason, in the case of the simulations, that the upper truncation increases with cluster richness
is because the first sinks to form not only tend to attain the largest masses but also have the
greatest opportunities to undergo cluster mergers and hence end up in the largest clusters.

8.8 Discussion

It is often stated that the majority of stars form in clusters and indeed in the simulations we
find that by an age of half a Myr 60− 80% of sinks are located in clusters3. We also find
that by this stage the clusters are strongly mass segregated, that more massive sinks are, in a
statistical sense, associated with richer clusters and that massive sinks are under-represented
in field regions compared with clusters. We find that in the simulations a sink ‘forms’ (i.e.
the mass of bound gas within a radius of ≈ 200 AU increases as a result of infall from the
environment) over a variable period which can be as long as the duration of the simulation

3Note that in common with observers we here define clusters in terms of association on the sky and do not
imply by this that such clusters are necessarily bound or long lived. Obviously the fraction in clusters depends
on the choice of dbreak.
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(of order half a Myr). Given the ambient gas densities, this period is of order a free fall time
and sinks can thus move significant distances (several tenths of a parsec) over this period and
experience considerable evolution in clustering properties in the process. Indeed, around half
of sinks of all masses do not start to form in the central regions of populous clusters, but in
their outskirts or in separate small groupings (with n < 12). The more massive sink particles
are however those that start to form earlier and are more likely to have undergone mergers
into successively larger entities.

A consequence of this cluster formation pattern is that sinks that form together in a small-
n group tend to stay together and experience similar accretion histories as they merge into
larger entities. This is particularly true of sinks that form early and thus acquire a headstart in
mass acquisition, since these tend to end up in the cluster core during cluster merging. Thus
the mass distribution of sinks in a given cluster often contains a group of massive sinks of
similar mass (see Figure 8.19). In terms of a mathematical description of the resulting IMF
on a cluster by cluster basis, this is best represented by a power law upper IMF which is
truncated at a stellar mass that depends on the cluster richness. As pointed out by Weidner
& Kroupa (2006), a consequence of such behaviour is that in the integrated IMF (i.e. the
IGIMF, being that composed of the summed total of a sample of clusters) the massive sinks
are underrepresented, which leads to a steeper slope in the power law for a large sample. The
104 M� simulation produces several clusters, and indeed when all sinks of them are combined
the mass function deviates from a power law. Because of the small number of clusters we do
not find a general steepening of the slope but a lack of massive sinks at the high-mass end,
which is the IGIMF effect for a small sample of clusters.

While a lot of our analysis has been devoted to understanding the reason that the simula-
tions produce particular observational characteristics, observers can also of course simply use
these results as an empirical test of the correctness of the physical ingredients in the simula-
tions. It is of course important for proper comparison that clusters are extracted from spatial
distributions on the sky through use of a minimal spanning tree, as here, and that parameters
(such as ellipticity) are also derived in the same way.

Apart from the issue of IMF slope described above, we here draw attention to two prop-
erties that are particularly suitable for observational comparison. First of all, the ellipticity
histogram (Figure 8.10) demonstrates that the clusters are somewhat flattened, typically with
an axis ratio of < 2 : 1; this moderate flattening is a combined consequence of the filamen-
tary morphology of the gas and the effects of relaxation that tend to sphericalise the inner
regions. It is an easy matter to compare the ellipticity distribution of an ensemble of clusters
and decide whether this is statistically consistent with the distribution shown in Figure 8.10.
Secondly, one may readily compare the degree of mass segregation in an observed cluster
ensemble with these simulations through construction of a diagram like Figure 8.13. This di-
agram involves only a scale free quantity and makes no assumption about the radial density
profile or cluster morphology: all that is required in order to construct such a diagram is that
one can count sources on the sky and can identify the most massive star in the cluster. We note
that upcoming Xray surveys, which offer the potential to identify large numbers of low mass
pre-main sequence stars in regions that are heavily embedded, offer an excellent opportunity
to test the diagnostics presented in this paper.
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8.9 Appendix: Dependence of the results on the projection plane

As we analyse the simulation data in projection on a 2D plane the results could be compro-
mised by the choice of the projection plane (in the main text the x-y plane). To demonstrate the
robustness of our results we show here examples for how a different choice of the projection
plane would influence them. The following plots are made by analysing the data with exactly
the same parameters but different projection planes (x-z and z-y). In general the effects of a dif-
ferent projection plane are small and not distinguishable from the already present statistical
scatter.

The merging history (Fig. 8.22) shows the influence on the general detection and classifica-
tion of clusters (number of clusters and their richness). The total number of clusters chances
slightly, because small-n clusters may not be detected, but all larger subclusters are present
with a nearly identical growth history. The ellipticity histogram (Fig. 8.24) and the Cartwright
Q parameter (Fig. 8.23) should be very sensitive to projection effects, but also here the differ-
ences are only minor. Finally, to asses the influence on the Section about the mass function
we show in Fig. 8.25 the most massive, second and third most massive sink particle against
number of sinks. Again, no major discrepancy that could compromise our results is present.

Figure 8.22: Merging history of the subclusters (as Fig. 8.3), derived in x-z (left) and y-z projec-
tion, large simulation.
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Figure 8.23: Time evolution of Q
(lines as in Fig. 8.8 calculated in
x-z (left) and y-z projection, large
simulation.

Figure 8.24: Histograms of subclus-
ter ellipticities (as Fig. 8.10) derived
in x-z (left) and y-z (right) projection,
large simulation.
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Figure 8.25: Evolution of the most massive, second and third most massive sink particle (as
Fig. 8.19), determined in x-z (left) and y-z (right) projection, large simulation.



Chapter 9

Outlook

In the preceding Chapters we touched many aspects of star formation, from galaxy scales (≈
10 000 pc) to sub-cluster scales (≈ 0.1 pc). The following Sections sketch projects which follow
up some of these aspects.

9.1 Star cluster mass function

A prominent relation in this thesis was the scaling of the brightest cluster with the star forma-
tion rate in a galaxy. Two concepts can account for this, the size-of-sample effect and a variable
upper limit of the cluster mass function. For a more quantitative analysis of this relation it
is more convenient to go from the observational quantities to “theoretical” quantities, i.e. to
analyse the relation between the mass of the most massive cluster and the total mass/number
of the cluster population. For this purpose a time interval has to be introduced. Problems that
arise here are e.g. the choice of the length of the interval is somewhat arbitrary, and the choice
of the brightest cluster does not guarantee that it has an age within the interval.

With the new data from Larsen (2009) it is possible to avoid these problems as he gives
masses and ages for the clusters. By using the age of the brightest cluster as the length of the
interval the problem of the brightest cluster not being the most massive one is solved (clusters
become only fainter in time, so that the brightest cluster is the most massive up to its age), and
by construction the mass of the most massive cluster is paired with the correct number of
formed clusters. Therefore it is possible to construct more strictly a physical Mmax–Ntot relation
from observational data. With this it should be possible to shed light on the size-of-sample
vs. truncation question, and perhaps also on the steep exponent for the cluster mass function
that is needed to explain the brighest cluster – star formation rate relation.

9.2 Stellar initial mass function

The relation between the upper limit of the stellar mass function and the number of stars
in a star cluster has been extensively discussed in Chapters 7 and 8. For an observational
confirmation the direct estimation and goodness-of-fit tests as presented in Chapter 5 are
superior to the analysis of the mmax-ntot relation. With modern observational surveys large,
homogeneous photometric data sets of star clusters and star forming regions are available.
The reason for the choice of photometry over spectroscopy is that large spectroscopic surveys
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are too observationally expensive. Photometry has the drawback of reduced precision of the
mass determination, but is inevitable in order to arrive at a sufficiently large sample of stars
and star clusters for statistically sound conclusions.

During a summer project in 2009 in Cambridge, A. Maharaj investigated with C. Clarke, S.
Hodgkin, N. Bastian and myself the possibility to obtain robust stellar masses from multiband
photometry. The target was the Orion Nebula Cluster, as it has the largest sample of spectro-
scopically determined masses for comparison. We were able to pinpoint several issues with
the mass determination, as for example the choice of isochrones, the choice of photometric
bands, allowing for age spreads etc. The current status of this project is promising, the photo-
metric and spectroscopic mass agree for stars more massive than 5 M�. Below this mass there
is only a weak correlation. There are several issues which still have to be cleared to achieve
a conclusive picture of photometric mass determination, as for example the use of homoge-
neous photometric data sets for both photometric and spectroscopic mass determinations or
the explanation of the large scatter in the photometrically and spectroscopically determined
redddening. Also, the effects of variability and protostellar disks will have to be considered
for the mass determination. Nevertheless, the preliminary results are very promising and
need to be pursued to further refine the method.

9.3 Stellar accretion rates

A side project to the analysis of the hydrodynamical star formation simulations (Chapter 8)
was the analysis of accretion rates of matter onto the sink particles. A preliminary finding
is here that, on average, the accretion rate decreases in time. This is understandable in the
smaller simulation, as there a high star formation efficiency, up to 55%, is reached quickly
so that the available gas for accretion becomes increasingly scarcer. The same behaviour is
appearing in the large simulation with only 15% of the gas transformed into stars at the end.
The upper envelope in a plot of accretion rate vs. time stays, however, constant. Perhaps
the destruction of accretion flows by near encounters of sink particles is responsible for this
behaviour.

Another interesting feature of the accretion rates is their scaling with the (simultaneous)
mass of the sink particle. From the theory of Bondi-Hoyle-Lyttleton accretion the accretion
rate scales with m2, but in the simulations this relation is shallower. It is an interesting ques-
tion what causes this behaviour. An answer could be found by revisiting the mass evolution
of a sink particle in the simulation with respect to the local gas environment and dynamics.
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(Heidelberg).

Kim, S., Staveley-Smith, L., Dopita, M. A.,
Freeman, K. C., Sault, R. J., Kesteven, M. J.,
& McConnell, D. (1998). An H I aperture
synthesis mosaic of the Large Magellanic Cloud.
ApJ, 503:674–688.

Kimber, A. C. (1985). Tests for the exponential,
Weibull and Gumbel distributions based on the
stabilized probability plot. Biometrika, 72:661–
663.

Kitsionas, S. & Whitworth, A. P. (2002).
Smoothed Particle Hydrodynamics with parti-
cle splitting, applied to self-gravitating collapse.
MNRAS, 330:129–136.

Kitsionas, S. & Whitworth, A. P. (2007). High-
resolution simulations of clump-clump colli-
sions using SPH with particle splitting. MN-
RAS, 378:507–524.

Kleinmann, D. E. & Low, F. J. (1967). Discovery
of an Infrared Nebula in Orion. ApJ, 149:L1–
L4.

Koen, C. (2006). On the upper limit on stellar
masses in the Large Magellanic Cloud cluster
R136. MNRAS, 365:590 – 594.
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