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Abstract

In this thesis we generalize the Feynman-Kac formula to semigroups that
correspond to Schrödinger type operators with possibly singular potentials
on vector bundles over noncompact Riemannian manifolds.

This probabilistic formula is then used to obtain information about the spec-
tral theory of these operators.

A first class of applications corresponds to semigroup domination: We show
how the spectrum can be estimated by usual scalar Schrödinger operators
on functions. This includes estimates for the bottom of the spectrum and,
from a Brownian bridge version of our Feynman-Kac formula, we also obtain
estimates for the integral kernel and the trace of the semigroup.

As another application of the Feynman-Kac formula, we introduce the class
of Kato potentials on vector bundles and use probabilistic methods to prove
that the semigroups corresponding to Schrödinger type operators with local
Kato potentials map square integrable sections to bounded continuous sec-
tions. In particular, this implies the boundedness and the continuity of the
eigensections of these operators.

We finally specify some of these results to Schrödinger type operators on
trivial vector bundles.
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1 Introduction

1.1 Review of path integrals for scalar Schrödinger op-
erators in the Euclidean space

By the predictions of nonrelativistic quantum mechanics the energy of a par-
ticle with spin 0 and charge and mass equal to 1, moving in the Euclidean
space Rm under the influence of an electrical potential v : Rm → R, is de-
scribed by the spectrum of a self-adjoint realization H0(v) of the Schrödinger
operator −∆/2 + v in the Hilbert space L2(Rm). If the initial state f of this
system is in the domain of definition of H0(v), then the state at the time t
is given by e−itH0(v)f . Ever since R. Feynman’s seminal paper [31] it has be-
come customary in the physics literature to write e−itH0(v)f as an ill-defined
path integral.

While the time evolution is given by the unitary group (e−itH0(v))t∈R, it has
been demonstrated by B. Simon in [76] [77] that, in case H0(v) is semi-
bounded from below, the study of the spectrum and the eigenfunctions of
H0(v) is closely related to the Schrödinger semigroup (e−tH0(v))t≥0, so that it
is natural from this point of view to look for an explicit formula for e−tH0(v).
Beginning with M. Kac’s paper [45] there have been several publications
which are concerned with the fact that there is a well-defined “imaginary
time” version of Feynman’s path integral: If B(x) is a Brownian motion in
Rm which starts in x and which is defined on a filtered probability space with
expectation value E[•], then one has the Feynman-Kac formula,

e−tH0(v)f(x) = E
[
e−

R t
0 v(Bs(x))dsf(Bt(x))

]
. (1)

This Feynman-Kac formula is valid for a large class of potentials. For in-
stance, if v is Kato decomposable, which includes all physically relevant cases,
then there is a natural quadratic form definition of H0(v) and (1) holds [83].
If one takes into account a locally integrable magnetic field β, then H0(v)
has to be replaced by some self-adjoint realization1 H(iβ, v) of the magnetic
Schrödinger operator

1

2

m∑
j=1

(−i∂j + βj)
2 + v, (2)

and (1) can be generalized as follows:

e−tH(iβ,v)f(x) = E
[
e−

R t
0 v(Bs(x))ds+i

R t
0

Pm
j=1 βj(Bs(x))dBj

s(x)f(Bt(x))
]
. (3)

1The reason for the notation H(iβ, v) instead of H(β, v) will become clear in section
1.2, in particular in the setting of theorem 1.4.

1



Formula (3) is known as Feynman-Kac-Itô formula and it holds for the natu-
ral quadratic form realization of (2), if ‖β(•)‖Rm , divβ are in the local Kato
class and v is Kato decomposable. This formula (and a natural extension of
it to arbitrary open subsets of Rm) has been proved in [13] by K. Broderix,
D. Hundertmark and H. Leschke. Their paper seems to contain the state
of the art in the Euclidean setting. We would also like to mention [14].
There, in contrast to all the papers cited so far, the authors have extended
ideas from [78] and proved a Feynman-Kac-Itô formula under assumptions
on the pair (β, v), under which the considered operator H(iβ, v) need not
be semibounded from below. As a consequence, the self-adjoint nonnegative
operator e−tH(iβ,v) is in general not bounded, but formula (3) remains true
for all f in the domain of definition of e−tH(iβ,v).

1.2 Main results and organization of this work

In terms of theoretical physics, we are interested in this work to extend the
above path integral formulae and their applications to particles that live
on Riemannian manifolds and that are subject to certain abstract internal
symmetries. In order to motivate the form of these generalized vector valued
path integral formulae on manifolds, let us continue our review of the scalar
Euclidean case with a geometric interpretation of (3). We consider Rm as a
smooth Riemannian manifold with its Euclidean metric and assume that the
magnetic field β is smooth (this is a satisfactory assumption for applications
in theoretical physics), so that it can be considered as a smooth 1-form in Rm.
With α := iβ, d+α can be considered as a covariant derivative on the trivial
line bundle Rm×C, and (2) is nothing but 1/2 times the Bochner Laplacian
corresponding to this covariant derivative. We define the Stratonovic line
integral of α along B(x) as∫ t

0

α(dBs(x)) :=

∫ t

0

m∑
j=1

αj(Bs(x))dB
j
s(x), (4)

and remark that
//x

α,t := e−
R t
0 α(dBs(x))

satisfies the linear U(1)-valued Stratonovic equation

//x
α,t = 1−

∫ t

0

//x
α,sα(dBs(x)), (5)

where U(d) stands for the Lie group of unitary d×d matrices in the following.
By the analogy to the usual parallel transport along smooth paths, //x

α can be
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considered as the stochastic parallel transport with respect to the covariant
derivative determined by α, along the paths of B(x). If the potential v is
sufficiently regular (for instance Kato decomposable), then, by the results
cited above, the process

V x
α,t := e−

R t
0 v(Bs(x))ds

is well-defined and it satisfies the complex valued linear ordinary initial value
problem

V x
α,t = 1−

∫ t

0

V x
α,sv(Bs(x))ds. (6)

As the final step of our geometric interpretation, we consider (6) as a “co-
variant equation” by writing the right-hand side as

V x
α,sv(Bs(x)) = V x

α,s//
x,−1
α,s v(Bs(x))//

x
α,s,

which explains the artificial notational dependence of V x
α on α, and the

Feynman-Kac-Itô formula takes the form

e−tH(α,v)f(x) = E
[
V x

α,t//
x,−1
α,t f(Bt(x))

]
. (7)

The aim of this thesis is to generalize formula (7) and its applications to
the spectral theory of H(α, v) in the spirit of [76] [77] to the setting of arbi-
trary vector bundles over Riemannian manifolds, allowing possibly singular
generalized potentials. To this end, we fix some notation.

Let M = (M, g) be a geodesically and stochastically complete smooth con-
nected Riemannian manifold. For example, stochastic completeness is im-
plied by geodesic completeness, if the Ricci curvature is bounded from below
by a constant, or more generally, if the Ricci curvature is bounded from be-
low in radial direction by some quadratic function of the geodesic distance
function (for some fixed reference point). Furthermore, let E → M be a
smooth Hermitian vector bundle with a fixed Hermitian covariant derivative
∇, and let V be a potential, in the sense that V is a measurable, pointwise
Hermitian section in End(E). The class of potentials under consideration in
this thesis is the one of locally square integrable potentials that are bounded
from below, so let

CV 1 ≤ V ∈ ΓL2
loc

(M,End(E)) for some CV ∈ R (8)

for the rest of this introduction. In analogy to a classical result of T. Kato, it
has been proved by M. Braverman, O. Milatovic and M. Shubin in [11] that
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the Schrödinger type operator ∇∗∇/2 + V in the Hilbert space ΓL2(M,E)
of square integrable sections in E is essentially self-adjoint on the domain of
smooth sections with compact support. The corresponding operator closure
will be denoted with H(V ) and the semigroup

(e−tH(V ))t≥0 ⊂ L (ΓL2(M,E))

will be called the Schrödinger semigroup corresponding to H(V ) in the fol-
lowing. We remark that in analogy to the considerations of section 1.1, the
energy of a nonrelativistic particle with mass 1 which has internal symmetries
(that are modelled by a subgroup of U(d); for example, isospin corresponds to
the group SU(2)) and which lives on M under the influence of an “electrical”
potential V is described [20] by an operator of the type H(V ).

As we have already stated, the path integral formula for e−tH(V ) is of the
form (7), so let us explain our approach for constructing Brownian motion in
this general setting, which is the one initiated by L. Schwartz: By embedding
M into some Euclidean Rl in an isometric way, we define a Brownian motion
B(x) on M with initial value x as the unique maximally defined solution of a
Stratonovic equation on a filtered probability space (Ω,F ,F∗,P). Now the
stochastic parallel transport //x with respect to the data (∇, B(x)) can be
defined conveniently by solving the lift of the defining Stratonovic equation
of B(x) to the U(d)-principal bundle of unitary frames in E. The process
//x can be read as an isometry along the paths of B(x),

//x
t : Ex −→ EBt(x).

With these preparations, we can state the central result of this thesis:

Theorem 1.1 For almost every x ∈M there is a unique process

V x : [0,∞)× Ω −→ End(E)x

which satisfies the initial value problem

dV x
t = −V x

t //
x,−1
t V (Bt(x))//

x
t dt, V x

0 = 1 (9)

pathwise in the weak sense, and for any t ≥ 0, f ∈ ΓL2(M,E) and almost
every x ∈M one has the following identity,

e−tH(V )f(x) = E
[
V x

t //
x,−1
t f(Bt(x))

]
. (10)

Note that the existence of V x is not trivial, since V is not assumed to be
continuous in general. Versions of formula (10) have been known for some

4



time for certain smooth potentials: For example in [9][60], the authors have
proved a similar formula for closed M , and in [24] a formula is worked out for
the Friedrichs realization of a Schrödinger type operator with some growth
restriction on the potential.
After having defined the stochastic parallel transport conveniently, it is rather
straightforward to establish (10) for continuous bounded potentials. The
proof for the general case is quite technical and uses a chain of approximation
arguments.

Besides of being a generalization to singular potentials, formula (10) has sev-
eral applications in the spectral theory of H(V ). As we have already stated,
these applications mainly represent extensions of [76] [77] to our geometric
setting, but due to the vector valued character of our calculus, we also obtain
some new results forM = Rm with its Euclidean metric. We also remark that
the results below are all valid without any kind of boundedness assumptions
on the geometry of E.

In the following, let v : M → R be a locally square integrable potential
which is bounded from below, and let H0(v) be the self-adjoint realization of
−∆/2 + v in L2(M), where ∆ stands for the Laplace-Beltrami operator on
M . The Feynman-Kac formula can easily be brought into the following form
in this situation,

e−tH0(v)f(x) = E
[
e−

R t
0 v(Bs(x))dsf(Bt(x))

]
, (11)

and this shows that this operator is positivity preserving. In particular, if
the ground state energy λ := inf σ(H0(v)) is an eigenvalue of H0(v), then
λ is simple and the corresponding ground state eigenfunction can be chosen
strictly positive. Here, σ(•) stands for the spectrum.
Furthermore, the combination of (10) and (11) leads to an important fact,
namely semigroup domination: If V ≥ v1, then one has the inequality∥∥e−tH(V )f(x)

∥∥
x
≤ e−tH0(v) |f | (x) for any f ∈ ΓL2(M,E),

where the function |f | ∈ L2(M) is defined by |f | (x) := ‖f(x)‖x. This has
an important consequence: If a section x 7→ f(x) is in the quadratic form
domain of H(V ), then the function x 7→ ‖f(x)‖x is in the quadratic form
domain of H0(v) and one has

inf σ(H(V )) ≥ inf σ(H0(v)), (12)

a remarkable fact, since both operators act in different Hilbert spaces.

Another consequence of formula (10) is that, with some control on the Rie-
mannian structure of M , the Schrödinger semigroup can also be considered
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as acting in the spaces of Lp-sections in E, ΓLp(M,E): To this end, we use
the right-hand side of the Feynman-Kac formula to define the expression
e−tH(V )f(x) for any section f in E. Let ‖•‖p,q denote the operator norm for
linear operators mapping ΓLp(M,E) to ΓLq(M,E). We use semigroup domi-
nation to prove the following result: If M has a bounded geometry, then for
any 1 ≤ p ≤ q ≤ ∞ one has

e−tH(V ) ∈ L
(
ΓLp(M,E),ΓLq(M,E)

)
(13)

and there is a C > 0, which only depends on the Riemannian structure of
M , such that for all 1 ≤ p ≤ q ≤ ∞ one has∥∥e−tH(V )

∥∥
p,q
≤ C

1
p
− 1

q min
{
t

m
2 , 1
}− 1

p
+ 1

q e−tCV . (14)

The importance of (13) is discussed in remark 8.5.

Next, we present some of our results concerning the integral kernel of the
Schrödinger semigroup. To this end, we first prove that if M is geodesically
complete with Ricci curvature bounded from below and a positive injectivity
radius, then one can define the Brownian bridge measures Px,y

t in a way that
the expectation values Ex,y

t [•] are a rigorous version of the conditional expec-
tation values E[•|Bt(x) = y]. We believe that this construction of Ex,y

t [•] is
possibly not well-known for noncompact manifolds. With this disintegration,
we prove:

Theorem 1.2 Let M be geodesically complete with Ricci curvature bounded
from below and a positive injectivity radius. Then for any t > 0, the section

M ×M 3 (x, y) 7−→ e−tH(V )(x, y) ∈ Hom(Ey, Ex),

e−tH(V )(x, y) := pt(x, y)Ex,y
t

[
V x

t //
x,−1
t

]
in E�E∗ is well-defined for a.e. (x, y) ∈M×M and it defines an essentially
bounded integral kernel for the operator e−tH(V ).

Theorem 1.2 has several consequences. Firstly, one gets another aspect of
semigroup domination: V ≥ v1 implies∥∥e−tH(V )(x, y)

∥∥
y,x
≤ e−tH0(v)(x, y). (15)

Secondly, standard arguments imply the path integral formula

tr
(
e−tH(V )

)
=

∫
M

∫
M

trEy

(
e−

t
2
H(V )(x, y)∗e−

t
2
H(V )(x, y)

)
vol(dx)vol(dy).

(16)
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Here, we remark that whenever e−tH(V )(•, •) is pointwise well-defined and
continuous, it is possible to derive the more familiar formula

tr
(
e−tH(V )

)
=

∫
M

trEx

(
e−tH(V )(x, x)

)
vol(dx) (17)

from (16) (the short time asymptotics of a supertrace variant of this formula
for M closed and V smooth has been used by J.-M. Bismut [9] for his proba-
bilistic proof of the Atiyah-Singer index theorem). Unfortunately, we believe
that under our weak assumptions on M and V this continuity need not be
true for M high dimensional. However, our substitute for (17) will turn out
to work equally well for the applications that we have in mind. For example,
formula (16) can be combined with (15) to give

tr
(
e−tH(V )

)
≤ d tr

(
e−tH0(v)

)
,

where the number d stands for the dimension of the fibers of E.

As another consequence, we get a generalized Goldon-Thompson-Symanzik
inequality2: If M has a bounded geometry, then there is a constant C > 0,
which only depends on the Riemannian structure of M , such that

tr
(
e−tH(V )

)
≤ Cd

min{tm
2 , 1}

∫
M

e−tV (y)vol(dy),

where the scalar potential V : M → R is given by

V (y) := the smallest eigenvalue of V (y).

This in turn implies a generalized phase space bound for small times,

tr
(
e−tH(V )

)
≤ Cd

∫
M

∫
T∗yM

e−t( 1
2
‖x‖2T∗xM+V (y))volT∗yM(dx)vol(dy).

The latter inequality can be interpreted as follows: Even in the setting of
curved configuration spaces and particles with abstract internal symmetries,
the corresponding quantum mechanical partition function is bounded from
above by the corresponding classical partition function, an assertion which
has been known since the 1960’s [82] for the scalar Euclidean Schrödinger
operators from section 1.1. These results generalize some results of C. Bär
and F. Pfäffle to noncompact and not necessarily smooth potentials: In [4]
and [5], the authors derive similar estimates by approximating a variant of
the path integral formula (10) by finite dimensional integrals.

2The name goes back to [32][85][82]; see in particular also [77].

7



As a next application, we would like to explain how the Feynman-Kac for-
mula can be used to derive a pointwise result for H(V ): The continuity of
the eigensections of H(V ). To this end, we assume that M is geodesically
complete with Ricci curvature bounded from below and a positive injectivity
radius, and that V is (in addition to our standing assumption (8)) in the
local Kato class. Here, we have extended the definition of real-valued local
Kato functions [76] to potentials that are sections in End(E) as follows: A
potential W is said to be in the Kato class, if

lim
t↘0

sup
x∈M

E
[∫ t

0

‖W (Bs(x))‖Bs(x) ds

]
= 0,

and W is said to be in the local Kato class, if 1KW is in the Kato class for
any compact subset K ⊂ M . By a result of K. Kuwae and M. Takahashi
[53], one finds that under the above assumptions on M , being locally Kato
is not very restrictive3 for V . In this situation, one can show that V x can be
defined for all x ∈M , so that in particular the right-hand side

QV
t f(x) = E

[
V x

t //
x,−1
t f(Bt(x))

]
of the Feynman-Kac formula is well-defined for all x ∈ M . We show the
pointwise perturbation formula

Q0
sQ

V
t−sf(x) = E

[
V x,−1

s V x
t //

x,−1
t f(Bt(x))

]
, t ≥ s ≥ 0, x ∈M , (18)

and use this formula to approximate QV in some locally uniform way by
the semigroup Q0, so that, using additionally the local elliptic regularity for
H(0), we can prove the following result:

Theorem 1.3 Let M be geodesically complete with Ricci curvature bounded
from below and a positive injectivity radius, and let V be in the local Kato
class. Then for any t > 0 and f ∈ ΓL2(M,E), the section

M −→ E, x 7−→ QV
t f(x) = E

[
V x

t //
x,−1
t f(Bt(x))

]
∈ Ex

is continuous and bounded. In particular, the eigensections of H(V ) can be
chosen continuous and bounded.

Theorem 1.3 generalizes the corresponding result [13] for scalar Schrödinger
operators with magnetic fields in the Euclidean Rm to our setting.

3For example, if dim M ≤ 3, then any locally square integrable potential is in the local
Kato class (under the stated assumptions on the Riemanian structure of M).
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Finally, we specify some of the previous results to trivial vector bundles, that
is, E = M ×Cd with its standard Hermitian structure. Let U (d) denote the
Lie algebra corresponding to U(d), let

α ∈ Ω1(M,U (d)),

and let V : M → Mat(Cd) be a locally square integrable potential which is
bounded from below. The self-adjoint realization of 1

2
(d + α)∗(d + α) + V in

L2(M,Cd) shall be denoted with H(α, V ). The Feynman-Kac formula can
brought into the following form in this situation:

Theorem 1.4 Let α, V and H(α, V ) be as above. Then for almost every
x ∈M there is a unique solution

A α,V (x) : [0,∞)× Ω −→ Mat(Cd)

of the Stratonovic equation

dA α,V
t (x) = A α,V

t (x)
(
α(dBt(x))− V (Bt(x))dt

)
, A α,V

0 (x) = 1,

and the following formula holds for any t ≥ 0, f ∈ L2(M,Cd) and almost
every x ∈M ,

e−tH(α,V )f(x) = E
[
A α,V

t (x)f(Bt(x))
]
. (19)

Here,
∫ t

0
α(dBs(x)) stands for the Stratonovic line integral of α along B(x),

a semi-martingale with values in Mat(Cd) which can be defined in anology to
(4) with our embedding approach. In particular, we obtain a Feynman-Kac-
Itô type formula for manifolds: Let β ∈ ΩR(M), let v : M → R be a locally
square integrable potential which is bounded from below, with H(iβ, v) the
self-adjoint realization in L2(M) corresponding to 1

2
(d + iβ)∗(d + iβ) + v,

so that H0(v) = H(0, v). Analogously to section 1.1, the operator H(iβ, v)
describes the energy of a particle with spin 0 and charge and mass equal
to 1, moving in M under the influence of the electrical potential v and the
magnetic field β. In this situation, formula (19) reads

e−tH(iβ,v)f(x) = E
[
e−

R t
0 v(Bs(x))ds+i

R t
0 β(dBs(x))f(Bt(x))

]
, (20)

which extends formula (3) to Riemannian manifolds. Using the formulae (11)
and (20), one obviously has the semigroup domination∣∣e−tH(iβ,v)f(x)

∣∣ ≤ e−tH0(v) |f | (x),

9



which directly implies the adaption of (12) to this simple situation:

σ(H(iβ, v)) ≥ inf σ(H0(v)).

The latter inequality can be interpreted as “switching on a magnetic field
leads to an increase of the energy of charged quantum particles without
spin”.

This thesis is organized as follows:

In section 2, we first review the concepts of stochastic differential equations on
manifolds and stochastic horizontal lifts (to arbitrary principal bundles) and
recall the corresponding standard existence and uniqueness theorems. Then
we briefly explain possible constructions of Brownian motions on Riemannian
manifolds. The main goal of this section is to calculate the Stratonovic
differential of processes of the form //x,−1Ψ(B(x)), with Ψ a smooth section
and B(x) a Brownian motion that is constructed by the Nash embedding
theorem. As far as we know, this result has not appeared in the literature in
this generality, although we believe that it is known among probabilists.

In section 3, we explain the proof of the above essential self-adjointness result
for H(V ), and we present a new proof for M with bounded geometry.

After having fixed some notation in section 4, section 5 is completely devoted
to the proof of theorem 1.1.

In the sections 6 and 7, we introduce and prove basic properties of Kato
potentials and Brownian bridge measures, respectively.

Finally, section 8 is devoted to the applications of theorem 1.1.

We have included an appendix, in which certain heat kernel estimates for
manifolds with bounded geometry have been collected, and in which readers
who are not familiar with stochastic integrals may find a short introduction
to this topic.

10



Acknowledgements

Firstly, I would like to express my gratitude to my thesis advisor Prof. Dr.
Matthias Lesch for creating an excellent research environment at the Math-
ematical Institute of the University of Bonn. His support has helped me a
lot to improve the quality of this thesis.

I would also like to thank Prof. Dr. Andreas Eberle very much for his
willingness to be, at such a short notice, the second referee of my thesis.

Moreover, I am indebted to Prof. Dr. Markus Pflaum for supporting me ever
since my time as a student in Frankfurt/Main, and for sharing his knowledge
about mathematical physics with me.

I am grateful to Thomas Buch, Leonardo Cano, Carolina Neira Jimenez, Dr.
Kazumasa Kuwada, Prof. Dr. Kazuhiro Kuwae, Prof. Dr. Ognjen Milatovic,
Jonathan Pfaff, Dr. Robert Philipowski and Prof. Dr. Karl-Thedor Sturm
for valuable mathematical discussions during the preparation of this thesis.
I particularly benefited a lot from mathematical discussions with Prof. Dr.
Anton Thalmaier (who has also invited me to Luxembourg in November
2009).

I would also like to thank Dr. Patrick Erdelt, Dr. Hans-Christian Herbig
and Prof. Dr. Joachim Weidmann very much for their support during my
time in Frankfurt.

Finally, I would like to express my gratitude to my girlfriend, Sina Gruner,
who has supported me wherever she could in the last two years.

This thesis is dedicated to my parents, Mihriban and Erdolon Güneysu.
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2 Foundations of stochastic analysis on man-

ifolds

2.1 Stochastic differential equations on manifolds

We are going to give a brief introduction to stochastic differential equations
on smooth manifolds first. Since this concept naturally leads to solutions
which may only be defined up to some “explosion time”, it is natural to
assume that the processes are only defined up to some stopping time which
is not necessarily equal to ∞. We start with some definitions and remarks
that are in the spirit of this observation.

Throughout this thesis, we assume that any manifold under consideration is
paracompact and without boundary. Unless otherwise stated, measurability
will always be understood with respect to the corresponding Borel-σ-algebra.
LetM be a smooth connected manifold with M̂ := M∪{∞M} its Alexandroff
compactification andm := dimM . Let (Ω,F ,F∗,P) be a filtered probability
space. Whenever necessary, we will make the filtration F∗ right-continuous
and complete without changing the notation. For stopping times η and ζ we
use the usual notation

[η, ζ)× Ω :=
{

(t, ω)
∣∣∣ η(ω) ≤ t < ζ(ω)

}
,

and in general, a process X with values in M will be a map

X : [0, ζX)× Ω −→M, (21)

where ζX is a P-a.s. positive predictable stopping time, such that

Xt :
{
t < ζX

}
−→M (22)

is F -measurable for any t ≥ 0. We will then say that X is defined up to ζX .
Similarly, X will be called

• adapted, if (22) is Ft-measurable for any t ≥ 0,

• continuous, if for P-a.e. ω ∈ Ω the map

X•(ω) : [0, ζX(ω)) −→M

is continuous, and

• maximally defined, if

lim
t↗ζX(ω)

Xt(ω) = ∞M for P-a.e. ω ∈
{
ζX <∞

}
. (23)
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The concept of Rm-valued semi-martingales can be carried over to manifolds
as follows:

Definition 2.1 A continuous adapted process X with values in M is called
a continuous semi-martingale on M , if for any stopping time ζ with ζ < ζX
P-a.s. and any real-valued f ∈ C∞(M), the stopped process

f(Xζ) : [0,∞)× Ω → R (24)

is a usual continuous semi-martingale.

The notion of semi-martingales on manifolds has been introduced by L.
Schwartz in [69]. It follows from the Itô formula that this definition coincides
with the usual one for processes with values in Rm.

Remark 2.2 1. If X is a continuous adapted process with values in M ,
then X is a continuous semi-martingale, if and only if for any real-valued
f ∈ C∞(M) there is a sequence of stopping times (ζn) which announces ζ
such that for any n ∈ N the process f(Xζn) is a usual continuous semi-
martingale. A proof of this simple fact can be found in [69], p.104.

2. The notion of “continuous local martingales” on manifolds can be defined
in a complete analogy to definition 2.1.

�

Having this definition, we can now give a precise definition of stochastic
differential equations (and their solutions) on manifolds:

Definition 2.3 a) A stochastic differential equation in M is a pair (A,Z),
where A : M × Rl → TM is a morphism of smooth vector bundles and Z is
a continuous semi-martingale with values in Rl and ζZ = ∞. The process Z
is called the driving semi-martingale of (A,Z).

b) A continuous semi-martingale X with values in M is called a solution
of the stochastic differential (A,Z), if for any stopping time ζ with ζ < ζX
P-a.s. and any real-valued f ∈ C∞(M), the process Xζ satisfies the following
(Itô) formula,

f(Xζ
t ) = f(X0) +

∫ t∧ζ

0

df(Xζ
s )(A(Xζ

s ))dZs P-a.s. for any t ≥ 0. (25)

Here, we have used the usual notation a ∧ b := min{a, b} and the symbol d
stands for the Stratonovic differential. We will write d for Itô differentials in
the following. The analogue of remark 2.2 also holds for definition 2.3:
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Remark 2.4 It follows directly from the continuity of the involved processes
and the Stratonovic stopping rule that a continuous semi-martingale X with
values in M is a solution of (A,Z), if and only if for any real-valued f ∈
C∞(M) there is a sequence of stopping times (ζn) that announces ζ, such
that for any n ∈ N the process f(Xζn) satisfies (25) with ζ replaced by ζn.

�

One usually uses the symbolic notation

dX = A(X)dZ (26)

in order to express that a process X is a solution of (A,Z). Note that if M =
Rm, then the usual Itô formula implies that definition 2.3 is equivalent to the
usual definition of (strong) solutions of stochastic differential equations.

We fix the standard orthonormal basis e1, . . . , el of Rl. If A : M × Rl →
TM and Z = (Z1, . . . , Z l)t are as in definition 2.3, then Aj := A(•)ej ∈
ΓC∞(M,TM) and the formulae (25) and (26) can be written as

f(Xζ
t ) = f(X0) +

l∑
j=1

∫ t∧ζ

0

Aj(f)(Xζ
s )dZj

s (27)

and

dX =
l∑

j=1

Aj(X)dZj, (28)

respectively. Conversely, if A1, . . . , Al ∈ ΓC∞(M,TM), then there is an
unique morphism of smooth vector bundles A : M × Rl → TM such that
Aj = A(•)ej.

An application of the Itô formula implies that the coordinate maps from an
embedding M ↪→ Rl can serve as a set of test functions for (26). In detail,
this means:

Proposition 2.5 Let (A,Z) be a stochastic differential equation in M and
let

Ψ = (Ψ1, . . . ,Ψl)t : M ↪−→ Rl

be a smooth embedding for some l ∈ N such that Ψ(M) is a closed subset of
Rl. Then a continuous semi-martingale X with values in M is a solution of
(A,Z), if and only if for any stopping time ζ with ζ < ζX P-a.s. and any
k = 1, . . . , l, the process Ψk(Xζ) satisfies

Ψk(Xζ
t ) = Ψk(X0) +

l∑
j=1

∫ t∧ζ

0

Aj(Ψ
k)(Xζ

s )dZj
s P-a.s. for any t ≥ 0.
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Proof. Proposition 1.2.7 in [41].

�

The following existence and uniqueness theorem for stochastic differential
equations on manifolds will be central in the following:

Theorem 2.6 Let (A,Z) be a stochastic differential equation in M . Then
for any F0-measurable map x0 : Ω →M there is a unique maximally defined
solution X of

dX = A(X)dZ (29)

with X0 = x0 P-a.s.

Remark 2.7 1. Here, the uniqueness of X is understood in the following
sense: If X̃ is a solution of (A,Z) with X̃ = x0 P-a.s., then ζX̃ ≤ ζX P-a.s.
and X̃ is indistinguishable from X |[0,ζX̃)×Ω, that is,

P
{

for all t with 0 ≤ t < ζX̃ one has Xt = X̃t

}
= 1.

2. Of course, one can also consider stochastic differential equations with an
arbitrary nonnegative starting time. The analogue of theorem 2.6 remains
true in this slightly more general context [27].

�

The conclusion of theorem 2.6 will be written symbolically as

dX = A(X)dZ, X0 = x0, (30)

and X will be called the maximal solution of (30). In order to prove theorem
2.6, one can use the corresponding result for M = Rm (which can be proved
by a typical stopping time argument, if one cuts off the given stochastic dif-
ferential equation on the elements of an exhaustion of Rm and then applies
the usual existence and uniqueness theorem for stochastic differential equa-
tions with globally Lipschitz coefficients) and then apply this result to the
general case by using the Whitney embedding theorem. This is the proof
given in [27], and a text book version of this proof can be found in [37]. It is
also possible to give a proof that use a localization and patching argument
[43], however, this approach leads to several technical difficulties.

The uniqueness part of theorem 2.6 easily implies:
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Corollary 2.8 Under the assumptions of theorem 2.6, let N be a smooth
submanifold of M which is closed as a subset, and let A(x)v ∈ TxN for all
x ∈ N , v ∈ Rl. Any maximal solution X of (A,Z) with X0 ∈ N P-a.s. stays
in N up to ζX , that is,

P
{

for all t with 0 ≤ t < ζX one has Xt ∈ N
}

= 1.

Proof. This is the corollary on p. 371 of [37].

�
For the sake of completeness, we state the following theorem concerning the
solution flows of stochastic differential equations. We refer the reader to [28]
and [27] for a proof (see also [52] for M = Rm):

Theorem 2.9 For any stochastic differential equation (A,Z) in M there is
a family

ζ : Ω×M → [0,∞], (ω, x) 7−→ ζ(ω, x)

of P-a.s. positive predictable stopping times, and a map

X : [0,∞)× Ω×M → M̂, (t, ω, x) 7−→ Xt(ω, x),

such that if one sets

Mt(ω) :=
{
x
∣∣∣ t < ζ(ω, x)

}
,

then for P-a.e. ω ∈ Ω one has:

i) Mt(ω) is an open subset of M for any t ≥ 0, in particular,

ζ(ω, •) : M −→ [0,∞]

is lower semi-continuous.

ii) The map
Xt(ω, •) : Mt(ω) −→M

is a smooth diffeomorphism onto some open subset of M for any t ≥ 0.

iii) The pair (X•(•, x), ζ(•, x)) is the maximal solution of

dX = A(X)dZ, X0 = x (31)

for any x ∈M .

16



iv) The map
[0, t] −→ C∞(Mt(ω),M), s 7−→ Xs(ω, •)

is continuous for any t ≥ 0, if C∞(Mt(ω),M) is equipped with its
canonical C∞-topology.

v) If supp(Aj) ⊂M is compact for any j = 1, . . . , l, then ζ(•, •) = ∞ and

Xt(ω, •) : M −→M

is a smooth diffeomorphism onto M for any t ≥ 0.

2.2 Horizontal lifts of semi-martingales

In this section, we are going to explain the concept of stochastic horizontal
lifts of continuous semi-martingales to arbitrary smooth principal bundles.
We will only consider processes with starting time 0, but it is clear that, with
obvious adaptions, all results from section 2.2 and section 2.3 carry over to
processes with an arbitrary nonnegative starting time. Let us first remark
the following proposition, which characterizes the semi-martingale property
of manifold valued processes:

Proposition 2.10 Any solution of a stochastic differential equation in M is
a continuous semi-martingale. Conversely, any continuous semi-martingale
X in M with ζX = ∞ solves a stochastic differential equation in the sense of
definition 2.3.

Proof. It is clear that the solutions of stochastic differential equations are
continuous semi-martingales. The other direction can be seen as follows:
Let Ψ : M ↪→ Rl be a smooth embedding for some l ∈ N such that Ψ(M)
is a closed subset of Rl, and let A be given as the orthogonal projection
A(x) : Rl → TxM for any x ∈ M . Then X is a solution of the stochastic
differential equation (A,Ψ(X)). The technical details can be found in [41],
lemma 2.3.3.

�

Actually, a somewhat stronger statement holds: One can generalize the no-
tion of (solutions of) stochastic differential equations [41] by allowing the
driving semi-martingale itself to be defined only up to some predictable stop-
ping time, where then an analogue of theorem 2.6 holds. With this general-
ized definition, and keeping the construction of the driving semi-martingale
in the proof of proposition 2.10 in mind, one finds that a process is a continu-
ous semi-martingale, if and only if it is the solution of a stochastic differential
equation.
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In order to avoid technical difficulties (like stochastic localization procedures
that would be necessary in order to define the involved stochastic integrals
correctly), we will assume for the abstract results of this section that the
given continuous semi-martingale on M is defined up to ∞. The assertions
for the general case can then be derived with typical stopping time arguments.
Furthermore, we remark that one can always change the filtration to achieve
an infinite lifetime ([37], p.371). This approach is certainly satisfactory, if
one is interested in abstract existence results as in proposition 2.10 or in
theorem 2.15.

Let us now introduce the concept of stochastic line integrals, which will help
us to extend the notion of “horizontal lifts” to continuous semi-martingales.
In the following, any two processes which are defined up to ∞ will be iden-
tified, if they are indistinguishable.

Proposition and definition 2.11 Let N be a smooth manifold and let Y
be a continuous semi-martingale on N which is defined up to ∞. Further-
more, let F be a finite dimensional K-linear 4 space. Then there is a unique
morphism of K-linear spaces

Ω1(M,F ) −→
{
F -valued continuous semi-martingales defined up to ∞

}
,

α 7−→
∫
α(dY )

such that for any f ∈ C∞(N,F ),∫
f(Y )α(dY ) :=

∫
f(Y )d

∫
α(dY ) =

∫
(fα)(dY ) (32)∫

(df)(dY ) = f(Y )− f(Y0). (33)

The process
∫
α(dY ) is called the Stratonovic stochastic line integral of α

along Y .

Proof. We explain the construction: Let

h = (h1, . . . , hq)t : N ↪−→ Rq

be such that h(N) is a closed subset of Rq, and let α1, . . . , αq ∈ C∞(N,F )
be such that

α =

q∑
j=1

αjdh
j.

4K = R, C
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Then one can define∫ t

0

α(dYs) :=

q∑
j=1

∫ t

0

αj(Ys)dh
j(Ys). (34)

The details of the proof (in particular, the well-definedness of (34)) can be
found in [37] (Satz 7.62).

�

Remark 2.12 1. Proposition 2.11 extends the definition of usual line in-
tegrals along deterministic smooth curves: Let γ : [0,∞) → N be a deter-
ministic smooth curve on N . By the chain rule, γ is clearly a continuous
semi-martingale in the sense of definition 2.1. One has∫ t

0

α(dγs) =

∫
γ

α |[0,t]:=

∫ t

0

αγ(s)(γ̇(s))ds.

This follows from the uniqueness part of proposition 2.11.

2. In principle, it is possible to define
∫
α(dY ) by using charts (this is carried

out in [43]). However, the patching procedure is complicated. Furthermore,
the use of Whitney’s embedding theorem makes it easier to check the well-
definedness.

3. It is possible to give a third equivalent definition of stochastic line integrals,
using the so called anti-development (with respect to some initial value) of
the given continuous semi-martingale [41].

�

There is a canonic way to calculate line integrals along solutions of stochastic
differential equations:

Corollary 2.13 In the setting of proposition 2.11, let Y be given as the
maximal solution of

dY =
l∑

j=1

Aj(Y )dZj, Y0 = y0 (35)

for some stochastic differential equation (A,Z) on N and some F0-measurable
x0 : Ω → N , and let α ∈ Ω1(N,F ). Then∫

α(dY ) =
l∑

j=1

∫
α(Aj(Y ))dZj.
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Proof. This follows easily from the uniqueness part of proposition 2.11.

�

In particular, proposition 2.10 and corollary 2.13 lead to another equivalent
definition of stochastic line integrals along continuous semi-martingales.

For the rest of this section, let X be a continuous semi-martingale with values
in M which is defined up to ∞ and which starts from some F0-measurable
x0 : Ω → M . We also fix a smooth principal bundle π : P → M with
structure group G and the associated Lie algebra g, and a connection 1-form
α0 ∈ Ω1(P, g). Since we now have the probabilistic notion of line integrals,
we can give the following definition:

Definition 2.14 A continuous semi-martingale U on P which is defined up
to ∞ is called a horizontal lift of X to P (with respect to the connection α0),
if π(U) = X and ∫

α0(dU) = 0. (36)

Clearly, this definition is motivated from remark 2.12 and the fact that if a
γ : [0,∞) → M is a deterministic smooth curve in M , then for any u0 ∈ P
with π(u0) = γ0 there is a unique horizontal lift (in the usual sense) u :
[0,∞) → P from u0. This lift clearly satisfies∫

u

α0 |[0,t]= 0 for any t ≥ 0.

Being equipped with this notion, one can prove:

Theorem 2.15 For any F0-measurable u0 : Ω → P with π(u0) = x0 P-a.s.
there is a unique horizontal lift U of X to P with U0 = u0 P-a.s.

In this generality, this result first appeared in [72] (where the construction
of U is given, but an argument for ζU = ∞ is missing). A full proof of
theorem 2.15 can be found in [37], Satz 7.141. In the general case, that is,
if the given semi-martingale on M is not necessarily defined up to ∞, then
the corresponding horizontal lift lives on P as long as the first process lives
on M . This assertion is included in [37], Satz 7.141.

By proposition 2.10, the process X satisfies a stochastic differential equation
of the form (30). This can be used to derive a corresponding equation for
the lift U , which turns out to be very useful in applications:
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Proposition 2.16 Let X be the maximal solution of

dX =
l∑

j=1

Aj(X)dZj, X0 = x0 (37)

for some stochastic differential equation (A,Z) and some F0-measurable x0 :
Ω → M , and let u0 : Ω → P be F0-measurable with π(u0) = x0 P-a.s. Then
the horizontal lift U of X to P from u0 is uniquely determined as the maximal
solution Ũ of

dŨ =
l∑

j=1

A∗j(Ũ)dZj, Ũ0 = u0, (38)

where A∗j is the horizontal lift of Aj to P (with respect to α0) for any j =
1, . . . , l.

Proof. First of all, ζŨ = ∞ has been shown in the proof of theorem 13C,
p.175, in [28]. The equality π(Ũ) = X then follows from checking that π(Ũ)
satisfies (37), which follows directly from the definition of A∗j and the chain
rule. The fact that ∫

α0(dŨ) = 0 (39)

follows from the (local) considerations of lemma 3.2 in [72]. However, being
equipped with our embedding approach to stochastic line integrals, the proof
of (39) becomes trivial: Corollary 2.13 implies∫

α0(dŨ) =
l∑

j=1

∫
α0(A

∗
j)(Ũ)dZj = 0,

where the last equality follows from the fact that the vector fields A∗j are
horizontal.

�

2.3 Stochastic parallel transport

Throughout section 2.3, X will again be a continuous semi-martingale with
values in M which is defined up to ∞ and which starts from some F0-
measurable x0 : Ω → M . Let E → M be a smooth d-dimensional complex
vector bundle with a fixed smooth Hermitian structure

(•, •)x : Ex × Ex −→ C, x ∈M,
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and a fixed Hermitian covariant derivative

∇ : ΓC∞(M,E) −→ ΓC∞(M,T∗M ⊗ E).

It is implicit in the notation that we have complexified T∗M and TM . Let
π : P(E) → M be the U(d)-principal bundle corresponding to (E, (•, •)x),
that is,

P(E) =
⋃

x∈M

{
u
∣∣∣u : Cd '−→ Ex is an isometry

}
.

That ∇ is Hermitian means that it is compatible with (•, •)x in the usual
sense: For any Ψ1,Ψ2 ∈ ΓC∞(M,E), A ∈ ΓC∞(M,TM) one has

A
(
(Ψ1,Ψ2)

)
(x) = (∇AΨ1(x),Ψ2(x))x + (Ψ1(x),∇AΨ2(x))x for any x ∈M ,

where (Ψ1,Ψ2) ∈ C∞(M) is given by

x 7−→ (Ψ1(x),Ψ2(x))x.

We write U (d) := Lie(U(d)) for the anti-Hermitian elements of

Mat(Cd) := MatC(d× d).

Since ∇ is Hermitian, it follows from proposition 1.5 on p. 117 in [51] that ∇
induces a connection α0 ∈ Ω(P(E),U (d)) on P(E), and the considerations
of the previous section show that for any F0-measurable u0 : Ω → P(E)
with π(u0) = x0 P-a.s. there is a unique horizontal lift of X to P(E) starting
from u0. The aim of this section is to introduce the parallel transport map
associated to X and to derive a formula for the stochastic differential of it.
Let E � E∗ → M ×M be the exterior tensor bundle corresponding to E,
that is,

E � E∗ |(x,y)= Ex ⊗ E∗
y = Hom(Ey, Ex). (40)

The following assertion is certainly well-known. Nevertheless, we have not
been able to find a proof in the literature, so we give one here:

Proposition and definition 2.17 Let U be a lift of X to P(E). Then the
continuous adapted process given by

//X := UU−1
0 : [0,∞)× Ω −→ E � E∗

does not depend on the particular choice of the lift U , and //X will be called
the stochastic parallel transport in E along X.
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Proof. Note that whatever lift has been taken to define //X , one has

//X
t ∈ Hom(Ex0 , EXt) P-a.s. for all t ≥ 0.

Let U be the horizontal lift starting from u0 and let Ũ be the horizontal lift
from starting from ũ0. We define a F0-measurable map g0 by setting

g0 := u−1
0 ũ0 : Ω −→ U(d).

Clearly, Ug0 is a lift of X starting from ũ0. It is also horizontal: For example,
one can use Shigekawa’s pull back formula (lemma 3.4 in [72]) to deduce that∫

α(dUg0) = Ad(g−1
0 )

∫
α(dU),

which is equal to zero by assumption. The uniqueness part of theorem 2.15
now implies Ug0 = Ũ .

�

Note that, as we have already done, the dependence of //X on ∇ and (•, •)x

will usually be omitted in our notation, since these data will always be fixed.
Furthermore, for all t ≥ 0 the linear maps

//X
t : Ex0

'−→ EXt

are isometries P-a.s.

Next, we remark the following purely geometric lemma:

Lemma 2.18 For any Ψ ∈ ΓC∞(M,E) let FΨ be the smooth function defined
by

FΨ : P(E) −→ Cd, FΨ(u) = u−1
(
Ψ ◦ π(u)

)
.

Let A ∈ ΓC∞(M,TM) and let A∗ ∈ ΓC∞(P(E),TP(E)) be the lift of A to
P(E) (with respect to ∇). Then one has

A∗FΨ = F∇AΨ for any Ψ ∈ ΓC∞(M,E).

A proof can be found in [51], p. 115.

In case X is given as the solution of a stochastic differential equation (this
is no restriction), one can proceed as follows:

Proposition 2.19 Assume that X is the maximal solution of

dX =
l∑

j=1

Aj(X)dZj, X0 = x0 (41)
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for some stochastic differential equation (A,Z) and some F0-measurable x0 :
Ω → M , and that U is a horizontal lift of X to P(E). Then the following
formulae hold for any Ψ ∈ ΓC∞(M,E),

d
(
U−1Ψ(X)

)
= U−1

l∑
j=1

(∇Aj
Ψ)(X)dZj (42)

= U−1

(
l∑

j=1

(∇Aj
Ψ)(X)dZj +

1

2

l∑
i,j=1

(∇Ai
∇Aj

Ψ)(X)d[Zi, Zj]

)
.

(43)

Proof. If one applies the formula in proposition 2.16 to each component of
FΨ, that is,

dFΨ(U) =
l∑

j=1

A∗j(FΨ)(U)dZj,

then formula (42) follows immediately from A∗jFΨ = F∇Aj
Ψ (lemma 2.18).

In order to derive formula (43), one now only has to apply proposition 2.16 to
F∇Aj

Ψ, in order to convert the Stratonovic differential to an Itô differential.

�

Corollary 2.20 Under the assumptions of proposition 2.19, let X start from
a deterministic point x0 ∈M . Then the following formulae hold,

d
(
//X,−1Ψ(X)

)
= //X,−1

l∑
j=1

(∇Aj
Ψ)(X)dZj (44)

= //X,−1

(
l∑

j=1

(∇Aj
Ψ)(X)dZj +

1

2

l∑
i,j=1

(∇Ai
∇Aj

Ψ)(X)d[Zi, Zj]

)
. (45)

Proof. This follows from multiplying the formulae from proposition 2.19 with
some u0 ∈ P(E) with π(u0) = x0.

�

We close this section with some specific remarks about stochastic paral-
lel transport in trivial vector bundles: Firstly, we prove that the (inverse)
stochastic parallel transport on trivial vector bundles can essentially be de-
fined as the solution of a linear stochastic differential equation:
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Proposition 2.21 Assume that X starts from a deterministic point x0 ∈M .
Let E = M × Cd with its standard Hermitian structure, let f1, . . . , fd ∈
ΓC∞(M,E) be the standard global orthonormal frame

fj(x) := (x, ej) ∈ Ex = {x} × Cd, j = 1, . . . , d,

and let α ∈ Ω1(M,U (d)) be the connection-1-form of ∇ (with respect to
f1, . . . , fd). If the process A (X) is defined by

A (X) : [0,∞)× Ω −→ Mat(Cd),

A (X)k
l :=

(
//X,−1fk(X), fl(x0)

)
x0
, (46)

then A (X) is uniquely determined as the maximal solution 5 of the following
linear stochastic differential equation in Mat(Cd),

dA α(X) = −α(dX)A α(X), A α
0 (X) = 1. (47)

Proof. Firstly, the linearity of (47) implies that A α(X) can clearly be defined
up to ∞.
We can assume that X is given as the maximal solution of (37), and we set
//−1 := //X,−1 and A := A (X). Then one has

dA k
l =

(
d//−1fk(X), fl(x0)

)
x0

=
l∑

j=1

(
//−1∇Aj

fk(X)dZj, fl(x0)
)

x0

=
l∑

j=1

d∑
i=1

(
//−1fi(X)α(Aj)

i
kdZ

j, fl(x0)
)

x0

=
d∑

i=1

(
//−1fi(X)α(dX)i

k, fl(x0)
)

x0

= −
(
α(dX)A

)k

l
,

where we have used corollary 2.20 for the second equality, corollary 2.13 for
the fourth equality and α(dX)i

k = −α(dX)k
i for the last equality.

�

Proposition 2.21 should be read as follows:

5Remember the notation α(dX) = d
∫

α(dX).
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Remark 2.22 1. We fix the situation of proposition 2.21. If for any t ≥ 0
we choose f1(Xt), . . . , fd(Xt) as the orthonormal basis of EXt , then //X

t is
represented by the unitary matrix A α

t (X) (see also proposition C.29), which
is uniquely determined by

dA α,−1(X) = A α,−1(X)α(dX), A α,−1
0 (X) = 1. (48)

Since furthermore the global orthonormal frame f1, . . . , fd induces an iso-
morphism ΓK (M,E) ∼= K (M,Cd) of K (M)-modules, where for example
K may stand for “smooth” or “continuous” or “measurable”, one can con-
sider A α(X) itself as the stochastic parallel transport along X. Note that
in view of remark 2.12.1, equation (48) certainly represents another analogy
to the usual theory of deterministic smooth curves.

2. If E = M × C, then the first part of this remark reduces to

A α,−1(X) = e
R

α(dX). (49)

In particular, if M = Rm, if α = iβ for some

β =
m∑

j=1

βjdx
j ∈ Ω1

R(Rm),

and if X is equal to an Euclidean Brownian motion in Rm, then the Itô
formula and [Xj, Xk]t = δjkdt show

A iβ,−1
t (X) = exp

(
i

m∑
j=1

∫ t

0

βj(Xs)dX
j
s

)

= exp

(
i

m∑
j=1

∫ t

0

βj(Xs)dX
j
s +

i

2

∫ t

0

divβ(Xs)ds

)
.

The latter expression is well-known from the classical Feynman-Kac-Itô for-
mula in Rm [77], if one interprets β as a magnetic field. In particular, the
equality

A iβ,−1
t (X) = exp

(
i

m∑
j=1

∫ t

0

βj(Xs)dX
j
s +

i

2

∫ t

0

divβ(Xs)ds

)

gives some geometric insight into the classical Feynman-Kac-Itô formula.

�

26



2.4 Brownian motions and stochastic completeness

For the rest of this thesis, we assume thatM is equipped with a fixed Rieman-
nian structure g ∈ ΓC∞(M,T∗M ⊗ T∗M). The Laplace-Beltrami operator
corresponding to this structure will be denoted with

∆ = −d∗d : C∞(M) −→ C∞(M).

Since g will remain fixed, we will usually omit the dependence on data de-
pending on g in our notation, as we have already done for ∆.
Brownian motions can be defined as follows in arbitrary Riemannian mani-
folds:

Definition 2.23 A continuous adapted maximally defined process

B(x) : [0, ζB(x))× Ω −→M

is called a Brownian motion on M = (M, g) with starting point x ∈ M , if
B0(x) = x P-a.s. and if for any stopping time ζ with ζ < ζB(x) P-a.s. and
any real-valued f ∈ C∞(M), the process

Bf,ζ
t (x) := f(Bζ

t (x))−
1

2

∫ t∧ζ

0

∆f(Bζ
s (x))ds (50)

is a continuous local martingale.

Clearly, definition 2.23 implies that Brownian motions are continuous semi-
martingales. Furthermore, by using the Lévy-characterization of Brownian
motions and the Itô formula, one easily finds that this definition is consistent
with the usual definition of Brownian motions in the Euclidean Rm.

We leave the question of existence of Brownian motions on M aside for a
moment. In the following, vol(•) stands for the canonical volume measure
(on the Borel-σ-algebra) associated to the given Riemannian structure on
M . It is well-known that the minimal heat kernel pt(x, y) of M exists and
is uniquely determined in the sense of the following theorem, which also
connects Brownian motions to pt(x, y) by asserting that the transition density
of Brownian motions is given by pt(x, y).

Theorem 2.24 There exists a unique minimal positive fundamental solution

p : (0,∞)×M ×M −→ (0,∞), (t, x, y) 7−→ pt(x, y)

of the heat equation
∂

∂t
h(t, x) =

1

2
∆xh(t, x).

The map p will be called the minimal heat kernel of M = (M, g), and it has
the following additional properties:
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i) p is smooth,

ii) pt(x, y) = pt(y, x) for all t > 0, x, y ∈M ,

iii) one has ∫
M

pt(x, y)vol(dy) ≤ 1 for all t > 0, x ∈M , (51)

iv) the Chapman-Kolmogorov equations hold,

pt+s(x, y) =

∫
M

pt(x, z)ps(z, y)vol(dz) for all t, s > 0, x, y ∈M,

v) pt(x, •) ∈ L1(M) ∩ L2(M) for all t > 0, x ∈M ,

vi) if B(x) is a Brownian motion on M which starts in x and if N ⊂ M
is a Lebesgue measurable set, then

P
{
t < ζB(x) and Bt(x) ∈ N

}
=

∫
N

pt(x, y)vol(dy) for any t > 0.

(52)

Proof. As the theorem is certainly well-known, we only explain possible
constructions of the minimal heat kernel: Let (Mn) be a smooth exhaustion

of M and let p
(n)
t (x, y) denote the Dirichlet heat kernel corresponding to Mn.

Then it has been shown in [21] that

pt(x, y) := lim
n→∞

p
(n)
t (x, y)

is independent of (Mn) and has the properties i)-iv). The property pt(x, •) ∈
L2(M) follows obviously from ii) and iv), and vi) is included in [41], propo-
sition 4.1.6.
Let us mention that it is also possible to define pt(x, y) somewhat more di-
rectly as the integral kernel corresponding to e−tH , where H is the Friedrichs
extension of

−∆/2 : C∞
0 (M) −→ L2(M).

The equivalence of this approach to the first one has also been shown in [21].

�

Next, let us review the question under which assumptions on M = (M, g) the
corresponding Brownian motions can be defined up to ∞. More precisely:

28



Definition 2.25 M = (M, g) is called stochastically complete, if

P
{
ζB(x) = ∞

}
= 1

for any x ∈M and any Brownian motion B(x) on M with starting point x.

A simple characterization of this property can be found in part a) of the
following proposition. Part b) will be used implicitely throughout in the
following:

Proposition 2.26 a) The following statements are equivalent:

i) M is stochastically complete.

ii) One has∫
M

pt(x, y)vol(dy) = 1 for any t > 0 and any x ∈M .

iii) One has∫
M

pt0(x0, y)vol(dy) = 1 for some t0 > 0 and some x0 ∈M .

b) Let M be stochastically complete, let B(x) be a Brownian motion in M
starting from x and let t > 0. If N ⊂M is measurable with vol(N) = 0, then
one has ∣∣∣{s∣∣∣ 0 ≤ s ≤ t, Bs(x) ∈ N

}∣∣∣ = 0 P-a.s.,

where |•| stands for the Lebesgue measure in R1.

Proof. a) The equivalence i) ⇔ ii) follows from property vi) of proposition
2.24. The equivalence iii)⇔ ii) follows easily from the Chapman-Kolmogorov
equation, if one first considers the case t < t0 and then the case t ≥ t0. See
for example theorem 6.2 in [33].

b) One has

E
[∫ t

0

1{s|0≤s≤t, Bs(x)∈N}(s)ds

]
=

∫ t

0

P{Bs(x) ∈ N}ds

=

∫ t

0

∫
N

ps(x, y)vol(dy)ds = 0, (53)

where we have used theorem 2.24 vi) for the second equality.

�

In general, geodesic completeness is not implied by stochastic completeness
(M = R2 \ {0} is a simple counter example) and there are geodesically com-
plete manifolds which are not stochastically complete (see e.g. [29], (5.49),
p.69). However, one has the following theorem:
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Theorem 2.27 If M is geodesically complete and if for some x ∈ M and
some r0 > 0 one has ∫ ∞

r0

rdr

log(vol(x, r))
= ∞, (54)

then M is stochastically complete.

Here, vol(x, r) stands for the volume of the open geodesic ball with radius r
around x. A detailed proof of theorem 2.27 can be found in the survey article
of A. Grigor’yan [33] (theorem 9.1), who first proved this result in [34]. As
an application, one has [41][37]:

Theorem 2.28 Let M be geodesically complete. If the Ricci curvature of
M is bounded from below in radial direction by some quadratic function of
the Riemannian distance function (for some fixed reference point), then M is
stochastically complete. In particular, if the Ricci curvature of M is bounded
from below by a constant, then M is stochastically complete.

Theorem 2.28 can be derived from theorem 2.27 by using the Bishop-Gromov
inequality [41]. The fact that stochastic completeness is implied by geodesic
completeness if the Ricci curvature is bounded from below is known as Yau’s
(stochastic completeness) theorem and has first been proved in [89] with an-
alytic methods. A probabilistic approach to Yau’s theorem can be found in
[27].

By these considerations it is clear that the Euclidean Rm, compact mani-
folds or, more generally, manifolds with a bounded geometry are examples
of stochastically complete manifolds (see also inequality (213)).

Remark 2.29 1. Grigor’yan’s stochastic completeness criterion has been
generalized by K.-T. Sturm [81] to certain local Dirichlet forms on locally
compact seperable Hausdorff spaces with a positive Radon measure with full
support.

2. It is also possible to define the notion of stochastic completeness for metric
graphs, but, interestingly, the analogue of theorem 2.27 does not hold in this
situation. This follows from corollary 3.10 in [88]. 6

�

We now turn to the question of how to construct Brownian motions. Defini-
tion 2.23 actually means that Brownian motions on M are diffusion processes

6This reference has been pointed out to the author by Matthias Keller.
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corresponding to the generator ∆/2. Thus, in principle, one can construct
Brownian motions as follows: In order to include the possibility of explosion,
one considers the generalized path space

W (M̂) :=
{
ω
∣∣∣ ω ∈ C([0,∞), M̂), ω(t) = ∞M for all t ≥ ζM(ω)

}
,

where
ζM(ω) = inf

{
t
∣∣∣ ω(t) = ∞M

}
stands for the explosion time of the coordinate process (t, ω) 7→ ω(t) on
W (M̂). Then one takes FM and FM

∗ to be the σ-algebra and, respectively,
the filtration which is generated by the coordinate process. Using the Whit-
ney embedding theorem, one can show ([41], proposition 3.2.1):

Theorem 2.30 For any x ∈ M there is a unique measure Px, the Wiener
measure, on (W (M̂),FM) such that the coordinate process on the filtered
probability space (W (M̂),FM ,FM

∗ ,Px) is a Brownian motion on M starting
in x, which is defined up to ζM .

This construction of Brownian motions on M is satisfactory, if one wants to
derive path integral formulae for Schrödinger operators on functions. How-
ever, if one is interested in Schrödinger type operators on arbitrary vector
bundles, where parallel transports are involved naturally, then it is conve-
nient (see corollary 2.20) to start with an Euclidean Brownian motion and to
define Brownian motions on M by solving a stochastic differential equation.
In the following, we explain two constructions that are in the spirit of this
remark.

Let ∇TM denote the Levi-Civita connection. An extrinsic construction prin-
ciple of Brownian motions can be given in terms of the Nash embedding
theorem. The construction of diffusion processes on manifolds by the use of
embedding theorems goes back to L. Schwartz [71]. In the following theorem,
it is understood that Rl is equipped with its Euclidean metric.

Theorem 2.31 Let M ↪→ Rl isometrically for some l ∈ N and let the mor-
phism of smooth vector bundles A : M×Rl → TM be given as the orthogonal
projection A(x) : Rl → TxM for any x ∈ M . Let W be a Brownian motion
in Rl. Then the maximal solution of

dX =
l∑

j=1

Aj(X)dW j, X0 = x (55)

is a Brownian motion on M with starting point x.
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Proof. Let f ∈ C∞(M) and let ζ be a stopping time with ζ < ζB(x) P-a.s.
Then

f(Xζ
t )− f(x) =

l∑
j=1

∫ t∧ζ

0

Aj(f)(Xζ
t )dW j +

1

2

l∑
i,j=1

∫ t∧ζ

0

AiAj(f)(Xζ
t )δijdt,

thus it is sufficient to prove that

l∑
j=1

A2
jf = ∆f. (56)

Fix an arbitrary y ∈ M . Let w1, . . . , wm be an orthonormal basis of TyM
and let vm+1, . . . , vl ∈ Rl be such that v1, . . . , vl is an orthonormal basis of
Rl, where vj := A(x)∗wj for j = 1, . . . ,m. Then

∆f |y =
m∑

j=1

w2
jf |y −∇TM

∇TM
wj

wj
f |y

=
l∑

j=1

(A(•)vj)
2f |y −∇TM

∇TM
A(•)vj

A(•)vj
f |y

=
l∑

j=1

(A(•)ej)
2f |y −∇TM

∇TM
A(•)ej

A(•)ej
f |y .

Since

l∑
j=1

∇TM
Aj

Aj = 0, (57)

which has been proved in [37], Satz 7.119, the theorem follows.

�

If B(x) is constructed in this way, then one can apply corollary 2.20 in order
to get the following formula for the stochastic differential of the corresponding
stochastic parallel transport:

Proposition 2.32 Let M be stochastically complete, let B(x) be constructed
as in theorem 2.31 and let E be a Hermitian vector bundle over M with a
Hermitian covariant derivative. Furthermore, let Ψ ∈ ΓC∞(M,E) and let
//x be the stochastic parallel transport in E along B(x). Then

d
(
//x,−1Ψ(B(x))

)
= //x,−1

l∑
j=1

(∇Aj
Ψ)(B(x))dW j. (58)
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This approach to B(x) will be discussed further in section 5.1.

We close this section with an intrinsic construction of Brownian motions on
M using horizontal lifts to the frame bundle, which is due to Malliavin [56].
Since we won’t follow this approach, we will only state the result without
proof. Let π : O(M) →M be the orthonormal frame bundle of M = (M, g).
We equip O(M) with the Levi-Civita connection

ϑ : π∗TM
'−→ THO(M) ↪−→ THO(M)⊕ TV O(M) = T O(M).

The standard horizontal vector fields L1, . . . , Lm on O(M) are defined by
Lj(u) := ϑ(u)(uej) for j = 1, . . . ,m, and we also define a differential operator
in Hörmander form by

∆̃ :=
m∑

j=1

L2
j : C∞(O(M)) −→ C∞(O(M)).

The key observation for the following theorem (which is discussed in detail
in [41] and [27]) is that the following diagram commutes:

C∞(M) π∗ //

∆
��

C∞(O(M))

∆̃
��

C∞(M) π∗ // C∞(O(M))

In the spirit of this diagram, ∆̃ is called the horizontal lift of ∆ to O(M).

Theorem 2.33 Let W be a Brownian motion in the Euclidean Rm and let
u ∈ O(M) with π(u) = x. If the continuous semi-martingale U on O(M) is
defined as the maximal solution of

dU =
m∑

j=1

Lj(U)dW j, U0 = u, (59)

then B(x) := π(U) with ζB(x) := ζU is a Brownian motion on M starting
from x, and U is the horizontal lift of B(x) to O(M) from u.

As we have already remarked, this construction has an intrinsic character:
The driving semi-martingale of (59), which in this case is equal to the anti-
development of B(x) (with respect to u), lives in Rm, where m = dimM .
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3 Essential self-adjointness of Schrödinger type

operators with locally square integrable po-

tentials

The aim of this section is to find natural conditions that garantee the essential
self-adjointness of operators of the form ∇∗∇/2 + V in a Hilbert space of
square integrable sections, if this operator is initially defined on the smooth
sections with compact support. Let us introduce:

Hypothesis 3.1 E → M is a smooth d-dimensional complex vector bundle
with a smooth Hermitian structure (•, •)x and a Hermitian covariant deriva-
tive ∇. The symbol ‖•‖x stands for the corresponding norm and operator
norm of Ex. The seperable complex Hilbert space of square integrable sec-
tions in E, defined as the completion of ΓC∞0

(M,E) with respect to the scalar
product

〈f, g〉 =

∫
M

(f(x), g(x))xvol(dx),

with ‖f‖2 := 〈f, f〉, will be denoted with ΓL2(M,E).

Since ∇ and (•, •)x will always be fixed, we will omit the dependence on ∇
or (•, •)x of data corresponding to (E,∇) or (E, (•, •)x) or (E,∇, (•, •)x) in
our notation, as we have already done for example for P(E), for the parallel
transport or for ΓL2(M,E).

For section 3 we fix a bundle E as in hypothesis 3.1 and we will use a similar
notation for all vector bundles of this type that are constructed from E,
like E ⊗TM . There is a canonical second order elliptic differential operator
associated to ∇ (and g):

Definition 3.2 The Bochner Laplacian

∇∗∇ : ΓC∞(M,E) −→ ΓC∞(M,E)

is the second order elliptic differential operator given by the composition

∇∗∇ : ΓC∞(M,E)
∇−→ ΓC∞(M,TM ⊗ E)

∇TM⊗1+1⊗∇−−−−−−−−→ ΓC∞(M,TM ⊗ TM ⊗ E)
−trg−−→ ΓC∞(M,E).

If v1, . . . , vm is a local orthonormal frame for TM over N ⊂ M and if Ψ ∈
ΓC∞(M,E), then

∇∗∇Ψ = −
m∑

j=1

∇2
vj

Ψ +∇∇TM
vj

vj
Ψ in N. (60)
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We consider ∇∗∇/2 as a linear operator in ΓL2(M,E). As the notation
indicates, one has:

Lemma 3.3 The operator ∇∗∇/2 with domain of definition D(∇∗∇/2) =
ΓC∞0

(M,E) is a symmetric nonnegative operator.

Proof. The assertion is certainly well-known, although we have not been able
to find a detailed proof in the literature. We know the following proof from
L. Habermann’s lecture notes: Let Ψ1,Ψ2 ∈ ΓC∞0

(M,E). Then we can define
a function fΨ1,Ψ2 ∈ C∞

0 (M) by setting

fΨ1,Ψ2(x) :=
m∑

j=1

(
∇vj

Ψ1(x),∇vj
Ψ2(x)

)
x
,

where v1, . . . , vm is some local orthonormal frame for TM in a neighbourhood
of x (this definition does not depend on the particular choice of the local
orthonormal frame). We will prove in a moment that

(∇∗∇Ψ1,Ψ2) = −div
(
XΨ1,Ψ2

)
+ fΨ1,Ψ2 , (61)

where
XΨ1,Ψ2 ∈ ΓC∞0

(M,TM)

is defined by

g(XΨ1,Ψ2 , Y ) = (∇Y Ψ1,Ψ2) for all Y ∈ ΓC∞(M,TM).

As a consequence, the identity

〈∇∗∇Ψ1,Ψ2〉 =

∫
M

fΨ1,Ψ2(x)vol(dx) = 〈∇∗∇Ψ2,Ψ1〉

follows from the divergence theorem and the definition of fΨ1,Ψ2 , and noting
that fΨ1,Ψ1 ≥ 0, this proves the lemma.
It remains to prove (61): Let x ∈M be arbitrary and let v1, . . . , vn be a local
orthonormal frame for TM in a neighbourhood of x with

∇TM
vj

vk |x= 0 for j, k = 1, . . . ,m. (62)

Using (62) and that ∇TM is compatible with g we see that

div
(
XΨ1,Ψ2

)
|x=

m∑
j=1

vj

(
(∇vj

Ψ1,Ψ2)
)
|x . (63)
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On the other hand, (60), (62) and the assumption that ∇ is compatible with
(•, •)x imply that

(∇∗∇Ψ1,Ψ2) |x= −
m∑

j=1

(∇vj
∇vj

Ψ1,Ψ2) |x

= −
m∑

j=1

vj

(
(∇vj

∇vj
Ψ1,Ψ2)

)
|x +

m∑
j=1

(∇vj
Ψ1,∇vj

Ψ2) |x,

which together with (63) proves (61).

�

The following definition will be convenient for us:

Definition 3.4 Any7 V ∈ ΓL0(M,End(E)) will be called a potential, if the
morphism of complex Hilbert spaces V (x) : Ex → Ex is Hermitian for a.e.
x ∈M .

Whenever V is a potential such that the operator ∇∗∇/2 + V with

D(∇∗∇/2 + V ) = ΓC∞0
(M,E)

makes sense and is essentially self-adjoint, we will denote the corresponding
closure with H(V ). Firstly, in this context it is certainly natural to assume
that V is locally square integrable, because then VΨ ∈ ΓL2(M,E) for any
Ψ ∈ ΓC∞0

(M,E). Secondly, since we want derive a formula for e−tH(V ),
t ≥ 0, it is natural to assume that V is bounded from below. The aim
of this section is to prove the following theorem, which asserts that these
two assumptions on the potential imply essential self-adjointness, if M is
geodesically complete. For any, say locally square integrable, potential V we
define the corresponding maximal domain of definition

D(H(V )max) :=
{
f
∣∣∣f, (∇∗∇/2 + V )f ∈ ΓL2(M,E)

}
,

where (∇∗∇/2 + V )f has to be understood in the sense of distributions.

Theorem 3.5 Let M be geodesically complete and let V be a potential with

CV 1 ≤ V ∈ ΓL2
loc

(M,End(E)) for some CV ∈ R.

The operator ∇∗∇/2 + V with

D(∇∗∇/2 + V ) = ΓC∞0
(M,E)

is essentially self-adjoint, the closure H(V ) is semi-bounded from below and
one has D(H(V )) = D(H(V )max).

7L0 stands for “measurable”.

36



Here, V ≥ CV 1 is understood pointwise, that is, V (x) ≥ CV 1x for a.e.
x ∈M in the sense of Hermitian morphisms in Ex. The factor 1/2 in ∇∗∇/2
is motivated by the definition of Stratonovic integrals and its necessity will
become clear in the proof of theorem 5.3.
A proof of theorem 3.5 has been given in [11]. Since we believe that the
methods from [11] are not standard, we are going to explain their proof be-
low. In addition, we will present a new rather elementary proof for the case
that M has a bounded geometry.

Theorem 3.5 in particular implies the following well-known result:

Theorem 3.6 If M is geodesically complete, then the operator ∇∗∇/2 with

D(∇∗∇/2) = ΓC∞0
(M,E)

is essentially self-adjoint and the self-adjoint extension H(0) is nonnegative
and given by D(H(0)) = D(H(0)max).

Before we give a proof of theorem 3.5 for the general case, let us first explain
that in case M has a bounded geometry, theorem 3.5 can be proved in com-
plete analogy to the case where M is the Euclidean Rm, E = Rm × C and
∇ is the usual exterior derivative. The latter case has been carried out by
T. Kato in [49] (see also theorem X.28 in [64] for a textbook version of this
proof). To this end, we first remark:

Proposition 3.7 Let M have a bounded geometry, let b be a positive real
number and let f ∈ L2(M) be real-valued with

(b−∆)f ≥ 0 in the sense of distributions. (64)

Then f ≥ 0 a.e. in M .

Proof. Proposition B.3 in [11].

�

Remark 3.8 There is an elementary proof of proposition 3.7 for the Laplace
operator in the Euclidean Rm: By using the Fourier transform one finds that
b−∆ maps 8

b−∆ : S (Rm)
'−→ S (Rm) as complex linear spaces (65)

8S (Rm) stands for the Schwartz functions and S ′(Rm) for the tempered distributions.
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so that also

b−∆ : S ′(Rm)
'−→ S ′(Rm) as complex linear spaces. (66)

Furthermore, since (b−∆)−1 is an integral operator with a positive integral
kernel [64], one has

(b−∆)−1 : S+(Rm) −→ S+(Rm), (67)

where S+(Rm) stands for the positive elements of S (Rm). Now (64), (66)
and (67) easily imply∫

Rm

f(x)Ψ(x)dx ≥ 0 for all Ψ ∈ S+(Rm),

so f ≥ 0 a.e. in Rm.

�

We use the notation |f | (x) := ‖f(x)‖x for any section f in E. One has the
following abstract Kato inequality:

Theorem 3.9 Let f ∈ ΓL1
loc

(M,E) be such that ∇∗∇f ∈ ΓL1
loc

(M,E) in the
sense of distributions. Then

−∆ |f | ≤ Re(∇∗∇f, signf) in the sense of distributions,

where

signf(x) :=


f(x)

‖f(x)‖x
, f(x) 6= 0

0 , f(x) = 0.

Proof. Theorem 5.7 in [11].

�

Proof of theorem 3.5 for the case when M has a bounded geometry. We use
ideas from the proof of lemma 3.9 in [58] and remark that by considering
H(V − CV ) instead of H(V ), one can assume V ≥ 0. By theorem X.26 in
[64] it is sufficient to prove that

Ker((∇∗∇+ V + 1)∗) = {0}.

Let
f ∈ D((∇∗∇+ V + 1)∗) ⊂ ΓL2(M,E)
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with
(∇∗∇+ V + 1)∗f = 0 a.e. in M.

Then one has

(∇∗∇+ V + 1)f = 0 in the sense of distributions,

so that ∇∗∇f ∈ ΓL1
loc

(M,E) by the Cauchy-Schwartz inequality. As a con-
sequence, theorem 3.9 implies

−∆ |f | ≤ Re(∇∗∇f, signf) = (−(V + 1)f, signf)

≤ − |f | , (68)

where we have used that V ≥ 0. Thus

(1−∆) (− |f |) ≥ 0,

and finally f = 0 a.e. in M follows from proposition 3.7.

�

Since it is not known whether proposition 3.7 holds on arbitrary geodesically
complete Riemannian manifolds, one has to simulate this result in some sense.
This can be done with the following lemma together with the fact, that one
has “good” cut-off functions on geodesically complete manifolds:

Lemma 3.10 Under the assumptions of theorem 3.5, let V ≥ 0, let f ∈
D(H(V )max) and let ϕ : M → R be a Lipschitz (thus a.e. differentiable)
function with compact support. Then one has (see also theorem 3.13)

‖∇(ϕf)‖2 +

∫
M

(V (x)ϕ(x)f(x), ϕ(x)f(x))x vol(dx)

= Re 〈ϕ(∇∗∇+ V )f, ϕf〉+ ‖dϕ⊗ f‖2 . (69)

Proof. This is an adaption of lemma 8.10 in [11] to our situation.

�

Lemma 3.11 Let M be geodesically complete. There is a sequence (ϕn) of
Lipschitz functions on M with compact support such that

i) 0 ≤ ϕn(x) ≤ 1, ϕn(x) → 1 as n→∞ for any x ∈M , and

ii) ‖dϕn‖∞ → 0 as n→∞.
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Proof. This is lemma 8.9 in [75]. Since the proof is simple, we include it for
the convenience of the reader: Fix x0 ∈ M and take a function χ ∈ C∞

0 (R)
such that χ = 1 in a neighbourhood of 0 and

0 ≤ χ(a) ≤ 1, |χ′(a)| ≤ 1 for all a ∈ R.

If d(•, •) denotes the metric which is induced by g, then d(•, x0) is a Lipschitz
function with Lipschitz constant ≤ 1, and

ϕn(x) := χ

(
d(x, x0)

n

)
has the desired properties, where the compactness of supp(ϕn) follows from
the completeness of M .

�

Proof of theorem 3.5 for the general case. We can assume V ≥ 0, and it is
sufficient to prove that the assumptions

f ∈ ΓL2(M,E), (∇∗∇+ V + 1)f = 0 in the sense of distributions

imply f = 0 a.e. in M . Clearly, one has (∇∗∇+ V )f = −f ∈ ΓL2(M,E), so
f ∈ D(H(V )max). Thus, we can use V ≥ 0 together with lemma 3.10 applied
to ϕ := ϕn, where ϕn is as in lemma 3.11, to conclude

−‖ϕnf‖2 + ‖dϕn ⊗ f‖2 ≥ 0,

so that

‖f‖2 = lim
n→∞

‖ϕnf‖2 ≤ lim
n→∞

‖dϕn ⊗ f‖2

≤ ‖f‖2 lim
n→∞

‖dϕn‖2
∞ = 0. (70)

This proves the theorem.

�

For the sake of completeness, we state an “accessible” generalization of the-
orem 3.5 to potentials that are not necessarily bounded from below:

Theorem 3.12 Let M be geodesically complete and let V be a potential
which satisfies the following two assumptions:

i) V ∈ ΓL2
loc

(M,End(E))

ii) V = V1 + V2, where V1 and V2 are potentials with V1 ≥ 0 and V2 ≤ 0
and V2 ∈ ΓLp

loc
(M,E) with p ≥ m/2 if m ≥ 5, p > 2 if m = 4, and

p = 2 if m ≤ 3.
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If the operator ∇∗∇/2 + V with

D(∇∗∇/2 + V ) = ΓC∞0
(M,E)

is semi-bounded from below, then this operator is essentially self-adjoint, its
closure H(V ) is semi-bounded from below with D(H(V )) = D(H(V )max).

Proof. This follows from combining theorem 2.13, remark 2.2 and theorem
2.3 in [11].

�

We refer the reader to [11] for more general results on the essential self-
adjointness for operators of the form D∗D + V . Here, E and Ẽ are vector
bundles as in hypothesis 3.1,

D : ΓC∞(M,E) −→ ΓC∞(M, Ẽ)

is a first order differential operator, and V is a locally square integrable
potential which is not necessarily bounded from below. The results from [11]
(partly) extend an earlier result by M. Lesch [55] for operators of this type
with V locally bounded.
We would also like to mention [58] and [59], where O. Milatovic determines
conditions on M , E, ∇ under which one can still explicitely (= by giving the
domain of definition) define a self-adjoint operator corresponding to ∇∗∇+V
with V only in ΓL1

loc
(M,End(E)), which extends classical results for usual

scalar Schrödinger operators in the Euclidean Rm by H.L. Cycon [18] and T.
Kato [48].

We close this section with some remarks concerning the regularity of sections
in D(H(V )max). For any k ∈ N the local Sobolev space of order k with respect
to M and E will be denoted with ΓHk

loc
(M,E). For example, these complex

linear spaces can be defined with a standard localization procedure as follows:
Some f ∈ ΓL0(M,E) is an element of ΓHk

loc
(M,E), if and only if for any chart

h : Rm ⊃ N −→ h(N) ⊂M

in which E is trivial, one has

h∗(f |h(N)) ∈ Hk
loc(N,Cd), (71)

in the sense that the local frame for E in N is used to identify f |N with a
map N → Cd. Of course, this is the same as saying that f ∈ ΓL0(M,E) is in
ΓHk

loc
(M,E), if and only if f ∈ ΓL2

loc
(M,E) and for any h as above one has

∂αh∗(f |h(N)) ∈ L2
loc(N,Cd) for any multiindex α with |α| ≤ k (72)
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in the sense of distributions. We refer the reader to [74] and [25] for details
about local Sobolev spaces, in particular for the spaces ΓHs

loc
(M,E) with ar-

bitrary s ∈ R (which can be defined either with a localization as above or,
somewhat more intrinsically, using pseudodifferential operator techniques)
and for the construction of a canonic locally convex topology on ΓHs

loc
(M,E).

Note that these spaces don’t depend on the particular choice of the Rieman-
nian structure on M and the Hermitian structure on E.

One of the main results in [11] implies the following:

Theorem 3.13 Let V be a potential in ΓL2
loc

(M,End(E)).
a) If V satisfies assumption ii) of theorem 3.12 then

D(H(V )max) ⊂ ΓH1
loc

(M,E). (73)

In particular, if V is bounded from below, then one has (73).

b) If m ≤ 3 or if V ∈ ΓLp
loc

(M,E) with p > m/2 for m ≥ 4, then

D(H(V )max) ⊂ ΓH2
loc

(M,E).

Proof. a) This follows from combining theorem 2.3 (ii) with remark 2.2 in
[11].

b) This follows from theorem 2.3 (i) in [11].

�

4 Some general assumptions and notations

We will work under the following assumptions and with the following nota-
tions for the rest of this thesis:

1. Throughout, E will denote a vector bundle over M satisfying hypothesis
3.1.

2. We assume that the underlying filtered probability space is equal to some
Euclidean Wiener space equipped with the Wiener measure. To be more
specific, with the notation of example C.8, we set

(Ω,F ,F∗,P) := (C([0,∞),Rl),F l,F l
∗,P0),

and we take W to be the coordinate process on C([0,∞),Rl), so that W is
an Euclidean Brownian motion in Rl. Here, l is a fixed number, such that
there is an isometric embedding of M into the Euclidean Rl. The reason for
this assumption is that it will allow us to use the Kolmogorov consistency
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theorem in the form of Satz 1.25’ in [37] in order to construct the Brownian
bridge measure in section 6.

3. Whenever M is stochastically complete, we will construct the Brownian
motion B(x) with ζB(x) = ∞ for any x ∈M in the spirit of Nash’s embedding
theorem and assumption 2, that is, B(x) is defined by theorem 2.31 as the
maximal solution of

dB(x) =
l∑

j=1

Aj(B(x))dW j, B0(x) = x, (74)

where M ↪→ Rl isometrically 9, where A : M × Rl → TM is given as the
orthogonal projection A(x) : Rl → TxM and where W is a Brownian motion
in Rl which starts in 0. Throughout, //x will denote the stochastic parallel
transport in E along B(x). Then using

l∑
j=1

∇TM
Aj

Aj = 0

as in the proof of theorem 2.31 implies

∇∗∇Ψ =
l∑

j=1

∇Aj
∇Aj

Ψ for all Ψ ∈ ΓC∞(M,E), (75)

so that by corollary 2.20 (see also proposition 2.32) the following formula
holds:

d
(
//x,−1Ψ(B(x))

)
= //x,−1

(
l∑

j=1

(∇Aj
Ψ)(B(x))dW j −H0Ψ(B(x))dt

)
. (76)

5 Probabilistic representations of Schrödinger

semigroups

Throughout section 5, we will assume that M is geodesically and stochasti-
cally complete.

9If M is the Euclidean Rm, we will of course take l = m and B(x) := W + x.
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5.1 The Feynman-Kac formula for bounded potentials

The aim of this section is to prove the Feynman-Kac formula for essentially
bounded potentials. This formula will then imply the general Feynman-Kac
formula for locally square potentials with an approximation argument and
dominated convergence.

We fix a potential10

V ∈ ΓL∞(M,End(E))

for the rest of section 5.1. The following lemma will be needed to deduce
the Feynman-Kac formula for potentials in L∞ from the one for continuous
bounded potentials:

Lemma 5.1 There is a sequence (Vn) of potentials in 11 ΓCb
(M,End(E))

and a C > 0 such that for all n ∈ N and a.e. x ∈M one has

‖Vn(x)‖x ≤ C, ‖V (x)‖x ≤ C, lim
n→∞

‖Vn(x)− V (x)‖x = 0 (77)

and

lim
n→∞

‖Vnf − V f‖ = 0 for any f ∈ ΓC∞0
(M,E). (78)

Proof. Assume first that V is supported in a relatively compact coordinate
neighbourhood N (which will be identified with a bounded open subset of
Rm) in which E is trivial. In this case, the assertion follows from a Friedrichs
mollifier argument: Let V be given as

V i
j ∈ L∞(N) for i, j = 1, . . . d.

We fix some p ≥ 1 and remark that since |N | < ∞, we have V i
j ∈ Lp(N).

Let (ϕn)n be a nonnegative sequence in C∞
0 (Rm) with 12∫

Rm

ϕn(x)dx = 1, supp(ϕn) ⊂ K1/n(0) for any n.

We set
Nn :=

{
x
∣∣∣K 1

n
(x) ⊂ N

}
, Dn := Nn ∩Kn(0).

Then by standard arguments (see for example [3], p.111) one finds that the
functions

x 7−→ Ṽ i
j,n(x) :=

∫
Dn

ϕn(x− y)V i
j (y)dy

10L∞ stands for “measurable, essentially bounded”.
11Cb stands for “continuous, bounded”.
12In a metric space, we will write Kr(x) for the open ball with radius r around x.

44



are in C∞
0 (N) for any n and that Ṽ i

j,n → V i
j as n→∞ in the norm of Lp(N).

As a consequence, for some subsequence (V i
j,n)n of (Ṽ i

j,n)n and some Kd > 0
we have∣∣V i

j,n(x)
∣∣ ≤ Kd ‖V ‖∞ , V

i
j,n(x) → V i

j (x) as n→∞, for a.e. x ∈ N .

Thus if Vn ∈ C∞
0 (N,Mat(Cd)) is the self-adjoint matrix given by V i

j,n, then
one has a Ld > 0 such that

‖Vn(x)‖Mat(Cd) ≤ Ld ‖V ‖∞ , Vn(x) → V (x) as n→∞, for a.e. x ∈ N .

The existence of a sequence satisfying (77) now follows from a standard
partition of unity argument.
This sequence also satisfies (78): For a.e. x ∈M one has

lim
n→∞

‖(Vn(x)− V (x))f(x)‖2
x = 0

and
‖(Vn(x)− V (x))f(x)‖2

x ≤ 4C2 ‖f(x)‖2
x ,

so that (78) follows from dominated convergence.

�

We fix an arbitrary x ∈M . Since

t 7−→ V
(x)
t (ω) is in L1

loc

(
[0,∞),End(E)x

)
for any fixed ω ∈ Ω,

with the process V (x) given by

V (x) : [0,∞)× Ω −→ End(E)x, V
(x)
t := −//x,−1

t V (Bt(x))//
x
t ,

it follows in the usual way from the Banach fixed point theorem that one can
define a process

V x : [0,∞)× Ω −→ End(E)x

as the unique weak (= locally absolutely continuous) pathwise solution of
the ordinary initial value problem

dV x
t = V x

t V
(x)
t dt, V x

0 = 1.

V x will sometimes also be called the path ordered exponential corresponding
to V , a definition that is motivated from formula (79) below. Let us note
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the following elementary estimate, which will be used throughout in the
following: Since

V x
t = 1 +

∞∑
n=1

∫
t∆n

V
(x)
t1 · · ·V (x)

tn dt1 · · · dtn, (79)

one finds that P-a.s.,

‖V x
t ‖x

≤ 1 +
∞∑

n=1

∫
t∆n

∥∥//x,−1
t1 V (Bt1(x))//

x
t1

∥∥
x
· · ·
∥∥//x,−1

tn V (Btn(x))//x
tn

∥∥
x
dt1 · · · dtn

≤ et‖V ‖∞ . (80)

Next, let us prove that the convergence from lemma 5.1 implies the conver-
gence of the corresponding path ordered exponentials:

Lemma 5.2 Let (Vn) be a sequence as in lemma 5.1 and for any n ∈ N let
the process

V x
n : [0,∞)× Ω −→ End(E)x

be given as the solution of the ordinary initial value problem

dV x
n,t = −V x

n,t//
x,−1
t Vn(Bt(x))//

x
t dt, V x

n,0 = 1.

Then for any fixed t > 0,

lim
n→∞

∥∥V x
n,t − V x

t

∥∥
x

= 0 P-a.s.

Proof. The following equalities and inequalities are all valid P-a.s. It follows
that ∥∥//x,−1

s Vn(Bs(x))//
x
s − //x,−1

s V (Bs(x))//
x
s

∥∥
x
→ 0 as n→∞

for a.e. s ∈ [0, t]. Also, there is a C̃ > 0 such that for a.e. s ∈ [0, t] and all n
one has ∥∥//x,−1

s Vn(Bs(x))//
x
s − //x,−1

s V (Bs(x))//
x
s

∥∥
x
≤ C̃,∥∥//x,−1

s Vn(Bs(x))//
x
s

∥∥
x
≤ C̃,∥∥//x,−1

s V (Bs(x))//
x
s

∥∥
x
≤ C̃ (81)
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(one can take C̃ := 2C, where C is chosen as in lemma 5.1), thus proposition
A.2 and dominated convergence imply∥∥V x

n,t − V x
t

∥∥
x

≤ e3C̃t

∫ t

0

∥∥//x,−1
s Vn(Bs(x))//

x
s − //x,−1

s V (Bs(x))//
x
s

∥∥
x
ds→ 0

as n→∞, and the lemma is proved. �

By theorem 3.6,∇∗∇/2+V is essentially self-adjoint on the domain ΓC∞0
(M,E),

the closure H(V ) is given by D(H(V )) = D(H(0)) and one clearly has
H(V ) ≥ −‖V ‖∞.

Now we can prove:

Theorem 5.3 Let V be a potential in ΓL∞(M,End(E)). For any x ∈M let

V x : [0,∞)× Ω −→ End(E)x

be the process which is given as the weak pathwise solution of the ordinary
inital value problem

dV x
t = −V x

t //
x,−1
t V (Bt(x))//

x
t dt, V x

0 = 1. (82)

If f ∈ ΓL2(M,E), t ≥ 0, then the following identity holds

e−tH(V )f(x) = E
[
V x

t //
x,−1
t f(Bt(x))

]
for a.e. x ∈M. (83)

Proof. The theorem will be proved in two steps:

1. We first assume that V ∈ ΓCb
(M,End(E)). Let

Qt : ΓL2(M,E) −→ ΓL0(M,E),

Qth(x) := E
[
V x

t //
x,−1
t h(Bt(x))

]
and remember that pt(x, y) denotes the minimal heat kernel of M . Since
pt(x, •) is nonnegative and in L1(M), we can use the Hölder inequality to
estimate as follows for all t > 0,

‖Qth‖2 ≤ e2t‖V ‖∞

∫
M

E
[
‖h(Bt(x))‖Bt(x)

]2
vol(dx)

= e2t‖V ‖∞

∫
M

(∫
M

‖h(y)‖y pt(x, y)vol(dy)

)2

vol(dx)

≤ e2t‖V ‖∞

∫
M

∫
M

pt(x, y) ‖h(y)‖2
y vol(dy)

∫
M

pt(x, z)vol(dz)vol(dx)

= e2t‖V ‖∞ ‖h‖2 .
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Thus we have13

Qt ∈ L (ΓL2(M,E)) for all t ≥ 0.

If Ψ ∈ ΓC∞0
(M,E), then the Itô product rule and (76) imply

d
(
V x

t //
x,−1
t Ψ(Bt(x))

)
= −V x

t //
x,−1
t V (Bt(x))//

x
t //

x,−1
t Ψ(Bt(x))dt

+ V x
t //

x,−1
t

(
r∑

j=1

(∇Aj
Ψ)(Bt(x))dW

j
t −H0Ψ(Bt(x))dt

)
(84)

for the Ex
∼= Cd valued continuous semi-martingale V x//x,−1Ψ(B(x)). Since

supp(∇Aj
Ψ) ⊂ supp(Ψ), CΨ,j := max

y∈supp(Ψ)

∥∥∇Aj
Ψ(y)

∥∥
y
<∞,

one has∫ t

0

E
[∥∥V x

s //
x,−1
s (∇Aj

Ψ)(Bs(x))
∥∥2

x

]
ds ≤ C2

Ψ,j

∫ t

0

e2s‖V ‖∞ds <∞,

thus

Z :=

∫ r∑
j=1

V x//x,−1(∇Aj
Ψ)(B(x))dW j

is a (continuous) martingale with values in Ex, and taking E[•] on both sides
of equation (84) shows that

QtΨ(x) = Ψ(x)−
∫ t

0

QsH(V )Ψ(x)ds in Ex.

This implies the identity

d

dt
〈QtΨ, h〉 = −〈QtH(V )Ψ, h〉 for all h ∈ ΓL2(M,E). (85)

Since ΓL2(M,E) is seperable, this shows that t 7→ QtΨ is strongly differen-
tiable with

d

dt
QtΨ = −QtH(V )Ψ, Q0Ψ = Ψ,

so QtΨ = e−tHΨ for all Ψ ∈ ΓC∞0
(M,E), and finally Qt = e−tH follows from

Qt ∈ L (ΓL2(M,E)).

13L (X, Y ) stands for the Banach space of linear bounded operators X → Y between
Banach spaces X, Y .
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2. Now let V ∈ ΓL∞(M,End(E)). We can assume t > 0. By lemma 5.1, we
can find a sequence of potentials (Vn) in ΓCb

(M,End(E)) such that

‖H(Vn)Ψ−H(V )Ψ‖ → 0 as n→∞,

so since ΓC∞0
(M,E) is a common core for H(V ) and H(Vn), theorem VIII

25, theorem VIII 20 in [63] and the Feynman-Kac formula applied to H(Vn)
show that we can assume

E
[
V x

n,t//
x,−1
t f(Bt(x))

]
→ e−tH(V )f(x) as n→∞ ,

with the notations from lemma 5.2. Finally, the theorem follows from domi-
nated convergence, since by lemma 5.2,

V x
n,t//

x,−1
t f(Bt(x)) → V x

t //
x,−1
t f(Bt(x)) as n→∞, P-a.s.

and∥∥V x
n,t//

x,−1
t f(Bt(x))

∥∥
x
≤ etC ‖f(Bt(x))‖Bt(x) , E

[
‖f(Bt(x))‖Bt(x)

]
<∞,

where we have used lemma 5.1, (80) and

E
[
‖f(Bt(x))‖Bt(x)

]
= e

t
2
∆ ‖f(x)‖x <∞,

since x 7→ ‖f(x)‖x is in L2(M).

�

Let us note the following corollary to the above proof:

Corollary 5.4 Let v : M → R be measurable and essentially bounded and
let H0(v) be the self-adjoint realization of −∆/2+v in L2(M) in the sense of
theorem 3.5. Then one has the following formula for any t ≥ 0, f ∈ L2(M)
and a.e. x ∈M ,

e−tH0(v)f(x) = E
[
e−

R t
0 v(Bs(x))dsf(Bt(x))

]
. (86)

Proof. If v is continuous and bounded and Ψ ∈ C∞
0 (M), then (56) and (74)

imply the following identity for any t ≥ 0, and x ∈M ,

e−
R t
0 v(Bs(x))dsΨ(Bt(x)) =

(
a martingale which starts in 0

)
+ Ψ(x)

−
∫ t

0

e−
R s
0 v(Br(x))drH0(v)Ψ(Bs(x))ds P-a.s. (87)
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Now one can continue in the same way as has been done in the first part of the
proof theorem 5.3 to conclude that (86) holds for continuous and bounded
potentials. If the potential v is not necessarily continuous, then one can
approximate v by continuous bounded potentials and deduce (86) with the
same arguments that have been used in the second part of the proof theorem
5.3.

�

Of course, using standard identifications in trivial line bundles, it is straight-
forward to derive corollary 5.4 somewhat directly from theorem 5.3. We have
given the direct argument (formula (87)) here, just because of its simplicity.

5.2 The Feynman-Kac formula for locally square inte-
grable potentials

As we have already remarked, we want to use theorem 5.3 now in order to
extend the Feynman-Kac formula for Schrödinger type operators that have
been considered in theorem 3.5:

Theorem 5.5 Let V be a potential with

CV 1 ≤ V ∈ ΓL2
loc

(M,End(E)) for some CV ∈ R

and let H(V ) be given as in theorem 3.5. Then for a.e. x ∈ M there is a
unique process

V x : [0,∞)× Ω −→ End(E)x

which satisfies

dV x
t = −V x

t //
x,−1
t V (Bt(x))//

x
t dt, V x

0 = 1 (88)

pathwise in the weak sense, and for any f ∈ ΓL2(M,E), t ≥ 0 the following
identity holds

e−tH(V )f(x) = E
[
V x

t //
x,−1
t f(Bt(x))

]
for a.e. x ∈M. (89)

For the rest of section 5.2, we work under the assumptions of theorem 5.5, so
V will always stand for a square integrable potential which is bounded from
below by some CV ∈ R.

We first consider the scalar case. Assume we are given a nonnegative real-
valued function v ∈ L2

loc(M) and let H0(v) be the corresponding self-adjoint
realization in L2(M) of −∆/2 + v in the sense of theorem 3.5. The following
proposition, a Feynman-Kac formula for functions, will be useful for the proof
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of theorem 5.5. The consideration of operators of the form H0(v) is natural
for the study of the spectrum of H(V ): In some sense, the energy of H(V )
can be bounded from below by any operator H0(v) with V ≥ v1 (see section
8).

Proposition 5.6 The map t 7→ v(Bt(x)) is in L1
loc[0,∞) P-a.s. for a.e.

x ∈ M and the following formula holds for any f ∈ L2(M), t ≥ 0 and a.e.
x ∈M ,

e−tH0(v)f(x) = E
[
e−

R t
0 v(Bs(x))dsf(Bt(x))

]
. (90)

Proof. We can assume t > 0. Let (vn) be a sequence of measurable, essentially
bounded, nonnegative functions on M such that vn(x) ↗ v(x) as n→∞ for
a.e. x ∈ M (e.g., one can take vn := min{n, v}). If f̃ ∈ C∞

0 (M), then since
|vn − v|2 ≤ 4|v|2 and since |v|2 is in L1

loc(M), one has∫
M

|vn(x)f̃(x)− v(x)f̃(x)|2vol(dx)

≤ Cf̃

∫
supp(f̃)

|vn(x)− v(x)|2vol(dx) → 0 as n→∞ (91)

by dominated convergence. The following (in-)equalities are all valid for a.e.
x ∈ M . By using the Feynman-Kac formula for bounded potentials, one
finds that the heat semigroup corresponding to H(vn) is given by

e−tH(vn)f(x) = E
[
e−

R t
0 vn(Bs(x))dsf(Bt(x))

]
.

So (91) and the same arguments as in the second part of the proof theorem
5.3 show

E
[
e−

R t
0 vn(Bs(x))dsf(Bt(x))

]
→ e−tH0(v)f(x) as n→∞. (92)

Using that P-a.s.

0 ≤ vn(Bs(x)) ≤ vn+1(Bs(x)) ≤ v(Bs(x)),

vn(Bs(x)) → v(Bs(x)) as n→∞ for a.e. s ∈ [0, t],

one has ∫ t

0

vn(Bs(x))ds→
∫ t

0

v(Bs(x))ds, (93)
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and as a consequence

e−
R t
0 vn(Bs(x))ds → e−

R t
0 v(Bs(x))ds as n→∞, P-a.s., (94)

by monotone convergence. Writing f = f1 − f2 + if3 − if4 with nonnegative
functions fj, we can assume that f is nonnegative in the following. Since

e−
R t
0 v1(Bs(x))dsf(Bt(x)) ≥ e−

R t
0 vn(Bs(x))dsf(Bt(x))

≥ e−
R t
0 vn+1(Bs(x))dsf(Bt(x)) ≥ e−

R t
0 v(Bs(x))dsf(Bt(x)),

e−
R t
0 vn(Bs(x))dsf(Bt(x)) → e−

R t
0 v(Bs(x))dsf(Bt(x)) as n→∞, P-a.s. (95)

one can use a generalized monotone convergence theorem (theorem 9.17 in
[90]), where the necessary finiteness is assured by (92), to conclude that the
desired formula holds. The asserted integrability follows from our construc-
tion of the integral and applying (90) with some f < 0.

�

The proof of theorem 5.5 will be prepared further with three lemmata. In
order to be able to use the Feynman-Kac formula for potentials in L∞, we
first remark:

Lemma 5.7 Let V be a potential with

0 ≤ V ∈ ΓL2
loc

(M,End(E)).

Then there is a sequence of nonnegative potentials (Vn) in ΓL∞(M,End(E))
such that

i) for all n ∈ N, a.e. x ∈M ,

‖Vn(x)‖x ≤ ‖Vn+1(x)‖x ≤ ‖V (x)‖x ,

ii) for a.e. x ∈M and all 14 f ∈ ΓL∞0
(M,E),

lim
n→∞

‖Vn(x)− V (x)‖x = 0, lim
n→∞

‖Vnf − V f‖ = 0.

Proof. Since we are only interested in the measurable structure of E, we can
use a partition of unity argument to trivialize E globally in a measurable
way, so let V ∈ L2

loc(M,Mat(Cd)). We can also assume that V is diagonal,

V = diag(v1, . . . , vd) with 0 ≤ vj ∈ L2
loc(M) real-valued.

14L∞0 stands for “measurable, essentially bounded with compact support”.
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Then setting vn,j := min{n, vj}, it is clear that with

Vn := diag(vn,1, . . . , vn,d) ∈ L∞(M,Mat(Cd)),

one has

‖Vn(x)‖Mat(Cd) ≤ ‖Vn+1(x)‖Mat(Cd) ≤ ‖V (x)‖Mat(Cd) ,

‖Vn(x)− V (x)‖Mat(Cd) → 0 as n→∞. (96)

The convergence

‖Vnf − V f‖L2(M,Cd) → 0 as n→∞ for any f ∈ L∞0 (M,Cd)

follows as in (91).

�

Lemma 5.8 Let V be a potential with

CV 1 ≤ V ∈ ΓL2
loc

(M,End(E)) for some CV ∈ R.

Then the map

[0,∞) −→ [0,∞), t 7−→
∥∥∥V (Bt(x)

)∥∥∥
Bt(x)

(97)

is in L1
loc[0,∞) P-a.s. for a.e. x ∈M . In particular, for a.e. x ∈M there is

a unique process
V x : [0,∞)× Ω −→ End(E)x

which solves the ordinary initial value problem

dV x
t = −V x

t //
x,−1
t V (Bt(x))//

x
t dt, V x

0 = 1 (98)

pathwise in the weak sense. Furthermore, for all x ∈ M such that V x is
defined, one has

‖V x
t ‖x ≤ e−tCV P-a.s. for any t ≥ 0. (99)

Proof. Clearly, the second assertion follows from the first one and the Banach
fixed point theorem since∥∥//x,−1

t V (Bt(x))//
x
t

∥∥
x
≤ ‖V (Bt(x))‖Bt(x) .
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The fact that (97) is locally integrable in the above sense is implied by
proposition 5.6 by setting v(x) := ‖V (x)‖x, and (99) follows from applying
proposition A.1 b) pathwise to

F (t) := −
(
//x,−1

t V (Bt(x))//
x
t

)
and c(t) := CV .

�

A statement analogous to lemma 5.2 holds for unbounded potentials:

Lemma 5.9 Let V be a potential with

0 ≤ V ∈ ΓL2
loc

(M,End(E)),

let (Vn) be a sequence as in lemma 5.7, and for any n ∈ N and any x ∈ M
let the process

V x
n : [0,∞)× Ω −→ End(E)x

be given as the weak pathwise solution of the ordinary initial value problem

dV x
n,t = −V x

n,t//
x,−1
t Vn(Bt(x))//

x
t dt, V x

n,0 = 1.

Then for any fixed x ∈M such that s 7→ ‖V (Bs(x))‖Bs(x) is locally integrable
P-a.s. and any t > 0 one has

lim
n→∞

∥∥V x
n,t − V x

t

∥∥
x

= 0 P-a.s.

Proof. The proof is similar to the proof of lemma 5.2. By proposition A.2,
lemma 5.7 and lemma 5.8 one has the following inequality P-a.s.,∥∥V x

n,t − V x
t

∥∥
x

≤ e3
R t
0 ‖V (Bs(x))‖Bs(x)ds

×
∫ t

0

∥∥//x,−1
s Vn(Bs(x))//

x
s − //x,−1

s V (Bs(x))//
x
s

∥∥
x
ds.

Using lemma 5.7 and lemma 5.8 again, the assertion follows from dominated
convergence.

�

Proof of theorem 5.5. Since

e−t(H(V )−CV ) = etCV e−tH(V ),
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and since if t 7→ V x
t is the solution of

dV x
t = −V x

t //
x,−1
t V (Bt(x))//

x
t dt, V x

0 = 1, (100)

then t 7→ etCV V x
t is the solution of (100) with V replaced with V − CV , we

can assume that V ≥ 0. Furthermore, we can assume t > 0. Let (Vn) be as
in lemma 5.7. By the same arguments as in the second part of the proof of
theorem 5.3, one has

E
[
V x

n,t//
x,−1
t f(Bt(x))

]
→ e−tH(V )f(x) as n→∞,

with the notations from lemma 5.9. Since by lemma 5.9,

V x
n,t//

x,−1
t f(Bt(x)) → V x

t //
x,−1
t f(Bt(x)) as n→∞, P-a.s.

and since by applying (99) to Vn,∥∥V x
n,t//

x,−1
t f(Bt(x))

∥∥
x
≤ ‖f(Bt(x))‖Bt(x) ,

(101)

the theorem follows from dominated convergence, in view of

E
[
‖f(Bt(x))‖Bt(x)

]
= e

t
2
∆ ‖f(x)‖x <∞. (102)

�

Being motivated from [76], we will call the family of bounded self-adjoint
operators

(e−tH(V ))t≥0 ⊂ L (ΓL2(M,E))

the Schrödinger semigroup corresponding to H(V ). We directly get the fol-
lowing corollary:

Corollary 5.10 Under the assumptions of theorem 5.5, one has∥∥e−tH(V )
∥∥ ≤ e−tCV for any t ≥ 0.

In particular, V ≥ 0 implies that the Schrödinger semigroup corresponding
to H(V ) is contractive and that H(V ) ≥ 0.

Proof. The inequalities∥∥e−tH(V )f
∥∥2 ≤ e−2tCV

∫
M

E
[
‖f(Bt(x))‖Bt(x)

]2
vol(dx)

≤ e−2tCV ‖f‖2 (103)

can be seen by using (99) and the same arguments as in the first part of the
proof of theorem 5.3.

�
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6 Kato potentials

Now we introduce the (local) Kato class corresponding to potentials on vec-
tor bundles. The importance of local Kato potentials for us is, that it is a
very large class (see theorem 6.4), under which one can still expect pointwise
results for H(V ). In particular, expressions like e−tH(V )f(x) given by the
Feynman-Kac formula will turn out to make sense for all x ∈ M , if V is in
the local Kato class (see lemma 6.5 and also lemma 7.6). Of course, this is
of importance, if one is interested in pointwise results like continuity.

Definition 6.1 Let M be stochastically complete. A potential V is said to
be in the Kato class, if

lim
t↘0

sup
x∈M

E
[∫ t

0

‖V (Bs(x))‖Bs(x) ds

]
= 0,

and V is said to be in the local Kato class, if 1KV is in the Kato class for
any compact K ⊂ M . We write ΓK(M,End(E)) and ΓKloc

(M,End(E)) for
the Kato and the local Kato class, respectively.

Remark 6.2 It is clear that in general ΓK(M,End(E)) depends on the Rie-
mannian structure of M and the Hermitian structure of E, but since we have
fixed these structures, they don’t appear in our notation. On the other hand,
ΓKloc

(M,End(E)) does not depend on the Hermitian structure of E, but still
depends on the Riemannian structure of M , so the term “local” should be
understood rather in the sense of Markov processes with values in a metric
space, than in the usual sense of manifolds.

�

If E = M × C (with its standard Euclidean structure), then we set

K(M) := ΓK(M,End(E)), Kloc(M) := ΓKloc
(M,End(E)),

where the elements of these sets will be identified with functions M → R in
the usual way. We collect some facts about ΓK(M,End(E)): If V is in the
Kato class, then obviously

sup
x∈M

E
[∫ t0

0

‖V (Bs(x))‖Bs(x) ds

]
<∞ for some (small) t0 > 0. (104)

Using the Chapman-Kolomogorov equation, we can prove:
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Lemma 6.3 Let M be stochastically complete.
a) For a potential V one has

sup
x∈M

E
[∫ t0

0

‖V (Bs(x))‖Bs(x) ds

]
<∞ for some t0 > 0, (105)

if and only if

sup
x∈M

E
[∫ t

0

‖V (Bs(x))‖Bs(x) ds

]
<∞ for all t > 0. (106)

b) One has
ΓKloc

(M,End(E)) ⊂ ΓL1
loc

(M,End(E)).

Proof. a) The proof is probably standard in the theory of PCAF‘s (positive
continuous additive functionals; see for example [53]). Take some n ∈ N with
t ≤ nt0. Then we can estimate as follows:

sup
x∈M

E
[∫ t

0

‖V (Bs(x))‖Bs(x) ds

]
= sup

x∈M

∫
M

∫ t

0

ps(x, y) ‖V (y)‖y ds vol(dy)

≤ sup
x∈M

∫
M

∫ nt0

0

ps(x, y) ‖V (y)‖y ds vol(dy)

≤
n∑

k=2

sup
x∈M

∫
M

∫ t0

0

p(k−1)t0+s(x, y) ‖V (y)‖y ds vol(dy)

+ sup
x∈M

∫
M

∫ t0

0

ps(x, y) ‖V (y)‖y ds vol(dy)

=
n∑

k=2

sup
x∈M

∫ t0

0

∫
M

p(k−1)t0(x, z)

∫
M

ps(z, y) ‖V (y)‖y vol(dy)vol(dz)ds

+ sup
x∈M

∫
M

∫ t0

0

ps(x, y) ‖V (y)‖y ds vol(dy)

≤

(
n∑

k=2

sup
x∈M

∫
M

p(k−1)t0(x, z)vol(dz)

)
sup
z∈M

∫ t0

0

∫
M

ps(z, y) ‖V (y)‖y vol(dy)ds

+ sup
x∈M

∫
M

∫ t0

0

ps(x, y) ‖V (y)‖y ds vol(dy)

≤ n sup
z∈M

∫ t0

0

∫
M

ps(z, y) ‖V (y)‖y vol(dy)ds <∞, (107)
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where we have used the Chapman-Kolmogorov identity for the fourth step
and (51) for the sixth step.

b) Let V be in the local Kato class, let K ⊂ M be compact and let 0 <
ε1 < ε2. Take a C > 0 such that for all s ∈ [ε1, ε2] and all x, y ∈ K one has
ps(x, y) > C. Thus,

C(ε2 − ε1)

∫
K

‖V (y)‖y vol(dy) ≤ sup
x∈M

∫
K

∫ ε2

0

ps(x, y)ds ‖V (y)‖y vol(dy),

which is finite by part a).

�

The set of potentials V satisfying (105) or equivalently (106) can be called
the Dynkin class. This definition is motivated by the scalar case [54].

For any p ≥ 1 let

ΓLp
u,loc

(M,End(E)) :=

{
V

∣∣∣∣ sup
x∈M

∫
K1(x)

‖V (y)‖p
y vol(dy) <∞

}
denote the set of uniformly locally p-integrable potentials. Clearly, one has

ΓLp
u,loc

(M,End(E)) ⊂ ΓLp
loc

(M,End(E)).

The following theorem shows that under relatively mild assumptions on the
Riemannian structure ofM , being locally Kato is not a restrictive assumption
on the class of locally square integrable potentials, if 1 ≤ m ≤ 3:

Theorem 6.4 Let M be geodesically complete with Ricci curvature bounded
from below 15 and positive injectivity radius.

a) A potential V is in ΓK(M,End(E)), if and only if

V ∈ ΓL1
u,loc

(M,End(E)), if m = 1

and

lim
r↘0

sup
x∈M

∫
Kr(x)

‖V (y)‖y Gm(d(x, y))vol(dy) = 0, if m ≥ 2.

Here, Gm : (0,∞) → (0,∞) is the function such that Gm(‖v − w‖Rm) is the
Green’s function of the Laplace operator in the Euclidean Rm, that is,

Gm(r) :=

{
r2−m, if m > 2

log(r−1), if m = 2.
(108)

15Then M is automatically stochastically complete.
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b) For any p such that p ≥ 1 if m = 1, and p > m/2 if m ≥ 2, one has

ΓLp
u,loc

(M,End(E)) ⊂ ΓK(M,End(E)), (109)

ΓLp
loc

(M,End(E)) ⊂ ΓKloc
(M,End(E)). (110)

Proof. a) This follows from the scalar results of [54]. The main point for the
proof clearly is a two sided Gaussian bound for pt(x, y), which is valid under
these assumptions on M (see lemma 7.1).

b) The inclusion (109) has also been proved in [54] and the inclusion (110)
follows easily from (109).

�

The following lemma shows that the local Kato assumption on the potential
is sufficient to ensure that e−tH(V )f(x) can be defined for all x ∈M , t > 0:

Lemma 6.5 Let M be stochastically complete and let V ∈ ΓKloc
(M,End(E)).

Then for any x ∈M and t > 0 one has∫ t

0

‖V (Bs(x))‖Bs(x) ds <∞ P-a.s. (111)

Proof. The arguments of [13], p.45, can be adapted to our situation. We use
the fact that the Brownian motion is continuous and (under our assumptions
on M) nonexplosive. For any r > 0 one has

P
{∫ t

0

‖V (Bs(x))‖Bs(x) ds = ∞
}

= P
{∫ t

0

∥∥∥(1Kr(x)(Bs(x)) + 1M\Kr(x)(Bs(x))
)
V (Bs(x))

∥∥∥
Bs(x)

ds = ∞
}

≤ P
{∫ t

0

∥∥(1Kr(x)V )(Bs(x))
∥∥

Bs(x)
ds = ∞

}
+ P

{
max
0≤s≤t

d(x,Bs(x)) ≥ r

}
. (112)

The last term tends to 0 as r →∞, so the lemma is proved if (111) holds for
any V ∈ ΓK(M,End(E)). But this follows directly from (106).

�

7 Brownian bridges

Next, we introduce the Brownian bridge measures Ex,y
t [•], which are a rig-

orous version of the conditional expectation values E[• | Bt(x) = y], and as
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such, they will provide us with a probabilistic formula for the integral kernel
of the Schrödinger semigroup. Although the construction of the Brown-
ian bridge measures as measures on the path space W (M) with M closed
is certainly well-known [41], we believe that the construction below, which
corresponds to our embedding approach to Brownian motion, might not be
known as well. Our arguments are motivated by [10], where Ex,y

t [•] has been
defined for closed manifolds and for B(x) defined intrinsically by means of
theorem 2.33.

For the following considerations, it will be convenient to note the following
lemma:

Lemma 7.1 Let M be geodesically complete with Ricci curvature bounded
from below and a positive injectivity radius. Then for any t > 0 there are
At, Bt, Ct, Dt > 0 such that for all 0 < s ≤ t and all x, y ∈M one has

Ate
−Bt

d(x,y)2

s

sm/2
≤ ps(x, y) ≤

Cte
−Dt

d(x,y)2

s

sm/2
. (113)

In particular, one has

sup
x,y∈M

pt(x, y) <∞ for all t > 0. (114)

Proof. The estimates in (113) follow easily from the considerations of p.110
in [54] and a simple rescaling argument for the Riemannian structure g.

�

Remark 7.2 For example, one may assume thatM has a bounded geometry
in order to be in the setting of lemma 7.1. �

Let F∗ be the filtration which is generated by the coordinate process W on Ω
and let F̃∗ ⊃ F∗ be the corresponding augmented right-continuous filtration.
By definition, the process B(x) is adapted to F̃∗. However, since B(x) is the
solution of a stochastic differential equation which is driven by W , it follows
that B(x) is also adapted to F∗ (see for example theorem 2.1 on p.375 in
[66]). We first note the following elementary lemma:

Lemma 7.3 Let M be stochastically complete with

sup
x,y∈M

pt(x, y) <∞ for all t > 0. (115)

Then the process

pt−•(B(x), y) : [0, t)× Ω −→ (0,∞)

is a (Fs)0≤s<t-martingale.
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Proof. Since B(x) is adapted to F∗ ⊂ F̃∗, it is sufficient to prove that
pt−•(B(x), y) is a (F̃s)0≤s<t martingale.
The integrability of pt−•(B(x), y) follows from the Chapman-Kolmogorov
equations. Let 0 ≤ s1 < s2 < t. Then P-a.s. one has

E
[
pt−s2(Bs2(x), y) | F̃s1

]
(•) =

∫
Ω

pt−s2

(
Bs2−s1

(
Bs1(x)(•)

)
(ω), y

)
P(dω)

=

∫
M

ps2−s1(Bs1(x)(•), z)pt−s2(z, y)vol(dz)

= pt−s1(Bs1(x)(•), y), (116)

where we have used the Markov property of B(x) (Bemerkung 7.250 in [37]
together with (115)) for the first step, theorem 2.24 vi) for the second step
and the Chapman-Kolmogorov identity for the third step.

�

Let M be geodesically complete with Ricci curvature bounded from below
and a positive injectivity radius. We fix arbitrary x, y ∈ M and t > 0 for
the rest of this section. Lemma 7.3 shows that we can define the conditional
Brownian bridge measure Px,y

t as the unique probability measure on (Ω,Ft−),
where

Ft− := σ

( ⋃
0≤s<t

Fs

)
,

such that

dPx,y
t

dP

∣∣∣∣
Fs

=
pt−s(Bs(x), y)

pt(x, y)
for any s < t. (117)

The existence of this measure follows from a small adaption of Satz 1.25’ and
the remarks on p.249 in [37], and the uniqueness follows from the monotone
class theorem (see [61], p.143, for an abstract argument). Note also that
Ft− = Ft, which is implied by the (left-)continuity of W (see for example
p.89 in [46]).
Due to the strict positivity of the Radon-Nikodym derivative, the measures
P and Px,y

t are actually equivalent on Fs, if s < t, so that the process(
1

pt−•(B(x), y)
,Px,y

t

)
: [0, t)× Ω −→ (0,∞)

is a nonnegative continuous martingale, which, by martingale convergence,
necessarily has a limit as s ↗ t (see for example [36], theorem 1.3). Using
the upper bound (113) again, these considerations imply

lim
s↗t

Bs(x) = y Px,y
t -a.s. (118)
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Furthermore, it follows from (117) that the process

(B(x),Px,y
t ) : [0, t]× Ω −→M (119)

is a Brownian bridge from x to y at the terminal time t in the sense of the
defining finite dimensional distributions given in [41]. As such, it is well-
known that one has the following time reversal property: The law of

(Bt−•(x),Px,y
t ) : [0, t]× Ω −→M

is equal to the law of

(B(y),Py,x
t ) : [0, t]× Ω −→M.

Let Ex,y
t [•] denote the expectation value with respect to Px,y

t . Our initial
remark that Ex,y

t [•] is a rigorous implementation of E[• | Bt(x) = y] is finally
justified by the following disintegration:

Lemma 7.4 For any A ∈ Ft− (= Ft),

P(A) =

∫
M

Px,y
t (A)pt(x, y)vol(dy). (120)

Proof. By the monotone class theorem, it is sufficient to consider the case
A ∈ Fs for some 0 ≤ s < t. Then we have

Px,y
t (A) = E

[
1A
pt−s(Bs(x), y)

pt(x, y)

]
,

so that with Fubini,∫
M

Px,y
t (A)pt(x, y)vol(dy) =

∫
M

E [1Apt−s(Bs(x), y)] vol(dy)

=

∫
A

∫
M

pt−s(Bs(x)(ω), y)vol(dy)P(dω)

= P(A),

where we have used (117) and the stochastic completeness of M .

�

Corollary 7.5 Let M be geodesically complete with Ricci curvature bounded
from below and a positive injectivity radius, and let the potential v ∈ L2

loc(M)
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be bounded from below. If H0(v) denotes the self-adjoint realization of −∆/2+
v in L2(M), then for any t > 0, the function

e−tH0(v)(•, •) : M ×M −→ (0,∞)

e−tH0(v)(x, y) := pt(x, y)Ex,y
t

[
e−

R t
0 v(Bs(x))ds

]
is well-defined for a.e. (x, y) ∈M ×M and it defines an essentially bounded
integral kernel for the operator e−tH0(v), in the sense that for any f ∈ L2(M),
a.e. x ∈M one has

e−tH0(v)f(x) =

∫
M

e−tH0(v)(x, y)f(x)vol(dy).

Proof. The equality (120) gives

e−
R t
0 v(Bs(x))ds ≤ e−tCv Px,y

t -a.s. for a.e. (x, y) ∈M ×M ,

where Cv is some lower bound of v. It follows that

M ×M 3 (x, y) 7−→ e−tH0(v)(x, y) ∈ (0,∞)

is a well-defined measurable function, which is easily seen to have the desired
properties, if one uses the Feynman-Kac formula, (120), (118) and a simple
limiting argument.

�

We finally note the following proposition, which shows that the local Kato
assumption on the potential is compatible with the Brownian bridge:

Proposition 7.6 Let M be geodesically complete with Ricci curvature bounded
from below and a positive injectivity radius. If V ∈ ΓKloc

(M,End(E)), then
one has ∫ t

0

‖V (Bs(x))‖Bs(x) ds <∞ Px,y
t -a.s. (121)

Proof. By going through the same steps as in the proof of lemma 6.5, it
is sufficient to prove that (121) holds for any V ∈ ΓK(M,End(E)). By the
time-reversal property of the Brownian bridge, one can write

Ex,y
t

[∫ t

0

‖V (Bs(x))‖Bs(x) ds

]
= Ex,y

t

[∫ t
2

0

‖V (Bs(x))‖Bs(x) ds

]
+ Ey,x

t

[∫ t
2

0

‖V (Bs(x))‖Bs(x) ds

]
. (122)
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Both of the last two terms can be treated similarly, say,

Ex,y
t

[∫ t
2

0

‖V (Bs(x))‖Bs(x) ds

]

= E

[∫ t
2

0

‖V (Bs(x))‖Bs(x) ds
p t

2
(B t

2
(x), y)

pt(x, y)

]

≤ C̃t

pt(x, y)
E

[∫ t
2

0

‖V (Bs(x))‖Bs(x) ds

]
<∞, (123)

where we have used (117), the upper bound in (113) and (106).

�

8 Applications of the Feynman-Kac formula

In this section, we explain how the Feynman-Kac formula can be used to
obtain regularity results and bounds for some spectral data of Schrödinger
type operators on vector bundles over noncompact manifolds.

We continue to work under the assumptions and with the notations from
section 4. If V is a potential and x ∈M , ω ∈ Ω are such that

[0,∞) −→ [0,∞), t 7−→ ‖V (Bt(x))‖Bt(x) (ω)

is locally integrable, then

V x
• (ω) : [0,∞) −→ End(E)x

stands for the weak solution of

dV x
t (ω) = −V x

t (ω)
(
//x,−1

t V (Bt(x))//
x
t

)
(ω)dt,

V x
0 (ω) = 1. (124)

It is easily seen that V x
• (ω) is invertible with

dV x,−1
t (ω) =

(
//x,−1

t V (Bt(x))//
x
t

)
(ω)V x,−1

t (ω)dt,

V x,−1
0 (ω) = 1, (125)

and furthermore one has

dV x,∗
t (ω) = −

(
//x,−1

t V (Bt(x))//
x
t

)∗
(ω)V x,∗

t (ω)dt,

V x,∗
0 (ω) = 1. (126)
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The self-adjoint realizations of ∇∗∇/2 + V in ΓL2(M,E) and of −∆/2 + v
in L2(M) in the sense of theorem 3.5 will be denoted with H(V ) and with
H0(v), respectively.

8.1 Bottom of the spectrum

In the following, we write qH for the (minimal) closed, lower semi-bounded
quadratic form corresponding to a self-adjoint, lower semi-bounded operator
H in some Hilbert space H with norm ‖•‖H . If H is bounded from below
by a constant C1 and if C2 ≤ C1, then qH is given as follows:

D(qH) = D
(
(H − C2)

1
2

)
, qH(f) =

∥∥∥(H − C2)
1
2f
∥∥∥2

H
+ C2 ‖f‖2

H , (127)

and (127) does not depend on C2 ([47], p.332). The spectral theorem justifies
the extension qH(f) := ∞, if f ∈ H \ D(qH) (at least, if H ≥ 0). See [47],
chapter VI, for details on quadratic forms.

We remind the reader of the notation |f | (x) := ‖f(x)‖x for any section f in
E. A key observation is the following semigroup domination. We refer the
reader to [6] and [38] for an abstract formulation of semigroup domination
and applications.

Theorem 8.1 Let M be stochastically and geodesically complete, let V be a
potential with

V ∈ ΓL2
loc

(M,End(E))

and let v be a scalar potential with 16

Cv1 ≤ v1 ≤ V for some Cv ∈ R.

Then the following inequality holds for any f ∈ ΓL2(M,E), t ≥ 0 and a.e.
x ∈M , ∥∥e−tH(V )f(x)

∥∥
x
≤ e−tH0(v) |f | (x). (128)

In particular,

i) for any f ∈ ΓL2(M,E), any λ ∈ C such that Re(λ) > Cv and a.e.
x ∈M , ∥∥(H(V ) + λ)−1f(x)

∥∥
x
≤ (H0(v) + λ)−1 |f | (x), (129)

16Note that v is automatically in L2
loc(M) under these assumptions.
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ii) for any f ∈ ΓL2(M,E), t ≥ 0,〈
e−tH(V )f, f

〉
≤
〈
e−tH0(v) |f | , |f |

〉
L2(M)

, (130)

iii) |f | ∈ D(qH0(v)) for any f ∈ D(qH(V )),

iv) inf σ(H(V )) ≥ inf σ(H0(v)).

Proof. Let f ∈ ΓL2(M,E). The Feynman-Kac formulae for H(V ), H0(v) and
the inequality

‖V x
t ‖x ≤ e−

R t
0 v(Bs(x))ds P-a.s., (131)

which comes from proposition A.1 b) by defining

F (t) := −
(
//x,−1

t V (Bt(x))//
x
t

)
and c(t) := −v(Bt(x)) pathwise, directly imply (128).
Now (129) follows from the Laplace transforms

(H(V ) + λ)−1f(x) =

∫ ∞

0

e−tλe−tH(V )f(x)dt

and

(H0(v) + λ)−1 |f | (x) =

∫ ∞

0

e−tλe−tH0(v) |f | (x)dt.

Multiplying (128) with ‖f(x)‖x and integrating with respect to
∫

M
(•)vol(dx)

proves (130) in view of the Cauchy-Schwarz inequality for (•, •)x and〈
e−tH(V )f, f

〉
≥ 0.

For the other assertions, note that by (127) we may assume that H(V ) and
H0(v) are nonnegative (otherwise, considerH(V −C) andH(v−C) with some
C ∈ R small enough such that H(V ) − C and H0(v) − C are nonnegative).

If f ∈ D(H(V )
1
2 ), then by (130) and the spectral calculus,

∞ >
〈
H(V )

1
2f,H(V )

1
2f
〉

= − lim
t↘0

〈
e−tH(V )f − f

t
, f

〉
(132)

≥ − lim
t↘0

〈
e−tH0(v) |f | − |f |

t
, |f |
〉

L2(M)

=
〈
H0(v)

1
2 |f | , H0(v)

1
2 |f |

〉
L2(M)

,

(133)
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so |f | is in the form domain of H0(v) and〈
H(V )

1
2f,H(V )

1
2f
〉
≥
〈
H0(v)

1
2 |f | , H0(v)

1
2 |f |

〉
L2(M)

.

Finally, by the variational principle (see for example [87], Satz 8.27),

inf σ(H(V )) = inf
{〈

H(V )
1
2f,H(V )

1
2f
〉∣∣∣ f ∈ D(H(V )

1
2 ), ‖f‖ = 1

}
≥ inf

{〈
H0(v)

1
2 |f | , H0(v)

1
2 |f |

〉
L2(M)

∣∣∣∣ f ∈ D(H(V )
1
2 ), ‖f‖ = 1

}
≥ inf

{〈
H0(v)

1
2h,H0(v)

1
2h
〉

L2(M)

∣∣∣∣h ∈ D(H0(v)
1
2 ), ‖h‖L2(M) = 1

}
= inf σ(H0(v)),

and the theorem is proved.

�

Remark 8.2 If V is bounded from below, then a possible choice for the
scalar potential v in proposition 8.2 is v(x) := minσ(V (x)).

�

For the next proposition we set (whenever it makes sense)

e−tH(V )f(x) := E
[
V x

t //
x,−1
t f(Bt(x))

]
(134)

e−tH0(v)h(x) := E
[
e−

R t
0 v(Bs(x))dsh(Bt(x))

]
(135)

for sections f in E and functions h on M . For any p, q ∈ [1,∞] let ‖•‖p

denote the norm in ΓLp(M,E) and let ‖•‖p,q denote the norm corresponding
to

L
(
ΓLp(M, •),ΓLq(M, •)

)
,

with the convention ‖•‖ = ‖•‖2,2 (and the same notation for operators on
functions on M). We will prove the following proposition in a moment:

Proposition 8.3 a) Let M be stochastically and geodesically complete, let
V be a potential with

V ∈ ΓL2
loc

(M,End(E))

and let v be a scalar potential with

Cv1 ≤ v1 ≤ V for some Cv ∈ R.
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Furthermore, let p, q ∈ [1,∞] and t > 0. Then the assumption

e−tH0(v) ∈ L (Lp(M),Lq(M))

implies

e−tH(V ) ∈ L
(
ΓLp(M, •),ΓLq(M, •)

)
and ∥∥e−tH(V )

∥∥
p,q
≤
∥∥e−tH0(v)

∥∥
p,q
. (136)

b) Let M have a bounded geometry and let V be a potential with

CV 1 ≤ V ∈ ΓL2
loc

(M,End(E)) for some CV ∈ R.

Then for any 1 ≤ p ≤ q ≤ ∞, t > 0, one has

e−tH(V ) ∈ L
(
ΓLp(M, •),ΓLq(M, •)

)
and there is a C > 0, which only depends on the Riemannian structure of
M , such that ∥∥e−tH(V )

∥∥
p,q
≤ C

1
p
− 1

q min
{
t

m
2 , 1
}− 1

p
+ 1

q e−tCV . (137)

In particular, one has∥∥e−tH(V )
∥∥

p,p
≤ e−tCV for any 1 ≤ p ≤ ∞, t > 0.

We will need the following assertion for the proof of part b) of proposition
8.3:

Proposition 8.4 Let t > 0 and assume that

C(t) := sup
x,y∈M

pt(x, y) <∞.

Then the assignment

e
t
2
∆h(x) :=

∫
M

pt(x, y)h(y)vol(dy)

defines an element of L (Lp(M),Lq(M)) for all 1 ≤ p ≤ q ≤ ∞ and one has∥∥∥e t
2
∆
∥∥∥

p,q
≤ C(t)

1
p
− 1

q .
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Proof. It should be possible to deduce this proposition with an abstract Lp-
interpolation theorem like Riesz-Thorin. Nevertheless, here is an elementary
proof which only uses the Hölder inequality. Let us first note the following
simple fact: For any r ≥ 1 and x ∈M one has

‖pt(x, •)‖r ≤ C(t, r) := C(t)1− 1
r . (138)

Throughout, let f ∈ Lp(M).

Case 1 < p < q < ∞: Let r be given as 1 − 1/r = 1/p − 1/q. Applying
Hölder’s inequality with the exponents

q1 = q, q2 =
r

1− r
q

, q3 =
p

1− p
q

gives∥∥∥e t
2
∆f
∥∥∥q

q

≤
∫

M

(∫
M

(pt(x, y)
r|f(y)|p)

1
q pt(x, y)

1− r
q |f(y)|1−

p
q vol(dy)

)q

vol(dx)

≤
∫

M

(∫
M

pt(x, y)
r|f(y)|pvol(dy)

)(∫
M

pt(x, y)
rvol(dy)

) q
r (1− r

q )

×
(∫

M

|f(y)|pvol(dy)

) q
p(1− p

q )
vol(dx),

so that using Fubini’s theorem and (138),∥∥∥e t
2
∆f
∥∥∥q

q
≤ C(t, r)q(1− r

q ) ‖f‖
q(1− p

q )
p

∫
M

|f(y)|p
∫

M

pt(x, y)
rvol(dx)vol(dy)

≤ C(t, r)q ‖f‖q
p = C(t)q( 1

p
− 1

q ) ‖f‖q
p . (139)

Case 1 < p = q <∞: One has∥∥∥e t
2
∆f
∥∥∥p

p
≤
∫

M

(∫
M

pt(x, y)|f(y)|vol(dy)

)p

vol(dx)

≤
∫

M

∫
M

|f(y)|ppt(x, y)vol(dy)vol(dx) (140)

=

∫
M

∫
M

pt(x, y)vol(dx)|f(y)|pvol(dy)

≤ ‖f‖p
p , (141)
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where we have applied the Hölder inequality to the finite measure µ(dy) =
pt(x, y)vol(dy) for the second inequality.

Case 1 < p < q = ∞: This works with the same argument that has been
used for the inequality (140).

Case 1 = p < q <∞: One has∥∥∥e t
2
∆f
∥∥∥q

q
≤
∫

M

(∫
M

(pt(x, y)
q|f(y)|)

1
q |f(y)|1−

1
q vol(dy)

)q

vol(dx). (142)

Applying the Hölder inequality with the exponents

q1 = q, q2 =
1

1− 1
q

gives ∥∥∥e t
2
∆f
∥∥∥q

q
≤ ‖f‖q−1

1

∫
M

∫
M

pt(x, y)
q|f(y)|vol(dy)vol(dx), (143)

so that the Fubini theorem and (138) imply∥∥∥e t
2
∆f
∥∥∥q

q
≤ C(t)q(1− 1

q ) ‖f‖q
1 .

The cases p = q = ∞ and p = q = 1 and p = 1,q = ∞ are trivial.

�

Proof of proposition 8.3. a) Let f ∈ ΓLp(M,E) and remember (131). If
q <∞, then

∥∥e−tH(V )f
∥∥

q
≤
(∫

M

E
[
e−

R t
0 v(Bs(x))ds ‖f(Bt(x))‖Bt(x)

]q
vol(dx)

) 1
q

=
∥∥e−tH0(v) |f |

∥∥
p
≤
∥∥e−tH0(v)

∥∥
p,q
‖f‖p .

If q = ∞, ∥∥e−tH(V )f
∥∥
∞ = ess sup

x∈M

∥∥E [V x
t //

x,−1
t f(Bt(x))

]∥∥
x

≤ ess sup
x∈M

E
[
e−

R t
0 v(Bs(x))ds ‖f(Bt(x))‖Bt(x)

]
≤
∥∥e−tH0(v)

∥∥
p,∞ ‖f‖p . (144)

b) We have ∥∥e−tH0(CV )
∥∥

p,q
= e−tCV

∥∥∥e t
2
∆
∥∥∥

p,q
,
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so that applying part a) to v := CV and using proposition 8.4 shows∥∥e−tH(V )
∥∥

p,q
≤ e−tCV

∥∥∥e t
2
∆
∥∥∥

p,q
≤ e−tCV C(t)

1
p
− 1

q .

Since
C(t) = sup

x,y∈M
pt(x, y) = sup

z∈M
pt(z, z),

where the last equality follows easily from the properties of pt(x, y) (see for
example [19], p.67 for details), the assertion follows from the heat kernel
bound (214), noting that

e−t inf σ(−∆) ≤ 1.

�

Proposition 8.3 should be understood as follows:

Remark 8.5 Fix the assumptions of proposition 8.3 b). It follows from the
arguments of the proof of proposition 8.14 that the operators (QV

t )t>0 given
formally by

QV
t f(x) := E

[
V x

t //
x,−1
t f(Bt(x))

]
form a semigroup of bounded operators in ΓLp(M,E). Under additional as-
sumptions on V (probably local Kato will do), this semigroup will be strongly
continuous. One could then define H(V )p to be the generator of (QV

t )t>0 in
ΓLp(M,E) and examine questions like the p-independence of σ(H(V )p). The
reader may find assertions of this type for Schrödinger operators with mag-
netic fields in the Euclidean Rm in [42], and for certain uniformly elliptic
operators on Riemannian manifolds in [80]. As we mainly have applications
in quantum physics in mind, which corresponds to the Hilbert space case
p = 2, we did not work further into this direction.

�

8.2 Integral kernels and trace estimates

Our next aim is to show that with some control on g and V , e−tH(V ) is an
integral operator for any t > 0, and to derive a probabilistic formula for the
corresponding integral kernel.

To this end, let E � E∗ → M ×M denote the tensor bundle corresponding
to E, that is,

E � E∗ |(x,y)= Ex ⊗ E∗
y = Hom(Ey, Ex). (145)
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We denote with ‖•‖x,y the operator norm in Hom(Ex, Ey) and equip the
fibers of E � E∗ with this norm in a continuous way, which means that for
any 17 Ψ ∈ ΓC(M ×M,E � E∗) the function

M ×M 3 (x, y) 7−→ ‖Ψ(x, y)‖x,y ∈ [0,∞)

is continuous. Now we can prove:

Theorem 8.6 Let M be geodesically complete with Ricci curvature bounded
from below and a positive injectivity radius, and let V be a potential with

CV 1 ≤ V ∈ ΓL2
loc

(M,End(E)) for some CV ∈ R.

Then the following assertions hold for all t > 0:

a) The section

M ×M 3(x, y) 7−→ e−tH(V )(x, y) ∈ Hom(Ey, Ex)

e−tH(V )(x, y) := pt(x, y)Ex,y
t

[
V x

t //
x,−1
t

]
in E � E∗ is well-defined for a.e. (x, y) ∈M ×M and it defines an integral
kernel for the operator

e−tH(V ) : ΓL2(M,E) −→ ΓL2(M,E),

in the sense that for any f ∈ ΓL2(M,E), a.e. x ∈M ,

e−tH(V )f(x) =

∫
M

e−tH(V )(x, y)f(y)vol(dy). (146)

b) The integral kernel e−tH(V )(•, •) is essentially bounded. More precisely,
one has ∥∥e−tH(V )(x, y)

∥∥
y,x
≤ Cte

−tCV for a.e. (x, y) ∈M ×M ,

where Ct is an upper bound for pt(•, •).

Proof. a),b) The proof is similar to the one of corollary 7.5.
Let us first remark the following fact: Since //x,−1 is (essentially) defined
as the solution of a stochastic differential equation that is driven by W , it
follows that //x,−1 is adapted to F∗. By expanding V x as a path ordered
exponential as in (79) (even if V is not bounded, this is possible by theorem

17C stands for “continuous”.
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4.3 in [22] and the remarks on p.55 there), one sees that V x is also adapted
to this filtration. Next, we note that in view of (120), lemma 5.8 implies

‖V x
t ‖x ≤ e−tCV Px,y

t -a.s. for a.e. (x, y) ∈M ×M ,

and by (118), we also have that the parallel transport maps

//x,−1
t : Ex −→ Ey

and that this map is an isometry, both under Px,y
t for a.e. (x, y) ∈ M ×M .

Altogether, it follows that Ex,y
t

[
V x

t //
x,−1
t

]
is well-defined for a.e. (x, y). Now

(146) follows easily from the Feynman-Kac formula, (120), (118) and a simple
limiting argument.

�

In the following, we will consider the trace tr
(
e−tH(V )

)
as an element of

[0,∞] and our next goal is to derive a probabilistic representation of this
number. If e−tH(V )(x, y) depended continuously on (x, y) (we believe that it
is not even possible to define e−tH(V )(x, y) for all x, y ∈M under our general
assumptions on M and V ; see remark 8.7 for conditions under which this is
possible), then it would be straightforward to derive a formula of the form

tr
(
e−tH(V )

)
=

∫
M

trEx

(
e−tH(V )(x, x)

)
vol(dx). (147)

In order to avoid the necessity of this continuity, we proceed as follows: We
will use the semigroup property of (e−tH(V ))t>0 to prove that

tr
(
e−tH(V )

)
=

∫
M

∫
M

trEy

(
e−

t
2
H(V )(x, y)∗e−

t
2
H(V )(x, y)

)
vol(dx)vol(dy),

(148)

which will be used in the following as a substitute for the literal interpretation
of (147). In view of the first inequality of part b) of theorem 8.8, formula
(148) will turn out to work equally well for our purpose, which is finding
estimates for tr

(
e−tH(V )

)
.

Remark 8.7 If one assumes that M has a bounded geometry, then one can
use the Girsanov theorem and the same arguments as in [1] to prove that the
bound (216) on the gradient of pt(x, y) implies the semi-martingale property
of B(x) |[0,t]×Ω under Px,y

t . Assuming furthermore that

CV 1 ≤ V ∈ ΓKloc
(M,End(E)) ∩ ΓL2

loc
(M,End(E)) for some CV ∈ R,
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one can use proposition 7.6 to see that e−tH(V )(x, y) can be defined for all
x, y ∈ M . We have not been able to prove or disprove the continuous de-
pendence of e−tH(V )(x, y) on (x, y) under these assumptions, which could be
expected from the results of [13]. The main difficulty in proving this conjec-
ture comes from the fact that the (local) Kato class seems to depend very
sensitively on the Riemannian structure of M . This makes approximation ar-
guments that could be motivated by proposition 2.3 in [13] not accessible for
arbitrary manifolds with bounded geometry (the latter proposition asserts
that in the Euclidean Rm, one can locally approximate Kato decomposable
potentials by smooth potentials with compact support in the so called Kato
norm). We have only been able to derive a sketch of proof of the above
conjecture under the very restrictive additional assumption that M has an
infinite injectivity radius. �

Now we prove:

Theorem 8.8 Let M be geodesically complete with Ricci curvature bounded
from below and a positive injectivity radius. The following assertions hold
for any t > 0:

a) Assume that V is a potential with

CV 1 ≤ V ∈ ΓL2
loc

(M,End(E)) for some CV ∈ R.

Then one has

tr
(
e−tH(V )

)
=

∫
M

∫
M

trEy

(
e−

t
2
H(V )(x, y)∗e−

t
2
H(V )(x, y)

)
vol(dx)vol(dy),

(149)

in the sense that either both sides are equal to a nonnegative real number or
both sides are infinite.

b) Assume that V is a potential with

V ∈ ΓL2
loc

(M,End(E))

and that v is a scalar potential with

Cv1 ≤ v1 ≤ V for some Cv ∈ R.

Then one has 18∥∥e−tH(V )(x, y)
∥∥

y,x
≤ e−tH0(v)(x, y) for a.e. (x, y) ∈M ×M , and

tr
(
e−tH(V )

)
≤ d tr

(
e−tH0(v)

)
. (150)

18Remember that the number d stands for the dimension of the fibers of E.
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Proof. a) Let |‖•‖|(x,y) denote the Hilbert-Schmidt norm in Hom(Ex, Ey) and
let |‖•‖| be the Hilbert-Schmidt norm in L (ΓL2(M,E)). The equality

e−tH(V ) = e−
t
2
H(V )e−

t
2
H(V ) (151)

and the self-adjointness of e−
t
2
H(V ) imply that e−tH(V ) is trace class, if and

only if e−
t
2
H(V ) is Hilbert-Schmidt and

tr
(
e−tH(V )

)
= tr

((
e−

t
2
H(V )

)∗
e−

t
2
H(V )

)
=
∣∣∣∥∥∥e− t

2
H(V )

∥∥∥∣∣∣2
=

∫
M

∫
M

∣∣∣∥∥∥e− t
2
H(V )(x, y)

∥∥∥∣∣∣2
(y,x)

vol(dx)vol(dy).

This proves formula (149).

b) The first inequality in (150) follows directly from the formulae for the
integral kernels e−tH(V )(•, •), e−tH0(v)(•, •) and proposition A.1 together with
(120), so that in order to prove the second inequality, one can estimate as
follows,

tr
(
e−tH(V )

)
≤
∫

M

∫
M

trEy

(
e−

t
2
H(V )(x, y)∗e−

t
2
H(V )(x, y)

)
vol(dx)vol(dy)

≤ d

∫
M

∫
M

∥∥∥e− t
2
H(V )(x, y)

∥∥∥2

(y,x)
vol(dx)vol(dy)

≤ d tr
(
e−tH0(v)

)
.

This proves the theorem.

�

Remark 8.9 Let the assumptions of theorem 8.8 on M be satisfied. Local
elliptic regularity [24] implies that there is a smooth integral kernel

(0,∞)×M ×M 3 (t, x, y) 7−→ ˜e−tH(0)(x, y) ∈ Hom(Ey, Ex)

such that for any t > 0 one has

˜e−tH(0)(x, y) = e−tH(0)(x, y) for a.e. (x, y) ∈M ×M .

The continuity of
∥∥∥ ˜e−tH(0)(x, y)

∥∥∥
y,x

in (x, y) and theorem 8.8 b) imply∥∥∥ ˜e−tH(0)(x, y)
∥∥∥

y,x
≤ pt(x, y),

for all t > 0 and all x, y ∈M . �
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In the scalar Euclidean setting it is well-known that the quantum mechanical
partition function is bounded by the classical partition function, that is, for
a very large class of operators of the form H0(v) in L2(Rm) it holds that

tr
(
e−tH0(v)

)
≤ 1

(2πt)
m
2

∫
Rm

e−tv(y)dy (152)

=

∫
Rm

∫
Rm

e−t( 1
2
‖x‖2Rm+v(y))dxdy. (153)

These inequalities are valid, for example, if v is Kato decomposable: v+ ∈
Kloc(Rm) and v− ∈ K(Rm). The bound (152) is known as the Golden-
Thompson-Symanzik inequality. We will prove direct extensions of these
bounds with classical (= probabilistic) methods from [77] to Yang-Mills
Hamiltonians in the Euclidean Rm in section 8.4.
The following theorem asserts a Golden-Thompson-Symanzik type inequality
for manifolds with bounded geometry, which is in the spirit of (152). Fur-
thermore, this inequality easily implies a phase space bound for small times,
which is an extension of (153) to this general setting. The classical proof
of (152) uses the invariance of the Lebesgue measure in Rm under transla-
tions (see also the proof of (209)) and thus is not accessible in the setting of
manifolds. However, one can use operator-theoretic methods to prove:

Theorem 8.10 Let M have a bounded geometry and let V be a potential
with

CV 1 ≤ V ∈ ΓL2
loc

(M,End(E)) for some CV ∈ R.

There is a constant C > 0, which only depends on the Riemannian structure
of M , such that the following assertions hold:

a) For any t > 0 one has

tr
(
e−tH(V )

)
≤ Cd

min{tm
2 , 1}

∫
M

e−tV (y)vol(dy), (154)

where V (y) := minσ(V (y)). In particular, if there is a t > 0 such that∫
M

e−tV (y)vol(dy) <∞, (155)

then
e−tH(V ) ∈ J1 (ΓL2(M,E)) ,

the trace class of ΓL2(M,E).

b) One has the following phase space type bound for all 0 < t ≤ 1,

tr
(
e−tH(V )

)
≤ Cd

∫
M

∫
T∗yM

e−t( 1
2
‖x‖2T∗xM+V (y))volT∗yM(dx)vol(dy).
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Remark 8.11 Here, the measure volT∗yM(•) stands for the pushforward mea-
sure of the Lebesgue measure in Rm under some orthonormal frame

A : Rm −→ T∗
yM.

This definition does not depend on the particular choice of A. �

Proof of theorem 8.10. a) In the following, we consider V as a maximally
defined multiplication operator in ΓL2(M,E). So we have the domains of
definition

D(V ) =
{
f
∣∣∣ f, V f ∈ ΓL2(M,E)

}
,

D(H(0)) =
{
f
∣∣∣ f , ∇∗∇f (as a distrib.) ∈ ΓL2(M,E)

}
. (156)

By the essential self-adjointness of ∇∗∇/2 + V on ΓC∞0
(M,E) and

ΓC∞0
(M,E) ⊂ D(H(0)) ∩D(V ),

it is clear that H(0) + V is essentially self-adjoint on the domain D(H(0)) ∩
D(V ). As a consequence, we can use the operator version of the Golden-
Thompson inequality (theorem 4 in [67]) to obtain

tr
(
e−tH(V )

)
≤ tr

(
e−

t
2
H(0)e−tV e−

t
2
H(0)
)
.

Since e−
t
2
V e−

t
2
H(0) is an integral operator with an integral kernel given by

M ×M 3 (x, y) 7−→ e−
t
2
V (x)e−

t
2
H(0)(x, y) ∈ Hom(Ey, Ex),

one has

tr
(
e−

t
2
H(0)e−tV e−

t
2
H(0)
)

= tr
((

e−
t
2
V e−

t
2
H(0)
)∗

e−
t
2
V e−

t
2
H(0)
)

=
∣∣∣∥∥∥e− t

2
V e−

t
2
H(0)
∥∥∥∣∣∣2

=

∫
M

∫
M

trEy

((
e−

t
2
V (x)e−

t
2
H(0)(x, y)

)∗
e−

t
2
V (x)e−

t
2
H(0)(x, y)

)
vol(dx)vol(dy),
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so that we can estimate as follows:

tr
(
e−

t
2
H(0)e−tV e−

t
2
H(0)
)

≤ d

∫
M

∫
M

∥∥e−tV (x)
∥∥

x

∥∥∥e− t
2
H(0)(x, y)

∥∥∥2

y,x
vol(dx)vol(dy)

≤ d

∫
M

∫
M

e
t
2
∆(x, y)e

t
2
∆(y, x)vol(dy)

∥∥e−tV (x)
∥∥

x
vol(dx)

= d

∫
M

pt(x, x)
∥∥e−tV (x)

∥∥
x
vol(dx)

≤ C̃d

min{tm
2 , 1}

e−t inf σ(−∆)

∫
M

e−tV (x)vol(dx).

Here, we have used theorem 8.8 b) for the second step, the Chapman-
Kolmogorov equation for pt(x, y) for the third step, and the bound (214)
for the last step. Since

e−t inf σ(−∆) ≤ 1,

we are done.

b) This follows from part a) and

1

(2πt)
m
2

=

∫
Rm

e−
1
2
t‖x‖2Rm dx,

which is valid for all t > 0.

�

8.3 Spacial continuity of the Schrödinger semigroup

As a next goal, we want to prove one of our main results: If one has the
same control on the geometry of M that has been necessary to define the
Brownian bridge measures in a satisfacorty way, and if V is in the local Kato
class, then the operator e−tH(V ) maps

e−tH(V ) : ΓL2(M,E) −→ ΓCb
(M,E) ∩ ΓL2(M,E)

in the obvious sense. In detail, this is:

Theorem 8.12 Let M be geodesically complete with Ricci curvature bounded
from below and a positive injectivity radius. Assume furthermore that

CV 1 ≤ V ∈ ΓKloc
(M,End(E)) ∩ ΓL2

loc
(M,End(E)) for some CV ∈ R.
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Then for any t > 0, f ∈ ΓL2(M,E), the section

M −→ E, x 7−→ E
[
V x

t //
x,−1
t f(Bt(x))

]
∈ Ex (157)

is continuous and bounded. In particular, each eigensection of H(V ) can be
chosen continuous and bounded.

Remark 8.13 Let us explain our approach for proving theorem 8.12: In the
situation of theorem 8.12, let

QV
t f(x) := E

[
V x

t //
x,−1
t f(Bt(x))

]
. (158)

Note that under our assumptions on M and V , the right-hand side of (158)
is indeed well-defined for all x ∈M (see lemma 6.5). We will use semigroup
domination and a bound on pt(x, y) to prove that QV

t f is bounded. Further-
more, one can prove that QV

• f(x) satisfies a semigroup property for all x ∈M
(a priori, this is only clear for a.e. x ∈M , and the proof that it remains true
for all x ∈ M is actually quite technical). From these considerations, it is
clear that we may assume

f ∈ ΓL∞(M,E) ∩ ΓL2(M,E).

Next, note that one can expect from elliptic regularity that Q0
t f̃ is continuous

(in fact, smooth) for any t > 0 and any essentially bounded square integrable
f̃ , so that the continuity of QV

t f will follow, if we can locally uniformly
approximate QV

t f as s ↘ 0 by Q0
sQ

V
t−sf . This will in fact follow from the

perturbation formula (161) below and the convergence (185). The latter of
which strongly relies on the assumption that the potential is in the local
Kato class. These techniques extend the corresponding ones from [17] (see
also [13]) for usual scalar operators to our setting, where we remark that the
proofs of assertions like proposition 8.14, proposition 8.15 or proposition 8.18
are almost trivial in the setting of [17]. �

The following four propositions will help us to turn the considerations of
remark 8.13 into a full proof.
We first prove the asserted semigroup property and the perturbation formula:

Proposition 8.14 Let M be geodesically and stochastically complete and let
V be a potential with

CV 1 ≤ V ∈ ΓKloc
(M,End(E)) ∩ ΓL2

loc
(M,End(E)) for some CV ∈ R.

We set

QV
t f(x) := E

[
V x

t //
x,−1
t f(Bt(x))

]
for any t ≥ 0, x ∈M . (159)
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a) QV
• f satisfies a pointwise semigroup identity,

QV
s+tf(x) = QV

s Q
V
t f(x) for any s, t ≥ 0, x ∈M . (160)

b) One has the following perturbation formula for any t ≥ s ≥ 0, x ∈M ,

Q0
sQ

V
t−sf(x) = E

[
V x,−1

s V x
t //

x,−1
t f(Bt(x))

]
. (161)

Proof. Firstly, note that lemma 6.5 implies that all expressions that are
involved are well-defined for all x ∈ M . Furthermore, for any starting time
a ≥ 0 and any appropiate Fa-measurable h : Ω →M , we define the processes
Ba,h, //a,h and V a,h as follows:

Ba,h : [a,∞)× Ω −→M

is defined as the maximal solution of

dBa,h =
l∑

j=1

Aj(B
a,h)dW j, Ba,h

a = h,

//a,h is defined as the stochastic parallel transport corresponding to Ba,h, so
that

//a,h
b : Eh −→ EBa,h

b
for any b ≥ a,

and, finally, for P-a.e. ω ∈ Ω, the map

V a,h
• (ω) : [0,∞) −→ End(E)h(ω)

is defined as the weak solution of

dV a,h
t (ω) = −V a,h

t (ω)
(
//a,h,−1

a+t V (Ba,h
a+t)//

a,h
a+t

)
(ω)dt,

V a,h
0 (ω) = 1.

Note that our usual notation implies

(B0,x, //0,x,V 0,x) = (B(x), //x,V x).

a) Let Ux be a lift of B(x) and let U s,Bs(x) be the lift of Bs,Bs(x) from Ux
s .

Then proposition 2.17 implies //x = UxUx,−1
0 and //s,Bs(x) = U s,Bs(x)Ux,−1

s ,
so that theorem 2.16 and the flow property [60] of the solutions of

dU =
l∑

j=1

A∗j(U)dW j (162)
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show

//x
s+t = //

s,Bs(x)
s+t //x

s P-a.s. (163)

Using (163) and the flow property Bs+t(x) = B
s,Bs(x)
s+t of the solutions of

dB =
l∑

j=1

Aj(B)dW j, (164)

one easily checks that for fixed s, the processes

V x
s+• and V x

s //
x,−1
s V s,Bs(x)

• //x
s

both solve the same End(E)x-valued initial value problem, so that by unique-
ness and (163) we get the multiplicative property

V x
s+t//

x,−1
s+t = V x

s //
x,−1
s V s,Bs(x)

t //
s,Bs(x),−1
s+t P-a.s. (165)

With EFs [•] := E[•|Fs] the last identity implies

QV
s+tf(x) = E

[
V x

s //
x,−1
s V s,Bs(x)

t //
s,Bs(x),−1
s+t f(Bs+t(x))

]
= E

[
V x

s //
x,−1
s EFs

[
V s,Bs(x)

t //
s,Bs(x),−1
s+t f

(
B

s,Bs(x)
s+t

)]]
. (166)

Now lemma 6.31 in [37] gives

E
[
V x

s //
x,−1
s EFs

[
V s,Bs(x)

t //
s,Bs(x),−1
s+t f

(
B

s,Bs(x)
s+t

)]]
=

∫
Ω

V x
s (ω)//x,−1

s (ω)

∫
Ω

Z
s,Bs(x)(ω)
t (ω̃)P(dω̃) P(dω), (167)

where we have set

Za,y
t := V a,y

t //a,y
a+tf (Ba,y

a+t) for any a ≥ 0, y ∈M .

(To be exact, lemma 6.31 in [37] is only directly applicable, if f is bounded.
The general case can easily be deduced with a dominated convergence argu-
ment, if one applies this result to fn := 1Kn(x)f and lets n→∞.) It remains
to prove that

E [Zs,y
t ] = E

[
Z0,y

t

]
for any y ∈M . (168)

To this end, we first remark that the processes Bs,y
s+• and B(y) have the same

law: Indeed, the smoothness of the vector fields Aj implies the uniqueness
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in law for (164) (this follows from theorem 1.1.10 in [41] and the Whitney
embedding theorem). Now one can use the same arguments as in the proof
of corollary 1 to Satz 6.40 in [37] to deduce that Bs,y

s+• and B(y) are equal in
law.
This equality in law shows that we can use the same arguments as in the
proof of theorem 5.5 (see in particular lemma 5.8) to restrict ourselves to the
case

V ∈ ΓL∞(M,End(E)).

Let π : P(E) →M denote the principal bundle projection, let Uy be a lift of
B(y) and let U s,y be the lift of Bs,y from Uy

0 . Proposition 2.17 implies //s,y =
U s,yUy,−1

0 and clearly we have Bs,y = π(U s,y), //y = UyUy,−1
0 , B(y) = π(Uy).

For any y ∈M and n ∈ N we define a function A t,y
n by setting

A t,y
n : C([0,∞),P(E)) −→ Ey,

A t,y
n (γ) :=

{
−→∏

1≤j≤n

(
1 +

t

n
Uy

0 γ[(tj)/n]−1V
(
π (γ[(tj)/n])

)
γ[(tj)/n]Uy,−1

0

)}
× Uy

0 γ[t]
−1f
(
π (γ[t])

)
. (169)

Then we have the following inequalities,∥∥A t,y
n (U s,y

s+•)
∥∥

y
≤ et‖V ‖∞ ‖f(Bs,y

s+t)‖Bs,y
s+t

P-a.s. (170)

and ∥∥A t,y
n (Uy)

∥∥
y
≤ et‖V ‖∞ ‖f(Bt(y))‖Bt(y) P-a.s. (171)

Since V s,y and V y can be represented as product integrals (this follows from
applying theorem 7.1 in [22] with z 7→ 1+ z together with the corresponding
remarks on page 56), one has

lim
n→∞

A t,y
n (U s,y

s+•) = Zs,y
t and lim

n→∞
A t,y

n (Uy) = Z0,y
t P-a.s.

With the same arguments as above for B•,•, one finds that U s,y
s+• and Uy also

have the same law, so that we can use dominated convergence (in view of
(170) and (171)) to deduce

E [Zs,y
t ] = lim

n→∞
E
[
A t,y

n (U s,y
s+•)

]
= lim

n→∞
E
[
A t,y

n (Uy)
]

= E
[
Z0,y

t

]
.
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b) One has

Q0
sQ

V
t−sf(x) =

∫
Ω

//x,−1
s (ω)

∫
Ω

V Bs(x)(ω)
t−s (ω̃)//

Bs(x)(ω)
t−s (ω̃)

× f
(
Bt−s

(
Bs(x)(ω)

)
(ω̃)
)

P(dω̃) P(dω)

=

∫
Ω

//x,−1
s (ω)

∫
Ω

V s,Bs(x)(ω)
t−s (ω̃)//

s,Bs(x)(ω)
t (ω̃)

× f
(
B

s,Bs(x)(ω)
t (ω̃)

)
P(dω̃) P(dω)

= E
[
//x,−1

s EFs

[
//x

sV
x,−1

s V x
t //

x,−1
t f

(
B

s,Bs(x)
t

)]]
= E

[
V x,−1

s V x
t //

x,−1
t f (Bt(x))

]
, (172)

where we have used (168) for the second equality, lemma 6.3.1 in [37] as in
the proof of part a) together with (165) for the third equality, and the flow
property of (164) for the last equality.

�

Next, we will prove:

Proposition 8.15 Let M be geodesically complete with Ricci curvature bounded
from below and a positive injectivity radius. Then for any t > 0 and any

f ∈ ΓL∞(M,E) ∩ ΓL2(M,E),

the section given by

M −→ E, x 7−→ Q0
tf(x) = E

[
//x,−1

t f(Bt(x))
]
∈ Ex (173)

is smooth.

Proof. We owe Anton Thalmaier the crucial idea (which is to use formula
(175) below) for the following proof. Let Qtf := Q0

tf . By remark 8.9,
e−tH(0)f has a smooth representative which is given by

ft(•) :=

∫
M

˜e−tH(0)(•, y)f(y)vol(dy).

Furthermore, the map (t, x) 7→ ft(x) is smooth with ft → f in the sense of
‖•‖ as t↘ 0 and

∂tft(x) = −1

2
∇∗∇ft(x) for all t > 0, x ∈M . (174)
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We fix arbitrary x ∈M and t > 0 now. Then (76) and (174) give

ds

(
//x,−1

s ft−s(Bs(x))
)

= //x,−1
s

l∑
j=1

(∇Aj
ft−s)(Bs(x))dW

j
s −

1

2
//x,−1

s ∇∗∇ft−s(B(x))ds

+ //x,−1
s ∂sft−s(Bs(x))ds

= //x,−1
s

l∑
j=1

(∇Aj
ft−s)(Bs(x))dW

j
s , (175)

so that the process

N : [0, t)× Ω −→ Ex, Ns := //x,−1
s ft−s(Bs(x))

is a continuous local martingale. It is in fact a martingale: For any 0 ≤ s < t
the following inequalities hold P-a.s.,

‖Ns‖x ≤ ‖ft−s(Bs(x))‖Bs(x)

=

∥∥∥∥∫
M

˜e−(t−s)H(0)(Bs(x), y)f(y)vol(dy)

∥∥∥∥
Bs(x)

≤ ‖f‖∞
∫

M

∥∥∥ ˜e−(t−s)H(0)(Bs(x), y)
∥∥∥

y,Bs(x)
vol(dy)

≤ d ‖f‖∞
∫

M

pt−s(Bs(x), y)vol(dy) = d ‖f‖∞ , (176)

where we have used remark 8.9, so the martingale property of N follows from
a standard criterion (see for example p.129 in [66]). This shows that for all
0 ≤ s < t,

ft(x) = E [N0] = E [Ns] ,

so that the proposition follows from dominated convergence, in view of (176)
and Ns → //x,−1

t f(Bt(x)) as s↗ t, P-a.s.

�

The next proposition is concerned with the first exit time of B(x) from open
geodesic balls, where x runs through a compact set. Although the arguments
of the (alternative) proof that we are going to present are certainly well-
known from proofs of stochastic completeness, the result itself has not yet
appeared in the literature, as far as we know.
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Proposition 8.16 Let M be geodesically complete with Ricci curvature bounded
from below. Let K 6= ∅ be a compact subset of M , fix some origin x0 ∈ K,
and for any t > 0, x ∈ K, r > 0 let

χ(r, t, x) := 1{t<ζ(r,x)},

where ζ(r, x) stands for the first exit time of B(x) from Kr(x0). Then one
has

lim
r→∞

sup
x∈K

E [1− χ(r, t, x)] = 0 for any t > 0. (177)

Remark 8.17 If M is the Euclidean Rm, then (177) follows from Lévy’s
maximal inequality. This has been pointed out in [13].

�

Proposition 8.16 can be seen as follows: Theorem 5.40 in [79] (the corre-
sponding proof is purely analytical) implies the existence of constants

C1(M) > 0, C2(t) > 0, C3(M, t) > 0

such that for any x ∈M and any r > 0 one has

E [1− χ(r, t, x)] ≤ C1(M)eC2(t)d(x0,x)e−C3(M,t)r2

. (178)

Bounding d(x0, •) on K, this obviously implies (177).
As we have already mentioned, we are going to give a stochastic analysis
proof of proposition 8.16:

Alternative proof of proposition 8.16. Note that (177) is nothing but

lim
r→∞

sup
x∈K

P{t < ζ(r, x)} = 1 for any t > 0.

Since M is stochastically complete, we can assume K 6= {x0}. Let R(x) :=
d(x0, x). Then R is a smooth function on the open set

M̃ := M \ (Cut(x0) ∪ {x0}).

If C > 0 is such that the Ricci curvature of M is bounded from below by
−C, then by a standard argument of differential geometry, which uses the
index lemma and the second variation formula, one can easily deduce 19

∆R(x) ≤ h(R(x)) for all x ∈ M̃, (179)

19For example, (179) can be seen by replacing Ki(s) in the proof of theorem 3.4.3 in
[41] with (sXi)/r. This result also follows directly from setting ϕ(t) := t/r in inequality
(2.3) of [62].
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where

h : (0,∞) −→ (0,∞), h(r) :=
m− 1

r
+
C

3
r.

Furthermore, although R /∈ C∞(M), the process R(B(x)) is a continuous
semi-martingale (this is a highly nontrivial result [50]) which satisfies

R(Bt(x))−R(x) = Zx
t +

∫ t

0

∆R(Bs(x))ds− Lx
t P-a.s. (180)

for any t ≥ 0, x ∈M , where Zx is a Brownian motion which starts in 0, Lx is
a continuous nondecreasing process which starts in 0, and where the integral
can be defined since B(x) does not spend time in M \ M̃ (this follows from
the well-known fact that Cut(x0) ∪ {x0} is a null set; see p.527 in [37] for
details). We set

CK := max
y∈K

R(y) (> 0).

For any x ∈M let Y x be the uniquely determined maximal solution of

dY x = dZx + h(Y x)dt, Y x
0 = CK . (181)

The Feller explosion test as formulated in proposition 4.2.2 in [41] can be
checked with elementary estimates to prove that Y x is nonexplosive. Fur-
thermore, (179), (180) and a classical comparison theorem (theorem 1.1 in
[44]) imply

R(Bt(x)) ≤ Y x
t P-a.s. for any t ≥ 0, x ∈ K. (182)

Now (182) shows the following uniform estimate in x: For any t ≥ 0 and
r > 0,

sup
x∈K

P{t < ζ(r, x)} = sup
x∈K

P {R(Bs(x)) < r for all s ∈ [0, t]}

≥ sup
x∈K

P {Y x
s < r for all s ∈ [0, t]}

= sup
x∈K

P {Y x0
s < r for all s ∈ [0, t]}

= P {Y x0
s < r for all s ∈ [0, t]} , (183)

where we have used that the smoothness of h implies uniqueness in law for
the pair (1, h) (theorem 1.1.10 in [41]). Since Y x0 does not explode, the last
term in (183) goes to 1 as r →∞, and the proof is complete.

�

We will use proposition 8.16 to prove part b) of:
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Proposition 8.18 a) Let M be stochastically complete and let V be a po-
tential with

CV 1 ≤ V ∈ ΓK(M,End(E)) for some CV ∈ R.

Then one has

lim
t↘0

sup
x∈M

E
[
‖1− V x

t ‖
2
x

]
= 0. (184)

b) Let M be geodesically complete with Ricci curvature bounded from below
and let V be a potential with

CV 1 ≤ V ∈ ΓKloc
(M,End(E)) for some CV ∈ R.

Then for all compact K ⊂M one has

lim
t↘0

sup
x∈K

E
[
‖1− V x

t ‖
2
x

]
= 0. (185)

Proof. a) Let f1, . . . , fd be a global orthonormal frame for E. Of course,
these sections in E cannot be chosen smooth in general, but they can always
be chosen measurable, so

f1, . . . , fd ∈ ΓL0(M,E).

For any x ∈M we define a Mat(Cd)-valued process A (x, •) by setting

A i
j (x, t) := 〈fi(x),V

x
t fj(x)〉x .

Then it is sufficient to prove that for all i, j = 1, . . . , d one has

lim
t↘0

sup
x∈M

E
[∣∣δi

j −A i
j (x, t)

∣∣2] = 0. (186)

The following (in)equalities are all valid P-a.s. One has

d

dt

∣∣δi
j −A i

j (x, t)
∣∣2 = 2Re

{(
δi
j −A i

j (x, t)
) d

dt

(
δi
j −A i

j (x, t)
)}

,

so that integrating this equality and using the differential equation for V x

we get∣∣δi
j −A i

j (x, t)
∣∣2

=

∫ t

0

2Re
{(
δi
j −A i

j (x, s)
) 〈
fi(x),V x

s //
x,−1
s V (Bs(x))//x

sfj(x)
〉

x

}
ds.
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This implies∣∣δi
j −A i

j (x, t)
∣∣2

≤ 2

∫ t

0

∣∣δi
j −A i

j (x, s)
∣∣ ∣∣〈fi(x),V

x
s //

x,−1
s V (Bs(x))//

x
sfj(x)

〉
x

∣∣ ds,
so that noting that for 0 ≤ s ≤ t,

‖V x
s ‖x ≤ Ct := max

{
e−CV t, 1

}
,
∣∣A i

j (x, s)
∣∣ ≤ Ct,

we arrive at

sup
x∈M

E
[∣∣δi

j −A i
j (x, t)

∣∣2] ≤ 2 (1 + Ct)Ct sup
x∈M

E
[∫ t

0

‖V (Bs(x))‖Bs(x) ds

]
.

(187)

The last expression tends to 0 as t↘ 0 by the definition of the Kato class.

b) We use a standard localization procedure. Let K, x0 and χ(r, t, x) be as
in proposition 8.16. Then we have

sup
x∈K

E
[(

1− χ(r, t, x) + χ(r, t, x)
)
‖1− V x

t ‖
2
x

]
≤ Ct sup

x∈K
E [1− χ(r, t, x)] + sup

x∈K
E
[
χ(r, t, x) ‖1− V x

t ‖
2
x

]
, (188)

where
Ct := 2e−2CV t + 2,

so that in view of (177) it is sufficient to prove that for all r > 0,

lim
t↘0

sup
x∈M

E
[
χ(r, t, x) ‖1− V x

t ‖
2
x

]
= 0. (189)

To this end, let t > 0, r > 0 and take a nonnegative Ψ ∈ C∞
0 (M) such that

Ψ = 1 in Kr(x0). We denote with V Ψ,x the solution of (124) with V replaced
with ΨV and remark that

ΨV ∈ ΓK(M,End(E)).

Since in {χ(r, t, x) 6= 0} one has

//x,−1
s V (Bs(x))//

x
s = //x,−1

s Ψ(Bs(x))V (Bs(x))//
x
s for any 0 ≤ s ≤ t,

expanding V x and V Ψ,x in path ordered exponentials as in (79) shows

E
[
χ(r, t, x) ‖1− V x

t ‖
2
x

]
= E

[
χ(r, t, x)

∥∥∥1− V Ψ,x
t

∥∥∥2

x

]
,
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and (189) follows from part a).

�

Now we are prepared to prove theorem 8.12.

Proof of theorem 8.12. Boundedness: We estimate as follows,

sup
x∈M

∥∥E [V x
t //

x,−1
t f(Bt(x))

]∥∥
x

≤ sup
x∈M

(
E
[
‖V x

t ‖
2
x

] 1
2 E
[
‖f(Bt(x))‖2

Bt(x)

] 1
2

)
≤ e−CV t

(
sup

x,y∈M
pt(x, y)

) 1
2

‖f‖ <∞, (190)

where we have used the Cauchy-Schwarz inequality and (114).

Continuity: It follows from remark 8.13 that it is sufficient to prove that for
any compact K ⊂M and any

f ∈ ΓL∞(M,E) ∩ ΓL2(M,E)

one has

lim
s↘0

sup
x∈K

∥∥Q0
sQ

V
t−sf(x)−QV

t f(x)
∥∥

x
= 0. (191)

By (161), one has∥∥Q0
sQ

V
t−sf(x)−QV

t f(x)
∥∥

x

=
∥∥E [(V x,−1

s V x
t − V x

t

)
//x,−1

t f(Bt(x))
]∥∥

x

=
∥∥E [(1− V x

s ) V x,−1
s V x

t //
x,−1
t f(Bt(x))

]∥∥
x
. (192)

Since we have ∥∥V x,−1
s V x

t

∥∥
x
≤ e−CV (t−s) P-a.s. (193)

for some lower bound CV of V by proposition A.1, and furthermore

E
[
‖f(Bt(x))‖2

Bt(x)

]
=

∫
M

pt(x, y) ‖f(y)‖2
y vol(dy) ≤ ‖f‖2

∞ ,

we get

sup
x∈K

∥∥Q0
sQ

V
t−sf(x)−QV

t f(x)
∥∥

x

≤ e−CV (t−s) sup
x∈K

(
E
[
‖1− V x

s ‖
2
x

]1/2 E
[
‖f(Bt(x))‖2

Bt(x)

]1/2
)

≤ e−CV (t−s) ‖f‖∞ sup
x∈K

E
[
‖1− V x

s ‖
2
x

]1/2

→ 0 as s↘ 0, (194)
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where we have used the Cauchy-Schwarz inequality and proposition 8.18.

�

8.4 Some specific remarks on trivial vector bundles

In this section, we would like to specify some of the results from the previous
sections to trivial vector bundles and to apply these results to operators that
have direct applications in theoretical physics, such as magnetic Schrödinger
operators or Yang-Mills Hamiltonians.

Throughout this section, let M be geodesically and stochastically complete,
let E = M × Cd with its standard Hermitian structure, and let

α ∈ Ω1(M,U (d)).

We consider a potential V with

CV 1 ≤ V ∈ L2
loc(M,Mat(Cd)) for some CV ∈ R,

and the self-adjoint realization of 1
2
(d + α)∗(d + α) + V in L2(M,Cd) will be

denoted withH(α, V ). Here, d and d∗ act componentwise and α is considered
as a zeroth order differential operator

α : C∞(M,Cd) −→ Ω1(M,Cd), α(Ψ)j =
m∑

k=1

αjkψ
k.

The formal adjoint α∗ of α is the zeroth order differential operator given by

α∗ : Ω1(M,Cd) −→ C∞(M,Cd), α∗(β)j =
m∑

k=1

g(αkj, β
k),

where g(αkj, β
k) stands for the pairing of αkj and βk with respect to the

(complexified) Riemannian structure g on M . In accordance to our previous
notation for operators on functions, we will write H0(V ) = H(0, V ). Let us
first derive a formula for H(α, V ) |C∞0 (M,Cd):

Lemma 8.19 The following formula holds for any Ψ ∈ C∞
0 (M,Cd),

H(α, V )Ψ =− 1

2
∆Ψ− 1

2

l∑
j=1

α(Aj)
2 ·Ψ− 1

2

l∑
j=1

Aj(α(Aj)) ·Ψ

−
l∑

j=1

α(Aj) · Aj(Ψ) + V ·Ψ, (195)
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where the number m ≤ l ∈ N and the vector fields

A1 . . . , Al ∈ ΓC∞(M,TM)

have been defined by the Nash embedding theorem in section 4.

Proof. Let the morphism of vector bundles A : M × Rl −→ TM be as in
section 4, let ν, ξ ∈ Ω(M) and let # : T∗M → TM be the isomorphism of
vector bundles that is induced by the metric g. Clearly, one has d∗dΨ =
−∆Ψ. Furthermore,

gx(v, w) =
〈
A(x)∗v#, A(x)∗w#

〉
Rl for any x ∈M and v, w ∈ T∗

xM

and Aj(x) = A(x)ej imply

g(ν, ξ) =
l∑

j=1

ν(Aj)ξ(Aj). (196)

Next, let x ∈ M be arbitrary and let w1, . . . , wm be a local orthonormal
frame for TM in a neighbourhood of x with

∇TM
wj

wk |x= 0 for j, k = 1, . . . ,m.

Then

d∗ν |x= −div(ν#) |x= −
m∑

j=1

g
(
∇TM

wj
ν#, wj

)
|x= −

m∑
j=1

wj

(
g
(
ν#, wj

) )
|x .

If we take vm+1, . . . , vl ∈ Rl such that v1, . . . , vl is an orthonormal basis of
Rl, where vj := A(x)∗wj(x) for j = 1, . . . ,m, then it follows that

d∗ν |x=−
m∑

j=1

(
A(•)A(•)∗wj

)(
g
(
ν#, A(•)A(•)∗wj

) )
|x

= −
l∑

j=1

(
A(•)vj

)(
g
(
ν#, A(•)vj

) )
|x

= −
l∑

j=1

(
A(•)ej

)(
g
(
ν#, A(•)ej

) )
|x

= −
l∑

j=1

Aj(ν(Aj)) |x . (197)
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The assertion now follows easily from the formulae (196) and (197).

�

The starting point for the results of this section is the following Feynman-Kac
formula:

Theorem 8.20 a) The following formula holds for any t ≥ 0, f ∈ L2(M,Cd)
and a.e. x ∈M ,

e−tH(α,V )f(x) = E
[
A α,V

t (x)f(Bt(x))
]
, (198)

where for a.e. x ∈M , the process

A α,V (x) : [0,∞)× Ω −→ Mat(Cd)

is defined as the maximal solution of

dA α,V
t (x) = A α,V

t (x)
(
α(dBt(x))− V (Bt(x))dt

)
, A α,V

0 (x) = 1.

b) Let M be geodesically complete with Ricci curvature bounded from below
and positive injectivity radius, and let t > 0. Then e−tH(α,V ) is an integral
operator with an a.e. well-defined and essentially bounded integral kernel
given by

e−tH(α,V )(•, •) : M ×M −→ Mat(Cd)

e−tH(α,V )(x, y) := pt(x, y)Ex,y
t

[
A α,V

t (x)
]
∈ Mat(Cd). (199)

Remark 8.21 A geometric interpretation of A α,0 as a stochastic parallel
transport can be found in remark 2.22. Indeed, with standard identifications
in trivial vector bundles it is possible to deduce theorem 8.20 somewhat
directly from theorem 5.5. Nevertheless, we find it instructive to explain the
“calculational” origin of formula (198), namely formula (200) below. The
approximation arguments that follow the latter formula are the same ones
as in the proof of theorem 5.5. �

Proof of theorem 8.20. a) We set A (x) := A α,V (x). Let us first assume
that V is continuous and bounded, let Ψ ∈ C∞

0 (M,Cd) and fix an arbitrary
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x ∈M . Then using (56) and (74), one finds that for all t ≥ 0,

d
(
At(x)Ψ(Bt(x))

)
= d
(

a martingale which starts in zero
)

+ At(x)

(
1

2
∆Ψ(Bt(x))− V ·Ψ(Bt(x))

)
dt

+
1

2
At(x)

l∑
j=1

α(Aj)
2 ·Ψ |Bt(x) dt+

1

2
At(x)

l∑
j=1

Aj(α(Aj)) ·Ψ |Bt(x) dt

+ At(x)
l∑

j=1

α(Aj) · Aj(Ψ) |Bt(x) dt P-a.s. (200)

Using lemma 8.19, this implies

d
(
At(x)Ψ(Bt(x))

)
= d
(

a martingale which starts in zero
)

−At(x)H(α, V )Ψ(Bt(x))dt (201)

and (198) for continuous and bounded V can be deduced as in the first part
of the proof of theorem 5.3.

For general V one proceed as follows: Firstly, we remark that the process
A (x) indeed exists for a.e. x ∈M , as follows from proposition 5.6. Since we
can decompose A (x) into a unitary process and a path ordered exponential
(see part c) and d) of proposition C.29) and since one has

‖At(x)‖Mat(Cd) ≤ e−CV t P-a.s. for any t ≥ 0

for some lower bound CV of V (which is implied by this decomposition and
proposition A.1 b)), one can directly follow the approximation arguments of
the second part of the proof of theorem 5.3 and of the proof of theorem 5.5
to deduce (198).

b) This assertion follows with standard arguments from part a).

�

We have collected some simple consequences of formula (198) in the following
corollary. In particular, we obtain an extension of the Euclidean Feynman-
Kac-Itô formula to the setting of Riemannian manifolds.

Corollary 8.22 Let v : M → R be locally square integrable and bounded
from below and let β ∈ Ω1

R(M).

a) For any f ∈ L2(M), t ≥ 0 and a.e. x ∈M one has

e−tH(iβ,v)f(x) = E
[
e−

R t
0 v(Bs(x))ds+i

R t
0 β(dBs(x))f(Bt(x))

]
. (202)
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b) The operator e−tH0(v) is positivity preserving for any t ≥ 0, that is, f ≥ 0
a.e. in M implies e−tH0(v)f ≥ 0 a.e. in M .

c) If the ground state energy λ := inf σ(H0(v)) is an eigenvalue of H0(v),
then λ is simple and the corresponding ground state eigenvector can be chosen
strictly positive.

Proof. a) This follows easily from theorem 8.20.

b) This is obviously implied by the Feynman-Kac-Itô formula with β = 0.

c) This follows from b) and theorem XIII.44 in [65].

�

Next, let us add some specific remarks about Schrödinger operators with
magnetic fields.

The energy of a nonrelativistic spinless quantum mechanical particle with
mass and charge equal to 1 which lives on a “nice” Riemannian manifold (for
example, one may assume that M has a bounded geometry for the following
arguments) under the influence of a electrical potential

Cv ≤ v ∈ L2
loc(M)

is described [15] by the spectrum of the Schrödinger operatorH0(v) in L2(M).
Switching on a magnetic field β ∈ Ω1

R(M) corresponds to changing H0(v) to
H(iβ, v). Note that if Ψ ∈ C∞

0 (M), then one has

H(iβ, v)Ψ = −1

2
∆Ψ +

i

2

(
d∗(βΨ)− β∗(dΨ)

)
+

1

2
β∗(βΨ) + vΨ,

where β∗(α) ∈ C∞
0 (M) stands for the pairing of β and α ∈ Ω1

0(M) with re-
spect to the Riemannian structure of M . It is expected from classical physics
that in some sense the energy of the quantum system given byH(iβ, v) should
be greater than (or equal to) the energy of the quantum system given by
H0(v). This statement can be justified mathematically in three ways, with
the probabilistic methods that have been developed so far: Firstly, one has
the following diamagnetic inequality,∣∣e−tH(iβ,v)(x, y)

∣∣ ≤ e−tH0(v)(x, y). (203)

Secondly, one has

tr
(
e−tH(iβ,v)

)
≤ tr

(
e−tH0(v)

)
, (204)

and finally

inf σ(H(iβ, v)) ≥ inf σ(H0(v)). (205)
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We find it instructive to explain how elementary the proofs of these in-
equalites become in this scalar setting: From conditioning the Feynman-
Kac-Itô formula, one finds,∣∣e−tH(iβ,v)(x, y)

∣∣ = pt(x, y)
∣∣∣Ex,y

t

[
e−

R t
0 v(Bs(x))ds+i

R t
0 β(dBs(x))

]∣∣∣
≤ pt(x, y)Ex,y

t

[
e−

R t
0 v(Bs(x))ds

]
= e−tH0(v)(x, y). (206)

The inequality (204) now follows from

tr
(
e−tH(iβ,v)

)
=

∫
M

∫
M

e−
t
2
H(iβ,v)(x, y)e−

t
2
H(iβ,v)(x, y)vol(dx)vol(dy).

If f ∈ L2(M), then multiplying (206) with |f(y)| and integrating with respect
to
∫

M
(•)vol(dy) gives ∣∣e−tH(iβ,v)f(x)

∣∣ ≤ e−tH0(v) |f(x)| . (207)

The latter inequality implies〈
e−tH(iβ,v)f, f

〉
≤
〈
e−tH0(v) |f | , |f |

〉
, (208)

from which (205) can easily be deduced with the help of the following two
abstract facts: If H is a self-adjoint operator in a Hilbert space (H , 〈•, •〉H )
such that H is semi-bounded from below, then by the spectral calculus one
has ([87], p.322)

supσ
(
e−H

)
= e− inf σ(H),

and furthermore the variational principle (see for example [84], theorem 2.19)
gives

supσ
(
e−H

)
= sup

{〈
e−HΨ,Ψ

〉
H

∣∣∣Ψ ∈ H , ‖Ψ‖H = 1
}
.

Alternatively, one can of course also use the somewhat more sophisticated
arguments from the proof of theorem 8.1 (that have been used there to prove
the inclusion iii)) to deduce (205) from (208).

We close this section with a measure theoretic proof of a Goldon-Thompson-
Symanzik type bound and a phase space bound for Yang-Mills Hamiltonians
in the Euclidean Rm. Let α ∈ Ω(Rm,U (d)) and let V be a potential with

CV 1 ≤ V ∈ L2
loc(Rm,Mat(Cd)) ∩ Kloc(Rm,Mat(Cd)) for some CV ∈ R.

We are interested in the operator H(α, V ) in L2(Rm,Cd). Note that in this
case we have

H(α, V )Ψ = −1

2
∆Ψ− 1

2

m∑
j=1

(
(∂jαj) + 2αj∂j + α2

j

)
Ψ + VΨ
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for any Ψ ∈ C∞
0 (Rm,Cd). Differential operators of this type arise in quantum

mechanics, if one wants to describe the energy of nonrelativistic Yang-Mills
particles [40] [20] (with internal symmetries like isospin that are modelled by
a subgroup of U(d)), which live on Rm under the influence of the “electrical”
potential V . We want to prove an extension of (152) and the phase space
bound (153) to this setting. As we have already mentioned, by using the
linear structure of Rm explicitely, the proof of these inequalities becomes
elementary (in the sense that no operator theoretic methods are needed),
when compared with the proof of theorem 8.10. To this end, let V : Rm →
R be given by V (x) = minσ(V (x)) and let t > 0. In view of (199) and
proposition C.29, one can use the same arguments as in the proof of theorem
8.8 to see that

tr
(
e−tH(α,V )

)
≤ d tr

(
e−tH0(V )

)
,

where H0(V ) denotes the self-adjoint realization of −∆/2 +V in L2(Rm). In
this situation, the map

(x, y) 7−→ e−tH0(V )(x, y) =
1

(2πt)
m
2

e−
‖x−y‖2Rm

2t Ex,y
t

[
e−

R t
0 V (Bs(x))ds

]
is continuous [13], so that we may interpret

tr
(
e−tH0(V )

)
=

∫
Rm

e−tH0(V )(y, y)dy

=
1

(2πt)
m
2

∫
Rm

Ey,y
t

[
e−

R t
0 V (Bs(y))ds

]
dy

=
1

(2πt)
m
2

∫
Rm

E0,0
t

[
e−

R t
0 V (Bs(0)+y)ds

]
dy

literally. Using Fubini’s theorem twice together with Jensen’s inequality
(applied to the probability measure µ(ds) = ds/t on [0, t] and the exponential
function), one gets

1

(2πt)
m
2

∫
Rm

E0,0
t

[
e−

R t
0 V (Bs(0)+y)ds

]
dy

≤ 1

(2πt)
m
2

∫ t

0

E0,0
t

[∫
Rm

e−tV (Bs(0)+y)dy

]
ds

t
.

Since ∫
Rm

e−tV (Bs(0)(ω)+y)dy =

∫
Rm

e−tV (y)dy
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for any ω ∈ Ω and
1

(2πt)
m
2

=

∫
Rm

e−
1
2
t‖x‖2Rm dx,

we arrive at the desired bounds

tr
(
e−tH(α,V )

)
≤ d

(2πt)
m
2

∫
Rm

e−tV (y)dy (209)

= d

∫
Rm

∫
Rm

e−t( 1
2
‖x‖2Rm+V (y))dxdy. (210)

97



A Appendix: Some inequalities for operator

valued differential equations

Let H be a d-dimensional, d <∞, complex or real Hilbert space with scalar
product 〈•, •〉 and the corresponding norm ‖•‖. The induced operator norm
will be denoted with the same symbol. If a ≥ 0, F ∈ L1

loc([a,∞),L (H )),
then a standard use of the Banach fixed point theorem shows that there is a
unique weak (= locally absolutely continuous) solution Y : [a,∞) → L (H )
of the ordinary initial value problem

d

ds
Y (s) = Y (s)F (s), Y (a) = 1.

We want to prove the following two propositions in this section:

Proposition A.1 a) For any t ≥ a,

‖Y (t)‖ ≤ e
R t

a‖F (s)‖ds.

b) Let t ≥ a, assume that F (s) is Hermitian for a.e. s ∈ [a, t] and that there
exists a real-valued function c ∈ L1[a, t] such that for all v ∈ H one has

〈F (s)v, v〉 ≤ c(s) ‖v‖2 for a.e. s ∈ [a, t].

Then one has
‖Y (t)‖ ≤ e

R t
a c(s)ds.

Proof. a) This becomes a direct consequence of the Gronwall lemma, if one
integrates the differential equation and takes norms.

b) Let f1, . . . , fd be an orthonormal basis of H . Since ‖Y ∗‖ = ‖Y ‖, we can
assume that

d

ds
Y (s)fj = F (s)Y (s)fj, Y (a) = 1,

so

d

ds
‖Y (s)fj‖2 = 2 〈F (s)(Y (s)fj), Y (s)fj〉

≤ 2c(s) ‖Y (s)fj‖2 for a.e. s ∈ [a, t], (211)

and the assertion again follows from the Gronwall lemma.

�
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Proposition A.2 Let F1, F2 ∈ L1
loc([a,∞),L (H )) and let

Y1, Y2 : [a,∞) −→ L (H )

be the unique solutions of the ordinary initial value problems

d

ds
Yj(s) = Yj(s)Fj(s), Yj(a) = 1 for j = 1, 2.

The following inequality holds for all t ≥ a,

‖Y1(t)− Y2(t)‖ ≤ e2
R t

a‖F1(s)‖ds+
R t

a‖F2(s)‖ds

∫ t

a

‖F1(s)− F2(s)‖ ds.

Proof. Y1(s) and Y2(s) are invertible for any s ≥ a and

d

ds
Y −1

j (s) = −Fj(s)Y
−1
j (s).

Since

d

ds

(
Y −1

1 (s)Y2(s)
)

= Y −1
1 (s)(F2(s)− F1(s))Y2(s) for a.e. s ≥ a,

one obtains the following equality (after integration and multiplication with
Y1(t)):

Y2(t) = Y1(t) + Y1(t)

∫ t

a

Y −1
1 (s)(F2(s)− F1(s))Y2(s)ds.

Thus,

‖Y1(t)− Y2(t)‖ ≤ ‖Y1(t)‖
∫ t

a

∥∥Y −1
1 (s)

∥∥ ‖F2(s)− F1(s)‖ ‖Y2(s)‖ ds. (212)

The claim follows from observing that

‖Yj(s)‖ ≤ e
R t

a‖Fj(r)‖dr,
∥∥Y −1

j (s)
∥∥ ≤ e

R t
a‖Fj(r)‖dr

by proposition A.1.

�

We remark that this result is similar to inequality III, [68], p.53 (which could
be adjusted to our situation by applying it to step functions and taking limits
then). Our proof follows the strategy of theorem 5.1, p.33 in [22].
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B Appendix: Riemannian manifolds with bounded

geometry

A Riemannian manifold M = (M, g) is called a manifold with bounded ge-
ometry, if

(i) infx∈M rinj(x) > 0, with rinj(x) the injectivity radius of M at x, and

(ii) all covariant derivatives of the Riemannian curvature tensor of M are
bounded.

Examples of manifolds with bounded geometry are homogeneous Riemannian
manifolds with an invariant metric, covering manifolds of compact Rieman-
nian manifolds and leaves of a foliation on a compact Riemannian manifold
(the latter two with the induced Riemannian structures) [73], [26].

Let M have a bounded geometry now. This property always implies geodesic
completeness [26]. Furthermore, by lemma 4.8 in [73], there is a C > 0 such
that for all x ∈M and all r > 0 one has

vol(x, r) ≤ eCr, (213)

where vol(x, r) stands for the volume of the open geodesic ball with radius
r around x. This inequality can be used to prove that M is stochastically
complete. Next, we list some heat kernel bounds for M : Let m := dimM ,
and let pt(x, y) be the minimal heat kernel ofM . Firstly, one has the following
global upper bound [35]: There is a constant C > 0 (which depends on the
Riemannian structure of M) such that for all t > 0, x, y ∈M ,

pt(x, y) ≤
C

min{tm
2 , 1}

(
1 +

d(x, y)2

t

)m
2

+1

e−
d(x,y)2

4t
−t inf σ(−∆). (214)

Secondly, one has the following bounds, which are local in t: For any t > 0
there are At, Bt, Ct, Dt > 0 such that for all 0 < s ≤ t and all x, y ∈ M one
has

Ate
−Bt

d(x,y)2

s

sm/2
≤ ps(x, y) ≤

Cte
−Dt

d(x,y)2

s

sm/2
. (215)

These estimates are included in lemma 7.1.
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Finally, we remark the following bound for the gradient of the logarithmic
heat kernel: Let ∇ be the Levi-Civita connection. Then for any t > 0 there
is a Ct > 0 such that for all 0 < s ≤ t and all x, y ∈M one has

‖∇y log ps(x, y)‖y ≤ Ct

(
d(x, y)

s
+

1√
s

)
. (216)

Proof. Since M is geodesically complete and has Ricci curvature bounded
from below, the main result of [30] shows the following estimate: If there
exist r0 > 0 and v0 > 0 such that for any x ∈ M one has vol(x, r0) ≥ v0,
then there are constants Cr0 , C̃r0 > 0 such that for all 0 < s ≤ C̃r0 and all
x, y ∈M one has

‖∇y log ps(x, y)‖y ≤ Cr0

(
d(x, y)

s
+

1√
s

)
. (217)

The proof (see p.527 in [30]) shows that one can actually take C̃r0 = 2r2
0.

Since one has ([15], p.784)

inf
x∈M

vol(x, r) > 0 for all r > 0

on manifolds with bounded geometry, the inequality (216) follows from these
considerations.

�

C Appendix: Stochastic differential equations

in Rm

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. Whenever it is neces-
sary20, we will assume that F∗ := (Ft)t≥0 satisfies the usual hypthothesis,
that is, the pair (P,Ft) is complete in the usual measure theoretic sense for
all t ≥ 0, and F∗ is right-continuous: Ft = Ft+ := ∩s>tFs for any t ≥ 0.
This property can always be achieved in a canonic way: If F∗ is not com-
plete, then one can augment F∗ [36], and if F∗ is not continuous, then one
way replace F∗ with (Ft+)t≥0.
In the following, let M be a topological space, canonically equipped with
the Borel-σ-algebra B(M). If X : Ω → M is a random variable (= a F -
measurable map), then the law PX of X is defined as the pushforward mea-
sure of P with respect to X, that is, PX is the probability measure on B(M)

20This is in particular the case, if one considers stochastic integrals.
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which is defined by the following commutative diagram:

B(M) PX
//

X−1

��

[0, 1]

F

P

::vvvvvvvvv

A M-valued process is a map

X : [0,∞)× Ω −→M, (t, ω) 7−→ Xt(ω) (218)

such that Xt : Ω → M is a random variable for any t ≥ 0. The process
(218) is called adapted (to F∗), if Xt is Ft-measurable for any t ≥ 0, and
continuous, if X has this property pathwise, that is, if the sample paths X(ω)
are continuous for P-a.e. ω ∈ Ω. Analogously, if M = R, then X is said to
be of finite variation (o.f.v.), if the sample paths are locally o.f.v., and X
is called increasing, if its sample paths are increasing. We use the notation
E [•] :=

∫
Ω
(•)dP for the expectation value with respect to P.

Remark C.1 If we don’t specify M , then M = R in the following.

�

Martingales are defined as follows:

Definition C.2 a) Let X be an integrable process (that is, Xt is in L1(Ω,F ,P)
for all t ≥ 0). Then X is called a (F∗-)martingale, if

Xs = E [Xt|Fs] P-a.s. for all 0 ≤ s ≤ t .

b) A process X = (X1, . . . , Xm)t with values in Rm is called a martingale, if
Xj is a martingale in the sense of a) for any j = 1, . . . ,m.

Here,
E [•|Ft] : L1(Ω,F ,P) −→ L1(Ω,Fs,P)

stands for the conditional expectation of Xt given (the information) Fs. This
morphism of Banach spaces is uniquely determined by the following fact: If
f ∈ L2(Ω,F ,P), then E [f |Fs] is the Hilbert space projection of f onto
L2(Ω,Fs,P) ([77], p.22).

Note that any martingale X is adapted and that the expectation value of X
is constant: E [Xt] = E [X0] for all t ≥ 0.
Next, we remark the following important martingale convergence theorem
(theorem 3.15 in [46]):
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Theorem C.3 Let X be a continuous martingale with

sup
t≥0

E [|Xt|] <∞.

Then there is an integrable random variable X̃ with Xt → X̃ as t → ∞
pointwise P-a.s.

Theorem C.3 particularly applies, if X is a nonnegative continuous martin-
gale.

Definition C.4 a) A (F∗-)stopping time is a map ζ : Ω → [0,∞] such that{
ζ ≤ t

}
∈ Ft for all t ≥ 0.

b) A stopping time ζ is called predictable, if there is a sequence of stopping
times (ζn) with ζn ↗ ζ P-a.s. such that

ζn < ζ P-a.s. in
{
ζ > 0

}
.

Such a sequence is said to announce ζ.

If ζ1 and ζ2 are stopping times, then so are ζ1∧ζ2 := min{ζ1, ζ2} and ζ1∨ζ2 :=
max{ζ1, ζ2}, and if (ζn) is a sequence of stopping times, then supn∈N ζn is
again a stopping time.

Example C.5 An important class of stopping times is given by first exit
times: If N is a seperable metrizable topological space, if X is a continuous
adapted process with values in N and if and U ⊂ N is open, then the map

Ω −→ [0,∞]

ω 7−→

{
∞, if Xt(ω) ∈ U for all t ≥ 0,

inf
{
t
∣∣∣ Xt(ω) /∈ U

}
, else

is P-a.s. equal to a stopping time ζX,U , called the first exit time of X from N

([28], p.41). In particular, if N = M̂ is the Alexandroff compactification of
a seperable metrizable space M , then ζX := ζX,M is a stopping time, called
the explosion time or lifetime of X.

�

For any process X with values in M and any stopping time ζ, let Xζ be the
process given by Xζ

t (ω) := Xζ(ω)∧t(ω).
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Proposition C.6 Let ζ be a stopping time and let X be a martingale. Then
the process Xζ is again a martingale.

Proof. [66], corollary 3.6, p.71.

�

Whenever necessary, we will consider Rm as a smooth Riemannian manifold
with its standard Euclidean metric. Let

p : (0,∞)× Rm × Rm −→ (0,∞), (t, x, y) 7−→ 1

(2πt)
m
2

e−
‖x−y‖2Rm

2t

be the heat kernel of Rm. Of fundamental importance is:

Definition C.7 a) A process W with values in Rm is called a Brownian
motion in Rm with starting point 21 x ∈ Rm, if W is continuous and for any
finite sequence of times 0 =: t0 < t1 ≤ · · · ≤ tn and E1, . . . , En ∈ B(Rm) one
has

P
{
Wt1 ∈ E1, . . . ,Wtn ∈ En

}
=

∫
E1

. . .

∫
En

pδ0(x, x1) · · · pδn−1(xn−1, xn)dx1 · · · dxm, (219)

with δj := tj+1 − tj for j = 0, . . . , n− 1.

b) A Brownian motion W in Rm is called F∗-compatible, if W is adapted to
F∗ and Wt+s −Wt is independent of Ft for any t ≥ 0 and s > 0.

If W is a Brownian motion in Rm, then the components of W are (indepen-
dent) Brownian motions in R1, and if FW

∗ is the filtration which is generated
by W , then W is FW

∗ -compatible, so that from now on we will always as-
sume that Brownian motions are compatible with the given filtration. In this
sense, Brownian motions are square integrable continuous martingales ([43],
theorem 7.2, p. 42) and they can be constructed as follows:

Example C.8 By setting

d(ω1, ω2) :=
∞∑

n=1

1

2n
max
0≤t≤n

min (‖ω1(t)− ω2(t)‖Rm , 1) ,

C([0,∞),Rm) becomes a metric space and we denote with Fm the corre-
sponding Borel-σ-algebra and with Fm

∗ the filtration

Fm
t := σ{Ws|0 ≤ s ≤ t},

21It follows from (219) that the law of Wt is equal to
∫
• pt(x, y)dy for any t > 0, so that

indeed W0 = x P-a.s.
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with the coordinate process Wt(ω) := ω(t). By using Kolmogorov’s exten-
sion theorem and Kolmogorov’s continuity criterion, one finds that for any
x ∈ Rm there is a unique probability measure Px on (C([0,∞),Rm),Fm)
such that formula (219) holds. In this setting, the coordinate process W on
(C([0,∞),Rm),Fm,Fm

∗ ,Px) is a Fm
∗ -compatible Brownian motion in Rm

which starts in x. We refer the reader to chapter 2 in [46] for details.

�

Our next aim in this section is to explain, given two processes X and F
satisfying certain assumptions, how one can define a new process I(F,X),
which deserves the notation (“stochastic integral”)

I(F,X)t =

∫ t

0

FsdXs.

We shall assume from now on that the given filtered probability space satisfies
the usual assumptions. Let

A :=
{
X
∣∣∣ X is cont., adapted, o.f.v and X0 = 0 P-a.s.

}
and

A+ :=
{
X
∣∣∣ X is cont., adapted, increasing and X0 = 0 P-a.s.

}
.

If X ∈ A, then the definition of I(F,X) is straighforward by the pathwise
use of the usual Lebesgue-Stieltjes calculus. But there is a no-go theorem:

Theorem C.9 . If a continuous martingale X is an element of A, then
Xt = 0 P-a.s. for any t ≥ 0.

Proof. [66], Proposition 1.2, p.120.

�

Since one is especially interested in the case where X is equal to a Brownian
motion, theorem C.9 actually shows that one has to use a different concept
in order to define stochastic integrals, namely, the concept of quadratic vari-
ations, which will be explained below.

For some applications, the class of continuous martingales is too small and
it turns out that the following is an appropriate generalization ([37], p.159):

Definition C.10 A continuous adapted process X is called a continuous lo-
cal martingale, if there exists a sequence (ζn) of stopping times with ζn ↗∞
P-a.s. as n → ∞, such that for any n ∈ N the process (X − X0)

ζn is a
martingale.
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Definition C.10 extends in the obvious way to processes with values in Rm.
A sufficient condition for a continuous local martingale to be a martingale is:

Proposition C.11 A continuous local martingale X is a martingale, if

E
[

sup
0≤t≤T

|Xt|
]
<∞ for all T > 0.

Proof. This follows from the first part of Satz 4.13 in [37].

�

Proposition and definition C.12 For any continuous local martingale X
there is a unique [X] ∈ A+ such that X2 − [X] is a continuous local mar-
tingale. The process [X] is called the quadratic variation of X. Moreover, if
X, Y are continuous local martingales, then

[X, Y ] :=
1

4

(
[X + Y ]− [X − Y ]

)
is the unique process in A such that XY − [X, Y ] is a continuous local mar-
tingale. [X, Y ] called the cross variation of X and Y .

Remark C.13 Here and in the following, uniqueness is understood in the
sense that if ˜[X] is another process with the above properties, then [X]t =
˜[X]t P-a.s. for any t ≥ 0, that is, the processes are versions of each other. We

recall the following simple fact in this context: If B,C are right-continuous
processes with values in a Hausdorff space, then B and C are versions of each
other, if and only if they are indistinguishable:

P
{
Bt = Ct for all t ≥ 0

}
= 1 ⇐⇒ P

{
Bt = Ct

}
= 1 for all t ≥ 0.

�

The map (X, Y ) 7→ [X, Y ] is symmetric and bilinear and if ζ is a stopping
time, then

[Xζ , Y ζ ]t = [X, Y ζ ]t = [X, Y ]ζt P-a.s. for any t ≥ 0. (220)

Furthermore, one has [X,X] = 0, if and only if Xt = X0 P-a.s. for any
t ≥ 0. A proof of these facts and of proposition C.12 can be found in [66],
pp.124–125.

The notion of quadratic variation characterizes Brownian motions with values
in Rm by the following Lévy theorem:
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Theorem C.14 Let X = (X1, . . . , Xm)t be a continuous adapted process
with values in Rm and a deterministic initial value. Then X is a Brownian
motion, if and only if X is a local martingale with

[Xj, Xk]t = δjkt P-a.s. for any t ≥ 0.

Proof. [66], theorem 3.6, p.150.

�

Now we are in the position to define stochastic integrals by a uniqueness
property:

Theorem C.15 For any continuous local martingale X and any continuous
adapted process F there is a unique continuous local martingale I(F,X) with
I(F,X)0 = 0 P-a.s., written as

(t, ω) 7−→
(∫ t

0

FsdXs

)
(ω) := I(F,X)t(ω),

such that

[I(F,X), Z] = I(F, [X,Z]) for any continuous local martingale Z.

Proof. [66], proposition 2.7, p.140.

�

The process I(F,X) is called the (Itô) stochastic integral of F with respect
to X. Stochastic integrals have the following properties ([66], p.140 and [37],
Satz 4.35):

Proposition C.16 Let X be a continuous local martingale and let F,G be
continuous adapted processes. Then the following statements hold:

a) One has
I(FG,X) = I(F, I(G,X)).

b) If ζ is a stopping time, then

I(F,X)ζ = I(F,Xζ) = I(F ζ , Xζ). (221)

One can extend the definition of stochastic integrals further to continuous
semi-martingales:
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Proposition and definition C.17 a) A process X is called a continuous
semi-martingale, if there is a continuous local martingale X1 and a contin-
uous adapted process of finite variation X2 such that X = X1 + X2. This
decomposition is unique.

b) For continuous semi-martingales X, Y we define [X, Y ] := [X1, Y1], if
X = X1 + X2 and Y = Y1 + Y2 are the decompositions of X and Y in the
sense of part a).

Proof. The only thing that has to be proved is the asserted uniqueness, which
follows easily from theorem C.9.

�

Remark C.18 If X, Y, Z are continuous semi-martingales, then definition
C.17 implies [[X, Y ], Z] = 0.

�

Of course, definition C.17 can be extended to vector-valued processes again.
If X = X1 + X2 is a continuous semi-martingale and if F is a continuous
adapted process, then we can define a continuous semi-martingale I(F,X)
which starts in 0 by setting

I(F,X) := I(F,X1) + I(F,X2),

where I(F,X2) ∈ A is defined as a pathwise Stieltjes integral. This definition
could actually be extended to all locally bounded integrands (this has been
carried out in [66], p.140), but we won’t need this extension here. One has:

Proposition C.19 Let X, Y be continuous semi-martingales and let F,G be
continuous adapted processes.

i) If X is a continuous local martingale, then so is I(F,X). If X is a
continuous adapted process of finite variation, then so is I(F,X).

ii) One has
I(F, I(G,X)) = I(FG,X).

iii) One has
[I(F,X), I(G, Y )] = I(FG, [X, Y ]).

iv) If ζ is a stopping time, then one has the stopping rule

I(F,X)ζ = I(F,Xζ) = I(F ζ , Xζ). (222)
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Proof. i) follows from the definition, ii) and iii) can be found in [37], p.194,
and iv) follows from (221) and the stopping rule for pathwise defined Stieltjes
integrals ([37], Satz 4.7).

�

In the case of Brownian motions as integrators, one has the following char-
acterization:

Proposition C.20 Let B be a Brownian motion and let F be a continuous
adapted process with

E
[∫ t

0

F 2
s ds

]
<∞ for any t ≥ 0.

Then I(F,B) is a square integrable continuous martingale.

Proof. This follows from the basic construction of the Itô integral with respect
to Brownian motions as integrators, which can be found for example in [43],
definition 1.5 on p.49.

�

We can now state the Itô formula:

Theorem C.21 Let X = (X1, . . . , Xm)t be a continuous semi-martingale
with values in Rm and let f ∈ C2(Rm) be real-valued. Then the process f(X)
is a continuous semi-martingale and one has

f(Xt) = f(X0) +
m∑

k=1

∫ t

0

∂kf(Xs)dX
k
s +

1

2

m∑
k,l=1

∫ t

0

∂k∂lf(Xs)d[Xk, X l]s

(223)

P-a.s. for any t ≥ 0.

Proof. [66], theorem 3.3, p.147.

�

In the symbolic differential notation of stochastic integrals, formula (223) is
also often written as

df(X) =
m∑

k=1

∂kf(X)dXk +
1

2

m∑
k,l=1

∂k∂lf(X)d[Xk, X l],

and we will use this notation, whenever it is convenient. Note that taking
f(x1, x2) := x1x2, the Itô formula implies the following product rule,

d(X1X2) = X2dX1 +X1dX2 + d[X1, X2]. (224)
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It turns out that the introduction of the following stochastic integral is con-
venient for local stochastic calculus on manifolds. This statement is mainly
motivated by theorem C.24, which shows that this calculus behaves well
under changes of coordinate systems:

Definition C.22 For any two continuous semi-martingales X, Y the con-
tinuous semi-martingale given by∫

XdY :=

∫
XdY +

1

2
[X, Y ]

is called the Stratonovic stochastic integral of Y with respect to the integrator
X.

In the situation of definition C.22, one has (where we write X(s) and Y (s)
instead of Xs and Ys, respectively):∫ t

0

X(s)dY (s) = l.i.p.
n→∞

n∑
k=1

X

(
(k − 1)t

n

)(
Y

(
(k − 1)t

n

)
− Y

(
kt

n

))
,

(225)

whereas ∫ t

0

X(s)dY (s) = l.i.p.
n→∞

n∑
k=1

1

2

(
X

(
(k − 1)t

n

)
+X

(
kt

n

))
×
(
Y

(
(k − 1)t

n

)
− Y

(
kt

n

))
. (226)

Here, l.i.p. stands for the limit in probability with respect to P. In particular,
there is a subsequence which converges P-a.s. The proof of this convergence
can be found in [43]. We remark that the symmetric definition of Stratonovic
integrals correspond to the Hermitian symmetry of the integral kernels cor-
responding to magnetic Schrödinger operators (see [77], p.160).

In analogy to proposition C.19, we get the following

Proposition C.23 Let W,X, Y, Z be continuous semi-martinagales.

i) One has ∫
Xd

∫
Y dZ =

∫
XY dZ.

ii) One has[∫
XdY,

∫
ZdW

]
=

∫
XZd[Y,W ] =

∫
XZd[Y,W ].
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iii) If ζ is a stopping time, then one has the Stratonovic stopping rule∫ t∧ζ

0

XsdYs =

∫ t

0

XsdY
ζ
s =

∫ t

0

Xζ
s dY ζ

s P-a.s. for any t ≥ 0.

Proof. i) and ii) can be found in [37], p.200-201, and iii) follows from (220)
and (222).

�

The Itô formula takes the following form with the notion of Stratonovic
integrals:

Theorem C.24 Let X be a continuous semi-martingale with values in Rm

and let f ∈ C3(Rm). Then the process f(X) is a continuous semi-martingale
and one has

f(Xt) = f(X0) +
m∑

k=1

∫ t

0

∂kf(Xs)dX
k
s P-a.s. for any t ≥ 0.

Proof. One has

m∑
k=1

∂kf(X)dXk =
m∑

k=1

∂kf(X)dXk +
1

2

m∑
k=1

d[∂kf(X), Xk]

=
m∑

k=1

∂kf(X)dXk +
1

2

m∑
j,k=1

∂j∂kf(X)d[Xj, Xk]

+
1

2

m∑
j,k,l=1

∂l∂j∂kf(X)d[[Xj, X l], Xk]

=
m∑

k=1

∂kf(X)dXk +
1

2

m∑
j,k=1

∂j∂kf(X)d[Xj, Xk]

= df(X),

where we have used the usual Itô formula and proposition C.19 iii) for the
second equality, remark C.18 for the third equality and the usual Itô formula
again for the last equality.

�

Theorem C.24 shows that Stratonovic differentials behave like ordinary dif-
ferentials in the sense of the symbolic notation

df(X) = grad(f)dX.
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The product rule (224) now takes the form

d(X1X2) = X2dX1 +X1dX2 (227)

and, more generally, if B and C are continuous semi-martingales with val-
ues in Mat(Cd) (with the usual identification of C with R2), then a short
calculation shows that

d(BC) = (dB)C +B(dC). (228)

Finally, we briefly explain the concept of stochastic differential equations in
Rm.

Definition C.25 Let Z be a continuous semi-martingale with values in Rl

and let
A = (Aj

i )
1≤j≤m
1≤i≤l : Rm −→ MatR(m× l)

be continuous. A solution of the Itô stochastic differential equation deter-
mined by (A,Z) is a Rm-valued continuous adapted process X such that for
all j = 1, . . . ,m one has

Xj
t = Xj

0 +
l∑

i=1

∫ t

0

Aj
i (X)dZi

s P-a.s. for any t ≥ 0. (229)

In particular, this definition implies that the solutions of Itô stochastic dif-
ferential equations are continuous semi-martingales. As above, one usually
uses the symbolic notation dX = A(X)dZ instead of (229). Under the as-
sumption of globally Lipschitz continuous coefficients one has:

Theorem C.26 Let Z be a continuous semi-martingale with values in Rl

and let
A : Rm −→ MatR(m× l)

be globally Lipschitz continuous. Then for any F0-measurable x0 : Ω → Rm

there is a unique solution X of the Itô equation dX = A(X)dZ with X0 = x0

P-a.s.

A proof of theorem C.26 can be found in [37] (Satz 6.15). We now turn to
Stratonovic stochastic differential equations.

Definition C.27 Let Z be a continuous semi-martingale with values in Rl

and let
A : Rm −→ MatR(m× l)
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be smooth. We say that a Rm-valued continuous semi-martingale X is a solu-
tion of the Stratonovic stochastic differential equation determined by (A,Z),
if for all j = 1, . . . ,m one has

Xj
t = Xj

0 +
l∑

i=1

∫ t

0

Aj
i (X)dZi

s P-a.s. for any t ≥ 0. (230)

Symbolically, one writes dX = A(X)dZ. Let us state some simple basic facts
that motivate the definition of stochastic differential equations on smooth
finite dimensional manifolds: Let (A,Z) be as in definition C.27 and let X
be a continuous semi-martingale in Rm. The map A defines smooth vector
fields A1, . . . , Al on Rm by setting Ai(f) :=

∑m
j=1A

j
i∂jf . A simple calculation

shows that X is a solution of dX = A(X)dZ, if and only if for any real-valued
f ∈ C∞(Rm) one has

df(X) =
l∑

i=1

Ai(f)(X)dZi (231)

=
l∑

i=1

Ai(f)(X)dZi +
1

2

l∑
i,k=1

AiAk(f)(X)d[Zi, Zk],

which, by letting f go through the coordinate maps, easily implies that X is
a solution of dX = A(X)dZ, if and only if X solves the following Itô type
equation:

dXj =
l∑

i=1

Aj
i (X)dZi +

1

2

l∑
i,k=1

m∑
p=1

Ap
k(X)∂pA

j
i (X)d[Zi, Zk].

In particular, one can use theorem C.26 to formulate a basic existence and
uniqueness theorem for Stratonovic stochastic differential equations given by
(A,Z) (for example, one may assume that A is globally Lipschitz).

Remark C.28 Assume that A1, . . . , Al are smooth vector fields on a smooth
finite dimensional manifold M . Then equation (231) makes sense, if one
defines a continuous adapted process X on M to be a semi-martingale, if
f(X) is a real-valued semi-martingale for arbitrary real-valued f ∈ C∞(M).
This observation leads to the usual definition of (solutions of) stochastic
differential equations on manifolds.

�
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We close this section with some specific remarks about matrix-valued linear
Stratonovic equations: Let

B,C : [0,∞)× Ω −→ Mat(Cd)

be adapted processes such that B is a continuous semi-martingale and such
that t 7→ Ct is pathwise locally integrable. Then by the above considerations
there is a uniquely determined solution

A B,C : [0,∞)× Ω −→ Mat(Cd)

of
dA B,C

t = A B,C
t

(
dBt − Ctdt

)
, A B,C

0 = 1.

We have collected some properties of A B,C in the following proposition:

Proposition C.29 a) A B,0,∗ is uniquely determined as the solution of

dXt = (dB∗
t − C∗

t dt)Xt, X0 = 1.

b) A B,0 is invertible and A B,0,−1 is uniquely determined as the solution of

dXt = −(dB − Ctdt)Xt, X0 = 1.

c) If
B : [0,∞)× Ω −→ U (d),

where U (d) stands for the anti-Hermitian elements of Mat(Cd), then A B,0

is unitary.

d) If
B : [0,∞)× Ω −→ U (d),

and if
Ã B,C : [0,∞)× Ω −→ Mat(Cd)

denotes the pathwise weak (= locally absolutely continuous) solution of

dÃ B,C
t = −Ã B,C

t

(
A B,0

t CtA
B,0,∗

t

)
dt, Ã B,C

0 = 1,

then one has

A B,C = Ã B,CA B,0. (232)

Proof. a) This is obvious.

b) This follows from applying the Stratonovic product rule (228) to A B,0X.

c) This follows from combining a) and b).

d) Formula (232) follows from part c) and the Stratonovic product rule.

�
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