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Summary

In the introduction of the dissertation we define Glauber and Kawasaki dynamics of a lattice
system of continuous unbounded spins. Both dynamics can be understood as stochastically
perturbed gradient flows w.r.t. the energy landscape given by the HamiltonianH of the sys-
tem. The main difference between them is that Kawasaki dynamics conservethe mean spin
m of the system in contrast to Glauber dynamics. We identify natural candidates for the
equilibrium state of the dynamics, which are closely connected to the HamiltonianH. For
Glauber dynamics this state is the grand canonical ensembleµ. For Kawasaki dynamics
this state is the canonical ensembleµN,m. Additionally, we motivate the use of functional
inequalities – namely the spectral gap (SG), the logarithmic Sobolev inequality (LSI), and
the transport-information inequality (WI) – for the analysis of the relaxation toequilibrium
of the dynamics. Roughly speaking, the SG, LSI, and WI constants characterize the expo-
nential rate of convergence to equilibrium. The main focus of Chapter 1 is laidon Glauber
dynamics, whereas the main focus of Chapter 2 and Chapter 3 is laid on Kawasaki dynamics.

In Section 1.1 we introduce some standard criteria for the SG, the LSI, and the WI. In Sec-
tion 1.2 we derive a new covariance estimate that can be naturally applied to our spin system
with weak interaction. Here, the HamiltonianH of the system ofN spins is given by

H(x) =
N∑

i=1

ψ(xi) +
∑

1≤i<j≤N
mijxixj

for a single-site potentialψ and small real-valued numbersmij determining the interaction.
The algebraic structure of this estimate is close to the Brascamp-Lieb inequality [7], but
the assumption of the convexity of the Hamiltonian is relaxed. The estimate also yields a
weighted covariance estimate due to Helffer [30], which was applied to derive decay of cor-
relations. However, our result applies to general weak (not just nearest neighbor) interaction
and is optimal for quadratic Hamiltonians with attractive interaction. The proof isbased on
a new directional SG. In Section 1.3 we derive this directional inequality on the level of the
WI. The latter yields a non-linear version of the covariance estimate and a criterion for the
WI similar to the Otto & Reznikoff criterion for LSI [46]. The proof of the directional SG
is based on ideas of Helffer [28] and Ledoux [40], whereas the proof of the directional WI
follows the proof of the Otto & Reznikoff criterion.

In Chapter 2 we consider the LSI for the canonical ensembleµN,m in the case of a non-
interacting HamiltonianH given by a sum of single-site potentialsψ i.e.

H(x) =

N∑

i=1

ψ(xi).
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Summary

Even if there is no interaction term in the HamiltonianH, there is long-range interaction
in the system due to the conservation of the mean spinm. We show that the LSI holds
uniformly in the system sizeN and the mean spinm, if the single-site potentialψ is a
bounded perturbation of a strictly convex function; more precisely, if there is a splitting
ψ = ψc + δψ such that

ψ′′
c & 1 and |δψ|+ |δψ′| . 1.

This verifies a conjecture of Landim, Panizo, and Yau [38] and simultaneously answers a
question Varadhan [53] posed in 1993. The argument is independent of the geometric struc-
ture and adapts the two-scale approach of Grunewald, Otto, Westdickenberg, and Villani [22]
from the quadratic to the super-quadratic case. Compared to the proof of[22] there are three
major changes:

• Instead of coarse-graining of big blocks, we consider iterated coarse-graining of pairs.

• The latter allows to apply a new asymmetric Brascamp-Lieb type inequality for covari-
ances, because the situation is reduced to one dimension. The asymmetric Brascamp-
Lieb inequality can be applied to perturbed strictly convex single-site potentialsψ in
contrast to the classical covariance estimate that was used in [22].

• This procedure reduces the task of deriving a uniform LSI forµN,m to the convexi-
fication of the coarse-grained Hamiltonian, which follows from a new local Cramér
theorem for perturbed strictly convex single-site potentialsψ.

In Chapter 3 we consider the LSI for the canonical ensembleµN,m in the case of weak
interaction. Here, the HamiltonianH is given by

H(x) =
N∑

i=1

(ψ(xi) + sixi) +
∑

1≤i<j≤N
mijxixj .

The linear term – given by the vectors – models the interaction of the spins with the boundary
data. Due to technical reasons, we assume thatψ has the same structure as in [22]; namely
ψ is a bounded perturbation of a quadratic potential

ψ(xi) =
1

2
x2i + δψ(xi) and |δψ|+ |δψ′|+ |δψ′′| . 1.

Provided the interaction is small in a certain sense, we derive the LSI for thecanonical en-
sembleµN,m uniformly in the system sizeN , the mean spinm, and the boundary datas. The
argument is independent of the geometric structure of the system. In contrast to Chapter 2,
the proof consists of an application of the original two-scale approach [22]. Several ideas
are needed to solve new technical difficulties due to the interaction:

• The interaction between blocks is controlled by an application of the covariance esti-
mate of Section 1.2.
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• The convexification of the coarse-grained Hamiltonian is deduced using a conditioning
technique and a perturbation argument.

• The interaction with the boundary datas induces a natural dependence of the single-
site potentials(ψ(xi) + sixi) on the sitei. Therefore, we have to generalize the local
Cramér theorem of [22] to the case of inhomogeneous single-site potentials.

It remains to note that the contents of Section 1.2 and Chapter 2 emerged fromjoint projects
of Prof. Felix Otto and the author. The content of Chapter 3 is contained in the preprint [44]
of the author, which has been recommended for publication in the journalCommunications
in Mathematical Physics.
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Introduction

In the dissertation we study classical lattice systems of continuous unbounded spins. These
systems appear in the literature in several situations:

• as a generalization of discrete spin systems like the Ising or Potts model [41];

• as a modeling and computational tool in physics, as for example in the description of
magnetic materials [34, 37, 45] and phase separation [19, 18, 14];

• in statistical mechanics and in Euclidean quantum field theory [39, 23].

Let us introduce the basic concepts of the spin system considered in the dissertation. The
setΛ consists of finitely manysites. For example,Λ can be a finite part of a lattice or a finite
graph. We index the elements ofΛ and identifyΛ with the set{1, . . . , N}. A real-valued
spinxi ∈ R is associated to each sitei ∈ {1, . . . , N}. Compared to the Ising model, where
the spin values are bounded and discrete (i.e.xi ∈ {−1, 1}), considering real-valued spins
leads to a technical advantage on the one side and to a technical challenge on the other side:

• The advantage is that because the spin valuexi is continuous one can use analytic
tools as for example differentiation and gradients.

• The challenge is that because the spin valuexi is unbounded a lot of arguments known
for the bounded case cannot be used.

A stateof the spin system is given by a vectorx ∈ R
N . TheHamiltonianH assigns to each

statex ∈ R
N a certain amount of energyH(x) ∈ R. We assume that the HamiltonianH is

smooth. TheGibbs measureµ is a probability measure on the state spaceR
N given by the

density

µ(dx) =
1

Z
exp(−H(x)) dx. (1)

Here and later on,Z denotes a generic normalization constant. The definition ofµ shows
that the occurrence of states with high energies is penalized in an exponentially strong way.
Sometimes, we callµ thegrand canonical ensemble.

Even if the study of phase transitions in spin systems has attracted a lot of interest [3, 41, 48],
we will concentrate on aspects of equilibrium dynamics in the one phase region. We consider
a stochastic processξ = ξ(t) ∈ R

N satisfying the stochastic differential equation

dξ = −A∇H(ξ) dt+
√
2A dBt. (2)

Here,∇ denotes the gradient determined by the standard Euclidean structure onR
N and the

noiseBt ∈ R
N consists ofN independent standard Brownian motions. TheN ×N matrix

A is chosen in two different ways:
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• In the case ofGlauberdynamics, the matrixA is given by the identity matrix. This
choice corresponds to spin-flip dynamics in the Ising model (cf. [43, 59]).

• In the case ofKawasakidynamics, the matrixA is given by the discrete second-order
difference operator. This choice corresponds to spin-exchange dynamics in the Ising
model (cf. [9, 38]). Note that the matrixA depends on the geometric structure of the
sitesΛ i.e. on the notion of nearest neighbor. For simplicity, we assume thatΛ is
a periodic one-dimensional lattice of sizeN . Then the elementsAij of theN × N
matrixA are given by

1

N2
Aij =







2, if i = j,

−1, if |i− j| ∈ {1, N − 1} ,
0, else.

(3)

Even if we only consider the periodic one-dimensional lattice explicitly, adapted state-
ments of our results for Kawasaki dynamics also hold for general lattices and graphs
(cf. [22, Remark 15]).

The main difference between Glauber and Kawasaki dynamics is that Glauber dynamics are
non-conservative and Kawasaki dynamics are conservative. The latter means that the initial
mean spinm of the system is conserved over time by the process i.e. for all timest ≥ 0 we
have

m :=
1

N

N∑

i=1

ξi(t = 0) =
1

N

N∑

i=1

ξi(t).

The last identity follows from the fact
∑N

i=1 dξi = 0, which is verified by a straight forward
calculation using the stochastic differential equation (2) and the definition (3) of A. Hence,
for Kawasaki dynamics the state spaceR

N can be restricted to the(N − 1) dimensional
hypersurface

XN,m :=

{

x ∈ R
N ,

1

N

N∑

i=1

xi = m

}

. (4)

The restriction of the Gibbs measureµ to the new state spaceXN,m is called thecanonical
ensembleµN,m. More precisely,µN,m is given by the density

µN,m(dx) :=
1

Z
exp (−H(x)) HN−1

⌊XN,m
(dx), (5)

whereHN−1
⌊XN,m

denotes the(N − 1) dimensional Hausdorff measure restricted toXN,m.

We assume that the initial distribution of the stochastic processξ is given by a smooth posi-
tive density. Then standard probability theory yields that the processξ is distributed at time
t according to the density given by the time-evolution

d

dt
(ftµ) = ∇ · (µ A∇ft) (6)
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in the case of Glauber dynamics and

d

dt
(ftµN,m) = ∇ · (µN,m A∇ft) (7)

in the case of Kawasaki dynamics. Both equations have to be understood inthe weak sense.
For example, equation (6) means that for any smooth test functionζ

d

dt

∫

ζ(x)ft(x)µ(dx) = −
∫

∇ζ(x) ·A∇ft(x)µ(dx).

We pose the following questions on the dynamics:

• Is there an equilibrium state?

• If yes, do the dynamics converge to equilibrium, in which sense, and how fast?

We can immediately give an answer to the first question: By using the time-evolution (6)
and (7) one sees that

d

dt
µ = 0 and

d

dt
µN,m = 0.

It follows that:

• For Glauber dynamics the Gibbs measureµ is a stationary distribution and therefore a
natural candidate for an equilibrium state.

• For Kawasaki dynamics the canonical ensembleµN,m is a stationary distribution and
therefore a natural candidate for an equilibrium state.

Let us turn to the second question, which we approach with the help of functional inequal-
ities. We introduce the spectral gap (SG), which is also called Poincaré inequality in the
literature, and the logarithmic Sobolev inequality (LSI):

Definition 0.1 (SG). Let X be a Euclidean space. A Borel probability measureµ on X
satisfies the SG(̺) with constant̺ > 0, if for all functionsf

varµ(f) :=

∫ (

f2 −
∫

fdµ

)2

dµ ≤ 1

̺

∫

|∇f |2dµ.

Here,∇ denotes the gradient determined by the Euclidean structure ofX.

Definition 0.2 (LSI). Let X be a Euclidean space. A Borel probability measureµ on X
satisfies the LSI(̺) with constant̺ > 0, if for all functionsf > 0

Ent(fµ, µ) :=

∫

f log f dµ−
∫

f dµ log

∫

f dµ ≤ 1

2̺

∫ |∇f |2
f

dµ. (8)

Here,∇ denotes the gradient determined by the Euclidean structure ofX. If
∫
fdµ = 1, the

relative entropy of the probability measurefµ w.r.t.µ is given byEnt(fµ, µ).
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Remark 0.3 (Gradient onXN,m). BecauseXN,m inherits the standard Euclidean structure
ofRN , one can calculate|∇f |2 in the following way: Extendf : XN,m → R to be constant
on the direction normal toXN,m, then

|∇f |2 =
N∑

i=1

∣
∣
∣
∣

d

dxi
f

∣
∣
∣
∣

2

.

In our framework the functional inequalities SG and LSI are useful, because they yield ex-
ponential convergence ofξ to the equilibrium state of the dynamics (cf. [50, 51, 52, 59, 62]):

Lemma 0.4. Letµ denote the grand canonical ensemble given by(1) and letftµ denote the
distribution of the Glauber dynamics given by(6). It holds:

1. If µ satisfies SG(̺), then varµ(ft) ≤ exp(−2̺t) varµ(f0).

2. If µ satisfies LSI(̺), then Ent(ftµ, µ) ≤ exp(−2̺t) Ent(f0µ, µ).

LetµN,m denote the canonical ensemble given by(5) and letftµN,m denote the distribution
of the Kawasaki dynamics given by(7). Then there is a constantC > 0 such that:

1. If µN,m satisfies SG(̺), then varµN,m
(ft) ≤ exp(−2C−1N−2̺t) varµN,m

(f0).

2. If µN,m satisfies LSI(̺), then

Ent(ftµN,m, µN,m) ≤ exp(−2C−1N−2̺t) Ent(f0µN,m, µN,m).

Proof of Lemma 0.4.We start with considering Glauber dynamics. It follows from (6) that

d

dt

∫

fdµ = 0.

A direct calculation using the last identity and (6) reveals

d

dt
varµ(ft) = −2

∫

|∇ft|2dµ and
d

dt
Entµ(ftµ, µ) = −

∫ |∇ft|2
ft

dµ.

An application of the SG(̺) and the LSI(̺ ) yields

d

dt
varµ(ft) ≤ −2̺ varµ(ft) and

d

dt
Entµ(ftµ, µ) ≤ −2̺Entµ(ftµ, µ).

Hence, the desired statement follows from an application of the differentialinequality.
The argument for Kawasaki dynamics is almost the same. Using the time-evolution (7) one
sees that for Kawasaki dynamics

d

dt
varµN,m

(ft) = −2

∫

|
√
A∇ft|2dµN,m and

d

dt
EntµN,m

(ftµ, µ) = −
∫ |

√
A∇ft|2
ft

dµN,m.

viii



On the right hand side of the last equation one applies the discrete Poincaréinequality
(cf. [12, 22]), which states that for some constantC

|∇f |2 ≤ CN2|
√
A∇f |2.

One concludes the proof by applying the SG(̺), the LSI(̺ ), and the differential inequality in
the same way as for the Glauber dynamics.

The last lemma also characterizes the rate of convergence in terms of the SG and LSI con-
stant̺. The rate for Kawasaki dynamics depends diffusively on the system sizeN , which is
the optimal scaling behavior (cf. [57]). This dependence on the system sizeN is natural: By
the definition of the matrixA, only nearest neighbors are allowed to interchange their spin
values in order to equilibrate.

The SG yields convergence to equilibrium in the sense of variances, whereas the LSI yields
convergence in the sense of relative entropies. As the next remark shows, we prefer the con-
vergence in the sense of relative entropies, because it is better adaptedto the hydrodynamic
limit i.e. sending the system sizeN to infinity.

Remark 0.5. Let us consider the scaling behavior ofvarµ(f) andEntµ(fµ, µ) in the system
sizeN for a simple example: Letν be a probability measure onR with

∫
z ν(dz) = 1. If

the grand canonical ensembleµ is the product measureµ(dx) = ⊗N
i=1ν(dxi) onR

N , then
a direct calculation yields forf(x) = ΠNi=1xi

varµ(f) = (varν(idR) + 1)N − 1 and Entµ(fµ, µ) = N Entν(idR ν, ν).

Hence, the termvarµ(f) diverges exponentially fast forN → ∞. The termEntµ(fµ, µ)
only increases linearly. The latter shows that it makes more sense to consider the relative
entropy per site than to consider the variance per site.

The SG constant̺ also determines the rate of convergence of the empirical time-average of
a bounded random variableu to its ensemble average.

Lemma 0.6. Let µ denote the Gibbs measure given by(1) and let ξ denote the Glauber
dynamics given by(2). If µ satisfies SG(̺), then anyε > 0 and t > 0 it holds for any
bounded functionu

Pf0

(
1

t

∫ t

0
u(ξ(s))ds−

∫

u dµ ≥ ε

)

≤ ‖f0‖L2(µ) exp

(

− tε2̺

(oscu)2

)

.

Here, Pf0 denotes the probability of Glauber dynamics with initial distributionf0µ and
oscu := supx u(x)− infx u(x) is the oscillation ofu.

For the proof of the last statement we refer the reader to [24][Theorem3.1]. Note that
Lemma 0.6 only holds for bounded random variablesu. For this reason we introduce two
more functional inequalities. Using these inequalities one is able to consider Lipschitz con-
tinuous random variablesu (cf. Lemma 0.9 below).
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Definition 0.7 (Wasserstein distance). Let ν andµ be probability measures on a Euclidean
spaceX. For p ∈ {1, 2} theLp-Wasserstein distanceWp(ν, µ) is given by

Wp(ν, µ) =

(∫

|x− y|p π(dx, dy)
) 1

p

,

whereπ is the optimal transference plan ofν andµ. More precisely,π minimizes the expres-
sion ∫

|x− y|p π̃(dx, dy)

over all joint probability measures̃π with marginalsν andµ, which means
∫

ξ(x)π̃(dx, dy) =

∫

ξ(x)ν(dx) and
∫

ξ(y)π̃(dx, dy) =

∫

ξ(y)µ(dy)

for all functionsξ. In the rest of the dissertation, all transference plans correspond to the
choicep = 2.

For an introduction to the Wasserstein distance and optimal transport in general we refer the
reader to Villani’s books [54] and [55].

Definition 0.8 (WI). Let X be a Euclidean space andp ∈ {1, 2}. A Borel probability
measureµ onX satisfies the WpI(̺) with constant̺ > 0, if for all functionsf > 0 with
∫
fdµ = 1

W 2
p (fµ, µ) ≤

1

̺2

∫ |∇f |2
f

dµ

For convenience, we write WI(̺) for W2I(̺). In the abbreviation WI, ”W” stands for Wasser-
stein distance and ”I” stands for Fisher information, which is the name of the term on the
r.h.s. of the last inequality.

In the literature, this type of functional inequality is called transportation-information in-
equality. In our framework, the W1I is interesting because of the following equivalent char-
acterization (cf. [24, Corollary 2.5]):

Lemma 0.9. Let µ denote the Gibbs measure given by(1) and let ξ denote the Glauber
dynamics given by(2). Thenµ satisfies W1I(̺) if and only if for any initial distributionf0µ,
ε > 0, t > 0, and Lipschitz functionu

Pf0

(
1

t

∫ t

0
u(ξ(s))ds−

∫

u dµ ≥ ε

)

≤ ‖f0‖L2(µ) exp

(

− tε2̺2

‖u‖2Lip

)

.

Here,Pf0 denotes the probability of Glauber dynamics with initial distributionf0µ.

Remark 0.10. Similar results of Lemma 0.6 and Lemma 0.9 also hold for Kawasaki dynam-
ics ξ and the canonical ensembleµN,m. One only has to exchange the constant̺ with the
constantC−1N−2̺ (cf. proof of Lemma 0.4).
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In the rest of the dissertation we will only consider the WI(̺), which implies the W1I(̺)
by Hoelder’s inequality. The purpose of the introduction was to motivate the use of the
functional inequalities SG, LSI, and WI for the analysis of equilibrium dynamics. In the
main part of the dissertation, we will consider the question if the functional inequalities SG,
LSI, and WI hold for the grand canonical ensembleµ and the canonical ensembleµN,m.
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1 Functional inequalities for Glauber
dynamics

1.1 Standard criteria for the LSI, the WI, and the SG

In this section we recall some standard criteria for the LSI, the WI, and the SG. For a general
introduction to the SG and LSI we refer to [40, 49, 25]. For more background information
about the WI we refer the reader to [47] and [24]. We start with the interplay between the
functional inequalities LSI, the WI, and the SG, which was first observedby Otto & Villani
in [47].

Lemma 1.1.1. Letµ be a probability measure on a Euclidean spaceX. Then:

µ satisfies LSI(̺) ⇒ µ satisfies WI(̺) ⇒ µ satisfies SG(̺).

Remark 1.1.2. Note that the implications of the last lemma are strict. This was shown
in [11] for the first implication. For the second implication we consider the probability
measuredµ = Z−1 exp(−|x|)dx on the real line: On the one hand [21, Theorem 6] yields
thatµ does not satisfy the WI, on the other hand the measureµ satisfies the SG because it is
log-concave by a result of Bobkov [4].

The first criterion shows that the functional inequalities LSI, WI, and SG are compatible with
products (cf. for example [25, Theorem 4.4]).

Theorem 1.1.3(Tensorization principle). Let µ1 and µ2 be probability measures on Eu-
clidean spacesX1 andX2 respectively. Ifµ1 andµ2 satisfy LSI(̺ 1) and LSI(̺ 2) respectively,
then the product measureµ1 ⊗ µ2 satisfies LSI(min{̺1, ̺2}).

Note that the last statement also holds for the WI (cf. [24, Theorem 2.7]) and the SG (cf. [25,
Theorem 2.5.]). The next criterion shows, how the LSI constant behaves under perturbations
(cf. [33, p. 1184]).

Theorem 1.1.4(Criterion of Holley & Stroock). Let µ be a probability measure on a Eu-
clidean spaceX and letδψ : X → R be a bounded function. Let the probability measureµ̃
be defined as

µ̃(dx) =
1

Z
exp (−δψ(x)) µ(dx).

If µ satisfies LSI(̺), thenµ̃ satisfies LSI(̺̃) with constant̺̃ = ̺ exp (− osc δψ).

1



1 Functional inequalities for Glauber dynamics

The last statement also holds in the case of the SG. Because of its perturbative nature, the
criterion of Holley & Stroock is not well adapted for high dimensions. For theproof we
refer the reader to [40, Lemma 1.2]. Now, we state the criterion of Bakry & Émery, which
connects the convexity of the Hamiltonian to the LSI constant (cf. [1, Proposition 3 and
Corollary 2] or [40, Corollary 1.6]).

Theorem 1.1.5(Criterion of Bakry & Émery). Letdµ := Z−1 exp(−H(x)) dx be a proba-
bility measure on a Euclidean spacesX. If there is a constant̺ > 0 such that in the sense
of quadratic forms

HessH(x) ≥ ̺

uniformly inx ∈ X, thenµ satisfies LSI(̺).

A proof using semigroup methods can be found in [40, Corollary 1.6]. There is also a nice
heuristic interpretation of the criterion of Bakry & Émery on a formal Riemannian structure
on the space of probability measures (cf. [47, Section 3]).

We illustrate the criteria from above with some examples. Letµ denote the Gibbs measure
associated to the HamiltonianH i.e.

µ(dx) =
1

Z
exp (−H(x)) dx.

Using the criterion of Bakry & Émery one directly sees that forH(x) = 1
2x

2, x ∈ R, the
associated Gibbs measureµ satisfies LSI(1). Let us consider the Ginzburg-Landau single-
site potentialH(x) = 1

4(x
2−1)2, x ∈ R, which is very important in the study of continuous

phase-transitions (cf. [27, Chapter 13]). One can splitH(x) = 1
4(x

2 − 1)2 into

H(x) = ψc(x) + δψ(x) such that ψ′′
c (x) & 1 and |δψ| . 1.

The relations∼ and. are defined in the Chapter Conventions at the end of the dissertation.
A combination of the criterion of Bakry & Émery and the criterion of Holley & Stroock
yields that the associated Gibbs measureµ satisfies the LSI(̺) for some constant̺ > 0.
Together with the tensorization principle from above this implies that the Gibbs measureµ
onR

N associated to the HamiltonianH(x) =
∑N

i=1
1
4(x

2
i − 1)2, x ∈ R

N , satisfies LSI(̺)
with the same constant̺ > 0 uniformly in the system sizeN .

The situation becomes more complex if one adds an interaction term to the Hamiltonian. Let
us consider for example the Hamiltonian

H(x) =
N∑

i=1

1

4
(x2i − 1)2 + J

N∑

|i−j|=1

xixj , for x ∈ R
N and |J | ≪ 1.

For this type of Hamiltonian, deriving the LSI(̺) with constant̺ > 0 uniformly in the
system sizeN is a well-studied problem in the literature (cf. [5, 49, 58, 40]). More recently,
Otto & Reznikoff [46] deduced a criterion for LSI that covers this situationwithout any
further analysis. Before we formulate the criterion of Otto & Reznikoff, letus recall the
disintegration of probability measures into conditional measures and the marginal:
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1.1 Standard criteria for the LSI, the WI, and the SG

Definition 1.1.6. LetP(X) denote the space of probability measures on a Euclidean space
X. We consider an arbitrary probability measureµ(dx1, dx2) ∈ P(X1 × X2). Then the
marginalµ̄(dx1) ∈ P(X1) and the family of conditional measures

{µ(dx2|x1) ∈ P(X2)}x1∈X1

are defined via

∀ ζ(x1, x2)
∫

ζ(x1, x2) µ(dx1, dx2) =

∫ ∫

ζ(x1, x2) µ(dx2|x1) µ̄(dx1).

For convenience, we will use the notationx̄i := (x1, . . . , xi−1, xi+1, . . . , xN ) that erases the
i-th coordinate of the vectorx = (x1, . . . , xN ).

Theorem 1.1.7(Criterion of Otto & Reznikoff). Letdµ := Z−1 exp(−H(x)) dx be a prob-
ability measure on a direct product of Euclidean spacesX = X1 × · · · ×XN . We assume
that

• the conditional measuresµ(dxi|x̄i), 1 ≤ i ≤ N , satisfy a uniform LSI(̺i).

• the numbersκij , 1 ≤ i 6= j ≤ N , satisfy

|∇i∇jH(x)| ≤ κij <∞

uniformly inx ∈ X. Here,| · | denotes the operator norm of a bilinear form.

• the symmetric matrixA = (Aij)N×N defined by

Aij =

{

̺i, if i = j,

−κij , if i < j,

satisfies in the sense of quadratic forms

A ≥ ̺ Id for a constant̺ > 0. (1.1)

Thenµ satisfies LSI(̺).

By [46, Remark 5], the last statement is optimal for ferromagnetic Gaussian Hamiltonians
given by

H(x) =
1

2

∑

1≤i,j≤N
xiAijxj +

∑

1≤i≤N
bixi, Aij , bj ∈ R, (1.2)

where ferromagnetic means that the coupling is attractive i.e.

Aij = Aji ≤ 0 for i < j ∈ {1, . . . , N}.

In Section 1.3 we derive an analog version of the criterion of Otto & Reznikoff on the level
of the WI (see Theorem 1.3.3). On the level of the SG there is not only an analog version but
also a relaxed one (cf. [40, Proposition 3.1], [46, Remark 4], and Remark 1.2.9):
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1 Functional inequalities for Glauber dynamics

Theorem 1.1.8.Letdµ := Z−1 exp(−H(x)) dx be a probability measure onRN . Assume
that

• the conditional measuresµ(dxi|x̄i), 1 ≤ i ≤ N , satisfy a uniform LSI(̺i).

• the matrixA(x) = (Aij(x))N×N given by

Aij(x) =

{

̺i, if i = j,

∇i∇jH(x), else,

satisfies in the sense of quadratic forms and uniformly inx

A(x) ≥ ̺ Id for a constant̺ > 0. (1.3)

Thenµ satisfies SG(̺).

It is an open question if the assumption (1.1) of Theorem 1.1.7 can also be relaxed similar to
the assumption (1.3) of Theorem 1.1.8.

As we have illustrated with examples, the standard criteria are very useful for deriving the
LSI, the WI, and the SG for the grand canonical ensembleµ. As we will explain in Chapter 2
below, one cannot directly apply the standard criteria to the canonical ensembleµN,m for a
non-convex HamiltonianH. In the remaining part of Chapter 1, we continue to consider
functional inequalities for the grand canonical ensembleµ. In Chapter 2 and Chapter 3, we
will have a closer look at the question of deriving the LSI for the canonical ensembleµN,m.

1.2 A Brascamp-Lieb type covariance estimate

In this section we derive a new covariance estimate for a certain class of Gibbs measures

µ(dx) =
1

Z
exp (−H(x)) dx,

on a finite-dimensional Euclidean spaceX (see Theorem 1.2.4). The covariance estimate can
be seen as an analogon of the Brascamp-Lieb inequality (BLI), which estimates variances.
The BLI was originally introduced by Brascamp & Lieb in [7]:

Theorem 1.2.1(Brascamp & Lieb). LetH be strictly convex. Then for all functionsf

varµ(f) :=

∫ (

f −
∫

f dµ

)2

dµ ≤
∫ 〈

∇f, (HessH)−1∇f
〉

dµ. (1.4)

The main difference between our estimate and the BLI is that

• our estimate applies to covariances,

• it also handles non-convex Hamiltonians,

• in the convex case the bound is slightly weaker than in the BLI.
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1.2 A Brascamp-Lieb type covariance estimate

The estimate also implies a well-known weighted covariance estimate due to Helffer(see
Theorem 1.2.8, [30, Section 4] or [40, Proposition 2.1 or 3.1]), which yields exponential
decay of correlations for unbounded spin systems with a non-convex single-site potential
and a weak finite-range interaction (see [30, Theorem 2.1], [5, Theorem 1.1], [6, Theorem
3.1] or [40, Proposition 6.2]). On the other hand our estimate already yieldsthe decay as
a simple consequence (see Corollary 1.2.10 and Proposition 1.2.11). Decay of correlations
is often used to derive the LSI or the SG (see for example [61, 62, 30, 5,58, 60] or [5]
for an overview). Hence, it is not surprising that our covariance estimate is one of the key
ingredients to derive the LSI for the canonical ensembleµN,m in the case of a weak two-
body interaction (cf. Chapter 3). We deduce the covariance estimate froma new inequality
calleddirectionalSG (see Theorem 1.2.12). The proof the directional SG is based on ideas,
which were outlined by Ledoux for the proof of the weighted covariance estimate (cf. [40]
and Theorem 1.2.8).

We consider a finite dimensional Euclidean spaceX. Norms| · | and gradients∇ are derived
from the Euclidean structure. If a probability measureµ onX satisfies the SG, we directly
obtain the following standard covariance estimate:

Lemma 1.2.2. Assumeµ satisfies SG(̺). Then for any functionf andg we have

covµ(f, g) ≤
1

̺

(∫

|∇f |2 dµ
) 1

2
(∫

|∇g|2 dµ
) 1

2

. (1.5)

Even if the estimate (1.5) is optimal (cf. [46, Remark 4]), it does not yield information about
the dependence of the covariance on the specific coordinates. Hence,the estimate (1.5) is
useless for deducing decay of covariances. For example, let us consider a Gaussian Gibbs
measure

µ(dx) =
1

Z
exp (−x ·Ax) dx

onRN with a symmetric and positive definiteN ×N - Matrix A. Then it is known that

covµ(xn, xk) =
(
A−1

)

nk
≤ 1

̺
. (1.6)

Therefore, we can hope for a finer estimate than (1.5) that is also sensitive to the dependence
of the functionsf andg on the specific coordinatesxi. Our covariance estimate shows this
feature:

Assumption 1.2.3.We assume that the HamiltonianH of the Gibbs measureµ is convex at
infinity i.e.H is a bounded perturbation of a convex function. It follows from the observation
by Bobkov [4] – all log-concave measures satisfy SG – and the perturbation lemma of Holley
& Stroock [33] (cf. Lemma 1.1.4), thatµ satisfies SG with an unspecified constant˜̺> 0.

Theorem 1.2.4(Covariance estimate). Let dµ := Z−1 exp(−H(x)) dx be a probability
measure on a direct product of Euclidean spacesX = X1 × · · · ×XN . We assume that

• the conditional measuresµ(dxi|x̄i), 1 ≤ i ≤ N , satisfy a uniform SG(̺i).
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1 Functional inequalities for Glauber dynamics

• the numbersκij , 1 ≤ i 6= j ≤ N , satisfy

|∇i∇jH(x)| ≤ κij <∞

uniformly inx ∈ X. Here,| · | denotes the operator norm of a bilinear form.

• the symmetric matrixA = (Aij)N×N defined by

Aij =

{

̺i, if i = j,

−κij , if i < j,
(1.7)

is positive definite.

Then for all functionsf andg

covµ(f, g) ≤
N∑

i,j=1

(
A−1

)

ij

(∫

|∇if |2 dµ
) 1

2
(∫

|∇jg|2 dµ
) 1

2

. (1.8)

The structure of the estimate in Theorem 1.2.4 is related to the BLI in the sense that variance
is replaced by covariance and thatHessH is replaced byA.

Remark 1.2.5 (Connection to BLI). We assumeXi = R for i ∈ {1, . . . , N} and letA
be a symmetric positive definiteN × N - matrix. We consider a ferromagnetic Gaussian
Hamiltonian given by(1.2). Then the covariance estimate(1.8)coincides with the BLI given
by (1.4)provided the functionf = g is an affine function.

The next remark considers the optimality of Theorem 1.2.4.

Remark 1.2.6 (Optimality). Provided the Hamiltonian H is ferromagnetic Gaussian, the
estimate of Theorem 1.2.4 is optimal. This remark is verified by settingf(xn) = xn and
g(xk) = xk and using(1.6).

Remark 1.2.7(Criterion for SG). Theorem 1.2.4 contains a well-known criterion for SG i.e.

A ≥ ̺ Id, ̺ > 0 ⇒ µ satisfies SG(̺).

As we have seen in the last section, this criterion also holds in a more relaxedversion
(cf. Theorem 1.1.8 and Remark 1.2.9).

The assumption under which Theorem 1.2.4 holds has the same algebraic structure as the as-
sumption in the Otto & Reznikoff criterion for LSI (cf. Theorem 1.1.7). The only difference
is that the uniform LSI constant for the single-site conditional measures is replaced by the
uniform SG constant. Starting point of the proof of Theorem 1.2.4 is a representation of the
covariance, which was used by Helffer [28] to give another proof ofthe BLI. More precisely,
one can express the covariance of the measureµ as

covµ(f, g) =

∫

∇ϕ · ∇g dµ, (1.9)
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1.2 A Brascamp-Lieb type covariance estimate

where the potentialϕ is defined as the solution of the elliptic equation

−∇ · (µ∇ϕ) =
(

f −
∫

f dµ

)

µ. (1.10)

Here we used the convention, thatµ also denotes the Lebesgue density of the probability
measureµ. As a solution of (1.10) we understand anyϕ ∈ H1(µ) such that for allζ ∈ H1(µ)

∫

∇ζ · ∇ϕ dµ =

∫

ζ

(

f −
∫

f dµ

)

dµ. (1.11)

The existence of such solutions follows directly from the Riez representation theorem applied
to

H = H1(µ) ∩
{

ϕ,

∫

ϕdµ = 0

}

equipped with the inner product ∫

∇ζ · ∇ϕ dµ. (1.12)

The completeness ofH w.r.t. the chosen inner product follows from the fact thatµ satisfies
some SG, which is guaranteed by our Assumption 1.2.3.

Let us return to the sketch of the proof of Theorem 1.2.4. After applying the Cauchy-Schwarz
inequality to (1.9), the main step of the argument (see Theorem 1.2.12) is an estimation of

(∫

|∇iϕ|2 dµ
) 1

2

(1.13)

for i ∈ {1, . . . , N}, where the upper bound on (1.13) is given in terms of weighted compo-
nents of

(∫

|∇jf |2 dµ
) 1

2

, j ∈ {1, . . . , N}.

The full argument of the proof is outlined in Section 1.2.2.

1.2.1 Decay of correlations

In this section we compare the covariance estimate of Theorem 1.2.4 with a well known
weighted covariance estimate due to Helffer [30], which is often applied to derive exponen-
tial decay of correlations of certain spin systems (cf. [5] and [6]). Forthis purpose we follow
the presentation of Ledoux [40, Proposition 3.1], but rephrase the estimate in our framework.

Theorem 1.2.8(Helffer, Ledoux). We assume that the conditions of Theorem 1.2.4 are sat-
isfied. Additionally, we consider positive weightsdi > 0, i ∈ {1, . . . N}. Let the diagonal
N ×N - matrixD be defined as

D := diag(d1 . . . , dN ).
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1 Functional inequalities for Glauber dynamics

We assume that there exists̺ > 0 such that in the sense of quadratic forms

DAD−1 ≥ ̺ Id . (1.14)

Then the matrixA is positive definite and for all functionsf andg,

covµ(f, g) ≤
1

̺

(∫

|D∇f |2 dµ
) 1

2
(∫

|D−1∇g|2 dµ
) 1

2

. (1.15)

In fact, we will show that this estimate is a direct consequence of our covariance estimate of
Theorem 1.2.4. Hence, our covariance estimate is consistent with the existingliterature.

Remark 1.2.9. For the sake of completeness we will give another proof of Theorem 1.2.8
in Section 1.2.2, which just relies on the ideas of Helffer [29, 30] and Ledoux [40]. This
argument shows that condition(1.14) can be relaxed by a weaker condition, which was
already observed in [13, Proposition 3.2]. More precisely, let the symmetricN ×N -matrix
A(x) = (Aij(x)) be defined by

Aij(x) =

{

̺i, if i = j,

∇i∇jH(x), if i < j.
(1.16)

Assume that there is̺> 0 such that for allx ∈ X

DA(x)D−1 ≥ ̺ Id . (1.17)

Note that the last condition applied toD = Id yields the criterion for SG of Theorem 1.1.8.

Let us recapitulate the method of Helffer to deduce exponential decay of correlations. One
considers a metricδ(·, ·) on the set of sites{1, . . . , N} of the spin system. For an arbitrary
but fixed sitel ∈ {1, . . . , N} one chooses

di := exp (−δ(i, l))

as weights in Theorem 1.2.8. Because the triangle inequality implies

di
dj

= exp (δ(j, l)− δ(i, l)) ≤ exp (δ(j, i)) ,

a direct application of Theorem 1.2.8 yields the following criterion for exponential decay of
correlations.

Corollary 1.2.10 (Helffer & Ledoux). Assume that the conditions of Theorem 1.2.4 are
satisfied. Additionally, we consider a metricδ(·, ·) on the set{1, . . . , N} and the symmetric
N ×N - matrix Ã = (Ãij) defined by

Ãij =

{

̺i, if i = j,

− exp (δ(i, j))κij , if i < j.
(1.18)
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1.2 A Brascamp-Lieb type covariance estimate

We assume that there exists˜̺> 0 such that in the sense of quadratic forms

Ã ≥ ˜̺ Id . (1.19)

Then for all functionsf = f(xi) andg = g(xj), i, j ∈ {1, . . . , N},

covµ(f, g) ≤
1

˜̺
exp (−δ(i, j))

(∫

|∇if |2 dµ
) 1

2
(∫

|∇jg|2 dµ
) 1

2

. (1.20)

This criterion may also be stated more generally for functions with arbitrary disjoint sup-
ports. It is implicitly contained in the prelude of [40, Proposition 6.2]. In Section 1.2.2 we
will give another proof of Corollary 1.2.10, which is just based on our covariance estimate
of Theorem 1.2.4.

Now, let us give an example how Corollary 1.2.10 can be applied. For that purpose we
consider a two-dimensional lattice system with non-convex single-site potential and weak
nearest-neighbor interaction. The same type of argument would also workfor any dimension
and finite-range interaction. LetX denote a two-dimensional periodic lattice ofN -sites and
let δ(·, ·) denote the graph distance on it. We assume thatµ ∈ P(X) has the Hamiltonian

H(x) =
∑

i

ψ(xi)− ε
∑

δ(i,j)=1

xixj , (1.21)

where the smooth potentialψ is a bounded perturbation of a Gaussian in the sense that

ψ(x) =
1

2
x2 + δψ(x) and sup

R

|δψ(x)| <∞.

By the criterion of Holley & Stroock (cf. Theorem 1.1.4) all conditional measuresµ(dxi|x̄i)
satisfy a uniform LSI with constant∆ := exp (− osc δψ). From (1.21) we see that

κij = sup
x

|∇i∇jH(x)| = ε.

Hence, we know that if the interaction is sufficiently weak in the sense ofε < ∆
4 , the matrix

A of Theorem 1.2.4 satisfies
A ≥ (∆− 4ε) Id .

Analogously one obtains that ifε < ∆
4 e

−1, the matrixÃ of Corollary 1.2.10 satisfies

Ã ≥ (∆− 4εe) Id .

Therefore, an application of Corollary 1.2.10 yields exponential decay of correlations:

Proposition 1.2.11.Assume thatε < ∆
4 e

−1. Then for any functionsf = f(xi) and g =
g(xj), i, j ∈ {1, . . . , N},

covµ(f, g) ≤
1

∆− 4εe
exp (−δ(i, j))

(∫

|∇if |2 dµ
) 1

2
(∫

|∇jg|2 dµ
) 1

2

.

This statement reproduces the correlation bounds established by Helffer[30] and reproved
by Ledoux in [40, Proposition 6.2].
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1 Functional inequalities for Glauber dynamics

1.2.2 Proof of the Brascamp-Lieb type covariance estimate

Behind our covariance estimate of Theorem 1.2.4 stands a stronger inequality. In fact we
deduce the following theorem, from which the main result follows as a simple consequence.

Theorem 1.2.12(Directional SG). Assume that the conditions of Theorem 1.2.4 are satisfied.
For any functionf let the potentialϕ be a solution of(1.10). Then for alli ∈ {1, . . . , N}

(∫

|∇iϕ|2dµ
) 1

2

≤
N∑

j=1

(
A−1

)

ij

(∫

|∇jf |2dµ
) 1

2

. (1.22)

In order to understand inequality (1.22) better, we recall the dual formulation of the SG
(cf. for example [47]).

Lemma 1.2.13(Dual formulation of the SG). A probability measureµ satisfies SG(̺) if and
only if for any functionf and the solutionϕ of (1.10)

(∫

|∇ϕ|2 dµ
) 1

2

≤ 1

̺

(∫

|∇f |2dµ
) 1

2

. (1.23)

Because the directional SG given by (1.22) estimates each coordinate of the gradient sepa-
rately, it is a refinement of the dual formulation of the SG given by (1.23). As in [47] we
can interpret the functionϕ as the infinitesimal optimal displacement transportingµ into
(1 + εf)µ. Therefore, the left hand side of (1.22) measures the average flux ofmass into
the direction of thei-th coordinate against a weighted gradient off . For this reason we
call (1.22) directional spectral gap. One can also interpret the estimate (1.22) in terms of
the Witten complex (for a nice overview see [31]). At least formally one canintroduce the
Witten-LaplacianA−1

1 as
A−1

1 ∇f := ∇ϕ,
which maps the gradient of some functionf onto the gradient of the solutionϕ of the equa-
tion (1.10). LetΠi denote the projection onto the spaceXi, i ∈ {1, . . . , N}. Then the
estimate (1.22) becomes a weighted estimate of theL2-operator norm ofΠiA

−1
1 . The proof

of Theorem 1.2.12 is very basic. It combines the core inequality of Ledoux’s argument for
[40, Proposition 3.1] with linear algebra that was used in the argument of [46, Theorem 1].

Proof of Theorem 1.2.12.To make the main ideas of the argument more visible, we assume
that the Euclidean spacesXi, i ∈ {1, . . . , N}, are one dimensional i.e.Xi = R. The
argument for general Euclidean spacesXi is almost the same. Then the product spaceX =
X1×· · ·×XN becomesRN . The gradient∇i onXi is just the partial derivative∂i w.r.t. the
i-th coordinate. The first ingredient of the proof is the basic estimate forj ∈ {1, . . . , N}

∫
(
|∂j∂jϕ|2 + ∂jϕ ∂j∂jH ∂jϕ

)
µ(dxj |x̄j) ≥ ̺j

∫

|∂jϕ|2µ(dxj |x̄j), (1.24)

which is just an equivalent formulation of the SG(̺i) for the single-site measureµ(dxj |x̄j)
(cf. [40, Proposition 1.3, (1.8)] or [32, 29]). The second ingredient of the proof is the identity

∫

∂jϕ ∂jfdµ =

∫ N∑

k=1

(
|∂j∂kϕ|2 + ∂jϕ ∂j∂kH ∂kϕ

)
dµ. (1.25)
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1.2 A Brascamp-Lieb type covariance estimate

Indeed, by partial integration one sees that
∫

∂jϕ ∂jfdµ = −
∫

∂j∂jϕ

(

f −
∫

fdµ

)

dµ+

∫

∂jϕ ∂jH

(

f −
∫

fdµ

)

dµ.

Applying now (1.11) on the terms of the r.h.s. yields the identitiy
∫

∂jϕ ∂jf dµ = −
∫ N∑

k=1

∂k∂j∂jϕ ∂kϕ dµ+

∫ N∑

k=1

∂k∂jϕ ∂jH ∂kϕ dµ

+

∫ N∑

k=1

∂jϕ ∂k∂jH ∂kϕ dµ.

Let us have a closer look at the second term on the r.h.s of the last identity. It follows from
the definition ofµ that

∫ N∑

k=1

∂k∂jϕ ∂jH ∂kϕ dµ = − 1

Z

∫ N∑

k=1

∂k∂jϕ(x) ∂kϕ(x) ∂j exp (−H(x)) dx

=

∫ N∑

k=1

∂j∂k∂jϕ ∂kϕ dµ+

∫ N∑

k=1

∂k∂jϕ ∂j∂kϕ dµ

A combination of the last two formulas yields the desired identity (1.25).

Now, we turn to the proof of (1.22). A combination of (1.24) and (1.25) yields the estimate
∫

∂jϕ ∂jf dµ ≥ ̺j

∫

|∂jϕ|2dµ+

∫ N∑

k=1, k 6=j
∂jϕ ∂j∂kH ∂kϕ dµ

≥ ̺j

∫

|∂jϕ|2dµ−
N∑

k=1, k 6=j
κjk

∫

∂jϕ ∂kϕ dµ.

Applying Cauchy-Schwarz on the last estimate yields for allj ∈ {1, . . . , N}
(∫

|∂jf |2dµ
) 1

2

≥ ̺j

(∫

|∂jϕ|2dµ
) 1

2

−
N∑

k=1, k 6=j
κjk

(∫

|∂kϕ|2dµ
) 1

2

=
N∑

k=1

Ajk

(∫

|∂kϕ|2dµ
) 1

2

. (1.26)

A simple linear algebra argument outlined in [46, Lemma 9] shows that the elementsof the
inverse ofA are non negative i.e.

(
A−1

)

ij
≥ 0 for all i, j ∈ {1, . . . , N}. Hence, (1.26)

yields
N∑

j=1

(
A−1

)

ij

(∫

|∂jf |2dµ
) 1

2

≥
N∑

j=1

(
A−1

)

ij

N∑

k=1

Ajk

(∫

|∂kϕ|2dµ
) 1

2

= δik

(∫

|∂kϕ|2dµ
) 1

2

=

(∫

|∂iϕ|2dµ
) 1

2

.
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The proof of Theorem 1.2.4 is just a direct application of Theorem 1.2.12.

Proof of Theorem 1.2.4.Using the definition ofϕ, cf. (1.10), we obtain the following esti-
mate of the covariance

covµ (f, g) =

∫

f

(

g −
∫

g µ

)

dµ

=

∫

∇ϕ · ∇g dµ

≤
N∑

j=1

(∫

|∇jϕ|2dµ
) 1

2
(∫

|∇jg|2dµ
) 1

2

Now, the statement follows directly from Theorem 1.2.12.

Proof of Theorem 1.2.8 using Theorem 1.2.4.We start with deducing thatA is positive def-
inite. BecauseA is a symmetric Matrix, it suffices to show that every eigenvalue ofA is
positive. Letλ ∈ R be an eigenvalue ofA with eigenvectorx i.e.

Ax = λx.

An application of (1.14) to the vectorDx yields

λ|Dx|2 = Dx ·DAx = Dx ·DAD−1Dx ≥ ̺|Dx2| > 0,

which impliesλ > 0.
Now, we will deduce (1.15). BecauseA is symmetric, the inverseA−1 also is symmetric.
Therefore, an application of Theorem 1.2.4 yields the estimate

covµ(f, g) ≤
N∑

i,j=1

(
A−1

)

ij

(∫

|∇if |2 dµ
) 1

2
(∫

|∇jg|2 dµ
) 1

2

=

N∑

i,j=1

dj
(
A−1

)

ji
d−1
i

(∫

|di∇if |2 dµ
) 1

2
(∫

|d−1
j ∇jg|2 dµ

) 1

2

= DA−1D−1z · z̃
≤ |DA−1D−1z| |z̃|,

where the vectorsz, z̃ ∈ R
N are defined fori, j ∈ {1, . . . , N} by

zi :=

(∫

|di∇if |2 dµ
) 1

2

and z̃j :=

(∫

|d−1
j ∇jg|2 dµ

) 1

2

.

Therefore, (1.15) is verified provided

|DA−1D−1z| ≤ 1

̺
|z| (1.27)

12



1.2 A Brascamp-Lieb type covariance estimate

holds for anyz ∈ R
N . From the hypothesis (1.14) it follows that

̺ z · z ≤ DAD−1z · z
≤ |DAD−1z| |z|.

Hence, we have

|z| ≤ 1

̺
|DAD−1z|,

which immediately yields (1.27).

Now, we give a direct argument for Theorem 1.2.8. The proof is basedon the estimate (1.24)
and the identity (1.25), which were the core elements of the proof of Theorem 1.2.12 and
Theorem 1.2.4.

Proof of Theorem 1.2.8.As in the proof of Theorem 1.2.4 we estimate the covariance with
the help of the potentialϕ defined by (1.10) as

covµ (f, g) =

∫

f

(

g −
∫

g µ

)

dµ

=

∫

∇ϕ · ∇g dµ

=

∫

D∇ϕ ·D−1∇g dµ

≤
∫

|D∇ϕ| |D−1∇g| dµ

≤
(∫

|D∇ϕ|2dµ
) 1

2
(∫

|D−1∇g|2dµ
) 1

2

.

The proof is finished if we show
(∫

|D∇ϕ|2dµ
) 1

2

≤ 1

̺

(∫

|D∇f |2dµ
) 1

2

. (1.28)

To verify (1.28) we need two observations. The first one is that (1.14) isequivalent to

D2A ≥ ̺D2 (1.29)

in the sense of quadratic forms. The second observation is that forA given by (1.16)

D2A ≥ D2A (1.30)

in the sense of quadratic forms. Becausedi ≥ 0, the estimates (1.24), (1.25), (1.29), and
(1.30) yield

∫

D∇ϕD∇fdµ ≥
∫

∇ϕD2A∇ϕdµ

≥ ̺

∫

|D∇ϕ|2dµ.

Applying now Cauchy-Schwarz yields the estimate (1.28).

13



1 Functional inequalities for Glauber dynamics

Now, we will deduce Corollary 1.2.10 from Theorem 1.2.4.

Proof of Corollary 1.2.10.Let us fix two indicesi, j ∈ {1, . . . , N}. Letf andg be arbitrary
functions just depending onxi andxj respectively. We apply Theorem 1.2.4 and get

covµ(f, g) ≤
(
A−1

)

ij

(∫

|∇if |2 dµ
) 1

2
(∫

|∇jg|2 dµ
) 1

2

, (1.31)

whereA is defined as in (1.7). Therefore, it remains to estimate the element
(
A−1

)

ij
. By

Neumann series (also called the random walk expansion ofA−1 (cf. [8]) we have

(
A−1

)

ij
= δij

1

̺i
+

κij
̺i̺j

+
N∑

s=1

κisκsj
̺i̺s̺j

+
N∑

s,l=1

κisκslκlj
̺i̺s̺l̺j

+ · · · · · ·

= δij
1

̺i
+
e−δ(i,j)

e−δ(i,j)
κij
̺i̺j

+
N∑

s=1

e−δ(i,s)e−δ(s,j)

e−δ(i,s)e−δ(s,j)
κisκsj
̺i̺s̺j

+
N∑

s,l=1

e−δ(i,s)e−δ(s,l)e−δ(l,j)

e−δ(i,s)e−δ(s,l)e−δ(l,j)
κisκslκlj
̺i̺s̺l̺j

+ · · · · · · . (1.32)

By the triangle inequality we get

e−δ(i,s)e−δ(s,j) ≤ e−δ(i,j)

for all i, s, j ∈ {1, . . . , N}. Hence, we can continue the estimation of (1.32) as

(
A−1

)

ij
≤ e−δ(i,j)

(

Ã−1
)

ij
, (1.33)

whereÃ is defined as in (1.18). By (1.19) we have the bound

(

Ã−1
)

ij
≤ 1

˜̺
,

which together with (1.31) and (1.33) finishes the proof.

1.3 The directional WI and two applications

In this section we derive a similar statement of the directional SG (see Theorem 1.2.12) on the
level of the WI (see Theorem 1.3.1 below). A first application yields a criterion for the WI,
which is an analog version of the Otto & Reznikoff criterion for the LSI (seeTheorem 1.1.7).
A second application yields a non-linear version of the covariance estimate of Theorem 1.2.4.
Both applications are again optimal for ferromagnetic Gaussian Hamiltonians given by (1.2).
It remains to mention that this part was originally motivated by a preprint of Gao& Wu [20],
who among other things generalized the to the WI to some extent (cf. Remark 1.3.5 below).
The main result of this section is:
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1.3 The directional WI and two applications

Theorem 1.3.1(Directional WI). Letdµ := Z−1 exp(−H(x)) dx be a probability measure
on a direct product of Euclidean spacesX = X1 × · · · ×XN . We assume that

• the conditional measuresµ(dxi|x̄i), 1 ≤ i ≤ N , satisfy a uniform WI(̺i).

• the numbersκij , 1 ≤ i 6= j ≤ N , satisfy

|∇i∇jH(x)| ≤ κij <∞

uniformly inx ∈ X. Here,| · | denotes the operator norm of a bilinear form.

• the symmetric matrixA = (Aij)N×N defined by

Aij =

{

̺i, if i = j,

−κij , if i < j,
(1.34)

is positive definite.

Then for alli ∈ {1, . . . , N} and all functionsf > 0 satisfying
∫
f dµ = 1 holds

(∫

|xi − yi|2 π(dx, dy)
) 1

2

≤
N∑

j=1

(
A−1

)

ij

(∫ |∇jf |2
f

dµ

) 1

2

, (1.35)

whereπ denotes the optimal transference plan offµ andµ (cf. Definition 0.7).

Remark 1.3.2. In (1.35)the Wasserstein transportation cost in one direction is estimated by
a weighted Fisher information. Therefore, we call the inequality(1.35)directional WI. It is
the non-linear analogon of(1.22).

The assumption under which Theorem 1.2.4 holds has the same algebraic structure as the as-
sumption in the Otto & Reznikoff criterion for LSI (cf. Theorem 1.1.7). The only difference
is that the uniform LSI constant for the single-site conditional measures is replaced by the
uniform WI constant. The structure of the proof of Theorem 1.3.1 is similar tothe structure
of the proof of the Otto & Reznikoff criterion for LSI. In particular, we use a similar induc-
tion in the dimension. For the proof of Theorem 1.3.1, which is outlined in Section1.3.4, we
need some auxiliary results. They are stated in Section 1.3.2 and verified in Section 1.3.3.

Application 1: A new criterion for the transportation-information in equality

In the first application of Theorem 1.3.1 we deduce a criterion for the WI inequality.

Theorem 1.3.3(Criterion for WI). We assume that the conditions of Theorem 1.3.1 are
satisfied. Additionally, we assume that there is̺ > 0 such that in the sense of quadratic
forms

A ≥ ̺ Id . (1.36)

Then the Gibbs measureµ satisfies the WI(̺).
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1 Functional inequalities for Glauber dynamics

Note that Theorem 1.3.3 is formulated in the same way as the Otto & Reznikoff criterion for
LSI (cf. Theorem 1.1.7).

Remark 1.3.4. Theorem 1.3.3 is optimal for ferromagnetic Gaussian Hamiltonians in the
sense of(1.2): Recall that Lemma 1.1.1 states

µ satisfies LSI(̺) ⇒ µ satisfies WI(̺) ⇒ µ satisfies SG(̺).

Hence, the argument for optimality is the same as for the Otto & Reznikoff criterion for LSI
formulated in Theorem 1.1.7 (cf. [46, Remark 4]).

Remark 1.3.5. As already mentioned before, Gao & Wu derived a similar criterion for
the WI with a different approach (cf. [20][Theorem 5.3]). If one translates their statement
into our setting and applies some simplification, it becomes exactly the same statement as
Theorem 1.3.3. There is only one difference: Instead of considering thesymmetric matrixA
given by(1.34), Gao & Wu consider the symmetric matrix̃A = (Ãij)N×N given by

Ãij =

{

min1≤k≤N ̺k, if i = j,

−κij , if i < j.

Note thatA andÃ coincide except of the terms on the main diagonal andA ≥ Ã in the sense
of quadratic forms.

Application 2: A new non-linear covariance estimate

The second application is a non-linear version of the covariance estimate ofTheorem 1.2.4.

Theorem 1.3.6(Non-linear covariance estimate). Assume that the conditions of Theorem
1.3.1 are satisfied. Then for all functions̃f > 0, f , andg holds

a) covµ(f, g) ≤
N∑

i,j=1

(
A−1

)

ij
‖∇if‖L2(µ) ‖∇jg‖L2(µ),

b) covµ(f̃ , g) ≤
N∑

i,j=1

(
A−1

)

ij

(∫

f̃ dµ

) 1

2

(
∫ |∇if̃ |2

f̃
dµ

) 1

2

‖∇jg‖L∞(µ).

Note that parta) of Theorem 1.3.6 trivially follows from a combination of Theorem 1.2.4
and the fact that WI(̺) implies SG(̺ ). In order to show self-consistency, we will give a
direct proof of parta) that is only based on the directional WI. Obviously, Theorem 1.3.6 is
optimal for ferromagnetic Gaussian systems (cf. Remark 1.2.6).

1.3.1 Proof of the applications

Proof of Theorem 1.3.3.From the hypothesis (1.36) one directly gets

〈
x,A−1A−1x

〉
≤ 1

̺2
〈x, x〉 . (1.37)
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1.3 The directional WI and two applications

By using Theorem 1.3.1 we can estimate

W 2
2 (fµ, µ) =

N∑

i=1

∫

|xi − yi|2 π(dx, dy)

≤
N∑

i=1





N∑

j=1

(
A−1

)

ij

(∫ |∇jf |2
f

dµ

) 1

2





2

=
N∑

i=1

N∑

k,j=1

(
A−1

)

ik

(
A−1

)

ij

(∫ |∇kf |2
f

dµ

) 1

2
(∫ |∇jf |2

f
dµ

) 1

2

=
N∑

k,j=1

N∑

i=1

(
A−1

)

ki

(
A−1

)

ij

(∫ |∇kf |2
f

dµ

) 1

2
(∫ |∇jf |2

f
dµ

) 1

2

.

Applying now (1.37) directly yields

W 2
2 (fµ, µ) ≤ 1

̺2

N∑

i=1

∫ |∇if |2
f

dµ =
1

̺2

∫ |∇f |2
f

dµ.

Proof of Theorem 1.3.6.Argument fora): We assume that the functionsf andg are smooth
and have compact support. Without restriction

∫
fd µ = 0, else consider the functioñf :=

f −
∫
f dµ. For an arbitraryε > 0 we consider the measureµε := (1 + εf)µ. Then

covµ(f, g) =

∫

f

(

g −
∫

g dµ

)

dµ =

∫ (

g −
∫

g dµ

)

d
µε − µ

ε

=
1

ε

∫

g(x)− g(y) πε(dx, dy).

Hereπε(dx, dy) denotes the optimal transference plan betweenµε(dx) andµ(dy). We know
by Taylor formula that

g(x)− g(y) ≤
N∑

j=1

|∇jg(y)||xj − yj |+ C|x− y|2.

Therefore, we can estimate

covµ(f, g) ≤
1

ε

∫ N∑

j=1

|∇jg(y)||xj − yj | πε(dx, dy) +
C

ε

∫

|x− y|2 dπε(dx, dy)

≤
N∑

j=1

‖∇jg‖L2(µ)
1

ε

(∫

|xj − yj |2 πε(dx, dy)
) 1

2

+
C

ε

∫

|x− y|2 πε(dx, dy).
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1 Functional inequalities for Glauber dynamics

On the first term of the r.h.s. we apply Theorem 1.3.1 and on the second termwe apply
Theorem 1.3.3 i.e.

covµ(f, g) ≤
N∑

i,j=1

(A−1)ij ‖∇jg‖L2(µ)

(∫ |∇i(1 + εf)|2
ε2(1 + εf)

dµ

) 1

2

+
C

ε̺2

∫ |∇(1 + εf)|2
1 + εf

dµ.

Forε→ 0 the first term on the r.h.s. converges to

(∫ |∇iεf |2
ε2(1 + εf)

dµ

) 1

2

−→ ‖∇if‖L2(µ)

and for the second term converges to

C

ε̺2

∫ |∇εf |2
1 + εf

dµ −→ 0.

Using now a standard approximation argument one can get rid of the assumptions of smooth-
ness and compact support onf andg.

Argument forb): We assume w.l.o.g.
∫
f̃ dµ = 1. A direct calculation yields

covµ(f̃ , g) =

∫

f̃ g dµ−
∫

f̃ dµ

∫

g dµ

=

∫

f̃ g dµ−
∫

g dµ

=

∫

g(x)− g(y) π(dx, dy) ,

whereπ(dx, dy) denotes the optimal transference plan of the measuresf̃µ(dx) andµ(dy).
Because

g(x)− g(y) =

∫ 1

0
∇g (tx+ (1− t)y) · (x− y) dt

=

∫ 1

0

N∑

j=1

∇jg (txj + (1− t)yj) (xj − yj) dt

we get the estimate

covµ(f̃ , g) ≤
N∑

j=1

‖∇jg‖∞
∫

|xj − yj | π(dx, dy)

≤
N∑

j=1

‖∇jg‖∞
(∫

|xj − yj |2 π(dx, dy)
) 1

2

.

Now, an application of Proposition 1.3.1 yields the desired statement.
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1.3 The directional WI and two applications

1.3.2 Auxiliary results

For the proof of Theorem 1.3.1 we need some auxiliary results. We start withrecalling a
basic fact for the optimal transport, which was observed for example by Gao & Wu in their
proof of [20, Theorem 3.1]:

Lemma 1.3.7. For an arbitrary functionf > 0 with
∫
fdµ = 1, let π(dx, dy) denote

the optimal transference plan between the measuresfµ(dx) and µ(dy). Then for every
i ∈ {1, . . . , N} and every vector̄xi and ȳi (cf. the Chapter Conventions), the conditional
transference planπ(dxi, dyi|x̄i, ȳi) is the optimal transference plan of the conditional mea-

suresfµ(dxi|x̄i)
f̄(x̄i)

andµ(dyi|ȳi) i.e.

W2

(
fµ(·|x̄i)
f̄(x̄i)

, µ(·|ȳi)
)

=

(∫

|xi − yi|2π(dxi, dyi|x̄i, ȳi)
) 1

2

.

Here, we used the notation

f̄(x̄i) :=

∫

f(x)µ(dxi|x̄i).

The last statement is used to deduce the following estimate for the optimal transport:

Lemma 1.3.8. For an arbitrary functionf > 0 with
∫
fdµ = 1, let π(dx, dy) denote

the optimal transference plan betweenfµ(dx) andµ(dy). For i ∈ {1, . . . , N} let µ̄i(dx̄i)
denote the marginal measure ofµ w.r.t. the conditional measuresµ(dxi|x̄i). Additionally,
let π̃(dx̄i, dȳi) denote the optimal transference plan between the marginalsf̄ µ̄i(dx̄i) and
µ̄i(dȳi). Then

∫

|xi − yi|2 π(dx, dy) ≤
∫

W 2
2

(
fµ(·|x̄i)
f̄(x̄i)

, µ(·|ȳi)
)

π̃(dx̄i, dȳi).

Because we follow the approach of Otto & Reznikoff [46], the remaining auxiliary results
are almost the same as in [46]. There is only one difference: In our casethe statements are
formulated on the level of the WI and not on the level of the LSI.

Lemma 1.3.9. [Analogue of Lemma 5 in [46]] Letµ(dx) be a probability measure on a
Euclidean spaceX. We assume that there exists̺ > 0 such that

µ satisfies WI(̺).

Then we have for arbitraryf > 0 andg:

|covµ(g, f)| ≤
1

̺
sup
x

|∇g|
(∫

f dµ

∫
1

f
|∇f |2 dµ

) 1

2

.

We also need a linearized version of Lemma 1.3.9.
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1 Functional inequalities for Glauber dynamics

Corollary 1.3.10 (Analogue of Corollary 1 in [46]). Letµ(dx) be a probability measure on
a Euclidean spaceX. We assume that there exists̺ > 0 such that

µ satisfies WI(̺).

Then we have for arbitraryf andg:

|covµ(g, f)| ≤
1

̺
sup
x

|∇g|
(∫

|∇f |2 dµ
) 1

2

≤ 1

̺
sup
x

|∇g| sup
x

|∇f |.

Lemma 1.3.9 is used to establish the following result.

Lemma 1.3.11(Analogue of Lemma 6 in [46]). LetX1, X2 be two Euclidean spaces and
µ(dx1, dx2) a probability measure on the product spaceX1 × X2 with a smooth positive
Lebesgue densitydµdL .

We assume that there existsκ12 < ∞ such that the HamiltonianH(x1, x2) = − log dµ
dL

satisfies
∀ (x1, x2) |∇1∇1H(x1, x2)| ≤ κ12.

We assume that there exists̺2 > 0 such that we have for the conditional measure

∀ x1 µ(dx2|x1) satisfies WI(̺2).

For arbitrary f(x1, x2) ≥ 0 consider

f̄(x1) =

∫

f(x1, x2)µ(dx2|x1).

Then we obtain for the marginal̄µ(dx1)

(∫
1

f̄
|∇1f̄ |2 µ̄(dx1)

) 1

2

≤
(∫

1

f
|∇1f |2 dµ

) 1

2

+
κ12
̺2

(∫
1

f
|∇2f |2 dµ

) 1

2

.

Lemma 1.3.12(Analogue of Lemma 7 in [46]). LetX1, X2 be two Euclidean spaces and
µ(dx1, dx2) a probability measure on the product spaceX1 × X2 with smooth positive
Lebesgue densitydµdL .
We assume that there exists̺2, ¯̺1 > 0 such that we have for the conditional measure and
marginal

∀ x1 µ(dx2|x1) satisfies WI(̺2),

µ̄(dx1) satisfies WI(¯̺1).

Then we obtain for the marginal̄µ(dx2)

µ̄(dx2) satisfies WI(¯̺2)

with
1

¯̺2
≤ 1

̺2
+

1

¯̺1

κ212
̺22
.
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1.3 The directional WI and two applications

Corollary 1.3.13 (Analogue of Corollary 2 in [46]). LetX1, X2 be two Euclidean spaces
andµ(dx1, dx2) a probability measure on the product spaceX1 ×X2 with smooth positive
Lebesgue densitydµdL .
We assume that there exists̺1, ̺2 > 0 such that we have for the conditional measures

∀ x2 µ(dx1|x2) satisfies WI(̺1),

∀ x1 µ(dx2|x1) satisfies WI(̺2).

We assume that

̺1̺2 − κ212 > 0.

Then we obtain for the marginal̄µ(dx1)

µ̄(dx1) satisfies WI(¯̺1)

with

¯̺1 ≥ ̺1 −
κ212
̺2
.

Lemma 1.3.14(Analogue of Lemma 8 in [46]). LetX1, X2, X3 be Euclidean spaces and
µ(dx1, dx2, dx3) a probability measure on the product spaceX1 ×X2 ×X3 with a smooth
positive Lebesgue densitydµdL .
We assume that fori < j ∈ {1, 2, 3} there existsκij < ∞ such that the Hamiltonian
H(x1, x2, x3) = − log dµ

dL satisfies

∀ (x1, x2, x3) |∇i∇jH(x1, x2, x3)| ≤ κij .

We assume that there exists̺3 > 0 such that we have for the conditional measures

∀ (x1, x2) µ(dx3|x1, x2) satisfies WI(̺3).

Consider the Hamiltonian̄H(x1, x2) belonging to the marginal̄µ(dx1, dx2), i.e.

H̄(x1, x2) = − log

∫

exp(−H(x1, x2, x3)) dx3.

It satisfies

∀ (x1, x2) |∇1∇2H̄(x1, x2)| ≤ κ̄12

with

κ̄12 ≤ κ12 +
κ13κ23
̺3

.

1.3.3 Proof of the auxiliary results

In this section we will proof the auxiliary results of Section 1.3.2.
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1 Functional inequalities for Glauber dynamics

Proof of Lemma 1.3.8.A direct calculation yields thatπ(dxi, dyi|x̄i, ȳi)π̃(dx̄i, dȳi) is a trans-
ference plan offµ(dx) andµ(dy). Therefore, we can estimate by using the optimality ofπ
that

∫ N∑

j=1

|xj − yj |2 π(dx, dy) ≤
∫ ∫ N∑

j=1

|xj − yj |2 π(dxi, dyi|x̄i, ȳi) π̃(dx̄i, dȳi)

=

∫ N∑

j=1, j 6=i
|xj − yj |2 π̃(dx̄i, dȳi)

+

∫ ∫

|xi − yi|2 π(dxi, dyi|x̄i, ȳi) π̃(dx̄i, dȳi). (1.38)

Let π̄(dx̄i, dȳi) be the marginal ofπ(dx, dy) w.r.t. (x̄i, ȳi). Another direct calculation yields
that π̄(dx̄i, dȳi) is a transference plan of̄fµ̄i(dx̄i) andµ̄i(dȳi). Hence, by optimality of̃π
we can estimate

∫ N∑

j=1, j 6=i
|xj − yj |2 π̃(dx̄i, dȳi) +

∫

|xi − yi|2 π(dx, dy)

≤
∫ N∑

j=1, j 6=i
|xj − yj |2 π̄(dx̄i, dȳi) +

∫

|xi − yi|2 π(dx, dy)

=

∫ N∑

j=1

|xj − yj |2 π(dx, dy). (1.39)

A combination of (1.38), (1.39), and Lemma 1.3.7 yields the desired statement.

Proof of Lemma 1.3.9.Let us assume w.l.o.g.
∫
fdµ = 1. Recall from the proof of Theo-

rem 1.3.6 that

covµ(f, g) =

∫

g(x)− g(y) π(dx, dy).

Here,π is the optimal transference plan of the measuresfµ andµ. Because

g(x)− g(y) =

∫ 1

0
∇g (tx+ (1− t)y) · (x− y) dt

we can estimate

covµ(f, g) ≤ sup |∇g|
∫

|x− y| π(dx, dy) ≤ sup |∇g|
(∫

|x− y|2 π(dx, dy)
) 1

2

,

which yields the desired statement by applying WI(̺).

Proof of Corollary 1.3.10.The statement follows from Lemma 1.3.9 by linearization (see
also the proof of Theorem 1.3.6).
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1.3 The directional WI and two applications

Proof of Lemma 1.3.11.The statement is an analogue formulation of [46][Lemma 6]. There-
fore, one can directly copy the proof, because the argument just relieson Lemma 1.3.9.

Proof of Lemma 1.3.12.For convenience we will use the notation

f̄(x1) :=

∫

f(x2) µ(dx2|x1).

Let π̃(dx1, dy1) denote the optimal transference plan betweenf̄(x1)µ̄(dx1) andµ̄(dy1). Let
ξ be a test function on the Euclidean spaceX2, then

∫

X1×Y1

∫

X2

ξ(x2)
f(x2)

f̄(x1)
µ(dx2|x1) π̃(dx1, dy1)

=

∫

X1

∫

X2

ξ(x2)
f(x2)

f̄(x1)
µ(dx2|x1) f̄(x1)µ̄(dx1)

=

∫

X2

ξ(x2)f(x2)µ(dx2)

=

∫

X2

ξ(x2)f(x2) µ̄(dx2).

Also let ζ be a test function on the Euclidean spaceY2 then
∫

X1×Y1

∫

Y2

ζ(y2) µ(dy2|y1) π̃(dx1, dy1)

=

∫

Y1

∫

Y2

ζ(y2) µ(dy2|y1) µ̄(dy1)

=

∫

Y2

ζ(y2) µ̄(dy2).

Therefore,(f(x2)µ̄(dx2) , µ̄(dx2)) is a convex combination of

(
f(x2)

f̄(x1)
µ(dx2|x1) , µ(dy2|y1)

)

with respect tõπ(dx1, dy1). Hence, we get by the convexity of the Wasserstein distance that

W 2
2 (f(x2)µ̄(dx2), µ̄(dy2)) ≤

∫

W 2
2

(
f(x2)

f̄(x1)
µ(dx2|x1), µ(dy2|y1)

)

π̃(dx1, dy1).

(1.40)
By using the triangle inequality we get

W2

(
f(x2)

f̄(x1)
µ(dx2|x1), µ(dy2|y1)

)

≤W2

(
f(x2)

f̄(x1)
µ(dx2|x1), µ(dy2|x1)

)

+W2 (µ(dy2|x1), µ(dy2|y1)) . (1.41)
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1 Functional inequalities for Glauber dynamics

The first term on the r.h.s. is estimated by applying the WI(̺2) for µ(dx2|x1) as

W2

(
f(x2)

f̄(x1)
µ(dx2|x1), µ(dy2|x1)

)

≤ 1

̺2

(
1

f̄(x1)

∫
1

f(x2)
|∇x2f(x2)|2 µ(dx2|x1)

) 1

2

.

(1.42)
We put now our attention on the second term on the r.h.s. of (1.41). Let

Z1 :=

∫

exp (−H(x1, y2)) dy2 and Z2 :=

∫

exp (−H(y1, y2)) dy2.

Notice that

µ(dy2|x1) = Z−1
1 exp (−H(x1, y2)) dy2

= Z−1
1 Z2 exp (−H(x1, y2) +H(y1, y2))
︸ ︷︷ ︸

=:g(y2)

µ(dy2|y1).

Therefore, we can estimate by applying the WI(̺2) to µ(dy2|y1) that

W2 (µ(dy2|x1), µ(dy2|y1)) =W2 (g(y2)µ(dy2|y1), µ(dy2|y1))

≤ 1

̺2

(∫
1

g(y2)
|∇y2g(y2)|2 µ(dy2|y1)

) 1

2

=
1

̺2

(∫

|∇y2 ln g(y2)|2g(y2) µ(dy2|y1)
) 1

2

. (1.43)

Notice that

|∇y2 ln g(y2)| = |∇y2H(x1, y2)−∇y2H(y1, y2)|
≤ sup |∇1∇2H| |x1 − y1| = κ12 |x1 − y1|

and
g(y2) µ(dy2|y1) = µ(dy2|x1).

Therefore, we get from (1.43) that

W2 (µ(dy1|x1), µ(dy2|y1)) ≤
κ12
̺2

|x1 − y1|
∫

µ(dy2|x1)
︸ ︷︷ ︸

=1

. (1.44)

By applying now theL2-triangle inequality we get from (1.41) that
∫

W 2
2

(
f(x2)

f̄(x1)
µ(dx2|x1), µ(dy2|y1)

)

π̃(dx1, dx2)

≤
[(∫

W 2
2

(
f(x2)

f̄(x1)
µ(dx2|x1), µ(dy2|x1)

)

π̃(dx1, dy1)

) 1

2

+

(∫

W 2
2 (µ(dy2|x1), µ(dy2|y1)) π̃(dx1, dy1)

) 1

2

]2

. (1.45)
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1.3 The directional WI and two applications

We estimate now the first term on the r.h.s. of (1.45) by using (1.42) as

(∫

W 2
2

(
f(x2)

f̄(x1)
µ(dx2|x1), µ(dy2|x1)

)

π̃(dx1, dy1)

) 1

2

≤ 1

̺2

(∫
1

f̄(x1)

∫
1

f(x2)
|∇2f(x2)|2 µ(dx2|x1) π̃(dx1, dy1)

) 1

2

=
1

̺2

(∫
1

f̄(x1)

∫
1

f(x2)
|∇2f(x2)|2 µ(dx2|x1) f̄(x1) µ̄(dx1)

) 1

2

=
1

̺2

(∫
1

f(x2)
|∇2f(x2)|2 µ̄(dx2)

) 1

2

.

By using (1.44) we can estimate the second term on the r.h.s. of (1.45) as

(∫

W 2
2 (µ(dy2|x1), µ(dy2|y1)) π̃(dx1, dy1)

) 1

2

≤ κ12
̺2

(∫

|x1 − y1|2 π̃(dx1, dy1)
) 1

2

=
κ12
̺2

W2

(
f̄(x1)µ̄(dx1), µ̄(dy1)

)
.

We use now that̄µ(dy1) satisfies WI(̺̄ 1) and apply Lemma 1.3.11 in the to get

W2

(
f̄(x1)µ̄(dx1), µ̄(dy1)

)
≤ 1

¯̺1

(∫ |∇x1 f̄ |2
f̄

µ̄(dx1)

) 1

2

≤ 1

¯̺1

κ12
̺2

(∫
1

f
|∇x2f |2 µ̄(dx2)

) 1

2

.

Therefore, we overall get by a combination of (1.40) and the last four estimates that

W 2
2 (f(x2)µ̄(dx2), µ̄(dy2)) ≤

[
1

̺2

(∫
1

f(x2)
|∇2f(x2)|2 µ̄(dx2)

) 1

2

+
1

¯̺1

κ212
̺22

(∫
1

f(x2)
|∇2f(x2)|2 µ̄(dx2)

) 1

2

]2

, (1.46)

which yields the desired statement.

Proof of Corollary 1.3.13.Note that one can take over the proof of [46][Corollary 2] using
Lemma 1.3.12 as the main ingredient.

Proof of Lemma 1.3.14.Note that one can take over the proof of [46][Lemma 8] using
Corollary 1.3.10 as the main ingredient.

25



1 Functional inequalities for Glauber dynamics

1.3.4 Proof of the directional WI inequality

For the proof of Proposition 1.3.1 we adapt the argument of the proof of the Otto & Reznikoff
criterion for LSI (cf. [46, Theorem 2]). Therefore, we show (1.35) by induction. ForN = 1
the statement (1.35) is a trivial consequence of our assumptions. Now, letus assume that
(1.35) holds for a system with(N − 1) components. We will show that it also holds for
system withN components. LetκN := (κ1N , . . . , κNN )

t. As in [46] we introduce the
block decomposition of A as

A =

(
A′ −κN

−κtN ̺N

)

.

Let Ā denote the(N − 1)× (N − 1) matrix defined by

Ā = A′ − 1

̺N
κN ⊗ κN .

Note thatĀ inherits our assumptions onA: It is symmetric and positive definite.

Now, we consider the system̄µ(dx1, . . . , xN−1) i.e. the marginal ofµ(dx1, . . . , dxN ) on
X1 × · · · ×XN−1. Its Hamiltonian is given by

H̄(x1, . . . , xN−1) = − log

∫

exp(−H(x1, . . . , xN−1, xN ))) dxN .

Analog to [46] we apply Lemma 1.3.14 toµ(dxi, dxj , dxN | · · · ) and get fori 6= j

−κ̄ij ≥ −κij −
κiNκjN
̺N

= Āij .

As in [46] we apply Corollary 1.3.13 toµ(dxi, dxN | · · · ) and get for anyi ∈ {1, . . . , N−1}
andx̄iN := (x1, . . . , xi−1, xi+1, . . . , xN−1) that

µ̄(dxi|x̄iN ) satisfies WI(¯̺i)

with

¯̺i ≥ ̺i −
κ2iN
̺N

= Āii.

Recall the convention̄xN := (x1, . . . , xN−1). Hence, we may apply the induction hypoth-
esis toµ̄(dx̄N ) and Ā and get for anyj ∈ {1, . . . , N − 1} and f̄(x̄N ) > 0 satisfying
∫
f̄dµ̄ = 1 that

(∫

|xj − yj |2 π̃(dx̄N , dȳN )
) 1

2

≤
N−1∑

k=1

(
Ā−1

)

jk

(∫ |∇kf̄ |2
f̄

dµ̄

) 1

2

. (1.47)

Here,π̃(dx̄N , dȳN ) denotes the optimal transference plan betweenf̄ µ̄(dx̄N ) andµ̄(dȳN ).
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1.3 The directional WI and two applications

Now, we state the induction step for (1.35) in the casei = N . In the casei ∈ {1, . . . , N−1},
one could re-numerate the basis such thati 7→ N and carry out the same argument. From
[46] we know that the inverse ofA can be written as

A−1 =




Ā−1 Ā−1κN

̺N(
Ā−1κN
̺N

)t
1
̺N

+ κN ·Ā−1κN
̺2
N



 . (1.48)

For convenience, we introduce the probability measuresνj , 0 ≤ j ≤ N , on the Euclidean
spaceXN according to

νj(dxN ) =







µ(dxN |x̄N ), if j = 0,

µ(dxN |y1, . . . yj , xj+1, . . . xN ), if 1 ≤ j ≤ N − 1,

µ(dxN |ȳN ), if j = N.

Recalling the definitionf̄(x̄N ) :=
∫
f(x)µ(dxN |x̄N ) we get by applying the triangle in-

equality for the Wasserstein distance twice that

W2

(
fµ(·|x̄N )
f̄(x̄N )

, µ(·|ȳN )
)

=W2

(
fµ(·|x̄N )
f̄(x̄N )

, νN

)

≤W2

(
fµ(·|x̄N )
f̄(x̄N )

, ν0

)

+W2 (ν0, νN )

≤W2

(
fµ(·|x̄N )
f̄(x̄N )

, µ(·|x̄N )
)

+
N∑

j=1

W2 (νj−1, νj) .

By Lemma 1.3.8 we have the estimate
(∫

|xN − yN |2 π(dx, dy)
) 1

2

≤
(∫

W 2
2

(
fµ(·|x̄N )
f̄(x̄N )

, µ(·|ȳN )
)

π̃(dx̄N , dȳN )

) 1

2

,

whereπ̃(dx̄N , dȳN ) is the optimal transference plan off̄(x̄N )µ̄(dx̄N ) andµ̄(dȳN ). Apply-
ing now the triangle inequality for theL2−norm yields

(∫

|xN − yN |2 π(dx, dy)
) 1

2

≤
(∫

W 2
2

(
fµ(·|x̄N )
f̄(x̄N )

, µ(·|x̄N )
)

π̃(dx̄N , dȳN )

) 1

2

+
N∑

j=1

(∫

W 2
2 (νj−1, νj) π̃(dx̄N , dȳN )

) 1

2

. (1.49)

The first term on the r.h.s. of (1.49) is estimated by applying the WI(̺N ) for µ(dxN |x̄N ) as
(∫

W 2
2

(
fµ(·|x̄N )
f̄(x̄N )

, µ(·|x̄N )
)

π̃(dx̄N , dȳN )

) 1

2

≤
(∫

1

̺2N

∫ |∇Nf(x)|2
f(x)

µ(dxN |x̄N )
1

f̄(x̄N )
π̃(dx̄N , dȳN )

) 1

2

=
1

̺N

(∫ |∇Nf |2
f

dµ

) 1

2

. (1.50)
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1 Functional inequalities for Glauber dynamics

Let us turn to the remaining terms of (1.49). Note that for1 ≤ j ≤ N the vectors

(y1, . . . , yj−1, xj , . . . , xN ) and (y1, . . . , yj , xj+1, . . . , xN )

only differ in thej-th entry. Hence, the same argument as in the proof of Lemma 1.3.12
applied to the measuresνj−1 andνj yields (cf. equation (1.44))

(∫

W 2
2 (νj−1, νj) π̃(dx̄N , dȳN )

) 1

2

≤ κjN
̺N

(∫

|xj − yj |2 π̃(dx̄N , dȳN )
) 1

2

.

Now, we apply the induction hypothesis (1.47):

(∫

W 2
2 (νj−1, νj) π̃(dx̄N , dȳN )

) 1

2

≤ κjN
̺N

N−1∑

k=1

(
Ā−1

)

jk

(∫ |∇kf̄ |2
f̄

dµ̄

) 1

2

.

On the integral on the r.h.s. we apply Lemma 1.3.11 and get

(∫

W 2
2 (νj−1, νj) π̃(dx̄N , dȳN )

) 1

2

≤ κjN
̺N

N−1∑

k=1

(
Ā−1

)

jk

[(∫ |∇kf |2
f

dµ

) 1

2

+
κkN
̺N

(∫ |∇Nf |2
f

dµ

) 1

2

]

. (1.51)

Now, we can perform the final step: Inserting (1.51) and (1.50) into (1.49) yields

(∫

|xN − yN |2 dπ
) 1

2

≤
N−1∑

k=1

N−1∑

j=1

(
Ā−1

)

kj

κjN
̺N

(∫ |∇kf |2
f

dµ

) 1

2

+

[
1

̺N
+
κN · Ā−1κN

̺2N

](∫ |∇Nf |2
f

dµ

) 1

2

.

It follows from (1.48) that the r.h.s. of the last inequality can be written as

(∫

|xN − yN |2 dπ
) 1

2

≤
N∑

k=1

(
A−1

)

Nk

(∫ |∇kf |2
f

dµ

) 1

2

,

which verifies (1.35) in the casei = N . Therefore, the proof of Proposition 1.3.1 is complete.
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2 Uniform LSI for Kawasaki dynamics:
the non-interacting case

We start with recalling the definition of the grand canonical ensembleµ and the canonical en-
sembleµN,m (cf. the Chapter Introduction). The grand canonical ensembleµ is a probability
measure onRN given by

µ(dx) :=
1

Z
exp (−H(x)) dx.

In the non-interacting case, the HamiltonianH : RN → R is given by a sum of single-site
potentialsψ : R → R that are specified later i.e.

H (x) :=

N∑

i=1

ψ(xi). (2.1)

For a real numberm we consider the(N − 1) dimensional hyper-planeXN,m given by

XN,m :=

{

x ∈ R
N ,

1

N

N∑

i=1

xi = m

}

.

We equipXN,m with the standard scalar product induced byR
N , namely

〈x, x̃〉 :=
N∑

i=1

xix̃i.

The restriction ofµ toXN,m is called canonical ensembleµN,m. It is given by the density

µN,m(dx) :=
1

Z
exp (−H(x)) HN−1

⌊XN,m
(dx). (2.2)

Here,HN−1
⌊XN,m

denotes the(N − 1) dimensional Hausdorff measure restricted to the hyper-
planeXN,m. Recall the notation

a . b ⇔ there is a uniform constantC > 0 such thata ≤ Cb,

a ∼ b ⇔ it holds thata . b andb . a.

In 1993, Varadhan [53] posed the question for which kind of single-sitepotentialψ the
canonical ensembleµN,m satisfies the SG(̺) with constant̺ > 0 uniformly in the system
sizeN and the mean spinm. A partial answer was given by Caputo [10]:
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

Theorem 2.0.15(Caputo). Assume that for the single-site potentialψ exists a splittingψ =
ψo + δψ and constantsβ−, β+ ∈ [0,∞) such that for allx ∈ [0,∞)

ψ′′
0(x) ∼ |x|β+ + 1, ψ′′

0(−x) ∼ |x|β− + 1, and |δψ|+
∣
∣δψ′∣∣+

∣
∣δψ′′∣∣ . 1. (2.3)

Then the canonical ensembleµN,m satisfies the SG(̺) with constant̺ > 0 uniformly in the
system sizeN and the mean spinm.

In this chapter, we give a full answer to the question by Varadhan [53] and also consider the
question if the statement of the last theorem can be strengthened to the LSI. We consider three
cases of single-site potentials: sub-quadratic, quadratic, and super-quadratic potentials. In
the case of sub-quadratic single-site potentials, Barthe and Wolff [2] gave a counterexample
where the scaling in the system size of the SG and the LSI constant of the canonical ensemble
differs in the system size. More precisely, they showed:

Theorem 2.0.16(Barthe & Wolff). Assume that the single-site potentialψ is given by

ψ(x) =

{

x, for x > 0,

∞, else.

Then the SG constant̺1 and the LSI constant̺2 of the canonical ensembleµN,m satisfy

̺1 ∼
1

m2
and ̺2 ∼

1

Nm2
.

In the case of perturbed quadratic single-site potentials it is known that Theorem 2.0.15 can
be improved to the LSI. More precisely, several authors (cf. [42, 38,12, 22]) deduced the
following statement by different methods:

Theorem 2.0.17(Landim, Panizo, and Yau). Assume that the single-site potentialψ is per-
turbed quadratic in the following sense: There exists a splittingψ = ψo + δψ such that

ψ′′
0 = 1 and |δψ|+

∣
∣δψ′∣∣+

∣
∣δψ′′∣∣ . 1. (2.4)

Then the canonical ensembleµN,m satisfies the LSI(̺) with constant̺ > 0 uniformly in the
system sizeN and the mean spinm.

There is only left to consider the super-quadratic case. It is conjectured that the optimal
scaling LSI also holds, if the single-site potentialψ is a bounded perturbation of a strictly
convex function (cf. [38, p. 741], [12, Theorem 0.3 f.], and [10, p. 226]). Heuristically, this
conjecture seems reasonable: Because the LSI is closely linked to convexity (consider for
example the criterion of Bakry & Émery formulated in Theorem 1.1.5), a perturbed strictly
convex potential should behave no worse than a perturbed quadratic one. However techni-
cally, the methods for the quadratic case are not able to handle the perturbed strictly convex
case, because they require an upper bound on the second derivative of the Hamiltonian. In
the main result of the article we show that the conjecture from above is true:
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Theorem 2.0.18.Assume that the single-site potentialψ is perturbed strictly convex in the
sense that there is a splittingψ = ψc + δψ such that

ψ′′
c & 1 and |δψ|+ |δψ′| . 1. (2.5)

Then the canonical ensembleµN,m satisfies the LSI(̺) with constant̺ > 0 uniformly in the
system sizeN and the mean spinm.

Note that the standard criteria for the SG and LSI (cf. Section 1.1) fail forthe canonical
ensembleµN,m:

• The tensorization principle (cf. Theorem 1.1.3) for SG and LSI does not apply be-
cause of the restriction to the hyper-planeXN,m.

• The criterion ofBakry & Émery (cf. Theorem 1.1.5) does not apply because the
HamiltonianH is not strictly convex.

• The criterion ofHolley & Stroock (cf. Theorem 1.1.4) does not help because the LSI
constant̺ has to be independent of the system sizeN .

Therefore, a more elaborated machinery was needed for the proof of Theorem 2.0.15 and
Theorem 2.0.17. The approach of Caputo to Theorem 2.0.15 seems to be restricted to the
SG, because it relies on the spectral nature of the SG. The most common approach for the
proof of Theorem 2.0.17 is the Lu-Yau martingale method (see [42, 38, 12]). Recently,
Grunewald, Otto, Villani, and Westdickenberg [22] provided a new technique for deducing
Theorem 2.0.17 called the two-scale approach. We follow this approach in the proof of
Theorem 2.0.18.

The limiting factor for extending Theorem 2.0.17 to more general single-site potentials is
almost the same for the Lu-Yau martingale method and for the two-scale approach: It is
the estimation of a covariance term w.r.t. the measureµN,m conditioned on a special event
(cf. [38, (4.6)] and [22, (42)]). In the two-scale approach one has to estimate for some large
but fixedK ≫ 1 and any non-negative functionf the covariance

∣
∣
∣
∣
∣
covµK,m

(

f,
1

K

K∑

i=1

ψ′(xi)

)∣
∣
∣
∣
∣
.

In [22] this term term was estimated by using a standard estimate, which only canbe ap-
plied to perturbed quadratic single-site potentialsψ (cf. Lemma 1.2.2, Lemma 2.1.9, and
[22] [Lemma 22]). We get around this difficulty by making the following adaptations:
Instead of one-time coarse-graining of big blocks we consider iterative coarse-graining of
pairs. As a consequence we only have to estimate the covariance term fromabove in the
caseK = 2. Becauseµ2,m is a one-dimensional measure, we are able to apply the more
robust asymmetric Brascamp-Lieb inequality (cf. Lemma 2.1.10), which can also be applied
for perturbed strictly convex single-site potentialsψ.
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

As we will see in Chapter 3, the optimal scaling LSI also holds in the case of a weakly-
interacting HamiltonianH given by

H(x) =
N∑

i=1

ψ(xi) + ε
∑

1≤i<j≤N
bijxixj ,

provided the single-site potentialψ is perturbed quadratic in the sense of (2.4). Because
the original two-scale approach is used, it is an interesting question if one could extend this
result to perturbed strictly convex single-site potentials. A direct transferof the argument for
perturbed strictly convex single-site potentialsψ fails, because of the iterative structure of
the proof of Theorem 2.0.18.

The remaining part of this chapter is organized as follows. In Section 2.1.1 weprove of the
main result. The auxiliary results of Section 2.1.1 are proved in Section 2.1.2. There is one
exception: The convexification of the single-site potential by iterated renormalization (see
Theorem 2.1.6) is proved in Section 2.2.

2.1 The adapted two-scale approach

2.1.1 Proof of the main result of Chapter 2

In this section we state the proof of Theorem 2.0.18, which is based based on an adaptation
of the two-scale approach of [22]. We start with introducing the conceptof coarse-graining
of pairs. We recommend to read Chapter 2.1 of [22] as a guideline. We assume that the
numberN of sites is given byN = 2K for some large numberK ∈ N. The step to arbitrary
N is not difficult (cf. Remark 2.1.7 below).

We decompose the spin system into blocks each containing two spins. The coarse-graining
operatorP : XN,m → XN

2
,m assigns to each block the mean spin of the block. More

precisely,P is given by

P (x) : =

(
1

2
(x1 + x2),

1

2
(x3 + x4), . . . ,

1

2
(xN−1 + xN )

)

. (2.6)

Due to the coarse-graining operatorP we can decompose the canonical ensembleµN,m into

µN,m(dx) = µ(dx|y)µ̄(dy), (2.7)

whereµ̄ := P#µN,m denotes the push forward of the Gibbs measureµ underP andµ(dx|y)
is the conditional measure ofx givenPx = y. The last equation has to be understood in a
weak sense i.e. for any test functionξ

∫

ξ(x) µN,m(dx) =

∫

Y

(
∫

{Px=y}
ξ(x) µ(dx|y)

)

µ̄(dy).

Now, we are able to state the first ingredient of the proof of Theorem 2.0.18.
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2.1 The adapted two-scale approach

Proposition 2.1.1(Hierarchic criterion for LSI). Assume that the single-site potentialψ is
perturbed strictly convex in the sense of(2.5). If the marginalµ̄ satisfies the LSI(̺1) with
constant̺ 1 > 0 uniformly in the system sizeN and the mean spinm, then the canonical
ensembleµN,m also satisfies the LSI(̺2) with constant̺ 2 > 0 uniformly in the system size
N and the mean spinm.

The proof of this statement is given in Section 2.1.2. Due to the last propositionit suffices to
deduce the LSI for the marginalµ̄. Hence, let us have a closer look at the structure ofµ̄. We
will characterize the Hamiltonian of the marginalµ̄ with the help the of the renormalization
operatorR, which is introduced as follows.

Definition 2.1.2. Letψ : R → R be a single-site potential. Then the renormalized single-site
potentialRψ is defined as

Rψ(y) := − log

∫

exp (−ψ(x+ y)− ψ(−x+ y)) dx for y ∈ R. (2.8)

Remark 2.1.3. The renormalized single-site potentialRψ can be interpreted in the follow-
ing way: A change of variables (cf. [16, Section 3.3.3]) and the invariance of the Hausdorff
measure under translation yield the identity

exp (−Rψ(y)) =
∫

exp (−ψ(x+m)− ψ(−x+m)) dx

=
1√
2

∫

exp (−ψ(x1)− ψ(x2))H1
⌊{x1+x2=2y}(dx).

Therefore, the renormalized single-site potentialRψ describes the free energy of two inde-
pendent spinsX1 andX2 (identically distributed according toZ−1 exp(−ψ)) conditioned
on a fixed mean value12 (X1 +X2) = y.

Lemma 2.1.4(Invariance under renormalization). Assume that the single-site potentialψ is
perturbed strictly convex in the sense of(2.5). Then the renormalized HamiltonianRψ is
also perturbed strictly convex in the sense of(2.5).

A direct calculation using the coarea formula (cf. [16, Section 3.4.2]) reveals the following
structure of the marginal̄µ.

Lemma 2.1.5. The marginal̄µ is given by

µ̄(dy) :=
1

Z
exp



−
N
2∑

i=1

Rψ(yi)



H
N
2
−1

⌊XN
2

,m

(dy).

It follows from the last two lemmas that the marginalµ̄ has the same structure as the canon-
ical ensembleµN,m. The single-site potential of̄µ is given by the renormalized single-site
potentialRψ. Hence, one can iterate the coarse-graining of pairs. The next statement shows
that after finitely many iterations the renormalized single-site potentialRMψ becomes uni-
formly strictly convex. Therefore, the criterion of Bakry & Émery (cf. Theorem 1.1.5) yields
that the corresponding marginal satisfies the LSI with constant˜̺ > 0, uniformly in the sys-
tem sizeN and the mean spinm. Then an iterated application of the hierarchic criterion of
LSI (cf. Proposition 2.1.1) yields Theorem 2.0.18 in the caseN = 2K .
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

Theorem 2.1.6(Convexification by renormalization). Letψ be a perturbed strictly convex
single-site potential in the sense of(2.5). Then there is an integerM0 such that for all
M ≥M0 theM−times renormalized single-site potentialRMψ is uniformly strictly convex
independently of the system sizeN and the mean spinm.

We conclude this section with some remarks and pointing out the central tools needed for
the proof of the auxiliary results. The next remark shows how Theorem 2.0.18 is proved in
the case of an arbitrary numberN of sites.

Remark 2.1.7. Note that an arbitrary number of sitesN can be written as

N = K̃2K +R

for some number̃K, a large but fixed numberK, and a bounded numberR < 2K . Hence,
one can decompose the spin system intoK̃ blocks of2K spins and one block ofR spins.
The big blocks of2K spins are coarse-grained by pairs, whereas the small block ofR spins
is not coarse-grained at all. After iterating this procedure sufficiently often, the renormal-
ized single-site potentials of the big blocks are uniformly strictly convex. On theremaining
R spins, the corresponding single-site potentials are unchanged. Because ψ is a bounded
perturbation of a strictly convex function, it follows from a combination of the criterion of
Bakry & Émery (cf. Theorem 1.1.5) and the criterion of Holley & Stroock (cf. Theorem 1.1.4)
that the marginal of the whole system satisfies the LSI(̺) with constant

̺ & exp(−R osc δψ),

which is independent onN andm. Therefore, an iterated application of the hierarchic
criterion of LSI (cf. Proposition 2.1.1) yields Theorem 2.0.18 for an arbitrary number of
sitesN .

The proof of Proposition 2.1.1 and Lemma 2.1.4 is given in Section 2.1.2, whereas the proof
of Theorem 2.1.6 is stated in Section 2.2.

Starting point for the proof of Theorem 2.1.6 is the observation that theM -times renor-
malized single-site potentialRMψ corresponds to the coarse-grained Hamiltonian related to
coarse-graining with block size2M (cf. [22]).

Lemma 2.1.8. For K ∈ N let the coarse-grained Hamiltonian̄HK be defined by

H̄K(m) = − 1

K
log

∫

exp(−H(x)) HK−1
⌊XK,m

(dx). (2.9)

LetM ∈ N. Then there is a constant0 < C(2M ) <∞ depending only on2M such that

RMψ = 2MH̄2M + C(2M ).

Because the last statement is verified by a straight forward application of thearea and coarea
formula, we omit the proof. In Lemma 2.1.8 one could easily determine the exact value of
the constantC(2M ). Because we are only interested in the convexity ofRMψ, this is not
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2.1 The adapted two-scale approach

important. In [22] the convexification of̄HK was deduced from a local Cramér theorem
(cf. [22][Proposition 31]). For the proof of Theorem 2.1.6 we follow the same strategy
generalizing the argument to perturbed strictly convex single-site potentialsψ.

Now, we make some comments on the proof of Proposition 2.1.1 and Lemma 2.1.4. One of
the limiting factors in the proof of Theorem 2.0.17 is the application of a classicalcovariance
estimate (cf. [22][Lemma 22]). In our framework this estimate can be formulated as:

Lemma 2.1.9. Assume that the single-site potentialψ is perturbed strictly convex in the
sense of(2.5). Letν be a probability measure onR given by

ν(dx) =
1

Z
exp (−ψ(x)) dx.

Then for any functionf ≥ 0 andg

| covν(f, g)| . sup
x

∣
∣g′(x)

∣
∣

(∫

fdν

) 1

2
(∫ |f ′|2

f
dν

) 1

2

.

In [22], the last estimate was applied to the functiong = ψ′. Note that|g′(x)| = |ψ′′(x)|
is only bounded in the case of a perturbed quadratic single-site potentialψ. The main new
ingredient for the proof of the hierarchic criterion for LSI (cf. Proposition 2.1.1) and the
invariance principle (cf. Lemma 2.1.4) is an asymmetric Brascamp-Lieb inequality, which
does not exhibit this restriction.

Lemma 2.1.10.Assume that the single-site potentialψ is perturbed strictly convex in the
sense of(2.5). Letν be a probability measure onR given by

ν(dx) =
1

Z
exp (−ψ(x)) dx.

Then for any functionf andg

| covν(f, g)| ≤ exp (−3 osc δψ) sup
x

∣
∣
∣
∣

g′(x)
ψ′′
c (x)

∣
∣
∣
∣

∫

|f ′|dν,

whereosc δψ := supx δψ(x)− infx δψ(x).

We call the last inequality asymmetric, because compared to the original Brascamp-Lieb
inequality [7]L2 ×L2 is replaced byL1 ×L∞ and the factor 1√

ψ′′
c

is not evenly distributed.

It is an interesting question if an analog statement also holds for higher dimensions. The
proof of Lemma 2.1.10 is based on a kernel representation of the covariance. All steps are
elementary.

Proof of Lemma 2.1.10.Let µ be a Gibbs measure onR associated to a HamiltonianH :
R → R. More precisely,µ is given by

µ(dx) :=
1

Z
exp (−H(x)) dx.
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

We start by deriving the following integral representation of the covariance ofµ:

covµ(f, g) =

∫ ∫

f ′(x)Kµ(x, y)g
′(y) dx dy, (2.10)

where the non-negative kernelKµ(x, y) is given by

Kµ(x, y) :=

{
Mµ(x)(1−Mµ)(y) for y ≥ x
(1−Mµ)(x)Mµ(y) for y ≤ x

}

,

andMµ(x) := µ((−∞, x)) so that(1−Mµ)(x) = µ((x,∞)). Indeed, we start by noting
that

covµ(f, g) =

∫ ∫

(f(z)− f(x))µ(x) dx

∫

(g(z)− g(y))µ(y) dy µ(z) dz, (2.11)

where we don’t distinguish between the measureµ(dx) and its Lebesgue densityµ(x) in our
notation. UsingM ′

µ(x) = µ(x), we can use integration by parts to rewrite each factor in
terms of the derivative:

∫

(f(z)− f(x))µ(x) dx

=

∫ z

−∞
(f(z)− f(x))M ′

µ(x) dx−
∫ ∞

z
(f(z)− f(x))(1−Mµ)

′(x) dx

=

∫ z

−∞
f ′(x)Mµ(x) dx−

∫ ∞

z
f ′(x)(1−Mµ)(x) dx

=

∫

f ′(x)
(
I(x < z)Mµ(x)− I(x > z)(1−Mµ)(x)

)
dx,

whereI(x < z) assumes the value1 if x < z and zero otherwise. Inserting this, and the
corresponding identity forg(y), into (2.11), we obtain

covµ(f, g)

=

∫ ∫

f ′(x)
(
I(x < z)Mµ(x)− I(x > z)(1−Mµ)(x)

)
dx

×
∫

g′(y)
(
I(y < z)Mµ(y)− I(y > z)(1−Mµ)(y)

)
dyµ(z)dz

=

∫ ∫

f ′(x)Kµ(x, y)g
′(y) dx dy (2.12)
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2.1 The adapted two-scale approach

with kernelKµ(x, y) as desired given by

Kµ(x, y)

= Mµ(x)Mµ(y)
∫
I(x < z)I(y < z)µ(z) dz

− Mµ(x)(1−Mµ)(y)
∫
I(x < z)I(y > z)µ(z) dz

− (1−Mµ)(x)Mµ(y)
∫
I(x > z)I(y < z)µ(z) dz

+ (1−Mµ)(x)(1−Mµ)(y)
∫
I(x > z)I(y > z)µ(z) dz

= Mµ(x)Mµ(y)(1−Mµ)(max{x, y})
− Mµ(x)(1−Mµ)(y)I(y > x)(Mµ(y)−Mµ(x))

− (1−Mµ)(x)Mµ(y)I(y < x)(Mµ(x)−Mµ(y))

+ (1−Mµ)(x)(1−Mµ)(y)Mµ(min{x, y})
= I(y > x)

(
Mµ(x)Mµ(y)(1−Mµ)(y)−Mµ(x)(1−Mµ)(y)(Mµ(y)−Mµ(x))

+(1−Mµ)(x)(1−Mµ)(y)Mµ(x)
)

+ I(y ≤ x)
(
Mµ(x)Mµ(y)(1−Mµ)(x)− (1−Mµ)(x)Mµ(y)(Mµ(x)−Mµ(y))

+(1−Mµ)(x)(1−Mµ)(y)Mµ(y)
)

= I(y > x)Mµ(x)(1−Mµ)(y) + I(y ≤ x)(1−Mµ)(x)Mµ(y).

We now establish the following identity for the above kernel:
∫

Kµ(x, y)H
′′(y)dy = µ(x). (2.13)

Indeed, we have by integrations by part
∫

Kµ(x, y)H
′′(y) dy

= (1−Mµ)(x)

∫ x

−∞
Mµ(y)H

′′(y) dy +Mµ(x)

∫ ∞

x
(1−Mµ)(y)H

′′(y) dy

= (1−Mµ)(x)

(

Mµ(x)H
′(x)−

∫ x

−∞
M ′
µ(y)H

′(y) dy

)

+ Mµ(x)

(

−(1−Mµ)(x)H
′(x) +

∫ ∞

x
M ′
µ(y)H

′(y) dy

)

= −(1−Mµ)(x)

∫ x

−∞
exp(−H(y))H ′(y) dy

+ Mµ(x)

∫ ∞

x
exp(−H(y))H ′(y) dy

= (1−Mµ)(x)µ(x) +Mµ(x)µ(x) = µ(x).

Let us now consider the Gibbs measuresν(dx) andνc(dx) given by

ν(dx) =
1

Z
exp (−ψc(x)− δψ(x)) dx and νc(dx) =

1

Z
exp (−ψc(x)) dx.
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

By the integral representation (2.10) of the covariance we have the estimate

|covν(f, g)| ≤
∫ ∫

∣
∣f ′(x)

∣
∣Kν(x, y)

∣
∣g′(y)

∣
∣ dx dy.

By a straight forward calculation we can estimate

Mν(x) =

∫ x
−∞ exp(−ψc(x)− δψ(x))dx
∫
exp(−ψc(x)− δψ(x))dx

≤ exp(− osc δψ)

∫ x
−∞ exp(−ψc(x))dx
∫
exp(−ψc(x))dx

= exp(− osc δψ)Mνc(x).

Together with a similar estimate for(1−Mν(y)), this yields the kernel estimate

Kν(x, y) ≤ exp(−2 osc δψ) Kνc(x, y).

Applying this to the covariance estimate from above yields

|covν(f, g)| ≤ exp(−2 osc δψ)

∫ ∫
∣
∣f ′(x)

∣
∣Kνc(x, y)

∣
∣g′(y)

∣
∣ dx dy.

Using the identity (2.13) forµ = νc we may easily conclude:

|covν(f, g)| ≤ exp(−2 osc δψ) sup
y

|g′(y)|
ψ′′
c (y)

∫
∣
∣f ′(x)

∣
∣

∫

Kνc(x, y)ψ
′′
c (y) dy dx

= exp(−2 osc δψ) sup
y

|g′(y)|
ψ′′
c (y)

∫
∣
∣f ′(x)

∣
∣ νc(dx)

≤ exp(−3 osc δψ) sup
y

|g′(y)|
ψ′′
c (y)

∫
∣
∣f ′(x)

∣
∣ ν(dx).

For the entertainment of the reader, let us now argue how the identity (2.13)also yields the
traditional Brascamp-Lieb inequality in the caseH ′′(y) > 0. Indeed, by the symmetry of
the kernelKµ(x, y) the identity (2.13) yields for allx andy

∫

Kµ(x, y)H
′′(y) dy = µ(x) and

∫

Kµ(x, y)H
′′(x) dx = µ(y). (2.14)

The integral representation of the covariance (2.10) yields

varµ(f) =

∫ ∫

f ′(x)Kµ(x, y)f
′(y) dx dy

=

∫ ∫

f ′(x)

(
Kµ(x, y) H

′′(y)
H ′′(x)

) 1

2

f ′(y)

(
Kµ(x, y) H

′′(x)
H ′′(y)

) 1

2

dx dy.
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Then Hoelder’s inequality and the identity (2.14) for the kernelKµ(x, y) yield the Brascamp-
Lieb inequality:

varµ(f)

≤
(∫ ∫ |f ′(x)|2

H ′′(x)
Kµ(x, y)H

′′(y)dydx

) 1

2
(∫ ∫ |f ′(y)|2

H ′′(y)
Kµ(x, y)H

′′(x)dxdy

) 1

2

=

(∫ |f ′(x)|2
H ′′(x)

µ(x)dx

) 1

2
(∫ |f ′(y)|2

H ′′(y)
µ(y)dy

) 1

2

=

∫ |f ′(x)|2
H ′′(x)

µ(x)dx. (2.15)

2.1.2 Proof of the auxiliary results

In this section we outline the proof of Proposition 2.1.1 and Lemma 2.1.4. We start with
Proposition 2.1.1, which is the hierarchic criterion for LSI. Unfortunately,we cannot directly
apply the two-scale criterion of [22][Theorem 3]. The reason is that thenumber

κ :=
{
〈HessH(x)u, v〉 , u ∈ im(2P tP ), v ∈ im(idX −2P tP ); |u| = |v| = 1

}
, (2.16)

which measures the interaction between the microscopic and macroscopic scales, can be in-
finite for a perturbed strictly convex single-site potentialψ. However, we follow the proof
of [22][Theorem 3] with only one major difference: Instead of applyingthe classical co-
variance estimate (cf. Lemma 2.1.9) we apply the asymmetric Brascamp-Lieb inequality
(cf. Lemma 2.1.10). Let us assume for the rest of this section that the single-site potentialψ
is perturbed strictly convex in the sense of (2.5).

For convenience we setX := XN,m andY := XN
2
,m. We choose onX andY the standard

Euclidean structure given by

〈x, y〉 =
N∑

i=1

xiyi.

The coarse-graining operatorP : X → Y given by (2.6) satisfies the identity

2PP t = idY ,

whereP t : Y → X is the adjoint operator ofP . Note that ourP t differs from theP t

of [22], because the Euclidean structure on Y differs from the Euclidean structure used in
[22]. The last identity yields that2P tP is the orthogonal projection ofX to imP t. Hence,
one can decomposeX into the orthogonal sum ofmicroscopic fluctuationsandmacroscopic
variablesaccording to

X = kerP ⊕ imP t and

x =
(
idX −2P tP

)
x+ 2P tPx.
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

We apply this decomposition to the gradient∇f of a smooth functionf onX. The gradient
∇f is decomposed into a macroscopic gradient and a fluctuation gradient satisfying

∇f(x) =
(
idX −2P tP

)
∇f(x) + 2P tP∇f(x) and

|∇f(x)|2 =
∣
∣
(
idX −2P tP

)
∇f(x)

∣
∣2 +

∣
∣2P tP∇f(x)

∣
∣2 . (2.17)

Note thatkerP is the tangent space of the fiber{Px = y}. Hence, the gradient off on
{Px = y} is given by

(
idX −2P tP

)
∇f(x). The first main ingredient of the proof of Propo-

sition 2.1.1 is the following statement.

Lemma 2.1.11. The conditional measureµ(dx|y) given by(2.7) satisfies the LSI(̺) with
constant̺ > 0 uniformly in the system sizeN , the macroscopic profiley, and the mean spin
m. More precisely, for any non-negative functionf

∫

f log fµ(dx|y)−
∫

fµ(dx|y) log
(∫

fµ(dx|y)
)

≤ 1

2̺

∫ |
(
idX −2P tP

)
∇f |2

f
µ(dx|y).

Proof of Lemma 2.1.11.Observe that the conditional measuresµ(dx|y) have a product struc-
ture: We decompose{Px = y} into a product of Euclidean spaces. Namely for

X2,yi :=

{

(x2i−1, x2i) ∈ R
2, x2i−1 + x2i = 2yi

}

, i ∈
{

1, . . . ,
N

2

}

we have
{Px = y} = X2,y1 × · · · ×X2,yN

2

.

It follows from the coarea formula (cf. [16, Section 3.4.2]) that
∫

{Px=y}
f(x)µ(dx|y)

=

∫

f(x)

N
2⊗

i=1

1

Z
exp (−ψ(x2i−1)− ψ(x2i)) H1

⌊X2,yi
(dx2i−1, dx2i).

Hence,µ(dx|y) is the product measure

µ(dx|y) =
N
2⊗

i=1

µ2,yi(dx2i−1, dx2i), (2.18)

where we make use of the notation introduced in (2.2). Because the single-site potentialψ
is perturbed strictly convex in the sense of (2.5), a combination of the criterion of Bakry &
Émery (cf. Theorem 1.1.5) and the criterion of Holley & Stroock (cf. Theorem 1.1.4) yield
that the measureµ2,m(dx1, dx2) satisfies the LSI(̺) with constant̺ > 0 uniformly in m.
Then the tensorization principle (cf. Theorem 1.1.3) implies the desired statement.
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2.1 The adapted two-scale approach

For convenience, let us introduce the following notation: Letf be an arbitrary function.
Then its conditional expectation̄f is defined by

f̄(y) :=

∫

f(x)µ(dx|y).

The second main ingredient of the proof of Proposition 2.1.1 is the following proposition,
which is the analogue statement of [22, Proposition 20].

Proposition 2.1.12.Assume that the marginal̄µ(dy) given by(2.7)satisfies the LSI(λ) with
constantλ > 0 uniformly in the system sizeN and the mean spinm. Then for any non-
negative functionf

|∇f̄(y)|2
f̄(y)

.

∫ |∇f(x)|2
f(x)

µ(dx|y),

uniformly in the macroscopic profiley and the system sizeN .

Before we will verify Proposition 2.1.12, let us show how it can be used in the proof of
Proposition 2.1.1.

Proof of Proposition 2.1.1.Under the assumption that Lemma 2.1.11 and Proposition 2.1.12
hold, the argument is exactly the same as in the proof of [22, Theorem 3]: Letφ denote the
function

φ(x) := x log x.

First, the additive property of the entropy implies
∫

φ(f)dµN,m − φ

(∫

fdµN,m

)

=

∫ [∫

φ (f(x))µ(dx|y)− φ
(
f̄(y)

)
]

µ̄(dy)

+

[∫

φ
(
f̄(y)

)
µ̄(dy)− φ

(∫

f̄(y)µ̄(dy)

)]

.

An application of Lemma 2.1.11 yields the estimate

∫ [∫

φ (f(x))µ(dx|y)− φ
(
f̄(y)

)
]

µ̄(dy)

≤ 1

2̺

∫ ∫ |
(
idX −2P tP

)
∇f(x)|2

f(x)
µ(dx|y)µ̄(dy).

By assumption the marginal̄µ satisfies LSI(λ) with constantλ > 0. Together with Proposi-
tion 2.1.12 this yields the estimate

∫

φ
(
f̄(y)

)
µ̄(dy)− φ

(∫

f̄(y)µ̄(dy)

)

≤ 1

2λ

∫ |∇f̄(y)|2
f̄(y)

µ̄(dy)

.

∫ ∫ |∇f(x)|2
f(x)

µ(dx|y)µ̄(dy).
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

A combination of the last three formulas and the observations (2.7) and (2.17) yield

∫

φ(f)dµN,m − φ

(∫

fdµN,m

)

.

∫ |
(
idX −2P tP

)
∇f(x)|2

f(x)
µN,m(dx) +

∫ |∇f(x)|2
f(x)

µN,m(dx)

.

∫ |∇f(x)|2
f(x)

µN,m(dx),

uniformly in the system sizeN and the mean spinm.

Because the hierarchic criterion for LSI is an important ingredient in the proof of the main
result, we outline the proof of Proposition 2.1.12 in full detail. We follow the proof of
[22][Proposition 20], which is based on two lemmas. We directly take over thefirst lemma
(cf. [22, Lemma 21]), which in our notation becomes:

Lemma 2.1.13.For any functionf onX and anyy ∈ Y it holds

∫

P∇f(x)µ(dx|y) = 1

2
∇f̄(y) + P covµ(dx|y)(f,∇H).

Remark 2.1.14. The notational difference compared to [22, Lemma 21] is based on our
choice of the Euclidean structure onY = XN

2
,m. Compared to the notation in Lemma 21 of

[22] we have

∇Y f̄(y) =
N

2
∇f̄(y).

Hence, we omit the proof, which is a straight forward calculation.

The more interesting ingredient of the proof of [22, Proposition 20] is the estimate (see [22,
(42),(43)])

|2P covµ(dx|y)(f,∇H)|2 ≤
√
2κ2

̺2
f̄(y)

∫ |(idX −2P tP )∇f(x)|2
f(x)

µ(dx|y). (2.19)

The estimate (2.19) follows in [22] by direct calculation from the standard covariance esti-
mate given by Lemma 2.1.9. In contrast to [22], we cannot use the estimate (2.19) because
the constantκ given by (2.16) maybe infinite for perturbed strictly convex single-site po-
tentialsψ. We avoid this problem by applying the more robust asymmetric Brascamp-Lieb
inequality given by Lemma 2.1.10. Our substitute for (2.19) is:

Lemma 2.1.15.For any non-negative functionf

|2P covµ(dx|y)(f,∇H)|2 . f̄(y)

∫ |∇f(x)|2
f(x)

µ(dx|y),

uniformly in the system sizeN , the macroscopic profiley, and the mean spinm.
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We postpone the proof of Lemma 2.1.15 and show how it is used in the proof ofProposi-
tion 2.1.12 (cf. proof of [22][Proposition 20]).

Proof of Proposition 2.1.12.Note that because for anya, b ∈ R

1

2
(a+ b)2 ≤ a2 + b2,

it follows form the definition (2.6) ofP that

|Px|2 ≤ |x2|. (2.20)

By successively using Lemma 2.1.13 and Jensen’s inequality (with the convex function
(a, b) 7→ |b|2/a), we have

|∇f̄(y)|2
f̄(y)

=
4

f̄(y)

∣
∣
∣
∣
P

∫

∇f(x)µ(dx|y)− P covµ(dx|y)(f,∇H)

∣
∣
∣
∣

2

.
1

f̄(y)

∣
∣
∣
∣

∫

P∇f(x)µ(dx|y)
∣
∣
∣
∣

2

+
1

f̄(y)

∣
∣P covµ(dx|y)(f,∇H)

∣
∣2

.

∫ |P∇f(x)|2
f(x)

µ(dx|y) + 1

f̄(y)

∣
∣2P covµ(dx|y)(f,∇H)

∣
∣2 .

On the first term on the r.h.s. we apply the estimate (2.20). On the second term we apply
Lemma 2.1.15, which yields the desired estimate.

Now, we state the proof of Lemma 2.1.15, which also represents one of the maindifferences
compared to the two-scale approach of [22]. The main ingredients are the product struc-
ture (2.18) ofµ(dx|y) and the asymmetric Brascamp-Lieb inequality (cf. Lemma 2.1.10).

Proof of Lemma 2.1.15.We have to estimate the covariance

|2P covµ(dx|y)(f,∇H)|2 =
N
2∑

j=1

| covµ(dx|y) (f, (2P∇H)j) |2. (2.21)

Therefore, let us consider forj ∈
{
1, . . . N2

}
the termcovµ(dx|y) (f, (2P∇H)j). Note that

the function
(2P∇H(x))j = ψ′(x2j−1) + ψ′(x2j )

only depends of the variablesx2j−1 andx2j . Hence, the product structure (2.18) ofµ(dx|y)
yields the identity

covµ(dx|y)(f, 2 (P∇H)j)

=

∫

covµ2,yj (dx2j−1,dx2j )
(f, (2P∇H)j)

N
2⊗

i=1,i 6=j
µ2,yi(dx2i−1, dx2i).
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

As we will show below, we obtain by using the asymmetric Brascamp-Lieb inequality of
Lemma 2.1.10 and the Csiszár-Kullback-Pinsker inequality the estimate

∣
∣
∣covµ2,yj (dx2j−1,dx2j )

(f, (2P∇H)j)
∣
∣
∣ .

(∫

f(x)µ2,yj (dx2j−1, dx2j )

) 1

2

×
(
∫ | d

dx2j−1
f(x)|2 + | d

dx2j
f(x)|2

f(x)
µ2,yj (dx2j−1, dx2j )

) 1

2

(2.22)

uniformly in j andyj . Therefore, a combination of the identity from above, the last estimate,
and Hölder’s inequality yield

| covµ(dx|y)(f, (2P∇H)j)|2

.

∫

f(x)µ(dx|y)
∫ | d

dx2j−1
f(x)|2 + | d

dx2j
f(x)|2

f(x)
µ(dx|y),

which implies the desired estimate by the identity (2.21). It is only left to deduce theesti-
mate (2.22). We assume w.l.o.g.j = 1. Recall the splittingψ = ψc+ δψ given by (2.5). We
use the bound on|δψ′| to estimate
∣
∣
∣covµ2,y1 (dx1,dx2)(f, (2P∇H)1)

∣
∣
∣ .

∣
∣
∣covµ2.y1 (dx1,dx2)

(
f, ψ′

c(x1) + ψ′
c(x2)

)
∣
∣
∣

+

∫ ∣
∣
∣
∣
f −

∫

fµ2,y1(dx1, dx2)

∣
∣
∣
∣
µ2,y1(dx1, dx2). (2.23)

Now, we consider the first term on the r.h.s. of the last estimate. Fory1 ∈ R let the one-
dimensional probability measureν(dz|y1) be defined by the density

ν(dz|y1) :=
1

Z
exp (− (ψ(z + y1) + ψ(−z + y1))) dz.

A reparametrization of the one-dimensional Hausdorff measure implies
∫

ξ(x1, x2)µ2,y1(dx1, dx2) =

∫

ξ(−z + y1, z + y1)ν(dz|y1) (2.24)

for any measurable functionξ. We may assume w.l.o.g. that the functionf(x) = f(x1, x2)
just depends on the variablesx1 andx2. Hence, for

f̃(z, y1) := f(−z + y1, z + y1) and g̃(z, y1) := ψ′
c(−z + y1) + ψ′

c(z + y1)

the last identity yields

covµ2,y1 (dx1,dx2)
(
f, ψ′

c(x1) + ψ′
c(x2)

)
= covν(dz|y1)(f̃ , g̃).

Because
∣
∣
∣
∣
∣

d
dz g̃(z, y1)

ψ′′
c (−z + y1) + ψ′′

c (z + y1)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

−ψ′′
c (−z + y1) + ψ′′

c (z + y1)

ψ′′
c (−z + y1) + ψ′′

c (z + y1)

∣
∣
∣
∣
≤ 2,
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2.1 The adapted two-scale approach

an application of the asymmetric Brascamp-Lieb inequality (cf. Lemma 2.1.10) yields

∣
∣
∣covν(dz|y1)(f̃ , g̃)

∣
∣
∣ .

∫

| d
dz
f̃ |ν(dz|y1) .

(∫

f̃ ν(dz|y1)
) 1

2

(
∫ | ddz f̃ |2

f̃
ν(dz|y1)

) 1

2

.

From the last inequality and (2.24) follows the estimate
∣
∣
∣covµ2,y1 (dx1,dx2)

(
f,
(
ψ′
c(x1) + ψ′

c(x2)
))
∣
∣
∣

.

(∫

f µ2,y1(dx1, dx2)

) 1

2

(
∫ | d

dx1
f |2 + | d

dx2
f |2

f
µ2,y1(dx1, dx2)

) 1

2

. (2.25)

We turn to the second term on the r.h.s. of (2.23). For convenience we write

f̃(y1) :=

∫

fµ2,y1(dx1, dx2).

An application of the (well-known) Csiszár-Kullback-Pinsker inequality (cf. [15, 36]) yields
∫ ∣
∣
∣f − f̃(y1)

∣
∣
∣µ2,y1(dx1, dx2) = f̃(y1)

∫ ∣
∣
∣
∣

f

f̃(y1)
− 1

∣
∣
∣
∣
µ2,y1(dx1, dx2)

. f̃(y1)

(∫
f

f̃(y1)
log

f

f̃(y1)
µ2,y1(dx1, dx2)

) 1

2

.

An application of the LSI for the measureµ2,y1(dx1, dx2) implies
∫ ∣
∣
∣
∣
f −

∫

fµ2,y1(dx1, dx2)

∣
∣
∣
∣
µ2,y1(dx1, dx2)

.

(∫

fµ2,y1(dx1, dx2)

) 1

2

(
∫ | d

dx1
f |2 + | d

dx2
f |2

f
µ2,y1(dx1, dx2)

) 1

2

.

A combination of (2.23), (2.25), and the last inequality yield the desired estimate(2.22).

We turn to the proof of Lemma 2.1.4. Again, the main ingredient of the proof is theasym-
metric Brascamp-Lieb inequality.

Proof of Lemma 2.1.4.We define

ψc(m) := −1

2
log

∫

exp (−ψc(−x+m)− ψc (x+m)) dx

and

δψ(m) : = −1

2
log

∫

exp (−ψ(−x+m)− ψ (x+m)) dx

+
1

2
log

∫

exp (−ψc(−x+m)− ψc (x+m)) dx.

45



2 Uniform LSI for Kawasaki dynamics: the non-interacting case

We show that the splittingRψ = ψc + δψ satisfies the conditions given by (2.5). Using
the strict convexity ofψc it follows by a standard argument based on the Brascamp-Lieb
inequality (cf. [7] and (2.15)) that the first condition is preserved i.e.

ψ
′′
c & 1.

We turn to the perturbationδψ. For convenience, we introduce the measures

ν(dx) :=
1

Z
exp (−ψ(−x+m)− ψ (x+m)) dx

and

νc(dx) :=
1

Z
exp (−ψc(−x+m)− ψc (x+m)) dx

so that

δψ(m) = −1

2
log

∫

exp (−δψ(−x+m)− δψ (x+m)) νc(dx).

A direct calculation using the bound|δψ| . 1 yields

|δψ(m)| . 1.

We turn to the first derivative ofδψ. A direct calculation based on the definition ofδψ yields

2δψ
′
(m) =

∫
(
ψ′(−x+m) + ψ′ (x+m)

)
ν(dx)

−
∫
(
ψ′
c(−x+m) + ψ′

c (x+m)
)
νc(dx).

Fors ∈ [0, 1] we define the measure

νs(dx) :=
1

Z
exp (−ψc(−x+m)− ψc (x+m)− sδψ(−x+m)− sδψ (x+m)) dx

that interpolates betweenν0 = νc andν1 = ν. By the mean-value theorem there iss ∈ [0, 1]
such that

2δψ
′
(m) =

d

ds

∫
(
ψ′
c(−x+m) + ψ′

c (x+m) + sδψ′(−x+m) + sδψ′ (x+m)
)
νs(dx)

=

∫
(
δψ′(−x+m) + δψ′ (x+m)

)
νs(dx)

+ covνs

(

ψ′
c(−x+m) + ψ′

c (x+m) , δψ(−x+m) + δψ (x+m)

)

+ covνs

(

sδψ′(−x+m) + sδψ′ (x+m) , δψ(−x+m) + δψ (x+m)

)

.

The first term on the r.h.s. is controlled by the assumption|δψ′| . 1. We turn to the estima-
tion of the first covariance term. An application of the asymmetric Brascamp-Lieb inequality
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2.2 Convexification by iterated renormalization

of Lemma 2.1.10 and|δψ|+ |δψ′| . 1 yield the estimate

∣
∣
∣
∣
covνs

(

ψ′
c(−x+m) + ψ′

c (x+m) , δψ(−x+m) + δψ (x+m)

)∣
∣
∣
∣

. sup
x

∣
∣
∣
∣

ψ′′
c (−x+m)− ψ′′

c (x+m)

ψ′′
c (−x+m) + ψ′′

c (x+m)

∣
∣
∣
∣

∫
∣
∣−δψ′(−x+m) + δψ′ (x+m)

∣
∣ νs(dx)

. 1.

The second covariance term can be estimated using the assumption|δψ|+ |δψ′| . 1. Sum-
ming up, we have deduced the desired estimate|δψ′| . 1.

2.2 Convexification by iterated renormalization

In this section we will prove Theorem 2.1.6 that states the convexification of aperturbed
strictly convex single-site potentialψ by iterated renormalization. The proof relies on a local
Cramér theorem and some auxiliary results. The proof of Theorem 2.1.6 is given in the
Subsection 2.2.1. The proofs of the auxiliary results are given in the Subsection 2.2.2.

2.2.1 Proof of Theorem 2.1.6

In view of Lemma 2.1.8 it suffices to show the strict convexity of the coarse-grained Hamil-
tonianH̄K defined by (2.9) for largeK ≫ 1. The strategy is the same as in [22, Proposition
31]. Letϕ denote the Cramér transform ofψ, namely

ϕ(m) := sup
σ∈R

(

σm− log

∫

exp(σx− ψ(x))dx

)

.

Becauseϕ is the Legendre transform of the strictly convex function

ϕ∗(σ) = log

∫

exp(σx− ψ(x))dx, (2.26)

there exists for anym ∈ R a uniqueσ = σ(m) such that

ϕ(m) = σm− ϕ∗(σ). (2.27)

From basic properties of the Legendre transform it follows that theσ is determined by the
equation

d

dσ
ϕ∗(σ) =

∫
x exp(σx− ψ(x))dx
∫
exp(σx− ψ(x))dx

= m. (2.28)

The starting point of the proof of the convexification of the coarse-grained Hamiltonian
H̄K(m) is the explicit representation

g̃K,m(0) = exp
(
Kϕ(m)−K H̄K(m)

)
. (2.29)
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

Here,g̃K,m denotes the Lebesgue density of the distribution of the random variable

1√
K

K∑

i=1

(Xi −m) ,

whereXi areK real-valued independent random variables identically distributed as

µσ(dx) := exp (−ϕ∗(σ) + σx− ψ(x)) dx. (2.30)

We note that in view of (2.28) the mean ofXi ism. As in [22, (125)] the Cramér represen-
tation (2.29) follows from direct substitution and the coarea formula. As we will see in the
proof of Lemma 2.2.3, the Cramér transformϕ is strictly convex. The main idea of the proof
is to transfer the convexity fromϕ to H̄K using the representation (2.29) and a local central
limit type theorem for the densitỹgK,m, which is formulated in the next statement.

Proposition 2.2.1. Let ψ(x) be a smooth function that is increasing sufficiently fast as
|x| ↑ ∞ for all subsequent integrals to exist. Note that the probability measureµσ defined
by (2.30)depends on the field strengthσ. We introduce its meanm and variances2

m :=

∫

xµσ(dx) and s2 :=

∫

(x−m)2µσ(dx). (2.31)

We assume that uniformly in the field strengthσ, the probability measureµσ has its standard
deviations as unique length scale in the sense that

∫

|x−m|kµσ(dx) . sk for k = 1, · · · , 5, (2.32)
∣
∣
∣
∣

∫

exp(ixξ)µσ(dx)

∣
∣
∣
∣

. |sξ|−1 for all ξ ∈ R. (2.33)

ConsiderK independent random variablesX1, · · · , XK identically distributed according
to µσ. Let gK,σ denote the Lebesgue density of the distribution of the normalized sum
1√
K

∑K
i=1

Xi−m
s .

ThengK,σ(0) converges forK ↑ ∞ to the corresponding value for the normalized Gaussian.
This convergence is uniform inm, of order 1√

K
, andC2 in σ:

|gK,σ(0)−
1√
2π

| .
1√
K
, (2.34)

|1
s

d

dσ
gK,σ(0)| .

1√
K
, (2.35)

|(1
s

d

dσ
)2gK,σ(0)| .

1√
K
. (2.36)

Let us comment a bit on this result: Quantitative versions of the central limit theorem like
(2.34) are abundant in the literature, see for instance [17][Chapter XVI], [35][Appendix 2],
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2.2 Convexification by iterated renormalization

[26][Section 3], and [38][p. 752 an Section 5]. In his work on the spectral gap, Caputo ap-
peals even to a finer estimate that makes the first terms in an error expansion in1√

K
explicit

[10, Theorem 2.1]. The coefficients of the higher order terms are expressed in terms of mo-
ments ofµσ. However, following [22, Proposition 31], for our two-scale argumentwe need
pointwisecontrol of the Lebesgue densitygK,σ (in form of gK,σ(0)) and, in addition, control
of derivatives ofgK,σ w.r.t. the field parameterσ, cf. (2.35), (2.36). Note that the derivative
d
dσ has units of length (becauseσ, which multipliesx in the Hamiltonian, cf. (2.30), has
units of inverse length) so that1s

d
dσ is the properly non-dimensionalized derivative. Point-

wise control means that control of the moments, cf. (2.32), is not sufficient. One also needs
to know thatµσ has no fine structure on scales much smaller thans. This property is ensured
the upper bound (2.33).

As opposed to [22, Proposition 31], the Hamiltonianψ we want Proposition 2.2.1 apply
to is not a perturbation of the quadratic12x

2 but of a general strictly convex potentialψ.
As a consequence, the variances2 can be a strongly varying function of the field strength
σ. Nevertheless, Lemma 2.2.2 from below shows that every elementµσ in the family of
measures is characterized by the single length scales, uniformly in σ in the sense of (2.32)
and (2.33). For the verification of (2.32) and (2.33) in Lemma 2.2.2 we provide a self-
contained argument just using basic calculus of one variable. The merit ofProposition 2.2.1
consists in providing a version of the central limit theorem that isC2 in the field strengthσ
even if the variances2 varies strongly withσ.

Lemma 2.2.2. Assume that the single-site potentialψ is perturbed strictly convex in the
sense of(2.5). Thens . 1 uniformly inm, and the conditions(2.32)and (2.33)of Proposi-
tion 2.2.1 are satisfied.

Using Proposition 2.2.1, Lemma 2.2.2, and the Cramér representation (2.29) wecould easily
deduce a local Cramér theorem (cf. [22, Proposition 31]) for general perturbed strictly convex
potentialsψ. However, because we are just interested in the convexification ofH̄K we just
consider the convergence of the second derivatives ofϕ andH̄K .

Lemma 2.2.3. Assume that the single-site potentialψ is perturbed strictly convex in the
sense of(2.5). Then for allm ∈ R it holds

∣
∣
∣
∣

d2

dm2
ϕ(m)− d2

dm2
H̄K(m)

∣
∣
∣
∣
.

1

Ks2
,

wheres2 is defined as in Proposition 2.2.1.

Proof of Theorem 2.1.6.Because of Lemma 2.1.8 it suffices to show that there existsδ > 0
andK0 ∈ N such that for allK ≥ K0 andm ∈ R

d2

dm2
H̄K(m) ≥ δ.

We start with some formulas on the derivatives ofϕ. Differentiation of the identity (2.27)
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

yields

d

dm
ϕ

(2.28)
=

d

dm
σ m+ σ − d

dσ
ϕ∗ d

dm
σ

(2.28)
=

d

dm
σ m+ σ −m

d

dm
σ

(2.28)
= σ.

A direct calculation reveals that (see (2.60) below)

d

dσ
m = s2,

wheres2 is defined as in Proposition 2.2.1. Hence, a second differentiation ofϕ yields the
identity

d2

dm2
ϕ =

d

dm
σ =

(
d

dσ
m

)−1

=
1

s2
. (2.37)

By Lemma 2.2.3 we thus have

d2

dm2
H̄K =

d2

dm2
ϕ+

d2

dm2

(
H̄K − ϕ

)

≥ 1

s2
− C

K

1

s2

≥ 1

2

1

s2
,

if K ≥ K0 for some largeK0. The statement follows from the uniform bounds . 1
provided by Lemma 2.2.2.

2.2.2 Proof of Theorem 2.2.1 and of the auxiliary results

In this section we prove the auxiliary statements of the last subsection. Before turning to the
proof of Proposition 2.2.1 we sketch the strategy. For convenience we introduce the notation

〈f〉 :=

∫

f(x)µσ(dx) =

∫

f(x) exp(−ϕ∗(σ) + σx− ψ(x)) dx. (2.38)

The definition ofgK,σ (cf. Proposition 2.2.1) suggests to introduce the shifted and rescaled
variable

x̂ :=
x−m

s
. (2.39)

We note that by (2.31) the first and second moment inx̂ are normalized

〈x̂〉 = 0, 〈x̂2〉 = 1 (2.40)

and that (2.32) turns into
5∑

k=1

〈|x̂|k〉 . 1. (2.41)
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2.2 Convexification by iterated renormalization

Proposition 2.2.1 is a version of the central limit theorem, that, like most others, isbest
proved with help of the Fourier transform. Indeed, since the random variables X̂1 :=
X1−m
s , · · · , X̂K := XK−m

s in the statement of Proposition 2.2.1 are independent and identi-
cally distributed, the distribution of their sum is theK-fold convolution of the distribution of
X̂1. Therefore, the Fourier transform of the distribution of the

∑K
n=1 X̂n is theK-th power

of the Fourier transform of the distribution of̂X. The latter is given by

〈exp(ix̂ξ̂)〉,

whereξ̂ denotes the variable dual tôx. Hence, the Fourier transform of the distribution of the
normalized sum 1√

K

∑K
n=1 X̂K is given by〈exp(ix̂ 1√

K
ξ̂)〉K . Applying the inverse Fourier

transform, we obtain the representation

2π gK,σ(0) =

∫

〈exp(ix̂ 1√
K
ξ̂)〉Kdξ̂. (2.42)

In order to make use of formula (2.42), we need estimates on〈exp(ix̂ξ̂)〉. Because of

dk

dξ̂k
〈exp(ix̂ξ̂)〉 = ik〈x̂k exp(ix̂ξ̂)〉, (2.43)

the moment bounds (2.41) translate into control of〈exp(ix̂ξ̂)〉 for |ξ̂| ≪ 1. Together with
the normalization (2.40), we obtain in particular by Taylor

|〈exp(ix̂ξ̂)〉 − (1− 1

2
ξ̂2)| . |ξ̂|3. (2.44)

We will use the latter in the following form: There exists a complex-valued function h(ξ̂)
such that for|ξ̂| ≪ 1:

〈exp(ix̂ξ̂)〉 = exp(−h(ξ̂)) with |h(ξ̂)− 1

2
ξ̂2| . |ξ̂|3. (2.45)

This estimate, showing that the Fourier transform of the normalized probability〈·〉 is close
for |ξ̂| ≪ 1 to the Fourier transform of the normalized Gaussian, is at the core of most proofs
of the central limit theorem.

Estimate (2.45) provides good control over〈exp(ix̂ξ̂)〉 for |ξ̂| ≪ 1. Another key ingredient
is uniform decay for|ξ̂| ≫ 1. In our new variables, (2.33) takes on the form

|〈exp(ix̂ξ̂)〉| . |ξ̂|−1. (2.46)

As usual in central limit theorems, we also need control of the characteristicfunction for
intermediate values of|ξ̂|. This can be inferred from (2.41) and (2.46) by a soft argument (in
particular, it does not require the more intricate argument for [10, (2.10)] from [10, Lemma
2.5]):
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

Lemma 2.2.4. Under the assumptions of Proposition 2.2.1 and for anyδ > 0 there exists
λ < 1 such that for allσ

|〈exp(ix̂ξ̂)〉| ≤ λ for all |ξ̂| ≥ δ.

So far, the strategy is standard; now comes the new ingredient: In view of formula (2.42), in
order to controlσ-derivatives ofgK,σ(0), we need to control1s

1
dσ 〈exp(ix̂ξ̂)〉. Relying on the

identities

1

s

1

dσ
〈f(x)〉 = 〈x̂f(x)〉, (2.47)

1

s

1

dσ
x̂ = −1− 1

2
〈x̂3〉x̂, (2.48)

that will be established in the proof of Lemma 2.2.5 below, we see that the estimate again
follow from the moment control (2.41). Lemma 2.2.5 is the only new element of ouranalysis.

Lemma 2.2.5. Under the assumptions of Proposition 2.2.1 we have

|1
s

1

dσ
〈exp(ix̂ξ̂)〉| . (1 + |ξ̂|)|ξ̂|3, (2.49)

|(1
s

1

dσ
)2〈exp(ix̂ξ̂)〉| . (1 + ξ̂2)|ξ̂|3. (2.50)

Before turning to the proof of Proposition 2.2.1, we prove Lemma 2.2.4 and Lemma 2.2.5.

Proof of Lemma 2.2.4.In view of (2.41) and (2.46), it suffices to show: For anyC <∞ and
δ > 0 there existsλ < 1 with the following property: Suppose〈·〉 is a probability measure
(in x̂) such that

〈|x̂|〉 ≤ C, (2.51)

|〈exp(ix̂ξ̂)〉| ≤ C

|ξ̂|
for all ξ̂. (2.52)

Then
|〈exp(ix̂ξ̂)〉| ≤ λ for all |ξ̂| ≥ δ.

In view of (2.52), it is enough to show

|〈exp(ix̂ξ̂)〉| ≤ λ for all δ ≤ |ξ̂| ≤ 1

δ
.

We will give an indirect argument for this statement and thus assume that there is a sequence
{〈·〉ν} of probability measures satisfying (2.51) & (2.52) and a sequence{ξ̂ν} of numbers in
[δ, 1δ ] such that

lim inf
ν↑∞

|〈exp(ix̂ξ̂ν)〉ν | ≥ 1. (2.53)
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In view of (2.51), after passage to a subsequence, we may assume that there exists a proba-
bility measure〈·〉∞ and a number̂ξ∞ > 0 such that

lim
ν↑∞

〈f〉ν = 〈f〉∞ for all bounded and continuousf(x̂), (2.54)

lim
ν↑∞

ξ̂ν = ξ̂∞. (2.55)

Since| exp(ix̂ξ̂ν)− exp(ix̂ξ̂∞)| ≤ |x̂||ξ̂ν − ξ̂∞|, we obtain from (2.51), (2.54) & (2.55):

lim
ν↑∞

〈exp(ix̂ξ̂ν)〉ν = 〈exp(ix̂ξ̂∞)〉∞,

so that (2.53) saturates to
|〈exp(ix̂ξ̂∞)〉∞| ≥ 1. (2.56)

On the other hand, (2.52) is preserved under (2.54) so that we have in particular

lim
|ξ̂|↑∞

|〈exp(ix̂ξ̂)〉∞| = 0. (2.57)

We claim that (2.56) and (2.57) contradict each other. Indeed, sincex̂ 7→ exp(ix̂ξ̂∞) is
S1-valued, it follows from (2.56) that there is a fixedζ ∈ S1 such that

exp(ix̂ξ̂∞) = ζ for 〈·〉∞ − a. e. x̂.

This implies for everyn ∈ N

exp(ix̂(nξ̂∞)) = ζn for 〈·〉∞ − a. e. x̂

and thus
|〈exp(ix̂(nξ̂∞))〉∞| = |ζn| = 1, (2.58)

which in view of ξ̂∞ 6= 0 and thus|nξ̂∞| ↑ ∞ asn ↑ ∞ contradicts (2.57).

Proof of Lemma 2.2.5.We restrict our attention to estimate (2.50); estimate (2.49) is easier
and can be derived by the same arguments. We start with the identities (2.47) and (2.48).
Deriving (2.38) w.r.t.σ yields

d

dσ
〈f(x)〉 = 〈(x− dϕ∗

dσ
)f(x)〉 (2.28)

= 〈(x−m)f(x)〉. (2.59)

In view of definition (2.39), the latter turns into (2.47).

We now turn to identity (2.48) and note that in view of definitions (2.31) and (2.39), (2.59)
yields in particular

d

dσ
m

(2.31),(2.59)
= 〈(x−m)x〉 (2.31)

= 〈(x−m)2〉 (2.31)
= s2, (2.60)

d

dσ
s2

(2.31),(2.59)
= 〈(x−m)(x−m)2〉 (2.39)

= s3〈x̂3〉, (2.61)
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which we rewrite as

1

s

d

dσ
m = s,

1

s

d

dσ
s =

1

2
s〈x̂3〉. (2.62)

These formulas imply as desired

1

s

d

dσ
x̂

(2.39)
=

1

s

d

dσ

x−m

s
= −1− 1

2
〈x̂3〉x̂.

We now combine formulas (2.47) and (2.48) to express derivatives of〈f(x̂)〉. We start with
the first derivative:

1

s

d

dσ
〈f(x̂)〉 (2.47)

= 〈 df
dx̂

(x̂)
1

s

d

dσ
x̂+ f(x̂)x̂〉

(2.48)
= −〈 df

dx̂
(x̂)〉 − 1

2
〈x̂3〉〈x̂ df

dx̂
(x̂)〉+ 〈x̂f(x̂)〉. (2.63)

(As a consistency check we note that1
s
d
dσ 〈f(x̂)〉

(2.63)
= −〈( ddx̂− x̂)f〉− 1

2〈x̂3〉〈x̂
df
dx̂〉 vanishes

if ψ is quadratic since then the distribution ofx̂ under〈·〉 is the normalized Gaussian so that
both〈( ddx̂ − x̂)f〉 = 0 and〈x̂3〉 = 0.)
Iterating this formula, we obtain for the second derivative

(
1

s

d

dσ
)2〈f(x̂)〉 (2.63)

= −1

s

d

dσ
〈 df
dx̂

(x̂)〉 − 1

2

(
1

s

d

dσ
〈x̂3〉

)

〈x̂ df
dx̂

(x̂)〉

−1

2
〈x̂3〉

(
1

s

d

dσ
〈x̂ df
dx̂

(x̂)〉
)

+
1

s

d

dσ
〈x̂f(x̂)〉

(2.63)
= 〈d

2f

dx̂2
〉+ 1

2
〈x̂3〉〈x̂d

2f

dx̂2
〉 − 〈x̂ df

dx̂
〉

+
1

2

(

3〈x̂2〉+ 3

2
〈x̂3〉2 − 〈x̂4〉

)

〈x̂ df
dx̂

〉

+
1

2
〈x̂3〉

(

〈 df
dx̂

+ x̂
d2f

dx̂2
〉+ 1

2
〈x̂3〉〈x̂ df

dx̂
+ x̂2

d2f

dx̂2
〉 − 〈x̂2 df

dx̂
〉
)

−〈f + x̂
df

dx̂
〉 − 1

2
〈x̂3〉〈x̂f + x̂2

df

dx̂
〉+ 〈x̂2f〉

= 〈d
2f

dx̂2
〉+ 〈x̂3〉〈x̂d

2f

dx̂2
〉+ 1

4
〈x̂3〉2〈x̂2d

2f

dx̂2
〉

+
1

2
〈x̂3〉〈 df

dx̂
〉 − 1

2
(1− 2〈x̂3〉2 + 〈x̂4〉)〈x̂ df

dx̂
〉 − 〈x̂3〉〈x̂2 df

dx̂
〉

−〈f〉 − 1

2
〈x̂3〉〈x̂f〉+ 〈x̂2f〉.

Because of (2.43) we have for anyk ∈ N

dk

dξ̂k
(
1

s

d

dσ
)2〈exp(iξ̂x̂)〉 = (

1

s

d

dσ
)2
dk

dξ̂k
〈exp(iξ̂x̂)〉 = ik(

1

s

d

dσ
)2〈x̂k exp(iξ̂x̂)〉. (2.64)
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2.2 Convexification by iterated renormalization

This formula and the normalization (2.40) yield that(1s
d
dσ )

2〈exp(iξ̂x̂)〉 vanishes to second
order inξ̂. More precisely, fork ∈ {0, 1, 2}

dk

dξ̂k

∣
∣
∣
∣
ξ̂=0

(
1

s

d

dσ
)2〈exp(iξ̂x̂)〉 = ik(

1

s

d

dσ
)2〈x̂k〉 = 0. (2.65)

Therefore, we consider the third derivative w.r.t.ξ̂ given by (2.64). For this purpose we
apply the formula for(1s

d
dσ )

2〈f(x̂)〉 from above to the functionf = x̂3 exp(iξ̂x̂). Using the

abbreviatione := exp(iξ̂x̂) we obtain

d3

dξ̂3
(
1

s

d

dσ
)2〈e〉 = i3(

1

s

d

dσ
)2〈x̂3e〉

= i3

(

6 〈x̂e〉+ i6ξ̂
〈
x̂2e
〉
− ξ̂2

〈
x̂3e
〉

+
〈
x̂3
〉 (

6
〈
x̂2e
〉
+ i6ξ̂

〈
x3e
〉
− ξ2

〈
x̂4e
〉)

+
1

4

〈
x3
〉2
(

6
〈
x̂3e
〉
+ i6ξ̂

〈
x̂4e
〉
− ξ̂2

〈
x̂5e
〉)

+
1

2

〈
x̂3
〉 (

3
〈
x̂2e
〉
+ iξ̂

〈
x̂3e
〉)

− 1

2

(

1− 2
〈
x̂3
〉2

+
〈
x̂4
〉)(

3
〈
x̂3e
〉
+ iξ̂

〈
x̂4e
〉)

−
〈
x̂3
〉 (

3
〈
x̂4e
〉
+ iξ̂

〈
x̂5e
〉)

−
〈
x̂3e
〉
− 1

2

〈
x̂3
〉 〈
x̂4e
〉
+
〈
x̂5e
〉

)

.

From this formula and the moment estimates (2.41) we obtain the estimate

| d
3

dξ̂3
(
1

s

d

dσ
)2〈e〉| . 1 + ξ̂2.

In combination with (2.65), this estimate yields (2.50).

Proof of Proposition 2.2.1.We focus on (2.34) and (2.36). The intermediate (2.35) can be
established as (2.36).

We start with (2.34). Fix aδ > 0 so small such that the expansion (2.45) of〈exp(ix̂ξ̂)〉 holds
for |ξ̂| ≤ δ. We split the integral representation (2.42) accordingly:

2πgK,σ(0) =

∫

{| 1√
K
ξ̂|≤δ}

〈exp(ix̂ 1√
K
ξ̂)〉Kdξ̂

+

∫

{| 1√
K
ξ̂|>δ}

〈exp(ix̂ 1√
K
ξ̂)〉Kdξ̂. (2.66)
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

We consider the first termI on the r.h.s. of (2.66), which will turn out to be of leading order.
Sinceδ is so small that (2.45) holds, we may rewrite it as

I :=

∫

{| 1√
K
ξ̂|≤δ}

〈exp(ix̂ 1√
K
ξ̂)〉Kdξ̂ =

∫

{| 1√
K
ξ̂|≤δ}

exp(−Kh( 1√
K
ξ̂))dξ̂. (2.67)

We note that for| 1√
K
ξ̂| ≤ δ we have by (2.45),

|Kh( 1√
K
ξ̂)− 1

2
ξ̂2| .

1√
K

|ξ̂|3, (2.68)

in particular forδ small enough

Re

(

Kh(
1√
K
ξ̂)

)

≥ 1

4
ξ̂2, (2.69)

so that (2.68) implies by the Lipschitz continuity ofC ∋ y 7→ exp(y) ∈ C onRe y ≤ −1
4 ξ̂

2

with constantexp(−1
4 ξ̂

2):

| exp(−Kh( 1√
K
ξ̂))− exp(−1

2
ξ̂2)| .

1√
K

|ξ̂|3 exp(−1

4
ξ̂2).

Inserting this estimate into (2.67) we obtain

|I −
∫

{| 1√
K
ξ̂|≤δ}

exp(−1

2
ξ̂2)dξ̂| .

1√
K

∫

{| 1√
K
ξ̂|≤δ}

|ξ̂|3 exp(−1

4
ξ̂2)dξ̂

.
1√
K

∫

|ξ̂|3 exp(−1

4
ξ̂2)dξ̂

.
1√
K
.

The latter turns as desired into

|I −
√
2π| = |I −

∫

exp(−1

2
ξ̂2)dξ̂|

.
1√
K

+

∫

{| 1√
K
ξ̂|>δ}

exp(−1

2
ξ̂2)dξ̂

.
1√
K
,

since
∫

{| 1√
K
ξ̂|>δ} exp(−1

2 ξ̂
2)dξ̂ is exponentially small inK.

We now address the second termII on the r.h.s. of (2.66). On the integrand we apply
Lemma 2.2.4 (onK − 2 of theK factors) and (2.46) (on the remaining2 factors):

|〈exp(ix̂ 1√
K
ξ̂)〉|K . λK−2




1

1 + 1√
K
|ξ̂|





2

. K λK−2 1

K + ξ̂2
. K λK−2 1

1 + ξ̂2
.
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It follows that the second termII on the r.h.s. of (2.66) is exponentially small and thus higher
order:

∣
∣
∣
∣
∣

∫

{| 1√
K
ξ̂|>δ}

〈exp(ix̂ 1√
K
ξ̂)〉Kdξ̂

∣
∣
∣
∣
∣

. K λK−2

∫
1

1 + ξ̂2
dξ̂

. K λK−2 λ<1≪ 1√
K
.

We now turn to (2.36). We take the secondσ-derivative of the integral representation (2.42):

2π(
1

s

d

dσ
)2gK,σ(0)

=

∫ (

K(K − 1)〈exp(ix̂ 1√
K
ξ̂)〉K−2(

1

s

d

dσ
〈exp(ix̂ 1√

K
ξ̂)〉)2

+K〈exp(ix̂ 1√
K
ξ̂)〉K−1(

1

s

d

dσ
)2〈exp(ix̂ 1√

K
ξ̂)〉
)

dξ̂ (2.70)

and use Lemma 2.2.5:

∣
∣
∣
∣
(
1

s

d

dσ
)2gK,σ(0)

∣
∣
∣
∣

.

∫ (

K2|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(1 + | 1√

K
ξ̂|2)| 1√

K
ξ̂|6

+K|〈exp(ix̂ 1√
K
ξ̂)〉|K−1(1 + | 1√

K
ξ̂|2)| 1√

K
ξ̂|3
)

dξ̂

.
1√
K

∫

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(1 + | 1√

K
ξ̂|2)(|ξ̂|6 + 1)dξ̂. (2.71)

As for (2.34), we split the integral representation (2.71) according toδ:

∣
∣
∣
∣
(
1

s

d

dσ
)2gK,σ(0)

∣
∣
∣
∣

.
1√
K

∫

{ 1√
K
|ξ̂|≤δ}

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(1 + | 1√

K
ξ̂|2)(ξ̂6 + 1)dξ̂

+
1√
K

∫

{ 1√
K
|ξ̂|>δ}

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(1 + | 1√

K
ξ̂|2)(ξ̂6 + 1)dξ̂

.
1√
K

∫

{ 1√
K
|ξ̂|≤δ}

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(ξ̂6 + 1)dξ̂

+
1√
K

∫

{ 1√
K
|ξ̂|>δ}

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(ξ̂8 + 1)dξ̂. (2.72)
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On the first r.h.s. term we use (2.69):

1√
K

∫

{ 1√
K
|ξ̂|≤δ}

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(ξ̂6 + 1)dξ̂

.
1√
K

∫

{ 1√
K
|ξ̂|≤δ}

exp(−(K − 2)
1

4
(

1√
K
ξ̂)2)(ξ̂6 + 1)dξ̂

K≫1

.
1√
K

∫

exp(−1

8
ξ̂2)(ξ̂6 + 1)dξ̂

.
1√
K
. (2.73)

On the integrand of the second r.h.s. term in (2.72) we use Lemma 2.2.4 (onK − 12 of the
K − 2 factors) and (2.46) (on the remaining10 factors):

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(ξ̂8 + 1) . λK−12

(

1

1 + 1√
K
|ξ|

)10

(ξ̂8 + 1)

. K5λK−12 1

K5 + ξ̂10
(ξ̂8 + 1)

. K5λK−12 1

1 + ξ̂2
.

Hence, we see that this second term in (2.72) is exponentially small and thus higher order:

1√
K

∫

{ 1√
K
|ξ̂|>δ}

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(|ξ̂|8 + 1)dξ̂

. K9/2λK−12

∫
1

1 + ξ̂2
dξ̂

. K9/2λK−12 λ<1≪ 1√
K
.

For the proof of Lemma 2.2.2 we need the following auxiliary statement, based onelemen-
tary calculus.

Lemma 2.2.6. Assume that the single-site potentialψ : R → R is convex. We consider the
corresponding Gibbs measure

ν(dx) =
1

Z
exp(−ψ(x))dx.

LetM denote the maximum of the density ofν i.e.

M := max
x

1

Z
exp(−ψ(x)).
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Then we have for allk ∈ N

∫

|x|k ν(dx) . 1

Mk

for some constant only depending onk.

Proof of Lemma 2.2.6.We may assume w.l.o.g. that

Z =

∫

exp(−ψ(x))dx = 1 (2.74)

andM := supx exp(−ψ(x)) is attained atx = 0, which means

M = exp(−ψ(0)). (2.75)

It follows from convexity ofψ that

ψ′(x) ≤ 0 for x ≤ 0 and ψ′(x) ≥ 0 for x ≥ 0. (2.76)

We start with an analysis of the convex single-site potentialψ. We first argue that

ψ
(

± e

M

)

≥ − logM + log e. (2.77)

Indeed in view of the monotonicity (2.76) we have

1
(2.74)
≥
∫ e

M

0
exp(−ψ(y))dy

(2.76)
≥ e

M
exp

(

−ψ
( e

M

))

and

1
(2.74)
≥
∫ 0

− e
M

exp(−ψ(y))dy
(2.76)
≥ e

M
exp

(

−ψ
(

− e

M

))

.

We now argue that for|x| ≥ e
M

ψ(x) ≥ M

e

(

|x| − e

M

)

− logM. (2.78)

W.l.o.g. we may restrict ourselves tox ≥ e
M . By the mean-value theorem there is0 ≤ ξ ≤

e
M such that

ψ′(ξ) =
ψ
(
e
M

)
− ψ(0)
e
M

.

Using once again the monotonicity ofψ′, (2.75), and (2.77) yields the estimate

ψ′
( e

M

)

≥ ψ′(ξ)
(2.75)
=

ψ
(
e
M

)
+ logM
e
M

(2.77)
≥ M

e
.
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The convexity ofψ, the last estimate, and (2.77) yield forx ≥ e
M as desired

ψ(x) ≥ ψ′
( e

M

)(

x− e

M

)

+ ψ
( e

M

)

≥ M

e

(

x− e

M

)

− logM.

We finished the analysis onψ and turn to the verification of the first estimate of Lemma 2.2.6.
We split the integral according to

∫

|x|k exp(−ψ(x))dx =

∫ 0

−∞
|x|k exp(−ψ(x))dx+

∫ ∞

0
|x|k exp(−ψ(x))dx.

We will now deduce the estimate
∫ ∞

0
|x|k exp(−ψ(x))dx .

1

Mk
.

A similar estimate for the integral
∫ 0
−∞ |x|k exp(−ψ(x))dx follows from the same argument

by symmetry. We split the integral:

∫ ∞

0
|x|k exp(−ψ(x))dx =

∫ e
M

0
|x|k exp(−ψ(x))dx+

∫ ∞

e
M

|x|k exp(−ψ(x))dx.

The first integral on the r.h.s. can be estimated as

∫ e
M

0
|x|k exp(−ψ(x))dx ≤ ek

Mk

∫

exp(−ψ(x))dx (2.74)
=

ek

Mk
.

For the estimation of the second integral we apply (2.78), which yields by the change of
variablesMe

(
x− e

M

)
= x̂

∫ ∞

e
M

|x|k exp(−ψ(x))dx ≤
∫ ∞

e
M

|x|k exp
(

−M
e

(

x− e

M

)

+ logM

)

dx

=M
e

M

∫ ∞

0

∣
∣
∣
e

M
x̂+

e

M

∣
∣
∣

k
exp (−x̂) dx̂

= e
( e

M

)k
∫ ∞

0
|x̂+ 1|k exp (−x̂) dx̂

.
1

Mk
.

Equipped with Lemma 2.2.6 we are able to give an elementary proof of Lemma 2.2.2:
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Proof of Lemma 2.2.2.We argue thats . 1. Becauseψ is a bounded perturbation of a
uniformly strictly convex function, the measureµσ given by (2.30) has a spectral gap with
constant independently ofσ. This implies in particular

s2 = varµσ(x) .

∫ (
d

dx
x

)2

dµσ . 1 (2.79)

uniformly in σ and thus inm.
Now, we verify (2.32). Using|δψ| . 1 to pass fromψ to ψc, we may assume thatψ is
strictly convex. In fact, we can give upstrict convexity ofψ and may only assume thatψ is
convex. By the change of variablesx̂ = x−m

s we have for anyk ∈ N

∫
|x−m|kdµ

sk
=

∫

|x̂|k exp(−ψ̂(x̂))dx̂

for some convex function̂ψ, which is normalized in the sense that

∫

exp(−ψ̂(x̂))dx̂ = 1 and
∫

x̂2 exp(−ψ̂(x̂))dx̂ = 1. (2.80)

An application of Lemma 2.2.6 yields the estimate

∫
|x−m|kdµ

sk
≤
∫

|x̂|k exp(−ψ̂(x̂))dx̂ .
1

Mk
,

whereM is given byM := maxx̂ exp(−ψ̂(x̂)). Now, we argue that due to the normalization
of ψ̂ we have

M ≥ C

for some universal constantC > 0, which verifies the desired estimate (2.32). Indeed the
normalization (2.80) implies

∫

(−2,2)
exp(−ψ(x))dx (2.80)

= 1−
∫

R−(−2,2)
exp(−ψ(x))dx

≥ 1− 1

4

∫

x2 exp(−ψ(x))dx
(2.80)
≥ 3

4
.

Hence, there exists anx0 ∈ (−2, 2) such thatexp(−ψ(x0)) ≥ 3
8 , which yields

M = max
x̂

exp(−ψ̂(x̂)) ≥ exp(−ψ(x0)) ≥
3

8
.

Let us turn to the statement (2.33) of Proposition 2.2.1. Writing

exp (ixξ) =
d

dx

(

−i 1
ξ

exp(ixξ)

)
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

we obtain by integration by parts that

〈exp (ixξ)〉 = i
1

ξ

∫

exp (ixξ)
d

dx
(exp (−ϕ∗(σ) + σx− ψ(x))) dx

= i
1

ξ

∫

exp (ixξ)
(
σ − ψ′(x)

)
exp (−ϕ∗(σ) + σx− ψ(x)) dx.

The splittingψ = ψc+δψ with |δψ|, |δψ′| . 1 and definition (2.26) ofϕ∗ yield the estimate

|〈exp (ixξ)〉| . 1

s|ξ|
s
∫
|σ − ψ′

c(x)| exp (σx− ψc(x)) dx
∫
exp (σx− ψc(x)) dx

+
1

s|ξ| s,

wheres is defined as in Proposition 2.2.1. Becauses . 1 by (2.79), we only have to consider
the first term of the r.h.s. of the last inequality. We argue that for

M := max
x

exp (σx− ψc(x))
∫
exp (σx− ψc(x)) dx

it holds

2M =

∫
|σ − ψ′

c(x)| exp (σx− ψc(x)) dx
∫
exp (σx− ψc(x)) dx

. (2.81)

For the proof of the last statement, we only need the fact that the functionH(x) = −σx +
ψc(x) is convex. W.l.o.g. we may assume that

∫
exp(−H(x))dx = 1 and thatM is attained

atx = 0, which means
M = exp(−H(0)).

It follows from convexity ofH that

H ′(x) ≤ 0 for x ≤ 0 and H ′(x) ≥ 0 for x ≥ 0.

Therefore, we get

∫

|H ′(x)| exp(−H(x))dx = −
∫ 0

−∞
H ′(x) exp(−H(x))dx+

∫ ∞

0
H ′(x) exp(H(x))dx

=

∫ 0

−∞
exp(−H(x))′dx−

∫ ∞

0
exp(−H(x))′dx

= 2 exp(−H(0)) = 2M.

Because the mean of a measureµ is optimal in the sense that for allc ∈ R

∫

(x− c)2 µ(dx) =

∫

x2µ(dx)− 2c

∫

xµ(dx) + c2

≥
∫

x2µ(dx)−
(∫

xµ(dx)

)2

=

∫ (

x−
∫

yµ(dy)

)2

µ(dx), (2.82)
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we can estimate

s2
|δψ|.1

≤
∫
x2 exp (σx− ψ(x)) dx
∫
exp (σx− ψ(x)) dx

|δψ|.1

.

∫
x2 exp (σx− ψc(x)) dx
∫
exp (σx− ψc(x)) dx

. (2.83)

Therefore, Lemma 2.2.6 applied tok = 2 andψ replaced by−σx+ ψc yields

s
∫
|σ − ψ′

c(x)| exp (σx− ψc(x)) dx
∫
exp (σx− ψc(x)) dx

(2.81),(2.83)
.

(∫
x2 exp (σx− ψc(x)) dx
∫
exp (σx− ψc(x)) dx

) 1

2

M . 1,

which verifies (2.33) of Proposition 2.2.1.

Before we turn to the proof of Lemma 2.2.3 we will deduce the following auxiliaryresult.

Lemma 2.2.7. Assume that(2.32)of Proposition 2.2.1 is satisfied. Then, using the notation
of Proposition 2.2.1, it holds:

(i)

∣
∣
∣
∣

d

dm
s

∣
∣
∣
∣
. 1 and (ii)

∣
∣
∣
∣

d2

dm2
s

∣
∣
∣
∣
.

1

s
.

Proof of Lemma 2.2.7.We start with restating some basic identities (cf. (2.60) and (2.61)):
It holds that

d

dσ
m = s2, (2.84)

d2

dσ2
m =

d

dσ
s2 =

∫

(x−m)3 µσ(dx), (2.85)

d3

dσ3
m =

∫

(x−m)4 µσ(dx). (2.86)

Let us consider(i): It follows from (2.84) and (2.85) that

d

dm
s2 =

d

dσ
s2

d

dm
σ

=

∫

(x−m)3 µσ(dx)

(
d

dσ
m

)−1

=

∫
(x−m)3 µσ(dx)

s3
s,

which yields by assumption (2.32) of Proposition 2.2.1 the estimate
∣
∣
∣
∣

d

dm
s2
∣
∣
∣
∣
. s.

The statement of(i) is a direct consequence of the last estimate and the identity

d

dm
s =

1

2s

d

dm
s2.
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

We turn to the statement(ii): Differentiating the last identity yields

d2

dm2
s = −1

2

1

s2
d

dm
s
d

dm
s2 +

1

2s

d2

dm2
s2.

The estimation of the first term on the r.h.s. follows from the estimates
∣
∣
∣
∣

d

dm
s2
∣
∣
∣
∣
. s and

∣
∣
∣
∣

d

dm
s

∣
∣
∣
∣
. 1,

which we have deduced in the first step of the proof. We turn to the estimation of the second
term. A direct calculation using (2.84) yields the identity

d2

dm2
s2 =

d2

dm2

d

dσ
m =

d

dm

(
d2

dσ2
m

d

dm
σ

)

=
d3

dσ3
m

(
d

dm
σ

)2

+
d2

dσ2
m

d2

dm2
σ. (2.87)

Considering the first term on the r.h.s. we get from the identities (2.84) and (2.86), and the
assumption (2.32) of Proposition 2.2.1 that

∣
∣
∣
∣
∣

d3

dσ3
m

(
d

dm
σ

)2
∣
∣
∣
∣
∣
=

∫
(x−m)4 µσ(dx)

s4
. 1.

Before we consider the second term of the r.h.s. of (2.87) we establish thefollowing estimate:
∣
∣
∣
∣

d2

dm2
σ

∣
∣
∣
∣
.

1

s3
. (2.88)

Indeed, direct calculation using (2.84) and (2.85) yields

d2

dm2
σ =

(
d

dσ

d

dm
σ

)
d

dm
σ

=

(

d

dσ

(
d

dσ
m

)−1
)(

d

dσ
m

)−1

= −
(
d

dσ
m

)−3 d2

dσ2
m

= − 1

s3

∫
(x−m)3 µσ(dx)

s3
.

The last identity yields (2.88) using the assumption (2.32) of Proposition 2.2.1.Using (2.88)
and (2.85) we can estimate the second term of the r.h.s. of (2.87) as

∣
∣
∣
∣

d2

dσ2
m

d2

dm2
σ

∣
∣
∣
∣
.

1

s3

∣
∣
∣
∣

∫

(x−m)3 µσ(dx)

∣
∣
∣
∣
.

By applying the assumption (2.32) of Proposition 2.2.1 this yields
∣
∣
∣
∣

d2

dσ2
m

d2

dm2
σ

∣
∣
∣
∣
. 1,

which concludes the argument for(ii).
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2.2 Convexification by iterated renormalization

Proof of Lemma 2.2.3.Recall the representation (2.29) i.e.

g̃K,m(0) = exp
(
Kϕ(m)−KH̄K(m)

)
.

Here g̃K,m(ξ) denotes the Lebesgue density of the random variable1√
K

∑K
i=1 (Xi −m),

whereXi are real-valued independent random variables identically distributed according to
µσ (cf. (2.30)). LetgK,σ denote the density of the normalized random variableX

s , wheres
is given by (2.31). Then the densities are related by

1

s
gK,σ

(x

s

)

= g̃K,m(x).

It follows from (2.29) that

Kϕ(m)−KH̄K(m) = log gK,σ(0)− log s.

In order to deduce the desired estimate it thus suffices to show
∣
∣
∣
∣

d2

dm2
log s

∣
∣
∣
∣
.

1

s2
(2.89)

and ∣
∣
∣
∣

d2

dm2
log gK,σ(0)

∣
∣
∣
∣
.

1

s2
. (2.90)

The first estimate follows directly from the identity

d2

dm2
log s =

d

dm

(
1

s

d

dm
s

)

= − 1

s2

(
d

dm
s

)2

+
1

s

d2

dm2
s

and the estimates provided by Lemma 2.2.7. We turn to the second estimate. The identity

d2

dm2
log gK,σ = − 1

g2K,σ

(
d

dm
gK,σ

)2

+
1

gK,σ

d2

dm2
gK,σ

and (2.34) yield for largeK the estimate

∣
∣
∣
∣

d2

dm2
log gK,σ(0)

∣
∣
∣
∣
.

(
d

dm
gK,σ(0)

)2

+

∣
∣
∣
∣

d2

dm2
gK,σ(0)

∣
∣
∣
∣
.

The estimation of the first term on the r.h.s. follows from the estimate (2.35) of Proposi-
tion 2.2.1 and the identity

1

s

d

dσ
= s

d

dm
, (2.91)

which is a direct consequence of (2.60). Let us consider the second term. The identity

(
1

s

d

dσ

)2
(2.91)
=

(

s
d

dm

)(

s
d

dm

)

= s2
d2

dm2
+ s

(
d

dm
s

)
d

dm
,
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

which we rewrite as

s2
d2

dm2
=

(
1

s

d

dσ

)2

−
(
d

dm
s

)
1

s

d

dσ

yields
d2

dm2
gK,σ(0) =

1

s2

((
1

s

d

dσ

)2

gK,σ(0)−
(
d

dm
s

)
1

s

d

dσ
gK,σ(0)

)

.

Now, the estimates (2.35) and (2.36) of Proposition 2.2.1 and Lemma 2.2.7 yield thedesired
estimate (2.90).
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3 Uniform LSI for Kawasaki dynamics:
the weakly-interacting case

Once again, we recall the definition (5) of the canonical ensemble

µN,m(dx) :=
1

Z
exp (−H(x)) HN−1

⌊{ 1

N

∑N
i=1

xi=m}(dx).

In Chapter 2, we showed that the canonical ensembleµN,m satisfies an optimal scaling LSI
provided the Hamiltonian

H(x) =
N∑

i=1

ψ(xi)

is non-interacting and the single site potentialψ is a bounded perturbation of a strictly con-
vex potential (cf. Theorem 2.0.18). In this chapter, we consider the question if the optimal
scaling LSI still holds when adding a small interaction term to the Hamiltonian. In thecase
of discrete spins, this question was already positively answered assumingfinite-range inter-
action and a mixing condition (cf. [57] and [9]). We show that the LSI also holds in the case
of unbounded continuous spins and a weak two-body interaction provided the single-site po-
tentialψ is perturbed quadratic in the sense of (3.1) below. The interaction is not restricted
to finite range. Any two spins of the system are allowed to interact. The LSI constant is uni-
form in the boundary data and scales optimally in the system size. Compared to the discrete
case we have to deal with new technical difficulties due to the fact that the spin values and
the range of interaction are unbounded. Because we apply the original two-scale approach
of [22], it is also possible to derive the hydrodynamic limit with the same method asoutlined
in [22]. However, the hydrodynamic limit is not considered in the dissertation. Note that for
existing results on the hydrodynamic limit (cf. [26, 56]) there are restrictions to lattices of
certain dimensions or nearest neighbor interaction, whereas our approach is independent of
the geometrical structure of the system.

Let us take a closer look at the HamiltonianH considered in this chapter. There are three
contributions to the HamiltonianH:

◦ for each sitei ∈ {1, . . . , N}, a Ginzburg-Landau type single-site potentialψi : R → R

satisfying uniformly ini

ψi(x) =
1

2
x2 + δψi(x) and ‖δψi‖C2 ≤ c1 <∞. (3.1)

◦ a two-body interaction given by a real-valued symmetric matrixM = (mij)N×N with
zero diagonalmii = 0;
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

◦ a linear term given by a vectors ∈ R
N . This term models the interaction of the sites with

the boundary data of the spin system.

Explicitly, the Hamiltonian of the system is given by

H (x) :=
N∑

i=1

ψi(xi) +
1

2

N∑

i,j=1

mijxixj +
N∑

i=1

sixi. (3.2)

Note that in contrast to [22] and Chapter 2 we do not consider homogeneous single-site
potentialsψi = ψ, i ∈ {1, . . . , N}. The reason is that the linear term in the definition
of H naturally induces a dependence of the single-site potentials on the sitei. The value
of |mij | determines the strength of the interaction between the spinxi andxj . The sign
of mij determines if the interaction is repulsive or attractive. To avoid phase transition, it
is natural to assume that the interaction is small in a certain sense. Our substitutefor the
mixing condition in the discrete case is:

Definition 3.0.8(Condition of smallness). The interaction matrixM satisfies the smallness
condition CS(ε) with ε > 0, if for all x ∈ R

N

N∑

i,j=1

xi |mij | xj ≤ ε
N∑

i=1

x2i . CS(ε)

Later, we will use the condition CS(ε) to apply the covariance estimate of Theorem 1.2.4.
This proceeding is similar to the discrete case, where the mixing condition was used to
deduce a decay of correlations. Note that the condition CS(ε) does not impose finite-range
interaction as for example the condition used by Yoshida [60] (cf. Remark 3.0.10). The main
result of this chapter is:

Theorem 3.0.9.Assume that the HamiltonianH is given by(3.2) and that the single-site
potentialsψi satisfy(3.1)with a constantc1 < ∞ independent of the sitei, the system size
N ∈ N, the mean spinm ∈ R, and the boundary datas ∈ R

N .
Then there existε > 0 and̺ > 0 depending only onc1 such that: If the interaction matrix
M satisfies CS(ε), then the canonical ensembleµN,m satisfies LSI(̺) independent ofN , m,
ands.

For the proof of Theorem 3.0.9 we apply the original two-scale approachof Grunewald,
Otto, Westdickenberg and Villani [22]. Hence, we consider coarse-graining of big blocks
and not iterated coarse-graining of pairs as in Chapter 2. Additionally, weapply the original
two-scale criterion for LSI (cf. [22, Theorem 3]) that only holds for perturbed quadratic
single-site potentialsψi in the sense of (3.1) (cf. Remark 3.1.3). Therefore compared to
Chapter 2, we are not able to consider the whole class of perturbed strictlyconvex single-site
potentialsψi in the sense of (2.5) but only the relatively small subclass of perturbed quadratic
single-site potentialsψi. Because we allow for interactionM 6= 0, we have to deal with new
technical difficulties compared to [22] and Chapter 2:

• The interaction between blocks is controlled by the covariance estimate of Theo-
rem 1.2.4.
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• The convexification of the coarse-grained Hamiltonian with interaction is attained by
a conditioning technique (that artificially reduces the system size) and a nonstandard
perturbation argument.

• The local Cramér theorem (cf. [22, Proposition 31]) is generalized to inhomogeneous
single-site potentialsψi.

The unboundedness of the spins and of the range of interaction also leads to new difficulties
compared to the discrete and bounded case (cf. [57, 9]):

• In the case of finite-range interaction one could use the covariance estimatedue to
Helffer (cf. Theorem 1.2.8, Corollary 1.2.10, and [30, 40]) to deduceexponential de-
cay of covariances (see also [5, 6] and Section 1.2.1). The application ofthe covari-
ance estimate of Theorem 1.2.4 makes it possible to consider infinite-range interaction
(cf. proof of Lemma 3.1.9).

• The perturbation argument used in the proof of Lemma 3.1.13 is a lot easier in the
case of bounded spins and finite-range interaction. The proof becomesa lot more
delicate in the case of unbounded spins and infinite-range interaction (cf.comments
after (3.31)). Additionally, we require for the argument that the single-sitepotentials
ψi are perturbed quadratic in the sense of (3.1).

The rest of Chapter 3 is organized in the following way. Section 3.1 is devoted to the two-
scale approach. In Section 3.1.2, we state the proof of Theorem 3.0.9 directly after the
formulation of the two-scale criterion for LSI (see Theorem 3.1.2), which isthe main tool of
the argument. In the remaining part of Section 3.1, the ingredients of the two-scale criterion
are verified: The microscopic LSI is deduced in Section 3.1.2 and the macroscopic LSI
is deduced in Section 3.1.3. For the proof of the macroscopic LSI we need ageneralized
version of the local Cramér theorem, which we state and prove in Section 3.2.We conclude
this section with a remark on the condition CS(ε).

Remark 3.0.10(Alternative condition of smallness). Note that the condition CS(ε) is weaker
than the condition Yoshida used in [60], namely

max
j=1...N

N∑

i=1

|mij | ≤ ε and mij = 0, if |i− j| ≥ R,

for some fixedR ∈ N. There is an obvious difference between both conditions: the CS(ε)
allows infinite-range interaction and Yoshida’s condition not. Even if infinite-range interac-
tion is allowed in Yoshida’s condition, we give an example to distinguish both conditions:
Let us consider the interaction matrixM = (mij)N×N given by

mij =







ε
2
√
N
, if i = 1 andj 6= 1,

ε
2
√
N
, if j = 1 andi 6= 1,

0, else.
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By Cauchy-Schwarz we have

N∑

j=1

|xj | ≤





N∑

j=1

1





1

2




N∑

j=1

|xj |2




1

2

=
√
N





N∑

j=1

|xj |2




1

2

.

Then a direct calculation reveals that

N∑

i,j=1

xi |mij | xj =
ε√
N

|x1|
N∑

j=1

|xj |

≤ ε |x1|





N∑

j=1

|xj |2




1

2

≤ ε
N∑

j=1

|xj |2,

which yields that the matrixM satisfies CS(ε).
Considering Yoshida’s condition one directly sees that

max
j=1...N

N∑

i=1

|mij | =
N∑

i=1

|mi1| =
ε

2

(√
N − 1√

N

)

.

This bound is not uniform in the system sizeN .

3.1 The original two-scale approach

We make the following assumption and convention for the Section 3.1 .

Assumption 3.1.1.We assume that the HamiltonianH is given by(3.2)and the single-site
potentialsψi satisfy(3.1)with a constantc1 < ∞ independent of the sitei, the system size
N , the mean spinm, and the boundary datas.

Convention. For convenience, we write onµ for the canonical ensembleµN,m.

3.1.1 Proof of the main result of Chapter 3

In this section we state the proof of Theorem 3.0.9. For that reason we explain the two-scale
approach, point out the new difficulties arising from the interaction, and explain how they
are solved. We use the same notation as in [22, Subsection 2.1 and 5.1]. We decompose
the spin system ofN sites intoL blocks each containingK sites (note thatN = KL). The
index set of thel-th block,l ∈ {1, . . . , L}, is given by (cf. Figure 3.1)

B(l) := {(l − 1)K + 1, . . . , l}.

The spin values inside the blockB(l) are denoted byxl := (xi)i∈B(l). Hence, a configuration
x ∈ XN,m of the spin system can be written as

x = (x1, . . . , xL). (3.3)
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3.1 The original two-scale approach

Figure 3.1: Block decomposition of the spin system

Note that the block decomposition is arbitrary and has no geometric significance. The
coarse-graining operatorP : XN,m → XL,m =: Y assigns to each block its mean spin i.e.

P (x) :=




1

K

∑

i∈B(1)

xi , . . . ,
1

K

∑

i∈B(L)

xi



 . (3.4)

In contrast to Section 2.1.2, we endowY with the same scalar product as in [22] i.e.

〈y, z〉Y :=
1

L

L∑

i=1

yizi, for y, z ∈ Y. (3.5)

Let P ∗ : Y → XN,m denote the adjoint operator ofP . More precisely,P ∗ is given by

P ∗(y1, . . . yL) =
1

N
(y1, . . . , y1
︸ ︷︷ ︸

K times

, . . . . . . . . . . . . , yL, . . . , yL
︸ ︷︷ ︸

K times

).

The orthogonal projection ofXN,m on kerP is given byId−NP ∗P , which can be seen
using the identity

PNP ∗ = IdY .

Hence, we can decomposex ∈ XN,m into a macroscopic profile and a microscopic fluctua-
tion according to

x = (NP ∗P )x
︸ ︷︷ ︸

∈(kerP )⊥

+(Id−NP ∗P )x
︸ ︷︷ ︸

∈ kerP

. (3.6)

The coarse-graining also induces a natural decomposition of measures.Recall thatµ denotes
the canonical ensemble given by (5) associated to the HamiltonianH and the mean spinm.
Let µ̄ := P#µ be the push forward ofµ underP and letµ(dx|y) denote the conditional
measure ofµ givenPx = y. Then by disintegration

µ(dx) = µ(dx|y)µ̄(dy). (3.7)

This equation has to be understood in a weak sense i.e. for any test function ξ

∫

ξ dµ =

∫

Y

(
∫

{Px=y}
ξ µ(dx|y)

)

µ̄(dy).

By the coarea formula one can determine the density ofµ̄(dy) as

µ̄(dy) = exp(−NH̄(y)) dy,
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

where the coarse-grained HamiltonianH̄ is given by

H̄(y) := − 1

N
log

∫

exp(−H(x)) HN−L
⌊{Px=y}(dx). (3.8)

Note that this definition of the coarse-grained HamiltonianH̄ differs slightly from the defi-
nition (2.9) in Chapter 2. The coarse-grained HamiltonianH̄(y) represents the energy of a
macroscopic profiley. Overall, we observe the system at two different scales:

◦ the microscopic scaleµ(dx|y) considers all fluctuations of the system around a macro-
scopic profiley ∈ Y , and

◦ the macroscopic scalēµ(dy) considers the macroscopic profiles and neglects all fluctua-
tions.

We will apply the two-scale criterion for LSI (see [22, Theorem 3]) to derive the LSI for the
canonical ensembleµ. In our setting the two-scale criterion becomes

Theorem 3.1.2(Two-scale criterion). Assume that the canonical ensembleµ given by(5) is
decomposed by(3.7). Additionally, assume that:

(i) There is̺ > 0 such that for allN ,m, s, andy ∈ Y the conditional measuresµ(dx|y)
satisfy LSI(̺ ).

(ii) There isλ > 0 such that for allN ,m, ands the marginalµ̄ satisfies LSI(λN ).

Thenµ satisfies LSI(̺̂ ) with ˆ̺ independent ofN ,m, ands.

Remark 3.1.3. The two-scale criterion in [22] also contains an explicit representation of
the LSI constant̺̂ in terms of̺, λ, and a constantκ given by(2.16), which represents the
strength of the coupling between the microscopic and macroscopic scale.However, for our
purpose it is just important that̺̂ is independent of the system sizeN , the mean spinm, and
the boundary datas. Additionally, note that the constantκ can be infinite for a perturbed
strictly convex single-site potentialψ in the sense of(2.5).

Proof of Theorem 3.0.9.We carry out the coarse-graining procedure with a large but fixed
block sizeK ≥ K0, whereK0 is determined by Proposition 3.1.5 below. Note thatK0 is
independent of the system sizeN , the mean spinm, and the boundary datas. The ingredients
of the two-scale criterion of Theorem 3.1.2, namely the microscopic LSI and the macroscopic
LSI, are verified by Proposition 3.1.4 and Corollary 3.1.6 respectively. Then Theorem 3.0.9
follows directly from an application of Theorem 3.1.2.

Now, we discuss how the ingredients of Theorem 3.1.2 are verified. The microscopic LSI
(cf. Proposition 3.1.4) follows directly from the Otto & Reznikoff criterion for LSI (cf. The-
orem 1.1.7) using the condition CS(ε). Difficulties arise deducing the macroscopic LSI
(cf. Proposition 3.1.5 and Corollary 3.1.6). We follow the strategy of [22] and want to show
thatH̄ is uniformly strictly convex provided the block sizeK is large enough and the inter-
actionε is small enough. The uniform strict convexity of̄H would yield the macroscopic
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LSI by the criterion of Bakry & Émery (see Theorem 1.1.5). Due to the interaction between
blocks we lose the product structure ofµ̄ (cf. [22, (63) ]), that was crucial for the argument
of [22]. As a consequence, the off-diagonal entries of the Hessian of H̄ become non trivial
(see (3.17)) i.e. forl 6= n

hln :=
(
HessY H̄(y)

)

ln
6= 0.

However, applying the covariance estimate of Theorem 1.2.4 yields sufficient control ofhln,
l 6= n, in terms ofε (see Subsection 3.1.3).

The main difficulty of the proof is encountered checking the positivity of the diagonal ele-
mentshll of the Hessian of̄H. It is not possible to transfer the positivity ofhll from the case
of ε = 0 to the case of smallε by a simple perturbation argument. The reason is that due
to the loss of the product structurehll depends on all spins of system. In the caseε = 0 the
diagonal elementshll depend only on the spins of thel-th block, which has sizeK. Hence,
one could not chooseε independent from the system sizeN and the LSI constant would
depend onN . We avoid this problem by conditioning on all spins except of a single block
(see Subsection 3.1.3). This procedure artificially reduces the system size to the numberK
and introduces new boundary data, which is expressed by an additionallinear term in the
Hamiltonian (cf. proof of Proposition 3.1.4). Independently, we observein Proposition 3.2.1
that forε = 0 the positivity ofhll for largeK is untouched by adding a linear term to the
Hamiltonian. Therefore, we are able to apply a perturbation argument to transfer the posi-
tivity of hll to smallε depending only onK and not on the total system sizeN (see Lemma
3.1.12 and Lemma 3.1.13).

3.1.2 The microscopic LSI

In this subsection we will prove the following statement.

Proposition 3.1.4(Microscopic LSI). There is0 < ε independent ofN , m, s, andy ∈ Y
(depending only on the block sizeK andc1) such that:
If M satisfies CS(ε), then the conditional measuresµ(dx|y) given by(3.7)satisfy LSI(̺ ) with
̺ > 0 independent ofN ,m, s, andy (depending only onKandc1).

Proof of Proposition 3.1.4.The statement follows from an application of the Otto & Reznikoff
criterion for LSI (see Theorem 1.1.7). Let us consider an arbitrary but fixed macroscopic pro-
file y = (y1, . . . , yL) ∈ Y . We start with decomposing the Euclidean space{Px = y} into a
finite product of Euclidean spaces. It follows from the definition (3.4) ofthe coarse-graining
operatorP that

{x ∈ R
N , Px = y} = XK,y1 × . . .×XK,yL ,

where the hyperplaneXK,yl , 1 ≤ l ≤ L, given by (4) is identified with

XK,yl =






xl ∈ R

B(l),
1

K

∑

i∈B(l)

xi = yl






.
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Figure 3.2: Conditioning on spins outside of the blockB(l)

Hence, we can decompose a configurationx ∈ {Px = y} into

x = (x1, . . . , xL) with xl = (xi)i∈B(l) ∈ XK,yl .

The spin values outside the blockB(l) (or ratherXK,yl) are denoted bȳxl := (xi)i/∈B(l)

for convenience. Disintegration of the microscopic measureµ(dx|y) with respect toxl for a
fixed1 ≤ l ≤ L yields

µ(dx|y) = µ(dxl|x̄l, y) µ̄(dx̄l|y),

whereµ(dxl|x̄l, y) and µ̄(dx̄l|y) denotes the conditional measure and the corresponding
marginal respectively (cf. Figure 3.2). More precisely, we have for all test functionsξ :
{Px = y} → R

∫

ξ(x)µ(dx|y) =
∫ ∫

ξ(xl, x̄l)µ(dxl|x̄l, y)µ̄(dx̄l|y). (3.9)

For the first requirement of Theorem 1.1.7 we have to show that onXK,yl , 1 ≤ l ≤ L,
the conditional measuresµ(dxl|x̄l, y) satisfy the LSI(̺̃ ) with constant̺̃ > 0 independent of
N , m, s, y, l, andx̄l. For this purpose let us have a closer look at the Hamiltonian of the
conditional measureµ(dxl|x̄l, y):
For an arbitrary vectors∗ ∈ R

B(l) we define the HamiltonianH(xl|M, s∗) by

H(xl|M, s∗)
(3.1)
=

∑

i∈B(l)

ψi(xi) +
1

2

∑

i,j∈B(l)

mijxixj +
∑

i∈B(l)

s∗ixi.

The definition (3.2) of the HamiltonianH yields

H(x) =
N∑

i=1

ψi(xi) +
1

2

N∑

i,j=1

mijxixj +
N∑

i=1

sixi

=
∑

i∈B(l)

ψi(xi) +
1

2

∑

i,j∈B(l)

mijxixj +
∑

i∈B(l)



si +
∑

j /∈B(l)

mijxj



xi

+
∑

i/∈B(l)

ψi(xi) +
1

2

∑

i,j /∈B(l)

mijxixj +
∑

i/∈B(l)

sixi

= H
(

xl|M, sc

)

+
∑

i/∈B(l)

ψi(xi) +
1

2

∑

i,j /∈B(l)

mijxixj +
∑

i/∈B(l)

sixi,
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where the vectorsc = sc(s,M, x̄l) ∈ R
B(l) is defined fori ∈ B(l) by the elements

sc,i := si +
∑

j /∈B(l)

mijxj .

Because one can cancel all terms that are independent ofxl = (xi)i∈B(l) with terms of the
normalization constantZ, the effective Hamiltonian of the conditional measureµ(dxl|x̄l, y)
is given byH(xl|M, sc). More precisely,

µ(dxl|x̄l, y) = 1

Z
exp

(

−H(xl|M, sc)
)

HK−1
⌊XK,yl

(dx).

Using the assumption (3.1) on the single-site potentialsψi we can writeH(xl|M, sc) as the
sum of

H(xl|M, sc) = H1(x
l|M, sc) +H2(x

l|M, sc),

whereH1(x
l|M, sc) andH2(x

l|M, sc) are given by

H1(x
l|M, sc) =

∑

i∈B(l)




x2i
2

+



si +
∑

j /∈B(l)

mijxj



xi



+
1

2

∑

i,j∈B(l)

mijxixj ,

H2(x
l|M, sc) =

∑

i∈B(l)

δψi(xi).

Using CS(ε) it follows that
∑

i,j∈B(l)

mijxixj ≤ ε|xl|2.

Hence, ifε is small enough, thenH1(x
l|M, sc) is a uniformly strictly convex function with

constantλ ≥ 1
4 . By the assumption (3.1) on the functionsδψi it follows thatH2(x

l|M, sc)
is a bounded function satisfying

∣
∣
∣
∣
∣

sup
xl∈XK,yl

H2(x
l|M, sc)− inf

xl∈XK,yl

H2(x
l|M, sc)

∣
∣
∣
∣
∣
≤ 2Kc1.

Therefore, a combination of the criterion of Bakry & Émery (see Theorem1.1.5) and of
the criterion of Holley & Stroock (see Theorem 1.1.4) yields that the conditional measures
µ(dxl|x̄l, y) satisfy a uniform LSI with constant

˜̺ = exp (−2Kc1)
1

4
. (3.10)

Note that˜̺ is independent ofN ,m, s, y, l, andx̄l (depending only on the block sizeK and
the constantc1 given by (3.1)).
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Now, we verify the remaining ingredients of the criterion of Otto & Reznikoff.Forn,m ∈
{1, . . . , L} letMnm denote theK ×K matrix given by

Mnm = (mij)i∈B(n), j∈B(m). (3.11)

Let ‖Mnm‖ be defined as the operator norm ofMnm as a bilinear form i.e.

‖Mnm‖ = max







∑

i∈B(n), j∈B(m)

ximijyj
|x| |y| , x ∈ R

B(n), y ∈ R
B(m)






. (3.12)

Let the matrixA = (anm)K×K be defined by the elements

anm =

{

˜̺, if n = m,

−‖Mnm‖, if n 6= m,
n,m ∈ {1, . . . ,K} . (3.13)

We will show thatA satisfies in the sense of quadratic forms

A ≥ ̺ Id

for some̺ > 0 independently ofN , m,s, y, l, andx̄l. For the rest of the proof letC < ∞
denote a generic constant that only depends onK. Firstly, we will show that

(‖Mnm‖)L×L ≤ Cε Id . (3.14)

in the sense of quadratic forms. Because of the equivalence of norms in finite dimensional
vector spaces we have forn,m ∈ {1, . . . , L}

‖Mnm‖ ≤ C
∑

i∈B(n),j∈B(m)

|mij |.

For any vectorx ∈ R
L we have

L∑

n,m=1

xn ‖Mnm‖ xm
CS(ε)
≤ C

L∑

n,m=1

∑

i∈B(n),j∈B(m)

|xn| |mij | |xm|

CS(ε)
≤ Cε

L∑

n=1

x2n.

This inequality already yields (3.14). Because˜̺ only depends on the block sizeK andc1,
we can chooseε ≤ ˜̺

2C independently ofN ,m, s, andy such that

A = ˜̺Id− (‖Mnm‖)L×L + diag (‖M11‖, . . . , ‖MLL‖)
≥ ˜̺ Id− (‖Mnm‖)L×L
≥ (˜̺− Cε) Id

≥ ˜̺

2
Id . (3.15)

Hence, we can apply the criterion of Otto & Reznikoff and the proof is finished.
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3.1.3 The macroscopic LSI

In this section we will derive the macroscopic LSI. More precisely, we will prove thatH̄
becomes uniformly convex for largeK and smallε.

Proposition 3.1.5. Let H̄ denote the coarse-grained Hamiltonian defined by(3.8). Let
HessY H̄ denote the Hessian of̄H w.r.t. the Euclidean structure〈·, ·〉Y onY given by(3.5).
Then there existsK0 ∈ N depending only onc1 such that:
If the block sizeK ≥ K0 and the interaction matrixM satisfiesCS(ε), then there are con-
stantsλ > 0 andC < ∞ independent ofN , m, ands (depending only onK andc1) such
that for all y ∈ Y

HessY H̄(y) ≥ (λ− Cε) Id

in the sense of quadratic forms.

By the definition (3.8) ofH̄ we have

µ̄(dy) = exp(−NH̄(y))HL−1
⌊Y (dy).

Hence, the macroscopic LSI is a direct consequence of Proposition 3.1.5and the criterion of
Bakry & Émery (see Theorem 1.1.5), if we chooseε small enough. More precisely, we have

Corollary 3.1.6 (Macroscopic LSI). Choose a fixed block sizeK ≥ K0, whereK0 is given
by Proposition 3.1.5. Consider the marginalµ̄ defined by(3.7). Then there existε > 0 and
λ > 0 independent ofN ,m, ands (depending only onK andc1) such that:
If the interaction matrixM satisfiesCS(ε), thenµ̄ satisfies LSI(λN ).

The proof of Proposition 3.1.5 consists of three steps. In the next subsection we will deduce a
formula for the elements ofHessY H̄. In Subsection 3.1.3 we will show that the off-diagonal
elements ofHessY H̄ are small in a certain sense (cf. Lemma 3.1.9). In Subsection 3.1.3 we
will show that the diagonal elements ofHessY H̄ are uniformly positive for largeK and
smallε (cf. Lemma 3.1.11).

Proof of Proposition 3.1.5.We decompose theHessY H̄(y) into its diagonal matrix and its
remainder i.e.

HessY H̄(y) = diag
((
HessY H̄(y)

)

11
, . . . ,

(
HessY H̄(y)

)

LL

)

+
[
HessY H̄(y)− diag

((
HessY H̄(y)

)

11
, . . . ,

(
HessY H̄(y)

)

LL

)]

A combination of Lemma 3.1.9 and Lemma 3.1.11 from below yields the statement.

Formula for the elements of the Hessian of H̄. Before we derive the formula for
the elements of the Hessian ofH̄, we state an alternative representation of the coarse-grained
HamiltonianH̄.
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

Lemma 3.1.7. Assume that the HamiltonianH and the coarse-grained Hamiltonian̄H are
given by(3.2)and(3.8)respectively. Forx ∈ {Px = 0} andy ∈ Y letHM (x, y) be defined
by

HM (x, y) :=
1

2
〈x, (Id+M)x〉+ 〈x,MNP ∗y〉+ 〈s, x〉+

N∑

i=1

δψi(xi + (NP ∗y)i).

Then

H̄(y) =
1

2
〈y, (Id+PMNP ∗)y〉Y + 〈Ps, y〉Y

− 1

N
log

∫

exp (−HM (x, y))HN−L
⌊{Px=0}(dx), (3.16)

where the scalar product〈·, ·〉Y is given by(3.5).

The last lemma is verified by a straight forward calculation: One applies the linear transfor-
mationx 7→ x−NP ∗y to the integral in the definition (3.8) of̄H(y). Additionally, one has to
use the fact that by orthogonality〈x,NP ∗y〉 = 0 for anyx ∈ kerP andNP ∗y ∈ (kerP )⊥

(cf. (3.6)).

The last statement is used to deduce the following representation of the Hessian ofH̄, which
is the base of our argument for the convexity of the coarse-grained HamiltonianH̄.

Lemma 3.1.8. Assume that the HamiltonianH and the coarse-grained Hamiltonian̄H are
given by(3.2) and (3.8) respectively. Recall that the conditional measuresµ(dx|y) are
defined by(3.7). For 1 ≤ l, n ≤ L we have

(
HessY H̄(y)

)

ln
= δln + δln

1

K

∫
∑

i∈B(l)

δψ′′
i (xi)µ(dx|y) +

1

K

∑

i∈B(l), j∈B(n)

mij

− 1

K
covµ(dx|y)

(
∑

j∈B(l)

(
N∑

i=1

mijxi

)

+ δψ′
j (xj) ,

∑

j∈B(n)

(
N∑

i=1

mijxi

)

+ δψ′
j (xj)

)

.

(3.17)

The last lemma is easily deduced by differentiating (3.16). Additionally, one has to apply
the inverse translationx + NP ∗y to the occurring integrals, consider the orthogonality of
NP ∗y ∈ (kerP )⊥, and apply the fact that covariances are invariant under adding constant
functions. Because every step of the proof is very basic, we will omit the details.

Estimation of the off-diagonal elements of the Hessian of H̄. In this section we
will show, that the off-diagonal elements of the Hessian ofH̄ are controlled byε. Explicitly,
we will prove the following statement.

Lemma 3.1.9. If the interaction matrixM satisfies CS(ε), then there is a constant0 ≤ C <
∞ independent ofN ,m, ands (depending only on the block sizeK andc1) such that

HessY H̄(y)− diag
((
HessY H̄(y)

)

11
, . . . ,

(
HessY H̄(y)

)

LL

)
≥ −Cε Id

in the sense of quadratic forms.
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This lemma is not obvious. Considering (3.17) one has to estimate for example thecovari-
ance

covµ(dx|y)




∑

j∈B(l)

δψ′
j (xj),

∑

j∈B(n)

δψ′
j (xj)





for 1 ≤ l 6= n ≤ L. It is not clear how to exploit the control CS(ε) on the last expres-
sion. The key observation is that the first function only depends on spinsof the blockB(l),
whereas the second function only depends on spins of blockB(n). One hopes that the co-
variance is decaying in the distance of the blocks, ifε is small enough. It turns out, that
the covariance estimate of Theorem 1.2.4 is optimally adapted for this purpose.We will use
Theorem 1.2.4 to deduce the following auxiliary lemma, which is the main ingredientin the
proof of Lemma 3.1.9.

Lemma 3.1.10.The following statements hold:

(i) The conditional measuresµ(dx|y) given by(3.7)satisfy the covariance estimate(1.8)
with the matrixA given by(3.13).

(ii) Assume that̺̃ is given by(3.10)and that the elements‖Ms1s2‖ of theL × L- Matrix
(‖Ms1s2‖)L×L are given by(3.12). Then in the sense of quadratic forms:

A−1 − diag
((
A−1

)

11
, . . . ,

(
A−1

)

LL

)
≤ 1

˜̺

ε

˜̺− ε
Id, (3.18)

(‖Ms1s2‖)L×LA−1 (‖Ms1s2‖)L×L ≤ 1

˜̺

ε2

˜̺− ε
Id . (3.19)

Proof of Lemma 3.1.10.Argument for(i): The LSI(̺ ) implies the SG(̺) by Lemma 1.1.1.
Hence, the hypotheses of Theorem 1.2.4 are weaker than the hypotheses of the criterion
of Otto & Reznikoff (cf. Theorem 1.1.7), which were already verified for the conditional
measuresµ(dx|y) in the proof of Proposition 3.1.4. Thus the statement follows from a direct
application of Theorem 1.2.4.

Argument for(ii): Using the Neumann representation ofA−1 one sees that

diag
((
A−1

)

11
, . . . ,

(
A−1

)

LL

)
≥ 1

˜̺
Id, (3.20)

in the sense of quadratic forms. Because for sufficiently smallε (cf. (3.15))

A ≥ ˜̺Id− (‖Ms1s2‖)L×L > 0,

it follows that

A−1 ≤
(
˜̺Id− (‖Ms1s2‖)L×L

)−1
=

1

˜̺

∞∑

k=0

(
(‖Ms1s2‖)L×L

˜̺

)k

. (3.21)
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A combination of (3.20) and (3.21) yields

A−1 − diag
((
A−1

)

11
, . . . ,

(
A−1

)

LL

)
≤ 1

˜̺

∞∑

k=1

(
(‖Ms1s2‖)L×L

˜̺

)k

,

which implies the desired estimate (3.18) by using (3.14). By (3.21) we have

(‖Ms1s2‖)L×LA−1 (‖Ms1s2‖)L×L ≤ 1

˜̺

∞∑

k=2

(
(‖Ms1s2‖)L×L

˜̺

)k

,

which implies the desired estimate (3.19) by using (3.14).

Proof of Lemma 3.1.9.Because of (3.17) we can write

HessY H̄(y)− diag
((
HessY H̄(y)

)

11
, . . . ,

(
HessY H̄(y)

)

LL

)
=W1 +W2,

where the matrixW1 is given by

(W1)ln =

{
1
K

∑

i∈B(l),j∈B(n)mij , if 1 ≤ n 6= l ≤ L,

0, if l = n,

and the elements of the matrixW2 are defined for1 ≤ n 6= l ≤ L by

(W2)ln =

− 1

K
covµ(dx|y)

(
∑

j∈B(l)

(
N∑

i=1

mijxi

)

+ δψ′
j (xj) ,

∑

j∈B(n)

(
N∑

i=1

mijxi

)

+ δψ′
j (xj)

)

and forl = n by (W2)ll = 0. By using CS(ε) we can estimate

W1 ≥ −ε Id

in the sense of quadratic forms. The estimation ofW2 is a little bit more subtle. By bilinearity
of the covariance the matrixW2 can be rewritten as

W2 =W3 +W4 +W5 +W6,

where the elements of the matricesW1, . . . ,W6 are defined for1 ≤ l 6= n ≤ L by

(W3)ln = − 1

K
covµ(dx|y)

(
∑

j∈B(l)

(
N∑

i=1

mijxi

)

,
∑

j∈B(n)

(
N∑

i=1

mijxi

))

,

(W4)ln = − 1

K
covµ(dx|y)

(
∑

j∈B(l)

δψ′
j (xj) ,

∑

j∈B(n)

δψ′
j (xj)

)

,

(W5)ln = − 1

K
covµ(dx|y)

(
∑

j∈B(l)

(
N∑

i=1

mijxi

)

,
∑

j∈B(n)

δψ′
j (xj)

)

,

(W6)ln = − 1

K
covµ(dx|y)

(
∑

j∈B(l)

δψ′
j (xj) ,

∑

j∈B(n)

(
N∑

i=1

mijxi

))

,
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and forl = n by

(W3)ll = 0, (W4)ll = 0, (W5)ll = 0, (W6)ll = 0.

We estimate each matrix separately and start withW3. A simple linear algebra argument
outlined in [46, Lemma 9] shows that the elements of the inverse ofA are non negative
i.e.(A−1)s1s2 ≥ 0 for all s1, s2 ∈ {1, . . . , L}. Hence, Lemma 3.1.10(i) and the equivalence
of norms in finite dimensional vector spaces yield for1 ≤ l 6= n ≤ L the estimate

−(W3)ln ≤
L∑

s1,s2=1

(
A−1

)

s1s2




∑

i∈B(l),j∈B(s1)

m2
ij





1

2



∑

i∈B(n),j∈B(s2)

m2
ij





1

2

≤ C
L∑

s1,s2=1

‖Mls1‖
(
A−1

)

s1s2
‖Ms2n‖,

where the matrixA is defined by (3.13) and‖Mls1‖ is defined by (3.12). Here and later on in
this proof,0 < C < ∞ denotes a generic constant depending only onK andc1. It follows
from the last estimate and (3.19) that

−W3 ≤ (‖Ms1s2‖)L×LA−1 (‖Ms1s2‖)L×L ≤ Cε

in the sense of quadratic forms.
Let us turn to the estimation ofW4. An application of Lemma 3.1.10(i) implies the estimate

−(W4)ln ≤
(
A−1

)

ln
max

i∈{1,...,N}
max
x∈R

|δψ′′
i (x)|2

for 1 ≤ l 6= n ≤ L. Hence, (3.18) yields in the sense of quadratic forms

−W4 ≤ A−1 − diag
((
A−1

)

11
, . . . ,

(
A−1

)

LL

)
≤ Cε.

With an similar argument one can estimate the matricesW5 andW6 as

−W5 −W6 ≤ Cε

in the sense of quadratic forms, which together with the estimates ofW3 andW4 yields

−W2 ≤ Cε

in the sense of quadratic forms.

Estimation of the diagonal elements of the Hessian of H̄. In this section we will
deduce the strict positivity of the diagonal elements of the Hessian ofH̄ for sufficiently
large block sizesK and sufficiently small interactionε. More precisely, we will show the
following statement.
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Lemma 3.1.11.There existK0 ∈ N depending only onc1 such that:
If the block sizeK ≥ K0 and the interaction matrixM satisfies CS(ε), then there are
constantsλ > 0 andC < ∞ independent ofN , m, ands (depending only onK and c1)
such that for all1 ≤ l ≤ L andy ∈ Y

(
HessY H̄(y)

)

ll
≥ λ− Cε.

Therefore,

diag
((
HessY H̄(y)

)

11
, . . . ,

(
HessY H̄(y)

)

LL

)
≥ (λ− Cε) Id

in the sense of quadratic forms.

For the proof of Lemma 3.1.11 we use a conditioning technique, which allows usto apply
a perturbation argument for smallε independently ofN , m, and s. Let us consider an
arbitrary but fixed blockB(l), 1 ≤ l ≤ L. Recall that the spin values inside the blockB(l)
are denoted byxl := (xi)i∈B(l) and the spin values outside the blockB(l) are denoted by
x̄l := (xi)i/∈B(l). As in the proof of Proposition 3.1.4, disintegration of the measureµ(dx|y)
with respect toxl yields (cf. Figure 3.2)

µ(dx|y) = µ(dxl|x̄l, y) µ̄(dx̄l|y),

whereµ(dxl|x̄l, y) and µ̄(dx̄l|y) denote the conditional measure and the corresponding
marginal respectively (cf. (3.9)). Recall the definition ofH(xl|M, s∗) for an arbitrary vector
s∗ ∈ R

B(l) i.e.

H(xl|M, s∗) :=
∑

i∈B(l)

ψi(xi) +
1

2

∑

i,j∈B(l)

mijxixj +
∑

i∈B(l)

s∗ixi. (3.22)

In the proof of Proposition 3.1.4 we have shown that the conditional measuresµ(dxl|x̄l, y)
are given by

µ(dxl|x̄l, y) = 1

Z
exp

(

−H(xl|M, sc)
)

HK−1
⌊XK,yl

(dx), (3.23)

where the vectorsc = sc(M, s) ∈ R
B(l) defined by

sc,i := si +
∑

j /∈B(l)

mijxj for i ∈ B(l) (3.24)

and the integration spaceXK,yl is identified with

XK,yl =






xl ∈ R

B(l) | 1

K

∑

i∈B(l)

xi = yl






. (3.25)

We introduce the coarse-grained Hamiltonian ofH(xl|M, s∗) as usual i.e. foryl ∈ R

H̄(yl|M, s∗) := − 1

K
log

∫

exp
(

−H(xl|M, s∗)
)

HK−1
⌊XK,yl

(dxl). (3.26)
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The next lemma shows that uniform positivity of

d2

dy2l
H̄(yl|M, s∗)

yields uniform positivity of(HessY H̄(y))ll for smallε . This observation is one of the main
insights in order to apply a perturbation argument for smallε independently of the system
sizeN . The advantage of̄H(yl|M, s∗) overH̄(y) is that in (3.26) one integrates only over
sites of the blockB(l), whereas in the definition (3.8) of the coarse-grained Hamiltonian
H̄(y) one integrates over all sites of the spin system.

Lemma 3.1.12.Assume that the vectorsc and the HamiltonianH(xl|M, sc) are given by
(3.24)and (3.22)respectively. Then:
If the interaction matrixM satisfies CS(ε), then for all1 ≤ l ≤ L andy ∈ Y

(HessY H̄(y))ll ≥
∫

d2

dy2l
H̄(yl|M, sc)µ̄(dx̄

l|y)− Cε,

where the constantC <∞ is independent ofN ,m, ands (depending only on the block size
K andc1).

The proof of Lemma 3.1.12 consists of two steps. In the first step we show that the disinte-
gration (3.9) yields the identity

(
HessY H̄(y)

)

ll
=

∫
d2

dy2l
H̄(yl|M, sc) µ̄(dx̄

l|y)

− 1

K
varµ̄(dx̄l|y)





∫
∑

j∈B(l)

(
N∑

i=1

mijxi

)

+ δψ′
j(xj) µ(dx

l|x̄l, y)



 . (3.27)

In the second step we show that the variance term on the right hand side can be estimated by
using the covariance estimate of Theorem 1.2.4 as

1

K
varµ̄(dx̄l|y)





∫
∑

j∈B(l)

(
N∑

i=1

mijxi

)

+ δψ′
j(xj) µ(dx

l|x̄l, y)



 ≤ Cε. (3.28)

We will state the full proof of Lemma 3.1.12 below. The next lemma provides the last
remaining ingredient of the proof of Lemma 3.1.11, which is the uniform positivity of
d2

dy2
l

H̄(yl|M, s∗).

Lemma 3.1.13.There isK0 ∈ N such that:
If the block sizeK ≥ K0 and the interaction matrixM satisfies CS(ε), then there are
constantsλ > 0 andC < ∞ independent ofN , m, ands (depending only onK and c1)
such that for all1 ≤ l ≤ L, yl ∈ R, ands∗ ∈ R

B(l)

d2

dy2l
H̄(yl|M, s∗) ≥ λ− Cε. (3.29)
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For the proof of Lemma 3.1.13 we apply the following strategy. If the block sizeK is large
enough, the generalized local Cramér theorem (cf. Proposition 3.2.1 andTheorem 3.2.2)
yields

d2

dy2l
H̄(yl|0, s̃) ≥ λ > 0 (3.30)

for all yl ∈ R and s̃ ∈ R
B(l). We want to derive (3.29) from (3.30) by a perturbation

argument. More precisely, we will show that for a specific choice ofs̃ = s̃(s∗) ∈ R
B(l)

given by (3.43)
∣
∣
∣
∣

d2

dy2l
H̄(yl|M, s∗)− d2

dy2l
H̄(yl|0, s̃)

∣
∣
∣
∣
≤ Cε. (3.31)

The constantC < ∞ just depends onK and c1. For the proof of Lemma 3.1.11 it is
crucial that the last inequality holds uniformly ins∗ ∈ R

B(l) andyl. Because we consider
unbounded spins with quadratic interaction, this is difficult and leads to the specific choice of
s̃ = s̃(s∗). It would be a lot easier to derive (3.31) for bounded spin-values with finite-range
interaction. In this case one could also deduce the estimate (3.31) choosings̃ = 0. Then, the
standard version of the local Cramér theorem [22, Proposition 31] wouldbe sufficient for the
perturbation argument at least for homogeneous single-site potentialsψi = ψ. The reason is
that [22, Proposition 31] yields in this case

d2

dy2l
H̄(yl|0, 0) ≥ λ > 0.

We will state the full proof of Lemma 3.1.13 below.

Proof of Lemma 3.1.11.The desired statement follows from a combination of Lemma 3.1.12
and Lemma 3.1.13.

Proof of Lemma 3.1.12.Let us deduce the identity (3.27). Recall that by Lemma 3.1.8 we
have

(
HessY H̄(y)

)

ll
= 1 +

1

K

∑

i,j∈B(l)

mij +
1

K

∫
∑

j∈B(l)

δψ′′
j (xj)µ(dx|y)

− 1

K
varµ(dx|y)




∑

j∈B(l)

(
N∑

i=1

mijxi

)

+ δψ′
j(xj)



 .
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The disintegration rule (3.9) and the additive property of variances yield the identity
(
HessY H̄(y)

)

ll
=

∫
[
∫
(

1 +
1

K

∑

i,j∈B(l)

mij +
1

K

∫
∑

j∈B(l)

δψ′′
j (xj)

)

µ(dxl|x̄l, y)

− 1

K
varµ(dxl|x̄l,y)

(
∑

j∈B(l)

(
N∑

i=1

mijxi

)

+ δψ′
j(xj)

)]

µ̄(dx̄l|y)

− 1

K
varµ̄(dx̄l|y)

(
∫
[
∑

j∈B(l)

(
N∑

i=1

mijxi

)

+ δψ′
j(xj)

]

µ(dxl|x̄l, y)
)

.

Note that the HamiltonianH(xl|M, s∗) defined by (3.22) has the same structure as the
HamiltonianH(x) given by (3.2). Therefore, an application of Lemma 3.1.8 yields that

d2

dy2l
H̄(yl|M, sc) = 1 +

1

K

∑

i,j∈B(l)

mij +
1

K

∫
∑

j∈B(l)

δψ′′
j (xj)µ(dx

l|x̄l, y)

− 1

K
varµ(dxl|x̄l,y)

(
∑

j∈B(l)

(
∑

i∈B(l)

mijxi

)

+ δψ′
j(xj)

)

. (3.32)

The desired identity (3.27) follows from the last two equations and the fact that adding
constant functions does not change variances.
It remains to derive the estimate (3.28) of the variance term of the right handside of (3.27).
By Young’s inequality

1

K
varµ̄(dx̄l|y)





∫
[
∑

j∈B(l)

(
N∑

i=1

mijxi

)

+ δψ′
j(xj)

]

µ(dxl|x̄l, y)





≤ 2

K
varµ̄(dx̄l|y)





∫
∑

j∈B(l)

N∑

i=1

mijxi µ(dx
l|x̄l, y)





+
2

K
varµ̄(dx̄l|y)





∫
∑

j∈B(l)

δψ′
j(xj) µ(dx

l|x̄l, y)



 . (3.33)

Let us consider the first term of the right hand side of (3.33). By the disintegration rule (3.9)
we have for any functionξ(x̄l)

∫

ξ(x̄l)µ̄(dx̄l|y) =
∫

ξ(x̄l)

∫

1 µ(dxl|x̄l, y)
︸ ︷︷ ︸

=1

µ̄(dx̄l|y) =
∫

ξ(x̄l)µ(dx|y).

It follows that

2

K
varµ̄(dx̄l|y)

(

ξ(x̄l)
)

=
2

K
varµ(dx|y)

(

ξ(x̄l)
)

.
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

Therefore, an application of Theorem 1.2.4 to the measureµ(dx|y) yields

2

K
varµ̄(dx̄l|y)





∫
∑

j∈B(l)

N∑

i=1

mijxi µ(dx
l|x̄l, y)





≤ 2

̺K

L∑

s1,s2=1

(
A−1

)

s1s2

×





∫
∑

k∈B(s1)

∣
∣
∣
∣
∣
∣

d

dxk

∫
∑

j∈B(l)

N∑

i=1

mijxi µ(dx
l|x̄l, y)

∣
∣
∣
∣
∣
∣

2

µ(dx|y)





1

2

×





∫
∑

k∈B(s2)

∣
∣
∣
∣
∣
∣

d

dxk

∫
∑

j∈B(l)

N∑

i=1

mijxi µ(dx
l|x̄l, y)

∣
∣
∣
∣
∣
∣

2

µ(dx|y)





1

2

. (3.34)

It follows from the definitionxl = (xk)k∈B(l) that fork ∈ B(l)

d

dxk





∫
∑

j∈B(l)

N∑

i=1

mijxi µ(dx
l|x̄l, y)



 = 0. (3.35)

Using the definition (3.22) ofH(xl|M, sc) direct calculation shows that

d

dxk

∫
∑

j∈B(l)

N∑

i=1

mijxi µ(dx
l|x̄l, y)

=
∑

j∈B(l)

mkj − covµ(dxl|x̄l,y)




∑

j∈B(l)

N∑

i=1

mijxi ,
d

dxk
H(xl|M, sc)





for k /∈ B(l). From now on, letC <∞ denote a generic constant depending only onK and
c1. Becauseµ(dxl|x̄l, y) satisfies LSI(̺̃) with ˜̺> 0 depending only onK andc1 (cf. proof
of Proposition 3.1.4), the measureµ(dxl|x̄l, y) also satisfies the SG(˜̺) by Lemma 1.1.1.
Hence, an application of the standard covariance estimate of Lemma 1.2.2 and the equiva-
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lence of norms in finite-dimensional vector spaces yield
∣
∣
∣
∣
∣
∣

d

dxk

∫
∑

j∈B(l)

N∑

i=1

mijxi µ(dx
l|x̄l, y)

∣
∣
∣
∣
∣
∣

(3.14)
≤ C




∑

j∈B(l)

m2
kj





1

2

+
1

˜̺




∑

i,j∈B(l)

m2
ij





1

2

︸ ︷︷ ︸

≤C‖Mll‖




∑

j∈B(l)

m2
kj





1

2

(3.14)
≤
(

C +
C

˜̺
ε

)



∑

j∈B(l)

m2
kj





1

2

. (3.36)

A combination of the estimates (3.34), (3.35) and (3.36) yields the estimate of the first term
on the right hand side of (3.33). More precisely,

2

K
varµ̄(dx̄l|y)





∫
∑

j∈B(l)

N∑

i=1

mijxi µ(dx
l|x̄l, y)





≤ C
L∑

s1,s2=1

(
A−1

)

s1s2




∑

i∈B(s1), j∈B(l)

m2
ij





1

2



∑

i∈B(s2), j∈B(l)

m2
ij





1

2

≤ C
L∑

s1,s2=1

(
A−1

)

s1s2
‖Mls1‖ ‖Ms2l‖

(3.19)
≤ Cε.

The second term on the right hand side of (3.33) can be estimated with the sameargument
as we used for the first term. The only different ingredient is the estimation of

∣
∣
∣
∣
∣
∣

d

dxk

∫
∑

j∈B(l)

δψ′
j(xj) µ(dx

l|x̄l, y)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

covµ(dxl|x̄l,y)




∑

j∈B(l)

δψ′
j(xj) ,

∑

s∈B(l)

mksxs





∣
∣
∣
∣
∣
∣

≤ C

˜̺




∑

j∈B(l)

m2
kj





1

2

,

where we applied Lemma 1.2.2 and the uniform bound (3.1) of the functionsδψi.

Proof of Lemma 3.1.13.Note that the estimate (3.30) follows directly from the generalized
local Cramér theorem (cf. Proposition 3.2.1 and Theorem 3.2.2). Hence,it is only left to
deduce (3.31). Letν(dxl|M, s∗) denote the Gibbs measure onXK,yl (see (3.25)) associated
to the HamiltonianH(xl|M, s∗) i.e.

ν(dxl|M, s∗) =
1

Z
exp(−H(xl|M, s∗))HK−1

⌊XK,yl

(dxl).
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The same reason as for (3.32) yields that

d2

dy2l
H̄(yl|M, s∗) = 1 +

1

K

∑

i∈B(l), j∈B(l)

mij +

∫
1

K

∑

j∈B(l)

δψ′′
j (xj) ν(dx

l|M, s∗)

− 1

K
varν(dxl|B,s∗)




∑

j∈B(l)




∑

i∈B(l)

mijxi



+ δψ′
j(xj)



 .

An application of this formula tōH(yl|0, s̃) with arbitrarys̃ ∈ R
B(l) yields

d2

dy2l
H̄(yl|0, s̃) = 1 +

∫
1

K

∑

j∈B(l)

δψ′′
j (xj) ν(dx

l|0, s̃)

− 1

K
varν(dxl|0,s̃)




∑

j∈B(l)

δψ′
j(xj)



 .

It follows from the last two equations and the bilinearity of the covariance that
∣
∣
∣
∣

d2

dy2l
H̄(yl|M, s)− d2

dy2l
H̄(yl|0, s̃)

∣
∣
∣
∣
≤ T1 + T2 + T3 + T4 + T5 (3.37)

where the termsT1, T2, andT4 are given by

T1 :=
1

K

∣
∣
∣
∣
∣
∣

∑

i,j∈B(l)

mij

∣
∣
∣
∣
∣
∣

, T2 :=
1

K

∣
∣
∣
∣
∣
∣

varν(dxl|M,s∗)




∑

i,j∈B(l)

mijxi





∣
∣
∣
∣
∣
∣

,

T3 :=
2

K

∣
∣
∣
∣
∣
∣

covν(dxl|M,s∗)




∑

i,j∈B(l)

mijxi , δψ
′
j(xj)





∣
∣
∣
∣
∣
∣

,

and the termsT4 andT5 are given by

T4 :=
1

K

∣
∣
∣
∣
∣
∣

∫
∑

j∈B(l)

δψ′′
j (xj) ν(dx

l|M, s∗)−
∫

∑

j∈B(l)

δψ′′
j (xj) ν(dx

l|0, s̃)

∣
∣
∣
∣
∣
∣

,

T5 :=
1

K

∣
∣
∣
∣
∣
∣

varν(dxl|M,s∗)




∑

j∈B(l)

δψ′
j(xj)



− varν(dxl|0,s̃)




∑

j∈B(l)

δψ′
j(xj)





∣
∣
∣
∣
∣
∣

.

Note that the measureν(dxl|M, s∗) has the same structure as the measureµ(dxl|x̄l, y).
Therefore, it follows by the same argument as in the proof of Proposition 3.1.4 that the
measureν(dxl|M, s∗) satisfies LSI(̺̃) with ˜̺ > 0 depending only onK andc1. Hence, the
measureν(dxl|M, s∗) also satisfies the SG(˜̺) by Lemma 1.1.1. It is easy to deduce by using
CS(ε) and the basic covariance estimate of Lemma 1.2.2 that

T1 + T2 + T3 ≤ Cε
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for a constantC <∞ depending only onK andc1.

The interesting part is the estimation ofT4 andT5. The right choice of̃s = s̃(s∗) ∈ R
B(l)

plays an important role. Therefore, let us motivate how to chooses̃ = s̃(s∗) for a given
vectors∗ ∈ R

B(l). The structure ofT4 andT5 is given by
∣
∣
∣
∣

∫

ξ(xl) ν(dxl|M, s∗)−
∫

ξ(xl) ν(dxl|0, s̃)
∣
∣
∣
∣

for a bounded functionξ : RB(l) → R. We want to estimate the last expression uniformly in
the unbounded parametersyl ∈ R ands∗ ∈ R

B(l). Therefore, let us take a closer look at the
dependence of

∫

ξ(xl) ν(dxl|M, s∗) =
1

Z

∫

ξ(xl) exp
(

−H(xl|M, s∗)
)

HK−1
⌊XK,yl

(dxl) (3.38)

on the parametersyl ands∗. On the blockB(l) the coarse-graining operatorPl : RB(l) → R

is defined byPlxl = 1
K

∑

i∈B(l) xi. LetP ∗
l denote the adjoint operator ofP i.e. foryl ∈ R

P ∗
l (yl) :=

1

K
(yl, . . . , yl) ∈ R

B(l).

By using the identityPlKP ∗
l = IdR one sees that the orthogonal projectionΠ of RB(l) on

kerPl = XK,0 is given by
Π = Id−KP ∗

l Pl. (3.39)

Consider the right hand side of (3.38). The dependence of the integration spaceXK,yl onyl
is abolished by the translationxl 7→ z̃ = Πxl, which mapsXK,yl ontoXK,0 and yields the
identity
∫

ξ(xl)ν(dxl|M, s∗) =
1

Z

∫

ξ(z̃ +KP ∗
l yl)× (3.40)

exp



−1

2
〈z̃, (Id+Mll)z̃〉 − 〈s∗ +MllKP

∗
l yl, z̃〉 −

∑

i∈B(l)

δψi(zi + yl)



HK−1
⌊XK,0

(dz̃),

where the matrixMll is given by (3.11). Deriving the last identity consists of a straight
forward calculation, where one has to consider the definition (3.22) ofH(xl|M, s∗), cancel
all terms that are independent ofz̃ with terms of the normalization constantZ, and ap-
ply the fact that〈KP ∗

l yl, z̃〉 = 0 for z̃ ∈ XK,0. Note that in (3.40) only the linear term
〈s∗ +MllKP

∗
l yl, z̃〉 depends on the parametersyl ands∗. The idea is to get rid of this term

by a second translatioñz 7→ z̃ + v, which leaves the integration spaceXK,0 invariant. Be-
causez̃ ∈ XK,0 = kerPl, we can rewrite the Gaussian part of the Hamiltonian in (3.40)
as

1

2
〈z̃, (Id+Mll)z̃〉+ 〈s∗ +MllKP

∗
l yl, z̃〉

=
1

2
〈z̃, (Id+ΠMll)z̃〉+ 〈Πs∗ +ΠMllKP

∗
l yl), z̃〉 .
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BecauseM satisfies CS(ε) with ε < 1, the map(Id+ΠMll) : XK,0 → XK,0 is invertible.
We definev by

v = (Id−ΠMll)
−1(Πs∗ +ΠMllKP

∗
l yl). (3.41)

A direct calculation using the definition ofv yields

1

2
〈z̃, (Id+ΠMll)z̃〉+ 〈Πs∗ +ΠMllKP

∗
l yl, z̃〉

=
1

2
〈z, (Id+ΠMll)z〉 − 〈Πs∗ +ΠMllKP

∗
l yl, v〉+

1

2
〈v, (Id+ΠMll)v〉 .

Becausev ∈ XK,0, the transformatioñz 7→ z = z̃ + v leaves the integration spaceXK,0 on
the right hand side of (3.40) invariant and yields by using the last identity that

∫

ξ(xl) ν(dxl|M, s∗) =
1

Z

∫

ξ(z +NP ∗yl − v)

× exp



−1

2
〈z, (Id+Mll)z〉 −

∑

i∈B(l)

δψi(zi + yl − vi)



HK−1
⌊XK,0

(dz), (3.42)

where we have canceled the terms that are independent ofz with terms of the normalization
constantZ. Note that we have gained compactness by this representation: The unbounded
parametersyl ands∗ only enter (3.42) as an argument of the bounded functionsξ andδψi.
This observation is crucial for the estimation ofT4 andT5. The derivation of (3.42) reveals
that it is natural to choose

s̃(s∗) = Πs∗ +ΠMllKP
∗
l yl = (Id−KP ∗

l Pl) (s
∗ +MllKP

∗
l yl) , (3.43)

where the matrixMll is given by (3.11). The reason is that carrying out the two translations
from above yields

∫

ξ(xl) ν(dxl|0, s̃) = 1

Z

∫

ξ(z +KP ∗
l yl − v)

× exp



−1

2
〈z, z〉 −

∑

i∈B(l)

δψi(zi + yl − vi)



HK−1
⌊XK,0

(dz). (3.44)

The right hand side of (3.42) and (3.44) coincide except of the interaction term
〈
xl,Mllx

l
〉
.

The latter is very helpful to apply a perturbation argument for the uniform estimation ofT4
andT5.

Now, we will estimateT4 andT5. Let us choosẽs = s̃(s∗) as in (3.43). For0 ≤ λ ≤ 1 we
define the probability measureνλ onXK,0 (see (3.25)) by

νλ(dz) :=
1

Z
exp



−1

2
〈z, (Id+λMll)z〉 −

∑

j∈B(l)

δψj (zj + yl − vj)



HK−1
⌊XK,0

(dz),
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3.1 The original two-scale approach

where the vectorv is defined by (3.41). Applying the translationxl 7→ z = Πxl + v on the
integrals ofT4 yields (cf. (3.42), and (3.44))

T4 =
1

K

∣
∣
∣
∣
∣
∣

∫
∑

j∈B(l)

δψ′′
j (zj + yl − vj)ν1(dz)−

∫
∑

j∈B(l)

δψ′′
j (zj + yl − vj)ν0(dz)

∣
∣
∣
∣
∣
∣

≤ 1

K
sup

0≤λ≤1

∣
∣
∣
∣
∣
∣

d

dλ

∫
∑

j∈B(l)

δψ′′
j (zj + yl − vj) νλ(dz)

∣
∣
∣
∣
∣
∣

. (3.45)

BecauseM satisfies CS(ε), we may assume w.l.o.g. that

−1

2
Id ≤Mll ≤

1

2
Id . (3.46)

By direct calculation we get that for any0 ≤ λ ≤ 1

d

dλ

∫
∑

j∈B(l)

δψ′′
j (zj + yl − vj) νλ(dz)

=
1

2
covνλ(dz)




∑

j∈B(l)

δψ′′
j (zj + yl − vj) , 〈z,Mllz〉





=
1

2

∫



∑

j∈B(l)

δψ′′
j (zj + yl − vj)−

∫

δψ′′
j (zj + yl − vj)νλ(dz)



 〈z,Mllz〉νλ(dz).

Let C < ∞ denote a generic constant depending only onK andc1. From the last identity
we can deduce the estimate
∣
∣
∣
∣
∣

d

dλ

∫
∑

j∈B(l)

δψ′′
j (zj + yl − vj) νλ(dz)

∣
∣
∣
∣
∣

(3.14)
≤ K max

j∈B(l)
sup
x∈R

∣
∣δψ′′

j (x)
∣
∣

∫

|〈z,Mllz〉| νλ(dz)

(3.14)
≤ Cε

∫
|z|2 exp

(

−1
2 〈z, (Id+λMll) z〉 −

∑

j∈B(l) δψj (zj + yl − vj)
)

HK−1
⌊XK,0

(dx)

∫
exp

(

−1
2 〈z, (Id+λMll) z〉 −

∑

j∈B(l) δψj (zj + yl − vj)
)

HK−1
⌊XK,0

(dx)

(3.46)
≤ Cε exp

(

2K max
j∈B(l)

sup
x

|δψj(x)|
)
∫
|z|2 exp

(
−1

2 〈z, z〉
)
HK−1

⌊XK,0
(dx)

∫
exp

(
−3

2 〈z, z〉
)
HK−1

⌊XK,0
(dx)

(3.14)
≤ Cε. (3.47)

A combination of (3.45) and (3.47) yields the estimate

T4 ≤ Cε.
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The same argument also yields
T5 ≤ Cε.

Compared to the estimation ofT4 one has to take a closer look at the term

d

dλ
varνλ(dz)




∑

j∈B(l)

δψ′
j(zj + yl − vj)





=
d

dλ

∫



∑

j∈B(l)

δψ′
j(zj + yl − vj)−

∫

δψ′
j(zj + yl − vj) νλ(dz)





2

νλ(dz).

Because

∫



d

dλ




∑

j∈B(l)

δψ′
j(zj + yl − vj)−

∫

δψ′
j(zj + yl − vj) νλ(dz)





2

 νλ(dz)

= −2

∫



∑

j∈B(l)

δψ′
j(zj + yl − vj)−

∫

δψ′
j(zj + yl − vj) νλ(dz)



 νλ(dz)

× d

dλ

∫
∑

j∈B(l)

δψ′
j(zj + yl − vj) νλ(dz)

= 0,

it follows by direct calculation that

d

dλ
varνλ(dz)




∑

j∈B(l)

δψ′
j(zj + yl − vj)





=

∫
(
∑

j∈B(l)

δψ′
j(zj + yl − vj)−

∫

δψ′
j(zj + yl − vj)νλ(dz)

)2(
d

dλ
νλ(dz)

)

=
1

2
covνλ(dz)

((
∑

j∈B(l)

δψ′
j(· · · )−

∫

δψ′
j(· · · )νλ(dz)

)2

, 〈z,Mllz〉
)

.

However, the covariance term on the right hand side can be estimated in the same way as
in (3.47). Therefore, we have deduced (3.31) uniformly inyl ∈ R ands∗ ∈ R

B(l), which
completes the proof of Lemma 3.1.13.

3.2 The local Cramér theorem for inhomogeneous
single-site potentials

The main goal of this section is to deduce a convexification result that is one of the central
ingredients for the macroscopic LSI (cf. Proposition 3.1.5 and Lemma 3.1.13):
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Proposition 3.2.1. Assume that the HamiltonianH : RK → R is given by

H(x) :=
K∑

j=1

1

2
x2j + sjxj + δψj(xj) (3.48)

for some arbitrary vectors ∈ R
K and some functionsδψj : R → R satisfying the uniform

bound(3.1) i.e. for all j ∈ {1, . . . ,K}.

‖δψj‖C2 ≤ c1 <∞.

Let H̄K denote the coarse-grained Hamiltonian ofH associated to coarse-graining the
whole system. More precisely, form ∈ R

H̄K(m) := − 1

K
log

∫

{ 1

K

∑K
j=1

xj=m}
exp (−H (x)) H (dx) . (3.49)

Then there isK0 andλ > 0 such that for allK ≥ K0, s, andm

d2

dm2
H̄K(m) ≥ λ.

Like the convexification result of Theorem 2.1.6 in Chapter 2 and [22][Lemma 29], the
statement of Proposition 3.2.1 is a direct consequence of the a local Cramértheorem, namely:

Theorem 3.2.2(Local Cramér theorem). Assume that the HamiltonianH is given by(3.48).
LetϕK(m) be defined as the Cramér transform ofH, namely

ϕK(m) := sup
σ∈R



σm− 1

K
log

∫

RK

exp



−H(x) +

K∑

j=1

σxj



 dx



 . (3.50)

ThenϕK is strictly convex independently ofs,m, andK. Additionally, it holds

‖H̄K(m)− ϕK(m)‖C2 → 0 asK → ∞,

The convergence only depends on the constantc1 given by(3.1).

In Section 2.2 we have implicitly generalized the local Cramér theorem to Hamiltonians
given by (cf. comment after Lemma 2.2.2)

H(x) :=
K∑

j=1

ψ(xj)

for an arbitrary perturbed strictly convex single-site potentialψ in the sense of (2.5). Now,
we have to generalize it to Hamiltonians of the form

H(x) :=
K∑

j=1

ψj(xj).
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The difference to [22] and Section 2.2 is that the single-site potentialsψj are allowed to
depend on the sitej ∈ {1, . . . ,K}. Because we want to apply the local Cramér theorem to
single-site potentials given by

ψj(xj) =
1

2
x2j + sjxj + δψj(xj),

we only consider this nice class of potentials making the proof of the local Cramér theorem
less complex than in Section 2.2.

As usual, the proof of the local Cramér theorem is based on two ingredients. The first one is
Cramér’s representation of the difference(H̄K(m)− ϕK(m)) (cf. [22, (125)]):

Lemma 3.2.3. For j ∈ {1, . . . ,K} we consider the one-dimensional probability measure
µσj given by

µσj (dxj) := exp

(

−ϕ∗
K,j(σ) + σxj −

1

2
x2j − sjxj − δψj(xj)

)

dxj ,

where

ϕ∗
K,j(σ) := log

∫

exp

(

σxj −
1

2
x2j − sjxj − δψj(xj)

)

dxj .

We introduce the meanmj and varianceς2j of the measureµσj

mj :=

∫

xjµ
σ
j (dxj) and ς2j :=

∫

(xj −mj)
2µσj (dxj).

Assume thatXj , j ∈ {1, . . . ,K}, are independent random variables distributed according
to µσj . LetgK,m(ξ) denote the Lebesgue density of the distribution of the random variable

1√
K

K∑

j=1

Xj −mj .

Then
gK,m(0) = exp(KϕK(m)−KH̄K(m)). (3.51)

The second ingredient is a local central limit type theorem for the densitygK,m. The gener-
alization of the local Cramér theorem by Theorem 3.2.2 is not surprising: For the classical
central limit theorem it is not important that the random variablesXj are identically dis-
tributed. It suffices that the standard deviationςj of Xj is uniformly bounded. The latter is
guaranteed by the uniform control‖δψj‖ ≤ c1 (cf. Lemma 3.2.4 below). As a consequence
we can proceed with the same strategy as for the classical local Cramér theorem (cf. [22,
Proposition 31]). We just have to pay attention that every step does not rely on the specific
form of ψj but on the uniform bound ofςj . Because the complete proof of Theorem 3.2.2 is
elementary but a bit lengthy, we will state the details in the next section.
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3.2 The local Cramér theorem for inhomogeneous single-site potentials

Lemma 3.2.4. Assume that‖δψj‖C2 ≤ c1 < ∞ uniformly inj ∈ {1, . . . ,K}. Then there
is a constant0 < c <∞ such that for anyσ andj

1

c
≤ ςj ≤ c, (3.52)

whereςj is defined as in Lemma 3.2.3.

We conclude this chapter with the proof of Lemma 3.2.3 and Lemma 3.2.4.

Lemma 3.2.3.BecauseϕK is the Legendre transform of the strictly convex function

ϕ∗
K(σ) :=

1

K
log

∫

RK

exp



−H(x) +
K∑

j=1

σxj



 dx,

there exits for everym ∈ R a uniqueσ = σ(m) ∈ R such that

ϕK(m) = σm− ϕ∗
K(σ). (3.53)

It is well-known thatσ is determined by the equation

m =
d

dσ
ϕ∗
K(σ). (3.54)

Now, we will show thatϕ∗
K andm can be decomposed according to

ϕ∗
K(σ) =

1

K

K∑

j=1

ϕ∗
K,j(σ) and m =

1

K

K∑

j=1

mj . (3.55)

Indeed, the decomposition ofϕ∗
K directly follows from definitions. Observe that

mj =

∫

xjµ
σ
j (dxj) =

d

dσ
ϕ∗
K,j(σ).

Then, the decomposition ofm follows from (3.54) and the decomposition ofϕ∗
K . More

precisely,

m =
d

dσ
ϕ∗
K(σ) =

1

K

K∑

j=1

d

dσ
ϕ∗
K,j(σ) =

1

K

K∑

j=1

mj .

Now, we will deduce Cramér’s representation (3.51). The densitygK,m(ξ) at ξ = 0 can be
written as

gK,m(0) =

∫

{

K− 1
2
∑K

j=1
xj−mj=0

}

exp





K∑

j=1

−ϕ∗
K,j(σ) + σxj − ψj(xj)



H(dx).
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By (3.55) we get

gK,m(0) =

∫

XK,m

exp



−Kϕ∗
K(σ) +Kσm−

K∑

j=1

ψj(xj)



H(dx).

Using (3.53) the right hand side becomes

gK,m(0) = exp (KϕK(m))

∫

XK,m

exp



−
K∑

j=1

ψj(xj)



 H(dx).

Applying the definition (3.49) of̄HK(m) yields the desired formula.

Lemma 3.2.4.Observe that the variance of a one-dimensional Gaussian measure is invariant
under adding a linear term to the Hamiltonian i.e. for anyσ̃ ∈ R

ς2 : =

∫
(

x−
∫
x exp(−x2

2 )dx
∫
exp(−x2

2 )dx

)2
exp(−x2

2 )
∫
exp(−x2

2 )dx
dx

=

∫
(

x−
∫
x exp(σ̃x− x2

2 )dx
∫
exp(σ̃x− x2

2 )dx

)2
exp(σ̃x− x2

2 )
∫
exp(σ̃x− x2

2 )dx
dx.

Let us consider the upper bound of (3.52). Because the mean of a probability measureν is
optimal in the sense that for allc ∈ R

∫

(x− c)2 ν(dx) =

∫

x2ν(dx)− 2c

∫

xν(dx) + c2

≥
∫

x2ν(dx)−
(∫

xν(dx)

)2

=

∫ (

x−
∫

xν(dx)

)2

ν(dx),

we have by using the uniform bound‖δψj‖C2 ≤ c1 <∞ andσ̃ = σ − sj

ς2j =

∫

(xj −mj)
2 exp(σ̃xj −

x2j
2 − δψj(xj))

∫
exp(σ̃xj −

x2j
2 − δψj(xj))dxj

dxj

≤
∫


xj −
∫
xj exp(σ̃xj −

x2j
2 )dxj

∫
exp(σ̃xj −

x2j
2 )dxj





2

exp(σ̃xj −
x2j
2 − δψj(xj))

∫
exp(σ̃xj −

x2j
2 − δψj(xj))dxj

dxj

≤ exp(2c1)

∫


xj −
∫
xj exp(σ̃xj −

x2j
2 )dxj

∫
exp(σ̃xj −

x2j
2 )dxj





2

exp(σ̃xj −
x2j
2 )

∫
exp(σ̃xj −

x2j
2 )dxj

dxj

= exp(2c1) ς
2.
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The lower bound of (3.52) is deduced by the same type of argument, namely

ς2j ≥ exp(−2c1)

∫

(xj −mj)
2 exp(σ̃xj −

x2j
2 )

∫
exp(σ̃xj −

x2j
2 )dxj

dxj

≥ exp(−2c1)

∫


xj −
∫
xj exp(σ̃xj −

x2j
2 )dxj

∫
exp(σ̃xj −

x2j
2 )dxj





2

exp(σ̃xj −
x2j
2 )

∫
exp(σ̃xj −

x2j
2 )dxj

dxj

= exp(−2c1) ς
2.

3.2.1 Proof of the local Cramér theorem

As in Section 2.2, the main tool for the proof of Theorem 3.2.2 is a local central limit type
result for the densitỹgK,m. Even if we use some auxiliary results of Section 2.2, we cannot
apply the local central limit result of Theorem 2.2.1 because it is only formulated for the
case of homogeneous single-site potentialsψj = ψ, j ∈ {1, . . . ,K}. In another aspect,
the setting of this section is not as complex as the setting of Section 2.2, becausewe have
the uniform control (3.52) on the standard deviationςj . Therefore, we can apply a simpler
argument than the one of Theorem 2.2.1. Because the proceeding is more or less standard,
some elements of the proof may also be found in [17, Chapter XVI], [35, Appendix 2], [26,
Section 3], [38, p. 752 and Section 5] and [22, Appendix: Local Cramér theorem].

Convention. For the rest of Section 3.2.1, we assume that the indexj is given by some
numberj ∈ {1, . . . ,K}. Additionally, we introduce the notation

〈f〉j :=
∫

f(xj)µ
σ
j (dxj).

The definition of̃gK,m suggests to introduce for the shifted variables

x̃j := xj −mj ,

which yields that the mean of̃xj is normalized i.e.〈x̃j〉j = 0. The following auxiliary
lemma provides tools needed for the proof of Theorem 3.2.2.

Lemma 3.2.5. There is a constant0 < C <∞ such that the following statements are true:

(i) For anyk ∈ {1, . . . , 5} andj it holds:
〈
|x̃j |k

〉

j
≤ C.

(ii) For any ξ ∈ R andj it holds: | 〈exp(ix̃jξ)〉j | ≤ C|ξ|−1.

(iii) For any δ > 0 there isλ < 1 such that for allσ, |ξ| ≥ δ, andj it holds:
∣
∣
∣〈exp (ix̃jξ)〉j

∣
∣
∣ ≤ λ.
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(iv) For anyδ > 0 there is0 < Cδ <∞ such that for allσ, |ξ| ≥ δ, andj it holds:

∣
∣
∣〈exp (ix̃jξ)〉j

∣
∣
∣ ≤ Cδ

1

1 + |ξ| .

(v) For anyj it holds:
∣
∣
∣
∣

d

dm
〈exp(ix̃jξ)〉j

∣
∣
∣
∣
≤ C (1 + |ξ|) |ξ|3,

∣
∣
∣
∣

d2

dm2
〈exp(ix̃jξ)〉j

∣
∣
∣
∣
≤ C

(
1 + |ξ|2

)
|ξ|3.

(vi) There exists a complex-valued functionhj(ξ) such that for|ξ| ≪ 1:

〈exp(ix̃jξ)〉j = exp(−hj(ξ)) with

∣
∣
∣
∣
hj(ξ)−

1

2
ς2j ξ

2

∣
∣
∣
∣
. |ξ|3.

The proof of the last lemma is straight forward using the auxiliary results of Section 2.2 and
the uniform bound (3.52).

Proof of Lemma 3.2.5.The statements (i) and (ii) follow from a combination of the uniform
bound (3.52) and Lemma 2.2.2.

The statement (iii) follows from an application of Lemma 2.2.4 and the observationthat the
constantλ only depends on the upper bound of the statements (i) and (ii), which is uniform
in j.

The statement (iv) follows directly from a combination of (ii) and (iii).

Now, let us deduce the statement (v). We need the fact that by (3.55) we have

d

dσ
m =

1

K

K∑

j=1

d

dσ
mj

(2.84)
=

1

K

K∑

j=1

ς2j
(3.52)
≤ c (3.56)

and
d2

dσ2
m =

1

K

K∑

j=1

d

dσ
ς2j

(2.85)
≤ 1

K

K∑

j=1

〈|x̃j |3〉j
(i)

≤ C. (3.57)

We fix the indexj. Then an application of Lemma 2.2.5 yields (observingx̂ =
x−mj

ςj
= x̃

ςj

andξ̂ = ςjξ)
∣
∣
∣
∣

d

dm
〈exp(ix̃jξ)〉j

∣
∣
∣
∣

(3.56)
=

∣
∣
∣
∣

d

dσ
〈exp(ix̃jξ)〉j

∣
∣
∣
∣

∣
∣
∣
∣

d

dσ
m

∣
∣
∣
∣

(3.56)
≤ ςj c (1 + |ςjξ|) (|ςjξ|)2

(3.52)
≤ c4max(1, c) (1 + |ξ|) (|ξ|)2.
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We turn to the second statement of (v). A direct calculation reveals

d2

dm2
〈exp(ix̃jξ)〉j =

d

dm

(
d

dσ
〈exp(ix̃jξ)〉j

d

dσ
m

)

=
d

dσ

(
1

ςj

d

dσ
〈exp(ix̃jξ)〉j ςj

d

dσ
m

)
d

dσ
m

= ς2j

[(
1

ςj

d

dσ

)

〈exp(ix̃jξ)〉j
] (

d

dσ
m

)2

+

(
1

ςj

d

dσ
〈exp(ix̃jξ)〉j

)
d

dσ
ςj

(
d

dσ
m

)2

+

(
1

ςj

d

dσ
〈exp(ix̃jξ)〉j

)

ςj
d2

dσ2
m

d

dσ
m.

Now, the desired estimate can be achieved by an application of Lemma 2.2.5, (3.56), (3.57),
and some basic estimates.

Finally, let us deduce the statement (vi). We fix the indexj. Recalling that̂x =
x−mj

ςj
= x̃

ςj

andξ̂ = ςjξ, the statement follows from the uniform bound (3.52) and the observation (2.44).

Proof of Theorem 3.2.2.We start with deducing the strict convexity ofϕK for anyK. With
the same argument as for (2.37) we get

d2

dm2
ϕK(m) =

(
d

dσ
m

)−1

,

which yields the desired statement by using the estimate (3.56).

Now, let us consider the convergence of‖ϕK(m) − ψK(m)‖C2 . Because the random vari-
ablesX̃j := Xj −mj of Lemma 3.2.3 are independent, it follows by the same argument as
for (2.42) that

2π g̃K,m(0) =

∫ K∏

j=1

〈exp(ix̃j
1√
K
ξ)〉jdξ, (3.58)

whereg̃K,m(ξ) denotes the Lebesgue density of the distribution of the sum1√
K

∑K
j=1 X̃j .

Assume that the following estimates hold uniformly inK andm:
∣
∣
∣
∣
∣
∣

∫ K∏

j=1

〈exp(ix̃j
1√
K
ξ)〉jdξ

∣
∣
∣
∣
∣
∣

∼ 1, (3.59)

∣
∣
∣
∣
∣
∣

d

dm

∫ K∏

j=1

〈exp(ix̃j
1√
K
ξ)〉jdξ

∣
∣
∣
∣
∣
∣

. 1, (3.60)

∣
∣
∣
∣
∣
∣

d2

dm2

∫ K∏

j=1

〈exp(ix̃j
1√
K
ξ)〉jdξ

∣
∣
∣
∣
∣
∣

. 1. (3.61)
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Then a combination of the formula (3.58) and Cramér’s representation (3.51) yields the
desired result

‖ψK(m)− ϕK(m)‖C2 → 0 asK → ∞.

It remains to establish the estimates from above. Note that the intermediate estimate (3.60)
follows from the estimates (3.59) and (3.61) by interpolation. Using the tools ofLemma 3.2.5,
we can deduce (3.59) and (3.61) with the same strategy as in the proof of Theorem 2.2.1.

Argument for (3.59): We start with deducing the upper bound
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. 1. (3.62)

For some fixed0 < δ ≪ 1 we split the integral according to
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Let us consider the inner integral. We can chooseδ is so small that the statement (vi) of
Lemma 3.2.5 applies. Hence, we may rewrite the inner integral as

I :=

∫

{
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Note that for
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ξ
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∣
∣ ≤ δ the statement (vi) of Lemma 3.2.5 yields
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In particular forδ small enough this implies by using the assumption (3.52)
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ξ2, (3.64)

where the constant0 ≤ c <∞ is given by (3.52). The last statement yields the estimate
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Now, let us consider the outer integral

II :=

∫

{
∣
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∣

1√
K
ξ
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∣
≥δ

}

K∏

j=1

〈exp(ix̃j
1√
K
ξ)〉jdξ.

On the integrand we apply the statement (iii) of Lemma 3.2.5 (onK − 2 of theK factors)
and the statement (iv) of Lemma 3.2.5 (on the remaining2 factors):
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It follows that the second termII is exponentially small:

|II| =
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. K λK−2 → 0 as K → ∞.

Together with the estimate of|I| from above, this yields the desired upper bound (3.62).

We turn to the lower bound
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Applying the triangle inequality yields

|I + II| & |I| − |II|.

Because|II| → 0 asK → ∞ it suffices to show

|I| & 1.

Recall that for
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Re





K∑

j=1

hj

(
1√
K
ξ

)


 ≥ 1

4c2
ξ2.

Note that the functionC ∋ y 7→ exp(y) ∈ C is Lipschitz continuous onRe y ≤ − 1
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with constantexp(− 1
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ξ2). Therefore (3.63) yields the estimate
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The last estimate implies
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asK → ∞. Additionally, we observe that by the assumption (3.52)
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Hence, we may conclude that

|I| = |I − III + III| ≥ |III| − |I − III| & 1

for K ≫ 1 large enough.

Argument for (3.61): We split the integral according to
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Let us consider the inner integralIV . An application of the chain rule for differentiation
yields
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A second differentiation yields
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The same argument as for (3.64) yields that for
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Hence, a combination of the identity (3.65), the estimate (3.66), and the estimates of Lemma 3.2.5 (v)
yields
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The desired estimate directly follows from the last estimate, i.e.

|IV | .
∫

{
∣

∣

∣

1√
K
ξ
∣

∣

∣
≤δ

}

(
1 + |ξ|2

) (
|ξ|3 + |ξ|6

)
exp

(

− 1

4c
ξ2
)

dξ . 1.

Now, we turn to the outer integralV . By substitution we have
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On the identity (3.65), we apply the estimates of Lemma 3.2.5 (v) in a first step and|〈exp(ix̃jξ)〉j | ≤ 1
in a second step:
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We use Lemma 3.2.5 (iii) (onK − 12 of theK − 2 factors|〈exp(ix̃lξ)〉l|) and Lemma 3.2.5
(iv) (on the remaining10 factors|〈exp(ix̃lξ)〉l|):
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Hence, we see that the term|V | is exponentially small i.e.

|V | .
√
K K2 λK−12

∫
1

1 + |ξ|2 dξ → 0 as K → ∞.

Together with the estimate for|IV | from above, the latter yields (3.61).
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Conventions

In addition to standard notation we use the following conventions:

• a . b means that there is a uniform constantC > 0 such thata ≤ Cb,
a ∼ b means thata . b andb . a.

• x̄i = (x1, . . . , xi−1, xi+1, . . . , xN ) erases thei-th entry ofx = (x1, . . . , xN ).

• osc f = supx f(x)− infx f(x) is the oscillation off .

• d
dxi
f stands for the partial derivative off w.r.t. the variablexi.

• 〈·, ·〉 denotes the scalar product,| · | denotes the norm,∇ denotes the gradient, andHess
denotes the Hessian of a Euclidean spaceX. If nothing else is written, the standard Eu-
clidean structure is considered onRN i.e.x · y = 〈x, y〉 =

∑N
i=1 xiyi.

•
∫
f(x)dx denotes the integration off w.r.t. the Lebesgue measure in the according di-

mension.

• HK denotes theK-dimensional Hausdorff measure,
HK

⌊A(dx) denotes theK-dimensional Hausdorff measure restricted to the setA.

• P(X) denotes the space of probability measures on a Euclidean spaceX.

• Z denotes a generic normalization constant of a probability measure. Its valuemay change
from line to line or even within a line. For example, ifµ(dx) = 1

Z exp(−H(x)) dx, then
Z =

∫
exp(−H(x))dx.

• We do not distinguish between the measureµ(dx) and its Lebesgue densityµ(x).

• fµ denotes the measure given by the densityf(x)µ(dx).

• covµ(f, g) =
∫ (
f −

∫
fdµ

) (
g −

∫
gdµ

)
dµ denotes the covariance off andg,

varµ(f) = covµ(f, f) denotes the variance off w.r.t. the probability measureµ.

• Ent(fµ, µ) =
∫
f log fdµ −

∫
fdµ log

∫
fdµ coincides with the relative entropy offµ

w.r.t.µ provided
∫
fdµ = 1.
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