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Summary

In the introduction of the dissertation we define Glauber and Kawasakindigs of a lattice
system of continuous unbounded spins. Both dynamics can be undkastatochastically
perturbed gradient flows w.r.t. the energy landscape given by the Haraiitéhof the sys-
tem. The main difference between them is that Kawasaki dynamics cortkerseean spin
m of the system in contrast to Glauber dynamics. We identify natural candifiatehe
equilibrium state of the dynamics, which are closely connected to the Hamiltéhidfor
Glauber dynamics this state is the grand canonical ensembleor Kawasaki dynamics
this state is the canonical ensemplg,,. Additionally, we motivate the use of functional
inequalities — namely the spectral gap (SG), the logarithmic Sobolev inequasty, @nd
the transport-information inequality (WI) — for the analysis of the relaxatioggailibrium
of the dynamics. Roughly speaking, the SG, LSI, and WI constantsathére the expo-
nential rate of convergence to equilibrium. The main focus of Chapter 1 i®ta@lauber
dynamics, whereas the main focus of Chapter 2 and Chapter 3 is laid ors&lawgnamics.

In Section 1.1 we introduce some standard criteria for the SG, the LSI, anffithn Sec-
tion 1.2 we derive a new covariance estimate that can be naturally appliedgpiosystem
with weak interaction. Here, the Hamiltonidh of the system ofV spins is given by

N

H(z) = v+ D mijzi

i=1 1<i<j<N

for a single-site potentiab and small real-valued numbers;; determining the interaction.
The algebraic structure of this estimate is close to the Brascamp-Lieb inequdlityuf
the assumption of the convexity of the Hamiltonian is relaxed. The estimate alss gield
weighted covariance estimate due to Helffer [30], which was applied teeddecay of cor-
relations. However, our result applies to general weak (not jusestaeighbor) interaction
and is optimal for quadratic Hamiltonians with attractive interaction. The prdod@sed on
a new directional SG. In Section 1.3 we derive this directional inequality etetrel of the
WI. The latter yields a non-linear version of the covariance estimate ariteaam for the
WI similar to the Otto & Reznikoff criterion for LSI [46]. The proof of the datonal SG
is based on ideas of Helffer [28] and Ledoux [40], whereas theffthe directional WI
follows the proof of the Otto & Reznikoff criterion.

In Chapter 2 we consider the LSI for the canonical ensemhlg, in the case of a non-
interacting Hamiltoniarf{ given by a sum of single-site potentials.e.

N

H() = 3 ().

i=1



Summary

Even if there is no interaction term in the Hamiltoni&h there is long-range interaction
in the system due to the conservation of the mean spinWe show that the LSI holds
uniformly in the system sizé&V and the mean spim, if the single-site potential is a
bounded perturbation of a strictly convex function; more precisely, ifethera splitting
1 = 1. + 01 such that

Wzl ooand sl + 6w S 1.

This verifies a conjecture of Landim, Panizo, and Yau [38] and simultaheamswers a
question Varadhan [53] posed in 1993. The argument is indepenfie geometric struc-
ture and adapts the two-scale approach of Grunewald, Otto, Westdergeahd Villani [22]
from the quadratic to the super-quadratic case. Compared to the pri@2f tfiere are three
major changes:

e Instead of coarse-graining of big blocks, we consider iterated capeseing of pairs.

e The latter allows to apply a new asymmetric Brascamp-Lieb type inequality faricov
ances, because the situation is reduced to one dimension. The asymmeicianBpa
Lieb inequality can be applied to perturbed strictly convex single-site potentigls
contrast to the classical covariance estimate that was used in [22].

e This procedure reduces the task of deriving a uniform LSIfgr,, to the convexi-
fication of the coarse-grained Hamiltonian, which follows from a new locaht&r
theorem for perturbed strictly convex single-site potentials

In Chapter 3 we consider the LSI for the canonical ensemhlg, in the case of weak
interaction. Here, the HamiltoniaH is given by

N
H(l’) = Z (¢($z) + Simi) + Z My LT 5.

i=1 1<i<j<N

The linear term — given by the vector models the interaction of the spins with the boundary
data. Due to technical reasons, we assumerthzds the same structure as in [22]; namely
1 is a bounded perturbation of a quadratic potential

U(e) = g v ou(e)  and [Su]+ 15w + 100 S 1
Provided the interaction is small in a certain sense, we derive the LS| faati@nical en-
sembleuy ,, uniformly in the system siz&/, the mean spim:, and the boundary data The
argument is independent of the geometric structure of the system. In stati@hapter 2,
the proof consists of an application of the original two-scale approaZlh Reveral ideas
are needed to solve new technical difficulties due to the interaction:

e The interaction between blocks is controlled by an application of the covarigste
mate of Section 1.2.



e The convexification of the coarse-grained Hamiltonian is deduced usingtioning
technique and a perturbation argument.

e The interaction with the boundary datanduces a natural dependence of the single-
site potentialg(x;) + s;z;) on the sitei. Therefore, we have to generalize the local
Cramér theorem of [22] to the case of inhomogeneous single-site potentials.

It remains to note that the contents of Section 1.2 and Chapter 2 emergejbiinbprojects

of Prof. Felix Otto and the author. The content of Chapter 3 is containe@ ipreprint [44]

of the author, which has been recommended for publication in the joGoralmunications
in Mathematical Physics
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Introduction

In the dissertation we study classical lattice systems of continuous untbapihs. These
systems appear in the literature in several situations:

e as a generalization of discrete spin systems like the Ising or Potts model [41];

e as a modeling and computational tool in physics, as for example in the destgbtio
magnetic materials [34, 37, 45] and phase separation [19, 18, 14];

e in statistical mechanics and in Euclidean quantum field theory [39, 23].

Let us introduce the basic concepts of the spin system considered in feetai®n. The
setA consists of finitely mangites For exampleA can be a finite part of a lattice or a finite
graph. We index the elements afand identify A with the set{1,..., N}. A real-valued
spinz; € Ris associated to each site {1,..., N}. Compared to the Ising model, where
the spin values are bounded and discrete fi;e= {—1, 1}), considering real-valued spins
leads to a technical advantage on the one side and to a technical chaltethgeother side:

e The advantage is that because the spin valus continuous one can use analytic
tools as for example differentiation and gradients.

e The challenge is that because the spin valuie unbounded a lot of arguments known
for the bounded case cannot be used.

A stateof the spin system is given by a vectore RY. TheHamiltonian H assigns to each
statezr € RY a certain amount of energy (z) € R. We assume that the Hamiltonidhis
smooth. TheGibbs measurg is a probability measure on the state spgéegiven by the
density

pldz) = o, exp(~H(x) da. (1)

Here and later onZ denotes a generic normalization constant. The definition siiows
that the occurrence of states with high energies is penalized in an exjadiyesirong way.
Sometimes, we call thegrand canonical ensemble

Even if the study of phase transitions in spin systems has attracted a lot ebirjer41, 48],
we will concentrate on aspects of equilibrium dynamics in the one phasaraffeoconsider
a stochastic procegs= £(t) € RY satisfying the stochastic differential equation

d¢ = —AVH(E) dt + V2A dB,. 2)

Here,V denotes the gradient determined by the standard Euclidean structif€ and the
noiseB; € RY consists ofV independent standard Brownian motions. Tie< N matrix
A'is chosen in two different ways:
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¢ In the case ofclauberdynamics, the matri¥ is given by the identity matrix. This
choice corresponds to spin-flip dynamics in the Ising model (cf. [43, 59]

¢ In the case oKawasakidynamics, the matrixl is given by the discrete second-order
difference operator. This choice corresponds to spin-exchangegnuygs in the Ising
model (cf. [9, 38]). Note that the matrix depends on the geometric structure of the
sites A i.e. on the notion of nearest neighbor. For simplicity, we assume/Ahat
a periodic one-dimensional lattice of si2e. Then the elementd;; of the N x IV
matrix A are given by

. 2, if 1=,
i =4 -1 i li-jle{1,N -1}, (3)
0, else

Even if we only consider the periodic one-dimensional lattice explicitly, adegitde-
ments of our results for Kawasaki dynamics also hold for general lattiwdg@phs
(cf. [22, Remark 15]).

The main difference between Glauber and Kawasaki dynamics is thatésldyibamics are
non-conservative and Kawasaki dynamics are conservative. fiber@eans that the initial
mean spinn of the system is conserved over time by the process i.e. for all tire8 we

have
Zgz t_O Zgz

The last identity follows from the fac,‘zl}:1 d&; = 0, which is verified by a straight forward
calculation using the stochastic differential equation (2) and the definitjoof (3. Hence,
for Kawasaki dynamics the state spa&R& can be restricted to theV — 1) dimensional
hypersurface

N
1
XNm = {xeRN,Nin:m}. 4)
i=1

The restriction of the Gibbs measyreo the new state spac€y,, is called thecanonical
ensemble:y ,,,. More preciselyy:y ., is given by the density

() = - exp (~H(x) M) (dr), (5)

where?—[]& ! denotes th¢ N — 1) dimensional Hausdorff measure restrictedig ,,.

We assume that the initial distribution of the stochastic progésgiven by a smooth posi-
tive density. Then standard probability theory yields that the pra¢esdistributed at time
t according to the density given by the time-evolution

S =V ( AVS) ©

Vi



in the case of Glauber dynamics and

S fivan) = ¥ (v AV ) )

in the case of Kawasaki dynamics. Both equations have to be understtimhireak sense.
For example, equation (6) means that for any smooth test fun¢tion

/c )@tde) = - [ V(@) AVfi()ntda).

We pose the following questions on the dynamics:

e Is there an equilibrium state?

e If yes, do the dynamics converge to equilibrium, in which sense, and t&i® fa

We can immediately give an answer to the first question: By using the time-evol@jo
and (7) one sees that

d d
—u=0 and —UnNm = 0.
at” art'N

It follows that:

e For Glauber dynamics the Gibbs measuiis a stationary distribution and therefore a
natural candidate for an equilibrium state.

e For Kawasaki dynamics the canonical ensemblg,, is a stationary distribution and
therefore a natural candidate for an equilibrium state.

Let us turn to the second question, which we approach with the help didanatinequal-
ities. We introduce the spectral gap (SG), which is also called Poincaréaligygn the
literature, and the logarithmic Sobolev inequality (LSI):

Definition 0.1 (SG). Let X be a Euclidean space. A Borel probability measpren X
satisfies the SGJ with constant > 0, if for all functions f

va, (1) i= [ <f2— / fdu>2du< [ Vit

Here,V denotes the gradient determined by the Euclidean structuié. of

Definition 0.2 (LSI). Let X be a Euclidean space. A Borel probability measuren X
satisfies the LSH) with constant > 0, if for all functionsf > 0

But(fp.p) = [ flog du~ /fdulog/fdu</'vf’2 (®)

Here,V denotes the gradient determined by the Euclidean structuké. of [ fdu = 1, the
relative entropy of the probability measufe w.r.t. u is given byEnt( fu, ).

Vii
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Remark 0.3 (Gradient onXy ,,). BecauseXy,, inherits the standard Euclidean structure
of RY, one can calculatéV f|? in the following way: Extend : Xy, — R to be constant
on the direction normal toX  ,,,, then

N

VIE =Y |

i=1

2

In our framework the functional inequalities SG and LSI are useful, imx#hey yield ex-
ponential convergence gfto the equilibrium state of the dynamics (cf. [50, 51, 52, 59, 62]):

Lemma 0.4. Let ;» denote the grand canonical ensemble giveri)yand let f; .« denote the
distribution of the Glauber dynamics given (8). It holds:

1. If  satisfies SG), then  var,(f;) < exp(—2pt) var,(fo).
2. If pu satisfies LSK), then  Ent(fiu, 1) < exp(—20t) Ent(fou, ).

Let v, denote the canonical ensemble giver(®yand let ;.. ,, denote the distribution
of the Kawasaki dynamics given {§). Then there is a constadt > 0 such that:

1. If un,m satisfies SGY), then  var,, . (fi) < exp(=2C"'N~2pt) var,, . (fo).

2. If pun o, satisfies LSK), then
Ent(fipinm, tiv,m) < exp(—2C~ N2 0t) Ent(fofin,m, 1nm)-

Proof of Lemma 0.4We start with considering Glauber dynamics. It follows from (6) that

d
— [ fdu=0.
dt/fu

A direct calculation using the last identity and (6) reveals

\V4 2
VAR,

d d
9 (f) = 2 / ViPde and Gt (f) = [ B

dt dt
An application of the SG{) and the LSIp) yields

d d
%varu(ft) < —2p var,(f) and o Ent,(fip, 1) < —20Ent,(fip, p).

Hence, the desired statement follows from an application of the differeméiquality.
The argument for Kawasaki dynamics is almost the same. Using the time-ead[dfione
sees that for Kawasaki dynamics

d
£VarMN7m(ft) = —2/|\/141Vﬁt|2d,u]\f7m and
d VAV f|?
dat EntMN,m(ftﬂa p) = — / Md/uw,m-
Tt

viii



On the right hand side of the last equation one applies the discrete Poinegrélity
(cf. [12, 22]), which states that for some constant

IVfI> < CN?|[VAV 2.

One concludes the proof by applying the 3% (he LSI(p), and the differential inequality in
the same way as for the Glauber dynamics. O

The last lemma also characterizes the rate of convergence in terms of thed3Glacon-
stantp. The rate for Kawasaki dynamics depends diffusively on the systear\sizvhich is

the optimal scaling behavior (cf. [57]). This dependence on the sysgenVsis natural: By

the definition of the matrix4, only nearest neighbors are allowed to interchange their spin
values in order to equilibrate.

The SG yields convergence to equilibrium in the sense of varianceseastre LSl yields
convergence in the sense of relative entropies. As the next remanis sive prefer the con-
vergence in the sense of relative entropies, because it is better atlapitechydrodynamic
limiti.e. sending the system siZ€ to infinity.

Remark 0.5. Let us consider the scaling behavionef,( f) andEnt,, ( fu, i) in the system
size N for a simple example: Let be a probability measure oR with [ z v(dz) = 1. If
the grand canonical ensembjeis the product measurg(dz) = @ ,v(dz;) onRY, then
a direct calculation yields foif (x) = I, z;

var,(f) = (var, (idg) + 1)V — 1 and Ent,(fu, n) = N Ent, (idg v, v).

Hence, the ternvar,(f) diverges exponentially fast fa¥ — oo. The termEnt,,(fu, 1)
only increases linearly. The latter shows that it makes more sense taeotise relative
entropy per site than to consider the variance per site.

The SG constant also determines the rate of convergence of the empirical time-average of
a bounded random variableto its ensemble average.

Lemma 0.6. Let i denote the Gibbs measure given [y and let¢ denote the Glauber
dynamics given by2). If u satisfies SGf), then anys > 0 and¢ > 0 it holds for any
bounded functiom

t 2
Pi (7 [ eonts - [tz <) < Vil e (-5 ).

Here, P, denotes the probability of Glauber dynamics with initial distributifin: and
oscu := sup, u(x) — inf, u(z) is the oscillation ofu.

For the proof of the last statement we refer the reader to [24][The&&in Note that
Lemma 0.6 only holds for bounded random variahleg-or this reason we introduce two
more functional inequalities. Using these inequalities one is able to considsrhitip con-
tinuous random variablas(cf. Lemma 0.9 below).
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Definition 0.7 (Wasserstein distancelet v and ;. be probability measures on a Euclidean
spaceX. For p € {1, 2} the LP-Wasserstein distand&,(v, ;) is given by

Wy (v, 1) = </ |z — y|? m(dz, dy)>; :

wherer is the optimal transference plan ofand .. More precisely; minimizes the expres-
sion

/ @ — yP? 7(dz, dy)

over all joint probability measures with marginalsv and 1, which means

[ ewyitdn,ay) = [ @ d [ ewrtds.dy = [ e

for all functions¢. In the rest of the dissertation, all transference plans correspond to the
choicep = 2.

For an introduction to the Wasserstein distance and optimal transport irefjemerefer the
reader to Villani’s books [54] and [55].

Definition 0.8 (WI). Let X be a Euclidean space and € {1,2}. A Borel probability
measurey on X satisfies the W(p) with constante > 0, if for all functions f > 0 with

[ fdp=1
For convenience, we write Wi for Wal (o). In the abbreV|at|on WI, "W” stands for Wasser-

stein distance and "I” stands for Fisher information, which is the name of the ten the
r.h.s. of the last inequality.

In the literature, this type of functional inequality is called transportationrinédgion in-
equality. In our framework, the Wis interesting because of the following equivalent char-
acterization (cf. [24, Corollary 2.5]):

Lemma 0.9. Let i denote the Gibbs measure given {dy and let¢ denote the Glauber
dynamics given b{2). Thenu satisfies WI( ) if and only if for any initial distributionfy i,
e > 0,t > 0, and Lipschitz functiom

1 [t te2 02
Py, n 0 u(§(s))ds — [ udp>e) < HfOHLQ(u) exp —W .
ip

Here, Py, denotes the probability of Glauber dynamics with initial distributim.

Remark 0.10. Similar results of Lemma 0.6 and Lemma 0.9 also hold for Kawasaki dynam-
ics ¢ and the canonical ensembjey ,,,. One only has to exchange the constantith the
constantC~! N2 (cf. proof of Lemma 0.4).



In the rest of the dissertation we will only consider the ¥yl(which implies the WI(p)
by Hoelder’s inequality. The purpose of the introduction was to motivate seeofi the
functional inequalities SG, LSI, and WI for the analysis of equilibrium dgits. In the
main part of the dissertation, we will consider the question if the functionglialties SG,
LSI, and WI hold for the grand canonical ensembland the canonical ensemblg ,,, .

Xi






1 Functional inequalities for Glauber
dynamics

1.1 Standard criteria for the LSI, the WI, and the SG

In this section we recall some standard criteria for the LSI, the WI, and@é&r a general
introduction to the SG and LSI we refer to [40, 49, 25]. For more baakgtdnformation
about the WI we refer the reader to [47] and [24]. We start with the ifagrpetween the
functional inequalities LSI, the WI, and the SG, which was first obsebye@tto & Villani
in [47].

Lemma 1.1.1. Let u be a probability measure on a Euclidean spa€eThen:
wsatisfies LSlp) = p satisfies Wlp) = p satisfies S(p).

Remark 1.1.2. Note that the implications of the last lemma are strict. This was shown
in [11] for the first implication. For the second implication we consider thebgaitaility
measurely = Z~! exp(—|x|)dz on the real line: On the one hand [21, Theorem 6] yields
that 4 does not satisfy the WI, on the other hand the megssatisfies the SG because it is
log-concave by a result of Bobkov [4].

The first criterion shows that the functional inequalities LSI, WI, and 88&&ampatible with
products (cf. for example [25, Theorem 4.4]).

Theorem 1.1.3(Tensorization principle)Let 1 and uo be probability measures on Eu-
clidean space&; and X, respectively. If:; and s satisfy LSIf;) and LSIp2) respectively,
then the product measug ® po satisfies LSifin{o1, 02}).

Note that the last statement also holds for the WI (cf. [24, Theorem DhdJjhe SG (cf. [25,
Theorem 2.5.]). The next criterion shows, how the LSI constant leshawder perturbations
(cf. [33, p. 1184])).

Theorem 1.1.4(Criterion of Holley & Stroock) Let ;1 be a probability measure on a Eu-
clidean spaceX and letéy : X — R be a bounded function. Let the probability measire
be defined as

fildz) = - exp (~00(x)) u(dr).

If 1 satisfies LSK), thenj: satisfies LSK) with constan® = ¢ exp (— osc 61)).
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The last statement also holds in the case of the SG. Because of its peviuriztire, the
criterion of Holley & Stroock is not well adapted for high dimensions. Forpgheof we
refer the reader to [40, Lemma 1.2]. Now, we state the criterion of Bakryr&iy, which
connects the convexity of the Hamiltonian to the LSI constant (cf. [1, Ritpn 3 and
Corollary 2] or [40, Corollary 1.6]).

Theorem 1.1.5(Criterion of Bakry & Emery) Letdy := Z~! exp(—H (z)) dz be a proba-
bility measure on a Euclidean spacas If there is a constany > 0 such that in the sense
of quadratic forms

Hess H(z) > o

uniformly inz € X, theny satisfies LSK).

A proof using semigroup methods can be found in [40, Corollary 1.6]r& lsealso a nice
heuristic interpretation of the criterion of Bakry & Emery on a formal Riemamstaucture
on the space of probability measures (cf. [47, Section 3]).

We illustrate the criteria from above with some examples. Ldenote the Gibbs measure
associated to the Hamiltonidi i.e.

1
wu(dr) = — oxXP (—H(z))dx.
Using the criterion of Bakry & Emery one directly sees that fbfr) = %xQ, z € R, the
associated Gibbs measuiesatisfies LSI{). Let us consider the Ginzburg-Landau single-
site potentiall (z) = 1(z* —1)2, = € R, which is very important in the study of continuous
phase-transitions (cf. [27, Chapter 13]). One can gplit) = (2> — 1) into

H(z) = () + 02)(2) suchthat ¢7(x)>1 and |6y| < 1.

The relations~ and < are defined in the Chapter Conventions at the end of the dissertation.
A combination of the criterion of Bakry & Emery and the criterion of Holley & Stk
yields that the associated Gibbs measursatisfies the LSK) for some constant > 0.
Together with the tensorization principle from above this implies that the Gibbsuresa
onR" associated to the Hamiltonidii(z) = "IV, 1(z? — 1), z € RV, satisfies LSIf)

with the same constapt> 0 uniformly in the system sizé/.

The situation becomes more complex if one adds an interaction term to the Hamiltoeian
us consider for example the Hamiltonian

N N
1
H(z) = Z(m? —1)2HT Y wm, for zeRY and |J] < 1.
—

i li—jl=1

For this type of Hamiltonian, deriving the L3I with constantp > 0 uniformly in the
system sizeV is a well-studied problem in the literature (cf. [5, 49, 58, 40]). More ndge
Otto & Reznikoff [46] deduced a criterion for LSI that covers this situati@thout any
further analysis. Before we formulate the criterion of Otto & Reznikoff,ustrecall the
disintegration of probability measures into conditional measures and the mlargin



1.1 Standard criteria for the LSI, the WI, and the SG

Definition 1.1.6. Let P(X) denote the space of probability measures on a Euclidean space
X. We consider an arbitrary probability measugdz;, dz2) € P(X; x X3). Then the
marginali(dx;) € P(X1) and the family of conditional measures

{m(dza|r1) € P(X2)},, ex,

are defined via

V ((21, 22) /C(»’Chfﬂz)ﬂ(dﬂ?hdm) = //C(l’hm) p(dwo|wy) fi(dey).

For convenience, we will use the notation:= (x1,...,2;—1,%;t1, ..., 2xyN) that erases the
i-th coordinate of the vectar = (z1,...,2n).

Theorem 1.1.7(Criterion of Otto & Reznikoff) Letdu := Z~! exp(—H (x)) dz be a prob-
ability measure on a direct product of Euclidean spages- X; x --- x Xy. We assume
that

e the conditional measurgs(dz;|z;), 1 < i < N, satisfy a uniform LS[;).
e the numbers:;;, 1 <i# j < N, satisfy
|ViV,iH (z)| < kij < 00
uniformly inz € X. Here,| - | denotes the operator norm of a bilinear form.
e the symmetric matrid = (A;;) nx N defined by
Ay = {Q I
—kgj, If 0 < g,
satisfies in the sense of quadratic forms

A>pld for a constanf > 0. (1.2)

Theny satisfies LSK).

By [46, Remark 5], the last statement is optimal for ferromagnetic Gaussaniltanians

given by
1
H(z) = B Z ziAijz; + Z bixi, Aij, b €R, 1.2)

1<4,5<N 1<i<N

where ferromagnetic means that the coupling is attractive i.e.
Aij :Aji <0 fori<je {1,,N}

In Section 1.3 we derive an analog version of the criterion of Otto & Refindkothe level
of the WI (see Theorem 1.3.3). On the level of the SG there is not onlyao@wersion but
also a relaxed one (cf. [40, Proposition 3.1], [46, Remark 4], and Reina.9):



1 Functional inequalities for Glauber dynamics
Theorem 1.1.8.Letdy := Z ' exp(—H(x)) dx be a probability measure oR”. Assume
that

¢ the conditional measurgs(dz;|z;), 1 < i < N, satisfy a uniform LSI;).

e the matrixA(z) = (Aij(z))nx N given by

0i; if i =j,
Aii(z) =
() {VN]»H(x), else
satisfies in the sense of quadratic forms and uniformly in

A(x) > pld for a constant > 0. (1.3)

Theny satisfies SGf).

Itis an open question if the assumption (1.1) of Theorem 1.1.7 can alstalzedesimilar to
the assumption (1.3) of Theorem 1.1.8.

As we have illustrated with examples, the standard criteria are very usefdéfiving the
LSI, the WI, and the SG for the grand canonical ensembl&s we will explain in Chapter 2
below, one cannot directly apply the standard criteria to the canonicaihdey v ,, for a
non-convex Hamiltoniar. In the remaining part of Chapter 1, we continue to consider
functional inequalities for the grand canonical ensemblén Chapter 2 and Chapter 3, we
will have a closer look at the question of deriving the LSI for the candeiesemblg:y .

1.2 A Brascamp-Lieb type covariance estimate
In this section we derive a new covariance estimate for a certain class lo§ @Gieasures

pldz) = o, exp(~H(x) dr,

on afinite-dimensional Euclidean spakgsee Theorem 1.2.4). The covariance estimate can
be seen as an analogon of the Brascamp-Lieb inequality (BLI), which e¢ssnaariances.
The BLI was originally introduced by Brascamp & Lieb in [7]:

Theorem 1.2.1(Brascamp & Lieb) Let H be strictly convex. Then for all functiorfs

var, (f) = / <f— / fdu>2du§ / (Vf (Hess )" V) dp. (14)

The main difference between our estimate and the BLI is that
e our estimate applies to covariances,
e it also handles non-convex Hamiltonians,

¢ in the convex case the bound is slightly weaker than in the BLI.
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The estimate also implies a well-known weighted covariance estimate due to Hsééer
Theorem 1.2.8, [30, Section 4] or [40, Proposition 2.1 or 3.1]), whickdgiexponential
decay of correlations for unbounded spin systems with a non-convglesiite potential
and a weak finite-range interaction (see [30, Theorem 2.1], [5, Enedr1], [6, Theorem
3.1] or [40, Proposition 6.2]). On the other hand our estimate already \tieéddecay as
a simple consequence (see Corollary 1.2.10 and Proposition 1.2.11)y dfemarrelations
is often used to derive the LSI or the SG (see for example [61, 62, 388,5%0] or [5]
for an overview). Hence, it is not surprising that our covariance egtimsaone of the key
ingredients to derive the LSI for the canonical ensemblg,, in the case of a weak two-
body interaction (cf. Chapter 3). We deduce the covariance estimateafreew inequality
calleddirectional SG (see Theorem 1.2.12). The proof the directional SG is based on ideas
which were outlined by Ledoux for the proof of the weighted covariarstienate (cf. [40]
and Theorem 1.2.8).

We consider a finite dimensional Euclidean spaceNorms| - | and gradient§/ are derived
from the Euclidean structure. If a probability measuren X satisfies the SG, we directly
obtain the following standard covariance estimate:

Lemma 1.2.2. Assumeu satisfies SGf). Then for any functiorf and g we have

con,(£,9) < ( [vir duf ( [ 1var du>$- (15)

Even if the estimate (1.5) is optimal (cf. [46, Remark 4]), it does not yield'imédion about

the dependence of the covariance on the specific coordinates. Heaaestimate (1.5) is
useless for deducing decay of covariances. For example, let uslepasGaussian Gibbs
measure

1
wu(dr) = - CXP (—z- Az) dx
onRY with a symmetric and positive definifé x N- Matrix A. Then it is known that

covy(xp, ry) = (A_l)nk < -. (1.6)

SR

Therefore, we can hope for a finer estimate than (1.5) that is also serteitive dependence
of the functionsf andg on the specific coordinates. Our covariance estimate shows this
feature:

Assumption 1.2.3.We assume that the Hamiltonidh of the Gibbs measure is convex at
infinity i.e. H is a bounded perturbation of a convex function. It follows from the observa
by Bobkov [4] — all log-concave measures satisfy SG — and the pettarbamma of Holley
& Stroock [33] (cf. Lemma 1.1.4), that satisfies SG with an unspecified constant 0.

Theorem 1.2.4(Covariance estimate) et du := Z !exp(—H(x)) dr be a probability
measure on a direct product of Euclidean spag&es- X; x --- x Xy. We assume that

e the conditional measurgs(dz;|z;), 1 <1i < N, satisfy a uniform SGX).
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e the numbers:;;, 1 <i # j < N, satisfy
’VZVJH(.%)‘ < Kij < 00
uniformly inz € X. Here,| - | denotes the operator norm of a bilinear form.
e the symmetric matrixl = (A;;) v« defined by
79 if 7= .7
Ayj = ¢ ! ) (1.7)
—Kij, if i<y,
is positive definite.
Then for all functionsf andg
N : }
covu(f,9) < D (A7), ( / Vif|? du) ( / Vig/? du) : (1.8)
i,j=1

The structure of the estimate in Theorem 1.2.4 is related to the BLI in the sehsaribace
is replaced by covariance and thatss H is replaced byA.

Remark 1.2.5(Connection to BLI) We assumeX; = R fori € {1,...,N} and letA

be a symmetric positive definifé x N- matrix. We consider a ferromagnetic Gaussian
Hamiltonian given by1.2). Then the covariance estimgtk8) coincides with the BLI given
by (1.4) provided the functiorf = g is an affine function.

The next remark considers the optimality of Theorem 1.2.4.

Remark 1.2.6 (Optimality). Provided the Hamiltonian H is ferromagnetic Gaussian, the
estimate of Theorem 1.2.4 is optimal. This remark is verified by sefiing) = x,, and
g(xr) = x and using(1.6).

Remark 1.2.7(Criterion for SG) Theorem 1.2.4 contains a well-known criterion for SG i.e.
A>pld, 0>0 = p satisfies SG).

As we have seen in the last section, this criterion also holds in a more relasibn
(cf. Theorem 1.1.8 and Remark 1.2.9).

The assumption under which Theorem 1.2.4 holds has the same algeb&iaretas the as-
sumption in the Otto & Reznikoff criterion for LSI (cf. Theorem 1.1.7). Tmdyadifference

is that the uniform LSI constant for the single-site conditional measurepliaaed by the
uniform SG constant. Starting point of the proof of Theorem 1.2.4 is a&septation of the
covariance, which was used by Helffer [28] to give another protti@BLI. More precisely,
one can express the covariance of the meaga®

covuf.9) = [ V- Vg dn, (L.9)
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where the potentiap is defined as the solution of the elliptic equation

Y (uVp) = (f - /1 du> " (1.10)

Here we used the convention, thatalso denotes the Lebesgue density of the probability
measurg:. As a solution of (1.10) we understand anyg H'(u) suchthatforalt € H'(p)

/vc-ku=/<<f—/fdu> . (1.11)

The existence of such solutions follows directly from the Riez representhigmrem applied

to
H = H"(u)N {% /«pdu = 0}
equipped with the inner product
/VC -V du. (1.12)

The completeness 6{ w.r.t. the chosen inner product follows from the fact thegatisfies
some SG, which is guaranteed by our Assumption 1.2.3.

Let us return to the sketch of the proof of Theorem 1.2.4. After applyie@tuchy-Schwarz
inequality to (1.9), the main step of the argument (see Theorem 1.2.12) ifraatem of

(/ Vigl? du)é (1.13)

fori € {1,..., N}, where the upper bound on (1.13) is given in terms of weighted compo-

nents of )
2
([1visran)’s e

The full argument of the proof is outlined in Section 1.2.2.

1.2.1 Decay of correlations

In this section we compare the covariance estimate of Theorem 1.2.4 with avealhk
weighted covariance estimate due to Helffer [30], which is often appliedrieedexponen-
tial decay of correlations of certain spin systems (cf. [5] and [6]).tRisrpurpose we follow
the presentation of Ledoux [40, Proposition 3.1], but rephrase the estimaur framework.

Theorem 1.2.8(Helffer, Ledoux) We assume that the conditions of Theorem 1.2.4 are sat-
isfied. Additionally, we consider positive weights> 0, ¢ € {1,... N}. Let the diagonal
N x N-matrix D be defined as

D = diag(d1 ce 7dN).
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We assume that there exigts> 0 such that in the sense of quadratic forms
DAD !> pId. (1.14)

Then the matrix4 is positive definite and for all functionsandg,

cov,(f,g) < Z (/\Dwy? du>2 (/\Dlng du>2. (1.15)

In fact, we will show that this estimate is a direct consequence of our ieowar estimate of
Theorem 1.2.4. Hence, our covariance estimate is consistent with the ekistiature.

Remark 1.2.9. For the sake of completeness we will give another proof of Theorem 1.2.8
in Section 1.2.2, which just relies on the ideas of Helffer [29, 30] and Led#0]. This
argument shows that conditiofl.14) can be relaxed by a weaker condition, which was
already observed in [13, Proposition 3.2]. More precisely, let the sgimim/N x N-matrix

A(z) = (Aji;(z)) be defined by

Ailw) = {@;ij(x), :: :j (1.16)
Assume that there ig > 0 such that for alle € X
DA(z)D™! > o1d. (1.17)
Note that the last condition applied #8 = Id yields the criterion for SG of Theorem 1.1.8.

Let us recapitulate the method of Helffer to deduce exponential decayriaflations. One
considers a metrié(-, -) on the set of site$1,..., N} of the spin system. For an arbitrary
but fixed sitel € {1,..., N} one chooses

d; :=exp (—6(i, 1))

as weights in Theorem 1.2.8. Because the triangle inequality implies

ZZ — exp (8(j,1) — 8(i,1)) < exp (6(5, 7)) ,

a direct application of Theorem 1.2.8 yields the following criterion for exguial decay of
correlations.

Corollary 1.2.10 (Helffer & Ledoux) Assume that the conditions of Theorem 1.2.4 are

satisfied. Additionally, we consider a metéic, -) on the se{1,..., N} and the symmetric
N x N-matrix A = (A4;;) defined by
Ay=1 . Ti=g, (1.18)
—exp (0(4, 7)) kij, 1f i <j.



1.2 A Brascamp-Lieb type covariance estimate

We assume that there exigts> 0 such that in the sense of quadratic forms
A>51d. (1.19)
Then for all functionsf = f(x;) andg = g(z;),4,j5 € {1,...,N},

0

This criterion may also be stated more generally for functions with arbitrajginisup-
ports. It is implicitly contained in the prelude of [40, Proposition 6.2]. In Secli®.2 we
will give another proof of Corollary 1.2.10, which is just based on owmaciance estimate
of Theorem 1.2.4.

Now, let us give an example how Corollary 1.2.10 can be applied. For tirabpe we
consider a two-dimensional lattice system with non-convex single-site pdtantdaveak
nearest-neighbor interaction. The same type of argument would alsdevaky dimension
and finite-range interaction. Léf denote a two-dimensional periodic lattice/@tsites and
let (-, -) denote the graph distance on it. We assumethatP (X) has the Hamiltonian

covalf.g) < & exp (=3, ) ( [ du>2 < G du>2- (1.20)

H(z) =) (@) —c Yz, (1.21)
i 5(i,5)=1
where the smooth potentidlis a bounded perturbation of a Gaussian in the sense that
1
V(@) = 52% + 0y(2) and sup |01(z)] < oo.
R

By the criterion of Holley & Stroock (cf. Theorem 1.1.4) all conditional measy(dz;|z;)
satisfy a uniform LSI with constank := exp (— osc d¢). From (1.21) we see that

kij = sup |V;V;H(z)| = e.
x
Hence, we know that if the interaction is sufficiently weak in the sense@f%, the matrix

A of Theorem 1.2.4 satisfies
A> (A —4e)1d.

Analogously one obtains thatdf< ¢!, the matrixA of Corollary 1.2.10 satisfies
A> (A —4ee)1d.
Therefore, an application of Corollary 1.2.10 yields exponential detagroelations:

Proposition 1.2.11. Assume that < %e—l. Then for any functiong = f(z;) andg =
g(ﬂ?j),l,] € {17 7N}'

on(.9) < 5= e e (06 ( [1varPan) ([ 19502 an)

This statement reproduces the correlation bounds established by Helffeand reproved
by Ledoux in [40, Proposition 6.2].
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1.2.2 Proof of the Brascamp-Lieb type covariance estimate

Behind our covariance estimate of Theorem 1.2.4 stands a stronger linegumfact we
deduce the following theorem, from which the main result follows as a simpkecprence.

Theorem 1.2.12Directional SG) Assume that the conditions of Theorem 1.2.4 are satisfied.
For any functionf let the potentialp be a solution of(1.10) Then foralli € {1,..., N}

Lo :
(/|V¢w|2du> <> (4, </\ij|2du> : (1.22)
j=1

In order to understand inequality (1.22) better, we recall the dual fotionlaf the SG
(cf. for example [47]).

Lemma 1.2.13(Dual formulation of the SG)A probability measure: satisfies SGf) if and
only if for any functionf and the solutiorp of (1.10)

( [1ver du>% <1 ( / !W\Qduf- (1.23)

Because the directional SG given by (1.22) estimates each coordinat gfaitient sepa-
rately, it is a refinement of the dual formulation of the SG given by (1.23.iny47] we
can interpret the functiop as the infinitesimal optimal displacement transportingto
(1 4+ ef)u. Therefore, the left hand side of (1.22) measures the average fluasd into
the direction of the-th coordinate against a weighted gradientfof For this reason we
call (1.22) directional spectral gap. One can also interpret the estim&®) (b terms of
the Witten complex (for a nice overview see [31]). At least formally oneintmoduce the
Witten-LaplacianA; * as
ATY VS =V,

which maps the gradient of some functigonto the gradient of the solutign of the equa-
tion (1.10). LetII; denote the projection onto the spake, i € {1,...,N}. Then the
estimate (1.22) becomes a weighted estimate of.theperator norm ofl; A; *. The proof
of Theorem 1.2.12 is very basic. It combines the core inequality of Led@ugument for
[40, Proposition 3.1] with linear algebra that was used in the argumen6pTHeorem 1].

Proof of Theorem 1.2.12To make the main ideas of the argument more visible, we assume
that the Euclidean spaces;, i € {1,...,N}, are one dimensional i.eX; = R. The
argument for general Euclidean spaéésis almost the same. Then the product space

X1 % ---x Xy become®R". The gradien¥; on X; is just the partial derivative; w.r.t. the

i-th coordinate. The first ingredient of the proof is the basic estimatg ¢of1,..., N}

/(\6j8j<p2 + ajtp 6j8jH ﬁjgo) ,u(dxj|a’cj) > 0j / ‘8j(p‘2u(d1‘j’fj), (1.24)

which is just an equivalent formulation of the S&3(for the single-site measuyg(dz;|z;)
(cf. [40, Proposition 1.3, (1.8)] or [32, 29]). The second ingretighe proof is the identity

N
/6jg0 0 fdu = /Z (|8j8kg0|2 + 0 0;0,LH akgo) dp. (1.25)
k=1

10
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Indeed, by partial integration one sees that

[oevisan=— [0 (f -/ fdu) du+ [ o0 0H (f -/ fdu> .

Applying now (1.11) on the terms of the r.h.s. yields the identitiy

N N
/ajcp O;f du = —/Zakajajw e dﬂ+/Za,€aj¢ O;H dyp dp
k=1 k=1

N
+*/p§:¥%@fﬁi%f[6%¢(hL
k=1

Let us have a closer look at the second term on the r.h.s of the last identdifows from
the definition ofu that

N N
1
[ ot ot o du=- [ S 00s0(0) duple) 0;exp (~H () do
k=1 k=1

N N
= /Zajakaj@ A du-i—/Z@k@jcp ;0 dy
k=1 k=1

A combination of the last two formulas yields the desired identity (1.25).
Now, we turn to the proof of (1.22). A combination of (1.24) and (1.25) weltk estimate

N
[owoosanz o [1056Pdn+ [ 3" 0y 000t 01 d
k=1, k#j

N
> Qj/|8j80’2d,u_ Z njk/c‘?jso Op djt.
k=1, kj

Applying Cauchy-Schwarz on the last estimate yields foj &l {1,..., N}
N

([10stPan)" = oy ([ 1osoau)” = 50 i ( [10voPan)’

k=1, k#j

N 3
:ZAjk </|@W|2du> . (1.26)
k=1

A simple linear algebra argument outlined in [46, Lemma 9] shows that the eleofahts
inverse of A are non negative i.e(.A—l)ij > (0 foralli,j € {1,...,N}. Hence, (1.26)
yields

N

2, (47, </ajf’2d“>% 2 ZN:(Al),-jZAjk </|ak<p|2dﬂ>5

] J=1 k=1

Jj=1
1 1
2 2 2 2
= dik (/Ié’wl du) = (/Ié’m! du) :

11
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The proof of Theorem 1.2.4 is just a direct application of Theorem 1.2.12.

Proof of Theorem 1.2.4Using the definition ofp, cf. (1.10), we obtain the following esti-
mate of the covariance

COVu(f,g)—/f<g—/gu> dp

:/V@'ngu

< il ( / rvjsoqu); ( / Ing|2dM>;

Now, the statement follows directly from Theorem 1.2.12. O

Proof of Theorem 1.2.8 using Theorem 1.2Me start with deducing that is positive def-
inite. Becaused is a symmetric Matrix, it suffices to show that every eigenvaluel oé
positive. Leth € R be an eigenvalue ol with eigenvector: i.e.

Azx = Ax.
An application of (1.14) to the vectdpx yields
A Dz|? = Dx - DAz = Dx - DAD™' Dz > o|Dx?| > 0,

which impliesA > 0.
Now, we will deduce (1.15). Becauskis symmetric, the inversd—! also is symmetric.
Therefore, an application of Theorem 1.2.4 yields the estimate

v : :
covu(f9) < 30 (47, ([19san) ([ 1908 dn)
ig—1

N 1 :
=Y di(a™h) 4t < / ldiviﬂ?du) < / ldjlngﬁdu)

i,j=1
=DA'D 2.3
<|DA7'D7 2| ||,

where the vectors, 7 ¢ R are defined foi,j € {1,..., N} by

1

1 1
- . |2 : s S 2

Therefore, (1.15) is verified provided

IDAT'D™ 1| < ! |2| (1.27)
0

12
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holds for anyz € RY. From the hypothesis (1.14) it follows that
0z-2<DAD7'z.2
< |DAD™ 2| |z|.
Hence, we have
< 5 [DAD™4,

which immediately yields (1.27). O

Now, we give a direct argument for Theorem 1.2.8. The proof is basdle estimate (1.24)
and the identity (1.25), which were the core elements of the proof of Thear2.12 and
Theorem 1.2.4.

Proof of Theorem 1.2.8As in the proof of Theorem 1.2.4 we estimate the covariance with
the help of the potentiab defined by (1.10) as

covu(f,g)z/f<g—/gu) dp

= /Dw -D7 Vg du

< /|DV<P| |D~'Vg| dp

1 1
< ([ wvekan)” ([ 10vaPan) .

The proof is finished if we show

1

( / erqu)Q <1 ( / |DVf2du>2. (1.28)
o

To verify (1.28) we need two observations. The first one is that (1.1Qussalent to
D?A > oD? (1.29)
in the sense of quadratic forms. The second observation is that goren by (1.16)
D?A > D*A (1.30)

in the sense of quadratic forms. Becadse> 0, the estimates (1.24), (1.25), (1.29), and
(1.30) yield

/ DV DV fdu > / VDAV du

> o [ 1DV

Applying now Cauchy-Schwarz yields the estimate (1.28). O

13
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Now, we will deduce Corollary 1.2.10 from Theorem 1.2.4.

Proof of Corollary 1.2.10.Let us fix two indices, j € {1,..., N}. Let f andg be arbitrary
functions just depending ary andx; respectively. We apply Theorem 1.2.4 and get

covu(f0) < (4, ([ 19t an)” ([ 1ssPan)’ @

where A is defined as in (1.7). Therefore, it remains to estimate the ele(m?nlt)ij. By
Neumann series (also called the random walk expansiottTéf(cf. [8]) we have

N N
(A_l) = 5l + Hij + Z Hisﬁsj + Lisﬂd,ﬂj 4
Ve 0oy eiosey A 0i0s@io;
_5 1 N 6—(5(i7j) K:ij +Z (18)6 5(8]) K/ZSK/SJ
T 0; e—0(4.7) 0i0j ‘= 3(4,8) g—0(5,) 0i0s0;
—6 (4,s) 5(8 l) —5(1,9) KisksiKli
J
...... . 1.32
+ ;1 —6(i,8) e—0(8,1) g—6(1,J )QzQsQle + ( )
S

By the triangle inequality we get

e_d(ivs)e_(s(svj) S e_d(ivj)
foralli,s,j € {1,..., N}. Hence, we can continue the estimation of (1.32) as

AN, <06 (471) 1.33
( )U =¢ ( >z'j ( )

whereA is defined as in (1.18). By (1.19) we have the bound

- 1
(A 1)ij = o

which together with (1.31) and (1.33) finishes the proof. O

1.3 The directional WI and two applications

In this section we derive a similar statement of the directional SG (see Thdo?el2) on the
level of the WI (see Theorem 1.3.1 below). A first application yields a critefido the W1,
which is an analog version of the Otto & Reznikoff criterion for the LSI (Ereorem 1.1.7).
A second application yields a non-linear version of the covariance estilfiBlbeorem 1.2.4.
Both applications are again optimal for ferromagnetic Gaussian Hamiltoniaes loy (1.2).
It remains to mention that this part was originally motivated by a preprint of&At [20],
who among other things generalized the to the WI to some extent (cf. RemaBlbgldw).
The main result of this section is:

14
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Theorem 1.3.1(Directional WI). Letdy := Z~! exp(—H (x)) dz be a probability measure
on a direct product of Euclidean spac&s= X; x --- x Xy. We assume that
e the conditional measurgs(dz;|z;), 1 <1i < N, satisfy a uniform W|;).
e the numbers;;;, 1 <1 # j < N, satisfy
|ViV,iH (z)| < kij < 00
uniformly inz € X. Here,| - | denotes the operator norm of a bilinear form.
e the symmetric matrid = (A;;) nxn defined by
%3 if 7= ju
Ajj = o (1.34)
—Kij, if i<y,
is positive definite.

Thenforalli € {1,..., N} and all functionsf > 0 satisfying f du = 1 holds

</ |z — yil” m(d, aly))é < ]é (A_l)z‘j (/ WCZ#)% ; (1.35)

wherer denotes the optimal transference planfafand . (cf. Definition 0.7).

Remark 1.3.2. In (1.35)the Wasserstein transportation cost in one direction is estimated by
a weighted Fisher information. Therefore, we call the inequdlit35) directional WI. It is
the non-linear analogon of1.22)

The assumption under which Theorem 1.2.4 holds has the same algebctiaretas the as-
sumption in the Otto & Reznikoff criterion for LSI (cf. Theorem 1.1.7). Timyalifference

is that the uniform LSI constant for the single-site conditional measurespiaaed by the
uniform WI constant. The structure of the proof of Theorem 1.3.1 is simil#récstructure
of the proof of the Otto & Reznikoff criterion for LSI. In particular, weeua similar induc-

tion in the dimension. For the proof of Theorem 1.3.1, which is outlined in Sett&d, we

need some auxiliary results. They are stated in Section 1.3.2 and verifiectiorSke 3.3.

Application 1: A new criterion for the transportation-information in equality

In the first application of Theorem 1.3.1 we deduce a criterion for the Wjuality.

Theorem 1.3.3(Criterion for WI). We assume that the conditions of Theorem 1.3.1 are
satisfied. Additionally, we assume that thereis- 0 such that in the sense of quadratic
forms

A>pld. (1.36)

Then the Gibbs measuyesatisfies the WH).

15



1 Functional inequalities for Glauber dynamics

Note that Theorem 1.3.3 is formulated in the same way as the Otto & Reznikoffamifer
LSI (cf. Theorem 1.1.7).

Remark 1.3.4. Theorem 1.3.3 is optimal for ferromagnetic Gaussian Hamiltonians in the
sense 0f(1.2). Recall that Lemma 1.1.1 states

wsatisfies LSl) = psatisfiesWlp) = satisfies S().

Hence, the argument for optimality is the same as for the Otto & Reznikoffioritior LSI
formulated in Theorem 1.1.7 (cf. [46, Remark 4]).

Remark 1.3.5. As already mentioned before, Gao & Wu derived a similar criterion for
the WI with a different approach (cf. [20][Theorem 5.3]). If one tstates their statement
into our setting and applies some simplification, it becomes exactly the satemstd as
Theorem 1.3.3. There is only one difference: Instead of considerirgythmetric matrixd
given by(1.34) Gao & Wu consider the symmetric matrx= (A;;) nxn given by

~ min if 1=
Aij _ { 1<k<N Ok, Js

—Kij, if 4<j.

Note thatA and A coincide except of the terms on the main diagonal 4nd A in the sense
of quadratic forms.

Application 2: A new non-linear covariance estimate
The second application is a non-linear version of the covariance estimateofem 1.2.4.

Theorem 1.3.6(Non-linear covariance estimatejssume that the conditions of Theorem
1.3.1 are satisfied. Then for all functioiis> 0, f, andg holds

N
a‘) COV,M(f?.g) < Z (A_l)w ”VZfHL2(u) ”V]g”LQ(,u):

1,j=1

. al _\2 72 2
D eondfa < Y (a0, ([ Fan) (/ - du) 990l

ij=1

Note that partz) of Theorem 1.3.6 trivially follows from a combination of Theorem 1.2.4
and the fact that WK) implies SGp). In order to show self-consistency, we will give a
direct proof of part) that is only based on the directional WI. Obviously, Theorem 1.3.6 is
optimal for ferromagnetic Gaussian systems (cf. Remark 1.2.6).

1.3.1 Proof of the applications
Proof of Theorem 1.3.3From the hypothesis (1.36) one directly gets

(z,A7'A7'z) < 912<x,x). (1.37)
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1.3 The directional WI and two applications

By using Theorem 1.3.1 we can estimate

N
W2 (from) =3 / 21— yil? (de, dy)
=1

( /|v iy >]
(A7Y),, (4™, < / |v;}f|2 dﬂ) < |v; f|2d‘u>§.

Applying now (1.37) directly yields

L~ [IVif? 1 [[VfP
W G < 553 [ == [ “

M=
Mz

s
I
—

Il
M=%
[

M= L=

k=1

&
Il

D=

M-

k,j=11i=1

O

Proof of Theorem 1.3.6Argument fora): We assume that the functiofisandg are smooth
and have compact support. Without restrictiptid . = 0, else consider the functiof:=
f — | f dp. For an arbitrary > 0 we consider the measure := (1 + ¢ f)u. Then

Covu(f,g):/f<g—/gd,u> du=/<g—/gdu> d%

_ 1/9(93) — gly) me(de, dy).

e

Heren.(dx, dy) denotes the optimal transference plan betwednz) andu(dy). We know
by Taylor formula that

N
Z ||$]_yj|+c|$_y|2
Therefore, we can estimate

cov,(f.9) < / ijg Iy — vl me(de, dy) + / & — y? dm.(dz, dy)

1
1 2 C
<> 1t ([l mitnan) + € oy i ay)
j=1
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1 Functional inequalities for Glauber dynamics

On the first term of the r.h.s. we apply Theorem 1.3.1 and on the secondmerapply
Theorem 1.3.3i.e.

3 % 2 \3
covu(£9) < 30 (A Wil ([ o e an)

i,j=1
VA +ef)? \2
6,9 1+¢ef

Fore — 0 the first term on the r.h.s. converges to

Vief2
(f 2l an)” — 19l

and for the second term converges to
[Vefl?
1+ef

Using now a standard approximation argument one can get rid of the atssusf smooth-
ness and compact support grandg.

dp — 0.

Argument forb): We assume w.l.o.gf f dp = 1. A direct calculation yields

COVu(f,g):/fgdu—/fdu /gdu
/fgdu /gdu

/ 9(x) — g(y) n(dz, dy)

wherer(dz, dy) denotes the optimal transference plan of the measfyiéér) and (dy).
Because

1
o(z) - g(y) = / Vg (tz+ (1 - t)y) - (z —y) dt

:/ Zng tw + (L= t)y;) (x5 —y;) dt

we get the estimate

N
cov, (. 9) Z 1Vl / l2; — ;| m(de, dy)

N 1
2
§ V9l (/ |z — y;|° 7T(da?,dy)>

Now, an application of Proposition 1.3.1 yields the desired statement. O
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1.3 The directional WI and two applications

1.3.2 Auxiliary results

For the proof of Theorem 1.3.1 we need some auxiliary results. We starredgttling a
basic fact for the optimal transport, which was observed for exampleaoy&Wu in their
proof of [20, Theorem 3.1]:

Lemma 1.3.7. For an arbitrary functionf > 0 with [ fdu = 1, let n(dxz, dy) denote
the optimal transference plan between the measyyesiz) and n(dy). Then for every
i € {1,..., N} and every vectof; andy; (cf. the Chapter Conventions), the conditional

transference plam (dz;, dy;|Z;, y;) is the optimal transference plan of the conditional mea-

sures% and u(dy;|g;) i.e.

W (f/;é;)) (17 > (/\wz _yi|27r(dxivdyi’jivgi))é'

Here, we used the notation
/ F (@)l dails).

The last statement is used to deduce the following estimate for the optimal transpo

Lemma 1.3.8. For an arbitrary functionf > 0 with [ fdu = 1, let n(dz, dy) denote
the optimal transference plan betwegén(dx) and u(dy). Fori € {1,..., N} let ;(dz;)
denote the marginal measure pfw.r.t. the conditional measurgs(dx;|z;). Additionally,
let 7 (dz;, dy;) denote the optimal transference plan between the margifialédz;) and

/|$i_yi’2 m(dz,dy) < /Wz2 <f/}gii)aﬂ(‘|§i)> 7 (dZi, dyi).

Because we follow the approach of Otto & Reznikoff [46], the remainingliany results
are almost the same as in [46]. There is only one difference: In ourtcastatements are
formulated on the level of the WI and not on the level of the LSI.

Lemma 1.3.9. [Analogue of Lemma 5 in [46]] Let(dx) be a probability measure on a
Euclidean space&. We assume that there exigts- 0 such that

w satisfies Wp).

Then we have for arbitrary > 0 andg:

covi(9. )| <+ sup [Vl (/fdu/}lvﬂdu)Q

We also need a linearized version of Lemma 1.3.9.
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1 Functional inequalities for Glauber dynamics

Corollary 1.3.10 (Analogue of Corollary 1 in [46]) Let ;(dx) be a probability measure on
a Euclidean spac&’. We assume that there exists> 0 such that

w satisfies Wlo).

Then we have for arbitrary andg:

1
1 2
aWAgJNfégsmﬂVgl</1Vdeu>
1
<5 sup [Vg| sup [V f].

Lemma 1.3.9 is used to establish the following result.

Lemma 1.3.11(Analogue of Lemma 6 in [46])Let X, X> be two Euclidean spaces and
p(dx1,dxs) a probability measure on the product spa&e x X, with a smooth positive
Lebesgue density:.

We assume that there existg, < oo such that the HamiltoniarH (z1, z2) = —logj—z
satisfies
V(x1,22) |ViViH(21,22)| < Ki2.

We assume that there exigts > 0 such that we have for the conditional measure
Va1 p(dee|xy) satisfies Wlos).

For arbitrary f(z1,x2) > 0 consider

fma—/#mhmmumuu

Then we obtain for the marginal(dz)

</V1f| Md561>2§(/}|v1f|2d,u)2 F1z (/f\V2f|2d,u>

Lemma 1.3.12(Analogue of Lemma 7 in [46])Let Xl,XQ be two Euclidean spaces and
u(dxzy,dze) a probability measure on the product spadg x X with smooth positive
Lebesgue density-

We assume that there exigts 01 > 0 such that we have for the conditional measure and
marginal

Vg p(dxo|zy) satisfies Wloz),
f(dxy) satisfies Wlgy ).
Then we obtain for the marginal(dzs)
a(dzy) satisfies Wlo2)
with )
F1a

<
03

_l’_

| -

1
02

S|~

20



1.3 The directional WI and two applications

Corollary 1.3.13 (Analogue of Corollary 2 in [46]) Let X1, X5 be two Euclidean spaces
and p(dzxy, dzo) a probability measure on the product spake x X with smooth positive
Lebesgue density:.

We assume that there exigts oo > 0 such that we have for the conditional measures

Y xo w(dz|zo) satisfies Wloy ),
Y xq u(dzo|zy) satisfies Wlga).

We assume that
0102 — 5%2 > 0.

Then we obtain for the marginal(dz)
i(dzq) satisfies Wlo1 )

with
2

012> 01— aiby
02
Lemma 1.3.14(Analogue of Lemma 8 in [46])Let X, X, X3 be Euclidean spaces and
wu(dzy, dxe, dxs) a probability measure on the product spake x Xy x X3 with a smooth
positive Lebesgue densig%.
We assume that far < j € {1,2,3} there existss;; < oo such that the Hamiltonian

H(x1,22,23) = —log g—g satisfies

V(r1,22,23) |ViVjH (21,22, 23)| < Kyj.
We assume that there exigts > 0 such that we have for the conditional measures
V (r1,22) p(drs|ei,xe) satisfies Wos).

Consider the Hamiltonia/ (z1, x2) belonging to the margingi(dz1, dzz), i.e.

H(x1,m9) = —log/exp(—H(xl,xg,xg)) dxs.

It satisfies
V(z1,22) |ViVaH(z1,22)| < Ri2
with
K13K
K12 < K12 + 15723
03

1.3.3 Proof of the auxiliary results

In this section we will proof the auxiliary results of Section 1.3.2.
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1 Functional inequalities for Glauber dynamics

Proof of Lemma 1.3.8A direct calculation yields that(dx;, dy;|Z;, y;) 7 (dz;, dy;) is a trans-
ference plan off u(dx) andu(dy). Therefore, we can estimate by using the optimality: of
that

/3 Zm—yﬂ sy < [ [ Zm—yﬂ (i, dyi |73, 3) 70 )
/ Z i — yi|* 7(dzi, digi)

J=1, j#i
+// i — il * w(dai, dys|Zi, ;) 7(dzs, digi). (1.38)
Let 7(dz;, dy;) be the marginal ofr(dz, dy) w.r.t. (z;, y;). Another direct calculation yields

that7(dz;, dy;) is a transference plan ¢fii;(dz;) andji;(dy;). Hence, by optimality oft
we can estimate

/ Z _yj| 0 dxudyz /|$z yz| W(dl' dy)
J=1, j#i
/ Z _yj‘ 0 dxudyz /‘xz yz‘z (d.T dy)

Jj= 13#2

_ / Z 2 — y;|? w(dz, dy). (1.39)

j=1
A combination of (1.38), (1.39), and Lemma 1.3.7 yields the desired statement. [

Proof of Lemma 1.3.9Let us assume w.l.o.g. fdu = 1. Recall from the proof of Theo-
rem 1.3.6 that

covu(f.g) = / 9(z) — g(y) n(dz, dy).

Here,n is the optimal transference plan of the measyiesandyu. Because

1
o(z) - g(y) = /0 Vgt +(1—t)y) - (z —y) dt

we can estimate

2
cov,(f,g) < sup|Vgl / & — | n(dz,dy) < sup|Vg| ( / rx—m%(dx,dy)) ,

which yields the desired statement by applying ¥WI( O

Proof of Corollary 1.3.10.The statement follows from Lemma 1.3.9 by linearization (see
also the proof of Theorem 1.3.6). O
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1.3 The directional WI and two applications

Proof of Lemma 1.3.11The statement is an analogue formulation of [46][Lemma 6]. There-
fore, one can directly copy the proof, because the argument just oglieemma 1.3.9. [

Proof of Lemma 1.3.12For convenience we will use the notation

F(ar) = / F(2) (sl ).

Let 7 (dz1, dy; ) denote the optimal transference plan betwgen )ii(dz1) andi(dy; ). Let
£ be atest function on the Euclidean spate then

f(x2) N
/><1xy1 Xzﬁ(m) f(xl)ﬂ(dxﬂxl) 7 (day, dy)

/ m Ndazm)ﬂxlm(dm)
X1 JXo )

§(w2) fw2)pn (dfm)

Xo

= [ &(x2)f(w2) p(dz2).

Xo

Also let( be a test function on the Euclidean spagehen

/ C(y2) p(dyalyr) 7(dz1, dyr)
X1><Y1 YQ
— / C(y2) ldyalyn) ldyn)
Y1 JYs

C(y2) i(dyz)-

Yo

Therefore(f(z2)f(dxs2) , i(dx2)) is a convex combination of

(7

with respect tar(dz1, dy; ). Hence, we get by the convexity of the Wasserstein distance that

p(dzg|zy) M(dyz\y1)>

W22 (f(xg)ﬂ(dl’g dy2 /W2 < — gj dl‘g|$1) (dy2|y1)) ﬁ'(d$1,dy1).

(1.40)
By using the triangle inequality we get
W (F 22 n(dnse). )

< W (FE ko). el dielen) ) + W2 (uldelon). el ). (1.41)
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1 Functional inequalities for Glauber dynamics

The first term on the r.h.s. is estimated by applying theddjIfor u(dz2|z1) as

W (R u(dalen). plen)) < (705 [ s Vaad ) utaaalen) )

f(z1)
(1.42)

We put now our attention on the second term on the r.h.s. of (1.41). Let

Zy = /exp(—H(xhyQ)) dy, and Zj:= /exp(—H(y1,y2)) dys-
Notice that

w(dyz|z1) = Z; texp (—H(w1,y2)) dys
= Z7 Zyexp (—H (z1,y2) + H(y1,y2)) pu(dyalyr).

=:9(y2)

Therefore, we can estimate by applying the W)(to (dy2|y:1) that
Wa (u(dyz|z1), n(dyzly1)) = Wa (9(y2)uldyz|y1), n(dyz|y1))

<2 ( [ s gt u(dy2|y1)>

1
2

= ([ 9ot Pote) i) ) - @4)
Notice that
[V, Ing(y2)| = [V H(z1,y2) = Vi H(y1, 2))|
<sup |[ViVeH||z1 — y1| = K12 [71 — 31|
and

9(y2) p(dyz|yr) = p(dyz|a).
Therefore, we get from (1.43) that

W (o) ldyeln) < 2 o1 = / n(dyslar) (1.44)

—_—
=1

By applying now thel ?-triangle inequality we get from (1.41) that

e

p(dza|zy), (dy2|y1)> 7(day, day)

(/W2 ( u(dzs)ar), (dyg\x1)> fr(dg;l,dyl))é

12
+ (/ W3 (u(dya|z1), p(dyalyr)) ﬁ(dxl,dyﬂ) ] : (1.45)
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1.3 The directional WI and two applications

We estimate now the first term on the r.h.s. of (1.45) by using (1.42) as

( / w3 <§Ezjsﬂ(dﬂc2\$1),M(dy2\x1)> o)

/f f !V2f 22)|? p(dwalay) (dCUlvdyl))

I

N

1
2

/ oy [Vaf@2) ldaafon) <1>u<dm>>

By using (1.44) we can estimate the second term on the r.h.s. of (1.45) as

( [ W2 Gutdyalo). el fr(dm,dyﬂ)l < M ( JE; (d%dm))

_ % Wo (f(z1)i(dey), i(dy)) -

We use now thati(dy, ) satisfies WIg;) and apply Lemma 1.3.11 in the to get

i (] )’

1 K12 2
S </ 7 IVadl “(d“)) |

Therefore, we overall get by a combination of (1.40) and the last fetimates that

Wa (f(z1)p(de), i(dyr))

IN

Wa (f(z2)pldwa). f(dye)) [Ql < / iy V2 x2)|? u(dm))é

2

172
Ql( / Fag Vel M(dwz)> ] . (1.46)

which yields the desired statement. O

Proof of Corollary 1.3.13.Note that one can take over the proof of [46][Corollary 2] using
Lemma 1.3.12 as the main ingredient. O

Proof of Lemma 1.3.14Note that one can take over the proof of [46][Lemma 8] using
Corollary 1.3.10 as the main ingredient. O
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1 Functional inequalities for Glauber dynamics

1.3.4 Proof of the directional WI inequality

For the proof of Proposition 1.3.1 we adapt the argument of the prooédtto & Reznikoff
criterion for LSI (cf. [46, Theorem 2]). Therefore, we show (3.B§ induction. ForV =1
the statement (1.35) is a trivial consequence of our assumptions. Nowg &tsume that
(1.35) holds for a system wittvV. — 1) components. We will show that it also holds for
system withN components. Lety := (kin,...,5nn)'. As in [46] we introduce the

block decomposition of A as
A —k
A= (_ﬂt N ) .
N ON

Let A denote thé N — 1) x (N — 1) matrix defined by

1
A:A,—fliN@IiN.
ON

Note thatA4 inherits our assumptions of. It is symmetric and positive definite.

Now, we consider the systefi(dx1,...,xx_1) i.e. the marginal ofu(dz1,...,dxy) On
X1 x .-+ x Xn_1. Its Hamiltonian is given by

H(zy,...,2an_1) = log/exp(H(:cl, ce s IN-1,ZN))) dTN.

Analog to [46] we apply Lemma 1.3.14 jddx;, dz;,dxy| - - - ) and get fori # j

_ RiNKjN T
—Rij > —Rij — 0 = Az
N

As in [46] we apply Corollary 1.3.13 to(dx;, dzy| - -- ) and getforany € {1,...,N—1}
andz;y := (.7}1, RN TP IR 17 N ,xN_l) that

a(dx;|z; ) satisfies W(o;)

with
2
_ K _
QiZQi_ LN :Azz
ON
Recall the conventiofiy := (z1,...,zy-1). Hence, we may apply the induction hypoth-

esis tofi(dzy) and A and get for anyj € {1,...,N — 1} and f(zy) > 0 satisfying
[ fdii = 1that

3 Nol 2 3
</\%—yﬂ ﬂ(de,dyN> <> (A, </ Vi /1 ) . (1.47)

k=1

Here,7(dz v, dyn) denotes the optimal transference plan betwgeiz ) andji(dyy ).
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1.3 The directional WI and two applications

Now, we state the induction step for (1.35) in the caseN. Inthe caseé € {1,..., N—1},
one could re-numerate the basis such that N and carry out the same argument. From
[46] we know that the inverse of can be written as

A-1 A lky
-1 _ oN
A = (A715N>t 1 n K)N'A;IHN . (148)

ON oN oN

For convenience, we introduce the probability measufes < j < IV, on the Euclidean
spaceX  according to

u(dmN]EN), if 7=0,
vi(den) = § plden|yr, .. yj, js1, ... zn), i 1<j<N-—1,
(d$N|ﬂN) if ] =N

Recalling the definitionf(zy) := [ f(z)u(dzn|Zn) we get by applying the triangle in-
equality for the Wasserstein distance tW|ce that

< Ws (M,%) + W (vo, vN)

(

_ N

< W (Ww(-@ﬂ) + ) Wa (vo1,v).
j=1

By Lemma 1.3.8 we have the estimate

</ lzn — yn|? 7T(0l9f/‘aaly))é < (/ w3 (Wa#('@]\/)) 7~r(dﬂ?”N,a@N)) y

wheref (dz y, dijy) is the optimal transference plan 6z v )i (dz y) andfi(dgjy ). Apply-
ing now the triangle inequality for thB?>—norm yields

(il < (52 (P03 ) staem. o))
N 1
+Z (/ W3 (vj-1,v5) 7?(dwzv,dyzv))Q. (1.49)
7=1

The first term on the r.h.s. of (1.49) is estimated by applying theoYWifor (dx x|z ) as

([wz (P <|N>) <cz:z»N,e@N>>é

< ([ [ wamion) g wtaav.an)

2 3
_QN( V]Jif’ du> . (1.50)

N
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1 Functional inequalities for Glauber dynamics

Let us turn to the remaining terms of (1.49). Note thatifet j < NN the vectors

(yl,...,yj_l,xj,...,xN) and (yl,...,yj,xj+1,...,xN)

only differ in the j-th entry. Hence, the same argument as in the proof of Lemma 1.3.12
applied to the measures_; andv; yields (cf. equation (1.44))

1 1
R 2 Kj . 2

Now, we apply the induction hypothesis (1.47):

5 % K N-1 _ \V4 £12 %
(/Wg(ujl,uj) W(di,dgN)> g;jj;(/x Dk (/' ’}f| dﬂ) :

On the integral on the r.h.s. we apply Lemma 1.3.11 and get

</ W2 (vi_1,v;) fr(de,dyN)>

N—-1 1 1
KjiN < q Vi f[? 2 RN VN f]? 2
<o 2 [(/ ;o ) Ton (/ ;o > ] (oD

k=1

Now, we can perform the final step: Inserting (1.51) and (1.50) int®jli&lds

N—-1N-1

(fire-mitad) < 55 o, o (52 )

1 FAT! Uni? )\
+[+/€N ! HN] </’ Nf] du) _
ON On f

It follows from (1.48) that the r.h.s. of the last inequality can be written as

: XN 2 \2
(/ lzn — yn|? dﬁ) <> (A ) ( IV;}f| dM) :
k=1

which verifies (1.35) in the cage= N. Therefore, the proof of Proposition 1.3.1 is complete.

.
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2 Uniform LSI for Kawasaki dynamics:
the non-interacting case

We start with recalling the definition of the grand canonical ensemhbled the canonical en-
sembleuy ,,, (cf. the Chapter Introduction). The grand canonical ensemide probability
measure ofiR” given by

j(da) = %exp (—H(z)) da.

In the non-interacting case, the Hamiltoniaih: RY — R is given by a sum of single-site
potentialsy : R — R that are specified later i.e.

N
H (x) =) t(xi). (2.1)

=1

For a real numbem we consider th¢ N — 1) dimensional hyper-plan& y ,,, given by

N
1
XNm = {:UGRN, Nin:m}.
i=1

We equipX x,,, with the standard scalar product inducediby, namely

N
(x,T) := Z %
=1

The restriction ofu to X v ., is called canonical ensembley ,,,. It is given by the density

pnm(da) = % oxp (~H(2)) HYG! (dr). 2.2)

Here,Hf’X‘N1 denotes thé N — 1) dimensional Hausdorff measure restricted to the hyper-
planeX y ,,,. Recall the notation

asb & there is a uniform constaiit > 0 such that, < Cb,
a~b & it holds thata < b andb < a.

In 1993, Varadhan [53] posed the question for which kind of singlegitentialy the
canonical ensembley ,, satisfies the SG{ with constantp > 0 uniformly in the system
size N and the mean spim. A partial answer was given by Caputo [10]:

29



2 Uniform LSI for Kawasaki dynamics: the non-interacting case

Theorem 2.0.15Caputo) Assume that for the single-site potentjaéxists a splitting) =
Y, + 01 and constantg_, 31 € [0, c0) such that for allz € [0, c0)

Yo (@) ~ 2’ +1, ¢f(—2) ~|z® +1, and |oy|+|6¢'| + |69 S 1. (2.3)

Then the canonical ensemhlg ,,, satisfies the SGJ with constantp > 0 uniformly in the
system siz&V and the mean spim.

In this chapter, we give a full answer to the question by Varadhan fa8héso consider the
guestion if the statement of the last theorem can be strengthened to thed &ndider three
cases of single-site potentials: sub-quadratic, quadratic, and supeéragic potentials. In
the case of sub-quadratic single-site potentials, Barthe and Wolff [2] g@ounterexample
where the scaling in the system size of the SG and the LSI constant of ingicalrensemble
differs in the system size. More precisely, they showed:

Theorem 2.0.16(Barthe & Wolff). Assume that the single-site potentjals given by

() = {az, forx > 0,

oo, else.

Then the SG constapt and the LSI constant; of the canonical ensembjey ,,, satisfy

1 and 1
01 02 N2

m2
In the case of perturbed quadratic single-site potentials it is known thatr@ime2.0.15 can
be improved to the LSI. More precisely, several authors (cf. [4212822]) deduced the
following statement by different methods:

Theorem 2.0.17(Landim, Panizo, and Yau)Assume that the single-site potentjals per-
turbed quadratic in the following sense: There exists a splitting v, + 61 such that

Yo =1 and [6¢|+ [6¢'] + |oy"| S 1. (2.4)

Then the canonical ensemilg; ,,, satisfies the LSH) with constant > 0 uniformly in the
system siz&/ and the mean spim.

There is only left to consider the super-quadratic case. It is conjecthet the optimal
scaling LSI also holds, if the single-site potentiais a bounded perturbation of a strictly
convex function (cf. [38, p. 741], [12, Theorem 0.3 f.], and [102p6]). Heuristically, this
conjecture seems reasonable: Because the LSl is closely linked to @grieexsider for
example the criterion of Bakry & Emery formulated in Theorem 1.1.5), a fgestlistrictly
convex potential should behave no worse than a perturbed quadretidHanvever techni-
cally, the methods for the quadratic case are not able to handle the pdrstrioly convex
case, because they require an upper bound on the second derofatie Hamiltonian. In
the main result of the article we show that the conjecture from above is true:
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Theorem 2.0.18.Assume that the single-site potentials perturbed strictly convex in the
sense that there is a splitting = . + dv such that

Wzl ooand [oul+ 8] S 1. (2.5)

Then the canonical ensempblg; ,,, satisfies the LSH) with constant > 0 uniformly in the
system sizé&/ and the mean spim.

Note that the standard criteria for the SG and LSI (cf. Section 1.1) faithlercanonical
ensemblguy

e Thetensorization principle (cf. Theorem 1.1.3) for SG and LSI does not apply be-
cause of the restriction to the hyper-plakig .

e The criterion ofBakry & Emery (cf. Theorem 1.1.5) does not apply because the
HamiltonianH is not strictly convex.

e The criterion ofHolley & Stroock (cf. Theorem 1.1.4) does not help because the LSI
constant has to be independent of the system dize

Therefore, a more elaborated machinery was needed for the prodfeafrdm 2.0.15 and
Theorem 2.0.17. The approach of Caputo to Theorem 2.0.15 seems tstfieted to the
SG, because it relies on the spectral nature of the SG. The most commoacpfor the

proof of Theorem 2.0.17 is the Lu-Yau martingale method (see [42, 38, Récently,

Grunewald, Otto, Villani, and Westdickenberg [22] provided a new teatnfqr deducing
Theorem 2.0.17 called the two-scale approach. We follow this approacke iprtof of

Theorem 2.0.18.

The limiting factor for extending Theorem 2.0.17 to more general single-stenpals is
almost the same for the Lu-Yau martingale method and for the two-scale appritds
the estimation of a covariance term w.r.t. the meaguyg, conditioned on a special event
(cf. [38, (4.6)] and [22, (42)]). In the two-scale approach ong tieeestimate for some large
but fixed K > 1 and any non-negative functighthe covariance

1 K
OV (f, =2 w/(m) ‘ .
i=1

In [22] this term term was estimated by using a standard estimate, which onlyecap-
plied to perturbed quadratic single-site potential¢cf. Lemma 1.2.2, Lemma 2.1.9, and
[22] [Lemma 22]). We get around this difficulty by making the following adéptes:
Instead of one-time coarse-graining of big blocks we consider iteratigese-graining of
pairs. As a consequence we only have to estimate the covariance ternalimm in the
caseK = 2. Becausqus,, is a one-dimensional measure, we are able to apply the more
robust asymmetric Brascamp-Lieb inequality (cf. Lemma 2.1.10), which carbalapplied

for perturbed strictly convex single-site potentigils
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

As we will see in Chapter 3, the optimal scaling LSI also holds in the case ofalilyve
interacting Hamiltoniarl given by

N
Hx) =) v(@)+e Y by,
i=1

1<i<j<N

provided the single-site potential is perturbed quadratic in the sense of (2.4). Because
the original two-scale approach is used, it is an interesting question ifaré extend this
result to perturbed strictly convex single-site potentials. A direct traa$fibie argument for
perturbed strictly convex single-site potentiaidails, because of the iterative structure of
the proof of Theorem 2.0.18.

The remaining part of this chapter is organized as follows. In Section 2.1grave of the
main result. The auxiliary results of Section 2.1.1 are proved in Section 2.ié2e Ts one
exception: The convexification of the single-site potential by iterated nealtration (see
Theorem 2.1.6) is proved in Section 2.2.

2.1 The adapted two-scale approach

2.1.1 Proof of the main result of Chapter 2

In this section we state the proof of Theorem 2.0.18, which is based basadadaptation
of the two-scale approach of [22]. We start with introducing the conakpbarse-graining
of pairs. We recommend to read Chapter 2.1 of [22] as a guideline. Wenasthat the
numberN of sites is given byV = 2% for some large numbek” € N. The step to arbitrary
N is not difficult (cf. Remark 2.1.7 below).

We decompose the spin system into blocks each containing two spins. Tise-gopaining

operatorP : Xy,, — X~ . assigns to each block the mean spin of the block. More
2 b

precisely,P is given by

P(z): = (;(961 + x2), %(963 +4), .., %(xN—l +$N)> : (2.6)

Due to the coarse-graining operafdmwe can decompose the canonical ensemhlg, into
N m(da) = p(dxly)a(dy), (2.7)

whereji := Py, denotes the push forward of the Gibbs meagunederP andy(dz|y)
is the conditional measure aefgiven Px = y. The last equation has to be understood in a
weak sense i.e. for any test function

[ €@ i) = /Y ( /{ & u(dx!y)> fdy).

Now, we are able to state the first ingredient of the proof of Theorem&.0.1
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2.1 The adapted two-scale approach

Proposition 2.1.1(Hierarchic criterion for LSI) Assume that the single-site potentiais
perturbed strictly convex in the sense (@f5). If the marginali satisfies the LS#;) with
constantp; > 0 uniformly in the system siz&¥ and the mean spim, then the canonical
ensemble:y ,,, also satisfies the LS{) with constanto, > 0 uniformly in the system size
N and the mean spim.

The proof of this statement is given in Section 2.1.2. Due to the last proposisioffices to
deduce the LSI for the marginal Hence, let us have a closer look at the structure. aive
will characterize the Hamiltonian of the marginatvith the help the of the renormalization
operatorR, which is introduced as follows.

Definition 2.1.2. Lety : R — R be a single-site potential. Then the renormalized single-site
potential Ry is defined as

RY(y) := — log/exp (—Y(z+y) —Yv(—x+vy)) dz fory € R. (2.8)

Remark 2.1.3. The renormalized single-site potenti@k) can be interpreted in the follow-
ing way: A change of variables (cf. [16, Section 3.3.3]) and the invagaof the Hausdorff
measure under translation yield the identity

exp (~“RU(W) = [ exp(~bla +m) = v~z + m)) do
= 5 [ exp (=) = 02 M,y (o)

Therefore, the renormalized single-site potenftal describes the free energy of two inde-
pendent spinsy; and X (identically distributed according t& —! exp(—1)) conditioned
on a fixed mean valug (X + X») = y.

Lemma 2.1.4(Invariance under renormalizationAssume that the single-site potentiais
perturbed strictly convex in the sense (@5). Then the renormalized HamiltoniaRy) is
also perturbed strictly convex in the sensg®hb).

A direct calculation using the coarea formula (cf. [16, Section 3.4.2Baksvthe following
structure of the marginal.

Lemma 2.1.5. The marginalz is given by

N
2 N
) = exp | =S Rotw) | HiL ()

i=1 ’
It follows from the last two lemmas that the margipahas the same structure as the canon-
ical ensemble:y ,,,. The single-site potential gf is given by the renormalized single-site
potentialR+. Hence, one can iterate the coarse-graining of pairs. The next stateinosrs
that after finitely many iterations the renormalized single-site poteRtial) becomes uni-
formly strictly convex. Therefore, the criterion of Bakry & Emery (cf.éiem 1.1.5) yields
that the corresponding marginal satisfies the LSI with congtant0, uniformly in the sys-
tem sizeN and the mean spim. Then an iterated application of the hierarchic criterion of
LSI (cf. Proposition 2.1.1) yields Theorem 2.0.18 in the cilse: 2%,
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

Theorem 2.1.6(Convexification by renormalization)et v be a perturbed strictly convex
single-site potential in the sense (2.5). Then there is an integek/, such that for all
M > M, the M —times renormalized single-site potential”/ ¢ is uniformly strictly convex
independently of the system si¥eand the mean spim.

We conclude this section with some remarks and pointing out the central tcadgdéor
the proof of the auxiliary results. The next remark shows how Theor@m&is proved in
the case of an arbitrary numbat of sites.

Remark 2.1.7. Note that an arbitrary number of site$ can be written as
N=K2X+R

for some numbefs, a large but fixed numbek’, and a bounded numbet < 2%, Hence,

one can decompose the spin system istbdlocks of2% spins and one block aR spins.

The big blocks 02X spins are coarse-grained by pairs, whereas the small blodk spins

is not coarse-grained at all. After iterating this procedure sufficiently oftea renormal-
ized single-site potentials of the big blocks are uniformly strictly convex. Orethaining

R spins, the corresponding single-site potentials are unchanged. Begaissa bounded
perturbation of a strictly convex function, it follows from a combination of thiigon of

Bakry & Emery (cf. Theorem 1.1.5) and the criterion of Holley & Stro@fk{heorem 1.1.4)
that the marginal of the whole system satisfies thed)S¥{th constant

0 2 exp(—Rosc o),

which is independent oV and m. Therefore, an iterated application of the hierarchic
criterion of LSI (cf. Proposition 2.1.1) yields Theorem 2.0.18 for an arbjtnaumber of
sitesV.

The proof of Proposition 2.1.1 and Lemma 2.1.4 is given in Section 2.1.2, aédre proof
of Theorem 2.1.6 is stated in Section 2.2.

Starting point for the proof of Theorem 2.1.6 is the observation thatMh#mes renor-
malized single-site potenti& "+ corresponds to the coarse-grained Hamiltonian related to
coarse-graining with block siz&" (cf. [22]).

Lemma 2.1.8.For K < N let the coarse-grained HamiltoniaH i be defined by

1 _
Hg(m) = % log/exp(—H(x)) Hf};m(dx). (2.9)
Let M € N. Then there is a constant< C(2M) < oo depending only o2 such that
RMyy = 2MH2M + C(?M).

Because the last statement is verified by a straight forward application afdhend coarea
formula, we omit the proof. In Lemma 2.1.8 one could easily determine the eahust of
the constant”(2"). Because we are only interested in the convexityRdf, this is not
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2.1 The adapted two-scale approach

important. In [22] the convexification off - was deduced from a local Cramér theorem
(cf. [22][Proposition 31]). For the proof of Theorem 2.1.6 we follove thame strategy
generalizing the argument to perturbed strictly convex single-site potentials

Now, we make some comments on the proof of Proposition 2.1.1 and Lemma 2.£4f On
the limiting factors in the proof of Theorem 2.0.17 is the application of a classivakriance
estimate (cf. [22][Lemma 22]). In our framework this estimate can be fornuikge

Lemma 2.1.9. Assume that the single-site potentialis perturbed strictly convex in the
sense 0f2.5). Letr be a probability measure dR given by

v(dr) = %exp (—¢(x)) dz.

Then for any functiorf > 0 andg

3 2o\ s
covy(1,0)] S sup |9/ (0) (/ fdv> ( ‘ff’ dy).

In [22], the last estimate was applied to the functipe= ¢/’. Note that|¢'(z)| = [¢"(z)]
is only bounded in the case of a perturbed quadratic single-site potentiEthe main new
ingredient for the proof of the hierarchic criterion for LSI (cf. Prejiimn 2.1.1) and the
invariance principle (cf. Lemma 2.1.4) is an asymmetric Brascamp-Lieb inequatiigh
does not exhibit this restriction.

Lemma 2.1.10. Assume that the single-site potentialis perturbed strictly convex in the
sense 0f2.5). Letv be a probability measure dR given by

v(dz) = %exp (—¢(x)) dz.

Then for any functiorf andg

| cov,(f, g)| < exp (=3 o0sc i) sup" /!f |dv,

whereosc 67 := sup,, 0¢(x) — inf, J¢(x).

We call the last inequality asymmetric, because compared to the originalaBmpsicieb
inequality [7]L? x L? is replaced by.' x L> and the facto\/r% is not evenly distributed.

It is an interesting question if an analog statement also hoids for higher domensThe
proof of Lemma 2.1.10 is based on a kernel representation of the covariatl steps are
elementary.

Proof of Lemma 2.1.10Let 1 be a Gibbs measure dR associated to a HamiltoniaH
R — R. More preciselyyu is given by

p(dx) == — exp (—H(z)) dx.
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

We start by deriving the following integral representation of the covadani:

cov,(f,9) //f Vg (y) dz dy, (2.10)

where the non-negative kernkl, (x, y) is given by

W) (1~ M)(y) for y>a
Kulwy) = {< SV @) for is:c}’

andM,,(z) = p((—o0,x)) sothat(l — M,)(x) = u((x,c0)). Indeed, we start by noting
that

covy(f, g) // p(x) dw/(g(Z) —9W)u(y) dyp(z)dz,  (2.11)

where we don't distinguish between the meaguiér) and its Lebesgue densityx) in our
notation. UsingM,,(z) = u(x), we can use integration by parts to rewrite each factor in
terms of the derivative:

/ (F(2) — f(@))ulz) da
- / ((2) — (@) M) () dir — /Oo(f(Z)—f(ﬂf))(l—Mu)’(x)dw

=/f dx—/f (1= M) (x) de

_ /f (& < 2)My(x) — I(z > 2)(1 — M,)(z)) dz,

wherel(z < z) assumes the valueif x < z and zero otherwise. Inserting this, and the
corresponding identity fog(y), into (2.11), we obtain

//f I(z < 2) u(.’E)*I(iL‘>Z)(1*M#)(SL‘))dI‘

/ () (I(y < 2)Mu(y) — Iy > 2)(1 — M) (y)) dyp(=)d=

//f Vg (y) dz dy (2.12)
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2.1 The adapted two-scale approach

with kernel K, (z, y) as desired given by

Ku(x,y)

= My(x)Mu(y) [I(z < 2)I(y < 2)u(z)dz

— Mu(2)(1 = M) (y) [I(z < 2)I(y > 2)p(z) dz

- (1= M,)(z) u(y ) 1(x > 2)I(y < z)u(z)dz

+ (1= M) (z)(1 = M) (y fI (x> 2)I(y > 2)pu(z) dz

= Mu(x)My(y)(1 — M,)(max{z, y})

= Mu(z)(1 = Mu)(y)I(y > 2)(Mu(y) — Mu(x))

— (1= M) () Mu(y)I(y < z)(Myu(z) — Mu(y))

+ (1= M) (z)(1 — My)(y)Myu(min{z,y})

= I(y> fﬂ)(Mu(l‘) Mu(y)(1 = M) (y) — Myu(2)(1 — M) (y) (Mu(y) — Mu(z))
(1= M) (2)(1 — M) (y) My (x))

+ I(y<w)(Mu(w)Mu(y)( M) () — (1 = M) (x) My (y) (My(x) — My (y))
(1= My)(2)(1 — M) (y)Myu(y))

= I(y > x)Mu(z)(1 = Mu)(y) + 1(y < 2)(1 — My) (@) Mu(y).

We now establish the following identity for the above kernel:

().

/Ku(x, y)H" (y)dy

Indeed, we have by integrations by part

/Ku(w,y)H"(y) dy

o

(1-

x

- [ >H’<>dy)
+/x M,QyH’(y)dy>

~- @) [ " exp(—H(y)H'(y) dy

(1 - M) () (M () (2)
M, (2) (—(1 M) H

M, () / " exp(—H(y) ' (y) dy
(1 - M) (@) + My(@)p(z) = p(z).

Let us now consider the Gibbs measurégx) andv,.(dz) given by

v(dx) = %exp (=te(x) — 69(x)) dx and  v.(dz) =

Z

(2.13)

M,) () / M () dy+ M) [ (1= M) )" 1) dy

L exp () do
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

By the integral representation (2.10) of the covariance we have the estimate

|covy,(f, g)] //‘f ‘K xy‘g }dmdy
By a straight forward calculation we can estimate
ffoo exp(—te(x) — dy(x))dx
J exp(=te(x) — 6¢())dx
J% o exp(—tc(x))da

[ exp(—te(x))dx
= exp(—OSC(Sw) uc( )

Together with a similar estimate fot — M, (y)), this yields the kernel estimate

M, (x) =

< exp(— osc 07))

Ku(xvy) < eXp(_QOSC 5’(/}) Kuc(x7y)'

Applying this to the covariance estimate from above yields

lcov, (f,9)] < exp(~2osc8v) / / 1F(@)| Ko (2,9) |9/ ()] do dy.

Using the identity (2.13) for, = v, we may easily conclude:

lcovy,(f,g)| < exp(—2oscdp) sup w// y)| /‘f }/Kl,c x,9)Y" (y) dy dx

= exp(—2o0sc o)) sup \g” | /‘f’(x)}uc(d:ﬁ)

IN

exp(—3osc o)) s | /‘f

O]

For the entertainment of the reader, let us now argue how the identity @si8yields the
traditional Brascamp-Lieb inequality in the caB¢(y) > 0. Indeed, by the symmetry of
the kerneli,(x, y) the identity (2.13) yields for alt andy

/Ku(w,y)H"(y) dy = p(z) and /Ku(ﬂf,y)H"(fc) dz = p(y). (2.14)

The integral representation of the covariance (2.10) yields

vary(f //f ' (y) dx dy
(S (i)
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2.1 The adapted two-scale approach

Then Hoelder’s inequality and the identity (2.14) for the kefig(, y) yield the Brascamp-
Lieb inequality:

vary,

(f)
< ( ’IJ:,, (x,y)H”(y)dydxf < / / ‘Z,(}Z;f Ku(ﬂﬁ,y)H”(I)dfcdy>é
(

o) (f it o)

/(=
H//( )

u(a:)dac. (2.15)

2.1.2 Proof of the auxiliary results

In this section we outline the proof of Proposition 2.1.1 and Lemma 2.1.4. We dthrt w
Proposition 2.1.1, which is the hierarchic criterion for LSI. Unfortunatelycannot directly
apply the two-scale criterion of [22][Theorem 3]. The reason is thahtimeber

k= {(Hess H(z)u,v), u € im(2P'P), v € im(idx —2P'P); |u| = |v| =1}, (2.16)

which measures the interaction between the microscopic and macroscdes; sea be in-
finite for a perturbed strictly convex single-site potential However, we follow the proof
of [22][Theorem 3] with only one major difference: Instead of applyihg classical co-
variance estimate (cf. Lemma 2.1.9) we apply the asymmetric Brascamp-Liehalitgqu
(cf. Lemma 2.1.10). Let us assume for the rest of this section that the singleetentiak)

is perturbed strictly convex in the sense of (2.5).

For convenience we séf := Xy, andY := X~ . We choose oX andY” the standard
2
Euclidean structure given by

N
)= iy
=1

The coarse-graining operatéy: X — Y given by (2.6) satisfies the identity
2PP! = idy,

where P! : Y — X is the adjoint operator of’. Note that ourP! differs from the P!
of [22], because the Euclidean structure on Y differs from the Eudatiddaucture used in
[22]. The last identity yields thatP! P is the orthogonal projection of to im P?. Hence,
one can decomposk into the orthogonal sum ahicroscopic fluctuationandmacroscopic
variablesaccording to

X =kerP®im P’ and
T = (idX —2PtP) x + 2P!Pz.
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case
We apply this decomposition to the gradi@nf of a smooth functiorf on X. The gradient
V f is decomposed into a macroscopic gradient and a fluctuation gradienyisatisf
Vf(z) = (idx —2PtP) Vf(z)+2P'PV f(x) and
IVf(z)]* = |(idx —2P'P) Vf(z)|" + |2P' PV f(x)|. (2.17)

Note thatker P is the tangent space of the fibePx = y}. Hence, the gradient of on
{Pz = y}isgiven by(idx —2PtP) V f(z). The first main ingredient of the proof of Propo-
sition 2.1.1 is the following statement.

Lemma 2.1.11. The conditional measurg(dz|y) given by(2.7) satisfies the LSH) with
constante > 0 uniformly in the system siZ€, the macroscopic profilg, and the mean spin
m. More precisely, for any non-negative functign

/flogfu(dx\y) —/fu(dﬂﬁly) log </ fu(dwy)>

1 idy —2PtP) V f|?
< | (idx : ) V. w(dely).

Proof of Lemma 2.1.110bserve that the conditional measu€gx|y) have a product struc-
ture: We decomposgPx = y} into a product of Euclidean spaces. Namely for

. N
Xoy, = {(16211,:621) € R2, Toi—1 + X2 = 2yi}, 1€ {1, ey 2}

we have
{Px =y} = Xog X o0 X X2,yM'
2

It follows from the coarea formula (cf. [16, Section 3.4.2]) that

/ £(@)u(dly)
{Pz=y}

- [ 1@

Hence,u(dz|y) is the product measure

1
- &Xp (=Y (z2i-1) — ¥ (22:)) %in,yi (dzgi—1,dz2;).

'®w\z

1

(2

p(dzly) = 2.y, (dz2i-1, dra;), (2.18)

'®w\z

=1

where we make use of the notation introduced in (2.2). Because the sitegf@tentialy
is perturbed strictly convex in the sense of (2.5), a combination of the critefiBakry &
Emery (cf. Theorem 1.1.5) and the criterion of Holley & Stroock (cf. Theew 1.1.4) yield
that the measurg; ,, (dz1, dz) satisfies the LSK) with constantp > 0 uniformly in m.
Then the tensorization principle (cf. Theorem 1.1.3) implies the desired staiteme [
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2.1 The adapted two-scale approach

For convenience, let us introduce the following notation: [ete an arbitrary function.
Then its conditional expectatighis defined by

/f p(dzly).

The second main ingredient of the proof of Proposition 2.1.1 is the followinggsition,
which is the analogue statement of [22, Proposition 20].

Proposition 2.1.12. Assume that the marginal dy) given by(2.7) satisfies the LSN) with
constantA > 0 uniformly in the system siz& and the mean spim. Then for any non-
negative functiorf

IVf / IVf wdsly),

uniformly in the macroscopic profilg and the system sizg.

Before we will verify Proposition 2.1.12, let us show how it can be used énpttoof of
Proposition 2.1.1.

Proof of Proposition 2.1.1Under the assumption that Lemma 2.1.11 and Proposition 2.1.12
hold, the argument is exactly the same as in the proof of [22, Theorene8} denote the
function

¢(z) := zlogx.
First, the additive property of the entropy implies

[ oD o ( [ saunn) = | [ [ ¢ @) atasly) - 6 (70) | nta)

An application of Lemma 2.1.11 yields the estimate

/ U ¢ (f(@)) pldzly) - (f(w)} fildy)
//I idy 2Ptp Vf( )I? el i(dy)

By assumption the marginal satisfies LSI{) with constant\ > 0. Together with Proposi-
tion 2.1.12 this yields the estimate

6 () 7l < L NIWE S
/ </ ) Y
< [ [ELE AR )'2 u(daly)a(dy).

_QQ
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

A combination of the last three formulas and the observations (2.7) and (2eld

[ othdusn— < / fduN,m)

| (idx —2P'P) Vf()|? V()
</ e nlde) + [ EEE o)
V£ ()]
< | —— x
< [ St
uniformly in the system siz& and the mean spim. O

Because the hierarchic criterion for LSI is an important ingredient in theff the main
result, we outline the proof of Proposition 2.1.12 in full detail. We follow theopraf
[22][Proposition 20], which is based on two lemmas. We directly take ovefirdtdemma
(cf. [22, Lemma 21]), which in our notation becomes:

Lemma 2.1.13.For any functionf on X and anyy € Y it holds

| PV F@tdely) = 5V 5w + P eovigaay(F, VH).

Remark 2.1.14. The notational difference compared to [22, Lemma 21] is based on our
choice of the Euclidean structure dh= X~ , . Compared to the notation in Lemma 21 of
2

[22] we have
_N

Vy fly) = TV ).

Hence, we omit the proof, which is a straight forward calculation.

The more interesting ingredient of the proof of [22, Proposition 20] is stienate (see [22,
(42),(43)))

2P <o,y (1. VI < 2 fy) / Y

dx|y). 2.19
p e uldaly).  (2.19)
The estimate (2.19) follows in [22] by direct calculation from the standavariance esti-
mate given by Lemma 2.1.9. In contrast to [22], we cannot use the estima® lf2dause
the constank given by (2.16) maybe infinite for perturbed strictly convex single-site po-

tentialsy. We avoid this problem by applying the more robust asymmetric Brascamp-Lieb
inequality given by Lemma 2.1.10. Our substitute for (2.19) is:

Lemma 2.1.15. For any non-negative functiofi

T 2
2P covyaay (1 VP < ) [ wuww),

uniformly in the system siz€, the macroscopic profilg, and the mean spim.
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2.1 The adapted two-scale approach

We postpone the proof of Lemma 2.1.15 and show how it is used in the prdtopbsi-
tion 2.1.12 (cf. proof of [22][Proposition 20]).

Proof of Proposition 2.1.12Note that because for ayb € R
1 2 2 2
i(a + b) S a® + b y
it follows form the definition (2.6) o that
|Pz|? < |2?|. (2.20)

By successively using Lemma 2.1.13 and Jensen’s inequality (with the cdumetion
(a,b) — |b]?/a), we have

3 2
VIO _ b [ 9 tdety) - Peovyan (4,98
1 2
PV f(x)p(dx|y Pcov,gun(f, VH
ol |+ 7 1P oo (.98
IPVf 2
< | 220 (de +7— 2P cov f,VH)|".
~ N y X 9y
/ f(@ (dely) + 705 | u(daly) (f; VH)]
On the first term on the r.h.s. we apply the estimate (2.20). On the second teapply
Lemma 2.1.15, which yields the desired estimate. O

Now, we state the proof of Lemma 2.1.15, which also represents one of thalifi@eiences
compared to the two-scale approach of [22]. The main ingredients aredabaqgb struc-
ture (2.18) ofu(dx|y) and the asymmetric Brascamp-Lieb inequality (cf. Lemma 2.1.10).

Proof of Lemma 2.1.15We have to estimate the covariance

'Mw\z

I
—

2P covaupy) (f; VH)* = Y | coVyuaaly) (f, 2PV H);) . (2.21)

J

Therefore, let us consider fgre {1,... 45} the termcov,,(4a),) (f, (2PVH);). Note that
the function

(2PVH(x)); = ¢/ (x9j-1) + ¢/ (x2,)
only depends of the variables;_; andz,;. Hence, the product structure (2.18)aflz|y)
yields the identity
COV(dz|y) (f7 2 (PVH)])
N
2

= /COV/.LQ,yj (dng_l,dCEQj)(f7 (ZPVH)j) M?,yi (d$2’i—l’ dx21)
i=1,i#j
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

As we will show below, we obtain by using the asymmetric Brascamp-Lieb itigyoa
Lemma 2.1.10 and the Csiszar-Kullback-Pinsker inequality the estimate

)COVM%(dmj_hdl,2 (f.(2PVH),) (/f T) 2y, (dr2j 1, dro; ))2
|z F @) + [ f @) :
y (/ a5l (2 }(x)!d /(@) M27yj(dx2j_1’dx2j)> (2.22)

uniformly in j andy;. Therefore, a combination of the identity from above, the last estimate,
and Holder’s inequality yield

| COV . (dx|y) (f) (2PVH)j)|2

e TP + e )
S [ amtasty) [ F B ),

which implies the desired estimate by the identity (2.21). It is only left to deducesdtie
mate (2.22). We assume w.l.0jg= 1. Recall the splitting) = 1. + 41 given by (2.5). We
use the bound ofd+’| to estimate

COV,ug,yl (dml,dxg)(f (2PVH) )’ )COV,uz v (dz1,dx2) (f w (xl) + %(502))‘

+/‘f—/fu2,y1(dx1,d$2)

Now, we consider the first term on the r.h.s. of the last estimate.yfar R let the one-
dimensional probability measurédz|y; ) be defined by the density

f12,y, (dz1, dzs). (2.23)

W dolyn) = 5 exp (= (b= + 1) + 0= +31) d=

A reparametrization of the one-dimensional Hausdorff measure implies

/&(3617332)#24/1 (dz1,dz2) = /5(—2 +y1, 2 +y1)v(dzlyr) (2.24)

for any measurable functioh We may assume w.l.0.g. that the functiptx) = f(x1, z2)
just depends on the variables andz-. Hence, for

fzop) = f(—z+y,z+y) and  §lz,y) = VL(—z+y1) +Vu(z + 1)

the last identity yields

Co ug yq (dz1,dx2) (f> 1%(951) + ¢é($2>) = Covy, (dz|y1) (f )

Because

(—z+wy1) + ¥ (z+wn)

4 5(21) '
V(=2 +y1) + (2 + 1)

d(=z+uy) + iz +u1)
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2.1 The adapted two-scale approach

an application of the asymmetric Brascamp-Lieb inequality (cf. Lemma 2.1.10}yield

Y[ op P 2
‘COVu (dz|y1) f 9 /f| (dz|y1) < (/fV dz|y1> </ ’dsz V(dz|y1)> )

From the last inequality and (2.24) follows the estimate

’covuzy (dz1,dx2) (f,( ($1)+¢;($2)))’

i d r12 | d 2 2
§</fﬂ2,y1(dx1,dx2)> (/‘dwlf‘ ;:lmf| uz,yl(dxl,dm2)> . (2.25)

We turn to the second term on the r.h.s. of (2.23). For convenience we write

f(yl) = /f:u2,y1(dx1’dx2)'

An application of the (well-known) Csiszar-Kullback-Pinsker inequalify [(£5, 36]) yields

/‘f f yl)‘ﬂ2,y1(dx1,d$2 fn) /‘

o ‘ p2.4, (dz1, dzo)

< fln) < o y1) M2,y1(d$1,d£€2))

1
2

An application of the LSI for the measue ,, (dz1, de) implies

/‘f—/fuz,yl(dfﬂl,dfﬂz)
% d r2 + _d r2 %
,S </ f/‘2,y1 (dl‘l,d$2)> (/ |dCI71 f| f |da:2 f| 12, (d:)j‘l’dl‘z)) .

A combination of (2.23), (2.25), and the last inequality yield the desired esti{@a2). [

pi2,y, (dy, diza)

We turn to the proof of Lemma 2.1.4. Again, the main ingredient of the proof iashm-
metric Brascamp-Lieb inequality.

Proof of Lemma 2.1.4We define

Po(m) = —% log/exp (—tbe(—x +m) — e (x +m)) dx
and
0p(m) : = —% log/exp (—(—z+m) =y (z+m))dr
+ 108 [ exp (= +m) = o o+ m)) do.
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

We show that the splittingR+) = 1, + d7) satisfies the conditions given by (2.5). Using
the strict convexity ofi). it follows by a standard argument based on the Brascamp-Lieb
inequality (cf. [7] and (2.15)) that the first condition is preserved i.e.

1!

P 2 1.

We turn to the perturbatiofx). For convenience, we introduce the measures

v(dz) = 1 exp (—(—z+m) — ¢ (z+m))dx

Z
and .
ve(de) = 7 &P (=te(=2 +m) — e (x +m)) dz
so that

50 (m) =~ log [ exp (=8~ +m) = 50 (a + m) vda).
A direct calculation using the bouné)| < 1 yields
[6u(m)| < 1.
We turn to the first derivative af). A direct calculation based on the definitiondaf yields
253 (m) = [ (/=2 m) +4 o+ m)) v{do)
— [ it m) + 0+ ) vl
Fors € [0, 1] we define the measure

vi(dx) == % exp (—e(—x +m) — Y (x + m) — sdY(—x +m) — s0v¢ (x +m)) dx

that interpolates betweel = v, andv! = v. By the mean-value theorem theresis [0, 1]
such that

253 (m) = 5o [ (WL bm) 4 L (ot m) 580/ () 550 (4 m) ()
_ / (64! (—z + m) + 69 (z + m)) v*(dz)
+couye (Uil m) 4 0o+ ), B0(—z 4 m) + 6 (a4 m) )
+ covye <35¢/(—x ) + s8¢ (x +m), 0(—z +m) + 6 (¢ +m) >

The first term on the r.h.s. is controlled by the assumpligri| < 1. We turn to the estima-
tion of the first covariance term. An application of the asymmetric Brascampihéguality
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2.2 Convexification by iterated renormalization

of Lemma 2.1.10 anthv| + |§¢'| < 1 yield the estimate

COVys <1/1£(—a: +m) + Y. (x +m), (—x +m)+ 5 (z+m) > ‘

{:,(_x+m)_ é’(m+m) —6 (—x +m (2 +m) v5(de
S [ ov ) 80 (a4 )] v ()

< su
~ P e m) + o (o

T

<1,

The second covariance term can be estimated using the assumption [6¢)’| < 1. Sum-
ming up, we have deduced the desired estimate < 1. O

2.2 Convexification by iterated renormalization

In this section we will prove Theorem 2.1.6 that states the convexificationpefrtarbed
strictly convex single-site potential by iterated renormalization. The proof relies on a local
Cramér theorem and some auxiliary results. The proof of Theorem 2.1i@eis o the
Subsection 2.2.1. The proofs of the auxiliary results are given in theeBtibis 2.2.2.

2.2.1 Proof of Theorem 2.1.6

In view of Lemma 2.1.8 it suffices to show the strict convexity of the coaragygd Hamil-
tonian Hx defined by (2.9) for largé > 1. The strategy is the same as in [22, Proposition
31]. Letyp denote the Cramér transform ©f namely

plm) = sup (am ~log / exp(oa — w(x))dx> |

Becausev is the Legendre transform of the strictly convex function

©* (o) = log/exp(aa: —(x))dx, (2.26)
there exists for anyn € R a uniques = o(m) such that

o(m) =om — ¢*(0). (2.27)

From basic properties of the Legendre transform it follows thavtle determined by the
eguation
d . .  Jxzexplox—y(x))de
do” (0) = [exp(ox —(z))dz

The starting point of the proof of the convexification of the coarse-gthidamiltonian
H (m) is the explicit representation

(2.28)

Gr,m(0) = exp (Kp(m) — K Hi(m)) . (2.29)
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

Here,gx ., denotes the Lebesgue density of the distribution of the random variable

| X
Vi ; (Xi —m),
whereX; are K real-valued independent random variables identically distributed as
wo(dx) :=exp (—¢*(0) + oz — () dz. (2.30)

We note that in view of (2.28) the mean &f is m. As in [22, (125)] the Cramér represen-
tation (2.29) follows from direct substitution and the coarea formula. As Wesee in the
proof of Lemma 2.2.3, the Cramér transfognis strictly convex. The main idea of the proof
is to transfer the convexity from to Hx using the representation (2.29) and a local central
limit type theorem for the densityx ,,,, which is formulated in the next statement.

Proposition 2.2.1. Let ¢)(z) be a smooth function that is increasing sufficiently fast as
|z| T oo for all subsequent integrals to exist. Note that the probability meagtirdefined
by (2.30)depends on the field strength We introduce its meam and variances?

m = /J:/f(das) and s* := /(x—m)2,ug(d:c). (2.31)

We assume that uniformly in the field strengttthe probability measurg? has its standard
deviations as unique length scale in the sense that

/\az—mku”(dl‘) < sf fork=1,---,5, (2.32)

< |s¢7t forall € € R. (2.33)

~

\ [ exviagyr (aa)

ConsiderK independent random variables,, - - - , Xk identically distributed according

to 7. Let gk, denote the Lebesgue density of the distribution of the normalized sum
K Xi—m

\/% Zi:l s

Thengk »(0) converges fof 1 oo to the corresponding value for the normalized Gaussian.
This convergence is uniform in, of orderLK, andC?ino:

i
o0 - =] 5 —= (2:3)

SO S = (2:35)
G ore0) S = (236)

Let us comment a bit on this result: Quantitative versions of the central limitehebke
(2.34) are abundant in the literature, see for instance [17][Chaptdy }38][Appendix 2],
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2.2 Convexification by iterated renormalization

[26][Section 3], and [38][p. 752 an Section 5]. In his work on thecsfz gap, Caputo ap-
peals even to a finer estimate that makes the first terms in an error expanggne'mplicit
[10, Theorem 2.1]. The coefficients of the higher order terms areeegpd in terms of mo-
ments ofu”. However, following [22, Proposition 31], for our two-scale argumeatneed
pointwisecontrol of the Lebesgue densigy , (in form of gx »(0)) and, in addition, control
of derivatives ofgx , w.r.t. the field parameter, cf. (2.35), (2.36). Note that the derivative
% has units of length (because which multipliesz in the Hamiltonian, cf. (2.30), has
units of inverse length) so th%t% is the properly non-dimensionalized derivative. Point-
wise control means that control of the moments, cf. (2.32), is not sufficizme also needs
to know thati,® has no fine structure on scales much smaller tharhis property is ensured
the upper bound (2.33).

As opposed to [22, Proposition 31], the Hamiltoniarwe want Proposition 2.2.1 apply
to is not a perturbation of the quadrat%a:2 but of a general strictly convex potentigl

As a consequence, the variangecan be a strongly varying function of the field strength
o. Nevertheless, Lemma 2.2.2 from below shows that every elepfent the family of
measures is characterized by the single length scalaiformly in o in the sense of (2.32)
and (2.33). For the verification of (2.32) and (2.33) in Lemma 2.2.2 we peoaidelf-
contained argument just using basic calculus of one variable. The méxibpbsition 2.2.1
consists in providing a version of the central limit theorem that4sn the field strengtle
even if the variance? varies strongly with.

Lemma 2.2.2. Assume that the single-site potentialis perturbed strictly convex in the
sense 0f2.5). Thens < 1 uniformly inm, and the condition§2.32)and (2.33)of Proposi-
tion 2.2.1 are satisfied.

Using Proposition 2.2.1, Lemma 2.2.2, and the Cramér representation (2.28uldesasily
deduce alocal Cramér theorem (cf. [22, Proposition 31]) for géperturbed strictly convex
potentialsy. However, because we are just interested in the convexificatidfyofve just

consider the convergence of the second derivativesarfd H .

Lemma 2.2.3. Assume that the single-site potentialis perturbed strictly convex in the
sense 0{2.5). Then for allm € R it holds

d? d?
dm2 p(m) — ) Hg(m)| S

1
dm Ks?’

wheres? is defined as in Proposition 2.2.1.

Proof of Theorem 2.1.6Because of Lemma 2.1.8 it suffices to show that there eXist9)
and K, € N such that for all > Ky andm € R

d?

We start with some formulas on the derivativesof Differentiation of the identity (2.27)
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

yields
d d d , d
%cp = %JTH—FU—%QO %U
(Zizg)iam—i—a—m—a
dm dm
= o.

A direct calculation reveals that (see (2.60) below)

d
%m = 82,
wheres? is defined as in Proposition 2.2.1. Hence, a second differentiatignyidlds the
identity
d? d d ' o1
- == = . 2.37
am2? = am® <dam> 52 (2.37)
By Lemma 2.2.3 we thus have
d? d? -
Hi —
dm2 K dm2(p+ dm? ( K= 9)
1 gl
52 K s?
11
2 52’
if K > K, for some largeK,. The statement follows from the uniform bourd< 1
provided by Lemma 2.2.2. O

2.2.2 Proof of Theorem 2.2.1 and of the auxiliary results

In this section we prove the auxiliary statements of the last subsection.eBafoing to the
proof of Proposition 2.2.1 we sketch the strategy. For convenience veelude the notation

) = / f() (da) = / f(x) exp(—¢7(0) + oz —p(x)) dx.  (2.38)

The definition ofgx , (cf. Proposition 2.2.1) suggests to introduce the shifted and rescaled

variable B
§o= =M (2.39)

S
We note that by (2.31) the first and second momeritéme normalized

() =0, &% =1 (2.40)
and that (2.32) turns into

5
> (Ef < 1 (2.41)

k=1
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2.2 Convexification by iterated renormalization

Proposition 2.2.1 is a version of the central limit theorem, that, like most othebgsts
proved with help of the Fourier transform. Indeed, since the randoiablas X; :=

X1 L XK ™ in the statement of Proposition 2.2.1 are independent and identi-
caIIy dlstrlbuted the dlstrlbutlon of their sum is théfold convolution of the distribution of

X;. Therefore, the Fourier transform of the distribution of Eéf: X, is the K-th power

of the Fourier transform of the distribution &f. The latter is given by

(expl(idt)),

WheregC denotes the variable dual4o Hence, the Fourier transform of the distribution of the

normalized sum\/l—E Z XK is given by(exp(z:c\ﬁg» . Applying the inverse Fourier

transform, we obtain the representation

27 i (0) = / <exp(i:%\/1[? VK G (2.42)

In order to make use of formula (2.42), we need estimates-omn(ii<)). Because of

dk

i@ —(exp(idf)) = i*(@" exp(iié)), (2.43)

the moment bounds (2.41) translate into contro{@fp(ii€)) for |€| < 1. Together with
the normalization (2.40), we obtain in particular by Taylor

exp(id)) — (1 - 58] 5 &P, (2.44)

We will use the latter in the following form: There exists a complex-valued fundti(c‘f)
such that fof¢| < 1:

(exp(idd)) = exp(~h(@) with [h(€) — & < IE° (2.45)

This estimate, showing that the Fourier transform of the normalized probapjlity close
for |¢| < 1 to the Fourier transform of the normalized Gaussian, is at the core of moustp
of the central limit theorem.

Estimate (2.45) provides good control ovexp(ii€)) for |¢| < 1. Another key ingredient
is uniform decay fot¢| > 1. In our new variables, (2.33) takes on the form

[(exp(iz€))| < €171 (2.46)

As usual in central limit theorems, we also need control of the characteftistition for
intermediate values df|. This can be inferred from (2.41) and (2.46) by a soft argument (in
particular, it does not require the more intricate argument for [10, (Rfdd) [10, Lemma
2.5)):
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

Lemma 2.2.4. Under the assumptions of Proposition 2.2.1 and for any 0 there exists
A < 1 such that for allo

[(exp(iz€))| < XA forall €] > .

So far, the strategy is standard; now comes the new ingredient: In viewrobifa (2.42), in
order to controb-derivatives ofyx - (0), we need to contro} - (exp(iz¢)). Relying on the
identities

@) = @), (247)
S = —1- %, (2.48)

that will be established in the proof of Lemma 2.2.5 below, we see that the estigaite a
follow from the moment control (2.41). Lemma 2.2.5 is the only new element cioalysis.

Lemma 2.2.5. Under the assumptions of Proposition 2.2.1 we have

(i) S (1+IEDIE, (2.49)
C o Pesp(iad)] £ (1+E)EP. (2,50

Before turning to the proof of Proposition 2.2.1, we prove Lemma 2.2.4 anuae2.2.5.

Proof of Lemma 2.2.4In view of (2.41) and (2.46), it suffices to show: For afiy< oo and
d > 0 there exists\ < 1 with the following property: Supposg) is a probability measure
(in £) such that

(lz) < ¢, (2.51)
(exp(id))| < ‘Z for all €, (2.52)

Then
l(exp(i€))] < A forall |€] > 6.

In view of (2.52), it is enough to show

[{exp(iz€))| < A forall§ < || <

| =

We will give an indirect argument for this statement and thus assumeAthali$h£sequence
{(-), } of probability measures satisfying (2.51) & (2.52) and a sequé&iceof numbers in
[6, §] such that

lim inf |[(exp(i2&,)),| > 1. (2.53)

vToo
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2.2 Convexification by iterated renormalization

In view of (2.51), after passage toa subsequence, we may assumectiead:tists a proba-
bility measure(-)», and a numbeg,, > 0 such that

liTm<f)u = (f)s forall bounded and continuoy4z), (2.54)
liTmfu = £ (2.55)

Since| exp(i2€,) — exp(iiéso)| < |2||€, — €xo|, We obtain from (2.51), (2.54) & (2.55):
i (exp(iy )y = (exp(idéos)) oo
so that (2.53) saturates to )
[(exp(ic))oc| = 1. (2.56)
On the other hand, (2.52) is preserved under (2.54) so that we hasaeticupar

lim |(exp(id))oo| = 0. (2.57)
€[ too

We claim that (2.56) and (2.57) contradict each other. Indeed, sinee exp(ii“éoo) is
Sl-valued, it follows from (2.56) that there is a fixéd= S such that

exp(i#éas) = ¢ for (Voo —a. €. &.
This implies for evenyh € N
exp(it(néss)) = ¢ for (Voo —a. €. &

and thus )
[(exp(i2(néeo)))oc| = [¢"] = 1, (2.58)
which in view ofé. # 0 and thugné.| 1 0o asn 1 oo contradicts (2.57). O

Proof of Lemma 2.2.5We restrict our attention to estimate (2.50); estimate (2.49) is easier
and can be derived by the same arguments. We start with the identities (Bdt{J.48).
Deriving (2.38) w.r.to yields

d B dy*
SU@) = (- 2)f)

In view of definition (2.39), the latter turns into (2.47).

We now turn to identity (2.48) and note that in view of definitions (2.31) an®{2(2.59)
yields in particular

(2.28)

((z —m)f(z)). (2.59)

dim (2:31),(2.59) (z — m)a) (2.31) <(a:—m)2> (2.31) &2 (2.60)
g
Lz CILD e —mp) O ), (2.61)
g
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

which we rewrite as

1d  _
sdo -
1d |
——s = =s(z°). 2.62
e 55(2°) (2.62)
These formulas imply as desired
1d, @39 1dz—m _ 1, 3.
e T

We now combine formulas (2.47) and (2.48) to express derivativég(af)). We start with
the first derivative:

1d N (2.47) df 1d o
S @) =0 s (@) i f(2)3)
(2.48) df 1, o0 ,.df . PPN
= <d:c( ) — §<ﬂf3><$d§3 (@) + (2 f(2)). (2.63)
(As a consistency check we note tHag- (f( R —((f —&) ) —3(2%)( 4y vanishes

if ¢ is quadratlc since then the dlstrlbutlonaoﬂnder< ) is the normalized Gaussian so that
both((4£ — #)f) = 0 and(23) = 0.)
Iterating this formula, we obtain for the second derivative

Gaorien 4 L Len -3 (35 @)

sdo
5@ (S ) + L@

sdo

(2.63) d>f NN df
L A A &
v (364 + §<fc3>2 e >) e
#1369 (LoD + Lo L + 20D - )
(f 2Dy - LT+ Py + (7))
d2f g d2f 1 a2 f
= (Eh @Sl v @

R 1 . a2 df o df
+§<w3><@> — 5= 2(2%)% + <w4>)<md9}> — (#%)(& dl,>

Because of (2.43) we have for ahy= N

d* 14d 2 1d ,df 1d

@(g%)2<exp(if@)> = (;@) dé’f( xp(if)) = (g%) (% exp(i€)). (2.64)
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2.2 Convexification by iterated renormalization

This formula and the normalization (2.40) yield thjét%)Q(exp(iézﬁ)) vanishes to second
order in¢. More precisely, foi € {0,1,2}

dF 1d

— —)2(exp(ifd :ikli
) o tewliga)) = i

;d0)2<5:’f> = 0. (2.65)

sdo

Therefore, we consider the third derivative W.f.tgiven by (2.64). For this purpose we
apply the formula fof 2 -4)2(f(%)) from above to the functiofi = 73 exp(ié#). Using the

s do
abbreviatiore := exp(i{2) we obtain
> 1d

1d
@ i

2le) = (5 300 a%e)

sdo
=43 (6 (Z€) + i6¢ <5026> —£2 <i36>

A3> (6 <i2e> + i6£ <1’36> — &2 <a§“4e>)

From this formula and the moment estimates (2.41) we obtain the estimate

d3 1d

dfég( el S 1+&%

sdo
In combination with (2.65), this estimate yields (2.50). O

Proof of Proposition 2.2.1We focus on (2.34) and (2.36). The intermediate (2.35) can be
established as (2.36).

We start with (2.34). Fix & > 0 so small such that the expansion (2.45)efp(i%¢)) holds
for |£] < 0. We split the integral representation (2.42) accordingly:

g o(0) = /  (explid—£))K dé
{I Fz¢l<a}

£))Xdé. (2.66)

5= 5

+ / ~ (exp(iz
{l7=¢1>6}
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

We consider the first terthon the r.h.s. of (2.66), which will turn out to be of leading order.
Sinced is so small that (2.45) holds, we may rewrite it as

1 . A 1 .~ 4
I = / ~ {exp(iz—=¢))d¢ = /  exp(—Kh(—=£))dé.  (2.67)
{| 7zél<6} VK {1 4=€1<8} VK
We note that fort\/%ﬂ < § we have by (2.45),
1 . 1- 1
Kh(—=¢) — =€2] < — €3, 2.68
Kh( =8 = 381 5 =Ll (2.68)
in particular foré small enough
1. 1
— > - .
Re <Kh(ﬁ§)> > 45, (2.69)

so that (2.68) implies by the Lipschitz continuity@f> y — exp(y) € ConRey < —%52
with constanexp(—1£2):
1

§) - exp(~38) 5 —=Iél* exp(~ 1€,

L
VK

Inserting this estimate into (2.67) we obtain

| exp(—Kh(
- / exp(—2€2)dé| < = €] exp(—~£2)dé
(| A-€l<8) 2 T VK Jyd<sy 4

1 (e 1y
S = [ e exp(— 8
1

<

5

The latter turns as desired into
1
1= VEr| = |1~ [ exp(~ 5
1y -
< = /  exp(—o€2)dé
{ 2
S

sincefﬂﬁéw} exp(—1£2)d€ is exponentially small ir.

We now address the second tedrh on the r.h.s. of (2.66). On the integrand we apply
Lemma 2.2.4 (oK — 2 of the K factors) and (2.46) (on the remaini@dactors):

2
1 . 1
(exp(it—=E)* < N7 | ——=
VK 1+ 7zlel
< K A\KE2 L < K A\E2 1
K+§2 1+§2
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2.2 Convexification by iterated renormalization

It follows that the second tery on the r.h.s. of (2.66) is exponentially small and thus higher
order:

1 - ~ 1 ~
/  (explit——E)KdE| < K AK? / g
{1 =€1>8} K 1+¢
< g2t L

~ \/I?'

We now turn to (2.36). We take the secandlerivative of the integral representation (2.42):

(2.70)

2)(1€]° + 1)d (2.71)

N
-
—

2

=
5

=
ﬂ

As for (2.34), we split the integral representation (2.71) accordirdg to

\(ijy%,a(@)\

S / |(exp (i@
VK Jijg<s)

: exp (i F)) [ —2 6 .
\F {5 \§|>6}’< p( K§)>’ (1 H\ﬁ ) (€8 + 1)dé

5)>!K’2(1+\\ﬁ E7)(€° + 1)dé

N

exp(iz—=&))[K2(&8 c
= /W} (i€ + 1)dé

e )| K28 4 1)dE. 2.72
ﬁ/{;ga»}“ ENIE2(E 4+ 1)dé (2.72)
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

On the first r.h.s. term we use (2.69):

i ex ichA K—2/£6 2
i /{jﬁm}u D)) + 1)

1 1.1 4 - -
< — _ 9\ (_—  £\2\(£6 d
S &) iy P DG ONE +
K>1 1 1226 .
S \/f/exp<—8§ NE” + 1)dE
S L (2.73)

VK

On the integrand of the second r.h.s. term in (2.72) we use Lemma 2.2H (o2 of the
K — 2 factors) and (2.46) (on the remaining factors):

10
1 - A 1 .
exp(it—=E)" (¥ +1) < A2 | ——F—F ) (&+1)
K 1+ﬁ|§|
< 5y K—12 ~8
< Ko\ P (8 +1)
S KB)\KfIZ 1 .
14 &2

Hence, we see that this second term in (2.72) is exponentially small anditfines brder:

L o Lok 28 1)dé
= /{ | gy PO 1)

5 K9/2)\K12/ 1 _ dé
14 &2

< K92)\K-12 2 \/1?
[

For the proof of Lemma 2.2.2 we need the following auxiliary statement, basetbmen-
tary calculus.

Lemma 2.2.6. Assume that the single-site potentiat R — R is convex. We consider the
corresponding Gibbs measure

v(dx) = % exp(—v(z))dx.
Let M denote the maximum of the density-ofe.

M = max % exp(—y(x)).
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2.2 Convexification by iterated renormalization
Then we have for alt € N

1
[ 1ol vtde) 5

for some constant only depending kn

Proof of Lemma 2.2.6We may assume w.l.0.g. that

Z = /exp(—w(az))dm =1 (2.74)
andM := sup, exp(—(x)) is attained at = 0, which means
M = exp(—1(0)). (2.75)
It follows from convexity ofy that
Y (z) <0 for 2 <0 and  ¢(z) >0 for x > 0. (2.76)

We start with an analysis of the convex single-site potemtidlVe first argue that
¢(ii)>—1 M+1 (2.77)
i) = og oge. .

Indeed in view of the monotonicity (2.76) we have

1 (2274)/0151 exp(—1(y))dy (2276) % oxp <—¢ (i»
and

V7 [ eputiy 0 e (o ()

e
M

5|

We now argue that foer| > 7

M e
> R
bla) > = (m M) log M. (2.78)
W.l.o.g. we may restrict ourselves 10> . By the mean-value theorem theredis< ¢ <
17 such that
¥ (57) — ¥(0)
Y(€) = —(M)i :
M

Using once again the monotonicity of, (2.75), and (2.77) yields the estimate

@75 % (§7) +log M @71 M
= - >

M e

W (57) Z¥(©
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

The convexity of), the last estimate, and (2.77) yield tor> 7 as desired

029 () () +o ()

> % (m—%) — log M.

We finished the analysis afiand turn to the verification of the first estimate of Lemma 2.2.6.
We split the integral according to

0 00

[ sl exp-v@nds = [ JatFesp-wo)ds + [ ol exp(-v(o)de
—00 0

We will now deduce the estimate

/ et exp(—(@))de S —

0 NMk

A similar estimate for the integra)ﬂf)Oo |z|* exp(—1(x))dx follows from the same argument
by symmetry. We split the integral:

o0

OO.TkeX — X xr = ﬁg’IJkQX — X X xkex — X xZ.
| teltexp=ptande = [ jalexpuids + [ ol exp(=(a)a

M

The first integral on the r.h.s. can be estimated as

i k CAZ) ek

|t esp—vns < 7 [ es(-i@nar 0

For the estimation of the second integral we apply (2.78), which yields byhhege of
variables (z — &) =2

/800 |z|* exp(—v(z))dx < /OO |z|¥ exp <—]\j (x - %) + log M) dx

M
—MM/ ‘—x—i— ¥ oxp (=) di

e(M)/O |z 4 1|F exp (&) di
1

MF

N

O]

Equipped with Lemma 2.2.6 we are able to give an elementary proof of Lemma 2.2.2:
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2.2 Convexification by iterated renormalization

Proof of Lemma 2.2.2We argue that < 1. Becausey) is a bounded perturbation of a
uniformly strictly convex function, the measug€ given by (2.30) has a spectral gap with
constant independently ef This implies in particular

d 2
s? = varye (z) S / <d :z:> dp’ <1 (2.79)
x

uniformly in o and thus inn.

Now, we verify (2.32). Usinddy| < 1 to pass fromy to 1., we may assume that is
strictly convex. In fact, we can give wgirict convexity ofy) and may only assume thatis
convex. By the change of variablés= = we have for anys € N

x —ml|F .
He= im0 [t exp(-diapas

for some convex functiovﬁ;, which is normalized in the sense that

/ exp(—i(#))di = 1 and / Zexp(—0(@))di =1.  (2.80)
An application of Lemma 2.2.6 yields the estimate

1

J 1z —m|*dp
sk Mk

< [ el exp(—(@)di <

wherelM is given byM := max; exp(—1(&)). Now, we argue that due to the normalization
of ¢ we have
M>C

for some universal constait > 0, which verifies the desired estimate (2.32). Indeed the
normalization (2.80) implies

/ exp(—p(e))dz 2 1 / exp(—1h(x))da
(—2,2) R—(—Q,Q)

(2.80)
> §

- / P oxp(—p(@)dr >

4

Hence, there exists any € (—2, 2) such thatxp(—1(z0)) > 2, which yields

| w

M = maxexp(—)(#)) = exp(~t(x0)) 2

Let us turn to the statement (2.33) of Proposition 2.2.1. Writing

exp (ixf) = % <—i 2 eXP(”f))
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

we obtain by integration by parts that

(exp (ix€)) g/exp i) (exp (—¢"(0) + oz —(x))) dx

. g/exp (i€)

The splittingy) = .+ dv with |§¢], [6¢'| < 1 and definition (2.26) of* yield the estimate

ox (i s [lo—vi@)]exp (0w — Ye(w))de 1
exp (2€)] £ 59 Tomn o e

wheres is defined as in Proposition 2.2.1. Becassg 1 by (2.79), we only have to consider
the first term of the r.h.s. of the last inequality. We argue that for

exp (ox — ()
[exp (ocx — Ye(z)) dz

df
(0 —¢'(x)) exp (¢ (o) + oz — P(x)) dz.

M —maX

it holds

Jlo — ¢ (@)|exp (02 — () d
[ exp (o2 — () da '

For the proof of the last statement, we only need the fact that the funfition = —ox +

() is convex. W.l.o.g. we may assume thatxp(—H (z))dz = 1 and that)/ is attained

atx = 0, which means

2M =

(2.81)

M = exp(—H(0)).

It follows from convexity ofH that
H'(z) <0 for 2 <0 and  H'(z) >0 for x > 0.

Therefore, we get
/!H’ | exp(— / H'(z) exp( H(x))da;+/ H'(z)exp(H (z))dx
0

=/;mm (DM—AemmeMx
= 2exp(—H(0)) = 2M.

Because the mean of a measpris optimal in the sense that for alle R

/ (2 — 0 u(dz) = / 22(dz) — 2 / ou(dz) + 2

z/fmmw(/mwmf
—/<x—/yﬂ(dy)>2u(dx)v (2.82)
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2.2 Convexification by iterated renormalization

we can estimate

2 [ 2? exp (ox — ¢ (z)) dx |51/i§1 [ 22 exp (ox — Ye(z)) dx
= Jexp(oz—¢(x))dx ~  [exp(ox —te(x))dr

Therefore, Lemma 2.2.6 applied o= 2 and+ replaced by-oz + 1. yields

(2.83)

s [lo = @) exp (o2 — gelw)) de @D ([ a2 exp (on — ve(a)) da) 2
fexp (ox — () drx S ( fexp (ox — () drx > M,

which verifies (2.33) of Proposition 2.2.1. O
Before we turn to the proof of Lemma 2.2.3 we will deduce the following auxiliasylt.

Lemma 2.2.7. Assume thaf2.32)of Proposition 2.2.1 is satisfied. Then, using the notation
of Proposition 2.2.1, it holds:

d2

o<t
dm2°>| ~

i) |

dm

<1 and (i7) ‘

~

1
.

Proof of Lemma 2.2.7We start with restating some basic identities (cf. (2.60) and (2.61)):
It holds that

%m ) (2.84)
2 d

oz = %82 = / (x —m)? uo(dz), (2.85)
d3

S = / (. —m)* 7 (da). (2.86)

Let us conside(i): It follows from (2.84) and (2.85) that
d o, d , d

S = —8 —0O

dm”~ — do~ dm

=/w—mfwwm<im)4

J (@ —m)’ p° (dz)

= s
s3 ’

which yields by assumption (2.32) of Proposition 2.2.1 the estimate

< s.

~

dm

‘da

The statement dfi) is a direct consequence of the last estimate and the identity

4. _14d,
dm° ~ 2sdm’
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case

We turn to the statemeifti): Differentiating the last identity yields
d? 11d d o, 1 d ,

deS: 2 52 dms%s %dm28 '
The estimation of the first term on the r.h.s. follows from the estimates
d 2

—S

d
T < s and —5

<1
~Y dm )

~

which we have deduced in the first step of the proof. We turn to the estimdtiba second
term. A direct calculation using (2.84) yields the identity

o B A (R 4N BN R R
dm2° T dm2do " dm \do2 am’) " do3 \am® do2 " am2?

Considering the first term on the r.h.s. we get from the identities (2.84)288)( and the
assumption (2.32) of Proposition 2.2.1 that

j;m <dfnf’> J (@ —=m)* po(de) _

I <L
Before we consider the second term of the r.h.s. of (2.87) we establiffiltveing estimate:

‘dz 1

<2 (2.88)

deU ~ g3

Indeed, direct calculation using (2.84) and (2.85) yields
& (dd N d
dm2?~  \dodm ) dm

(i) ) o)

The last identity yields (2.88) using the assumption (2.32) of Proposition 2J2ifig (2.88)
and (2.85) we can estimate the second term of the r.h.s. of (2.87) as
> d? ‘ 1

_ _ <
do?" am2

~

[ = m)* utan)

By applying the assumption (2.32) of Proposition 2.2.1 this yields

g3

d? d?
do?™ gm2®| S 1
which concludes the argument f@r). O
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2.2 Convexification by iterated renormalization

Proof of Lemma 2.2.3Recall the representation (2.29) i.e.
Gr.m(0) = exp (Kgp(m) — KHK(m)) .

Here gk (&) denotes the Lebesgue density of the random vari@%ezfil (X; —m),
whereX; are real-valued independent random variables identically distributexidiag to
u? (cf. (2.30)). Letgx , denote the density of the normalized random varia}aleNheres
is given by (2.31). Then the densities are related by

1 x N
—JK,o <*> = gK,m(l')-
S S

It follows from (2.29) that
Kp(m) — KHg(m) = log gx,(0) — log .

In order to deduce the desired estimate it thus suffices to show

<1 (2.89)

~ o2

S

d2
‘ ) log s
and
d? 1

‘Wloggl(’g(())’ S 2 (2.90)

The first estimate follows directly from the identity

o (LA N1 (d N1 d
dm? Ogs_dm sdms 82 dms sdmzs

and the estimates provided by Lemma 2.2.7. We turn to the second estimate. Thg iden

& 1 (d 2 L] d?
—- 5 10 c— o5 |\ 7 o ) o
dm2 89K g% o 9K, Ko dm? 9K,

and (2.34) yield for largd( the estimate

a2 a2
Iz !

d 2
02910 0) 5 (gm0 0) + |50 z010(0)].

The estimation of the first term on the r.h.s. follows from the estimate (2.35)apfdBi-
tion 2.2.1 and the identity

1d d

sdo ~ Sdm’ (2.91)

which is a direct consequence of (2.60). Let us consider the secondTae identity
TdVes( dY(,d\_o&  (d\d
sdo = Gam ) \Cam ) T am2 T am®) am
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2 Uniform LSI for Kawasaki dynamics: the non-interacting case
, d? 1d\? d \ 1d
S——=\—"—5—) —|5—s8| —5
dm? sdo dm sdo
2 1 (/1d)\? d \1d
WQK,O’(O) =32 <<8d0> 9K,0(0) — <dms> Sdo_gKJ(O)) :

Now, the estimates (2.35) and (2.36) of Proposition 2.2.1 and Lemma 2.2.7 yieldgined
estimate (2.90). O

which we rewrite as

yields
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3 Uniform LSI for Kawasaki dynamics:
the weakly-interacting case

Once again, we recall the definition (5) of the canonical ensemble

1 _
pUN,m(dz) = 7 exp (—H(x)) Hﬁ%Zf\lei:m}(dzp)'
In Chapter 2, we showed that the canonical ensemRlg, satisfies an optimal scaling LSI
provided the Hamiltonian

N
H(z)= > (a)
=1

is non-interacting and the single site potentiak a bounded perturbation of a strictly con-
vex potential (cf. Theorem 2.0.18). In this chapter, we consider thstiguef the optimal
scaling LSI still holds when adding a small interaction term to the Hamiltonian. Inake
of discrete spins, this question was already positively answered assfiniiegange inter-
action and a mixing condition (cf. [57] and [9]). We show that the LS| alsld#in the case
of unbounded continuous spins and a weak two-body interaction pbthéssingle-site po-
tentialv is perturbed quadratic in the sense of (3.1) below. The interaction is stoicted
to finite range. Any two spins of the system are allowed to interact. The Li&itant is uni-
form in the boundary data and scales optimally in the system size. Compareddigdhete
case we have to deal with new technical difficulties due to the fact that thesalpes and
the range of interaction are unbounded. Because we apply the originvaiciale approach
of [22], it is also possible to derive the hydrodynamic limit with the same methodtised
in [22]. However, the hydrodynamic limit is not considered in the dissertahlmte that for
existing results on the hydrodynamic limit (cf. [26, 56]) there are restristionattices of
certain dimensions or nearest neighbor interaction, whereas ouragpgindependent of
the geometrical structure of the system.

Let us take a closer look at the Hamiltonidhconsidered in this chapter. There are three
contributions to the Hamiltoniai :

o for each site € {1,..., N}, a Ginzburg-Landau type single-site potentigl: R — R
satisfying uniformly ini

vi(z) = % 2 + dpi(x) and ||0villce < 1 < 0. (3.2)

o a two-body interaction given by a real-valued symmetric mattix= (m;;) nxn With
zero diagonain;; = 0;
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

o alinear term given by a vectarc RY. This term models the interaction of the sites with
the boundary data of the spin system.

Explicitly, the Hamiltonian of the system is given by

N N N

H(x):= Z%’(ﬂfi) + % Z M T;T; + Z«Szwz (3.2)
i=1 i,j=1 i=1

Note that in contrast to [22] and Chapter 2 we do not consider homogsrsingle-site

potentialsy; = v, i € {1,...,N}. The reason is that the linear term in the definition

of H naturally induces a dependence of the single-site potentials on the Jitee value

of |m;;| determines the strength of the interaction between the spandx;. The sign

of m;; determines if the interaction is repulsive or attractive. To avoid phasettoamst

is natural to assume that the interaction is small in a certain sense. Our sulfetitiite

mixing condition in the discrete case is:

Definition 3.0.8 (Condition of smallness)The interaction matrix/ satisfies the smallness
condition CS£) withe > 0, if for all z € RY

N

N
> wifmilay <ed i CSE)

ij=1 i=1

Later, we will use the condition C8)to apply the covariance estimate of Theorem 1.2.4.
This proceeding is similar to the discrete case, where the mixing condition veastos
deduce a decay of correlations. Note that the conditiore)a®{es not impose finite-range
interaction as for example the condition used by Yoshida [60] (cf. Rem@rk(@. The main
result of this chapter is:

Theorem 3.0.9. Assume that the HamiltoniaH is given by(3.2) and that the single-site
potentialsy; satisfy(3.1)with a constant; < oo independent of the sitg the system size
N € N, the mean spim: € R, and the boundary datac R",

Then there exist > 0 andp > 0 depending only omr; such that: If the interaction matrix
M satisfies CSf), then the canonical ensemhlg; ,,, satisfies LSK) independent oV, m,
ands.

For the proof of Theorem 3.0.9 we apply the original two-scale approacbrunewald,
Otto, Westdickenberg and Villani [22]. Hence, we consider coarasymg of big blocks
and not iterated coarse-graining of pairs as in Chapter 2. Additionallgpply the original
two-scale criterion for LSI (cf. [22, Theorem 3]) that only holds farfurbed quadratic
single-site potentialg); in the sense of (3.1) (cf. Remark 3.1.3). Therefore compared to
Chapter 2, we are not able to consider the whole class of perturbed stdothgx single-site
potentialsy; in the sense of (2.5) but only the relatively small subclass of perturbedtgtic
single-site potentialg;. Because we allow for interactiall # 0, we have to deal with new
technical difficulties compared to [22] and Chapter 2:

e The interaction between blocks is controlled by the covariance estimate ofF The
rem1.2.4.
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e The convexification of the coarse-grained Hamiltonian with interaction is attdipe
a conditioning technique (that artificially reduces the system size) and staodard
perturbation argument.

e The local Cramér theorem (cf. [22, Proposition 31]) is generalized tonmdgeneous
single-site potentials;.

The unboundedness of the spins and of the range of interaction alsadeaelv difficulties
compared to the discrete and bounded case (cf. [57, 9]):

¢ In the case of finite-range interaction one could use the covariance estimat®
Helffer (cf. Theorem 1.2.8, Corollary 1.2.10, and [30, 40]) to dedexgonential de-
cay of covariances (see also [5, 6] and Section 1.2.1). The applicatitwe abvari-
ance estimate of Theorem 1.2.4 makes it possible to consider infinite-rangefite
(cf. proof of Lemma 3.1.9).

e The perturbation argument used in the proof of Lemma 3.1.13 is a lot easiez in th
case of bounded spins and finite-range interaction. The proof becartoéanore
delicate in the case of unbounded spins and infinite-range interactioco(@ments
after (3.31)). Additionally, we require for the argument that the singlepsitentials
1); are perturbed quadratic in the sense of (3.1).

The rest of Chapter 3 is organized in the following way. Section 3.1 is dé\otthe two-
scale approach. In Section 3.1.2, we state the proof of Theorem 3.0c@l\diaéter the
formulation of the two-scale criterion for LS| (see Theorem 3.1.2), whithdsmain tool of
the argument. In the remaining part of Section 3.1, the ingredients of thecale-iterion
are verified: The microscopic LSI is deduced in Section 3.1.2 and the nca@iosLSI

is deduced in Section 3.1.3. For the proof of the macroscopic LS| we ngedezalized
version of the local Cramér theorem, which we state and prove in SectioWa.2onclude
this section with a remark on the condition Ej5(

Remark 3.0.10(Alternative condition of smallnessNote that the condition C8Yis weaker
than the condition Yoshida used in [60], namely

N
]I:nlaXN Z; |mw| <e and mgj = 0, Iif ‘i —j‘ >R,
1=

for some fixedR € N. There is an obvious difference between both conditions: the)CS(
allows infinite-range interaction and Yoshida’'s condition not. Even if infirdtege interac-
tion is allowed in Yoshida’s condition, we give an example to distinguish bottiitcmms:
Let us consider the interaction matrid = (m;;) nxn given by

< ifi=1andj # 1,

2V N’
mg; = Qjﬁ’ If] = 1andi 75 1,
0, else
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case
By Cauchy-Schwarz we have

> i < ( 1) (ZfCﬂ) = VN (Z%’Q) :
j=1 j=1 j=1 j=1

Then a direct calculation reveals that

[ SIS

N

- N
T \ng| T = —F—= |21 ‘933‘
vV N =

i =1
1
N 2 N
2 2
Selml [ D |l | <edlxl
=1 i=1

which yields that the matrix/ satisfies CSJ).
Considering Yoshida’s condition one directly sees that

N N
€ 1
‘max E |m2]] = E |m21\ = — <\/N — > .
j=1..N — P 2 v N

This bound is not uniform in the system sive

3.1 The original two-scale approach

We make the following assumption and convention for the Section 3.1 .

Assumption 3.1.1.We assume that the Hamiltonidh is given by(3.2) and the single-site
potentialsy; satisfy(3.1) with a constant; < oo independent of the site the system size
N, the mean spim, and the boundary data

Convention. For convenience, we write ginfor the canonical ensembley .

3.1.1 Proof of the main result of Chapter 3

In this section we state the proof of Theorem 3.0.9. For that reason aire#e two-scale
approach, point out the new difficulties arising from the interaction, apthan how they
are solved. We use the same notation as in [22, Subsection 2.1 and 5.1Jecdfapmbse
the spin system aiV sites intoL blocks each containingl sites (note thatv = K'L). The

index set of thé-th block,! € {1, ..., L}, is given by (cf. Figure 3.1)

B(l) == {(- 1K +1,...,1}.

The spin values inside the blo¢k(/) are denoted by := (z:)iep()- HENCe, a configuration
x € Xn,m of the spin system can be written as

= (z,...,zb). (3.3)
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3.1 The original two-scale approach

X ‘ ‘ N

B(1) B(L)

Figure 3.1: Block decomposition of the spin system

Note that the block decomposition is arbitrary and has no geometric signiicahice
coarse-graining operatdt : Xy ,, — X1 ,, =: Y assigns to each block its mean spin i.e.

P(z) = % Z xi,...,% Z x| - (3.4)
)

ieB(1 i€B(L)

In contrast to Section 2.1.2, we enddWwwith the same scalar product as in [22] i.e.

L
1
(v,2)y =7 Z; yizi, fory,zey. (3.5)

Let P* : Y — X, denote the adjoint operator &f. More preciselyP* is given by

1

P*(yl,...yL):N(yl,...,yl, ............ ,yL,...,yL).

K times K times
The orthogonal projection oKy ,,, on ker P is given byld —N P*P, which can be seen
using the identity
PNP* =1dy .

Hence, we can decompose= X ,,, into a macroscopic profile and a microscopic fluctua-
tion according to
= (NP*P)z+(Id-NP*P)z. (3.6)

€(ker P)+ € ker P

The coarse-graining also induces a natural decomposition of meaBesez| thay:, denotes
the canonical ensemble given by (5) associated to the Hamiltdihiand the mean spim.
Let o := Pyp be the push forward ofi under P and letyu(dz|y) denote the conditional
measure of: given Px = y. Then by disintegration

p(dz) = p(dzly)p(dy). (3.7)

This equation has to be understood in a weak sense i.e. for any test fufictio

/5 dp = /Y (/{ny} 3 u(dwly)> a(dy).

By the coarea formula one can determine the densify(@#) as

fi(dy) = exp(=NH (y)) dy,
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

where the coarse-grained HamiltoniBhis given by
7 _ 1 N-L
A(y) = —-log / exp(—H(2)) HNFE (do). (3.8)

Note that this definition of the coarse-grained Hamiltonfamliffers slightly from the defi-
nition (2.9) in Chapter 2. The coarse-grained Hamiltoniafy) represents the energy of a
macroscopic profilg. Overall, we observe the system at two different scales:

o the microscopic scalg(dz|y) considers all fluctuations of the system around a macro-
scopic profiley € Y, and

o the macroscopic scajgdy) considers the macroscopic profiles and neglects all fluctua-
tions.

We will apply the two-scale criterion for LSI (see [22, Theorem 3]) tawaethe LSI for the
canonical ensemble. In our setting the two-scale criterion becomes

Theorem 3.1.2(Two-scale criterion) Assume that the canonical ensemplgiven by(5) is
decomposed b§B.7). Additionally, assume that:

(i) There isp > 0 such that for allN, m, s, andy € Y the conditional measures(dz|y)
satisfy LSIp).

(i) There isA > 0 such that for allV, m, ands the marginali satisfies LSKV).
Theny satisfies LSK ) with ¢ independent oV, m, ands.

Remark 3.1.3. The two-scale criterion in [22] also contains an explicit representation of
the LSI constanp in terms ofp, A, and a constank given by(2.16) which represents the
strength of the coupling between the microscopic and macroscopic $taveever, for our
purpose it is just important that is independent of the system si¥ethe mean spim, and

the boundary data. Additionally, note that the constartcan be infinite for a perturbed
strictly convex single-site potentialin the sense 0f2.5).

Proof of Theorem 3.0.9We carry out the coarse-graining procedure with a large but fixed
block sizeK > K, whereKj is determined by Proposition 3.1.5 below. Note thatis
independent of the system sig the mean spim, and the boundary data The ingredients

of the two-scale criterion of Theorem 3.1.2, namely the microscopic LS| anth#ttroscopic
LSI, are verified by Proposition 3.1.4 and Corollary 3.1.6 respectivdignTTheorem 3.0.9
follows directly from an application of Theorem 3.1.2. O

Now, we discuss how the ingredients of Theorem 3.1.2 are verified. Thesoapic LSI
(cf. Proposition 3.1.4) follows directly from the Otto & Reznikoff criteriom {51 (cf. The-
orem 1.1.7) using the condition G3( Difficulties arise deducing the macroscopic LSI
(cf. Proposition 3.1.5 and Corollary 3.1.6). We follow the strategy of [22] want to show
that / is uniformly strictly convex provided the block siZ€ is large enough and the inter-
actione is small enough. The uniform strict convexity &f would yield the macroscopic
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3.1 The original two-scale approach

LSI by the criterion of Bakry & Emery (see Theorem 1.1.5). Due to the iotena between
blocks we lose the product structurejofcf. [22, (63) ]), that was crucial for the argument
of [22]. As a consequence, the off-diagonal entries of the Hessi#h l,ecome non trivial
(see (3.17)) i.e.fot # n

hip = (HessY ﬁ(y))ln # 0.

However, applying the covariance estimate of Theorem 1.2.4 yields soffaatrol ofh,,,
I # n, in terms ofs (see Subsection 3.1.3).

The main difficulty of the proof is encountered checking the positivity of thgahal ele-
mentshy; of the Hessian off. It is not possible to transfer the positivity bf; from the case

of ¢ = 0 to the case of small by a simple perturbation argument. The reason is that due
to the loss of the product structukg depends on all spins of system. In the case 0 the
diagonal elements;; depend only on the spins of tiie¢h block, which has siz&’. Hence,
one could not choose independent from the system si2é and the LSI constant would
depend onV. We avoid this problem by conditioning on all spins except of a single block
(see Subsection 3.1.3). This procedure artificially reduces the systerogtze numbek

and introduces new boundary data, which is expressed by an addiiioee term in the
Hamiltonian (cf. proof of Proposition 3.1.4). Independently, we obsirfRroposition 3.2.1
that fore = 0 the positivity ofh;; for large K is untouched by adding a linear term to the
Hamiltonian. Therefore, we are able to apply a perturbation argument &fdrathe posi-
tivity of h;; to smalle depending only ori and not on the total system si2é(see Lemma
3.1.12 and Lemma 3.1.13).

3.1.2 The microscopic LSI

In this subsection we will prove the following statement.

Proposition 3.1.4(Microscopic LSI) There isO < ¢ independent oV, m, s, andy € Y
(depending only on the block sizZ&andc;) such that:

If M satisfies CS), then the conditional measurgsédzx|y) given by(3.7)satisfy LSIp) with
o > 0independent oV, m, s, andy (depending only od{and¢,).

Proof of Proposition 3.1.4The statement follows from an application of the Otto & Reznikoff
criterion for LS| (see Theorem 1.1.7). Let us consider an arbitratrfpted macroscopic pro-
filey = (y1,...,yr) € Y. We start with decomposing the Euclidean spgPe = y} into a
finite product of Euclidean spaces. It follows from the definition (3.4hefcoarse-graining
operatorP that

{z eRY, Pr=y} = Xk X ... x XKy,

where the hyperplan& ,,, 1 <1 < L, given by (4) is identified with

1
XKy = {xl e R7V), K Z T yl}-

1€B(1)

73



3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

Figure 3.2: Conditioning on spins outside of the bldgk)

Hence, we can decompose a configuration { Pz = y} into

z=(z',...,zl) with 2! = (73)ieB() € XK y,-

The spin values outside the blogk(/) (or ratherXg ,,) are denoted by! = (T3)igB()

for convenience. Disintegration of the microscopic meagfte |y) with respect ta:! for a
fixed1 <1 < L yields

p(dzly) = p(da'|z',y) pdz'ly),

where u(d2!|z!,y) and fi(dz'|y) denotes the conditional measure and the corresponding
marginal respectively (cf. Figure 3.2). More precisely, we have foteat functions¢ :
{Pr=y} >R

/5 p(dzly) = //g;c 2 p(dt |zt y) a(dzy). (3.9)

For the first requirement of Theorem 1.1.7 we have to show thaXgn,, 1 < I < L,

the conditional measuregdz'|z!, ) satisfy the LSIg) with constant > 0 independent of

N, m, s, y,l, andz!. For this purpose let us have a closer look at the Hamiltonian of the
conditional measurg(dz!|z, y):

For an arbitrary vectos* € RZ() we define the Hamiltonia#f (z!| M, s*) by

H(z'|M, s*) Z Vi(zi) +f Z mi;Tixj + Z S; T
1€B(1) 1,j€B(I) i€B(l)
The definition (3.2) of the Hamiltoniafl yields

N
= Z ¢z(xz Z mi;T;Tj + Z SiLg
=1

zgl

- Z Vi) Z MijT;x; + Z (Si—l— Z mz’jxj) T

1€B(l 7JEB(l i€B(l j¢B(l)
+ Z ¢1 332 + 5 Z MG TiTj + Z ST
1¢B(1) 7]¢B(l i¢B(1)
=H (ml|M, 8c> Z i(x;) + — Z M T + Z SiTs,
i¢B(1) 7]¢B(l i¢B(l)
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3.1 The original two-scale approach

where the vectos. = s.(s, M,z') € RBU is defined fori € B(l) by the elements

Seyi = S+ Z My Tj.
J¢B()

Because one can cancel all terms that are independmﬁt@f(mi)ieB(l) with terms of the
normalization constar#, the effective Hamiltonian of the conditional measurdz!|z!, y)
is given byH (z!| M, s..). More precisely,

_ 1 _
plda'|zy) = — exp (—H(xl!M, Sc)) Hixoe,, (42)-

Using the assumption (3.1) on the single-site potentialewe can writeH (z!| M, s..) as the
sum of

H(a'|M, s.) = Hi(a'|M, sc) + Ha(a'|M, sc),

whereH (2!|M, s.) and Ho (2! | M, s..) are given by

x.
Hy (2| M, s.) = Z ?’ s + Z mi;x; | @ +f Z MG TiT 5,

i€B(l) jeB(l) i,j€B(0)

2(a!| M, sc) Z Sepi ().

i€B(l

Using CS§) it follows that

E Mi;Tix; < 6|.’El|2.
1,j€B(1)

Hence, ife is small enough, thefl; (z!|M, s.) is a uniformly strictly convex function with
constant\ > i. By the assumption (3.1) on the functiofg; it follows that Hy(z!| M, s..)
is a bounded function satisfying

sup  Ho(z!|M,s.) — inf Ho(z!|M,s.)| < 2Ke;.

l
Z‘IEXle z eXKyyl

Therefore, a combination of the criterion of Bakry & Emery (see Theotehb) and of
the criterion of Holley & Stroock (see Theorem 1.1.4) yields that the conditioreasures
p(det|zt, y) satisfy a uniform LSI with constant

o= exp (—2Kcy) (3.10)

1
4

Note thatg is independent oN, m, s, y, [, andz' (depending only on the block siZ€ and
the constant; given by (3.1)).
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

Now, we verify the remaining ingredients of the criterion of Otto & Reznik&%r n, m €
{1,..., L} let M,,, denote thex’ x K matrix given by

Mim = (Mij)ieB(m), jeB(m)- (3.11)

Let || M,.,,,|| be defined as the operator norm/df,,,, as a bilinear form i.e.

| My || = max Yoo WM e REO y e REOW G (3.12)
1€B(n), jeB(m) ‘l’| |y|

Let the matrixA = (anm)k xx be defined by the elements

0, if n=m,
a =
T M|, i #Em,

We will show thatA satisfies in the sense of quadratic forms

n,me{l,...,K}. (3.13)

A>pld

for somep > 0 independently ofV, m,s, y, I, andz!. For the rest of the proof lef' < oo
denote a generic constant that only depend&oifirstly, we will show that

(1M ) e, < Ce 1d. (3.14)

in the sense of quadratic forms. Because of the equivalence of nornmitendimensional
vector spaces we have farm € {1,..., L}

[Mpm| < C Z |mij.
i€B(n),j€B(m)

For any vector: € R we have

L L
Z Tn | Myl 2 < C Z Z |Zn| (] |2m]

n,m=1 n,m=1 i€B(n),j€B(m)

CSE) L
< Ce Z z2.
n=1

This inequality already yields (3.14). Becausenly depends on the block siZ€ andc;,
we can choose < 5% independently ofV, m, s, andy such that

A= oId— ([[Myumll) g, + diag ([[Maal], ..., [Mre]])
2 old = (IMuml)) L
>(0—Ce)ld
> gld. (3.15)
Hence, we can apply the criterion of Otto & Reznikoff and the proof is fetsh O
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3.1 The original two-scale approach

3.1.3 The macroscopic LSI

In this section we will derive the macroscopic LSI. More precisely, we witive that
becomes uniformly convex for largé and smalk.

Proposition 3.1.5. Let A denote the coarse-grained Hamiltonian defined(By8). Let
Hessy H denote the Hessian ¢f w.r.t. the Euclidean structuré, -),- onY given by(3.5).
Then there exist&y € N depending only on; such that:

If the block sizeX > K, and the interaction matriX/ satisfiesCS(¢), then there are con-
stants\ > 0 andC' < oo independent oV, m, ands (depending only ok and¢;) such
thatforally € Y

Hessy H(y) > (A — Ce)Id
in the sense of quadratic forms.

By the definition (3.8) off we have

A(dy) = exp(~=NH(y))Hiy  (dy)-

Hence, the macroscopic LSl is a direct consequence of PropositioraBd the criterion of
Bakry & Emery (see Theorem 1.1.5), if we choasemall enough. More precisely, we have

Corollary 3.1.6 (Macroscopic LSI) Choose a fixed block siZ€ > K, whereKj is given
by Proposition 3.1.5. Consider the marginabdefined by3.7). Then there exist > 0 and
A > 0 independent olV, m, ands (depending only o andc;) such that:

If the interaction matrix\/ satisfiesCS(e), theng satisfies LSKN).

The proof of Proposition 3.1.5 consists of three steps. In the nextatidrse/e will deduce a
formula for the elements diessy H. In Subsection 3.1.3 we will show that the off-diagonal
elements oHessy H are small in a certain sense (cf. Lemma 3.1.9). In Subsection 3.1.3 we
will show that the diagonal elements Hiessy H are uniformly positive for largeg< and
smalle (cf. Lemma 3.1.11).

Proof of Proposition 3.1.5We decompose thHessy H (y) into its diagonal matrix and its
remainder i.e.

Hessy H(y) = diag ((HessY ﬁ(y))ll e (HessY FI(y))LL)
+ [HessY H(y) — diag ((HeSSY fI(y))ll e (HessY H(y))LL)]

A combination of Lemma 3.1.9 and Lemma 3.1.11 from below yields the statement]

Formula for the elements of the Hessian of H. Before we derive the formula for
the elements of the Hessian Bf, we state an alternative representation of the coarse-grained
HamiltonianH.
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

Lemma 3.1.7. Assume that the Hamiltoniali and the coarse-grained Hamiltoniafd are
given by(3.2)and(3.8)respectively. For € {Pz = 0} andy € Y let Hy,(x,y) be defined

by

Has(w,y) = ¢ (o, ([ +M)a) + (a2, MNPY) + (s, 3 b+ (NP
=1

Then

H(y) = 5 (y, [d+PMNP*)y)y + (Ps,y)y

N —

_ —log / exp (—Has(,9)) HY Ly, (d2), (3.16)

where the scalar produgt, -), is given by(3.5).

The last lemma is verified by a straight forward calculation: One applies ther lirensfor-
mationx — z— N P*y to the integral in the definition (3.8) df (y). Additionally, one has to
use the fact that by orthogonality, N P*y) = 0 for anyx € ker P and N P*y ¢ (ker P)*
(cf. (3.6)).

The last statement is used to deduce the following representation of tHarh-Ie_fsE, which
is the base of our argument for the convexity of the coarse-grained Haraiitél .

Lemma 3.1.8. Assume that the HamiltoniaH and the coarse-grained Hamiltoniaid are
given by(3.2) and (3.8) respectively. Recall that the conditional measuigdx|y) are
defined by(3.7). For1 < I,n < L we have

(Hessy H(y)),, = 0m + 0m — / >y (w) p(dzly) + > omy

i€B(1) 1€B(l), jeB(n)

= \

1 N
— KCOV“(dQC'y)( Z (Z mzjxl> + 61/1 (x5) Z (Z m”xz> + 5¢. (:@))
jeB(l) \i=1 ]EB(n)
(3.17)

The last lemma is easily deduced by differentiating (3.16). Additionally, osedhapply
the inverse translatiom + N P*y to the occurring integrals, consider the orthogonality of
NP*y € (ker P)*, and apply the fact that covariances are invariant under addingacins
functions. Because every step of the proof is very basic, we will omit ¢ield.

Estimation of the off-diagonal elements of the Hessian of H. In this section we
will show, that the off-diagonal elements of the Hessia{odre controlled by. Explicitly,
we will prove the following statement.

Lemma 3.1.9. If the interaction matrix\/ satisfies CS), then there is a constaft< C <
oo independent oV, m, ands (depending only on the block siZ2andc¢,) such that

Hessy H(y) — diag ((Hessy H(y)),,,- .-, (Hessy ﬁ(y))LL) > —Celd

in the sense of quadratic forms.
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3.1 The original two-scale approach

This lemma is not obvious. Considering (3.17) one has to estimate for exammevidue-
ance

COV 4 (daly) ( > (), Y (fﬂj))

JEB(1) j€B(n)

for1 <1 # n < L. Itis not clear how to exploit the control CGg(on the last expres-
sion. The key observation is that the first function only depends on spihe blockB (1),
whereas the second function only depends on spins of bitfeK. One hopes that the co-
variance is decaying in the distance of the blocks; i§ small enough. It turns out, that
the covariance estimate of Theorem 1.2.4 is optimally adapted for this puifMessill use
Theorem 1.2.4 to deduce the following auxiliary lemma, which is the main ingreidi¢ms
proof of Lemma 3.1.9.

Lemma 3.1.10. The following statements hold:

(i) The conditional measures(dz|y) given by(3.7) satisfy the covariance estimate.8)
with the matrixA given by(3.13)

(i) Assume thap is given by(3.10)and that the elementg\/;, ,, || of the L x L- Matrix
(1M, 5,11) 1« ;, are given by3.12) Then in the sense of quadratic forms:

€
0—¢€

A7l —diag ((A7Y) ... (A71),,) < Id, (3.18)

SO

62

s . (3.19)

(||M8182 H)LXL Ail (HM3152 H)LXL <

] =

Proof of Lemma 3.1.10Argument for(i): The LSl() implies the SG¢) by Lemma 1.1.1.
Hence, the hypotheses of Theorem 1.2.4 are weaker than the hypotfabe criterion

of Otto & Reznikoff (cf. Theorem 1.1.7), which were already verified thoe conditional
measureg(dz|y) in the proof of Proposition 3.1.4. Thus the statement follows from a direct
application of Theorem 1.2.4.

Argument for(ii): Using the Neumann representationf! one sees that

1d, (3.20)

| =

diag ((Ail)n BRRE (Ail)LL) =
in the sense of quadratic forms. Because for sufficiently simll. (3.15))
A Z @Id_ (”MS182||)L><L > 0?

it follows that

B L& (Ml
A (U (M) = 53 (L) L @y
k=0
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

A combination of (3.20) and (3.21) yields
R _ _ 1o [ (M5, 1) :
AT =i (A7) (A7), < 5 30 (L)
k=1

which implies the desired estimate (3.18) by using (3.14). By (3.21) we have

k
< HM8182H)L><L
(M5 1) 5ser, A7 (1 Mosys5 D) 11 Z )

0 2 0
which implies the desired estimate (3.19) by using (3.14). O
Proof of Lemma 3.1.9Because of (3.17) we can write
Hessy H(y) — diag ((Hessy P_I(y))ll ..., (Hessy ﬁ(y))LL) = Wi + Wa,
where the matri¥y; is given by

(W) = x 2 ieB().jeBm) Mijs Fl1<n#l<L,
"o, if 1 = n,

and the elements of the matriX, are defined fol <n # [ < L by

(WQ)ln =
1
_ KCOVu(drly)< Z (Z m”%) + &ﬁj (x;), Z (Z mwxl> + 51/1j (a@))
JEB() \i=1 j€B(n) \i=1
and forl = n by (Ws); = 0. By using CS£) we can estimate
Wy > —e Id

in the sense of quadratic forms. The estimatiol®fis a little bit more subtle. By bilinearity
of the covariance the matri¥s can be rewritten as

Wo =Ws + Wy + Ws + W,
where the elements of the matridds, . .., W are defined foil <1 # n < L by

w35 (o) 5 (5 )

jeB(l) j€B(n)

(W4)ln COV;L(dw\y ( Z 6w xj Z 5w 'rj )
JEB(l) ]EB

(W5)im = COVM(dx‘y ( <Z mijxi> Z CM (x; )
JEB(l) j€B(n)

(Wﬁ)ln COVu(dx\y ( Z 6¢ :Bj Z (Z mz]xz>>
jeB() JeB( )
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3.1 The original two-scale approach

and forl = n by
(W3)y =0, (Wa)y =0, (Ws)u =0, (We)u = 0.

We estimate each matrix separately and start With A simple linear algebra argument
outlined in [46, Lemma 9] shows that the elements of the inversd afe non negative

i.e.(A s, > 0forall sy, sy € {1,...,L}. Hence, Lemma 3.1.1@) and the equivalence
of norms in finite dimensional vector spaces yieldfo£ | # n < L the estimate

N

1
2

L
—~(W3)im < Z (A’l)sm Z m3; Z mg;

s1,52=1 1€B(l),j€B(s1) 1€B(n),j€B(s2)

L
S C Z ”Mls1H (Ail)(slsQ HMsan,

s1,52=1

where the matrix4 is defined by (3.13) anffiM, || is defined by (3.12). Here and later on in
this proof,0 < C < oo denotes a generic constant depending onlysoandc;. It follows
from the last estimate and (3.19) that

~Ws < (IMsyso ) A (IMayso ) g, < Ce

in the sense of quadratic forms.
Let us turn to the estimation ;. An application of Lemma 3.1.1@) implies the estimate

—1 2
~(Whn < (A7), | _max  max|dyy(2)]

for1 <l +#n < L. Hence, (3.18) yields in the sense of quadratic forms

~Wy < A7' — diag (A7) L (Aa™h,,) < Ce

o
With an similar argument one can estimate the matri€gandWs as

—W5 — W6 < Ce
in the sense of quadratic forms, which together with the estimatég@ndiV, yields

—WQ S Ce

in the sense of quadratic forms. O]

Estimation of the diagonal elements of the Hessian of H. Inthis section we will
deduce the strict positivity of the diagonal elements of the Hessiali &br sufficiently
large block sized< and sufficiently small interaction. More precisely, we will show the
following statement.
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

Lemma 3.1.11. There existKy € N depending only on; such that:

If the block sizeK > K, and the interaction matrix\/ satisfies CS3{), then there are
constants\ > 0 andC < oo independent ofV, m, and s (depending only ok and ¢;)
suchthatforall </ < Landy €Y

(Hessy H(y)), > X — Ce.
Therefore,

diag ((Hessy H(y)) (Hessy H(y)),,;) = (A—Ce)1d

IEREERE

in the sense of quadratic forms.

For the proof of Lemma 3.1.11 we use a conditioning technique, which allows ajsply
a perturbation argument for smallindependently ofN, m, ands. Let us consider an
arbitrary but fixed blockB(1), 1 < < L. Recall that the spin values inside the bldgk)
are denoted by! := (7:)ie By @nd the spin values outside the blabBk) are denoted by
zl = (z:)igB(1)- As in the proof of Proposition 3.1.4, disintegration of the meagijie|y)
with respect tar! yields (cf. Figure 3.2)

p(dzly) = p(da'|z',y) p(dz'ly),

where ;(dz!|Z', ) and fi(dz'|y) denote the conditional measure and the corresponding
marginal respectively (cf. (3.9)). Recall the definitionfof=!| M, s*) for an arbitrary vector
s* e REW je,

l|M s* Z Yi(x;) —I—— Z M Tixj + Z six;. (3.22)

i€B(l i,j€EB() 1€B(l

In the proof of Proposition 3.1.4 we have shown that the conditional mesg(iz!|z!, )
are given by

1
L1z _ l K-1
wda'|T,y) = - exp (—H(x |M, 30)) Hix,, (d2), (3.23)
where the vectos,. = s.(M, s) € RE( defined by
=si+ Y mgz;  forie B(l) (3.24)
JEB(1)

and the integration space€y ,, is identified with

Xy = {x e RBO Z x; = yl} (3.25)

ZGB

We introduce the coarse-grained Hamiltonialﬂﬁr’\M, s*)asusual i.e. foy; € R

r7 * 1 *
Hy|M, s*) = —Klog/exp (—H(xl\M,s )) HEGL (dal). (3.26)
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3.1 The original two-scale approach

The next lemma shows that uniform positivity of

2

— H(y|M, s*
yields uniform positivity of(Hessy H (y)); for smalle . This observation is one of the main
insights in order to apply a perturbation argument for smatidependently of the system
size N. The advantage off (| M, s*) over H(y) is that in (3.26) one integrates only over
sites of the blockB(l), whereas in the definition (3.8) of the coarse-grained Hamiltonian

H (y) one integrates over all sites of the spin system.

Lemma 3.1.12. Assume that the vecter. and the Hamiltoniand (z!|M, s..) are given by
(3.24)and (3.22)respectively. Then:
If the interaction matrix)M satisfies CS(), thenforalll <! < Landy €Y

_ d?
(Hessy 7o) > [ 2 (ulM, s)j(da'ly) = Ce.
!
where the constanf’ < oo is independent oV, m, ands (depending only on the block size
K andc¢y).

The proof of Lemma 3.1.12 consists of two steps. In the first step we showhthdisinte-
gration (3.9) yields the identity

2

(Hessy H(y))” = / dC;lgH(yﬂM, s¢) i(dz']y)

1 N
_ Evarﬂ(da’clly) / Z (Z ml]$l> + 5¢;(Ij) H(dml|i‘l’y) . (3.27)

jeB() \i=1

In the second step we show that the variance term on the right hand sitle eatimated by
using the covariance estimate of Theorem 1.2.4 as

1 N
% Valu(dally) (/ Z (Z m”xz> + 09 (x5) u(dxl:):l,y)) < Ce. (3.28)

jeB(l) \i=1

We will state the full proof of Lemma 3.1.12 below. The next lemma provides the las
remaining ingredient of the proof of Lemma 3.1.11, which is the uniform payitiof

o
ddleH(y”M, S*)'

Lemma 3.1.13.There isKy € N such that:

If the block sizeK > K and the interaction matrix\/ satisfies CS3{), then there are
constants\ > 0 andC < oo independent ofV, m, and s (depending only ok and ¢;)
such thatforalll <! < L,y € R, ands* € RED

2

d® -
——H(y|M,s*) > X\ — Ce. (3.29)
dy;
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

For the proof of Lemma 3.1.13 we apply the following strategy. If the block Kize large
enough, the generalized local Cramér theorem (cf. Proposition 3.2.Thearem 3.2.2)
yields

2

l

forally, € Rands € RED. We want to derive (3.29) from (3.30) by a perturbation
argument. More precisely, we will show that for a specific choicé ef 5(s*) € REW®
given by (3.43)

& 5
dyl2

2

dyQﬁ(yZIO,é) < Ce. (3.31)
l

H(y| M, s*) —

The constantU < oo just depends o andc¢;. For the proof of Lemma 3.1.11 it is
crucial that the last inequality holds uniformly ifi € RF(®) andy,. Because we consider
unbounded spins with quadratic interaction, this is difficult and leads to #wifspchoice of
s = 3(s*). It would be a lot easier to derive (3.31) for bounded spin-values wittefrange
interaction. In this case one could also deduce the estimate (3.31) chéesifigThen, the
standard version of the local Cramér theorem [22, Proposition 31] viimuafficient for the
perturbation argument at least for homogeneous single-site potefitials). The reason is
that [22, Proposition 31] yields in this case

d2

— H(y]0,0) > X > 0.
dyl2 |

We will state the full proof of Lemma 3.1.13 below.

Proof of Lemma 3.1.11The desired statement follows from a combination of Lemma 3.1.12
and Lemma 3.1.13. O

Proof of Lemma 3.1.12Let us deduce the identity (3.27). Recall that by Lemma 3.1.8 we
have

(H655yf_1() _1+7 Z mij + /Z 0P (a) p(dxly)

1,j€B() JjeB()
1
_ ? Var,(dz|y) Z (Z mlsz> + 5¢§(1‘J) .
jeB(l) \i=1
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The disintegration rule (3.9) and the additive property of variances yiel@#ntity

(Hessy I:I(y)) =
/[/<1+ Z mij + — /Z&b”x]) (d2'|zt, y)
1,jEB(l) Jj€B()
, -
= 7¢ VATu(dal|7! y) ( > (Z mzﬁz) +5¢}(1’j)> a(dz'ly)
jeB() \i=1 i
1 ] 1=l
~ 7¢ VaTsdally) </ [ Z <Z ml]xz> +5¢J(xj) wu(de' |z ,y))
JjeB()

Note that the Hamiltoniard (z!|M, s*) defined by (3.22) has the same structure as the
HamiltonianH (x) given by (3.2). Therefore, an application of Lemma 3.1.8 yields that

d? - 1
TP =14 3 myt g [ 3 e uaist )
i,j€B(1) JEB(1)

1
_ Evarﬂ(dl’lﬁlﬂ) ( Z ( Z mZ]xz> + 51/};(1'])) (332)
jeB() \ieB(l)

The desired identity (3.27) follows from the last two equations and the fattatiding
constant functions does not change variances.

It remains to derive the estimate (3.28) of the variance term of the right$idadf (3.27).
By Young's inequality

1 N
174 Var; gzl |y) (/ [Z (Z mU:Ul) —|—5¢§»(m]~)] ,u(dxlxl,y))

jeB(l) \i=1

< —var fi(dzy) (/ Z Z mijxi p( (dz'|Z, y))

jeB() i=1

+_;2(V3r dz!|y) (/ Z S (w5) p(dat|z, y)) (3.33)

jeB()

Let us consider the first term of the right hand side of (3.33). By thetgigiation rule (3.9)
we have for any functiog(z!)

[ e@ntasty) = [ ¢ /md:cl\a:y (@a'y) = [ eamtdsly).

It follows that
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

Therefore, an application of Theorem 1.2.4 to the meag(ie|y) yields

varu(dm”y) (/ Z Z mija; p(da| 7, y))

jeB()

N[

N

X /kGB(Sl) /]EZB: Z mija; p(de'|z',y) 2 u(dwy))
/

2
X ( dxk/ > Z mija; p(da' |z, y) u(dl’y)) . (334
keB(s2)

jeB()

It follows from the definition:! = (z)xe () that fork € B(1)

(/ Z Z mijr; p(det |z, y) (3.35)

je€B()

Using the definition (3.22) off (+!| M, s.) direct calculation shows that

Ly S g 7 )

jeB(I) i=1
l
Z MEj — COVy(dal |zl y) z Z m;jxs , dzy (x |M> SC)
jeB() jeB() =1

for k ¢ B(l). From now on, leC < oo denote a generic constant depending onlysand
c1. Becauseu(dz!|z!, y) satisfies LSI§) with 5 > 0 depending only or< andc; (cf. proof
of Proposition 3.1.4), the measurédz!|z', y) also satisfies the S@Y by Lemma 1.1.1.
Hence, an application of the standard covariance estimate of Lemma 1.2.2caemlitia-
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3.1 The original two-scale approach

lence of norms in finite-dimensional vector spaces yield

du k:/ Z mexludem,y)

JjeB() =1
1 l 1
2 2
> mi >, m > miy
JeB() i jeB() jEB()
—_————
<C||Myl|

1

<3.§14> <C +gg> ( > mkj> . (3.36)

jeB(l)

sz\’*

A combination of the estimates (3.34), (3.35) and (3.36) yields the estimate ofshiefin
on the right hand side of (3.33). More precisely,

Varu(dxl‘y) (/ Z Z M4 b dxl‘l’ y))

JEB
1 1
L 3 3
<c > (A, X om S o
51,52=1 i€B(s1), j€B(I) i€B(s2), j€B(I)
(3.19)
<C Z oy 1M 1Ml < Ce.

s1,52=1

The second term on the right hand side of (3.33) can be estimated with theasguneent
as we used for the first term. The only different ingredient is the estimation o

T k/ Z ACH) p(dat|zt, )

jeB(l)

1
2
= | €OV, (gl |zt ) Z 5% xj) Z MpsTs | | < g Z mkj ,
JjEB() seB(l 9 jEB()
where we applied Lemma 1.2.2 and the uniform bound (3.1) of the funciibns O

Proof of Lemma 3.1.13Note that the estimate (3.30) follows directly from the generalized
local Cramér theorem (cf. Proposition 3.2.1 and Theorem 3.2.2). Hénsegnly left to
deduce (3.31). Let(dz'|M, s*) denote the Gibbs measure & ,, (see (3.25)) associated
to the Hamiltonianf (z!| M, s*) i.e.

1
v(da!|M, s*) = 7 exp(—H (2'| M, s* ))7—[& Uo(dah.
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

The same reason as for (3.32) yields that

d? 1
— H(y|M,s*) =1+ — m; / ovj (x da'|M, s
g M) =1+ & ij 7 2 0vj(ay) vida!|M, 57)

i€B(l), jeB jeB()
1
— Evary(dxl‘37s*) ( Z ( Z mwxz) +(51/J;(.Z'j)) .
jeB(l) \ieB(l)

An application of this formula td (|0, 5) with arbitrarys € RE(® yields

2

Hlo.5) =1+ [ 3 o0 v(dslo.5)

dyf JEB()
1
~ I VaTu(dat|0,5) Z ov(z5) | -
JjEB()
It follows from the last two equations and the bilinearity of the covariance tha

d? _ d?

dy? H(y|M, s) — a7 H(y]0,8)| < Ty +To + T3+ Ty + T3 (3.37)
!

where the termd7, 15, andTy are given by

1 1
Tii= | D Ml T = ¢ [VaTu(ant prar) ( > mw“"z) 7

i,7€B(1) ,j€B(1)

2
T3 = E COVu(dxl|M,s*) ( Z mi; Ty , 51/1;(I])) y

1,J€B(1)

and the termd’, andT; are given by

1 l * l g
Ti= / > v () v(dat'|M, s )—/ > 0l () v(da'|0, 5)|,
jeB(l) JEB()

1
Ts = 27 | VaTu(dal | M%) (Z 1 (x; ) — Valy,(dgl|0,3) (Z 6] xj) ’

jeB() jeB(l)

Note that the measure(dz!|M, s*) has the same structure as the meagt(iex!|z', y).
Therefore, it follows by the same argument as in the proof of Propositibd4 3hat the
measure/(dz!| M, s*) satisfies LSIf) with 5 > 0 depending only ori{ andc;. Hence, the
measure(dz'| M, s*) also satisfies the SGYby Lemma 1.1.1. Itis easy to deduce by using
CS¢) and the basic covariance estimate of Lemma 1.2.2 that

T1+T2+T3SC€
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3.1 The original two-scale approach

for a constanC < oo depending only ori andc;.

The interesting part is the estimationBf andTs. The right choice of = 5(s*) € RE®
plays an important role. Therefore, let us motivate how to ch@ose 5(s*) for a given
vectors* € RP(), The structure ofy and75 is given by

‘/g v(da!| M, s* /g v(dz!|0, 3)

for a bounded functiog : RF") — R. We want to estimate the last expression uniformly in
the unbounded parameteyse R ands* € RE("). Therefore, let us take a closer look at the
dependence of

/ £(2) v(da'| M, 5*) / e exp (~H( M, ) I (@) (3.39)

on the parameteng ands*. On the blockB(1) the coarse-graining operatéy : RE() — R
is defined byPja' = & 37, 5 i- Let P denote the adjoint operator fi.e. fory, € R

1

ll RBO).
Pa

Pr(y) == — (Y- u) €
By using the identityP, K P* = Idgr one sees that the orthogonal projectidrof RED on
ker P, = Xk Is given by

II=Id-KP/P,. (3.39)

Consider the right hand side of (3.38). The dependence of the inteysgtazeX « ,, ony;
is abolished by the translatiarl — z = ITz!, which mapsX ,, onto Xk and yields the
identity

/g yw(dz'| M, s* /g 74+ KPry)x (3.40)

1, ~ * * ~ — ~
exp | =3 (Z, Id+My)z) — (s" + MyK Py, z) — Z (2 + 1) H&;O(dz),
ieB(l)

where the matrix)M;; is given by (3.11). Deriving the last identity consists of a straight
forward calculation, where one has to consider the definition (3.22)(af| M, s*), cancel

all terms that are independent &fwith terms of the normalization constast and ap-
ply the fact that(/X P*y;, Z2) = 0 for Z € Xk . Note that in (3.40) only the linear term
(s* + My K P}y, Z) depends on the parametgfsands*. The idea is to get rid of this term
by a second translation — z 4 v, which leaves the integration spa&g o invariant. Be-
causez € Xk = ker P, we can rewrite the Gaussian part of the Hamiltonian in (3.40)
as

<§, (Id +Mll>2> + <S* + M”KPl*yl, §>

1
3¢

N =

Z, (Id —|—HM”)§> + <HS* + HM”KF)l*yl), 2) .
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

Because\/ satisfies CS{) with ¢ < 1, the map(Id +IIMy;) : Xk o — Xk is invertible.
We definev by

= (Id —TIMy) ~H(Is* + OM K Pfy;). (3.41)

A direct calculation using the definition ofyields

(2, (1d +11My) 2) + (I1s* + LMy K Py, 2)

[N

1 1
= 5 <z, (Id +HMll)Z> — <H8* + HM”KPl*yl, U> + 5 <U, (Id +HM11)U> .

Because € X, the transformatio — 2 = Z + v leaves the integration spadéx o on
the right hand side of (3.40) invariant and yields by using the last identity tha

/5 v(da'|M, s*) /§z+NPyl—v)

1
xexp | = (2, (Id+ M)z EEB%) 0vi(zi +y —vi) | Ml (d2),  (342)

where we have canceled the terms that are independenith terms of the normalization
constantZ. Note that we have gained compactness by this representation: Thendeilou
parameterg; ands* only enter (3.42) as an argument of the bounded functjoausd §v;.
This observation is crucial for the estimation’Bf and75. The derivation of (3.42) reveals
that it is natural to choose

5(8*) =IIs" + HMllKF)l*yl = (Id _KPI*]DZ) (8* + MllKPl*yl) , (343)

where the matrix\{y; is given by (3.11). The reason is that carrying out the two translations
from above yields

[ e viastio,n = 5 [ e+ KBy -v)

1
xexp | — (z,2) — Z iz +yr — vy) HLXK (dz). (3.44)
ieB()

The right hand side of (3.42) and (3.44) coincide except of the interatation (z!, M;;2').
The latter is very helpful to apply a perturbation argument for the unifastimation of7}
andTs.

Now, we will estimatel’y and75. Let us choosé = 5(s*) asin (3.43). FoH < A < 1 we
define the probability measurg on X (see (3.25)) by

1 1 _
va(dz) = — exp( 5 (& (1d+AMy)z = > ozt - )) H&;O(dz),

JEB(1)
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3.1 The original two-scale approach

where the vector is defined by (3.41). Applying the translatieh — z = ITz! + v on the
integrals of7y yields (cf. (3.42), and (3.44))

/ Z &p (zj +y — vj)r1(dz) / Z (w (zj +y — vj)vo(dz)

JEB() jeB()

< = 0 — v dz)|. 3.45
K 0?;21 dA/ Z ¢ ( +w = vy) valdz) ( )
Becausel/ satisfies CS(), we may assume w.l.0.g. that

1 1

By direct calculation we get that for afiy< A < 1

/ Z oY (25 4y — vj) va(dz)

JjeB()

1
= 5 COVuy(d2) ( Z oYY (25 +y — vj) (Z,Muz>>

JEB(1)

/ ( Z oYY (25 4+ i — vj) /5% Zi+uy — )V)\(dz)) (z, Myz)vy(dz).
JjE€B()

Let C < oo denote a generic constant depending onlyioandc;. From the last identity
we can deduce the estimate

/ Z (5¢ (zj +y1 —vj) va(dz)

jeB()

< K max sup‘&/) )‘ /|<Z,MZZZ>\V>\(dZ)
JE€B(I) zeR

s I (4 o (000 2) — e 0 (o 1= ) A, )
< Ce
fexp (—% (z, Id+AMy) z) — ZjeB(l) i (25 +yi — )) 7—[{; 1 (dz)

>f\z|2exp( Lz 2) M) (dn)

(3.46)
< Ceexp (2K B sup 9%5(2)l Jexp (=3 (z,2)) HE ! (dw)
2 \© [Xx,0

JjeB()

< Ce. (3.47)
A combination of (3.45) and (3.47) yields the estimate

T4 < Ce.
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

The same argument also yields
T5 < Ce.

Compared to the estimation @}, one has to take a closer look at the term

d
7 Vel (d2) ( Z oY (25 4y — Uj))

JEB()

2
/ ( Z oV (z5 +y — /6¢3(Zj+yl’l)j)y)\(d2)) va(dz).

jeB(1)

Because

2
/ {d)\ ( Y Wiz +y— ) /5% Zj +ylvj)l/)\(d2)) ] va(dz)
jeB(l)

= / ( Z oV (25 + i — vj) /cw zj + Yy — vj) u,\(dz)) va(dz)

JjeB()

X / Z 61# (zj +y1 — vj) va(dz)

JjE€B()
=0,

it follows by direct calculation that

d

JjeB()
? d
—/< > 5¢}(Zj+yz—Uj)—/5¢}(Zj+yz—’vj)w(d2)> (CD\VA(CZZ)>
JjeB()
= % COVI//\(dZ (( Z 57,/) /(w l/)\ dz)> <Z,Muz>>.
JjE€B()

However, the covariance term on the right hand side can be estimated iantleevegay as
in (3.47). Therefore, we have deduced (3.31) uniformly;ire R ands* € RE®, which
completes the proof of Lemma 3.1.13. O

3.2 The local Cramér theorem for inhomogeneous
single-site potentials

The main goal of this section is to deduce a convexification result that isfahe central
ingredients for the macroscopic LSI (cf. Proposition 3.1.5 and Lemma 3:1.13)

92



3.2 The local Cramér theorem for inhomogeneous single-site potentials

Proposition 3.2.1. Assume that the Hamiltoniali : RX — R is given by
W]
H(z) := Z 556? + sjx; + 51!13'(1‘]') (3.48)
j=1
for some arbitrary vectos € R and some functiondy; : R — R satisfying the uniform
bound(3.1)i.e.forallj € {1,..., K}.

16¢llc2 < er < oo

Let Hx denote the coarse-grained Hamiltonian Bf associated to coarse-graining the
whole system. More precisely, for € R

_ 1
Hg(m):= —— log/ exp (—H (z)) H (dx). (3.49)
K A NK o
174 23:1 acj_m}
Then there ig{y and A > 0 such that for allK > K, s, andm
&

Like the convexification result of Theorem 2.1.6 in Chapter 2 and [22fitoa 29], the
statement of Proposition 3.2.1 is a direct consequence of the a local Grerosm, namely:

Theorem 3.2.2(Local Cramér theorem)Assume that the HamiltoniaH is given by(3.48)
Letpx (m) be defined as the Cramér transformif namely

K

1

wr(m) :=sup am—log/ exp | —H(x) + g oxj | dx|. (3.50)
oc€R K RE j=1

Thenyg is strictly convex independently efm, and K. Additionally, it holds
|Hg (m) — o (m)||cz — 0 asK — oo,

The convergence only depends on the constagiven by(3.1).

In Section 2.2 we have implicitly generalized the local Cramér theorem to Hamil®nian
given by (cf. comment after Lemma 2.2.2)

K

H(x):= Y ()

=1

for an arbitrary perturbed strictly convex single-site potentiah the sense of (2.5). Now,
we have to generalize it to Hamiltonians of the form

K
H(z) = tj(xy).
j=1
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

The difference to [22] and Section 2.2 is that the single-site potentiaksre allowed to
depend on the sitg € {1,..., K'}. Because we want to apply the local Cramér theorem to
single-site potentials given by

1
wj(xj) = 5.%'3 + S;T; + 5’(%‘(1']'),

we only consider this nice class of potentials making the proof of the locah€irtheorem
less complex than in Section 2.2.

As usual, the proof of the local Cramér theorem is based on two ingrediémedirst one is
Cramér’s representation of the differen(déx (m) — px (m)) (cf. [22, (125)]):

Lemma 3.2.3.For j € {1,..., K} we consider the one-dimensional probability measure
g given by

o * 1
g (dx;) := exp <—cpK7j(o) +oxj — 537? — 8T — (51/1j(37j)> dxj,

where
. 1
Ok (o) = log/exp <0xj — 537]2 — 5T — (Wj(xj)) dz;.

We introduce the meam; and variances? of the measurg

mj = /%u;’(dfb‘j) and ¢} = /(fﬁj — m;)?pd (da).

Assume thak(;, j € {1,..., K}, are independent random variables distributed according
to ug. Letgx, m (&) denote the Lebesgue density of the distribution of the random variable

1 K
— ZXJ — mj.
VK =

Then
9r,m(0) = exp(Kpg(m) — K Hy (m)). (3.51)

The second ingredient is a local central limit type theorem for the deggity. The gener-
alization of the local Cramér theorem by Theorem 3.2.2 is not surprisingthEcclassical
central limit theorem it is not important that the random variabtgsare identically dis-
tributed. It suffices that the standard deviatigrof X; is uniformly bounded. The latter is
guaranteed by the uniform contrigft;|| < ¢; (cf. Lemma 3.2.4 below). As a consequence
we can proceed with the same strategy as for the classical local Craméenthéd. [22,
Proposition 31]). We just have to pay attention that every step doeslgairréhe specific
form of ¢»; but on the uniform bound af;. Because the complete proof of Theorem 3.2.2 is
elementary but a bit lengthy, we will state the details in the next section.
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3.2 The local Cramér theorem for inhomogeneous single-site potentials

Lemma 3.2.4. Assume thaljov;||c2 < ¢1 < oo uniformly inj € {1,..., K'}. Then there
is a constand < ¢ < oo such that for any and

<g <c (3.52)

ol

whereg; is defined as in Lemma 3.2.3.

We conclude this chapter with the proof of Lemma 3.2.3 and Lemma 3.2.4.

Lemma 3.2.3Becauser is the Legendre transform of the strictly convex function

there exits for everyn € R a uniques = o(m) € R such that

pic(m) = om — Pic(0). (3.53)
It is well-known thato is determined by the equation

m= %cp}‘((a). (3.54)

Now, we will show thatp?, andm can be decomposed according to

1 < 1<
=% Z ©k.(0) and m= Z m;. (3.55)
j=1 j=1

Indeed, the decomposition ¢f;. directly follows from definitions. Observe that

vy
my = [ (das) = 2 iy (o),

Then, the decomposition of. follows from (3.54) and the decomposition of,. More

precisely,
K

d ~d 1
"= gtk EI%J TERLM

Now, we will deduce Cramér’s representation (3.51). The density,({) at{ = 0 can be
written as

K
gr,m(0 /{K2 S5 aymy=0) exp (Z —pk (o) +oxj— ?/)j(%’)) H(dz).
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

By (3.55) we get

K
9rm(0) = /X exp (Kw*x(v) + Kom —> %(l‘j)) H(dx).
Km j=1

Using (3.53) the right hand side becomes

91m(0) = exp (K prc(m)) /

K
exp (Zz/g(@)) H(dz).
XK,m j=1

Applying the definition (3.49) ofix (m) yields the desired formula. O

Lemma 3.2.4 Observe that the variance of a one-dimensional Gaussian measureaiginva
under adding a linear term to the Hamiltonian i.e. for any R

2. _ . fxexp(—%z)d:c ? exp(—x;) e
o /( fexp(—“’j)dx) ’

_ / (ac B J xexp(z — x;)d:c>2 exp(ox — %)

[exp(6z —Z)dz | [exp(Gz — Z)da

Let us consider the upper bound of (3.52). Because the mean of abjiipbmeasurer is
optimal in the sense that for alle R

/ (@ — &) p(da) = / 22(dz) — 2 / w(dz) +

> /xQV(dw) - </:m/(dl‘)>2
_ / (;E_ / :m/(dm)>21/(dﬂc),

we have by using the uniform bout{dy;||c2 < ¢1 < co andé = o — s;

1.2
Jexp(6z; — 5 — 0v;(x)))da;
22 2 N 2?2
- / (azj _ Jzjexp(oz; — QJ)da:j) exp(Gz; — o — 0vj(x;)) dz;

x2 N x2
Jexp(oz; — 5 )dx; Jexp(oz; — 5 — opj(x)))dx;
w?

2 2
< exp(2c1)/ (xj B [ zjexp(ox; — Q)dxj) exp(dz; — ) dz;

N

2
xsy x
J

Jexp(ox; — 5 )dx; Jexp(oa; — 5 )dx;
= exp(2¢1) 62
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3.2 The local Cramér theorem for inhomogeneous single-site potentials
The lower bound of (3.52) is deduced by the same type of argument, namely

2
exp(oz; — 7])

§]2 > exp(—2cy) / (z; —mj)? - dx;
Jexp(6a; — < )dx;
> 2

~ Ty ~ ;52
[ xjexp(oa; — = )dx; exp(0z; — 5 Ao
— 3 Lj

Jexp(6a; — 4 )dx; [ exp(6z; — %)dxj

> exp(—201)/ Tj—

= exp(—2c1) 6%

3.2.1 Proof of the local Cramér theorem

As in Section 2.2, the main tool for the proof of Theorem 3.2.2 is a local ddimtriatype
result for the densityx ,,. Even if we use some auxiliary results of Section 2.2, we cannot
apply the local central limit result of Theorem 2.2.1 because it is only fortedilor the
case of homogeneous single-site potentials= 1, j € {1,...,K}. In another aspect,
the setting of this section is not as complex as the setting of Section 2.2, bevasye

the uniform control (3.52) on the standard deviatipn Therefore, we can apply a simpler
argument than the one of Theorem 2.2.1. Because the proceeding is ness standard,
some elements of the proof may also be found in [17, Chapter XVI], [3pefdix 2], [26,
Section 3], [38, p. 752 and Section 5] and [22, Appendix: Local Crah&brem].

Convention. For the rest of Section 3.2.1, we assume that the indexgiven by some
number; € {1,..., K'}. Additionally, we introduce the notation

1)y = [ Fasus dsy).
The definition ofg ,, suggests to introduce for the shifted variables
f]‘ =Ty — My,

which yields that the mean af; is normalized i.e{(z;), = 0. The following auxiliary
lemma provides tools needed for the proof of Theorem 3.2.2.

Lemma 3.2.5. There is a constarit < C' < oo such that the following statements are true:
(i) Foranyk € {1,...,5} andj it holds: <\:%j|k>j <C.
(i) Forany¢ € R andj it holds: | (exp(iZ;€)), | < Cl¢]~1.

(iii) Forany d > 0thereisA < 1 such that for allo, || > ¢, and}j it holds:

(exp (i7€));] < A

97
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(iv) Foranyé > 0thereisO < Cs < oo such that for allo, |£| > ¢, andj it holds:

e (2300}, < 5

(v) For anyj it holds:

<C 1+ L,

‘ (exp zxj§)>

‘ (exp(id;€));| < C (1+) I&F°.

(vi) There exists a complex-valued functief{¢) such that forf{| < 1:

(exp(iZ;€)); = exp(—h;(£)) with < lef.

hji(€) —

29

The proof of the last lemma is straight forward using the auxiliary resultecti@ 2.2 and
the uniform bound (3.52).

Proof of Lemma 3.2.5The statements (i) and (ii) follow from a combination of the uniform
bound (3.52) and Lemma 2.2.2.

The statement (iii) follows from an application of Lemma 2.2.4 and the observ@bthe
constant\ only depends on the upper bound of the statements (i) and (ii), which isemifo
inj.

The statement (iv) follows directly from a combination of (ii) and (iii).

Now, let us deduce the statement (v). We need the fact that by (3.553wee h

K K
d 1 d 2.84) 1 5 (352)

_ oy 2 2 < 3.56
do"' T KZ4ude " T K& = C (3.56)
J=1 Jj=1

and
(2 85) 1

K .
Z (12513); (3.57)

We fix the index;j. Then an application of Lemma 2.2.5 yields (observing % =
and¢ = ;€)

{.\‘Hx

d . d - d
(i), = | i), [m
(3.56) )
2 G e (1D (€D
(3.52)

< Amax(1,¢) (1+€]) (1€)2
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3.2 The local Cramér theorem for inhomogeneous single-site potentials

We turn to the second statement of (v). A direct calculation reveals
d? . d (d " d
o 02,6, = o (40 (el 4o m)

d (1d (exp(iz;€)) d m d m
N A 2 el
do \jdo PULGS)15 % do do

1 d d 2
= [(gj da) <exp(ii“j€)>j} <da m>
1d d d 2
+ (S ein), ) 2o (5 m)
td, L 2
+ (S i lewime), ) o gzm gom

Now, the desired estimate can be achieved by an application of Lemma 2.2.3, (3.58),
and some basic estimates.

Finally, let us deduce the statement (vi). We fix the indeRecalling thatt =

T—my — i
Sj Sj
and¢§ = ¢;&, the statement follows from the uniform bound (3.52) and the observaida)(
O

Proof of Theorem 3.2.2We start with deducing the strict convexity @f; for any K. With
the same argument as for (2.37) we get

> d \7!
a2 ? ) = <da m) ’
which yields the desired statement by using the estimate (3.56).

Now, let us consider the convergence|gfy (m) — ¢k (m)| c=. Because the random vari-
ablesX; := X; —m; of Lemma 3.2.3 are independent, it follows by the same argument as
for (2.42) that

5 1
27 cn(0) = [ [tesplia =€) (2.59)
j=1

wheregk (&) denotes the Lebesgue density of the distribution of the %gnzle Xj.
Assume that the following estimates hold uniformlyAhandm:

K
[ Ttexptiz—=),de| ~ 1. (3.59)
j=1
d [ 1
o [ Tlesptia, ;i) <1, (3.60)
j=1
@ 2 )T 1 del <1 3.61
M/H@XP(Z%\/EE»J gl S 1 (3.61)
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

Then a combination of the formula (3.58) and Cramér’s representation) (@iélils the
desired result
b (m) —ox(m)|c2 =0  asK — oco.

It remains to establish the estimates from above. Note that the intermediate esBré@je (
follows from the estimates (3.59) and (3.61) by interpolation. Using the todlsrafma 3.2.5,
we can deduce (3.59) and (3.61) with the same strategy as in the prooéoferh 2.2.1.

Argument for (3.59): We start with deducing the upper bound

(3.62)

/Hexpzng»dé

For some fixed) < § < 1 we split the integral according to

K

exp(iZ;—=¢));dé = exp(if;—=¢));d§
G e ey Lt s

1
ex m:j— jdg.
/{r5)>5}a 1 ’ \/Ef» ‘

Let us consider the inner integral. We can chodsge so small that the statement (vi) of
Lemma 3.2.5 applies. Hence, we may rewrite the inner integral as

o .1 p K , 1 ]
_/{’&gka}jl;[l(exp(lw\/ﬁf»j f—/{‘\/%5<5} exp —j; j (\/»f> '3

Note that for

=

‘\/—%5‘ < ¢ the statement (vi) of Lemma 3.2.5 yields

j€P°. (3.63)

K 1 K §2 )
A _ )
;hJ(VEf) 25t S

j=1

\F

In particular foré small enough this implies by using the assumption (3.52)

K 2
(Zh (= )) = > Ses Le (364)

=1

where the constaitk < ¢ < oo is given by (3.52). The last statement yields the estimate

"= g (Zh Qfg))

< fgeg 0 it 51

dg
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3.2 The local Cramér theorem for inhomogeneous single-site potentials

Now, let us consider the outer integral

K

[ (exp(iz; ).

J=1

S e

On the integrand we apply the statement (iii) of Lemma 3.2.5Kon 2 of the K factors)
and the statement (iv) of Lemma 3.2.5 (on the remaigifectors):

K 1 1 2

[](exp <if?jf>>j SAK? (1)

j=1 VE 14+ =[]

1
<K K-2 <K K-2 )
It follows that the second tertf/ is exponentially small:
s 1 1
= [ [ (exptin——e))yae| < 0 2 [ L ae
{[+= €25} 52 VK 1+<

SKEMN?250  asK — .

Together with the estimate ¢f| from above, this yields the desired upper bound (3.62).
We turn to the lower bound

K
.1
| lteswts nyae| =1+ 1112

Applying the triangle inequality yields
|\I+I1I| 2 |I|—|II|.
Because/I| — 0 asK — oo it suffices to show
1z 1.

Recall that for < 6 we have (cf. (3.64))

Re (i hj (\/1? g)) > ég?

Note that the functiorC > y — exp(y) € C is Lipschitz continuous ofiRey < —552
with constanbxp(—ﬁﬁ). Therefore (3.63) yields the estimate

exp (Z;hj <\/1E f)) — exp (i ;}2{52) S \/% €]3 exp (—4252) :

J Jj=1

R €
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

The last estimate implies

K §2 1 .
/{&Ma}e){p( ;Mg)dg ~ VK /|§| eXp< 402£>d£—>0

asK — oo. Additionally, we observe that by the assumption (3.52)

11 —/ i s e déZ/ exp (~5€2) dg 21
{’rg‘@} 2K {le|<o} 2

Hence, we may conclude that
\I| = | = IIT+III| > |I1I| —|I —1II|>1
for K > 1 large enough.

Argument for (3.61): We split the integral according to
K

d? 1 d? 1
i | Lot pesae= s Tty e

Let us consider the inner integral’. An application of the chain rule for differentiation
yields

L exp(i56)); 11 <exp<z‘sﬁk£>>k.

—~ dm

#J

Mx

K
d
— | I exp(iZ;§));
m :

A second differentiation yields

K d2
d 3 H exp(iZ;€)); Z [M@Xp(ii’jf))j H (exp(ik&))k
Jj=1 ke{i,¥.7K},
J

d Koy
+ o {exp(iE€)); Y, o(exp(imn))n [ (eXP(iifzé»l]- (3.65)
n€{17 K}7 l€{17’K}7

The same argument as for (3.64) yields that’f\%&{g‘ < 4 with § small enough
[T (ewlii—e)
VK

1
exp Z hj ({) > ‘
le{1,...,.K}, (le{l,...,K}, \/F

l#7, l#n l#7, l#n
1

102



3.2 The local Cramér theorem for inhomogeneous single-site potentials

Hence, a combination of the identity (3.65), the estimate (3.66), and the estirhia¢gesma 3.2.5 (v)
yields

2 & 1
CWH(GXP(Z%\/EQ%

< [ (1 B i L (1 ) e ().

The desired estimate directly follows from the last estimate, i.e.

1
< 2 3 6 % T2 <
VIS [ gy @169 e 16) (38 e 51

Now, we turn to the outer integr®dl. By substitution we have

On the identity (3.65), we apply the estimates of Lemma 3.2.5 (v) in a first stejeampdiz ;£)) ;| < 1
in a second step:

2K
) (exp(iZ;&));
7j=1
K
SO a+ER P T Kexp(i@ng))l
j=1 ke{1,...,K},
k#j
+HEP) Y I Kexpi@e))l
ne{l,...K}, le{1,....K},
n#j I#5, I#n

SA+EP > > IT  Heplag)l-

je{l, ., K}  ne{l,..K}, le{l,.. K},
n#j I#], l#n

We use Lemma 3.2.5 (jii) (0K — 12 of the K — 2 factors|(exp(iz;£));|) and Lemma 3.2.5
(iv) (on the remaining 0 factors|(exp(iZ;£))i|):

d2 o 2 K—-12 1 10
S KA(1 AT

o LL {08,005 S € 1+ ) (1)
< g2ak-12 1
: TP
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3 Uniform LSI for Kawasaki dynamics: the weakly-interacting case

Hence, we see that the tefiri| is exponentially small i.e.

1
V| S VK K2 \E-12 dé — 0 as K — oo.
~ 1+ ¢

Together with the estimate fofV/| from above, the latter yields (3.61).
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Conventions

In addition to standard notation we use the following conventions:
e o < b means that there is a uniform constéht- 0 such that: < Cb,
a ~ bmeans that < bandb < a.
o 7, = (x1,...,2i—1,Tiy1,...,xN) €rases the-th entry ofr = (z1,...,2n).
e osc f =sup, f(z) — inf, f(z) is the oscillation off.
. d%f stands for the partial derivative gfw.r.t. the variabler;.

e (-,-) denotes the scalar product,| denotes the nornly denotes the gradient, artbss
denotes the Hessian of a Euclidean spacef nothing else is written, the standard Eu-
clidean structure is considered BY i.e.z -y = (z,y) = Ef;l Y-

e [ f(z)dx denotes the integration gf w.r.t. the Lebesgue measure in the according di-
mension.

e X denotes théd-dimensional Hausdorff measure,

’H{;(dx) denotes thé{-dimensional Hausdorff measure restricted to thedset

e P(X) denotes the space of probability measures on a Euclidean &pace

e 7 denotes a generic normalization constant of a probability measure. ltawajuehange

from line to line or even within a line. For example,ifdz) = £ exp(—H(z)) dz, then

Z = [exp(—H(z))dz.
e We do not distinguish between the measuféx) and its Lebesgue densityz).

e fu denotes the measure given by the dengity) u.(dx).

e covy(f,9) = [(f = [ fdr) (g9 — [ gdu) du denotes the covariance gfandg,
var,(f) = cov,(f, f) denotes the variance gfw.r.t. the probability measure.

o Ent(fp,pn) = [ flog fdu — [ fdu log [ fdu coincides with the relative entropy ¢f.
w.r.t. u provided [ fdu = 1.
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