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1. Introduction 
1.1. The Muscle 
Muscle is the contractile tissue of the body that is derived from the mesodermal layer of 

embryonic germ cells. Its main function is to produce force and cause motion. Muscles are 

responsible for locomotion of the organism itself and movement of internal organs. There are 

three basic types of muscles (a) cross-striated skeletal muscles, which are necessary for voluntary 

movement and breathing (diaphragm) (b) cross-striated cardiac muscles, which are involuntary, 

and necessary to circulate the blood and (c) smooth muscles, which are involuntary muscles that 

line the blood vessels, digestive tract, uterus and several internal organs. There are two broad 

types of voluntary muscle fibers: slow twitch and fast twitch. Slow twitch fibers (e.g. Soleus 

muscle) contract for long periods of time but with little force while fast twitch fibers (e.g. Tibialis 

Anterior muscle) contract quickly and powerfully but fatigue very rapidly. 

1.1.1. The cytoskeleton 

The cytoskeleton is a multi-protein framework. The fundamental aspects of cell division, fusion, 

intracellular transport, polarity, shape and organization depend on this multi-protein supporting 

structure. However, the cytoskeleton is at the same time a highly dynamic structure (Carballido-

Lopez et al., 2003) which undergoes constant restructuring and modifications. This physical 

property of the cytoskeleton is a manifestation of the biochemical properties of various proteins, 

which form three major filamentous systems. This dynamic system consists of the microtubules, 

the intermediate filament proteins and the actin containing microfilaments.  

1.1.1.1. Microtubules 

The microtubules are one of the components of the cytoskeleton. They have a diameter of 25 nm 

and length varying from 200 nanometers to 25 micrometers. Microtubules serve as structural 

components within cells and are involved in many cellular processes including mitosis, 

cytokinesis and vesicular transport. 

 

http://en.wikipedia.org/wiki/Muscle_contraction�
http://en.wikipedia.org/wiki/Tissue_%28biology%29�
http://en.wikipedia.org/wiki/Germ_layer�
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1.1.1.2. Intermediate filaments  

Intermediate filaments are one of the three main components (along with thin filaments and 

mictrotubules) of cytoskeleton. Intermediate filaments have an average diameter of 8-10 

nanometers, (intermediate in size compared to thin filaments (actin) and microtubules. There are 

five different types of intermediate filaments. Type I (acidic keratin) and Type II (basic keratin) 

are produced by different types of epithelial cells (eg. bladder, skin etc). Type III intermediate 

filaments are distributed in a number of cell types (eg. vimentin in fibroblasts, endothelial cells 

and leukocytes; desmin in muscle). Type IV (eg. neurofilament proteins) and Type V (eg. 

lamins). Most types of intermediate filaments (Types I-IV) are cytoplasmic, but type V, the 

lamins, are nuclear (http://www.cytochemistry.net/cell-biology/intermediate_filaments.htm). 

1.1.1.3. The actin filament system 

Actin is among the most abundant proteins within any eukaryotic cell and it has been highly 

conserved across divergent phyla. Cellular movement is primarily based on the interaction of 

actin filaments with myosin motors that lead to a sliding motion of the filaments. Actins are 

globular proteins of 42 kDa with four sub-domains. Above a critical concentration and in the 

presence of ATP, Mg2+ and K+

1.1.1.4. The actin binding proteins  

 ions, these monomers associate to form polarized filaments or the 

F-actin. Under physiological conditions, actin filaments are maintained in a dynamic equilibrium 

with monomeric, ATP-bound G-actin. The growth of actin filaments at the barbed ends and the 

simultaneous disassembly at the pointed end are parts of a process known as tread milling 

(Bindschadler et al., 2004).  

The dynamical property of the actin cytoskeleton is mainly regulated by a plethora of 

participating actin binding proteins (ABPs). These are classified into several main groups, 

according to their mode of binding to and modification of actin and their function in the cell 

(Figure 1.1). The G-actin binding proteins predominantly serve to function as helper proteins for 

exchanging ATP/ADP during the assembly and disassembly of filamentous actin, but also in 

severing and in promoting new actin polymerization. Varying the mechanical properties of F-

actin is essential for maintaining the structural integrity of the cell, cell motility and adhesion. 

During this, the actin filaments may be organized into stress fibers (Wang et al., 1984), dorsal 
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arcs (Heath et al., 1981), concave or convex bundles (White et al., 1984), geodesic arrays 

(Mochizuki et al., 1988), or a loose meshwork (Trotter et al., 1978). 

 
Figure 1.1. Functions of actin binding proteins determined from in vitro experiments. Each actin 
binding protein has a unique role and in a very significant manner modulates the nature of F-actin from a 
simple meshwork structure to highly cross-linked, tight thick bundles. Such a complex sub-cellular 
scaffold is brought about by the participating actin binding proteins. Figure adapted from reference 
(Ayscough et al., 1998). 

Formation of such complexes and the cytoarchitecture in general, depend predominantly on one 

or more actin-binding proteins. Several proteins are known to contain more than one actin 

binding site, these proteins typically bundle actin filaments e.g. α-actinin. Other parameters which 

govern the formation of complex structures are binding stoichiometry, kinetics of actin 

polymerization, and regulation of cross-linking activity. The expression profile and spatio-

temporal distribution of the ABPs also helps us in understanding a cell and in turn understand the 

function of the ABPs. The actin binding regulatory proteins cross-talk with components of 

intracellular signaling pathways and can act either as down-stream targets or as up-stream 

regulators in these cascades. Identification of novel components of the cytoskeleton and 

understanding their biological functions may help to design strategies to cure various diseases. 

Numerous diseases are associated with the cytoskeletal systems of the cytoplasm, the nuclear 

envelope or the nucleus. Among them are inherited skeletal muscle disorders, cardio myopathies, 
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diseases of the central nervous system, liver cirrhosis, viral and fungal infections, and 

inflammation, blistering skin disease, tumors and fibrotic disorders.  

1.1.2. Structure and function of cross striated muscle  

Cross striated muscles are highly complex structures formed by precise organization of 

macromolecular complexes regulated by functional interactions of its individual components. 

Skeletal muscle fibers are long, multinucleated cells connected to nerve terminals, blood vessels, 

and connective tissue. Each muscle fiber is built up from contractile organelles called myofibrils 

(Figure 1.2A). The individual myofibril in both skeletal and cardiac muscle forms the contractile 

apparatus and it is composed of repetitive units called ‘sarcomeres’. The length of the fiber is 

determined by the number of sarcomeres that is lined up in series, one next to the other and the 

thickness depends on the number of myofibrils that are aligned in parallel. The regular 

arrangement of the sarcomere gives the characteristic striated appearance of myofibrils and can 

readily be seen by the light microscopy as alternating light and dark bands (Figure 1.2 A, B). The 

light band is termed the I-band because it is isotropic in polarized light. The dark band is known 

as A-band because it is anisotropic. The principle components of striated muscle sarcomeres are 

parallel arrays of actin-containing thin filaments and myosin-containing thick filaments. Thin 

filaments span the I-band and overlap with thick filaments in the A-band. The tail part of myosin 

binds to several proteins and approximately 300 myosin molecules are assembled in a tail to tail 

fashion to build the thick filaments. The head parts (which can bind actin filaments and hydrolyze 

ATP) project out from the thick filament overlapping and interacting with thin filaments. Several 

myosin binding proteins, such as myomesin, reside at the center of the M-band. A third filament 

system that integrates both compartments is composed of the giant protein titin (also called 

connectin) and its associated proteins. Individual titin molecules span half sarcomere length and 

connect the Z-disk to the M-line. In addition, titin is thought to function as a molecular spring (Li 

et al., 2002; Linke et al., 1996; Linke et al., 1998). Another gigantic protein, called nebulin, spans 

the entire length of the actin filaments and is supposed to determine the length of the actin 

filaments. Z-disks represent the lateral boundaries of the sarcomere, where the actin filaments, 

titin, and nebulin are anchored (Huxley et al., 1954). 
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Figure 1.2. Structure of a skeletal muscle fiber. (A)  Myofibrils, which are composed of sarcomeres, are 
surrounded by the sarcoplasmic reticulum (SR) and plasma membrane (sarcolemma). Near the A/I 
junctions, terminal cisternae and T tubules form triads, which regulate the Ca2+

Contraction and relaxation occurs when the myosin heads of the thick filament slide past the actin 

thin filaments (Huxley et al., 1954). Thereby the thick filaments penetrate into the thin filament 

region. The contractile apparatus is regulated by the thin filament-associated protein complex 

troponin, that consists of troponin T, C and I and tropomyosin, which is wound over the actin 

filament. Muscle contraction begins with a depolarization signal from the nerve terminals and 

subsequent release of Ca

 transport and release. (B) 
Electron micrograph of human skeletal muscle. The A-band is the thick filament region of the sarcomere, 
whereas the I-band is composed of thin filaments. The Z-line anchors thin filaments from opposing 
sarcomeres and myomesin connects thick filaments to titin in the M-line. Adapted from (Stryer et al., 
1981; Van Der Ven et al., 1996).  

2+ ions from the sarcoplasmic reticulum. The free Ca2+

1.1.3. Ultrastructure and components of adult skeletal muscle tissue 

 binds to troponin 

C, which causes troponin I to shift and pull tropomyosin to which it is attached. The movement of 

tropomyosin from its position allows myosin heads to interact with the thin filaments by 

undergoing a conformational change (Cooke et al., 1986; Rayment et al., 1993b). This interaction 

of myosin heads with the actin-containing thin filaments is coupled to the ATP-ADP hydrolysis 

cycle (Lymn et al., 1971; Rayment et al., 1993a; Rayment et al., 1993b). Force generated by the 

interaction of myosin and actin is transduced across the plasma membrane by sub-sarcolemmal 

and transmembrane proteins to the extracellular matrix and neighboring cells. 

Skeletal muscle tissue is a precisely ordered structure. This order in the contractile machinery is 

essential for efficient function and it can only be achieved by other molecules that contribute to 

structural integrity. These are numerous actin- and myosin-associated proteins, as well as titin and 
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its associated proteins. All these components are essential for maintaining this complex 

architecture and regulation during differentiation (Figure 1.3). 

1.1.3.1. Thin filaments 

In striated muscle cells, the thin filament system consists of actin microfilaments. The striated 

muscle specific isoforms, cardiac actin (ACTC1) is expressed solely in cardiac tissue, while 

skeletal muscle actin (ACTA1) is found only in skeletal muscles. Both variants are products of 

individual genes. In striated muscle cells the thin filaments of the myofibrils measure 

approximately 1 µM in length on the either side of the Z-disk. The polymerized actin forms a 

polar structure with barbed ends and pointed ends. The capping protein CapZ binds to barbed 

ends and the tropomodulin binds to pointed ends. In cross striated muscle cells several other 

proteins bind to actin filaments; these include tropomyosin (66 kDa) and the troponin complex 

(TnT, TnC and TnI), which are bound along the length of the actin filament and regulate myosin 

binding. The giant protein nebulin also binds to F-actin and is thought to regulate the length of 

the filaments. At the Z- line, α-actinin binds to the barbed ends of the actin filaments, and tethers 

them into the characteristic tetragonal lattice. In addition to this structural role, recent data 

suggest an involvement of actin in transcriptional regulation and an activity as a scaffold for the 

transcriptional machinery (Franke et al., 2004). 

 

Figure 1.3. Schematic representation of the sarcomere. The sarcomere is composed of thin filaments 
(red), thick filaments (blue) and associated structures like the M-line (green box) and the Z-disk (yellow 
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box). The proteins that are found at the Z-disk are listed in the adjacent box above. Adapted from (Au et., 
2004). 

1.1.3.2 Thick filaments 
1.1.3.2.1. Myosin 

Myosins are a huge superfamily of genes whose protein products share the basic properties of 

actin binding, ATP hydrolysis (ATPase enzyme activity), and force transduction. Virtually all 

eukaryotic cells contain myosin isoforms. Some isoforms have specialized functions in certain 

cell types (eg. Myosin II in muscle) while other isoforms are ubiquitous. Myosin II is responsible 

for producing the contractile force in muscle cells. Most myosin molecules are composed of a 

head, neck, and tail domain. 

• The head domain binds the filamentous actin, and uses ATP hydrolysis to generate force and 

to "walk" along the filament towards the barbed (+) end.  

• The neck domain acts as a linker and as a lever arm for transducing force generated by the 

catalytic motor domain. The neck domain can also serve as a binding site for myosin light 

chains which are distinct proteins that form part of a macromolecular complex and generally 

have regulatory functions. 

• The tail domain generally mediates interaction with cargo molecules and/or other myosin 

subunits. In some cases, the tail domain may play a role in regulating motor activity 

(http://en.wikipedia.org/wiki/Myosin). 

In muscle cells, the long coiled-coil tails of the individual myosin molecules join together, 

forming the thick filaments of the sarcomere. A single thick filament consists of most likely 296 

myosin molecules bundled at the stalk in the M-line, which has a similar function to the Z-disk 

forming a bipolar thick filament (Figure 1.3, myosin filaments are colored in blue).  

1.1.3.3. Z-disk 

Electron microscopic images of striated muscles show alternating dark and light bands (Figure 

1.2B). The center of the light band, also known as the I-band, contains a narrow electron-dense 

zone, the Z-disk. Here, the barbed ends of the thin filaments from the neighboring sarcomeres are 

tethered together in a bipolar fashion. Proteins found at this location are termed Z-disk proteins. 

The major component of the Z-disk is α-actinin. The complete composition of Z-disk is still not 

http://en.wikipedia.org/wiki/Adenosine_triphosphate�
http://en.wikipedia.org/wiki/Hydrolysis�
http://en.wikipedia.org/wiki/Protein_subunits�
http://en.wikipedia.org/wiki/Coiled-coil�
http://en.wikipedia.org/wiki/Sarcomere�
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clear. Each Z-disk is aligned to the neighboring ones by making molecular connections, at least in 

part utilizing the intermediate filament system including desmin. Z-disks located beneath the 

sarcolemma are linked to the costamere, mainly with the help of specific sub-sarcolemmal 

proteins, such as vinculin. Sarcomeric integrity is maintained mainly by two major cross-linking 

proteins the α-actinin and the filamin. Several other molecules that associate at the Z-disk have 

been discovered relatively recently. Many of these make an interesting link to signaling 

mechanisms such as myotilin, myopalladin, PDZ/LIM proteins, ZASP/Cypher/Oracle, enigma, 

ENM (Enigma like LIM domain protein), CLP36/CLIM1, the FHL protein family, zyxin, MLP, 

T-cap/telethonin, calsarcins (myozenin /FATZ), calcnineurin/protein phosphatase 2B, myopodin, 

PKC, phosphodiesterase 5A, Arg-binding protein 2 and p21-activated kinase-1. Most of these 

proteins associate with α-actinin and/or filamin (Frank et al., 2006; Lange et al., 2006). However, 

a complete understanding of the structure and function of the Z-disk has not been possible, due to 

the great number of proteins that have been identified in the recent past. 

1.1.3.3.1. Titin 

The thin and thick filament systems are sufficient to produce force by the sliding mechanism. 

However, both for the assembly of this complex structure and for the proper functioning in 

particular during relaxation, the giant protein titin is necessary to integrate the two filament 

systems. Titin (from the Greek 'titan': giant, of great size) is the largest known monomeric 

protein. It connects thin and thick filaments and spans half the sarcomere. Titin is anchored to the 

Z-disk with its amino-terminal portion, while its carboxy-terminus binds to the M-line. A striking 

and unique feature of titin is its serine/threonine kinase domain, known as 'the titin kinase 

domain' (Labeit et al., 1992). Titin binds to several sarcomeric proteins, including α-actinin, actin, 

telethonin/T-cap, myosin, C-protein, myomesin, calpain, the potassium channel minK, obscurin, 

MURF-1, MLP, nebulin, calsarcin and myopalladin. The interaction partners of titin suggest that 

it acts as a scaffolding protein that is primarily involved in establishing and maintaining 

sarcomeric integrity.  

1.1.4. Myofibrillogenesis and myodifferentiation 

Skeletal muscle development is a multistep pathway, in which mesodermal precursor cells are 

selected to form myoblasts that later are withdrawn from normal cell cycle and subsequently 

differentiate. Two families of transcription factors, MyoD and myocyte enhancer factor-2 
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(MEF2) play an essential role in this cascade by binding specific target motifs (CANNTG and an 

A/T rich sequence, respectively) in the promoters of skeletal muscle specific genes. The  

interaction of these transcription factors with each other, leads to a unique complex that regulates 

muscle specific gene activation (Black et al., 1998). Both MyoD and MEF2 are targets for diverse 

intracellular signaling pathways, that control myogenesis by modulating the function and 

expression of these factors (Naya et al., 1999). Myocyte differentiation and myofibril formation 

can be studied in vitro using cultured myocytes, although the individual events are much slower 

than in vivo differentiation (Gregorio et al., 2000). Differentiation in culture is initiated by serum 

withdrawal and the progression to mature myocytes takes about seven days (Auerbach et al., 

1997; Ehler et al., 1999; Fürst et al., 1989; Gregorio et al., 2000). Expression of desmin is the 

first sign of muscle differentiation. Subsequently, other proteins taking part in myofibrillogenesis 

appear in a precise order and timing of expression (Gregorio et al., 2000). Three distinct forms of 

myofibrils can be distinguished during the differentiation progress. In the beginning of 

myofibrillogenesis, titin and α-actinin appear in a punctate pattern along stress fiber-like 

structures, forming premyofibrils (Ehler et al., 1999; Fürst et al., 1989; van der Loop et al., 1996). 

These fibrils are composed of "mini-sarcomeres", where non-muscle myosin interdigitates the 

bipolar actin filaments, which are linked by α-actinin in Z-disk primordia, called Z-bodies (Rhee 

et al., 1994). A N-terminal Z-disc region and a C-terminal M-line region bind to the Z-line and 

M-line of the sarcomere respectively so that a single titin molecule spans half the length of a 

sarcomere. Titin also contains binding sites for muscle associated proteins so it serves as an 

adhesion template for the assembly of contractile machinery in muscle cells. This structure seems 

to form a template for thick filament integration into the sarcomeres and the premyofibrils turn 

into nascent myofibrils. Other thin filament proteins like tropomodulin, T-cap, nebulin and 

filamin C (Almenar-Queralt et al., 1999; Ojima et al., 1999; van der Ven et al., 2000) are also 

expressed at early stages of differentiation and they incorporate into premyofibrils (Dabiri et al., 

1997). Like premyofibrils, nascent myofibrils have punctate Z-bodies, that are spaced closer (0.3 

μm) together than Z-disks of mature myofibrils (1.4 μm). Thus the growth in sarcomere length 

and alignment of nascent myofibrils leads to formation of cross-striated, mature myofibrils (Rhee 

et al., 1994). 

http://en.wikipedia.org/wiki/Sarcomere�
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1.1.4.1. Filamins  

Filamins are a small family of large actin-binding proteins that stabilize delicate three-

dimensional actin webs and link them to cellular membranes. In this way, they integrate functions 

in establishing cell architecture and signaling (Revenu et al., 2004). Primarily, they link actin 

filaments into a network, but they also anchor plasma membrane receptors and other 

transmembrane proteins to the cytoskeleton and are thought to act as scaffolding proteins. The 

important functions of filamins are exemplified by their essential roles in fetal development 

(Stossel et al., 2001).  The three filamin isoforms (filamin A, B, and C), are each encoded by a 

unique gene (Feng et al., 2004). Whereas filamin A and B are ubiquitously expressed, filamin C 

is the striated muscle specific isoform. 

 

Figure 1.4. Protein structure of filamin C. Filamins are rod shaped molecules, composed of an N-
terminal actin binding domain harboring two calponin homology domains followed by twenty four C2-
type Ig- domains, separated by one or two hinge regions. The 24th

In adult skeletal muscles and cultured cells, filamin C localizes to the Z-disk and to sites where 

myofibrils are attached to the membrane (myotendinous junctions). In the heart, the protein is 

localized mainly in the intercalated disks and in Z-disks. A minor fraction of filamin C is 

associated with plasma membrane (Lee et al., 2004). During in vitro muscle cell morphogenesis 

Filamin C shows a striking colocalization with α-actinin, initially in adherens junctions and in the 

Z-bodies of immature myofibrils, and later during development in Z-disks. Previous work in our 

laboratory focused on Filamin C and its interaction partners. While large parts of the molecule are 

homologous to the non-muscle variants A and B, one of the immunoglobulin-like domains of 

filamin C (domain 20) contains a unique 78 amino acid insertion. Since domains 19-21 of filamin 

C targeted to Z-disks upon transient transfections in muscle cells, this region was predicted to 

harbor one or more protein-protein interaction motifs. Subsequent yeast two hybrid screens with 

filamin C domains 19-21 as bait identified myotilin, myopodin and Xin as interacting partners 

(van der Ven et al., 2006). The latter protein was found to specifically interact with domain 20. 

 Ig domain dimerizes, which brings 
about the ability of the filamins to cross link actin polymers. Filamin C harbors a unique insertion in Ig-
like domain 20 and is expressed only in striated muscle cells. Figure adapted from (van der Ven et al., 
2006). 
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Filamin C has several other binding partners (β and γ-sarcoglycan, calsarcin-3, nephrocystin, 

calsarcin-2, MAP2K4, KCND2, Calpain-3 and SHIP2.  

1.1.4.2. Xin family of proteins  

The Xin family of proteins is expressed exclusively in striated muscles. The first member of the 

family, cXin was discovered in chicks based on its robust expression in developing chick hearts 

(Wang et al., 1999). The human orthologue of cXin was first named CMYA1, since it was found 

to be coexpressed with cardiomyopathy associated genes. A second member of the family XIRP2 

(Xin Repeat protein 2) was discovered in silico first in humans. The gene XIRP2 is also known as 

CMYA3. Since their first discovery in chick, mouse and humans, extensive database searches 

have further revealed that the Xin protein family is  expressed across the species but only in 

vertebrates (Grosskurth et al., 2008). The family is characterized by the presence of 16 amino 

acid repeat regions, the so called Xin repeats (Wang et al., 1999). The biochemical role of these 

Xin repeats was established in this laboratory by demonstrating that they define a novel actin 

binding motif (Pacholsky et al., 2004). Xin (Xirp1 or CMYA1) was found to localize along actin 

stress fibers and the cell membrane in cultured muscle cells (C2C12 myotubes), at the ICD in the 

heart and at the MTJ in skeletal muscle (Sinn et al. 2002). In contrast, Xirp2 (myomaxin, 

CMYA3) was found at Z-discs in the heart and skeletal muscle, at the ICD, as well as in 

proliferating C2C12 myoblasts (Huang et al., 2006; Gustafson-Wagner et al., 2007). 

1.1.4.2.1 Regulation of Xin family of genes by muscle-specific transcription factors  

Promoter analyses revealed the presence of several muscle-specific transcription factor binding 

sites in the promoter of xirp1, such as Mef2, Nkx2 and MyoD binding sites (Wang et al., 1999). 

Luciferase assays showed that MyoD, Myf5, and Mef2 could activate xirp1 expression, probably 

in complementary or partially overlapping temporal and spatial patterns (Gustafson-Wagner et 

al., 2005). The heart-specific transcription factor Nkx2.5 was also found to activate the 

expression of xirp1 (Wang et al. , 1999) and consequently, Nkx2.5 knock-out mice express less 

Xin (Jung-Ching Lin et al. , 2005). Xirp2 expression was found to be regulated by Mef2c and 

Mef2a (Huang et al., 2006).  
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1.1.4.2.2. Binding properties of Xirp proteins 

The Xin repeats have been extensively analyzed biochemically to determine their physical 

properties. Three Xin repeats were shown to be sufficient to crosslink and stabilize actin 

filaments and to inhibit the binding of tropomyosin to actin filaments (Pacholsky et al., 2004). It 

was also shown that Xin repeats and nebulin repeats bind to actin filaments in a similar manner, 

although nebulin repeats bundle actin filaments, whereas Xin repeats crosslink actin filaments 

(Cherepanova et al., 2006). Indeed, two studies found that Xin repeats do not bundle actin 

filaments (Cherepanova et al., 2006; Pacholsky et al., 2004). In contrast, the full-length protein 

does show actin bundling activity that is enhanced in the presence of β-catenin (Choi et al., 

2007). Xin is found at the ICD and the MTJ, where it colocalizes with β-catenin, N-cadherin and 

vinculin (Sinn et al., 2002; Wang et al., 1999). In contrast, Xirp2 additionally colocalizes with α-

actinin at the Z-disc (Gustafson-Wagner et al., 2007; Huang et al., 2006). Both Xin and Xirp2 

always colocalize with filamin C at various stages of development and in various muscle tissues, 

in structures such as the ICD, Z-discs and premyofibrils in neonate cardiomyocytes (van der Ven 

et al., 2006). Moreover, in neonate cardiomyocytes, Xin colocalizes with Mena, filamin C, β-

catenin and α-actinin (van der Ven et al., 2006) 

1.2. Lentivirus as a tool for gene expression and gene 
knockdown in skeletal muscle cells 
Skeletal muscle cells are generally considered as difficult to transfect with transfection 

efficiencies ranging from as low as 1 % and rarely reaching 30 %. Studying the expression of a 

gene which might play an important role in skeletal muscle differentiation requires studying the 

cells from a myoblast (mononuclear cell) to a fully differentiated mature myotube (multi-

nucleated cell). Knocking down the gene of interest in myoblasts and subsequent monitoring of 

differentiation of the knockdown cells requires a high transfection efficiency to nullify the effect 

of high background due to non-transfected cells. Ideally a virus based system is the method of 

choice. Both adenoviruses and lentiviruses (LVs) are capable of transducing dividing and non-

dividing cells. However LVs offer the advantage that they stably integrate in the host genome and 

hence stable cell lines can be generated, which are more convenient to study. Stable integration 

into the host genome obviates the need for repeated vector administration. LVs also offer other 

advantages such as animal transgenesis and the possibility of gene therapy.  
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1.2.1. Introduction to Lentivirus 

Lentiviruses belong to the large family of retroviruses. The genus lentiviridae includes the human 

immunodeficiency viruses HIV 1 and HIV 2, the simian immunodeficiency virus (SIV) and non-

primate lentiviruses, such as the visna virus, the equine infectious anemia virus (EIAV) and the 

feline and the bovine immunodeficiency viruses (FIV and BIV). Among all LVs, the HIV 1 is the 

most widely studied and used virus. Lentiviral based systems have attracted vast interest 

primarily due to their ability to transduce terminally differentiated cells including primary cells, 

neurons, macrophages, hematopoietic stem cells, retinal photoreceptor cells, muscle and liver 

cells etc. LVs integrate with a very high frequency into the host genome which provides an 

efficient tool for creation of stable cell lines and transmission of integrated transgenic cassettes to 

the progeny (vertical transmission). Because of integration into the host genome LVs provide 

long term expression of the cassettes they carry within the vector. Unlike adenoviral based 

expression systems they do not induce immunological responses and unlike other retroviral based 

systems they have the capability to transduce non-mitotic cells. LVs largely escape epigenetic 

silencing in embryonic stem cells and early embryos and thus can be used to generate transgenic 

animals (Pfeifer et al., 2002). LVs can infect both dividing and non-dividing cells because their 

preintegration complex (virus “shell”) can cross the intact membrane of the nucleus of the target 

cell (Bukrinsky et al., 1993). Lentiviruses cannot efficiently transduce truly quiescent cells (cells 

in the G0 state) owing to a block at the reverse transcription step (when the RNA viral genome is 

transcribed into DNA) (Zack et al., 1990), and they require progression through at least the G1b 

stage of the cell cycle (during which active RNA synthesis takes place) (Korin et al., 1998). 

1.2. 2. The general biology and life cycle of Lentivirus (HIV 1) 
1.2.2.1. The genes and elements of HIV 1 genome 

Like all retroviruses, HIV 1 is an RNA virus. Its genome contains three main genes encoding the 

polyproteins Gag, Pol and Env. The polyproteins are post-translationally and proteolytically 

cleaved to form structural proteins and enzymes. Gag, the precursor of the virus core, is cleaved 

into MA (matrix), CA (capsid), NC (nucleocapsid) and P6, Env into the proteins which form the 

outer membrane envelop SU (surface or gp120) and TM (transmembrane or gp 41), and Pol into 

the three main enzymatic components-PR (protease), RT (reverse transcriptase), and IN 

(integrase). 
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Figure 1.5. Schematic diagram of the HIV 1 genome. The 5' and 3' Long terminal repeats (LTRs) serve 
to integrate the dsDNA copy of the virus into host genome. The packaging signal (ψ) acts as a signal 
sequence and is necessary for packaging RNA with the reporter or therapeutic gene in virions. The three 
structural genes (gag, pol and env), the two regulatory genes (tat and rev) and the four accessory genes 
(vif, vpr, vpu and nef) and the Rev-response element (RRE) that is located in the intron of rev and tat are 
also shown. B. Shows the structural proteins encoded by various genes of the HIV 1 genome (Figure 
adapted from http://biology.kenyon.edu). 

Apart from the three genes mentioned above and unlike simple retroviruses, the HIV genome 

encodes additionally two regulatory genes, tat and rev and four accessory genes, vif, vpu, vpr and 

nef, all of which are involved in viral pathogenesis. Figure1.5 gives an overview of the genes and 

elements of the HIV1 genome. 

1.2.2.2. The life cycle of the lentivirus 

The life cycle of lentiviruses is common to all members of the Retroviridae family and can be 

described by the following steps (schematically represented in Figure 1.6). 

1- Attachment and entry: The interaction between the virus and the target cell occurs via specific 

receptors. Once bound to the surface, the viral and cellular membranes fuse and the viral 
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nucleoprotein is delivered to the cytoplasm where reverse transcription begins. For example, HIV 

1 infects human CD4+ T cells and macrophages by utilizing CD4 as its receptor and a variety of 

chemokine receptors as its co-receptor. The two most important chemokine receptors, CXCR4 

and CCR5, not only provide a crucial function for viral entry into cells, but also determine the 

tropism (ability to infect) of virus.  

2- Reverse transcription: After HIV entry into cells, its RNA is converted into double stranded 

DNA by the viral reverse transcriptase using cellular tRNA as a primer in a large nucleoprotein 

complex called preintegration complex (PIC). The PIC of HIV 1 contains matrix proteins, 

integrase and vpr. The viral cDNA is actively transported into the nucleus, a process that is 

facilitated by the PIC. 

3- Integration: Once in the nucleus, the viral integrase processes the 3'ends of the viral cDNA and 

then mediates its integration into the host genome. 

4-Transcription and viral protein synthesis: To complete the life cycle, HIV needs other 

regulatory proteins and accessory proteins either to facilitate the viral replication or to overcome 

the cellular constrains to the virus (Figure 1.6). One of the regulatory proteins, Rev, competes 

with the cellular splicing machinery and exports intact or partially spliced viral RNA out of the 

nucleus, a process that is crucial for Gag-Pol expression and new viral genome packaging. The 

four accessory proteins have various other functions such as augmentation of viral release, 

downregulation of MHC class I molecules and modulation of host cell cycles, all of which are 

involved in viral pathogenesis but not necessary for  lentiviral vector packaging, transduction and 

expression (Emerman et al., 1998). 

5-Virion assembly and release: Viral genome and structural proteins are packaged into the viral 

particles and released at the plasma membrane.  

1.2.3. HIV1 based lentiviral systems- three generations of lentiviral 
vectors 

The discovery that HIV-type1 can infect both mitotic and non-mitotic cells brought a new 

perspective to the field of gene therapy and lead to the development of lentiviral vectors as a gene 

delivery tool. For reasons of biological safety and efficiency, lentiviral gene transfer vectors 



16 
 
based on the HIV1 genome were created by deleting and altering native sequences in HIV1( 

reviewed in (Sinn et al., 2005). The major goal was to prevent generation of replication 

competent viruses which might occur due to homologous recombination of wild type sequences 

present on different vectors. The first generation of lentiviral vectors, were not intended for use in 

gene delivery but for the study of HIV-1 pathogenicity. These vectors generally contained the 

entire viral genome with the exception of the env gene. A reporter gene was expressed in place of 

env and the envelope protein was expressed by another construct making it a two vector system, a 

situation that implied a high risk of generating wild type virus.  

 

Figure 1.6. Schematic representation of a lentivirus life cycle. The life cycle can be described in five 
steps starting from attachment of the virus to the host cell till the new virion assembly and release. For a 
complete description see above (Figure adapted from (Amado et al., 1999). 

In the second generation of lentiviral vectors, this safety issue was dealt with by splitting 

packaging helper elements (gag-pol) and transgene expression cassette into two separate plasmids 

and by deleting all accessory genes of HIV1 from the vectors to minimize the possibility of 

homologous recombination.  

1.2.3.1. Self inactivating (SIN) lentivectors 

To further improve the safety, a chimeric LTR was made by using constitutive promoters such as 

human CMV intermediate-early enhancer/promoter to replace the U3 region at the 5'LTR (Figure 

1.7). In this case, the transcription of transfer vector became tat-independent and tat could be 
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removed from the vectors (Dull et al., 1998). Additionally most of the U3 region, except for the 

integrase attachment sites in the 3'LTR was also deleted, thus the U3 of  the 5' LTR of provirus 

no longer exists after the viral RNA undergoes reverse transcription and integrates into the host 

genome (Miyoshi et al., 1998).  

Packaging Construct 

 

Integrated vector 

          

Figure 1.7. Typical self inactivating (SIN) lentiviral vector showing modified U3 and U5 regions in 3' 
and 5' LTRs. The U3 region of the 5' LTR was replaced with a chimeric 5' LTR using  a constitutive 
promoters such as human CMV intermediate-early enhancer/promoter. Most of the 3' LTR was also 
deleted except for the integrase attachment sites to generate a SIN vector. 

It is virtually impossible that SIN vectors are mobilized once introduced into cells, even if the 

target cells are infected with wild-type replication competent viruses (Bukovsky et al., 1999). 

Additionally, U3 deletion abolishes LTR promoter activity, which minimizes the possibility to 

activate oncogenes downstream of the provirus integration site in the host genome. However, the 

deletion of U3 region at  the 3' LTR has also been found to compromise the polyadenylation 

signal of the 3' LTR that increases the transcriptional read-through (Zaiss et al., 2002). Thus the 

transgenes of SIN lentiviral vectors are designed to be driven by a heterologous internal promoter 

and terminated by a heterologous polyadenylation signal that replace the wild type 5' LTR and 3' 

LTR respectively. Since the efficient transportation of full-length and partially spliced RNA out 

of the nucleus is required for the gag-pol polyprotein production, the RRE element is designed 

into the packaging helper vector for the full-length RNA transportation through Rev-RRE 

interaction (Naldini et al., 2000). A minimal transgene expression cassette contains the LTRs 

(usually the chimeric LTRs and thus generating SIN vector), the packaging signal (ψ) and a 

heterologous promoter that drives the transgene of interest. However, to increase gene transfer 

efficiency, additional cis-acting regulatory sequences are routinely incorporated into lentiviral 

vector backbones. One such element is the central polypurine tract (cPPT), which enhances HIV 

vector efficiency by facilitating nuclear translocation of preintegration complexes. The viral 

transduction efficiency was further enhanced by the posttranscriptional regulatory element of 
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woodchuck hepatitis virus (WPRE). Insertion of the WPRE in the 3´ untranslated region of 

lentiviral vectors enhances transgene expression 5- to 8 fold in a promoter and transgene-

independent manner (Zufferey et al., 1999). Thus wild type cis elements are minimized, 

additional cis elements are added within the transfer vector and necessary trans-elements are 

supplied from packaging and envelope helper constructs to increase viral titer and thus gene 

transfer efficiency (reviewed in (Sinn et al., 2005)). Thus the second generation lentiviral vector 

systems are made up of three different plasmids namely a transfer vector, a packaging vector and 

an envelope plasmid.  

 

Figure 1.8. Schematic diagram of HIV-1 based third generation lentiviral vector system. Panel A 
shows the overview of genes in HIV 1 genome. In panel B, 1 shows the minimal HIV vector plasmid 
consisting of the CMV/HIV LTR hybrid promoter followed by the packaging signal (ψ), the rev-binding 
element (RRE) for cytoplasmic export of the RNA, the transgene expression cassette consisting of internal 
promoter (s) and transgene (s), and the 3' self-inactivating (SIN) LTR. All genes coding for enzymatic or 
structural HIV proteins have been removed. Together with the HIV vector plasmid (1), the HIV packaging 
plasmid (2), HIV rev (3), and an envelope protein expressing plasmid (4) are needed for HIV vector 
production. 

The lentiviral vectors used in this work belong to the second generation and are produced by co-

transfecting the three plasmids mentioned above into human packaging cells such as human 

embryonic kidney cells transformed with SV40 large T antigen also known as, HEK293T.  The 

SV40 large T antigen facilitates replication of plasmids containing the SV40 origin of replication, 

which is present on the transfer vector used. In the third generation of lentiviral vectors gag-pol 

and rev are supplied from different plasmids thus four plasmids need to be transfected into HEK 

293T cells to produce the lentivirus.To obtain a lentiviral gene vector, a reporter gene or a 
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therapeutic gene is cloned into a vector sequence that is flanked by LTRs and the ψ -sequence of 

HIV. The LTRs are required to integrate the therapeutic gene into the genome of the target cell, 

just as the LTRs in HIV integrate the dsDNA copy of the virus into its host genome. The ψ -

sequence is necessary for packaging viral RNA with the reporter or therapeutic gene into virions 

or viral particles. The packaging and envelope plasmids code for viral proteins, which make virus 

shells, however, they are not in context of LTRs and ψ -sequences (which are located on the 

transfer vector) therefore are not packaged into virions. Thus, the lentiviral particles produced are 

replication deficient, competent for initial infection but incompetent to spread from one cell to 

another cell. 

1.2.3.2. Envelope plasmid and pseudotyping 

Pseudotyped lentiviral vectors consist of vector particles bearing glycoproteins (GPs) derived 

from other enveloped viruses. Such particles possess the tropism (ability to infect) of the virus 

from which the GP was derived. Vesicular stomatitis virus G envelope glycoprotein (VSV-G) is a 

membrane fusion protein that utilizes a ubiquitous phospholipid as its cellular receptor. Lentiviral 

vectors pseudotyped with VSV-G envelope have a greatly extended host range (broad tropism). 

The pseudotyping of viral particles with the VSV-G protein allows for great stability compared to 

pseudotyping with other viral glycoproteins. VSV-G pseudotyped particles may be stored at 4º C 

for 2-3 days, can tolerate a freeze and thaw cycle and may be concentrated 100-fold by 

ultracentrifugation, all without a significant loss in viral titer (Burns et al., 1993). The only 

disadvantage of using VSV-G pseudotyped virus is its inactivation upon contact with human 

serum, limiting its experimental use (DePolo et al., 2000). While VSV-G has broad tropism and 

is the most frequently used GP for pseudotyping, other pseudotypes have also been applied for 

special applications. For example, to exploit the natural neural tropism of rabies virus and mokola 

virus, vectors designed to target the central nervous system have been pseudotyped with GPs 

derived from these viruses. GPs derived from Ebola virus were used for pseudotyping  

lentiviruses for infecting respiratory and lung tissues (Cronin et al., 2005). 

1.2.3.3. Promoters and inducible systems based on lentiviral vectors 

Lentiviral vectors often contain ubiquitously expressing promoters that allow broad transgene 

expression in almost all organs. Such promoters are the human cytomegalovirus immediate early 

promoter (CMV), the promoter of the human phosphoglycerate kinase gene (PGK), the human 
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Ubiquitin-C promoter and the CAG promoter (a chicken beta-actin/CMV compound promoter). 

By introduction of inducible transcriptional elements, spatial and temporal regulation of the 

lentiviral transgene expression can be achieved. The most frequently used regulatable systems are 

Tet-ON, Tet-OFF system (reversible) and Cre-lox based system (irreversible). LVs have 

relatively large cloning capacity (up to 10kb) between the 3' and 5' LTRs for cloning transgene 

cassettes. However the packaging ability and the viral titers decrease with increasing size of the 

expression cassettes. 

1.2.4. Biosafety issues related to lentiviral usage 

As discussed above, the second and third generations of lentiviral systems have adequate safety 

for laboratory use. The remote possibility to generate replication competent virus and their 

possible spread through liquids and aerosols is minimized by confining all the work related to 

lentivirus production and transduction to specific areas designed for this work (Biosafety level 2 

laboratory). According to the decision of the Institutional Biological Committee, which was 

approved by the Institutional Safety Committee, lentivirus work is done locally, within the 

facilities of each department and is under the responsibility of the principle investigator. Since 

lentiviruses produced in the laboratory are pseudotyped with VSV-G coat, which has broad 

tropism and could infect many cell types including human cells, accidental exposure to lentivirus 

is to be avoided. The separation of cis and trans-acting regions of the viral genome onto separate 

vectors and decreasing the level of homogeneity between these vectors has enabled the use of this 

system in scientific and clinical research. However, the presence of some sequences is required 

on more than one vector, e.g. approximately 300bp of gag is required on both the packaging and 

transfer vectors, thus the possibility of recombination, albeit very small, must still be considered. 

If such an event were to occur, infected cells could not express viral proteins due the SIN 

property of the system. In the third generation of lentiviral vectors the transport of transcripts to 

the cytoplasm could not occur in the absence of Rev, which is delivered to packaging cells on its 

own expression vector. Thus the third generation of lentiviral vectors offers highest bio-safety 

although they require four plasmids for production of lentiviruses. Another concern in clinical 

research is the possibility of recombination events between an engineered virus and a wild type 

virus in patients already infected with HIV-1. Studies suggest that if such an event were to occur, 

the possibility of recombination between the genomes of both viruses is quite likely, resulting in 

the emergence of a new viral species. The development of SIN LVs has also decreased the risk of 
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aberrant expression of genes endogenous to the transduced cells and induction of proto-

oncogenes from viral LTRs, a matter of major concern in clinical gene therapy trials (Marshall et 

al., 2003). 

1.3. RNA interference  
RNA interference (RNAi) is a post-transcriptional gene silencing mechanism that is 

evolutionarily conserved across many species. It is a process whereby small double stranded 

RNAs suppress the expression of target genes in a sequence specific manner (Fire et al., 1998). It 

is widely believed that RNAi has originally evolved as a defense mechanism against invading 

viruses or active transposable elements. Many foreign RNAs differ from endogenous transcripts 

in that they are not single stranded but consist of two anti-parallel strands. In case dsRNAs appear 

in the cell,   they are recognized by a cytoplasmic ribonuclease called ‘Dicer’ and cut to RNA 

duplexes of about 21 nucleotides with characteristic 2-nucleotide 3'-overhangs also known as 

siRNAs. The next stage of cellular RNAi mediated degradation involves a multi-protein complex 

called RNA induced silencing complex (RISC). Functional RISC is believed to contain at least 

four different subunits including a helicase, an endonuclease, an exonuclease and a homology 

searching component. Upon binding of siRNA to RISC the helicase unwinds the double stranded 

siRNA molecule resulting in two short single strands. In doing so activated RISC is poised for 

‘homology searching’. One single strand of siRNA (usually the antisense strand also called 

‘guide strand’ is used as bait for searching and binding a complementary mRNA strand. Finally 

the RISC bound target mRNA is degraded through action of the exo- and endonuclease subunits 

of RISC (Prawitt et al., 2004). 

1.3.1. RNAi in mammalian systems compared to plants flies and 
worms 

Long dsRNAs (400-700 base pairs) can induce efficient and highly specific gene silencing when 

introduced into worms, flies or plants. However in mammalian cells molecules of the same length 

are recognized by the RNA dependent protein kinase (PKR). Activation of PKR and 2', 5'-

oligoadenylate synthetase elicits an interferon response, which results in general inhibition of 

protein synthesis and mRNA degradation in a sequence independent manner. The only exceptions 

where long dsRNAs do not produce interferon response are restricted to oocytes and early 



22 
 
embryos. Plants, flies and worms have developed additional defense mechanisms to effectively 

defeat double stranded RNAs. They use RNA dependent RNA polymerase (RdRp) and amplify 

the silencing triggers (siRNAs). In contrast such amplification does not occur in mammalian 

systems, which necessitates continuous supply of silencing triggers (Prawitt et al., 2004). A major 

breakthrough was made in 2001, when it was discovered that small dsRNAs (< 30 base pairs) 

produce sequence specific mRNA degradation in mammalian cells (Elbashir et al., 2001a). This 

breakthrough together with a better understanding of the RNAi pathway and the discovery of 

several endogenous miRNAs lead to an explosion in the field and to the development of RNAi as 

a powerful and widespread reverse genetics tool for functional annotation of mammalian genes 

(Hannon and Rossi, 2004) to genome wide phenotypic screens in cell culture (Paddison et al., 

2004b) and creation of knockdown mice (Rubinson et al., 2003; Tiscornia et al., 2003). RNAi 

continues to make a huge impact on rapid functional annotation of genomes and has made enough 

promises for clinical use for a number of diseases (Kim et al., 2007; Lee et al., 2002) and is 

rightly recognized by awarding the discoverers of RNAi with Nobel Prize in medicine for 2006.  

1.3.2. RNAi pathway and endogenous miRNAs 

Micro RNAs (miRNAs) are highly related to siRNAs. They are endogenous small RNAs that 

repress the expression of their target genes. Micro RNAs differ from siRNAs in their biogenesis, 

however not in their function. Hundreds of miRNA genes have been found in animals, plants and 

viruses (Bartel et al., 2004; Murchison et al., 2004; Pfeffer et al., 2004) making them one of the 

largest gene families. Micro RNAs are defined as single-stranded RNAs of 19–25 nt in length 

generated from endogenous transcripts that can form hairpin structures (Ambros et al., 2003). 

Micro RNAs act as guide molecules, by base-pairing with their target mRNAs leading to 

translational repression (when the sequence is partially complementary) and/or mRNA cleavage 

(when the sequence is fully complementary). Several studies revealed the key roles of miRNAs in 

diverse regulatory pathways, including development timing control, hematopoietic cell 

differentiation, apoptosis, cell proliferation and organ development (Bartel et al., 2004). A single 

miRNA can bind to and regulate many different mRNA targets and, conversely, several different 

miRNAs can bind to and cooperatively control a single mRNA target (Lewis et al., 2003).The 

majority of miRNA genes are located in intergenic regions or in antisense orientation to 

annotated genes (Lagos-Quintana et al., 2001; Lee et al., 2001) indicating that they form 
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independent transcription units (Lee et al., 2001). Most of the other miRNA genes are found in 

intronic regions, which may be transcribed as part of the annotated genes.  

Micro RNAs are initially transcribed by RNA polymerase II (Pol II) as part of a long primary 

miRNA (pri-miRNA) precursor (Figure 1.9). Mature miRNAs form part of one arm of a ~ 85-nt 

RNA stem-loop in the pri-miRNA. The first step in miRNA processing is mediated by the RNase 

III enzyme Drosha, which cleaves the stem ~ 22 nt away from the terminal loop to generate an 

~65-nt pre-miRNA hairpin intermediate. Drosha cleavage defines one end of the mature miRNA 

and leaves a characteristic 2-nt 3′ overhang. The pre-miRNA is transported to the cytoplasm by 

the nuclear export factor, Exportin-5 (Exp 5), where it interacts with a second RNase III enzyme 

called Dicer (Figure 1.10.). Dicer binds the 2-nt 3′ overhang found at the base of the pre-miRNA 

hairpin and cleaves ~ 22 nt away from the base, removing the terminal loop and leaving another 

2-nt 3′ overhang. The resultant duplex intermediate interacts with RISC components, including 

Argonaute-2 (Ago2), which selectively incorporate the RNA strand whose 5′ end is less tightly 

base-paired. Once programmed, RISC can downregulate the expression of homologous mRNAs. 

1.3.3. Approaches to RNAi-mediated gene knockdown in mammalian 
cells 

Three types of small RNAs ( siRNAs, shRNAs and shRNAmirs) can be used to silence gene 

function by RNA interference (RNAi) in mammalian cells (Moffat and Sabatini, 2006) and they 

correspond to the three intermediate stages of  miRNA biogenesis pathway (Figure 1.9.). The 

siRNAs correspond to miRNA duplexes, the shRNAs to the pre-miRNA hairpin and shRNAmir 

to the initial pri-miRNA transcript. So the endogenous miRNA pathway can be entered at all 

three points with different types of small RNAs to ultimately guide mRNA degradation via RISC. 

1.3.3.1. Small interfering RNAs (siRNAs) 

siRNAs are short double-stranded RNAs (dsRNAs) that are typically 19–22 bp in length with 2-

nucleotide 3'overhangs on either end, including a 5′ - phosphate group and a 3′ - hydroxyl group 

(Figure 1.10 a). siRNAs can be made by chemical synthesis, in vitro transcription, RNase III 

digestion of dsRNAs or by PCR expression cassettes. siRNAs can be introduced into target cells 

by transfection to achieve transient silencing of a target gene. 
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Transfection of chemically synthesized siRNAs is a relatively quick method. But siRNAs are not 

amplified in mammalian systems unlike in plants and worms so siRNAs must be continuously 

supplied to get long-term knockdown. Without continuous supply the effective siRNA 

concentration goes down and knockdown efficiency decreases rapidly. Since there are no 

selection markers and reporters (unless siRNAs themselves are labeled) it is impossible to select 

transfected cells from untransfected cells and hence stable knockdown cell lines cannot be 

established.  

 

Figure 1.9. The miRNA biogenesis pathway in vertebrate cells. Artificial siRNAs can enter this 
pathway as synthetic siRNA duplexes, as shRNAs transcribed by Pol III or as artificial pri-miRNAs 
(shRNAmir). shRNAmirs enter the pathway upstream of shRNAs which in turn enter the pathway 
upstream of siRNAs. For simplicity, not all factors involved in miRNA biogenesis are shown. Figure 
adapted from (Cullen et al., 2005). 
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1.3.3.2. Short hairpin RNAs (shRNAs) 

shRNAs are transcribed from plasmid DNA under the control of a RNA pol III promoter as 

single-stranded RNA molecules of 50–70 nucleotides in length and form a stem–loop structure in 

vivo. A 5–10-nucleotide loop keeps the complementary 19–21 nucleotide stem sequences in close 

proximity to allow base pairing to occur (Figure 1.10 b). shRNAs exit the nucleus and are 

recognized and cleaved at the loop by the nuclease Dicer and enter the RNA-induced silencing 

complex (RISC) as siRNAs ( Figures 1.10 b & 1.9.).  

Expression of shRNAs from plasmids ensures a continuous supply of siRNAs. Since selection 

markers and reporters can be added in plasmids it is possible to select transfected cells from non-

transfected cells and to create stable cell lines. shRNAs are expressed from pol III promoters and 

require a precise transcription start site as well as a 3' termination signal (TTTTT). shRNAs also 

lack the polyadenylation signal and the 5'-cap (Brummelkamp et al., 2002). The main 

disadvantage of shRNAs is that Pol III-based expression systems that are used to express shRNAs 

cannot be applied in a tissue-specific manner due to the lack of tissue-specific Pol III promoters. 

The only alternative is to use a lox P system producing a functional Pol III promoter in a tissue-

specific manner. shRNAs can be ineffective inhibitors of target mRNA when expressed from 

single copy vector hence multiple copies of a vector should be present in cells to get reliable 

knockdown. 

1.3.3.3. shRNAmirs  

shRNAmirs are actually shRNAs in a micro RNA context. These artificial pri-miRNAs (i.e. 

shRNAmirs) and endogenous pri-miRNAs undergo the same processing steps but result in the 

production of siRNAs and miRNAs respectively (Figure 1.9 & 1.10c). shRNAmirs are expressed 

from a RNA pol III promoter or a RNA pol II promoter.  The shRNAmirs transcribed from either 

a Pol II or a Pol III promoter fold back to form a dsRNA hairpin molecule that is referred to as 

the primary polyadenylated miRNA structure (pri-miRNA). Drosha, a nuclear enzyme, cleaves 

the base of the hairpin to form the miRNA precursor pre-miRNA of ~70–90 nucleotides with a 2-

nucleotide 3′ overhang. This pre-miRNA molecule is actively transported from the nucleus to the 

cytoplasm by Exportin-5, a carrier protein. The Dicer enzyme then cuts 20–25 nucleotides from 

the base of the hairpin to release the mature miRNA. The artificial target sequence in the shRNA-

mir is incorporated into the RISC as a siRNA to cause target knockdown. shRNAmirs or artificial 
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pri-miRNAs not only induce an exceptionally potent RNAi response but also allow regulated 

RNAi when using Pol II–dependent promoters to drive pri-miRNA expression (Silva et al. , 2005, 

Dickins et al. , 2005). Both shRNAs and shRNAmirs are designed in a plasmid backbone and can 

be transfected or packaged into a virus and transduced into target cells. Retroviral or lentiviral 

transduction results in the stable integration and expression of shRNA or shRNA-mir in the target 

cell.  

 
Figure 1.10. The silencing triggers of RNAi. (a) siRNAs 19-22 bp dsRNAs are transfected to get a 
transient effect (phenotype) in target cells. (b) shRNAs which are transcribed from plasmid DNA under 
the control of a Pol III promoter as single strand RNA molecules and fold back in vivo to give shRNAs 
which are recognized and cleaved by Dicer to give functional siRNAs. (c) shRNAmirs, which are shRNAs 
expressed in the context of miRNAs are cleaved first by Drosha and then by Dicer to give functional 
siRNAs. Both shRNAs and shRNAmirs are expressed from plasmids and can be transfected or packaged 
into viruses and transduced to target cells, in later case producing stable knockdown. Figure adapted from 
(Moffat et al., 2006). 

1.3.4. Designing effective and specific siRNAs 

Not all siRNAs complementary to a cognate mRNA are functional. They usually show a 

spectrum of potency, and only a fraction of them are highly effective. Small positional shifts 

along the length of target mRNA, were shown to be sufficient to alter siRNA function in an 
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unpredictable manner (Reynolds et al., 2004). Moreover siRNAs may nonspecifically target 

unrelated genes with only partial sequence-complementarity (off-target effects) (Birmingham et 

al., 2006; Jackson et al., 2006; Anderson et al., 2008). Hence it is critical to identify effective and 

specific siRNA sequences to perform reliable gene-knockdown experiments. Initially empirical 

rules had been proposed for siRNA selection based on some of the first identified functional 

siRNAs (Elbashir et al., 2001a). However these rules did not ensure that each selected siRNA 

will be functional. The evolving understanding of RNAi biochemistry and endogenous miRNA 

function coupled with statistical analyses of libraries of siRNAs with experimentally determined 

efficiency, lead to computer based approaches that increased likelihood of identifying effective 

and specific siRNAs (Pei et al., 2006). However these rules are not perfect, firstly not every 

selected siRNA meets the desired thresholds of potency and specificity, so experimental proof of 

down-regulation and evaluation of potential off-target effects is necessary. A second important 

point is that a substantial fraction of functional siRNAs might have been dismissed based on the 

parameters chosen by the algorithm for selecting siRNAs (Pei et al., 2006). 

Several siRNA sequence selection algorithms have been developed in recent years that rely on 

the intrinsic sequence and stability features of functional siRNAs also known as ‘Rational design 

principles’. The crucial observation that RISC contains only one of the two strands of siRNA 

duplex and the antisense strand must be preferentially loaded into RISC to target the sense 

mRNA meant functional siRNAs and miRNAs exhibit strand bias (Khvorova et al., 2003). The 

same finding emerges from sequence analysis of miRNA precursors and largely explains the 

asymmetric accumulation of the majority of miRNAs. The asymmetry is determined by the 

different sequence composition, and the consequent differences in thermodynamic stability and 

molecular dynamic behavior of the two base-paired ends of an siRNA duplex: the strand with the 

less stable 5′ end, owing to either weaker base-pairing or introduction of mismatches, is favorably 

or exclusively loaded into RISC (Khvorova et al., 2003)The asymmetry rule has been 

implemented in many siRNA design algorithms by computing either the A+U base pair content 

or local free energy at both ends of an siRNA, followed by selection of the duplexes with less 

stable, (A+U)-enriched 5′ end on the guide strand. 

Most of the functional siRNAs had a low-to-medium G+C content ranging between 30% and 

52% (Reynolds et al., 2004). It has been argued that too low G+C content may destabilize siRNA 

duplexes and reduce the affinity for target mRNA binding, whereas too high G+C content may 



28 
 
impede RISC loading and/or cleavage-product release (Pei et al., 2006). Additionally, surveys of 

functional siRNAs revealed that stable duplexes devoid of internal repeats or palindromes (which 

might form intra-strand secondary structures) were better silencers (Patzel et al., 2005; Reynolds 

et al., 2004). Although the overall duplex stability is important, the center of the duplex (positions 

9–14 on the guide strand) appears to preferentially have low internal stability (Khvorova et al., 

2003). It has recently been noticed that miRNAs and siRNAs assemble into RISC by different 

mechanisms; siRNAs require cleavage of the passenger strand for effective RISC assembly, 

whereas a mismatched RNase III–processed miRNA duplex does not require passenger strand 

cleavage (Matranga et al., 2005). 

1.3.4.1. Target accessibility 

The local secondary structures (short stem-loops) in target mRNAs might restrict the accessibility 

of RISC, and attenuate or abolish siRNA efficacy. A major obstacle in assessing target-

accessibility is the lack of tools that reliably predict mRNA secondary structure (Pei et al., 2006). 

Several algorithms that filter the siRNAs based on local secondary structure of target mRNA 

have shown improved selection of functional siRNAs (Heale et al., 2005). 

1.3.4.2. Sequence characteristics 

Several sequence analyses of siRNAs have independently identified single nucleotide positional 

preferences, which are summarized using the guide strand as reference (Reynolds et al., 2004) 

(Figure 1.11): (i) U or A at position1; (ii) C or G (C is more common) at position 19; (iii) A+U 

richness between positions 1 and 7; (iv) A or U (A is more common) at position 10; The first 

three sequence features correlate with the rule of thermodynamic asymmetry, and the preferred 

nucleotides on indicated positions may contribute to the bias for selection of the antisense strand. 

The A or U at position 10 is at the cleavage site and may promote catalytic RISC-mediated 

passenger strand and substrate cleavage. Other sequence determinants may be involved in steps 

along the RNAi pathway, such as RISC loading (Pei et al., 2006). 
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Figure 1.11. siRNA and target mRNA structures. (a) Standard siRNA duplex. (b) Target mRNA 
specificity. The cleavage site is indicated by scissors in the target mRNA. Target recognition and off-
target activity can occur in two modes, the catalytic siRNA-guided cleavage reaction requiring extensive 
complementarity in the region surrounding the cleavage site (blue) and the miRNA-like destabilization of 
mRNAs requiring pairing of the siRNA 5′ end (green). Figure adapted from (Pei et al., 2006). 

1.3.4.3. Specificity 

Each strand of a siRNA duplex, once assembled into RISC, can guide recognition of fully and 

partially complementary target mRNAs, referred to as on- and off-targets, respectively. Off-target 

effects arising due to sense strand loading in RISC can be avoided by following asymmetry rules 

and biasing antisense strand to load in RISC complex. Off-target effects arising from anti sense 

strand loading in RISC can be mainly classified into two classes , (i) those that share contiguous 

and centrally located sequence complementarity over more than half of the siRNA sequence 

somewhere within the mRNA sequence, and (ii) those that show solely 6 or 7 nucleotides of 

perfect match preferentially in the 3′ UTRs with positions 2 –7 or 2–8 (seed region) of the guide 

siRNA (Anderson et al., 2008; Birmingham et al., 2006; Jackson et al., 2006b). The latter 

interaction is the major driving force behind endogenous miRNA–target mRNA recognition. 

Although the off-targets of the latter class are predominant, their actual number identified in 

microarray analyses was significantly smaller than the number of computationally predicted 

targets with sequence complementary to the seed region of the guide strand, suggesting that 

additional specificity determinants remain to be identified (Birmingham et al., 2006; Jackson et 

al., 2006b). Furthermore, structural and biochemical studies showed that guide-strand position 1 
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and the nucleotides at the 3′ overhang (positions 20 and 21) have little, if any, contribution to the 

specificity of target recognition, and that mismatches near the 5′ and 3′ ends can be tolerated for 

RISC-guided cleavage if the remaining pairing to the target was unperturbed. To enforce 

specificity, the current strategy is to select siRNAs in which the strand(s) entering RISC has some 

mismatches to all undesired target mRNAs, especially their 3′ UTRs. Typically at least th ree 

mismatches are recommended between positions 2 and 19 and the mismatches near the 5′ end and 

in the center of the examined strand should be assigned higher significance (Elbashir et al., 

2001b; Holen et al., 2005; Jackson et al., 2003; Lin et al., 2005).  

1.3.5. In vivo RNAi and generation of transgenic animals 

RNAi has also been successfully used to create animal models of gene inactivation in mice 

(Singer et al., 2006; Tiscornia et al., 2003). In many cases knockdown mice generated by RNAi 

have displayed phenotypes similar to a conventional knockout mice (Xia et al., 2006). RNAi has 

also demonstrated its utility in many species where a conventional knock out is not feasible, for 

example knockdown in the rat model was achieved whereas a conventional knock out in rats was 

not possible due to the non-availability of suitable ES cells. Furthermore knockdown mice could 

be created even in situations where a conventional knockout produced embryonic lethality 

thereby allowing the researchers to study those essential genes and their role in development. The 

ability of RNAi to create graded hypomorphic alleles combined with the conditional knockdown 

systems allows greater flexibility in deciphering gene function (Dickins et al., 2005; Dickins et 

al., 2007; Szulc et al., 2006; Ventura et al., 2004).  

In vivo RNAi can be achieved in many ways. Systemic RNAi is usually achieved by 

hydrodynamic tail vein injection, in which a saline solution containing siRNA or the shRNA 

vector is rapidly introduced into the blood stream of the animal. This method is particularly 

suitable to target highly perfused organs such as liver. The main disadvantage however, is the 

physiological shock and cardiac arrest associated with injecting large volumes of solutions 

rapidly. In recent years, it has been shown that intravenously administered, cholesterol-

conjugated siRNAs targeting apolipoprotein B, a protein implicated in the metabolism of 

cholesterol, significantly reduced serum lipoprotein levels. These findings and other on-going 

phase I clinical trials demonstrate that RNAi may soon become a relevant therapeutic tool in 

humans (Sandy et al., 2005). 
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Mouse embryonic stem cells (mES) can be electroporated with the appropriate transgene or 

transduced with a lentivirus-based vector (Figure 1.12.). In both cases, the resulting clones can be 

assayed for transgene copy number, shRNA expression, and degree of knockdown (if the gene is 

expressed in ES cells) before proceeding further. Selected clones are then injected into diploid 

blastocysts that are subsequently transferred to pseudopregnant females. The resulting chimeric 

mice are then bred further to obtain germ line transmission of the shRNA vector. To bypass the 

chimeric stage, it is possible to generate entirely ES cell-derived mice by injecting the ES cells 

into tetraploid blastocysts (Ventura et al., 2004) or by the tetraploid aggregation method. 

Standard transgenesis can also be used for introducing shRNA vectors into the germ line (Figure 

1.12). In this case, a linearized DNA fragment containing the shRNA expression cassette is 

injected into the pronucleus of fertilized eggs that are subsequently transferred to pseudopregnant 

females. Finally, lentiviruses carrying shRNA expression cassettes can be directly injected into 

the perivitelline space of single-cell mouse embryos that are then transferred into female recipient 

mice (Rubinson et al., 2003; Tiscornia et al., 2003). 

1.3.6. Conditional systems for RNAi 

Conditional or inducible RNAi refers to RNAi that can be controlled externally. External control 

can be temporal (at specific time points) or/and spatial (in specific tissues). Conditional RNAi can 

also be classified into reversible and irreversible types. Reversible gene knockdown generally 

relies on drug controlled expression of interfering RNAs. The most popular systems are 

doxycycline- and ecdysone-controlled units, which take advantage of regulating molecules 

(drugs) that can easily be added  to cells in culture or administered to animals (Wiznerowicz et 

al., 2006). 

Irreversible gene-knockdown systems, in contrast, make use of recombinases such as Cre or Flp, 

which allow one-time excision of an inactivating sequence that otherwise, prevents the expression 

of an interfering RNA. Alternatively, the RNAi-producing unit itself can be excised to stop its 

activity. In both cases, once excision is completed, the system cannot be switched back to its 

original state; hence the knockdown is permanently established or abrogated. The main field of 

application of this technique is the generation of conditional-knockdown animals (Wiznerowicz 

et al., 2006). External control of down-regulation of a gene is a desirable feature in many 

situations. It allows parallel analysis of the ‘off’ and ‘on’ states of a gene. Inducible knockdown 
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also allows researchers to examine the function of genes essential during development in 

differentiated tissues of transgenic animals. Conditional knockdown is also useful for modeling 

human pathologies in vivo i.e. to induce and revert at will the shutoff of a disease-influencing 

gene, for example an oncogene or a tumor suppressor gene (Wiznerowicz et al., 2006). 

 

Figure1.12. Generation of knockdown mice by various transgenic approaches. The fastest method is 
infection of single-cell embryos with high-titer lentiviruses. The advantage of using embryonic stem (ES) 
cells is that copy number and expression of the integrated short hairpin RNA (shRNA) can be monitored 
before blastocyst injection. Figure adapted from (Sandy et al., 2005). 

1.3.6.1. Reversible knockdown systems based on Pol III promoter 

The drug mediated control of Pol III promoters has been achieved by (i) steric hindrance, (ii) 

transactivation and (iii) epigenetic repression. 
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1.3.6.1.1. Steric hindrance 

Repression of a shRNA driven by a Pol III promoter can be achieved by placing an Escherichia 

coli Tet operator (TetO) sequence just upstream of the transcription start site to interfere with the 

function of the TATA box through recruitment of the tetracycline repressor (tetR). In the absence 

of a drug, tetR binds to TetO, and production of shRNA is suppressed (Chen et al., 2003; 

Hoeflich et al., 2006; Ohkawa et al., 2000; van de Wetering et al., 2003). Upon addition of 

tetracycline or doxycycline, repression is relieved by sequestration of tetR. 

One major pitfall of this system is the weakening of the pol III promoter strength after TetO 

insertion, which leads to suboptimal levels of shRNA production and hence of target-gene 

knockdown (Berns et al., 2004). Moreover, steric hindrance does not guarantee complete 

repression, and this usually results in leaky shRNA repression in the non-induced state (Ohkawa 

et al., 2000). 

1.3.6.1.2. Transactivation 

An ecdysone-inducible, retroviral vector–based system for transactivation of pol III promoters 

has been described1(Gupta et al., 2004). It relies on the conditional expression of an engineered 

pol III transactivator, which in turn induces transcription of a shRNA from a modified U6 

promoter. Using this system, tight and reversible regulation of TP53 was achieved in tissue 

culture. But such multi-component design is prohibitively complex for broad applications. 

1.3.6.1.3. Epigenetic repression 

The Krüppel-associated box (KRAB) domain found in many zinc-finger proteins can silence both 

pol II and pol III promoters by triggering heterochromatin formation. When tethered to specific 

DNA regions within the context of chimeric proteins, KRAB can induce a general silencing of 

transcription within up to 3 kilo bases (kb) from its binding site. When KRAB is fused to the tetR 

DNA binding domain, the resulting tTRKRAB chimeric protein allows for the doxycycline-

mediated control of any promoter placed nearby tetO sequences, in either ‘tet-on’ or ‘tet-off’ 

configurations depending on the tetR version used. The researchers at Ecole Polytechnique, 

Lausanne, Switzerland had used tTRKRAB based system to regulate the expression of a shRNA 

delivered via a lentiviral vector first in a multi vector system (Wiznerowicz et al., 2003) and later 
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in a single vector system (Szulc et al., 2006) to achieve reversible knockdown of a gene both in 

vitro and in vivo with a high degree of efficiency and without substantial leakiness. 
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2. Aim of the thesis 
Previous work in our laboratory has identified Xin as a specific interaction partner of filamin C 

domain 20. Since filamin C domains 19-21 (including the domain 20) localized to Z-disks upon 

transient transfections in muscle cells, our group became interested in elucidating the role of Xin 

in striated muscles. Xin was initially described by the group of Jim Lin at the University of Iowa, 

as a protein that plays a major role in cardiac morphogenesis in chick embryos (Wang et al., 

1999). Based on these observations, the ablation of the Xin in mice was predicted to have similar 

effects on heart development. Instead, mice lacking Xin were found to be fully viable and 

displayed only mild hypertrophic response (Gustafson-Wagner et al., 2007; Otten et al., 2010) 

and changes in the localization of the ICDs (Otten et al., 2010). 

In contrast to the Xin knockout mice developed in our laboratory, the one from Jim Lin group 

was observed to upregulate Xirp2, the homologous gene of Xin. (Gustafson-Wagner et al., 2007). 

Accordingly the authors mooted a hypothesis that, the milder phenotype observed in mice is due 

to an upregulation of Xirp2 which is argued to be complementing the function of Xin.  

In two recent reports of Xirp2 knockouts (Xirp2 hypomorphic mice of Mc Calmon et al and 

mXinβ knockout of Qinchuan Wang et al) varying degree of severity in cardiac phenotype was 

displayed. These reports did not describe the skeletal muscle phenotype. 

In the light of these observations, this work aimed at the characterization of the expression of 

Xirp2 and Xin during muscle cell differentiation at the RNA and protein level and their 

localization in differentiating skeletal muscle cells. To fully understand the role of Xirp2, a 

functional knockdown of the gene via lentiviral mediated RNA interference (RNAi) strategy was 

attempted in various cell models including primary Xin-/- myoblasts. A further goal was the 

development of a novel versatile lentiviral vector system with different modules that would 

enable simultaneous and / or controlled expression of shRNAs and transgene components. 

Phenotypes resulting from the depletion of Xin and Xirp2 were also studied in various cell 

models. Possible compensatory mechanisms in the absence of either of the proteins were also 

tested. 



36 
 

3. Materials & Methods 
3.1. Materials 
Laboratory chemicals and materials used in this work were purchased from standard suppliers 

like Carl Roth (Karlsruhe, Germany), Bio-Rad (Munich, Germany), and Sigma (Taufkirchen, 

Germany) unless stated otherwise. All the restriction enzymes, DNA modifying enzymes and 

polymerases etc. were obtained from Fermentas (St. Leon-Roth). Primers and oligo-nucleotides 

were ordered from TIB-Mol bio (Berlin). Cell culture media and fetal calf serum (FCS) were 

purchased from Gibco (Invitrogen). Lentiviral plasmids were obtained from Addgene 

(Cambridge, MA, USA) and Open Bio systems and their distributor Bio cat GmbH in Germany.  

For plasmid DNA isolation, endogen free plasmid DNA purification (Maxi, Midi, Mini) kits from 

Qiagen (Hilden) or Machery Nagel were used.  Gel extraction kits were either from Promega or 

Qiagen. For RNA isolation, RNeasy mini kits and QIAshredder from Qiagen and for total RNA 

isolation TRIZOL reagent from Invitrogen were used. All the solutions and buffers were prepared 

with Milli Q (Millipore) quality water and where necessary solutions were autoclaved or sterile 

filtered before use. Whatman blotting paper was from 3M Corporation. Nitrocellulose blotting 

membranes were from Schleicher-Schuell. Cell culture consumables like Petri dishes, tissue 

culture flasks and multi-well plates were purchased from TPP or Nunc. 

3.2. Apparatus 
 
Table 3.1. Apparatus 
 
Apparatus             Name  Company 

PCR Thermo cycler T 3000  Thermo cycler Biometra 

Table top centrifuge Biofuge pico Heraeus 

Table top cool centrifuge Biofuge fresco Heraeus 

Centrifuge I Allegra X-15R, Rotor 

SX4750A 

Beckman Coulter 

Centrifuge II Avanti J-25, Rotor JA 10 Beckman Coulter 

Ultracentrifuge Optima L-80XP Beckman Coulter 

Swinging bucket rotor SW 40 rotor Beckman Coulter 
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Centrifuge tubes for SW40 rotor Ultra Clear tubes 14x95mm Beckman Coulter 

Falcon centrifuge                  - Heraeus 

Protein electrophoresis Mini-Protean II System Bio-Rad 

Protein transfer Trans-Blot  Transfer Cell  
Trans-Blot SD Semi-Dry 
Transfer Cell  

Bio-Rad 

Bio-Rad 

Agarose electrophoresis                   - PEQLAB 

Bacterial culture shaker Certomat BS-I Sartorius 

UV Trans illuminator                 - Schütt Labortechnik 

UV-Vis spectrophotometer Cary 50 scan Varian 

ELISA plate reader               -  Biotek 

Microtome Leica CM3050S Leica 

Confocal laser scanning 

microscope 

LSM 510 Zeiss 

Live cell  imaging Nikon Eclipse TE 2000E Nikon 

Fluorescence microscope Axiophot   Zeiss 

Cell culture microscope 

(Inverted) 

Nikon  Eclipse TS 100  Nikon 

Autoclave Systec  5075 ELVC Systec 

FACS  FACSDiva BD biosciences 

Cell strainers 40µm                -         BD biosciences 

Dark room photographic film 

developer 

Curix 60 AGFA 

Infrared Imager Odyssey Infra red imager LI-COR 

See-Saw Rocker                   -  Stuart 

Millipore water Milli-Q UF plus Millipore 

Pipettes              - Abimed 

CO2 Incubator  Thermo Fischer Scientific 
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• Software • ImageJ 

• LSM  Image browser 4.0 

• Adobe Photoshop CS3 

• Adobe  Illustrator CS3 

• NISElements 2.0 

• EndNote 6.0 

• BLAST 

• BioEdit 

• Vector NTI 10.0 

• Quantity One for GelDoc 

• Public domain free software 

• Carl Zeiss 

• Adobe Systems 

• Adobe Systems 

• Nikon 

• EndNote 

• PubMed 

• BioEdit 

• Invitrogen 

• Bio-Rad 

3.3. Bacterial strains 
 
Table 3.2. Bacterial strains 
 
Strain Genotype Purpose 

E. coli JM 109 

 

e14-(McrA-) recA1 endA1 
gyrA96 thi-1hsdR17(r-k m+k ) 
supE44 relA1(lacproAB) [F’ 
traD36 proAB lacIqZ M15] 

DNA cloning and plasmid 

propagation 

E. coli DH5α F- endA1 hsdR17(rK-mK+) 
supE44 thi-1 recA1 gyrA 
(NalR) relA1 D(laclZYA-
argF)U169 deoR 
(F80dlacD(lacZ)M15) 

DNA cloning and plasmid 

propagation especially for 

lentiviral plasmids 

E. coli SCS 110 rpsL (Strr) thr leu endA thi-1 
lacY galK galT aratonA tsx 
dam dcm supE44D (lac-
proAB) [F' traD36 proAB 
lacIqZΔM15] 

Dam- host 

BL21(DE3) Codon Plus 

(DE3)-RP, Stratagene 

(Heidelberg) 

B F- ompT hsdS(r-B m-B) 

dcm+ Tetr gal (DE3) endA 

Hte [argU proL Camr] 

Protein expression 
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3.4. Plasmids 
Table 3.3. Plasmids 
 
Plasmid Purpose Remarks 

pETW2 Vector for protein expression Contains both T7 and His tags 

pETW1 Vector for protein expression Contains both EEF and His tags 

pMypG Eukaryotic expression 

Myomesin promoter, EGFP tag 

modified pCAT3-Enhancer (Promega) 

(Pacholsky et al., 2004) 

pMypG ∆XhoI Used as an intermediate plasmid 

for transferring miRNA to 

lentivector mpLVTHM 

Deleted XhoI site from pMypG (Made 

in this work) 

pLVTHM Lentivector, EF 1α promoter (Pol 

II) drives GFP and H1 promoter 

(Pol III) drives shRNA expression 

(Szulc et al., 2006) and Addgene 

website 

pLVTHM-mir For shRNAmir expression from 

H1 promoter 

Constructed from pLVTHM backbone 

(made in this work) 

pLVTU6+1  For shRNA expression from U6 

promoter 

Constructed from pLVTHM backbone 

(made in this work) 

pLVTU6-mir  For shRNAmir expression from 

U6 promoter. 

Constructed from pLVTHM backbone 

(made in this work) 

pLVmir An intermediate plasmid for 

shRNAmir expression from a Pol 

II promoter like CAG or EF1α. 

Constructed from pLVCT-tTRKRAB 

and pGIPZ 

(made in this work) 

pLVET-

tTRKRAB 

EF1α promoter  drives GFP, used 

for conditional expression 

(Szulc et al., 2006) and Addgene 

website 

pLVCT-

tTRKRAB 

CAG promoter drives GFP, used 

for conditional expression 

(Szulc et al., 2006) and Addgene 

website 

pLVET-mir Constitutive knockdown  from 

EF1α (Pol II) promoter 

Obtained by adding module I from 

pLVTHM to pLVmir   

pLVET-

tTRKRABmir 

Conditional knockdown from 

EF1α (Pol II) promoter 

Obtained by adding module I from 

pLVET-tTRKRAB  to pLVmir 

pLVET-GOI- Conditional gene expression Obtained by cloning GOI-GFP in place 
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GFP-tTRKRAB of GFP in pLVET-tTRKRAB 

pLVET-GOI-GFP 

(GOI = Gene of 

interest) 

Constitutive gene expression Obtained by and deleting the 

tTRKRAB module from the above 

vector (by digesting with EcoRI and 

self-ligating larger fragment) 

 
3.5. Antibodies 
3.5.1. Primary antibodies 
 
Table 3.4. Primary antibodies 
 
Name Epitope Classification Purpose Reference 

a653 α-actinin Rabbit polyclonal WB,IF (van der Ven et al., 

2000) 

T12 Titin Mouse IgG1 IF (Fürst et al., 1988) 

BB78 Myomesin Mouse IgG 2a IF  

RR90 Filamin A+C Mouse IgA IF (van der Ven et al., 

2000) 

XR1B Xin Mouse IgG1 WB,IF (van der Ven et al., 

2006) 

mAbXIRP2 hXIRP2 Mouse IgG1 WB,IF  

antiPR2-6 hXIRP2 Rabbit polyclonal WB,IF  

antiX2HN hXIRP2 Rabbit polyclonal WB,IF  

antiZF20a Zf XIRP2 Rabbit polyclonal WB,IF  

antiGFP GFP Mouse monoclonal WB,IF Roche, Mannheim, 

Germany 

antiGAPDH GAPDH Mouse monoclonal WB Calbiochem, Darmstadt, 

Germany 

antiActin Actin Rabbit polyclonal WB,IF  
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3.5.2. Secondary antibodies 
Table 3.5. Secondary antibodies 
 
Name Donor Against Conjugate Supplier 

GAMPO Goat Mouse HRPO Dianova  

 

GARPO Goat Rabbit HRPO Dianova 

GAM  IRDye 800  Goat Mouse IR Dye 800  Rockland Immunochemicals, 

Gilbertsville, USA 

GAR  IRDye 800  Goat Rabbit IR Dye 800  Rockland Immunochemicals, 

Gilbertsville, USA 

GAM  IgG1-TXR Goat Mouse TXR Southern Biotech  

GAM  IgG2a-FITC Goat Mouse FITC Southern Biotech 

GAM  IgA-TXR Goat Mouse TXR Southern Biotech 

GAM Cy3 Goat Mouse Cy3 Dianova 

GAM Cy5 Goat Mouse Cy5 Dianova 

GAR Cy2 Goat Rabbit Cy2 Dianova 

GAR Cy5 Goat Rabbit Cy5 Dianova 

 
3.6. Molecular Biology Methods 
3.6.1. Culture media 

All media and buffers were prepared essentially as described in Sambrook et al., 1989.The media 

were prepared with de-ionized water that was filtered through an ion-exchange unit (Millipore). 

Culture media were sterilized by autoclaving at 121ºC. For making agar plates, 15g agar (1.5 % 

w/v) was added to 1 liter of LB medium before autoclaving. 

Table 3.6. Media for Molecular Biology 

Medium                                                                       Composition 

LB medium                                 10 g Tryptone, 5 g yeast extract, 10 g NaCl per Liter, pH 7.5 

SOB medium                            20.g Tryptone, 5g yeast extract, 0.59g NaCl, 0.19g KCl per Liter, pH 7.0 

SOC medium                            5 mM MgCl2, 5 mM MgSO4, 20 mM Glucose in SOB- Medium 

PBS                                           0.14 M NaCl, 3 mM KCl, 2 mM K2HPO4, 10 mM Na2HPO4, pH 7.4 
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TBS                                          50 mM Tris/HCl, 150 mM NaCl, 0.05 %, pH 7.9 

TBST (Tween-20)                    50 mM Tris/HCl, 150 mM NaCl, 0.05 % Tween-20, pH 7.9 

TBST (Triton X-100)                300.µl of 20% Triton X-100 in 1 liter of TBS (Odyssey washing buffer) 

 
3.6.2. Antibiotics for molecular biology 

The following antibiotics were used in indicated concentrations for all bacterial cultures meant 

for plasmid propagation and bacterial expression of proteins. LB-agar antibiotic selection plates 

meant for transformation purposes were prepared by adding antibiotics at indicated 

concentrations after cooling LB-agar media to 45ºC.   

Table 3.7. Antibiotics for Molecular Biology 

Antibiotic End concentration 

Carbenicillin 100µg/ml 

Chloramphenicol 34µg/ml 

Kanamycin 50µg/ml 

 
3.6.3. Preparation of chemical competent cells 

Glycerol stocks of E. coli strains JM109 and DH5α containing 30 % glycerol (v/v) were stored -

80ºC. For each type of competent cells to be prepared 3 ml of LB medium is freshly inoculated 

with desired bacteria from glycerol stocks. Cultures were shaken continuously (250rpm, 37ºC) 

overnight. 5 µl of this culture were subsequently used to inoculate 50 ml of fresh LB medium and 

grown at 18º C for 3-4 days until an OD of 0.9 was reached. This culture was pelleted and 

washed with ice cold water and subsequently incubated on ice cold HD buffer (shown below). 

The final suspension was snap frozen in 200 µl portions in liquid nitrogen and stored at -80ºC. 

K-MES buffer:  0.5 M MES pH 6.3 adjusted with KOH and autoclaved/ filtered sterile. 

HD buffer: (10 %) glycerol 49.0 ml, 1.0 ml K-MES (0.5 M; pH 6.3), CaCl2 and MnCl2 
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3.7. Established Cell lines and Primary cultures 
Table 3.8. Established Cell lines and Primary cultures 

Name Cell type From Reference 

HSKM, Human skeletal muscle cell line  Human skeletal muscle (van der Ven et 

al., 1993) 

C2 C12 Myoblast cell line Established cell line of 
satellite cells from the 
thigh muscle of C3H 
mouse 

(Yaffe and 

Saxel, 1977) 

H-2Kb Mouse skeletal muscle cells -tsA58 Cells derived from  

H-2Kb-ts A58b-tsA58 

mice 

(Morgan et al., 

1994) 

Primary cells Satellite  cells Mouse diaphragm protocol Ulrich 

Becher 

PtK2 Epithelial cells Male Rat Kangaroo 

kidney  

ECACC# 

CB2059 

 HEK 293 

(AD293) 

Epithelial cells Human embryonic 

kidney  

Stratagene 

 

HEK293T 

HEK293 stably expressing a large 

T antigen 

 Transformed human 

embryonic kidney 293 

cells 

ATCC CRL-

11268 

3T3 Fibroblast cells Albino Swiss mouse 

embryo 

(Todaro et al., 

1963) 

 
3.8. Lentivirus methods 
3.8.1. Transient transfection method for production of lentiviruses 

All the recombinant lentiviruses used in this work were generated using transient transfection of 

HEK293T cells (kindly provided by Prof. A. Pfeifer; University of Bonn) as previously described 

(Szulc et al., 2006). The human embryonic kidney 293T (ATCC CRL-11268) cells were cultured 

in 10 cm and 15cm tissue culture dishes with proliferation medium containing DMEM plus 

Glutamax, supplemented with 10% fetal calf serum (FCS) and 2 mM sodium pyruvate (all from 

Invitrogen, Germany) at 37oC and 5% CO2. Cells were regularly split before reaching confluence, 
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usually at 1: 6 to 1:10 ratio. For transfection,  either 2*106 cells per a 10 cm plate or 5*106

Table 3.9. Transient transfection method for production of lentiviruses 

 cells 

per a 15 cm plate were plated a day before transfection. Next day, the cells were transfected with 

20µg of the transfer vector, 15µg of the packaging vector (psPAX2) and 6µg of the envelope 

plasmid vector (pMD2G) per one 10 cm plate using calcium phosphate transfection. For 

transfection of cells in a 15 cm plate double the amounts of the respective vectors were used. A 

typical lentivirus production consisted of two to six 15 cm plates.  

                                                                           10 cm plate             15 cm plate 

                                                                            

Cell number                                                         2*106                                    5*10

Transfer plasmid                                                  20µg                         40µg 

6 

Packaging plasmid, psPAX2                               15µg                         30µg 

Envelope plasmid, pMD2G                                  6µg                          12µg 

Sterile water                                                        500µl                        1000µl   

2.5M CaCl2 solution                                             50µl                         100µl 

Added drop-wise 

2X HBSS (HEPES buffered saline solution)      500µl                        1000µl 

The CaPO4 mixture was mixed thoroughly and immediately dispensed into the tissue culture 

dishes drop-wise with a gentle rocking of the plates. The medium was changed 6-10 hours later.  

The medium containing the lentiviral particles was harvested 36-48 hours later, removed of 

cellular debris by centrifugation (2000 rpm, for 5 minutes) and filtration through 0.2 µm sterile 

filter units (Schleicher-Schuell). Filtered medium containing lentiviral particles can be aliquoted 

and stored at -70ºC in unconcentrated form.  Alternatively media containing lentiviral particles 

was purified and concentrated (about 100 times) by ultracentrifugation in SW40 rotor at 26,000 

rpm for 2hours and resuspending invisible viral pellet in 50-100 µl PBS. 

3.8.2. Lentiviral titer determination 

The functional titer of GFP-carrying lentivectors was estimated by infecting HEK293T cells with 

limiting virus dilutions and quantification of GFP-positive cells by FACS after 5 days. Briefly, 

the day before transduction 30,000 HEK293T cells per well of a 24 well plate were plated in 1 ml 
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medium. Next day cells in one well were counted using a hemocytometer (cell number usually 

ranged between 60,000 - 80,000) and transduced with six 4-fold serial dilutions in 250μl total 

volume. 50μl of unconcentrated or 1μl of concentrated virus prep served as starting dilution. 

Three days after transduction, 1ml of fresh medium was added, and 2 days later cells were 

detached from the bottom of the wells and analyzed for GFP fluorescence by FACS. When 5-10 

% of the cells were GFP-positive, the fluorescence intensity values were in linear range.  Values 

from linear range were used for titer estimation. Titer is defined by the number (percentage) of 

cells transduced by a given volume and counted on day 2, e.g. if 1μl gives 10% of GFP-positive 

cells and if we had 50,000 cells on day 2, the titer is (50,000 * 10%) or 5,000TU/μl = 5*106

3.8.3. Lentiviral transductions 

 

TU/ml. (TU = transduction units, each transduction unit represents one functional lentiviral 

particle). 

3.8.3.1. Immortalized mouse myoblast culture- H-2Kb-tsA58 cells 

Myoblasts isolated from male homozygous H-2Kb-tsA58 (immorto) mice were grown under 

permissive conditions at a temperature of 33ºC in proliferation medium (see below) containing 

interferon-γ (IFN- γ, tebu-bio, Offenbach) as previously described (Morgan et al., 1994). 

Proliferating cells were split upon reaching 60-70 % confluence in collagen- (10µg/ml PBS) or 

MatrigelTM coated (1:100 dilution in DMEM) petri dishes for up to 20 passages. At 

approximately 30-40 % confluence cells were transduced with lentiviral constructs and either 

expanded or induced to differentiate at 70-80 % confluence. Expanded cells were selected for 

GFP expression by FACS (see below). Stably selected cells were differentiated either in 

Matrigel™ coated petri dishes (for RNA extraction and western blots) or on Matrigel™ coated 

coverslips (for immunofluorescence studies). 

Proliferation medium:  DMEM, 20 % fetal calf serum, 2 % L-glutamine,  

2 % Na-Pyruvate, 1 % Penicillin/Streptomycin, 20 U/ml IFN- γ 

Differentiation medium: DMEM, 2 % horse serum, 2 % L-glutamine, 2 % Na-Pyruvate 

1 % Penicillin/Streptomycin 

3.8.3.2. C2C12 and human skeletal muscle (HSKM) cells 

The myogenic cell line, C2C12 (ECACC#CB2438)  and primary cultures from human skeletal 

muscle (HSKM) cells, were cultured as previously described (van der Ven et al., 1993). 
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Composition of the culture media is shown below. C2C12 and HSKM cells were seeded on 6 

well or 12 well plates for lentiviral transductions. Transductions were performed at 30 % 

confluence at a multiplicity of infection (MOI) of 10 - 20 (i.e. 10-20 viral particles per cell). 

Transduced cells were selected for GFP expression by FACS, and selected cells were used for 

differentiation studies. Differentiation was induced by switching to differentiation media. 

Proliferation medium:  DMEM, 20 % fetal calf serum, 2 % L-glutamine,  

2 % Na-Pyruvate, 1 % Penicillin/Streptomycin, 0.4 % Ultroser G,  

Differentiation medium:   DMEM, 2 % horse serum, 2 % L-glutamine, 2 % Na-Pyruvate 

 
3.8.3.4. FACS-based sorting and establishment of stable cell lines 

GFP-positive cells were sorted using FACSDiva (BD Biosciences), at the FACS core facility of 

the University of Bonn.  Cells were excited with a blue laser (Enterprise II ion laser, Coherent, 

Santa Clara, CA, USA) with excitation wavelength of 488 nm. The power of excitation was about 

80 mW.  GFP-positive cells were collected with a 530/20 band pass filter where 20 stands for the 

width of the band pass in nm and 530 stands for the average wavelength of the band pass i.e. from 

520-540 nm.  The usual flow speed ranged between 100-5000 cells/sec. Data were collected with 

BD FACSDiva software version 5.03. 

3.8.3.5. Satellite cell isolation from wild type (strain SV129) and Xin knockout 
mice 

The following protocol was employed for the purification of a population of muscle-derived cells 

from the diaphragm muscles of mice. The diaphragm of 6-8 weeks old SV129 wild type and Xin 

knockout mice was carefully excised and placed in ice-cold PBS. The diaphragm was carefully 

cleared of adventitious tissues and blood vessels and minced to small pieces. The minced tissue 

was digested for 1 hour with 750 µl Collagenase B (1mg/ml) at 37ºC and resuspended every 15 

minutes. Resuspension of cells was carried out first, with blue plastic pipette tip and in later 

stages with yellow pipette tip; both the pipette tips were cut at the tip to avoid clogging through 

small diameter. Subsequently, 250 µl of trypsin (0.05%) was added and the tissue was incubated 

for a further 20 minutes at 37ºC and again resuspended with a blunt yellow pipette tip. The cell 

suspension was filtered through a 40 µm, nylon cell strainer with 10 ml medium (IMDM, 20% 

FCS, 1% FCS,1% Pen-Strep, 1% non-essential amino acids (NEAA), 0.1% ß-mercaptoethanol 
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and basic fibroblast growth factor (bFGF) 5ng/ml). The cell suspension that contained a mixture 

of many cell types including satellite cells, fibroblasts and other debris was centrifuged and the 

cell pellet was resuspended in 10 ml of medium. To enrich the cell population for muscle specific 

cells including satellite cells, cells were pre-plated twice, for 30-45 minutes, non-attached cells 

were collected, counted and plated on gelatin coated glass coverslips or Matrigel TM coated petri 

dishes. 250,000-500,000 cells were plated in each well of a 24 well plate (for differentiation) or 

alternatively in a 6 cm petri dish (for proliferation). The first medium change was done after 4 

days and subsequently every alternate day. For immunofluorescence studies, cells were plated 

directly on gelatin coated glass coverslips, transduced and were allowed to differentiate. For RNA 

extraction and quantification of gene knockdown cells were plated in petri dishes. 

3.9. RNA isolation 
3.9.1. RNeasy mini kit protocol 

RNA was isolated from a monolayer of cultured cells according to the RNeasy mini kit protocol 

from Qiagen. Skeletal muscle cells growing on a petri dish (10 cm dish for proliferating and 6 cm 

dish for differentiating cells) were lysed by the addition of 1ml of RLT buffer supplemented with 

10µl of β-mercaptoethanol, immediately after aspirating the culture media from the dish. Cells 

were scraped of the dish with a sterile rubber policeman and suspended thoroughly with a pipette 

until no cell clumps were visible. The lysate was applied to a QIAshredder spin column and 

centrifuged at maximum speed in a table top centrifuge (13,000rpm, 2 min). The flow-through 

was mixed with 600µl of 70% ethanol, applied to an RNeasy mini spin column and centrifuged at 

10,000 rpm for 15 sec.  The flow-through was discarded and the RNeasy mini column was 

transferred to a new 2 ml collection tube. The column was washed twice with 500 µl of RPE and 

RNA was eluted with 30-50µl of RNase-free water into a new eppendorf tube. 

3.9.2. Total RNA isolation with TRIzol

Total RNA was isolated with the 

® reagent 

TRIzol® reagent (Invitrogen, Carlsbad, CA, USA) as per the 

instructions of the manufacturer. Briefly, skeletal muscle cells growing on a 10 cm dish were 

lysed by the addition of 1ml of TRIzol® reagent immediately after removal of culture media. 

Cells were scraped from the dish with a sterile rubber policeman. The lysate was thoroughly 

suspended and incubated at room temperature for 5 min. The lysate was then centrifuged at 
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13000 rpm for 10 min at 4ºC and the supernatant was transferred to a fresh tube. 200µl of 

Chloroform was added to the lysate from above step and mixed well and allowed to incubate at 

room temperature for 5-15 min. The lysate and Chloroform mixture was centrifuged at 13000 

rpm for 10-15 min at 4ºC resulting in the aqueous phase, organic phase and the interface. The 

aqueous phase (top colorless layer) was transferred to a fresh tube. RNA remained exclusively in 

the aqueous phase, whereas DNA and protein were in interphase and organic phase (lower 

phase). 500 µl of isopropanol was added to the aqueous phase, vortexed briefly, incubated for 5-

10 min and centrifuged for 10 min at 4-25ºC. The supernatant was discarded and the pellet was 

washed with 1ml of 70% ethanol, centrifuged at 8000 rpm for 5 min. The ethanol was removed; 

the RNA pellet was allowed to air dry for 5-10 min and resuspended in RNase-free water. 

3.9.2.1. DNase I treatment of RNA to remove traces of genomic DNA 

RNA isolated from proliferating and differentiating skeletal muscle cells (C2C12, H-2Kb-tsA58 

and C2C12 and H-2Kb-tsA58 cells stably expressing lentiviral knockdown constructs) were 

treated with DNase I for 15-20 min in a volume of 100 µl (87.5 µl RNA solution+10µl buffer 

RDD+2.5µl DNase I stock solution) and purified again by column as per the instructions of the 

manufacturer.  

3.9.2.2. Measuring RNA quality, integrity, purity and concentration 

The quality of RNA was visualized by running on a 1% agarose gel. The ribosomal RNA bands 

18S and 28S should appear as sharp bands and the intensity of 28S ribosomal RNA band should 

be twice that of 18S RNA band. If the ribosomal bands in a given lane are not sharp, but appear 

as a smear of smaller sized RNAs, it is likely that the RNA sample suffered major degradation 

during preparation. The concentration and the quality (purity) of RNA were also measured by UV 

visible spectrophotometer.  

The concentration of RNA can be determined by measuring the absorbance at 260 nm (A260) in 

a spectrophotometer. Absorbance readings should be greater than 0.15 to ensure significance. An 

absorbance of 1 unit at 260 nm corresponds to 40 µg of RNA per ml (A260 = 1 = 40 µg/ml). This 

relationship is valid for measurements in water. Therefore, RNA is diluted in water to quantify it 

spectrophotometrically. 
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RNA concentration in µg/µl= (A260-A320)*40*dilution factor/1000  

Purity of RNA can be evaluated by determining the ratio of absorbance readings at 260 nm and 

280 nm (A260/A280). This ratio provides an estimate of the purity of RNA with respect to 

contaminants that absorb in the UV range, such as protein.The A260/A280 ratio is influenced 

considerably by pH in which RNA is measured. As water is unbuffered, the pH and the resulting 

260/280 ratio can vary greatly. Hence, for an accurate determination of purity, the 260/280 

absorbance was measured by diluting RNA in 10 mM Tris-Cl, pH 7.5. The spectrophotometer 

was also calibrated with the TE buffer. Pure RNA has an A260/A280 ratio of 1.9-2.1. However, 

values up to 2.3 are routinely obtained for pure RNA (in 10 mM Tris, pH 7.5) with some 

spectrophotometers.Lower pH results in lower A260/A280 ratio which hampers the sensitivity to 

detect protein contamination. A control PCR with Xin specific primer pair was done on each 

sample of DNase treated RNA to ensure that no genomic DNA was present in the sample of 

RNA. 

3.10. Reverse Transcription-PCR 
RNA was reverse transcribed to cDNA using random nonamers as per the instructions of the 

reverse transcription kit from Solis BioDyne. Briefly, 1 µg of RNA was mixed in a PCR tube 

with 2 µl of random nonamers (100 nM). The volume was adjusted to 11 µl with PCR water and 

incubated at 70ºC for 5 min. The PCR tube was placed immediately on ice and 4µl of 5x reverse 

transcription buffer 1 (contains MgCl2 and DTT) and 1 µl of dNTPs (20mM) was added. The 

volume was adjusted to 19 µl with PCR water and the tube was incubated at 25ºC for 5 min and 

afterwards placed on ice. 1 µl of M-MLV RNase H−  Reverse transcriptase (Solis BioDyne) was 

added, and the sample was incubated at 42ºC for 1 hour. This was followed by an incubation step 

of 10 min at 70ºC.  The cDNA obtained after reverse transcription was stored at -20ºC and 

subsequently used for semi-quantitative and quantitative Real-time PCR experiments.  

3.10.1. Semi quantitative RT-PCR 

Semi quantitative RT-PCR was performed to quantify transcript abundance in cDNA samples 

generated from the reverse transcription of the RNAs isolated from the cells at different stages of 

differentiation. Initial experiments for knockdown confirmation were also done with semi 

quantitative PCR.  
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Table 3.10. Semi quantitative RT-PCR reaction setup 
 
Single reaction                                                                            Master mix for 4 reactions 

36 µl PCR water ………………………………………………………………..144 µl 

5 µl Taq polymerase buffer (10X)………………………………………………20 µl 

3 µl MgCl2 (25mM)……………………………………………………………...12 µl 

1 µl dNTPS (20mM)……………………………………………………………. .4 µl 

1 µl Primer 1………………………………………………………………………4 µl 

1 µl Primer 2………………………………………………………………………4 µl 

1 µl Taq polymerase………………………………………………………………4 µl 

48 µl                                                                                                               192 µl    

Each single reaction was aliquoted from the Master mix as described in Table 3.10.  In the final 

step, 2 µl of individual cDNAs (e.g. cDNAs from proliferating cells and cells differentiated for. 1, 

3 or 6 days) were added to makeup a single reaction of 50 µl. The 50 µl reaction was equally split 

into four separate tubes (e.g.12 µl each) and run at different cycle numbers as shown in Figure 

3.1. The conditions for semi qRT-PCR are depicted in Table 3.11. 

Table 3.11. Semi qRT-PCR conditions for amplification of Xin, Xirp2 and Gapdh 
Step                    Time                           Temperature 
Denaturation       2 min                            94ºC 

Denaturation       30sec                            94ºC 

Annealing           30sec                             60ºC 

Extension            30sec                            72ºC         2           # Cycles 

Final extension   10 min                           72ºC 

Pause                   ----                                4ºC               
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Figure 3.1. Semi quantitative RT-PCR reaction setup. Semi quantitative PCR experiments in a 50 µl 
reaction were setup as shown in the Figure. Each reaction was divided into four separate tubes (e.g.12 µl 
in each tube) and the reactions were run for different cycle numbers (25, 30, 35 and 40 cycles) with 
identical PCR conditions. The PCR products were run on a 2 % agarose gel. For the Xin and Xirp2 
expression profile experiment, primer pairs of Xin, Xirp2 and Gapdh (as loading control) were used in 3 
separate master mixes. The cDNAs from four different stages of differentiation (proliferating and 
differentiation days 1, 3 and 6) were added to the aliquoted reactions. Primers were chosen in such a way 
that the amplicons generated were in the size range of 100-200 bp in length. The experimental setup also 
included a no template (no cDNA) control.  
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3.10.2. Quantitative Real time PCR (q-RTPCR) 

Quantitative Real time PCR was used to quantify the knockdown levels of genes in cells 

transduced with lentiviral knockdown constructs. The cDNAs from control cells and knockdown 

cells (see RNA isolation and reverse transcription steps above) were used with SYBR green 

based quantitative Real time PCR with QuantiFast SYBR green PCR kit from Qiagen on a Bio-

Rad iCycler® instrument. The QuantiFast SYBR green PCR kit was based on a two-step cycling 

protocol, with a denaturation step of 95ºC and a combined annealing/extension step at 60ºC. This 

protocol was also meant for primers with melting point (Tm) well below 60ºC. The QuantiFast 

SYBR green PCR kit included 2xSYBR green Master mix which contained all the necessary 

components for the quantitative PCR including SYBR green dye, all the buffers and Hot Start 

Taq plus DNA polymerase. The Hot Start Taq polymerase required initial incubation step of 5 

minutes at 95ºC to activate it. 

Table 3.12. Reaction setup in a 96 well plate on iCycler® instrument 
Single reaction                                                                                  Master mix 

12.5 µl 2x QuantiFast SYBR green PCR master mix ………….137.5 µl (for 10+1 reactions) 

0.5 µl   Primer 1…………………………………………………...5.5 µl 

0.5 µl    Primer 2…………………………………………………..5.5 µl 

10.5 µl   RNase free water………………………………………115.5 µl 

25 µl final volume                                                                         264 µl 

Note: The Master mix was prepared in excess for one reaction. 24 µl of Master mix was aliquoted 

into each of the wells and 1 µl template cDNA was added in the final step. The number of cycles 

was set to 40. Since SYBR green dye intercalates in an unspecific manner to all double-stranded 

DNA, this method required validation. The validation method included melting curve analysis.  A 

melting curve analysis was performed on PCR products to check each primer set. All three sets of 

primers Xin, Xirp2 and Gapdh produced single peaks in the melting curve analysis (see Figures 

of melting curves in Appendix). The end PCR products were also run on a 2% agarose gel to 

confirm the presence of a single band. From these validation methods it was concluded that the 

amplification was specific and no primer-dimer combinations or unspecific products were 

amplified in this protocol.  
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Table 3.13. PCR conditions for Real time PCR with QuantiFast SYBR green PCR kit 
 
Step Time Temperature Ramp rate Additional comments 

PCR initial 

activation step 

5 min 95ºC Maximal/fast mode Hot start Taq polymerase 

was activated in this step 

Two-step cycling     

Denaturation 10s 95ºC Maximal/fast mode  

Combined 

annealing/extension 

30s 60ºC Maximal/fast mode Performed fluorescence 

data collection 

 
3.11. Polymerase chain reaction 
PCR was used to amplify specific DNA fragments according to established protocols (Saiki et al., 

1985). For amplification of GC rich miR30 regions and PCR based double strand generation of 

hair pin sequences, DMSO at 5% concentration was included in the PCR reaction and the PCR 

was performed with Pfu polymerase, an enzyme with proof reading capacity. Plasmid clones 

purchased from Addgene and Open Biosystems were used as templates in PCR mixtures of 50 µl 

reaction volume, containing 20 pM oligonucleotides, 2mM of dNTPs (Fermentas), 5µl Pfu buffer 

(10x) and 2.5 Units or 1 µl of Pfu polymerase. Desired DNA fragments were amplified by 

programming the thermo cycler (TRIO-Thermo block, Biometra) according to the conditions 

given below. 

Table 3.14. Thermo cycler setting 

Denaturation 2.0 min at 94ºC 

35 Cycles of Denaturation, Annealing and Elongation 

1) Denaturation 45 sec at 94º 

2) Annealing 30 sec between 55-65ºC 

3) Elongation 2 min per each kb length at 72ºC 

Elongation 10 min at 72ºC 

Cooling or hold at 4ºC. 
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3.12. Standard molecular cloning techniques 
3.12.1. Blunting of DNA fragments 

Where necessary, the sticky ends of DNA fragments, resulting from the digestion of the DNA 

with a restriction enzyme were blunted, using the Pfu polymerase. Briefly 1 µg of plasmid DNA 

was incubated with 2 mM dNTPS and 1 U of Pfu polymerase and 5 µl Pfu buffer in 50µl reaction 

volume at 72ºC for 30 minutes. The reaction mix was then separated by agarose gel 

electrophoresis and purified from the gel using the QIAquick Gel Extraction Kit (Qiagen, Hilden) 

(see below).  

3.12.2. Dephosphorylation of vector DNA 

To avoid self-ligation of the vector, 5' ends of the linearized plasmids were dephosphorylated by 

incubation with calf intestinal alkaline phosphatase (CIAP, Roche Diagnostics, Mannheim). 

Briefly, 1-5 µg of the linearized vector DNA was incubated with 1 U calf intestinal alkaline 

phosphatase (CIAP) in CIAP buffer (provided by the manufacturer) in a total volume of 50 µl at 

37ºC for 30 min. By adjusting the concentration of EGTA to 5mM, the enzyme is inactivated 

upon incubation at 65ºC for 10 min. Dephosphorylated DNA was separated by agarose gel 

electrophoresis and purified from the gel using the QIAquick Gel Extraction Kit (Qiagen, Hilden)  

3.12.3. Ligation 

The respective DNA insert fragment and the linearized (where necessary dephosphorylated) 

plasmid were mixed in equi-molar amounts together with ligation buffer and 0.5 U of T4 DNA 

ligase (MBI, Fermentas). The reaction mixture was kept at 22ºC for 1 h or at 16ºC for overnight. 

The ligated product was transformed into E. coli, JM109 or DH5α cells. 

3.12.4. Transformation of E. coli by heat shock  

Competent bacteria (E. coli JM 109, DH5α or BL21CP) were thawed on ice. 5–10 l of a 

ligation mix or approximately 0.1 µg plasmid DNA was incubated with 100 µl of bacteria for 30 

min on ice. Subsequently, bacterial cells containing DNA were incubated at 42ºC for 80 seconds 

and then placed on ice for 2 min. Subsequently, 1 ml of SOC broth was added to the bacteria and 

they were incubated in for 1 hr at 37ºC under continuous shaking. Finally, cells were centrifuged 
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at 6000 rpm for 5 min, resuspended in 100 µl of LB broth and plated on LB agar plates with 

suitable antibiotic selection marker. Plated bacterial cells were incubated overnight at 37ºC. 

3.12.5. Bacterial mini overnight cultures 

Bacterial overnight cultures were grown by picking single colonies from the agar plates 

containing the transformed E. coli, the subsequent day and grown in 3 ml of LB broth with 

respective selected antibiotics.  

3.12.6. Plasmid DNA preparation 
3.12.6.1. Mini preparation of plasmid DNA (mini preps) 

Plasmid DNA was isolated either using Promega SV Wizard mini extraction kits or by TELT- 

mini preparations. 1.5 ml of bacterial overnight culture was centrifuged (6000 rpm, 5 min) and 

the supernatant was discarded. The pellet was dissolved in TELT lysis buffer (50 mM Tris pH 

8.0, 62.5 mM EDTA pH 8.0, 2.5 M. LiCl, 4% Triton X-100) and centrifuged at 13,000 rpm for 5 

min and the pellet was removed with a toothpick. From the supernatant, DNA was precipitated by 

addition of 0.8 times volume of isopropanol and centrifuged for 15 min at 13,000 rpm. The 

pelleted DNA was washed with 70 % ethanol, air dried and dissolved in 30 µl of TE buffer, pH 

8.8. The presence of plasmid was confirmed by restriction enzyme digests and subsequent 

agarose gel electrophoresis. Plasmid DNA for sequencing was prepared using the Promega SV 

Wizard mini extraction kits as per the instructions of the manufacturer. Sequencing was 

performed using the single read economy sequencing method by AGOWA GmbH, Berlin). 

3.12.6.2. Transfection quality plasmid DNA preparation: Midi preps and Maxi 
preps 

Plasmids that were used for the transfection in eukaryotic cells were purified using the plasmid 

midi kit (Qiagen) or using maxi prep kits (Machery Nagel) from 100-250 ml of overnight cultures 

as described in the manufacturer’s instructions.  Isolated plasmid DNA was re-dissolved in 0.1x 

TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). The DNA concentration was calculated from 

the absorption value at 260 nm. The purity of the DNA was estimated from the ratio of 

absorptions of wavelengths at 260 nm and 280 nm.  The plasmid integrity was also checked by 

running on 0.6% agarose gels by observing supercoiled plasmid DNA.  
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3.12.7. Restriction enzyme digests 

Plasmid DNA was digested using the desired restriction enzymes. 1 µg of the DNA of interest 

was incubated with restriction endonuclease (1 U/ µg of DNA) in a total volume of 20 µl in 

suitable buffers as suggested by the manufacturer for 1-3 hours at 37ºC. For analysis, the digested 

samples were loaded onto 0.6% - 2 % agarose gels depending on the fragment sizes and 

compared with DNA standard ladder bands. 

3.12.8. Agarose gel electrophoresis of DNA 

Agarose gel electrophoresis was used to resolve the DNA fragments. 0.6% - 2 % agarose was 

dissolved in hot TAE buffer. After cooling to approximately 50ºC, ethidium bromide was added 

to a final concentration of 0.5 µg/ml and gels were cast. Electrophoresis in a horizontal 

electrophoresis tank containing 1x TAE buffer at 1-5 V/cm. DNA size markers (MBI Fermentas) 

were always loaded along with the DNA samples to estimate the size of the resolved DNA 

fragments. The gels were examined under UV light at 302nm and were photographed using 

‘Quantity one’, gel-documentation software from Bio-Rad. 

3.12.9. DNA fragment recovery from agarose gels 

DNA fragments from restriction enzyme digests or PCR products were separated by agarose gel 

electrophoresis as described above. The desired DNA fragments were excised keeping the 

agarose gel under a low powered UV illuminator to avoid UV induced DNA mutations. The 

DNA fragment was then purified from the excised gel piece using the Qiagen gel extraction kit 

following the instructions supplied by the manufacturer. 

3.13. Biochemical Methods 
3.13.1. Protein expression 

For the expression of recombinant proteins, pET expression vectors were used. The pET23aW1 

vector was modified from original pET23a vector (Novagen) by introducing a three amino acid 

peptide, Glutamate-Glutamate-Phenylalanine (EEF) tag. The pET23a-T7 vector was modified 

from original pET23a vector (Novagen) by introducing a T7 immuno tag with amino acid 

sequence of MASMTGGQQMGR, an epitope derived from amino terminal portion of capsid 

protein of T7 phage. Expression of recombinant proteins from pET23a-EEF resulted in the 
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formation of a recombinant fusion protein with C-terminal 6x His tag and C-terminal EEF tag 

whereas, the expression from pET23a-T7 resulted in the formation of a recombinant fusion 

protein with C-terminal 6x His tag and N-terminal T7 tag. The E. coli strain BL21 CP was 

transformed with plasmids containing the relevant cDNA insert. Single colonies were picked 

from selection plates and grown overnight in LB selection medium. A mini expression culture of 

4 ml total volume was performed to assess the expression and solubility of the fusion proteins. 

3.13.2. Expression and purification of recombinant proteins 

Recombinant proteins were expressed by inoculating 100-150 ml of LB medium containing 

chloramphenicol and carbenicillin as antibiotic selection markers. Expression was induced by 

1mM IPTG for 3 hours after the culture has attained an O.D600 value of 0.6. Uninduced bacterial 

cultures (-IPTG) served as negative control. Bacterial cells were collected by centrifugation 

(5,000 rpm, Heraeus cool centrifuge) and kept at -20ºC until further use. Frozen pellets were 

thawed on ice, resuspended in lysis buffer and sonicated to reduce viscosity. Cell debris was 

removed by centrifugation (4,500 rpm, 30 min) and the supernatant was collected. 500-1000 µl of 

pre-equilibrated of Ni-NTA-Agarose beads (Qiagen) were added to the His-tagged fusion protein. 

The beads were incubated with the protein solution for approximately 1 h at 4ºC. The fusion 

protein bound beads were washed thoroughly in wash buffer and fusion proteins were eluted in 

fractions by addition of respective elution buffer. The composition of the buffers is given below. 

Lysis buffer: 50 mM NaH2PO4, 300 mM NaCl, 10 mM Imidazole, 1 mg/ml Lysozyme, pH 8.0 

Wash buffer: 50 mM NaH2PO4, 300 mM NaCl, 20 mM Imidazole, pH 8.0 

Elution buffer: 50 mM NaH2PO4, 300 mM NaCl, 250 mM Imidazole, pH 8.03.13.3. Protein 

concentration determination 

Protein concentration was determined by Bradford method. Protein Assay Dye reagent (Bio-Rad) 

was added to the protein solutions at required dilutions, incubated for 5 min and the O.D. was 

read at 595 nm wavelength. A series of γ- globulin dilutions served as standards. Both standard 

and samples were prepared in triplicate.3.13.4.  

SDS-Polyacrylamide gel electrophoresis (SDS-PAGE): SDS-polyacrylamide gel 

electrophoresis was performed using the discontinuous buffer system described by Laemmli 

(1970). For running gels, 6-14 % and for stacking gels 3 % acrylamide concentrations were used 
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(composition of the mixtures is given below). Where necessary, step gradient gels of 6 % to 14 % 

were used to resolve both high molecular and low molecular weight proteins in a single gel. The 

Bio-Rad Mini Protean II system was used with a spacer thickness of 0.75 mm. 

Table 3.15. SDS-PAGE Resolving gel composition 

Components                                8 %           10 %         12 %              14 %                  16 % 

Acrylamide Solution (37.5:1):   1.07 ml      1.33 ml     1.60 ml         1.87 ml                2.13 ml 

Resolving gel buffer:                 1.00 ml      1.00 ml     1.00 ml         1.00 ml               1.00 ml 

Double distilled H2O:               1.93 ml      1.67 ml      1.40 ml         1.13 ml               0.87 ml 

 

Table 3.16. SDS-PAGE Stacking gel composition 

Components                                3.0 %                                              4.5 % 

Acrylamide Solution (19:1):       0.15 ml                                            0.23 ml 

Stacking buffer:                          0.38 ml                                            0.38 ml 

Double distilled H2O:                0.98 ml                                             0.90 ml 

 

Table 3.17. Buffer composition 

Acrylamide solution:     30 % Acrylamide/Bis-Acrylamide (37.5:1) 

Resolving gel buffer:     375 mM Tris-HCl, 0.2 % SDS, pH 8.8 

Stacking gel buffer:       125 mM Tris-HCl, 0.2 % SDS, pH 6.8 

Running buffer:             25 mM Tris, 250 mM glycine, 0.1 % SDS, pH 8.8 

Coomassie staining:       0.1 % Coomassie Brilliant Blue G250, 50 % (v/v) methanol, 20 % (v/v) 

                                        acetic acid    

De-staining solution:      10 % (v/v) methanol, 7 % (v/v) acetic acid 

Sample buffer:                125 mM Tris-HCl, 0.2 % SDS, pH 6.8 

5 x SDS sample buffer:   5 mM EDTA, 30 % glycerol, 60 mM Tris-HCl, 15 % SDS, 

                                        0.1 % Bromophenol blue, pH 6.8, 7.5 % β-mercaptoethanol 

Purified protein solutions were mixed with 5 x sample buffer at a ratio of 1:5 (SDS sample buffer: 

Protein solution) and boiled at 95ºC for 2-5 minutes to denature. Samples were loaded into the 

wells of the stacking gels along with molecular mass marker to allow for the determination of the 

apparent molecular mass of proteins. After loading the samples, gels were run at a constant 
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voltage of 100-150 V until the bromophenol blue dye front reached the bottom of the gel. 

Resolved proteins were either stained with Coomassie brilliant blue or transferred onto a 

nitrocellulose membrane for subsequent detection protocols. 

3.13.5. Protein Transfer 
3.13.5.1. Semidry blot 

Proteins resolved by SDS-PAGE were electrophoretically transferred from the gel to a 

nitrocellulose membrane by a semidry blotting method for proteins of sizes up to 150 kDa. The 

transfer was performed using a semi-dry blotting apparatus (Bio-Rad). A constant current of 1 

mA/cm2 of nitrocellulose membrane was applied for 90 min. The quality of the protein transfer 

was determined by staining the membrane with Ponceau red solution (Sigma) for 2 min at room 

temperature. After staining, membranes were washed with deionized water and photographed 

after molecular mass markers and/or protein bands of interest were marked. 

Ponceau staining solution: 0.1 % (w/v) Ponceau-red in 3 % (w/v) acetic acid. 

Semi dry blot buffer:  39 mM Glycine, 48 mM Tris, 0.037 % SDS, 20 % methanol, pH 8.3 

3.13.5.2. Tank blot 

Proteins resolved by SDS-PAGE were electrophoretically transferred from the gel to a nitro- 

cellulose membrane by tank blotting for proteins above 100 kDa and whenever quantitative 

transfer was required (in the case of comparing protein levels from control and knockdown cells). 

The transfer was performed using a tank blotting apparatus (Bio-Rad). A constant current of 250 

mA was applied overnight at 4ºC. Protein transfer was assessed by staining the membrane with 

Ponceau red as described above. 

Tank blot buffer: 25mM Tris/ HCl, 192 mM Glycine, 18 % (v/v) methanol, 0.01 % SDS, pH 8.3 

3.13.6. Immunodetection of membrane bound proteins 
3.13.6.1. ECL method 

Transfer membranes prepared as described above were blocked with blocking buffer containing 4 

% low-fat milk powder, either overnight at 4ºC or at room temperature for 1-2 h. After blocking, 

the blot was incubated at room temperature with gentle agitation with either one of the desired 

primary antibodies with appropriate dilutions for 1-2 h at room temperature or overnight at 4ºC. 
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The blot was washed 3 times with TBST (with 0.05 % tween-20) at room temperature for 5 min 

each. Subsequently, the blot was incubated with Horse Radish Peroxidase (HRP) conjugated 

secondary antibody directed against the primary antibody for 1 hr. After washing with TBST, 

substrate reaction was carried out using an enzymatic Enhanced Chemiluminescence (ECL) 

detection system (Pierce Biotechnology Inc.). 

Table 3.18. Composition of ECL solutions 

TBST: 50 mM Tris/HCl, 150 mM NaCl, 0.05 % tween-20, pH 7.9 

ECL kit: Super signal West Pico Chemiluminescent substrate (Pierce Perbio Science GmbH,    

              Germany, Bonn)      

ECL-Film: Hyper film ECL (Amersham) 

 
3.13.6.2. Odyssey infrared scanning method 

Immunodetection using this method followed similar methods as described above with two 

exceptions. For washing the membranes, TBST with Triton X-100 is used to reduce the 

background which might appear with Tween. Additionally, the blots meant for detection by 

Odyssey® were incubated with an IR DYE 800-conjugated goat anti-mouse IgG antibody 

(Rockland Immunochemicals, Gilbertsville, USA). The obtained signals were quantified using an 

Odyssey® infrared scanner (LI-COR Biosciences, Bad Homburg, Germany). 

3.13.6.3. Western blot overlay 

Western blot overlay experiments were performed with recombinantly expressed and purified 

proteins at a concentration of 1 µg/µl, electrophoretically transferred to a nitrocellulose 

membrane (BA-85, Schleicher and Schuell). The blot membrane was stained with Ponceau® red 

to identify the electrophoresed proteins; afterwards the membrane was photographed and blocked 

with blocking buffer overnight at 4ºC. The membrane was washed briefly with PBST and 

overlaid with purified recombinant protein diluted in blocking buffer (4 % (W/V) low fat milk 

powder in PBST) to concentrations between 1 to 20 µg for 1-2 h at room temperature. The 

overlaid protein that was bound to the blotted protein was immunodetected as described above.  
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3.13.6.4. Dot blot overlay 

Dot blot assays were performed by spotting and drying of the protein of interest along with 

necessary positive and negative control proteins. Blocking of the membrane, overlaying with 

protein of interest and Immunodetection were performed as described above. 

3.14. Fixation and Permeabilization of cells 
Cells grown on glass cover slips were washed twice in warm PBS and treated with either 

paraformaldehyde or with methanol and acetone as follows 

3.14.1. Paraformaldehyde fixation 

Cells were incubated in 4 % Paraformaldehyde in PBS at room temperature for 15 min. The cells 

were permeabilized by incubating in 0.5 % Triton-X 100 for 15 min. The coverslips were 

subsequently washed twice in PBS and stored in sterile PBS until further use.  

3.14.2. Methanol- acetone fixation 

Cells cultured on the coverslips were incubated in a 1:1 methanol-acetone mixture at -20ºC for 15 

min. Subsequently, the coverslips were air dried and stored desiccated at -80ºC until further use. 

Alternatively they are stored in sterile PBS until further use. 

3.15. Immunohistochemical staining of tissue sections 
Frozen cryosections (on glass cover slides) with a thickness of 6-10 µm were fixed in cold 

methanol-acetone and blocked with blocking solution (10 % normal goat serum in PBS 

containing 0.1 % Tween 20 ) for 30 min at room temperature. Primary antibodies were diluted 

appropriately in PBST (PBS containing 0.1 % Tween 20) and incubated on sections for one hour 

at room temperature or overnight at 4ºC. The sections were washed twice with PBST and 

incubated with secondary antibody at room temperature for 45 minutes. Finally, the sections were 

washed twice with PBST and mounted with Mowiol® and covered with big rectangular glass 

coverslips. Stained sections were analyzed by imaging in a confocal microscope (see below). 
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3.16. Microscopy 
3.16.1. Confocal and epifluorescence microscopy 

To observe the localization of proteins in stained cells and tissues, images were acquired with 

Confocal laser scanning microscope (LSM 510, Carl Zeiss, Jena, Germany) or epifluorescence 

microscope (Nikon TE2000, Nikon, Japan). Nikon microscope was fitted with a 60x/1.25 NA oil 

immersion objective. A cooled CCD camera (Visitron, Puchheim) was used to record images on 

the epifluorescence microscopes. Images on Nikon TE2000 microscope were acquired with 

NISElements V2.0 (Nikon, USA) software and were processed either with Image J or Adobe 

Photoshop CS3 (Adobe Systems Inc., USA). Confocal fluorescence images of  stained cells on 

coverslips and immunolabelled specimens (6 to 10 µm thick tissue sections ) were recorded using 

a Zeiss LSM 510 confocal microscope equipped with a 488 nm argon laser, a 543 nm helium-

neon laser and a 633 nm helium-neon laser at 63x/1.3 NA oil immersion objective. For the 

excitation of GFP fluorescence, the 488nm argon laser was used, whereas, the 543 nm laser was 

used to excite Cy3, TRITC or Texas red. The Nikon TE 2000 was fitted with 6 fluorescent filter 

blocks in rotating turret with shutter. The filter combinations were selected to avoid any bleed-

through. The images from green and red channels were independently attributed with color codes 

and then superimposed using the accompanying software. Further image processing was done 

with Image J and Adobe Illustrator CS3 (Adobe Systems Inc., USA). 
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4. Results 
4.1. Expression patterns of Xin and Xirp2 in skeletal muscle 
cells  
 
4.1.1. Comparative expression levels of Xirp1 and Xirp2 by semi-
quantitative RT-PCR 

To test the temporal expression of Xirp1 and Xirp2 in differentiating skeletal muscle cells, the 

immortal mouse skeletal muscle cell line H-2Kb-tsA58 (Morgan et al., 1994), that typically 

differentiates up to the stage of cross striated and contracting myotubes in vitro was chosen. Since 

our efforts to produce an antibody that recognizes mouse Xirp2 protein were unsuccessful, the 

simultaneous expression of these genes at the protein level by western blotting could not be 

tested. Therefore, a semi-quantitative RT-PCR method was used to analyze their expression 

patterns at the mRNA level. RNA was isolated from proliferating and differentiating cells. The 

isolated RNA was reverse-transcribed to cDNA and subsequently used as a template for 

quantifying transcript abundance of Xin and Xirp2 using gene specific primers (Appendix Table 

1). The housekeeping gene Gapdh served as reference. Expression of Xirp1 was already observed 

in proliferating cells at the RNA level (Figure 4.1). The expression of Xirp1 increased with time 

and reached its maximum expression level after 3 days of differentiation, after which there was 

no further increase in its expression. By contrast, only minimal expression levels of Xirp2 were 

detected in proliferating cells as well as in early differentiating cells up to day 3. Robust 

expression of Xirp2 was only found from day 3 onwards and the expression remained stable up to 

day 6. These results indicate that, at least at the RNA level, Xirp1 is expressed even before the 

initiation of differentiation in skeletal muscle cells, whereas Xirp2 is only expressed at a 

considerably more advanced differentiation stage.  
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Semi quantitative-RT-PCR expression profile of Xirp1 and Xirp2 in H-2Kb-tsA58 muscle cells 

 

Figure 4.1. Expression patterns of Xirp1 and Xirp2 at mRNA level in differentiating H-2Kb-tsA58 
mouse immortal cells. RNA was isolated from H-2Kb-tsA58 cells undergoing differentiation at different 
time points (Proliferation (P) and differentiation days 1, 3 or 6 (D1, D3 or D6). Isolated RNA was reverse 
transcribed to cDNA and used as template for analyzing expression of Xirp1 and Xirp2 genes with gene 
specific primers in a semi quantitative PCR. Gapdh served as a reference. Xirp1 expression increased from 
D1 up to D3 and thereafter the expression level reached a plateau. For Xirp2, in the early stages of P, D1, 
D3, expression was minimal and towards the end of differentiation (D6) expression reached robust levels. 

4.1.2. Localization of Xin protein in proliferating and differentiating 
cells 

Although Xirp1 gene transcripts were detected in proliferating cells at the RNA level (Figure 

4.1), the protein (Xin) is absent in proliferating cells (Figure 4.2 B). Xin protein is also not 

detected in striations in maturely differentiated myotubes (Figure 4.2 J).  
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Figure 4.2. Localization of Xin in proliferating and differentiating H-2Kb-tsA58 cells. Proliferating 
cells (A-D) were stained for Xin with XR1B, an antibody recognizing XinA and XinB isoforms (B) and 
BM75.2, an antibody recognizing all α-actinin isoforms (C). Note that Xin protein was not detected in 
these cells (B). Non striated myofibrils (NSMF) of differentiating myotubes (E-H) show colocalization of 
Xin (side arrow head, F) with α-actinin (detected by a-653, side arrow head, E). Panels I-L show fully 
differentiated cells, in which Xin staining (J) does not colocalize either with Z-disk protein α-actinin (I) or 
with M-band protein myomesin ( detected with BB 78, K). M and N show typical Xin stainings at the 
myotube ends and along the stress fibers respectively. Panels O-Q display SMF and NSMF regions in a 
single developing myotube and the corresponding stainings of Xin and myomesin.  
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Intriguingly, within a single myotube which shows both striated and non-striated regions, Xin 

colocalizes with α-actinin in the non-striated myofibrils (NSMF) but not in the striated myofibrils 

(SMF, Fig. 4.2 E-H)). After induction of differentiation, Xin staining prominently appears in the 

regions where the myofibrils begin to form, typically myotube ends and the sites of new 

myofibril formation (Fig. 4.2 M-Q). In summary, Xin is localized to myotendinous junctions or 

the ends of myotubes and the sites where new myofibrils begin to form, but it is absent in mature, 

striated myofibrils. 

4.1.3. Expression of Xirp2 in various muscle cells, primary cells and 
tissue samples 

The efforts to study simultaneous expression profiles of Xin and Xirp2 proteins were complicated 

by the lack of proper differentiation in human skeletal muscle (HSKM) cells. At the same time, 

the lack of antibodies recognizing mouse Xirp2 protein hindered similar experiments with the 

well-differentiating mouse cell lines. This further compromised the studies on localization 

patterns of Xirp2 during differentiation in mouse cells. It must be noted that probably due to the 

relatively poor differentiation of the HSKM cells, Xirp2 staining appeared weak in differentiating 

HSKM cells (Figure 4.3). It was detectable only in the 1-2% of myotubes differentiated for six 

days, which contained mature myofibrils with distinct Z-disks. In these cells Xirp2 was localized 

in a doublet band flanking the Z-disk (Figure 4.4). By contrast, in cryosections from adult human 

skeletal muscle tissue, all available Xirp2 antibodies revealed a colocalization with α-actinin in 

the Z-disk (Figure 4.5). This implies that the layout of the Xirp2 molecule changes from regions 

flanking the Z-disk to the Z-disk itself during the differentiation process. Expression of Xin was 

detectable in HSKM cells which were switched to differentiation, even when the cells were not 

completely differentiated also in cells showing no Xirp2 expression. This finding again confirms 

the conclusion that Xin is expressed earlier than Xirp2 in skeletal muscle cells. Extrapolating 

these results, we predict a role for Xirp2 in the later stages of myofibril formation, whereas Xin 

probably plays a role in early myofibrillogenesis. 
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Figure 4.3. Localization of human Xirp2 protein in cultured human skeletal muscle (HSKM) cells 
undergoing differentiation. The differentiating HSKM cells were stained for Xirp2 either with a 
monoclonal antibody (mAb XIRP2) (A) or two distinct polyclonal antibodies (aX2HN, E) and (aPR2-6, 
H). The cells were counterstained with filamin (RR90, B), titin (T12, D) or Xin (XR1B). Note that Xirp2 
was localized along premyofibrils in E and H. Panel A shows a more ordered localization of Xirp2 
flanking the Z-disk at the periphery of the cell.  

The localization of Xirp2 was also studied in adult human skeletal muscle tissue sections with 

different antibodies targeting various regions of the human Xirp2 protein. All three available 

antibodies namely mAbXIRP2, the polyclonal antibodies anti PR2-6 and antiX2HN decorated the 

Z-disk region and mainly colocalized with α-actinin (Figure 4.5). The differences in localization 
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pattern of Xirp2 observed with mAb and polyclonal antibodies are due to possible impurities in 

polyclonal antibodies. 

 

Figure 4.4. Xirp2 doublet band flanking the Z-disk in differentiating HSKM cells. Differentiating 
HSKM cells were stained with a monoclonal Xirp2 antibody (mAbXIRP2, B, F) and counterstained for Z-
disk protein α-actinin (a-653, C, G) and M-band protein myomesin (BB78, A, E). Note that Xirp2 staining 
was visible in a doublet band flanking the Z-disk identified by the staining of α-actinin (D, H, I). 
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Figure 4.5. Localization of Xin and Xirp2 in adult human skeletal muscle tissues. Longitudinal 
sections of human skeletal muscle tissues (Vastus lateralis, a kind gift from Dr. Dirk Anhuf, 
Universitätsklinikum, Bonn ) were stained for Xin (C) and different antibodies targeted against human 
Xirp2 protein as indicated (G, I, M). Tissue sections were counterstained for α-actinin (A and E), or titin 
(K and P) to visualize the Z-disk. Scale bar: 20µm 
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4.2. Knockdown of Xirp2 expression in muscle cells 
To elucidate the possible role of Xirp2 in myofibrillogenesis and myodifferentiation, a functional 

knockdown of Xirp2 via RNAi was attempted. Earlier attempts in the laboratory to knockout 

Xirp2 gene in mice were unsuccessful owing to its complex gene structure. Xirp2 gene consists 

of 9 exons. The exon 7 is the largest one and contains most of the coding sequence. Multiple 

alternative forms of the protein can result due to splicing events and differential transcriptional 

start sites predicted for this gene. Therefore conventional knockout methods were unsuccessful in 

this laboratory. (A very recent report described successful knockout of Xirp2 (Wang et al., 

2010)).  Therefore RNAi was chosen as an alternative method for Xirp2 depletion. To effectively 

use RNAi method and to develop the knockdown system in hard to transfect muscle cell lines and 

primary muscle cells a lentiviral based gene knockdown method was selected. However, our 

experience with the existing lentiviral based systems and their inflexibility has motivated us to 

develop a novel general purpose modular lentiviral system. The system was intended for simple 

use, yet the modular approach was designed for multiple tasks without compromising the 

performance of the system. 

4.2.1. Construction of multipurpose modular lentiviral vectors  

Recently, a novel inducible lentiviral system based on a single vector was described that relied on 

the promiscuous activity of tTRKRAB, a fusion protein between the Krüppel-associated box 

(KRAB) domain and the tetracycline repressor (tetR) of Escherichia coli (Szulc et al., 2006). The 

tTRKRAB-mediated epigenetic repression of cellular Pol II and Pol III promoters juxtaposed to 

tet operator (TetO) sequences was shown to be reversibly controlled by doxycycline (Szulc et al., 

2006). The conditional vectors of this system allowed the expression of shRNAs from Pol III 

promoters and enabled reversible gene knockdown in vitro and in vivo without substantial 

leakiness (Szulc et al., 2006). However the vectors described in this reference used only shRNAs 

driven by the H1 (Pol III) promoter. Public libraries of gene knockdown clones (Silva et al., 

2005) as well as many vectors meant for gene knockdown also use shRNAs driven by other Pol 

III promoters (U6) and shRNAmirs driven by H1 and U6 promoters as well as a host of Pol II 

promoters. Since the tTRKRAB fusion protein can control both Pol II and Pol III promoters, the 

vectors described in the reference were modified as described below to allow for expression of 

both shRNAs and shRNAmirs from Pol III and Pol II promoters respectively. 
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4.2.1.1. Construction of the plasmid- pLVmir 

The construction of pLVmir (Figure 4.6) is based on the lentiviral vectors pLVCT-tTRKRAB 

(Appendix Figure 1) and pGIPZ (Appendix Figure 2 & 2.1) (Stegmeier et al., 2005; Szulc et al., 

2006). The vector map including unique restriction sites and modules is displayed in Figure 4.7. 

First, the vector pLVCT-tTRKRAB was cut with restriction enzyme SpeI to give two fragments 

4372bp and 8505bp respectively (Figure 4.6). The 8505 bp fragment was self-ligated to yield a 

new vector pLVCT∆ ( SpeI-SpeI). An XhoI site present just upstream of TetO sequence was 

deleted by digesting with XhoI, blunting the resulting sticky ends and finally religating to 

generate a new plasmid pLVCT∆(SpeI -SpeI)∆XhoI. In the next step, the shRNAmir-WPRE 

portion from the vector pGIPZ was amplified with two primers incorporating SpeI and MscI 

restriction sites in the forward and reverse primer respectively (a list of primers used for 

constructing various modular vectors is given in Appendix Table 2). The resulting amplicon was 

double digested with SpeI and MscI and cloned into the same restriction sites present in the 

plasmid pLVCT∆(SpeI-SpeI)∆XhoI, to generate a new plasmid, which was named pLVmir. This 

resulting plasmid harbors unique XhoI, EcoRI and MluI sites to facilitate direct cloning of 

miRNA30 based short hairpin sequences from public libraries from Open Biosystems (Chang et 

al., 2006). To further simplify the cloning protocol a stuffer sequence of 4.3 kb was introduced 

into the XhoI and EcoRI sites. We named the final version of the vector as pLVmir-stuffer. A 

schematic representation of the cloning is shown in Figure 4.6. The resulting vector including its 

unique restriction sites and modules is given in Figure 4.7. 
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Figure 4.6. Schematic representation of the cloning steps performed to construct the vector pLVmir 
from pLVCT-tTRKRAB and pGIPZ. For details of the cloning steps, see text. 
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Figure 4.7. Vector map of pLVmir with its unique restriction sites emphasizing its modular design. 
Modules are defined as the regions between the indicated restriction sites: module I is located between 
NotI and SpeI, module II between SpeI and MscI, module III between MscI and FspI, respectively. The 
choice of usable modules is given in Figure 4.9. 5' LTR - 5' long terminal repeat; 3' LTR-SIN - 3' long 
terminal repeat-self inactivating unit; TetO - tetracycline operator; psi - packaging signal; RRE - reverse 
response element;  mir5' and mir3' - 5' and 3' context sequences of miR30; WPRE - woodchuck hepatitis 
virus post-transcriptional regulatory element; AmpR- ampicillin resistance; pBR322_ori- pBR322 origin 
of replication; SV40 - simian virus 40 polyadenylation signal. 

4.2.1.2. Designing and cloning of shRNAmirs into modular lentivectors 

The two step protocol for cloning shRNAmirs into pLVmir and the subsequent construction of 

modular vectors for designated purposes is illustrated in detail in Figures 4.8 and 4.9. This 

protocol was applied for cloning shRNAmirs targeting mouse Xirp2 mRNA (NM_001024618). 

In the first step, sequences predicted to target Xirp2 mRNA (  see Appendix Table 4 for the actual 

sequences) were selected based on the siDESIGN algorithm (Dharmacon, Lafayette, USA) and 

converted to shRNAmir sequences with XhoI and EcoRI ends as shown in Figure 4.8., using a 

previously published protocol (Paddison et al., 2004a).  
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Figure 4.8. Schematic diagram showing the designing and cloning of shRNAmirs. Panel A shows the 
method for the conversion of siRNAs into shRNAmirs. To start with, a 22 nucleotide sense sequence that 
can potentially target the mRNA of a gene under consideration is identified with siDESIGN algorithm 
(http://www.dharmacon.com/DesignCenter/DesignCenterPage.aspx). Subsequently, a 97 base single 
strand is designed based on RNAi oligo retriever (http://www.cshl.org/public/SCIENCE/hannon.html) as 
shown in the Figure. Universal primers with XhoI and EcoRI in forward and reverse direction respectively 
amplify the single strand DNA to a double strand. The resulting amplicon is double digested with these 
enzymes and cloned into pLVmir or other compatible vectors. B) Shows the alignment of universal 
primers with the 97-base single strand nucleotide. 

The shRNAmir sequences generated from this protocol were double digested with XhoI and 

EcoRI and cloned into the correspondingly prepared pLVmir-stuffer. Successful cloning removes 
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the stuffer sequence (4.3kb) and introduces a short fragment of 110 bp consisting of the hairpin 

sequence. Alternatively, shRNAmir clones from pSM2 (retroviral) or pGIPZ (lentiviral) public 

libraries can be excised and cloned into pLVmir using the same restriction sites.  

4.2.1.3. Construction of modular vectors based on pLVmir 

In the second step, the NotI and SpeI double digested fragment of pLVTHM (the 3184bp shorter 

fragment also designated as module IA, Appendix Figure 3 and Figure 4.9) was cloned into 

correspondingly prepared pLVmir harboring the hairpin sequence (from step one) to generate a 

lentiviral vector pLVET-mir, constitutively expressing GFP and cloned shRNAmir sequence 

under the control of EF1α (Elongation factor 1α) promoter.  

Repeating the same step with NotI and SpeI double digested fragment of pLVET-tTRKRAB ( the  

4811 bp, shorter fragment, designated as module IB, Appendix Figure 4 and Figure 4.9)  

generated  a lentiviral vector ( pLVET-tTRKRAB mir) conditionally expressing GFP and the 

shRNAmir sequence under the control of EF1-alfa promoter. The tTRKRAB module provides 

conditionality to the system (Szulc et al., 2006). The EF1-alfa promoter can be exchanged with 

the CAG (cytomegalovirus (CMV) early enhancer element and chicken beta-actin combination) 

promoter in both constitutive and conditional versions by cutting and replacing NotI and PacI 

fragment in these vectors with that of  pLVCT-tTRKRAB (Appendix Figures 1 and 4). 

Alternatively, the 4372 bp, SpeI digested fragment (Figure 4.6 and cloning scheme ) of pLVCT-

tTRKRAB can be replaced into pLVmir containing the cloned shRNAmir sequence from step one 

by using single restriction site SpeI and selecting clones containing the 4732 bp insert in the right 

orientation to give  pLVCT-mir or pLVCT-tTRKRABmir versions. The Tet-off version, pLVCT-

rtTRKRAB-2SM2 (Appendix Figure 5) was generated following a similar protocol.  

The scope of the modular design was further extended by transferring additional Pol III based 

shRNA or shRNAmir expression cassettes into the plasmid, pLVTHM using EcoRI and ClaI 

sites. All existing shRNA or shRNAmir expression cassettes once transferred into the above 

restriction sites in pLVTHM backbone are amenable to this modular design. As example, three 

new plasmids pLVTU6+1, pLVTHM-mir, pLVTU6-mir harboring U6-shRNA, H1-shRNAmir 

and U6-shRNAmir expression cassettes respectively, were created (Figure 4.9, modules IIIB, IIIC 

and IIID). Plasmid pLVTHM is designated as module IIIA. 
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4.2.1.3.1. Construction of pLVTHM-mir 

A new plasmid pLVTHM-mir for expression of shRNAmir’s from H1 promoter was constructed 

based on pLVTHM backbone as described in the steps below. 

In a first step the SalI site positioned directly upstream of the EF1 alpha promoter in pLVTHM 

was destroyed by digesting with SalI, blunting the resulting sticky ends and religating to give a 

new plasmid pLVTHM∆SalI. Subsequently, a small stuffer sequence [sequence corresponding to 

the cDNA encoding the C-terminal region or tail portion of desmin, (accession number 

NM_001927.3)] was amplified with a forward primer containing an MluI site and a reverse 

primer containing both a SalI and a ClaI site. The above amplicon was cloned into MluI and ClaI 

sites in pLVTHM∆SalI, resulting in a further new plasmid called mpLVTHM∆SalI, with a new 

SalI site introduced between MluI and ClaI. Finally, the miR30 sequence from the vector 

pSM2(Chang et al., 2006) was amplified with a forward primer containing MluI site and a reverse 

primer containing a SalI site and cloned into MluI and SalI sites in mpLVTHM∆SalI to give a 

new vector, pLVTHM-mir. This vector expresses the shRNAmir from the H1 promoter. 

4.2.1.3.2. Construction of pLVTU6+1 

The U6-shRNA cassette from the plasmid pTZU6+1 is a kind gift from Prof. John. J. Rossi, 

(Beckmann Research Institute, City of Hope, CA, USA), (Lee et al., 2002) was transferred to 

pLVTHM∆SalI XbaI (plasmid generated by successive deletion of SalI and XbaI restriction sites 

at positions 2028 and 5885 respectively)  using the EcoRI and ClaI sites to give the new plasmid 

pLVTU6+1 which can be used for expression of shRNA from U6 promoter. 

4.2.1.3.3. Construction of pLVTU6-mir 

The U6-shRNAmir cassette from pSM2 was transferred to pLVTHM∆SalI using BamHI 

(blunted) and MluI sites on the former and EcoRI (blunted) and MluI sites on the later, to create a 

new plasmid pLVTU6-mir which can be used for expression of shRNAmir from U6 promoter. 

4.2.1.4. Construction of constitutive and conditional transgene modules 

A lentivirus that enables expression of actin-GFP was constructed by the transfer of the actin-

GFP sequence from a pMypG vector to pLVCT-tTRKRAB using MluI and XbaI (blunted) on 

pMypG and MluI and SmaI sites on pLVCT-tTRKRAB to give the conditional version of 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_001927.3�
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transgene module i.e. pLVCT-Actin-GFP-tTRKRAB. Digesting the conditional version with 

EcoRI and self-ligating the larger fragment yields the constitutive version of the transgene 

module.  The constitutive version of the vector can be used to clone any gene by replacing actin 

sequence using the PmeI, BamHI or MluI and the SalI sites. Schematic representation of all the 

cloned vectors and the corresponding modules are shown in Figure 4.9. 

4.2.1.5. Compatible vectors for cloning into Pol III modular vectors 

The modular vectors constructed in this work are not limited to the expression cassettes described 

above in this work. This system can be used to exchange the expression cassettes from various 

other vectors enabling these expression cassettes to be used in this modular setting. A list of the 

compatible vectors and their cassettes is given in Table 4.1 below. 

Table 4.1. Compatible vectors for cloning into Pol III modular vectors 

Source vector Expression cassette 
from source vector Target vector Expression cassette 

replaced from target vector 

pSUPER EcoRI-ClaI (H1-
shRNA) 

pLVTHM or pLVTHM-
mir * EcoRI-ClaI (H1-shRNA) 

pRSC EcoRI-XhoI (H1-
shRNA) pLVTHM-mir ** EcoRI-Sal (H1-shRNAmir) 

pSM2 SalI-MluI (shRNAmir) pLVTU6-mir Sal-Mlu (shRNAmir) 
pSM2 and 

pGIPZ XhoI-EcoRI (hairpin) pLVmir Xho-EcoRI (hairpin) 

 pSUPER is the first plasmid-based vector for shRNA expression (developed at Netherlands 

Cancer Institute (NKI)) and one of the most popular vectors in the scientific community 

(Brummelkamp et al., 2002). pRSC (Retro Super Cam) is a retroviral library vector developed at 

NKI. The NKI library targets about 8000 human genes and 15000 mouse genes with 3 or 2 

shRNA constructs per gene, respectively. Hannon-Elledge libraries are second generation 

libraries utilizing shRNAmir design instead of shRNA design. These libraries include both pSM2 

(Retroviral library) and pGIPZ (Lentiviral library) and are marketed by Open Biosystems and 

cover 30,000 human and 30,000 mouse genes with 3 constructs per gene. In pSM2 vectors 

shRNAmir is driven by a U6 (Pol III) promoter whereas in pGIPZ vectors shRNAmirs are driven 

by the CMV (Pol II) promoter. Although the Hannon-Elledge library also exists as conditional 

vectors (Tet-repressor system), the system only allows for control of a Pol II promoter and the 

system tends to be leaky. 
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*The H1-shRNA cassette from pSUPER can also be cloned into pLVTHM-mir using the same 

EcoRI-Cla sites. In this case the H1- shRNA casette from pSUPER replaces the H1-shRNAmir 

cassette in pLVTHM-mir. 

**XhoI and SalI sites are compatible and the H1- shRNA casette from pRSC replaces the H1-

shRNAmir cassette in pLVTHM-mir. 

4.2.1.6. The modular nature of the vectors 

The core of this vector system is based on the lentivirus transfer vector, pLVmir (Figure 4.7), 

which was constructed from pLVCT-tTRKRAB and pGIPZ. Defined portions of this vector may 

be replaced by distinct modules from various other vectors using simple cloning steps (Figure 

4.9). Module I, offers the possibility to select from a variety of constitutive and conditional gene 

expression control regions, while in module IIB, present in pLVmir, any available shRNAmir 

sequence can be cloned, the expression of which is driven by the promoter chosen in module I. 

Alternatively, the shRNAmir cassette can be excluded by choosing module IIA from pLVTHM. 

Module III (IIIA, IIIC, IIID or IIIE) offers additional Pol III promoter-driven shRNA or 

shRNAmir expression cassettes. The Pol III expression cassette can be excluded by choosing 

module IIIB from pLVmir. In principle, all permutations and combinations of modules I, II and 

III are possible. The complete list of combinations of modules, the resulting vectors and their 

potential applications are given in Table 4.3. Since there is no promoter in the pLVmir, it cannot 

be used as a stand-alone vector. However, it offers high flexibility in that any desired promoter 

(e.g. tissue-specific, ubiquitous Pol II such as CAG, CMV, or Pol III (H1or U6) can be inserted 

upstream of the SpeI restriction site. Table 4.2. presents a comparison of the vectors generated in 

this work with various currently available vectors for RNAi emphasizing on the method of 

selection of stable RNAi clones, the silencing triggers and their expression from various 

promoters.  



 

Figure 4.9. Schematic diagram showing all modules that may be combined to achieve transgene expression and/or knockdown. The complete 
list of combinations of modules, the resulting vectors and their potential uses are given in Table 4.3. All vectors except pLVTHM were constructed in 
this work. EF 1 alpha - Elongation factor 1 alpha promoter; cPPT - central polypurine tract; GFP - Green fluorescence protein; GOI-GFP - a GFP 
fusion protein of gene of interest; IRES - internal ribosomal entry site; tTRKRAB - a fusion protein of tetracycline repressor (tetR) and Krüppel-
associated box (KRAB) domain; GFP, GOI-GFP, tTRKRAB and the shRNAmir in module IIB are expressed from the EF-1 alpha promoter. 
shRNAmirs in pLVTHM-mir and pLVTU6-mir are expressed from the H1 and the U6 promoters, respectively. shRNAs in pLVTHM and pLVTU6+1 
are expressed from the H1 and the U6 promoters, respectively. 
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Table 4.2. Comparison of the vectors generated in this work with currently available vectors for RNAi 

Vector 
FACS-
based 
selection 

Antibiotic 
selection shRNAmir expression shRNA expression 

pSM2    No    Yes Constitutive from U6(Pol III) promoter     No 

pGIPZ   Yes   Yes Constitutive from CMV(Pol II) promoter     No 

pLVTHM   Yes    No         No Constitutive (H1-shRNA) 
PLVET-
tTRKRAB or 
pLVCT-
tTRKRAB 

  Yes    No         No Conditional  if H1-shRNA from pLVTHM is 
cloned  

pLVmir *  
 
*Vector 
constructed 
 in this study 

   Yes    No 

Constitutive/ conditional  from  Pol II (CAG or 
ET)  if module IA + module IIB+ module IIIB 
is chosen, from Pol III (H1 or U6) if module 
IA + module IIA + module IIID or IIIE is  
chosen 

Module IIIA or IIIC should be cloned. 
Constitutive/ Conditional  depending on module 
I chosen 

pSico   Yes    No        No 
A functional U6-shRNA expression cassette is 
restored after Cre based excision of CMV-GFP 
and sorting GFP-negative cells.  

pSico-R   Yes    No          No 
A functional U6-shRNA expression cassette is 
removed after Cre based excision of U6-shRNA 
cassette and sorting for GFP -positive cells.  

 



 

Table 4.3. List of combinations of modules, the resulting vectors and their potential use. 

A) Vectors for gene knockdown from Pol III promoters 

Module 
I 

Module 
II 

Module 
III Name of the vector Proposed uses 

IA IIA IIIA pLVTHM (Addgene) Constitutive single gene knockdown 
(H1-shRNA) 

IA IIA IIIC pLVTU6+1 Constitutive single gene knockdown 
(U6-shRNA) 

IA IIA IIID pLVTHM-mir Constitutive single gene knockdown 
(H1-shRNAmir) 

IA IIA IIIE pLVTU6-mir Constitutive single gene knockdown 
(U6-shRNAmir) 

Replacing IA with IB in the above vectors yields corresponding conditional single gene knockdown 
vectors.  

B) Vectors for gene knockdown from Pol II promoters  

IA IIB IIIB pLVET-mir Constitutive single gene knockdown 

IB IIB IIIB pLVET-Kmir Conditional single gene knockdown 

K= IRES-tTRKRAB 

C) Vectors for transgene expression 

IC IIA IIIB pLVET-GOI-GFP Constitutive transgene expression 

ID IIA IIIB pLVET-GOI-GFP-K Conditional transgene expression 

D) Vectors for combined transgene expression and gene knockdown with 
shRNAmirs/shRNAs  or rescue plasmids 

IC IIB IIIB pLVET-GOI-GFP-mir 
Constitutive rescue plasmid, 

shRNAmir expressed from EF1α 
promoter 

IC IIA IIID pLVET-GOI-GFP-Hmir 
Constitutive rescue plasmid, 

shRNAmir expressed from H1 
promoter 

IC IIA IIIE pLVET-GOI-GFP-U6mir 
Constitutive rescue plasmid, 

shRNAmir expressed from U6 
promoter 
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IC IIA IIIA pLVET-GOI-GFP-Hs Constitutive rescue plasmid, shRNA 
expressed from H1 promoter 

IC IIA IIIC pLVET-GOI-GFP-U6s Constitutive rescue plasmid, shRNA 
expressed from U6 promoter 

 Module IC can be replaced with ID to get corresponding conditional versions. GOI-GFP is 
expressed from EF1 alpha promoter in both constitutive and conditional versions. 

E) Vectors for synergistic effect and simultaneous knockdown 

IA IIB 

IIIA or pLVET-mirHs 
Constitutive synergistic effect or 

simultaneous knockdown 
IIIC or pLVET-mirU6s 
IIID or pLVET-mirHmir 

 IIIE pLVET-mirU6mir 

IB IIB 

IIIA or pLVET-KmirHs 
Conditional synergistic effect or 

simultaneous knockdown 
 IIIC or pLVET-KmirU6s 
 IIID or pLVET-KmirHmir 
 IIIE pLVET-KmirU6mir 

 
4.2.2. Validation of the modular vectors 
4.2.2.1. Confirmation of hairpins after cloning into modular vectors 

The modular vectors constructed in this work and the method of cloning hairpins (shRNAs and 

shRNAmirs) into such vectors was validated by performing control restriction digests and 

comparing the shorter fragments as shown in Figure 4.10. The comparison gives a guide for 

selection of right clones of modular lentiviral vectors harboring the required number of hairpins 

for synergistic and multiple gene knockdown strategies. Primers suggested for sequencing the 

shRNAmir/shRNA hairpins in the modular vectors are given in Appendix Table 2. 

4.2.2.2. FACS based validation of cloned vectors demonstrates functionality of 
the modular design 

The functionality of selected module combinations in this design was tested experimentally. To 

do this, HEK293T cells were transduced with a lentivirus consisting of modules IB and IIB 

(Figure 4.11A). The module IB contains the EF1α promoter that can be controlled by the 

tTRKRAB component of the module. Module IIB contains the shRNAmir sequence cloned into 

this module. Since the region containing the module IIB differs from the original lentiviral vector 

(see pLVCT-tTRKRAB and module IB in Appendix Figure 1 and Figure 4.9, respectively), the 

lentiviral vectors created by combining these modules were characterized for their functionality 
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and reversibility of the system. HEK293T cells carrying the virus were first maintained in 

medium containing high concentrations of doxycycline (1µg/ml). The cells were subsequently 

split into two dishes and further maintained in the presence or absence of doxycycline 

respectively. 

 

Figure 4.10. Cloning of hairpins (shRNAmirs) into the modular vectors and confirmation of the 
presence of hairpins. Successful cloning of one or two hairpins into modular vectors can be confirmed 
by SpeI and FspI double digests of vectors containing these hairpins by comparing the size of the smallest 
fragment. pLVCT-t TRKRAB containing no hairpin (1), pLVET-mir containing single hairpin from Pol II 
promoter (2), pLVTHM-mir containing single hairpin from a Pol III promoter (3) and pLVET-mirHmir 
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containing  two hairpins one each from Pol II and Pol III (4) are described in (A) and depicted in (B). The 
smallest restriction fragments (C) match the expected size as schematically represented in (B). 
 

Figure 4.11. FACS-based validation of the combination of modules IB and IIB in conditional 
lentiviral vector. (A) Gives a schematic representation of the modules chosen to construct a conditional 
lentiviral vector expressing a Xirp2-specific shRNAmir. (B-D) FACS analysis of control (untransduced) 
and transduced HEK293T cells for GFP expression, 48 hours after  induction or withdrawal of 
doxycycline (1µg/ml). Panel B shows control (untransduced) cells. Panel C shows a GFP-positive 
population of transduced cells subjected to doxycycline treatment. Panel D shows the same cells upon 
withdrawal of doxycycline. Note that nearly all GFP-positive cells turned GFP-negative in the absence of 
doxycycline and the GFP expression of cells in panel D is essentially identical to control cells in panel B. 
Higher doxycyline concentration (1µg/ml) and a relatively quick (within 48 hours) analysis of GFP 
expression could possibly explain a fast induction (Dox + cells) but a slow tapering of GFP expression 
(upon Dox withdrawal). 

 Two days later the cells were analyzed by FACS for GFP expression. FACS results indicated 

that the cells maintained in the absence of doxycycline (Dox-) were essentially identical to 

control cells (Figure 4.11D). In contrast, cells maintained in the presence of doxycycline (Dox+) 

were almost exclusively GFP-positive (Figure 4.11C). These results demonstrated the full 

reversibility of the system since cells that were GFP-positive in the presence of doxycycline, 
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were fully converted to GFP-negative cells in the absence of doxycycline within 48 hours. Most 

importantly, the introduction of module IIB did not compromise the original functionality of the 

system as evidenced by the expression of GFP, which confirms the functionality of the 

promoters in module I, and the working of the “on-off” switch, which confirms the inducibility 

of the system.  

Any functional shRNA or shRNAmir sequence expressed from a Pol III promoter (a list of 

compatible vectors was provided in Table 4.1) can be transferred to the modular vectors created 

in this study. Since each module functions individually, the combination of the modules would 

be expected to be functional. Some examples of combinations of modules are shown below. 

4.2.2.3. Validation of constitutive transgene modules by the analysis of protein 
expression and localization  

To test if the modular lentiviral vectors could be used for constitutive transgene expression, the 

muscle specific transcription factor MyoD and Ig-like domains 18-21 of the cross striated muscle 

specific protein filamin C (FLNC d18-21) were expressed in HEK293 cells using lentiviral 

transduction as shown below. 

4.2.2.3.1. Expression of MyoD in HEK293 cells 

To test the constitutive transgene module, a lentivirus expressing a C-terminal fusion of MyoD 

with GFP was produced and transduced into HEK293 cells. The results (Figure 4.12) show that 

the transcription factor MyoD localized to the nucleus as expected confirming that the 

lentiviruses constructed by this method can be used for gene expression.  
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Figure 4.12. Expression of MyoD-GFP in HEK293 cells. HEK293 cells were transduced with a virus 
resulting in constitutive expression of a C-terminal GFP fusion protein of MyoD. Note that the 
transcription factor MyoD is expressed and localized to the nucleus of these cells (arrow head). 
Transduced cells were not selected for GFP expression by FACS. Therefore, not all cells are transduced 
and express GFP. 

4.2.2.3.2. Expression of filamin C d 18-21 in HEK 293 cells 

The filamin C domain 18-21 (FLNCd18-21) region, which is known to contain several protein-

protein interaction motifs, was expressed as a C-terminal GFP fusion protein in a constitutive 

manner from the EF1α promoter using a lentiviral transduction in HEK293 cells. For this 

purpose, the cDNA of ACTA was replaced with the cDNA of filamin C domain 18-21, in the 

constitutive transgene module (Figure 4.9). Lentiviruses generated using this construct were 

transduced into HEK293 cells and stable cell lines were generated by FACS selection. A control 

lentivirus expressing GFP alone was also used for comparison of protein extracts by Western 

blotting. Expression of the construct resulted in the protein of expected size (~ 78kD). The 

resulting cells could be used for biochemical studies of protein–protein interactions. 

Figure 4.13. Analysis of expression of 
FLNCd18-21-GFP fusion protein and GFP 
control protein in HEK293 cells by 
Western blotting. Lentiviruses constitutively 
expressing either a FLNC d18-21-GFP fusion 
protein or a control GFP protein were 
transduced into HEK293 cells. The resulting 
cells were further allowed to proliferate. 
Western blots were performed to confirm the 
expression of proteins of expected size.  Cells 
harboring the GFP virus showed the GFP 
protein band at 27 kD, whereas cells 
harboring a GFP fusion of FLNC d18-21 
showed the expected protein band at 78 kD. 
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4.2.3.1 Selection of siRNAs 

To elucidate the possible role of Xirp2 in myofibrillogenesis and myodifferentiation, a functional 

knockdown of Xirp2 via RNAi was attempted. The mouse Xirp2 gene (NM_001024618.2) contains 

a total of 9 exons. The exon 7 is the largest exon and harbors most of the entire coding information. 

Differential splicing results in alternative usage of exons 8 or 9 resulting in expression of Xirp2 protein 

isoforms 1 and 2, respectively (Fig.4.14). A total of three siRNAs that target Xirp2 were selected based 

on the siDESIGN algorithm (Table 4.2). The positions of siRNAs are schematically represented in Figure 

4.14. The chosen siRNAs target different splice variants. In this case sequence #1 and #2 target isoform 1, 

and isoforms 1 and 2, respectively. Selected siRNAs were converted to shRNAmirs and cloned into 

modular lentiviral vectors as shown in Figure 4.8. 

 

Figure 4.14. Selection of siRNAs targeting Xirp2 gene. A total of three siRNAs predicted to target 
mouse Xirp2 (NM_001024618.2) were selected based on siDESIGN algorithm). siRNAs # 1 and #2 
target in exon 7, whereas siRNA# 3 targets in exon 9. siRNA #1 targets both mouse Xirp2 
(NM_001024618.2) and human XIRP2 (NM_152381.4).  

4.2.3.2. Lentiviral transduction and establishment of stable cell lines from 
mouse and human skeletal muscle cell lines 

Whereas HEK293 cells could be transduced with a high efficiency with non-concentrated 

lentiviral supernatants (titers ≈ 10 6 particles/ml, 50 to 100 µl was sufficient to obtain 100% 

transduction in a 12 well plate), only poor transductions were achieved in case of both, primary 

skeletal muscle cells and muscle cell lines. Lentivirus was therefore concentrated to titers of ≈ 

1x109 particles/ml using an ultracentrifuge (Materials & Methods). Additionally, a higher 

Multiplicity of Infection (MOI) of 20-30 was used, resulting in approximately 50-70 % GFP-

positive cells as recorded by FACS analysis. GFP-positive muscle cell lines were collected and 

grown further, thereby establishing stable cell lines. Transduced skeletal muscle cells containing 

conditional versions of shRNAmir sequences displayed their conditionality and reversibility. 

When these GFP-positive sorted muscle cell lines were cultured in media containing 

doxycycline, GFP expression remained stable even after 15 passages confirming stable long-term 
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GFP-expression in these cultures. On the other hand, culturing this GFP-positive sorted cells in 

the absence of doxycycline, turned them to GFP-negative cells confirming that the EF1α 

promoter can be effectively switched off in skeletal muscle cells (Figure 4.15).  

4.2.3.2.1. Significance of fixation methods in Xin and Xirp2 antibody staining in Xirp2 
knockdown cells 

HSKM, H-2Kb-tsA58 and C2C12 cells expressing lentiviral knockdown constructs were 

differentiated and processed for immunofluorescence by either paraformaldehyde (PFA) fixation 

or methanol-acetone fixation. PFA fixation preserves the cytosolic GFP in transduced cells 

enabling the visualization of transduced cells along with additional antibody stainings. However, 

XR1B and mAb XIRP2 or polyclonal XIRP2 antibodies were not reactive upon PFA fixation. 

Moreover, simultaneous labeling with three antibodies could not be achieved with this method. 

Methanol-acetone fixation removed cytosolic GFP from transduced cells, enabling triple labeling 

with three antibodies in these cells. Since primary murine muscle cells were not stably selected 

after transduction with lentiviral constructs, these cells were fixed using PFA fixation to be able 

to optically confirm the transduction efficiency. Subsequently, methanol-acetone fixed cells were 

used to study the myofibrillar arrangement with antibodies directed against three different 

proteins that were applied simultaneously. 
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Figure 4.15. FACS-based testing of promoter switch off in the absence of tetracycline in C2C12 cells 
transduced with a conditional version of shRNAmir targeting Xirp2. C2C12 cells were transduced 
with lentivirus conditionally expressing shRNAmir driven by the EF1α promoter. Transduced cells were 
cultured in proliferation media containing doxycycline and GFP-positive cells were sorted. Subsequently, 
these cells were maintained in the absence of doxycycline for 3 days and GFP expression was analyzed 
by FACS to quantify the percentage of GFP-positive cells. Panel A shows all the cells that were analyzed, 
Panel B shows single cells (free of clusters and doublets of cells) and Panel C shows the GFP-positive 
(P3) and GFP-negative (P4) gates used for sorting the cells on a BD FACSDIVA flow sorter. Panel D 
gives a table summarizing the percentage of each population of cells. Panel E shows a relative percentage 
of GFP-negative (P4 gate) and GFP-positive (P3 gate) cells. This result demonstrates that the EF1α 
promoter can be switched off effectively in muscle cells.  

4.2.3.3. Confirmation of Xirp2 knockdown 

To quantify the level of Xirp2 knockdown in C2C12 and H-2Kb-tsA58 cells, RNA was isolated 

from transduced and stably selected cells.  Isolated RNA was reverse transcribed and quantitative 

real time PCR (qRTPCR) was performed (see Materials & Methods). For confirmation of 
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knockdown in HSKM cells a Western blot was performed. The schematic representations of the 

modules used to construct these lentiviruses is shown in Figure 4.16A. Sequences mir1Xirp2 and 

mir2Xirp2 are expressed constitutively from EF1α promoter, whereas sequence mir3Xirp2K is 

expressed conditionally from the same promoter. Cells transduced with the latter virus were 

maintained in the presence of medium containing doxycycline at 1µg/ml concentration to induce 

the expression of GFP and the shRNAmir sequence.  

 

Figure 4.16. Knockdown levels obtained with different shRNAmir sequences targeting the 
endogenous Xirp2 mRNA in HSKM, H-2Kb-tsA58 and C2C12 cells. (A) Schematic representation of 
the modules used to construct the viruses. (B) Coomassie staining of total protein extracts from 
untransduced HSKM cells and HSKM-Xirp2 knockdown cells confirming the nearly identical total 
protein expression profiles. Note that one specific band that might represent Xirp2 is missing in 
knockdown cells (arrow). (C) Western blot comparing Xirp2 expression in untransduced HSKM cells and 
HSKM-Xirp2 knockdown cells. Note the disappearance of Xirp2 protein band in HSKM-Xirp2 
knockdown cells (arrowhead). (D) Remaining percentage of endogenous Xirp2 mRNA (by a q-RTPCR 
experiment) in C2C12 and H-2Kb-tsA58 from stably transduced and FACS-sorted cells undergoing 
differentiation for six days. GAPDH served as control for equal protein loading.  

Analysis of total protein extracts from HSKM cells transduced with mir1Xirp2 sequence showed 

a nearly identical total protein expression profile, except for one band that might represent 

human Xirp2 (Figure 4.17B). Western blots performed to compare Xirp2 expression in 

untransduced HSKM cells and HSKM-Xirp2 knockdown cells at the protein level showed 

efficient knockdown. q-RTPCR experiments indicated that all three sequences mediated 
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significant knockdown of the target mRNA to between approximately 2 and 25% of the original 

level. The results from Western blot and qRTPCR validated the Xirp2 knockdown achieved by 

the shRNAmir sequences and the lentiviral vectors constructed in this study.  

4. 3. Consequences of Xirp2 knockdown in muscle cell lines 
 
4.3.1. Xin expression level is unchanged upon knockdown of Xirp2 in 
H-2Kb-tsA58 cells 

To determine if Xirp2 knockdown had any effect on the expression of the closely related Xin 

protein, semi-quantitative RT-PCR and Western blot analysis were performed. H-2Kb-tsA58 

cells stably transduced with lentiviral shRNAmir sequences targeting Xirp2  were differentiated 

for six days and RNA and total protein extracts were made from these cells. A semi-quantitative 

RT-PCR comparison of Xirp1 and Xirp2 expression in control H-2Kb-tsA58 and H-2Kb-tsA58-

Xirp2 knockdown cells (Figure 4.17A) indicates that there is no change in the expression levels 

of Xin in the knockdown cells compared to control cells. Western blots performed using extracts 

from differentiating H-2Kb-tsA58-Xirp2 knockdown cells (Figure 4.17B) indicated that 

irrespective of the shRNAmir sequence used to knockdown Xirp2 in these cells, the expression 

of XinA and XinB protein isoforms displayed no significant differences compared to control 

cells. These results indicated no significant changes in Xin expression levels both at the mRNA 

level or protein level consequent to Xirp2 knockdown. 

 

Figure 4.17. Xin expression is unchanged in Xirp2 knockdown cells both at RNA and protein level. 
Panel A depicts a semi-quantitative RT-PCR comparison of Xin and Xirp2 expression levels at the mRNA 
level in control H-2Kb-tsA58 and H-2Kb-tsA58-Xirp2 (mir1XIRP2) knockdown cells. Gapdh served as 



92 
 
a control. Panel B, shows a Western blot with total protein extracts from various Xirp2 knockdown cells 
differentiated for six days. At the RNA level the expression of the Xirp2-related gene Xirp1 was 
essentially identical in control and Xirp2 knockdown cells. Western blot demonstrates that also at the 
protein level the expression of Xin did not change significantly. GAPDH served as a loading control. 
Different GFP signal intensities probably result from varying copy numbers of integrated viruses. Higher 
GFP-levels (mir1Xirp2) are associated with higher knockdown efficiency (Figure 4.16D).  

4.3.2. Effects of Xirp2 knockdown on muscle cell differentiation 
 
4.3.2.1 Knockdown of Xirp2 in human skeletal muscle (HSKM) cells  

In HSKM cells, transduction with mir1XIRP2 resulted in a highly specific and efficient 

knockdown with no significant changes in the expression of related proteins (Figure 4.16A). 

Cells transduced with mir1XIRP2 normally fused to form elongated multinucleated myotubes 

(Figure 4.18 A). However, the developing myofibrils appeared severely disrupted and showed no 

cross-striations (Figure 4.18 C). Xin was localized along actin stress fibers and in myotube ends 

(Panels I and J) and displayed no significant changes when compared to control cells (Panels E 

and F). However, control cells transduced with lentivirus containing sequences which were not 

predicted to target human XIRP2 and mock-transduced HSKM cells also showed poor 

differentiation, i.e. fusion but only limited striations. From these results it was concluded that 

HSKM cell differentiation was not optimal independent of the transduced virus and hence these 

cells were not used for further experiments. Instead a panel of mouse cells including C2C12, H-

2Kb-tsA58 and primary cells was used.  
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Figure 4.18. Phenotype in HSKM-Xirp2 knockdown cells. HSKM-Xirp2 knockdown cells (mir1Xirp2) 
were differentiated for six days, fixed with PFA (A-D) or methanol/acetone (E-H) and stained for 
myofibrillar proteins. Panel A, depicts a phase contrast image clearly indicating fusion of cells 
(multinucleated cell). Panel B, depicts cytosolic GFP confirming successful transduction. Panel C, depicts 
titin (T12) staining. Note the near complete absence of mature myofibrils in C. Panels E-H depict typical 
Xin staining patterns along the actin stress fibers and at myotube ends in HSKM control cells (E, F) and 
HSKM-Xirp2 knockdown cells (G, H). Immunofluorescence images were captured with a LSM 510 
confocal laser scanning microscope.  

4.3.2.2 Knockdown of Xirp2 in H-2Kb-ts A58 cells  
 
In H-2Kb-ts A58 immortalized mouse muscle cells, Xirp2 knockdown was achieved by three 

independent shRNAmir sequences mir1Xirp2, mir2Xirp2 and mir3Xirp2K resulting in specific 

and efficient knockdown (Figure 4.16). Xirp2 knockdown did not alter the expression levels of 

Xin both at mRNA level and protein level (Figure 4.17). To evaluate if Xirp2 knockdown altered 

the localization of Xin and other myofibrillar proteins, immunolocalization studies were 

performed. H-2Kb-ts A58-Xirp2 knockdown cells normally fused to form elongated 

multinucleated myotubes (Figure 4.19) and displayed typical Xin staining as seen in control cells 

(Figure 4.19N). Myofibril development was also not significantly altered in knockdown cells. 

However, a weaker Z-disk staining with T12, an antibody against Z-disk titin, was observed in 

knockdown cells. In contrast staining for the M-band component myomesin (BB78) appeared 

normal. 
 



94 
 

Figure 4.19. Localization of myofibrillar proteins in untransduced and H-2Kb-tsA58-Xirp2 
knockdown cells. H-2Kb-tsA58-Xirp2 knockdown cells differentiated for six days and fixed with 
methanol/acetone were stained for α-actinin, titin, Xin and/or myomesin and images were captured with 
LSM 510 confocal laser scanning microscope. Staining of transduced cells by T12 (F, white arrow) 
reveals a less intense staining of Z-disks in Xirp2 knockdown cells compared to untransduced control 
cells (B, arrowhead). Note that Xin (arrowheads in J and N) colocalizes with α actinin (arrow heads I and 
M) in non-striated myofibrils (NSMF, but does not colocalize with α-actinin in striated myofibrils (SMF, 
pink arrows in M and N) in both control and Xirp2 knockdown cells. The expression of Xin and the M-
band protein myomesin are not altered in Xirp2 knockdown cells.  



95 
 
4.3.2.3. Knockdown of Xirp2 in C2C12 mouse myoblasts  

Proliferating C2C12 cells were transduced with lentiviral constructs targeting Xirp2 (Figure 

4.16A) and stable cell lines were established in a similar manner to H-2Kb-tsA58 cells.  

Figure 4.20. Localization of myofibrillar proteins in mock transduced C2C12 and C2C12- Xirp2 
knockdown cells. C2C12-Xirp2 knockdown cells were processed by methanol/acetone fixation after six 
days differentiation and stained for α- actinin, titin and myomesin. Immunofluorescence images were 
captured with LSM 510 confocal laser scanning microscope. Note that upon staining with T12, Z-disks 
appear disrupted in Xirp2 knockdown cells (F, J) but not in mock-transduced control cells (B). The 
expression of α-actinin and the M-band protein myomesin are relatively normal.  

Subsequent immunofluorescence stainings of differentiated C2C12-Xirp2 knockdown cells with 

T12, an antibody targeting an epitope in the Z-disk of titin, revealed a disorganization of Z-disks 

(Figure 4.20, F, J) that was not observed in mock-transduced control cells (B). These cells 

contained perfectly striated myofibrils. In contrast, the expression of Xirp2 shRNA did not 

obviously alter the spatial and temporal expression of the M-band protein myomesin. From these 

results it can be concluded that fusion of myoblasts to form myotubes is not affected in the 
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absence of Xirp2. In contrast, Z-disks are disorganized to some degree, whereas significant 

changes in M-band assembly are not observed. 

4.3.2.4. Establishment and transduction of primary muscle cells derived from 
wild type and Xin knockout mice 

Figure 4.21. Myoblast cultures established from single myofibers of diaphragm muscles of wild type 
and Xin-/- mice. Primary muscle cell cultures one day post isolation. Note the presence of small round 
satellite cells (indicated by arrow head) and single myofibers (indicated by arrow). After four days in 
culture the medium was changed to remove cellular debris. The attached satellite cells started 
proliferating rapidly giving rise to muscle progenitor cells and some cells were already entering 
differentiation from day 6 onwards. With time, the percentage of differentiating cells increased. 

Primary muscle cells were isolated from wild type (SV129 strain) and Xin-/- mice as described in 

Materials & Methods. Figure 4.21 represents the initial stages of a primary muscle cell culture 

one day post isolation. Isolated cells were transduced immediately after the first medium change 

(4 days post isolation) at an MOI of 30. The medium was changed again after 16 hours and 

thereafter every alternate day. The cells were allowed to differentiate without changing the 
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medium to a low-nutrition medium (Becher et al., 2009). Initially an attempt was made to select 

transduced cells via FACS sorting, however, in addition to proliferating cells, all cultures 

contained differentiating cells and this population increased rapidly over time, therefore these 

cells could not be processed by FACS. From these observations it can be concluded that most of 

the satellite cells and muscle specific cells were inherently committed to differentiate. After 

reaching nearly confluence, the percentage of proliferating cells decreased dramatically while the 

percentage of differentiating cells increased.  

4.3.2.4.1. Transduction efficiencies in wild type and Xin-/- primary muscle cells 

Transduction of primary muscle cells isolated from wild type and Xin-/- mouse skeletal muscle 

specimens was efficient (≈70%) with Xirp2 knockdown constructs when transduced 4 days post 

isolation. GFP fluorescence intensity varied between different myotubes probably depending on 

the number of copies of viral particles present in these cells. Significantly myotubes containing 

higher copies of lentiviral knockdown constructs (indicated by stronger GFP fluorescence, 

arrows) displayed comparatively immature myofibrils compared to myotubes containing fewer 

lentiviral knockdown constructs (indicated by weaker GFP fluorescence, arrowheads). 
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Figure 4.22.Transduction efficiencies and myofibrillar structures in differentiating wild type and 
Xin-/- myotubes. Primary muscle cells from wild type (SV129 strain) and Xin-/- mice were isolated and 
transduced with lentiviral shRNAmir constructs targeting Xirp2 and co-expressing GFP reporter. 
Transduced cells were differentiated and processed for immunofluorescence by fixing with PFA to ensure 
that transduced cells retain GFP fluorescence enabling easy identification of transduced cells. Wild type 
cells served as control. Note that optimal differentiation as indicated by striated pattern revealed by α-
actinin staining is observed only in untransduced wild type myotubes (B). Wild type and Xin-/- myotubes 
transduced with lentiviruses expressing Xirp2 knockdown constructs displayed immaturely organized 
myofibrils with very few striations (E, H).  

4.3.2.5. Knockdown of Xirp2 in wild type mouse primary myoblasts  

Having established transduction of primary myoblasts, the phenotype of Xirp2 knockdown in 

wild type myotubes was determined by immunolocalization of sarcomeric α-actinin and Xin.  
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Figure 4.23. Effect of Xirp2 knockdown in wild type myotubes. Primary muscle cells were isolated 
from diaphragm muscles of wild type SV129 mice. Xirp2 was knocked down in these cells by 
mir1XIRP2 lentiviral construct. Wild type and wildtype-Xirp2 knockdown cells were differentiated and 
stained for myofibrillar markers Xin (XR1B) and α-actinin (a653). Whereas a normal striated pattern is 
visible in wild type control myotubes (B), a massive disruption of myofibrillar structures is seen in wild 
type-Xirp2 knockdown myotubes (E). The localization of Xin along the actin stress fibers remained 
unaltered (D) compared to untransduced myotubes (A). 

Xirp2 knockdown led to major disruption of myofibrils in wild type myotubes. Very few mature 

striations were observed in these cells compared to untransduced wild type cells (arrows in B and 

E). Areas indicated with arrowheads displayed a complete loss of striations (E). In contrast Xin 

staining along the actin stress fibers (D) is not significantly altered compared to control cells (A). 
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4.3.2.6. Knockdown of Xirp2 in Xin-/- mouse primary muscle cells 
4.3.2.6.1 Consequences of Xirp2 knockdown in Xin-/- primary muscle cells 

Figure 4.24. Overview images of myotube cultures derived from Xin-/- mice: Xin-/- control and Xin-/--
Xirp2 knockdown cells. Primary muscle cells isolated from diaphragm muscles of Xin-/- mice were 
transduced with the mir1Xirp2 knockdown virus. Differentiated cells were methanol/acetone fixed and 
stained for myofibrillar markers titin and α-actinin. Panel G compares diameters of myotubes from Xin-/- 
and Xin-/- - Xirp2 knockdown cells. Overview images and panel G suggest that Xin-/- -Xirp2 knockdown 
cells show thinner myotubes (D, E and F) compared to control Xin-/- satellite cells (A, B and C).  

Primary muscle cells isolated from Xin-/- mice differentiated to mature myotubes with the expression 

of typical myofibrillar markers α-actinin and titin in striated pattern (Figure 4.25A and B). Xirp2 

knockdown in primary muscle cells from Xin-/- mice did not inhibit their fusion to myotube structures; 

however, myotubes in the later cultures appeared thinner compared to Xin-/- cells (D and E). A random 
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measure of diameters of myotubes in Xin-/- and Xin-/- -Xirp2 cultures is presented in panel G. While the 

diameter of the majority of myotubes in Xin-/- cultures was 20-30µm, myotubes in Xin-/- -Xirp2 cultures 

measured only 5-10 µm. 

4.3.2.6.2 Comparison of myotubes developed from wild type and double gene 
depleted satellite cells 

Figure 4.25. Confocal microscopy images of myofibrillar markers in wild type and double gene 
depleted myotubes. Differentiated wild type and Xin-/--Xirp2 knockdown cells were fixed with 
methanol/acetone and stained for myofibrillar markers filamin C and α-actinin. Immunofluorescence 
images were captured with LSM 510 confocal laser scanning microscope. The localization of filamin C 
(RR90, green) and α-actinin (a-653, red) were indicated as shown. As revealed by the filamin C staining 
in D and α-actinin staining in E, myotubes depleted of both Xin and Xirp2 displayed immature myofibrils 
(arrows in D,E and F)with few observable striations compared to wild type control myotubes (arrowheads 
in A and B).  

To investigate the effect of the depletion of Xin and Xirp2 on myodifferentiation, Xin-/- primary 

cells were transduced with Xirp2 knockdown lentiviruses and differentiated cells were stained 

for Z-disk markers filamin C and α-actinin. While a perfect colocalization of filamin C 

(arrowheads, A) and α-actinin (arrowheads, B) in Z-disks was apparent in wild type control cells, 

the degree of differentiation in double gene depleted cells was comparatively minimal. Since the 

RR90 antibody also detects filamin A, the filamin isoform expressed predominantly in 

undifferentiated cells, this antibody also stains cells that do not contain sarcomeric α-actinin.  



102 
 

5. Discussion 
The striated muscle specific proteins Xin and Xirp2 have been predicted to play vital roles in 

cardiac and skeletal muscle development. However, in recent years conflicting data have 

emerged from literature on the roles of these proteins. Whereas the treatment of developing chick 

embryos with antisense oligonucleotides targeting the Xin mRNA resulted in abnormal cardiac 

morphogenesis in chicken (Wang et al., 1999), in two different mouse models, the ablation of 

Xirp1 (the gene encoding Xin) only resulted in mild hypertrophic response and knockout mice 

were found to be viable and fertile (Gustafson-Wagner et al., 2007; Otten et al., 2010). XinAB-/- 

mice lacking XinA and XinB isoforms (Gustafson-Wagner et al., 2007) displayed comparatively 

severe phenotype and an upregulation of Xirp2 in contrast to XinABC-/- mice developed by our 

group (Otten et al., 2010), which displayed no alteration in Xirp2 levels. Interestingly, XinC 

isoform was detected in hypertrophic hearts (Otten et al., 2010). At the time of beginning this 

dissertation work, there was no report describing the functional role of Xirp2 in either cardiac or 

skeletal muscle. Two recent reports have described the functional role of Xirp2 in mice: Xirp2 

hypomorphic model described by Mc Calmon et al (McCalmon et al., 2010) and mXinβ 

knockout model described by Qinchuan Wang et al (Qinchuan Wang et al., 2010). Both the 

reports gave an account of cardiac phenotype with varying degree of severity. However, neither 

of them described the skeletal muscle phenotype. In light of these observations, much about the 

functions of Xirp proteins in skeletal muscle remained unclear and therefore a lentiviral based 

Xirp2 knockdown was chosen as a method to understand the role of Xirp2 in skeletal muscle 

differentiation model and possible compensatory mechanisms resulting from Xirp2 knockdown 

in this setting. Primary muscle cells isolated from XinABC-/- mice were used to understand the 

functional role of Xin and/or Xirp2 either individually or by combined depletion. 

5.1. Expression patterns of Xin and Xirp2 in skeletal muscle 
cells  
Comparative expression levels of Xirp1 and Xirp2 at the RNA level by semi-Quantitative RT-

PCR in proliferating and differentiating skeletal muscle cells indicated that Xirp1 is expressed 

prior to Xirp2 in differentiating cells (this work).  These results also indicated that, at least at the 

RNA level, Xirp1 is expressed in proliferating cells even before the initiation of differentiation in 
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skeletal muscle cells, whereas Xirp2 is only expressed at a considerably more advanced 

differentiation stage (see section 4.1). Previous literature has described a robust increase in Xirp1 

mRNA expression upon muscle injury and it was localized to muscle satellite cells as well as 

within primary muscle myoblast cultures (Hawke et al., 2007). However, at the protein level, 

Xirp1 expression was not detected in proliferating cells (present study). Expression of Xin in 

myoblasts induced to differentiate is consistent with earlier literature (van der Ven et al., 2006). 

Some experiments involving Xin knockdown in C2C12 cells (Hawke et al., 2007) were reported 

to show an increase in proliferation rate compared to control cells albeit without any differences 

in their differentiation capacity. Moreover there was no explanation for the increase in cell 

proliferation rate after the knockdown of Xin mRNA expression. 

5.1.1. Localization of Xin and Xirp2 in skeletal muscle cells 

Localization of Xin protein to non-striated regions of premyofibrils and nascent myofibrils in 

differentiating cells and in the myotendinous junctions of maturely differentiated muscle fibers 

are consistent with previous work reported in the literature (Pacholsky et al., 2004; van der Ven 

et al., 2006). Myomaxin, the mouse orthologue of human XIRP2 was reported to localize to 

striated myofibrils in skeletal muscle sections (Huang et al., 2006). However, there were no 

reports of localization of Xirp2 protein during skeletal muscle differentiation. Since the antibody 

used in the present work detects only human Xirp2 but not mouse Xirp2, its localization was 

studied only in HSKM cells. Expression of Xirp2 was only rarely observed in HSKM myotubes, 

indicating a relatively poor differentiation capacity of these cells, and at the same time a delayed 

initiation of Xirp2 expression (Figure 4.3). Xirp2 staining was detectable only in 1-2% of 

myotubes which were more terminally differentiated and contained myofibrils with distinct Z-

disks. In these cells human Xirp2 was localized in a doublet band flanking the Z-disk (Figure 

4.4). By contrast, in cryosections from adult human skeletal muscle tissue, all available Xirp2 

antibodies revealed a colocalization with α-actinin in the Z-disk (Figure 4.5). This implies that 

the layout of the Xirp2 molecule changes from regions flanking the Z-disk to the Z-disk itself 

during the differentiation process. Expression of Xin was already detectable in HSKM cells 

shortly after initiation of differentiation, again confirming the conclusion that Xin is expressed 

earlier than Xirp2. Extrapolating from these results, Xirp2 is suggested to play a role in later 

stages of myofibril formation, whereas Xin may play a role in early myofibrillogenesis. 
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5.2. The role of Xirp proteins in muscle cells 
The first ever functional characterization of a Xirp protein was performed by knocking-down 

cXin in the chicken via antisense oligonucleotides (Wang et al., 1999). cXin deficient embryos 

displayed severe heart looping defects, cardiac edema and heart beating defects. It was suggested 

that the asymmetric expression of cXin in the heart of untreated chicken embryos correlates with 

normal asymmetric looping of the heart (Wang et al., 1999). In mouse, Xirp1 and Xirp2 were 

found to be expressed in striated muscles, the heart and the skeletal muscle. Surprisingly, the 

xirp1 knockout mouse is viable (Gustafson-Wagner et al., 2007), although adult knockout mice 

developed cardiac hypertrophy (larger hearts, thicker ventricles), fibrosis and conduction defects 

leading to arrhythmia. Ultrastructural analysis of cardiomyocytes revealed decreased myofiber 

width, disarrayed myofibrils (no clear A/I bands boundary), broader Z-discs, shorter sarcomeres 

and abnormal ICD. Moreover, the expression of various proteins was found to be misregulated 

(e.g. Connexin43, N-Cadherin and β-Catenin). In contrast, Xin knockout mice developed in our 

laboratory (Otten et al., 2010) displayed even milder cardiac phenotype. It was demonstrated by 

Otten et al, that Xin knockout strategy adapted by Jim Lin group (Gustafson-Wagner et al., 2007)  

resulted in only partial knockout of Xin ( knocking out XinA and XinB isoforms but leaving 

XinC isoform intact). Interestingly, XinC isoforms was found to be expressed in hypertrophic 

hearts, which could explain the hypertrophic effects of Xin knockout mice developed by Jim Lin 

group. In contrast to, XinAB-/- mice (Gustafson-Wagner et al., 2007) XinABC-/- mice (Otten et 

al., 2010) displayed no upregulation of Xirp2. XinABC-/- mice displayed increased perivascular 

fibrosis in young hearts. Isolated cardiomyocytes from XinABC-/- mice displayed increase in cell 

length and increased number of non-terminally localized intercalated disk (ICD)-like structures. 

Furthermore, resting sarcomere length was increased, sarcomeres shortening, peak shortening at 

0.5-1 Hz, and the duration of shortening were decreased. Sarcomere shortening and 

relengthening velocities were accelerated at frequencies above 4 Hz in XinABC-/- mice.    

Interestingly, Xirp2 were found to be upregulated in mouse models of hypertension: one 

hypertension model where mice were treated with Angiotensin II and another model for pressure 

overload (Duka et al., 2006; Jung-Ching Lin et al., 2005). In addition, Xirp1 was found to be 

upregulated in mouse satellite cells and in a muscle regeneration model based on eccentric 

exercise in mouse (Barash et al., 2004; Hawke et al., 2007). Moreover, mdx mice and ky/ky mice 
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models also displayed upregulation and ectopic localization of Xin in regenerating muscles 

(Beatham et al., 2006; Hawke et al., 2007).  

There are two recent reports describing the functional role of Xirp2 in mice hearts (McCalmon et 

al., 2010; Wang et al., 2010). In the first report, Mc Calmon et al. have demonstrated that 

upregulation of Xirp2 in Angiotensin II infused animals was direct effect of the hormone and 

was a not attributable to secondary effect resulting from pressure overload (McCalmon et al., 

2010). To substantiate their point the authors have also identified and mapped an Angiotensin II 

responsive region in the proximal 1.5 kb Xirp2 promoter. An attempt has been made recently to 

elucidate the functional role of Xirp2 in the heart by creating Xirp2 hypomorphic allele mouse 

model (McCalmon et al., 2010). The Xirp2 hypomorphic mice were viable but reduction of 

Xirp2 expression in mouse hearts resulted in cardiac hypertrophy in adult unstressed mice. 

Interestingly, these mice displayed tapered response to Angiotensin II induced myocardial 

damage and diminished fibrosis and apoptosis compared to wild type mice exposed to chronic 

Angiotensin II infusion. Additionally, Xirp2 hypomorphic mice did not show any altered cardiac 

function as measured by echocardiography (McCalmon et al., 2010). Xirp2 hypomorphic mice 

displayed a modest increase in HW: BW ratio between 9 and 15 weeks postnatally. 

Morphometric analysis of ventricular myocytes in adult hypomorphic hearts revealed a 

significant increase in the cross-sectional area. However other hallmarks of cardiomyopathy such 

as fibrosis and apoptosis were not significantly altered. No obvious perturbations in myofibrillar 

structure in Xirp2 hypomorphic mice cardiomyocytes were reported. The report did not describe 

the phenotype in skeletal muscle cells. 

The cardiac phenotype of unstressed Xirp2 hypomorphic allele is reminiscent of Xin knockout 

mice which also developed adult onset hypertrophy suggesting partial overlap of functions. 

However unlike Xin knockout mice model which demonstrated an upregulation of Xirp2 

(Gustafson-Wagner et al., 2007), the Xirp2 hypomorphic mice model (McCalmon et al., 2010) 

displayed no alteration of Xin expression. Similar results were also obtained in the present study, 

i.e. Xirp2 knockdown in several of muscle cell lines and primary cells did not alter Xin 

expression or its localization. Xin is also a MEF2 target however; its expression was not 

significantly induced in the heart by Ang II (McCalmon et al., 2010). Xirp2 is required for 

proper physiological growth as a reduction in its expression resulted in enlarged cardiomyocyte 
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size. Cardiac hypertrophy in hypomorphic mice was accompanied by an upregulation of 

hypertrophic marker gene, β-MHC, and a downregulation of the calcineurin modulatory gene, 

RCAN1/MCIP1 (McCalmon et al., 2010). The downregulation of calcineurin modulator and 

increased calcineurin activity was speculated to be the plausible mechanism for hypertrophy in 

unstressed Xirp2 hypomorphic allele mice. Further the upregulation of Pdlim3/ALP and 

MARCKS (myristoylated alanine-rich C kinase substrate), which encode cytoarchitectural 

proteins involved in actin dynamics localized to costameres and focal adhesions, was speculated 

to be a compensatory response to the reduction of Xirp2 in these structures. The diminished 

cardiac hypertrophy in Xirp2 hypomorphic mice compared to wild type mice after Ang II 

infusion was attributed to insufficient levels of Xirp2 which in turn is direct effecter of Ang II. 

An examination of phosphorylation levels of intracellular signaling molecules known to function 

downstream of Ang II revealed a downregulation of glycogen synthase kinase (GSK)-3 β serine-

9 phosphorylation in Ang II infused Xirp2 hearts. Inhibition of GSK-3β kinase activity, a well 

established hypertrophic antagonist, through increased phosphorylation on serine-9, is associated 

with enhanced hypertrophy. A major target of active GSK-3 β is β-catenin, which is 

phosphorylated by GSK-3 β and is subsequently targeted for ubiquitination and degradation. 

Western blot analysis revealed that β-catenin levels are significantly diminished in Ang II-treated 

hypomorphic mice. Thus, the reduction in GSK-3 β serine-9 phosphorylation in Ang II-treated 

hypomorphic mice is consistent with diminished cardiac hypertrophy (McCalmon et al., 2010). 

                       In the second report by Qinchuan Wang et al, ablation of mXinβ (Xirp2) led to 

abnormal heart shape, ventricular septal defects, severe growth retardation and postnatal lethality 

(mXinβ null mice died before weaning) with no upregulation of the mXinα (Xin) (Wang et al., 

2010). The mXinβ (Xirp2) null hearts displayed altered apoptosis and proliferation of 

cardiomyocytes and misorganized myocardium and impaired diastolic function and a delay in 

switching off the slow skeletal troponin I. Loss of mXinβ resulted in immature intercalated discs 

and the mislocalization of mXinα and N-cadherin. These observations are completely different 

from those reported by Mc Calmon et al, in their Xirp2 hypomorphic mice, which displayed 

unaltered cardiac function and unperturbed myofibrillar structures. The complete loss of mXinβ 

(Xirp2) message in the mXinβ knockout model of Jim Lin group compared to reduced level of 

Xirp2 in hypomorphic mice model of Frank Naya group could offer a potential explanation for 

the differences in these two models.  Additionally, mXinβ null hearts displayed upregulation of 
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active stat3 (signal transducer and activator of transcription 3) and downregulation of activities 

of Rac1, insulin growth factor receptor, protein kinase B, and extracellular signal related kinases 

1 and 2 (Wang et al., 2010). 

In the present study, to evaluate the functional role of Xirp2 in myofibrillogenesis and myotube 

formation a lentiviral mediated shRNAmir knockdown was achieved in several muscle cell lines 

and primary muscle cells isolated from wild type and Xin-/- mice. Knocking down Xirp2 did not 

affect myotube formation in all cell lines and primary muscle cells. Xirp2 knock down in both 

wild type and primary muscle cells from  XinABC-/- mice, disrupted Z-disk targeting of α-actinin 

and filamin C. In contrast, the expression of the M-band protein myomesin was relatively 

unaffected. From these results it can be concluded that myotube formation per se is not altered in 

the absence of Xirp2; in contrast, Z-disks are disorganized to some degree, whereas no 

significant changes are observed in the M-band. 

5.3. Xin expression levels are unchanged in Xirp2 
knockdown cells – H-2Kb-tsA58 cells 
Semi-Quantitative RT-PCR and western blot analysis of control and Xirp2 knockdown cells 

indicated no significant changes in Xin expression at the mRNA and protein level in the Xirp2 

knockdown cells compared to the control cells (Figure 4.17). Furthermore, localization studies of 

Xin in Xirp2 knockdown cells revealed no alteration in the localization of Xin compared to 

control cells (Figure 4.19). 

5.4. Possible role of Xin in satellite cells and their 
commitment to differentiation 
According to a recent report, Xin is already expressed in activated satellite cells and in newly 

regenerated skeletal muscle fibers (Hawke et al., 2007). Xin mRNA was found to be upregulated 

more than 16 fold within 12 hours following skeletal muscle injury and was shown to localize to 

the muscle satellite cell population. It was also shown that Xin was expressed during muscle 

regeneration as well as in primary muscle satellite cell cultures but not in other stem cell 

populations. According to this study, Xin staining was also observed in satellite cells along with 

typical satellite cell marker syndecan-4 further indicating the expression of Xin in satellite cells. 
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In-situ hybridization studies on regenerating muscle fibers 5 to 7 days post injury confirmed Xin 

expression within these newly regenerating myofibers. Promoter-reporter assays demonstrated 

that known myogenic transcription factors such as the Myocyte enhancer factor-2 (MEF2), the 

Myogenic differentiation factor (MyoD) and the Myogenic factor-5 (Myf-5) transactivated Xin 

promoter constructs supporting the muscle specific expression of Xin (Hawke et al., 2007). 

Although the expression and localization were established, the actual functional role played by 

Xin was not fully understood. From the biochemical data of Xin interactions with actin and β-

catenin (Choi et al., 2007; Pacholsky et al., 2004) and filamin C (van der Ven et al., 2006), it was 

predicted that Xin is involved in reorganization of the cytoskeleton and contributes to myofibril 

formation. However neither the functional knockout of Xin (previous results from this 

laboratory) nor Xin knockdown (Hawke et al., 2007) resulted in any overt differences in 

myofibrillogenesis. In a mouse model with a partial Xin knockout (targeting XinA and XinB 

isoforms but not XinC isoform) generated by Jim Lin group at the University of Iowa 

(Gustafson-Wagner et al., 2007), it was reported that Xirp2 expression was upregulated as a 

consequence of Xin knockout of this setting. A complete functional Xin knockout (targeting all 

three Xin isoforms, XinA, XinB and XinC) in this laboratory (Otten et al., 2010) had shown no 

upregulation of Xirp2 in these knockouts (present study). Both studies described only heart 

function avoiding any comment on the skeletal muscle function (Gustafson-Wagner et al., 2007; 

Otten et al.). Unpublished data from our laboratory showed the absence of major differences in 

skeletal muscle morphology and function. No differences in cardiac myofibril formation were 

observed in both studies irrespective of whether Xirp2 complemented the function of Xin or not. 

Since Xin is expressed earlier than Xirp2 in skeletal muscle differentiation and Xirp2 

knockdown is not accompanied by any changes in either the expression or localization of Xin 

(from the results of this study), there was no strong evidence for the trans complementation of 

Xirp2 by Xin. 

From the observations of Hawke et al (Hawke et al., 2007), it was tempting to predict a role for 

Xin proteins in cell fate determination and commitment. Xin was detected in satellite cells and 

early differentiation stages where satellite cells initially migrate, proliferate and ultimately 

differentiate to regenerate the injured tissue. A recent report also suggests the role of activated β-

catenin in satellite cell proliferation, wherein localization of activated β-catenin in the nucleus of 
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satellite cells resulted in proliferation whereas its localization in the cytoplasm (out of the 

nucleus) resulted in satellite cell differentiation (Otto et al., 2008). A host of Wnt ligands which 

increased the level of activity of activated β-catenin, helped in satellite cell proliferation and 

other Wnt ligands, which decreased activity of activated β-catenin resulted in decreased 

proliferation and increased differentiation of the satellite cells demonstrating a role for β-catenin 

signaling in satellite cells. Since Xin proteins across the species were predicted to have a 

conserved β-catenin binding region (Grosskurth et al., 2008), Xin might influence β-catenin 

levels and the consequent decisions on satellite cell fate. It is also noteworthy that 

downregulation of Xin in cultured C2C12 cells increases the proliferation and migration of these 

cells (Hawke et al., 2007). Since Xin is known to be upregulated in the early differentiation 

stages, one could imagine that Xin plays a balancing role between proliferation and 

differentiation whereby higher or lower levels of Xin lead to differentiation or increased 

proliferation rates, respectively. Since the proliferation differences were studied only in cultured 

C2C12 cells, it will be interesting to investigate the role of Xin in satellite cells. More 

specifically: do satellite cells isolated from Xin knockout mice show increased proliferation 

compared to satellite cells isolated from wild type mice? Additional questions should address if 

any differences in the localization and distribution of activated β-catenin in the nucleus and the 

cytoplasm of the satellite cells from wild type and the Xin-/- mice exist. The satellite cell 

activation is characterized by the expression of the transcription factor, MyoD, which is the 

strongest transactivator of Xin. Xin is expressed in activated satellite cells and localizes to 

regions of early differentiation (eg. the injury site which is being repaired) leading to the 

prediction that Xin expression might determine satellite cell fate and their commitment to 

differentiation. It was also observed that Xin is expressed at the mRNA level in proliferating 

cells (present study), whereas at the protein level it is expressed only in differentiating cells 

indicating a role for Xin in subtle balancing of proliferation and differentiation commitments of 

muscle cells. However, the complete lack of Xin (satellite cells isolated from Xin-/- mice) did not 

prevent satellite cell commitment to differentiation (results from this study). 
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Figure 5.1. The possible role of Xin in satellite cell differentiation. Satellite cells are maintained as a 
reserve pool underneath the basal lamina of skeletal muscle myofibers. These satellite cells are typically 
characterized by the expression of Pax7, a transcription factor. Activation of satellite cells upon muscle 
injury is typically characterized by expression of MyoD another muscle specific transcription factor. 
Activation of satellite cells leads initial proliferation and after attaining sufficient number they can either 
downregulate MyoD and become ‘reserve pool’ and useful for future expansion or they can upregulate 
another muscle specific transcription factor Myogenin (Myog) and proceed along the differentiation 
pathway ultimately differentiating to myotubes and fusing with existing myofibers.  Since Xin is robustly 
upregulated within 12 hours of muscle injury, where typically satellite cells initially proliferate and then 
differentiate to repair the damaged tissue, Xin could either influence satellite cell commitment to 
differentiation or might help in further downstream events necessary for differentiation and myofibril 
formation ( Figure was modified from (Shefer et al., 2006)) 

5.5. The rationale behind the design of the modular vectors  
RNA interference (RNAi) has emerged as a powerful tool to analyze gene function both on the 

cellular level and the organismic level (by way of creating a knockdown animal) (Hannon et al., 

2004). However, key challenges such as the off-target effects, finding the effective sequences 

which can efficiently knockdown the gene of interest, delivery to the desired tissue or 

transfectability in cell culture still remain. At least, some of the problems have been solved by 

recent work. Off-target effects have been minimized by advent of rational design principles 
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(Khvorova et al., 2003; Reynolds et al., 2004), algorithms predicting effective siRNA sequences, 

principles for preferential loading of antisense strand in RISC complex, avoiding seed region 

sequence complementarity to unintended targets (Anderson et al., 2008; Birmingham et al., 

2006; Jackson et al., 2006a) utilizing naturally occurring miRNA based hairpin design rules 

(Chang et al., 2006; McBride et al., 2008; Zeng et al., 2002) and often a combination of several 

principles. Delivery issues have been solved mainly by adapting viral based systems. Lentiviral 

based systems in particular, have attracted vast interest primarily for their ability to transduce 

both dividing and non-dividing cells including primary cells and embryonic stem cells and the 

consequent ability to generate transgenic animals (Tiscornia et al., 2003). Lentiviruses also offer 

a very high integration frequency into the host genome allowing for the creation of stable cell 

lines and transmission of integrated transgenic cassettes to the progeny. Plasmid based shRNA 

design principles have been used for RNAi with varying degrees of success. Both Pol II (Dickins 

et al., 2005; Stegmeier et al., 2005; Zeng et al., 2005) and Pol III promoter based strategies have 

also been developed and several suppliers have commercialized their systems. But each of the 

systems suffers from a few disadvantages and the systems are very rigid in that a researcher is 

faced with numerous constraints with regard to selecting system of the choice and the ability to 

alter the system to suit their changing needs, the primary reason being incompatibility of 

sequences between different types of vectors. The function of a gene is dynamically regulated in 

an organism depending on several internal and external conditions. In such a scenario, spatial 

and temporal control over gene function i.e. the ability to switch ‘’on’’ and ‘’off’’ the function of 

a gene under study at desired time points and  in desired tissues would equip the researcher with 

an excellent tool to do reverse genetics studies. Several of such inducible systems have also been 

described. Recently a novel lentiviral system was described which attracted the attention of the 

scientific community (Szulc et al., 2006). Among the many advantages described in this system, 

very little leakiness, full reversibility and tight regulation of both pol II and pol III promoter 

expression cassettes are of utmost importance. This novel inducible vector system is based on a 

single lentiviral vector and relied on the promiscuous activity of tTRKRAB, a fusion protein 

between the Krüppel-associated box (KRAB) domain and the tetracycline repressor (tetR) of 

Escherichia coli (Szulc et al., 2006). The tTRKRAB-mediated epigenetic repression of cellular 

Pol II and Pol III promoters juxtaposed to tet operator (TetO) sequences was shown to be 

reversibly controlled by doxycycline (Szulc et al., 2006). The flexibility of this system was 
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extended in this work by including multiple expression cassettes and silencing triggers thus 

creating a systematic and simple method for its modular use.  

The main disadvantage of the epigenetic repression based lentiviral plasmids (pLVET-

tTRKRAB, pLVCT-tTRKRAB), is that although, the tight regulation is independent of promoter 

choice, in the current format they offer only a H1-shRNA cassette. Additionally, they have no 

unique XhoI and EcoRI sites that would facilitate direct transfer of the large collection of 

sequence-verified miR30 based shRNAmirs from retro- and lentiviral library clones of Open 

Biosystems. Although the latter libraries are available in an inducible format (TRIPZ lentiviral 

inducible system), this system is restricted to a limited set of Pol II promoters (such as the CMV 

minimal promoter) and is based on a leaky transactivation system (Wiznerowicz et al., 2006). 

We decided to marry these systems to enable the expression of the shRNAmirs under control of 

the inducible promoters of the former system. A major drawback however, is the necessity of an 

extremely error-prone PCR-based amplification of the GC rich shRNAmir-sequences and 

subsequent sequencing of each transferred sequence. To circumvent this impediment, we aimed 

for the development of a PCR-free method. The resultant vector system introduced in this work 

(Kesireddy et al., 2010) combines the ease and safety of restriction enzyme-based shuttling of 

shRNAmir sequences with the flexibility and versatility of a modular system. Thus, this novel 

vector system combines the advantages of shRNAmirs with an inducible system that is less leaky 

and enables fine-tuning of the level of silencing. In addition, this work, also presents a modular 

design to show the flexibility and versatility of the system to achieve constitutive and conditional 

expression and for synergistic effect and simultaneous knockdown. 

5.6. Advantages of the modular vectors 
The modular nature of the vectors constructed in this work offers more flexibility and versatility 

as shown in the schematic drawing of the modules (Figure 4.9). These vectors harbor two 

different expression cassettes for expression of shRNAs and shRNAmirs viz. a Pol II based 

expression of shRNAmir (similar to pGIPZ vector) and a Pol III based expression of either 

shRNAs (a range of vectors with both U6 and H1 promoters, see Table 4.1 for compatible 

vectors for cloning into modular vectors) or shRNAmirs (similar to pSM2 vector). Moreover 

these expression cassettes can be either constitutive or conditional (depending on the module 
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chosen) and both expression cassettes can be used alone or in combination additionally in each 

case it is still possible to achieve constitutive or conditional expression.  

In case a simultaneous knockdown of genes is required, e.g. in order to avoid potential 

compensatory effects that may arise due to upregulation or downregulation of closely related 

genes, with known systems, independent viruses to target two genes are required, and cells have 

to be transduced with both viral constructs. Usually, this means that analysis of two different 

reporters (eg. GFP and RFP) or a reporter plus an antibiotic selection marker is necessary. Often 

coordinated external control of expression cassettes is difficult to achieve. The two autonomous 

expression cassettes in the vectors fashioned here can be coordinately controlled externally, 

ensuring the simultaneous delivery of both cassettes with a single reporter. 

5.6.1. Advantages of miRNA design over shRNA design 

The silencing triggers (siRNAs) are not amplified and transported in mammalian species as 

opposed to what happens in C. elegans or plants. The silencing triggers in mammalian species 

have half-lives and must be supplied continuously to the RNAi machinery to maintain silencing 

(Paddison et al., 2004a). Stable RNAi requires stable expression of silencing triggers (dsRNA) 

which is achieved via retroviral constructs. The design of the hairpin cassettes used in this study, 

incorporates the sequences of human miR-30-RNA (Stegmeier et al., 2005). First adding a miR-

30 loop and a 125 nt of miR-30 flanking sequence on either side of the hairpin results in a more 

than tenfold greater Drosha and Dicer processing of the expressed hairpins as compared to 

shRNA based designs (Silva et al., 2005). Increased Drosha and Dicer processing translates into 

greater siRNA production and greater potency for expressed hairpins (Silva et al., 2005). Finally, 

the miR-30 design offers more flexibility as miRNAs can be expressed from both Pol II and Pol 

III promoters (Stegmeier et al., 2005). Since miRNAs are endogenously expressed from Pol II 

promoters, tissue specific knockdown can be achieved with tissue specific (Pol II) promoters, 

whereas Pol III promoters (H1 and U6) are ubiquitously expressed in all tissues. Expression of 

hairpins from Pol III promoters also requires a precise transcription start site and hairpins must 

also include a stop signal of five thymidines (‘TTTTT’). Since miRNAs are transcribed from 

long transcripts and processed by an endogenous miRNA pathway they require neither a precise 

transcription start site nor a stop signal. siRNAs and shRNAs can over-saturate cellular miRNA 
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pathways when present in high concentrations (Grimm et al., 2006). One way to avoid this 

potential pitfall is to use low concentrations of siRNAs and shRNAs (Cullen et al., 2006). 

However, oversaturation remains a risk in many cases, since it is extremely difficult to control 

total cellular concentrations of siRNAs or shRNAs especially taking into account the differences 

in transfection and transduction efficiencies of different cell types. While MOI can give an idea 

of transducebility of the cell type it remains difficult to precisely control the number of vector 

copies in individual cells. In situations where more copies of expressed hairpins are present in a 

cell, this might again lead to oversaturation of endogenous pathways. Under those circumstances 

an inducible expression system is more favorable as the knockdown can be tuned more precisely 

according to the special requirement. Utilizing miRNAs instead of shRNAs has also been shown 

to prevent oversaturation of endogenous miRNA pathways (presumably shRNAmirs mimic 

endogenous miRNAs compared to artificial shRNA sequences). Their expression from pol II 

promoters can be designed to be tissue specific and by using the modular design hairpins can be 

transferred in a PCR- free method from publicly available libraries. 

Many endogenous miRNAs are expressed in clusters of multiple identical or different copies and 

since endogenous miRNAs are expressed in a polycistronic cassette, this provides an attractive 

way to express multiple hairpins from a single Pol II transcript (26, 27). While the modular 

vectors of this study use different expression cassettes for expressing different hairpins their 

expression from a single polycistronic cassette can also be achieved with our vectors following a 

previously published protocol (26). 

The modular vectors developed here may be used to (i) knockdown two genes simultaneously 

using the Pol II and the Pol III cassettes targeting different genes, (ii) achieve synergistic effect 

using the Pol II and the Pol III cassettes expressing different sequences targeting the mRNA of 

the same gene at different positions, (iii) target different isoforms of the same gene with different 

sequences expressed from the Pol II and the Pol III cassettes. Unlike the system that is used in 

this work, many of the conditional vectors described are specific to certain promoters (such as 

the CMV minimal promoter) severely restricting the capability of the researcher. Also most of 

these systems can only control Pol II promoter. 
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5.6.2. Proposed uses of the modular lentivectors 

Application for Rescue Plasmid: Since the GFP (Figure 4.9, module IA) can be replaced with a 

GFP fusion protein of the gene of interest (module IC), one can exploit this feature to express 

mutant form of the cDNA of the gene (harboring silent mutations at the sequence where the 

shRNAmir sequence binds the mRNA portion by utilizing codon redundancy) that is targeted 

with the shRNAmir sequence in the module II. Thus one can create a rescue plasmid expressing 

the mutant cDNA and the shRNAmir sequence targeting the same gene in a single vector with a 

single reporter (GFP) and thus a single virus. Moreover both mutant cDNA and shRNAmir 

sequence can be induced to be expressed at any point of time and can be switched “on” and 

“off”. When the switch is in the “off” position shRNAmir and mutant cDNA are not expressed 

(as indicated by the absence of GFP) thus the phenotype will be normal wild type. When the 

switch is in the “on” position both shRNAmir and mutant cDNA are expressed, shRNAmir 

targets the wild type protein (this action would have produced a phenotype) but the simultaneous 

expression of the mutant cDNA from the plasmid rescues the phenotype. The rescue plasmid can 

also be used to study mutant genes (if the mutations are not silent mutations) by knocking down 

the wild type genes. Thus, the rescue plasmid has far reaching potential for studying mutant 

genes in a physiological context.  

In summary, a highly versatile lentiviral system that offers an unprecedented variability in the 

choice of modules that can be combined or excluded as desired was introduced in this work. 

5.6.3. Double copy design and the Cre-Lox strategy with modular 
vectors 

The 3' LTR of the vector pLVTHM contains the TetO sequence, the Pol III expression cassette 

(H1-shRNA) and the loxP site immediately after the ClaI restriction site. Since the 3' LTR 

duplicates during viral reverse transcription (see, SIN vectors in 1.2.3.1) the integrated provirus 

contains two copies each of TetO sequences, Pol III expression cassettes and loxP sites. The 

presence of two loxP sites in the integrated provirus enables vectors containing this cassette to be 

used with the Cre-Lox strategy. A ‘Cre’ coding plasmid when simultaneously transfected or 

transduced to the cells harboring the integrated provirus excises the expression cassette between 
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the loxP sites and in this case removes the Pol II promoter cassette along with one copy of the 

shRNA cassette.  

 

Figure 5.2. Schematic representation of the double-copy design showing the duplication of 3' LTR 
during viral replication of pLVTHM. During reverse transcription, the U3 region of the 5' LTR is 
synthesized using its 3' homologue as a template, which results in a duplication of the TetO-shRNA 
cassette in the provirus integrated in the genome of transduced cells.  Figure adapted from 
http://lentiweb.com/double_copy.php. 

 

Figure 5.3. Design and mode of action of the tTRKRAB based reversible, tetracycline controlled 
systems for conditional knockdown.  In the tTRKRAB based epigenetic repression vectors in the 
absence of doxycycline (left), the tTRKRAB fusion protein binds to TetO and, by triggering the local 
formation of heterochromatin, prevents transcription from the H1 promoter. Right, in the presence of the 
drug, tTRKRAB cannot bind the vector, the repressive epigenetic modification is alleviated, and the 

http://lentiweb.com/double_copy.php�
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shRNA is produced leading to gene knockdown. The internal transgene (for example, GFP) is also 
subjected to the conditional epigenetic repression providing a monitoring device. Figure adapted from 
(Wiznerowicz et al., 2006). 

Although the vectors pLVTHM (H1-shRNA), pLVTHM-mir (H1-shRNAmir), pLVTU6+1 (U6-

shRNA) and pLVTU6-mir (U6-shRNAmir) harbor different Pol III expression cassettes, the 

TetO and the loxP sites are unchanged in all these vectors constructed from pLVTHM backbone 

in this work. Therefore, the double copy design and the Cre-Lox strategy are applicable to all 

these vectors in spite of different expression cassettes. By extension, all the modular vectors that 

include the Pol III module (module IIIA, IIIB, IIIC and IIID) are amenable to Cre-Lox strategy.  

 



118 
 

6. Summary  
Skeletal muscle differentiation is characterized by a remarkable reorganization of the actin 

cytoskeleton. In particular actin and actin binding proteins play a vital role in this process. Actin 

is reorganized from stress fiber like structures to finely organized myofibrillar arrangement. 

Several proteins have been implicated to function in this complex process. Recently, the striated 

muscle-specific protein Xin was predicted to play an essential role in early heart formation. This 

assumption was mainly based on the observation that the treatment of developing chick embryos 

with antisense oligonucleotides targeting the Xin mRNA resulted in abnormal cardiac 

morphogenesis (Wang et al., 1999). Therefore, depletion of Xin in mice was also predicted to 

have identical lethal effects on murine heart development. However, in two different mouse 

models, the ablation of Xirp1 (the gene encoding Xin) only resulted in a mild hypertrophic 

response and knockout mice were found to be viable and fertile (Gustafson-Wagner et al., 2007; 

Otten et al., 2010). It was suggested that the lack of Xin protein is compensated by the presence 

of Xirp2, a closely related protein in the mammalian genome encoded by the Xirp2 gene 

(Gustafson-Wagner et al., 2007).  

                          In this work, I aimed to analyze the role of both proteins in normal skeletal 

muscle differentiation and the possible trans-complementation of Xin by Xirp2 in Xin knockout 

mice. The expression pattern of both Xin and Xirp2 in cultured differentiating murine and human 

skeletal muscle cells was analyzed by semi quantitative real time PCR and immunofluorescence 

stainings, respectively. Furthermore, the consequence of the depletion of these proteins (either 

individual or combined depletion) in skeletal muscle cell differentiation models was studied. 

Depletion of Xin was achieved making use of satellite cells isolated from Xin-/- mice previously 

established in our laboratory (Otten et al., 2010), whereas shRNAmir based Xirp2 knockdown 

using lentiviral vectors was applied in muscle cell lines and in primary muscle cells isolated from 

wild type (SV129 strain) and Xin-/- mice.  

                      To start with, a multipurpose lentiviral vector system for expressing miRNA 30-

based short hairpins (shRNAmirs) for RNAi was created. The core of the resulting vector 

system, pLVmir, allowed a simple two step cloning procedure for expressing shRNAmirs under 

the control of a Pol II promoter in both a constitutive and a conditional manner with GFP as a co-
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expressing reporter. This novel set of lentiviral vectors was used to knockdown Xirp2 mRNA 

expression in five different kinds of cultured myogenic cells. Cell lines stably expressing 

shRNAmirs were established by selecting GFP positive cells by FACS. Consequences of the lack 

of Xirp2 and / or Xin on myofibril assembly were analyzed by immunolocalization studies of 

myofibrillar proteins. 

                    The achieved results indicated that knocking down of Xirp2 was efficient and 

specific and had no effect on the expression of the closely related protein Xin. In the various cell 

types tested, Xirp2 knockdown exhibited variable alterations in myofibril formation. While in H-

2Kb-tsA58 myotubes, Xirp2 knockdown alone showed no major disruption of myofibril 

assembly, in Xin-/- primary murine muscle cells, Xirp2 knockdown resulted in the development 

of thinner myotubes that differentiated up to a less advanced degree when compared to wild type 

cells. In C2C12 and HSKM cells Xirp2 knockdown was accompanied by a disruption of 

myofibril development and relatively fewer maturely differentiated cells compared to control 

cells. Semi quantitative RT-PCR experiments revealed that Xirp1 was expressed at earlier 

developmental stages as compared to Xirp2 in differentiating skeletal muscle cells. Specific 

antibodies localized human Xirp2 to mature myofibrils in a striated pattern in human skeletal 

muscle tissues and HSKM cells, whereas Xin was mainly found in the non-striated regions of 

nascent myofibrils and in structures analogous to the myotendinous junctions of adult muscle. 

Combined with the finding that Xirp2 knocked down cells showed no alteration in Xin 

expression levels or localization, these data provided no evidence for a trans-complementation of 

Xirp2 by Xin. The phenotypes of single and double gene depletions suggested that Xirp2 plays a 

more significant role in myofibrillar development compared to Xin since primary muscle cells 

from Xin-/-  mice differentiated without any disorganization in their myofibrillar arrangement. 
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VECTOR MAP 

 

Figure 3.  Detailed vector map of pGIPZ™ lentiviral vector. 

ANTIBIOTIC RESISTANCE 
pGIPZTM contains 3 antibiotic resistance markers (Table 2). 
 
Table 2.  Antibiotic resistances conveyed by pGIPZ 
Antibiotic Concentration Utility 

Ampicillin (carbenicillin) 100µg/ml Bacterial selection marker (outside LTRs) 
Zeocin 25µg/ml Bacterial selection marker (inside LTRs) 
Puromycin variable Mammalian selectable marker 
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 Figure 2:  pGIPZ lentiviral vector 
 
Table 1.  Features of the pGIPZ vector 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vector Element Utility 

CMV Promoter  RNA Polymerase II promoter 
cPPT Central Polypurine tract helps translocation into the nucleus of non-dividing cells 
WRE Enhances the stability and translation of transcripts 

TurboGFP Marker to track shRNAmir expression 
IRES-puro resistance Mammalian selectable marker 

Amp resistance Ampicillin (carbenicillin) bacterial selectable marker 
5'LTR  5' long terminal repeat  
pUC ori  High copy replication and maintenance of plasmid in E. coli 

SIN-LTR 3' Self inactivating long terminal repeat (Shimada, et al. 1995) 
RRE  Rev response element  

Zeo resistance Bacterial selectable marker 
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Validation of sensitivity of SYBR Green based Real Time PCR method-Melting Curve 
analysis of primer sets. 

 

Figure A1: Melting curve, Primer set 1, Xin. Single peak was observed in SYBR Green based Real 
Time PCR validating this method. Sequences of the primers are given in Appendix Table 1. 

Appendix Table 1: Primers used SYBR Green based Real Time PCR  

Xin Real Time PCR Primers  
XIN RT1f           5'-GCTCCGGCGTCTCTACAAAC-3' 
XIN RT 1r          5'-CCAGCGCATACACTGAACATC-3'  
Xirp2 Real Time PCR Primers  
XIRP2 RT1f           5'-GCAGCTTCTCGGCTAATGTCA-3' 
XIRP2 RT 1r          5'-AGGCGTTGCAGGTTGAAGTC-3' 
Gapdh Real Time PCR Primers  
GAPDH RT 1f          5'-AGGTCGGTGTGAACGGATTTG-3' 
GAPDH RT 1r          5'-TGTAGACCATGTAGTTGAGGTCA-3' 
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Figure A2: Melting curve, Primer set 2, Xirp2. Single peak was observed in SYBR Green based Real 
Time PCR validating this method. Sequences of the primers are given in Appendix Table 1. 

 

 

Figure A3: Melting curve, Primer set 3, Gapdh. Single peak was observed in SYBR Green based Real 
Time PCR validating this method. Sequences of the primers are given in Appendix Table 1. 
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Figure A4: CT Values- first detection in H2k-ts A58 mouse muscle (control) cells. GAPDH was 
detected after 11.5 cycles, Xin after 19.5 cycles and Xirp2 after 20.7 cycles 

∆∆Ct Method for calculation of percentage of remaining mRNA after normalization to 
GAPDH levels 

 

∆∆Ct            = (Ct sample- Ct control) – (Ct  GAPDHsample- Ct  GAPDHcontrol) 

Eg.   

           =   (26.76-20.63) – (12.09-11.49) 

             =   6.13-0.6 

             =   5.53 

% Remaining mRNA = 100* (1/2)5.53= 2.16% 
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