
 

 

 

 

 

Validation of the novel label-free 

dynamic mass redistribution technology 

and 

its application for functional analysis of  

G protein-coupled receptors 
 

 

 

 

Dissertation 

zur 

Erlangung des Doktorgrades (Dr. rer. nat.) 

der 

Mathematisch-Naturwissenschaftlichen Fakultät 

der 

Rheinischen Friedrich-Wilhelms-Universität Bonn 

 

 

vorgelegt von 

 

Ralf Schröder 

 

aus 

Schleiden 

 

 

Bonn 2010 

 



 

  

 

 

 

 



 

 

 

 

Angefertigt mit der Genehmigung der Mathematischen-Naturwissenschaftlichen Fakultät der 

Rheinischen Friedrich-Wilhelms-Universität Bonn 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1. Gutachter:   Prof. Dr. E. Kostenis 

 2. Gutachter:   Prof. Dr. G. M. König 

 

 

  

 Tag der Promotion: 31.05.2011 

  

 Erscheinungsjahr: 2011 

 



 

  



 

 

 

 

Die vorliegende Arbeit wurde angefertigt in der Zeit von Oktober 2006 bis August 2010 im 

Institut für Pharmazeutische Biologie der Rheinischen Friedrich-Wilhelms-Universität Bonn 

unter der Leitung von Frau Prof. Dr. rer. nat. Evi Kostenis. 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table of contents 

 

I  

Table of contents 

1.  Introduction .................................................................................................... 1 

1.1  G protein coupled receptors ..................................................................................... 1 

1.2  GPCRs and signaling ............................................................................................... 2 

1.3  Detection of receptor interactions and functionality ................................................ 5 

1.4  Label-free methods................................................................................................... 6 

1.4.1 Label-free dynamic mass redistribution technology ................................................ 7 

1.5  Signaling pathway modulators ................................................................................. 9 

1.6  Eicosanoids, prostanoids and prostaglandins ......................................................... 10 

1.7  Prostanoid receptors ............................................................................................... 12 

1.7.1  Chemoattractant receptor homologous molecule expressed on Th2 cells ............. 12 

1.7.2  E-prostanoid receptors............................................................................................ 14 

1.8  Aim and scope........................................................................................................ 15 

2.  Results .............................................................................................................. 17 

2.1  Validation of DMR technology as functional assay for GPCR characterization... 17 

2.1.1  DMR reflects Gαi-dependent CRTH2 response..................................................... 17 

2.1.2  DMR captures Gαs response of endogenous EP2/EP4 receptors ........................... 20 

2.1.3 DMR unveiles additional Gαi signaling for the Gαq-linked FFA1 receptor .......... 23 

2.1.4  Signaling along the Gα12/13 pathway is captured by DMR measurement .............. 25 

2.1.5  Exploring DMR technology to interrogate features of agonist and antagonist 

pharmacology......................................................................................................... 30 

2.1.5.1  Examination of full and partial agonism................................................................ 30 

2.1.5.2  Discrimination of surmountable and insurmountable antagonists ......................... 31 

2.1.6  Functional DMR response reflects receptor surface expression ............................ 33 

2.1.7  DMR technology enables signaling analysis in human primary cells ................... 34 

2.2  Utilizing DMR technology for eicosanoid screening at CRTH2 ........................... 37 



Table of contents 

 

II 

 

 

2.2.1  DMR measurements of 2-series prostanoids at CRTH2 ........................................ 37 

2.2.2  DMR measurements of 1-series prostanoids at CRTH2 ........................................ 40 

2.2.3  Both PGH2 and PGH1 are active at CRTH2........................................................... 42 

2.2.4  Gαi and Gαs responses are simultaneously captured by DMR measurement ........ 48 

2.3.  Activation of CRTH2 by PGH1 and PGH2............................................................. 50 

2.3.1  Stability of PGH1 and PGH2................................................................................... 50 

2.3.2  PGH1 promotes internalization of CRTH2 in HEK cells ....................................... 53 

2.3.3  PGH1 and PGH2 induce the activation of primary human lymphocytes................ 55 

2.3.3.1  PGH1 and PGH2 induce shape change in eosinophils via CRTH2 ........................ 55 

2.3.3.2  PGH1 and PGH2 induce intracellular calcium release and migration at Th2 cells. 56 

2.4  The E-prostanoid receptors EP2 and EP4 are activated by PGH2 and PGH1 ........ 58 

2.4.1  PGH2 and PGH1-induced responses in HEK cells are Gαs mediated..................... 58 

2.4.2  Identification of both EP2 and EP4 as molecular targets of PGH2 and PGH1 ....... 59 

2.4.3  Detection of EP2 and EP4 activation in primary human keratinocytes ................. 61 

3.  Discussion...................................................................................................... 65 

3.1  DMR technology captures signaling along all four major G protein pathways..... 65 

3.1.1  Detection of Gα12/13 signaling ................................................................................ 65 

3.1.2  Gαi signaling .......................................................................................................... 66 

3.1.3  Gαs signaling .......................................................................................................... 67 

3.1.4  Gαq and mixed signaling events ............................................................................. 68 

3.1.5  DMR detection in primary human keratinocytes ................................................... 69 

3.1.6  General aspects of functional GPCR detection by DMR technology .................... 70 

3.2  Prostanoid screening at CRTH2............................................................................. 72 

3.3  PGH2 and PGH1 induce activation of EP2 and EP4 receptors ............................... 73 

3.4  PGH2 and PGH1 induce activation of CRTH2....................................................... 74 

4.  Summary......................................................................................................... 79 

 



Table of contents 

 

III  

5.  Material and methods............................................................................ 83 

5.1  Material .................................................................................................................. 83 

5.1.1  General chemicals, reagents and ready-mixed solutions ....................................... 83 

5.1.2  Compounds and reagents for functional assays ..................................................... 84 

5.1.3  Devices ................................................................................................................... 86 

5.1.4  Software ................................................................................................................. 87 

5.1.5  Consumables .......................................................................................................... 87 

5.1.5.1  General material ..................................................................................................... 87 

5.1.5.2  Microplates for functional assays........................................................................... 88 

5.1.5.3  Kits ......................................................................................................................... 88 

5.1.6  Restriction endonucleases ...................................................................................... 88 

5.1.7  Antibodies .............................................................................................................. 89 

5.1.8  Buffers and solutions.............................................................................................. 89 

5.2  Molecular biology .................................................................................................. 92 

5.2.1  Vectors ................................................................................................................... 92 

5.2.2  Bacterial strains ...................................................................................................... 93 

5.2.3  Cultivation techniques for bacterial cells ............................................................... 93 

5.2.4  Generation of competent bacteria .......................................................................... 94 

5.2.5  Tranformation......................................................................................................... 94 

5.2.6  Plasmid DNA isolation (mini/maxi preparation) ................................................... 94 

5.2.7  Photometric measurement of nucleic acid concentration....................................... 94 

5.2.8  Restriction analysis ................................................................................................ 95 

5.2.9  Agarose gel electrophoreris.................................................................................... 95 

5.3  Cell culture ............................................................................................................. 95 

5.3.1  Cell lines................................................................................................................. 95 

5.3.2  Culture media ......................................................................................................... 97 

5.3.3  Cell culture techniques for mammalian cells ......................................................... 98 



Table of contents 

 

IV 

 

 

5.3.4  Transfection by co-precipitation of calcium phosphate and DNA......................... 99 

5.3.5  Transfection by electroporation ............................................................................. 99 

5.4  Cell based assays.................................................................................................. 100 

5.4.1  Dynamic mass redistribution (DMR) assay ......................................................... 100 

5.4.2  Enzyme-linked immunosorbent assay (ELISA)................................................... 101 

5.4.3  HitHunter™ cAMP accumulation assay (for endogenously expressed receptors)

.............................................................................................................................. 102 

5.4.4  Homogeneous Time-Resolved Fluorescence (HTRF
®
) assays for cAMP or IP-1 

(for overexpressed receptors) ............................................................................... 103 

5.4.5  Calcium assays in CRTH2-HEK cells ................................................................. 106 

5.4.6  Internalization assay............................................................................................. 106 

5.4.7  Functional assays in primary human leukocytes.................................................. 106 

5.4.8  Calculations and data analysis.............................................................................. 107 

6.  Abbreviations ............................................................................................ 109 

7.  References ................................................................................................... 113 

8.  Curriculum vitae ...........................................................................................  

9.  Publications ................................................................................................ 123 

10.  Acknowledgements .............................................................................. 125 

 

 



Introduction 

   

1 

 

1. Introduction 

 

1.1 G protein coupled receptors 

One of the largest and most diverse families in the mammalian genome is represented by the 

G protein coupled receptor (GPCR) superfamily. Around 800 genes encode for GPCRs which 

share a common membrane topology: an intracellular C-terminus, an extracellular N-

terminus, and seven transmembrane (TM) helices, connected by three intracellular loops 

(ICLs) and three extracellular loops (ECLs) (Lander, et al., 2001, Venter, et al., 2001, 

Fredriksson, et al., 2003). A salient feature of GPCRs is to sense signals outside the cell and 

activate signal transduction within the cell, ultimately leading to cellular responses. Most 

GPCRs signal by activation of heterotrimeric guanosin-5'-triphosphate (GTP) binding 

proteins (G proteins), but progressive research indicates an increasing number of G protein-

independent signaling events. Thus GPCRs are also referred to with the more general term 

7TM receptors (Pierce, et al., 2002, Fredriksson, et al., 2003). 

GPCRs, responsible for 80% of signal transduction across the cell membrane, are activated by 

a wide range of stimuli including photons, ions, small organic compounds, odorants, amino 

acids, lipids, fatty acids, eicosanoids, peptides and nucleotides and contribute to a host of 

physiological processes. They are involved in visual and smell senses, behavioral and mood 

regulation, immune and nervous system, and in general the body homeostasis (Millar and 

Newton, 2010). Also involved in pathological processes, GPCRs are important 

pharmacological drug targets, which is illustrated by the fact that about one third of all current 

therapeutics are active on GPCRs (Overington, et al., 2006, Millar and Newton, 2010). 

Drugable GPCRs are relevant in diseases including stroke, asthma, schizophrenia, cancer, 

neurological pain, migraine, allergies, gastric ulcer, diabetes, obesity and hypertension 

(Jacoby, et al., 2006, Chung, et al., 2008). 

The GPCR superfamily is phylogenetically classified into 5 main branches: (i) the rhodopsin 

like receptors (672 members), (ii) the secretin receptors (15 members), (iii) the adhesion 

receptors (33 members), (iv) the glutamate receptors (22 members) and the (v) frizzled/taste 

receptors (11/25 members). Presently, there are still approximately 100 orphan GPCRs whose 

endogenous ligands are not identified yet, thus their role in health and disease is still to be 

unveiled (Fredriksson, et al., 2003, Lagerström and Schioth, 2008).  
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1.2 GPCRs and signaling 

In a classical view GPCR signal transduction is initiated by agonist binding, leading to 

conformational changes of the receptor molecule accompanied by a transition from an 

inactive to an active state. That in turn activates the receptor bound heterotrimeric G protein, 

which now dissociates from the receptor and modulates downstream effector molecules 

(Samama, et al., 1993, Kenakin, T., 1995, Cabrera-Vera, et al., 2003).  

G proteins are composed of the three subunits Gα, Gβ and Gγ and their functional principle 

depends on the capability of Gα to cycle between an inactive and an active conformation. In 

the inactive state Gα is bound to GDP and able to bind to a receptor and the Gβγ subunits. 

Due to GPCR activation Gα in turn is activated resulting in conformational changes that 

induce an exchange of GDP for GTP. In this active state the Gα molecule dissociates from the 

receptor and the Gβγ subunits. Now both, Gα as well as the Gβγ subunits are able to bind to 

corresponding effector molecules. The Gα subunit possesses a GTPase domain, which 

hydrolyses GTP to GDP resulting in self-inactivation, enabling Gα again to bind to a receptor 

and Gβγ subunits. Hence, the activation process can start again (Sprang, 1997, Oldham and 

Hamm, 2008). 

Although the GPCR superfamily is large, the number of individual interacting G proteins is 

relatively small. In humans there are at least 16 Gα subunits, 5 Gβ subunits and 14 Gγ 

subunits. Since there are more different GPCRs than G protein families, each is generally able 

to interact with many different receptors. G protein heterotrimers are typically divided into 

four classes based on the primary sequence similarity of the Gα subunit and their functional 

properties: Gαs, Gαi/o, Gαq/11, Gα12/13 (Simon, et al., 1991, Milligan and Kostenis, 2006, 

Oldham and Hamm, 2008). 

Gαs proteins are known to bind to and stimulate adenylyl cyclase (Northup, et al., 1980, Ross, 

E. M. and Gilman, 1980), leading to an increase of intracellular cAMP levels. This signal is 

further transduced by activation of protein kinase A (PKA), the exchange protein directly 

activated by cAMP (Epac) or the transcription factor CREB (cAMP response element 

binding). Further downstream targets are members of the Src family of tyrosin protein kinases 

(PKs) and the GTPase of tubulin (Ma, et al., 2000, Milligan and Kostenis, 2006, Woehler and 

Ponimaskin, 2009, Gloerich and Bos, 2010). 

Gαi/o proteins are characterized by inhibition of adenylyl cylase (Bokoch, et al., 1984, 

Sternweis and Robishaw, 1984), resulting in a decrease of cellular cAMP levels. Downstream 

targets are tyrosin PKs and GTPase activating proteins (GAPs), GTPase of tubulin, and in 

addition Gαi proteins and in particular the corresponding Gβγ subunits, liberated upon Gαi 
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activation also modulate ion channels like G protein activated inward rectifying potassium 

channel (GIRK) and calcium channels (Woehler and Ponimaskin, 2009). 

Gαq/11 is predominantly known to activate the phospholipase C (PLC) (Cockcroft and 

Gomperts, 1985), which hydrolyses phosphatidylinositol 4,5-bisphospate (PIP2) resulting in 

inositol triphosphate (IP3) and diacylglycerol (DAG). DAG can activate protein kinase C 

(PKC), while IP3 acts on receptors in the endoplasmatic reticulum, resulting in release of 

calcium from intracellular stores. In addition Gαq-dependent activation of potassium channels 

and downstream signaling towards serine and tyrosin PKs, guanine nucleotide exchange 

factors (GEFs) and tubulin is described (Milligan and Kostenis, 2006, Woehler and 

Ponimaskin, 2009). 

The Gα12/13 pathway (Strathmann and Simon, 1991) is lacking a distinct second messenger as 

there are IP3 and calcium for Gαq and cAMP for Gαs- and Gαi-mediated signaling. Best 

characterized downstream effectors of Gα12/13 are RhoGEF-mediated activation of RhoA that 

in turn might activate Rho kinases (ROCK) leading to formation of stress fibers and certain 

downstream pathways like activation of serum response transcription factor (SRF), ultimately 

regulating gene expression. In some cases also calcium release via PLC was (Ross, R. A., 

2009). Further, members of the family of small GTPases like Rho, Rac and Cdc42 can 

likewise be activated mediating various cellular effects. Additionally a variety of other 

interaction partners for G12/13 including cadherins and protein phosphatases and kinases, 

phospholipases, GAPs and GEFs have been reported (Worzfeld, et al., 2008, Ross, R. A., 

2009, Siehler, 2009, Woehler and Ponimaskin, 2009). 

For Gβγ subunits a host of effectors is described mostly associated with calcium release via 

channels or PLC, but also diverse kinases and nucleotide exchange factors may be affected, 

among others (Milligan and Kostenis, 2006, Oldham and Hamm, 2008). 

GPCRs are often characterized by the G proteins binding to them but these have not to belong 

to one single class of G proteins. For an increasing number of receptors promiscuity of 

G protein coupling was demonstrated and context-dependency of these coupling events 

indicates a more complex and dynamic signaling system than expected many years before 

(Galandrin, et al., 2007, Kenakin, T., 2010). 

As more downstream signaling events mitogen-activated protein kinases (MAPK) can be 

activated by several different pathways. GPCRs are known to activate each of the three 

known mammalian MAP kinases: extracellular-regulated kinases 1/2 (ERK1/2), the c-Jun 

amino terminal kinases (JNKs) and the p38 MAPKs, ultimately leading to regulation at the 

gene expression level (Pierce, et al., 2002, Woehler and Ponimaskin, 2009). 



4 Intoduction 

  

GPCRs are also able to mediate G protein-independent signaling events. Best known is the 

β-arrestin2-dependent signaling (Pierce and Lefkowitz, 2001, Wei, et al., 2003, Lefkowitz, 

2007) targeting MAP kinases, Src and AKT among others. But also Janus protein 

kinase/signal transducers and activators of transcription (JAK/STAT), the Src-protein family, 

tyrosine kinases, GPCR kinases (GRKs), and PDZ domain-containing proteins have been 

suggested to directly relay signals from GPCRs independent of G proteins (Galandrin, et al., 

2007, Millar and Newton, 2010). 

Signaling activity of GPCRs can be regulated and modulated by a lot of cellular mechanisms 

including control of expression levels, phosphorylation and internalization. Commonly, 

signaling of activated receptors is regulated by desensitization mechanisms to avoid 

exaggerated responses. In many cases, receptors are phosphorylated by GRKs which in turn 

enables binding of β-arrestin proteins. This initiates the association of clathrin and adaptor 

protein 2 (AP-2) leading to receptor endocytosis. Subsequently, the receptor molecule may be 

degraded intracellularly or recycled back to the cell surface raring again for signaling (Sorkin 

and von Zastrow, 2009a).  

For an increasing number of receptors further features are reported, which can modulate 

GPCR-mediated signaling including biased agonism (i.e. ligation of different agonists to one 

receptor activates one or more different signaling pathways), differential receptor 

phosphorylation inducing variable signaling events, receptor crosstalk with or without homo- 

and heterodimerisation affecting signaling properties, and recent advances are made for the 

detection of sustained signaling events after receptor internalization (Galandrin, et al., 2007, 

Kenakin, T. P., 2009, Milligan, 2009, Mullershausen, et al., 2009, Calebiro, et al., 2010, 

Prezeau, et al., 2010). 

The complexity of possible GPCR behaviors and phenomena including inverse agonism, 

allosteric modulation and biased agonism, also referred to as functional selectivity or 

pluridimensional efficacy, is no longer explainable by a simple two state receptor model that 

switches between an inactive and an active state only. It seems that receptors might rather 

oscillate between multiple conformations, which can be differentially stabilized by ligands 

and in turn permit access to the whole or only a subset of the complete receptor signaling 

repertoire (Galandrin, et al., 2007, Kenakin, T. P., 2009, Kenakin, T., 2010). 

The rising complexity in the known GPCR/7TM receptor signaling behavior seems to require 

detection systems with complex readouts improving access to the plasticity of receptor-

mediated signaling behavior. 
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1.3 Detection of receptor interactions and functionality 

In the field of GPCR research a lot of techniques for detection of GPCR-ligand interactions, 

receptor activation and downstream signaling events are established.  

Binding assays are necessary to investigate the direct ligand-receptor interaction, and in this 

manner the affinity of a ligand towards a receptor binding site can be determined. Receptor 

efficacy on the other hand is determined by functional assays. [
35

S]GTPSγS assays capture 

direct activation of G proteins in closest proximity to the receptor, but this method is 

particularly amenable for Gαi-coupled receptors and not in living cells (Milligan, 2003). Most 

current cell-based assays are second messenger assays for cAMP and IP3 (or IP1) or calcium, 

capturing specific events of Gαs-, Gαi- and Gαq-dependent pathways, usually performed as 

endpoint assays including cell lysis. Very popular is the detection of intracellular calcium 

release, which can be recorded in real time, using calcium
 
sensitive fluorescence dyes. Mainly 

signaling by Gαq is captured this way but in some cases also other pathways namely Gαi are 

linked to mobilization of intracellular calcium. Furthermore, success was achieved designing 

promiscuous G proteins, able to funnel Gαs- or Gαi-coupled receptors to Gαq and thus getting 

access to their signaling by detection of calcium release (Conklin, et al., 1993, Kostenis, et al., 

2005b, Heilker, et al., 2009). 

The lack of a specific second messenger complicates the measurement of Gα12/13-dependent 

signaling. RhoA activation by RhoA-GTP immunoblot detection is practiced and also direct 

detection of Gα12/13 activation by immunoprecipitation (IP) is possible, but these techniques 

are less suited for pharmacological studies. In high content screen (HCS) approaches (see 

below) fluorescent biosensors for activated RhoA are available and cellular translocation of 

RhoGEF can be observed by green fluorescence protein (GFP) tagged p115-Rho-GEF 

(Meyer, et al., 2008, Siehler, 2009). 

Direct activation of far downstream effectors is detectable by phosphorylation assays as 

performed for MAP kinases and reporter gene assays are also used for various pathways, 

where certain signaling events trigger expression of a cotransfected luciferase reporter gene 

(Liu and Wu, 2004). Microscopy techniques, using colors or fluorescent labels are mainstay 

for internalization and trafficking studies (Hein, et al., 1997, Whistler, et al., 2002). 

Other approaches to detect receptor and signaling behavior are intermolecular fluorescence 

resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) 

techniques for detection of interplay between signaling cascade components like interactions 

between G protein subunits and receptors or beneath each other as well as for other interacting 

molecules like β-arrestins. Intramolecular FRET at receptor molecules was also shown for 
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muscarinic receptors gaining access to real time receptor activation studies (Hoffmann, et al., 

2005, Marullo and Bouvier, 2007). 

All these techniques provide valuable information and contribute to the present knowledge 

about GPCRs and their comprehensive behavioral repertoire and impact in complex signaling 

events. Indispensable as these techniques are, they usually require manipulations or molecular 

engineering of cells, such as overexpression of the target GPCRs, loading of dyes or 

fluorescent molecules, cotransfection with promiscuous G proteins or tagged signal cascade 

components. Due to their invasive nature - manipulations may alter the cellular physiology - 

the risk of causing artificial results may have to be taken into account (Lee, et al., 2008, 

Kenakin, T. P., 2009). 

Recent approaches to get access to complex receptor functions and signaling properties are on 

the one hand high content screens (HCS) and on the other hand label-free technologies. HCS 

deals also with invasive techniques and represents a combination of high resolution 

fluorescence microscopy with automated image analysis in a microtiterplate format. By using 

diverse fluorescent labels many GPCR functions including ligand binding, internalization, 

second messenger generation and downstream signaling events are detectable, some of them 

in real time (Heilker, et al., 2009). Label-free cell based assays on the other hand provide 

access to receptor efficacy in a non-invasive and holistic manner by impedance-based or 

optical-based biosensors (Heilker, et al., 2009, Kenakin, T. P., 2009, Rocheville and Jerman, 

2009). 

 

1.4 Label-free methods 

In contrast to the invasive techniques mentioned above, during the last years label-free assay 

platforms emerged which allow detection of functional receptor activity and properties in 

living cells, in real time and without interventions in the investigated cells, and a single 

detection system is capable to capture various responses of GPCRs that couple to different 

pathways.  

At time label-free detection of GPCR-mediated cellular responses are possible with three 

different methods: optical-based biosensors, impedance-based biosensors and acidification-

based microphysiometry. The latter detects changes in the extracellular acidification rate 

(ECAR) as a reflection of GPCR mediated Na
+
/H

+
 exchange (NHE) (McConnell, et al., 1992, 

Kramarenko, et al., 2009). Whereas acidification-based systems so far do not have found 
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broad application in GPCR research, optical- and impedance-based systems are apparently 

widely employed in the pharmaceutical industry (Peters, et al., 2009, Scott and Peters, 2010). 

Impedance-based instruments utilize interdigitated electrodes embedded within each well of a 

microtiter plate. Cells plated on these electrodes resist the flow of a small, applied current. 

Even subtile changes in cell shape, adhesion and cell-cell interaction alters impedance. 

GPCRs induce those cellular changes through different signaling pathways and in this way 

changes in impedances can be used as efficacy readout (Heilker, et al., 2009, Scott and Peters, 

2010). 

Optical-based instruments detect and quantify the index of refraction near the surface of a 

microtiter plate, which therefore contains an optical grating surface, serving as biosensor, in 

each well. Cells are cultivated directly on the biosensor and GPCR-induced cellular changes 

lead to movement of cellular matters, herein referred to as dynamic mass redistributions 

(DMR). DMR in turn might alter optical density near the surface and is detectable this way 

(Fang and Ferrie, 2007, Lee, et al., 2008, Scott and Peters, 2010). This technology was 

originally developed for biochemical binding assays and subsequently shown to be capable of 

detecting GPCR-induced mass redistribution in cells. 

 

1.4.1 Label-free dynamic mass redistribution technology 

The Corning
®
 Epic

®
 System used in the present study represents an optical-based instrument 

for cell based label-free detection of GPCR-mediated responses by DMR measurements. 

Ligand-induced activation of a receptor might lead to a plethora of cellular events and 

responses including movement and rearrangement of signaling cascade components, dynamic 

interaction with regulatory proteins (e.g. β-arrestins and GRKs), internalization, cytoskeleton 

rearrangements and changes in cell shape. All these (intra-) cellular movements may 

contribute to dynamic mass redistribution, ultimately leading to changes in optical density, 

which in turn is detected by the biosensor.  

For experiments within the scope of this thesis, a beta version of the Corning
®
 Epic

®
 System 

was used, consisting of a temperature control unit, an optical detection unit, an on-board 

robotic liquid handling device and an affiliated incubator. For measurement of DMR cells 

were grown on a 384-well Epic
®
 microplate which contains a resonant waveguide grating 

biosensor in the bottom of each well. 

Functional principle (see also Fig. 1): the microplate underside is illuminated with polarized 

broadband light centered at 830 nm, and light of a given wavelength is guided to travel 

parallel through the bottom of each microwell. The electromagnetic field of the light extends 
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into the adjacent cells, and depending on the optical density in this area, the light loses 

energy, is reflected and wavelength is measured. In response to cell function-affecting 

interventions (e.g. ligand-induced G-protein signaling) cellular components are relocated, 

leading to changes of local index of refraction, which in turn results in a shift of the reflected 

wavelength. The magnitude of wavelength shift is proportional to the amount of DMR. 

Increase of mass contributes positively and decrease negatively to the overall response. For 

the Epic system penetration depth is 150 nm i.e. DMR that takes place within this penetration 

depth can be detected. 
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light

wavelength
shift [pm]

change of optical densitycell layer
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Figure 1: Sketch of dynamic mass redistribution (DMR) measurement. Activation of the four 

major G protein dependent pathways leads to modulation of cell function accompanied by relocation 

of cellular constituents and ultimately to changes of optical density which is detected by the induced 

wavelength shift. Second messenger generation allows detection of Gαi, Gαs and Gq signaling by 

conventional assays via detection of cAMP and IP1 generation, whereas for Gα12/13 signaling (?) a 

conventional second messenger assay is not known (figure adapted from Schröder et.al. (2010)). 

 

DMR technology is of interest for and used by pharmaceutical companies in drug screening 

approaches including high throughput screening (HTS), but it might provide more than a 

sensitive, label-free readout for various pathways. DMR measurements enable monitoring of 

GPCR-mediated cellular responses in real time, resulting in a holistic readout that may 

display the integrated efficacy of complex signaling behavior. This might also be of high 

value for basic GPCR research as it provides access to complex and intertwined cellular 
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responses (Fang, 2007, Fang and Ferrie, 2007, Lee, et al., 2008, Schröder, et al., 2009, 

Schröder, et al., 2010). 

 

 

1.5 Signaling pathway modulators 

G protein coupling specificity of GPCRs can be investigated by the use of specific toxins and 

other pathway-affecting substances.  

 

Pertussis toxin (PTX) 

This toxin is a hexameric protein derived from the bacterium Bordetella pertussis and was 

found to irreversibly ADP-ribosylate Gαi/o and Gαt proteins (Kaslow, et al., 1987). As a result 

Gαi/o proteins remain locked in their inactive GDP-bound state, unable to be activated and to 

inhibit adenylyl cyclase activity. Gαt (transducin) is involved in the visual process and not 

relevant for the topics explored herein. 

 

Cholera toxin (CTX) 

The pentameric CTX protein is derived from Vibrio cholerae and irreversibly ADP-

ribosylates the Gαs subunit of heterotrimeric G proteins, resulting in inhibition of GTPase 

activity (Gill and Meren, 1978). In contrast to the action of PTX does CTX lead to a 

permanent activation of the corresponding G protein. This results in a durable activation of 

adenylyl cyclase accompanied by increased cAMP levels. Since for Gαs proteins no selective 

inhibitor is known to date, CTX is used for investigation of the Gαs pathway: prestimulation 

of adenyly cyclase and the accompanied sustained cAMP increase causes that further Gαs 

activation is no more detectable and therefore masked. Due to its stimulatory character 

investigations with CTX have to be considered with care, because the sustained cAMP level 

elevation is likely to alter the cell’s responsiveness and receptor functions. 

 

Forskolin 

Direct activation of adenylyl cyclase is mediated by forskolin (de Souza, et al., 1983) and 

therefore used in inhibitory cAMP second messenger assays. It can also be used for 

investigations at the Gαs pathway through its masking effect by prestimulation, similar to 

CTX. 
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YM-254890 

The cyclic peptide YM-254890 is producd by Chromobabacterium sp. and found as potent 

and selective inhibitor for the Gαq/11 pathway (Takasaki, et al., 2004). The suggested point of 

action is at the receptor Gαq/11 interaction or the subsequent guanine nucleotide exchange step 

(Nishimura, et al., 2010).  

 

Amuminiumfluoride (AlF4
-
)  

AlF4
-
 ions, herein referred to as AlF, are capable to interact with G proteins of all coupling 

classes resulting in a pan-activation (Bigay, et al., 1987). This effect may be useful in 

connection with the issue of G-protein dependence of signaling events. 

 

Up to date, no inhibitor for Gα12/13 proteins is known, thus identification of Gα12/13 proteins as 

trigger of cellular response has to be explored by other methods including dominant negative 

G proteins, siRNA or approaches using antibodies against these proteins. 

 

1.6 Eicosanoids, prostanoids and prostaglandins 

Eicosanoids are generated from twenty carbon essential fatty acids and represent signaling 

molecules that exert complex control over many body systems. Prostanoids represent a 

subclass of eicosanoids and are classified according to their precursor dihomo-γ-linolenic acid 

(DHGLA) (20:3(n-6)) as 1-series, arachidonic acid (AA) (20:4(n-6)) as 2-series and 

eicosapentaenoic acid (EPA) (20:5(n-3)) as 3-series of prostanoids. The 1-series and the 3-

series are predominantly described as anti-inflammatory, whereas a huge number of 

pathophysiological processes are correlated with increased amounts of the 2-series 

eicosanoids (Bell, et al., 1994, Smyth, et al., 2009). 

Arachidonic acid is produced from membrane phospholipids by the action of 

phospholipase A2 (PLA2) and can be converted into different eicosanoid subfamilies. 

Enzymatical conversion by cyclooxygenases (COX) leads to prostanoids, with lipoxygenases 

(LOX) to leukotriens and lipoxins and with cytochrome P450 to hydroxyeicosatetraenoic 

acids (HETEs). COX-1 and COX-2 catalyzed oxidation of AA leads to prostaglandin (PG) G2 

(PGG2), which is immediately reduced to PGH2, that in turn serves as a substrate for the 

prostanoid synthase enzymes responsible for the generation of five principle bioactive 

prostanoids of the 2-series: prostaglandin D2 (PGD2), prostaglandin E2 (PGE2), prostaglandin 

F2α (PGF2α), prostacyclin I2 (PGI2) and thromboxane A2 (TXA2) (Fig. 2). In addition a host 
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of further converted metabolites with biological activity are detectable (Bell, et al., 1994, 

Levin, et al., 2002, Hata and Breyer, 2004, Smyth, et al., 2009).  

 

 

 

 

Fig 2: Prostanoid biosynthesis  

Archaidonic acid and dihomo-γ-linolenic acid are converted by cyclooxygenase 1 and 2 (COX-1/2) to 

prostaglandin (PG) H2 (PGH2) and H1 (PGH1) respectively, the common precursor of four principal 

prostaglandins and one thromboxane (TX). Specific synthases including PGD synthase (PGDS) and 

PGE synthase (PGES) catalyze the formation of prostanoids, which in turn interact with the 

corresponding receptors as D-prostanoid receptor (DP1), chemo attractant-receptor homologous 

molecule expressed on T-helper type 2 cells (CRTH2), E-prostanoid receptor (EP), I-prostanoid 

receptor (IP), F-prostanoid receptor (FP) and thromboxane receptor (TP), or other effectors. 

 

Prostanoids are ubiquitously produced and elicit a diverse set of pharmacological effects in 

modulating physiological systems like the CNS, cardiovascular, gastrointestinal, 

genitourinary, endocrine, respiratory and immune systems. A broad array of diseases is 

correlated to prostaglandin synthesis like inflammation and pain, hypertension, cardiovascular 

diseases and cancer. Generally 2-series prostanoids are considered to be potent pro-

inflammatory mediators, indicated by the great market of pharmacological therapeutics that 

block prostaglandin biosyntheses like COX inhibitors. However, anti-inflammatory effects 
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were also observed, indicating a complex interaction of mediators, and effectors. Conversion 

of DHGLA by COX-1/2 generates PGH1, which is converted to the 1-series of prostaglandins 

(Fig. 2). Further metabolites like PGE1 and PGA1 are mainly referred to as anti-inflammatory, 

and moreover no leukotriens are generated by this pathway (Zurier and Quagliata, 1971, 

Kunkel, et al., 1979, Zurier, 1982, Rossi, et al., 2000, Levin, et al., 2002, Hata and Breyer, 

2004, Mandal, et al., 2005, Smyth, et al., 2009). This is reflected in nutrition 

recommendations for diets enriched with ω-3 fatty acids and γ-linolenic (GLA) acid, which, 

among other effects, are supposed to lead to increased levels of DHGLA resulting in 

formation of anti-inflammatory mediators (Chilton, et al., 2008). 

 

1.7 Prostanoid receptors 

Mediators of physiological prostanoid effects are G protein-coupled prostanoid receptors. To 

date nine receptors are known, which all belong to the class of rhodopsin like receptors: four 

E-prostanoid receptors (EP1-EP4), the F-prostanoid receptor (FP), the I-prostanoid receptor 

(IP), the thromboxane receptor (TP) and the D-prostanoid receptors 1 and 2 (DP1 and 

DP2).DP2 is also referred to as chemoattractant receptor homologous molecule expressed on 

T-helper type 2 (Th2) cells (CRTH2) (Hata and Breyer, 2004).  

 

1.7.1 Chemoattractant receptor homologous molecule expressed on T-helper type 2 cells 

PGD2 is the major agonist of two pharmacologically distinct G protein-coupled receptors: The 

D-prostanoid 1 (DP1) receptor (Boie, et al., 1995) and CRTH2, representing the most recently 

discovered prostanoid receptor. CRTH2 was initially identified as a Th2 cell-specific surface 

receptor and subsequently demonstrated to bind PGD2 with approximately equal affinity in a 

nanomolar range compared to that observed for the DP1 receptor (Nagata, et al., 1999a, 

Nagata, et al., 1999b, Hirai, et al., 2001). Phylogenetic studies revealed that CRTH2 shares 

only little similarity to the other known prostanoid receptors and is more related to 

chemoattractant receptors like the leukotrien receptors (BLTR and CysLTR), anaphylatoxin 

C3a and C5a receptors and N-formyl peptide receptors (FPR) (Nagata, et al., 1999a, Hata and 

Breyer, 2004). CRTH2 is expressed in various human tissues whereas significant levels of 

mRNA were detected in blood leucocytes/lymphocytes such as Th2 cells (but not in Th1 

cells), eosinophils and basophils, as well as in brain, heart, stomach and other tissues 

(Marchese, et al., 1999, Nagata, et al., 1999b). 
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Activation of CRTH2 leads to inhibition of cAMP via Gαi proteins, but signaling via Gβγ 

protein subunits has also been reported and results in intracellular calcium mobilization in a 

variety of cell types like Th2 cells and eosinophils (Hirai, et al., 2001, Sawyer, et al., 2002, 

Kostenis and Ulven, 2006). PTX sensitivity was also observed for activation of 

phosphatidylinositol-3-kinase (PI3K), PLC and MAP kinases in eosinophils (Stubbs, et al., 

2002). G protein-independent signaling via β-arrestin 2 was shown (Mathiesen, et al., 2005) 

whereas internalization occurs in a β-arrestin 2-independent manner and the receptor 

molecule is not phosphorylated upon agonist stimulation (Schröder, et al., 2009). The 

C terminus of CRTH2 constrains Gαi signaling, which may compensate for the absence of the 

classical phosphorylation-dependent signal attenuation (Schröder, et al., 2009). Downstream 

signaling of CRTH2 results in PI3K-dependent phosphorylation of AKT, phosphorylation of 

glycogen synthase kinase-3β (GSK-3β) and nuclear translocation of NFAT (Xue, et al., 2007). 

CRTH2 appears to play an import role in inflammation, allergic diseases and asthma and is 

predominantly described as pro-inflammatory. In this context it is worth to mention that the 

Gαs-coupled DP1 receptor is also involved in inflammatory reactions, and in many cases it 

seems to exhibit functions contrary to CRTH2 (Kostenis and Ulven, 2006, Pettipher, 2008). 

Activation of CRTH2 can lead to a plethora of biological effects that include shape change, 

chemotaxis, respiratory burst and degranulation of eosinophils (Gervais, et al., 2001, Hirai, et 

al., 2001, Monneret, et al., 2001, Heinemann, et al., 2003), chemotaxis and histamine release 

by basophils (Hirai, et al., 2001, Yoshimura-Uchiyama, et al., 2004) and chemotaxis, release 

of pro-inflammatory cytokines from Th2 cell and it counteracts apoptosis of Th2 cells (Xue, 

et al., 2005, Xue, et al., 2009). Several studies in mice have shown that CRTH2 antagonists 

can ameliorate allergen-induced cutaneous, pulmonary and upper respiratory inflammation 

(Böhm, et al., 2004, Uller, et al., 2007, Lukacs, et al., 2008, Nomiya, et al., 2008, Shiraishi, et 

al., 2008). In humans sequence variants of the CRTH2 gene are associated with asthma and 

allergic phenotypes (Huang, et al., 2004, Cameron, et al., 2009). Recent data suggest that 

CRTH2 is also expressed on monocytes and macrophages and mediates their migration 

induced by PGD2 and endotoxin (Tajima, et al., 2008, Shirasaki, et al., 2009) and CRTH2 

expression levels are elevated in patients with allergic dermatitis (Yahara, et al., 2010). 

A hallmark of CRTH2 is that it is not only activated by PGD2 but also by other endogenous 

ligands including several PGD2 metabolites and other prostanoids not only from the D-type. 

Endogenous ligands are the PGD2 metabolites 13,14-dihydro-15-keto-PGD2 (DK-PGD2), 

∆
12

-PGD2, 15-deoxy-∆
12,14

-PGD2 (15d-PGD2) and also metabolites with J-rings as PGJ2, ∆
12

-

PGJ2, 15-deoxy-∆
12,14

-PGJ2 (15d-PGJ2) or F-rings as 11β-PGF2α (Hirai, et al., 2001, 
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Monneret, et al., 2002, Sawyer, et al., 2002, Heinemann, et al., 2003, Gazi, et al., 2005, 

Sandig, et al., 2006). Interestingly, also PGs generated independently from PGD synthase 

were found to be active at CRTH2 like PGF2α (Sandig, et al., 2006), 11-dehydro 

Thromboxane B2 (11d-TXB2) (Böhm, et al., 2004) and recently the precursor of the 2-series 

of prostanoids PGH2 (Schuligoi, et al., 2009) (relevant structural formulas are depicted in 

chapter 2.2.3, table 1a,b and chapter 3.4, Fig. 37). 

Being involved in inflammation and allergic diseases, CRTH2 is an attractive therapeutic 

target and a large number of structurally diverse antagonists have meanwhile become 

available from both academic and industrial researchers (Ulven and Kostenis, 2010). 

 

1.7.2 E-prostanoid receptors 

Four different GPCRs are predominantly activated by ligation of E-prostanoids and are 

therefore classified as E-prostanoid (EP) receptors and designated as EP1 through EP4. 

EP2 and EP4 are Gαs-coupled whereas EP4 is additionaly described to activate PI3K, butGαi 

coupling has also been reported in a recent study (Leduc, et al., 2009). EP1 signals via 

calcium increase by an unknown mechanism (Sugimoto and Narumiya, 2007). For EP3 at 

least three isoforms, EP3α, β and γ were found, all predominantly coupling to Gαi proteins. 

However, EP3α and β additionally couple to Gα12 proteins leading to IP3 formation and 

calcium release, whereas EP3γ might also activate Gαs proteins, but in addition IP3 and 

calcium release has been described. EP receptors exhibit different tissue distributions and are 

involved in a host of physiological and pathophysiological processes including ovulation and 

fertilization, bone formation and duodenal secretion, but also inflammation, fever, pain and 

some cancer diseases (Hata and Breyer, 2004, Sugimoto and Narumiya, 2007, Smyth, et al., 

2009). 

PGE2 and PGE1 are described to induce different physiological effects. Whereas PGE2 is 

predominantly associated with pathological effects, for PGE1 mainly anti-inflammatory 

properties are described. PGE1 seems to prefer EP2 and EP4 receptors and is therefore 

associated with cAMP elevation. PGE1 and its synthetic derivative misoprostol are used as 

therapeutics in gynecology and obstetrics, for diabetic kidney disease, erectile dysfunction, 

cutaneous diseases and wound healing (Levin, et al., 2002, Boulvain, et al., 2008, Murota, et 

al., 2008, Eardley, et al., 2010, Wang, et al., 2010). 
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1.8 Aim and scope 

The present study is based on the validation and utilization of the recently developed 

label-free DMR assay technology (Corning
®
 Epic

®
 system) as a novel cell based GPCR 

functional assay system. Up to date, this technique has been predominantly used for high 

throughput screening and pharmacological ligand profiling in pharmaceutical companies and 

at the beginning of this study, validation of this novel technology platform has been 

performed on a rather empirical basis aimed to provide feasibility for drug screening 

approaches.  

 

- The first objective was to explore the usability of DMR technology for GPCR basic 

research, with regard to precise allocation of signaling pathway origins to the captured 

response profiles. Of particular interest in this context was the Gα12/13 pathway, which is not 

accessible by conventional second messenger assays. The pursued strategy was to choose 

GPCRs from the four main coupling classes and to examine their response profiles regarding 

the corresponding pathways by a panel of toxins, inhibitors and pathway affecting agents. For 

comparison, traditional second messenger assays were included. 

 

- A further aim was to explore the sensitivity of DMR technology with regard to detection of 

endogenously expressed receptors, even in primary cells, which are known to display lower 

receptor expression levels as compared with recombinant cell systems. Primary and 

immortalized human keratinocytes were chosen as cellular model system and the known 

cAMP elevating agent PGE1 was selected as stimulus and examined using both the novel 

DMR assay platform as well as traditional cAMP second messenger assays for comparison. 

 

- As DMR technology validation was successful, a ligand screening approach at CRTH2 

stably expressed in HEK293 cells was conducted. Since CRTH2 is activated by a plethora of 

endogenous prostanoid ligands, two main questions arose: (i) do additional prostanoid ligands 

exist with bioactivity on CRTH2 and (ii) do CRTH2 ligands differ regarding their induced 

signaling behavior? If so, this might be detectable by a holistic readout provided by the DMR 

assay system. In order to provide a comprehensive overview, the DMR-supported ligand 

screening at CRTH2 was designed with 2-series prostanoids known to activate CRTH2, as 

well as with the main representatives of the 1-series of PGs, including the corresponding 

biosynthetic precursors. 
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2. Results 

 

2.1 Validation of DMR technology as functional assay for GPCR 

characterization 

The first part of the presented study deals with the exploration and validation of the recently 

developed label-free dynamic mass redistribution (DMR) technology (Epic
®

 system, 

Corning
®

) (chapter 1.4.1), with regard to the origins of GPCR mediated signaling events. This 

was accomplished by utilizing the receptors CRTH2, EP2/EP4, FFA1 and GPR55 as 

representatives of GPCRs linked to G proteins of the four main coupling classes Gαi/0, Gαs, 

Gαq/11 and Gα12/13 respectively. 

 

2.1.1 DMR reflects Gαi-dependent CRTH2 response  

The DMR technology validation study was initiated by examinations of CRTH2, referred to 

as Gαi-coupled, leading to inhibition of cAMP levels, and for some cells also PTX-sensitive 

calcium signaling is described (Hirai, et al., 2001, Sawyer, et al., 2002, Kostenis and Ulven, 

2006) (see also chapter 1.7.1). In addition, signaling via β-arrestin2 in a G protein-

independent manner was also observed (Mathiesen, et al., 2005). Known for its weak 

functional responses compared to other Gαi-coupled receptors (Schröder, et al., 2009), it was 

of interest to determine whether CRTH2-dependent signaling is detectable at all and if so, 

which signaling events are responsible for the detected signals. 

In order to explore this, HEK293 cells stably expressing CRTH2 (CRTH2-HEK) and native 

HEK293 (HEK) cells were seeded onto Epic
®
 biosensor microplates and cultivated for ~24 h 

to reach confluent monolayers. During DMR assay performance, cells were challenged with 

various concentrations of the CRTH2 specific agonist DK-PGD2 (Hirai, et al., 2001, Kostenis 

and Ulven, 2006), and the resulting wavelength shift was detected and recorded as a measure 

of receptor activation over time. The captured responses are depicted in figure 3a,b and 

subsequently they will be referred to as signatures or traces.  

CRTH2-HEK cells responded with robust and concentration-dependent signals to challenging 

with DK-PGD2 (Fig. 3a), whereas native HEK cells were unaffected by this treatment 

(Fig. 3b). In figure 3a the timepoint of agonist addition is denoted by an arrow, indicating 
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that the captured response appeared immediately after compound application. This was 

generally observed for all receptors and the corresponding traces examined in this study. 

The response of DK-PGD2-induced traces in CRTH2-HEK cells exhibited a characteristic 

shape: a rapid increase, reaching a point of maximum response, which was followed by a 

steep decrease. Usually the traces did not touch the base line (zero) but after about 1200 s they 

declined only very slowly and appeared to reach a plateau phase paralleling the x-axis. 
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Figure 3: DMR enables measurement of CRTH2. HEK293 cells stably expressing CRTH2 (a) and 

native HEK293 cells (b) were challenged with the indicated concentrations of the specific CRTH2 

agonist DK-PGD2, and wavelength shift was monitored over time. Shown are representative data 

(mean + SEM) out of six (a) or four (b) independent experiments. (c) The signal of DK-PGD2 in 

stable CRTH2 transfectants was inhibited by pretreatment with 1 µM of the CRTH2 specific 

antagonist TM30089. (d) Concentration effect curves of DMR data were generated by the maximum 

response between 300 and 1200 s. CRTH-mediated decrease of intracellular cAMP is calculated as 

percent inhibition of adenylyl cyclase stimulated with 10 µM forskolin. Calculated molar pEC50 values 

are: DMR: 7.96 ± 0.04, cAMP: 7.85 ± 0.34. Data are mean ± SEM of at least three independent 

experiments, each performed in triplicates. 

 

To further confirm that induced signaling induced by DK-PGD2 was CRTH2-dependent (Fig. 

3a), CRTH2-HEK cells were pretreated for 1 h with 1 µM of the CRTH2 specific antagonist 

TM30089 (Mathiesen, et al., 2005) or assay buffer as a control, both containing equal 

amounts of DMSO, before agonist addition. TM30089 pretreatment led to a total inhibition 
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compared with the signature generated by addition of 100 nM DK-PGD2 to buffer-pretreated 

cells (Fig. 3c). By this it was verified that CRTH2 was responsible for the captured traces. 

Additionally, Schild plots were performed, which are depicted in a later context (chapter 

2.1.5.2 (Fig. 15)). Quantification of the DMR-derived traces for the generation of 

concentration effect curves was performed by gathering the maximum responses in the range 

of 300 and 1200 s (chapter 5.4.8). The results are depicted in figure 3d. Additionally, the 

effect of DK-PGD2 at CRTH2-HEK cells was determined by traditional inhibitory cAMP 

accumulation assays, where accessorily to the indicated agonist concentrations, 10 µM 

forskolin was added (Fig. 3d) in order to stimulate adenylyl cyclase. The comparison of 

concentration effect curves obtained by DMR and cAMP assays revealed that calculated 

molar pEC50 values were very similar (Fig. 3, legend). However, the resulting assay windows 

were quite different. The forskolin induced cAMP level was decreased less than 10%, which 

is generally in agreement with the observation that DK-PGD2 is a partial agonist at CRTH2 

(Hirai, et al., 2001, Kostenis and Ulven, 2006). But obviously, the cAMP assay offered only a 

small assay window in contrast to the DMR measurements, which provided robust signals and 

small sized error bars. 

These results demonstrated that DMR technology enables the detection of CRTH2-dependent 

signaling in a recombinant HEK293 expression system. The signals were regarded as specific 

for CRTH2 because (i) a CRTH2 specific agonist was used (DK-PGD2), (ii) only CRTH2-

HEK and not HEK cells responded to DK-PGD2 and (iii) the obtained signatures were totally 

inhibited in the presence of the CRTH2 specific antagonist TM30089. 
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Figure 4: The CRTH2-mediated DMR trace is triggered by Gαi proteins. The CRTH2-mediated 

DMR response of DK-PGD2 in HEK293 cells stably expressing CRTH2 is blocked by (a) 

pretreatment with 5 ng/ml of pertussis toxin (PTX) but not with (b) 100 ng/ml of cholera toxin (CTX) 

or (c) 300 nM YM25890 (YM). Shown are representative data (mean + SEM) of four to six 

independent experiments. 
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To explore which signaling events are reflected in the cumulative DMR response profile, 

CRTH2-HEK cells were pretreated for 18 h with the Gαi inhibitor pertussis toxin (PTX). 

Moreover, in parallel approaches the cells were pretreated for 2.5 h with the Gαq inhibitor 

YM25890 (YM) or for 18 h with the Gαs
 
activator cholera toxin (CTX) (chapter 1.5). 

Pretreatment with PTX resulted in virtually total inhibition of the response obtained from 

100 nM DK-PGD2. However, neither CTX nor YM pretreatment did affect the CRTH2-

dependent signatures (Fig. 4), excluding an involvement of the Gαs or Gαq pathway in 

receptor signaling. A very weak response remained after PTX pretreatment, when compared 

to antagonist-pretreated cells (Fig. 3c). This slight difference was observed during most 

assays and may be due to non Gαi protein-dependent events. But the difference appeared to be 

too small to be suitable for further exploration. 

These results demonstrated the fact, that Gαi proteins were the upstream post receptor triggers 

for the CRTH2-mediated traces and that additional signaling was not detectable. 

 

2.1.2 DMR captures Gαs response of endogenous EP2/EP4 receptors 

First of all, Gαs-mediated signaling is characterized by its property to increase the intracellular 

cAMP level. For this reason, the suitability of DMR technology to detect this signaling event 

was explored in HEK cells challenged with prostaglandin E1 (PGE1) (Fig. 5a), which was 

described as cAMP elevating agent acting via endogenous E-prostanoid receptors (Levin, et 

al., 2002). 
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Figure 5: DMR technology captures PGE1 induced response in native HEK cells. (a) HEK293 

cells were challenged with various concentrations of PGE1, and DMR was detected. Shown are 

representative data (mean + SEM) of four independent experiments. (b) DMR data were calculated by 

the area under the curve (AUC) between 0 and 3600 s, and concentration effect curves are 

superimposable to those derived from cAMP accumulation assays. Calculated molar pEC50 values are: 

DMR: 8.11 ± 0.07, cAMP: 8.11 ± 0.12. Data are means and SEM of at least three independent 

experiments, each performed in triplicates. 
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The monitored signatures were concentration-dependent and their shape was obviously 

different from those obtained from DK-PGD2 at CRTH2-HEK cells (chapter 2.1.1, Fig. 3a). 

In contrast to the latter, the traces exhibited a much slower increase and aspired towards a 

stable maximum response. At some concentrations, an initial negative response was observed, 

which might also be a characteristic feature of a defined cellular process, however these initial 

negative DMR responses were not explored any further since a clear concentration effect 

relationship was lacking. Since there was no defined point of maximum response, the 

quantification of these signatures was performed by determination of the area under the curve 

(AUC) (chapter 5.4.8). In parallel, traditional cAMP accumulation assays were carried out, 

verifying that cAMP generation occurs. The resulting concentration effect curves were 

compared with those obtained from DMR measurements (Fig. 5b) and found to be 

superimposable with nearly equal molar pEC50 values. 
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Figure 6: PGE1 response in HEK cells is masked by CTX or forskolin. (a) Forskolin (Fsk) induced 

traces similar to those obtained by PGE1 addition. PGE1 response was invisible after (b) pretreatment 

with 100 ng/ml cholera toxin (CTX) or 10 µM forskolin, but not with (c) 5 ng/ml pertussis toxin 

(PTX) or (d) 300 nM YM254890 (YM). Shown are representative data (mean + SEM) of three to four 

independent experiments, each performed in triplicates. 
 

When the cellular cAMP concentration was increased by addition of forskolin (Fsk) (Fig. 5a), 

which directly activates the adenylyl cyclase, a signature, very similar to the PGE1 signal was 

recorded (Fig. 6a). Pretreatment of HEK cells with either forskolin (1.5 h) or CTX (18 h) 



Results 

 

22 

 

inhibited the PGE1 signals as shown in figure 5b, whereas the PGE1-induced traces were not 

affected by pretreatment with PTX or YM (Fig. 5c,d), although recently for EP4 also Gαi 

signaling was described. In conclusion, it can be stated that the optical traces, generated by 

PGE1 in HEK293 cells, were caused by Gαs protein activation.  

The use of PGE1 as an agonist suggested EP2 and EP4 receptors as cellular targets for the 

captured response profiles. To further corroborate this assumption, HEK cells were pretreated 

with the EP2 and EP4 receptor antagonists AH6809 and L161,982, respectively. As 

demonstrated in figure 7, only a combination of the antagonists was suitable to block the 

signals (Fig. 7a), whereas each compound alone was hardly effective (Fig. 7b). This indicates 

that both receptors are expressed in HEK cells. While L161,982 is a specific EP4 receptor 

antagonist, the EP2 receptor antagonist AH6809 additionally acts at EP1 and EP3 receptors. 

Unfortunately, for these studies no antagonist with exclusive EP2 receptor-specificity was 

available. However, EP1 might be excluded as target involved in the DMR-captured 

responses, since signaling via calcium release is described for this receptor and no cAMP 

elevating properties are known (Sugimoto and Narumiya, 2007). EP3 on the other hand was 

predominantly referred to as Gαi coupled, although, for some EP3 isoforms signaling via Gαs 

might occur in addition (Sugimoto and Narumiya, 2007). However, additional Gαi signaling 

due to EP3 might be excluded herein, since the signatures were not sensitive towards PTX 

and the fact that DMR measurements would have detected simultaneous Gαi and Gαs 

signaling (chapter 2.2.3, Fig. 23 and chapter 2.2.4, Fig. 25). This indicates that EP3 is not 

involved in PGE1-induced signaling. Thus, PGE1-induced signaling in HEK cells is suggested 

as exclusively mediated by EP2 and EP4. 
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Figure 7: PGE1 activates EP2 and EP4 receptors in HEK293 cells. The signal of 30 nM PGE1 is 

inhibited by a combination of the EP2 and EP4 receptor antagonists AH6809 and L161,982 

respectively (10 µM each) (a) but not when these antagonists are applied alone (b). Shown are 

representative data (mean + SEM) of four (a) or three (b) independent experiments, each preformed in 

triplicates. 
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2.1.3 DMR unveiles additional Gαi signaling for the Gαq-linked FFA1 receptor 

The free fatty acid receptor 1 (FFA1, GPR40), previously classified as Gq/11 sensitive (Brisco, 

2003; Itho, 2003; Stoddart, 2007) was chosen to explore the detection of Gαq coupling events.  

HEK293-Flp-In
TM 

T-Rex
TM

 cells stably transfected with FFA1 (FFA1-HEK) were induced to 

express FFA1 by pretreatment with doxycyclin. As a control, cells were not induced. 

Receptor activation was stimulated by application of the small molecule agonist TUG424 

(Christiansen, et al., 2008), resulting in strong DMR responses (Fig. 8a). FFA1 specificity of 

the captured traces was verified by the absence of signaling in FFA1-HEK cells not treated 

with doxycyclin and therefore not expressing the receptor (Fig. 8b). DMR traces mediated by 

FFA1 were concentration-dependent and different in shape from those obtained from the Gαi-

coupled CRTH2 (Fig. 3a) or the Gαs-coupled EP2/EP4 receptors (Fig. 5a). The captured 

signatures were characterized by a steep initial increase, comparable to those obtained from 

Gαi signaling generated by CRTH2 (Fig. 3a), but in contrast to the latter, the DMR response 

remained at an elevated level and proceeded further nearly in parallel to the x-axis.  
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Figure 8: DMR technology captures TUG424 induced response of FFA1. (a) FFA1-HEK induced 

with doxycycline to express FFA1 responded with concentration-dependent DMR traces when treated 

with various concentrations of TUG424. (b) Non-induced FFA1-HEK cells did not respond to 

TUG424. Shown are representative data (mean + SEM) of at least three independent experiments. 

 

To test the Gαq origin of the signatures, FFA1-HEK cells were pretreated with the Gαq 

specific inhibitor YM and DMR was monitored. Unlike what would be expected for a Gαq 

coupled receptor, the FFA1-mediated DMR response was only partly sensitive towards the 

inhibitory effect of YM (Fig. 9a, compare black and blue trace), but in addition, partial 

sensitivity towards PTX was also found (Fig. 9a, compare black and grey trace). Only the 

combination of YM and PTX was sufficient and required for complete erasure of the FFA1 

response (Fig. 9a, compare black and red trace).  
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Due to the partial inhibition by YM, it was of interest to examine the ability of YM to inhibit 

Gαq-dependent signaling in HEK293 cells in another assay. To address this issue, IP1 

accumulation assays were performed as shown in figure 9b. Stimulation of FFA1-HEK by 

TUG424 resulted in an increase of cellular IP1 concentrations in comparison to the negative 

control (Fig. 9b, first and third bar). Pretreatment with 300 nM YM (Fig. 9b, second and 

fourth bar) led to a considerable decrease of the cellular IP1 level compared to the negative 

control, irrespective of additionally challenged with TUG424 or not. This means that the 

endogenous IP1 generation, conceivable by constitutive Gαq signaling events, as well as the 

TUG424-induced Gαq activation, were lowered by YM to the same level, indicating sufficient 

inhibition of Gαq proteins by YM.  
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Figure 9: FFA1 is linked to Gαq and Gαi proteins. (a) The DMR signature obtained with 3 µM of 

the agonist TUG424 was partly sensitive to pretreatment of FFA1-HEK cells with 300 nM YM254890 

(YM) or 5 ng/ml of pertussis toxin (PTX) but completely inhibited in the presence of a combination of 

PTX and YM. Shown are representative data (mean + SEM) of at least six independent experiments. 

(b) FFA1 mediated production of the second messenger IP1 was totally blunted by 300 nM YM. (c) 

FFA1 activation of the Gαi signaling pathway was statistically significant in cAMP inhibition assays. 

FFA1-HEK induced to express FFA1 (FFA1) or HEK control cells were stimulated with 5 µM 

forskolin and cAMP inhibition was quantified by a cAMP accumulation assay. (b and c) Shown are 

mean values and SEM of three to six independent experiments. (c) For statistical analysis, individual 

concentrations were compared by two-way analysis of variance (ANOVA) with Bonferroni's 

correction for multiple comparisons; ** p < 0.01, *** p < 0.001. (b and c) Data were kindly provided 

by Johannes Schmidt, Institute of Pharmaceutical Biology, University of Bonn, Germany. 

 

Since PTX sensitivity of the DMR response indicated additional Gαi-dependent signaling, this 

was probed by inhibitory cAMP second messenger assays (Fig. 9c). Although the inhibition 

was less than 5% of forskolin-stimulated adenylyl cyclase, the differences between cells 

expressing FFA1 and control cells were concentration-dependent and significant. These 

results confirm the partial PTX sensitivity observed in the DMR measurements, and 

demonstrate again the superiority of DMR technology for detection of Gαi signaling events.  

Finally, it can be stated that DMR technology, since endowed with the advantages of a 

holistic approach, was not only competent to gather Gαq-dependent responses, moreover it 
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was able to detect Gαq and Gαi effects simultaneously. This results in the discovery of the 

signaling promiscuity of FFA1 towards Gαq and Gαi proteins.  

 

2.1.4 Signaling along the Gα12/13 pathway is captured by DMR measurement 

So far, it was demonstrated that DMR technology is suitable to detect signaling along the Gαi, 

the Gαs and the Gαq pathways. For these pathways second messenger assays are well 

established. But how about the fourth Gα protein family, the Gα12/13 proteins? Until now, no 

specific second messenger is known and therefore, apart from high content screen (HCS) 

approaches and detection of far downstream events like reporter gene assays (chapter 1.3 and 

1.4) (Henstridge, et al., 2009, Henstridge, et al., 2010), no direct assays, which are sufficient 

for pharmacological characterizations, are available. 

The atypical cannabinoid receptor GPR55 was chosen to probe whether DMR technology is 

able to capture signaling along this pathway. GPR55 is the only GPCR known to date with 

exclusive bias towards the Gα12/13 pathway (Ryberg, et al., 2007, Henstridge, et al., 2009, 

Ross, R. A., 2009). AD-HEK293 cells (AD-HEK) and AD-HEK cells stably expressing 

GPR55 (GPR55-AD-HEK) were challenged with L-α-lysophosphatidylinositol (LPI), 

currently the most suitable GPR55 agonist (Henstridge, et al., 2010) (Fig 10). Captured 

response profiles displayed concentration-dependent traces (Fig. 10a,b), whereas AD-HEK 

cells not expressing GPR55, did not show any response (Fig. 10c). 
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Figure 10: DMR measurement captures signaling of GPR55. GPR55-AD-HEK cells (a) or native 

AD-HEK cells (c) were stimulated with the indicated concentrations of L-α-lysophosphatidylinositol 

(LPI) and wavelength shift was detected over time. Shown are representative data (mean + SEM) of at 

least three independent experiments. (b) Concentration effect curve for LPI in GPR55-AD-HEK cells 

resulting from DMR traces of three independent experiments (mean ± SEM). The calculated molar 

pEC50 value is 7.34 ± 0.05. 
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By visual inspection, GPR55-derived traces display some similarity to the mixed Gαq/Gαi 

traces obtained from FFA1. However, pretreatment with YM, PTX or CTX did not lead to 

inhibition of the signals, indicating an origin that is not derived from Gαq, Gαi or Gαs proteins 

(Fig. 11a). To examine whether the captured traces were G protein-dependent at all, the pan 

G protein activator aluminium fluoride (AlF4
-
 herein referred to as AlF) was used. Figure 11b 

showns, that the GPR55-mediated response was completely silenced by pretreatment with 

300 µM AlF. For control purposes, the effect of AlF addition itself was measured, leading to 

an obvious response as depicted in figure 11c. The principle of silencing by AlF depends on 

activation of all Gα proteins (Bigay, et al., 1987). This causes that additional activation via Gα 

proteins is no longer detectable and therefore masked, similar to the action of CTX masking 

Gαs signaling. Critically, the inhibition of GPR55-mediated response by AlF can not be 

explained by a general blunting of cell responsiveness in DMR assays, because pretreatment 

with AlF did not prevent additional G protein-independent DMR changes to occur in response 

to growth factor containing serum (Fig. 11d). 
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Figure 11: The GPR55 traces are of G protein origin but independent of Gαi, Gαs or Gαq 

proteins. (a) LPI-mediated DMR in GPR55 cells was not blunted by pretreatment with 5 ng/ml 

pertussis toxin (PTX), 100 ng/ml of cholera toxin (CTX) or 300 nM YM254890 (YM), but (b) was 

sensitive to preincubation of cells with 300 µM pan G protein agonist AlF4
-
 (AlF). (c) Treatment of 

cells with AlF caused robust DMR changes on its own. (d) GPR55-HEK cells pretreated for 1.5 h with 

300 µM AlF were still responsive to serum to promote growth factor activation. Shown are 

representative data (mean + SEM) of at least three independent experiments. 
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These results suggest that the GPR55 mediated DMR response was generated by G proteins in 

general, but not by Gαq, Gαi or Gαs proteins. This was additionally examined by second 

messenger assays. Neither an increase of cAMP levels could be observed, nor the inhibition 

of forskolin-stimulated adenylyl cyclase was detectable, and also IP1 accumulation was not 

altered to a significant extent (Fig. 10a,b). Thus, these pathways could be excluded, which 

was a strong hint towards involvement of Gα12/13 proteins.  
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Figure 12: Second messenger levels in GPR55-HEK cells are not affected by LPI. (a) GPR55-

HEK293 cells stimulated with L-α-lysophosphatidylinositol (LPI) displayed neither increased cAMP 

accumulation nor inhibition of forskolin (FSK)-stimulated cAMP production. (b) No relevant IP1 

accumulation was detectable for GPR55-HEK cells stimulated with the indicated concentrations of 

LPI. Cells were stimulated with carbachol (Cch) for control. Data shown are mean values and SEM of 

three to four independent experiments, each performed in triplicates. 

 

To investigate the specificity of GPR55-AD-HEK-mediated signaling in DMR assays, a 

dominant negative form of the Gα13 protein (Gα13dn, Q226L,D294N) was utilized. The 

mutations at the Gα13 protein lead to a combined effect of constitutive activity and a switch 

of selectivity from guanine nucleotides to xanthine nucleotides (Barren and Artemyev, 2007). 

The structural reasons for a dominant negative phenotype are not fully elucidated, but the 

Gα13dn protein is now competent to sequester a respective GPCR without Gβγ binding and 

despite of an empty nucleotide pocket. Since Gα13dn is not able to bind guanine nucleotides 

and since xanthine nucleotides are not available in the cells, the protein is bound tightly to the 

receptor. Thus, by blocking wild type proteins from binding to the activated GPCR, the G 

protein activation cycle is interrupted (Yu and Simon, 1998, Barren and Artemyev, 2007). 

GPR55-AD-HEK cells were transiently transfected by an electroporation method using either 

Gα13dn or empty vector as a control. DMR assays were performed 48 h after transfection and 



Results 

 

28 

 

LPI-induced responses were considerably diminished in GPR55-HEK cells transfected with 

Gα13dn compared to vector transfected cells (Fig. 13a). As a control, carbachol (Cch), an 

agonist of endogenously expressed Gαq- and Gαi-coupled muscarinic receptors, was applied 

to Gα13dn and vector transfected cells and the resulting DMR traces were found virtually 

unaffected (Fig. 13b). Concentration sequences of LPI, applied at both cell samples, 

displayed a concentration-dependent effect with a consistent rank order, whereas the efficacy 

of Gα13dn transfected cells was significantly diminished in comparison with vector 

transfected control cells (Fig. 13c).  

To examine whether the signal reduction may not possibly be caused by different receptor 

surface expression levels, enzyme linked immunosorbent assays (ELISAs) were performed. 

This was carried out in parallel to the DMR assays, using the same transfectants. ELISA data 

demonstrate that the surface expression of GPR55 was not altered by transfection of Gα13dn 

in comparison to vector transfected cells (Fig. 13d).  

These data verified that the LPI-induced signatures in GPR55-AD-HEK cells were triggered 

by activation of Gα12/13 proteins. Thus, the DMR technology represents a method to explore 

the functionality of GPCRs linked to G proteins of all four main coupling classes. 
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Figure 13: The Gα12/13 pathway is captured by DMR measurements. Depicted are DMR responses 

and ELISA data of GPR55-AD-HEK cells cotransfected with a dominant negative form of Gα13 

(Gα13dn, G13Q226L,D294N) or empty pcDNA3.1+ vector as control. (a) DMR response of Gα13dn 

transfectants is substantially diminished compared with vector-transfected cells when treated with 

L-α-lysophosphatidylinositol (LPI) (b) but not when treated with 100 µM carbachol (Cch). Shown are 

representative data (mean + SEM) of five independent experiments. (c) Concentration effect 

relationship of LPI induced DMR responses at the GPR55-AD-HEK transfectants. (d) Parallel ELISA 

assays detected the same surface expressions of GPR55 for Gα13dn and vector transfected cells. Data 

were buffer corrected and normalized. Shown are mean ± SEM of five (c) and three (d) independent 

experiments, each performed in triplicates. For statistical analysis, individual concentrations were 

compared by two-way ANOVA with Bonferroni's correction for multiple comparisons; *** p < 0.001. 
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2.1.5 Exploring DMR technology to interrogate features of agonist and antagonist 

pharmacology 

Activation of the Gαi pathway can be detected by cAMP accumulation assays as mentioned 

above (chapter 1.3 and 2.1.1). However, because of its inhibitory character, the measurement 

of Gαi activation by detection of decreasing cAMP levels is more complicated and artificial 

than the detection of Gαs and Gαq signaling. In addition to the use of 3-isobutyl-1-

methylxanthine (IBMX), that protects cAMP against enzymatic degradation by inhibition of 

the phosphodiesterase activity, the adenylyl cyclase has to be activated by forskolin to enable 

the detection of its inhibition. Thus, the non-invasive DMR technology is supposed to be a 

more sensitive and comfortable method to detect and examine Gαi-dependent signaling 

events. Its practicability was investigated using CRTH2 with regard to (i) detection of full and 

partial agonism, (ii) discrimination of different modes of pharmacological antagonist behavior 

and (iii) comparison of signaling efficacy and receptor expression levels. 

 

2.1.5.1 Examination of full and partial agonism 

The investigations at CRTH2 presented so far were performed utilizing DK-PGD2 that is 

described to be a specific but also a partial agonist at the receptor. In contrast, prostaglandin 

D2 (PGD2), the major agonist of CRTH2, exerts full agonism properties (Hirai, et al., 2001, 

Kostenis and Ulven, 2006). To address the question whether these pharmacological properties 

will be reflected in DMR assays, PGD2 and DK-PGD2 were applied in parallel to CRTH2-

HEK cells in both DMR and cAMP assays. 

When CRTH2-HEK cells were challenged with PGD2, the captured response profiles were 

found very similar to those derived from DK-PGD2 (compare Fig. 12a and Fig. 3a). These 

responses were CRTH2-dependent, since HEK cells not expressing CRTH2 did not display 

any effect, except for occasionally appearing weak signals at 10 µM PGD2. These might be 

attributable to unspecific activation of endogenous receptors by this high PGD2 concentration 

(Fig. 12b). As observed for DK-PGD2 before, pretreatment with PTX blunted the signal of 

PGD2, indicating that also in this case only Gαi signaling was detected (Fig. 12c).  

Comparing the DMR-derived concentration effect curves of PGD2 and DK-PGD2, it is 

noticeable, that the molar pEC50 values of both compounds are nearly equal. But unlike what 

would be expected, the detected efficacies were not considerably different (Fig. 14d). 

However, in cAMP assays, PGD2 led to a decrease of cellular cAMP levels of about 40 %, 

whereas for DK-PGD2 a reduction of less than 10% was observed, reflecting that DK-PGD2 is 
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a partial agonist at CRTH2. These results indicate that DMR technology may be limited in its 

capacity to discriminate between partial and full agonism as pharmacological agonist 

characteristics. 
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Figure 14: Partial agonism at CRTH2 is hardly detectable in DMR assays. DMR response was 

induced by PGD2 in CRTH2-HEK cells (a) but not in native HEK cells (b). (c) The response of 

100 nM PGD2 was inhibited by pretreatment with 50 ng/ml of pertussis toxin (PTX). Shown are 

representative data (mean + SEM) of four (c) or six (a,b) independent experiments. (d) Comparison of 

concentration effect curves of PGD2 and DK-PGD2 derived from DMR and cAMP assays. For DMR 

assays the compared values of PGD2 and DK-PGD2 were obtained from the same measurement and 

were normalized to the respective maximum response of PGD2, which was set to 100%. cAMP values 

were calculated as per cent inhibition of 10 µM forskolin. For DK-PGD2 calculated molar pEC50 

values are: DMR: 7.96 ± 0.04, cAMP: 7.85 ± 0.34, and for PGD2: DMR: 7.97 ± 0.04, cAMP: 8.62 ± 

0.17. Data are mean ± SEM of at least three independent experiments, each performed in triplicates. 

 

2.1.5.2 Discrimination of surmountable and insurmountable antagonists 

Substances with specific antagonistic properties towards receptors are important 

pharmacological tools and crucial for investigations at endogenously expressed receptors in 

both immortalized and primary cells. Since full and partial agonism hardly could be 

discriminated by DMR technology (chapter 2.1.5.1), it was of interest in how far different 

antagonistic behaviors would be reflected. To explore this, two CRTH2 specific antagonists 

with different pharmacological properties were chosen: on the one hand TM30642, described 

as an antagonist with competitive behavior and referred to as surmountable antagonist and on 
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the other hand TM30089, described as an insurmountable antagonist (Mathiesen, et al., 2005). 

CRTH2-HEK cells were pretreated with different concentrations of TM30642 or TM30089 

and incubated for 1 h. Subsequently, cells were challenged with various concentrations of 

PGD2 and wavelength shift was monitored over time (Fig. 15). 
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Figure 15: DMR technology accurately discriminates surmountable and insurmountable 

antagonism. CRTH2-HEK cells were pretreated for 1 h with the indicated antagonists before being 

challenged with PGD2. (a) Increasing concentrations of TM30642 caused a right-ward shift of PGD2 

concentration effect curves, compatible with surmountable antagonism. The calculated pA2 value for 

TM300642 is: 7.50 (± 0.14), slope 0.99 (± 0.11) (b) Increasing concentrations of TM30089 caused 

both, right-ward shift and depressed maximal PGD2 efficacy, compatible with insurmountable 

antagonism. (a,b) Shown are representative data (mean ± SEM) of at least three independent 

experiments, each performed in triplicates. 

 

As depicted in figure 15a it could be observed that increasing concentrations of TM30642 

caused a right-ward shift of the PGD2 concentration effect curves. However, the absolute 

maximum response was not decreased. This means that the effect could be compensated by 

increasing agonist concentrations and represents a competitive antagonist mechanism, which 

is also referred to as surmountable antagonism. The calculated pA2 value for TM300642 is 

7.50 (± 0.14) and the corresponding slope of 0.99 (± 0.10) substantiates a competitive 

mechanism. These results are in accordance with data presented by Mathiesen et al. (2009), 

where for TM30642 in [
35

S]GTPSγS assays (at membranes from CHO cells stably expressing 

CRTH2) the determined pA2 value was 7.72 (± 0.13) with a corresponding slope of 0.89 (± 

0.08). Pretreatment with TM30089 induced an antagonistic effect which differs from the 

observation for TM30642. Increasing antagonist concentrations resulted also in right-wards 

shifts of PGD2 concentration effect curves, but additionally the absolute maximum responses 

were diminished. This indicates an insurmountable mode of action, which is also in 

agreement with previous data (Mathiesen, et al., 2006). These results reveal unequivocally 
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that DMR measurement is competent to characterize and discriminate between these different 

antagonistic properties. 

 

2.1.6 Functional DMR response reflects receptor surface expression 

When different agonistic efficacies at the level of cAMP resulted in nearly similar DMR 

responses (Fig. 14), how would DMR responses reflect different receptor surface expression 

levels? In order to address this question, HEK293 cells were transiently transfected with 

different amounts of a CRTH2 expression plasmid or an empty vector as a control. 

Additionally, stable CRTH2-HEK cells and untransfected HEK293 cells were used. 48 h after 

transfection, DMR assays and ELISAs were performed in parallel. As expected, in ELISAs 

the stable CRTH2-HEK cells provided the strongest signals (Fig. 16a). The receptor surface 

expression of transiently transfected cells were graded according to the applied amounts of 

DNA. Non-transfected HEK cells as well as vector-transfected cells indicated the background 

level. The corresponding DMR responses were found consistent with the rank order of the 

surface expression (Fig. 16b). This demonstrates that surface expression levels are well 

reflected in DMR responses. 
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Figure 16: CRTH2 surface expression is consistent with the corresponding efficacy in DMR 

assays. (a) Detection of CRTH2 surface expression was performed by ELISA at CRTH2-HEK, HEK 

cells and HEK cells transiently transfected with the indicated amounts of CRTH2 expression vector or 

empty pcDNA3.1+ vector. (b) Concentration effect curves obtained from DMR assays which were 

performed in parallel. Shown are representative data (mean and SEM) of at least three independent 

experiments, each performed in triplicates. 
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2.1.7 DMR technology enables signaling analysis in human primary cells 

Receptor behavior can nicely be studied in overexpression systems, utilizing immortalized 

cell lines. However, the artificial character may imply less physiological relevance. The 

possibility of DMR technology to study receptor signaling label-free and in living cells seems 

to be particularly advantageous for examinations in primary cells. Thus, immortalized human 

keratinocytes (HaCaT) and primary human keratinocytes were chosen to investigate whether 

DMR technology is sufficiently sensitive to detect GPCR-mediated signaling in a native 

environment. 
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Figure 17: PGE1 induce Gαs-linked signaling in immortalized (HaCaT) and primary human 

keratinocytes is captured by DMR measurements. Cells were challenged with the indicated 

concentrations of PGE1 and wavelength shift was monitored over time. (a) Representative data (+ 

SEM) of at least four independent experiments. (b) Representative data (+ SEM) of cells from one 

human donor. Cells from five additional donors yielded comparable signatures (data not shown) (c,d) 

DMR signatures of 100 nM PGE1 are masked when cells are pretreated with 250 ng/ml of cholera 

toxin (CTX). (c) Representative data (+ SEM) of at least four independent experiments. (d) One 

representative data set (+ SEM) from one out of six human cell samples. 

 

Primary keratinocytes were obtained from six healthy patients who underwent skin surgery 

(see also 5.3.1). As stimulus, the cAMP elevating agent PGE1 was used, which is referred to 

as effective in topical treatment for cutaneous ulcerations (Zhang, et al., 1994) and known to 

affect cell growth and cytokine production of human keratinocytes (Murota, et al., 2008). 
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Challenged with PGE1, HaCaTs and primary human keratinocytes responded with 

concentration-dependent optical traces (Fig.17a,b) comparable to those already observed in 

PGE1-treated HEK293 cells (Fig. 5). Pathway determination in HaCaTs and primary human 

keratinocytes was performed by pretreatment with CTX, and the resulting inhibition of PGE1-

mediated signaling in both cell lines verified the assumed Gαs origin (Fig. 17c,d). As already 

observed previously in the case of HEK cells (chapter 2.1.2, Fig. 7), PGE1-stimulated 

signaling was mediated by the Gαs-coupled E-prostanoid receptors EP2 and EP4, because the 

responses were inhibited by a combination of the EP2 and EP4 receptor antagonists AH6809 

and L161,982 respectively (Fig. 18a,b), but the signatures were hardly decreased by one of 

the antagonists alone (Fig. 18c,d). 

 

0 1200 2400 3600

-25

0

25

50

75

100

125

150

Control

+ AH6809
+ L161,962

Time (s)

R
e
s
p
o
n
s
e
 (

p
m

)

0 1200 2400 3600

-25

0

25

50

75

100

125

150

Control

+ AH6809

+ L161,982

P
G

E
1
 (

3
0
 n

M
)

Time (s)

R
e
s
p
o
n
s
e
 (

p
m

)

0 1200 2400 3600

-25

0

25

50

75

100

125

150

+ AK6809
+ L161,982

Control

Time (s)

R
e
sp

o
n
s
e
 (

p
m

)

0 1200 2400 3600

-25

0

25

50

75

100

125

150

Control

+ AH6809

+ L161,982

P
G

E
1
 (

1
0
0
 n

M
)

Time (s)

R
e
s
p
o
n
s
e
 (

p
m

)

a c

b d

HaCaT

Keratinocytes Keratinocytes

HaCaT

 

Figure 18: PGE1 signaling is mediated by the Gαs coupled EP2 and EP4 receptors. 
Depicted are DMR traces in immortalized (HaCaT) and primary human keratinocytes, challenged with 

the indicated concentrations of PGE1.(a,b) PGE1-induced DMR was inhibited by pretreatment with a 

combination of the EP2 and EP4 receptor antagonists AH6809 and L161,982 respectively. Optical 

traces resulted from addition of 30 nM PGE1 (a) or 100 nM PGE1 (b) in the absence and presence of a 

combination of 10 µM AH6809 and 3 µM L161,982. All data are representative data (+ SEM) of at 

least four independent experiments. (c,d) Signatures of PGE1 were hardly inhibited by one of the 

antagonists alone. Shown are representative data (+ SEM) of three independent experiments, each 

performed in triplicates. 
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In both cell lines cAMP assays were performed in parallel to DMR assays, revealing that 

cAMP formation occurred (Fig. 19). Concentration effect curves from HaCaT were found 

slightly left-ward shifted in DMR assays. For primary keratinocytes potencies in the cAMP 

assays were similar compared to those obtained from DMR assays. However, the detection of 

cAMP increase in primary keratinocytes was challenging, which was displayed by the small 

assay window and the large error bars (Fig. 19b). In case of the primary cells used in these 

assays, it can be concluded that DMR measurements are superior with respect to the quality of 

the signal window and seem highly superior to detect PGE1-induced signaling in both cell 

lines. 
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Figure 19: PGE1-dependent cAMP increases are virtually superimposable to DMR signals. 
DMR assays were compared with traditional endpoint second messenger cAMP assays. DMR data 

were generated by determination of the area under the curve (AUC) between 0 and 3600 s. Calculated 

molar pEC50 values are: (a) Immortalized keratinocytes (HaCaT): DMR: 8.27 ± 0.09, cAMP: 

7.78 ± 0.09, and (b) primary keratinocytes: DMR: 7.70 ± 0.06, cAMP: 7,60 ± 0.12. All data are means 

± SEM of at least four independent experiments, each performed in triplicates. 
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2.2 Utilizing DMR technology for eicosanoid screening at CRTH2 

CRTH2, described as the second PGD2 receptor and therefore also referred to as DP2 receptor 

(chapter 1.7.1.1), is not exclusively activated by PGD2, but characterized by its 

responsiveness to a rather broad spectrum of endogenous ligands, which belong to the 2-series 

of prostanoids (Kostenis and Ulven, 2006, Schuligoi, et al., 2009).  

For this reason, it was of interest to determine whether CRTH2 ligands may differ regarding 

their induced signaling behavior at CRTH2 and if there are additional, still unknown ligands.  

Most of the 2-series prostanoids had been tested at CRTH2, whereas the 1-series had not yet 

been examined. Due to the close structural relationship of the 1-series and 2-series of 

prostanoids (chapter 1.6) and the non-selectivity of CRTH2 towards some members of the 

2-series, the 1-series prostanoids may not generally be excluded as ligands for CRTH2. 

Examination of 1-series prostanoids at the pro-inflammatory CRTH2 receptor appears also 

obligatory, given the nutrition recommendations with regard to diets enriched with ω-3 fatty 

acids and γ-linolenic acid, resulting in increased levels of dihomo-γ-linolenic acid (DHGLA), 

the biosynthetic precursor of all 1-series prostanoids (Chilton, et al., 2008).  

 

2.2.1 DMR measurements of 2-series prostanoids at CRTH2 

In order to address the issues mentioned above, ligand screening was performed using the 

known CRTH2 ligands of the 2-series of prostanoids and in addition the main representatives 

of the 1-series, including arachidonic acid (AA) and prostaglandin H2 (PGH2), the precursors 

of the 2-series as well as DHGLA and prostaglandin H1 (PGH1), which represent the 

precursors of the 1-series of prostaglandins (PGs) (chapter 1.6, Fig. 1).  

The screening approach was realized utilizing the DMR assay technology (Fig. 20-24), which 

was previously validated for functional GPCR analysis (chapter 2.1). Two of the prostanoid 

derivates, PGD2 and DK-PGD2, have been examined already during the validation process 

(chapter 2.1.1 and 2.1.5). The used eicosanoid compounds, structural formulas and the 

corresponding molar pEC50 values are listed in table 1. 

In DMR measurements, various concentrations of these substances were applied to both 

CRTH2-HEK and HEK cells. Resulting DMR traces of prostaglandins with D- and F-rings 

are depicted in figure 20. The data of prostaglandins with J-rings and the one known 

thromboxane, being active at CRTH2, are presented in figure 21. 
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Figure 20: 2-series prostanoids induce Gαi-dependent responses in CRTH2-HEK. 
(a-l) DMR measurements were performed in HEK293 cells stably expressing CRTH2 (CRTH2-HEK) 

(left and right panels) and native HEK293 cells (HEK) (middle panels). (Left and middle panels) 

CRTH2-HEK and HEK cells were challenged with various concentrations of (a,b) 15-deoxy-∆
12,14

-

prostaglandin D2 (15d-PGD2), (d,e) ∆
12

-prostaglandin D2 (∆
12

-PGD2), (g,h) prostaglandin F2α 

(PGF2α), and (j,k) 11β-prostaglandin F2α (11β-PGF2α), and wavelength shift was monitored over 

time. (Right panels) Pathway determination in CRTH2-HEK cells was performed by pretreatment with 

50 ng/ml of pertussis toxin (PTX) and subsequent DMR measurement of the indicated compounds and 

concentrations. For control, PTX-untreated cells were employed. Shown are representative data (mean 

+ SEM) of three to four independent experiments, each performed in triplicates. 
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Figure 21: 2-series prostanoids induce Gαi-dependent responses in CRTH2-HEK. 

(a-l) DMR measurements were performed in HEK293 cells stably expressing CRTH2 (CRTH2-HEK) 

(left and right panels) and native HEK293 cells (HEK) (middle panels). (Left and middle panels) 

CRTH2-HEK and HEK cells were challenged with various concentrations of (a,b) prostaglandin J2 

(PGJ2), (d,e) 15-deoxy-∆
12,14

-prostaglandin J2 (15d-PGJ2), (g,h) ∆
12

-prostaglandin J2 (∆
12

-PGJ2) and 

(j,k) 11-dehydro-thromboxane B2 (11d-TXB2), and wavelength shift was monitored over time. (Right 

panels) Pathway determination in CRTH2-HEK cells was performed by pretreatment with 50 ng/ml of 

pertussis toxin (PTX) and subsequent DMR measurement of the indicated compounds and 

concentrations. For control, PTX-untreated cells were employed. Shown are representative data (mean 

+ SEM) of three to four independent experiments, each performed in triplicates. 
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The known CRTH2 agonists 15-deoxy-∆
12,14

-prostaglandin D2 (15d-PGD2), 

∆
12

-prostaglandin D2 (∆
12

-PGD2), prostaglandin F2α (PGF2α), 11β-prostaglandin F2α 

(11β-PGF2α), prostaglandin J2 (PGJ2), 15-deoxy-∆
12,14

-prostaglandin J2 (15d-PGJ2), 

∆
12

-prostaglandin J2 (∆
12

-PGJ2) and 11-dehydro-thromboxane B2 (11d-TXB2) triggered robust 

concentration-dependent signatures and the traces were found to be of similar shape as 

compared to those obtained with DK-PGD2 and PGD2 (compare left panels of Fig. 20 and 

Fig. 21 with chapter, 2.1.1, Fig. 3a and chapter, 2.1.5.1, Fig. 14a). The detected responses 

were CRTH2-dependent, since compound application in HEK cells generally did not induce 

any response, except of the occasional appearance of weak signals at the highest compound 

concentration of 10 µM. Only the addition of 10 µM PGF2α led to a small but reproducible 

signal in HEK cells and might result from activation of targets endogenously expressed in 

HEK cells. The typical shape of agonist induced signatures at CRTH2-HEK cells led to the 

assumption that in all cases Gαi coupling occurs, as previously demonstrated for DK-PGD2 

and PGD2 (chapter 2.1.1, Fig. 4 and chapter 2.1.5.1, Fig. 14c). To prove this, CRTH2-HEK 

cells were pretreated with 50 ng/ml of PTX as depicted in the right panels of figure 20 and 

figure 21. In all cases the agonist induced signals were fully abrogated by pretreatment with 

PTX. 

Summarized, the investigated known CRTH2 ligands were all active at CRTH2 in DMR 

assays, but no other signaling events, which may occur additionally to, or instead of, the 

known Gαi pathway, could be detected. 

 

2.2.2 DMR measurements of 1-series prostanoids at CRTH2 

The results of DMR measurements utilizing the 1-series of prostanoids prostaglandin D1 

(PGD1), prostaglandin A1 (PGA1), prostaglandin E1 (PGE1) and 6-keto-prostaglandin F1α 

(PGF1α) are presented in figure 22. It was found that PGD1 activates CRTH2 (Fig. 22a,b) 

and the resulting signature was completely sensitive towards PTX (Fig. 22c). PGD1 has not 

been reported as CRTH2 agonist to date, but since this prostanoid had not yet been found in 

vivo, the resulting ligand-receptor pair may lack physiological relevance. PGA1 and PGE1 

induced concentration-dependent signatures in both CRTH-HEK and HEK cells (Fig. 22d,e 

and Fig. 22g,h). The captured traces of each compound looked very similar at both CRTH2-

HEK and HEK cells, by presenting a comparable maximum response and shape, which is 

obviously different from the observed CRTH2 dependent Gαi signaling events.  
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Figure 22: The 1-series prostanoid PGD1 induces Gαi-dependent responses in CRTH2-HEK. 

(a-k) DMR measurements were performed in HEK293 cells stably expressing CRTH2 (CRTH2-HEK) 

(left and right panels) and native HEK293 cells (HEK) (middle panels). (Left and middle panels) 

CRTH2-HEK and HEK cells were challenged with various concentrations of (a,b) prostaglandin-D1 

(PGD1), (d,e) prostaglandin A1 (PGA1), (g,h) prostaglandin E1 (PGE1) and (j,k) 6-keto-prostaglandin 

F1α (PGF1α), and wavelength shift was monitored over time. Pathway determination in CRTH2-HEK 

cells was performed by pretreatment with or without (c) 50 ng/ml of pertussis toxin (PTX) or (f,i) with 

or without 250 ng/ml of CTX. Shown are representative data (mean + SEM) of three to four 

independent experiments, each performed in triplicates. 

 

For PGE1 it was shown that in HEK cells endogenous EP2 and EP4 receptors were activated 

(chapter 2.1.2, Fig. 7). However, in CRTH-HEK cells the signal looks comparable and there 

were no indications for signaling in addition to that observed in HEK cells. The same was true 

for PGA1-induced signaling: no additional signaling events could be observed in CRTH2-
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HEK cells, however the origin of the endogenous response was unknown, These data suggest 

that CRTH2 was not activated by PGA1 or PGE1. To verify this assumption, CRTH2-HEK 

cells were treated with 10 µM of the CRTH2 specific antagonist TM30089, before PGA1 or 

PGE1 were applied. In both cases the detected signals were not affected, verifying that PGA1 

and PGE1 are not active at CRTH2. 

The signal induced by PGE1 has already been shown to be Gαs-dependent (chapter 2.1.2, 

Fig. 6). The PGA1-induced traces, due to similarities of shape, may be linked to the same 

pathway. This was proven by pretreatment of CRTH2-HEK cells with CTX. After PGA1 

addition, the signal totally disappeared in comparison to cells not CTX-treated. These data 

confirmed that the PGA1-induced signaling was mediated by Gαs proteins, too.  

In contrast to the other tested 1-series prostaglandins, in both cell lines no DMR response was 

induced by PGF1α. 

 

2.2.3 Both PGH2 and PGH1 are active at CRTH2 

To provide a comprehensive overview, also the biosynthetic precursor of the 2- and 1-series 

of prostanoids PGH2 and PGH1, respectively, in addition to arachidonic acid (AA) and 

dihomo-γ-linolenic (DHGLA), were applied at both CRTH2-HEK and HEK cells 

(Fig. 23a-k). DMR measurements revealed that neither AA, nor DHGLA induced any 

response in both cell lines (Fig. 23a-c). 

PGH2 and PGH1 were described as labile substances when solved in aqueous solutions 

(Hamberg, et al., 1974b, Hamberg and Fredholm, 1976, Samuelsson, et al., 1978). For this 

reason the assay procedure was modified in so far, as PGH2 and PGH1 dilutions were not 

incubated for 1 h at 28°C as practiced for the cell containing biosensor microplates (chapter 

5.4.1), but were freshly prepared and loaded immediately before being added to the assay. 

When PGH2 and PGH1 were applied, in contrast to what was expected, concentration-

dependent signatures were detected (Fig. 23d-i), and obviously the traces derived from 

CRTH2-HEK cells were different with regard to their size and shape compared to those 

obtained from HEK cells. In comparison to HEK cells, CRTH2-HEK cells responded 

considerably stronger. The first part of the traces up to about 1200 s was reminiscent to the 

known Gαi signals, characterized by a strong increase of signal strength, followed by a steep 

decrease after the maximum. 
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Figure 23: PGH1 and PGH2 are active at CRTH2.  

(a-i) DMR measurements were performed in HEK293 cells stably expressing CRTH2 (CRTH2-HEK) 

(left and right panels) and native HEK293 cells (HEK) (middle panels). (Left and middle panels) 

CRTH2-HEK and HEK cells were challenged with various concentrations of (a,b) arachidonic acid 

(AA), (b,c) dihomo-γ-linolenic acid (DHGLA), (d,e) prostaglandin H2 (PGH2) and (g,h) prostaglandin 

H2 (PGH2), and wavelength shift was monitored over time. (f,i) Pathway determination in CRTH2-

HEK cells was performed by pretreatment with or without 50 ng/ml of pertussis toxin (PTX). CRTH2-

dependent responses were identified by pretreatment with or without of the specific CRTH2 antagonist 

TM30089 in a concentration of 10 µM. Shown are representative data (mean + SEM) of three to six 

independent experiments, each performed in triplicates. 

 

However, in contrary to the known Gαi shape, observed for PGD2 and other typical CRTH2 

agonists, the decrease was not very prominent and the signal remained stable over time at a 

rather high plateau. 

Of particular interest was the great difference between the signals obtained from 

CRTH2-HEK and HEK cells. Assuming that DMR responses are additive as observed for the 

Gαq and Gαi events mediated by FFA1 (chapter 2.1.3, Fig. 9), it is conceivable that CRTH2-

dependent signaling was included in the overall response detected in CRTH2-HEK cells. At 

that time both, PGH1 and PGH2 had not been known as agonists for CRTH2. 
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To address the previous assumption, PGH1 and PGH2-induced signaling in CRTH2-HEK cells 

was examined by the use of TM30089 (the CRTH2 specific antagonist), resulting in a partial 

inhibition (Fig. 23f,i). Of note, the remaining trace was shaped like the signals obtained from 

HEK cells. These data suggest that CRTH2 was activated by the addition of PGH2 and PGH1 

and that there was an additional CRTH2-independent response, found in both cell lines. PTX 

pretreatment of CRTH2-HEK cells led to the same partial inhibition (Fig. 23f,i) as observed 

with TM30089, implying that a part of the PGH1 and PGH2-induced responses in CRTH2-

HEK cells are CRTH2-dependent and Gαi-triggered. The origin of the background response 

remains to be elucidated, but it is reasonable to assume that activation of endogenous 

receptors accounts for these responses. 
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Fig. 24: DMR-derived concentration effect curves of prostanoids with activity at CRTH2.  

(a-d) Concentration effect curves of DMR data were generated by the maximum response between 

300 and 1200 s. The prostaglandin D2-derived curve and data points are depicted in each panel for 

comparison. Shown are data of (a) 15-deoxy-∆
12,14

-prostaglandin D2 (15d-PGD2), ∆
12

-prostaglandin 

D2 (∆
12

-PGD2), prostaglandin F2α (PGF2α) and 11β-prostaglandin F2α (11β-PGF2α), (b) prostaglandin 

J2 (PGJ2), 15-deoxy-∆
12,14

-prostaglandin J2 (15d-PGJ2), ∆
12

-prostaglandin J2 (∆
12

-PGJ2), 

(c) 11-dehydro-thromboxane B2 (11d-TXB2) and prostaglandin-D1 (PGD1), (d) prostaglandin H2 

(PGH2) and prostaglandin H1 (PGH1). (a-c) Data are normalized to the maximum response of PGD2. 

(d) Data are normalized to the maximum response of each compound. (a-d) Depicted are mean 

values ± SEM of at least three independent experiments, each performed in triplicates. Calculated 

molar pEC50 values are depicted in table 1. 
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The background response was always nearly the same with regard to its shape and size in both 

CRTH2-HEK and HEK cells, which was observed in at least five parallel but independent 

experiments. To acquire the CRTH2-dependent responses, the signatures obtained from HEK 

cells were subtracted from those obtained from CRTH2-HEK cells. Then the maximum 

response between 300 and 1200 s was determined and utilized for the calculation of 

concentration effect curves. Concentration effect curves of all compounds active at CRTH2 

are depicted in figure 24 and calculated molar pEC50 values are listed in table 1. 

In DMR assays, PGD2, 15d-PGD2, ∆
12

-PGD2 and DK-PGD2 were detected as most potent 

compounds, whereas PGF2α, 11β-PGF2α and 11d-TXB2 were about 100-fold less potent. 

Potencies of PGJ2, 15d-PGJ2, ∆
12

-PGJ2 and PGD1 are inbetween these values. Compared with 

the hitherto known CRTH2 agonists, PGH1 was as least as potent as the F-ring PGs and PGH2 

was comparable to the J-ring PGs. The rank order of potencies is as follows: ∆12-PGD2 
≥ 

PGD2 = DK-PGD2 ≥ 15dPGD2 > ∆12-PGJ2 > PGH2 = PGD1 ≥ PGJ2 ≥ 15dPGJ2 ≥ PGH1 ≥ 

PGF2a = 11β-TXB2 = 11β-PGF2. Differences of potencies were considered as "equal" (=) if 

the difference of molar pEC50 values (∆ pEC50) is < 0.1, as "greater than/equal" (≥) if ∆pEC50 

is < 0.5 and as "greater than" (>) if ∆pEC50 is ≥ 0.5. 
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Table 1-a: DMR assay-derived potencies of eicosanoid compounds for CRTH2 stably expressed 

in HEK293 cells  
 

13,14-Dihydro-15-keto-

prostaglandin D2

(DK-PGD2) 

Prostaglandin D2

(PGD2)

15-Deoxy-∆12,14-

prostaglandin D2

(15d-PGD2)

Prostaglandin J2

(PGJ2)

11β-Prostaglandin F2α

(11β-PGF2α)

Prostaglandin F2α

(PGF2α)

∆12-Prostaglandin D2

(∆12-PGD2)

Ligand
Structural

formula

Molar

pEC50

7,96 ± 0.04

(n=6)

7,96 ± 0.05

(n=6)

7,84 ± 0.09

(n=3)

8.25 ± 0.09

(n=3)

6.27 ± 0.06

(n=4) 

6.20 ± 0.05

(n=4)

6.82 ± 0.14

(n=3) 

15-Deoxy-∆12,14-

prostaglandin J2

(15d-PGJ2)

6.61 ± 0.07

(n=3) 

∆12-Prostaglandin J2

(∆12-PGJ2)
7.24 ± 0.03

(n=3) 

13,14-Dihydro-15-keto-

prostaglandin D2

(DK-PGD2) 

Prostaglandin D2

(PGD2)

15-Deoxy-∆12,14-

prostaglandin D2

(15d-PGD2)

Prostaglandin J2

(PGJ2)

11β-Prostaglandin F2α

(11β-PGF2α)

Prostaglandin F2α

(PGF2α)

∆12-Prostaglandin D2

(∆12-PGD2)

Ligand
Structural

formula

Molar

pEC50

7,96 ± 0.04

(n=6)

7,96 ± 0.05

(n=6)

7,84 ± 0.09

(n=3)

8.25 ± 0.09

(n=3)

6.27 ± 0.06

(n=4) 

6.20 ± 0.05

(n=4)

6.82 ± 0.14

(n=3) 

15-Deoxy-∆12,14-

prostaglandin J2

(15d-PGJ2)

6.61 ± 0.07

(n=3) 

∆12-Prostaglandin J2

(∆12-PGJ2)
7.24 ± 0.03

(n=3) 
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Table 1-b: DMR assay-derived potencies of eicosanoid compounds for CRTH2 stably expressed  

inHEK293  

 

Prostaglandin D1

(PGD1) Prostaglandin D1

(PGD1)

Prostaglandin A1

(PGA1)

Dihomo-γ-linolenic acid 

(DHGLA)

Arachidonic acid 

(AA)

6-keto-Prostaglandin F1α

(PGF1α)

Prostaglandin E1

(PGE1)

Ligand
Structural

formula

Molar

pEC50

7.04 ± 0.09

(n=4)

no response

no response

no response

no response

no response

Prostaglandin H2

(PGH2)
7.09 ± 0.08

(n=4) 

Prostaglandin H1

(PGH1)
6.37 ± 0.10

(n=5)

11-Dehydro-

Thromboxane B2

(11d-TXB2)

6.20 ± 0.08

(n=3) 

Prostaglandin D1

(PGD1) Prostaglandin D1

(PGD1)

Prostaglandin A1

(PGA1)

Dihomo-γ-linolenic acid 

(DHGLA)

Arachidonic acid 

(AA)

6-keto-Prostaglandin F1α

(PGF1α)

Prostaglandin E1

(PGE1)

Ligand
Structural

formula

Molar

pEC50

7.04 ± 0.09

(n=4)

no response

no response

no response

no response

no response

Prostaglandin H2

(PGH2)
7.09 ± 0.08

(n=4) 

Prostaglandin H1

(PGH1)
6.37 ± 0.10

(n=5)

11-Dehydro-

Thromboxane B2

(11d-TXB2)

6.20 ± 0.08

(n=3) 
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2.2.4 Gαi and Gαs responses are simultaneously captured by DMR measurement 

Both PGH1 and PGH2 were found to be not only active at CRTH2, but also inducing a 

background response, which was not CRTH2 or Gαi-dependent (Fig. 23f,i). This remaining 

response, and also the response in HEK cells, was shaped like the known Gαs-dependent 

signatures, suggesting that this pathway was activated by hitherto unknown targets. Since no 

interacting receptors were described for both derivatives, these targets were also of interest, 

and further investigations are mainly described in chapter 2.4. 

In order to further explore the capability of DMR technology, it was of interest whether the 

captured background signal was CTX sensitive and in particular, whether the mixed response 

obtained from CRTH2-HEK cells could be dissected into their individual components. To 

examine this, CRTH2-HEK and HEK cells were pretreated with CTX, TM30089, and a 

combination of both (Fig. 25a,b). As expected, TM30089 displayed no effect at the signals 

derived from HEK cells (Fig. 25b), when challenged with PGH1. But pretreatment with CTX, 

and the combination of CTX and TM30089 totally erased the traces, indicating that 

Gαs coupling events occur. In CRTH2-HEK cells pretreatment with TM30089 led to the 

known Gαs-like signature (Fig. 25a), while the use of CTX alone led to a Gαi like trace, 

whereas the signals were fully abrogated by the use of a combination of TM30089 and CTX.  
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Fig. 25: The PGH1-induced background signal in CRTH2-HEK cells is Gαs-mediated. 
DMR measurements were performed in (a) HEK293 cells stably expressing CRTH2 (CRTH2-HEK) 

and (b) native HEK293 cells (HEK). (a,b) Pathway determination and dissection was performed by 

pretreatment of CRTH2-HEK and HEK cells with 250 ng/ml of CTX, 10 µM TM30089, or a 

combination of both. Shown are representative data (mean + SEM) of three to four independent 

experiments, each performed in triplicates. 

 

These data demonstrate that the background signal in CRTH2-HEK cells has a Gαs origin. 

Therefore the results described in this chapter suggest that PGH1 and PGH2 are agonists at 
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CRTH2 and also activators of still unknown endogenous Gαs-linked targets in HEK293 cells. 

In addition, it is obvious and remarkable, that DMR technology is capable to simultaneously 

capture Gαi and Gαs coupling events, which are contrary at the cAMP level and would thus 

neutralize each other in a cAMP accumulation assay. 

Activation of CRTH2 by both PGH1 and PGH2 was corroborated by further investigations, 

which are presented in chapter 2.3. 

Continued examinations of PGH1 and PGH2-induced Gαs responses in HEK cells are 

described in chapter 2.4. 
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2.3. Activation of CRTH2 by PGH1 and PGH2  

 

The precursors of the 1- and the 2-series of prostanoids, PGH1 and PGH2, respectively, were 

found to be active at CRTH2, as described in chapter 2.2. These findings came from DMR 

measurements in HEK293 cells stably expressing CRTH2. Herein, the activation of CRTH2 

by PGH1 and PGH2 was corroborated in additional independent assays and extended to 

primary human cells.  

Since CRTH2 activation by PGH2 is meanwhile known und published (Schuligoi, et al., 

2009), this chapter focuses on PGH1.  

 

2.3.1 Stability of PGH1 and PGH2 

Both, PGH1 and PGH2 are described to be instable substances. PGH2 can be converted 

enzymatically to PGD2 by PGD synthases (Kanaoka, et al., 1997), whereas spontaneous 

decomposition to PGE2 takes place when PGH2 is dissolved in aqueous solutions (Hamberg, 

et al., 1974b, Hamberg and Fredholm, 1976, Samuelsson, et al., 1978). PGH1 is less well 

examined and described in literature, but considering that the modifications mentioned for 

PGH2 are related to the molecular ring structure, which is equal for both derivatives, it can be 

assumed that the risk of decomposition is also true for PGH1. 

Given the reported instability of the PGH derivatives, the possibility that the compounds 

might degrade during DMR assays was examined. Two experimental sets were performed in 

parallel using the same biosensor microplate: for one set both PGH derivatives were diluted 

immediately before they were applied to the cells, for the other set the compounds were 

diluted and stored for 90 minutes at 28°C (the DMR assay temperature) before being added to 

the assay. DMR measurements of both, PGH1 and PGH2, prepared under the different 

conditions, did not indicate decomposition of these derivatives (Fig. 26). The captured 

signatures were virtually superimposable, demonstrating that PGH1 and PGH2 were stable 

during the assay period and under the applied conditions.  
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Figure 26: DMR data indicate that PGH derivatives do not decompose during an assay period.  

(a-h) DMR measurements in HEK293 cells stably expressing CRTH2 (CRTH2-HEK) and native 

HEK293 cells (HEK). CRTH2-HEK cells (a,e) and HEK cells (c,g) were challenged with the 

indicated compound concentrations, which were prepared and diluted in assay buffer immediately 

before use or (b,d,f,h) diluted and stored at 28°C for 90 minutes before addition. Optical traces 

obtained from the different pretreated compound samples are virtually superimposable. Shown are 

representative data (mean + SEM) of three independent experiments, each performed in triplicates. 
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To further confirm that PGH1 and PGH2 induce activation of CRTH2, calcium mobilization 

assays were performed. CRTH2-HEK cells were transiently transfected with cDNA coding 

for the promiscuous G protein Gqi5 (chapter 5.2.1), which funnels GPCR response from Gαi 

to Gαq. This enables the detection of Gαi-coupled receptor activity via calcium release. Cells 

were challenged with the PGH derivatives as well as with PGD2 for comparison and reference 

purposes and intracellular calcium efflux was detected by fluorescence measurement 

(Fig. 27). Detection of calcium release represents a very rapid readout for receptor activation. 

PGH1 and PGH2 were freshly diluted immediately before addition and both compounds 

induced robust calcium peaks, although the signals induced by PGH1 displayed reduced 

efficacy compared to PGD2 and PGH2. The calcium response maxima were reached within 

20 s after compound addition, ensuring that compound decomposition was minimized during 

this time frame. 
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Figure 27: PGH2 and PGH1 stimulate calcium mobilization in CRTH2 transfectants. 
(a-d) Measurement of calcium release in HEK293 cells stably expressing CRTH2 (CRTH2-HEK) and 

cotransfected with the promiscuous G protein Gqi5, that funnels GPCR response from Gαi to Gαq. 

Cells were challenged with the indicated agonist concentrations and calcium release was detected with 

a fluorescence-sensitive dye. Assays were performed in the presence and absence of the CRTH2 

antagonist TM30089. The depicted traces were background corrected by subtraction of CRTH2-

independent response. Shown are representative data (mean + SEM) of three independent experiments, 

each performed in triplicates. (d) Maximum responses were normalized to 1 µM PGD2. Data are mean 

and SEM of three independent experiments, each performed in triplicates. 
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2.3.2 PGH1 promotes internalization of CRTH2 in HEK cells 

Most GPCRs are known to internalize after agonist activation and this is also true for CRTH2 

after the ligation with its main agonist PGD2 (Ferguson, 2001, Schröder, et al., 2009, Sorkin 

and von Zastrow, 2009b). To corroborate the activation of CRTH2 by PGH1 in another 

independent assay, the ability of PGH1 to internalize CRTH2 in CRTH2-HEK cells was 

investigated. This was realized by fluorescent staining of the receptor and detection of cellular 

distribution after compound addition using confocal microscopy as described in chapter 5.4.6 

and figure 28 (see legend). In non-stimulated cells, the cell membranes were predominantly 

stained (Fig. 28a), indicating that CRTH2 was mainly located in these regions. Upon 

stimulation with PGH1 or PGD2, CRTH2 staining appeared in intracellular vesicles in high 

density (Fig. 28b,c), indicating altered cellular receptor distribution. These data demonstrate 

that CRTH2 internalized subsequent to addition of PGH1 or PGD2, which was confirmed by 

using the selective CRTH2 antagonist TM30089 (Fig. 28e,f). In the presence of TM30089, 

PGH1 and PGD2-mediated internalization of CRTH2 was inhibited, whereas TM30089 

showed no effect when applied alone (Fig. 28d). These results further corroborate the 

interaction of PGH1 and CRTH2. 
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Figure 28: PGH1 promotes internalization of CRTH2.  

The utilized HEK293 cells stably expressing CRTH2 (CRTH2-HEK) had been engineered in order to 

express a CRTH2 molecule that possesses a FLAG epitope at its N-terminus (chapter 5.3.1). CRTH2-

HEK cells were incubated with the anti-FLAG M1 antibody (Sigma, St. Lois, MO, US) recognizing 

the FLAG-tag of CRTH2. Cells were then treated with either solvent control (a,d), 1 µM PGH1 (b,e) 

or 1 µM PGD2 (c,f) in the absence (a-c) or presence (d-f) of the CRTH2 antagonist TM30089 (10 

µM). All ligand stimulations were performed for 30 min at 37°C. Following stimulation, cells were 

fixed, permeabilized and immunostained with a fluorescent secondary antibody (Alexa-Fluor 488-

conjugated goat anti mouse, Sigma, St. Lois, MO, US). This antibody binds to the anti FLAG antibody 

and is capable to pass through the permeabilized cell membrane, hence all CRTH2 molecules present 

at the cell surface in the first step are now stained and visible by microscopy. The cellular receptor 

localisation was imaged by confocal microscopy using a LSM 510 Meta laser scanning microscope 

(Zeiss, DE). For control, CRTH2-HEK and HEK cells were treated with both antibodies without 

stimulation and permeabilization. Under these conditions surface staining was observed for CRTH2-

HEK but not for native HEK cells, indicating that the detection is CRTH2 specific (data not shown). 

(a-f) Experiments were performed three times, and the shown images are representative for cell 

populations. Scale bars are 10 µm. Assays were performed by Dr. Lene Martini from the Ernest Gallo 

Clinic & Research Centre, University of California, San Fransisco, Emeryville, CA 94608, US. 
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2.3.3 PGH1 and PGH2 induce the activation of primary human lymphocytes 

The discovery that PGH1 and PGH2 activate CRTH2 was made in a HEK293 cell-based 

overexpression system. Thus, the question arose whether PGH derivatives induce CRTH2-

dependent bioactivity also in primary human cells, which are generally considered as being of 

higher physiological relevance. CRTH2 is predominantly expressed in lymphocytes such as 

eosinophils and T-helper type 2 (Th2) cells and mediates the activation of these cells in 

inflammation and allergic responses. This activation is characterized by detectable events like 

shape change, chemotaxis and migration. In addition intracellular calcium release represents a 

key event in ligand-induced activation of immune cells and is correlated with a variety of 

cellular processes in inflammation. Furthermore PGD2 is known as potent inducer of calcium 

efflux in Th2 cells (Hirai, et al., 2001). Meanwhile, it has been shown that PGH2 induces 

activation of CRTH2 resulting in shape change, migration and calcium release in eosinophils 

(Schuligoi, et al., 2009). 

In the present study, it was examined whether both PGH1 and PGH2 are competent to induce 

shape change of eosinophils and moreover migration of and calcium release in Th2 cells. 

 

2.3.3.1 PGH1 and PGH2 induce shape change in eosinophils via CRTH2 

Shape change assays with primary human eosinophils were performed by flow cytometry 

(FCM) analysis as referred to in chapter 5.4.7 and figure 29 (see legend). Alterations of cell 

shape induce differences in the scattering of applied light. The amount of light scatter is 

detected by FCM and a measure for shape change.  

PGH1 was found to induce shape change with similar efficacy as PGH2, although both PGH 

derivatives displayed reduced efficacy and potency compared with PGD2 (Fig. 29). The rank 

order of potencies matches well with the results obtained from DMR assays: PGD2 > PGH2 > 

PGH1. The activation of eosinophils by PGH1 and PGH2 was inhibited by pretreatment with 

TM30089 before agonist addition, indicating that the effect was mediated by CRTH2. 
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Figure 29: PGH1 activates human eosinophils via CRTH2.  
Human eosinophils were challenged with the indicated agonist concentrations and chemotactic 

activation was measured in shape change assays using the FACSArray (BD Biosiences, Oxford, UK). 

Shape change of eosinophils is inhibited in the presence of 1 µM of the CRTH2 specific antagonist 

TM30089. Results are presented as mean ± SEM of three experiments, each performed in triplicates 

with a separate donor used in each experiment. For statistical analysis, individual concentrations were 

compared by two-way ANOVA with Bonferroni's correction for multiple comparisons; ** p < 0.01, 

*** p < 0.001.Assays at primary human eosinophils were performed by Dr. Luzheng Xue and Dr. Roy 

Pettipher from Oxagen Ltd, 91 Milton Park, Abingdon Oxon, OX14 4RY, UK. Primary blood cells 

were purchased from the National Blood Service, Bristol, UK. 

 

 

2.3.3.2 PGH1 and PGH2 induce intracellular calcium release and migration at Th2 cells 

Activation of Th2 cells was investigated by calcium release assays and migration of Th2 cells 

towards the investigated compounds, as referred to in chapter 5.4.7 and figure 30 (see 

legend).  

In calcium release assays, primary Th2 cells were challenged with PGH1, PGH2 and PGD2 

and they respond with concentration-dependent signals (Fig. 30a-c). The PGH derivates were 

comparable to each other with regard to the induced potency and efficacy, but less effective 

compared to PGD2. PGH1 and PGH2-induced calcium release was abolished by pretreatment 

with TM30089, indicating that the activation was CRTH2-mediated (Fig. 30b,c). The calcium 

responses peaked at ~50 sec after compound addition (data not shown) and provide further 

support that the PGH derivates by themselves and not degradation products were responsible 

for the observed CRTH2 activations. 

Chemotactic migration of cells towards a chemoattractant substance can be detected by a cell 

culture two chamber system. One chamber contains the cells and the other chamber the test 

compound. Both chambers, filled with culture medium, are connected by a membrane, 

enabling the test compound to diffuse towards the connected cell-containing chamber, and in 
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turn enabling the cells to migrate in direction of a potential chemoattractant. Migrated cells 

remain at the membrane and can be counted. 

The assays demonstrated that PGH1 and PGH2 were competent to induce migration of Th2 

cells, but with reduced potency and efficacy as compared with PGD2 (Fig. 30d-f). In the 

presence of TM30089, the PGH1 and PGH2-induced effect was totally erased, indicating that 

migration was mediated by activation of CRTH2. 

These results demonstrate that both PGH1 and PGH2 were capable to induce CRTH2-

dependent bioactivity in primary cells. 
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Figure 30: PGH1 activates human Th2 cells via CRTH2.  

Measurement of calcium mobilization (a-c) and cell migration (d-f) was performed at primary human 

T helper type 2 (Th2) cells utilizing the indicated concentrations of PGD2, PGH1, and PGH2, 

respectively. Both calcium mobilization and cell migration were inhibited in the presence of 1 µM of 

the CRTH2 specific antagonist TM30089. Data are mean ± SEM of three experiments, each performed 

in duplicates and involving Th2 cells from a separate donor. Calcium mobilization was detected using 

the Calcium 5 assays kit and a FlexStation (both: Molecular Devices, CA, US). Migration assays were 

performed using 5-µm pore-sized 96-well ChemoTX plates (Neuro Probe, MD, US). Migrated cells 

were quantified by fluorescent activated cell sorting (FACS) using the FACSArray (BD Biosiences, 

Oxford, UK). For statistical analysis, individual concentrations were compared by two-way ANOVA 

with Bonferroni's correction for multiple comparisons; * p < 0.05, ** p < 0.01, *** p < 0.001. Assays 

with Th2 cells were performed by Dr. Luzheng Xue and Dr. Roy Pettipher from Oxagen Ltd, 91 

Milton Park, Abingdon Oxon, OX14 4RY, UK. Primary blood cells were purchased from the National 

Blood Service, Bristol, UK. 
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2.4 The E-prostanoid receptors EP2 and EP4 are activated by PGH2 

and PGH1  

PGH2 and PGH1, the precursor of the 2- and 1-series of prostanoids, respectively, were found 

active at CRTH2 as described in chapter 2.2.3. However, an additional background signal was 

detected, which remained when CRTH2-HEK cells were treated with the CRTH2 antagonist 

TM30089, and a similar response was also detected in native HEK cells (chapter 2.2.3, 

Fig. 23). Herein investigations regarding the detected background responses unveiled EP2 

and EP4 receptors as molecular targets of PGH2 and PGH1. 

 

2.4.1 PGH2 and PGH1-induced responses in HEK cells are Gαs mediated 

For PGH1, the background response mentioned above was previously shown to be CTX 

sensitive (chapter 2.2.4, Fig. 25). This was also examined for PGH2 as depicted in figure 31.  
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Figure 31: PGH2 and PGH1 cause Gs signaling in native HEK293 cells.  
(a,b) Pathway determination was performed in native HEK293 cells (HEK) in the presence and 

absence of 250 ng/ml of cholera toxin (CTX) or 50 ng/ml of pertussis toxin (PTX). Cells were 

challenged with the indicated agonist concentrations and wave length shift was monitored over time. 

Shown are representative data (mean and SEM) of at least three independent experiments, each 

performed in triplicates. (c,d) DMR-derived concentration effect curves of PGH2 and PGH1 in HEK 

cells. Molar log EC50 values are 7.28 ± 0.06 for PGH2 and 7,15 ± 0.07 for PGH1. Shown are mean ± 

SEM of four independent experiments. 
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The DMR traces induced by both PGH1 and PGH2 were masked by pretreatment with CTX, 

whereas PTX pretreatment did not display any affect. This indicates a similar mode of action 

for both PGH derivatives. The observed sensitivities towards CTX demonstrate that the 

responses are triggered by endogenous Gαs coupled receptors. 

Response traces of PGH2 and PGH1 in native HEK cells were found to be concentration-

dependent (chapter 2.2.3, Fig 23e,h). Efficacies were determined by the area under the curve 

and resulting concentration effect curves exhibited similar potencies (Fig. 31c,d). Both 

derivatives always displayed similar maximum responses in parallel experiments (chapter 

2.2.3, Fig 23 e,h and data not shown), hence concentration effect curves were normalized to 

the maximum response of each compound (Fig. 31c,d). 

 

2.4.2 Identification of both EP2 and EP4 as molecular targets of PGH2 and PGH1 

Considering that most prostanoid receptors are closely related and in some cases no exclusive 

ligand specificity exists, it was likely, that prostanoid receptors were the origin of the PGH2 

and PGH1-induced responses. PGH2 is described to activate the thromboxane receptor (TP) 

(Corey, et al., 1975, Saito, et al., 2003), which exists as two alternatively spliced variants. 

Both are predominantly Gαq-coupled, but TPα additionaly couples to Gαs and TPβ to Gαi. 

Prevailed coupling to Gαs is described for the D-prostanoid receptor 1 (DP1) and the E-

prostanoid receptors EP2 and EP4 (Hata and Breyer, 2004). Since the DMR responses 

induced by the PGH derivates were found to be only Gαs-dependent, DP1 and EP2/EP4 

receptors were examined first.  
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Figure 32: Signatures of PGH derivatives are unaffected by the DP1 antagonist laropiprant. 
(a,b) DMR traces derived from native HEK 293 cells challenged with the indicated agonists were not 

affected by pretreatment with laropiprant (10 µM). (c) PGD2 induced signaling in HEK293 cells stably 

expressing DP1 (DP1-HEK) was fully abrogated by 10 µM laropiprant. Shown are representative data 

(mean and SEM) of three independent experiments, each performed in triplicates. 
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Due to the fact that PGD2 did not induce signaling in native HEK cells, except for responses 

at the highest agonist concentrations, DP1 was unlikely to represent the endogenous PGH-

sensitive receptor. Nevertheless, the selective DP1 antagonist laropiprant was tested for 

inhibition of PGH2 and PGH1-induced responses. As anticipated, the signatures obtained from 

HEK cells challenged with the PGH derivates were not affected by pretreatment with 

laropiprant (Fig. 32a,b). For control purposes, PGD2 was applied to HEK cells stably 

expressing DP1 (DP1-HEK) in the absence and presence of laropiprant, verifying that the 

antagonist inhibits the DP1-derived response (Fig. 32c). 

As described in chapter 2.1.2, in HEK cells the endogenously expressed E-prostanoid 

receptors EP2 and EP4 were activated by PGE1, leading to Gαs signaling. Thus, the EP2 and 

EP4 receptor antagonist AH6809 and L161,982, respectively, were tested with regard to the 

responses derived from application of the PGH derivatives (Fig. 33).  
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Figure 33: PGH derivatives signal via endogenous EP2 and EP4 receptors in HEK cells. 

(a,b) The DMR responses of PGH1 and PGH2 in native HEK 293 cells were fully abrogated by 

pretreatment with a combination of AH6809 (10 µM) and L161,982 (10 µM). (c,d) Pretreatment with 

only one of the compounds (10 µM) did hardly affect the response. Shown are representative data 

(mean and SEM) of four (a,b) or three (c,d) independent experiments, each performed in triplicates. 
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DMR responses of both, PGH2 and PGH1, were completely inhibited in the presence of a 

combination of both antagonists (Fig. 33a,b). However, treatment with the individual 

compounds alone did hardly diminish the responses (Fig. 33c,d). These data demonstrate that 

PGH2 and PGH1 activate both EP2 and EP4 receptors in HEK cells. 

 

2.4.3 Detection of EP2 and EP4 activation in primary human keratinocytes 

For PGE1, the activation of EP2 and EP4 receptors in HaCaT and primary human 

keratinocytes was demonstrated (chapter 2.1.7, Fig. 18). This was likewise tested for the PGH 

derivatives. 

PGH1 and PGH2 were applied at HaCaT and primary keratinocytes and cells responded with 

robust and concentration-dependent DMR traces (Fig. 34). The signatures were markedly 

similar to those detected in the same cell lines after application of PGE1 (chapter 2.1.7, 

Fig. 17). In HaCaT cells the molar pEC50 values of the resulting concentration effect curves 

are 7.60 (± 0.23) for PGH2 and 7.36 (± 0.05) for PGH1, and hence similar between the PGH 

derivatives (Fig. 34 d,c) but less potent compared to PGE1 (8,27 ± 0.09). Similar results were 

found for primary keratinocytes. Concentration effect curves are depicted in figure 34g,h. 

The resulting molar pEC50 values are 6.61 (± 0,13) for PGH2 and 6,73 (± 0.10) for PGH1, and 

thus were comparable to each other, but again lower as compared with PGE1 (7.77 ± 0.06). 

Efficacies of both compounds were similar in all experiments at the respective cell lines 

(Fig. 34 and data not shown).  

The PGH2 and PGH1-induced signatures at both, HaCaT and primary keratinocytes, were 

sensitive to treatment with CTX but PTX-insensitive (Fig. 35a-d), indicating that the cellular 

targets were Gαs-linked. As depicted in figure 35e-h, the application of a combination of the 

EP2 and EP4 receptor antagonists AH6809 and L161,982 respectively, led to a full response 

inhibition.  

These results demonstrate that EP2 and EP4 receptors are the cellular targets of PGH2 and 

PGH1 in HaCaT and primary keratinocytes. 
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Figure 34: PGH derivatives induce DMR responses in HaCaT and primary keratinocytes.  
DMR measurements in the presence of the indicated compounds were performed in immortalized 

(HaCaT) (a-d) and primary keratinocytes (e-h). (a,b,e,f) Shown are representative data (mean and 

SEM) of three independent experiments, each performed in triplicates. (c,d,g,h) Concentration effect 

curves were generated by the area under the curve (AUC). Depicted are mean ± SEM of three 

experiments, each performed in triplicates. Calculated molar pEC50 values are for HaCaT: PGH2: 

7.60 ± 0.23, PGH1: 7.36 ± 0.05 and for primary keratinocytes: PGH2: 6.61 ± 0.13, PGH1: 6.73 ± 0.10. 
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Figure 35: PGH derivatives activate the Gαs-coupled EP2 and EP4 receptors in HaCaT and 

primary keratinocytes.  

(a-d) DMR responses resulting from PGH1 and PGH2 application in immortalized (HaCaT) and 

primary keratinocytes were sensitive to pretreatment with cholera toxin (CTX) (250 ng/ml), but 

pertussis toxin (PTX) (50ng/ml) insensitive. (e-h) Signaling of both PGH derivatives was fully 

abrogated by pretreatment with a combination of AH6809 (10 µM) and L161,982 (10 µM). Shown are 

representative data (mean and SEM) of at least three independent experiments, each performed in 

triplicates. 
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3. Discussion 

 

3.1 DMR technology captures signaling along all four major G protein 

pathways 

The presented results demonstrate for the first time that a label-free detection system is 

competent to record activation of GPCRs associated with all four major G protein coupling 

classes (Schröder, et al., 2010). This is at present beyond reach for most other technology 

platforms. Detection of specific signaling events was established regarding the examles of 

CRTH2, EP2 and EP4, FFA1 and GPR55 for Gαi, Gαs, Gαq/Gαi and Gα12/13 coupling events, 

respectively. Origins of the captured DMR traces were defined using pharmacological tools 

including pathway inhibitors as PTX and YM, activators as CTX, forskolin and ALF, as well 

as receptor antagonists. Additionally, the detection of Gα12/13 signaling was substantiated 

utilizing a dominant negative form of the Gα13 protein (Gα13dn). In this way heterotrimeric 

G proteins were defined as post receptor trigger for the complex DMR signatures. Moreover it 

was demonstrated that DMR technology simultaneously detects mixed signaling events, 

which could be deconvoluted into individual response components. 

Generally DMR measurements appear highly suitable for detection of GPCR signaling events 

(Lee, et al., 2008, Dodgson, et al., 2009, Peters, et al., 2009, Rocheville and Jerman, 2009). 

However, previous validation had been done in a more empirical way to enable high-

throughput drug screening approaches or pharmacological ligand profiling, but no in-depth 

analytical study had been published, that truly defined DMR recordings and compared them 

with second messenger assays, which are state of the art in current receptor research. 

 

3.1.1 Detection of Gα12/13 signaling 

One of the most remarkable results was the demonstration that Gα12/13 signaling is captured 

by DMR recordings. The current study for the first time provides evidence that Gα12/13 

signaling can be detected by label-free DMR technology using GPR55 as a model. GPR55 is 

the only receptor reported to date with exclusive bias towards the Gα12/13 pathway (Ryberg, et 

al., 2007, Henstridge, et al., 2009, Ross, R. A., 2009). However, for this pathway no second 

messengers are known and therefore no direct assays are available (chapter 1.3). The 

possibility to detect GPR55-dependent signaling via DMR measurements was shown 
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previously (Henstridge, et al., 2010), suggesting that Gα12/13 signaling might indeed be 

captured. Importantly, however, this study has not proven Gα12/13 involvement and hence a 

G protein-independent signaling event might have led to the observed optical response. The 

absence of inhibitory effects of PTX and YM treatment or masking by the use of CTX 

indicated that signaling occurs independent of Gαi, Gαs or Gαq proteins (chapter 2.1.4, 

Fig. 11). This was assured by the lack of IP1 formation and unresponsiveness in stimulatory 

and inhibitory cAMP assays (chapter 2.1.4, Fig. 12). The full abrogation of signaling by 

pretreatment with the pan-G protein activator AlF points to the fact that G protein-dependent 

signaling was detected nevertheless. Evidence for Gα12/13 signaling was provided by 

cotransfection of GPR55-AD-HEK cells with a dominant negative Gα13 protein, which 

significantly diminished receptor response, whereas receptor surface expression was not 

affected. Generally, dominant negative G proteins do not fully erase a receptor response since 

their effectiveness may depend on the individual expression levels of the competing 

G proteins as well on their binding affinity towards the receptor, which do not have to be so 

prevalent that no wild type G protein may bind at all (Barren and Artemyev, 2007). In 

addition, transfection efficiency is rarely equal to hundred percent, and hence uptake of 

dominant negative inhibitors by all cells in culture is unlikely. 

Detection of signaling along the Gα12/13 pathway may be of great relevance in drug discovery 

and GPCR research including deorphanisation strategies. Receptors considered to be non-

signaling might exclusively signal through Gα12/13. Furthermore unexpected mixed signaling 

might be discovered more easily. 

 

3.1.2 Gαi signaling 

Label-free DMR measurement was shown to be highly suitable for detection of Gαi signaling 

events. DK-PGD2-induced DMR signatures in CRTH2-HEK cells could be defined as Gαi-

dependent because pretreatment with PTX was able to abrogate them, while the traces were 

unaffected by YM or CTX (chapter 2.1.1, Fig. 3 and Fig. 4). The concentration effect curve 

of DK-PGD2 and the corresponding molar pEC50 value generated by DMR were in good 

agreement with the data derived from cAMP second messenger assays. However, the assay 

window in cAMP assays was very small. Because of its inhibitory character and the fact that 

cAMP generation has to be induced by pre-stimulation with forskolin, detection of Gαi 

signaling by second messenger assays is always more challenging compared for instance with 

Gαs signaling. In addition, CRTH2 is known for its weak signaling compared to other 

Gαi-coupled receptors (Schröder, et al., 2009) and the fact that DK-PGD2 is described as a 
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partial agonist (Hirai, et al., 2001, Kostenis and Ulven, 2006) may foster the weak responses 

in cAMP assays.  

Comparison of PGD2, the main and full CRTH2 agonist, with the specific but partial agonist 

DK-PGD2 shows that both compounds not only display similar potencies but also induce 

comparable efficacies in DMR measurement. This is in contrast to data derived from cAMP 

accumulation assays, where PGD2 induces an obviously higher efficacy (chapter 2.1.5.1, 

Fig. 14). The similarity of both agonist efficacies in DMR assays may be caused by the 

holistic read out, where also far downstream signaling events contribute to the captured 

overall response. It is suggested that at the level of the DMR readout signaling efficacies will 

be equalized due to enhancement during the signaling cascade amplification. In this context 

the high receptor expression level in the CRTH2-HEK over-expressing system may also 

contribute to the effect that downstream responses of compounds, known as full or partial 

agonists, may converge resulting in similar efficacies. For the experimental setup used herein, 

DMR technology appears to be limited in differentiating these pharmacological agonist 

properties. However, different pharmacological antagonist properties were accurately 

captured by this method, as demonstrated for TM30642 and TM30089, referred to as 

surmountable and insurmountable antagonists of CRTH2, respectively (chapter 2.1.5.2, 

Fig. 15) (Mathiesen, et al., 2006). High sensitivity of DMR assays towards Gαi signaling was 

also observed for the FFA1 receptor. Hence, Gαi-coupling events represented a considerable 

portion of the mixed Gαq/Gαi DMR response, whereas for cAMP assays, this was hardly 

detectable (response was less than 6% of forskolin induced cAMP inhibition (chapter 2.1.3, 

Fig. 9). Finally, gene dosing experiments revealed not only that DMR-derived efficacies 

correlate with receptor expression levels, but also that DMR technology enables the detection 

of Gαi signaling under decreased expression conditions (chapter 2.1.6, Fig. 16).  

These data point to the fact that DMR technology provides high sensitivity towards Gαi 

signaling and thus access to concealed signaling events which may be barely detectable by 

conventional methods, whereas their obvious impact upon DMR alludes cellular relevance.  

 

3.1.3 Gαs signaling 

PGE1-induced DMR responses by native HEK cells were defined as Gαs-dependent due to 

their sensitivity towards CTX and forskolin, but not to PTX and YM. The fact that CTX 

totally erases PGE1-dependent signaling but did not affect the CRTH2 mediated Gαi traces 

reveals also the suitability of CTX for pathway discrimination in this assay system. 

Nevertheless, since CTX acts by pre-activation and not by inhibition, results generated by the 
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usage of CTX, and pathway pre-activation in general, should be considered carefully, since 

activation of any pathway may have horizontal effects on other components of signaling 

cascades. For example, this was observed for the Gαq-coupled muscarinic M3 receptor, that 

extended its signaling repertoire in the presence of enhanced cAMP levels to the Gαi pathway 

(Schröder, et al., 2010). 

By the use of a combination of the respective antagonists EP2 and EP4 receptors could be 

defined as cellular targets of PGE1. In contrast to recently reported BRET-based studies with 

transiently transfected HEK293E cells, where for EP4 also interaction with Gαi proteins was 

detected (Leduc, et al., 2009), in DMR assays and for the used conditions herein, no 

indication for Gαi signaling events were observed. Interestingly, one of the EP2/EP4 

antagonists alone was hardly effective to decrease PGE1-induced responses. This might be 

caused by the holistic DMR readout including far downstream signaling events. At this level 

the individual receptor efficacies seem to converge close to a maximum response, which can 

not be exceeded, indicating a high sensitivity also towards Gαs signaling events. This is in 

accordance with results from Jiang and colleagues (2010), where high sensitivty of DMR 

measurements towards PGE2-activated EP2 receptors was observed in stable EP2 

transfectants of rat C6 glioma cells (C6G-EP2) and human colon tumor cells (HCT-EP2). 

3.1.4 Gαq and mixed signaling events 

The ability of DMR technology to detect Gαq specific signaling was verified by the example 

of FFA1-mediated signaling (chapter 2.1.3). It was demonstrated, that FFA1-derived DMR 

traces were sensitive towards YM, although not totally blocked. Parallel second messenger 

assays revealed IP1 formation, which was fully erased by YM. Notably, the DMR response 

remaining after YM treatment was PTX sensitive, and Gαi signaling was verified in parallel 

cAMP assays. Thus, an additional pathway could be determined for FFA1, which was 

previously solely described as Gαq/11 coupled (Briscoe, et al., 2003, Itoh, et al., 2003, 

Stoddart, et al., 2007).  

These results demonstrate the capability of DMR technology to simultaneously detect 

signaling of more than one G protein coupling event, reflecting the experimental power of an 

all-encompassing response in combination with appropriate pharmacological tools. 

This was also shown for the mixed Gαi/Gαs response obtained from CRTH2-HEK cells when 

challenged with PGH2 and PGH1 (chapter 2.2.3, Fig. 22 and chapter 2.2.4, Fig. 25), where 

different receptors mediated the individual signals. However, DMR technology provides the 

possibility of simultaneous detection of cellular responses which are contrary at the second 

messenger level. Thus, detection by cAMP accumulation assays could be expected to fail: 
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because of the adversary nature of signaling, simultaneous stimulation and inhibition of 

cAMP is expected to neutralize each other, which is also obvious from bell-shaped dose 

response profiles of mixed Gαi/Gαs-sensitive receptor as observed for the muscarinic M2 

receptor stably in expressed in CHO cells, when challenged with acethylcholine (Schröder et 

al., 2010, supplementary material). 

Given the increasing number of receptors and associated ligands found to exhibit ligand-

dependent biased signaling and the growing perception and importance of pluridimensional 

efficacy in the field of GPCR research (Galandrin and Bouvier, 2006, Galandrin, et al., 2007, 

Kenakin, T., 2010), the capability of DMR technology to simultaneously detect different 

signaling events seems particularly valuable to seize and unravel these features.  

 

3.1.5 DMR detection in primary human keratinocytes 

Label-free DMR recording of native signaling has already been reported before (Rocheville 

and Jerman, 2009). However, in these studies immortalized cell lines were analyzed. Here, for 

the first time, label-free DMR measurement of GPCR-mediated signaling in primary human 

cells was demonstrated (Schröder, et al., 2010). 

Activation and inhibition of PGE1-dependent signaling was detected in immortalized 

keratinozytes (HaCaT) and in primary human keratinocytes, cell lines known to be endowed 

with PGE1-responsive receptors (Zhang, et al., 1994, Murota, et al., 2008). The strategy of 

pathway determination by the use of toxins could successfully be adopted and unveiled the 

captured traces to be Gαs-dependent. Further analysis using receptor antagonists determined 

both EP2 and EP4 as molecular targets of PGE1 (chapter 2.1.7). High sensitivity of DMR 

measurements towards GPCR signaling events was once more demonstrated with regard to 

the quality of the assay window by comparison of DMR responses from primary 

keratinocytes with second messenger assays (chapter 2.1.7, Fig. 19). The possibility to 

investigate GPCR signaling in living cells in a label-free manner seems to be particularly 

advantageous for primary cells, which are difficult to analyze with biochemical methods as 

well as difficult to transfect with labeled components of the GPCR signaling cascade for 

optical studies (Fang, 2007, Fang and Ferrie, 2007, Rocheville and Jerman, 2009).  

DMR technology opens the opportunity to analyze drug candidates in primary human cells, 

i.e. the cell type in which therapeutics are intended to mediate their effect. The presented 

results provide compelling evidence that DMR is a technology platform ideally suited to 

examine GPCR signaling in the receptor’s native environment and therefore promises to 

perform studies about the mechanism of action in physiologically relevant cells. 
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3.1.6 General aspects of functional GPCR detection by DMR technology 

DMR traces derived from GPCR-mediated signaling events often exhibit a characteristic 

shape which can be quite different between individual signaling routes, as observed 

particularly evident for the recordings of Gαs vs. Gαi-dependent events in HEK293 cells 

(chapter 2.1.2 Fig. 3 vs. chapter 2.1.3, Fig. 5). Thus, it may be tempting to deduce signaling 

specificity of receptors simply by visual inspection of the captured response profile and 

comparison with historical data.  

Such predictions may be correct in some instances, particularly if the cellular background is 

known, but generally the shape of DMR traces does not allow direct extrapolation of the 

signaling origin. This is illustrated in figure 37, considering the response traces of Gα12/13-

mediated signaling (Fig. 37a and chapter 2.1.4) and the mixed Gαq/Gαi signature derived 

from FFA1 activation (Fig. 37c and chapter 2.1.3), which display strong analogies at least for 

some concentrations. Additionally, mixed Gαs and Gαi signatures as observed for CRTH2-

HEK cells challenged with the H-prostaglandins may provide similar shapes (Fig. 37e and 

chapter 2.2.3). Only in the presence of pharmacological tools can such signaling origins be 

uncovered, as depicted in figure 37b,d,f. 

In this context, it is important to mention that DMR response profiles might be cell type-

dependent. In Chinese hamster ovary (CHO) cells, Gαs signaling was observed as downward- 

(negative) directed response, whereas Gαi traces derived from CHO cells are reflected by 

positive responses (Antony, et al., 2009, Kebig, et al., 2009, Schröder, et al., 2010). It is 

therefore even conceivable that simultaneous stimulation of pathways with opposing nature of 

DMR responses may lead to “Zero-signatures” that neutralize each other and therefore mask 

one or both signaling events. Nevertheless, the use of pathway blockers would uncover of 

such hidden pathway activations (Antony, et al., 2009, Kebig, et al., 2009). This may 

exemplify that pathway deconvolution by means of appropriate pharmacological tools or 

other methods is highly recommended and indispensable for mechanistic investigations. 

The strategy to deconvolute cumulative responses by pathway affecting substances as 

presented herein, demonstrates that G protein-dependent signaling was found to be mainly 

responsible for the DMR traces triggered by the receptors and ligands of this study. In fact, no 

serious indices were found for sensing G protein-independent signaling events as might have 

been anticipated for CRTH2, a receptor known to recruit β-arrestin2 in a G protein-

independent manner (Mathiesen, et al., 2005).  
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Figure 37: Similar response shapes derived from different signaling origins. Although DMR 

traces visually resemble each other, the use of pharmcological tools indicates different signaling 

events. DMR responses obtained from AD-HEK293 cells stably expressing GPR55 (GPR55-AD-

HEK) (a,b), HEK293 cells stably expressing the FFA1 receptor (FFA1-HEK) (c,d) and HEK293 cells 

stably expressing CRTH2 (CRTH2-HEK) (c,d) challenged with the indicated agonists. Cells were 

pretreated with 100 ng/ml of cholera toxin (CTX) (b), 5 ng/ml of pertussis toxin (PTX) (b,d), 300 nM 

YM254890 (YM) (b,d) or with a buffer control. CRTH2-HEK were pretreated with 10 µM TM30089, 

50 ng/ml of PTX or 250 ng/ml CTX (f). Shown are representative data (mean + SEM) of at least three 

independent experiments, each performed in triplicates. 

 

DMR-derived traces may contain an unimaginable wealth of intracellular players 

(chapter 1.2) and study is focused on the responsibility of G proteins as upstream triggers, but 

of course it cannot solve the multifarious downstream consequences. Due to the used toxins 

and other pathway affecting substances herein, especially the different Gα proteins or their 

heteromeric complexes were found responsible for DMR responses. Thus it would be exciting 
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to uncover whether Gβγ subunit-mediated events do also contribute to the detected overall 

responses, which might be accomplished by specific Gβγ inhibitors such as M119 or related 

small molecules (Bonacci, et al., 2006). In addition, details of DMR signatures could be 

elucidated by the use of inhibitors or siRNA regarding the signaling of downstream effectors 

including phospolipases, protein kinases and exchange factors. In this context it may be of 

interest to note that cytochalasin D, a potent inhibitor of actin polymerization, was reported to 

obviously diminish signal strength of GPCR dependent-DMR traces (Peters, et al., 2009). 

This suggests that changes in cytoskeleton assembly, as a far downstream event, contribute to 

the complex DMR responses.  

Second messenger data presented herein were found to be in accordance with DMR responses 

and detected potencies in both assays were in good agreement whereas the sensitivity of DMR 

was equal or even superior to the traditional biochemical assays. DMR technology and second 

messenger assays base on completely different readouts. DMR captures an overall cellular 

response as single functional optical output that includes far downstream cellular events, 

which may also be enhanced by signaling cascade amplification. This is in contrast to the 

classical determination of second messenger generation, which represents a less downstream 

event and only a part of the overall response. Thus agonist potencies determined in both 

assays may, but do not necessarily have to converge.  

Summarized, DMR technology provides a pathway-unbiased yet pathway-sensitive approach 

towards receptor activation of all four main GPCR coupling classes and provides a continuous 

and highly sensitive kinetic measurement of signaling activity in a manner, which is 

unachievable by traditional second messenger assays. Due to its holistic readout of cell 

function, DMR detection promises access to the plasticity of receptor-mediated signaling 

behavior, even in primary cells, and can be suggested to advance clinical predictability of 

drug candidates at early research stages. Also expectable are improving effects towards 

systems biology and systems pharmacology promoting therapeutics with novel mechanisms.  

 

3.2 Prostanoid screening at CRTH2 

The most remarkable result from the prostanoid screening approach was the identification of 

the biosynthetic precursor of the 2- and 1-series of prostanoids PGH2 and PGH1, respectively, 

as functional agonists of CRTH2, whereas AA and DHGLA did not display any effect. In 

addition, PGH2 and PGH1 were shown to also induce CRTH2-independent Gαs-linked 

signaling, which was identified to be mediated by endogenous EP2 and EP4 receptors. 
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The DMR screen of the prostanoid derivatives demonstrates that all used 2-series of 

prostanoids, known to activate CRTH2, induced concentration-dependent DMR responses 

and pathway determination studies revealed that the tested derivatives did not elicit 

qualitatively different G protein activation profiles. Differential activation of G protein-

independent signaling appears to be undetectable by DMR measurements since treatment with 

PTX virtually abolished the response, although CRTH2 is known to signal also 

G protein-independently via β-arrestin2 (Mathiesen, et al., 2005). To address this issue, 

further investigations using BRET approaches appear necessary, to enable the detection of 

ligand-induced interaction of CRTH2 and β-arrestin2. 

Some slight differences in ligand induced DMR responses may occur in the later phase of the 

recorded responses. After reaching the maximum response at about 1000 s, for some 

derivatives as ∆
12

-PGD2 and 11d-TXB2, the signal decline appeared to be distinctively 

different (chapter 2.2.1 Fig. 20 and Fig. 21). This may be a hint towards different post-

activation behavior of receptors, as for instance ligand-induced internalization or persistent 

receptor activation after internalization as recently described for the S1P agonist fingolimod 

(Müllershausen, et al., 2009). To unravel such phenomena, internalization assays based on 

microscopic techniques would be required. 

DMR studies with the 1-series of prostanoids demonstrate for the first time, that PGD1 but not 

PGA1, PGE1 or PGF1α are functional agonists of CRTH2. PGD1 also induced PTX-sensitive 

DMR responses, but since this derivative had not yet been found in vivo, physiological 

relevance of this result is unclear. The results concerning the 1-series prostanoids are 

nevertheless of interest, since CRTH2 is described to be activated by 2-series PGs containing 

D-, J-, and F-rings, but not A- or E-rings (Sawyer, et al., 2002). Interestingly, only PGD1, but 

not PGA1, PGE1 and in particular not PGF1α were found to activate CRTH2. Since PGF2α and 

PGF1α share identical rings, these data suggest that CRTH2 activation is not exclusively 

determined by the ring systems, but also by the side chain (chapter 2.2.3, Tab. 1). 

 

3.3 PGH2 and PGH1 induce activation of EP2 and EP4 receptors  

DMR measurements indicate that both PGH2 and PGH1 prostaglandins were not only active at 

CRTH2 but additional "background" responses could be identified as PGH2 and PGH1-

dependent Gαs signaling of EP2 and EP4 receptors endogenously expressed in HEK293 cells 

(chapter 2.2 and 2.4). The activation of both receptors was also detected in immortalized and 

primary human keratinocytes, when challenged with PGH2 and PGH1. Compared to PGE1 in 
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all investigated cell lines no differences in signaling quality was detectable. It would be of 

interest to explore whether EP1 and EP3 receptors are also targets for PGH2 and PGH1, and if 

so whether PGH-induced signaling events are comparable to those elicited by PGE1 or PGE2. 

As discussed below (chapter 3.4), EP receptor activation by H-prostaglandins may also be 

relevant in the context of CRTH2-dependent activation of eosinophils. 

With regard to primary keratinocytes multiple effects of E prostanoids and their receptors are 

reported including involvement of EP2 receptors in growth regulation (Konger, et al., 2002), 

protection of UV-induced skin carcinogenesis in EP2 knockout mice (Brouxhon, et al., 2006) 

as well as inflammatory skin diseases (Murota, et al., 2008). 

There is strong evidence that PGE2 facilitates cancer diseases by tumor initiation, progression, 

and metastasis through multiple biological effects, including increased proliferation and 

angiogenesis, decreased apoptosis, and modified immunosuppression. These effects are 

mediated via multiple signaling pathway including EP receptors (Radmark and Samuelsson, 

2010). PGE2 generation is mediated by enzymatic conversion of PGH2 by three types of PGE 

synthases (PGES), the microsomal PGES1 (mPGES1), the microsomal PGES2 (mPGES2) 

and the cytosolic PGES (cPGES). Accordingly, a currently investigated strategy to combat 

cancer but also diseases associated with inflammation and pain is pursued by the development 

of (subtype specific) PGES inhibitors (Hara, et al., 2010, Radmark and Samuelsson, 2010). In 

this context it might be of interest that EP receptor activation may also be achieved 

independent of PGES by the H-prostaglandins.  

 

3.4 PGH2 and PGH1 induce activation of CRTH2  

It was shown that both PGH2 and PGH1 were active at CRTH2 stably expressed in HEK293 

cells. This was first found in DMR assays, but also calcium release could be detected, and for 

PGH1 induction of CRTH2 internalization was shown (chapter 2.2 and 2.3). 

Activation of CRTH2 by PGH2 was not only demonstrated in the presented study. Schuligoi, 

et al. (2009) reported that PGH2 is competent to induce CRTH2-mediated migration of 

primary human eosinophils, and in HEK293 cells stably expressing CRTH2 or DP1, 

activation of both receptors could be detected by calcium response via cotransfected 

promiscuous G proteins.  

Eosinophils are described as important effectors in allergic diseases. Upon their activation by 

chemoattractants like PGD2 and eotaxin, shape change takes place, and they migrate towards 

the side of inflammation. Subsequently they release chemoattractants by themselves that in 
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turn causes further influx of inflammatory cells into the tissue (Hata and Breyer, 2004, Luster 

and Tager, 2004, Kostenis and Ulven, 2006, Sturm, et al., 2008). 

The current study provides evidence that PGH2 and PGH1-induced activation of CRTH2 is 

detectable in the receptor’s native environment, since both compounds were capable to 

stimulate chemotactic activation of human eosinophils (shape change) as well as migration 

and calcium release of human Th2 cells, effects which were sensitive to inhibition by a 

CRTH2 specific antagonist. Compared to PGD2 both H-prostaglandins acted as full agonists 

in DMR assays using CRTH2-HEK cells, but in eosinophils and Th2 cells they behave as 

partial agonists. Nonetheless, these data suggest that eosinophils and Th2 cells, both involved 

in the promotion of inflammation, can be activated in the absence of endogenous PGD2 

generation. 

Interestingly, H-prostaglandins were not only found to be active at CRTH2 but also 

stimulation of EP2 and EP4 receptors was detected. Recently, activation of EP2 receptors by 

PGE2 and Butaprost, a synthetic EP2 agonist, was reported to partially inhibit eosinophil 

trafficking to sites of inflammation in response to known chemoattractants such as eotaxin, 

C5a and PGD2 (Sturm, et al., 2008). Since PGD2 is known to activate eosinophil shape 

change and trafficking via CRTH2, and PGH2 was found to activate both CRTH2 and EP2 

receptors, these data may explain the partial agonism of the H-prostaglandins at eosinophils 

observed herein. H-prostaglandins might induce eosinophil shape change and trafficking via 

CRTH2 but simultanously reduce this effect via EP2 receptor activation, and thus may also 

protect against exaggerated effects. Since inflammatory reactions are regulated by a host of 

opposing factors apart from those considered herein, contrary stimuli are not generally 

unexpected. For example, CRTH2 and DP1, both expressed in eosinophils, basophils and Th2 

cells and both activated by PGD2, are also hypothesized to counteract each other in 

inflammatory diseases (Kostenis and Ulven, 2006, Pettipher, 2008). The data presented herein 

provide compelling evidence that H-prostaglandins are efficacious activators of CRTH2 and 

EP2/4. However, the above considerations also indicate the difficulty to predict which effects 

may be exerted by H-prostaglandins in vivo. Clearly, it would be of interest to investigate the 

PGH2 and PGH1-induced reactions in eosinophils with regard to involvement of EP receptors, 

for instance by the use of selective EP antagonists.  

Regarding the potential bioactivity of the PGH derivatives in vivo two major points have to be 

considered: (i) physiological availability of untransformed H-prostaglandins and (ii) their 

chemical stability.  
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(i) In most cells that express cyclooxygenases, PGH2 and PGH1 are rapidly converted to 

downstream prostanoids by also expressed prostanoid synthases (chapter 1.6 Fig. 1). Thus, at 

first glance, only little PGH2 or PGH1 is expected to be released untransformed. However, in 

several studies release of larger amounts of genuine H-prostaglandins has been described for 

certain cells and tissues such as endothelial cells, platelets, mesangial cells and lung tissue 

(Hamberg, et al., 1974a, Svensson, et al., 1975, Soler, et al., 2001, Folco and Murphy, 2006). 

In these cells, upon mechanical or chemical stimuli such as acetylcholine and endothelin-1, 

overproduction of H-prostaglandins was detected outranging the catalytical capacity of the 

downstream synthases, resulting in release of the untransformed precursor (Kato, et al., 1990, 

Asano, et al., 1994, Camacho, et al., 1998, Saito, et al., 2003).  

(ii) Due to spontaneous isomerization to PGE derivatives the half-life of PGH metabolites in 

phosphate buffered aqueous media has been described to be 5-10 min (Hamberg, et al., 1974a, 

Hamberg and Fredholm, 1976, Samuelsson, et al., 1978). More rapid conversion of PGH2 to 

PGD2 takes place in the presence of serum albumin (Hamberg and Fredholm, 1976) and by 

the lipocalin-type prostaglandin D synthase (L-PGDS) and hematopoietic PGDS (H-PGDS) 

(Kanaoka, et al., 1997, Urade and Hayaishi, 2000, Kanaoka and Urade, 2003). Nevertheless, 

resulting effects from release of genuine H-prostaglandins were described as induction of 

platelet aggregation and vasoconstriction mediated by the thromboxane receptor (TP) for 

which PGH2 is a potent agonist (Corey, et al., 1975, Saito, et al., 2003).  

With regard to the presented data, particularly in calcium assays for both HEK-CRTH2 and 

primary Th2-cells, responses upon receptor activation appeared within seconds and also DMR 

responses occurred immediately after compound application. Taken together, this indicates a 

potential physiological relevance for CRTH2 activation by both metabolites.  

CRTH2 is not only stimulated by PGD2 but also by several of its conversion products 

including DK-PGD2, 15d-PGD2, ∆
12

-PGD2, 11β-PGF2α, PGJ2, 15d-PGJ2 and ∆
12

-J2 as 

depicted in figure 37. All these PGD2-derived ligands are initially formed by conversion of 

PGH2 by L-PGDS and H-PGDS. Accordingly, inhibition of PGDS is being considered as an 

therapeutic strategy to treat inflammatory disorders (Inoue, et al., 2004, Aritake, et al., 2006, 

Hohwy, et al., 2008, Irikura, et al., 2009). However, more recently additional PGH2-derived 

prostanoids were identified, which were active at CRTH2, whereas their formation occurs 

independently of PGDS. These are PGF2α (Sandig, et al., 2006), the thromboxane A2 

metabolite 11d-TXB2 (Böhm, et al., 2004), PGH2 (Schuligoi, et al., 2009) and PGH1 as 

presented herein (Fig. 37).  
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Figure 37: PGDS-dependent and -independent CRTH2 agonists 
(Left and middle structures) Prostaglandin D2 (PGD2), the product of prostaglandin D synthase- 

(PGDS) dependent conversion of PGH2 is enzymatically metabolized or spontaneously converted to 

many other products, some of which are active at CRTH2. (Right structures) CRTH2 activating 

prostanoids generated independently of PGDS. 

 

The identification of PGH2 and also PGH1 as active ligands at CRTH2 has strong implications 

for strategies to combat inflammation and allergic responses, because there are two additional 

lipid mediators which are competent to activate CRTH2 independent of PGDS. These results 

raise the option that effective suppression of inflammation might be better supported by 

pharmacological inhibition of CRTH2 rather than abrogation of PGDS activity. 

CRTH2 activation by PGH1 is remarkable, because it is viewed as precursor for PGs with 

predominantly anti-inflammatory properties. Although the 2-series of PGs is the most well 

characterized and biologically abundant (arachidonic acid is the preferred substrate for COX-

1 and COX-2 enzymes), anti-inflammatory effects of 1-series PGs, in particular PGA1 and 

PGE1 have been repeatedly demonstrated in vivo and in vitro in diverse cell types and animal 

models. PGA1, for example, has been shown to limit inflammatory responses in activated 

monocytes/macrophages via induction of anti-inflammatory cytokine IL-10 expression (Kim, 

et al., 2008) and to suppress NFkappaB activation which in turn is essential for COX-2 gene 

expression (Mandal, et al., 2005). PGE1, appears to possess anti-inflammatory properties 

which favorably affect a variety of inflammatory conditions, as adjuvant arthritis and 

inflammatory skin diseases (Zurier and Quagliata, 1971, Murota, et al., 2008) among others. 



Discussion 

 

78 

 

In this context it is noteworthy that PGH1, the precursor for these two anti-inflammatory PGs, 

is an activator of the pro-inflammatory receptor CRTH2. The results presented herein not only 

have identified PGH1 as novel CRTH2 ligand; they also, at least in part, provide a proof of 

principle that PGH1 may be competent to promote allergic inflammation via stimulation of 

CRTH2. This appears noteworthy when fatty acid composition of cell membrane 

phospholipids and hence potential eicosanoid formation are intended to be altered applying 

diets enriched in ω-3 fatty acids and γ-linolenic acid resulting in increased levels of DHGLA 

to in turn enhance the production of apparently anti-inflammatory eicosanoids (Chilton, et al., 

2008). Notably, increased DHGLA levels were also correlated with negative effects as 

reported by Kompauer, et al. (2008) where the DGHLA content in serum phospholipids has 

been found to negatively influence lung function parameters in asthmatic subjects, and also a 

positive association between DHGLA plasma levels and the occurrence of asthma was found 

in young adults (Woods et al., 2004). The precise mechanisms for these observations have not 

been elucidated, but since CRTH2 is known for its pathological function in inflammatory 

airway diseases, it is tempting to speculate that CRTH2 activation by PGH1 may also 

contribute to these clinical phenotypes. To further estimate the in vivo relevance of the 

findings presented herein and since PGH1 production and release is much less examined as 

compared with PGH2, a first step could be to explore whether enhanced PGH1 generation and 

release from endothelial cells upon DHGLA application are detectable 

Taken together, PGH1 and PGH2 were found as efficacious activator of the pro-inflammatory 

CRTH2. Given that both prostanoids are released untransformed in substantial amounts, for 

instance from endothelial cells or lung tissues, it is suggested that H-prostaglandins via 

CRTH2 stimulation could be involved in recruitment of immune cells to sites of allergic 

reactions, resulting in enhancement of allergic asthma and other inflammatory diseases. This 

may occur independent of PGDS-mediated PGD2 generation. 
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4. Summary 

 

The presented study deals with the validation of the recently developed label-free dynamic 

mass redistribution (DMR) assay technology (Corning
®
 Epic

®
 system) as a cell based 

G protein-coupled receptor (GPCR) functional assay as well as the subsequent utilization of 

DMR assays for an eicosanoid ligand screen at the pro-inflammatory D-prostanoid receptor 

DP2 also referred to as chemo attractant receptor homologous molecule expressed on 

T-helper type2 (Th2) cells (CRTH2). 

DMR technology represents an assay platform that allows non-invasive and real-time 

recording of integrated cellular responses in living cells upon GPCR activation. The 

cumulative response of the whole cell is captured by detection of refractive index alterations 

by an optical biosensor, resulting in distinct "signatures" which in turn reflect receptor 

activity. Since previous applications of DMR technology were based on a more empirical 

validation to provide feasibility for drug screening approaches, the first objective of this thesis 

was to investigate the applicability of DMR technology for GPCR basic research. This was 

realized using CRTH2 (DP2), the E-prostanoid receptors (EP) EP2/EP4, the free fatty acid 

receptor 1 (FFA1) and GPR55 as representatives for Gαi/0, Gαs, Gαq/11/(Gαi/0) and Gα12/13-

linked signaling events, respectively. The cellular mechanisms underlying the integrated 

cellular DMR responses could be precisely assigned by the use of pharmacological tools 

including pathway inhibitors as pertussis toxin (PTX) and YM254890 (YM) and activators as 

cholera toxin (CTX) and aluminum fluoride (AlF4
-
). Detection of receptor activation in 

parallel second messenger assays was in good agreement with DMR-derived results, whereas 

sensitivity of DMR was at least equal or even superior. Not accessible by conventional second 

messenger assays, the detection of Gα12/13 mediated signaling by DMR technology was of 

particular interest and substantiated utilizing a dominant negative form of the Gα13 protein 

(Gα13dn, Q226L,D294N). Herein, for the first time, evidence was provided that Gα12/13 

signaling can be detected by label-free DMR technology. These results demonstrate that the 

holistic nature of DMR reflects GPCR functionality along all four major G protein signaling 

pathways and defines heterotrimeric G proteins as post-receptor trigger for the complex DMR 

responses.  

The holistic DMR readout enabled simultaneous detection of mixed signaling events, which 

could be dissected into individual response components. One example is the identification of 

additional Gαi signaling for the FFA1 receptor, previously solely described as Gαq/11-coupled. 
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Sensitivity of DMR technology was further examined at endogenously expressed receptors in 

primary human cells. The strategy to define signaling events with pharmacological tools 

could successfully be adopted and PGE1-induced responses in both immortalized and primary 

human keratinocytes were defined as Gαs-linked signaling via EP2 and EP4 receptors.  

This demonstrates that DMR technology represents a universal, pathway-unbiased yet 

pathway-sensitive approach towards investigations of G protein-mediated effects and that the 

cumulative readout provides access to complex GPCR signaling behavior. It is suggested that 

DMR is an enabling technology for both GPCR basic research and drug discovery. 

CRTH2, involved in inflammation and allergic diseases, is activated by several endogenous 

eicosanoid ligands. Thus, it was of interest to determine whether these ligands may differ 

regarding their induced signaling behavior and if additional, still unknown ligands, might 

exist. The successful definition of DMR-reflected G protein-mediated signaling events 

allowed the utilization of DMR technology for a ligand screening approach at CRTH2 stably 

expressed in HEK293 cells. The screening was designed with 2-series prostanoids known to 

activate CRTH2, as well as with the main representatives of the 1-series of PGs, including the 

corresponding biosynthetic precursors.  

The most remarkable result obtained from the screening approach was the identification of 

PGH2 and PGH1, the precursor of the 2- and 1-series of prostanoids, respectively, as 

functional agonists of CRTH2. For all tested compounds with bioactivity at CRTH2, no 

differences in signal quality were detectable with regard to G protein-mediated events. 

Additionally, PGH2 and PGH1 were shown to activate endogenous EP2 and EP4 receptors in 

HEK293 cells as well as in primary human keratinocytes. 

The PGH2 and PGH1-induced stimulation of CRTH2 was verified in calcium release assays 

and was also detectable in the receptor’s native environment. In cooperation with the Oxagen 

Ltd, UK, it was shown, that both compounds stimulate chemotactic activation of primary 

human eosinophils as well as migration and calcium release in primary human Th2 cells, 

effects which were sensitive to inhibition by a CRTH2 specific antagonist. Identification of 

PGH1 and PGH2 as activators of the pro-inflammatory CRTH2 is at least a proof of principle 

for potential physiological relevance. Thus, it is conceivable that H-prostaglandins could be 

involved in recruitment of immune cells to sites of allergic reactions, resulting in 

enhancement of allergic asthma and other inflammatory diseases, via stimulation of CRTH2. 

This might occur independent of endogenous PGD2 generation and during potential blockage 

of PGDS. 
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PGH1 is the cyclo oxygenase (COX) product from dihomo-γ-linolenic acid (DHGLA) and the 

precursor for the 1-series prostanoids which are often viewed as "anti-inflammatory". This is 

reflected in recommendations for diets enriched with ω-3 fatty acids and γ-linolenic acid, 

resulting in increased levels of DHGLA and subsequent "anti-inflammatory" metabolites, 

among other effects. Thus, it is remarkable that PGH1 was found active at the pro-

inflammatory CRTH2. Since increased DGHLA levels were also reported to be in correlation 

with inflammatory asthma it is tempting to speculate that PGH1 may contribute to the clinical 

phenotype.  
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5. Material and methods 

5.1 Material 

5.1.1 General chemicals, reagents and ready-mixed solutions 

Agar      Fluka, Hamburg, DE, #05040 

Agarose, ultra pure    Invitrogen
®
, Darmstadt, DE, #15510-27 

Aluminium chloride    ZVE, Bonn, DE, #125098 

Ampicillin sodium salt    Roth, Karlsruhe, DE, #K029.1 

Blasticidin     InvivoGen, Toulouse, FR, #ant-bl-1 

Bromphenol blue    Fluka, Hamburg, DE, #32712 

Bovine serum albumin (BSA), fatty acid free Sigma, Taufkirchen, DE, #A6003 

Calcium chloride, dihydrate   Sigma, Taufkirchen, DE, #C3306 

Dimethyl sulfoxide (DMSO)   Riedel-de Haen, Seelze, DE, #60153 

Distilled water, ultra pure   Invitrogen
®
, Darmstadt, DE, #10977 

Dry milk, blotting grade   BioRad®
, CA, US, #170-6404 

Dulbecco´s modified Eagle medium (DMEM) Invitrogen
®
, Darmstadt, DE, #41965 

Doxycycline hyclate    Sigma, Taufkirchen, DE, #D9891 

Ethylenediaminetetraacetic acid   Roth, Karlsruhe, DE, #8040.3  

disodium salt, dihydrate  (EDTA)   

Ethanol      KMF Optichem, Lohmar, DE, #08-205 

Fetal calf/bovine serum (FCS)   Sigma, Taufkirchen, DE, #-0804 

Genenticin (G418)    Gibco, Paisley, UK, #11811 

D-(+)-Glucose     Sigma, Taufkirchen, Hamburg, DE, #G7021 

Glycerol     Sigma, Taufkirchen, DE, #G2025 

3-Isobutyl-1-methylxanthine (IBMX)  Sigma, Taufkirchen, DE, #15879 

Isopropanol     Merck, Darmstadt, DE, #107022 

Hanks balanced salt solution (HBSS)  Invitrogen
®
, Darmstadt, DE, #14025 

Hydrochloric acid    Applichem, Darmstadt, DE, #A1437 

4-(2-Hydroxyethyl)-1-piperazineethane-  Applichem, Darmstadt, DE, #A3268 

sulfonic acid (HEPES)      

Hygromycin B     InvivoGen, Toulouse, FR, #ant-bl-1 

Keratinocyte growth medium II   Promocell, Heidelberg, DE, #C-20011 

Lithium chloride solution   Sigma, Hamburg, DE, #L7026 

Magnesium chloride, hexahydrate  Fluka, Hamburg, DE, #63068  

Magnesium sulphate, heptahydrate  Applichem, Darmstadt, DE, #A1037  
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Methanol     VWR, Langenfeld, DE, #20847.307 

3-(N-Morpholino)propanesulfonic acid  Sigma, Taufkirchen, DE, #M-1254 

(MOPS) 

Paraformaldehyde    Fluka, Hamburg, DE, #76240 

Penicillin/streptomycin solution   Invitrogen
®
, Darmstadt, DE, #15140 

Poly-D-lysin     Sigma, Taufkirchen, DE, #P-6407 

Potassium acetate    Merck, Darmstadt, DE, #1.04820 

Potassium chloride    Fluka, Hamburg, DE, #60128 

Potassium carbonate    Fluka, Hamburg, DE, #60110 

Potassium dihydrogen phosphate  ZVE, D-53121 Bonn, #1.04873 

Dipotassium hydrogen phosphate  Merck, Darmstadt, DE, #105104 

Potassium hydroxide    Merck, Darmstadt, DE, #1.05033 

RPMI-1640 Medium    Invitrogen
®
, Darmstadt, DE, #21875

 

Rubidium chloride    Merck, Darmstadt, DE, #107615  

Sodium acetate     Applichem, Darmstadt, DE, #4555 

Sodium chloride    Fluka, Hamburg, DE, #71376 

Sodium fluoride    ZVE, Bonn, DE, #125310 

Sodium dihydrogen phosphate   Roth, Karlsruhe, DE, #T878.2 

Disodium hydrogen phosphate   Roth, Karlsruhe, DE, #T876.2 

Sodium hydrogen carbonate   Merck, Darmstadt, DE, #1.06323.2500 

Sodium hydroxide    Merck, Darmstadt, DE, #1.06482.1000 

Sulfuric acid     Merck, Darmstadt, DE, #1007311000 

3, 3’, 5, 5’-Tetramethylbenzidine (TMB)  Sigma, Taufkirchen, DE, # T8665 

Liquid substrate system 

Tris(hydroxymethyl)-aminomethane (TRIS) Roth, D-76231 Karlsruhe, #5426 

Tryptone     Roth, D-76231 Karlsruhe, #8952.1 

Yeast extract     Roth, Karlsruhe, DE, #2363 

Zeocin      Invitrogen
®
, Darmstadt, DE, #R25001 

 

5.1.2 Compounds and reagents for functional assays 

AH6809     Cayman, MI, US, #14050 

Arachidonic acid (AA)    Cayman, MI, US, #90010.1 

AH6809     Cayman, MI, US, #14050 

Cholera toxin (CTX)    Sigma, Taufkirchen, DE, #C8052 

Carbachol (Cch)    Merck, Darmstadt, DE, #212385  

Dihomo-γ-linoleic acid (DHGLA)  Cayman, MI, US, #90230 
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Forskolin (Fsk)     Tocris, Bristol, UK, #1099 

L161,982     Cayman, MI, US, #10011565  

Laropiprant     Chemie Tek, IN, US, #CT-LR001 

Lysophosphatidyl inositol (LPI)   Sigma, Taufkirchen, DE, #L7835 

Pertussis toxin (PTX)    Sigma, Taufkirchen, DE, #2980 

Prostaglandin A1 (PGA1)   Cayman, MI, US, #10010 

Prostaglandin D1 (PGD1)   Cayman, MI, US, #12000 

Prostaglandin D2 (PGD2)   Cayman, MI, US, #12010 

∆
12

-Prostaglandin D2 (∆
12

-PGD2)  Cayman, MI, US, #12650 

15-Deoxy-∆
12,14

-prostaglandin D2  Cayman, MI, US, #12700 

(15d-PGD2) 

13,14-Dihydro-15-keto-prostaglandin D2  Cayman, MI, US, #12610 

(DK-PGD2) 

Prostaglandin E1 (PGE1)   Cayman, MI, US, #13010 

Prostaglandin F2α (PGF2α)   Cayman, MI, US, #16020 

11β-Prostaglandin F2α (11β-PGF2α)  Cayman, MI, US, #16520 

6-keto-Prostaglandin F1α (6k-PGF1α)  Cayman, MI, US, #15210 

11β-Prostaglandin F2α (11β-PGF2α)  Cayman, MI, US, #16520 

Prostaglandin H1 (PGH1)   Cayman, MI, US, #17015 

Prostaglandin H2 (PGH2)   Cayman, MI, US, #17020 

Prostaglandin J2 (PGJ2)    Cayman, MI, US, #18500 

∆
12

-Prostaglandin J2 (∆
12

-PGJ2)   Cayman, MI, US, #18550 

15-Deoxy-∆
12,14

-Prostaglandin J2  Cayman, MI, US, #18570 

(15d-PGJ2) 

11-Dehydro-Thromboxane B2 (11d-TXB2) Cayman, MI, US, #19500 

TM30089     Kindly provided by Dr. Trond Ulven, 

      University of Southern Denmark, DK 

TM30642     Kindly provided by Dr. Trond Ulven,  

      University of Southern Denmark, DK 

TUG424     Kindly provided by Dr. Trond Ulven,  

      University of Southern Denmark, DK 

YM254890     Kindly provided by Prof. Dr. Graeme Milligan, 

      University of Glasgow, UK 



Material and Methods 

 

86 

 

5.1.3 Devices 

Autoclave     Varioclav 500 E, H+P Labortechnik,   

      Oberschleissheim, DE 

Balance     TE64, Sartorius, Göttingen, DE 

Balance (analytical)    TE6101, Sartorius, Göttingen, DE 

Centrifuge     5810, Eppendorf, Hamburg, DE 

Centrifuge     6K10, Sigma, Osterode, DE 

Centrifuge      MiniSpin, Eppendorf, Hamburg, DE 

Counting chamber    Neubauer, Brand, Wertheim, DE 

DMR assay system    Epic
®
, Corning

®
, NY, US 

DNA-Gel documentation system  Devision D-Box, Decon Science Tec,   

      Vilbert Lourmant, Cedex, FR 

Dry block heater    QBT2, Grant Instruments, Cambridge, UK 

Electrophoresis chambers   Mini-Subcell
®
 GT, BioRad®

, CA, US 

      Wide Mini-Subcell
®
 GT, BioRad®

, CA, US 

ELISA reader      Sunrise, Tecan, Männedorf, CH   

Freezer, - 80°C     Herafreeze, Heraeus, Hanau, DE 

Freezer, liquid-N2    MVE-Tec 3000, GermanCryo, Jüchen, DE  

Electroporation device     Gene Pulser Xcell, BioRad
®
, CA, US 

Incubator/shaker (bacteria)   HT-INFORS, Buch+Holm, CH 

Microscope (cell culture)   CKX31, Olympus, Hamburg, DE 

Microwave     Microwave 800, Severin, Sundern, DE 

Multimode reader     Mithras LB940, Berthold Technologies, 

      Bad Wildbad, DE 

Ca
++

 flux reader    NovoStar
®
, BMG LabTech, Offenburg, DE 

Pipettes      Eppendorf, Hamburg, DE 

Pipettes, multi-channel     Alpha, Genex, Torquay, UK   

Power Supply     Power Pac HC, BioRad®
, CA, US 

pH-meter     SevenEasy, Mettler Toledo, Giessen, DE 

Sterile bench     HeraSafe, Thermo Fisher, Schwerte, DE 

Spectro-photometer    Smart Spec Plus, BioRad®
, CA, US 

Vortexer     Reaxtop, Heidolph, Schwabach, DE 

Water purification system   Milli Q
®
 Water system, Millipore, MA, US  
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5.1.4 Software       

Office Excel
®
 2003    Microsoft Corporation, Unterschleißheim, DE 

Office PowerPoint
®
 2003   Microsoft Corporation, Unterschleißheim, DE 

Office Word
®
 2003    Microsoft Corporation, Unterschleißheim, DE 

Prism
®
 4.02     GraphPad Software Inc, CA, US 

DeVision
®
 G v1.0    Decon Science Tec GmbH, Hohengandern, DE 

 

Assay Development Mode Epic
®
  Corning

®
 Incorporated, NY, US 

V1.22.2 

Microplate Analyzer v1.5   Corning
® 

Incorporated, NY, US 

modified for Excel 2002 

NOVOstar
®
 1.20-0    BMG Labtech, Offenburg, DE 

EndNote
®
 9.0.0 (Bld 1425)   Thomson, PA, US 

Mikrowin
® 

4,41  (at Mithras)   Mikrotek Laborsysteme Gmbh, Overath, DE 

X Fluor4 V4.51 (at Tecan)    Tecan, Männedorf, CH  

SymyxDraw 3.2 (chemical structures)  Symyx, San Diego, CA, US 

 

 

5.1.5 Consumables 

5.1.5.1 General material 

Cell culture vessels: 

- Plates: 6, 24, 48 and 96 well   Corning
®
, NY, US, #3506, 3512, 3548, 3596 

- Flasks: 25, 75 and 175 cm
2
   Corning

®
, NY, US, #430168, 430720, 431079 

- Dishes: 6, 10 and 150 cm
2
   Corning

®
, NY, US, #430161, 430167, 430599 

Gene Pulser cuvette, 0.4cm,    BioRad®
, CA, US, #1652088 

Petri dishes (for bacteria)   Greiner, Frickenhausen, DE, #632102 

Eppendorf reaction tubes   Eppendorf, Hamburg, DE 

Pipet tips     Sarstedt, Nümbrecht, DE 

Tips + trays 384 (for Epic
®
)   CyBio, Jena, DE, #3800-25-513-N 

Tubes 15 and 50 ml    Corning
®
, NY, US 
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5.1.5.2 Microplates for functional assays 

DMR measurement, Epic
®
: 

384 well, Epic
®
, fibronectin-coated,  Corning

®
, NY, US, #5042 

biosensor cell assay microplate 

384 well, Epic
®
, source plate   Corning

®
, NY, US, #3657 

ELISA: 

96 well, flat bottom costar plate, clear  Corning
®
, NY, US, #9017 

HTRF
®
 cAMP and IP-One assay: 

384 well, LIA-plate, white, TC, F-form  Greiner, Frickenhausen, DE, #632102 

Greiner bio one 4550 

Calcium mobilization assay: 

96 well, flat bottom, costar cell plate  Corning
®
, NY, US, #3599 

96 well, v-bottom, costar plate  Corning
®
, NY, US, #3357 

96 well, round bottom, costar plate  Corning
®
, NY, US, #3795 

 

5.1.5.3 Kits 

Calcium 4 assay kit FLIPR   Molecular Devices, CA, USA, #8142 

cAMP Dynamic 2 HTRF® assay kit  Cisbio Bioassays, Gif-sur-Yvette, FR, 

      #62AM4PEC 

IP-One HTRF® assay kit   Cisbio Bioassays, Gif-sur-Yvette, FR,   

      #62P1APEB  

HitHunter™ cAMP-HS+ kit    DiscoveRx Corporation, Fremont, US,  

      #90-0090S 

QIAprep
®
 Plasmid Mini kit   QIAGEN GmbH, Hilden, DE, #27106 

QIAprep
® 

Plasmid Maxi kit   QIAGEN GmbH, Hilden, DE, #12145 

 

5.1.6 Restriction endonucleases 

EcoRI      New England BioLabs
®
, MA, US, #R0101S 

BamHI      New England BioLabs
®
, MA, US, #R0136S 

HindIII      New England BioLabs
®
, MA, US, #R0104S 

KpnI      New England BioLabs
®
, MA, US, #R0142S 

XbaI      New England BioLabs
®
, MA, US, #R0145S 

XhoI      New England BioLabs
®
, MA, US, #R0146S 
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5.1.7 Antibodies 

Anti-CRTH2 (BM16)     Santa Cruz, Heidelberg, DE, #sc-21798 

(monoclonal from rat) 

Anti-HA      Roche, Grenzach-Wyhlen, DE, #11583816001 

(monoclonal from mouse) 

Anti-rat (from goat)    Santa Cruz, Heidelberg, DE, #sc-2006 

(horseradish peroxidase coupled) 

Anti-mouse (from goat)    Sigma, Taufkirchen, DE, #A4416 

(horseradish peroxidase coupled) 

 

 

5.1.8 Buffers and solutions 

 

Phosphate buffered saline (PBS) 

PBS consists of 150 mM NaCl, 2.5 mM KCl, 7.5 mM Na2HPO4 and 1.5 mM KH2PO4 solved 

in deionized water. The pH value was adjusted to 7.2 by addition of hydrochloric acid. 

Subsequently the solution was autoclaved. 

 

EDTA solution (0.5 M) 

93.5 g of Ethylenediaminetetraacetic acid (EDTA) disodium salt were solved in 400 ml 

deionized water and the pH was adjusted to 8.0 with NaOH. Then the solution was filled up to 

500 ml. 

 

Super optimal broth (SOB) 

SOB medium consists of 2% Bactotryptone, 0.5% (w/v) yeast extract, 10 mM NaCl and 2.5 

mM KCl solved in deionized water. The pH was adjusted to 7.4 and the medium was 

sterilized by autoclaving. Afterwards the following solutions were added: 10 ml of 10 mM 

MgCl2 and 10 ml of 10 mM MgSO4, each autoclaved separately. 

 

Competent bacteria buffer 1 (CB buffer 1) 

CB buffer 1 consists of 30 mM C2H3O2K, 50 mM MnCl2, 100 mM CaCl2 and 15 % (v/v) 

glycerol solved in deionized water. The pH was adjusted to 5.8 and finally the solution was 

filter-sterilized (0.2 µm). 
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Competent bacteria buffer 2 (CB buffer 2) 

CB buffer 2 consists of 10 mM RbCl, 75 mM CaCl2, 10 mM MOPS and 15 % (w/v) glycerol 

solved in deionized water. The pH was adjusted to 6.8, and finally the solution was filter-

sterilized (0.2 µm). 

 

Luria Bertani (LB) medium 

10 g of Bactotryptone (1% w/v), 5 g of yeast extract (0.5% w/v) and 5 g of NaCl (0.5% w/v) 

were solved in 900 ml of deionized water. The pH was adjusted to 7.5 with NaOH, and finally 

the solution was filled up to 1,000 ml. The medium was autoclaved and stored at 4°C. If 

necessary, antibiotics were added before usage. 

 

Luria Bertani (LB) 1.5% agar 

For 20 LB agar plates (10 cm dishes) 400 ml medium were prepared: 4 g of Bactotryptone 

(1% w/v), 2 g of yeast extract (0.5% w/v) and 2 g of NaCl (0.5% w/v) were solved in 350 ml 

deionized water and pH value was adjusted to 7.5 with NaOH. 6 g Agar (1.5% w/v) were 

added and the volume was filled up to 400 ml. The medium was autoclaved and cooled down 

to approximately 60°C. If necessary, antibiotics were added and the solution was casted into 

the plates at approximately 20 ml/plate and cooled down to room temperature. Finally plates 

were stored bottom up at 4°C. 

 

Tris acetate EDTA (TAE) buffer for agarose gel electrophoresis (50x) 

242 g of Tris(hydroxymethyl)-aminomethane (Tris) base was solved in 700 ml of deionized 

water. 57.1 ml of glacial acetic acid and 100 ml of a 0.5 M EDTA solution were added and 

the volume was filled up to 1000 ml with deionized water. Final concentrations (50x) were 

2 M TRIS and 1 mM EDTA. 

 

DNA loading dye (6x) 

DNA loading dye consists of bromphenol blue (0,25% w/v) solved in equivalent amounts of 

glycerol and deionized water. 

 

Tris EDTA (TE) buffer 

TE buffer consists of 10 mM Tris and 1 mM EDTA solved in deionized water. The pH value 

was adjusted to 8.0 with HCl. Finally the solution was filter-sterilized (0.2 µm) or autoclaved.  
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Tris HCl solution (0.5 M, 10x) 

61 g of Tris were solved in deionized water, the pH was adjusted to 7.5 with HCl and the 

solution was filled up to a final volume of 1000 ml. 

 

Solutions for calcium phosphate transfection 

CaCl2 aqueous solution (2 M) 

14.7 g of CaCl2 were solved in 50 ml of deionised water (2 M) and the solution was filter-

sterilized (0.2 µm). 

Hepes bufferd saline (HBS) (2x) 

HBS consists of 50 mM HEPES, 280 mM NaCl and 1.5 mM Na2HPO4 solved in deionized 

water. The pH value was adjusted to 7.1, and the solution was filter-sterilized (0.2 µm). 

 

Solutions for transfection by the electroporation method 

Electroporation buffer (EB) (5x) 

EB buffer contains 250 mM K2HPO4, 100 mM CH3COOK and 100 M KOH solved in 

deionized water. The pH was adjusted to 7.4 with acetic acid, and the solution was filter-

sterilized (0.2 µm). 

MgSO4 solution (1 M) 

12.3 g of MgSO4 heptahydrate were solved in 50 ml of deionized water and the solution was 

filter-sterilized (0.2 µm). 

 

Solutions for ELISA 

Blocking buffer (3% dry milk) 

Tris base was solved at a concentration of 50 mM in deionized water. The pH was adjusted to 

7.4 with HCl and 3% dry milk (w/v) was added. 

Paraformaldehyde (PFA) fixative solution (4%) 

8 g of paraformaldehyde were stirred in 100ml of deionized water at 60°C and NaOH (1 M) 

was added drop wise until PFA was solved. Phosphate buffer (0.2 M, pH 7.4) was added to a 

total volume of 200 ml.  

 

HEPES solution (1 M) 

119.1 g of HEPES were solved in deionized water, and the pH was adjusted to 7.2 and the 

solution was filter-sterilized (0.2 µm). 
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DMR assay buffer (Epic
®
 assay) 

Hank's balanced salt solution (HBSS) was supplemented with 10 ml of a HEPES solution 

(1 M) to a final concentration of 20 mM HEPES in HBSS (pH 7.2).  

 

Krebs HEPES buffer (KHP) for Ca
2+

 assay 

The KHB buffer consists of an aqueous solution of 118.6 mM NaCl, 4.7 mM KCl, 1.3 mM 

MgSO4, 1.2 mM CaCl2, 1.2 mM KH2PO4, 4.2 mM NaHCO3, 11.7 mM D-glucose and 10 mM 

HEPES. The pH was adjusted to 7.4 by addition of NaOH. The buffer was prepared in a 

5-fold concentration without CaCl2 and MgSO4 and stored at -20°C. For usage the buffer was 

diluted, and CaCl2 and MgSO4 were added. 

 

Aluminium fluorid solution (AlF4
-
)  

A 1.2 mM AlF4
-
 solution was generated by mixing equal amounts of 2.4 mM AlCl3 and 80 

mM NaF, each solved in DMR assay buffer (20 mM HEPES in HBSS).  

 

 

5.2 Molecular biology 

5.2.1 Vectors 

 

pcDNA3.1+ 

Purchased from Invitrogen®, Darmstadt, DE, #V790-20 

 

CRTH2 cDNA in pcDNA3.1+ 

cDNA of CRTH2 (Gen-bank accession-number NM_004778) had been inserted into 

pcDNA3.1+ by HindIII and EcoRI restriction sides. The plasmid originated from an internal 

source: research group of Prof. Dr. Evi Kostenis, Institute of Pharmaceutical Biology, 

University of Bonn, Germany. 

 

Gα13dn cDNA in pcDNA3.1+ 

cDNA of the dominant negative mutant of Gα13 (Gα13dn, Q226L/D294N) had been inserted 

into pcDNA3.1+ by KpnI and XbaI. The plasmid was purchased from UMR cDNA Resource 

Center, MO, US, #GNA13000X0 

 



Material and Methods 

   

93 

 

Gααααqi5 cDNA in pcDNA3.1+ 

cDNA of the promiscous G protein that funnels GPCR response from Gαi to Gαq, (Conklin, et 

al., 1993, Kostenis, et al., 2005a) had been inserted in pcDNA3.1+ by BamHI and XbaI 

restriction sides. The plasmid originated from an internal source: research group of Prof. Dr. 

Evi Kostenis, Institute of Pharmaceutical Biology, University of Bonn, Germany. 

 

 

5.2.2 Bacterial strains 

 

XL1blue (Stratagene, CA, US), Escherichia coli, genotype: recA1 endA1 gyrA96 thi-1 

hsdR17 supE44 relA1 lac [F´ proAB lacIqZ∆M15 Tn10 (Tetr)] 

 

DH5α (Invitrogen
®, Karlsruhe, DE), E. coli, genotype: F- φ80lacZ∆M15 ∆(lacZYA-

argF)U169 recA1 endA1 hsdR17(rk
-
, mk

+
) phoA supE44 thi-1 gyrA96 relA1 λ

-
 

 

 

5.2.3 Cultivation techniques for bacterial cells 

 

Cultivation of bacteria 

5 ml of LB-medium were inoculated by a single bacterial colony or a cryo-culture and 

cultivated (if required with antibiotics) over night (200 rpm, 37°C). 

 

Freezing of bacteria 

Bacteria were grown as described before and settled by centrifugation (3000 g, 5 min). The 

supernatant was removed and the cells were resuspended in LB-medium containing 15% 

glycerol. Subsequently the bacterial suspension was stored at -80°C. 

 

Thawing of bacteria 

Bacteria were thawn by picking with a sterile pipette tip into the frozen glycerol stock and 

applying the used pipette tip into an already prepared liquid LB-medium (if required with 

antibiotics). The culture was then incubated over night (200 rpm, 37°C). 
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5.2.4 Generation of competent bacteria 

E. coli XL-blue cells were plated onto a LB agar plate (without antibiotics) and incubated 

overnight at 37°C. The next day 5 ml of SOB medium were inoculated by a single colony and 

cultivated for 16 h (37°C, 200 rpm). 1 ml of this culture was used to inoculate 100 ml of SOB 

broth. Bacteria were cultivated at 37°C and 200 rpm until an optical density (OD 600 nm) of 

0.5 was reached, followed by centrifugation in pre-cooled tubes for 10 min (3000 g, 4°C). The 

following working steps were performed using pre-cooled tips and tubes. The pellet was 

resuspended in 2 x 12.5 ml of ice-cold CB buffer 1 and centrifuged again for 10 min (3000 g, 

4°C). After the pellet was resuspended in 8 ml of CB buffer 2, the suspension was portioned 

in aliquots of 100 µl/tube, frozen in liquid nitrogen and stored at -80°C until usage. 

 

5.2.5 Tranformation 

Competent cells (100 µl) were thawed on ice, and 20-50 ng of plasmid DNA were added. 

After being incubated for 20 min on ice, tubes containing cells and DNA were put in a water 

bath (42°C) for 90 s and subsequently cooled on ice. Cells were mixed with 900 µl LB-

medium and incubated for 1 h at 37°C. An appropriate volume was plated onto LB-agar plates 

supplemented with ampicillin (100 µg/ml) and incubated at 37°C over night. 

 

5.2.6 Plasmid DNA isolation (mini/maxi preparation) 

For mini preparations, 1.5 ml of an overnight culture were centrifuged, and DNA was isolated 

using the QIAprep
®
 Mini-Kit (QIAGen) according to the manufacturer's instructions. 

For maxi preparations 200-300 ml of an overnight culture were centrifuged, and DNA was 

isolated using the QIAprep
®
 Maxi-Kit (QIAGen) according to the manufacturer's instructions.  

 

5.2.7 Photometric measurement of nucleic acid concentration 

DNA concentrations in aqueous solution were determined by measurement of the photometric 

absorbtion at 260 nm and 280 nm (Smart Spec Plus, BioRad®), the absorbtion maxima for 

nucleic acids and proteins, respectively. An absorption value of 1 at 260 nm corresponds to a 

concentration of 50 µg/ml double strand DNA (dsDNA). The ratio of 260nm/280nm indicates 

the purity and should be ~ 1.8 (or higher). 
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5.2.8 Restriction analysis 

Plasmid digest was performed for diagnostic purpose. Single and double digestions with 

restriction endonucleases were performed as recommended by the manufacturer (New England 

BioLabs
®). Approximately 250 ng plasmid DNA were mixed with 0.5 µl of each restriction 

enzyme, 2 µl buffer (10 x), BSA (if required) and purified water (UltraPure, Invitrogen
®) at a 

total volume of 20 µl, followed by 1 h incubation at 37°C.  

 

5.2.9 Agarose gel electrophoreris 

Gel electrophoresis was performed with 1 % agarose in TAE buffer (1-fold) and was used to 

resolve the DNA fragments of the diagnostic digest. For DNA staining, ethidium bromide 

(0.5 µg/ml) was added to gel. A 1 kb molecular weight marker and the DNA samples, mixed 

with 4 µl loading dye (6x) (5.1.8), were load onto the gel. The gel was run at 80 to 120 V in 

an electrophoresis chamber (Subcell® GT, BioRad®) for about 1 hour. Subsequently, the DNA 

was visualized using UV illumination and a digital imaging system (Devision D-Box, Decon 

Science Tec). 

 

 

5.3 Cell culture 

 

5.3.1 Cell lines 

 

HEK293 (HEK) 

The used HEK293 cell line was from an internal source: research group of Prof. Dr. Evi 

Kostenis, Institute of Pharmaceutical Biology, University of Bonn, Germany. 

 

HEK293 cells stably expressing CRTH2 (CRTH2-HEK) 

The HEK293 cell line stably expressing CRTH2 was from an internal source: research group 

of Prof. Dr. Evi Kostenis, Institute of Pharmaceutical Biology, University of Bonn, Germany. 

Cells were generated as described priviously (Schröder, et al., 2009). Cells include cDNA of 

CRTH2 (gene bank accession-number NM_004778) fused to a FLAG-tag at the N-terminus, 

inserted into the genome via pcDNA3.1+. Cells were selected by resistance towards geneticin 

(G418). 
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HEK293 cells stably expressing DP1 (DP1-HEK) 

The HEK293 cell line stably expressing the D-prostanoid 1 receptor (DP1) (Schuligoi, et al., 

2009) was kindly provided by Dr. Maria Waldhoer (University of Graz, Austria). Cells 

include the cDNA of DP1 (gene bank accession-number NM_000953), inserted into the 

genome via pcDNA3.1+Zeo (UMR cDNA center, #PTGDR00000). Cells were selected by 

resistance towards zeocin. 

 

HEK293 -Flp-InTM T-RExTM cells stably expressing FFA1 (FFA1-HEK) 

HEK293-Flp-InTM T-RExTM expressing FFA1 (FFA1-HEK) cells were from an internal 

source: research group of Prof. Dr. Evi Kostenis, Institute of Pharmaceutical Biology, 

University of Bonn, Germany. The cDNA of FFA1 (also referred to as FFAR1 or GPR40) 

corresponds to the gene bank accession-number NM_005303. Cells were selected by 

resistance towards blasticidin and hygromycin B. To induce receptor expression on demand, 

cells were treated with 1 µg/ml of doxycyline for 16 hours. For control purpose, cells were 

grown without doxycycline. 

 

Adherent HEK293 cells (AD-HEK) 

The AD-HEK293 cell line is a derivative of the commonly used HEK293 cell line, providing 

improved cell adherence and plaque formation properties (Stratagene, #240085). The 

AD-HEK cell line was kindly provided by Prof. Dr. Andy Irving (University of Dundee, UK). 

 

AD-HEK cells stably expressing GPR55 (GPR55-AD-HEK) 

AD-HEK cells stably expressing GPR55 (Henstridge, et al., 2009) were kindly provided by 

Prof. Dr. Andy Irving (University of Dundee, UK). 

 

Immortalized human keratinocytes (human adult low calcium temperature = HaCaT) 

The HaCaT cell line (Boukamp, et al., 1988) was kindly provided by Dr. Evelyn Gaffal 

(University of Bonn, Germany). 

 

Human keratinocytes 

Primary human keratinocytes were obtained from skin samples of healthy patients which 

underwent skin surgery. All patients had written an informed consent before excision. The 

study was approved by ethic committee of the University of Bonn (concession-no. 090/04). 

Cells were kindly provided by Dr. Jörg Wenzel (University of Bonn, Germany). 
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5.3.2 Culture media 

 

Medium for HEK293 cells 

HEK 293 cells were cultivated in Dulbecco's Modified Eagle's Medium (DMEM, 

Invitrogen®) supplemented with 10% (v/v) fetal calf serum (FCS), 100 U/ml penicillin and 

100 µg/ml streptomycin. 

 

Medium for CRTH2-HEK 

CRTH2-HEK cells were cultivated in DMEM supplemented with 10% (v/v) FCS, 100 U/ml 

of penicillin, 100 µg/ml of streptomycin and 500 µg/ml of geneticin 418 (G418). 

 

Medium for DP1-HEK 

DP1-HEK cells were cultivated in DMEM supplemented with 10% (v/v) FCS, 100 U/ml of 

penicillin, 100 µg/ml of streptomycin and 200 µg/ml of zeocin. 

 

Medium for FFA1-HEK 

FFA1-HEK cells were cultivated in DMEM supplemented with 10% (v/v) FCS, 100 U/ml of 

penicillin, 100 µg/ml of streptomycin, 100 µg/ml of hygromycin B and 15 µg/ml of 

blasticidin. 

 

Medium for GPR55-HEK 

CRTH2-HEK cells were cultivated in DMEM supplemented with 10% (v/v) FCS, 100 U/ml 

of penicillin, 100 µg/ml of streptomycin and 500 µg/ml of G418. 

 

Medium for HaCaT 

HaCaT were cultivated in Roswell Park Memorial Institute 1640 medium (RPMI-1640, 

Invitrogen®) supplemented with 10 % (v/v) of FCS, 100 U/ml of penicillin and 100 µg/ml of 

streptomycin. 

 

Medium for keratinocytes 

Primary human keratinocytes were cultivated in keratinocyte growth medium 2 (KGM2, 

Pomocell) supplemented with 100 U/ml of penicillin and 100 µg/ml of streptomycin. 
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5.3.3 Cell culture techniques for mammalian cells 

 

Cultivation of cells 

All cell lines used in this study were adherent and cultivated at 37°C, 5% CO2 and a humidity 

of 95%, referred to as standard conditions. Size and shape of culture vessels were chosen 

according to the desired application (flasks: T25 cm2, T75 cm2 or T175 cm2; dishes: 6 cm, 

10 cm, or 15 cm; multiplates: 6 well - 96 well; assay plates: 96 and 384 well). Medium was 

changed as required. Cells were sub-cultured when grown up to 80-90% confluence: the 

medium was removed and cells were washed once with PBS. Hereafter trypsin/EDTA 

solution was added and cells were incubated at 37°C until cells were detached. The reaction 

was stopped by addition of culture medium containing FCS. Subsequently cells were splitted 

in the required ratio and transferred into a new culture vessel. 

 

Counting of cells 

Cells were counted by using an improved counting chamber (Neubauer). 10 µl of cell 

suspension were applied between the counting surface and a cover slip. The numbers of cells 

counted at one main square was determined, and finally the cell number was calculated by the 

following term: cells per ml = (counted cells/main square) x 10,000. 

 

Freezing of cells 

Cells were harvested and counted as described before. After centrifugation (3 min, 120 g) 

medium was removed and cells were resuspended in freezing medium consisting of 90% 

culture medium without antibiotics and 10% DMSO or 90 % FCS and 10% DMSO. The cell 

suspension was transferred into cryo-tubes at about 3 million cells/tube. The cryo-tubes were 

put into a special freezing container placed at -80°C over night. On the next day the tubes 

were transferred into a liquid nitrogen tank (MVE-Tec 3000, GermanCryo) for long time 

storage. 

 

Thawing of cells 

A cryo-tube with cells was removed out of the liquid nitrogen tank and thawed at 37°C in a 

water bath. Cells were then transferred into a previously prepared tube with fresh medium and 

centrifuged (3 min, 120 g). The supernatant was aspirated and cells were resuspended in the 

required culture medium and cultivated under standard conditions. 
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5.3.4 Transfection by co-precipitation of calcium phosphate and DNA 

24 h before transfection HEK293 cells were plated at a density of 4 million cells per dish (10 

cm2) to reach 50-60 % confluence over night. At the next day, medium was aspirated, 

replaced by 10 ml of fresh medium and cells were incubated again for 2-4 h. 20 µg of plasmid 

DNA were mixed with 60 µl of CaCl2 (2 M) and TE-buffer to reach a total volume of 500 µl 

and incubated for 30 min at room temperature, leading to co-precipitation of calcium 

phosphate and DNA. (For some indicated approaches plasmid DNA was mixed in a ratio of 

1:10 with pcDNA3.1+ (the empty vector), since this had improved the expression levels in 

some cases.) The suspension was added to the culture medium (10 ml), which was then 

incubated under standard conditions. 5 h later, medium was changed. On the next day, cells 

were transferred to the required culture vessels according to the desired application and 

cultivated again for 24 h. Generally cells were used for assays about 48 h after transfection. 

 

5.3.5 Transfection by electroporation 

Transfection of GPR55-HEK cells with cDNA coding for dominant-negative Gα13 (Gα13dn) 

was performed using an electroporation method described previously (Pantaloni, 1996, JBC). 

In brief: for transfection, cells were trypsinized, centrifuged (3 min, 120 g) and resuspended 

in an adequate volume of EP (1x) buffer. Cells were counted, and for each transfection 

6 million cells were placed into a tube and centrifuged (3 min, 120 g). Subsequently the 

supernatant was aspirated and cells were resuspended in EP (1x) buffer at a total volume of 60 

µM. 50 µl were transferred to a 1.5 ml tube containing the previously prepared transfection 

mix: 

 

 20 µl  EB (5x) 

 4 µl  MgSO4 (1M) 

 x µl vector: pcDNA3.1+ ( 4µg) 

 x µl  cDNA in pcDNA3.1+ (1µg) 

 ad 100µl deionized H2O 

 

After 15 min of incubation at room temperature the transfection mix was transferred into a 

0.4 cm electroporation cuvette (BioRad®) and pulsed using the Gene Pulser Xcell (BioRad®). 
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Settings of Gene Pulser Xcell: 

 

 Program:  exponential decay 

 voltage: 250 (V) 

 capacity: 500 (µF) 

 resistence:  ∞ (Ώ) 

 cuvette: 4 (mm) 

 

Cells were then plated into a 6 cm dish. On the next day, cells were harvested, plated in the 

requested culture vessels according to the desired application and cultivated for another 24 h. 

 

 

5.4 Cell based assays 

 

5.4.1 Dynamic mass redistribution (DMR) assay  

For DMR measurements the label-free Epic® System (Corning®) was used. The functional 

principle is described in the introduction (1.4.1). 

Cells were seeded onto fibronectin-coated 384-well Epic® biosensor microplates and cultured 

for 20-24 h under standard conditions to obtain confluent monolayers, using the following cell 

numbers (cells/well): HEK-293, CRTH2-HEK, DP1-HEK and FFA1-HEK: 15,000; HaCaT: 

10,000; keratinocytes: 12,500.  

Before the assay, the medium was removed using a manifold and cells were washed two times 

with assay buffer (HBSS, 20 ml HEPES, pH 7,2) containing the same percentage of DMSO as 

the compound dilutions, which were later added in the assay. This is important since some 

solvents can induce bulk refraction index differences. After washing, a total volume of 30 µl 

assay buffer was left in every well and the microplate was kept for 1 h in the Epic
®
 incubator 

at a constant temperature of 28°C. Compound dilutions were prepared and applied to a 384 

well compound plate, which was also loaded into the Epic
®
 incubator for 1 h. 

Hereafter, the assay was started and the sensor plate was scanned, recording a baseline optical 

signature. Subsequently compound solutions were transferred into the sensor plate by the on-

board robotic liquid handling device and DMR was monitored for at least 3600 seconds. 

The incubation time for pretreatment with pertussis toxin (PTX) or cholera toxin (CTX) was 

18 hours, for YM254890 2.5 hours and for antagonists and forskolin 1 hour. 
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For GPR55-AD-HEK and AD-HEK cells a starvation protocol was used: 48 h before the 

assay cells were seeded at a density of 7,500 cells per well on to a 384-well Epic
®
 microplate 

and cultivated at 37°C and CO2-humidified atmosphere. 24 h later, cells were washed three 

times with assay buffer and were further cultivated in this buffer for again 20-24 h under 

standard conditions. The assay was then performed as described above, using assay buffer 

supplemented with 0.1% bovine serum albumin (BSA). 

 

 

5.4.2 Enzyme-linked immunosorbent assay (ELISA) 

 

Coating of tissue culture vessels with poly-D-lysine (PDL) 

To obtain an increased adherence of the cells, the bottom of the tissue vessels was coated with 

poly-D-Lysine (PDL). This avoids the loss of cells due to repeated washing steps as 

implemented in the ELISA. 

A PDL solution (0.1 mg/ml) was applied to the according tissue vessel. The volume should be 

suitable to cover the bottom e.g. 100 µl per well for 96 well plates. Plates were incubated for 

30 min at 37°C. Then the solution was aspirated, followed by two washing steps with PBS. 

 

Assay protocol 

ELISA was performed to detect the surface expression levels of CRTH2 or GPR55. For each 

receptor a slightly different protocol was used for treatment and cultivation before the assay: 

Determination of cell surface expression levels of GPR55 containing an N-terminal HA-tag 

was performed using stable GPR55-AD-HEK cells transiently cotransfected with either 

Gα13dn cDNA or pcDNA3.1+ as a control. 24 h after transfection, cells were seeded in PDL-

coated 96-well tissue culture plates at a density of 50,000 cells per well and cultivated for 6 h 

under standard conditions. Cells were then washed three times in HBSS with 20 mM HEPES 

and serum starved for about 16 h.  

Surface expression levels of CRTH2 were determined in HEK293 cells transiently transfected 

with either CRTH2 cDNA or pcDNA3.1+ as a control. Additionally the stable transfected 

CRTH2-HEK cell line was used and as a control native HEK293 were used. Transfected cells 

were seeded 24 hours after transfection into PDL-coated 96 well tissue plates at a density of 

50,000 cells/well. 

Approximately 48 h after transfection (transiently transfected cells) and 24 h after seeding in 

96 well PDL-coated assay plates, cells were washed once with PBS. For fixation, a 4% PFA 



Material and Methods 

 

102 

 

solution (100 µl/well) was added and incubated for 30 min at room temperature. Cells were 

washed three times with PBS (200 µl/well). Then blocking solution (100 µl/well) was added 

and cells were incubated for 1 h at 37°C. Subsequently, cells were incubated with the primary 

antibody diluted in blocking buffer for 1 h at room temperature followed by three washes and 

an incubation with the secondary antibody in blocking buffer for 1 h at room temperature. 

After three washes, the secondary antibody was detected by adding 100 µl/well of the 

colorimetric horseradish peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB). After 

about 5 min, when adequate color change was reached, the reaction was terminated by adding 

of 0.5 M H2SO4 (50 µl/well). The supernatants were then transferred to a new 96-well plate 

with clear bottom, and colorimetric readings were obtained at 450 nm using an ELISA reader 

(Sunrise, Tecan). 

Used antibody dilutions for detection of GPR55: 

- primary antibody: 1:400 (mouse anti-HA antibody)  

- secondary antibody: 1:1,000 (goat anti-mouse conjugated to horseradish peroxidase)  

Used antibody dilutions for detection of CRTH2: 

- primary antibody: 1:1,000 (rat anti-CRTH2 antibody)  

- secondary antibody: 1:10,000 (goat anti-rat conjugated to horseradish peroxidase)  

Antibodies are further specified at 5.1.7. 

 

 

5.4.3 HitHunter™ cAMP accumulation assay (for endogenously expressed receptors) 

Measurement of cAMP accumulation at cell lines with endogenously expressed receptors was 

performed using the HitHunter™ cAMP-HS+ assay kit (DiscoveRx Corporation) according to 

the manufacturer's instruction. This assay kit was used for native HEK293 cells, HaCaTs and 

primary keratinocytes. 

 

Assay principle 

The method is a competitive immunoassay combined with enzyme complementation 

technique: free cAMP from cell lysates competes for antibody binding to labeled enzyme 

donor-cAMP (ED-cAMP). Unbound ED-cAMP is free to complement enzyme acceptor (EA) 

to form an active β-galactosidase enzyme by enzyme fragment complementation. Active 

β-galactosidase hydrolyzes an added substrate producing a chemiluminescence signal. 

Detected signals are directly proportional to the amount of free cAMP. 
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The kit includes following buffers and reagents: 

- lysis buffer:   cAMP HS+ Lysis Buffer (pH 6.9) containing 10 mM phosphate, 

    10 mM NaCl, 1 mM IBMX, lysing agent, and other proprietary 

    components. 

- enzyme acceptor (EA)  cAMP HS+ EA reagent 

- enzyme donor (ED)  cAMP HS+ ED reagent 

- antibody reagent (Ab) cAMP HS+ Ab reagent 

- CL-substrate   Galacton-Star + Emerald-II™ CL substrate 

 

Assay protocol 

20 h before the assay cells were seeded into a 384 well microplate at a density of 2,500 

cells/well for HEK293 cells and 5,000 cells/well for HaCaTs and keratinocytes. Medium was 

replaced by assay buffer (HBSS, 20 mM HEPES, 1 mM 3-isobutyl-1-methylxanthine 

(IBMX)) and cells were incubated with agonist for 30 min. The reaction was stopped by 

addition of lysis buffer containing cAMP-HS+ antibody reagent. After 1 h of incubation the 

cAMP-HS+ ED reagent was added and the microplate was incubated again for further 1 h. 

Then, cAMP-HS+ EA reagent was added and chemiluminescence signals were detected after 

3 h of incubation at room temperature using the Mithras LB 940 multimode reader (Berthold 

Technologies) at 1 sec/well. Data analysis was performed based on the relative light units of 

chemiluminescence signals.  

 

 

5.4.4 Homogeneous Time-Resolved Fluorescence (HTRF
®
) assays for cAMP or IP-1 (for 

overexpressed receptors) 

 

Assay principle and data calculation: 

The principle of this method herein is described for cAMP detection, but IP-1 detection 

functions accordingly. 

The HTRF
®

 assay is a competitive immunoassay. Native free cAMP produced by cells and 

cAMP labeled with the dye d2 compete for binding to a labeled cAMP antibody (europium 

cryptate anti-cAMP conjugate). Light excitation (320 nm) at anti-cAMP conjugates leads to 

fluorescence caused emission of light (620 nm). When the cAMP-d2 molecule binds to the 

anti cAMP conjugate, fluorescence resonance energy transfer (FRET) between the europium 

cryptate and the dye d2 occurs, resulting in fluorescence caused emission of light (655 nm). 
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Emitted fluorescence is detected at both wavelengths in parallel and the fluorescence ratio 

(655 nm/620 nm) is calculated. The obtained ratio values were corrected by a negative control 

containing only europium cryptate but not d2 (and no test compounds) in accordance with the 

following formula: 

 

 

 

Generation and accumulation of native cAMP leads to replacement of cAMP-d2. As a result  

less emission at 655 nm is detected in favor of the detected emission at 620 nm, leading to 

decreased Delta F values. For this reason the specific signal is inversely proportional to the 

generated cAMP (or respectively IP-1). To obtain proportional relationships, values were 

inverted by calculating the differences to the basal (buffer) value (for Gαs) and the forskolin 

value (for inhibitory Gαi approaches). 

 

HTRF
®
cAMP accumulation assay  

Activation and inhibition of cAMP accumulation in CRTH2-HEK293 cells was performed 

using the HTRF
®
-cAMP dynamic kit (Cisbio) as per manufacturer’s instruction and described 

previously (Schröder, et al., 2009). This assay kit was used for cell lines with overexpressed 

receptors as there are CRTH2-HEK, FFA1-HEK, and GPR55-AD-HEK cells. 

 

The kit includes the following buffers and reagents: 

- lysis buffer (50 mM phosphate buffer (pH 7.0), 1 M KF and 1.25% Triton X-100) 

- europium cryptate-labeled anti-cAMP antibody (cAMP-conjugate) 

- d2-labeled cAMP (cAMP-d2) 

 

Assay protocol  

Cells were washed (HBSS, 20 mM HEPES), resuspended in assay buffer (HBSS, 20 mM 

HEPES, 1 mM 3-isobutyl-1-methylxanthine (IBMX)) and dispensed in 384-well microplates 

at a density of 50,000 cells/5 µl per well and settled by centrifugation (1 min, 120 g). After 

preincubation in assay buffer for 30 min at 37°C, cells were stimulated for 30 min at room 

temperature with 5 µl agonist diluted in assay buffer alone or for inhibition approaches with 

agonist in the presence of the indicated concentrations of forskolin,. The reactions were 

stopped by addition of lysis buffer containing HTRF
®

 assay reagents: anti-cAMP conjugate 

Delta F =                                               * 100        

Ratiosample - Rationeg 

Rationeg 
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and cAMP-d2, 5 µl each. After incubation for 1 h at room temperature, FRET signals were 

detected at λex 320 nm and λem 665 nm (d2) and λem 620 (europium cryptate) using the 

Mithras LB 940 multimode reader (Berthold Technologies). Data analysis was performed as 

described and according to the formula depicted above. 

 

 

HTRF
®
IP one assay 

Accumulation of inositol phosphates was detected according to the HTRF
®

-IP-One kit 

(Cisbio) instructions and was used for FFA1-HEK and GPR55-AD-HEK cells. 

 

The kit includes the following buffers and reagents: 

- lysis buffer (50 mM phosphate buffer (pH 7.0), 1 M KF and 1.25% Triton X-100) 

- europium cryptate-labeled anti-IP-1 antibody (IP-1-conjugate) 

- d2-labeled IP-1 (IP-1-d2) 

 

Assay protocol  

Cells were harvested, counted and the required amount of cells was collected and washed 

(HBSS + 20 mM HEPES). Cells were then resuspended in assay buffer (HBSS, 20 mM 

HEPES, 50 mM LiCl), plated at 100,000 cells/7µl per well in a 384-well microplate, settled 

by a short centrifugation step (1 min, 120g) and incubated for 30 min at 37°C. Receptors were 

challenged by the addition of 7 µl compound solution solved in assay buffer. Reaction takes 

place within 30 min at room temperature and was terminated by addition of lysis buffer 

containing HTRF
®
 assay reagents: anti-IP-1 conjugate and IP-1-d2, 3 µl each. After 

incubation for 1 h at room temperature, FRET signals were detected at λex 320 nm, λem 665 

nm (d2) and λem 620 (europium cryptate) using the Mithras LB 940 multimode reader 

(Berthold Technologies). Data analysis was made based on the fluorescence ratio emitted by 

d2-labeled cAMP (665 nm) over the light emitted by the europium cryptate-labeled anti-

cAMP (620 nm). Data analysis was performed as described and according to the formula 

depicted above. 
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5.4.5 Calcium assays in CRTH2-HEK cells 

CRTH2-HEK cells were transiently transfected to co-express the chimeric Gqi5 protein (see 

also 5.2.1), engineered to funnel signaling of Gαi sensitive receptors to the Gαq signaling 

pathway, using the calcium phosphate precipitation method as described above (5.3.3.1). 24 h 

after transfection cells were detached and plated into 96 well assay plates at a density of 

80,000 cells per well. After 24 h cells were washed twice with KHB buffer, and 50 µl of Ca4 

solution (Calcium 4 assay kit, Molecular Devices) were applied. Cells were incubated for 30 

min prior to challenge with the respective compounds. Fluorescence output was measured in a 

Novostar® microplate reader with a built-in pipetor (BMG LabTech). Detection of 

fluorescence at λex 485 nm and λem 520 nm was initiated by injecting 20 µl of the respective 

agonist solution sequentially into separate wells. 

 

5.4.6 Internalization assay 

Assays were performed by Dr. Lene Martini from the Ernest Gallo Clinic & Research Centre, 

University of California, San Fransisco, Emeryville, CA 94608, US as described previously 

(Schröder, et al., 2009). See also chapter 2.3, legend at figure 29. 

 

5.4.7 Functional assays in primary human leukocytes 

Assays at human eosinophils and T helper type 2 (Th2) cells were performed by Dr. Luzheng 

Xue and Dr. Roy Pettipher from the Oxagen Ltd, 91 Milton Park, Abingdon Oxon, OX14 

4RY, UK. 

 

Eosinophile shape change assay 

Assays with primary human eosinophils were performed as described previously (Sabroe, et 

al., 1999). See also the legend of figure 30 (chapter 2.3.2). 

T-helper 2 (Th2) cell migration assay 

Assays with primary human Th2 cells were performed as described previously (Vinall, et al., 

2007). See also the legend of figure 29 (chapter 2.3.3). 

Th2 calcium flux assay 

Calcium flux assays in primary human Th2 cells were performed as described previously 

(Hirai, et al., 2001). See also the legend of figure 30 (chapter 2.3.3). 

 



Material and Methods 

   

107 

 

5.4.8 Calculations and data analysis 

Data calculation and EC50 value determination by nonlinear regression was accomplished 

using Prism
®
 4.02 (Graph Pad). Quantification of DMR signals for concentration effect curves was 

performed as indicated: (i) for Gαi coupling events with a clear maximum peak, this maximum response value 

was used in the range of 300 and 1200 s, (ii) for all other response profiles the area under the curve (AUC) was 

calculated in the range of 0 and 3600 s. All optical DMR recordings were buffer corrected. For data 

normalization, indicated as relative response (%), top levels of concentration effect curves 

were set 100% and bottom levels 0%. DMR signatures were normalized by setting the 

maximum response of the depicted time frame to 100 %. 

Where appropriate, differences in means were examined by two way analysis of variance 

(ANOVA) with Bonferroni's multiple comparison post-hoc testing using Prism® 4.02. P 

values were considered as significant (*) if p < 0.05, as very significant (**) if p < 0.01 and as 

extremely significant (***) if p < 0.001. 
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6. Abbreviations 

 

°C  degrees Celsius 

µ  10
-6

 

λ  lambda, wavelength (nm) 

AlF  aluminium fluoride (AlF4
-
) 

ANOVA analysis of variance  

AUC  area under curve 

BRET  bioluminescence resonance energy transfer 

BSA  bovine serum albumin 

cAMP  cyclic 3'-5'-adenosine monophosphate 

Cch  carbachol 

cDNA  complementary DNA 

CHO  Chinese hamster ovary (cells) 

COX  cyclo oxygenase 

CRTH2  chemo attractant receptor homologous molecule expressed on T-helper type 2 cells 

CTX  cholera toxin 

DAG  diacylglycerol 

DMEM  Dulbecco’s modified eagle medium 

DMR  dynamic mass redistribution 

DMSO  dimethyl sulfoxide 

DNA  deoxyribonucleic acid 

DP  D-prostanoid receptor 

E. coli  Escherichia coli 

EDTA  diethylenediaminetetraacetic acid 

EP  E-prostanoid receptor 

EPAC  exchange protein activated by cAMP 

FCS  fetal calf (bovine) serum 

FFA1  free fatty acid receptor 1 

FRET  fluorescence resonance energy transfer 

Fsk  foskolin 

FU  fluorescence units 

g  gram 

g  acceleration by gravity 

G418  geneticin 

GDP  guanosine-5′-diphosphate 



 

  

GEF  guanine nucleotide exchange factor 

GPCR  G protein-coupled receptor 

G protein guanine nucleotide-binding protein 

GTP  guanosine-5′-triphosphate 

GRK  G protein-coupled receptor kinase 

h  human 

h  hours 

HBSS  Hanks' balanced salt solutions 

HEK  human embryonic kidney (cells) 

HEPES  4-(2-Hydroxyethyl)-1-piperazineethane sulfonic acid 

HRP  horseradish peroxidase 

IBMX  3-Isobutyl-1-methylxanthine 

IP1  inositol-4-phosphate 

IP3  inositol-1,3,4-triphosphate 

KHB  Krebs-HEPES-buffer 

l  liter 

LB-medium Luria Bertani medium 

m  meter 

m  milli 

MAPK  mitogen-activated protein kinase 

min  minutes 

M  molar (mol/l) 

n  nano (10
-9

) 

n  number 

p  pico (10
-12

) 

p  p-value, probability 

pEC50  negative logarithm (base 10) of half maximal effect concentration (EC50) 

PBS  phosphate buffered saline 

PG  prostaglandin 

PGDS  prostaglandin D synthase 

PGES  prostaglandin E synthase 

PKA  protein kinase A 

pH  the negative logarithm (base 10) of the molar concentration of dissolved  

  hydronium ions (H3O
+
) 

PKC  protein kinase C 

PLC  phospholipase C 

PTX  Pertussis toxin 
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RFU  relative fluorescence units 

rpm  revolutions per minute 

RPMI  Roswell Park Memorial Institute 

s  second 

siRNA  short interference ribonucleic acid 

SEM  standard error of the mean 

TP  thromboxane receptor 

TX  thromboxane 

U  units 

UV  ultraviolet 

YM  YM254890 (Gαq protein inhibitor) 
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