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1 Introduction

Axiomatic set theory serves as a foundation for pure mathematics. About
80 years after the formulation of the formal system for set theory by Zermelo
and Fraenkel, ZFC, it seems that any theorem of common mathematics can
be formulated as an ε-formula and that every argument acceptable as a proof
in any area of pure mathematics with the exception of set theory itself has
a formal counterpart within first-order predicate calculus, starting from the
axioms of ZFC.
Apart from its intrinsic value and philosophical relevance, this has two con-
sequences that are particularly remarkable: First, through the use of deriva-
tions within ZFC, mathematicians have a tool at hand that can in principle
be used to reformulate proofs as syntactical objects that are mechanically
checkable. Second, by giving such a precise definition of the notion of a
proof, proofs itself could become a subject of mathematical study. Deriva-
tions within ZFC are thus in a similar relationship to proofs in the intuitive
sense as Turing programs are to the informal idea of a ’method’ or an ’algo-
rithm’. Arguably, the most important advantage of this is the possibility of
independence proofs: Having transformed proofs from the metatheory into
objects of mathematical study, the statement that a certain mathematical
statement φ has no proof becomes itself a mathematical statement, and so
does the statement that φ is undecidable, i.e. that there are neither proofs
for φ nor for ¬φ.
The usual way to prove something like this is the construction of models:
Assuming that some model M of ZFC is given, one describes how to turn it
into a model of ZFC+φ and into another model of ZFC+¬φ. This implies
the independence of φ from ZFC, provided ZFC is consistent.
There are essentially two methods for such constructions. The one, forcing,
consists in adding extra objects to M in a controlled way, extending it to an
outer model of ZFC and was invented by Paul Cohen. The other, historically
first, method, is due to Gödel [39]: Here, one passes from a class-sized M to a
potentially ⊂-smaller, definable, class-sized submodel of M , a so-called inner
model. The simplest inner model, the constructible hierarchy L, is generated
by the following ordinal recursion:
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1. (1) L0 = ∅

2. (2) Lα+1 = Def(Lα)

3. (3) Lλ =
⋃
α<λ Lα

Here, Def(x) is the set of sets definable by an ∈-formula over x, i.e. of sets
of the form {y ∈ x|x |= φ(y, ~p)} for some ∈-formula φ and some finite vector
~p ⊂ x. Then L is

⋃
α∈On Lα. It is rather easy to check that L is a model

of ZFC containing all ordinals, and in fact the ⊂-smallest one. Because of
its very concrete and uniform definition, L can be analyzed much easier and
deeper than a general model of ZFC. An important and probably the most
famous example is Cantor’s continuum hypothesis (CH). The trouble with
CH in ZFC seems to be that ZFC does not give a precise meaning to the
notion of a subset of ω; hence, there are models where the size of the contin-
uum becomes arbitrarily large. On the other hand, the set of real numbers
in L is very clear. This allows one to demonstrate that all reals in L are
already elements of LωL1 , which implies that L |= CH. In this way, Gödel
demonstrated the relative consisteny of CH.
The research on L made a great step forwards through the invention of
Jensen’s fine structure theory. This studies in detail at which stages of the
recursion new subsets of ordinals arise and thereby helps to reveal the com-
binatorial content of L. Roughly, the Σn-projectum ρnα of Lα is the smallest
ordinal ρ such that there is a Σn-formula φ and ~p ⊂fin Lα with the property
that {x ∈ Lα|Lα |= φ(x, ~p)} ∩ ρ /∈ Lα. The lexically minimal such param-
eter ~p is then the Σn-standard parameter. If ρnα = α, the structure Lα is
closed under Σn-comprehension, so the projectum can be seen as a measure
for the closedness of a structure. Through the use of bounded truth predi-
cates, the so called master codes, and relativized structures, reducts, these
fine structural parameters become compatible with extension techniques for
embeddings and condensation arguments. The theory becomes smoother by
using the J-hierarchy instead of the Lα’s. With these tools, strong combina-
torial principles like the square principle or the existence of morasses could
be demonstrated to hold in L.
However, these techniques lead to very complicated proofs. Typically for a
finestructural construction, a lexically minimal triple 〈α, n, ~p〉 is considered
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such that some interesting object (like the collapse of an ordinal or a cofinal
sequence) is definable by a Σn-formula over Jα in parameter ~p ⊂fin Jα. It
is then shown with considerable effort that these triples are preserved by
sufficiently well-behaved maps like Mostowski collapses. Usually, the combi-
natorial intuition is encoded in the case where α is a limit ordinal and n = 1.
The finestructural apparatus is then used to reduce every other case to this
one. When one asks for simplifications of finestructure, it is therefore natural
to try to set up a hierarchy in such a way that anything is Σ1-definable over
a level, so that the messy reduction procedure is avoided.
Several different fine structures based on this main idea have been proposed
since the publication of [6]. Most notably are Jensens own Σ∗-theory, where
the mentioning of codes is almost completely avoided by a clever modifica-
tion of the Levy hierarchy. In [28] this is used for a comparably short proof
of several combinatorial principles. Silver [19] used very slowly growing hier-
archies of hull operators, known as Silver machines, to eliminate large parts
of finestructural considerations from combinatorial proofs in L. A canonical
choice of a Silver machine based on Gödels Lα-hierarchy lead to the hyperfine
structure of Friedman and Koepke [16].
The F -hierarchy is another approach in this spirit. Its levels are defined by
iterating a very limited comprehension operator, restricted to quantifier-free
formulas in an extended set-theoretical language with build-in symbols for a
well-ordering, a comprehension operator and Skolem functions. It was first
described van Eijmeren in [15], and later on used by Koepke for a simplified
proof of the covering lemma for L in [14].
In the first section, we introduce the F -hierarchy. The purpose of this part
is two-fold: We give a complete account on results in the F -hierarchy and
extend the range of these results, thereby exploring the possibilities and bor-
ders of this approach. First, we introduce the F -hierarchy and the basic
related notions: We define hull operators, prove a condensation theorem for
the F -hierarchy and introduce structure-preserving maps between F -levels,
so called ’fine maps’. Simple combinatorics like GCH and versions of diamond
are carried out. These proofs turn out to be rather stable between different
hierarchies. Then, we consider direct limits of F -structures and introduce a
technique for extending fine maps to larger domains. This is the basis for a
proof of the covering lemma for L and a proof of the approximation lemma,
claiming that any set of ordinals closed under the basic operations of the F -
hierarchy is a union of countably many constructible sets, provided that 0]

does not exist. Through the use of the new approach, there are considerable
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simplifications in both proofs. In particular, due to the homogenity of the
comprehension operator, no case distinction according to formula complexity
necessary.
For stronger combinatorics, some extra effort is necessary. We take methods
from Silver machines and hyperfine structure to incorporate the ideas behind
the hyperfine proofs of square in the F -hierarchy. It turns out that hyperfine
structure theory can be generalized when applied to the F -hierarchy, which
gives a family of fine structural hierarchies, the so-called hyperings. Each
hypering allows a proof of the square principle, two of which we work out.
Also, in this setting, the construction of a gap-1-morass can be carried out
directly from the general properties of hyperings without reference to a par-
ticular one. These proofs are adaptions of those given in [16] and [8] to the
F -hierarchy. They are quite different in spirit from those given by Jensen.
In particular, the construction of a gap-1-morass is based on a considerably
different idea.

In the second part, we use methods of constructibility theory in the con-
text of generalized recursion theory to determine the strength of Infinite Time
Register Machines, a version of register machines computing along an ordi-
nal time axis. Here, we make use of Jensen’s J- and Gödel’s Lα-hierarchy
mainly for two reasons: First, the levels considered in this area are usually
sufficiently closed anyway so that they appear in any of these hierarchies as
a limit stage. Second, and more importantly, this allows us to use classical
results of reverse mathematics and admissible recursion theory without the
need to translate these into the F -hierarchy.
Computability theory on the ordinals can be seen as a kind of non-hierarchical
approach to the constructible universe. The central operations that we build
into our language to achieve simplifications when working with the fine or
the hyperfine hierarchy can be viewed as recursive operators: For example, a
Skolem function on a structure X corresponds to an exhaustive search for a
witness through X. Recasting fine structure theory and its generalizations in
the conceptual framework of generalized computability theory is a promising
alternative to classical fine-structure and the hierarchical finestructures in
general.

The third part deals with applications of alternative fine structures to
relativizations. This is relevant for the construction and application of core
models, L-like structures that can contain large cardinals that cannot exist
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in L. This is useful for estimating the consistency strength of combinatorial
statements, which can be done according to the following strategy: Given a
certain core model K, one first proves a covering lemma for K, stating that,
in the absence of a large cardinal type transcending K, K is ’close to the
universe’ V . This can mean, e.g., that sets of ordinals in V from a certain
size on are subsets of sets of ordinals in K of the same cardinality. As the
combinatorics of K is simplified by the possibility to use fine structure, it is
often possible to prove a certain principle in question to hold in K. Covering
can then be used to show that it must also hold in V . Hence if the principle
fails, the large cardinal must exist, which is an estimate of the consistency
strength of the principle from below.
We present fragments of a hyperfine theory for the Dodd-Jensen core model
KDJ . Several central concepts of core model theory, like an iteration the-
ory or the Dodd-Jensen lemma, are carried over. However, the approach
encountered unexpected, massive difficulties, as a preservation of the extra
operators used in hyperfine structure seems incompatible with the goal of
controlling the target structure inside the source structure when forming an
ultrapower. The theorem of Los, a triviality in the classical context, becomes
an open challenge. This problem remains unsolved; however, we hope to have
raised attention and interest for a central point easily and often overlooked
in considerations about alternative approaches to core model theory.
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3 Preliminaries and Notation

Most of our notation is standard and can be found in e.g. Jech’s Book [12].
We make some common abbreviations.

If f : X → Y is a function, a ⊂ X, then f [a] denotes
{y ∈ Y |∃x ∈ a|f(x) = y}.
Small greek letters like α, β, γ usually denote ordinals unless stated other-
wise. κ and sometimes λ are used for an infinite (local) cardinal.
When talking about structures, we use boldface letters for structures and
lightface letters for the underlying sets/classes. Thus, we would write M for
〈Lα,∈, <〉 and M for Lα. However, this convention is sometimes violated
when it is clear from the context what we mean.
We often denote the Mostowski collapse of a set X by π : M →coll−1 X;
π is called the uncollapsing map or the inverse collapse. π−1 is called the
collapsing map.
We write p ⊂fin X to indicate that p is a finite subset of X, similar p ⊂cntbl X
for a countable subset. Also, if p = 〈p1, ..., pn〉 is a finite sequence, we make
the nonstandard convention that p ⊂fin X and p ∈ X mean {p1, .., pn} ⊂fin
X. If p and q are finite sequences, p∧q denotes their concatenation.
If f : A→ B is a partial function, then f(x) ↓ means x ∈ dom(f); f(x) ↓= y
means f(x) ↓ and f(x) = y. f(x) ↑ means x /∈ dom(f). If P is a programme,
expressions like P (x) ↓= y are to be read by replacing P by the function it
computes. Usually, this will be functions from ω to ω.
If an equation x = y or a map σ : x→ y is given, LHS and RHS denote the
left-hand side and the right-hand side of the term, respectively.
If B is a well-ordered set (usually a set of ordinals), then A ↓B means that
A ∩B is bounded in B. A ↑B means that A ∩B is cofinal in B.
lub(X) is the least upper bound of X, sup(X) the supremum, max(X) the
maximum etc.
If < is a well-ordering of a class X, then <lex is the well-ordering of X<ω

given by p <lex q ↔ max{(p ∪ q)− (p ∩ q)} ∈ q for p, q ∈ X<ω.
If M is an ∈-structure, κ a cardinal in M, then HM

κ denotes the set of ele-
ments of M that are heriditarily of cardinality < κ, Hκ := HV

κ .
On is the class of ordinals. For S ⊂ On, otp(S) denotes the order type of S.
lim(α) abbreviates the statement that α is a limit ordinal.
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4 The F -Hierarchy

In this section, we introduce the fine hierarchy for the constructible universe.
The approach, the definitions and results are - up to some technical modifi-
cations - due to Koepke and can be found in [14] and [15]. The general idea
is to reduce the complexity of formulas under consideration and the overall
development by directly integrating frequently used basic operations of fine
structure into the underlying language. This will lead to a modified defini-
tion operator, and iterating this operator will give the Fα-hierarchy.
Our basic operations will be SX and IX , the Skolem function and the inter-
pretation function for a well-founded ε-structure X. Furthermore, we will
use the naming function N as a kind as inverse to I and the relations ε and a
well-ordering <X of X. Thus the structures we work with will have the form
〈X, IX , SX , N,X , ε, <X〉. For a subclass S0 of formulas φ of a language S yet
to be specified, these are going to have the following definitions (let φ ∈ S0,
∈ X, ~q ⊂fin x):

• I(x, φ, ~q) = {z ∈ x|φ(z, ~q)} for ~q ⊂fin x, otherwise ∅ by default

• If φ has m+ n free variables and ~q is of length n, then S(x, φ, ~q) =<X

−min{z ∈ x|∃x2, ..., xmφ(z, x2, ..., xm, ~q)} for ~q ⊂fin x if such z exists,
otherwise ∅ by default.

• 〈N(1, , z), N(2, , z), 〈N(3, i, z) : i < n〉〉 =<lex −min{〈y, ψ, ~p〉|I(y, ψ, p) =
z} for z ∈ X, where n is the number of free variables in φ and <lex

is the lexical ordering on triples 〈a, b, c〉, where a ∈ X, b is a suitable
formula, c ⊂fin X using <X on the first and third and some fixed,
natural ordering of the formulas for the second component. Hence, N
is a 3-adic function inverting the I-operator, where N(1, , z) gives a
<X-minimal underlying set y, then N(2, , z) the minimal index of a
formula ψ (given y) and then N(3, i, z) the i-th component of a <lex-
minimal ~p ⊂fin X (given y and ψ) such that I(y, ψ, ~p) = z for i ∈ ω.
If j is larger than the number of free variables of ψ, we setN(3, j, z) = ∅.

Remark: (1) These definitions make the implicite assumption that ~q ⊂fin
x is of the right length so that an expression like φ(z, ~q) makes sense. For
technical reasons, we extend it to the case where φ has only n free variables,
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yet ~q = 〈q1, .., qm〉 with m > n by simply replacing ~q by its first n compone-
nents. If m < n, we set qi := ∅ for m < i ≤ n.
(2) We will write N(z) instead of 〈N(1, , z), N(2, , z), 〈N(3, i, z)|i < n〉〉.
The reason for splitting the naming function into components is that we are
going to work with structures that are not necessarily closed under the pair-
ing function and will therefore not contain N(z) even if they contain every
single component. We will therefore also write N(z) ∈ X to indicate that all
components of N(z) are elements of X. Hence, N will be treated as a unary
function symbol, though it is formally 3-adic.
(3) By iteration of the S-operator, x2, ..., xm can be found as well. 〈z, x2, .., xm〉
will in general not be an element of our structure. Nevertheless, where
this simplifies the arguments, we usually treat the S-function as giving back
the whole finite sequence in this case, understanding 〈z, x2, ..., xm〉 ∈ X as
{z, x2, .., xm} ⊂ X by our convention.
In practice, these general Skolem and comprehension operators will be re-
stricted to triples where the first argument is a level of our finestructural
hierarchy. Accordingly, N(1, , x) will have to be a level of the hierarchy.

Definition 1: The language for the fine hierarchy is a first-order language
with countably many variable symbols vi, the logical symbols =, ∃, ∀, ¬, ∧,
∨, →, (, ), the ternary function symbols I, S and N , the binary relation ∈
and the ternary relation <.
By S0, we denote the set of quantifier-free S-formulas.
An S-term (S0-term) over a set X is then of the form I(x, φ, y), N(x) or
S(x, φ, y), where φ is an S-formula (S0-formula), x ∈ X and y ⊂fin X.
We fix a canonical linear ordering 〈φi|i ∈ ω〉 of the S0-formulas in order type
ω.

Remark: When we actually mention expressions of S, we commonly use
variable symbols from the meta-language like x, y, z instead of v1, v2, .... In
our opinion, this makes the formulas much more readable.

We are now ready to define our hierarchy. The possibility of passing to
the next level depends on some assumptions on the current level. We there-
fore formulate our definition with a stopping condition first and demonstrate
that it leads to a proper class afterwards.

Definition 2: (F -hierarchy)

13



• Fi = Vi for i ≤ ω. I, N and S, restricted to Fω, are empty functions.
S|Fω, I|Fω, N |Fω are simply ∅, <Fω is any linear well-ordering of Fω
in order type ω.

• If λ is a limit ordinal and Fι is defined for ι < λ, then Fλ :=
⋃
ι<λ Fι.

Furthermore, S|Fλ, I|Fλ, N |Fλ and <Fλ are simply the unions of their
respective predecessors.

• Now for the successor step: Suppose Fι is defined for ι ≤ α, and that
all these Fι are transitive, that ι1 < ι2 ≤ α implies Fι1 ⊂ Fι2 and
Fι1 ∈ Fι2. If any of these conditions fails, the construction stops. Then
Fα+1 is defined as {I(Fα, φ, ~p)|φ ∈ S0∧ ~p ⊂fin Fα}. I|Fα+1 and S|Fα+1

only have to be defined for triples containing the new level, i.e. triples
of the form 〈Fα, φ, p〉, φ an S0-formula, p ⊂fin Fα. They are then given
by the definition above. N |Fα+1 has to be defined for x ∈ Fα+1 − Fα;
for such an x, N(1, y, x) = Fα (for every y), while N(2, y, x) is (for
every y) the minimal S0-formula φ such that, for some ~q ⊂fin Fα, we
have I(Fα, φ, ~q) = x, and finally N(3, i, x) is the i-th component of the
<lex-minimal such vector ~q. If n /∈ {1, 2, 3} or n = 3 and i /∈ ω or ~q
does not have an i-th component, then N(n, i, x) := ∅. <Fα+1 is defined
as an end-extension of <Fα, where, for a, b ∈ Fα+1, we set a <Fα+1 b iff
N(a) <lex N(b), using ε on the first component, the ordering of formu-
las on the second and the lexical ordering according to <Fα on the third.

Convention: As the restricted well-orderings <Fα are easily seen to be
compatible in the sense that α < β implies <Fα⊂<Fβ , we can and will leave
out the index Fα when the structure in question is clear from the context.

Theorem: Lemma 3: Let α < β be ordinals. Then:
(a) Fα is transitive
(b) Fα ⊂ Fβ
(c) Fα ∈ Fβ

Proof: By simultaneous induction on α. For α = 0, all clauses are trivial.
Assume that (a)-(c) hold for all γ < α. If x ∈ Fα, α ≤ δ < β, then
x = {x ∈ Fδ|x ∈ a} ∈ Fβ. Hence Fα ⊂ Fβ. Also, Fα = {x ∈ Fα|x = x} =
{x ∈ Fδ|x ∈ Fα}, so Fα ∈ Fβ as well. (a) is trivial if α is a limit ordinal. If
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α = η + 1, then Fα consists of sets of the form I(Fη, φ, q), all of which are
subsets of Fη, which is a subset of Fα by induction. �

Corollary 4: Fα exists for every α ∈ On.

Proof: �

Each set first-order definable over Fα appears in the F -hierarchy finitely
many steps after α:

Lemma 5: (1) Let φ(x0, ..., xn) be an ε-formula with all free variables
shown. Then there is a natural number k and an S0-formula
φ∗(x0, ..., xn, xn+1, ..., xn+k) uniformly definable from φ such that for all a0, ..., an ∈
Fα:

(Fα, ε) |= φ(a0, ..., an)↔ Fα+k |= φ∗(a0, ..., an, Fα, .., Fα+k−1).

In particular, {〈a0, ..., an〉|(Fα, ε) |= φ(a0, ..., an)} = {〈a0, ..., an〉|Fα |=
φ∗(a0, ..., an, Fα, ..., Fα+k−1}.

Proof: We prove this by induction on the complexity of φ: If φ is ¬ψ,
ψ1 ∧ ψ2, ψ1 ∨ ψ2, then let φ∗ be ¬ψ∗, ψ∗1 ∧ ψ∗2, ψ∗1 ∨ ψ∗2, respectively.
Now suppose φ is ∃xψ(x, a0, ..., an). Then we first apply induction to ψ, then
add extra F -levels as a parameters and finally use the S-operator to eliminate
the existential quantifier. Hence:
Fα |= ∃xψ(x, a0, ..., an) iff
∃x ∈ Fαψ(x, a0, ..., an) iff
∃x ∈ Fαψ∗(x, a0, ..., an, Fα, ..., Fα+k−1 iff
∃x ∈ Fα+kx ∈ Fα ∧ ψ∗(x, a0, ..., an, Fα, ..., Fα+k−1).
The last formula can be expressed in Fα+k+1 as an S0-formula using the S-
operator.
�

This is basically what we need to see that the union of the F -hierarchy
is actually L, the universe of constructible sets.

Theorem 6:
⋃
α∈On Fα = L

15



Proof: ⊂: The definition of the F -hierarchy can be carried out within L as
the basic constructible operations are definable by ε-formulas. This allows
us to show inductively that Fβ ∈ L for any β ∈ On. The definition of a new
element over Fβ by the I-operator can also be emulated in L. Hence, any
element of

⋃
α∈On Fα will also be an element of L.

⊃: As L is the ⊂-smallest transitive class model of ZFC and we have
already seen F :=

⋃
α∈On Fα ⊂ L, we only have to check that the latter is a

transitive class model of ZFC. Transitivity is clear, as any element of F is
an element of some Fβ, which is transitive. Also, F contains all ordinals and
is hence a proper class.
To see that F |= ZFC, recall that a transitive class X is a model of ZFC if
X is closed under first-order definability and almost universal, i.e. any subset
of X is already a subset of an element of X. F is easily seen to be almost
universal, since any subset of F will already be a subset of some Fγ ∈ F .
Closure under first-order definability was demonstrated above. �

Remark: This result relativizes. See the next section.

It will be convenient in many places that we can restrict ourselves to
parameters with elements of the form Fγ in definitions rather than general
elements of F -levels. This is possible by the next lemma.

Lemma 7: For each x ∈ Fα+1, there are β0, ..., βn and an S0-formula ψ
such that x = I(Fα, ψ, 〈Fβ0 , ..., Fβn〉).

Proof: By induction on α. Suppose the lemma is true for elements of Fα.
Let x = I(Fα, φ(x1, ..., , xk), p), p = {p1, ..., pk} ⊂ Fα. By induction, there
are m ∈ ω, βji < α and φj such that pi = I(Fβim , φj, 〈Fβi1 , Fβi2 , ..., Fβim−1

〉) for
0 < i ≤ m, 0 < j ≤ k. Then also
x = {z ∈ Fα|φ(z, x1, ...xn)∧ x1 = p1 ∧ ...∧ xm = pm}, which is of the desired
form. �

Convention: Fα is {Fβ|β < α}.
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4.1 Relativization

Many important features of constructibility theory generalize to L-like struc-
tures which can make use of an extra predicate A in definitions. This can
be carried over to the F -hierarchy. As we will not make use of relativized
F -structures, we restrict ourselves to a short account. An approach to the
relativization of the fine hierarchy was also made in [42].

Definition 8: An SA0 -formula is a quantifier-free formula in the language
S amended with an extra predicate symbol A for an arbitrary class.

Definition 9: Define the basic constructible operations and relations SA,
IA, NA, <A for FA as in the first section with SA0 -formulas in place of S0-
formulas.

• FA
n := Vn for n ∈ ω

• FA
α+1 = {IA(FA

α , φ, ~x)|φ is an SA0 -formula and ~x ⊂fin FA
α }.

• If λ is a limit ordinal, then FA
λ =

⋃
ι<λ F

A
ι

All of the results and proofs given so far carry over to relativized lev-
els without any extra effort. Also, we will not make use of relativized F -
structures in this work. Nevertheless, we state and prove some of the follow-
ing in relativized form where this might be relevant for future considerations
and the relativization isn’t trivial. In cases where relativization merely leads
to a complication of notation, we leave it out.
We give a short account on how the FA-hierarchy relates to Jensen’s JA-
hierarchy. At the same time, we introduce the J-hierarchy, which will be
used in the second part.

4.1.1 FA and JA

The J-hierarchy is advantegous to Gödels Lα-hierarchy in several respects
when developing finestructure. We will need it in the second part for the
study of infinite time register machines. A good account on the properties of
this hierarchy can be found in [1]. Here, we restrict ourselves to the definition:
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Definition 10: Let X be any set, A a class. A function f : X → V is
rudimentary in A (rudimentary if A = ∅) if it is generated by the following
rules:

• For each c ∈ X, the constant function g(x) = c for x ∈ X is rudimen-
tary

• For each i ≤ n ∈ ω, the projection function g(〈c1, ..., , cn〉) = ci is
rudimentary

• The function f(x) = x ∩ A is rudimentary

• The function f(x, y) = {x, y} is rudimentary

• If f(x0, ..., xn−1) and g0(~y), ..., gn−1(~y) are rudimentary, then so is their
composition f(g0(~y), ..., gn−1(~y)).

• If g is rudimentary, then so is f(y, ~x) =
⋃
z∈y g(z, ~x).

The unique ⊂-minimal superset of X closed under rudimentary functions is
denoted by rud(X).

Definition 11:

• JA0 = ∅

• JAα+1 = rud(JAα ∪ {JAα })

• If λ is a limit ordinal, then JAλ =
⋃
ι<λ J

A
λ

Theorem 12: For every α ∈ On, A ⊂ V , we have FA
ωα = JAα .

Proof: It is easily checked that the proof by Koepke and van Eijmeren in
[15] for the case A = ∅ relativizes. �

The FA levels can thus be viewed as a refinement of the JA-hierarchy. One
should therefore expect that they form an appropriate setting for finestruc-
tural arguments.
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4.2 Fine Maps and Hulls

A crucial technique of any fine structure theory is the formation of hulls
and the consideration of maps between them that preserve basic functions
and relations. The F -hierarchy is constructed in such a way that such hulls
and maps become very canonical. A hull in the constructible hierarchy is
basically a closure under the constructible operations I, N and S. However,
by the way these operations were defined, this would be inconvenient as, for
example, the hull of an ordinal α would be α itself, not Fα, as one should
expect. Therefore we also close under the operations α→ Fα and Fα → α.

Definition 13: A class A ⊂ L is constructibly closed (cc) iff Fω ⊂ A and
A is closed under the basic constructible operations I, S and N .
For X ⊂ L, F{X} denotes the intersection of all cc-sets Z that are also
closed under the operations α → Fα and Fα → α for α ∈ On such that
X ⊂ Z. F{X} is called the constructible hull or the constructible closure of
X.

Equivalently, F{X} is the ⊂-smallest cc-superset of X.

In these hulls, the correspondence between levels and ordinals is now as
desired.

Proposition 14: Let X ⊂ L be a set. Then, for an ordinal α, we have
α ∈ X ↔ Fα ∈ X.

Proof: By definition. �

Proposition 15: Let X be a set of ordinals. Then max{F{X} ∩ On} =
max{X}. In particular, if p is finite, max{p} > µ, then F{µ ∪ p} = Fα
implies that α is a successor ordinal.

Proof: Let η = max{X}. For the first statement, observe that the hull
operations can only add subsets of Fη, hence no ordinal ≥ η can be added.
For the second, if α was a limit ordinal, there would be max{p} < ρ < α
which could not be an element of F{µ ∪ p} by the first observation. �

Proposition 16: For each α ≥ ω, Fα is cc.
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Proof: Fω ⊂ Fα follows from the fact that the F -levels form a ⊂-increasing
sequence of sets. Closure under S follows from the transitivity of Fα, closure
under I is clear since, if Fγ ∈ Fα, then Fγ+1 ⊂ Fα, and all elements S0-
definable over Fγ are elements of Fγ+1 by definition. Also, Fα is closed under
N , as each element was formed as the interpretation of some name. �

Definition 17: Let A and B be S-structures and suppose π : A → B is a
map. The π is called fine if it preserves S0-formulas and π|Fω = id|Fω.
If π is also bijective, we call it a fine isomorphism. In this case, we write
π : A ' B. If there is a fine isomorphism between A and B, we call them
isomorphic and simply write A ' B.
For SA-structures, π is accordingly called A-fine if it additionally preserves
SA0 -formulas. Usually, the A will not be mentioned when there is no ambigu-
ity.

Fine maps roughly correspond to Σ0-preserving maps in the classical fine
structure theory. As there, it will be important to consider maps with
stronger preservation properties. These correspond to hulls with stronger
closure properties, which we now define.

Definition 18: Let Z ⊂ Fα, p ⊂fin Fα. Z is constructibly closed up to p
(p-cc) iff Z is cc and for all S0-formulas φ, q ⊂fin Z with q <lex p:

• (a) I(Fα, φ, q) ∈ Fα implies I(Fα, φ, q) ∈ Z

• (b) S(Fα, φ, q) ∈ Fα implies S(Fα, φ, q) ∈ Z

If Z is p-cc for all p ⊂fin Fα, then Z is constructibly closed up to α, denoted
α-cc.

The easiest way to get α-cc sets is by truncation:

Proposition 19: If Z is a cc set and Fα ∈ Z, then Z ∩ Fα is α-cc.

Proof: That Z ∩ Fα is cc is clear. Since Fα ∈ Z and Z is cc, it follows
that I(Fα, φ, p) ∈ Z for any p ⊂fin Z and any S0-formula φ. Therefore, if
I(Fα, φ, p) is an element of Fα, it is also an element of Z ∩ Fα. The same
reasoning applies to S and N . So Fα ∩ Z is α-cc. �
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The main reason why α-cc sets are interesting is that they reflect Σ1.

Lemma 20: Let Z ⊂ Fα be α-cc, a0, ..., an ∈ Z. Then any statement of
the form ∃y0, ..., ymφ(a0, ..., an, y0, ..., ym) with φ(x0, ..., xm+n) an S0-formula
with all free variables shown that has witnesses in Fα has witnesses in Z and
vice versa.

Proof: Suppose b0, ..., bm ∈ Fα such that φ(a0, ..., an, b0, ..., bm). Then let
ci = S(Fα, φ, 〈a0, ..., an, c0, ..., ci−1〉) for 0 ≤ i ≤ m. By the existence of
b0, ..., bm, every ci is defined and we have φ(a0, .., an, c0, ..., cm). Since Z is
α-cc and is hence closed under S(Fα, , ), all ci are elements of Z.
The other direction is immediate since Z ⊂ Fα and S0-formulas are preserved
upwards. �

Now for the corresponding degree of preservation for maps.

Definition 21: π : Fα → Fβ is fine up to p ⊂fin Fβ (p-fine) iff it is fine
and rng(π) is p-cc. If π is p-fine for every p ⊂fin Fβ, i.e. if rng(π) is β-cc,
then π is fine up to Fβ.

The Σ1-reflection of α-cc sets is then turned into a Σ1-preservation prop-
erty of the map fine up to FA

α .

Lemma 22: Let π : FA
α → FB

β be fine up to FB
β , φ(x0, ..., xm, ..., xn) be an

S0-formula with all free variables shown. Then, for all a0, ..., am ∈ FA
α , there

are am+1, ..., an ∈ FA
α such that φ(a0, ..., an) holds iff there are bm+1, ..., bn ∈

FB
β such that φ(π(a0), ..., π(am), bm+1, ..., bn) holds.

Proof: This follows from the last lemma: As rng(π) is fine up to FB
β , it

reflects Σ1, hence the witnesses appear in the range of π and therefore in the
pre-image. So downwards preservation holds. Upwards preservation already
follows from the fact that π is fine. �

Maps with this higher degree of preservation have the nice property that
they can be lifted to the next level. This fact is important for the condensa-
tion lemma, but also in more advanced applications like the covering lemma
or the approximation theorem.
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Theorem 23: Assume σ : FD
δ → FE

η is fine up to FE
η . Then there is

a unique fine map σ+ : FD
δ+1 → FE

η+1 with the properties σ+|FD
δ = σ and

σ+(FD
δ ) = FE

η .

Proof: The idea is of course to let σ+ = σ on FD
δ and then to define

σ+(ID(FD
δ , φ, p)) = IE(FE

η , φ, σ[p]) for φ a S0-formula and p ⊂fin FD
δ . (Re-

call that σ[p] is the componentwise image of the finite sequence p under σ.)
By the demands on σ+ and the fact that, as a fine map, it must preserve the
I-operation, it is clear that this is the only possible candidate for σ+. So we
know that there is at most one map of this kind. We have to see that it does
indeed work. As a ∈ FD

δ can be represented as {z ∈ FD
δ |z ∈ a}, we can take

σ+(ID(FD
δ , φ, p)) = IE(FE

η , φ, σ[p]) to define σ+ everywhere.

First, we need to see that it is well-defined, i.e. that there is only one ’im-
age’ of x ∈ FD

δ+1 under σ+. So pick S0-formulas φ, ψ along with p, q ⊂fin FD
δ .

Then, since σ preserves Σ1-formulas:
ID(FD

δ , φ, p) 6= ID(FD
δ , ψ, q)

↔ FD
δ |= ∃x(φ(x, p)↔ ¬ψ(x, q))

↔ FE
η |= ∃x(φ(σ(x), σ(p)↔ ¬ψ(σ(x), σ(q)))

↔ IE(FE
η , φ, σ(p)) 6= IE(FE

η , ψ, σ(q)).
So ID(FD

δ , φ, p) = ID(Fδ, ψ, q) iff IE(FE
η , φ, σ(p)) = IE(FE

η , ψ, σ(q)), and σ+

is really a well-defined map from FD
δ to FE

η .

Claim: σ+|FD
δ = σ

Proof: Let ∈ FD
δ . Then σ+(a) = σ+(I(FD

δ , x ∈ y, a)) = I(FE
η , x ∈

y, σ(a)) = σ(a). �

Claim: σ+(FD
δ ) = FE

η .

Proof: σ+(FD
δ ) = σ+(I(FD

δ , ∅ = ∅, ∅)) = I(FE
η , x = x, ∅) = FE

η . �

Claim: z ∈ FD
δ ↔ σ+(z) ∈ FE

η for z ∈ FD
δ+1.

Proof: Let ND(z) = (FD
δ , φ, ~x), σ+(z) = IE(FE

η , φ, σ(~x)) ∈ FE
η . By as-

sumption on σ, σ+(z) ∈ rng(σ). So there is y ∈ FδD with σ+(z) = σ(y). But
then σ+(z) = σ+(y), so z ∈ FδD. �
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Claim: σ+ is fine.

Proof: We need to show that σ+ preserves D, ∈, <, I, S and N . This is clear
for elements of FD

δ . If x ∈ y ∈ FD
δ , where N(y) = 〈γ, ψ, ~q〉, then we have

FD
γ |= ψ(x, ~q), γ ≤ δ. As σ is fine, it follows that FE

η = σ(FD
δ ) |= ψ(σ(x)~q).

By definition of σ+, σ+(y) = I(σ(N(y)), hence σ(x) ∈ σ(y). Preservation
of I is immediate by construction of σ+. From this, it also follows that
D(x)↔ E(σ+(x)). The remaining operations will be handled separately.

Subclaim: σ+ preservesN , i.e. for x ∈ FD
δ+1, σ+(NFDδ+1(x)) = NFEη+1(σ+(x)).

Proof: As σ+ preserves I, it is clear that, for any x ∈ FD
δ+1,

IF
E
η+1(σ+(NFDδ+1(x))) = σ+(x). It remains to see that σ+(NFDδ+1(x)) is lexi-

cally minimal with this property. Assume there is a lexically smaller name.
We distinguish two cases according to whether the first component of this
name is FE

η or an earlier level of the FE-hierarchy. In the former case, the

existence of an S0-formula ψ̂ and a parameter ~q which form a pair lexically
smaller than the corresponding pair of σ+(NFDδ+1(x)) can be expressed as a
Σ1-formula over FE

η . In the latter, the same applies to the existence of all
three components. In both cases, this Σ1 statement is preserved downwards
by σ as σ is fine up to FE

η . This means that there is a name for x in FD
δ

which is lexically smaller than NFDδ (x), a contradiction.
�

It is now clear that σ+ preserves <, i.e. ∀x, y ∈ FD
δ+1(x < y ↔ σ+(x) <

σ+(y): < is the lexical order on minimal names. Minimal names are preserved
by the last subclaim, preservation of the order of ordinals and formulas is
clear, and as the parameters must be elements of FD

δ , the preservation of
their order follows from the the fact that σ is fine.

Subclaim: σ+ preserves SF
D
δ+1 .

Proof: First, we need to see that, for β, ~z ∈ rng(σ+), ψ an S0-formula,
ψ(x, ~z) has a witness in FE

β iff there is one for ψ(x, σ−1(~z)) in FD
σ−1(β). But as

β cannot be larger than δ, this follows again from the downwards preservation
of Σ1 by σ. Let w, ŵ be the <-minimal witnesses on the FD and the FE-side,
respectively.
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We need to demonstrate that σ+(x) = x̂. As σ+ preserves S0 and <, we must
have σ+(x) ≥ x̂. Again, x̂ < σ+(x), then this fact could be expressed as a Σ1-
statement over FE

η and then be pulled back to FD
δ , leading a contradiction.

�

All basic constructible operations are hence preserved by σ+. Thus σ+ is
indeed fine.
�

This concludes the construction of σ+ and hence the proof.
�

4.2.1 Condensation

We are now in the position to prove the following theorem, the condensation
lemma for the FA-hierarchy, an analogue to the condensation lemma for the
J-hierarchy, which is one of the most powerful tools of finestructure theory.

Theorem 24: Let A be a predicate, Z ⊂ LA be A-cc. Then there are α ∈
On and a class D such that Z := 〈Z, IA|Z, SA|Z,NA|Z, ε|Z,<A |Z,A ∩ Z〉
is isomorphic to FD

α via a fine map π. Furthermore, can choose D ⊂ FD
α .

Furthermore, π, α and D are unique with these properties.
Also, if A = ∅, then D = ∅, so cc-subsets of L are isomorphic to levels of the
F -hierarchy.

Proof: Uniqueness is clear, because if there is such a map at all, it can only
be the Mostowski collapse, which determines D, α as well.
To see existence, we proceed by induction on β := sup{On∩Z}. For β ≤ ω,
the set Z will itself be transitive and there is nothing to show.
If β is a limit ordinal, assume the theorem is true for all η < β. Each Z ∩FA

η

is A-cc and hence by induction isomorphic to some F
A(η)
α(η) . If x ∈ FA

γ ∩ FA
δ

and πγ,A, πδ,A are the collapsing maps for these respective structures, then

πγ,A(x) = πδ,A(x). Hence F
A(γ)
α(γ) is an initial segment of F

A(δ)
α(δ) for γ < δ,

thus we can form the union of these structures and let α∗ =
⋃
η<β α(η),

A∗ =
⋃
η<β A(η), πβ,A =

⋃
η<β πη,A. πβ,A : Z → FA∗

α∗ is then the desired
structure.
On the other hand, if β = η + 1 is a successor, then Z ∩ FA

η is isomorphic
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to some FA∗

η∗ via a fine map π∗ by induction. Furthermore, Z ∩ FA
η is η-

cc, hence π∗ is fine up to FA
η . Therefore we can lift π∗ up to a fine map

π+ : FA∗

η∗+1 → FA
η+1. This is already the structure we want, all that remains

to show is that rng(π+) = Z. But, as Z was cc, any element of Z had a
name in Z which is an element of FA

η and is hence unfolded in the lifting
construction. On the other hand, if z ∈ rng(π+), it is constructed from
elements of Z ∩ FA

η by basic operations, and hence ∈ Z.
�

The following general reflection properties will be relevant for the combi-
natorics in the section on elementary constructible combinatorics:

Lemma 25: (1) Let φ be an arbitrary ∈-formula. Then there is n ∈ ω
such that, for every ~x ⊂fin Fα, ~x ⊂ X ⊂ Fα we have
coll′′F{X ∪ {Fα} ∪ {Fα+1} ∪ ... ∪ {Fα+n}} |= φ(~̄x)↔ Fα |= φ(~x), where ~̄x is
the image of ~x under the collapsing map.
(2) With φ, ~x as in (1), there is n ∈ ω such that each fine map π : Fα+n → Fβ
preserves φ.

Proof: Using the S-operation for the extra F -levels, each ∈-formula φ can
be equivalently represented as an S0-formula ψ, which is preserved by fine
maps, particularly collapsing maps. �

4.3 Direct limits of FA-structures

In the proof of the covering lemma and the approximation theorem, it will
be crucial to extend a fine embedding to a larger domain. Suppose we have
π : Fα → Fβ fine, and let δ > α. The method we use here is to present
Fδ as a direct limit of a system consisting of structures and maps in Fα,
map the system over by π and unfold it again. To make this work, we need
to know that direct limits of systems consisting of (relativized) F -levels are
again (isomorphic to) F -levels.

Definition 26: 〈Ai, πij|i ≤ j ∈ I〉 is a fine system with index set 〈I,≤〉
iff, for i ≤ j, πij : Ai → Aj is a fine map and ≤ is a directed partial order on
I, so that the structures and maps form a directed system.
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Proposition 27: A fine system 〈Ai, πij|i ≤ j ∈ I〉 has a direct limit A

together with fine maps πi : Ai → A. The maps πij and πk for i, j, k ∈ I

commute in the sense that πj ◦ πij = πi for i ≤ j. Furthermore, A and the πi
are unique up to isomorphism with this property.

Proof: This is a general property of directed systems. See e.g. [12].�

Theorem 28: Let 〈Ai, πij|i ≤ j ∈ I〉 be a fine system with Ai = FEi
αi

and
direct limit A = (A, I∗, S∗, N∗, ε∗, E∗, <∗), πi|i ∈ I. If ε∗ is well-founded, then
there are α, E such that A ' FE

α .

Proof: First, note that two elements of A are equal iff they have the same
ε∗-predecessors: For if a 6= b ∈ A, then there are i, j ∈ I and ā ∈ Ai, b̄ ∈ Aj
such that πi(ā) = a, πj(b̄) = b. As ≤ is directed, there is k ≥ i, j in I, let
a′ = πik(ā), b′ = πjk(b̄). As Ak is an F -level, there must be c ∈ Ak such that
c ∈ a′ ↔ c /∈ b′. Hence, πk(c) ∈ a↔ πk(c) /∈ b.
As A is also well-founded, we know now that there is a unique transitive set
isomorphic to (A, ε∗), so we can, without loss of generality, assume that A is
itself transitive and that ε∗ is ε|A.
(1) ε|{πi(FEi

γ )|i ∈ I, γ < αi} is a well-order.

Proof: Obviously, ε is well-founded. To see that ε is transitive, we show
that πi(F

Ei
γ ) is transitive for i ∈ I: Let u ∈ v ∈ πi(F

Ei
γ ), pick i ≤ j ∈ I

such that u and v have pre-images ū and v̄ in Ai and Aj, respectively, so
that ū ∈ v̄ ∈ πij(FEi

γ ). The fine map πij preserves relativized F -levels and

transitivity, so πij(F
Ei
γ ) = F

Ej
ζ for some Ej, which implies ū ∈ πij(FEi

γ ) and

so, by application of πj, u ∈ πi(FEi
γ ).

To obtain the linearity of ε, let i, j ∈ I and γ < αi, δ < αj, then pick k ≥ i, j

by directedness. As above, πik(F
Ei
γ ) and πjk(F

Ej
δ ) are FEk

ρ , FEk
τ for some

ρ, τ ∈ On and Ek, respectively. By linearity of the FEk-hierarchy, we must
have πik(Fγ) ∈ πjk(F

Ej
δ ) or vice versa, or equality, all of which would be

preserved by the fine map πk. �

We will now show that the basic constructible operations are preserved
by the system maps πi. This will be done by simultaneous induction on the
well-founded relation ε.

We claim:
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• (2) Each πi(F
Ei
γ ) is of the form FE

ζ

• (3) I∗, S∗, <∗, ε∗, N∗ are equal to I, S,<, ε,N on FE
ζ

• (4) If φ is an SE0 -formula, p ⊂fin FE
ζ , then I∗(FE

ζ , φ, p) = I(FE
ζ , φ, p)

• (5) For x, y ∈ FE
ζ , x <∗ y iff x <E y

• (6) If φ is an SE0 -formula, p ⊂fin FE
ζ , then S∗(FE

ζ , φ, p) = S(FE
ζ , φ, p)

Proof: By induction on ε|{πi(FEi
γ )|i ∈ I, γ < αi}. For FEi

γ = ∅, there is
nothing to show. So let i ∈ I, γ < αi and assume that the statements hold
for all ε-smaller elements of ε|{πi(FEi

γ )|i ∈ I, γ < αi}.

Claim: (2) and (3) hold at (i, γ).

Proof: To see this, we make a case distinction according to whether or not
(i, γ) is a limit or a successor in the ordering < of the directed system.

Case 1: First, suppose (i, γ) is a <-limit.
In this case, we can find for (j, δ) < (i, γ) a (k, η) which is between these

elements. Consider
⋃

(j,δ)<(i,γ) πj(F
Ej
δ ). By construction, this is a relativized

fine level F Ê
ζ . Using the fact that every element of F Ê

ζ appears in one of the

F
Ej
δ , we conclude that πi(F

Ei
γ ) = F Ê

ζ . As the basic operations agree with the
corresponding operations of the limit structure on each of these levels, the
same applies to the union.

Case 2: If (i, γ) is a <-successor, proceed as follows. There must be

(j, δ) whose immediate <-successor is (i, γ). Set F Ê
ρ = πj(F

Ej
δ ), ζ := ρ + 1.

Without loss of generality, assume j ≥ i. By using the induction hypothesis,
we can deduce πi(F

Ei
γ ) = F Ê

ζ . Preservation is now clear. �

Now we take care of the remaining statements (4) to (6). Here, no case
distinction is necessary.
Claim: (4) holds at (i, γ).

Proof: Let φ(v0, ..., vn) be an S0-formula with all free variables shown, and

suppose ~y is a vector of length n of elements of F Ê
ζ . If x̄ ∈ FEj

αj , j from the
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index set, we need to see that πj(x̄) ∈ I∗(F Ê
ζ , φ, ~y) ↔ πj(x̄) ∈ I(F Ê

ζ , φ, ~y).
To see this, pick j large enough to guarantee that all elements of ~y have
pre-images in F

Ej
αj , denote these pre-images by ȳi.

Consequently πj(x̄) ∈ I∗(F Ê
ζ , φ, ~y)↔ x̄ ∈ I(F

Ej
γ , φ, ~̄y)

But this means that φ(x̄, ~̄y) holds in F
Ej
γ , and using the preservation of the

basic operations, this means that φ(~y, πj(x̄)) holds in F Ê
ζ , which is exactly

the condition for elements of I(F Ê
ζ , φ, πj(x̄)). �

Claim: (5) holds at (i, γ).

Proof: This follows by induction hypothesis from the preservation of mini-
mal names. �

Claim: (6) holds at (i, γ).

Proof: Let φ(x0, ..., xn) be an S0-formula with all free variables shown, and
take y0, ..., ym−1 from Fζ , where m ≤ n. We handle the cases where S returns
a default value or a minimal witness for the statement:
Case 1: SE(FE

ζ , φ, p) has default value ∅.
Pick some index j large enough so that there are pre-image ȳ0,..., ¯ym−1 for

y0,...,ym−1 under the system map for j in F
Ej
αj . We must have SEj(F

Ej
αj , φ, ȳ0, ..., ȳm−1) =

∅ by default as well, and since πj is fine, the same holds for S∗.
Case 2: SE(FE

ζ , φ, p) is a witness for ∃z ∈ Fζφ(z, p).
In this case, we proceed in the same manner: Pull back all of the (finitely
many) relevant parameters to a component of the system with sufficiently
large index, then use the fact that the limit maps are fine. �

All statements of the claim have been checked. �

Now the lemma is easy to prove. Considering
⋃
πj(F

Ej
δ ), where the union

is over all (j, δ) from the directed system, we clearly get a structure of the
form F F

θ . (Here, F is
⋃
πj[Ej]; note that, by the fact that the system maps

are fine, we must have πi[Ei] ⊂ πj[Ej] for i ≤ j in the ordering of indices.)
If this is isomorphic to the direct limit of the system, we are done. It is
also clear that this structure forms a subset of the direct limit structure A.
The only other possibility is hence that F F

θ is a proper subset of A. As the
operations in the limit structure have been demonstrated to be equal to the
constructible operations, we must then have A = F F

θ+1, which is sufficient. �

28



5 Basic constructible combinatorics in the F -

hierarchy

In this short section, we use the F -hierarchy of L to obtain some well-known
combinatorial statements about L. We consider first the continuum hypoth-
esis and the generalized continuum hypothesis originally proved to hold in
L by Gödel before turning to various strengthenings invented by Jensen, the
so-called ♦-principles. The combinatorial heart of the proof of all these state-
ments is the fact that condensation holds in the F -hierarchy. The original
proofs using Gödel’s hierarchy can be found in e.g. [1] or [3].

5.1 GCH

Convention: If s is a set of ordinals, s̄ denotes {Fα|α ∈ s} for the rest of
this section.

Definition 1: By CH (Continuum Hypothesis), we denote the statement
2ℵ0 = ℵ1.
By GCH (Generalized Continuum Hypothesis), we denote the statement
card(P(X)) = card(X)+, where κ+ denotes the cardinal successor of κ.

Theorem 2: CH holds in L.

Proof: : Let s ⊂ ω ∈ L. Consider π : F{s̄} →coll Fβ; the hull on the LHS
is countable, hence β < ω1. Obviously Fω := ω̄ = {Fi|i ∈ ω} ⊂ dom(π).
Therefore, we have π|Fω

= id|Fω
, which implies π(s̄) = s̄, and therefore s̄ ∈

Fβ. Thus we have s̄ ∈ Fω1 , hence s ∈ Fω1 for each such s. But card(Fω1) = ω1

in L, so L |= card(P(ω)) ≤ ω1, i.e. L |= card(P(ω)) = ω1.�

Of course, this argument easily generalizes as usual to higher power sets:

Theorem 3: GCH holds in L.

Proof: Let s ⊂ κ, where κ is an infinite cardinal in L. Consider
π : F{κ̄ ∪ s̄} → Fβ; since κ is a cardinal, the hull is again of cardinality
< κ+, so β < κ+; since s is a subset of the transitive part of the hull, we have
π(s) = s as well, so s ∈ Fβ, card(P(κ)) ≤ κ+, thus L |= card(P(κ)) = κ+.�
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5.2 The diamond principle

We recall some basic definitions. Keep in mind that, by our definition of
hulls, we may and will confuse α with Fα wherever it is convenient to do so.

Convention: For A ⊂ On, lim(A) denotes the set of limit points of A,
i.e. {β ∈ On|sup{A ∩ β} = β}.

Definition 4: For α an ordinal, C ⊂ α is club in α if:
(i) B ⊂ C, sup(B) < α implies sup(B) ∈ C.
(ii) If γ < α, then there is β ∈ C with β > γ.

Definition 5: For κ a regular cardinal, S ⊂ κ is stationary in κ if for
every C ⊂ κ club in κ, we have S ∩ C 6= ∅.

Definition 6: For a regular uncountable cardinal κ, ♦(κ) denotes the
following statement:
There is a sequence 〈Sα|α < κ〉 such that
(i) Sα ⊂ α for α < κ
(ii) For each A ⊂ κ, {α < κ|A ∩ α = Sα} is stationary in κ

Theorem 7: ♦(ω1) holds in L.

Proof: We simultanously define a sequence of clubs and a sequence of subsets
in α, namely 〈Cα, Sα〉. Set 〈C0, S0〉 = 〈Cα+1, Sα+1〉 = 〈∅, ∅〉. For α a limit
ordinal, let 〈Cα, Sα〉 be the <L-minimal pair such that Cα is club in α and
{µ < α|Sµ = Sα ∩ µ} ∩ Cα = ∅ if it exists, and 〈∅, ∅〉, otherwise. We will
prove that 〈Sα|α < ω1〉 is a ♦-sequence.
Suppose for the sake of a contradiction that there is a <L-minimal pair 〈C, S〉
in L such that C is club in ω1, S ⊂ ω1 and for no γ ∈ C, we have S∩γ = Sγ.
Choose n ∈ ω large enough for the following to work. Consider F{〈C, S〉 ∪
{Fω1 , Fω1+1, ..., Fω1+n}} := H1. Since H1 is countable, it is bounded below
ω1, say by β1. If H1 ∩ On 6= β1, construct F{H1 ∪ β̄1} := H2. Define β2

from H2 as we defined β1 from H1. Continuing in this manner (eventually
taking a union of all hulls if necessary), we get a countable hull H such that
〈C, S〉 ∈ H, H ∩ ω1 := β ∈ On, H |=’C is club in β’, H |=’S ⊂ β’ and H
knows about the defining properties of 〈C, S〉. Obtain π : H →coll Fγ so that
π(C) = C ∩ β, π(S) = S ∩ β and the 〈π(C), π(S)〉 has the same defining
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properties as 〈C, S〉. So by absoluteness of the relevant notions, we have
Sβ = S ∩ β and β ∈ C (since C is closed, π(C) ⊂ C and sup{π(C)} = β).
This contradicts our assumption on S and C. �

This proof strategy works again well in the general case.

Theorem 8: ♦(κ) holds in L for every regular uncountable cardinal κ.

Proof: Define a sequence {〈Cα, Sα〉|α < κ} as above, letting 〈Cα, Sα〉 for
limit α be the <L-minimal pair such that Cα is club in α, Sα ⊂ α and
{β < α|Sβ = Sα ∩ β} ∩ C = ∅ if it exists and 〈∅, ∅〉 otherwise. 〈Sα|α < κ〉
will be our ♦-sequence.
Otherwise, take again 〈C, S〉 <L-minimal witnessing the failure of ♦(κ) as
above. Choose n ∈ ω sufficiently large and form the hull
H1 := F{〈C, S〉 ∪ {Fκ, Fκ+1, ..., Fκ+n}}. Again iterate through ω if necessary
to arrive at a hull H such that H ∩ κ ∈ On. Take the collapse π : H → Fγ
and continue as in the ω1-case. �

An important strengthening of the ♦-principle is Jensens ♦+. One ap-
plication is his proof that the Kurepa hypothesis holds in L (indeed in all
models of ZFC + ♦+).
By P(X), we denote the powerset of X.

Definition 9: ♦+(ω1) denotes the following statement:
There is a sequence 〈Sα|α < ω1〉 such that for α < ω1

(i) Sα ⊆ P(α)
(ii) card(Sα) ≤ ω
(iii) for each X ⊆ (ω1), there is ω1 ⊇ B ↑ω1 with X∩α, B∩α ∈ Sα whenever
α = sup(B ∩ α).

We give a proof of ♦+ closely following the usual strategy (see e.g. [1]) to
demonstrate how more delicate combinatorics not relying on full fine struc-
tural techniques can be carried out in the F -hierarchy quite naturally. Extra
stages are sometimes put into the hulls to ensure preservation of properties
not S0-expressible at the stage one is currently working in. We make this
idea precise in the following definition and convention before proceeding.
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The following concept is useful for reflecting properties of high levels at
lower stages of the hierarchy.

Definition 10: Let z be the free variable of φ, α < β be ordinals. Then
Sα(Fβ, φ, x̄) := S(Fβ, φ∧z ∈ Fα, x̄). For X ⊆ Fβ, Fα{X} denotes the closure
of X under I and Sα.

Definition 11: Let X ⊆ Fα. Then we call
Hω
α{X} := Fα{X ∪ {Fα+i|i ∈ ω}} the elementary hull of X in Fα. Members

of Hω
α{X} are called Fα-definable from X, or simply Fα-definable if X = ∅.

Proposition 12: Let φ be any PL1-formula, X ⊆ Fα, z ∈ Hω
α . Then

Fα |= φ(z)↔ Hω
α |= φ(z).

Proof: : By a previous lemma, any first order property over Fα can be
expressed by S0-formulas with finetely many extra stages above Fα added
as parameters. Therefore, the LHS is closed under Skolem functions for all
PL1-formulas and hence an elementary submodel of the RHS. �

The following basic lemma is especially important in application of fine
structural arguments at low levels of the hierarchy.

Lemma 13: Assume V = L. Then:
(i) Let Z ⊆ Fω1 be constructibly closed up to Fω1. Then there is α ≤ ω1 such
that Z = Fα.
(ii) Let Z ⊆ Fω2 be such that Hω

ω2
{Z} is constructibly closed up to Fω2. Then

there is α ≤ ω1 such that Z ∩ Fω1 = Fα.

Proof: : (i) By constructible closure, we can find for any F -stage in Z an-
other F -stages that contains it. So the ordinal height of Z is a limit ordinal.
Furthermore, Z satisfies the assumptions of the condensation lemma, and
is thus isomorphic to a fine level. So we only have to show that this fine
level is in fact Z itself, i.e. that Z is transitive. For this, take any x ∈ Z.
Also take Fβ ∈ Z minimal such that x ∈ Fβ. Since x ∈ Z ⊆ Fω1 , x is
countable. So there is g ∈ L such that g : ω →surj x. This g is a subset
of ω × x ∈ Fω1 . By the above proof of GCH, actually g ∈ Fω1 . Define f to
be the <L |Fω1-minimal such g. Since enough stages above Fβ are available,
we can express the defining properties of the g in Fω1 by an S0-formula and
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thus use S(Fω1 , , ) with parameter x to find f . So f ∈ Z. Of course, we
have ω ⊂ Z. So we can use the Skolem function again to get f(i) for each
particular i ∈ ω. But then x = {f(i)|i ∈ ω ⊂ Z}, qed.
(ii) By Proposition 12, Z |=”Fω1 is the only fine level indexed by an uncount-
able cardinal” and so we have Fω1 ∈ Z. Now it is obvious that Z̄ := Fω1 ∩X
is closed under S(Fω1 , , ) and therefore Z̄ is elementary in Fω1 , so we can
apply (i) to conclude the proof. �

Theorem 14: ♦+(ω1) holds in L.

Proof: : By lemma 13 (i), we have for each α < ω1 a β := β(α) < ω1 such
that Hω

ω1
{{Fα}} = Fβ. By the corresponding proof, there is f : ω →surj α

in Hω
ω1

, and α is countable inside that structure. Our ♦+(ω1)-sequence
〈Sα|α < ω1〉 can be thought to consist of the subsets of α definable from
{α}. This is made precise by setting Sα := P(α)∩Hω

ω1
. This obviously satis-

fies (i) from definition 9 and (ii) as well (since already Hω
ω1
{α} is countable).

Also 〈Sα|α < ω1〉 ∈ Hω
ω2
{∅}, being definable by a PL1-formula inside Fω2 .

We are going to prove that this sequence satisfies ♦+(ω1).
Suppose otherwise. So there is Y ⊂ ω1 such that for each B ↑ω1 , there is
γ ∈ lim(B) such that not both B ∩ γ and X ∩ γ are in Sγ. Y ∈ L since we
are assuming V = L and so we can let X be the <L-minimal such set. This
X is Fω2-definable.
Next, we define a chain 〈Nη|η < ω1〉 of elementary hulls in Fω2 and a conti-
nous sequence 〈αη|η < ω1〉 ↑ω1 of ordinals.
Set N0 := Hω

ω2
{∅}, α0 = ω1∩N∅. For η a limit ordinal, Nη :=

⋃
ι<ηNι, αη :=⋃

ι<η αι. At successor stages, set Nη+1 := Hω
ω2
{Nη ∪ {Nη}}, αη := ω1 ∩Nη+1.

Note that, by lemma 13 (ii), Fω1 ∩Nη is a countable F -level, and in particu-
lar transitive. So ω1 ∩Nη is really an ordinal in each step and the definition
makes therefore sense. By Proposition 8, all these hulls satisfy the same
first-order formulas. Denote by πη : Nη → Fδ(η) the transitive collapse, so
πη(ω1) = αη, πη(X) = X ∩ αη for η < ω1. Let B := {δ(η)|η < ω1} for short.
B is obviously an unbounded set of countable ordinals. We will show that it
is a counterexample to our assumption that no such set can satisfy ♦+(ω1)
for X.
Choose some limit point γ of B. Clearly, αη < δ(η) since αη is an initial
segment of the ordinals of a model of height δ(η). Furthermore Nη ∈ Nη+1

and Nη ⊂ Nη+1, so Fδ(η) ∈ Nη+1. Since Nη is countable for each η < ω1, δ(η)
is countable as well. But then, δ(η) is a countable ordinal of Nη+1 and hence,
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by definition of αη+1, a member of αη+1. Thus all limit points of B are also
limit points of the sequence of the α’s. In particular, we may suppose that
γ = αθ for some limit ordinal θ < ω1.
Since all concepts involved in this definition are absolute between ZF−-
models, so we can carry it out inside Nθ with parameter Fδ(θ) to get B ∩ γ.
Since γ = αθ = πθ(ω1), γ is uncountable in Fδ(θ), while we have observed
above that α is countable inside Fβ(α) for each α < ω1, so in particular γ is
countable inside Fβ(γ). That means that a new bijection must have entered
the defining process of the fine hierarchy between δ(θ) and β(γ) and thus
δ(θ) < β(γ). But β(γ) is a limit ordinal and Fβ(γ) is a model of ZF−, so
carrying out the definition inside Fβ(γ) gives B ∩ γ ∈ Fβ(γ). Furthermore
X ∩ γ = πθ(X) ∈ Fδ(γ) ⊂ Fβ(α). So we have X ∩ γ, B ∩ γ ∈ Sα, which
contradicts our assumption on X.
So there is no such X and ♦+(ω1) holds in L. �
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6 Extensions of embeddings

Having proved the relevant properties of directed systems in section 4.3, we
now turn to the extension construction. The main importance of this lies
in the fact that it allows to code maps between class-sized structures by
maps between initial segments of these classes that are sets. The obtained
extenders are hence restrictions of the class-sized map to sets and hence sets
themselves. These initial segments then satisfy a similar purpose as ultrafil-
ters in the classical fine-structure theory of L and core models.

We begin by defining a directed system D with direct limit LA and then
a class of important subsystems that will be used for representing levels of
the FA-hierarchy.

Definition 1: Set IA := {(µ, p)|µ ∈ On, p ⊂fin {FA
ζ |ζ ∈ On}}, (µ, p) ≤IA

(ν, q) iff µ ≤ ν, p ⊆ q. With each (µ, p) ∈ IA, we associate the unique

transitive structure F
A(µ,p)
α(µ,p) ' FA{Fµ∪p}, and let πµ,p : F

A(µ,p)
α(µ,p) → FA{Fµ∪p}

be the inverse collapsing map. For (µ, p) ≤IA (ν, q) ∈ IA, the canonical

embedding πAµ,p,ν,q : F
A(µ,p)
α(µ,p) → F

A(ν,q)
α(ν,q) is given by πAµ,p,ν,q := π−1

ν,q ◦ πµ,p as
explained in the following diagram:

DA := 〈FA(µ,p)
α(µ,p) , π

A
µ,p,ν,q|(µ, p) ≤IA (ν, q) ∈ IA〉 is then a fine system with direct

limit LA.

Similarly, we can present initial segments of the FA-hierarchy, granted
appropriate conditions.
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Definition 2: FA
α is a base for FA

δ iff, for any µ < α, p ⊂fin FA
δ , the

transitive collapses A(µ, p) and F
A(µ,p)
µ,p of A∩FA{FA

µ ∪ p} and FA{FA
α(µ∪p)},

respectively, are elements of FA
α .

Remark: Of course, if A = ∅, then the first condition is vacuous; hence
Fα is a base for Fδ iff coll′′F{Fµ ∪ p} ∈ Fα for µ < α, p ⊂fin Fδ.

Definition 3: Let FA
α be a base for FA

δ . We set IAαδ := {(µ, p)|µ <
α, p ⊂fin FA

δ }. Also, (µ, p) ≤IAαδ (ν, q) iff µ ≤ ν and p ⊂ q. With each

(µ, p) ∈ IAα,δ, we associate the structure F
A(µ,p)
α(µ,p) as before. For (µ, p) ≤ (ν, q) ∈

IAαδ, the map πAµ,p,ν,q : FA(µ,p)
µ,p → FA(ν,q)

ν,q is defined as above.

Then DAαδ := 〈FA(µ,p)
µ,p , πAµ,p,ν,q|(µ, p) ≤IAαδ (ν, q) ∈ IAαδ〉.

Convention: When it is clear which order relation is meant, the sub-
scripts in ≤IA , ≤I etc. are usually dropped. The same applies to the sub-
and superscripts for index sets, system maps and systems.

Now we describe the extension construction. Fix FA
α , FA

δ such that FA
α

is a base for FA
δ and let E : FA

α → FB
β be fine.

D := DAαδ is then a directed system with limit FA
δ . As FA

α was a base for FA
δ ,

we have that F
A(µ,p)
α(µ,p) ∈ D implies F

A(µ,p)
α(µ,p) ∈ FA

α . Also note that E-images of

sets of the form FZ
ι ∈ FA

α for ι < α will be of the form FZ′

ι′ if Z ∈ FA
α , which

is guaranteed for our F
A(µ,p)
α(µ,p) by the definition of a base.

The same applies to the system maps:

Lemma 4: (µ, p) ≤ (ν, q) implies πAµ,p,ν,q ∈ FA
α .

Proof: Let p̄1, p̄2 be the pre-images of p and q under πAµ,p and πAη,q, respec-

tively. πAµ,p,ν,q(x) = y holds for x ∈ FA(µ,p)
α(µ,p) , y ∈ FA(η,q)

α(η,q) iff there are an S-term

t, ~z ⊂fin FA
µ with x = t(p̄1, ~z), y = t(p̄2, ~z). But the existence of such ~z, t can

be expressed as a Σ1-formula over some FA
τ for τ < α sufficiently large (i.e.

large enough so that it contains p̄1, p̄2, FA
µ , F

A(µ,p)
α(µ,p) and F

A(ν,q)
α(ν,q) ), and hence

as an S0-formula over FA
τ+1. This implies that πAµ,p,ν,q ∈ FA

τ+2 ⊂ FA
α , since α

is a limit ordinal. �
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This allows us to map each structure and map in D over by E. The image
D∗ will converge to the intended target structure. Set F

A∗(µ,p)
α∗(µ,p) = E(F

A(µ,p)
µ,p ),

π
A∗(µ,p)
α∗(µ,p) = E(π

A(µ,p)
µ,p .

Lemma 5: D∗ is a directed system.

Proof: The property of the maps πAµ,p,ν,q being fine can be expressed over

F
A(ν,q)
α(ν,q) by a Π1-formula. �

Denote the direct limit of D∗ by A = 〈A, I∗, S∗, N∗, <∗,∈∗〉, and let
(π∗µ,p|(µ, p) ∈ IAαδ) be the system maps.
We define a fine embedding σ of FB

β into A: If x ∈ FB
β , pick an index (µ, 0)

such that E(F
A(µ,0)
α(µ,0) ) = E(FA

µ ) 3 x, then let σ(x) = π∗µ,0(x).
Claim: σ is well-defined, i.e. the definition of σ is independent of the

choice of µ. Furthermore, σ is fine.

Proof: If we take µ1 < µ2 as required by the definition, π
A(µ2,0)
µ2,0

will be the

identity on F
B(µ1,0)
α(µ1,0) and hence σ will lead the same image for elements of

F
A(µ,0)
α(µ,0) .

To see that σ is fine, it suffices to observe that it is the increasing union of
the fine maps π∗µ,0. �

Claim: σ[FB
β ] is an initial segment of A, i.e. if x ∈ FB

β and y ∈ A with
y ∈ x, then y ∈ σ[FB

β ].

Proof: Let (µ, 0) be an index, π∗µ,0(y) an element of FB
β . Suppose that z ∈

π∗µ,0(y). We need to see that z ∈ FB
β . To see this, pick an index (ν, q) ≥ (µ, 0)

such that z has a pre-image z̄ under π∗ν,q. Now πµ,0,ν,q|FA(µ,0)
µ = id|FA(µ,0)

µ ,

hence π∗µ,0,ν,q|F
A∗(µ,0)
α∗(µ,0) , so z̄ ∈ y and hence, applying the fine map π∗ν,q, we get

indeed z = π∗µ,0(z̄) ∈ σ[FB
β ]. �

This means that, up to isomorphism, FB
β is an initial segment of A. So

assume without loss of generality that FB
β is an initial segment of A.

Now we can define a map πE from FB
δ to A: If x ∈ FA

δ , pick µ, p so that
x ∈ rng(πµ,p) and let πE(x) = π∗µ,p(E(π−1

µ,p(x))).
The following diagram shows what is going on:
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Claim: πE(x) does not depend on the choice of µ and p. Furthermore,
πE is fine.

Proof: First, let x ∈ FA
δ and (µ1, p1) and (µ2, p2) be as required in the defi-

nition. Let x1, x2 be the pre-images of x under πµ1,p1 and πµ2,p2 , respectively.
By the definition of the index set, (max(µ1, µ2), p1∪p2) =: (µ, p) is an index.
Let x3 := π−1

µ,p(x). Then we must have x3 = πµ1,p1,µ,p(x1) = πµ2,p2,µ,p(x2),
hence the definition of πE gives the same value for both choices of an index.
That πE is fine now follows immediately from the above commutative dia-
gram. �

Claim: πE ⊃ E.

Proof: Let x ∈ FA
α . Since α is a limit ordinal, there must be µ < α such

that x ∈ FA
µ . But F

A(µ,0)
α(µ,0) = FA

µ and πµ,0 = id|FA
µ . Consequently π∗µ,0 is the

identity on E(FA
µ ), hence πE(x) = E(x), as desired. �

This concludes the construction.
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Definition 6: The structure M constructed above is the extension of FA
δ by

E, denoted Ext(FA
δ , E). If this structure is well-founded, it is isomorphic to

some FC
γ , in which case we identify the extension with its transitive collapse.

πE : FA
δ → M is the extension map for FA

δ , E.

The next lemma holds as well for the relativized extension construction.
But since the proof is virtually identical and we will only use it for the case
where the extra predicate is ∅, we state and prove it only for this case.

Lemma 7: Suppose Ext(Fγ, E) is well-founded, say ' Fδ. Then the
extension map πE : Fγ → Fδ is fine up to Fδ.

Proof: Clearly, πE[Fγ] is constructibly closed, as it is a fine image of a con-
structibly closed structure. So we need to check that interpretation and the
Skolem function behave according to the definition.
Denote by D the directed system used to represent Fγ, and by D∗ the mapped
directed system with direct limit Fδ. πµ,p and π∗µ,p are the limit maps for com-
ponents of D, D∗, respectively.
First, suppose we have an S0-formula φ and a finite vector ~x ⊂fin Fγ with the
property that v := I(Fδ, φ, π

E(~z)) ∈ Fδ. Pick (µ, p) ∈ D∗ with πE(~z)∪{v} ⊂
rng(π∗µ,p), let z̄ be the pre-image of ~z under πµ,p, y the pre-image of v under
π∗µ,p. This means that, in Fδ, the Π1-formula ∀x(x ∈ v ↔ φ(E(~z), v)) holds,
which uniquely characterizes v. But π∗µ,p, being fine, preserves Π1-statements
downwards, so that E(Fα(µ,p)) = Fα∗(µ,p) |= ∀x(x ∈ y ↔ φ(E(z̄), x)). Now,
there are ω many F -levels containing Fα(µ,p) in the domain of the fine map
E, so that E restricted to Fα(µ,p) is elementary. Hence the statement
ψ := ∃z∀x(x ∈ z ↔ φ(E(z̄), x)) that holds in Fα∗(µ,p) must also hold in
Fα(µ,p), and as y is the only witness for ψ, we must have y ∈ E[Fα(µ,p)].
Let ȳ := E−1(y), ŷ := πµ,p(ȳ). Then πE(ȳ) = y by definition of πE, so
y ∈ rng(πE), as desired.

Now we take care of the S-operation. Let φ(x0, ..., xn) be an S0-formula with
all free variables shown, pick a0, ..., am ∈ rng(πE) ⊂ Fδ, where m < n, and
suppose that there is b ∈ Fδ such that there are c1, ..., cn−m−2 in Fδ with
φ(a0, ..., am, b, c1, ..., cn−m−2). Equivalently, S(Fδ, φ, (a0, ..., am)) is defined
and not set to ∅ by default. Without loss of generality, let b be <Fδ -minimal
with this property and hence equal to S(Fδ, φ, (a0, ..., am)). Let ā0, ..., ām
be the pre-images of a0, ..., am under πE. Once again, take (µ, p) such that
{ā0, ..., ām} ⊂ Fα(µ,p), {b, c1, ..., cn−m−2} ⊂ rng(π∗µ,p). Let b∗, c∗0, ..., c

∗
n−m−2 be
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the pre-images of b, c0, ..., cn−m−2 under π∗µ,p. Then:
Fα∗(µ,p) |= ∃z1, ..., zn−m−2φ(a0, ..., am, b

∗, ..., zn−m−2). Also:
Fδ |= ∀x(x <Fδ b→ ¬∃z1, ..., zn−m−2φ(a0, ..., am, x, ..., zn−m−2)).
This is preserved downwards by π∗µ,p, so
Fα∗(µ,p) |= ∀x(x <Fα(µ,p)

b∗ →
→ ¬∃z1, ..., zn−m−2φ(π∗µ,p(a0), ..., π∗µ,p(am), x, z1, ..., zn−m−2)). By these two
facts, b∗ is uniquely characterized. As in the first part, E is elementary
when restricted to Fα(µ,p) and hence we must have b∗ ∈ E[Fα(µ,p)]. If b̄ is the

pre-image of b∗ under E, then b̂ := πµ,p(b̄) is a pre-image of b under πE. �
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7 The Covering Lemma for L

7.1 The Statement

It is well-known that there can be no elementary embedding π : V → V
from the universe to itself. It follows that the existence of an elementary
embedding π : L→ L implies that L and V must be quite different. This is
indeed the case. Let us abbreviate the statement ’There is π : L →el L’ by
’0]’. One of many consequences of 0] is that all uncountable cardinals (of V )
are inaccessible in L - so V and L have a very different structure.
It is natural to ask the other way round: How similar must V and L be in the
absence of such an embedding, abbreviated ¬0]? The answer to this question
is given by Jensen’s covering lemma (CL):

¬0]: Let X ⊂ On be uncountable. Then there is Y ∈ L such that X ⊂ Y
and cardL(X) = cardL(Y ).

This has numerous consequences on the cardinal and ordinal structure of
L.
For example, suppose κ is a singular cardinal and let X = 〈γi|i < θ〉 be
a cofinal sequence in κ with θ < κ. As κ is singular, we have κ > ℵ1, so
we can pass from X to another cofinal sequence X̂ in κ with cardinality
ℵ1 ≤ card(X̂) =: θ̂ < κ. Applying the covering lemma, we get X̂ ⊂ X̃ ∈ L
such that θ̃ := card(X̃) = card(X̂). Now, κ∩ X̃ will be a cofinal sequence in
κ of length θ̃ < κ in L, so κ is singular in L as well, and we have shown that,
under ¬0], singular cardinals are also singular in L. (Compare this with the
fact stated above that under 0], all cardinals are inaccessible in L.)

Now, let κ be a cardinal, λ := (κ+)L be the L-successor of κ. It is easy
to see that cf(λ) ≥ κ: Otherwise, pick a cofinal sequence X := 〈γi|i < θ〉
in λ with ℵ0 < θ < κ. Covering gives Y ⊃ X with card(Y ) = card(X) and
Y ∈ L. This means that λ is singular in L, but as L |= ZFC, no successor
cardinal can be singular in L.

In particular, it follows that if κ is singular, then (κ+)L = κ+: For
cf((κ+)L) ≥ κ implies cf((κ+)L) > κ for κ singular (as cofinalities are always
regular), and hence we must have cf((κ+)L) = (κ+)L. Now (κ+)L = κ+ is
immediate.
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The last fact, asserting that L-successors of singular cardinals are the
same as in V , is also known as the weak covering property. While this seems
to be a rather weak corollary in the realm of L, it becomes in fact the primary
goal when one tries to generalize covering ideas to larger core models.

7.2 The Proof Idea

CL was originally proved in [23]. Other versions appeared using Silver ma-
chines [19], Σn-Skolem functions [11] and the fine hierarchy [14]. A good
account on the classical proof is [31]. The general strategy is as follows: As-
sume ¬0] and that CL fails. Let X ⊂ On be a counterexample with minimal
supremum β, so that X ⊂ Fβ. Form the constructible hull F{X} of X and
collapse it to some constructible level by E : Fα → F{X} ⊂ Fβ. We attempt
to extend E to a larger domain. Let us ignore for a moment the question
of well-foundedness of the extension; as we are working under ¬0], it must
be impossible to form Ext(L,E). Hence there must be some stage Fδ such
that Fα is not a base for Fδ. This is witnessed by a lexically minimal pair
(µ, p) ∈ α × F<ω

δ . We will show that under these conditions, Fδ is already
generated by these parameters. These parameters are elements of some Fγ,
γ < δ and can hence be mapped by the extension map for Ext(Fδ−1, E),
which exists by choice of δ. The hull of the images contains X as a subset
and can be mapped bijectively into some ordinal ζ < β. This allows us to
construct a counterexample to covering with smaller supremum than β, a
contradiction.
The problem is of course how to guarantee the well-foundedness of the ex-
tended structures. The natural approach is to add to X witnesses for po-
tential ill-foundedness, so that each ill-founded sequence in an extension is
actually in the range of the extension map and can hence be pulled back to
L, giving a contradiction. This could be achieved e.g. by demanding that X
is constructibly closed and that X is ω-closed, i.e. Xω = X. If it isn’t, one
can pass to an appropriate superset. If card(X) = κ, this superset can be
chosen to be of cardinality ≤ κω. However, if κω > κ, the covering set given
by this strategy will be larger than the original set X. If we want a covering
set of the same size, we need to avoid the use of ω-closure in the argument.
This was used to ensure the well-foundedness of the extension by allowing to
pull back every witness for non-well-foundedness of the extended structure
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to the original structure, leading to a contradiction. The crucial observation
for a proof of the full covering lemma is that it is quite unnecessary for this
purpose to add all ω-sequences: A small number of canonical witnesses is
sufficient. That is the idea behind the proof in the next section.

Some preliminary steps allow us to focus on a seemingly special case which
is convenient in several respects. The following does not use any assumptions
on 0].

Assume that CL fails. Then there is an uncountable set Z ⊂ On such
that for all Y ⊃ Z with Y ∈ L, card(Y ) > card(Z). Let β be minimal
such that there is a counterexample X ⊂ On with β := sup{X}. Now let
additionally X ⊂ β be a counterexample of minimal cardinality µ. As X is
uncountable, we can pass from X to X ′ := X ∪ ℵ1 without increasing the
cardinality of X, and any covering of X ′ will also cover X. Hence we may
assume without loss of generality that ℵ1 ⊂ X.

Theorem:

1. There is no X ⊂ Y ∈ L with cardL(Y ) < β.

2. β = cardL(β)

3. µ+ < β

4. µ is regular.

Proof:

1. Assume otherwise, let Y be a counterexample, cardL(Y ) = κ, let f ∈ L
such that f : κ →surj Y . Let Ȳ be the pre-image of Y under f .
cardL(Ȳ ) = cardL(Y ) = κ < µ, and sup{Ȳ } ≤ κ < β, so by induction,
there must be Ȳ ⊂ Ŷ ∈ L with cardinality ≤ κ + ℵ1. This implies
X ⊂ f [Ŷ ] ∈ L, hence X is not a counterexample.

2. This follows by the same argument: If β could be collapsed to κ < β
by a map f in L, then X could be pulled back to κ, contradicting the
minimality of β.
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3. Since X is a counterexample to CL, and X ⊂ β, card(X) = card(β)
is impossible. So µ < β. Now, as β is the supremum of X, β must be
singular and cannot be a successor cardinal, in particular not µ+.

4. We argue by contradiction. Suppose µ is singular, cf(µ) := λ < µ,
then X =

⋃
ζ<λXζ with card(Xζ) < µ and Xζ ⊂ β. Then no Xζ can

be cofinal in β, so already sup{Xζ} < β for ζ < λ. By minimality
off β, each Xζ can be covered: For ζ < λ, pick Yζ ∈ L with Xζ ⊂ Yζ
and card(Xζ) = card(Yζ). By passing to Yζ ∩ β when necessary, we
can make our choices in such a way that Yζ ⊂ On and sup{Yζ} < β
for each ζ < λ. Since HL

β = Fβ, this implies ∀ζ < λYζ ∈ Fβ. Now
Fβ = F{β} and β is an L-cardinal, so that β · ω = β and β<ω = β.
Each element of Fβ is generated by a finite sequence of constructible
operations applied to a finite sequence of elements of β, hence there
is a canonical map f : β · ω →surj Fβ, which is definable over Fβ and
hence an element of L. Also, there is g ∈ L such that g : β →surj β ·ω.
Hence h := f ◦ g : β →surj Fβ is in L as well and we can define
Z = {h−1(Yζ)|ζ < λ}, the set of pre-images of the Yζ under h. Then
sup{Z} = β, but as card(Z) = λ < µ, the minimality of µ implies that
Z can be covered. So let L 3 P ⊂ β be a superset of Z of cardinality
≤ µ. Then the following set is in L:
W :=

⋃
{h(η)|η ∈ P ∧ h(η) ⊂ On ∧ otp(h(η)) < µ+}.

So W is the union of all h-images with pre-images in P that are subsets
of β of order type < µ+. In particular, this includes all of the Yζ , so
their union will be a subset of W . Hence X ⊂ W ⊂ β. But W is
the union of at most µ many sets of cardinality ≤ µ, and µ is regular.
So card(W ) = µ = card(X), and W covers X. This contradicts the
assumption that X was a counterexample to CL.

�

In this situation, we want to make use of the extension construction.

7.3 The Full Covering Lemma

Convention: For the next section, ≤S is the ordering of the directed system
under consideration.
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As we sketched above, we need a replacement for lemma 2 that leads to
a better control of the size of the covering set. In order to apply the proof
idea of theorem 2, we have to present some superset of X as the range of a
fine embedding E of some Fα with the property that the extender construc-
tion applied to E leads well-founded structures whenever applicable. This
motivates the following definition.

Definition 1: A fine map E : Fα → Fβ is strong for Fδ provided:

1. α is a limit ordinal

2. rng(E) ↑Fβ

3. Ext(Fδ, E) is strong whenever Fα is a base for Fδ

If E is strong for every Fδ, E is called strong for the fine hierarchy, or
F-strong.

In order to prevent non-well-foundedness, we need a way to reflect the
well-foundedness of the extension to the base structure.

Definition 2: Let α be a limit ordinal, E : Fα →cof Fβ be fine. If
there is a ≤S-increasing sequence 〈(µi, pi)|i ∈ ω〉 with µi < α, pi ⊂ Fδ
together with a sequence 〈yi|i ∈ ω〉 with yi ∈ Fβ such that, for all i, we have
yi+1 ∈ E(πµipi,µi+1,pi+1

)(yi), then the sequence 〈yi|i ∈ ω〉 is called a vicious
sequence for Fδ, E.

Lemma 3: Let α be a limit ordinal, E : Fα →cof Fβ be fine such that E
is not strong for Fδ. Then there is a vicious sequence for Fδ, E.

Proof: If Ext(Fδ, E) =: A is ill-founded, there are 〈yi|i < ω〉 ⊂ A with
yi+1 ∈∗ yi, where ∈∗ is the ∈-relation of A. Let π∗µ,p be the system maps on
the right-hand side of the extension. This sequence must be generated by
the directed system Dαδ: So pick a sequence 〈µi, pi, ȳi|i < ω〉 with µi < α,
pi ⊂fin Fδ so that yi = π∗µi,pi(ȳi). Since Dα,δ is a directed system, we may
assume without loss of generality that (µi, pi) <Dα,δ (µj, pj) for i < j. This
is already a vicious sequence for Fδ, E: For now,
ȳi+1 ∈ (π∗µi+1,pi+1

)−1 ◦ π∗µi,pi(ȳi) = E(πµi,pi,µi+1,pi+1
)(ȳi) for all i ∈ ω, which is

just the definition of a vicious sequence. �
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We are ready to prove Jensens’s covering lemma.

Definition 4: An uncountable set X ⊂ On is suitable iff X is cc and,
with σ : Fα →coll X, σ is strong.

Lemma 5: Assume ¬0] and let X ⊂ On be suitable with sup{X} = β.
Then there is X ⊂ Y ⊂ On such that Y ∈ L and card(Y ) < card(β).

Proof: Form the collapse E : Fα →coll−1 Fβ with inverse collapsing map E.
If E = id, then X = Fα ∈ L, so X covers itself. Hence, without loss of
generality, E 6= id.
Now it is clear that Fα cannot be a base for L: Otherwise, since X is suit-
able, E is strong and therefore could be lifted to Ext(L,E), a non-trivial
automorphism of L, so 0] would exist. Hence there must be some minimal
ordinal γ such that Fα is not a base for Fγ. Pick µ < α minimal then
p ⊂fin Fγ <lex-minimal such that coll′′F{µ ∪ p} /∈ Fα. By condensation,
there is γ̄ such that Fγ̄ ' F{µ ∪ p}, let σ be the collapsing map. It follows
that Fγ̄ = F{σ(µ) ∪ σ(p)} /∈ Fα, so Fα is not a base for Fγ̄. Hence γ ≤ γ̄
by minimal choice of γ, so in fact γ̄ = γ, and F{µ ∪ p} ' Fγ. Furthermore,
σ(µ) ≤ µ, σ(p) ≤lex p, but coll′′F{σ(µ)∪ σ(p)} /∈ Fα, so the minimal choices
of µ and p imply that σ(µ) = µ, σ(p) = p, so that already F{µ ∪ p} = Fγ.
By Proposition 1.4.2, there must then be an ordinal δ with γ = δ + 1. By
minimality of γ, Fα is a base for Fδ, so E can be lifted to some embedding
πE : Fδ → Fη fine up to Fη and further to a fine map πE ⊂ π+

E : Fγ → Fη+1.
The rest is elementary manipulation: As E ⊂ πE ⊂ π+

E and X ⊂ rng(E), we
have X ⊂ rng(π+

E). But Fγ could be presented as F{µ ∪ p}, so rng(π+
E) =

π+
E [Fγ] = π+

E [F{µ ∪ p}]. π+
E is fine, so it commutes with the constructible

operations and also with the hull operator; accordingly π+
E [F{µ ∪ p}] =

π+
E [F{π+

E [µ] ∪ π+
E [p]}]. As µ < α, π+

E(µ) < β, so we may exchange π+
E [µ] for

π+
E(µ) ⊃ π+

E [µ] without increasing the cardinality above β in the latter hull.
Putting this together, we get X ⊂ F{σ(µ) ∪ π+

E [p]}, where π+
E(µ) is simply

an ordinal, while π+
E [p] is finite, so both are elements of L. Consequently,

F{π+
E ∪ π

+
E [p]} ∈ L, but card(F{π+

E(µ) ∪ π+
E [p]}) ≤ card(π+

E(µ) + ℵ0) < β,
so we have obtained a set of the desired kind. �

The following lemma finishes the proof:

Lemma 6: Let X ⊂ On such that X ↑β, β a limit ordinal such that
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card(X) =: µ > ℵ0 is regular. Then there is a suitable set On ⊃ Y ⊃ X with
card(Y ) = card(X).

Proof: We construct Y by recursion. First, let 〈xι|ι < µ〉 enumerate X in
any order. Then then Y0 = E0 = ∅ and define the sets Yζ along with ordinals
αζ and fine maps Eζ as follows:

• If λ is a limit, Yλ =
⋃
ζ<λ Yζ .

• If ζ = γ+ 1, then Yζ is the constructible closure of Yζ ∪{xζ}∪ s, where
s is a vicious sequence for Eζ , Fδ, where δ is minimal such that Eζ is
not strong for Fδ. If Eζ is strong for L, set s := ∅.

• Eζ : Fαζ → Yζ is simply the inverse collapsing map.

Then let Y =
⋃
ζ<µ Yζ , E : Fα →coll−1 Y . We claim that Y and E are as

desired.
First, X ⊂ Y follows from the construction of Y , as each element of X was
included in some Yζ . Y is constructibly closed, so E is fine. By induction,
card(Yζ) ≤ µ for ζ < µ, hence card(Y ) ≤ µ = card(X) as well. (For unions
this is immediate; at successor steps, we add a countable set and form a
constructible hull, hence card(Yζ+1) ≤ card(Yζ) · ℵ0.)

We need to see that E is strong. Assume otherwise, and pick η minimal
such that E is not strong for Fη: Hence Fα is a base for Fη, yet Ext(Fη, E)
is not well-founded. The idea is to reflect this fact in one of the Yζ where
the vicious sequences have been explicitely included in the range Eζ , thus
contradicting the well-foundedness of Fαζ .
So pick a vicious sequence for Fη, E, say s = 〈(zi, µi, pi)|i ∈ ω〉, i.e. µi < α,
pi ⊂ Fη and zi+1 ∈ E(πµi,pi,µi+1,pi+1

)(zi) for i ∈ ω.
Recall that Fα is the transitive collapse of Y =

⋃
ζ<µ Yζ with collapsing map

E. Hence, setting Ȳζ := E−1[Yζ ], we get Fα =
⋃
ζ<µ Ȳζ . Pick a regular car-

dinal κ large enough so that the transitivizations of E, X, Y , Fα, Fη are of
cardinality < κ and hence elements of Hκ. Strongness of maps is absolute
between V and Hκ, and so are the definitions of Yζ , Eζ , Y , E etc.
Now, we form a sequence of elementary substructures of Hκ:

47



• Z0 is the smallest elementary substructure of Hκ containing Fα, Fη as
elements and s and Y0 as subsets.

• For i ∈ ω, let ζi be minimal such that Zi ∩ Fα ⊂ Ȳζi . Then Zi+1 is the
smallest elementary substructure of Hκ such that Zi ∪ Ȳζi ⊂ Zi+1

Then let W :=
⋃
i∈ω Zi. W ≺el Hκ, and W ∩ Fα = Ȳγ for some γ < µ. Form

the collapse σ : W̄ →coll−1 W , where σ is the inverse of the collapsing map. σ
collapses Fα to Ȳγ, but Ȳγ ' Yγ via E by definition, and the transitivization
of Yγ was Fαγ . This implies that σ−1(Fα) = Fαγ .
The corresponding inverse collapsing map was Eγ : Fαγ → Yγ. This can be
presented as the result of first uncollapsing Fαγ by σ to Ȳγ, then applying E.
Hence Eγ = E ◦ σ|Fαγ .
Being a base is absolute between V and Hκ, and further reflected by the
elementary substructures. Hence, letting η̄ = σ−1(η), Fαγ will be a base for
Fη̄.
Now, we can use σ to pull back the vicious sequence s to one for Eγ: Setting
(µ̄n, p̄n, π̄n,n+1) = σ−1((µn, pn, πµn,pn,µn+1,pn+1)), we get for all n ∈ ω:
zn+1 ∈ E(πµn,pn,µn+1,pn+1)(zn) = E◦σ(πµ̄n,p̄n,µ̄n+1,p̄n+1)(zn) = Eζ(πµ̄n,p̄n,µ̄n+1,p̄n+1)(zn),
since the elementary map σ sends system maps to system maps. We have
obtained a vicious sequence for Eγ. Hence Eγ is not strong for L.
So pick δ minimal such that Eγ is not strong for Fδ. By the construction of
Yγ, Yγ+1 contains a vicious sequence sγ = 〈(νi, qi, yi)|i ∈ ω〉 for Eγ, Fδ. This
means that, for all n ∈ ω:
yn+1 ∈ Eγ(πνn,qn,νn+1,qn+1)(yn). This can now be pulled back to the left side
of the extension, leading:
E−1(yn+1) ∈ E−1◦Eγ(πνn,qn,νn+1,qn+1)(E−1(yn)) = σ(πνn,qn,νn+1,qn+1)(E−1(yn)) =
πσ(νn),σ(qn),σ(νn+1),σ(qn+1)(E

−1(yn)).
This represents a non-wellfounded ∈-sequence in the directed system repre-
senting Fη. Unfolding this via πσ(νn+1),σ(pn+1) then gives us:
πσ(νn+1),σ(pn+1)(E

−1(yn+1)) ∈ πσ(νn),σ(pn)(E
−1(yn)), which is an ill-founded ∈-

sequence in Fη, a contradiction.
So Eγ, and consequently E, must have been strong after all. �
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8 An Approximation Theorem for L

8.1 Preliminary Remarks

The covering theorem shows how, in the absence of 0], uncountable sets X of
ordinals can be approximated by elements of L from ’above’. It is a natural
question whether something similar can be done from ’below’, i.e. whether
sets of ordinals can be ’exhausted’ by elements of L. This turns out to be
the case: By a theorem of Magidor [11], if ¬0] and X is a set closed under
primitive recursive set functions, there are Xi ∈ L such that

⋃
i∈ωXi = X.

We prove a similar theorem in the context of the fine hierarchy, replacing
pr-closure by the (weaker) condition of constructible closure. Since we don’t
have to distinguish between definition complexities, the proof becomes con-
siderably shorter and simpler.

8.2 Notation

Definition 1: Fα is an ω-base for Fδ if, for A ⊂ Fδ countable, ᾱ < α,
and π : F{Fᾱ ∪ A} →coll Fβ, then β < α.

Convention: Fα is {Fβ|β < α}; furthermore, we write p ⊂fin X to indi-
cate that p is a finite subset of X, similar p ⊂cntbl X for a countable subset.

Obviously, being an ω-base is a stronger property than being a base. This
gives some information on the wellfoundedness of extensions.

Lemma 2: Let α be a limit ordinal such that cf(α) > ω. Suppose E :
Fα → Fβ is fine and cofinal in β and that Fα is an ω-base for Fδ. Define
the extension map πE as in section 6 on extension of embeddings. Then the
direct limit of the mapped directed system is well-founded.

Proof: Define a directed system S: The index set
I = {(ᾱ, p)|ᾱ < α, p ⊂fin F δ}, associated structures πᾱ,p : F{Fᾱ ∪ p} →coll

Fζ(ᾱ,p) (where ζ(ᾱ, p) < α because of the definition of ω-base), maps π(α1,p1),(α2,p2) :
Fζ(α1,p1) → Fζ(α2,p2) defined as usual. The direct limit of S is Fδ. Since the
relevant structures and maps are easily seen to be elements of Fα, the system
S lifts up by E to a directed system SE. Now, suppose the limit of SE is ill-
founded, so there are i1 < i2 < ... ∈ I such that (set ζ(ik) = ζ(k) etc. for con-
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venience) the limit of the directed sequence FE(ζ(1)) →E(π1,2) FE(ζ(2)) →E(π2,3)

... is ill-founded. Set ik = (αk, pk), ᾱ =
⋃
i∈ω αi, A =

⋃
i∈ω pk. So A ⊂cntbl F δ

and ᾱ < α since cf(α) > ω.
Consider h : F{Fᾱ ∪ A} →coll Fζ ; ζ < α by definition of ω-base. Define
πk := π(k,∞) : Fζ(k) → Fζ by h ◦ π−1

ik
. πk,∞ ∈ Fα by the usual argument: It is

the identity on αk, maps the condensed finite parameter correctly into h[A]
and respects S0-terms. Hence it is definable in, and, as α is a limit ordinal,
an element of Fα. Hence all structures and maps mentioned are in Fα, and
so the commutative diagram:

lifts up:
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So the limit of the directed system can be embedded in FE(ζ) and is thus not
ill-founded.�

8.3 The approximation theorem

We state and prove the fine approximation theorem theorem; we assume ¬0]

for this section.

Definition 3: X ⊂ F∞ is constructibly closed in the ordinals (Ω− cc) if
F{X} ∩ F∞ = X.

Remark/Convention: In the following, we freely confuse α, Fα and Fα
where this is possible and leads to a better readability. Note that, by our
observations in the section on fine hulls, these all lead to the same hull.

Theorem 3: Let X be constructibly closed in the ordinals. Then there are
〈Xi|i ∈ ω〉 such that Xi ∈ L and X =

⋃
i∈ωXi.

The rest of the section is devoted to the proof of this theorem.

Proof:
Suppose X ⊂ β is as in the theorem statement, β = sup(X). Let

E : Fα → F{X} be the inverse of the collapsing map.

Proposition 4: rng(E) ∩ β = X.

Proof: Immediate by the fact that X is Ω− cc.�
The proof will be an induction on β. So suppose the theorem to be true

for γ < β.

If β is a successor, say β = γ + 1, then X ∩ γ is obviously Ω − cc and
thus a countable union of constructible sets by induction hypothesis, say
X ∩ γ =

⋃
i∈ω Zi. Then X = (X ∩ γ) ∪ {γ} = {γ} ∪

⋃
i∈ω Zi witnesses our

claim.
For the same reason, we may without loss of generality assume that α is a
limit ordinal.
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If cf(otp(X)) = cf(α) = ω, then let 〈αi|i ∈ ω〉 be cofinal in α. Induc-
tion applies to each X ∩ E(αi), giving us Xij ∈ L for i, j ∈ ω such that
X =

⋃
i∈ωX ∩ E(αi) =

⋃
i∈ω
⋃
j∈ωXij.

So assume cf(α) > ω from now on.

Proposition 5: We can assume without loss of generality that E|Fα 6= id.

Proof: Otherwise, we have X = α ∈ L and the theorem statement is
trivial.�

Proposition 6: Fα is not an ω-base for F∞.

Proof: Otherwise, by Lemma 1, we can lift E to a fine map πE : F∞ → F∞
other than the identity, which contradicts the assumption ¬0].�

So let ρ be minimal such that Fα is not an ω-base for Fρ. Also, let ᾱ < α
and A ⊂cntbl Fρ be such that F{Fᾱ∪A} →coll Fζ , ζ ≥ α. Setting Ā = coll′′A,
we get Fζ = F{Fᾱ∪Ā}. Since ρ is minimal and ζ ≤ ρ, we actually have ζ = ρ
and therefore may assume without loss of generality that Fρ = F{Fᾱ ∪ A}.
If ρ is a limit ordinal, then Fρ =

⋃
i∈ω F{Fᾱ ∪ Ai}, where the Ai are such

that An is an initial segment of An+1 for n ∈ ω and
⋃
i∈ω Ai = A (this is

possible since A is countable). So we actually have cf(ρ) = ω.

Now we distinguish two cases:

Case 1: ρ is a successor, let ρ = γ + 1.
By minimal choice of ρ, Fα is an ω-basis for Fγ, so there is a fine embedding
πE : Fγ → Fδ extending E. In particular πE

′′α = X, so (πE
′′Fγ) ∩ β = X.

By theorem 4.23, πE is fine up to Fγ, so there is a lifting π+
E : Fρ → Fδ+1

extending πE; in particular, π+
E
′′
α = X, (π+

E
′′
Fρ) ∩ β = X. This implies:

X = β ∩ rng(π+
E) = β ∩ π+

E
′′
Fρ = β ∩ π+

E
′′
F{Fᾱ ∪ A}

= β ∩ F{π+
E
′′
Fᾱ ∪ π+

E
′′
A} = β ∩ F{π+

E
′′
F ᾱ ∪ π+

E
′′
A}

= β ∩ F{E ′′F ᾱ ∪ π+
E
′′
A}.

Now E ′′F ᾱ is Ω− cc (since it is a fine image of an Ω− cc set) and ᾱ < α, so
E(ᾱ) < β and we get from the induction hypothesis that E ′′F ᾱ =

⋃
i∈ω Yi,

where Yi ∈ L for i ∈ ω. We can assume without loss of generality that i < j
implies Yi ⊂ Yj. Thus:
X = β ∩ F{

⋃
i∈ω Yi ∪ π

+
E
′′
A} =

⋃
i∈ω β ∩ F{Yi ∪ π

+
E
′′
A}

=
⋃
i∈ω,q∈(π+

E

′′
A)<ω

F{Yi ∪ q} ∩ β,
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and β ∩ F{Yi ∪ q} ∈ L, so we are done in this case.

Case 2: ρ is a limit ordinal.
We have already seen that cf(ρ) = ω in this case. Let 〈ρi|i ∈ ω〉 be a se-
quence of ordinals cofinal in ρ, so ρi < ρ for i ∈ ω and ρ =

⋃
i∈ω ρi. We

consider separately the countably many directed systems Sk, k ∈ ω: Ik, the
index set of Sk is given by Ik := {(τ, q)|τ < α, q ⊂fin F ρk

}, the structures
and maps between them are defined as before.
Each system Sk has a direct limit isomorphic to the fine level Fρk , remem-
ber

⋃
i∈ω Fρk = Fρ. Since ρ is minimal, Fα is an ω-base for each Fρk ,

and by Lemma 1, the corresponding lifted direct limites are well-founded
and hence isomorphic to fine levels. Name these levels Fγ̄k and let πEn :
Fρk → Fγ̄k be the corresponding embeddings extending E, so E ⊆ πEi .
We have E ′′Fα = X, and hence for each i ∈ ω, we have πEi

′′
Fα = X.

Since these maps are order-preserving, this implies rng(πEi ) ∩ Fβ = X.

Observe that Fα ⊆ Fρ = F{Fᾱ ∪ A} =
⋃
i∈ω F{Fᾱ ∪ (A ∩ Fρi)}. Let

βn := sup{πEn
′′
F{Fᾱ ∪ (A ∩ Fρn)} ∩ β}, so that X =

⋃
n∈ω(βn ∩ πEn

′′
F{Fᾱ ∪

(A ∩ Fρn)}). Let Xn := (βn ∩ πEn
′′
F{Fᾱ ∪ (A ∩ Fρn)}), so X =

⋃
n∈ωXn

and Xn = βn ∩ F{πEn
′′
Fᾱ ∪ πEn

′′
(A ∩ Fρn)} = βn ∩ F{E ′′Fᾱ ∪ πEn

′′
(A ∩ Fρn)}.

Since ᾱ < α, E ′′Fᾱ =
⋃
i∈ω Yi, where Yi ∈ L by induction. Assume again

without loss of generality that i < j implies Yi ⊂ Yj.
But then we can conclude:
Xn = βn ∩ F{

⋃
i∈ω Yi ∪ πEn

′′
(A ∩ (Fρn))} =

= βn ∩
⋃
i∈ω,q∈πEn

′′(A∩Fβn )<ω F{Yi ∪ q} =

=
⋃
i∈ω,q∈πEn

′′(A∩Fβn )<ω βn ∩ F{Yi ∪ q},
which is a countable union of sets in L. So we have represented each Xn as
a countable union of constructible sets, and hence X =

⋃
n∈ωXn.

This concludes the proof of theorem 3.�
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9 How to hyper the Fine Hierarchy

9.1 Introductory Remarks

The use of the F -hierarchy allowed proofs of basic theorems of constructible
combinatorics and particularly short and simple proofs for the covering lemma
and the approximation theorem. To make the F -hierarchy work for more ad-
vanced principles like global square or morass, we have to amend it with an
even finer interpolation. A short preceeding remark is in order to explain
why this is so.
In the proof of square using Jensen’s fine structure theory, the singulariza-
tion of an ordinal θ in L is associated with the minimal α such that a cofinal
sequence of smaller order type is definable over Jα and the minimal n such
that there is a Σn-formula φ defining such a sequence. The square sequence
is then constructed by using master codes to reduce the consideration to the
case of a Σ1-formula over a relativized structure. The Σ1-information of a
structure can then be approximated from below: One chooses a canonical
sequence converging to α, simultanously constructing the square sequence.
This works due to the fact that, if the defining formula for a singularizing
sequence is Σ1, θ either singularizes over a limit stage or has a cofinal se-
quence of order type ω, which leads to several trivial special cases. If θ
Σ1-singularizes over Jβ+1, then cfL(θ) = ω.
This is not true for the F -hierarchy. Ordinals that are singularized over a
successor stage by an S0-formula are not necessarily of countable cofinality.
To see this, recall that Fωα = Jα. Now, if γ is any ordinal singular in L
with uncountable cofinality singularized over Jα by a Σn-formula with n ≥ 3,
the singularization will be definable for the first time in the F -hierarchy over
some successor stage between Fα and Fα+ω. And ordinals with this property
are easily constructed.
Our solution to this problem is to refine the hull operators associated with
the F -hierarchy; more precisely, we transfer the idea of hyperfine structure
to the F -hierarchy. Since only S0-formulas are considered in constructing
the next F -level, elementarity of important maps is achieved easier than in
the classical development, leading to a more general and flexible approach.
There are many other potentially interesting modifications to classical hy-
perfine structure theory; for example, it is not necessary that the underlying
enumeration of formulas is of order type ω. Limits in this enumeration would
rather lead to an extra, but harmless limit case in applications. This way,
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hyperfine structure can be made compatible with the Levy-hierarchy, which
could become relevant for the definition of fine-structural ultrapowers for
levels of a hyperfine hierarchy. In this section, we will define a family of hy-
perfine structures rather than a single one. We exhibit in some detail three
natural examples, thus proving versions of Jensens square principle.

9.2 Basic notions and facts

The standard F -hierarchy consisted of levels Fα, α an ordinal together with
three-place Skolem functions S(Fβ, φ, p), where φ is a S0-formula and p ⊂ Fβ,
card(p) < ω is a parameter. Our goal here is to insert intermediate struc-
tures by approximating the Skolem- and interpretation functions available at
the next level. Let 〈φi〉i∈ω be any effective enumeration of the S0 formulas
fixed for the rest of this section. (Note, however, that we do not require the
closure of inital segments under subformulas or any other restrictions.) For
a S0 formula φ, we denote by [φ]free the number of free variables in φ.

Definition 1: A location is a countable sequence of the form 〈Fα, x1, x2, ...〉,
where each xi is either a finite sequence of elements of Fα or Ω. If the ordi-
nal in the first position is β, it is a β-location. If s = 〈Fα, x1, x2, ...〉 is a
location, the set supp(s) := {i ∈ ω|xi 6= ~0} is called the support of s.

For convenience, we abbreviate the location s = 〈α, x1, ..., xn, ...〉, where
xi = ~0 for i 6= n by lnα(xn); also, lα(x) means 〈α, x, x, ...〉. The condensation
lemma is a basic tool for any fine structure. We have to ensure that hulls
in our hierarchy condense to levels of the hierarchy. By the condensation
lemma for the F -levels, this can be achieved for structures closed under I, S
and naming. This of makes sure that we will always have minimal names. In
the context of hyperings, the unrestricted use of the naming function leads
to technical problems, and we had to exclude it from the basic operations.
Hence, some extra care is necessary to ensure that we still have names that
are not necessarily minimal as the term was defined, but still minimal in
some sense.
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Definition 2: A name n = 〈Fα, φ, p〉 is appropriate if there is no name
m = 〈Fβ, ψ, p1〉 such that I(n) = I(m) and β < α. A name is an F -name
if the parameter p consists only of F -stages; minimal and appropriate F -
names have the obvious meaning. A set X ⊆ L is said to be closed under
appropriate F -names, abbreviated c.a.n., if it contains the componenents of
an appropriate F -name for each of its elements.

N(x) is appropriate, of course. We can now define the structures we will
be using; restriction of a function in an α-location to Ω means that the func-
tion is applied to the whole of Fα. When it is not clear from the context
where the functions act, we will add this as an upper index; so the Skolem
function S(Fα, φ, y) in Fα for S0-formulas φ restricted to elements y <lex x
will be Sαφ |x. Iαφ (x) is I(Fα, φ, x), if this is an element of Fα, and otherwise
∅, of course.

Definition 3: Let s = 〈Fα, x1, ...〉 be a location. The structure corre-
sponding to s is defined thus:
〈Fα, I, S, I|x1, N ◦ I|x1, S|x1, N ◦ S|x1, I|x2, N ◦ I|x2, S|x2, N ◦ S|x2, ...〉
For X ⊂ Fα, the s-hull of X, written Fs{X}, is the closure of X under all
functions belonging to s.

Obviously, any set of the form Fα ∪ {Fβ1 , ..., Fβn} is c.a.n.. Note that
I(x, y = y, ∅) = x characterizes levels of the F -hierarchy. Being c.a.n. is
inherited from sets to their closures:

Proposition 4: Let X ⊆ L be c.a.n., s a location. Then H := Fs{X} is
c.a.n. as well.

Proof: Each element of H is generated from elements of X by a finite
series of applications of S, I and their restrictions. For the restricted func-
tions, minimal, hence appropriate names are added by definition. Let x =
I(Fβ, φ, p), where Fβ and (the components of) p have been generated before;
if 〈Fβ, φ, p〉 is appropriate, we are done. Suppose otherwise, thus x ∈ Fβ.
Then S(Fβ, I(a, b, c) = d ∧ [a is an F -stage] ∧ [c consists of F -stages], {x})
will find a minimal, hence an appropriate name. The fact that c consists of
F -stages can be expressed as a S0-statement since c will be of fixed finite
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cardinality, depending on φ.
Now suppose x = S(Fβ, φ, p), the components being generated before. Then
x ∈ Fβ by definition of S, so we can proceed as we did for I. In any case, we
will have an appropriate name for x in our hull.�

From this, a weak condensation lemma already follows.

Proposition 5: Let X ⊆ Fα be c.a.n., s an α-location and π : Fs{X} →
M the Mostowski collapse, thus M is transitive. Then there is an ordinal β
such that M = Fβ and π preserves I, S, ∈ and <L.

Proof: By Proposition 4, H := Fs{X} is closed under I, S and c.a.n.;
so we are in the situation of the standard condensation lemma for the fine
hierarchy, and the result follows.�

For arguments in HFS, it will be essential to canonically order (a subclass
of) the locations. That this can be done in multiple ways gives our approach
a nice flexibility. However, any reasonable ordering will respect the following.

Definition 6: Let s1 = 〈α, x1, x2, ...〉 and s2 = 〈β, y1, y2, ...〉 be locations.
Then s1 <loc s2 if α < β or α = β and xi ≤lex yi for i ∈ ω.

When passing to <loc-larger locations, the corresponding hyperfine hulls
are ⊂-increasing:

Lemma 7 (Monotonicity):

• (a) Suppose s1 <loc s2 are α-locations, X ⊆ Fα. Then Fs1{X} ⊆
Fs2{X}.

• (b) Suppose X ⊆ Fα, s1 and s2 are α- and β-location, respectively,
α < β. Then Fs1{X} ⊆ Fs2{X ∪ {Fβ}}.

Proof:

• (a) This is obvious, since we simply form a hull under extended func-
tions.

• (b) Skolem functions and naming in Fβ can be carried out on the RHS
by using S(Fβ, , ).
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�

Definition 8: Let s1 = 〈α, x1, ...〉, s2 = 〈α, y1, ...〉 be locations. Then s2

is a successor of s1 if yi = xi or yi is the immediate <lex-successor of xi
for all i ∈ ω. A chain from s1 to s2 is a sequence 〈s1 = l0, l1, ..., lγ = s2

of α-locations such that for each β+ ≤ γ, lβ+ is a successor of lβ and for
lim(β), β ≤ γ, lβ =<loc-sup{lι|ι < β}.

Note that a location can well be a successor and a successor of a successor
of another location at the same time.

Proposition 9: Let X ⊆ Fα, s1, s2 be α-locations, where s2 is a successor
of s1. Then there is a countable set p such that Fs2{X} ⊆ Fs1{X ∪ p}. If
xi = yi for all but finitely many i ∈ ω, there is a finite p with this property.

Proof: Just let p be the set of the new values of the restricted Skolem
functions added at the places where the scopes grow.�

So, we have monotonicity, a weak condensation property and an analogue
of finiteness already in this general setting. However, to get continuity and
a condensation lemma strong enough for applications like e.g. the square-
principle, we have to specify further the kind of structure we are going to
work in.
S̄ denotes the language obtained from the usual language for the F -hierarchy
by adding the function symbols α(s) and pin(s) giving the ordinal stage and
the i-th element of the nth element of the location s, respectively. Also,
denote by pn(s) the nth element of the location s. By S̄0, we denote the
quantifier-free formulas of S̄. A set A of α-locations is S̄0-definable over Fα
if there is an S̄0-formula ψ such that s ∈ A ↔ ψ(s). A class of locations
is uniformly S̄0-definable if the sets of its α-locations are S̄0-definable using
the same ψ for each α. (In other words, if s ∈ A ↔ Fα(s) |= ψ(s) for some
S̄0-formula ψ.)

We will often have to apply embeddings of structures to locations. Since
the locations are in general not elements of the structures, we make the fol-
lowing convention:

Convention: If s = 〈α, x1, x2, ...〉 is an α-location, π : Fα → Fβ a fine
map, then π(s) denotes the β-location 〈β, π(x1), π(x2), ...〉.
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Definition 10: Suppose A is a class of locations, <H⊂ A× A. Then
H := 〈A,<H〉 is a linear hypering of L if the following axioms are satisfied:

1. (1) <H=<loc |H and the latter is a well-order

2. (2) For each location lnα(x), there is an α-location s = 〈α, y1, y2, ...〉 in
H such that yn = x

3. (3) For each ordinal α, both lα(~0) and lα(Ω) are in H

4. (4) For S ⊂ H a set of α-locations, <loc-sup{S} ∈ H

5. (5) If s1, s2 ∈ H are α-locations, H contains a (naturally unique) chain
from s1 to s2

6. (6) If α < β, π : Fα → Fβ a fine map, then s ∈ Hα iff π(s) ∈ Hβ.

We say that a linear hypering H1 = 〈A1, <1〉 extends another linear hypering
H2 = 〈A2, <2〉, written H1 � H2, if A1 ⊆ A2.

Remark 1: There are also quite natural ways to define non-linear hy-
perings of L, i.e. classes H of locations for which (1) fails so that <loc is
not total on H. However, it is not clear how to give a general treatment of
these; some things, such as condensation, appear to require some new work
in each case. We comment on these later; meanwhile, linear hyperings are
completely sufficient for our needs.
Remark 2: (2) follows from (3) and (5); we add it to make the concept
more transparent.
Remark 3: While (6) is apparently a convenient property, it is not used
in our development of hyperfine structure; in particular, the condensation
lemma can be proved without that assumption. So far, we have not encoun-
tered an example of a natural hypering that is not uniformly S̄0-definable;
but if necessary, it seems that this requirement might be dropped without
difficulty. This changes when we work with general hyperings in the sec-
tion on morasses, where it is needed to obtain the soundness property of
the hypering. However, (6) seems to be a rather ’external’ criterion. An
alternative would be to demand that the set of α-locations in H is uniformly
S̄0-definable over Fα. Note, however, that S̄0-definability is a considerably
stronger property. (6) would e.g. still hold if Hα was given by a countable
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scheme of such statements rather than merely a single one.

Hβ will denote the set of β-locations in H. Now, the basic properties of
HFS can be shown to hold for any hypering of L.

Definition 11: Let H be a hypering of L, s ∈ H an α-location, X ⊆ Fα,
and suppose that π : Fs{X} → Fβ is the transitive collapse. Then s̄, the
condensed structure of X in s relative to H is defined as
<H-sup{t ∈ Hβ|π−1(t) <H s}.

Lemma 12 (Condensation): Let H = 〈A,<H〉 be a hypering of L, s ∈ A
an α-location, X ⊆ Fα, s̄ the condensed structure of X in s relative to H.
Then π : Fs{X} → Fs̄ is an isomorphism, where π is the Mostowski collapse.

Proof: By proposition 5, we already have that the image of π is an F -stage,
say Fᾱ, as well as preservation of I, S,∈, <L. Preservation of minimal and ap-
propriate names follows easily. It remains to show preservation for restricted
Skolem- and intepretation functions.
So suppose lnα(x) ≤ s̄ By (5) of Def.10, there is r ∈ H such that r <loc s̄ and
the n-th parameter of r is x. So π−1(r) = 〈α, π−1(x1), π−1(x2), ...〉 <loc s,
since π preserves <L and hence <lex. By (6) of Def.10, π−1(r) ∈ Hα. Then
a := Iαφ (π−1(x)) ∈ X and for some b ∈ Fα, we have Fα |= φ(b, π−1(x)) ↔
Fᾱ |= φ(π(b), x). So π(Iαφ (π−1(x)) = π({b ∈ Fα|Fα |= φ(b, π−1(x))}) =
{π(b) ∈ Fᾱ|Fᾱ |= φ(π(b), x)} = I ᾱφ (x).
Furthermore, a := Sαφ (π−1(x)) ∈ X and Fα |= φ(a, π−1(x)↔ Fᾱ |= φ(π(a), x).
That π(a) is <L-minimal follows from the preservation of <L under π, as well
as the minimality of the condensed F -names. �

Remark: Note that this proof would still work if π−1(r) was any location
<loc s, not necessarily contained in H.

Definition 13: A linear hypering H is called slow if for the successor s+

of s ∈ H in <H , we have s = s+ almost everywhere (i.e. only finitely many
scopes move).

Corollary 14: For a slow linear hypering, Proposition 9 is true with
“finite” instead of “countable”.
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Lemma 15 (Continuity):

1. Suppose lim(α), X ⊆ Fα; then Flα(0){X} = F{X} =
⋃
β<α Flβ(0){X ∩ Fβ}.

2. Let X ⊂ Fα, s := lα+1(0); then Fs{X ∪ {Fα}} ∩ Fα =
F{X ∪ {Fα}} ∩ Fα =

⋃
{Fr{X}|r <loc s, r ∈ Hα}

3. Let s ∈ H be a <loc-limes not of the form lα(0), X ⊆ Fα; then Fs{X} =⋃
{Fr{X}|r ∈ Hα, r <loc s}.

Proof:

1. The hull is in this case just the closure under I, N and S; since any
element of the LHS is generated by finitely many elements, it is already
in such a hull of an initial segment, all of which are considered on the
RHS.

2. The first equality follows as in the first part, since only I and S
are considered. For the second, set V := F{X ∪ {Fα}} ∩ Fα and
U :=

⋃
{Fr{X}|r <loc s, r ∈ Hα}.

(1) U ⊆ V
Each z ∈ U is generated from elements of X by finite application
I, S,N ◦ Iφi |Ω, N ◦Sφi |Ω. Closure under I and S is clear, the restricted
functions are given on the LHS by I(Fα, φi,−) and S(Fα, φi,−). By the
results in the section on the fine hierarchy, the LHS is also closed under
appropriate names; hence, the components of minimal names can be
found using S.
(2) V ⊆ U
z ∈ V is computed from elements of X ∪ Fα by a finite sequence of
applications of I and S. Suppose we have 〈y1, ..., yn = z〉, where each
yi is either an element of X ∪ Fα, or z ∈ {S(yj, φ, x)} ∪ {I(yj, φ, x)},
where j < i and the components of x appear earlier than yi in the
generating sequence. We prove by induction on i that if yi ∈ Fα, then
yi ∈ U . We distinguish three cases, depending on how yi was generated.

• y ∈ X ∪ Fα. Then either y ∈ X, in which case obviously y ∈ U ,
or y = Fα and so y /∈ Fα.

• y = I(Fβ, φ, x). By induction, x ⊂ U . If β < α, we have Fβ ∈ U
again by induction, so I(Fβ, φ, x) ∈ U since U is closed under I.
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If β = α, but still y ∈ Fα (so we have taken a non-appropriate
name), the restricted interpretation function Iαφ (x) generates the
same element in U in some location on the RHS.

• y = S(Fβ, φ, x); by induction, x ⊂ U . Now, if β < α, Fβ ∈ U
by induction, so y ∈ U since U is closed under S. If β = α,
S(Fα, φ, x) = Sαφ (x) ∈ U .

3. Since there is a chain in H from lα(0) to s, all scopes on the LHS appear
also on the RHS.

�

Remark: Trivially, any location also satisfies the following compactness
property: Let X ⊂ Ls, y ∈ Ls{X}. Then there is a finite x ⊂fin X such
that y ∈ Ls{x}. (This follows from the fact that each element of the hull is
generated by finite applications of s-operations to elements of X.)

When we make use of hyperings in our constructions, we will sometimes
consider maps between locations that preserve more than just the basic oper-
ations of these locations. This will be particularly relevant for the construc-
tion of a morass. Therefore, we make the following definitions:

Definition: If s is a location, then an s-formula is a first-order formula
in the basic functions of s.

Definition: If s is a location, ψ an s-formula, π : Fs → Ft an embedding,
then ψπ, the π-mapped formula ψ, is obtained by replacing in ψ any function
symbol of the form SFsφ |~q by SFtφ |π[~q], similarly for the other basic functions.

Convention: When π is clear from the context, the superscript is usu-
ally dropped and we write ψ for the corresponding formula on both sides.

Definition: Let s = 〈α, x1, x2, ...〉 be a location. A Σs
0-formula is a

quantifier-free formula in the operations associated with s.
A formula of the form ∃yφ(y, p) with p ⊂fin Fα is a Σs

1-formula if φ is a
Σs

0-formula.
An embedding π : Fα → Fβ is Σs

1-preserving iff, for any Σs
1-formula ψ,

p ⊂fin Fα, we have Fα |= ψ(p)↔ Fβ |= ψ(π(p)).
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9.2.1 Examples

To illustrate the above general notions, we give three linear and two non-
linear hypering of L. In the next section, we let the usual argument for
square in HFS run through the first three of them to illustrate how they
work.

First example: The classical hypering
Let H1 := {cnα(x) := 〈α,Ω,Ω, ...,Ω, x,~0,~0, ...} consist of all locations that
allow unrestricted Skolem functions for the first n formulas, then a restric-
tion to ~x ⊂ Fα for the (n + 1)th, and the empty function for the rest. The
conditions for being a hypering are clearly fulfilled. H1 is modelled after the
original HFS of Friedman and Koepke for the Lα-hierarchy and is therefore
referred to as the classical hypering.

Second example: The horizontal hypering
H2 := {lα(x)|Ord(α), x ⊂ Fα}. This is in my view the most natural hyper-
ing; it is generated by simultanously increasing the restrictions step by step.
The main problem with this hypering is that it is not slow.

Third example: The slowed-down horizontal hypering
As the name suggests, H3 is defined similar to H2, but between lα(x) and
lα(x+), we place the ω many locations 〈α, x+, x, ...〉, 〈α, x+, x+, x, ...〉 etc.
This is still rather natural, but superior to H2 in being slow (thus satisfying
the finiteness property).

Now for the non-linear examples:
Singleton fine structure
H4 := {lnα(x)|Ord(α), x ⊂ Fα}, with r <H4 s iff either r <loc s or r = lnα(x),
s = lmα (y) and n < m. Singleton fine structure and its extensions are espe-
cially interesting since they measure very accuratly the complexity of con-
structible sets.

The finite support hypering
H5 := {〈α, x, ..., x,~0,~0, ...〉|Ord(α), x ⊂ Fα}. To achieve unique minimal el-
ements in any set of α-locations, we expand the order <loc by sorting finite
sets of naturals by <lex and letting s1 <H5 s2 iff either supp(s1) <lex supp(s2)
or supp(s1) = supp(s2) and s1 <loc s2.
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10 Two proofs of square

In this section, sngl(α) means that α is singular.

Theorem 16: Suppose V = L. Then, there is 〈Cβ|sngl(β)〉 such that

• (a) Cβ is club in β

• (b) otp(Cβ) < β

• (c) If β̄ is a limit point of Cβ, then sngl(β̄) and Cβ̄ = β̄ ∩ Cβ

We present two proofs, using the classical and the slowed-down horizontal
hypering. Both proofs have the basic strategy as well as some initial notions
and lemmata in common; so we prove these first. Let H be a linear hypering
for the rest of this paragraph.

Definition 17: Let s ∈ H, α := α(s), ~p ∈ Fα finite, β ≤ α; then
fix(s, β, ~p) := {β̄ < β|β̄ = Fs{β̄ ∪ ~p} ∩ β} is the fixed point set of s below β
relative to ~p.

Convention: We usually suppress the vector sign for ~p when the nature
of the parameter is clear from the context. Recall that, for a set X, X ↓β
means that X is bounded in β, i.e. there is β̄ < β such that X ∩ β ⊆ β̄.

Lemma 18: Suppose β is singular in L. Then there is a location 〈α, x1, ..., 〉 ∈
H and a finite ~p ⊂ Fα such that fix(s, β, ~p) ↓β

Proof: By singularity, choose f ∈ L, f : α → β cofinally, α < β, and
γ̄ such that f ∈ Fγ̄. Obviously γ̄ ≥ max{α, β}. Now f(x) = y ↔
Fγ̄ |= ∃z(z ∈ f ∧ z = 〈x, y〉). This is equivalent to an S0-formula φi over
γ̄ + 2 =: γ. Then images of each ι < α under f can be found by S(Fγ̄, φ, ...),
and these are cofinal in β. Now s = lγ(0) (which is in H by (3) of Def. 10)
and ~p = {f, Fγ̄} witnesses our statement. �
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We already know that we can restrict ourselves to parameters ~p consisting
of F -stages only, which we do. Choose a <lex-minimal s ∈ H and then a
<L-minimal ~p satisfying Lemma 18. Each approach to the square principle
is an attempt to approximate s in a canonical way to define the Cβ.

Lemma 19: If H is slow, then s is a limit location. This holds as well if
cf(β) > ω, regardless whether H is slow or not.

Proof: If s is an immediate successor of r ∈ H in a slow hypering, then by
Proposition 9 (Finiteness), there is a finite set q such that Fs{β̄ ∪ p} ⊆
Fr{β̄ ∪ p ∪ q}. But then, we have {β̄ < β|Fr{β̄ ∪ p ∪ q} ∩ β = β̄} ⊆
{β̄ < β|Fs{β̄ ∪ p} ∩ β = β̄} ↓β, which contradicts the minimality of s.
Now assume cf(β) > ω and let s = t+ be a successor. We can then use the
countability property to obtain a countable set c such that
{β̄ < β|Ft{β̄ ∪ c} ∩ β = β̄} ↓β. (Just take the set of values of the basic
functions at the places where the s is larger than t.) As cf(β) > ω, there
is β̃ < β with Ft{β̃ ∪ c} ↑β. (Otherwise, form for β̄ < β the sequence given
by β0 = β̄, βi+1 = supFt{βi ∪ c} ∩ β. Then

⋃
i∈ω βi =: β′ < β as β has un-

countable cofinality, but β′ is a fixpoint. Contradiction.) Now, if c|i denotes
the first i elements of c in some enumeration of c in order-type ω, we have
that 〈supFt{β̃∪c|i}∩β〉i∈ω ↑β forms a cofinal ω-sequence in β, contradicting
again our assumption. Hence s cannot be a successor.
�

10.1 The classical hypering

We start with a proof of full square in H1, along the lines of [16]. Modifica-
tions are e.g. due to the fact that our restricted Skolem functions only allow
search for witnesses for and interpretation of S0-formulas.

Claim 1: s 6= c0
β(~0)

Proof: Suppose otherwise, and choose (since β is limit and p is finite) β0 < β
such that p ⊂ Fβ0 . For β0 ≤ β̄ < β, we have:
β̄ ⊆ Fs{Fβ̄ ∪ p} ∩ β ⊆ F{Fβ̄ ∪ p} ∩ β ⊆ Fβ̄ ∩ β = β̄, which contradicts the
choice of s and p. �
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Claim 2: s 6= c0
γ(~0) for γ a limit ordinal.

Proof: Choose γ0 < γ such that p ⊂ Fγ0 and let s0 = c0
γ0

(~0). Then it follows
that:
{β̄ < β|β̄ = β̄ ∩ Fs0{Fβ̄ ∪ p}} = {β̄ < β|β̄ = β ∩ Fs{Fβ̄ ∪ p}} ↓ β, which
contradicts the minimal choice of s. �

Special Case I: s = c0
α+1(~0) for some ordinal α.

Since p consists entirely of F -stages, we must have Fα ∈ p; for other-
wise, s̄ := c0

α(~0) would lead to the same hull, contradicting the minimality of
s >loc s̄. Set q := p− {Fα}.
Now define β0 := max{β̄ < β|β̄ = β ∩ Fs{Fβ̄ ∪ p}} < β by assump-
tion. For βn given, let βn+1 < βn be minimal with the property that
βn+1 = β ∩ Fcnα(~0){βn+1 ∪ p}. By minimality of s, we have βn < β for n ∈ ω.
Set βω :=

⋃
n∈ω βn. Thus:

β ∩ Fs{βω ∪ p} = β ∩ Fs{Fβω ∪ q ∪ {Fα}}
= β ∩ ∪{Fr{Fβω∪q}|r ∈ H1,α} =

⋃
n∈ω β ∩ Fcnα(~0){Fβω ∪ q}

=
⋃
n∈ω Fcnα(~0){Fβn+1 ∪ q} =

⋃
n∈ω βn+1 = βω.

Now βω > β0, so we must have βω = β; thus, if we let Cβ := {βn|n ∈ ω}, we
are done in this case.

From now on, we assume s = cnγ(~x) 6= c0
γ(~0).

Claim 3: There is a finite set p̄ ⊂ Fγ such that Fs{Fβ ∪ p̄} = Fγ.

Proof: π : Fs{Fβ ∪ p} →coll Fs̄. Then Fs̄ = Fs̄{Fβ ∪ p̄}, where p̄ := πp.
Since π|Fβ = id (F -stages are preserved), this implies β ∩ Fs{Fβ̄ ∪ p} =
β ∩ Fs̄{Fβ̄ ∪ p̄}. Thus:
{β̄ < β|β̄ = β ∩ Fs̄{Fβ̄ ∪ p}} = {β̄ < β|β̄ = β ∩ Fs{Fβ̄ ∪ p}} ↓β, so s̄ = s by
minimality of s. Thus Fs = Fs{Fβ ∪ p̄} = Fγ. �

We choose p(β) ⊂ Fγ <lex-minimal with this property. In particular, we
have p ⊂ Fs{Fβ ∪ p(β)}, which immediatly gives us:

Claim 4: {β̄ < β|β̄ = β ∩ Fs{Fβ̄ ∪ p(β)}} ↓β.

Let β0 < β be the maximum of this set. Since p(β) satisfies the properties
we demanded of p, we set p := p(β) from now on. A hull Fs{X} contains
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parameters that can serve as components for locations; for Y ⊂ Fγ, we write
cnγ(~y) =: r ∈ Y for ~y ∈ Y (which, as we recall, in turn means that any com-
ponent of ~y is in Y ).

Proposition 20: If s̄ is the l.u.b. of Y = Fs{X}, then Fs{X} = Fs̄{X}.

Proof: Only the s̄-operations are relevant for Fs{X}. Nothing else can be
considered in the hulling process. �

Special Case II: Fs{Fα ∪ p} ↓s for α < β.

In this case, define β0 as in special case I and let βn+1 =
⋃
{β∩Fs{Fβn ∪ {Fβn} ∪ p}}

By assumption, there is r <loc s such that Fs{Fβn ∪{Fβn}∪p} = Fr{Fβn+1∪
p}. But then, β ∩ Fr{Fβn+1 ∪ p} ↓β, or s would not be minimal. Therefore,
βn+1 < β; let βω =

⋃
n∈ω βn, then βω > β0 and:

βω ⊆ β ∩ Fs{Fβω ∪ p} ⊆
⋃
n∈ω β ∩ Fs{Fβn+1 ∪ p} ⊆

⋃
n∈ω βn+1 = βω,

so βω = β. So, once again, Cβ := {βn|n ∈ ω} will work.

So, from now on, we consider only situations where Fs{Fα0 ∪ p} ↑s for
some α0 < β; choose such an α0 = α0(β) minimal. If α0 is not a limit or 0,
we add its predecessor α′0 to the parameters and find a (smaller) α1(β)′ with
the required property for the new parameter. We continue with this process,
constructing a falling sequence of ordinals, so we have to stop at some point;
thus αk(β)′ is limit or 0 for some k ∈ ω.

Special Case III: αk = 0.

Then Fs{Fαk ∪ p ∪ {Fα′0 , ..., Fα′k−1
}} = Fs{p ∪ {Fα′0 , ..., Fα′k−1

}} is obvi-

ously countable, so there is a countable sequence 〈sn|n ∈ ω〉 ↑s. Now, de-
fine β0 in the same way as above and let βn+1 > βn be minimal such that
βn+1 = β ∩ Fsn+1{Fβn+1 ∪ p}, which is < β since s is minimal. Again, let
βω :=

⋃
n∈ω βn, then:

βω =
⋃
n∈ω βn+1 =

⋃
n∈ω β ∩ Fsn+1{Fβn+1 ∪ p} = β ∩ Fs{Fβω ∪ p}, so, once

again, βω = β, and we can set Cβ := {βn|n ∈ ω}.

The Generic Case: lim(α) 6= 0, s = cnγ(x) 6= c0
γ(~0)
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Then define {βi(β)|i ≤ α} and {si|0 < i ≤ α} as follows:
First, let β0 be defined as before. Now, for 0 < i ≤ α, let
si :=<loc −sup{Fs{i ∪ p ∪ {Fα′0 , ..., Fα′k−1

}}} <loc s

and β0 < βi = βi(β) minimal with:
βi = β ∩ Fsi{Fβi ∪ p ∪ {Fα′0 , ..., Fα′k−1

}}.
For i < α, we have βi < β by minimality of s since si < s. sα = s (by as-
sumption) and βα = β, of course. Without loss of generality, we assume that
the indices i start at the point where the si become γ-locations. Furthermore:

Claim 5: 0 < i < j < α implies si <loc sj and βi ≤ βj. (Remember that
we are only dealing with γ-locations!)

Claim 6: {βi|i < α} is club in β.

Proof: Let ᾱ ≤ α be a limit ordinal. We show βᾱ =
⋃
i<ᾱ βi. Since βᾱ ≥ βi

for i < ᾱ, it suffices to see that:⋃
i<ᾱ βi =

⋃
i<ᾱ β ∩ Fsi{Fβi ∪ p ∪ {Fα0 , ..., Fαk−1

}}
= β ∩ Fsᾱ{

⋃
i<ᾱ Fβi ∪ p ∪ {Fα0 , ..., Fαk−1

}}, so
⋃
βi satisfies the definition of

βᾱ, and is hence by minimality equal to βᾱ, so βᾱ =
⋃
βi. �

Now we restrict the si to an appropriate endsegment to ensure absolute-
ness. Let I(β) be the set of all i such that:

1. βi ≥ max{α0, ..., αk−1} (this is possible since 〈βi|i < α〉 ↑β)

2. βj > j (Recall that we have j < α < β)

3. The upper bounds of the intermediate construction steps Fs{Fαl ∪ p ∪
{Fα′0 , ..., Fα′l−1

}} are <loc si

4. In case β < γ, we have Fβ ∈ Fsi{Fβi ∪ p}

I(β) is easily seen to be an endsegment of α. Now set:
Cβ := 〈βi|i ∈ I(β)〉. Since Cβ is just a ’shortening’ of a club with the same
properties, one immediatly gets:

Claim 7: Cβ is club in β, otp(Cβ) ≤ α < β.
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It remains to show the coherence property, namely that for β̄ a limit point
of Cβ, then Cβ̄ = β̄ ∩ Cβ. So assume β̄ to be a limit point of Cβ, ᾱ minimal
such that βᾱ = β̄. Then ᾱ is a limit ordinal, βᾱ > ᾱ (by (2) of the definition
of I(β)) and β belongs to the generic case (for otherwise, Cβ would be of
order type ω and hence there could be no limit points).
Consider π : Fsᾱ{Fβ̄ ∪ p} →coll Fs̄, q := π′′p, s̄ a γ̄-location.

Claim 8:

1. π|Fβ̄ = id (By definition of the transitive collapse)

2. γ > β implies π(Fβ) = Fβ̄. (By definition of I(β), we have Fβ ∈
Fsᾱ{Fβ̄ ∪ p}, β̄ = β ∩ Fsᾱ{Fβ̄ ∪ p}.)

3. γ = β implies γ̄ = β̄ (Since equal ordinals are mapped to equal ordi-
nals.)

Claim 9: s̄ = s(β̄)

Proof:

1. ′ ≥′: If β0 < δ < β̄, then δ 6= β ∩ Fsᾱ{Fδ ∪ p ∪ {Fα′0 , ..., Fα′k−1
}}, (by

minimal choice of β̄), so δ 6= β̄ ∩ Fs̄{Fδ ∪ p ∪ {Fα′0 , ..., Fα′k−1
}}. So s̄

satisfies the requirement of s(β̄), and since s(β̄) is minimal with this
property, we get s̄ ≥loc s(β̄).

2. ′ ≤′: We show that r <loc s̄ implies r <loc s(β̄). Let r <loc s̄, q̄ ⊂ Fα(r)

finite, then π−1(r) <loc si and π−1q̄ ⊂ Fsi{Fβi ∪ p} for i < ᾱ large
enough, since the si are unbounded in sᾱ, the βi are unbounded in β̄
and Fs̄{Fβ̄ ∪ q} = Fα(s̄) hence generates the finitely many elements of
q̄.
Now βi = β ∩Fsi{Fβi ∪ p} and r <loc si (recall that si is a γ-location!),
we arrive at βj = β̄ ∩ Fr{Fβj ∪ q̄} for i < j < ᾱ, so r <loc s(β̄). This
shows the implication we stated and hence proves s(β̄) ≥loc s̄.

�

Claim 10: β̄ does not fall under Special Case I.
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Proof: s̄ cannot be of the form c0
γ̄(~0) here, since condensation only leads to

such a location if the condensed location is of this form itself. �

Claim 11: q = p(β̄)

Proof: (1) Fs̄{Fβ̄ ∪ q} = Fγ̄, thus q ≥lex p(β̄).
(2) Assume q >lex p(β̄); then q ⊂ Fs̄{Fβ̄ ∪ p(β̄)}, so p = π−1[q] ⊂ Fs{Fβ̄ ∪ π−1p(β̄)};
but π−1p(β̄) <lex p = π−1q and π−1p(β̄) satisfies the requirements for p, which
contradicts the minimal choice of p(β). �

By a previous remark, we have Fsᾱ{Fᾱ ∪ p} = Fs{Fᾱ ∪ p}, thus
Fsᾱ{Fᾱ ∪ p} ↑sᾱ , and Fs̄{Fᾱ ∪ q} ↑s̄. Since also ᾱ < β̄:

Claim 12: β̄ does not fall under Special Case II. (Since ᾱ 6= 0).

Claim 13: αj(β) = αj(β̄) for j < k

Proof: αj(β) is the minimal µ, so that Fs{Fµ ∪ p ∪ {Fα′0 , ..., Fα′j−1
}} ↑s;

Fs{Fᾱ ∪ p∪ {Fα′0 , ..., Fα′k−1
}} ↑sᾱ . Furthermore Fᾱ ∪ {Fα′j , ..., Fα′k−1

} ⊂ Fαj(β)

(since αj(β) majorizes all of them), so Fs̄{Fαj(β) ∪ q ∪ {Fα′0 , ..., Fα′j−1
}} ↑s̄,

thus αj(β̄) ≥ αj(β).
On the other hand, Fs{Fα′j ∪p∪{Fα′0 , ..., Fα′j−1

}} ↓s by some s′ <loc sᾱ by (3)

of the definition of I(β), hence by some location in Fsᾱ{Fβ̄ ∪ p}; therefore,
Fs̄{Fα′j ∪ q ∪ {Fα′0 , ..., Fα′j−1

}} ↓s̄ by some s̄′ <loc s̄, so αj(β̄) ≤ αj(β) as well.

In summary, we have shown αj(β̄) = αj(β). �

Claim 14: αk(β̄) = ᾱ

Proof: Fs̄{Fᾱ ∪ q ∪ {Fα′0 , ..., Fα′k−1
}} ↑s̄, thus ᾱ ≥ αk(β̄). For α′ < α, it

follows that Fsᾱ{Fα′ ∪ p ∪ {Fα′0 , ..., Fα′k−1
}} ↓s̄ᾱ (since ᾱ is minimal), hence

Fs̄{Fα′ ∪ q ∪ {Fα′0 , ..., Fα′k−1
}} ↓s̄, and ᾱ ≤ αk(β̄). �

Claim 15: βi(β) = βi(β̄) for i < ᾱ.

Proof: β0(β) was defined to be the largest δ < β such that
δ = β ∩Fs{Fδ ∪ p}. By definition of β̄ = βᾱ and sᾱ, β0 is the maximal δ < β̄
with δ = β̄ ∩Fsᾱ{Fδ ∪ p}; this condenses to δ = β̄ ∩Fs̄{Fδ ∪ q}, which is the
definition of β0(β̄).
Now, let 0 < i < ᾱ. Then si(β) :=<loc −l.u.b.{Fs{Fi∪p∪{Fα′0 , ..., Fα′k−1

}}} <
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s. By previous results, si(β) :=<loc −l.u.b.{Fsᾱ{Fi ∪ p∪{Fα′0 , ..., Fα′k−1
}}} <

sᾱ; also, si(β̄) :=<loc −l.u.b.{Fs̄{Fi ∪ q ∪ {Fα′0 , ..., Fα′k−1
}}} < s̄.

Recall that βi(β) was minimal> β0 with βi(β) = β∩Fs{Fβi(β) ∪ p ∪ {Fα′0 , ..., Fα′k−1
}},

i.e. with βi = βi(β) also βi = β ∩ Fs′{Fβi ∪ p ∪ {Fα′0 , ..., Fα′k−1
}} for all

s′ <loc sᾱ(β) with s′ ∈ Fsᾱ{Fi ∪ p ∪ {Fα′0 , ..., Fα′k−1
}}; furthermore β̄i = βi(β̄)

is minimal > β0 so that β̄i(β) = β̄ ∩ Fs̄′{Fβ̄i(β) ∪ q ∪ {Fα′0 , ..., Fα′k−1
}} for

s′ <loc s̄, s̄′ ∈ Fs̄{Fi ∪ q ∪ {Fα′0 , ..., Fα′k−1
}}.

Consider π : Fsᾱ{Fβ̄ ∪ p} →coll Fs̄{Fβ̄ ∪ q}; π|β̄ = id, hence βi = β̄i. �

Observe that I(β̄) = ᾱ ∩ I(β), so the coherence follows: The sequences
coincide and start with the same index.

This concludes the first proof of square.

10.2 The horizontal hypering

Now, we demonstrate how the square principle can be proved using the hor-
izontal hypering H2 from the second example. Actually, as we already re-
marked there, H2 has the defect of not being slow; this makes it unfeasable
for some cases where cf(β) = ω. The slowed-down hierarchy H3 works fine,
but is not as natural. What we will do is to mix the two hierarchies, using
H3 for some (trivial) special cases and using H2 for the main part. Most of
the proof above goes through without change. We repeat the crucial parts
nevertheless, for the sake of completeness.
While at first sight the square sequence constructed here is as good as any
other, including the one from the previous section, one might note that the
sequence coming from H3 does - apart from the special cases - not depend
on the choice of the enumeration of the formula and is therefore somewhat
more canonical. Our hope is that this effect might become useful in some way.

When checking the techniques underlying the proof of square in the clas-
sical hypering, the first thing to note is of course that lemma 19 does not
seem to be applicable here, due to lack of slowness. We circumvent this dif-
ficulty by introducing a new special case.

Special Case I: s = s̄+ = 〈γ, x+, x+, ...〉 is a successor in <H2 , where s̄
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is not of the form 〈ζ,Ω,Ω, ...〉.

We make use of the slowed-down interpolation: set hi = 〈γ, x+, ..., x+, x, x, ...〉,
where the x are preceeded by i occurences of x+. Then define
β0 := max{β̄ < β|β̄ = β ∩ Fs{Fβ̄ ∪ p}}, which is < β by definition of
s and p. Now choose βn+1 > βn minimal with the property that βn+1 =
β ∩ Fhn+1{Fβn+1 ∪ p}.
We claim that βn < β for every n ∈ ω: Otherwise, let n be the smallest
counterexample. Set pn := p ∪ {Sφ1

γ (x), ..., Sφnγ (x)}; then since the extra
Skolem values that could enter the hulling process for hi have now been put
in anyway, we conclude {β̄ < β|Fs̄{Fβ̄ ∪ pn} ∪ β = β̄} ↓β, contradicting the
minimal choice of s.
Now put βω :=

⋃
i∈ω βi, thus:

β ∩ Fs{Fβω ∪ p} = β ∩
⋃
i∈ω Fhi{Fβω ∪ p}

=
⋃
i∈ω β ∩ Fhi{Fβω ∪ p} =

⋃
i∈ω β ∩ Fhi{Fβi ∪ p}

=
⋃
i∈ω βi+1 = βω,

and by definition of β0, we get βω = β.
So, we conclude in this case by setting Cβ = 〈βn|n ∈ ω〉.

Therefore, we can assume from now on that s is indeed a limit location
in <H2 , having avoided lemma 19.

The rest of the proof is now very similar to the first one. We will mostly
repeat the statements, but not the proofs, where these carry over verbatim
(substituting l for c in the naming of locations).

Claim 1: s 6= l0β(~0)

Proof: Classically. �

Claim 2:

1. s 6= lγ(~0) for γ a limit ordinal

2. s 6= lγ(0) for γ = δ + 1 a successor ordinal

Proof: (1) Classically.
(2) All functions involved in this hulling process can be emulated by those
of s̄ := lδ(Ω) in case Fδ ∈ p and otherwise, so the fixed-point set for s̄ with
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parameter q = p− {Fδ} will in any case be a subset of the original one and
hence be bounded below β, contradicting the choice of s. �

Remark: Note that this means in particular that special case I of the
first proof does not occur; this seems plausible, since special cases typically
lead to cofinality ω, and there was a cofinal ω-sequence for such locations
in the classical hypering, but in the horizontal, there is usually not. The
corresponding case is the case I we have just dealt with. So even though H1

and H2 share some locations, these may play fundamentally different rules
in the constructions. This should not be too much of a surprise, because we
choose minimal locations at which a certain effect happens, and of course,
there can for example be one in H2 below lγ(Ω), but not in H1.

From now on, we assume s = lγ(~x) 6= lγ(0).

Claim 3: There is a finite set p̄ ⊂ Fγ such that Fs{Fβ ∪ p̄} = Fγ.

Proof: Classically. �

We choose p(β) ⊂ Fγ <lex-minimal with this property. In particular, we
have p ⊂ Fs{Fβ ∪ p(β)}, which immediatly gives us:

Claim 4: {β̄ < β|β̄ = β ∩ Fs{Fβ̄ ∪ p(β)}} ↓β.

Let β0 < β be the maximum of this set. Since p(β) satisfies the properties
we demanded of p, we set p := p(β) from now on. A hull Fs{X} contains
parameters that can serve as components for locations; for Y ⊂ Fγ, we write
lγ(~y) =: r ∈ Y for ~y ∈ Y (which, as we recall, in turn means that any com-
ponent of ~y is in Y ).

Proposition 21: If s̄ is the l.u.b. of Y = Fs{X}, then Fs{X} = Fs̄{X}.

Proof: Classically. Note, however, that the statement has the same wording,
but not the same meaning, as that of Proposition 20, since we are in a
different hypering here. �

Special Case II: Fs{Fα ∪ p} ↓s for α < β.
(Classically. No changes whatsoever here.)
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Now we drop to a steering limit ordinal as in the classical case. We re-use
the notation from there as well.

Special Case III: αk = 0.
(Classically.)

Until now, the proofs were very similar; the generic case works in the
same fashion, the only difference being that we have to take care of exclud-
ing the new special case I from being obtained by condensation instead of
the old one. Luckily, this is already a side-effect of the old construction.

The Generic Case: lim(α) 6= 0, s = cnγ(x) 6= c0
γ(~0)

The construction is the same as before. As we did there, we can show:

Claim 5: 0 < i < j < α implies si <loc sj and βi ≤ βj.

Claim 6: {βi|i < α} is club in β.

Proof: Classically. �

Even though the definition of the endsegment does not change, we repeat
it here to keep things together. Let I(β) be the set of all i such that:

1. βi ≥ max{α0, ..., αk−1} (this is possible since 〈βi|i < α〉 ↑β)

2. βj > j (Recall that we have j < α < β)

3. The upper bounds of the intermediate construction steps Fs{Fαl ∪ p ∪
{Fα′0 , ..., Fα′l−1

}} are <loc si

4. In case β < γ, we have Fβ ∈ Fsi{Fβi ∪ p}

I(β) is easily seen to be an endsegment of α. Now set:
Cβ := 〈βi|i ∈ I(β)〉. Since Cβ is just a ’shortening’ of a club with the same
properties, one immediatly gets:

Claim 7: Cβ is club in β, otp(Cβ) ≤ α < β.
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It remains to show the coherence property, namely that for β̄ a limit point
of Cβ, then Cβ̄ = β̄ ∩ Cβ. So assume β̄ to be a limit point of Cβ, ᾱ minimal
such that βᾱ = β̄. Then ᾱ is a limit ordinal, βᾱ > ᾱ (by (2) of the definition
of I(β)) and β belongs to the generic case (for otherwise, Cβ would be of
order type ω and hence there could be no limit points).
Consider π : Fsᾱ{Fβ̄ ∪ p} →coll Fs̄, q := π′′p, s̄ a γ̄-location.

Claim 8:

1. π|Fβ̄ = id (By definition of the transitive collapse)

2. γ > β implies π(Fβ) = Fβ̄. (By definition of I(β), we have Fβ ∈
Fsᾱ{Fβ̄ ∪ p}, β̄ = β ∩ Fsᾱ{Fβ̄ ∪ p}.)

3. γ = β implies γ̄ = β̄ (Since equal ordinals are mapped to equal ordi-
nals.)

Claim 9: s̄ = s(β̄)

Proof:

• ′ ≥′: If β0 < δ < β̄, then δ 6= β ∩ Fsᾱ{Fδ ∪ p ∪ {Fα′0 , ..., Fα′k−1
}}, (by

minimal choice of β̄), so δ 6= β̄ ∩ Fs̄{Fδ ∪ p ∪ {Fα′0 , ..., Fα′k−1
}}. So s̄

satisfies the requirement of s(β̄), and since s(β̄) is minimal with this
property, we get s̄ ≥loc s(β̄).

• ′ ≤′: We show that r <loc s̄ implies r <loc s(β̄). Let r <loc s̄, q̄ ⊂ Fα(r)

finite, then π−1(r) <loc si and π−1q̄ ⊂ Fsi{Fβi ∪ p} for i < ᾱ large
enough, since the si are unbounded in sᾱ, the βi are unbounded in β̄
and Fs̄{Fβ̄ ∪ q} = Fα(s̄) hence generates the finitely many elements of
q̄.
Now βi = β ∩Fsi{Fβi ∪ p} and r <loc si (recall that si is a γ-location!),
we arrive at βj = β̄ ∩ Fr{Fβj ∪ q̄} for i < j < ᾱ, so r <loc s(β̄). This
shows the implication we stated and hence proves s(β̄) ≥loc s̄.

�

So claim 8 and claim 9 go through as well. The only thing we have to
take care of is claim 10, for it now refers to a different special case; but this
can easily be dealt with:
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Claim 10: β̄ does not fall under Special Case I.

Proof: sᾱ is the limit of the sequence 〈si|i < ᾱ〉 and not of the form lζ(0),
so s̄ will be the limit of the images of these locations under the condensation
map and thus not a successor. �

From here, the proofs of claims 11 to 15, and hence the conclusion of the
proof, are identical to the classcial case and can entirely be carried out in H2.

This concludes the horizontal approach to square.
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11 Morasses

Morasses were invented by Ronald Jensen as a strong tool for describing
structures of a certain cardinality as limits of a small system of smaller struc-
tures. If the size of the approximated structure is the cardinal successor of
the size of the system, we are in the simplest case of a gap-1-morass. A con-
struction of such a structure using classical fine structure can be found in [1].
Higher gap morasses have been defined and constructed, yet these notions
tend to become so complicated that few, if any, applications are known.
The first construction of a morass in L was given by Jensen using his fine-
structure theory. Using Silver machines, the construction could be consid-
erably simplified by Richardson in his PhD-thesis [20]. Later on, Koepke,
Friedman and Piwinger constructed a morass in L using Friedman-Koepke
hyperfine structure theory [8], [40], [17].
Here, we will exhibit morasses in the context of general hyperings. We start
by showing that the horizontal hypering suffices for constructing what is
known as a ’coarse morass’. Then, after giving some more general results on
hyperings, we give an ’abstract’ construction of a gap-1-morass only using
general properties of hyperings, without referring to a particular instance.
Doing so, it will become apparent which properties are important for the
proof and where. This places hyperings between Silver machines and classi-
cal hyperfine structure in terms of generality.

We will now define the structures we are talking about.

Definition 1: Let S0, S1 ⊂ ω2, ≺, / ⊂ ω2 × ω2, πστ ⊂ L× L,
Sγ := {σ ∈ S1|γσ = γ} such that S0 = {γσ|σ ∈ S1}. The ω1-morass axioms
are:

• (M0)

– (a) If γ ∈ S0, then Sγ is closed in sup[Sγ].

– (b) Sω2 is club in ω2.

– (c) S0 ∩ ω1 ↑ω1.

– (d) / is a tree-ordering on S1.
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• (M1) If σ / τ , then:

– (a) ν < σ implies that ν ∈ S1 ↔ πστ(ν) ∈ S1.

– (b) πστ preserves ≺-minimality, ≺-limites and being a successor
upwards and immediate predecessors downwards.

• (M2) If σ̄ ≺ σ and σ / τ , then, setting τ̄ = πστ (σ̄), we have σ̄ / τ̄ and
πσ̄τ̄ = πστ |Fs(σ̄).

• (M3) For τ ∈ S1, {γσ|σ / τ} ∪ {γτ} is closed.

• (M4) If τ ∈ S1 has a ≺-successor, then {γσ|σ / τ} ↑γτ .

• (M5) {γσ|σ / τ} ↑γτ implies τ =
⋃
σ/τ πστ [σ].

• (M6) If σ ∈ S1 is a ≺-limit, σ /τ , λ := supπστ [σ] and λ < τ , then σ /λ
and πσλ|σ = πστ |σ.

• (M7) If σ ∈ S1 is a ≺-limit, σ / τ , τ = supπστ [σ] and α ∈ S0 is such
that, for each σ̄ ≺ σ, we can find ν̄ ∈ Sα with σ̄ / ν̄ / πστ (σ̄), then there
is also ν ∈ Sα with σ / ν / τ .

Definition 2: A structure M := (S1, σ / τ, (πστ )σ/τ ) satisfying (M0)-
(M5) is a coarse morass. If M additionally satisfies (M6) and (M7), it is an
(ω1, 1)-morass.
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11.1 Construction of a Coarse Morass

In this section, we show how to get a coarse morass using the horizontal
hypering H2. This will already use many of the central ideas of the general
construction given in the next two sections.

Definition 3: An ordinal σ ≤ ω2 is a morass point if Fσ |= ZF−+’There
is exactly one uncountable cardinal’. We abbreviate the statement that σ is
a morass point by MP (σ). If σ is a morass point, let γσ > ω be the unique
ordinal such that Fσ |=′ γσ is a cardinal’.

Lemma 4: Let σ be a morass point. Then there is a minimal s =: s(σ) ∈
H2 such that, for some p =: pσ ⊂fin Ls, we have Ls{γσ ∪ p} ↑σ.

Proof: As Fω1 |=’There is no uncountable cardinal’, σ 6= ω1, so σ must
eventually be collapsed. That is, there are α, f ∈ Fα, such that
f : γσ →surj σ. Take enough extra levels so that ’y is the f -image of x’
becomes S0-expressable over Fα+k in the parameters f , Fα, ..., Fα+k−1. Then,
setting q := 〈Fα, ..., Fα+1〉, the H2-location lα+k(q

+) will generate σ from γσ
and the finite parameter q, and in particular the corresponding hull will be
cofinal in σ. As H2 is a linear hypering, <loc is a well-ordering on H2, so
there is also a minimal location with this property.
�

Remark: The location s(σ) of lemma 4 will be called the H2-collapsing
location for σ. In the next sections, we will consider collapsing locations in
arbitrary hyperings. Though it might be tempting to introduce a notation
like sH2(σ) to indicate what hypering is currently used, this is the sort of
index that will immediately be dropped unless ambiguities arise, which will
never be the case in this chapter.

Lemma 5: Let σ be a morass point, γ = γσ, s = s(σ) and p = pσ as given
by the last lemma. Then:

• (a) σ ⊂ Fs{γ ∪ p}
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• (b) Fs = Fs{γ ∪ p}

Proof:
(a) Suppose ζ < σ. If ζ < γσ, the lemma is trivial. So suppose without loss
of generality that γσ ≤ ζ. Since σ is a morass point, Fσ |= ZF− and γσ is the
largest cardinal in Fσ. By definition of s = s(σ), Fs{γ ∪ p} ↑σ. So there are
ζ < α < σ and a <L-least function f ∈ Fσ such that f : γσ →surj α. Also,
there are ω many F -stages above α in Fs{γ ∪ p}, hence f is definable in, and
in fact an element of Fs{γ ∪ p}. Say f ∈ Fδ ∈ Fs{γ ∪ p} =: Z. Take enough
F -stages above δ in Z and another one, say Fλ, on top of these so that the
relation f(x) = y becomes S0-expressable in Z over Fλ. Let φ(x, y, q) be the
corresponding S0-formula, q ⊂fin Fλ. Then Sφ(Fλ, x

∧q) can be used to find
the image of each ι < γσ under f . As Z is closed under this Skolem function
and contains each element of γσ, we get α ⊂ Z. As ζ < α, also ζ ⊂ Z.
(b) By (a), Fs{γ ∪ p} = Fs{σ ∪ p}. Consider π : Fs{σ ∪ p} →coll Fs̄. Let
p̄ := π(p). As π|σ = id, it follows that Fs̄{γ ∪ p̄} ↑σ, so s̄ collapses σ to
γσ. Thus s(σ) ≤loc s̄. By minimality of s, also s̄ ≤loc s(σ), therefore s̄ = s.
The same reasoning shows p̄ = p. But then, π can only be the identity. So
Fs{γ ∪ p} is transitive, and hence equal to Fs.
�

Now for the construction:
Let S1 := {σ < ω2|MP (σ)}, S0 := {γ|∃σ ∈ S1(γ = γσ)}. For α, β ∈ S1,
write α ≺ β iff α < β and γα = γβ.
Also, let α / β iff α < β and there is a structure-preserving embedding
παβ : Fs(α) → Fs(β) satisfying:

• (i) παβ|γα = id

• (ii) παβ(γα) = γβ

• (iii) παβ(α) = β

• (iv) παβ(pα) = pβ

• (v) παβ preserves Σ
s(α)
1 -formulas

It remains to show that this works.
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Theorem 6: The system M := 〈S0, S1, /,≺, πστ |σ /τ〉, constructed in H2,
is a coarse morass, i.e. satisfies the morass axioms (M0)-(M5).

Proof: This will shown by a sequence of claims.

• (M0) holds for M .
Proof:

– (a) First, for any γ ∈ S0, the set Sγ of morass points σ with γσ = γ
is closed in its supremum. This is easy to see: Suppose δ is a limit
point of Sγ. As Fδ is a limit of limits of ZF−-models, it is itself a
limit of ZF−-models. Also, γ is the only uncountable cardinal of
Fδ: On the one hand, if there was another one, say κ, then there
would be δ > β ∈ Sγ such that κ ∈ Fβ. As Fβ ⊂ Fδ and κ is
supposed to be a cardinal in Fδ, κ cannot be collapsed in Fβ. So κ
is also an uncountable cardinal in Fβ, but κ 6= γ and β is a morass
point, which is impossible. So there are no uncountable cardinals
in Fδ besides γ. On the other hand, if γ was collapsed in Fδ, say
by a function f : α →surj γ with α < γ and f ∈ Fδ, then there
would be δ > β ∈ Sγ such that f ∈ Fβ. But this implies that γ
is already collapsed in Fβ, again a contradiction. So δ is indeed a
morass point with γδ = γ.

– (b) That Sω2 is closed in ω2 follows from (a). By regularity of
ω2, there are unboundedly many α < ω2 such that Fα |= ZF−,
and hence there are unboundedly many limits of such α below
ω2 as well. For each ω1 < ζ < ω2, there is g ∈ Fω2 such that
g : ω1 →surj ζ. So for each α < ω2 there is β = β(α) < ω2 such
that Fβ is a limit of ZF−-models and no cardinal greater than ω1

in Fα remains a cardinal in Fβ. Setting α0 = α, αn+1 = β(αn),
α̂ := sup{αi|i ∈ ω} will be an element of Sω1 greater than α, so
Sω1 is indeed unbounded in ω2.

– (c) Let ζ < ω1, we need to show that there are ζ < α < σ < ω1

such that α is the unique uncountable cardinal in Fσ. To see this,
take a countable elementary submodel X of Fω2 containing ζ as
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a subset and ω1 as a singleton. Let π : X →coll Fµ by conden-
sation. As X is countable, so is µ. By elementarity, π(ω1) is the
unique uncountable cardinal in Fµ and, since ζ ⊂ X, we must
have π(ω1) > ζ.

– (d) Suppose σ /τ , ν /τ and assume without loss of generality that
σ < ν. Define π : Fs(σ) → Fs(ν) by π = π−1

ντ ◦πστ . As both maps are

Σs
1-preserving for their respective locations, π is Σ

s(σ)
1 -preserving.

As πστ (γσ) = γτ and πντ (γν) = γτ , we have π−1
ντ (γτ ) = γν and

hence π(γσ) = γτ , as required. Also, π(σ) = ν, for the same rea-
son. Finally, as σ < τ , we have πστ |γσ = πντ |γσ = id|γσ, and so
π|γσ = id|γσ. So π is a morass map, and we have σ / ν, which is
what had to be shown.
(The well-foundedness of / is immediate from the fact that, in
a /-falling sequence of morass points σ, the γσ form a <-falling
sequence of ordinals.)

• (M1) holds for M .
Proof:

– (a) First, suppose ν < σ is a morass point. As σ is a morass point,
there is ν < α < σ such that Fα |= ZF−. As being a morass point
is absolute between ZF−-models, Fα |= MP (ν). As α < σ and
σ is a limit ordinal, this statement will be preserved by πστ : So
πστ (Fα) = Fπστ (α) |= ZF−+MP (πστ (ν)), and hence πστ (ν) really
is a morass point.
For the other direction, assume MP (πστ (ν)). Since τ is a morass
point, there is πστ (ν) < β < τ such that Fβ |= ZF−+MP (πστ (ν)).
As enough stages are available, this statement can be expressed
by a Σ

s(τ)
0 -formula. Hence the existence of such a β is Σ

s(τ)
1 -

expressable and therefore preserved by πστ . Now, we can proceed
as we did for the reverse direction to deduce that ν actually is a
morass point.

– (b) The properties of ≺-minimality, being a ≺-limit, a ≺-successor
etc. are easily first-order expressable and hence preserved by πστ
by the same reasoning used for part (a). For the preservation of
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immediate predecessors, observe that the existence of an interme-
diate morass point is as well PL1-expressable, and hence preserved
by suitable restrictions of πστ .

• (M2) holds for M .
Proof: Basically, we need to show that the collapsing locations s(σ̄)
and s(τ̄) are mapped to each other by πστ . As σ is a morass point,
there is σ̄ < α < σ such that Fα |= ZF−. Inside Fα, construct s(σ̄)
and pσ̄. πστ |Fα is elementary, hence πστ (Fα) = Fπστ (α) |= ZF− and, in-
side Fπστ (α), πστ (sσ̄) is the collapsing location for πστ (σ̄) = τ̄ . Also, as
γσ̄ = γσ and γτ̄ = γτ , we get πστ |γσ̄ = id and πστ (γσ̄) = γτ̄ ; πστ (σ̄) = τ̄

is true by definition of τ̄ . That πστ |Fs(σ̄) is Σ
s(σ̄)
1 -preserving is immedi-

ate from the fact that it is a restriction of a Σs
1-map with s >loc s(σ̄).

• (M3) holds for M .
Proof: If {γσ|σ / τ} ↑ γτ , then the supremum, namely γτ , is in the
considered set since we have added it. So we can without loss of gen-
erality assume that ζ < γτ and ζ is a limit point of {γσ|σ / τ}. We
need to show that ζ is the unique uncountable cardinal in some Fδ
where δ is a morass point and δ / τ . The natural attempt is to take
Fs(τ){ζ ∪{τ}∪ {pτ}} and collapse this to some Fs̄ with collapsing map
π, hoping that π(τ) =: τ̄ will be a morass point with γτ̄ = ζ, s̄ will be
the collapsing location s(τ̄) for τ̄ with parameter p̄ := π(pτ ) and that π
itself can be chosen as the morass map witnessing τ̄ / τ . This is indeed
the case, as we will now demonstrate step by step:

– τ̄ is a morass point.

Proof: We need to show that τ̄ is a limit of ordinals ν such
that Fν |= ZF−. Let η < τ̄ , we will show that there is ν > η
such that Fν |= ZF−. As ζ is a limit of ordinals of the form
γι with ι / τ and ζ ∈ Fs(τ){γτ ∪ pτ} = Fs(τ), there is σ / τ such
that ζ ∈ Fs(τ){γσ ∪ pτ} = rng(πστ ). So ζ has a pre-image under
πστ in Fs(τ), say ζ̄. ζ̄ < σ, of course, so by the fact that σ is a
morass point, we get ζ̄ < µ < σ with Fµ |= ZF−. Since there
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are enough F -stages above Fµ in dom(πστ ) to ensure elementar-
ity, πστ (Fµ) |= ZF− is clear. Also, this structure is an element of
rng(πστ ) ⊂ Fs(τ){ζ ∪ pτ} and hence in the range of the uncollaps-
ing map π−1. Pulling it back via π, which is elementary for Fµ to
Fs̄ gives π(µ) between ζ and τ̄ such that Fπ(µ) |= ZF−, as desired.

– ζ is the unique uncountable cardinal of Fτ̄ .
Proof: First, we show that ζ is an uncountable cardinal in Fτ̄ :
Assume the contrary, so that there are β < ζ and a function
f ∈ Fτ̄ such that f : β →surj ζ. f must have a π-preimage f̂ in
Fs(τ){ζ∪{τ}∪pτ}, and so, by definition of ζ, there must be σ < τ

such that f̂ ∈ Fs(τ){γσ ∪ {τ} ∪ pτ}. Now, consider σ′ < ζ large
enough such that γσ′ > max{β, γσ}. This must exist by definition
of ζ. Then certainly f̂ ∈ Fs(τ){γσ′ ∪ {τ} ∪ pτ}, so γσ′ is collapsed
to β in Fs(σ′), a contradiction.
To see uniqueness, suppose ζ ′ is another uncountable cardinal in
Fτ̄ . Then there is again σ such that ζ, ζ ′ have π-preimages in
Fs(τ){γσ∪{τ}∪pτ}. But then, Fs(σ) will also have two uncountable
cardinals, again a contradiction. So ζ is indeed unique.�

For the next two steps, we need the following:
Claim: Z := Fs(τ){ζ ∪ {τ} ∪ pτ} ∩ γτ = ζ. (∗)

Proof: That ζ is a subset of Z is clear. For the other direction,
let λ ∈ Fs(τ){ζ∪{τ}∪pτ}. By definition of ζ, there must be δ < τ
such that λ ∈ Fs(τ){γδ ∪ {τ} ∪ pτ}. But, as γδ is the critical point
of πδτ and πδτ (γδ) = γτ , we must have (recall that τ = πδτ (δ))
rng(πδτ ) = Fs(τ){γδ ∪ {τ} ∪ pτ} ∩ γτ = γδ, hence indeed δ ∈ Z. �

– s̄ is the collapsing location for τ̄ .
Proof: We show this by two inequalities. As we have seen in the
last part, s̄ is a collapsing location for τ̄ , so s(τ̄) ≤loc s̄ is clear.
For the other direction, suppose s(τ̄) <loc s̄. Then there must be
σ / τ and ŝ, p̂ ∈ Fs(σ) such that s(τ̄) = π ◦ πστ (ŝ), pτ̄ = π ◦ πστ (p̂).
Now, as s(τ̄) <loc s̄ by assumption and π and πστ preserve <lex

and (hence) <loc, clearly ŝ <loc s(σ), so Fŝ{γσ ∪ p̂} ↓σ by min-
imality of s(σ). Let λ := sup{Fŝ{γσ ∪ p̂} ∩ σ}. Again by the
preservation properties of πστ and π, Fs(τ̄ ){ζ ∪ τ̄ ∪ pτ̄} ↓τ̄ , because
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we can simply map over the bound λ to π ◦ πστ (λ) and obtain an
upper bound for the latter.
But now, the boundedness of Fs(τ̄){ζ ∪ {τ̄} ∪ pτ̄} in τ̄ contradicts
the definition of s(τ̄) and pτ̄ . So our assumption must have been
wrong, and s(τ̄) ≥loc s̄.

– p̄ is the minimal collapsing parameter pτ̄ for τ̄ .
Proof: This follows by the same reasoning we used to obtain that
s̄ is the collapsing location for τ̄ . Clearly, Fs̄{γτ ∪ {τ} ∪ p̄} ↑τ̄
by condensation, so pτ̄ ≤lex p̄. For the other direction, if we had
p̄ <lex pτ̄ , we could again pull this back using π◦πστ for sufficiently
/-large σ to obtain a contradiction.

– π : Fs(τ̄) → Fs(τ) is a morass map.
Proof: That π|ζ is the identity map is clear from the fact that π
is a collapsing map and ζ is contained in the pre-image of π as a
subset. Also, it was just shown that π preserves the parameter,
the unique uncountable cardinal and the morass point. The only
property that requires an argument is Σs̄

1-preservation. Upwards
preservation of Σs̄

1 follows from the fact that π is a collapsing map.

If a Σ
s(τ)
1 -formula ψ with parameters from rng(π) is true in Fs(τ),

there must be σ/τ such that ψ has a witness in Fs(τ){γσ∪{τ}∪pτ}.
This witness will then also be an element of Fs̄.

• (M4) holds for M .
Proof: To see this, assume that ν is a ≺-sucessor of τ , so ν ∈ Sγτ
and τ < ν, and let ζ < γτ . We need to show that there is σ / τ with
ζ < γσ < γτ . This is easily arranged: First, since ν is a morass point,
we may pick τ < η < ν such that Fη |= ZF− and Ls(τ) ∈ Fη. Then,
form a countable elementary submodel X of Fη that contains as subsets
the hull Ls(τ){ζ ∪ pτ} and the singleton {τ} and such that X ∩ γτ is
transitive and < γτ . (By regularity of γτ in Fη, this can be achieved by
repeatedly taking the transitive closure of the part below γτ and then
forming the union.) Take the collapse π : X →coll Fη̄, and let σ = π(τ),
p̄ = π(pτ ). π will map ZF−-models to ZF−-models and hence σ is a
morass point. The restriction of the uncollapsing map to Fs(σ) will be
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elementary, as there are infinitely many ZF−-models between Fτ and
Fν , so π−1|Fs(σ) is in particular Σ

s(σ)
1 -preserving. It follows that σ / τ .

τ will be collapsed to the unique uncountable cardinal γσ of Fσ, and,
by transitivity of the hull below γτ , will be > ζ. This is exactly what
we wanted to obtain.

• (M5) holds for M .
Proof: Suppose Γτ := {γσ|σ / τ} ↑γτ , and let ζ ∈ τ . We need to
find σ < τ , ζ̄ < σ such that πστ (ζ̄) = ζ. For this, recall that
Ls(τ){γτ ∪ pτ} = Ls(τ ) ⊃ τ , so by the /-cofinality of Γτ in γτ , we
can find σ / τ such that ζ ∈ Ls(τ){γσ ∪ pτ}. But, as πστ |γσ = id and
πστ (pσ) = pτ , Ls(τ){γσ ∪ pτ} is just rng(πστ ), so we can simply let ζ̄ be
π−1
στ (ζ).

�

11.2 More on hyperings

In this section, we generalize the ideas and lemmas used in the preceeding
construction. Already in our account on the �-principle, we had to deal with
singularizing locations. We generalize some of the observations made there.
For this section, let H be a linear hypering.

Definition 7: We say that s ∈ H singularizes σ ∈ On if there are
p ⊂fin Ls, γ < σ such that σ ⊂ Ls{γ ∪ p}. In this case, we also say that σ
is collapsed to γ at s in the parameter p.
If s is <H-minimal such that s singularizes σ, we call s the singularizing
location for σ.

Lemma 8: Let σ ∈ On, s be the singularizing location for σ, and suppose
H is slow. Then s is a limit location.

Proof: Suppose for a contradiction that s = s̄+ for some location s̄ ∈ H.
Assume that σ is collapsed to γ in parameter p. As H is slow, there is
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q ⊂fin Ls̄ such that Ls{γ∪p} ⊂ Ls̄{γ∪p∪ q}: For example, q can be the set
of all the (finitely many) new Skolem values added when passing from s̄ to s.
This implies σ ⊂ Ls̄{γ∪ (p∪ q)}, so σ is already collapsed at s̄, contradicting
the minimal choice of s.
�

Lemma 9: Let σ ∈ On, s the singularizing location for σ. Suppose σ is
collapsed to γ at s in parameter p. Then:
Fs = Fs{σ ∪ p}.

Proof: Consider Fs̄ = coll′′Fs{σ ∪ p}, let π be the uncollapsing map, s̄
the condensed location as given by definition 11, p̄ := π−1(p). We start by
showing that for q ∈ Fs{σ ∪ p}, if Sφn(q) can be formed in s, then, letting
q̄ := π−1(q), Sφn(q̄) can be formed in s̄.
Assume otherwise, so pn(s̄) < q̄. Then π(pn(s̄)) <lex q, and π(s̄) <loc s by
linearity of H.
Suppose now that s is a limit location. Hence π(s̄+) <loc s as well. But, by
clause (6) in the definition of a linear hypering, π(s̄) is an H-location, and
the property of being a successor location is preserved by π. So π(s̄+) <loc s,
and s̄+ ∈ H, which contradicts the definition of the condensed location.
Now we have that Fs̄ = Fs̄{σ ∪ p̄}. Furthermore, we get that s̄ collapses σ
to γ.
Since s was minimal, it follows that s̄ = s. Since p was minimal, also p̄ = p.
So Fs = Fs̄ = Fs̄{σ∪ p̄} = Fs{σ∪ p}. If s is a successor location, the proof is
similar: The image of the condensed location will be strictly below s, so the
image of the successor cannot be strictly greater, contradicting definition 11.
In any case, the theorem is proved.
�

Corollary 10: In the setting of the last lemma, we have in fact Fs =
Fs{γ ∪ p}.

Proof: : By definition of s, σ ⊂ Fs{γ ∪ p}, the rest follows from the last
lemma.
�
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Definition 11: A hypering H with the property proved in the last corol-
lary, i.e. that, if there is σ such that σ is collapsed to γ < σ at s ∈ H
in parameter p implies Fs = Fs{γ ∪ p} is called a sound hypering, and this
property is from now on referred to as the soundness of H.

An important fact in constructible combinatorics is the isomorphy of
hulls. The following shows that this is preserved by Σs

1-maps for a spe-
cial kind of hulls that occurs frequently.

Lemma 12: (Preservation of Isomorphy) Let s and t be H-locations such
that π : Fs → Ft is Σs

1-preserving. Assume s0 ≤loc s1 ≤loc s are limit loca-
tions of H and let p0 ⊂fin Fs0, p1 ⊂fin Fs1, α ≤ α(s0). Then:
Fs0{α ∪ p0} ' Fs1{α ∪ p1} ↔ Fπ(s0){π(α) ∪ π(p0)} ' Fπ(s1){π(α) ∪ π(p1)}.

Proof: Let σ : Fs0{α ∪ p0} ' Fs1{α ∪ p1}. We define a map
σ̂ : Fπ(s0){π(α) ∪ π(p0)} → Fπ(s1){π(α) ∪ π(p1)} as the unique structure-
preserving map such that σ̂|π(α) = id|α and σ̂(π(p0)) = π(p1), if it exists.
We need to show that is does. So let τ1 be an s0-term, τ2 be an s1-term. In
order for σ̂ to be well-defined, we need to know that R(τ1(~x, p0), τ2(~x, p0)) for
all ~x ⊂fin Fα implies R(τ1(~x, π(p0)), τ2(~x, π(p1))) for all ~x ⊂fin Fπ(α), where
R is either ∈ or =.
Assume otherwise: So there are τ1, τ2, ~x,R as above such that ¬R(τ1(~x, π(p0)), τ2(~x, π(p1))),
but R(τ1(~y, p0), τ2(~y, p0)) for all ~y ⊂fin Fα. But the former implies
∃x¬R(τ1(~x, π(p0)), τ2(~x, π(p1))),
which is a Σ1-formula and hence preserved by π. But then
∃~y ⊂fin Fα¬R(τ1(~y, p0), τ2(~y, p0)), a contradiction. �

Remark: In the context of the last lemma, the isomorphism σ̂ given
there is called the canonical isomorphism.
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11.3 Construction of Gap-1-Morasses

We have now gathered enough of the and facts about hyperings to construct a
gap-1-morass in L directly from these. This ’meta’-finestructual proof makes
the central steps of the morass construction very apparent. In particular, it
should be observed that the crucial ingredient of slowness, which is a kind
of a border between coarse and fine structure, is only relevant for (M6) and
(M7). This explains why the ’coarser’ hypering H2 was sufficient for the con-
struction of a coarse morass. We see here that the heart of the fine-structural
power of a hypering is its slowness.

Luckily, most of the technical work has already been done. In particular,
the construction given for a coarse morass makes sense for any linear hypering
H, using H-singularizing locations sH(σ) instead of H2-locations. A closer
inspection of the proofs of (M0)-(M5) reveals that no particular property of
H2 besides being a linear hypering was used there. We will therefore not re-
peat the proofs but merely state which general properties of linear hyperings
were used for the argument.
The remaining challenge is thus to show that (M6) and (M7) hold as well.
As we already stated, this requires the slowness of the hypering.
Now for the argument. Until the end of this section, H denotes a slow, linear
hypering.

Theorem 13: The system M := 〈S0, S1, /,≺, πστ |σ / τ〉, constructed in
H, is a gap-1-morass, i.e. satisfies the morass axioms (M0)-(M7).

Proof:

• (M0) This does not make use of the power of hyperfine structure at
all. It would work equally well if ’bare’ F -stages were used instead of
hyperfine levels.

• (M1) This only uses ’coarse’ properties of the hierarchy as well and
could also be carried out using only the F -levels without hyperfine
interpolation.

• (M2) Here, clause (6) of the definition of linear hyperings, i.e. preser-
vation of locations under fine maps, is invoced to guarantee that the
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collapsing location can be mapped over so that its image is still an
H-location.

• (M3) Requires soundness, continuity and clause (6).

• (M4) Requires continuity and (6).

• (M5) Requires the soundness of H.

• (M6) holds for M .

Proof: Consider ŝ, the least upper bound of {πστ (t)|t <loc s(σ) is an
H-location}. This is an H-locations as hyperings are closed under least
upper bounds.

Claim: λ ∩ Fŝ{γτ ∪ pτ} = λ

Proof: To see ⊃, we use the usual argument: If δ < λ, there must, by
definition of λ, be δ′ < λ such that δ′ ≥ δ and δ′ ∈ rng(πστ ). Pick such a
δ′ and let δ̄′ be the pre-image of δ′ under πστ . Since σ is a morass point,
there must be a function f : γσ →surj δ̄′ in Fσ = Fs(σ){γσ ∪pσ}. This is
the first place where we need to use the slowness of H: Since s(σ) is a
collapsing location, it is a limit location. By continuity, there must be
t <loc s(σ) such that already f ∈ Ft{γσ∪pσ}. Let g := πστ (f), then g is
a surjection from γτ = πστ (γσ) onto δ′ = πστ (δ̄′). But γτ ∈ Fŝ{γτ ∪pτ},
so also δ′ ⊂ Fŝ{γτ ∪ pτ}, hence, in particular, δ ∈ Fŝ{γτ ∪ pτ}.
For ⊂, take δ ∈ Fŝ{γτ ∪pτ}, find some t <H s(σ) such that this already
holds at t, observe that Ft{γσ ∪ pσ} ↓σ by minimality of s(σ) and that
the bound maps over by πστ to something < δ. �

Collapse Fŝ{γτ ∪ pτ} to Fs̄ with collapsing map π and set p̄ := π(pτ ).
As ŝ is a limit location, so is s̄.

Claim: s̄ = s(λ).

Proof: ≥loc is clear, as s̄ is a singularizing location for λ. If s̄ >loc s(λ),
obtain a contradiction as follows:
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As pλ ∈ Fs̄{γτ ∪ p̄} and s̄ is a limit location, there is t ∈ H, strictly
between s(λ) and s̄ in <loc, with pλ ∈ Ft{γτ ∪ p̄}. t >loc s(λ) clearly
singularizes λ, and the π-preimage of t must be <loc s̄. Then there is
r ∈ H with r <loc s(σ) and π−1(t) <loc ŝ. Furthermore Fr{γσ ∪ pσ} ↓σ.
The bound is preserved by πστ , so Fπστ (r){γτ ∪ pτ} ↓τ , and further by
π, so Ft{γτ ∪ p̄} ↓λ, which is impossible. �

Claim: p̄ = pλ

Proof: Again, p̄ ≥lex pλ is as in the last claim. If p̄ >loc pλ, p̄ ∈
Fs(λ) = Fs(λ){γλ ∪ pλ} = Fs(λ){γτ ∪ pλ}. Hence π−1(pλ) <lex pτ ∈
Fŝ{γτ∪π−1(pλ)}, but pτ was supposed to be minimal with this property.
Contradiction. �

From the last two claims, we immediately get that Fs̄{γτ ∪ p̄} =
Fs(λ){γτ ∪ pλ}. To finish the proof, we need to find a morass map
from Fs(σ) to Fs(λ). It is natural to try π̄ := π ◦ πστ . π̄(σ) = λ and

π̄(pσ) = pλ are clear. It only remains to check preservation of Σ
s(σ)
1 -

formulas. Upwards preservation is trivial. Downwards preservation by
πστ is also clear, but π is an isomorphism, so p̄ = π ◦ πστ is indeed
Σ
s(σ)
1 -preserving, and hence a morass map. Thus σ / τ . �

• (M7) holds for M .

Proof: Here, to obtain an intermediate morass point between σ and τ ,
the first candidate would be to consider e.g. Fs(τ){α∪{γτ}∪ {τ}∪ pτ}
and collapse this. τ will be send to some ν, the collapsing map will
witness that ν / τ provided it is sufficiently preserving. That σ / ν then
follows from the fact that ν > σ and that / is a tree-ordering. The
challenge is to see that ν ∈ Sα, i.e. that α is the unique uncountable
cardinal in Fν . For this, we need to know that γτ is collapsed to α.
Hence, we start with the following important fact:

Claim: Fs(τ){α ∪ pτ} ∩ γτ = α.
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Proof: ⊃ is obvious. To see ⊂, suppose ζ ∈ Fs(τ){α ∪ pτ} ∩ γτ .
As {πστ (t)|t <loc s(σ)} is <loc-cofinal in s(τ), there is, by continuity,
ŝ <H s(σ) such that already ζ ∈ Fπστ (ŝ){α ∪ pτ}. ŝ <loc s(σ) and
hence, ŝ is not a collapsing location for σ. Collapse Fŝ{γσ ∪ pσ} to
Fs̄, let π̄ be the collapsing map, p̄ = π̄−1(pσ). So π̄−1(σ) < σ, as σ
is not collapsed. Also, π̄−1(σ) is not collapsed in Fs̄, for otherwise it
would be collapsed to γσ and hence σ itself would be collapsed as well.
(Note that sufficiently many F -levels are available in the structures in
question by the fact that σ is a limit ordinal so that these properties
are in fact preserved.) So Fs̄ must come before Fσ in the ordering of
the F -levels, and hence Fs̄ ∈ Fσ. σ is a ≺-limit, so there will be σ̄ ≺ σ
with {Fs̄, p̄} ⊂ Fs(σ̄) = Fs(σ̄){γσ ∪ pσ̄}.

By preservation of isomorphy, we get that
Fπστ (s̄){γτ∪πστ (p̄)} ' Fπστ (ŝ){γτ∪pτ}. Call the corresponding canonical
isomorphism π̂. By the definition of the canonical isomorphism, no
η < γτ is moved by π̂, so we have ζ ∈ Fπστ (s̄){α∪πστ (p̄)}, and hence ζ ∈
Fs(πστ (σ̄)){α ∪ pπστ (σ̄)}, as πστ (p̄) is definable in, and hence an element,
of the latter hull. Further, by the assumption of (M7), there is some
η̄ ∈ Sα strictly /-between σ̄ and πστ (σ̄). The map πητ will have critical
point α, send α to γτ and will satisfy rng(πητ ) = Fs(πστ (σ̄)){α∪pπστ (σ̄)}.
Hence ζ ∈ Fs(πστ (σ̄)){α ∪ pπστ (σ̄)} ∩ γτ = α. This was to be shown. �

Form the collapse of the hull Fs(τ){α∪pτ} to Fs′ , let π be the collapsing
map, p′ := π(pτ ), τ̄ := π(τ). The last claim implies that α is collapsed
to γτ , so π−1(α) = γτ . By the preservation properties of the maps
considered, τ̄ is a morass point and in fact an element of Sα.
τ̄ is our designated morass point between σ and τ .

Claim: s′ = s(τ̄).

Proof: Since s′ is a collapsing location for τ̄ , s(τ̄) ≤loc s′. Suppose
s(τ̄) <loc s

′. By continuity and compactness of H, there is
s0 ∈ rng(π ◦ πστ ) strictly <H-between s(τ̄) and s′ such that
pτ̄ ∈ F{α ∪ p′}, let s̄0 = (π ◦ πστ )−1(s0). By minimality of s(σ),
Fs̄0{γσ∪pσ} ↓σ; both π and πστ preserve such bounds, so Fs0{α∪p′} ↓τ̄ ,
but this contradicts the fact that s0 was supposed to be >H s(τ̄). �
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It remains to see that really σ/τ̄ /τ , i.e. that the corresponding morass
maps exist. π−1 looks like a promising witness for the latter. If it is, the
former follows from the fact that / is a tree-order and that we cannot
have τ̄ / σ as τ̄ ≥ σ.

Claim: π is Σ
s(τ)
1 -preserving.

Proof: π is a collapsing map. Hence, the non-trivial direction is down-
wards preservation. Take some Σ

s(τ)
1 -formula ψ, suppose ψ is ∃~xφ(~x, ~q),

where φ is Σ
s(τ)
0 . Assume ψ has a witness ~z in Fs(τ){γτ̄ ∪ pτ}. By <H-

cofinality of πστ , pick t <H s(σ) with ~q, ~z ∈ Fπστ (t){γτ ∪ pτ}. Form
the collapse πσ : Ft{γσ ∪ pσ} →coll Ft̄, p̄σ := πσ(pσ). By preser-
vation of isomorphy and πστ (γσ) = γτ , we get Fπστ (t){γτ ∪ pτ} '
Fπστ (t̄){γτ ∪ πστ (p̄σ)}. Let π̂ be the canonical isomorphism, then the
images of both ~q and ~z are elements of the latter hull. Again, using
the minimality of collapsing locations, we can reflect this at an earlier
stage, letting σ̄ / η / ¯̄τ such that all relevant locations and parameters
are included in rng(πη¯̄τ ). But this is a morass map and hence it pre-
serves Σ1-formulas. Thus, in fact ~z ∈ Fπστ (t){γτ̄ ∪ pτ} = rng(πτ̄ ,τ ), so
ψ is preserved downwards as well. �

Hence, (M7) holds. �

All properties of a morass have been checked, hence the proof is finished.

�

This concludes our account on morasses in particular and on constructible
combinatorics in general.
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12 Generalized Computability and Constructibil-

ity

In this chapter, we consider yet another way of analyzing the constructible
hierarchy: Namely in terms of a notion of generalized computability, Infinite
Time Register Machine computability (ITRM computability). The basic op-
erations of the fine structural frameworks considered so far, Skolem functions
and interpretation, can be rephrased as recursive processes on appropriate
structures: For example, a Skolem function giving the minimal witness for
some statement according to a well-ordering of the underlying set is basi-
cally a µ-operator and can be interpreted as a generalized search procedure.
Nested terms using these basic operators then correspond to more complex
algorithms. Here, the question comes up whether this intuition can be made
precise. A great advantage of analyzing L in terms of computability would
be the great stability of results and constructions under changes of the un-
derlying language; also, a lot of the strong intuitions behind programming
Turing machines and its analogues can thus be made useful for the theory of
constructibility.
Generalized recursion theory is an attempt to carry over the ideas behind
notions like computability, decidability etc. into the realm of abstract set
theory. These notions are in their classical sense connected to the natural
numbers. Computability theory provides a tool for characterizing reals (sub-
sets of ω) by the complexity of the means necessary to generate them. The
power of this approach is due to a philosophical assumption known as the
Church-Turing-Thesis (CTT):

(CTT): The notion of computability in the sense of recursion theory co-
incides with the intuitive notion of ’being capable to be generated according
to a recipee’.

The CTT hence says that recursion theory adequatly catpures our (hu-
man) concept of finite constructions. The classical recursion theory limits the
scope of mathematical objects by restrictring itself to operations on ω. As
the real mathematics is much broader, the question arises whether a similar
capture is feasible for objects given by infinite constructions. As we are able
to communicate about such matters in a precise manner, we should expect
a positive answer.
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Intuitively, the set theory after Cantor is characterized by the step of tran-
scending the concept of time underlying mathematical constructions in which
everything is either the starting point or a successor. The obvious way to
proceed would accordingly be to operate along an ordinal time axis. A similar
consideration applies to the available space, which corresponds to memory in
recursion theory and is e.g. modeled by the tape length in the case of Turing
machines. This leads to the (α, β)-Turing machines of [2], which carry out β
many steps on a tape of length α, where α and β are ordinals. As results of
ordinal constructions, there is a natural connection between computations of
ordinal Turing machines and L.
The different approaches to the classical theory of computation, like λ-
calculus, recursive functions, Turing machines etc. have turned out to be
equivalent, which is commonly seen as a consequence and a support for the
Church-Turing thesis. Appropriately formulated, this definitional stability
still holds in the ordinal case. However, it is unclear what the intuitive idea
behind these concepts might be. Formulating a version of CTT for infinite
time computability remains a philosophical challenge.
In this section, we present the concept of infinite time register machines, a
generalization of unlimited registers machines (URM ’s) where computations
are carried out along an ordinal time axis of a priori unlimited length, but
with only finitely much memory. One might say that while the time is ex-
tended with respect to URM ’s, the hardware remains unaltered. We shall
prove a theorem on the difference between recognizability and computability
of reals with ITRM ’s and show how ITRM ’s are connected with the theory
of constructibility. In particular, we give a precise analyis of the computa-
tional power of ITRM ’s with certain numbers of registers. To this end, we
introduce typed ITRM ’s, where registers with simpler limit behaviour are
used for the implementation of auxiliar functions.
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12.1 Infinite Time Register Machines

Infinite Time Register Machines (ITRM ’s) are meant to genalize computa-
tions with classical register machines to an ordinal time axis. We give here
the definitions of [7], based on the unlimited register machines (URM ’s) of
[38].

Definition 1: An unlimited register machine (URM) has registers R0, R1, . . .
which can hold natural numbers. An URM program is a finite list P = I0, I1,
. . . , Is−1 of instructions, each of which may be of one of five kinds:

• the zero instruction Z(n) changes the contents of Rn to 0, leaving all
other registers unaltered;

• the successor instruction S(n) increases the natural number contained
in Rn by 1, leaving all other registers unaltered;

• the oracle instruction O(n) replaces the content of the register Rn by the
number 1 if the content is an element of the oracle, and by 0 otherwise;

• the transfer instruction T (m,n) replaces the contents of Rn by the nat-
ural number contained in Rm, leaving all other registers unaltered;

• the jump instruction J(m,n, q) is carried out as follows: the contents
rm and rn of the registers Rm and Rn are compared, all registers are left
unaltered; then, if rm = rn, the URM proceeds to the qth instruction of
P ; if rm 6= rn, the URM proceeds to the next instruction in P .

Remarks/Conventions: It is clear that a URM -program P can only
mention finitely many registers, which will be called the registers used by the
program. The number of registers used can serve as a complexity measure of
a program. Later, when we introduce typed programs, this will be replaced
by triples of naturals. The position of the appearance of a certain instruction
in a program is called its index; the indices of a program P are also called
the program states of P .
At any ordinal time λ, the computation by P will be in a configuration which
is given by the current program state IP (λ) and the sequence of register con-
tents 〈RP

i (λ)|i < ω〉. The superscript P is dropped when the program is
clear from the context; also, we will usually abbreviate the configuration by
only mentioning registers used by P .
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Definition 2: Let P = I0, I1, . . . , Is−1 be an URM program. Let Z ⊆ ω
be an oracle. A pair

I : θ → ω,R : θ → (ωω)

is an (infinite time register) computation by P if the following hold:

• θ is an ordinal or θ = On; θ is the length of the computation;

• I(0) = 0; the machine starts in state 0;

• If τ < θ and I(τ) /∈ s = {0, 1, . . . , s − 1} then θ = τ + 1; the machine
halts if the machine state is not a program state of P ;

• If τ < θ and I(τ) ∈ s then τ + 1 < θ; the next configuration is deter-
mined by the instruction II(τ), with I(τ+1) = I(τ)+1 unless otherwise
specified:

– if II(τ) is the zero instruction Z(n) then define R(τ + 1) : ω → On
by setting Rk(τ + 1) to be 0 (if k = n) or Rk(τ) (otherwise).

– if II(τ) is the successor instruction S(n) then define Rk(τ + 1) to
be Rk(τ) + 1 (if k = n) or Rk(τ) (otherwise).

– if II(τ) is the oracle instruction O(n) then define Rk(τ + 1) to be
Rk(τ) (if k 6= n), or 1 (if k = n and Rk(τ) ∈ Z), or 0 (if k = n
and Rk(τ) /∈ Z).

– if II(τ) is the transfer instruction T (m,n) then define Rk(τ +1) to
be Rm(τ) (if k = n) or Rk(τ) (otherwise).

– if II(τ) is the jump instruction J(m,n, q) then let R(τ+1) = R(τ),
and set I(τ + 1) = q (if Rm(τ) = Rn(τ)) or I(τ + 1) = I(τ) + 1
(otherwise).

• If τ < θ is a limit ordinal, then I(τ) = lim infσ→τ I(σ) and for all
k < ω

Rk(τ) =

{
lim infσ→τ Rk(σ), if lim infσ→τ Rk(σ) < ω

0, if lim infσ→τ Rk(σ) = ω.

The computation is obviously determined recursively by the initial register
contents R(0), the oracle Z and the program P . We call it the (infinite time
register) computation by P with input R(0) and oracle Z. If the computation
halts then θ = β + 1 is a successor ordinal and R(β) is the final register
content. In this case we say that P computes R(β)(0) from R(0) and the
oracle Z.
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Convention: If a register R is reset to 0 at time λ due to the lim inf
being ω, we say that that R overflows at λ.

Definition 3: An n-ary partial function F : ωn ⇀ ω is computable if there
is a register program P such that for every n-tuple (a0, . . . , an−1) ∈ dom(F ),

P : (a0, . . . , an−1, 0, 0, . . .), ∅ 7→ F (a0, . . . , an−1).

Here the oracle instruction is not needed.

Obviously any standard recursive function is computable.

Definition 4: A subset x ⊆ ω, i.e., a (single) real number, is computable
if its characteristic function χx is computable.

A subset A ⊆ P(ω) is computable in the oracle Y if there is a register
program P such that for all Z ⊆ ω:

Z ∈ A iff P : (0, 0, . . .), Y×Z 7→ 1, and Z /∈ A iff P : (0, 0, . . .), Y×Z 7→ 0

where Y × Z is the cartesian product of Y and Z with respect to the Cantor
pairing function

(y, z) 7→ (y + z)(y + z + 1)

2
+ z.

Definition 5: x ⊂ ω is computable in y ∈ ω if and only if there is an
ITRM-program P such that P y(i) = 1 if i ∈ x and P y(i) = 0, otherwise. In
this case, we call x ITRM-reducible to y and write x ≤ITRM y. If x and y
are mutually reducible to each other, we write x =ITRM y. If x ≤ITRM y, but
x 6=ITRM y, then we write x <ITRM y.

The following basic fact of classical recursion theory will be used fre-
quently.

Fact: A real x ⊂ ω is URM -computable if and only if it is computable
by a URM with 3 registers. The same holds relative to any oracle.

The main sources for ITRMs are [7], [21]. The computational strength
of ITRM ’s is known to increase with the number of registers; in particular,
there is m ∈ ω for each n ∈ ω such that an ITRM with m registers can solve
the halting problem for an ITRM with n registers. This makes ITRM ’s
much stronger than classical register machines. On the other hand, the
Infinite Time Turing Machines from [2] can simulate all ITRM ’s and solve
the halting problem for ITRM ’s.
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12.2 The Lost Melody Theorem for Infinite Time Reg-
ister Machines

In this section, we state and prove an analogue to the Lost Melody Theorem
for ITTMs from [2]. This proof was recently published in [21]. Intuitively,
a lost melody theorem for a certain notion of computability says that there
are reals that can be recognized, but not computed. Accordingly, let us call
a real r recognizable if the set of reals {r} is computable in the empty oracle ∅.

Definition 6: A real r ⊂ ω is recognizable iff there is an ITRM-program
P such that P x(0) ↓= 1 if and only if x = r. If r is recognizable, but not
computable by an ITRM , then r is called a lost melody.

Theorem 7: There is a real r which is recognizable, but not computable.
Thus, the Lost Melody Theorem holds for ITRM’s as well.

The rest of this section is devoted to the proof of this theorem.

Roughly, the proof goes like this: We will choose a real r ⊂ ω that codes
the minimal Jα such that Jα |= ZF− and we will take the <L-minimal such
r. It will be easy to see that this r cannot be computable. However, to see
that it is indeed recognizable, we will have to develop methods for, given r,
evaluating truth predicates (i) within Jα, which is a comparably easy task
and allows us to check that r codes a structure of the desired form, and (ii)
for Jα+2, which is necessary to identify r as the <L-minimal such code. The
latter makes it necessary to unfold the structure coded by r far enough so
that properties of r itself become feasible. The idea is that, if there was a
<L-smaller real t with the same properties, it would have to be generated
by Gödel functions over Jα+1, and can hence be coded by parameters from
Jα and a natural number coding a series of Gödel functions. The challenge
remains to exhibit statements about the coded objects in terms of the codes
with oracle r. This is the main concern of the following construction.

We need some notions from the Jensen fine structure theory of the con-
structible universe L. The canonical source for the following is [6].

Definition 8: The Gödel basis functions are the following:
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1. F1(x, y) = {x, y}

2. F2(x, y) = x× y

3. F3(x, y) = {(u, v) : u ∈ x ∧ v ∈ y ∧ u ∈ v}

4. F4(x, y) = x− y

5. F5(x, y) = x ∩ y

6. F6(x, y) =
⋃
x

7. F7(x, y) = dom(x)

8. F8(x, y) = {(u, v) : (v, u) ∈ x}

9. F9(x, y) = {(u, v, w) : (u,w, v) ∈ x}

10. F10(x, y) = {(u, v, w) : (v, w, u) ∈ x}

Definition 9:

• S0 := ∅

• Sα+1 = {Fi(x, y)|1 ≤ i ≤ 10 ∧ {x, y} ⊂ Sα}

• If λ is a limit ordinal, then Sλ =
⋃
ι<λ Sι

Fact: Jα = Sωα, where Jα is as defined in the first part. (See e.g. [6]).

From now on until the end of the proof, we define α to be the smallest
ordinal such that Jα |= ZF−, where ZF− is ZF without the power set axiom.
Thus, α is a countable ordinal and Jα is itself countable. In fact, we have:

Lemma 10: There is s ∈ Jα+2 such that s : ω → Jα is surjective.

Proof: Let Mα be the Σω Skolem hull of {Jα} in Jα+1. All elements of Mα

are of the form h(i, {Jα}), where h is the canonical Σ1 Skolem function for
Jα+1 (which is Σ1 over Jα+1 and hence an element of Jα+2). Also, we have
Mα ∈ Jα+2. Let πβ(x) : x → y be the collapsing map for elements x of Sβ,
where y is the transitive collapse of x; this can be defined by induction on β
and is easily seen to be an element of Jα for ωα > β. Furthermore, let π be
the collapsing map for Mα, i.e.

⋃
β πβ.
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By the condensation lemma, the transitive collapse of Mα is of the form Jγ
for some ordinal γ ≤ α+1. Since Jα+1 |= ’there is a maximal J-stage’ (namely
Jα), the same holds in Jγ and so γ = δ + 1 for some ordinal δ. Furthermore,
for each axiom φ of ZF−, Jα+1 |= φJα , and hence Jγ |= φJδ . Now, since α was
minimal, it follows that α ≤ δ, so we get α = δ. Now f : i → π(h(i, {Jα}))
is a partial surjection from ω onto Jα+1. Define s(x) = f(x) if f(x) ∈ Jα, ∅
otherwise. Since Jα and Jα+1 are in Jα+2 and the latter is closed under
rudimentary functions, f is easily seen to be an element of Jα+2 as well and
is the desired surjection.�

Convention: From now on, let p : ω × ω → ω be the Cantor pairing
function.

Given a surjective map s as above, we can code Jα by a real r in a canon-
ical way by simply putting n = p(i, j) into r iff s(i) ∈ s(j). Conversely, any
real can be interpreted as a (possibly ill-founded) countable ∈-structure in
this way: Introduce countably many constants ci and let ciEcj ↔ p(i, j) ∈ r.
We say that r codes a model of ZF− iff the ∈-structure obtained in this way
is such a model. (Obviously, any structure obtained in this way is transitive.)
From now on, r denotes the <L-minimal real that codes a Jα |= ZF−. Since
a real coding Jα is easily generated from s as in Lemma 8 by applying some
Gödel functions, we have r ∈ Jα+2. From now on, we write P ∅(n) for the
output that the program P generates from the input n in the empty oracle.

We start by proving:

Lemma 11: r is not computable.

Proof: Suppose for the sake of a contradiction that P computes r. Since
computations are absolute between transitive models of ZF−, there is an ∈-
formula φ(v) such that P ∅(n) = 1↔ Jα |= φ(n). Since comprehension holds
in Jα, we have r ∈ Jα. But then, since Jα satisfies replacement, the structure
coded by r is itself an element of Jα, and we get Jα ∈ Jα, a contradiction. �

The algorithm for deciding whether or not the oracle number o is equal
to r proceeds in three steps: First, it is checked whether the ∈-structure R
coded by o (in the sense mentioned above) is well-founded. This can be done
by the algorithm testing for well-foundedness in [21]. If it doesn’t succeed,
we stop with negative result. If it does, we have to check whether all axioms
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of ZF− + V = L are valid in R and R is ∈-minimal with this property.
How to do this will follow easily from the effort taken for the last step: As-
suming that the last step was successful (so o codes an ∈-minimal model of
ZF−+V = L), we have to check whether o is <L-minimal with this property.
For this purpose, we fix the oracle number o for the rest of the proof.

Since it is checked by now that R is isomorphic to a transitive, well-
founded, ∈-minimal model of ZF−+V = L, we may assume that R is of the
form Jγ for some ordinal γ.

The J-hierarchy is obtained by iterating the process of closing Jβ ∪ {Jβ}
under Gödel functions and taking unions at limits. Each element of L =⋃
β Jβ can therefore be represented as an iteration of Gödel functions ap-

plied to several of the Sγ. We view such a representation as a name for the
element; if we restrict ourselves to an initial segment of L below a count-
able ordinal, this concept can be arithmetized, which will allow us to decide
∈-formulae relativized to Jα+2 when a Jα-oracle is given, where Jα is the
minimal ZF− + V = L-model as above.

We start by assigning natural numbers to the constituting elements of
names; having a surjection s as in the introduction at our disposal, we let 3n
code s(n). Sω(α+i)+j, j ∈ ω, i ∈ {0, 1} is represented by 3j + i + 1. Names
can now be coded by a suitable application of the pairing function p:

Definition 12: A name is any number generated in the following way:
(i) p(2n, i) is a name for all i, n ∈ ω
(ii) if a and b are names, i ∈ ω, then so is p(2i+ 1, p(a, b)).

Thus a name is an ordered pair 〈a, b〉 of naturals; the parity of the first
element shows whether the name is flat, i.e. an Sβ or an element of Jγ if a
is even or whether and which Gödel function was applied. We explain the
coding by giving the interpretation function I:

Definition 13: The interpretation function I is defined as follows:
(i) if i = 3k + j, j ∈ {1, 2}, then I(p(2n, i)) = Sω(γ+j−1)+k

(ii) otherwise, I(p(2n, 3i)) = s(i)
(iii) if j = 10k + l, 0 ≤ l < 10, then I(p(2j + 1, p(a, b))) = Fl+1(I(a), I(b))
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Obviously, we assign multiple (and in fact infinitely many) names to each
interpretation. However, this has a technically advantageous consequence:

Proposition 14: Every natural number is a name.

Proof: Trivial. �

This will allow us to search through Jγ+2 by searching through ω without
any further checks.

The idea of a final constituent of a name is given by the following formal
notion:

Definition 15: The argument set A(n) of a name n is given by the
following recursive rules:
(i) A(p(2n, i)) = {i}
(ii) A(p(2k + 1, p(a, b))) = A(a) ∪ A(b)

The following is our central tool for inductive arguments and definitions
on names. For rational q, dqe denotes the smallest integer n such that n ≥ q.

Definition 16: Let a be a name. Then ps(a), the pseudostage of a, is
defined as follows:
(i) for i = 3k + j, j ∈ {1, 2}, ps(p(2n, i)) = ω(γ + j − 1) + 3k
(ii) otherwise, ps(p(2n, i)) = 0
(iii) if A(a), A(b) ⊆ {3i|i ∈ ω}, then
ps(p(2k + 1, p(a, b))) =max{ps(a), ps(b)}+ 1
(iv) if k = 10n+ 1 for some n ∈ ω
ps(p(2k + 1, p(a, b))) = max{ps(a), ps(b)}+ 1
(v) for k = 10n+ j, n ∈ ω, j ∈ {4, 5, 6}, if max{ps(a), ps(b)} = ω(γ+ j) + t,
let ps(p(2k + 1, p(a, b))) = ω(γ + j) + 3[ t

3
] + 1

(vi) for k = 10n + j, n ∈ ω, j ∈ {2, 3, 7, 8, 9, 0}, if max{ps(a), ps(b)} =
ω(γ + j) + t, let ps(p(2k + 1, p(a, b))) = ω(γ + j) + 3d t

3
e+ 2

We call a name m minimal if any name n with I(n) = I(m) satisfies
ps(n) ≥ ps(m).

In our arithmetization, the ordinal ω(γ + j) + i will be coded by p(j, i).
Accordingly, we slightly abuse our notation by viewing ps as a function tak-
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ing naturals to naturals rather than to ordinals. If we talk about relations
between pseudostages like <, we nevertheless mean the ordinals, and simi-
larly for ps(a) + 2 etc. Since the definition consists of easy recursive rules,
which can be implemented even on a classical (finite) register machine, we
note:

Proposition 17: The pseudostage of a name can be computed by an
ITRM-program in finite time.

Proof: Trivial. �

From now on, if a and b are names, we write a∈̃b and a=̃b instead of
I(a) ∈ I(b) and I(a) = I(b). Furthermore, we write a <ps b for ps(a) < ps(b),
similarly for >,= etc. If β is an ordinal a <ps β means ps(a) < β. Sometimes
we will write a <ps+i b, i ∈ ω to indicate that ps(a) + i < ps(b).

The following lemma is the main reason for the usefulness of the pseu-
dostage. To enhance readability, we will e.g. write 〈8, x, y〉 instead of
p(8, p(x, y)).

Lemma 18: Suppose a and b are names such that I(a) ∈ I(b). Then:
(i) If ps(b) > 0 then there is a name c such that ps(c) < ps(b) and I(c) =
I(a). Thus, minimal names of elements of sets with names of ps > 0 have a
strictly smaller pseudostage.
(ii) If ps(b) = 0 then there is a name c such that ps(c) = 0 and I(c) = I(a).

Proof: (i) Easy induction on the pseudostage. To give a feeling for the kind
of argument used here, we prove this for names of the form 〈8, x, y〉. In the
following, all names are chosen minimal. Consider z ∈ 〈8, x, y〉, so that z is
of the form 〈v, u〉, where 〈u, v〉 ∈ x. By definition of ps, we have x <ps+1

〈8, x, y〉; now, by induction, 〈u, v〉 <ps x, {u, v} <ps 〈u, v〉, u <ps {u, v},
v <ps {u, v}. Since pairing (i.e. application of F1) increases the pseudostage
by 1, we have 〈v, u〉 <ps x <ps 〈8, x, y〉.
(ii) By transitivity of Jγ.�

We will now define a ∈ b and a = b by induction on a partial order / of
the tripels 〈σ, a, b〉, where σ ∈ {∈,=}, a,b names without using the interpre-
tation function. This will allow a purely syntactical decision procedure for
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atomic formulae by inspection of the names.

Definition 19: For triples as mentioned above, let ma = max{ps(a1), ps(a2)},
mb = max{ps(b1), ps(b2)}. Then define 〈σ1, a1, a2〉 / 〈σ2, b1, b2〉 iff one of the
following holds:
(i) ma < mb

(ii) ma = mb, and left triple satisfies that σ1 is ∈ and a1 <ps a2, while the
analogous proposition for the right triple is not true
(iii) ma = mb and the left, but not the right triple satisfies that σ1 is =.

Thus, given that we already know what ∈ and = mean for names with
ps < β, we first explain a ∈ b for ps(a) < β. Now, since elements of sets have
names of smaller pseudostage then the sets themselves, we can define a = b
for names with ps ≤ β and then also a ∈ b for β = ps(a) > ps(b), since this
is only possible if there is a name c with ps(c) < β and c = a.

This approach leads to a meaningful definition: Since the maximum of
the pseudostages cannot increase when going down in /, and since we can go
down at most two steps while preserving the maximum and these maxima
are ordinals, we have the following:

Proposition 20: / is well-founded.

Proof: Trivial. �

We will now give a formal version of the above sketch by induction on /.

Definition 21: For the sake of brevity, we abbreviate names and write e.g.
a∈̃x, y, where we really mean a∈̃〈1, x, y〉, and similar for ordered pairs and
triples. The replacement function η assigns (codes of) formulae to (codes of)
formulae as follows:
(i) a=̃b 7−→ ∀x <ps max{1, ps(a), ps(b)}(x∈̃a↔ x∈̃b)
(ii) if ps(a) = ps(b) = 0, then (a∈̃b) 7−→ true, if p(a, b) ∈ o, false, otherwise
(iii) if ps(a) > 0, ps(a), ps(b) ∈ ω, then (a∈̃b) 7−→ (∃a0, b0 =ps 0(a0=̃a ∧
b0=̃b ∧ a0∈̃b0))

If ps(b) = β 6∈ ω, ps(a) < β:
(i) (a∈̃b = 〈1, x, y〉) 7−→ (a=̃x ∨ a=̃y)
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(ii)(a∈̃b = 〈2, x, y〉) 7−→ (∃t1 <ps x∃t2 <ps y(t1∈̃x ∧ t2∈̃y ∧ 〈t1, t2〉=̃a))
(iii)(a∈̃b = 〈3, x, y〉) 7−→ (∃t1 <ps x∃t2 <ps y(t1∈̃x∧t2∈̃y∧〈t1, t2〉=̃a∧t1∈̃t2))

(iv)a∈̃b = 〈4, x, y〉 7−→ a∈̃x ∧ a /̃∈y
(v)a∈̃b = 〈5, x, y〉 7−→ a∈̃x ∧ a∈̃y
(vi) a∈̃b = 〈6, x, y〉 7−→ ∃z <ps x(z∈̃x ∧ a∈̃z)
(vii) a∈̃b = 〈7, x, y〉 7−→ ∃u, v <ps+3 x∃z <ps x(z=̃〈u, v〉 ∧ a=̃u)
(viii) a∈̃b = 〈8, x, y〉 7−→ ∃z <ps x∃u, v <ps+1 z(z=̃〈u, v〉 ∧ a=̃〈v, u〉 ∧ z∈̃x)
(ix) a∈̃b = 〈9, x, y〉 7−→ ∃z <ps x∃u <ps+1 z∃v, w <ps+3 z(z=̃〈u,w, v〉∧z∈̃x∧
a=̃〈u, v, w〉)
(x) a∈̃b = 〈10, x, y〉 7−→ ∃z <ps x∃v <ps+1 z∃w, u <ps+3 z(z=̃〈v, w, u〉∧z∈̃x∧
a=̃〈u, v, w〉)
(xi)b is an S-stage: j ∈ {1, 2}, a∈̃b = p(2n, 3k+j) 7−→ ∃c ≤ps a(c=̃a∧c <ps b)

If ps(α) ≥ ps(β):
a∈̃b 7−→ ∃c <ps b(a=̃c ∧ c∈̃b)

If 0 =ps(a) <ps(b) ∈ ω, then the above almost works. Just replace each
<ps x by <ps max{1,ps(x)} and terms like 〈u, v〉 by their definition (so if, for
example, {u, v} appears, replace it by a new variable c and add the condition
∀x <ps max{1, ps(c)}(x ∈ c ↔ x = u ∨ x = v); similarly for ordered pairs
and triples.)

This function produces for every tripel 〈s, x, y〉, where s is ∈̃ or =̃, an
equivalent formula which is only based on /-smaller atomic formulas. This
procedure can be implemented on an ITRM.

For this, an arithmetization of the appearing formulas is needed: So set
a(x∈̃y) = 5p(x, y), a(x=̃y) = 5p(x, y) + 1, a(φ ∧ ψ) = 5p(a(φ), a(psi)) + 2,
a(¬φ) = 5a(φ) + 3, a(∃tiψ) = 5p(p(i, a(ψ)) + 4. A formula of the form
∃ti <ps+jφ is viewed as ∃ti(ps(ti) + j <ps(x) ∧ φ) in this respect; this will,
in connection with the fact that the implementation considers conjunctions
from left to right, lead to the termination of the algorithm. For the sake of
uniformity, we introduce the symbol Ω and write the unbounded quantifiers
as ∃xφ as ∃x <ps Ωφ.

We now describe a stack algorithm for deciding ∈-formulas in Jγ+2.

The implementation essentially uses only two registers, one of which con-
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tains a sequence of (codes of) ∈-formulas coded by iterating the pairing func-
tion, while the others holds a status for the most recently processed element
of this sequence (true, false, unknown, represented by 0,1,2, respectively). In
addition, numerous auxiliary registers are used for calculating the auxiliary
functions. We leave out those details.

For the description, we use sequences of pairs of the form 〈f1, s1〉 7−→
〈f2, s2〉, where the first element represents the sequence of formulas, the sec-
ond the status; the reader will easily convince himself that the described
development of the stack contents can be generated by a standard register
machine without assigning other values to the two central registers in be-
tween. 〈〉 is the empty sequence, 〈S|e〉, S = 〈s1, ..., sn〉 denotes the sequence
〈s1, ..., sn, e〉; φ[x/i] for i ∈ ω is the formula derived from φ by replacing every
free occurence of x in φ by i.

Base cases:
〈〈〉, 1〉 : output = true;, 〈〈〉, 0〉 : output = false, 〈〈〉, ?〉 : output = true
〈〈S|false〉, ?〉 7−→ 〈S, 0〉
〈〈S|true〉, ?〉 7−→ 〈S, 1〉
Atomic formulas, s ∈ {∈,=}:
〈〈S|s(x, y)〉, ?〉 7−→ 〈〈S|η(s(x, y))〉, ?〉 (where η is the replacement function
defined above; we assume that the formula on the right hand side is rewrit-
ten in such a way that in contains only ∃, ¬ and ∧ as logical symbols.)
Conjunction:
〈〈S|φ ∧ ψ〉, ?〉 7−→ 〈〈〈S|φ ∧ ψ〉|φ〉, ?〉
〈〈S|φ ∧ ψ〉, 0〉 7−→ 〈S, 0〉
〈〈S|φ ∧ ψ〉, 1〉 7−→ 〈〈S|ψ〉, ?〉
Negation:
〈〈S|¬φ〉, ?〉 7−→ 〈〈〈S|¬〉|ψ〉, ?〉
〈〈S|¬〉, 0〉 7−→ 〈S, 1〉
〈〈S|¬〉, 1〉 7−→ 〈S, 0〉
Existential quantifier:
〈〈S|∃xφ〉, ?〉 7−→ 〈〈〈S|〈∃xφ, 0〉〉|φ[x/0]〉, ?〉
〈〈S|〈∃xφ, k〉〉, 1〉 7−→ 〈S, 1〉
〈〈S|〈∃xφ, k〉〉, 0〉 7−→ 〈S, 0〉 7−→
〈〈〈S|〈∃xφ, k + 1〉〉|φ[x/k + 1]〉, ?〉

We will now show that this algorithm, given the input 〈〈φ〉, ?〉, φ an ∈-
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formula without free variables, always terminates and returns the truth value
of Jα+2 |= φ. We do this by induction on a well-order on these formulae.

In the following, at(φ) is the set of atomic subformulas of φ, written
in the form 〈∈, x, y〉 etc. First, write φ in prenex normal form and bound
all unbounded quantifiers with the help of the symbol Ω as introduced above.

For β = ωγ + j, we set β − i = ωγ + (j − i) for i ≤ j and otherwise
β − i = ωγ.

Definition 22: For such a formula ψ we define pt(ψ), the potential of ψ,
as follows:
(i) pt(∃x <ps+i yφ) = /−max{ψ[x/ps(y)− i]|ψ ∈ at(φ)}
(ii)pt(¬φ) =pt(φ)
(iii)pt(φ ∧ ψ) = /−max{pt(φ),pt(ψ)}

Intuitively, pt(ψ) is an upper bound for the complexity of an atomic for-
mula that has to be decided in order to evaluate ψ. For our purposes, a
slightly finer order is necessary:

Definition 23: If φ and ψ are formulae as described above, we let φ <F ψ
iff one of the following cases occurs:
(i) pt(φ)/pt(ψ)
(ii) pt(φ) and pt(ψ) are incomparable in / and φ is a proper subformula of
ψ.

Proposition 24: <F is a well-order on formulae of this kind.

Proof: Trivial. �

By case distinction and the definition of the replacement function:

Lemma 25: Whenever the algorithm puts a new formula φ on the stack
on top of the formula ψ, we have φ <F ψ.

Proof: Trivial. (See the remark above.) �

Therefore, finally:
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Lemma 26: The algorithm terminates and gives the correct result.

Proof: By induction on <F with the help of the last lemma and the last
proposition; observe that the bounding of a quantifier is always processed
as the first conjunct by the way the algorithm treats conjunctions and that
the complexity drop is therefore mirrored by the processing steps. The only
interesting case is existential quantification: If ∃xφ is true, a witnessing x
will be found, the formula will be taken off the stack, and the status register
will be set to 1. If it is false, the seemingly pointless step in the last line
in the description of the algorithm forces the occurence of a limit state, in
which the formula is of the stack and the status register contains a 0.�

Thus, we are now able to decide arbitrary ∈-formula in Jα+2.

Finally, we have to check the <L-minimality of o. Since in this case, we
have o = r and we know that r ∈ Jα+2, we can do this by finding a name
n for o and then checking for each name u whether I(u) <L r and u codes
an ∈ −minimal model of ZF−. We just gave a procedure for the latter;
the well-order <L of the constructible hierarchy (restricted to Jα+2) can be
expressed by an ∈-formula in Jα+2 and thus computed by the same method.
Since there are only countably many names, we will have a way to test for
<L-minimality of a real given in the oracle as soon as we can tell how to
find n such that I(n) = o. Again, since the number of names is countable, it
suffices to be able to test for some given name m and some oracle number z
whether or not I(m) = z.

For this, we first run through all the names until we find one, say y0, such
that ¬∃t(t ∈ I(y0)), that is, I(y0) = ∅ and save it in a separate register.

Definition 27: For k ∈ ω the canonical name cn(k) of k is defined as
follows:
(1) cn(0) = y0

(2) cn(k + 1) = 〈6, 〈1,cn(k), 〈1,cn(k),cn(k)〉〉, 0〉

Proposition 28: I(cn(k)) = k for k ∈ ω

Proof: If k = 0, this follows from the definition of y0.
Otherwise, I(cn(k+ 1)) is just

⋃
{I(cn(k)), {I(cn(k)), I(cn(k))}}, which, by

induction, equals
⋃
{k, {k, k}} =

⋃
{k, {k}} = k ∪ {k} = k + 1.�
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cn(k) is obviously easy to compute. So we can check for a name m whether
I(m) ∈ ω simply by checking for any i ∈ ω wether I(m) = I(cn(i)), at the
same time finding the corresponding i in case of success. From this, one con-
structs an algorithm for checking I(m) ⊂ ω by running through the names
and testing for being element of I(m) and of ω.

To find out if z ⊆ I(m), run through ω, checking by oracle call for every
k ∈ ω whether k ∈ z, then, if so, whether c(k) ∈ I(m).

Finally, check I(m) ⊆ z by finding out if I(m) ⊆ ω and, if so, running
through the canonical names of all k ∈ ω and calling the oracle for each
cn(k) ∈ m to see if k ∈ z.

This concludes the description of the algorithm, and thus the proof of the
lost melody theorem.
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12.3 The Computational Strength of Infinite Time Reg-
ister Machines

We now turn to the question which real numbers can be computed by ITRMs.
This has been done in [5] for non-resetting infinite time register machines, a
variant of ITRMs which stop in case of a register overflow. Also, the strength
of an ITRM with an arbitrary number of registers has been determined in
[22].
Here, we consider the computational strength of ITRMs with up to n over-
flowing registers, where n < ω. Let Rn be the set of reals computable by an
ITRM with at most n overflowing registers. The non-resetting ITRMs are
thus the case n = 0, while the answer for arbitrarily many registers is

⋃
i∈ω Ri.

When writing programs for ITRMs, it soon becomes apparent that a
certain number of registers is never used in its limit behaviour, but rather
deals with organizing operations like pushing/popping a stack etc. This is
disadvantegous for a complexity analysis in terms of the number of registers,
as naturally the real power of an ITRM lies in the overflowing registers, not
in the administrative ones. This could probably be accomodated by expand-
ing the programming language in a suitable way, including certain tools as
basic commands. However, a detailed choice of extra commands is always
somewhat arbitrary, and a canonical one is not known so far. One might ex-
pect that such basic operations could be carried out without extra registers
with a clever implementation. However, the problem is that, when taking
limits, seemingly harmless intermediate calculations can vastly change the
behaviour of the machine. We therefore introduce typed programs, where
different registers behave differently at limit stages according to their type.
A program can then be characterized by the number of registers of each
types used in it, which gives more information than the mere overall number
of registers. There is an imperfect analogy to second-order logic here, where
the first-order quantifier complexity is rather irrelevant and only the second-
order quantifiers are taken into account for the classification of a formula.

Definition 29: (Register types) A register behaves just like a classical
register at successor steps. Let R be a register, λ a limit ordinal.

• R is of type 1 if one of the following holds:
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– (1) There is a finite, nonempty set T of registers of type 2 or 3
such that, between any two successive states of the computation
where the content of an element of T is changed, the content of
R is changed only finitely many times. Then, if λ is such that
the times of changes of content for an element of T are cofinal
in λ, we have R(λ) = 0. In all other cases where λ is a limit
time, the content of R has changed only finitely many times and is
hence eventually constant. Rλ is then defined to be this eventually
constant value.

– (2) If there is no such set T and R has changed its value infinitely
often at time λ, then the computation stops.

• R is of type 2 if R(λ) = lim inf{R(ι)|ι < λ} in case this limit is < ω.
Otherwise R(λ) is undefined and the computation stops

• R is of type 3 if R(λ) = lim inf{R(ι)|ι < λ} in case this limit is < ω
and R(λ) = 0, otherwise.

The idea behind type 1 registers is to serve as auxiliar registers for sub-
routines. A typical use would be to carry out stack operations for a register
of higher type, but they may not carry information over limit steps of the
registers involved in their intended sub-routine. Thus, type 1 registers cor-
respond to finite register machines, type 2 registers to the non-overflowing
registers of the former notion of ITRM from, e.g. [5], while type 3 registers
behave as described in the first section. We can measure the complexity of an
algorithm by the number of algorithms of each kind it uses. The main reason
for the introduction of type 1 registers is to make complexity considerations
stable with respect to minor changes in the definition of a machine. For
example, adding commands for the organization of stacks should not change
the computational complexity of an object. Recall that there is a universal
classical register machine with 3 registers, so that sub-tasks for particular
stack registers can also be carried out by at most 3 type 1-registers.

Convention: In plain text, we often call type 1 registers ’classical’, type
2 registers ’non-overflowing’ and type 3 registers ’overflowing’

Definition 30: A machine type (sometimes simply ’type’) is a triple of
the form t = 〈n1, n2, n3〉 ∈ ω3. The τ -typed register machine program P τ is
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the pair 〈P, τ〉 consisting of a register machine program P together with a
function τ : ω → {1, 2, 3}. A type-τ -specification of P is a pair ρ = 〈τ, f〉,
where f is a function from the set of type-1-registers to the powerset of the set
of type-2 and type-3-registers. A computation according to P ρ is performed
in the obvious way, where the ith register used in P is evaluated according to
its type τ(i) at limit stages, where the set relevant for a type-1-register with
index i is f(i). A typed program P τ is of type t = 〈n1, n2, n3〉 if, letting U
be the set of register indices mentioned in P , ni = card{j ∈ U |τ(j) = i} for
i ∈ {1, 2, 3}.

The specifications are not relevant for our complexity analysis, and when-
ever we use typed machines, they are clear. Hence, we only talk about types
rather than their specifications. In some contexts, even the precise type is not
as interesting as, e.g., the number of registers of the strongest type involved.
Therefore we generalize the notion of a type to account for this concept.

Definition 31: A generalized type is a triple of the form t = 〈x1, x2, x3〉,
where x1, x2, x3 are either natural numbers or ′?′. A type 〈a1, a2, a3〉 is an
instance of the generalized type t if ai ≤ xi whenever xi 6= ?.

Convention: If < is an order relation, then WO(<) abbreviates the
statement that < is a well-ordering.

Definition 32: Let a ∈ 2ω be a real. For Rn a register machine program,
let <a

n be the relation {〈m,n〉|Rω,B
n (〈m,n〉) = 1}, where Rω,a

n is the (partial)
function from ω to ω computed by Ra

n in finite time. (And is thus what a finite
register machine with oracle a would compute.) Then a+, the hyperjump of
a, is defined to be the set {k ∈ ω|WO(<a

k)}.
Also, a0 := a, an+1 := (an)+. an is called the nth hyperjump of a.
∅n is called the nth hyperjump, also written 0n.

The following trick will be used many times in algorithms in this section:
To determine whether the computation is at a limit stage, we use 2 type
2-registers R1, R2 with initial content 1 and 0, respectively. After that, we
exchange the contents in each successor step. Then, the contents will be both
equal to 0 if and only if the computation is in a limit state.
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Theorem 33: 0n can be computed by an ITRM with n overflowing regis-
ters.

Proof: We prove this by induction. Obviously, a 0-ITRM can compute
00 = 0. Now, assuming that we have an ITRM with n overflowing registers
computing 0n, we show how to construct an ITRM with n + 1 overflowing
registers computing 0n+1. This will be done by a refined version of the stack
algorithm for deciding well-orderings given in [21].
Suppose On is an ITRM such that, for k ∈ ω, On(k) = 1 if k ∈ 0n, and
otherwise 0. By induction, On can be assumed to have ≤ n overflowing
registers. Also, let U be a universal finite register machine. We need to
flag registers f1 and f2 to decide the halting problem for U . These will only
contain the values 1 or 0 and in particular they will not overflow. The stack
register, s, will be the new overflowing register used to store initial segments
of a possible non-wellfounded branch.
Now, the algorithm proceeds like this: Suppose it is to be checked whether
m ∈ 0n+1 for some m ∈ ω. Initially, let f1 contain 0, f2 contain 1. The
content of s is set to 1. Now, use depth-first search to look for an infinite
non-wellfounded branch in <0n

m , storing the intermediate results in s. If
there’s an infinite non-wellfounded branch, then there’s one not containing 0
and 1, so we can without loss of generality assume that these are not used.
Whenever a backtracking with stack content 〈x1, ..., xi, xi+1〉 occurs, switch
the stack content first to 〈x1, ..., xi〉 and then to 〈x1, ..., xi, xi+1 + 1〉. If i = 0,
i.e. the stack only contains one element, switch the content to 1 and then
to x1 + 1. So 0 can only become the stack content by overflow, which means
that the search was successful. On the other hand, 1 can only occur in s at
a limit stage when all possible first elements have been tried and there’s no
infinite non-wellfounded branch. Whenever a new number (expect 1) is put
on the stack, we need to check whether the stack content 〈x1, ..., xn〉 forms a
<0n

m -decreasing sequence. For this, it is sufficient to be able to decide whether
a <0n

m b for a, b ∈ ω. This can be done using U , On and the flag registers
f1, f2: We need to decide whether R0n

m (〈a, b〉) = 1. For this, we simulate
Rm by U with input 〈a, b〉. After each calculation step of Rm, we switch the
register contents of f1 and f2. Oracle calls by Rm can be dealt with using
On. If R0n

m terminates on this input with outcome 1, give a positive answer.
Otherwise, there will either be a different result after finite time, in which
case we output a negative answer, or R0n

m does not halt. But then, f1 and
f2 will be flashed infinitely often and a limit state will occur with f1 and f2
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both containing 0. In this case, also a negative answer is returned.
This diagram explains the role of the registers and the information flow:

�

For the next step, we will need the notion of admissibility. As usually
On(x) abbreviates the statement that x is an ordinal. Good sources for these
and related concepts are [13] and [27].

Definition 34: The axiom system of Kripke-Platek set theory (KP ) is a
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subtheory of ZFC consisting of the following axioms:

1. (Extensionality) ∀x∀y(∀z(z ∈ x↔ z ∈ y)→ (x = y))

2. (Induction Schema) Let φ(x,~a) be an ε-formula with all free variables
shown. Then ∀~a(∀x((∀y ∈ x)φ(y,~a)→ φ(x,~a))→ ∀xφ(x,~a))

3. (Pairing) ∀x∀y∃z∀w((w ∈ z)↔ (w = x ∨ w = y))

4. (Union) ∀x∃y∀z((z ∈ y)↔ (∃u ∈ x)(z ∈ u))

5. (Infinity) ∃x(On(x) ∧ (x 6= ∅) ∧ (∀y ∈ x)(∃z ∈ x)(y ∈ z))

6. (Cartesian Product) ∀x∀y∃z∀u((u ∈ x) ↔ (∃a ∈ x)(∃b ∈ y)(u =
(a, b)))), where (a, b) is the pair as defined in (3)

7. (Σ0-Comprehension Schema) Let φ(~a, x) be a Σ0-formula with all free
variables shown. Then ∀~a∀x∃y∀z((z ∈ y)↔ (z ∈ x ∧ φ(~a, z)))

8. Let φ(x, y,~a) be a Σ0-formula with all free variables shown. Then
∀~a(∀x∃yφ(y, x,~a)→ ∀u∃v∀x ∈ u∃y ∈ vφ(y, x,~a))

Definition 35: An ordinal α is admissible iff Lα |= KP . For a class A,
α is A-admissible iff LAα |= KP .

Remark 1: There are many equivalent formulations of this concept. For
example, α is admissible iff ρLα = α, where ρLα denotes the Σ1-projectum of
Lα.

Remark 2: We will also use the relativized notion of admissibility and
admissibly ordinals. For A ⊂ ω, α ∈ On is admissible if Lα[A] |= ZF−.

Convention: For the rest of this chapter, ωCKn denotes the nth admissible
ordinal greater than ω. Also, we let µ := sup{ωCKn |n ∈ ω}. When relativized
admissibles are considered, we drop the superscript CK and write e.g. ωXn
instead of ωXn

CK
.

We can now start by proving an upper bound for the halting time of an
n-machine. The next two results are adaptions of results by Koepke [22] to
typed machines.
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Theorem 36: A program of type 〈?, ?, 0〉 either halts before ωCK1 or does
not halt at all.

Proof: See [5] or below. �

This can be used as the base case of the following stronger version:

Theorem 37: A program of type 〈?, ?, n〉 either halts before ωCKn+1 or does
not halt at all.

Proof: See [7] or below. �

Also, we can already determine the computational power of two rather
broad types.

Theorem 38:

1. x ⊂ ω is computable in type 〈?, ?, 0〉 iff it is an element of LωCK1
.

2. x ⊂ ω is computable in type 〈?, ?, ?〉 iff it is an element of Lµ.

Proof: See [5] for (1) and [7] for (2). The adaption to typed machines is
straightforward. �

Our goal is to achieve a finer analysis of the computational power of vari-
ous types. For this, we need some notions and results from hyperarithmetical
theory. Since everything we use can be found in [27] or [13], we assume some
familiarity with the central ideas of admissible sets, recursive well-orders and
ordinals. We write x ≤h y if x is hyperarithmetically reducible to y.

Definition 39: For Z ⊂ ω, OZ denotes the set of indices e for Z-recursive
functions such that eZ computes a well-order.

Definition 40: If X is a set, then the ⊂-smallest transitive admissible
set M such that X ∈ M is the admissible hull of X, which we denote by
Adh(X).

Lemma 41: A real is hyperarithmetic iff it is ∆1
1-definable. The hyper-

arithmetical reals are exactly those in LωCK1
. Hence, a real is hyperarithmetic

iff it is computable in type 〈?, ?, 0〉. The relativization of this is also true.

118



Proof: �

For the proof of lemma 44, I am indebted to Philip Welch for a private
e-mail on this topic. We will use the following standard facts:

1. ωY1 is the supremum of the order types of all well-orders recursive in Y

2. X ≤h Y iff X ∈ Adh(Y )

3. If Y ⊂ ω, then Adh(Y ) = LωY1 [Y ]

4. If X ⊂ ω, then OX is Π1,X
1 -complete (that is, every Π1,X

1 -set of integers
is many-one-reducible to 0X)

5. (Spector-Gandy Theorem) If Z ⊂ ω and A ⊂ ω is Π1,Z
1 , then there is

an arithmetical predicate φ such that i ∈ A↔ ∃Y ≤h Zφ(Y, i)

Lemma 42: There is a recursive bijection between the Σ1-theory of
〈LωZ1 [Z], ε, Z〉 and 0Z. In particular, OZ is Σ1(〈LωZ1 [Z], ε, Z〉)-definable, and
hence an element of LωZ1 +1[Z].

Proof: For the reduction of OZ to the Σ1-theory, observe that, as OZ is Π1,Z
1 ,

Spector-Gandy gives us φ such that e ∈ OZ ↔ ∃Y ≤h Zφ(Y, e). By (2) and
(3), the right-hand side is absolute to LωZ1 [Z], hence we can replace it by
LωZ1 [Z] |= ∃Y φ(Y, e), which is a Σ1-statement.
In the other direction, let φ be a Σ1-sentence with LωZ1 [Z] |= φ. There must

be α < ωZ1 such that already Lα[Z] |= φ.
The set of codes E ⊂ ω × ω of ω-models with 〈ω,E〉 |= KP + V = L is
lightface Borel with some rank γ < ωZ1 . Therefore:

LωZ1 [Z] |= φ↔ ∃e ∈ ω(e ∈ OZ ∧ ∀E(〈ω,E〉 |= (e ∈ OZ ∧KP + V = L)→
〈ω,E〉 |= φ)).

The direction from left to right is clear: If the Σ1-statement φ is true in
LωZ1 [Z], then there is some Z-recursive ordinal α such that
β ≥ α→ Lβ[Z] |= φ. Then, let e be an index for α.
For the converse, observe that the RHS states the existence of a recursive
ordinal such that all L-stages containing that ordinal are models of φ, which
is sufficient by upwards preservation of Σ1.
�
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The following lemma connects hyperjumps with admissible levels and is
thus an important tool for a fine analysis of the computational strength of
ITRMs.

Lemma 43: For k ∈ ω, Ok ∈ LωCKk +1.

Proof: This is proved by induction on k, using Fact (5) in each step to see
that Ok is Σ1 over LωCKk , and hence an element of LωCKk +1, as desired. �

Lemma 44: X ⊂ ω is hyperarithmetic in the nth hyperjump if and only
if X ∈ LωCKn+1

.

Proof: We show this by induction on n.
First, let n = 0, and X ⊂ ω by hyperarithmetic. Then X ∈ Adh(∅) by Fact
(2). But Adh(∅) = LωCK1

by Fact (3). So X ∈ LωCK1
. The other direction

follows by simply following the equivalences in the reverse direction.
Now, suppose n = m+ 1 for some m ∈ ω, X ≤h Om. Then X ∈ L

ωO
m

1

[Om] by

the last lemma. In particular, Om ∈ L
ωO

m

1

, which is admissible. Therefore,

we must have L
ωO

m

1

[Om] = L
ωO

m

1

. As all these steps are in fact equivalences,

we deduce that X ≤h Om if and only if X ∈ L
ωO

m

1

. But L
ωO

m

1

is admissible

and has ordinal height larger than ωCKm , so we get ωO
CK

1 ≥ ωm+1.

Observe that ωO
m

1 > ωCKm+1 is impossible, as Om ∈ LωCKm+1
and L

ωO
m

1

was

minimal with the property of being admissible and containing Om, so we
would otherwise have Om ∈ LωCKm+1

, a contradiction.
Therefore, we indeed get L

ωO
m

1

= Lωm+1 . �

We can now distinguish very sharply between the computational powers
of types according to the number of resetting registers.

Theorem 45: The halting problem for type 〈?, ?, n〉 can be solved in type
〈?, ?, n+ 1〉.

Proof: We saw that the reals computable in type 〈?, ?, n + 1〉 are exactly
those in LωCKn+1

. Now, if P is a program of type 〈?, ?, n〉, then, denoting by
P ↓σ the statement that P applied to the empty input stops after σ many
steps and assuming that P uses d many registers in total, we have:
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P ↓↔ ∃σ ∈ ωCKn+1(P ↓σ).

But P ↓σ↔ ∃f : σ → ωd+1(f is a computation according to P and I(σ) =
STOP ). Denote the last part by φ(f, P, σ). If such f exists, it will be an
element of LωCKn+1

by a simple induction. Hence P ↓ σ ↔ ∃f ∈ LωCKn+1
φ(f, P, σ).

So P ↓↔ ∃σ, f ∈ LωCKn+1
φ(f, P, σ), which is Σ1(LωCKn+1

).

Therefore, {P ∈ ω is a program of type 〈?, ?, n〉 such that P ↓} ∈ LωCKn+1+1 ⊂
LωCKn+2

. This number is computable in type 〈?, ?, n+ 1〉 and codes the halting

problem for type 〈?, ?, n〉, as desired. �
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12.4 More on unresetting register machines

In contrast to the general ITRMs, there are universal types if we restrict
ourselves to unresetting register machines, i.e. machines of generalized type
〈?, ?, 0〉.

Definition 46: Let τ = 〈a, b, c〉 be a generalized type. An instance τ0 of
τ is universal for τ (τ -universal) if any real x computable in type τ is also
computable in type τ0.

Theorem 47: There is a universal 〈?, ?, 0〉-type.

Proof: With k ∈ ω, write Dk for the kth computably enumerable binary
relation on ω. Suppose x is 〈?, ?, 0〉-computable. Then x ∈ LωCK1

. So {x} is

lightface ∆1
1, and in particular Π1

1. It is well-known that lightface Π1
1-reals

can be represented in the form

n ∈ x↔ Rf(n) is well-founded

for a recursive function f : ω → ω. But x is also Σ1
1, and standard results

on Σ1
1-bounding hence imply the existence of α < ωCK1 such that:

n ∈ x↔ Rf(n) is well-founded and otp(Rf(n)) < α.

We argue that the RHS can be checked in type 〈9, 4, 0〉.
This is done by carefully reconsidering the algorithm from [5]. First, Rf(n)

can be computed in type 〈3, 2, 0〉: Three type 1-registers are sufficient to
implement the algorithm for semi-deciding Rf(n), the two additional type 2-
registers f1, f2 are used as flags to solve the halting problem for this machine.
If it halts, we output 1, otherwise 0.
Second, a relation of order type α can be decided by another 3 classical reg-
isters since α < ωCK1 .
Now, using two type 2-registers R1, R2 for storing stacks and three extra
type 1-registers for organizational purposes, we can carry out the algorithm
which is given in [5] along with its correctness proof, for deciding whether
Rf(n) embedds in the relation of order type α. The extra type 3-registers
serve the purpose to take care of the macros.
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The overall organization is then as follows:

Hence any real computable by a 〈?, ?, 0〉-machine is computable in type
〈9, 4, 0〉, which is what we wanted to show. �
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12.5 More on recognizability

Having introduced the notion of a recognizable real, the question is natural
to consider the structure of recognizable reals.

Proposition 48: Every real x computable in type 〈?, ?, ?〉 is also recog-
nizable in this type. In fact, if x is computable in type 〈a, b, c〉, then it is
recognizable in type 〈a+ 3, b, c+ 1〉.

Proof: We can recognize x simply by computing its bits one after the other,
each time checking by an oracle call whether it matches the number in the
oracle. In a separate overflowing register R, we store the position of the bit
we are currently checking. If it doesn’t match, we halt with negative result.
Otherwise, R will overflow, and we halt with positive result. This recognizes
x. The complexity bound is immediate from the construction. �

Proposition 49: There is a recognizable real x ⊂ ω such that x /∈ Lµ.

Proof: The real r defined in the section on the lost melody theorem is rec-
ognizable, but not ITRM -computable, hence /∈ Lµ by the results of section
12.3. �

The set of reals recognizable by type 〈?, ?, ?〉-programs is hence strictly
larger than the class of reals computable in this type. A closer inspection
of the proof reveals that in fact only one overflowing register was needed
to recognize the number r defined there. Hence, 〈?, ?, k〉-recognizability is a
strictly weaker property than 〈?, ?, k〉-computability for 1 ≤ k < ω.

Definition 50: If τ is a (generalized) type, denote by RECOGτ the class
of reals recognizable in type τ . RECOG is simply RECOG〈?,?,?〉. RECOGτ (x)
abbreviates the statement that ω ⊃ x ∈ RECOGτ .

Over a transitive ε-structure M , RECOG(x) can be expressed as a Σ3-
statement claiming that there is a program P such that for all reals z in M
there is a computation according to P that outputs 1 if and only if z = x.
Denote this formal statement by FRECOG(x).

Lemma 51: If M |= ZF− is transitive, then for x ∈ M ∩ 2ω, we have
M |= FRECOG(x) iff RECOG(x).
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Proof: Recall (e.g. from [21]) that ITRM -computations are absolute be-
tween transitive ZF−-models. So all we have to show is that, for an ITRM -
program P , the computation of P on input 0 in oracle x will halt in M if it
halts at all. As M is a ZF−-model, it follows from x ∈ M that ωxi ∈ M for
i ∈ ω. Suppose that P uses n registers in total. The lemma about halting
times of ITRMs with k overflowing registers easily relativizes, so any com-
putation of P in oracle x must stop after at most ωxn+1 many steps if it stops
at all. (Recall that we drop the CK-superscript.) So, if the computation
halts at all, its halting time is in M . By the absoluteness of computations,
the computation within M is the same as in V . So, if there is a program Q
that recognizes x, this fact will be reflected by M . �

Now, each recognizable real uniquely corresponds to a (typed) ITRM -
program that recognizes it. Hence RECOG is countable. In particular,
sup{RECOG} < ω1. On the other hand, {α < ω1|Lα |= ZF−} ↑ω1 . Thus,
we can prove the following:

Lemma 52: The set of recognizable reals RECOG has gaps in the con-
structible order, i.e. there are reals r1 <L r2 <L r3 such that {r1, r3} ⊂
RECOG, but r2 /∈ RECOG.

Proof: As {α < ω1|Lα |= ZF−} is cofinal in ω1 but card(RECOG) = ω,
there must be a minimal γ such that Lγ |= ZF−+’There is an unrecognizable
real’. Let r3 be a minimal code of Lγ as in the proof of the lost melody
theorem. By the same argument as there, r3 is recognizable. However, let x
be an unrecognizable (in the sense of Lγ) element of Lγ, then x <L r3 and,
by the last lemma, x really is unrecognizable. So 0 <L x <L r3 witnesses our
claim. �

One can also consider a notion of relative recognizability. If x, y ⊂ ω,
x ] y denotes z ⊂ ω such that 2i ∈ z iff i ∈ x and 2i + 1 ∈ z iff i ∈ y, the
join of x and y.

Definition 53: x ⊂ ω is recognizable in y ⊂ ω iff there is an ITRM-
program P such that P y]x(0) = 1 iff z = x. Write x ≤recog y in this case.

Proposition 54: If y ≤ITRM z and x ≤recog y, then x <recog z.
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Proof: All information about y relevant for identifying x can be computed
from z by the first assumption. �

It might be tempting to consider e.g. degrees of recognizability. Unfor-
tunately, this does not seem to make sense, as ≤RECOG is not transitive, and
hence no equivalence classes can be formed.

Lemma 55: ≤RECOG is not transitive.

Proof: Let x and r3 be as in the proof of the last lemma. We then have
x ≤recog r3 ≤recog ∅: The second was shown above, the first follows from the
last proposition, as x is as an element of the structure coded by r3 easily
ITRM -computable from r3. But x 6≤recog ∅ by the choice of x. �

Another question is how large the ’gaps’ between recognizable ordinals
can become.

Definition 56: Let δ be a countable ordinal. A δ-gap in RECOG is a
set S = {x ∈ L ∩ 2ω|r1 ≤L x <L r2 for some r1, r2 ∈ L ∩ 2ω} such that
r2 ∈ RECOG, S ∩RECOG = ∅ and opt(S) = δ.

Theorem 57: For every δ < ωCK1 , there is a δ-gap in RECOG.

Proof: For each such δ, there is γ(δ) such that Lγ(δ) |= ZF− + V = L
and Lγ(δ) contains a <L-intervall of reals with order type δ and all ele-
ments unrecognizable. This is again because there are cofinally many α
with Lα |= ZF−+V = L in ω1, but only boundedly many recognizable reals.
As δ < ωCK1 , there is a code x ⊂ ω for δ. Also, let r′ be a <L-minimal code
for Lγ(δ) as in the proof of the lost melody theorem.
We claim that x ] r′ is recognizable. This suffices, for it then follows that
x ] r′ is >L all elements of the δ-intervall of unrecognizables in Lγ(δ). Now
for the claim:
Clearly, a ] b is recognizable if a and b are. (The converse is false.) As
δ < ωCK1 , it is computable, hence recognizable. Let r′−1(a) denote the ele-
ment of Lγ(δ) coded by a for a ∈ ω. For each pair 〈a, b〉 ∈ ω2, the set

{j ∈ ω|r′−1(j) ∈ 2ω ∩ L ∧ r′−1(a) <L r
′−1(j) <L r

′−1(b)} is computable from
r′. Now we only need to check for each of these pairs whether all elements
in between are unrecognizable and whether the order type of the intervall is
≥ δ. The first can be done using the implementation of the truth-predicate
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given in the proof of the lost melody theorem: We just test for each natural
number i whether i belongs to the intervall and represents an unrecognizable
real number. If no recognizable real in the intervall is found, we return a pos-
itive answer, otherwise a negative answer. For the second, we use again the
algorithm by Koepke given in [5] for testing the embeddability of recursive
order types. �

In fact, we can do much better.

Theorem 58: For every δ < µ, there is a δ-gap in RECOG.

Proof: It suffices to see that there is a ωCKn -gap for each n ∈ ω. Basically,
we can re-use the above proof, now taking ITRM -computable rather than
recursive well-orderings. These are exactly the order types below µ. The only
place in the above proof where this matters is in the algorithm that tests for
embeddability of one well-order <1 into another <2, say, where we need to
decide <1 and <2. But this can be achieved by using some extra registers. So
we can again test whether an intervall as above has length ≥ δ and proceed
as above to see that the <L-smallest code for an L-stage modeling ZF− and
having a δ-gap in RECOG is recognizable. �

Remark/Open Questions:
(1) If it weren’t for the well-foundedness test, we could carry out all steps
necessary for recognizing r on a 〈?, 1, 0〉-machine. However, this step is cru-
cial. At this time, the question remains open: Are there lost melodies in type
〈?, ?, 0〉?.
(2) Also, it is unclear how recognizability depends on the number of resetting
registers: Are there e.g. reals recognizable in type 〈?, ?, n〉 but not in type
〈?, ?, n+ 1〉 for some n > 0?
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12.6 Some Reverse Mathematics

In this short section, we analyze the complexity of the halting problem for
〈?, ?, n〉-machines in terms of subsystems of second order arithmetic. We
adapt ideas of unpublished notes from Koepke and Welch [9], where this is,
in our language, done for 〈0, 0, n〉-machines. Focusing on typed machines
instead, we can improve some of the bounds.

First of all, we review some definitions and basic results. All of these can
be found in the book by Simpson [13].

The language L2 of second-order arithmetic consists of the quantifiers ∃,
∀, the logical connectives ∧, ∨, →, ¬, ↔, the relation symbols <, ε and =,
the function symbols + and ∗, the constant symbols 0 and 1, all of which are
intended to have their obvious meaning, along with two types of variables vi
and Xi (i ∈ ω), intended to range over ω and P(ω), respectively. Formulas,
sentences etc. are defined in the obvious way. If φ is a formula such that
all quantifiers of φ range over ω, φ is called arithmetical. If φ is of the form
∃Xψ with ψ arithmetical, ψ is a Σ1

1-formula; the other stages of the Levy
hierarchy, Σ1

n, Π1
n and ∆1

n are then defined as usual.

Definition 59: The axioms of second order arithmetic are the following:

• (1) Basic Axioms

– (a) ∀n(n+ 1 6= 0)

– (b) ∀m,n(m+ 1 = n+ 1→ m = n)

– (c) ∀m(m+ 0 = m)

– (d) ∀m,n(m+ (n+ 1) = (m+ n) + 1)

– (e) ∀m(m ∗ 0 = 0)

– (f) ∀m,n(m ∗ (n+ 1) = (m ∗ n) +m)

– (g) ∀m¬m < 0

– (h) ∀m,n(m < n+ 1↔ (m < n ∨m = n))

• (2) The Induction Axiom
∀X(0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X))→ ∀n(n ∈ X))
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• (3) The Comprehension Scheme
For any L2-formula φ(n) in which X does not occur as a free variable:
∃X∀n(n ∈ X)↔ φ(n)).

Subsystems of second order arithmetic are now obtained by restricting
(3) to some subclass of L2-formulas. If Π is a class of L2-formulas, Π− CA0

denotes the axiom system consisting of (1), (2) and ∃X∀n(n ∈ X) ↔ φ(n))
for all L2 ∈ Π such that X does not occur as a free variable in φ.
The only subsystems we will need here are the ones given in the next defini-
tion.

Definition 60: All of the following systems include the basic axioms.

• RCA0 (Axiom of Recursive Comprehension): This is the induction
axiom restricted to Σ0

1-classes, i.e. the statement
(φ(0) ∧ ∀n(φ(n) → φ(n + 1))) → ∀nφ(n) for Σ0

1-formulas φ, together
with the statement that, for φ(n) a Σ0

1-formula, ψ a Π0
1-formula, we

have ∀n(φ(n)↔ ψ(n))→ ∃X∀n(n ∈ X ↔ φ(n)). Here, n is a number
variable and X a set variable not contained in free(φ).

• ACA0: Call an L2-formula arithmetical if it contains no quantification
over set variables occurs in it. (Note that this does not preclude the
occurence of free set variables.) ACA0 is then the statement that for all
arithmetical formulas φ, there is X ⊂ ω such that ∀n(n ∈ X ↔ φ(n))
together with the induction axiom.

• Π1
1 −CA0 is the statement that, for all Π1

1-formulas ψ, there is X ⊂ ω
such that
∀n(n ∈ X ↔ ψ(n)) together with the induction axiom.

Theorem 61: Denote by T(Φ) the theory of Φ, where Φ is a set of L2-
sentences. Then T(RCA0) ⊂ T(ACA0) ⊂ T(Π1

1−CA0), and both inclusions
are proper.

Proof: See [13]. �

Also, we will need to consider the following set existence axiom.
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Definition 62: ATR0: Let φ(n,X, ~p) be an arithmetical formula, where
n is a number variable, X is a set variable and ~p is a (possibly empty) vec-
tor of number and set variables serving as parameters. Define a function
Φ : P(ω) → P(ω) by Φ(X) = {n ∈ ω|φ(n,X)} for X ⊂ ω. Suppose I is a
countable index set and <I is a well-ordering of I. For each i ∈ I, we define
Y ⊂ ω × I by Yi := Φ(Y i) = {m|(m, a) ∈ Y }, Y i = {(n, b)|n ∈ Yj ∧ j <I i}.
Intuitively, this amounts to iterating Φ along <I.
Now, ATR0 (axiom of transfinite recursion) is ACA0 together with the state-
ment that, for any φ, (I, <I) as above, the set Y exists.

Lemma 63: Over RCA0, the following statements are equivalent:

1. Π1
1 − CA0

2. If 〈Tk|k ∈ ω〉, Tk ⊂ ω<ω is a countable sequence of countable trees, then
the set {k|Tk has a path} exists.

Proof: See [13] 6.VI.1.1. �

We will use these principles to classify the strength of the existence of
halting sets. For this, we assume that the typed programs are effectively
enumerated in a convenient way, so that sets of typed programs canonically
correspond to real numbers.

Definition 64:

• ITRMn denotes the statement:
’The halting set H〈?,?,n〉 := {P |P is an ITRM-program of type 〈?, ?, n〉
and P ↓} exists.’

• Likewise, ITRMω denotes the statement: ’For any X ⊂ ω and any
type τ = 〈a, b, c〉, the halting set
HZ
τ := {P |P is an ITRM-program of type τ and PZ ↓} exists.’

Theorem 65:

1. KP+’ωCKn exists’` ITRMn

2. Π1
1 − CA0 ` ITRMω
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Proof: (1) We show that a program of type 〈?, ?, n〉 either halts after less
than ωCKn many steps or does not halt. From this, it follows that ITRMn

is Σ1-definable by n ∈ ITRMn ↔ ∃α < ωCKn (Pn is in halting state after α
many steps). Then the existence of ITRMn is implied by KP .
Now we prove the halting criterium by induction on n. First suppose that
n = 0, so there are no overflowing registers in the typed program P . Suppose
P uses m registers in total and denote by rιi the content of the ith register at
time ι ∈ On, Iι the command line at time ι, and sι = 〈rι1, ..., rιm, Iι〉. Assume
for a contradiction that P stops, but not before ωCK1 . Then each component
of sωCK1

will be the lim inf of the sequence of the corresponding component

of sζ for ζ < ωCK1 . In particular, each component of sωCK1
must have occured

cofinally often below ωCK1 . Hence, by the lim inf-rule, {ζ < ωCK1 |r
ζ
i = r

ωCK1
i }

is club in ωCK1 for any i ≤ n. By admissibility, the intersection of these finitely
many clubs is again a club, so {ζ < ωCK1 |sζ = sωCK1

} is also a club in ωCK1 .

But this means in particular that the program state at time ωCK1 has already
occured at some time ι < ωCK1 . By a simple induction, sι+ζ = sωCK1 +ζ for

every ζ < ωCK1 , so the computation cycles, which contradicts the assumption
that it halts.
If n = k + 1, we proceed similarly: If the computation does not halt before
ωCKn , then consider the state s := sωCKn . By the case n = 0, a certain number
i of the n type 3-registers must have overflown and contain 0, let this be the
registers R′1, ..., R

′
i. Hence, there will be some τ < ωCKn such that none of

the registers R′1 to R′i contains a 0 at a stage of computation between τ and
ωCKn . By basic ordinal arithmetic, there exists τ < δ < ωCKn that is of the
form δ = γ+ωCKk . δ is a limit ordinal, and at stage δ, the number of registers
having overflown must be less than n. Since initial segments of computations
can always be emulated by suitable choice of the initial state, we get from
the inductive assumption that the program cycles, again a contradiction.
(2) Π1

1 − CA0 is sufficient to obtain the existence of Z+ for any Z ⊂ ω. But
then, we have also Z(n), the nth hyperjump of Z. From this, it follows that
ωCKn exists. So we get that ωCKk exists for every k ∈ ω, which is sufficient by
(1).
�
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Conversely, there are also lower bounds for these principles:

Theorem 66:

1. ATR0 + ITRM ` Π1
1 − CA0

2. ATR0 + ITRMn+1 `’On exists’

Proof: (1) First note that, under ITRMω, if we have an ITRM -program P
and a set X, then the set {y ∈ X|P (x) ↓ 1} exists: To see this, change P to
a program P ′ that halts on input n if P returns 1 on this output and loops
otherwise. ITRMω implies the existence of
ITRM ′

ω := {(Q, x)|x ⊂ ω∧’Q is an ITRM -program such that Qx ↓}. The
desired set is now obtained by intersecting and projecting.
Recall that ATR0 is stronger than ACR0 and that over ACR0, Π1

1 − CA0

was equivalent with the statement that, for any countable sequence of trees,
the subsequence consisting of those trees having a branch exists. Testing a
tree for the existence of a branch can be done by the same algorithm that
checks partial orders coded by reals for well-foundedness. Hence there is an
ITRM -program P deciding for a coded tree whether it contains a branch,
which, for 〈Ti|i ∈ ω〉 a sequence of trees, implies the existence of
{i ∈ ω|Ti contains a branch}, and hence, in turn, Π1

1 − CA0.
(2) We have shown above how the nth hyperjump can be computed in type
〈?, ?, n〉 by some ITRM -program P . By ITRMn+1 and ACA0, the set of
initial values n ∈ ω such that P (n) = 1 exists. But this is exactly ITRMω.
�

This concludes our analysis of ITRMs.
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13 Fragments of a Hyperfine Core Model The-

ory

13.1 Preliminary Remarks

Through the use of alternative finestructures, the technical complexity of
proofs in L could be considerably decreased. Therefore, one should expect
that similar effects could be achieved when considering relativized versions
of the constructible hierarchy, providing us with a simplified fine structure
for core models. However, all my attempts at this have failed so far at a
rather early stage even for small core models like KDJ . These various ways
to analyze L through the use of extra operations do not seem to be com-
patible with the formation of ultrapowers: In particular, the preservation of
even the simplest fine-structural parameters with a two-line proof in Jensen’s
approach poses unexpected difficulties. This section is a brief and sometimes
sketchy summary of possible attempts and their problems. My hope is that
this can be useful as a starting point for further efforts in this area, as a
simplified fine structure for core models would certainly be appreciated by
students and researchers alike. The idea of building up the model LA in such
a fine way that every object can be described by a formula of low complexity
over a level of the hierarchy seems to be the most promising. After all, also
in Jensen’s work, the Σ1-case can usually be dealt with in an elegant and
canonical manner.

There are already many different approaches in this spirit: Using the F -
hierarchy, using hyperings, combined with extensions or several notions of
fine ultrapower. However, they ultimately all face the same difficulties, so we
focus here on the arguably most common one, namely the Friedman-Koepke
hyperfine structure in connection with lifted directed systems. Our exposi-
tion is based on [41], where a similar strategy was attempted. It seems to
be the most promising candidate for a theory meeting the following require-
ments:
(1) It should be possible to define and construct the core model KDJ in
this framework, which includes a theory of iterations, coiterations, parame-
ter preservation etc.
(2) Important structural results like rigidity or the covering lemma should
have natural proofs in it.
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(3) It should simplify the current approach at least in the sense that refer-
ence to formula complexity is avoided and a uniform concept of ultrapower
is used, circumventing the concept of Σn-ultrapowers and its relatives.
(4) For applications of the core model, the theory has to be good enough to
allow deeper combinatorics like proofs of square or morass in the core model.
(5) Preferably, generalizations to larger core models should be possible.
Hyperfine methods, either in the sense of Friedman-Koepke or hyperings,
are more likely to meet (4). Virtually everything in the following exposition
carries over to the F -hierarchy in a canonical way.
It has been stated in several places (see e.g. [43]) that hyperfine structure
theory could be used to structure the Dodd-Jensen core model, focusing on
questions of iteration strategies at higher levels. It turned out, however, that,
much earlier, fundamental difficulties arise with the representability of the
target model in the source model of an extension.
We shall develop the concepts of premice and iterations in the hyperfine
structure and their theory as far as possible. Then, we give an account on
the problems with this approach, sketching how one should go on if one could
solve these. Finally, we discuss several alternative notions of ultrapowers and
general ideas for ways out.

13.2 Hyperfine Structures and their Iterations

In this section, we introduce the basic notions and theorems of an iteration
theory for hyperfine structures: We define premice and iterations and prove
basic preservation theorems for hyperfine extension maps. Familiarity with
the Gödels Lα-hierarchy and their relativizations is assumed. Apart from
that, the most definitions easily carry over from the context of hyperings,
and we do not repeat them here.

13.2.1 Hyperfine Extensions

The basic construction for the following is a method to extend a map E :
LAα → LBβ to a larger domain. This extension process can then be iterated.
The construction we use here is very similar to the one we gave for the rel-
ativized F -hierarchy earlier, presenting the source structure as a limit of a
directed system that we can map over and unfold. Hence, we merely sketch
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the method. Details can be found in [41].

In the context of the L-hierarchy, the possible choices for a hypering are
restricted. This is mainly due to the fact that, once the formulas under
consideration become more complex than mere S0-formulas, more caution is
necessary to allow a helpful condensation lemma. Here, we use a relativized
version of the hyperfine structure of Friedman and Koepke. We state some
definitions and lemmas, most of which are straightforward to prove. Details
can be found in [16].
Now, fix an enumeration 〈φi|i ∈ ω〉 of the first-order ε-formulas with an
extra predicate with subformulas appearing earlier. To approach LAα+1 =
{I(LAα , φ, q)|φ is a formula and q ⊂fin LAα} from LAα , we use structures
equipped with restricted Skolem functions for some initial segment of the
formulas.

Definition 1: For a class A, a hyperfine LA-level is a structure of the
form 〈LAα , ε, <A, I, N, S,A, Sφ1 , Sφ2 , ..., Sφn|~x〉, where ~x ⊂fin LAα . Locations
are hence of the form cnα as in the classical hypering, their ordering <loc etc.
are as in the chapter on hyperings.

Definition 2: An extender is an elementary map between relativized levels
of the L-hierarchy. Let LAs be a hyperfine level. Then E is a local extender
on LAs iff there are γ < α(s), δ and B such that E : LAγ → LBδ is elementary.

Definition 3: Let M = LAs be a hyperfine level, E an extender on M .
Suppose that Ext(M,E) is well-founded with transitive collapse N = LFt and
denote by π the extension map. Then E is a measure iff
N = LFt {rng(π) ∪ {κ}}.

Definition 4: A sequence of extenders ~F is a set of pairs of the form
〈ι, Fι〉, such that Fι is either an extender with sup{rng(Fι) ∩ On} = ι or ∅
for any ordinal ι.
If ~F is a sequence of extenders, then X ⊂ L

~F is ~F -constructibly closed (~F -cc)

iff X is closed under I, N , S and extenders on ~F whose indices are elements
of X: That is, if x and ι are in X, then so is (~F (ι))(x). The corresponding

hull is denoted by F
~F
s {X}.
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Definition 5: Let M = 〈LEα ,∈, E|(LFα )2, Eα〉, where E is a sequence of
extenders. Then M is a coarse measure structure iff:

• For each ι ∈ On, Eι is either ∅ or a measure with Eι : L
E|λ
λ →el L

E|ι
ι

cofinal. This λ is denoted by λ(ι).

• If ι < α is such that Eι 6= ∅, then 〈LE|ιι ,∈, E|ι〉 |= ZF−(E), i.e.
all axioms of ZF− where the underlying set of formulas comprises all
expressions using the extra predicate symbol E.

• If ι < α is such that Eι 6= ∅, κ = crit(Eι), then L
E|ι
ι |= card(κ).

Furthermore we have λ(ι) = (κ+)L
E|ι
ι (i.e. there are no L

E|ι
ι -cardinals

between κ and λ(ι)) and HL
E|ι
ι

κ+ = L
E|λ
λ .

Definition 6: If E is a sequence of measures, s = 〈α, φ, ~p〉 a location, then
LEs is a fine measure structure if LEγ is coarse measure structure for γ ≤ α.

Definition 7: An extender F on M = LEs with crit(E) := κ is active, iff,
for all r <loc s, p ⊂fin M , we have coll[LEr {κ∪p}] ∈ dom(F ), we say dom(F )
is a base for M . For M a fine measure structure, if there is β < α(s) such
that E(β) is an active extender for M , then M is called active. Otherwise,
M is passive.

We will restrict ourselves to fine measure structures with at most one
active measure. Analogous to the condensation lemmata for the F -hierarchy
and general hyperings, we can now show:

Theorem 8: Let M = LEs be a fine measure structure, and suppose that
X is a substructure of M that includes the critical point κM of the unique
active extender of M if it exists. Let π : M̄ →coll−1 X. Then M̄ = LĒs̄ is
itself a fine measure structure.

Proof: �

The other properties of hyperings, like finiteness, continuity, monotony
and compactness are also easily proved.

Definition 9: If M = LEs , then M is called sound if, whenever α < OnM ,
q ⊂fin M are such that coll(LEs {α ∪ q}) /∈M , we have LEs {α ∪ q} = LEs .
If M ||β is sound for every β < OnM , then M is called initially sound.
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For M = LEs an active fine measure structure, s a limit location, F the
active measure on M , crit(F ) = κ, we consider a directed system with un-
derlying index set {〈r, q〉|r <loc s ∧ q ⊂fin M}, ordered by 〈r1, q1〉 ≤ 〈r2, q2〉
iff r1 ≤loc r2, q1 ⊆ q2, and α(q1) ∈ q2 if α(q1) < α(q2). The structure associ-

ated with 〈r, q〉 is L
E(r,q)
s(r,q) := coll[LEr {κ ∪ q}]. By the monotonicity property,

〈r1, q1〉 ≤ 〈r2, q2〉 implies LEr1{κ ∪ q1} ⊂ LEr2{κ ∪ q2}, so we can define system
maps πr1q1r2q2 as in section 6. By definition of an active extender, all compo-
nents of this system will be elements of dom(F ), so they can be mapped over
by F . The direct limit of the mapped system is then the extension of LEs
by F , denoted Ext(LEs , F ). It is routine similar to theorem 4.3.28 to show
that this structure, if well-founded, is isomorphic to some active fine measure
structure LÊŝ . Also, we can define a map πF : LEs → LÊŝ extending F . Its
preservation properties will be given by theorem 12.

Definition 10: The fine measure structure M = 〈LEs , E,G〉 is a premouse
iff:

• M is initially sound

• If F = E(β) is an extender and N ' Ext(M,F ) is well-founded, then
EN |β + 1 = EM |β

• For each η < α(s), there is at most one active extender for M ||η on E

• G is the extender with largest index on E

Convention: For an active premouse M = L
~E
s , the unique active mea-

sure on E is called the top extender of M , denoted EM
top.

The interesting stages in constructing a model relative to an extender
sequence are the <loc-minimal locations where the base property is lost:

Definition 11: A premouse M = LEs is critical for an extender F if,
for all t <loc s, F is an extender for LEt and there is p ⊂fin LEs such that
coll[LEs {κ ∪ p}] /∈ dom(F ), where κ = crit(F ).

Critical premice are hence the maximal structures M to which an exten-
der can be applied, i.e. for which dom(F ) is a base for M . By the finiteness
property, such an s must be a limit location. (Otherwise, the same hull
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could be formed using the predecessor of s, adding one Skolem value to the
finite parameter p.) At these levels, also a maximum of information is pre-
served by the extension maps. We have the following preservation properties:

Theorem 12: Let LEs be a critical premouse, π : LEs → Ext(LEs , Etop) =:

LÊŝ be an extension map with critical point κ. Then π has the following prop-
erties:

• (a) π : LEs → LÊŝ preserves the basic operations of s

• (b) π is Σs
1-preserving

• (c) The set of locations in rng(π) is <loc-cofinal in ŝ

• (d) The powerset of κ is preserved, i.e. P(κ) ∩ LEs = P(κ) ∩ LÊŝ

Proof:

• (a) Let M := LEs , N := LÊŝ , ~r ⊂fin M , SMφi (~r) = x ∈ M , where
s = 〈α,m, ~p〉, t := 〈α, i, ~r〉 ≤loc s. Set t+ := 〈α, i, ~r+〉, where ~r+ de-
notes the <lex-successor of ~r as usual. As s is a limit location, t+ <loc s.
Ergo coll[LEs+{κ ∪ ~r∧{x}}] ∈ M ||(κ+)M by definition of s. Write H1

for coll[LEt+{κ ∪ ~r∧{x}}] =: LE1
t1 and denote by σ the collapsing map.

We have SH1
φi

(σ(~r)) = σ(x). Set σ(~r) = ~̄r, σ(x) = x̄. This is a ex-
pressible as a PL1-statement ψ over H1, so H1 |= ψ(x,~r). As E was
elementary, we must have H2 := E(H1) |= ψ(E(~̄x), E(~̄r)). Let σ̂H2

be the limit map from component H2 to N . As the system maps in
the lifted direct system are homomorphisms of measure structures, we
must, with σ̂H2(E(x̄)) = x′, σ̂H2(E(~̄r)) = ~r′, have SNφi(~r

′) = x′. But

x′ = σ̂H2(E(x̄)), where x̄ = σ−1
H1

(x), thus x′ = σ̂H2 ◦ E ◦ σ−1
H1

(x) =
πEMtop(x), similarly for ~r′. Therefore πEMtop(S

M
φi

(~r)) = SNφi(πEMtop(~r)), as

desired.
The same reasoning applies to I,N, S, ε, <,=.

• (b) (1) The upwards preservation is immediate by (a): If u is a witness
for ∃xψ(x,~v), ψ a Σs

1-formula, ~v ⊂fin LEs , then πEMtop(u) is a witness

for ∃xψπ
EMtop

(x, πEMtop(~v)), where ψπ
EMtop

denotes the mapped formula as
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usual.
(2) Now for downwards preservation: Let LÊŝ |= ∃xψ(x,~v′), ~v′ =

πEMtop(~v), ~v′ ⊂fin LÊŝ . Suppose u ∈ LÊŝ is a witness, so LÊŝ |= ψ(u,~v′).

For the truth of the Σs
0-formula ψ(u,~v′), only a finite number of Skolem

values can be relevant. Thus, there must be s̄ <loc s such that ψ(u,~v′)
is a Σs̄

0-formula. Consider H2 := EM
top(H1) from the mapped directed

system with the property that û, ~̂v
′
∈ H2 with ˆσH2(û) = u, ˆσH2(~̂v

′
) = ~v′.

Then H2 |= ∃xψ(x, ~̂v
′
). As EM

top is elementary, we get H1 |= ∃xψ(x, ~̂v
′
),

where σH1H2(~̄v
′
) = ~̂v

′
. If ū ∈ H1 is such that H1 |= ψ(ū, ~̄v

′
), then, since

the system maps a homomorphisms and setting u = σH1(ū), we get
LEs |= ψ(u,~v), and finally LEs |= ∃sψ(x,~v).

• (c) By construction of LÊŝ , every location l in the target structure has
a pre-image in some component π(C) of the mapped directed system.
Suppose C = coll′′LEr {µ∪ q}, then l <loc r and r has a π-preimage r̄ in
LEs . Hence l <loc π(r̄).

• (d) As κ = crit(π), we have π|κ = id|κ. If x ∈ P(κ) ∩ LEs , then π
will preserve any statement of the form ζ ∈ x, ζ ∈ LEs : so ζ ∈ x iff
π(ζ) ∈ π(x), but π(ζ) = ζ, and hence x = π(x)∩κ, which is an element

of LÊŝ . Hence P(κ) ∩ LEs = P(κ) ∩ LÊŝ .

On the other hand, let x ∈ LÊŝ ∩ P(κ). Then there must be some
component C = π(C̄) of the mapped directed system along with some
x̂ ∈ C such that x = πC(x̂). We can assume without loss of generality
that κ ⊂ C̄ (and hence ⊂ C). From the construction of the extension,
it follows easily that πC is the identity on κ, as ζ ∈ κ is neither moved
by the extender used nor by the collapsing map. Hence x̄ = x. But
x̄ ∈ C ∈ LEs , so x ∈ LEs . Thus, also LÊŝ ∩P(κ) ⊂ LEs ∩P(κ).

�

13.2.2 Iterations

Definition 13: Let M be a premouse. A pre-iteration of M of length θ is
a sequence 〈Mι, νι, sι, πιγ|0 ≤ ι < γ < θ〉 such that for ι < θ:
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• Mι is a premouse, ν ∈ OnMι, sι is an Mι-location

• If ι is a limit ordinal, then there is δ(ι) < ι such that sζ is the top
location of Mζ for δ < ζ < ι

• If ι is a limit ordinal, then Mι = dirlim〈Mζ , πζη|δ(ι) < ζ < ι〉 and πζι is
the direct limit map for δ(ι) < ζ < ι and undefined for all other values
of ζ

• If ι = δ + 1, then Mι = Ext(Mδ||sδ, EMδ
νδ

)

• If ι = δ+1 and sδ is the top location of Mδ, then πδι is the corresponding
extension map. Otherwise, it is undefined.

• If ι = δ+1, ζ < ι, then πζι := πδι◦πζδ if both of these maps are defined,
and undefined otherwise.

From now on, we write lt(I) for the length of the iteration I.

Definition 14: If I is a pre-iteration of a premouse M , θ := lt(I) and sι
is not the top location of Mι, then ι is called a drop of I. The set of drops of I
is denoted by D(I). Furthermore, if α(sι) = OnMι, we call ι a finestructural
drop. Otherwise, if α(sι) < OnMι, ι is a level drop. The set of level drops is
abbreviated by LD(I). If D(I) = ∅, then I is called simple.

Remark: For the study of premice with at most one active measure,
finestructural drops can be avoided.

For a pre-iteration I and an ordinal ι < lt(I), I|ι denotes the iteration I

up to the index ι.

Proposition 15: If I is a pre-iteration of a premouse M , ι < lt(I), then
D(I|ι) is finite.

Proof: Otherwise, there would be some limit ordinal ῑ ≤ ι such that D(I|ῑ)
is infinite, contradicting the rule for limit steps in the definition of pre-
iterations.�

Corollary 16: If I is a pre-iteration, otp(D(I)) ≤ ω.
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Proof: Clear from the preceeding proposition.�

Our main interest lies in the cases where there are only finitely many
drops.

Definition 17: A pre-iteration I is an iteration if D(I) is finite. A
pre-iteration that is not an iteration is called degenerate.

Definition 18: A premouse M is a mouse if it is active, critical, iterable
and does not have degenerate iterations.

Corollary 19: If M is a mouse, then any simple iterate N of M is also
a mouse.

Proof: (Sketch) If N was not iterable or had degenerate iterations, the same
would apply to M . �

13.3 The Copy process and the Dodd-Jensen Lemma

In this section, we formulate and prove one of the most important lemmata
of core model theory, the Dodd-Jensen-Lemma, for hyperfine levels. A proof
sufficient for building KDJ can be found in [30], a more general formulation
in [35]. Roughly, it states that there can be no map π from M = LAs preserv-
ing Σs,A

1 -formulas to an iterate N of M unless the iteration from M to N is
simple. This implies in particular that being a simple or non-simple iterate
of a certain premouse is a stable property and does not depend on the choice
of the iteration.

Lemma 20: (The Copy Construction): Let M̄ := LĒs̄ and M := LEs be
premice, σ : (M̄, Ē) →Σs̄1

(M, E) an embedding and IM̄ := 〈M̄i, ν̄i, ᾱi, π̄ij|i <
j < θ〉 an iteration of M̄ of length θ. Then there is an iteration IM :=
〈Mi, νi, αiπij|i < j < θ〉 of the same length and embeddings 〈σi|i < θ〉 such

that if 〈M̄i|i < θ〉 =: 〈LĒis̄i |i < θ〉 and 〈Mi|i < θ〉 =: 〈LEisi |i < θ〉 are the
structures on the M̄- and the M-side, respectively, we have σi : M̄i →Σ

s̄i
1
M

such that the σi commute with the iteration maps π̄ij, πij.
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Proof: We prove this by induction on θ. For θ = 0, there is nothing to
show.
Suppose first θ = η + 1 is a successor. Let 〈σι|ι ≤ η〉 be the embeddings
from M̄ι to Mι by induction. Set M̄θ =: M , Mθ =: N for convenience. Let
M̂ = Ext(M ||α,EM

ν ) be the next structure on the M -side. Then we define
the next step on the N -side to be N̂ := Ext(N ||ση(α), EN

ση(ν)).

To obtain σθ, we proceed as follows, where πM and πN denote extension
maps, while πM̂C , πN̂C are the limit map for the component C of the mapped
directed system used to obtain M̂ and N̂ , respectively:
Let x ∈ M̂ be arbitrary, and pick C from the mapped directed system for M
along with x̄ ∈ C such that πC(x̄) = x. Then σθ(x) := πση(C) ◦ ση(x̄). From
the properties of directed systems, it follows that this definition does not
depend on the choice of the representative x̄, so that σθ is well-defined. As a
composition of maps preserving Σ1-formulas for their respective structures,
it is also ΣM̂

1 -preserving.
If θ is a limit ordinal, M̄θ is the direct limit of 〈M̄γ, π

M̄
γδ |0 ≤ γ < δ < θ〉, while

Mθ = dirlim〈Mγ, π
M
γδ |0 ≤ γ < δ < θ〉. For x ∈ M̄θ, let λ < θ be large enough

such that x has a pre-image x̄ in M̄λ under the iteration map πλθ. Then, set
σθ(x) := πMλθ ◦σλ(x̄). The requirements for this map are again easily checked.
�

Lemma 21: (The Dodd-Jensen Lemma for hyperfine levels) Let M = LEs
be a mouse, I an iteration of M with final mouse M̂ = LÊŝ . Assume there is
σ : (M,E)→Σs,E1

(M̂, Ê). Then:

1. I is simple.

2. By (1), let π : M → M̂ be the iteration map. Then π is minimal in the
sense that π(ζ) ≤ σ(ζ) for all ζ ∈ OnM .

Proof: (1) Assume otherwise, i.e. I contains a drop. Letting M0 := M ,

M̂0 := M̂ , we define iterations IM , IM̂ of M and M̂ along with maps
σι : (Mι, E

Mι)→ΣMι1
(M̂ι, E

M̂ι) as follows:
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Mι+1 := M̂ι and M̂ι+1 is the result of copying the iteration from Mι to
Mι+1 via σι to an iteration of M̂ι, using the copy construction from the last
lemma. Obviously, all these iterations will be non-simple and hence together
form a degenerate iteration of M , which contradicts the assumption that M
is a mouse.

(2) Assume otherwise, and pick ζ ∈ OnM such that σ(ζ) < π(ζ). For
0 ≤ i < j < ω, denote by πij the iteration map from Mi to Mj in the iteration

just defined. (The iteration map from M̂i to M̂j is then π(i+1)(j+1).) Since the
iteration maps commute with the σi, we have σi+1 ◦ πi(i+1) = π(i+1)(i+2) ◦ σi.
Consider now 〈ζi|i ∈ ω〉 := 〈σk◦σk−1◦...◦σ0(ζ)|k ∈ ω〉. Since π(ζ) = π01(ζ) >
σ(ζ) and by repeatedly using commutativity, ζi < σk ◦ ... ◦ σ1 ◦ π01(ζ) =
πk(k+1) ◦ σk−1 ◦ ... ◦ σ0(ζ).
Now consider dirlim〈Mi, πij|0 ≤ i < j < ω〉 =: M∗. As M is a mouse,
M∗ is a simple, well-founded iterate of M . Denoting by π∗k the limit map
from Mi to M∗ and applying π∗k+1 to the above inequality, it follows that
〈π∗k+1 ◦ σk ◦ ... ◦ σ0(ζ) < π∗k ◦ σk−1 ◦ ... ◦ σ0(ζ)|k ∈ ω〉 is an infinite decreasing
sequence of ordinals in M∗, which contradicts the well-foundedness of M∗.
�

Corollary 22: Let M be a premouse, N an iterate of M . Then either all
iterations of M resulting in N are simple or all are non-simple.

Proof: Suppose there is a simple iteration from M to N , and let πMN be
the iteration map. πMN : M → N is at least ΣM

1 . If N was also a non-simple
iterate of M , we would have a ΣM

1 -preserving map from M to a non-simple
iterate of itself, contradicting the Dodd-Jensen-Lemma.�
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Corollary 23: Let M be a premouse, α ∈ OnM . Then there is no
π : M →ΣM1

M ||α.

Proof: Immediate from the last corollary.�

Another important consequence of the Dodd-Jensen lemma is the inde-
pendence of the iteration map from the actual iteration:

Corollary 24: Let M be a premouse, I1, I2 iterations of M with final
premouse N with iteration maps π1 and π2, respectively. Then π1 = π2.

Proof: By the minimality property of iteration maps, we have π1(ζ) ≤ π2(ζ)
and π2(ζ) ≤ π1(ζ) for each ζ ∈ OnM . Hence π1 and π2 agree on the ordinals,
and, since they preserve Σ1, hence on M . �

We draw another important conclusion from the copy construction, which
allows to restrict well-foundedness considerations of iterations to iterations of
countable length. In slight abuse of notation, we call the structure obtained
from some iterate of M by the final use of a measure a pre-iterate of M , even
if this structure is not well-founded.

Lemma 25: Let M be a premouse such that any countable pre-iterate of M
is well-founded and such that there are no countable degenerate pre-iterations
of M . Then M is a mouse.

Proof: Assume otherwise, and let I be a pre-iteration of M of length θ such
that Mθ is ill-founded or such that D(I) is infinite. Take γ large enough such
that I ∈ Hγ and let H̄ be the transitive collapse of the elementary hull of I in
Hγ, σ the uncollapse. H̄ is transitive and countable and contains pre-images
Ī of I and M̄ of M . As the relevant notions are absolute, Ī is a countable
pre-iteration of M̄ that is not an iteration. Use the copy construction to
obtain from M̄ , I and σ a countable pre-iteration J of M that is not an
iteration. This contradicts the assumption about countable pre-iterations of
M .�

13.4 Finestructural parameters

Definition 26: For M = LEs , we denote by ρM = ρEs , the projectum of
M , i.e. the smallest ordinal δ such that there is q ⊂fin M with the property
that coll(LEs {δ ∪ {q}) /∈M .

144



Definition 27: For M as above, ρ = ρM , pM = pEs is the standard
parameter of M , the <lex-smallest q ⊂fin M such that coll(LEs {ρM∪q}) /∈M .

Lemma 28: ρM is a cardinal in M .

Proof: Otherwise, there is υ < ρEs , g ∈ M such that g : υ →surj ρ
E
s . Let

α = OnM be the ordinal height of M . Since g ∈M , there is N(g) ∈M , say
N(g) = 〈β, φi, q〉, q ⊂fin M ||β, β < α, so g(ι) = γ ↔ M ||β |= φi(ι, γ, q).

It follows that g(ι) = S
M ||β
φi

({ι}∧q). Consequently ρEs ⊂ LEs {ρ ∪ {β}∧q}, so

LEs {ρEs ∪ pEs } ⊂ LEs {υ ∪ {β}∧q∧pEs }. If we had indeed
a := LEs {υ ∪ {β}∧q∧pEs } ∈ M , then LEs {ρEs ∪ pEs } would be definable over
a and hence an element of M as well, which it isn’t by definition. But this
contradicts the minimality of ρEs . �

In fact, we have shown more:

Corollary 29: Let υ < ρEs , then ρEs 6⊂ LEs {υ ∪ q} for all q ⊂fin LEs .

Proof: Immediate by the proof of the last lemma. �

If we want to characterize mice by properties of their iterates, we need
some notion of preservation of definability. One of the main ideas of hyper-
fine structure is to replace the study of definability by the study of hulls.
The preservation of definitions should hence corresponds to the isomorphy
of hulls. This is given by the following results.

Lemma 30: Let E be an M-Extender, M = LFs , ρ ≤ crit(E) =: κ be an

ordinal, p ⊂fin M , N := LF̂ŝ = Ext(M,E), πE : M → N the extended em-

bedding, p̂ := πE(p), s = 〈α, n, ~r〉 a limit M-location, ŝ =: 〈α̂, n̂, ~̂r〉 likewise.
Suppose 〈α, i, p〉 <loc s. Then SMφi (p) ↓↔ SNφi(p̂) ↓.

Proof: The direction from left to right is clear, as πE is a homomorphism
of measure structures and hence preserves the Skolem value.
For the other direction, suppose SNφi(p̂) ↓= x̂ and choose a component K̂ of

the mapped directed system, so that its pre-image E−1(K̂) =: K contains
pre-images of p̂′, x̂′ for p̂, x̂ and is formed using a location s̄ with πE(s̄) >loc

〈α̂, i, p̂〉. Then K̂ |= SK̂φi(p̂
′) = x̂′, which can be expressed as an ε-formula

φ(x̂′, p̂′) over K̂. So K̂ |= ∃yφ(y, p̂′). As E is elementary and p̂ ∈ rng(πE),
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we can pull this back to K |= ∃yφ(y, p̄), where p̄ is the pre-image of p under
the system map. Thus there exists x̄ ∈ K with K |= φ(x̄, p̄) ↔ SKφi(p̄) = x̄.
As K belongs to a location >loc 〈α, i, p〉, it reflects SMφi at p̄. So SMφi (p) = x,
in particular SMφi (p) ↓. �

Lemma 31: Let M,N,E, s, ŝ, F, F̂ , πE, α, α̂, n, n̂, ~r, ~̂r, p, p̂ be as in the last
lemma.
Then we have LFs {ρ ∪ p} ' LF̂ŝ {ρ ∪ p̂}.

Proof: We already know that πE is a homomorphism of measure struc-
tures. Therefore, σ : LFs {ρ ∪ p} → LF̂ŝ {ρ ∪ p̂}, given by tFs (ζ1, ..., ζk, p) →
tF̂ŝ (ζ1, ..., ζk, p̂) for s-terms t, ζ1, ..., ζk ∈ ρ will be structure-preserving as well.
We have to show that σ is surjectiv.
So assume for a contradiction that this is not the case and pick x ∈ LF̂ŝ {ρ ∪
p̂}−rng(σ). As s ∈ LF̂ŝ {ρ∪ p̂}, there exists an ŝ-term t and ζ1, ..., ζk ∈ ρ such

that x = tF̂ŝ (ζ1, ..., ζk, p̂). t is a combination of I,N, S, SNφ1
, ..., SNφn̂|~̂r. Without

loss of generality, we may assume that t is chosen in such a way that no
subterm of t generates an object outside of rng(σ).
We now proceed by induction on the structure of t; t will be of the form
Θ(x1, ..., xl) with x1, ..., xl ∈ rng(σ) and Θ an ŝ-operation. If Θ is I,N or S,
then x = σ(Θ(σ−1(x1), ..., σ−1(xl))) ∈ rng(σ), which contradicts the choice
of x. The same is true for Θ = SNφi in case that SMφi (σ

−1(x1), ..., σ−1(xl))
is defined. (Note that by our wlog assumption on t no parameters from
N −M can become relevant.) So we must have SMφi (σ

−1(x1), ..., σ−1(xl)) ↑
but SNφi(x1, ..., xl) ↓= x. But this is excluded by the last lemma. �

13.5 On Parameter Preservation

′′Es ist nichts! Sucht das Heil woanders! ′′

Nietzsche, Zur Genealogie der Moral

The core model below a measurable cardinal is a structure of the form
LE, where E is a canonical sequence of local measures. The sequence E is
constructed recursively, chosing measures one after another in such a way
that the corresponding structures remain sound. It turns out that, unless
there is an inner model with a measurable cardinal, this recursion works and
offers a unique choice in each step. For proving this and in applications of
core models, it is important that iterations maps preserve the central fine
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structural information: If N is an iterate of M , κ the critical point of the
iteration map π and ρM ≤ κ, then we should have ρM = ρN and π(pM) = pN .
In Jensen’s fine structure, one basically reduces everything to Σ1 by intro-
ducing sufficiently strong extra predicates, then using the very nice special
properties of Σ1 along with some version of the Los theorem to describe the
target structure in the ground structure and show that the first projectum
below the critical point does not change.
Unfortunately, the situation is very different for the hyperfine theory. Noth-
ing analogous to the Los theorem is in sight so far, and the preservation of
the finestructural information is basically an open question. The problem
seems to be that the extensions of hyperfine mice, although very uniform
with respect to formula complexity, does not allow the formulation of rel-
evant properties of the target structure in the ground structure. In this
section, we explicate this difficulty in some detail.

First, some positive results:

Lemma 32: Let M = LFs be a premouse, E an M-extender, LF̂ŝ = N =
Ext(M,E), κ := crit(E), ρ ≤ κ, p ⊂fin M such that coll(LFs {ρ ∪ p} /∈ M
and hence /∈ (Hκ+)M (as there is a surjection from ρ onto coll(LFs {ρ ∪ p})).

Then coll(LF̂ŝ {ρ ∪ πE(p)}) /∈ (Hκ+)N , and hence /∈ N .

Proof: Set ĥ := coll(LF̂ŝ {ρ∪πE(p)}) ∈ N . As ρ ≤ κ and there is a surjection

g : κ →surj ĥ definable over ĥ from κ, we would have ĥ ∈ (Hκ+)N . E is an

M -extender, which implies (Hκ+)M = (Hκ+)N . Hence ĥ ∈ (Hκ+)M . But we

already saw that LFs {ρ ∪ p} ' LF̂ŝ {ρ ∪ πE(p)}, ergo h := coll(LFs {ρ ∪ p} =

coll(LF̂ŝ {ρ∪πE(p)}) = ĥ, implying coll(LFs {ρ∪p} ∈ (Hκ+)M , a contradiction.
�

Corollary 33: In the above situation, if additionally ρFs ≤ κ, then ρF̂ŝ ≤
ρFs .

Proof: By the above argument, there is a hull of the form F F̂
ŝ {ρ ∪ q},

q ⊂fin LFŝ such that its collapse is /∈ LF̂ŝ . (Namely we can take q = πE(pFs ).)
This suffices. �

Corollary 34: If, in the above situation, we additionally have ρFs = ρF̂ŝ ,

then also pF̂ŝ ≤lex πE(pFs ).
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Proof: We know that coll(LF̂ŝ {ρFs ∪ πE(pFs )}) /∈ LF̂ŝ . As ρFs = ρF̂ŝ , πE(pFs )

defines a new collapsed hull of the form coll(LF̂ŝ {ρF̂ŝ ∪q}). But pF̂ŝ was defined

to be the <lex-smallest such q, so we must indeed have pF̂ŝ ≤lex πE(pFs ). �

The important next step would be to demonstrate the preservation of the
projectum. However, unexpected difficulties arise when attempting to use
the techniques from classical fine-structure here. To give an impression what
happens, let us consider the proof for the preservation of the Σ1-projectum
under ultrapowers in Jensen’s fine structure.

Fact: Denote by ρ
JUα

the smallest ρ such that there is a Σ1-formula ψ

and a finite set p ⊂fin JUα with the property that {ι|JUα |= ψ(ι, p)} ∩ ρ /∈ JUα .

Suppose κ is a cardinal in JUα , and that for some β < α, U := U(β) =

{x|(β, x) ∈ U} is an ultrafilter on κ in JUα . (This means that U is an ul-

trafilter on P(κ) ∩ JUα .) Further, assume that Ult(JUα , U) is well-founded,

hence isomorphic to some J Ûα̂ and let π be the ultrapower map. Set ρ = ρ
JUα

,

ρ̂ = ρ
J

ˆU
α̂

. Then ρ = ρ̂ if ρ ≤ κ.

Proof: First, note that P(κ) ∩ JUα = P(κ) ∩ J Ûα̂ . ⊂ is clear. If κ ⊃ x ∈ J Ûα̂ ,

then there is a function JUα 3 fx : κ→ JUα such that
ι ∈ x ↔ {η < κ|ι ∈ fx(η)} ∈ U . The RHS is expressable as a Σ0-formula

over JUα (there is only one implicite existential quantifier, which is bounded

to U), hence x ∈ JUα by general closure properties of relativized J-stages.

It is now easy to see that ρ̂ ≤ ρ: For let φ be Σ1 and p ⊂fin JUα such that

x := {ι < ρ|JUα |= φ(ι, p)} /∈ JUα . Then x = {ι < ρ|J Ûα̂ |= φ(ι, π(p))} is

Σ1-definable over J Ûα̂ , but is, by our initial remark, not an element of this
structure. Hence ρ̂ ≤ ρ.
For the other direction, we show that for any Σ1-formula φ and finite vector

p̂ ⊂fin J Ûα̂ there are a Σ1-formula ψ and p ⊂fin JUα such that:

(*) {ι < κ|J Ûα̂ |= φ(ι, p̂)} = {ι < κ|JUα |= ψ(ι, p)}.
From this, ρ ≤ ρ̂ is immediate: Since ρ̂ ≤ ρ, we have ρ̂ ≤ κ. So any subset of

ρ̂ that is Σ1-definable over J Ûα̂ is also Σ1-definable over JUα . Since the power
sets agree, we must have ρ ≤ ρ̂.

To finish the proof, let x = {ι < κ|J Ûα̂ |= ∃yφ(ι, y, p̂)}, where φ is Σ0,

p̂ ⊂fin J Ûα̂ . Pick fp̂ : κ → JUα from JUα that represents p̂ in the ultrapower,
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i.e. [fp̂]U = p̂. Now, using that rng(π) ↑α̂ and the theorem of Los:

J Ûα̂ |= ∃yφ(ι, y, p̂)↔ ∃ζ < ωα∃y ∈ F Ûπ(ζ)φ(ι, y, p̂)

↔ ∃ζ < ωα[{γ < κ|∃fy ∈ FUζ φ(ι, fy(γ), fp̂(γ))} ∈ U ].

The last is a Σ1-definition of x over JUα , so we are done. �

In our setting, the inequality ρ̂ ≤ ρ was unproblematic. The central step
for the reverse direction is (*). This would require a variant of the Los the-
orem for the Ext-construction: The truth of some quantifier-free formula
φ̂ with some parameter p̂ for the target structure should be expressable in
a quantifier-free way over the source structure in some parameter p. The
difficulty with this is that the target N is presented in the source M in an in-
appropriate manner: The source can’t talk about components of the mapped
directed system, let alone by using quantifier-free formulas. The directed sys-
tems used to represent the structure N in M is an outer object to M . This
crucial difference between the common ultrapower construction and the use
of Ext accounts for the non-representability of the target structure in the
source structure, hence for the failure to show parameter preservation, and
thereby for the failure of the approach.

It might be tempting to combine hyperfine levels with ultrapowers by ul-
trafilters and use an extension construction like ′Ult(LUs , U)′, where U is an

LUs -ultrafilter on κ ∈ LUs and the ultrapower is build in the usual way from U -

equivalence classes of functions in LUs . This fails badly for the LAt -hierarchy
due to the lack of closure in general relativized Lα-levels: If x ∈ Lα+1 − Lα,
then constx /∈ Lα+1, where constx denotes the function constx(ι) = x for
ι < κ. Thus, no embedding from the original structure into the ’ultrapower’
can be defined. This problem can be circumvented by applying the idea of
hyperfine structure to J-stages instead and considering structures of the form
JUs . Now the embedding is definable, but does in general not even respect the
s-operations like the restricted Skolem functions for formulas of complexity
Σ2 and above. This was achieved in the Ext-construction by forming and
mapping s-hulls, a feature which is absent when the extension is build as an
ultrapower.

Attempts to achieve preservation in either concept of extension by adding
extra information to the structures like truth predicates, codes for the whole
directed system etc. so far all faced the problem that they enhance the ex-
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pressive power on both sides in such a way that the problem remains.

If the problem of parameter preservation could be solved, i.e. the exten-
der construction was set up in such a way that, for critical mice, projecta and
standard parameters are preserved, the construction of the core model would
go through smoothly. For a rough sketch, assign to each mouse M = LEs the
measure structure C(M) := coll′′LEs {ρM ∪ pM}, the core of M . Taking the
preservation of fine structure for granted, the comparison process for mice
can be defined and proved to converge as in the classical setting. It then
follows that C(M) is a mouse if M is, and that M is a simple iterate of C(M).
A core mouse is a mouse M that is the core of some mouse, which is equiva-
lent to C(M) = M as well as to the soundness of M . Information on mice can
thus be reduced to information on sound mice. Using the preservation of fine
structure, one deduces that in a seemingly restricted, but in fact sufficient
situation, the comparison process is trivial: I.e., for any two critical core
mice M = LEs , N = LFt whose extender sequences agree up to the maximum
of their projecta are compatible in the sense that one is an initial segment
of the other. Once this is known, all is available to show that the following
recursion works, which defines the Dodd-Jensen core model KDJ :

Definition 35: (The Dodd-Jensen Core Model) We define an extender
sequence EDJ recursively:

• EDJ
0 = ∅

• If α = β + 1 for some β, then EDJ
α = ∅

• Suppose EDJ |κ is defined. Let Mκ be the set of sound mice M such
that ρM = κ and EM |κ = EDJ |κ. Let λ = sup{OnM |M ∈ M}. Then

EDJ |λ = E
⋃
M∈Mκ

EM
.

The preservation of fine structure under extensions is hence the one, but
crucial barrier remaining for a hyperfine core model. In the next section,
we consider several possible ways to attack this difficulty by modifying the
extension process.
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13.6 What might be done

13.6.1 Alternative Concepts of Fine Ultrapowers and their diffi-
culties

Compared with the fine structure based on reducts and standard codes, the
hyperfine approach can be seen as attempt to represent the structure by
Skolem functions rather than truth predicates. A typical structure occuring
in the construction fine ultrapowers in e.g. [30] can be equivalently repre-
sented in the form 〈JUρUα,n , A1, ..., An〉, where ρUα,n is the nth projectum of JUα .

Here, Ai+1 is the Σ1 truth predicate over the ith reduct. Now, Σ1 truth
predicates and the canonical Skolem functions Sφ used in hyperfine structure
are obviously quite resemblant to each other. The reason for the difficulties
of the hyperfine approach is then the fact that, while the truth predicates
give information on a complexity class of formulas with convenient closure
properties, these properties are absent when adding Skolem functions for for-
mulas one after another. For example, if the truth predicate for φ and ψ in
certain parameters is given, then so is the one for φ ∧ ψ. The same is not
true in the hyperfine case: Having Sφ and Sψ available does not allow one to
search for witnesses for φ ∧ ψ.
When seen from this angle, a solution would be to introduce the Skolem
functions in appropriate ’portions’ as well, say, for all formulas at a certain
level of the Levy hierarchy at once. This would correspond to a generaliza-
tion of locations where the underlying ordering of the formulas is no longer
necessarily of order type ω. One could, for example, let <i be a canonical
well-ordering of the Σi-formulas with subformulas coming earlier and then
define < as the concatenation of 〈<i |i ∈ ω〉. This is an ordering in order
type ω2. Allowing critical locations to be only of the form 〈α, φ, ω · n, ∅〉,
everything would work exactly as in Jensen’s fine structure. However, at the
same time, the uniformity and all other advantages of hyperfine structure
theory would be lost and one would end up with a mere reformulation of
classical core model theory. Even worse, by adding infinitely many operators
at once, a crucial feature of hyperfine structures used in applications, the
finiteness property, is lost.
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13.6.2 A More Algebraic Approach

A possible way out might be the ’model-theoretical’ ultrapowers introduced
by Magidor in [11]. The basic idea is to take the complete theory T of the
source structure and code the desired fine structure into that theory to ar-
rive at T′ ⊃ T. The ultrapower is then a certain (minimal) model of T
together with an extra ω-sequence of indiscernibles. Magidor works with the
Lα-hierarchy. An attempt to carry this over to the F -hierarchy would prob-
ably start as indicated below.

The structure to work with are of the form M := 〈FU
α ,∈, I, N, S,<, U〉,

where U is a measure in M on some M -cardinal κ. We will call these F -
measure structures. To take an ultrapower of M , expand the language S for
the fine hierarchy by constant symbols cx for each element x of M to get
the expanded language SM . T(M) is then the complete SM0 -theory of M .
Introduce another ω many constant symbols 〈ιi|i < ω〉, intended to denote a
sequence of indiscernibles below the image of the critical point κ.
Let T(M) be the complete SM0 -theory of M . Let
T∗ := T(M) ∪ {ιi < ιj|0 < i < j < ω} ∪ {ιi ∈ cκ|i ∈ ω} ∪ {φ(ιi1 , ..., ιin) ↔
φ(ι1, ..., ιn)|φ an S0-formula} ∪ {t(ιi1 , ..., ιin) = t(ι1, ..., ιn)|t an S0-term}∪
∪{U(t(ι1, ..., ιn)) ↔ t(ιi1 , ..., ιin) ∈ cκ ∧ ∀i > in(ιi ∈ t(ιi1 , ..., ιin))|t an S0-
term}.

Now for each ordinal α, the αth iterate of M is obtained by taking the
constructible closure of an α-sequence of indiscernibles of type T∗. If this
structure is well-founded for each α, then M is called iterable. KDJ can then
be defined as {x|∃M = FU

γ ∃κ ∈ On|M is iterable ∧crit(U) = κ∧x ∈M ||κ}.

As in [30], one can now show that, for (A, T ) iterable and λ a cardinal
greater than card(A), we have ATλ of the form Lα[Fλ], where Fλ is the closed
unbounded filter on λ. From this it follows that, for any two iterable struc-
tures (A, T ), (B, S), there is δ such that one of ATδ , BSδ is an initial segment
of the other. (Just let δ be a cardinal greater than max{card(A), card(B)}.)
This allows a comparison and hence a well-ordering of iterable structures.

The key to obtaining representability of the extension in the source struc-
ture is the concept of a realized structure: An iterable structure (A, T ) with
critical point κ is realized if there is an infinite set C ⊂ κ such that the
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following holds for any S0-formula φ:
φ(ι1, ..., ιk) ∈ T ↔ There is C ′ ⊂ C cofinite such that ∀〈ζ1, ..., ζn〉 ⊂fin C ′A |=
φ(ζ1, ..., ζn).

If a structure is realized, terms on the RHS of an ultrapower can often
be mirrored on the LHS by using elements of C ′ in place of indiscernibles.
In particular, the ultrapower map will be fine up to the target structure in
the case of a realized structure. The necessary variant of a Los theorem is
thereby directly implemented in the construction.

A rough sketch of this construction of the Dodd-Jensen core model can
be found in the appendix to [11]. Some experiments with this indicate that
it would indeed be compatible with the F -hierarchy, and would result in a
gain in terms of simplicity as the necessity of splitting the ultrapower con-
struction into ω many cases according to the minimal n such that a Σn-hull
collapses the critical point (the measurable cardinal) vanishes. This would
meet requirements (1) and (2) from the preliminary remarks. By simplified
proofs of the covering lemma for L and the proof of an approximation lemma
for the core model given in [11], it is very likely that (3) will hold as well. (4)
is at least doubtful, as methods in the spirit of these Σn-hulls have yet not led
to proofs for any of the more involved combinatorial facts about L (such as
square or morasses) to the best of our knowledge. (5) almost certainly fails
for models much bigger than KDJ when iterations and the corresponding
indiscernibles become more complicated.

We can, of course, not exclude that appropriate concepts of definabil-
ity/hull operators and extensions can be found that bring together ultra-
powers and alternative fine structure. At this point, however, this remains a
big, open question.
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14 Concluding Remarks and Future Goals

The use of the F -hierachy circumvents the necessity of considering formula
complexity in finestructural arguments. It is a flexible setting and well suited
for working in L. Many case distinctions of classical finestructure are made
unnecessary, the techniques for extending embeddings become shorter and
more transparent. This leads to slicker and more accessible proofs for the
covering lemma and what is called here the approximation lemma. Notions
from hyperfine structure theory can be incorporated in this setting, leading
to hyperings, a natural refinement of the hierarchy, which allows proofs of
central combinatorial properties of L. The use of the horizontal hypering
achieves the independence of the desired objects from the ordering of formu-
las and other deliberate properties of the underlying language. One might
consider carrying out proofs for other principles like the existence of gap-2-
morasses or Sy Friedman’s morass with square.
In the context of generalized computability theory, such subleties of structur-
ing the levels are mostly irrelevant, as the levels under considerations have
sufficiently strong closure properties anyway to appear in any of the com-
mon hierarchies. Through the introduction of typed machines, the analysis
of computational strength of ITRM ’s could be recasted in a conception-
ally more stable and interesting way and in large parts be finished. Open
questions are here for example whether a lost melody theorem can hold for
weak ITRMs and whether there is a universal weak ITRM . Interesting new
questions would certainly arise by enriching the variety of register types: For
example, type 3 registers containing a 0 could also pass on information on
the question whether this is a regular limes inferior or due to an overflow.
Relatiziations of the F -hierarchy and hyperfine structure theory are possible,
but working with them poses difficulties. When approaching core models, the
preservation of finestructural parameters seems incompatible with the extra
operations. Intuitively, these structures enriched with all kinds of tools seem
to lack ’self-consciousness’, i.e. the ability to represent the extension in the
source structure. The development of Magidor with F - or hyperfine levels
seems to have a realistic chance of leading to a fine structure for core models
independent of formula complexities and hence simpler. The next step should
be to elaborate this for very decent core models like e.g. Welch’s core model
up to a Σ2-mouse [18]. This should already be sufficient to see whether the
central problems present themselves again. If they can be solved, the route
to KDJ is probably free. However, for higher core models, the possibility of
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finestructural drops in iterations would still remain a challenge.
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16 Zusammenfassung

Die Arbeit befasst sich mit alternativen Methoden zur Analyse von Gödels
konstruktiblem Universum L, dem ⊆-minimalen klassenmächtigen Modell
von ZFC und anderer konstruktibler Strukturen.
Im ersten Teil werden F -Strukturen eingeführt, ein Ansatz von Koepke zur
Vereinfachung der Feinstrukturtheorie von Kernmodellen. Wir gewinnen
einige Vorteile für die weitere Entwicklung aus der Einführung einer Na-
mensfunktion N unter die Basisfunktionen und kleinerer Modifikationen des
Hüllenoperators. Es wird demonstriert, dass die F -Hierarchie ein geeignetes
Instrument zum Beweis wichtiger Eigenschaften von L ist, wie etwa die Haus-
dorffsche verallgemeinerte Kontinuumshypothese GCH oder das kombina-
torische Prinzip ♦. Dann wird eine Methode zur Erweiterung strukturerhal-
tender Funktionen, sogenannter feiner Abbildungen, angegeben, Koepkes
vereinfachter Beweis des Überdeckungssatzes für L erläutert und ein Ap-
proximationssatz für L gezeigt:
Unter ¬0] ist jedes X ⊂ On von überabzählbarer Konfinalität, das unter
den Basisfunktionen der F -Hierarchie abgeschlossen ist, Vereinigung von
abzählbar vielen Elementen von L.
Gegenüber dem Beweis des Approximationssatzes von Magidor, der die Abgeschlossen-
heit unter primitiv-rekursiven Mengenfunktionen voraussetzt, gewinnen wir
deutlich an Kürze und Einfachheit.
Anschließend ergänzen wir die Basisfunktionen der F -Hierarchie durch Ansätze
aus der Hyperfeinstrukturtheorie von Friedman und Koepke. Im Kontext
der F -Hierarchie ergibt sich daraus das allgemeinere Konzept des Hyperings,
das wir ausführen und benutzen, um die hyperfeinstrukturellen Beweise des
Quadrat- und Morastprinzips in die F -Hierarchie zu übertragen. Das hier-
bei vornehmlich benutzte horizontale Hypering H2 sorgt dabei für eine Un-
abhängigkeit der konstruierten Objekte von der gewählten Aufzählung der
Formeln.
Anschliessend betrachten wir Infinite Time Register Machines (ITRMs) sowohl
als Anwendung von wie auch als weiteren Zugang zu konstruktiblen Meth-
oden. ITRMs sind Registermaschinen, deren Laufzeiten beliebige Ordi-
nalzahlen sein können. Wir beweisen das Lost-Melody-Theorem für ITRMs,
d.h. die Existenz einer reellen Zahl, die durch eine ITRM als Orakelzahl
erkannt, aber nicht berechnet werden kann. Wir führen getypte Maschinen
ein, die Register mit verschiedenem Limesverhalten parallel verwenden und
klassifizieren die Maschinentypen hinsichtlich ihrer Berechnungsstärke. Ins-
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besondere zeigen wir, dass ITRMs mit n + 1 überlaufenden Registern und
einigen schwächeren Hilfsregistern den n-ten Hypersprung berechnen und
das Halteproblem für ITRMs mit n überlaufenden Registern lösen können.
Wir beweisen, dass die Menge der ITRM -erkennbaren reellen Zahlen in
der Ordnung von L Lücken aufweist, und zwar mindestens von der Größe
sup{ωCKi |i ∈ ω}, wobei ωCKi die i-te zulässige Ordinalzahl bezeichnet. Außer-
dem zeigen wir, dass die beweistheoretischen Analysen von Welch bezüglich
der Existenz der Haltezahlen für verschiedene Maschinen im Kontext der
getypten Maschinen zu präziseren Schranken führen.
Im letzten Teil skizzieren wir Ansätze zu einer Übertragung alternativer Fe-
instrukturen auf allgemeinere konstruktible Strukturen, sogenannte Kern-
modelle. Wir übertragen zentrale Konzepte, zeigen einige Erhaltungseigen-
schaften für die Ultrapotenzkonstruktion und ein Dodd-Jensen-Lemma für
das entsprechende Iterationskonzept. Die Bewahrung der feinstrukturellen
Information in Iterationen hingegen scheitert. Daran anschließend erläutern
wir kurz die Gründe dieser Schwierigkeiten und diskutieren mögliche Auswege.
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