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1. Introduction 

1.1 Cyanobacterial secondary metabolites 

The current study investigated the biosynthesis of the halogenated secondary 

metabolites ambigol A, B, C and tjipanazole D of the cyanobacterium Fischerella 

ambigua.  

 

O

Cl

Cl

HO

Cl

Cl

ClCl

OH

ambigol A

O

Cl

Cl

ClCl

ambigol B

O

Cl

Cl

O

Cl

Cl

ClCl

ambigol C

O

Cl

Cl

OH

OH

N
H

Cl

N
H

Cl

tjipanazole D

 

Figure 1.1-1: Structure of the polychlorinated phenolic ethers ambigols A-C and the indolocarbazole 

compound tjipanazole D, produced by the terrestrial cyanobacterium Fischerella ambigua.  

Cyanobacteria represent an extremely diverse group of Gram-negative 

photoautotrophic prokaryotes. This concerns especially their morphological and 

physiological attributes (Gugger & Hoffmann, 2004; Teaumroong et al., 2002) but 

also their production of a wide range of secondary metabolites (Van Wagoner et al., 

2007; Nett & Koenig, 2007). These metabolites play an ecological role in that they 

support cyanobacterial blooms or enable cyanobacteria to defend their habitat 

against other organisms like fungi, bacteria and vertebrates (Leao et al., 2010; Nagle 

& Paul, 1998).  

Cyanobacteria form symbiotic associations with different organisms (Svenning et al., 

2005; Meeks & Elhai, 2002), e.g. in lichen (Luecking et al., 2009), sponges 

(Hentschel et al., 2006; Hentschel & Bringmann, 2010) and plants (Adams & Duggan, 
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2008). Three major groups of cyanobacterial symbionts have been reported from 

marine sponges: the filamentous Oscillatoria spongeliae, the unicellular "Candidatus 

Synechococcus spongiarum" and Synechocystis species (Lemloh et al., 2009). Since 

cyanobacterial symbionts contribute to the spectrum of sponge-derived compounds, 

structural characteristics of cyanobacterial chemistry often debunk the photosymbiont 

as being the true source of secondary metabolites (Flatt et al., 2005; Moore, 1996).  

Natural products from cyanobacteria include toxins (Wiegand & Pflugmacher, 2005) 

like hepatotoxins (mentioned below), neurotoxins, e.g. jamaicamides (Edwards et al., 

2004) as well as dermatotoxins, e.g. lyngbyatoxin A (Cardellina et al., 1979). The 

most prevalent class of hepatotoxins is represented by monocyclic oligopeptides, the 

microcystins and nodularins. They are produced by a hybrid nonribosomal-polyketide 

megasynthase (NRPS/PKS) (Dittmann & Wiegand, 2006; Moffitt & Neilan, 2004; 

Rouhiainen et al., 2004). Microcystins and nodularins are potent inhibitors of 

serine/threonine protein phosphatases 1 and 2A (Yoshizawa et al., 1990; Nishiwaki-

Matsushima et al., 1991).  By contrast, numerous cyanobacterial secondary 

metabolites have promising biological activities regarding their therapeutic benefit 

(Liu & Rein, 2010; Jones et al., 2009; Tan, 2007; Singh et al., 2005). In this context 

the cyanobactins shall be mentioned, which form a new class of ribosomally 

biosynthesised, low-molecular-weight cyclic peptides (Sivonen et al., 2010). The 

cyanobactin synthetase gene is wide-spread among cyanobacterial genera and 

congeners of these compounds show high structural diversity (Leikoski et al., 2010; 

Leikoski et al., 2009; Donia et al., 2008). They include patellamides B, C, and D that 

were reported to reverse multidrug resistance (Jones et al., 2009; Schmidt et al., 

2005). 

Among many other pharmacological properties, cyanobacterial metabolites show 

activity against pathogenic protozoa, e.g. the antileishmanial lipopeptides 

almiramides B-C and the closely related dragonamide E, which all were obtained 

from Panamanian strains of Lyngbya majuscula (Sánchez et al., 2010; Balunas et al., 

2010). Another lipopeptide, dragonamide A exhibited good activity against 

Plasmodium falciparum (McPhail et al., 2007). The knowledge of involved genes in 

the biosynthesis of these compounds may open up affordable alternatives to produce 

effective drugs for the treatment of orphan diseases.   
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1.2 Halogenated secondary metabolites from cyanobacteria 

The most frequently isolated cyanobacterial metabolites are peptides and 

depsipeptides, e.g. aeruginosins, microginins, cyanopeptolins and anabaenopeptins 

(Silva-Stenico et al., 2010; Mehner et al., 2008; Welker & von Doehren, 2006). Most 

structural congeners display inhibitory activity towards serine proteases, e.g. trypsin, 

human leucocyte elastase (cyanopeptolins) and thrombin (aeruginosins) (Sisay et al., 

2009; Ishida et al., 2009; Cadel-Six et al., 2008). The structural diversity of these 

oligopeptides and other cyanobacterial metabolites is due to variability of amino acid 

residues and tailoring reactions like glycosylation, sulfatation, methylation, or 

halogenation (Jones et al., 2010; Ishida et al., 2007; Rouhiainen et al., 2000; von 

Elert et al., 2005). These post-NRPS modifications explain the broad variety of 

derivatives in each of these peptide classes (Welker et al., 2006). Halogenated 

compounds are frequently found in cyanobacteria, and were described, e.g. among 

aeruginosin-, cyanopeptolin- and microginin-type peptides (Rounge et al., 2007; 

Welker & von Doehren, 2006). In cyanopeptolin- and aeruginosin-like oligopeptides, 

chlorination is performed on aromatic moieties by FADH2-dependent halogenases 

(Vaillancourt et al., 2006; van Pée & Patallo, 2006).  

Genes encoding for enzymes involved in the biosynthesis of cyanopeptolins have 

been isolated and characterised as NRPS-gene clusters for Anabaena strain 90 

(apd) (Rouhiainen et al., 2000), the producer of anabaenopeptilide 90 B, and for 

Planktothrix agardhii NIVA CYA 116 (oci) (Tooming-Klunderud et al., 2007), a source 

of cyanopeptolin 954 [figure 1.2-1]. 
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Figure 1.2-1: Two cyanobacterial cyclic peptides, which belong to the large class of cyanopeptolins. 

Anabaenopeptilide 90B from Anabaena strain 90 and cyanopeptolin 954 from Microcystis NIVA-CYA 

172/5 contain a chlorinated tyrosyl moiety. 

Several cyanopeptolin variants are known to occur as halogenated compounds along 

with non-halogenated ones. For instance, from Anabaena strain 90, 

anabaenopeptilide 90B and its non-chlorinated analogue anabaenopeptilide 90A 

were isolated (Gkelis et al., 2005; Rouhiainen et al., 2000; Fujii et al., 1996). The oci 

biosynthetic gene cluster does not contain a phenolic halogenase gene, in contrast to 

the highly similar cyanopeptolin 984 synthetase operon (mcn) (Rounge et al., 2007). 

It is supposed that NRPS gene clusters lacking halogenase genes arise from more 

ancient pathways by gene deletion and that chlorination is presumbly not necessary 

for the biological function of these cyclic peptides (Jones et al., 2010; Tooming-

Klunderud et al., 2007).  

In the biosynthesis of anabaenopeptilide 90B and cyanopeptolin 954 [figure 1.2-1], 

respectively, the flavin-dependent halogenases ApdC and McnD perform tyrosyl 

moiety chlorination during the NRPS assembly line (Wagner et al., 2009). Other 

cyclic depsipeptides are the cryptophycins, which have been isolated exclusively 

from Nostoc spp. and not, as common for other peptide classes, from a broad 

taxonomic range of cyanobacteria (Welker & von Doehren, 2006). The antimitotic 

cryptophycin 1 [figure 1.2-2], which was first discovered in the lichen cyanobacterial 

symbiont Nostoc sp. ATCC 53789, represents the most important member of this 
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large class of cyanobacterial secondary metabolites. It possesses tubulin-

depolymerising properties (Smith & Zhang, 1996; Bai et al., 1996; Smith et al., 1994), 

and thus served as a lead structure for efforts to design improved anticancer drugs 

(Liu et al., 2009; Beck et al., 2005). The biosynthetic gene cluster revealed the 

presence of a mixed PKS-NRPS-system (Du & Shen, 2001; Du et al., 2001) 

producing the depsipeptide backbone. Similar to anabaenopeptilide 90B and 

cyanopeptolin 954, chlorination occurs at the tyrosine moiety, likely catalysed by the 

FADH2-dependent halogenase CrpH. It is proposed that CrpH is also responsible for 

the production of dichlorinated cryptophycin congeners (Magarvey et al., 2006). The 

closely related non-halogenated arenastatin A [figure 1.2-2] was isolated from the 

marine sponge Dysidea arenaria (Kobayashi & Kitagawa, 1999; Kobayashi et al., 

1995). Like cryptophycin 1, arenastatin A was used as a lead structure to design 

analogues aiming the development of new anticancer agents (Murakami et al., 2004). 

The high structural similarity to cryptophycin 1 suggests that a cyanobacterial 

symbiont in the sponge may be the producing strain of this compound. This idea is 

supported by the fact that cryptophycin-24, which was isolated from Nostoc sp GSV 

224 proved to be identical with arenastatin A (Moore, 1996).  
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Figure 1.2-2: Chemical structures of the cyanobacterial depsipeptide cryptophycin 1, which was first 

isolated from the lichen cyanobacterial symbiont Nostoc sp. ATCC 53789 and the structurally closely 

related arenastatin A, which was obtained from the marine sponge Dysidea arenaria. 

Besides the prevalent production of halogenated cyclic peptides, cyanobacteria are 

also capable to biosynthesise linear peptides with halide substituents. Aeruginosins 

are a group of such linear tetrapeptides chlorinated either at the 4-

hydroxyphenyllactic acid (4-Hpla) moiety, as found in Microcystis sp., or at the 2-

carboxy-6-hydroxyoctahydroindole (Choi) residue, as described for such metabolites 
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from Oscillatoria sp. (Ishida et al., 2009). Like cyanopeptolins, also aeruginosins 

revealed inhibition of serine proteases, especially thrombin (Ishida et al., 1999).  

As presumed for the chlorination step in anabaenopeptilide 90B [figure 1.2-1], 

aromatic moiety halogenations (van Pee et al., 2006) during the biosynthesis of 

cyanopeptolins and aeruginosins are suggested to occur integrated in the NRPS 

biosynthetic pathway (Wagner et al., 2009; Cadel-Six et al., 2008; Tooming-

Klunderud et al., 2007). Figure 1.2-3 shows exemplarily the chemical structure of a 

chlorinated acyclic peptide, i.e. aeruginosin 98-A from Microcystis aeruginosa NIES-

98. 
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Figure 1.2-3: Chemical structure of the trypsin inhibitor aeruginosin 98-A from Microcystis aeruginosa 

NIES-98. It represents one congener of the large class of aeruginosins, which are linear, 

cyanobacterial tetrapeptides (Ishida et al., 2009; Murakami et al., 1995). 

Several cyanobacterial metabolites that arise from mixed PKS/NRPS assembly lines 

include halogenation of alkyl moieties in their biosynthetic pathways (Jones et al., 

2009). These halogenations are accomplished by α-ketoglutarate-dependent non-

heme Fe (II) halogenases. In the biosynthesis of the anticancer compound curacin A, 

produced by a Curaçao strain of Lyngbya majuscula, the halogenase CurA catalyses 

a cryptic chlorination to facilitate the formation of the cyclopropane ring (Khare et al., 

2010; Chang et al., 2004).  

Other chlorinated lipopetides are the neurotoxic jamaicamides (Edwards et al., 2004) 

and the molluscicidal barbamide [figure 1.2-4] (Orjala & Gerwick, 1996; Jones et al., 

2010). The closely related barbaleucamides A and B were derived from a Philippine 

sponge of the genus Lamellodysidea (formerly Dysidea) (Harrigan et al., 2001). 
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Figure 1.2-4: The molluscicidal barbamide (a) obtained from Lyngbya majuscula resembles the 

sponge-derived barbaleucamide A (b). The polychlorinated amino acid derivative dysidenin from the 

marine sponge Lamellodysidea herbacea (c) is structurally similar to the lipopeptide pseudodysidenin 

(d) from the marine cyanobacterium L. majuscula (Jones et al., 2009; Jiménez & Scheuer, 2001). 

Halogenation of alkyl moieties of these compounds is carried out by α-ketoglutarate-dependent non-

heme Fe (II) halogenases. 

Dysidenin [figure 1.2-4], an inhibitor of iodide transport in thyroid cells has been 

isolated from the marine sponge Lamellodysidea herbacea (formerly known as 

Dysidea herbacea) (Van Sande et al., 1990; Kazlauskas et al., 1977). It carries a 

trichloromethyl residue and shows apparent structural similarity to pseudodysidenin, 

produced by the cyanobacterium L. majuscula (Jiménez & Scheuer, 2001). For the 

derivative 13-demethylisodysidenin, it was shown by fluorescence activated cell 

separation that only O. spongeliae contained the chlorinated metabolite, and 

therefore was likely the true producer of this compound (Unson et al., 1994; Unson & 

Faulkner, 1993).  

In a recent study presented by Flatt (2005), a genetic approach was applied to 

confirm the filamentous cyanobacterial symbiont O. spongeliae to be the source of 

polychlorinated peptides from Lamellodysidea (formerly Dysidea) herbacea. 

Sequence information available for the barbamide biosynthetic gene cluster (Chang 
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et al., 2002; Orjala & Gerwick, 1996) enabled to amplify a homologous gene (dysB1) 

from Dysidea sponge material. Using the CARD-FISH method, it was shown that 

dysB1 probes did only hybridise to sequences in cyanobacterial cells (Flatt et al., 

2005). 

1.3 Chlorinated secondary metabolites in Fischerella ambigua 

The current project focused on F. ambigua and the biosynthesis of its chlorinated 

natural products. The latter did not belong to the group of nonribosomal peptides but 

were polychlorinated phenolic ethers and a bisindol alkaloid. These compounds, 

named ambigols A-C and tjipanazole D were found in a previous study (Falch et al., 

1995).  

1.3.1 Ambigols and related structures 

Ambigols represent a highly intriguing class of cyanobacterial compounds formed by 

a simple phenolic building block that is linked by either ether-bridges or aryl-aryl- 

bonds to give a trimeric basic structure. This skeleton is furthermore characterised by 

the presence of not less than six chloride atoms on the phenyl rings [figure 1.3.1-1].  
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Figure 1.3.1-1: Polychlorinated phenolic ethers, ambigols A-C, produced by the terrestrial 

cyanobacterium Fischerella ambigua. 

 Polyhalogenated phenolic ethers feature a broad range of biological activities 

(Gribble, 2010). The polychlorinated ambigols A and B were found to exhibit 

antibacterial effects, whereby ambigol A was significantly more active than ambigol 

B. In a bioautographic assay, ambigol A was tested against Bacillus subtilis inhibiting 

its growth at the same order of magnitude as chloramphenicol. Furthermore, both, 

ambigol A and B, have been proven to show mild cytotoxic and antiviral properties as 
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well as a strong inhibitory effect on cyclooxygenase (Falch et al., 1995). A significant 

cytotoxic effect was described for ambigol A, whereas ambigol B only revealed a 

weak lethal effect in a brine shrimp assay. Ambigol C possesses antiplasmodial 

activity, which could not been proven for ambigol A and B though (Wright et al., 

2005).  

1.3.1.1 Related structures to the ambigols from the marine environment 

From the tropical marine sponge L. herbacea two chemotypes are known (Faulkner 

et al., 1994), one of which produces polychlorinated amino acid derivatives (Unson et 

al., 1993) like dysidenin and barbaleucamides A and B [figure 1.2-4], whereas the 

second exclusively produces polybrominated diphenyl ethers [figure 1.3.1.1-1a] 

(Handayani et al., 1997).  
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Figure 1.3.1.1-1: Polybrominated diphenyl ether (a) isolated from the marine sponge L. herbacea 

(formerly known as D. herbacea). It is structurally related to the polychlorinated phenolic ethers from F. 

ambigua, e.g. ambigol B (b). 

The most prevalent prokaryotic endosymbiont in the mesohyl of the sponge L. 

herbacea is the host-specific filamentous cyanobacterium O. spongeliae (Thacker & 

Starnes, 2003), which was identified as the possibly responsible strain for the 

production of brominated diphenyl ethers (Unson et al., 1994). A great variety of new 

polybrominated diphenyl ethers have been frequently encountered in Lamellodysidea 

(formerly Dysidea) spp. exhibiting a broad range of biological effects in bioassays. 

These include antibacterial, antifungal, and cytotoxic activity (Gribble, 2010). 

Recently, 2-(2’,4’-dibromophenoxy)-4,6-dibromophenol [figure 1.3.1.1-1 a] previously 

isolated from L. herbacea (Carté & Faulkner, 1981) was obtained from a new source, 

the sponge D. granulosa and was found to display potent broad-spectrum in vitro 
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activity towards Gram-positive bacteria. Further, a potent activity against antibiotic-

resistant bacteria including MRSA, erythromycin-resistant S. aureus and vancomycin-

resistant Enterococcus has been reported (Shridhar et al., 2009). 

1.3.1.2 Related structures to the ambigols found in red and brown algae 

Red algae like Odonthalia corymbifera belong to the family Rhodomelaceae and 

represent a rich source of bromophenols, which possess cytotoxic, anti-inflammatory 

and antimicrobial effects (Oh et al., 2008). Studies on the structure-activity 

relationship of antimicrobial bromophenols from natural sources and of synthetic 

derivatives revealed that a di-phenolic backbone, the presence of free hydroxyl 

groups and two or more bromine substituents on the phenol ring are critical for 

antimicrobial attributes (Oh et al., 2009; Oh et al., 2008).  
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Figure 1.3.1.2-1: Phenolic metabolites from red and brown algae (1 and 2) and the structurally similar 

ambigol C (3) isolated from F. ambigua. Compound 1 belongs to the lanosol-type dimers obtained 

from the red alga Odonthalia corymbifera. Compound 2 represents a dichlorinated phloroglucinol 

derivative isolated from the brown alga Laminaria ochroleuca.  

The lanosol-type dimer 1 [figure 1.3.1.2-1], also obtained from Odonthalia 

corymbifera, inactivates α-glucosidase, and thus could be a potential candidate for 

adjuvant Diabetes mellitus treatment (Kurihara et al., 1999b; Kurihara et al., 1999a).  

The phlorotannin triphlorethol was obtained along with chlorinated analogues, 

exemplified by compound 2 from the brown alga Laminaria ochroleuca (La Barre et 

al., 2010; Glombitza et al., 1977). They bear remarkable structural similarity to the 

ambigols from F. ambigua [figure 1.3.1.2-1 and 1.3.1.1-1].  
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Phloroglucinol natural compounds including phlorotannins with ether bridges and 

phenyl linkages have been reviewed recently (Singh et al., 2010; Gribble, 2010). 

They exhibit a broad range of biological activities such as anti-inflammatory, 

anticancer, neuro-regenerative and antioxidant effects (Singh et al., 2009).  

1.3.1.3 Ambigol-related structures from the terrestrial environment 

Terrestrial organisms usually utilise chlorine instead of bromine due to its prevalence 

in soil. The toxic mushroom Russula subnigrans (Russulaceae) produces interesting 

polychlorinated phenyl ethers, i.e. russuphelins A-F, which are reminiscent of the 

chlorinated phenyl ether structure of the ambigols from F. ambigua. Russuphelin B-D 

[figure 1.3.1.3-1] show cytotoxicity against P388 leukemia cells (Takahashi et al., 

1992). In the course of further studies on this mushroom, the optically active 

russuphelol was identified (Ohta et al., 1995). 
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Figure 1.3.1.3-1: A series of polychlorinated phenyl ethers, exemplified by russuphelin B and F, were 

isolated from the toxic mushroom Russula subnigrans. It also produces the tetrameric ether 

russuphelol. All compounds structurally resemble the ambigols from F. ambigua. 



12 
Introduction  

 

1.3.1.4 Structural similarity of ambigols to triclosan 

Triclosan [figure 1.3.1.4-1] is a synthetic bisphenol with a broad-spectrum activity 

against Gram-positive and Gram-negative bacteria. It is topically used for disinfecting 

ancillary treatment of neurodermitis, acne and ulcus cruris. Its antimicrobial effect is 

due to its inhibitory activity against bacterial fatty acid synthase (FAS) (Heath et al., 

2001).  Recently, a suppressive effect of triclosan on rat mammary carcinogenesis 

has been discovered. Again, this effect is related to inhibition of FAS suggesting the 

latter as a promising molecular target for breast cancer chemoprevention (Lu & 

Archer, 2005). By analogy, the uncompetitive inhibition of type II fatty acid 

biosynthesis explains the potency of triclosan against in vitro cultured Plasmodium 

falciparum parasites as well as against P. berghei in vivo infections in mice 

(Freundlich et al., 2007; Perozzo et al., 2002).  
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Figure 1.3.1.4-1: Chemical structure of the synthetic, antimicrobial bisphenol ether triclosan and the 

natural product ambigol A from F. ambigua. 

A structure-based drug design approach led to the identification of triclosan 

derivatives containing alkyl and aryl substituents in 5-position. These compounds 

possessed significantly enhanced activity against purified InhA, an enoyl acyl carrier 

protein reductase of Mycobacterium tuberculosis (Freundlich et al., 2009). The broad 

use of triclosan in many daily applied products, e.g. toothpaste, cosmetics, 

detergents increases the development of triclosan-resistant bacteria. 

1.3.2 Tjipanazole D and related structures 

The bisindole natural product tjipanazole D was also isolated from the 

cyanobacterium F. ambigua (Falch et al., 1995) and is the second class of 

compounds targeted in this study. It was previously reported from the cyanobacterial 
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species Tolypothrix tjipanasensis together with 14 further tjipanazoles (Bonjouklian et 

al., 1991). Of these compounds, only tjipanazole J possesses the pyrrolo[3,4-c] ring, 

which is a typical chemical attribute of indolo[2,3-a]pyrrolo[3,4-c]carbazoles from 

actinomycetes, e.g. rebeccamycin from cultures of Lechevalieria aerocolonigenes 

(Bush et al., 1987) and staurosporine from Streptomyces sp. TP-A0274 (Tamaoki et 

al., 1986). Other tjipanazoles obtained from T. tjipanasensis were chlorinated and 

non-chlorinated indolo[2,3-a]carbazole N-glycosides or simple chlorinated indolo[2,3-

a]carbazoles, such as tjipanazole D. All tjipanazoles possess only weak cytotoxicity 

against tumor cell lines and are inactive towards protein kinase C. Tjipanazoles A1 

and A2 [figure 1.3.2-1] are described as antifungal agents (Bonjouklian et al., 1991). 

Tjipanazole D, when isolated from F. ambigua showed only a moderate antibacterial 

activity against the Gram-positive strains of Bacillus subtilis and Micrococcus luteus 

and displayed no antifungal activity (Falch et al., 1995).  
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Figure 1.3.2-1: Chlorinated tjipanazoles obtained from the cyanobacterium Tolypothrix tjipanasensis. 

They were isolated among other tjipanazoles, which except tjipanazole J all have the same 

indolocarbazole framework and vary in their tailoring modifications, i.e. glycosylation and halogenation. 

Tjipanazole D was also isolated from the terrestrial cyanobacterium F. ambigua.  

A great number of structurally diverse bisindole secondary metabolites have been 

isolated from a variety of microbial species (Ryan & Drennan, 2009). Structurally 

related indolo[2,3-a]pyrrolo[3,4-c]carbazoles are divided into two classes, i.e. DNA-

topoisomerase I inhibitors and protein kinase C inhibitors (Hyun et al., 2003). The 

DNA-topoisomerase I inhibitor rebeccamycin and the structurally related AT2433-A1 

are chlorinated indolo[2,3-a]pyrrolo[3,4-c]carbazole derivatives that bear a fully 
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oxidised C-7 carbon [figure 1.3.2-2]. Except N-methylation of the pyrrole ring in 

AT2433-A1 and an additional chlorination in rebeccamycin, both compounds have 

the same aglycone. The single methoxy-β-glucoside residue in rebeccamycin was 

shown to be essential for interaction with DNA topoisomerase (Bailly et al., 1999). 

The rebeccamycin structure was a target for semisynthetic design of a great number 

of analogues (Marminon et al., 2008; Moreau et al., 2005; Anizon et al., 2003). 

Various substituents can be introduced to the lactam nitrogen [figure 1.3.2-2] without 

loss of the topoisomerase I inhibition activity (Prudhomme, 2003). A semisynthetic 

approach even led to analogues of the tjipanazoles, which lack an imide heterocycle 

but despite that exhibit strong inhibition of DNA topoisomerase I. For instance, a 

derivative containing the sugar moiety of rebeccamycin and two nitro substituents at 

the indolo[2,3-a]carbazole scaffold revealed the same profile of cytotoxicity as 

rebeccamycin (Voldoire et al., 2004). 

 

Figure 1.3.2-2: Antitumor compounds rebeccamycin and AT2433-A1 represent a class of bisindoles 

with a fully oxidised imide heterocycle and a sugar moiety attached only to one indole nitrogen. The N- 

attached sugar is the same in both, rebeccamycin and AT2433-A1. However, in the indolocarbazole 

diglycoside AT2433-A1 a second pyranosyl-unit, i.e. 2,4-dideoxy-4-methylamino-L-xylose is attached 

to the O-methylated glucosyl moiety. 
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A second group of indolo[2,3-a]pyrrolo[3,4-c]carbazoles is exemplified by the protein 

kinase C inhibitors staurosporine and K252a, which contain an identical aglycone 

with a non-oxidised C-7 carbon and a sugar that is linked to both indole nitrogens 

[figure 1.3.2-3]. The crystal structures of staurosporine and UCN-01 in complex with 

checkpoint kinase (Chk) 1 revealed that a free NH of the lactam heterocycle interacts 

with the ATP-binding pocket of Chk1 by hydrogen-bonding, and thus substitution at 

the imide nitrogen turned out to decrease Chk1 inhibitory potency of derivatives  

(Zhao et al., 2002). A semisynthetically produced rebeccamycin derivative having a 

sugar moiety linked to both indole-nitrogens like in staurosporine exhibited strong 

Chk1 inhibition activity (Anizon et al., 2009). 
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Figure 1.3.2-3: Antitumor compounds staurosporine and K252a with an indolo[2,3-a]pyrrolo[3,4-

c]carbazole-skeleton, in which only one carbon, C5 is oxidised and the sugar is linked to both indole 

nitrogens. Staurosporine contains the sugar residue 2,3,6-trideoxy-3-aminoaldohexose, whereas 

K252a is substituted with a dihydrostreptose moiety. 

A large number of semisynthetic rebeccamycin and staurosporine analogues have 

been developed to investigate structure-activity relationships and to generate 

synthetic drugs, which combine structurally essential elements of rebeccamycin- and 

staurosporine-like compounds, respectively, to display a dual effect on cancer cells 

(Prudhomme, 2004; Marminon et al., 2008). 

The biosynthetic gene clusters of staurosporine and rebeccamycin as well as those 

of the related indolocarbazoles K252a and At2433-A1 have been cloned and 

characterised (Onaka et al., 2003; Onaka et al., 2002; Sánchez et al., 2002; Chiu et 

al., 2009b; Gao et al., 2006). Genes involved in the production of these compounds 

encode for highly conserved proteins, which generate the indolocarbazole core. They 
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even turned out to be exchangeable in combinatorial biosynthesis experiments 

(Salas & Mendez, 2009; Sánchez et al., 2006a; Sánchez et al., 2005). Tjipanazole D, 

bears an indolo[2,3-a]carbazole core structure instead of an indolo[2,3-a]pyrrolo[3,4-

c] carbazole as found for the above mentioned natural products. This divergence 

consequently implies differences in the biosynthetic assembly of tjipanazole D. At this 

point of time, no published data exist on the biosynthesis of the indolocarbazole 

scaffold as present in tjipanazole D. 

1.4 Proposed building blocks and reactions in ambigol and 

tjipanazole D biosynthesis 

The ambigol core structure and its regioselective halogenation pattern as well as 

obtained sequence information on probable biosynthesis proteins encouraged to 

hypothesise on the involvement of specific enzymes in the endogenous assembly of 

these highly intriguing phenolic ethers [figure 1.1-1]. These enzymes are assumed to 

be phenolic halogenases (1.4.1.1), a chorismate lyase (1.4.2), a CoA synthetase 

(1.4.3), and a pair of two CYP 450 enzymes (1.4.4). The phenolic building blocks, 

which form the ambigol carbon scaffold is supposed to arise from chorismic acid via 

formation of 4-hydroxybenzoic acid (4-HBA). Phenolic halogenases usually act on 

peptidyl carrier-attached substrates (Buedenbender et al., 2009; van Pée & Patallo, 

2006). Based on sequence data obtained in this study, this PCP domain is part of an 

NRPS-like module carrying a starter C domain (1.4.5). To date, no published data 

exist on the biosynthesis of this type of natural products. 

The indolocarbazole tjipanazole D [figure 1.1-1] is composed of two indole units, 

which are chlorinated in 5-position. As described in 1.3.2, the molecule shares 

remarkable structural similarity with other indolocarbazole compounds (Nakano & 

Omura, 2009), whose biosyntheses are well-characterised in literature (Ryan & 

Drennan, 2009), e.g. rebeccamycin [figure 1.3.2-2] from Lechevalieria 

aerocolonigenes (1.3.2). On the basis of published information on the biosynthesis of 

these natural products and their high structural resemblance to tjipanazole D, the 

latter most likely arises from the simple building block L-tryptophan, which is known 

to be a typical free diffusible substrate for tryptophan halogenases (1.4.1.2) (Zhu et 

al., 2009; Sánchez et al., 2006b). By analogy to rebeccamycin production (Onaka, 

2009; Sánchez et al., 2005; Onaka et al., 2003), the biosynthesis of the tjipanazole D 



17 
Introduction 

 

carbon framework is proposed to include a dimerisation of 5-chlorinated L-tryptophan 

and an intramolecular aryl-aryl coupling between the pyrrole rings of the two indole 

units. Thereby, oxidative processes are suggested to be catalysed by three enzymes, 

a chromopyrrolic acid synthase (CPAS)-like protein, an FAD-dependent 

monooxygenase and a CYP 450 enzyme (1.4.4; 5.7.5).  

Both, ambigols and tjipanazole D are characterised by aromatic halogenation, and 

thus it was hypothesised that the biosynthesis of these secondary metabolites 

involves FADH2-dependent halogenases (1.4.1). Both, phenolic and tryptophan 

halogenases, are thoroughly described and characterised in literature (Neumann et 

al., 2008; Flecks et al., 2008; van Pée & Patallo, 2006). They are typically involved in 

the halogenation of aromatic moieties, in particular aromatic amino acids, i.e. 

chorismic acid derivatives (Wagner et al., 2009). In case of ambigols and tjipanazole 

D, results of the current study suggest chorismate to be the origin of their aromatic 

scaffolds (5.5).  

1.4.1 Flavin-dependent halogenases 

FADH2-dependent halogenases form a class of biosynthetic enzymes that typically 

halogenate aromatic substrates with strict regioselectivity, but also a few aliphatic 

substrates are known. The involvement of halogenases in the biosynthetic process 

has been thoroughly reviewed recently (Wagner et al., 2009; Neumann et al., 2008; 

Fujimori & Walsh, 2007). In regard to their substrate specifity, they may be divided 

into three subgroups [figure 1.4.1-1]. One of them mediates the halogenation of 

phenolic or pyrrole moieties, while a second one is responsible for the halogenation 

of tryptophan derivatives, and a third one acts on aliphatic substrates (van Pée & 

Patallo, 2006). However, concerning their substrate utilisation, i.e. carrier-bound or as 

free substrates, a classification into two groups is supported by crystal structures 

obtained from several FADH2-dependent halogenases (Buedenbender et al., 2009; 

Neumann et al., 2008; Dong et al., 2004): variant A acts on small substrates while 

completely embracing them. This group includes tryptophan halogenases and the 

aliphatic halogenase CmlS from chloramphenicol biosynthesis. Halogenating 

enzymes of variant B catalyse halogenations while the substrate is attached to a 

carrier protein (Podzelinska et al., 2010).  



18 
Introduction  

 

Formerly, phenolic halogenases were supposed to act exclusively on carrier-bound 

substrates (van Pée & Patallo, 2006). However, very recently the halogenation steps 

in the biosynthesis of differentiation-inducing factor 1 (Dif-1), a polyketide-derived, 

dichlorinated signal molecule from Dictyostelium discoideum (Morris et al., 1987) has 

been studied in vivo and in vitro. Although ChlA, a flavin-dependent halogenase 

identified in the genome of D. discoideum, clearly acts on a phenolic substrate, no 

carrier protein is required for halogenation (Neumann et al., 2010; Austin et al., 

2006). It should be noted that this halogenase was proven to catalyse both 

chlorination steps in the biosynthesis of DIF-1. 

 

 

Figure 1.4.1-1: Chart illustrating different types of flavin-dependent halogenases with regard to their 

substrate specifity. Pyrrole and phenol halogenating enzymes often act on peptidyl carrier-tethered 

substrates. Similarly, halogenation of an aliphatic moiety, as in case of chloramphenicol biosynthesis, 

is supposed to be carried out on a CoA-bound intermediate (acetoacetyl-CoA). By contrast, tryptophan 

is usually utilised as a free diffusible substrate.  
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The crystal structure of the phenolic halogenase CndH, which is involved in the 

biosynthesis of chondrochloren in the myxobacterium Chondromyces crocatus [figure 

1.4.1-2] was compared to previously published crystal structures of the tryptophan 

halogenases PrnA (Dong et al., 2005) and RebH (Yeh et al., 2007). This suggested a 

protein interaction between the phenolic halogenase CndH and the carrier protein 

during catalytic turnover (Buedenbender et al., 2009). The enzymatic mechanism of 

FADH2-dependent halogenases has been proposed to depend on three absolutely 

conserved regions, which mediate the formation of an HOCl molecule and its 

controlled nucleophilic attack on the aromatic substrate (Butler & Sandy, 2009; 

Buedenbender et al., 2009; Yeh et al., 2007; Anderson and Chapman, 2006). The 

highly conserved overall organisation of FADH2-dependent halogenases has been 

recently confirmed for the crystal structure of CmlS, a flavin-dependent halogenase 

that is responsible for aliphatic moiety chlorination during chloramphenicol 

biosynthesis in Streptomyces venezuelae ISP5230 [figure 1.4.1-2] (Podzelinska et 

al., 2010). 
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Figure 1.4.1-2: The two FADH2-dependent halogenases CmlS from chloramphenicol biosynthesis and 

CndH from chondrochloren production perform chlorination on different substrates. Despite that, the 

crystal structures of these two enzymes reveal a highly conserved overall structure suggesting that all 

FADH2-dependent halogenases use a conserved calaytic mechanism but differ in their substrate 

recognition and binding. 

Halogenases of variant B, like the chondrochloren halogenase CndH, show a more 

open conformation of their active site, being accessible for a carrier-bound 

intermediate by sterical adaption including protein-protein interactions with a carrier 

domain (Podzelinska et al., 2010). This could also explain the ability of some 
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phenolic halogenases to perform multiple halogenations with regioselectivity, which 

may be due to their higher conformational flexibility in their substrate recognition. 

All aromatic moiety halogenations performed by FADH2-dependent halogenases 

reveal excellent regiospecifity (Wagner et al., 2009; van Pée & Patallo, 2006). 

Enzymes catalysing the halogenation of pyrrole and phenol moieties may be capable 

of regioselective dichlorinations [figure 1.4.1.1-1], whereas multiple halogenations of 

tryptophan derivatives require distinct halogenating enzymes for each halogenation 

step [figure 1.4.1.2-2]. Halogenase genes, which are closely associated to particular 

NRPS gene clusters are according to the current state of knowledge likely to encode 

for enzymes elaborating carrier-tethered intermediates (1.4.1.1). By contrast, 

tryptophan halogenases utilise their substrates without the need of carrier units 

(1.4.1.2). 

1.4.1.1 Carrier proteins and halogenases in the biosynthetic process 

Halogentions are typical tailoring modifications of cyanobacterial metabolites and 

very often associated with NRPS, PKS or mixed NRPS/PKS assembly lines (Walsh, 

2008; Walsh, 2004). Peptidyl carrier proteins (PCP) and acyl/aryl carrier proteins 

(ACP/ArCP) are common attachment sites to present the substrate to a tailoring 

enzyme (Walsh, 2008; van Pée & Patallo, 2006; Walsh, 2004; Thomas et al., 2002; 

Walsh et al., 2001). A carrier-halogenase collaboration has been described for the 

biosynthesis of numerous cyanobacterial metabolites (Wagner et al., 2009).  For the 

chlorinated cyclic peptide anabaeopeptilide 90B [figure 1.2-1], it is proposed that the 

phenolic halogenase ApdC acts on a tyrosine residue while the growing peptide is 

bound to the NRPS protein ApdB (Rouhiainen et al., 2000). Similar considerations 

were suggested for chlorinated cyanopeptolin and aeruginosin peptides (Ishida et al., 

2009; Cadel-Six et al., 2008; Tooming-Klunderud et al., 2007). Carrier proteins occur 

either freestanding or embedded in multifunctional proteins. They exist as three 

variants (Zhou et al., 2007): acyl carrier proteins (ACP) found in polyketide 

synthetases (PKS) as well as fatty acid synthetases (FAS), peptidyl carrier proteins 

(PCP) found in NRPS systems, and aryl carrier proteins (ArCP) usually found in 

siderophore NRPS synthetases (Qiao et al., 2007).  

Not all carrier-depending halogenases do function in a multienzymatic biosynthetic 

environment. The hybrid PKS/NRPS molecule pyoluteorin from Pseudomonas 
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fluorescens Pf-5 consists of an NRPS-derived pyrrole moiety and a PKS-derived 

resorcinol ring.  In the biosynthesis of this antifungal compound [figure 1.4.1.1-1], a 

simple freestanding carrier protein PltL, which contains a phosphopantetheinyl 

attachment site, is involved (Hutchinson, 2003). A prolyl-AMP ligase (1.4.3) PltF 

activates the substrate proline by adenylation to prolyl-AMP for transfer to the 

thiolation (PCP) domain PltL. A following FAD-dependent four-electron oxidation that 

is likely performed by PltE yields pyrrolyl-S-PltL, which represents a carrier protein-

attached intermediate as the substrate for dichlorination (Walsh et al., 2006; Thomas 

et al., 2002). Interestingly, the FADH2-dependent halogenase PltA, performs both 

chlorination steps on the protein-attached acyl moiety, pyrrolyl-S-PltL. This reaction 

has been proven experimentally by in vitro assay (Walsh et al., 2006; Dorrestein et 

al., 2005; Nowak-Thompson et al., 1999). 

 

 

Figure 1.4.1.1-1: Formation of dichloropyrrole in the biosynthesis of pyoluteorin through the flavin- 

dependent halogenase PltA, which catalyses the dichlorination of the carrier-bound pyrrole moiety.     

T = thiolation domain; A = adenylation domain; PltF = prolyl-AMP ligase; PltE = FAD-dependent 

dehydrogenase 

In complex NRPS- and PKS-systems, a modular organisation of the involved 

enzymes is favoured due to facilitated substrate channeling of large peptide or 

polyketide chains (Huang et al., 2001). By contrast, the example of pyoluteorin 

biosynthesis demonstrates that intermolecular transfer of small substrates from 

freestanding adenylation (A) domains to separate carrier proteins can occur. 

Similarly, in the biosynthesis of enedyine C-1027 [figure 1.4.1.1-2 and 1.4.1.1-3], a 

PCP-tethered substrate undergoes regiospecific chlorination. Enedyine C-1027, an 

antitumor antibiotic was isolated from Streptomyces globisporus (Hu et al., 1988) and 

is composed of an enediyne core, which is covalently bound to three distinct 
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moieties:  a deoxy aminosugar, a β-amino acid, and a benzoxazolinate residue. For 

the biosynthesis of the (S)-3-chloro-4,5-dihydroxy-β-phenylalanine moiety, β-tyrosine 

is activated by an isolated A domain giving β-tyrosyl-AMP, which is subsequently 

loaded onto the freestanding PCP domain SgcC2 [figure 1.4.1.1-2]. The resulting 3-

hydroxy-β-tyrosyl-S-SgcC2 intermediate is the substrate for halogenation catalysed 

by the FADH2-dependent halogenase SgcC3. This halogenation step has been 

proven by generating the β-aminoacyl-S-SgcC2 substrate in vitro and subsequent 

incubation with the recombinant halogenase SgcC3 (Lin et al., 2007). Again, the A 

domain encoded by sgcC1 and the PCP domain SgcC2 are monofunctional proteins, 

i.e. not part of a modular architecture (Hutchinson, 2003). The A domains of both, 

enediyne biosynthesis (SgcC1) and pyoluteorin assembly (PltF) are responsible for 

aminoacyl-AMP formation and loading of this adenylate onto a carrier protein. 

 

Figure 1.4.1.1-2: Formation of the (S)-3-chloro-4,5-dihydroxy-β-phenylalanine moiety catalysed by the 

flavin-dependent halogenase SgcC3, while the substrate is bound to the carrier protein SgcC2 in the 

biosynthesis of the antitumor antibiotic enediyne C-1027. T = thiolation domain; A = adenylation 

domain. 

Also coenzyme A is a possible carrier for substrates to be halogenated. For instance, 

during the biosynthesis of chloramphenicol [figure 1.4.1.1-3] the acetoacetyl group is 

supposed to be linked to CoA by CmlK, which shares sequence homology to acyl 

CoA synthetases. The CoA-ester is suggested as a possible substrate for the 

FADH2-dependent halogenase CmlS (Podzelinska et al., 2010).  
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Figure 1.4.1.1-3: Chemical structures of natural compounds containing a chlorinated aromatic or 

aliphatic residue, respectively, which is biosynthesised by carrier-bound halogention. 

1.4.1.2 Halogenases acting on free diffusible substrates 

The most famous group of halogenases, which utilise free diffusible substrates is 

formed by enzymes responsible for the halogenation of tryptophan [figure 1.4.1.2-1] 

(Wagner et al., 2009). They were first discovered during investigations towards the 

biosynthesis of pyrrolnitrin. It could be demonstrated that chlorination of tryptophan at 

position 7, mediated by PrnA, is the first step in pyrrolnitrin biosynthesis (Keller et al., 

2000; Hammer et al., 1999; Kirner et al., 1998; Hammer et al., 1997). By analogy, the 

conversion of free tryptophan to 7-chlorotryptophan was shown to be catalysed by 

RebH as the initial step in the biosynthesis of the indolocarbazole rebeccamycin in L. 

aerocolonigenes (Yeh et al., 2005). The biosynthesis of pyrrole containing 

compounds has been recently reviewed (Walsh et al., 2006). To date, several other 

tryptophan halogenases have been characterised, some of which are a tryptophan 5-

halogenase (PyrH) from Streptomyces rugosporus (Zehner et al., 2005; Ding et al., 

1994) and a tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus (Kling 

et al., 2005). The mechanism of tryptophan halogenases has been studied 

extensively (Flecks et al., 2008; Yeh et al., 2007; Dong et al., 2005). Recently 

performed mutagenesis experiments concerning the tryptophan binding site of the 

tryptophan-5-halogenase PyrH revealed that the latter binds tryptophan to present 

the C5 atom to the chlorinating species while blocking other potential reactive sites 

(Zhu et al., 2009; Flecks et al., 2008).  
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Figure 1.4.1.2-1: Bacterial secondary metabolites bearing a chlorinated tryptophan unit. All 

responsible halogenases of the respective biosynthetic gene clusters utilise free tryptophan, except in 

chondramides biosynthesis (see text below). Tryptophan halogenases act with distinct regioselectivity. 

Whereas in the biosynthesis of pyrrolnitrin and rebeccamycin halogenation occurs at position 7 of the 

indole ring, the halogenase Thal of thienodolin biosynthesis chlorinates at position 6, and PyrH at 

position 5 during pyrroindomycin B assembly.  

It is noteworthy that the tryptophan 2-halogenase CmdE acts on a carrier-attached 

tryptophanyl-moiety in the chondramide B and D [figure 1.4.1.2-1] assembly line. An 

inactivation mutant of cmdE did not accept the corresponding 2-chloro-tryptophan as 

a substrate for the biosynthesis, which in conclusion would exclude free tryptophan 

as the substrate of CmdE (Rachid et al., 2006). However, since CmdE rather 

chlorinates a pyrrole moiety as described for pyoluteorin [figure 1.4.1.1-1], it is not 

surprising that this reaction is performed carrier-bound.  
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Although the majority of tryptophan halogenases utilise the same substrate, i.e. free 

tryptophan, they are known to generate only a single chlorotryptophan isomer, for 

example RebH of rebeccamycin biosynthesis, which mediates chlorination at position 

7 of the indole ring, whereas Thal chlorinates at position 6 in the production of 

thienodolin (Zhu et al., 2009; Vaillancourt et al., 2006; Kling et al., 2005). As well, 

KtzQ and KtzR are two distinct FADH2-dependent halogenases involved in the 

formation of 6,7-dichloro-L-tryptophan in the biosynthesis of kutznerides (Strieker et 

al., 2009). Dichlorination occurs by successive tandem action of the two halogenases 

on free tryptophan and its monochlorinated derivative, respectively [figure 1.4.1.2-2]. 

Thus, for the production of the dichlorinated tryptophan derivative 6,7-dichloro-L-

tryptophan, two distinct enzymes are required (Fujimori et al., 2007; Heemstra, Jr. & 

Walsh, 2008).  
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Figure 1.4.1.2-2: The dichlorination of L-tryptophan in the biosynthesis of kutznerides is performed by 

two different FADH2-dependent halogenases. 

1.4.2 Chorismate and halogenases in the biosynthetic process 

As mentioned in 1.4, the biosynthesis of ambigols is proposed to involve a 

halogenase, which utilises a chorismate derived aromatic substrate. Chorismic acid is 

an important branch point intermediate that arises from the shikimate pathway 

(Knaggs, 2003) and is the precursor of the aromatic amino acids tryptophan, 

phenylalanine and tyrosine (Herrmann & Weaver, 1999; Arcuri et al., 2010). It plays 

an important role for downstream biosynthetic assembly lines, in particular for the 

biosynthesis of nonribosomal peptides as well as mixed NRPS/PKS compounds (Du 

& Shen, 2001), alkaloids and also other amino acid derived frameworks like the 

amino coumarin scaffold of novobiocin and its chlorinated analogue clorobiocin 

KtzQ KtzR 
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(Walsh et al., 2006; Pojer et al., 2003a; Pojer et al., 2003b; Eustaquio et al., 2003). 

As well, simple hydroxybenzoic acid derivatives have their origin in chorismate, for 

instance salicylic acid or 2,3-dihydroxybenzoic acid, which are precursors of 

siderophores, e.g. vibriobactin or mycobactin [figure 1.4.2-1] (Neres et al., 2008). 

Nitrogen-containing compounds like the antitumor antibiotic enediyne C-1027 and the 

antibiotic metabolite chloramphenicol [figure 1.4.1.1-3] contain partial structures that 

are chorismate-derived (Van Lanen et al., 2008). 
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Figure 1.4.2-1: Bacterial metabolites with a phenolic building unit, which arises from chorismate. The 

amino coumarin framework of clorobiocin is derived from tyrosine, whereas vibriobactin, mycobactin or 

pentabromopseudilin contain a phenolic reisidue that results from a hydroxycarboxylic acid precursor. 

Chorismate-derived metabolites with halide substituents as tailoring modifications are 

no rareness. The most typical substrates for FADH2-dependent halogenases are 

amino acids like tyrosine or derivatives thereof as well as tryptophan (1.4.1.1 and 

1.4.1.2). In this regard, it is very common that phenolic halogenases are often 

associated with NRPS gene clusters (Wagner et al., 2009). However, also a simple 

building block like 4-hydroxybenzoic acid may be a substrate for halogenating 

enzymes, for instance in the biosynthesis of the marine antibiotic 

pentabromopseudilin [figure 1.4.2-1] that was obtained from different bacterial strains 
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including Alteromonas luteoviolaceus (Peschke et al., 2005; Hanefeld et al., 1994; 

Laatsch & Pudleiner, 1989).  

1.4.3 AMP-dependent enzymes in the biosynthetic process 

In chapter 1.4.1.1, it was outlined that some halogenases recognise their substrates 

exclusively when these are attached to peptidyl carrier domains. In order to link a 

PCP domain to a substrate, the latter has to be activated to its corresponding 

adenylate. This adenylation reaction is mediated by a class of enzymes refered to as 

AMP ligases.  

Adenylation is a smart biological way to chemically activate carboxylate substrates by 

condensing them with ATP under pyrophosphate release. The superfamily of 

adenylate-forming enzymes comprises three subfamilies:     

a. adenylation domains of NRPS (Linne et al., 2007; Marahiel et al., 1997), 

including freestanding A domains as described in 1.4.1.1 

b. acyl and aryl CoA synthetases or ligases (Ingram-Smith et al., 2006b) 

c. luciferase oxidoreductase (White & Branchini, 1975) 

All adenylate-forming enzymes catalyse a two step ping-pong reaction (Horswill & 

Escalante-Semerena, 2002), in which a carboxylic acid is adenylated under 

pyrophosphate liberation in a first half-reaction. The resulting carboxylate adenylate 

is a very reactive species, and thus the enzyme catalyses the second step as well, 

which is the reaction of the intermediate with a nucleophile.  For most enzymes, this 

nucleophile is a phosphopantetheinyl moiety of either CoA, an aryl carrier protein 

(ArCP), or a peptidyl carrier protein (PCP), respectively [figure 1.4.3-1] (Ingram-Smith 

et al., 2006b). 
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Figure 1.4.3-1: Activation of amino acids and aryl/acyl acids by AMP-ligases. Aryl acids may either be 

attached to an ArCP or a PCP domain. Alternatively, a CoA-ester may be formed by a group of AMP-

ligases, the CoA synthetases, known from polyketide biosynthesis (Walsh, 2004; Townsend, 1997). 

Besides their involvement in primary lipid metabolism, AMP-ligases are important 

substrate-activating proteins in secondary metabolism, for example as a part of 

modular NRPS, but also lone standing A domains are reported (Miethke et al., 2006). 

Such independent aryl acid adenylation (AAA) domains give rise to adenylated 

carboxylic acids in the formation of several aryl-capped siderophores, e.g. 

enterobactin from E. coli or yersiniabactin from Yersinia pestis (Neres et al., 2008).  

EntB, one of six enzymes (EntA-EntF) of the enterobactin biosynthesis, has been 

described as a bifunctional protein with isochorismate lyase activity. EntC, EntB and 

EntA act in tandem to yield 2,3-dihydroxybenzoic acid, which is thioesterified to the 

ArCP domain of the bifunctional enzyme EntB. Subsequently, a 2,3-dihydroxybenzoic 

acid-AMP ligase, EntE is responsible for ATP-dependent acylation of EntB with 2,3-

dihydroxybenzoic acid via adenylation [figure 1.4.3-2] (Gehring et al., 1998a; Gehring 

et al., 1997). Very recently, the two-step adenylation-ligation reaction of EntE was 

analysed for kinetic parameters with focus on possible siderophore inhibition 

strategies against pathogenic bacteria (Sikora et al., 2010). 
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Figure 1.4.3-2: Biosynthesis of enterobactin, in which the aryl acid, 2,3-dihydroxybenzoic acid is 

activated by a 2,3-dihydroxy-AMP ligase EntE, which represents an aryl acid adenylation (AAA) 

domain. The adenylated substrate is subsequently loaded onto the ArCP domain of EntB, in order to 

be linked to L-serine by action of the starter C domain of the NRPS EntF (see figure 1.4.5-1). Three of 

these dimers are coupled through an ester bond. A final cyclisation step catalysed by the thioesterase 

domain of EntF leads to the trilacton enterobactin (Roche & Walsh, 2003). 

The aryl carrier proteins EntB and VibB, respectively, are famous examples for 

freestanding representatives of usually integrated thiolation domains. As well, their 

substrates are activated by the lone standing A domains EntE and VibE, respectively 

(Gehring et al., 1998b; Keating et al., 2000a; Keating et al., 2000b; Hutchinson, 

2003). 

1.4.4 Cytochrome P450-dependent enzymes in biosynthesis 

The overall ambigol core structure [figure 1.1-1] is congruent with parts of the 

heptapeptide backbone of glycopeptide antibiotics, e.g. balhimycin or vancomycin 

[figure 1.4.4-1], whose aromatic residues are linked via phenyl ether and biphenyl 

bridges that arise via crosslinking reactions, mediated by CYP 450 enzymes (Woithe 

et al., 2007; Stegmann et al., 2006; Pylypenko et al., 2003; Zerbe et al., 2002).  

L- serine            

EntF 

enterobactin 
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Based on this common structural feature, it was concluded that the biosynthesis of 

the ambigol scaffold likewise involves this class of oxidative enzymes (1.4).  
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Figure 1.4.4-1: Ambigols A and B share structural similarity with parts of the balhimycin molecule.  

Likewise, the production of the indolocarbazole scaffold of tjipanazole D [figure 1.1-1] 

is hypothesised to be maintained through oxidative dimerisation of 5-

chlorotryptophan and intramolecular aryl-aryl coupling of the bisindole dimer between 

carbons 12a and 12b [figure 1.3.2-2]. This possible biosynthetic pathway, which is 

similar to that of rebeccamycin and related indolocarbazole compounds (Nakano & 

Omura, 2009; Sánchez et al., 2006b) would then involve a chromopyrrolic acid 

synthase-like protein, an FAD-dependent monooxygenase and a CYP 450 enzyme 

(Ryan & Drennan, 2009; Howard-Jones & Walsh, 2007; Ryan et al., 2007; Howard-

Jones & Walsh, 2006). In this study, the collection of sequence data on tjipanazole D 

biosynthesis genes aimed to confirm this hypothesis. 

CYP 450 monooxygenases are a superfamily of more than 8,500 heme-thiolate 

enzymes (Lewis & Wiseman, 2005; Werck-Reichhart & Feyereisen, 2000) containing 

an enzyme-bound prosthetic group (iron-protoporphyrin). These proteins comprise 

about 400 amino acids and represent a highly versatile class of oxidative enzymes 

catalysing reactions of primary metabolism, e.g. biodegradation pathways as well as 

secondary metabolism, i.e. biosynthesis pathways. Most of these reactions are 
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hydroxylations of aliphatic and aromatic carbons, however a large spectrum of other  

reactions is carried out as well (Guengerich, 2001). Some of them are N-oxidation, 

reductive dehalogenation (Li & Wackett, 1993), N-, S-, and O-dealkylation or 

epoxidation, e.g. in cryptophycin biosynthesis (Ding et al., 2008; Magarvey et al., 

2006). Furthermore, they can be involved in the formation of C-C- and C-O-bonds 

between aromatic rings by a radical mechanism [figure 1.4.4-2]. A free radical is 

generated by one-electron oxidation, and mesomeric structures arise by 

delocalisation of the free electron to positions ortho and para to the oxygen 

functionality. Enolised final products reveal carbon-carbon bonds either at ortho- or 

para-positions, but also ether linkages may be formed (Dewick, 2009). 
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Figure 1.4.4-2: Range of dimeric systems generated by phenolic oxidative coupling reactions 

according to Dewick, 2009. 

As described for halogenases (1.4.1.1), several CYP 450’s were reported, which 

instead of binding free ligands, rely on an interaction with PCP domains. For 

instance, in the assembly lines of vancomycin-type antibiotics, the heptapeptide 

backbone is linked to a PCP domain when crosslinking occurs (Pylypenko et al., 

2003; Zerbe et al., 2002). As well, NovI and CumD are likely responsible for carrier-

bound β-hydroxylation of tyrosine, in order to produce the amino coumarin moiety in 

the biosynthesis of the antibiotic compounds novobiocin (Steffensky et al., 2000a; 

Steffensky et al., 2000b) and coumermycin A (Wang et al., 2000), respectively. 

x 2 x 2 
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The antibiotic novobiocin is produced by Streptomyces spheroides and contains a 

tyrosine-derived 3-amino-4-hydroxycoumarin moiety as its structural core. In the 

biosynthetic gene cluster of novobiocin, two genes were found, novH and novI that 

encode an NRPS-type didomain and a CYP 450 hydroxylase, respectively [figure 

1.4.4-3]. The NRPS didomain consists of an L-tyrosine specific A domain and a C-

terminal PCP domain. The biosynthesis of the coumarin scaffold starts with L-

tyrosine, which is tethered to the PCP domain of NovH by action of an A domain, 

located upstream. Hydroxylation of the amino acid side chain is then performed by 

the CYP 450 enzyme NovI on the PCP-tethered substrate, L-tyrosyl-S-NovH. 

Following steps are also performed on the carrier-attached substrate and include 

ortho-hydroxylation of the phenyl ring and intramolecular cyclisation with coincident 

release of the coumarin derivative (Chen & Walsh, 2001). This example shows 

possible interactions between CYP 450 enzymes and PCP domains in biosynthetic 

pathways.  
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Figure 1.4.4-3: PCP-bound hydroxylation of tyrosine in the formation of the coumarin ring during 

novobiocin production. NovI = CYP 450 enzyme; NovJ/K = similar to 3-keto-ACP reductases; NovO = 

similarity to quinone C-methyltransferases; NovC = putative flavin-dependent monooxygenase. 
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Nearly the same hydroxylation procedure was found for the production of a β-R-

hydroxytyrosine moiety, which is an important precursor in vancomycin biosynthesis. 

The CYP 450 enzyme OxyD, whose crystal structure was solved recently, turned out 

to hydroxylate its substrate while this is bound to the PCP domain of the didomain 

BpsD rather than free in solution. As described for NovH, BpsD consists of an A and 

a PCP domain only (Cryle et al., 2010).  

Also ACP-bound fatty acids can be substrates for CYP 450’s. P450BioI (CYP107H1) 

from biotin biosynthesis in Bacillus subtilis is responsible for the formation of a seven-

carbon diacid via oxidative cleavage of a fatty acid C-C bond. This reaction includes 

several reaction steps starting with hydroxylation of a fatty acid linked to an ACP 

(Cryle & De Voss, 2004; Cryle & Schlichting, 2008).  

1.4.5 Starter C domains in NRPS 

In the presented study, an NRPS-module bearing a starter C domain was identified. 

The NRPS module is believed to play a crucial role in the enzymatic action of 

ambigol biosynthesis proteins. 

NRPS are multienzyme complexes that are composed of highly specific catalytic 

domains, which are arranged in a modular fashion fascilitating intramolecular transfer 

of peptide chains from one domain to the next (Strieker et al., 2010). A typical NRPS 

module comprises at least three protein domains, which are an A domain (~550 aa), 

a PCP (T) domain (~80 aa) and a C domain (~550 aa) (Finking & Marahiel, 2004; 

Walsh, 2003; Stachelhaus et al., 1996b). These domains are usually found as the 

typical C-A-T module. By contrast, also lone standing A, PCP and C domains were 

reported, e.g. from the biosynthesis of iron(III)-chelating siderophores (Hutchinson, 

2003; Sharma & Johri, 2003).  

NRPS usually start with an A domain activating the first amino acid to the 

corresponding aminoacyl-AMP. Subsequently, the adenylated amino acid is loaded 

onto the contiguous PCP domain (Walsh et al., 1997; Stachelhaus et al., 1996a). The 

catalysed reaction of an adjacent C domain involves nucleophilic attack by the amino 

group of the downstream PCP-tethered amino acid on the acyl group of the growing 

chain while this is attached to the upstream PCP domain (Koglin & Walsh, 2009; 

Lautru & Challis, 2004). 
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Divergently, also an aryl acid, can be recognised by a freestanding A domain (1.4.3). 

This was reported for the production of siderophores, e.g. the biosynthesis of 

enterobactin [figure 1.4.3-2], in which 2,3-dihydroxybenzoic acid (DHB) is tethered to 

a PCP domain, in order to be linked to an amino acid, i.e. L-serine by the action of a 

so called starter C domain (Rausch et al., 2007) [figure 1.4.5-1].  
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Figure 1.4.5-1:  Enterobactin biosynthesis: peptide bond formation between an aryl acid and an amino 

acid, catalysed by an N-terminal (starter) C domain located on the NRPS module EntF. ICL = 

isochorismate lyse; PCP = peptidyl carrier protein; C = C domain with d (donor site) and a (acceptor 

site); A = A domain; TE = thioesterase domain. 

EntE, a dissected A domain activates 2,3-DHB to give the corresponding acyl-AMP 

derivative, which is transferred also by EntE to the ArCP-domain of the bifunctional 

protein holo-EntB. The serine activating NRPS EntF contains a starter C domain, 

which receives 2,3-DHB at its donor site. The downstream located PCP domain of 

EntF binds L-serine, which is linked to 2,3-DHB to form 2,3-dihydroxybenzoylserine. 

Three such molecules are connected through ester bonds by iterative action of the 

TE domain of EntF giving the final trilacton enterbactin (Roche & Walsh, 2003).  

Starter C domains are also reported for several lipopeptides e.g. surfactin from B. 

subtilis or lichenysins from Bacillus licheniformis. These compounds contain a β-

hydroxyl fatty acid, which is connected to the carboxy group of the C-terminal amino 

acid, e.g. L-glutamic acid of the peptide (Konz et al., 1999).  
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2. Intent of the presented study 

The cyanobacterium F. ambigua produces highly interesting compounds, i.e. 

ambigols A-C and tjipanazole D (1.3). These compounds bear aromatic frameworks, 

whose biosynthesis most likely involves oxidative processes, i.e. aromatic coupling 

reactions and halogenations. The enzymatic control of these reactions enables strict 

regioselectivity paired with high effectiveness of catalysed steps. Thus, the 

knowledge of involved genes encoding the respective enzymes is of enormous 

interest with regard to their possible use for in vitro catalysis of biosynthesis 

reactions.  

At the start of the current project, a suitable DNA extraction method for F. ambigua 

was sought, in order to obtain highly pure DNA for the establishment of a fosmid DNA 

library. In a preceding study, partial halogenase sequences were obtained applying 

PCR techniques (Wagner et al., 2009). These sequences were designated to be 

used for a screening of the genomic library.  

Thus, the here presented study aimed the construction and screening of a genomic 

library of the F. ambigua genome and the identification of the ambigols and 

tjipanazole D biosynthetic gene clusters as well as the bioinformatic analysis of the 

latter towards their possible involvement in secondary metabolites biosynthesis. This 

analysis is facilitated by the use of online databases (3.1.13) (Walsh & Fischbach, 

2010), which contain collected information on genes and encoded proteins with 

proven or putative function. Based on sequence homology, proteins may be assigned 

to possible catalysed reactions. The most specific enzymes of the here investigated 

biosyntheses seemed to be the halogenases. In particular, the tryptophan 

halogenase of the tjipanazole D biosynthesis appeared to be a suitable enzyme for 

heterologous expression, based on compareable approaches in literature (1.3.2; 

5.7.2). Since tryptophan halogenases utilise the simple substrate tryptophan as a 

free diffusible molecule, they are excellent candidates for in vitro halogenations. 

Therefore, a target of this study was the recombinant production of the putative 

tryptophan halogenase of the tjipanazole D biosynthesis and its experimental use. As 

an ambitious objective, the manipulation of the substrate susceptibility of this 

halogenase was planned by site-directed mutagenesis (Lang et al., 2011), in order to 

establish a compound library. 
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3. Materials and methods 

3.1 Materials 

3.1.1 Chemicals and other materials 

Table 3.1.1-1 gives a list of chemicals used in this study. All chemicals listed were 

purchased in research grade/pro analysi quality. Those not mentioned below were 

supplied by Fluka Chemie GmbH (Buchs, Switzerland), Merck KGaA (Darmstadt, 

Germany), Roth Chemie GmbH (Karlsruhe, Germany) or Sigma-Aldrich Chemie 

GmbH (Steinheim, Germany).  

Table 3.1.1-1: Purchased chemical substances and solutions used in this work. 

Substance Manufacturer 

Acetic acid KMF Laborchemie Handels GmbH (Darmstadt, Germany) 

Acetone-d 99.8% D Deutero GmbH (Kastellaun, Germany) 

Agar  Fluka Chemie GmbH (Buchs, Switzerland) 

Ammonium acetate Roth Chemie GmbH (Karlsruhe, Germany)  

Ampicillin  Roth Chemie GmbH (Karlsruhe, Germany) 

BG-11 stock solution   Sigma-Aldrich Chemie GmbH (Steinheim, Germany) 

Boric acid  Roth Chemie GmbH (Karlsruhe, Germany) 

Bromophenol blue Merck KGaA (Darmstadt, Germany)  

BSA  Bio-Rad Laboratories GmbH (Munich, Germany) 

CaCl2 × 2 H2O  Merck KGaA (Darmstadt, Germany) 

Chloramphenicol Fluka Chemie GmbH (Buchs, Switzerland) 

Chloroform  Roth Chemie GmbH (Karlsruhe, Germany) 

CTAB  Roth Chemie GmbH (Karlsruhe, Germany) 

DMSO   Roth Chemie GmbH (Karlsruhe, Germany) 

dATP Fermentas GmbH (St. Leon Rot, Germany) 
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Substance Manufacturer 

dNTP  Promega GmbH (Mannheim, Germany)  

Fermentas GmbH (St. Leon Rot, Germany) 

Ethanol 99,8% p.a.  Roth Chemie GmbH (Karlsruhe, Germany) 

Ethidium bromide  Roth Chemie GmbH (Karlsruhe, Germany)  

Glycerol  Roth Chemie GmbH (Karlsruhe, Germany) 

Gel Loading Dye Fermentas GmbH (St. Leon Rot, Germany) 

GoTaq® Flexi Buffer (10 x) Promega GmbH (Mannheim, Germany)  

Isoamyl alcohol (3-methyl-1-butanol)  Roth Chemie GmbH (Karlsruhe, Germany) 

Isopropanol  Roth Chemie GmbH (Karlsruhe, Germany)  

Merck KGaA (Darmstadt, Germany) 

D(+)-Maltose x H2O Roth Chemie GmbH (Karlsruhe, Germany) 

β-Mercaptoethanol  Roth Chemie GmbH (Karlsruhe, Germany)  

MgCl2 × 6 H2O  Merck KGaA (Darmstadt, Germany) 

MgSO4 x 7 H2O  Merck KGaA (Darmstadt, Germany) 

Na-acetate  Merck KGaA (Darmstadt, Germany) 

NaCl  Merck KGaA (Darmstadt, Germany) 

Na2-EDTA  Roth Chemie GmbH (Karlsruhe, Germany) 

NaOH  Merck KGaA (Darmstadt, Germany) 

peqGOLD Agarose  PEQLAB Biotechnologie GMBH (Erlangen, 

Germany) 

peqGOLD Low Melt-Agarose  PEQLAB Biotechnologie GMBH (Erlangen, 

Germany)  

Phenol Merck KGaA (Darmstadt, Germany) 

Sarcosyl (N-Lauroylsarcosin) Sigma-Aldrich Chemie GmbH (Steinheim, 

Germany) 

SDS  Roth Chemie GmbH (Karlsruhe, Germany) 

D (+)-Saccharose (Sucrose) Roth Chemie GmbH (Karlsruhe, Germany)  

Tris  Roth Chemie GmbH (Karlsruhe, Germany) 

Tris-HCl Roth Chemie GmbH (Karlsruhe, Germany) 

Tryptone/Peptone from Caseine  Roth Chemie GmbH (Karlsruhe, Germany) 

Yeast extract  Fluka Chemie GmbH (Buchs, Switzerland) 
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Other materials used in this study are listed in table 3.1.1-2 

Table 3.1.1-2: Technical equipment and other materials used in this study. 

Material Manufacturer  

Autoclave Varioklav®, H+P Labortechnik AG 

(Oberschleißheim, Germany)  

Amicon Ultra Centrifugal Filters Millipore GmbH (Schwalbach, Germany) 

Bandelin Sonorex RK 31  Bandelin electronic GmbH & Co. KG 

(Berlin, Germany) 

Biometra T3000 Thermocycler Biometra GmbH (Goettingen, Germany) 

BioRad PowerPacTM Basic Bio-Rad Laboratories GmbH (Hercules, 

U.S.A.) 

Boekel Replicator  Boekel Scientific (Feasterville, U.S.A.) 

Centrifuge Heraeus Biofuge fresco  Thermo Fisher Scientific (Waltham, U.S.A.) 

Centrifuge Heraeus Contifuge Stratos Thermo Fisher Scientific (Waltham, U.S.A.) 

Centrifuge Heraeus Fresco 17  Thermo Fisher Scientific (Waltham, U.S.A.) 

Centrifuge tubes (15/50 ml) TPP AG (Trasadingen, Germany) 

CopyControlTM Induction solution Epicentre (Madison, U.S.A.)  

Eppendorf Centrifuge 5415 D Eppendorf (Hamburg, Germany)  

Eppendorf tubes (0.5, 1.5, 2 ml) Eppendorf (Hamburg, Germany) 

Gel chambers Horizon 58 and 

Horizon 11.14  

Life technologies (Karlsruhe, Germany)  

Incubator Memmert GmbH + Co. KG (Schwalbach, 

Germany) 

Inolab pH meter WTW GmbH (Weilheim, Germany) 

Intas iX Imager Intas Science Imaging Instruments GmbH 

(Göttingen, Germany) 

Kodak DC290 Kodak GmbH (Stuttgart, Germany) 

Laminar Airflow Clean Bench BSB 4A 

(Hera Safe, Class II)   

Heraeus (Hanau, Germany) 

Magnetic stirrer (IKA® RH basic) IKA® Werke GmbH & Co. KG (Staufen, 

Germany) 
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Material Manufacturer  

Milli-Q® Water System Millipore (Eschborn, Germany)  

Multittron incubation shaker Infors AG (Bottmingen, Switzerland)  

MS2 Minishaker IKA® Works Inc. (Wilmington, U.S.A.) 

Nalgene cryogenic vials Nalgene Nunc International (Rochester, 

U.S.A.) 

Olympus BX 51 Olympus America Inc. (Center Valley, 

U.S.A.) 

Overhead mixer (IKA® RW 20) IKA® Werke GmbH & Co. KG (Staufen, 

Germany)  

Parafilm® Pechiney Plastic Packaging Company 

(Chicago, U.S.A.) 

Potter S Homogenisator  Sartorius AG (Göttingen, Germany) 

Scale (Sartorius BL 3100) Sartorius AG (Göttingen, Germany) 

Scale (Sartorius BP 221S) Sartorius AG (Göttingen, Germany) 

Sterile filter (0.2 µm) Renner GmbH (Dannstadt, Germany) 

Thermomixer Eppendorf  Eppendorf (Hamburg, Germany) 

Transferpette®-8 Brand GmbH + Co. KG. (Wertheim, 

Germany) 

UV mini 1240 UV/Vis spectro-

photometer  

Shimadzu (Kyoto, Japan)  

UV cuvettes  Ratiolab GmbH (Dreieich, Germany) 

Water bath (Haake DC 10) Thermo Haake GmbH (Karlsruhe, 

Germany) 
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3.1.2 Enzymes 

Enzymes used in this study were supplied as listed in table 3.1.2-1. Appropriate 

enzyme reaction buffers, which provide optimal reaction conditions as for 

polymerase, restriction and ligation were purchased together with the enzymes.  

Table 3.1.2-1: Enzymes that were used in this study for molecular biological experiments. 

Enzyme Manufacturer 

Agarase (0.5 u/µl) Fermentas GmbH (St. Leon Rot, Germany) 

GoTaq® Flexi DNA Polymerase 

(5 u/µl) 

Promega (Mannheim, Germany)  

Lysozyme  Roth (Karlsruhe, Germany) 

Proteinase K  Roth (Karlsruhe, Germany) 

Restriction enzymes Fermentas GmbH (St. Leon Rot, Germany)  

RNase (DNase free) Roth Promega (Mannheim, Germany) 

Fast-Link™ DNA Ligase Epicentre (Madison, U.S.A.) 

T4-ligase Fermentas GmbH (St. Leon Rot, Germany) 

 

All enzymes were applied following the respective manufacturer’s recommendations 

for use. Lysozyme and Proteinase K were used as stock solutions with 

concentrations of 100 mg/ml and 20 mg/ml, respectively. Restriction enzymes were 

purchased together with the appropriate reaction buffers and were used according to 

the provided company’s protocols. 
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3.1.3 Molecular weight markers 

The following DNA standards listed in table 3.1.3-1 were used for gel electrophoresis.  

Table 3.1.3-1: Molecular weight markers applied for size estimation of DNA in gel electrophoresis 

Molecular weight marker Manufacturer 

  
Gene RulerTM DNA Ladder Mix Fermentas GmbH (St. Leon Rot, Germany) 

Lambda Mix Marker Fermentas GmbH (St. Leon Rot, Germany) 

36 kb Fosmid Control DNA (100ng/ul) Epicentre Biotechnologies (Madison, 

U.S.A.) 

3.1.4 Molecular biological kits 

Commercial molecular kits that were utilised in this work are listed in table 3.1.4-1. 

The application of the kits was performed according to the manufacturer’s instruction 

manuals. 

Table 3.1.4-1: Commercial molecular biological kits used in this work for different applications. 

Molecular biological kit Manufacturer 

  
QIAquick PCR Purification Kit Qiagen GmbH (Hilden, Germany) 

pGEM®-T Vector System I Promega (Mannheim) 

QIAquick Gel Extraction Kit Qiagen GmbH (Hilden, Germany) 

QIAGEN Plasmid Midi Kit Qiagen GmbH (Hilden, Germany) 

QIAGEN Blood & Cell Culture DNA Mini Kit  Qiagen GmbH (Hilden, Germany)  

QIAprep®Spin Miniprep Kit  Qiagen GmbH (Hilden, Germany)  

GeneJET™ Plasmid Miniprep Kit  Fermentas GmbH (St. Leon Rot, 

Germany) 

CopyControl™ Fosmid Library Production Kit Epicentre Biotechnologies 

(Madison, U.S.A.) 

Fast-Link™ DNA Ligation Kit  Epicentre Biotechnologies 

(Madison, U.S.A.) 
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Molecular biological kit Manufacturer 

Quick Blunting Kit New England Biolabs (Frankfurt, 

Germany)  

TOPO® TA Cloning® Kit Invitrogen (Karlsruhe, Germany) 

3.1.5 Bacterial strains 

Within this work, different E. coli host strains were utilised for transformation of 

various insert-vector constructs (3.4.9.3; 3.4.14.4). The E. coli strains, their genotype 

and manufacturers are listed in table 3.1.5-1. 

Table 3.1.5-1: E. coli host strains applied in the presented study. 

Strain Genotype Manufacturer 

   
XL1-Blue competent 

E.coli cells 

recA1 endA1 gyrA96 thi-1 
hsdR17 supE44 relA1 lac 
[F´ proAB lacIqZΔM15 
Tn10 (Tetr)]. 

Agilent Technologies 

Deutschland GmbH 

(Böblingen, Germany) 

TOP10 competent E.coli 

cells 

F- mcrA Δ(mrr-hsdRMS-
mcrBC) Φ80lacZΔM15 
ΔlacΧ74 recA1 araD139 
Δ(araleu) 
7697 galU galK rpsL 
(StrR) endA1 nupG 

Invitrogen (Karlsruhe, 

Germany) 

Phage T1-Resistant 

TransforMax™ EPI- 

300™-T1R chemically 

competent E. coli 

F- mcrA D(mrr-hsdRMS-
mcrBC) f80dlacZDM15 
DlacX74 recA1 endA1 
araD139 D(ara, leu)7697 
galU galK λ- rpsL nupG 
trfA tonA dhfr 

Epicentre Biotechnologies 

(Madison, U.S.A.) 

3.1.6 Vectors 

For phenolic halogenase screening as well as for fosmid subcloning techniques, DNA 

fragments were produced by PCR and ultrasonic treatment, respectively. These 

fragments were made available on plasmids via cloning procedures (3.4.9.3; 

3.4.14.4; 3.4.14.10). The following vectors listed in table 3.1.6-1 were used in this 

work.  



43 
Materials and methods  

 

Table 3.1.6-1: Plasmids utilised in the presented study. 

Vector Size/Selectable marker Manufacturer 

   
pGEM®-T Vector 3.0 kb/ampicillin Promega (Mannheim, Germany) 

pCR®2.1-TOPO® 3.9 kb/ampicillin Invitrogen (Karlsruhe, Germany) 

pCC1FOS™ Vector 

(fosmid vector) 

8.1 kb/chloramphenicol Epicentre Biotechnologies 

(Madison, U.S.A.) 

 

Recombinant plasmids generated within this work are listed in table 3.1.6-2. 

Table 3.1.6-2: Vector-insert constructs produced in the presented study. 

Construct Applied vector Insert 

gem-phal-990 pGEM®-T  990 bp PCR product amplified 

from F. ambigua (template) 

top-phal-700 pCR®2.1-TOPO® 700 bp PCR product amplified 

from fosmid E8 (4.3.4) 

E8-3 pGEM®-T  830 bp long DNA fragment 

produced by sonication 

E8-4 pGEM®-T 940 long DNA fragment 

produced by sonication 

E8-5 pGEM®-T 856 long DNA fragment 

produced by sonication 

E8-6 pGEM®-T 931 long DNA fragment 

produced by sonication 
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Construct Applied vector  Insert 

E8-7 pGEM®-T 913 long DNA fragment 

produced by sonication 

E-8-8             pGEM®-T 928 bp long DNA fragment 

produced by sonication 

E8-F4-M13 pCR®2.1-TOPO®  1017 bp long DNA fragment 

produced by sonication 

E8-F61-M13 pCR®2.1-TOPO® 851 bp long DNA fragment 

produced by sonication 

E8-F62-M13 pCR®2.1-TOPO®  962 bp long DNA fragment 

produced by sonication 

E8-F71-M13 pCR®2.1-TOPO® 1000 bp long DNA fragment 

produced by sonication 

E8-13 pGEM®-T 452 bp long DNA fragment 

produced by sonication 

E8-15 pGEM®-T  999 bp long DNA fragment 

produced by sonication 

E8-17 pGEM®-T 821 bp long DNA fragment 

produced by sonication 

E8-18 pGEM®-T  824 bp long DNA fragment 

produced by sonication  

E8-22 pGEM®-T 1009 bp long DNA fragment 

produced by sonication 

E8-33 pGEM®-T 967 bp long DNA fragment 

produced by sonication 
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Construct Applied vector Insert 

E8-34 pGEM®-T 902 bp long DNA fragment 

produced by sonication 

E8-62 pGEM®-T 911 bp long DNA fragment 

produced by sonication  

E8-69 pGEM®-T  966 bp long DNA fragment 

produced by sonication  

Meo-6 pGEM®-T 966 bp long DNA fragment 

produced by sonication 

FA16S clones: 

FA16S1-T7-4.3 

FA16S2-T7-4.3  

FA16S3-T7-4.3 

FA16S2-T7-27.2 

FA16S4-T7-27.2  

FA16S5-T7-27.2 

 

pGEM®-T 

 

Approx. 1.5 kb long 16S rDNA 

fragments amplified from F. 

ambigua genomic DNA using 

the primers Cyan-16S-fw and 

Cyan-16S-rev [table 3.1.9-1] 

Pstu clones: 

Pstu-1-T7  

Pstu-3-T7 

Pstu-4-T7 

Pstu-5-T7 

Pstu-7-T7 

Pstu-8-T7 

Pstu-9-T7 

 

pGEM®-T  

 

Approx. 1.5 kb long 16S rDNA 

fragments amplified from P. 

stutzeri genomic DNA using 

the primers Cyan-16S-fw and 

Cyan-16S-rev [table 3.1.9-1]  
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3.1.7 Fosmids  

About 2,800 recombinant fosmids were generated, each containing approximately 40 

kb of cyanobacterial recombinant DNA. The fosmid library was established using the 

CopyControl™ Fosmid Library Production Kit (3.1.4). Fosmid E8 listed in table 3.1.7-

1 was analysed in detail within this project (4.4.4). 

Table 3.1.7-1: Fosmid E8 was generated in the presented study and further analysed. 

Fosmid Vector Insert 

   
E8 pCC1FOS™ Vector  ~ 45 kb of F. ambigua DNA 

3.1.8 Phages 

Phages used in this work for packaging of concatemer DNA (3.4.14.6) are presented 

in table 3.1.8-1. 

Table 3.1.8-1: λ-phage applied in this work. 

Phage Type Manufacturer 

MaxPlax™ Lambda Packaging 
Extracts  

λ-phage Epicentre Biotechnologies 
(Madison, U.S.A.)  

3.1.9 Oligonucleotides 

In the presented work, several oligonucleotides were used as PCR primers (3.4.9), 

either specific or degenerate. They were designed from multiple sequence 

alignments (3.1.13). Table 3.1.9-1 shows the primers utilised in this project and the 

corresponding melting temperatures (TM) as stated by the manufacturers. The 

primers were provided as lyophilised powders from Eurofins MWG Operon 

(Ebersberg, Germany) and were dissolved in TE buffer, adjusted to a concentration 

of 100 pmol/µl and stored at -20 °C. In standard PCR reaction mixtures, the primers 

were used at working concentrations of 10-20 pmol/µl. 
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Table 3.1.9-1: Oligonucleotides that were used as primers for PCR reactions. 

Primer    Sequence TM 

   
T7 TAATACGACTCACTATA 53 

SP6 TATTTAGGTGACACTATAG  48 

Epi-RP CTCGTATGTTGTGTGGAATTGTGAGC  63 

M13-fw GTAAAACGACGGCCAG  52 

M13-rev CAGGAAACAGCTATGAC  50 

   

T-Hal fw GAAGCAACCTTCAGTACCATCAAG 63 

T-Hal rev TTCCAGATCCAGCCAGAACTTAAAG 63 

   

C-Hal fw GTCGTTTTGACGTGAGCG 61 

C-Hal rev CAACGATTGATCGAAAATACCTG 60 

   

Chal-rev2 CCAIGCRTTIARCCA 48 

   

Ckons-fw GGT TCT GGT TTA GCT GGG 60 

Ckons-rev AGG AAT GAG CCA GAG CCA 60 

   

T-Neu-fw TAC AAA ACG GCA ATT AAG TTC AGC 58 

T-Neu-rev CTC TGT CAC ACA ACA GTG AGT CAG 63 

   

Cyp-fw GCT ATG CAT ACC TTT GTG 51 

Cyp-rev AGC TGC ATC AAA GAT CC  50 

   

Kina-fw TGA TCA CTC AGC CAT CAG 54 

Kina-rev TCG CAT ATC GTT AGA TAT ACC 54 

   

Cyan-16S-fw TCA GAW YGA ACG CTG GCG G (Fiore 

et al., 2000) 

60 

Cyan-16S-rev AAG GAG GTG ATC CAG CC  (Fiore et al., 

2000)  

55 
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The base abbreviations were used according to the IUPAC nucleotide code listed in 

table 3.1.9-2. Inosine (I) was integrated as a spacer base to reduce the degradation 

rate of primers. 

Table 3.1.9-2: Base abbreviations according to IUPAC.  

IUPAC  

nucleotide code 

 

Base 

 IUPAC  

nucleotide code 

 

Base 

     

A Adenine  W A or T 

C Cytosine  K G or T 

G Guanine  M A or C 

T Thymine  B C or G or T 

U Uracil  D A or G or T 

R A or G  H A or C or T 

Y C or T  V A or C or G 

S G or C  N any base 

3.1.10 Water 

For the preparation of culture media, demineralised water was provided by a reverse 

osmosis system (IMB, Germany). A Milli-Q® Academic Water Purification System 

(Millipore GmbH, Germany) was used to generate ultra-pure water prepared from 

demineralised water. Milli-Q® water was used for all applications, if not specified 

otherwise. For PCR application, autoclaved Milli-Q® water was applied.  
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3.1.11 Culture Media 

Culture media were prepared with demineralised water prior to steam sterilization. 

Their composition was as listed in table 3.1.11-1. 

Table 3.1.11-1: Culture media and their composition as they were used during this project. 

Culture medium Composition 

BG-11 medium (blue green 

medium): 

20 ml of 50 x BG-11 ready stock solution 

(purchased from Sigma-Aldrich Chemie GmbH, 

Karlsruhe, Germany) ad 1 l H2O 

BG-11 agar: 15 g Agar ad 1 l BG-11 medium 

LB-medium (according to 

Luria-Bertani): 

10 g Tryptone, 5 g Yeast extract, 10 g NaCl,  

ad 1 l H2O, pH 7.5 

LB-agar: 10 g Tryptone, 5 g Yeast extract, 5 g NaCl, 15 g  

Agar, ad 1 l H2O, pH 7.5 

 LB-antibiotic-agar: 10 g Tryptone, 5 g Yeast extract, 5 g NaCl, 15 g 

Agar, ad 1 l H2O, pH 7.5 

sterile filtered ampicillin (final concentration of 

100 µg/ml)  or chloramphenicol (final 

concentration of 12.5 µg/ml) was added before 

casting the agar plates 

2 x YT-medium 16 g Tryptone, 10 g Yeast extract, 5 g NaCl,  

ad 1 l H2O, pH 7.5 

3.1.12 Buffers and solutions  

All buffers and solutions were prepared with ultra-pure water [table 3.1.12-1]. Stock 

solutions not containing any organic solvents or thermolabile compenents were 

usually steam sterilised prior to use (3.4.1). 
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Table 3.1.12-1: Buffers and solutions used within this study. 

Buffers for DNA extraction:  

Wash buffer to remove 

polysaccharides (Fiore et al., 

2000) 

50 mM Tris-HCl (pH 8.0), 5 mM EDTA and 50 

mM NaCl 

Resuspension buffer (Fiore et 

al., 2000)  

50 mM Tris-HCl (pH 8.0), 50 mM EDTA  

CTAB extraction buffer (Fiore et 

al., 2000)   

3% (w/v) CTAB, 1% (w/v) Sarkosyl, 20 mM 

EDTA, 1.4 M NaCl, 0.1 M Tris–HCl, pH 8.0, 

1% (v/v) 2-mercaptoethanol 

  

SET buffer (Sambrook & Russell, 

2001) 

75 mM NaCl, 25 mM EDTA, 10 mM Tris-HCl 

(pH 7.5) 

TE buffer 10 mM Tris-HCl (pH 8.0), 1 mM EDTA (pH 

8.0) 

RNase A stock solution (DNase- 

free) 

50 mg lyophilised RNase A, 5 ml Tris-HCl (10 

mM, pH 7.5), 15 mM NaCl, and storage at     

–20 °C 

Buffer G2 800 mM Guanidine-HCl, 30 mM Tris-HCl (pH 

8.0), 30 mM EDTA (pH 8.0), 5 % Tween-20; 

0.5 % Triton X-100  

Buffers for library construction: 

Phage dilution buffer (PDB) 10 mM Tris-HCl (pH 8.3), 100 mM NaCl, 10 

mM MgCl2 
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Buffers for plasmid and fosmid purification: 

Buffer P1 50 mM Tris-HCl (pH 8), 10 mM EDTA, 100 

µg/mL RNase A 

Buffer P2 200 mM NaOH, 1% SDS 

Buffer P3 3M potassium acetate (pH 5.5) 

Buffer QBT (Equilibration buffer) 750 mM NaCl, 50 mM MOPS (pH 7.0), 

including 15 % isopropanol and 15 ml of 10% 

Triton X-100 solution (v/v)  

Buffer QC (Wash buffer) 1 M NaCl, 50 mM MOPS (pH 7.0) including 

15 % isopropanol  

 

Buffer QF (Elution Buffer) 1.25 M NaCl, 50 mM Tris (pH 8.5) including 

15 % isopropanol  

 

Buffers QBT, QC and QF were supplied with the QIAGEN Plasmid Midi Kit and the 

QIAGEN Blood & Cell Culture DNA Mini Kit (3.1.4). They were used for equilibration 

(QBT) and washing (QC) of the provided DNA purification columns as well as for the 

elution of purified DNA (QF). The procedure was carried out following the 

manufacturer’s protocol.  

Buffers for gel electrophoresis: 

10 x TBE buffer  0.89 M Tris base, 0.02 M EDTA, 0.87 M 

H3BO3, purified water ad 1000 ml  

Modified 50 x TAE buffer 

(according to Millipore protocol; 

3.4.14.2) 

2 M Tris-acetate, 50 mM EDTA (pH 8) 

6 x Gel loading buffer (Sambrook 

& Russell, 2001) 

Sucrose 40 g, bromophenol blue 0.25 g, 

purified water  ad 100 ml. (400-500 bp) 
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3.1.13 Software and Databases 

Basic Local Alignment Search Tool (BLAST) is provided by the National Center for 

Biotechnology Information (NCBI) [http://www.ncbi.nlm.nih.gov/pubmed]. This 

software was applied to analyse obtained nucleotide data for sequence similarities 

using blastx (nucleotide sequence is translated and compared to the amino acid 

sequences database). In order to analyse 16S rDNA, the database was searched 

using blastn (nucleotide query vs. nucleotide databases) 

Entrez Nucleotide Database is maintained by the National Center for Biotechnology 

Information (NCBI) [http://www.ncbi.nlm.nih.gov/gene]. This source is linked to 

numerous databases, e.g. GenBank, NCBI Reference Sequences (RefSeq), and the 

Protein Data Bank of the Research Collaboratory for Structural Bioinformatics (RCSB 

PDB). Therefore, it lends itself for detailed analysis of nucleotide and amino acid 

sequences and putative anticipation on their possible functions in secondary 

metabolites biosynthesis. 

ClustalW2 sequence analysis tool version 2.1 is provided by the European 

Bioinformatics Institute (EBI), (EMBL) [http://www.ebi.ac.uk/Tools/clustalw]. This tool 

was used to generate multiple sequence alignments based on the Nucleotide 

Sequence Database, part of the European Molecular Biology Laboratory (EMBL). 

DNASTAR Lasergene 8: This software was purchased from DNASTAR, Inc. 

(Madison, U.S.A.). It includes several sequence analysis tools, e.g. SeqMan Pro, 

GeneQuest, MegAlign, and PrimerSelect. In particular SeqMan Pro was extensively 

used to analyse fosmid assembly files. 

CLUSEAN (CLUster SEquence ANalyzer): This software enables fast access to 

sequence data from established databases like BLAST and HMMER (Weber et al., 

2009). It can be used to identify functional domains and conserved motifs in a given 

nucleotide or amino acid sequence. Furthermore, the software allowed searching 

whole genome assembly files as well as assembled contigs of the 454 sequencing of 

Fischerella ambigua. 

Kodak 1D software version 3.5.4 and iX Imager software: These programs were 

provided together with the respective gel documentation system (Kodak Scientific 

Imaging Systems and Intas Gel iX imager) and were applied to edit digital photos of 

electrophoresis gels. 
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3.2 Cultivation of cyanobacterial organism 

3.2.1 Origin of cyanobacterial Fischerella ambigua 

F. ambigua (Näg.) Gomont, designated strain number 108b, was obtained from the 

Culture Collection of Algae of the Swiss Federal Institute for Water Resources and 

Water Pollution Control (EAWAG), Dübendorf, Switzerland. This cyanobacterium was 

originally isolated from a shallow hollow in Mellingen, Kanton Aargau, Switzerland, in 

1965.  

3.2.2 Small-scale cultivation for DNA isolation 

In order to obtain fresh cyanobacterial cells for DNA extraction, 10-20 300 ml flasks, 

each containing 100 ml BG-11 medium, were inoculated with 1 ml of a 21-day-old 

preculture and grown under gentle shaking at 120 rpm and constant cool white 

illumination at 25 °C. Cyanobacterial cells were harvested in late exponential phase 

(usually 21 days) for isolation of genomic DNA.    

3.2.3 Large-scale cultivation for analytical purposes  

F. ambigua was routinely cultivated in a 25 l glass-tube photobioreactor (Planctotec, 

Type: Pluto) for possible feeding experiments, but cultures were also used for DNA 

extraction. The photobioreactor was successively filled with BG-11 medium and the 

culture was grown at 25 °C under constant irradiation with white fluorescent light 

(Osram lamps L 58W/25) and aeration by sterile filtered ventilation. Biomass was 

harvested after 3-4 weeks by continuous flow centrifugation using the Heraeus 

Contifuge Stratos (3.1.1). The obtained cell material was stored at -20 °C while 

cultivation was continued by replenishing the remaining culture with fresh 

BG-11 medium. 

3.3 Obtaining axenic cyanobacterial cultures 

In order to remove heterotrophic contaminants from the cyanobacterial cultures, 

different attempts have been made using phototaxis, resistence to lysozyme (3.1.2) 

and antibiotic selection as well as resistence to UV light. 
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3.3.1 Phototaxis experiments 

Gliding cyanobacteria like F. ambigua show phototactic migration in response to light 

(Moon et al., 2004). This behaviour was expected to allow a light-dependent 

separation from an associated heterotrophic P. stutzeri strain present in the 

cyanobacterial cultures. One half of an agar plate containing solid BG-11 medium 

was wrapped up with alu foil. At the shielded half of the plate, a spheric 

cyanobacterial colony was placed. The illuminant was adjusted to shine on the 

second half of the agar plate while being locatable for the cyanobacterial cells. 

Incubation was then performed for 2 weeks. 

3.3.2 UV treatment of cyanobacterial colonies 

Due to their production of photoprotective UV-absorbers (Ehling-Schulz et al., 1997), 

F. ambigua was also tried to be separated from the P. stutzeri strain using well-dosed 

UV light. For this purpose, a cyanobacterial colony was dispersed on a petri dish that 

should consist of translucent quartz glass. The petri dish is completely surrounded by 

alu foil sheets for effective light reflexion leaving an aperture at the top for the light 

source. The whole procedure was carried out within a laminar air flow clean bench 

[table 3.1.1-2] using an integrated UV lamp. The culture was exposed to UV light for 

30-60 min. 

3.3.3 Cyanobacterial resistence to lysozyme 

During DNA extraction experiments (3.4.2), it was observed that F. ambigua showed 

resistence to the sole exposition to lysozyme (3.1.2) in a final concentration of 

1mg/ml. Based on this observation, it was tried to cultivate the cyanobacterial cells in 

BG-11 medium containing lysozyme at 100 µg/ml and 1 mg/ml. The cultures were 

grown as described in 3.2.2.  

3.3.4 Antibiotic selection with ampicillin 

Due to their slow growth rate, i.e. cell division rate, cyanobacteria can be treated 

overnight with cell wall antibiotics (β-Lactam antibiotics) without being significantly 

affected. By contrary, accompanying strains like Pseudomonas sp. have a high 

growth rate when cultured overnight at 37 °C in nutrient media. One spheric 

cyanobacterial colony was placed in a 1.5 ml Eppendorf cap and dispersed in 500 µl 
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steam sterilised Milli-Q® water (table 3.1.1-2). The cell suspension was then added to 

a glass tube containing 5 ml liquid LB medium supplemented with 500 µg/ml 

ampicillin. The culture was incubated overnight at 37 °C while shaking at 180 rpm. 

The next day, the cyanobacterial cells were recovered by centrifugation at 13,000 

rpm for 5 min, resuspended in 100 ml BG-11 medium and grown at 25 °C with 

shaking at 120 rpm. 

3.4  Molecular biological methods 

Molecular biological methods were conducted with the aim to identify halogenase 

nucleotide sequences and flanking genes, which may be involved in the biosynthesis 

of ambigols and tjipanazole D.  

3.4.1 Sterilization of solutions and equipment 

For elimination of potential foreign organisms, i.e. contaminations, all solutions, 

buffers and media that were not heat sensitive, were autoclaved at 121 °C and 2 bar 

for 20 min in a Varioklav® steam steriliser (table 3.1.1-2). Solutions of heat sensitive 

components were sterilised by filtration through 0.22 µm membrane filters (table 

3.1.1-2). 

Steam heat sterilization was also applied for decontamination of glass and plastic 

ware as well as for inactivation of genetically modified organisms. 

3.4.2 Isolation of chromosomal DNA from F. ambigua 

For DNA extraction from F. ambigua, two different protocols were tested for their 

effectiveness. Cell material was obtained from both, fresh grow cultures and from 

deep-frozen cell pellets. All incubation steps mentioned below were performed under 

constant gentle shaking. Centrifugation of probes up to 2 ml was carried out using 

the Heraeus Biofuge fresco or the Eppendorf Centrifuge 5415 D. For centrifugation of 

bigger volumes up to 50 ml, the Heraeus Contifuge Stratos was utilised [table 3.1.1-

2]. 
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3.4.2.1 DNA extraction with CTAB containing extraction buffer (Method A) 

Buffers used in this protocol were prepared according to Fiore et al. (2000). 1-2 g of 

filamentous conglomerated cyanobacterial cells were pelleted (8,500 rpm for 5 min) 

and resuspended in 5 ml wash buffer (3.1.12) in a 50 ml collection tube. In order to 

rupture aggregated colonies and seperate filaments, the cell suspension was 

exposed to sonic shock for 10 min. After centrifugation at 8,500 rpm for again 5 min, 

the washing procedure was repeated twice. Cell pellets were then resuspended in 5 

ml of resuspension buffer (3.1.12). 15 ml CTAB extraction buffer (3.1.12) were added 

and the tube was gently inverted for several times. The suspension was incubated at 

55°C in a water bath for 1 hour and mixed every 10 min. After cooling down to room 

temperature, extraction with an equal volume of chloroform:isoamylalcohol (24:1) 

was performed several times until the interface layer was clear. Subsequently, 

centrifugation was carried out at 12,000 rpm for 30 min at 25°C to allow phase 

separation. The aquos phase (ca. 20 ml) was splitted into two 50 ml tubes followed 

by addition of 0.1 volumes (1 ml) Natrium acetate and 2.5 volumes (25 ml) of ice-cold 

ethanol. Subsequently, the tubes were centrifuged at 8,500 rpm for 1 h at 4°C or at 

room temperature to precipitate the nucleic acids. The supernatant was discarded 

and the derived pellets were washed twice with ethanol 70%. Air dried pellets were 

resuspended in 100 µl ultra purified water or TE buffer (3.1.12). 

3.4.2.2 DNA extraction using SDS containing extraction buffer (Method B) 

1 g of cyanobacterial cells were harvested by centrifugation (8,500 rpm, 10 min) after 

2-3 weeks of growth at 25 °C, vigorous shaking at 120 rpm and constant illumination. 

The pelleted cells were washed three times with sterile, ultra purified water (Milli-Q® 

water) (3.1.10)  and centrifuged at 8,500 rpm for 5 min. Cells were resuspended in 20 

ml SET buffer (3.1.12) and the suspension was decanted into a Potter homogenisator 

(3.1.1) for filament breakage and cell separation. In order to remove or at least 

reduce associated organisms, the homogenised and washed cell suspension was 

treated with lysozyme (3.1.2) in a final concentration of 1mg/ml and incubation for 30 

min at 55 °C prior to DNA extraction. Cyanobacterial cells were then washed and 

vortexed three times with Milli-Q® water (3.1.10) including necessary centrifugation 

steps, each performed for 5 min at 13,000 rpm. This step was integrated to remove 

released DNA of associated contaminants. The washed cyanobacterial cells were 

pelleted by centrifugation at 13,000 rpm for 2 min and resuspended in 20 ml SET 
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buffer. The following components were added in the given final concentrations: SDS 

0,5 %,  Proteinase K  500 µg/ml  and lysozyme 2,5 mg/ml. The cell suspension was 

incubated at 55 °C for 2 h. Subsequently, an extraction with one volume of 

Phenol:Chloroform:Isoamyl alcohol (PCI; 25:24:1) was performed in a 50 ml tube by 

centrifugation at 8,500 rpm for 30 min. This step was repeated until no precipitated 

proteins could be found between the upper aqueous and the lower organic phase. 

The supernatant was then pipetted in a new 50 ml tube and 2.5 volumes of ice cold 

ethanol and 0.1 volume of 3 M sodium acetate were added, followed by a 

centrifugation step at 8,500 rpm for 1 hour at 4 °C. The derived pellet was washed 

twice with ethanol 70%. Air dried pellets were resuspended in 100 µl ultra purified 

water or TE buffer (3.1.12). Alternatively, the aqeous supernatant from the PCI 

extraction was purified using the QIAGEN Genomic-tips, which were supplied with 

QIAGEN Blood & Cell Culture DNA Mini Kit (3.1.4). In this case, the DNA solution 

was purified based on the manufacturer’s instruction manual.  

3.4.3 Isolation of genomic DNA from the associated Pseudomonas sp. 

Aerobic heterotrophic bacteria were isolated by inoculation of 3 ml LB medium with a 

cyanobacterial spheric colony followed by incubation at 37 °C and shaking at 160 

rpm overnight under light exclusion. 2 ml of the supernatant containing cultured 

heterotrophs were pipetted into a sterile 2 ml Eppendorf cap and centrifuged for 5 

min at 13,000 rpm. The cell pellet was resuspended in 5 ml of SET-buffer, followed 

by addition of 500 µl SDS-solution (10 %), 275 µl Proteinase K solution (20mg/ml) 

and 500 µl lysozyme solution (40mg/ml) (Sambrook & Russell, 2001). The mixture 

was incubated at 55 °C for 30 min. Subsequently, an extraction with one volume of 

PCI (25:24:1) was performed in a 15 ml tube by centrifugation at 8,500 rpm for 30 

min. This step was repeated until no precipitated proteins could be found between 

the upper aqueous and the lower organic phase. The genomic DNA was precipitated 

from the supernatant according to 3.4.4. RNase (3.1.2) was added in a final 

concentration of 20 µg/ml, to remove RNA from the DNA solution.  

3.4.4 DNA precipitation 

As a first step to recover nucleic acids from aqueous solutions, the ion concentration 

was adjusted by addition of 0.1 volume of 3 M sodium acetate (pH 5.2). For 
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precipitation of nucleic acids, two volumes of ice cold ethanol (99,8% p.a.) were 

added prior to centrifugation, which was performed at 4 °C or at room temperature for 

30 min. The supernatant was discarded and the derived pellet was washed twice with 

70 % ethanol, to remove potential remains of salts. After another centrifugation step 

at 4 °C or at room temperature for 15 min, the pellet was air dried at 37 °C until all 

ethanol residues were evaporated. Rehydration of the nucleic acids was 

accomplished in TE-buffer pH 8 or Milli-Q® water (3.1.10; 3.1.12) 

3.4.5 Determination of nucleic acid concentration and purity of DNA 

To quantify obtained nucleic acids and determine the quality of DNA solutions, the 

OD was measured at the wavelengths 260 nm (A260) and 280 nm (A280) using a 

UV/VIS spectrophotometer (table 3.1.1-2). The OD value at 260 nm (A260) refers to 

the amount of DNA or RNA in the solutions to be quantified. The Lambert-Beer law 

describes the linear relation between the concentration of an absorbing material and 

its light absorption at a given wavelength. This linear correlation is only valid for 

absorption values between 0.1 and 1.5. Therefore, highly concentrated DNA 

solutions had to be diluted to an appropriate measurable concentration. The true 

concentration of the original nucleotide solution was then extrapolated by including 

the dilution factor (DF) in calculations. The absorption coefficient is a material-

dependent parameter that describes the specific absorption of the respective 

material. For solutions containing double stranded DNA, an average extinction 

coefficient of 50 (µg/ml)-1 cm-1 was applied (Sambrook & Russell, 2001). The 

concentration of nucleic acids was calculated according to the following equation: 

conc. nucleic acid= DF x A260 x 50 µg/ml 

Aromatic amino acids of proteins show significant absorption at 280 nm and therefore 

the ratio of A260/A280 is a common value to specify the purity of a DNA solution. A 

ratio value of 2.00 indicates 100 % nucleic acids and 0 % proteins. A260/A280 values 

between 1.8 and 2 are favorable for DNA used in downstream applications. 

3.4.6 16S rDNA analysis 

A standard PCR reaction (3.4.9.2) was performed on isolated DNA applying the two 

primers Cyan-16S-fw and Cyan-16S-rev (3.1.9) (Fiore et al., 2000). The obtained 
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PCR product at approximately 1,500 bp was excised from an agarose gel and 

purified using the QIAquick Gel Extraction Kit (3.1.4). Subsequently, the purified 

amplificate was ligated into the pGEMT®-vector (3.4.9.3) for sequencing with the T7-

primer (3.4.9.5).  

3.4.7 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to survey DNA manipulations such as 

preparative DNA isolation, restriction digests or PCR amplification. Standard gels 

were prepared by dissolving 1 % peqGOLD Agarose in 1 x TBE buffer [table 3.1.1-1] 

(3.1.12). Small gels were usually run in a Life Technologies Horizon® 58 chamber 

[table 3.1.1-2] for 40 min at a voltage of 120 V. Nucleic acid probes were mixed with 

gel loading dye before they were filled into the slots. DNA standards were applied to 

each gel for size estimation. To reduce ethidium bromide contamination in the 

laboratory, gels were stained subsequently to the separation run by immersing them 

in 100 ml ethidium bromide solution (10 mg/ml) for 5-10 min. This was followed by a 

washing step in water for another 5-10 min. The ethidium bromide solution was 

saved to be reused several times. Nucleic acids with intercalated ethidium bromide 

could be visualised by UV illumintion at 254 nm. Gels were digitally pictured using the 

Kodak DC 290 Zoom Digital Camera System, or alternatively the Intas Gel iX Imager 

[table 3.1.1-2]. Short-wave UV light exposure should be kept to a minimum, since it 

may cause photochemical damage of the DNA, which could affect downstream 

applications, in particular DNA sequencing.  

3.4.8 Recovery of DNA from agarose gels  

For cloning procedures (3.4.9.3), stained PCR fragments of interest were directly cut 

out from electrophoresis-gels and purified using the QIAquick gel extraction kit 

following the manufacturer’s protocol. Purified PCR amplificates were usually cloned 

in sequencing vectors (pGEMT® or pCR®2.1-TOPO®) to analyse their nucleotide 

sequences by BLAST (3.1.13).  

3.4.9 Polymerase chain reaction  

In contrast to in vivo amplification of DNA inside host cells (3.4.12), for instance by 

cloning techniques, high yield propagation of specific DNA-sections with a moderate 
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size is often accomplished in vitro by polymerase chain reaction (PCR). This reaction 

requires the knowledge of flanking regions of the sequence to be amplified. 

Oligonucleotide primers with a length of typically 18-22 bp are complementary to 

these two opposite ends of the desired region. In a repititive manner, denaturation, 

annealing and elongation are carried out in usually up to 30 cycles. In the 

denaturation step, double stranded DNA is melted by heating. In this state, the single 

stranded DNA is ready for primer annealing and nucleic acid elongation, which is 

mediated by a Taq polymerase (3.1.2). This procedure enables exponential in vitro 

reproduction of a DNA-section between two primer annealing sites, and therefore is 

the method of choice for rapid amplification of nucleic acid fragments. Within this 

work, PCR was performed applying a T3 or a T-gradient thermocycler [table 3.1.1-2] 

according to the parameters and protocols described in sections 3.4.9.1and 3.4.9.2. 

3.4.9.1 PCR parameters 

For PCR amplification of template DNA, PCR-buffers supplied with the GoTaq® Flexi 

DNA Polymerase (3.1.2) were used to achieve optimal reaction conditions. To ensure 

hybridisation of PCR-primers with their complementary sequence after denaturation, 

the temperature was adjusted to the calculated annealing temperatures of the 

primers. Elongation by Taq-polymerase was accomplished at 72 °C, whereby the 

required elongation time was estimated from the length of the target region (about 

1 min/kb). For DNA-extension, the polymerase recognises the primers annealed to 

the DNA-template and starts elongation in 3’-direction using dNTPs provided in the 

reaction mixture. 

Fine tuning of PCR amplifications is depending on the MgCl2 concentration, which 

affects polymerase activity and furthermore relies on specific hybridisation of the 

primers to the DNA-template. Primer annealing occurs with less specifity at lower 

temperatures, which was beneficial when using homologous, degenerate primers 

designed from sequence alignments (3.1.13). Optimisation of the procedure was 

achieved for each PCR by adjusting the annealing temperature as well as the MgCl2 

concentration. Self-complementarity of template DNA is usually less likely due to 

molar excess of oligonucleotides. Despite that, additives like DMSO are useful when 

working with GC-rich templates avoiding the formation of secondary structures in the 

polynucleotide molecules (Hung et al., 1990).  
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3.4.9.2 PCR protocol 

A standard PCR reaction mixture was composed as follows: 

components  volume final concentration 

5x Tag-Puffer 
(MgCl2 contained) 

(7.5 mM) 4.0 µl 1.5 mM 

extra MgCl2  (25 mM) 0 / 1.2 / 2.4 µl 1.5 / 3.0 / 4.5 mM 

dNTP (each 10 mM) 0.4 µl each 0.2 mM 

Tag-Polymerase  (5 unit/µl) 0.2 µl 0.05 unit/µl 

Forward-Primer  (20 µM) 1.0 µl 1 µM 

Reverse-Primer  (20 µM) 1.0 µl 1 µM 

DMSO  1.0 µl 0.5 % 

Template  1.0 µl  

H2O  ad 20.0 µl  

 

The typical PCR thermocycling was performed as described below: 

  temperature time 

1. initial denaturation step 95 °C 5 min 

2. primer annealing 45 - 60 °C 0.5 min 

3. elongation 72 °C 1 - 1.5 min 

4. denaturation 95 °C 0.5 min 

5. final primer annealing 45 - 60 °C 0.5 min 

6. final elongation 72 °C 4 min 

7. end  4 °C hold 

 

Steps 2 to 4 were repeated in a loop for 30 times before proceeding with step 5. 

Annealing temperatures were estimated from the lower Tm-value (3.1.9) of the two 

used primers. 

3.4.9.3 Ligation of PCR Products  

PCR fragments produced by Taq-polymerases had a 3’-poly-A nucleotide overhang. 

Some customary cloning kits, like the pGEM®-T Vector System I and the TOPO TA 
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Cloning® kit (3.1.4) provide vectors, which are compatible to PCR products 

synthesised by Taq polymerases. These cloning kits were utilised to directly ligate 

PCR fragments extracted from electrophoresis gels. A vector to insert ratio of 3:1 was 

favored in a total volume of 10 µl. Usually, an incubation time of 2 h at room 

temperature was sufficient before proceeding with the transformation step. The 

following general pipetting scheme was applied for standard ligations: 

Component pGEM®-T Vector System I  TOPO TA Cloning®  

Buffer  5 µl (2 x Rapid Ligation 

Buffer, T4 DNA Ligase) 

 1 µl Salt Solution   

Vector 1 µl (pGEM®-T)  1 µl pCR®2.1-TOPO® 

PCR product 3 µl   0.5-3 µl  

Ligase 1 µl T4 DNA Ligase  1 µl T4 DNA Ligase  

Nuclease-free water ad 10 µl   ad 6 µl 

3.4.9.4 PCR with sequencing primers  

To check the plasmids for correct integration of inserts, PCR reactions (3.4.9.2) were 

performed using the appropriate sequencing primers. The M13-fw/M13-rev primer 

pair was used for the pCR®2.1-TOPO® vector. For pGEM®-T vector, the T7/SP6 

combination was applied. 

3.4.9.5 Sequencing of vector-insert constructs  

To characterise and verify the gene fragments inserted in PCR vectors or fosmids 

(3.1.9), the nucleic acid sequence had to be determined. Sequencing was performed 

by GATC Biotech AG (Konstanz, Germany) according to the chain termination 

method invented by Sanger et al. (1977). In this PCR based procedure, a single 

primer anneals to a single stranded DNA template next to the sequence of interest. 

Either standard vector sequence-specific primers (3.4.9.4) were used, or alternatively 

oligonucleotides designed from the insert sequence were applied for sequencing. 

Fluorescently labeled chain-terminating nucleotides (ddNTPs), which are included in 
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the PCR reaction, lack a 3'-OH group, which is necessary for phosphodiester bond 

formation, i.e. for chain elongation.  Through occasional incorporation of these 

nucleotides, chain elongation is terminated. During the thermocycling procedure, 

PCR amplificates of any length are produced and are separable by capillary gel 

electrophoresis. Thereby, each fragment that reaches the detector has been 

extended by exactly one nucleotide (Metzker, 2010; Sanger et al., 1977). PCR 

probes for sequencing were usually delivered as cloned fragments in suitable 

plasmid vectors (3.4.9.3). For end sequencing of fosmid E8, the T7 primer served as 

a forward primer to sequence in 5’3’-direction, whereas Epi-RP was applied as a 

reverse primer for sequencing in 3’5’-direction.  

3.4.10 Restriction digestion  

Endonucleases were applied during this study to achieve specific fragmentation of 

double stranded nucleic acids. These enzymes originally belong to the bacterial 

repertoire of defense mechanisms. They recognise certain DNA sequences, which 

are mostly palindromes enabling a cleavage of phosphodiester bonds at these 

specific restriction sites. Because of their palindromic nature, cleavage sites may 

have an increased chance of reassociation, which is an important advantage for 

cloning procedures, i.e. ligation of inserts into vectors, because different orientations 

for the reannealing of two restriction fragments are possible. Most of the restriction 

endonucleases employed in this work produce sticky ends, while SmaI for example 

generates blunt ends. However, ligation reactions are more reliable when carried out 

with sticky ended restriction fragments. 

For optimal conditions, the buffers provided with the restriction enzymes were 

included in the reaction mixtures. The duration of the restriction digest was 

depending on the nature and quality of template DNA as well as on the type of 

restriction enzyme applied. Generally, a reaction mixture included 10 units of enzyme 

per µg DNA in a total volume of 20 µl and was incubated overnight at 37 °C.  
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3.4.11 Preparation of cells competent for DNA-transformation  

In this work, E. coli strain XL-1 Blue (Stratagene, La Jolla, CA, USA) (3.1.5) with the 

following genotype was used for general cloning: 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB lacIqZΔM15 Tn10 

(Tetr)]. 

For the production of chemically competent cells, an overnight preculture was 

prepared by inoculating 3 ml LB-medium with a single E. coli colony followed by 

incubation at 37 °C with constant shaking at 180 rpm. This preculture was transferred 

into an Erlenmeyer flask containing 70 ml of 2 x YT-medium. The mixture was again 

grown at 37 °C and shaking at 180 rpm until an OD600 of 0.3-0.4 was reached. At this 

point the cells were harvested by centrifugation for 10 min at 8,000 rpm and 4 °C 

(Heraeus Contifuge Stratos) [table 3.1.1-2]. To make the cells transformable, they 

were treated with ice cold CaCl2/MgSO4-solution (70 mM CaCl2/20 mM MgSO4) twice 

after resuspension. The first treatment was performed with 10 ml and the second one 

with 3.5 ml of the CaCl2/MgSO4-solution. Each time, the cell suspension was kept on 

ice for 30 min. It was possible to store the competent E. coli cells deep-frozen for 

later use without discernible loss of quality. After addition of 875 µl steam sterilised 

glycerol, the cell suspension was aliquoted to 100 µl probes for storage at -80 °C.   

3.4.12 Transformation of host strains  

In vivo amplification of DNA sequences was accomplished by introducing the insert-

containing vector to competent E. coli XL1-Blue cells (3.1.5) for multiplication of the 

vector construct. An aliquot of competent cells (3.4.11) was thawed on ice and 5 µl of 

the ligation mixture (3.4.9.3) was added. After incubation on ice for 30 min, the probe 

was heat-shocked for 1.5 min at 42 °C to enable DNA uptake. In order to ensure that 

the delivered plasmid DNA was kept inside the E. coli transformants, the cell 

suspension was again placed on ice for 2 min. To initiate cell growth, 600 µl of sterile 

2 x YT-medium were added and a following incubation was carried out for 1 h at 

37 °C using the Thermomixer Eppendorf [table 3.1.1-2]. Depending on the applied 

vector, an antibiotic selection was performed by spreading 300 µl of this preculture 

on LB agar plates, which were supplemented with an appropriate antibiotic. The 

plates were incubated overnight at 37 °C using an incubator (3.1.1). Subsequently to 

plasmid isolation (3.4.13), the insert was confirmed by PCR (3.4.9.4).  
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3.4.13 Plasmid isolation from transformed E. coli  

The vector construct was isolated from transformed E. coli cells (3.4.12) using the 

GeneJET™ Plasmid Miniprep Kit (3.1.4). For the isolation of plasmid DNA from PCR 

positive clones, cultures in a scale of 3 ml were sufficient. After inoculation of LB-

medium supplemented with an appropriate antibiotic, the culture was grown overnight 

in a glass tube at 37 °C under constant shaking at 180 rpm. Cells were then 

harvested by centrifugation at 13,000 rpm for 2 min in 1.5 ml tubes (3.1.1). 

Subsequently, the pellets were resuspended in buffer 1 (3.1.12) by vigorous 

vortexing applying the MS2 Minishaker [table 3.1.1-2]. Cell lysis was achieved by 

addition of buffer 2 (3.1.12), followed by incubation for not more than 2 min while 

gently inverting the tube several times. After addition of the neutralization solution 

(buffer 3) (3.1.12), precipitated proteins and non-circular DNA were pelletted by 

centrifugation at 13,000 rpm for 15 min. The supernatant was purified with supplied 

columns following the manufacturer’s instructions. 

3.4.14 Methods for the establishment of a genomic library 

3.4.14.1 LMP agarose gel electrophoresis 

For preparative gel extraction of high molecular genomic DNA, peqGOLD Low Melt 

Agarose was applied. According to the manufacturer’s manual, gels were prepared 

with TAE electrophoresis buffer. For separation of 35-40 kb of DNA, a 0.9 % TAE 

LMP agarose gel was chosen. The 50 x TAE stock solution was diluted to 1 x 

concentration. 1.8 g of LMP agarose was suspended in 200 ml of 1 x TAE buffer 

using a magnetic stirrer [table 3.1.1-2]. The suspension was weighed and 

subsequently heated to ebullition using a microwave until the agarose was 

completely dissolved. Afterwards, the solution was weighed and boiling losses were 

supplemented by adding distilled water. The LMP agarose solution was allowed to 

cool for 20 min to a temperature of about 50 °C. In a Horizon® 11.14 chamber, the 

LMP gel was casted and cooled at 4 °C for 1 hour to achieve optimal consistence. 

The nucleic acid solution was mixed with gel loading dye [table 3.1.1-1] and pipetted 

into the gel slots. For size estimation, the GeneRuler™ DNA Ladder Mix (3.1.3) and 

the 36 kb Control DNA supplied with the CopyControl™ Fosmid Library Production 

Kit (3.1.4) was used. In a first turn, the gel was run for 10 min at 100 V to assure that 

http://www.dict.cc/englisch-deutsch/magnetic.html
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the DNA was transferred to the gel matrix. Subsequently, the voltage was lowered to 

15-30 V and the gel electrophoresis was carried out overnight. For preparative 

isolation of the desired band, only lanes, which contain marker DNA were stained 

with ethidium bromide, in order to prevent damages to the genomic DNA by 

intercalation. 

3.4.14.2 DNA extraction from LMP agarose  

For purification of DNA from LMP agaose, a modified protocol provided by Millipore 

(Millipore GmbH, Schwalbuch) allowed the application of protein purification columns 

(Amicon Ultra Centrifugal Filters 100K) [table 3.1.1-2] for DNA extraction from LMP 

agarose.  Guided by the stained band of the Fosmid Control DNA (3.4.14.1), the 

desired band of about 36 kb had to be excised from the gel using a clean scalpel. To 

minimise UV light exposure to the band of interest, the latter was masked with a 

sheet of alu foil. Cut out gel slices were molten at 70 °C for 15 min and the 

temperature was subsequently equilibrated to 42 °C for additional 10 min. According 

to the manufacturer’s protocol, 1 unit of Agarase (3.1.2) was added per 100 mg 

(approximately 100 μl) of molten LMP agarose. After repeated pipetting, the mixture 

was incubated in a water bath at 42 °C for 30 min. In order to remove undigested gel 

remnants, ammonium acetate was added to a final concentration of 2.5 M and the 

solution was chilled on ice for 10 min. This was followed by centrifugation at 12,000 

rpm for 10 min. 90 % of the supernatant was pipetted in a new, sterile 2 ml Eppendorf 

tube for further purification steps. Up to 200 µl of digested agarose were pipetted into 

an Amicon Ultra Centrifugal Filter with a pore size retaining molecules of about 

100kDa. The volume was filled up to 500 µl with 20 % isopropanol. A subsequent 

centrifugation was performed at 2,500 rpm for 14 min. This step was repeated until 

the whole DNA solution had passed the filter unit. A washing step using 450 µl of TE 

or Milli-Q® water was followed by another centrifugation step at 2,500 rpm. Finally, 

the purified and concentrated DNA solution could be removed from the vial by 

pipetting. 

3.4.14.3 End-repair of size selected DNA 

For cloning into the pCC1FOS vector (3.1.6), genomic DNA with a size of 35-40 kb 

had to undergo an end-repair for generating blunt ends. For this purpose the Quick 
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Blunting Kit (3.1.4) was used according to the manufacturer’s protocol. A standard 

reaction mixture contained the following components: 

Purified DNA (up to 5 µg) 1-19 µl 

10 x Blunting Buffer 2.5 µl 

1 mM dNTP Mix 2.5 µl 

Blunt Enzyme Mix 1.0 µl 

Sterile distilled water ad 25 µl   

 

Since the DNA fragments were sheared during DNA extraction, an incubation time of 

30 min at room temperature was chosen following the manufacturer’s 

recommendations. Subsequently, the enzyme mix was inactivated by heating  for 10 

min at 70 °. The reaction mixture containing the blunt end DNA could be directly used 

for ligation into the pCC1FOS fosmid vector. 

3.4.14.4 Ligation of end-repaired DNA into the pCC1Fos vector 

For the construction of a genomic library, the CopyControl™ Fosmid Library 

Production Kit (3.1.4) was applied with special regard to the manufacturer’s 

instructions. For blunt end ligation, the molar ratio of the cloning vector to the desired 

insert DNA has to be taken into account, whereby a 10:1 molar ratio of the 

CopyControl™ pCC1FOS vector (3.1.6) to insert DNA is recommended.   

A 10 µl reaction volume was pipetted in a 0.5 ml Eppendorf tube according to the 

following scheme: 

concentrated insert DNA (~ 0.25 mg of approx. 40 Kb DNA)  6 µl 

10 x Fast-Link Ligation Buffer 1 µl 

10 mM ATP 1 µl 

CopyControl pCC1FOS vector (0.5 mg/ml) 1 µl 

Fast-Link DNA Ligase 1 µl  

 

The reaction mixture may be scaled-up, if the ligation effectiveness is limited due to 

low quality of insert DNA. To calculate the number of clones (N) necessary to cover 
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the whole F. ambigua genome by 40 kb fragments with a given probability (P), the 

following equation was applied: 

 

N = ln (1-P ) / ln (1-f )  P= 99.9 % 

N = ln (1-0.99) / ln (1-0.0073) = 630 f = 40 kb/5.5 x 103 kb = 0.0073 

N = ln (1-0.99) / ln (1-0.0053) = 865 f = 40 kb/7.5 x 103 kb = 0.0053 

 

In this formula, f is the proportion of the genome present in one clone (Clarke & 

Carbon, 1976). The size of cyanobacterial genomes can vary from 5.5 to 7.5 Mb 

(Herdman et al., 1979), and therefore the number of required clones was estimated 

to lie between 630 and 865 clones. Based on empirical experiences, this value was 

tripled, and thus 2,600 clones would be necessary to represent the whole F. ambigua 

genome. According to manufacturer’s data, a single ligation reaction is imputed to 

produce 103 - 106 clones. Therefore, only one reaction mixture was set up for ligation. 

The mixture was incubated for 2 hours at room temperature or overnight at 4 °C. 

Subsequently, the Fast-Link™ DNA Ligase was inactivated for 10 min at 70 °C. The 

concatemer formation during ligation is essential for the following lambda packaging 

step into phage coats (3.4.14.6).   

3.4.14.5 Preparation of EPI300-T1R competent E. coli cells 

As a preparation step, the E.coli strain, which was supplied as a glycerol stock 

solution was plated on LB agar plates, which did not contain an antibiotic. The 

colonies were grown overnight at 37 °C in an incubator [table 3.1.1-2]. For a 

preculture, an Erlenmeyer flask was prepared containing 5 ml of sterile 100 mM 

MgSO4 solution and 45 ml of sterile LB medium. After inoculation with a single colony 

of the plating bacterial strain, the culture was shaken overnight at 160 rpm and 37 °C. 

A second Erlenmeyer flask contained 40 ml of autoclaved LB medium supplemented 

with 5 ml of 100 mM MgSO4 solution and 5 ml of sterile filtrated 2 % maltose solution. 

The medium was inoculated with 5 ml of the EPI300-T1R overnight preculture and 

shaken at 180 rpm at 37 °C until an OD600 of 0.8 was reached. The competent cells 

could be stored for up to three days.  

http://www.dict.cc/englisch-deutsch/equation.html
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3.4.14.6 Packaging of fosmid clones 

Like cosmids, also fosmids contain at least one phage lambda cos site, which is 

recognised by λ phage particles, and therefore DNA fragments ligated into such 

fosmids may be packaged in vitro. The infective phage particles were used to deliver 

linear, concatemerised phage DNA to special E. coli cells (EPI300-T1R Plating Strain; 

3.1.5) by transduction. For the packaging reactions, the MaxPlax™ Lambda 

Packaging Extracts (3.1.8) were applied following the manufacturer’s protocol. For 

one ligation reaction, one tube of the MaxPlax™ Lambda Packaging Extracts was 

thawed on ice. Immediately, 25 µl were transferred to a 1.5 ml Eppendorf tube, which 

was subsequently stored at -80 °C until use. The ligation reaction (10 µl) was added 

to the remaining 25 µl of the MaxPlax™ Packaging Extract, which was kept on ice for 

the whole time. The solution was then mixed by pipetting without introducing air 

bubbles, because the latter could interfere with the packaging process. The mixture 

was held at 30 °C for 1.5 hours in an incubator [table 3.1.1-2]. This incubation step 

was repeated after thawing and adding the second half of the MaxPlax™ Packaging 

Extract, which was stored at -80 °C priorly. The mixture was then diluted in Phage 

Dilution Buffer (PDB) (3.1.12) to a final volume of 1 ml. 25 ml of chloroform were 

added to prevent bacterial contaminations and the tube was inverted gently several 

times. The final solution was then stored at 4 °C until use. For long term storage, 

sterile glycerol was added to a final concentration of 20% to the remaining phage 

solution, which could then be stored at -80 °C. 

To determine an appropriate titer for easier clone picking, a 1:10, 1:20, 1:100 and a 

1:104 dilution of the packaging reaction were made in PDB. 100 µl of each dilution 

were mixed with 100 µl of competent EPI300-T1R cells (3.4.14.5). The mixture was 

incubated for 30 min at 37 °C to allow the phage particles to infect the E. coli cells 

and to transfer the linear fosmid DNA to the cell interior by transduction. The infected 

EPI300-T1R cells were spread on LB agar plates containing the selective marker 

chloramphenicol in a final concentration of 12.5 mg/ml. The plates were incubated at 

37 °C overnight. Inside the E. coli cells, the cohesive ends (cos sites) enable the 

circulization of the linear DNA to form a plasmid bearing a 40 kb fragment of the 

genomic F. ambigua DNA. In contrast to cosmids, the pCC1FOS vector does not 

have the drawback of partial deletion of the insert DNA, because it contains a single 

copy origin of replication based on the F plasmid. A second origin of replication oriV 
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requires induction of desired clones to high copy number to obtain high yield of DNA. 

This procedure is described in 3.4.14.9. 

3.4.14.7 Plating the genomic library 

For each dilution prepared in 3.4.14.6, the colonies per LB plate were counted to 

determine the appropriate amount of host cell suspension for plating. The 1:20 

dilution yielded about 200 colony forming units (cfu) per plate, and therefore this 

dilution was chosen to plate the fosmid library. Altogether, 2,800 colonies were 

cultivated on LB plates containing chloramphenicol (12.5 μg/ml). 29 microtiter plates, 

each having 98 wells, were prepared to contain 100 µl of LB liquid medium and 12.5 

µg/ml chloramphenicol in every well using the Transferpette®-8 multipipette [table 

3.1.1-2]. The clones were picked and suspended in the wells of the microtiter plates 

using tooth picks. Afterwards, the plates were incubated overnight at 37 °C. Copies 

of the produced cultures were made using the Boekel Replicator [table 3.1.1-2]. For 

long term storage, an equal volume of 100 % glycerol was added to the bacterial 

culture and mixed by pipetting applying the Transferpette®-8 [table 3.1.1-2] prior to 

freezing at -80° C.  

3.4.14.8 Screening of the fosmid gene library 

The fosmid gene library was screened by whole cell PCR for the presence of 

halogenase positive clones using specific primers designed from PCR fragments, 

obtained in a previous work (Wagner, 2008). In order to make the fosmid DNA 

accessible for the Taq-polymerase, a heating step has to be integrated in the 

standard PCR program described in 3.4.9.2. This denaturation step at the beginning 

of the PCR procedure was performed at 97 °C for 15 min to initiate cell lysis (whole 

cell PCR). The primer pairs used to identify phenolic halogenase genes were C-Hal 

fw/C-Hal rev and Ckons-fw/Ckons-rev (3.1.9). Screening for tryptophan halogenases 

was performed applying the primers T-Hal fw/T-Hal rev and T-Neu-fw/T-Neu-rev 

(3.1.9). To facilitate fast screening of the library, all 98 clones of each microtiter plate 

were pooled in 0.5 ml Eppendorf tubes. Standard PCR reactions (3.4.9) were set and 

performed with 1 µl of each pool at the appropriate annealing temperature including 

an initial heating step for cell breakage as described above. PCR probes were 

subsequently analysed by agarose gel electrophoresis (3.4.7). Localisation of single 

http://www.dict.cc/englisch-deutsch/accessible.html
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clones in positive pools was achieved by splitting the latter into 8 x 12 clone pools (8 

pools each containing the clones of one line of the microtiter plate). Subsequently, 

the right clone was localised in one of the 8 pools by PCR of the 12 single clones 

(one line). 

3.4.14.9 Induction of identified positive clones 

For the isolation of great amounts of fosmid DNA from PCR positive clones, it was 

necessary to induce a promoter (oriV) by addition of the CopyControl™ induction 

solution, which was supplied with the CopyControl™ Fosmid Library Production Kit 

(3.1.4). This induction step initiates expression of the trfA gene product, which 

enables the amplification of fosmid clones at high copy number. A preculture was set 

by supplementing 5 ml of LB medium with 12.5 mg/ml chloramphenicol in a 15 ml 

tube. After inoculation with a single fosmid clone, the culture was shaken overnight at 

180 rpm and 37 °C. The next day, 45 ml of fresh, sterile LB medium containing 12.5 

mg/ml chloramphenicol were mixed with 5 ml of the overnight culture. 50 µl of the 

1000 x CopyControl™ induction solution (Epicentre, Madison, U.S.A.) were added to 

the mixture, which was then shaken under sufficient aeration at 37 °C and 180 rpm 

for 5 hours. Fosmid isolation was accomplished by applying the QIAgen Plasmid Midi 

Kit following the manufacturer’s instruction manual (3.1.4). 

3.4.14.10 Subcloning procedure for fosmid E8 

Fosmid DNA was fragmented by ultrasonic treatment. Sheared DNA was size 

selected (range 500 bp to 2 kb) and reisolated by gel extraction using the QIAquick® 

Gel Extraction Kit (3.1.4) as described in the QIAquick® Spin Handbook supplied by 

the manufacturer. After elution of the size selected and purified DNA with Milli-Q® 

water (3.1.10), an end-repair reaction was set to obtain blunt end DNA fragments 

(3.4.14.3). 

The mixture was incubated at room temperature for 1 hour and the reaction was 

stopped by heating at 70 °C for 20 min. The end-repaired DNA was purified with the 

QIAquick PCR Purification Kit (3.1.4) for ligation into the plasmid cloning vector. The 

applied pGEM®-T Vector System I (3.1.4) contains a 3’-T overhang that fit the 3’-A 

overhangs of PCR amplicons, generated by Taq-polymerases. To generate DNA-

fragments that are suitable for ligation into the pGEM-T® vector, a tailing reaction had 
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to be performed in order to add an adenine to the PCR products. The reaction 

mixture contained the following components: 

 

 

 

 

 

 

 

The mixture was then incubated for 2 h at 72 °C for optimal polymerase activity. 

Subsequently, the A-tailed DNA fragments were purified using the QIAquick PCR 

Purification Kit (3.1.4). A ligation into the T-tailed plasmid vector (pGEM®-T Vector or 

pCR®2.1-TOPO® (3.1.6) was carried out applying the T4 DNA Ligase (3.1.2) 

according to the above mentioned protocol (3.4.9.3). Typically, a vector to insert ratio 

of 1:3 was utilised for these ligations and the reactions were preceded at room 

temparature preferably overnight. 

3.4.15 Genome sequencing using the 454 sequencing procedure 

Within this study, results of a 454 sequencing performed for the F. ambigua genome 

were analysed (4.4.4). The sequencing was carried out by GATC Biotech AG 

(Konstanz, Germany). In this method, the genomic DNA is fragmented, ligated to 

universal adapter primers and subsequently linked to beads at a dilution that 

promotes one DNA molecule per bead. These bead-DNA complexes are then 

encapsulated into emulsion based droplets. By emulsion PCR, the DNA fragments 

are enriched within these droplets. The beads are then allotted to individual 

picotiterplate wells, in which a bioluminescence method, referred to as 

pyrosequencing is performed. In this process, nucleotides are not added coincidently 

as done in dideoxy sequencing methods (Sanger method and variants thereof) but 

successively. If a matching nucleotide is added, a cascade of enzymatic reactions 

Reaction mix:  30 µl  end-repaired template DNA  

 10  µl  10 x  GoTaq® Flexi Buffer 

 1.5  µl   GoTaq® Flexi DNA Polymerase  

 5  µl  MgCl2  

 2.5  µl  dATP 

 1  µl sterile water  

 50  µl  total reaction volume 
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visualises the formation of ATP from pyrophosphate via a light emitting conversion of 

luciferin into oxyluciferin (Metzker, 2010; Grody et al., 2010; Sanger et al., 1977). 
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4. Results 

Cyanobacteria are a rich source of structurally diverse secondary metabolites.  The 

occurrence of these bacteria in a wide range of environments demonstrates their 

capability to defend themselves probably by the production of chemical weapons. A 

filamentous cyanobacterial strain of Fischerella ambigua was found to produce the 

polyhalogenated natural products ambigol A, B, C and tjipanazole D under various 

culture conditions (Wright et al., 2005; Falch et al., 1995). Although to date numerous 

polyhalogenated phenolic ethers were found in nature (Gribble, 2010), little is known 

about their assembly and the involved biosynthetic enzymes. 

The current project thus focussed on a genetic approach to elucidate the putative 

sequence information involved in the production of chlorinated natural secondary 

metabolites of F. ambigua. Preliminary information on several genes that are 

putatively involved in ambigol biosynthesis was obtained by PCR screening of a 

fosmid library with primers derived from halogenase genes. Further sequence data 

were obtained from a 454 genome sequencing effort of F. ambigua. Results of these 

experiments allowed hypothesising on the biosynthesis of the ambigols and also on 

the indole derivative tjipanazole D.  

The sole information on sequence data probably relating to the biosynthesis of a 

natural product, however does not clarify the biochemical mechanisms and the 

succession of the catalysed reactions. The hypothesis presented here remains to be 

proven by gene knockout studies and heterologous expression of putatively involved 

biosynthesis genes as well as by further biochemical experiments, i.e. in vitro assays.   

4.1 Morphological and molecular characteristics of F. ambigua 

The cyanobacterial strain investigated in this work was obtained from the Culture 

Collection of Algae of the Swiss Federal Institute for Water Ressources and Water 

Pollution Control (Dübendorf, Switzerland). Taxonomic studies on this strain have 

already been done by Wagner (2008) in collaboration with the Culture Collection of 

Algae and Protozoa, Scottish Association for Marine Science (SAMS, Oban, United 

Kingdom).  
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Cyanobacteria are taxonomically divided into five subsections (Garrity et al., 2001; 

Rippka, 1988; Rippka et al., 1979): subsection I and II include unicellular strains that 

divide by binary or multiple fission, respectively. Filamentous, non-heterocystous 

cyanobacteria are classified to subsection III. Subsection IV and V include 

filamentous strains that form heterocysts in non-branching and branching filaments, 

respectively. Apart from this morphological classification, recent efforts were made to 

establish a key map for a molecular identification of cyanobacteria using PCR 

fingerprinting profiles (Valerio et al., 2009).  

Cyanobacteria of the genus Fischerella are classified to subsection V according to 

Rippka et al. (1979) and are characterised by true branching and filamentous growth 

[figure 4.1-2]. Their filamentous nature is mainly due to sheath material formed by 

exopolysaccharides (Hoiczyk & Hansel, 2000; Hoiczyk & Baumeister, 1995). Early 

studies on the fine structure of F. ambigua revealed that during cell division the 

middle and outer wall layer as well as the sheath invaginate separating the two 

daughter cells. This kind of septal division is normally found in most unicellular 

organisms (Thurston & Ingram, 1971). In fact, it was observed that the F. ambigua 

strain investigated in this work is able to change to unicellular morphology [figure 4.1-

1] (Wagner, 2008). 

     

Figure 4.1-1: Unicellular (left) and filamentous (right) growth of F. ambigua (Näg.) Gomont (strain 

number 108b) shown with a magnification of 100 times.   

 

 

 

 

 

100 x 100 x 
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Figure 4.1-2: Phase-contrast micrograph showing heterocysts and true lateral branching of F.ambigua 

(magnification of 1000 times). 

In the work of Wagner (2008), 16S rDNA sequences of the present strain revealed 

high homology with nucleotide sequences from Fischerella species available in 

GenBank. In order to assure that the strain used during the current study is still 

identical to that employed by Wagner (2008), 16S rDNA sequences were amplified 

using the primers Cyan-16S-fw and Cyan-16S-rev [table 3.1.9-1]. The amplified PCR 

product of approximately 1,500 bp was cloned into the pGEMT-vector and 

transformed into XL1-Blue competent E. coli cells (3.4.9.3; 3.4.12). 16S rDNA 

sequences obtained from six clones (see clones FA16S in table 3.1.6-2) were aligned  

with those previously found (Wagner, 2008). The compared sequences turned out to 

be nearly identical.  

 

4.2 Identification and removal of associated bacteria 

4.2.1 16S rDNA analysis of associated bacteria 

In order to accomplish a 16S analysis (3.4.6) for the identification of the Fischerella 

associated heterotrophic bacterial strain, genomic DNA was isolated according to 

3.4.3. Fresh LB medium (3 ml) was inoculated with a spheric cyanobacterial colony 

and grown overnight at 37°C under light exclusion. Cultured cells were then plated on 

solid LB medium [figure 4.2.1-1 a] and incubated overnight. The bacterial cells were 

subsequently grown in liquid LB medium for DNA extraction (3.4.3) [figure 4.2.1-1 b]. 

 

heterocyst branching 

1000 x 1000 x 
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a)                                             b) 

      

Figure 4.2.1-1: a) LB agar plate with the Pseudomonas sp. associated with F. ambigua; b) genomic 

DNA from the isolated Pseudomonas strain. 

The primers Cyan-16S-fw and Cyan-16S-rev (3.1.9) were used to amplify a 16S 

rDNA fragment (~1.5 kb) of the unknown strain. The obtained PCR product was 

cloned in E. coli XL-1 Blue cells for sequencing (3.4.9.3; 3.4.12). The sequences 

contained in seven different clones (see clones Pstu; table 3.1.6-2) were analysed 

using the Basic Local Alignment Search Tool (3.1.13). They all led to the conclusion 

that the isolated bacterium is related to a partial 16S rDNA gene of Pseudomonas 

stutzeri strain Gr46 (GenBank accession: FR667910) with 99 % sequence identity. 

4.2.2 Axenic cultures 

Heterotrophic bacteria are able to grow within the mucilaginous cyanobacterial 

envelope of filamentous strains like Fischerella spp. (Simmons et al., 2008). In this 

work, the addition of ampicillin in a final concentration of 500 µg/ml and shaking 

overnight at 37 °C led to axenic cultures (3.3.4). However, recultivation of these 

pretreated cells in BGII medium revealed a significantly slowed growth when 

compared to a non-treated culture. The decreased growth rate was judged by the 

diameter of the spheric colonies [figure 4.2.2-1]. Thus, cultivation of ampicillin-

pretreated cyanobacteria turned out to be rather inefficient for isolation of genomic 

DNA due to poor amounts of available cell material. 
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Figure 4.2.2-1: On the left, a 300 ml culture flask is shown containing F. ambigua cells, which were 

not pretreated with ampicillin. The right picture shows an Erlenmeyer flask with cyanobacterial cells 

that were pretreated with ampicillin in a concentration of 500 µg/ml overnight. Both cultures were 

grown for 2 weeks at 25 °C and shaking at 120 rpm. 

 

Attempts to separate the here investigated Fischerella strain from associates by 

phototaxis-induced gliding (3.3.1) were not successful, because the polysaccharide 

sheath, which harbours the heterotrophic bacteria is strongly involved in the gliding 

process (Adams & Duggan, 2008; Adams, 2001; Hoiczyk & Baumeister, 1995).  

Exposure to UV light (3.3.2) in order to eliminate contaminants also did not lead to 

axenic cultures due to light induced production of UV-absorbing substances by the 

cyanobacterial cells. These compounds, e.g. carotenoids usually serve as light-

harvesting pigments (5.2) facilitating photosynthesis and also protect against 

photooxidative damage (Liang et al., 2006). During cultivation under constant 

illumination, a permanent release of carotenoids was observed, as judged by the 

colouring of the culture medium [figure 4.2.2-2]. These and other light-absorbing 

pigments did probably protect the associated heterotrophic bacteria from UV-light 

(see 5.2).  

 

Figure 4.2.2-2: 300 ml culture flasks containing cyanobacterial cultures of F. ambigua in BG-11 after 

3-4 weeks  (left),  6 weeks (middle) and 2 months (right). 
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For the current project it was thus accepted that no suitable axenic culture of F. 

ambigua was available. 

4.3 Construction and screening of a fosmid library 

4.3.1 DNA extraction from filamentous cyanobacteria 

4.3.1.1 Pretreatment of cyanobacterial cells for filament breakage 

Problems in DNA extraction of cyanobacteria are well known and often caused by 

morphological and chemical characteristics, i.e. filamentous growth and   

polysaccharides, respectively. Furthermore, accompanying heterotrophic bacteria 

secluded in the thick cyanobacterial polysaccharide envelope may interfere with 

downstream applications [figure 4.3.1.1-1] (Simmons et al., 2008; De Philippis et al., 

2001; Hoiczyk & Baumeister, 1995). The filamentous structure of the bacterial cells 

required suitable measurements for cell breakage, like sonication or application of a 

Potter homogenisator (3.4.2), in order to conduct cell lysis to the resulting 

homogenous cell suspension. For this purpose, the latter was centrifuged, the 

supernatant discarded and the pelleted cells were washed several times under 

vigorous vortexing to remove most of the polysaccharide sheath (3.4.2). 

a)                                                  b) 

    

Figure 4.3.1.1-1: a) Petri dish containing a cyanobacterial colony of F. ambigua consisting of 

aggregated filaments; b) Phase-contrast micrograph showing a cyanobacterial filament with the typical 

thick polysaccharide envelope 

  

 

1000 x Polysaccharide envelope 
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4.3.1.2 Removal of heterotrophic bacteria to obtain axenic cyanobacterial DNA 

The pretreatment to break cyanobacterial filaments does not remove contaminating 

and associated bacterial cells, which was tested by inoculation of sterile, liquid 

nutrient medium (LB medium) with pretreated cells and incubation at 37°C overnight 

and shaking at 180 rpm. In order to remove the associated Pseudomonas cells, the 

homogenised cell suspension containing both, cyanobacterial and Pseudomonas 

cells, was exposed to lysozyme as described in 3.4.2.2. Pseudomomas DNA was 

then removed by washing and centrifugation steps, which were performed three 

times with ultrapurified water. A similar method was described for the desert 

cyanobacterium Chroococcidiopsis (Billi et al., 1998).  

The applied procedure was suitable, because F. ambigua cells were observed to 

show resistance to the sole application of lysozyme, whereas the contaminants, i.e. 

Pseudomonas cells could be easily cracked under these conditions (3.4.2.2). 

However, the exposition of F. ambigua cells to lysozyme should not exceed 30 min, 

because after this long time of incubation, a release of a greenish color was observed 

revealing that some cyanobacterial cells were already lysed.  

4.3.1.3 Comparison of two methods for DNA extraction 

Two methods were investigated for the effective isolation of DNA. Method A uses a 

CTAB/sarkosyl buffer for cell breakage (3.4.2.1). In method B, cells lysis is achieved 

through an SDS-containing buffer together with Proteinase K and lysozyme (3.4.2.1). 

Especially concentrations higher than 0.4 % SDS were observed to cause effective 

cell lysis. From 1-2 g cells, an average amount of 9.3 µg almost axenic DNA was 

obtained with method B [figure 4.3.1.3-1], whereas method A usually gave amounts 

of 3-5 µg DNA per gram cells. Apart from the inferior yield of genomic DNA, method 

A does not include the removal of Pseudomonas cells, because this contaminating 

strain was discovered in a later period of this study. Therefore, method B was 

preferred for DNA isolation from F. ambigua.           
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a)                                                  b)             

                            

Figure 4.3.1.3-1: Comparison of two different DNA isolation strategies. The figure shows 1 % agarose 

gels with 1 µl of clear DNA solution in each lane: a) isolated genomic DNA by method A; b) isolated 

genomic DNA obtained by method B 

For the extraction of good quality DNA, it is favorable to extract cyanobacterial cells 

in an early phase of growth (usually after 21 days). This turned out to be critical for 

the quality of isolated DNA, because in a later phase of growth, high amounts of 

polysaccharides were observed that are partially released into the culture medium, 

which becomes more and more viscous (De Philippis et al., 2001). In this case, these 

polysaccharides did also increase the viscosity of the resulting DNA solution.  

The cell lysate could be directly purified using DNA purification columns (Genomic 

tips) (3.4.2.2) and led to high amounts of DNA. However, a 

phenol:chloroform:isoamyl alcohol extraction prior to column use was preferred, in 

order to reduce proteins that may affect downstream applications, e.g. PCR reactions 

or ligation into the fosmid vector. The obtained DNA was tested successfully for 

applicability in PCR techniques (3.4.9). 

4.3.2 PCR for phenolic halogenase genes  

Using a homology based approach, a previous study on halogenases in F. ambigua 

had successfully obtained a sequence for approximately half of a putative phenolic 

halogenase (Wagner, 2008). Further design of reverse primers downstream of a 

conserved motif, i.e. W-X-W-X-I-P (van Pée & Patallo, 2006; 4.7.4), was managed 

using multiple sequence alignments (3.1.13) of published halogenase sequences 

[figure 4.3.2-1]. The reverse primer Chal-rev2 (3.1.9) was designed from the W-L-N-

A-W-A motif near the C-terminus of the phenolic halogenase Ab7 (4.7.10). It was 

used together with the forward primer C-Hal fw (3.1.9) from a previous work (Wagner, 

2008). A PCR reaction was set aiming to obtain missing genetic information on the 

Fischerella phenolic halogenase gene ab7 (4.7.10). 

10 kb 

F. ambigua 

genomic DNA 
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McnD M P E M L P K V S S N S W L N A W A I S L N 593 
ApdC M P D M L S K V N S N S W L N A W A I S L D 593 
AerJ R P E L L P K I N E H P W L N A W A I S L D 593 
Ab7 M P E K S A D F P S P V W L N A W V V S L D 530 

Figure 4.3.2-1: Multiple sequence alignment used to design degenerate primers from the consensus 

motif W-L-N-A-W-A. The lowest line shows new sequence information obtained for Ab7. McnD 

(GenBank: AAZ03553.1: phenolic halogenase from the cyanopeptolin 984 gene cluster; ApdC 

(GenBank: CAC01605.1): phenolic halogenase involved in the biosynthesis of anabaenopeptilide 90B; 

AerJ (GenBank: ACM68683.1): tyrosine moiety halogenation in aeruginosin biosynthesis. Ab7 

(4.7.10): putative phenolic halogenase from F. ambigua. Amino acids identical in all compared 

sequences are shaded in red and those, which are only identical among up to three compared 

sequences are coloured in yellow.  

 

PCR conditions for primer annealing were optimised according to manufacturer’s 

recommendations on the melting temperature (3.1.9). For the use of degenerate 

primers, it is recommended to choose a low annealing temperature to enable 

restricted unspecific binding to the target sequence, at least 5 °C below the melt 

temperature. In case of the primer combination C-Hal fw and Chal-rev2 the annealing 

temperature was adjusted to 43 °C yielding amplificates of different size. 

Halogenases are very similar concerning their general genetic constitution (Zhu et al., 

2009; Flecks et al., 2008), and thus the expected size of the amplified fragment could 

be estimated and expected to be approximately 990 bp long.  

The obtained PCR product was excised and purified from the agarose gel (3.4.8) for 

ligation into the pGEM-T® vector (3.4.9.3) and subsequent transformation into E. coli 

(3.4.12). The purified plasmid DNA was sequenced and identified as a fragment of a 

halogenase gene. The 990 bp long PCR product contained approximately 600 bp of 

new sequence information, as compared to the partial sequence of Wagner (2008).  

4.3.3 Fosmid library production  

In order to obtain the complete sequence of biosynthetic gene clusters in F. ambigua, 

the construction of a genomic library was essential (3.4.14). The number of 

recombinants needed in such a library depends on the genome size of the respective 

organism and on the size of fosmid inserts (3.4.14.4). Fischerella genomes can reach 

up to 7 Mb (Herdman et al., 1979), and thus it was estimated that 2,800 clones were 

sufficient for a complete coverage of the genome (Sambrook & Russell, 2001; Clarke 

& Carbon, 1976).  
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In fosmids the origin of replication comes from the F plasmid that is known to be 

present in low copy number. This has the advantage that each clone of the fosmid 

library keeps a single copy of the inserted DNA fragment. Thereby, degradation or 

elimination of fosmids during high copy processes is avoided, and thus clone stability 

is assured. "On-demand" induction of positive clones to high copy number is 

mediated by a high copy origin of replication, which is also present in the pCC1FOS 

fosmid vector (3.4.14.9). 

Chromosomal DNA, isolated for genomic library construction, was usually sheared 

during the extraction procedure and revealed a size of approximately 35-40 kb. This 

was verified by agarose gel analysis (3.4.7) using fosmid control DNA (3.1.3), 

supplied with the CopyControl™ Fosmid Library Production Kit (3.1.4). DNA 

fragments smaller than 25 kb are undesirable, because they increase the possibility 

to be ligated together in one fosmid. This would lead to chimeric clones, which 

complicate subsequent screening and gene localization processes (see 

manufacturer’s manual). Small DNA inserts may also not be recognised by phages, 

and thus would bypass the "head-full" mechanism, in which phages usually segment 

host DNA into smaller pieces to package them into the phage particle.  

Therefore, the sheared DNA was size selected by excising from LMP agarose [figure 

4.3.3-1] (3.4.14.2) and subsequently purified through Microcon YM-100 centrifugal 

filter devices according to a modified protocol provided by the manufacturer 

(Millipore, Schwalbach). Purification by this procedure is beneficial, because it 

enables to remove traces of electrophoresis buffer and agarose, in order to obtain 

highly purified DNA.   
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Figure 4.3.3-1: Gel extraction from LMP agarose: 100 µl of DNA solution (a) obtained from 1-2 g of F. 

ambigua cells were size selected using the fosmid control DNA as marker (left picture). The right gel 

picture shows genomic DNA with an average size of 40 kb that was purified with Microcon YM-100 

centrifugal filter devices, see lane (e). Lane (b) and (f): fosmid control DNA (~36 kb). Lanes (c) and (d): 

GenRuler™ DNA ladder mix (largest band = 10 kb).  

Several attempts were necessary to ligate the purified DNA (~90 ng/µl) into the 

fosmid vector by blunt end ligation (3.4.14.4). The finally successful molar ratio of 

vector to insert was 9:1 [figure 4.3.3-2]. 

 
      
  

 

 

 

 

 

 

Figure 4.3.3-2: Result of ligation of F. ambigua DNA into the pCC1FOS fosmid vector (see lane 3). 

The ligation was compared to a positive control applying the fosmid control DNA as insert (see lane 5). 

Subsequently, the ligation reaction was packaged into phage heads according to the 

manufacturer’s protocol using MaxPlax™ Lambda Packaging Extracts (3.4.14.6). 

Before plating the library (3.4.14.7), the titer of the phage particles had to be 

1 

 lane 1: GenRuler™ DNA ladder mix (largest band=10 kb) 

lane 2: fosmid control (36 kb) 

lane 3: template ligated in pCC1FOS vector 

lane 4: negative control:  template and pCC1FOS 
(without FastLink

TM
 DNA ligase) 

lane 5: fosmid control ligated in pCC1FOS 

lane 6: negative control: fosmid control and pCC1FOS 
(without FastLink

TM
 DNA ligase) 
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determined. For this purpose, several dilutions of the packaged phage particles were 

prepared (3.4.14.6). Transfection of competent EPI300™-T1R E. coli cells was 

achieved by incubation for 30 min after adding the undiluted phage particles and the 

prepared dilutions, respectively. Infected E. coli cells were spread on LB plates and 

selected by an antibiotic resistance encoded by a cat gene located on the fosmid 

vector (3.1.7). With the 1:104 dilution, only single clones were found, whereas the 

1:102 dilution yielded approximately 30-40 clones per LB agar plate. A 1:20 dilution 

finally led to about 200 clones per LB plate facilitating clone picking. 2,800 fosmid 

clones with an average insert length of 40 kb were generated from the F. ambigua 

genome.  

Assuming that traces of genomic DNA of the accompanying Pseudomonas strain 

(4.2) were present in the ligation reaction mix, the required number of clones for the 

coverage of the F. ambigua genome would be significantly higher. The size of P. 

stutzeri genomes can reach 4.6 Mb (Ginard et al., 1997), and thus additional clones 

would have been necessary to assure that every 40 kb DNA-fragment of the F. 

ambigua genome would be present in the genomic library (3.4.14.4). 

4.3.4 Screening of the fosmid library for phenolic halogenase genes 

FADH2-dependent halogenases are enzymes involved in regioselective halogenation 

of aromatic moieties (Vaillancourt et al. 2006). They contain highly specific signature 

motifs, which facilitate their recognition (van Pée & Patallo, 2006). Homologous 

primers for library screening were designed from sequence data obtained in a 

previous work by PCR strategies (Wagner, 2008) and from the PCR approach 

performed in the current study (4.3.2). To enable rapid fosmid library screening, 29 

pools were made, each containing 98 clones (3.4.14.8). Using the primer pair C-Hal 

fw and Chal-rev2 (4.3.2), PCR amplification yielded several unspecific products. In 

particular, all pools gave a false-positive band when compared to a negative control 

without template DNA. This band was most likely caused by traces of host DNA 

(3.4.14.6). Therefore, attempts were made to recognise the right clone by evaluation 

of band intensity, which was possible. However, this preliminary result had to be 

assured by a modified, specific PCR. Consequently, several different primers were 

designed from the known PCR amplificates and tested until the final primer 

combination, i.e. Ckons-fw and Ckons-rev was found (3.4.14.8). This primer pair was 
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designed from two conserved motifs, G-S-G-L-A-G and W-V-W-L-I-P and gave a 

distinct band at approximately 700 bp for fosmid E8, which was localised in pool 15. 

Sequence analysis of construct top-phal-700 [table 3.1.6-2], which contained the 700 

bp amplificate verified the presence of a phenolic halogenase gene on fosmid E8 

(3.4.9.5; 3.1.13). 

4.4 Sequence analysis of fosmid E 8 

4.4.1 High yield fosmid isolation from clone E8 and restriction digestion  

For sequencing and subcloning purposes high amounts of fosmid E8 had to be 

obtained. Therefore, the high copy origin of replication was induced by addition of a 

special induction solution activating the trfA gene product in the EPI300™-T1R E. coli 

strain. This allowed initiation of replication from oriV (3.4.14.9) and resulted in a high 

copy number of fosmid E8 per cell, and thus enhanced the amount of isolated fosmid 

DNA (3.4.14.9). The latter was analysed by restriction digest to ensure a sufficient 

insert size for further sequence investigations. Results are shown in figure 4.4.1-1. 

 

 

Figure 4.4.1-1: Restriction digest of fosmid E8 using different restriction enzymes. 

 

lane 1: GeneRuler™ DNA ladder mix (3.1.3; 

largest band = 10 kb)  

lane 2: restriction digest of fosmid E8 with SacII 

lane 3: restriction digest of fosmid E8 with ApaI 

lane 4: restriction digest of fosmid E8 with HindIII 

lane 5: restriction digest of fosmid E8 with XhoI 

lane 6: restriction digest of fosmid E8 with XbaI 

lane 7: restriction digest of fosmid E8 with SpeI 

lane 8: GenRuler™ DNA ladder mix (largest band 

= 10 kb)  
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4.4.2 End sequencing of fosmid E8  

End sequencing of fosmid E8 was performed by GATC Biotech AG (3.4.9.5) using 

two primers, a forward primer that binds to a T7 promoter and a reverse sequencing 

primer pEpiFOS™ RP-2 (Epi-RP) (3.1.9). Two sequences having 950 bp (T7 primer) 

and 980 bp (Epi-RP), respectively, were obtained. Their deduced peptide sequences 

were analysed using BLAST (3.1.13). Table 4.4.2-1 shows their highest identity with 

proteins listed in GenBank. 

Table 4.4.2-1: BLAST search results for end-sequences of fosmid E8 with the vector-specific forward 

and reverse primers T7 and Epi-RP, respectively. The deduced amino acid sequences were analysed 

using BLAST. Proteins with highest identity are shown in column two. In column three, the ratio of 

identical amino acids (first value) to all compared amino acids (second value) is given (percentage in 

brackets).  

Primer Enzyme name Identity of 

aligned amino 

acids 

GenBank 

accession 

number 

T7 Acetate kinase [Nostoc punctiforme 

PCC 73102] 

218/288 

(76%) 

YP_001868163 

Epi-RP CYP 450 2C44 [Mus musculus] 73/272 

 (27%) 

NP_001161377  

 

Acetate kinase is involved in the formation of acetyl-CoA from acetate via an ATP-

dependent phosphorylating step, in which acetate is activated to acetyl phosphate. 

The following conversion of acetyl phosphate to acetyl-CoA is mediated by 

phosphotransacetylase (Ingram-Smith et al., 2006a). No coherence to the ambigol 

biosynthetic gene cluster could be deduced for the acetate kinase, which likely 

participates in primary metabolism (Campos-Bermudez et al., 2010). Hence, the 

conclusion was justified that probably one boundary of the cluster was covered by 

fosmid E8. The second sequence revealed homology to vertebrate CYP 450 

enzymes, which represent a class of highly versatile proteins involved in primary 

metabolism but also in secondary metabolic pathways, for instance in phenolic 

coupling reactions (Dewick, 2009). 
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4.4.3 Subcloning of fosmid E8 

4.4.3.1 Construction of a shotgun library 

In order to characterise fosmid E8 further, a shotgun subcloning was accomplished 

by sonication of fosmid DNA and recovery of fragmented DNA to be cloned into the 

pGEMT®-vector (3.4.14.10). A 100 ml culture of the E8 clone was induced to high 

copy number and the fosmid was isolated as described in 3.4.14.9. Subsequently, 

the purified fosmid solution was sonicated and the resulting DNA fragments were size 

selected by gel extraction within a range of 0.5-2 kb (3.4.8) [figure 4.4.3.1-1 a]. To 

make the fragmented DNA suitable for the pGEMT® PCR vector (3.1.9), a blunt 

ending and subsequent A-tailing reaction was performed with the DNA fragments 

(3.4.14.10). The A-tailing reaction is necessary to make the ends of the inserts 

compatible for ligation into the target PCR vector. The ligation reaction was 

transformed to E. coli XL1 Blue cells (3.1.5) that were plated on ampicillin containing 

solid LB medium for selection of recombinants (3.4.12). Randomly picked clones 

were grown overnight and purified using the GeneJET™ Plasmid Miniprep Kit (3.1.4). 

Several purified clones were checked for inserts by PCR (3.4.9.4) [figure 4.4.3.1-1 b] 

and sent for sequencing (3.4.9.5). Sequencing results are presented in section 

4.4.3.2. 

 

 

 

   

 Ligation into the 
pGEMT

®
-vector 

 PCR with isolated 
plasmids 

                        

 

Figure 4.4.3.1-1: Fosmid E8 DNA was fragmented by ultrasonic shock and recovered from an 

agarose gel in a range from 0.5-2 kb (picture a). Fragmented DNA was then end-repaired and A-tailed 

for ligation into the pGEMT
®
-vector (3.4.14.10). Obtained constructs were verified by PCR (picture b) 

using the two vector sequence-specific primers T7 and SP6 (3.4.9.4). The gel photo on the right side 

shows PCR amplificates obtained from different plasmids, each containing one fragment of fosmid E8. 

The first lane of all gels was filled with the GeneRuler™ DNA ladder mix (3.1.3). 
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4.4.3.2 Sequencing results for E8 subclones 

Sequences obtained from subclones generated in this work [table 3.1.6-2] were 

analysed using BLAST (3.1.13). Search results are shown in table 4.4.3.2-1. One 

subclone, E8-8 contained a putative halogenase gene with homology to aerJ from 

the aeruginosin biosynthetic pathway (Cadel-Six et al., 2008; Welker & von Doehren, 

2006). Adjacent to the putative halogenase gene on subclone E8-8, a sequence 

probably related to a TE domain was found. Its deduced amino acid sequence shows 

highest identity to the TE domain of HctF, an NRPS involved in hectochlorin 

biosynthesis (Ramaswamy et al., 2007). Subclone E8-69 revealed a sequence 

related to a putative chorismate lyase that catalyses the formation of p-

hydroxybenzoic acid from chorismic acid by removal of pyruvate (Gallagher et al., 

2001). Subclone MEO-6 contained partial sequence data of a gene that probably 

codifies for a phospho-2-dehydro-3-deoxy-heptonate aldolase. This enzyme is 

involved in an early step of the shikimate pathway, which is an entry point to the 

biosynthesis of aromatic secondary metabolites (Knaggs, 2003; Herrmann & Weaver, 

1999). 

 

Table 4.4.3.2-1: BLAST search results for several subclones, which were randomly picked from the 

shotgun subclone library of fosmid E8. The deduced amino acid sequences of E8 subclones (first 

column) were aligned with homologous proteins. In column four, the ratio of identical amino acids (first 

value) to all compared amino acids (second value) is given (percentage in brackets). Forward primer 

(fw); Reverse primer (rev).   

Subclone 
(Insert size) 

Primer 
(fw/rev) 

Highest homology (protein 
level)  

Identity of 
aligned 

amino acids 

GenBank 
accession 

number 

E-8-8            
(928 bp) 

SP6 
(rev) 

Halogenase AerJ                              
[M. aeruginosa] 

121/202                           
(59%) 

CAO82151 

E-8-8            
(928 bp)  

T7 
(fw) 

Thioesterase domain of 
HctF [Lyngbya majuscula]  

36/82  
(43%) 

AAY42398  

E-8-69  
(966 bp) 

T7    
(fw) 

Conserved hypothetical 
protein (chorimate lyase) 
[Microcoleus 
chthonoplastes PCC 7420] 

113/181 
(62%) 

ZP_05024769 

MEO-6 
(966 bp) 

T7    
(fw) 

Phospho-2-dehydro-3-
deoxy-heptonate aldolase 
[Anabaena variabilis ATCC 
29413] 

88/133 
(66%) 

YP_320855 
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Table 4.4.3.2-1 (continued): 

Subclone 
(Insert size) 

Primer 
(fw/rev) 

Highest homology 
(protein level)   

Identity of 
aligned 

amino acids 

GenBank 
accession 

number 

E8F4-M13 
(1017 bp) 

M13 
(fw) 

Condensation domain-
containing protein 
[Nostoc punctiforme PCC 
73102] 

52/81  
(65%) 

YP_001866792  

E8-15           
(999 bp) 

T7    
(fw) 

CYP 450 family 1 
subfamily D polypeptide 1 
[Fundulus heteroclitus]  

42/103 
(41%) 

ACO51073  

E8-18    
(824 bp) 

T7    
(fw) 

Acetate kinase [Nostoc 
sp. PCC 7120] 

106/147 
(73%) 

NP_486601  

The aromatic scaffold of the ambigols and its regioselective chlorination seemed to 

be consistent with the identification of a putative FADH2-dependent halogenase as 

well as enzymes associated with the shikimate pathway. Thus, it was concluded that 

important genetic information on the ambigol biosynthesis was located on fosmid E8.  

4.4.4 Complete sequencing of fosmid E8 

Complete sequencing of fosmid E8 was performed by GATC-Biotech AG (Konstanz, 

Germany) through construction of a shotgun library, which was then sequenced by 

the Sanger method (3.4.9.5) (Sanger et al., 1977). Sequence data previously found 

during subcloning of E8 (4.4.3) were identified and completed. Additional genes 

could be recognised upstream of a transposase gene (orf25), however the insert of 

E8 is boardered by an incomplete CYP 450 gene, ab2. Table 4.7.2-2 shows all 

genetic information of E8, i.e. sequences located between the incomplete gene ab2 

and a downstream located transposase gene orf25. Approximately 10 kb sequence 

information belonging to a putative ambigol biosynthetic gene cluster was obtained. 

Of this, a phenolic halogenase gene with a size of 1.67 kb proved to be identical with 

the partial sequence information found previously (4.3.2). Further sequences were 

analysed as a putative CYP 450 enzyme, a chorismate lyase, an AMP-ligase, a 

DAHP synthetase and an NRPS-like module. Details are presented in section 4.7.2 

[table 4.7.2-2].  
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4.5 Screening for fosmids overlapping with E8 

Since the CYP450 gene ab2 was not completely covered by fosmid E8, the genomic 

library was screened by PCR (3.4.9.2) for overlapping fosmids applying primers Cyp-

fw and Cyp-rev (3.1.9). The latter were designed from the respective boarder 

sequences of fosmid E8. The annealing temperature was adjusted according to 

manufacturer’s recommendations (Eurofins MWG Operon, Ebersberg, Germany).  A 

large spectrum of unspecific amplificates was observed, however no band was found 

at the expected size of 524 bp with the primers Cyp-fw and Cyp-rev. Thus, it was 

concluded that the CYP 450 gene was not completely present in the fosmid library. 

4.6 Whole genome sequencing of F. ambigua 

To obtain missing information on the putative ambigol biosynthetic gene cluster and 

for further studies on F. ambigua, a 454 whole genome sequencing was performed 

by GATC-Biotech (3.4.15) applying the Roche GS FLX Titanium sequencer (F. 

Hoffmann-La Roche AG, Basel, Switzerland). To assure that the sequencing will only 

include F. ambigua genomic DNA sequences, the cyanobacterial cells had to be 

pretreated, in order to remove the accompanying Pseudomonas strain DNA (4.2).  

An assembly of obtained sequences led to 14280 contigs with an average contig size 

of 1661 bp. The largest contig assembled had a size of 237 kb. The number of 

aligned bases was 185,592,864 bp. These would offer at least a 26.5-fold coverage 

of the F. ambigua genome with the imputed size of maximal 7 Mb (4.3.3). Two 

contigs were identified by searching the genome assembly files for sequences of 

fosmid E8 and partial sequence information on a putative tryptophan halogenase 

from the work of Wagner (2008). On contig 00522, genes putatively involved in 

ambigol biosynthesis were identified (4.7). Contig 15287 harbours a putative 

tryptophan halogenase and further genes, which may participate in the formation of 

the indolocarbazole scaffold of tjipanazole D (4.8). 
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4.7 Elucidation of the putative ambigol biosynthetic gene cluster  

4.7.1 Searching the genome assembly for sequences of the E8 fosmid 

The genome assembly was searched for contigs containing sequences for the 

already deciphered phenolic halogenase gene ab7 (4.4) [table 4.7.2-2]. For the 

identification of this halogenase, sequences obtained from fosmid E8 and the 

software CLUSEAN (3.1.13) (Weber et al., 2009) were used. Contig 00522 with a 

size of 123 kb was identified as bearing all sequence information of fosmid E8 and 

additional genetic data upstream of the CYP 450-dependent monooxygenase gene 

ab2, which was incomplete on fosmid E8 (4.4.4). 

4.7.2 Overall sequence analysis of contig 00522 

The sequences were analysed applying BLAST (3.1.13) on contig 00522. Table 

4.7.2-2 shows the BLAST search results of identified genes located on contig 00522, 

some of which are suggested to be involved in ambigol biosynthesis. In table 4.7.2-1, 

genes found upstream of the putative ambigol biosynthetic gene cluster [table 4.7.2-

2] are listed. They are most likely not involved in the biosynthesis of the ambigols but 

probably in primary metabolism and resistence mechanisms.   
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Table 4.7.2-1: BLAST search results for genes on contig 00522, which were found upstream of the 

putative ambigol biosynthetic gene cluster [table 4.7.2-2] and are boardered by a transposase gene 

(orf1). They are likely involved in primary metabolism, resistance mechanisms, or fulfil unknown 

functions. The deduced amino acid sequences of orfs found on contig 00522 (first column) were 

aligned with homologous proteins by BLAST (3.1.13). In column four, the ratio of identical amino acids 

(first value) to all compared amino acids (second value) is given (percentage in brackets). In the first 

column, the orientation of orfs identified on contig 00522 is given: > (5’,3’-direction); < (3’,5’-direction). 

 

Gene Size 

(kb) 

Highest homology (protein level) Identity of 

aligned 

amino acids 

GenBank 

accession 

number 

orf1    < 0.7  Transposase IS4 family protein 

[Cyanothece sp. PCC 8801] 

145/187 

(77%) 

YP_002364719 

orf2    > 0.58 Conserved hypothetical protein 

[Bacteroides sp. 3_1_23]  

43/196 

(21%) 

ZP_07037929 

orf3    > 0.2 Partial sequence of ABC 

transporter gene [Pseudomonas 

savastanoi pv. savastanoi 

NCPPB 3335] 

22/63  

(34%) 

ZP_07007141  

orf4    > 0.25 Hypothetical protein MAE_10500 

[Microcystis aeruginosa NIES-

843]  

45/82  

(54%) 

YP_001656064 

orf5    > 0.35 Unnamed protein product 

[Microcystis aeruginosa PCC 

7806]  

83/120 

(69%) 

CAO89065  

orf6    >  0.47 Translation-associated GTPase 

[Paenibacillus larvae ssp. larvae]  

46/177 

(25%) 

ZP_02329628  

orf7    >     0.41 Hypothetical protein MAE_47070 

[Microcystis aeruginosa NIES-

843] 

88/137 

(64%) 

YP_001659721 

orf8    >  0.9 Unnamed protein product 

[Microcystis aeruginosa PCC 

7806]  

206/303 

(67%) 

CAO90918 
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Table 4.7.2-1 (continued): 

Gene Size 

(kb) 

Highest homology (protein level) Identity of 

aligned 

amino acids 

GenBank 

accession 

number 

orf9    > 0.35 Hypothetical protein 
CwatDRAFT_4464 
[Crocosphaera watsonii WH 
8501] 

58/117 

(49%) 

ZP_00515402 

orf10  >  

0.34 

XisI protein-like [Anabaena 

variabilis ATCC 29413] 

97/114 

(85%) 

YP_322782 

orf11  < 0.98 Nucleotide-diphospho-sugar 

transferase protein [Cyanothece 

sp. PCC 8801]  

172/277 

(62%) 

YP_002373870  

orf12  <  0.93 Probable glycosyl transferase 

[Nodularia spumigena CCY9414]  

216/311 

(69%) 

ZP_01629594 

orf13  < 1.2 Glycosyl transferase, group 1 

[Nostoc punctiforme PCC 73102]  

309/406 

(76%) 

 

YP_001866301 

orf14  <  2.24 ABC transporter related [Nostoc 

punctiforme PCC 73102]  

549/774 

(70%) 

YP_001866302 

orf15  < 1.16 Glycosyl transferase, group 1 

[Nostoc punctiforme PCC 73102]  

280/389 

(71%) 

 

YP_001870304 

orf16  <  0.23 Hypothetical protein 

(glycosyltransferase family A; GT-

A) [Nostoc punctiforme PCC 

73102]  

93/116 

(80%) 

YP_001866304 

orf17  < 0.92 Hypothetical protein (glycosyl 

transferase family 11)                          

[Oscillatoria sp. PCC 6506]  

188/307 

(61%) 

 CBN58369 
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Table 4.7.2-1 (continued):  

Gene Size 

(kb) 

Highest homology (protein level) Identity of 

aligned 

amino acids 

GenBank 

accession 

number 

orf18  > 0.77 Beta-lactamase-like protein 

[Nodularia spumigena CCY9414]  

203/257 

(78%) 

ZP_01629590 

orf19  < 0.15 50S ribosomal protein L9 

[Anabaena variabilis ATCC 

29413]  

116/151 

(76%) 

YP_320850  

orf20  <  0.92 Hypothetical protein [Nostoc sp. 

PCC 7120]   

239/308 

(77%) 

NP_485051                 

 

In conclusion, the putative ambigol biosynthetic gene cluster is possibly boardered by 

orf21 and orf24 [figure 4.7.2-1] [table 4.7.2-2].  

 

 

Figure 4.7.2-1: Organisation of genes putatively involved in the biosynthesis of the ambigols. Genes 

encoding Orfs with possible regulative functions (i.e. orf21, 22) as well as orf24, which encodes a 

protein of unknown function are coloured in black. Genes probably related to the biosynthesis of 

ambigols are shown in blue. A putative DAHP synthetase is encoded by orf23. This class of enzymes 

is typically involved in the output control of shikimate-dependent biosynthetic pathways (Thykaer et al., 

2010). 

DNA sequences that are probably related to the production of ambigols are illustrated 

in figure 4.7.2-1. These enzymes are probably a phenolic halogenase (gene ab1), 

two CYP 450 enzymes (genes ab2 and ab3), a chorismate lyase (gene ab4), an 

AMP-ligase (gene ab5), an NRPS-like module (gene ab6) and a second phenolic 

halogenase (gene ab7) [table 4.7.2-2].   

 

 

orf21 ab1 orf22 ab2 ab3 ab4 ab5 orf23 ab6 ab7 orf24 
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Table 4.7.2-2: BLAST search results for the transposase-boardered assembly of genes on contig 

00522, which are putatively involved in ambigol biosynthesis. The deduced amino acid sequences of 

orfs found on contig 00522 (first column) were aligned with homologous proteins by BLAST (3.1.13). In 

column four, the ratio of identical amino acids (first value) to all compared amino acids (second value) 

is given (percentage in brackets). In the first column, the orientation of orfs identified on contig 00522 

is given: > (5’,3’-direction); < (3’,5’-direction).  

Gene Size 

(kb) 

Highest homology (protein level) Identity of 

aligned 

amino acids 

GenBank 

accession 

number 

orf21 > 1.45 Conserved hypothetical protein 

[Cyanothece sp. PCC 7424]  

275/466 

(59%) 

YP_002380103              

ab1    > 1.45 Phenolic halogenase CrpH 

[Nostoc sp. ATCC 53789] 

283/485 

(58%) 

ABM21576    

ab2    > 1.48 CYP 1D1 [Danio rerio]  168/479 

(35%) 

NP_001007311  

ab3    >  1.46 CYP 1C2 [Oncorhynchus  
mykiss] 

168/479 

(35%) 

NP_001171961 

orf22  > 0.62 Cyclase/dehydrase-like protein 

[Nodularia spumigena 

CCY9414]; Polyketide_cyc2 

superfamily   

87/206 

(42%) 

ZP_01629447 

ab4    > 0,62 Conserved hypothetical protein 

(Chorismate lyase superfamily); 

[Microcoleus chthonoplastes 

PCC 7420]  

112/193 

(58%) 

ZP_05024769 
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Table 4.7.2-2 (continued):  

Gene Size 

(kb) 

Highest homology (protein level) Identity of 

aligned 

amino acids 

GenBank 

accession 

number 

ab5    > 1.53 AMP-dependent synthetase and 

ligase (Acyl CoA synthetases 

(AMP-forming)/AMP-acid 

ligases II) [Herpetosiphon 

aurantiacus]  

259/511 

(50%) 

YP_001546718 

orf23  > 1.13 3-deoxy-7-phosphoheptulonate 

synthase (NeuB Superfamily);   

[Nodularia spumigena 

CCY9414]  

233/363 

(64%) 

ZP_01628888 

ab6    > 2.63 a) Condensation domain (~900 

bp);  [Nostoc punctiforme PCC 

73102] 

248/483 

(51%) 

  

YP_001866789 

 

  b) NRPS sequence (~510 bp) 

partially identified as the 

protein domain TIGR01720;  

[Tolypothrix sp. PCC 7601/1]  

74/149 

(49%) 

 

CAC60280  

  

  c) PP-binding domain (~192 bp) 

[Anabaena variabilis ATCC 

29413] 

70/117 

(59%) 

 

YP_325330   

  

  d) Thioesterase domain (~771 

bp); [Nostoc punctiforme PCC 

73102] 

133/286 

(46%) 

YP_001869788  
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Table 4.7.2-2 (continued):  

Gene Size 

(kb) 

Highest homology (protein level) Identity of 

aligned 

amino acids 

GenBank 

accession 

number 

ab7    > 1.67 Phenolic  halogenase McnD 

[Microcystis aeruginosa]  

367/556 

(66%) 

CAO82181 

orf24  < 0.23 Conserved hypothetical protein 

Aazo_2377 ['Nostoc azollae' 

0708] 

56/78  

(71%) 

YP_003721441 

orf25  < 1.4 Transposase, IS605 family 

[Microcoleus sp.] 62 % 

324/441 

(73%) 

ZP_01629916  

 

Genetic information identified on fosmid E8 (4.4.4) were identical to those found on 

contig 00522, whereby the sequence of ab2 could be completed and the additional 

halogenase gene ab1 was found [table 4.7.2-2]. 
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4.7.3 Orf21 shows homology to regulative proteins 

Orf21 shows homology to AAA-ATPase-like proteins (i.e. ATPases associated with 

diverse cellular activities) [table 4.7.3-1], which are known to participate in several 

cellular processes including the regulation of gene expression (Wilcox & Laney, 

2009; Snider et al., 2008; Snider & Houry, 2008; White & Lauring, 2007). Orf21 also 

resembles WD (tryptophan-aspartate)-repeat containing proteins, which fulfil cellular 

functions and may be involved in the regulation of gene transcription (Neer et al., 

1994).  

Table 4.7.3-1: BLAST search results for the deduced peptide sequence of orf21 found on contig 

00522 obtained from 454 sequencing of F. ambigua. Homologous proteins are shown in column one. 

The deduced amino acid sequence of orf21 was aligned with the respective homologous proteins by 

BLAST (3.1.13). In column two, the ratio of identical amino acids (first value) to all compared amino 

acids (second value) is given (percentage in brackets). Positives are amino acid residues that are 

similar to each other concerning their chemical properties (e.g. polarity, aromaticity, side chains, and 

acidity). 

Homologous amino acid 
sequence 

Identity of 
aligned amino 

acids 

Positives of 
aligned 

amino acids 

GenBank 
accession 

number 

Hypothetical protein [Cyanothece 
sp. PCC 7424]  

275/466  
(59%) 

344/466 
(73%) 

YP_002380103                     

Hypothetical protein 
[Trichodesmium erythraeum 
IMS101 

250/462 
(54%) 

333/462 
(72%) 

YP_723374 

Hypothetical protein                        
(AAA-ATPase-like)                           
[Microcystis aeruginosa NIES-
843]  

220/346 
(63%) 

277/346 
(80%) 

YP_001657291 

Hypothetical protein                         
(WD-repeat containing protein) 
[Cyanothece sp. PCC 7822]  

214/343 
(62%) 

273/343 
(79%) 

ZP_03155193               

GGDEF domain protein           
(Diguanylate-cyclase)                                       
[Microcoleus chthonoplastes 
PCC 7420  

204/437 
(46%) 

287/437 
(65%) 

ZP_05024949                
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4.7.4 Ab1, an FADH2-dependent halogenase 

The first protein identified in the putative ambigol biosynthetic gene cluster consists of 

483 amino acids. A BLAST search performed with the amino acid sequence of Ab1 

revealed homology to FADH2-dependent halogenases (1.4.1) [table 4.7.4-1]. 

Table 4.7.4-1: BLAST search results for the deduced amino acid sequence of ab1 found on contig 

00522, obtained from 454 sequencing of F. ambigua. In column two, the ratio of identical amino acids 

(first value) to all compared amino acids (second value) is given (percentage in brackets). Positives 

are amino acid residues that are similar to each other concerning their chemical properties (e.g. 

polarity, aromaticity, side chains, and acidity). 

homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank accession 
number/Reference 

CrpH [Nostoc sp. ATCC 
53789] 

283/485 
(58%) 

377/485                          
(77%) 

ABM21576                  
(Magarvey et al., 2006) 

Putative tryptophan 
halogenase [Burkholderia 
pseudomallei 576]  

224/484 
(46%) 

331/484 
(68%) 

ZP_03453428  

CmdE [Chondromyces 
crocatus] 

221/498 
(44%) 

322/498     
(64%) 

CAJ46693                 
(Rachid et al., 2006) 

ORF8* halogenase 
[Actinoplanes 
teichomyceticus] 

155/414 
(37%) 

243/414 
(58%) 

CAG15020 (Li et al., 
2004) 

RadH [Chaetomium 
chiversii]  

148/382 
(38%) 

217/382 
(56%) 

ACM42402                      
(Wang et al., 2008) 

Halogenase BhaA 
[Amycolatopsis 
balhimycina]  

145/400 
(36%) 

234/400 
(58%) 

CAA76550                       
(Puk et al., 2002) 

The amino acid sequence of Ab1 resembles published FADH2-dependent 

halogenases involved in the biosynthesis of cryptophycin (CrpH), chondramide B and 

D (CmdE), teicoplanin (ORF8*), radicicol (RadH) and balhimycin (BhaA) (for literature 

see table 4.7.4-1). 

Figure 4.7.4-1 shows a multiple sequence alignment of the deduced amino acid 

sequence of gene ab1 and the first three homologous proteins listed in table 4.7.4-1. 

Two motifs are highly conserved in FADH2-dependent halogenases (van Pée & 

Patallo, 2006): the G-X-G-X-X-G, present as G-G-G-P-A-G in Ab1, located in the 

flavin-binding site near the amino terminal end (van Pée & Zehner, 2003). Near the 

middle of the sequence, a second absolutely conserved region W-X-W-X-I-P is 
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present as W-L-W-G-I-P in Ab1 (Dong et al., 2005). In addition, a lysine moiety that is 

involved in the mechanistic action of the halogenation reaction was recognised at 

position 75 (Buedenbender et al., 2009; Flecks et al., 2008; Yeh et al., 2007).  

 
 
 
                                     

 
 

Figure 4.7.4-1: Multiple sequence alignment of Ab1 with putative halogenases from Nostoc sp. ATCC 

53789 (CrpH), Burkholderia pseudomallei 576 (Thalburk) and Chondromyces crocatus (CmdE). For 

GenBank accession numbers, see table 4.7.4-1. Amino acids identical in all compared sequences are 

shaded in red and those, which are only identical among up to three compared sequences are 

coloured in yellow.  

4.7.5 Two adjacent CYP 450 enzymes  

Ab2 and Ab3 were identified in the putative ambigol biosynthetic gene cluster and 

were analysed by BLAST search (3.1.13). They reveal significant homology to 

vertebrate CYP 450-dependent monooxygenases. For Ab2, highest similarity to 

those of subfamilies D and A were determined [table 4.7.5-1]. 

Table 4.7.5-1: BLAST search results for the deduced peptide sequence of ab2, partially found on 

fosmid E8. It was confirmed and completed by contig 00522, obtained from 454 sequencing of F. 

ambigua. In column two, the ratio of identical amino acids (first value) to all compared amino acids 

(second value) is given (percentage in brackets). Positives are amino acid residues that are similar to 

each other concerning their chemical properties (e.g. polarity, aromaticity, side chains, and acidity).  

Homologous amino 
acid sequence 

Identity of 
aligned amino 

acids 

Positives of 
aligned 

amino acids  

GenBank accession 
number/Reference 

CYP 1D1 [Danio rerio] 165/486 
(33%) 

255/486            
(52%) 

NP_001007311                      
(Goldstone et al., 2009) 

CYP 1D1 [Fundulus 
heteroclitus]  

156/506 
(30%) 

252/506 
(49%) 

ACO51073                         
(Zanette et al., 2009) 

CYP 1A1 [Xenopus 
laevis]  

156/507 
(30%) 

255/507 
(50%) 

NP_001090541               
(Laub et al., 2010) 

 

Ab1 G G G P A G 19 Q Y K 75 W L W G I P 223 

CrpH G G G P S G 19 Q R K 75 W V W G I P 221 

Thalburk G G G P A G 28 Q R K 84 W W W A I P 231 

CmdE G G G P A G 18 Q R K 42 W I W G I P 219 

Motif I Conserved 

lysine 

Motif II 
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A BLAST search performed for Ab3 showed similar results as found for Ab2, while it 

possesses highest homology to CYP 450 enzymes of subfamilies C and A [table 

4.7.5-2]. 

Table 4.7.5-2: BLAST search results for the deduced amino acid sequence of ab3, found on fosmid 

E8. It was also confirmed by contig 00522, obtained from 454 sequencing of F. ambigua. In column 

two, the ratio of identical amino acids (first value) to all compared amino acids (second value) is given 

(percentage in brackets). Positives are amino acid residues that are similar to each other concerning 

their chemical properties (e.g. polarity, aromaticity, side chains, and acidity). 

Homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank accession 
number/Reference 

CYP 1C2 
[Oncorhynchus  
mykiss] 

168/479 
(35%) 

259/479 
(54%) 

NP_001171961              
(Jonsson et al., 2010b) 

CYP 1A1 [Xenopus 
laevis]  

169/486 
(34%) 

264/486 
(54%) 

NP_001090541                 
(Laub et al., 2010)  

CYP 1C3 
[Oncorhynchus  
mykiss]   

168/482 
(34%) 

257/482 
(53%) 

NP_001171962    (Jonsson 
et al., 2010a)  

 

Ab2 and Ab3 harbour the typical three conserved regions found in CYP 450-

dependent monooxygenases (1.4.4). These motifs were recognized in a multiple 

sequence alignment of Ab2 and Ab3, respectively, with similar CYP 450 enzymes 

[figure 4.7.5-1]. First, an absolutely conserved cysteine ligand in the heme binding 

motif F-X-X-G-X-X-X-C-X-G of the active center was found at position 433 in Ab2 and 

at position 437 in Ab3. In the second typical consensus sequence, the E-X-X-R motif 

is located in helix K, in which glutamic acid and arginine are generally but not 

absolutely conserved (Rupasinghe et al., 2006). The A-(A,G)-X-(E,D)-T motif of helix 

I contains a generally conserved threonine residue present in most but not in all CYP 

450s (Lewis & Wiseman, 2005). It is presumably involved in the binding and 

activation of dioxygen. The latter motif (motif I) is not completely conserved in Ab2 

and Ab3 revealing a lysine residue instead of threonine. 
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Figure 4.7.5-1: Multiple sequence alignment of Ab2 and Ab3 with amino acid sequences of CYP 450-

dependent monooxygenases from the zebrafish (Danio rerio), the african clawed frog (Xenopus laevis) 

and the rainbow trout (Oncorhynchus mykiss; GenBank accession: NP_001171961). For GenBank 

accession numbers, see table 4.7.5-1 and 4.7.5-2. Amino acids identical in all compared sequences 

are shaded in red and those, which are only identical among up to four compared sequences are 

coloured in yellow. Green shaded amino acids are only identical in Ab2 and Ab3.    

Based on the presence of conserved motifs, Ab2 and Ab3 most likely belong to the 

P450 superfamily (GenBank accession: cl12078). A BLAST search comparing the 

sequences of genes ab2 and ab3 gave an identity of 1181/1397 (84%). 

 

 

 

 

 

 

 

 

 

 

 

CYP1D1[ Danio rerio ] F G M G I R R C L G 460 

CYP1A1[ Xenopus laevis ] F G L G K R R C V G 468 

CYP1C2[ Oncorhynchus mykiss ] F S A G K R R C I G 466 

Ab2 [ F. ambigua  ] F G M G S R R C I G 435 

Ab3 [ F. ambigua  ] F G I G S R R C I G 439 

CYP1D1[ Danio rerio ] A G F D T 322 E V F R 378 

CYP1A1[ Xenopus laevis ] A G F D T 329 E M F R 385 

CYP1C2[ Oncorhynchus mykiss ] A G L D T 328 E T M R 384 

Ab2 [ F. ambigua  ] A G A G L 296 E I F R 352 

Ab3 [ F. ambigua  ] A G T E L 300 E V F R 356 

Motif I 

Motif III 

Motif II 
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4.7.6 Orf22 belongs to the polyketide_cyc2 superfamily 

Orf22 exhibits homology to proteins from the polyketide_cyc2 superfamily that 

comprises polyketide cyclases/dehydrases (GenBank accession: cl10449) and 

proteins involved in lipid transport [table 4.7.6-1]. 

Table 4.7.6-1: BLAST search results for the deduced amino acid sequence of orf22, found on fosmid 

E8. It was also confirmed by contig 00522, obtained from 454 sequencing of F. ambigua. In column 

two, the ratio of identical amino acids (first value) to all compared amino acids (second value) is given 

(percentage in brackets). Positives are amino acid residues that are similar to each other concerning 

their chemical properties (e.g. polarity, aromaticity, side chains, and acidity). 

Homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank accession 
number 

Cyclase/dehydrase-like protein 
[Nodularia spumigena 
CCY9414] 

87/206 
(42%) 

126/206 
(61%) 

ZP_01629447 

Cyclase/dehydrase [Nostoc 
punctiforme PCC 73102]  

78/174 
(44%) 

112/174 
(64%) 

YP_001866258               

Cyclase/dehydrase [Anabaena 
variabilis ATCC 29413] 

85/191 
(44%) 

116/191 
(60%) 

YP_324949 

4.7.7 Ab4, a putative chorismate lyase 

Ab4 belongs to the chorismate lyase superfamily (GenBank accession: cl01230) and 

shares 58 % identity with a putative 4-hydroxybenzoate (4-HBA) synthetase from 

Microcoleus chthonoplastes PCC 7420 and 55% identity with a putative chorismate 

lyase from Beggiatoa sp. PS [table 4.7.7-1]. The enzyme chorismate lyase is well-

known from the ubiquinone pathway catalysing the removal of pyruvate from 

chorismate (1.4.2) to generate 4-hydroxybenzoic acid. The crystal structure of 

chorismate lyase from E. coli has been solved (Gallagher et al., 2001), and 

furthermore studies on ligand binding and catalysis have been recently published 

(Smith et al., 2006). 
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Table 4.7.7-1: BLAST search results for the deduced peptide sequence of ab4, found on fosmid E8. It 

was also confirmed by contig 00522, obtained from 454 sequencing of F. ambigua. In column two, the 

ratio of identical amino acids (first value) to all compared amino acids (second value) is given 

(percentage in brackets). Positives are amino acid residues that are similar to each other concerning 

their chemical properties (e.g. polarity, aromaticity, side chains, and acidity). 

Homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank 
accession number 

Conserved hypothetical protein 
(putative 4-hydroxybenzoate 
synthetase); [Microcoleus 
chthonoplastes PCC  7420] 

112/193 
(58%) 

151/193 
(78%) 

ZP_05024769 

Conserved hypothetical protein 
(putative chorismate lyase);  
[Beggiatoa sp. PS]  

98/177 
(55%) 

134/177 
(75%) 

ZP_02000334  

Hypothetical protein (putative 
chorismate lyase); 
[Herpetosiphon aurantiacus 
ATCC 23779]  

73/184 
(39%) 

118/184 
(64%) 

YP_001546717  

4-Hydroxybenzoate synthetase 
(chorismate lyase);  [Hahella 
chejuensis KCTC 2396] 

59/193 
(30%)  

98/193 
(50%) 

YP_437233 

4.7.8 Ab5, a putative CoA synthetase  

The amino acid sequence of Ab5 was analysed by BLAST search and was found to 

resemble putative AMP-dependent synthetases/ligases of Herpetosiphon aurantiacus 

ATCC23779 with high homology. Detailed results are presented in table 4.7.8-1. 

AMP-forming acyl CoA synthetases belong to the adenylate-forming enzyme 

superfamily (1.4.3) (Linne et al., 2007). 
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Table 4.7.8-1: BLAST search results for the deduced amino acid sequence of ab5, found on fosmid 

E8. It was also confirmed by contig 00522, obtained from 454 sequencing of F. ambigua. In column 

two, the ratio of identical amino acids (first value) to all compared amino acids (second value) is given 

(percentage in brackets). Positives are amino acid residues that are similar to each other concerning 

their chemical properties (e.g. polarity, aromaticity, side chains, and acidity).  

Homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank 
accession number 

AMP-dependent synthetase and 
ligase [Herpetosiphon 
aurantiacus ATCC 23779] 

259/511 
(50%) 

352/511 
(68%) 

YP_001546718 

 AMP-binding enzyme 
[Teredinibacter turnerae T7901]  

213/510 
(41%) 

302/510 
(59%) 

YP_003075760  

Acyl CoA synthetase (AMP-
forming)/AMP-acid ligases II 
[Hahella chejuensis KCTC 2396]  

184/511 
(36%) 

284/511 
(55%) 

YP_437234                  

Acyl CoA synthetase 
[Geobacillus thermodenitrificans 
NG80-2] 

182/522 
(34%) 

288/522 
(55%) 

YP_001124702              

 

A multiple sequence alignment of Ab5 with similar amino acid sequences [table 4.7.8-

1] reveals the presence of three signature motifs [figure 4.7.8-1].   

 

 

  

 

   
 

Figure 4.7.8-1: Multiple sequence alignment of Ab5 with amino acid sequences of adenylate-forming 

enzymes from Herpetosiphon aurantiacus ATCC 23779, Teredinibacter turnerae T7901, and Hahella 

chejuensis KCTC 2396. For GenBank accession numbers, see table 4.7.8-1. Amino acids identical in 

all compared sequences are shaded in red and those, which are only identical among up to three 

compared sequences are coloured in yellow. 

F. ambigua Y G C T E 315 F F T G D 397 
H. aurantiacus ATCC 23779 Y G C T E 309 F F T G D 390 
Teredinibacter turnerae T7901 Y G S T E 291 F Y T G D 373 
Hahella chejuensis KCTC 2396 Y G S T E 288 Y H T G D 369 

F. ambigua S S G S T G R P K R 173 
H. aurantiacus ATCC 23779 S S G S T G R P K K 165 
Teredinibacter turnerae T7901 S T G S T G K P K R 161 
Hahella chejuensis KCTC 2396 S S G S T G S P K Q 158 

Motif II Motif III 

Motif I 
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The first highly conserved consensus region T[SG]-S[G]-G-[ST]-T[SE]-G[S]-X-P[M]-

K-G[LF] as described by Chang et al. (1997) was identified in Ab5 as S-S-G-S-T-G-

R-P-K (Chang et al., 1997). Instead of glycine, leucine or phenylalanine (G, L, F) an 

arginine was recognised as the last amino acid of the motif. Motifs II and III, which 

are Y[LWF]-G[SMW]-X-T[A]-E and Y[FL]-R[KX]-T[SV]-G-D could also be identified. 

Based on crystal structures of firefly luciferase and other members of the superfamily, 

an involvement of these three motifs in substrate binding and enzymatic turnover is 

supported (Ingram-Smith et al., 2006b).  

4.7.9 Ab6, an NRPS-like module 

Adjacent to the AMP-dependent CoA synthetase, an isolated NRPS-like module was 

found by BLAST search of the deduced amino acid sequence of ab6. As a starter 

NRPS-module, it reveals an unusual composition beginning with a C domain followed 

by a phophopantheteine (PP) binding site and a TE domain but lacking an A domain 

for activation and loading of an amino acid [figure 4.7.9-1]. 

 

 

 

 

Figure 4.7.9-1: NRPS-like module with relative sizes of its domains found on fosmid E8 and on contig 

00522 adjacent to the adenylate-forming enzyme Ab5. Standard starter NRPS-modules begin with an 

A domain followed by a PCP and C domain (ATC-modules). Ab6 lacks an A domain in front of the C 

domain. The C domain is followed by an NRPS sequence that was partially identified as TIGR01720 

(~ 40 amino acids), which is analysed below. Its function in NRPS-modules is currently unclear 

(4.7.9.2).  

4.7.9.1 C domain of Ab6 

The C domain of Ab6 resembles C domains (1.4.5) of the cyanopeptolin synthetase 

OciA from Planktothrix rubescens NIVA-CYA 98, the NRPS NosA and NosD from the 

nostopeptolide A biosynthetic gene cluster of Nostoc sp. GSV224 and CrpD, which is 

involved in cryprophycin assembly in Nostoc sp. ATCC 53789. Table 4.7.9.1-1 shows 

identity of Ab4 with these proteins.  

 

C domain TIGR01720? PCP TE domain 
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Table 4.7.9.1-1: BLAST search results for the C domain of Ab6. The gene ab6 was found on fosmid 

E8. It was also confirmed by contig 00522, obtained from 454 sequencing of F. ambigua. In column 

two, the ratio of identical amino acids (first value) to all compared amino acids (second value) is given 

(percentage in brackets). Positives are amino acid residues that are similar to each other concerning 

their chemical properties (e.g. polarity, aromaticity, side chains, and acidity).  

homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids  

GenBank 
accession 
number/Reference  

Condensation domain-
containing protein [Nostoc 
punctiforme PCC 73102]  

232/434 
(53%) 

305/434 
(70%) 

YP_001866789             

peptide synthetase [Cyanothece 
sp. ATCC 51142]  

231/458 
(50%) 

311/458 
(67%) 

YP_001804456 
(Welsh et al., 2008)  

OciA protein [Planktothrix 
rubescens NIVA-CYA 98] 

213/417 
(51%) 

291/417 
(69%) 

CAQ48254   
(Rounge et al., 
2009) 

NosD [Nostoc sp. GSV224]  216/440 
(49%) 

298/440 
(67%) 

AAF17281 
(Hoffmann et al., 
2003) 

NosA [Nostoc sp. GSV224] 208/418 
(49%) 

288/418 
(68%) 

AAF17281 
(Hoffmann et al., 
2003)  

CrpD [Nostoc sp. ATCC 53789]  209/416 
(50%) 

278/416 
(66%) 

ABM21572 
(Magarvey et al., 
2006) 

The amino acid sequence of the C domain of Ab6 was aligned with related C 

domains of OciA, NosD and CrpD [figure 4.7.9.1-1] revealing the presence of the 

typical conserved core motif H-H-X-X-X-D-G [table 4.7.9.1-2]. Additional six signature 

sequences, which were described by Konz and Marahiel (1999), were recognised 

with some variations (Konz & Marahiel, 1999). Table 4.7.9.1-2 shows the general 

formulation of seven canonical core motifs of C domains and the corresponding 

sequence found in Ab6 of F. ambigua. 
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Table 4.7.9.1-2: Consensus sequences of C domains as described by Konz and Marahiel (1999) in 

the left column and conserved motifs for Ab6 are listed in the right column. Amino acids that are 

different in the compared sequences are emphasised by underlined, bold letters. 

conserved motif of C-domains motif found in F. ambigua 

C1: S-X-A-Q-X-R-(L,M)-(W,Y)-X-L S-F-S-Q-E-R-L-W-F-L 

C2: R-H-E-X-L-R-T-X-F R-H-E-A-L-R-T-T-F 

C3: M-H-H-X-I-S-D-G-(W,V)-S V-H-H-I-V-I-D-F-W-S 

C4: Y-X-D-(F,Y)-A-V-W Y-A-D-F-A-V-W 

C5: (I,V)-G-X-F-V-N-T-(Q,L)-(~)-X-R I-G-Y-F-V-N-L-L-I-L-R 

C6: (HN)-Q-D-(Y,V)-P-F-E Y-Q-D-L-P-V-Q 

C7: R-D-X-S-R-N-P-L Y-V-A-P-R-N-P-L 

 

Multiple sequence alignments with similar proteins found by BLAST search [table 

4.7.9.1-1] led to the identification of the seven core motifs C1-C7 in the peptide 

sequence of Ab6 [figure 4.7.9.1-1]. 

                                                                

OciA S Y A Q T R L W F L 123 
 

R H E A L R T N F 168 

NosD S Y A Q Q R L W F L 70 
 

R H E A L R T N F 115 

CrpD S F A Q D R L W F L 74 
 

R H E V L R T S F 119 

Ab6 S F S Q E R L W F L 77 
 

R H E A L R T T F 123 

 

                                                              

OciA L H H V I S D G W S 242 
 

Y A D F A V W 287 

NosD M H H I V S D A W S 189 
 

Y A D F A I W 234 

CrpD M H H I V S D G W S 193 
 

Y A D F A V W 238 

Ab6 V H H I V I D F W S 197 
 

Y A D F A V W 242 

 

                                                                                                                                       

OciA I G F F V N T L V M R 406 
 

H Q D L P F E 438 

NosD I G F F V N T L V L R 353 
 

H Q D L P F E 385 

CrpD I G F F A N T L V L K 357 
 

H Q D V P F E 389 

Ab6 I G Y F V N L L I L R 361 
 

Y Q D L P V Q 393 
      

Figure 4.7.9.1-1:  Multiple sequence alignment of Ab6 with amino acid sequences of C domains from 

OciA from Planktothrix rubescens NIVA-CYA 98, NosA and NosD from Nostoc sp. GSV224 and CrpD 

from Nostoc sp. ATCC 53789. For GenBank accession numbers, see table 4.7.9.1-1. Amino acids 

identical in all compared sequences are shaded in red and those, which are only identical among up to 

three compared sequences are coloured in yellow.   

Motif C1 

Motif C3 

Motif C2 

Motif C4 

Motif C5 Motif C6 
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Motif C7 

OciA I H Q L F E E Q V E R T P N A V A V V F 

NosD - - - - - - - - - - - - - - - - - - - - 

CrpD V H F L S S N - - - - - - N L Q I Y I L 

Ab6 V Y V A P R N - - - - - - - - - - - P L 

 

Figure 4.7.9.1-1 (continued)  

Motif C1 is not completely conserved in Ab6 containing a phenylalanine residue 

instead of an alanine as the third amino acid of the motif. Motif C3 as it is present in 

the deduced peptide sequence of ab6 differs from the usual motif found in C domains 

[table 4.7.9.1-2], however the essential second histidine residue is present (Sieber & 

Marahiel, 2005).  

C domains belong to the superfamily of CoA-dependent acyltransferases, which carry 

the typical consensus sequence H-H-X-X-X-D-G. In case of C domains, the latter is 

responsible for the aminoacyl transfer to generate amide bonds in a growing peptide 

chain. The histidine and aspartate moieties of the motif are considered to be 

essential for acyltransferase activity (Bergendahl et al., 2002).  

Motif C5 is conserved completely except the 7th amino acid being leucine instead of 

threonine. However, striking difference in motifs C6 and C7 from those postulated by 

Konz and Marahiel (1999) were found for the C domain of Ab6.  

4.7.9.2 NRPS domain TIGR01720  

BLAST search performed on Ab6 revealed that the C domain is followed by a peptide 

synthase domain, which partially was recognised as TIGR01720 (NCBI Conserved 

Domains Database: TIGR01720). A classification to the NRPS-para261-superfamily 

(Genbank accession: cl11771) was suggested by BLAST. However, the conserved 

residues, which are the following three could not be recognised in the sequence: a 

highly conserved lysine residue at the N-terminus (position 11), which is followed by 

R-X-X-P-X-X-G-X-G-Y-G with an invariant proline and a conserved first glycine. A 

second motif is F-N-Y-L-G located about 22 residues later. Near the C-terminus of 

the domain, a third sequence T-X-S-D is usually conserved and carries a nearly 

invariant serine and aspartate (NCBI Conserved Domains Database: TIGR01720) 

(Marchler-Bauer et al., 2009).  

http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=cl11771


111 
Results 

 

Furthermore, the peptide synthase domain TIGR01720 usually has a size of about 

171 amino acids, whereas in Ab6 approximately 40 of 170 amino acids were 

recognised as TIGR01720 [table 4.7.2-2]. Therefore, the sequence is probably an 

artefact and not related to ambigol biosynthesis. Its possible function in ambigol 

biosynthesis could not be deduced.  

4.7.9.3 PP-binding domain of Ab6 

The PP-binding domain of Ab6 was analysed by BLAST search and resulted in the 

identification of the conserved motif D-X-F-F-X-X-L-G-G-(H,D)-S-(L,I) according to 

Konz, D. and Marahiel, M. (1999), see figure 4.7.9.3-1. 

Table 4.7.9.3-1: BLAST search results for the PCP domain of Ab6. The gene ab6 was found on fosmid 

E8. It was also confirmed by contig 00522, obtained from 454 sequencing of F. ambigua. In column 

two, the ratio of identical amino acids (first value) to all compared amino acids (second value) is given 

(percentage in brackets). Positives are amino acid residues that are similar to each other concerning 

their chemical properties (e.g. polarity, aromaticity, side chains, and acidity).  

Homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank accession 
number/Reference 

Phosphopantetheine 
attachment site [Anabaena 
variabilis ATCC 29413] 

49/83 (59%) 63/83 (75%) YP_325330                

Phosphopantetheine 
attachment site ['Nostoc 
azollae' 0708] 

47/81 (58%) 59/81 (72%)  YP_003721147              

PP-binding domain of MicD 
[Planktothrix rubescens 
NIVA-CYA 98] 

47/83 (56%) 62/83 (74%) CAQ48261 (Rounge 
et al., 2009) 

PP-binding domain of NosD 
[Nostoc sp. GSV224] 

46/83 (55%) 62/83 (74%) AAF17281 (Hoffmann 
et al., 2003) 

 

The PCP domain of Ab6 belongs to the superfamily of PP-binding proteins (GenBank 

accession: cl09936) containing a phosphopantetheine attachment site that is 

recognised by the signature motif D-X-F-F-X-X-L-G-G-(H,D)-S-(L,I) with an invariant 

serine residue according to Konz, D. and Marahiel, M. (1999).  Figure 4.7.9.3-1 

shows a multiple sequence alignment of the PP-binding domain with similar domains 

from strains of Anabaena, Nostoc and Planktothrix, which allowed specifying the 

conserved motif in Ab6, present as D-N-F-F-E-L-G-G-E-S-L. 
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N. azollae D N F F E L G G H S L 35 

Nostoc sp. GSV224 D N F F E L G G H S L 39 

F. ambigua D N F F E L G G E S L 38 

P. rubescens  E N F F E L G G H S L 34 

  

Figure 4.7.9.3-1: Multiple sequence alignment of Ab6 from F. ambigua with amino acid sequences of 

PP-domains from Anabaena variabilis ATCC 29413, 'Nostoc azollae' 0708, MicD from Planktothrix 

rubescens NIVA-CYA 98 and NosD from Nostoc sp. GSV224. For GenBank accession numbers, see 

table 4.7.9.3-1. Amino acids identical in all compared sequences are shaded in red and those, which 

are only identical among up to three compared sequences are coloured in yellow.  

4.7.9.4 TE domain of Ab6 

A BLAST search performed on the TE domain of Ab6 classifies it to the superfamily 

of esterases and lipases acting on carboxylic esters (GenBank accession: cl12031) 

(Marchler-Bauer et al., 2009). It also belongs to the thioesterase protein family, i.e. 

pfam00975 (Schneider & Marahiel, 1998). In table 4.7.9.4-1, TE domains with highest 

identity to that of Ab6 are listed. 

 

Table 4.7.9.4-1: BLAST search results for the TE domain of Ab6. The gene ab6 was found on fosmid 

E8. It was also confirmed by contig 00522, obtained from 454 sequencing of F. ambigua. In column 

two, the ratio of identical amino acids (first value) to all compared amino acids (second value) is given 

(percentage in brackets). Positives are amino acid residues that are similar to each other concerning 

their chemical properties (e.g. polarity, aromaticity, side chains, and acidity).   

Homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank accession 
number/Reference 

TE domain [Nostoc 
punctiforme PCC 73102]  

130/276 
(47%) 

181/276 
(65%) 

YP_001869788             

TE domain [Anabaena 
variabilis ATCC 29413]  

126/287 
(43%)  

169/287 
(58%) 

YP_325330                 

TE domain of HctF [Lyngbya 
majuscula] 

122/307 
(39%) 

168/307 
(54%) 

AAY42398 
(Ramaswamy et al., 
2007) 

TE domain of JamP [Lyngbya 
majuscula] 

108/271 
(39%) 

153/271 
(56%) 

AAS98787 (Edwards 
et al., 2004) 

 

Thioesterases carry two consensus motifs. The first one is G-X-S-X-G, which is also 

common in the active sites of serine proteases, lipases and acyltransferases. The 

second conserved sequence, i.e. G-X-H-F is located approximately 140 amino acids 

downstream of the first. It contains a histidine residue which is essential for catalytic 
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activity (Reimmann et al., 2004). The TE domain of Ab6 was aligned with sequences 

from similar TE domains, listed in table 4.7.9.4-1, in order to identify the two 

conserved motifs. As a result, the latter were present in Ab6 with some mutations in 

the second one, which however contains the critical histidine moiety [figure 4.7.9.4-1]. 

 

F. ambigua 
 

G N S M G 93 
  

G D H F 243 

N. punctiforme 
 

G Y S S G 75 
  

G I H N 234 

HctF (L.majuscula) 
 

G H S F G 75 
  

G D H L 259 

JamP (L.majuscula) 
 

G A S L G 75 
  

A T H V 235 

 

Figure 4.7.9.4-1: Multiple sequence alignment of Ab6 from F. ambigua with amino acid sequences of 

TE domains from Nostoc punctiforme PCC 73102, HctF and JamP identified in the cyanobacterium 

Lyngbya majuscula. For GenBank accession numbers, see table 4.7.9.4-1. Amino acids identical in all 

compared sequences are shaded in red and those, which are only identical among up to three 

compared sequences are coloured in yellow. 

4.7.10 Ab7, a second FADH2-depedent halogenase 

Ab7 shares significant homology with published FADH2-dependent halogenases. 

BLAST search results for the peptide sequence of Ab7 are listed in table 4.7.10-1. 

Table 4.7.10-1: BLAST search results for the deduced peptide sequence of ab7, found on fosmid E8. 

It was also confirmed by contig 00522, obtained from 454 sequencing of F. ambigua. In column two, 

the ratio of identical amino acids (first value) to all compared amino acids (second value) is given 

(percentage in brackets). Positives are amino acid residues that are similar to each other concerning 

their chemical properties (e.g. polarity, aromaticity, side chains, and acidity).  

Homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank accession 
number/Reference 

Halogenase McnD 
[Microcystis aeruginosa]  

367/556 
(66%) 

438/556 
(78%) 

CAO82181 (Cadel-
Six et al., 2008) 

Halogenase AerJ 
[Microcystis aeruginosa 
NIES-98] 

359/554 
(64%) 

432/554 
(77%) 

ACM68683 (Ishida et 
al., 2009) 

Halogenase AdpC 
[Anabaena circinalis 90] 

355/556 
(63%) 

433/556 
(77%) 

CAC01605 
(Rouhiainen et al., 
2000) 

 

Motif I Motif II 
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Ab7 contains the two conserved signature motifs for FADH2-dependent halogenases 

described in 4.7.4 and a conserved lysine at position 78 [figure 4.7.10-1].  

 
                                                                     

McnD G G G L A G 76 
 

V K L 139 
 

W V W T I P 307 

AdpC G G G L A G 76 
 

V K L 139 
 

W V W T I P 307 

AerJ G G G L A G 76 
 

S K L 139 
 

W V W L I P 307 

Ab7 G S G L A G 16 
 

H K L 79 
 

W V W L I P 244 

 

Figure 4.7.10-1: Multiple sequence alignment of Ab7 from F. ambigua with amino acid sequences of 

published FADH2-dependent phenolic halogenases of Microcystis sp. and Anabaena circinalis. For 

GenBank accession numbers, see table 4.7.10-1. Amino acids identical in all compared sequences 

are shaded in red and those, which are only identical among up to three compared sequences are 

coloured in yellow.  

The peptide sequence of Ab7 is similar to halogenases from the biosynthesis of 

chlorinated cyclic peptides, i.e. McnD known from the biosynthesis of cyanopeptolin 

984 in several Microcystis strains (Rounge et al., 2007), AerJ from Microcystis 

aeruginosa NIES-98 (Cadel-Six et al., 2008) from aeruginosin production and ApdC, 

which is involved in the anabaenopeptilide 90B assembly line in Anabaena circinalis 

90 (Rouhiainen et al., 2000). It is remarkable that the two halogenases Ab1 and Ab7 

share only 22 % amino acid sequence identity. 

4.7.11 Orf23, a putative DAHP synthetase 

The gene orf23 possibly encodes a 3-deoxy-D-arabino-heptulosonate 7-phosphate 

(DAHP) synthetase. It shares 65 % identity with DAHP synthetases from Nodularia 

spumigena CCY9414, Nostoc punctiforme PCC 73102 and Anabaena variabilis 

ATCC 29413 [table 4.7.11-1]. These belong to the DAHP synthetase I family, i.e. 

class I DAHP synthetases according to the classification by Birck and Woodard (Wu 

& Woodard, 2006; Birck & Woodard, 2001). DAHP synthetases catalyse the first, 

crucial step in the shikimate pathway, in which chorismate and prephenate are 

formed as important intermediates for the production of the aromatic amino acids, i.e. 

phenylalanine, tyrosine and tryptophan. As well, chorismate is a precursor for the 

formation of aromatic aryl acids, e.g. 4-hydroxybenzoic acid [figure 5.5-1] (Wu et al., 

2003). DAHP synthetases exist as many isoforms and can be specifically inhibited, 

Motif I Motif II Conserved 

lysine 
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either by allostery feedback inhibition or by transcriptional regulation (Grove & 

Gunsalus, 1987).  

Table 4.7.11-1: BLAST search results for the deduced amino acid sequence of orf23, found on fosmid 

E8. It was also confirmed by contig 00522 obtained from 454 sequencing of F. ambigua. In column 

two, the ratio of identical amino acids (first value) to all compared amino acids (second value) is given 

(percentage in brackets). Positives are amino acid residues that are similar to each other concerning 

their chemical properties (e.g. polarity, aromaticity, side chains, and acidity).  

Homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank accession 
number 

3-Deoxy-7-
phosphoheptulonate 
synthase [Nodularia 
spumigena CCY9414] 

233/363 
(65%) 

295/363 
(82%) 

ZP_01628888 

Phospho-2-dehydro-3-
deoxyheptonate aldolase 
[Nostoc punctiforme  
PCC 73102] 

233/363 
(65%) 

294/363 
(81%) 

YP_001864699 

Phospho-2-dehydro-3-
deoxyheptonate aldolase 
[Anabaena variabilis ATCC 
29413] 

235/364 
(65%) 

 290/364 
(80%) 

YP_320855 

4.8 Elucidation of the putative tjipanazole D biosynthetic gene cluster  

Tjipanazoles have been isolated from Tolypothrix tjipanasensis (Bonjouklian et al., 

1991) as well as from F. ambigua (Falch et al., 1995). Tjipanazole D consists of an 

indolocarbazole matrix with two tryptophan residues that are chlorinated at position 5 

of the indole ring system. PCR studies on genes encoding for the respective 

tryptophan halogenase in F. ambigua were accomplished previously and led to the 

identification of a 730 bp long PCR fragment that showed highest identity with the 

tryptophan 5-halogenase of Streptomyces rugosporus LL-42D005 (Wagner, 2008). 

The fosmid library of F. ambigua was screened using the specific primers T-neu-fw 

and T-neu-rev (3.4.14.8), in order to identify clones containing the 730 bp long partial 

halogenase sequence. No positive clone could be identified in the genomic library. 

Therefore, the genome assembly from the recent 454 sequencing of F. ambigua (4.6) 

was searched for tryptophan halogenases using the software CLUSEAN (3.1.13) 

(Weber et al., 2009). 
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4.8.1 Overall sequence analysis of contig 15287 

Contig 15287 with a size of 59 kb was found to carry the complete putative 

tjipanazole D biosynthetic gene cluster, boardered by a transposase gene orf1 and a 

probable regulator gene orf4. Detailed BLAST search results are listed in table 4.8.1-

1. 

Table 4.8.1-1: BLAST search results for the transposase-boardered assembly of genes putatively 

involved in tjipanazole D production, found on contig 15287. The sequences were obtained from 454 

sequencing of F. ambigua. The deduced amino acid sequences of orfs found on contig 15287 (first 

column) were aligned with homologous proteins by BLAST (3.1.13). In column four, the ratio of 

identical amino acids (first value) to all compared amino acids (second value) is given (percentage in 

brackets). In the first column, the orientation of orfs identified on contig 15287 is given: > (5’,3’-

direction); < (3’,5’-direction).    

Gene Size 

(kb) 

Highest homology (protein level)  Identity of 

aligned 

amino acids 

GenBank 

accession number 

orf1  > 0.3 Transposase [Methanosarcina 

acetivorans C2A]  

60/101 

(59%) 

NP_615790                 

tj1    > 1.54 Putative L-tryptophan oxidase 

[Lechevalieria aerocolonigenes]  

208/492 

(42%) 

CAC93714 

(Nishizawa et al., 

2005) 

tj2    > 3.45 Chromopyrrolic acid synthase 

StaD [Streptomyces sp. TP-

A0274]  

558/1211 

(46%) 

BAC15759 

(Asamizu et al., 

2006) 

orf2  > 1.1 Hypothetical protein (putative O-
methyltransferase)                      
[Nodularia spumigena 
CCY9414]  

158/342 

(46%) 

ZP_01629838  

orf3  > 0.63 NAD(P)H-dehydrogenase 

[Anabaena variabilis ATCC 

29413] 

135/212 

(63%) 

YP_321581                 

tj3    > 1.59 Monooxygenase FAD-binding 

[Methylobacterium radiotolerans 

JCM 2831]  

79/203 

(38%) 

YP_001754189 
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Table 4.8.1-1 (continued):  

Gene Size 

(kb) 

Highest homology (protein level)  Identity of 

aligned 

amino acids 

GenBank 

accession number 

tj4    > 1.29 Putative cytochrome P450 
enzyme [Actinomadura 
melliaura] 

190/424 

(44%) 

ABC02792 (Gao 

et al., 2006)  

tj5    < 1.72 Tryptophan 5-Halogenase PyrH 
[Streptomyces rugosporus] 

257/517 

(49%) 

 AAU95674 (Zhu 

et al., 2009)  

orf4  > 0.49 CMP/dCMP deaminase, zinc-

binding [Nostoc punctiforme 

PCC 73102]  

123/142 

(86%) 

YP_001869809 

orf5  > 0.72 Hypothetical protein Ava_3794 

[Anabaena variabilis ATCC 

29413]  

177/238 

(74%) 

YP_324294                  

An overview of genes possibly involved in tjipanazole D production and their 

arrangement is given by figure 4.8.1-1. 

 

 

 

Figure 4.8.1-1: Organisation of genes putatively involved in the biosynthesis of tjipanazole D. The 

genes orf1 and orf4 are likely the boarders of the biosynthetic gene cluster and presumably not part of 

the tjipanazole D biosynthetic pathway. Putative proteins, encoded by orf2 and orf3 could not be 

ascribed to the production of tjipanazole D. The orfs 1-4, which are of unknown function are coloured 

in black. Genes tj1-5, which are probably related to the tjipanazole D biosynthesis are shown in blue.  

4.8.2 Tj1, a putative L-tryptophan oxidase 

A BLAST search on the deduced peptide sequence of tj1 revealed homology with the 

L-tryptophan oxidase RebO from the rebeccamycin biosynthetic gene cluster 

identified in the actinomycete L. aerocolonigenes. Furthermore, Tj1 is similar to 

AtmO, an L-tryptophan oxidase from the recently characterised biosynthetic gene 

cluster of AT2433-A1 [table 4.8.2-1] (Gao et al., 2006). 

tj1 orf2 tj2 tj3 tj4 tj5 orf1 orf3 orf4 
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Table 4.8.2-1: BLAST search results for the deduced amino acid sequence of tj1, found on contig 

15287, which was obtained from 454 sequencing of F. ambigua. In column two, the ratio of identical 

amino acids (first value) to all compared amino acids (second value) is given (percentage in brackets). 

Positives are amino acid residues that are similar to each other concerning their chemical properties 

(e.g. polarity, aromaticity, side chains, and acidity).  

Homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank accession 
number/Reference 

Putative L-tryptophan 
oxidase RebO [Lechevalieria 
aerocolonigenes]  

208/492 
(42%) 

284/492 
(57%) 

 CAC93714 
(Nishizawa et al., 
2005) 

Amine oxidase [Salinispora 
arenicola CNS-205]  

204/496 
(41%) 

287/496 
(57%) 

YP_001537178 (Penn 
et al., 2009) 

Putative L-tryptophan 
oxidase AtmO [Actinomadura 
melliaura]  

213/493 
(43%) 

284/493 
(57%) 

ABC02789                
(Gao et al., 2006) 

 

Based on an amino acid alignment among putative amine oxidases listed in table 

4.8.2-1 and the deduced peptide sequence of tj1, two conserved motifs were 

recognised [figure 4.8.2-1], i.e. G-X-G-X-X-G-X-X-X-[G/A] flagging the FAD binding 

site of amine oxidases (Nishizawa et al., 2005), and secondly a G-G motif. The 

dinucleotide binding motif and the GG doublet occur in miscellaneous families of 

flavoproteins (Vallon, 2000). The FAD-binding motif is also a typical conserved region 

found in halogenases (4.7.4, 4.7.10, 4.8.8). 

                                            

L. aerocolonigenes G A G V A G L V A A 21 
 

L G G 43 

A. melliaura G A G I A G L V A A 18 
 

C G G 40 

S. arenicola G A G I A G L V T A 33 
 

V G G 55 

F. ambigua G A G I A G L I A A 34 
 

I G G 56 
 

Figure 4.8.2-1: Multiple sequence alignment of the deduced amino acid sequence of tj1 from F. 

ambigua with amino acid sequences of putative amine oxidases from Lechevalieria aerocolonigenes, 

Salinispora arenicola CNS-205 and Actinomadura melliaura. For GenBank accession numbers, see 

table 4.8.2-1. Amino acids identical in all compared sequences are shaded in red and those, which are 

only identical among up to three compared sequences are coloured in yellow.   

 

 

Motif I Motif II 
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4.8.3 Tj2, a possible chromopyrrolic acid synthase-like protein 

The deduced amino acid sequence of tj2 was analysed by BLAST search for 

homologous proteins implicating a high degree of identity to the chromopyrrolic acid 

(CPA) synthase StaD from Streptomyces sp. TP-A0274] and the homologous protein 

RebD from Lechevalieria aerocolonigenes (Howard-Jones & Walsh, 2005). It also 

bears high similarity to VioB, from the violacein biosynthetic pathway (Balibar & 

Walsh, 2006) [table 4.8.3-1].  

Table 4.8.3-1: BLAST search results for the deduced peptide sequence of tj2, found on contig 15287, 

which was obtained from 454 sequencing of F. ambigua. In column two, the ratio of identical amino 

acids (first value) to all compared amino acids (second value) is given (percentage in brackets). 

Positives are amino acid residues that are similar to each other concerning their chemical properties 

(e.g. polarity, aromaticity, side chains, and acidity).  

Homologous amino aid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank accession 
number/Reference 

Chromopyrrolic acid 
synthase StaD 
[Streptomyces sp. TP-
A0274] 

558/1211 
(46%) 

713/1211 
(58%) 

BAC15759 (Asamizu et 
al., 2006; Onaka et al., 
2002) 

VioB [Salinispora arenicola 
CNS-205]  

535/1204 
(44%) 

707/1204 
(58%) 

YP_001537179            
(Penn et al., 2009) 

Putative CCA synthetase 
[Actinomadura melliaura] 

484/1205 
(40%) 

648/1205 
(53%) 

ABC02790 (Gao et al., 
2006) 

RebD [Lechevalieria 
aerocolonigenes] 

480/1209 
(39%) 

634/1209 
(52%) 

CAC93715 (Sánchez 
et al., 2002; Onaka et 
al., 2003)  

Chromopyrrolic acid 
synthase  InkD 
[Nonomuraea longicatena]  

480/1218 
(39%) 

623/1218 
(51%) 

ABD59213 (Kim et al., 
2007) 

 

StaD is a tetrameric hemoprotein that was demonstrated to catalyse the coupling 

reaction of two molecules of indole-3-pyruvic acid imine to yield chromopyrrolic acid 

(Ryan & Drennan, 2009; Asamizu et al., 2006; Howard-Jones & Walsh, 2005). RebD 

and VioB, which participate in the rebeccamycin and violacein biosynthetic pathway, 

respectively, are like StaD supposed to mediate the formation of a carbon-carbon 

bond between the β-carbons of two indole-pyruvate-imine units, in order to give the 

corresponding iminophenylpyruvate dimer (5.7.3.2). The latter is thought to be 

spontaneously transformed to CPA (Ryan & Drennan, 2009). For the assembly of the 
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rebeccamycin aglycone, a tandem mechanism of RebD together with RebO was 

postulated (Howard-Jones & Walsh, 2005). Proteins of the StaD family comprise 

about 1000 amino acids. As reported by Asamizu et al. (2006), a search of the amino 

acid sequence database did not give significant conserved domains among the StaD 

family and other proteins including heme containing proteins.  

4.8.4 Orf2, a probable O-methyltransferase 

The gene orf2 was translated to the corresponding peptide sequence and searched 

for homologous primary structures using BLAST (3.1.13). Search results are 

presented in detail in table 4.8.4-1 revealing identity of Orf2 with putative O-

methyltransferases. Furthermore, a classification of Orf2 to the Methyltransferase 2- 

superfamily (GenBank accession: cl14604) and to class I of the family of S-

adenosylmethionine-dependent methyltransferases (SAM or AdoMet-MTase; 

GenBank accession: cl12011) was suggested by BLAST. 

Table 4.8.4-1: BLAST search results for the deduced peptide sequence of orf2, found on contig 

15287, which was obtained from 454 sequencing of F. ambigua. In column two, the ratio of identical 

amino acids (first value) to all compared amino acids (second value) is given (percentage in brackets). 

Positives are amino acid residues that are similar to each other concerning their chemical properties 

(e.g. polarity, aromaticity, side chains, and acidity). 

Homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank accession 
number 

Hypothetical protein (putative 
O-methyltransferase)                      
[Nodularia spumigena 
CCY9414] 

158/342 
(46%) 

231/342 
(67%) 

ZP_01629838 

O-methyltransferase family 
protein [Nostoc punctiforme 
PCC 73102]  

153/337 
(45%) 

225/337 
(66%) 

YP_001869557 

O-demethylpuromycin-O-
methyltransferase 
[Microcystis aeruginosa 
NIES-843]  

153/336 
(45%) 

221/336 
(65%) 

YP_001659523              

O-methyltransferase family 2 
[Cyanothece sp. PCC 7425]  

147/335 
(43%) 

221/335 
(65%) 

YP_002481441  

 

The SAM-binding site can be recognised by a glycine-rich consensus sequence G-X-

G-X-G (Kozbial & Mushegian, 2005), which was found in the primary structure of Orf2 
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shown in figure 4.8.4-1. The peptide sequence of the probable O-methyltransferase 

of F. ambigua was aligned with similar proteins, listed in table 4.8.4-1. 

 

N. spumigena D V G G G N G T 194 

Cyanothece sp. D V A G G H G S 182 

N. punctiforme E V G G G N G T 193 

F. ambigua D V G G G L G S 195 
  

Figure 4.8.4-1: Multiple sequence alignment of the deduced amino acid sequence of orf2 from F. 

ambigua with amino acid sequences of related O-methyltransferases. For GenBank accession 

numbers, see table 4.8.4-1. The typical consensus motif G-X-G-G, which is the hallmark of the SAM-

binding site, was recognised. Amino acids identical in all compared sequences are shaded in red and 

those, which are only identical among up to three compared sequences are coloured in yellow 

A nucleotide BLAST aligning the sequence of gene orf2 with that of rebM, which 

codifies for the indolocarbazole sugar O-methyltransferase RebM in rebeccamycin 

biosynthesis (Singh et al., 2008), did not show significant homology. However, it has 

to be considered that SAM-dependent methyltransferases share little sequence 

identity, especially their substrate-binding site is highly variable. At the same time, 

they exhibit a highly conserved structural fold (Martin & McMillan, 2002). Therefore, 

the sole comparison of primary structures is probably not sufficient to classify Orf2 

and to hypothesise on its possible function. RebM was characterised in vitro through 

its crystal structure (Singh et al., 2008). It catalyses the final tailoring step in the 

assembly of rebeccamycin, the methylation of the C-4 glucosyl atom. The distinct 

sugar O-alkylations performed by RebM, AtM (AT2433-A1-biosynthesis) and StaMB 

(staurosporine biosynthesis) have a wide influence on the biological activity of the 

corresponding indolocarbazole metabolites (Singh et al., 2008).  

4.8.5 Orf3, a possible NAD(P)H- dehydrogenase 

The deduced amino acid sequence of the gene orf3 reveals significant similarity to 

putative NAD(P)H-dehydrogenases, e.g. from Anabaena variabilis ATCC 29413 and 

a probable acyl carrier protein phosphodiesterase from Nostoc sp. PCC 7120 [table 

4.8.5-1].  
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Table 4.8.5-1: BLAST search results for the deduced peptide sequence of orf3, found on contig 

15287, which was obtained from 454 sequencing of F. ambigua. In column two, the ratio of identical 

amino acids (first value) to all compared amino acids (second value) is given (percentage in brackets). 

Positives are amino acid residues that are similar to each other concerning their chemical properties 

(e.g. polarity, aromaticity, side chains, and acidity).   

Homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank accession 
number 

Putative NAD(P)H 
dehydrogenase (quinone) 
[Anabaena variabilis ATCC 
29413]  

135/212 
(63%) 

165/212 
(77%) 

YP_321581 

Putative acyl carrier protein 
phosphodiesterase [Nostoc 
sp. PCC 7120]  

136/212 
(64%) 

 162/212 
(76%) 

NP_486145 

NAD(P)H dehydrogenase 
(quinone) [Nostoc 
punctiforme PCC 73102] 

133/211 
(63%) 

152/211 
(72%) 

YP_001869506 

FMN-dependent NADH-
azoreductase 2 [Oscillatoria 
sp. PCC 6506]  

122/216 
(56%) 

154/216 
(71%) 

CBN55427  

Orf3 keeps a canonical pyridine nucleotide binding domain that is stamped by the 

conserved motif G-X-X-P (Ojha et al., 2007; Roma et al., 2005) [figure 4.8.5-1]. The 

related gene orf3 is located adjacently to gene tj3 [figure 4.8.1-1], which probably 

encodes an FAD-binding monooxygenase (4.8.6). Therefore, a possible protein-

protein interaction between Orf3 and Tj3 for cofactor regeneration and transfer might 

be assumed. Similar considerations could be made for an interaction between Orf3 

and the putative FADH2-dependent halogenase Tj5 (discussed in 5.7.4).   

Anabaena sp. L G H N P 47 

Nostoc sp. L G H N P 47 

F. ambigua L G H N P 47 

Oscillatoria sp. I G R N P 47 

  

Figure 4.8.5-1: Multiple sequence alignment of the deduced amino acid sequence of orf3 from F. 

ambigua with amino acid sequences of related putative NAD(P)H-dehydrogenases. For GenBank 

accession numbers, see table 4.8.5-1. The alignment shows the consensus motif G-X-X-P, which is a 

signature motif of the pyridine nucleotide binding site. Amino acids identical in all compared 

sequences are shaded in red and those, which are only identical among up to three compared 

sequences are coloured in yellow. 
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4.8.6 Tj3, a putative FAD-binding monooxygenase 

A BLAST search performed on the amino acid sequence of Tj3 revealed similarity to 

different FAD-binding monooxygenases [table 4.8.6-1]. Near the N-terminus of the 

protein, the typical dinucleotide binding motif G-X-G-X-X-G was recognised [figure 

4.8.6-1].  

Table 4.8.6-1: BLAST search results for the deduced peptide sequence of tj3, found on contig 15287, 

which was obtained from 454 sequencing of F. ambigua. In column two, the ratio of identical amino 

acids (first value) to all compared amino acids (second value) is given (percentage in brackets). 

Positives are amino acid residues that are similar to each other concerning their chemical properties 

(e.g. polarity, aromaticity, side chains, and acidity).    

Homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank accession 
number/Reference 

Monooxygenase FAD-
binding [Methylobacterium 
radiotolerans JCM 2831] 

211/548 
(38%) 

293/548 
(53%) 

YP_001754189              

Monooxygenase FAD-
binding [Roseomonas 
cervicalis ATCC 49957]  

207/544 
(38%) 

294/544 
(54%) 

ZP_06896947  

Putative monooxygenase, 
FAD binding (hydroxylase) 
[Bradyrhizobium sp. 
ORS278]  

181/565 
(32%) 

274/565 
(48%) 

YP_001208727 
(Giraud et al., 2007) 

Monooxygenase FAD-
binding [Cyanothece sp. PCC 
7822] 

183/547 
(33%) 

287/547 
(52%) 

ZP_03153217 

Putative 2-polyprenyl-6-
methoxyphenol hydroxylase 
[Sorangium cellulosum 'So 
ce 56']  

191/538 
(35%) 

191/538 
(35%) 

YP_001618529              

Pentachlorophenol 4-
monooxygenase [Stigmatella 
aurantiaca DW4/3-1]  

179/540 
(33%) 

253/540 
(46%) 

ZP_01461750  
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M. radiotolerans V V G A G P I G L 24 

R. cervicalis V I G A G P V G L 24 

F. ambigua I V G A G P V G L 12 

S. aurantiaca I A G A G P T G L 19 

 

Figure 4.8.6-1: Multiple sequence alignment of the deduced amino acid sequence of tj3 from F. 

ambigua with amino acid sequences of related putative FAD-binding monooxygenases. For GenBank 

accession numbers, see table 4.8.6-1. The alignment shows the consensus motif G-X-G-X-X-G, which 

is a signature motif of the FAD-binding site. Amino acids identical in all compared sequences are 

shaded in red and those, which are only identical among up to three compared sequences are 

coloured in yellow. 

Aligning Tj3 with RebC from the rebeccamycin biosynthetic pathway resulted in 25% 

identity. Recent studies on RebC and StaC support the idea that both enzymes 

stabilise reactive intermediates generated by the CYP 450-dependent enzymes 

RebP and StaP (4.8.7), respectively, in order to mediate the formation of a single 

product, i.e. the indolo[2,3-a]pyrrolo[3,4-c]carbazole core structure of rebeccamycin 

and staurosporine, respectively (Howard-Jones & Walsh, 2006). An alignment 

comparing the amino acid sequence of Tj3 with StaC revealed 24% identity.   

4.8.7 Tj4, a putative CYP 450 enzyme 

BLAST search results with Tj4 are presented in table 4.8.7-1. An identity of 45 % was 

found to the CYP 450 enzyme StaP from Streptomyces sp. TP-A0274. Further, Tj4 

shares 44 % sequence identity with RebP from L. aerocolonigenes on the peptide 

level. 
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Table 4.8.7-1: BLAST search results for the deduced peptide sequence of tj4, found on contig 15287, 

which was obtained from 454 sequencing of F. ambigua. In column two, the ratio of identical amino 

acids (first value) to all compared amino acids (second value) is given (percentage in brackets). 

Positives are amino acid residues that are similar to each other concerning their chemical properties 

(e.g. polarity, aromaticity, side chains, and acidity).     

Homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank accession 
number/Reference 

Putative cytochrome P450 
enzyme [Actinomadura 
melliaura]  

190/424 
(44%)  

256/424 
(60%) 

ABC02792 (Gao et 
al., 2006)  

Cytochrome P450 
[Roseiflexus sp. RS-1] 

180/412 
(43%) 

245/412 
(59%) 

YP_001275131  

Cytochrome P450 
[Roseiflexus castenholzii 
DSM 13941]  

183/415 
(44%) 

242/415 
(58%)  

YP_001434483 

StaP [Streptomyces sp. TP-
A0274] 

184/407 
(45%) 

245/407 
(60%) 

BAC55212 (Onaka et 
al., 2002) 

StaP [Streptomyces 
longisporoflavus]  

191/424 
(45%)  

251/424 
(59%) 

ABI94389 (Howard-
Jones & Walsh, 2006) 

RebP [Lechevalieria 
aerocolonigenes]  

176/415 
(42%) 

244/415 
(58%) 

BAC15753 (Onaka et 
al., 2003) 

 

StaP and RebP are well-known CYP 450 enzymes from the staurosporine and 

rebeccamycin biosynthetic pathways, respectively. StaP has been demonstrated to 

act on chromopyrrolic acid, in order to catalyse an intramolecular aryl-aryl coupling 

between two indole moieties to give the indolocarbazole skeleton (Howard-Jones & 

Walsh, 2007; Makino et al., 2007; Howard-Jones & Walsh, 2006). The latter occurs 

with auxiliary modifications, i.e. glycosylation (Sánchez et al., 2006b) and in case of 

rebeccamycin also halogenation (Yeh et al., 2005). Although to date only StaP has 

been studied in detail, all results are supposed to be likewise valid for its homologue, 

RebP (Ryan & Drennan, 2009).  

The amino acid sequence of Tj4 carries three conserved signature motifs as 

described in 4.7.5 suggesting a classification to the P450-superfamily (GenBank 

accession: cl12078). Figure 4.8.7-1 shows an alignment of the conserved regions of 

Tj4 with related CYP 450 enzymes. These are: motif A-(A,G)-X- (E,D)-T of helix I with 

a generally conserved threonine residue, the generally conserved E-X-X-R motif that 

is located in helix K and the haem binding motif F-X-X-G-X-X-X-C-X-G at the start of 

the L-helix, which is located in the active center. The latter region contains the 

absolutely conserved cysteine ligand.  
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The compared sequences were taken from BLAST search results obtained for the 

deduced amino acid sequence of gene tj4 [table 4.8.7-1]. 

 

                                                         

Streptomyces sp. TP-A0274  T A G H E T T 258 
 

E L M R 296 

S. longisporoflavus T A G H E T T 260 
 

E L M R 298 

L. aerocolonigenes T A G H E T T 241 
 

E L N R 279 

F. ambigua T A G H E T T 252 
 

E L L R 290 

R . castenholzii DSM 13941 L A G H E T T 246 
 

E L L R 284 

  

                                                         

Streptomyces sp. TP-A0274  F G L G I H Y C L G 366 

S. longisporoflavus F G L G I H Y C L G 368 

L. aerocolonigenes F G L G I H Y C L G 349 

F. ambigua F G G G I H F C I G 360 

R. castenholzii DSM 13941 F G H G P H Y C L G 354 

  

Figure 4.8.7-1: Multiple sequence alignment of the deduced amino acid sequence of tj4 from F. 

ambigua with amino acid sequences of related putative CYP 450-dependent monooxygenases. For 

GenBank accession numbers, see table 4.8.7-1.  Amino acids identical in all compared sequences are 

shaded in red and those, which are only identical among up to four compared sequences are coloured 

in yellow 

4.8.8 Tj5, a putative tryptophan halogenase 

The gene tj5 was translated to the corresponding amino acid sequence (3.1.13). The 

protein sequence was searched for homologous proteins using BLAST. It bears 

significant identity to FADH2-dependent halogenases, which are involved in the 

chlorination of tryptophan moieties. Results and references are presented in table 

4.8.8-1 for most related tryptophan halogenases.  

 

 

 

Motif I Motif II 

Motif III 
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Table 4.8.8-1: BLAST search results for the deduced amino acid sequence of tj5, found on contig 

15287, which was obtained from 454 sequencing of F. ambigua. In column two, the ratio of identical 

amino acids (first value) to all compared amino acids (second value) is given (percentage in brackets). 

Positives are amino acid residues that are similar to each other concerning their chemical properties 

(e.g. polarity, aromaticity, side chains, and acidity).     

Homologous amino acid 
sequence 

Identity of 
aligned 

amino acids 

Positives of 
aligned 

amino acids 

GenBank accession 
number/Reference 

Tryptophan 5-halogenase 
PyrH [Streptomyces 
rugosporus] 

257/517 
(49%) 

361/517 
(69%) 

AAU95674 (Zhu et al., 
2009) 

KtzR [Kutzneria sp. 744]  242/503 
(48%) 

337/503 
(66%) 

ABV56598 (Fujimori et 
al., 2007) 

Putative tryptophan 
halogenase [Burkholderia 
ambifaria MC40-6] 

232/539 
(43%) 

329/539 
(61%) 

YP_001811924               

Tryptophan halogenase 
PrnA [Myxococcus fulvus]  

231/536 
(43%) 

321/536 
(59%) 

AF161185_4 (Hammer 
et al., 1999) 

Putative tryptophan 
halogenase [Cyanothece 
sp. PCC 8802]  

232/535 
(43%) 

316/535 
(59%) 

YP_003137148  

Tryptophan halogenase 
PrnA [Pseudomonas 
fluorescens ]  

223/539 
(41%) 

329/539 
(61%) 

AF161184_1  (Hammer 
et al., 1999) 

 

The protein is characterised by the typical conserved regions as described in 4.7.4. 

Figure 4.8.8-1 presents a multiple sequence alignment of three consensus motifs, 

which represent a hallmark of FADH2-dependent halogenases (Wagner et al., 2009). 

The conserved lysine moiety that is involved in the mechanistic action of the 

halogenation reaction was recognised at position 74 (Yeh et al., 2007; Buedenbender 

et al., 2009). Interestingly, this halogenase shows an identity of about 26 % to the 

putative phenolic halogenase Ab1, which is supposed to be involved in ambigol 

formation (4.7.4). This is a higher degree of identity than it was found between Ab1 

and the second putative phenolic halogenase Ab7 (4.7.10).  
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S. rugosporus V G G G T A G W M T 17 
 

Y K L G 76 

F. ambigua V G G G T A G W M S 20 
 

Y K T A 79 

P. fluorescens V G G G T A G W M A 20 
 

F K A A 80 

Cyanothece sp. PCC 8801 V G G G T A G W M T 27 
 

F K T A 87 

  

                                           

S. rugosporus G W M W T I P L 285 

F. ambigua G W V W N I P L 295 

P. fluorescens G W T W K I P M 278 

Cyanothece sp. PCC 8801 G W I W K I P M 283 

  

Figure 4.8.8-1: Multiple sequence alignment of the deduced amino acid sequence of tj4 from F. 

ambigua with amino acid sequences of related tryptophan halogenases. For GenBank accession 

numbers, see table 4.8.8-1. The alignment shows the consensus motifs of flavin-dependent 

halogenases (4.7.4). Amino acids identical in all compared sequences are shaded in red and those, 

which are only identical among up to three compared sequences are coloured in yellow. 
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5. Discussion 
 

Cyanobacteria produce a great variety of secondary metabolites. These include 

cyanobacterial toxins (Wiegand & Pflugmacher, 2005; Smith et al., 2008) but also 

compounds interesting for therapeutical use (Singh et al., 2005). The most prevalent 

cyanobacterial natural products are NRPS and PKS derived (Liu & Rein, 2010; Sielaff 

et al., 2006; Dittmann et al., 2001). Also, many typical cyanobacterial bioactive 

secondary metabolites are produced in combinatorial pathways like mixed 

PKS/NRPS systems, for instance curacin A and the cryptophycins (Jones et al., 

2010; Wagner et al., 2009; Jones et al., 2009). Mixed NRPS/PKS sytems are of 

particular interest, because they combine principals of the peptide biosynthesis with 

those of fatty acid biosynthesis. Both are modular systems that apply analogous acyl 

chain elongation routes with differences in substrate recognition and catalysed bond 

formation (Walsh & Fischbach, 2010; Cane & Walsh, 1999).  

Besides their variety in constructing complex core structures with high diversity 

(Welker & von Doehren, 2006), cyanobacteria possess impressing skills in 

elaborating structural modifications, performed by a considerable repertoire of 

specific enzymes. These reactions include halogenation of aromatic and aliphatic 

moieties, cryptic halogenation, SAM-dependent methylations, reduction and HMG-

CoA-dependent transformations (Jones et al., 2010), to mention some of them. 

Usually these reactions are carried out in the course of peptide or mixed NRPS/PKS 

biosynthesis, and therefore are often dependent on certain carrier protein domains 

(Walsh, 2008; Rausch et al., 2007; Walsh et al., 2001).  

5.1 Bioactive secondary metabolites from F. ambigua 

F. ambigua is a gliding, filamentously growing cyanobacterium producing highly 

interesting chlorinated metabolites, which exhibit a spectrum of biological activities. 

These include antibacterial, antifungal, cytotoxic and molluscicidal properties for the 

polychlorinated phenolic ethers ambigol A and B [figure 5.1-1]. A moderate 

antibacterial activity was found for the indolo[2,3-a]carbazole tjipanazole D (Falch, S. 

et al, 1995).  
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Figure 5.1-1: Halogenated aromatic metabolites, isolated from the cyanobacterium F. ambigua 

With the ambigols, F. ambigua produces unprecedented compounds concerning their 

presence in cyanobacteria. Similar structures, however with a dimeric core scaffold, 

are known from sponges, e.g. from Lamellodysidea herbacea (formerly Dysidea 

herbacea) (Unson et al., 1994). The biosynthesis of the latter, however has been 

ascribed to cyanobacteria. The sponge-derived structures contain only a dimeric 

backbone connected by an ether bridge and are brominated. By contrast, the 

ambigols are trimeric natural products endowed with both, C-O and C-C linkages. 

Further, the aromatic framework of the ambigols is ornated with a high density of 

chlorine atoms preserving strict regioselectivity in the halogenation pattern [figure 

5.1-1]. Compareable structures from other organisms, which also have ether and 

biphenyl linkages, do not possess the high number of chlorine substituents, e.g. 

phloroglucinol compounds from brown algae [figure 1.3.1.2-1]. 

The therapeutic potential of polyhalogenated, hydroxylated aromatic compounds was 

shown for numerous related natural products, especially polybrominated biphenyls 

from Lamellodysidea (formerly Dysidea) spp. (Gribble, 2010; Shridhar et al., 2009).  

As outlined in 1.3.1.4, the synthetic antimicrobial agent triclosan is structurally related 

to the overall ambigol structure. It is medically used, e.g. as a disinfectant against 

clinically important bacteria, i.e. methicillin-resistant Staphylococcus aureus (MRSA). 

The use of triclosan as part of daily applied products, e.g. soaps, toothpastes or 
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textiles, however is regarded as critical due to resistance development in 

microorganisms. Triclosan possesses an inhibitory effect on fatty acid synthetatase 

systems of microbes (Freundlich et al., 2009; Freundlich et al., 2007). The latter may 

also be the mode of action for ambigol C having antiplasmodial and trypanocidal 

activity (Wright et al., 2005).  

To date, no data are available, explaining the biosynthesis of compounds like 

ambigol B, which was the focus of the current work. 

The unique core structure of tjipanazole D, i.e. its indolo[2,3-a]carbazole scaffold was 

to date only found in cyanobacteria (Falch et al., 1995; Bonjouklian et al., 1991). 

Similar compounds, which possess an indolo[2,3-a]pyrrolo[3,4-c] were isolated from 

actinomycetes, e.g. rebeccamycin and staurosporine (Bush et al., 1987; Tamaoki et 

al., 1986). Due to their promising therapeutic  effects, e.g. as anticancer agents 

(Nakano & Omura, 2009), they have been studied extensively towards structure-

activity relationships (Marminon et al., 2008; Voldoire et al., 2004; Anizon et al., 2003; 

Prudhomme, 2003; Bailly et al., 1999; Pereira et al., 1996) and their biosynthetic 

pathways (Chiu et al., 2009a; Sánchez et al., 2006b; Onaka et al., 2002; Onaka et 

al., 2003). 

5.2 Problems in DNA extraction from filamentous cyanobacteria 

Aiming the identification of the biosynthetic gene clusters of the ambigols and 

tjipanazole D, genomic DNA had to be isolated from F. ambigua. DNA was then used 

to establish a fosmid library (4.3.3), which was screened with specific primers for the 

putative FADH2-dependent halogenases Ab7 (4.7.10) and Tj5 (4.8.8). In addition, 

sequence data were completed by whole genome sequencing and analysis (4.6).  

Extraction of good quality genomic DNA from cyanobacteria, especially filamentously 

growing strains, often includes difficulties with sheath-associated bacteria, effective 

filament breakage and cell lysis as well as removal of solved trace contaminants, in 

particular polysaccharides of the mucilaginous envelope (Hoiczyk & Baumeister, 

1995). The production of these polysaccharides seems to be related directly to the 

extent of illumination of cyanobacterial cultures and the release of carotenoids 

(Ehling-Schulz et al., 1997). In accordance with studies on the terrestrial 
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cyanobacterium Nostoc commune, an excessive light exposure of F. ambigua 

cultures resulted in slower growth with enhanced release of carotenoids and 

accumulation of polysaccharides, changing the translucent culture medium into a 

viscous, orange coloured liquid [figure 4.3.2-2] (Ehling-Schulz et al., 1997). When 

high concentrations of carotenoids were present, they could not be removed 

completely from the final DNA solution, which revealed an orange color.   

The biological role of the enhanced carotenoid production was suggested to be the 

protection of cyanobacterial cells from intensive light exposure to maintain optimal 

conditions for photosynthesis (Liang et al., 2006; Paerl, 1984). The coincident 

increase of polysaccharide production is necessary to provide a matrix for other UV 

light absorbing substances, i.e. the aromatic pigment scytonemin or oligosaccharide 

mycosporine amino acids (OS-MAAs), which are closely attached to the glycan by 

non-covalent interactions (Ehling-Schulz et al., 1997; Böhm et al., 1995; Hill et al., 

1994). When high amounts of polysaccharides were present in the cyanobacterial 

cultures, traces of these contaminants were retrieved in the final DNA solution 

increasing its viscosity. Due to the presence of anionic groups in the polysaccharide 

chains, their separation from DNA was ineffective when using typical DNA purification 

columns (3.4.2; 4.3.1). For the genus Fischerella, it was in particular ascertained that 

released polysaccharides consist of deoxysugars (Nicolaus et al., 1999; De Philippis 

et al., 2001), and as a consequence, they might interfere with downstream 

applications, in particular PCR amplifications and ligation reactions (Sambrook & 

Russell, 2001; Porter, 1988). 

In conclusion, the well-dosed application of light together with a well-adjusted culture 

time (21 days) was a quality-determining factor for the obtained DNA solution. This 

was in particular important, because F. ambigua showed in general a low growth 

rate, with an obviously long generation time (population doubling time), whereas the 

induction of carotenoid production started after a relatively short time depending on 

light intensity (Fernández-González et al., 1998). Furthermore, it has to be 

considered that for the cyanobacterium Synechococcus elongatus PCC7942, a 

correlation between its division rate and environmental factors, i.e. light intensity, 

temperature, and nutrients was reported, whereby LD (light/dark) 12:12 cycles 

administer a fitness advantage to cyanobacterial colonies (Hellweger, 2010; Ouyang 

et al., 1998). The circadian clock (Yang et al., 2010) in cyanobacteria affects gene 
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expression, and as a consequence cellular processes (Johnson et al., 2008b; 

Johnson et al., 2008a). For instance, nitrogen fixation, which is an oxygen sensitive 

process reaches its maximum at the night phase, and thus is uncoupled from the 

oxygen producing photosynthesis (Grobbelaar et al., 1986). Very recently, an 

important link between three so called “clock proteins” (KaiA-KaiC) and the cell 

division control of S. elongates has been discovered (Dong et al., 2010a; Dong et al., 

2010b). 

Cyanobacteria, e.g. F. ambigua are well-known to harbor associated heterotrophic 

bacteria in their polysaccharide- and peptide-containing sheath providing a suitable 

biotope to them (Hube et al., 2009). Detectable amounts of sheath material are 

usually released to the culture medium by polysaccharide-producing cyanobacteria 

(De Philippis et al., 2001) allowing heterotrophic bacteria to settle even in BG-11 

medium, constituting a pure salt medium.  A removal of the identified P. stutzeri strain 

(4.2) by antibiotic treatment revealed that the presence of these heterotrophs seems 

to play a role in growing conditions, because they significantly accelerate the growth 

of F. ambigua. Rippka et al (1988) postulated that cyanobacteria require aerobic 

heterotrophic bacteria for growth (Rippka, 1988). This is likely one reason, why 

axenic cultures of cyanobacteria are known to be difficult to obtain (Choi et al., 2008). 

Antibiotically pretreated cultures were not useful for DNA-extraction due to highly 

decreased amount of harvested cells. Interestingly, treatment with lysozyme as 

described in 3.3.3 resulted in a compareable slow growth rate (4.2.2). An approach to 

remove the P. stutzeri strain by excessive UV-light exposure was also not successful, 

because as mentioned above, light absorbing pigments are always present in 

effective amount within the polysaccharide sheath (Hoiczyk & Hansel, 2000). Thus, 

the associated bacteria were probably sheltered during excessive UV-light exposure.   

Although cyanobacterial cell walls are affiliated to the Gram-negative type, the 

peptidoglycan layer present in cyanobacterial cell walls is significantly thicker than 

that of most other Gram-negative bacteria [figure 4.3.1.1-1b] (Hoiczyk & Hansel, 

2000). Hence, a yielding DNA extraction requires effective cell breakage 

measurements by application of strong tensides, whereby the most effective turned 

out to be SDS (4.3.1). The robustness of cyanobacteria offers an important 

advantage allowing the application of milder cell lysis conditions to eliminate the 
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accompanying bacteria without or slightly affecting the intactness of the 

cyanobacterial cells (4.3.1.3). 

5.3  Construction and screening of a genomic library 

A genomic library aims to represent the whole genome of an organism in assessable 

sequence fragments of about 40 kb. This requires, as a first step, a ligation of 

isolated genomic DNA into an appropriate vector. The ligation of extracted F. 

ambigua DNA into the fosmid vector pCC1FOS turned out to be rather complicated 

(4.3.3). This may have several reasons. Without doubt, the discussed trace 

contaminants (5.2) in the DNA solution may affect the T4-DNA ligase, perhaps by a 

kind of competitive inhibition caused by anionic polysaccharides. Another possibility 

is that acidic or alkaline groups of these contaminants changed the optimal buffer 

conditions for the T4-DNA ligase in an unfavorable way. With respect to the 

sensitivity of blunt end ligations towards the vector:template-ratio, the inhibitory effect 

of possible contaminants is even more significant.   

Another problem did arise with the screening of the genomic library, when some 

sequences could not be retrieved using sequence-specific primers. In particular, a 

partial sequence of the tryptophan 5-halogenase gene tj5 (4.8.8), obtained in a 

previous work (Wagner, 2008), could not be detected in the library by PCR (4.8). 

When searching for fosmids overlapping with fosmid E8 using specific primers 

designed from boarder sequences, i.e. gene ab2 (4.7.5) and a gene encoding a 

putative acetate kinase (4.4.2), no positive clones could be detected. This lack of 

representatives in the library may be reasoned by possible traces of P. stutzeri DNA 

in the ligation mixture, which were presumably incorporated in a number of fosmids. 

In this case, the stored 2,800 clones were obviously not enough to represent all of 

the Fischerella genome. 

Calculating the cost of fosmid sequencing in comparison to the diminishing costs for 

whole genome sequencing (4.6), a fosmid library might be no longer the best way, if 

only nucleotide sequences shall be analysed, i.e. elucidation of new biosynthetic 

gene clusters. However, the great advantage of having the actual DNA fragments 

present in a vector is their use in possible downstream experiments, in particular for 

heterologous expression studies.  
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With regard to the time consuming procedure of library construction and to the 

relative cost of fosmid sequencing, a 454 sequencing of the F. ambigua genome was 

favoured over the construction of a further, bigger fosmid library. The size of orfs 

related to the ambigols and tjipanazole D biosynthesis was estimated to be suitable 

for PCR amplifications. Therefore, sequence data, obtained from fosmid E8 and 454 

sequencing, enable the amplification of genes probably related to ambigol and 

tjipanazole D biosynthesis for heterologous expression studies in future projects. 

5.4 Whole genome analysis 

In the last five years, rapid advances have emerged in the development of 

alternatives to the automated Sanger method for DNA sequencing, which was the 

prevalent method for almost two decades (Sanger et al., 1977). These new 

strategies, referred to as next-generation sequencing (NGS) include different 

improved technologies, i.e. Roche/454, Illumina/Solexa, Life/APG and Helicos 

BioSciences (for a comprehensive review, see Metzker, 2010). The 454 sequencing 

applied for this project is based on massive parallelisation of sequencing reactions by 

performing millions of the latter individually at the same time in picotiter plates 

(3.4.15). By this method, 500 MB of DNA per run and 1 GB DNA per day can be 

sequenced (Grody et al., 2010).  

The overwhelming yield of sequence information per read along with significantly 

lower cost is a result of the high speed, in which sequencing reactions maybe carried 

out simultaneously. This development has changed the way of planning scientific 

projects, since the sole elucidation of sequence data has been facilitated to an 

extreme extent. As a consequence, this technical advance in methods of molecular 

biology, in particular the automation of DNA sequencing, has implied the involvement 

of bioinformatics and the establishment of databases to enable fast gene 

identification along with prediction of the putative function of corresponding proteins. 

Current and future projects are highly dependent on the use of systematised 

collections of proteomics data (Swiss Institute of Bioinformatics http://www.isb-sib.ch; 

http://www.ncbi.nlm.nih.gov/protein; Marchler-Bauer et al., 2011) with special regard 

to the knowledge of protein-protein interactions, so that it might be possible to dissect 

even proteins from complex enzymatic machineries, i.e. from ambigol biosynthesis 

for biochemical experiments. 

http://www.dict.cc/englisch-deutsch/systematized.html
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In order to assure a sufficient coverage of the Fischerella genome by 454 

sequencing, it was important to assure that the utilised DNA solution did not contain 

any foreign DNA, i.e. from the associated P. stutzeri strain (4.2). Therefore, the 

applied DNA was obtained by method B described in 3.4.2.2, which was the 

preferred method for DNA extraction in this work (4.3.1.3). The method includes the 

lysis of P. stutzeri cells and removal of foreign DNA prior to lysis of cyanobacterial 

cells. Furthermore, the resulting DNA solution did undergo a 16S rDNA analysis for 

Pseudomonas, to approve successfully its purity (4.1). As a result of the 454 

sequencing, a 26.5-fold coverage of the F. ambigua genome was estimated. 

5.5 Overview of the biosynthesis of ambigols and tjipanazole D  

At a first glance, ambigols and tjipanazole D are structurally completely different 

compounds [figure 5.1-1]. However, with the knowledge of genes encoding proteins 

that probably participate in the biosynthesis of these secondary metabolites, a high 

degree of similarity can be constituted concerning their biosynthetic assembly. Both, 

the ambigols and tjipanazole D contain an aromatic unit that most likely arises from 

the shikimate pathway, and in particular from chorismate. Chorismic acid is the key 

intermediate in the production of several aromatic acids, i.e. phenylalanine, tyrosine 

and tryptophan but also of some aryl acids like 4-hydroxybenzoic acid (4-HBA) [figure 

5.5-1] (Dewick, 2009; Van Lanen et al., 2008). As a consequence, many of the 

known aromatic secondary metabolites contain chorismate-derived structural units. 

These include the large group of NRPS- and mixed PKS/NRPS-compounds. As well, 

more simple bioactive molecules, such as the small trimeric nonribosomal peptide 

enterobactin and the antibiotic chloramphenicol, contain aromatic building blocks, 

which arise from chorismate [figure 5.5-1]. In ambigols and tjipanazole D 

biosynthesis, the supposed monomers are 4-hydroxybenzoic acid (4-HBA) and L-

tryptophan, respectively. 

The indole-containing aromatic amino acid L-tryptophan is produced from anthranilic 

acid and a phosphoribosyl unit in a few reaction steps (Dewick, 2009). Tryptophan 

does not only serve as a building block for the biosynthesis of nonribosomal peptides 

but also functions as a precursor of a variety of alkaloid structures. The structural 

diversity of these indolic secondary metabolites produced by bacteria has been 

reviewed recently (Ryan & Drennan, 2009).  
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Figure 5.5-1: Overview of some chorismate derived metabolites. The ambigols and tjipanazole D are 

also supposed to arise from chorismate. 4-HBA = 4-hydroxybenzoic acid. SgcD and SgcG are two 

enzymes from enediyne C-1027 biosynthesis (Van Lanen et al., 2008). 
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In contrast to plants, bacteria are capable to generate 4-hydroxybenzoic acid (4-HBA) 

directly from chorismic acid by a single elimination reaction, catalysed by a 4-HBA 

synthetase via removal of the enolpyruvic acid side chain of chorismate (Dewick, 

2009). In the putative ambigol biosynthetic gene cluster, a sequence that probably 

encodes a chorismate lyase (4.7.7; 1.4.2) was identified. This might allow anticipating 

that the origin of the phenolic structure of these compounds is 4-HBA.  

Apart from their common origin, both, tryptophan and 4-HBA are suggested to be 

substrates for oxidative coupling reactions giving rise to the structural matrix of 

tjipanazole D and the ambigols, respectively.  

A third common feature of these compounds is their tailoring modification, i.e. 

chlorination (4.7.4; 4.7.10; 4.8.8). However, differences in the halogenations process 

have to be considered (Buedenbender et al., 2009; Zhu et al., 2009; Flecks et al., 

2008). As described previously, halogenation of phenolic residues is often performed 

on a carrier-attached substrate (1.4.1; 1.4.2). Furthermore, it is well-established that 

in the assembly of complex glycopeptide antibiotics, an NRPS-bound peptide chain is 

modified by intramolecular, CYP 450-catalysed crosslinking (Woithe et al., 2007). By 

contrast, the production of indolocarbazole frameworks, for instance that of 

rebeccamycin, does involve free diffusible substrates for chlorination as well as for 

the production of the indolocarbazole scaffold (5.7.1). Therefore, it is not surprising 

that in the putative biosynthetic gene cluster of the ambigols (ab-operon), an NRPS-

like module, i.e. a possible carrier protein, was identified, whereas such a protein is 

not encoded by the putative tjipanazole D operon tj.  

Within this work, ab and tj genes were identified and characterised (4.7; 4.8). Proof of 

their involvement in the production of ambigols and tjipanazole D awaits gene 

inactivation experiments and/or heterologous expression of relevant enzymes. Both 

clusters are boardered at one side by a transposase gene. For the ab-operon, this 

transposase gene was named orf25 [figure 5.6-1] (4.7.2) and for tj (4.8) orf4 [figure 

5.7-1]. Some other cyanobacterial gene clusters, i.e. those for cryptophycin 

(Magarvey et al., 2006), curacin A (Chang et al., 2004) and the jamaicamides 

(Edwards et al., 2004), are also flanked by transposases. Thus, this feature seems to 

be characteristic for cyanobacterial biosynthetic gene clusters.  
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The ab-operon is possibly only responsible for the production of ambigol B. This will 

be discussed further in 5.6. 

5.6 The putative biosynthetic gene cluster for the ambigols 

Genes probably involved in the biosynthesis of ambigols A-C [figure 5.1-1] were 

found by three different strategies, i.e. PCR techniques, genomic library construction 

and whole genome analysis (3.4.9; 3.4.14; 3.4.15). First, partial sequences encoding 

for the halogenase Ab7 (4.7.10) were obtained by the design of degenerate primers 

in a previous work (Wagner, 2008) using published data on FADH2-dependent 

halogenases.  

A PCR screening performed in this study led to the identification of additional 

sequence information on the phenolic halogenase Ab7 (4.3.2; 4.7.10). Subsequently, 

a genomic library was established (4.3.3). The high specifity of halogenase genes, 

which is in particular due to the presence of highly conserved motifs (4.7.4; 4.7.10; 

4.8.8), facilitated the localization of the putative ambigol biosynthetic gene cluster in 

the fosmid library.  

Fosmid E8 contained most of the genetic information required to construct a 

hypothetical biosynthetic pathway for the ambigols. However, the sequence of the 

gene ab2 encoding a putative CYP 450 (4.7.5) was not completely covered by E8. As 

well, the halogenase gene ab1 (4.7.4) was not identified [figure 5.6-1]. Screening for 

fosmids overlapping with E8 (4.5) was not successful. As mentioned in 5.3, traces of 

DNA from the accompanying Pseudomonas strain (4.2) did probably interfere with 

the ligation reaction during library production. Therefore, the calculated 2,800 clones 

of the fosmid library were not sufficient to represent the complete F. ambigua 

genome. Instead of constructing a new fosmid library, whole genome sequencing 

was preferred, as this was judged a cheaper and faster alternative with regard to the 

cost of further fosmid sequencing. 

The putative ambigol biosynthetic gene cluster has a size of approximately 13 kb and 

is boardered by orf21 and orf24 [table 4.7.2-2; figure 5.6-1]. The deduced peptide 

sequences of the latter two genes could only be assigned to hypothetical proteins 

with unknown function. In case of Orf21 (4.7.3), similarity to regulative proteins, i.e. a 

possible AAA-ATPase-like protein (i.e. ATPases associated with diverse cellular 
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activities; identity = 63%) and a putative WD (tryptophan/aspartate)-repeat containing 

protein (identity = 62%) was found. Immediatialy downstream of orf24, the gene orf25 

was deciphered as a putative transposase [table 4.7.2-2], which most likely is the 

boarder of the ambigol biosynthetic gene cluster.  

 

 

Figure 5.6-1: Schematic overview of the arrangement of genes (ab1-ab7), which are putatively related 

to ambigol-production in F. ambigua. The coloured areas represent the corresponding, putative 

proteins. Areas coloured in light blue are involved in the formation of the ambigol core structure. 

Proteins coloured in blue are probable halogenases (HAL), which are responsible for tailoring 

reactions of ambigols, i.e. regiospecific chlorination. The black shaded areas represent proteins that 

may fulfil regulative functions. The cluster is boardered by orf21 and orf24. HYPOPROT = hypothetical 

protein; CYP = CYP 450 enzyme; PKCYC = polyketide cyclase; CHORLYAS = chorismate lyase; 

DAHPSYNT = DAHP synthetase; AMPLIG = AMP ligase. For detailed information and the putative 

function of the respective proteins, see table 4.7.2-2.  

The sequences of ab1 (4.7.4) and ab7 (4.7.10) encode for putative phenolic 

halogenases, whereas ab2 and ab3 (4.7.5) show significant identity with genes 

related to CYP 450 enzymes. The sequence of orf22 (4.7.6) resembles that of a gene 

encoding a putative cyclase/dehydrase-like protein from the cyanobacterium 

Nodularia spumigena CCY9414 (identity = 61%). Its function in the biosynthetic 

process could not be deduced. A chorismate lyase with the corresponding gene ab4 

(4.7.7) is likely responsible for the formation of 4-HBA (5.6.1), which presumably 

represents the origin of the basic monomer of the ambigols, i.e. their phenolic 

building unit (1.3.1). The gene orf23 was deciphered as a possible DAHP synthetase. 

These proteins exist as different isoenzymes and are specifically feedback-inhibited, 

and thus orf23 probably has a regulative function in the biosynthesis of antibacterial 

ambigols (Wu et al., 2003) (1.3; 5.6.7). Adjacently, the gene ab5 (4.7.8) encodes a 

putative AMP-ligase with similarity to CoA synthetases, which is probably involved in 

the activation of 4-HBA to its CoA-ester, or alternatively to an adenylate (5.6.2).  

If 4-HBA-CoA arises during ambigol biosynthesis, it is proposed to be transferred to 

the PCP domain of Ab6 (4.7.9), in order to be presented for a first halogenation 

reaction that is assumed to be mediated by Ab1 (4.7.4; 5.6.4). The two CYP 450 
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enzymes, Ab2 and Ab3 are postulated to construct the trimeric ambigol backbone by 

phenolic oxidative coupling performed on the carrier-bound substrate (5.6.5). A 

second halogenation reaction is supposed to be mediated by halogenase Ab7 while 

the trimeric framework is still bound to the PCP domain of Ab6 (5.6.6). The following 

considerations on a possible ambigol biosynthetic pathway, do not necessarily take 

the order of involved genes of the cluster into account. 

5.6.1  4-HBA, the possible key intermediate in ambigol assembly 

Chorismic acid is an important branch point intermediate [figure 5.5-1] in the 

biosynthesis of aromatic amino acids, i.e. phenylalanine, tyrosine and tryptophan as 

well as numerous bioactive aromatic compounds, for instance the antitumor agent 

enediyne C-1027 or the antibiotic compound chloramphenicol (Podzelinska et al., 

2010; Van Lanen et al., 2008). Ab4 shares 58% identity with a putative 4-HBA 

synthetase from Microcoleus chthonoplastes PCC 7420 and 55% to a putative 

chorismate lyase from Beggiatoa sp. PS (4.7.7). It should be noted that the 

information on functions of similar proteins relies exclusively on homology in their 

peptide sequences and not on in vitro proof for enzymatic activity of Ab4. This has to 

be proven by in vitro experiments with the heterologously expressed and purified 

protein (Ingram-Smith et al., 2006b). The superfamily of chorismate lyases (GenBank 

accession: cl01230) includes the most extensively studied representative UbiC from 

ubiquinone production (Smith et al., 2006; Holden et al., 2002). It catalyses the 

conversion of chorismate to 4-HBA by elimination of pyruvate (Gallagher et al., 

2001). Relying on sequence identity found for Ab4, it can only be assumed that it is 

responsible for the formation of 4-HBA [figure 5.6.1-1]. 
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Figure 5.6.1-1: Possible reaction catalysed by the putative chorismate lyase Ab4. Removal of pyruvic 

acid leads to 4-HBA. 
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The latter, however is most likely an intermediate in ambigol biosynthesis, because it 

was proven to be the precursor of the structurally similar, marine antibiotic 

pentabromopseudilin, produced by Alteromonas luteoviolaceus [figure 5.6.1-2]. This 

compound contains a dihalogenated phenolic unit similar to that present in ambigols 

(Peschke et al., 2005; Hanefeld et al., 1994). A closely related analogue of this 

secondary metabolite is pentachloropseudilin produced by Actinoplanes sp. ATCC 

33002 (Wynands & van Pee, 2004). 
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Figure 5.6.1-2: 4-HBA is a building unit of the marine antibiotic pentabromopseudilin 

  

The green marine alga Ulva lactuca was analysed for the presence of phenolic 

compounds [figure 5.6.1-3]. Among other isolated secondary metabolites, 3,5-

dibromo-4-hydroxybenzoic acid (3,5-dibromo-4-HBA) was identified. It was 

suggested that 4-HBA, which also was found in this organism, could be a possible 

precursor of 3,5-dibromo-4-HBA and 2,4,6-tribromophenol (Flodin & Whitfield, 1999b; 

Flodin & Whitfield, 1999a). 
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Figure 5.6.1-3: Possible precursors of brominated phenolic compounds from U. lactuca 

5.6.2 Possible activation of 4-HBA to 4-HBA-CoA 

Ab5 (4.7.8) was recognised as an AMP-binding enzyme bearing 50% amino acid 

identity with an AMP-dependent synthetase and ligase from Herpetosiphon 

aurantiacus ATCC 23779. Secondly, 41% identity to an AMP-binding enzyme from 

Teredinibacter turnerae T7901 was found. AMP-dependent enzymes exist as three 

variants (1.6), one of which is represented by CoA synthetases. Ab5 resembles 

several acyl CoA synthetases on the peptide level including a putative acyl CoA 

synthetase found in Hahella chejuensis KCTC 2396 (identity = 36%). Therefore, it 

might be anticipated that Ab5, whose gene is located downstream of ab4 (5.6.1) 

[figure 5.6-1], mediates the formation of the CoA-ester of the aryl acid 4-HBA, and 

thus activates it for following biosynthetic reaction steps [figure 5.6.2-1]. 
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Figure 5.6.2-1: Possible reaction catalysed by the putative CoA synthetase Ab5. It is supposed to 

activate the aryl acid 4-HBA to its corresponding CoA-ester. 

 

In this context, another possible activation reaction should be mentioned. As 

described in 1.4.3, AMP ligases may directly transfer an activated adenylate (aryl 

acid-AMP) onto a PCP domain. An example was described in 1.4.4 for the 

biosynthesis of the siderophore enterobactin, in which the freestanding A domain 

EntE generates 2,3-DHB-AMP and transfers it to the ArCP domain of EntB (Roche & 

Walsh, 2003). Similarly, in the lipidation reaction during daptomycin biosynthesis, the 

HS-CoA 

Ab5 
CoA 
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acyl ACP ligase DptE fulfils a similar function in that it activates fatty acids and 

transfers them to the cognate ACP DptF (Wittmann et al., 2008). By analogy, it is 

possible that the AMP-ligase Ab5 is responsible for the adenylation of 4-HBA to 4-

HBA-AMP along with the transfer of the latter onto the PCP domain of Ab6.  

On the other hand, it was reported that EncN, a benzoate CoA-ligase from enterocin 

biosynthesis is capable to transfer the benzoyl unit of benzoyl-CoA to the ACP 

domain EncC (transthiolation reaction) (Izumikawa et al., 2006). Therefore, it is 

absolutely essential to apply recombinant Ab5 in biochemical experiments, to 

investigate wether this enzyme exhibits CoA-ligase- or ACP-ligase-activity, or even 

both (Izumikawa et al., 2006; Ingram-Smith et al., 2006b, Knobloch & Hahlbrock 

1977). This is especially of interest with regard to the possible function of the starter 

C domain of the putative “NRPS”-module Ab6, which is proposed to display 

acyltransferase activity (5.6.3). 

5.6.3 Putative carrier protein domain Ab6 

The gene codifying for the “NRPS”-module Ab6 (4.7.9) is located adjacent to the 

putative aryl CoA synthetase gene ab5 (5.6.2) [figure 5.6-1]. It is composed of a C 

domain, an unspecific boundary sequence, a PCP and a TE domain. The C domain 

reveals 51% identity with OciA, a protein domain of an NRPS from Planktothrix 

rubescens NIVA-CYA 98, likely responsible for the production of the cyanopeptolin 

oscillapeptin G (Rounge et al., 2009). The PCP domain of Ab6 shows 56% identity 

with the PP-binding domain of MicD from the microginin gene cluster of Planktothrix 

rubescens NIVA-CYA 98 (Rounge et al., 2009). For the TE domain, 39% identity to 

the TE domain of HctF from the biosynthesis of hectochlorin in Lyngbya majuscula 

was found (Ramaswamy et al., 2007). 

Canonical conserved motifs for these three domains, which are required for 

enzymatic activity, were recognised (4.7.9). Thus, it could be followed that the three 

domains of the NRPS module Ab6 are functional units. However, their involvement in 

the biosynthesis of the ambigols remains to be proven by gene disruption studies. A 

possible function of this NRPS-like module could be the binding of 4-hydroxybenzoyl-

CoA (5.6.2) for following reaction steps. The C domain of Ab6 could be an ancient 

form of acyltransferases, bearing a divergent C3 core motif H-H-I-V-I-D-F, however 

with the presence of the essential second histidine residue (Samel et al., 2007) 
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(4.7.9.1). The latter is supposed to be involved in the amide bond formation in 

nonribosomal peptide biosynthesis by activation of the amino group of a downstream 

amino acid for its nucleophilic attack on the carboxy group of an upstream amino acid 

(Roche & Walsh, 2003; Bergendahl et al., 2002).  

An example for bacterial acyltransferases can be found in the biosynthesis of neutral 

lipids, i.e. triacylglycerols and wax esters. For enzymes of the wax ester 

synthase/diacylglycerol acyltransferase (WS/DGAT) family, it could be shown that 

even the first histidine residue is necessary for the catalytic acyl transfer (Stöveken et 

al., 2009). Further, the H-H-X-X-X-D-G motif is also present in the chloramphenicol-

inactivating, bacterial enzyme chloramphenicol acetyltransferase, which catalyses the 

transfer of an acetyl group onto a hydroxyl group (Shaw et al., 1979). Moreover, 

dihydrolipoamid-S-acetyltransferase contains the H-H-X-X-X-D-G motif (Keating et 

al., 2002; Marahiel et al., 1997). This enzyme mediates an interthiol acetyl-transfer 

between the cofactor S-acetylliponamid and CoA to generate acetyl-CoA.  

The starter C domain of Ab6 (1.4.5; 4.7.9) may receive the CoA-bound substrate to 

transfer it to the PCP domain [figure 5.6.3-1]. Here, an analogy to the biosynthesis of 

daunorubicin is worthwhile to mention. In the biosynthesis of this anthracycline 

antibiotic in S. peucetius, the KS III domain DpsC fulfils a dual function transferring a 

propionyl group from a propionyl-CoA starter unit to the 4’-PP cofactor of an ACP 

while it is also capable to exhibit condensation activity (Bao et al., 1999a). DpsC 

showed distinct specifity towards propionyl-CoA (Bao et al., 1999b).  
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Figure 5.6.3-1: Possible interthiol transfer reaction mediated by the C domain of Ab6. D = donor site; 

A = acceptor site.  
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C domains as starter units of an NRPS (1.4.5) are a characteristic for biosynthetic 

pathways of mixed PKS/NRPS products, lipopeptides and siderophores  (Chooi & 

Tang, 2010; Rausch et al., 2007; Roongsawang et al., 2005). These compounds are 

characterised by a polyketide derived carboxylic acid, a fatty acid or a hydroxylated 

carboxylic acid (e.g. 2,3-dihydroxybenzoic acid), respectively, which is received at the 

donor site by a starter C domain, in order to be linked to an amino acid bound to the 

acceptor site. 

The biosynthesis of surfactin includes a simplified variant of this procedure. The 

biotenside surfactin is a cyclic lipoheptapeptide lactone isolated from Bacillus subtilis 

(Bonmatin et al., 2003). It is composed of seven amino acids and a β-hydroxy fatty 

acid. The surfactin biosynthetic gene cluster comprises four biosynthetic genes 

codifying for the three-modular NRPSs SrfA and SrfB, the one-modular NRPS SrfC, 

and a dissected type II TE domain, i.e. SrfD. The latter fulfils repair functions during 

peptide assembly (Yeh et al., 2004). Thus, seven amino acid activating modules 

were identified in the biosynthetic gene cluster. These are, SrfA1, SrfA2, SrfA3, 

SrfB1, SrfB2, SrfB3, and SrfC.  

Surfactin-production is initiated by the NRPS-module SrfA1, which bears an N-

terminal C domain, also referred to as starter C domains (Steller et al., 2004). The 

role of this unique starter C domain has been extensively studied by Kraas et al. 

(2010). It was shown to catalyse the initial acylation step by linking 3-hydroxy myristic 

acid to glutamate. Thereby, the lipid chain is not tethered to an ACP domain but 

instead, 3-hydroxymyristoyl-CoA is directly transferred to the PCP-bound glutamate 

(Kraas et al., 2010). Interestingly, the surfactin biosynthetic machinery does not 

include a dedicated CoA-ligase for the formation of the fatty acyl-CoA substrate but 

instead, this substrate is suggested to be produced by primary metabolism (Chooi & 

Tang, 2010; Kraas et al., 2010). This example shows that CoA-esters may be 

produced separately by a lone standing CoA ligase, in order to be recognised and 

transferred by a modular protein. A stimulating effect of the TE domain SrfD in the 

uptake of the 3-hydroxymyristoyl-CoA substrate was observed [5.5.1.3-1] (Wittmann 

et al., 2008; Steller et al., 2004). 
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Figure 5.5.1.3-1: SrfA1 is the first module of the three-modular NRPS SrfA. It contains a dissected, N-

terminal C domain, an A and a PCP domain. The C domain is involved in the direct utilisation of a fatty 

acid-CoA, which is linked to glutamic acid by amide bond formation. 

Assuming that the C domain of Ab6 is even simpler than that of SrfA1 [figure 5.5.1.3-

1], it is conceivable that the NRPS-like module Ab6 would not catalyse a repetitive 

assembly of amino acids via peptide bond formation but rather transfers the first 4-

HBA-CoA unit to the PCP domain. This PCP-tethered 4-HBA-molecule is supposed 

to undergo dichlorination. Furthermore, the starter C domain of Ab6 could play an 

assisting role in the oxidative coupling reaction by providing 4-HBA units at its donor 

site for coupling with the PCP-bound 2,6-dichloro-4-HBA (5.6.4; 5.6.5).  

As mentioned in 5.6.2, a direct transfer of an aryl adenylate, i.e. 4-HBA-AMP onto the 

PCP domain of Ab6 may also be possible. In that case, the function of the starter C 

domain of Ab6 would be unknown.  

Downstream of the C domain, a boundary sequence of about 170 amino acids was 

identified (4.7.9.2) but is not clearly defined. Although BLAST classifies it partially 

(~40 amino acids) as TIGR01720, the typical conserved motifs of this protein family 

are not present in the sequence from F. ambigua.  It is supposed that the latter is an 

artefact and not related to the ambigol biosynthesis. TIGR01720 has been found in 

e.g. linear gramicidin synthetase subunit A (Kessler et al., 2004) or in surfactin 

synthetase subunit 1, i.e. SrfA, which carries a starter C domain, discussed above 

(Nakano et al., 1991).  

The PCP domain of Ab6 consists of approximately 80 amino acids revealing the 

typical conserved core region D-X-F-F-X-G-G-(H/D)-S-(L/I). It resembles thiolation 

starter C 

domain 

3-hydroxy myristic acid 

R = alkyl chain (11 carbons) 

glutamate 

surfactin 

SrfB, SrfC 

SrfA1 
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domains from NRPS assembly lines that are involved in the biosynthesis of 

cyanobacterial nonribosomal cyclic peptides, e.g. the PP binding domain of MicD 

from microginin production in Planktothrix rubescens NIVA-CYA 98 (Rounge et al., 

2009) (4.7.9.3).  

5.6.4 Probable halogenation of a PCP-bound substrate  

The putative flavin-dependent halogenase Ab1 reveals sequence identity with the 

phenolic halogenase CrpH (identity=58%), which catalyses the chlorination of 

tyrosine in ortho-position to the O-Met moiety in the cryptophycin assembly line 

(Magarvey et al., 2006). Ab1 also resembles the tryptophan-2-halogenase, CmdE 

from the myxobacterium Chondromyces crocatus with an identity of 44 %. According 

to Kling et al. 2005, FADH2-dependent halogenases share two highly conserved 

regions, the G-X-G-X-X-G-motif, which is located in the flavin binding site near the N-

terminus and a W-X-W-X-I-P sequence found in the middle of the enzyme (Kling et 

al., 2005). The latter one is supposed to sterically inhibit the active site from substrate 

binding and thus from catalysing monooxygenase reactions (Dong et al., 2005). 

These two motifs are a characteristic combination only found in halogenases and are 

very strong criteria to identify halogenase peptide sequences.  

The biosynthesis of chondramide B and D as well as that of cryptophycin is 

maintained by a modular pathway of mixed NRPS and PKS, in which the 

halogenation step is integrated, and thus takes place while the substrate is carrier- 

bound (Rachid et al., 2006; Magarvey et al., 2006). Within both of these biosynthetic 

gene clusters (cmd and crp), the halogenase genes are located immediately 

downstream of the associated NRPS genes. The corresponding chlorinating 

enzymes CmdE and CrpH, respectively, mediate a final decorating modification of 

the produced mixed PKS/NRPS chains. By contrast, the halogenase gene ab1, 

unlike the second halogenase gene ab7, is located clearly separated from the NRPS 

gene ab6, rather at the beginning of the biosynthetic gene cluster [figure 5.6-1]. It 

resides directly upstream of the genes for the two CYP 450 enzymes, Ab2 and Ab3. 

It is likely that the CYP 450’s act in tandem with the halogenase. Due to the high 

sequence homology of Ab1 to NRPS-associated halogenases, it could be expected 

that this enzyme like most other phenolic halogenases requires a PCP-attached 

substrate, rather than a free diffusible one. As described in 1.4.1.1, carrier-bound 
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halogenation may occur as di- or even trichlorination, however with strict 

regioselectivity (Jones et al., 2010). Ab1 is postulated to perform dichlorination of 

PCP-tethered 4-HBA at meta-position [figure 5.6.4-1]. It cannot be excluded, however 

that Ab7 (4.7.10) is involved in these halogenations. 
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Figure 5.6.4-1: Possible reaction catalysed by the putative halogenase Ab1. It is supposed to 

dichlorinate the activated substrate 4-HBA-S-PCP in meta-position to the OH-group. D = donor site;   

A = acceptor site. 

5.6.5 Putative oxidative coupling reaction 

CYP 450 enzymes are able to mediate phenolic oxidative coupling reactions, and 

thereby produce phenolic ethers or biphenyl compounds (Walsh, 2004) (1.4.4). The 

two proteins Ab2 and Ab3 show homology to vertebrate CYP 450 enzymes, which 

fulfil metabolic functions. For Ab2 highest identity was determined to CYP 450 1D1 

from the zebrafish Danio rerio. Ab3 possesses 35 % identity with CYP 1C2 from the 

rainbow trout Oncorhynchus mykiss (4.7.5). 

As might be expected, Ab2 and Ab3 share 73% sequence identity. Taking the 

ambigol structure into account, one could expect that both enzymes act on a similar 

substrate, maybe 4-HBA but differ concerning the type of catalysed linkage, i.e. C-O- 

or C-C-coupling. Another possibility could be that both, Ab2 and Ab3, mediate C-O-

coupling, while one of them acts to produce a dimer, whereas the second one is 

responsible for the formation of the trimeric scaffold. In this case, the identified ab-

operon would most likely be responsible for the formation of ambigol B only, which 

constitutes a symmetric molecule.  

Both enzymes are supposed to act in tandem with the putative halogenase Ab1 while 

the substrate is still tethered to the PCP domain of Ab6. As described previously 

Ab1 
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(1.4.4), an interaction of CYP 450’s with PCP domains is well-established. For 

instance, vancomycin and balhimycin comprise a common heptapeptide aglycone 

backbone, in which aryl residues are linked via biphenyl and biphenyl ether 

connections formed via phenolic oxidative crosslinking of the PCP-attached peptide 

chain (Walsh, 2008; Bischoff et al., 2005; Nolan & Walsh, 2009). 

Remarkably, the halogenated trimeric building unit of the peptide scaffold in 

balhimycin and vancomycin [figure 5.6.5-1] is reminiscent of the ambigols isolated 

from F. ambigua (Falch et al., 1995). The oxidative chemistry in the biosynthesis of 

vancomycin-type antibiotics has been recently reviewed (Widboom & Bruner, 2009).      
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Figure 5.6.5-1: The ambigol structure is highly reminiscent of partial structures in glycopeptide 

antibiotics, e.g. vancomycin and balhimycin. 

Analysis of the biosynthetic gene clusters of different glycopeptide antibiotics, 

heterologous expression of several involved genes in E. coli as well as gene 
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inactivation studies have given insights into the complex assembly of the crosslinked 

heptapeptide aglykone scaffold (Hubbard & Walsh, 2003). Knockout studies on the 

balhimycin-producing strain initially revealed that each crosslinking step within the 

heptapeptide is accomplished by a particular CYP 450 enzyme, i.e. OxyA, OxyB and 

OxyC, respectively, by sequential action. Thus, OxyB and OxyA catalyse aryl ether 

connections between residues 4 and 6 and residues 2 and 4, respectively, whereas 

OxyC by contrast is responsible for the C-C-crosslinking step between residues 5 

and 7 [figure 5.6.5-1] (Nolan & Walsh, 2009; Hadatsch et al., 2007; Stegmann et al., 

2006; Walsh, 2004; Bischoff et al., 2001; Pelzer et al., 1999). The crystal structures 

of OxyB and OxyC from the vancomycin producer A. orientalis have been solved 

recently and the typical P450-fold was reported (Pylypenko et al., 2003; Zerbe et al., 

2002). For OxyB, a model hexapeptide bound to a PCP domain served as a 

substrate to display CYP 450 activity giving rise to a monocyclic product (Widboom & 

Bruner, 2009; Woithe et al., 2008; Geib et al., 2008).  

As mentioned in 5.6.3, the starter C domain of Ab6 could play an assisting role in that 

it receives the CoA-activated aryl acid 4-HBA at its donor site to promote substrate 

recognition by the CYP 450 enzymes. The latter may depend on possible enzymatic 

interactions with the C and PCP domain, respectively. In accordance with the 

explanations in 1.4.4, a PCP-associated phenolic coupling reaction is reasonable to 

anticipate for ambigol production.  
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Figure 5.6.5-2: Possible phenolic oxidative coupling catalysed by Ab2 and Ab3, respectively.               

D = donor site; A = acceptor site. 

By analogy to glycopeptides biosynthesis, the first chlorination step is suggested to 

be performed prior to oxidative coupling reactions (5.6.4) (Puk et al., 2002). On the 

contrary to this, the second and final dihalogenation step is proposed to occur 

subsequently to the oxidative crosslinking reactions. Chlorination in ortho- and para- 

position to the oxygen substituted position of the outer rings of the ambigols [figure 

5.1-1] is probably mediated by the FADH2-dependent halogenase Ab7 (5.6.6).  

This would require a previous decarboxylation step to remove the carboxyl group 

from the para-position of the oxidatively linked 4-HBA units. However, a putative 

decarboxylase could not be identified in the putative ambigol biosynthetic gene 

cluster. An involvement of Ab2 and Ab3 in the decarboxylation of crosslinked 4-HBA 

units in the course of coupling reactions may be conceivable. However, no specific 

information on this reaction step is available.  

Ab2 or Ab3 

Ab2 or Ab3 

Phenolic oxidative 

coupling 
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The barbamide biosynthetic pathway involves two specific enzymes BarH and BarI, 

which putatively mediate oxidative decarboxylation of the barbamide precursor to 

produce the thiazol moiety of the compound (Jones et al., 2010; Flatt et al., 2006; 

Chang et al., 2002). Another type of oxidative decarboxylase, i.e. CndG was 

recognised only recently in the biosynthetic gene cluster of chondrochloren. This 

FAD-dependent enzyme catalyses the formation of the styryl moiety of the tyrosine 

derived natural product (Rachid et al., 2010).  

Concerning the signature motifs of CYP 450 enzymes described in 4.7.5, the A-

(A,G)-X-(E,D)-T-motif is not completely conserved in Ab2 and Ab3, revealing a lysine 

residue instead of threonine. Although the threonine is conserved in many CYP 

450’s, there are also functionally active enzymes reported, where replacement of 

threonine is critical for the enzymatic activity, e.g. in OxyB from vancomycin 

production, Asn-240 takes the position of the conserved threonine. The amido group 

of the side chain of Asn-240 is located in the active site of OxyB forming a hydrogen 

bond with the iron-bound water molecule. It thus plays a stabilising role in the 

catalytic process mediated by OxyB (Woithe et al., 2007; Zerbe et al., 2002).  

Another example is found in the biosynthetic pathway of erythromycin, which includes 

6-deoxyerythronolide B synthase, a PKS, which produces the erythromycin aglycone 

(Khosla et al., 2007). EryF, a CYP 450 enzyme performs 6(S)-hydroxylation of the 

macrocyclic polyketide aglycone 6-deoxyerythronolide B. This reaction depends on a 

substrate-CYP 450 interaction (Walsh & Fischbach, 2010; Isin & Guengerich, 2008). 

As found for Ab2 and Ab3, the threonine of motif I (4.7.5) is not absolutely conserved 

in EryF. It contains an alanine residue in place of threonine, which appeared to be 

important for dioxygen bond cleavage (Cupp-Vickery et al., 1996).  

It has to be mentioned that CYP 450 enzymes in general share low sequence 

homology. Despite that, they contain a conserved overall tertiary structure combined 

with regions of high flexibility for substrate positioning (Lewis & Wiseman, 2005; 

Graham & Peterson, 1999). As a consequence, the sole knowledge of the primary 

structure of Ab2 and Ab3 does not allow predictions, neither on their possible 

substrates nor on their catalysed reactions. Further studies are necessary including 

knockout experiments and heterologous expression of both CYP 450 enzymes to 

prove their involvement in ambigol biosynthesis and to test possible substrates by in 

vitro assays.  
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An experimental approach to inactivate a CYP 450 enzyme was managed by Wang 

(2008). In a knockout mutant of Chaetomium chiversii, the producer of the chlorinated 

secondary metabolite radicicol, the gene radP was inactivated. This gene encodes a 

CYP 450 epoxidase that is responsible for epoxidation of a PKS-generated double 

bond. As a result, a deepoxy analogue was obtained (Wang et al., 2008).  

5.6.6 Final halogenation steps 

With regard to the successive position of ab6 and ab7 in the putative ambigol 

biosynthetic gene cluster [figure 5.1-1], a tandem action of the corresponding 

enzymes could be estimated.  The deduced peptide sequence of Ab7 [4.7.10] is 

similar to prominent NRPS associated FADH2-dependent halogenases, which 

perform tailoring halogenation in the production of cyclic and linear nonribosomal 

peptides, e.g. cyanopeptolins and aeruginosins [figure 1.2-1]. Highest identity (66%) 

was found to the halogenase McnD from M. aeruginosa, which produces the 

chlorinated heptapeptide cyanopeptolin 984 (Cadel-Six et al., 2008; Rounge et al., 

2007; Tooming-Klunderud et al., 2007). The close relationship to these NRPS-

associated halogenases implies that Ab7 most likely acts on an NRPS-attached 

substrate. Furthermore, its catalysed reaction is expected to be the final step in 

ambigol biosynthesis due to the terminal location of the corresponding gene ab7 in 

the assembly of putative ambigol biosynthesis genes [figure 5.1-1]. Thus, halogenase 

Ab7 may perform dichlorination of the aromatic moieties in the putative trimeric 

ambigol precursor [figure 5.6.6-1] in ortho and para to the oxygen substituted position 

of the outer rings. Dichlorination on phenolic or pyrrole substrates is well-established 

in literature. One example was given in 1.4.1.1, i.e. the production of pyoluteorin by 

P. fluorescens Pf-5 (Dorrestein et al., 2005). CrpH, the FADH2-dependent 

halogenase of the cryptophycins, was proposed to generate dichlorinated 

cryptophycin congeners (Magarvey et al., 2006). Likewise, the flavin-dependent 

halogenase ChlA has been proven in vivo and in vitro to be capable to mediate both 

halogenations in the biosynthesis of DIF-1 (Neumann et al., 2010) (1.4.1).  

Similar to ChlA, which utilises a free PKS product as a substrate, the FADH2-

dependent halogenase Rdc2 from the fungus Pochonia chlamydosporia  acts on a 

resorcylic acid lactone, likely produced by two iterative PKSs (Zhou et al., 2010). 

Furthermore, in vitro assays using recombinant Rdc2 revealed that the latter was 
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even capable of generating dichlorinated products, although the endogenous 

secondary metabolite is only monochlorinated. Rdc2 was also able to incorporate 

bromide instead of chlorine and to halogenate structurally divergent lactones (Zeng & 

Zhan, 2010). 

The PCP-tethered ambigol precursor is suggested to be composed of a trimeric 

phenolic backbone with six chlorine substituents [figure 5.6.6-1]. The halogenase 

Ab7 is proposed to chlorinate the aromatic residues of the oxidatively coupled 4-HBA 

units. Release of the halogenated product is most likely mediated by action of the 

putative TE domain of Ab6 (4.7.9.4).  
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Figure 5.6.6-1: Possible reaction catalysed by the putative halogenase Ab7. It is supposed to 

chlorinate the outer rings of the trimeric ambigol scaffold. D = donor site; A = acceptor site. 

A final decarboxylation of the middle ring would be necessary to produce ambigols. 

Since no decarboxylating enzyme was identified in the putative ambigol biosynthetic 

gene cluster, it might be possible that housekeeping enzymes are involved or that the 

TE domain is capable of removing the carboxyl group in the course of ester cleavage 

(Mortison & Sherman, 2010).  

Moreover, the ambigol biosynthetic gene cluster did not contain an FAD-reductase, 

which is usually required for regeneration of the essential cofactor FADH2 (van Pée & 

Patallo, 2006; van Pée, 2001; Keller et al., 2000). However, within the biosynthetic 

gene cluster of pyrrolnitrin, which comprises four genes, also no flavin reductase was 

identified. In fact, the endogenous flavin reductase from Pseudomonas fluorescens 

could be even exchanged by reductases from other bacteria, e.g. Fre and SsuE from 

Ab7 
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E. coli (Unversucht et al., 2005; Dorrestein et al., 2005; Keller et al., 2000). Similarly, 

the halogenated indole derivative pyrroindomycin B (Ding et al., 1994) was produced 

in vitro using SsuE (Zehner et al., 2005). Therefore, a specifity between the flavin 

reductase and the halogenase is obviously not required (van Pee et al., 2006). The 

chemical lability of free diffusible FADH2, however suggests at least a halogenase-

reductase interaction for a possible interenzymatic cofactor-transfer (Flecks et al., 

2008).  

5.6.7 DAHP synthetase 

The peptide sequence of ORF23 (4.7.11) aligns with a DAHP synthetase from 

Nodularia spumigena CCY9414 bearing 64 % identity. Same degree of identity was 

found to a DAHP sythetase from Nostoc punctiforme PCC 73102 and Anabaena 

variabilis ATCC 29413, respectively. The DAHP enzyme catalyses the stereospecific 

aldol-like condensation of phosphoenol pyruvate and D-erythrose 4-phosphate to 

give 3-deoxy-D-arabino-heptulosonate 7-phosphate, which is the initial step of the 

shikimate pathway. The latter represents the source of aromatic amino acids in 

bacteria and plants (Knaggs, 2003; Herrmann & Weaver, 1999).  

DAHP synthetases are present in most bacteria, fungi and plants. Birck and Woodard 

separated this protein family into two classes, class I and class II, which was 

proposed due to their metal requirements (Birck & Woodard, 2001). An alternative 

classification was suggested by Jensen et al. (2002) dividing DAHP synthetases into 

two homology families (AroAI and AroAII) (Jensen et al., 2002). AroAII comprises 

herbal DAHP synthetases including higher plant proteins, but also numerous bacteria 

have been found to possess this class of enzyme (Gosset et al., 2001). According to 

amino acid similarity, ORF3 presumbly belongs to class I, which is typical for DAHP 

synthetases from microorganisms. 

It is well established that different strategies take place to control the activity of 

enzymes within the biosynthetic pathway for aromatic amino acids (Bentley, 1990). 

Regulation of DAHP synthetase activity is accomplished either transcriptionally or by 

feedback inhibition (Walker et al., 1996). The three DAHP synthetase isoforms 

expressed by E. coli are representatives of AroAIα (class II) and are specifically 

feedback-inhibited by tyrosine, phenylalanine or tryptophan, respectively. Early 

studies on the isoenzymes AroF, AroG, and AroH revealed that slight mutation in 
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AroF by replacing Leu-148 with a proline residue resulted in a tyrosine-insensitive 

enzyme (Weaver & Herrmann, 1990). Substitution of Lys-8 by an Asn-residue also 

led to a tyrosine-insensitive DAHP synthetase (Jossek et al., 2001). The DAHP 

synthetase from B. subtilis, which belongs to the AroAIβ family (class II), is inhibited 

by the shikimate pathway intermediates prephenate and chorismate (Wu et al., 

2003). Another example for the specifity of feedback-inhibition mechanisms is a 

DAHP synthetase from Xanthomonas campestris that has been shown to be 

sensitive to chorismate as an allosteric inhibitor, however less sensitive to L-

tryptophan (Gosset et al., 2001).  

Thus, the presence of a dahp gene in a biosynthetic gene cluster probably encoding 

a specific isoform of DAHP synthetases enables a distinct control of precursor 

availability. This, as a consequence would be a limiting factor in the production of a 

natural product, i.e. the potentially toxic ambigols.   

Only recently, this correlation has been shown for the balhimycin producer A. 

balhimycina (Stegmann et al., 2010; Thykaer et al., 2010). Balhimycin and related 

glycopeptide antibiotics, e.g. vancomycin and teicoplanin, contain the non-

proteinogenic amino acid (S)-4-hydroxyphenylglycine (Hpg), which arises from the 

shikimate pathway (Chen et al., 2001; Widboom & Bruner, 2009). This amino acid is 

also known from calcium-dependent antibiotic (CDA), an acidic lipopeptide from 

Streptomyces coelicolor (Strieker & Marahiel, 2009). Both biosynthetic gene clusters 

encode three similar proteins, a 4-hydroxymandelate synthase (HmaS), 4-

hydroxymandelate oxidase (Hmo) and the 4-hydroxyphenyl-glycine transaminase 

(HpgT), which mediate the formation of Hpg (Strieker & Marahiel, 2009). Also both 

biosynthetic gene clusters revealed the presence of a dahp gene (Hojati et al., 2002; 

Pelzer et al., 1999). A recombinant strain of A. balhimycina overexpressing the dahp 

gene was able to produce significantly higher amounts of balhimycin, whereas the 

deletion mutant clearly revealed a reduced production of balhimycin (Thykaer et al., 

2010).  

5.6.8 Summary of genes probably involved in ambigol biosynthesis 

The putative biosynthetic gene cluster of the ambigols comprises seven genes (5.6) 

codifying for a chorismate lyase (Ab4), a CoA synthetase (Ab5), an NRPS-like 

module (Ab6), two CYP 450 enzymes (Ab2 and Ab3) and two FADH2-dependent 



158 
Discussion 

 

halogenases (Ab1 and Ab7). These enzymes are most likely responsible for the 

production of an aromatic scaffold modified by regioselective halogenation. The 

central building block for ambigol A and B is proposed to be 4-HBA, which is 

generated by the probable chorismate lyase Ab4 (5.6.1).  Activation of this aryl acid 

to the corresponding CoA-ester may be ascribed to the AMP-dependent CoA 

synthetase Ab5 (5.6.2). The thioesterified substrate is supposed to be transferred to 

the PCP domain of the NRPS-like module Ab6 (5.6.3) by interthiol transfer probably 

mediated by the starter C domain of Ab6 [figure 5.6.8-1]. Alternatively, Ab5 could 

mediate the adenylation of 4-HBA to 4-HBA-AMP, and subsequently catalyse the 

transfer of the latter onto the PCP domain of Ab6. 

Genes encoding the halogenase Ab1 (5.6.4) and the CYP 450’s Ab2 and Ab3 (5.6.5) 

are resided contiguously on the biosynthetic gene cluster. They are therefore 

assumed to act collectively on the PCP-bound substrate. Ab1 could be responsible 

for the dichlorination of PCP-tethered 4-HBA in meta-position to the OH-group [figure 

5.6.8-1]. The trimeric ambigol backbone would emerge by action of Ab2 and Ab3 

catalysing either C-O- or C-C-coupling reactions. It is also possible however that Ab2 

and Ab3 both catalyse C-O-couplings. In this case, the first CYP 450 enzyme (Ab2 or 

Ab3) acts on a monomeric substrate only, while the second would utilise the resulting 

dimeric product to couple it to another 4-HBA unit. This hypothesis is in accordance 

with findings for the biosynthesis of vancomycin-type antibiotics, in which every single 

coupling step is mediated by a dedicated CYP 450 enzyme (5.6.5) (Widboom & 

Bruner, 2009; Walsh, 2004). Following this theory, it is suggested that the identified 

putative ambigol biosynthetic gene cluster is responsible only for the production of 

the symmetric molecule ambigol B [figure 5.6.8-1].  

Decarboxylation of the two added 4-HBA units after their linkage to 2,6-

dichlorobenzoyl-S-PCP is probably managed by housekeeping enzymes or in the 

course of the phenolic oxidative coupling reaction (5.6.5). Subsequently, Ab7 

putatively performs the final halogenations in ortho and para to the oxygen 

substituted position of the outer rings of the ambigols (5.6.6). Release of the final 

product is likely mediated by the TE domain of Ab6. The latter could probably involve 

an integrated decarboxylation step (5.6.6). In figure 5.6.8-1, the proposed 

biosynthetic pathway of the ambigols A and B is summarised. 
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Figure 5.6.8-1: Proposed biosynthesis for ambigols A and B.  
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On the basis of this theory, a possible biosynthesis for ambigol A and B could be 

deduced, whereby the biosynthetic pathway of ambigol B is favoured to be related to 

the identified gene cluster. Concerning ambigol C [figure 5.1-1], the linkage of the 

outer phenolic units in meta-position to the OH-group of the central ring can not be 

explained by a phenolic oxidative coupling reaction. Since the delocated electron can 

only be present in ortho and para positions to the OH-group of the central building 

block, a coupling reaction in meta-position would be impossible (1.4.4). Thus, the 

formulation of mesomeric structures of the respective phenolic radicals excludes a 

phenolic oxidative coupling reaction in meta-position to an OH-group.  

5.7 The putative biosynthetic gene cluster of tjipanazole D 

Sequence data obtained in this project show that the arrangement of genes encoding 

the putative set of tjipanazole D biosynthesis enzymes is to a high extent congruent 

with that of rebeccamycin production (5.7.1). To date, published information is only 

available on the biosynthesis of the indolo[2,3-a]pyrrolo[3,4-c]carbazole scaffold 

found in rebeccamycin and related compounds (Onaka, 2009; Salas & Mendez, 

2009; Nakano & Omura, 2009; Sánchez et al., 2006b) (1.3.2) but not on the 

production of the indolo[2,3-a]carbazole core structure as present in tjipanazole D. 

Therefore, the presented study may contribute to the understanding of the 

biosynthesis of this divergent type of indole alkaloid secondary metabolites. 

The putative tjipanazole D biosynthetic gene cluster (4.8) has a size of approximately 

12 kb and is boardered by the transposase gene orf1 and the downstream located 

orf4, which was deciphered as a putative CMP/dCMP deaminase (4.8.1). The latter 

enzyme is likely to participate in primary metabolism (Reizer et al., 1994). Five genes 

are probably directly ascribed to the assembly of the bisindole natural product 

tjipanazole D (4.8). These are: tj1, tj2, tj3, which codify for a putative L-tryptophan 

oxidase, a probable chromopyrrolic acid (CPA) synthase-like enzyme, and a putative 

FAD-dependent monooxygenase, respectively. Furthermore, the deduced peptide 

sequence of tj4 resembles CYP 450 enzymes involved in the biosynthesis of 

prominent indolocarbazoles, i.e. RebP and StaP, respectively (Ryan & Drennan, 

2009). The gene tj5 most probably encodes a tryptophan 5-halogenase. All above 

mentioned genes are arranged in 5’,3’-direction, except the halogenase gene tj5, 

which is read in 3’,5’-direction. Therefore, the halogenase is predicted to be 
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expressed independently from the remaining enzymes of the biosynthetic gene 

cluster. As it was proposed for most investigated tryptophan halogenases (Zhu et al., 

2009; Flecks et al., 2008; Yeh et al., 2005; Sánchez et al., 2005; Zehner et al., 2005) 

(1.4.2), Tj5 is assumed to catalyse the first step in tjipanazole D production, the 5-

chlorination of tryptophan. 

 

 

Figure 5.6-1: Schematic overview of the arrangement of genes, which putatively participate in 

tjipanazole D-formation in F. ambigua. The coloured areas represent the corresponding, putative 

proteins. For detailed information and the putative function of the respective proteins, see table 4.8.1-

1. Proteins coloured in light blue are involved in the formation of the tjipanazole D core structure. The 

probable halogenase Tj5 and the possible flavin reductase Orf3 are coloured in blue. The black 

shaded area (gene orf2) represents a protein of unknown function, i.e. a SAM-dependent 

methyltransferase. The gene cluster is boardered by orf1 and orf4. TRANSPOS = transposase; 

TRPOXI: L-tryptophan oxidase; CPASYNTH: chromopyrrolic acid synthase-like protein; O-

METTRANS = O-methyltransferase; NAD(P)HDEHYD = NAD(P)H-dehydrogenase; FADMONO = 

FAD-binding monooxygenase; CYP = CYP 450 enzyme; HAL = FADH2-dependent halogenase; 

CMP/dCMP DEAMIN = CMP/dCMP deaminase, zinc-binding  

The nucleotide sequences for tj1-tj4 correspond to respective genes of the 

biosynthetic gene clusters of rebeccamycin (reb) and staurosporine (sta) (Onaka et 

al., 2003; Sánchez et al., 2002; Onaka et al., 2002). Orfs related to the tjipanazole D 

biosynthesis and assigned genes from reb and sta biosynthetic gene clusters are 

listed in table 5.7.1-1.  

Rebeccamycin and the related natural product staurosporine, are composed of an 

indolo[2,3-a]pyrrolo[3,4-c]carbazole skeleton [figure 5.7-2], which is produced by 

dimerisation of two molecules of indole-3-pyruvate (IPA) imine, catalysed by StaD 

and RebD, to give chromopyrrolic acid (CPA) and 11,11’-dichlorochromopyrrolic acid 

[figure 5.7.1-1], respectively. The precursor, IPA-imine arises by action of the L-

amino acid oxidases RebO and StaO, respectively. Subsequent oxidation steps with 

ring closure mediated by the enzyme pairs StaP/StaC and RebP/RebC, respectively, 

lead to the indolocarbazole core structure (Singh et al., 2008; Sánchez et al., 2006b; 

Howard-Jones & Walsh, 2006; Howard-Jones & Walsh, 2005).  

    orf1             tj1           tj2             orf2             orf3              tj3           tj4          tj5            orf4        

TRANS 
POS 

TRP 
OXI 

CPA 
SYNTH 

O-MET 
TRANS 

FAD 
MONO 

CYP HAL 
 

CMP/dCMP
DEAMIN 

NAD(P)H 
DEHYD 

 



162 
Discussion 

 

By analogy, tj1 and tj2 are supposed to encode proteins that trigger the formation of 

a CPA-like intermediate [figure 5.7.3.2-1], which could be the precursor of the 

indolo[2,3-a]carbazole scaffold of tjipanazole D (Ryan et al., 2007).  

The halogenase RebH together with the flavin reductase RebF was proven by in vitro 

assay to catalyse the 7-chlorination of L-tryptophan as the initiating step of 

rebeccamycin biosynthesis (Yeh et al., 2005). Similarly, PyrH, the tryptophan 5-

halogenase from Streptomyces rugosporus was heterologously expressed to show 

its halogenating activity towards free tryptophan (Zehner et al., 2005). As might be 

expected with regard to the chlorination pattern in tjipanazole D, Tj5 reveals highest 

homology to PyrH. Therefore, it is reasonable to anticipate that Tj5 is the starting 

enzyme in tjipanazole D production (5.7.2).  
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Figure 5.7-2: Indolo[2,3-a]pyrrolo[3,4-c]carbazoles (staurosporine, rebeccamycin) and tjipanazole D. 

Pyrroindomycin contains, just as tjipanazole D, a tryptophan-derived moiety that is chlorinated in 5-

position.  
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5.7.1 Analogy of tjipanazole D to indolo[2,3-a]pyrrolo[3,4-c]carbazoles  

A key step in staurosporine and rebeccamycin biosynthesis is the formation of the 

indolocarbazole core by intramolecular C-C bond formation and oxidative 

decarboxylation of chromopyrrolic acid (Ryan & Drennan, 2009).  

The biosynthetic gene clusters of staurosporine, rebeccamycin as well as those for  

related indolocarbazoles, i.e. K252a and At2433-A1, have been cloned and 

characterised (Onaka et al., 2003; Onaka et al., 2002; Sánchez et al., 2002; Chiu et 

al., 2009b; Chiu et al., 2009a; Gao et al., 2006). The rebeccamycin biosynthetic gene 

cluster has been heterologously expressed completely and partially in Streptomyces 

albus and E. coli, respectively (Hyun et al., 2003; Sánchez et al., 2002).  

Furthermore, genes encoding for the biosynthesis of staurosporine were proven by 

heterologous expression in Streptomyces lividans and by gene disruption (Onaka, 

2009; Makino et al., 2007; Onaka et al., 2002). Taking these results together with the 

combinatorial biosynthetic approach performed by Sánchez et al. (2005), four genes 

staO, staD, staP, and staC in Streptomyces sp. TP-A0274, and the homologous 

genes rebO, rebD, rebP, and rebC in Lechevalieria aerocolonigenes, encode for the 

biosynthetic enzymes that catalyse the formation of the indolocarbazole backbone 

[figure 5.7.1-1] of staurosporine and rebeccamycin, respectively (Onaka, 2009). 
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Figure 5.7.1-1: Proposed biosynthesis for the rebeccamycin- and stauroporine-aglycones, 

respectively, according to Ryan and Drennan (2009). For details on the involved proteins, see table 

5.7.1-1. 
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On the basis of the structural similarity of tjipanazole D to rebeccamycin and 

staurosporine, respectively (5.1), an assignment of tj genes to possibly corresponding 

genes of the reb and sta biosynthetic gene clusters is suggested in table 5.7.1-1. The 

role of involved enzymes in staurosporine and rebeccamycin biosynthesis has been 

thoroughly investigated and reviewed, and therefore is well-established in literature 

(Onaka, 2009; Onaka et al., 2003; Onaka et al., 2002; Sánchez et al., 2002; Sánchez 

et al., 2005; Sánchez et al., 2006b; Ryan & Drennan, 2009; Howard-Jones & Walsh, 

2007; Howard-Jones & Walsh, 2006). 

 

Table 5.7.1-1: Enzymes encoded by the putative tjipanazole D biosynthetic gene cluster (first column) 

and corresponding proteins of the biosynthetic pathways of rebeccamycin and staurosporine (second 

column), respectively.  

Enzyme 

encoded by tj 

operon 

Possible equivalent 

encoded by          

reb / sta 

Function in rebeccamycin-/staurosporine-

biosynthesis 

Tj1 RebO/StaO formation of indole-3-pyruvate imine 

Tj2 RebD/StaD formation of chromopyrrolic acid (CPA)/11,11’-CPA 

Tj3 RebC/StaC stabilising reactive intermediate formed by RebP/StaP 

and directing the biosynthesis towards a single product 

Tj4 RebP/StaP intramolecular aryl-aryl coupling and decarboxylation 

Tj5 RebH (+RebF) 7-chlorination of tryptophan in rebeccamycin 

biosynthesis 

5.7.2 Possible start of tjipanazole D assembly: chlorination of L-tryptophan 

The putative FADH2-dependent halogenase Tj5 (4.8.8) shares 49% identity with the 

tryptophan 5-halogenase PyrH from Streptomyces rugosporus (Zehner et al., 2005). 

It also resembles KtzR from Kutzneria sp. 744 (48%), which performs 6-chlorination 

of the precursor 7-dichloro-L-tryptophan in the kutznerides biosynthetic pathway 

(1.4.1.2) (Fujimori et al., 2007). Furthermore, an identity of 41% to the tryptophan 7-

halogenase PrnA from pyrrolnitrin biosynthesis (Dong et al., 2005) was found. Based 

on sequence homology, an involvement of Tj5 in 5-chlorination of free tryptophan 
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[figure 5.7.2-1] is proposed and is postulated to be the first step in the production of 

tjipanazole D.  
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Figure 5.7.2-1: L-Trp (1) is proposed to be chlorinated in 5-position to give the chlorinated analogue 

(2). This reaction is likely catalysed by Tj5, which shows homology to the tryptophan 5-halogenase 

PyrH from Streptomyces rugosporus. 

5.7.3 Biosynthesis of the indolo [2,3-a]carbazole core of tjipanazole D 

5.7.3.1 Possible oxidation of 5-chloro-L-tryptophan 

The translated peptide sequence of gene tj1 aligns with several amine oxidases, 

among which RebO from L. aerocolonigenes revealed highest identity to Tj1 (4.8.2). 

This FAD-dependent enzyme was characterised as an L-tryptophan oxidase, which 

converts 7-chloro-L-tryptophan to 7-chloro-indole-3-pyruvic acid (IPA) imine 

(Nishizawa et al., 2005). Relying on sequence homology, Tj1 is like RebO probably 

specific for the L-amino acid enantiomer. In addition, RebO was shown to exhibit 

selectivity to the chlorinated derivative 7-chloro-L-tryptophan, which is oxidised more 

efficiently than the non-chlorinated precursor (Sánchez et al., 2006b; Nishizawa et 

al., 2005). An identical reaction is presumed for StaO from the biosynthesis of 

staurosporine. StaO however acts on non-chlorinated L-tryptophan to yield indole-3-

pyruvic acid imine (Ryan & Drennan, 2009).  

For Tj1, a slightly divergent mechanism has to be postulated [figure 5.7.3.1-1], since 

tjipanazole D in contrast to rebeccamycin and staurosporine lacks the upper imide 

heterocycle. Therefore, it might be anticipated that in a probable Tj1-catalysed 

reaction, indole-3-pyruvic acid is formed, congruent with the product of TdiD from 

terrequinone A biosynthesis in Aspergillus nidulans (Ryan & Drennan, 2009; Balibar 

et al., 2007).  

Tj5 
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 Figure 5.7.3.1-1: Intermediate 2 (figure 5.7.2-1) is proposed to be oxidatively desaminated to give 3. 

5.7.3.2 Putative dimerisation of 5-chloro-IPA 

Immediately downstream of tj1, the gene tj2 (4.8.3) was identified, probably codifying 

for a protein, which belongs to the StaD-family (Asamizu et al., 2006). It shows 

highest identity (46%) to the prototype of this family, the CPA-synthase StaD from 

Streptomyces sp. TP-A0274. This heme-containing enzyme from the biosynthesis of 

staurosporine has been heterologously expressed in E. coli and was shown to 

catalyse the coupling of two molecules of indole-3-pyruvic acid imine to give 

chromopyrrolic acid, which is the key intermediate in the assembly of the 

indolocarbazole framework (Ryan & Drennan, 2009; Howard-Jones & Walsh, 2006; 

Asamizu et al., 2006).  

In case of RebD, a tandem mechanism with RebO, whose gene is located upstream 

of that related to RebD, was postulated (Nishizawa et al., 2005; Howard-Jones & 

Walsh, 2005) (5.7.3.1). Herein, the reactive species indole-3-pyruvate imine, rather 

than indole-3-pyruvic acid is the preferred substrate of RebD and is thought to be 

channeled directly to this enzyme (Howard-Jones & Walsh, 2005).  StaD and RebD 

mediate the formation of chromopyrrolic acid and 11,11’-dichlorochromopyrrolic acid, 

respectively, by linkage of the β-carbons of two molecules of indole-pyruvic acid 

imine (Ryan & Drennan, 2009; Howard-Jones & Walsh, 2005; Nishizawa et al., 

2005). Very recently, the homologous genes inkO and inkD from the biosynthetic 

gene cluster of the staurosporine analogue K252a have been heterologously 

coexpressed in Streptomyces albus J1074 yielding chromopyrrolic acid (Chae et al., 

2009).  

Tj1 
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In contrast to the indolo[2,3-a]pyrrolo[3,4-c]carbazole and violacein biosyntheses 

(Onaka, 2009; Balibar & Walsh, 2006), which utilise indole-3-pyruvic acid imine as a 

precursor, Tj2 is proposed to act on 5-chloro-IPA. In this reaction Tj2 might catalyse a 

radical coupling of the aliphatic side chains of two phenylpyruvate units (4) to 

produce a coupled phenylpyruvate dimer (5). The latter represents a completely 

symmetric molecule with α-keto acid side chains [figure 5.7.3.2-1]. 
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Figure 5.7.3.2-1: Possible dimerisation of 5-chloro-IPA (4) by a possible radical mechanism catalysed 

by Tj2 during tjipanazole D biosynthesis. 

5.7.3.3 Possible intramolecular ary-aryl coupling 

Although differences in the indolocarbazole scaffold exist between tjipanazole D 

(1.3.2) and indolo[2,3-a]pyrrolo[3,4-c]carbazoles [figure 5.7.2], all these natural 

compounds keep the same interesting structural feature, i.e. the aryl-aryl coupling 

between the two indole rings of the tryptophan building blocks. Crosslinking between 

two aryl moieties is often catalysed by CYP 450 enzymes (1.4.4).  

Tj2 

Tj2 
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The primary structure of Tj4 resembles StaP Streptomyces sp. TP-A0274 with 45% 

identity and also aligns with RebP from L. aerocolonigenes revealing 42% identity 

(4.8.7). RebP from the biosynthetic gene cluster of rebeccamycin and its analogue 

StaP (staurosporine biosynthesis) represent functionally equal proteins (Sánchez et 

al., 2005). They catalyse the formation of the indolocarbazole core of rebeccamycin 

and staurosporine, respectively, via an intramolecular C-C bond formation in the 

bisindole intermediate chromopyrrolic acid. An analogous coupling reaction can be 

formulated for tjipanazole D biosynthesis, in which Tj3 probably catalyses an 

intramolecular aryl-aryl coupling of the phenylpyruvate dimer 5 [figure 5.7.3.3-1]. 
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Figure 5.7.3.3-1: Possible intramolecular aryl-aryl coupling in tjipanazole D biosynthesis, probably 

catalysed by the putative CYP 450 enzyme Tj3. 

During their coexpression experiments using rebeccamycin genes and genes from 

other microorganisms, Sánchez et al. discovered that StaP and RebP may be 

replaced by one another without any change in the core structure of yielded 

metabolites. Secondly, the initial chlorination of tryptophan is not essential for 

downstream biosynthetic enzymes, which all can utilise non-chlorinated or even 

alternately chlorinated substrates (Sánchez et al., 2005). The crystal structure of 

StaP implies that this enzyme exhibits a peroxidase-like mechanism to mediate C-C-

coupling via an indole cation radical intermediate (Makino et al., 2007).  

With regard to the order of genes in the tj-operon [table 4.8.1-1; figure 5.6-1], it 

should be considered that the gene tj3, encoding a putative FAD-binding 

monooxygenase, is located prior to tj4. Therefore, an alternative biosynthetic 

Tj4 
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pathway is possible, in which a reduction of the C2-side chain of intermediate 5, 

probably catalysed by Tj3, precedes intramolecular aryl-aryl coupling. 

5.7.3.4 Putative side chain reduction of the bisindole intermediate 

The deduced peptide sequence of tj3 reveals 38% identity with a probable FAD-

binding monooxygenase from Methylobacterium radiotolerans JCM 2831 and a 

putative 2-polyprenyl-6-methoxyphenol hydroxylase from Sorangium cellulosum 'So 

ce 56'. Further, Tj3 aligns with StaC and RebC only with 24% and 28% identity, 

respectively (4.8.6). By contrast, StaC and RebC, which act on similar substrates and 

thereby catalyse a similar reaction step [figure 5.7.3.4-1], share 65 % sequence 

identity.  

As outlined in 5.7.3.3, Tj4 is proposed to be responsible for an intramolecular aryl-

aryl coupling reaction in tjipanazole D biosynthesis. Herein, it is supposed to act 

collectively with Tj3 to generate the indolo[2,3-a]carbazole scaffold of tjipanazole D 

[figure 5.7-2]. The formation of this final product would require a reduction of the α-

keto acid side chains in structure 6 [figure 5.7.3.3-1], perhaps via oxidative 

decarboxylation. In addition, a final decarboxylation step and aromatisation of the 

middle ring would be necessary. 

In the biosynthesis of rebeccamycin and staurosporine, the intramolecular radical 

coupling between the two indole rings of CPA is mediated by the CYP 450 enzymes 

RebP and StaP, respectively [figure 5.7.3.4-1] (Howard-Jones & Walsh, 2007; 

Makino et al., 2007). This step is followed by an oxidative decarboxylation, which is 

suggested to be also catalysed by the respective CYP450’s in a concerted action 

with their corresponding enzymes RebC and StaC, respectively. The latter two 

proteins contain sequence similarity to flavin-dependent oxygenases, as does Tj3 

[table 4.8.6-1]. Both, RebC and StaC play an important role in receiving and directing 

the outcome of the CYP 450 enzymes RebP and StaP, respectively, towards the 

formation of a single biosynthesis product [figure 5.7.3.4-1] (Ryan & Drennan, 2009; 

Ryan et al., 2007; Howard-Jones & Walsh, 2006; Sánchez et al., 2005).    

A possible mechanism for the formation of the rebeccamycin aglycone 11,11’-

arcyriaflavin A (Howard-Jones & Walsh, 2006) through the FAD-dependent enzyme 
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RebC was proposed by Ballou (2007). It suggests a sequential hydroxylation with 

spontaneous decarboxylation at C5 and C7 of the pyrrole ring (Ballou, 2007).   
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Figure 5.7.3.4-1: Collective action of the enzyme pairs RebP/RebC and StaP/StaC to produce the 

rebeccamycin and staurosporine aglycone, respectively (Howard-Jones & Walsh, 2006). 

It has to be noted that all of the characterised four biosynthetic gene clusters of 

indolo[2,3-a]pyrrolo[3,4-c]carbazoles i.e. rebeccamycin (reb), staurosporine (sta), 

K252a (ink) and At2433-A1 (atm) contain a similar enzyme pair that is sought to 

produce the indolocarbazole aglycone of the respective compounds (RebC/RebP, 

StaC/StaP, AtmC/AtmP and InkE/InkP) (5.7.1) (Ryan & Drennan, 2009).  

Wether and how decarboxylation and subsequent aromatisation of intermediate 6 

[figure 5.7.3.4-2] is carried out in tjipanazole D biosynthesis, has to be investigated 

further.  
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staurosporine 
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5.7.4 Two orfs with unknown function 

Orf2 and orf3, which are resided next to each other were deciphered as a probable 

O-methyltransferase (4.8.4) and a putative NAD(P)H dehydrogenase (4.8.5), 

respectively. Their function in the biosynthesis of tjipanazole D is not clear at this 

point of time.  

Concerning Orf3 (4.8.5), a possible function is proposed with respect to the location 

of its related gene (orf3) adjacently to gene tj3 that possibly codifies for an FAD-

binding monooxygenase. Such two-component systems are very common, e.g. the 

alkane sulfonate monooxygenase system from E. coli (SsuD and SsuE) or the 

chlorophenol 4-monooxygenase system (TftD and TftC) of Burkholderia cepacia 

AC1100 (Webb et al., 2010). Tj3 revealed 33 % identity to a pentachlorophenol 4-

monooxygenase from Stigmatella aurantiaca DW4/3-1 [table 4.8.6-1]. A two-

component system, i.e. Orf3/Tj3 might be one possibility. 

Predictions on putative functions of proteins based on amino acid similarity are 

limited. For instance, RebF from rebeccamycin biosynthesis revealed highest identity 

with a putative FMN:NADH oxidoreductase from Streptomyces violaceoruber 

(Sánchez et al., 2002). Despite that, the enzyme RebF was shown to be essential for 

catalytic activity of the FADH2-dependent halogenase RebH, and thus is necessary, 

in order to supply reduced FAD to the halogenase (Yeh et al., 2005). Therefore, Orf3 

could be responsible for FAD reduction either. Furthermore, the E. coli flavin 

mononucleotide (FMN) reductase SsuE was also applied for in vitro experiments with 

the FADH2-dependent halogenase PltA (Dorrestein et al., 2005). In this regard, a 

probable two-component system consisting of Orf3 and Tj5 is conceivable. 

Hence, further studies are required to clarify the role Orf3 and its possible interaction 

with Tj3 or Tj5, respectively. 

5.7.5 Summary of the proposed biosynthetic pathway for tjipanazole D 

Similar to the biosynthesis of rebeccamycin, five genes are probably involved in the 

production of the tjipanzole D molecule [figure 5.7.5-1]. Following this analogy, the 

first catalysed step is postulated to be the chlorination of L-tryptophan in 5-position, 

possibly catalysed by the FADH2-dependent halogenase Tj5 (Yeh et al., 2005; 

Zehner et al., 2005). By contrast to rebeccamycin biosynthesis, the product of Tj1, an 
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amine oxidase, is proposed to be 5-chloro-IPA, similar to the product of TdiD in 

terrequinone A assembly (Balibar et al., 2007; Nishizawa et al., 2005). Tj2 shows 

similarity to RebD and StaD (4.8.3), which are responsible for the formation of CPA 

and 11,11’-dichloro-CPA as the key intermediates in staurosporine and rebeccamycin 

production, respectively (Nishizawa et al., 2005). Tj2 is supposed to catalyse a 

similar reaction via radical coupling of the aliphatic side chains of the 5-chloro-IPA-

molecules (Asamizu et al., 2006; Howard-Jones & Walsh, 2005). Tj4 as a probable 

analogue of StaP and RebP is proposed to mediate an intramolecular aryl-aryl 

coupling reaction (Howard-Jones & Walsh, 2007). As suggested for RebC and StaC, 

Tj3 is suggested to act concertedly with Tj4 receiving its possible reactive 

intermediate, in order to initiate the formation of a stable final product, i.e. tjipanazole 

D.  
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Figure 5.7.5-1: Proposed biosynthesis for tjipanazole D.  
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6. Summary 

Cyanobacteria are Gram negative, photoautotrophic bacteria, which are distinguished 

by an impressive array of chemically diverse natural products. The latter are 

frequently products of nonribosomal peptide synthetases and polyketide synthases 

like the liver toxins microcystins and the antitumor compound cryptophycin 1.  

The here investigated cyanobacterial strain of Fischerella ambigua was shown to 

produce the phenolic compounds ambigols A-C and the indole alkaloid tjipanazole D. 

 

 

Figure 6-1: Structures of the polychlorinated phenolic ethers ambigols A-C and the indolocarbazole 

tjipanazole D, produced by the terrestrial cyanobacterium Fischerella ambigua. 

The ambigol core structure is characterised by ether and aryl-aryl bridges which are 

strongly reminiscent of those found in glycopeptide antibiotics of the vancomycin-

family. Based on this analogy, the ambigol skeleton was hypothesised to be 

generated by an oxidative, radical mechanism (i.e. radical coupling reaction) carried 

out by CYP 450 enzymes. With respect to the phenolic character of the involved 

ambigol monomers, each bearing a single OH-group, their biosynthesis is likely 

related to the shikimate and not to the polyketide pathway. In this regard, the ambigol 

biosynthetic pathway would represent a link between primary metabolite production 

and the conversion of these simple building blocks to complex natural products. This 

correlation is likewise established for glycopeptides, e.g. balhimycin. The chlorination 
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of the phenolic components are proposed to be performed by halogenases on 

carrier-bound substrates, as judged from reports for related compounds with aromatic 

moieties, e.g. chondrochloren. The indolocarbazole tjipanazole D is composed of two 

indole units linked via a central six-membered ring. The aromatic framework of this 

compound resembles that of related indolocarbazole natural products, for instance 

that of rebeccamycin and staurosporine, whose biosyntheses have been thoroughly 

investigated. Regarding the structural analogy of tjipanazole D to these latter 

metabolites, it was hypothesised that tjipanazole D arises from two tryptophan units. 

These are proposed to be linked via oxidative metabolism, catalysed by heme-

containing enzymes. In this regard, the biosynthetic pathway of tjipanazole D is 

supposed to follow a similar logic as that described above for the ambigols. 

The current work focused on sequence information related to the ambigol and 

tjipanazole D biosynthetic gene clusters and its annotation using bioinformatic tools. 

First, a fosmid library of the F. ambigua genome had to be established. For this 

purpose a method for DNA isolation from the filamentous cyanobacterial strain had to 

be developed, which proved to be rather difficult due to interfering polysaccharides 

produced by the bacterium. The procedure also had to include the removal of DNA 

resulting from an associated Pseudomonas stutzeri strain, in order to prevent this 

DNA to be integrated in the genomic library.  

Subsequently, the genomic library was screened for halogenase genes and fosmid 

E8 was identified as possibly harbouring ambigol related biosynthetic genes. Fosmid 

E8 was then sequenced completely and comprised significant, however only partial 

information on a putative ambigol biosynthetic gene cluster. The missing data related 

to the putative CYP 450 enzyme Ab2 and the FADH2-dependent halogenase Ab1, 

respectively. Information on these additional genes were subsequently obtained from 

a 454 sequencing of the F. ambigua genome, in that contig 00522 with a size of 

approximately 123 kb confirmed and completed the sequences found on fosmid E8. 

Using bioinformatic tools the sequence information was analysed for the putative 

function of the respective proteins. 

Thus, the putative ambigol biosynthetic gene cluster (size = 13 kb) comprises seven 

genes encoding enzymes that would be expected regarding the structural features of 

ambigols. These enzymes were a 4-hydroxybenzoate (4-HBA) synthetase that is 

possibly involved in the formation of the starter molecule via the shikimate pathway, 
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an AMP-ligase putatively activating the starter molecule, an NRPS module that may 

serve as a carrier protein for the activated starter unit. Two CYP 450 enzymes and 

two halogenases are proposed to mediate the following biosynthesis steps, i.e. 

phenolic oxidative coupling and aromatic moiety chlorination. With respect to the 

symmetric character of ambigol B and the presence of two dedicated CYP 450 

enzymes, the hypothesis is supported that the identified biosynthetic gene cluster is 

responsible for the production of ambigol B only.   

The putative tjipanazole D biosynthetic gene cluster (size = 12 kb) was identified on 

contig 15287, which has a size of approximately 59 kb. It was also obtained by 454 

sequencing and bears all sequence information on genes probably related to the 

tjipanazole D production. Based on the highly conserved biosynthetic pathways for 

the indolocarbazoles rebeccamycin, staurosporine, K252a and At2433-A1, an 

assignment of all genes of the tj operon was possible. Similar to the rebeccamycin 

biosynthetic gene cluster, a set of five genes is putatively responsible for tjipanazole 

D formation. These are proposed to encode an L-tryptophan halogenase, an L-

tryptophan oxidase, a chromopyrrolic acid synthase-like protein, a CYP 450 enzyme 

and an FAD-binding monooxygenase. Whereas the halogenase is proposed to 

chlorinate free tryptophan, the other four enzymes most likely mediate the assembly 

of the indolocarbazole skeleton. 
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Figure 6-2: Scheme showing possible biosynthesis intermediates of tjipanazole D production. Tj1= 

tryptophan amine oxidase; Tj2 = Chromopyrrolic acid synthase-like protein; Tj3 = FAD-binding 

monooxygenase; Tj4 = CYP 450 enzyme; Tj5= FADH2-dependent halogenase. 
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The current study thus sheds light on sequence information which is putatively 

related to the biosynthesis of unusual cyanobacterial metabolites, i.e. ambigols and 

tjipanazole D, respectively. Further studies will have to proof the relationship of the 

here presented information with secondary metabolite production in F. ambigua. 
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8. Appendix 

8.1 Translated sequences of the ab-operon 

Sequences of genes probably related to the ambigol biosynthesis were obtained from 

fosmid E8 and from 454 sequencing of F. ambigua. 

8.1.1 Amino acid sequence of the putative FADH2-dependent halogenase Ab1 

 
M S N L P K S T K V L V V G G G P A G T T A A T L L A R E G F D I T L L E R E V 

F P R Y H I G E S L L P S S L K V L D L L G V R D K I D A H G F Q Y K P G G H Y 

H W G D E H W D L N F S D L S G N I T H S Y Q V R R D E F D K L L L D H A K S 

Q G V K V F D G I G V S S L S F E N E R P K S A I W S Q T N D K N H T G E I S F 

D F L I D A T G R Y G L M A N H H L K N R E Y H D V F Q N V A I W G Y W K N A 

D R L D N G R E G A I I I E S L K D G W L W G I P L H D G T I S V G L V V H K T I 

Y K E K R S K S L K D I Y L E G I A E S L D L K R L L E P G E L A S E V R S E Q D 

Y S Y A A D S F A G Q G Y F M I G D A A C F L D P L L S T G V H L A T F S G L L 

S A A S L A S V I R N H I T E E Q A I S F F E R T Y K Q A Y L R L M A M V S A F Y 

E N S K K E S Y F W Q A Q Q L T K T R Q S N E D K E K L H Q M F L N V V S G M 

E D M S D A E E N S E E L F L E L S E R L R E N W S L R H K Q T A N D L D Q T 

E E E K L R A S N Q F V S R L N G L F S L S K E S A V E G L Y I V T T P Q L G L 

V Q V N  

8.1.2 Amino acid sequences of the putative CYP 450 enzymes Ab2 and Ab3 

Ab2: 

M L Y Q E V A S T A F N K I A P P G P P V L P F V D M L P C L G K H L H L A L N 

Q L A K K Y G N I F Q I R V G A K T L V V L N G L E T I K E A L V K Q P D S F N A 

R A D F D I Y Q Q P P Q A Q F L E L K S G E S W R K H H N I L G Q A M H T F V 

V G K P D M L E S W A L E E A A D L A N I F F K F S G Q P F D P D L Y M P L A T 

L S F M Q R L I F D K R G A I K N P E E D H E F V A S A Y T L K H I P T V L E A V 

R L E Y I P K I W Q P I F R L S R W K S L R N F L K S L V A L E S Y V S K N V A Q 

H Q E S F D P E N L R D I T D A L L K A S S E L T E S D R N N L H L S E N D I V N 

G S L M Q L A G A G A G L A S F M L R W G V L Y M M T Y P A I Q A E I H K E L 

D E V V G R Q Q Q P C L E H R G K L P F T E A C I H E I F R H S S I T T M P P I T 

Y A T T T D V T L E D Y F I P Q N T P L L I N Y Y S L T R D Q R Y W E E P E Q F 

N P Y R F L D E N G K L R K N L L D K F Y P F G M G S R R C I G E Y L G R L L V 

F T F F T N L M H K C K F E K V P G E K L S F E S I P G A F I I P E K Y R V V V K 

P S F  
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Ab3: 

M V S Q Q S A S T E L N T L N K I S P P G P P A L P F V G M L P F L G K H L H L 

A L N Q L A K K Y G N I Y Q I R V G A R T L V V L N G L E T I K E A L V K Q P D S 

F N A R A D F D L Y Q Q P P Q C H F M E Q K S G E S W R K H R T I I G Q V M H 

T F V A S R S G T L E S W A L E E A A D L A N I F V N S S G Q A F D P N L Y L P 

L A T L S F I Q R L I F G K R G N L D D P E K D T D F V T T A H S M G K L N N G 

A Q N L T K L V L L P T I W R P I L M I S I W K S L R G F V K A A D A A E G Y L I K 

N V E Q H Q K S F D P E N L R D I T D A L L K A S S E L T E S D R N N L G L S E 

N D I V N G S L T Q F V G A G T E L P S L M L R W A L L Y M I T Y P A I Q A E I H 

K E L D E V V G R Q Q Q P C S E H R G K L P F T E A C I H E V F R H S S A T T T 

P A F I Y A T T T D V T L D G Y F I P Q N T P L L V D Y Y S L T R D E R Y W E K P 

E Q F N P Y R F L D E N G K L R K N L L D K F H P F G I G S R R C I G E Y I G R 

L L I F T F F T H L M H K C K F E K V P G E K L S L D P Q P A I I L P P Q N Y K V I 

A K P R F 

8.1.3 Amino acid sequence of the putative polyketide cyclase Orf22 

M S K I Y D L N Q K S D F S G A T D S F K T E K E P E S L N S A T N P A I L Q D 

V E I K I E K L E G R Q R R I F A K I Q I P Y P L E Q V W Q V L T D Y E A F A K F 

M P N M T Q S R R L E H S T A S I C V E Q V R T K S F M G M K F S A R S V F D 

V E E K F P H E I H Y Q L I E G D F K A C S G Y W R L E P W N S S D E K A G V 

D L I Y N F L I L P K P I F P M P L V E N I L S H D I P V G I L A I R Q R V E E L F S 

S K 

8.1.4 Amino acid sequence of the putative chorismate lyase Ab4 

M I H L Q K E S L S T V D L Q D E A S L P I S I L T N N S Q E S P S R N P I D P S 

T L S T F Q R I L L T T N G T V T D I L E Y Y A F E Q I R V V K L A E Q L V S L A H 

E I P M M E L K E G T E V L V R K I L L Q G K I S R K N F L Y A D S I I V P E R L D 

E R F R K A L L E T K M P I G K L W F E L R V E T F K E V L D T S K E V A G N L 

A D Y F Q I Q P D D N I L S R T Y R V I N N R K P V M M I T E K F P E N Y Y L K C 

S  

8.1.5  Amino acid sequence of the putative AMP-ligase Ab5 

M L T Q L F T E V V S N Y P E K T A I V Y D Q T K I S Y Q T L Y S Q I K S F S Q G 

L G S I G I D Q G D C V A L L L P N C P E F V I S F Y A I A R L N G V V L P L N H 

L F K A E E V S H Y L N D S D V K A I I T D S Q R A D I C K K I I F N L G K K I E L I 

V V D Q A P P P A K Y F Y D L I L P N S T E I H E S V L P Y E G N V L Y Q Y S S 

G S T G R P K R V S R T Q K N L Y H E A R N F T E S V K V T P S D N I L C T V P 

L Y H A H G L G N C L L A A T C N G L T L V I L E Q S I Q N G V S V E V P F V F K 

C P R I L E L I K T E K I S I F P G V P Y I F N S L A E T P V N I Q A D L S T L K L C 

I S A G N F L G K D V F N K F L Q R F G V P I R Q L Y G C T E A G A M C I N L D 
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E N P E Q T W D S V G T P L K N V G I K I I N E Q G H E L S V G Q T G E I L I K S 

Q A L T N G Y D N I P D L N Q Q A F K E G T F F T G D L G K L D E A G R L Y I T 

G R K K I L I D T G G R K V D P I E I E D I L N T H P Q V K E A V V V G V K G A H 

A G E L V K A V I V L K E P E Q C D E Q K I F S Y C K E R L A E F K V P K I I E F 

R N E I P K S P L G K I L R K A L V V  

8.1.6 Amino acid sequence of the putative DAHP synthetase Orf23 

M D I N K I L D T N I K S L S V L M A P M Q M K E Q L P I T P V A T E T V L R G R 

Q A V K E I L D G K D S R K F I I V G P C S I H D V K A T L E Y A E K L K T L A D 

K V Q D K L L I L M R V Y F E K P R T T I G W K G L I N D P D L D D S F N I Q K G 

L L T A R N L L I N I A E L G L P S A T E A L D P V T P Q Y I S D L I S W A A I G A 

R T I E S Q T H R E M A S G L S M P V G F K N G T D G N I Q V A L D A I Q S S R 

N P H H F L G I D Q I G Q I S I F Q T K G N V Y G H I I L R G G G G Q P N F D A A 

T V A W V E K K L E N L K L P K R I V I D C S H G N S Y K N H Q L Q T A V F N N 

V L Q Q I T D G N Q S M I G M M L E S N L Y E G N Q K I P S D L N Q L K Y G V S 

V T D K C I G W E E T E E I I L S A H E R L S A D R N V M L H T C G M V V S G T 

P V R N L M A T K G 

8.1.7 Amino acid sequence of the putative NRPS-module Ab6 

M I S S M S L E T L R D R N Q N I H P A S G L Q P Q N Q T K S S E E A Q K D L 

W E A I K T V I S L Q N Q A P P L V S V S R Q G N I P L S F S Q E R L W F L E Q 

L E P S R S S A Y N M P S A F R I T G A L N V S V L Q Q S L N E I L R R H E A L 

R T T F A F R E G K S V Q V I H P A L T L N L P I I E L Q N I S S E Q Q H I K T M 

Q L I R E E V Q R P F D L S Q L P L L R A T L L R L S E N E H L L L L S V H H I V I 

D F W S K G I L F Q E L S V L Y E A F S T G K P S P L S E L P I Q Y A D F A V W 

Q R Q W L K G E F L E V L L N Y W K Q Q L D S N L S E L H L P T D R A R S M L 

Q T R D G A N Q K L V L S K E L T K E L K A L S R Q E G T T L F V V L L A A F K 

V L L Y R Y T E Q D D I F V C S P I A N R N R K E V K G L I G Y F V N L L I L R T 

S L S D N P S F R E L L G R V R K V T S G G Y A Y Q D L P V Q Q L V K S L N L L 

Q T P L S R V M F G L Q N T A I H S L N L P G L T V R S V D I E G G T A D F D L 

Y L Y V L E E G S T L T A T L K Y N T D L F D D S T I V Q L L N H F Q T V L E N I 

A V D S G Q S I P L L L P L S T A E Q Q Q L T D K R L E Q S S L K P E G V Y V A 

P R N P L E L Q L T Q I W S Q V L G I Q S V G V K D N F F E L G G E S L L A M S 

L F A K I E K I F G K T L P L T T L L Q A P T V E Q F A Q L L T Q D A N S V S W S 

S L V P I Q P S G T K P P L F C I H G Q Q G N V L N F R K L S Q Y L G S D Q P F 

Y G L Q A K G L D G K E L P L F R I E D I A T H Y I Q E I R T L Q P E G P Y F L A 

G N S M G G T I A F E M A Q Q L H K Q G Q K V A L L V M F D T F G L D C F P R 

L S L R R Q H Y W A Y L L Q L G I S K F L L N E V N E L C Q R R L K E M I S R L 

Y L S L G R P L P Q N L R D E L V A E A N M Q A K I G Y Q A Q V Y P G R V T L L 

R A S Q P A L F P K L Y L P T S E D W Y N R N P E H G W S E V V G G G L E I H 

D V P G D H F S I F E E P H V Q V L A E K L K A C L D E A Q T K Y  
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8.1.8 Amino acid sequence of the putative FADH2-dependent halogenase Ab7 

M K N I Y D V A I C G S G L A G L T L A R Q L K L K M P D I S V V V L D R L A R P 

L P E A G F K V G E S S V E V G A F Y L A H I V Q L E D Y L E K Q H L H K L G L 

R Y F L G D T K G P F H K R P E I G L S K Y H F P N S Y Q L D R G K L E N D L R 

S I N T E A G V E L L E G C L V K D I E L G D P Q Q L H Q I I Y T Q E N N K A T Q 

A I Q A R W V V D S M G Y R R F L Q R K L G L A K P K N S Q F S A V W F R V E 

G R F D V S D F V P S T E I E W H E R V P H N N R Y Y S T N H L C G E G Y W V 

W L I P L S T G Y T S I G I V T N E E I H P F G T Y H T Y E K A F Q W L E K H E P 

V V A F H L K S N P P V D F M K I P Q Y S Y S S N Q V F S I N R W A C V G V A G 

V F A D P F Y S P G T D L I G F G N S L I T Q M V E L D R E N K L T P E I V N E A 

N R F L I T Y N E S V T S N I H N A Y L C F G N E T V M V M K Y I W D V L S A W 

A F S A P M M F N S L F L D S D K R A K V R K G T G Q F F L L A Q R M N Q L F 

R D W A V Q S Q R R T S F E F I D Y L Q I P F V R E L R A R N L K T N K T E Q E 

L I D D H L A S I K L F E E L A Q V I F L L A L E D T M P E K S A D F P S P V W L 

N A W V V S L D D K R W E I D G L F R P T S K P R D L R P M M E Q L W Q N I H 

F R A A D R D S S L I T A 

8.2  Translated sequences of the tj-operon 

Sequences of genes probably related to the tjipanazole D biosynthesis were obtained 

from 454 sequencing of F. ambigua. 

8.2.1 Amino acid sequence of the putative L-tryptophan oxidase Tj1 

M N I E T K L Q Q C K R A N H Q P S K H V T I L G A G I A G L I A A Y E L E R L G 

H Q V D V M E G S P R I G G R I W T H R F G D P I D G P Y G E L G A M R I P P 

Q H E Y V L H Y V Q T L G L G D K L R K F V T M F E E H N A L V N I D G T V L R 

I Q D A P R S I Q M H Y R G V F V D E R Y S E K T R L F A A W L K T I V D A I G S 

G E L R E C L E R D L N S H L M D E L K K L D L D P F F D V C G K T I D L H A F I 

K A Y P S F R N K C S K A L N I F L S D I L I E T S H D L W Q L E G G M D Q L I H 

S L A A A I N G P I R C N Q N V V A L R V Y Q D G V E I S W L E A G K L H T R L 

C D Y V L C T I P F S V L R Q I E L S G L D E D K L A T I H N I I Y W P A T K V L F 

L C A R P F W Q E S G I F G G A S F S D D A V R Q I Y Y P S T K S H S S L N S V 

L L A S Y T I G N D A R Y L G M M S E Q E R H S Y V K E A L S K L H P E I K V P 

G T L L D M T S I A W G N Y K W S A A G C S I P W D R S A F Y Q S P Q H Q D A 

I P H T E S V Y H Q K A A S P Q N T L F F A G E H C S K L P A W L Q G S V E S A 

L Q A V Y D I V S H N S S V N P N K K P S L V L E K G  
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8.2.2 Amino acid sequence of the putative chromopyrrolic acid synthase Tj2 

M S I F D F P R L H F Q G F A R I H A P T G H K N G L V D L S T N T V Y M N G D 

R F D H R R P V S E Y H E Y L K N L G P K F N V E G H W D E D G P F S M A M 

G W D F G G N G H F A I E A S I V S V Q R Q P G E L D Q R D P V V S R N I D M 

W G H Y N D Y I G T T F N R A R I F D C D P A S H W T T T I M I G Q L T F G R Q 

G A S Y E V P Y M L S A P V E G V Q P A R W Q D F N H I H E L S E H C L N N E 

F K R A A V H Q F T I S K E A E N F L W G E E S T L S P T V S L L R E A M N Q D 

D V L G L V V Q F G L S N M S S P L K P D F P V F W E L H G T I G L W R K G E L 

T N Y P Y G R L L T P H R A A H D L E Q T T S R S L S N L T V Q V T P Q G V S L 

N M V T A V P C V R R A A K P G P G P I H A I G D K L N L G D L E L R T V A S Q 

L L V A R I P Q Q A Y Q R Q A Y Q L T S G I V D V P L A A P F D Q L R D E I E H 

Q G L C I T V T Q S D G Q H R V L V E E E E I N I Q V E Q A C L F V E F P D W K 

R S E E H V L E M E V H S F I R G R P A S V E A I Y L R Q F Y N P R G L P Q L R 

Y A F E H D R R K H E V Q A L S T L S V S A G I R L R E S T G G N S A Q T E H T 

F H F P R S S E L D I V H F K P G R K E E T G D F A S T C V I S T D E Q G R G W 

V T L R G A Q P G T A R I L L S D R S N V F P C D P N H P D E A I I S Y D N D D L 

L G F W S G I G S C A V R V L T N D W H L E E V E D K A V D F D L I Y E H I L A 

Y Y E L A F S F M K A E V F S L A D R C K V E N Y A R L M W Q M C D P R N K D 

K T Y Y M P P T R D M S Q P K A M L L R K F L R N Q Q Q I G Y V P N S T P V P 

K R P Q R I L Q T R D D L V I A L K H A A E L E A A V M L Q Y I Y A A Y S I P N Y 

A T G Q E Y V R Q G L W T L N Q L L L A C G D D Q E V R N F G I R G V L L D I S 

H E E M I H F L M V N N I L M A L G E P F Y P A M P D F G K L N Q R F P I E V D 

F A L E P F S A T T L Q R F M R F E W P D F L A E D L T N K A A S T D E P S V N 

N L H G Y S S L S E L Y R Q I R E A L K N I P D L I L A E K G R V G G E H H L F M 

R Q D F N T V H P D Y Q L Q V D D I D S A L F A I D Y I V E Q G E G C D P K S P 

K F E Q S H F Q K F R R L A E A L A K E H I N D E T G C Q V P W T P A Y P A L R 

N P S L Y H Q D Y H T H I V T I P Q T R A V M Q I F D E C Y F L M M Q L M V Q Q 

F G W M P T G S L R R S K L M N A A I D I M S G M M R P L G E L L M T M P S G 

K R G K T A G P S F Q T I T L P Q Y I P T P K V A Y Q L I A R R F E D L T H Q A R 

A C E A I H S T V C D L F E F Y A R F F E D L A N Q P I D A A 

8.2.3 Amino acid sequence of the putative O-methyltransferase Orf2 

M T Q A P V A P A N L N Q Q N A L P P S E A L M Q M L D G H Y L S Q A I F V A 

A K L G I A D L L K D G T K S T D E L A K V T E V N S Q F L Y R I L R A L S S V G 

I F A E V G D R N F E L T P L A K Y L Q S D V P G S M R L P A I L V G E E W H W 

Q A W G N M F N A V K N G T S A F E A K F G T N I V D Y F G Q N P Q Q S K V F 

F E A M T T Y S V I V N N A I L E V Y D F S A F S K L V D V G G G L G S L L T D I 

L K A N P Q L T G I L L E L P P V I E R A K Q Q N H F Q T K E I S G R Y E I V G G 

D F L E S V P S G G D V Y I L K Q I I H N L N N D D A I K L L Q N C H D A M S T N 

G K L L V I D P V I P S S N E P S F S K L L D L Q M M V T H G A Q V H T A N E F 

Q D I L T K T G F Q I T N I I P T K S P C T I I E S V K K 
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8.2.4 Amino acid sequence of the putative NAD(P)H-dehydrogenase Orf3 

M A H I L H I D S S P R G E R S F S R L F S N E F I S K W K N A H P E D T I T Y R 

D L G H N P V P P V D E L W V A G A F T P P E V R P P E L A K G I E L S D A L I 

D E F L A A D R Y V F G V P M F N L I A P S T F K A Y I D Q I V R I G R T F A Q D 

N Y G V I K G L V E G K K M L I I T A R G A S Y R P E T P V A H L D F Q E P Y L R 

A I F G F I G I T D I S F I H V D N L N M G D D V R Q Q S L A R A R E E I A R T I T 

T W 

8.2.5 Amino acid sequence of the putative FAD-binding monooxygenase Tj3 

M A Q T K N Q E D L I D V L I V G A G P V G L T L A A E L L R L G V Q F R I L E T 

R P E P E K Y S K A A N L W P R T Q E V F A A I G V I D R L L A E S V P I R T A T 

L Y A Y G K R M G H V T I D G Y S S P Y G T P V M I G Q N R I E R I L S D H L V 

Q A G R S V E R G I T F T G L H Q N T D Y V E A T V E G N G K H E T V H C R F 

L V G C D G N K S R V R N A I G L S I H P E R L E R R F M R Q I D A R V R W S R 

S V R D D Q I W F F L F D T G Y I G V L P L P E G Y H R F W I I D D D Q G V P D 

R D P T L E E M Q E V V Q R I T G D T Q V E L Y D P I W F S H G R F Q H G V A 

S A L R K N R V I L A G D A G H I P I P I S G K G M N T G I Q D A F N L G W K L A 

A T L H E Q V S S V V L N S Y S I E R Q K I R Q Q L D T T Q V A G F H W I M E P 

S K I Q Q H L V R K L G S V W L N L I A A R F F K Q R L S Q L D I A Y P D S V L S 

Q D L L G K K G S C A G D R A P D A V V V A I P G Q Y T I T L F K L I Y E G L N 

W T L L L F D G A Q G S E I L E Q L Q T I A T A I A K E F S T I R V W P V L I A P V 

L A D P K H I P M L L D F D S F A H K A F G L E N P A L V L I R P D G H V A F R A 

A I N D Y Q A L Q M Y A R Q V F K M P P Q N N Y K S V S Q A E L T K I Q S 

8.2.6 Amino acid sequence of the putative CYP 450 enzyme Tj4 

M I E R L N P F L P E F I A N P Y A F Y S R Y R E E D P V H W G I T S N S R L P 

G A W Y L F R Y E D V V K V F E D P R F G R E A R R V L S D N Q A P L V P P A 

Y K G F L S M V S N W L V F R D P P D H T R L R S L V N K V F S Q R V V E N I R 

P A I F S I A D S L L D Q V H A R G E M D L I E E F A F P L P V M V I A A L L G V 

D P K D R P L F R Q W S M A L L E A S A S R L T P S P E I Y S R A E Q A T Q G F 

I D Y F T E A I A Q R R A E P R E D L I T D L I K A Q D E G D K L S E Q E V L S M 

C I H L L T A G H E T T V N L I S K G M L S L L R N R D T F K I L R T H P E L L P 

G A V E E L L R Y D S P V Q M V T R W A Y E D V E I G G K L I R R G D S V G L 

M I G A A N R D P L R F E N P D V L D I K R E D C R H C V F G G G I H F C I G S 

A L A R A E G Q I A L N V L L N R L P E L R L A E Q T L E W H G T I V F H G P K 

H L W V T F R P P T I P S A M P T P V V T S V N S D 
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8.2.7 Amino acid sequence of the putative FADH2-dependent halogenase Tj5 

M E C L L S W T F L M N V S D A F R N L Q P R S Q D K L K G E T L I M S Q P V 

Q N L V I V G G G T A G W M S A V Y L R K A L D K N I Q I T L V E S S D V T T I G 

V G E A T F S T I K L F F D Y L G L Q E H E W M P K C N A S Y K T A I K F N N W 

N T Q G Q H F Y H P F Q R Y E T V N G F D I A E W W L K I K R D E E P F D Y A 

C F L I P S I C D H K K S P R Y L D G T V F D D K V K D L I S R E F I P E K N V L 

S D H K V Q Y P Y A Y H F D A N L L A R F L K D Y A K Q R G V K H V I D H V E N 

V K L A E D G S I D S I I T R E H G N V S G D L F V D C T G F R G L L I N E A L D 

E P F N Y F S D S L L C D R A I A M Q I P T D I K K D G I N P F T A A T A L S S G 

W V W N I P L Y G R D G T G Y V Y C S A F L S E E E A E Q E F R Q H L G P A A 

L N C K A K H I K I R V G R N R N S W V K N C V A I G L A S G F V E P L E S T G I 

F F I Q H G I E E L V S H F P D K T F N E E L I K S Y N N T I A E C I D G V R D F L 

T L H Y C A S D R T D T P F W K A T K Q E I K I P E Q L N E K L R L W K T R L P 

N N K N V N H N Y H G F D S Y S Y S V M L L G L N Y L P E S S L P A L N H I D E 

R E A I A V F N S I K Q K A N H L A A T L P S Q Y E Y L T Y V I K S Q E Q S E Y L 

R E E S L V G V  

8.3 Nucleotide Sequences of 16S rDNA analyses 

8.3.1 Partial 16S rDNA sequences of Fischerella ambigua  

FA16S1-T7-4.3: 

ATTAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGTATGCTTAACACATGC

AAGTCGAACGGAGTGCTTCGGCACTTAGTGGCGGACGGGTGAGTAACGCGTGA

GAATCTAGCTTTGGGTTCGGGACAACCACGGGAAACGGTGGCTAATACCGGAT

GTGCCGAGAGGTAAAAGATTAATTGCCCGAAGAAGAGCTCGCGTCTGATTAGCT

AGTTGGTGTGGTAAGAGCGCACCAAGGCGACGATCAGTAGCTGGTCTGAGAGG

ATGACCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAG

CAGTGGGGAATTTTCCGCAATGGGCGAAAGCCTGACGGAGCAATACCGCGTGA

GGGAGGAAGGCTCTTGGGTTGTAAACCTCTTTTCTTAGGGAAGAAGAACTGACG

GTACCTAAGGAATAAGCATCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACG

GAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGCGTCCGCAGGTGGCA

ATGAAAGTCTGCTGTCAAAGAGTCTGGCTTAACCAGATAAAGGCAGTGGAAACT

ACATAGCTAGAGTGAGGTAGGGGCAGAGGGAATTCCTGGTGTAGCGGTGAAAT

GCGTAGAGATCAGGAAGAACACCGGTGGCGAAGGCGCTCTGCTGGACCGCAA

CTGACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTA

GTCCTAGCTGTAAACGATGGATACTAGGCGTTGCCCGTATCGACCCG 
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FA16S2-T7-4.3: 

GGAGGTGATCCAGCCCCACCTTCCGGTACGGCTACCTTGTTACGACTTCACCC

CAGTCACCAGTCCTACCTTCGGCATCCCCCTCCTCGAAAGGTTAGGGTAACGAC

TTCGGGCGTGACCAGCTTCCATGGTGTGACGGGCGGTGTGTACAAGGCCCGG

GAACGAATTCACTGCAGTATGCTGACCTGCAATTACTAGCGATTCCGACTTCAC

GCAGGCGAGTTGCAGCCTGCGATCTGAACTGAGCCGTGGTTTCTGGGATTTGC

TTGCGTTCGCACGCTTGCTGCCCTTTGTCCACAGCATTGTAGTACGTGTGTAGC

CCAGGACGTAAGGGGCATGCTGACTTGACGTCATCCCCACCTTCCTCCGGTTT

GTCACCGGCAGTCTCCTTAGAGTTCCCAACTTAATGATGGCAACTAAGTACGAG

GGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGAC

AGCCATGCACCACCTGTGTTCCGGTTCCCGAAGGCACCCCTCCCTTTCAAGAG

GGTTCCGGACATGTCAAGTCCTGGTAAGGTTCTTCGCGTTGCATCGAATTAAAC

CACATACTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTCACACTT

GCGTGCGTACTCCCCAGGCGGGATACTTAACGCNTTAGCTACGACACTGCCCG

GGTCGATACGGGCAACGCCTAGTATCCATCGTTTACAGCTAGGACTACTGGGGT

ATCTAATCCCATTCGCTCCCCTAGCTTTC 

FA16S3-T7-4.3: 

TTAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGTATGCTTAACACATGCA

AGTCGAACGGAGTACTTCGGTACTTAGTGGCGGACGGGTGAGTAACGCGTGAG

AATCTAGCTTTGGGTTCGGGACAACCACGGGAAACGGTGGCTAATACCGGATG

TGCCGAGAGGTAAAAGATTAATTGCCCGAAGAAGAGCTCGCGTCTGATTAGCTA

GTTGGTGTGGTAAGAGCGCACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGA

TGACCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGC

AGTGGGGAATTTTCCGCAATGGGCGAAAGCCTGACGGAGCAATACCGCGTGAG

GGAGGAAGGCTCTTGGGTTGTAAACCTCTTTTCTTAGGGAAGAAGAACTGACGG

TACCTAAGGAATAAGCATCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGG

AGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGCGTCCGCAGGTGGCAA

TGAAAGTCTGCTGTCAAAGAGTCTGGCTTAACCAGATAAAGGCAGTGGAAACTA

CATAGCTAGAGTGAGGTAGGGGCAGAGGGAATTCCTGGTGTAGCGGTGAAATG

CGTAGAGATCAGGAAGAACACCGGTGGCGAAGGCGCTCTGCTGGACCGCAACT

GACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGT

CCTAGCTGTAAACGATGGATACTAGGCGTTGCCCGTATCGACCCGGGCAGTGT

CGTAGCTAACGCGTTAAGTATCCCGCCTGGGGAGTACGCACGCAAGTGTGAAA

CTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTC

GATGCAACGCGAAGAACCTTACCAGGACTTGACATGTCCGGAACCCTCTTGA 

FA16S2-T7-27.2:  

GGAGGTGATCCAGCCCCACCTTCCGGTACGGCTACCTTGTTACGACTTACCCCA

GTCACCAGTCCTACCTTCGGCATCCCCCTCCTCGAAAGGTTAGGGTAACGACTT

CGGGCGTGACCAGCTTCCATGGTGTGACGGGCGGTGTGTACAAGGCCCGGGA

ACGAATTCACTGCAGTATGCTGACCTGCAATTACTAGCGATTCCGACTTCACGC

AGGCGAGTTGCAGCCTGCGATCTGAACTGAGCCGTGGTTTCTGGGATTTGCTT

GCGTTCGCACGCTTGCTGCCCTTTGTCCACAGCATTGTAGTACGTGTGTAGCCC
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AGGACGTAAGGGGCATGCTGACTTGACGTCATCCCCACCCTCCTCCGGTTTGT

CACCGGCAGTCTCCTTAGAGTTCCCAACTTAATGATGGCAACTAAGTACGAGGG

TTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAG

CCATGCACCACCTGTGTTCCGGTTCCCGAAGGCACCCCTCCCTTTCAAGAGGG

TTCCGGACATGTCAAGTCCTGGTAAGGTTCTTCGCGTTGCATCGAATTAAACCA

CATACTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTCACACTTGC

GTGCGTACTCCCCAGGCGGGATACTTAACGCGTTAGCTACGGCACTGCCCGGG

TCGATACGGGCAACGCCTAGTATCCATCGTTTACAGCTAGGACTACTGGGGTAT

CTAATCCCATTCGCTCCCCTAGCTTTCGTCCCTCAGTGTCAGTTGCGGTCCAGC

AGAGCGCCTTCGCCACCGGTGTTCTTCCTGATCTCTACGCATTTCACCGCTACA

CCAGGAATTCCCTCTGCCCCTACCTCACTCTAGCTATGTAGTTTCCACTGCCTTT

ATCTGGTTAAGCCAGACTCTTTGACAGCAGACTTTCATTGCCACCTGCGGACGC

TTTACGCCCAATCA  

FA16S4-T7-27.2  

GGAGGTGATCCAGCCCCACCTTCCGGTACGGCTACCTTGTTACGACTTCACCC

CAGTCACCAGTCCTACCTTCGGCATCCCCCTCCTCGAAAGGTTAGGGTAACGAC

TTCGGGCGTGACCAGCTTCCATGGTGTGACGGGCGGTGTGTACAAGGCCCGG

GAACGAATTCACTGCAGTATGCTGACCTGCAATTACTAGCGATTCCGACTTCAC

GCAGGCGAGTTGCAGCCTGCGATCTGAACTGAGCCGTGGTTTCTGGGATTTGC

TTGCGTTCGCACGCTTGCTGCCCTTTGTCCACAGCATTGTAGTACGTGTGTAGC

CCAGGACGTAAGGGGCATGCTGACTTGACGTCATCCCCACCTTCCTCCGGTTT

GTCACCGGCAGTCTCCTTAGAGTTCCCAACTTAATGATGGCAACTAAGTACGAG

GGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGAC

AGCCATGCACCACCTGTGTTCCGGTTCCCGAAGGCACCCCTCCCTTTCAAGAG

GGTTCTGGACATGTCAAGTCCTGGTAAGGTTCTTCGCGTTGCATCGAATTAAAC

CACATACTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTCACACTT

GCGTGCGTACTCCCCAGGCGGGATACTTAACGCGTTAGCTACGACACTGCCCG

GGTCGATACGGGCAACGCCTAGTATCCATCGTTTACAGCTAGGACTACTGGGGT

ATCTAATCCCATTCGCTCCCCTAGCTTTCGTCCCTCAGTGTCAGTTGCGGTCCA

GCAGAGCGCCTTCGCCACCGGTGTTCTTCCTGATCTCTACGCATTTCACCGCTA

CACCAGGAATTCCCTCTGCCCCTACCTCACTCTAGCTATGTAGTTTCCACTGCCT

TTATCTGGTTAAGCCAGACTCTTTGACAGCAGACTTTCATTGCCACCTGCGGAC

GCTTTACGCCCAATCATTCCGGATAACGCTTGCATCCTCCGT  

FA16S5-T7-27.2  

TTAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGTATGCTTAACACATGCA

AGTCGAACGGAGTACTTCGGTACTTAGTGGCGGACGGGTGAGTAACGCGTGAG

AATCTAGCTTTGGGTTCGGGACAACCACGGGAAACGGTGGCTAATACCGGATG

TGCCGAGAGGTAAAAGATTAATTGCCCGAAGAAGAGCTCGCGTCTGATTAGCTA

GTTGGTGTGGTAAGAGCGCACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGA

TGACCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGC

AGTGGGGAATTTTCCGCAATGGGCGAAAGCCTGACGGAGCAATACCGCGTGAG

GGAGGAAGGCTCTTGGGTTGTAAACCTCTTTTCTTAGGGAAGAAGAACTGACGG

TACCTAAGGAATAAGCATCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGG
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AGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGCGTCCGCAGGTGGCAA

TGAAAGTCTGCTGTCAAAGAGTCTGGCTTAACCAGATAAAGGCAGTGGAAACTA

CATAGCTAGAGTGAGGTAGGGGCAGAGGGAATTCCTGGTGTAGCGGTGAAATG

CGTAGAGATCAGGAAGAACACCGGTGGCGAAGGCGCTCTGCTGGACCGCAACT

GACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGT

CCTAGCTGTAAACGATGGATACTAGGCGTTGCCCGTATCGACCCGGGCAGTGT

CGTAGCTAACGCGTTAAGTATCCCGCCTGGGGAGTACGCACGCAAGTGTGAAA

CTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTC

GATGCAACGCGAAGAACCTTACCAGGACTTGACATGTC 

8.3.2 Partial 16S rDNA sequences of the associated Pseudomonas sp. 

Pstu-1-T7  

CTCCGGCCGCATGGCCGCGGGATTCAGATTGAACGCTGGCGGCAGGCCTAAC

ACATGCAAGTCGAGCGGATGAGTGGAGCTTGCTCCATGATTCAGCGGCGGACG

GGTGAGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGACAACGTTTCGAAAGA

AACGCTAATACCGCATACGTCCTACGGGAGAAAGTGGGGGATCTTCGGACCTC

ACGCTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGAGGTAAAGGCTCAC

CAAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTG

AGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGG

GCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA

AAGCACTTTAAGTTGGGAGGAAGGGCAGTAAGTTAATACCTTGCTGTTTTGACG

TTACCAACAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGA

AGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGT  

Pstu-3-T7  

CACTAGTGCGGCCGCCTGCAGGTCGACCATATGGGAGAGCTCCCAACGCGTTG

GATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGG

TCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATAC

GAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTC

ACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGC

CAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGG

GCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGC

GGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCA

GGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAA

CCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACG

AGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTA

TAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCG

ACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGC

GCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTC

CAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTAT

CCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGG

CAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACA

GAGTTCTTGAAGTGGTGGCCTAACTACGGCTAC 
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Pstu-4-T7  

CTCCGGCCGCCTGGCCGCGGGATTCAGATTGAACGCTGGCGGCAGGCCTAAC

ACATGCAAGTCGAGCGGATGAGTGGAGCTTGCTCCATGATTCAGCGGCGGACG

GGTGAGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGACAACGTTTCGAAAGG

AACGCTAATACCGCATACGTCCTACGGGAGAAAGTGGGGGATCTTCGGACCTC

ACGCTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGAGGTAAAGGCTCAC

CAAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTG

AGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGG

GCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA

AAGCACTTTAAGTTGGGAGGAAGGGCAGTAAGTTAATACCTTGCTGTTTTGACG

TTACCAACAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAA 

Pstu-5-T7  

CTCCGGCCGCCTGGCCGCGGGATTTCAGATTGAACGCTGGCGGCAGGCCTAA

CACATGCAAGTCGAGCGGATGAGTGGAGCTTGCTCCATGATTCAGCGGCGGAC

GGGTGAGTAATGCCTAGGAATCTGCCTGGTAATGGGGGACAACGTTTCGAAAG

GAACGCTAATACCGCATACGTCCTAAGGGAGAAAGTGGGGGATCTTCGGACCT

CACGCTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGAGGTAAAGGCTCA

CCAAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACT

GAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATG

GGCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGT

AAAGCACTTTAAGTTGGGAGGAAGGGCAGTAAGTTAATACCTTGCTGTTTTGAC

GTTACCAACAGAATA 

Pstu-7-T7  

CTCCGGCCGCATGGCCGCGGGATTTCAGATTGAACGCTGGCGGCAGGCCTAAC

ACATGCAAGTCGAGCGGATGAGTGGAGCTTGCTCCATGATTCAGCGGCGGACG

GGTGAGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGACAACGTTTCGAAAGG

AACGCTAATACCGCATACGTCCTACGGGAGAAAGTGGGGGATCTTCGGACCTC

ACGCTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGAGGTAAAGGCTCAC

CAAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTG

AGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGG

GCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA

AAGCACTTTAAGTTGGGAGGAAGGGCAGTAAGTTAATACCTTGCTGTTTTGACG

TTACCAACAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGA

AGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTT 

Pstu-7-T7  

CTCCGGCCGCCTGGCCGCGGGATTTCAGATTGAACGCTGGCGGCAGGCCTAA

CACATGCAAGTCGAGCGGATGAGTGGAGCTTGCTCCATGATTCAGCGGCGGAC

GGGTGAGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGACAACGTTTCGAAAG

GAACGCTAATACCGCATACGTCCTACGGGAGAAAGTGGGGGATCTTCGGACCT

CACGCTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGAGGTAAAGGCTCA

CCAAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACT

GAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATG
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GGCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGT

AAAGCACTTTAAGTTGGGAGGAAGGGCAGTAAGTTAATACCTTGCTGTTTTGAC

GTTACCAACAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATAC

GAAGGGTGCAAGCGTTAATCG 

 

 

 




