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Abstract

The concertina pattern is a ubiquitous pattern observed in ferromagnetic thin-film

elements. It occurs during the switching process due to the reversal of an applied

homogeneous magnetic field. The pattern-forming quantity is the magnetization,

which we think of as a unit-length vector field. The pattern consists of stripe-like

quadrangular and triangular regions – called domains – with a uniform, in-plane

magnetization that is, in particular, constant in the direction of the film thickness.

The domains are separated by sharp transition layers in which the magnetization

quickly turns – called walls.

Figure 0.1.: Concertina in a very elongated (length 2 mm) sample of width 50µm and thick-

ness 50 nm (left) and in a sample of width 35µm, thickness 40 nm and length

110µm (right). The left image shows only the center of the stripe which is less

than 10 percent of the whole sample. As indicated by the blue arrows, the gray-

scales encode the transversal component of the magnetization in the domains.

By courtesy of R. Schäfer.

The term concertina was introduced by van den Berg in [vdBV82] for this bellow-like

structure which is shown in Figure 0.1. In that reference, he discusses its formation

in thin rectangular-shaped ferromagnetic elements. He provides an explanation of

the domain pattern in a fairly thick (350 nm), not too elongated Permalloy sample

(width 15µm and length 50µm). He argues that the stripe-like pattern grows into

the sample from the tips due to boundary effects as the strength of an external

homogeneous magnetic saturation field – parallel to the long edge – is reduced.

We claim that in very elongated (length 2mm) thin (thickness 10 to 150 nm) fer-

romagnetic samples (width 10 to 100µm) the concertina does not grow from the

tips into the sample. For these extreme aspect ratios experiments rather suggest

that a bifurcation is at the origin of the concertina pattern, see Figure 0.2: As the

strength of an applied homogeneous magnetic field is reduced and finally reversed,

the uniform magnetization becomes unstable and buckles. As the strength of the
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destabilizing field increases, the oscillatory buckling of the magnetization grows

into the concertina pattern – simultaneously all over the sample. Cantero and Otto

performed a linear stability analysis on the basis of the micromagnetic energy func-

tional, see [CÁO06a] and [CÁO06b]. They identified a thin-film regime in which the

most unstable perturbation, the so called unstable mode, has the form of an oscil-

latory buckling. They find that the period of that instability is determined by the

width and the thickness of the sample together with the exchange length, a material

parameter. In [CÁOS07] a reduced energy functional was deduced as the scaling

limit of the micromagnetic energy in the oscillatory buckling regime. Numerical

simulations of the reduced energy functional showed that the unstable mode grows

into a concertina pattern. The bifurcation is slightly subcritical but exhibits a turning

point. This means that the bifurcating branch of stationary points is unstable but be-

comes stable after the turning point (both under perturbations of the same period).

A comparison of the period of the unstable mode with the experimentally measured

period yields a good agreement over a wide range of widths and thicknesses. How-

ever, there is a clear tendency that the experimental period is always larger by a

factor up to approximately two. In the experiments, one additionally observes that

the concertina pattern exhibits several coarsening events as the strength of the desta-

bilizing external field increases: Folds collapse, increasing the average period of the

pattern until it finally disappears. In order to understand these observations, it is

necessary to study the stability w.r.t. perturbations whose period is a multiple of the

period of the unstable mode or of the concertina, respectively.

The genesis of the concertina pattern is a prototypic example of a hysteretic process.

The aim of this work is an extensive understanding of the experimental observations

in the formation process of the concertina pattern on the basis of the reduced energy

functional. In particular, we explain the deviation of the experimental period from

the period of the unstable mode and investigate the coarsening of the concertina.

This is achieved by an application of a mixture of rigorous analysis, numerical sim-

ulations and heuristic arguments.

• The application of a heuristic sharp interface model, namely domain theory,

shows that the optimal period of the concertina is an increasing function of the

(destabilizing) external field. This is rigorously confirmed on the level of the re-

duced energy functional based on the construction of appropriate Ansatz func-

tions and new nonlinear interpolation estimates providing Ansatz-free lower

bounds. Domain theory is (partially) justified by a compactness result for min-

imizers of the reduced energy functional.

• Domain theory suggests that the concertina becomes unstable under long

wave-length modulations as the destabilizing external field increases. The in-

stability is analyzed and confirmed by a Bloch wave analysis of the Hessian

of the reduced energy functional in combination with numerical simulations

of the reduced energy functional. Simulations show that the instability finally

leads to the coarsening of the concertina pattern.
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• A (generalized) bifurcation analysis shows that the deviation of the period of

the unstable mode from the experimental observations is due to a non-linear

modulation instability. This instability is in turn related to the so called Eck-

haus instability.

• Domain theory and numerical simulations are applied to investigate the ef-

fect of a uniaxial transversal and longitudinal anisotropy, respectively. This

confirms the experimental observation that a transversal anisotropy has a sta-

bilizing effect while in case of a longitudinal anisotropy the concertina cannot

be observed at all.

• Based on a linearization of the reduced energy functional, the ripple-like struc-

ture, which occurs in polycrystalline material, is investigated. In the exper-

iments, one observes that the ripple continuously grows into the concertina

pattern. The analysis shows that both the ripple and the concertina are driven

by the same physical mechanisms. Numerical simulations confirm this result

and reproduce the transition from the ripple to the concertina.

In Chapter 1, we review the previously known results and extensively present and

physically interpret our new insights. For proofs, explanations of the methods ap-

plied, and further investigations, we refer to the subsequent chapters.

The experiments that we discuss and present were carried out at the IfW Dresden

by J. McCord, R. Schäfer, and H. Wieczoreck.
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Figure 0.2.: Formation of the concertina pattern in the experiment: The pictures show a section near the center of four different elongated

thin film elements for different values of the external field. The two upper series show samples of 30 nm thickness of

low anisotropy. The two lower series show samples of 30 nm thickness of higher transversal anisotropy. The width is

30µm and 50µm, respectively. The magnetization was saturated by a homogeneous external magnetic field applied in

direction of the long axis. The strength of that field was decreased and it was eventually reversed. At some critical field, the

uniform magnetization buckles into the concertina pattern. This domain-wall pattern coarsens several times before it finally

disappears (no picture).
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Introduction

In this chapter, we start with an introduction of the underlying physical model. Af-

terwards, we review the linear stability analysis in [CÁO06a] and give a motivation

for the reduced model which was derived in [CÁOS07] in the relevant parameter

regime (identified in the linear stability analysis). We proceed with a discussion of

van den Berg’s explanation of the concertina.

Motivated by the experiments and numerical simulations of the reduced model, a

heuristic sharp interface model – domain theory – is discussed which is based on a

piece-wise constant approximation of the magnetization on a mesoscopic scale. This

provides a first understanding of the coarsening of the concertina which is then

further investigated on the basis of the reduced model. Finally, we discuss two

very different effects of anisotropy which were neglected in the analysis before: We

first address the effect of a polycrystalline anisotropy which is relevant in Permalloy

material; it turns out that the oscillatory ripple structure, which is triggered by

the polycrystallinity of Permalloy material, is intimately related to the concertina.

Afterwards, we address the effect of a uniaxial anisotropy on the formation of the

concertina.

Details on the experimental setup and the samples are discussed in Section 1.12 at

the end of the introduction. Details on the numerical simulations, shortly addressed

in Section 1.11, are postponed to Chapter 4. In particular, Section 4.10 contains the

specific choices of the parameters in the simulations.

1.1. The micromagnetic energy

Since the applied magnetic field in the experiment varies on a very slow time scale,

the magnetization always relaxes to equilibrium. Therefore we assume that the

observed configurations are local minima of some free energy. The well-accepted

model that we apply is given by the micromagnetic (free) energy, see below. This

model was first introduced by Landau and Lifshitz in [LL35].

Let us denote by Ω ⊂ R3 the space which is occupied by a ferromagnetic sample

and by m: Ω → S2 the magnetization of the sample. The micromagnetic energy

1



1. Introduction

E(m) is given by

E(m) = d2
∫

Ω
|∇m|2 dx Exchange energy

+
∫

R3
|Hstray|2 dx Stray-field energy

−Q
∫

Ω
(m · e)2 dx Anisotropy energy

−2
∫

Ω
Hext ·m dx Zeeman energy.

(1.1)

The micromagnetic energy in the form of (1.1) is partially non-dimensionalized, i.e.,

except for lengths. Therefore the magnetization is described by a vector field of

unit-length that vanishes identically outside of the sample:

|m|2 = 1 in Ω and m = 0 in R
3 − Ω. (1.2)

Let us briefly introduce and discuss the different energy contributions:

Exchange energy. The first contribution is the so called exchange energy which is

of quantum-mechanical origin. (The gradient acts component wise, i.e., |∇m|2 =

∑
3
i=1 ∑

3
j=1(∂imj)

2.) It obviously favors a uniform magnetization. The material pa-

rameter d is called the exchange length and measures the relative strength between

exchange and stray-field energy. This length is typically of the order of some nm.

Stray-field energy. The second contribution is the stray-field energy. Due to the

static Maxwell equations, the magnetization m generates a stray-field Hstray: R3 →
R3 which satisfies

∇× Hstray(m) = 0 and ∇ · (Hstray(m) +m) = 0 in R
3, (1.3)

where B = Hstray + m is the magnetic induction. Hence, the stray-field is the field

which is generated by the divergence of the magnetization. Since the magnetization

is discontinuous at the boundary ∂Ω of the sample, cf. (1.2), the second equation has

to be understood in the sense:

∇ · Hstray =

{
0 in R3 − Ω

−∇ ·m in Ω
and [Hstray · ν] = m · ν on ∂Ω, (1.4)

where ν is the outward pointing normal of ∂Ω and [Hstray · ν] denotes the jump

Hstray · ν experiences across the surface ∂Ω. We therefore distinguish two different

types of sources of the stray-field – in analogy to electrostatics, we speak of charges –

namely

magnetic volume charges −∇ ·m in Ω and

magnetic surface charges m · ν on ∂Ω.

2



1.2. Linear stability analysis

There are several equivalent formulations for (1.4). Due to (1.3), it can be represented

as Hstray = −∇u, where the potential u : R3 → R is given as the solution to

−∆u =

{
0 in R3 − Ω

−∇ ·m in Ω
and [∇u · ν] = −m · ν on ∂Ω.

Another formulation is given by

∫

R3
|Hstray(m)|2 =

∫

R3

∣∣|∇|−1∇ ·m
∣∣2 dx,

where |∇|−1 is defined in Fourier space via the multiplier |k|−1.

Anisotropy energy. The third contribution is the anisotropy energy which models

the dependence (of the energy) on the direction of the magnetization relative to the

so called easy axis e = (e1, e2, e3) of a uniaxial material. The relevant anisotropy in

our samples is either a longitudinal anisotropy, i.e., e = (1, 0, 0), or a transversal

anisotropy, i.e., e = (0, 1, 0), see Section 1.12. The material parameter Q > 0 is

called the quality factor. It measures the relative strength between anisotropy and

stray-field energy. A uniaxial anisotropy originates for example in crystalline or

so-called induced anisotropy, see [CG08, Chapter 7, Chapter 10]. Later on we will

also consider polycrystalline anisotropy which plays an important role in Permalloy

material. This can be modeled with the help of a (random) position-dependent easy

axis e(x).

Zeeman energy. The last contribution is called Zeeman energy. It models the in-

teraction and favors the alignment of the magnetization with an applied external

magnetic field Hext : R3 → R3.

We note that we usually do not explicitly denote the dependence of the energy on the

extrinsic or intrinsic parameters, i.e., external field Hext, dimensions of the sample

Ω, and the material parameters d and Q.

1.2. Linear stability analysis

We are interested in magnetization patterns in very elongated thin-film elements of

width ℓ (in x2-direction) and thickness t ≪ ℓ (in x3-direction) which form under the

reversal of a homogeneous external magnetic field. This field is aligned with the

long axis (the x1-axis) of the sample. Hence it is of the form Hext = (−hext, 0, 0), see
Figure 1.1. (The minus is introduced so that the critical field in case of vanishing

uniaxial anisotropy is positive which simplifies the notations, see below.)

Experimental observations of the samples, that have a length about 2mm at least 20

times larger than the width ℓ, suggest that the pattern away from the sample edges

in x1-direction is not influenced by boundary effects at the sample’s tips (we later

3



1. Introduction

{t
{ℓ

x1

x3 x2
Hext = (−hext, 0, 0)

Figure 1.1.: The idealized geometry of the sample. The homogeneous external saturation

field Hext is parallel to the long axis of the sample.

come back to this point in Section 1.4). The pattern was recorded at three different

locations, equidistant to the small edges of the cross section, where qualitatively the

same pattern at the same values of the external field was observed. We therefore

assume from now on that the sample is infinite in x1-direction, i.e., Ω = R × (0, ℓ)×
(0, t), or periodic, i.e., Ω = [0, L)× (0, ℓ)× (0, t) with period L sufficiently large. As

a consequence of the idealized geometry the uniform magnetization m∗ = (1, 0, 0)
is a stationary point of the energy functional for all values hext of the external field

Hext = (−hext, 0, 0).

Let us neglect anisotropy – it can and will be included later on in Section 1.10. Ob-

serve that ±m∗ is the global minimizer of the energy (1.1) for hext ≶ 0. Experiments

suggest that as the strength of the field is reduced starting from saturation (i.e., for

large negative value of hext) and finally reversed, a bifurcation at some critical value

h∗ext > 0 of the external field (−hext, 0, 0) is at the origin of the concertina pattern. The

investigation of the concertina starts with a linear stability analysis of the uniform

magnetization in the following section.

1.2.1. Hessian and unstable modes

In Theorem 1 in [CÁO06a, p.357], a linear stability analysis of the saturated state

m∗ = (1, 0, 0) was performed. Due to the unit length constraint (1.2), infinitesimal

variations of m∗ are of the form δm = (0, δm2, δm3). The uniform magnetization only

generates Zeeman energy. Therefore, the Hessian of the energy in m∗ is given by the

exchange energy and the stray-field energy of the infinitesimal variation, augmented

by the linearization of the Zeeman energy:

HessE(m∗)(δm, δm) =
∫

Ω
|∇δm|2 dx+

∫

R3
|Hstray(δm)|2 dx− hext

∫

Ω
(δm2

2+ δm2
3)dx.

(1.5)

In the following, we discuss potentially unstable modes δm on the basis of (1.5). One

particular result will be the identification of the relevant parameter regime – for the

occurrence of the concertina pattern – as a function of the thickness t, the width ℓ

and the value of the exchange length d.

We continue to neglect uniaxial anisotropy (i.e., we set Q = 0) at that point, since

on the level of this infinitesimal discussion, a longitudinal or transversal anisotropy

4



1.2. Linear stability analysis

just leads to a shift of the critical field h∗ext  h∗ext ± Q, see Section 1.10. However,

since the shift entails that the sign of the critical field can change, we note in that

if we speak about reducing the strength of the (stabilizing) external field, we usually

mean that the critical field is approached from saturation (hext = −∞) if not stated

differently. Similarly, we say that the external field is increased after the critical field

is passed. In this sense, the critical field is interpreted as the zero point on the scale

of the external field, cf. Figure 1.2.

m∗ stable

0 h∗ext > 0

m∗ unstable

saturation

reducing increasing

hext

Figure 1.2.: The scale of the external field hext.

Regime I. The first unstable mode discussed in [CÁO06a] is a coherent, in-plane

rotation, i.e., δm = (0, 1, 0), cf. Figure 1.3. On the basis of (1.5), let us argue at

which field this mode becomes unstable by determining the infinitesimal release of

energy in terms of scaling. A coherent rotation releases Zeeman energy per length

in x1-direction of the infinitesimal amount hextℓt. A coherent rotation generates

surface charges. Over distances ℓ much larger than t, the surface charges act like

two oppositely charged wires at distance ℓ of line density t – also in the following if

not mentioned otherwise always infinitesimally and per length in x1-direction. This

generates an infinitesimal stray-field of the order t2(ln ℓt−1). Therefore, this mode

becomes unstable at a field hext of the order tℓ−1(ln ℓt−1) for t much smaller than

ℓ – in short hand notation hext ∼ tℓ−1(ln ℓt−1) for t ≪ ℓ. 1.

{t

{ℓ
Figure 1.3.: Coherent rotation and generated surface charges.

Regime II. The second unstable mode we consider is buckling, cf. Figure 1.4. The

magnetization avoids the lateral surface charges by just laterally buckling in the

middle of the cross section, i.e.,

δm = (0, sin(π x2
ℓ ), 0).

1By f ≪ g we mean that there exists a universal constant C > 1 such that C f < g. Moreover, . and
& stand for ≤ and ≥ up to a generic constant and by ∼ we mean both . and &.

5



1. Introduction

However, since ∇ · δm = πℓ−1 cos(π x2
ℓ ), the surface charges of the coherent rotation

turn into volume charges. At distances much larger than t from the cross section,

these volume charges act like surface charges of amplitude ℓ−1t which generate a

stray-field energy ∼ t2. This is slightly smaller (by a logarithm) than the infinitesimal

stray-field energy case of the previous mode of coherent rotation. Moreover, since

|∇δm|2 = π2ℓ−2 cos(π x2
ℓ )

2, the buckling mode generates exchange energy ∼ d2ℓ−1t,

where we recall that d denotes the exchange length as introduced in (1.1). Since the

release of Zeeman energy scales as ∼ hextℓt as above, this mode becomes unstable

at hext ∼ d2ℓ−2 in the regime t . d2ℓ−1 and at hext ∼ tℓd−2 in the regime t & d2l−1.

The second mode beats the first mode for d2ℓ−1(ln−1 ℓd−1) . t in the sense that it

becomes unstable earlier, i.e., at a smaller field hext.

{t

{ℓ
Figure 1.4.: Buckling mode and its generated volume charges (shaded region) and stray-field

(gray arrows).

Regime III. The third unstable mode we discuss is oscillatory buckling, cf. Figure

1.5. This mode reduces the stray-field energy through a modulation of the lateral

buckling in x1-direction, i.e.,

δm = (0, sin(π x2
ℓ ) sin(2π x1

w ), 0)

with a wave length wwith t ≪ w ≪ ℓ. Since w ≫ t, the volume charges generated by

this mode act like surface charges of amplitude ℓ−1t over distances much larger than

t from the cross section. However, these surface charges change sign over a distance

w ≪ ℓ, so that the generated stray-field only extends over a distance w away from

the cross section. Hence this mode generates a stray-field energy ∼ ℓ−1t2w, which

is substantially less than the stray-filed energy of the two prior modes for w ≪ ℓ.

Due to w ≪ ℓ, the exchange energy is now dominated by the oscillation in x1-

direction, which leads to an infinitesimal exchange energy ∼ d2ℓw−2t. Hence the w,

which leads to the minimal infinitesimal combined stray-field and exchange energy

of d2/3ℓ−1/3t5/3, is given by w∗ ∼ d2/3ℓ2/3t−1/3. This is consistent with t ≪ w ≪ ℓ

provided d2ℓ−1 . t . (dℓ)1/2. The oscillatory buckling mode becomes unstable

at hext ∼ d2/3ℓ−4/3t2/3 and, therefore, beats the first and second mode provided

d2ℓ−1 . t.

Regime IV. The fourth unstable mode we consider is curling. This mode avoids

charges altogether by an x3-dependent magnetization whose flow lines have a cork-

skew shape, i.e.,

δm = (0, sin(π x2
ℓ ) cos(π

x3
t ), ℓ

−1t cos(π x2
ℓ ) sin(π

x3
t )).

6



1.3. Period of the unstable mode: Experiment vs. theory

{t
{ℓ

{

w∗

} ∼ w∗

Figure 1.5.: Oscillatory buckling mode and its generated volume charges (shaded region)

and stray-field (gray arrows).

The exchange energy is now dominated by the gradient in x3-direction which scales

as d2ℓt−1. Hence the curling mode becomes unstable at hext ∼ d2t−2. It beats the

other modes provided (dℓ)1/2 . t.

The infinitesimal perturbations discussed above only provide upper bounds for

the critical field h∗ext. Matching lower bounds in terms of scaling were proofed

in [CÁO06a] by Ansatz-free lower bounds for the Hessian using interpolation es-

timates. The analysis in [CÁO06a] thus shows that there are exactly four regimes

for the instability, see 1.6.

1
1

I
coherent

II

buckling

III
osc. buckling

IV
curling

t
d

ℓ
d

Figure 1.6.: Phase diagram of the four regimes of instability.

1.3. Period of the unstable mode: Experiment vs. theory

Clearly, the regime of interest to us is the Regime III. Based on a Γ-convergence

result for the Rayleigh quotient of the Hessian, it was shown that the unstable mode

in Regime III is indeed of the form

δm = (0, sin(π x2
ℓ ) sin(2π x1

w ), 0), (1.6)

see Theorem 1 in [CÁO06b, p. 389]. Moreover, the asymptotic behavior – including

the factor – of w∗ was determined, namely

w∗ ≈ (32π)1/3d2/3ℓ2/3t−1/3. (1.7)

7



1. Introduction

Here, ≈ means asymptotically equal. So far, we have learned that in Regime III

at field strengths h∗ext ∼ d2/3ℓ2/3t−4/3 there is a bifurcation in direction of the os-

cillatory buckling mode (1.6) with period given by (1.7). We claim, cf. Section 1.6,

that the concertina pattern grows out of this unstable mode. If so, we expect that

the experimentally observed period w∗
exp should be close to the period w∗ of the

unstable mode. Defining and determining w∗
exp is delicate, see Figure 0.2: As hext

increases, there is a continuous transition from the magnetization ripple – for details

see Subsection 1.9 – to the concertina pattern, which is far from exactly periodic, and

which coarsens subsequently, see Section 1.8. As w∗
exp we take the average period as

soon as the concertina pattern is discernible to the eye. Let us note that counting by

hand and automatic determination via Fourier analysis coincide. Figure 1.7 shows

the result of this comparison for a broad range of sample dimensions ℓ and t and

therefore a fairly broad range of periods w∗: The ratio of the widest compared to the

smallest sample is 5 and the ratio of the thickest compared to the thinnest is 15. The

smallest period w∗ is expected for a thick film of small width, the largest period for a

thin film of large width, differing by a factor close to six – neglecting the prediction

for the defect samples. The ratio
w∗
exp

w∗ is approximately two. We basically see this as

a confirmation of our hypothesis that the concertina grows out of the unstable mode

and inherits its period. Notice that the deviation has a clear trend: w∗
exp is larger

than w∗. We give an explanation for this systematic deviation in Section 1.8.
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Figure 1.7.: The theoretical period of the unstable mode is in good correspondence to the

measurements: The left image shows the ratio of the average experimentally

observed period (observed in low anisotropic Permalloy) and the period of the

unstable mode. The white patches correspond to defect samples. The right

image displays the ratio of the period w∗ and the smallest expected period at all,

i.e., w∗ for the values ℓ = 50µm, t = 150 nm. Both images share the same color

map.

1.4. Van den Berg’s vs. our explanation

Let us turn to van den Berg’s explanation in [vdBV82]. The combination of van

den Berg’s explanation of the concertina with the insights from [BS89, DKM+01]
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1.4. Van den Berg’s vs. our explanation

leads to the following updated version of the explanation in [vdBV82, Sections A

& B]: In sufficiently large thin-film elements and for sufficiently low external fields,

[BS89] postulate that the mesoscopic two-dimensional magnetization pattern, i.e., in-

plane m3 = 0 and independent of the thickness direction m = m(x1, x2), with sharp

charge-free walls and that is tangential to the lateral edges of the sample, arranges

itself in such a way that the corresponding continuous magnetic charge density

σ = −(∂1m1 + ∂2m2) generates a stray-field Hstray that expels the external field Hext

from inside of the sample – like in electrostatics.

In [DKMO05], see [DKM+01] for an efficient account, it is shown that in the regime

of sufficiently large thin-film elements – i.e., t ≪ ℓ and ℓt ≫ d2 log ℓ
t and compara-

ble lateral dimensions ∼ ℓ – this principle extends to moderately large fields ∼ t
ℓ :

In this case the stray-field Hstray in general can no longer expel the external field

Hext everywhere in the sample, since the total charge density σ = −(∂1m1 + ∂2m2)
is limited by m2

1 + m2
2 = 1. The charge density σ is uniquely determined by a

convex variational problem only involving the stray-field energy and the Zeeman

term. At least some aspects of the mesoscopic two-dimensional magnetization pat-

tern (m1,m2) can be recovered from σ: The characteristics of (m1,m2), i.e., the curves
along which (m1,m2) is normal (called “trajectories” in [vdBV82]), have curvature

given by σ. However, due to the even charge-free discontinuity curves of the meso-

scopic magnetization (m1,m2), this seemingly rigid condition does not suffice to

determine (m1,m2) – even if it is easy to construct a solution via the maximal so-

lution of a modified eikonal equation [DKM+01, p.2987]. On the other hand, in the

region where the external field has penetrated, (m1,m2) is unique [DKM+01, p.2987]

and has no discontinuities [vdBV82, p.883].

Van den Berg explains the experimental observations as follows: For sufficiently

large external fields Hext ≫ t
ℓ

2, the sum of the external field and the generated stray-

field Hext + Hstray does not vanish in the sample, besides in the vicinity of the two

distant edges; as a consequence walls only occur in the two flux closure pattern at the

distant edges. As the external field is reduced, the penetrated region shrinks as the

walls invade the sample. Each of the two flux closure patterns has a “doublet” which

is a point on one of the long edges where two wall segments intersect. The doublets

were created at the very beginning of the experiment, as the 180◦ wall of the Landau

state touched the edge and broke up due to the application of a strong external field

parallel to the long edge. The inner (most distant to the short edges) ones of the

doublet walls fade out in the middle of bar. As the field decreases, each of these two

walls grows – necessarily in direction of the characteristic – till it hits the opposite

edge. There it must generate a “triplet” (a point on the edge where three walls meet);

the middle wall must coincide with the previous one originating in the doublet.

Again, the inner of the three walls grows towards the original, opposite edge. From

there on, the process repeats till the built-up concertina structure is linked in the

middle of the bar. For very elongated samples, the linking is expected at a field

2This is the strength of the applied field that can be compensated in a thin film element of lateral
dimensions ∼ ℓ and thickness t.
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1. Introduction

strength of order Hext ∼ tℓL−2 ln tℓ−1 and thus differs from the field at the beginning

of the growth process by a factor ℓ2L−2 ≪ 1 (up to a logarithm)3. We note that,

mathematically speaking, van den Berg appeals to continuity via the external field

to overcome the non-uniqueness of the magnetization (m1,m2) mentioned above.

Our explanation for the genesis of the concertina pattern is very different from the

one of van den Berg. Instead of an outgrowth of the closure domains, we explain

the concertina as an outgrowth of an unstable mode best captured in very elongated

thin film elements. Indeed, our experiments were performed on thin film elements

of thicknesses t in the range of 10 nm to 150 nm, widths ℓ in the range of 10µm to

100µm, but lengths in the range of 2mm. As mentioned, we recorded the pattern at

different sections and observed qualitatively the same pattern at the same values of

the external field.

Not surprisingly, our theoretical predictions are quite different from those in

[vdBV82] – already in terms of scaling. Van den Berg’s explanation contains two

different scales of the external field (Hext ∼ t
ℓ for the beginning of the building

process and Hext ∼ tℓL−2 ln tℓ−1 for the completion when the external field can

be totally expelled from the sample) whereas in our case Hext ∼ d2/3ℓ−4/3t2/3, see

Regime III in Subsection 1.2.1, which is in accordance with the simultaneous forma-

tion along the sample independent of the specific position. Whereas in [vdBV82] the

appropriate scale for the concertina width w is given by ℓ, in particular independent

on the thickness t, it is given by and d2/3ℓ2/3t−1/3 in our case, in accordance with

our experimental observations illustrated in Figure 1.8.

Figure 1.8.: Concertina in Permalloy samples of width ℓ = 100µm and thickness t = 30 nm

(left), t = 80 nm (center), and t = 300 nm (right). The average period of the

pattern is a decreasing function of the thickness of the sample.

3Notice that the potential u corresponding to a stray-field that compensates the uniform ex-
ternal field in the sample (−L/2, L/2) × (0, ℓ) × (0, t) is expected to be of the form u ≈
hextx1(ln LR−1)(ln−1 Lℓ−1) at distance ℓ ≪ R = (x22 + x23)

1/2 ≪ L for ℓ− L/2 ≪ x1 ≪ L/2− ℓ.
This can be used to estimate the total flux through a test cylinder of radius R and thickness

∆x1 ≫ R which is equal to the net charge density. This entails x1hext ln
−1 Lℓ−1 ∼ t

∫ ℓ
0 σ dx2.

Provided there are no boundary charges at the lateral edges of the sample we find that∫ L/2
0 x1hext ln

−1 Lℓ−1 dx1 ∼ t
∫ L/2
0

∫ ℓ
0 σ dx2 dx1 ∼ t

∫ ℓ
0 m1(x1 = 0, x2)dx2 ≤ tℓ. This indicates

that a field of strength hext . −tℓL−2 ln tℓ−1 can be expelled from within the sample.

10



1.5. A reduced energy functional

1.5. A reduced energy functional

In order to understand the type of bifurcation, it is useful to pass to a reduced

model adapted to Regime III. This reduced model was rigorously deduced based on

the notion of Γ-convergence in Theorem 3 in [CÁOS07, p.233]. Let us give a short

heuristic motivation for the reduced model by identifying higher order terms:

m, |m|2 = 1 |∇m|2
∫

R3 ||∇|−1∇ ·m|2 dx

thin-film t ≪ w m3 ≡ 0 |∇′m|2 t2

2

∫
R2 ||∇|−1/2∇′ ·m′|2 dx′

scale sep. w ≪ ℓ |∂1m′|2 t2

2

∫
R2 ||∂1|−1/2∇′ ·m′|2 dx′

low-angle approx. m1 ≈ 1− m2
2
2 |∂1m2|2 t2

2

∫
R2 ||∂1|−1/2(−∂1

m2
2
2 + ∂2m2)|2 dx′

Table 1.1.: Successive identification of leading order terms due to scale-separation and low-

angle approximation.

In view of the form of the unstable mode, the dependence on the thickness variable

and the out-of-plane component can be neglected, i.e., m = m(x1, x2) and m = m′,
respectively, where m′ = (m1,m2) denotes the first two components of m (likewise

we write for example x′ = (x1, x2) and ∇′ = (∂1, ∂2)
T). Since the unstable mode

varies faster in x1-direction than in x2-direction, |∂2m′|2 can be neglected with respect

to |∂1m′|2 in the exchange energy density. Moreover, we can approximate the stray-

field potential of an in-plane, thickness-invariant magnetization in a thin-film, i.e.,

Ω′ × (0, t), by the potential due to the charge density −t∇′ ·m′ on the plate Ω′:

−∆u = 0 in R
3 − (Ω′ × {0}) and [∂3u] = −t∇′ ·m′ on ∂Ω′ × {0}. (1.8)

Based on (1.8), it is a straight-forward calculation in Fourier space – by a transform

w.r.t. x1 and x2 – to show that

∫

R3

∣∣∇u|2 dx = t2

2

∫

R2

∣∣|∇′|−1/2∇′ ·m′|2 dx′. (1.9)

Since the oscillation in the sign of the charge density is on smaller length scales in

x1-direction than in x2-direction, the non-locality w.r.t. x2 can be neglected:

t2

2

∫

R2

∣∣|∇′|−1/2∇′ ·m′|2 dx′ ≈ t2

2

∫

R2

∣∣|∂1|−1/2∇′ ·m′|2 dx′.

Finally, since we are interested in small deviations from m∗ = (1, 0, 0), the Taylor

expansion m1 =
√

1−m2
2 ≈ 1− m2

2
2 entails that we may neglect |∇m1|2 with respect

to |∇m2|2 in the exchange energy density. We also use m1 ≈ 1− m2
2
2 in the the stray-

field and in the Zeeman contribution. Up to an additive constant, we are therefore

11



1. Introduction

left with the reduced energy functional E0(m2) given by

E(m) ≈ E0(m2) = d2t
∫

Ω′
(∂1m2)

2 dx1 dx2

+ t2

2

∫

Ω′

∣∣|∂1|−1/2(−∂1
m2

2
2 + ∂2m2)|2 dx1 dx2 − hext t

∫

Ω′
m2

2 dx1 dx2, (1.10)

where Ω′ = [0, L) × (0, ℓ) is periodic w.r.t. x1 of some large period L. The stray-

field energy is only finite if m2 vanishes at the lateral edges, i.e., m2(x1, x2) = 0 for

x2 ∈ {0, ℓ} – as is true for the unstable mode.

We note that the only non-quadratic term in the energy comes from the charge dis-

tribution σ = −∂1
m2

2
2 + ∂2m2. This is used to derive the scaling of the amplitude

of the magnetization: It should be such that both terms in the charge distribution

balance. In view of the unstable mode, the typical x1-scale of the variations of m2

is given by w∗ ∼ d2/3ℓ2/3t−1/3, whereas the typical x2-scale of variations of m2 is

given by the sample width ℓ. This entails that the terms ∂1
m2

2
2 and ∂2m2 balance

provided the amplitude of m2 scales as d2/3ℓ−1/3t−1/3 which suggests the follow-

ing non-dimensionalization of length and reduced units for the stray-field and the

magnetization:

x1 = d2/3ℓ2/3t−1/3x̂1, x2 = ℓx̂2, x3 = tx̂3,

m2 = d2/3ℓ−1/3t−1/3m̂2.
(1.11)

For the rescaling of the external field and the energy itself according to

hext = d2/3ℓ−4/3t2/3ĥext, (1.12)

E0 = d8/3ℓ−1/3t2/3Ê0, (1.13)

we obtain the reduced rescaled energy functional

Ê0(m̂2) =
∫

Ω̂′
(∂̂1m̂2)

2 dx̂1 dx̂2 +
∫

Ω̂′

∣∣|∂̂1|−1/2σ̂|2 dx̂1 dx̂2 − ĥext

∫

Ω̂′
m̂2

2 dx̂1 dx̂2, (1.14)

where σ̂ = −∂̂1
m̂2

2
2 + ∂̂2m̂2, under the constraints

m̂2 = 0 for x̂2 ∈ {0, 1}, (1.15)

m̂2(x̂1, x̂2) = m̂2(x̂1 + L̂, x̂2).

Note that the stray-field energy can be rewritten as the Dirichlet energy of some

potential û which satisfies

−(∂̂21 + ∂̂23)û = 0 for x̂3 6= 0 and [∂3û] = σ̂ for x̂3 = 0,

so that
∫

Ω̂′

∣∣|∂̂1|−1/2σ̂|2 dx̂1 dx̂2 =
∫

Ω̂′×R

(∂̂1û)
2 + (∂̂3û)

2 dx̂1 dx̂2 dx̂3. (1.16)
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1.6. Bifurcation analysis

Notice that due to periodicity, admissible magnetizations additionally suffice

∫ L̂

0
m̂2 dx̂1 = 0,

i.e.,
∫ L̂
0 σ̂ dx̂1 = 0. Let us not that the Hessian of the reduced energy in m̂2 = 0 can

be explicitly diagonalized with eigenvalues

λ(k̂1, k̂2) = 2(k̂1)
2 − π(k̂2)

2

|k̂1|
− 2ĥext,

and two-dimensional eigenspaces

Vk1,k2 = span{cos(k̂1x̂1) sin(k̂2x̂2), sin(k̂1x̂1) sin(k̂2x̂2)},

where k̂1 ∈ 2π
L N and k̂2 ∈ πN due to the boundary condition (1.15).

Let us compare the full three-dimensional micromagnetic energy (1.1) with our re-

duced model: The reduced rescaled formulation shows that the reduced energy func-

tional contains just one non-dimensional parameter, namely the reduced external

field ĥext – instead of four parameters – exchange length, sample dimensions and

hext – for the full model. Moreover, the vector field m = (m1,m2,m3), function of

three variables (x1, x2, x3), has been replaced by the scalar function m̂2, function of

two variables (x̂1, x̂2). Finally, the computation of the stray-field is a two-dimensional

computation – in (x̂1, x̂3) only with x̂2 as a parameter – instead of a three-dimensional

one. All this simplifies both the theoretical treatment and the numerical simulation.

For clarity, we will mostly discuss our results in the rescaled variables (1.14) – and

only occasionally return to the original variables, mostly for comparison with the

experiment and if we take into account anisotropy.

The reduced rescaled energy was identified as the Γ-limit w.r.t. the L2-topology of

the properly rescaled micromagnetic energy close to the uniform magnetization m∗

in the neighborhood of the critical field h∗ext in [CÁOS07]. It is a two-fold limit in the

parameters

ε = d4/3ℓ−2/3t−2/3 and δ = d−2/3ℓ−2/3t4/3, (1.17)

which characterize Regime III, more precisely ε, δ ≪ 1 is equivalent to d2ℓ−1 ≪ t ≪
(dℓ)1/2. Table 1.2 shows the values of (1.17) for specific sample dimensions.

1.6. Bifurcation analysis

On the level of the reduced model (1.14), the type of bifurcation was determined

in [CÁOS07]. Let us present the main steps and the result of the analysis: As

mentioned before, the Hessian of the reduced model in m̂2 ≡ 0 can be explicitly di-

agonalized and the first unstable mode is given by m̂∗
2 = sin(πx̂2) sin(2π x1

ŵ∗ ), where

ŵ∗ = (32π)1/3. The reduced critical field is given by

ĥ∗ext = 3
(

π
2

)4/3
. (1.18)
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H
H
H
H
H
HH

t

ℓ
10µm 100µm

10 nm ε = 0.0040 ε = 0.00085

δ = 0.016 δ = 0.0034

150 nm ε = 0.00065 ε = 0.00015

δ = 0.59 δ = 0.13

Table 1.2.: Parameters ε and δ for characteristic sample sizes where the exchange length is

given by d = 5 nm. Regime III is related to samples of small thickness t and large

width ℓ.

We note that this is consistent with the Γ-limit of the Hessian in Regime III, see

[CÁO06b]. In order to determine the type of bifurcation, one has to investigate the

energy functional Ê0 close to the one-dimensional subspace {Am̂∗
2}A∈R generated by

the unstable mode m̂∗
2 = sin(πx2) sin(2π x1

ŵ∗ ). Because of the invariance of both Ê0

and the unstable mode {Am̂∗
2}A∈R under the transform m̂2  −m̂2 and x̂2  1− x̂2,

all odd terms in A in the expansion of Ê0(Am̂
∗
2) vanish. The first non-vanishing

term in the expansion of Ê0 at the critical field ĥ∗ext is at least quartic. Hence it

is not sufficient to consider Ê0 just along the linear space {Am̂∗
2}A∈R but it has to

be analyzed along a curve {Am̂∗
2 + A2m̂∗∗

2 }A∈R in configuration space, where the

curvature direction m̂∗∗
2 , which affects the quartic term in the expansion, has to be

determined such that Ê0 is minimal. This minimization problem (of the coefficient of

the quartic term) is quadratic in m̂∗∗
2 and can thus be explicitly solved. One obtains

m̂∗∗
2 = − 1

10(
2
π )

1/3 sin(2πx2) sin(4π x1
ŵ∗ ),

which leads to a negative coefficient of the quartic term in the expansion of Ê0:

Ê0(Am̂
∗
2 + A2m̂∗∗

2 ) ≈ (ĥext − ĥ∗ext)
(

π
2

)1/3
A2 − π

640A
4. (1.19)

The negative quartic coefficient implies that the bifurcation is subcritical, also called

of first order. Subcriticality means that close to m̂2 ≡ 0, there are only unstable

stationary points for ĥext slightly below ĥ∗ext, and no stationary points close to m̂2 ≡ 0

for ĥext slightly above ĥ∗ext, cf. Figure 1.9.

ĥext < ĥ∗ext ĥext = ĥ∗ext

configuration
space

energy

ĥext > ĥ∗ext

Figure 1.9.: Energy landscape close to the bifurcation. The loss of stability at the critical field

leads to a subcritical bifurcation.
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1.6. Bifurcation analysis

At first sight, it is surprising that the stray-field energy contribution to Ê, which gives

rise to the only quartic term in m̂2, and clearly is non-negative, may nevertheless

allow for a negative coefficient in front of the quartic term in the expansion (1.19).

This comes from the fact that the two terms in the charge density −∂̂1
m̂2

2
2 + ∂̂2m̂2

interact, giving rise to a cubic term in m̂2, which indeed allows for cancellations.

The way how this operates is better understood in physical space: The term m̂∗∗
2 in

Am̂∗
2 + A2m̂∗∗

2 , i.e., the curvature direction in configuration space, leads to a tilt in the

charge distribution, see Figure 1.10. This tilt brings opposite charges closer together,

thereby reducing the stray-field energy (while increasing the exchange energy to a

lesser amount).

Figure 1.10.: Unstable mode {Am̂∗
2} and additional curvature correction {Am̂∗

2 + A2m̂∗∗
2 }

with its generated charges. The gray scales indicate the m̂2-component.

Since the bifurcation is subcritical, it is not obvious whether minimizers of the re-

duced energy functional can be related to the unstable mode. In particular, this find-

ing sheds doubt on the hypothesis that the concertina pattern inherits the period of

the unstable mode. It is even not obvious whether minimizers of the reduced energy

functional exist at all. However, it was shown that the reduced model is coercive for

all values of the external field ĥext, see Theorem 4 in [CÁOS07, p.236]. This in par-

ticular implies that there always exists a global minimizer of the reduced energy, in

particular for fields larger than the critical field. But it is not immediately clear how

and whether it is related to the unstable mode.

It is natural to resort to numerical simulations. A short introduction is given in

Section 1.11; for details on the discretization scheme and the algorithms, see Chapter

4. To confirm the conjecture that the unstable mode in Regime III is indeed related

to the concertina pattern, we use a numerical path-following in order to compute the

bifurcation branch. Figure 1.11 displays the outcome of the numerical simulations.

As expected due to the coercivity of the energy functional, we find a turning point

as we follow the bifurcation branch. The turning point is located at a field which is

just slightly – about one percent – smaller than the critical field. After the turning

point the branch is stable, at least under perturbations of the same period.

As the field increases beyond the turning point, the unstable mode grows into a

domain pattern of concertina type with its clear scale separation between the wall
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5.5 5.6 5.7 5.8 5.9
0

0.5

1

1.5

2

2.5

ĥext

〈m̂
2 2
〉1

/
2

Figure 1.11.: Numerical simulations: The ŵ∗-periodic branch close to the bifurcation (top)

and the computed pattern at the indicated fields (bottom). The gray scales

encode the m̂2-component (light gray corresponds to negative, dark gray to

positive m̂2) but are in this case not comparable – the scale is exhausted so that

the structure of the configuration is resolved.

width and the domain size, cf. Figure 1.12. We thus find a continuous transformation

from the unstable mode to the concertina pattern – confirming our hypothesis.

Figure 1.12.: Numerical simulations: The ŵ∗-periodic concertina pattern exhibits a clear

scale separation (domain width ≫ wall width) for large external fields. The

gray scales encode the m̂2 component and are comparable.

The numerical simulations lead to the conjecture that in a perfectly homogeneous

sample without anisotropy the magnetization exhibits a first order phase transition

from the uniformly magnetized state to the concertina state of period w∗ at the

critical field. Clearly, this does not explain the deviation of the average wavelength

in the experimental measurements from the period of the unstable mode.
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1.7. Domain theory

In the numerical simulations we observe for large external fields a clear scale sep-

aration: The width of the domains, where the magnetization is almost constant, is

much larger than the width of the walls, in which the magnetization quickly turns,

cf. Figure 1.12. This suggests the application of a sharp interface model, namely

domain theory, which is introduced in detail in Chapter 2. It is used in Section 1.8

and 1.10 in order to get a better understanding of the concertina, in particular its

period.

ν̂

−m̂0
2 m̂0

2m̂0
2

0

0 }
ŵ
m̂0

2}
1− ŵ

m̂0
2

α}
ŵ

Figure 1.13.: Domain theory: Sketch of the piecewise constant Ansatz function. Its angles

are fixed by (1.20).

On a mesoscopic scale, the computed magnetization is close to a piecewise constant

magnetization of amplitude m̂0
2, i.e., m̂2 = ±m̂0

2 in the quadrangular domains and

m̂2 = 0 in the triangular domains as indicated in Figure 1.13. We observe that the

angles in the pattern are determined by the amplitude; approximately we have that

sin α = 2m̂0
2. This is related to the fact that the reduced stray-field energy is strongly

penalized for large fields. In fact, the piecewise constant magnetization with angles

given by sin α = 2m̂0
2 is a distributional solution of

−∂̂1
m̂2

2
2 + ∂̂2m̂2 = 0. (1.20)

The energy which discriminates between these solutions will be given by the to-

tal wall energy, which is an appropriate line energy density ê integrated over the

interfaces, augmented by Zeeman energy:

Êdomain(m̂2) =
∫

jump set
ê
(
[m̂2]
2

)
dH0 dx̂2 − ĥext

∫
m̂2

2 dx̂1 dx̂2,

where H0 denotes the zero-dimensional Hausdorff measure. The optimal transition

layers are low angle Néel walls for which the specific line energy is a function of the

jump [m̂2] of the magnetization and of the length of the logarithmic tails of the Néel

wall, which scales as the period ŵ:

ê
(
[m̂2]
2

)
= ê(m̂0

2) ≈ π
8 (m̂

0
2)

4 ln−1 ŵ(m̂0
2)

2.
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For details, we refer to Chapter 2 where we will see that within the class of admis-

sible magnetizations, the domain theoretic energy per period becomes a function of

only three parameters, namely the transversal component m̂0
2, the period ŵ and the

external field ĥext:

Êdomain(m̂
0
2, ŵ) = 2

(
1− ŵ

m̂0
2

)
ê(m̂0

2) + 4 ŵ
m̂0

2
ê
(
m̂0

2
2

)
− ĥext(m̂

0
2)

2
(
ŵ− ŵ2

m̂0
2

)
.

Of course, domain theory is only applicable (and thus a good approximation for the

reduced model) for 1 ≪ ĥext, in which case there is a clear scale separation between

walls and domains. Figure 1.15 shows that the optimal amplitude on the level of

domain theory and the amplitude extracted from the numerical computations are in

good agreement for large external fields 1 ≪ ĥext.

2|A2−A1|
m̂1

2+m̂2
2}}

m1
2|A2−A1|
m̂1

2+m̂2
2

−m̂1
2 m̂2

2

0

A0

A1 A2

A3

Figure 1.14.: Domain theory: Sketch of a generalized tilted Ansatz function.

The experimentally observed concertina is of course not of uniform period and equal

amplitude as our domain theoretic Ansatz above. As shown in Figure 1.14, there are

also oblique piecewise constant weak solutions of (2.1). Nevertheless, this class of

Ansatz functions is very rigid, for details see Section 2.3.

Domain theory is (partially) justified as a consequence of Theorem 3.3 in Chapter

3 published in [OS10]. This Theorem states that minimizers of the reduced energy

functional are close to weak solutions of the Burgers equation (1.20).

1.8. Coarsening of the concertina pattern

1.8.1. Domain theory: The optimal period of the concertina pattern

Experiments show an increase in the average concertina period w as the external

field hext is further increased after the critical field is passed and the pattern has

formed. The general tendency that w is an increasing function of hext can be un-

derstood on the basis of domain theory in the reduced variables m̂0
2, ŵ and ĥext. By

optimizing the energy per unit lengthwith respect to the period ŵ and the amplitude

m̂0
2 of the transversal component for given external field ĥext, we obtain the following

scaling of the optimal period ŵa of the pattern:

ŵa(ĥext) ∼ ĥext ln ĥext for ĥext ≫ 1,
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Figure 1.15.: Domain theory and numerical simulations: The optimal amplitude on the level

of domain theory (red) and the computed amplitude based on the reduced

model (blue). For the reduced model we display the amplitude, i.e., the maxi-

mal value which is attained in the quadrangular domain.

see c) in Subsection 2.2. In particular, the optimal period increases with increasing

field. Domain theory also yields the same scaling behavior for the optimal inclina-

tion of the magnetization

m̂2a(ĥext) ∼ ĥext ln ĥext for ĥext ≫ 1,

see b) in Subsection 2.2. Both scalings are confirmed on the basis of the reduced

model using a concertina Ansatz for the upper bounds and new interpolation esti-

mates for the lower bounds in Theorem 3.1 in Chapter 3, also published in [OS10].

Numerical simulations of the reduced energy functional moreover show that the op-

timal period increases with increasing field also for small external fields, see Figure

1.16. The optimal period was computed by minimizing the energy per unit length

both w.r.t. the magnetization and the period for varying external field, for details

see Subsection 4.8.

1.8.2. Coarsening: A modulation instability

Although the analysis predicts that the optimal period increases as the field in-

creases, see above, it does not explain why and in which way a concertina pattern

of period ŵ becomes unstable as ĥext increases. We will see that both the increas-

ing period for large fields and the deviation of the initial period from the one of

the unstable mode are due to an instability under long-wave length modulations

of the pattern. The mechanism behind the instability is the following: Given ĥext
and a period ŵ, an optimization in the transversal component m̂2 yields that the

optimal energy per period Êopt(ĥext, ŵ) is a concave function in ŵ – provided ĥext(ŵ)
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Figure 1.16.: Numerical simulations: The optimal period of the concertina pattern as a func-

tion of the external field computed on the basis of the reduced model.

is sufficiently large. Concavity suggests – as depicted in Figure 1.17 – that the con-

certina pattern of a uniform period ŵ becomes unstable under modulations of the

period, i.e., perturbations which increase the period to ŵ+ ε and the corresponding

optimal transversal component in some folds, and decrease the period to ŵ− ε and

the corresponding optimal transversal component in other folds. However, in view

of the non-locality of the stray-field energy, it is not clear whether this simplified

picture, i.e., that the energy of the modulation amounts to the modulation of the

energy, applies. As discussed in Subsection 1.8.3, a modulation of the period on a

very long length scale overcomes this objection. Thus the concavity of the minimal

energy implies an instability under long wave-length modulations of the pattern.

Êopt

ŵ

ŵ− ε ŵ+ ε

Figure 1.17.: Concavity of the minimal energy per period implies an instability under wave-

length modulation.

In order to derive the concavity of the minimal energy, we apply domain theory for

large external fields, for details see d) in Subsection 2.2, and an extended bifurcation
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1.8. Coarsening of the concertina pattern

analysis close to the critical field, for details see Chapter 6. Furthermore, we will see

that both asymptotics match the results of the numerical simulation of our reduced

model.

The modulation instability of the concertina pattern is closely related to the Eckhaus

instability which was discovered in the context of non-linear instabilities in convec-

tive systems leading to a change in wave length of the observed periodic pattern, for

a review see [Eck92]. A higher degeneracy of the bifurcation in case of the reduced

energy functional leads to an asymmetric Eckhaus unstable region. More precisely

we will see that periodic minimizers of period ŵ∗ + δŵ are Eckhaus unstable for

δŵ < δŵ∗ for some δŵ∗ > 0. In case of the generic Eckhaus bifurcation, a state is

unstable if |δŵ| is above a certain threshold.

We note that the same concavity criterion was shown to imply sideband instabil-

ity for spatially periodic solutions to some hyperbolic/parabolic equation on an in-

finitely extended strip in [BM96, Mie07]. Using a localization argument for the stray-

field energy – similar to (5.31) in Section 5.2 – it was shown in [Sei08] that the con-

cavity implies modulation instability of periodic minimizers to the one-dimensional

version of (1.14), which describes a configuration of low-angle Néel walls. This is

related to the transition of the ripple structure to the so called blocked state ob-

served during field reversal in extended thin films of polycrystalline Permalloy, cf.

Section 1.9.

1.8.3. Bloch wave theory: Instability with increasing field

As indicated above, for ĥext ≫ 1, not only the optimal period but also the coars-

ening can be explained on the basis of domain theory which relies on the optimal

energy per period minm̂0
2
Êdomain(m̂

0
2, ĥext, ŵ). More precisely we find that for peri-

ods much smaller then the optimal period, i.e., ŵ ≪ ŵa(ĥext) ∼ ĥext ln ĥext, and for

1 ≪ ĥext ln ĥext:

min
m̂0

2

Êdomain(m̂
0
2, ŵ) ∼ −ĥ2extŵ

2 ln(ĥextŵ
2),

see d) in Section 2.2. The optimal energy per period is thus indeed concave in the

period ŵ (if ŵ is much smaller than the optimal period), implying the instability un-

der long wave-length modulations. Although domain theory suggests such a type

of perturbation, domain theory itself is too rigid to allow for such a type of pertur-

bation of the concertina pattern even in the class of generalized Ansatz functions as

depicted in Figure 1.14, for details see Section 2.3.

It is rather on the level of the reduced model that it can be seen that the concavity

translates into an instability (despite the potentially long-range interactions coming

from the stray-field). Indeed, a Bloch wave analysis, cf. [RS78, Mar00], of the reduced

model shows that the concavity is in a one-to-one correspondence with a long wave-

length modulation of the pattern: One can show that there are eigenfunctions of the
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Hessian of the form

δm̂2 = e−ix̂1ξ δm̂
ξ
2, where ξ = 2π

Nŵ and N ∈ N,

with δm̂
ξ
2 ŵ-periodic with respect to x̂1, i.e.,

Hess Ê(m̂2)(e
−ix̂1ξδm̂

ξ
2) = λξe−ix̂1ξ δm̂

ξ
2. (1.21)

Here, Nŵ is the wave length of the modulation. An asymptotic expansion of (1.21)

for ξ = 2π
Nŵ ≪ 1 shows that the (first) eigenvalue λξ can be related to the second

derivative of the minimal energy per period Êopt = minm̂2
Ê, for details see Chapter

5. More precisely, we find that the eigenvalue has the following expansion:

λξ ≈ d2

dŵ2
Êopt(ĥext, ŵ) ξ2 for ξ ≪ 1.

This shows that the concavity of Êopt(ĥext, ŵ) with respect to ŵ implies that the con-

certina pattern of a given period ŵ becomes unstable as the field increases. Domain

theory predicts that the marginally stable ŵs, i.e., ŵs such that d2

dŵ2 Êopt(ĥext, ŵs) = 0,

scales as ŵs ∼ ĥext ln ĥext. Figure 1.18 shows the optimal and marginally stable

period computed on the basis of the reduced energy functional.

6  6.5 7  

5

6
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9

ĥext

ŵ

 

 

ŵa(ĥext)

ŵs(ĥext)

ŵ∗

ĥ∗
ext

Figure 1.18.: Numerical simulations: The optimal and marginal stable period of the con-

certina pattern as a function of the external field – both computed on the basis

of the reduced model (1.14). In the region below the red curve, the minimal

energy per period is concave and thus a concertina of that period is unstable un-

der modulation of the period. The dashed dark-green lines indicate the period

of the unstable mode and the critical field, respectively.

Figure 1.19 shows that the prediction of the optimal and marginal stable period

on the basis of domain theory match the numerical simulations on the basis of the

reduced model for ĥext ≫ 1.
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Figure 1.19.: Numerical simulations and domain theory: The optimal and marginal stable

period computed on the basis of the reduced model (1.14) (dashed) match the

predictions on the basis of domain theory in the regime ĥext ≫ 1. The dashed

dark-green lines indicate the period of the unstable mode and the critical field,

respectively.

1.8.4. Bifurcation analysis: Instability for small fields

The numerical computations, cf. Figure 1.18, show that the minimal energy per pe-

riod is concave not only for large external field as predicted by domain theory. In

fact, we extract from our numerical data that d2

dŵ2 Êopt(ĥext, ŵ = ŵ∗) is negative also

for small external fields up to the turning point, cf. Figure 1.18. This is consis-

tent with the numerical computation of the eigenvalue λξ based on the asymptotic

expansion of equation (1.21). Hence, the Bloch wave analysis implies that the ŵ∗-
periodic concertina pattern is unstable under long wave length modulations. This

qualitatively explains the trend in the experimental observation (see Section 1.3) of

the concertina period w∗
exp.

The concavity of the minimal energy can be confirmed with the help of an asymp-

totic bifurcation analysis close to the critical field. To see this, we extend our

Ansatz from Section 1.6 and take into account small deviations of the wave num-

ber k̂1 = k̂∗1 + δ̂k1, for details see Section 6.2. As we have seen in (1.19) in Section

1.6, the quartic coefficient in the energy expansion is (relatively to the second order

coefficient and the scale of the external field) small. Due to that almost degeneracy,

it is necessary to take into account the cubic order for the perturbation of m̂2 = 0,

i.e., we use the extended Ansatz

m̂2 ≈ Am̂∗
2 + A2m̂∗∗

2 + A3m̂∗∗∗
2 .

Optimizing both in m̂∗∗
2 and m̂∗∗∗

2 leads to an expansion of the energy density of the
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form

k̂1
2π Ê(Am̂

∗
2 + A2m̂∗∗

2 + A3m̂∗∗∗
2 ) ≈ 1

4(ĥ
∗
ext(k̂1)− ĥext)A

2 − c4(k̂1)A
4 + c6(k̂1)A

6,

where c4(k̂
∗
1) =

π
640

k̂∗1
2π , see (6.13). Under the assumption that the quartic coefficient

c4(k̂
∗
1) is small, the energy density to leading order can be approximated by

k̂1
2π Ê(Am̂

∗
2 + A2m̂∗∗

2 + A3m̂∗∗∗
2 ) ≈ 1

4

(
d2

dk21
ĥ∗ext(k̂1)|k1=k∗1

δ̂k1
2

2 + δ̂hext
)
A2

− (c4(k̂
∗
1) +

d
dk̂1

c4(k̂1)|k̂1=k̂∗1
δ̂k1)A

4 + c6(k̂
∗
1)A

6. (1.22)

First notice that it turns out that c6(k̂
∗
1) is positive, confirming the numerically ob-

served turning point of the ŵ∗-periodic branch. Moreover, the asymptotic expansion

displays the afore mentioned asymmetric behavior in δ̂k1; the energy decreases for

δ̂k1 < 0. Based on the expansion (1.22), one can characterize the optimal wave num-

ber/period and the marginally Eckhaus stable wave number/period. We note that

the concavity of the minimal energy per period is equivalent to the concavity of the

energy density as a function of the wave number k̂1. More precisely we have that

d2

dŵ2 Ê(ŵ) =
k̂31

(2π)2
d2

dk̂21

(
k̂1Ê
(
2π
k̂1

))
.

The result is displayed in Figure 1.20. We read off that the ŵ∗-periodic concertina

pattern is indeed unstable at the critical field. A comparison between Figure 1.18 and

Figure 1.20 shows that our asymptotic expansion does not match the optimal and

marginal stable period computed on the basis of the reduced model very well (notice

the scale of the external field). This deviation is related to our assumption that the

quartic coefficient is negligible. In fact, Figure 1.21 shows that the asymptotics match

the reduced model if we add a quartic contribution Q̂
4

∫
m4

2 to the reduced energy

for which the value of the parameter Q̂ is chosen in the way that the coefficient

c4(k̂
∗
1) in (1.22) is (almost) canceled (Q̂ ≈ 0.03). In Section 1.10 we will see that

such an additional quartic contribution has a physical meaning related to a uniaxial

anisotropy. It turns out that the parameter Q̂ is an appropriate rescaling of the

quality factor Q, close to the bifurcation.

1.8.5. Wave-length modulation in the experiments

In the experiments, the wave length of the modulation is restricted not only by the

finiteness of the sample but even more strongly by the inhomogeneities and defects

of the material, in particular those at the long edges of the boundaries. This is related

to the fact that walls usually occur at the same pinning sites when the experiment is

rerun. The existence of pinning sites hence leads to a smaller effective modulation

wave length which is just a small multiple of the wave length of the pattern. In fact,

it is observed that as a consequence of the collapse of a fold only the width of the

neighboring folds is adjusted. In particular, pinning sites have a stabilizing effect

and prevent coarsening.

24



1.8. Coarsening of the concertina pattern

6  6.5 7  
4.5

5

5.5

6

6.5

7
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ĥ∗
ext

ŵ∗

Figure 1.20.: Bifurcation analysis: The optimal and marginal stable period as a function of

the external field computed on the basis on the extended bifurcation analysis.

We read off that states of period ŵ∗ + 0.212 are Eckhaus unstable for all values

of the external field. The dashed dark-green lines indicate the period of the

unstable mode and the critical field, respectively.
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Figure 1.21.: Numerical simulations and bifurcation analysis: The prediction on the basis of

the reduced model (1.14) (dashed) matches the prediction on the basis of the

extended bifurcation analysis for a near-degenerate value of Q̂ = 0.0295 close

to Q̂∗ ≈ 0.03, cf. Section 1.10. The dashed dark-green lines indicate the period

of the unstable mode and the critical field, respectively.
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1.8.6. Numerical bifurcation analysis: Type of secondary instability and

downhill path in energy-landscape

With the help of a bifurcation detection algorithm, we are able to compute at which

field the pattern becomes unstable under Nŵ∗-periodic perturbations while we fol-

low the primary branch. For details of the numerical schemes applied, see Section

4.4 and Section 4.5. Figure 1.22 shows how the secondary critical field decreases as

N increases. As expected (cf. Subsection 1.8.4 and Figure 1.18),the first instability

approaches the turning point as N increases – it is reached for finite N.
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Figure 1.22.: Numerical simulations: The appearance of the secondary instability under

Nŵ∗-periodic perturbations as a function of N. The critical field for N = 8

is given by 5.602.

In the following, we want to study in which way the concertina pattern becomes un-

stable. We first present the outcome of the computation of the secondary bifurcation

branches. We note hat due to the symmetries of the pattern, the bifurcations are not

simple in the sense that more than one branch bifurcates. The symmetries of the

Nŵ-periodic concertina pattern can be identified as linear representations of the di-

hedral group D2N, where N denotes the number of folds. The secondary bifurcation

branches are computed with the help of a numerical branch switching algorithm

which is adapted to the problem of multiple bifurcations. Generically, there are

two distinct types of branches: Branches along which rotational symmetry is broken

and reflectional symmetry is conserved and branches along which rotational sym-

metry is conserved and reflectional symmetry is broken. In case of the first type of

branches, a fold collapses as two neighboring faces disappear, cf. Figure 1.24. In case

of the second type of branches, the number of folds decreases as one face disappears

and the two adjacent faces merge, cf. Figure 1.25. During the coarsening process, the

width of the remaining folds is adjusted in both cases. In correspondence to the ex-

perimental observations, the actual coarsening process is rather local in the sense

that neighboring folds or faces collapse or merge, respectively.
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1.8. Coarsening of the concertina pattern

Due to the choice of an artificial and finite computational domain one might doubt

the relevance of the numerical simulations. However, as mentioned before, the wave-

length of the modulation in the experiments is effectively reduced by the defects and

inhomogeneities in the samples.
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Figure 1.23.: Numerical simulations: Bifurcation diagram for 4ŵ∗ perturbations: The bifurca-
tion branches that connect the ŵ∗-periodic (blue) and the 4

3 ŵ
∗-periodic branch

(orange). The magnetization patterns at the indicated fields are shown in Fig-

ure 1.24 and Figure 1.25. The bifurcation points of the secondary branches

coincide. In between, the branches slightly differ.

1.8.7. Domain theory: Instability for decreasing field

Let us consider a concertina after several coarsening events. The experiments show

that the concertina period decreases as the strength of the destabilizing field de-

creases, cf. Figure 1.29. This also has a simple explanation on the level of domain

theory, for details see e) in Subsection 2.2. As the decreasing external field ĥext drops

below its optimal scaling for a given period ŵ, that is, for ŵ ≫ ĥext ln ĥext, the opti-

mal concertina pattern degenerates in the sense that the triangular closure domains

invade the whole sample cross section. We expect that at this stage the concertina

refines its period towards the optimal period. The numerical backward cycle in

Figure 1.26, in which we start at the multiply coarsened state and then after min-

imization repeatedly decrease the external field by a fixed increment, reveals that

the coarsened pattern is stable up to the first turning point at which it degenerates.

Depending on the initial level of coarsening, the period is then either refined or we

reach the uniformly magnetized state after the minimization.

Let us introduce the maximal period ŵm at the field ĥext as the period for which

the corresponding ŵm(ĥext)-periodic pattern degenerates. Figure 1.27 shows that

the prediction of domain theory matches the result of the simulation of the reduced

model.
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Figure 1.24.: Numerical simulations: Reflectional symmetric magnetization pattern on the

unstable bifurcation branch connecting the ŵ∗-periodic and the 4
3 ŵ

∗-periodic
branch. The central fold collapses. The pattern is invariant under odd reflection

at the center line m̂2(x̂1, x̂2) −m̂2(2ŵ− x̂1, x̂2).

Figure 1.25.: Numerical simulations: Rotational symmetric magnetization pattern on the

unstable bifurcation branch connecting the ŵ∗-periodic and the 4
3 ŵ

∗-periodic
branch. A white face disappears and two adjacent black faces merge. The

pattern is invariant under rotation around the midpoint of the white face

m̂2(x̂1, x̂2) m̂2(
3
2 ŵ− x̂1, 1− x̂2).

28



1.8. Coarsening of the concertina pattern

5 6 7 8 9 10 11 12
0

5

10

15

20
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Figure 1.26.: Numerical simulations: The coarsened concertina pattern computed on the

basis of the reduced model (1.14) up to the turning point. The numerical simu-

lations confirm the prediction based on domain theory, namely that the pattern

degenerates at the turning point of the branch.
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Figure 1.27.: Numerical simulations: The marginal stable ŵs, optimal ŵa and maximal pe-

riod ŵm of the concertina pattern as a function of the external field ĥext. The

field ĥext(ŵs) is the field at which the ŵs-periodic branch exhibits its turning

point or degenerates, respectively. The dashed lines display the results of the

numerical simulation of the reduced energy, the solid lines display the results of

the minimization of the domain theoretic energy. The dashed dark-green lines

indicate the period of the unstable mode and the critical field, respectively.
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1.8.8. Conclusion: Hysteresis and Scattering of Data

Summing up, domain theory in conjunction with a Bloch wave argument indicates,

that the concertina pattern of period ŵ is present or stable at a given field ĥext if and

only if ŵ ∼ ĥext ln ĥext. This is confirmed by the numerical simulations. In particular

we expect that the height of the triangular domains (∼ ŵ
m̂0

2
) is close to constant

as the external field increases. If the period deviates by a (large) factor from that

expression, it becomes unstable. On the other hand, this analysis also suggest that

there is a range of ŵ ∼ ĥext ln ĥext for which the concertina pattern is stable. This

may explain some of the scatter in the experimental data and the pattern’s hysteresis,

see Figure 1.28.
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Figure 1.28.: Numerical simulations: The hysteresis loop obtained from the incremental

minimization (iteration of ĥext  ĥext + δĥext and successive minimization on

the 4ŵ∗-periodic domain) of the reduced energy including a small symmetry-

breaking white-noise perturbation of the external field. As the external field

increases, we follow the green path: The concertina pattern coarsens if the pe-

riod is much smaller than the stable period. As the field decreases, we follow

the yellow path: Starting from a multiply coarsened state, the pattern degener-

ates as we reach the turning point of the branch. The pattern refines towards

the optimal period until it finally disappears. Red and blue parts indicate insta-

bility and stability under 4ŵ∗-periodic perturbations.
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Figure 1.29.: Experiment: The hysteresis cycles of a Permalloy sample of 30 nm thickness and 50µm width. First row: increasing

destabilizing field from left to right. Bottom row: decreasing destabilizing field from right to left. The configurations of the

same column are observed at the same value of the external field.
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1.9. Polycrystalline anisotropy

The experiments usually do not show a clear-cut critical field with a first order

transition, cf. Figure 1.30. This can be due to lack of experimental resolution or due

to the presence of the ripple-like structure that smoothes out the transition. The

ripple is the typical oscillation of the magnetization on a small scale and of small

amplitude in an extended thin-film. This oscillation is perpendicular to the mean

magnetization of the sample. The ripple is triggered by an effective random field

on a small scale which originates in the heterogeneity of the material. We will focus

on the effect of the polycrystallinity of Permalloy, which is the random orientation

of grains possessing a uniaxial (crystal) anisotropy. In the literature other sources

of the random field are discussed, for example local mechanical stresses due to

magnetostriction.

As we will see in detail in Chapter 7, the ripple itself and the transition to the

concertina can be understood based on an extension of the reduced model; the linear

ripple theory developed in [Hof68, Har68] can be incorporated into our theory of

the concertina. This explains the smoothing-out of the first order phase transition

encountered in Section 1.6.

We learn from the analysis that, as the strength hext of the external field increases

from moderate negative values towards the critical field the average wave length

of the ripple continuously increases from the values characteristic for an extended

film to the wave length of the unstable mode that is at the origin of the concertina

pattern with its low-angle symmetric Néel walls. This suggests that the reduced

model also provides the appropriate framework to analyze the nonlinear corrections

to the linear ripple theory and thus captures the transition from the ripple to the so

called blocked state – consisting of an array of Néel walls – in an extended film, see

[Fel61].

In Section 7.2 we also contrast the effect of thermal fluctuations to the effect of

quenched disorder – due to for example polycrystalline anisotropy. The first one

leads to a random torque in the Landau-Lifshitz-Gilbert equation that is white noise

in space and time whereas the latter one only leads to a white-noise in space. Based

on an analysis of the stationary Gibbs measure we will see that the space-time white-

noise causes a divergence of the expected average amplitude of the magnetization

and an excitation in the small wave numbers, cf. [BG05]. This divergence is related

to phase transitions in the Heisenberg spin model. In thin films, the dominant

wavelength excited by a spatially random field is determined by both exchange and

stray-field energy and can be seen to be much larger than the atomistic length scale,

i.e., the exchange length d, and the grain size.

In Subsection 7.1.2, we address the numerical simulation of the spatially random

field. Figure 1.30 compares the numerical simulations of the reduced energy func-

tional including the random anisotropy with the experimental observations in a

polycrystalline Permalloy sample.
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Figure 1.30.: Experiment and numerical simulations: The coarsening of the concertina pattern in a Permalloy sample (top row) of 30 nm

thickness and 70µm width compared to the numerical simulations (bottom row). A ripple-like structure grows into the

concertina pattern. Within the numerical simulations we iteratively increment the external field and minimize the energy,

see Section 4.7. The computational domain is of period 6ŵ∗. The numerical images are scaled according to (1.11). The

images hence display approximately 1.8 times the unit cell; the numerical images therefore appear to be more uniform than

the experimental concertina. Details on the numerical simulation of the random anisotropy are discussed in Subsection

7.1.2.
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1. Introduction

1.10. Uniaxial anisotropy

Due to its experimental relevance, we now address the effect of a uniaxial anisotropy

that is constant throughout the sample, on the formation and evolution of the con-

certina pattern. We focus on two cases: The easy axis coincides with the x2-axis –

transversal anisotropy, i.e., e = (0, 1, 0) in (1.1) – or the easy axis coincides with

the x1-axis – longitudinal anisotropy, i.e., e = (1, 0, 0) in (1.1). Clearly, such type of

anisotropy has no effect on the stationarity of m∗ = (1, 0, 0). On the level of the re-

duced model both cases are represented up to an additive constant by the additional

quadratic term

−Q t
∫

Ω′
m2

2 dx1 dx2, (1.23)

with a signed quality factor Q. Transversal anisotropy corresponds to Q > 0, longi-

tudinal anisotropy corresponds to Q < 0.

As will become clear below when considering the effects of anisotropy, it is appro-

priate to expand the Zeeman term to quartic order, i.e.,

−hext t
∫

Ω′
(m2

2 +
1
4m

4
2 )dx1 dx2.

The following Gedankenexperiment is helpful in understanding the sequel: In ex-

tended thin films, i.e., infinite width ℓ = ∞, there is no incentive for a spatially

varying magnetization so that we may consider a constant magnetization m2. The

only energy contributions are due to the external field and the anisotropy so that

the energy per volume is thus given by −Qm2
2 − hext(m2

2 +
1
4m

4
2). In this context, the

critical field is given by h∗ext = −Q. For longitudinal anisotropy, the bifurcation is

subcritical, whereas for transversal anisotropy, the bifurcation is supercritical and

yields

m2 = ±(2(1+Q−1hext))
1/2. (1.24)

Hence for finite ℓ, there are two competing mechanisms which lead to a bifurcation

and a selection of an amplitude for m2: uniaxial anisotropy and stray-field energy.

As we will see in the sequel, there are essentially three different effects of anisotropy:

a linear one, a weakly nonlinear one, and a strongly nonlinear one. We list and char-

acterize these effects below. However, the order at which these effects arise with in-

creasing anisotropy does not agree with their ordering with increasing nonlinearity,

cf. Figure 1.31: The linear effect becomes pronounced for |Q| ≫ d2/3ℓ−4/3t2/3, the

strongly nonlinear one for |Q| ≫ ℓ−1t, and the weakly nonlinear one only for |Q| ≫
d−2/3ℓ−2/3t4/3. Note that we have that d−2/3ℓ4/3t−2/3 ≪ ℓ−1t ≪ d−2/3ℓ−2/3t4/3 pro-

vided d2ℓ−1 ≪ t, which is the lower bound on the film thickness which characterizes

Regime III.

We mainly focus on the case of transversal anisotropy Q > 0. In case of longitu-

dinal anisotropy Q < 0 we give an explanation for the experimental fact that the
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1.10. Uniaxial anisotropy

d2/3ℓ−4/3t2/3

Linear effect

ℓ−1t

Strongly nonlinear effect

d−2/3ℓ−2/3t4/3

Weakly nonlinear effect

|Q|

Figure 1.31.: The order of the different effects of anisotropy.

concertina cannot be observed at all. The forthcoming discussion is based on the

unrescaled version of the reduced model, (1.10) augmented by (1.23).

Linear effect for weak anisotropy |Q| ≫ d2/3ℓ−4/3t2/3. An obvious effect of

anisotropy is a shift of the critical field h∗ext by the amount −Q; we call it the lin-

ear effect of anisotropy since it arises on the level of the linearization at m2 ≡ 0. In

view of the scaling of the critical field h∗ext at Q = 0, i.e., (1.12), we infer that the

critical field behaves as

h∗ext ≈ −Q for |Q| ≫ d2/3ℓ−4/3t2/3. (1.25)

We note that a transversal anisotropy decreases the distance between the two critical

fields ±hext of ±m∗; in particular, the the sign of the critical field changes provided

Q ∼ d−2/3ℓ4/3t−2/3 and thus the order between the two critical fields switches. Like-

wise, for longitudinal anisotropy the distance decreases. Although a clear-cut critical

field cannot be observed in the experiments – due to the polycrystalline structure

which triggers the ripple and since the value of the effective external field at the

observed sample section is not available – the linear effect has been qualitatively con-

firmed: For Permalloy samples of high transversal anisotropy we observed that the

oscillatory instability occurs before the external field is reversed. For wide films the

relative strength of anisotropy increases, see (1.25), and the oscillation is observed

even earlier in the experiments. For low-anisotropic Permalloy the oscillation is first

observed close to zero external field.

Weakly nonlinear effect for strong anisotropy |Q| ≫ t(w∗)−1 ∼ d−2/3ℓ−2/3t4/3.

For sufficiently strong anisotropy Q the quartic term coming from the stray-field en-

ergy no longer dominates the quartic term coming from the Zeeman energy near the

bifurcation. We call this effect the weakly nonlinear effect of anisotropy, since it can be

analyzed on the level of an expansion near m2 ≡ 0 and hext = h∗ext, cf. (1.19). We addi-

tionally have to take into account the quartic Zeeman term − hext
4 tA4

∫
(m∗

2)
4 dx1 dx2.

The shift of the critical field suggests the following rescaling for the external field

ĥext = d−2/3ℓ4/3t−2/3(hext +Q).

Note that for |Q| ≫ d−2/3ℓ−2/3t4/3 ≫ d−2/3ℓ4/3t−2/3 the critical field is of order

h∗ext ≈ −Q. Therefore we set

Q̂ = − 1
4d

2/3ℓ2/3t−4/3hext.
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1. Introduction

We obtain – with the same rescaling of energy, length and magnetization as in (1.11)

and (1.13) – the reduced energy functional augmented by +Q̂
∫

Ω̂′ m̂
4
2 dx̂1 dx̂2. There-

fore the reduced energy close to the bifurcation takes the form of

Ê(Am̂∗
2 + A2m̂∗∗

2 ) ≈ −(π
2 )

1/3(ĥext − ĥ∗ext) A
2 + ( 9

64 Q̂− π
640)A

4,

cf. (1.19). For |Q| ≫ d−2/3ℓ−2/3t4/3 ≫ d−2/3ℓ4/3t−2/3, the critical field is of order

h∗ext ≈ −Q, so that the reduced quality factor scales as Q̂ ≈ 1
4d

2/3ℓ2/3t−4/3 Q. From

the latter we read off that in the regime Q ≫ t(w∗)−1 ∼ d−2/3ℓ−2/3t4/3 the quartic

coefficient becomes positive and therefore the bifurcation becomes supercritical, cf.

Figure 1.32. Essentially it is a perturbation of the constant-magnetization bifurcation

in infinitely extended films mentioned above. In particular, the selected amplitude

in this case scales as m2 ∼ A ∼ (1+ hextQ
−1)1/2.

5.45 5.5 5.55 5.6 5.65 5.7 5.75
0

1

2

hext+ Q
d2/3ℓ−4/3 t2/3

〈m̂
2 2
〉1

/
2

 

 

Q
d−2/3ℓ−2/3t4/3

= 0.3
Q

d−2/3ℓ−2/3t4/3
= 0.03

Q
d−2/3ℓ−2/3t4/3

= 0.0

Figure 1.32.: Numerical simulations: Transition from sub- to supercritical bifurcation as

strength of transversal anisotropy increases. For Q̂ = 0.03 ≈ Q̂∗ the bifurca-

tion degenerates.

On the other hand, for large longitudinal anisotropy, i.e., −Q ≫ d−2/3ℓ−2/3t4/3, we

expect that there is no turning point on the bifurcating branch so that it remains un-

stable to the effect that no concertina pattern forms in the first place. The numerical

simulations in Figure 1.33 show a second turning point which coincides with the

break-up of the concertina pattern. For very large longitudinal anisotropy the first

turning point is destroyed.

This observation can be confirmed on the level of domain theory within the original

scaling, cf. (1.11), where we include anisotropy and the quartic term in the Zeeman

energy:

Edomain(m
0
2,w) = 2

(
ℓ− w

m0
2

)
e(m0

2) + 4 w
m0

2
e
(
m0

2
2

)

− (hext + Q)(m0
2)

2t
(
wℓ− w2

m0
2

)
− hext

1
4(m

0
2)

4t
(
wℓ− w2

m0
2

)
. (1.26)
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Figure 1.33.: Numerical simulations: Loss of the turning point as strength of longitudinal

anisotropy increases

We note that the line-energy density e(m0
2) scales as π

8 t
2(m0

2)
4 up to a logarithm.

Hence, the stray-field energy cannot compensate the destabilizing quartic Zeeman

contribution provided hext t w ≫ t2 (up to a logarithm). Since h∗ext ∼ −Q and

w ∼ d2/3ℓ2/3t−1/3 close to the bifurcation there are no (local) minimizers of the

energy.

Typical values for our Permalloy samples of strong uniaxial anisotropy range from

Q̂ = |Q|
4d−2/3ℓ−2/3t4/3

≈ 2.1× 10−4 to 0.023 depending on the sample’s width and thick-

ness (Q = 5× 10−4, t = 10 nm to 150 nm, ℓ = 10µm to 50µm, see Chapter 1.12).

Typical values for CoFeB range from Q̂ = 7.8 × ×10−4 to 0.011 (Q ≈ 1.5 × 10−3,

t = 30 nm-100 nm, ℓ = 10µm-50µm, see Chapter 1.12). The uniaxial anisotropy

is thus too small to cause the weakly non-linear effect. Although local minimizers

of the energy though might exist in case of longitudinal anisotropy, still the energy

augmented by the quartic Zeeman energy is not coercive as soon as the external

field is reversed.

Strongly nonlinear effects for moderate anisotropy |Q| ≫ ℓ−1t. In that case we

find two different scenarios, which are investigated in detail in Section 2.5 on the

level of domain theory augmented by the quartic Zeeman energy, i.e., (1.26).

• Scenario I: If the amplitude and shape of the concertina pattern would not be

affected by anisotropy, like in an infinitely extended film, its optimal amplitude

would scale as

m2 ∼ ℓt−1(hext − h∗ext)
(1.25)≈ ℓt−1(hext +Q) = ℓt−1Q(1+Q−1hext), (1.27)

up to a logarithm, as we have seen in Section 1.8.1.
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• Scenario II: If the amplitude of the concertina pattern would be dominated by

transversal anisotropy, it would behave as

m2
(1.24)∼ (1+Q−1hext)

1/2 for 0 < (1+Q−1hext) ≪ 1, (1.28)

as we have seen at the beginning of this Section in (1.24). Hence, we expect that for

Q ≫ ℓ−1t the amplitude of the concertina pattern is limited by stray-field effects as

long as 0 < 1+Q−1hext ≪ (Q−1ℓ−1t)2 and by anisotropy effects once (Q−1ℓ−1t)2 ≪
1 + Q−1hext ≪ 1. Loosely speaking, the effect of anisotropy kicks in for a large

amplitude and is most prominent close to field strength where the concertina pattern

vanishes. We call this the strongly nonlinear effect of anisotropy. Also this provides a

reason to expand the Zeeman term to higher order.

We note that the optimal period in Scenario II is determined by the lower order

wall energy. A minimization of the energy per length yields the following scaling

behavior of the optimal period (up to a logarithm)

wa ∼ (ℓt)1/2Q−1/2(1+Q−1hext)
1/4,

cf. Section 2.5 b). As we know from Section 1.8, the experimentally more relevant

quantity is the marginally stable period, i.e., the largest period – as a function of the

external field – for which the minimal energy is convex. At the cross-over we expect

that the marginal stable period is of the order ∼ tQ−1, cf. Figure 2.6. In fact, due

to (Q−1ℓ−1t)2 ∼ 1+ Q−1hext at the cross-over, we have that ℓ2t−1Q(1+ Q−1hext) ∼
(tℓ)1/2Q−1/2(1+ Q−1hext)1/4 entails that the period is of the order w ∼ tQ−1. We

will see that for a period of that order, the minimal energy in scenario II turns out

to be convex, see c) in Section 2.5. Hence we expect that the coarsening stops once

(Q−1ℓ−1t)2 ≪ 1+Q−1hext ≪ 1. Still the transversal component of the magnetization

increases as m2 ∼ (1+Q−1hext)1/2 so that the size and height of the closure domains

decrease. As hext approaches zero, the energy 1.26 looses coercivity, so that the low-

angle approximation is not valid anymore since the amplitude m0
2 diverges. At

this stage the pattern is suspected to collapse so that the magnetization in the end

switches completely.

Let us mention another observation supporting the conjecture that anisotropy effects

are most prominent close to the field strength where the concertina collapses: For

Q ≫ ℓ−1t, the ground state for vanishing external field hext = 0 is no longer given

by the uniform magnetization m = (±1, 0, 0), but a Landau or concertina-type pat-

tern, see Figure 1.35, has lower energy. The period w of the two latter patterns is

determined by a balance of the wall energy and the anisotropy energy in the clo-

sure domains and scales as w ∼ Q−1/2ℓ1/2t1/2 up to a logarithm. Hence we expect

that in this regime, the concertina does not switch to m = (−1, 0, 0), but evolves to
the pattern in Figure 1.35. In fact, that type of evolution of the concertina pattern

can be observed in the CoFeB samples which possess a relatively strong transversal

anisotropy, cf. Figure 1.37.
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1.11. Discretization and numerical simulations

Figure 1.34.: Experiment: Permalloy samples of width 60µm to 150µm of high anisotropy

and the end of the coarsening process. The 6 samples on the right are of thick-

ness 30 nm, the 6 samples on the right are of thickness 50 nm. The period of

the pattern appears to be independent of the width of the samples.

} w√
2}

w

Figure 1.35.: Continuous transition from the concertina pattern via the Landau state to the

reverse concertina.

1.11. Discretization and numerical simulations

The numerical simulations are based on a finite difference discretization of the re-

duced rescaled energy functional (1.14). The transversal component m̂2 is approxi-

mated on a uniform Cartesian grid. The discretization of the exchange, anisotropy

and Zeeman energy is straight-forward. In case of the non-linear charge density

σ̂ = −∂̂1
m̂2

2
2 + ∂̂2m̂2, our choice of a finite difference stencil is motivated by the in-

heritance of the shear-invariance of σ̂, see 4.1. The stray-field energy can efficiently

be computed using Fast Fourier Transform with respect to x̂1. For a detailed in-

troduction of the discretization scheme, see [Ste06, Subsection 3.2]. Note that the

computation of the energy and related quantities such as the gradient or the Hes-

sian can be parallelized – the non-locality is only with respect to one dimension –

for which we decompose the computational domain into horizontal slices, i.e., with

respect to x̂2.
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We apply numerical simulations to compute minimizers and stationary points. The

naive approach, using steepest descent algorithms for the computation of minimiz-

ers ,is slow and even fails close to bifurcations points. The iterative path-following

techniques that we apply in order to compute an approximation to a branch of sta-

tionary points are adapted to such situations, cf. [Geo01].

A bifurcation point can be detected with the help of an appropriate indicator func-

tion. However, both the bifurcation detection and the branch-switching technique

which are described in [Geo01] are applicable for simple bifurcations points only.

As described in detail in Chapter 4, we extend these methods to cope with multi-

ple bifurcation points. The extension relies on the fact that multiple bifurcations,

which occur due to symmetries of the primary solution, generically can be reduced

to simple bifurcation points, cf. [GS02].

1.12. Experimental setup and samples

Figure 1.36.: Photograph of a complete specimen. The numbers on the substrate next to the

stripes denote the width (in µm). By courtesy of H. Wieczoreck.

Figure 1.36 displays one of the samples which were investigated at the IfW Dresden

by J. McCord, R. Schäfer, and H. Wieczoreck. The samples were manufactured in

cooperation with R. Mattheis at IPHT Jena. In the experiments we investigated

magnetic films of nano-crystalline Permalloy, Ni81Fe19, and amorphous Co60Fe20B20

of various thicknesses and varying induced magnetic anisotropy values. The films

were deposited by magnetron sputtering under ultra high vacuum conditions. In

order to control the grain growth of the polycrystalline films a Ta (Tantalum) seed

(5 nm) layer was used for the Ni81Fe19 deposition. In all cases, a magnetic in-plane

saturation field was applied during film deposition to control the induced anisotropy

strength and direction. By varying the magnetic field history, films with different

effective induced anisotropy values were obtained.

• In a first set of samples the uniaxial anisotropy was induced by a deposition

in the presence of a homogeneous, static magnetic field. This results in a
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maximum and also well-aligned induced magnetic anisotropy. A series of

Permalloy and CoFeB samples was obtained by this method.

• In a second set of Permalloy samples the induced anisotropy was strongly re-

duced. In order to ensure this, the films were deposited in a magnetic field

with alternating orthogonal alignment. The field direction was changed ap-

proximately after every 5 nm of film growth. The superposition of orthogo-

nally aligned magnetic anisotropy axis results in a strongly reduced induced

anisotropy.

The material parameters, relevant for the comparison of the experimental observa-

tions to theoretical predictions, are the following:

• Exchange length d: Permalloy 5 nm, CoFeB 3 nm.

• For both materials the saturation polarization is Js ≈ 1 T and the stray-field

energy density is given by Kd ≈ 4× 105 J/m3.

• The uniaxial anisotropy coefficient is K
Permalloy
u ≈ 200 J/m3 for the high aniso-

tropic Permalloy and KCoFeB
u ≈ 600 J/m3 for CoFeB, respectively. For the low

anisotropic Permalloy films we obtain K
Permalloy
u ≈ 50 J/m3.

• Quality factor Q = Ku/Kd: High anisotropy Permalloy Q ≈ 0.5× 10−3 and

CoFeB Q ≈ 1.5× 10−3.

• The average size of the individual grains of Permalloy is ℓgrain ≈ 12 to 15 nm.

It is assumed that up to a film thickness of about 30 nm the grains display a

column-like shape.

• The film thicknesses range from 10 to 150 nm, the investigated film widths

from 10 to 100µm.

After film deposition, elongated stripes of various widths and a length of 2000µm

were patterned by photolithography and subsequent ion beam etching. The stripes

are aligned parallel and orthogonal to the induced anisotropy axis, see Figure 1.36.

The observation of domains and magnetization processes was carried out in a

digitally-enhanced Kerr microscope, see [HS98]. The longitudinal Kerr effect was

applied with its magneto-optical sensitivity axis transverse to the long edge of the

stripe. The dominant wavelength of the patterns was computed by Fast Fourier

transform. The result of the computation is in agreement with the average wave-

length determined by counting the folds as soon as the concertina becomes dis-

cernible to the eye as the magnetic field is decreased starting from saturation. The

typical strength of the magnetic fields which were applied for saturation is of the

order of some mT.
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Figure 1.37.: Experiment: Hysteresis of a CoFeB sample of 60 nm thickness and 30µm width. After several coarsening events we observe

a transition to a Landau state at zero external field which turns into a concertina that degenerates and refines, and finally

disappears.

4
2



2

Domain theory

In the numerical simulations of the reduced energy functional, we observe for large

external field ĥext ≫ 1 that the minimizers are approximately piecewise constant

on a mesoscopic scale, see Section 1.7 in the introductory chapter and Figure 1.12

therein. In this chapter, we make use of the scale-separation and heuristically derive

a sharp-interface model, namely domain theory, as a limit of the reduced energy for

ĥext ≫ 1. This model is partially justified in the subsequent Chapter 3, see Theorem

3.3 therein, which states that minimal energy configurations of the reduced model

(1.14) are close to weak solution of the Burgers equation.

2.1. Derivation of the energy

Motivated by the numerical simulations and as mentioned in the introduction, we

assume that admissible magnetizations within domain theory are given by weak

solutions to the Burgers equation

−∂̂1

(
m̂2

2
2

)
+ ∂̂2m̂2 = 0. (2.1)

In view of the boundary conditions, i.e., m̂2 = 0 for x̂2 ∈ {0, 1}, the method of

characteristics shows that non-trivial weak solutions of (2.1) cannot be continuous.

Typically, they will have line discontinuities, i.e., a one-dimensional jump set Ĵ, cf.

Figure 2.1. The energy which discriminates between these solutions is given by

an appropriate line-energy density ê integrated over the jump set Ĵ, augmented by

Zeeman energy. In its rescaled version, the energy is given by:

Êdomain(m̂2) =
∫

Ĵ
ê
(
[m̂2]
2

)
dH0 dx̂2 − ĥext

∫
m̂2

2 dx̂1 dx̂2,

where H0 denotes the zero-dimensional Hausdorff measure. Not surprisingly, the

specific line – or wall – energy ê is a function of the jump [m̂2] of m̂2 across Ĵ. In

case of the vertical walls, it can be derived by restricting (1.14) to one-dimensional

configurations with prescribed boundary data ±m̂0
2, minimizing

ÊNéel(m̂2) =
∫
(∂̂1m̂2)

2 dx̂1 +
1
8

∫
||∂̂1|1/2m̂2

2|2 dx̂1. (2.2)
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The optimal transition layers are low-angle Néel walls whose line-energy density is

given by

ê
(
[m̂2]
2

)
= ê(m̂0

2) = π
8 (m̂

0
2)

4 ln−1 ŵtail
ŵcore

, (2.3)

where ŵtail and ŵcore are the two characteristic length scales of the Néel wall, namely

the tail and core width, see [Mel03] and [DKMO05, Section 6]. For the scaling of

these two parameters in case of the concertina pattern, see below. Due to the shear

invariance of the reduced energy functional (1.14), i.e.,

x̂1 = sx̂2 + x̃1, x̂2 = x̃2, m̂2 = m̃2 − s for some s ∈ R, (2.4)

a diagonal wall of jump size [m̂2] = ±m̂0
2 can be transformed into a vertical wall

of equal jump size (with the choice of s = ± m̂0
2
2 ). This shows that the specific line-

energy density is in fact a function of the jump size.

We want to use an Ansatz which mimics the concertina pattern with its quadrangu-

lar and triangular domains and which is determined by just two parameters, namely

the period ŵ and the inclination m̂2 = ±m̂0
2 in the quadrangular domains (m̂2 = 0 in

the triangular domains), cf. Figure 2.1.

Jump set Ĵ

ν̂

−m̂0
2 m̂0

2m̂0
2

0

0 }
ŵ
m̂0

2}
1− ŵ

m̂0
2

}
ŵ

Figure 2.1.: Sketch of the Ansatz function.

Indeed, the angles in the pattern are fixed by the constraint that m̂2 is a weak solution

to Burgers’ equation: If ν̂ denotes the normal to the diagonal jump set, indicated in

Figure 2.1, then the jump of the normal component of the magnetization has to

vanish:

0 = [ν̂ · (− 1
2m̂

2
2, m̂2)] = ν̂ · (− 1

2(m̂
0
2)

2, m̂0
2).

This condition fixes the angles in the pattern. We note that it is always necessary to

impose m0
2 > ŵ to avoid a degenerated pattern – for m0

2 = ŵ the triangular domains

invade the whole cross-section.

We claim that with our Ansatz, the energy per length in x̂1 becomes a function

of only two parameters, namely m̂0
2 and ŵ. To see that, we first turn to the two
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2.2. Minimality and stability of domain theory for large fields

parameters ŵtail and ŵcore in (2.3). The tails of the Néel wall spread as much as

possible; in case of the concertina pattern, they are only limited by the neighboring

walls – thus ŵtail ∼ ŵ
4 . A more careful inspection of (2.2) shows that the core

width decreases with increasing jump size, more precisely ŵcore ∼ 1
(m̂0

2)
2 , see [Ste06].

Hence (2.3) turns into

ê(m̂0
2) = π

8 (m̂
0
2)

4 ln−1 c0
ŵ
4 (m̂

0
2)

2. (2.5)

In [Ste06], the constant c0 was determined by fitting the numerically computed min-

imal energy (on the basis of (2.2)) as a function of its boundary conditions to (2.5).

Notice that one period of the pattern in Figure 2.1 contains

• two vertical walls of height 1− ŵ
m̂0

2
and of jump size 2 m̂0

2, leading to an energy

contribution of 2 (1− ŵ
m̂0

2
) ê(m̂0

2),

• four diagonal walls of projected height ŵ
m̂0

2
and of jump size m̂0

2, leading to an

energy contribution of 4 ŵ
m̂0

2
e(

m̂0
2
2 ),

• two quadrangular domains of total area ŵ− ŵ2

m̂0
2
, leading to a Zeeman energy

of −ĥext(m̂0
2)

2 (ŵ− ŵ2

m̂0
2
).

Hence, the total energy per period is given by:

Êdomain(m̂
0
2, ŵ) = 2

(
1− ŵ

m̂0
2

)
ê(m̂0

2) + 4 ŵ
m̂0

2
ê
(
m̂0

2
2

)
− ĥext(m̂

0
2)

2
(
ŵ− ŵ2

m̂0
2

)
, (2.6)

under the constraint m̂0
2 ≥ ŵ. Figure 1.15 shows that domain theory provides a good

approximation of the reduced energy (1.14) for ĥext ≫ 1.

2.2. Minimality and stability of domain theory for large fields

Based on (2.6), we now derive certain properties of minimizing configurations whose

physical interpretation was discussed in Section 1.8. The following statements a)-d)

address the scaling behavior of the minimal energy per length, the optimal inclina-

tion of the magnetization, the optimal period of the pattern, and the minimal energy

for periods much smaller than the optimal period. The last item e) states that that

there is a smallest field for which a concertina of prescribed period exists. We note

that the coarsening of the concertina is related to statement d) while the refining of

the pattern is related to statement e).

For large external field ĥext ≫ 1 we have:
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2. Domain theory

a) The minimal energy per length in x̂1-direction scales as

min
{(m̂0

2,ŵ) | m̂0
2≥ŵ}

1

ŵ
Êdomain(m̂

0
2, ŵ) ∼ −ĥ3ext ln

2 ĥext.

b) The optimal inclination of the magnetization scales as

m̂0
2a
(ĥext) ∼ ĥext ln ĥext.

c) The optimal period scales as

ŵa(ĥext) ∼ ĥext ln ĥext.

d) For m̂0
2 ≫ ŵ, the minimal energy per period scales as

min
{(m̂0

2) | m̂0
2≫ŵ}

Êdomain(m̂
0
2, ŵ) ∼ −ĥ2extŵ

2 ln(w2hext).

e) For fixed ŵ there exist no non-trivial minimizers m̂0
2 ≥ ŵ provided ĥext . ŵ ln−1 ŵ.

Argument for the scaling behavior of a)-e). Observe that due to the constraint

ŵ ≤ m̂0
2 we have that

1
ŵ Êdomain(m̂

0
2, ŵ) &

1
4

π
8 (m̂

0
2)

3 ln−1(m0
2)

3 − ĥext(m̂
0
2)

2 + ĥextŵ
2.

Hence we obtain for ŵ ≫ ĥext ln ĥext and m̂0
2 ≫ ĥext ln ĥext the expression

min
(ŵ,m̂0

2)

1
ŵ Êdomain(m̂

0
2, ŵ) & ĥ3ext ln

2 ĥext ≥ 0.

In order to prove a)-c), consider the following change of variables

ŵ = ĥext(ln ĥext) w̃,

m̂0
2 = ĥext(ln ĥext) m̃

0
2,

Êdomain = ĥ4ext(ln
3 ĥext) Ẽdomain, and ê = ĥ4ext(ln

3 ĥext) ẽ.

(2.7)

For m̃0
2, w̃ ∼ 1 and ĥext ≫ 1, we have that ln ŵ(m̂0

2)
2 ≈ 3 ln ĥext so that by (2.5)

1
w̃ ẽ(m̃0

2) ≈ 1
w̃

π
24(m̃

0
2)

4,

and

1
w̃ Ẽdomain(m̃

0
2, w̃) = 2

(
1− w̃

m̃0
2

)
1
w̃ ẽ(m̃

0
2) + 4 w̃

m̃0
2

1
w̃ ẽ
(
m̃0

2
2

)
− (m̃0

2)
2
(
1− w̃

m̃0
2

)
.

Hence, in the regime ĥext ≫ 1 this change of variables leads to the parameter-free

variational problem

1
w̃ Ẽdomain(m̃

0
2, w̃) ≈ π

24

(
2
(m̃0

2)
4

w̃ − 7
4(m̃

0
2)

3
)
−
(
(m̃0

2)
2 − w̃ m̃0

2

)
. (2.8)
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2.2. Minimality and stability of domain theory for large fields

Due to the constraint w̃ ≤ m̃0
2, we have

1
w̃ Ẽdomain(m̃

0
2, w̃) '

π
24

1
4(m̃

0
2)

3 − (m̃0
2)

2 + w̃2, (2.9)

so that that the energy is coercive. In particular

lim inf
|(m̃0

2,w̃)|→∞

1
w̃ Ẽdomain(m̃

0
2, w̃) = +∞.

On the other hand, 1
w̃ Ẽdomain assumes negative values for 0 < w̃ ≪ m̃0

2 . 1. There-

fore we have min 1
w̃ Ẽdomain ∼ −1. Finally we note that from (2.9) we have

lim inf
m̃0

2→0

1
w̃ Ẽdomain(m̃

0
2, w̃) ≥ 0 uniformly in w̃2,

and from

1
w̃ Ẽdomain(m̃

0
2, w̃) '

π
24

1
4
(m̃0

2)
4

w̃ − (m̃0
2)

2

we gather

lim inf
w̃→0

1
w̃ Ẽdomain(m̃

0
2, w̃) ≥ 0 for fixed (m̃0

2)
4 > 0.

Therefore, min 1
w̃ Ẽdomain is assumed for m̃0

2 ∼ 1 and w̃ ∼ 1.

Let us address d). For m̂0
2 ≫ ŵ we have that

Êdomain(m̂
0
2, ŵ) ≈ 2ê(m̂0

2)− ĥext(m̂
0
2)

2ŵ.

The rescaling

m̂0
2 = (ŵ ĥext ln(w

2hext))
1/2m̃0

2,

Êdomain = ĥ2extŵ
2 ln(w2hext)Ẽdomain,

leads to a parameter-free minimization problem

Ẽdomain(m̃
0
2) = 2ẽ(m̃0

2)− (m̃0
2)

2

in m̃0
2. Obviously Ẽdomain is coercive and assumes negative values for m̃0

2 ∼ 1. More-

over we have that limm̃0
2→0 Ẽdomain ≥ 0. Hence in the regime m̂0

2 ≫ ŵ the minimal

energy is achieved for

m̂0
2 ∼ (ŵ ĥext ln(w

2hext))
1/2,

in which case

min
m̂0

2≫ŵ
Êdomain(m̂

0
2, ŵ) ∼ −ĥ2extŵ

2 ln(w2hext).

Finally, e) can best be seen using the rescaling

ĥext = ŵ ln−1 ŵ h̃ext,

m̂0
2 = ŵ m̃0

2,

Êdomain = ŵ4 ln−1 ŵẼdomain.
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which leads to the minimization problem

Ẽdomain(m̃
0
2) ≈ π

24

(
2 (m̃0

2)
4 − 7

4(m̃
0
2)

3
)
− hext

(
(m̃0

2)
2 − m̃0

2

)
,

under the constraint m̃0
2 ≥ 1. For hext ≥ 0 there exists exactly one positive (local)

minimizer of the energy. The amplitude of the minimizer decreases as h̃ext decreases

from large positive values. An explicit minimization shows that at h̃ext =
11
96π the

minimal amplitude m̃0
2 drops below one.

2.3. Extensions of domain theory

The concertina in the experiments is far from being uniform and one occasionally

displays certain sub-structures. We therefore now discuss several possible general-

izations of the uniform concertina Ansatz within domain theory. In particular we

try to include modulations.

2.3.1. Tilted Ansatz

In the prior section we have seen that the minimal energy per period is concave for

periods much smaller than the optimal period, i.e., ŵ ≪ ĥext ln ĥext. We now show

that, although domain theory predicts a modulation instability, it is too rigid to allow

for such perturbations. Note that for any weak solution of the Burgers equation we

have conservation of the following quantity

I =
∫ 1

0
m̂2

2 dx̂2, more precisely d
dx1

I(x1) = 0. (2.10)

This can easily be seen by integrating the Burgers equation w.r.t. x̂2 and using the

zero boundary conditions at x̂2 ∈ {0, 1}.
We want to extend the set of uniform piecewise constant Ansatz functions to piece-

wise constant Ansatz functions with possibly different values of m̂1
2 and m̂2

2 in the

quadrangular domains of different width as depicted in Figure 2.2.

A particular consequence of (2.1) is that if we choose specific values m̂1
2 and m̂2

2 and

the width of the fold A2− A1, then all the angles and the two triple points A0 and A3

are fixed. Therefore we can either choose the amplitude or the width of the adjacent

facet for the continuation of the pattern due to the conservation of I.

2.3.2. Rigidity of domain theory

In this part we will see that a concertina of period ŵ− ε with its optimal amplitude

cannot be connected within the class of generalized Ansatz functions to a concertina

of period ŵ + ε with its optimal amplitude, cf. Figure 2.3. Thus domain theory is

too rigid to take into account modulations.

Let ŵ− ε be the period of the spatially uniform state on the left side and ŵ+ ε on

the right side in Figure 2.3. According to statement d) in Section 2.2 the minimal
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2.3. Extensions of domain theory

2|A2−A1|
m̂1

2+m̂2
2}}

m̂1
2|A2−A1|
m̂1

2+m̂2
2

−m̂1
2 m̂2

2

0

A0

A1 A2

A3

Figure 2.2.: Domain Theory: Generalized Ansatz function. Observe that m̂2
2 > m̂1

2 leads to

a tilt of the vertical wall towards the quadrangular domain with m̂2 = m̂1
2. The

slope of the diagonal walls is inversely proportional to the amplitude of the

neighboring quadrangular domain.

energy per period (and therefore the Zeeman energy per period ) scales up to a log-

arithm as −ĥext(ŵ− ε)2 and −ĥext(ŵ+ ε)2, respectively. The Zeeman energy density

thus scales as −hext I = −hext
∫
m̂2

2 dx̂2 = −ĥext(w− ε) and −hext I = −ĥext(ŵ+ ε),
respectively. This is in contradiction to the fact that I has to be conserved along x̂1.

?

}ŵ
2 − ε }ŵ

2 + ε

−m̂1
2 m̂2

2

Figure 2.3.: A modulation is not compatible with domain theory.

2.3.3. Refining

Based on domain theory, we can also study the backward hysteresis: After several

coarsening steps and before the concertina disappears, we decrease the strength of

the external field. As a consequence, the transversal component decreases. The

periodic concertina pattern degenerates as m̂0
2 approaches ŵ. Due to statement e) at

the beginning of Section 2.2 this happens at a field ĥext ∼ ŵ ln−1 ŵ.

Kite-like perturbation. In the experiments, one sometimes observes the formation

of a certain substructure before the concertina degenerates. In the following, we try

to include such type of configurations in the class of admissible Ansatz functions of

domain theory, cf. Figure 2.5.
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2. Domain theory

Figure 2.4.: Experiments: Kite-like substructure of the concertina which arises in the coars-

ened concertina as the external field is reduced (CoFeB sample of thickness

30 nm and width 30µm).

−m̂0
2 m̂0

2

−r

1

t

1

c

d

b

Figure 2.5.: Domain Theory: Kite-like perturbation. The slope of the diagonal wall indicated

by the dashed triangle.

The substructure has the form of a kite with values ±m̂1
2 in its two triangular facets.

For the stability analysis, we only have to determine the loss and gain in wall energy

since the Zeeman energy is invariant due to the conservation of I, see (2.10). Let

a = b+ c be the length of the vertical wall of the kite. Then all angles are fixed by

the jump condition if we prescribe the value of m̂2 = ±m̂1
2 in the two facets. We set

s = 1
2m̂

0
2, r = 1

2m̂
1
2, t = 1

2(m̂
0
2 − m̂1

2).

Let b be the length of the upper green component and c the length of the lower red

component of a, and d be the length of the x̂2-projection of the orange diagonal wall.

A straight-forward calculation shows that b = a rs , c = a ts and d = a rt
s2
.

Due to the shear invariance of the energy, the wall energy of a diagonal wall is given

by the energy of the symmetric wall of equal jump size multiplied by the length of

the x̂2-projection of the diagonal wall, cf. (2.4). The kite perturbation introduces
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2.4. Charged walls

• a vertical wall of length a = b+ c and jump size 2m̂1
2, leading to a contribution

aê(m̂1
2),

• two times the blue wall of (projected) length b and jump size m̂0
1 − m̂1

2, leading

to a contribution 2b ê(
m̂0

2−m̂1
2

2 ),

• two times the yellow wall of (projected) length c and jump size m̂1
2, leading to

a contribution 2c ê(
m̂1

2
2 ).

• The vertical wall decreases by the length of the green part b− d leading to a

contribution −(b− d) ê(m̂0
2).

• The diagonal wall decreases by the (projected) length of the orange part d

leading to a contribution −2dê(
m̂0

2
2 ).

Summing up, we obtain that the loss and gain in wall energy is given by

∆Êwall = aê(m̂1
2) + 2b ê(

m̂0
2−m̂1

2
2 ) + 2c ê(

m̂1
2
2 )− (b− d)ê(m̂0

2)− 2dê(
m̂0

2
2 )

= aê(m̂1
2) + 2a rs ê(

m̂0
2−m̂1

2
2 ) + 2a ts ê(

m̂1
2
2 )− a r

2

s2
ê(m̂0

2)− 2a rt
s2
ê(

m̂0
2
2 ).

Hence up to a logarithm we obtain to leading order

∆Êwall = aπ(2r4 + r
8s t

4 + t
8sr

4 − 2 r2

s2
s4 − rt

8s2
s4)

= aπr2(13r
2

8 + 3rs
4 − 19s2

8 )

≤ 0,

since r ≤ s. Note that this estimate is strict, i.e., ∆Êwall < 0 for r < s and ∆Êwall = 0

for r = s. A kite-like perturbation thus always decreases the energy. Since ∆Êwall is

linear in a the perturbation should be such that the kite hits the boundary x̂2 = 0.

An instability of that type of the coarsened concertina pattern as ĥext decreases could

not be observed in the numerical simulations. Up to the turning point, at which the

quadrangular folds (almost) degenerate, the concertina pattern is stable. This seems

contradictory in the first place but the finite width of the walls is related to energy

barriers which domain theory does not take into account. However, if we numer-

ically follow the branch beyond the turning point, a kite-like structure develops.

This structure grows into a concertina of one-third the period of the original pattern.

Although this transition is observed on the unstable part of the branch, it can be

suspected that such states are stabilized in the experiments due to inhomogeneities

and defects.

2.4. Charged walls

In the previous sections it was shown that the class of Ansatz functions within do-

main theory is quite rigid. Another extension of domain theory might be related to

the fact that the diagonal walls are not charge-free on a mesoscopic scale. However,

this question is beyond the scope of our work and will be addressed in the future.

51



2. Domain theory

2.5. Minimality and stability for moderate uniaxial anisotropy

In this section, we study the effect of a moderate uniaxial anisotropy Q ≫ ℓ−1t

within the framework of domain theory. We restrict the analysis to the most inter-

esting case of transversal anisotropy Q > 0. Due to the shift of the critical field, it

is necessary to include the next order term in the Zeeman energy if we take into

account a non-zero anisotropy. The analysis hence relies on the unrescaled domain

theoretic energy, namely

Edomain(m
0
2,w) = 2

(
ℓ− w

m0
2

)
e(m0

2) + 4 w
m0

2
e
(
m0

2
2

)

− (hext + Q)(m0
2)

2tw
(
ℓ− w

m0
2

)
− hext(m

0
2)

4tw
(
ℓ− w

m0
2

)
.

In order to simplify the following discussions we neglect the logarithm in the energy

density of the Néel wall, i.e., we consider e(m0
2) =

π
8 t

2(m0
2)

4. As discussed in the in-

troduction, for moderate uniaxial anisotropy the critical field is given by hext ≈ −Q.

Since the energy looses coercivity for hext > 0 – and hence m0
2 tends to infinity so

that the low-angle approximation is not valid anymore and the pattern is suspected

to collapse – we assume in the following that hext varies between −Q and 0.

We will see in this section that for small external fields, i.e., 0 < 1 + Q−1hext ≪
(Q−1ℓ−1t)2, the optimal inclination of the concertina is dominated by the competi-

tion between stray-field and Zeeman energy. For large fields 0 < (Q−1ℓ−1t)2 ≪
1+ Q−1hext ≪ 1 it is dominated by the competition between the bulk energies, i.e.,

anisotropy and Zeeman energy. Nevertheless, the optimal period is determined by

the competition between stray-field and bulk energy in both cases, though the re-

lated contribution is of lower order for large fields. We will see that for large fields

the minimal energy per period becomes convex. It is not surprising that we verify

the statement above on the basis of an appropriate rescaling, see below:

Scenario I: Regime of dominant stray-field energy.

Let Q ≫ ℓ−1t. For 0 ≤ 1+Q−1hext ≪ (Q−1ℓ−1t)2

a) the optimal inclination of the magnetization scales as

m0
2a

∼ ℓt−1Q(1+Q−1hext),

b) the optimal period scales as

wa ∼ ℓ2t−1Q(1+Q−1hext),

c) for w ≪ wa ∼ ℓ2t−1Q(1+Q−1hext) the minimal energy per period is concave.

Note that these are just the rescaled statements with hext shifted to hext + Q from

the beginning of Section 2.2. Hence, besides the shift of the field, minimizers in the

regime 0 ≤ 1+ Q−1hext ≪ (Q−1ℓ−1t)2 are of the same form as in the case of zero

anisotropy, cf. Section 2.2.
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2.5. Minimality and stability for moderate uniaxial anisotropy

Statements a) and b) can be seen using the rescaling

m0
2 = ℓt−1Q(1+Q−1hext) m̃

0
2,

w = ℓ2t−1Q(1+Q−1hext) w̃,

Edomain = Q4(1+Q−1hext)
4ℓ5t−2 Ẽdomain.

In fact, the rescaled energy per length is given by

1
w̃ Ẽdomain = π

8

(
2
(m̃0

2)
4

w̃ − 7
4(m̃

0
2)

3
)
−
(
(m̃0

2)
2 − w̃ m̃0

2

)
+ ε(m̃0

2)
2
(
(m̃0

2)
2 − w̃ m̃0

2

)
,

where in this case ε = −Q−1hext(Q−1hext + 1)(Qℓt−1)2. Notice that in the regime

considered, we have that −Q ≤ hext . −Q+ ℓ−2t2Q−1, so that 0 < ε ≪ 1.

In order to see a) and b), observe that the fourth order (in m̃0
2) bulk contribution

amounts to a lower order (positive) perturbation of the rescaled energy functional

so that the arguments from the beginning of Section 2.2 carry over. Statement c) can

best be seen on the level of the rescaling

m0
2 = (wt−1Q(1+Q−1hext))

1/2m̃0
2.

We note that again the quartic bulk contribution is of higher order.

Scenario II: Regime of dominant bulk energy.

Let Q ≫ ℓt−1. In the regime 0 < (Q−1ℓ−1t)2 ≪ 1+Q−1hext ≪ 1 we have that

a) the optimal inclination of the magnetization scales as

m0
2a

∼ (1+Q−1hext)
1/2,

b) the optimal period scales as

wa ∼ (ℓt)1/2Q−1/2(1+Q−1hext)
1/4,

c) for tQ−1 ≪ w ≤ wa ∼ (ℓt)1/2Q−1/2(1 + Q−1hext)1/4 the minimal energy per

period is convex.

Consider the rescaling

m0
2 = (1+Q−1hext)

1/2(−Q−1hext)
−1/2 m̃0

2,

w = (ℓt)1/2Q−1/2(1+Q−1hext)
1/4(−Q−1hext)

−3/4 w̃,

Edomain = (1+Q−1hext)
9/4(−Q−1hext)

−7/4(ℓt)3/2Q1/2 Ẽdomain.

Hence the rescaled energy per period is given by

1
w̃ Ẽdomain(m̃

0
2, w̃, ε) =

π
8

(
2 ε
w̃ (m̃0

2)
4 − 7

4 ε2(m̃0
2)

3
)

−
(
(m̃0

2)
2 − εw̃ m̃0

2

)
+ (m̃0

2)
2
(
(m̃0

2)
2 − εw̃ m̃0

2

)
, (2.11)

53



2. Domain theory

where

ε = (Qℓt−1)−1/2(1+Q−1hext)
−1/4(−Q−1hext)

−1/4.

Observe that 1+ Q−1hext ≪ 1 entails that −Q ≤ hext ≤ − 1
C for some C > 1. Hence

in the regime 0 < (Q−1ℓ−1t)2 ≪ 1+Q−1hext ≪ 1 we have that ε ≪ 1. For the same

reason w̃ ∼ 1 implies w ∼ (ℓt)1/2Q−1/2(1+ Q−1hext)1/4. Notice that the constraint

w ≤ m0
2 turns into εw̃ ≤ m̃0

2. Obviously, for m̃0
2 ≥ 1 or εw̃ = m̃0

2

1
w̃ Ẽdomain(m̃

0
2, w̃, ε) ≥ 0.

For m̃0
2 ≤ 1 we find by neglecting the positive wall energy

1
w̃ Ẽdomain(m̃

0
2, w̃, ε) ≥ −(m̃0

2)
2 + (m̃0

2)
4 + εw̃ m̃0

2(1− (m̃0
2)

2)

≥ −(m̃0
2)

2 + (m̃0
2)

4.

On the other hand, the energy assumes negative values ∼ −1 for 1 ∼ m̃0
2 and w̃ ∼ 1.

For fixed m̃0
2 ≤ 1 we can minimize the energy w.r.t. w̃ and obtain

w̃a(m̃
0
2) =

(m̃0
2)

4

m̃0
2 − (m̃0

2)
3
.

Let us assume that the optimal amplitude can – up to higher order terms – be

expanded in the following way:

m̃0
2(w̃, ε) = argmin

{m̃0
2|m̃0

2≥εw̃}
Ẽdomain(m̃

0
2, w̃, ε) ≈ m̃0

2(w̃, 0) + ε∂εm̃
0
2(w̃, 0). (2.12)

Obviously we have due to (2.11) that

m̃0
2(w̃, 0) = 2−1/2.

Moreover we obtain that

∂εm̃
0
2(w̃, 0) = − π

4w̃2
−3/2 + w̃

8 .

Let us plug (2.12) into (2.11), then

1

w̃
Ẽdomain(m̃

0
2(w̃, ε), w̃, ε) ≈

1

w̃
Ẽdomain(m̃

0
2(w̃, 0), w̃, 0)

+
(

∂m̃0
2
( 1
w̃ Ẽdomain)(m̃

0
2(w̃, 0), w̃, 0)∂εm̃

0
2(w̃, 0)

+ ∂ε(
1
w̃ Ẽdomain)(m̃

0
2(w̃, 0), w̃, 0)

)
ε

= − 1
4 +

(
π

16w̃ + w̃
23/2

)
ε, (2.13)

where we used that ∂m̃0
2
( 1
w̃ Ẽdomain)(m̃

0
2(w̃, 0)w̃, 0) = 0. We read off that the optimal

period is given by w̃a = π1/22−5/4 (up to higher order terms). This is consistent with
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2.5. Minimality and stability for moderate uniaxial anisotropy

the constraint εw̃ ≤ m̃0
2. Summing up, this establishes a) and b). Let us now address

c): From (2.13) we derive that the minimal energy per period scales as

Ẽdomain(m̃
0
2(w̃, ε)w̃, ε) ≈ − w̃

4 +
(

π
16 +

w̃2

23/2

)
ε.

This is to order zero (in ε) linear in w̃ and to first order convex in the period w̃. We

note that on the level of the rescaled variables tQ−1 ≪ w ≤ wa ∼ (ℓt)1/2Q−1/2(1+
Q−1hext)1/4 turns into ε ≪ w̃ ≤ 1 which entails that the quadratic (in ε) contribution

in the latter expansion is indeed of higher order.

Formation and coarsening of the concertina in a film of moderate uniaxial transver-

sal anisotropy. In the previous section we derived the scaling behavior of the op-

timal and marginal stable period and the optimal amplitude of the transversal com-

ponent. Figure 2.6 provides an interpretation of the results: As the external field

increases from the critical field, domain theory is applicable once the amplitude of

the magnetization is of the order d2/3ℓ−1/2t−1/3, so that m̂0
2 ∼ 1, ĥext ∼ 1. At that

point, we enter Scenario I: As the field increases the optimal inclination increases.

Domain theory predicts a modulation instability due to the concavity of the minimal

energy per period, once the period is much smaller than the optimal period. The

concertina coarsens, so its period increases towards the optimal period. As the field

increases further we enter Scenario II. The period of the concertina at that point is of

the order tQ−1. Since the minimal energy per period for periods much smaller than

the optimal period is convex, the coarsening stops. Only the inclination grows.

Consistency. In the following part, the consistency of the predictions derived above

with the underlying assumptions for the applicability of domain theory is checked.

On the one hand, there is the assumption of scale separation between the x1 and x2
variable, i.e., w ≪ ℓ, and the low-angle approximation for m0

2 ≪ 1 which both stem

from the reduced model. On the other hand, domain theory itself is a good approxi-

mation of the reduced energy and applicable provided hext +Q ≫ d2/3ℓ−4/3t2/3. At

the cross-over between Scenario I and II we expect that the period of the concertina

pattern is of the order w ∼ tQ−1 and that the transversal component is of the order

m2 ∼ t(ℓQ)−1. In the regime of moderate anisotropy Q ≫ ℓ−1t, this is consistent

with the assumptions of the reduced model, i.e., the low-angle approximation and

the scale separation, since tQ−1 ≪ ℓ and t(ℓQ)−1 ≪ 1. Note that m2 tends towards

one in Scenario II which displays the limitation of the model as hext tends towards 0.

Observe that for strong anisotropy Q ≫ d−2/3ℓ−2/3t4/3, Scenario I disappears and

we expect no coarsening at all. In fact, in that case the distance between the two

characterizing fields −Q+ d2/3t2/3ℓ−2/3 and −Q+ t2ℓ−2Q−1 shrinks to zero. This

is consistent with the bifurcation analysis close to the critical field which predicts

stability of w∗-periodic states for strong transversal anisotropy, see Figure 6.3.
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Figure 2.6.: Scaling behavior of the optimal and marginal stable period and the amplitude of the transversal component in the regime

tℓ−1 ≪ Q ≪ d−2/3ℓ−2/3t4/3.
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3

Analysis of the reduced energy for large external field

In Chapter 2, we argue one the level of domain theory that for ĥext ≫ 1

a) the minimal energy per length in x̂1-direction scales as −ĥ3ext ln
2 ĥext,

b) the optimal inclination of the magnetization scales as m̂0
2 ∼ ĥext ln ĥext, and

c) the optimal period scales as ŵopt ∼ ĥext ln ĥext.

These results were first published in [OS10]. We point out that c) is the explanation

why a larger period is preferred for a stronger external field, as observed in the

experiments and the numerical simulations.

Until now there is no rigorous derivation of domain theory. In the following, we

rigorously prove the above predictions by domain theory starting from the reduced

energy Ê0 and show in addition that global minimizers are close to weak solutions

of Burgers’ equation. Theorem 3.1 below addresses: a) the scaling behavior of the

minimal energy and b) the scaling behavior of the average inclination of minimizing

magnetizations. Estimate c1), which amounts to a control of a fractional derivative

of m̂2 in direction x̂1 in the L2-norm by the L2-norm of m̂2, shows that – on average –

there cannot be substantial oscillations of m̂2 in x̂1 on length scales ≪ ĥext ln ĥext. In

this sense, it confirms the heuristically produced scaling of the optimal period as a

lower bound. On the other hand, estimate c2), which controls averages of m̂2 in x̂1
in the L1-norm by m̂2 itself in the L2-norm, shows that – on average – there has to be

substantial cancellations on length scales ≫ ĥext ln ĥext. In this sense, c2) confirms

the predicted scaling as an upper bound. All statements include the logarithm.

3.1. Main results

Theorem 3.1. Let ĥext ≫ 1 and L̂ ≥ ĥext ln hext. Then for Ê0 as in (1.14) and m̂2 as in

(1.15):

a) The minimal energy per length scales as

min
m̂2

L̂−1Ê0 ∼ −ĥ3ext ln
2 ĥext.
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3. Analysis of the reduced energy for large external field

b) Let m̂2 with L̂−1Ê0(m̂2) ∼ minm̂2
L̂−1Ê0, then

Â2 := L̂−1
∫ L̂

0

∫ 1

0
m̂2

2 dx̂2 dx̂1 ∼ ĥ2ext ln
2 ĥext.

c1) For and any shift ŵ > 0 in x̂1-direction we have

L̂−1
∫ L̂

0

∫ 1

0
(m̂2(x̂1 + ŵ, x̂2)− m̂2(x̂1, x̂2))

2 dx̂2 dx̂1 .
(

ŵ
ĥext ln ĥext

)α
Â2,

for α ∈ [0, 25).

c2) Let (m̂2)ŵ denote the mean of m̂2 in x̂1-direction over intervals of size ŵ, i.e., for any

L̂-periodic f (x̂1, x̂2), i.e., fŵ(x̂1, x̂2) := ŵ−1
∫ ŵ

2

− ŵ
2

f (x̂1 + x̂′1, x̂2)dx̂
′
1. Then for any ŵ > 0

we have

L̂−1
∫ L̂

0

∫ 1

0
|(m̂2)ŵ(x̂1, x̂2)|dx̂2 dx̂1 .

(
ĥext ln ĥext

ŵ

)1/2
A.

Remark 3.2. Instead of a separate definition for the asymptotic relations ∼, . and so forth,

we explain their meaning in the context of Theorem 3.1:

There exist universal constants 1 ≤ C, Ca,Cb1 ,Cb2 < +∞ such that for all ĥext ≥ C and

all L̂ ≥ ĥext ln ĥext:

a) The minimal energy per length can be bounded by

−Ca ĥ
3
ext ln

2 ĥext ≤ min
m̂2

L̂−1Ê0 ≤ − 1

Ca
ĥ3ext ln

2 ĥext.

b) Let m̂2 with L̂−1Ê0(m̂2) ≤ 1
Cb1

minm̂2
L̂−1Ê0. Then we have

1

Cb1

ĥ2ext ln
2 ĥext ≤ Â2 := L̂−1

∫ L̂

0

∫ 1

0
m̂2

2 dx̂2 dx̂1 ≤ Cb2 ĥ
2
ext ln

2 ĥext.

c1) For any α ∈ [0, 25) there exists Cα > 0 such that for any ŵ > 0

L̂−1
∫ L̂

0

∫ 1

0
(m̂2(x̂1 + ŵ, x̂2)− m̂2(x̂1, x̂2))

2 dx̂2 dx̂1 ≤ Cα

(
ŵ

ĥext ln ĥext

)α
Â2.

c2) There exists Cc2 > 0 such that for any ŵ > 0

L̂−1
∫ L̂

0

∫ 1

0
|(m̂2)ŵ(x̂1, x̂2)|dx̂2 dx̂1 ≤ Cc2

(
ĥext ln ĥext

ŵ

)1/2
Â.

The upper bound on the minimal energy for large external fields ĥext in a) is proven

on the basis of the Ansätze from domain theory, where the discontinuities are re-

placed by the optimal 1-d transitions layers (low-angle Néel walls). The proof of
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3.1. Main results

the lower bound and b) and c1) is based on a non-linear interpolation estimate, cf.

Lemma 3.15. As opposed to the result in [CÁOS07, Theorem 4], the new interpola-

tion estimate provides also L̂-independent coercivity of the reduced energy Ê0. The

proof of c2) is based on standard convolution estimates combined with the coercivity

of the energy, treated in Lemma 3.17, which is derived from Lemma 3.15.

In Theorem 3.3 we use again Lemma 3.15 to prove that global minimizers are close

to weak solutions of Burgers’ equation for ĥext ≫ 1.

Theorem 3.3. Let ĥext ≫ 1 and L̂ ∼ ĥext ln ĥext. Then for Ê0 and any m̂2 as in (1.15) with

L̂−1Ê0(m̂2) ∼ −ĥ3ext ln
2 ĥext there exists m̂

∗
2 with

−∂̂1
1
2(m̂

∗
2)

2 + ∂̂2m̂
∗
2 = 0

distributionally and

L̂−1
∫ L̂

0

∫ 1

0
(m̂2 − m̂∗

2)
2 dx̂2 dx̂1 ≪ L̂−1

∫ L̂

0

∫ 1

0
m̂2

2 dx̂2 dx̂1.

Although the lower and the upper bound on the energy in Theorem 3.1 agree in

terms of scaling with the simple Ansatz from domain theory (see above), it cannot

be excluded that additional substructures in the concertina Ansatz, such as branched

structures sometimes observed in the experiments, further reduce the energy.

To our knowledge, Theorem 3.3 is the first example of a rigorous connection be-

tween minimizers of the 3-d micromagnetic energy functional and solutions to a (lin-

earized) eikonal equation – Burgers’ equation – via the Γ-convergence in [CÁOS07,

Theorem 3] and Theorem 3.3 in this paper.

Rescaling. In view of Theorem 3.1, it is convenient to rescale length, magnetization

and energy according to

x̂1 = ĥext (ln ĥext) x̃1,

x̂2 = x̃2,

m̂2 = ĥext (ln ĥext) m̃2,

L̂−1Ê0 = ĥ3ext (ln
2 ĥext) L̃

−1Ẽ0.

In these new variables we obtain

L̃−1Ẽ0(m̃2) = ĥ−3
ext (ln

−2 ĥext) L̃
−1
∫ L̃

0

∫ 1

0
(∂̃1m̃2)

2 dx̃2 dx̃1

+ (ln ĥext)
1
2 L̃

−1
∫ L̃

0

∫ 1

0
||∂̃1|−1/2(−∂̃1(

1
2m̃

2
2) + ∂2m̃2)|2 dx̃2 dx̃1

− L̃−1
∫ L̃

0

∫ 1

0
m̃2

2 dx̃2 dx̃1.
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3. Analysis of the reduced energy for large external field

It is convenient to introduce

ε := ĥ−3
ext ln

−2 ĥext,

such that for ĥext ≫ 1

ln 1
ε = 3 ln ĥext + 2 ln ln ĥext ≈ 3 ln ĥext.

Hence, to leading order

Ẽ0(m̃2) = ε
∫ L̃

0

∫ 1

0
(∂̃1m̃2)

2 dx̃2 dx̃1

+ (ln 1
ε )

1
6

∫ L̃

0

∫ 1

0
||∂̃1|−1/2(−∂̃1(

1
2m̃

2
2) + ∂2m̃2)|2 dx̃2 dx̃1

−
∫ L̃

0

∫ 1

0
m̃2

2 dx̃2 dx̃1.

With this rescaling, Theorem 3.1 assumes the form:

Theorem 3.4. Let 0 < ε ≪ 1 and L̃ ≥ 1.

a) Then

min
m̃2

L̃−1Ẽ0 ∼ −1.

b) Let m̃2 with L̃−1Ẽ0(m̃2) ∼ −1. Then we have

L̃−1
∫ L̃

0

∫ 1

0
m̃2

2 dx̃2 dx̃1 ∼ 1,

c1) and for any w̃ > 0

L̃−1
∫ L̃

0

∫ 1

0
(m̃2(x̃1 + w̃, x̃2)− m̃2(x̃1, x̃2))

2 dx̃2 dx̃1 . w̃α for α ∈ [0, 25),

c2) and

L̃−1
∫ L̃

0

∫ 1

0
|(m̃2)w̃(x̃1, x̃2)|dx̃2 dx̃1 . w̃−1/2,

where (m̃2)w̃ is defined as in Theorem 3.1.

With the rescaling above, Theorem 3.3 assumes the form:

Theorem 3.5. Let 0 < ε ≪ 1 and L̃ ∼ 1. Then for any m̃2 with L̃−1Ẽ0(m̃2) ∼ −1 there

exists m̃∗
2 with

−∂̃1
1
2(m̃

∗
2)

2 + ∂̃2m̃
∗
2 = 0

distributionally and

L̃−1
∫ L̃

0

∫ 1

0
(m̃2 − m̃∗

2)
2 dx̃2 dx̃1 ≪ 1.
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3.2. Proofs

3.2. Proofs

For notational convenience, we drop the tilde ·̃. In the following we will write u

instead of m2, x instead of x1, t instead of x2, and E instead of E0.

3.2.1. Upper bound

Proposition 3.6. For any 0 < ε ≪ 1 and any L ≥ 1

min
u

L−1E . −1. (3.1)

Proof of Proposition 3.6. Let us explain the main features of our construction.

Symmetry. Our Ansatz will have the following symmetry properties, cf. Fig. 3.1:

• It will be periodic in x with period w ∼ 1 , i.e.,

u(x+ w, t) = u(x, t).

The parameter w ∼ 1 will be chosen later such that L is an integer multiple of

w. (By w ∼ 1 we mean that w ∈ ( 1C ,C] for some universal constant 1 < C <

∞.)

• It will be odd w.r.t. reflection at x = 0 (one of the vertical walls), i.e.,

u(−x, t) = −u(x, t).

• It will be even w.r.t. rotation in (w4 ,
1
2) (the center of mass of one of the quad-

rangular domains), i.e.,

u(w4 + x, 12 + t) = u(w4 − x, 12 − t).

Hence, u will be determined by its values

u(x, t) on the fundamental domain (x, t) ∈ (0, w2 )× (0, 12).

Mesoscopic pattern. On a mesoscopic level, our u will be of the form

umeso(x, t) =

{
0 for t ≤ x

s ,

−2 s for t ≥ x
s ,

where the parameter s ∼ 1 will be chosen later. Notice that s > w
2 is necessary

to avoid a degenerated pattern. In favor of a clear presentation we only show the

construction for the case s ≥ w in detail. This will be enough to obtain the desired

upper bound on the minimal energy. We will comment on the differences for the

case w
2 < s < w at the end of the proof.
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3. Analysis of the reduced energy for large external field

The mesoscopic Ansatz umeso satisfies

−∂x(
1
2u

2
meso) + ∂tumeso = 0

distributionally. Notice that umeso has the following discontinuity lines within

(0, w2 )× (0, 12):

• a jump between 2 s and −2 s across x = 0 for 0 ≤ t ≤ 1
2 ,

• a jump between −2 s and 2 s across x = w
2 for t ≥ w

2 s ,

• a jump between −2 s and 0 across t = x
s for 0 ≤ x ≤ w

2 .

The first two discontinuity lines carry a weight of 1
2 , since they also belong to the

neighboring cell, cf. Section 2.

Néel walls. We must choose appropriate transition layers, i.e., walls, in order to

construct a microscopic u starting from umeso. The construction will additionally

depend on two parameters α and β, with ε ≪ α ≪ β ≪ w, which will be chosen

later in function of ε. In fact, we distinguish 3 regions, cf. Fig. 3.1:

• Bulk: Here we set u = umeso.

• Walls: Here we use a one-dimensional construction. Within the fundamental

domain (0, w2 )× (0, 12) the wall region is given by

{(x, t) | 0 ≤ x ≤ β,
2 β
s ≤ t ≤ 1

2}
∪{(x, t) | w2 − β ≤ x ≤ w

2 ,
w
2s ≤ t ≤ 1

2}
∪{(x, t) | s t− β ≤ x ≤ s t+ β,

2 β
s ≤ t ≤ w

2s −
β
s }.

Notice that β ≤ w
4 is necessary.

• Corners: Here, we interpolate the x-dependent boundary data linearly in t.

Within the fundamental domain (0, w2 )× (0, 12) the corner region is described

by

(
(0, 3 β)× (0, 2 β

s )
)
∪
(
(w2 − 2 β, w2 )× ( w2s −

β
s ,

w
2 s )
)
.

Notice that 3 β ≤ w
2 is necessary.

The function uwill be constructed to be continuous across the regions. These regions

contribute differently to the three parts of the energy:

• Exchange energy: This local energy contribution behaves in an additive way;

only the walls and the corners contribute.
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3.2. Proofs

• Magnetostatic energy: Only walls and corners contribute to the charge density

σ, i.e., the support of the charge density is a subset of the wall and corner

region. Since the magnetostatic energy is non-local in the charge density σ, it

behaves in a non-additive way. However, if σ = σ1 + σ2 + σ3 is a decomposi-

tion, we have an upper bound by the triangle inequality

∫ ∣∣|∂x|−1/2σ
∣∣2 dx ≤ 3

∫ ∣∣|∂x|−1/2σ1
∣∣2 dx

+ 3
∫ ∣∣|∂x|−1/2σ2

∣∣2 dx+ 3
∫ ∣∣|∂x|−1/2σ3

∣∣2 dx, (3.2)

where we have to ascertain
∫ w

2

−w
2

σ1 dx =
∫ w

2

−w
2

σ2 dx =
∫ w

2

−w
2

σ3 dx = 0, so that

the r.h.s. is finite. Since modulo w-periodicity in x, there are at most 3 walls or

corners at a given t-value, (3.2) suffices.

• Zeeman energy: Here, we seek a lower bound for
∫∫

u2 dtdx. The main contri-

bution will come from the bulk.

Bulk region

Wall region

Corner region

3β0 w
2

w
2s}

Figure 3.1.: The Ansatz u.

Vertical Néel walls. In this section, we construct the vertical Néel walls. Without

loss of generality, we focus on the construction in the region

{
(x, t)

∣∣ − β ≤ x ≤ β,
2 β
s ≤ t ≤ 1

2

}
. (3.3)

We consider the exchange and magnetostatic energy Eex+ma. Within (3.3), u coin-

cides with an odd function v of the form

u = −2 s v(x), v(±β) = ±1,
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3. Analysis of the reduced energy for large external field

which we think of as being w-periodic and v(x + w
2 ) = −v(x). In terms of v, we

have the estimate

Eex+ma

= ( 12 −
2β
s )

(
4 s2 ε

∫ w
2

−w
2

(∂xv)
2 dx+ 8

3 s
4 (ln 1

ε )
∫ w

2

−w
2

∣∣|∂x|−1/2∂x(− 1
2v

2)
∣∣2 dx

)

. s2 ε
∫ w

2

−w
2

(∂xv)
2 dx+ s4 (ln 1

ε )
∫ w

2

−w
2

∣∣|∂x|1/2 v2
∣∣2 dx

. s2 ε
∫ w

2

−w
2

1
v2
(∂xv

2)2 dx+ s4 (ln 1
ε )
∫ w

2

−w
2

∣∣|∂x|1/2 v2
∣∣2 dx.

It is convenient to think in terms of ̺ = v2 which satisfies

̺ = 1 for β ≤ |x| ≤ w
2 − β,

̺ = 0 for x = 0,

̺ is w
2 -periodic,

so that

Eex+ma . s2 ε
∫ w

4

−w
4

1

̺
(∂x̺)2 dx+ s4 ln

1

ε

∫ w
4

−w
4

∣∣|∂x|1/2̺
∣∣2 dx.

We make the Néel-wall Ansatz, cf. [Mel03] and [DKMO05, Section 6],

̺(x) =





ln
α2+x2

α2

ln
α2+β2

α2

for |x| ≤ β,

1 for β ≤ |x| ≤ w
4 ,

(3.4)

where ε and α with ε ≪ α ≪ β ≪ w will be chosen later. We first turn to the

magnetostatic part and use the trace characterization of the homogeneous H1/2-

norm, i.e.,

∫ w
4

−w
4

∣∣|∂x|1/2̺
∣∣2 dx = inf{

∫ w
4

−w
4

∫ ∞

0
(∂x ¯̺)

2 + (∂z ¯̺)
2 dzdx|

¯̺(x, z) is w
2 -periodic in x and ¯̺(x, 0) = ̺(x)}, (3.5)

which yields by extending ̺ in a radially symmetric way in the (x, z)-plane:
∫ w

4

−w
4

∣∣|∂x|1/2̺
∣∣2 dx

.
1

ln2
α2+β2

α2

∫∫

x2+z2 ≤ β2

(
∂x
(
ln α2+x2+z2

α2

))2
+
(

∂z
(
ln α2+x2+z2

α2

))2
dx dz

α≪β

.
1

ln2
β
α

∫ β

0
(∂r(ln

α2+r2

α2
))2r dr

∼ 1

ln
β
α

.
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3.2. Proofs

We now turn to the exchange energy. Since

1
̺

(
d̺
dx

)2
=

1

ln
α2+β2

α2





1

ln
α2+x2

α2

4x2

(α2+x2)2
for |x| < β,

0 for β < |x| < w
4 ,

we have

∫ w
4

−w
4

1
̺

(
d̺
dx

)2
dx

α≪β

.
1

ln
β
α

∫ β

−β

1

ln α2+x2

α2

x2

(α2 + x2)2
dx ∼ 1

α ln
β
α

. (3.6)

Hence we obtain

Eex+ma . s2 ε
1

α ln
β
α

+ s4
(
ln 1

ε

) 1

ln
β
α

≈ s4
(
ln 1

ε

) 1

ln
β
α

, (3.7)

where the last asymptotic identity follows from ε ≪ α ≪ w ∼ 1 and s ∼ 1.

Diagonal Néel walls. We now address the construction in the region

{(x, t)|s t− β ≤ x ≤ s t+ β,
2 β
s ≤ t ≤ w

2 s −
β
s }.

Since exchange and magnetostatic energy Eex+ma are invariant under the shear trans-

form

x = s t+ x̃, t = t̃, u = ũ− s, (3.8)

we can reduce this construction to a construction of a vertical Néel wall in

{(x̃, t̃)| − β ≤ x̃ ≤ β,
2 β
s ≤ t̃ ≤ w

2 s −
β
s }.

The only difference to the vertical Néel wall before is that the construction connects

−s to s instead of −2s to 2s. Hence we obtain as there

Eex+ma . s4
(
ln 1

ε

)
1

ln
β
α

. (3.9)

Corners. Without loss of generality we consider the corner (−3 β, 3 β)× (0, 2 β
s ). In

view of (3.4) (for ̺ = v2) and (3.8), we have to interpolate

u(x, 0) = 0

and

u(x, 2 β
s ) =





s (v(x+ 2 β) + 1) for − 3 β ≤ x ≤ −β,

−2 s v(x) for − β ≤ x ≤ β,

s (v(x− 2 β)− 1) for β ≤ x ≤ 3 β

(3.10)
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3. Analysis of the reduced energy for large external field

in t, where

v(x) = signx ̺(x)1/2.

We opt for a linear interpolation, i.e.,

u(x, t) = s t
2 βu(x,

2 β
s ).

We first turn to the exchange energy Eex. Because of the linear interpolation, we

infer from (3.6)

Eex .
β

s

ε s2

α ln
β
α

.

We now address the magnetostatic energy Ema. Notice

σ(x, t) = (−∂x(
1
2u

2) + ∂tu)(x, t)

= −( s t
2 β )

2∂x(
1
2u

2)(x, 2 β
s ) +

s
2 β u(x, 2 β

s ). (3.11)

Because of the symmetry property

u(−x,
2 β
s ) = −u(x, 2 β

s ),

we have in particular for all t ∈ (0, 2 β
s )

∫ w
2

−w
2

σ(x, t)dx = 0. (3.12)

Since supp σ(·, t) ⊂ [−3 β, 3 β], we claim that

∫ w
2

−w
2

∣∣(|∂x|−1/2σ)(·, t)
∣∣2 dx . β

∫ w
2

−w
2

σ(x, t)2 dx. (3.13)

Let us give the argument for (3.13). By duality, this is equivalent to

∫ w
2

−w
2

ζ(x)σ(x, t)dx .

(
β
∫ 3 β

−3 β
σ(x, t)2 dx

∫ w
2

−w
2

∣∣|∂x|1/2ζ(x)
∣∣2 dx

)1/2

,

for all w-periodic functions ζ(x). By the trace characterization of the homogeneous

H1/2-norm (3.5), this estimate is equivalent to

∫ w
2

−w
2

ζ(x, 0)σ(x, t)dx .

(
β
∫ 3 β

−3 β
σ(x, t)2 dx

∫ w
2

−w
2

∫ ∞

0
(∂xζ)2 + (∂zζ)

2 dx dz

)1/2

for all functions ζ(x, z) which are w-periodic in x. Because of (3.12) and supp σ(·, t)
⊂ [−3 β, 3β], this estimate in turn follows from

∫ 3 β

−3 β
(ζ(x, 0)− 1

6 β

∫ 3 β

−3 β
ζ(x̃, 0)dx̃)2 dx . β

∫ w
2

−w
2

∫ ∞

0
(∂xζ)2 + (∂zζ)

2 dx dz,
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for all functions ζ(x, z). which because of β ≪ w follows from a standard trace

estimate. This establishes (3.13).

Inserting (3.11) into (3.13) yields

∫ w
2

−w
2

∣∣(|∂x|−1/2σ)(·, t)
∣∣2 dx

st
2β ≤ 1

. β

(∫ 3 β

−3 β
(∂x(u

2)(x, 2 β
s ))

2 dx+ ( sβ )
2
∫ 3 β

−3 β
(u(x, 2 β

s ))
2 dx

)

. β sup
x∈(−3 β,3 β)

{u2(x, 2 β
s )}

∫ 3 β

−3 β
(∂xu(x,

2β
s ))

2 dx+ s2

β sup
x∈(−3 β,3 β)

{u2(x, 2 β
s )}

(3.10),(3.6)

. β

(
s4

α ln
β
α

+ s4

β

)

α≪β∼
β
α

ln
β
α

s4.

Therefore

Ema =
1
6(ln

1
ε )
∫ 2 β

s

0

∫ w
2

−w
2

∣∣|∂x|−1/2σ
∣∣2 dx dt . β2 s3

α

ln 1
ε

ln
β
α

.

Hence, we obtain for the sum Eex+ma of exchange and magnetostatic energies

Eex+ma .
β ε s

α ln
β
α

+
β2 s3

α

ln 1
ε

ln
β
α

=
β s

α ln
β
α

(ε + β s2 ln 1
ε ),

so that because of ε ≪ β ≪ w ∼ 1 and s ∼ 1, this estimate asymptotically turns into

Eex+ma .
β2 s3

α

ln 1
ε

ln
β
α

. (3.14)

Optimizing in the parameters. We first consider the exchange and magnetostatic

energy Eex+ma in (−w
2 ,

w
2 )× (0, 1). Collecting (3.7), (3.9) and (3.14) we obtain

Eex+ma . s4
ln 1

ε

ln
β
α

+
β2 s3

α

ln 1
ε

ln
β
α

.

Choosing for instance

α = ε2/3, β = ε1/2,

which is compatible with ε ≪ α ≪ β ≪ w ∼ 1, the estimate asymptotically turns

into

Eex+ma . s4 + ε1/3 s3
ε≪1≈ s4.
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3. Analysis of the reduced energy for large external field

Since β ≪ w, we have for the Zeeman contribution that

∫ 1

0

∫ w
2

−w
2

u2 dx dt ≈
∫ 1

0

∫ w
2

−w
2

u2meso dx dt = (2 s)2 w (1− w
2 s ).

Choosing s = w, we obtain for the total energy

E ≤ C1 w
4 − 1

2C2 w
3.

Hence we obtain for the total energy per length x

e(w) ≤ C1 w
3 − 1

2C2 w
2.

Obviously, there is a w′ ≤ 1 s.t. for all w ∈ (w
′
2 ,w

′]

e(w) . −1. (3.15)

Hence we can always choose w such that L is an integer multiple of w and (3.15)

holds. The corresponding Ansatz function provides the upper bound on the energy.

The case w > s > w
2 . Notice that the three discontinuity lines of the mesoscopic

pattern have a common triple point at (12 ,
w
2s ) in the fundamental domain, cf. Fig.

3.1. If we allowed for w > s > w
2 this triple point would be at (0, 1 − w

2s ) in

the fundamental domain. The construction of the microscopic pattern with smooth

transition layers can be carried out in the same way as in the case s ≥ w. For the

upper bound on the magnetostatic energy, we have to take into account (at most) 4

walls or corners at a given t-value modulo w-periodicity.

3.2.2. Lower bound

Remark 3.7. We introduce the notation for the average of an L-periodic function ζ(x, t) in
x

〈ζ〉 := L−1
∫ L

0
ζ dx,

and the average both in x and t

〈〈ζ〉〉 := L−1
∫ 1

0

∫ L

0
ζ dx dt.

We further define the translation of a function ζ by ∆ ∈ R in the x1-variable:

ζ∆(x1, x2) := ζ(x1 + ∆, x2).

Proposition 3.8. Let 0 < ε ≪ 1 and L > 0. Then

min
u

L−1E & −1.

68



3.2. Proofs

The main ingredient for the lower bound is a new estimate on smooth solutions u of

the inhomogeneous, inviscid Burgers equation, i.e.,

∂tu− ∂x(
1
2u

2) = σ. (3.16)

This type of estimate was introduced in [Ott09, Section 2.6]; it relies on a generaliza-

tion of Oleinik’s E-principle [Ole63]. That principle states that for smooth solutions

of the homogeneous inviscid Burgers equation, i.e.,

∂tu− ∂x(
1
2u

2) = 0, (3.17)

a one-sided Lipschitz bound improves over time in the sense that for any τ > 0

∂xu(t = 0, ·) ≥ −τ−1 ⇒ ∂xu(t, ·) ≥ −(τ + t)−1. (3.18)

In fact, the main insight of [Ott09] is that in addition, the L2-distance to the set of

functions ζ with a one-sided Lipschitz bound improves over time. To make this

more precise, we need

Definition 3.9. Let u(x) be L-periodic in x. Define

D−(u, τ) := inf { 〈(ζ − u)2〉 | ζ smooth and L-periodic, τ∂xζ ≥ −1 },
D+(u, τ) := inf { 〈(ζ − u)2〉 | ζ smooth and L-periodic, τ∂xζ ≤ 1 }.

If u(x, t) is L-periodic in x we use the abbreviation

D±(t, τ) := D±(u(·, t), τ).

For D± we denote the average w.r.t. t by

〈D±〉(τ) :=
∫ 1

0
D±(t, τ)dt.

It was shown in [Ott09] that if u satisfies the homogeneous Burgers equation (3.17),

D− satisfies the linear homogeneous differential inequality

∂tD− + ∂τD− + τ−1D− ≤ 0. (3.19)

Obviously, (3.19) contains (3.18), which follows from ∂tD− + ∂τD− ≤ 0. The new

and crucial feature is the τ−1D−- term in (3.19).

It was also shown in [Ott09] that (3.19) survives for the inhomogeneous Burgers

equation (3.16) in the form

∂tD− + ∂τD− + τ−1D− ≤ 2 〈
∣∣|∂x|−1/2σ

∣∣2〉1/2 〈
∣∣|∂x|1/2u

∣∣2〉1/2. (3.20)

However, (3.20) is not of use to us since we do not control 〈
∣∣|∂x|1/2u

∣∣2〉 independently
of ε. The idea is to replace u on the r.h.s. of (3.20) by the optimal ζ in the definition

of D−(u, τ), since a ζ with a one-sided Lipschitz bound has (up to a logarithm) half

of a derivative in L2. This is the content of the next two lemmas.
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3. Analysis of the reduced energy for large external field

Lemma 3.10. Let ζ(x, t) be smooth, L-periodic in x and satisfy

τ∂xζ ≥ −1

for some τ > 0. Then for 0 < r ≤ R

〈
∣∣|∂x|1/2ζ

∣∣2〉 . r 1
2 〈(∂xζ)2〉+ (ln R

r ) τ−1 〈|ζ|〉+ R−1 1
2 〈ζ2〉

≤ r 1
2 〈(∂xζ)2〉+ (ln R

r ) τ−1 〈|ζ|2〉1/2 + R−1 1
2 〈ζ2〉. (3.21)

This interpolation inequality in turn relies on

Lemma 3.11. Let ζ(x, t) be smooth, L-periodic in x and satisfy

τ ∂xζ ≥ −1

for some τ > 0. Then

sup
∆>0

1
∆
〈|ζ∆ − ζ|2〉 . τ−1 〈|ζ|〉. (3.22)

Let us comment on both lemmas: The estimate sup∆>0
1
∆
〈|ζ∆ − ζ|2〉 . sup |∂xζ| 〈|ζ|〉

is obvious. The insight of (3.22) is that the two-sided control sup |∂xζ| can be re-

placed by the one-sided control.

We now turn to Lemma 3.10: Although 〈
∣∣|∂x|1/2ζ

∣∣2〉 and sup∆>0
1
∆
〈|ζ∆ − ζ|2〉 have

the same scaling, the estimate

〈
∣∣|∂x|1/2ζ

∣∣2〉 . sup
∆>0

1
∆
〈|ζ∆ − ζ|2〉

fails. However, if very short wave lengths (≤ r) and very long wave lengths (≥ R)

are treated separately, one obtains the logarithmic estimate (3.21).

Mimicking the proof of (3.20), using Lemma 3.10, we will derive

Lemma 3.12. For any smooth L-periodic u(x, t) and 0 < ε ≤ 1

∂t
1
2(D− − 〈u2〉) + ∂τ

1
2D− + τ−1 1

2D−

. 〈
∣∣|∂x|−1/2σ

∣∣2〉1/2 [ ε1/2 〈(∂xu)2〉1/2 〈u2〉1/2 + (ln 1
ε ) τ−1 〈u2〉1/2 ]1/2. (3.23)

Note that the second factor on the r.h.s of (3.23) is related to the r.h.s. of (3.21) by

optimizing in r ≤ R while keeping ε = r
R fixed.

We use Lemma 3.12 to derive the following interpolation inequality:

Corollary 3.13. For any smooth L-periodic u(x, t) with u(·, 0) = u(·, 1) = 0 and 0 <

ε ≤ 1 it holds

∫ 1

0
〈u2〉dt .

(
(ln 1

ε )
∫ 1

0
〈
∣∣|∂x|−1/2σ

∣∣2〉dt
)2/3

+
( ∫ 1

0
〈
∣∣|∂x|−1/2σ

∣∣2〉dt
)2/3 (

ε
∫ 1

0
〈(∂xu)2〉dt

)1/3
. (3.24)

70



3.2. Proofs

We also use Lemma 3.12 to derive a regularity estimate:

Corollary 3.14. For any smooth L-periodic u(x, t) with u(·, 0) = u(·, 1) = 0 and 0 <

ε ≤ 1 it holds

sup
τ>0

τ−1/2
∫ 1

0
D+ dt + sup

τ>0

τ−1/2
∫ 1

0
D− dt

.
(
(ln 1

ε )
∫ 1

0
〈
∣∣|∂x|−1/2σ

∣∣2〉dt
)2/3

+
( ∫ 1

0
〈
∣∣|∂x|−1/2σ

∣∣2〉dt
)2/3 (

ε
∫ 1

0
〈(∂xu)2〉dt

)1/3
. (3.25)

Not surprisingly, the control of the L2-distance to the set of functions with a (one-

sided) Lipschitz-bound gives control of some fractional derivative in some Lp-norm.

More precisely, supτ>0 τ−1/2
∫ 1
0 D+ dt + supτ>0 τ−1/2

∫ 1
0 D− dt has the same scal-

ing as sup∆>0 ∆−1/2
∫ 1
0 〈|u∆ − u|5/2〉dt. Using ideas from [Ott09, Proposition 4] and

interpolation with Corollary 3.13 we indeed obtain:

Lemma 3.15. For any smooth L-periodic u(x, t) with u(·, 0) = u(·, 1) = 0 and 0 < ε ≤
1 it holds

sup
∆>0

∆−(p−2)
∫ 1

0
〈|u∆ − u|p〉dt .

(
(ln 1

ε )
∫ 1

0
〈
∣∣|∂x|−1/2σ

∣∣2〉dt
)2/3

+
( ∫ 1

0
〈
∣∣|∂x|−1/2σ

∣∣2〉dt
)2/3 (

ε
∫ 1

0
〈(∂xu)2〉dt

)1/3
(3.26)

with p ∈ [2, 52).

Remark 3.16. In [CÁOS07, Section 3.3], it was shown that admissible functions u as

in (1.15) of finite energy can always be approximated by a sequence of smooth admissible

functions {uα}α↓0 in the energy topology. Therefore Corollary 3.13 and Corollary 3.14 and

Lemma 3.15, which were established for a smooth u, extend to our finite-energy u.

We will apply Corollary 3.13 to derive the coercivity of the energy. To facilitate the

notation we introduce the abbreviations

Σ := 〈〈
∣∣|∂x|−1/2σ

∣∣2〉〉,
DU := 〈〈 (∂xu)2〉〉, and
U := 〈〈 u2〉〉.

(3.27)

Lemma 3.17. Let 0 < ε ≪ 1. Then for any L-periodic u(x1, x2) with u(·, 0) = u(·, 1)
which is of finite energy, i.e.,

L−1E(u) = εDU + (ln 1
ε )Σ −U < +∞,

we have

εDU, (ln 1
ε )Σ, U .

{
1 for L−1E(u) ≤ 1,

L−1E(u) for L−1E(u) ≥ 1.
(3.28)
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Proof of Lemma 3.10. We fix t. The fractional Sobolev norm can be expressed as a

suitable average of the L2-modulus of continuity of ζ (this can easily be seen in

Fourier space, cf. [LM68, p.59]):
∫ L

0

∣∣|∂x|1/2ζ
∣∣2 dx ∼

∫ ∞

0

1
∆

∫ L

0
(ζ(x+ ∆)− ζ(x))2 dx 1

∆
d∆. (3.29)

We split the r.h.s. into a small scale part, an intermediate scale part, and a large scale

part:
∫ ∞

0

1
∆

∫ L

0
(ζ(x+ ∆)− ζ(x))2 dx 1

∆
d∆

=
∫ r

0

1
∆

∫ L

0
(ζ(x+ ∆)− ζ(x))2 dx 1

∆
d∆

+
∫ R

r

1
∆

∫ L

0
(ζ(x+ ∆)− ζ(x))2 dx 1

∆
d∆

+
∫ ∞

R

1
∆

∫ L

0
(ζ(x+ ∆)− ζ(x))2 dx 1

∆
d∆, (3.30)

where 0 < r ≤ R < +∞.

The most interesting term is the intermediate one, which we estimate as follows:
∫ R

r

1
∆

∫ L

0
(ζ(x+ ∆)− ζ(x))2 dx 1

∆
d∆ ≤ (ln R

r ) sup
∆>0

1
∆

∫ L

0
(ζ(x+ ∆)− ζ(x))2 dx.

The application of Lemma 3.11, i.e.,

sup
∆>0

1
∆

∫ L

0
(ζ∆ − ζ)2 dx . τ−1

∫ L

0
|ζ|dx,

yields
∫ R

r

1
∆

∫ L

0
(ζ(x+ ∆)− ζ(x))2 dx 1

∆
d∆ . (ln R

r ) τ−1
∫ L

0
|ζ|dx. (3.31)

We now turn to the large scale part in (3.30). Just using the triangle inequality in

form of
∫ L

0
(ζ(x+ ∆)− ζ(x))2 dx ≤ 4

∫ L

0
ζ2 dx

we obtain
∫ ∞

R

1
∆

∫ L

0
(ζ(x+ ∆)− ζ(x))2 dx 1

∆
d∆ . R−1

∫ L

0
ζ2 dx. (3.32)

Finally, we consider the small scale part in (3.30). We have by Jensen’s inequality
∫ L

0
(ζ(x+ ∆)− ζ(x))2 dx =

∫ L

0

( ∫ x+∆

x
∂xζ(x′) dx′

)2
dx

≤
∫ L

0
∆

∫ x+∆

x
(∂xζ(x′))2 dx′ dx

= ∆2
∫ L

0
(∂xζ)2 dx.
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Hence we obtain
∫ r

0

1
∆

∫ L

0
(ζ(x+ ∆)− ζ(x))2 dx 1

∆
d∆ ≤ r

∫ L

0
(∂xζ)2 dx. (3.33)

Collecting (3.31), (3.32) and (3.33) we obtain from (3.29) and (3.30)
∫ L

0

∣∣|∂x|1/2ζ
∣∣2 dx . r 1

2

∫ L

0
(∂xζ)2 dx+ (ln R

r ) τ−1
∫ L

0
|ζ| dx+ R−1 1

2

∫ L

0
ζ2 dx,

which entails

〈
∣∣|∂x|1/2ζ

∣∣2〉 . r 1
2〈(∂xζ)2〉+ (ln R

r ) τ−1 〈|ζ|〉+ R−1 1
2〈ζ2〉.

Proof of Lemma 3.11. We shall actually prove that for any L-periodic function ζ(x)
with

τ∂ζ(x) ≤ 1 for all x,

we have
∫ L

0
|ζ(x+ ∆)− ζ(x)|2 dx . ∆ τ−1

∫ L

0
|ζ(x)| dx for all ∆ > 0. (3.34)

The statement of Lemma 3.11 follows by the application of (3.34) to ζ(x) = ζ̃(−x, t).

Because of the rescaling

x = ∆ x̂, L = ∆ L̂, ζ = ∆ τ−1 ζ̂,

it is enough to show (3.34) for ∆ = 1 and τ−1 = 1, that is under the assumption

∂ζ(x) ≤ 1 for all x. (3.35)

We split (3.34) into a statement for positive and for negative increments:

∫ L

0
(ζ(x+ 1)− ζ(x))2+ dx ≤ 2

∫ L

0
|ζ(x)|dx, (3.36)

∫ L

0
(ζ(x+ 1)− ζ(x))2− dx ≤ 4

∫ L

0
|ζ(x)|dx. (3.37)

The statement (3.36) is easy to see. Indeed, because of (3.35), we have the pointwise

bound ζ(x+ 1)− ζ(x) ≤ 1, so that we obtain for the integrand

(ζ(x+ 1)− ζ(x))2+ ≤ (ζ(x+ 1)− ζ(x))+ ≤ |ζ(x+ 1)|+ |ζ(x)|.
This implies (3.36) after integration.

We now turn to (3.37). Because of L-periodicity we have

∫ L

0
|ζ(x)|(1− ∂ζ(x))dx =

∫ L

0
|ζ(x)| − ∂(12signζ|ζ|2)(x)dx =

∫ L

0
|ζ(x)|dx.
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Hence inequality (3.37) will follow by integration from

(ζ(x+ 1)− ζ(x))2− ≤ 4
∫ x+1

x
|ζ(x′)|(1− ∂ζ(x′))dx′,

which by translation invariance can be reduced to

(ζ(1)− ζ(0))2− ≤ 4
∫ 1

0
|ζ(x)|(1− ∂ζ(x))dx. (3.38)

Since by (3.35) the r.h.s. is positive, it is enough to consider the case ζ(1) ≤ ζ(0).
Now (3.38) follows from

(ζ(1)− ζ(0))2− ≤ −4
∫ 1

0
|ζ(x)|∂ζ(x)dx (3.39)

= −4
∫ 1

0

1
2∂(signζ |ζ|2)(x)dx (3.40)

= 2 signζ(0) ζ(0)2 − 2 signζ(1) ζ(1)2.

In fact, to prove that (3.39) holds, we distinguish three cases:

Case 0 ≤ ζ(1) ≤ ζ(0): In this case

(ζ(1)− ζ(0))2− = (ζ(0)− ζ(1))2

≤ ζ(0)2 − ζ(1)2

= signζ(0) ζ(0)2 − signζ(1) ζ(1)2.

Case ζ(1) ≤ 0 ≤ ζ(0): In this case

(ζ(1)− ζ(0))2− = (ζ(0)− ζ(1))2

≤ 2 (ζ(0)2 + ζ(1)2)

= 2 (signζ(0) ζ(0)2 − signζ(1) ζ(1)2).

Case ζ(1) ≤ ζ(0) ≤ 0: This follows from the first case.

Before we start with the other proofs, let us note that D = D± is locally Lipschitz

continuous in (t, τ). Indeed, by the triangle inequality we easily obtain for t1, t0 and

for τ1 ≥ τ0:

D1/2(t1, τ)−D1/2(t0, τ) ≤ 〈|u(t1, ·)− u(t0, ·)|2〉1/2,
D1/2(t, τ1)−D1/2(t, τ0) ≤ (1− τ0

τ1
)〈|u(t, ·)|2〉1/2.

Clearly, D is monotonically increasing in τ. Indeed, let τ2 > τ1 > 0, and ζ be smooth

and L-periodic with ± τ2 ∂xζ ≤ 1, then also ± τ1 ∂xζ ≤ 1 and hence

D±(u, τ1) = inf { 〈(ζ − u)2〉 | ζ smooth and L-periodic, τ1∂xζ ≥ ±1 }
≤ inf { 〈(ζ − u)2〉 | ζ smooth and L-periodic, τ2∂xζ ≥ ±1 }
= D±(u, τ2). (3.41)
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Proof of Lemma 3.12. Let ζ0 be admissible in the definition of D−(0, τ), i.e.,

τ∂xζ0 ≥ −1. (3.42)

For λ > 0 define ζ as the solution to the initial value problem

∂tζ − ∂x(
1
2ζ2) + λ∂A(τ + t) ζ = 1

2(∂xζ + (τ + t)−1) (u− ζ)

ζ(·, 0) = ζ0. (3.43)

Here, the functional A is defined by

A(τ, ζ) = 1
2〈 r(∂xζ)2 + η + 1

η (ln
2 R

r ) τ−2 ζ2 + R−1 ζ2〉 (3.44)

for η > 0, 0 < r ≤ R, and τ > 0, and the operator ∂A is (up to the factor L−1) the

functional derivative of (3.44) and thus given by

∂A(τ) ζ = −r ∂2xζ + 1
η (ln

2 R
r ) τ−2 ζ + R−1 ζ. (3.45)

As we shall see, the reason for this choice of A is that

min
η

A(τ, ζ) = 1
2r 〈 (∂xζ)2〉+ (ln R

r ) τ−1 〈ζ2〉1/2 + 1
2R

−1 〈ζ2〉

appears on the r.h.s. of the estimate of Lemma 3.10.

Because u is smooth and r > 0, a unique smooth solution to (3.43) always exists.

Note that the solution ζ depends, next to the initial data and u, also on the parame-

ters λ, η, τ, r, and R.

Step 1. Maximum principle. Here we argue that for ζ defined by (3.43) we have

(τ + t)∂xζ(·, t) ≥ −1 for t ≥ 0. (3.46)

To show (3.46) let us introduce

̺(x, t) := ∂xζ + (τ + t)−1. (3.47)

We shall argue that (3.43) can be rewritten as an advection-diffusion equation in

terms of the “density” ̺:

∂t̺ − ∂x(
1
2̺ (u+ ζ)) + (τ + t)−1 ̺ + λ ∂A(τ + t) ̺

= λ 1
η (ln

2 R
r ) (τ + t)−3 + λR−1 (τ + t)−1. (3.48)

For a solution to (3.48) with non-negative initial data, non-negativity is preserved

since the r.h.s. is positive. Due to (3.42) and (3.47) this is a reformulation of (3.46).

To see that (3.48) holds, we first rewrite the r.h.s. of (3.43):

∂tζ − ∂x(
1
2ζ2) + λ∂A(τ + t) ζ = 1

2(∂xζ + (τ + t)−1) (u− ζ)

(3.47)
= 1

2̺ (u+ ζ)− (∂xζ + (t+ τ)−1)ζ

= 1
2̺ (u+ ζ)− ∂x(

1
2ζ2)− (τ + t)−1ζ.
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Therefore we obtain

∂tζ + λ∂A(τ + t) ζ = 1
2̺ (u+ ζ)− (τ + t)−1ζ.

Differentiating this equation w.r.t. x yields by linearity of ∂A

∂t∂xζ + λ∂A(τ + t) ∂xζ = ∂x(
1
2̺(u+ ζ))− (τ + t)−1 ∂xζ.

Hence, by definition (3.47) and linearity of ∂A we obtain

∂t̺ + (τ + t)−2 + λ∂A(τ + t) ̺ − λ∂A(τ + t) (τ + t)−1

= ∂x(
1
2̺ (u+ ζ)) + (τ + t)−2 − (τ + t)−1 ̺

and therefore

∂t̺ − ∂x(
1
2̺ (u+ ζ)) + (τ + t)−1 ̺ + λ∂A(τ + t) ̺ = λ∂A(τ + t) (τ + t)−1.

Appealing to the definition (3.45) of ∂A this yields (3.48).

Step 2. L2-Contraction. In this step we show that there exists a constant C > 0 s.t.

∂t(
1
2〈(u− ζ)2〉 − 1

2〈u2〉) + (τ + t)−1 1
2〈(u− ζ)2〉
≤ λA(τ + t, u) + C

4λ 〈
∣∣|∂x|−1/2σ

∣∣2〉. (3.49)

We first rewrite equation (3.43) as

−∂tζ +
1
2(τ + t)−1 (u− ζ) + u ∂xζ − 1

2(∂xζ) (u− ζ) = λ∂A(τ + t) ζ

and combine it with ∂tu− u ∂xu = σ which gives

∂t(u− ζ) + 1
2(τ + t)−1 (u− ζ)− u ∂x(u− ζ)− 1

2(∂xζ) (u− ζ)

= σ + λ∂A(τ + t) ζ.

We multiply this equation by u− ζ and apply Leibniz’ rule to obtain

∂t
1
2(u− ζ)2 + 1

2(τ + t)−1(u− ζ)2 − u 1
2∂x(u− ζ)2 − (∂xζ)12(u− ζ)2

= σ(u− ζ) + λ(∂A(τ + t) ζ) (u− ζ).

Taking averages w.r.t. x and integration by parts yields

1
2∂t〈(u− ζ)2〉+ 1

2(τ + t)−1〈(u− ζ)2〉+ 〈(∂xu− ∂xζ)12(u− ζ)2〉
= 〈σ(u− ζ)〉+ 〈λ(∂A(τ + t) ζ) (u− ζ)〉. (3.50)

On the other hand, multiplying ∂tu− u ∂xu = σ with u and taking averages w.r.t. x

we have

∂t
1
2〈u2〉 = 〈σ u〉. (3.51)
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Because of 〈(∂xu− ∂xζ)12(u− ζ)2〉 = 0, the combination of (3.50) and (3.51) yields

1
2∂t〈(u− ζ)2〉 − 1

2∂t〈u2〉+ (τ + t)−1 1
2〈(u− ζ)2〉

= 〈λ(∂A(τ + t) ζ) (u− ζ)〉 − 〈σ ζ〉,
Cauchy-Schwarz

≤ 〈λ(∂A(τ + t) ζ) (u− ζ)〉+ 〈
∣∣|∂x|−1/2σ

∣∣2〉1/2〈(|∂x|1/2ζ)2〉1/2

Due to the convexity of A and by Young’s inequality we thus obtain

1
2∂t〈(u− ζ)2〉 − 1

2∂t〈u2〉+ (τ + t)−1 1
2〈(u− ζ)2〉

≤ λA(τ + t, u)− λA(τ + t, ζ) + C
4λ 〈
∣∣|∂x|−1/2σ

∣∣2〉+ λ
C 〈(|∂x|1/2ζ)2〉, (3.52)

where we choose C > 0 to be the constant in the estimate of Lemma 3.10. Since

ζ(·, t) fulfills the assumptions of Lemma 3.10 according to Step 1, more precisely

(τ + t) ∂xζ(x, t) ≥ −1 for t ≥ 1, we have by Young’s inequality (w.r.t. η)

〈(|∂x|1/2ζ)2〉1/2 ≤ CA(τ + t, ζ).

Hence (3.52) turns into

1
2∂t〈(u− ζ)2〉 − 1

2∂t〈u2〉+ (τ + t)−1 1
2〈(u− ζ)2〉
≤ λA(τ + t, u) + C

4λ 〈
∣∣|∂x|−1/2σ

∣∣2〉. (3.53)

Step 3. The integration of (3.53) in t gives

1
2〈(u(·, t)− ζ(·, t))2〉 − 1

2〈u2(·, t)〉+
∫ t

0
(τ + t′)−1 1

2〈(u(·, t′)− ζ(·, t′))2〉dt′

≤ 1
2〈(u(·, 0)− ζ(·, 0))2〉 − 1

2〈u2(·, 0)〉+
∫ t

0
λA(τ + t′, u(·, t′))

+ C
4λ 〈
∣∣|∂x|−1/2σ(·, t′)

∣∣2〉dt′.
According to Step 1, ζ(x, t′) is admissible in the definition of D−(t′, τ + t′), so that

we obtain

1
2D−(t, τ + t)− 1

2〈u2(·, t)〉+
∫ t

0
(τ + t′)−1 1

2D−(t′, τ + t′)dt′

≤ 1
2〈(u(·, 0)− ζ0)

2〉 − 1
2〈u2(·, 0)〉

+
∫ t

0
λA(τ + t′, u(·, t′)) + C

4λ 〈
∣∣∂x|−1/2σ(·, t′)

∣∣2〉dt′.

Finally, since ζ0 was an arbitrary admissible function in D−(0, τ), this turns into

1
2(D−(t, τ + t)− 〈u2(·, t)〉) + 1

2

∫ t

0
(τ + t′)−1D−(t′, τ + t′)dt′

≤ 1
2(D−(0, τ)− 〈u2(·, 0)〉)

+
∫ t

0
λA(τ + t′, u(·, t′)) + C

4λ 〈
∣∣|∂x|−1/2σ(·, t′)

∣∣2〉dt′ (3.54)

77



3. Analysis of the reduced energy for large external field

for all t ≥ 0 and τ > 0. Since D− is locally Lipschitz continuous in both variables

and by translation invariance in t, (3.54) entails a differential version:

∂t
1
2(D−(t, τ)− 〈u2〉) + ∂τ

1
2D−(t, τ) + τ−1 1

2D−(t, τ)

≤ λA(τ, u) + C
4λ 〈
∣∣|∂x|−1/2σ

∣∣2〉. (3.55)

Indeed, a Lipschitz function is classically differentiable almost everywhere and its

classical derivative agrees with its weak derivative.

Step 4. Optimization.

The l.h.s. of (3.55) does not depend on λ > 0 and holds for all t ≥ 0 and τ > 0.

Therefore, we can now optimize on the r.h.s. of (3.55) in λ to derive:

∂t
1
2(D−(t, τ)− 〈u2〉) + ∂τ

1
2D−(t, τ) + τ−1 1

2D−(t, τ)

. A(τ, u)1/2 〈
∣∣|∂x|−1/2σ

∣∣2〉1/2. (3.56)

Since (3.56) holds true for all η > 0 and 0 < r ≤ R, we optimize at fixed ε = r
R ≤ 1

in η and R:

min
η,R

A(τ, u) = min
η,R

1
2〈 r(∂xu)2 + η + 1

η (ln
2 R

r ) τ−2 u2 + R−1 u2〉

∼ min
R

R ε〈(∂xu)2〉+ (ln 1
ε ) τ−1〈u2〉1/2 + R−1 〈u2〉

∼ ε1/2 〈(∂xu)2〉1/2 〈u2〉1/2 + (ln 1
ε ) τ−1〈u2〉1/2.

Proof of Corollary 3.13. In the following proof, we repeatedly use that due to (1.15)

〈 u(t = 0)2 〉 = 〈 u(t = 1)2 〉 = 0, and thus

D−(u(t = 0), τ) = D−(u(t = 1), τ) = 0 for all τ > 0. (3.57)

Step 1. We drop the positive terms τ−1D− and ∂τD−, cf. (3.41), on the l.h.s. of (3.23)

and integrate backwards in t and get due to (3.57)

〈u2(·, t)〉 − D−(t, τ)

.
∫ 1

t
〈
∣∣|∂x|−1/2σ

∣∣2〉1/2 ( ε1/2 〈(∂xu)2〉1/2 〈u2〉1/2 + (ln 1
ε ) τ−1〈u2〉1/2 )1/2 dt′

≤
∫ 1

0
〈
∣∣|∂x|−1/2σ

∣∣2〉1/2 ( ε1/2 〈(∂xu)2〉1/2 〈u2〉1/2 + (ln 1
ε ) τ−1〈u2〉1/2 )1/2 dt′.

Applying Jensen’s and Cauchy-Schwarz’ inequality in t gives

〈u2(·, t)〉 − D−(t, τ) . 〈〈
∣∣|∂x|−1/2σ

∣∣2〉〉1/2×
( ε1/2 〈〈(∂xu)2〉〉1/2 〈〈u2〉〉1/2 + (ln 1

ε ) τ−1〈〈u2〉〉1/2 )1/2. (3.58)
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Averaging (3.58) w.r.t. t yields

〈〈u2〉〉 . 〈D−〉(τ) + 〈〈
∣∣|∂x|−1/2σ

∣∣2〉〉1/2×
( ε1/2 〈〈(∂xu)2〉〉1/2 〈〈u2〉〉1/2 + (ln 1

ε ) τ−1〈〈u2〉〉1/2 )1/2. (3.59)

Step 2. Consider again (3.23). We drop the positive term ∂τD−, cf. (3.41). We then

average over t ∈ [0, 1]. Because of (3.57), the ∂t
1
2(D− − 〈u2〉)-term vanishes. Using

Cauchy-Schwarz’ and Jensen’s inequality as above we obtain

τ−1〈D−〉(τ) . 〈〈
∣∣|∂x|−1/2σ

∣∣2〉〉1/2×
( ε1/2 〈〈(∂xu)2〉〉1/2〈〈u2〉〉1/2 + (ln 1

ε ) τ−1〈〈u2〉〉1/2 )1/2. (3.60)

Combining inequalities (3.59) and (3.60) gives in our short hand notation, cf. (3.27),

U . (1+ τ)Σ1/2 (ε1/2DU1/2U1/2 + (ln 1
ε )τ

−1U1/2)1/2.

Choosing τ ∼ 1 yields

U . Σ1/2 (ε1/2DU1/2U1/2 + (ln 1
ε )U

1/2)1/2

. Σ1/2 (εDU)1/4U1/4 + ((ln 1
ε )Σ)

1/2U1/4,

and by Young’s inequality we absorb U into the l.h.s. to obtain (3.24):

U . Σ2/3 (ε DU)1/3 + ((ln 1
ε )Σ)

2/3.

Proof of Corollary 3.14. We start from (3.60) in the proof of Corollary 3.13, i.e.,

τ−1〈D−〉(τ)
. 〈〈

∣∣|∂x|−1/2σ
∣∣2〉〉1/2 ( ε1/2 〈〈(∂xu)2〉〉1/2 〈〈u2〉〉1/2 + (ln 1

ε ) τ−1〈〈u2〉〉1/2 )1/2,
which in our short hand notation turns into

τ−1〈D−〉(τ)
. Σ1/2 ( (εDU)1/2U1/2 + (ln 1

ε )τ
−1U1/2 )1/2

Triangle ineq.

. τ1/8Σ1/2(εDU)1/4 (τ−1/2U)1/4 + τ−1/2((ln 1
ε )Σ)1/2U1/4

Young

. τ1/6Σ2/3(εDU)1/3 + τ−1/2U + τ−1/2((ln 1
ε )Σ)1/2U1/4

(3.24)

. τ1/6Σ2/3(εDU)1/3 + τ−1/2
(

Σ2/3 (ε DU)1/3 + ((ln 1
ε )Σ)

2/3
)

+ τ−1/2((ln 1
ε )Σ)1/2

(
Σ2/3 (ε DU)1/3 + ((ln 1

ε )Σ)
2/3
)1/4

. τ1/6Σ2/3(εDU)1/3 + τ−1/2
(

Σ2/3 (ε DU)1/3 + ((ln 1
ε )Σ)

2/3
)

+ τ−3/8((ln 1
ε )Σ)1/2

(
τ−1/2Σ2/3 (ε DU)1/3

)1/4

Young

. (τ1/6 + τ−1/2)Σ2/3(εDU)1/3 + τ−1/2((ln 1
ε )Σ)

2/3.
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Therefore we deduce for τ ≤ 1

τ−1〈D−〉(τ) . τ−1/2
(
((ln 1

ε )Σ)
2/3 + Σ2/3(εDU)1/3

)
. (3.61)

On the other hand, for τ ≥ 1 we have

〈D−(τ)〉
ζ=0
≤ U

. τ1/2U

(3.24)

. τ1/2
(
((ln 1

ε )Σ)
2/3 + Σ2/3(εDU)1/3

)
. (3.62)

Collecting estimates (3.61) and (3.62), we now obtain

sup
τ>0

τ−1/2〈D−〉(τ) . ((ln 1
ε )Σ)

2/3 + Σ2/3(εDU)1/3. (3.63)

For D+ note that the change of variables t̂ = 1− t, û = −u leaves the r.h.s. of (3.63)

invariant whereas the l.h.s. turns into

D−(û(·, t̂ ), τ) = D−(−u(·, 1− t ), τ) = D+(u(·, 1− t ), τ),

which gives

〈D−(û, τ)〉 = 〈D+(u, τ)〉.
Therefore we obtain (3.25) in our short hand notation, i.e.,

sup
τ>0

τ−1/2〈D+〉(τ) + sup
τ>0

τ−1/2〈D−〉(τ) . ((ln 1
ε )Σ)

2/3 + Σ2/3(εDU)1/3.

Proof of Lemma 3.15. The main ingredient is the following estimate of the modulus

of continuity in the weak L5/2-norm

sup
∆>0

∆−1/2 sup
M>0

M5/2〈〈I(|u∆ − u| > M)〉〉

. sup
τ>0

τ−1/2〈D+〉+ sup
τ>0

τ−1/2〈D−〉, (3.64)

where I denotes the indicator function. To see that (3.64) holds, fix ∆, M > 0 and

let ζ+(x, t) and ζ−(x, t) be L-periodic in x with ±τ∂xζ± ≤ 1 for some τ > ∆
M given.

Then we have

|{|u∆ − u| > M}| = |{u∆ − u > M}|+ |{u∆ − u < −M}|
≤ |{(u− ζ+)∆ − (u− ζ+) > (M− ∆

τ )}|
+ |{(u− ζ−)∆ − (u− ζ−) < −(M− ∆

τ )}|

≤ (M− ∆
τ )

−2
( ∫ L

0
((u− ζ+)∆ − (u− ζ+))2 dx

+
∫ L

0
((u− ζ−)∆ − (u− ζ−))2 dx

)

≤ 4 (M− ∆
τ )

−2
( ∫ L

0
(u− ζ+)2 dx+

∫ L

0
(u− ζ−)2 dx

)
.
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Since ζ± was arbitrary in the definition of D±(τ), we obtain

〈I(|u∆ − u| > M)〉 ≤ 4 (M− ∆
τ )

−2(D+(τ) +D−(τ)).

Therefore we have

〈I(|u∆ − u| > M)〉 ≤ τ1/2 4 (M− ∆
τ )

−2 (sup
τ̃>0

τ̃−1/2D+(τ̃) + sup
τ̃>0

τ̃−1/2D−(τ̃)).

Now optimizing in τ > ∆
M gives

〈I(|u∆ − u| > M)〉 . ( ∆
M )1/2M−2 (sup

τ̃>0

D+(τ̃) + sup
τ̃>0

D−(τ̃)),

which entails (3.64).

Plugging in Corollary 3.14 we obtain from (3.64) for all ∆ > 0

∆−1/2 sup
M>0

M5/2〈〈I(|u∆ − u| > M)〉〉 . ((ln 1
ε )Σ)

2/3 + Σ2/3(εDU)1/3. (3.65)

We can now interpolate the strong estimate on the modulus of continuity that we

obtain from Corollary 3.13, i.e.,

〈〈|u∆ − u|2〉〉 . 〈〈u2〉〉
(3.24)

. ((ln 1
ε )Σ)

2/3 + Σ2/3(εDU)1/3,

and the weak estimate (3.65). By Marcinkiewicz interpolation, cf. [BL76, Section 5.3],

we obtain for 0 ≤ β < 1

〈〈|u∆ − u|2+
1
2 β〉〉 . 〈〈|u∆ − u|2〉〉1−β (sup

M>0

M5/2〈〈I (|u∆ − u| > M)〉〉)β

. ∆
β
2

(
((ln 1

ε )Σ)
2/3 + Σ2/3(εDU)1/3

)
.

With the identification p = 2+ β
2 we obtain (3.26), i.e.,

sup
∆>0

∆−(p−2)〈〈|u∆ − u|p〉〉 . ((ln 1
ε )Σ)

2/3 + Σ2/3(εDU)1/3

for p ∈ [2, 52), in our short hand notation.

Proof of Lemma 3.17. Let C > 0 be a generic constant. Due to Remark 3.16 it follows

that Corollary 3.13, which was established for smooth u, extends to our finite-energy

u:

U . ((ln 1
ε )Σ)

2/3 (1+ (ln 1
ε )

−2/3 (εDU)1/3)

ε≪1

. ((ln 1
ε )Σ)

2/3 (1+ (εDU)1/3). (3.66)
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Hence we obtain by Young’s inequality

L−1E(u) = εDU + (ln 1
ε )Σ −U

ε≪1
≥ εDU + (ln 1

ε )Σ − C ((ln 1
ε )Σ)

2/3 (1+ (εDU)1/3)

Young

& εDU + (ln 1
ε )Σ − C,

where C is the constant in estimate (3.66). This entails

εDU + (ln 1
ε )Σ

ε≪1

.

{
1 for L−1E(u) ≤ 1,

L−1E(u) for L−1E(u) ≥ 1.

Therefore we obtain if we once again apply Young’s inequality to (3.66):

U
ε≪1

. ((ln 1
ε )Σ)

2/3 (1+ (εDU)1/3)
ε≪1

.

{
1 for L−1E(u) ≤ 1,

L−1E(u) for L−1E(u) ≥ 1.

Proof of Proposition 3.8. Due to Lemma 3.17, we have that for any u with L−1E(u) ≤
0

εDU, (ln 1
ε )Σ, U . 1.

In particular

L−1E(u) ≥ −U & −1.

Proof of Theorem 3.4. Let 0 < ε ≪ 1 and L ≥ 1.

ad a) The upper bound on the minimal energy is the statement of Proposition 3.6,

the lower bound is the statement of Proposition 3.8.

ad b) The upper bound

L−1
∫ L

0

∫ 1

0
u2 dtdx . 1

was treated in Proposition 3.8. The lower bound

L−1
∫ L

0

∫ 1

0
u2 dtdx & 1

follows directly from the assumption L−1E(u) ∼ −1.
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ad c1) Note that by Jensen’s inequality

w−2(p−2)/p L−1
∫ L

0

∫ 1

0
(u(x+ w, t)− u(x, t))2 dtdx

.

(
w−(p−2) L−1

∫ L

0

∫ 1

0
(u(x+ w, t)− u(x, t))p dtdx

)2/p

(3.67)

for p ∈ [2,∞). Due to Lemma 3.17 we have for any u with L−1E(u) ∼ −1, that

εDU, (ln 1
ε )Σ, U . 1 (uniformly in ε). Hence the r.h.s. in (3.67) is bounded for

p ∈ [2, 52) (uniformly in ε) due to Lemma 3.15, which due to Remark 3.16 extends to

our finite-energy u. Therefore with the identification α = 2(p− 2)/p we have

L−1
∫ L

0

∫ 1

0
(u(x+ w, t)− u(x, t))2 dtdx . wα

for α ∈ [0, 25).

ad c2) We split the proof into an estimate for w ≤ 1 and an estimate for w ≥ 1. For

w ≤ 1 we have by Jensen’s inequality

L−1
∫ L

0

∫ L

0
|uw|dtdx ≤

(
L−1

∫ L

0

∫ L

0
u2 dtdx

)1/2

≤ w−1/2

(
L−1

∫ L

0

∫ L

0
u2 dtdx

)1/2

.

Due to Lemma 3.17, for u with L−1E(u) ∼ −1 the energy contributions are sepa-

rately bounded. Hence we obtain

L−1
∫ L

0
|uw|dx . w−1/2.

We now turn to the case w ≥ 1. By linearity we have that

∂tuw − (∂x(
1
2u

2))w = σw.

Therefore by the triangle inequality we have

L−1
∫ L

0
|∂tuw|dx . L−1

∫ L

0
|(∂x(12u2))w|dx+ L−1

∫ L

0
|σw|dx. (3.68)

We now appeal to the estimates

L−1
∫ L

0
|(∂x(12u2))w|dx . w−1L−1

∫ L

0
u2 dx (3.69)

and

L−1
∫ L

0
|σw|dx . w−1/2

(
L−1

∫ L

0

∣∣|∂x|−1/2σ
∣∣2 dx

)1/2

. (3.70)
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3. Analysis of the reduced energy for large external field

We first turn to (3.69). By definition,

∫ L

0
|(∂xu2)w|dx =

∫ L

0

∣∣∣w−1
∫ w

2

−w
2

∂xu
2(x+ x′)dx′

∣∣∣dx

= w−1
∫ L

0
|u2(x+ w

2 )− u2(x− w
2 )|dx

≤ w−1
∫ L

0
u2 dx.

We now turn to (3.70), which is a standard convolution estimate. We start with

Jensen’s inequality in the form of

L−1
∫ L

0
|σw|dx ≤

(
L−1

∫ L

0
|σw|2 dx

)1/2

. (3.71)

By definition,

σw(x, t) =
∫

R

ηw(y) σ(x− y, t)dy,

where ηw(x) := w−1η( x
w ) and η(x) := I([− 1

2 ,
1
2 ])(x). We appeal to the Fourier se-

ries F (σ)(ξ) = 1√
L

∫ L
0 σ(x) e−i xξ dx, ξ ∈ 2πL−1Z, of σ and to the Fourier transform

F (ηw)(ξ) =
∫

R
ηw(x) e−i xξ dx, ξ ∈ R, of ηw:

∫ L

0
|σw|2 dx = ∑

ξ∈2πL−1Z

|F (σw)|2(ξ)

= ∑
ξ∈2πL−1Z

|F (ηw)(ξ)|2|F (σ)(ξ)|2

= ∑
ξ∈2πL−1Z

|F (η)(w ξ)|2|F (σ)(ξ)|2. (3.72)

We explicitly calculate the Fourier transform of η:

F (η)(ξ) =
∫

R

η(x) e−i x ξ dx =
∫ 1

2

− 1
2

e−i x ξ dx = 2 sin( ξ
2).

Hence we have

|F (η)(ξ)| . 1

1+ |ξ| .
1

|ξ|1/2 .

Thus (3.72) turns into

∫ L

0
|σw|2 dx .

1

w ∑
ξ∈2πL−1Z

1

|ξ| |F (σ)(ξ)|2 =
1

w

∫ L

0

∣∣|∂x|−1/2σ
∣∣2 dx.

Now (3.70) follows from the last estimate together with (3.71).
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3.2. Proofs

In order to control the r.h.s. of (3.68), we collect estimates (3.69) and (3.70) and

use again that for u with L−1E(u) ∼ −1 the energy contributions are separately

bounded by Lemma 3.17 to obtain

L−1
∫ L

0
|∂tuw|dx . w−1 + w−1/2

w≥1

. w−1/2. (3.73)

Hence we have for w ≥ 1

L−1
∫ 1

0

∫ L

0
|uw(x, t)|dx dt

u(·,0)=0
= L−1

∫ 1

0

∫ L

0
|
∫ t

0
∂tuw(x, t

′)dt′|dx dt

≤ L−1
∫ 1

0

∫ L

0

∫ 1

0
|∂tuw(x, t′)|dt′ dx dt

= L−1
∫ 1

0

∫ L

0
|∂tuw|dx dt

(3.73)

. w−1/2. (3.74)

3.2.3. Compactness

Proposition 3.18. Let L ∼ 1 be fixed and {uε}ε↓0 be a sequence such that L−1Eε(uε) ∼
−1. Then {uε}ε↓0 is compact in L2((0, L)× (0, 1)).

Proof of Proposition 3.18. The proof is a classical compensated compactness argument,

in the sense that the strong equi-continuity properties in x compensate the weak

equi-continuity in t. To start, let us first list some direct consequences of the results

in the previous section.

Let {uε}ε↓0 be a sequence such that

L−1Eε(u
ε) ∼ −1. (3.75)

We have due to Lemma 3.17 that the sequence {uε}ε↓0 is bounded in L2((0, L) ×
(0, 1)). Therefore, after extracting a subsequence we may assume that there exists

u0 ∈ L2((0, L)× (0, 1)) such that :

uε ε↓0−−⇀ u0 weakly in L2. (3.76)

Hence our goal is to show that this weak convergence is in fact a strong convergence.

Let F denote the Fourier series w.r.t. x and the Fourier transform w.r.t. t. More

precisely, for any L-periodic g(x, t) we define

F (g)(ξ, θ) :=
1√
L

∫ L

0

∫

R

g(x, t) e−itθe−ixξ dtdx,

85



3. Analysis of the reduced energy for large external field

where ξ ∈ 2π
L Z and θ ∈ R denote the dual variables to x and t, respectively. Since

uε is L-periodic in x with L ∼ 1 and supported in t ∈ [0, 1] we automatically have

|F ((uε)2)(ξ, θ)| .
∫ 1

0

∫ L

0
(uε)2 dx dt . 1. (3.77)

By (3.76), we have

F (uε)
ε↓0−→ F (u0) pointwise.

Therefore, we have for all R > 0
∫

BR(0)
|F (uε)−F (u0)|2 dξ dθ

ε↓0−→ 0, (3.78)

where BR(0) = {(ξ, θ) ∈ 2π
L Z × R | |θ| < R and |ξ| < R} and

∫
·dξ dθ denotes the

integration w.r.t. ξ and the discrete summation w.r.t. θ. Hence for strong convergence

in L2, it is enough to show that there is no concentration in the high frequencies, i.e.,

∫

( 2π
L Z×R)−BR(0)

|F (uε)|2 dξ dθ
R↑∞−−→ 0 (3.79)

uniformly in ε, cf. [Peg85].

Before embarking on (3.79), we note that

∫ 1

0

∫ L

0

∣∣|∂x|s uε
∣∣2 dx dt . 1 (3.80)

uniformly in ε for some s > 0. Indeed, since L ∼ 1 we have by Theorem 3.4 c1) that

∆−α
∫ 1

0

∫ L

0
|(uε)∆ − uε|2 dx dt . 1

for α ∈ [0, 25) uniformly in ε. Therefore for 0 < r < 1

∫ 1

0

∫ 1

0

1

∆2/5+r

∫ L

0
|(uε)∆ − uε|2 dx d∆dt . 1

uniformly in ε, as well as for 1 < r < ∞

∫ 1

0

∫ ∞

1

1

∆r

∫ L

0
|(uε)∆ − uε|2 dx d∆dt . 1

uniformly in ε. This entails

∫ 1

0

∫ ∞

0
∆−2s

∫ L

0
|(uε)∆ − uε|2 dx 1

∆
d∆dt . 1

for s ∈ (0, 15) uniformly in ε. We once again refer to the characterization of fractional

Sobolev spaces in [LM68, p.59] to deduce (3.80).
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3.2. Proofs

We now turn to the proof of (3.79). We will use the identity σε = −∂x(
1
2(u

ε)2) + ∂tu
ε

to provide for control of oscillations in t via its Fourier transformed version, namely

−i θ F (uε) = F (σε)− 1
2 i ξF ((uε)2). (3.81)

Moreover, we have by assumption due to Lemma 3.17 that

∫ 1

0

∫ L

0

∣∣|∂x|−1/2σε
∣∣2 dx dt ε↓0−→ 0. (3.82)

Therefore we have for M2 ≫ M1 ≫ 1

∫

{|ξ|>M1}∪{|θ|>M2}
|F (uε)|2 dξ dθ

≤
∫

{|ξ|>M1}
|F (uε)|2 dξ dθ +

∫

{|ξ|≤M1}∩{|θ|>M2}
|F (uε)|2 dξ dθ

(3.81)

.
∫

{|ξ|>M1}
|F (uε)|2 dξ dθ +

∫

{|ξ|≤M1}∩{|θ|>M2}
|F (σε)|2

|θ|2 dξ dθ

+
∫

{|ξ|≤M1}∩{|θ|>M2}
1

|θ|2 |ξ|
2|F ((uε)2)|2 dξ dθ

≤ 1

M2s
1

∫

{|ξ|>M1}
|ξ|2s|F (uε)|2 dξ dθ dξ dθ

+
M1

M2
2

∫

{|ξ|≤M1}∩{|θ|>M2}
|F (σε)|2

|ξ| dξ dθ

+
∫

{|ξ|≤M1}∩{|θ|>M2}
1

|θ|2 |ξ|
2 dξ dθ (sup |F ((uε)2)|)2

.
1

M2s
1

+
M1

M2
2

+
M3

1

M2
,

where the last inequality is a consequence of (3.80),(3.82), and (3.77). With the choice

M1 = M1/4 and M2 = M, this implies

∫

{|ξ|>M1}∪{|θ|>M2}
|F (uε)|2 dξ dθ .

1

Ms/2
+

M1/4

M2
+

M3/4

M

M↑∞−−−→ 0

uniformly in ε, which yields (3.79).

Proof of Theorem 3.5. We give a proof by contradiction. Let 0 < ε ≪ 1 and L ∼ 1.

Assume there exists u with L−1E(u) ∼ −1 such that for any u∗ with

−∂x
1
2(u

∗)2 + ∂tu
∗ = 0

distributionally

L−1
∫ L

0

∫ 1

0
(u− u∗)2 dtdx & 1. (3.83)
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3. Analysis of the reduced energy for large external field

Hence, there exist sequences {Lε}ε↓0, {uε}ε↓0 with Lε bounded and L−1
ε E(uε) ∼ −1

such that uε is not close to a weak solution to Burgers’ equation. Rescaling according

to x = Lε
L x̂ and u = Lε

L û, we may w.l.o.g. assume that Lε = L. On the other hand,

by Proposition 3.18, {uε}ε↓0 is compact in L2 and we claim that after extracting a

subsequence, {uε}ε↓0 converges in L2 to a weak solution of Burgers’ equation which

is in contradiction to the assumption. Indeed, if we denote the L2-limit of {uε}ε↓0 by
u0 then {(uε)2}ε↓0 converges to (u0)2 in L1. Therefore, like in (3.82) we have

∫ 1

0

∫ L

0

∣∣|∂x|−1/2σε
∣∣2 dx dt ε↓0−→ 0,

and we obtain as desired

−∂x
1
2(u

0)2 + ∂tu
0 = lim

ε↓0

(
−∂x

1
2(u

ε)2 + ∂tu
ε
)

= lim
ε↓0

σε = 0 distributionally.
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4

Numerical simulation of the reduced energy functional

In this chapter, we address the numerical simulation of the reduced energy func-

tional (1.14). The aim is to numerically explore the energy landscape with its local

minima, in particular the deformation of the landscape under the variation of the

external field. We start with a short introduction of the important features of the

discretization; for a detailed presentation, see [Ste06] where the scheme was intro-

duced. Afterwards, we explain the algorithms used to compute solution branches

of stationary states, namely path-following techniques and branch switching. The

simulations show:

• There exists a branch of stationary points connecting the ŵ∗-periodic unstable
mode to the concertina pattern. The bifurcation is subcritical. There exists

a turning point after which the branch is stable (under perturbations of pe-

riod ŵ∗).

• The ŵ∗-periodic concertina is unstable under perturbations of period Nŵ∗. It
turns out that the symmetries of the pattern lead to multiple bifurcations which

can be systematically studied and computed with the help of representation

theory.

• There is a cascade of secondary instabilities at which the pattern coarsens as

the field increases.

At the end of this chapter, in Section 4.10, we provide a list of the parameters which

are chosen in the numerical simulations. For notational convenience, we drop the ·̂
related to the rescaling of the reduced energy in this section, cf. (1.14).

4.1. Discretization of the reduced energy functional

The magnetization m2 is approximated on a uniform Cartesian grid of step size

h1 =
L
N1

and h2 =
1
N2

w.r.t. x1 and x2, respectively:

Mj,k ≈ m2 (j h1, k h2) , j ∈ {0 . . . ,N1 − 1}, k ∈ {0, . . . ,N2 − 1}.
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4. Numerical simulation of the reduced energy functional

The discrete magnetization is N1-periodic w.r.t. j, cf. Figure 4.1. The finite-difference

discretization of the energy is straightforward in case of exchange, Zeeman, and the

anisotropy energy. In case of the stray-field energy, one has to choose an appropriate

approximation of the non-linearity and of the non-locality which can be computed

at low cost avoiding the assembling and application of dense matrices.

One can think of several different discretizations of the non-linearity σ = − 1
2∂1m

2
2 +

∂2m2, all of the same order. Our choice is motivated by the aim that the shear-

invariance (3.8), i.e., the invariance of the energy under the transform

x1 = s x2 + x̃1, x2 = x̃2, m2 = m̃2 − s, (4.1)

is inherited by the discrete scheme. We therefore choose the following discretization

of the non-linearity which is compatible with the shear-invariance

Σj,k = − 1
2h1

1
2

((
Mj+1,k+1+Mj+1,k

2

)2
−
(

Mj−1,k+1+Mj−1,k

2

)2)
+ 1

h2
(Mj,k+1 − Mj,k).

Figure 4.1 depicts the spatial extent of the difference stencil.
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Figure 4.1.: Discrete approximation of the magnetization on the uniform grid.

In case of the non-locality, we use that the H−1/2-norm can be represented as the

Dirichlet energy of a potential u, which is the harmonic extension on [0, L)× (0, 1)×
R with Neumann data σ at [0, L)× (0, 1), i.e.,

1
2

∫ L

0

∫ 1

0
||∂1|−1/2σ|2 dx′ =

∫ L

0

∫ 1

0

∫

R

|∇u|2 dx = −
∫ L

0

∫ 1

0
u(x3 = 0) σ dx′,

where the potential u : [0, L)× (0, 1)× R → R satisfies

−(∂21 + ∂23)u = 0 x3 6= 0 and [∂3u](x3 = 0) = σ,

cf. (1.16). We discretize this equation w.r.t. x1 and x2:

−Uj+1,k(x3) + 2Uj,k(x3)−Uj−1,k(x3)

h21
− ∂23Uj,k(x3) = 0 for x3 6= 0

[∂3Uj,k](x3 = 0) = σ.
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4.1. Discretization of the reduced energy functional

The application of the Discrete Fourier Transform (DFT) w.r.t. j turns the Neu-

mann problem into an ordinary differential equation w.r.t. x3 which can be explicitly

solved. We obtain the discrete counterpart to the Fourier multiplier |k1|−1/2 in the

continuous case:

|k1|−1/2  K(l)−1/2 = ( 2
h1
sin( πl

N1
))−1/2 l ∈ {0, . . . ,N1 − 1}. (4.2)

The DFT, denoted by F , is normalized in the way that 1
N1
F̄F is the identity, namely

F (X)k =
N1−1

∑
l=0

e
−i 2π k l

N1 Xl and F̄ (Y)l =
N1−1

∑
k=0

e
i 2π l k

N1 Yk,

where X and Y denote some vectors of length N1. The stray-field energy is thus

approximated by

1
2

∫ L

0

∫ 1

0
||∂1|−1/2σ|2 dx′ ≈ 1

2h1h2
1
N1 ∑

l,k

K(l)−1|F (Σ)l,k|2.

We note that the application of the Fast Fourier Transform (FFT) allows a fast evalu-

ation of the non-local term in the simulations.

The discrete energy functional is thus given by:

Eh
0(M) = h1 h2 D1M

TD1M+ 1
2 h1 h2

1
N1
(F̄ (Σ))TK−1F (Σ)

− hext h1 h2 MTM+ Q h1 h2 (M.2)TM.2,

where the operator D1 denotes the forward difference, i.e., D1 Mj,k =
(Mj+1,k−Mj,k

h1

)
j,k
,

and where M.2 denotes the componentwise square. The diagonal matrix K repre-

sents the discrete Fourier multiplier K(l), cf. (4.2). The gradient of the energy is

given by

DMEh
0(M) = 2 h1 h2 DT

1 D1M+ h1 h2
1
N1

DMΣTF̄ (K−1F (Σ))

− 2hext h1 h2 M+ 4Q h1h2 M.3.

The Hessian applied to some test vector V is given by

D2
MEh

0(M)(V) = 2 h1 h2 DT
1 D1V

+ h1 h2
1
N1

DMΣTF̄ (K−1F (DMΣ(V))) + h1 h2
1
N1

D2
MΣ(V)TF̄ (K−1F (Σ))+

− 2hext h1 h2 V + 12Q h1 h2 V.M.2.

Hence, the matrix-vector product can be computed without assembling the Hessian,

which is called matrix-free multiplication. In particular, the assembling of the dense

matrix F̄K−1F can be circumvented.

The discretization was validated in [Ste06], where the convergence of the scheme, as

the grid size tends to zero, was numerically confirmed. Moreover, it was shown that

the numerical solution coincides with the asymptotic solution close to the primary

bifurcation, see Section 6.1.
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4. Numerical simulation of the reduced energy functional

4.2. Implementation and parallelization

The implementation is based on the C-library PETSc (Portable, Extensible Toolkit

for Scientific Computation), [BBG+09]. It provides the necessary data structures

for vectors and matrices, and Krylov subspace methods for the solution of linear

equations. All modules are also available in a parallel implementation which is

based on the MPI (Message Passing Interface) standard. For the evaluation of the

DFT, we use the implementation of the FFT in the C-library FFTW, [FJ05]. The

iterative linear solvers (Krylov subspace methods) in PETSc are compatible with

matrix-free implementations.

The stray-field energy in the reduced energy functional is non-local w.r.t. only one

space dimension. This can be used in a parallel implementation of the basic alge-

braic operations in the following way: The computational domain is subdivided in

horizontal stripes which are distributed to the individual processors. We are aware

of the fact that this parallelization scheme cannot lead to an optimal scaling in the

limit: The length of the interfaces of n sub-domains, in case of an anisotropic, strip-

like decomposition, scales like ∼ n, while in case of an isotropic decomposition the

total length of the interface scales like ∼ n1/2. Note that the idle time of the proces-

sors is negligible since the computational effort is uniformly distributed among the

processors. For standard grid sizes (e.g., N1 = N2 = 256) a ring of 4 workstations

leads for example to a speed-up of a factor of approximately 3.5.

4.3. Path following

Our aim is the computation of stationary points, in particular (local) minimizers,

of the discrete energy functional for varying external field. For the computation

of minimizers, iterative descent algorithms can be used. However, if the energy

landscape is flat – in particular close to a bifurcation – these algorithms turn out to

be slow. In such regions it is necessary to employ so-called path-following methods,

cf. [DH08, Geo01]. Within that context we interpret the Euler-Lagrange-equation

DMEh
0(M, hext) = 0

for varying external field hext as a parameter-dependent equation

F(x,λ) = 0, i.e., F = DMEh
0 , and (x,λ) = (M, hext).

The aim is to iteratively approximate a branch of solutions (x(s),λ(s)), where s is a

suitable parameterization of the branch, e.g. arc length.

Tangent path-following algorithm. Consider an approximate solution (x0,λ0) of

the parameter-dependent equation and in addition an approximate tangent t0 =
(tx0 , t

λ
0 ) to the branch of solutions in that particular point. The path-following consists

of the iteration of the following two steps for n = 0, . . . ,Nmax, cf. Figure 4.2:
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4.3. Path following

1. Predictor. Choose a step size ηn > 0 and set

pn+1 = (xn,λn) + ηntn.

2. Corrector. The next point on the branch (xn+1,λn+1) is computed as a solution

to the nonlinear equation




F(xn+1,λn+1)(
pn+1 − (xn+1,λn+1)

)T
tn


 = 0.

The next approximate tangent can be obtained as the normalized solution tn+1 =
t

||t||
to the equation

(
DF(xn+1,λn+1)

tTn

)
t =

(
0

1

)
, (4.3)

where we use that 0 = d
dsF(x(s),λ(s)) = DF(x(s),λ(s))t(s). The augmentation

tTn t = 1 ensures that the orientation is preserved during the path-following proce-

dure.

(xn,λn)

tn

pn+1

(xn+1,λn+1)

Figure 4.2.: Tangent predictor-corrector continuation method.

Inexact Newton method. We use the Newton method to solve the non-linear equa-

tion in the corrector step. To solve the linearized equation within the Newton

method, we make use of the block structure of the Jacobian which contains a sym-

metric block of codimension 1 given by the Hessian of the energy:

DF =

(
HessEh

0(M, hext) −2M

−tM −thext

)
.

Note that the solution of an equation of the form

(
A b

cT d

)(
y1
y2

)
=

(
z1
z2

)
, (4.4)
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4. Numerical simulation of the reduced energy functional

where A is a quadratic block of codimension 1, can be represented as

y2 =
z2 − cTA−1z1
d− cTA−1b

, y1 = A−1z1 − y2A
−1b. (4.5)

On the basis of the latter representation we can make use of the symmetry of the

Hessian, i.e., the quadratic block A. Although it is necessary to solve two linear

equations, related to A−1z1 and A−1b, to obtain (y1, y2) , this approach is advan-

tageous compared to an iterative scheme directly applied to the Jacobian DF. We

make use of the symmetry and apply the conjugated-gradient (cg) method in or-

der to invert the Hessian. Note that a matrix-free implementation of the Hessian is

compatible with the application of the cg-method. Observe that the tangent in (4.3)

can be computed on the basis of a similar decomposition, too. In the literature, the

decomposition (4.4) is known as the Schur method.

The scheme described above falls into the class of inexact Newton methods since the

linearized equation is only solved approximately via the cg-iteration. Provided that

the residuum is sufficiently small, the quadratic convergence of the Newton iteration

is not affected, see [GK99, Algorithm 10.1 and Proposition 10.2] and [Ste06].

4.4. Detection of bifurcation points and branch switching

In this section, we present a numerical method for the detection of bifurcations and

branch-switching. A necessary criterion for a simple bifurcation in s = s∗ is that the

determinant

det

(
DF(x(s),λ(s))
(tx(s), tλ(s))T

)

changes its sign in s = s∗. For reasons of computational complexity it is of course

not possible to use the determinant as an indicator function for a bifurcation. We

pick up an approach which is presented in [Geo01]:

Theorem 4.1 ([Geo01]). Let (x(s∗),λ(s∗)) be a simple bifurcation point, let the vector b

be acute, i.e., not orthogonal, to the kernel of

(
DF(x(s∗),λ(s∗))
(tx(s∗), tλ(s∗))T

)T

and the vector c be acute to the kernel of
(
DF(x(s∗),λ(s∗))
(tx(s∗), tλ(s∗))T

)
.

Then τ(x(s)) defined via


(
DF(x,λ))
(tx, tλ)T

)
b

cT 0



(

ξ

τ

)
=

(
0

1

)
(4.6)

changes sign at s = s∗.
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4.5. Bifurcations with symmetries

The proof is a direct consequence of Cramer’s rule.

Observe that

τ = − 1

cT
(
DF(x,λ))
(tx, tλ)T

)−1

b

, ξ = −τ

(
DF(x,λ))
(tx, tλ)T

)−1

b.

Hence the computation of τ and ξ can again be carried out with the help of the Schur

method, cf. (4.4) and (4.5), applied to the matrix (DF, tT). Note that ξ is orthogonal

to the current tangent. Hence it can be used to obtain a predictor for the bifurcating

branch and thus as the first step in the path following of the bifurcating branch.

Let us emphasize that the strategy above only works in case of simple bifurcation

points. Symmetries of the energy and the primary solution branch can lead to mul-

tiple bifurcations as we are going to discuss in the following section. Luckily, the

multiple bifurcations which occur in case of the concertina pattern can be reduced

to the computation of simple bifurcations. This allows us to develop and apply

modifications of the methods discussed above.

4.5. Bifurcations with symmetries

In this section, we want to discuss the symmetries of the concertina pattern which

play an important role for the understanding of the secondary bifurcations. We

refer the reader to the two text books [GS02] and [Hoy06] for a brief introduction

into bifurcation problems with symmetries. In the presence of symmetries, one

cannot expect to observe the generic case of a one-dimensional bifurcation since the

symmetries can lead to higher degeneracies. On the other hand, a precise knowledge

of the symmetries in general allows to characterize the bifurcations which can occur

and hence to identify the generic bifurcations in the presence of symmetries. In

case of the concertina pattern, it is possible to reduce the multiple bifurcations to

simple bifurcations within a certain symmetry class. We start with the identification

of the symmetries of the energy functional. We note that most of the statements are

discussed on the basis of the reduced rescaled energy but can be correspondingly

adapted to the discrete energy.

Lemma 4.2. The reduced energy functional (1.14) is invariant under the following types of

symmetries, namely

translation E0(m2(x1, x2)) = E0(m2(r+ x1, x2)), r ∈ [0, L),

rotation E0(m2(s+ x1, x2)) = E0(m2(s− x1, 1− x2)), s ∈ [0, L),

reflection E0(m2(t+ x1, x2)) = E0(−m2(t− x1, x2)), t ∈ [0, L).

They form a group (by composition), whose generator is given by translations with r ∈ [0, L),
rotation w.r.t. (0, 12), i.e., s = 0, and reflection at the x2-axis, i.e., t = 0.
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4. Numerical simulation of the reduced energy functional

Remark 4.3. It is easily seen that the energy is invariant under the transforms in Lemma

4.2. Another symmetry is given by E0(m2(x1, x2)) = E0(−m2(x1, 1− x2)).

In case of the discrete energy similar relations hold. Of course, one has to require that

the parameters are chosen from the discrete set, more precisely r, s, t ∈ Nh1. The discrete

magnetization can be translated, rotated and reflected on the Cartesian grid.

Although the Euler-Lagrange equation inherits the invariance of the energy under

the symmetries, solutions clearly need not to be invariant under these symmetries.

The concertina pattern inherits a discrete subgroup of symmetries generated by

translation by an integer multiple of its period, rotation around the center of a quad-

rangular domain and reflection w.r.t. a vertical walls under a change of sign of m2,

cf. Figure 4.3.

-

Figure 4.3.: Reflectional and rotational symmetry of one fold of the concertina pattern.

Generic bifurcations in the presence of symmetries. To apply the abstract frame-

work for the identification of the generic bifurcations in the presence of symmetries

as described in [GS02], it is necessary to identify the symmetries as linear representa-

tions on the vector space of admissible magnetizations. It turns out that generically

the induced representation of the symmetries of the primary solution branch on the

kernel of the Hessian in the bifurcation is irreducible. The central theorem, the so

called Equivariant-Branching Lemma, entails the existence of bifurcating branches

using a symmetry-preserving Liapunov-Schmidt reduction. An additional generic-

ity result finally allows the reduction of the multiple bifurcation to simple bifurca-

tions (on fixed-point subspaces of the isotropy subgroups), see below. We need the

following definitions:

Definition 4.4. Let Γ be a finite group and V be a vector space. A linear representation

of Γ is a homomorphism ̺ : Γ → O(V).

With an abuse of notation we write γ v = ̺(γ)(v) for all γ ∈ Γ and v ∈ V. We have

to generalize the notion of invariance:

Definition 4.5. Let Γ be a linear representation over the vector space V and F : V×R → V

a parameter-dependent map. Then F is Γ-equivariant provided F(γ v,λ) = γF(v,λ) for
all γ ∈ Γ and v ∈ V. Similarly, A ∈ GL(V) is equivariant provided γA = Aγ for all

γ ∈ Γ.
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4.5. Bifurcations with symmetries

Since E0 is Γ-invariant, we have that the gradient DE0 is Γ-equivariant. Moreover, if

m2 is Γ invariant, then the Hessian in m2, i.e., D
2E0(m2), is equivariant, too. Both

statements are a direct consequence of the application of the chain rule.

Consider now a stationary concertina pattern of some period w, which we think of

as a solution to the Euler-Lagrange equation on the Nw-periodic domain for N ∈ N.

Due to translation invariance, we can assume that the center of a vertical wall is

located at x1 = 0. We are interested in bifurcations where we allow for Nw-periodic

perturbations. The group action generated by rotation in (w4 , 0), reflection at x1 = 0,

and translation by w, cf. Figure 4.4, on the space of Nw-periodic perturbations is a

linear representation of the group D2N. Here D2N denotes the dihedral group, i.e.,

the symmetry group of the regular polygon with N edges. To see this, we refer to

Figure 4.4 which depicts the action of D2N for N = 2.

D′ C′

B′A′

D C

BA

-

D

C

B A

A B′

C′D

D C′

A′B

C′ D

AB′

Figure 4.4.: Symmetry transforms on the 2w-periodic domain which leave the w-periodic

pattern invariant: The left image in the top row shows two copies of the 2w-

periodic domain. Rotation (red), reflection under change of sign m2  −m2

(green), and translation by w (orange) of the 2w-periodic concertina are repre-

sentations of the symmetry group of the square and correspond to reflections at

the symmetry axes of the square and rotation by 180◦, respectively. The images

in the bottom row show the result of the symmetry transforms restricted to the

2w-periodic domain on the level of the location of the edges. Note that due

to periodicity, the rotations w.r.t. the center of the bright or the dark facets are

equivalent. Similarly, reflections w.r.t. the first and third or second and fourth

vertical wall are equivalent.

Due to the invariance of the magnetization m2, the kernel of the Hessian is a D2N-

invariant subspace. Therefore we obtain an induced representation of D2N on the
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kernel of the Hessian. Of course, the elements in the kernel need not to be pointwise

invariant. We need the following definition:

Definition 4.6. Let Γ be a linear representation on V. The representation is irreducible

if the only invariant subspaces are {0} and V. Let C ⊂ GL(V) be the set of commuting

linear invertible maps, i.e., if A ∈ C then γA = Aγ for all γ ∈ Γ. The representation is

absolutely irreducible if C contains only scalar multiples of the identity.

Note that for a complex representation both properties are equivalent.

In [GSS88, Proposition 3.2] it is stated that the induced representation on the kernel

is generically absolutely irreducible. This is not true for a bifurcation in the varia-

tional setting. In fact, the perturbation which is constructed in [GSS88] for a general

parameter-dependent equation with symmetries – in order to prove the property of

being absolute irreducible – is not compatible with the variational structure. It can-

not be integrated in order to obtain a perturbation of the energy. Nevertheless, one

can construct an integrable perturbation of the bifurcation equation which entails

that the representation on the kernel is generically irreducible.

Representations of D2N. In order to classify the possible bifurcations, we have to

identify the irreducible representations of D2N. The absolute irreducible represen-

tations are well known. In fact, there are four one-dimensional representations and

N− 1 two-dimensional representations of D2N, cf. [Ser77, Section 5.3] . Both the one-

and the two-dimensional representations can be realized as real representations over

R and R2, respectively. Hence, in case of the dihedral group the irreducible repre-

sentations coincide with the absolutely irreducible representations. Let us come

back to the example of the w-periodic concertina as a solution on the 2w-periodic

domain, i.e., N = 2. Denote by τ and ̺ the generators of D4 where we think of τ

as a reflection and of ̺ as a rotation by π
2 , respectively. In case of D4 the irreducible

representations are up to equivalence (i.e., conjugation or change of basis) given by:

• Four one-dimensional representations: Trivial representation, i.e., γ(τ) = 1,

γ(̺) = 1; γ(τ) = 1, γ(̺) = −1; γ(τ) = −1, γ(̺) = 1; γ(τ) = −1, γ(̺) = −1.

• One two-dimensional representation: Natural representation, i.e., γ(τ) =(
1 0

0 −1

)
and γ(̺) =

(
0 −1

1 0

)
.

Generalized Liapunov-Schmidt reduction. The Liapunov-Schmidt reduction al-

ways allows to reduce the analysis of a bifurcation of a parameter-dependent equa-

tion (infinite dimensional) to an analysis of the bifurcation of a finite dimensional

parameter-dependent equation defined on the kernel of the Hessian:

f : kerHessE0(m2, hext)× R → kerHessE0(m2, hext).

In particular, the critical point can be assumed to be (0, 0). As shown in Section 1.3

in [GS02], the reduction can be performed in such a way that the symmetries of the
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4.5. Bifurcations with symmetries

system are preserved. Using the generalized Liapunov-Schmidt reduction, we are

now ready to state and to apply the basic general existence theorem for symmetry

breaking branches, the so called Equivariant-Branching Lemma.

Theorem 4.7. [GS02, Lemma 1.31] Let Γ ⊂ O(n) be a finite group.

1. Assume Γ acts absolutely irreducible on V = Rn.

2. Let f : Rn × R → Rn be Γ-equivariant, i.e., f (γv,λ) = γ f (v,λ), which implies

f (0,λ) = 0,

D f (0,λ) = c(λ) id .

3. Assume c(0) = 0 (bifurcation occurs) and c′(0) 6= 0 (eigenvalue crossing condition).

4. Assume Σ ⊂ Γ is an axial subgroup, i.e., a subgroup s.t. dim{v ∈ V | γv = v for all

γ ∈ Σ} = 1.

Then there exists a unique branch of solutions to f (v,λ) emanating from (0, 0) where the

symmetry of the solutions is Σ.

Theorem 4.7 is of importance because the axial subgroups of D2N are easy to iden-

tify. In case of the two-dimensional representations (which numerically turn out to

be the relevant ones), there are two conjugacy classes of axial subgroups, cf. Figure

4.5. They correspond to configurations which are either invariant under rotation

w.r.t. the center of a facet of the fold or to configurations which are invariant under

reflection at a vertical wall with change of sign m2  −m2. As shown in [GS02],

the application of the following theorem entails that the solutions which are guaran-

teed by the Equivariant-Branching Lemma are generically the only solutions of the

bifurcation equation:

Theorem 4.8. [GS02, Theorem 2.24] Let f : C → C be Dn-equivariant. Then there exist

p, q : R2 → R such that

f (z) = p(u, v)z+ q(u, v)z̄n−1, (4.7)

where u = zz̄ and v = zn + z̄n. Moreover, any f of the form (4.7) is Dn-equivariant.

Theorem 4.8 characterizes Dn-equivariant functions. In order to apply Theorem 4.8

we have to identify the action of Dn on C with the standard action on R2. For our

case of a variational bifurcation equation we note that

∇× f = 0 is equivalent to npv − qu = 0. (4.8)

Clearly, the necessary condition for the bifurcation is that p(0) = 0.

We want to show that any solution of the equation f = 0 generically corresponds to

a solution given by Theorem 4.7. To see this, we distinguish three types of solutions:
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4. Numerical simulation of the reduced energy functional

• The first type is the trivial equilibrium solution z = 0.

• The second type of solutions corresponds to z parallel to z̄n−1 which entails

that Im zn = 0. Notice that Im zn = 0 implies that z is in the fixed-point

subspace of some axial subgroup. The solutions in the second case thus corre-

spond to the solutions given by the Equivariant-Branching Lemma.

• Finally, let us assume that z is not parallel to z̄n−1 in which case p = q = 0.

However, generically q(0) 6= 0, even in the variational setting. In fact, one can

perturb q by q+ ε which preserves

– the Dn-equivariance,

– the variational structure, i.e., relation (4.8),

– and, obviously, the necessary condition for a bifurcation, i.e., p(0) = 0.

Hence, by continuity, there are generically no solutions such that p = q = 0.

Figure 4.5.: Reflections of the square, each corresponding to an axial subgroup of D4.

4.6. Adaption of numerical algorithms

In the last section it was shown that multiple bifurcations related to symmetries can

be reduced to simple bifurcations on the fixed-point subspace of an axial subgroup.

We now show how this can be used for an adaption of the numerical algorithms

for the bifurcation detection and branch switching discussed in Section 4.4. The

detection of a bifurcation can be realized by choosing the augmentation (4.6) in

Theorem 4.1 from the fixed-point subspace of the axial subgroup. Although the

resulting matrix is rank-deficient, the linear equation restricted to the fixed-point

subspace has a unique solution due to Theorem 4.7 and Theorem 4.8. Note that

iterative methods like the cg-method are oblivious to the degeneracy of the matrix

and produce a solution in the fixed-point subspace if the iteration is started in that

subspace – in particular at 0. Hence, the augmentation by a vector from the fixed-

point subspace together with an iterative solver that leaves the fixed-point subspace

invariant can be used for the detection of the simple bifurcation in the fixed-point

subspace.

Let us now specify how this general approach can be used in the computation of

the multiple secondary bifurcations of the concertina pattern by a specific choice of
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the augmentation. As an example we come back to the secondary bifurcations of

the w-periodic concertina in the class of 2w-periodic configurations. In that case we

choose the augmentation in Theorem 4.1 (up to translation by w
2 which yields an

augmentation in an equivalent fixed-point subspace) as b = c = (v, 0), where v is

the discrete approximation of

v1 = sin
(2πx1

2w

)
sin(πx2) or

v2 = cos
( 2π(x1+

w
4 )

2w

)
sin(πx2).

Note that v1 is invariant under the axial subgroup related to a reflection with change

of sign at the vertical wall located at x1 = 0 whereas v2 is invariant under the

axial subgroup related to a rotation by 180◦ w.r.t. to the quadrangular domain with

center in (w4 ,
1
2). Figure 6.5 (top left) shows the computed secondary branches in

case of 2w∗-periodic perturbations. There are two reflectional and two rotational

symmetric branches (conjugated by a translation by w
2 ) emanating at the secondary

bifurcation at an external field hext ≈ 9. Bifurcation branches in case of 4w∗-periodic
perturbations are shown in the introduction, cf. Figure 1.23. Figure 1.24 and Figure

1.25 display the corresponding configurations along the branches.

4.7. Energy minimization

The simulation of the hysteresis loop relies on the iterative minimization of the en-

ergy, see e.g. Figure 1.29. For the minimization of the energy we use a Newton

method which is globalized using a steepest descent method: The Newton direction

is an energy decreasing direction in the neighborhood of the minimum. Depending

on the starting point of the iteration we therefore us the negative gradient as a de-

scent direction at the beginning and later on switch to the Newton method to speed

up convergence close to the stationary point. Since the energy is to highest order

quartic in M, the line minimization along the gradient can be explicitly computed.

The linearized equation in the Newton algorithm is solved by a conjugate-gradient

iteration, see [GK99, Algorithm 10.1 and Proposition 10.2] and [Ste06].

4.8. Numerical computation of the period of global minimizers

In this section we explain how the global minimizer of the energy density E0
L as a

function of the external field hext is computed. We look for an appropriate scheme

in order to solve the following minimization problem: For given external field hext,

minimize

E0(m2,hext)
w among all w-periodic m2 for 0 < w < ∞. (4.9)

On the discrete level we want to minimize

Eh
0(M,hext)

w among all N1-periodic M ∈ R
N1×N2 and 0 < w < ∞, (4.10)
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where the period of the computational domain is L = w. Note that the discrete

magnetization M does not depend explicitly on the period. Instead, the grid size

h1 = w
N1

depends on w if we fix the number of grid points w.r.t. x1, i.e., N1. This

entails that total derivatives w.r.t. the period – which are required for a numerical

minimization of (4.10) – do not contain partial derivatives of M w.r.t. the period.

More precisely, the first derivative is for example given by

Dw

(Eh
0(M,hext)

w

)
= −Eh

0(M,hext)

w2 +
Dh1

Eh
0(M,hext)

w
1
N1
. (4.11)

Computation of the branch. For the computation of the approximation to the

branch of solutions (M(hext),w(hext), hext) of (4.10), we apply a tangent predictor-

corrector path-following method. In order to apply this iterative method, we need

a good starting point (M0,w0, hext0), i.e., a stationary point which (indeed) belongs

to the minimal branch. For hext close to the critical field h∗ext, we choose the period

of the unstable mode w = w∗ and minimize
Eh
0(M,hext)

w w.r.t. (M,w). The result is

used as a starting point for the tangent predictor-corrector algorithm applied to the

equation

DM,w

(
Eh
0(M,hext)

w

)
= 0,

(for a fixed number of grid points). The result of a simulation is shown in Figure 1.16

in the introduction.

4.9. Computation of derivatives of the energy

In order to compute the marginal stable branch, see Section 1.8.2, we need to com-

pute derivatives of the minimal energy w.r.t. the period w – the outcome of a simula-

tion is amongst others shown in Figure 1.18. A naive approach for the computation

of the second derivative of the minimal energy per period d2

dw2E0(w), where

E0(w) = min
m2 w-periodic

E0(m2,w),

is given by the post-processing via finite differences of the minimal energy per pe-

riod Eh
0(wi) for a set of periods wi. Let us introduce the family of minimizers

mw
2 = argmin

m2 w-periodic

E0(m2,w),

which we assume are differentiable w.r.t. w. A more robust approach makes use of

the following observation:

d2

dw2
E0(w) =

d2

dw2
E0(m

w
2 ) =

d

dw
(Dm2E0∂wm

w
2 + ∂wE0)

= Dm2∂wE0∂wm
w
2 + ∂2wE0,
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where we used that Dm2E0(m
w
2 ) = 0, since by assumption mw

2 minimizes the energy.

In order to numerically compute the second derivatives of the minimal energy per

period given by

d2

dw2
Eh
0(M

w) = Dm2∂wE
h
0∂wM

w + ∂2wE
h
0 ,

we need the quantity ∂wM
w. (Notice that in contrast to the computation of the

period of the global minimizers, Mw depends on the period w due to the implicit

function theorem.) For that purpose we differentiate the Euler-Lagrange equation:

0 =
d

dw
(DMEh

0(M
w)) = HessEh

0(M
w)∂wM

w + (∂wDMEh
0)(M

w).

Hence ∂wM is obtained by solving the latter linear equation. Similar as in (4.11) the

derivative of the energy w.r.t. w amounts to ∂wDMEh
0 = ∂h1DMEh

0
1
N1
.

4.10. Practical issues of the simulations

4.10.1. General remarks

The Newton iteration in the simulation is stopped if the norm of the residuum

drops below a certain threshold ∼ 10−6 to 10−8. We usually observe 3 to 4 steps

of the Newton iteration within the region of quadratic convergence. The necessary

resolution of the walls was investigated in [Ste06]. As soon as the interfaces are

not properly resolved, the iterations usually do not converge which is related to

the fact that the discrete energy is in that case not coercive. Instead of a plot of

the discrete values (e.g. hext-〈m2
2〉1/2-plot) we usually show the linear interpolant for

reasons of a clear presentation. Below, we list the parameters which are chosen in

the numerical simulations. If not stated differently, we neglect uniaxial anisotropy

and polycrystalline anisotropy. The choice of the constant c0, which appears in the

wall energy, is described below in the context of Figure 1.15.

4.10.2. Choice of parameters

Figure 1.11 shows the result of a path-following of the w∗-periodic branch where

we chose N1 = 512 and N2 = 256. We used a uniform step-size η = 0.1. The path-

following procedure was started at the bifurcation point, i.e., (x0,λ0) = (M0, hext0) =
(0, h∗ext), where the M-component of the tangent was chosen as the discretization of

the unstable mode while the field component is zero.

Figure 1.12 shows configurations computed in a path-following of the w∗-periodic
branch where we chose N1 = 512 and N2 = 256. We used a uniform step-size η = 1.

The path-following procedure was started at the bifurcation point.

Figure 1.15 shows the value of the maximum of m2 – computed in the same path-

following process shown in figure 1.12 – compared to the optimal period which was
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obtained from a Matlab minimization of the domain theoretic energy. The constant

c0 = 3.26 in the line-energy density was obtained by a fit of the simulation results

of the one-dimensional energy (2.2) using 4096 grid points on a domain of size w∗
2

where m0
2 varies between 20 and 100, cf. Chapter 2, in particular (2.3).

Figure 1.16 shows the result of the path-following for the computation of the optimal

period as described in Section 4.8 where we chose N1 = 512 and N2 = 256. We used

a uniform step-size η = 0.03.

Figure 1.18 shows a plot of the contour lines of the second derivative of the energy

per period and the first derivative of the energy density. The data results from

a path-following using N1 = N2 = 256 and η = 0.1 of w-periodic branches for

w = (1+ 0.025 n)w∗, n = 0, 1, 2, . . . . The derivatives of the energy and the energy

density are computed as described in the previous section.

Figure 1.19 shows a plot of the contour lines of the second derivative of the energy

per period and the first derivative of the energy density. The data results from a

path-following of w-periodic branches for w = (1+ 0.5 n)w∗, n = 0, 1, 2, . . . using

N1 = 4096, N2 = 256 and η = 0.5. The derivatives of the energy and the energy

density are computed as described in the previous section. The contour lines are

obtained on the basis of an interpolation of the data on an equidistant grid w.r.t. w

and hext.

Figure 1.20 shows a plot of the contour lines of the second derivative of the energy

per period and the first derivative of the energy density. This plot was generated

with the help of a Matlab routine which minimizes the amplitude functional on

an equidistant grid w.r.t. δk1 and δhext. We plot the results using the identification

δw = − 2π
(w∗)2 δk1.

Figure 1.21 shows a plot of the contour lines of the second derivative of the energy

per period and the first derivative of the energy density. Although the magnetiza-

tion is smooth close to the bifurcation, we have to choose a relatively fine grid since

the discrete critical field and the discrete critical anisotropy depend on the number

of grid-points. The data for the reduced energy results from a path-following of

w-periodic branches for w = (1+ 0.005 n)w∗, n = 0, 1, 2, . . . , using N1 = N2 = 512

and η = 0.002. The derivatives of the energy and the energy density are computed

as described in the previous section. The result for the amplitude functional was

generated with the help of a Matlab routine which minimizes the amplitude func-

tional on an equidistant grid w.r.t. δk1 and δhext. The contour lines are plotted using

the identification δw = − 2π
(w∗)2 δk1.

Figure 1.22 shows the result of the bifurcation detection which was computed on

the Nw∗-periodic domain using N1 = 128 and N2 = 128 grid-points. Here η = 0.1

which is the error the secondary critical fields.

Figure 1.23 shows the result of the bifurcation detection where N1 = 256, N2 = 128

and η = 0.1.
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Figure 1.24 and Figure 1.25 show the configurations along the secondary branches

as indicated in Figure 1.23.

Figure 1.26 shows the result of a steepest descent simulation for the 5w∗-periodic
pattern where N1 = 1024 and N2 = 128. The energy is subsequently minimized for

different values of the external field using the previous result as a starting point for

the minimization. The increment in the external field is ∆hext = 0.2.

Figure 1.27 shows a plot of the contour lines of the second derivative of the energy

per period and the first derivative of the energy density. The data results from a

path-following of w-periodic branches for w = (1+ 0.25 n)w∗, n = 0, 1, 2, . . . , using

N1 = 1024, N2 = 128 and η = 0.25. The derivatives of the energy and the energy

density are computed as described in the previous section.

Figure 1.28 shows the result of a path-following of the Nw∗-periodic branch, N =
1, 2, 3, 4, where we chose N1 = 512 and N2 = 64. We used a uniform step-size

η = 0.1. The path-following procedure was started at hext = 12, where the first

stationary point was obtained by an energy minimization.

Figure 1.30 shows the result of an iterative energy minimization including uniaxial

and polycrystalline anisotropy. In that case N1 = 1024, N2 = 128, L = 6w∗, δhext =
0.1. Moreover, we chose Q = 2 × 10−4, δ = 0.02, and ε = 0.0005. Let us note

that ε(d = 5 nm, ℓ = 70µm, t = 20 nm) = 5.2 × 10−4, δ(d = 5nm, ℓ = 70µm,

t = 20nm) = 1.9× 10−2. The variance of the random external field was chosen as

(σ∗)2 = 110.83 – for a motivation of that value see Subsection 7.1.2.

Figure 1.32 shows the result of the path following started at the bifurcation for

N1 = N2 = 256 and η = 0.1.

Figure 1.33 shows the result of the path following started at the bifurcation for

N1 = N2 = 128 and η = 0.2.

Figure 6.5 shows the result of different path-following and branch switching proce-

dures. We always chose N1 = N2 = 256. The step size η was chosen between 0.1 for

the primary branches and 0.02 for the secondary branches.

Figure 6.6: See Figure 6.5 for the description of the simulation of the reduced energy.

The Euler-Lagrange equation of the amplitude functional was explicitly solved in

Mathematica. The obtained data was exported for a discrete set of values of the

external field and plotted in Matlab.

Figure 6.7, see Figure 6.6.

Figure 7.3 shows the result of an iterative energy minimization. In that case N1 =
1024, N2 = 128, L = 6w∗, δhext = 0.1. The variance of the random external field was

chosen as (σ∗)2 = 1.73. The dominant wave number is independent of the specific

choice of σ∗ provided it is sufficiently small so that the linear ripple theory is valid.
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5

Bloch wave analysis

This chapter addresses the relation between the instability of periodic patterns under

long wave-length modulations (Eckhaus instability) and the concavity of the mini-

mal energy per period. This relation is established on the basis of an asymptotic

Bloch wave analysis in Theorem 5.1. The use of Theorem 5.1 is threefold: Together

with the extended bifurcation analysis in Chapter 6 it implies the instability of the

ŵ∗-periodic concertina and explains the deviation of the initially observed experi-

mental period from the period of the unstable mode ŵ∗, cf. Figure 1.20. In conjunc-

tion with the numerical computation of the second derivative of the minimal energy

per period, we can derive the marginal Eckhaus stable state for moderate external

field ĥext also away from the bifurcation, see Section 4.9 and Figure 1.18. Finally, in

combination with the asymptotic analysis on the basis of domain theory we obtain

the scaling of the period of the marginal Eckhaus stable state for large external field

ĥext ≫ 1 in Chapter 2, cf. Figure 1.19.

In Section 5.2 we sketch a generalization of Theorem 5.1 to functionals with an

additional non-linear constraint.

5.1. Main result and proof

Theorem 5.1. Let {m̂ŵ
2 }ŵ be a family of ŵ-periodic stationary points of the reduced energy

functional (1.14) which is differentiable w.r.t. ŵ. Consider infinitesimal perturbations δ̂m2

of Bloch form, i.e.,

δ̂m2 = eiξ x̂1v(x̂1, x̂2), (5.1)

where v : [0, ŵ) × (0, 1) → C is ŵ-periodic in x̂1. Then for small wave numbers, i.e.,

ξ = 2π
N where the integer N ≫ 1, we have that the smallest eigenvalue of the Hessian is

bounded by the second derivative of the minimal energy per period, more precisely

inf
δ̂m2 in (5.1)

Hess Ê0(m̂
ŵ
2 )(δ̂m2, δ̂m2)∫

(0,Nŵ)×(0,1) |δ̂m2|2 dx̂1 dx̂2
/ ξ̂2

d2

dŵ2 (Ê0(m̂
ŵ
2 ))∫

(0,ŵ)×(0,1)(∂̂1m̂
ŵ
2 )

2 dx̂1 dx̂2
.
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5. Bloch wave analysis

Here we denote by f (ξ) / ξ2g that for ξ → 0 it holds that that f (ξ) ≤ ξ2g up to

higher order terms.

Before we step into the proof, let us comment on the result of Theorem 5.1. Consider

a smooth branch of ŵ-periodic stationary points m̂ŵ
2 and let Ê0(ŵ) = Ê0(m̂

ŵ
2 ) be the

corresponding energy. For local energy functionals the geometric interpretation of

concavity immediately leads to a building plan for a suitable destabilizing (finite)

perturbation: By cutting, gluing, and if necessary additional smoothing, one can

construct an inner variation which mimics a wave length modulation, see Figure 5.1.

Re δ̂m2

x̂1

ŵ

2π
ξ

Figure 5.1.: Sinusoidal modulation of a ŵ periodic function.

Not surprisingly, one obtains in case of a local energy functional that the energy of

the modulation is equal to the modulation of the energy (up to higher order terms).

Theorem 5.1 shows that this can be generalized to non-local energies, at least in the

case of sinusoidal modulation functions.

We subdivide the proof of Theorem 5.1 into several steps. In a first step we deter-

mine how Hess Ê0(m̂2)(δ̂m2, δ̂m2) acts as an operator applied to the modulated v. In

particular we have to determine how the non-locality commutes with the modula-

tion. In the case of the reduced stray-field energy, i.e., the non-local operator |∂1|−1/2,

the modulation amounts to a shift of the Fourier symbol |k1|−1/2 |k1 + ξ|−1/2. Af-

terwards we choose a suitable Ansatz for v and use an asymptotic expansion of the

operator to derive that the leading order term in the expansion is related to the sec-

ond derivative of the energy Ê0(ŵ) := Ê0(m̂
ŵ
2 ). The perturbation corresponds to the

infinitesimal variation of an inner variation; for details on the Ansatz we refer to the

paragraph which follows right after the end of the proof of Theorem 5.1.

An analog of Theorem 5.1 can, for example, be proofed for constrained minimization

problems with local energy contributions. Note that the reduced energy functional

can be rewritten to fit into that framework by introducing a second variable. This

approach is sketched in Section 5.2.

Proof of Theorem 5.1. For notational convenience we drop the ·̂.
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Step 1. Consider a modulation perturbation δm2 = eiξx1v(x1, x2), where ξ = 2π
Nw ,

N ∈ N, and where v is w-periodic w.r.t. x1. In this step we will see how the Hessian

HessE0(m2)(δm2, δm2) acts as an operator applied to v. More precisely, we derive

the following formula:

1

N
HessE0(m2)(δm2, δm2)

= 2
∫

(0,w)×(0,1)
|(∂1 + iξ)v|2 dx1 dx2

+
∫

(0,w)×(0,1)

∣∣∣|∂1 + iξ|−1/2(−(∂1 + iξ)(m2v) + ∂2v)
∣∣∣
2
dx1 dx2

+
∫

(0,w)×(0,1)

(
|∂1|−1(−∂1

m2
2
2 + ∂2m2)

)
(−∂1|v|2)dx1 dx2

− 2 hext

∫

(0,w)×(0,1)
|v|2 dx1 dx2. (5.2)

Before we come to the proof of (5.2), let us recall that the Hessian (evaluated on

Nw-periodic perturbations such as δm2 = eiξx1v(x1, x2) as above) is given by:

HessE0(m2)(δm2, δm2)

= 2
∫

(0,Nw)×(0,1)
|∂1δm2|2 dx1 dx2

+
∫

(0,Nw)×(0,1)

∣∣∣|∂1|−1/2(−∂1(m2δm2) + ∂2δm2)
∣∣∣
2
dx1 dx2

+
∫

(0,Nw)×(0,1)

(
|∂1|−1(−∂1

m2
2
2 + ∂2m2)

)
(−∂1|δm2|2)dx1 dx2

− 2 hext

∫

(0,Nw)×(0,1)
|δm2|2 dx1 dx2. (5.3)

Notice that we allow for complex perturbations in order to simplify the notations

in the proof, so that we think of the Hessian as a sesquilinear form – we always

assume that the second argument is the one that is complex conjugated. This also

necessitates the absolute values in (5.2) and (5.3).

In order to obtain (5.2), we have to derive how the modulation commutes with the

local and non-local differential operators w.r.t. the x1-variable; the Zeeman contribu-

tion and ∂2 are obviously oblivious to the modulation. Let us start with the local

operator for which we observe that

∂1(e
iξx1v(x1, x2)) = eiξx1(∂1 + iξ)v(x1, x2),

∂1(e
−iξx1 v̄(x1, x2)) = e−iξx1(∂1 − iξ)v̄(x1, x2).

(5.4)

Using the representation of the non-local operator in Fourier space, we similarly

obtain that

|∂1|−1/2(eiξx1v(x1, x2)) = eiξx1 |∂1 + iξ|−1/2v(x1, x2),

|∂1|−1/2(e−iξx1 v̄(x1, x2)) = e−iξx1 |∂1 − iξ|−1/2v̄(x1, x2),
(5.5)
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5. Bloch wave analysis

where |∂1 ± iξ|−1/2 denotes the operator with Fourier symbol |ik1 ± iξ|−1/2. The

modulation thus leads to a shift of the Fourier multiplier. Hence, we obtain formula

(5.2) by replacing δm2 and δm2 by v and v̄, respectively, and the local and non-local

operators acting on δm2 and δm2 by (5.4) and (5.5), respectively. We emphasize, and

later on use, that the non-local contribution can be written as
∫

(0,w)×(0,1)

∣∣|∂1 + iξ|−1/2v
∣∣2 dx1 dx2

=
∫

(0,w)×(0,1)
(|∂1 + iξ|−1/2v)(|∂1 − iξ|−1/2v̄)dx1 dx2

=
∫

(0,w)×(0,1)
v(|∂1 − iξ|−1v̄)dx1 dx2. (5.6)

Let us finally define

HessξE0(m2)(v, v) :=
1

N
HessE0(m2)(δm2, δm2). (5.7)

Notice that HessξE0(m2) is defined on w-periodic functions and that we can allow

for arbitrary values of ξ on the level of (5.7).

Step 2. Consider vξ := v0 + ξv1 where v0 and v1 are w-periodic functions. (Later

on we chose specific v0 and v1 in Step 3.) Then

Hessξ(m2)(v
ξ , vξ) = L0(v0, v0) + ξ

(
L1(v0, v0) + L0(v1, v0) + L0(v0, v1)

)

+ ξ2
(
1
2L2(v0, v0) + L1(v1, v0) + L1(v0, v1) + L0(v1, v1)

)
+O(ξ3), (5.8)

where the sesquilinear forms L0, L1, and L2 are given by

L0(v, r) = 2
∫

(0,w)×(0,1)
∂1v ∂1r̄ dx1 dx2

+
∫

(0,w)×(0,1)

(
|∂1|−1/2(−∂1(m2 v) + ∂2v)

)

(
|∂1|−1/2(−∂1(m2 r̄) + ∂2r̄)

)
dx1 dx2

+
∫

(0,w)×(0,1)

(
|∂1|−1(−∂1

m2
2
2 + ∂2m2)

)
(−∂1(v r̄))dx1 dx2

− 2hext

∫

(0,w)×(0,1)
v r̄ dx1 dx2, (5.9)

and

L1(v, r)

= 2
∫

(0,w)×(0,1)
(−i ∂1v r̄+ v i ∂1r̄)dx1 dx2

+
∫

(0,w)×(0,1)
(−i m2 v)|∂1|−1(−∂1(m2 r̄) + ∂2r̄)dx1 dx2
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5.1. Main result and proof

+
∫

(0,w)×(0,1)
(−∂1(m2 v) + ∂2v)|∂1|−1(i m2 r̄)dx1 dx2

+
∫

(0,w)×(0,1)
(−∂1(m2 v) + ∂2v) (|∂1|−3 i∂1) (−∂1(m2 r̄) + ∂2r̄)dx1 dx2,

(5.10)

and

L2(v, r) = 4
∫

(0,w)×(0,1)
v r̄ dx1 dx2

+2
∫

(0,w)×(0,1)
i m2 v|∂1|−3 i∂1(−∂1(m2r̄) + ∂2r̄)dx1 dx2

+2
∫

(0,w)×(0,1)
(−∂1(m2v) + ∂2v)|∂1|−3 i∂1(−i m2 r̄)dx1 dx2

+2
∫

(0,w)×(0,1)
(m2v)|∂1|−1(m2 r̄)dx1 dx2

+2
∫

(0,w)×(0,1)
(−∂1(m2v) + ∂2v) |∂1|−3 (−∂1(m2r̄) + ∂2r̄)dx1 dx2.

(5.11)

Notice that (5.9) is just the Hessian, see (5.3), evaluated on perturbations defined on

the domain (0,w)× (0, 1). In order to show (5.8), notice that the local contributions

in (5.7) and (5.2), respectively, can be easily expanded w.r.t. ξ. For the non-local

operator, see (5.6), we calculate the asymptotic expansion of the Fourier symbol

w.r.t. ξ:

|ik1 − iξ|−1 = |k1 − ξ|−1 = |k1|−1 + ξ k1
|k1| |k1|

−2 + 2ξ2|k1|−3 + ξ3R(k1, ξ). (5.12)

The error in the Taylor expansion R(k1, ξ) is of the order O(1) uniformly in k1
provided ξ ≪ 2π

w . In fact, by homogeneity only ξk−1
1 matters since (5.12) is in

principle an expansion in ξk−1
1 due to

|ik1 − iξ|−1 = |k1|−1|1− ξ
k1
|−1.

Since |k1| ≥ 2π
w , the ratio ξk−1

1 is small independent of k1 for ξ ≪ 2π
w which en-

tails that R(k1, ξ) = O(1). Observe that k1
|k1| |k1|

−2F (v) = F (−i|∂1|−3∂1v), so that
k1
|k1| |k1|

−2F̄ (v̄) = F̄ (i|∂1|−3∂1v̄). Hence we derive from (5.12) that
∫

(0,w)×(0,1)

(
|∂1 + iξ|−1/2u

)(
|∂1 − iξ|−1/2v̄

)
dx1 dx2

=
∫

(0,w)×(0,1)
u
(
|∂1 − iξ|−1v̄

)
dx1 dx2

=
∫

(0,w)×(0,1)
u
(
|∂1|−1v̄

)
dx1 dx2

+ ξ
∫

(0,w)×(0,1)
u
(
i|∂1|−3∂1v̄

)
dx1 dx2

+ 2 ξ2
∫

(0,w)×(0,1)
u |∂1|−3v̄dx1 dx2 +O(ξ3). (5.13)
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5. Bloch wave analysis

Using (5.13), it is now a straightforward calculation to obtain the expansion (5.8)

from the representation (5.2).

Step 3. The formulas derived in Step 1 and Step 2 hold for any stationary point

m2 whereas in this step it becomes important to take m2 from the family of sta-

tionary points {mw
2 }w differentiable w.r.t. w: Consider the following Ansatz for the

perturbation vξ :

vξ = v0 + ξv1 where v0 = −∂1 m
w
2 and v1 = i Lmw

2 , (5.14)

and L = x1∂1 + w∂w. Based on a differentiation w.r.t. w of the rescaled Euler-

Lagrange equation, we will show in this step that

L0(v1, ·) + L1(v0, ·) = L0(iLmw
2 , ·) + L1(−∂1m

w
2 , ·) = 0. (5.15)

As we will see, the constant and linear term in the expansion (5.8) vanish, so that

(5.15) will entail that

Hessξ(mw
2 )(v

ξ , vξ) = ξ2(12L2(v0, v0)−L0(v1, v1)) +O(ξ3). (5.16)

For a motivation of Ansatz (5.14) we refer to the paragraph which follows right after

the end of the proof.

First we have to show that vξ is well defined, i.e., that Lmw
2 is w-periodic. In fact, we

have due to the periodicity of mw
2 that

Lmw
2 (x1 + w) = (x1 + w)∂1m

w
2 (x1 + w) + w∂wm

w
2 (x1 + w)

= (x1 + w)∂1m
w
2 (x1) + w d

dw (m
w
2 (x1 + w))− w∂1m

w
2 (x1)

= (x1 + w)∂1m
w
2 (x1) + w∂wm

w
2 (x1)− w∂1m

w
2 (x1)

= x1∂1m
w
2 (x1) + w∂wm

w
2 (x1)

= Lmw
2 (x1).

To see (5.16), we use the expansion (5.8) which was derived in Step 2. Due to

periodicity of mw
2 and translational invariance of E0, ∂1m

w
2 is in the null space of the

Hessian HessE0(m
w
2 ), so that

L0(·, ∂1u) = L0(∂1u, ·) = 0. (5.17)

This entails that the constant (in ξ) term in (5.8) vanishes. The l.h.s. of (5.8) is purely

real. On the other hand, L1(v0, v0) is purely imaginary, see (5.10) and (5.14). More-

over L0(v0, v1) = L0(v1, v0) is purely imaginary, see (5.9) and (5.14). Hence, the

linear term in (5.8) vanishes. So far we have shown that the leading order contribu-

tion in (5.8), where v0 and v1 are as in (5.14), is (at least) quadratic in ξ. Using (5.15)

then (5.16) follows. In fact, by testing (5.15) with v1 we derive that

Hessξ(vξ , vξ)

= ξ2(12L2(v0, v0) + L1(v1, v0) + L1(v0, v1) + L0(v1, v1)) +O(ξ3)

= ξ2(12L2(v0, v0)−L0(v1, v1)) +O(ξ3). (5.18)

112



5.1. Main result and proof

We now address (5.15). Let us note that by abuse of notation we do not distinguish

the linear forms Li(v, ·) and their Riesz representations w.r.t L2 in the following. We

have by definition (5.10) that

L1(−∂1m
w
2 , ·) = −i

(
− 4 ∂21m

w
2 − (mw

2 ∂1 − ∂2)|∂1|−1(mw
2 ∂1m

w
2 )

−mw
2 |∂1|−1(∂1(m

w
2 ∂1m

w
2 )− ∂2∂1m

w
2 )

+ (mw
2 ∂1 − ∂2)(|∂1|−3∂1)(−∂1(m

w
2 ∂1m

w
2 ) + ∂2∂1m

w
2 )
)

= −i
(
− 4 ∂21m

w
2 −mw

2 ∂1|∂1|−1∂1
(mw

2 )
2

2 + ∂2|∂1|−1∂1
(mw

2 )
2

2
:::::::::::::::::

−mw
2 |∂1|−1∂21

(m2)
2

2 +mw
2 |∂1|−1∂2∂1m

w
2. . . . . . . . . . . . . . . . . . . . . . . . .

−mw
2 ∂1|∂1|−3∂31

(mw
2 )

2

2 +mw
2 ∂1|∂1|−3∂1∂2∂1m

w
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ ∂2|∂1|−3∂1∂21
(mw

2 )
2

2
::::::::::::::::::::

− ∂2|∂1|−3∂1∂2∂1m
w
2

)
.

Observe that |∂1|−3∂21 = −|∂1|−1 which yields that the underlined terms cancel.

Therefore we obtain

L1(−∂1m
w
2 , ·) = i

(
4 ∂21m

w
2 +mw

2 |∂1|−1∂21
(mw

2 )
2

2 − |∂1|−1∂22m
w
2

)
. (5.19)

Consider the rescaling

x1 = wx̃1 and m̃w
2 (x̃1) = mw

2 (wx̃1). (5.20)

Under this rescaling the Euler-Lagrange equation, i.e.,

0 = −2 ∂21m
w
2 + (mw

2 ∂1 − ∂2)|∂1|−1(−∂1
(mw

2 )
2

2 + ∂2m
w
2 )− 2 hext m

w
2 ,

turns into

0 = − 2
w2 ∂̃21m̃

w
2 + ( 1

w m̃w
2 ∂̃1 − ∂2)w |∂̃1|−1(− 1

w ∂̃1
(m̃w

2 )
2

2 + ∂2m̃
w
2 )− 2 hext m̃

w
2 .

(5.21)

The latter expression (5.21) has the right form in order to differentiate w.r.t. w. We

apply chain rule and use that the Hessian is related to the differentiated r.h.s. of the

Euler-Lagrange equation (w.r.t. mw
2 ). After rescaling into the original variables we

therefore obtain

0 = 1
w (4 ∂21m

w
2 +mw

2 ∂1|∂1|−1∂1
(mw

2 )
2

2 − |∂1|−1∂22m
w
2 ) +L0

(
(∂wm̃

w
2 )(w

−1·), ·
)
. (5.22)

To obtain (5.15), we compare (5.19) and (5.22) multiplied by iw, using the relation

(w∂wm̃
w
2 )(w

−1x1) = (x1∂1m
w
2 + w∂wm

w
2 )(x1) = Lmw

2 (x1). (5.23)
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Step 4. In this step we show that

w2 d2

dw2E0(m
w
2 ) =

1
2L2(v0, v0)−L0(v1, v1). (5.24)

Let us rewrite the the minimal energy with the help of the rescaled quantities (5.20),

i.e.,

E0(m
w
2 )

=
∫

(0,w)

∫

(0,1)

(
(∂1m2)

2 + 1
2

(
|∂1|−1/2(−∂1

m2
2
2 + ∂2m2)

)2 − hextm
2
2

)
dx2 dx1

=
∫

(0,1)

(
w
∫

(0,1)

(
w−2(∂̃1m̃

w
2 )

2 + 1
2

(
w1/2|∂̃1|−1/2(−w−1∂̃1

(m̃w
2 )

2

2 + ∂2m̃
w
2 )
)2

− hext(m̃
w
2 )

2
)
dx2

)
dx̃1 =: Ẽw

0 (m̃
w
2 ). (5.25)

The r.h.s of (5.25) has the right form in order to differentiate w.r.t. w. It holds that

d2

dw2 Ẽ
w
0 (m̃

w
2 ) = ∂2wẼ

w
0 (m̃

w
2 ) + 2∂wDm̃2 Ẽ

w
0 (m̃

w
2 )∂wm̃

w
2

+ D2
m̃2
Ẽw
0 (m̃

w
2 )(∂wm̃

w
2 , ∂wm̃

w
2 ) + Dm̃2 Ẽ

w
0 (m̃

w
2 )∂

2
wm̃

w
2 ,

where Dm̃2 denotes the functional derivative. The last contribution vanishes; it is

equal to the rescaled Euler-Lagrange equation tested with ∂2wm̃
w
2 . By differentiating

the rescaled Euler-Lagrange equation w.r.t. w, and testing with m̃w
2 , we obtain

∂wDm̃2 Ẽ
w
0 (m̃

w
2 )∂wm̃

w
2 + D2

m̃2
Ẽw
0 (m̃

w
2 )(∂wm̃

w
2 , ∂wm̃

w
2 ) = 0.

Using the latter identity, we have so far shown that

d2

dw2E0(m
w
2 ) =

d2

dw2 Ẽ
w
0 (m̃

w
2 ) = ∂2wẼ

w
0 (m̃

w
2 )− D2

m̃2
Ẽw
0 (m̃

w
2 )(∂wm̃

w
2 , ∂wm̃

w
2 ). (5.26)

We are now ready to identify the r.h.s. of (5.26) with the r.h.s. of (5.24) and start with

the easy part, namely the second contribution in (5.26). By scaling into the original

variables and using the relation (5.23), namely (w∂wm̃
w
2 )(w

−1x1) = Lmw
2 (x1), we

obtain

w2D2
m̃2
Ẽw
0 (m̃

w
2 )(∂wm̃

w
2 , ∂wm̃

w
2 ) = HessEw

0 (m)(Lm, Lm)

(5.9)
= L0(Lm, Lm)

= L0(v1, v1). (5.27)

We finally address the first contribution in (5.26). From definition (5.11) it follows
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that

1
2L2(v0, v0)

=
∫

(0,w)×(0,1)

(
2(∂1m

w
2 )

2

− mw
2 ∂1m

w
2 |∂1|−3 ∂1(−∂1(m

w
2 ∂1m

w
2 ) + ∂2∂1m

w
2 )

+ (−∂1(m
w
2 ∂1m

w
2 ) + ∂2∂1m

w
2 )|∂1|−3 ∂1(m

w
2 ∂1m

w
2 )

+ (mw
2 ∂1m

w
2 )|∂1|−1(mw

2 ∂1m
w
2 )

+ (−∂1(m
w
2 ∂1m

w
2 ) + ∂2∂1m

w
2 )|∂1|−3(−∂1(m

w
2 ∂1m

w
2 ) + ∂2∂1m

w
2 )
)
dx1 dx2

By expanding the latter expression and using again the relation that |∂1|−3∂21 =
−|∂1|−1 we find that

1
2L2(v0, v0) =

∫

(0,w)×(0,1)

(
2(∂1m

w
2 )

2 + (|∂1|−1/2∂2m
w
2 )

2
)
dx1 dx2.

On the other hand, due to (5.25), we have

w2∂2wẼ
w
0 (m̃

w
2 ) = w2

∫ 1

0

∫ 1

0

(
2w−3(∂̃1m̃

w
2 )

2 +
(
|∂̃1|−1/2(∂2m̃

w
2 )

2
)
dx̃1 dx2

=
∫

(0,w)×(0,1)

(
2(∂1m

w
2 )

2 +
(
|∂1|−1/2(∂2m

w
2 )

2
)
dx1 dx2.

This establishes

w2∂2wẼ
w
0 (m̃

w
2 ) =

1
2L2(v0, v0). (5.28)

Collecting (5.27) and (5.28) yields together with (5.26) that

w2 d2

dw2E0(m
w
2 ) =

1
2L2(v0, v0)−L0(v1, v1).

Step 5. In this step we conclude as follows:

ξ2w2 d2

dw2E0(m
w
2 )

(5.24)
= ξ2(12L2(v0, v0)−L0(v1, v1))

(5.16)
= Hessξ(vξ , vξ) +O(ξ3)

(5.7)
=

1

N
HessE0(m

w
2 )(δm

ξ
2, δm

ξ
2) +O(ξ3)

=
HessE0(m

w
2 )(δm

ξ
2, δm

ξ
2)∫

(0,Nw)×(0,1) |δmw
2 |2 dx1 dx2

∫

(0,w)×(0,1)
|vξ |2 dx1 dx2 +O(ξ3),

where δm
ξ
2 = eiξx1vξ and vξ = −∂1 m

w
2 + ξi Lmw

2 . Observe that
∫

(0,w)×(0,1)
|vξ |2 dx1 dx2 =

∫

(0,w)×(0,1)
|∂1mw

2 |2 dx1 dx2 +O(ξ).

This establishes the statement in Theorem 5.1.
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Although Theorem 5.1 is formulated in the context of the reduced energy (1.14), it

can be shown to hold for a broader class of energies, for example of the form

E(m) =
∫

(0,w)×Y
∑
l

al(∂
l
xm)2 + bl(|∂x|lBl(m, ∂xm))2 dx dy, (5.29)

where Y is some subset of Rn, m : (0,w) × Y → R is w-periodic, and Bl denote

differential operators w.r.t. the second variable y. The reduced energy functional is

contained in that formulation in the form of

a0 = −hext,

a1 = 1,

B−1/2(m, ∂xm) = σ(m) = −∂x
m2

2 + ∂ym = −m∂xm+ ∂ym, b−1/2 = 1/2.

By subdividing our proof into several steps we tried to highlight the crucial in-

gredients necessary for a generalization: The first step is the derivation of the ex-

pansion (5.8). Establishing (5.15), on the basis of the differentiation of the Euler-

Lagrange equation w.r.t. the period, then yields in combination with the introduc-

tion of the rescaled energy density (5.24). Notice that the identities in Step 4 are a

consequence of the homogeneity of the local and non-local differential operators.

Relation between the infinitesimal perturbation and the modulation by an inner

variation. Not surprisingly, the infinitesimal variation (5.14) can be related to an

inner variation in the form of a sinusoidal wave-length modulation. To see this,

consider an inner variation due the modulation via a function ζ: Let Φε be the flux

defined via

∂εΦε(x1) = ζ(Φε(x1)),

Φ0(x1) = x1.

Let uw be a family of w-periodic stationary points, then we define the inner variation

uwε (Φε(x1)) = uΦ′
ε(x1)w(Φ′

ε(x1)x1).

Therefore it holds that

d
dε |ε=0 u

w
ε (x1) ≈ ζ(−∂1u

w) + ζ ′(x1∂1 + w∂w)u
w,

so that in case of ζ = eiξx1 we obtain (5.14).

5.2. Bloch wave analysis for general energy functionals

In this section we address the generalization of the Bloch wave analysis: We consider

functionals defined on functions with values in a general linear space Y including a

general non-holonomic non-linear constraint.
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Let e : Y × Y → R and g : Y × Y → Z, where Y and Z are some linear (Banach)

spaces. For u : [0,w) → Y which is w-periodic consider (as a model problem) the

minimization of the energy

E(u) =
∫ w

0
e(u, ∂xu)dx subject to g(u, ∂xu) = 0, (5.30)

in the sense that g(u(x), ∂xu(x)) = 0 holds pointwise in x as a Z-valued equation.

Notice that the reduced energy functional can be rewritten to fit into this framework.

In fact, the stray-field contribution can be localized introducing a second variable

b = (b1, b3):

∫ w

0
(|∂1|−1/2σ)2 dx1 = inf

{ ∫ w

0

∫ ∞

0
b21 + b23 dx3 dx1

∣∣ b : [0,w)× [0,∞) → R
2

∂1b1 + ∂3b3 = 0 for x3 6= 0 and b3 = σ at x3 = 0
}
. (5.31)

Using the equivalence (5.31), the minimization of the reduced energy w.r.t m2 can be

replaced by a minimization both w.r.t m2 and b; this means that we identify u in (5.30)

with (m2, b); the space Y in this case is a space of the form R × {b : [0,∞) → R2}.
Obviously, m2 is coupled to b via a non-linear constraint involving the non-linear

charge density σ = −∂1
m2

2
2 + ∂2m2.

In the following we sketch the proof of the generalization of Theorem 5.1 to func-

tionals including a non-linear constraint of the form (5.30). In contrast to the proof

of Theorem 5.1, we use a (slightly) different method which can be applied in case

of local energy contributions. In that case, one does not need to rescale since the

calculation of the commutator relations for L = x∂x + w∂w and the differential oper-

ators is straight-forward. On the other hand, the non-linear constraint necessitates

additional assumptions for the existence of the Ansatz of the Bloch eigenfunction.

We start with some preliminary observations. Let u(s) be a finite variation that is

admissible in (5.30) with u(0) = u0,
d
dsu(s)s=0 = δu, and d2

ds2
u(s)s=0 = δ2u, where u0

is some stationary point of the energy. Then for s = 0

gu δu+ gp ∂xδu = 0, (5.32)

δu · guu δu+ 2δu · gup ∂xδu+ ∂xδu · gpp ∂xδu+ gu δ2u+ gp ∂xδ2u = 0, (5.33)

which hold as Z-valued equations pointwise in x with the abbreviation gu(x) =
gu(u(x), ∂xu(x)), etc. Notice that p denotes the derivative w.r.t. the second variable.

The relations (5.32) and (5.33) can be seen to hold by differentiating the constraint

g(u(s), ∂xu(s)) = 0 w.r.t. to s, evaluated at s = 0.

Let us assume that there exists a Lagrange multiplier ϕ : [0,w) → Z∗, where Z∗

denotes the dual space of Z, s.t. the Euler-Lagrange equation takes the form

eu(u0, ∂xu0)− ∂xep(u0, ∂xu0) + ϕgu(u0, ∂xu0)− ∂x(ϕgp(u0, ∂xu0)) = 0, (5.34)
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5. Bloch wave analysis

as a Y-valued equation valid for all x ∈ [0,w). (This is related to the fact that gp is

invertible. We address the meaning in case of our energy functional,i.e., (5.31), after

the end of the proof.) The Hessian in the w-periodic stationary point u0 is given by

HessE(u0) (δu, δu) =
∫ w

0

((
δu

∂xδu

)
·
(
euu eup
eup epp

)(
δu

∂xδu

)

+ϕ

(
δu

∂xδu

)
·
(
guu gup
gup gpp

)(
δu

∂xδu

))
dx (5.35)

for δu subject to (5.32). This can be seen by differentiating E(u(s)) twice w.r.t. s,

inserting (5.34) tested with δ2u, and finally appealing to (5.33).

Consider the family of minimizers

uw0 = argmin{E(u)| u is w-periodic and suffices the constraint (5.30)}.

Let us assume that this family is differentiable w.r.t. w. However, for notational

convenience we most of the time drop the w in the following and write u0 instead

and similarly e instead of ew = e(uw, ∂xuw). Consider a Bloch wave Ansatz for

the infinitesimal variation of the form δu = eiξxvξ , i.e., a sinusoidal modulation

of a w-periodic function vξ , for 0 < ξ = 2π
Nw ≪ 1 where N ∈ N. Notice that the

perturbation δu is in general complex. For any sesquilinear form we assume that the

second argument is the one that is complex conjugated. Let us plug in our Ansatz

into the Hessian:

1

N
HessE(u0) (δu, δu)

=
∫ w

0

((
vξ

∂xv
ξ

)
·
(
euu eup
eup epp

)(
v̄ξ

∂xv̄
ξ

)

+ ϕ

(
vξ

∂xv
ξ

)
·
(
guu gup
gup gpp

)(
v̄ξ

∂xv̄
ξ

))
dx

+ ξ
∫ w

0
(ivξ · epp ∂xv̄

ξ − i∂xv
ξ · epp v̄ξ + ϕ(ivξ · gpp ∂xv̄

ξ − i∂xv
ξ · gpp v̄ξ))dx

+ ξ2
∫ w

0
(vξ · epp v̄ξ + ϕvξ · gpp v̄ξ)dx

=: L0(vξ , vξ) + ξL1(vξ , vξ) + ξ2L2(vξ , vξ). (5.36)

On the level of the constraint (5.32) we find

guv
ξ + gp (∂xv

ξ + iξvξ) = 0. (5.37)

Assume that vξ is of the form vξ = v0 + ξv1 + ξ2v2 – in contrast to (5.14), the

quadratic term is necessary due to the constraint, see below. We plug this Ansatz
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5.2. Bloch wave analysis for general energy functionals

into (5.36) and obtain the following expansion:

HessE(u0) ((v
ξ , ∂xv

ξ), (vξ , ∂xv
ξ))

= L0(v0, v0)

+ ξ(L1(v0, v0) + L0(v1, v0) + L0(v0, v1))

+ ξ2(L2(v0, v0) + L1(v0, v1) + L1(v1, v0) + L0(v1, v1)

+ L0(v0, v2) + L0(v2, v0)) +O(ξ3). (5.38)

Similarly we expand the constraint (5.37) for which we obtain

0 =guv0 + gp∂xv0

+ ξ(guv1 + gp(∂xv1 + iv0))

+ ξ2(guv2 + gp(∂xv2 + iv1)) +O(ξ3). (5.39)

As in the proof of Theorem 5.1 we choose v0 = ∂xu and v1 = −iLu, where L =
x∂x + w∂w. However, due to the non-linear constraint it is now necessary to assume

that there exists v2 such that (5.37) holds up to order ξ2, i.e.,

guv2 + gp(∂xv2 + iv1) = 0. (5.40)

This is again related to the fact that gp is invertible. Note that for a general pertur-

bation r, that is not necessarily admissible in (5.32), we have that

L0(v0, r) = −
∫

∂xϕ(gur+ gp∂xr)dx, (5.41)

which can be seen by differentiating (5.34) w.r.t. x, testing with r. Let us come

back to (5.38). Due to (5.32) and (5.41) with the choice of δu = ∂xu we obtain that

L0(v0, v0) = 0. Observe that L1(r, r) = 0 for any real function r. Moreover, we have

that L0(v0, v1) and L0(v1, v0) are purely imaginary since v0 is purely real and v1 is

purely imaginary. Since the l.h.s. of (5.38) is purely real we thus obtain

HessE(u0)(v
ξ , vξ) = ξ2(L2(v0, v0) + L1(v0, v1) + L1(v1, v0)

+ L0(v1, v1) + L0(v2, v0) + L0(v0, v2)) +O(ξ3). (5.42)

Our goal is to identify the latter expression (5.42) with the second derivative of the

minimal energy E(w) = E(uw0 ) where uw0 = argmin{E(u)| u w-periodic}. Appeal-

ing to (5.41), we deduce from (5.40) that L0(v0, v2) + L0(v2, v0) = 2
∫

∂xϕgpLudx.

Therefore, we find that (5.42) does not depend on v2 up to order ξ2 – as expected

due to our assumption that uw0 is a family of stationary points. More precisely, since
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v0 is real and v1 = −iLu we find that

L2(v0, v0) + L1(v1, v0) + L1(v0, v1) + L0(v1, v1) + L0(v2, v0) + L0(v0, v2)

=
∫ w

0
(v0 · eppv̄0 + ϕv0 · gppv̄0)dx

+ i
∫ w

0
(v1 · epp∂xv̄0 − ∂xv1 · eppv̄0)dx+ i

∫ w

0
(v0 · epp∂xv̄1 − ∂xv0 · eppv̄1)dx

+ i
∫ w

0
ϕ(v1 · gpp∂xv̄0 − ∂xv1 · gppv̄0)dx

+ i
∫ w

0
ϕ(v0 · gpp∂xv̄1 − ∂xv0 · gppv̄1)dx

+ L0(v1, v1) + 2
∫ w

0
∂xϕgpLudx

=
∫ w

0
(v0 · eppv0 + ϕv0 · gppv0)dx

− 2
∫ w

0
(∂xLu · epp∂xu− Lu · epp∂2xu)dx

− 2
∫ w

0
ϕ(∂xLu · gpp∂xu− Lu · gpp∂2xu)dx

+ L0(v1, v1)− 2
∫ w

0
ϕ(∂xu · gupLu+ ∂2xu · gppLu+ gp∂xLu)dx,

where we just replaced v0 and v1 by our specific Ansatz and integrated by parts in

the last contribution. Collecting all terms containing the Lagrange multiplier ϕ, we

find

L2(v0, v0) + L1(v1, v0) + L1(v0, v1) + L0(v1, v1) + L0(v2, v1) + L0(v0, v2)

=
∫ w

0
(v0 · eppv0 + ϕv0 · gppv0)dx

− 2
∫ w

0
(∂xLu · epp∂xu− Lu · epp∂2xu)dx

− 2
∫ w

0
ϕ(∂xLu · gpp∂xu+ ∂xu · gupLu+ gp∂xLu)dx

+ L0(v1, v1). (5.43)

We now turn to the second derivative of the minimal energy d2

dw2E(w). Let us recall
that by assumption the energy density is given by e = e(uw0 , ∂xu

w
0 ). Therefore it

holds that

d
dwE(w) = d

dw

∫ w

0
edx

= e +
∫ w

0
∂wedx

= 1
w

∫ w

0

(
∂x(xe) + w∂we

)
dx

= 1
w

∫ w

0

(
e+ Le)dx,
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where L = x∂x + w∂w. The second derivative is given by

d2

dw2E(w) = − 1
w2

∫ w

0

(
e+ Le

)
dx+ 1

w (e+ Le) + 1
w

∫ w

0

(
∂we+ ∂wLe

)
dx

= 1
w2

∫ w

0
−
(
e+ Le

)
+ ∂x(x(e+ Le)dx+ 1

w

∫ w

0

(
∂we+ ∂wLe

)
dx

= 1
w2

∫ w

0

(
x∂x(e+ Le) + w∂we+ w∂wLe

)
dx1

= 1
w2

∫ w

0

(
L2e+ Le

)
dx. (5.44)

In order to identify (5.44) with (5.43), we use the Euler-Lagrange equation – once

tested with Lu, see (5.51), once tested with L2u, see (5.52) – which introduces the

Lagrange multiplier into (5.44). In order to rewrite the outcome, we moreover apply

the differentiated constraint g = 0 – once applying L, see (5.54), once applying L2,

see (5.53). Let us start by expanding:

w2 d2

dw2E(w)

=
∫ w

0
(L2 + L)edx

=
∫ w

0

((
Lu

L∂xu

)
·
(
euu eup
eup epp

)(
Lu

L∂xu

)

+ euL
2u+ epL

2∂xu+ euLu+ epL∂xu

)
dx. (5.45)

In order to apply our strategy, it is necessary to rewrite the latter expression using

the relations

L∂x = ∂xL− ∂x, (5.46)

∂xL = L∂x + ∂x, (5.47)

and

L2∂x = ∂xL
2 − 2∂xL+ ∂x, (5.48)

∂xL
2 = L2∂x + 2L∂x + ∂x. (5.49)

Integration by parts in the second line in (5.45) will then turn the terms containing

first derivatives of e into second derivatives of e. In fact, due to (5.46), the identity

(5.45) turns into

w2 d2

dw2E(w)

=
∫ w

0

(
Lu

∂xLu

)
·
(
euu eup
eup epp

)(
Lu

∂xLu

)
dx

+
∫ w

0
(−2(Lu · eup∂xu+ ∂xLu · epp∂xu) + ∂xu · epp∂xu)dx

+
∫ w

0
(euL

2u+ epL
2∂xu+ euLu+ epL∂xu)dx.
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5. Bloch wave analysis

Due to (5.46) and (5.48) we find that

∫ w

0
(euL

2u+ epL
2∂xu+ euLu+ epL∂xu)dx

=
∫ w

0
(euL

2u+ ep(∂xL
2u− 2∂xLu+ ∂xu) + euLu+ ep(∂xLu− ∂xu))dx

=
∫ w

0
(euL

2u+ ep(∂xL
2u− 2∂xLu) + euLu+ ep∂xLu)dx.

Integration by parts yields that

−2
∫ w

0
ep∂xLudx = 2

∫ w

0
(Lu · eup∂xu+ Lu · epp∂2xu)dx. (5.50)

Using the Euler-Lagrange equation (5.34) tested with Lu we find that

∫ w

0
(euLu+ ep∂xLu)dx = −

∫ w

0
(ϕguLu− ∂x(ϕgp)Lu)dx

= −
∫ w

0
(ϕguLu+ ϕgp∂xLu)dx. (5.51)

Plugging in (5.35), (5.50) and (5.51) we hence obtain

w2 d2

dw2E(w)

= L0(v1, v1)−
∫ w

0
ϕ

(
Lu

∂xLu

)
·
(
guu gup
gup gpp

)(
Lu

∂xLu

)
dx+

∫ w

0
∂xu · epp∂xudx

+ 2
∫ w

0
(Lu · epp∂2xu− ∂xLu · epp∂xu)dx+

∫ w

0
(euL

2u+ ep∂xL
2u)dx

−
∫ w

0
(ϕguLu+ ϕgp∂xLu)dx.

Using once again (5.46), we rewrite the second term in the latter expression:

w2 d2

dw2E(w)

= L0(v1, v1)−
∫ w

0
ϕ

(
Lu

L∂xu

)
·
(
guu gup
gup pp

)(
Lu

L∂xu

)
dx

−
∫ w

0
ϕ(2Lu · gup∂xu+ 2L∂xu · gpp∂xu+ ∂xu · gpp∂xu

)
dx

+
∫ w

0
∂xu · epp∂xudx+ 2

∫ w

0
(Lu · epp∂2xu− ∂xLu · epp∂xu)dx

+
∫ w

0
(euL

2u+ ep∂xL
2u)dx

−
∫ w

0
(ϕguLu+ ϕgp∂xLu)dx.

Notice that due to (5.46)

2L∂xu · gpp∂xu+ ∂xu · gpp∂xu = 2∂xLu · gpp∂xu− ∂xu · gpp∂xu.
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If we once again use the Euler-Lagrange equation (5.34) tested with L2u we find that

∫ w

0
(euL

2u+ ep∂xL
2u)dx = −

∫ w

0
(ϕguL

2u+ ϕgp∂xL
2u)dx. (5.52)

Due to (5.49) we therefore obtain
∫ w

0
(euL

2u+ ep∂xL
2u)dx = −

∫ w

0
ϕ(guL

2u+ gpL
2∂xu+ 2gpL∂xu+ gp∂xu.)dx,

The application of L2 to the constraint g = 0 yields

(
Lu

L∂xu

)
·
(
guu gup
gup gpp

)(
Lu

L∂xu

)
= −(guL

2u+ gpL
2∂xu). (5.53)

Therefore we derive that

w2 d2

dw2E(w) = L0(v1, v1) +
∫ w

0
v0 · eppv0 dx+

∫ w

0
ϕ(guL

2u+ gpL
2∂xu)dx

::::::::::::::::::::::::::

− 2
∫ w

0
ϕ(Lu · gup∂xu+ ∂xLu · gpp∂xu)dx+

∫ w

0
ϕv0 · gppv0 dx

+ 2
∫ w

0
(Lu · epp∂2xu− ∂xLu · epp∂xu)dx

−
∫ w

0
(ϕguL

2u+ ϕgpL
2∂xu

::::::::::::::::::::::

+ 2ϕgpL∂xu+ ϕgp∂xu)dx

−
∫ w

0
(ϕguLu+ ϕgp∂xLu)dx.

The underlined terms cancel so that we obtain

w2 d2

dw2E(w) = L0(v1, v1) +
∫ w

0
v0 · eppv0 dx+

∫ w

0
ϕv0 · gppv0 dx

+ 2
∫ w

0
(Lu · epp∂2xu− ∂xLu · epp∂xu)dx

− 2
∫ w

0
ϕ(Lu · gup∂xu+ ∂xLu · gpp∂xu)dx

−
∫ w

0
ϕ(2gpL∂xu+ gp∂xu+ guLu+ gp∂xLu)dx.

Let us once more use the relations (5.46) and (5.47) to rewrite the last line:

−
∫ w

0
ϕ(2gpL∂xu+ gp∂xu+ guLu+ gp∂xLu)dx

= −
∫ w

0
ϕ(2gp(∂xLu− ∂xu) + gp∂xu+ guLu+ gp(L∂xu+ ∂xu))dx

= −
∫ w

0
ϕ(2gp∂xLu+ guLu+ gpL∂xu)dx.

Due to

0 = Lg = guLu+ gpL∂xu, (5.54)
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we hence obtain

−
∫ w

0
ϕ(2gpL∂xu+ gp∂xu+ guLu+ gp∂xLu)dx = −

∫ w

0
ϕ 2gp∂xLudx.

Therefore

w2 d2

dw2E(w) = L0(v1, v1) +
∫ w

0
v0 · eppv0 dx+

∫ w

0
ϕv0 · gppv0 dx

+ 2
∫ w

0
(Lu · epp∂2xu− ∂xLu · epp∂xu)dx

− 2
∫ w

0
ϕ(Lu · gup∂xu+ ∂xLu · gpp∂xu+ gp∂xLu)dx.

A comparison to (5.43) shows that

ξ2w2 d2

dw2E(w) ≈ N−1HessE(uw)(δuξ , δuξ),

where δuξ = ∂xu
w − ξiLuw + ξ2v2 and ξ = 2π

N , 0 ≪ N ∈ N. This completes the

sketch of the proof.

Remark 5.2. Let us shortly address the existence of the Lagrange multiplier in case of our

energy (5.31). In our case, gp is given as m2 in the sense of a multiplication operator. Is is

useful to state this more precisely, see below.

On can show that the b-component of the minimizer satisfies ∇× b = 0. Hence, there exists

a potential V, s.t. b = −(∂1, ∂3)
TV. The Euler-Lagrange equation turns into

−2∂21m2 − 2hext +m2∂1V − ∂2V = 0.

In particular, the Lagrange multiplier ϕ can be identified with V. This can be used to show

that the term, which is related to the multiplier ϕ in the Hessian, is of the form

∫ w

0
V∂1(δm2)

2 dx1.

In case of our energy (5.31), equation (5.40) turns into

−∂1(m2v2) + ∂2v2 − im2v1 = −∂3V2 on x3 = 0,

where v1 = −iLm2.
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6

Bifurcation analysis

In this chapter we investigate the bifurcation of the reduced rescaled energy func-

tional (1.14). We recall the outcome of the classical bifurcation analysis which was

performed in [CÁOS07], see Section 6.1. This analysis is afterwards extended to take

into account small variations of the wave number, see Section 6.2. On the basis of the

amplitude functional – which we obtain from the extended bifurcation analysis – we

study the stability of minimizers close to the bifurcation, see Section 6.3. In particu-

lar we will see that ŵ∗-periodic states are Eckhaus unstable close to the bifurcation.

This instability is related to a degeneracy of the amplitude functional. At the end

of that section we provide a comparison to the classical, non-degenerate Eckhaus

instability. In Section 6.4 we further generalize the extended bifurcation analysis

to spatially varying amplitudes. We formally derive a non-local Ginzburg-Landau

functional representing an approximation of the energy close to the bifurcation on

ŵ-periodic functions with period ŵ close to ŵ∗. This provides the most general tool

to investigate the Eckhaus instability. Finally, in Section 6.5, we will see that the

secondary bifurcations originate from multiple primary bifurcations and can hence

be asymptotically investigated near the degenerate primary bifurcation.

We drop the ·̂ in this chapter to simplify the notation.

6.1. Classical bifurcation analysis.

In [CÁOS07], a bifurcation analysis was carried out for the reduced energy func-

tional by deriving the asymptotic energy close to the bifurcation. Let us shortly

review the set-up and the outcome of that analysis: Consider small perturbations of

the critical field

hext = h∗ext + δhext

and a perturbation of the uniform magnetization m2 = 0 of the form

m2 = Am∗
2 + A2m∗∗

2 +O(A3), (6.1)

where m∗
2 = cos(k∗1x1) sin(πx2) is the unstable mode with wavenumber k∗1 = 2π

w∗ .

Since the cubic non-linearity of the energy degenerates on the kernel of the Hessian,
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6. Bifurcation analysis

it is necessary to take into account the second order term in the expansion (6.1). (The

degeneracy is caused by the invariance of the energy under the transform m2  −m2

and x2  −x2.) Evaluating E0 on the Ansatz (6.1) and neglecting all terms of

higher order O(A5) in the expansion of the energy w.r.t. the amplitude A at the

field hext = h∗ext, an optimization in m∗∗
2 of the A4-term in the expansion yields that

m∗∗
2 = 1

10(
2
π )

1/3 sin(2k∗1x1) sin(2πx2).

One obtains that the asymptotic energy close to the bifurcation is described by the

amplitude functional

E0(Am
∗
2 + A2m∗∗

2 ) ≈ − (32π)1/3

4 δhext A
2 − π

640A
4. (6.2)

Since the quartic coefficient is negative, the bifurcation is subcritical and hence the

w∗-periodic branch emanating at the critical field is unstable. From an optimization

of the asymptotic energy (6.2) w.r.t. the amplitude A one can derive an asymptotic

expansion of the bifurcation branch as a function of δhext. Obviously the optimal

amplitude A will scale as δh1/2ext . We note that the fourth order coefficient π
640 is

small compared to the second order coefficient and the scale h∗ext of δhext. (This is

related to the numerical observation that the bifurcation is just slightly subcritical,

see Figure 1.11). Hence the bifurcation is near-degenerate and it is necessary to take

into account higher order terms. For an unfolding we have to consider an extended

Ansatz of (6.1) for the magnetization of the form

m2 = Am∗
2 + A2m∗∗

2 + A3m∗∗∗
2 +O(A4), (6.3)

where m∗
2(k1) = cos(k1x1) sin(πx2). Since we are interested in the behavior of the

energy for varying wave number we take into account small perturbations of the

wave number k1 = k∗1 + δk1. As we will see, after optimization of the A4-term w.r.t.

m∗∗
2 and of the A6-term w.r.t. m∗∗∗

2 this leads to and expansion of the energy of the

form
k∗1
2πE0 ≈ (−c2δhext + c̃2δk21)A

2 + (−c4 + c̃4δk1)A
4 + c6A

6, (6.4)

see (6.18) in the following Section 6.2. Note that in case of the near-degenerate

bifurcation, i.e., |c4| ≪ 1, we expect a different scaling behavior of minimizers then

in case of the classical bifurcation analysis, namely

A ∼ δh1/4ext ∼ δk1/21 . (6.5)

Let us now start with the unfolding of the near-degenerate bifurcation and the

derivation of the amplitude functional. For that purpose we take into account an

additional term in the energy of the form

+Q
∫

(0,w)×(0,1)
m4

2 dx1 dx2

so that the energy degenerates for some value Q = Q∗(k∗1) of the quality factor.

Recall that in case of high anisotropy we can interpret the parameter Q close to the

critical field as a reduced value for the quality factor, cf. Section 1.10.
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6.2. Unfolding of the near-degenerate bifurcation: Extended Ansatz.

6.2. Unfolding of the near-degenerate bifurcation: Extended

Ansatz.

The goal is to obtain an asymptotic expansion of the energy in the neighborhood of

the (quadratic near-degenerate) bifurcation. For that purpose we have to determine

the branch along which the energy decreases the most to higher order: Consider a

cubic perturbation of the uniform magnetization m2 = 0 as in (6.3), i.e.,

m2 = Am∗
2 + A2m∗∗

2 + A3m∗∗∗
2 +O(A4), (6.6)

where m∗
2(k1) = cos(k1x1) sin(πx2) and where the wave number is close to the criti-

cal one, i.e., k1 = k∗1 + δk1. Observe that the uniform magnetization m2 = 0 becomes

unstable under perturbation by m∗
2(k1) at a field

h∗ext(k1) = k21 +
π2

2|k1| .

It is useful to rewrite the energy in terms of a quadratic, cubic and quartic form:

E0(m2) =
1
2〈m2,Lm2〉+ 1

3N3(m2,m2,m2) +
1
4N4(m2,m2,m2,m2)

− (hext − h∗ext(k1))
∫

(0,w)×(0,1)
m2

2 dx1 dx2

+ (Q−Q∗(k1))
∫

(0,w)×(0,1)
m4

2 dx1 dx2,

where

1
2〈u,Lv〉 =

∫

(0,w)×(0,1)
∂1u∂1v+

1
2(|∂1|−1/2∂2u)(|∂1|−1/2∂2v)dx1 dx2

−
∫

(0,w)×(0,1)
h∗ext(k1)u vdx1 dx2,

1
3N3(u, v, r) =

∫

(0,w)×(0,1)
(|∂1|−1/2(−∂1

u v
2 )) (|∂1|−1/2∂2r)dx1 dx2,

1
4N4(u, v, r, s) =

1
2

∫

(0,w)×(0,1)
(|∂1|−1/2(−∂1

u v
2 ))(|∂1|−1/2(−∂1

r s
2 ))dx1 dx2

+
∫

(0,w)×(0,1)
Q∗(k1) u v r sdx1 dx2. (6.7)

We plug Ansatz (6.3) into the energy and expand the resulting expression w.r.t. the

amplitude A. Then as in [CÁOS07, Subsection 2.2.1] m∗∗
2 is given as the solution to

the minimization of the contribution of order A4, i.e.,

Lm∗∗
2 + 1

3

(
N3(m

∗
2 ,m

∗
2 , ·) +N3(m

∗
2 , ·,m∗

2) +N3(·,m∗
2 ,m

∗
2)
)
= 0. (6.8)

(We note that by abuse of notation we identify linear forms with their L2-Riesz

representation.) Fredholm’s alternative states that this equation is uniquely solvable

since the cubic non-linearity vanishes on the kernel of the Hessian:

N3(m
∗
2 ,m

∗
2 ,m

∗
2) = 0.
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6. Bifurcation analysis

Using the definition of L and N3 equation (6.8) turns into

−2∂21m
∗∗
2 − |∂1|−1∂22m

∗∗
2 − 2 h∗ext(k1)m

∗∗
2 − π

2 sin(2k1x1) sin(2πx2) = 0. (6.9)

Notice that |∂1|−1 acts on a pure mode as

|∂1|−1 sin(k1x1) = |k1|−1 sin(k1x1) and |∂1|−1 cos(k1x1) = |k1|−1 cos(k1x1). (6.10)

Equation (6.9) can be explicitly solved and we obtain

m∗∗
2 = π

2
|k1|

6|k1|3+π2 sin(2k1x1) sin(2πx2).

The form of m∗∗
2 is a consequence of the r.h.s. in (6.8) which is quadratic in m∗

2 . (For

example in case of N3(m2∗,m∗
2 , 0), which contains the expression (m∗

2)
2 = 1

4(1 +
cos(2k1x1))(1− cos(2πx2)), the differentiation w.r.t. x2 and x1 cancels the constant

terms and turns the the cos into sin.) Due to (6.9) we see that the k1-dependent

factor in the amplitude of m∗∗
2 is inversely proportional to the eigenvalue λ of m2,

i.e., λm2 = L2m2. The coefficient in the energy expansion of quartic order A4 is

given by

− 1
2〈m∗∗

2 ,Lm∗∗
2 〉+N4(m

∗
2 ,m

∗
2 ,m

∗
2 ,m

∗
2). (6.11)

A straightforward calculation shows that this term vanishes and hence the bifurca-

tion is degenerate provided

Q = Q∗(k1) =
(5π2 − 18|k1|3)|k1|
36(6|k1|3 + π2)

. (6.12)

Let us motivate the k1-dependence of (6.12): Since the amplitude A2(k) of m∗∗
2 is

inversely proportional to the eigenvalue λ of m2, λm2 = L2m2 see above, the k1-

dependent factor in the first contribution in (6.11) is proportional to the amplitude of

m∗∗
2 multiplied by the size of the domain, i.e., 2π

k∗1
. Due to homogeneity, the integrals

in the second term are linear in k1. Hence, the condition that (6.11) vanishes amounts

to an equation of the form aA2(k1) + b+ cQ∗(k1) = 0. This explains the form of the

numerator in (6.12).

Note that Q∗(k∗1)
9
64 =

k∗1
1280 so that

2π
k∗1
Q∗(k∗1) =

π
640 , (6.13)

which is the fourth order coefficient of the energy in the bifurcation, see (1.19) in

Section 1.6. We now optimize the coefficient in the expansion of the energy of order

A6 in m∗∗∗
2 . This leads to the equation

Lm∗∗∗
2 + 1

3 ∑
τ∈S3

N3(τ(m
∗
2 ,m

∗∗
2 , ·)) +N4(m

∗
2 ,m

∗
2 ,m

∗
2 , ·) = 0, (6.14)

where τ ∈ S3 denote permutations. Since m∗∗
2 is a second order harmonic of

m∗
2 , the r.h.s. of the latter equation contains third order harmonics of m∗

2 , which
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6.2. Unfolding of the near-degenerate bifurcation: Extended Ansatz.

are given by m∗∗∗1
2 = cos(k1x1) sin(πx2), m

∗∗∗2
2 = cos(3k1x1) sin(3πx2), m

∗∗∗3
2 =

cos(3k1x1) sin(3πx2), and m∗∗∗4
2 = cos(k1x1) sin(πx2). Fredholm’s alternative pro-

vides a unique solution to that equation if Q∗(k1) as in (6.12), cf. (6.7). By general

considerations this entails that only the first three harmonics can appear on the r.h.s.

of the equation. A straightforward but lengthy calculation shows that the cubic

perturbation is given by

m∗∗∗
2 =

k21
6|k1|3+π2

(
− k1

24k1
cos(k1x1) sin(3πx2)− (18|k1|3+π2)

8(48|k1|3−2π2)
cos(3k1x1) sin(πx2)

− (−18|k1|3+47π2)
144(8|k1|3+π2)

cos(3k1x1) sin(3πx2)
)
.

Let us again give a motivation for the k1-dependence of the amplitudes, in particular

the divergence of the second amplitude for k1 =
(

π2

24

)1/3
: By testing (6.14) with each

of the third order harmonics we read off that the corresponding amplitude Ai
3 of

m∗∗∗i
2 satisfies an equation of the form Ai

3EV(m
∗∗∗i
2 ) + aiA2(k1) + ci + Q∗(k1)di = 0,

where EV denotes the eigenvalue of m∗∗∗i
2 as an eigenfunction of L2. The amplitudes

are therefore inversely proportional to A2(k1) and EV(m∗∗∗1
2 ) = 8π2

|k1| , EV(m
∗∗∗2
2 ) =

48|k1|3−2π2

3|k1| , and EV(m∗∗∗3
2 ) = 28|k1|3+π2

|k1| , respectively. The simple structure of the first

numerator is due to the fact that m∗∗∗1
2 has the same wave number as m∗

2 , namely

the wave number k1.

The divergence of A2
3 in k1 is related to the fact that for the value of k1 = (π2

24 )
1/3 not

only m∗
2 but also m∗∗∗2

2 is in the null space of the Hessian at the field h∗ext(k1).

The coefficient to order A6 is then given by

− 1
2〈m∗∗∗

2 ,Lm∗∗∗
2 〉+ 2N4(m

∗∗
2 ,m∗∗

2 ,m∗
2 ,m

∗
2) + 4N4(m

∗∗
2 ,m∗

2 ,m
∗∗
2 ,m∗

2). (6.15)

Altogether we obtain the following expansion of the energy per length close to m2 =
0, hext = h∗ext(k

∗
1) and Q = Q∗(k∗1):

|k1|
2π E0(A, k1, hext)

≈ −(hext − h∗ext(k1))
1
4A

2 + (Q− Q∗(k1)) 9
64A

4 + e(k1)
1
64A

6, (6.16)

where

h∗ext(k1) = k21 +
π2

2|k1| ,

Q∗(k1) =
|k1|(5π2−18|k1|3)
36(6|k1|3+π2)

,

e(k1) =
|k1|3

(6|k1|3+π2)2

(
− π2

9 − (18|k1|3+π2)2

24(48|k1|3−2π2)
− (−18|k1|3+47π2)2

9×144(8|k1|3+π2)

+ π2 + π2(5π2−18|k1|3)
6(6|k1|3+π2)

)
.

(6.17)

Notice that the first three terms in e stem from the quadratic contribution in (6.15)

and are hence quadratic in the amplitudes Ai
3 multiplied by the eigenvalue of
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m∗∗∗i
2 . Due to homogeneity, the quartic contribution consists of two terms which

are quadratic in A2, the latter one is multiplied by Q∗(k1).

For k1 close to the critical wave number k∗1, i.e., k1 = k∗1 + δk1, Q = Q∗(k∗1) + δQ, and

hext = h∗ext(k
∗
1) + δhext, we expand the energy w.r.t. δk1 and obtain that

k∗1
2πE0(A, δk1, δhext) ≈

(
− δhext +

d2

dk21
|k1=k∗1 h

∗
ext(k1)

δk21
2

)
1
4A

2

+
(
δQ− d

dk1
|k1=k∗1

Q∗(k1) δk1
)

9
64A

4 + e(k∗1)
1
64A

6. (6.18)

Note that d
dk1

|k1=k∗1
h∗ext(k1) = 0 since k∗1 is the minimizer of the dispersion relation

h∗ext(k1) so that the first non-constant contribution is quadratic in δk1. We expect that

the choice of δQ = −Q∗(k∗1) in (6.18) provides an approximation of our reduced

model. For δQ = 0 we are in the degenerate case.

In the next section the analysis of the amplitude functional (6.18) is presented. Before

we step into it let us remark that the numerical value of e(k∗1) is positive. This implies

the existence of a turning point of the primary bifurcation branch emanating at the

critical field, cf. Figure 1.11.

6.3. Analysis of the amplitude functional

We now present the analysis of the amplitude functional. On the one hand, we are

interested in absolute minimizers, i.e.,

arg min
A, δk1

k∗1
2πE0(A, δk1, δh),

and on the other hand in the stability of local minimizers, i.e., minimizers for pre-

scribed wave-number δk1. The outcome of the analysis is summarized by the plot in

Figure 6.2.

The Bloch wave analysis in Theorem 5.1 showed that concavity of the minimal en-

ergy as a function of the period translates into an instability under long wave-length

modulation. The following observation shows that concavity of the energy per pe-

riod E0(w) w.r.t. the period is equivalent to concavity of the energy density w.r.t the

wave number:

d2

dk21

( k1
2πE0

(
2π
k1

))
= d

dk1

(
1
2πE0(

2π
k1
)− 1

k1
E′
0(

2π
k1
)
)
= 2π

k31
E′′
0

(
2π
k1

)
. (6.19)

To simplify the analysis, we introduce the following rescaling of the energy:

Rescaling of the amplitude functional. For an energy density e of the form

e = (−c2 δhext + c̃2 δk21) A
2 + (−c4 + c̃4 δk1) A

4 + c6A
6,
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let

A2 = (2 c̃2)
1/2(3 c6)

−1/2̺,

−c4 = (6c̃2c6)
1/22−1δq,

c2 δhext = 2 c̃2 δh,

c̃4 = (6c̃2c6)
1/2 ε,

e = (2 c̃2)
3/2 (3 c6)

−1/2ê.

Then the rescaled energy density takes the form

ê = (−δh + 1
2δk21 )̺ + ( 12δq+ εδk1) ̺2 + 1

3̺3.

Due to the rescaling above the minimization of ê is restricted to ̺ ≥ 0. In case of the

amplitude functional (6.18) we have

c6 = e(k∗1),

c̃4 = − 9
64

d
dk1

|k1=k∗1
Q(k∗1),

c̃2 =
1
8

d2

dk21
|k1=k∗1

hext(k
∗
1),

c4 = − 9
64δQ,

c2 =
1
4 .

(6.20)

Coercivity of the amplitude functional. The amplitude functional ê is coercive for

ε ≤ 21/23−1/2. In fact, we have by the Cauchy-Schwarz inequality that

εδk1̺2 ≥ −1
2(ε

2̺3 + δk21̺).

Hence the energy is bounded from below if and only if ε ≤ 21/23−1/2. Using the

formulas (6.20) above we find that

0.711 ≈ ε ≤ 21/23−1/2 ≈ 0.816.

Hence the amplitude functional for the reduced energy is coercive.

General characterization of optimal and marginally Eckhaus stable states. Let us

list the criteria for minimality and stability for energies of the form ê = ê(̺, δk1). The
optimal amplitude ̺a as a function of the wave number δk1 is characterized via

0 =
∂ê

∂̺
(̺a(δk1), δk1) and 0 <

∂2ê

∂̺2
(̺a(δk1), δk1).

The absolute minimizer (among all δk1) satisfies the additional relations

0 =
∂ê

∂δk1
(̺a(δka1), δk

a
1) and 0 < detHess ê (̺a(δka1), δk

a
1).
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Eckhaus unstable states, i.e., those states ̺a(δk1) for which the energy ê(̺a(δk1), δk1)
is concave, can be characterized via the relation

0 > detHess ê (̺a(δk1), δk1),

see below. The marginally Eckhaus-stable state (̺a(δks1), δk
s
1) is described by

0 = detHess ê (̺a(δks1), δk
s
1).

In fact, a straightforward calculation shows that

d2ê(̺a(δk1), δk1)

dδk21
=

1
∂2 ê
∂̺2

(̺a(δk1), δk1)
detHess ê (̺a(δk1), δk1).

Absolute minimizer and marginally Eckhaus-stable state of the amplitude func-

tional of the reduced energy. In the following we apply the general criteria from

the previous paragraph to obtain the branch of absolute minimizers (̺a(δka1), δk
a
1)

and the marginal stability curve (̺a(δks1), δk
s
1) for our amplitude functional as a

function of the external field. The result is plotted in Figure 6.2 and Figure 6.3.

We have that

∂ê

∂̺
= −δh+ 1

2δk21 + 2εδk1̺ + δq̺ + ̺2. (6.21)

This is a quadratic form in ̺ and δk1. In order to determine the set of stationary

points we rewrite the equation in the form of 1
2x · Ax+ bx+ c where x =

(
̺

δk1

)
:

∂ê

∂̺
=

(
̺

δk1

)
·
(
1 ε

ε 1
2

)(
̺

δk1

)
+ δq̺ − δh. (6.22)

Since 1
2x · Ax + bx + c = 1

2(x − A−1b) · A(x − A−1b) − 1
2b · A−1b + c and due to

0.711 ≈ ε >
√

1
2 ≈ 0.707 we have that det A < 0, so that the stationary points lie on

a hyperbola of center

A−1b = − 2

2− 4ε2

(
1
2 −ε

−ε 1

)(
δq

0

)

=
δq

4ε2 − 2

(
1

−2ε

)
,

with direction of the principal axes
(
− −1±

√
1+16ε2

4ε , 1
)
and level sets

δq2

8ε2−4
− δh.

The sufficient condition amounts to

0 <
∂2ê

∂̺2
(̺a(δk1), δk1) = 2(̺a(δk1) + εδk1 +

1
2δq). (6.23)
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This cuts the (̺, δk1)-plane into a stable and an unstable (w.r.t perturbations of ̺)

half-plane. Stationarity w.r.t. δk1 amounts to

0 =
∂ê

∂δk1
= ̺(ε̺ + δk1). (6.24)

The absolute minimizer is located in the intersection of the hyperbola defined via

(6.22) with the line (6.24).

Let us turn to the question of Eckhaus (in)stability. We have that

det




∂2 ê
∂̺2

∂2 ê
∂̺∂δk1

∂2 ê
∂̺∂δk1

∂2 ê
∂δk21


 = (2− 4ε2) ̺2 − 2εδk1̺ − δk21 + δq̺ (6.25)

=

(
̺

δk1

)
·
(
2− 4ε2 −3ε

−3ε −1

)(
̺

δk1

)
+ δq̺. (6.26)

Since 0.711 ≈ ε <
√

3
2 ≈ 1.225 the stability is thus related to a hyperbola of center

− δq

10ε2 + 4

(−1

3ε

)
,

with direction of the principal axes
(− 1

ε
1

)
and

(
4
3 ε

1

)
,

and level sets
δq2

5ε2+2
.

Thus the marginally Eckhaus-stable state is located in the intersection of the two

hyperbolas defined via (6.22) and (6.26). We note that the stability criterion only

depends on the value of δq but is independent of the value of the perturbation of

the field δh.

The marginal stable wave-number. There is a largest infinitesimal wave-number

δk∗(δq) s.t. for all δk1 > δk∗1 we have that ̺a(δk1) is unstable (independent of the

external field δh); the infinitesimal period of that state is given by δw∗ = − 2π
(k∗)2 δk∗1.

On the level of the experiment we hence expect that no pattern of period smaller than

w∗ + δw∗ can be observed. The explicit formula for δk∗1 can be obtained from the

characterization (6.25). This infinitesimal wave-number corresponds to the turning

point of the hyperbola defined by detHess = 0. It is the root of the discriminant

which we obtain by solving detHess = 0 for ̺, namely

δk∗ =
4εδq+ sign(δq)

√
(4εδq)2 − 4δq2(−12ε2 + 8)

2(−12ε2 + 8)
.

For the degenerate bifurcation we have δw∗ = 0, cf. Figure 6.3, where as for the

near-degenerate bifurcation for the reduced energy functional, i.e., δQ = −Q∗(k∗1)
we find δw∗ = 0.212, cf. Figure 6.2.
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6. Bifurcation analysis

6.3.1. Comparison to the classical Eckhaus instability

In the classical, non-degenerate case the (appropriately rescaled) amplitude func-

tional is given by

ê = (−δh + 1
2δk21 )̺ + 1

2̺2.

In that case the optimal state for prescribed wave-number is given by

̺a(δk1) = δh− 1
2δk21 provided |δk1| ≤ (2δh)1/2.

The absolute minimizer is given by

(̺a, δka1) = (δh, 0).

The marginal Eckhaus stable state is characterized via

0 = detHess E = ̺a − δk21 = δh− 3
2δk21.

Hence, for |δk1| > (23δh)1/2 the minimizer ̺a(δk1) is Eckhaus unstable. The region

of instability is centered at δk1 = 0.

1
0

1

−1

−2

δh

δk1 = − 2π
(w∗)2 δw

Figure 6.1.: The optimal (blue) state and the marginal Eckhaus stable (red) state for the

non-degenerate energy. The black parabola bounds the region of existence of

stable – under perturbation of amplitude – states.
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0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

δhext

δw

Figure 6.2.: The optimal (blue) and marginal Eckhaus stable (red) state as predicted by the

analysis of the amplitude functional for δQ = −Q∗(k∗1). The black curve bounds

the region of existence of stable states.
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1.5

2

δhext

δw

Figure 6.3.: The optimal (blue) and marginal Eckhaus stable (red) state as predicted by the

analysis of the amplitude functional for δQ = 0. The black curve bounds the

region of existence of stable states.
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6. Bifurcation analysis

6.4. Derivation of the general amplitude functional

The bifurcation analysis based on the extended Ansatz can be generalized by con-

sidering spatially varying amplitudes within a two-scale approach. This approach

builds on the central observation that a function of wave number close to k∗1 can be

written as the slow modulation of a function of wave number k∗1.

Two scale expansion and scaling of parameters. Motivated by the extended bifur-

cation analysis we make the following Ansatz

m2(x1, x2) =ε1/2 1
2

(
eik

∗
1x1 sin(πx2) A(X1) + c.c.

)

+ε1 1
2

(
ei2k

∗
1x1 sin(2πx2) B(X1) + c.c.

)

+ε3/2 1
2

(
eik

∗
1x1 sin(3πx2)C1(X1) + c.c.

+ ei3k
∗
1x1 sin(πx2)C2(X1) + c.c.

+ ei3k
∗
1x1 sin(3πx2)C3(X1) + c.c.

)

+O(ε2), (6.27)

where the slow variable X1 is given by

X1 = εx1.

In this Ansatz, the amplitudes A, B and Ci, i = 1, 2, 3 are assumed to be periodic

with period 2π
k∗1
. At the end of the derivation on p. 142, we come back to the point

that higher order terms in (6.27) do not appear in the leading order term of the

energy expansion.

The scaling behavior of amplitude and wave number as discussed in the previous

section motivates the scaling behavior in ε of the amplitude and the slow variable,

cf. (6.5). For the same reason we rescale the external field in the form of

hext = h∗ext(k
∗
1) + ε2 δhext.

Moreover we rescale the anisotropy parameter Q as

Q = Q∗(k∗1) + εδQ.

Our program is as follows: We plug in the Ansatz as above into the rescaled reduced

energy (1.14) augmented by anisotropy and determine the expansion w.r.t. ε. By a

successive minimization of the coefficients with increasing order of ε the amplitudes

B and Ci, i = 1, 2, 3 are slaved to A using Fredholm type conditions. In the end, we

obtain an amplitude functional which coincides with the amplitude functional de-

rived in the extended bifurcation analysis in the previous chapter in case of constant

amplitude, i.e., A = ÃeiδK1X1 . We note that the derivation is only on a formal level.

A rigorous derivation could be based on the notion of Γ-convergence.
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6.4. Derivation of the general amplitude functional

In order to derive the amplitude functional, we have to determine how the differen-

tial operators effectively act on the slow variable X1 and therefore on the amplitudes

A, B and Ci, i = 1, 2, 3. We have that

∂X1
= ε−1∂x1 . (6.28)

This entails that

∂x1(e
ik∗1x1F(εx1)) = eik

∗
1x1(ik∗1F(εx1) + ε∂X1

F(εx1)). (6.29)

We use the Fourier representation in order to derive the commutator relation for

the modulation and the non-local operator |∂x1 |−1. As for the differentiation, the

modulation just leads to a shift of the Fourier multiplier:

|∂x1 |−1(eik
∗
1x1eiεK1x1) = |∂x1 |−1(e(ik

∗
1+iεK1)x1) = |k∗1 + εK1|−1eik

∗
1x1eiεK1x1 . (6.30)

In short hand notation we write

|∂x1 |−1(eik
∗
1x1F(X1)) = eik

∗
1x1 |ik∗1 + ε∂X1

|−1F(X1). (6.31)

From the Fourier representation (6.30) we obtain that

|ik∗1 + ε∂X1
|−1 =

1

k∗1
+ ε

i

(k∗1)
2

∂X1
− ε2

1

(k∗1)
3

∂2X1
− ε3

i

(k∗1)
4

∂3X1
+ ε4

1

(k∗1)
5

∂4X1
+O(ε5),

i.e., the expansion of (6.31), cf. Step 2 in the proof of Theorem 5.1 in Chapter 5. Let

us point out that in contrast to the Bloch wave analysis for the eigenvalue in Chapter

5 – where we prescribed the modulation function – we here prescribe the function

to be modulated.

In a first step the two-scale Ansatz for m2 together with the expansion of the param-

eters is plugged into the energy. Using the commutator relations for the differential

operators, which were derived above, and neglecting the oscillatory integrands –

these contribution vanish as ε tends to zero to any order, see (6.32) – one obtains the

following expansion after an integration w.r.t. x2:

E0(m2) = εE1(A) + ε2E2(A, B) + ε3E3(A, B,C) +O(ε4).

As we will see, the scaling is chosen in such a way that the energy, after appropriate

choice of B and Ci in terms of A, is of the order ∼ ε3. Let us start with the simplest
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6. Bifurcation analysis

contribution, namely the Zeeman energy:

m2
2 =ε 14 sin

2(πx2)
(
ei2k

∗
1x1A2 + c.c.+ 2|A|2

)

+ε3/2 14 sin(πx2) sin(2πx2)2
(
ei3k

∗
1x1AB+ c.c.+ e−ik∗1x1AB̄+ c.c.

)

+ε2 14

(
sin(2πx2)

2(ei4k
∗
1x1B2 + c.c.+ 2|B|2)

+ sin(πx2) sin(3πx2)2(e
i2k∗1x1AC1 + c.c.+ AC̄1 + c.c.)

+ sin(πx2) sin(πx2)2(e
i4k∗1x1AC2 + c.c.+ e−i2k∗1x1AC̄2 + c.c.)

+ sin(πx2) sin(3πx2)2(e
i4k∗1x1AC3 + c.c.+ e−i2k∗1x1AC̄3 + c.c.)

)

+ε5/2 14

(
sin(2πx2) sin(3πx2)2(e

i3k∗1x1BC1 + c.c.+ eik
∗
1x1BC̄1 + c.c.)

+ sin(2πx2) sin(πx2)2(e
i5k∗1x1BC2 + c.c.+ e−ik∗1x1BC̄2 + c.c.)

+ sin(2πx2) sin(3πx2)2(e
i4k∗1x1BC3 + c.c.+ e−ik∗1x1BC̄3 + c.c.)

)

+ε3 14

(
sin(3πx2)

2(ei2k
∗
1x1C2

1 + c.c.+ 2|C1|2)
+ sin(πx2)

2(ei5k
∗
1x1C2

2 + c.c.+ 2|C2|2)
+ sin(3πx2)

2(ei5k
∗
1x1C2

3 + c.c.+ 2|C3|2)
+ sin(3πx2) sin(πx2)2(e

i4k∗1x1C1C2 + c.c.+ e−i2k∗1x1C1C̄1 + c.c.)

+ sin(3πx2)
22(ei4k

∗
1x1C1C3 + c.c.+ e−i2k∗1x1C1C̄3 + c.c.)

+ sin(πx2) sin(3πx2)2(e
i6k∗1x1C2C3 + c.c.+ C2C̄3 + c.c.)

)

+O(ε4).

We see that most of the contributions are oscillating on a length-scale one (in partic-

ular all contributions of fractional order in ε). Since the variation of A, B, and Ci is

on a scale of order ε−1, these expressions become small if we integrate w.r.t. x1 over

a periodic domain of size ∼ ε−1. In fact, for a function D which is 2π
k∗1
-periodic we

have that

∫ 2π
εk∗
1

0
e−ik1∗x1D(εx1)dx1 =

∫ 2π
εk∗
1

0

1

ik∗1
(∂x1e

−ik1∗x1)D(εx1)dx1

= − ε

ik∗1

∫ 2π
εk∗
1

0
e−ik1∗x1∂X1

D(εx1)dx1. (6.32)

Integration by parts therefore entails by iteration that the oscillatory integral on the

l.h.s. of (6.32) can be bounded to any order in ε if we assume that D is sufficiently

smooth. Hence we obtain for small ε ≪ 1

ε
∫ 2π

εk∗
1

0

∫ 1

0
m2

2 dx2 dx1 ≈
1

4

∫ 2π
k∗
1

0

(
ε|A|2 + ε2|B|2 + ε3(|C1|2 + |C2|2 + |C3|2)

)
dX1,
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6.4. Derivation of the general amplitude functional

which follows from the rescaling εx1 = X1 and the evaluation of the integral w.r.t x2.

Similarly we obtain

ε
∫ 2π

εk∗
1

0

∫ 1

0
m4

2 dx2 dx1 ≈
1

16

∫ 2π
k∗
1

0

(
ε2 94 |A|4 + ε3

(
6|A|2|B|2 − 3

2 |A|2(AC̄1 + c.c.)

+ 3
2(A

3C̄2 + c.c.)− 1
2(A

3C̄3 + c.c.)
))

dX1.

In the same way, using (6.28) and neglecting the oscillatory integrals, the exchange

energy turns into

ε
∫ 2π

εk∗
1

0

∫ 1

0
(∂x1m2)

2 dx2 dx1

≈ 1
4

∫ 2π
k∗
1

0

(
ε(k∗1)

2|A|2 + ε2(ik∗1A∂X1
Ā+ c.c.+ (2k∗1)

2|B|2)

+ ε3(|∂X1
A|2 + 2ik∗1B∂X1

B̄+ c.c.+ (k∗1)
2|C1|2

+ (3k∗1)
2|C2|2 + (3k∗1)

2|C3|2)
)
dX1.

The stray-field energy is more complicated. This is rather due to the fact that it

is non-linear and involves differentiation in two variables than due to the fact that

it involves a non-local operator which can be expanded. Due to the non-linearity

in the charge density several resonances can appear. A straightforward calculation

shows that the expansion of the charge density is given by the following expression

(resonating contributions in the energy, as σ is squared, are highlighted):

σ(m2)

=− ∂x1
m2

2
2 + ∂x2m2

=ε1/2 π
2 cos(πx2)

(
eik

∗
1x1A+ c.c.. . . . . . . .

)

+ε
(

π cos(2πx2)(e
i2k∗1x1B+ c.c.)

:::::::::::::::::

− 1
8 sin

2(πx2)(2ik
∗
1e

i2k∗1x1A2 + c.c.)
:::::::::::::::::::::::

)

+ε3/2
(
3π
2 cos(3πx2)(e

ik∗1x1C1 + c.c.)

+ π
2 cos(πx2)(e

i3k∗1x1C2 + c.c.) + 3π
2 cos(3πx2)(e

i3k∗1x1C3 + c.c.)

− 1
4 sin(πx2) sin(2πx2)(3ik

∗
1e

i3k∗1x1AB+ c.c.+ (−ik∗1)e
−ik∗1x1AB̄+ c.c.. . . . . . . . . . )

)
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+ε2
(
− 1

8 sin
2(2πx2)(4ik

∗
1e

i4k∗1x1B2 + c.c.)

− 1
8 sin

2(πx2)(e
i2k∗1x1∂X1

A2 + c.c.
::::::::::::::::::::

+ 2∂X1
|A|2)

− 1
2 sin(πx2) sin(3πx2)(2ik

∗
1e

i2k∗1x1AC1 + c.c.
::::::::::::::::::::::

)

− 1
2 sin

2(πx2)(4ik
∗
1e

i4k∗1x1AC2 + c.c.+ (−2ik∗1)e
−i2k∗1x1AC̄2 + c.c.

:::::::::::::::::::::::::::::

)

− 1
2 sin(πx2) sin(3πx2)(4ik

∗
1e

i2k∗1x1AC1 + c.c.

+ (−2ik∗1)e
−i2k∗1x1AC̄3 + c.c.

:::::::::::::::::::::::::::::

)
)

+ε5/2
(
− 1

4 sin(πx2) sin(2πx2)(e
i3k∗1x1∂X1

(AB) + c.c.+ e−ik∗1x1∂X1
(AB̄) + c.c.

. . . . . . . . . . . . . .
)

− 1
4 sin(2πx2) sin(3πx2)(3ik

∗
1e

i3k∗1x1BC1 + c.c.+ ik∗1e
ik∗1x1BC̄1 + c.c.

. . . . . . . . . . .
)

− 1
4 sin(2πx2) sin(πx2)(5ik

∗
1e

i5k∗1x1BC2 + c.c.+ (−ik∗1)e
−ik∗1x1BC̄2 + c.c.

. . . . . . . . . . . . . . .
)

− 1
4 sin(πx2) sin(3πx2)(5ik

∗
1e

i5k∗1x1BC3 + c.c.+ (−ik∗1)e
−ik∗1x1BC̄3 + c.c.

. . . . . . . . . . . . . . .
)
)
.

+O(ε3).

Using the expansion of the non-locality, one can derive the expansion of the stray-

field contribution.

From the calculation above we can now derive the expansion of the energy. We note

that there are no contributions of fractional order in ε – the corresponding integrals

are all of oscillatory type, see (6.32). The first coefficient, i.e.,

E1(A) =
∫ 2π

k∗
1

0

(
(k∗1)

2 + π2

2k∗1
− h∗ext

) |A|2
4

dX1,

obviously vanishes by definition of k∗1 and h∗ext.

Neglecting the oscillatory integrands, the coefficient to order ε2 is given by

E2(A, B)

=
∫ 2π

k∗
1

0

((
k∗1 − π2

4(k∗1)
2

) iA∂X1
Ā+ c.c.

4
+

3k∗1
16

|A|4
16

+ 9
4Q

∗(k∗1)
|A|4
16

+ π
2

iA2B̄+ c.c.

8
+ ((2k∗1)

2 + π2

k∗1
− h∗ext)

|B|2
4

)
dX1. (6.33)

The first term vanishes since k∗1 is the minimizer of the dispersion relation. Given A,

we can minimize E2 in B and obtain

B =
−πik1A

2

2(6(k∗1)
3 + π2)

. (6.34)

We find that the remaining term in (6.33) vanishes if Q = Q∗(k∗1) =
5π2−18(k∗1)

3

36(6(k∗1)
3+π2)

k∗1,
which is just the critical value identified in the extended bifurcation analysis in (6.12).
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We now come to the cubic contribution for which we obtain

E3(A, B,C1,C2,C3)

=
∫ 2π

k∗
1

0

(
1
4(|∂X1

A|2 − δhext|A|2 + π2

2(k∗1)
3 ∂X1

|A|2) + 3
64

iA2∂X1
Ā2 + c.c.

16

+ 3
16

(∂X1
|A|2)(|∂X1

|−1∂X1
|A|2)

16
+ δQ

9|A|4
64

+Q∗(k∗1)
6|A|2|B|2

16
+
(
2k∗1 − π2

4(k∗1)
2

) iB∂X1
B̄+ c.c.

4

+ 1
4((k

∗
1)

2 + 3π2

2k∗1
− h∗ext)|C1|2 −Q∗(k∗1)

3|A|2(AC̄1 + c.c.)

32

+
−(iπAB̄C1 + c.c.)

8
+

−k∗1|A|2(ĀC1 + c.c.)

128

+ 1
4((3k

∗
1)

2 + π2

6k∗1
− h∗ext)|C2|2 +Q∗(k∗1)

3(A3C̄2 + c.c.)

32

+
−(iπABC̄2 + c.c.)

16
+

3k∗1(A
3C̄2 + c.c.)

128

+ 1
4((3k

∗
1)

2 + 3π2

2k∗1
− h∗ext)|C3|2 −Q∗(k1∗)

A3C̄3 + c.c.

32

+
3iπABC̄3 + c.c.

16
+

−k∗1(A
3C̄3 + c.c.)

128

)
dX1.

We note that there is no contribution of the form B∂X1
Ā2 + c.c.. Such a term would

be potentially contained in the expansion of the cubic stray-field contribution, i.e.,

2∂x2m2|∂x1 |−1(−∂x1
m2

2
2 ). However, the differential operator w.r.t. x1 is of order zero

so that on the level of the Fourier multiplier (|∂x1 |−1∂x1)e
±ik∗1x1 turns into

±ik∗1 + iεK1

| ± ik∗1 + iεK1|
εK1≪ik∗1= ±i.

This shows that there are no contributions of the form B∂X1
Ā2 + c.c.. Plugging in

the optimal B as given by (6.34), we obtain by minimizing w.r.t. C1, C2, and C3 that

C1 = − (k∗1)
2|A|2A

24(6(k∗1)
3 + π2)

,

C2 = − (18(k∗1)
3 + π2)(k∗1)

2A3

8(6(k∗1)
3 + π2)(48(k∗1)

3 − 2π2)
,

C3 = − (−18(k∗1)
3 + 47π2)(k∗1)

2A3

144(6(k∗1)
3 + π2)(8k31 + π2)

.

Therefore, the first non-trivial coefficient of the amplitude functional – namely that
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of cubic order in ε – is given by:

E3(A) =
∫ 2π

k∗
1

0

(
(k∗1)

3

(6(k∗1)
3+π2)2

(
− π2

9 − (18(k∗1)
3+π2)2

24(48(k∗1)
3−2π2)

− (18(k∗1)
3−47π2)2

9×144(8(k∗1)
3+π2)

+
π2(5π2−18(k∗1)

3)

6(6(k∗1)
3+π2)

+ π2
) |A|6

64

+
(

π2(k∗1)
2

(6(k∗1)
3+π2)2

(2k∗1 − π2

4(k∗1)
2 ) +

3
64

) iA2∂X1
Ā2 + c.c.

16

+ δQ 9
4

|A|4
16

+ 3
16

∣∣|∂X1
|−1/2∂X1

|A|2
∣∣2

16

+
(
1+ π2

2(k∗1)
3

) |∂X1
A|2
4

− δhext
|A|2
4

)
dX1.

The amplitude functional thus has the form of a non-local Ginzburg-Landau func-

tional.

Let us come back to our Ansatz (6.27). One might suspect that next order terms

(∼ ε2) in (6.27) could lead to an additional contribution in the E3 coefficient of the

energy, e.g., via a mode interaction in the stray-field energy with the ε1-coefficient

in (6.27). Based on the level of the extended bifurcation analysis, let us argue that

there is no need to worry. In fact, the algebraic rules yield that an additional fourth

order coefficient in (6.6) satisfies an equation of the form

Lm∗∗∗∗
2 = g,

where g is some linear combination of terms of the form

N3(τ1(m
∗∗
2 ,m∗∗

2 , ·)) and N4(τ2(m
∗∗
2 ,m∗

2 , ,m
∗
2 , ·)),

where τ1 ∈ S3 and τ2 ∈ S4. A straightforward calculation shows that the r.h.s. is

proportional to sin(4k∗1x1) sin(4πx2). Therefore the next-order term in (6.27) should

be of the form

ei4k
∗
1x1 sin(4πx2)D(X1) + c.c.,

for some 2π
k∗1
-periodic D. Obviously, there are no resonances with the other coeffi-

cients.

Spatially-constant amplitude. Let us first show how the case of a constant ampli-

tude is related to the extended bifurcation analysis: For A = Ã eiθ(X1) = Ã eiδK1X1

the energy to leading order becomes a function of the amplitude Ã and the infinites-

imal perturbation of the wave number perturbation δK1. In fact, we have

|∂X1
A|2 = δK2

1|Ã|2,
iA2∂X1

Ā2 + c.c. = 2δK1Ã
4.
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Hence

E3(Ã eiδK1X1) = 2π
k∗1

(
(k∗1)

3

(6(k∗1)
3+π2)2

(
− π2

9 − (18(k∗1)
3+π2)2

24(48(k∗1)
3−2π2)

− (−18(k∗1)
3+47π2)2

9×144(8(k∗1)
3+π2)

+
π2(5π2−18(k∗1)

3)

6(6(k∗1)
3+π2)

+ π2
) Ã6

64

+
(

π2(k∗1)
2

(6(k∗1)
3+π2)2

(
2k∗1 − π2

4(k∗1)
2

)
+ 3

64

)δK1Ã
4

8

+
(
1+ π2

2(k∗1)
3

)δK1Ã
2

4
− δhext

Ã2

4

)
.

A comparison with (6.16) and (6.17) indeed confirms the equivalence of the spatially-

constant amplitude for the two-scale approach and the extended bifurcation analysis.

To see this, notice that

1+ π2

2(k∗1)
3 =

1
2

d2

dk21 |k1=k∗1
h∗ext(k1),

1
8

(
π2(k∗1)

2

(6(k∗1)
3+π2)2

(
2k∗1 − π2

4(k∗1)
2

)
+ 3

64

)
= − 9

64
d

dk1 |k1=k∗1
Q∗(k1).

As outlined in [Eck92], it is tempting to use the result of an extended bifurcation

analysis for an algorithmic derivation of the generalized amplitude functional: How-

ever, this algorithmic derivation – the replacement of δK1 by ∂X1
and Ã by a spa-

tially varying amplitude A, as explained in that reference – would miss the term∫
∂X1

|A|2|∂X1
|−1∂X1

|A|2 dX1, which obviously vanishes for constant amplitude.

Quasi-periodic solutions. It is known that – besides the stationary constant ampli-

tude solutions – there are stationary states of the classical Ginzburg-Landau func-

tional

E(A) =
∫ 2π

k∗
1

0
−δh|A|2 + 1

2 |∂X1
A|2 + 1

4 |A|4 dX1

with spatially varying amplitude and phase, i.e., A = Ã(X1)e
iθ(X1). In order to

investigate these states it is useful to introduce the “angular momentum”

H = Ã2 dθ

dX1
.

A straightforward calculation shows that stationary solutions exhibit conservation

of the angular momentum, i.e.,

d

dX1
H = 0.

Moreover the “energy”

1
2

( dÃ

dX1

)2
+V(Ã)
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is conserved, where

V(Ã) =
1

2
δhÃ2 − 1

4
Ã4 +

H2

2Ã2
.

Then stationarity amounts to

d2Ã

dX2
1

= −dV

dÃ
.

In the special case where H = 0 one can construct solutions of constant phase whose

amplitude suffices

δhÃ− Ã3 +
d2Ã

dX2
1

= 0.

There is the trivial constant solution Ã = ±(δh)1/2 and the hyperbolic tangent. The

so called defect solutions correspond to a hetero-clinic orbit connecting the constant

amplitude via the hyperbolic tangent profile. In case of H > 0, there are solutions

corresponding to compression-dilatation waves, i.e., solutions of non-constant phase,

cf. [Hoy06]. As shown in [DE91], the quartic degenerate bifurcation (without non-

locality) can be treated similarly by identifying analog integrals. Depending on

their value, there exist periodic and quasi-periodic solutions. Nevertheless, the non-

local term cannot be treated with that method. On the other hand the bifurcation

analysis in Section 6.5 suggests that quasi-periodic stationary points exist – though

all unstable.

6.5. Secondary bifurcations as splitting from multiple primary

bifurcations

It is known that secondary bifurcations are often intimately related to multiple pri-

mary bifurcations. This was first suggested in a work by Bauer, Keller, and Reiss in

[BKR75]. A model example can be found in [IJ90, V.6]. We will see in this section

that the secondary instabilities of the concertina pattern are also related to degener-

ate primary bifurcations. The secondary parameter, besides the external field, that

leads to a splitting of the double eigenvalue is given by the period of the system.

As the secondary parameter varies, the secondary bifurcation branches move along

the primary branches, see Figure 6.5. For a critical value of this parameter, the

secondary branches coalesce into a multiple primary bifurcation point. Usually, sec-

ondary bifurcations occur if there exist symmetries of the system. We now start with

a bifurcation analysis that we subsequently compare to our numerical simulations.

As mentioned in Subsection 1.8.5, the physical relevance of a finite artificial period

of the domain is related to defects and inhomogeneities in the sample. They effec-

tively reduce the characteristic wave length of interactions to a small multiple of the

period of the concertina.
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6.5. Secondary bifurcations as splitting from multiple primary bifurcations

Consider the reduced sample of size (L̂, 0)× (0, 1) where L̂ is arbitrary but fixed. As

depicted in Figure 6.4, the Hessian of the reduced energy (1.14) in m̂2 = 0 degener-

ates for the following values of the external field:

ĥ∗ext(k̂1) = k̂21 +
π2

2k̂1
, where k̂1 =

2πl
L̂
, l ∈ N.

ĥ∗ext

ĥ∗ext + 1

ĥext

k̂21 k̂∗

Figure 6.4.: Dispersion relation ĥext(k). The marked points correspond to wave numbers k̂l
and k̂m s.t. (6.35) is fulfilled. Dark green corresponds to l = 2 and m = 1 while

orange corresponds to l = 3 and m = 2.

Depending on the specific value of L̂, there may exist two distinct integers l and m s.t.

the l-mode (ml
2 = cos(2πlx̂1

L̂
) sin(πx̂2)) and the m-mode (mm

2 = cos(2πmx̂1
L̂

) sin(πx̂2))

become unstable for the same value of ĥext. This is the case if the corresponding

values of the critical field coincide, i.e.,

(k̂l1)
2 + π2

2k̂l1
= (k̂m1 )

2 + π2

2k̂m1
,

where

k̂r1 =
2πr
L̂
, r = l,m.

From this expression we can derive that a multiple primary bifurcation occurs pro-

vided

L̂∗(l,m) = 2(2πlm(l +m))1/3 (6.35)

at a field

ĥext =
π4/3(l2+ml+m2)
(2lm(l+m))2/3

.
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Figure 6.5.: Numerical simulations: The bifurcation diagram for L̂ = 2ŵ∗ (top left), L̂ =

1.8ŵ∗ (top right), L̂ = 1.6ŵ∗ (bottom left), L̂ = 1.4ŵ∗ (bottom right) showing the

first three primary branches and secondary bifurcations. The primary branches

correspond to the unstable modes sin( 2πrx̂1
L̂

) cos(πx̂2), r = 1, 2, 3. Note that r = 2

for L̂ = 2ŵ∗ corresponds to the ŵ∗-periodic concertina branch. The secondary

branches correspond to reflectional or rotational symmetric solutions, see Sec-

tion 4.5. The simulations confirm that the secondary bifurcations originate in

degenerate primary bifurcations.

In the following, we show that as L̂ varies in the neighborhood of L̂∗(l,m), cf. (6.35),

the multiple bifurcation splits up into two simple bifurcations and secondary bifur-

cations in the neighborhood of the primary bifurcation, cf. Figure 6.5. In order to

simplify the calculations, let us rescale in the following way:

(L̂ x̃1, x̃2) = (x̂1, x̂2),

L̂ ũ( x̃1
L̂
, x̃2) = m̂2(x̂1, x̂2),

L̂ h̃ext = ĥext,

L̂4 Ẽ0 = Ê0.
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6.5. Secondary bifurcations as splitting from multiple primary bifurcations

We thus obtain

Ẽ0(ũ, h̃ext, L̂) = 1
L̂3

∫

Q
(∂̃1ũ)

2 dx̃ + 1
2

∫

Q

(
|∂̃1|−1/2σ̃

)2
dx̃ − h̃ext

∫

Q
ũ2 dx̃,

where Q = (0, 1)× (0, 1) is periodic in the first coordinate and σ̃ = −∂̃1
m̃2

2
2 + ∂̃2m̃2.

For notational convenience, set λ = 1
L̂3

and µ = h̃ext. We also drop the tilde so that:

E0(u, µ,λ) = λ
∫

Q
(∂1u)

2 dx′ + 1
2

∫

Q

(
|∂1|−1/2σ

)2
dx′ − µ

∫

Q
u2 dx′.

We rewrite the energy in terms of a quadratic, cubic and quartic term:

E0(u,λ, µ) = 1
2〈u,Lu〉 + 1

3N3(u, u, u) +
1
4N4(u, u, u, u)

+ (λ − λ∗)
∫

Q
(∂1u)

2 dx′

− (µ − µ∗)
∫

Q
u2 dx′, (6.36)

where

1
2〈u,Lv〉 = λ∗

∫

Q
∂1u ∂1vdx

′

+ 1
2

∫

Q
(|∂1|−1/2∂2u)(|∂1|−1/2∂2v)dx

′ − µ∗
∫

Q
u vdx′,

1
3N3(u, v, r) = −

∫

Q

(
|∂1|−1/2∂1

(
1
2u v

)) (
|∂1|−1/2∂2r

)
dx′,

1
4N4(u, v, r, s) = 1

2

∫

Q

(
|∂1|−1/2∂1

(
1
2u v

))(
|∂1|−1/2∂1

(
1
2r s
))

dx′.

By definition we have that L is symmetric.

For all values of λ ∈ R and µ ∈ R, we have that u = 0 is a solution to the Euler-

Lagrange equation. With our rescaling as above, the Hessian in u = 0 degenerates

provided

µ = λ (kl1)
2 + π2

2kl1
, where kl1 = 2πl, l ∈ N.

As discussed above, the kernel generically is one-dimensional (up to translation).

However, for

λ∗ = 1
16πlm(l+m)

, at µ∗ = π(l2+ml+m2)
4lm(l+m)

the kernel of the Hessian is spanned (up to translation) by the two modes

cos(2π r x1) sin(πx2), r = l,m. (6.37)

Our plan is to calculate a general stationary point as a bifurcation from criticality on

the basis of the asymptotic energy. We use an Ansatz of the following form

u = Aul + A2ull + Bum + B2umm + ABulm, (6.38)

where ul and um either share
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6. Bifurcation analysis

• a rotational symmetry with center in (0, 12), i.e., ur = cos(2π r x1) sin(πx2),
r = l,m, or

• a reflectional symmetry with change of sign at the axis x1 = 0, i.e., ur =
sin(2π r x1) sin(πx2), r = l,m.

We note that in the particular case of l = 3m both symmetries occur, see below.

We recall that both transforms are symmetries of the energy, see Section 4.5 More-

over, these two cases are (up to translation) the only cases where mode-interactions

between ul and um can occur which are – as we will see – the origin of the sec-

ondary bifurcation. In the following, we only consider the rotational symmetric case

ur = cos(2π r x1) sin(πx2) for r = l,m. We note that it turns out that the reflectional

symmetric case leads to the same asymptotic energy. We will obtain ull, umm, and

ulm by minimizing the coefficients in the expansion of the energy – restricted to the

two-dimensional manifold parameterized by (6.38).

Let us plug in our Ansatz (6.38) and expand the energy. Using that Lur = 0 and

that N3(ur, ur, ur) = N3(τ(ul, um, um)) = N3(τ(um, ul, ul)) = 0, where τ denotes a

standard permutation in S3 (which is a result of the invariance of the energy under

the transform u → −u, x2 → 1− x2), the first term in the expansion in δλ = δµ = 0

is of quartic order. More precisely, we obtain up to higher order terms that:

E0 ≈ A4
(
1
2〈ull,Lull〉+ 1

6 ∑
τ∈S3

N3(τ(ul, ul, ull)) +
1
4N4(ul, ul, ul, ul)

)

+B4
(
1
2〈umm,Lumm〉+ 1

6 ∑
τ∈S3

N3(τ(um, um, umm)) +
1
4N4(um, um, um, um)

)

+A2B2
(
1
2〈ulm,Lulm〉+ 〈ull,Lumm〉+ 1

3 ∑
τ∈S3

N3(τ(ul, um, ulm))

+ 1
6 ∑

τ∈S3
N3(τ(ull, um, um)) +

1
6 ∑

τ∈S3
N3(τ(umm, ul, ul))

+ 1
16 ∑

τ∈S4
N4(τ(ul, ul, um, um))

)

+A3B
(
〈ull,Lulm〉+ 1

6 ∑
τ∈S3

N3(τ(ul, ul, ulm))

+ 1
3 ∑

τ∈S3
N3(τ(um, ul, ull)) +

1
24 ∑

τ∈S4
N4(τ(ul, ul, ul, um))

)

+AB3
(
〈umm,Lulm〉+ 1

6 ∑
τ∈S3

N3(τ(um, um, ulm))

+ 1
3 ∑

τ∈S3
N3(τ(ul, um, umm)) +

1
24 ∑

τ∈S4
N4(τ(um, um, um, ul))

)

+δλ 1
4(A

2(2πl)2) + B2(2πm)2)

−δµ 1
4(A

2 + B2), (6.39)
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6.5. Secondary bifurcations as splitting from multiple primary bifurcations

where Sd, d = 3, 4, denote the standard permutations. We simultaneously minimize

w.r.t. ull, umm, and ulm and obtain the following equations: Minimization w.r.t. ull
entails

A4
(
Lull + 1

6 ∑
τ∈S3

N3(τ(ul, ul, ·))
)
+ A2B2

(
Lumm + 1

6 ∑
τ∈S3

N3(τ(·, um, um))
)

+ A3B
(
Lulm + 1

3 ∑
τ∈S3

N3(τ(·, ul, um))
)
= 0,

minimization w.r.t. umm entails

B4
(
Lumm + 1

6 ∑
τ∈S3

N3(τ(um, um, ·))
)
+ A2B2

(
Lull + 1

6 ∑
τ∈S3

N3(τ(·, ul, ul))
)

+ AB3
(
Lulm + 1

3 ∑
τ∈S3

N3(τ(·, ul, um))
)
= 0,

and minimization w.r.t. ulm entails

A2B2
(
Lulm + 1

3 ∑
τ∈S3

N3(τ(ul, um, ·))
)
+ A3B

(
Lull + 1

6 ∑
τ∈S3

N3(τ(·, ul, ul))
)

+ AB3
(
Lumm + 1

6 ∑
τ∈S3

N3(τ(·, um, um))
)
= 0.

Multiplication by B2, A2 and AB shows that these equations reduce to one equation,

namely

A3B3
(
Lulm + 1

3 ∑
τ∈S3

N3(τ(ul, um, ·))
)
+ A4B2

(
Lull + 1

6 ∑
τ∈S3

N3(τ(·, ul, ul))
)

+ A2B4
(
Lumm + 1

6 ∑
τ∈S3

N3(τ(·, um, um))
)
= 0.

The latter equation holds (independently of A and B) provided

Lull + 1
6 ∑

τ∈S3
N3(τ(ul, ul, ·)) = 0, (6.40)

and

Lumm + 1
6 ∑

τ∈S3
N3(τ(um, um, ·)) = 0, (6.41)

and

Lulm + 1
3 ∑

τ∈S3
N3(τ(ul, um, ·)) = 0. (6.42)

Let us turn to the question of solvability. As mentioned above, the invariance of the

energy under the transform u → −u, x2 → 1− x2 entails that

N3(τ(ul, ul, ul)) = N3(τ(um, um, um)) = 0, (6.43)
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and

N3(τ(ul, um, ul)) = N3(τ(ul, um, um)) = 0. (6.44)

Due to (6.43) and (6.44) and the fact that ul and um span the kernel of L, a unique

solution to each of the equations (6.40), (6.41), and (6.42) exists due to Fredholm’s

alternative. It holds that

1
3 ∑

τ∈S3
N3(τ(ul, um, ·))

= −4π
(
sin(2π(l +m)x1) +

1
2 sin(2π(l −m)x1)

)
sin(2πx2). (6.45)

Notice that we do not distinguish the linear form, cf. (6.44), and its Riesz represen-

tation, cf. (6.45), w.r.t. notation. Moreover, we note that the different amplitudes of

sin(2π(l −m)x1) and sin(2π(l +m)x1) on the r.h.s. of (6.45) are due to the fact that

the trigonometric identities lead to cancellations in the sum of ul∂1um and um∂1ul.

Without loss of generality we may assume l > m. A straightforward calculation

shows that

ull = all sin(4πlx1) sin(2πx2), where all =
4lm(l+m)
3l2+ml+m2 ,

umm = amm sin(4πmx1) sin(2πx2), where am = 4lm(l+m)
3m2+ml+l2

,

ulm = al+m sin(2π(l +m)x1) sin(2πx2) + al−m sin(2π(l −m)x1) sin(2πx2),

where al+m = 8(l+m)
5 , al−m = 4(l2−m2)

7m+l .

The pairs (ull, umm) and (ull, ulm) are L2-orthogonal for all values l > m. This is not

true for (umm, ulm) in the particular case of l = 3m. Let us note that the formulas

for the amplitudes are consistent in the sense that al−m vanishes for l = m in which

case 1
2ulm = ull = umm.

With this at hand, we are ready to calculate the coefficients in the amplitude func-

tional. Without loss of generality we assume l > m. We use the Euler-Lagrange

equations (6.40), (6.41), and (6.42), and the symmetry properties of the operators to

simplify the coefficients, namely

N4(v, u, u, v) = N4(τ3(τ1(u, v), τ2(u, v)))

for arbitrary τ1, τ2, τ3 ∈ S2 and

N4(u, u, v, v) = N4(v, v, u, u).
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6.5. Secondary bifurcations as splitting from multiple primary bifurcations

Moreover, due to L2-orthogonality of (ull, umm), we finally obtain from (6.39)

E0 = A4
(
− 1

2〈ull,Lull〉+ 1
4N4(ul, ul, ul, ul)

)

+B4
(
− 1

2〈umm,Lumm〉+ 1
4N4(um, um, um, um)

)

+A2B2
(
− 1

2〈ulm,Lulm〉+ 1
2N4(ul, ul, um, um) +N4(um, ul, um, ul)

)

+A3B
(
− 〈ulm,Lull〉+N4(ul, ul, ul, um)

)

+AB3
(
− 〈ulm,Lumm〉+N4(um, um, um, ul)

)

+δλ 1
4(A

2(2πl)2) + B2(2πm)2)

−δµ 1
4(A

2 + B2). (6.46)

We emphasize that for l > m – due to the form of ul and um and since ull and ulm
are L2-orthogonal – the A3B-contribution vanishes. Moreover, a lengthy but straight-

forward calculation yields the following values for the coefficients in the expansion:

− 1
2〈ull,Lull〉+ 1

4N4(ul, ul, ul, ul) = − πlm(l+m)
3l2+ml+m2 +

3πl
8

= πl 9l
2−5ml−5m2

8(3l2+ml+m2)
,

− 1
2〈umm,Lumm〉+ 1

4N4(um, um, um, um) = − πlm(l+m)
3m2+ml+l2

+ 3πm
8

= πm 9m2−5ml−5l2

8(3m2+ml+l2)
,

− 1
2〈ulm,Lulm〉+ 1

2N4(um, um, ul, ul) +N4(um, ul, um, ul)

= −π
(l+m)(23m+9l)

5(7m+l)
+ 0+ 3πl

2 = π−3l2+41ml−46m2

10(7m+l)
,

−〈ummLulm〉+N4(um, um, um, ul) = δ2m,l−m(2π l2−m2

7m+l +
3πm
2 )

= δ2m,l−mπ(−4l2+25m2+3lm
2(7m+l)

).
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6.5.1. Stationary points of the amplitude functional.

Based on the asymptotic expansion of the energy (6.46), we want to characterize all

stationary points close to the bifurcation. We distinguish two cases:

Case l 6= 3m. In this case an explicit characterization of the stationary points is

possible. To simplify the notation let us rewrite the energy (6.46) in the form

E0 = eAAA
4 + eBBB

4 + eABA
2B2 + δλ 1

4(bAA
2 + bBB

2)− δµ 1
4(A

2 + B2).

We use the amplitude functional in order to calculate the stationary points close to

u = 0, i.e., (A, B)(δλ, δµ), s.t.

∂E0

∂A
= 0 and

∂E0

∂B
= 0.

This is equivalent to

2eAAA
3 + eABAB2 + δλ 1

4bAA− δµ 1
4A = 0,

2eBBB
3 + eABA

2B+ δλ 1
4bBB− δµ 1

4B = 0.

By factorizing the equation we can distinguish four cases, namely

a) A = 0 and B = 0,

b) A = 0 and B 6= 0,

c) A 6= 0 and B = 0,

d) A 6= 0 and B 6= 0.

Let us characterize the (real) solutions:

ad a) This corresponds to the trivial solution which exists for all δλ and all δµ.

ad b) This corresponds to the primary bifurcation branch as obtained from the classi-

cal bifurcation analysis. A solution A2 ≥ 0 exists, provided (−eAA)
−1(δλbA −

δµ ≥ 0.

ad c) This corresponds to the primary bifurcation branch as obtained from the clas-

sical bifurcation analysis. A solution B2 ≥ 0 exists, provided (−eBB)
−1(δλbB −

δµ ≥ 0.

ad d) This corresponds to secondary bifurcation branches. A solution (A, B) s.t.

A2 ≥ 0 and B2 ≥ 0 exists, provided both

(2bAeBB−bBeAB)δλ+(2eBBeAB)(−δµ)

e2AB−4eAAeBB
≥ 0,

(2bBeAA−bAeAB)δλ+(2eAA−eAB)(−δµ)

e2AB−4eAAeBB
≥ 0.
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6.5. Secondary bifurcations as splitting from multiple primary bifurcations

As an example, we consider the case m = 2 and l = 1. Then

eAA = 7π
20 , eBB = − 7π

24 , eAB = 4π
15 , bA = 4(2π)2 and bB = (2π)2.

Therefore, solutions of type b) exist provided

δµ ≥ 4(2π)2δλ

and of type c) provided

δµ ≤ (2π)2δλ.

Moreover, solutions of type d) only exist if

δµ ≥ 208π2δλ
17 and δµ ≤ 44π2δλ

13 .

In particular, existence is related to δλ < 0, i.e., L > L∗(l,m). It is useful to think

of δλ as fixed, since it is related to the infinitesimal period of the domain, see the

paragraph before (6.36).

Our calculations show that the existence of secondary branches is related to the

crossing of primary branches as the period L passes some critical value, cf. (6.35).

For L > L∗(l,m) we find a secondary bifurcation branch connecting the primary

mode-l-branch with the primary mode-m-branch. Notice that the mode-l-branch

bifurcates for a smaller value of µ, i.e., smaller external field hext, than the mode-m-

branch.

Figure 6.6 shows a comparison of the result of the bifurcation detection algorithm on

the basis of the reduced model and the result of the asymptotic analysis. The asymp-

totic analysis shows no difference in energy of the rotational symmetric bifurcation

and the reflectional symmetric bifurcation, see Chapter 4 and Figure 6.7.

Case l = 3m. The explicit characterization of the set of solutions is difficult for B =
0, so that we solely refer to numerical computations: The Euler-Lagrange equation

of the amplitude functional was solved in Mathematica and plotted in matlab, see

Figure 6.7. The plot shows that the asymmetry of the equation leads to a loop of

the bifurcation branch which can be interpreted as a perturbation of the secondary

bifurcation for l 6= 3m.

Let us finally remark that that the form of the diagrams depends only on the quan-

tities l/(gcd(l,m)) and m/(gcd(l,m)).
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Figure 6.6.: Numerical simulations (solid) and asymptotics (dashed): The figure shows a

comparison of the bifurcation diagram for the L̂ = 1.5ŵ∗-periodic domain (λ∗ ≈
0.003316, δλ ≈ −0.000368) including the branch corresponding to the mode

m = 1 (orange) and the branch corresponding to the mode l = 2 (blue). The

reflectional (green) and rotational (red) symmetric branches coincide to leading

order with the secondary branch based on the asymptotics (black).
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Figure 6.7.: Numerical simulations (solid) and asymptotics (dashed): The figure shows a

comparison of part of the bifurcation diagram for the L̂ = 1.9ŵ∗-periodic domain

(λ∗ ≈ 0.001658, δλ ≈ −0.000208) including the branch corresponding to the

mode m = 1 (orange) and the branch corresponding to the mode l = 3 (violet).

The zoom-in shows that the turning point does not coincide with the osculation

point. This is the generic case.
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7

The effect of polycrystalline anisotropy

In this chapter, the effect of a polycrystalline anisotropy is investigated on the ba-

sis of the reduced energy functional (1.10). This form of anisotropy leads to an

additional contribution which has the form of a random transversal external field.

In particular, we will address the relation of the oscillatory ripple structure, which

is observed in polycrystalline Permalloy material, and the concertina, see Section

7.1. Subsection 7.1.2 addresses the discretization and numerical simulation of the

random field.

It is well known that an additional spatial-temporal random torque in the Landau-

Lifshitz-Gilbert equation, modeling thermal fluctuations, leads to a divergence in

the large wave-numbers, cf. [BG05, Abe10]. In Section 7.2 we therefore address

the different effects of a spatial randomness, i.e., quenched disorder, and a spatial-

temporal randomness.

7.1. The ripple

The ripple denotes the typical in-plane oscillation of a magnetization in a thin film

that is small in amplitude (and scale with respect to typical domain patterns), see

Figure 1.30; the wave vector is always in direction of the (locally averaged) magneti-

zation, see Figure 7.1.

σ = ∂1m1

≈ ∂1(− 1
2m

2
2)

σ = ∂2m2

x1

x2

Figure 7.1.: An oscillation in the direction of average magnetization leads to a smaller,

quadratic scaling in the charge density.

The ripple is triggered by an effective field of random direction on a small scale.

Several origins for this effective field are proposed in the literature, see for instance

[Har68, Section C]; in polycrystalline thin films, the random orientation of the grains,
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7. The effect of polycrystalline anisotropy

more precisely their crystalline anisotropy, and local stresses via magnetostriction

are seen as the main causes. In our discussion, we shall focus on the first one.

Hoffmann [Hof68] and Harte [Har68], based on the torque equilibrium linearized

around a spatially constant magnetization (solely determined by the external field

and anisotropy). Hereby they identified the linear response to such a small-scale,

small-amplitude random effective field. The main finding is that the stray field –

which penalizes transversal more than longitudinal perturbations of the magnetiza-

tion because the former lead to a stronger charge oscillation – results in a strong

anisotropic response. The anisotropic rescaling (1.11) leading to our reduced model

and the anisotropic response of the ripple obviously have the same origin.

We will see that both the ripple and the transition between ripple and concertina

can be explained within the framework of an extension of our reduced model. Our

analysis of the ripple is mainly a reformulation of the classical results by Hoffmann.

However, the new insight is that the finite width of the sample leads to a (continuous)

transition from the ripple to the concertina.

{

∼ ℓgrain

e
hripple

Figure 7.2.: A polycrystalline anisotropy acts like a transversal (to the direction of the mean

magnetization) random field on length scales large compared to the grain size.

7.1.1. Extension of the reduced model to polycrystalline anisotropy

We now heuristically explain how to extend our reduced model. We start from the

three-dimensional model (1.1) with a uniaxial anisotropy of strength Q and position-

dependent easy axis e(x), i.e., with the augmentation −Q
∫

Ω
(m · e)2 dx of the micro-

magnetic energy (1.1), cf. Figure 7.2 (left). Under the assumptions of our reduced

model, i.e., m3 ≡ 0, m = m(x1, x2), m
2
2 ≪ 1, this term is, up to additive constants, to

leading order approximated by

−Q
∫

Ω
(m · e)2 dx ≈ −2Qt

∫

Ω′
m2e1e2 dx1 dx2, (7.1)

where

e1e2(x1, x2) = t−1
∫ t

0
e1e2(x1, x2, x3)dx3

denotes the vertical average of the product of the first two components of the easy

axis. A random anisotropy therefore acts to leading order as a transversal external
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7.1. The ripple

stochastic field

hripple = Qe1e2. (7.2)

As mentioned, the position dependence of e arises from the random orientation

of the grains of size ℓgrain. Provided t ≪ ℓgrain ≪ w∗ (where we take w∗ as a

typical length scale of the magnetization pattern), the stationary statistics of e1e2 are

characterized by

〈e1e2(0, 0)e1e2(x1, x2)〉 = ℓ2grainδ(x1)δ(x2)〈e1e2(0, 0)2〉, (7.3)

where 〈·〉 denotes the ensemble average and δ the Dirac function. For example in

case of a uniform distribution of the easy axis e in S1 and column-like grains, i.e.,

the distribution (cos φ sin φ, 0), φ ∈ [0, 2π), we obtain

〈e1e22〉 = 1
2π

∫ 2π

0
(e1e2)

2(φ)dφ = 1
8 .

Let us note that different axial anisotropies can be similarly treated, leading to a

different factor in the latter identity.

The dominant wave number of the magnetization. For subcritical fields hext <

h∗ext, we neglect the nonlinear term in the charge density in (1.10). The resulting

energy functional is quadratic and linear in m2. Hence, it is conveniently expressed

in terms of Fm2(k1, k2), which denotes the Fourier transform of m2 w.r.t. x1 (we

assume an infinite stripe at that point, periodic stripes of large period L lead to

similar results) and the Fourier sine series in x2 (related to the edge pinning m2 = 0

at x2 = 0, ℓ):

E(m2)

≈
∫ ∞

−∞
∑

k2∈πZ

ℓ

(d2k21 +
1
2 tk

2
2k

−1
1 − hext)|F (m2)|2 − 2QF (e1e2)F−1(m2)dk1. (7.4)

A uniaxial anisotropy, constant throughout the sample, is neglected at that point but

can be easily included afterwards since it only leads to a shift of the external field.

The explicit minimization yields

F (m2)(k1, k2) =
1

(d2k21 +
1
2 tk

2
2k

−1
1 − hext)

F (hripple)(k1, k2). (7.5)

We interpret this m2 as the ripple. Since (7.3) on the level of F (e1e2) reads

〈|F (e1e2)(k1, k2)|2〉 = ℓ2grain〈e1e2(0, 0)2〉,

(7.5) is best expressed in terms of the energy spectrum:

〈|Fm2(k1, k2)|2〉 = Q2 ℓ2grain

(d2k21+
1
2 tk

2
2k

−1
1 −hext)2

〈e1e2(0, 0)2〉. (7.6)
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7. The effect of polycrystalline anisotropy

The numerator clearly displays the afore mentioned anisotropic response of m2 to

the isotropic field e1e2.

As we will see below, from formula (7.6), one can infer the predominant wave num-

ber of the ripple given by

〈k1〉 =
〈∑k2

∫ ∞

−∞
|k1||F (m2)|2 dk1〉

〈∑k2

∫ ∞

−∞
|F (m2)|2 dk1〉

=
〈||∇|1/2m2|2〉

〈|m2|2〉
. (7.7)

There are three different scaling regimes for the wave number.

• For moderate stabilizing fields, i.e., t2d−2 ≫ −hext ≫ d2/3ℓ−4/3t2/3, one can

show that

〈|k1|〉 ∼ (−hext)
1/2d−1. (7.8)

This is the characteristic wave number which was derived by Hoffmann and

Harte , cf. [Hof68, p.34, (7) and (9)] and [Har68, p.1515, (97b)]. However, Hoff-

man includes an additional uniaxial anisotropy with easy axis e1 of strength

Qu, i.e., +Qu

∫
Ω
m2

2 dx , so that the external field is shifted in the sense that the

dominant wave number turns into 〈|k1|〉 ∼ (Qu − hext)1/2d−1.

• We note that for large stabilizing fields, i.e., in the limit −hext ≫ t2d−2, the

amplitude of the ripple tends to zero.

• For small stabilizing fields and destabilizing fields up to the critical field, more

precisely −d2/3ℓ−4/3t2/3 ≪ hext ≤ h∗ext = 3(π
2 )

4/3d2/3ℓ−4/3t2/3, one can show

that the dominant wave number scales as

〈|k1|〉 ∼ d−2/3ℓ−2/3t1/3. (7.9)

More precisely, as hext approaches the critical field h∗ext, the dominant wave

number 〈|k1|〉 approaches the critical wave number k∗1, i.e., the wave number

of the unstable mode, see below.

We thus learn from the analysis that, as the strength hext of the external field in-

creases from moderate negative values towards its critical value, the average wave

length of the ripple continuously increases

• from the values characteristic to a film which is infinite in both x1- and x2-

directions, cf. Section 7.2 and (7.28) therein,

• to the wave length of the unstable mode that is at the origin of the concertina

pattern, see Figure 7.3.

It is thus not surprising that ripple and small-amplitude concertina are difficult to

distinguish.
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7.1. The ripple
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Figure 7.3.: Numerical simulations: The dominant wave number of the transversal compo-

nent of the magnetization computed on the basis of the reduced model aug-

mented by a transversal random field. As the external field approaches the criti-

cal field the dominant wave number increases towards the critical wave number.

Arguments for scaling behavior of the dominant wave number. Let us first give

an argument for (7.8) and afterwards turn to (7.9). For moderate stabilizing external

field, i.e.,

t2d−2 ≫ −ĥext = d−2/3ℓ4/3t−2/3(−hext) ≫ 1, (7.10)

consider the rescaling

k1 = d−1(−hext)
1/2 k̂1 and k2 = d−1/2t−1/2(−hext)

3/4 k̂2

and set

α = d1/2ℓ−1t1/2(−hext)
−3/4. (7.11)

Then

π
ℓ ∑
k2∈π

ℓ Z

∫ ∞

−∞

1

(d2k21+
1
2 t

k22
|k1|

−hext)2
dk1

= π
ℓ d

−1(−hext)
1/2 (−hext)

−2 ∑
k2∈παZ

∫ ∞

−∞

1

(k̂21+
1
2

k̂22
|k̂1|

+1)2
dk̂1.

Since α ≪ 1 in the Regime (7.10), we can approximate the sum over k̂2 by an integral,

more precisely

πα ∑
k2∈παZ

∫ ∞

−∞

1

(k̂21+
1
2

k̂22
|k̂1|

+1)2
dk̂1

α≪1≈
∫ ∞

−∞

∫ ∞

−∞

1

(k̂21+
1
2

k̂22
|k̂1|

+1)2
dk̂2 dk̂1.
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7. The effect of polycrystalline anisotropy

To see that the latter integral is finite, we refer to Figure 7.4 which depicts the scaling

regimes of the integrand. From Figure 7.4 we read off that

∫ ∞

−∞

∫ ∞

−∞

1

(k̂21+
1
2

k̂22
|k̂1|

+1)2
dk̂1 dk̂2

∼
∫ 1

0

∫ k̂1/21

0
1 dk̂2 dk̂1 +

∫ 1

0

∫ 1

k̂1/21

|k̂1|2k̂−4
2 dk̂2 dk̂1

+
∫ ∞

1

∫ k̂2/32

0
|k̂1|2k̂−4

2 dk̂1 dk̂2 +
∫ ∞

1

∫ k̂3/21

0
k̂−4
1 dk̂2 dk̂1

< +∞. (7.12)

Altogether we obtain that

π
ℓ ∑
k2∈π

ℓ Z

∫ ∞

−∞

1

(d2k21+
1
2 t

k22
|k1|

−hext)2
dk1

= d−3/2t−1/2(−hext)
−3/4πα ∑

k̂2∈παZ

∫ ∞

−∞

1

(k̂21+
1
2

k̂22
|k̂1|

+1)2
dk̂1

α≪1∼ d−3/2t−1/2(−hext)
−3/4.

Notice that this is the average squared ripple amplitude ∑k2

∫
|F (m2)|2 dk1which

was derived by Hoffmann in [Hof68, p.34, (10)], see (7.6). Similarly we have that

π
ℓ ∑
k2∈π

ℓ Z

∫ ∞

−∞

|k1|
(d2k21+

1
2 t

k22
|k1|

−hext)2
dk1

≈ d−3/2t−1/2(−hext)
−3/4 d−1(−hext)

1/2
∫ ∞

−∞

∫ ∞

−∞

|k̂1|
(k̂21+

1
2

k̂22
|k̂1|

+1)2
dk̂1 dk̂2.

Since the latter integral is finite – which can be seen in a similar way using the

decomposition as in (7.12) – we obtain for α ≪ 1 that the dominant wave number is

given by

〈|k1|〉 ∼ d−1(−hext)
1/2.

(We note that higher order moments do not exist, more precisely 〈|k1|r〉 is infinite

for r > 3
2 ). In the same manner one can show that

〈|k2|〉 ∼ (dt)−1/2(−hext)
3/4.

Note that the anisotropic response of the magnetization, i.e., 〈|k2|〉 ≪ 〈|k1|〉, only is

equivalent to the lower bound in the regime (7.10).

Let us briefly address the case of large stabilizing field −hext ≫ t2d−2. In that

case the scale separation is not valid anymore so that the anisotropic approximation
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7.1. The ripple

d2k21 +
t2

2
k22
|k1| − hext of d

2|k′|2 + t2

2
k22
|k′| − hext fails. However, on the basis of the latter

expression one can show that the amplitude of the magnetization 〈δm2
2〉1/2 in the

limit −hext ≫ t2d−2 converges to zero, see Section 7.2.

We now turn to small stabilizing external fields α ≫ 1, cf. (7.11). Using the rescaling

k1 = d−2/3ℓ−2/3t1/3 k̂1 and k2 = ℓ−1 k̂2

we obtain that

π
ℓ ∑
k2∈π

ℓ Z

∫ ∞

−∞

1

(d2k21 +
1
2 t

k22
|k1| − hext)2

dk1

= π
ℓ d−2/3ℓ−2/3t1/3 d−4/3ℓ8/3t−4/3 ∑

k̂2∈πZ

∫ ∞

−∞

1

(k̂21 +
1
2

k̂22
|k̂1|

+ 1
α4/3

)2
dk̂1 dk̂2

α≫1∼ d−2ℓt−1.

The latter sum/integral is finite since (k̂21 +
1
2 k̂

2
2|k̂1|−1)−2 is integrable on (0,∞) ×

(π,∞):

∫ ∞

π

∫ ∞

−∞
(k̂21 +

1

2
k̂22|k̂1|−1)−2 dk̂1 dk̂2

∼
∫ ∞

π

∫ |k̂2|2/3

0
k̂21k̂

−4
2 dk̂1 dk̂2 +

∫ ∞

π

∫ 0

|k̂2|2/3
k̂−4
1 dk̂1 dk̂2 ∼ 1. (7.13)

Moreover

π
ℓ ∑
k2∈π

ℓ Z

∫ ∞

−∞

|k1|
(d2k21 +

1
2 t

k22
|k1| − hext)2

dk1

= πd−2ℓt−1d−2/3ℓ−2/3t1/3 ∑
k̂2∈πZ

∫ ∞

−∞

k̂1

(k̂21 +
1
2

k̂22
|k̂1|

+ 1
α4/3

)2
dk̂1 dk̂2

α≫1∼ d−2ℓt−1d−2/3ℓ−2/3t1/3.

In fact, the integral is finite which can be seen similar to (7.13) so that we obtain

〈|k1|〉 ∼ d−2/3ℓ−2/3t1/3.

In the same way one obtains that

〈|k2|〉 ∼ ℓ−1.

Observe that that 〈|k2|〉 ≪ 〈|k1|〉 is equivalent to the lower bound characterizing

Regime III, (1.17).
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∼ k22|k1|−1

Figure 7.4.: The scaling regimes of k21 + k22|k1|−1 + 1.

Finally we turn to the case of small external destabilizing field. Provided that

0 ≤ hext < h∗ext = 3(π
2 )

4/3d2/3ℓ−4/3t2/3 the density |F (m2)|2 is integrable. Ob-

serve that, as hext approaches the critical field h∗ext, the density |F (m2)|2 concen-

trates at k∗1 = 2πd−2/3ℓ−2/3t1/3 and k∗2 = πℓ−1 respectively. In fact, the minimum of

d2k21 +
t
2k

2
2|k1|−1 among k1 ∈ R and k2 ∈ π

ℓ Z is attained at k∗1 and k∗2, respectively,
and it holds that

d2(k∗1)
2 + t

2(k
∗
2)

2|k∗1|−1 = h∗ext.

Due to the uniform integrability away from the singularity as hext → h∗ext one can

show that

〈|k1|〉 → k∗1 in the limit hext → h∗ext.

A refinement of the analysis even shows that 〈|k1|〉 monotonically decreases as hext
increases, see Figure 7.3.

Summing up the above analysis shows that the dominant wave-length grows from

values ∼ (−hext)−1/2d to w∗ = (32π)1/3d2/3ℓ2/3t−1/3 as the external field hext in-

creases from moderate negative values hext ∼ −t2d−2 to h∗ext.

7.1.2. Discretization and numerical simulation of the random field

We now address the numerical simulation of our augmented model (7.14). Let us

therefore first rewrite the additional term (7.1) in the rescaled variables (1.11). We

obtain

Ê = old− 2
∫

ĥripplem̂2 dx̂1 dx̂2, (7.14)

where ĥripple is a stationary Gaussian field of vanishing mean and of variance

〈ĥripple(0, 0)ĥripple(x̂1, x̂2)〉 = (σ∗)2δ(x̂1)δ(x̂2), (7.15)
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7.2. Thermal fluctuations vs. quenched disorder

where σ∗ = d−10/6ℓ5/6t−1/6Qℓgrain〈e1e2(0, 0)2〉1/2. For a typical film of 30 nm thick-

ness and 70µm width the grain size is of the order ℓgrain = 15nm, see Section 1.12.

For a local strength of anisotropy Q = 5× 10−3 we obtain that (σ∗)2 = 125.87. On

the level of the discretization, ĥripple in (7.2) is modeled as a Gaussian random vari-

able of mean zero, which is identically and independently distributed from grid

point to grid point and has variance (σ∗)2∆x̂1
−1∆x̂2

−1, where ∆x̂i denotes the grid

size. For the value of (σ∗)2 = 110.83, our numerical simulation indeed shows a con-

tinuous transition from the ripple to the concertina pattern instead of a first-order

phase transition due to a subcritical bifurcation, see Figure 1.30.

7.2. Thermal fluctuations vs. quenched disorder

In the following, we want to contrast the effect of thermal fluctuations to the effect

of quenched disorder. Thermal fluctuations can be modeled by a random external

field term in the Landau-Lifshitz-Gilbert equation (LLGe) that is white noise in space

and time. On the other hand, as we have seen, quenched disorder related to the

polycrystallinity of the material can be modeled by a random field term that is

white noise in space.

It is known that the space-time white noise in the LLGe leads to a divergence in small

wave-lengths, cf. [BG05, Section 2.4, Figure 1 and 2]. In fact, the exchange energy is

not strong enough to suppress these excitations. Within the numerical simulations,

one observes a mesh-size dependence of the solution, cf. [Abe10], which can be

remediated by a suitable renormalization. These effects are related to the presence

of phase transitions in the Heisenberg spin model. Hence it is not surprising that the

critical dimension for that effect is two, cf. Table 7.18. Both effects are investigated

below on the basis of the linearization of the energy for bulk material and thin films.

The analysis shows that the expected average infinitesimal amplitude is given by

〈|δm|2〉 =
∫

λ(k)−j dk (7.16)

and that the dominant wave number of the magnetization is given by

〈|k|〉 =
∫

λ(k)−j|k|dk∫
λ(k)−j dk

, (7.17)

where λ(k) denotes the eigenvalues of the linearization of the energy parameterized

by the wave number in Fourier space. We will see that j = 1 in case of thermal

fluctuations and j = 2 in case of quenched disorder. Note that (7.17) is just a refor-

mulation of the expectation for the ripple wave number in (7.7). We will see that

(7.16) and (7.17) diverge in case of thermal fluctuations, i.e., j = 1, though only log-

arithmically in a thin film. In case of quenched disorder, i.e., j = 2, (7.16) and (7.17)

are finite. But only in a thin film the dominant wave length is determined by both

exchange and stray-field energy and turns out to be much larger than the atomistic

length scale, i.e., the exchange length d, and the typical grain size ℓgrain.
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7. The effect of polycrystalline anisotropy

7.2.1. Thermal fluctuations.

We consider the Langevin dynamics of the LLGe and take into account a white-noise

torque. The stationary measure which is associated to the dynamics is given by the

Gibbs distribution

1

Z
exp(−E(m))dm, (7.18)

where E denotes the micromagnetic energy (1.1). We start with the effect of thermal

fluctuations in a bulk sample where we think of the energy E as the full micromag-

netic energy (1.1). Afterwards we consider a two-dimensional thin film. In that case

the magnetization is assumed to be in-plane, i.e., m3 = 0, so that the stray-field

energy can be approximated by

t
2

∫

Ω′
||∇′|−1/2∇′ ·m′|2 dx1 dx2,

cf. (1.9). In order to derive expectations for the spatially averaged magnetization and

the dominant wave number, we need the following identities. Let A ∈ Rn×n be a

symmetric positive definite matrix. Then

∫

Rn
|x|2e−x·Ax

2 dx = (2π)n/2
( n

∏
i=1

λ−1/2
i

) ( n

∑
i=1

λ−1
i

)

and

∫

Rn
e
−x·Ax

2 dx = (2π)n/2
( n

∏
i=1

λ−1/2
i

)
,

where λi, i = 1, . . . , n denote the eigenvalues of the matrix A. In fact, using substi-

tution of coordinates x = QT x̂ where Q ∈ O(N) is s.t. QAQT = diag(λ), this is a

consequence of the one-dimensional identities

∫

R

|x|2e−λx2

2 dx =
(
2π
λ3

)1/2
and

∫

R

e
−λx2

2 dx =
(
2π
λ

)1/2
. (7.19)

Bulk sample d = 3. To simplify the discussions we assume that the bulk sample is

given by a periodic cube (0, L)3 of period L so large that is does not affect the char-

acteristic length scale of the minimizer. Moreover, we consider a uniform external

magnetic field Hext = (−hext, 0, 0) so that m∗ = (1, 0, 0) is the global minimizer of

the energy for hext < 0. If we approximate the energy E(m) for m close to m∗ with

the help of its Hessian, more precisely

E(m) ≈ 1
2HessE(m∗)(m♯,m♯)

= d2
∫

(0,L)3
|∇m♯|2 dx+

∫

(0,L)3

∣∣|∇|−1∇ ·m♯

∣∣2 dx− hext

∫

(0,L)3
|m♯|2 dx,
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where m♯ = (m2,m3), then the measure (7.18) can be explicitly analyzed. To cir-

cumvent the subtleties related to the measure dm, it is helpful to think of m♯ as a

high-dimensional finite difference approximation m♯
∆x on a uniform Cartesian grid

of grid size ∆x = L/N for some large N ∈ N. Under these assumptions the expec-

tation of the average stationary magnetization is approximated by

∫
||m♯||2L2e−E(m) dm∫

e−E(m) dm

≈
∫

RN3×RN3 ∆x3||m♯
∆x||2

l2
e−

m♯
∆x ·HessE∆x(m∗)m♯

∆x

2 dm∆x
2 dm∆x

3

∫
RN3×RN3 e−

m∆x
♯

·HessE∆x(m∗)m♯
∆x

2 dm∆x
2 dm∆x

3

. (7.20)

Using (7.19) we find that (7.20) turns into

∫
||m♯||2L2e

−HessE(m∗)(m♯ ,m♯)

2 dδm

∫
e
−HessE(m∗)(m♯ ,m♯)

2 dm♯

≈ ∑
l∈{0,...,N−1}3

(
(λ∆x

div(l))
−1 + (λ∆x

curl(l))
−1
)
, (7.21)

where λ∆x
div and λ∆x

curl denote the eigenvalues of ∆x−3HessE∆x(m∗). In fact, the appli-

cation of the discrete Fourier transform F to the vector field m♯
∆x = (0,m∆x

2 ,m∆x
3 )

shows that

HessE∆x(m∗)(m∆x
♯ ,m∆x

♯ ) = 2∆x3 ∑
l=(l1,l2,l3)∈{0,...,N−1}3

(F (m∆x
2 )l

F (m∆x
3 )l

)
·


d2|K(l)|2 + K(l2)

2

|K(l)|2 − hext
K(l2)K(l3)
|K(l)|2

K(l2)K(l3)
|K(l)|2 d2|K(l)|2 + K(l3)

2

|K(l)|2 − hext



(F (m∆x

2 )l
F (m∆x

3 )l

)
,

where

K(l) = 2
∆x sin(

πl
N ) = 2

∆x

(
sin(πl1

N ), sin(πl2
N ), sin(πl3

N )
)

is the discrete Fourier multiplier, see (4.2) in Chapter 4. To each 2× 2-dimensional

block of the Hessian in Fourier space, there is one eigenvalue associated to a di-

vergence-free eigenvector, given by

λ∆x
div(l) = 2(d2|K(l)|2 − hext),

and one eigenvalue associated to a curl-free eigenvector, given by

λ∆x
curl(l) = 2(d2|K(l)|2 + |K((0, l2, l3)|2

|K(l)|2 − hext),

respectively, where l = (l1, l2, l3) ∈ {0, . . . ,N − 1}3. In the limit ∆x to zero, K(l)
converges to kl = 2π

L l ∈ 2π
L Z3. Hence, the r.h.s. in (7.21) is not bounded due to
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a divergence in the large wave numbers, i.e., |kl| ≫ (|hext|)1/2d−1, even in case of

stabilizing external field hext < 0. This entails that the dominant wave number

diverges as the inverse grid size, i.e.,

〈|ki|〉 ∼
∑l∈{0,...,N−1}3 |K(li)|

(
(λ∆x

div(l))
−1 + (λ∆x

curl(l))
−1
)

∑l∈{0,...,N−1}3
(
(λ∆x

div(l))
−1 + (λ∆x

curl(l))
−1
) ∼ ∆x−1 (7.22)

for i = 1, 2, 3. The dominant wave number is defined in analogy to the dominant

wave number in case of quenched disorder, see (7.23), and can be identified with

〈|ki|〉 =
∫
‖|∇|1/2m♯‖2L2e−E(m) dm♯∫

‖m♯‖2e−E(m) dm♯

.

Thin film d = 2. We now discuss the effect of thermal fluctuations in a periodic

thin film (0, L)2. We assume that the magnetization is in-plane, i.e., m3 = 0. Then

the Hessian is given by:

HessE2−d(m∗)(m2,m2) = 2
∫

|∇′m2
2|dx′+ t

∫
||∇′|−1/2∂2m2|2 dx′− 2hext

∫
m2

2 dx
′.

The eigenvalues of the (discrete) Hessian are given by

λ∆x(l) = 2(d2|K(l)|2 + t
2

|K(l2)|2
|K((l1, l2)|

− hext),

where l = (l1, l2) ∈ {0, . . . ,N− 1}2. In the limit ∆x to zero, K(l) converges as before
to kl ∈ 2π

L Z. Note that the contribution coming from the stray-field only has a

significant damping effect on the small wave numbers. For large wave numbers we

find a logarithmic divergence of the sum ∑(λ∆x)−1 – which is the expectation of the

average amplitude of the magnetization – as ∆x tends to zero. Similar as before the

dominant wave number diverges as

〈|ki|〉 ∼
∑l∈{0,...,N−1}3 |K(li)|(λ∆x(l))−1

∑l∈{0,...,N−1}3(λ∆x)−1
∼ ∆xi

−1, i = 1, 2. (7.23)

Both can be seen using the approximation

λ∆x ∆x↓0→ ∼




d2k21 +

t2

2
k22
|k1| − hext for 〈|k2|〉 ≪ 〈|k1|〉

d2k22 +
t2

2 |k2| − hext for 〈|k2|〉 ≫ 〈|k1|〉.

We skip the detailed argument at that point. It uses the same rescaling as in the case

of a thin film for quenched disorder, see below.
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7.2.2. Quenched disorder.

Bulk sample d = 3. Again we start with the discussion of the bulk sample where

we take into account a position-dependent easy axis e(x) ∈ S2 in order to model a lo-

cal anisotropy. For an external field Hext = (−hext, 0, 0) we consider the linearization

of the energy close to m∗, i.e.,

d2
∫

(0,L)3
|∇m♯|2 dx+

∫

(0,L)3

∣∣|∇|−1∇ ·m♯

∣∣2 dx

− hext

∫

(0,L)3
|m♯|2 dx− 2

∫

(0,L)3

(
h2ripplem2 + h3ripplem3

)
dx,

where h2ripple and h3ripple are stationary Gaussian fields of vanishing mean and covari-

ance

〈h2ripple(0)h2ripple(x)〉 = 〈h3ripple(0)h3ripple(x)〉 = σ2δ(x1)δ(x2)δ(x3). (7.24)

Moreover

〈h2ripple(0)h3ripple(x)〉 = 0. (7.25)

Again, 〈·〉 denotes the ensemble average and δ the Dirac distribution. The explicit

minimization of the linearization of the energy in Fourier space yields that

(
F (h2ripple)(k)

F (h3ripple)(k)

)
= 1

2A(k)

(F (m2)(k)
F (m3)(k)

)
,

where F now denotes the Fourier series w.r.t. x1, x2 and x3 and

A(k) =


d2|k|2 + k22

|k|2 − hext
k2k3
|k|2

k2k3
|k|2 d2|k|2 + k23

|k|2 − hext


 , k ∈ 2π

L Z.

Let v1(k) = 1
(k22+k23)

1/2 (−k3, k2) and v2(k) = 1
(k22+k23)

1/2 (k2, k3) be the eigenvectors of

the matrix A(k). Then

(F (m2)(k)
F (m3)(k)

)
= A(k)−1

(
F (h2ripple)(k)

F (h3ripple)(k)

)

= (λdiv(k)
−1a(k)v1(k) + λcurl(k)

−1a(k)v2(k)),

where

a(k) = v1(k) · F (hripple) =
1

(k22 + k23)
1/2

(−k3F (h2ripple)(k) + k2F (h3ripple)(k)),

b(k) = v2(k) · F (hripple) =
1

(k22 + k23)
1/2

(k2F (h2ripple)(k) + k3F (h3ripple)(k)).
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The eigenvalues are given by

λdiv(k) = (d2|k|2 − hext) and λcurl(k) = (d2|k|2 + k22+k23
|k|2 − hext),

as before, see p. 165. Since v1(k) and v2(k) are orthonormal and due to (7.24) and

(7.25), we obtain

〈∑
k

|F (m♯)|2〉 ∼ σ2 ∑
k

(λdiv(k)
−2 + λcurl(k)

−2) ∼ σ2 ∑
k

λdiv(k)
−2.

The r.h.s. is finite since (1+ |k̂|2)−2 is integrable in dimensions less or equal to four.

Using the rescaling k = d−1(−hext)1/2k̂ we find that the dominant wave number

scales as

〈∑k |ki||F (m♯)|2〉
〈∑k |F (m♯)|2〉

∼ d−1h1/2ext , (7.26)

i = 1, 2, 3.

Thin film d = 2. In case of a thin film we consider the energy

d2
∫

(0,L)2
|∇′m2|2 dx1 dx2 + t

2

∫

(0,L)2

∣∣|∇′|−1//2∂2m2

∣∣2 dx1 dx2

− hext

∫

(0,L)2
|m2

2|2 dx1 dx2 − 2
∫

(0,L)2
hripplem2 dx1 dx2,

where hripple is a stationary Gaussian field of vanishing mean and covariance

〈hripple(0)hripple(x)〉 = σ2δ(x1)δ(x2). The explicit minimization in Fourier space

yields that

〈∑
k′
|F (m♯)|2〉 = σ2 ∑

k

λ(k′)−2, (7.27)

where

λ(k) = d2|k′|2 + t
2

k22
|k′|2 − hext.

Clearly, for hext < 0 the right hand side in (7.27) is finite since (|k′|2 + 1)−2 is inte-

grable in dimension two. We use the rescaling

k1 = d−1h1/2ext k̂1,

k2 = (dt)−1/2(−hext)
3/4k̂2.

Let α = dt−1(−hext)1/2. Then

d2|k′|2 + t2

2
k22
|k′| − hext = hext

(
k̂21 + αk̂22 +

k̂22
|k̂1|+α1/2|k̂2|

+ 1
)

∼




k̂21 +

k̂22
|k1| + 1 for |k̂2| ≪ α−1/2|k̂1|

αk22 + α−1/2|k2|+ 1 for |k2| ≫ α−1/2|k1|.
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7.2. Thermal fluctuations vs. quenched disorder

For large sample size L we can approximate the sum by the integral

(π
L )

2 ∑
k′∈(π

L Z)2

1

(d2|k′|2+ 1
2 t

k22
|k′ |−hext)2

∼ h−2
ext

( ∫ ∞

−∞

∫ α−1/2|k̂1|

0
(k̂21 +

k̂22
|k1| + 1)−2 dk̂2 dk̂1

+
∫ ∞

−∞

∫ ∞

α1/2|k̂2|
(αk22 + α−1/2|k2|+ 1)−2 dk̂1 dk̂2

)
.

For α ≪ 1 the second integral tends to zero while the first integral is of order one.

Hence, the expectation for the dominant wave number is

〈|k1|〉 ∼ d−1(−hext)
1/2 and k2 ∼ (dt)−1/2(−hext)

3/4. (7.28)

This is the dominant wave-length of the ripple in an extended thin film, cf. (7.8). Let

us collect the main results (7.22), (7.23) and (7.26), (7.28) in Table 7.18.

d = 2 d = 3

〈|k1|〉 ∼ d−1|hext|1/2

quenched disorder 〈|k2|〉 ∼ d−1/2t−1/2|hext|3/4 〈|ki|〉 ∼ d−1|hext|1/2, i = 1, 2, 3

for 0 < |hext| ≪ t2d−2

thermal fluctuations 〈|ki|〉 ∼ ∆x−1, i = 1, 2 〈|ki|〉 ∼ ∆x−1, i = 1, 2

Table 7.1.: Thermal fluctuations vs. quenched disorder in bulk samples (d = 3) and thin

films (d = 2). The dominant wave-numbers in case of thermal fluctuations scale

like the grid-size of the discretization.

At the beginning of this chapter the relation between the ripple and the concertina

in polycrystalline material was investigated. Afterwards, we addressed the investi-

gation of the different effects of thermal fluctuations and quenched disorder. The

outcome of this analysis is in correspondence with numerical simulations. Thermal

fluctuations, i.e., a spatial-temporal white-noise torque in the LLGe, lead to a diver-

gence in the small wave-lengths. Quenched disorder in dimension three leads to an

excitation of small wave-numbers of order d−1|hext|1/2. Only in dimension two it

leads to an anisotropic response of the magnetization, i.e., the ripple.
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8

General remarks

8.1. Some notes on hardware and software

Our simulations were run on Intel R© CoreTM 2 Duo 1.86GHz or Pentium TM 4 3.00GHz

CPUs with 2GB RAM. The operating system was Debian GNU/Linux 3.1 and the

program was compiled with gcc version 3.3.5. As external packages PETSc 2.3.2

[BBG+09] together with MPICH2 1.0.4p1 and the libraries FFTW3-3.1.2 [FJ05] and

SLEPc 2.3.2 [HRV05] were used. PETSc uses the Intel R© MKLTM library in version 8.0.1.

Wolfram Mathematica R© was used for the investigation of the amplitude functional.

The visualization of our numerical results was done in MATLAB R© by The Math-

Works in version R2007a. The same version was also used for the minimizations

related to domain theory. Schematic figures were drawn using PSTricks.

Our code was developed with the help of Eclipse with the CDT plug-in. Typesetting

was done in LATEX.

I am grateful for the countless contributors to the Open Source programming com-

munity for providing the numerous tools I have used.

171



8. General remarks

172



A

List of notations and symbols

d Exchange length. p. 2

E Micromagnetic energy. p. 2

E0 Reduced energy. p. 12

Hext External field Hext = (−hext, 0, 0). p. 3

Hstray Stray field Hstray generated by magnetization m. p. 2

ℓ Sample’s width. p. 3

m Magnetization m = (m1,m2,m3) : Ω → S2. p. 1

ν (Outward pointing) normal. p. 2

Ω Domain occupied by sample. p. 1

Q Quality factor (strength of anisotropy). p. 3

t Sample’s thickness. p. 3

wa Optimal period, i.e., absolute minimizer of the energy density. p.

18

wm Maximal period. p. 27

ws Marginally stable period, o.e. d2

dw2E(ŵs) = 0. p. 22

w∗ Period of the unstable mode. p. 7

̂ Non-dimensionalized lengths and reduced units. p. 12

[ ] Jump of some quantity across an interface. p. 2

|∇|−s Operator associated to Fourier multiplier |∇|−s. p. 3
′ In-plane components of some quantity, e.g. x′ = (x1, x2), ∇′ =

(∂1∂2)
T. p. 11

≈ Asymptotically equal in a certain regime. p. 8

& f & g means f C ≥ g for a generic constant C > 0. p. 5

. f . g means f ≤ Cg for a generic constant C > 0. p. 5

∼ ∼ stands for both . and &. p. 5

≪ f ≪ g: there exists C > 1 such that C f < g independent of the

parameters involved. p. 5
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