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Abstract

The concertina pattern is a ubiquitous pattern observed in ferromagnetic thin-film
elements. It occurs during the switching process due to the reversal of an applied
homogeneous magnetic field. The pattern-forming quantity is the magnetization,
which we think of as a unit-length vector field. The pattern consists of stripe-like
quadrangular and triangular regions — called domains — with a uniform, in-plane
magnetization that is, in particular, constant in the direction of the film thickness.
The domains are separated by sharp transition layers in which the magnetization

quickly turns — called walls.
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Figure o.1.: Concertina in a very elongated (length 2 mm) sample of width 50 um and thick-
ness 50 nm (left) and in a sample of width 35 um, thickness 40 nm and length
110 um (right). The left image shows only the center of the stripe which is less
than 10 percent of the whole sample. As indicated by the blue arrows, the gray-
scales encode the transversal component of the magnetization in the domains.
By courtesy of R. Schifer.

The term concertina was introduced by van den Berg in [vdBV82] for this bellow-like
structure which is shown in Figure o.1. In that reference, he discusses its formation
in thin rectangular-shaped ferromagnetic elements. He provides an explanation of
the domain pattern in a fairly thick (350 nm), not too elongated Permalloy sample
(width 15 pm and length 50 um). He argues that the stripe-like pattern grows into
the sample from the tips due to boundary effects as the strength of an external
homogeneous magnetic saturation field — parallel to the long edge — is reduced.

We claim that in very elongated (length 2mm) thin (thickness 10 to 150 nm) fer-
romagnetic samples (width 10 to 100 um) the concertina does not grow from the
tips into the sample. For these extreme aspect ratios experiments rather suggest
that a bifurcation is at the origin of the concertina pattern, see Figure 0.2: As the
strength of an applied homogeneous magnetic field is reduced and finally reversed,
the uniform magnetization becomes unstable and buckles. As the strength of the
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destabilizing field increases, the oscillatory buckling of the magnetization grows
into the concertina pattern — simultaneously all over the sample. Cantero and Otto
performed a linear stability analysis on the basis of the micromagnetic energy func-
tional, see [CAOo6a] and [CAOo6b]. They identified a thin-film regime in which the
most unstable perturbation, the so called unstable mode, has the form of an oscil-
latory buckling. They find that the period of that instability is determined by the
width and the thickness of the sample together with the exchange length, a material
parameter. In [CAOSo7] a reduced energy functional was deduced as the scaling
limit of the micromagnetic energy in the oscillatory buckling regime. Numerical
simulations of the reduced energy functional showed that the unstable mode grows
into a concertina pattern. The bifurcation is slightly subcritical but exhibits a turning
point. This means that the bifurcating branch of stationary points is unstable but be-
comes stable after the turning point (both under perturbations of the same period).
A comparison of the period of the unstable mode with the experimentally measured
period yields a good agreement over a wide range of widths and thicknesses. How-
ever, there is a clear tendency that the experimental period is always larger by a
factor up to approximately two. In the experiments, one additionally observes that
the concertina pattern exhibits several coarsening events as the strength of the desta-
bilizing external field increases: Folds collapse, increasing the average period of the
pattern until it finally disappears. In order to understand these observations, it is
necessary to study the stability w.r.t. perturbations whose period is a multiple of the
period of the unstable mode or of the concertina, respectively.

The genesis of the concertina pattern is a prototypic example of a hysteretic process.
The aim of this work is an extensive understanding of the experimental observations
in the formation process of the concertina pattern on the basis of the reduced energy
functional. In particular, we explain the deviation of the experimental period from
the period of the unstable mode and investigate the coarsening of the concertina.
This is achieved by an application of a mixture of rigorous analysis, numerical sim-
ulations and heuristic arguments.

e The application of a heuristic sharp interface model, namely domain theory,
shows that the optimal period of the concertina is an increasing function of the
(destabilizing) external field. This is rigorously confirmed on the level of the re-
duced energy functional based on the construction of appropriate Ansatz func-
tions and new nonlinear interpolation estimates providing Ansatz-free lower
bounds. Domain theory is (partially) justified by a compactness result for min-
imizers of the reduced energy functional.

e Domain theory suggests that the concertina becomes unstable under long
wave-length modulations as the destabilizing external field increases. The in-
stability is analyzed and confirmed by a Bloch wave analysis of the Hessian
of the reduced energy functional in combination with numerical simulations
of the reduced energy functional. Simulations show that the instability finally
leads to the coarsening of the concertina pattern.
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e A (generalized) bifurcation analysis shows that the deviation of the period of
the unstable mode from the experimental observations is due to a non-linear
modulation instability. This instability is in turn related to the so called Eck-
haus instability.

e Domain theory and numerical simulations are applied to investigate the ef-
fect of a uniaxial transversal and longitudinal anisotropy, respectively. This
confirms the experimental observation that a transversal anisotropy has a sta-
bilizing effect while in case of a longitudinal anisotropy the concertina cannot
be observed at all.

e Based on a linearization of the reduced energy functional, the ripple-like struc-
ture, which occurs in polycrystalline material, is investigated. In the exper-
iments, one observes that the ripple continuously grows into the concertina
pattern. The analysis shows that both the ripple and the concertina are driven
by the same physical mechanisms. Numerical simulations confirm this result
and reproduce the transition from the ripple to the concertina.

In Chapter 1, we review the previously known results and extensively present and
physically interpret our new insights. For proofs, explanations of the methods ap-
plied, and further investigations, we refer to the subsequent chapters.

The experiments that we discuss and present were carried out at the IfW Dresden
by J. McCord, R. Schéfer, and H. Wieczoreck.
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Figure o.2.: Formation of the concertina pattern in the experiment: The pictures show a section near the center of four different elongated
thin film elements for different values of the external field. The two upper series show samples of 30 nm thickness of
low anisotropy. The two lower series show samples of 30 nm thickness of higher transversal anisotropy. The width is
30 um and 50 um, respectively. The magnetization was saturated by a homogeneous external magnetic field applied in
direction of the long axis. The strength of that field was decreased and it was eventually reversed. At some critical field, the
uniform magnetization buckles into the concertina pattern. This domain-wall pattern coarsens several times before it finally
disappears (no picture).

Vi
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Introduction

In this chapter, we start with an introduction of the underlying physical model. Af-
terwards, we review the linear stability analysis in [CAOo6a] and give a motivation
for the reduced model which was derived in [CAOSO7] in the relevant parameter
regime (identified in the linear stability analysis). We proceed with a discussion of
van den Berg’s explanation of the concertina.

Motivated by the experiments and numerical simulations of the reduced model, a
heuristic sharp interface model — domain theory — is discussed which is based on a
piece-wise constant approximation of the magnetization on a mesoscopic scale. This
provides a first understanding of the coarsening of the concertina which is then
further investigated on the basis of the reduced model. Finally, we discuss two
very different effects of anisotropy which were neglected in the analysis before: We
tirst address the effect of a polycrystalline anisotropy which is relevant in Permalloy
material; it turns out that the oscillatory ripple structure, which is triggered by
the polycrystallinity of Permalloy material, is intimately related to the concertina.
Afterwards, we address the effect of a uniaxial anisotropy on the formation of the
concertina.

Details on the experimental setup and the samples are discussed in Section 1.12 at
the end of the introduction. Details on the numerical simulations, shortly addressed
in Section 1.11, are postponed to Chapter 4. In particular, Section 4.10 contains the
specific choices of the parameters in the simulations.

1.1. The micromagnetic energy

Since the applied magnetic field in the experiment varies on a very slow time scale,
the magnetization always relaxes to equilibrium. Therefore we assume that the
observed configurations are local minima of some free energy. The well-accepted
model that we apply is given by the micromagnetic (free) energy, see below. This
model was first introduced by Landau and Lifshitz in [LL35].

Let us denote by Q) C R® the space which is occupied by a ferromagnetic sample
and by m: Q) — S? the magnetization of the sample. The micromagnetic energy
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E(m) is given by

E(m)= d° /Q |Vm|? dx Exchange energy
+ / , | Hytray|* dx Stray-field energy
R (1.1)
-Q / (m-e)? dx Anisotropy energy
o)
-2 / Heyt - m dx Zeeman energy.
Q

The micromagnetic energy in the form of (1.1) is partially non-dimensionalized, i.e.,
except for lengths. Therefore the magnetization is described by a vector field of
unit-length that vanishes identically outside of the sample:

m?=1 in Q and m=0 in R®-Q. (1.2)

Let us briefly introduce and discuss the different energy contributions:

Exchange energy. The first contribution is the so called exchange energy which is
of quantum-mechanical origin. (The gradient acts component wise, i.e., |Vm|> =
Yo, 2]3:1(81-111]-)2.) It obviously favors a uniform magnetization. The material pa-
rameter d is called the exchange length and measures the relative strength between
exchange and stray-field energy. This length is typically of the order of some nm.

Stray-field energy. The second contribution is the stray-field energy. Due to the
static Maxwell equations, the magnetization m generates a stray-field Hstray: R3 —
R3 which satisfies

V X Hspray(m) =0 and V- (Hsgay(m) +m) =0 in R3, (1.3)

where B = Hgyray + m is the magnetic induction. Hence, the stray-field is the field
which is generated by the divergence of the magnetization. Since the magnetization
is discontinuous at the boundary d() of the sample, cf. (1.2), the second equation has
to be understood in the sense:

0 in R* — O

V'Hstray:{_v.m o Q and [Hsyray -v] =m-v on 00, (1.4)

where v is the outward pointing normal of 92 and [Hstray -v] denotes the jump
Hgtray - v experiences across the surface d(). We therefore distinguish two different
types of sources of the stray-field — in analogy to electrostatics, we speak of charges —
namely

magnetic volume charges —V-m in () and

magnetic surface charges m-v on dQ.



1.2. Linear stability analysis

There are several equivalent formulations for (1.4). Due to (1.3), it can be represented

as Hstray = —Vu, where the potential u : R3 - Ris given as the solution to
0 in R — O
—Au = ?n and [Vu-v]=—m-vonodQ.
—V-m inQ)

Another formulation is given by

- 2
/]R3 | Hstray (m)|* = /]Rg V|71V - m|" dx,
where |V|~! is defined in Fourier space via the multiplier |k| 1.

Anisotropy energy. The third contribution is the anisotropy energy which models
the dependence (of the energy) on the direction of the magnetization relative to the
so called easy axis e = (eq,ep,e3) of a uniaxial material. The relevant anisotropy in
our samples is either a longitudinal anisotropy, i.e., ¢ = (1,0,0), or a transversal
anisotropy, i.e,, ¢ = (0,1,0), see Section 1.12. The material parameter Q > 0 is
called the quality factor. It measures the relative strength between anisotropy and
stray-field energy. A uniaxial anisotropy originates for example in crystalline or
so-called induced anisotropy, see [CGo8, Chapter 7, Chapter 10]. Later on we will
also consider polycrystalline anisotropy which plays an important role in Permalloy
material. This can be modeled with the help of a (random) position-dependent easy
axis e(x).

Zeeman energy. The last contribution is called Zeeman energy. It models the in-
teraction and favors the alignment of the magnetization with an applied external
magnetic field Hext : R3 — R3.

We note that we usually do not explicitly denote the dependence of the energy on the
extrinsic or intrinsic parameters, i.e., external field Heyt, dimensions of the sample
(), and the material parameters d and Q.

1.2. Linear stability analysis

We are interested in magnetization patterns in very elongated thin-film elements of
width ¢ (in xp-direction) and thickness ¢t < ¢ (in x3-direction) which form under the
reversal of a homogeneous external magnetic field. This field is aligned with the
long axis (the xj-axis) of the sample. Hence it is of the form Hext = (—hext, 0,0), see
Figure 1.1. (The minus is introduced so that the critical field in case of vanishing
uniaxial anisotropy is positive which simplifies the notations, see below.)

Experimental observations of the samples, that have a length about 2mm at least 20
times larger than the width /, suggest that the pattern away from the sample edges
in xj-direction is not influenced by boundary effects at the sample’s tips (we later
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t{ 1,0 - — 7 Hext = (_hext/ 0, 0)

Figure 1.1.: The idealized geometry of the sample. The homogeneous external saturation
field Hey is parallel to the long axis of the sample.

come back to this point in Section 1.4). The pattern was recorded at three different
locations, equidistant to the small edges of the cross section, where qualitatively the
same pattern at the same values of the external field was observed. We therefore
assume from now on that the sample is infinite in x;-direction, i.e., QO = R x (0, ) x
(0,t), or periodic, i.e., Q = [0,L) x (0,¢) x (0, t) with period L sufficiently large. As
a consequence of the idealized geometry the uniform magnetization m* = (1,0,0)
is a stationary point of the energy functional for all values hey: of the external field
Hext = (_hext/ 0, 0)

Let us neglect anisotropy — it can and will be included later on in Section 1.10. Ob-
serve that m* is the global minimizer of the energy (1.1) for /eyt < 0. Experiments
suggest that as the strength of the field is reduced starting from saturation (i.e., for
large negative value of hext) and finally reversed, a bifurcation at some critical value
hi > 0of the external field (—hext, 0, 0) is at the origin of the concertina pattern. The
investigation of the concertina starts with a linear stability analysis of the uniform

magnetization in the following section.

1.2.1. Hessian and unstable modes

In Theorem 1 in [CAOo6a, p.357], a linear stability analysis of the saturated state
m* = (1,0,0) was performed. Due to the unit length constraint (1.2), infinitesimal
variations of m* are of the form om = (0, émy, dm3). The uniform magnetization only
generates Zeeman energy. Therefore, the Hessian of the energy in m* is given by the
exchange energy and the stray-field energy of the infinitesimal variation, augmented
by the linearization of the Zeeman energy:

HessE(m™)(ém,ém) = /Q|V§m|2dx—|—/]R3 |Hstray((5m)|2dx—hext Q(ém%+5m§)dx.
(1.5)

In the following, we discuss potentially unstable modes ém on the basis of (1.5). One
particular result will be the identification of the relevant parameter regime — for the
occurrence of the concertina pattern — as a function of the thickness ¢, the width ¢
and the value of the exchange length d.

We continue to neglect uniaxial anisotropy (i.e., we set Q = 0) at that point, since
on the level of this infinitesimal discussion, a longitudinal or transversal anisotropy



1.2. Linear stability analysis

just leads to a shift of the critical field h}, ~~ h},, = Q, see Section 1.10. However,
since the shift entails that the sign of the critical field can change, we note in that
if we speak about reducing the strength of the (stabilizing) external field, we usually
mean that the critical field is approached from saturation (hexy = —o0) if not stated
differently. Similarly, we say that the external field is increased after the critical field
is passed. In this sense, the critical field is interpreted as the zero point on the scale

of the external field, cf. Figure 1.2.

m* stable m* unstable

saturation 0 hie >0 Hext
reducing increasing

Figure 1.2.: The scale of the external field heyt.

Regime I. The first unstable mode discussed in [CAOo6a] is a coherent, in-plane
rotation, i.e., dm = (0,1,0), cf. Figure 1.3. On the basis of (1.5), let us argue at
which field this mode becomes unstable by determining the infinitesimal release of
energy in terms of scaling. A coherent rotation releases Zeeman energy per length
in xj-direction of the infinitesimal amount hext/t. A coherent rotation generates
surface charges. Over distances ¢ much larger than t, the surface charges act like
two oppositely charged wires at distance ¢ of line density ¢ — also in the following if
not mentioned otherwise always infinitesimally and per length in x;-direction. This
generates an infinitesimal stray-field of the order t?(In/t~!). Therefore, this mode
becomes unstable at a field Fey; of the order t/~1(In/t~1) for t much smaller than
¢ — in short hand notation hex; ~ t{~ (In¢t~1) for t < £. 1.

,;J—*‘?li—:"?f—t —t/zjfﬁ
Pt g - .57
Ve

7
/ = > 4 ;4

t{ —r—

l

Figure 1.3.: Coherent rotation and generated surface charges.

Regime II. The second unstable mode we consider is buckling, cf. Figure 1.4. The
magnetization avoids the lateral surface charges by just laterally buckling in the
middle of the cross section, i.e.,

om = (0,sin(7r7%),0).

"By f < g we mean that there exists a universal constant C > 1 such that Cf < g. Moreover, < and
2 stand for < and > up to a generic constant and by ~ we mean both < and 2.
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However, since V - ém = 7t/ ! Cos(n’%), the surface charges of the coherent rotation
turn into volume charges. At distances much larger than f from the cross section,
these volume charges act like surface charges of amplitude /'t which generate a
stray-field energy ~ t2. This is slightly smaller (by a logarithm) than the infinitesimal
stray-field energy case of the previous mode of coherent rotation. Moreover, since
|Vom|* = m20~2 cos(71*%#)?, the buckling mode generates exchange energy ~ d2(~1t,
where we recall that d denotes the exchange length as introduced in (1.1). Since the
release of Zeeman energy scales as ~ hext/t as above, this mode becomes unstable
at Hext ~ d2¢72 in the regime t < d2¢~1 and at hext ~ t¢d~2 in the regime t 2 a2t
The second mode beats the first mode for d2¢~(In"! ¢d—") < t in the sense that it
becomes unstable earlier, i.e., at a smaller field hey.

4 7
/ N —== =7
//,/ ~ 7 ///,/
/ .,

H 7=

Figure 1.4.: Buckling mode and its generated volume charges (shaded region) and stray-field
(gray arrows).

Regime III. The third unstable mode we discuss is oscillatory buckling, cf. Figure
1.5. This mode reduces the stray-field energy through a modulation of the lateral
buckling in x;-direction, i.e.,

om = (0,sin(7r7#) sin(2713L),0)

with a wave length w with t < w < ¢. Since w > t, the volume charges generated by
this mode act like surface charges of amplitude £~ 't over distances much larger than
t from the cross section. However, these surface charges change sign over a distance
w <K £, so that the generated stray-field only extends over a distance w away from
the cross section. Hence this mode generates a stray-field energy ~ ¢~ !t>w, which
is substantially less than the stray-filed energy of the two prior modes for w < /.
Due to w < /¢, the exchange energy is now dominated by the oscillation in xi-
direction, which leads to an infinitesimal exchange energy ~ d?/w~2t. Hence the w,
which leads to the minimal infinitesimal combined stray-field and exchange energy
of d?/3¢=1/345/3 is given by w* ~ d?/3¢2/3¢t=1/3_ This is consistent with t < w < /
provided d?¢=1 < t < (d¢)'/2. The oscillatory buckling mode becomes unstable
at hext ~ d?/30=4/312/3 and, therefore, beats the first and second mode provided
d2 -1 <t

Regime IV. The fourth unstable mode we consider is curling. This mode avoids
charges altogether by an x3-dependent magnetization whose flow lines have a cork-
skew shape, i.e.,

6m = (0,sin(72) cos(%), €t cos(2) sin(7)).
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Figure 1.5.: Oscillatory buckling mode and its generated volume charges (shaded region)
and stray-field (gray arrows).

The exchange energy is now dominated by the gradient in x3-direction which scales
as d2¢t~1. Hence the curling mode becomes unstable at heyt ~ d?t=2. Tt beats the
other modes provided (d¢)'/? < t.

The infinitesimal perturbations discussed above only provide upper bounds for
the critical field h},. Matching lower bounds in terms of scaling were proofed
in [CAOo6a] by Ansatz-free lower bounds for the Hessian using interpolation es-
timates. The analysis in [CAOo6a] thus shows that there are exactly four regimes

for the instability, see 1.6.

Qls

\ 11
‘\\ 0scC. buckling"',-' v
';'curling

—_
[l

Figure 1.6.: Phase diagram of the four regimes of instability.

1.3. Period of the unstable mode: Experiment vs. theory

Clearly, the regime of interest to us is the Regime IIl. Based on a I'-convergence
result for the Rayleigh quotient of the Hessian, it was shown that the unstable mode
in Regime III is indeed of the form

om = (0,sin(7r7) sin(27r3L), 0), (1.6)

see Theorem 1 in [CAO06b, p. 389]. Moreover, the asymptotic behavior — including
the factor — of w* was determined, namely

w* & (327)1/3d2/3¢2/341/3, (1.7)
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Here, ~ means asymptotically equal. So far, we have learned that in Regime III
at field strengths hf, ~ d?/3(2/3t=4/3 there is a bifurcation in direction of the os-
cillatory buckling mode (1.6) with period given by (1.7). We claim, cf. Section 1.6,
that the concertina pattern grows out of this unstable mode. If so, we expect that
the experimentally observed period wg,, should be close to the period w* of the
unstable mode. Defining and determining wzxp is delicate, see Figure 0.2: As hext
increases, there is a continuous transition from the magnetization ripple — for details
see Subsection 1.9 — to the concertina pattern, which is far from exactly periodic, and
which coarsens subsequently, see Section 1.8. As wg,,, we take the average period as
soon as the concertina pattern is discernible to the eye. Let us note that counting by
hand and automatic determination via Fourier analysis coincide. Figure 1.7 shows
the result of this comparison for a broad range of sample dimensions ¢ and ¢ and
therefore a fairly broad range of periods w*: The ratio of the widest compared to the
smallest sample is 5 and the ratio of the thickest compared to the thinnest is 15. The
smallest period w* is expected for a thick film of small width, the largest period for a
thin film of large width, differing by a factor close to six — neglecting the prediction

for the defect samples. The ratio % is approximately two. We basically see this as
a confirmation of our hypothesis that the concertina grows out of the unstable mode
and inherits its period. Notice that the deviation has a clear trend: wg,, is larger
than w*. We give an explanation for this systematic deviation in Section 1.8.
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Figure 1.7.: The theoretical period of the unstable mode is in good correspondence to the
measurements: The left image shows the ratio of the average experimentally
observed period (observed in low anisotropic Permalloy) and the period of the
unstable mode. The white patches correspond to defect samples. The right
image displays the ratio of the period w* and the smallest expected period at all,
i.e., w* for the values ¢ = 50 um, t = 150 nm. Both images share the same color
map.

1.4. Van den Berg’s vs. our explanation

Let us turn to van den Berg’s explanation in [vdBV82]. The combination of van
den Berg’s explanation of the concertina with the insights from [BS89, DKM o1]
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leads to the following updated version of the explanation in [vdBV82, Sections A
& B]: In sufficiently large thin-film elements and for sufficiently low external fields,
[BS89] postulate that the mesoscopic two-dimensional magnetization pattern, i.e., in-
plane m3 = 0 and independent of the thickness direction m = m(x1, x3), with sharp
charge-free walls and that is tangential to the lateral edges of the sample, arranges
itself in such a way that the corresponding continuous magnetic charge density
o = —(d1m7 + dymy) generates a stray-field Hgtray that expels the external field Hext
from inside of the sample — like in electrostatics.

In [DKMOos], see [DKM T o1] for an efficient account, it is shown that in the regime
of sufficiently large thin-film elements - i.e., t < ¢ and ¢t > d’log ¢ and compara-
ble lateral dimensions ~ ¢ — this principle extends to moderately large fields ~ 4:
In this case the stray-field Hgyray in general can no longer expel the external field
Hext everywhere in the sample, since the total charge density o = —(91m1 + damy)
is limited by m? + m3 = 1. The charge density ¢ is uniquely determined by a
convex variational problem only involving the stray-field energy and the Zeeman
term. At least some aspects of the mesoscopic two-dimensional magnetization pat-
tern (mq, my) can be recovered from ¢: The characteristics of (1, my), i.e., the curves
along which (my,m;) is normal (called “trajectories” in [vdBV82]), have curvature
given by . However, due to the even charge-free discontinuity curves of the meso-
scopic magnetization (mq,my), this seemingly rigid condition does not suffice to
determine (mq,my) — even if it is easy to construct a solution via the maximal so-
lution of a modified eikonal equation [DKM o1, p.2987]. On the other hand, in the
region where the external field has penetrated, (11, m) is unique [DKM*o1, p.2987]
and has no discontinuities [vdBV82, p.883].

Van den Berg explains the experimental observations as follows: For sufficiently
large external fields Hext > 7 2, the sum of the external field and the generated stray-
field Hext + Hstray does not vanish in the sample, besides in the vicinity of the two
distant edges; as a consequence walls only occur in the two flux closure pattern at the
distant edges. As the external field is reduced, the penetrated region shrinks as the
walls invade the sample. Each of the two flux closure patterns has a “doublet” which
is a point on one of the long edges where two wall segments intersect. The doublets
were created at the very beginning of the experiment, as the 180° wall of the Landau
state touched the edge and broke up due to the application of a strong external field
parallel to the long edge. The inner (most distant to the short edges) ones of the
doublet walls fade out in the middle of bar. As the field decreases, each of these two
walls grows — necessarily in direction of the characteristic — till it hits the opposite
edge. There it must generate a “triplet” (a point on the edge where three walls meet);
the middle wall must coincide with the previous one originating in the doublet.
Again, the inner of the three walls grows towards the original, opposite edge. From
there on, the process repeats till the built-up concertina structure is linked in the
middle of the bar. For very elongated samples, the linking is expected at a field

?This is the strength of the applied field that can be compensated in a thin film element of lateral
dimensions ~ ¢ and thickness t.
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strength of order Hext ~ t/ L 2Int¢~! and thus differs from the field at the beginning
of the growth process by a factor /2L=2 < 1 (up to a logarithm)3. We note that,
mathematically speaking, van den Berg appeals to continuity via the external field
to overcome the non-uniqueness of the magnetization (1, m,) mentioned above.

Our explanation for the genesis of the concertina pattern is very different from the
one of van den Berg. Instead of an outgrowth of the closure domains, we explain
the concertina as an outgrowth of an unstable mode best captured in very elongated
thin film elements. Indeed, our experiments were performed on thin film elements
of thicknesses t in the range of 10 nm to 150 nm, widths ¢ in the range of 10 um to
100 um, but lengths in the range of 2mm. As mentioned, we recorded the pattern at
different sections and observed qualitatively the same pattern at the same values of
the external field.

Not surprisingly, our theoretical predictions are quite different from those in
[vdBV82] — already in terms of scaling. Van den Berg’s explanation contains two
different scales of the external field (Hext ~ 4 for the beginning of the building
process and Hext ~ t/L~2Int{~! for the completion when the external field can
be totally expelled from the sample) whereas in our case Hext ~ d2/3¢074/312/3, see
Regime III in Subsection 1.2.1, which is in accordance with the simultaneous forma-
tion along the sample independent of the specific position. Whereas in [vdBV82] the
appropriate scale for the concertina width w is given by /, in particular independent
on the thickness ¢, it is given by and d?/3¢2/3t=1/3 in our case, in accordance with
our experimental observations illustrated in Figure 1.8.

Figure 1.8.: Concertina in Permalloy samples of width ¢ = 100 um and thickness ¢ = 30 nm
(left), t = 80 nm (center), and t = 300 nm (right). The average period of the
pattern is a decreasing function of the thickness of the sample.

3Notice that the potential u corresponding to a stray-field that compensates the uniform ex-
ternal field in the sample (—L/2,L/2) x (0,¢) x (0,t) is expected to be of the form u =~
hexex1(In LR™1)(In"1 Le~1) at distance ¢ < R = (2§ +23)V/? < Lfor { —L/2 < x; < L/2— L.
This can be used to estimate the total flux through a test cylinder of radius R and thickness
Ax1 > R which is equal to the net charge density. This entails XjhiexIn 1 LE™1 ~ ¢t fogadx}
Provided there are no boundary charges at the lateral edges of the sample we find that
I xheeIn  Ledxy ~ ¢ [ [fodxadxy ~ f [y mi(x; = 0,x))dx, < . This indicates
that a field of strength fexy < —t/L~2Intf~! can be expelled from within the sample.

10
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1.5. A reduced energy functional

In order to understand the type of bifurcation, it is useful to pass to a reduced
model adapted to Regime III. This reduced model was rigorously deduced based on
the notion of T-convergence in Theorem 3 in [CAOSoy, p.233]. Let us give a short
heuristic motivation for the reduced model by identifying higher order terms:

m, |m)*> =1 | [Vm]? Jea |IV]717 - m 2 dx
thin-film t < w mz =0 |V m|? %fmz IV [~12V - /2 d’
scale sep. w < / |91m' |2 % 2 101712V 2 d!
low-angle approx. | m; ~ 1 — ng |01m5|? %f]RZ ’|al|—1/2(_alm7§ + 9ymp) |2 dx’

Table 1.1.: Successive identification of leading order terms due to scale-separation and low-
angle approximation.

In view of the form of the unstable mode, the dependence on the thickness variable
and the out-of-plane component can be neglected, i.e., m = m(x1,x) and m = m’,
respectively, where m’ = (my,my) denotes the first two components of m (likewise
we write for example ¥’ = (x1,x;) and V/ = (91,92)7). Since the unstable mode
varies faster in x;-direction than in x;-direction, |d,m’ |2 can be neglected with respect
to [91m’'|? in the exchange energy density. Moreover, we can approximate the stray-
field potential of an in-plane, thickness-invariant magnetization in a thin-film, i.e.,
Q) x (0,t), by the potential due to the charge density —tV’ - m’ on the plate ()':

—Au=0inR®— (O x {0}) and [9su] = -tV -m' onaQ) x {0}. (1.8)

Based on (1.8), it is a straight-forward calculation in Fourier space — by a transform
w.r.t. x; and xp — to show that

2 _
/]RS Vuldx = %/]Rz V|72 P (1.9)

Since the oscillation in the sign of the charge density is on smaller length scales in
x1-direction than in xp-direction, the non-locality w.r.t. x can be neglected:

2 _ 5 B
%/ [|V/|712V" ! 2 A’ ~ %/ 191 71/2V" - P d.
R2 .

Finally, since we are interested in small deviations from m* = (1,0,0), the Taylor
m3

expansion mj = /1 —m2 ~ 1 — "3 entails that we may neglect |Vm; |* with respect

2
to |Vms|? in the exchange energy density. We also use m; ~ 1 — % in the the stray-
field and in the Zeeman contribution. Up to an additive constant, we are therefore

11
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left with the reduced energy functional Ey(my) given by
E(m) =~ Ey(my) = dzt/ (9111)2 daxy doxy
Q/
2
+ % /Q/ Hall_l/z(—al% + 82m2)|2dx1 dxy — hext t/ﬂ/ m% dx;dxp, (1.10)

where Q) = [0,L) x (0,¢) is periodic w.r.t. x; of some large period L. The stray-
field energy is only finite if m, vanishes at the lateral edges, i.e., my(x1, x2) = 0 for
xp € {0, ¢} — as is true for the unstable mode.

We note that the only non-quadratic term in the energy comes from the charge dis-

tribution ¢ = —81%% + damy. This is used to derive the scaling of the amplitude
of the magnetization: It should be such that both terms in the charge distribution
balance. In view of the unstable mode, the typical x;-scale of the variations of m,
is given by w* ~ d?/3¢2/3t=1/3, whereas the typical x,-scale of variations of m, is

given by the sample width ¢. This entails that the terms al’“é and dpm, balance
provided the amplitude of m, scales as d?/3¢~1/3t=1/3 which suggests the follow-
ing non-dimensionalization of length and reduced units for the stray-field and the
magnetization:

X1 = d2/3€2/3t_1/39?1, Xp = €Xp, X3 = tX3,

my = d2/30=1/3= 135, (1.11)
For the rescaling of the external field and the energy itself according to
hext = d2/3€_4/3t2/3il\ext; (1.12)

we obtain the reduced rescaled energy functional

Eo(iiiy) = /ﬁ (01771)* A%y AT + /ﬁ [101] 7?5 A%y A%y — Frext /ﬁ it A%y dRy, (1.14)

= B ~
where 0 = —81% + 0,715, under the constraints
m, =0 for X €{0,1}, (1.15)

~

ity (%1, %2) = Mo (X1 + L, %2).

Note that the stray-field energy can be rewritten as the Dirichlet energy of some
potential i which satisfies

—(B+B)ii=0 forTz#0 and [36] =7 for X3 =0,
so that

/A 1181 71/25)2 d#%, d = /A (0110)2 + (3510)2 dy A d5. (1.16)
Qo O'xR

12
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Notice that due to periodicity, admissible magnetizations additionally suffice
L
| adz =0,
0
ie., fOL odx; = 0. Let us not that the Hessian of the reduced energy in 77i; = 0 can
be explicitly diagonalized with eigenvalues
n(k)? -

Ak, ko) = 2(k1)? — o 2hext,
1

and two-dimensional eigenspaces
Vipk, = span{cos (ki %) sin(ko2), sin(k %1 ) sin (k2 %2) },

where /k\l S 2T”lN and /152 € ntIN due to the boundary condition (1.15).

Let us compare the full three-dimensional micromagnetic energy (1.1) with our re-
duced model: The reduced rescaled formulation shows that the reduced energy func-
tional contains just one non-dimensional parameter, namely the reduced external
field Trexe — instead of four parameters — exchange length, sample dimensions and
hext — for the full model. Moreover, the vector field m = (mq,my, m3), function of
three variables (x1,x2,x3), has been replaced by the scalar function i, function of
two variables (X7, X). Finally, the computation of the stray-field is a two-dimensional
computation —in (X7, X3) only with X as a parameter — instead of a three-dimensional
one. All this simplifies both the theoretical treatment and the numerical simulation.
For clarity, we will mostly discuss our results in the rescaled variables (1.14) — and
only occasionally return to the original variables, mostly for comparison with the
experiment and if we take into account anisotropy.

The reduced rescaled energy was identified as the I'-limit w.r.t. the L?-topology of
the properly rescaled micromagnetic energy close to the uniform magnetization m*
in the neighborhood of the critical field 1, in [CAOSo7]. It is a two-fold limit in the
parameters

e =d¥3¢72/3472/3 and 6 = d /30723443, (1.17)

which characterize Regime III, more precisely ¢,§ < 1 is equivalent to d*/™! < t <
(d¢)'/2. Table 1.2 shows the values of (1.17) for specific sample dimensions.

1.6. Bifurcation analysis

On the level of the reduced model (1.14), the type of bifurcation was determined
in [CAOSoy]. Let us present the main steps and the result of the analysis: As
mentioned before, the Hessian of the reduced model in 71 = 0 can be explicitly di-
agonalized and the first unstable mode is given by 5 = sin(7X>) sin(2w ), where
@* = (327r)1/3. The reduced critical field is given by

hi, =3 (%)4/3. (1.18)

13
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; 10 pm 100 um

10 nm ¢ = 0.0040 | e = 0.00085
6 =0.016 | 6 =0.0034
150 nm | e = 0.00065 | ¢ = 0.00015
0 =0.59 0 =0.13

Table 1.2.: Parameters ¢ and J for characteristic sample sizes where the exchange length is
given by d = 5 nm. Regime III is related to samples of small thickness ¢ and large
width /.

We note that this is consistent with the I'-limit of the Hessian in Regime III, see
[CAO06b]. In order to determine the type of bifurcation, one has to investigate the
energy functional Ey close to the one-dimensional subspace { A1} } ocr generated by
the unstable mode 715 = sin(7x,) sin(27rz%). Because of the invariance of both Eo
and the unstable mode { A7} } scr under the transform 7, ~» —fip and xp ~» 1 — 1y,
all odd terms in A in the expanswn of EO(Amz) vanish. The first non-vanishing
term in the expansion of Eo at the critical field hext is at least quartic. Hence it
is not sufficient to consider Ej just along the linear space {Am3} acr but it has to
be analyzed along a curve {Afii5 + A%fii3*} gocRr in configuration space, where the
curvature direction 775", which affects the quartic term in the expansion, has to be
determined such that Ep is minimal. This minimization problem (of the coefficient of
the quartic term) is quadratic in 7i;* and can thus be explicitly solved. One obtains

3" = —3(2)'/3sin(27xy) sin(47L),

[y

which leads to a negative coefficient of the quartic term in the expansion of Ep:
T Kok 7 To* 1/3
Eo(Afniz + A%ii3") = (hext — hixe) (5)7 A% — g A™. (1.19)

The negative quartic coefficient implies that the bifurcation is subcritical, also called
of first order. Subcriticality means that close to 7, = 0, there are only unstable
stationary points for hext slightly below hext, and no stationary points close to 1i; =0
for Hext slightly above h:,,, cf. Figure 1.9.

ext’

energy

to

I . — : configuration
/ l\ m space

~

. o ~
hext < Mgyt hext = Nayt hext > hgyt

Figure 1.9.: Energy landscape close to the bifurcation. The loss of stability at the critical field
leads to a subcritical bifurcation.
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1.6. Bifurcation analysis

At first sight, it is surprising that the stray-field energy contribution to E, which gives
rise to the only quartic term in iy, and clearly is non-negative, may nevertheless
allow for a negative coefficient in front of the quartic term in the expansion (1.19).

This comes from the fact that the two terms in the charge density —51%% + 0yl
interact, giving rise to a cubic term in 71, which indeed allows for cancellations.
The way how this operates is better understood in physical space: The term 73" in
Amy + Azn’ii*, i.e., the curvature direction in configuration space, leads to a tilt in the
charge distribution, see Figure 1.10. This tilt brings opposite charges closer together,
thereby reducing the stray-field energy (while increasing the exchange energy to a
lesser amount).

Figure 1.10.: Unstable mode {A7i;} and additional curvature correction {A#ij + A2%7is*}
with its generated charges. The gray scales indicate the 77i;-component.

Since the bifurcation is subcritical, it is not obvious whether minimizers of the re-
duced energy functional can be related to the unstable mode. In particular, this find-
ing sheds doubt on the hypothesis that the concertina pattern inherits the period of
the unstable mode. It is even not obvious whether minimizers of the reduced energy
functional exist at all. However, it was shown that the reduced model is coercive for
all values of the external field ﬁext, see Theorem 4 in [CAOSo7, p-236]. This in par-
ticular implies that there always exists a global minimizer of the reduced energy, in
particular for fields larger than the critical field. But it is not immediately clear how
and whether it is related to the unstable mode.

It is natural to resort to numerical simulations. A short introduction is given in
Section 1.11; for details on the discretization scheme and the algorithms, see Chapter
4. To confirm the conjecture that the unstable mode in Regime III is indeed related
to the concertina pattern, we use a numerical path-following in order to compute the
bifurcation branch. Figure 1.11 displays the outcome of the numerical simulations.

As expected due to the coercivity of the energy functional, we find a turning point
as we follow the bifurcation branch. The turning point is located at a field which is
just slightly — about one percent — smaller than the critical field. After the turning
point the branch is stable, at least under perturbations of the same period.

As the field increases beyond the turning point, the unstable mode grows into a
domain pattern of concertina type with its clear scale separation between the wall

15
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25

<A2>1/2

—_

0.5f

5.5 5.6 5.7 5.8 5.9

heact

Figure 1.11.: Numerical simulations: The @*-periodic branch close to the bifurcation (top)
and the computed pattern at the indicated fields (bottom). The gray scales
encode the 77y-component (light gray corresponds to negative, dark gray to
positive 71iy) but are in this case not comparable — the scale is exhausted so that
the structure of the configuration is resolved.

width and the domain size, cf. Figure 1.12. We thus find a continuous transformation
from the unstable mode to the concertina pattern — confirming our hypothesis.

how: = 6.84 Bogt = 232 Pewy = 40.1 hoyi = 57.3

HAAn

Figure 1.12.: Numerical simulations: The @w*-periodic concertina pattern exhibits a clear
scale separation (domain width > wall width) for large external fields. The
gray scales encode the 77, component and are comparable.

The numerical simulations lead to the conjecture that in a perfectly homogeneous
sample without anisotropy the magnetization exhibits a first order phase transition
from the uniformly magnetized state to the concertina state of period w* at the
critical field. Clearly, this does not explain the deviation of the average wavelength
in the experimental measurements from the period of the unstable mode.

16
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1.7. Domain theory

In the numerical simulations we observe for large external fields a clear scale sep-
aration: The width of the domains, where the magnetization is almost constant, is
much larger than the width of the walls, in which the magnetization quickly turns,
cf. Figure 1.12. This suggests the application of a sharp interface model, namely
domain theory, which is introduced in detail in Chapter 2. It is used in Section 1.8
and 1.10 in order to get a better understanding of the concertina, in particular its
period.

w
1—20
2
@
~0
n;

Figure 1.13.: Domain theory: Sketch of the piecewise constant Ansatz function. Its angles
are fixed by (1.20).

On a mesoscopic scale, the computed magnetization is close to a piecewise constant
magnetization of amplitude 79, i.e., fii; = £ in the quadrangular domains and
ity = 0 in the triangular domains as indicated in Figure 1.13. We observe that the
angles in the pattern are determined by the amplitude; approximately we have that
sina = 2771y. This is related to the fact that the reduced stray-field energy is strongly
penalized for large fields. In fact, the piecewise constant magnetization with angles
given by sina = 277} is a distributional solution of

~ 72 ~
—8172 + dpitip = 0. (1.20)

The energy which discriminates between these solutions will be given by the to-
tal wall energy, which is an appropriate line energy density ¢ integrated over the
interfaces, augmented by Zeeman energy:

/E\domain(ﬁ\iZ) = / ?(@) dHO dfz - Eext / 7’?1% dJ/C\l de\ZI
jump set

where H? denotes the zero-dimensional Hausdorff measure. The optimal transition
layers are low angle Néel walls for which the specific line energy is a function of the
jump [fi;] of the magnetization and of the length of the logarithmic tails of the Néel
wall, which scales as the period @w:

17
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For details, we refer to Chapter 2 where we will see that within the class of admis-
sible magnetizations, the domain theoretic energy per period becomes a function of
only three parameters, namely the transversal component i), the period @ and the

external field ﬁext:

Eaomain(3, @) =2 (1 &) () +4 52 (%) — hexe(9)* (2 - 5 ).

Of course, domain theory is only applicable (and thus a good approximation for the
reduced model) for 1 < ﬁext, in which case there is a clear scale separation between
walls and domains. Figure 1.15 shows that the optimal amplitude on the level of
domain theory and the amplitude extracted from the numerical computations are in
good agreement for large external fields 1 < Hext.

Figure 1.14.: Domain theory: Sketch of a generalized tilted Ansatz function.

The experimentally observed concertina is of course not of uniform period and equal
amplitude as our domain theoretic Ansatz above. As shown in Figure 1.14, there are
also oblique piecewise constant weak solutions of (2.1). Nevertheless, this class of
Ansatz functions is very rigid, for details see Section 2.3.

Domain theory is (partially) justified as a consequence of Theorem 3.3 in Chapter
3 published in [OS10]. This Theorem states that minimizers of the reduced energy
functional are close to weak solutions of the Burgers equation (1.20).

1.8. Coarsening of the concertina pattern

1.8.1. Domain theory: The optimal period of the concertina pattern

Experiments show an increase in the average concertina period w as the external
field heyxt is further increased after the critical field is passed and the pattern has
formed. The general tendency that w is an increasing function of hext can be un-
derstood on the basis of domain theory in the reduced variables mz, w and hext By
optlmlzlng the energy per unit length with respect to the period @ and the amplitude
m2 of the transversal component for given external field /ey, we obtain the following
scaling of the optimal period @, of the pattern:

Wy (ﬁext) ~ il\ext In il\ext for /Eext > 1,
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Figure 1.15.: Domain theory and numerical simulations: The optimal amplitude on the level
of domain theory (red) and the computed amplitude based on the reduced
model (blue). For the reduced model we display the amplitude, i.e., the maxi-
mal value which is attained in the quadrangular domain.

see c) in Subsection 2.2. In particular, the optimal period increases with increasing
field. Domain theory also yields the same scaling behavior for the optimal inclina-
tion of the magnetization

~

ﬁi\za(ﬁext) ~ il\ext In il\ext for  hex >1,

see b) in Subsection 2.2. Both scalings are confirmed on the basis of the reduced
model using a concertina Ansatz for the upper bounds and new interpolation esti-
mates for the lower bounds in Theorem 3.1 in Chapter 3, also published in [OS10].
Numerical simulations of the reduced energy functional moreover show that the op-
timal period increases with increasing field also for small external fields, see Figure
1.16. The optimal period was computed by minimizing the energy per unit length
both w.r.t. the magnetization and the period for varying external field, for details
see Subsection 4.8.

1.8.2. Coarsening: A modulation instability

Although the analysis predicts that the optimal period increases as the field in-
creases, see above, it does not explain why and in which way a concertina pattern
of period W becomes unstable as Eext increases. We will see that both the increas-
ing period for large fields and the deviation of the initial period from the one of
the unstable mode are due to an instability under long-wave length modulations
of the pattern. The mechanism behind the instability is the following: Given Eext
and a period @, an optimization in the transversal component 7, yields that the
optimal energy per period Eopt (ﬁext, W) is a concave function in @ — provided Eext(@)
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121
11

10f

Figure 1.16.: Numerical simulations: The optimal period of the concertina pattern as a func-
tion of the external field computed on the basis of the reduced model.

is sufficiently large. Concavity suggests — as depicted in Figure 1.17 — that the con-
certina pattern of a uniform period @ becomes unstable under modulations of the
period, i.e., perturbations which increase the period to @ + € and the corresponding
optimal transversal component in some folds, and decrease the period to @ — € and
the corresponding optimal transversal component in other folds. However, in view
of the non-locality of the stray-field energy, it is not clear whether this simplified
picture, i.e., that the energy of the modulation amounts to the modulation of the
energy, applies. As discussed in Subsection 1.8.3, a modulation of the period on a
very long length scale overcomes this objection. Thus the concavity of the minimal
energy implies an instability under long wave-length modulations of the pattern.

Figure 1.17.: Concavity of the minimal energy per period implies an instability under wave-
length modulation.

In order to derive the concavity of the minimal energy, we apply domain theory for
large external fields, for details see d) in Subsection 2.2, and an extended bifurcation
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analysis close to the critical field, for details see Chapter 6. Furthermore, we will see
that both asymptotics match the results of the numerical simulation of our reduced
model.

The modulation instability of the concertina pattern is closely related to the Eckhaus
instability which was discovered in the context of non-linear instabilities in convec-
tive systems leading to a change in wave length of the observed periodic pattern, for
a review see [Eckgz]. A higher degeneracy of the bifurcation in case of the reduced
energy functional leads to an asymmetric Eckhaus unstable region. More precisely
we will see that periodic minimizers of period @w* 4 6@ are Eckhaus unstable for
0w < dw* for some dw* > 0. In case of the generic Eckhaus bifurcation, a state is
unstable if [d@| is above a certain threshold.

We note that the same concavity criterion was shown to imply sideband instabil-
ity for spatially periodic solutions to some hyperbolic/parabolic equation on an in-
finitely extended strip in [BMg6, Mieoy]. Using a localization argument for the stray-
tield energy — similar to (5.31) in Section 5.2 — it was shown in [Seio8] that the con-
cavity implies modulation instability of periodic minimizers to the one-dimensional
version of (1.14), which describes a configuration of low-angle Néel walls. This is
related to the transition of the ripple structure to the so called blocked state ob-
served during field reversal in extended thin films of polycrystalline Permalloy, cf.
Section 1.9.

1.8.3. Bloch wave theory: Instability with increasing field

As indicated above, for Eext > 1, not only the optimal period but also the coars-
ening can be explained on the basis of domain theory which relies on the optimal

-~

energy per period min@g Edomain(rﬁg,hext,&)). More precisely we find that for peri-

ods much smaller then the optimal period, i.e., & < @, (iz\ext) ~ Nexi In Hext, and for
1 < hext In hext:

min Edomain (19, @) ~ —I2@” In(heu@®),
ny

see d) in Section 2.2. The optimal energy per period is thus indeed concave in the
period @ (if @ is much smaller than the optimal period), implying the instability un-
der long wave-length modulations. Although domain theory suggests such a type
of perturbation, domain theory itself is too rigid to allow for such a type of pertur-
bation of the concertina pattern even in the class of generalized Ansatz functions as
depicted in Figure 1.14, for details see Section 2.3.

It is rather on the level of the reduced model that it can be seen that the concavity
translates into an instability (despite the potentially long-range interactions coming
from the stray-field). Indeed, a Bloch wave analysis, cf. [RS78, Maroo], of the reduced
model shows that the concavity is in a one-to-one correspondence with a long wave-
length modulation of the pattern: One can show that there are eigenfunctions of the
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Hessian of the form

iy = e~ 16 51?15, where ¢ = % and N e,
with 57?1% w-periodic with respect to xy, i.e.,

Hess E(77i) (e_i’?lcéﬁig) = Abe18 (57?1%. (1.21)

Here, N is the wave length of the modulation. An asymptotic expansion of (1.21)
for ¢ = % < 1 shows that the (first) eigenvalue A® can be related to the second
derivative of the minimal energy per period Eopt = ming, E, for details see Chapter
5. More precisely, we find that the eigenvalue has the following expansion:
dz = -~ —~ 2
A~ wEopt(hext,w) & for <1
This shows that the concavity of Eopt (Eext, w) with respect to @ implies that the con-
certina pattern of a given period @ becomes unstable as the field increases. Domain

theory predicts that the marginally stable s, i.e., @, such that dd—z;zfopt (ﬁext, ws) =0,

scales as ws ~ Eext lnﬁext. Figure 1.18 shows the optimal and marginally stable
period computed on the basis of the reduced energy functional.

Figure 1.18.: Numerical simulations: The optimal and marginal stable period of the con-
certina pattern as a function of the external field — both computed on the basis
of the reduced model (1.14). In the region below the red curve, the minimal
energy per period is concave and thus a concertina of that period is unstable un-
der modulation of the period. The dashed dark-green lines indicate the period
of the unstable mode and the critical field, respectively.

Figure 1.19 shows that the prediction of the optimal and marginal stable period
on the basis of domain theory match the numerical simulations on the basis of the
reduced model for hey > 1.
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1.8. Coarsening of the concertina pattern
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Figure 1.19.: Numerical simulations and domain theory: The optimal and marginal stable
period computed on the basis of the reduced model (1.14) (dashed) match the
predictions on the basis of domain theory in the regime Hext > 1. The dashed
dark-green lines indicate the period of the unstable mode and the critical field,
respectively.

1.8.4. Bifurcation analysis: Instability for small fields

The numerical computations, cf. Figure 1.18, show that the minimal energy per pe-
riod is concave not only for large external field as predicted by domain theory. In

fact, we extract from our numerical data that %E\Opt(ﬁext,z’u\ = ") is negative also
for small external fields up to the turning point, cf. Figure 1.18. This is consis-
tent with the numerical computation of the eigenvalue A¢ based on the asymptotic
expansion of equation (1.21). Hence, the Bloch wave analysis implies that the @w*-
periodic concertina pattern is unstable under long wave length modulations. This
qualitatively explains the trend in the experimental observation (see Section 1.3) of

: . «
the concertina period weyp.

The concavity of the minimal energy can be confirmed with the help of an asymp-
totic bifurcation analysis close to the critical field. To see this, we extend our
Ansatz from Section 1.6 and take into account small deviations of the wave num-
ber El = %f + (F/k\l, for details see Section 6.2. As we have seen in (1.19) in Section
1.6, the quartic coefficient in the energy expansion is (relatively to the second order
coefficient and the scale of the external field) small. Due to that almost degeneracy,
it is necessary to take into account the cubic order for the perturbation of 77i; = 0,
i.e., we use the extended Ansatz

fiiy & Afiiy + A%ig* + A%5T

Optimizing both in 3* and 7i5** leads to an expansion of the energy density of the
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form

SE(Amy + A%y + A%iy) & Lk (kr) — hext) A2 — ca(k1) A* + co(k1) A®,

where ¢4 (ﬂ‘) = %%, see (6.13). Under the assumption that the quartic coefficient
Cq (ET) is small, the energy density to leading order can be approximated by

Nl =)
Ka

- A~ % ~ ok A~ ok k * % 7
LE(Afits + A%y + A%iiiy™) ~ 1 ( ;;Zhext(kl)m:k*% + Ohex) A2
— (ca(k) + i C4(k1)\k k*5k1) A%+ c6(k)AS. (1.22)

First notice that it turns out that c6(k1‘) is positive, confirming the numerically ob-
served turning point of the w*-periodic branch. Moreover, the asymptotic expansion
displays the afore mentioned asymmetric behavior in 5ky; the energy decreases for
5k < 0. Based on the expansion (1.22), one can characterize the optimal wave num-
ber/period and the marginally Eckhaus stable wave number/period. We note that
the concavity of the minimal energy per period is equivalent to the concavity of the
energy density as a function of the wave number k1. More precisely we have that

2P K& (7 pon

amE(@) = (27;)2d_g<k1E(ﬁ)>-
The result is displayed in Figure 1.20. We read off that the @*-periodic concertina
pattern is indeed unstable at the critical field. A comparison between Figure 1.18 and
Figure 1.20 shows that our asymptotic expansion does not match the optimal and
marginal stable period computed on the basis of the reduced model very well (notice

the scale of the external field). This deviation is related to our assumption that the
quartic coefficient is negligible. In fact, Figure 1.21 shows that the asymptotics match

the reduced model if we add a quartic contribution £ 5 [ mj to the reduced energy
for which the value of the parameter ( Q is chosen in the way that the coefficient
C4(k*) in (1.22) is (almost) canceled (Q 0.03). In Section 1.10 we will see that
such an additional quartic contribution has a physical meaning related to a uniaxial
anisotropy. It turns out that the parameter Q is an appropriate rescaling of the
quality factor Q, close to the bifurcation.

1.8.5. Wave-length modulation in the experiments

In the experiments, the wave length of the modulation is restricted not only by the
finiteness of the sample but even more strongly by the inhomogeneities and defects
of the material, in particular those at the long edges of the boundaries. This is related
to the fact that walls usually occur at the same pinning sites when the experiment is
rerun. The existence of pinning sites hence leads to a smaller effective modulation
wave length which is just a small multiple of the wave length of the pattern. In fact,
it is observed that as a consequence of the collapse of a fold only the width of the
neighboring folds is adjusted. In particular, pinning sites have a stabilizing effect
and prevent coarsening.
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1.8. Coarsening of the concertina pattern

6.5F

Figure 1.20.: Bifurcation analysis: The optimal and marginal stable period as a function of
the external field computed on the basis on the extended bifurcation analysis.
We read off that states of period @* + 0.212 are Eckhaus unstable for all values
of the external field. The dashed dark-green lines indicate the period of the
unstable mode and the critical field, respectively.

0.2r

0.15f

0.05f

Figure 1.21.: Numerical simulations and bifurcation analysis: The prediction on the basis of
the reduced model (1.14) (dashed) matches the prediction on the basis of the
extended bifurcation analysis for a near-degenerate value of Q = 0.0295 close
to Q* ~ 0.03, cf. Section 1.10. The dashed dark-green lines indicate the period
of the unstable mode and the critical field, respectively.
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1.8.6. Numerical bifurcation analysis: Type of secondary instability and
downhill path in energy-landscape

With the help of a bifurcation detection algorithm, we are able to compute at which
field the pattern becomes unstable under N@w*-periodic perturbations while we fol-
low the primary branch. For details of the numerical schemes applied, see Section
4.4 and Section 4.5. Figure 1.22 shows how the secondary critical field decreases as
N increases. As expected (cf. Subsection 1.8.4 and Figure 1.18),the first instability
approaches the turning point as N increases — it is reached for finite N.

6.

° /

A N=2
=l O N=4
€ N=5

N=T7

1 O N=8

0 .

5 6 7 8 9 10 11

Figure 1.22.: Numerical simulations: The appearance of the secondary instability under
Nw*-periodic perturbations as a function of N. The critical field for N = 8
is given by 5.602.

In the following, we want to study in which way the concertina pattern becomes un-
stable. We first present the outcome of the computation of the secondary bifurcation
branches. We note hat due to the symmetries of the pattern, the bifurcations are not
simple in the sense that more than one branch bifurcates. The symmetries of the
Nw-periodic concertina pattern can be identified as linear representations of the di-
hedral group D;y, where N denotes the number of folds. The secondary bifurcation
branches are computed with the help of a numerical branch switching algorithm
which is adapted to the problem of multiple bifurcations. Generically, there are
two distinct types of branches: Branches along which rotational symmetry is broken
and reflectional symmetry is conserved and branches along which rotational sym-
metry is conserved and reflectional symmetry is broken. In case of the first type of
branches, a fold collapses as two neighboring faces disappear, cf. Figure 1.24. In case
of the second type of branches, the number of folds decreases as one face disappears
and the two adjacent faces merge, cf. Figure 1.25. During the coarsening process, the
width of the remaining folds is adjusted in both cases. In correspondence to the ex-
perimental observations, the actual coarsening process is rather local in the sense
that neighboring folds or faces collapse or merge, respectively.

26



1.8. Coarsening of the concertina pattern

Due to the choice of an artificial and finite computational domain one might doubt
the relevance of the numerical simulations. However, as mentioned before, the wave-
length of the modulation in the experiments is effectively reduced by the defects and
inhomogeneities in the samples.

5 -
4 3
~ 3F
=
N/g
~ 2
—— w*-periodic
1t - - -ref. symmetric
- - -rot. symmetric
4 w* perlodlc
0 . . . ,
5 5.5 6 6.5 7 7.5

Figure 1.23.: Numerical simulations: Bifurcation diagram for 4w* perturbations: The bifurca-
tion branches that connect the @*-periodic (blue) and the %@*—periodic branch
(orange). The magnetization patterns at the indicated fields are shown in Fig-
ure 1.24 and Figure 1.25. The bifurcation points of the secondary branches
coincide. In between, the branches slightly differ.

1.8.7. Domain theory: Instability for decreasing field

Let us consider a concertina after several coarsening events. The experiments show
that the concertina period decreases as the strength of the destabilizing field de-
creases, cf. Figure 1.29. This also has a simple explanation on the level of domain
theory, for details see e) in Subsection 2.2. As the decreasmg external field ftex; drops
below its optimal scaling for a given period @, that is, for @ > hext In hext, the opti-
mal concertina pattern degenerates in the sense that the triangular closure domains
invade the whole sample cross section. We expect that at this stage the concertina
refines its period towards the optimal period. The numerical backward cycle in
Figure 1.26, in which we start at the multiply coarsened state and then after min-
imization repeatedly decrease the external field by a fixed increment, reveals that
the coarsened pattern is stable up to the first turning point at which it degenerates.
Depending on the initial level of coarsening, the period is then either refined or we
reach the uniformly magnetized state after the minimization.

Let us introduce the maximal period @,, at the field hext as the period for which
the corresponding wm(hext) -periodic pattern degenerates. Figure 1.27 shows that
the prediction of domain theory matches the result of the simulation of the reduced
model.

27



1. Introduction

Figure 1.24.: Numerical simulations: Reflectional symmetric magnetization pattern on the
unstable bifurcation branch connecting the @*-periodic and the 5@*-periodic
branch. The central fold collapses. The pattern is invariant under odd reflection
at the center line 77, (X1, X2) ~> — (20 — X1, X2).

Figure 1.25.: Numerical simulations: Rotational symmetric magnetization pattern on the
unstable bifurcation branch connecting the @*-periodic and the 3@*-periodic
branch. A white face disappears and two adjacent black faces merge. The
pattern is invariant under rotation around the midpoint of the white face
iy (X1, %2) ~ fia (30 — %1, 1 — %2).
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Figure 1.26.: Numerical simulations: The coarsened concertina pattern computed on the
basis of the reduced model (1.14) up to the turning point. The numerical simu-
lations confirm the prediction based on domain theory, namely that the pattern
degenerates at the turning point of the branch.

Figure 1.27.: Numerical simulations: The marginal stable @;, optimal @, and maximal pe-
riod Wy, of the concertina pattern as a function of the external field iz\ext. The
field Eext(z@s) is the field at which the @ws-periodic branch exhibits its turning
point or degenerates, respectively. The dashed lines display the results of the
numerical simulation of the reduced energy, the solid lines display the results of
the minimization of the domain theoretic energy. The dashed dark-green lines
indicate the period of the unstable mode and the critical field, respectively.
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1.8.8. Conclusion: Hysteresis and Scattering of Data

Summing up, domain theory in con]unctlon with a Bloch wave argument indicates,
that the concertina pattern of period @ is present or stable at a given field Bext if and
only if @ ~ /ﬁext In hext This is confirmed by the numerical 51mu1at10ns In particular
we expect that the height of the triangular domains (~ Z5) is close to constant

as the external field increases. If the period deviates by a (iarge) factor from that
expression, it becomes unstable. On the other hand, this analysis also suggest that
there is a range of W ~ hext In hext for which the concertina pattern is stable. This
may explain some of the scatter in the experimental data and the pattern’s hysteresis,
see Figure 1.28.

Figure 1.28.: Numerical simulations: The hysteresis loop obtained from the incremental
minimization (iteration of hext ~r hext + (5hext and successive minimization on
the 4w*-periodic domain) of the reduced energy including a small symmetry-
breaking white-noise perturbation of the external field. As the external field
increases, we follow the green path: The concertina pattern coarsens if the pe-
riod is much smaller than the stable period. As the field decreases, we follow
the yellow path: Starting from a multiply coarsened state, the pattern degener-
ates as we reach the turning point of the branch. The pattern refines towards
the optimal period until it finally disappears. Red and blue parts indicate insta-
bility and stability under 4@w*-periodic perturbations.
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Figure 1.29.: Experiment: The hysteresis cycles of a Permalloy sample of 30 nm thickness and 50 pm width. First row: increasing
destabilizing field from left to right. Bottom row: decreasing destabilizing field from right to left. The configurations of the
same column are observed at the same value of the external field.
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1.9. Polycrystalline anisotropy

The experiments usually do not show a clear-cut critical field with a first order
transition, cf. Figure 1.30. This can be due to lack of experimental resolution or due
to the presence of the ripple-like structure that smoothes out the transition. The
ripple is the typical oscillation of the magnetization on a small scale and of small
amplitude in an extended thin-film. This oscillation is perpendicular to the mean
magnetization of the sample. The ripple is triggered by an effective random field
on a small scale which originates in the heterogeneity of the material. We will focus
on the effect of the polycrystallinity of Permalloy, which is the random orientation
of grains possessing a uniaxial (crystal) anisotropy. In the literature other sources
of the random field are discussed, for example local mechanical stresses due to
magnetostriction.

As we will see in detail in Chapter 7, the ripple itself and the transition to the
concertina can be understood based on an extension of the reduced model; the linear
ripple theory developed in [Hof68, Har68] can be incorporated into our theory of
the concertina. This explains the smoothing-out of the first order phase transition
encountered in Section 1.6.

We learn from the analysis that, as the strength hey of the external field increases
from moderate negative values towards the critical field the average wave length
of the ripple continuously increases from the values characteristic for an extended
film to the wave length of the unstable mode that is at the origin of the concertina
pattern with its low-angle symmetric Néel walls. This suggests that the reduced
model also provides the appropriate framework to analyze the nonlinear corrections
to the linear ripple theory and thus captures the transition from the ripple to the so
called blocked state — consisting of an array of Néel walls — in an extended film, see
[Fel61].

In Section 7.2 we also contrast the effect of thermal fluctuations to the effect of
quenched disorder — due to for example polycrystalline anisotropy. The first one
leads to a random torque in the Landau-Lifshitz-Gilbert equation that is white noise
in space and time whereas the latter one only leads to a white-noise in space. Based
on an analysis of the stationary Gibbs measure we will see that the space-time white-
noise causes a divergence of the expected average amplitude of the magnetization
and an excitation in the small wave numbers, cf. [BGos]. This divergence is related
to phase transitions in the Heisenberg spin model. In thin films, the dominant
wavelength excited by a spatially random field is determined by both exchange and
stray-field energy and can be seen to be much larger than the atomistic length scale,
i.e., the exchange length 4, and the grain size.

In Subsection 7.1.2, we address the numerical simulation of the spatially random
field. Figure 1.30 compares the numerical simulations of the reduced energy func-
tional including the random anisotropy with the experimental observations in a
polycrystalline Permalloy sample.

32



€€

Figure 1.30.: Experiment and numerical simulations: The coarsening of the concertina pattern in a Permalloy sample (top row) of 30 nm
thickness and 70 pum width compared to the numerical simulations (bottom row). A ripple-like structure grows into the
concertina pattern. Within the numerical simulations we iteratively increment the external field and minimize the energy,
see Section 4.7. The computational domain is of period 6w*. The numerical images are scaled according to (1.11). The
images hence display approximately 1.8 times the unit cell; the numerical images therefore appear to be more uniform than
the experimental concertina. Details on the numerical simulation of the random anisotropy are discussed in Subsection
7.1.2.
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1.10. Uniaxial anisotropy

Due to its experimental relevance, we now address the effect of a uniaxial anisotropy
that is constant throughout the sample, on the formation and evolution of the con-
certina pattern. We focus on two cases: The easy axis coincides with the x;-axis —
transversal anisotropy, i.e., ¢ = (0,1,0) in (1.1) — or the easy axis coincides with
the x1-axis — longitudinal anisotropy, i.e., e = (1,0,0) in (1.1). Clearly, such type of
anisotropy has no effect on the stationarity of m* = (1,0,0). On the level of the re-
duced model both cases are represented up to an additive constant by the additional
quadratic term

—Q t/Q/ m% dxq dxy, (1.23)

with a signed quality factor Q. Transversal anisotropy corresponds to Q > 0, longi-
tudinal anisotropy corresponds to Q < 0.

As will become clear below when considering the effects of anisotropy, it is appro-
priate to expand the Zeeman term to quartic order, i.e.,

—HNext t/Q/(m% + Lm3 ) dx; dx,.

The following Gedankenexperiment is helpful in understanding the sequel: In ex-
tended thin films, i.e., infinite width ¢ = oo, there is no incentive for a spatially
varying magnetization so that we may consider a constant magnetization m,. The
only energy contributions are due to the external field and the anisotropy so that

the energy per volume is thus given by —Qm3 — hext(m3 + tm3). In this context, the
critical field is given by h , = —Q. For longitudinal anisotropy, the bifurcation is

subcritical, whereas for transversal anisotropy, the bifurcation is supercritical and
yields

my = £(2(14+ Q thext)) V2. (1.24)

Hence for finite ¢, there are two competing mechanisms which lead to a bifurcation
and a selection of an amplitude for m;: uniaxial anisotropy and stray-field energy.

As we will see in the sequel, there are essentially three different effects of anisotropy:
a linear one, a weakly nonlinear one, and a strongly nonlinear one. We list and char-
acterize these effects below. However, the order at which these effects arise with in-
creasing anisotropy does not agree with their ordering with increasing nonlinearity,
cf. Figure 1.31: The linear effect becomes pronounced for |Q| > d?/3¢=4/3t2/3, the
strongly nonlinear one for |Q| > £~!t, and the weakly nonlinear one only for |Q| >
d=2/3¢=2/3t4/3_ Note that we have that d=2/3¢4/3t=2/3 < =1t < d=2/3¢2/344/3 pro-
vided d?¢~1 <« t, which is the lower bound on the film thickness which characterizes
Regime III.

We mainly focus on the case of transversal anisotropy Q > 0. In case of longitu-
dinal anisotropy Q < 0 we give an explanation for the experimental fact that the
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Figure 1.31.: The order of the different effects of anisotropy.

concertina cannot be observed at all. The forthcoming discussion is based on the
unrescaled version of the reduced model, (1.10) augmented by (1.23).

Linear effect for weak anisotropy |Q| > d?/3¢=%/32/3.  An obvious effect of
anisotropy is a shift of the critical field hf,; by the amount —Q; we call it the lin-
ear effect of anisotropy since it arises on the level of the linearization at m; = 0. In
view of the scaling of the critical field h}, at Q = 0, i.e,, (1.12), we infer that the

critical field behaves as
e~ —Q for |Q|> d2/39—4/342/3, (1.25)

We note that a transversal anisotropy decreases the distance between the two critical
tields +hext of £m*; in particular, the the sign of the critical field changes provided
Q ~ d=2/3¢4/34=2/3 and thus the order between the two critical fields switches. Like-
wise, for longitudinal anisotropy the distance decreases. Although a clear-cut critical
field cannot be observed in the experiments — due to the polycrystalline structure
which triggers the ripple and since the value of the effective external field at the
observed sample section is not available — the linear effect has been qualitatively con-
tirmed: For Permalloy samples of high transversal anisotropy we observed that the
oscillatory instability occurs before the external field is reversed. For wide films the
relative strength of anisotropy increases, see (1.25), and the oscillation is observed
even earlier in the experiments. For low-anisotropic Permalloy the oscillation is first
observed close to zero external field.

Weakly nonlinear effect for strong anisotropy |Q| > t(w*)~! ~ d=2/3¢72/3t4/3,
For sufficiently strong anisotropy Q the quartic term coming from the stray-field en-
ergy no longer dominates the quartic term coming from the Zeeman energy near the
bifurcation. We call this effect the weakly nonlinear effect of anisotropy, since it can be
analyzed on the level of an expansion near my = 0 and hext = hj,, cf. (1.19). We addi-
tionally have to take into account the quartic Zeeman term —%t‘A4 [ (m3)* dx; dxa.
The shift of the critical field suggests the following rescaling for the external field

/]’;ext - d_2/3€4/3t_2/3(hext + Q)

Note that for |Q| > d=2/3¢72/3t4/3 > d=2/3¢4/3;=2/3 the critical field is of order

it = —Q. Therefore we set

Q= _%d2/3€2/3t_4/3hext-
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We obtain — with the same rescaling of energy, length and magnetization as in (1.11)
and (1.13) — the reduced energy functional augmented by +Q [, /i3 d¥1 dX,. There-
fore the reduced energy close to the bifurcation takes the form of

~
*

(A3 + A%i5") = —(5)' (hew — hée) A* + (1Q — ghg) A*,

cf. (1.19). For |Q| > d=2/3172/344/3 > d=2/3¢4/3t=2/3  the critical field is of order

& ~ —Q, so that the reduced quality factor scales as Q ~ 1d?/3¢2/3t=4/3 Q. From
the latter we read off that in the regime Q >> t(w*)~! ~ d=2/3{=2/3t*/3 the quartic
coefficient becomes positive and therefore the bifurcation becomes supercritical, cf.
Figure 1.32. Essentially it is a perturbation of the constant-magnetization bifurcation

in infinitely extended films mentioned above. In particular, the selected amplitude
1/2

in this case scales as my ~ A ~ (1+ hextQ_l)

—_— Q _
d—2/3(—2/3¢473 — 0.3

% =0.03
=0.0

d-2/3¢—2/3¢4/3

0 . . . . . .

5.45 55 5.55 5.6 5.65 57 5.75
ezt + Q

42/3¢—4/342/3

Figure 1.32.: Numerical simulations: Transition from sub- to supercritical bifurcation as
strength of transversal anisotropy increases. For Q = 0.03 ~ Q* the bifurca-
tion degenerates.

On the other hand, for large longitudinal anisotropy, i.e., —Q > d=2/3¢/72/3t4/3 we
expect that there is no turning point on the bifurcating branch so that it remains un-
stable to the effect that no concertina pattern forms in the first place. The numerical
simulations in Figure 1.33 show a second turning point which coincides with the
break-up of the concertina pattern. For very large longitudinal anisotropy the first
turning point is destroyed.

This observation can be confirmed on the level of domain theory within the original
scaling, cf. (1.11), where we include anisotropy and the quartic term in the Zeeman
energy:

0
Edomain(mgl w) =2 (£ - %) e(mg) + 4 mlg e (%)
042 2 1(,,,0\4 2
= (hext + Q) (m9)*t (wl %) — howey (m3)'t (wl - m) . (1.26)
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Figure 1.33.: Numerical simulations: Loss of the turning point as strength of longitudinal
anisotropy increases

We note that the line-energy density e(m3) scales as Ft*(m3)* up to a logarithm.

Hence, the stray-field energy cannot compensate the destabilizing quartic Zeeman
contribution provided hexttw > t? (up to a logarithm). Since ki, ~ —Q and
w ~ d?/302/3t=1/3 close to the bifurcation there are no (local) minimizers of the
energy.

Typlcal values for our Permalloy samples of strong uniaxial anisotropy range from
Q= W ~ 2.1 x 107% to 0.023 depending on the sample’s width and thick-
ness (Q = 5x 1074, t = 10 nm to 150 nm, ¢ = 10 um to 50 um, see Chapter 1.12).
Typical values for CoFeB range from Q = 7.8 x x10~* to 0.011 (Q ~ 1.5 x 1073
t = 30 nm-100 nm, ¢ = 10 um-50 um, see Chapter 1.12). The uniaxial anisotropy
is thus too small to cause the weakly non-linear effect. Although local minimizers
of the energy though might exist in case of longitudinal anisotropy, still the energy
augmented by the quartic Zeeman energy is not coercive as soon as the external
field is reversed.

Strongly nonlinear effects for moderate anisotropy |Q| > ¢~!t. In that case we
find two different scenarios, which are investigated in detail in Section 2.5 on the
level of domain theory augmented by the quartic Zeeman energy, i.e., (1.26).

e Scenario I: If the amplitude and shape of the concertina pattern would not be
affected by anisotropy, like in an infinitely extended film, its optimal amplitude
would scale as

myp ~ gt_l(hext - ext) ~ Et— ( ext T Q) = Et_lg(l + Q_lhext)/ (1-27)

up to a logarithm, as we have seen in Section 1.8.1.
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e Scenario II: If the amplitude of the concertina pattern would be dominated by
transversal anisotropy, it would behave as

iy U2 (14 O Mhew)/? for 0< (140 Vhex) < 1, (1.28)

as we have seen at the beginning of this Section in (1.24). Hence, we expect that for
Q > (71t the amplitude of the concertina pattern is limited by stray-field effects as
long as 0 < 1+ Q thexr < (Q~1471t)? and by anisotropy effects once (Q1/71#)? <«
1+ Q 'hext < 1. Loosely speaking, the effect of anisotropy kicks in for a large
amplitude and is most prominent close to field strength where the concertina pattern
vanishes. We call this the strongly nonlinear effect of anisotropy. Also this provides a
reason to expand the Zeeman term to higher order.

We note that the optimal period in Scenario II is determined by the lower order
wall energy. A minimization of the energy per length yields the following scaling
behavior of the optimal period (up to a logarithm)

wa ~ (LHY2Q7 V21 + Q Mhewt) 4,

cf. Section 2.5 b). As we know from Section 1.8, the experimentally more relevant
quantity is the marginally stable period, i.e., the largest period — as a function of the
external field — for which the minimal energy is convex. At the cross-over we expect
that the marginal stable period is of the order ~ tQ_l, cf. Figure 2.6. In fact, due
to (Q 11t)?2 ~ 1 + Q lhey at the cross-over, we have that /2t 1Q(1 + Q hext) ~
(t0)Y2Q712(1 + Q hext)'/* entails that the period is of the order w ~ tQ~1. We
will see that for a period of that order, the minimal energy in scenario II turns out
to be convex, see c) in Section 2.5. Hence we expect that the coarsening stops once
(Q Y 1)? < 1+ Q lhex < 1. Still the transversal component of the magnetization
increases as my ~ (14 Q hext)'/? so that the size and height of the closure domains
decrease. As heyt approaches zero, the energy 1.26 looses coercivity, so that the low-
angle approximation is not valid anymore since the amplitude m) diverges. At
this stage the pattern is suspected to collapse so that the magnetization in the end
switches completely.

Let us mention another observation supporting the conjecture that anisotropy effects
are most prominent close to the field strength where the concertina collapses: For
Q > (7', the ground state for vanishing external field hex: = 0 is no longer given
by the uniform magnetization m = (£1,0,0), but a Landau or concertina-type pat-
tern, see Figure 1.35, has lower energy. The period w of the two latter patterns is
determined by a balance of the wall energy and the anisotropy energy in the clo-
sure domains and scales as w ~ Q~1/2¢1/2t1/2 yp to a logarithm. Hence we expect
that in this regime, the concertina does not switch to m = (—=1,0,0), but evolves to
the pattern in Figure 1.35. In fact, that type of evolution of the concertina pattern
can be observed in the CoFeB samples which possess a relatively strong transversal
anisotropy, cf. Figure 1.37.
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1.11. Discretization and numerical simulations

Figure 1.34.: Experiment: Permalloy samples of width 60 pm to 150 pm of high anisotropy
and the end of the coarsening process. The 6 samples on the right are of thick-
ness 30 nm, the 6 samples on the right are of thickness 50 nm. The period of
the pattern appears to be independent of the width of the samples.

bt bt by bt by
W
*)\/i% o -~

w

Figure 1.35.: Continuous transition from the concertina pattern via the Landau state to the
reverse concertina.

1.11. Discretization and numerical simulations

The numerical simulations are based on a finite difference discretization of the re-
duced rescaled energy functional (1.14). The transversal component i, is approxi-
mated on a uniform Cartesian grid. The discretization of the exchange, anisotropy
and Zeeman energy is straight-forward. In case of the non-linear charge density

o= —51"17% + §2ﬁ2, our choice of a finite difference stencil is motivated by the in-
heritance of the shear-invariance of 7, see 4.1. The stray-field energy can efficiently
be computed using Fast Fourier Transform with respect to ¥;. For a detailed in-
troduction of the discretization scheme, see [Steo6, Subsection 3.2]. Note that the
computation of the energy and related quantities such as the gradient or the Hes-
sian can be parallelized — the non-locality is only with respect to one dimension —
for which we decompose the computational domain into horizontal slices, i.e., with
respect to ;.
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1. Introduction

We apply numerical simulations to compute minimizers and stationary points. The
naive approach, using steepest descent algorithms for the computation of minimiz-
ers ,is slow and even fails close to bifurcations points. The iterative path-following
techniques that we apply in order to compute an approximation to a branch of sta-
tionary points are adapted to such situations, cf. [Geoo1].

A bifurcation point can be detected with the help of an appropriate indicator func-
tion. However, both the bifurcation detection and the branch-switching technique
which are described in [Geoo1] are applicable for simple bifurcations points only.
As described in detail in Chapter 4, we extend these methods to cope with multi-
ple bifurcation points. The extension relies on the fact that multiple bifurcations,
which occur due to symmetries of the primary solution, generically can be reduced
to simple bifurcation points, cf. [GSoz].

1.12. Experimental setup and samples

S o §
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Figure 1.36.: Photograph of a complete specimen. The numbers on the substrate next to the
stripes denote the width (in pm). By courtesy of H. Wieczoreck.

Figure 1.36 displays one of the samples which were investigated at the If W Dresden
by J. McCord, R. Schifer, and H. Wieczoreck. The samples were manufactured in
cooperation with R. Mattheis at IPHT Jena. In the experiments we investigated
magnetic films of nano-crystalline Permalloy, Nig; Fej9, and amorphous CogyFe2Bao
of various thicknesses and varying induced magnetic anisotropy values. The films
were deposited by magnetron sputtering under ultra high vacuum conditions. In
order to control the grain growth of the polycrystalline films a Ta (Tantalum) seed
(5 nm) layer was used for the Nig;Fe 9 deposition. In all cases, a magnetic in-plane
saturation field was applied during film deposition to control the induced anisotropy
strength and direction. By varying the magnetic field history, films with different
effective induced anisotropy values were obtained.

e In a first set of samples the uniaxial anisotropy was induced by a deposition
in the presence of a homogeneous, static magnetic field. This results in a
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1.12. Experimental setup and samples

maximum and also well-aligned induced magnetic anisotropy. A series of
Permalloy and CoFeB samples was obtained by this method.

e In a second set of Permalloy samples the induced anisotropy was strongly re-
duced. In order to ensure this, the films were deposited in a magnetic field
with alternating orthogonal alignment. The field direction was changed ap-
proximately after every 5 nm of film growth. The superposition of orthogo-
nally aligned magnetic anisotropy axis results in a strongly reduced induced
anisotropy.

The material parameters, relevant for the comparison of the experimental observa-
tions to theoretical predictions, are the following:

e Exchange length d: Permalloy 5 nm, CoFeB 3 nm.

e For both materials the saturation polarization is J; ~ 1 T and the stray-field
energy density is given by K; ~ 4 x 10° J/m?.

e The uniaxial anisotropy coefficient is ngrmauoy ~ 200 J/m?3 for the high aniso-
tropic Permalloy and K$°FB ~ 600 J/m3 for CoFeB, respectively. For the low

anisotropic Permalloy films we obtain ngrmalloy ~ 50 J/m3,

e Quality factor Q = K, /K;: High anisotropy Permalloy Q ~ 0.5 x 1073 and
CoFeB Q ~ 1.5 x 1073,

e The average size of the individual grains of Permalloy is lgrain & 12 to 15 nm.
It is assumed that up to a film thickness of about 30 nm the grains display a
column-like shape.

e The film thicknesses range from 10 to 150 nm, the investigated film widths
from 10 to 100 um.

After film deposition, elongated stripes of various widths and a length of 2000 um
were patterned by photolithography and subsequent ion beam etching. The stripes
are aligned parallel and orthogonal to the induced anisotropy axis, see Figure 1.36.

The observation of domains and magnetization processes was carried out in a
digitally-enhanced Kerr microscope, see [HS98]. The longitudinal Kerr effect was
applied with its magneto-optical sensitivity axis transverse to the long edge of the
stripe. The dominant wavelength of the patterns was computed by Fast Fourier
transform. The result of the computation is in agreement with the average wave-
length determined by counting the folds as soon as the concertina becomes dis-
cernible to the eye as the magnetic field is decreased starting from saturation. The
typical strength of the magnetic fields which were applied for saturation is of the
order of some mT.
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1.
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Figure 1.37.: Experiment: Hysteresis of a CoFeB sample of 60 nm thickness and 30 um width. After several coarsening events we observe
a transition to a Landau state at zero external field which turns into a concertina that degenerates and refines, and finally

[

disappears.
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2

Domain theory

In the numerical simulations of the reduced energy functional, we observe for large
external field Fiex > 1 that the minimizers are approximately piecewise constant
on a mesoscopic scale, see Section 1.7 in the introductory chapter and Figure 1.12
therein. In this chapter, we make use of the scale-separation and heuristically derive
a sharp-interface model, namely domain theory, as a limit of the reduced energy for
Bext > 1. This model is partially justified in the subsequent Chapter 3, see Theorem
3.3 therein, which states that minimal energy configurations of the reduced model

(1.14) are close to weak solution of the Burgers equation.

2.1. Derivation of the energy

Motivated by the numerical simulations and as mentioned in the introduction, we
assume that admissible magnetizations within domain theory are given by weak
solutions to the Burgers equation

—31 (@) +52ﬁ12 =0. (2.1)

In view of the boundary conditions, i.e., i, = 0 for x; € {0,1}, the method of
characteristics shows that non-trivial weak solutions of (2.1) cannot be continuous.
Typically, they will have line discontinuities, i.e., a one-dimensional jump set J, cf.
Figure 2.1. The energy which discriminates between these solutions is given by
an appropriate line-energy density ¢ integrated over the jump set ], augmented by
Zeeman energy. In its rescaled version, the energy is given by:

E\domain(n/b) = /Té\<[rﬁ2_2]) dHO de - /ﬁext / ﬂ/”\l% dfl de/

where #H? denotes the zero-dimensional Hausdorff measure. Not surprisingly, the
specific line — or wall — energy ¢ is a function of the jump [fiis] of i, across J. In
case of the vertical walls, it can be derived by restricting (1.14) to one-dimensional
configurations with prescribed boundary data +#iJ, minimizing

Engel (i) = /(517’72)2 dxy +%/||§1’1/2”A1§|2 dx;. (2.2)
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2. Domain theory

The optimal transition layers are low-angle Néel walls whose line-energy density is
given by

Wceore

o(1%) = &) = F(ag) ! S, )

where Wy,;; and Weore are the two characteristic length scales of the Néel wall, namely
the tail and core width, see [Melo3] and [DKMOos, Section 6]. For the scaling of
these two parameters in case of the concertina pattern, see below. Due to the shear
invariance of the reduced energy functional (1.14), i.e.,

X1 =8Xp+ X1, Xo=2=Xp, ip=1ilp—s forsome scR, (2.4)

a diagonal wall of jump size [fiy] = +7i) can be transformed into a vertical wall

770
of equal jump size (with the choice of s = j:%). This shows that the specific line-
energy density is in fact a function of the jump size.

We want to use an Ansatz which mimics the concertina pattern with its quadrangu-
lar and triangular domains and which is determined by just two parameters, namely
the period @ and the inclination #7i = =77 in the quadrangular domains (77, = 0 in
the triangular domains), cf. Figure 2.1.

0 A~
‘]ump set |
1— &
iy
~0 ~0 ~0
my —m, omy
v @
~0
0 2
w

Figure 2.1.: Sketch of the Ansatz function.

Indeed, the angles in the pattern are fixed by the constraint that 7, is a weak solution
to Burgers’ equation: If v denotes the normal to the diagonal jump set, indicated in
Figure 2.1, then the jump of the normal component of the magnetization has to
vanish:

0 = [V (=33, fii2)] = V- (=3 ()% ).

This condition fixes the angles in the pattern. We note that it is always necessary to
impose m) > @ to avoid a degenerated pattern — for m) = @ the triangular domains
invade the whole cross-section.

We claim that with our Ansatz, the energy per length in x; becomes a function
of only two parameters, namely 79 and @. To see that, we first turn to the two
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2.2. Minimality and stability of domain theory for large fields

parameters W, and Weore in (2.3). The tails of the Néel wall spread as much as
possible; in case of the concertina pattern, they are only limited by the neighboring
walls — thus W, ~ 7. A more careful inspection of (2.2) shows that the core

width decreases with increasing jump size, more precisely Weore ~ (ﬁ%)z, see [Steob].
2

Hence (2.3) turns into
a)) = E(MY)*In" o2 (2. (25)

In [Steo6], the constant ¢y was determined by fitting the numerically computed min-
imal energy (on the basis of (2.2)) as a function of its boundary conditions to (2.5).

Notice that one period of the pattern in Figure 2.1 contains

e two vertical walls of height 1 — n% and of jump size 271, leading to an energy

contribution of 2 (1 — n%) e(m)),

e four diagonal walls of projected height n% and of jump size 719, leading to an

P 50
I @ i)
energy contribution of 4 = e(%),

. 2 .
e two quadrangular domains of total area @ — %5, leading to a Zeeman energy
m

2
2

of —hext(9)2 (@ — y).
ext( 2) ( mg)
Hence, the total energy per period is given by:
~ 0~ ~ N\ ~ /70 ~ - - ~2
Eaomain (13, ®) =2 (1= 5 ) e(ii)) +4 %2 (3 ) ~hea(@))? (0 - 5 ), (26)
2 2 2

under the constraint 79 > @. Figure 1.15 shows that domain theory provides a good
approximation of the reduced energy (1.14) for hext > 1.

2.2. Minimality and stability of domain theory for large fields

Based on (2.6), we now derive certain properties of minimizing configurations whose
physical interpretation was discussed in Section 1.8. The following statements a)-d)
address the scaling behavior of the minimal energy per length, the optimal inclina-
tion of the magnetization, the optimal period of the pattern, and the minimal energy
for periods much smaller than the optimal period. The last item e) states that that
there is a smallest field for which a concertina of prescribed period exists. We note
that the coarsening of the concertina is related to statement d) while the refining of
the pattern is related to statement e).

For large external field /ﬁext > 1 we have:
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2. Domain theory

a) The minimal energy per length in X;-direction scales as

1= 0 ~
mln - Edomam(mg/ ) ~ hext 11’1 hext
{(mz, ) |m2_w} w

b) The optimal inclination of the magnetization scales as
”Aiga (/I’;ext) ~ /ﬁext In /I’;ext-

c) The optimal period scales as
W, (il\ext) ~ il\ext In il\ext-

d) For ) >> @, the minimal energy per period scales as

. & ~0 ™ 2 2
min Edomain (M3, W) ~ —ha @0 In(w hext)-
{(m) | my>w}

e) For fixed @ there exist no non-trivial minimizers 70 > @ provided fex; < @ In~! @.
2 p ~

Argument for the scaling behavior of a)-e). Observe that due to the constraint
w < rﬁg we have that

17 ~0 ~ 1 (203 1m=170\3 7 (02 | 7 2
7 Edomain (712, @) Z 35 (M) In™" (m3)” — hext(113)” + hextW".
Hence we obtain for @ > heyt In heyt and rﬁg > hext In hext the expression

o~ 2/\
mm Edomam(m w) 2 hext In“ eyt > 0.
(w,m)

In order to prove a)-c), consider the following change of variables

~

w = /]’zext (11’1 hext) w,
ﬁ’ig = /h\ext (ln/ﬁext) 7718, (2'7)

Edomain = 7/1\4 (1113 /]/;ext) Edomain- and e = hext(ln3 Eext) e.

For ﬁﬁg, w ~ 1and Eext > 1, we have that In z@(n?g)2 ~ 3lnﬁext so that by (2.5)

and
%Edomain(ﬁg/@) =2 (1 B "%) % ( ) +4 EUOZlUN<ﬁ;g> B (7718)2<1 B 7%>

Hence, in the regime Eext > 1 this change of variables leads to the parameter-free
variational problem

~ . . nq() 4 . . o
%Edomain(mg,w) S <2 ( u%) — %(mg)?’) — <(mg)2 —w 8) (2.8)
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2.2. Minimality and stability of domain theory for large fields

Due to the constraint w < mz, we have

17 ~0 - 1(=0\3 _ (50\2 | =2

ﬁEdomain(me) % 27414(7”2) - (mZ) +w, (29)
so that that the energy is coercive. In particular

lim inf ~Ed0main(ﬁ18,&3) = +oo0.
|(775,) | =00

On the other hand, Edomam assumes negative values for 0 < w < m2 < 1. There-
fore we have min @Edomam ~ —1. Finally we note that from (2.9) we have

hm inf 1 Edomam(mZ, %) >0 uniformly in @,
m2 —0

and from
15 ~0 ~ 1 () 0\2
ﬁEdomain(msz) ; 23 u% ( 2)

we gather

liminf L Edomam(mz, ©) >0 for fixed (m9)* > 0.
w—0

. 1 ~ . ~0 ~
Therefore, min = Eqomain is assumed for m; ~ land w ~ 1.

Let us address d). For i) > @ we have that

A~

= ~0 5\~ a0 ~ ~0\2
Edomain(mzlw) ~ 23(m2) - hext(mz) w.
The rescaling
=0 _ (7 2 1/2.50
T 72 2 2 T
Edomain = Hex®@ ln(w hext)Edomain/
leads to a parameter-free minimization problem

Edomam(mZ) - 26( ) (mg)

in 9. Obviously Edomain i coercive and assumes negative values for 73 ~ 1. More-
over we have that limﬁg 0 Edomain > 0. Hence in the regime 719 > @ the minimal
energy is achieved for

M3 ~ (@ hext In(whext)) /2,
in which case

min Edomain (19, @) ~ —h2, @2 In(w?hext).
7”’12 >w

Finally, e) can best be seen using the rescaling

~ ]
hext = WIn™" @ hext,
iy = @ iy,

Edomain =W ln ZUEdomain-
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2. Domain theory

which leads to the minimization problem
Egomain (13) = & (2 (19)* — 7(12)%) — hexe ((3)% — i),

under the constraint ﬁg > 1. For hext > 0 there exists exactly one positive (local)
minimizer of the energy. The amplitude of the minimizer decreases as hext decreases
from large positive values. An explicit minimization shows that at Eext = %n the
minimal amplitude 3 drops below one.

2.3. Extensions of domain theory

The concertina in the experiments is far from being uniform and one occasionally
displays certain sub-structures. We therefore now discuss several possible general-
izations of the uniform concertina Ansatz within domain theory. In particular we
try to include modulations.

2.3.1. Tilted Ansatz

In the prior section we have seen that the minimal energy per period is concave for
periods much smaller than the optimal period, i.e., ¥ < Eext In Eext. We now show
that, although domain theory predicts a modulation instability, it is too rigid to allow
for such perturbations. Note that for any weak solution of the Burgers equation we
have conservation of the following quantity

1
I :/0 i3 d%,, more precisely d_fclll(xl) =0. (2.10)

This can easily be seen by integrating the Burgers equation w.r.t. X, and using the
zero boundary conditions at X, € {0,1}.

We want to extend the set of uniform piecewise constant Ansatz functions to piece-
wise constant Ansatz functions with possibly different values of i} and 3 in the
quadrangular domains of different width as depicted in Figure 2.2.

A particular consequence of (2.1) is that if we choose specific values i} and i35 and
the width of the fold A, — A, then all the angles and the two triple points Ay and A3
are fixed. Therefore we can either choose the amplitude or the width of the adjacent
facet for the continuation of the pattern due to the conservation of I.

2.3.2. Rigidity of domain theory

In this part we will see that a concertina of period @ — & with its optimal amplitude
cannot be connected within the class of generalized Ansatz functions to a concertina
of period @ + € with its optimal amplitude, cf. Figure 2.3. Thus domain theory is
too rigid to take into account modulations.

Let @ — ¢ be the period of the spatially uniform state on the left side and @ + € on
the right side in Figure 2.3. According to statement d) in Section 2.2 the minimal

48



2.3. Extensions of domain theory

2|A27A1\
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m2+m2
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Figure 2.2.: Domain Theory: Generalized Ansatz function. Observe that 713 > 7} leads to
a tilt of the vertical wall towards the quadrangular domain with 77, = 7. The
slope of the diagonal walls is inversely proportional to the amplitude of the
neighboring quadrangular domain.

energy per period (and therefore the Zeeman energy per period ) scales up to a log-
arithm as —Fext (@ — €)2 and —hexs (@ + €)2, respectively. The Zeeman energy density
thus scales as —heyl = —hextfr?l% dx, = —Eext(w —¢) and —hext] = —Eext(zﬁ +¢),
respectively. This is in contradiction to the fact that I has to be conserved along X;.

[STISH

+¢€

Figure 2.3.: A modulation is not compatible with domain theory.

2.3.3. Refining

Based on domain theory, we can also study the backward hysteresis: After several
coarsening steps and before the concertina disappears, we decrease the strength of
the external field. As a consequence, the transversal component decreases. The
periodic concertina pattern degenerates as 73 approaches @. Due to statement e) at

the beginning of Section 2.2 this happens at a field Jiex; ~ @ In~ @.

Kite-like perturbation. In the experiments, one sometimes observes the formation
of a certain substructure before the concertina degenerates. In the following, we try
to include such type of configurations in the class of admissible Ansatz functions of
domain theory, cf. Figure 2.5.
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2. Domain theory

N
~ -

Figure 2.4.: Experiments: Kite-like substructure of the concertina which arises in the coars-
ened concertina as the external field is reduced (CoFeB sample of thickness
30 nm and width 30 pm).

Figure 2.5.: Domain Theory: Kite-like perturbation. The slope of the diagonal wall indicated
by the dashed triangle.

The substructure has the form of a kite with values £} in its two triangular facets.
For the stability analysis, we only have to determine the loss and gain in wall energy
since the Zeeman energy is invariant due to the conservation of I, see (2.10). Let
a = b+ c be the length of the vertical wall of the kite. Then all angles are fixed by
the jump condition if we prescribe the value of i, = +77i5 in the two facets. We set

_ 120 _ 121 _ 170 _ =1
§ = gy, r= My, t = 5 (iiy —7iiy).

Let b be the length of the upper green component and c the length of the lower red
component of 4, and d be the length of the X,-projection of the orange diagonal wall.

A straight-forward calculation shows that b = a%, c = al and d = a;—ﬁ.

Due to the shear invariance of the energy, the wall energy of a diagonal wall is given
by the energy of the symmetric wall of equal jump size multiplied by the length of
the X-projection of the diagonal wall, cf. (2.4). The kite perturbation introduces
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2.4. Charged walls

e a vertical wall of length a = b + ¢ and jump size 2773, leading to a contribution
ae(iy),

e two times the blue wall ofA(projected) length b and jump size i} — i}, leading

50 _ 1
to a contribution 2be("2,"2),
e two times the yellow wall of (projected) length ¢ and jump size i3, leading to
1
a contribution 2ce("5).

e The vertical wall decreases by the length of the green part b — d leading to a
contribution — (b — d) &(77i3).
e The diagonal wall decreases by the (projected) length of the orange part 4
leading to a contribution —2de("2 )
Summing up, we obtain that the loss and gain in wall energy is given by
AEyan = ad(i}) + 2b8("4;72) + 2c a(@) — (b — d)e(ig) — 2de( ")
= ag () +2a% (" o 2 M2) + 20t 6("R) — ase() — 2a2te("R).

Hence up to a logarithm we obtain to leadmg order

AEan = am(2r* + Lt + Lot 2r25 — st

= anr
<0,

0 )

since r < s. Note that this estimate is strict, i.e., Afwau < 0 forr <sand AEwau =0
for r = s. A kite-like perturbation thus always decreases the energy. Since AE,, is
linear in a the perturbation should be such that the kite hits the boundary x, = 0.

An instability of that type of the coarsened concertina pattern as hext decreases could
not be observed in the numerical simulations. Up to the turning point, at which the
quadrangular folds (almost) degenerate, the concertina pattern is stable. This seems
contradictory in the first place but the finite width of the walls is related to energy
barriers which domain theory does not take into account. However, if we numer-
ically follow the branch beyond the turning point, a kite-like structure develops.
This structure grows into a concertina of one-third the period of the original pattern.
Although this transition is observed on the unstable part of the branch, it can be
suspected that such states are stabilized in the experiments due to inhomogeneities
and defects.

2.4. Charged walls

In the previous sections it was shown that the class of Ansatz functions within do-
main theory is quite rigid. Another extension of domain theory might be related to
the fact that the diagonal walls are not charge-free on a mesoscopic scale. However,
this question is beyond the scope of our work and will be addressed in the future.
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2. Domain theory

2.5. Minimality and stability for moderate uniaxial anisotropy

In this section, we study the effect of a moderate uniaxial anisotropy Q > £~ 1t
within the framework of domain theory. We restrict the analysis to the most inter-
esting case of transversal anisotropy Q > 0. Due to the shift of the critical field, it
is necessary to include the next order term in the Zeeman energy if we take into
account a non-zero anisotropy. The analysis hence relies on the unrescaled domain
theoretic energy, namely

Edomain(mglw) = 2(€ ) mz +4 <Tg>
— (hext + Q)(mz) tw (€ — ﬂg) — hext(m3)*tw (€ — mﬂg).

In order to simplify the following discussions we neglect the logarithm in the energy
density of the Néel wall, i.e., we consider e(m3) = Zt*(m))*. As discussed in the in-
troduction, for moderate uniaxial anisotropy the critical field is given by hext =~ —Q.
Since the energy looses coercivity for hext > 0 — and hence mg tends to infinity so
that the low-angle approximation is not valid anymore and the pattern is suspected
to collapse — we assume in the following that hey; varies between —Q and 0.

We will see in this section that for small external fields, ie., 0 < 1+ Q_lhext <
(Q~1¢~1t)2, the optimal inclination of the concertina is dominated by the competi-
tion between stray-field and Zeeman energy. For large fields 0 < (Q 1/71#)? «
1+ Q 'hext < 1 it is dominated by the competition between the bulk energies, i.e.,
anisotropy and Zeeman energy. Nevertheless, the optimal period is determined by
the competition between stray-field and bulk energy in both cases, though the re-
lated contribution is of lower order for large fields. We will see that for large fields
the minimal energy per period becomes convex. It is not surprising that we verify
the statement above on the basis of an appropriate rescaling, see below:

Scenario I: Regime of dominant stray-field energy.
Let Q> ¢7't. For 0 < 1+ Q lhex < (Q 17 11)?
a) the optimal inclination of the magnetization scales as

mg ~ 07 1Q(1+Q hext),
b) the optimal period scales as
Wy ~ éztilQ(l + Qilhext)/

c) for w < w, ~ 2t71Q(1 + Q lhext) the minimal energy per period is concave.

Note that these are just the rescaled statements with hey shifted to hext + Q from
the beginning of Section 2.2. Hence, besides the shift of the field, minimizers in the
regime 0 < 1+ Q hext < (Q’lé’lif)2 are of the same form as in the case of zero
anisotropy, cf. Section 2.2.
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2.5. Minimality and stability for moderate uniaxial anisotropy

Statements a) and b) can be seen using the rescaling
m) = 0t Q(1 4 Q' hext) 15,
w= 101+ Q Yhex) @,
Edomain = Q4(1 + Qilhext)‘lgSti2 Edomain-

In fact, the rescaled energy per length is given by

N O

~ ~0\4 - - — — — —
L Edomain = Z(2725 — 7(2)%) — (D)% — @) + e(i2)?((3)* — @),

where in this case ¢ = —Q Vext(Q 'hext + 1)(QFft~1)2. Notice that in the regime
considered, we have that —Q < eyt < —Q + 0722Q7 1 so that 0 < e < 1.

In order to see a) and b), observe that the fourth order (in 79) bulk contribution
amounts to a lower order (positive) perturbation of the rescaled energy functional
so that the arguments from the beginning of Section 2.2 carry over. Statement c) can
best be seen on the level of the rescaling

m3 = (wt Q14 Q Vhext))/ %7i1).

We note that again the quartic bulk contribution is of higher order.

Scenario II: Regime of dominant bulk energy.
Let Q > (t~!. In the regime 0 < (Q 1/71#)2 < 1+ Q 'hexs < 1 we have that

a) the optimal inclination of the magnetization scales as
m ~ (1+Q hext)'?,

b) the optimal period scales as
wa ~ (E)2Q712(1 4+ Q Vhext) V4,

o) for tQ7! < w < w, ~ (£)12Q7V2(1 + Q Mhext)'/* the minimal energy per
period is convex.
Consider the rescaling
mg = (1 + Q_lhext)l/z(_Q_lhext)_l/2 7712,
w = (()2Q 721+ Q hext) H(=Q Mhext) @,

Edomain = (1 + Qilhext)9/4(_Qilhext)77/4(£t)3/2Ql/2 Edomain'
Hence the rescaled energy per period is given by

%Edomain(ﬁg/@/ 8) = %(2% (”7[8)4 - %82 (ﬁg)g)

— ((m9)? — ewmy) + (m3)*((m9)* — ewm3y), (2.11)
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2. Domain theory

where
€= (Qgt_l)_l/Z(l + Q_lhext)_1/4(_Q_1hext)_1/4-

Observe that 1+ Q 1hey < 1 entails that —Q < Jey < —% for some C > 1. Hence
in the regime 0 < (Q 1/714)2 < 1+ Q 'hext < 1 we have that ¢ < 1. For the same

reason @ ~ 1 implies w ~ (£t)1/2Q71/2(1 4+ Q 'hex)'/*. Notice that the constraint

w < mg turns into ew < ﬁig. Obviously, for ﬁig >1orew = 7713

% Edomain (713, @, €) > 0.
For ) < 1 we find by neglecting the positive wall energy
%Edomain(ﬁigr 1’515) > _(ﬁig)z + (n’jlg)zl + ew ﬁig(l - (fﬁg)z)
> —(iy)* + (7iy)*.

On the other hand, the energy assumes negative values ~ —1 for 1 ~ m9 and @ ~ 1.
For fixed fﬁg < 1 we can minimize the energy w.r.t. w and obtain

(13)"
i — (115)°

o (713)

Let us assume that the optimal amplitude can — up to higher order terms — be
expanded in the following way:

M) (w,¢) = argmin Egomain (713, @, €) ~ 19(,0) + ed¢i3 (i, 0). (2.12)

{73 i >etw}
Obviously we have due to (2.11) that
mg(w,0) =271/2,
Moreover we obtain that
9efity (@,0) = — L2732 4 0,
Let us plug (2.12) into (2.11), then

1~ ), - 1~ ()~ -
ﬁEdomain(mg(w,s),w,s) ~ ﬁEdomain(mg(w,O),w,O)

+ (930 (3 Edomain) (3(@,0), @, 0),73(, 0)
+ aﬁ(%gdomain) (7718(@/ 0)/ w, 0)) S
=1+ (& + ) e (2.13)

where we used that aﬁg(%Edomam)(ﬁig(zﬁ,O)@,O) = 0. We read off that the optimal

period is given by @, = 711/2275/4 (up to higher order terms). This is consistent with
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2.5. Minimality and stability for moderate uniaxial anisotropy

the constraint ew < m9. Summing up, this establishes a) and b). Let us now address
c): From (2.13) we derive that the minimal energy per period scales as

~ ~ ~ ~ —~ ~2
Eaomain (13(@,€),€) ~ —F + (5 + 7 ) e

This is to order zero (in ¢) linear in w and to first order convex in the period w. We
note that on the level of the rescaled variables tQ~! < w < w, ~ (£t)V/2Q71/2(1 +
Q_lhext)l/ 4 turns into ¢ < @ < 1 which entails that the quadratic (in €) contribution
in the latter expansion is indeed of higher order.

Formation and coarsening of the concertina in a film of moderate uniaxial transver-
sal anisotropy. In the previous section we derived the scaling behavior of the op-
timal and marginal stable period and the optimal amplitude of the transversal com-
ponent. Figure 2.6 provides an interpretation of the results: As the external field
increases from the critical field, domain theory is applicable once the amplitude of
the magnetization is of the order d2/3¢=1/2¢=1/3 go that 7?18 ~1, ﬁext ~ 1. At that
point, we enter Scenario I: As the field increases the optimal inclination increases.
Domain theory predicts a modulation instability due to the concavity of the minimal
energy per period, once the period is much smaller than the optimal period. The
concertina coarsens, so its period increases towards the optimal period. As the field
increases further we enter Scenario II. The period of the concertina at that point is of
the order tQ~1. Since the minimal energy per period for periods much smaller than
the optimal period is convex, the coarsening stops. Only the inclination grows.

Consistency. In the following part, the consistency of the predictions derived above
with the underlying assumptions for the applicability of domain theory is checked.
On the one hand, there is the assumption of scale separation between the x; and x;
variable, i.e., w < ¢, and the low-angle approximation for mJ < 1 which both stem
from the reduced model. On the other hand, domain theory itself is a good approxi-
mation of the reduced energy and applicable provided hex; + Q > d?/3¢074/312/3_ At
the cross-over between Scenario I and II we expect that the period of the concertina
pattern is of the order w ~ tQ~! and that the transversal component is of the order
my ~ t({Q)~1. In the regime of moderate anisotropy Q > ¢~1t, this is consistent
with the assumptions of the reduced model, i.e., the low-angle approximation and
the scale separation, since tQ~! <« £ and t(/Q)~! < 1. Note that m, tends towards
one in Scenario II which displays the limitation of the model as fext tends towards 0.
Observe that for strong anisotropy Q > d—2/3¢=2/344/3, Scenario I disappears and
we expect no coarsening at all. In fact, in that case the distance between the two
characterizing fields —Q + d?/3t2/3¢=2/3 and —Q + t*¢72Q~! shrinks to zero. This
is consistent with the bifurcation analysis close to the critical field which predicts
stability of w*-periodic states for strong transversal anisotropy, see Figure 6.3.
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2. Domain theory

()2

w .
Scenario I Scenario II
Wq
1 —+ (1+ Q_lhext)l/z(_Q_lhex -1 /
mp,
. (m)l/ZQ—l/z
ﬂ_ —1 _3la
f_th_l i (ft) Q (1 + Q hext) ( Q hext) N tQ_l
1Q(1 + Q Mhext)
7101+ Q M hext)
(d_2)1/3 ae optimal ~ stable 1 (ﬂ)l/s
(t t
| |
[ [ [
—Q  —Q+(F)VP Qe+ (2 0 hew

Figure 2.6.: Scaling behavior of the optimal and marginal stable period and the amplitude of the transversal component in the regime
H < Q< d 2307233,
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3

Analysis of the reduced energy for large external field

In Chapter 2, we argue one the level of domain theory that for Brexe > 1

a) the minimal energy per length in ¥;-direction scales as —13 In? ﬁext,

ext

b) the optimal inclination of the magnetization scales as 1?18 ~ ﬁext In ﬁext, and

c) the optimal period scales as z@opt ~ ﬁext In ﬁext.

These results were first published in [OS10]. We point out that c) is the explanation
why a larger period is preferred for a stronger external field, as observed in the
experiments and the numerical simulations.

Until now there is no rigorous derivation of domain theory. In the following, we
rigorously prove the above predictions by domain theory starting from the reduced
energy Eg and show in addition that global minimizers are close to weak solutions
of Burgers’ equation. Theorem 3.1 below addresses: a) the scaling behavior of the
minimal energy and b) the scaling behavior of the average inclination of minimizing
magnetizations. Estimate c1), which amounts to a control of a fractional derivative
of iy in direction ¥j in the L2-norm by the L?-norm of 71y, shows that — on average —
there cannot be substantial oscillations of 7 in X7 on length scales < iz\ext In Eext. In
this sense, it confirms the heuristically produced scaling of the optimal period as a
lower bound. On the other hand, estimate c2), which controls averages of i, in Xy
in the L!-norm by i, itself in the L2-norm, shows that — on average — there has to be
substantial cancellations on length scales >> Eext lnﬁext. In this sense, c2) confirms
the predicted scaling as an upper bound. All statements include the logarithm.

3.1. Main results

Theorem 3.1. Let Eext > 1land L > Eext In hext. Then for EO as in (1.14) and iy as in
(1.15):

a) The minimal energy per length scales as

min L'Ey ~ —hgxt In? Hext.
iy
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3. Analysis of the reduced energy for large external field
b) Let ifip with L~ Eq (i) ~ ming, L~ 'Eq, then

L 1
2 -1 ~D 1o o 2 127
A° =L /0 /0 m5 dxy dxy ~ hi In® hext.

c1) For and any shift @ > 0 in X1-direction we have

- I o o ) o
_1/0 /0 (mZ(x1+w/x2)—mZ(xl,xz))zdxzdxl < (A#) AZ,

hext In hext
fora €10,2).
c2) Let (i1y)s denote the mean of fiy in Xy-direction over intervals of size @, i.e., for any
~ @
L-periodic f(X1,%), i.e., f(%1,%2) = @ ! [2, f(X1 + X}, %) dX]. Then for any @ > 0
2

we have

n > \1/2
/ / |(1112) 5 (X1, X2) | dXp dX S (%) A

Remark 3.2. Instead of a separate definition for the asymptotic relations ~, < and so forth,
we explain their meaning in the context of Theorem 3.1:

There exist universal constants 1 < C, C,, Cp,, Cp, < +00 such that for all Eext > Cand
all T > Texe In Trexe:
a) The minimal energy per length can be bounded by

~ ~ PPN 1 ~ ~
—Coh3 I’ heyy < minL'Ey < —C—hgxt In? Hext.
mp a

b) Let ifiy with L~ Eg(ifiy) < o ming, L~1Ey. Then we have
. [ - ~
o L2 i < A2 = T /0 /0 2 Ay d®y < Cy, B2 I Fiex

1

c1) Forany a € [0, %) there exists C > 0 such that for any W > 0

T “
> T (5 4 . %) — i (5 < 0 A2,
/0 /0 (mZ(X1 + w’ xZ) mZ(x )) dxz dx:l C <hext nhext) A

c2) There exists Cop > 0 such that for any w > 0

1/2 .
//| 2)a (X1, %) dxadx; < Co (%ﬂ) a

The upper bound on the minimal energy for large external fields /h\ext in a) is proven
on the basis of the Ansdtze from domain theory, where the discontinuities are re-
placed by the optimal 1-d transitions layers (low-angle Néel walls). The proof of
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3.1. Main results

the lower bound and b) and c1) is based on a non-linear interpolation estimate, cf.
Lemma 3.15. As opposed to the result in [CAOSo7, Theorem 4], the new interpola-
tion estimate provides also L-independent coercivity of the reduced energy Ey. The
proof of c2) is based on standard convolution estimates combined with the coercivity
of the energy, treated in Lemma 3.17, which is derived from Lemma 3.15.

In Theorem 3.3 we use again Lemma 3.15 to prove that global minimizers are close
to weak solutions of Burgers” equation for hext > 1.

Theorem 3.3. Let hext >> land T ~ hext In hext Then for Eo and any iy as in (1.15) with

L™ 1E0(m2) ~ hgxt In2 Tieys there exists i3 with

—812( ) —1—82 =0

distributionally and

N L (1 N L /1
-1 /0 /0 (fiy — 713)2 d%, dFy < T /0 /O i3 di, d.

Although the lower and the upper bound on the energy in Theorem 3.1 agree in
terms of scaling with the simple Ansatz from domain theory (see above), it cannot
be excluded that additional substructures in the concertina Ansatz, such as branched
structures sometimes observed in the experiments, further reduce the energy.

To our knowledge, Theorem 3.3 is the first example of a rigorous connection be-
tween minimizers of the 3-d micromagnetic energy functional and solutions to a (lin-
earized) eikonal equation — Burgers’ equation — via the T-convergence in [CAOSo7,
Theorem 3] and Theorem 3.3 in this paper.

Rescaling. In view of Theorem 3.1, it is convenient to rescale length, magnetization
and energy according to

~ -~

X1 = hext (lnhext) X1,
- 552/

=
N
|

my = Eext (11’1 il\ext) my,
L 'Ey = 12, (In? hext) L Eo.

In these new variables we obtain
LBy (i) = s (In"2 Fext) / / (9nifin)? dF, dF;

+ (Infiexe) 171 /0 /O 1180]712(=31 (L) + D) |* A%, dF,

N L 1
—L—l/o /O 2 d%, di.
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3. Analysis of the reduced energy for large external field

It is convenient to introduce
€ 1= E;f’t In2 ﬁext,
such that for Eext >1
ln% = 31nﬁext +2In lniz\ext =2 3lnﬁext.

Hence, to leading order
- L 1 _
Eo(iia) —¢ / / (9nifin)? dF, dF
0 JO
L /1 _ ~
+(1n%)%/0 /0 1130 71/2(= 31 (L) + Doty | d, dFy

L 1
_ / / 2 d%, di).
0 0

With this rescaling, Theorem 3.1 assumes the form:

Theorem 3.4. Let 0 < ¢ < land L > 1.
a) Then

min L'Ey ~ —1.
1y

b) Let ity with L~YEy(fi1y) ~ —1. Then we have
_ L /1
[ / / 2 d%,d% ~ 1,
0o Jo
c1) and for any w > 0
~ L 1
Ll/ / (it (%) + @, %) — fita (%1, %)) A% d¥y S @ for a€[0,2),
0o Jo
c2) and
~ L 1
L_l/ / |(7712) 5 (X1, %) | dFa dXy < w12,
0o Jo
where (1) is defined as in Theorem 3.1.

With the rescaling above, Theorem 3.3 assumes the form:

Theorem 3.5. Let 0 < ¢ < 1and L ~ 1. Then for any fiiy with L~ Eo(if1y) ~ —1 there
exists m; with

—013(53)? + 93 =0

distributionally and

- L 1
L—l/o /O(ﬁz—m;)zdzzdfl <1
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3.2. Proofs

3.2. Proofs

For notational convenience, we drop the tilde ~. In the following we will write u
instead of my, x instead of x1, t instead of x», and E instead of Ej.

3.2.1. Upper bound
Proposition 3.6. Forany 0 < e < landany L > 1

min L7 'E < —1. (3.1)
u
Proof of Proposition 3.6. Let us explain the main features of our construction.

Symmetry. Our Ansatz will have the following symmetry properties, cf. Fig. 3.1:
o It will be periodic in x with period w ~ 1, i.e,,
u(x+w,t) =u(x,t).

The parameter w ~ 1 will be chosen later such that L is an integer multiple of
w. (By w ~ 1 we mean that w € (%, C] for some universal constant 1 < C <
00.)

e It will be odd w.r.t. reflection at x = 0 (one of the vertical walls), i.e.,

u(—x,t) = —u(x,t).

e It will be even w.r.t. rotation in (¥, %) (the center of mass of one of the quad-
rangular domains), i.e.,

w(@+x,14+4) =u(@—x1-t).
Hence, u will be determined by its values

u(x,t) on the fundamental domain (x,t) € (0,%) x (0, 3).

Mesoscopic pattern. On a mesoscopic level, our u will be of the form

0 for t
—2s fort

Umeso (x/ t) = {

where the parameter s ~ 1 will be chosen later. Notice that s > % is necessary
to avoid a degenerated pattern. In favor of a clear presentation we only show the
construction for the case s > w in detail. This will be enough to obtain the desired
upper bound on the minimal energy. We will comment on the differences for the
case 5 < s < w at the end of the proof.
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3. Analysis of the reduced energy for large external field

The mesoscopic Ansatz 1, satisfies
1,2
_ax(jumgso) + Ottyeso = 0

distributionally. Notice that w5 has the following discontinuity lines within
(0,2) % (0,3):

e ajump between 2s and —2s across x =0for0 < t < %,
e ajump between —2s and 2s across x = 3 for t > 7%,

e a jump between —2s and 0 across t = % for0 < x <

SIS

The first two discontinuity lines carry a weight of 1, since they also belong to the
neighboring cell, cf. Section 2.

Néel walls. We must choose appropriate transition layers, i.e., walls, in order to
construct a microscopic u starting from ;... The construction will additionally
depend on two parameters a and B, with ¢ < a# < B < w, which will be chosen
later in function of e. In fact, we distinguish 3 regions, cf. Fig. 3.1:

e Bulk: Here we set u = 1;050.

e Walls: Here we use a one-dimensional construction. Within the fundamental
domain (0, %) x (0, 1) the wall region is given by

2 1
{(xlo<x<p2<t<h}
W) |%-p<x<¥ L<t< ]}
U{(x,t)[st—B < x Sst—}—ﬁ,% <t< %_g}

Notice that § < % 1S necessary.

e Corners: Here, we interpolate the x-dependent boundary data linearly in ¢.
Within the fundamental domain (0, %) x (0, 1) the corner region is described

by
(0,38) % (0,25) U (% -28%) x (£ -5 2)).

Notice that 38 < 7 is necessary.

The function u will be constructed to be continuous across the regions. These regions
contribute differently to the three parts of the energy:

e Exchange energy: This local energy contribution behaves in an additive way;
only the walls and the corners contribute.
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3.2. Proofs

e Magnetostatic energy: Only walls and corners contribute to the charge density
o, i.e., the support of the charge density is a subset of the wall and corner
region. Since the magnetostatic energy is non-local in the charge density o, it
behaves in a non-additive way. However, if ¢ = 07 4 02 4 03 is a decomposi-
tion, we have an upper bound by the triangle inequality

[l 20 ax < 3 [ {21201
+3/Hax|_1/2c72|2dx+3/||8x|_1/2(73|2dx, (3.2)

w w w
where we have to ascertain [2, cydx = [%, ;cpdx = [?, 03dx = 0, so that
-7 2 2

2
the r.h.s. is finite. Since modulo w-periodicity in x, there are at most 3 walls or
corners at a given t-value, (3.2) suffices.

e Zeeman energy: Here, we seek a lower bound for [[ u?dtdx. The main contri-
bution will come from the bulk.

N, VAN
\\ // \\
O 7/ N [ | Bulk region
AN 4 AN
L 1 LN B Wall region
(111} Corner region
LN [ I
AN 4 AN
AN 4 AN
AN 7 AN w
AN / AN =
A 7 AN 2s
N/ ' N
)
3 w
0 B g

Figure 3.1.: The Ansatz u.

Vertical Néel walls. In this section, we construct the vertical Néel walls. Without
loss of generality, we focus on the construction in the region

{wy)] -p<x<p2L<r<i) (3:3)

We consider the exchange and magnetostatic energy Eextma. Within (3.3), u coin-
cides with an odd function v of the form

u = —2sv(x), v(xp) = =£1,
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3. Analysis of the reduced energy for large external field

which we think of as being w-periodic and v(x + %) = —v(x). In terms of v, we
have the estimate

Eex+ma

:(l_
2

5528/
5528/

It is convenient to think in terms of ¢ = v? which satisfies
g=1forp < |x| < %5,
0=0forx =0,

w

) (45 6‘/ ZU(ach)ZC].JC-I-%S4 (ln%) /Zw Hax|_1/zax(—%02)|2dx)
-2

2

AN

S

(9x0)%dx + 5* (In 1) /2 105172 02| dx
2

S

NE

1(9,0%)? du + (m%)/zw 10172 22 dx.
-2

Ng

0 is 5-periodic,
so that

Eex—&-ma S 525/410 E(axg)z dx—|—54 lng/t, Hax|1/2g|2dx‘
1 B

4

We make the Néel-wall Ansatz, cf. [Melo3] and [DKMOos, Section 6],

1 oc2+x2
i 2"f > for |x| < B,

Q(x) = lna[xz‘B (3-4)
1 forp < |x| < %,

where ¢ and a with ¢ < & < B < w will be chosen later. We first turn to the
magnetostatic part and use the trace characterization of the homogeneous H'/2-
norm, i.e.,

/4w Hax’1/2Q|2dx = inf{/iU/O (0x0)* + (920)* dz dx|
w e
0(x,z) is §-periodic in x and ¢(x,0) = o(x)}, (3.5)

which yields by extending ¢ in a radially symmetric way in the (x, z)-plane:

w
4
_z

|ax|1/2Q‘2dx

L ] o) o (o () e

a2 x2+22 < ‘BZ

/ﬁ(ar(w 2112y dr

12
p

‘ -

a<
S

R

In?
1
i

Y
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3.2. Proofs

We now turn to the exchange energy. Since

1 4x2 £ <
AR T e
Q X
lna;rzﬁ 0 for B < |x| < ¢
we have
i 2 b1 P 1 2 1
/4 1 (g—9> drx S / — a dx ~ . (3.6)
—w @ \dx In B J-p In 22 (a2 + x2)? alnb
o a2 o
Hence we obtain
1 1 1
< g2 4 1) = ¢ 1y =

where the last asymptotic identity follows from ¢ < a« < w ~ 1lands ~ 1.

Diagonal Néel walls. We now address the construction in the region

{(x,t)|st—B< x<st+p L<r<r_by

Since exchange and magnetostatic energy Ecxma are invariant under the shear trans-
form

x =st+% t=1F u=i-—s, (3.8)
we can reduce this construction to a construction of a vertical Néel wall in
{h -p<zx<pL<i<p-f

The only difference to the vertical Néel wall before is that the construction connects
—s to s instead of —2s to 2s. Hence we obtain as there

Eex4+ma S st (ln %) lLﬁ (3.9)
Ny

Corners. Without loss of generality we consider the corner (-3 5,3 ) x (0, %) In
view of (3.4) (for ¢ = v?) and (3.8), we have to interpolate

u(x,0) =0
and
s(v(x+2B)+1) for =3B < x < —p,
u(x,28) = { —2s0(x) for —p<x<B, (3.10)
s(v(x—2B)—1) for B<x<3B
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3. Analysis of the reduced energy for large external field

in t, where

o(x) = signx o(x)'/2.

We opt for a linear interpolation, i.e.,

u(x,t) = 3hu(x,%F).

We first turn to the exchange energy E.x. Because of the linear interpolation, we
infer from (3.6)
B es?

Eex 5 - .
Soclng

We now address the magnetostatic energy En,. Notice

o(x,t) = (—0x(Ju?) +0pu)(x, t)
— (3520 (1) (v, ) + 55 u(x, 2B, (11)
Because of the symmetry property
u(—x,28) = —u(x, %),
we have in particular for all t € (0, %)

w

/Zw o(x,t)dx = 0. (3.12)

-3
Since supp o (-, t) C [-3 B, 3 B, we claim that
[ 2o nPar < p [ et rax 319
-3 —32

Let us give the argument for (3.13). By duality, this is equivalent to

/_i, C(x)o(x, t)dx < (5/_3310(9(,02 / 19:]2¢(x)| dx)l/z,

for all w-periodic functions {(x). By the trace characterization of the homogeneous
H'/2-norm (3.5), this estimate is equivalent to

/_%UC(X,O)O(x,t)dx < (,B/_S o8 dx/_/ 007+ (0.0)° dx(:lz)l/z

2

for all functions {(x,z) which are w-periodic in x. Because of (3.12) and supp o (-, t)
C [—3B,3p], this estimate in turn follows from

/_335/3@()(’0) B #/_332 o(%, )2dx < 5/ / 9x0)* + (9:0)*dxdz,
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3.2. Proofs

for all functions {(x,z). which because of B < w follows from a standard trace
estimate. This establishes (3.13).

Inserting (3.11) into (3.13) yields

w

[ 120 () d

2
=1 3p 38
: ‘B(/—Eiﬁ( (uz)(x'¥))2dx+(%)2/3ﬁ(u( ﬁ>)2dx>
3;3 ,
5 IB Sup {l/l X, 5 }/ xu 7 S'B)) d.)(f—l—sl3 Sup {uz(x’T'B)}
x€(-3B,3B) xe(-3B,3B)
(3-10),(3.6) . .
< s 48
~ IB (wlng ﬁ)
ap g 4
~ s*.
lng
Therefore
Loy 23 Inl
Ema = l(lnl)/s /2 ol?dxdt < prs"ne
oy | & Ink

Hence, we obtain for the sum E¢xima of exchange and magnetostatic energies

€S 248Ind s
Eextma S P ﬁ+‘8 £ = P ﬁ(E—I—IBSZln%),

B
DCII’IE a lnE (Xlna

so that because of ¢ < B < w ~ 1 and s ~ 1, this estimate asymptotically turns into

23 1n
p~s’Ing

—- (3.14)
a lng

Eeerma ~

Optimizing in the parameters We first consider the exchange and magnetostatic
energy Eexima in (=%, %) x (0,1). Collecting (3.7), (3.9) and (3.14) we obtain

ln— +5253ln%

< gt .
x lng

Eex+ma ~

In

R0 =

Choosing for instance

o =3 B =¢ll?
which is compatible with ¢ < &« < B < w ~ 1, the estimate asymptotically turns
into

1
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3. Analysis of the reduced energy for large external field

Since B < w, we have for the Zeeman contribution that

/01 /_12; u?dx dt ~ /01 /_Z Ulso dxdt = (25)%w (1 —2).
Choosing s = w, we obtain for the total energy
E < CGuw*— %Cg w.
Hence we obtain for the total energy per length x
e(w) < Crw’ — LG w?
Obviously, there isa w’ < 1s.t. forall w € (%/,w’ ]
e(w) S —1. (3.15)

Hence we can always choose w such that L is an integer multiple of w and (3.15)
holds. The corresponding Ansatz function provides the upper bound on the energy.

The case w > s > 5. Notice that the three discontinuity lines of the mesoscopic

pattern have a common triple point at (3, %) in the fundamental domain, cf. Fig.

3.1. If we allowed for w > s > ¥ this triple point would be at (0,1 — %) in

the fundamental domain. The construction of the microscopic pattern with smooth
transition layers can be carried out in the same way as in the case s > w. For the
upper bound on the magnetostatic energy, we have to take into account (at most) 4
walls or corners at a given t-value modulo w-periodicity. O

3.2.2. Lower bound

Remark 3.7. We introduce the notation for the average of an L-periodic function {(x,t) in
x

L
Q) ==L /0 g dx,

and the average both in x and t

1 L
(@) =L / / ¢ dxdt.
0 Jo
We further define the translation of a function { by A € R in the x1-variable:

g8 (x1,%2) := C (31 + A, x2).
Proposition 3.8. Let 0 < e < 1and L > 0. Then

min L7'E > —1.
u
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3.2. Proofs

The main ingredient for the lower bound is a new estimate on smooth solutions u of
the inhomogeneous, inviscid Burgers equation, i.e.,

oru — dx(3u?) = 0. (3.16)

This type of estimate was introduced in [Ottog, Section 2.6]; it relies on a generaliza-
tion of Oleinik’s E-principle [Ole63]. That principle states that for smooth solutions
of the homogeneous inviscid Burgers equation, i.e.,

O — dx(3u%) = 0, (317)
a one-sided Lipschitz bound improves over time in the sense that for any 7 > 0
xu(t=0,)> —t ' = du(t-) > —(t+1t)"L. (3.18)

In fact, the main insight of [Ottog] is that in addition, the L2-distance to the set of
functions { with a one-sided Lipschitz bound improves over time. To make this
more precise, we need

Definition 3.9. Let u(x) be L-periodic in x. Define
D~ (u,7) := inf { (( — u)?) | { smooth and L-periodic, 79, > —1 },
D (u,7) := inf { (( — u)?) | { smooth and L-periodic, 79, < 1 }.
If u(x, t) is L-periodic in x we use the abbreviation
DE(t, 1) == DF(u(-,t),71).

For D* we denote the average w.r.t. t by

1
(D¥)(1) = /0 D*(t,7) dt.

It was shown in [Ottog] that if u satisfies the homogeneous Burgers equation (3.17),
D~ satisties the linear homogeneous differential inequality

0D~ +9:D” +1 D" < 0. (3.19)
Obviously, (3.19) contains (3.18), which follows from 0;D~ 4 d:D~ < 0. The new
and crucial feature is the 7D - term in (3.19).

It was also shown in [Ottog] that (3.19) survives for the inhomogeneous Burgers
equation (3.16) in the form

D™ +3: D™+ 1D < 2(||3:| V202 ([0 2u) 12, (3.20)

However, (3.20) is not of use to us since we do not control (|9, |!/?u |2> independently
of e. The idea is to replace u on the r.h.s. of (3.20) by the optimal  in the definition
of D~ (u,T), since a { with a one-sided Lipschitz bound has (up to a logarithm) half

of a derivative in L2. This is the content of the next two lemmas.
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3. Analysis of the reduced energy for large external field

Lemma 3.10. Let {(x,t) be smooth, L-periodic in x and satisfy

Toxg > —1
for some T > 0. Then for 0 <r <R

(119<22) < r34@<0)) + (n §) T (2) + RT3 4%)

< 15 ((0:0)%) + (In )T (V2 + RS (P). (3-21)

This interpolation inequality in turn relies on
Lemma 3.11. Let {(x,t) be smooth, L-periodic in x and satisfy

700 > -1
for some T > 0. Then

iulg%w — 7% < L. (3.22)

Let us comment on both lemmas: The estimate sup ., 1 (|% — ¢|?) < sup 9] (|C])
is obvious. The insight of (3.22) is that the two-sided control sup |0+{| can be re-
placed by the one-sided control.

We now turn to Lemma 3.10: Although (] |8x]1/25‘2> and sup,., £ (|¢® — {|?) have
the same scaling, the estimate

(|10x"2¢)%) < sup L(|g* — ¢?)
A>0

fails. However, if very short wave lengths (< r) and very long wave lengths (> R)
are treated separately, one obtains the logarithmic estimate (3.21).

Mimicking the proof of (3.20), using Lemma 3.10, we will derive
Lemma 3.12. For any smooth L-periodic u(x,t) and 0 < ¢ <1
3(D™ — (u?)) +0AD™ + v 1D
_ 2 _
S ([lox 720V [/2 {(0xu)) V2 (u?) 2+ (Ing) T ()2 ]V20 (3.23)

Note that the second factor on the r.h.s of (3.23) is related to the r.h.s. of (3.21) by
optimizing in » < R while keeping ¢ = 1 fixed.

We use Lemma 3.12 to derive the following interpolation inequality:

Corollary 3.13. For any smooth L-periodic u(x,t) with u(-,0) = u(-,1) = 0and 0 <
e < 1it holds

[Huyar < (and) (a2 a)
0 0
+ (/01<Hax|‘1/za\2>dt)2/3 (e /01<(8xu)2>dt>1/3, (3.24)

2/3
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3.2. Proofs

We also use Lemma 3.12 to derive a regularity estimate:

Corollary 3.14. For any smooth L-periodic u(x,t) with u(-,0) = u(-,1) = 0and 0 <
¢ < 1 it holds

1 1
sup T_l/z/ Dt dt + sup T_l/z/ D~ dt
0 0

>0 >0
< ((1n%)/01<\|ax|—1/20}2> dt>2/3
+ (/01<||ax|‘1/2cr|2>dt>2/3 (s/ol<(axu)2>dt)1/3~ (3.25)

Not surprisingly, the control of the L2-distance to the set of functions with a (one-
sided) Lipschitz-bound gives control of some fractional derivative in some LP-norm.

More precisely, sup,., 7 1/? fol DT dt + sup,., T /2 fol D~ dt has the same scal-
ing as sup,. oA~ 1/2 f01<]uA — u[%/2) dt. Using ideas from [Ottog, Proposition 4] and
interpolation with Corollary 3.13 we indeed obtain:

Lemma 3.15. For any smooth L-periodic u(x,t) with u(-,0) = u(-,1) = 0and 0 < e <
1 it holds

e 1 B > 2/3
sup A= [Njut —u)d < ((nd) [ (|jox| /20 ) at)

1
A>0 0
+ (/01<||ax|‘1/za|2> dt)2/3 (e /01((8xu)2>dt>1/3 (3.26)

with p € [2,3).

Remark 3.16. In [CAOSo7, Section 3.3], it was shown that admissible functions u as
in (1.15) of finite energy can always be approximated by a sequence of smooth admissible
functions {1y}, o in the energy topology. Therefore Corollary 3.13 and Corollary 3.14 and
Lemma 3.15, which were established for a smooth u, extend to our finite-energy u.

We will apply Corollary 3.13 to derive the coercivity of the energy. To facilitate the
notation we introduce the abbreviations

_ 2
= (|10« 7120,
DU := {(9,u)?), and (3.27)
U= (u?).
Lemma 3.17. Let 0 < ¢ < 1. Then for any L-periodic u(xy,x2) with u(-,0) = u(-,1)
which is of finite energy, i.e.,
L'E(u) = eDU+ (In )T — U < +o0,
we have
1 for LYE(u) <1,

L7'E(u) for L"'E(u) > 1. (3-28)

eDU, (InH), U < {
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3. Analysis of the reduced energy for large external field

Proof of Lemma 3.10. We fix t. The fractional Sobolev norm can be expressed as a
suitable average of the L?>-modulus of continuity of { (this can easily be seen in
Fourier space, cf. [LM68, p.59]):

L o0 L
| los 2P ax ~ [T [N+ 8) — ¢(x))? dx § da (5.29)

We split the r.h.s. into a small scale part, an intermediate scale part, and a large scale
part:

) L
| % [ @+ 8) —(x)? dx Fda
= [k [ @) )2 dx jan
R L
+/r %/0 (C(x + A) — {(x))? dx L dA

) L
[0k [[Gr+8)— @) drkda, (3:30)
where 0 < r < R < +oo0.

The most interesting term is the intermediate one, which we estimate as follows:

Ryt 2 1.1 R p [F 2
[ 4 [ @t a) - g drkda < (n) sup § [ @+ 8) ()2 dx

A>0
The application of Lemma 3.11, i.e,,
L L

sup} [ (@ —oPdx ST [ gl

A>0 0 0
yields

Ryt 2 1 R 1 [E
[ %[ @) =g drkds 5 nB)wt [Tig/dx 631

We now turn to the large scale part in (3.30). Just using the triangle inequality in
form of

L L
|G+ a) -~ o) dx <4 [ dx
0 0

we obtain

[T3 [[@er ) —cwrdarida SR [ 2 (332
R 2 Jo AT 0 ' 33

Finally, we consider the small scale part in (3.30). We have by Jensen’s inequality

[asn)—gwrac = [([Tacw) ar) ax
L x+A
< [a / (3xC(x'))? dx’ dx

= A? /OL(E)xg)Z dx.
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3.2. Proofs

Hence we obtain

r L ) L 5
| A [ @t ) g dxjda < v [ @0 dx. (5:33)
Collecting (3.31), (3.32) and (3.33) we obtain from (3.29) and (3.30)
/LHa V2% dx < rl/L(a {)? dx + (In R / 7| dx + R 11/ 22 dx,
o ~ 2 g T

which entails
(19:1722)%) S r2((0:0)%) + (In By v (|g)) + R~ L(Z%).
]

Proof of Lemma 3.11. We shall actually prove that for any L-periodic function {(x)
with

T9¢(x) <1 forall x,

we have

/0L|§(x—|—A)—§(x)]2 dx < ATt /0L|C(x)] dx forall A >0. (3-34)

The statement of Lemma 3.11 follows by the application of (3.34) to {(x) = {(—x,t).

Because of the rescaling
x=A% L=AL (=AtT"(

it is enough to show (3.34) for A = 1 and T~! = 1, that is under the assumption
al(x) <1 forall x. (3-35)

We split (3.34) into a statement for positive and for negative increments:

L L
| @ —g@ax <2 [ ) dx, (5:36)

L L
| @) )2 dr < 4 [ je()ax (3:37)

The statement (3.36) is easy to see. Indeed, because of (3.35), we have the pointwise
bound (x4 1) — {(x) < 1, so that we obtain for the integrand

Cxr+1)—(x0)F < @Qx+1)=Z(x))+ < [+ D] +[0(x)].
This implies (3.36) after integration.

We now turn to (3.37). Because of L-periodicity we have

L L
[T 1e@I0 - ag0)ax = [ le(] - asigngleP) (0 dx = [ 1) dx
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3. Analysis of the reduced energy for large external field

Hence inequality (3.37) will follow by integration from

Q1) —g2 <4 [ eI - A ax,

which by translation invariance can be reduced to

@)~ 202 < 4 [ 101 - ag(x)) dx. 639

Since by (3.35) the r.h.s. is positive, it is enough to consider the case {(1) < (0).
Now (3.38) follows from

@)~ 22 < 4 [ fo()pe(x) dx 639)

1
— 4 /O 1a(signg |Z[?) (x) dx (3.40)

— 25igng(0) £(0)2 — 2signg (1) {(1)2
In fact, to prove that (3.39) holds, we distinguish three cases:
Case 0 < (1) < Z(0): In this case

(C(1) = 2(0))% = (§(0) = (1))
< (0>~ ¢(1)?
= sign((0) £(0)* — signZ (1) £(1)*
Case (1) < 0 < Z(0): In this case

(C(1) = 2(0))% = (§(0) = (1))
< 2(0(0)* +¢(1)%)
= 2 (signg(0) £(0)* — signZ (1) £(1)?).
Case ((1) < ¢(0) < 0: This follows from the first case. O

Before we start with the other proofs, let us note that D = D% is locally Lipschitz
continuous in (t, 7). Indeed, by the triangle inequality we easily obtain for ¢1, o and
for T > T:

D'2(t,7) = D2 (to, 7) < (Jultr,-) —ulto,) )",

<
DV2(t1) = DV2(t, 1) < (1— ?)<|u(t, JR2.
1

Clearly, D is monotonically increasing in 7. Indeed, let 75 > 71 > 0, and { be smooth
and L-periodic with £ 9d,{ < 1, then also =77 9, < 1 and hence

D*(u, 1) = inf { (({ —u)?) | ¢ smooth and L-periodic, 710, > +1 }
< inf { (({ —u)?) | { smooth and L-periodic, 729, > +1 }
= D (u, ). (3-41)
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3.2. Proofs

Proof of Lemma 3.12. Let (o be admissible in the definition of D~ 0,7),ie.,

Tox(y > —1. (3-42)
For A > 0 define { as the solution to the initial value problem

g —0x(3%) +AVA(T+ )T = 200+ (t+8) ) (u—1Q)

¢(-,0) = Go- (343)
Here, the functional A is defined by
A(t,§) = 3(r(0x0)* + 5+ y(In* X) T2 2+ R71 P (3-44)

forn >0,0 < r < R,and T > 0, and the operator d.4 is (up to the factor L~') the
functional derivative of (3.44) and thus given by

QA(T) L = —1dig + (I ) T2 +R7'E (3.45)
As we shall see, the reason for this choice of A is that

min A(7,8) = br ((0:0)%) + (n &) 7 (@2 + 1R ()

appears on the r.h.s. of the estimate of Lemma 3.10.

Because u is smooth and » > 0, a unique smooth solution to (3.43) always exists.
Note that the solution ¢ depends, next to the initial data and u, also on the parame-
ters A, 7, T, v, and R.

STEP 1. Maximum principle. Here we argue that for { defined by (3.43) we have

(T+1)0xl(-,t) > =1 fort>0. (3-46)

To show (3.46) let us introduce

o(x,t) = 9+ (t+1)L (3-47)

We shall argue that (3.43) can be rewritten as an advection-diffusion equation in
terms of the “density” o:

30— oW+ + T+t Lo+ AdA(T+1E)0
= A 2) (4P AR (T4 1) (349)

For a solution to (3.48) with non-negative initial data, non-negativity is preserved
since the r.h.s. is positive. Due to (3.42) and (3.47) this is a reformulation of (3.46).

To see that (3.48) holds, we first rewrite the r.h.s. of (3.43):
0 —0x(AP) +ADA(T+ )T = 200+ (t+8)) (u—Q)
O 1o (u+0) — @8+ (t4+7)1)C
= 30(u+g) —0:(36%) — (r+1)7'¢C.
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3. Analysis of the reduced energy for large external field

Therefore we obtain
I+ AA(T+H) I = 2o(u+0)— (t+1)7'C.
Differentiating this equation w.r.t. x yields by linearity of 0.4
019xf + ADA(T+ 1) 0x0 = 9x(30(u+Q)) — (T+1) 1 0:L.
Hence, by definition (3.47) and linearity of 0.4 we obtain
0+ (T+1) 2+ A0A(T+1) 0 — AA(TH 1) (T+1)7?
= h(z0@+0)+(T+) = (t+H e
and therefore
010 — x(30(u+ Q)+ (t+1t) 1o+ AdA(T+1) 0 = NA(T+ 1) (T+1t) !

Appealing to the definition (3.45) of d.A this yields (3.48).

StEP 2. L2-Contraction. In this step we show that there exists a constant C > 0 s.t.

A(z((u—0)%) — 3(u?) + (r+ )73 ((u = 0)?)
< AT+t u) +S([[0: 720, (3.49)
We first rewrite equation (3.43) as

0+ 3T+t N (u =) +udd — 3(0:0) (u—7) = AA(T+1)(

and combine it with d;u — udyu = ¢ which gives

A(u—0)+3(t+ 67" (u—7) —ude(u—g) = 5(9xC) (u—7)
= 04+ MA(T+ 1)

We multiply this equation by u — { and apply Leibniz’ rule to obtain
0r3(u =)+ 3(r+ 57 (u =) — uzde(u — 0)* = (9:0) 3 (u — )?
= o(u—0) +AQA(T+1) L) (u—E).

Taking averages w.r.t. x and integration by parts yields

306{(1 = 0)%) + 3 (T + 1) 7 (1 = £)%) + {(@xu — L) 3(u — £)?)
= (o(u—=0)) + AEA(T+ 1)) (u—7)). (3.50)

On the other hand, multiplying d;u — udyu = ¢ with u and taking averages w.r.t. x
we have

A3 (u?) = (ou). (3.51)
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3.2. Proofs

Because of ((dxu — 9x{)%(u — {)?) = 0, the combination of (3.50) and (3.51) yields

30 (1= 0)%) = 30 (u) + (T + ) 3 {(u = 0)%)
= (AEA(T+ 1) (u—0)) — (o),
Cauchy-Schwarz 3 2
< A@A(T+1 ) (=) + ([l 7120 )2 ((0:20)%) 12
Due to the convexity of A and by Young's inequality we thus obtain
20((u = 0)?) — 39 (u?) + (T + )7 3((u = 2)?)
< AA(T+tu) = AA(T+40) + 5 {[[0: 720 ) + E((1:170)%), G52)

where we choose C > 0 to be the constant in the estimate of Lemma 3.10. Since
¢(-,t) fulfills the assumptions of Lemma 3.10 according to Step 1, more precisely
(T+t)0x{(x,t) > —1 for t > 1, we have by Young's inequality (w.r.t. 1)

(([x[122)%)2 < CA(T+1,0).

Hence (3.52) turns into
300((u = 0)%) = 30 () + (T + 1) 7 3((u = £)?)
SAA(T+tu) + 5 ({10570 ). (3.53)
StEP 3. The integration of (3.53) in t gives
(1) = 1)%) = 3{u?( 1)) + /()t(T+ )75 (U 1) = ¢, ¢))?) dt’
(4(,0) = 2,0)7) = P, 0) + [ MA@+ #,u( 1)

_ 2
+ S(|19x] 720 (-, )] at'.

Nl—

<

N—

According to Step 1, {(x,t) is admissible in the definition of D~ (¥, 7+ t'), so that
we obtain

1D~ (LT + 1) — L2 1) + /Ot(r—l— )" UD (¢, T+ 1) dY’
((u(-,0) = 20)*) — 3(u*(-,0))
—|—/Ot)\,4(r+t',u(-,t')) + S (|92 (-, )P at'.

<

N|—=

Finally, since {y was an arbitrary admissible function in D~ (0, T), this turns into
t
LD (LT +8) — (13, 1)) + /O (T+#)1D (¢, 7+ ) d
< 3(D7(0,7) — (u?(-,0)))

t
+/O NA(T+ 1, u(, 1) + S| lox] V20 (-, ) ) dr (3.54)
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3. Analysis of the reduced energy for large external field

for all t > 0 and T > 0. Since D~ is locally Lipschitz continuous in both variables
and by translation invariance in ¢, (3.54) entails a differential version:

Ot3(D™(,7) — (u?)) + 03D (t,7) + T 1AD (¢, 7)
< AM(Tu) + S8 720 (3.55)

Indeed, a Lipschitz function is classically differentiable almost everywhere and its
classical derivative agrees with its weak derivative.

STEP 4. Optimization.

The Lh.s. of (3.55) does not depend on A > 0 and holds for all t > 0 and T > 0.
Therefore, we can now optimize on the r.h.s. of (3.55) in A to derive:

(D (t,T) — (12)) + 94D (t,7) + T 11D (1, 7)
< A(T,u)l/Z<Hax’fl/20,‘2>1/2. (3.56)

~Y

Since (3.56) holds true forall7 > 0and 0 < r < R, we optimize at fixede = < 1
in 77 and R:

miRn A(t,u) = m%n r(0xu)? + 17+ %(ln2 ByYt=2u2 + R71u?)
n 1,
~ rr}zin Re((9xu)?) + (In 1) T u2)V2 L R (u?)
~ 81/2 <(axu)2>l/2 <u2>1/2 + (ln%) Tfl <u2>1/2'
O
Proof of Corollary 3.13. In the following proof, we repeatedly use that due to (1.15)

(u(t=0)*) = (u(t=1)2) =0, and thus
D (u(t=0),7) =D (u(t=1),7) =0 forallT>0. (3-57)

StEP 1. We drop the positive terms T~ 'D~ and 9:D~, cf. (3.41), on the Lh.s. of (3.23)
and integrate backwards in ¢t and get due to (3.57)

(u?(-,1)) =D~ (t,7)

1
_ 2 -
S /t <Hax| 1/20-‘ >1/2(51/2 <(axu)2>1/2 <u2>1/2—i—(ln%)’f 1<u2>1/2)1/2 4+
1
_ 2 -
< /O <H8x| 1/20-‘ >1/2(€1/2<(axu)2>1/2 <u2>1/2—i—(ln%)r 1<u2>1/2)1/2 dr.
Applying Jensen’s and Cauchy-Schwarz’ inequality in ¢ gives

(-, 1)) = D (t,7) < ((|0x] 20| *) /2
(2 ((@xu)2) V2 ()2 + (In 1) 1 (u2)/2)2 (3.58)
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3.2. Proofs

Averaging (3.58) w.r.t. t yields

() S (D)) + (|[ox] 2 |")1 /2
(/2 {@xu)) /2 ()12 + (Ing) T H{u?) %)% (3.59)

Ster 2. Consider again (3.23). We drop the positive term 9D, cf. (3.41). We then
average over t € [0,1]. Because of (3.57), the 9;3(D~ — (u2))-term vanishes. Using
Cauchy-Schwarz” and Jensen’s inequality as above we obtain

D) (0) S ([fox] 720 )17
(2 (@xu) )2 ()2 + (In D) T (u?)/2) 2 (3.60)
Combining inequalities (3.59) and (3.60) gives in our short hand notation, cf. (3.27),
U s (1+71)=V2(2put?ut? + (In et ut/2)l2,
Choosing T ~ 1 yields
u SJ 21/2 <€1/2Du1/2u1/2 4 (ln%) u1/2)1/2
5 21/2 (€DU)1/4U1/4 + ((ln%)z)l/z u1/4/

and by Young’s inequality we absorb U into the L.h.s. to obtain (3.24):
u< =3 (epu)'’? + ((Ind)z)?/s.

Proof of Corollary 3.14. We start from (3.60) in the proof of Corollary 3.13, i.e.,
T H(D7)(7)
S (lIaal 7202 (12 (k)Y (AN 2+ (in ) T ()12,
which in our short hand notation turns into
T H(D7)(7)
g 21/2 ( (€DU)1/2 u1/2 + (ln%)r_lul/z )1/2
Triangle ineq.

< T1/821/2(€DU)1/4 (T—l/Zu)1/4 + 1,—1/2((1n %) 2)1/2 u1/4

Yo
<7 L2 (DU 4 T2 4 T 2((In 1 z)2utt

Y

(3-24)
< T/ eDu)? 4 w12 (222 (eDU)'P 4 ((in1)x)??)

1/4
+7 2 (in )12 (222 (eDU)' + ((In1)z)?)
S T/ex23(eDU) "/ + 72 (522 (eDU)Y + ((Inh)z)?)

1/4
+7 8 ((in ) z)/2 (12223 (eDU)'?)

Young
< (T1/6—|-T_1/2)22/3(8DU)1/3 + T‘l/z((ln%)Z)Z”.

Y]
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3. Analysis of the reduced energy for large external field

Therefore we deduce for T < 1
D7) (1) S TV (((InHT)? + 23 (eDu)'?) . (3.61)

On the other hand, for T > 1 we have

(D(1)) ‘< u

< /2y
(3-24)
<

Y

/2 (((In})z)?/ + £2/3(eDU)?) (3.62)
Collecting estimates (3.61) and (3.62), we now obtain
supt V2(D7)(1) < ((In %)2)2/3 + 22/3(eDU)3. (3.63)

Y
>0

For D+ note that the change of variablest = 1 —t, i = —u leaves the r.h.s. of (3.63)
invariant whereas the Lh.s. turns into

D (ii(-,t),7) = D (—u(-,1—1t),7) = D (u(-,1—1t),7),
which gives
(D™ (@,7)) = (D" (u,7)).
Therefore we obtain (3.25) in our short hand notation, i.e.,
sup T V(D) (1) +supt VHD7) (1) S ((In1)2)¥3 + 223 (eDU)V5.

>0 >0

]

Proof of Lemma 3.15. The main ingredient is the following estimate of the modulus
of continuity in the weak L3/2-norm

sup A~V2 sup MY 2(I(Ju® — u| > M))
A>0 M>0

< supt VDT +suptVEHDT), (3.64)

>0 >0

where [ denotes the indicator function. To see that (3.64) holds, fix A, M > 0 and
let {*(x,t) and {~(x,t) be L-periodic in x with £70,{* < 1 for some T > £ given.
Then we have

[{[u® —u| > M} = [{u® —u> M} + |[{u" —u < —M}|
{(u =)= (u—7") > (M—2)}
- = (u-7) < —(M-2)}

L
(M=2)2( [ (=) = (=) e
L
[ (=0 = (=) ax)
s =22 ([ pacs [ pa).

IN

IN

IN
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3.2. Proofs

Since {* was arbitrary in the definition of D* (), we obtain
(I(Ju® —ul > M)) < 4(M—2)"4(D* () + D™ (1)).
Therefore we have

(I(|u® —u| > M)) < T/24(M — 2)72 (sup T7V/2D* (%) + sup T71/2D~(%)).

T
>0 >0
Now optimizing in T > ﬁ gives

(I(ju® —ul > M)) < (£)/2M™2 (supD* () + sup D™ (1)),
>0 >0
which entails (3.64).
Plugging in Corollary 3.14 we obtain from (3.64) for all A > 0

A2 sup M2 (I(Ju® —u| > M) < ((InHx)*° +22°(DU)' . (3.65)
M>0

We can now interpolate the strong estimate on the modulus of continuity that we
obtain from Corollary 3.13, i.e.,

(I = u2) < (u2) 2 ((n 1)z 4 223 (eDuy’3,

and the weak estimate (3.65). By Marcinkiewicz interpolation, cf. [BL76, Section 5.3],
we obtain for0 < g < 1

(lu® —uP+2P) S (lud — u2)i-? (;li%MS/Z((I(MA —u| > M)))P

((n1yzy?/2 +£2/%(eDU) ).

N

<A

With the identification p = 2 + g we obtain (3.26), i.e.,

sup AP (ut —ulP) S ((In)T)*? + 223 (eDU)'?
>

forp € [2, g), in our short hand notation. N

Proof of Lemma 3.17. Let C > 0 be a generic constant. Due to Remark 3.16 it follows
that Corollary 3.13, which was established for smooth u, extends to our finite-energy
u:

U< (InHz)?2 (14 (In1)=23 (eDU)!/?)

"2 (1P (1 + (DU)). (5.66)
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3. Analysis of the reduced energy for large external field

Hence we obtain by Young’s inequality

L'E(u) = eDU+ (InH)T - U

<1
> DU+ (In1)x — C ((In1)x)2/3 (1 + (eDU)V?)

Young
> DU+ (Inl)z-C,

where C is the constant in estimate (3.66). This entails

I

e<1 { 1 for L~ E(u)

eDU+ (InH)z < =1
¢ L~ 'E(u) for L7'E(u) > 1.

Therefore we obtain if we once again apply Young’s inequality to (3.66):

Y ~Y

e<1 e<1 [ 1 for L~'E(u) <1
U < (nHz)?3 1+ (eDU)3) < =,
((ln)Z2)77 (1 + (DU)™) LE(u) for L'E(u) > 1.

]

Proof of Proposition 3.8. Due to Lemma 3.17, we have that for any u with L™1E(u) <
0

eDU, (InH)z, U < 1.
In particular
L7 'E(u) > —U > —1.

)

Proof of Theorem 3.4. Let0 < ¢ < land L > 1.

ad a) The upper bound on the minimal energy is the statement of Proposition 3.6,
the lower bound is the statement of Proposition 3.8.

ad b) The upper bound

L 1
Ll/ / u?dtdx <1
0 JoO

was treated in Proposition 3.8. The lower bound

L /1
L_l/ / u>dtdx > 1
0 JoO

follows directly from the assumption L~'E(u) ~ —1.

82



3.2. Proofs

ad c1) Note that by Jensen’s inequality
L 1
—2p=2)/p -1 / / (u(x +w,t) —u(x,t))?dtdx
0

2/
< < (P=2) - / / x+w,t) —u(x,t))”dtdx) ' (3.67)

for p € [2 o). Due to Lemma 3.17 we have for any u with L™'E(u) ~ -1, that
eDU, (ln )%, U < 1 (uniformly in €). Hence the rh.s. in (3.67) is bounded for
pE2 2) (umformly in €) due to Lemma 3.15, which due to Remark 3.16 extends to
our finite-energy u. Therefore with the identification « = 2(p —2)/p we have

L /1
L_l/o /0 (u(x+w,t) —u(x, t))>dtdx < w*

fora € [0, 2).

ad c2) We split the proof into an estimate for w < 1 and an estimate for w > 1. For
w < 1 we have by Jensen’s inequality

L (L L (L 1/2
L_l/ / |ty | dt dx < <L_1/ / uzdtdx)
0o Jo 0o Jo
L (L 1/2
gwfl/z (Ll/ / uzdtdx> .
0o Jo

Due to Lemma 3.17, for u with L™'E(u) ~ —1 the energy contributions are sepa-
rately bounded. Hence we obtain

L
L_l/ lup|dx < w12,
0

We now turn to the case w > 1. By linearity we have that

Therefore by the triangle inequality we have

L~ /]E)tuw\dx<L /y ool dx + L /\Uw\dx. (3.68)

We now appeal to the estimates

L™ /| oldx < w L™ /udx (3.69)

and

L L 1/2
L /0 ol dx S w12 (L‘l /0 Haxr”za\zdx) : (3.70)
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3. Analysis of the reduced energy for large external field

We first turn to (3.69). By definition,

L
/ |(3x12) | dix :/ v ® o(x+ ) dx'| dx
0 _w

2

_ w—l/o (2 + ©) —12(x — ©)| dx
L

< w_l/ u? dx.
0

We now turn to (3.70), which is a standard convolution estimate. We start with
Jensen’s inequality in the form of

L L 1/2
Ll/o |ow|dx < (Ll/o |(7w\2dx) : (3.71)

By definition,

/77 o(x—y,t)dy,

where 7% (x) = w~ 17( ) and 1 (x) := I([—3,3])(x). We appeal to the Fourier se-
ries F(0)(¢) = ﬁ fo e ¥ dx, & € 2rL~'Z, of ¢ and to the Fourier transform
F) (@) = Jen*(®) e‘”‘g dx, { € R, of #*:

[lefax= ¥ 1Fe)l@

feanl-17

= Y FuM@QPF@E@)F

zeanl-17Z

= Y |F@PIF@)E@)P (3.72)

Feanl-1Z

We explicitly calculate the Fourier transform of #:

1

Fp@ = [n@e*fax = [ e Edr = 2sin(§).

2
Hence we have
1 1
F < < .

Thus (3.72) turns into

[wbasl £ iro@F =g [ o e
(I ~w le] w

feanl-17

Now (3.70) follows from the last estimate together with (3.71).
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3.2. Proofs

In order to control the rh.s. of (3.68), we collect estimates (3.69) and (3.70) and
use again that for u with L™'E(u) ~ —1 the energy contributions are separately
bounded by Lemma 3.17 to obtain

L w>1
L1/0 |01y | dx < w12 < w2, (3.73)

Hence we have for w > 1
1 (L . 0)= 1 L t
[ a0 a2 1 [ [ () d | dva
0 /0 o Jo ' Jo

1 L r1
< L—l/ / / 1Betta(x, )| A’ dx dt
0 JO 0
1 ,L
= L1/ / |01y | dx dt
0 JO

(3-73)
<

[

w12, (3.74)

3.2.3. Compactness
Proposition 3.18. Let L ~ 1 be fixed and {u¢}.| be a sequence such that L™ E¢(uf) ~
—1. Then {u®}|o is compact in L*>((0,L) x (0,1)).

Proof of Proposition 3.18. The proof is a classical compensated compactness argument,
in the sense that the strong equi-continuity properties in x compensate the weak
equi-continuity in t. To start, let us first list some direct consequences of the results

in the previous section.

Let {u®}, |0 be a sequence such that
LYEc(uf) ~ —1. (3.75)

We have due to Lemma 3.17 that the sequence {uf}, o is bounded in L?((0,L) x
(0,1)). Therefore, after extracting a subsequence we may assume that there exists
u% € L2((0,L) x (0,1)) such that :

ue 000 weakly in L. (3.76)

Hence our goal is to show that this weak convergence is in fact a strong convergence.

Let F denote the Fourier series w.r.t. x and the Fourier transform w.r.t. t£. More
precisely, for any L-periodic g(x, t) we define

L . .
F(9)(5,0) = % [ [ sttt arar,
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3. Analysis of the reduced energy for large external field

where ¢ € ZT”Z and 6 € R denote the dual variables to x and ¢, respectively. Since
u® is L-periodic in x with L ~ 1 and supported in ¢ € [0, 1] we automatically have

2 brh e
FEol < [ [ ) drdr 1 6.77)
By (3.76), we have
F(uf) 20, F(u®) pointwise.

Therefore, we have for all R > 0

| 1F ) = Fa)Fdede <o, (578)
Bg(0)

where Br(0) = {(g,0) € 2ZZ xR | |8] < Rand |¢| < R} and [ -dZd6 denotes the
integration w.r.t. § and the discrete summation w.r.t. . Hence for strong convergence
in L2, itis enough to show that there is no concentration in the high frequencies, i.e.,

Fue)2dzdo X% o .
Jis )y 70 P 0 555 (:79)

uniformly in ¢, cf. [Peg85].

Before embarking on (3.79), we note that
1 /L )
| [ ot u?axat < 1 (5.80)
0 Jo
uniformly in ¢ for some s > 0. Indeed, since L ~ 1 we have by Theorem 3.4 c1) that
1 /L
A“"/ / (#6)D — ufPdxdt < 1
0 Jo

for & € [0, 2) uniformly in ¢. Therefore for 0 < r < 1

vt 1 L e\A €2 <

uniformly in ¢, as well as for 1 <r < oo

1 poo 1 L
/ / E/ (16D — P dxdAdt < 1
0 J1 0

uniformly in e. This entails

1 [} L
/ / A‘zs/ |(uf)? —u£|2dxl dAdt <1
0 Jo 0 A

fors € (0, %) uniformly in e. We once again refer to the characterization of fractional
Sobolev spaces in [LM68, p.59] to deduce (3.80).
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3.2. Proofs

We now turn to the proof of (3.79). We will use the identity 0 = —,(3(u#)?) + 9;u¢
to provide for control of oscillations in ¢ via its Fourier transformed version, namely

—i0 F(uf) = F(o°) — $igF((u5)?). (3.81)

Moreover, we have by assumption due to Lemma 3.17 that

1 L
/0/0 10, 71/20* dxe dt =% 0. (3.82)

Therefore we have for M, > M; > 1

F(ut)[*>dEde
/{§>Ml}u{|9>Mz}‘ ()" de

g/ Fuf)2dEdo + F(uf) 2 dF do
Geonayy 17 O dE Geismgniiogy T O

(3.81) |]:<0.s) |2
< / F(u 2d§d9+/ I 4z a6
{|¢|>M1}| () {lel<Miin{lo|>m} |62 ¢

—1 2 2\(2
+ F ut dédo
/{ICISM1}0{9|>M2} |9|2|§| | F ()77 dg

1

< 5| F (uf)|> dF d0 & do

B M%S/{5>Ml}‘§| 7l dedods
Aﬁ:/ | F(e*)2

M2 Jyaemnge=m} 1€

1
+/ —|&2dE de (sup | F((u®)?)])?
{1e|<M}n{|8]>Ma} |(9|2|€| ¢de (sup [F((u%))])
1 M M

dede

where the last inequality is a consequence of (3.80),(3.82), and (3.77). With the choice
M; = MY*and M, = M, this implies

1 MYY M Mt
£y|2 < N
F@)FdEdd S v + 3 + g

0
/{|€|>M1}U{|9|>Mz}

uniformly in ¢, which yields (3.79). O]

Proof of Theorem 3.5. We give a proof by contradiction. Let0 < e < 1and L ~ 1.
Assume there exists u with L™1E(u) ~ —1 such that for any u* with

—ax%(u*)2+atu* =0

distributionally

L 1
L_l/o /0 (u—u*)?dtdx > 1. (3.83)
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3. Analysis of the reduced energy for large external field

Hence, there exist sequences {L¢ } o, {uf}¢)0 with L, bounded and Ly E(uf) ~ —1
such that u® is not close to a weak solution to Burgers” equation. Rescaling according
tox = % Xand u = % il, we may w.l.o.g. assume that L = L. On the other hand,
by Proposition 3.18, {uf}.|o is compact in L? and we claim that after extracting a
subsequence, {uf},|o converges in L? to a weak solution of Burgers’ equation which
is in contradiction to the assumption. Indeed, if we denote the L2-limit of {u¢}| by

u® then {(uf)?},o converges to (u°)? in L. Therefore, like in (3.82) we have

1 ,L
| [ Nl 120 P axdt <5 o,
0 JoO

and we obtain as desired

— 9, (u0)? 4 9’ = 181151 (—ax%(uf)z —|—8tu£> = 181151 o® = 0 distributionally.

O

88



4

Numerical simulation of the reduced energy functional

In this chapter, we address the numerical simulation of the reduced energy func-
tional (1.14). The aim is to numerically explore the energy landscape with its local
minima, in particular the deformation of the landscape under the variation of the
external field. We start with a short introduction of the important features of the
discretization; for a detailed presentation, see [Steo6] where the scheme was intro-
duced. Afterwards, we explain the algorithms used to compute solution branches
of stationary states, namely path-following techniques and branch switching. The
simulations show:

e There exists a branch of stationary points connecting the w*-periodic unstable
mode to the concertina pattern. The bifurcation is subcritical. There exists
a turning point after which the branch is stable (under perturbations of pe-
riod @*).

e The w*-periodic concertina is unstable under perturbations of period Nw*. It
turns out that the symmetries of the pattern lead to multiple bifurcations which
can be systematically studied and computed with the help of representation
theory.

e There is a cascade of secondary instabilities at which the pattern coarsens as
the field increases.

At the end of this chapter, in Section 4.10, we provide a list of the parameters which
are chosen in the numerical simulations. For notational convenience, we drop the -
related to the rescaling of the reduced energy in this section, cf. (1.14).

4.1. Discretization of the reduced energy functional

The magnetization m; is approximated on a uniform Cartesian grid of step size
hy = N% and hy = NLz w.r.t. x; and xp, respectively:

Mj’k%mz(jhl,khz),je {0...,N1—1}, k e {O,...,Nz—l}.
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4. Numerical simulation of the reduced energy functional

The discrete magnetization is Nj-periodic w.r.t. j, cf. Figure 4.1. The finite-difference
discretization of the energy is straightforward in case of exchange, Zeeman, and the
anisotropy energy. In case of the stray-field energy, one has to choose an appropriate
approximation of the non-linearity and of the non-locality which can be computed
at low cost avoiding the assembling and application of dense matrices.

One can think of several different discretizations of the non-linearity o = —%d,m3 +
dymy, all of the same order. Our choice is motivated by the aim that the shear-
invariance (3.8), i.e., the invariance of the energy under the transform

X1 =8x2+X1, X2 = Xy, mp = My—s5, (4.1)

is inherited by the discrete scheme. We therefore choose the following discretization
of the non-linearity which is compatible with the shear-invariance

2 2
. 11 Mj+1,k+1+Mj+1,k Mj,1,k+1+M];1,k 1
Tik=—2513 ((f (7= 7) )+ 5 (Mjga — Mg).

Figure 4.1 depicts the spatial extent of the difference stencil.

Mjn, =0
1 . M
X >}< >}< >}< I X0
| |
X TRt f !
y + \+ + |
X I
| |
O ] J
0 M;o=0 L

Figure 4.1.: Discrete approximation of the magnetization on the uniform grid.

In case of the non-locality, we use that the H~1/2-norm can be represented as the

Dirichlet energy of a potential #, which is the harmonic extension on [0,L) x (0,1) x
R with Neumann data ¢ at [0,L) x (0,1), i.e.,

L rl L ,1 L rl
%/ / ||81|_1/2c7|2dx’=/ / / |Vu|2dx:_/ / u(xs = 0) o dy,
0 0 0 0 JR 0 0

where the potential u: [0,L) x (0,1) x R — R satisfies
— (B +R)u=0 x3#0 and [o3u](x3=0) =0,
cf. (1.16). We discretize this equation w.r.t. x; and x»:

—Ujy1x(x3) +2Ujr(x3) — Uj_q(x3)
s

— aéujlk(m) =0 for x3#0

[agu]',k] (X3 = 0) =J0.
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4.1. Discretization of the reduced energy functional

The application of the Discrete Fourier Transform (DFT) w.r.t. j turns the Neu-
mann problem into an ordinary differential equation w.r.t. x3 which can be explicitly
solved. We obtain the discrete counterpart to the Fourier multiplier |k;|~1/2 in the
continuous case:

k|72 s K(D T2 = (Zsin(F1) 21 e {0,..., Ny — 1} (4.2)

The DFT, denoted by F, is normalized in the way that Nil]:" F is the identity, namely

Ni—1 _j2mkl ~ Ni—1 i27lk
]:(X)k = Z e Ny Xl and I(Y)l = Z e M Yk,
=0 k=0

where X and Y denote some vectors of length Nj. The stray-field energy is thus
approximated by

L 1
%/0 /0 1191|1202 dx’ ~ %hlthil Y K(1) Y F ()2
Ik

We note that the application of the Fast Fourier Transform (FFT) allows a fast evalu-
ation of the non-local term in the simulations.

The discrete energy functional is thus given by:

EH(M) = I DYMTDLM + s ()KL F (D)
— hext 1y hy MTM + Q hy iy (M2)TM 2,

. . M1 —M;
where the operator D; denotes the forward difference, i.e., D; My = (W)] o

and where M.? denotes the componentwise square. The diagonal matrix K repre-
sents the discrete Fourier multiplier K(I), cf. (4.2). The gradient of the energy is
given by
DMEG(M) = 2hy hy DI D1M + hyhy 3-DyET F(K™1F(Z))
— 2hext h1 hy M +4Qhihy M3

The Hessian applied to some test vector V is given by

DYEG(M)(V) =2y hy DI D1V
+ hyhy 5Dy =" F(K'F(DmE(V))) + byl - DYE(V) T F(KHF(2))+
— Qhext Iy hy V +12Qhq hy V.M 2.
Hence, the matrix-vector product can be computed without assembling the Hessian,

which is called matrix-free multiplication. In particular, the assembling of the dense
matrix FK~1F can be circumvented.

The discretization was validated in [Steo6], where the convergence of the scheme, as
the grid size tends to zero, was numerically confirmed. Moreover, it was shown that
the numerical solution coincides with the asymptotic solution close to the primary
bifurcation, see Section 6.1.
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4. Numerical simulation of the reduced energy functional

4.2. Implementation and parallelization

The implementation is based on the C-library PETSc (Portable, Extensible Toolkit
for Scientific Computation), [BBG'og]. It provides the necessary data structures
for vectors and matrices, and Krylov subspace methods for the solution of linear
equations. All modules are also available in a parallel implementation which is
based on the MPI (Message Passing Interface) standard. For the evaluation of the
DFT, we use the implementation of the FFT in the C-library FFTW, [FJos]. The
iterative linear solvers (Krylov subspace methods) in PETSc are compatible with
matrix-free implementations.

The stray-field energy in the reduced energy functional is non-local w.r.t. only one
space dimension. This can be used in a parallel implementation of the basic alge-
braic operations in the following way: The computational domain is subdivided in
horizontal stripes which are distributed to the individual processors. We are aware
of the fact that this parallelization scheme cannot lead to an optimal scaling in the
limit: The length of the interfaces of n sub-domains, in case of an anisotropic, strip-
like decomposition, scales like ~ 7, while in case of an isotropic decomposition the
total length of the interface scales like ~ n!/2. Note that the idle time of the proces-
sors is negligible since the computational effort is uniformly distributed among the
processors. For standard grid sizes (e.g., Ny = Ny = 256) a ring of 4 workstations
leads for example to a speed-up of a factor of approximately 3.5.

4.3. Path following

Our aim is the computation of stationary points, in particular (local) minimizers,
of the discrete energy functional for varying external field. For the computation
of minimizers, iterative descent algorithms can be used. However, if the energy
landscape is flat — in particular close to a bifurcation — these algorithms turn out to
be slow. In such regions it is necessary to employ so-called path-following methods,
cf. [DHo8, Geoo1]. Within that context we interpret the Euler-Lagrange-equation

DmEG(M, hext) =0
for varying external field hext as a parameter-dependent equation
F(x,A) =0, ie, F=DyEl and (x,A)= (M, hex).

The aim is to iteratively approximate a branch of solutions (x(s), A(s)), where s is a
suitable parameterization of the branch, e.g. arc length.

Tangent path-following algorithm. Consider an approximate solution (xg, Ag) of
the parameter-dependent equation and in addition an approximate tangent fy =
(t3,1}) to the branch of solutions in that particular point. The path-following consists
of the iteration of the following two steps for n =0, ..., Nmax, cf. Figure 4.2:
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4.3. Path following

1. Predictor. Choose a step size 77, > 0 and set
Pn+1 = (xnz )\n) + fnty.

2. Corrector. The next point on the branch (x,,+1,A,+1) is computed as a solution
to the nonlinear equation

F(xn—HI )\n—}—l)

T =0.
(Pn+1 — (xn+1//\n+1)) tn

_t

[1¢]]

The next approximate tangent can be obtained as the normalized solution t,, 1 =
to the equation

(DF(Xthr%/)\n+1)) L ( (1’> (4-3)

n

where we use that 0 = LF(x(s),A(s)) = DF(x(s),A(s))t(s). The augmentation
tI't = 1 ensures that the orientation is preserved during the path-following proce-
dure.

tn

;A
() s

Figure 4.2.: Tangent predictor-corrector continuation method.

Inexact Newton method. We use the Newton method to solve the non-linear equa-
tion in the corrector step. To solve the linearized equation within the Newton
method, we make use of the block structure of the Jacobian which contains a sym-
metric block of codimension 1 given by the Hessian of the energy:

HessE!'(M, hext) —2M
DF: ( EtM ex _thext .

Note that the solution of an equation of the form
A b n . 21
(@) (3)=(); w
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4. Numerical simulation of the reduced energy functional

where A is a quadratic block of codimension 1, can be represented as

2o —cTA 1z
P TAT
On the basis of the latter representation we can make use of the symmetry of the
Hessian, i.e., the quadratic block A. Although it is necessary to solve two linear
equations, related to A71z; and A~1b, to obtain (y1,y2) , this approach is advan-
tageous compared to an iterative scheme directly applied to the Jacobian DF. We
make use of the symmetry and apply the conjugated-gradient (cg) method in or-
der to invert the Hessian. Note that a matrix-free implementation of the Hessian is
compatible with the application of the cg-method. Observe that the tangent in (4.3)
can be computed on the basis of a similar decomposition, too. In the literature, the
decomposition (4.4) is known as the Schur method.

y1 = A"z —ypAT'D, (4.5)

The scheme described above falls into the class of inexact Newton methods since the
linearized equation is only solved approximately via the cg-iteration. Provided that
the residuum is sufficiently small, the quadratic convergence of the Newton iteration
is not affected, see [GKgg, Algorithm 10.1 and Proposition 10.2] and [Steo6].

4-4. Detection of bifurcation points and branch switching

In this section, we present a numerical method for the detection of bifurcations and
branch-switching. A necessary criterion for a simple bifurcation in s = s* is that the
determinant

DF(x(s), A(s))
et (G5 oy
changes its sign in s = s*. For reasons of computational complexity it is of course

not possible to use the determinant as an indicator function for a bifurcation. We
pick up an approach which is presented in [Geoo1]:

Theorem 4.1 ([Geoo1]). Let (x(s*), A(s*)) be a simple bifurcation point, let the vector b
be acute, i.e., not orthogonal, to the kernel of

(DF(x(s*>,A<s*>>)T

((s*), 1(s*))T
and the vector c be acute to the kernel of

(DECLAEDY

(£5(s%),t4(s*))"
Then T(x(s)) defined via

S IRIGEG »

changes sign at s = s*.
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4.5. Bifurcations with symmetries

The proof is a direct consequence of Cramer’s rule.

Observe that

-1
e s ()

Hence the computation of T and ¢ can again be carried out with the help of the Schur
method, cf. (4.4) and (4.5), applied to the matrix (DF,tT). Note that & is orthogonal
to the current tangent. Hence it can be used to obtain a predictor for the bifurcating
branch and thus as the first step in the path following of the bifurcating branch.

Let us emphasize that the strategy above only works in case of simple bifurcation
points. Symmetries of the energy and the primary solution branch can lead to mul-
tiple bifurcations as we are going to discuss in the following section. Luckily, the
multiple bifurcations which occur in case of the concertina pattern can be reduced
to the computation of simple bifurcations. This allows us to develop and apply
modifications of the methods discussed above.

4.5. Bifurcations with symmetries

In this section, we want to discuss the symmetries of the concertina pattern which
play an important role for the understanding of the secondary bifurcations. We
refer the reader to the two text books [GSo2] and [Hoyo6] for a brief introduction
into bifurcation problems with symmetries. In the presence of symmetries, one
cannot expect to observe the generic case of a one-dimensional bifurcation since the
symmetries can lead to higher degeneracies. On the other hand, a precise knowledge
of the symmetries in general allows to characterize the bifurcations which can occur
and hence to identify the generic bifurcations in the presence of symmetries. In
case of the concertina pattern, it is possible to reduce the multiple bifurcations to
simple bifurcations within a certain symmetry class. We start with the identification
of the symmetries of the energy functional. We note that most of the statements are
discussed on the basis of the reduced rescaled energy but can be correspondingly
adapted to the discrete energy.

Lemma 4.2. The reduced energy functional (1.14) is invariant under the following types of
symmetries, namely

translation  Eg(my(x1,%2)) = Eo(ma(r + x1,x2)), r€[0,L),
rotation  Egq(ma(s + x1,%2)) = Eg(ma(s —x1,1—x2)), s€[0,L),
reflection  Eq(ma(t + x1,x2)) = Eo(—ma(t — x1,x2)), t€[0,L).

They form a group (by composition), whose generator is given by translations withr € [0, L),
rotation w.r.t. (0, %), i.e.,, s = 0, and reflection at the xy-axis, i.e., t = 0.
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4. Numerical simulation of the reduced energy functional

Remark 4.3. It is easily seen that the energy is invariant under the transforms in Lemma
4.2. Another symmetry is given by Eq(mp(x1,x2)) = Eo(—ma(x1,1 — x2)).

In case of the discrete energy similar relations hold. Of course, one has to require that
the parameters are chosen from the discrete set, more precisely r,s,t € INhy. The discrete
magnetization can be translated, rotated and reflected on the Cartesian grid.

Although the Euler-Lagrange equation inherits the invariance of the energy under
the symmetries, solutions clearly need not to be invariant under these symmetries.
The concertina pattern inherits a discrete subgroup of symmetries generated by
translation by an integer multiple of its period, rotation around the center of a quad-
rangular domain and reflection w.r.t. a vertical walls under a change of sign of my,
cf. Figure 4.3.

0

Figure 4.3.: Reflectional and rotational symmetry of one fold of the concertina pattern.

Generic bifurcations in the presence of symmetries. To apply the abstract frame-
work for the identification of the generic bifurcations in the presence of symmetries
as described in [GSo2], it is necessary to identify the symmetries as linear representa-
tions on the vector space of admissible magnetizations. It turns out that generically
the induced representation of the symmetries of the primary solution branch on the
kernel of the Hessian in the bifurcation is irreducible. The central theorem, the so
called Equivariant-Branching Lemma, entails the existence of bifurcating branches
using a symmetry-preserving Liapunov-Schmidt reduction. An additional generic-
ity result finally allows the reduction of the multiple bifurcation to simple bifurca-
tions (on fixed-point subspaces of the isotropy subgroups), see below. We need the
following definitions:

Definition 4.4. Let I be a finite group and V be a vector space. A linear representation
of I is a homomorphism ¢ : T — O(V).
With an abuse of notation we write yv = ¢(7)(v) for all ¥ € I and v € V. We have

to generalize the notion of invariance:

Definition 4.5. Let I be a linear representation over the vector space Vand F : V xR — V
a parameter-dependent map. Then F is I'-equivariant provided F(yv,A) = yF(v, ) for
all v € Tand v € V. Similarly, A € GL(V) is equivariant provided yA = Ay for all
v el
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4.5. Bifurcations with symmetries

Since Ej is I'-invariant, we have that the gradient DE is I'-equivariant. Moreover, if
my is I' invariant, then the Hessian in my, i.e., Don(mz), is equivariant, too. Both
statements are a direct consequence of the application of the chain rule.

Consider now a stationary concertina pattern of some period w, which we think of
as a solution to the Euler-Lagrange equation on the Nw-periodic domain for N € IN.
Due to translation invariance, we can assume that the center of a vertical wall is
located at x; = 0. We are interested in bifurcations where we allow for Nw-periodic
perturbations. The group action generated by rotation in (%,0), reflection at x; = 0,
and translation by w, cf. Figure 4.4, on the space of Nw-periodic perturbations is a
linear representation of the group Dyy. Here D,y denotes the dihedral group, i.e.,
the symmetry group of the regular polygon with N edges. To see this, we refer to
Figure 4.4 which depicts the action of Doy for N = 2.

A’ B’ A B D

14 A A&/ C’ D

Figure 4.4.: Symmetry transforms on the 2w-periodic domain which leave the w-periodic
pattern invariant: The left image in the top row shows two copies of the 2w-
periodic domain. Rotation (red), reflection under change of sign my ~» —my
(green), and translation by w (orange) of the 2w-periodic concertina are repre-
sentations of the symmetry group of the square and correspond to reflections at
the symmetry axes of the square and rotation by 180°, respectively. The images
in the bottom row show the result of the symmetry transforms restricted to the
2w-periodic domain on the level of the location of the edges. Note that due
to periodicity, the rotations w.r.t. the center of the bright or the dark facets are
equivalent. Similarly, reflections w.r.t. the first and third or second and fourth
vertical wall are equivalent.

Due to the invariance of the magnetization my, the kernel of the Hessian is a Dyn-
invariant subspace. Therefore we obtain an induced representation of D,x on the
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4. Numerical simulation of the reduced energy functional

kernel of the Hessian. Of course, the elements in the kernel need not to be pointwise
invariant. We need the following definition:

Definition 4.6. Let I" be a linear representation on V. The representation is irreducible
if the only invariant subspaces are {0} and V. Let C C GL(V) be the set of commuting
linear invertible maps, i.e., if A € C then yA = A<y for all v € I'. The representation is
absolutely irreducible if C contains only scalar multiples of the identity.

Note that for a complex representation both properties are equivalent.

In [GSS88, Proposition 3.2] it is stated that the induced representation on the kernel
is generically absolutely irreducible. This is not true for a bifurcation in the varia-
tional setting. In fact, the perturbation which is constructed in [GSS88] for a general
parameter-dependent equation with symmetries — in order to prove the property of
being absolute irreducible - is not compatible with the variational structure. It can-
not be integrated in order to obtain a perturbation of the energy. Nevertheless, one
can construct an integrable perturbation of the bifurcation equation which entails
that the representation on the kernel is generically irreducible.

Representations of D,y. In order to classify the possible bifurcations, we have to
identify the irreducible representations of D,y. The absolute irreducible represen-
tations are well known. In fact, there are four one-dimensional representations and
N —1 two-dimensional representations of Dy, cf. [Sery7, Section 5.3] . Both the one-
and the two-dimensional representations can be realized as real representations over
R and R?, respectively. Hence, in case of the dihedral group the irreducible repre-
sentations coincide with the absolutely irreducible representations. Let us come
back to the example of the w-periodic concertina as a solution on the 2w-periodic
domain, i.e., N = 2. Denote by T and ¢ the generators of Ds where we think of T
as a reflection and of ¢ as a rotation by 7, respectively. In case of D, the irreducible
representations are up to equivalence (i.e., conjugation or change of basis) given by:

e Four one-dimensional representations: Trivial representation, i.e., y(t) =1,
(@) =L y(1t) =1, 7(0) =-L (1) =-L () =1L v(t) = -1, 7(0) = -1

e One two-dimensional representation: Natural representation, ie., y(7) =
1 0 and 7(0) = 0 -1
0 -1 M=\ o)
Generalized Liapunov-Schmidt reduction. The Liapunov-Schmidt reduction al-
ways allows to reduce the analysis of a bifurcation of a parameter-dependent equa-

tion (infinite dimensional) to an analysis of the bifurcation of a finite dimensional
parameter-dependent equation defined on the kernel of the Hessian:

f : ker HessE(my, hext) X R — ker HessEq (11, hext )

In particular, the critical point can be assumed to be (0,0). As shown in Section 1.3
in [GSo02], the reduction can be performed in such a way that the symmetries of the
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4.5. Bifurcations with symmetries

system are preserved. Using the generalized Liapunov-Schmidt reduction, we are
now ready to state and to apply the basic general existence theorem for symmetry
breaking branches, the so called Equivariant-Branching Lemma.

Theorem 4.7. [GSo2, Lemma 1.31] Let T C O(n) be a finite group.
1. Assume I acts absolutely irreducible on V = R".

2. Let f : R" x R — R" be I'-equivariant, i.e., f(yv,A) = v f(v, A), which implies

f(0,A) =0,
DF(0,A) =c(A)id.

3. Assume c(0) = 0 (bifurcation occurs) and ¢’ (0) # 0 (eigenvalue crossing condition).

4. Assume ¥ C T is an axial subgroup, i.e., a subgroup s.t. dim{v € V | yv = v for all
yeX}t=1

Then there exists a unique branch of solutions to f(v, A) emanating from (0,0) where the
symmetry of the solutions is X.

Theorem 4.7 is of importance because the axial subgroups of D,y are easy to iden-
tify. In case of the two-dimensional representations (which numerically turn out to
be the relevant ones), there are two conjugacy classes of axial subgroups, cf. Figure
4.5. They correspond to configurations which are either invariant under rotation
w.r.t. the center of a facet of the fold or to configurations which are invariant under
reflection at a vertical wall with change of sign my ~~ —mj. As shown in [GSoz2],
the application of the following theorem entails that the solutions which are guaran-
teed by the Equivariant-Branching Lemma are generically the only solutions of the
bifurcation equation:

Theorem 4.8. [GSoz2, Theorem 2.24] Let f : C — C be Dy-equivariant. Then there exist
p,q: R?> — R such that

f(2) = p(u,v)z + q(u,0)2" ", (4.7)
where u = zz and v = 2" + Z"". Moreover, any f of the form (4.7) is Dy-equivariant.

Theorem 4.8 characterizes D,-equivariant functions. In order to apply Theorem 4.8
we have to identify the action of D, on C with the standard action on R?. For our
case of a variational bifurcation equation we note that

V x f=0 isequivalentto np,—gq, =0. (4-8)

Clearly, the necessary condition for the bifurcation is that p(0) = 0.

We want to show that any solution of the equation f = 0 generically corresponds to
a solution given by Theorem 4.7. To see this, we distinguish three types of solutions:
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4. Numerical simulation of the reduced energy functional

o The first type is the trivial equilibrium solution z = 0.

e The second type of solutions corresponds to z parallel to 2"~ which entails
that Imz" = 0. Notice that Imz" = 0 implies that z is in the fixed-point
subspace of some axial subgroup. The solutions in the second case thus corre-

spond to the solutions given by the Equivariant-Branching Lemma.
e Finally, let us assume that z is not parallel to 2"~ ! in which case p = g = 0.
However, generically 4(0) # 0, even in the variational setting. In fact, one can

perturb g by g 4 € which preserves
- the Dy-equivariance,
— the variational structure, i.e., relation (4.8),
- and, obviously, the necessary condition for a bifurcation, i.e., p(0) = 0.

Hence, by continuity, there are generically no solutions such that p = g = 0.

Figure 4.5.: Reflections of the square, each corresponding to an axial subgroup of Dj.

4.6. Adaption of numerical algorithms

In the last section it was shown that multiple bifurcations related to symmetries can
be reduced to simple bifurcations on the fixed-point subspace of an axial subgroup.
We now show how this can be used for an adaption of the numerical algorithms
for the bifurcation detection and branch switching discussed in Section 4.4. The
detection of a bifurcation can be realized by choosing the augmentation (4.6) in
Theorem 4.1 from the fixed-point subspace of the axial subgroup. Although the
resulting matrix is rank-deficient, the linear equation restricted to the fixed-point
subspace has a unique solution due to Theorem 4.7 and Theorem 4.8. Note that
iterative methods like the cg-method are oblivious to the degeneracy of the matrix
and produce a solution in the fixed-point subspace if the iteration is started in that
subspace — in particular at 0. Hence, the augmentation by a vector from the fixed-
point subspace together with an iterative solver that leaves the fixed-point subspace
invariant can be used for the detection of the simple bifurcation in the fixed-point
subspace.

Let us now specify how this general approach can be used in the computation of
the multiple secondary bifurcations of the concertina pattern by a specific choice of
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the augmentation. As an example we come back to the secondary bifurcations of
the w-periodic concertina in the class of 2w-periodic configurations. In that case we
choose the augmentation in Theorem 4.1 (up to translation by %5 which yields an
augmentation in an equivalent fixed-point subspace) as b = ¢ = (v,0), where v is
the discrete approximation of

20 sin(7txp) or

Uy = COS (%) sin(7tx7).

v = sin (

Note that v; is invariant under the axial subgroup related to a reflection with change
of sign at the vertical wall located at x; = 0 whereas v, is invariant under the
axial subgroup related to a rotation by 180° w.r.t. to the quadrangular domain with
center in (7, %) Figure 6.5 (top left) shows the computed secondary branches in
case of 2w*-periodic perturbations. There are two reflectional and two rotational
symmetric branches (conjugated by a translation by %) emanating at the secondary
bifurcation at an external field hext ~ 9. Bifurcation branches in case of 4w*-periodic
perturbations are shown in the introduction, cf. Figure 1.23. Figure 1.24 and Figure

1.25 display the corresponding configurations along the branches.

4.7. Energy minimization

The simulation of the hysteresis loop relies on the iterative minimization of the en-
ergy, see e.g. Figure 1.29. For the minimization of the energy we use a Newton
method which is globalized using a steepest descent method: The Newton direction
is an energy decreasing direction in the neighborhood of the minimum. Depending
on the starting point of the iteration we therefore us the negative gradient as a de-
scent direction at the beginning and later on switch to the Newton method to speed
up convergence close to the stationary point. Since the energy is to highest order
quartic in M, the line minimization along the gradient can be explicitly computed.
The linearized equation in the Newton algorithm is solved by a conjugate-gradient
iteration, see [GK9gg, Algorithm 10.1 and Proposition 10.2] and [Steo6].

4.8. Numerical computation of the period of global minimizers

In this section we explain how the global minimizer of the energy density % as a
function of the external field hext is computed. We look for an appropriate scheme
in order to solve the following minimization problem: For given external field /eyt,
minimize

Eo (mZ/hext)

- among all w-periodic m, for 0 < w < co. (4.9)

On the discrete level we want to minimize

Eg (M,hext)
w

among all Nj-periodic M € RM*N2 and 0 < w < oo, (4.10)
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where the period of the computational domain is L = w. Note that the discrete
magnetization M does not depend explicitly on the period. Instead, the grid size
hy = Nﬂl depends on w if we fix the number of grid points w.r.t. x1, i.e., Nj. This
entails that total derivatives w.r.t. the period — which are required for a numerical
minimization of (4.10) — do not contain partial derivatives of M w.r.t. the period.
More precisely, the first derivative is for example given by

ElN (M, hext) E'(Mhext) , Dy Ef(Mhext) 1
Dw( 0 wex ):_ 0 wzex 4+ — N (4'11)

Computation of the branch. For the computation of the approximation to the
branch of solutions (M (hext), W(hext), hext) Of (4.10), we apply a tangent predictor-
corrector path-following method. In order to apply this iterative method, we need
a good starting point (M, wy, hexto), i.e., a stationary point which (indeed) belongs

to the minimal branch. For heyt close to the critical field ki, we choose the period

exts
h
of the unstable mode w = w* and minimize M) 4 1t (M, w). The result is

used as a starting point for the tangent predictor-corrector algorithm applied to the
equation
h
D (252) =0,

(for a fixed number of grid points). The result of a simulation is shown in Figure 1.16
in the introduction.

4.9. Computation of derivatives of the energy

In order to compute the marginal stable branch, see Section 1.8.2, we need to com-
pute derivatives of the minimal energy w.r.t. the period w — the outcome of a simula-
tion is amongst others shown in Figure 1.18. A naive approach for the computation

of the second derivative of the minimal energy per period %Eo(w), where

Eo(ZU) = min Eo(mz, ZU),
my w-periodic

is given by the post-processing via finite differences of the minimal energy per pe-
riod E}l(w;) for a set of periods w;. Let us introduce the family of minimizers

my = argmin Egy(mp, w),

my w-periodic

which we assume are differentiable w.r.t. w. A more robust approach makes use of
the following observation:

& & . d )
@Eo(w) = WEO(mz) = %(szEOawmz + 9w Eo)
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where we used that D, Eq(m5) = 0, since by assumption m% minimizes the energy.
In order to numerically compute the second derivatives of the minimal energy per
period given by
d h wy _ o) h o) w4 92 h

wEo(M ) = Dmy9wEgdu M® + 9, Ey,
we need the quantity d,M®. (Notice that in contrast to the computation of the
period of the global minimizers, M® depends on the period w due to the implicit
function theorem.) For that purpose we differentiate the Euler-Lagrange equation:

d
0= %(DMES(M“’)) — HessE}(M®)d,M® + (duDpER) (M®).
Hence d,M is obtained by solving the latter linear equation. Similar as in (4.11) the

derivative of the energy w.r.t. w amounts to d;, Dy El} = dp, D ME(P)’N%.

4.10. Practical issues of the simulations

4.10.1. General remarks

The Newton iteration in the simulation is stopped if the norm of the residuum
drops below a certain threshold ~ 107¢ to 1078, We usually observe 3 to 4 steps
of the Newton iteration within the region of quadratic convergence. The necessary
resolution of the walls was investigated in [Steo6]. As soon as the interfaces are
not properly resolved, the iterations usually do not converge which is related to
the fact that the discrete energy is in that case not coercive. Instead of a plot of
the discrete values (e.g. hext-<m§>1/ 2—plo’t) we usually show the linear interpolant for
reasons of a clear presentation. Below, we list the parameters which are chosen in
the numerical simulations. If not stated differently, we neglect uniaxial anisotropy
and polycrystalline anisotropy. The choice of the constant ¢y, which appears in the
wall energy, is described below in the context of Figure 1.15.

4.10.2. Choice of parameters

Figure 1.11 shows the result of a path-following of the w*-periodic branch where
we chose N; = 512 and N, = 256. We used a uniform step-size 1 = 0.1. The path-
following procedure was started at the bifurcation point, i.e., (xo, Ag) = (Mo, exto) =
(0, h%,.), where the M-component of the tangent was chosen as the discretization of
the unstable mode while the field component is zero.

Figure 1.12 shows configurations computed in a path-following of the w*-periodic
branch where we chose N; = 512 and N, = 256. We used a uniform step-size 7 = 1.
The path-following procedure was started at the bifurcation point.

Figure 1.15 shows the value of the maximum of m; — computed in the same path-
following process shown in figure 1.12 — compared to the optimal period which was
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obtained from a Matlab minimization of the domain theoretic energy. The constant
cp = 3.26 in the line-energy density was obtained by a fit of the simulation results
of the one-dimensional energy (2.2) using 4096 grid points on a domain of size wT*

where m) varies between 20 and 100, cf. Chapter 2, in particular (2.3).

Figure 1.16 shows the result of the path-following for the computation of the optimal
period as described in Section 4.8 where we chose N; = 512 and N, = 256. We used
a uniform step-size y = 0.03.

Figure 1.18 shows a plot of the contour lines of the second derivative of the energy
per period and the first derivative of the energy density. The data results from
a path-following using N; = N, = 256 and 1 = 0.1 of w-periodic branches for
w = (1+0.025n)w*, n = 0,1,2,.... The derivatives of the energy and the energy
density are computed as described in the previous section.

Figure 1.19 shows a plot of the contour lines of the second derivative of the energy
per period and the first derivative of the energy density. The data results from a
path-following of w-periodic branches for w = (14 0.5n)w*, n = 0,1,2,... using
N; = 4096, N = 256 and 1 = 0.5. The derivatives of the energy and the energy
density are computed as described in the previous section. The contour lines are
obtained on the basis of an interpolation of the data on an equidistant grid w.r.t. w
and Feyt.

Figure 1.20 shows a plot of the contour lines of the second derivative of the energy
per period and the first derivative of the energy density. This plot was generated
with the help of a Matlab routine which minimizes the amplitude functional on
an equidistant grid w.r.t. dk; and dhext. We plot the results using the identification
bw = — 5 0k1.

Figure 1.21 shows a plot of the contour lines of the second derivative of the energy
per period and the first derivative of the energy density. Although the magnetiza-
tion is smooth close to the bifurcation, we have to choose a relatively fine grid since
the discrete critical field and the discrete critical anisotropy depend on the number
of grid-points. The data for the reduced energy results from a path-following of
w-periodic branches for w = (14 0.005n)w*, n = 0,1,2,..., using Ny = N, = 512
and 1 = 0.002. The derivatives of the energy and the energy density are computed
as described in the previous section. The result for the amplitude functional was
generated with the help of a Matlab routine which minimizes the amplitude func-
tional on an equidistant grid w.r.t. 6k; and dhext. The contour lines are plotted using

the identification dw = — -22%,5k;.

(w*)
Figure 1.22 shows the result of the bifurcation detection which was computed on
the Nw*-periodic domain using N1 = 128 and N, = 128 grid-points. Here 17 = 0.1
which is the error the secondary critical fields.

Figure 1.23 shows the result of the bifurcation detection where N; = 256, N, = 128
and 7 = 0.1.
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Figure 1.24 and Figure 1.25 show the configurations along the secondary branches
as indicated in Figure 1.23.

Figure 1.26 shows the result of a steepest descent simulation for the 5w*-periodic
pattern where N; = 1024 and N, = 128. The energy is subsequently minimized for
different values of the external field using the previous result as a starting point for
the minimization. The increment in the external field is Ahey; = 0.2.

Figure 1.27 shows a plot of the contour lines of the second derivative of the energy
per period and the first derivative of the energy density. The data results from a
path-following of w-periodic branches for w = (1+ 0.25n)w*, n =0,1,2,..., using
N; = 1024, N, = 128 and 1 = 0.25. The derivatives of the energy and the energy
density are computed as described in the previous section.

Figure 1.28 shows the result of a path-following of the Nw*-periodic branch, N =
1,2,3,4, where we chose N; = 512 and N, = 64. We used a uniform step-size
n = 0.1. The path-following procedure was started at hext = 12, where the first
stationary point was obtained by an energy minimization.

Figure 1.30 shows the result of an iterative energy minimization including uniaxial
and polycrystalline anisotropy. In that case N = 1024, Np = 128, L = 6w", dhext =
0.1. Moreover, we chose Q = 2 X 1074, 6 = 0.02, and ¢ = 0.0005. Let us note
that e(d = 5nm, { = 70um, t = 20 nm) = 52 x 1074, §(d = 5nm, £ = 70 um,
t = 20nm) = 1.9 x 1072, The variance of the random external field was chosen as
(0*)? = 110.83 — for a motivation of that value see Subsection 7.1.2.

Figure 1.32 shows the result of the path following started at the bifurcation for
N; = N; =256 and 7 = 0.1.

Figure 1.33 shows the result of the path following started at the bifurcation for
N1 = N2 = 128 and n = 0.2.

Figure 6.5 shows the result of different path-following and branch switching proce-
dures. We always chose N; = N, = 256. The step size 77 was chosen between 0.1 for
the primary branches and 0.02 for the secondary branches.

Figure 6.6: See Figure 6.5 for the description of the simulation of the reduced energy.
The Euler-Lagrange equation of the amplitude functional was explicitly solved in
Mathematica. The obtained data was exported for a discrete set of values of the
external field and plotted in Matlab.

Figure 6.7, see Figure 6.6.

Figure 7.3 shows the result of an iterative energy minimization. In that case N; =
1024, N, = 128, L = 6w™, dhext = 0.1. The variance of the random external field was
chosen as (0*)? = 1.73. The dominant wave number is independent of the specific
choice of c* provided it is sufficiently small so that the linear ripple theory is valid.
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5

Bloch wave analysis

This chapter addresses the relation between the instability of periodic patterns under
long wave-length modulations (Eckhaus instability) and the concavity of the mini-
mal energy per period. This relation is established on the basis of an asymptotic
Bloch wave analysis in Theorem 5.1. The use of Theorem 5.1 is threefold: Together
with the extended bifurcation analysis in Chapter 6 it implies the instability of the
w*-periodic concertina and explains the deviation of the initially observed experi-
mental period from the period of the unstable mode @*, cf. Figure 1.20. In conjunc-
tion with the numerical computation of the second derivative of the minimal energy
per period, we can derive the marginal Eckhaus stable state for moderate external
field Eext also away from the bifurcation, see Section 4.9 and Figure 1.18. Finally, in
combination with the asymptotic analysis on the basis of domain theory we obtain
the scaling of the period of the marginal Eckhaus stable state for large external field
Bext > 1 in Chapter 2, cf. Figure 1.19.

In Section 5.2 we sketch a generalization of Theorem 5.1 to functionals with an
additional non-linear constraint.

5.1. Main result and proof

Theorem 5.1. Let {1y }5 be a family of @-periodic stationary points of the reduced energy

functional (1.14) which is differentiable w.r.t. w. Consider infinitesimal perturbations dmy
of Bloch form, i.e.,

Smy = eMo(%, %), (5.1)

where v : [0,@) x (0,1) — C is W-periodic in X1. Then for small wave numbers, i.e.,
= 27 where the integer N > 1, we have that the smallest eigenvalue of the Hessian is
bounded by the second derivative of the minimal energy per period, more precisely

~ —_ d2 =~
nf Hess Eo(m5)(0my, omy) - 2 W(Eo(mzz)

)
s in 51) Jig N w (o) 9212 A% dRs T T [ o 0 (01F)2 AR AR
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Here we denote by f(¢) S &2¢ that for & — 0 it holds that that (&) < &2¢ up to
higher order terms.

Before we step into the proof, let us comment on the result of Theorem 5.1. Consider
a smooth branch of @-periodic stationary points 7% and let Eo(@) = Eo(n?g’) be the
corresponding energy. For local energy functionals the geometric interpretation of
concavity immediately leads to a building plan for a suitable destabilizing (finite)
perturbation: By cutting, gluing, and if necessary additional smoothing, one can
construct an inner variation which mimics a wave length modulation, see Figure 5.1.

Re(S/m\z

WA AN
A

w

27

¢

Figure 5.1.: Sinusoidal modulation of a @ periodic function.

Not surprisingly, one obtains in case of a local energy functional that the energy of
the modulation is equal to the modulation of the energy (up to higher order terms).
Theorem 5.1 shows that this can be generalized to non-local energies, at least in the
case of sinusoidal modulation functions.

We subdivide the proof of Theorem 5.1 into several steps. In a first step we deter-
mine how Hess Eq (7 ) (6m12, 6m2) acts as an operator applied to the modulated v. In
particular we have to determine how the non-locality commutes with the modula-
tion. In the case of the reduced stray-field energy, i.e., the non-local operator |91 ~!/2,
the modulation amounts to a shift of the Fourier symbol |ki|~1/2 ~ |k; + &|~1/2. Af-
terwards we choose a suitable Ansatz for v and use an asymptotic expansion of the
operator to derive that the leading order term in the expansion is related to the sec-
ond derivative of the energy Eo(@) := Eo(/ii¥). The perturbation corresponds to the
infinitesimal variation of an inner variation; for details on the Ansatz we refer to the
paragraph which follows right after the end of the proof of Theorem 5.1.

An analog of Theorem 5.1 can, for example, be proofed for constrained minimization
problems with local energy contributions. Note that the reduced energy functional
can be rewritten to fit into that framework by introducing a second variable. This
approach is sketched in Section 5.2.

Proof of Theorem 5.1. For notational convenience we drop the ~.
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5.1. Main result and proof

Ster 1. Consider a modulation perturbation dm; = eigxlv(xl,xz), where ¢ = %,

N € N, and where v is w-periodic w.r.t. x;. In this step we will see how the Hessian
HessEg(my)(dmy, dmy) acts as an operator applied to v. More precisely, we derive
the following formula:

%HGSSEo(mz)((SmZ, 5H12)
/ (31 + i&)v[2 dx daz
/ \|a1 g7V (01 + i) (mz0) + 030)| ey iy
+/ 1) (=92 + 9 —3,|0]) dx; d
(0.0)%(0,1) <| 1|7 (=015 zmz)) ( 1|U| ) dxq dxo
— 2 Hext 0|2 dx; dxy. (5.2)
(0,w)%(0,1)
Before we come to the proof of (5.2), let us recall that the Hessian (evaluated on
Nw-periodic perturbations such as émy; = e®*1v(x1,x,) as above) is given by:
HeSSEo(le)(5mz, 57’?12)
=2 |815m2|2 dx1 dXQ
(0,Nw) % (0,1)

2
+ / ‘|81|_1/2(—81(m2(5m2) —|-8257H2)‘ dx; dxp
(0,Nw)x(0,1)

+/(O,Nw)x(o,1) (' 17 (=7 + 2’”2))( 1|6m2|%) dxy dxp
-2 hext |(5ﬂ12|2 dx1 dX2. (53)
(0,Nw)x(0,1)

Notice that we allow for complex perturbations in order to simplify the notations
in the proof, so that we think of the Hessian as a sesquilinear form — we always
assume that the second argument is the one that is complex conjugated. This also
necessitates the absolute values in (5.2) and (5.3).

In order to obtain (5.2), we have to derive how the modulation commutes with the
local and non-local differential operators w.r.t. the xj-variable; the Zeeman contribu-
tion and d, are obviously oblivious to the modulation. Let us start with the local
operator for which we observe that

al(ei‘:xlv(xl,xz)) = ei‘:xl(81+i§)v(x1,x2),
al(e_igxlﬁ(xl,xz)) = e M (61 — ié)ﬁ(xl,xz).

Using the representation of the non-local operator in Fourier space, we similarly
obtain that

j01] 72 (e 10(x1, x2)) = €19y +iE| T P0(xy, x2),
|81|_1/2(e_i5x177(x1, X2)) = e_iéxl |81 — i§|_1/2z7(x1, X2),

(5-4)

(5-5)
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5. Bloch wave analysis

where |97 4 i&|~1/2 denotes the operator with Fourier symbol |ik; + i&| /2. The
modulation thus leads to a shift of the Fourier multiplier. Hence, we obtain formula
(5.2) by replacing dmy and dm; by v and 3, respectively, and the local and non-local
operators acting on dmy and ém, by (5.4) and (5.5), respectively. We emphasize, and
later on use, that the non-local contribution can be written as

91 + i~V  dxy d
/(O,w)x(o,l)“ 1+ vl e
= / | (1421 7120) (91— 2] /20) iy da

/ o(|9y — i¢|~15) dxy dx,. (5.6)

Let us finally define
Hess® Eq(m)(v,v) := %HessEo(mz)(émz,émz). (5.7)

Notice that Hess® Eg(m;) is defined on w-periodic functions and that we can allow
for arbitrary values of ¢ on the level of (5.7).

SteP 2. Consider v° := vy + fv; where vy and v; are w-periodic functions. (Later
on we chose specific vy and v; in Step 3.) Then
Hess® (my) (v°,v¢) = L£%(vg,v0) + &(L (v, v0) + L0 (v1,00) + L0 (vo, 1))
+&2(3£%(vo,v0) + L1 (01,00) + L (vo,01) + L(01,01)) + O(F%), (5.8)

where the sesquilinear forms £°, £!, and £? are given by

,CO(U, 1’) =2 010017 dxq dxo
(0,w)x(0,1)

| 2(—a d
™ Jowpx o) (| (=9 (ma o) + 20))

(101 772(=91(m2 7) + 7)) dxr dxy
“1/ m_% B _
* /(0,w)><(0,1) (|81| ( d1 7 T aZmZ)) ( al(v 7‘)) dxq dxp

~Zhext | oFdu; dxy, (59)
(0,w)x(0,1)

and
£l (v,7)

=2 (—i0107 +vio7)dxy dxp
(0,w) % (0,1)

* (0,w)x(0,1) (_1 2 ZJ) |al|_1(_al(m2 7_’) + 827_’) dxy dxo
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5.1. Main result and proof

+ —a +9,0)|01| L (imy 7) dx1 d
(O,w)x(o,l)( 1(m20) 4 920)[01| " (imy 7) dxy dxy
+ (=01(m2v) 4 050) (|01] 2 i01) (—01(m27) 4 057) dxy dx,
(0,w)x (0,1)
(5.10)
and
(o) = 4 o7 dxy da
(0,w)x(0,1)
2 i 112 0|01 |2 101 (—91 (moF) + 977) dxy d
- (O,w)x(O,l)lsz| 1|77 i01(—01(m2F) + 027) dxy dxy
? -9 020)|91| 72 i1 (—imy 7) dx1 d
+ (O,w)x(O,l)( 1(m2v) + 020) 01| id1 (—imz 7) dxy dxa
+2 | (my7) dxy d
(o,w)x(o,l)(mzv)’ 1l ma7) dx dxs
+2 (—01(mpv) + 920) 91|72 (—91 (maF) + 927) dxy dxs.
(0,w)x(0,1)
(5.11)

Notice that (5.9) is just the Hessian, see (5.3), evaluated on perturbations defined on
the domain (0,w) x (0,1). In order to show (5.8), notice that the local contributions
in (5.7) and (5.2), respectively, can be easily expanded w.r.t. {. For the non-local
operator, see (5.6), we calculate the asymptotic expansion of the Fourier symbol
w.r.t. ¢

ik —ig| ™t = k=g = T a4 280+ @ R (k). (5.12)

The error in the Taylor expansion R(kj,¢) is of the order O(1) uniformly in k;
provided ¢ < 2%, In fact, by homogeneity only ¢k;' matters since (5.12) is in
principle an expansion in ¢k; ' due to

ik — i8]t = [y L=
Since |ki| > 2Z, the ratio ¢k;' is small independent of ki for & < 2% which en-
taﬂs that R(k1,¢) = O(1). Observe that “'i—h|k1]_2.7:(v) = F(—ild1|7391v), so that
3 |]k1\ 2F (o) = F(i|d1|30,10). Hence we derive from (5.12) that
o1 + i&|1%u —i&|7Y25) dx; dx
Lo, 181 317720 (21 2] 720) iy i
= u (|01 — i&|~17) dxy dx
(0,w)x(0,1) <| e C’ ) 152

= ) (’81’ )dxlde
‘:/ (|91]3910) dx; dx,

+2gz/ 1[92 dx; dxa + O(E). (5.13)
(0,w)x(0,1)
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5. Bloch wave analysis

Using (5.13), it is now a straightforward calculation to obtain the expansion (5.8)
from the representation (5.2).

Ster 3. The formulas derived in Step 1 and Step 2 hold for any stationary point
my whereas in this step it becomes important to take mj from the family of sta-
tionary points {m¥ }, differentiable w.r.t. w: Consider the following Ansatz for the
perturbation v¢:

v® =vg+ vy where vy=—-9;m¥ and v} =ilmy, (5.14)
and L = x701 + wdy,. Based on a differentiation w.r.t. w of the rescaled Euler-
Lagrange equation, we will show in this step that

Lo(v1,-) + LM vy, ) = LOGLmY,-) + L (=91my, ) = 0. (5.15)

As we will see, the constant and linear term in the expansion (5.8) vanish, so that
(5.15) will entail that

Hess® (my)(v%,0°) = &2(3L%(vo,v0) — L2(v1,v1)) + O(&). (5.16)

For a motivation of Ansatz (5.14) we refer to the paragraph which follows right after
the end of the proof.

First we have to show that v¢ is well defined, i.e., that Lm3 is w-periodic. In fact, we
have due to the periodicity of mJ that

Lmy (x1 +w) = (x1 + w)oym5 (x1 + w) + wo,ymy (x1 + w)
= (1 +w)dym3 (x1) + wg (ms (x1 +w)) — wdym3 (x1)
= (x1 + w)oym5 (x1) + woymy (x1) — wdymy (x1)
= x101m5 (x1) + woymy (x1)
= Lm5 (x1).

To see (5.16), we use the expansion (5.8) which was derived in Step 2. Due to
periodicity of my and translational invariance of Eg, d;mj is in the null space of the
Hessian HessE(mY), so that

L£0(,01u) = £%0u,-) = 0. (5.17)

This entails that the constant (in ¢) term in (5.8) vanishes. The Lh.s. of (5.8) is purely
real. On the other hand, £!(vy,vy) is purely imaginary, see (5.10) and (5.14). More-
over £L%(vg,v1) = L%(v1,v9) is purely imaginary, see (5.9) and (5.14). Hence, the
linear term in (5.8) vanishes. So far we have shown that the leading order contribu-
tion in (5.8), where vy and v; are as in (5.14), is (at least) quadratic in ¢. Using (5.15)
then (5.16) follows. In fact, by testing (5.15) with v; we derive that

Hess® (0%, 0%)
- gz(%ﬁz(v()/ UO) + ’Cl(vll UO) + El(v()/ Ul) + Eo(vll Ul)) + O(CS)
= Z*(3L%(vo,v0) — L2(v1,v1)) + O(&). (5.18)
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5.1. Main result and proof

We now address (5.15). Let us note that by abuse of notation we do not distinguish
the linear forms £;(v, -) and their Riesz representations w.r.t L? in the following. We
have by definition (5.10) that

LM (—ormg, ) = —i( = 43my — (m§oy — ) [o1] " (mFm3)
— m%|01| (1 (m5 Iy my) — 9201m)
+ (39, - az>(\an—?’al)(—al(mwalmz") + azalm%)

_ ( 42m¥ — may]91| 101 Y2 + 9,10, 1o, 5

2
—m 01| 7103 2 + |9y ~00ymy

— 29,01 | 33 EY 1,0, 291,09, mY

w)2

Observe that |09 = —|9;|"! which yields that the underlined terms cancel.
Therefore we obtain

L (=avmg, ) = i (43tm +mg|y]| S — [oy 1 93my) (5.19)
Consider the rescaling
x1 = w¥ and my (%) = my(wxy). (5.20)

Under this rescaling the Euler-Lagrange equation, i.e.,

w)2
0 = —28%m§ + (m§a — ) (01| (9, 5L + 0pm) — 2oy i,
turns into
0 = —Z 3¢ + (L m¥d; — 3)w|dr| " (—L 3y 5L 4 0y — 2 hewy 1Y

(5.21)

The latter expression (5.21) has the right form in order to differentiate w.r.t. w. We
apply chain rule and use that the Hessian is related to the differentiated r.h.s. of the
Euler-Lagrange equation (w.r.t. my’). After rescaling into the original variables we
therefore obtain

0=1(42m2 + m¥ay (91| 1912  — 13y 1Im¥) + LO((@uil) (w 1), ). (5.22)
To obtain (5.15), we compare (5.19) and (5.22) multiplied by iw, using the relation

(W) (0" x1) = (31015 + W) (x1) = L (x1). (5.23)
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5. Bloch wave analysis

STEP 4. In this step we show that

WZ%EOQ%) 1L%(v9,v0) — LO(v1,v1). (5.24)

Let us rewrite the the minimal energy with the help of the rescaled quantities (5.20),
ie.,

2
= / / almz %(|81\’1/2(—81% + azmz))z - hextm%> dx, dxy
(O,w) J(0,1)
~ ~ ~ 50\ 2
:/01 <w o) W 2(@) + 3 (w2302 (—w 19 YL 1 i)
- hext(mg")2> dx, | d% =: EY (). (5.25)

The r.h.s of (5.25) has the right form in order to differentiate w.r.t. w. It holds that
S E () = 038 (#13) + 290 Do, EG (1590
+ D5, EG (7715) (0w, dwh) + Diny E (85 )35, 15
where Dj;, denotes the functional derivative. The last contribution vanishes; it is

equal to the rescaled Euler-Lagrange equation tested with 027Y. By differentiating
the rescaled Euler-Lagrange equation w.r.t. w, and testing w1th 1y, we obtain

dwDiin, E§ (15)01y + Dig, Y (115) (01, 0p1it’) = 0.
Using the latter identity, we have so far shown that
d? Tw/~ B [ B [ ~ ~
SEo(my) = B () = 945 (1i5)) — Dy, ES (18) Qg duits).  (5.26)

We are now ready to identify the r.h.s. of (5.26) with the r.h.s. of (5.24) and start with

the easy part, namely the second contribution in (5.26). By scaling into the original

variables and using the relation (5.23), namely (wd, ) (w 1x1) = Lm¥(x1), we

obtain

w? D3, EY (%) (91, 0ty ) = HessEY (m)(Lm, Lm)
59 Lo(Lm, Lm)
= Lo(v1,01). (5.27)

We finally address the first contribution in (5.26). From definition (5.11) it follows
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5.1. Main result and proof

that
%‘CZ(UOI UO)
= 2(0ym5)?
(O,w)x(0,1)< (9umz)
— mg’ Blmg’|81|_3 81(—81(71130811’}130) -+ azalmg))

+ (=01 (m3yayms) + 9201m5) 1] > 91 (m3 0ym3)
+ (m391m3')[01] " (3 91m3)
+ (—al(mg’almg’) + azalmg’)\al\_?’(—al (mg’almg’) + azalmg))> dx1 de

By expanding the latter expression and using again the relation that [0;|7%0% =
—|091]| ! we find that

1,2 — w2 —-1/2 w2
1£2(09, o) /(O,w)x(o,l) (2001m8? + (31] 7 /20m)?) dxy s,

On the other hand, due to (5.25), we have

w2 EY (mY) = w / / 2w‘3 + (|01 V2(9m¥) )dx1 dx,
2(3 9171 2(9m%)?) dxy dx,.
(0w)<01)<(m> (1] 7172(30m3)? ) dxy dxy
This establishes
w?dL,EY (my) = 1L%(vo, v0). (5.28)
Collecting (5.27) and (5.28) yields together with (5.26) that

2
w? & By (m) = 102(v0,00) — £0(01,01).

StTEP 5. In this step we conclude as follows:

Czw E o(m )(524) & (3L%(vg, v9) — L2(v1,v1))
526 Hess® (v°,0°) + O(&%)
G2 %HessEo(mg’)((Smg (Smg) +O(&)
HessEo(mg’)((Smg, (Smg)
f(o,Nw)x(o,1) |om3|2 dxy dxz

/(o w)x(0,1) 062 dxy dxa + O(&3),

where ng = etMyl and ¢ = —o4 my + ¢i LmY. Observe that

212 d; d :/ 3 P dors s 4 O(E).
/<o,w>x<o,1>|v| 2= fygon e 1R+ O)

This establishes the statement in Theorem 5.1. O
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5. Bloch wave analysis

Although Theorem 5.1 is formulated in the context of the reduced energy (1.14), it
can be shown to hold for a broader class of energies, for example of the form

E(m)= [ Y ay(@m)?+ by([ox|'B(m,9xm))? dx dy, (529)
(0,w)xY 5

where Y is some subset of R”, m : (0,w) x Y — R is w-periodic, and B; denote
differential operators w.r.t. the second variable y. The reduced energy functional is
contained in that formulation in the form of

ap = —hext,

ap =1,

B_1/5(m,0ym) =c(m) = —axm; +0ym = —moym +9ym, b_q,=1/2.
By subdividing our proof into several steps we tried to highlight the crucial in-
gredients necessary for a generalization: The first step is the derivation of the ex-
pansion (5.8). Establishing (5.15), on the basis of the differentiation of the Euler-
Lagrange equation w.r.t. the period, then yields in combination with the introduc-

tion of the rescaled energy density (5.24). Notice that the identities in Step 4 are a
consequence of the homogeneity of the local and non-local differential operators.

Relation between the infinitesimal perturbation and the modulation by an inner
variation. Not surprisingly, the infinitesimal variation (5.14) can be related to an
inner variation in the form of a sinusoidal wave-length modulation. To see this,
consider an inner variation due the modulation via a function {: Let ®, be the flux
defined via

Let u® be a family of w-periodic stationary points, then we define the inner variation
uf (e (x1)) = u® V(D (x1)x1).

Therefore it holds that
Lemoul (x1) = (—01u™) + 7' (1101 + w0y )u®,

so that in case of { = €°*1 we obtain (5.14).

5.2. Bloch wave analysis for general energy functionals

In this section we address the generalization of the Bloch wave analysis: We consider
functionals defined on functions with values in a general linear space Y including a
general non-holonomic non-linear constraint.
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Lete: YXY - Rand g : Y XY — Z, where Y and Z are some linear (Banach)
spaces. For u : [0,w) — Y which is w-periodic consider (as a model problem) the
minimization of the energy

w
E(u) :/ e(u,dxu)dx subject to g(u,0,u) =0, (5.30)
0

in the sense that g(u(x),dyu(x)) = 0 holds pointwise in x as a Z-valued equation.
Notice that the reduced energy functional can be rewritten to fit into this framework.
In fact, the stray-field contribution can be localized introducing a second variable

b= (b1/b3):

w w o0
/ (194]120)2 dx; = inf{/ / B + b2 dxz dxy | b : [0,) x [0, 00) — R
0 0 0
01b1 +93b3 = 0 for x3 # 0 and by = 0 at x3 = 0}. (5.31)

Using the equivalence (5.31), the minimization of the reduced energy w.r.t m; can be
replaced by a minimization both w.r.t m; and b; this means that we identify u in (5.30)
with (my,b); the space Y in this case is a space of the form R x {b : [0,00) — R?}.
Obviously, my is coupled to b via a non-linear constraint involving the non-linear

2
charge density o = —81% + domy.

In the following we sketch the proof of the generalization of Theorem 5.1 to func-
tionals including a non-linear constraint of the form (5.30). In contrast to the proof
of Theorem 5.1, we use a (slightly) different method which can be applied in case
of local energy contributions. In that case, one does not need to rescale since the
calculation of the commutator relations for L = xdyx + wdy, and the differential oper-
ators is straight-forward. On the other hand, the non-linear constraint necessitates
additional assumptions for the existence of the Ansatz of the Bloch eigenfunction.

We start with some preliminary observations. Let u(s) be a finite variation that is
admissible in (5.30) with u(0) = uy, d—iu(s)szo = du, and %u(s)szo = 6%u, where 1
is some stationary point of the energy. Then for s = 0

Qu U+ gp0x0u =0, (5.32)
Ou + Quy Ou + 20U - gyyp 06U + 00U - pp 0xOU + &y 5%u + Sy 9,0%u = 0, (5.33)
which hold as Z-valued equations pointwise in x with the abbreviation g,(x) =
gu(u(x),0xu(x)), etc. Notice that p denotes the derivative w.r.t. the second variable.

The relations (5.32) and (5.33) can be seen to hold by differentiating the constraint
g(u(s),0xu(s)) = 0 w.r.t. to s, evaluated at s = 0.

Let us assume that there exists a Lagrange multiplier ¢ : [0,w) — Z*, where Z*
denotes the dual space of Z, s.t. the Euler-Lagrange equation takes the form

e (1o, 0xig) — Oxep(1g, Oxtig) + 9gu (1o, Oxtig) — Ox(@gp(uo, Oxtt0)) =0,  (5.34)
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5. Bloch wave analysis

as a Y-valued equation valid for all x € [0, w). (This is related to the fact that g, is
invertible. We address the meaning in case of our energy functional,i.e., (5.31), after
the end of the proof.) The Hessian in the w-periodic stationary point ug is given by

B w ou | Guu Cup ou
HessE (1) (5”"5”)_/0 (<8x(5u) (eup ePP) (axéu)

ou ( Suu Sup ou
e (ax5”) (gup gpp) (ax5”))dx (5:35)

for éu subject to (5.32). This can be seen by differentiating E(u(s)) twice w.r.t. s,
inserting (5.34) tested with 6?1, and finally appealing to (5.33).

Consider the family of minimizers
ug = argmin{E(u)|u is w-periodic and suffices the constraint (5.30)}.

Let us assume that this family is differentiable w.r.t. w. However, for notational
convenience we most of the time drop the w in the following and write 1 instead
and similarly e instead of ¢ = e(u”,0,u™). Consider a Bloch wave Ansatz for
the infinitesimal variation of the form du = e**v°, i.e., a sinusoidal modulation
of a w-periodic function v¢, for 0 < & = % < 1 where N € IN. Notice that the
perturbation du is in general complex. For any sesquilinear form we assume that the

second argument is the one that is complex conjugated. Let us plug in our Ansatz
into the Hessian:

1
NHessE(uo) (6u,du)
o /w v° [ euu eup o°
6 Suu  Sup % )
. d
IR (axvg) (8up 8pp) (ax776 ) i
w

w
+ ¢ /0 (v - ey 7 + @b - gy ) dix
=: L%, 0%) + LY (05, v0) 4+ E2L2 (v, o°). (5.36)

On the level of the constraint (5.32) we find
gut® + gp (9x0° +igv’) = 0. (5.37)

Assume that v¢ is of the form v¢ = vy + vy + v, — in contrast to (5.14), the
quadratic term is necessary due to the constraint, see below. We plug this Ansatz
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into (5.36) and obtain the following expansion:

HessE (1) ((v%,0x0%), (v°,0,0%))
= £°%(vg, v9)
+ &(LY (v, vo) + LO(v1,v0) + L (v, v1))
+ E2(L2(vg, v9) + LY (vo, v1) + LY (v1,v0) + L%(v1,v1)
+ L0(00,02) + L2(v2,v0)) + O(&°). (5.38)

Similarly we expand the constraint (5.37) for which we obtain

0 =8gu00 +gpax00
+ g(guvl + gp(axvl + iUO))
+ & (guv2 + gp(0x02 +iv1)) + O(&). (5-39)

As in the proof of Theorem 5.1 we choose vy = dyu and v; = —iLu, where L =
xdy + woy. However, due to the non-linear constraint it is now necessary to assume
that there exists v, such that (5.37) holds up to order &, i.e.,

8uv2 + gp(9xvz +ivy) = 0. (5.40)

This is again related to the fact that g, is invertible. Note that for a general pertur-
bation r, that is not necessarily admissible in (5.32), we have that

Eo(vo,r) = — /ax(p(gur + gp0xr) dx, (5.41)

which can be seen by differentiating (5.34) w.r.t. x, testing with r. Let us come
back to (5.38). Due to (5.32) and (5.41) with the choice of du = d,u we obtain that
£%(vg,v9) = 0. Observe that L!(r,r) = 0 for any real function . Moreover, we have
that £%(vp,v1) and £%(v1,v9) are purely imaginary since vy is purely real and v; is
purely imaginary. Since the Lh.s. of (5.38) is purely real we thus obtain

HessE (1) (v°,0°) = &*(L(vo, v0) + L' (vo,01) + L' (v1,v0)
+ [,0(01,01) + ﬁO(Uz, ’U()) + 50(00, 02)) + O(¢3) (5.42)

Our goal is to identify the latter expression (5.42) with the second derivative of the
minimal energy E(w) = E(uy) where uf = argmin{E(u)|u w-periodic}. Appeal-
ing to (5.41), we deduce from (5.40) that £%(vg, v2) + L%(v2,v9) = 2 [ 9xpgpLu dx.
Therefore, we find that (5.42) does not depend on v, up to order &? — as expected
due to our assumption that u{’ is a family of stationary points. More precisely, since
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5. Bloch wave analysis

vg is real and v, = —iLu we find that

L2(vg,v0) + LY (v1,v0) + LY (v, v1) + L2(v1,01) + L2(v2,v0) + L0 (vg, v2)
= /Ow(vo - eppD0 + QUo - §ppTo) dx
+i/0w(01 - epp0xTg — 0x01 - eppDp) dx +i/0w(00 - epp0yT1 — OxVp - eppDy) dx
+1i /Ow @(v1 - §ppOxTo — 0xV1 - §ppTo) dx
+i/0w ¢(v0 - §pp0xT1 — 0xVp - §pp¥1) dx
+ L%(vy,v1) +2 /Ow dxpgpLudx

w
2/0 (v0 - eppv0 + @UO - gppUo) dx

w
0

w
- 2/ @(0xLut - gppdxtt — Lut - gppdsu) dx
0
w
+ L%(v1,v1) — 2/0 @(Oxu - gupLu + 02 - SppLu + gpoxLu) dx,

where we just replaced vy and v; by our specific Ansatz and integrated by parts in
the last contribution. Collecting all terms containing the Lagrange multiplier ¢, we
find

L2(vg, v9) + L (v1,00) + L1 (v9,01) + L2(v1,01) + L (v2, v1) + L0 (00, v2)
= /0 (vo - epplo + QUg - gppvo) dx

w
— 2/ (3xLu - eppstt — Lut - epyd3u) dx
0

w
+L%(01,01). (5-43)
We now turn to the second derivative of the minimal energy dd—;E(w). Let us recall
that by assumption the energy density is given by e = e(u§,dyu{). Therefore it

holds that

w
%E(w) :% A edx
w
= ¢ —i—/ dye dx
1 ZUO
= 5/0 (ax(xe)erawe) dx

w
= %/0 <€+Le>dx,
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5.2. Bloch wave analysis for general energy functionals

where L = xdyx + wdy. The second derivative is given by
& 1 [¢ 1 1 [¢
32 E(w) = —a7/0 (e—i—Le) dx+5(e—i—Le)—|—Z—U/0 <8we—i—8wLe> dx
w w
— #/0 —<e+Le> +8x(x(e+Le)dx+%/0 (8we+8wLe> dx
w
= L ; (xax(e + Le) + woye + wawLe> dxy

w
— # ; <L2€+L€> dx. (5.44)

In order to identify (5.44) with (5.43), we use the Euler-Lagrange equation — once
tested with Lu, see (5.51), once tested with L?u, see (5.52) — which introduces the
Lagrange multiplier into (5.44). In order to rewrite the outcome, we moreover apply
the differentiated constraint ¢ = 0 — once applying L, see (5.54), once applying L2,
see (5.53). Let us start by expanding:

2
W f E(@)
w
:/ (L2 + L)edx
0
B /w Lu [ euu eup Lu
+e,L%u + epLzaxu +e,Lu + epLaxu) dx. (5.45)

In order to apply our strategy, it is necessary to rewrite the latter expression using
the relations

Loy = 9L — 0y, (5-46)

0L = Loy + 0, (5.47)
and

L20; = 0¢L? — 20,L + 0, (5.48)

9xL? = L?0x + 2Ly + 5. (5-49)

Integration by parts in the second line in (5.45) will then turn the terms containing
tirst derivatives of e into second derivatives of e. In fact, due to (5.46), the identity
(5.45) turns into

2
W G E®)

:/w( Lu )(euu eup)(Lu )dx
w
—|—/ (—2(Lu - eyp0xtt + 0xLu - epp0xt) + Oyt - epp0xtt) dx
0

w
+ / (euLzu + epLZB,Cu +eyLu + ey Loyu) dx.
0
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5. Bloch wave analysis

Due to (5.46) and (5.48) we find that
w
/0 (euLzu + epLzaxu +eyLu +epLoyu) dx
w
— /0 (euLzu + ep(axLzu — 20 Lu + 0xu) + e, Lu + ep(9xLu — dyu)) dx
w
= / (eMLzu + ep(axLzu —20yLu) +e,Lu + epoyLu) dx.
0
Integration by parts yields that
w w
—2/0 epdyLudx = 2/0 (Lu - eypdxtt + Lu - epp0%u) dx. (5.50)

Using the Euler-Lagrange equation (5.34) tested with Lu we find that

w w
/0 (euLu +epdyLu)dx = —/0 (pguLlu — dx(¢pgp)Lu) dx

w
= —/0 (pguLu + ¢gpoxLu) dx. (5.51)
Plugging in (5.35), (5.50) and (5.51) we hence obtain
wzdd—u;E(w)

_ 0 Y Lu '\ (Quu &up Lu /w )
= L"(vy,v1) /0 (P(axLu) (gup . 9.Lu dx + ; Oxll - eppdytt dx

w w
+ 2/ (Lu - eppdiu — OxLut - epydyut) dx + / (euL?u + €0y L?u) dx
0 0

w
_/0 (pguLlu + ¢gpoxLu) dx.
Using once again (5.46), we rewrite the second term in the latter expression:

2
wZ#E(w)

== [T (i) (e 5 (o)
[ plaLu- gupdua + 2Laste- gy + D gypdr) dx
+ /Ow Oxl - eppOxu dx + 2 /Ow(Lu . eppaiu — OxLu - eppoyu) dx
+ /Ow(euLzu + epaxLzu) dx
— /Ow(qoguLu + @gpoxLu) dx.

Notice that due to (5.46)
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5.2. Bloch wave analysis for general energy functionals

If we once again use the Euler-Lagrange equation (5.34) tested with L?u we find that
/Ow(euLzu + epaxLzu) dx = — /Ow((pguLzu + q)gpaxLzu) dx. (5.52)

Due to (5.49) we therefore obtain

/w(euLzu + epaxLzu) dx = — /Ow go(guLzu + gpLzaxu +2gpLoxu + gp0yu.) dx,

0
The application of L? to the constraint g = 0 yields

Lu . guu gup Lu _ 2 2
(Laxu) (gup gp,,) (Laxu) = —(guLl7u +gpL70xu). (5-53)

Therefore we derive that
w w
W E(w) = oy o) + [ o epmdy [ glguln + gy L20) dx
w w
w
+ 2/0 (Lu - eppaiu — 0xLu - eppoyu) dx
w
— [ (puL? + 93,10y + 298, Lasu + gg,du1) dx
w
—/0 (pgulu + ¢gpoxLu) dx.

The underlined terms cancel so that we obtain

2 w v
w? L E(w) = £0(01,01)+/0 V0 - eppTo dx+/0 $vo - gppUo dx

+2 /Ow(Lu - eppO3t — Ox Lt - epydxut) dx
-2 " (Lt gupdytt + DLt - gpdytt) dx
- /Ow ¢(2gpLoxu + gpoxu + gy Lu + g,0xLu) dx.
Let us once more use the relations (5.46) and (5.47) to rewrite the last line:

(p(ngLaxu + gpOxu + guLu + gpoyLu) dx

I
\

S

¢(28p(0xLu — Oxu) 4 gpOxt + gy Lu + gp(Loxu + 0xu)) dx

o

w
¢(28p0xLu + gyLu + gyLoyu) dx.
0

Due to

0=Lg = guLu + gpLoxu, (5.54)
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5. Bloch wave analysis

we hence obtain

w

w
- /0 ¢(28pLoxu + gpoxtt + guLu + gpoyLu)dx = — /0 ¢ 28p0xLu dx.

Therefore
2 2 0 v v
w3z E(w) = L7(v1,01) —|—/0 D0 - eppT0 dx-l—/0 @vg - §ppVo dx
w
+ 2/0 (Lu - eppdiu — dxLu - eppdyu) dx
w
- 2/0 ¢(Lu - SupOxU + dxLut - gppdxtt + gpaxLu) dx.
A comparison to (5.43) shows that

?w? L E(w) ~ N~"HessE(u®) (5uf, 6u’),

dw?

where du¢ = 9,u® — EiLu¥ + &vy and & = %T, 0 < N € N. This completes the

sketch of the proof.

Remark 5.2. Let us shortly address the existence of the Lagrange multiplier in case of our
energy (5.31). In our case, gp is given as my in the sense of a multiplication operator. Is is

useful to state this more precisely, see below.

On can show that the b-component of the minimizer satisfies V. x b = 0. Hence, there exists

a potential V, s.t. b = —(91,03)" V. The Euler-Lagrange equation turns into

—20%1my — 2hexi + M0,V — 9,V = 0.

In particular, the Lagrange multiplier ¢ can be identified with V. This can be used to show

that the term, which is related to the multiplier ¢ in the Hessian, is of the form

w
/ V81 ((571’12)2 dxl.
0
In case of our energy (5.31), equation (5.40) turns into
—81(1’112?)2) 4+ 0pvy — impv; = —0d3Vo on x3 =0,

where v1 = —iLm,.
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6

Bifurcation analysis

In this chapter we investigate the bifurcation of the reduced rescaled energy func-
tional (1.14). We recall the outcome of the classical bifurcation analysis which was
performed in [CAOSo07], see Section 6.1. This analysis is afterwards extended to take
into account small variations of the wave number, see Section 6.2. On the basis of the
amplitude functional — which we obtain from the extended bifurcation analysis — we
study the stability of minimizers close to the bifurcation, see Section 6.3. In particu-
lar we will see that @*-periodic states are Eckhaus unstable close to the bifurcation.
This instability is related to a degeneracy of the amplitude functional. At the end
of that section we provide a comparison to the classical, non-degenerate Eckhaus
instability. In Section 6.4 we further generalize the extended bifurcation analysis
to spatially varying amplitudes. We formally derive a non-local Ginzburg-Landau
functional representing an approximation of the energy close to the bifurcation on
w-periodic functions with period @ close to @*. This provides the most general tool
to investigate the Eckhaus instability. Finally, in Section 6.5, we will see that the
secondary bifurcations originate from multiple primary bifurcations and can hence
be asymptotically investigated near the degenerate primary bifurcation.

We drop the ~'in this chapter to simplify the notation.

6.1. Classical bifurcation analysis.

In [CAOSo7], a bifurcation analysis was carried out for the reduced energy func-
tional by deriving the asymptotic energy close to the bifurcation. Let us shortly
review the set-up and the outcome of that analysis: Consider small perturbations of
the critical field

hext = hzxt + Ohext
and a perturbation of the uniform magnetization m; = 0 of the form
my = Am + A’m3* + O(A3), (6.1)

where m} = cos(kjx;)sin(7x;) is the unstable mode with wavenumber kj = 2Z.

Since the cubic non-linearity of the energy degenerates on the kernel of the Hessian,
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6. Bifurcation analysis

it is necessary to take into account the second order term in the expansion (6.1). (The
degeneracy is caused by the invariance of the energy under the transform my ~~ —m,
and x, ~» —xp.) Evaluating Ey on the Ansatz (6.1) and neglecting all terms of
higher order O(A®) in the expansion of the energy w.r.t. the amplitude A at the

field hext = hly, an optimization in m}* of the A*-term in the expansion yields that

L(2)1/3

my* = 35(%)""7 sin(2k]x1 ) sin(27rx2).

One obtains that the asymptotic energy close to the bifurcation is described by the
amplitude functional

1/3
Eo(Amj + APmy*) ~ =827 sho A2 — 2 A%, (6.2)

Since the quartic coefficient is negative, the bifurcation is subcritical and hence the
w*-periodic branch emanating at the critical field is unstable. From an optimization
of the asymptotic energy (6.2) w.r.t. the amplitude A one can derive an asymptotic
expansion of the bifurcation branch as a function of dhey. Obviously the optimal
amplitude A will scale as (Shi){tz. We note that the fourth order coefficient 5 is
small compared to the second order coefficient and the scale hj,, of dhext. (This is
related to the numerical observation that the bifurcation is just slightly subcritical,
see Figure 1.11). Hence the bifurcation is near-degenerate and it is necessary to take
into account higher order terms. For an unfolding we have to consider an extended

Ansatz of (6.1) for the magnetization of the form
my = Amj + A’my* + Admy* 4+ O(AY), (6.3)

where m} (k1) = cos(kixp)sin(7tx;). Since we are interested in the behavior of the
energy for varying wave number we take into account small perturbations of the
wave number ki = kj + Jk1. As we will see, after optimization of the A*-term w.rt.
m3* and of the A®-term w.r.t. m}** this leads to and expansion of the energy of the

form
%EO ~ (_C2fshext + 525](%)142 + (—C4 + 54(5](1)144 + C6A6, (6_4)

see (6.18) in the following Section 6.2. Note that in case of the near-degenerate
bifurcation, i.e., |c4| < 1, we expect a different scaling behavior of minimizers then
in case of the classical bifurcation analysis, namely

A ~ ShLE ~ 5k1/2. (6.5)

ext

Let us now start with the unfolding of the near-degenerate bifurcation and the
derivation of the amplitude functional. For that purpose we take into account an
additional term in the energy of the form

2dx d
Q/(O,w)x(O,l) My G 4%2

so that the energy degenerates for some value Q = Q*(k}) of the quality factor.

Recall that in case of high anisotropy we can interpret the parameter Q close to the
critical field as a reduced value for the quality factor, cf. Section 1.10.
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6.2. Unfolding of the near-degenerate bifurcation: Extended Ansatz.

6.2. Unfolding of the near-degenerate bifurcation: Extended
Ansatz.

The goal is to obtain an asymptotic expansion of the energy in the neighborhood of
the (quadratic near-degenerate) bifurcation. For that purpose we have to determine
the branch along which the energy decreases the most to higher order: Consider a
cubic perturbation of the uniform magnetization m, = 0 as in (6.3), i.e.,

my = Amj + A’m3* 4+ ASmi** + O(AY), (6.6)

where m3 (k1) = cos(kjx1) sin(7tx2) and where the wave number is close to the criti-
cal one, i.e., k; = ki + dky. Observe that the uniform magnetization m, = 0 becomes
unstable under perturbation by m} (k1) at a field

(kl) _ k2 i

*
h + 2l

ext

It is useful to rewrite the energy in terms of a quadratic, cubic and quartic form:

Eo(mp) =3(my, Lmy) + IN3(ma, mo, mp) + TNu(ma, ma, my, my)

- (hext_tht(kl))/ m% dx; dx
(0,w)x(0,1)
—Q*(k 4 dx; dxo,
HQ-Qk) [ mddndy,

where

${u, Lo) = / 914010 + 1(191]7Y292u) (191 71/20,0) daxy dix
(0,w)x(0,1)
— hiy.(k dx; dxy,
/(O,w)x(o,l) ext(k1Ju v dxy dxz
Walwor)= [ T2 ) (1] ) da d
w
FNa(w,0,7,9) /0 (01720 (0] 20 9)) d i
ZU

—|—/ Q* (k1) uvrsdxy dxs. (6.7)
(0,w)%(0,1)

N|—

We plug Ansatz (6.3) into the energy and expand the resulting expression w.r.t. the
amplitude A. Then as in [CAOSo7, Subsection 2.2.1] m3* is given as the solution to
the minimization of the contribution of order A%, i.e.,

,Cm;* +3 (N3(m2/ mZI ) +N3(m51 ,mi) +N3(" m;, m;)) =0. (68)

(We note that by abuse of notation we identify linear forms with their L?-Riesz
representation.) Fredholm’s alternative states that this equation is uniquely solvable
since the cubic non-linearity vanishes on the kernel of the Hessian:

N3 (m3,m;,m3) = 0.
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6. Bifurcation analysis

Using the definition of £ and N3 equation (6.8) turns into
—20%m3* — |0q| " tosmy* — 2k (k) m3* — ZF sin(2kyx1) sin(27txp) = 0. (6.9)
Notice that |d1|~! acts on a pure mode as
01| L sin(kqxy) = k1| tsin(kixg) and  |91] ' cos(kixy) = |ki| "t cos(kixy). (6.10)

Equation (6.9) can be explicitly solved and we obtain

Ili'r 5 sin(2kyx1) sin(27txy).

sk T
my = 26k 3

The form of m;* is a consequence of the r.h.s. in (6.8) which is quadratic in m3. (For
example in case of N3(my*,mj,0), which contains the expression (m})? = 1(1+
cos(2k1x1))(1 — cos(27xy)), the differentiation w.r.t. x, and x; cancels the constant
terms and turns the the cos into sin.) Due to (6.9) we see that the ki-dependent
factor in the amplitude of m3* is inversely proportional to the eigenvalue A of my,
ie, Amy = Lymy. The coeff1c1ent in the energy expansion of quartic order A% is

given by
—3(m¥*, Lm3*) + Nay(ms, ms, m3, m3). (6.11)

A straightforward calculation shows that this term vanishes and hence the bifurca-
tion is degenerate provided

(572 — 18kq ) |k1|

Q= Q") = TP+ )

(6.12)

Let us motivate the kj-dependence of (6.12): Since the amplitude A, (k) of m}* is
inversely proportional to the eigenvalue A of my, Amy = Lomy see above, the k-
dependent factor in the first contribution in (6. 11) is proportional to the amplitude of
m5* multiplied by the size of the domain, i.e., k* . Due to homogeneity, the integrals
in the second term are linear in k1. Hence, the condltlon that (6.11) vanishes amounts
to an equation of the form aA;(ky) + b + cQ*(k1) = 0. This explains the form of the
numerator in (6.12).

Note that Q*(k}) & = % so that
Q ( ) 640’ (6.13)

which is the fourth order coefficient of the energy in the bifurcation, see (1.19) in
Section 1.6. We now optimize the coefficient in the expansion of the energy of order
A® in m3**. This leads to the equation

Lmy™ +3 ) Na(t(my,m3", ) + Na(ms, m3,m3,-) =0, (6.14)

T€SS

where T € S® denote permutations. Since m}* is a second order harmonic of
m3, the r.h.s. of the latter equation contains third order harmonics of mj, which
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6.2. Unfolding of the near-degenerate bifurcation: Extended Ansatz.

$okk3

are given by m3**! = cos(kyx;)sin(7xa), m3**2 = cos(3kix1) sin(37xp), m3**® =
cos(3k1x1)sm(37'[x2) and m}*** = cos(kjx1) sin(7rx;). Fredholm’s alternative pro-
vides a unique solution to that equation if Q* (k1) as in (6.12), cf. (6.7). By general
considerations this entails that only the first three harmonics can appear on the r.h.s.
of the equation. A straightforward but lengthy calculation shows that the cubic
perturbation is given by

sy = —<—21;—}(1cos(k1x1)sin(3nx2) —

(18]ky [°+7%) ;
Al ) cos(3kqx1) sin(7txy)

8(48k; |7 —272

— 18]k |3 +47 72 .
o W cos(3k1x1) Sln(37‘(x2)>.

Let us again give a motivation for the k4 -dependence of the amplitudes, in particular
the divergence of the second amplitude for k; = (24) : By testing (6.14) with each
of the third order harmonics we read off that the corresponding amplitude A} of

;**l satisfies an equation of the form A! LEV (m ***1) +a;Ax(k1) + ¢+ Q*(k1)d; =0,
where EV denotes the eigenvalue of m}**! as an eigenfunction of £2 The amplitudes
are therefore inversely proportional to Az(ky) and EV(m3**1) = |k ‘, EV(m}*2) =

48k [>—27 K4k 3 8l [+t .
— g and EV(m}*°) =2 ol respectlvely. The simple structure of the first

numerator is due to the fact that mz**1 has the same wave number as mj}, namely
the wave number k.

The divergence of AZ in kj is related to the fact that for the value of k; = (7;_2)1/ 3 not
only m; but also mﬁ**z is in the null space of the Hessian at the field h},, (k7).

The coefficient to order A° is then given by
— 5 (m3*, Lms**) + 2Ng (m5*, my*, my, m3) + 4Ny (m3y*, ms, m3*, m3). (6.15)

Altogether we obtain the following expansion of the energy per length close to m, =

0, hext = tht(kT) and Q= Q* (kT)

K Eo (A, Ky, ext)
~ —(hext — hie (k1)) §A% + (Q — Q¥ (k1)) g A* + e(k1) & A®, (6.16)

where

2
h:xt(kl) = k% + #/
k1| (5% —18[ky *)
Q") = Sseempt) -
e(k [k 2 (18]ky |3+72)2 (—18]k; [3+47722)2 (6.17)
1) = 6k P+m2)2\ 9 2448k P—272)  9x144(8]k [P+ 72)

% (52 —18kq |3)
Tt 6 )

Notice that the first three terms in e stem from the quadratic contribution in (6.15)
and are hence quadratic in the amplitudes A} multiplied by the eigenvalue of
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6. Bifurcation analysis

oKk

my**'. Due to homogeneity, the quartic contribution consists of two terms which
are quadratic in Ay, the latter one is multiplied by Q*(k1).

For k; close to the critical wave number ki, i.e., ky = ki 4 k1, Q = Q*(k}) +9Q, and
hext = hi (ki) + Ohext, we expand the energy w.r.t. 0k and obtain that

ext

& % ok3
2 Eo(A, 01, Ohewt) = (= Shex + S iy Hoa(kr) 1) §47
+(6Q = gy b=k Q" (k1) 0k1) g A* + e(ki) gz A°. (6.18)

Note that & |, _: i, (k1) = 0 since k¥ is the minimizer of the dispersion relation
dkq 1k1=K7 Fext 1

h% (k1) so that the first non-constant contribution is quadratic in dk;. We expect that

the choice of 6Q = —Q*(k}) in (6.18) provides an approximation of our reduced

model. For 6Q = 0 we are in the degenerate case.

In the next section the analysis of the amplitude functional (6.18) is presented. Before
we step into it let us remark that the numerical value of e(k7}) is positive. This implies
the existence of a turning point of the primary bifurcation branch emanating at the
critical field, cf. Figure 1.11.

6.3. Analysis of the amplitude functional

We now present the analysis of the amplitude functional. On the one hand, we are
interested in absolute minimizers, i.e.,

.k}
arg Egg 7=Eo(A, 0k, 0h),

and on the other hand in the stability of local minimizers, i.e., minimizers for pre-
scribed wave-number dk;. The outcome of the analysis is summarized by the plot in
Figure 6.2.

The Bloch wave analysis in Theorem 5.1 showed that concavity of the minimal en-
ergy as a function of the period translates into an instability under long wave-length
modulation. The following observation shows that concavity of the energy per pe-
riod Ep(w) w.r.t. the period is equivalent to concavity of the energy density w.r.t the
wave number:

d2 (k 2 — d (1 2 1pr(2 2 2
& (35E0(39)) = g (FE(BE) — FE (3D ) = BEY (32). (6.19)
To simplify the analysis, we introduce the following rescaling of the energy:

Rescaling of the amplitude functional. For an energy density e of the form

e = (—Cz 5hext + C~2 (Sk%) Az + (—C4 + C~4 (Skl) A4 —+ C6A6,
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6.3. Analysis of the amplitude functional

let

A% = (2 52)1/2(3 C6)_1/2Q,
—Cy = (652C6)1/22_1(5q,

Co 5hext = 252 5h,

Gy = (682¢6)

e = (2 52)3/2 (3 C6)71/2é\.

1/2 g,

Then the rescaled energy density takes the form
&= (—0h + 30k7 o + (30q + ek1) 0> + 30°.

Due to the rescaling above the minimization of e is restricted to ¢ > 0. In case of the
amplitude functional (6.18) we have

ce = e(ky),

Cs = —grai; =k QUKT),

& = };%hl:k;hext(ki‘), (6.20)
¢4 = —50Q,

0 =1

Coercivity of the amplitude functional. The amplitude functional €'is coercive for
e < 21/2371/2 Tn fact, we have by the Cauchy-Schwarz inequality that

edk10” > —L(e20% + ko).

1/2

Hence the energy is bounded from below if and only if ¢ < 21/2371/2, Using the

formulas (6.20) above we find that
0.711 ¢ < 2/2371/2 ~ 0.816.

Hence the amplitude functional for the reduced energy is coercive.

General characterization of optimal and marginally Eckhaus stable states. Let us
list the criteria for minimality and stability for energies of the form ¢ = (g, dk1). The
optimal amplitude ¢” as a function of the wave number Jk; is characterized via
_ode 0%

5, (¢"(0k), 8k1) and 0 < 55 (o (3k1), ok

0 30

The absolute minimizer (among all Jk;) satisfies the additional relations

0= %(@”((5%{),(51{‘{) and 0 < detHess?(g"(dk"), 5K7).
1
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6. Bifurcation analysis

Eckhaus unstable states, i.e., those states ¢%(dkq) for which the energy e(0%(dk1), 0k1)
is concave, can be characterized via the relation
0 > detHesseé (¢%(dky), 6k1),
see below. The marginally Eckhaus-stable state (0%(Jk3), 0kj) is described by
0 = detHesse (0" (9k3), 0k3).
In fact, a straightforward calculation shows that

dZé\(Qa (5k1),5k1) _ 1
dok] %(Q“@kl)/ ok1)

detHesse (¢%(dk1), 0ky).

Absolute minimizer and marginally Eckhaus-stable state of the amplitude func-
tional of the reduced energy. In the following we apply the general criteria from
the previous paragraph to obtain the branch of absolute minimizers (¢"(dk{), dk%)
and the marginal stability curve (0(dk3),dk;) for our amplitude functional as a
function of the external field. The result is plotted in Figure 6.2 and Figure 6.3.
We have that

de

50" —Oh + 10k} + 2edkq10 + 890 + 0% (6.21)
This is a quadratic form in ¢ and ék;. In order to determine the set of stationary

points we rewrite the equation in the form of x - Ax + bx + ¢ where x = ( (i ):
1

de [ o 1 ¢ 0
% = ((5k1) . (S %) ((5k1> +6q0 — 6h. (6.22)

Since 3x - Ax +bx+c = 3(x — A7'b) - A(x — A7'b) — 3b- A" + ¢ and due to
0711 =~ e > \@ ~ 0.707 we have that det A < 0, so that the stationary points lie on
a hyperbola of center

2 1 ¢ )
“1y _ 5 q
ATb= 2—452<—s 1)(0)
_0q 1
42 -2\ —2¢)’

/ 2
with direction of the principal axes < — %1&“682, 1) and level sets -5 — §h.

8e2—4

The sufficient condition amounts to

0%e
0< a—Qz(Qa(5k1),5k1) = 2(0" (k1) + edky + 36q). (6.23)
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6.3. Analysis of the amplitude functional

This cuts the (o, k1 )-plane into a stable and an unstable (w.r.t perturbations of o)
half-plane. Stationarity w.r.t. dk; amounts to

~

= a0k, ~ <

The absolute minimizer is located in the intersection of the hyperbola defined via
(6.22) with the line (6.24).

0 o + okq). (6.24)

Let us turn to the question of Eckhaus (in)stability. We have that

3% 92
det ( A ) — (2 — 4¢?) @ — 2e0ky0 — 53 + 840 (6.25)

0ddky  3ok?
(0 [2—48 -3¢ 0
_<5k1> ( 3e 1) \aky ) 090 (6.26)

Since 0.711 = ¢ < \/g ~ 1.225 the stability is thus related to a hyperbola of center

9 (-1
1062 4+4 \ 3¢ )’

with direction of the principal axes

_1 %g
€
(1) = ()
oq%
5e242°

Thus the marginally Eckhaus-stable state is located in the intersection of the two
hyperbolas defined via (6.22) and (6.26). We note that the stability criterion only
depends on the value of §q but is independent of the value of the perturbation of
the field Jh.

and level sets

The marginal stable wave-number. There is a largest infinitesimal wave-number
0k*(6q) s.t. for all 6k; > Jki we have that ¢(dk;) is unstable (independent of the
external field &h); the infinitesimal period of that state is given by dw* = —(lfTﬂ)zékf.
On the level of the experiment we hence expect that no pattern of period smaller than
w* + dw* can be observed. The explicit formula for Jk can be obtained from the
characterization (6.25). This infinitesimal wave-number corresponds to the turning
point of the hyperbola defined by det Hess = 0. It is the root of the discriminant
which we obtain by solving det Hess = 0 for ¢, namely

_ 4ebdg + sign(6q)+/(4e6q)? — 462 (—12¢2 + 8)

ok* .
2(—12¢% +8)
For the degenerate bifurcation we have dw* = 0, cf. Figure 6.3, where as for the
near-degenerate bifurcation for the reduced energy functional, i.e.,, 6Q = —Q*(k})

we find dw* = 0.212, cf. Figure 6.2.
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6. Bifurcation analysis

6.3.1. Comparison to the classical Eckhaus instability

In the classical, non-degenerate case the (appropriately rescaled) amplitude func-
tional is given by

¢ = (—0h + 30kt )o + 30>
In that case the optimal state for prescribed wave-number is given by
0" (0k1) = 6h — 1oki provided |oki| < (20h)/2.
The absolute minimizer is given by
(", 5K5) = (6h,0).
The marginal Eckhaus stable state is characterized via
0 = detHess E = ¢" — 6k§ = 6h — 35k7.

Hence, for |6k1| > (36h)'/? the minimizer ¢"(6k;) is Eckhaus unstable. The region
of instability is centered at dk; = 0.

Sky = —(j]—f)Z(Sw

1 oh

21

Figure 6.1.: The optimal (blue) state and the marginal Eckhaus stable (red) state for the
non-degenerate energy. The black parabola bounds the region of existence of
stable — under perturbation of amplitude — states.
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6.3. Analysis of the amplitude functional

0 02 04 06 08 1
6hewt
Figure 6.2.: The optimal (blue) and marginal Eckhaus stable (red) state as predicted by the

analysis of the amplitude functional for 6Q = —Q*(k}). The black curve bounds
the region of existence of stable states.
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1.5f
1 3
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0 3
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Figure 6.3.: The optimal (blue) and marginal Eckhaus stable (red) state as predicted by the
analysis of the amplitude functional for 6Q = 0. The black curve bounds the
region of existence of stable states.

135



6. Bifurcation analysis

6.4. Derivation of the general amplitude functional

The bifurcation analysis based on the extended Ansatz can be generalized by con-
sidering spatially varying amplitudes within a two-scale approach. This approach
builds on the central observation that a function of wave number close to k] can be
written as the slow modulation of a function of wave number k7.

Two scale expansion and scaling of parameters. Motivated by the extended bifur-
cation analysis we make the following Ansatz

my(x1, xp) =e'/? 1 (eikfxl sin(7mxy) A(Xq) + c.c.)
+el %(eizkfﬂ sin(27xp) B(X1) + c.c.)
+e3/21 (eﬂqxl sin(37txp) C1(X7) + c.c.
+ e sin(71xp) Co(X1) + c.c.
+ eB3M1% sin (3717 ) C3(Xq) + c.c.)
+0(e%), (6.27)
where the slow variable X; is given by
X1 = &xy.

In this Ansatz, the amplitudes A, B and C;, i = 1,2,3 are assumed to be periodic
with period i—? At the end of the derivation on p. 142, we come back to the point
1

that higher order terms in (6.27) do not appear in the leading order term of the
energy expansion.

The scaling behavior of amplitude and wave number as discussed in the previous
section motivates the scaling behavior in ¢ of the amplitude and the slow variable,
cf. (6.5). For the same reason we rescale the external field in the form of

Hext = zxt(kT) + 52 Ohext.-
Moreover we rescale the anisotropy parameter Q as
Q = Q" (k}) + Q.

Our program is as follows: We plug in the Ansatz as above into the rescaled reduced
energy (1.14) augmented by anisotropy and determine the expansion w.r.t. &. By a
successive minimization of the coefficients with increasing order of ¢ the amplitudes
B and C;, i = 1,2,3 are slaved to A using Fredholm type conditions. In the end, we
obtain an amplitude functional which coincides with the amplitude functional de-
rived in the extended bifurcation analysis in the previous chapter in case of constant
amplitude, i.e., A = Ael’KiX1 We note that the derivation is only on a formal level.
A rigorous derivation could be based on the notion of I'-convergence.
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6.4. Derivation of the general amplitude functional

In order to derive the amplitude functional, we have to determine how the differen-
tial operators effectively act on the slow variable X; and therefore on the amplitudes
A,Band C;,i =1,2,3. We have that

dx, = & 10y, (6.28)

1
This entails that
Oy, (€™M F (ex1)) = ™1 (ik{F (ex1) + edx, F(exy)). (6.29)

We use the Fourier representation in order to derive the commutator relation for
the modulation and the non-local operator |dy,|~!. As for the differentiation, the
modulation just leads to a shift of the Fourier multiplier:

’axly—l(eik’{xleislel) _ |ax1|—1(e(ik’l‘+iel<1)x1) = |kt _}_EKll—leiki‘xleisIQxl. (6.30)
In short hand notation we write

19y, | "L (eMIMF(Xy)) = e®M1 ik} + edx, | TLF(X). (6.31)
From the Fourier representation (6.30) we obtain that

1 ;
1 —

1
0% + O(e),
(ki)5 X1 ( )

i.e., the expansion of (6.31), cf. Step 2 in the proof of Theorem 5.1 in Chapter 5. Let
us point out that in contrast to the Bloch wave analysis for the eigenvalue in Chapter
5 — where we prescribed the modulation function — we here prescribe the function
to be modulated.

In a first step the two-scale Ansatz for m; together with the expansion of the param-
eters is plugged into the energy. Using the commutator relations for the differential
operators, which were derived above, and neglecting the oscillatory integrands —
these contribution vanish as ¢ tends to zero to any order, see (6.32) — one obtains the
following expansion after an integration w.r.t. xo:

Eo(my) = eEY(A) + €E*(A,B) + E3(A, B,C) + O(e*).

As we will see, the scaling is chosen in such a way that the energy, after appropriate
choice of B and C; in terms of A, is of the order ~ &. Let us start with the simplest
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6. Bifurcation analysis

contribution, namely the Zeeman energy:
m3 =ei sin®(7x,) (e’QkT"1 A% tcc + 2\A|2>
+&3/21 sin(7rxp) sin(27x)2 <ei3k7x1AB +cc.+e FMMAB 4 c.c.)
+e21 ( sin(271x)% (171 B2 4- c.c. 4 2|B|?)

(
+ sin(71x) sin(371x2)2(e2MM AC) + c.c. + AC; + c.c.)
+ sin(71xp) sin(71x)2(e 1 AC, + c.c. + e HTAC, + c.c.)
(

+ sin(71xp) sin(37x2)2(e*M AC; + c.c. + e M ACS + c.c.))
+e/21 ( sin(271x7) sin(371x2)2(e*K11BCy + c.c. + €M1MBC; + c.c.)

+ sin(271x;) sin(71x2)2(e”M1X1BC, + c.c. + e MYBC, + c.c.)

+ sin(271x;) sin(37x2)2(e*1*1 BC; + c.c. + e *iM1BC3 + c.c.))
+e’l ( sin(37tx2)?(e2171C2 + c.c. 4 2|C1 %)

+ sin(7x2) 2 (PK11C3 + c.c. + 2| G [?)

(
(
+ sin(371x)2(PK1%1CE + c.c. 4+ 2|C3]?)
+ sin(371x;) sin(7x2)2(e41%1C1Cy 4 .. + e 2RNC G + cc)
(371x2)
(

5

+ sin(37x;)22(e Mk Cs + coc. + e 2N C 1C3 +c.c.)
+ sin(71x0) sin(371x2)2(e 11 C, C3 + c.c. 4+ CCz + c.c.))
+ O(eh).

We see that most of the contributions are oscillating on a length-scale one (in partic-
ular all contributions of fractional order in ¢€). Since the variation of A, B, and C; is
on a scale of order ¢, these expressions become small if we integrate w.r.t. x; over

a periodic domain of size ~ ¢~1. In fact, for a function D which is i—f—periodic we
1

have that

2 21
& i a1
0 K e_zkl*xlD(gxl) dx; = i kT o (axle—lkl*xl)D(gxl) dxy
1
_ _é /Sk{ e*ikl*xlaxlD(sxl) dxq. (6.32)
zk1 0

Integration by parts therefore entails by iteration that the oscillatory integral on the
Lh.s. of (6.32) can be bounded to any order in ¢ if we assume that D is sufficiently
smooth. Hence we obtain for small ¢ < 1

o 1 3%
8/0/0 2 dxy doxy ”Z/Okl (el AP +2[BP + (G + G2 + Ca?) ) dxs,
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6.4. Derivation of the general amplitude functional

which follows from the rescaling ex; = X; and the evaluation of the integral w.r.t x.
Similarly we obtain

21

F
skl

1 1 3% _
4 ~ (2914144 3 2|12 _ 3142
e ) /0 m5 dxp dxg NB/O 1 <s 1| Al* 4+ € (6] A|?|B|* — 5]A]7(ACy + c.c.)
+

3(A3C, +cc.) — L(A3Cs + c.c.))) dx;.

In the same way, using (6.28) and neglecting the oscillatory integrals, the exchange
energy turns into

el
e/gkl / (3, m2)* dixa dixg
o Jo

2
~ }I/kl (e(kr)2 AL + €2(iK; Adx, A + ..+ (2K BP)
0
+&(|9x, A|* + 2iki Box, B + c.c. + (k})?|Cy |
+ (3K Cal? + (3k])?(Ca ) ) dxa.

The stray-field energy is more complicated. This is rather due to the fact that it
is non-linear and involves differentiation in two variables than due to the fact that
it involves a non-local operator which can be expanded. Due to the non-linearity
in the charge density several resonances can appear. A straightforward calculation
shows that the expansion of the charge density is given by the following expression
(resonating contributions in the energy, as ¢ is squared, are highlighted):

o(my)
2
== axl% + 0x, 1>

=¢!/2% cos(rxa) <e1k7x1A+ q.q.)

+e <7‘L’ cos(27xy) (e2M¥1B + c.c.) — % sin®(7rx2) (2ik;e? 111 A2 4 c.c.))

+3/2 <37” cos(37xy) (e*11Cy + c.c.)

+ 7 cos(7x2) (ePF1¥1C, + c.c.) + i cos(371x) (ePK11C3 4 c.c.)

— Lsin(7txp) sin(27x,) (3ik; e 1L AB + c.c. + (—ikj)e M1 AB + c.c.))
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6. Bifurcation analysis

+€2( — sin?(27xy) (4ikie*1*1B2 4 c.c.)
— §sin’ (1) (€119, A% 4 c.c. 4 29, |A?)
— Lsin(7xy) sin(3nx2)(m.)
— 3 sin®(71x;) (4ikje i1 AC, + c.c. + (—2ik})e PMAG) +c.c.)

— Lsin(7xy) sin(37xy) (4ikje 1M1 AC) + c.c.

— Lsin(27txp) sin(37rx2) (3ik;eB¥ 11 BCy + c.c. + ikje 1M BCy + c.c.)

— Lsin(mxy) sin(37x,) (5ikje™ ™1 BCs + c.c. + (—ik})e M1 BC; + c.c.)).

+0(&).

Using the expansion of the non-locality, one can derive the expansion of the stray-
field contribution.

From the calculation above we can now derive the expansion of the energy. We note
that there are no contributions of fractional order in & — the corresponding integrals
are all of oscillatory type, see (6.32). The first coefficient, i.e.,

7 2 |A|?
El A 1 lf* 2 T * ]
( ) /O ! (( 1) zlq hext) 1 Xl/
()bVi()LlSly vanishes by definiti()n ()f kT and h

%
ext:

Neglecting the oscillatory integrands, the coefficient to order ¢ is given by

E%(A,B)
2 . A
o » (iAdx, A+cc. 3k !A|4 9 |A|4
N /0 K- T 16 49 (k)T
iA2B + c.c. N 2 « B
%T + ((2k3)% + & h@%) dX;. (6.33)

The first term vanishes since kj is the minimizer of the dispersion relation. Given A,
we can minimize E? in B and obtain
e A2
— ik A
B — 1

—2(6(k)3 4+ ) (6-34)

2_ *\3
We find that the remaining term in (6.33) vanishes if Q = Q*(k}) = %kiﬁ,
1

which is just the critical value identified in the extended bifurcation analysis in (6.12).
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6.4. Derivation of the general amplitude functional

We now come to the cubic contribution for which we obtain

E3(A,B,Cy,Cy,C3)

= [ (1005, AR — Shond AP + s af) + 3 A A ee
3 @ulAE) g7 >+5Q9|§|4
N Q*(kT)6|Af6|B|2 (26 o) iBE)XllivLc.c.
U + 3 — mla P — e JALAC e
—(imABCy + c.c.) N —ki|A]2(ACy +c.c.)
8 128 )
1K) + B — )|+ (k) 242 e
—(imrABCy + c.c.) N 3k;(A3Cy +c.c.)
16 128 )
1K)+ 3~ B Caf? - @ () e

N 3imABC;3 + c.c. N —k; (A3C5 +c.c.)
16 128

) dx;.

We note that there is no contribution of the form B8X1A2 + c.c.. Such a term would
be potentially contained in the expansion of the cubic stray-field contribution, i.e.,

2
20,150, | 1 (—0y, 2 ). However, the differential operator w.r.t. x; is of order zero
so that on the level of the Fourier multiplier (|dy,| 19y, )e**1%1 turns into

Tk +ieKy K<k}
| £ ikt +ieKy|

This shows that there are no contributions of the form Bdx, A% + c.c.. Plugging in
the optimal B as given by (6.34), we obtain by minimizing w.r.t. C;, Cp, and C3 that

oo |rlapa

1T T 24(6(k)3 + )
c = (18(k})> + %) (kp)*A°

27 8(6(kp)3 + m2) (48(k;)? — 272’
c (—18(k})% + 477%) (k)2 A3

ST 144(6(kp)3 + m2) (83 + 72)

Therefore, the first non-trivial coefficient of the amplitude functional — namely that
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of cubic order in € — is given by:

3 . 5 (k*)3 2 (18(k*)3+7‘[2)2
E°(A) = /o ' (W( — 5 - 24(48(11<’1‘)3—2n2)
_(18(k)3—47m%)? I m2(5m2—18(k;)?) 4 z) |Al°
9x144(8(ky)3+72) 6(6(ky)3+m2) 64
7'[2(](*)2 " 2 3 ZAZaX Az + c.c.
+ ((6(k;)3in2)2 (21 — 4(2[’{)2) + 6_4> 116
_ 2
o|A[* 5 [19x,| 7120 | AP
i1 "6 16

2 ’axlA‘z - ‘Ayz

+0Q

The amplitude functional thus has the form of a non-local Ginzburg-Landau func-
tional.

Let us come back to our Ansatz (6.27). One might suspect that next order terms
(~ €%) in (6.27) could lead to an additional contribution in the E3 coefficient of the
energy, e.g., via a mode interaction in the stray-field energy with the e!-coefficient
in (6.27). Based on the level of the extended bifurcation analysis, let us argue that
there is no need to worry. In fact, the algebraic rules yield that an additional fourth
order coefficient in (6.6) satisfies an equation of the form

ok ok k

£m2 — g,
where g is some linear combination of terms of the form
Na(t(my,my",-)) and  Ny(ma(my",m3,,m3,-)),

where 77 € S®and 1, € S% A straightforward calculation shows that the rh.s. is
proportional to sin(4kjx) sin(47x;). Therefore the next-order term in (6.27) should
be of the form

%1 sin(471x,) D(X1) + c.c.,
for some i—?—periodio D. Obviously, there are no resonances with the other coeftfi-

cients.

Spatially-constant amplitude. Let us first show how the case of a constant ampli-
tude is related to the extended bifurcation analysis: For A = A e?(X1) = A ei0KiXa
the energy to leading order becomes a function of the amplitude A and the infinites-
imal perturbation of the wave number perturbation 6Kj. In fact, we have

|ox, A|* = 6K3| AP,
iA%9x, A® + c.c. = 20K A%,
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6.4. Derivation of the general amplitude functional

(k})° 2 (18(k})>+72)
: ( 9 24(48(k)3-2n?)

(—18(k})3+477%)2 | m2(5m2—18(k})3) 2 A®
 9x144(8(k)3+72) 6(6(k})3+m2) +7 )6_4

2 (kt)2 . 2 5\ 0K  A*
+ <_<6<k1f—>3in2>2 (2K — 4‘(%‘)2) +&) 8
L NOKiA2 R
T (1 * 2(k1‘>3> g Oheay

A comparison with (6.16) and (6.17) indeed confirms the equivalence of the spatially-
constant amplitude for the two-scale approach and the extended bifurcation analysis.
To see this, notice that

1d2 *
e ( ) 2di? - k*hext(kl)

( +rr2 <2k1 ) 634>:_69_4d_?<11|k1_kTQ*(k1)'

As outlined in [Eckgz], it is tempting to use the result of an extended bifurcation
analysis for an algorithmic derivation of the generalized amplitude functional: How-
ever, this algorithmic derivation — the replacement of 6K; by dx, and A by a spa-
tially varying amplitude A, as explained in that reference — would miss the term
[ 9x,|A|?|9x,| ~9x,|A|* dX;, which obviously vanishes for constant amplitude.

Quasi-periodic solutions. It is known that — besides the stationary constant ampli-
tude solutions — there are stationary states of the classical Ginzburg-Landau func-
tional

27

E(A) = [ ~ah| AP+ 3ox, AP + 1A dXy

with spatially varying amplitude and phase, i.e, A = A(X1)e?®*1). In order to
investigate these states it is useful to introduce the “angular momentum”
= do

ax;’

A straightforward calculation shows that stationary solutions exhibit conservation
of the angular momentum, i.e.,

d
——~ H=
dX; 0

Moreover the “energy”

LAY v

H=A"—-
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is conserved, where

N P A - &
V(A) = 30nA% - 1A%+ —.

Then stationarity amounts to

d?A 4V

¢~ A

In the special case where H = 0 one can construct solutions of constant phase whose
amplitude suffices
;a3 d?A
ShA — A°+——= =0.
dXj

There is the trivial constant solution A = 4(6h)!/2 and the hyperbolic tangent. The
so called defect solutions correspond to a hetero-clinic orbit connecting the constant
amplitude via the hyperbolic tangent profile. In case of H > 0, there are solutions
corresponding to compression-dilatation waves, i.e., solutions of non-constant phase,
cf. [Hoyo6]. As shown in [DEg1], the quartic degenerate bifurcation (without non-
locality) can be treated similarly by identifying analog integrals. Depending on
their value, there exist periodic and quasi-periodic solutions. Nevertheless, the non-
local term cannot be treated with that method. On the other hand the bifurcation
analysis in Section 6.5 suggests that quasi-periodic stationary points exist — though
all unstable.

6.5. Secondary bifurcations as splitting from multiple primary
bifurcations

It is known that secondary bifurcations are often intimately related to multiple pri-
mary bifurcations. This was first suggested in a work by Bauer, Keller, and Reiss in
[BKR75]. A model example can be found in [IJgo, V.6]. We will see in this section
that the secondary instabilities of the concertina pattern are also related to degener-
ate primary bifurcations. The secondary parameter, besides the external field, that
leads to a splitting of the double eigenvalue is given by the period of the system.
As the secondary parameter varies, the secondary bifurcation branches move along
the primary branches, see Figure 6.5. For a critical value of this parameter, the
secondary branches coalesce into a multiple primary bifurcation point. Usually, sec-
ondary bifurcations occur if there exist symmetries of the system. We now start with
a bifurcation analysis that we subsequently compare to our numerical simulations.
As mentioned in Subsection 1.8.5, the physical relevance of a finite artificial period
of the domain is related to defects and inhomogeneities in the sample. They effec-
tively reduce the characteristic wave length of interactions to a small multiple of the
period of the concertina.
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6.5. Secondary bifurcations as splitting from multiple primary bifurcations

Consider the reduced sample of size (L,0) x (0,1) where L is arbitrary but fixed. As
depicted in Figure 6.4, the Hessian of the reduced energy (1.14) in 77i; = 0 degener-
ates for the following values of the external field:

B (k) = K+ %, where ¥ = ZTNZ, I € IN.

=)

ext
/ﬁ(txt + 1T
ext
1 % 2 x

Figure 6.4.: Dispersion relation Eext(k). The marked points correspond to wave numbers ki
and ky, s.t. (6.35) is fulfilled. Dark green corresponds to [ = 2 and m = 1 while
orange corresponds to | = 3 and m = 2.

Depending on the specific value of L, there may exist two distinct integers [ and m s.t.

the I-mode (m}, = cos,(znzl’?1 ) sin(7x2)) and the m-mode (m}! = cos(%) sin(71x,))

become unstable for the same value of Eext. This is the case if the corresponding
values of the critical field coincide, i.e.,

TIN2 | 72 pmN\2 | P
(k1) o = (k7 * 20

where

o2
kgz%, r=1,m.

From this expression we can derive that a multiple primary bifurcation occurs pro-
vided

L*(I,m) = 2(2mlm(l + m))'/3 (6.35)
at a field
il\ 7 3(P4ml4m?)

Xt = TIm(I+m))2/3
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. 7 mode 1
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Figure 6.5.: Numerical simulations: The bifurcation diagram for L = 2@* (top left), L =
1.8w* (top right), L = 1.6@* (bottom left), L = 1.4@* (bottom right) showing the
first three primary branches and secondary bifurcations. The primary branches
correspond to the unstable modes sin(%) cos(mtxz), r = 1,2,3. Note thatr = 2
for L = 2@* corresponds to the @*-periodic concertina branch. The secondary
branches correspond to reflectional or rotational symmetric solutions, see Sec-
tion 4.5. The simulations confirm that the secondary bifurcations originate in
degenerate primary bifurcations.

In the following, we show that as L varies in the neighborhood of L* (1,m), cf. (6.35),
the multiple bifurcation splits up into two simple bifurcations and secondary bifur-
cations in the neighborhood of the primary bifurcation, cf. Figure 6.5. In order to
simplify the calculations, let us rescale in the following way:

(L7, %) = (R, %),
Lu(%,%) = (%, %),

Lhext - hext/
I*E, = L.

146



6.5. Secondary bifurcations as splitting from multiple primary bifurcations

We thus obtain

~ ~ ~ ~ _ _ ~ 1/ \2 ~ N
Eo(il, Fiext, L) = %/ (31i0)2 d¥ + %/ (19171727 " d¥ — fex Qu2dx,

where Q = (0,1) x (0,1) is periodic i m the first coordinate and 0 = —81 —|— iy
For notational convenience, set A = E_ and u = hext. We also drop the tllde so that:

Eo(u, u,A) )\/ (01u)?dx’ + 1 / 01| 1/2(7 dx y/u dx’.
We rewrite the energy in terms of a quadratic, cubic and quartic term:
Eo(u, A, u) = (u, Lu) + %Ng(u, w,u) + s Na(u,u,u,u)
+ (A—/\*)/ (31u)? d’
Q
—(p—pu") /Q udy/, (6.36)

where

u, Lo) = A*/ d1u dvdx’
Q
+ %/ (101]~20921) (|01) ~1/?0,0) dx’ — y*/ uvdy/,
Q Q
1 _ ~1/25. (1 ~1/2 /
sN3 (1,0, 1) /Q(|81\ 81(2uv)> <|81\ azr) dx/,
Na(uw,v,1,8) = %/Q(laﬂ1/281(%%))(!81]1/281(%rs)>dx’.

By definition we have that £ is symmetric.

For all values of A € R and y € IR, we have that u = 0 is a solution to the Euler-
Lagrange equation. With our rescaling as above, the Hessian in u = 0 degenerates
provided

= A(k)? 2kl’ where k) =2nl, 1eN.

As discussed above, the kernel generically is one-dimensional (up to translation).
However, for

(12 +ml+m?)

1
167clm(1+m)’
the kernel of the Hessian is spanned (up to translation) by the two modes

cos(2mrxy)sin(mtxy), r=1,m. (6.37)

Our plan is to calculate a general stationary point as a bifurcation from criticality on
the basis of the asymptotic energy. We use an Ansatz of the following form

u = Au;+ A%uy; + Buy, + Bty + ABuy,, (6.38)

where u; and u,, either share
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6. Bifurcation analysis

1

e a rotational symmetry with center in (0, 5), ie., u, = cos(27rxq)sin(mxy),

r=1,m,or

e a reflectional symmetry with change of sign at the axis x; = 0, ie, u, =
sin(27trx1) sin(7txy), r =1, m.

We note that in the particular case of | = 3m both symmetries occur, see below.
We recall that both transforms are symmetries of the energy, see Section 4.5 More-
over, these two cases are (up to translation) the only cases where mode-interactions
between u; and u, can occur which are — as we will see — the origin of the sec-
ondary bifurcation. In the following, we only consider the rotational symmetric case
u, = cos(27mrxy)sin(mrxy) for r = I, m. We note that it turns out that the reflectional
symmetric case leads to the same asymptotic energy. We will obtain uj;, uy,, and
U, by minimizing the coefficients in the expansion of the energy — restricted to the
two-dimensional manifold parameterized by (6.38).

Let us plug in our Ansatz (6.38) and expand the energy. Using that Lu, = 0 and
that N3 (up, up, uy) = N3(T(uy, thy, tty)) = N3(T(thy, 1y, u;)) = 0, where T denotes a
standard permutation in S® (which is a result of the invariance of the energy under
the transform u — —u, x — 1 — x2), the first term in the expansion in A = éy =0
is of quartic order. More precisely, we obtain up to higher order terms that:

Ey = A4<%<Mzz,£uzz> + & Y Na(r(ug,u,uy)) + %Nzx(ul/uz,uz,uz))

T€S3

TESS

+A232<%<u1m, Lug) + (upp, Loimm) + 3 Y N3 (T(ug, ttm, )

TESS

+ 1Y Na(t(ug oy um)) + &Y N3(T (i, g, 1) )

TESS TESS

+ 15 L Na(e(u, gty o))

TS

+A3B<<ull/ £u1m> + % Z N3(T(ul/ uj, ulm))

T€ss

+% Z N3 (T (um, ug, uy)) + 21—4 Z Na(T(ug, ug, ulr“m)))

T€S3 TeSE

—|—ABs<<umm/ £u1m> + % Z N3(T(um, Um, ulm))

T€SS

+ 3 Y Na(t(ug, i, timm)) + 25 Y N4(T(um,um,um,ul)))

TS TES
+6AL(A%(271)?) + B*(27tm)?)
—ouz(A*+ B, (6.39)
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6.5. Secondary bifurcations as splitting from multiple primary bifurcations

where S%, d = 3,4, denote the standard permutations. We simultaneously minimize
w.r.t. Uy, Uy, and up, and obtain the following equations: Minimization w.r.t. uy;
entails

A*(Lug+ 1 Y Ns(t(ug,uy,-))) + A*B* (Luym + Y, Na(T(, i, tim)))

TeSS €83

+ APB(Lupy + 3 Y N3(T( up,um))) =0,

T€SS

minimization w.r.t. u,,,, entails

B*(Lutm + £ Y Na(T(tim, tim,+))) + A*B*(Luy + £ Y N3(t(,up,up)))

TeS3 res3

+ AB (Lupy + 3 Y Na(T(-,up,um))) =0,

T€Ss

and minimization w.r.t. u;,, entails

APB?(Lugy + 5 Y Na(t(ug,um, ) + A’B(Luy + 5 Y Na(t(-,u,up)))

Tes3 reS3

+ AB? (Luym + £ Y N3(T(-, ttm, um))) = 0.

TES3

Multiplication by B?, A? and AB shows that these equations reduce to one equation,
namely

APB (Lupy + 3 Y Na(t(ug, i, ) + A*B*(Luy + Y Na(t(,up,up)))

Tes3 eS3

+ A%B* (Litm +% Z N3(T (-, tim))) = 0.

TeS3

The latter equation holds (independently of A and B) provided

Luy+ ¢ Y Na(t(ug,uy,-)) =0, (6.40)
TeS3
and
Lty + 3 Y N3(t(tm, i, ) =0, (6.41)
Tess
and
Lup, + % Y Na(t(ug, um,-)) = 0. (6.42)
€S

Let us turn to the question of solvability. As mentioned above, the invariance of the
energy under the transform u — —u, x, — 1 — x entails that

N3(T(ul/ uy, ul)) = N?)(T(urm Um, um)) =0, (6.43)
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6. Bifurcation analysis

and

N3 (T (1, i, 1)) = Na(T (g, thm, ) = 0. (6.44)

Due to (6.43) and (6.44) and the fact that u; and u,, span the kernel of £, a unique
solution to each of the equations (6.40), (6.41), and (6.42) exists due to Fredholm’s
alternative. It holds that

3 ) Na((ugum, )

TES3

= —4r1 (sin(Zn(l +m)x) + 3 sin(27(l — m)x1)> sin(27txp). (6.45)

Notice that we do not distinguish the linear form, cf. (6.44), and its Riesz represen-
tation, cf. (6.45), w.r.t. notation. Moreover, we note that the different amplitudes of
sin(27t(l — m)x1) and sin(27t(I 4+ m)x1) on the r.h.s. of (6.45) are due to the fact that
the trigonometric identities lead to cancellations in the sum of u;01u,, and u,,01u;.
Without loss of generality we may assume | > m. A straightforward calculation
shows that

4m(l4+m)

up = 4ay sin(47tlx1) Sil’l(27‘L’X2), where ap = 32t mltm2’

4lm(1+m)

Umm = Amm Sin(47tmxq) sin(27tx2), where a, = T I

Uy = A1 SIN(27T(1 + m)xq) sin(27txp) + a5, sin(27t(1 — m)xq) sin(27xy),

_ 8(I+m) _ 4(P-m?)
where aj, = =5, aGm=—g -

The pairs (uy;, mm) and (uy, uy,) are L>-orthogonal for all values [ > m. This is not
true for (Umm, Ujy) in the particular case of I = 3m. Let us note that the formulas
for the amplitudes are consistent in the sense that a;_,, vanishes for I = m in which
case %ulm = Uj = Umm-

With this at hand, we are ready to calculate the coefficients in the amplitude func-
tional. Without loss of generality we assume | > m. We use the Euler-Lagrange
equations (6.40), (6.41), and (6.42), and the symmetry properties of the operators to
simplify the coefficients, namely

Ny(v,u,u,0) = Ny(t3(t1 (1, 0), 22 (1,0)))
for arbitrary 71, 12, 13 € S% and

Ny(u,u,0,0) = Ny(v,0,u,u).
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6.5. Secondary bifurcations as splitting from multiple primary bifurcations

Moreover, due to Lz-orthogonality of (uj, umm), we finally obtain from (6.39)

Ey = A4< — uy, Lug) + TNa(ug, ug, Ml#l))
B4 (=} (b, Lot) + Nttt 1))
+A?B? — Mg, Lugy) + ANa (g, g, i, i) + Na (i, 147, tim, ul))

+A%B (tpp, Lug) + N4(u1,u1,ul,um))

+AB3 ( ulm, ,Cumm> +N4(um/ Um, Um, ul))
+OAL(A%(2r])?) + B2 (2rtm)?)
—Sut(A*+B?). (6.46)

We emphasize that for I > m — due to the form of u; and u,, and since u;; and uy,
are L?-orthogonal — the A®B-contribution vanishes. Moreover, a lengthy but straight-
forward calculation yields the following values for the coefficients in the expansion:

rtlm(l+m) + 3_7rl
3124-ml+-m?

l 912 —5ml—5m?
8(312+ml+m?)’

— 3 (uyy, Luy) + INa(ug, ug, up,up) = —

rtlm(l+m) + 37tm
3m2+ml+12

9% —5ml—51>
8(3m2+ml+I12)’

_%<umm1 £umm> + }INAL(um/ Um, Um, um) = -

= 7tm

- %<u1mr Eulm) + %Nél(um; Um, Uy, ul) +N4(um/ Uy, Um, ul)

_ - (I4+m)(23m+91) +0+ 3l =312 +41ml—46m>
- 5(7m+I) 2 10(7m+1) Y

_ 4l2+25m2+3lm
= ‘52m,l—m7r(W)-

151



6. Bifurcation analysis

6.5.1. Stationary points of the amplitude functional.
Based on the asymptotic expansion of the energy (6.46), we want to characterize all

stationary points close to the bifurcation. We distinguish two cases:

Case | # 3m. In this case an explicit characterization of the stationary points is
possible. To simplify the notation let us rewrite the energy (6.46) in the form

Ey = BAAA4 + 63334 + eABAZBz + 5)\}1(19,4142 + bBBZ) — (S‘l/l}I(Az + Bz).

We use the amplitude functional in order to calculate the stationary points close to

u=0,ie., (A B)(dA,du),s.t
O _ 9 _
0A OB

This is equivalent to

0 and 0.

2e4a A% +eapAB® + 6ALbAA —SutA =0,
2eppB® + eapA*B + 6ALbgB — uiB = 0.
By factorizing the equation we can distinguish four cases, namely
a) A=0and B=0,
b) A=0and B # 0,
c) A#0and B =0,
d) A#0and B # 0.
Let us characterize the (real) solutions:
ad a) This corresponds to the trivial solution which exists for all /A and all Jp.

ad b) This corresponds to the primary bifurcation branch as obtained from the classi-
cal bifurcation analysis. A solution A% > 0 exists, provided (—es) (6Abs —
ou > 0.

ad c) This corresponds to the primary bifurcation branch as obtained from the clas-
sical bifurcation analysis. A solution B> > 0 exists, provided (—epp) ! (6Abg —
ou > 0.

ad d) This corresponds to secondary bifurcation branches. A solution (A,B) s.t.
A% > 0 and B? > 0 exists, provided both

(2baepp—bpeap)dA+(2eppeap) (=01) ~ 0
€2, —4e 4 4 -
AB AACBB

(2bpean—baea)or+(2ean—eap)(=04) ~ 0
61243—4614/1633 -
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6.5. Secondary bifurcations as splitting from multiple primary bifurcations

As an example, we consider the case m = 2 and [ = 1. Then

ean =51, epp=—%%, eap=3F ba=4(27) and bp= (27)%
Therefore, solutions of type b) exist provided

Su > 4(27)%5A
and of type c) provided

ou < (2m)%6A.

Moreover, solutions of type d) only exist if

S > 208177725)\ and ou < 4471125/\‘
In particular, existence is related to dA < 0, i.e,, L > L*(I,m). It is useful to think
of JA as fixed, since it is related to the infinitesimal period of the domain, see the
paragraph before (6.36).

Our calculations show that the existence of secondary branches is related to the
crossing of primary branches as the period L passes some critical value, cf. (6.35).
For L > L*(I,m) we find a secondary bifurcation branch connecting the primary
mode-/-branch with the primary mode-m-branch. Notice that the mode-/-branch
bifurcates for a smaller value of y, i.e., smaller external field heyt, than the mode-m-
branch.

Figure 6.6 shows a comparison of the result of the bifurcation detection algorithm on
the basis of the reduced model and the result of the asymptotic analysis. The asymp-
totic analysis shows no difference in energy of the rotational symmetric bifurcation
and the reflectional symmetric bifurcation, see Chapter 4 and Figure 6.7.

Case [ = 3m. The explicit characterization of the set of solutions is difficult for B =
0, so that we solely refer to numerical computations: The Euler-Lagrange equation
of the amplitude functional was solved in Mathematica and plotted in matlab, see
Figure 6.7. The plot shows that the asymmetry of the equation leads to a loop of
the bifurcation branch which can be interpreted as a perturbation of the secondary
bifurcation for [ # 3m.

Let us finally remark that that the form of the diagrams depends only on the quan-
tities 1/ (ged(l,m)) and m/(ged(l, m)).
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5.9 6 6.1 62 63 64 65 6.6
hea:t

Figure 6.6.: Numerical simulations (solid) and asymptotics (dashed): The figure shows a

comparison of the bifurcation diagram for the L = 1.5w*-periodic domain (A* ~
0.003316, A ~ —0.000368) including the branch corresponding to the mode
m = 1 (orange) and the branch corresponding to the mode I = 2 (blue). The
reflectional (green) and rotational (red) symmetric branches coincide to leading
order with the secondary branch based on the asymptotics (black).

2r
1.5} -
N ~£d i
~ z
— =’
Er il ~
. 7 1.34 -
=~ 1.32
1.3 -
0.5} 128 - -="
7.7 7.75
0 N N N N N N N
6.6 6.8 7 7.2 7.4 7.6 7.8 8

hez:t

Figure 6.7.: Numerical simulations (solid) and asymptotics (dashed): The figure shows a
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comparison of part of the bifurcation diagram for the I = 1.9@*-periodic domain
(A* =~ 0.001658, JA ~ —0.000208) including the branch corresponding to the
mode m = 1 (orange) and the branch corresponding to the mode I = 3 (violet).
The zoom-in shows that the turning point does not coincide with the osculation
point. This is the generic case.



7

The effect of polycrystalline anisotropy

In this chapter, the effect of a polycrystalline anisotropy is investigated on the ba-
sis of the reduced energy functional (1.10). This form of anisotropy leads to an
additional contribution which has the form of a random transversal external field.
In particular, we will address the relation of the oscillatory ripple structure, which
is observed in polycrystalline Permalloy material, and the concertina, see Section
7.1. Subsection 7.1.2 addresses the discretization and numerical simulation of the
random field.

It is well known that an additional spatial-temporal random torque in the Landau-
Lifshitz-Gilbert equation, modeling thermal fluctuations, leads to a divergence in
the large wave-numbers, cf. [BGos, Abe1o]. In Section 7.2 we therefore address
the different effects of a spatial randomness, i.e., quenched disorder, and a spatial-
temporal randomness.

7.1. The ripple

The ripple denotes the typical in-plane oscillation of a magnetization in a thin film
that is small in amplitude (and scale with respect to typical domain patterns), see
Figure 1.30; the wave vector is always in direction of the (locally averaged) magneti-
zation, see Figure 7.1.

|

X1

o= azmz

NN\
s

P P
7 0 =0d1m .
e ~ 0y (—gm3)

A2
A2

Figure 7.1.: An oscillation in the direction of average magnetization leads to a smaller,
quadratic scaling in the charge density.

The ripple is triggered by an effective field of random direction on a small scale.
Several origins for this effective field are proposed in the literature, see for instance
[Har68, Section CJ; in polycrystalline thin films, the random orientation of the grains,
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7. The effect of polycrystalline anisotropy

more precisely their crystalline anisotropy, and local stresses via magnetostriction
are seen as the main causes. In our discussion, we shall focus on the first one.

Hoffmann [Hof68] and Harte [Har68], based on the torque equilibrium linearized
around a spatially constant magnetization (solely determined by the external field
and anisotropy). Hereby they identified the linear response to such a small-scale,
small-amplitude random effective field. The main finding is that the stray field —
which penalizes transversal more than longitudinal perturbations of the magnetiza-
tion because the former lead to a stronger charge oscillation — results in a strong
anisotropic response. The anisotropic rescaling (1.11) leading to our reduced model
and the anisotropic response of the ripple obviously have the same origin.

We will see that both the ripple and the transition between ripple and concertina
can be explained within the framework of an extension of our reduced model. Our
analysis of the ripple is mainly a reformulation of the classical results by Hoffmann.
However, the new insight is that the finite width of the sample leads to a (continuous)
transition from the ripple to the concertina.

O
Z

Figure 7.2.: A polycrystalline anisotropy acts like a transversal (to the direction of the mean
magnetization) random field on length scales large compared to the grain size.

7.1.1. Extension of the reduced model to polycrystalline anisotropy

We now heuristically explain how to extend our reduced model. We start from the
three-dimensional model (1.1) with a uniaxial anisotropy of strength Q and position-
dependent easy axis e(x), i.e., with the augmentation —Q [ (m - ¢)* dx of the micro-
magnetic energy (1.1), cf. Figure 7.2 (left). Under the assumptions of our reduced
model, i.e., m3 =0, m = m(x1,x2), m% < 1, this term is, up to additive constants, to
leading order approximated by

~Q [(m-epdx~ ~20t [ maiesdxi day (71)
0 o
where
t
erez(xy, x2) = f_l/o erex(x1,x2, x3) dxz

denotes the vertical average of the product of the first two components of the easy
axis. A random anisotropy therefore acts to leading order as a transversal external
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7.1. The ripple

stochastic field

hripple = Qeres. (7-2)

As mentioned, the position dependence of e arises from the random orientation
of the grains of size lgrain. Provided t < flgrain < w* (where we take w* as a
typical length scale of the magnetization pattern), the stationary statistics of eje; are
characterized by

<m(0, O)E('xl/ X2)> = géraind(xl)(s(XZ) <m(0/ 0)2>l (73)

where (-) denotes the ensemble average and ¢ the Dirac function. For example in
case of a uniform distribution of the easy axis e in 8! and column-like grains, i.e.,
the distribution (cos¢sin¢,0), ¢ € [0,277), we obtain

Qol—=

() = 2 [ (ere2)(9)dg =

Let us note that different axial anisotropies can be similarly treated, leading to a
different factor in the latter identity.

The dominant wave number of the magnetization. For subcritical fields hext <
h% we neglect the nonlinear term in the charge density in (1.10). The resulting
energy functional is quadratic and linear in mj. Hence, it is conveniently expressed
in terms of Fmy(ky,ky), which denotes the Fourier transform of mp w.rt. x; (we
assume an infinite stripe at that point, periodic stripes of large period L lead to
similar results) and the Fourier sine series in x; (related to the edge pinning my = 0
at xp =0,/):

E(ms)
~ / Y (@2 + LK — hext) | F () |2 — 2QF (e1e2) F Y (my) dky. (7.4)
_ookZEﬂ:él

A uniaxial anisotropy, constant throughout the sample, is neglected at that point but
can be easily included afterwards since it only leads to a shift of the external field.
The explicit minimization yields

1
(d2k3 + Stk3ky ! — hext)

F(my)(k1, k) = F (heipple) (k1, k2). (7-5)

We interpret this m; as the ripple. Since (7.3) on the level of F(eje;) reads

(IF (@1e2) (k1 ko) [2) = Lopain (€102(0,0)%),

(7.5) is best expressed in terms of the energy spectrum:

2

£ rain —
(1Fmalky ko)) = Qo St (0122 0,0)%). (7.6)
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7. The effect of polycrystalline anisotropy

The numerator clearly displays the afore mentioned anisotropic response of m; to
the isotropic field eje;.

As we will see below, from formula (7.6), one can infer the predominant wave num-
ber of the ripple given by

(S S R IF )Rk (V[ 2mf?)
<k1> = <Zk2 fjooo |.7-"(m2)|2 dk1> - <‘m2|2> . (7-7)

There are three different scaling regimes for the wave number.

e For moderate stabilizing fields, i.e., 2472 > —hey > d2/30-%/342/3 one can
show that

([kil) ~ (—hext)!/2d 1. (7.8)

This is the characteristic wave number which was derived by Hoffmann and
Harte , cf. [Hof68, p.34, (7) and (9)] and [Har68, p.1515, (97b)]. However, Hoff-
man includes an additional uniaxial anisotropy with easy axis e; of strength
Qu, ie., +Qy fQ 771% dx , so that the external field is shifted in the sense that the
dominant wave number turns into (|k1|) ~ (Qy — hext)?/?d 1.

e We note that for large stabilizing fields, i.e., in the limit —heyt > 2d72, the
amplitude of the ripple tends to zero.

e For small stabilizing fields and destabilizing fields up to the critical field, more
precisely —d?/3¢4/3¢2/3 <« hey < i, = 3(Z)*/3d%/30~4/312/3, one can show
that the dominant wave number scales as

<|k1|> ~ d_2/3€_2/3t1/3. (7.9)

More precisely, as hext approaches the critical field kY, the dominant wave

number (|ki|) approaches the critical wave number k7, i.e., the wave number
of the unstable mode, see below.

We thus learn from the analysis that, as the strength hey of the external field in-
creases from moderate negative values towards its critical value, the average wave
length of the ripple continuously increases

e from the values characteristic to a film which is infinite in both x;- and x»-
directions, cf. Section 7.2 and (7.28) therein,

e to the wave length of the unstable mode that is at the origin of the concertina
pattern, see Figure 7.3.

It is thus not surprising that ripple and small-amplitude concertina are difficult to
distinguish.
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; h

ext
hext

Figure 7.3.: Numerical simulations: The dominant wave number of the transversal compo-
nent of the magnetization computed on the basis of the reduced model aug-
mented by a transversal random field. As the external field approaches the criti-
cal field the dominant wave number increases towards the critical wave number.

Arguments for scaling behavior of the dominant wave number. Let us first give
an argument for (7.8) and afterwards turn to (7.9). For moderate stabilizing external
field, i.e.,

A2 > —Re = d 23043723 (—heyy) > 1, (7.10)
consider the rescaling

ki =d Y—hext)?k1 and kp = d V2 V2 (—hew)3 4y
and set

o =dV20 Y2 (hey) A, (7.11)

Then

T OO 1
n dk,
¢ Z / (d2k2+2t —hext)?

keZZ \k |
d_l(—hext)l/ Z /

kyenaZ

~|3

ﬂm H

N\»—l
=

Since &« < 1 in the Regime (7.10), we can approximate the sum over 752 by an integral,
more precisely

o
1 o~ (X<<1 1
e Y / L 4k "R — L dkdk;.
) —00 (2412 41)2 (243 -2 +1)2
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7. The effect of polycrystalline anisotropy

To see that the latter integral is finite, we refer to Figure 7.4 which depicts the scaling
regimes of the integrand. From Figure 7.4 we read off that

1 _
] R dkldkz

15
TaR]
1 k1/2

N/o/l

+ / |7 kPRt dk dke + / /1 ko4 dky diy
1 0

< —+oo0. (7.12)

1 dk2 dk1 +/ / ’kl‘zki dkz dk1

k/3

Altogether we obtain that

o

s 1

t 2 / 22, 1,5 zdk1
—00 (d k1+ztm_hext)

sz%Z
= A2 () Y — L dky
ks 0. (kﬁzﬁ*l)z

<1 ;- _ _
< d 3/2t 1/2(_hext) 3/4.

Notice that this is the average squared ripple amplitude Y, [ |F (my)[*> dkywhich
was derived by Hoffmann in [Hof68, p.34, (10)], see (7.6). Similarly we have that

* 1
% Z / 1 }1{2 dk1
kze%Z - (dzk%+§t7‘kf‘_hext)2

~ d A (o) A (—he)? [ [ Tl dky dks.

Since the latter integral is finite — which can be seen in a similar way using the
decomposition as in (7.12) — we obtain for « < 1 that the dominant wave number is
given by

([kil) ~ d ™! (—hext) /2.

(We note that higher order moments do not exist, more precisely (|k1|") is infinite
for r > %). In the same manner one can show that

(ko) ~ ()72 (=hext)*™.

Note that the anisotropic response of the magnetization, i.e., (|kz2|) < (|k1|), only is
equivalent to the lower bound in the regime (7.10).

Let us briefly address the case of large stabilizing field —hex > t2d~2. In that
case the scale separation is not valid anymore so that the anisotropic approximation
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7.1. The ripple

224 28 212 L 2K . .
1+ ] hext of d~|K'|~ + &5 il hext fails. However, on the basis of the latter

expression one can show that the amplitude of the magnetization (§m3)!/2 in the
limit —hey > t2d—2 converges to zero, see Section 7.2.

We now turn to small stabilizing external fields & > 1, cf. (7.11). Using the rescaling
ki =d 23072313k and k= (ks

we obtain that

00 1
x / dk
sz%Z (dez + 2t|k ‘ hext)2
= T 472/3¢72/341/3 g=4/348/34=4/3 / ” — Pl dkq dk»
kenz” % (K + 255 + w5 )

2l g2 1,

The latter sum/integral is finite since (E% + %%@ﬂ’l)’z is integrable on (0,00) X
(71, 00):

1
/ / 1+§2 k1|71 ~2 dky dk;

Bl
2k, 4 dk; dk, + / /k R L4k, dky ~ 1. (7.13)
2

“Lh

Moreover
o0 k
x / | 1! dky
sz%Z (deZ + 2t|k ‘ hext)2
= qd 20t 1d PRy kf dk; dk,
fenz” ™ (B + 325 + )2

a2l g=2p4-14-2/3p-2/341/3
In fact, the integral is finite which can be seen similar to (7.13) so that we obtain
(ky|) ~ d—2/3072/311/3,
In the same way one obtains that
(Jkal) ~ €7,

Observe that that (|ky|) < (|k1|) is equivalent to the lower bound characterizing
Regime I1I, (1.17).
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ko
ko = [ky[*2

ki
Figure 7.4.: The scaling regimes of k% + k3|k,| 1 + 1.

Finally we turn to the case of small external destabilizing field. Provided that
0 < hext < hiq = 3(F)*3d2/3¢74/342/3 the density |F(m;)|? is integrable. Ob-
serve that, as hext approaches the critical field hl,, the density |F(my)|> concen-
trates at ki = 2rd~2/3¢=2/3t1/3 and k3 = ml~! respectively. In fact, the minimum of
d*k3 + 5k3k1| 71 among k1 € R and k, € ZZ is attained at k} and k, respectively,
and it holds that

2(1%)2 2% -1
d?(k1)* + 3 (k3)* k7| = hes.
Due to the uniform integrability away from the singularity as hext — h% one can
show that
(|k1]) = k] in the limit Fext — Ny
A refinement of the analysis even shows that (|k1|) monotonically decreases as Fext
increases, see Figure 7.3.

Summing up the above analysis shows that the dominant wave-length grows from
values ~ (—hext) V/2d to w* = (327)1/3d%/3¢2/3t=1/3 a5 the external field hey; in-

creases from moderate negative values hex ~ —t2d =2 to hl,.

7.1.2. Discretization and numerical simulation of the random field

We now address the numerical simulation of our augmented model (7.14). Let us
therefore first rewrite the additional term (7.1) in the rescaled variables (1.11). We
obtain

E =old — z/ﬁripplefﬁZ d)?l dfz, (7.14)

~

where hjppe is a stationary Gaussian field of vanishing mean and of variance

<ﬁripple(0/0)ﬁripple(flf9?2)> = (0'*)2‘5(5(\1)5(552)/ (7.15)
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7.2. Thermal fluctuations vs. quenched disorder

where ¢* = d_10/6£5/6t_1/6Q£grain((31_62(0,O)2>1/2. For a typical film of 30 nm thick-
ness and 70 um width the grain size is of the order {grai, = 15nm, see Section 1.12.
For a local strength of anisotropy Q = 5 x 1073 we obtain that (¢*)? = 125.87. On
the level of the discretization, /ﬁripple in (7.2) is modeled as a Gaussian random vari-
able of mean zero, which is identically and independently distributed from grid
point to grid point and has variance (¢*)2A%; 'A%, !, where AX; denotes the grid
size. For the value of (0*)? = 110.83, our numerical simulation indeed shows a con-
tinuous transition from the ripple to the concertina pattern instead of a first-order
phase transition due to a subcritical bifurcation, see Figure 1.30.

7.2. Thermal fluctuations vs. quenched disorder

In the following, we want to contrast the effect of thermal fluctuations to the effect
of quenched disorder. Thermal fluctuations can be modeled by a random external
field term in the Landau-Lifshitz-Gilbert equation (LLGe) that is white noise in space
and time. On the other hand, as we have seen, quenched disorder related to the
polycrystallinity of the material can be modeled by a random field term that is
white noise in space.

It is known that the space-time white noise in the LLGe leads to a divergence in small
wave-lengths, cf. [BGos, Section 2.4, Figure 1 and 2]. In fact, the exchange energy is
not strong enough to suppress these excitations. Within the numerical simulations,
one observes a mesh-size dependence of the solution, cf. [Abe1o], which can be
remediated by a suitable renormalization. These effects are related to the presence
of phase transitions in the Heisenberg spin model. Hence it is not surprising that the
critical dimension for that effect is two, cf. Table 7.18. Both effects are investigated
below on the basis of the linearization of the energy for bulk material and thin films.
The analysis shows that the expected average infinitesimal amplitude is given by

(Jomf?) = [ M) dk (7.16)
and that the dominant wave number of the magnetization is given by
[ A(k) 7|k dk
k|) = —, :

where A(k) denotes the eigenvalues of the linearization of the energy parameterized
by the wave number in Fourier space. We will see that j = 1 in case of thermal
fluctuations and j = 2 in case of quenched disorder. Note that (7.17) is just a refor-
mulation of the expectation for the ripple wave number in (7.7). We will see that
(7.16) and (7.17) diverge in case of thermal fluctuations, i.e., j = 1, though only log-
arithmically in a thin film. In case of quenched disorder, i.e., j = 2, (7.16) and (7.17)
are finite. But only in a thin film the dominant wave length is determined by both
exchange and stray-field energy and turns out to be much larger than the atomistic
length scale, i.e., the exchange length d, and the typical grain size grain.
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7.2.1. Thermal fluctuations.

We consider the Langevin dynamics of the LLGe and take into account a white-noise
torque. The stationary measure which is associated to the dynamics is given by the
Gibbs distribution

%exp(—E(m)) dm, (7.18)
where E denotes the micromagnetic energy (1.1). We start with the effect of thermal
fluctuations in a bulk sample where we think of the energy E as the full micromag-
netic energy (1.1). Afterwards we consider a two-dimensional thin film. In that case
the magnetization is assumed to be in-plane, i.e., m3 = 0, so that the stray-field
energy can be approximated by

3 IV TR Py dy,

cf. (1.9). In order to derive expectations for the spatially averaged magnetization and
the dominant wave number, we need the following identities. Let A € R"*" be a
symmetric positive definite matrix. Then

A;1>

/]Rn |x[2e™F" dx = (27)"/? (fpil/z) (

n
i= i=1

and

ot

where A;, i = 1,...,n denote the eigenvalues of the matrix A. In fact, using substi-
tution of coordinates x = QTx where Q € O(N) is s.t. QAQT = diag(A), this is a
consequence of the one-dimensional identities

“Ax2 1/2 A2 1/2
/]R \x\zeAT dx = (i—’;) and /]ReAZ dx = (27”> . (7.19)

Bulk sample d = 3. To simplify the discussions we assume that the bulk sample is
given by a periodic cube (0, L) of period L so large that is does not affect the char-
acteristic length scale of the minimizer. Moreover, we consider a uniform external
magnetic field Hext = (—hext,0,0) so that m* = (1,0,0) is the global minimizer of
the energy for hext < 0. If we approximate the energy E(m) for m close to m* with
the help of its Hessian, more precisely

7xéAx dx = (27_()71/2 (ﬁ[Ail/Z)’
i=1

E(m) =~ %HGSSE(TH*)(mﬁ/mﬁ)
:dZ/ |Vmﬂ|2dx+/ 1917 g — et [ g
(O,L)3 (0,L)3 (OL)?
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7.2. Thermal fluctuations vs. quenched disorder

where my = (my,m3), then the measure (7.18) can be explicitly analyzed. To cir-
cumvent the subtleties related to the measure dm, it is helpful to think of m; as a
high-dimensional finite difference approximation m;%* on a uniform Cartesian grid
of grid size Ax = L/N for some large N € IN. Under these assumptions the expec-
tation of the average stationary magnetization is approximated by

f Hmli||%2e E(m)

fe_E(m)
3 nzﬁAx~HessEAx(m*)m:Ax
. fRN3 (RN? DY |45 \lze Z dmb* dm?x
~ jij -HessEDX (m* )m, BX (7'20)
Jrn g€ ) dm5* dm§*
Using (7.19) we find that (7.20) turns into
—HessE(m*)(mu,mﬁ)
[ 1lms2,e 2 dém .
—HessE(m* ) (mymy) ~ Z (()‘dlv(l)) (/\curl(l)) )/ (7.21)
fef dmy 1€{0,...,N—1}3

Ax Ax
where AJ and A il

denote the eigenvalues of Ax *HessEA*(m*). In fact, the appli-

cation of the discrete Fourier transform JF to the vector field mﬁA (0, mz ,mgx)
shows that
Ax
HessE® (m*) (mf¥, mg™) = 2Ax° y (]fr (mix)l) .
1=(I3,l,13)€{0,...N—1}3 (m3%);
2 2 K(b)? K(l)K(l5)
d |K(l)|K(‘Z|‘)KK(§—12%|2 — Next —é(l}('(z; . (]:(mgi)l) ,
2 2
KOF PKP + e — hext (1m3),

where

K(l) = Azx sm(”ﬁl) = Ax(sm(%),sin(”le),sin(nwb))

is the discrete Fourier multiplier, see (4.2) in Chapter 4. To each 2 x 2-dimensional
block of the Hessian in Fourier space, there is one eigenvalue associated to a di-
vergence-free eigenvector, given by

Adlv(l) = 2(d2|K(l) |2 - hext)/

and one eigenvalue associated to a curl-free eigenvector, given by

K((0,1,,13)|?
A 0y = o2k 4 KOG B

[K(D)[2
respectively, where | = (I1,l,13) € {0,...,N —1}3. In the limit Ax to zero, K(I)
converges to k; = ZT”l € ZT”Z?’. Hence, the rh.s. in (7.21) is not bounded due to
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7. The effect of polycrystalline anisotropy

a divergence in the large wave numbers, i.e., |k;| > (|hext|)!/?d~!, even in case of
stabilizing external field hext < 0. This entails that the dominant wave number
diverges as the inverse grid size, i.e.,

Y1e{0,. N-1}3 |K(lz)|((A§f‘V(l)) + (A (D))
Zle{O,...,N—l}3 ( /\ﬁﬁf (AcAlfﬂ(l)) 1)

for i = 1,2,3. The dominant wave number is defined in analogy to the dominant
wave number in case of quenched disorder, see (7.23), and can be identified with

(Ikil) ~ ~ Ax! (7:22)

SV Y226 E0™) dim,
f||mﬁ||2e E dmﬁ

(Ikil) =

Thin film d = 2. We now discuss the effect of thermal fluctuations in a periodic
thin film (0, L)%. We assume that the magnetization is in-plane, i.e., m3 = 0. Then
the Hessian is given by:

HessE> % (m*) (my, my) = 2/ |V’m§|dx'+t/ ||V']_1/282m2|2dx'—2hext/m% dx’.

The eigenvalues of the (discrete) Hessian are given by

Mgy — (22 .t KR
ARH(1) = 2(d |K(l)|+2|K(( L)l hext),

where | = (I3, 1) € {0,...,N — 1}2. In the limit Ax to zero, K(I) converges as before
to k; € 2£Z. Note that the contribution coming from the stray-field only has a
significant damping effect on the small wave numbers. For large wave numbers we
find a logarithmic divergence of the sum Y_(A%¥)~! — which is the expectation of the
average amplitude of the magnetization — as Ax tends to zero. Similar as before the
dominant wave number diverges as

Yiefo,. N1 K1) (AR (1)~

~ Ax_l’ l — 1’2. (7.2 )
Zle{o,...,zxf—1}3(AAX)_1 ! 3

(Ikil) ~

Both can be seen using the approximation

b Axf0_ 42k + tzz |£ [~ hext for ([ka|) < ([ka)
dzkz ’kz‘ hext for <‘k2’> > <|k1|>

We skip the detailed argument at that point. It uses the same rescaling as in the case
of a thin film for quenched disorder, see below.
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7.2. Thermal fluctuations vs. quenched disorder

7.2.2. Quenched disorder.

Bulk sample d = 3. Again we start with the discussion of the bulk sample where
we take into account a position-dependent easy axis e(x) € S? in order to model a lo-
cal anisotropy. For an external field Hext = (—hext, 0,0) we consider the linearization
of the energy close to m*, i.e.,

dz/( )3]Vmﬁ‘2dx+/( )3]|V]1V.mﬁ‘2dx
0,L 0,L

2 2
— Next (0.L)3 ’mﬁ‘ dx —2 /(0,L)3 (hripplem2 + hrlpple ) dx,

where hippl . and 12, pple AT stationary Gaussian fields of vanishing mean and covari-
ance

<h1%1pple(0)h1%1pple( )> <h§1pple(0)h§1pple( )> = 0’2§(x1)5(x2)(5(x3). (7'24)
Moreover

<hr1pp1e(0)h1%1pple( )> =0. (725)

Again, () denotes the ensemble average and ¢ the Dirac distribution. The explicit
minimization of the linearization of the energy in Fourier space yields that

F (M) () F(my) (k)
(fv%ikxm>"%A“)( )

where F now denotes the Fourier series w.r.t. x1, xo and x3 and

K2
Pk + % —h kaks
A(k) ’ ‘ ) ‘]]:|2 ext \k|}j2 . ke zTnZ

Let 01 (k) = W(
the matrix A(k). Then

Fom) 0 _ o (Flp) &
(FW;W)_A®1< -

—k3, k) and vy (k) = m(kz,k@ be the eigenvectors of
2173

= ——

= (Adiv(k)ilu(k)vl(k) + Curl(k)ila(k)UZ(k)),

where
ﬂ(k) =0 (k) ' f(hripple) = (ICZ_SW( k3f(hr1pple)(k) +k2f(hr1pple) (k))
2 3
b(k) = UZ(k) 'f(hripple) = (k%_i_;k%)l/z(sz( rlpple)( ) + k3f( rlpple)(k))
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The eigenvalues are given by

2,12
/\div(k) - (dz‘kF - hext) and /\curl(k) = (d2‘k’2 + k2|;‘—§3 - hext)/

as before, see p. 165. Since v1(k) and v, (k) are orthonormal and due to (7.24) and
(7.25), we obtain

<; [F(my)[?) ~ o Z(Adiv(k)_z + Acurt (k) 72) ~ 0 ;Adiv(k)_z-

The r.hs. is finite since ( \ k*)~2is integrable in dimensions less or equal to four.
Using the rescaling k = 1~ ext)l/ 2k we find that the dominant wave number
scales as
kil|F 2
(L [F (my) 12)
i=1,2,3.

Thin film d = 2. In case of a thin film we consider the energy
dz/( |V m2|2dx1 dX2—|- / |V | 1//28271’12| dx; dxy
o [ ImBPdxi s —2 /( o ez

where Iyjpple is a stationary Gaussian field of vanishing mean and covariance
(Meipple (0)ripple (X)) = 025(x1)8(x2). The explicit minimization in Fourier space
yields that

<; | F(my)|?) = Z;A(k’)_zf (7.27)

where

AK) = K P+ iy — hewe
Clearly, for eyt < 0 the right hand side in (7.27) is finite since (|k'|?> 4+ 1)72 is inte-
grable in dimension two. We use the rescaling

ky = d 'L/ 2Ky,

ky = (dt) V2 (—hext) k.
Let & = dt~!(—hext)'/%. Then

2 13 3
PP+ SR~ hon = o (B4 a8+ gy +1)
/\2 ~ ~
N K+ B+l for [ky| < a=1/2|kq]|
aks +a 2|k +1  for ko] > a2k,
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7.2. Thermal fluctuations vs. quenched disorder

For large sample size L we can approximate the sum by the integral

& 1 w27 M @ By
4 k’G%Z)Z (dz‘k’|2+%t%—hext)2 - eXt(/—oo/O (ki + g5 +1) 2 dkq

+/ / (@l a2 k| 4+ 1) "2 dky dky ).
0 a1/2|k2|( 2 ‘2| ) 1 2)

For &« < 1 the second integral tends to zero while the first integral is of order one.
Hence, the expectation for the dominant wave number is

(|k1]) ~ d Y (=hext)? and ko ~ (dt) V2 (—hex)%. (7.28)

This is the dominant wave-length of the ripple in an extended thin film, cf. (7.8). Let
us collect the main results (7.22), (7.23) and (7.26), (7.28) in Table 7.18.

d=2 d=23

(Jlal) ~ d~Hhex|'?
quenched disorder || {|ka|) ~ d= 12tV 2 ey |34 | {|k;|) ~ d Hhext|'/?, i =1,2,3

for 0 < |hext| < t2d—2

thermal fluctuations | (|k;|) ~ Ax~1,i=1,2 (Jki]) ~Ax~1,i=1,2

Table 7.1.: Thermal fluctuations vs. quenched disorder in bulk samples (d = 3) and thin
films (d = 2). The dominant wave-numbers in case of thermal fluctuations scale
like the grid-size of the discretization.

At the beginning of this chapter the relation between the ripple and the concertina
in polycrystalline material was investigated. Afterwards, we addressed the investi-
gation of the different effects of thermal fluctuations and quenched disorder. The
outcome of this analysis is in correspondence with numerical simulations. Thermal
fluctuations, i.e., a spatial-temporal white-noise torque in the LLGe, lead to a diver-
gence in the small wave-lengths. Quenched disorder in dimension three leads to an
excitation of small wave-numbers of order d_1|hext\1/ 2, Only in dimension two it
leads to an anisotropic response of the magnetization, i.e., the ripple.
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8

General remarks

8.1. Some notes on hardware and software

Our simulations were run on Intel* Core” 2 Duo 1.86GHz or Pentium " 4 3.00GHz
CPUs with 2GB RAM. The operating system was Debian GNU/Linux 3.1 and the
program was compiled with gcc version 3.3.5. As external packages PETSc 2.3.2
[BBGT09] together with MPICH2 1.0.4p1 and the libraries FFTW3-3.1.2 [FJos] and
SLEPc 2.3.2 [HRVo5] were used. PETSc uses the Intel© MKL" library in version 8.0.1.

Wolfram Mathematica® was used for the investigation of the amplitude functional.
The visualization of our numerical results was done in MATLAB® by The Math-
Works in version R20o7a. The same version was also used for the minimizations
related to domain theory. Schematic figures were drawn using PSTricks.

Our code was developed with the help of Eclipse with the CDT plug-in. Typesetting
was done in IATEX.

I am grateful for the countless contributors to the Open Source programming com-
munity for providing the numerous tools I have used.
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A

List of notations and symbols

d Exchange length. p. 2

E Micromagnetic energy. p. 2

Ep Reduced energy. p. 12

Hext  External field Hext = (—hext, 0,0). p. 3

Hgtray  Stray field Hgyray generated by magnetization m. p. 2
14 Sample’s width. p. 3

m Magnetization m = (my, my, m3) : QO — S, p. 1
v (Outward pointing) normal. p. 2

Q) Domain occupied by sample. p. 1

Q Quality factor (strength of anisotropy). p. 3

t Sample’s thickness. p. 3

Wy Optimal period, i.e., absolute minimizer of the energy density. p.
18

Wi Maximal period. p. 27

W Marginally stable period, o.e. %E(@S) = 0. p. 22

Period of the unstable mode. p. 7

Non-dimensionalized lengths and reduced units. p. 12

[ ] Jump of some quantity across an interface. p. 2

|V|™®  Operator associated to Fourier multiplier |V|~°. p. 3
In-plane components of some quantity, e.g. ¥’ =

(alaz)T. p- 11

Asymptotically equal in a certain regime. p. 8

f 2 g means fC > g for a generic constant C > 0. p. 5

f < gmeans f < Cg for a generic constant C > 0. p. 5

~ stands for both < and 2. p. 5

f < g there exists C > 1 such that Cf < g independent of the

parameters involved. p. 5

(‘xll X2), v, -

A LNV R
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