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Overview

Similarly to a magnifying glass, a gravitational field deflects light rays that travel
through it. This phenomenon, predicted by the theory of General Relativity by
A. Einstein (1915), is referred to as gravitational lensing, and it is the core of the
projects presented in this thesis. The study of gravitational lenses yields the mass
distribution of the lensing object together with the properties of the background
source. We have studied two of these systems using radio interferometers, achieving
angular resolution within the range 0.001 − 4 arcseconds. The first system is the 8
o’clock arc (J002240+143130). Main goal is the detection of radio emission from a
high redshift source exploiting lensing as natural telescope; eventually the properties
of the intervening mass could then be studied from the observed lensed configura-
tion. The second system is the gravitational lens MG J0414+0534. The goal is
to deduce the properties of the foreground mass distribution and the background
source.
In Chapter 1 we describe the theoretical astrophysical framework on which is based
the work presented in this thesis. We start describing our current understanding of
cosmic expansion, structure formation and evolution in the Universe. Afterwards
we describe the theory of gravitational lensing providing the basic concepts and def-
initions necessary to analyse a gravitational lens. Next we review some important
recent results from the field, and highlight the astrophysical applications of gravita-
tional lensing that are relevant for the projects discussed here.
In Chapter 2 we continue with lensing and describe first the analytical mass models
used for mass modelling, then the techniques used to study the properties of the
foreground mass distribution and the background source. Then we explain the pro-
cedure used to estimate the uncertainty on the lens model parameters and describe
the set of constraints that a lensed configuration provides, this last aspect is im-
portant in order to interpret the goodness of fit of lens model. Afterwards we also
discuss the main degeneracies to consider when interpreting the results from lens
modelling.
In Chapter 3 we start describing the principles of radio-interferometry, calibration
strategies and methods to reconstruct images of the radio sky. We discuss issues
like smearing and sensitivity, that are relevant for lensing studies from radio obser-
vations, and in particular for the systems studied here. We conclude the chapter
giving more details on the imaging technique which we have used to produce the
maps of both systems presented in this work.
In Chapter 4 we present the 8 o’clock arc system. Our target is the high redshift
galaxy (z ∼ 2.73) J002240.78+143113.9, which is gravitationally lensed by a galaxy
at z ∼ 0.38. The system was first discovered at optical wavelengths (Allam et al.,
2007), and later on studied also in the near-infrared (Finkelstein et al., 2009); both

xiii



xiv Overview

studies have confirmed this system as an active star-forming region. In the NVSS
catalogue (The National Radio Astronomy Observatory Very Large Array Sky Sur-
vey; Condon et al. 1998) the system is associated with a radio source of 5 mJy, which
would predict a radio-derived star-formation rate more then one order of magnitude
larger than what predicted by the existing studies. In order to investigate the source
of the 5 mJy radio emission we have conducted radio-interferometric observations
at 1.4 and 5 GHz with the Very Large Array (VLA) telescope. In this chapter we
present results from the VLA observations. Detailed and accurate studies of these
early episodes of star-formation are only possible when the emission is boosted by
a gravitational lens. In particular, radio observations of these targets are becoming
feasible now that the sensitivity of the radio telescopes has been improved by at
least one order of magnitude. We find that most of the radio emission is associated
with the lens galaxy. From our study we could place only an upper limit on the
radio flux density and hence the radio-derived star-formation rate, which we find in
good agreement with the predictions from optical and near-infrared observations.
In Chapter 5 we present the study of the gravitational lens MG J0414+0534. The
lensed source is a QSO at redshift z ∼ 2.64, while the elliptical lens galaxy is at
redshift z ∼ 0.96; the latter has a luminous companion, whose nature is proba-
bly a dwarf galaxy. We have conducted new global-VLBI observations at 1.7 GHz
in order to map with high sensitivity the emission of the extended structures and
hence obtain a rich set of constraints for lens-modelling purposes. In this chapter
we present the new VLBI maps and lens-modelling results. The system is a very
well know radio-loud lens. This type of lenses are the ideal laboratories where the
presence of CDM structures can be directly revealed by independent bent of the
radio jet or flux-ratios mismatches between the observed configuration and the pre-
diction of a smooth mass model that does not account for such a mass structure.
Indeed for this system, mid-infrared observations have reported the presence of a
flux-anomaly which could indicate the presence of a dark-matter clump (Minezaki
et al., 2009). Previous Very Long Baseline Interferometric (VLBI) observations have
shown four resolved lensed images, separated by up to 2 arcseconds (Ros et al., 2000;
Trotter et al., 2000). Deep optical observations, obtained with the Hubble Space
Telescope, shows the four compact images of the lensed QSO, the lens galaxy and
its luminous satellite, as well as an extended structure, probably connected to the
QSO (Kochanek et al., 1999). We first use the new data to test the existing lens
models, afterwards we constrain the model with a modelling technique that uses all
the structures seen in the radio maps; this is a new modelling approach for this sys-
tem and it also allows us to reconstruct the unlensed source structure. The source
reconstruction obtained with our best mass model has shifts of ∼ 5 milli-arcseconds
that could be explained by a non-smooth mass distribution. This would also be
consistent with the flux-anomaly problem reported by mid-infrared studies. At the
end, we discuss if these data are sensitive to probe other mass models than the one
we have considered.
To conclude, in Chapter 6 we summarize the research projects we have carried out
and describe the possible future work.
In the appendix we describe the model fitting techniques used to describe the fea-
tures seen in the radio maps.



Imagination is more important
than knowledge

A. Einstein

1
Introduction

In this chapter the theoretical astrophysical framework for this thesis is introduced.
In Sections 1.1 and 1.2 we discuss the aspects of relativistic cosmology that are
relevant for the science cases presented here. In Section 1.3 and 1.4 we describe the
theory of gravitational lensing and some of its astrophysical applications.

1.1 The expanding Universe

While the first scientific results from the Planck mission have been recently delivered,
new results are produced by the Wilkinson Microwave Anisotropy Probe (WMPA)
satellite, which place tighter constraints on the currently most widely accepted stan-
dard model of cosmology, namely the Cold Dark Matter and Cosmological Constant
in a flat Universe.
The cosmological principle, the Weyl postulate1 and the framework provided by the
theory of General Relativity gravity build the theoretical framework for this model
that explains how the Universe has evolved since the primordial hot and dense phase
of the Big Bang, which occurred ∼ 13.7 billion years ago. Since then, as time pro-
ceeded, the small inhomogeneities that were set by fluctuations of the quantum field
were amplified by gravitational instabilities, leading to the formation of the large-
scale structures in the Universe that we observe today.
Hubble’s experiment in 1929 first opened the picture of an expanding Universe. In
1959, observations of the spiral galaxy M33 showed its rotation curve not consis-
tent with Keplerian dynamic (Volders, 1959), evidence found later on also for many
other galaxies (Rubin et al., 1978). Observations were implying an amount of a non-
luminous matter, named dark matter extending far from the centre of the galaxy.
Already Zwicky in 1933 had evidence for it while studying the Coma galaxy cluster.

1An intuitive interpretation of this postulate would allow us to see as cosmological models only
those ones given by hyperslices which are are everywhere orthogonal to the world lines of the
cosmological fluid particles. In other terms, this postulate states how space is evolving over time,
and guarantees the measurement of time.

1



2 Introduction

Afterwards, the discovery of the Cosmic Microwave Background (CMB) by Penzias
& Wilson in 1965 as relic radiation from the Big Bang, provided the first evidence of
the early Universe. Finally, another important piece for the whole picture has come
by observations of distant type Ia supernovae (Conley et al. 2011 and references
therein) which have indicated that the Universe is undergoing an accelerated expan-
sion at present times, explained by a dark energy component, acting as a negative
pressure.
The WMAP satellite has studied in great detail the power spectrum of the primordial
inhomogeneities, providing an enormous amount of information on all cosmological
parameters showing no deviations from the currently accepted model that, although
requiring its main ingredient being dark, seems to be the only one in agreement with
the observational evidences achieved in the last 10−15 years. Among them, beside
what is mentioned above, they need to be mentioned here the statistical properties
of the large-scale structures that have been studied in large redshift surveys like
the Sloan Digital Sky Survey (SDSS) and the Two Degree Field Galaxy redshift
Survey (2dFGRS) (Padmanabhan et al., 2007; Hawkins et al., 2003), the spectra
of high-redshift quasars (Tytler et al., 2000), and clusters studies (Eke et al., 1996)
that allow one to constrain the primordial abundance of light elements and thus the
baryon and total matter content of the Universe.
The latest results the WMAP mission are given in Larson et al. (2011) and Ko-
matsu et al. (2011). Dark Energy constitutes 72.1% of the Universe energy density,
Dark matter 23.3% and the remaining 4.6% is in form of baryonic matter. Other
methods, like Baryonic Acoustic Oscillations (e.g. Zhai et al. 2010; Eisenstein et al.
2005), time delays measurements from gravitational lensing systems (Suyu et al.,
2010) and cosmic shear measurements are all complementary to break the degen-
eracies between the cosmological parameters, and thus in our understanding of the
components of the Universe in which we live.

1.1.1 Dynamics of the expanding Universe

As seen from the Earth, when smoothed on large scales, our Universe is isotropic.
Furthermore, accepting the Copernican principle, the same property holds also for
other observers. Thus we conclude that on large scales the Universe looks the same
in all directions for an observer at any place. This statement is usually referred to
as cosmological principle that in mathematical terms translate that the Universe is
homogeneous and isotropic on large scales. From symmetry considerations it follows
that the metric in such a Universe can be written as

ds2 = c2dt2 − a2(t)
[
dχ2 + f2k (χ)

(
dθ2 + sin2θdφ2

)]
. (1.1)

Independently, Robertson (1935) and Walker (1936) demonstrated that this is the
general form for the line element in a spatially homogeneous and isotropic space-
time. It was used for the first time by Friedmann in 1922, and therefore is usually
called the Friedmann-Robertson-Walker (FRW) metric. In Equation (1.1) c is the
speed of light, a(t) is a time-dependent scale factor; the coordinates θ and φ are
angular coordinates, while χ is the coordinate in the radial direction; t is the time
coordinate has measured by a set of comoving observers at coordinates (χ, θ, φ),
which are called comoving coordinates. The factor fk(χ) depends upon the geometry
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of the Universe, which depends on the curvature parameter k. For a flat Universe
(suggested by the observations of the CMB) k = 0, the factor f0(χ) = χ and the
metric equation is

ds2 = c2dt2 − a2(t)
[
dχ2 + χ2

(
dθ2 + sin2θdφ2

)]
. (1.2)

At a given time t, a comoving distance is the distance between comoving observers.
The physical distance between two points in space is x = χa(t) 2.
In the theory of General Relativity, the metric is related to the matter distribution
in the Universe by the Einstein field equations:

Gµν − Λgµν =
8πG

c2
Tµν . (1.3)

In the above equation, G is the gravitational constant, Gµν is the Einstein tensor,
representing the metric, while Tµν is the energy-momentum tensor.The parameter
Λ is the cosmological constant. The labels µ and ν run over the time index (0) and
the three spatial indices (1,2,3).
The homogeneity and isotropy of the Universe implies that the matter contents must
be a perfect fluid with density ρ(t) and pressure p(t). Inserting the metric equation
(Eq. 1.2) in the field equations (Eq. 1.3), the components of Equation (1.3) reduce
to two equations for the scale factor a(t),

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+
Λ

3
(1.4)

and
ä

a
= −4

3
πG

(
ρ+

3p

c2

)
+
Λ

3
. (1.5)

These are called Friedmann’s equations. Equations (1.4) and (1.5) can be combined
to give the adiabatic equation that expresses the first law of thermodynamics in the
cosmological context,

d

dt

[
a3(t)ρ(t)c2

]
+ p(t)

da3(t)

dt
= 0. (1.6)

Equation (1.6) says that the expansion of the Universe must be adiabatic, thus the
total entropy does not change.
A third equation, the equation of state is now necessary to fully describe how the
Universe expands, 3

p = wρc2, (1.7)

which relate the pressure and energy density of the components of the Universe.
The parameter w is dimensionless, and assumes different values for each of the
components of the Universe, that is w = 0 for non-relativistic matter, w = 1/3 for
radiation and relativistic matter, w = −1 for the vacuum energy component. The
total energy density of the Universe is then the sum of the three components,

ρt = ρm + ρr + ρΛ, (1.8)

2assuming for simplicity θ = 0 and φ = 0
3Note that of among the three equations (1.4), (1.5) and (1.6) only two of them are independent
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with ρΛ = Λ/8πG and ρm, and ρr refer to matter and radiation. With this decom-
position, the Friedmann equations, (Eq. (1.4) and (1.5)), can be used without the
Λ term, and its density and pressure are included in the variables ρ(t) and P (t).
Combining Equations (1.7) and (1.6) gives the matter energy density falling as a−3,
consistent with the conservation of number of particles, and the radiation energy
density as a−4, which reflects the conservation of number of particles and the de-
crease of the energy density due to the expansion. Note that for w = −1, the energy
density ρ stays constant with the expansion of the Universe. The ratio

ȧ

a
≡ H(t) (1.9)

expresses the expansion rate of the Universe, and is called the Hubble parameter.
For Λ = 0 and k = 0 (vanishing spatial curvature), there is a critical density whose
value depends on the Hubble parameter,

ρcrit(t) =
3H2(t)

8πG
. (1.10)

This value is conveniently used to define the mean energy density of each of the
components of the Universe as

Ωi(t) =
ρi(t)

ρcrit(t)
(1.11)

Combining Equations (1.4) and (1.8), and using the definitions given in Equa-
tion (1.11), the expansion equation becomes

(
ȧ

a

)2

= H2
0

[
Ωr

a4
+
Ωm

a3
+

Kc2

a2H2
0

+ΩΛ

]
= H2(t). (1.12)

At the current time, H(t) = H0 and a = 1, Equation (1.12) yields an expression for
the curvature of the Universe in terms of its total density today,

k = (Ωr +Ωm +ΩΛ − 1)
H2

0

c2
. (1.13)

Defining Ω0 = Ωr + Ωm + ΩΛ, from the above equation it follows that the sign of
Ω0−1 agrees with that of k, that is the total energy density determines the curvature
of the Universe.

1.1.2 Light propagation in the expanding Universe

Photons of wavelength λ1 and emitted at scale factor a1 reach the observer today
(t = t0) with wavelength λ0 related to the scale factor by

λ0
λ1

=
1

a1
. (1.14)

In the expanding Universe, the observed wavelength (λ0) is longer than λ1; this is
expressed in terms of the redshift parameter z, defined as

z =
λ0 − λ1
λ1

. (1.15)
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It follows that the scale factor can be written as function of redshift as

a =
1

1 + z
. (1.16)

Cosmological redshift is an observational evidence, seen for the first time in 1912 by
V. M. Slipher while taking spectra of distant galaxies. At that time astronomers did
not agree on the nature of these distant galaxies, which were referred to as spiral
nebulae. The issue was debated in the Great Debate in 1920 between H. Shapley
and H. Curtis, and solved only in 1929 with the work of E. Hubble.

1.1.3 Distances in the expanding Universe

Distance measures in cosmology are given along the backward light cone, and as
the Universe expands distances change. There is not a unique meaning of distance,
but methods can be specified on how to measure distances, and define distances
according to the methods used to measure them.

Angular diameter distance

The physical size of an object, ξ1, at redshift z1 is related to its angular size, θ1, as
measured today (z = 0) as

ξ1 = Dang(0, z1)θ1. (1.17)

Consider an observer at redshift z = 0 situated at the centre of a circle, which has
radius given by the comoving distance χ1. In a flat space, the angle subtended by
the circle is 2π and its physical size at z1 is 2πχ1a1. Consider now an element on
the circle ξ1 with angular size θ1, then

ξ1
2πχ1a1

=
θ1
2π
. (1.18)

Comparing Equations (1.17) and (1.18), the angular distance of the circle as seen
from z = 0 is

Dang(0, z1) = a1χ1. (1.19)

In gravitational lensing (see Sect. 1.3) physical distances at different redshifts have
to be converted into angles seen at a given redshift. Hence distances are conveniently
expressed as angular diameter distances.
The angular diameter distance of a source at redshift z2 as measured by an observer
at redshift z1 < z2 is

Dang(z1, z2) = a2(χ2 − χ1). (1.20)

Luminosity distance

Another way to measure distances is to relate the flux S, observed today at redshift
z = 0, of a source at redshift z1, to its luminosity, L,

S =
L

4πD2
l

(1.21)
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where Dl is the luminosity distance.
The above two distance measurements are related by the following expression (de-
rived by Etherington in 1933),

Dl(z) = (1 + z)2Dang(z). (1.22)

The k-correction

The quantities S and L in Equation (1.21) refer to the flux and the luminosity
integrated over frequencies. Because of redshift, the observed flux at frequency ν,
Sν , is related to the luminosity of the source at frequency νe = (1 + z)ν. The
observed flux is

Sν =
(1 + z)Lνe

4πD2
l

, (1.23)

which can also be written as

Sν =
Lν

4πD2
l

[
Lνe

Lν
(1 + z)

]
, (1.24)

where the first factor is the relation between the bolometric quantities while the
second one represents the spectral shift. This is referred to as k-correction, and it
depends on the spectrum of the source.

1.2 Structure formation

Observations show that the Universe is homogeneous on large scales, while this is
not the case at smaller scales. We observe anisotropies imprinted in the CMB, and
the distribution of galaxies in the sky is highly anisotropic as well. We believe that
today we observe the evolution over cosmic time of density inhomogeneities, that
have evolved from smaller fluctuations in the early Universe, through gravitational
instability. The mathematical framework within which we study their evolution is
provided by linearised equations of gravity, for small perturbations, and numerical
methods, when linear approximation breaks down. Within the theory of structure
formation we are able to study the evolution over cosmic time of these early fluctu-
ations, whose growth depends on the matter content of the Universe and the nature
of dark matter. The gravitationally bound structures in which galaxies and clusters
form are the dark matter halos.
Below we introduce two questions regarding the properties of these structures which
can be both investigated using gravitational lensing.

1.2.1 Halo profiles

Numerical simulations show that the halos density profiles seem to have a universal
functional form, described by

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (1.25)

where ρs is the amplitude of the density profile, and rs specifies a characteristic
radius. This result was first reported by Navarro et al. (1997). The inner part of
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the density profile follows r−1, whereas the outer part follows r−3. No analytical
argument has been found for the existence of such a profile, and comparison of these
profiles with observations is not simple because the dark matter is not directly ob-
servable. However the rotation curves of low surface brightness galaxies provide no
evidence of a cusp in the central distribution.

1.2.2 Halos abundance

The comparison of theoretical predictions with observations is necessary as it allows
to test our understanding of structures formations. For Milky Way type halos,
numerical simulations based on a ΛCDM cosmology predict a sub-halos population
of hundreds of dark-matter satellites, that is one order of magnitude higher than the
observed population of satellite galaxies in the Local Group (Diemand et al., 2007;
Moore et al., 1999). This discrepancy is referred to as the missing satellite problem
(Fig. 1.1). Until recently, one possibility of solving the discrepancy has been the
interpretation that they indeed exist but star formation is suppressed, thus they
they are not observable (Klypin et al., 1999). In the last few years, the number
of faint satellites has increased, most of them being found from the Sloan Digital
Sky Survey (SDSS; York et al. 2000), and the discrepancy now is within a factor
of few of the predicted number (e.g. Belokurov et al. 2007; Zucker et al. 2006a,b).
However, recent works based on high-resolution simulations (Lactea I and II, and
Acquarious simulations; Madau et al. 2008; Springel et al. 2008) show discrepant
results, implying that out understanding of the problem is still far from being clear.
Being a pure gravity effect, gravitational lensing (see next section), provides us
a powerful tool to study the matter distribution in our Universe and address the
important question regarding the abundance of dark matter halos (see Sect. 1.4.1).
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Figure 1.1: The plot shows the number density of sub-halos as function of their
Keplerian velocity vc for a cluster and galaxy mass. The velocity vc is measured
in units of the rotational velocity of the main halo. The open circles represent the
number of sub-halos in the Virgo cluster, the filled ones the satellite galaxies in the
Milky Way. The solid (dashed) curve shows the simulated cluster (galactic) mass
halo (for the galactic halo there are two lines, at two different epochs). Adopted
from Moore et al. (1999)
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1.3 Theory of gravitational lensing

The theory of gravitational lensing describes how light rays from a background source
propagate through a foreground mass distribution. Before reaching the observer,
light rays are deflected by the gravitational potential along the line of sight, such
that the source appears with a distorted shape. For a source whose distance in the
sky from the line of sight of the potential is large, the effect of the lens potential
is weak and one image is formed, whose shape is distorted. This is called the weak
lensing regime that is observed for example from a background galaxy distribution
emanating radiation through the large-scale structures of the Universe. On the other
hand, when the distance in the sky between the source and the line of sight of the
potential is small, the effect of the potential is higher and multiple images of the
same background source may be formed. This is called strong lensing regime. The
properties of the observed image configurations (which will be introduced in the
next sections) carry information on the mass distribution that is causing the effect,
thus this phenomenon provides an interesting tool to probe the mass distribution
in the Universe; in particular in the cosmological framework it allows us to address
questions related to the dark matter halos properties, small dark matter clumps and
the large scale-structures as well.
For details on the different regimes and applications of the effect see Schneider et al.
(1992). In this section the theory of the strong lensing regime is reviewed.

1.3.1 Basic equations of lens theory

The deflection angle

In Figure 1.2 is sketched the typical situation usually considered in gravitational
lensing, that is the deflection of a light ray emitted from a (background) source
when it travels through a foreground mass distribution. The deflection angle α̂
depends on the the mass distribution and on the impact parameter ξ. The angle α̂
can be written as

α̂ =
2

c2

∫
∇⊥Φ dl, (1.26)

where the gradient of the Newtonian potential Φ is taken perpendicular to the light
path and the integral is taken along the trajectory. Equation (1.26) relies on two
assumptions: 1) the Newtonian potential is small (i.e. Φ ≪ c2), 2) the lens has
a small peculiar velocity (i.e. v ≪ c). For a point-like mass M , the Newtonian
potential is given by Φ(r3, ξ) = −GM/

√
ξ2 + r23, where r3 is the distance component

along the ray (see Fig. 1.2). Substituting the potential in Equation (1.26) gives the
deflection angle of a point mass M ,

α̂ =
4GM

c2ξ
. (1.27)

To calculate the deflection angle of a three-dimensional (extended) mass distribu-
tion the so-called thin lens approximation is made. The light ray is assumed to
have a trajectory described by (ξ1, ξ2, r3), where the coordinates are chosen such
that the ray is propagating along r3.We consider the deflected light ray, which is
actually smoothly curved near the deflector, as a straight line. The distances of the



10 Introduction

r3 

M
S

O

ξ
α̂

Figure 1.2: Light rays travelling from the source (S)to an observer (O) and being
deflected by the mass M. The deflection corresponds to the angle α̂.

background source and the mass (i.e. the lens) from the observer are very large
compared to extension of the lens. Under these assumptions4 the deflection angle is
given by integrating for each mass element and summing the deflection angles due
to the mass elements at every ξ in the sky5:

α̂(ξ) =
4G

c2

∫
d2ξ′Σ(ξ′)

ξ − ξ′

|ξ − ξ′|2 (1.28)

where

Σ(ξ′) =

∫
ρ(ξ1, ξ2, r3)dr3 (1.29)

is the surface mass density, that is the mass density projected onto a plan perpen-
dicular to the incoming light ray. Note that in Equation (1.29) ξ′ = (ξ1, ξ2) is a
two-dimensional vector.

The lens equation

Consider a situation sketched in Figure 1.3. The two planes identify the source, the
lens and the source plane connected by the optical axis. A light ray originating from
the source at η intersects the lens plane at ξ and reaches the observer O. The two

triangles ôo
′

s
′

and ôll
′

are similar and the following relation holds:

η =
Ds

Dd
ξ −Ddsα̂(ξ). (1.30)

Replacing the distance vectors η and ξ (in the source and the lens plane) with the
angular quantities β and θ,

η = Dsβ and ξ = Ddθ (1.31)

whereDs and Dd, and Dds (see Fig. 1.3) are the angular diameter distances involved,
the lens equation then follows as

β = θ −α(θ), (1.32)

where the quantity α is the scaled deflection angle that is related to the deflection
angle α̂ by

α(θ) =
Dds

Ds
α̂(Ddθ); (1.33)

4we are also implying here that the lens is the only mass distribution, which together with the
two mentioned in the text, is a good assumption in the strong lensing regime

5the deflection angle of the deflector is given by the superposition of all deflection angles due to
each mass element
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o

o’ s s’

lDs

Dds

Dd

l’

η

α̂

α

ξ

β

θ

Figure 1.3: Geometry of strong gravitational lensing. The observer o sees the source
s at a different angular position because of the deflection of the light. The distances
between the observer and the source, the observer and the deflector, and the deflector
and the source are indicated by Ds, Dd and Dds.

the ratio Dds/Ds is defined as lens strength efficiency.
The scaled deflection angle can be expressed in terms of the surface mass density.

Let us define the critical surface mass density

Σcrit =
c2

4πG

Ds

Dds
(1.34)

and the dimensionless surface mass density or convergence

κ =
Σ

Σcrit
. (1.35)

Now, re-writing Equation (1.28) using ξ as defined in Equation (1.31), and using
the two definitions given in Equations (1.34) and (1.35), the scaled deflection angle
becomes

α(θ) =
1

π

∫
d2θ

′

κ(θ
′

)
θ − θ

′

|θ − θ
′ |2
. (1.36)

The Fermat potential

From the identity ∇ln|θ| = θ/|θ|2 it follows that the scaled deflection angle can be
written as gradient of the function ψ

α = ∇ψ (1.37)

where ψ is the deflection potential,

ψ(θ) =
1

π

∫
d2θ

′

κ(θ
′

)ln|θ − θ
′ |. (1.38)

We recover the Poisson equation if we apply the Laplacian to Equation (1.38)

∇2ψ = 2κ. (1.39)
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Using Equation (1.37) the lens equation can be written as

β = ∇
(

1

2
θ2 − ψ(θ)

)
, (1.40)

which becomes

∇
(

1

2
(θ − β)2 − ψ(θ)

)
= 0. (1.41)

Defining the scalar function φ (Schneider, 1985)

φ(θ,β) =
1

2
(θ − β)2 − ψ(θ), (1.42)

Equation (1.41) can be written as

∇θφ(θ,β) = 0 (1.43)

which is equivalent to the lens equation (1.32).
The function φ is called the Fermat potential and is associated with the arrival time
of the lensed images (see Sect.1.3.3) (Blandford & Narayan, 1986).

The Einstein radius

For an axi-symmetric mass distribution, the images are collinear with the centre of
the lens; from the lens equation, β = θ − α(θ), we see that in case of symmetry
the source position is also aligned with the centre of the lens. It follows that the
lens equations can then be written in one dimension. For an axisymmetric mass
distribution, using Equation (1.27), the deflection angle is

α̂ =
4GM(ξ)

c2ξ
, (1.44)

where M(ξ) is total mass within a circle of radius ξ. For this distribution the lens
equation is given by

β = θ − 4GM(θ)

c2θ

Dds

DdDs
. (1.45)

In the very special case when the source lies on the optical axis (see Fig. 1.3), β = 0.
If in Equation (1.45) is β = 0, it follows

θE =

(
4GM

c2
Dds

DdDs

)1/2

. (1.46)

Therefore, due to the symmetry of the mass distribution, and the position alignment,
the source is imaged into a ring of radius θE, called Einstein ring.
Such structures have indeed been observed (see Fig. 1.4), and provide an excellent
observable to constrain the mass enclosed within the Einstein radius, θE . If the
source is moved away from the optical axis, the ring will break up into multiple
images, whose separation is approximately ∆θ ≈ 2θE.
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Figure 1.4: Three examples of Einstein’s rings are shown. Left panel: system
SDSS J095629.77+510006.6 (credit: A. Bolton). Right panel: Double Einstein ring,
SDSSJ0946+1006. Two partial concentric ring-structures are visible (the foreground
galaxy has been subtracted; credit: R. Gavazzi and T. Treu). Middle panel: System
B0218+357 (Merlin/VLA 5 GHz map Biggs et al. 2001).

Time delay

When a lens produces multiple images the light travel time along the different light
paths will be different. The difference in the arrival time of the images is called time
delay which is the only dimensional observable of gravitationally lensed systems; if
a source is variable the time delay can be measured by flux monitoring programs.
There are two effects that contribute to the light-travel time (Cooke & Kantowski,
1975). First, light rays that are deflected are geometrically longer than undeflected
ones, thus there is a geometrical time delay. Second, there is a potential time delay,
which is due to the gravitational potential of the lens (this is known as Shapiro
delay). For a light ray that crosses the lens plane at θ the travels from the source
to the observer and is given by the function

T (θ,β) =
DdDs

Ddsc
(1 + zd)

(
(θ − β)2

2
− ψ(θ)

)
. (1.47)

Recalling the scalar function defined in Equation (1.42), the time delay between two
images at θi and θj is

∆τij =
DdDs

Ddsc
(1 + zd)[φ(θi,β) − φ(θj,β)]. (1.48)

The distance factor in the above equation is proportional to 1/H0 (Eq. 1.9),

∆τ ∝ H−1
0 . (1.49)

Thus, provided the redshifts of the lens and of the background source, and that
the mass distribution is known, time delays measurement can constrain the value
of the Hubble constant (Refsdal 1992, and references therein). This method for
estimating the Hubble constant is independent of distance ladder methods that
calibrate distances to high redshift galaxies with standard candles from low redshift,
and that are affected by systematic uncertainties. A recent work by Suyu et al.
(2010) shows that an accurate statistical study, based on Bayesian analysis, of a
single gravitational lensing system, can provide precise measurements of H0.
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1.3.2 Magnification

The flux of a source density with intensity I is proportional to the solid angle dω0

subtended by the source on the sky (S0 = I×dω0). In the presence of a lens, due to
the deflection of light rays, the solid angle is modified to the solid angle dω. Since
the light deflection does not change the intensity I, the flux of the image is modified
to S = I × dω. The ratio of the two solid angles is called magnification, which is
also the factor by which the observed source flux is changed,

µ =
S

S0
=

dω

dω0
. (1.50)

Let us define a Jacobian matrix that describes the lens transformation

A(θ) =
∂β

∂θ
; (1.51)

using Equation (1.40), the elements of this matrix are

(Aij) = (δij − ψij) =

(
1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)
(1.52)

The subscripts in ψ imply partial derivative of the potential with respect to θi and
θj . A new quantity has been introduced, the shear γ ≡ γ1 + iγ2, with

γ1 = 1
2(ψ,11 − ψ,22) and

γ2 = ψ,12 .
(1.53)

The shear causes the shape distortion (due to the gravitational potential) of the
images. The convergence κ is related to the potential through Equation (1.39), it
contributes to isotropic magnification. The trace of matrix (1.52) is trA = 2(1− κ),
and its the eigenvalues are a1,2 = 1−κ± |γ|, that give the factor of stretching along
the direction given by the eigenvectors. The ratio of the solid angles subtended by
an image and the unlensed source is the absolute value of the determinant of the
matrix A

µ =
1

detA
=

1

(1 − κ)2 − |γ|2 . (1.54)

As defined in Eq. (1.54) the magnification can have positive or negative sign. The
parity of an image is defined as the sign of µ. If both the eigenvalues have the same
sign (+ or −), then the parity is positive; if the eigenvalues have different signs, the
parity of the image is negative.

1.3.3 Image classification

Ordinary images

For a given source position β, the Fermat potential defines a two-dimensional sur-
face. Ordinary images form at points θ where ∇φ vanishes, thus they are located
at the stationary points (local extrema and saddle points) of the two-dimensional
arrival time surface defined by the Fermat potential (see the equivalence between
Equations (1.42) and (1.32) ).
The following three types of ordinary images can occur:
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Figure 1.5: Critical curves and caustics for an elliptical mass distribution. The
colours represent different source positions, and relative image positions. In the
left panel the source approaches the centre through the fold caustics, in the right
one through the cusp. The numbers 1,3,5 mark the regions in the source plane
characterized by 1,3, or 5 number of images in the image plane. (Adapted from
Narayan & Bartelmann 1996)

1. For detA > 0, trA > 0, the image is formed at the minimum of the arrival
time surface. This is called Type I image.

2. For detA < 0, the image is formed at the saddle point and is called Type II
image.

3. For detA > 0, trA < 0, the image is formed at the maximum and is called Type
III image. If this image exists it is located closer to the centre of the potential
and hence is rarely observed because of low magnification and obscuration.

Critical images

For detA = 0 the magnification becomes infinite. The set of points that satisfy
this condition are called critical curves in the image plane, caustics in the source
plane. In reality however, due to their finite sizes, when a source is close to a caustic,
highly stretched images with high but finite magnification, are formed; these usu-
ally appear as arc like or rings. In Fig. 1.5, the image positions are shown given an
elliptical mass distribution and different source positions. The outer smooth curve
is the radial caustic, while the inner diamond is the tangential caustic.
Caustics and critical curves provide a useful qualitative understanding of a lens ge-
ometry. Critical curves divide the image plane into regions of different parities, that
is images on either sides of a critical curve correspond to opposite parity. Caustics
divide regions in the source plane with different multiplicity, and as a source moves
across a caustic the number of images change by two (see Fig.1.5).

1.3.4 The odd number and magnification theorem

Consider a thin matter distribution whose surface mass density κ(θ) is smooth and
decreases faster than |θ|−2 for |θ| → ∞. Such a lens has then finite total mass,
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and continuous deflection angle. Under these assumptions, the odd-number-theorem
(Burke, 1981) states that the total number of ordinary images is finite and odd.
Under the same assumptions, the magnification theorem (Schneider, 1984) states
that the image of a source that arrives first forms in the global minimum of the
Fermat potential, with a magnification µ ≥ 1.

1.4 Gravitational lensing as tool

Gravitational lensing has a wide-spread set of astrophysical applications. Since it
is sensitive to any kind of matter distribution, regardless if luminous or not, and
it is an achromatic effect, it is used to probe different mass scales, stars, galaxies,
clusters and large-scale structure as well (e.g. Suyu et al. 2010; McKean et al. 2010;
Bauer et al. 2011). The combined analysis of strong lensing and stellar dynamics
can be used to investigate galaxy evolution models (e.g. Ruff et al. 2011). Time
delays measurements can be used to constrain cosmological parameters (Suyu et al.,
2010; Coe & Moustakas, 2009). An intensive search for extra-solar planet objects
has being carried out with the help of lensing within the OGLE (Optical Gravita-
tional lensing experiment) program. When multiple images occur, the properties of
the interstellar medium in lensing galaxies can be studied since the images are seen
through different lines of sight (e.g. Falco et al. 1999), as well as differential Faraday
rotation (Biggs et al., 2003). Within survey programs it is possible to carry out sta-
tistical studies in lensing, which yield cosmological constraints. If so far these studies
have yielded only weak bounds (e.g Oguri et al. 2008), within the next decade, with
the help of new instruments (e.g. JWST, ALMA, SKA) they will certainly benefit
from the increase of the sample size.
In the following we describe the lensing applications on which the results of this
thesis are based.

1.4.1 Mass substructures

Gravitational lenses described as smooth mass distributions fail in some cases to fit
the image positions and in many cases to fit the flux-ratios. This problem is usually
referred to as astrometric anomalies and flux mismatches. In this section we explain
how this problem is related to the distribution of dark matter halos and how it is
used to investigate the missing satellite problem which was introduced earlier.

Flux mismatches

Mao & Schneider (1998) argued that small-scale structures in the mass distribu-
tion may be a plausible explanation for the flux-ratio discrepancies. From equa-
tion (1.52), the gravitational magnification depends on second derivatives of the
potential, whereas the deflected image positions depend on first derivatives. The
presence of small-scale mass perturbations can thus change the flux ratios, nearly
without changing the image positions. Studying lens systems which have a radio-



1.4 Gravitational lensing as tool 17

loud source6, Dalal & Kochanek (2002) & Kochanek & Dalal (2004) concluded that
flux anomalies can be explained by a substructure fraction of few percent (0.6−7%)
of the smooth mass model, well in agreement with CDM predictions.
However the puzzle cannot be considered resolved as 1) high resolution numerical
simulations have predicted a fraction of CDM substructures . 0.5% within a scale of
typical image separations produced by lens galaxies (Mao et al., 2004), 2) when radio
flux anomaly lenses are investigated it is often found that substructures are visible,
thus luminous (e.g. MG 0414+0534 Schechter & Moore 1993; CLASS 2045+265
McKean et al. 2007; MG 2016+112 More et al. 2009).
There is however strong evidence that favours a lensing origin of the flux mismatches.
In most cases, flux mismatches are such that the brightest saddle point is demag-
nified with respect to the magnification predicted by a smooth mass model. This
effect is known as parity-dependence of flux ratios. Chen (2009) shows that this effect
is unlikely to be produced by luminous satellite and that more substructures than
predicted by simulation may be required to solve this problem. The use of larger
sample of observed lenses, as well as simulations of dark matter and baryons, might
be necessary for further studies of CDM substructures using strong gravitational
lensing.

Astrometric anomalies

Besides the anomalies in the flux-ratios, discrepancies between observed and ex-
pected image positions can be used as well as evidence of dark matter clumps (sub-
structures). Chen et al. (2007) shows that the image positions are perturbed on
milli-arcsecond (mas) scales by substructures that project clumps near the Einstein
radius of the main lens halo. Best candidate systems to detect those are lenses
with extended sources, e.g. jets. The idea is that when a gravitational lens pro-
duces multiple images of an extended source, a non-smooth mass distribution may
cause independent features in each image, which could reveal the presence of small
structures along a line of sight. This is illustrated in Figure 1.6. Lensed AGN
radio jets, imaged on mas scales using Very Long Baselines Technique (VLBI; see
Chap. 3), where kink are detected are B1152+199 (Rusin et al., 2002; Metcalf,
2002), Q0957+561 (Haschick et al., 1981; Walsh et al., 1979; Garrett et al., 1996);
MG0414+0534 (Hewitt et al., 1992). The last one is discussed in Chapter 5 of this
thesis.

1.4.2 High-z Universe

Although the surface brightness of a lensed source is conserved, the gravitational
magnification increases its observed flux density (see Eq. (1.50)), therefore they
would appear brighter than they would without a lens. In some cases, this effect is
essential to detect these sources in first place, provided that their lensed brightness
is higher than the detection threshold of a survey or a current instrument sensitivity.

6flux anomalies could also be due to propagation effects, or to the gravitational lensing effect
by stars within the lens galaxy; however, at radio wavelengths propagation effects do not occur
or are frequency dependent, and hence can be corrected for, and the lensing by star can be ex-
cluded because stars have small Einstein radii compared to the size of a radio-loud source. Hence
observations of lenses of a radio-loud source allows these studies
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Figure 1.6: The picture has been adopted by (Garrett et al., 1996). The cartoon
shows how lensed extended structures may reveal the presence of a non-smooth mass
distribution, in this case independent bends in the lensed images could be produced.

Lensing capitalized as natural telescope has yielded to the discovery of high-redshift
galaxies behind cluster lenses, as e.g. star-forming galaxies or sub-millimetre sources
(Seitz et al., 1998; Garrett et al., 2005); in other cases it has allowed very detailed
kinematic studies of distant galaxies (Nesvadba et al., 2006; Coppin et al., 2007)
providing unique insight in the early Universe. A foreground lens as magnifier
also provides higher angular resolution. Recent results from the Herschel telescope
(Negrello et al., 2010) are very promising in the detection of strongly-lensed sub-
millimetre galaxies, confirming lensing as powerful cosmological probe particularly
at sub-millimetre wavelengths for the study of statistical and individual properties
of high redshift star-forming galaxies. Together with sensitive and high resolution
radio observations the study of high-z sub-sub-millimetre galaxies has implications
on disentangling the emission of AGN from normal galaxies, which has implications
on the cosmic history of star-formation and the growth of super-massive black holes.
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I. Newton

2
Mass modelling of gravitational lenses

In the strong lensing regime multiple images of the same background source can
be produced, whose observed configuration (relative positions, magnification and
arrival times) is determined by the properties of the mass distribution. The goal of
mass modelling is to find the best model for a lens that can explain the positions
and flux ratios of the lensed images, as seen in the data. In reality, in lens modelling
the intrinsic source structure needs to be modelled too, as the unlensed properties
of the source are unknown as well.
Over the years several techniques have been developed that allow complex lens mod-
els to be constrained by high quality data, e.g. LENSTOOL (Kneib et al., 1993),
GRAVLENS (Keeton, 2001b), LENSCLEAN (Kochanek & Narayan, 1992; Wucknitz,
2004) and PIXELENS (Saha & Williams, 2004). Combining different data sets re-
sults have been achieved concerning galaxy density profiles, their evolution with
cosmic time (Ruff et al., 2011), the distribution of galaxies in the fundamental plane
(Treu et al., 2006), the distribution of mass substructures along the line-of-sight and
galaxies environments (Thanjavur et al., 2010).
For this thesis we have used the GRAVLENS software; below we will describe the
lens-modelling techniques implemented in the code as well as the parametrization
of mass models.
The chapter is organized as follow: in Sect. 2.1 we describe parametrizations for
standard mass models. In Sect. 2.2 we describe the algorithm we used for mass mod-
elling. We then explain, in Sect. 2.3, a technique suitable for modelling extended
sources. Subsequently give details on error estimates and the number of constraints.
Finally in Sect. 2.6 we describe typical degeneracies that occur in strong lensing.

2.1 Parametric mass models

In order to study a mass distribution of a gravitational lens, one approach is to
parametrize it with a generic model, and apply model-fitting techniques that al-
low us to find the best set of parameters reproducing the observed properties of
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a lens system. Alternatively, there are non-parametric methods, which use a grid
parametrization of the surface mass density κ; the constraints are written as linear
equations of κ and different mass distributions constrained by the data can be in-
vestigated (Saha & Williams, 2004).
We have followed the first approach and used analytical mass models which are good
approximations to the real distribution of mass. In this section we describe the ones
implemented in GRAVLENS which we have used in this thesis (Keeton, 2001a).

2.1.1 Power-law models

The density distribution in three dimensions is assumed to be a power-law given by

ρ ∝ r−γ . (2.1)

The surface mass density is the projection of the three-dimensional density distri-
bution along the line of sight, and hence it is proportional to r1−γ .
Given a deflecting potential described by a power-law of the form

ψ(θ) =
b2

3 − γ

(
θ

b

)3−γ

, (2.2)

the surface mass density κ, the deflection angle α and the shear γs are given by the
following expressions:

κ(θ) =
3 − γ

2

(
θ

b

)1−γ

, (2.3)

α(θ) = b

(
θ

b

)2−γ

(2.4)

and

γs(θ) =
γ − 1

2

(
θ

b

)1−γ

(2.5)

where b is the Einstein radius.

2.1.2 Singular Isothermal Sphere (SIS) profile

This is a special case of the power law lens models that can account for the lensing
properties of many galaxies and clusters. The radial density distribution is given by

ρ ∼ r−2. (2.6)

It corresponds to a self-gravitating spherically-symmetric ideal gas whose tempera-
ture is constant at all radii, hence the name ‘isothermal’. A spherical distribution
is characterized by flat rotation curve, which is observed for spiral galaxies (Rubin
et al., 1978). For elliptical galaxies the velocity dispersion of stars acts as kinetic
temperature which is then constant with radius (Binney & Tremaine, 1987). This
model is indeed found to apply well to the mass distribution as seen in galaxies
(Koopmans et al., 2006).
This mass distribution has however two non-physical properties: the central density
diverges as ρ ∝ r−2, and hence the name ‘singular’, and the total mass diverges as
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r −→ ∞. We will address the former feature in the next section; the distribution
for large r does not affect the lensing properties for the inner regions of the lens.
For a SIS the surface mass density at a projected radius ξ is given by

Σ(ξ) =
σ2v

2Gξ
, (2.7)

where σv is the one-dimensional velocity dispersion.
Since κ = Σ/Σcrit, using the expression for Σcrit (Equation. 1.34), the convergence
for a SIS is

κ(θ) =
2π

θ

Dds

Ds

(σv
c

)2
, (2.8)

where we have used ξ = θDd. Comparing Equation (2.8) with Equation (2.3) for
γ = 2 gives

b =
4πσ2vDds

c2Ds
, (2.9)

the deflection angle and the shear are given by

α(θ) = b (2.10)

and

γs(θ) =
1

2

b

θ
. (2.11)

For these models, in GRAVLENS the Einstein radius is parametrized as given in Equa-
tion (2.9).

2.1.3 Non-Singular Isothermal Sphere (NIS) profile

The central singularity for a SIS does not occur if the density is nearly constant
within a core of radius rc. The surface mass density at the projected radius ξ is
given by

Σ(ξ) =
σ2v

2G
√
ξ2 + ξ2c

, (2.12)

where ξc is the projected core radius. For radii much larger than ξc the surface mass
density approaches the SIS model.
The lens properties are then,

κ(θ) =
b

2
√
θ2 + θ2c

, (2.13)

where ξc = Ddθc;

α(θ) =
b(
√
θ2 + θ2c − θc)

θ
, (2.14)

and

|γs(θ)| =
b(
√
θ2 + θ2c − θc)

2(
√
θ2 + θ2c)(

√
θ2 + θ2c + θc)

. (2.15)

The value of ξc depends on the central density as ρ−2
c . The fact that for lens galaxies

an odd number of images is not observed is usually interpreted as the missing image
is located very close to the centre of the lens galaxy and is highly demagnified. This
yields a lower limit for the central density and thus an upper limit for the core
radius, which for galaxy scales is expected to be small.
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2.1.4 Truncated density distributions

A more general description for the three-dimension density distribution is power law
with central cusp, which declines asymptotically and has a break radius a, given by

ρ ∝ 1

rγ
1

(aα + rα)(m−γ)/α
. (2.16)

A density distribution of this family has a central cusp with ρ ∝ rγ , for large values
of r, r ≫ a it declines as ρ ∝ rm. For γ = 1, m = 3 and α = 1, it corresponds to
the NFW (Navarro et al., 1997) and for γ = 2, m = 4 and α = 1 to the Jaffe model
(Jaffe, 1983).
The projected surface mass density is

κ(θ) ∝ 1

θγ−1

1

(θαa + θα)(m−γ)/α
. (2.17)

Truncated isothermal (Pseudo-Jaffe) sphere (TIS)

For strong lensing modelling the Jaffe profile is modified such that the three-dimension
density distribution is

ρ ∝ (r2 + s2)−1(r2 + a2)−1, (2.18)

where a is the break radius and s is a core radius, s < a with central density ρc.
For radii s . r . a the density ρ goes as r−2 as for the isothermal sphere, and in
the outer regions, r ≫ a, it falls as ρ ∼ r−4 . In GRAVLENS the scaled surface mass
density for a truncated isothermal sphere is written as:

κ(θ) =
b

2

[
1√

θ2s + θ2
− 1√

θ2a + θ2

]
, (2.19)

where, ξs = Ddθs, ξa = Ddθa.
The deflection angle is

α(θ) = bf(θ/θs, θ/θa) (2.20)

where

f(θ/θs, θ/θa) ≡
(

θ/θs

1 +
√

1 + (θ/θs)2
− θ/θa

1 +
√

1 + (θ/θa)2

)
. (2.21)

The magnitude of the corresponding shear is

γ(θ) =
b

2

[
2

(
1

θs +
√
θ2s + θ2

− 1

θa +
√
θ2a + θ2

)
+

(
1√

θ2s + θ2
− 1√

θ2a + θ2

)]
.

(2.22)
In the above equations, b represents the Einstein radius, θE, which for a truncated
isothermal mass distribution is related to the velocity dispersion σv by

σv = c

(
θE
6π

Ds

Dds

)1/2

(2.23)

(Eĺıasdóttir et al., 2007).
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2.1.5 Singular Isothermal Ellipsoid

Non-symmetric mass distributions are needed in order to explain quadruples images,
which cannot be reproduced by spherical mass distributions. Let us now replace in
Equation (2.7) the projected radius ξ by the quantity

ζ =
√
ξ21 + q2ξ22 ; (2.24)

which is constant on ellipses with minor axis ζ, major axis ζ/q and axis-ratio q. We
find that the surface mass density of a singular isothermal ellipsoid (SIE) is

Σ(ξ1, ξ2) =
σ2v
2G

√
q√

ξ21 + q2ξ22
=

√
qσ2v

2G

1

ζ
, (2.25)

where the normalization is chosen such the mass inside an elliptical iso-density con-
tour for a fixed Σ is independent of q (Kormann et al., 1994).
In GRAVLENS the scaled surface mass density for a SIE is given as

κ(θ1, θ2) =
b

2[(1 − ǫ)θ21 + (1 + ε)θ22 ]1/2
, (2.26)

where the minor and major axis components are ξ1 = Ddθ1 and ξ2 = Ddθ2. In the
above Equation ǫ is related to the axis ratio q by

q =

√
1 − ǫ

1 + ǫ
(2.27)

and b is related to the velocity dispersion σv by

b = q

√
2

1 + q2
4π
(σv
c

)2 Dds

Ds
. (2.28)

The deflection angle cannot anymore be reduced to a one dimensional scalar, instead
it has two components, α1 and α2, along the the two axis θ1 and θ2,

α1 =
b√

1 − q2
tan−1

(
θ1
√

1 − q2

[q2θ21 + θ22]1/2

)
(2.29)

and

α2 =
b√

1 − q2
tanh−1

(
θ2
√

1 − q2

[q2θ21 + θ22]1/2

)
. (2.30)

The magnitude of the shear |γs(θ1, θ2)| equals the surface mass density κ(θ1, θ2).

2.2 Algorithms for mass modelling

The aim of mass modelling is to find the mass model that can explain the properties
of the observed images (positions, flux ratios and arrival time delays). The problem
has two unknowns, the intrinsic, unlensed, source properties, and the foreground
mass distribution. Given a mass model and an observed configurations of multiple
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lensed images, for each image the corresponding source position can be found in-
dependently from the other images, and if the mass model is correct, each of the
lensed image should correspond to the same source position within the uncertainties
of the image positions. Furthermore for the given source position all the observed
images, but the central demagnified ones, should be predicted. This is the basis of
the algorithm used to determine the lens model. The single steps are:

1. assume a simple parametrized mass model as starting model

2. given the mass model and the observed image positions, use the lens equation
to find the corresponding source positions and error-weighted mean of the
source position

3. use the mass model and the mean source position to determine the properties
of the lensed images (number of images, positions, flux ratios, parities and
arrival times)

4. based on the predictions of the model and the observed image properties,
assign a measure of the goodness-of-fit, χ2

5. adjust the parameters of the model to minimize the value of the χ2

Steps 2, 3 and 4 are the core of the algorithm and are performed in every step of
the procedure minimizing the χ2.
This algorithm is implemented in the LENSMODEL application within the GRAVLENS

software (Keeton, 2001b).

2.2.1 Solving the lens equation

The source position β and the position of a lensed image θ are related by the lens
equation, β = θ − α(θ). For a given set of parameters describing the mass model,
the deflection angle α can be determined for every θ using Equation (1.37). But
for a given source position, β, the equation is not linear and may have multiple
solutions, which are the multiple image positions θi. To find all the positions of the
images, a numerical root finder is needed which will find all the roots of the lens
equation in the image plane.
In order for the root finder to work, the number of images and their approximate
location must be specified. In this way, reading the lens equation from right to left,
each image position can be taken and mapped to a unique source position. The
location of the images can be found if the image plane is described by a grid divided
in tiles. The vertices of every tile in the grid can be mapped to the source plane via
the lens equation leading to a tiling of the source plane. Every point in the source
plane is covered by at least one tile, and points covered by more than one tile are
multiply imaged. Thus, given the source position, the image plane tiles, which map
to the tiles that enclose the source, can be identified. These tiles are the regions
which can be provided to the numerical root finder to solve the lens equation and to
refine all the image positions for a particular source. In Fig. 2.1 we show the tiling
in the image and in the source plane for the quadrupole lens system MG0414+0534.
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In the image plane, the tiling has higher resolution near the critical curves and at
the position of a secondary lens galaxy. Near the critical curves, the lens mapping
folds on itself, its determinant changes sign and the number of images changes; in
any tile containing a critical curve the code generates a sub-grid to ensure to resolve
any close pair of images. The code generates also sub-grid in any tile containing any
galaxy other than the main lens to resolve its critical curves.

2.2.2 Optimizing the model

Once a mass model is given, the first guess for the source is given by the error-
weighted average source positions (see Eq. 2.38) obtained by mapping the multiple
images back to the source plane. This position is then used to find the positions of
all the corresponding images in the image plane. The deviations of the quantities
predicted by the model from the observed ones constitute the χ2 for the model.
The χ2 term for the image positions, evaluated in the image plane, is then

χ2
img,pos =

∑

i

δθT
i · S−1

i · δθi, (2.31)

where

δθi = θobs,i − θmod,i. (2.32)

The sum extends over all the images, θobs,i and θmod,i are the observed and modelled
positions of image i. Si represents the covariance matrix, describing the error ellipses
as follows:

Si = RT
i

(
σ21,i 0

0 σ22,i

)
Ri, (2.33)

Ri =

(
−sinθσ,i cosθσ,i
−cosθσ,i −sinθσ,i

)
, (2.34)

σ21,i and σ22,i are the semi-major and semi-minor axis of the error ellipse, and with
position angle θσ,i, measured East of North; Ri is the rotation matrix. The assump-
tion is that position uncertainties for different point images are independent and
Gaussian. When flux-ratios are included in the set of constraints, the χ2 of the
model has an additional term, χ2

flux. If the observed flux of image i is fi ± σf,i, the
χ2 due to the deviations in the flux densities of the images is

χ2
flux =

∑

i

(fi − µifsrc)
2

σ2f,i
, (2.35)

where µi is the modelled magnification of image i;

fsrc =
Σifiµi/σ

2
f,i

Σiµ2i /σ
2
f,i

(2.36)

is the best-fit source flux.
Other constraints can be included in the optimization: time delays or the structure
of the source (see Sect. 2.3) or for example priors on the position angle and ellipticity
of the host halo (which can be fitted from the surface brightness profile), or on its
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Figure 2.1: Top panel shows the tiling in the image plane; the positions of the lensed
images are marked by green triangles. At the bottom, panel b) shows a zoom of the
tiling in the source plane; the position of the source is marked by the green triangle.
Each tile in the image plane encompassing a lensed image has been mapped back
onto the source plane using the lens equation. As expected in this plane the four
tiles overlap, and the source is found in the regions where tiles overlap.
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position from accurate optical measurements; each of them contributes to the χ2 of
the model, which is then the sum of all the terms,

χ2
tot = χ2

pos + χ2
flux + χ2

oth. (2.37)

When the predicted number of images or the parity is incorrect, the code assigns an
arbitrarily high value to the χ2

tot.
To narrow down the search in the parameter space the χ2 can be evaluated in the
source plane. This is another minimization routine, which does not require to solve
the lens equation and find all the images of a source; it provides a good starting
model for the image plane minimization allowing a much faster convergence of the
minimization routine in the image plane.
The χ2 in the source plane is defined as,

χ2
src,pos =

∑

i

δβT
i ·MT

i · S−1
i ·Mi · δβi, (2.38)

where

δβi = βobs,i − βmod (2.39)

are the deviations between the modelled source position, βmod, and the source posi-
tion corresponding to image i, βobs,i = θobs,i−α(θobs,i). For small δβ, δθ ≈Mi ·δβi

is a good approximation, and any deviations in the source plane multiplied by the
magnifications matrix Mi gives an approximate image plane deviation; it follows
that Equation (2.38) is a good approximation for the χ2 evaluated in the image
plane (Eq. 2.31). βmod is calculated as follows,

βmod = A−1 · b, (2.40)

where

A = ΣiM
T
i · S−1

i ·Mi, (2.41)

b = ΣiM
T
i · S−1

i ·Mi · βobs,i; (2.42)

in the above equations, Mi is the magnification matrix for image i, Si is the co-
variance matrix as in Equation (2.33); the modelled source position is then the
error-weighted mean of βobs,i.

2.3 Modelling extended sources

In the algorithm described above, the lensed configuration is treated as a collection
of point-like components. However, in most cases the observations reveal extended
lensed structures which could be used as well to constrain a lens model. Since
the unlensed source properties are unknown, lens-modelling based on this approach
requires to model in a self-consistent way the mass distribution and the source
structure. An ideal lens model would then reproduce the observed properties of the
images pixel by pixel, mapping the intrinsic surface brightness through the lensing
potential and convolving it with the response of the telescope.
Given a true sky brightness distribution Is, and the observed one Iobs, where the
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vector notation expresses that we are considering the brightness for every pixel, the
following lens equation needs to be inverted,

Iobs = BLIs, (2.43)

where B is is the matrix describing the telescope point-spread-function, and L is the
matrix describing the lens mapping. Lens modelling based on this approach consists
of two layers. An inner one, in which the lens model is fixed, and the source model
is determined, and an outer one where the mass model parameters are varied to
minimize the χ2 function. Minimizing a χ2 defined as

χ2 =
|Iobs − BLIs|2

σ2
, (2.44)

where σ2 is the variance of the pixel errors, corresponds to invert Equation (2.43).
Algorithms based on this idea are presented in Kochanek & Narayan (1992); Wuck-
nitz (2004); Suyu et al. (2009). Lens systems constrained in this way, e.g. B1608+656
(Suyu et al., 2010), and B0218+357 (Wucknitz et al., 2004), are the basis to con-
strain the Hubble parameter using gravitational lensing.
The use of much larger sets of constraints requires however a higher computational
effort, thus wider ranges of models are usually explored by faster techniques. The
LENSMODEL application provides the curve-fitting technique for modelling extended
images which uses the information contained in jets or arcs without the effort of
building a full model for the intrinsic source brightness distribution (see below).

2.3.1 The curve-fitting technique

The technique can be applied when the lensed source has extended structure which is
multiply imaged; it is based on the idea that surface brightness is conserved in grav-
itational lensing. For resolved features, contours showing the same level of surface
brightness identify regions (sub-components) that must transform into each other
under the lensing mapping. Taken a point on such a contour all the other images
must lie on contours of the same level of surface brightness.

In reality, points on these curves do not always lie on contours of the same level,
for no other reason than PSF smearing, however the approach is reasonable as it uses
the information contained in the extended resolved images to constrain the model,
without modelling the intrinsic source distribution.
Let us consider the case of two images of the same background source, each of them
described by one curve, say curves A and B. Similarly to the case of a point-like
source, given a lens model, for each of the curves, a curve describing the source
structure can be found independently, and if the model is correct each curve should
correspond within the uncertainties in the image plane to the curve describing the
source. Furthermore, given the curve in the source plane, all the curves in the image
plane must be predicted. Thus, taken curve A the intrinsic curve can be found,
which can be mapped to the image plane and all the other images of the curve can
be found. Let A1 be an image of the curve A; within the uncertainty, A1 must
coincide with B. Thus a useful χ2 is defined as the perpendicular distance between
A1 and B, integrated along the length of the curves. To handle the different lengths
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of the curves, the “shorter” one is taken as “test” curve which is compared to the
“longer” reference curves. To handle different sampling of the curves, points on the
test curve are compared with segments on the reference curve. The geometry on
which the algorithm is based is illustrated in Fig. 2.2a.
Let y be a test point, whose projection onto the segment connecting the reference
points x1 and x2 is y′. The proper projection is

y′
12(y) = [1 − ξ12(y)]x1 + ξ12(y)x2 (2.45)

with ξ12 in the range 0 ≤ ξ12 ≤ 1, in this case the projection lies on the segment
between x1 and x2, and

ξ12(y) =
(y − x1) · (x2 − x1)

|x2 − x1|2
. (2.46)

The perpendicular distance from y to the line segment is then

d12(y) = |y − y′
12(y)|. (2.47)

The reference curve may bent and the test point is outside the bend, in this case
there may be no proper projections (Fig. 2.2b)1, or if the test point is inside the
bend there may be two proper projections (Fig. 2.2c). These cases are handled
considering the distance of the test point to the nearest reference point. Thus the
χ2 contribution for the test point j is

χ2
test,j = min

(
|yj − xi|2

σ2i
,

di−1,i(yj)
2

σi−1σ

)
(2.48)

where i runs over the reference points; for each segment the error-bars are taken to
be the geometric mean of the error-bars at the endpoints. When there are multiple
reference curves, the algorithm finds the smallest contribution among all of them.
The total χ2 for the curve constraints is conveniently defined as the sum over all the
test points,

χ2
crv = Σjχ

2
test,i. (2.49)

The above expression reduces to Equation (2.31), if each curve consists of only a
single point. In order to avoid that a good fit is found by reducing the number of
points, the following statistics is specified χ̄2

crv ≡ χ2
crv/Ncrv, with Ncrv mean number

of points. This prevents the code getting a lower value for the χ2
crv with fewer points.

2.4 Errors on the parameters

The errors on the best-fitting model parameters can be expressed in terms of con-
fidence limit from the likelihood function of the parameters. The integral of this
function within such an interval gives the probability that the true value of the pa-
rameter lies within the specified limits.

1similarly, there is no proper projection if the test point lies beyond the end of the reference
curve.
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Figure 2.2: The figures show different geometries for curve fitting. A point y on the
test curve is compared with segments on the reference curve. Panel (a) shows the
most simple case, while panels (b) and (c) show more complicate cases when there
is no proper projection (panel b) or there are two (panel c).

From the n-dimensional parameter space of the χ2 distribution, the confidence levels
on the probability of each parameter can be given individually from the distribu-
tion ∆χ2 = χ2 − χ2

min. For a Gaussian distribution, the interval within which is
∆χ2 = χ2 − χ2

min ≤ 1 corresponds to the region in the parameter space such that
a parameter will assume a value in this region with 68% (1σ) probability. Unless
otherwise said, for each lens-model parameter, we have estimated the uncertainties
in the region within which ∆χ2 ≤ 1 as each parameter is varied and all the others
were fitted.

2.5 How many constraints?

The ratio χ2
tot/Ndof is usually quoted as measure of the agreement between the data

and the model, given that the mean value of the χ2 distribution is equal to the
number of degrees of freedom. In general if the model has p parameters, the number
of degrees of freedoms is equal to q − p where q is the number of constraints. Let
us consider the case of N lensed images. For a source of n components, there are
2×n×N position constraints, if each of the components is described as point-like; in
addition when the flux ratios are included in the set of constraints, there are n×N
more constraints. However, as explained in the previous sections, the intrinsic source
position and flux are unknown, and have to be modelled too, thus the total number
of constraints given by the positions is 2×n×(N−1), and by the fluxes is n×(N−1).
In presence of an extended structure, parametrized as described in Sect. 2.3.1, for
each curve there is only one constraint given by the dimension of the curve, the model
is indeed constrained by minimizing the perpendicular distance between reference
and test curves. Thus for a source parametrized with m curves there are m × N
constraints given by the curves. Similarly to what was said above, the total number
of constraints is m× (N − 1), in order to account for the unknown source structure.
Note that the definition of χ2 as given in Equation (2.49) is arbitrary and thus it has
to be considered as an approximation of the goodness-of-fit. In Table 2.1 we give a
short summary of the number of constraints given by the observed configuration for
the lens systems discussed in this thesis. Clearly, the use of all the constraints, and
when possible, the extended structure, provides more constraints for lens modelling.
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Table 2.1: Constraints for modelling a lensed source consistently with the
parametrization of Keeton (2001b). n is the number of sub-components a lensed
source has, N is the number of lensed images, m is the number of curves when the
lensed source is described as extended one. The two systems discussed in this thesis
are over-viewed.

lens system N n m position position and flux curve

N n m 2n× (N − 1) (2n+ n) × (N − 1) (3n+m) × (N − 1)

J002240.91+1431110.4 4 1 1 6 9 12a

MG J0414+0534 4 3 3 18 27 36
a the system shows a bright arc counted here as one curve. However, the LENSMODEL application

provides the ring-fitting algorithm which allows to parametrize the ring structure and constrain
the lens model and the shape of the source (Kochanek et al., 2001).

2.6 Degeneracies in mass models

Although strong gravitational lensing provides very accurate mass measurements
of the mass of distant galaxies, there are some degeneracies that affect lens mass
models and that need to be considered for a correct interpretation of lens-modelling
results.

2.6.1 Radial profile degeneracy

When the lensed images lie at a similar distance from the centre of the mass dis-
tribution, the observed configuration provides tight constraints only on the mass
enclosed by the images but not on how it is distributed. Consider an axi-symmetric
mass model, the two images form at θA and θB on opposite sides of the lens. The
lens equation than reads

β = θA − α(θA) = −θB + α(θB). (2.50)

Let us consider a power-law for the radial profile which leads to a power-law de-
flection angle α = bγ−1/θγ−2. Inserting this into Equation (2.50), we find that the
Einstein radius is given by

b =

(
θA + θB

θ2−γ
A + θ2−γ

B

)1/(γ−1)

. (2.51)

From the above equation, and recalling Equation (1.46), it nicely follows that the
location of the ring b, and thus the mass scale, can be determined from the image
configuration. However it is very difficult determining the radial profile of the mass
distribution because of a strong degeneracy between b and the slope γ. If the images
have similar angular distance from the lens, the dependence of b on the radial profile
is very weak, of order of (δθ/θ). This degeneracy can be broken if the data show
lensed structures within the anulus δθ = θA − θB (Kochanek, 2006).
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2.6.2 Shear-ellipticity degeneracy

This degeneracy relates to the angular structure of the lensing potential. Its quadrupole
moment has contributions from the ellipticity of the lens galaxy as well as the ex-
ternal shear, and these two are indistinguishable; they are

φ(r, θ) = −εr
2

cos 2(θ − θε) (2.52)

where θε is the position angle measured East of North; and

φ(r, θ) = −γsr
2

2
cos 2(θ − θγs) (2.53)

where γs represent the contribution of external shear. Models with only one of these
two components are usually well constrained, but the fit is improved dramatically if
both of them are included in the model.



He who loves practice without
theory is like the sailor who boards
ship without a rudder and compass
and never knows where he may
cast.

L. da Vinci

3
Radio interferometry and techniques for data

reduction

For this thesis, we have made use of astronomical data taken with radio interfer-
ometers, namely the Very Large Array (VLA) and the global Very Long Baseline
Interferometry (VLBI) array (consisting in the joint action of the European VLBI
Network and the Very Long Baseline Array). In this chapter we give an overview on
the radio-interferometry technique, and highlight the aspects that are most relevant
for the work presented in the following chapters.
There are some advantages in studying gravitationally lensed systems at these
frequencies: 1) Propagation effects on the incoming radiation are very small or
frequency-dependent. 2) Microlensing is less likely to cause flux anomalies, thus flux
ratio measurements are much more accurate than at other wavelengths, and can
be used to constrain the lens model. 3) The high angular resolution allows us to
investigate the presence of small-scale non-luminous matter (M ≤ 108−9 M⊙) that
are expected to perturb the image positions on milliarcsecond scales. 4) Thanks
to the latest technical developments, which have provided the upgrade of some of
the existing radio arrays (Expanded-Very Large Array, EVLA, and Expanded-Multi
Radio Linked Interferometer Network, e-Merlin), or the construction of new radio
telescopes (Low Frequency Array, LOFAR), it is now possible to perform much more
sensitive observations, or revealing the sky at new frequencies, opening the way to
new lenses being found or high-redshift background source being detected. There-
fore, the study of gravitationally lensed systems from radio observations is a highly
efficient and promising tool for future discoveries in cosmology and galaxy evolution
studies.

33
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Table 3.1: Angular resolutions achieved nowadays by interferometric techniques.

telescope aperture λmin baseline length resolution

VLT 8.2 m 2 µm 200 m ∼ 2.4 mas
ALMA 12 ma 0.4 mm 10 km ∼ 10 mas
EVLA 25 m 6 mm 36.4 km ∼ 44 mas
VLBA 25 m 3 mm 6000 km ∼ 0.12 masb

GMVA 25 mc 3 mm 15000 km ∼ 50 µ arcsec
a upon completion ALMA will have 12 7-m dishes comprising the At-

acama Compact Array
b longest VLBA baseline length at 3 mm
c the array comprises also the Effelsberg telescope (100 m), Pico Valeta

(30 m), Plateau de Bure (6 × 15 m), Onsala (20 m) and Metsahovi
(14 m)

3.1 Basic principles of radio-interferometry

3.1.1 What do we measure?

The image of a source observed through an aperture of a given size larger than
the source (point-like source approximation) will result in alternating bright and
dark bands called fringes; for an aperture whose size is comparable with that of the
source, the fringes are no longer visible. The quantity that measures the relative
amplitude of the fringes is the visibility function:

V =
Imax − Imin

Imax + Imin
,

where Imax and Imin are the maximum and minimum value of the intensity of the
fringes. The larger is the value of V, the better the source is observed. In the ideal
case, for a point like source, Imin will reach zero, giving V = 1. However, a source has
finite size, and thus Imin will always be larger than zero, and the visibility smaller
than one.
The first application of interferometric techniques in astronomy dates back to 1920,
when for the first time the diameter of the super-giant star Betelgeuse could be
measured with high angular resolution (Michelson, 1920; Michelson & Pease, 1921).
Figure 3.1(a) shows the interferometer used by Michelson & Pease (1921) to measure
the diameter of α-Orionis. Light rays from the star fall on two mirrors and are
reflected on the same detector. By varying the distance between mirrors M1 and M4

fringe patterns were obtained. The corresponding visibility function depends on the
total flux density on the aperture and on the distance between the two aperture (see
Fig. 3.1 for more details). By varying the distance of the two mirrors, Michelson
and Pease were able to determine the location of the first maximum and estimate
the diameter of the source (Michelson & Pease, 1921).
The resolution of an instrument is proportional to the ratio between the observing
wavelength and the size of the aperture (∼ λ/D). In order to achieve higher angular
resolution, larger telescopes or higher frequencies are necessary. This very basic
concept has led since 1920 to the development of many applications of interferometry
in astronomy. Interferometry is nowadays applied very efficiently in those windows
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of the electromagnetic spectrum that is possible to investigate from the ground
allowing for angular resolution of order of milliarcsecond resolution (Table 3.1). Let
us now consider an aperture of finite size x that is receiving radiation of wavelength
λ. The mathematical Fourier Transform relation existing between the electric field
in a generic point P, E(ϕ), and the electric field distribution along the aperture with
which we observe E(x), can be proved:

E(ϕ) =

∫ ∞

−∞

E(x)e−2πi(x/λ)sinϕdx, (3.1)

E(ϕ) is also known as radiation field pattern or far field. It can be shown that
for a single, constant illuminated aperture of size xλ = x/λ, the far field will be
∝ sin(sin(ϕ)πxλ)/sin(ϕ)πxλ. The first null of this function occurs for sin(ϕ) = 1/xλ.
The position of the first null corresponds to the angular resolution of the aperture
as given by Rayleigh’s criterion ∼ λ/x, thus the larger is xλ the smaller is the first
maximum (main lobe of the antenna diagram) which is the smaller angular scale that
can be resolved. An interferometer may be seen as a collection of such apertures,
with dλ = d/λ (dλ is the distance between the apertures in unit of λ).

3.1.2 Response of an interferometer

Consider two antennas at a distance b pointing towards the same source, in a direc-
tion given by the unit vector s. The incoming wave-front will reach the two antennas
with a time lag τg, called geometrical time delay and given by τg = b · s/c. In order
to combine the signals coherently an instrumental delay is then introduced in the
path of the second antenna. Figure 3.2 shows how the signals from both antennas
are processed. The incoming signals at radio frequency νRF is down-converted to
an intermediate frequency with a local oscillator at frequency νLO. This is done
for practical reasons as it is technically more convenient to perform amplification,
filtering, delaying and cross-correlation. The latter is performed in the correlator,
which is a voltage multiplier followed by a time averaging (integrator) circuit. If
the input voltages are V1(t) and V2(t), the output is the complex quantity called
visibility

V = 〈V1V ∗
2 〉.

Visibilities are measured as function of the antenna separations and can be used to
reconstruct the source intensity distribution.
Let us consider the source of the electric field far away, such that all we measure is
the surface brightness of the emitting source1; assuming that the source is spatially
incoherent, the spatial coherence function, measured as function of the antennas
separation (baseline) b=r1−r2 is:

V(r1, r2) ≈
∫
Iν(s)e−2πiνs(r1−r2)/cdΩ. (3.2)

In the above equation, Iν is the source intensity distribution. The function V only
depends on the separation vector r1 − r2 of the two points, not on their absolute

1We may conceive this as what we learn is the distribution of the source of electric field on a
sphere of given radius R, which indicates the position vector of the source.
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(a)

(b)

Figure 3.1: Panel (a) shows the light path through the interferometer used by Michel-
son & Pease (1921). M1, M2, M3, M4, the mirrors; a, the 100 inches paraboloid; b,
cover mirror; c, flat mirror; d, focus. In panel (b), the function F (k, n) describes
the flux distribution on the aperture as function of the distance from the centre. On
the y-axis the plot shows the visibility function of the light of a source for different
radial profiles, indicated by various values of n. On the x-axis, k is a parameter
depending on the wavelength λ, b is the distance between the two mirrors and d is
the size of a source, k = 2πb

λd . The curves show the fringe patterns for various light
distributions as function of the parameter k. Given λ and b, the position of the first
null of the visibility function corresponds to a value of k form which the diameter
of the source, d, can be obtained. (Adopted from Michelson & Pease 1921)
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b

Figure 3.2: The incoming wave-front will reach the two antennas with a time lag τg
that is proportional to the baseline length, b. The sky signal at radio frequency νRF

is combined with the signal given by the local oscillator and converted to an inter-
mediate frequency νIF. Afterwards the signals are multiplied and averaged in the
correlator whose output is the Fourier Transform of the sky brightness distribution.
(Thompson 1999).

locations r1 and r2. Therefore, by holding one point fixed and moving the other
around, the properties of Iν can be reconstructed by V(r1, r2). This function is the
complex visibility function measured by an interferometer.

3.1.3 Synthesis Imaging

Let us now define a coordinate system (u,v,w), where w points towards the centre
of the field that is observed, u and v towards the East and the North in the local
tangential plane (see Fig. 3.3). In this system, the vector spacing in the coherence
function has components u, v and w measured in wavelengths λ = c/ν at the centre
frequency of the signal band;the baseline vector becomes r1−r2 = λ(u,v,w). In this
coordinate system positions on the sky are defined in l, m, and n which are the
direction cosines measured with respect to the u, v and w axis (Fig. 3.3). The
response of the interferometer can be expressed as function of (u,v,w), since these
coordinates represent the antenna separations with respect to the direction of the
field. If we consider that the radiation comes from a small portion of the celestial
sphere, l ≪ 1 and m≪ 1 2, the projected vector distance between two antennas has
coordinates xu = λu and yu = λv, and Equation (3.2) becomes

V(u, v) =

∫ ∫
I(l,m)e−2πi(ul+vm)dl dm, (3.3)

2the primary beam of parabolic antennas is usually < 1◦, which is a small area in the sky
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Figure 3.3: (u,v,w) and (l,m,n) coordinate systems used to express the antenna
separations and the source brightness distribution. (Thompson 1999).

which is a 2-dimensional Fourier Transform relation between the spatial coherence
function and the sky intensity written as I(l,m). Equation (3.3) is the basis for
radio interferometry. This is usually referred to as the van Cittert-Zernike theorem
3.
If the visibility function is measured in all the points of the (u,v) plane, the sky
intensity I(l,m) may be recovered by inverting Equation (3.3). However is not
necessary to measure all the Fourier components simultaneously. Consider the very
simple case of having only two antennas, one of which is mobile: by moving the
second antenna from place to place all the required Fourier components may be
measured. The method of gradually building up all the required Fourier components
and using them to image a source in the sky is called aperture synthesis (for their
work in developing this technique, M. Ryle & A. Hewish were awarded the Nobel
Prize for physics in 1974). As seen from a source, the spatial separation between
two antennas changes continuously as the Earth rotates, such that visibilities are
measured at different points in the uv -plane. This technique is called Earth Rotation
Synthesis.

The function that describes the sampling of the visibility function is known as
transfer function or sampling function, indicated by S(u, v); this is a function of
the source declination as well as the antenna separations. This function gives the

3The theorem shows that the spatial coherence function only depends on the separation vector
r1-r2 and that if all the measurements are in a plane, then there is a Fourier Transform relationship
between the spatial coherence function and the intensity distribution.
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Figure 3.4: Distribution of visibilities using VLA. The uv-plane is filled with the
rotation of the Earth over the time. The source declination is δ = 17◦.

values for u and v for which the visibility function is sampled, and hence it is zero
everywhere no data have been taken; it is given by the following equation, which
represents a sum of two-dimensional δ-Dirac function:

S(u, v) =
∑

k

wkδ(u− uk, v − vk), (3.4)

where wk are the weighting factors; (uk, vk) are the points where the visibility mea-
surements are recorded. The sampled visibility function is given by

VS(u, v) = S(u, v) ⊗ V(u, v). (3.5)

The image that is reconstructed from the sampled visibility function is called dirty
image, and can be obtained by Fourier transforming the sampled visibility function:

ID = FT−1(VS(u, v)) = FT−1(S(u, v)) ⊗ FT−1(V(u, v)) (3.6)

where FT represents a Fourier Transform and the right-hand side equation follows
from the convolution theorem and represents the convolution of the dirty beam BD

with the real image I:

ID = BD ⊗ I. (3.7)

BD is the point spread function corresponding to the Fourier Transform of the sam-
pling function, BD =FT−1(S(u, v)).
Equation (3.7) shows that the dirty beam BD must be deconvolved from the dirty
image ID to recover the real image intensity distribution I. We will discuss in section
3.3 and 3.4 methods that are used to recover the true intensity distribution.

3.1.4 The effect of bandwidth in radio imaging

Let ν0 be the centre frequency of the observing band ∆ν. The visibility data are
processed as if they were all observed at the centre frequency ν0. In particular, in
the (u,v) plane components of the projected baseline vectors are calculated for ν0.
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Let these be (u0,v0), for any other frequency ν within ∆ν they are (u,v)=(fu0,fv0),
with f = ν/ν0. Pratically this means that within ∆ν, at different frequencies the
(u,v) plane is sampled in the radial direction. Due to the Fourier relation between
the (u,v) and the image plane, the (l,m) coordinates of the brightness function are
scaled too. The effect of averaging the data over the full bandwidth ∆ν can be seen
as averaging images of the brightness distribution each with a different scale factor
in the direction aligned with the centre of the field. This effect is called bandwidth
smearing. It is proportional to the fractional bandwidth, ∆ν/ν0, and the distance
from the phase centre4 scaled by the beam-width, θ0/θHPBW (see Fig. 3.5 for an ex-
ample). If the visibilities averaged over ∆ν centred at ν0 are changing significantly,
features in a map are radially smeared and suffer loss of peak flux density far from
the phase centre.
Strong gravitational lensing systems can be as wide as 4′′ (Browne et al., 2003), thus
when mapping such fields, features far from the phase centre can only be maintained
by not averaging the data over the whole observing bandwidth (see e.g. Garrett et al.
1999).

3.1.5 The effect of time averaging

The time averaging of the visibility data at the correlator results in another form
of smearing in the image. Due to the rotation of the Earth, the visibility function
rotates through an angle ωeτ , resulting in different points corresponding to different
times in the interval δt. Because of the Fourier Transform relation between the uv -
plane and the image plane, in the latter the same rotation (of the image) occurs. At
a point (l,m) the smearing is proportional to ωeτ

√
l2 +m2, with τa being the time

interval between the visibilities are averaged.

3.1.6 Sensitivity

The measure of the weakest emission that can be detected is the sensitivity. For an
image obtained from N antennas observing with a bandwidth ∆ν and integrating
over a time tint it is given by:

∆I =
1

ηs

SEFD√
npolN(N − 1)∆νtint

. (3.8)

In Equation (3.8) npol is the number of polarizations included in the image, ηs
represents the system efficiency and SEFD is the “system equivalent flux density”,
defined as the flux density of a radio source that doubles the system temperature:

SEFD =
Tsys
K

=
Tsys2kb
ηA

. (3.9)

The SEFD is a measure of the overall antenna performance, it is expressed in Jansky
(unit for spectral density, used especially in radioastronomy; 1Jy = 10−26Wm−2Hz−1).
K is the antenna gain, which consists of the efficiency (η) and collecting area of the

4This is defined as the centre of the field, chosen as the point for which the time delay τg is
calculated
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Figure 3.5: The effect of bandwidth smearing over 0.5, 2 and 8 MHz are shown. The
figure shows the effect of radial smearing for a feature situated ∼ 2′′ away from the
phase-centre. The map shows one of the 4 lensed images of the gravitational lensing
system MG J0414+0534, which will be discussed in Chap. 5. From left to right,
the panels show the effect of smearing occurring when averaging visibilities over
0.5 MHz, 2 MHz and 8 MHz. When visibilities are averaged over 0.5 MHz the shape
of the feature is less affected and the percent peak loss is minimum; when averaging
over a larger bandwidth, up to the complete observing bandwidth of 8 MHz, the
effects of smearing are clearly visible: the peak flux density is reduced, and the shape
of the three components appears is significantly changed.
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antenna (A), and the Boltzmann’s constant kb. From Equation (3.8) is clear that the
image sensitivity may be improved increasing the number of antennas, the observing
bandwidth or the total integration time. The latest upgrade of previously existing
radio facilities, such as EVLA and e-Merlin, will have larger observing bandwidth
and improved receivers, that will improve the sensitivity by at least a factor of 10.
Integrating the visibilities over the full bandwidth is referred to as continuum observ-
ing mode; when this is not possible because of the effects described in the previous
section, and sensitivity has to be maintained many observing bandwidth (channels)
are required. This is called spectral line observing mode (see Sect. 3.2.3).

3.2 Calibration and Editing

The spatial coherence function defined in Equation (3.3) is usually referred to as
the true visibility function. An array of antennas samples this function at many
different locations, after that the signals are collected, amplified, converted, corre-
lated and averaged. A data point for each antenna pair is then recorded. These are
called observed visibilities. Calibration is the process of determining and correcting
for difference factors between observed and real visibilities. Standard calibration
techniques are discussed in Sect. 3.2.1 and Sect. 3.2.2.

Editing

The process of identifying and discarding invalid data is called editing. This is an
important step of the data reduction process since bad visibilities strongly degrade
the imaging when Fourier transforming the data. It requires a careful inspection of
the data in order to identify corrupted measurements, which may be antenna- or
baseline-dependent. Depending on the observing wavelength, observations may be
severely affected by radio-frequency interference, and when this happens these data
need to be removed. Sometimes the antenna is off-source, or some scans are bad
because of bad weather conditions; these scans need to be removed as well in order
to avoid incorrect interpolation of the calibration.

3.2.1 Phase and amplitude calibration

The relation between the complex visibility observed at time t on the i-j baseline
and the true one Vij(t) is:

Vobs
ij (t) = Gij(t)Vij(t) + ǫij(t) + ηij(t); (3.10)

where the factor Gij(t) is the complex baseline based gain, ǫij(t) is the baseline
based complex offset, and ηij(t) is the baseline based complex noise, representing
the thermal noise 5. The factor Gij(t) is composed by the complex gains of the array
elements i and j and a non-factorable part gij(t) which for well designed arrays is
within a one percent of unity,

Gij(t) = gi(t)g
∗
j (t)gij(t) = ai(t)aj(t)e

i[φi(t)−φj (t)], (3.11)

5The use of complex quantities describes the combination of the two outputs of the correlator
into a complex one
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where ai(t) is an antenna based amplitude correction and φi(t) is the antenna based
phase correction.
One way to perform amplitude and phase calibration is to observe a calibrator source,
whose observations are used to determine the amplitude and phase corrections as
function of time. The interpolation of these solutions then provides good values to
correct the target visibility data. The image of the target made using this technique
is referred to phase-referenced image.
In order to achieve good results, the phase calibrator should be unresolved at most
frequencies and bright; its position should be known with high accuracy and within
< 2◦ from the target source.
However, this method has a drawback when temporal and spatial variations in the
atmosphere are present. Values for the gi(t) inferred from observing a calibrator
may not apply to a source observed at another time and in another part of the sky.
Thus, some residuals may remain. In case of VLBI observations imaging would be
completely prevented by these effects and self-calibration is necessary (see Sect. 3.6).

Considering only the amplitude term in Equation (3.11), the raw correlation
coefficient from the correlator is

Ãij(t) = ai(t)aj(t)Sij , (3.12)

where ai/j(t) are the amplitude terms of the antennas gains, and Sij is the calibrated
flux density which in terms of antenna performance and system temperature becomes

Sij = Ãijb

√
TsysiTsysj
KiKj

, (3.13)

where the factor b accounts for signal-to-noise ratio losses due to effects like digital-
ization, the Ki are the antenna sensitivities measured in Kelvin/Jansky and Tsysi are
the system temperatures in Kelvin. During an observation the system temperature
is measured frequently since it is time and elevation dependent. Using Tsys and
Ki to determine the amplitude calibration is called a-priori amplitude calibration.
This technique provide amplitude calibration consistent to better than 10%. An im-
provement to this can be made by observing strong non-varying sources. Models (or
images) of these sources are used to perform self-calibration and determine constant
offsets between the stations. However, this requires that the phases are very well
calibrated.

Fringe-fitting

Very Long Baseline Interferometry (VLBI) is a technique where the telescopes are
not physically connected. Their signal is recorded on the stations in a storage device
(tapes in the past, disks at present) which are then brought together, multiplied,
Fourier Transformed, and averaged in the correlator6. In this way, with the use of

6e-VLBI is a modern VLBI program conducted by the European VLBI network (EVN); data
from the radio telescopes are transferred real time to the correlator via optical fibre cables; in e-
VLBI high performing hardware and software are used that enable real time correlation of the data
streams.
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the longest baselines on ground (and space) is possible to achieve the highest angular
resolution of the order of sub-milliarcseconds. Fringe-fitting is an important step
when analysing VLBI data.
Residuals between the true and the observed visibility phase are due to variations
of the phases with time and frequency; these originate from instrumental effects,
geometrical delays and the propagation in the atmosphere and ionosphere. The
error on the phase of the measured visibility is given by

∆φt,ν = φ0 +
∂φ

∂ν
∆ν +

∂φ

∂t
∆t (3.14)

where the phase slope in frequency and time are respectively the residual delay
and the residual rate. In order to correlate the data, a model has to be assumed
that describes the geometrical delays and fringe rates. For connected interferometers
residual delays and rates are small, and the model used by the correlator can properly
account for these terms. This is not the case for VLBI arrays. Geometric errors are
due to uncertainties in the terrestrial and celestial coordinates. Instrumental errors
occur because of the signal propagating through different electronics and because
of the use of different clocks at each station. The antennas can be up to ∼ 12000
kilometres apart, thus the signal travels through different geometric path in the
atmosphere and ionosphere. The presence of electrons in the ionosphere introduces
an additional phase delays, as well as different refractive indices in the atmosphere.
Residuals phase delay and rates can then be significant, and need to be corrected.
The fringe-fitting operation solves and removes for any residual delays and rates
offsets that are not properly accounted by the model used by the correlator. Fringe-
fitting estimates the phase delays and rates, and correct for them in the data. The
frequency-time data (as delivered from the correlator) are Fourier transformed to the
delay rate domain; here the peak of the function will appear as an isolated point,
which gives the lowest residuals. Finding the signal is rather simple for strong
sources, but for weak sources it can be tricky, since the signal-to-noise ratio is not
enough to distinguish the true peak from noise peaks. Given a source model which
replaces the true visibilities in Equation (3.10), it is possible to use all the data to
determine delays and rates. This process of solving for antenna-dependent delays
and fringe rates is called global fringe-fitting. Using a reference antenna, for which
the phase, delay and rate are set to zero, solutions are found for each antenna; these
solutions are then used to find a least-square solution where antenna phases, fringe
rates and delays are determined from all the baselines 7.

3.2.2 Closure quantities and self-calibration

In order to image a target source is fundamental to align the phases from different
antennas. In the early times of radio interferometry, Roger Jennison introduced
a new concept that became crucial in the development of algorithms to produce
images of the radio sky, the closure quantities (Jennison, 1958). He realized that

7Alternatively, there is the baseline-based fringe fitting that determines delays and rates for each
baseline, and afterwards these are obtained for the single antennas. In order to use this method
the source has to be detected on all the baselines, otherwise baselines with a weak or non-detection
will not be calibrated.
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the sum of visibility phase around a closed loop of baselines is free of antenna-based
errors. Considering only the phase term of Equation (3.11), the relation between
the measured and the true phases is

φ̃ij(t) = φij(t) + θi(t) − θj(t) (3.15)

where φ̃ij is the measured visibility phase and φij(t) is the true one. Consider now
the sum of phases around a closed triangle of antennas i, j and k,

φ̃ij(t) + φ̃jk(t) + φ̃ki(t) = φij(t) + φjk(t) + φki(t) (3.16)

where the terms θi, θj and θk cancel because the appear twice with opposite sign.
The quantity

C̃ijk(t) = φ̃ij(t) + φ̃jk(t) + φ̃ki(t). (3.17)

is known as observed closure phase and apart from noise term is identical to the
‘real’ closure phase

Cijk(t) = φij(t) + φjk(t) + φki(t). (3.18)

In the same way, for a loop of 4 elements a closure amplitude is defined as the ratio
of the visibility amplitudes which cancels out the antenna based gains,

Γijkl(t) =
|Ṽij(t)||Ṽkl(t)|
|Ṽik(t)||Ṽjl(t)|

. (3.19)

These two quantities are then good observable. For an array of N elements there
are N(N − 1)/2 − (N − 1) independent closure phases, and N(N − 1)/2 − N clo-
sure amplitudes which can be used to constraint the true intensity sky distribution.
However, they could not be used for imaging until the late 1970s, when the advent
of fast computers made possible to produce images consistent with the informations
contained in the closure quantities. The first iterative scheme was produced by
Readhead and Wilkinson in 1978, and became known as Hybrid mapping. An initial
model of the source is used to determine the phases on baselines with the help of
closure phases. A new model is produced from the observed visibilities amplitudes
and the just predicted visibility phases. These steps are then repeated until a satis-
fying model is obtained.

Self-calibration

Similarly to method just described, self-calibration is based on an iterative scheme,
in which the antennas gains are allowed to be free parameters when determining the
true sky intensity distribution improving the quality of the images. As mentioned
in Sect. 3.2.1, VLBI phase calibration relies on this process. The iterative scheme
consists of two parts, 1) determining the antenna based corrections, 2) determining
the source brightness distribution. Basically the aim is to produce a model of the
sky Ĩ, the Fourier transform V̂ of which, when corrected by the complex gain factor,
reproduces the observed visibilities within the noise Ṽ . This is done by minimizing
the sum of the squares residuals

S =
∑

k

∑

i,j;i 6=j

wij(tk)|Ṽij(tk) − gi(tk)g∗j (tk)V̂ij(tk)|2 (3.20)
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Figure 3.6: Iterative algorithm of self-calibration. Adapted from Pearson & Read-
head (1984)

where the wij(tk) are the weights purely determined from the uncertainties in the ob-
served visibilities (see Sect. 3.3). Figure 3.6 illustrates the process of self-calibration.
A good starting model is required. The observed visibilities are then divided by this
model in order to solve for the antenna gains which are then used to correct the
visibilities,

Vij,corr(t) =
Ṽij(t)

Gij(t)G∗
ij(t)

. (3.21)

A new model is produced from the corrected visibilities which is then used for the
next iteration. These steps are repeated until a good satisfactory sky intensity map
is produced. Basic requirements for this process to work are that the total number of
free parameters (free gains and parameters in the sky intensity distribution) should
not be greater than the number of independent visibility measurements, the data
has a good signal-to-noise ratio and the source structure is not too complex (relative
to the model).
In Figures 3.7 and 3.8 are shown VLBA 1.7 GHz phase-referenced (left panel) and
phase-self-calibrated (right panels) maps of the 4 lensed images of MG J0414+0534
(see Chap. 5). The brightest features in the left panels of Figure 3.7(a) and Fig-
ure 3.7(b) were used as starting model. The figure shows just the first iteration, but
the improvement in dynamic range is clearly visible.

3.2.3 Bandpass calibration

When observations are made in spectral line mode (Sect. 3.8) a further step is
needed in the calibration process in order to compensate for the change of gains
with frequency, the so called bandpass calibration. The frequency response across
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(a)

(b)

Figure 3.7: First iteration of self-calibration. Left panels: phase referenced maps;
right panels: self-calibrated maps. The figures show the lensed images A1 (figure
a)) and A2 (figure b)) of the lens system MG J0414+0534. The axes units are the
relative right ascension (east of the phase centre ) and declination (north of the
phase centre) in milli-arcseconds.
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(a)

(b)

Figure 3.8: Continue from Fig. 3.7. The figures show the lensed images B (figure
a)) and C (figure b)) of the lens system MG J0414+0534. The axes units are the
relative right ascension (east of the phase centre ) and declination (north of the
phase centre) in milli-arcseconds.
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the frequency channels can be determined by observing a strong calibrator source
whose spectrum is known over the frequency band.

3.3 Imaging

Equation (3.6) is a discrete approximation of

I(l,m)A(l,m) =

∫ ∫
V(u, v)e2πi(ul+vm)du dv (3.22)

where we have taken into account the finite size of the interferometers elements,
which have sensitivity dependent to the arrival direction of the radiation. This is
expressed by the additional term A(l,m) that describes the sensitivity as function of
direction, that is called primary beam. From the recorded visibility measurements,
at each (uk, vk), k = 1, ...N , Equation (3.22) is used to obtain an estimate of
the modified sky brightness from the observed visibilities. This is done using the
Direct Fourier Transform (DFT) or the Fast Fourier Transform (FFT) methods.
FFT methods need the visibility plane to be gridded; because visibilities are not
regularly sampled an interpolation needs to be done. Hence, a smoothing function
is applied to the observed visibility function, which is then regularly sampled at
regular spaced intervals (basically the convolution function is evaluated only on
the grid points); afterwards the data are Fourier transformed, and divided by the
FT of the convolution. The weighting factors wk (introduced in Equation (3.4) )
are wk = RkTkWk, which are non-zero where visibility points are measured. The
coefficients Rk account for the reliability of each data point. This depends on the
integration time, the system temperature and the bandwidth for that point. The Tk
are given by a smooth tapering function, usually a Gaussian, used to down-weight
the data at higher spatial frequencies. This can improve the quality of the image, if
the higher spatial frequencies are sparsely sampled and noisy. The Wk describe the
density weighting function which can be used to emphasize visibility points from
different spatial frequencies, there are two choices for it. The natural weighting
scheme, which sets the weights as the reciprocal of the variance of the measured
visibilities; this is the optimal approach from a statistical point of view, it increases
the sensitivity in a map down-weighting the data points which have poor or no
measurements. The uniform weighting in which weights are set as the inverse of the
density of the visibility points within a region of the uv -plane; this scheme down-
weights points from smaller spatial frequencies, increasing the resolution. The robust
weighting scheme is an intermediate approach, in which the weights are divided by
the local density of visibilities plus a constant. In this way, one avoids to assigns
high weights to noisy points only because the density is low.
Recalling equation( 3.7), the dirty map is the convolution of the dirty beam Bd and
the true map I(l,m). Let Z be an intensity distribution which correspond to the
unmeasured visibilities in the (u,v) plane, then Bd ∗ Z = 0. Therefore any I + αZ,
where α is a number, is a solution of the convolution equation. This implies that
there is no unique solution for the deconvolution problem and therefore non-linear
methods are needed in order to find the optimal solution.
In the next Section we describe the two predominant algorithms used to find a
solution to the convolution equation.
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3.4 Deconvolution: the CLEAN algorithm

This algorithm provides one solution to the convolution equation by representing
the radio sky as a collection of point sources. It was first implemented by Högbom
(1974). It proceeds as follow:

1. The position and the strength of the brightest point in the dirty image are
found.

2. The dirty beam multiplied by the peak strength and by a damping factor γ ≤ 1
is subtracted at peak position in the dirty image. The factor γ is called loop
gain, typically its value is ∼ 1% − 5%.

3. The peak position and its strength are recorded as model component, the so
called clean component.

4. These steps are repeated for a fixed number of iterations or until no flux density
peak higher than a threshold is found. Both conditions are user-specified. The
model subtracted dirty map is now referred to as dirty image.

5. The collection of clean components is convolved with a clean beam, usually
an elliptical Gaussian beam with the Full-Width at Half Maximum (FWHM)
of the central lobe of the dirty beam. The image produced is the clean image.

6. The remainder of the dirty map is added to the clean image.

An improvement to this algorithm is the Clark algorithm (Clark, 1980) which
works in the image and the (u,v) plane. It consists of two cycles, the minor and
the major one. In the minor cycle, clean components are selected in the dirty
image if their intensity, above threshold fraction of the image peak, is greater than
the highest sidelobe of the beam; a Högbom clean is performed until there are
no components to be selected in the dirty image. In the major cycle, the clean

components are Fourier transformed to the visibility plane, convolved with the sam-
pling function, transformed back to the image plane and subtracted from the dirty
map. Further improvement is given by the Cotton-Schwab algorithm in which the
subtraction of the clean components is performed on the ungridded visibility data.
This has the advantage that any gridding errors are eliminated, provided that the
Fourier transform of the clean components to the u,v sample is done with high
accuracy.
This algorithm is implemented in the Astronomical Image Processing Software (AIPS)
used for the data reduction of the lens systems in this thesis.

The Maximum Entropy Method

The Maximum Entropy Method (MEM) reconstructs the brightness distribution by
model fitting to the uv -data maximizing the entropy of the brightness distribution.
One possible form for the entropy function is

H = −
∑

k

Ikln
Ik
Mke

, (3.23)
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where Mk is a “default” image that allows an a-priori knowledge to be used. A
low resolution image can be used for this purpose. A comparison between MEM
and CLEAN is given in Narayan & Nityananda (1984). Since its invention CLEAN
has been the most used method for deconvolution in radio astronomy, but it has
not been applied to other fields, probably because of the decomposition into point
sources which is not always feasible in other types of images. On the contrary MEM
has spread to many different fields. Generally CLEAN is faster for small and simple
sources, whereas for extended structures MEM is faster and gives better results.

3.5 Wide-field imaging

When imaging weak sources in a large field of view, where strong background sources
are present far from the phase centre, observations must be taken with narrow band-
widths in order to preserve the wide field of view (see Fig. 3.9). In Sect. 3.1.4 we have
seen that averaging the visibilities over the bandwidth corresponds to rescaling the
image plane in the radial direction respect to the phase centre. When imaging weak
sources over a large field of view, the effects of sidelobes from strong background
sources would be hard to mitigate if the field of view is not preserved (namely if the
data are averaged over the frequency band thus reducing the field of view).
When imaging wide field of view using the two-dimensional FT the w = 0 approxi-
mation (see Section 3.1.3) is no longer a valid approximation and serious errors may
occur which increase as the square of the angular distance from the phase reference
point. Following Cornwell & Perley (1992), images of a bigger area are made up
of smaller facets. The algorithm is also implemented in AIPS. For each facet, the
projected baselines coordinates and the observed phases are rotated to the phase ref-
erence position at the facet centre, so that the w = 0 condition is still valid for that
facet; the sky brightness I(l,m) can now be approximated with a two-dimensional
FT and standard clean can be performed (as described in the previous section);
note however that for each facet being cleaned there is a local point-spread function
which is used to deconvolve the brightness; when a facet is cleaned, the model in
that facet is subtracted from the the residual data so the next facet to be cleaned
is imaged using the latest residual visibility data; in this way sidelobes of a strong
source in one facet are removed from the others before these are cleaned. Figure 3.9
represents the L-band primary beam of the Very Large Array (VLA). At the fre-
quency of 1.4 GHz, it has a size of ∼ 30 arcminutes. The target of this observations
is a 5 mJy source (see Sect. 4.6). Note the flux scale of the image is in Jansky. It
was therefore necessary image all the brighter sources, and remove their sidelobes.
In the figure, the white rectangle shows the targeted region.

3.5.1 Multi-scale imaging

The clean algorithm is based on the idea that the sky brightness distribution can
be approximated as collection of point like sources (Sect. 3.4). In the multi-scale
clean, also implemented in AIPS, extended emission is modelled with extended
components. This algorithm is well suited when imaging low signal-to-noise extended
emission. However some steering by the user is required in order for this algorithm
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Figure 3.9: Field size ∼ 30 arcminutes. The green box represents the target region.
The blue ones correspond to regions with flux density at 1.4 GHz of ≃ 40 mJy (the
southern) and ≃ 60 mJy (the northern), which are ≥ 8 times the flux density of our
target. The axes units are the relative right ascension (east of the phase centre )
and declination (north of the phase centre) in kilo-arcseconds.
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to work well. Different flux cut-off scales need to be specified for different scales of
emission, such that lower resolution images have higher flux cut-off.





The most precious things in life are
not those you get for money

A. Einstein

4
The brightest Lyman Break Galaxy

The work presented in this chapter is based on the refereed publication Volino et al.
(2010).
Goal of this project was to study the properties of a high-redshift star forming
galaxy from radio observations and to compare them with results from observations
at shorter wavelengths, which may suffer of systematic uncertainty due to propaga-
tion effects. So far this is the first case that galaxy strong lensing is exploited at
radio wavelengths to study a high-redshift source. Moreover, if emission is detected
from the multiply lensed star-forming region, the lens galaxy could be studied as
well using lens-modelling techniques.
The chapter is organized as follows: in Section 4.1 we introduce the properties of
this high-redshift galaxy population. In Section 4.2 we describe the astrophysical
framework on which this study is based, namely the radio-FIR correlation. After-
wards, in Section 4.3 we describe how it is possible to study star-forming regions
at other wavelengths but radio, and compare the systematic effects for different ob-
serving band. In Section 4.4 we introduce the system and the motivations for this
project. In Section 4.5 we outline some aspects of lens-modelling relevant for the
interpretation of the intrinsic source properties. We then present the radio observa-
tions and imaging results in Sections 4.6 and 4.7. In Sections 4.8 and 4.9 we present
our results on the radio-derived star forming properties in the high-redshift source.
Finally we give our conclusions on this project in Section 4.10.
Throughout the chapter we assume a Λ-CDM cosmology with H0 = 70 km s−1 Mpc−1,
ΩM = 0.3, ΩΛ = 0.7.
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4.1 Lyman Break Galaxies

Lyman Break Galaxies (LBGs) belong to a population of high redshift objects whose
general properties [star-formation rates (SFRs), space density and mass] suggest that
they are the progenitors of present-day luminous ellipticals and star-forming galax-
ies. Their spectra, characterized by a blue ultraviolet (UV) continuum, lines from
massive stars, weak Lyα emission, strong interstellar absorption, and dust extinc-
tion, are extremely similar to those of nearby star-forming galaxies (Steidel et al.,
1996b). Figure 4.1 shows spectra of two LGBs compared to a spectrum of a local
starburst.
LBGs have been detected using the Lyman Break technique, a colour-selection cri-
teria that exploit the Lyman discontinuity in the UV part of the rest-frame spectral
energy distribution (Steidel et al., 1996a,b).
The Lyman discontinuity is an important feature of the UV spectrum of high-redshift
galaxies whose photons emitted at λ < 1216 Å are absorbed by the intergalactic gas.
Furthermore, radiation at λ < 912 Å is also heavily suppressed by the interstellar
medium of the galaxy itself. A source of UV radiation at redshift z would not been
detected if observed with a filter with central wavelengths λ1 . (1+z)912 Å but only
with redder ones. Hence, high-redshift galaxies become hidden when observations
go towards shorter wavelengths (see Fig. 4.2). Large sample of LBGs have provided
precise clustering measurements showing strong spatial correlation (r0, correlation
length, of order of ∼ 3− 4 Mpc h−1) and thus implying that these galaxies are asso-
ciated with the more massive dark matter halos 1, (Adelberger et al., 2005; Bielby
et al., 2010). Understanding the properties of this high z galaxy population (their
clustering properties, colour and star-formation rates) is indeed very important in
order to test the paradigm of galaxy formation.
These galaxies are characterized by a wide variety of morphological properties. In
general, they are not classified in terms of Hubble types because of the difficulty in
identifying their structural components (Giavalisco, 2002).
Detailed investigations of these early episodes of star-formation require the addi-
tional magnification provided by gravitational lensing (see Sect. 1.4.2). Unfortu-
nately, an advantageous strong lensing geometry is very rare (lensing probabilities
are ∼ 10−3), and there are only a few cases where studies of an LBG boosted by grav-
itational lensing have been carried out; for example, MS1512−cB58 (Yee et al., 1996;
Pettini et al., 2000; Siana et al., 2008), LBG J213512.73−010143 (Smail et al., 2007;
Coppin et al., 2007), the ‘arc-core’ in the cluster 1E 0657−56 (Nesvadba et al., 2006).

4.1.1 Are radio observations of LBGs sensible?

Star-forming galaxies are dust embedded regions, and therefore unbiased studies are
provided by observations in the far-infrared (FIR) to mm bands, where the total
stellar and gas content of these dusty environments can be directly probed by mea-
suring the thermal emission of the dust. On the other hand, at radio wavelengths,
the non-thermal emission traces recent massive star-formation activity, which gives

1The clustering properties of the galaxies are determined from observations of their distribution
in the sky.



4.1 Lyman Break Galaxies 57

Figure 4.1: A comparison between spectra of Lyman Break Galaxies and the star-
burst galaxy NGC 4212 is shown. The spectra show strong interstellar absorption
lines and blue continuum, denoting that formation of massive stars is taking place.
Adopted from Giavalisco (2002).
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Figure 4.2: Illustration of the Lyman-Break technique: a galaxy observed at all
wavelength seems to “disappear“ from long (I, infrared; right most panel) to short
wavelengths (FUV, far-UV; left most panel). Credit to Burgarella et al. (2006)

us another unobscured view of the dust embedded star-forming galaxies. Based on
the FIR-radio correlation (see next Sect.) and a typical SFR of ∼ 30 M⊙ yr−1

(Shapley et al., 2001), a non-thermal 1.4 GHz luminosity of ∼ 1022 WHz−1 is ex-
pected for these galaxies, which implies a sub-mJy flux density. Stacking techniques
(Ivison et al., 2007; Carilli et al., 2008) or deep imaging are necessary to detect these
objects. In addition to the technical improvements provided by new facilities at cm
wavelengths, gravitational lensing is a powerful tool to investigate the radio emission
of LBGs. Garrett et al. (2005) started exploiting this tool using clusters of galaxies
as lenses. With this work, we want to extend the method to individual galaxies as
lenses.

4.2 The FIR−radio correlation

At radio wavelengths thermal and non-thermal emission of galaxies trace recent
massive star formation activity, and the galaxy luminosity can be modelled using
the SFR of high mass stars as the only free parameter (Condon, 1992). Stars more
massive than 8 M⊙ end their life as type II and type Ib supernovae; their remnants
are considered to be the source of acceleration of most of the relativistic electrons in
galaxies; hence responsible for the non-thermal and thermal radio emission. Massive
stars have lifetimes . 107 years, while relativistic electrons live probably . 108 years;
in both cases, the lifetimes are much shorter than the Hubble time, thus the radio
emission of a galaxy probes recent processes of star-formation.
The following equation describes the relation between the total radio luminosity of
a galaxy and the massive SFR,

SFR =

{
Lν

WHz−1

[
5.3 × 1021

( ν

GHz

)−0.8
+ 5.5 × 1020

( ν

GHz

)−0.1
]−1
}
M⊙ yr−1

(4.1)
where the first term in the denominator represents the synchrotron radio emission
and the second one the thermal emission from the HII regions. For a detailed
description of the radio emission in normal galaxies the reader is referred to Condon
(1992).
On the other hand, massive stars are thought to be born in dusty giant molecular
clouds, such that almost all of the UV radiation is re-emitted in the FIR. This is the
basis for the radio-FIR correlation, first discovered and reported by Van der Kruit
(1971). Indeed, there is a very tight relation between radio and FIR luminosity at
z < 0.5 (e.g. Jarvis et al. 2010), with a possible evolution up to z ∼ 4 (e.g. Garrett
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2002; Micha lowski et al. 2010; Sargent et al. 2010).

4.3 Indicators of star formation

Information on the star-formation properties of a galaxy come from flux measure-
ments at different wavelengths, such as ultraviolet continuum, optical lines, far-
infrared continuum and lines, and radio continuum (non-thermal radiation). These
are direct tracers of star formation activity, and are briefly discussed in this section.
In the UV, the continuum is dominated by the emission of young stars, so that the
SFR scales linearly with the luminosity, under the assumption that the SFR remains
constant over time scales longer than the lifetime of the dominant UV emitting stel-
lar population (< 108 years). The main advantages of this technique are that it is
directly connected to the photospheric emission of the young stellar population and
it can be applied to star-forming galaxies over a wide range in redshift. The weak
points are its sensitivity to dust extinction and to the assumed IMF. In order to
obtain an estimate of the extinction, models are required, which take into account
the geometrical dust distributions and the grain shape; alternatively, one needs to
make use of the reddening information from the Balmer decrement or infrared (IR)
lines (Calzetti et al., 1994; Calzetti, 1997). For high redshift star forming galaxies,
the latter is the most accurate.
From early- to late-type galaxies, a comparison of the integrated spectra shows an
increase in the strengths of the emission lines (Kennicutt, 1998). The integrated
ionizing radiation that is necessary to explain these lines (mostly Hα and Hβ), is
due to very massive stars (M > 10 M⊙) whose lifetime is of order of mega-years;
it follows that emission lines provide a nearly instantaneous measure of the SFR.
The big advantage of this method is its high sensitivity to the massive SFR, while
the limitations are its sensitivity to the IMF, uncertainties in the extinction, and
the assumption that all of the massive star formation is traced by the ionized gas.
Systematic uncertainties due to dust extinction can be compensated by observations
at longer wavelengths (continuum FIR), where the star formation is directly traced
by the stellar light that is absorbed by dust and then re-emitted beyond a few µm.
The efficacy of this method depends on the contribution of young stars to heat the
dust, and on the optical depth of the dust itself. However, the weak point of using
this method to trace the star formation activity, is that it is sensitive to the choice
of the IMF (Kennicutt, 1998).
Finally, the tight correlation between the FIR and the radio (non-thermal) lumi-
nosities allows a direct measurement of the SFR from the radio luminosity. At these
wavelengths the reddening by dust does not occur, and hence the observed flux
density can be converted to a direct measurement of the star-formation activity.
However, as discussed in the previous section, the radio emission traces the massive
star-forming regions, and hence one needs to use conversion factors when comparing
radio-derived to other wavelengths SFR.
Other methods to derive the SFR are based on synthesis modelling which provide
relations between the SFR per unit mass or luminosity and the integrated colour of
the stellar population. Also in these cases, systematic uncertainties from an incor-
rect initial mass function, reddening or star-formation history needs to be accounted
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Figure 4.3: The 8 o’clock arc system. The 4 lensed images and the lens galaxy are
shown. Credit to Allam et al. (2007)

for. These last methods are mainly used for faint galaxies.

4.4 The 8 o’clock arc

The 8 o’clock arc system was first identified by Allam et al. (2004) while imaging the
data of the Sloan Digital Sky Survey Data Release 4, and follow up spectroscopic
observations confirmed its lensing nature (Allam et al., 2007) 2. The two components
of the system are SDSS J002240.91+1431110.4, a luminous red galaxy (LRG), and
SDSS J002240.78+143113.9 a very blue and elongated arc (hereafter referred to as
the LBG). The LRG is at redshift z = 0.38 and acts as the lens. The lensed arc
of the LBG subtends 9.6′′, and consists of three components: A1, A2 and A3 (with
i = 20.13, 20.11 and 20.21, respectively3; Allam et al. 2007). The SPIcam4 g–band
image of Allam et al. (2007) also shows a faint fourth component, identified as the
counterimage, 5 arcseconds away from the main arc and on the opposite side of the
lens galaxy (Fig. 4.3). The redshift of the arc was measured to be z = 2.73 (Allam
et al., 2007; Finkelstein et al., 2009).
Even taking into account a lensing magnification of ≈ 12.3 (from the lens model of
Allam et al. 2007), the arc is 2.6 mag more luminous (≈ a factor of 11 in luminosity)
than L∗ for LBGs (where L∗ is the characteristic Schechter luminosity for LBGs;
Steidel et al. 1999). This suggests that the system is going through a vigorous
process of star formation. Allam et al. (2007) estimated a SFR ∼ 230 M⊙ yr−1

using the relation given in Pettini et al. (2000) scaled to MS1512−cB58. From their
optical and near-infrared (NIR) studies, Finkelstein et al. (2009) found a more robust
dust-corrected and de-lensed SFR of 266 ± 74 M⊙ yr−1. Their result confirms that
this system is undergoing a very active process of star formation, and shows that
the SFR is higher than ∼ 85% of the high-redshift LBGs studied by Shapley et al.
(2001, 2005).

2The authors have named the system 8 o’clock arc from the time of its discovery.
3Allam et al. 2007 obtained exposures using the SDSS gri filters.
4SPIcam CCD imager is mounted on the Astrophysical Research Consortium 3.5 m telescope at

the Apache Point Observatory.
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Table 4.1: SDSS photometry of the 8 o’clock arc system. The table has been adopted
from Allam et al. (2007). The estimated error on the magnitudes is ±0.1

g r i
LRG 20.14 18.62 18.16
A1 21.18 20.21 20.13
A2 20.99 20.40 20.11
A3 21.27 20.68 20.21
A4 ∼ 22 – –
arc 19.95 19.22 22.40

4.4.1 NVSS identification of the 8 o’clock arc and motivations for
our study

In the radio, the 8 o’clock arc lens system is coincident with an NVSS5 (45 arcsecond
resolution; Condon et al. 1998) radio source with a 1.4 GHz flux-density of ∼ 5 mJy.
If due to star formation the flux density at 1.4 GHz would imply a huge SFR ∼
11 000 M⊙ yr−1 (using Equations 4.2 and 4.3), which would contradict the estimates
from the optical and NIR spectroscopy. Taking the optical and NIR derived SFR of
∼ 270 M⊙ yr−1 and a total magnification of µ ∼ 12, the gravitationally lensed 1.4
GHz flux density for the LBG is expected to be just ∼ 0.12 mJy.

4.5 Lens modelling

Here we highlight some aspects of the lens models that are relevant for the interpre-
tation of the de-lensed properties of the 8 o’clock arc system.
Allam et al. (2007) show that a singular isothermal ellipsoid (SIE) model for the
lens galaxy provides a good fit to the optical data. Their model predicts the source
position to be within the cusp (see Fig.4.4) of the tangential caustic curve, and the
total magnification to be µ = 12.3+15

−3.6, where each of the three arc components has
µi & 4 (Allam et al., 2007). However lensing theory predicts that for this image
configuration the magnifications of the A1 and A3 components (which lie outside
the critical curve) should be equal, and their sum should be equal to the magni-
fication of A2, which is expected to have the largest flux-density. This relation
is known in gravitational lensing studies as the cusp relation (Schneider & Weiss,
1992). Using a magnification of µi ∼ 4 (see below) for each component could lead
to biased estimates of the de-lensed emission from the “8 o’clock arc” components
and thus all of the parameters derived from it, e.g., the SFRs. This consideration is
necessary here since we compare our results to those of Finkelstein et al. (2009) who
derive the SFR from A3 and A2 components and correct for a total magnification
µ(A3+A2) ∼ 8. Furthermore, the observed optical flux ratios of the lensed images
indicate that the arc components have a similar magnification (see Table 4.1); this
is pointing out a violation of the cusp relation which might be explained by small
scale (milli-arcsecond scale) structures in the lens galaxy or extinction. Hence, the
lens model would need further investigation. Nevertheless, in order to compare our

5The National Radio Astronomy Observatory Very Large Array Sky Survey.



62 The brightest Lyman Break Galaxy

A4

(a
rc

se
co

nd
s)

(a
rc

se
co

nd
s)

(arcseconds)(arcseconds)

A3 A2

A1
∆
y

∆
y

∆x∆x

Figure 4.4: A simple Singular Isothermal Ellipsoid (SIE) has been fitted to the
optical positions of the arc components (Table 4.1). The left (right) panel shows the
image (source) plane. In the image plane, the green crosses mark the observed image
positions and the blue the modelled ones. In the source plane, the cross indicates
the modelled source position.

results with Finkelstein et al. (2009), we have corrected the flux density using µi ∼ 4
per component.
Another aspect of this lensing system which needs further investigation, which was

also pointed out by Allam et al. (2007), concerns the mass distribution outside the
main lensing galaxy. The image separation between the arc and the faint counter
arc (see Fig. 4.3) is ≃ 5 arcsec. Oguri et al. (2005) show that for lens systems with
image separations of θ larger than 3 arcsec, the contribution of the lens environment
may be important, with an external convergence larger than 10%. Moreover, Oguri
(2006) has predicted that the contribution of dark matter halos surrounding the
main lensing galaxy is significant in systems with θ & 3 arcsec and has to be taken
into account in the lens modelling. Indeed, recent studies of group-scale gravita-
tional lens systems have found that the lens environment is important, changing the
convergence and producing density profiles that can be either shallower or steeper
than isothermal (McKean et al., 2010; Thanjavur et al., 2010; Verdugo et al., 2010).
A simple isothermal model for the lens galaxy of the 8 o’clock arc may not be the
best parametrization for the mass model. However, given that the lens system is
dominated by the massive LRG, we expect the model to be close to isothermal, and
hence, for the magnification to be close to what was found by Allam et al. (2007).

4.6 Very Large Array observations of the system

We observed the 8 o’clock arc in November 2007 using the VLA in B-configuration
at 1.4 GHz [synthesized half power beam width (HPBW) of ∼ 3.9 arcsec] and at 5
GHz (synthesized HPBW ∼ 1.2 arcsec), and again at 1.4 GHz one year later, when
the telescope was in A-configuration (HPBW ∼ 1.4 arcsec). The higher resolution
and more sensitive 1.4 GHz data (second observing run) were necessary to disentan-
gle the weak radio emission of the lensed LBG from the lens (see Fig. 4.5 and 4.6).
For the first observing run, the total time on source was 6 hours, divided equally
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between the two observing frequencies, while one year later we observed the system
for 7 hours. In order to reduce the potential effect of bandwidth smearing, at 1.4
GHz we used the correlator in spectral line mode, using 25 MHz of bandwidth and
3.125 MHz wide channels. At this frequency a larger field of view is required for
imaging (in order to remove the response of unwanted sources), and therefore the use
of a narrower bandwidth is required to reduce chromatic aberrations which cannot
be neglected. In addition to this, continuum observations in spectral line mode are
usual preferred at this observing frequency as narrow interferences, which can be a
problem at this or longer wavelength, can be identified. For both runs, 3C 48 and
0010 + 174 were used as the flux-scale and gain (amplitude and phase) calibrators,
respectively. The data were taken in 2 IFs, but for both 1.4 GHz observations, one
of the IFs was corrupted, and therefore was not used in imaging. For the first run
(November 2007), at 5 GHz we used a switching cycle of 1.5 and 5 min between the
calibrator (0010+174) and the lens system, while at 1.4 GHz we used 1.5 and 20 min;
in the second run (November 2008), the array configuration was larger (A-array),
therefore we used a cycle-time of 1.5 and 10 min in order to compensate for the less
stable phases.
The data reduction was performed using the AIPS (Astronomical Imaging Process-
ing Software) package, provided by the National Radio Astronomy Observatory. The
calibration strategy was the following: the flux-scale was set using 3C 48; afterwards
amplitude and phase calibration was performed using 0010+174. In both cases, for
the 1.4 GHz data, bandpass calibration was necessary in order to identify variations
of amplitudes and phases across the band; 3C 48 was used for this. This step was
not required for the 5 GHz data which were taken in continuum mode. At 1.4 GHz
the primary beam has a half-width at half maximum of ∼ 18 arcminutes while at 5
GHz it is ∼ 5 arcminutes, therefore wide field imaging techniques and deep cleaning
were necessary in order to map all of the sources in the field-of-view, and remove
their interfering sidelobes from the region of interest around the lens system. At
both frequencies the whole primary beam was mapped.

4.7 Imaging results

In Figure 4.5 and 4.6, we show the 1.4 and 5 GHz images of the 8 o’clock arc system
that were taken with the VLA. The crosses indicate the positions of the lensed
images and the lens galaxy. As already mentioned, in the NVSS catalogue the lens
system is identified with a radio source that has a 1.4 GHz flux-density of ∼ 5 mJy
at 45 arcsec resolution (Condon et al., 1998).
Figure 4.5 shows the L-band map from the first observing run. At the optical
position of the system we are interested in, this radio map shows extended emission
associated with both components of the lens system, the lens and the arc. Towards
the south-east direction, a second extended component is visible. The integrated
flux density over region N is 2.44±0.13 mJy, over region S it is 2.00±0.17 mJy, well
in agreement with the NVSS detection. However the resolution of ∼ 4 arcsecond is
not enough to disentangle the emission of the lens and the arc.
Figure 4.6(a) shows the C-band map from the same observing run (B array). The
higher resolution of ∼ 1.2 arcsecond shows emission extending towards the north-
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west direction. The peak of the radio emission is coincident with the optical position
of the lens. The south-east component seems now to be aligned with the northern
extended structure, implying an AGN morphology. No radio emission above the 3σ
level is detected at the optical position of the lensed arc components.
Imaging results from the L-band observations at higher resolution are shown in Fig.
4.6(b). These observations better resolve the radio emission of the system which we
find dominated by an AGN associated with the lens galaxy. The peak of the radio
emission is coincident with the optical position of the lens. In Figure 4.8 we show
the spectral index map of the system between 1.4 and 5 GHz. We find that the
peak in the radio emission has a spectral index of α ∼ +0.25, where Sν ∝ να, which
is consistent with a synchrotron self-absorbed radio source. Therefore, we associate
the brightest radio component, which is coincident with the optical position of the
lensing galaxy, as the compact core of the AGN. At both frequencies, we see that
there is radio emission that propagates from the core region towards the north-west.
This radio emission has a steeper spectral index of α ∼ −0.80, consistent with an
optically-thin radio jet. This would suggest that the AGN has a morphology that is
consistent with an FR I type radio galaxy. Extended emission is also seen opposite
to the jet direction with respect to the AGN core (towards the south-east), which
could be from a radio lobe; the steep spectral index (α ∼ −0.70) and morphology
agree with this classification. The integrated flux density of the system at 1.4 GHz
is ∼ 5 mJy, in agreement with the NVSS flux density.

4.7.1 Radio flux measurements

In Figure 4.7, we show an overlay of the 1.4 GHz radio contours and the SDSS i-band
image. We find that the radio jet covers about two thirds of the arc, contaminating
the radio emission from components A1 and A2 of the LBG. However, component
A3 of the arc is relatively free from the emission of the radio jet and can be used to
estimate the SFR of the LBG. The lensed 1.4 GHz flux-density at the position of A3
is 80 ± 36 µJy beam−1, which is a 2.2σ detection, and therefore, is not statistically
significant. Based on the rms noise in our VLA map, we place a firm 3σ upper limit
of 108 µJy beam−1 for the 1.4 GHz flux-density of component A3. We have also
measured the flux-density of component A2 and the total flux-density of the arc (A1
+ A2 + A3), but these data are contaminated by the emission from the radio-jet.
All our measurements are presented in Table 4.2.

4.8 Radio-derived star formation rate

Assuming the FIR-radio correlation the radio emission of a star-forming region can
be converted in rate of massive stars (M > 5 M⊙) expected to form. However in
order to make a fair comparison between the results from the optical/NIR and the
radio data for the 8 o’clock arc we must measure the SFR using the same initial
mass function (Salpeter, 1955) and down to the same stellar mass limit (≥ 0.1 M⊙).
This needs the relation between the SFR and the radio emission to be modified.
This was done by Yun et al. 2001 and found to be,

SFR

(M⊙ yr−1)
= (5.9 ± 1.8) × 10−22 L1.4 GHz

(W Hz−1)
. (4.2)
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Figure 4.5: L-band, B array. The restoring beam has size of 4.8×4.2 arcsec at a
position angle of 52. The contours are shown at (−3,3,6,12,24)×42µJy, the rms map
noise. The theoretical rms of the map is 35 µJy beam−1. The axes units are the
relative right ascension (east of the phase centre) and declination (north of the phase
centre) in arcseconds. When these observations were carried out, there was an offset
problem with the VLA correlator for 25 MHz bandwidth spectral-line observations,
a fictitious source would appear after few hours of integration time at the phase
centre. The problem was avoided shifting the phase centre by few arcsecond. In our
case this was 100 arcsecond.
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(a)

(b)

Figure 4.6: Panel a):C-band, B-array. Panel b): L-band, A-array. a)The 5 GHz
map has a restoring beam of 2.1×1.4 arcsec at a position angle of −68.1. The
contours are shown at(−3,3,6,12,24)×17µJy, the rms map noise. b)The 1.4 GHz
image has been restored with 2.1 × 1.4 arcsec beam at a position angle of −67. The
contours are shown at (−3,3,6,12,24)×36 µJy, the rms map noise. The theoretical
rms of the 1.4 and 5 GHz maps are 25 and 15 µJy beam−1, respectively. The colour-
scale is in mJy beam−1. The axes units are the relative right ascension (east of the
phase centre ) and declination (north of the phase centre) in arcseconds.
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Figure 4.7: The 8 o’clock arc system: superposition of radio continuum 1.4 GHz
contours on optical image. The contours are shown at the same levels as the top
Fig. 4.6.

The rest-frame luminosity at 1.4 GHz is calculated using,

L1.4 GHz = 4πD2
LS1.4 GHz(1 + z)−(1+α) (4.3)

where DL is the luminosity distance, α is the spectral index of the LBG (assumed
to be −0.8) and S1.4 GHz is the observed monochromatic flux density. The factor
(1 + z)−(1+α) accounts for the k-correction (Schmidt & Green, 1986). To calculate
the SFR of the LBG we must also correct the observed flux-density for the lensing
magnification. The lensing model constructed by Allam et al. (2007) gives a total
magnification of 12.3 for the arc, with each component (A1, A2 and A3) having a
magnification of about 4. It is likely that there could be differential magnification
across the full extent of the arc given its large size. However, since we have at
best an upper-limit for the radio emission from the arc and that the resolution of
our radio data matches the size of the individual components, we have adopted
the magnifications found by Allam et al. (2007) in our calculations. This gives
also consistency when comparing the radio-derived SFR and the optical one. The
estimated unlensed luminosity and SFR of the LBG is given in Table 4.2.

4.9 Radio emission from the 8 o’clock arc

We have observed the 8 o’clock arc gravitational lens system to investigate the source
of the excess radio emission at 1.4 GHz. Previous observations from NVSS found a
radio source with a flux-density of ∼ 5 mJy. If this flux density is associated with the
lensed LBG, the implied SFR of ∼ 11000 M⊙ yr−1 is in conflict with the optical/NIR
derived value of ∼ 270 M⊙ yr−1. Three possible explanations could account for this;
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Table 4.2: A summary of the radio emission observed from the 8 o’clock arc lens
system. From our VLA observations we quote the observed (gravitationally lensed)
flux-densities and the rest-frame (unlensed) luminosities at 1.4 GHz. We give the
estimated SFRs, corrected for the lensing magnification. For comparison, we also
show the data from NVSS and the expected radio emission based on the optical/NIR
derived SFR.

Component µ a S1.4 GHz L1.4 GHz SFR
(µJy) (W Hz−1) (M⊙ yr−1)

A3 (2.2σ detection) 4 80 ± 36 b (9 ± 4) × 1023 560 ± 300
A3 (3σ upper limit) 4 ≤ 108 b ≤ 1.3 × 1024 ≤ 750
A2 (including jet) 4 95 ± 36 b (1.1 ± 0.4) × 1024 660 ± 310
A1+A2+A3 (including jet) 12 430 ± 70 (1.7 ± 0.3) × 1024 1000 ± 350
All (NVSS) 12 4700 ± 500 (1.9 ± 0.2) × 1025 11000 ± 3500

Prediction from optical/NIR-based SFR

SFR S1.4 GHz L1.4 GHz

(M⊙ yr−1) (µJy) (W Hz−1)

270±75 120 ± 50 (4.6 ± 1.9) × 1023

a magnification correction
b flux density per beam

D
E

C
L

IN
A

T
IO

N
 (

J2
00

0)

RIGHT ASCENSION (J2000)
00 22 42.5 42.0 41.5 41.0 40.5 40.0 39.5

14 31 30

25

20

15

10

05

00

30 55

50

-1.0 -0.5 0.0

Figure 4.8: Spectral index map between 1.4 and 5 GHz, where S(ν) ∝ να. The
map has been made using only the emission detected at ≥ 3σ in the 1.4 and 5 GHz
images. The colour-scale is the spectral index.
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i) there is a radio-loud AGN within the lensing galaxy, ii) there is a radio-loud AGN
associated with the lensed LBG and iii) there is a genuine discrepancy between the
optical/NIR and radio methods for determining the SFR. Our observations with
the VLA have shown that there is a radio-loud AGN within the lensing galaxy that
dominates the radio emission from the 8 o’clock arc gravitational lens system. In
principle, our observations should have been sensitive enough to detect the radio
emission from the LBG as the predicted flux-density from the arc is 120 µJy. Due to
losing half of the data from a corrupted IF and the radio jet from the AGN covering
most of the arc, we could only place a limit on the SFR from the uncontaminated
region of the lensed arc. Our limit of ≤ 750 M⊙ yr−1 (3σ) is consistent with the
SFR found from the optical/NIR data.
We were unfortunate that this system has a radio-loud lensing galaxy whose emission
covered part of the LBG; from surveys of lens systems at radio wavelengths about 1
in 10 lensing galaxies, which are typically massive early-types, are radio-loud. For
example, the Cosmic Lens All-Sky Survey (CLASS; Browne et al. 2003; Myers et al.
2003) found 22 gravitational lenses and two systems had radio-loud lensing galaxies
(B2108+213; McKean et al. 2005; More et al. 2008, and B2045+265; Fassnacht et al.
1999; McKean et al. 2007).

4.10 Radio emission from other LBGs and future prospects

Carilli et al. (2008) showed the first robust statistical detection of sub-µJy radio
emission for a sample of high redshift LBGs from the COSMOS field6 at z ∼ 3.
Their results found an average flux density of 0.90 ± 0.21 µJy at 1.4 GHz, which
implies a total SFR of ≃ 31 M⊙ yr−1, based on the radio–FIR correlation for low
redshift star-forming regions. The comparison of this result with those obtained
from UV data, for star-forming galaxies at the same redshift, showed a discrepancy
between the SFR implied by the non-thermal radio luminosity and that derived from
the UV spectra. In particular, the authors find that the ratio of radio- to UV-based
SFRs is 1.8, indicating either a smaller dust attenuation factor (standard values for
LBGs are ∼ 5) or an attenuation of the radio luminosity to SFR conversion factor
at z ∼ 3. Discriminating between these two possibilities requires a deeper look into
the interaction between CMB photons and relativistic electrons at such redshifts
(increased electron cooling due to Inverse Compton scattering off the CMB; Carilli
et al. 2008), and into the properties of LBGs. The radio-FIR correlation may as
well require a deeper insight as the radio-derived SFRs rely on the assumption that
this correlation is as tight as for local galaxies. A discrepancy between UV and
radio-derived SFR is also found by Ivison et al. (2007), in their 1.4 GHz VLA survey
of starburst galaxies up to z ≤ 1.3.

For lensed systems, Spitzer IR spectroscopy and photometry of two LBGs, namely,
MS 1512−cB58 (Siana et al., 2008) and the LBG J213512.73 − 010143 (also known
as the Cosmic Eye; Siana et al. 2009) show that the UV spectral slope overpredicts
the reddening by dust and thus the SFR measurements. In particular, for the system
MS1512−cB58 (z = 2.73), Siana et al. (2008) find a SFR of ∼ 20 − 40 M⊙ yr−1,

6COSMOS is an Hubble Space Telescope project to survey a 2 degrees equatorial field to study
formation and evolution of galaxies as function of redshift.
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consistent with the SFR derived from the dust corrected Hα luminosity, but 5 times
lower than the UV-derived SFR. For the Cosmic Eye (z = 3.074), Siana et al. (2009)
find that the SFR inferred from the IR luminosity is 8 times lower than that pre-
dicted from the rest-frame UV properties. In addition, for the Cosmic Eye, CO
studies indicate a SFR ∼ 60 M⊙ yr−1 (Coppin et al., 2007). These numbers imply
that calculating a radio continuum dust unbiased SFR for a sample of star-forming
galaxies could help resolve the conflicting SFRs that have been found from IR and
UV studies.

The new generation of radio facilities, such as the Expanded Very Large Array
(EVLA), will have significantly better surface brightness sensitivity due to improved
receivers and larger instantaneous bandwidths. L-band observations with 1 GHz
bandwidth using the EVLA will reach sensitivities of ∼ 8 µJy in 1 hour, which
corresponds to a SFR of ∼ 220 M⊙ yr−1 at redshift 2.7. To reach the average SFR
for LBGs of ∼ 30 M⊙ yr−1 (Shapley et al., 2001, 2005) will require of order 60 hours
of integration. Clearly, studies of lensed LBGs will also benefit from the increased
sensitivity. The added advantage is that the lensing magnification will allow more
systems to be observed over a shorter amount of time and give higher-resolution
imaging of the structure of these galaxies. There has recently been a large increase
in the numbers of lensed LBGs being found making the prospects of detailed studies
of meaningful samples of these galaxies possible in the near future.



A theory is something nobody
believes, except the person who
made it. An experiment is
something everybody believes,
except the person who made it.

A. Einstein

5
The non-smooth mass distribution in the

gravitational lens MG J0414+0534

Lensed QSO are ideal laboratories to study CDM substructures with strong gravi-
tational lensing. If the foreground mass distribution is non-smooth on scales smaller
than 108÷9M⊙ independent bends in the jet images on milli-arcsecond scales may be
seen. The system discussed in this chapter, the gravitational lens MG0414+0534, is
one example of multiply imaged QSO, that at high angular resolution may reveal the
presence of mass substructures. Moreover, for this system, existing lens models (Ros
et al., 2000; Minezaki et al., 2009) predict a parity-dependent flux-ratio anomaly,
which can be used to address the study of cold dark matter substructures.
The system deserves a special investigation also because the lensed QSO was dis-
covered to be the host of a powerful water maser (Impellizzeri et al., 2008), with a
luminosity L∼ 104L⊙. Up to now, this is the only lensed water maser at a cosmo-
logical distance (z > 1) (McKean et al., 2011).
In this chapter we present the latest VLBI observations and results on lens mod-
elling constrained by these data. Main goal of this project was the modelling of the
foreground mass distribution using the information contained in the extended lensed
structures revealed by the observations; for this target this is the first time that the
modelling approach mentioned above is used. Note that the results of this study
can be used to apply lens-modelling techniques with full source reconstruction (as
explained in Chapter 2) which would provide a unique insight into the properties of
the lensed source.
The chapter is organized as follows: in Section 5.1 we introduce the system; in
Sections 5.2 and 5.3 we review the previous radio observations and existing lens
models. In Section 5.4 we give details on the new VLBI observations, the calibration
steps and present the imaging results. Afterwards, in Section 5.5 we explain the lens
modelling strategy, and describe the set of parameters and constraints. We discuss
details and results of the modelling in Sections 5.6 and 5.7. In Section 5.8 we discuss
our results and compare with other studies. Then, in Section 5.9 we study the origin
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of the emission lensed into the arc, and in Section 5.9 describe a new model we have
tested for one of the mass components of this system.
Throughout the chapter we assume a Λ-CDM cosmology with H0 = 70 km s−1 Mpc−1,
ΩM = 0.3, ΩΛ = 0.7.

5.1 The gravitational lens system MG0414+0534

The system consists of a main elliptical lens galaxy (Schechter & Moore, 1993)
at redshift z = 0.9584 ± 0.0002 (Tonry & Kochanek, 1999) and four images of a
z = 2.639 ± 0.002 (Lawrence et al., 1995) QSO separated by up to 2 arcseconds. It
was discovered in the VLA-MIT survey (Bennett et al., 1986) and later on found
by other lens surveys (CLASS, and JVAS; Myers et al. 2003). Hewitt et al. (1992)
identified this system as gravitational lensing candidate from observations with the
VLA telescope (Hewitt et al., 1992) with an angular resolution of 0.4′′. They found
that at radio wavelengths the system is resolved into four components, two brighter
ones separated by 0.4′′ and two fainter ones, the latter are separated about 2′′ from
each other and from the pair. Based on the relative angular positions and the flux
ratios the authors argued the lensing nature of this system. They did model the lens
as a singular isothermal ellipsoid, but the final fit was rather poor; indeed, in their
paper they quote it only as “lens candidate”.
Later on, the system was observed at optical wavelengths by Schechter & Moore
(1993). Goal of these observations was accurate photometry for the system compo-
nents, to establish the presence of optical variability. The optical flux-ratios were
found significantly different from the radio measurements, especially for the close
pair A1−A2 in excess of a factor of two. They concluded that the difference could be
explained by the extended structure of the lensed source (revealed by Hewitt et al.
1992). In their paper indeed, they speculate on the possibility that the pair A1−A2
lies close to a caustic, and therefore different parts of the extended source might be
magnified by different amounts.
Figure 5.1 shows a combined optical and infrared Hubble-Space-Telescope HST im-
ages from the CfA-Arizona Space Telescope LEns Survey (CASTLES) (Kochanek
et al., 1999). The lens galaxy is labelled as G, the four lensed images are A1, A2,
B and C. The HST images show extended structures from a partial Einstein ring,
connecting the pair A2-B. The arc has a significantly bluer colour then the image
cores. The colour differences among the four images, and along the arc, indicate
that the reddening is more likely intrinsic to the host galaxy of the QSO rather than
the lens galaxy (Falco et al. 1997; see also discussion below). The sixth object is
most likely not related to the lensed source, but rather associated with the lens or
being a lens itself. It was shown by Falco et al. (1997) that lens models which only
include the main lens cannot account for the properties of the lensed images (see
Sect. 5.3). More recent studies (Ros et al., 2000; Minezaki et al., 2009) have shown
that better fits are obtained if object-X is included in the lensing configuration,
with the observed positions of the four images being well explained by a lens model
consisting of both the main lens and object-X.
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Figure 5.1: HST image of the gravitational lens MG0414+0534

Object-X

So far, observations have not constrained the redshift of this object, and for lens
studies the assumption that it is at the same redshift of the lens galaxy has always
been made. We consider three possibilities for its redshift. If object-X lies at the
same redshift as the source it would be expected to have at least another counter-
image for which there is no evidence in the HST map and it is unlikely that it
has been missed. Object-X could also be at an intermediate redshift, zx between
the lens and the source. In this case the observed image configuration allows us to
say that zx . 1.5. We explain this statement in the following: let us assume that
object-X is the only one image of a source at redshift zx; for an axi-symmetric mass
distribution, we can say that the radius within which we expect multiple images of
the source is ∆θ ≃ 2θE(X), where θE(X) is the Einstein radius. Hence, given that
we only see one image of object-X at θX ≃ 1.2′′, we say that θE(X) . θX/2. From
the observed image configuration the Einstein radius of the lens galaxy is θE ≃ θX.
It follows that θX(X) . θE/2. Recalling Equation (1.46), the relation between the
angular diameter distances and the size of the Einstein radius is θE ∝ Dds/DsDd,
and θE(X) ∝ Ddx/DxDd. Hence we can write,

Ddx

DxDd
.

1

2

Dds

DsDs
. (5.1)

Since we know the redshift of the lens galaxy and of the QSO, we can re-arrange
Equation (5.1), and using Equations (1.19) and (1.20), it follows

1 − χd

χx
. 0.233. (5.2)

In the above equations, the subscripts refer to the lens galaxy (d), object-X (x) and
the source (s), and χ is the comoving distance. We can now solve Equation (5.2)
with respect to χx, and obtain that χx . 4300 Mpc. In Figure 5.2 we read that
this condition corresponds to zx . 1.5. The third possibility is that object-X is
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Figure 5.2: The top (bottom) panel shows the comoving radial distance (angular
diameter) distance as function of redshift for a flat Universe, with Ωm = 0.3, ΩΛ =
0.7 and H0 = 70 km s−1 Mpc−1. In the top panel, the green line identifies the upper
limit for the redshift of object-X so that Equation 5.1 is satisfied.

at the same redshift than the lens galaxy or in its foreground. Not knowing its
redshift, the assumption zX ≃ zd is a reasonable one if one considers that this is a
faint object. The object appears being extended, thus it can be considered as dwarf
galaxy near the redshift of G. Very recently, the work by Curran et al. (2011) finds
absorption features at redshift z ∼ 0.38 that may be associated with this object, in
addition to the absorption occurring in the lens galaxy and in the host galaxy of the
source. However, for the work and the results presented here, based on the above
considerations, we have assumed that it lies at the same redshift of the lens galaxy.
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Table 5.1: HST deep imaging: magnitudes and relative positions from the core
centroid of image B. (CASTLES database).

G X A1 A2 B C
RA −472±3 −857±9 600±3 732±3 0±3 −1342±3
Dec −1.277±3 180±11 -1942±3 −1549±3 0±3 −1650±3

filter
F160W 17.54±0.02 20.12±0.32 15.54±0.01 15.87±0.01 16.56±0.01 17.41±0.01
F110W 19.21±0.01 17.59±0.01 18.08±0.01 18.54±0.01 19.37±0.01
F205W 16.70±0.11 14.59±0.01 14.79±0.02 15.63±0.04 16.49±0.01
F555W 24.17±0.08 25,53±1.26 26.69±0.22 26.08±2.07 26.68±0.09
F675W 22.58±0.13 24.63±0.30 22.61±0.02 23.80±0.02 23.34±0.03 24.17±0.04
F814W 20.91±0.04 23.35±0.21 20.43±0.06 21.36±0.06 21.24±0.06 22.10±0.07

The blue optical arc

This structure was revealed by deep HST imaging (Falco et al., 1997), with a much
bluer colour than the four compact images; no colour differences are found as func-
tion of the arc length, nor between among the lensed cores; hence the colour dif-
ference between the core of the images and the arc is likely to be explained by
extinction occurring in the host galaxy of the lensed QSO rather than in the lens
galaxy. In the latter case, because of the patchy extinction, the colour differences
would appear on scales smaller than 0.4′′ (which is the smallest separation between
the lensed images). It is however also possible that the arc is a lensed (distorted)
region not physically connected with the core of the QSO. We go into more details
on this in Section 5.9.

5.2 Existing Radio observations

Radio observations of MG0414+0534 with the VLA radio-telescope have provided
flux measurements of the lensed components (Katz et al., 1997). The system was
observed in several bands between 1.4 and 22 GHz. The spectral indices of the
four components were found consistent with each other, with a best estimate for
the averaged spectral index1 of α = 0.80 ± 0.02 (Katz et al., 1997). The radio
spectrum (Fig. 6 in Katz et al. 1997) shows a peak near 1 GHz suggesting that
MG0414 belongs to the GHz-peaked spectrum radio sources. These are compact
radio sources with sub kilo-parsec sizes. At higher angular resolution (Patnaik &
Porcas, 1996; Porcas, 1998) the system shows compact radio-cores and extended
structures in three of the lensed images. Figure 5.3 shows the 1.7 GHz (L-band)
map of the system, made by Patnaik & Porcas (1996) using the European-VLBI
network (EVN) radio-telescope.
Higher resolution and more sensitive observations at 8.4 GHz (X-band) (global-VLBI
observations by Ros et al. 2000) and 5 GHz (C-band) (VLBA observations by Trotter
et al. 2000) have later-on revealed more details on the extended structures in all the
four images, namely a core region and jet-like structures (see Figures 5.4 and 5.5).

1the spectrum is modelled as S ∝ ν−α, where ν is the observing frequency
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Figure 5.3: EVN maps at 1.7 GHz (Patnaik & Porcas, 1996; Porcas, 1998). Images
A1 and A2 are brighter than the other two, image C is the faintest one. These maps
already show the extended emission of the lensed QSO, but higher resolution is nec-
essary to better understand the source properties and identify the sub-components
among the images. This is important in order to use these features to constrain a
lens model.

VLA data by Katz et al. (1997) have shown no emission at the position of object X
or the lens galaxy.

5.3 Existing Lens models

The VLBI observations presented in this chapter were carried out with the goal of
exploring lens models using a richer set of constraints, provided by the lensed jets
of the QSO. Before we discuss the results we find, here we briefly overview the lens
modelling constrained by existing VLBI observations.
VLBI observations in C and X band (Figures 5.4 and 5.5) have revealed a lot of de-
tails on the structure of the lensed source. The combination of the intrinsic source
structure and the lensing transformation results in a quite complex geometry, that at
first glance may mislead the lensing interpretation. The works by Ros et al. (2000)
and Trotter et al. (2000) show that the image configuration revealed by the radio
observations can be explained by a gravitational lensing scenario.
Ros et al. (2000) parametrize the mass distribution with a singular isothermal ellip-
soid, describing the main lens, and a singular isothermal sphere, describing object-
X; in addition, an external shear term was include as well. This model is found
to account for the observed positions of the compact radio cores, with the total χ2

dominated by the flux-ratio constraints.
Trotter et al. (2000) use a more general mathematical description for the lensing
potential, namely a multipole expansion. They parametrize the source with four
point-like components (corresponding to the features labelled p, q, r and s, Fig. 5.4),
whose positions were used to constrain the model. In the best model the centroid
position for the deflecting mass coincides with the measured optical position of the
lens galaxy. However the authors find that the mass distribution is highly asymmet-
ric or an unseen perturber has to be considered.
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Figure 5.4: C-band (5 GHz) VLBI maps of MG J0414+0534 (Trotter et al., 2000).
On the axes are plotted the relative right ascension (east of A1-p) and declina-
tion (north of A1-p) in milli-arcseconds. For this thesis we have adopted the same
notation as these authors for the sub-components of the lensed images.
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A1 C

BA2

Figure 5.5: X-band (8 GHz) VLBI maps of MG J0414+0534 (Ros et al., 2000).
On the axes are plotted the relative right ascension (east of the phase centre) and
declination (north of the phase centre) in milli-arcseconds. Note that the four fields
were imaged using the wide-field approach (see Sect. 3.5).
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Note that neither group of authors fully exploit the wealth of structures seen at radio
wavelengths, using a rather simplified description for the lensed source. The con-
figuration contains a lot of information on the foreground mass distribution which
could be studied in great detail.

5.3.1 The ‘Flux-ratio’ anomaly

As described above, since the discovery of the system, the observed flux ratios at
different wavelengths have always been a puzzle.
Minezaki et al. (2009) report on mid-infrared observations of this system carried
out with the Subaru telescope. Table 5.2 summarizes the flux-ratio measurements
at different wavelengths from optical to radio. Within the uncertainties, measure-
ments in the infrared and radio regimes are consistent with each other. Emission at
these wavelengths is not affected by microlensing caused by stars in the foreground
lens galaxy, given that the Einstein rings of the stars have sizes of few percents of
the regions where the mid-infrared and the radio emission originate, and at radio
wavelengths extinction by dust does not occur (and some propagation effects, like
scattering, are wavelength-dependent, thus can be accounted for). This is not the
case at smaller observing wavelengths, where dust extinction is largely affecting the
radiation from the lensed source. The nature of this extinction is however not full
understood. Eĺıasdóttir et al. (2006) found images A2 and A1 significantly more
extinguished than images B and C, however they did not find just one extinction
law, rather different ones giving similar results.
The pair A1−A2 is found to show the so-called ‘flux-ratio’ anomaly: for these two
images, the radio and mid-infrared flux-ratios do not agree with the predictions of
lens models. The smooth mass model, consisting of an isothermal ellipse, an isother-
mal sphere and an external shear, is found to account for the mid-infrared observed
positions of the core images, but not the for the flux ratios; the pair A2/A1 is indeed
predicted to have a value of ≃ 1.06 whereas we observe ∼ 0.90 (see Table 5.2). Im-
age A2 would then be the brighter negative parity image demagnified with respect
to the model predictions. Gravitational lensing by a CDM substructure could be
the explanation to this problem. Minezaki et al. (2009) infer a limit on the mass
of a possible CDM substructure which is causing this anomaly, finding that a CDM
sub-halo of mass M > 360M⊙ is likely to affect the radio and mid-infrared flux ratio
of the A1-A2 pair.

5.4 New Global-VLBI observations at λ = 18 cm

The purpose of the new 1.7 GHz global-VLBI observations was to map the extended
structures of the source combining the steep spectrum of the lensed source and the
sensitivity of the data. This is a high priority in order to have a good data set which
will be used to study the lensing properties of the foreground mass distribution.

Observations details

The system was observed at a wavelength of 18 cm on 7 June 2008 for 19 hours with
a global VLBI array comprising the following 21 telescopes: Effelsberg (100 m),
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Table 5.2: Measured flux-ratios from optical to radio wavelengths

Flux ratios
observing wavelength A2/A1 B/A1 C/A1

0.8 µma 0.425±0.033 0.474±0.040 0.215±0.018
1.1 µma 0.637±0.024 0.417±0.016 0.194±0.007
1.6 µma 0.738±0.025 0.391±0.013 0.179±0.005
2.1 µma 0.832±0.017 0.384±0.015 0.174±0.002
11.7 µmd 0.90±0.04 0.36±0.02 0.12±0.03
22 GHzb 0.881±0.013 0.397±0.004 0.157±0.003
15 GHzb 0.8905±0.0049 0.3896±0.0015 0.1515±0.0013
8 GHzb 0.8974±0.0016 0.3887±0.0005 0.1492±0.0004
5 GHzb 0.898±0.010 0.386±0.003 0.144±0.002
1.7GHzc 0.93±0.09 0.37±0.03 0.14±0.01

a CASTLES
b Katz et al. (1997)
c work presented in this thesis (Sect. 5.4). The uncertainties here assume

a 10% of uncertainty on the flux measurements, which may be higher
than the accuracy on the flux-ratios, but accounts for calibration offsets.

d Minezaki et al. (2009)

Westerbork tied-array (equivalent to 93 m), Jodrell Bank (76 m), Onsala (25 m),
Medicina (32 m), Noto (32 m), Torun (32 m), Urumqi (25 m), Shanghai (25 m), Har-
tebeesthoek (26 m), Arecibo 2(305 m), 9 antennas (25 m) of the VLBA and the VLA
tied-array (equivalent to 130 m). The 19 hours of allocated time for this experiment
were scheduled in this way: 5 hours of EVN, 3 hours of EVN and VLBA, 1.5 hours
EVN - VLBA - VLA, 2.5 hours EVN - VLBA - VLA - ARECIBO, for the remaining
7 hours VLBA and VLA. Data were recorded in dual-polarization mode at 512 Mbps,
distributed over 8 subbands per polarization, each of 8 MHz bandwidth. The data
were correlated at the EVN MkIV Data Processor at the Joint Institute for VLBI in
Europe (JIVE) in three different portions: an initial (for the EVN) and a final one
(for VLBA and VLA), correlated in one single pass; a middle one having more than
16 stations which required 3 different passes in order to correlate all the baselines.
There were 16 frequency points (channels) per subband. The integration time was
1 second.
The flux density of the target source is high enough (Katz et al., 1997) so that phase-
referencing was only needed to create an initial model prior to self-calibration. The
observing cycle consisted of one hour blocks repeated through the whole observing
time. They were scheduled as follow: 15 minutes cycles of alternate scans between
the target MG J0414 + 0534 and the phase referencing source J0422 + 0219, at
3.85 degrees distance; once per hour a fringe finder was observed for 4 minutes.
For the 2.5 hours with Arecibo the 15 minutes scans alternated between the target
and J0412 + 0438, 1.07 degrees away. J0409 + 1217, J0319 + 4130, J0555 + 3948,
J0530 + 1331 and 3C286 were used as fringe finders and calibrators for polarization.

2our target, at declination 5◦, can be tracked for ∼2 hours at Arecibo,close to the maximum of
2h:46m
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Figure 5.6: Global-VLBI observations: (uv)-plane coverage for the target source,
MG0414+0534. The core of the plane is filled with uv-spacing of the EVN and
VLBA antennas, the points at the edges in the north-south direction identify the
baselines with the South-Africa antenna, and the most East-West points are given
by the baselines to the Shanghai and Urumqi antennas. The target was tracked for
almost 19 hours.

5.4.1 Data reduction

The data reduction and analysis was performed using the standard Astronomical
Image Processing System (AIPS, version 31Dec10). The visibility phases were cor-
rected for changes in parallatic angle to account for the apparent change in position
angle as the source moves across the sky. The a priori amplitude calibration was
determined from measured system temperatures and antenna gains.
Fringe fitting was performed using the two phase-referencing sources (J0422 + 0219
and J0412+0438). Changes of gains as function of frequency (across all the channels)
were corrected via bandpass calibration. The spectral response of each telescope was
analysed from the data of the fringe-finders, and the final bandpass correction for
each telescope was constructed using only the scan with the flattest amplitude and
phase response. Subsequently, the two phase referencing sources were mapped by
performing self-calibration, initially phase-only but finally phase and amplitude.
The phase and amplitude corrections from the best models for both sources were
then applied to the target which was then imaged. The data on the lens system were
then phase self-calibrated with solution intervals of 4, 2 and 1 minutes. During self-
calibration, the telescopes were not given their full statistical weight. Note that the
array is made out of several 25-meter diameter dishes and a few big telescopes. If the
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telescopes are given their statistical weight, bigger telescopes will have a significantly
larger weight, as well as all the baselines to these telescopes (see Equation (3.20)).
Practically this means that the visibilities from these baselines are considered to
have a better calibration than the rest, though it is not the case. Hence, imaging
will be dominated by calibration errors. Therefore during these steps we did not use
the full statistical weights. Through the whole process data were never averaged in
frequency or time, in order to preserve a large field of view.

5.4.2 Imaging

The system is 2′′ wide, and therefore wide-field techniques are required for imaging
(Garrett et al., 1999). Instead of mapping one single field (2′′ × 2′′ wide) with milli-
arcseconds (mas) resolution, which would require a large computing time, the AIPS

task IMAGR provides a wide-field mapping procedure based on a multi-windowing
approach. We mapped 3 sub-fields, centred on image B, C and the mid-point of
image A1 and A2. Imaging the four fields separately was found giving poor results
for fields A1 and A2.
The final images were produced using a weighting scheme between uniform and nat-
ural, setting the parameter robust to 0. This was found to give the best combination
between sensitivity and resolution (see Sect. 3.3). The use of very tight clean boxes
was found to be crucial in order to map the extended structures with high SNR.
Furthermore a large number of clean iterations (10000; with a loop gain factor of
0.08 see Sect. 3.4) has helped in improving the SNR.
The rms noise on the final single image produced combing the three subfields is
0.11 mJy beam−1; the rms noise on the three maps are 0.12, 0.10 and 0.08 mJy beam−1.
The peaks of emission in the 4 fields are 140, 140, 30 and 25 mJy/beam. Imaging
results are shown in Figures 5.7 and 5.8. In both figures, a label in each panel
identifies the lensed image and in Fig. 5.8 the sub-components are labelled adopting
the same notation as Trotter et al. (2000): p and q for the two core components,
r for the single jet component on one side of the core, s for the more extended jet
regions on the other side and t for the outer part of this. The restoring beam has
size of ≃ 5 × 3 mas2, and position angle P.A.≃ −7 deg (measured East of North).
In Fig. 5.7, the maps displays contours level at (−1, 2, 4, 8, 16, 32) × 0.5 mJy/beam,
corresponding to & 4 times the rms noise in three subfields; in Fig. 5.7, the maps
show contours level at (−1, 2, 4, 8, 16, 32)×1.4 mJy/beam, corresponding to the 10%
of the peak of emission in the A1-A2 field. Previous high resolution VLBI observa-
tions of this system (Ros et al., 2000; Trotter et al., 2000) have showed the presence
of a resolved core region and 2 jet-like structures in each of the 4 lensed images.
Our new global VLBI data has higher sensitivity to the extended structures. A
comparison of our maps with Fig. 5.4, shows that the structures are consistent with
those shown in previous images; in images A1, A2 and B we confirm the feature
seen in the outer part of the more elongated jet. Image B shows a resolved core
region extending over ∼ 20 mas and two jet like features (r and s/t) not exactly
aligned with it. This image is highly stretched in the direction tangential to that
of the lensing galaxy. Images A1 and A2 show the most complex structures, highly
distorted in the tangential directions. Image A1 has the two jet-like features parallel
to each other and not aligned with the central core. The brighter jet (s/t) is highly
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Table 5.3: Radio flux densities for the fields shown in Fig. 5.7 and for the sub-
components of each lensed image. Values reported in the first three columns are
computed from the clean components (cc) in these regions. The forth column
reports the total flux for each image, computed by the cc.

corea jet1b jet2c totd

(mJy) (mJy) (mJy) (mJy)

a1 238 322 60 620
a2 233 292 53 578
b 80 135 14 229
c 33 44 8 85

a total flux density for the core feature (labels p,q)
b total flux density for the jet labelled s,t
c total flux density for the jet labelled r
d this value is used to calculate the flux ratios reported in Table 5.2

elongated and extends for more than 80 mas in the NE direction. In image A2 the
two extended jet-like features are also not aligned with the core. The brighter (s/t)
is elongated in the NS direction over ∼ 60 mas, while r is ∼ 80 mas away in the
SW direction. The core region extends over ∼ 20 mas, showing a two-component
structure. Image C shows a NS structure, with the core in between r and s/t ; the
northern jet component is brighter than the southern, and is more elongated. This
image is the least bright (and hence least resolved) amongst the four. Existing lens
models predict that the 2 pairs of images, A1&A2 and B&C, should have opposite
parities. The extended structures seen at radio wavelengths confirms this although
the lensing transformations are highly non linear.
The total flux densities measured for each subfield agree with the flux ratios be-
tween the lensed images given by Katz et al. (1997). We present in Table 5.3 the
flux density for the core-like and jet-like regions which we have computed from the
clean components in each of these regions. Elliptical Gaussian model fitting of
the 4 images was carried out via the AIPS task JMFIT and the results are given in
Table 5.4. The errors were determined following Fomalont (1999). Following this
formalism, the uncertainty on the position of the modelled component depends on
the fitted size of the component, its peak flux density and the thermal-noise on the
map. Most of the components are highly elongated, thus in Table 5.4 the errors on
their positions are given as error ellipses. For the core features, the higher resolution
data from Ros et al. (2000) (Figure 2) show that our description is consistent; higher
resolution maps show indeed 3,2,4 and 2 sub-components in the core of images A1,
A2, B and C. In Table 5.5 we summarize results from model fitting of the peaks of
emission, carried out in AIPS using the procedure MAXFIT. This procedure is best
suited to study the position of the peaks, but it does not account properly for the
extended structures of the components. We refer the reader to Appendix A for a
description on the two tasks and the procedure used to derive the errors on the fitted
parameters.
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Figure 5.7: 1.7 GHz global VLBI observations: imaging results. The rms noise levels
in the 4 images are 0.12, 0.12, 0.10 and 0.08 mJy/beam for A1, A2, B and C re-
spectively; these were measured as the off-source rms noise levels. The maps display
contours at (−1, 2, 4, 8, 16, 32) × 0.5 mJy/beam. The restoring beam is plotted on
the lower left corner of each panel. It has size of 5 × 3 mas2 at position angle −7◦.
On the axes are plotted the relative right ascension (east of the phase centre) and
declination (north of the phase centre), in milli-arcseconds. Note that the system
was mapped using 3 sub-fields, centred on the mid-point of image A1&A2, image B
and image C.
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Figure 5.8: In each panel the labels identify the lensed image and different regions
of the source using the same notation used by Trotter et al. 2000. The maps display
contours at (−1, 2, 4, 8, 16, 32)×1.4 mJy/beam. On the axes are plotted the relative
right ascension (east of the phase centre) and declination (north of the phase centre),
in milli-arcseconds.
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Emission from the lens and object X

Previous radio observations of this system did not report on the emission from the
lens galaxy or object-X (Katz et al., 1997). Any highly demagnified lensed image
located near the main lens G is not expected to be extended, but rather point-like.
Hence a dirty-image was produced to check the presence of any point-like source in a
field centred around the optical position of the lens galaxy. In the same way we have
checked the presence of emission in a field centred on object-X. Figure 5.9 shows 3σ
contours of the dirty maps of the two fields, each of sizes 0.8′′ × 0.8′′. The rms-noise
in the maps is 0.4 mJy beam−1 for both fields; the cross marks the optical position
of the lens and object-X. The 1σ level does not show the presence of a point-like
source associated with the the lens galaxy or object-X.
Following Zhang et al. (2007) we have furthermore cleaned both fields using the
same weighting scheme described above. Note that it is likely that sidelobes from
the A1-A2 pair (image B) are present in the lens (object-X) field, and are removed
only by further cleaning the field. Zhang et al. (2007) find that cleaning with a large
number of iterations (∼ 104) one single field, centred at the position of the expected
image, leads to lower rms noise in the map, and to the recovery of 70% of the flux
of any point like image located near the lens galaxy centre. With this approach the
final rms noise in the maps are 87 and 80 µJy beam−1, corresponding to flux density
limit (3σ levels) of ∼ 0.26 (image located near the lens) and ∼ 0.24 mJy−1 (any
emission located near object-X), which we do not detect in our maps.
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Figure 5.9: Dirty maps of two fields centred on the optical position (marked by the
cross) of the lens galaxy (top panel) and object-X (bottom panel). The dirty maps
do not show the typical beam pattern centred on the optical position marked by the
cross which would indicate a peak of emission at these positions.
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Table 5.4: Results from fitting of Gaussian components to the structures seen in
the global-VLBI 1.7 GHz map. For each fitted components the position of the peak
and the total flux densities are given. The uncertainties were estimated following
the approach described in Appendix A. The first component of image A1 is taken
as origin of the coordinates.

image RA Dec error ellipse Speak Stot

(mas) (mas) (mas, mas, deg) (mJy beam−1) (mJy)

0.00 0.00 (0.04, 0.02, 5.5) 23.55±0.18 65.95±2.80
A1,core −0.11 0.35 (0.01, 0.02, 172.9) 123.59±0.18 159.85±1.29

−2.72 2.26 (0.06, 0.02, 170.7) 11.44±0.18 11.44±1.00

A1,r −6.84 21.05 (0.02, 0.01, 7.1) 31.23±0.18 55.95±1.79

A1,jet3 14.15 2.29 (0.04, 0.02, 19.8) 20.55±0.18 50.42±2.45
16.99 8.01 (0.06, 0.03, 177.1) 10.63±0.18 14.61±1.37
19.51 11.46 (0.10, 0.03, 175.8) 6.80±0.18 7.42±1.09
21.95 14.32 (0.07, 0.03, 27.1) 16.35±0.18 62.30±3.81
25.55 20.30 (0.06, 0.03, 10.7) 14.85±0.18 34.31±2.31
36.82 38.23 (0.10, 0.03, 6.1) 9.99±0.18 21.73±2.18
41.18 45.69 (0.07, 0.03, 17.4) 14.64±0.18 44.62±3.05
51.02 60.26 (0.11, 0.04, 12.8) 11.91±0.18 43.73±3.68
57.67 70.46 (0.14, 0.04, 22.6) 11.00±0.18 49.24±4.45

134.66 405.99 (0.01, 0.01, 0.185) 116.67±0.18 184.82±1.58
A2,core 131.12 397.56 (0.04, 0.02, 174.3) 20.91±0.18 38.02±1.82

A2,r 105.17 332.81 (0.03, 0.01, 3.6) 28.37±0.18 53.06±1.87

150.75 435.54 (0.03, 0.01, 174.7) 22.71±0.18 20.02±0.88
A2,jet 150.29 429.12 (0.04, 0.01, 176.7) 36.12±0.18 128.00±3.54

151.57 406.51 (0.09, 0.02, 179.6) 21.14±0.18 113.20±5.35
154.96 398.20 (0.07, 0.02, 6.5) 15.77±0.18 38.66±2.45

−590.47 1937.94 (0.02, 0.01, 166.1) 26.66±0.17 37.77±1.41
B,core −593.23 1939.46 (0.05, 0.02, 171.7) 11.72±0.17 12.23±1.04

−595.63 1940.34 (0.27, 0.13, 123.1) 5.11±0.17 32.91±6.44
−602.06 1944.27 (0.15, 0.06, 170.6) 3.39±0.17 2.56±0.76

B,r −655.43 1970.84 (0.07, 0.03, 167.7) 10.04±0.17 15.22±1.52

−539.47 1913.00 (0.11, 0.05, 118.1) 12.76±0.17 73.41±5.75
B,jet −523.21 1907.98 (0.12, 0.07, 125.7) 8.27±0.17 36.25±4.38

−510.13 1903.32 (0.20, 0.12, 135.5) 5.13±0.17 23.23±4.52
−500.33 1897.80 (0.23, 0.13, 142.8) 4.03±0.17 13.96±3.46
−497.61 1897.22 (0.15, 0.06, 172.1) 3.87±0.17 3.80±0.98

−1954.49 300.26 (0.01, 0.01, 170.9) 27.10±0.09 31.13±1.15
C,core −1953.41 292.61 (0.14, 0.07, 170.5) 1.69±0.09 1.23±0.72

C,r −1948.88 271.43 (0.08, 0.03, 169.7) 5.03±0.09 6.50±1.29

−1955.26 318.83 (0.03, 0.01, 175.3) 10.95±0.09 12.87±1.17
C,jet −1952.99 322.87 (0.04, 0.03, 8.6) 9.59±0.09 23.97±2.50

−1950.12 328.72 (0.05, 0.02, 175.2) 6.89±0.09 8.60±1.25



5.4 New Global-VLBI observations at λ = 18 cm 89

Table 5.5: Position and strength of the emission peaks. The position of the core
peak in A1 is taken as the origin of coordinates. This is offset from the brightest
component of Table 5.4, not surprising given that two different procedure are used
to determine the emission peaks and the parameters of the Gaussian components
describing the features. See Appendix A for more details.

image component RA Dec Speak

(mas) (mas) (mJy beam−1)

core 0.00±0.004 0.00±0.004 148.89±0.18
r −6.66±0.02 20.84±0.02 30.74±0.18
jet 14.67±0.03 2.63±0.03 21.87±0.18

19.57±0.03 10.53±0.03 20.99±0.18
16.90±0.03 6.55±0.03 22.14±0.18

A1 25.83±0.04 20.28±0.04 14.99±0.18
37.91±0.05 40.07±0.05 13.47±0.18
41.02±0.04 45.03±0.04 15.48±0.18
56.71±0.05 68.17±0.05 11.44±0.18
52.05±0.04 61.42±0.04 13.83±0.18

core 134.80±0.01 405.70±0.01 118.98±0.18
r 105.32±0.02 332.49±0.02 28.33±0.18
jet 150.67±0.01 433.95±0.01 46.37±0.18

A2 150.58±0.02 427.49±0.02 39.20±0.18
151.97±0.03 407.74±0.03 21.98±0.18
154.29±0.03 398.19±0.03 20.86±0.18

−590.82±0.02 1937.89±0.02 32.25±0.17
core −601.75±0.09 1943.48±0.09 6.16±0.17
r −655.33±0.05 1970.62±0.05 10.81±0.17

B jet −538.46±0.04 1912.26±0.04 14.95±0.17
−512.96±0.06 1907.35±0.06 9.59±0.17
−510.48±0.09 1903.12±0.09 6.12±0.17
−497.78±0.08 1896.68±0.08 6.85±0.17

core −1954.37±0.01 300.00±0.01 27.16±0.09
C r −1948.69±0.06 270.79±0.06 5.13±0.09

jet −1954.98±0.02 319.59±0.02 15.09±0.09
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5.5 Lens modelling with the new radio observations

The main goal of this project was to improve the existing lens models including the
set of constraints from the extended features seen at radio wavelengths. In order to
do so, we started with a simple point-like description of the lensed source, and used
only the core features as constraints. The best lens model is then used as starting
model for the next step in which we use the position of all the fitted components to
constrain the shape of the source using the curve-fitting technique. These results will
be discussed in Sections 5.6 and 5.7. Here we give details on the set of constraints
and parameters, and describe the modelling strategy.

5.5.1 Constraints from radio and optical measurements

We have parametrized the lens galaxy as Singular Isothermal Ellipsoid (SIE) and
object-X as Singular Isothermal Sphere (SIS) (these mass parametrizations were de-
scribed in detail in Chapter 2 (Section 2.1). The lens model includes also an external
shear component. An independent shear can be produced by perturbations in the
lens galaxy environment or by the internal angular structure of the lens itself. As
shown by Keeton et al. (1997), in quadrupole lens systems this may lead to better
fits. From optical measurements (Falco et al., 1997), the ellipticity and position an-
gle (P.A.) of the lens galaxy are well constrained. However we have assumed no prior
on the ellipticity nor on the P.A. in order to compare at the end our results with ex-
isting models and with optical results. The constraints on the positions of the lensed
images were taken from the new VLBI observations (see Table 5.4). For the point-
like model source we only used the core features. This region is resolved in all of the
four images but, as shown also by the results of the Gaussian fitting, a different num-
ber of Gaussian components is needed to describe it; identifying these components
among the lensed images is difficult thus we have constrained the position of each
core-feature with the position of the centroid of the Gaussian components describing
it. The smooth macro-model of Ros et al. (2000) can account relatively well for the
positions of the lensed images within 0.5 milli-arcseconds. Hence, we have assumed
the position of the VLBI cores to be known with an accuracy of 0.5 milli-arcseconds,
even though the accuracy provided by the VLBI measurements is higher.
Constraints on the flux-ratios are taken from the flux of the CLEAN components for
the core regions as given in Table 5.3 with an accuracy of 10% (on the relative
fluxes).
Since the lens galaxy and object-X are detected in optical observations, their posi-
tions were constrained by the deep HST NICOMOS H-band image (λ = 1.6µm) from
the CfA-Arizona Space Telescope Lens Survey (CASTLES; Kochanek et al. 1999).
We assumed a position accuracy of 20 milli-arcseconds. Note that at optical wave-
lengths the position of the lens is known with an accuracy of ∼ 3 milli-arcseconds,
however we have to account for the fact that the radio and the optical emission may
not originate from the same region in the source, which leads to an uncertainty in
aligning the radio and the optical maps. We have estimated this uncertainty mea-
suring per each image the scatter between its optical position and the position of the
centroid of the radio VLBI core features; the largest value of 20 milli-arcseconds was
taken as a measure of the uncertainty in aligning the two maps. Hence, the positions
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Table 5.6: Lens model parameters

SIE+shear+SIS and point-like source

Einstein radius of SIE bl

position of SIE xl,yl
ellipticity of SIE e, θe
shear γ, θγ
Einstein radius of SIS bx

position of SIS xx,yx
position of the source xs,ys
flux of the source fs

of the lens galaxy G and object-X were constrained within ±20 milli-arcseconds from
the optical measured value. The model has thirteen parameters, ten describing the
lens and object X and three the unlensed source. Table 5.6 lists the parameters
needed for the parametrization just mentioned.

5.5.2 Model fitting approach

The positions and flux-ratios of the core centroids provide in total twelve constraints
(8 from the positions and 4 from the relative fluxes), and four more constraints are
given by the positions of both lenses. Hence when fitting an SIE+shear+SIS there
are 3 degrees-of-freedom when all the parameters of Table 5.6 are fitted. Several
attempts were necessary to find out the best fitting procedure, especially regarding
the fit of the lens position. At the beginning we fixed the positions of both lenses
and only varied the Einstein radii while fitting for the ellipticity and shear. Once
we found a good fit for these parameters, the position of the lens galaxy was allowed
to vary in both directions (x and y). Afterwards all the parameters were optimized
at the same time. As explained in Chapter 2 errors on the lens model parameters
were determined from the range over which ∆χ2 ≤ 1 as each parameter was varied
while the others were fitted.

5.6 Results from lens modelling using a point-like source

In this Section we summarize the lens models constrained by the positions and flux-
ratios of the core images. In order to compare the various models we summarize the
results all together in Table 5.7.

SIE+shear

Falco et al. (1997) showed that a lens model only including the main lens galaxy
and an external shear term cannot account for the observed image configuration.
Here we show a similar result obtained constraining the same model with the VLBI
observations. This model has a reduced χ2 of ∼ 4.6, which has the largest contribu-
tion given by the position of the lens galaxy. Results are given in the top panel of
Table 5.7.
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5.6.1 SIE+shear+SIS

Results of this model are given in the middle panel of Table 5.7. The top row of the
panel refers to the model constrained only by the positions of the centroid radio cores,
the bottom row refers to the model constrained by positions and flux-ratios. When
not using the flux-ratios, the problem has 0 degrees-of-freedom (DoF), which implies
that the reduced χ2, namely a measure of the goodness-of-fit, cannot be given even
though this model has a total χ2 ≃ 0. Adding the flux ratios in the set of constraints
gives 3 more DoF, with a reduced χ2 ∼ 0.5 given by the flux ratios (χ2

flux ≃ 1.2)
and the optical constraints (χ2

oth ≃ 0.4). The model predicts a flux ratio for A2/A1
≃ 1.04. The fitted value of the ellipticity (e = 0.20 ± 0.07) agrees with the one
measured at optical wavelengths (eopt = 0.20±0.02 and θe,opt = 71◦±5◦ Falco et al.
1997), with the position angles (P.A.) slightly misaligned (θe = −89◦±13◦). The χ2

function along the P.A. axis (second raw, right panel of Figure 5.11) does not show a
well shaped parabola around the χmin, this might be due to degeneracies present in
our model. A strong degeneracy is present between the shear and ellipticity, which
is discussed in Figure 5.12. We find that the ratio between the Einstein rings is
bx/bl = 0.13 ± 0.03. Within the uncertainty in aligning the radio and the optical
frame, the positions of the lens galaxy and object X are consistent. Ros et al. (2000)
have constrained the same model using higher resolution VLBI data; in their model
the lens galaxy has an ellipticity of e = 0.21± 0.05, with a P.A (−83± 6)◦, the ratio
between the two Einstein rings is bx/bl = 0.17 ± 0.02. Results from lens modelling
using VLBI observations are consistent with each other. Both studies find the total
χ2 dominated by the flux-ratios term, and a comparable misalignment between θe
and θopt.

Predicted image configurations and source reconstruction

In Figures 5.13 we show the critical curves in the source and in the image plane, with
the observed and modelled positions of the lensed images, the lens galaxy and object-
X. This model predicts image B in the absolute minimum of the time-delay surface,
followed by image A1 (∆t ∼ 16.5 days), A2 (∆t ∼ 16.9 days) and C (∆t ∼ 70.5 days).
In Figure 5.14(a) we show the source reconstructions obtained projecting into the
source plane the observed image configurations. In the source plane, the modelled
core regions, predicted by each of the four images, agree rather well with each other.
The modelled positions of the r features show offsets of ∼ 5 milli-arcsecond in the
x-direction. For the more elongated jet, the reconstruction obtained from image B
shows the least agreement with the ones from the the other three images, predicting
the outer components of the jet crossing the caustic; indeed, in the image plane, the
source reconstruction by image B does not predict all the components for the A1-A2
pair (see Fig.5.14(b)).
As next step we will use a larger set of constraints, which includes the jet features
(see Sect. 5.7); hence how well the model can account for these structures will be
described later.
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Figure 5.10: SIE+shear+SIS model constrained by the positions of the 1.7 GHz
cores. These plots show the χ2 function along the parameter-axis, varying each
parameter while fitting all the others. Plotted in green is the value of χ2

min and in
blue is the value χ2

min + 1. Errors on the model parameters were determined in this
range. For this model the total χ2 ≃ 0, however there are 0 DoF.
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Figure 5.11: SIE+shear+SIS model constrained by the positions and relative flux-
ratios of the 1.7 GHz core. The total χ2 ≃ 1.6, with 3 DoF . The χ2 function along
the P.A. axis does not show a parabola, as well as the χ2 function of the shear
orientation, which moves away from the absolute minimum for slight changes of this
parameter. We discuss model parameters degeneracies in the next Figure.
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Figure 5.12: Degeneracy between shear and ellipticity. The plots show the χ2 for the
model SIE+shear+SIS while moving along the ellipticity and shear axis. Contours
are shown for χ2 values from 4 to 25.
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Figure 5.13: Critical curves for the model SIE+shear+SIS constrained by the po-
sitions and flux ratios of the 1.7 GHz core. The red (green) crosses indicate the
observed (modelled) positions of the lens galaxy and object-X, while the blue as-
terisks (magenta squares) indicate the observed (modelled) positions of the core
features. In the source plane, the source (the green cross) lies near the tangential
caustic, as found by previous models.
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Figure 5.14: Top panel: source reconstructions obtained per each lensed image. Bot-
tom panel: predicted image configuration from model SIE+shear+SIS constrained
by the 1.7 GHz core features. In the source plane, image B predicts the outer com-
ponents of the elongated jet on the other side of the caustics, not in agreement in the
image plane, with the observed configuration for the A1-A2 pair. The r component
predicted by image C is offset by ∼ 5 milli-arcsecond with respect to the other three.
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The feature r as constraint

The same model (SIE+shear+SIS) was fitted using the positions and flux-ratios of
feature r alone. Results are given in the lower panel of Table 5.7. The model just
discussed is expected to account as well for observed configuration of the four images
of this component.
This feature is not seen at optical wavelengths, nevertheless the positions of the
lens and object-X can still be constrained by the optical measurements by using the
relative astrometry between the r components and the core centroids, and assuming
that within 20 milli-arcseconds these are aligned with their optical counterparts.
Hence the position of the lens and object X is constrained within 20 mas of the
optical measurement assuming the core centroid of image A1 as origin of coordinates.
At the beginning we have constrained the model only using positional constraints,
afterwards including the flux ratios. Interestingly, if the first model agrees with the
one constrained by the core centroids, this is not the case for the second one. This
model has a reduced χ2 ∼ 3.3 given mainly by the optical constraints (χ2

oth ≃ 6.3)
with a contribution also by the flux-ratios (χ2

flux ≃ 3.7). Similarly to what discussed
above, when only using positional constraints the problem has 0 DoF, and hence even
though the total χ2 ≃ 0, a measure of the goodness-of-fit cannot be given. When
including the flux-ratios, the b parameter for object X is not constrained anymore,
and a larger shear is required. The contribution to the χ2 given by the flux-ratios
is larger than the previous model, this may be due to mass perturbations that are
not accounted by the model, but it may also indicate that the flux measurements
for the r components are less accurate than the cores. The main contribution to the
total χ2 is given by the optical constraints.

Lens modelling using two point-like components

In the next row we show the results obtained constraining the same model with
the observed positions and flux ratios of the core centroids and r components. In
this case, the SIE+shear+SIS model is fitted very poorly, with a reduced χ2 ∼ 6.8.
In particular, the model seems to favour the main lens offset more offset 40 from
the optical measurements, and a larger ellipticity. Figures 5.15 shows the predicted
image configurations where we see that this model cannot account for the position
of the VLBI features. The model predicts the lensed features offset within . 5 milli-
arcseconds, with the largest offset for the A1-A2 pair. These results may be due
a radial profile different than isothermal. However we will address this question in
Section 5.7 when including the extended structures in the set of constraints.
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Table 5.7: Model 1. SIE + shear + SIS and point-like source. We modelled the lensed source with only one component. In this Table
we give the total χ2, and in the following columns we give the contributions from the different constraints. The uncertainties on the
parameters are given below each model. We adopt the same format for all the next tables.

model feature Ndof bl (xl,yl) e θe γ θγ (xx,yx) bX χ2
tot χ

2
pos χ

2
flux χ

2
oth

a

(mas) (mas) (deg) (deg) (mas) (mas)

SIE+γ p,qb 3 1166 (−1008,641) 0.24 −21.1 0.13 84.0 – – 14 0 3 11
±1 (±38,±25) ±0.02 ±19.0 ±0.01 ±4.0 –

SIE+SIS+γ p,qb 0 1099 (−1072, 665) 0.20 83.1 0.094 −56.6 (−1457, 2122) 167 0 0 0 0
±26 (±20, ±17) ±0.07 ±10.5 ±0.028 ±9.1 (±20, ±20) ±36

p,qb 3 1113 (−1069,653) 0.17 −89.2 0.078 −62.6 (−1457, 2122) 143 1.6 0 1.2 0.4
±20 (±24, ±14) ±0.07 −13,+5 ±0.022 ±7.5 (±20, ±20) ±36

r 0 1110 (−1072, 665) 0.17 83.6 0.091 −59.4 (−1457, 2122) 148 0 0 – –
±2 (±20, ±17) ±0.01 ±0.9 ±0.002 ±5.0 (±20, ±20) ±1

r 3 1160 (−1060, 616) 0.23 −47 0.103 79 (−1457, 2122) 15 10.0 0.002 3.7 6.3
±10 (±17, ±12) ±0.05 ± 7 ± 0.027 ±6 (±20, ±20 ) ±15

p,q, r 1062 (−1137, 627) 0.360 −86 0.072 −46 189 (−1441, 2128 ) 82 49 25 8
12 ±8 (±20, ±8) ±0.003 ±1 ±0.011 ±3 ±11 (±24, ±38)

a contribution from the optical constraints
b the position of their centroid was used



5.7 Lens modelling with the extended-source structure 99

(arcseconds)

(a
rc

se
co

nd
s)

∆x

∆
y

Figure 5.15: The plot shows the comparison between the observed (green crosses)
and the modelled (blue crosses) configuration of lensed imaged; the observed and
modelled position of the lens galaxy and object-X are also shown. Positions and
relative flux-ratios of the core and r features were used to constrain the model.

5.7 Lens modelling with the extended-source structure

The lens model just constrained is used now as starting model for the next step:
we use a more complex source parametrization, namely we include in the set of
constraints the position of all the Gaussian components listed in Table 5.4, and
use the curve-fitting technique to model the foreground mass distribution with an
SIE+shear+SIS. As explained in Section 2.3, with this algorithm information on
the shape of the source is used to constrain the model. Images A1, A2 and B were
considered to be reference-images with respect to image C, which was the test-
image. During the optimization routine, the family of curves describing image C
was compared with the curves of A1, A2 and B. In this way the software accounts
for the fact that image C is described by the least number of components.
We have assumed an accuracy of 1 milli-arcsecond on each of the jet components.
Note however that the curve-fitting technique uses the uncertainties only for the
references curves.
In Table 5.8 we report the best fitting model parameters and their uncertainties.
These were estimated via a statistical approach: the jet components configuration
was perturbed within ±10 mas the observed configuration, and each perturbed set of
components was used to constrain the model using the curve fitting technique. The
standard deviations of each lens parameter were then calculated and used to give the
level of uncertainties. Comparing this table with the middle panel of Table 5.7 we see
that within the uncertainties the two model agree, however the model constrained
by the jet components has a slightly larger ellipticity. The model has a reduced
χ2 ∼ 3.5, mainly given by the curve term.
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Predicted image configuration and source reconstruction

In Figure 5.16 we show the critical curves of this model, with the predicted posi-
tions of the main lens and object-X (image plane) and the source reconstruction
(source plane). In Figure 5.17 we show the source reconstruction and the predicted
image configuration given by the lens model discussed above. The comparison of
Figure 5.17(a) and 5.14(a) shows that for images A1, A2 and C, the offsets between
the jet components are reduced, and through the lens mapping one could match
and identify the components among them, especially for the core and the more elon-
gated jet. The modelled positions of feature r are still offset by ≃ 5 milli-arcsecond.
The source reconstruction in Fig. 5.17(a) shows that, for this feature, the modelled
position from image C is offset by the other three. Given that this component has
a lower signal-to-noise ratio among all the features, it could be that its measured
position is affected by a larger uncertainty, and that the offset in the source plane is
just due to this. Note also that, though we describe this feature with one Gaussian
component, in images A1 and A2 it shows a bit of extended structure. This could
be another explanation for the offset in the source reconstruction, namely the un-
certainty in identifying this feature among the four images. Image B appears to be
not consistent with the other three, particularly in the outer part of the elongated
jet, where we measure . 5 milli-arcseconds deviations between the reconstruction
from image B and the other three images. In the image plane, the jet components
in all the images, but image B, are consistent in all the four image predictions.
Offsets in the parallel direction might also indicate uncertainties in the position of
the components. For the core feature the model predicts for A2/A1 a flux ratio of
≃ 1.05. The source has an angular size of ∼ 50 milli-arcseconds, corresponding to
a linear size ∼ 0.4 kilo-parsec; these numbers are consistent with a sub kilo-parsec
scale expected for GHz peaked sources.

The radial profile of the lens galaxy

Recent studies find that the density profile of galaxies has become slightly steeper
over cosmic time, with ∂γ/∂zd ≃ −0.25 in the redshift range 0.05 − 0.1, Ruff et al.
(2011). In Section 2.6 we have shown that for an axi-symmetric mass distribution the
slope of the density profile is degenerate with the size of the Einstein ring, and that in
order to break this degeneracy information from lensed structures at different radii is
needed. Here we investigate if the VLBI features provide us a useful set of constraints
to a radial profile different than isothermal for the lens galaxy. Note that the stronger
constraints come from the radial structures, e.g. the jet feature in image C or the core
in image A2. We have checked the following profiles γ = 2.01, 2.02, 2.03, 2.05, 2.1.
The total χ2 for the best model are respectively χ2

γ=2.01 = 40.75, χ2
γ=2.02 = 42.87,

χ2
γ=2.03 = 41.46, χ2

γ=2.05 = 42.53 and χ2
γ=2.1 = 41.05. In the bottom panel of

Table 5.8 we report results for γ = 2.05, which is the value for γ predicted by the
evolution of Ruff et al. (2011). Within the uncertainties the two model are consistent
with each other, though we find that for the power-law models the contribution to
the total χ2 from the VLBI core features is slightly larger. Hence we find no strong
evidence for a density profile steeper than isothermal. Rather we conclude that the
VLBI features are not sensitive to constrain the slope of the density profile.
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Figure 5.16: SIE+shear+SIS constrained by the extended structures. The plots
show the critical curves. In the left panel, the blue squares (green crosses) are the
modelled (observed) positions of the lens galaxy and object-X. The source lies near
to the tangential curve, as already found for a point-like source description.

5.7.1 Velocity dispersion of the lens galaxy and object-X

For an axi-symmetric mass distribution, the Einstein radius b and the total mass
within this radius are related by the following relation

M =
b2c2

4G

DdDs

Dds
. (5.3)

Recalling Equation (2.9), for a SIS, the Einstein radius can be related to the line of
sight velocity dispersion σv by

b =
4πσ2v
c2

Dds

Ds
. (5.4)

From the best fitting Einstein radii we have predicted the line of sight velocity
dispersion for the lens galaxy. Note that to the lens galaxy G we have fitted a
singular isothermal ellipsoid for which there is no simple relation as Equation (5.3);
therefore we have predicted its velocity dispersion using an SIS of similar mass. We
find the velocity dispersion of the lens galaxy G to be σv = 275 ± 30 km s−1. This
value is found to be well in agreement with measured values of σv for lenses in the
Strong Lenses Legacy Survey (SL2S) with median redshift zd = 0.5 (Ruff et al.,
2011). Equations (5.3) and (5.4) imply that the ratio between the Einstein radii of
the lens and object-X scales as

bx
bl

∝
(
σvx
σvl

)2

. (5.5)
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Figure 5.17: SIE+shear+SIS constrained using the extended structures. Top panel:
source reconstructions. Bottom panel: predicted image configurations. Image B
does not seem to be consistent with the predictions of the other images. In the source
plane, the modelled position of the r component from image C is offset ∼ 5 milli-
arcsecond with respect to the other images. The reconstruction for the elongated
jet from A1, A2 and C images are well consistent with each other. The modelled
source from image B is offset in the outer part of the jet by ≃ 5 milli-arcseconds
with respect the other three images.
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With the above equation and the predicted σv for the lens galaxy G the velocity
dispersion for object-X is found to be σvx ≃ 100 km s−1. This is consistent with the
result given in Chen et al. (2007), who found a value 81 < σvx < 102 km s−1 at a
95% confidence. The authors only present results for the Einstein radius (or velocity
dispersion), they do not give details on their best model, and hence our data could
not be used to compare their best model parameters with what we find.
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Table 5.8: The model SIE+external shear+SIS constrained using the position of all the Gaussian components in the curve-fitting
algorithm.

Ndof
c bl (xl,yl) e θe γ θγ (xx,yx) bx χ2

tot χ2
pos χ2

flux χ2
oth

a χ2
crv

b

(mas) (mas) (deg) (deg) (mas) (mas)

12 1108 (−1074, 648) 0.20 −87 0.073 −61 (−1459, 2124) 146 42.2 0.8 1 0.7 39.5
±7 (±10, ±10) ±0.05 ±3 ±0.012 ±2 (±10, ±28) ±5

Power-law+shear+SIS (γ = 2.05).

12 1109 −1076,648 0.20 −87 0.075 −61 (−1456,2124) 151 42.53 1.75 1.22 0.77 38.79
±8 ±12, ±10 ±0.04 ±2 ±0.008 ±2 (±16, ±33) ±8

a contribution from the optical constraints
b contribution from the curve term
c the model is constrained by the positions and flux ratios of the core features, and in addition per each image three curves

were used to describe the core region and the two jets
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5.8 Implications for a non-smooth mass distribution

In the previous sections we have discussed the lens models constrained by the new
1.7 GHz global-VLBI observations. Here we give an overview on what we find and
discuss what the implications are for the mass distribution.
From previous studies, the lens system MG J0414+0534 is a candidate for the de-
tection of CDM substructures (Minezaki et al., 2009). Mismatches between the mod-
elled and observed flux-ratios, or astrometric-anomalies of the lensed sub-components,
are the observational evidences that would prove such a mass distribution. Let us
consider first the flux anomaly. We have discussed in Section 5.3.1 that mid-infrared
flux-ratio measurements are not in agreement with the prediction of a smooth mass
model for the pair A2/A1, which is found to be demagnified with respect to the pre-
diction from such a model. The measured flux-ratios from radio observations (this
work and all the previous ones, see Table 5.2) are found to be in agreement with
mid-infrared observations. For the lens systems Q0957+561 (Garrett et al., 1994)
and PKS1830-211 (Jin et al., 2003), by modelling the relative magnification matrix
between images, the authors infer limits on the substructures in the mass distribu-
tion. The method is based on the fact that ideally, the surface brightness of lensed
images is conserved, hence the observed flux density ratios of the images should be
equal to the ratio of their solid angle. This is defined to be the determinant of the
relative magnification matrix between the images, which gives the transformation of
one image into another. For a given pair of images whose observed flux ratio is not
affected by substructures the measured value should correspond within the uncer-
tainties to the determinant of the modelled matrix. We could not apply successfully
this method to our data, since as among the four images we can match only two
sub-components, the core and r features. The components of the elongated jets are
not easy to identify because of the high magnification gradients.
Let us now consider the astrometry of the system. Astrometric perturbations from
substructures are of order of 10 . milli-arcseconds. However, when CDM sub-
structures are present in the mass distribution, it is possible to detect astrometric
anomalies if the position of the lens galaxy is fixed within . 10 milli-arcseconds;
when the centre of the potential is not fixed, instead is let to float, any non-smooth
mass model, and hence the astrometric anomalies, is degenerate with the fitted
smooth mass model (Chen et al., 2007). These considerations are important to un-
derstand our results (the χ2 of the model and the source reconstruction). Our best
mass model does not account well for the extended structure of the source, with
offsets of ≃ 5 milli-arcseconds (in the source plane). Also, we have assumed an
uncertainty of 20 milli-arcseconds on the position of the lens galaxy (to account for
the uncertainty on the registration of the radio and optical data), and that we have
let this parameter free within this range; hence if substructures are present in the
mass distribution, our smooth mass model may be degenerate with the presence of
small mass clumps, responsible for the 5 milli-arcseconds shift that we measure from
the source reconstruction.
The χ2 of our best mass model has always a small contribution from the flux-
ratios, and the model prediction for the A2/A1 flux ratio is not consistent with
what observed, namely image A2 appears to be demagnified with respect to model
prediction. Thus the conclusion that the mass distribution is characterized by multi
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components seems to be realistic. However, it is not intuitive but rather arbitrary
to determine the parameters of the mass clumps.
Trotter et al. (2000), who also aimed at modelling the mass distribution including
all the structures revealed by the radio VLBI observations, were able to fit the cen-
tre of the gravitational potential consistently with optical measurements of the lens
galaxy positions, but their fit suggests that the mass distribution is highly asymmet-
ric. Though their description of the mass distribution is very difficult to correlate
with a physical parameters, we interpret this result consistent with a non-smooth
mass distribution.

5.9 The optical arc

Deep HST-imaging by Falco et al. (1997) revealed the presence of an extended arc
connecting image A2 and B, bluer than the core images. It appears stretched in the
tangential direction relative the centre of the lens galaxy, hence most likely it is due
to an extended structure laying close to the tangential critical curve, in the vicinity
of the lensed QSO. Here we address this question.
In Figure 5.18 we show the i -band image from the CASTLES project (Kochanek
et al., 1999) where the signal of the arc is stronger. Our aim is to find the corre-
sponding position in the source plane. In order to achieve this goal, we have placed
circular regions along the arc (these are the black circles in Figure 5.18) in a way that
the collection of all the regions describes the whole arc from image B to A2. Note
that the arc extends over ∼ 1′′. The positions of the centres of the regions, referred
to image A1, were projected into the source plane using the model of Table 5.8,
and for each component in the source plane the corresponding image positions were
predicted. Figures 5.20 and 5.19 show the results of this exercise. In the source
plane the arc components correspond to positions close to the tangential caustic,
in the proximity of the lensed QSO. In the image plane they are mapped into four
regions, which we label D,E,F and G. The arc is produced by the merging pair D-E
which is the brightest one. The other two lensed regions, F and G, are produced
very close to the images A1 and C of the QSO, making it very hard to disentangle
their emission from the lensed emission of A1 and C. The left panel in Figure 5.20
shows a zoom on the merging pair D-E, illustrating how the pair moves for different
source positions. In the next section we give an interpretation of this result.

5.9.1 Interpretation on the nature of this region

Up to now there is no information on the redshift of the arc, which we assume to be
equal to zQSO. The emission from the arc, as seen in the optical image, seems to be
naturally extending from the bright peaks of images B and A2, thus the assumption
that the arc is a lensed structure connected to the QSO is reasonable. In the source
plane (Figure 5.19), the source lensed into the arc extends over ∼ 20 milli-arcseconds
in the x-axis, and ∼ 40 milli-arcseconds in the y-axis, at a project distance from the
QSO of ∼ 70 milli-arcseconds. From the redshifts of the lens and the source galax-
ies, 1′′ in the source (lens) plane corresponds to 7.97 (7.92), hence the projected
separation between the QSO and the extended source is ∼ 0.56 kilo-parsec. These
numbers are consistent with the interpretation that the emission of the arc is lensed
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Figure 5.18: The figure shows the R-band image of the system from the CASTLES
project (Kochanek et al., 1999) project. The black circles (radius of 0.113′′) trace
the optical arc. To identify the circles in the image and source plane (see also next
figures) we have used numbers from 1 to 6 to label them.

emission from the QSO host galaxy. The R−I colour of the arc is 1.3±0.3 mag (Falco
et al., 1997); similar colours are found for galaxy-type objects at the same redshift
of the QSO. Hence, it is likely that this is lensed emission of a star-forming region
in the host galaxy of the QSO, probably induced by a merging event in the Early
Universe. Note that the sizes for this region would imply a system of star-forming
regions rather than just a single one. Further investigation on the colour of the host
galaxy is currently being done, by which we aim at identifying the galaxy template.

5.10 Truncation radius for object-X

Strong gravitational lensing has been successfully used to study the properties of
galaxy dark matter halos, in particular to constrain sizes of halos truncated by
tidal stripping in the gravitational potential of clusters or group of galaxies. In
particular, the works by Suyu et al. (2010) and Vegetti et al. (2010) show that when
lensed structures are seen at distances as large as the size of the truncation radius
itself strong gravitational lensing is able to constrain directly the size of this radius
without any assumption on scaling relations (e.g Halkola et al. 2007; Natarajan et al.
2009) nor on the light profile of the satellite (e.g. Donnarumma et al. 2011). Within
this radius the density profile of the mass distribution is assumed to be isothermal,
namely the density ρ falls as r−2, while for larger radii the density declines as r−4.
Note that from a physical point of view the truncation radius of the satellite has
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Figure 5.19: The figure shows the position of the lensed QSO and the extended
region in the source plane. The source of the arc is found at approximately 70
(projected) milli-arcseconds of the QSO, close to the tangential caustic curve.

Figure 5.20: The purple asterisks correspond to the centre of the regions describing
the arc. These were projected into the source plane and the corresponding images
in the image plane were predicted. These are shown here with the blue crosses. The
green ones represent the observed image configuration of the lensed QSO. The right
panel shows a zoom in the same plane, on the merging pair E and D. See text for
more details on the model.
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to be consistent with its tidal radius, which defines the three-dimensional distance
between the main galaxy and the satellite where the gravitational tidal forces due
to the galaxy are equal to the gravitational force of the satellite. Mass particles
beyond the truncation radius of the satellite fall into the gravitational potential of
the main galaxy. For cluster member galaxies, or in general not isolated objects,
this radius is found to be within . 15 kilo-parsec (see Fig.10 in Suyu et al. 2010).
In the lens system discussed here, object-X lays within 0.9′′ (7.1 kilo-parsec) from
image B, ∼ 1.5′′(11.8 kilo-parsec) from the lens galaxy, and ∼ 2.5′′ (19.8 kilo-parsec)
from image A1. Given the angular distances discussed above, we can only say that
the truncation radius for object X could be constrained by the VLBI data if within
0.9′′ − 2.5′′. We have fitted a lens model consisting of a singular ellipsoid (SIE),
external shear and a truncated isothermal sphere (TIS). Results are summarized in
Table 5.9. The reduced χ2 is 0.8, with the main contribution given by the flux ratios.
Figure 5.21 shows the χ2 function of this parameter, over the range within which
tr is varied while fitting all the other parameters. The two lines identify the region
corresponding to ∆χ2 ≤ 1. For any value in this range the ∆χ2 function is not a
parabola centred on χmin; within this range the function is rather constant, implying
that the set of constraints is not sensitive to this model. Note that for radii smaller
than 0.6′′(4.7 kilo-parsec) we find ∆χ2 > 1, hence we constrain the truncation radius
to be at least 4.7 kilo-parsec. The comparison of this model with the SIE+γ+SIS
model (middle panel of Table 5.7 shows that the reduced χ2 is slightly larger for the
SIE+γ+TIS model. There is no evidence for a finite truncation radius for object-X.
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Table 5.9: Results for the modelSIE+shear+TIS.

Ndof bl (xl,yl) e θe γ θγ (xx,yx) bx tr χ2
tot χ2

pos χ2
flux χ2

oth

(mas) (mas) (deg) (deg) (mas) (mas) (mas)

2 1140 (−1078,654) 0.22 −88 0.075 −59 (−1455, 2122) 168 1615 1.6 0 1.2 0.4
±13 (±15,±15) ±0.08 ±2 ±0.016 ±7 (±9, ±8) ±33 –
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Figure 5.21: The curve shows a cut of the χ2 surface along the truncation radius.
The green line corresponds to χ2

min, and the blue one to the χ2
min + 1. The value of

tr that gives ∆χ2 larger than 1 sets the lower limit for this parameter at 0.6′′. (see
text for more details)
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5.11 Conclusions

New sensitive and high-angular resolution observations for the gravitational lens MG
J0414+0534 were carried out to investigate lens mass models that account for the
complex extended lensed structures. We have presented new radio maps obtained
from observations taken with a global-VLBI array at 1.7 GHz. The new maps con-
firm the extended structures revealed by previous observations at higher frequencies
(Trotter et al., 2000; Ros et al., 2000). We have placed a 3σ upper limit on the flux
density of an odd image near the centre of the lens galaxy, or emission from the lens,
of 0.4 mJ beam−1.
We have modelled the mass distribution in the foreground lensing plane using two
different source models, the standard point-like one and subsequently a more com-
plex one describing the lensed extended structures. The best lens model (reduced
χ2 ≃ 3.5), consisting of a SIE+shear+SIS, with both lenses at the same redshift
(z ≃ 0.958) accounts for the complex structure revealed by the radio observations.
In the source plane the source is found to have linear sizes of ∼ 0.4 kilo-parsec, well
in agreement with the GHz peaked structure implied by the spectral analysis (Katz
et al., 1997). However we find that a non-smooth mass distribution is a realistic
description for the lensing potential. This result is consistent with studies done at
mid-infrared wavelengths that investigate the flux-anomaly problem in the A1/A2
pair, though it is not intuitive what would be a realistic distribution of CDM struc-
tures that would account for the observed astrometry and flux-densities. Moreover
fitting the same mass model using a different set of constraint, leads to a poorer
fit (reduced χ2 ≃ 6.8) probably due a radial profile for the lens galaxy which is
not isothermal. However we find that VLBI constraints are not sensitive enough to
constrain the slope of the density profile. Our best model accounts for a lensed arc
revealed by optical observations, which we find to be lensed emission of a source
connected with the AGN. The predictions for the velocity dispersions of both lenses
and a lower limit for the tidal radius of object-X are found to be in agreement with
other independent studies.



It is the theory that decides what
can be observed.

A. Einstein

6
Conclusions and future work

In this thesis two gravitationally lensed systems were studied using radio interfero-
metric observations, J002240+143130 and MG J0414+0534. We were interested in
exploiting gravitational lensing to probe the mass distribution and the properties
of the lensed source, though this last point was addressed differently in the two
projects.

The 8 o’clock arc (J002240+143130)

From optical and near-infrared observations, the system is known to be a Lyman
Break galaxy at z ≃ 2.73, forming stars at a rate of ∼ 270 M⊙yr−1 (Allam et al.,
2007; Finkelstein et al., 2009). It is lensed into an arc by a lens galaxy at z ≃ 0.38.
The rate at which the galaxy is forming stars is implying a radio flux density at 1.4
GHz of ∼ 120µJy. However, in the NVSS catalogue (Condon et al., 1998), the lens
system is associated with a 5 mJy source which would predict a much larger star-
formation rate. Main goal of this project was to study and understand the origin of
the excess radio emission in the lensed galaxy.
We have observed the system J002240+143130 at 1.4 and 5 GHz with the VLA
telescope in the B-array configuration, and again at 1.4 GHz in the A-array to
obtain a higher angular resolution. We find that most of the 5 mJy radio emission is
associated with an AGN radio galaxy whose peak coincides with the optical position
of the lens galaxy. From the spectral analysis, carried out between 1.4 and 5 GHz,
we find that the AGN is a FRI type radio galaxy, characterized by a compact
core component, a steep spectrum jet extending from the core of the AGN, and an
extended radio lobe, aligned with a jet propagating from the core in the opposite
direction with respect to the lobe. We find no evidence for radio emission above the
3σ level associated with the lensed arc. Our observations should have been sensitive
enough to detect any radio emission from the lensed arc. However we could not use
half of the data, since part of the observing frequency band was lost, and the radio
jet is covering most of the arc. Hence we could only infer an upper limit on the radio

113



114 Conclusions and future work

emission from the arc of 108µ Jy beam−1, which corresponds to a radio-derived star
formation rate ≤ 750M⊙yr−1. This limit agrees with what found from optical and
near-infrared data.

Future work

In order to study the properties of the star-forming activity in the lensed LBG we
have started a new project whose goal is to quantify its content of gas mass. In
February 2011, we have observed the J 1 −→ 0 transition in the lensed LBG with
the Effelsberg telescope. The data analysis has not yet been performed. After H2,
CO is the most abundant molecule whose rotational levels are excited by collision
with H2. Hence CO is a good tracer of molecular hydrogen, fuel for star formation.
From these observations we aim at obtaining the total gas mass from the luminosity
of the line, and from the comparison with the existing estimates of the SFR, we
will obtain constraints on the efficiency of the star-formation process in the lensed
galaxy. Furthermore, results from these observations may lead to new investigations
(through higher resolution spectral lines observations and observations of higher CO
transitions) to understand the dynamical state of the gas content, its temperature
and density.

MG J0414+0534

The system is an example of image configuration produced by an elliptical mass
distribution. At optical wavelengths we observe the four images of the QSO, the
lens galaxy and a dwarf galaxy, most probably associated with the main lens, and
an arc connecting two of the images. Previous observations at radio wavelengths
have shown multi-components for each of the lensed images, and no radio emission
associated with the lens galaxy, the dwarf galaxy or the arc. We have analysed new
VLBI observations at 1.7 GHz. We resolve the four lensed images and their sub-
components, namely a compact core region and two extended jet structures. The
1.7 GHz maps confirm a wealth of structures consistently with previous observa-
tions at higher frequencies (Ros et al., 2000; Trotter et al., 2000). In particular we
map with a higher signal-to-noise the outer regions of the radio jets. We have per-
formed Gaussian model fitting on the VLBI maps to describe the position, strength
of emission and size of the sub-components in each of the four images, and built the
set of constraints which was used to study various lens models. Main goal of this
project was indeed to improve existing lens models, which where so far constrained
with simpler source parametrization. Previous lens models constrained by VLBI ob-
servations (Ros et al., 2000) find that the observed configurations of the radio core
features can be accounted by a lens system consisting of an isothermal ellipsoid (SIE;
describing the main lens galaxy), an isothermal sphere (SIS; describing the dwarf
galaxy) and an external shear contribution (γ). We have tested this mass model
using the 1.7 GHz VLBI cores. We find that the best mass model has a reduced
χ2 ∼ 0.5 and, within the uncertainties on the lens model parameters, it is consistent
with results from Ros et al. (2000). However, this model accounts for the observed
configuration of the core features, not for the jet structures. Furthermore, model-
fitting with other sets of constraints, (e.g., using point-like source parametrization
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for another radio feature, but the core, or using a two point-like source parametriza-
tion) suggests that the radial density profile may be different than isothermal. Next,
we have tested mass models using a source parametrization that accounts for the
extended structure of the source, namely the core and both jets. We then use the
new constraints and study the SIE+γ+SIS model. We find that the best mass model
has a reduced χ2 ∼ 3.5, and a slightly larger ellipticity than model discussed above.
The source reconstructions obtained projecting into the source plane the four lensed
images shows deviations . 5 milli-arcseconds for one of the images. This could be
due to substructures mass not accounted with the SIE+γ+SIS mass distribution.
Note that this system is known to be a candidate for mass substructures: existing
lens mass models (e.g., Minezaki et al. 2009), and also the one just discussed, pre-
dict the so-called parity dependent flux-ratio anomaly which is considered to be a
signature of mass substructures. However, it is not intuitive to predict what would
be the properties of a realistic multi-components mass distribution.
Aiming at constraining a radial profile different than isothermal for the lens galaxy,
we have tested power-law models for the lens galaxy (the model also includes the
SIS+γ for the dwarf galaxy and the shear component). From a recent study (Ruff
et al., 2011), the radial density profile for the lens galaxy at redshift z ≃ 0.958 is
expected to be slightly steeper than isothermal. However, we find no evidence for
a similar radial profile and interpret this result with the VLBI features not being
sensitive enough to constrain the slope of the radial density profile. An attempt was
made to constrain the size of the truncation radius of the dwarf galaxy, fitting a a
truncated isothermal sphere for it (in addition, the model also includes the SIE+γ
for the main lens and shear, as above). We find no evidence for a finite truncation
radius for this galaxy, instead we infer a lower limit for it of ∼ 4.7 kilo-parsec.
Finally, we find that the optical arc is most likely lensed emission of a star-forming
region in the host galaxy of the QSO, and obtain a source reconstruction for it that
explains the arc structure which is observed.

Future work

We are currently investigating the colour of the lensed source (from available HST
data) in order to characterize the template of the host galaxy of the QSO (work in
collaboration with J.P. McKean).
Another aspect that certainly needs to be investigated concerns the properties of
the non-smooth mass distribution which could account for the observed flux-ratios
and astrometry of this system. Hence, multi-components mass distributions or a
lensing potential with higher order multipoles will be tested as well. Moreover,
data reduction and analysis of the latest 8 GHz VLBI observations (O. Wucknitz
et al. 2008) should be performed; results of this analysis compared to the 8 GHz
VLBI data of Ros et al. (2000) will reveal morphological changes of the lensed
source. An accurate astrometry (as the one provided by VLBI measurements) of
quad gravitational lenses has the potential of detecting the proper motion in the
lens galaxy, which is otherwise very difficult to perform in optical astronomy (see
Kochanek et al. 1996).
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Outlook

In the near future, thanks to the improvements made for observations from FIR to
radio bands, e.g., the new Herschel instrument, ALMA, and the upgraded EVLA
telescope, it will possible to obtain a direct view into the properties of star-forming
galaxies. Detailed studies of statistically significant samples of LBGs will be possible,
which will allow us to address important questions on galaxy formation. On the other
hand, beside benefit of the gravitational magnification that enables the detection of
high-redshift galaxies, studies of lensed star-forming galaxies will give us constraints
for lens modelling purposes. With the advent of new facilities (LOFAR and SKA),
the radio sky will be seen with new resolution and better sensitivity, opening the
way to more gravitational radio-lens systems being found.
Practically this means that studies of the properties of the lens galaxies, their global
mass distribution and radial profiles, will be carried out on larger samples yielding
new informations on the structure and evolution of galaxies.



A
Model-fitting the VLBI maps

Features seen in astronomical images are usually described by a set of parameters, so
they can be compared at different observing wavelengths, or with observations taken
at different epochs. In most cases it is convenient to specify a model for the intensity
distribution, and determine the parameters that describe a component within the
specified model.
The AIPS software provides two tasks that allow us to fit physical parameters that
describe the components seen in the radio map, maxfit and jmfit.
For a given map array, maxfit determines the position and strength of its peak
fitting a quadratic function using the least square method. This task does not
perform the goodness of fit nor error estimates. It is conveniently used to find the
location and the intensity of the peak, which can be then used as starting model for
a more complex fit. jmfit fits a two-dimensional elliptical Gaussian to a region of
the image around the component. It uses the least square method, since it assumes
that the pixels error distribution is Gaussian with constant rms over the component.
However this is not the case for features in radio interferometric images, where over
the map the pixel errors are correlated with each other by the beam pattern. To
estimate the errors on the fitted parameters we have used the analytical approach,
described in Fomalont (1999), that accounts for the fact that Gaussian model fitting
in radio interferometric maps has uncertainties which depend on the signal-to-noise
of the detection. This is described below.
Let σrms be the rms noise of the residual map, then the uncertainty on the modelled
peak-flux Sp is

σSpeak
= σrms; (A.1)

the uncertainty on the modelled total flux density Stot is approximated by

σStot =

√
σ2rms + (S/P )2. (A.2)
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Let d be the size of the component, then the uncertainty on the modelled position1

is

σpos =
σrmsd

2Stot
. (A.3)

These equations give rough approximations of the true errors, which may be larger.
When fitting several components, not well distinguished, their uncertainties may be
larger than what given above.

1For components smaller than the beam size, the beam size is taken as d, and for components
larger than the beam size, the size of the component is taken as d
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