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Abstract

Let k be an algebraically closed field, ) a finite quiver and M a finite-dimensional
Q-representation. The quiver Grassmannian Grq(M) is the projective variety of sub-
representations of M with dimension vector d.

Quiver Grassmannians occur naturally in different contexts. Fomin and Zelevinsky in-
troduced cluster algebras in 2000. Caldero and Keller used Euler characteristics of quiver
Grassmannians for the categorification of acyclic cluster algebras. This was generalized
to arbitrary antisymmetric cluster algebras by Derksen, Weyman and Zelevinsky. The
quiver Grassmannians play a crucial role in the construction of Ringel-Hall algebras.
Moreover, they arise in the study of general representations of quivers by Schofield and
in the theory of local models of Shimura varieties. Motivated by this, we study the ge-
ometric properties of quiver Grassmannians, their Euler characteristics and Ringel-Hall
algebras. This work is divided into three parts.

In the first part of this thesis, we study geometric properties of the quiver Grass-
mannian Grq(M). In some cases we compute the dimension of this variety, we detect
smooth points and we prove semicontinuity of the rank functions and of the dimensions
of homomorphism spaces. Moreover, we compare the geometry of the quiver Grassman-
nian Grq(M) with the geometry of the module variety repq(Q@) and we develop tools to
decompose Grq(M) into irreducible components.

In the following we consider some special classes of quiver representations, called
string, tree and band modules. There is an important family of finite-dimensional k-
algebras, called string algebras, such that each indecomposable module is either a string
or a band module.

In the second part, for £ = C we compute the Euler characteristics of quiver Grass-
mannians Grq(M) and of quiver flag varieties Fya) g (M) in the case that M is a
direct sum of string, tree and band modules. We prove that these Euler characteristics
are positive if the corresponding variety is non-empty. This generalizes some results of
Cerulli Irelli.

In the third part, we consider the Ringel-Hall algebra H(A) of a string algebra A over
C. We give a complete combinatorial description of the product of the subalgebra C(A)
of the Ringel-Hall algebra H(A).

In covering theory we obtain the following results, which resemble the results of the
last two parts. Let Q be a locally finite quiver with a free action of a free or free abelian
group and 7: Q — (@ the corresponding projection on the orbit space ). Thus for each
finite-dimensional Q-representation V we get a @Q-representation 7, (V) and 7 induces
a map 7: N? — N of dimension vectors. We show that the Euler characteristic of
the quiver Grassmannian Grq(m, (V")) is the sum of the Euler characteristics of Gry(V),
where t runs over all dimension vectors in 7w~!(d). Moreover, the morphism 7 : @ —Q
of quivers induces a morphism C(7): C(CQ) — C(CQ) of the Ringel-Hall algebras.
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1 Introduction

Let k be an algebraically closed field, @ = (Qo,Q1) a locally finite quiver, M =
(M, My)icQo,ac, @ finite-dimensional @Q-representation and d = (d;)ic, a dimension
vector. A subrepresentation of M with dimension vector d is a tuple (U;)icq, of di-
dimensional subspaces U; of the k-vector space M; such that (U;, Ma]U5<a))ieQ07ate is
again a @-representation. The quiver Grassmannian Grq(M) is the projective variety
over k of all these subrepresentations of M with dimension vector d. This is a closed
subvariety of a product of classical Grassmannians (see Lemma [2.3.7)).

Following [46] quiver Grassmannians appear in the study of general representations of
quivers (see Crawley-Boevey [19] and Schofield [48]) and their Fuler characteristics in
the theory of cluster algebras (see Caldero and Chapoton [9], Caldero and Keller [11] and
Derksen, Weyman and Zelevinsky [21]). Cluster algebras were introduced by Fomin and
Zelevinsky [24], 25] 26] in 2000. For instance, Caldero and Keller [10], [11] showed that the
Fuler characteristic plays a central role for the categorification of cluster algebras. In this
context the positivity of these Euler characteristics is essential. The Euler characteristic
of such a projective variety is a much studied, but very rough invariant (see Caldero
and Zelevinsky [13] and Cerulli Irelli [14]). The representation theoretic properties of
these quiver Grassmannians are studied for instance by Fedotov [23], Lusztig [39] and
Reineke [42]. Moreover, Gortz [30, Section 4] showed that they appear in the theory of
local models of Shimura varieties.

It is easy to see that an ideal I of a quiver () does not affect our results. Let M be
a (Q, I)-representation. So M is also a Q-representation. Each subrepresentation of the
Q-representation M is also a subrepresentation of the (@, I)-representation M. Thus
the variety Grq(M) for a finite-dimensional (Q, I)-representation M equals the variety
Grq(M) for the Q-representation M.

This thesis is organized as follows: After this introduction we state the necessary
basic notions in Chapter Most of these definitions and results are well-known. In
the remaining three chapters we present our own results. In Chapter [3| we study the
geometry of the quiver Grassmannian Grq(M) as a scheme. In Chapter [4] we compute
the Euler characteristics of some quiver Grassmannians. These results are applied to
Ringel-Hall algebras in Chapter Some results of the last two chapters are already
published in [32].

1.1 Geometric properties of quiver Grassmannians

We study basic geometric properties of quiver Grassmannians Grq (M) building on work
of Caldero and Reineke [12] (see also Cerulli Irelli and Esposito [15], Schofield [48] and



1 Introduction

Wolf [54]). For this it is convenient to consider a k-scheme Grq(M) such that its k-
rational points form the variety Grq(M).

The module variety repy(Q) = Hate Mat (dt(a) X ds(a),k') is very well-known in
representation theory. This affine variety parametrizes in some sense all Q-represen-
tations with dimension vector d. The algebraic group GLa(k) = [];cq, GLq, (k) acts
by conjugation on the module variety repyq(Q@). The orbits under this action are in
bijection with the isomorphism classes of Q)-representations with dimension vector d.
They are irreducible, locally closed, smooth and their dimensions are well-known (see
Proposition [2.3.3]). The closure of such an orbit is the union of orbits. This defines the
degeneration order on the set of orbits. We say an orbit O(U) is bigger than another
orbit O(V) if and only if the orbit O(V) is contained in the closure of the orbit O(U) (see
e.g. [43]). For each (semi-)admissible ideal I there is a closed subvariety repq(Q, I) of
repq (@), which parametrizes all (Q, I)-representations with dimension vector d. Since
this variety is not irreducible in general it is natural to decompose it into irreducible
components (see e.g. [3, 20 411, 45, [50]).

This suggest to decompose the quiver Grassmannian Grq(M ) into irreducible compo-
nents. The isomorphism classes Cyy(k) of subrepresentations U of a Q-representation M
in the quiver Grassmannian Grq (M) are in general not orbits of some natural action (see
Remark . Nevertheless, these locally closed subschemes Cy; of the scheme Grq(M)
are irreducible, smooth and have dimension dimy Homg (U, M) — dimy, Endg(U) for each
U € Grq(M) by Theore In Proposition we give a homological condition on
U € Grq(M) such that Cy(k) is an irreducible component of the variety Grq(M). More-
over, in Corollary we use this criterion to construct a lot of examples of irreducible
components. In these cases all points in Cyy(k) are smooth in the quiver Grassmannian
Gra(M).

Each homomorphism f: M — N of Q-representations induces an isomorphism of
closed subschemes of the quiver Grassmannians Grg(M) and Grg—dimker f(IN) (see
Proposition [3.2.1)). Rank functions on the module variety repq(Q) are lower semicontin-
uous and dimensions of homomorphism spaces of ()-representations are upper semicon-
tinuous. We show the analogous statements for the quiver Grassmannian Grq(M) (see
Proposition and .

Comparing the degeneration order defined by the module variety repq(Q) and the
topology of the quiver Grassmannian Grq(M) we get the following result (see Theo-
rem . Let U,V € Grq(M). If U € Cy(k) in the quiver Grassmannian Grq(M),
then O(U) C O(V) in the module variety repq(Q). Using Example or the example
in Section we see that the converse of this theorem is not true. Nevertheless, this
gives us some irreducible components of the quiver Grassmannian Grq(M) if there are
only finitely many isomorphism classes of subrepresentations of the Q)-representation M
with dimension vector d (see Proposition .

Let M be an exceptional Q-representation, i.e. Extb(M, M) = 0. By Caldero and
Reineke [12, Corollary 4] the corresponding quiver Grassmannian Grq(M) is empty or
smooth (see Proposition. Moreover, we show in Propositionthe following. If
Grq(M) is non-empty and there are only finitely many isomorphism classes in Grq(M),

10



1.2 Euler characteristics of quiver Grassmannians

there is an exceptional Q-representation U such that the isomorphism class Cy (k) of U
is dense in Grq(M).

Of course, there are dual versions of all these results by replacing sub- by factor
representations.

In Section we consider the quiver Grassmannians Grq(M) in some examples. We
try to decompose it into irreducible components and detect smooth points. The following
examples are studied:

e Linearly oriented quivers of type A: We consider the quiver 1 — 2 for each Q-rep-
resentation M and each dimension vector d, the quiver 1 — 2 — 3 for Q-repre-
sentations M with dimension vectors of the form (n,n,n) and dimension vectors
d = (d,d,d) and the quiver 1 —+ 2 — --- — N for a projective or injective Q-rep-
resentation M and each dimension vector d.

o Cyclically oriented quivers of type A: We study the one-loop-quiver (see Fig-
ure for each representation and each dimension vector and one example for
the oriented two-cycle-quiver (see Figure [3.6.9)). Finally, we consider the oriented
N-cycle-quiver @ (see Figure [3.6.11) with each projective-injective (Q, ™ )-rep-
resentation and a dimension vector for N € N and N > 2. Gortz [30, Section
4] studied this example in the context of local models of Shimura varieties (see
Remark and also Pappas, Rapoport and Smithling [40, Section 7]).

1.2 Euler characteristics of quiver Grassmannians

Let k be the field of complex numbers C. We use and improve a technique of Cerulli
Irelli [I4] to compute Euler characteristics xq(M) of quiver Grassmannians Grq(M). In
general it is hard to compute the Euler characteristic of such projective varieties, but in
the case of a direct sum of tree and band modules we show that this is only a simple
combinatorial task.

Some special morphisms of quivers F': S — @ are called windings of quivers (see
Section [2.2). Each winding induces a functor Fj: rep(S) — rep(Q) of categories of
finite-dimensional quiver representations and a map F: N0 — N®0 of dimension vectors
of the corresponding quivers. Let S be a finite tree and 1g the S-representation such
that every vector space of this representation is one-dimensional and every linear map
is non-zero. This representation 1g is up to isomorphism uniquely determined and its
image under the functor Fj is called a tree module. Let n € Z~g, S be a quiver of type
A,y and Tg the set of indecomposable S-representations V' = (V;, V,)iesy,acs;, with V is
an isomorphism for each a € S and dimg V; = n for some ¢ € Sy. The Q-representation
F.(V) is called a band module if V € g and F,(V') is indecomposable.

In Theorem 4.3.1] we compute the Euler characteristics of quiver Grassmannians of all
tree and band modules. Let Fi(1g) be a tree module. By Part [1] of Theorem the
Euler characteristic of Grq(Fx(1g)) is the sum of the Euler characteristics of the quiver
Grassmannians Grg(1g), where t runs over all dimension vectors in F~!(d). By definition
of 1g it is very easy to compute the Euler characteristic y¢(1g) in this case, namely
Gr¢(1g) contains at most one point (see Corollary . For each indecomposable

11
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band module M we give an explicit formula for the Euler characteristic yq(M) in Part
of Theorem Moreover, we prove the positivity of each Euler characteristic yq(M)
in the case that M is a direct sum of tree and band modules (see Corollary .

In the proof of Theorem we use the following result of Bialynicki-Birula [3],
Corollary 2]. For a quasi-projective variety with a C*-action its Euler characteristic
equals the Euler characteristic of the fixed points under this action (see Theorem .
To construct C*-actions on the quiver Grassmannian Grq(M) we introduce the notion
of gradings in Section

The projective variety Fgqa) g (M) of flags of subrepresentations of a Q-represen-
tation M with dimension vectors dV), ..., d( is called quiver flag variety. The results

for the Euler characteristics of quiver Grassmannians can be generalized to analogous
statements for such quiver flag varieties (see Corollary [4.5.3)).

Let Q be a locally finite quiver and G a free or free abelian group. An action of the
group G on Q is a pair of maps G x Qo — Qo, (g9,1) — gi and G x 01 — O, (g,a) — ga
such that gs(a) = s(ga) and gt(a) = t(ga) forall g € G and a € Q1. We say, the group G
acts freely on the quiver Q if for all 7 € Qo and all a € Q1 the stabilizers are trivial. Let
Q=0 /G be the orbit quiver of such an action and : Q — Q the canonical projection.
If G acts freely on the quiver Q, then 7 is a winding.

Let V be a finite-dimensional Q—representation. In Part {3 of Theorem we show
that the Euler characteristic of a quiver Grassmannian of the Q-representation 7, (V)
is determined by the Euler characteristics of the quiver Grassmannians of V. More
precisely, for each dimension vector d the Euler characteristic of Grq(m(V)) is the sum
of all Euler characteristics of Gr(V'), where t runs over all dimension vectors in 7w=1(d).

1.3 Ringel-Hall algebras

Let @ be a locally finite quiver, I an admissible ideal and A = CQ/I the corresponding
C-algebra. We associate to the algebra A the Ringel-Hall algebra H(A), its subalgebra
C(A) and its completions H(A) and C(A) (see Section [2.4). We assume one of the
following cases.

1. Let ¢: S — @ be a tree or a band and A = CQ/I and B = CS/J finite-dimensional
algebras such that ¢ induces a functor ¢,: mod(B) — mod(A).

2. Let Q be a locally finite quiver and G a free or free abelian group, which acts
freely on Q. Let Q = Q/G be the orbit quiver, A = CQ/I and B = (EQ/J
algebras and ¢: Q — @ the canonical projection such that ¢ induces a functor
¢s«: mod(B) — mod(A).

Then the winding of quivers ¢ induces a functorial homomorphism

Clp): C(A) = C(B), f = fop.

of Hopf algebras (see Theorem [5.1.1]). Moreover, this map C(¢) can be extended to the
Ringel-Hall algebras H(¢): H(A) — #H(B), but this map is in general not an algebra
homomorphism.

12



1.3 Ringel-Hall algebras

Let F = (F(l), . ,F(T)) with F: §@ — @ be a tuple of trees, B = (B(l), . ,B(s))
with B@: 70 — @ a tuple of bands and n = (n1,...,mns) a tuple of positive integers.
Let

1 if 3V, € T,

0 otherwise.

. ~ r () _ s (@) v/
1pgn(M) = { M =@ Fo (Lgo) & By B (Vi)

for each Q-representation M. This defines constructible functions 1 B n in H(A), which
are not necessarily in C(A). We compute the image of such a function 1 B, under the
map H(p): H(A) — H(B) in TheoNrem Roughly speaking, this is given by the sum
of all maps 15 g ., where F and B runs over all liftings of F and B by the winding ¢
(see Figure .

Figure 1.3.1: Lifting F': 8’ — S of F: 8’ - Q by ¢: S = Q.

Using this we can study the products of functions of the form 1g gy in H(A). This
gives us a combinatorial description of (1g B n * 1y B/ n/)(M) for each C-algebra A and
each direct sum of tree and band modules M such that M is an A-module (see Corol-

lary .

Actually for a string algebra A = CQ/I each function in C(A) is a linear combination
of functions of the form 1y g and the computation of arbitrary products in C(A) is
reduced to a purely combinatorial task (see Definition and Corollary . If
A is representation finite and @) has no loops and cyclically oriented two-cycles, then
C(A) = H(A) (see Theorem [5.5.4). Moreover, in this case the functions 1y with some
tuple F of strings form a vector space basis.
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2 Preliminaries

Let k be an algebraically closed field. We denote by N the natural numbers including
0. Each algebra is an associative k-algebra with a unit. For a ring R and d,n € N let
Mat(d x n, R) be the free R-module of matrices with d rows, n columns and entries in R.
Moreover, let GL, (R) be the group of invertible elements in the R-algebra Mat(n xn, R).
The identity matrix in Mat(n x n, R) is denoted I for each ring R.

Let S be a set and d = (d;)ies,n = (n;)ics € N some tuples. In most cases we
assume that at most finitely many entries of such a tuple are non-zero. If d; < n; for
each i € § we write d < n. Moreover, if d < n and d # n, we write d < n. For a
ring R we denote the product [[,.g Mat(d; x n;, R) by Mat(d x n, R) and the same for
GLh(R).

2.1 Quivers and quiver representations

In this section we give a short introduction to the representation theory of quivers and
we explain the relations to finite-dimensional k-algebras. Most of these definitions and
results can be found in several books (see e.g. [1]).

Let Q = (Qo, @1, s,t) be a locally finite quiver (or Q = (Qo, Q1) and quiver for short),
i.e. an oriented graph with vertex set (Qg, arrow set (21 and maps s,t: Q1 — (g indicating
the start and terminal point of each arrow such that in each vertex only finitely many
arrows start and end. A finite-dimensional representation M = (M;, My)icQy,acq, of the
quiver @ (or Q-representation for short) is a tuple of finite-dimensional k-vector spaces
{M;|i € Qo} and a tuple of k-linear maps {My: M) — Myq)la € Q1} such that only
finitely many of the vector spaces are non-zero. A homomorphism f = (fi)icg,: M —
N of Q-representations is a tuple of k-linear maps {f;: M; — N;|i € Qo} such that
fr(a)yMa = Nafs(a) forall o € Q1 (see Figure. The vector space of homomorphisms

Ss(a)
Mya) —— Ny(a)

Mal lNa

Mi(a) — Ny
ft(a)

Figure 2.1.1: The condition for a homomorphism f: M — N of (J-representations.

f: M — N of Q-representations is denoted by Homg (M, N). Let rep(Q) denote the
category of finite-dimensional QQ-representations.

15



2 Preliminaries

Let @ be a quiver and M = (M;, Ma)icQo,acq, @ @-representation. A subrepre-
sentation N = (N;)icq, of the Q-representation M is a tuple of subspaces {IN; C
M;li € Qo} such that My (Nyq)) S Nyq) for all @ € Q1. So every subrepresentation
N = (N;)icq, of a Q-representation M = (M;, My )icQy,ac, is again a Q-representation
(Ni,Ma|Ns(a))i€Qo,ate and there is a canonical injective homomorphism ¢: N — M
of @-representations, which is called the canonical embedding. In this case we write
N C M. Let M be a Q-representation and S a subset of M. Then (m|m € S)g de-
notes the minimal subrepresentation of M containing S. A factor representation and
the canonical projection are defined dually. Let M be a Q-representation. Then there is
a unique largest semisimple subrepresentation of (). This is called socle and denoted by
soc M. Dually the largest semisimple quotient of M is called top and denoted by top M.

The dimension dimg M of a Q-representation M is the dimension of the corresponding
vector space eBier M;. Thus dimy M = Zier dimg M;. The dimension vector of M
is the tuple dim M = (dimy M,;);cq, € N¥°. So a dimension vector of Q is a tuple
d = (d)icg, € N? with at most finitely many non-zero entries. This means for a
dimension vector d = (d;)icg, € N¥ holds |d| := >icqpdi < o0. The support of
a Q-representation M = (M;, My)icQyacq, is the full subquiver of @ with vertices
{i € Qo|M; # 0}.

Let n € N. An oriented path a1 ..., of the quiver @) of length n is the concatenation
of some arrows aq, . . ., ay € Q1 such that t(a; 1) = s(a;) for all 1 < i < n. Additionally
we introduce a path e; of length zero for each vertex ¢ € Qg. The path algebra kQ of a
quiver @ is the following k-algebra. The underlying k-vector space has a basis given by
the set of oriented paths of ). The product of basis vectors is given by the concatenation
of paths if possible or by zero otherwise, e.g. ;) - @ - €4) = a for all a € Q.

Let @ be a locally finite quiver and kQ™ the ideal of the path algebra k(@ generated
by all arrows. An ideal of the path algebra kQ contained in (kQ%1)? is called semiad-
missible ideal and each semiadmissible ideal containing (kQ™)™ for some n € N is called
admissible. Thus the zero ideal is always semiadmissible, but not admissible in general.
Based on the following observation we call also an ideal I of the path algebra kQ an
ideal of the quiver Q.

Let @ be a quiver, I a semiadmissible ideal of Q and M = (M;, Ma)icQyacq,
Q-representation. Let Z?le\iaﬂ ...Q4p, be a linear combination of oriented paths in
the ideal I with n,n; € N, n; > 2, \; € k and oy € Qq for all i € {1,...,n} and
j € {1,...,n;} such that there are ig, jo € Qo with s(ain,) = io and t(a;1) = jo for all
i € {1,...,n}. Then the Q-representation M is called a (Q, I)-representation if for each
linear combination in I the linear map

n

AiMg,, o...0M,

Xin,;

i : Mio — Mjo

vanishes. Moreover, the full subcategory of (Q, I)-representations of rep(Q) is denoted
by rep(Q, 1).

An additive category is called Krull-Remak-Schmidt if each object is isomorphic to a
direct sum of indecomposable objects and this decomposition is unique. It is well-known
that the category rep(Q, I) (especially rep(Q)) is abelian and Krull-Remak-Schmidt for

16



2.1 Quivers and quiver representations

each semiadmissible ideal I. The category rep(Q,I) is called representation finite if
the set of isomorphism classes of indecomposable (@, I)-representations is finite. By a
theorem of Gabriel [29, Satz 1.2] the category rep(Q) is representation finite if and only
if the underlying graph of the quiver @) is a disjoint union of Dynkin graphs of type A,
Dor E.

For a quiver ) and a semiadmissible ideal I it is well-known that the category of
finite-dimensional kQ/I-modules mod(kQ/I) is equivalent to the category rep(Q,I).
So we think of (Q, I)-representations as k@ /I-modules and vice versa. Especially the
categories rep(Q) and mod(kQ) are equivalent. Moreover, for each finite-dimensional
k-algebra A exists a finite quiver @ and an admissible ideal I such that rep(Q,I) and
mod(A) are equivalent (see e.g. [1, Corollary I 6.10., Theorem II 3.7.]).

A Q-representation M is called nilpotent if there is a n € N such that M is a
(@, (kQT)™)-representation. Moreover, let nil(Q) be the full subcategory of nilpotent
representations of rep(Q). This category nil(Q) is an abelian and extension closed sub-
category of the category rep(Q).

For i € Qo we denote the Q-representation (Mj, Ma)jeQo,acq, With M; =k, M; =0
for each other j € Qo and M, = 0 for all &« € Q1 by S(i). These are up to isomorphism all
simple Q-representations in nil(Q) and in rep(Q, I) for each admissible ideal I. Thus for
a finite quiver ) and an admissible ideal I the k-algebra kQ/I is finite-dimensional and
the isomorphism classes of simple representations are given by {S(i)|i € Qo}. Moreover,
we denote the semisimple Q-representation (Mj, My )jeQy,acg, With dimension vector d
and M, = 0 for all & € Q1 by S(d).

Let ¢ € N, @ a quiver and I a semiadmissible ideal. The i-th cohomology group
of extensions of (Q,I)-representations M and N in the category rep(Q,I) is denoted
by Ext(q (M, N). If I = 0, we write Exty(M, N) for short. Let M be a (Q,1)-
representation. If the functors Ext’tQ,I)(M ,—) are vanish for all i € N with ¢ > 1,
we call it projective in the category rep(Q,I) (or a projective (Q, I)-representation for
short). Dually the (@, I)-representation M is called injective in the category rep(Q,I)
(or an injective (Q, I)-representation for short) if ExtéQ’I)(—, M) =0 for all i € N with
i > 1. Moreover, if a (Q,I)-representation is both projective and injective, we call it
projective-injective. If I = 0, the category rep(Q) is hereditary, i.e. Ext’Q(M, N) =0 for
all Q-representations M and N and i € N with ¢ > 2. Let d = (d;)ieq, and n = (n;)icqQ,
be dimension vectors. Since rep(Q) is hereditary the Euler form

(d,n) = Zierd"”i — ZatedS(Q)nt(a) (2.1.1)
of the quiver @ behalves very well, e.g.
(dim M, dim N) = dimy Homg (M, N) — dimy, Extb(M, N) (2.1.2)

for each Q-representations M and N.

Let @ be a quiver and M a Q-representation. If Extég(M , M) =0, we call the Q-rep-
resentation M exceptional. Thus for instance projective and injective Q-representations
are exceptional.

17



2 Preliminaries

Example 2.1.1. Let @ be the following quiver

Let M = (M, Ms, My, Mg, M,,) be the Q-representation with M; = k, My = k?,
My = (}), Mg = (9) and M, = (J9). The Q-representations S(1), S(2) and M
are illustrated in the pictures in Figure [2.1.2

0 0 ((1))
<k$030>, (0$k30> ki}j/&D(S?)
(1)

Figure 2.1.2: The Q-representations S(1), S(2) and M.

Thus S(1) is a factor and S(2) a subrepresentation of M. Moreover,
Homg(S(2),M) = {(0,(}))|r € k} = k.

The dimension vector of the Q-representation M is (1,2) and the support of S(2) is the
quiver ({2},{v}). Let I = (ya) be the ideal generated by ya. Thus [ is a semiadmissible
ideal, which is not admissible, and M is an indecomposable (Q, I)-representation, which
is not nilpotent. Using the Euler form of Q) we can compute

dimy Extg,(S(2), M) = dimy, Homg(S(2), M) — ((0,1),(1,2)) =1— (2—2) =1,
dimy, Ext¢ (N, S(1)) = dimy, Homy (N1, k) — ((d1,d2), (1,0)) =di —dy =0

for each Q-representation N = (N, N, No, Ng, N,) with dimension vector d = (d1, da).
Thus the Q-representation S(1) is injective.

2.2 Tree and band modules

Let Q@ = (Qo,Q1,s,t) and S = (Sp, S1,5',t') be two quivers. A winding of quivers
F: S — Q (or winding for short) is a pair of maps Fy: Sp — Qo and F;: S} — @ such
that the following hold:

1. F is a morphism of quivers, i.e. sFy = Fys’ and tF) = Fyt'.

2. If a,b € S; with a # b and §'(a) = §'(b), then Fy(a) # Fi(b).

3. If a,b € S; with a # b and t'(a) = t/(b), then Fy(a) # F1(b).
This generalizes Krause’s definition of a winding [37]. Let V' be a S-representation. For
1€ Qo and a € Q) set

18



2.2 Tree and band modules

This induces a functor F,: rep(S) — rep(Q) and a map of dimension vectors F: N9 —
N®. The concatenation of windings behaves very well: Let F: S — Q and G: T — S
be windings then F'G: T — @ is again a winding and the functors (F'G),. and F.G, are
naturally isomorphic.

Let @ be a finite quiver. Then the @Q-representation (M;, M,)icQq.acq, With M; =k
for all ¢ € Qo and M, = idy for all a € @)1 is denoted 1g. For n € N let 15 be the
set of all indecomposable @Q-representations (M;, My)icQy,ac@, With dimy M; = n for all
1 € Qg and M, is an isomorphism for all a € Q.

A simply connected and finite quiver S is called a tree, i.e. for two vertices in the
quiver S exists a unique not necessarily oriented path from one vertex to the other.

Definition 2.2.1. Let @) and S be quivers and F': S — ) a winding. If S is a tree,
then the representation Fi(1g) is called a tree module. We call such a winding F' a tree,
too.

By [28, Lemma 3.5] all tree modules are indecomposable.

Example 2.2.2. Let ), S and F be described by the following picture.

1 2 3 1 2
res=| N0 | me=| 2N
3/L>3// 337

This means for the morphism F': S — @ of quivers holds Fy(1) = 1, Fy(2) = 2, Fy(3) =
Fo(3) = Fp(3") = 3, Fi(a) = o, F1(B) = B and Fi(y) = Fi(7) = 7. Then 1g and
F.(1g) are described by the following pictures, F': S — @ is a tree and Fi(1g) a tree
module.

g = ’“xi%k h - ;0)\T(g)

k—k

A quiver S = (Sp, S1, s,t) is called of type A; for some [ € Z~ (or of type A for short)
if So ={1,...,l} and Sy = {s1,..., -1} such that for all i € Sy with ¢ # [ there exists a
g; € {—1,1} with s(s{*) =i+1 and ¢(s;*) = i. We use here the convention s(a™!) = t(a)
and t(a~!) = s(a) for all a € S;. A quiver S of type A; is called linearly oriented if
g; = —1forallie{l,...,l —1}. Figure visualizes a linearly oriented quiver of
type A;.

S1 S92 Si—1

1 2 3 -1 l

Figure 2.2.1: A linearly oriented quiver of type A;.

Definition 2.2.3. Let Q and S be quivers, S of type 4;, F: S — @ a winding and
F.(1g) a tree module. Then F' is called a string and Fi(1g) a string module.
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2 Preliminaries

Example 2.2.4. Let Q = ({o},{a,(}) a quiver and F the string described by the
following picture.

1 3 9
o g

Az/ﬁ \4 g 6, 8/ »Q=(a(Co D)

Q/N5/ N

F: 5=

g

7

In this case the string module Fi(1g) has a basis {e;|i € Sy} and is visualized by the
picture in Figure This means the vertices of this quiver correspond to the basis

€1 €3
a B
o B
€2 €4 €6 €s
B a
x / \ %
€5 €r

Figure 2.2.2: A string module F,(1g).

€9

vectors {e;|i € Sp} of Fi(1g) and the arrows describe the linear maps corresponding to
the arrows of ). For example the basis vector e; is mapped to ey by the linear map
Fy(15)q and to zero by Fi(1g)g.

A quiver S is called of type A;_, for some | € Z~q (or of type A for short) if Sy =
{1,...,1} and S1 = {s1,...,5} such that for all i € Sy a ¢; € {—1,1} exists with
s(s;") =4+ 1 and t(s}") = . We set [ + i := 4 in Sp, si4; := s; in 1 and 4, := ¢; for

all i € Sp. A quiver S of type A;_; is called cyclically oriented if ¢; = —1 for all i € Sp.
We draw pictures of quivers of type A;_; in Figure [3.6.11|and |4.4.1]

Definition 2.2.5. Let ) and S be quivers, B: S — @ a winding and V € Zg. If S is
of type A;—1 and B,(V) is indecomposable, then B.(V) is called a band module. The
winding B is called a band if S is of type A;_1 and B,(1g) is indecomposable.

Let S be a quiver of type A;_; and B: § — Q a winding. The module B,(1g) is
not necessarily indecomposable. This well-known feature is explained in the following
example.

Example 2.2.6. Let Q and S be quivers, S of type A;_;, B: S — Q a winding and
Vels.

1. If there is no integer r with 1 < r < I, By(s;) = Bi(si+,) and &; = &;4, for
all 1 < ¢ < [ and the Jordan normal form of the linear map Vi'... Vgl is an
indecomposable Jordan matrix, then B,(V) is indecomposable.

2. If there is an integer r with r > 0 as above, then B.(V) = @;_, M) with

§= 5 dl(r,l) and Q-representations M®) of dimension n ged(r,1).
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2.2 Tree and band modules

Remark 2.2.7. Using the Jordan normal form, the indecomposable modules of the
polynomial ring k[T, T!] of dimension r are canonically parametrized by k* for each
r € Zso. Let ¢.: k* — mod(k[T, T~']) describe this parametrization and ¢: k* x Z~g —
mod (k[T, T~1]) with (X, 7) = @.()).

Let B: S — @ be a band and mod(k[T,T~!]) the category of finite-dimensional
k[T, T~'-modules. There exists a full and faithful functor F': mod(k[T,T~]) — rep(S)
such that F(V) € Zg™* " for each indecomposable V € mod(k[T,T~1]).

The map k* X Zso —= mod (k[T, T~1]) £, rep(S) N rep(Q) is a parametrization
of all band modules of the form B, (V). The image of (\,r) € k* X Z~( under this map
is denoted B.(A,r). Additional we define B,(A,0) = 0 for all A € k*. We remark that
neither the functor F' nor our parametrization of band modules of the form B, (V) is
unique.

Let A € k* and r,s € N with » > s. Then a surjective homomorphism B, (\,r) —
B.(}, s) and an injective homomorphism B, (A, s) < B, (A, r) of Q-representations exists.
Let ¢: By(A\,r) = By(A, s) be such a homomorphism. Then the kernel and the image of
o are independent of . So for all r, s € N with r > s exists a unique sub- and a unique
factor module of B, (A, r) isomorphic to By(],s).

Example 2.2.8. Let @ = ({0}, {a, 5}) be as in Example A € k* and B the band
described by the following picture.

B:S=

1
v\
—>Q: «@ Ol(\
N (+C07)

In this case we can assume that the band module B, (), 3) has a basis {e;j|i € Sy, j €
{1,2,3}} and is visualized in Figure [2.2.3] In this case there are written some scalar
multiples. This means for example B, (), 3)3(e31) = Aeqr and By (), 3)(e33) = esa+Aeus.

Crawley-Boevey [18] and Krause [37] constructed a basis of the homomorphism spaces
of tree and band modules. This description yields the following lemma.

Lemma 2.2.9. Let ), S, T be connected quivers, F: S — Q and G: T — Q trees
or bands, V. € ITg and W € I}'. If F.(V) = G.(W), then a unique bijective winding
H: S — T exists such that F = GH and H,(V) = W.

Proof. Since F,(V) is indecomposable the endomorphism ring Endg(Fy(V)) is local.
Thus by [I8] and [37] such a winding H exists. Since F' and G are trees or bands
the modules H,(V) and W are isomorphic. The winding H is unique since there is
no non-trivial automorphism H': S — S with FF = F'H’ for a connected tree or band
F:5—=Q. O

Remark 2.2.10. Let Q be a quiver of type A;_;. The category rep(Q) is well-known
and described in [52]. The indecomposable @Q-representations are divided into three
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2 Preliminaries

classes: The classes of preprojective, reqular and preinjective representations. Let M be
a band module and N a string module of (). Then the band module M is regular and

€11
/ em\
€91 €99 €32 €31
€43 (8, A>/
(BN
€42

€41

Figure 2.2.3: A band module B, (A, 3).

the following hold:

e Let NV be

L split.

preprojective. Then IV is exceptional, determined up to isomorphism
by its dimension vector, Homg(N, M) # 0 and Homg(M,N) = 0. If dim; N <
dimy M, then an injective homomorphism N < M of ()-representations and an
indecomposable preinjective representation with dimension vector dim M —dim N
exists. All short exact sequences 0 - M — L — N — 0 with a QQ-representation

e If N is regular, then Homg(N, M) = 0 and Homg(M, N) = 0.

e Let N be preinjective. Then N is again exceptional, determined up to isomorphism
by its dimension vector, Homg (N, M) = 0 and Homg (M, N) # 0. All short exact

sequences

Let M and N be indecomposable preprojective Q)-representations such that dim; M >
dimy N. Then Homg(M,N) = 0 if M 22 N and all short exact sequences 0 — M —

0— N — L — M — 0 with a Q-representation L split.

L — N — 0 with a Q-representation L split.

These notions of string and band modules were introduced to study the following class

of finite-dimensional k-algebras.

Definition 2.2.

11. Let @ be a finite quiver and I an admissible ideal. Then A = kQ/I

is called a string algebra if the following hold:

1. At most two arrows start and at most two arrows end in each vertex of Q).

2. Let a, 8,7 € Q1. If a # B, then ay € [ or By € I. If § # ~, then af € I or

ay € 1.
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2.3 Algebraic geometry

3. The ideal I is generated by oriented paths of Q).

Example 2.2.12. Let Q = ({o},{a,5}) be as in Example 2.4 and 2.2.8 and I =
(a?, %, aBa) the admissible ideal of kQ generated by a?, 32 and aB3a. Then A = kQ/I
is a string algebra and the set {e., «, 5, af, Ba, faS} of paths is a basis of the vector
space A.

Let A be a string algebra. By [53, Proposition 2.3.] it is well-known that every
indecomposable A-module is a string or a band module.

2.3 Algebraic geometry

Algebraic varieties and schemes are basic objects in algebraic geometry (see [8, 22], 31]
51]). In our studies each variety is a reduced quasi-projective variety, which is not
necessarily irreducible. For example module varieties and quiver Grassmannians are
studied in representation theory. Roughly speaking the quiver Grassmannian of a quiver
representation is the collection of subrepresentations of this quiver representation with
a fixed dimension vector. These “collections® turn out to be algebraic varieties (see
Section and actually algebraic schemes (see Section .

In representation theory module varieties are more common. These affine varieties
parametrize in some sense all quiver representations for a fixed quiver and a fixed di-
mension vector. Again these varieties turn out to be algebraic schemes (see [8, Section
3.1] and Section . Since we compare module varieties and quiver Grassmannians in
Section we have to introduce the module variety in detail (see Section . First
of all we repeat some notions from algebraic geometry.

Let X be a topological space (e.g. an algebraic variety). A map ¢: X — Z is called
upper semicontinuous if for all n € Z the set {z € X|p(x) > n} is closed in X. Dually
it is called lower semicontinuous if {z € X|p(x) < n} is closed for all n € Z.

Example 2.3.1. Let d,n € N and rk: Mat(n x d,k) — Z the usual rank function. We
consider Mat(n x d, k) as an affine variety. Let 7 € N and B an r-minor of the matrices
in Mat(n x d, k). The induced algebraic morphism B: Mat(n X d,k) — k is continuous
and thus B~1(0) is closed in Mat(n x d, k). The map rk is lower semicontinuous, since

{M € Mat(n x d, k)| tk(M) <r} = ﬂ B70).

B, (r + 1)-minor

Let X be an algebraic variety and x € X. We denote the maximum of the dimensions
of irreducible components of X containing x as the dimension dim, X of X at x.

Let k[g] = k[X]/(X?) be the dual numbers of k, X a k-scheme and z a k-valued
point of X. Using [22, VI.1.3] the tangent space T, X of the k-scheme X is the set of
k[e]-valued points, which lift the point x. If the k-scheme X is affine, i.e. X = Spec A
for a commutative k-algebra A, we get for each k-valued point x € Homy_a15(A, k)

T.X = {fEHOmkAlgAk |7Tf—l‘}
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2 Preliminaries

as vector spaces with the canonical projection 7: k[e] — k. In general the dimension of
the vector space T, X is at least the dimension of X (k) in z. We call a k-valued point x
of a k-scheme X smooth if dim; T, X = dim, X.

Let X be a complex algebraic variety. We denote the Fuler characteristic of the
topological space X with the analytical topology by x(X) (see e.g. [27, Section 4.5]).
Then for example x(X) = x(U) + x(X\U) holds for each constructible subset U of
X. Moreover, for a morphism f: X — Y of complex algebraic varieties holds x(X) =
x(Y)x(f~1(y)) for each y € Y if the map Y — Z,y — x(f~1(y)) is constant.

2.3.1 The module variety

Let @ = (Qo, Q1,5s,t) be a quiver and d a dimension vector. Each tuple (My)aeq, of
matrices in Hate Mat (dt(a) X dg(a)s k‘) is a @Q-representation (M;, My )icQy,ac@, With
M; = k% for all i € Qy. Moreover, for a semiadmissible ideal I some of these tuples

(Ma)aeq, are (Q,I)-representations.

Definition 2.3.2. Let @ be a quiver and d a dimension vector. The affine variety

Hate Mat (dy() X ds(a), k)

is called module variety and denoted by repq(@). Each semiadmissible ideal I yields a
closed subvariety

repg(Q. 1) = {(Mme@l € repd@)‘ (k%Mo) € rep(Q, I)}

1€Qo,0€Q1
of (@, I)-representations of the affine variety repq(Q@).

The dimension of the variety repq(Q) is Zateds(a)dt(a). In general the algebraic
group GLg(k) acts by conjugation on the variety repyq(Q,I). For U € repq(Q,I) the
orbit under this action is denoted by O(U). These GLq(k)-orbits in repq(Q,I) are in
bijection with the isomorphism classes of (Q, I)-representations with dimension vector
d. Thus we can associate to each @Q-representation N with dimension vector d the
corresponding orbit. This is denoted by O(N) although N is in general not a point of
the variety repq(Q). The geometry of these orbits is very well-known by the following

proposition (see [8, Proposition 2.1.7]).

Proposition 2.3.3. Let QQ be a quiver, I a semiadmissible ideal, d a dimension vector
and U € repq(Q,I). Then the subset O(U) of repyq(Q,I) is irreducible, locally closed,
smooth and has dimension dim GLq(k) — dimy Endg(U).

Since the closure of an orbit in the variety repq(@,I) is a union of orbits we get a
partial order on the isomorphism classes of (Q, I)-representations with dimension vector
d. This much studied partial order is called degeneration order (see for example works
of Bongartz, Kraft, Riedtmann and Zwara). It is well-known that if there is a short
exact sequence of the foom 0 - U — M — U’ — 0 with Q-representations U, M and
U’, then O(U & U’) C O(M) holds in the variety repgsm as(Q@)-

The following proposition is well-known (see Example and [43, Proposition 2.1]).
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Proposition 2.3.4. Let Q be a quiver and d a dimension vector. For 8 € Q1 the map

tkg: repq(Q) = Z, (Un)acq, — tk (Up)

18 lower semicontinuous. For each QQ-representation N the maps

dimpHomg(—, N): repq(Q) = Z,U — dimpHomg (U, N),
dimpHomg (N, —): repq(Q) = Z,U — dimpHomg(N,U)

are both upper semicontinuous.

Using [8, Section 3.1] we can generalize the definition of a module variety repq(Q, I)
and define a corresponding k-scheme such that its k-valued points are repq(Q, ) (see
also Section [2.3.3). Moreover, by [36, Section 2.7] or [8, Corollary 3.2.3] the normal space
of the orbit O(U) of a k-valued point U in this scheme is isomorphic to Ext%Q’ nW,U).
Thus for the module variety repq(Q) we get the following well-known and unsurprising
result.

Lemma 2.3.5. Let Q be a quiver and d a dimension vector. There is a QQ-representation
M with repq(Q) = O(M) if and only if there is an exceptional Q-representation with
dimension vector d.

Proof. Using Proposition and the Euler form we get for each M € repy(Q)
dimrepy(Q) — dim O(M) = dimy Endg(M) — (d,d) = dimy, Extb(M, M).
Thus M is exceptional if and only if repy(Q) = O(M). O

Corollary 2.3.6. Let QQ be a quiver. Then there exists up to isomorphism at most one
exceptional Q-representation to each dimension vector.

2.3.2 Grassmannians as varieties

The classical Grassmannians Gr () are well-known and much studied geometric objects.
We use them to define the quiver Grassmannians Grq(M). It turns out that we need
a schematic version of this. Nevertheless, first of all we will define it as an algebraic
variety.

Let d,n € N with d < n. The algebraic group GL4(k) acts freely by right multiplication
on the open subset of matrices of rank d in Mat(n x d, k). The quotient of this set is
called (classical) Grassmannian Gr (). Using the Pliicker embedding this is a projective
variety (see e.g. [51, Chapter I, Section 4]). Let

7 {A € Mat(n x d, k)| tk(A) = d} — CGr (%) (2.3.1)

be the induced canonical projection. Thus the Grassmannian Gr (};) parametrizes all
d-dimensional subspaces of a fixed n-dimensional k-vector space.
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Now we define an open affine covering of the Grassmannian Gr (). This means the
Grassmannian is the glueing of these subvarieties. For each d-minor B of matrices in
Mat(n x d, k) we define

Up = {m(A)|A € Mat(n x d, k), det(B(A)) # 0}

an open subset of Gr (7). This variety is isomorphic to the affine variety Mat((n — d) x
d, k). Let B be the d-minor of the first d rows. Then

75: Mat((n —d) x d,k) = Up, C+ 7 (1) (2.3.2)

is a well-defined isomorphism of algebraic varieties.

Let Q@ = (Qo,Q1,s,t) be a quiver and n = (n;)icq, and d = (d;)ic, dimension
vectors. We consider the products of classical Grassmannians Gr(g) = [[;cq, Gr (%)
Let B = (B;)icq, be a tuple such that B; is a d;-minor of the matrices in Mat(n; x d;, k)
for each i € @y we call this tuple a d-minor. For a d-minor we define the following
product Ug = Hier Up, with the affine subsets Up, of Gr (Z;) for all i € Q)p. This
forms a covering of open affine sets of Gr(g) indexed by the d-minors. Let B be the
d-minor of the first rows. Then

m5: Mat((n —d) x d, k) = Ug, (Ci)icq, — (Tr (Ig >)z~er (2.3.3)

is again a well-defined isomorphism of algebraic varieties.

Lemma 2.3.7. Let QQ be a quiver, M a Q-representation with dimension vector n and
d another dimension vector. Then the subset

Gra(M) = {U C M|dimU = d}

of Gr (g) is closed. So this subvariety Grq(M) of the product of classical Grassmannians
Gr(g) is called quiver Grassmannian.

Hence this is a projective k-variety. In general the quiver Grassmannian Grq (M) is not
connected and not equidimensional, i.e. the dimensions of the irreducible components
differ (see Example . By the following example it is neither smooth nor irreducible
in general.

If k is the field of complex numbers C, we denote the Euler characteristic x(Grq(M))
of a quiver Grassmannian Grq(M) by xq(M) for short.

Example 2.3.8. Let Q = 1 N 2, My = My = k? and M,: M; — M, a linear map
with rk(M,) = 1. Then M = (M, My, M) is a Q-representation such that Gr; 1)(M)
can be described as ({*} x P+) U (Pt x {x}) C P}, x PL. This projective variety is neither
smooth nor irreducible. By the way, if & = C, then x(1)(M) = 3.

Proof of Lemma[2.3.7. We have to prove that the quiver Grassmannian is really de-
scribed by some closed condition as a subvariety of the product of classical Grassmanni-
ans. Without loss of generality, let M = (M;, My )icQ,,acQ, be the Q-representation with
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M; = k™ for all i € Qo and My € Mat (1) X Ny(ay, k) for all @ € Q1. We use the affine
sets Up with d-minors. Let B be the d-minor of the first rows. Thus Equation (2.3.3))
holds and it is enough to show that the set

{(C’L>7,EQ0 & Mat((n d) X d ]{7)‘ o Q’EQ1 & H Mat dt ) X ds(a),k) :

I
() - () xomear)  eas

t(ax)

is closed in Mat((n — d) x d, k). If we write for each o € Q1 the matrix M, as a block
matrix such that

Mi,a M2o
(M;:a Mia> € Mat (((dt(a)) + (N4a) — di(a))) X ((dsa)) + (Ns(a) — ds(@))) k),
then Equation (2.3.4) yields the following two equations:

Ml,oe + M27acs(a) :Xom
M3,oz + M4,ozCs(a) :Ct(oz)Xa

Thus we have to prove that the set

{Cicar

M3,a + M4,ocCs(a) = Ct(a)Ml,oz + Ct(a)M2,aCs(a) Va € Ql}

is closed in Mat((n — d) x d, k). This set is obviously given by polynomials. O

Example 2.3.9. Let QQ be the following quiver

M = (M, My, M, Mg) the Q-representation with My = My = k, M, = id, and
MB =0and N = (Nl,NQ,NO“NB) with Nl = N2 = k, Na = 0 and Ng = idk. Then
Gr(1,)(M @ N) = {M, N} and in general for i,j € Z with 7 > 1 and j > 1 the quiver
Grassmannian Gr(lyl)(Mi @ NY) is isomorphic to the disjoint union of [Pifl and [P{;l.
Thus this variety is not connected and in general not equidimensional.

The following lemma allows us to dualize most statements.

Lemma 2.3.10. Let Q = (Qo, Q1,s,t) be a quiver, M = (M;, My)icQy,acq, @ Q-repre-

sentation and d a dimension vector. Let Q°P = (Qo,{a: t(a) — s(a)|la € Q1}) be the

opposite quiver and M* = (M, M)icqq.acqe the dual Q°P-representation. Then
(—)*: Grd(M) — GrdimM—d(M*)a U— (M/U)*

18 an isomorphism of algebraic varieties.
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Proof. For each diagram of vector spaces with exact rows

0 U1 M1 Ml/U1‘>0

lfawl lfa |=

0 U2 M2 MQ/UQHO

the dual is

0 Uf Mik (Ml/Ul)*%O

[CAANEE [2)

0 U; M; (MQ/UQ)*%O

and has again exact rows. Thus the morphism (—)*: Grq(M) — Graimm—a(M*) is a
well-defined morphism of algebraic varieties. Using the duality M** =2 M the morphism
Grdim m—d(M*) — Grq(M™**) is an inverse map of (—)*. O

2.3.3 Grassmannians as schemes

We define also a k-scheme, i.e. a representable functor from the category of commutative
k-algebras to sets, called quiver Grassmannian Grq(M ), which is the schematic version
of the variety Grq(M). For this we use some observations of Caldero and Reineke [12]
Section 4].

Let Q@ = (Qo, Q1, s,t) be a quiver and d = (d;)icq, and n = (n;);cq, dimension vectors
of Q. First we define the schematic version of the module variety as in [8, Section 3.1].
Let rep, (@) be the affine k-scheme defined by rep, (Q) = Spec (R(Q,n)) with R(Q,n)

the polynomial algebra over the field £ with coefficients in Xz(]a ) for a € Q1,1 <1 < nyy
and 1 < j < nyq). Let A be a commutative k-algebra. Then the A-valued points of

rep, (Q) are
repn(Q)(A) = Homy ag(R(Q,m), A) = [ [ Mat(ny(a) X ns(a), A)-

Analogously we define an affine k-scheme Hom(d,n) by Hom(d,n) = Spec (H(d,n))
with the polynomial ring H(d,n) over k with coefficients in Y;g.l) forl € Qo, 1 <i<my
and 1 < j < d;. Thus Hom(d,n)(A) = Mat(n x d, A). Moreover, we define the open
subscheme Hom®(d, n) of Hom(d,n) by

Hom’(d,n) = U Spec (H(d,n)g)) -

B, d-minor

A monomorphism f: V — W of free modules is called a split monomorphism if there is a
homomorphism g: W — V of free modules such that gf = idy. Using this notation the
scheme Hom®(d, n) parametrizes the split monomorphisms from a tuple of free modules
with dimension vector d to a tuple of free modules with dimension vector n.

These schemes are used to define the quiver Grassmannian. The most important case
of the scheme Hom®(d,n) is the scheme GLg = Hom®(d, d) of tuples of invertible matri-
ces. Then for the k-valued points holds GLq(k) =2 GLq(k). Let M = (M;, My)icQo,0cq:
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2.3 Algebraic geometry

be a Q-representation with M; = k™ for all i € Qo and M, € Mat(ny) X Ng(a), k)
for all @ € 1. Then we define the closed subscheme Hom%(d, M) of the scheme
repq(Q) x Hom®(d, n) by

Hom%(d, M) = U Spec (HO(Q,d,M,B))

B, d-minor
where H%(Q,d, M, B) is the quotient of the algebra R(Q,d) ®j H(d, n)(g) by the ideal
generated by the relations induced by the matrix multiplications

(v (@)

) (5 - (5
J 1<i<ny(0) 1<5<dy(ay \ 7 7 1<i<dy(a),1<5<dy(a)

gl )1Si§ns(a)71§jsds(a)

for all @ € Q1. Thus the A-valued points Hom%(d, M)(A) of the scheme HomOQ(d, M)
are

{((U)acars (Miean) € T, o, Matda) X dyay, 4) x Mat(n x d, 4)|

3B = (B)ieq, : Bi(fi) € A"Vl € Qo, fia)Ua = Mo fy) Ya € Ql}

for each commutative k-algebra A. Thus this scheme HomOQ(d, M) parametrizes the
Q-representations of dimension vector d together with a homomorphism of Q-represen-
tations to M, which is a split homomorphism of free modules.

The A-linear morphisms

GLd(A) X TePd(Q)(A) — TePd(Q)(A)a ((gl)lEQoa (Ma)ate) = (gt(oc)Ma.g;((lx)>aeQ1
define a natural transformation of the functors A — GLq(A) X repq(Q)(A) and A —
repq(Q)(A) from the category of commutative k-algebras to the category of sets. Thus
this induces a morphism of k-schemes and an action of the scheme GLqg on the scheme

repq(Q). Using
GLa(A) x Hom(d, n)(A) — Hom®(d, n)(A), ((a)ieqy: (fiean) = (i )1

for a commutative k-algebra A we define an algebraic action of GLgq on the scheme
Hom®(d,n). This action is free. These both actions induce a free action of GLg on the
scheme HomOQ (d,M).

Now we review the well-known definition of the classical Grassmannian as a scheme.
For the quiver Q = ({o}, @) with one point and no arrow and d,n € N the quotient of
the scheme Hom®((d),(n)) by GL(g) is again a scheme since these action is free. This
scheme is called (classical) Grassmannian Gr (). For each d-minor B of Mat(n x d, k)
we get an open affine subscheme Up of Gr(}) defined as in Section 2.3.2] Thus the
scheme Up is isomorphic to the affine k-scheme Hom((d), (n — d)).

Let @@ be an arbitrary quiver. For a commutative k-algebra the morphism

Homy(d, M)(A) — Hom"(d,n)(A), (Ua)aeqs (fi)ieqo) = (fi)ieqs
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2 Preliminaries

is injective and thus the induced morphism HomOQ(d, M) — Hom®(d, n) of schemes is an
embedding. Generalizing the proof of Lemma the image of this morphism turns
out to be closed.

Using the free action of GLgq on the schemes Hom®(d,n) and Hom%(d,M) we can
define the quiver Grassmannian in the following way (see also [I12, Lemma 2]). The
quotient of the scheme Hom®(d,n) by GLq is again a k-scheme since these action is free.
This is the product of Grassmannians Gr(g) = [[;cq, Gr(q).

Definition 2.3.11. Let Q) be a quiver, M a Q-representation with dimension vector n
and d another dimension vector. Then the quotient of the scheme HomOQ (d, M) by GLq
is a closed subscheme of the product of Grassmannians Gr(g). This subscheme is called
quiver Grassmannian Grq(M).

The induced projection is denoted by
m: Homy(d, M) — Grg(M). (2.3.5)

Since Grq(M)(k) = Grq(M) the scheme Grq(M) is the schematic version of the variety
Grgq(M). In general Grq(M) is not reduced (see Example - in particular not
smooth. The scheme Grq(M) carries more information and is more natural in some
sense than the variety Grq(M). Thus we study the geometry of the quiver Grassmannian
Grq(M) instead of the geometry of the corresponding variety Grq(M ).

For example Schofield [48, Lemma 3.2] and Caldero and Reineke [12 Proposition 6
and Corollary 4] computed the tangent space of the scheme Grq(M). This result was
generalized by [21, Proposition 3.5] to a so called general representation in a module
variety.

Proposition 2.3.12. Let Q be a quiver, M a Q-representation with dimension vector
n, d another dimension vector and U € Grq(M). Then Ty (Gra(M)) = Homg (U, M/U)
and (d,n —d) < dim Grq(M) < (d,n —d) + dimy Extb(M, M).

If M is exceptional, then Grq(M) is empty or smooth with dimension (d,n —d).

In general we get again an open affine covering Up of the product of Grassmannians
Gr(§g) indexed by the d-minors B such that there is an isomorphism

m: Hom(d,n—d) — Us (2.3.6)

of k-schemes and Ug(k) = Up for each d-minor B. Moreover, for each d-minor B =
(B1)ieq, the A-valued points of Ug N Grq(M) are

71'({ ((Ua)ate, (fl)leQO) € Ha€Q1 Mat(dt(a) X ds(a), ) X Mat(n x d, A)

A
Bi(fi) € A V1€ Qo, fyapUa = Mafua) Yo € Q1 }).
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2.4 Ringel-Hall algebras

2.4 Ringel-Hall algebras

The Ringel-Hall algebras of finite-dimensional hereditary algebras over finite fields are
well-known objects (see [47] for an introduction). In this section let k& be the field of
complex numbers C. We consider the Ringel-Hall algebra H(A) of constructible functions
over the module varieties repy(Q, I) of a C-algebra A = CQ/I with a locally finite quiver
@ and an admissible ideal I. This is an idea due to Schofield [49], which also appears
in works of Lusztig [38] and Riedtmann [44]. An introduction to the construction of
Kapranov and Vasserot [34] and Joyce [33], which we are using here, can be found in [7]
Section 4]. For completeness we review the definition.

Let A = CQ/I be a path algebra of a locally finite quiver ) and an admissible ideal
I. A function f: X — C on a variety X is called constructible if the image is finite and
every fibre is constructible. A constructible function f: repy(Q,I) — C on the module
variety repq(@,I) is called GLq4(C)-stable (or GL(C)-stable for short) if the fibres are
GL4/(C)-stable sets.

Let Ha(A) be the vector space of constructible and GLq(C)-stable functions on the
variety repq(@,I). For a constructible and GL(C)-stable subset X C repq(@,I) let
1x be the characteristic function of X in Hq(A). Let H(A) = Pgeneo Ha(A) and
x: H(A) @ H(A) — H(A) with

(Lx % 1y ) (M) = X({N € Gra(M)|N € X, M/N € Y})

for all M € rep., q(Q,I) and all constructible and GL(C)-stable subsets X C repq(Q,I)
and Y C rep.(Q,I). For a dimension vector d let 14 be the characteristic function of
all representations with dimension vector d and Lg(q) the characteristic function of the
semisimple representations with dimension vector d in Hq(A). For an A-module M let
1ps be the characteristic function of the orbit of the module M in Hgijm a(A).

Proposition 2.4.1. Let A = CQ/I be a path algebra of a locally finite quiver Q and an
admissible ideal 1. The vector space H(A) with the product * is a N?°-graded algebra
with unit 1.

This algebra H(A) is called Ringel-Hall algebra. Let C(A) be the subalgebra of H(A)
generated by the set {]ld ‘d e N@o } This algebra turns out to be a Hopf algebra although
H(A) is not a Hopf algebra in general. Let H(A) = [[qcne0 Ha(A) be the completion
of the Ringel-Hall algebra H(A) and C(A) the one of C(A).

Lemma 2.4.2. Let A = CQ/I be a path algebra of a locally finite quiver Q and an
admissible ideal I. The algebra C(A) is a cocommutative Hopf algebra with the coproduct
A: C(A) = C(A)®C(A) defined by A(f)(M,N) = f(M&N) and the counitn: C(A) — C
defined by n(f) = f(0) for all f € C(A) and all Q-representations M and N. For each
dimension vector d and the antipode S of C(A), S (1q) = (—1)|d|]ls(d) and S (Lg(a)) =
(—1)ldiLg.

Moreover, the algebra C(A) is also generated by { Is(a) ‘d € NQO} since the subalgebra
of C(A) generated by this set is a Hopf algebra. The first part of this lemma is known
by Joyce [33] and also stated in [7, Section 4.2].
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Proof of the second part. Since C(A) is a Hopf algebra, (S ® 1)A = nly holds. Using
A(1a) = > cen@o, c<d Ie ® La—c, S(Lo) = 1o and S (La) = — D cen@o, c<a d (Le) * La—c
for d € N?0 with d # 0. By induction we get the following result for each M € repy(Q, I)
with d # 0. Let d’ = (d})icq, be the dimension vector of soc M. Thus 0 < d’ <d and

(15 - 5@a) (M) =3 o0 (D50 * 1ac ) (M)
= eenar ([, 17 (#))
— Hier (Zj;o(_l)j (i)) — Hier 1-1)%=0.

The other equation follows analogously. O
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Grassmannians

In this chapter we can assume for simplicity that all occurring quivers are finite. We
study geometric properties of the quiver Grassmannians Grq(M). After defining the
subschemes Cy; of subrepresentations of M isomorphic to U, we define another class
of closed subschemes of Grq(M) and construct morphisms between them. In the last
section of this chapter we decompose the quiver Grassmannian Grq(M) into irreducible
components in some examples.

3.1 Isomorphism classes

The GLq(k)-orbits in the module variety repq(@) are in bijection to the isomorphism
classes of Q-representations with dimension vector d. For these orbits Proposition[2.3.3]is
well-known, i.e. they are irreducible, locally closed and smooth. The isomorphism classes
of subrepresentations of a ()-representation are in general not orbits of some algebraic
action (see Remark [3.3.6). Nevertheless, these subschemes of the scheme Grgq(M) are
by the following theorem locally closed, irreducible and smooth. The intention of this
section is to prove this theorem and some corollaries.

Let @ be a quiver, M a Q-representation with dimension vector n = (n;)icq,, d =
(di)ieq, another dimension vector and N = (N, Nu)icQo,ac@, & Q-representation with
N; = k% for all i € Qo and N, € Mat(dy(a) X ds(a), k) for all a € Q1. Then the A-linear
maps

GLa(A) = repa(Q)(A). ()ieqw = (o) Nog(hy)

with a commutative k-algebra A induce a morphism GLq — 1epq(Q) of schemes. The
image is denoted by O(N) and

O°(N, M) = (O(N) x Hom®(d,n)) N Hom{y(d, M). (3.1.1)

By Proposition the subscheme O(N) of the scheme repy(Q) is locally closed. By
definition HomOQ(d, M) is closed in repq(Q) x Hom®(d, n). Thus the k-scheme O°(N, M)
is a locally closed subscheme of Hom%(d, M). This parametrizes the Q-representations
isomorphic to N with an injective homomorphism of @-representations to M.

This subscheme O°(N, M) is also G'Lg-stable and thus the quotient

Cny = O°(N, M)/ GLqg (3.1.2)
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3 Geometric properties of quiver Grassmannians

is a well-defined locally closed subscheme of Grq(M) = Hom% (d,M)/ GLq. Thus Cy is
the subscheme of Gryq(M) of subrepresentations of the Q-representation M isomorphic
to N. Dually we define the subscheme Cy of Grgq(M) of subrepresentations of M such
that M /N is isomorphic to N.

Theorem 3.1.1. Let Q be a quiver, M, N Q-representations and d a dimension vector.
If Cn (k) is non-empty in Grq(M ), then it is locally closed, irreducible, has dimension

dimy Homg (N, M) — dimy, Endg(N)
and the scheme Cn is smooth. Moreover,
Ty(Cn) = Homg(N, M)/ Endg(N)

for U € Cn (k). If C\ (k) is non-empty, then it is also locally closed, irreducible, smooth
and has dimension dimy Homg(M, N) — dimy, Endg(N).

In general we do not get that the locally closed subscheme Cy nv = Cny N Cly, is
irreducible. The subvarieties Ci (k) of Grq(M) are defined similarly to the orbits O(N)
in the variety repy(Q). Nevertheless, U € Cy (k) does not imply Cy (k) C Cy(k), since
the set Cy (k) is in general not an orbit of some action and thus Cy (k) is in general not a
union of Cyy(k)’s (see Example [3.1.3)). However, in general for each quiver @, dimension
vector d and Q-representation M,

_ _ '
Gra(M) = UNGTepd(Q)CN(k) N UN’Grepdimed(Q)CN/(k)

Cnn (k). (3.1.3)

- U(NyN')ErePd(Q) XTePgim M —da(Q)

We remark that these unions are not necessarily finite and they do not hold for the
corresponding schemes.

Corollary 3.1.2. Let Q be a quiver, M a Q-representation, d a dimension vector and
U € Grq(M). Then the normal space Ny (Cy/ Gra(M)) is isomorphic to the image of
the first connecting morphism Homg(U, ) of the long exact sequence of the short exact
sequence 0 = U — M — M/U — 0 and the functor Homg(U, —), i.e.

NU(CU/ GTd(M)) = ImHomQ(U, (5)

Moreover, this normal space is a subspace of Ext%QJ)(U, U) for each semiadmissible ideal
I such that M is a (Q, I)-representation. Dually Ny (C(;/ Gra(M)) = ImHomg(8,U).

Before proving the theorem and this corollary we consider some useful lemmas. By
the corollary or by Proposition [2.3.12] we get dimCy < dimy Homg(N,M/N) and
dim C§\4/N < dimy Homg(N, M/N). Using Lemma [2.3.10] both statements of the the-
orem and of the corollary are dual. Thus it is enough to consider the scheme Cp in the
following lemmas. If Cx (k) is empty, there is nothing to prove.
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3.1 Isomorphism classes

Example 3.1.3. Let Q = 1 3 2 and M = (My, My, M,,) the Q-representation such
that My = k? with basis {e1,e2}, My = k? with basis {f1, fo} and M, = (}9). Let
U = <€1>Q, V = <€2,f1>Q,V/ = <62, f2>Q S Gl“(ljl)(M). Then V = V/,

Cu(k) = {(e1 + Ae2)qlA € k},  Cv (k) = {(ea, flolf € Mo, f # 0} C Gry1)(M),

V € Cy(k), V' ¢ Cy(k) and thus Cy (k) N Cy (k) # @ and Cy (k) ¢ Cy (k).

Lemma 3.1.4. Let QQ be a quiver, M, N Q-representations and d a dimension vector.
Then Cn (k) is irreducible in Grq(M).

Proof. Let U,V € Cn(k) and ¢: U — V an isomorphism of @Q-representations. We
consider the homomorphisms

ot)=tw + 1 —thwe: U—M

of Q-representations with yy: U — M,y : V. — M are the canonical embeddings and
t € k. Let W(t) be the image of ¢(t). Thus W (t) is a subrepresentation of M, W(0) =V,
W (1) =U and if dim W (t) = d, then W (t) € Cy (k) for all ¢ € k.

Let {u1,...,uq} be a basis of the vector space U. Then {¢(t)(u1),...,p(t)(uq)}
generates the vector space W(t). Let

M(t) = (p(t)(u1) .. (t)(ua)) € Mat(d x n, k)

be the matrix with columns ¢(t)(u1),...,¢(t)(uq) for all t € k. Now we consider the
following maps M: k — Mat(n x d, k),t — M(t) and rk: Mat(n x d, k) — Z,M
rk(M). Since rk is lower semicontinuous by Example and M is continuous, also
rk oM is lower semicontinuous. Thus X = {t € k|rtk M (t) = d} = {t € k|W(t) € Cn(k)}
is open in k. Since 0 € X this set X is dense in k. Moreover, W: X — Cy(k),t — W(t)
is a well-defined morphism of algebraic varieties. Since X is irreducible, Cy (k) is also
irreducible. O

In the dual case for C}y let ¢»: M/V — M /U be an isomorphism. Then the kernel of
Y(t) =tmy + (1 —t)pmy: M — M /U gives a family of points in Ci (k).

Lemma 3.1.5. Let Q be a quiver, M a Q-representation, d a dimension vector and
N € repy(Q) with Cn (k) is non-empty in Grq(M). Then

dim Cy = dimy Homg (N, M) — dimy, Endg(N).

Proof. By Proposition dim O(N) = dim GLq(k) — dimj, Endg(N). The projection
on the first component

Tyt OO(Nv M)(k) — O(N)(k)7 ((Ua)OtEQN (fi)ier) — (UOé)OAGQ1

has fibres isomorphic to the subset of injective homomorphisms in Homg (N, M). This
set is open and non-empty in the affine space Homg(N, M). Thus

dim Cy = dim O°(N, M) — dim GLg (k)
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= dim O(N) + dimy Homg(N, M) — dim GLq4(k)
= dimy, Homg (N, M) — dimy Endg(N).

This proves Lemma [3.1.5 O

Lemma 3.1.6. Let QQ be a quiver, M a Q-representation, d a dimension vector, N €
Grq(M) and U € Cn(k). Then Ty (Cn) = Homg (N, M)/ Endg(N) and moreover Cn is
smooth.

Proof. As in the proof of Proposition of this thesis in [12, Proposition 6] we
compute the tangent space Ty/(Cn) by fixing a point (U, f) = ((Ua)acq:, (fi)icq,) €
Hom%(d, M)(k) in the fibre 7~ *(U) with 7 defined in Equation (2.3.5)), computing the
tangent space T of O(IN, M) at this point and factoring it by the image of the differential
of the action of GLq.

Let n = (n;)icq, be the dimension vector of M. Without loss of generality we assume
M = (Mi, My)ieqoacq, With M; = k™ for all i € Qo and M, € Mat(nyq) X Ny(a), k)
for all @ € Q1. To compute T, we perform a calculation with dual numbers. Since
repq(Q) x Hom(d, n) is just an affine scheme, an element of the tangent space at the point

(U, f) looks like (Ua +€Va)acq:, (fi +€9i)icqo), With (Va)aeqn, (9i)icq,) € repa(Q) x
Mat(n x d, k). The conditions for this to belong to the tangent space T are:

Mo (fsa) +€9s()) = (fia) + €94(a)) (Ua + €Va),
H(hi)ngO € Mat(d x d, k:) : (Ua + €Va)(1 + 5h5(a)) = (1 -+ Z:‘ht(a))Ua
for all @ € @1, which yields the conditions
Magsiay = fia)Va + gi(a)Uas (3.1.4)
3(hi)ieq, € Mat(d x d, k) : Unhy(a) + Va = hyiayUa

for all @ € Q1. The differential of the action of GLq is computed by applying the
definition of the action to a point (1 + ex;)icq, of T1 GLq:

(1 + gmi)iGQo((Ua + EVO&)QEQN (fl + Egi)iEQo)
:((Ua + E(Va + $t(a)Ua - Uams(a)))aeQu (fz + E(Qi - fixi))iEQo)-

By the calculation above, we get the following formula for the tangent space Ty (Cn):
N . Magsa) = fi(a)Va + 9t(a)Uas
{((VQ)QEQN (gZ)ZEQO) Va € Ql : Va — ht(a)Ua - Uahs(a)
{((xt(a)Ua - Uaxs(a))atea <_f2xz)z€Qo)}
with (Vo)acg, € repy(Q), (9i)icg, € Mat(n x d, k), (hi)icg, € Mat(d x d,k) and
(xi)iEQo c T1 GLd.

To understand this conditions better, we can assume without loss of generality the
following:

(3.1.5)

/

Ma:<U0aV[{/i>) fzz((l))7 gl:<§fl)
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for all & € 1 and 7 € Q9. Then Condition (3.1.4) reads

! !
Uy U ) Is(a) 1)1/ 9t(a)
« @ — _|_ l ]
( 0 Wa (9;,@1) (6) Va i) @

yielding the two conditions

Uagg(a) + Ut/xg;/(a) =Va+ gz(a)Ua (316)
Wads(a) = Jt(a)Ua (3.1.7)

for all & € 1. The subspace to be factored out reads

{((xt(a)Ua — UaZs(a))ac@s (76“ )ier)} )
Let
<(ht<a>Ua ~Uoha(@) eq, - (£ >ieQ0) € Ty (Cw)

with (hs)ieq, € Mat(d x d, k), (¢)icq, € Mat(d x d, k) and (g )icq, € Mat((n —d) x

d, k). Using Equation (3.1.6) and (3.1.7) holds (gi;,hi) o € Homg (U, M). Thus the
i 1€Q0

Formula (3.1.5)) yields the following short exact sequence

0 — Endg(U) — Homg (U, M) — Ty (Cn) — 0

defined by
(hi)iGQO = ( )iEQo’ (!];/ >i€Q0 = ((ht(a)Ua - Uahs(a))ate ) <g£l)iEQo>
This implies together with Lemma the statement. ]

Now we are able to prove Corollary

Proof of Corollary[3.1.2. Let 0 — U — M - M/U — 0 be a short exact sequence
and I a semiadmissible ideal such that M is a (Q, I)-representation. Then we use the
following part of the corresponding long exact sequence.

Homg (U,n)
0—— Endo(U) —— Homg (U, M) ——2"", Homg (U, M/U) j
Homg (U,6) (318)

L Ext (o (U, U).

By the proof of Lemma [3.1.6

o ) - T

= Im Homg(U, 9).
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The following proposition gives a homological condition on a smooth point U in

Gra(M) such that the set Cy (k) is an irreducible component of Grq(M).

Proposition 3.1.7. Let Q be a quiver, M a Q-representation, d a dimension vector
and U € Grq(M).

1. The linear map Homg(U,): Homg(U, M) — Homg(U, M /U) with the canonical
projection w: M — M /U is surjective if and only if U is a smooth point in Grq(M)
and Cy (k) is an irreducible component of Grq(M).

2. The linear map Homg(t, M/U): Homg(M,M/U) — Homg(U, M/U) with the
canonical embedding v: U — M is surjective if and only if U is a smooth point

in Gra(M) and C;WU(/{:) is an irreducible component of Grq(M).

Moreover, these irreducible components have dimension dimy Homg (U, M/U).

By Example [3.1.10| for a non-smooth point U the set Cy7(k) can be also an irreducible
component of Grq(M). Before proving this proposition we give a corollary.

Corollary 3.1.8. Let Q, M, d, U, +:U — M and w: M — M/U as in Proposi-
tion[31.77
1. If Grag(M) is smooth, then Homqg (U, ) is surjective if and only if Cy(k) is an
irreducible component and Homg(¢, M/U) is surjective if and only if CgWU(k) is
an irreducible component.
2. Let I be a semiadmissible ideal such that M is a (Q,I)-representation.
If Ext%QJ)(U, U) = 0, then Cy(k) is an irreducible component of Grq(M). If

Extq, n(M/U,M/U) =0, then Cy

3. If the maps Homg (U, 7) and Homg(¢, M/U) are both surjective, then Cy prju(k)
s an irreducible component.

4. Especially if M = U &V for Q-representations U and V', then Cyy (k) is an
irreducible component with dimension dimy Homg(U, V).

Moreover, all points in these sets Cy rry(k) are smooth in Grq(M).

By Proposition [2.3.12| the quiver Grassmannian Grq(M) is empty or smooth if M
is exceptional. This case is discussed in Section [3.5] in more detail. After proving the
proposition we show Part [3| and [4] of this corollary. The other parts follow immediately.

(k) is an irreducible component of Grq(M).

Proof of Proposition[3.1.7 Since Part [2]is dual to Part [I| by Lemma[2.3.10] it is enough
to prove Part (1l We use the again the exact sequence in (3.1.8). By Theorem holds

dimy Homg (U, M/U) =dimy Ty (Gra(M)) > dimy Grq(M) (3.1.9)
> dim Cy (k) = dimy, Homg (U, M) — dimy, Endg(U).

Thus if Homg (U, 7) is surjective, we get dim Cyy(k) = dimy Grq(M) and U is smooth in
Gra(M). Moreover, Cy(k) is dense in one irreducible component of Grq(M) and thus
Cu (k) is one irreducible component.

If the point U is smooth in Grq(M) and Cy (k) is an irreducible component, Equa-
tion (3.1.9) yields dimy Homg (U, M /U) = dimy Homg (U, M) — dimy, Endg(U) and thus
Homg (U, ) is surjective. O
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3.2 Morphisms induced by homomorphisms

Since each regular local ring is an integral domain (see [2, 11 Dimension Theory]) we
get the following lemma.

Lemma 3.1.9. Let U be a smooth point of a projective variety X. Then U lies in a
unique trreducible component of X.

Proof of Corollary[3.1.8 Using Lemma we get in Part |3 that the sets Cy(k) and
Carju (k) coincide. Since the sets Cyy (k) and Cpy/y (k) are locally closed, the set Cy a1 (k)

is dense in this irreducible component (see [31, II, Exercise 3.18]).

For Part [4) choose ¢v: U — M and w: M — V to be the canonical embedding and
projection induced by the isomorphism M = U @ V. Then the exact sequence 0 — U =
M 5V — 0 splits and we apply Part ]

Example 3.1.10. Let @ be the following quiver

«

)

(e]

and M = (M,, M,) the Q-representation with M, = k?, basis {e1, e2} and M, = (99).
Let U = (ea)q € Gry(M). The exact sequence 0 — U — M > M/U — 0 is described in
Figure Then Homg (U, m): Homg (U, M) — Homg(U, M/U) is not surjective and

€1
0—(e2) — | o] S (e1)—0
€2

Figure 3.1.1: The exact sequence 0 - U — M — M /U — 0.

Gr1(M) = {U} = Cy,pyu(k) as varieties. Since Cy is smooth and Gry(M) is not smooth
this equation holds only for varieties and not for schemes.

3.2 Morphisms induced by homomorphisms

In this section we construct to each homomorphism of Q)-representations an isomorphism
of closed subschemes of the corresponding quiver Grassmannians.

Let @ be a quiver, n and d dimension vectors and M = (M;, My )icQo,acQ, & @-
representation with M; = k™ and the standard basis {ej,..., e, } for all i € Qp. Let
V' = (Vi)ieq, be a subrepresentation of M with basis {ei,...,e;} of V; for all i € Q.
The maps

Ya: Mat((n—t) x (d—1t),A4) x GLg(A) — Mat(n x d, A),
((C)icqo, (91)icqo) — ((IS" co) 951>i€Q0
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3 Geometric properties of quiver Grassmannians

for a commutative k-algebra A induce a morphism ¢: Hom(d — t,n — t) x GLg —
Hom(d,n) of schemes. Let

UV, M) = (repg(Q) x Im1p) N Homdy(d, M). (3.2.1)

This is GLg-stable. For each d-minor B the scheme 7(U3(V, M)) N Ug with the projec-
tion 7 defined in Equation is by the isomorphism ng defined in Equation
isomorphic to a closed subscheme of Hom(d,n —d). Thus this scheme UJ(V, M) is a
closed subscheme of 1"—1077122(d7 M) and parametrizes subrepresentations of the Q-repre-
sentation M with an injective homomorphism of Q-representations to M such that the
image contains the subrepresentation V' of M. The geometric quotient Ug(V, M) =
UY(V, M)/ GLq of the scheme U3(V, M) by the group GLg is a well-defined closed sub-
scheme of Grq(M) = HomOQ(d, M)/ GLq .

This can be generalized to each pair V, M of Q-representations with an embedding
V < M. Moreover, by the canonical embedding the scheme Grq(V) is a closed sub-
scheme of Grq(M).

In Corollary we study the tangent space of the scheme Ug(V, M). First we show
that each homomorphism f: M — N of Q-representations induces an isomorphism of
closed subschemes of this form of the corresponding quiver Grassmannians.

Proposition 3.2.1. Let Q) be a quiver, d a dimension vector and f: M — N a homo-
morphism of Q-representations. Then

fe: Ua(Ker f,M) = Gra—dgimker f(Im f), U — f(U),
f*: GTd—dimKerf(Imf) —>Z/{d(Kerf, M), U— fﬁl(U)

are both well-defined morphisms of schemes, which are inverse to each other.

Proof. Let n = (n;)icq, € N?°. Without loss of generality let M = (M;, M) ic0p.acq,
and N = (N, No)icQoacq, with M; = k™ and N; = k% for all i € Qo, M, €
Mat(14(q) X Ng(a); k) and Ny € Mat(n;(a) X n’s(a),k) for all @ € @1, t = dimKer f,
Ker f = (Vi,Va)ieQo,acq, and the linear maps f;: M; — N; are described by the ma-
trices (8 I"lb*”) for all © € Qp. Thus let M, = (‘6‘1 %?) for all « € Q1. Let A be a
commutative k-algebra.

For each ((Ua)acq,, (Ci)icq,) € Hom%(d —t,Im f)(A) we get

((\ga MQUC:(a) )ate , (Iff o )ie%) € U(Ker f, M)(A)

with f~'(Im C;) = Im (161' CO> for all 4 € Qg. Thus this induces a morphism of schemes

F*o Homy(d — t,Tm f) — UJ(Ker f, M),
which factors to the morphism f*: Grq_¢(Im f) — Ug(Ker f, M) with

(f)a: Gra_¢(Im f)(A) = Ug(Ker f, M)(A), U — f~1U)
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3.2 Morphisms induced by homomorphisms

Homy(d — t,Tm f) —— 3 (Ker f, M)

l l fe
Grg—t+(Im f)— - = — - »Uq(Ker f, M)——Ji\*—%Grdt (Im f)

Figure 3.2.1: A commutative diagram for the proof of Proposition

as in the commutative diagram in Figure [3.2.0]

Now we construct an inverse map of the morphism f*. For a commutative k-algebra
Alet (Ua)acos, (hi)icg,) € US(Ker f, M)(A). Thus there is a tuple (g;)icg, € GLa(A)
of invertible matrices, a representation (U),)acq, € repq—_¢(Q)(A) and a tuple (C;)icq, €

Hom®(d —t,n—t)(A) of matrices such that Uy = gy(a) (VO‘ MaCsa) ) g;(}x) for all € Q1

0o U,
and h; = (I(t)i (E‘)z> gi_1 for all © € QQg. These matrices g; and C; are not unique for each

i € Qo. Nevertheless, the image of C; is uniquely determined by h; for all i € Qp. And
so this defines a well-defined morphism (fi)4: U3(Ker f, M)(A) — Gra_¢(Im f)(A),

(o (5755 )2, (2237, ) 0

This morphism factors again to the morphism
ferUa(Ker f, M) — Gra_t(Im f), U — f(U).
Moreover, these morphisms f* and f, are inverse to each other. O

If f: M — N is an injective homomorphism of Q)-representations, then this induces
a closed embedding f.: Grq(M) — Gra(N),U — f(U). If f: M — N is surjective,
then f*: Gra—dimker f(N) — Gra(M),V — f~1(V) is again a closed embedding. In
Example [3.2.3] we study an example.

Corollary 3.2.2. Let QQ be a quiver and M, U and V Q-representations such that
dimU=d and V CU C M. Then

Ty (Ua(V, M)) = Homg (U/V, M/U).

By Proposition the scheme Uy (V, M) is isomorphic to the quiver Grassmannian
Gra—+(M/V) with dimV = t and thus this corollary is clear by Proposition
Nevertheless, we give an independent proof. Using the canonical projection U — U/V
of Q-representations the normal space Ny (Ug(V, M)/ Grq(M)) is isomorphic to the quo-
tient space

Homg(U, M/U)/Homg(U/V, M/U).

Moreover, Ny (Gre(U)/ Gry(M)) = Homg(V,M/V)/Homg(V,U/V) holds by the em-
bedding U/V — M/V.

41



3 Geometric properties of quiver Grassmannians

Proof. Without loss of generality let dimM = n = (n;)ieq,, dimU = d = (d;)icq,,
dimV =t = (t;)icq, and M = (M;, My)icQy,acq, a Q-representation with M; = k™
and basis {e,...,ep,} for all i € Qo and

M, = (an us ) € Mat ((d+ (n — d))y) % (d + (0 — d))y(a), ).,
Uy = (‘ga s ) € Mat (6 + (d = £))ya) ¥ (&4 (d — £))y(a, %)

for all @ € Q1. Moreover, we assume that U = (U;)icq, and V = (V;)icq, are the
subrepresentations of M with the basis {e1,...,eq,} of U; and {ey, ..., e} of V; for all

1€ Qo.
We use the proof of Lemma [3.1.6f Thus ((Ua)ate, (Igi ) o ) € 7 1(U) with 7
1€Qo
defined in Equation (2.3.5). Let ((Ya)ae@:: (9i)icQ,) € repq(Q) x Homy(d, M). The

COndlthnS fOI'
€ ’ (( 0 ) Z) >
<( )O! @ 0 1€Qo

belonging to the tangent space T of U3(V, M) are (see Equation (3.1.4)):

Mags(a) = (Idtg‘” ) Yo + guayUa

and there exist h; € Mat(d; x d;, k), D} € Mat((d; —t;) x (d; —t;), k) and D; € Mat((n; —
d;) x (d; — t;), k) for all i € Qg such that

I; 0
(Igi) +egi = <(Igi) +€< 0 D£>> (14, +€hi)
0 D;
for all i € Qp. With g; = (j) for all i € Qg this yields:

Ua9s(a) + Uads(a) = Ya + Gy Uas Wabi(a) = 9i(e)Uas 9i = (OD/) +hi, gi = (0Di)

with h; € Mat(di X d;, k), D; S Mat((di —ti) X (d, —ti), k’) and D, € Mat((ni —di) X (dZ —
ti), k) for all i € Q. For each i € Qo, g; and D} we can choose some h; € Mat(d; x d;, k).
So we can drop the third condition.

As in the proof of Lemma the vector space Ty (Ug(V, M)) is isomorphic to

{<(Ua9§<a) = iU + Uégé’m))aegl () zer> ‘Wag ) zogé'( ))Ua’}
{((«Tt(a)Ua - Uaxs(a))ate ) (_gl )ieQ())}

with (z;)icq, € T1 GLa(k). Setting z; = g, for all ¢ € Qo this vector space is isomorphic
to

{(Di)icg, € Mat((n —d) x (d —t),k)|Wq (0 Ds(a) ) = (0 De(a) ) Un }

42



3.3 Semicontinuity and group action

Using the definition of U, for all a € Q)1 we get
Ty Ua(V, M)) = {(Di)ico|WaDs(a) = Di(a)Xa} = Homg(U/V, M/U).
O

Example 3.2.3. Let Q = ({0}, {a}) be the quiver defined in Example (see also
Section [3.6.3)). For each n € N let M(n) = (M(n)s, M (n)a) be a Q-representation with
M(n)o = k™ and M (n), the nilpotent Jordan block of size n. Then for n > 0 the Q-
representation M (n) is indecomposable, nilpotent and up to isomorphism unique. For
d,n € N with d < n exists an injective homomorphism ¢: M(d) — M (n). For such an
embedding the image is unique and M (n)/M(d) = M(n — d).

For d,n € N with d < n the variety Gry(M(n)) contains a unique element, but the
schemes Gry(M(n)) are in general pairwise non-isomorphic.

Let n,m € N and f: M(n) — M(m) a homomorphism of @Q-representations with
Ker f = M(t). Then by Proposition the induced morphism f,: Ug(M(t), M (n)) —
Grg—¢(M(n —t)) is an isomorphism of schemes. Moreover

Tay(a)Ua(M (1), M(n))) = Homg(M(d — 1), M(n — d))
= Homg(M(d —t), M(n —t)/M(d —t)) = Trja—p (Gra—(M(n —t))).
Let t,n € Nwith ¢t <n and g: M(n) — M(n—t) a surjective homomorphism of Q-repre-
sentations. Then the induced morphism ¢*: Grg_¢(M(n —1t)) = Grg(M(n)) is a closed

embedding of schemes. Moreover, for all d,d’,n,n’ € N withd <dandn' —d <n—d
there is a closed embedding of schemes Gry (M (n')) — Gry(M(n—d+d')) — Gra(M(n)).

3.3 Semicontinuity and group action

There are some well-known results for the module variety repq(Q). By Proposition m
rank functions on the module variety repy(Q) are lower semicontinuous and dimensions
of homomorphism spaces of Q)-representations are upper semicontinuous. In this section
it turns out that this is also true for the quiver Grassmannians Grq(M ). In the last part
we study a canonical operation of the automorphism group Autg (M) of the Q-represen-
tation M on the quiver Grassmannian Grq(M). This is useful for the computations in
Section

Proposition 3.3.1. Let Q be a quiver, M = (M;, My)icQo,0cQ, @ Q-representation, d
a dimension vector and f € Q1. Then the maps

I‘kg: Grd(M) — 7, (Ui)ier — rk <M5|Us(6) : Us(ﬁ) — Ut(B))
Eﬁt Grd(M) — Z, (Ui)iEQo — rk ((M/U)g : MS(B)/US(,B) — Mt(ﬁ)/Ut(/g))
are lower semicontinuous.

Using Lemma [2.3.10] both statements are dual. Thus it is enough to consider the case
of the map rkg. In the proof of the proposition we use the following lemma.
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3 Geometric properties of quiver Grassmannians

Lemma 3.3.2. Let d,m,n € N withd <n and M € Mat(m xn, k). Forvy,...,vq € k"
let (v1...vq) € Mat(n x d, k) be the matriz with columns vy, ...,vq. Then the map

tkar: Gr(y) = Z, (v, ..., vq) = tk(M - (v1...vq))
is well-defined and lower semicontinuous.

Proof of Proposition[3.3.1. Let n = (n;)icq, be the dimension vector of M. Then the
map rkg: Grq(M) — Z factorizes in the following way
s s rkyy
Gra(M) < Gr (2) =% Gr (Z_;gjjj) 7z
with the canonical projection my5). These maps are all continuous or lower semicontin-
uous. O

Proof of Lemma[3.3.3 Let U € Gr () and v1,...,vq and v{,...,v}; bases of U. Then
there exists g € GLg(k) with (v1...v4) - g = (v]...v}). Thus
tk(M - (v1...vq)) = k(M - (v1...vq9) - g) = k(M - (v]...0}))

and the map rk is well-defined.

Now we use the open affine covering {Ug}p of Gr () defined in Section Let B
be the d-minor of the first d rows and wp the isomorphism defined in Equation .
Moreover, we define the following linear map

X: Mat((n — d) x d, k) — Mat(m x d, k),C ~ M ().

We consider the commutative diagram in Figure [3.3.1

Mat((n — d) x d, k) T; UgC Gr(l)—7
\ A
\XHMat(m x d, k) vf”rk/

Figure 3.3.1: A commutative diagram for the proof of Lemma

To prove that rkys is lower semicontinuous it is enough to show this for the map
rkas |vg: Up — Z. This map is the concatenation of the continuous map X7r§1 and the
lower semicontinuous map rk: Mat(m x d, k) — Z (see Example [2.3.1])). O

Proposition 3.3.3. Let Q be a quiver, M, N Q-representations and d a dimension
vector. Then the maps

dimy Homg(—, N): Grg(M) — Z,U — dim; Homg (U, N)
dimy Homg (N, —): Grq(M) — Z,U — dimy Homg(N,U)
dimy, Homg(—, N): Grq(M) — Z,U + dimy, Homg(M /U, N)
dimy, Homg (N, —): Grq(M) — Z,U + dimy, Homg (N, M/U)

are upper semicontinuous.

44



3.3 Semicontinuity and group action

Some of the maps defined in the following proof are used again in the proof of Theo-

rem .41

Proof. We use the following result of Crawley-Boevey [17, Section 3, Special Case]: Let
X be a variety, V a vector space and for all x € X let V, be a subspace of V' such that
the set {(z,v)|v € V;} is locally closed in X x V. Then the map X — Z,z — dimy V,
is upper semicontinuous.

Let m = dim M, M = (M;, Ma)icQy,acq, With M; = k™ for all i € Q¢ and M, €
Mat(1my(q) X My(a), k) for all a € Q1, n =dim N, N = (N;, Na)icQo,acq, With N; = k™
for all i € Qo and N, € Mat(ny) X Ny, k) for all a € Q1, 11 Grg(M) — Gr(g)
the canonical inclusion and {Ug}p the affine open covering of Gr (') defined in Sec-
tion

For each U € Grq(M) let Vi7 be the subspace {f € Mat(nxm, k)| f|y € Homg(U, N)}
of Mat(n x m, k). We show that the set

{(U, f) € (Gra(M)NUs) x Mat(n x m,k)|f € Vi } (3.3.1)

is closed in (Grq(M) N Up) x Mat(n x m, k) for each B. The maps used for this are
summarized in the commutative diagrams in Figure and

Gra(M)S : »Gr (1)
Gra(31) N UgCtSa0s
™
Mat((m — d) x d, k) ———» Mat((m; — d;) x d;, k)
v Y
repq(Q) e Mat(dyg) X dg(g), k)

Figure 3.3.2: A commutative diagram for the proof of Proposition and Theo-
rem with j € Qo and B € Q.

Without loss of generality we assume B = (B;);cq, is the d-minor such that B; is the
d;-minor of the first d; rows for all i € Qo. Thus the isomorphism 7g: Mat((m — d) x
d, k) = Ug is given by Equation (2.3.3). We define the following linear maps

v Mat((m = d) x d.b) = 1epa(@). (Chicay = () Ma- ()
(

mg: repg(Q) — Mat(dy(g) X dy(s), k), (La)acq: + L,

Ty Mat((m — d) X d, k) — Mat((mj - dj) X dj, k}), (Ci)iGQo — Cj,
¢p: Mat((m —d) x d, k) x Mat(n x m, k) — Mat(nyg) X dyg), k),
Iy, Iy
((Cidieus (Flicas) = Nafupy (&2 ) = Fupy (01 ) ms(Cilieqn)
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3 Geometric properties of quiver Grassmannians

(L|Grd(M)mUB 0 )
id

(Grqg(M)NUg) x Mat(n x m, k)¢ Up x Mat(n x m, k)

™ 0
&3
Mat((m — d) x d, k) x Mat(n x m, k)
[0 l(@a)QEQl
Hate Mat(nt(a) X ds(a)a k)

Figure 3.3.3: A commutative diagram for the proof of Proposition m

for j € Qg and 8 € Q1. Moreover, we get the following morphisms of varieties
U: Grq(M)NUp — 1epa(Q),U — g u(U),
O: (Grqg(M)NUp) x Mat(n x m, k) — Hate Mat(nt(a) X ds(a), k),
(U, ) = (palmg (V) ) peo,

Let (U, f) € (Grq(M) NUp) x Mat(n x m, k). Since U is a subrepresentation of M,
there is some tuple (ga)ac@, € [laeq, Mat(dia) X ds(a), k) such that

I, 1,
M 5(8) — t(8)
B <7rs<ﬁ>7rBlL(U) ﬂt(B)ﬂglL(U) 9p

for each 8 € Q1. This equation shows gz = mg¥(U) for each f € Q. Thus the left
hand side of the diagram in Figure is commutative. Using the hole diagram in

Figure we get f € Vi if and only if gog(wglL(U),f) =0 for all 5 € Q1.

< Ta, ) >

k(8 rora ) Jems(8) Fo) Ns(s)

TrB\I/(U)l < Lay gy > JMﬂ JNB
kdt(ﬁ)( 7T::(B)”];H(U) i) fe(p) Nt(ﬁ)

Figure 3.3.4: A not necessarily commutative diagram for f € Vi with 5 € Q.

Thus the set defined in Equation is ®~1({0}) and closed in (Grq(M)NUg) x
Mat(n x m, k). Since dimg Vi = dimg Homg(U, N) + > e, (mi — di)n; for all U €
Grq(M), the map dim; Homg(—, N) is upper semicontinuous.

Using the subset {(U, f) € Grq(M) x Mat(m x n, k)|f € Homg(N,U)} of Grq(M) x
Mat(m x n, k) and Lemma the same holds in the other cases. O

46



3.4 Connections to degenerations of representations

The group GLq(k) operates on the variety repy(Q@). The orbits under this action are
the isomorphism classes of Q-representations in repq(Q@). By Remark there is no
such natural action for Grq(M), but by the following proposition the group Autg (M)
operates on Grq(M).

Proposition 3.3.4. Let Q be a quiver, M a Q-representation and d a dimension vector.

Then the group Autg(M) operates on Grq(M). This operation stabilizes Cn(k), Cn(k),
Cy (k) and Cy (k) for all Q-representations N.

Proof. The operation of Autg(M) on M induces one on Grq(M). If U = N with
U € Grq(M) and g € Autg(M), then gU = N.
Let g € Autg(M). Since pg: Gra(M) — Gra(M), U — ¢ 'U is continuous and

Cn (k) is closed, go;l (Cn(k)) = gCn (k) is also closed. So by Cn(k) = gCn (k) C gCn (k)
holds Cn (k) C gCn(k). Thus Cy(k) = gCn (k) by symmetry. O

Using the following example the number of Autg(M)-orbits of the quiver Grassman-
nian Grq (M) is not necessarily finite and do not describe the subschemes of isomorphism
classes.

Example 3.3.5. Let Q be the following quiver
1 2 3
ANZ
4

and M = (M, Mo, M3, My, M, Mg, M) the Q-representation with My = My = M3 =
k, My = k*, My = (}), Mg = (1) and M, = (9). Then Autgo(M) = k and
Gr(0,0,0,1)(M) = Py, although Cg (k) = Gr(g,0,1)(M).

Remark 3.3.6. In general there is no algebraic group G with an action on the quiver
Grassmannian Grq(M) such that the orbits are the subsets Cyr (k).

We assume there is such a continuous action in general. In this case the closure of an
orbit is the union of some orbits (see proof of Proposition . However, this is not
true in Example [3.1.3

3.4 Connections to degenerations of representations

Let @ be a quiver, M a Q-representation and d a dimension vector. Then we study in
this section the relations of the topology of the module variety repq(Q) and the quiver
Grassmannian Grq(M). For example we can guess

Cy(k) CCy(k) & OU) C OV) (3.4.1)
for U,V € Grq(M) or even

Cunyu (k) € Cyyv (k) < OU) COV)NOM/U) € O(M/V) (3.4.2)
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3 Geometric properties of quiver Grassmannians

for U,V € Grq(M). Only one of the implications in Equivalence (3.4.2)) is true by the
following theorem, the other is wrong by Example

Theorem 3.4.1. Let Q be a quiver, M a Q-representation, d a dimension vector and
U,V € Grg(M) with U € Cy (k). Then O(U) C O(V) in the variety repq(Q).

This is even stronger than the first part of Equivalence (|3 . However by using the
dual, adding trivial implications, taking the negation and using the definitions we get
the following two corollaries. Thereafter we prove the theorem.

Corollary 3.4.2. Let Q be a quiver, M a Q-representation, d a dimension vector and
U VeGraM).

o [fU € CM/V( ), then O(M/U) C O(M/V).

e IfCy(k) C Cy(k), then O(U) C O(V) and szM/U( ) C C§\4/V(k)’ then O(M/U) C

O(M/V).

e Let U 2 V. IfU € Cy(k), then O(V) ¢ OU) and if U € CM/V(k), then
O(M/V) L O(M/U).

o Let U2 V. IfOU) C O(V), then Cy (k) € Cu(k) and if O(M/U) C O(M/V),
then Cj\/[/v ) € CM/U

Corollary 3.4.3. Let QQ be a quiver, d and n dimension vectors, M a QQ-representation
with dimension vector n and U € Grq(M).
1. If the orbit O(U) is closed in the topological space Uy cryanO(V) € repa(Q),
then Cy (k) is also closed in Grq(M).
2. If the orbit O(M/U) is closed in the topological space Uy g, anyOM/V) <
rep,_q(@), then CM/U( ) is also closed in Grq(M).

This corollary does not mean that all closed orbits are of this form.

Proof of Theorem[3.4.1. We use the notations as in the proof of Proposition [3.3.3] The
maps used in this proof are again summarized in the commutative diagram in Fig-
ure Let B be again the d-minor of the first rows. Without loss of generality we
assume that U € Ug.

Let W = (Wi)ieq, € Gra(M) N Ug. Then W is a subrepresentation of M and thus
by (Wi, Ma|w, eyt W) = Wi(a))ieQo.ac@, canonically a Q-representation. The tuple
U(W) is a point in repgq(Q) and thus by (k% 7, ¥ (W))icqo.aco, again a Q-represen-
tation. Using the left hand side of the diagram in Figure [3.3.4) with W = U, we get
that this Q-representations W and W (W) are isomorphic and ¥(W) € O(W) for each
W e Grq(M)NUs.

Since ¥ is continuous the set U~! (W) is a closed subset of Grq(M) N Up and

i (W) U (Grq(M)\Us) a closed subset of Grq(M) containing Cy (k). This means
(Cv(k) N UB> c ! (W) Thus ¥(U) € O(V) and O(U) € O(V). 0
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3.4 Connections to degenerations of representations

In the following example we give a quiver @), Q-representations M, N and N’, a di-
mension vector d and subrepresentations U, U’ and V of M such that there are exact
sequences

0-U—-V U —-0and0— N — M/V - N —0, (3.4.3)

M/(U+U")= N& N and Cygr von' (k) € Cy (k). In this case O(U ®U’) C O(V) in
repg(Q) and O(N @ N') € O(M/V) in repgim ar—a(@)-

Example 3.4.4. Let ) be the following quiver

812
and M = (My, My, M, Mg) the Q-representation such that My = k%, My = k2, M, =

00 0000
(§§> and Mg = (égg(g)). Let {e1, e, e3,e4} be the canonical basis of My and {f1, fo}
of Ms. This representation M is described by one picture in Figure We define

the following sub- and factor representations of M. Let U = (fa)q € Gry,1)(M),
U' = (e2)q € Grio0)(M), V = (e1, fi)q € Grz1)(M), W = (e2,e4, f1)q € Gr(z1)(M),
N = M/(e2, f1, f2)o and N’ = M/(e1, f2)g. Then these representations are described

€1
% fo €2
M = () f1 7] fol, U= al , U' = Bl )
ol e | ‘s ‘3
€3 €4
€1
B €2 fi

Figure 3.4.1: The Q-representations M, U, U’', V, W, N and N'.

by the pictures in Figure There are exact sequences as in Equation (3.4.3]). Using
Theorem for the variety Gr(z 1)(M) holds

Cuev Non' (k) = {(e2, fo + puf1)glu € k},
Cvmyv (k) = {{e1 + Aes, f1)glA € k},
Cwayw (k) = {W} = {(e2, e4, fi)q}

and Gr(z1)(M) = Cugv',Non' (k) U Cyaryv (k) U Cwaryw (k). Since dimCygp = 1 =
dim Cy the irreducible components of Gr(s1)(M) are Cygu non' (k) and Cy,pr v (k).

Especially Cuaur non' (k) € Cv UCyy v (k), O(U @ U')(k) € O(V)(k) in the variety
rep(s,1)(Q) and O(N © N’)(k) C O(M/V)(k) in rep; 1)(Q)-
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3 Geometric properties of quiver Grassmannians

By some calculations dimy Homg(U @ U’, N & N') = 2, dimy, Homg(V, M/V) = 1 and
dimy Homg (W, M /W) = 3. Thus the smooth part of Grs 1)(M) is Cy,pr/v (k).

3.5 Representation finite case

Let @ be a quiver, d a dimension vector and M a Q)-representation. The representation
M is called sub-d-finite if the set of isomorphism classes of subrepresentations of M with
dimension vector d is finite. M is called factor-d-finite if the set of isomorphism classes
of factor representations of M with dimension vector dim M — d is finite.

Example 3.5.1. If I is an admissible ideal such that rep(Q, I) is representation finite,
then M is sub- and factor-d-finite for each (Q, I)-representation M and each dimension
vector d. In this case for each dimension vector d the decomposition of the module
variety repgq(Q,I) into irreducible components is given by repy(Q,1) = Uprerr, O(M)
with Mg the set of elements M € repq(@,I) such that O(M) is maximal under the
degeneration order.

Using Equation (3.1.3)), Theorem yields the following corollary.

Corollary 3.5.2. Let QQ be a quiver, d a dimension vector and M a Q-representation.
1. If M is sub-d-finite, then each irreducible component of Grq(M) is of the form
Cn(k) with some Q-representation N .
2. If M is factor-d-finite, then each irreducible component of Grq(M) is of the form
C\ (k) with some Q-representation N.
3. If M is sub- and factor-d-finite, then each irreducible component of Grq(M) is of
the form Cn n'(k) with some Q-representations N and N'. Especially Cy n+ (k) is
irreducible in this case.

Using Proposition [3.1.7] we get the following proposition.

Proposition 3.5.3. Let QQ be a quiver, d and n dimension vectors, M a @QQ-representa-
tion with dimension vector n and U € Grq(M).
1. If M s sub-d-finite, then the set

Cu(k)

UUEGrd(M), Homg (U,m) surjective

with the canonical projection w: M — M /U is dense in the smooth part of Grq(M).
2. If M is factor-d-finite, then the set

(F)

C/
LJUeGrd(M)7 Homg (¢,M/U) surjective M/U

with the canonical embedding v: U — M is dense in the smooth part of Grq(M).
3. If M is sub- and factor-d-finite, then the set

C k
UUGGrd(M), Homg (U,m), Homg (¢,M/U) both surjective U’M/U( )

is dense in the smooth part of the quiver Grassmannian Grq(M).
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3.5 Representation finite case

Example 3.5.4. Let Q =152, d = (1,1) and M = (M, My, M,) a Q-representation
such that M; = k? with basis {e1,ea}, My = k with basis {f} and M, = (10). Let
U= <€1>Q, V= <€2,f>Q S GI“(LI)(M). Then

Gr(1,1)(M) = Cy(k) UCy (k) = Cy (k) = Cyyy (k).

Moreover, the quiver Grassmannian Gr(; 1)(M) is smooth. Let 0 — U EME MU

0and 0 — V % M ™ M/V — 0 be the canonical short exact sequences. Since the first
one splits, Homg(U,my) and Homg(¢y, U) are surjective, but Homg(V, M/V) is not
surjective since Homg(V, my) vanishes and Homg(V, M/V') is one dimensional. Thus
the set Cy (k) for Part (1| of Proposition is a proper subset of the smooth part of

GI‘d (M )
Using Theorem and Corollary we get the following proposition.

Proposition 3.5.5. Let Q be a quiver, d and n dimension vectors, M a Q-representa-
tion with dimension vector n and U € Grq(M).
1. If M is sub-d-finite and the orbit O(U) is maximal in the variety

Uy ey @0V) € repa(@),

then Cy (k) is an irreducible component of Grq(M).
2. If M is factor-d-finite and the orbit O(M/U) is mazximal in the variety

UVeGrd(M)O(M/V) C repp_q(@),

then CM/U( ) is an irreducible component of Grq(M).
3. If M is sub- and factor-d-finite and the (GLq(k) X GLy_q(k))-orbit (O(U)x O(W))
18 maximal in the variety

UVGGrd(M) (O(V) x O(M/V)) C repa(Q) x repy_a(Q);

then Cyw (k) is an irreducible component of Grq(M) with dimension

dim Cyw (k) = dimy, Homg (U, M) — dimy, Endg (U)
= dimy, Homg (M, W) — dimy, Endg(W).

Example 3.5.6. Let Q =152, d = (1,1) and M = (My, My, M) a Q-representation
with My = My = k? and rk(M,) = 1. Then

UVEGrd(M)O(V) - Uvecrd(M)O(M/V) =repg(Q) =k
and with the identification repq(Q)? = k2 holds

UVeGrd(M) (O(V) x O(M/V)) = {(a,b) € k?|ab =0} C k*.
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3 Geometric properties of quiver Grassmannians

Example and Section shows that in general these are not all irreducible
components of Grq(M) for a sub- and factor-d-finite Q-representation M. Nevertheless,
in Section [3.6] we prove that in some special cases all irreducible components are of this
form.

In both cases the smooth points are not dense in the quiver Grassmannian. We look
for some example such that there exists a U € Grq(M) with Cy ps /U(k) is an irreducible
component, each point of Cy /i (k) is smooth and O(U) x O(M/U) is not maximal in
the variety described in Part [3] of Proposition [3.5.5] By the way, in this case the linear
map Homg (U, 7): Homg (U, M) — Homg (U, M/U) is surjective by Proposition

If a Q-representation M is exceptional we get the following simple result for the quiver
Grassmannian Grq(M).

Proposition 3.5.7. Let Q be a quiver, d a dimension vector and M an exceptional
Q-representation such that Grq(M) is non-empty.
1. If M is sub-d-finite, then Grq(M) = Cy (k) with some exceptional Q-representation
U.
2. If M s factor-d-finite, then Grq(M) = Cj;(k) with some exceptional QQ-represen-
tation U.
3. If M is sub- and factor-d-finite, then Grq(M) = Cyv (k) with some exceptional
Q-representations U and V.

We remind to Part [2| of Corollary Using this each exceptional subrepresentation
U with dimension vector d of an arbitrary Q-representation M provides an irreducible
component Cy (k) of Grq(M). By this proposition the irreducible component Cy (k) is
the hole quiver Grassmannian Grq(M) if the Q-representation M is also exceptional.

Proof. Again it is enough to prove the first part. By Corollary each irreducible
component of Grq(M) is of the form Cy(k) with a U € Grq(M). Let U be such a
subrepresentation of M and 0 — U — M —— M/U — 0 the corresponding short exact
sequence. Using a result of [12, Proof of Corollary 3] we get Extb(U, M) = 0 for the
subrepresentation U of the exceptional Q-representation M. We use the following part

of the corresponding long exact sequence:

Homg (U,n)
0 — Endo(U) —— Homg (U, M) —22"% Home(U, M/U) j

Homg (U,6)

Ext4(U,U) —————— Extg (U, M)

Using Proposition the scheme Grq(M) is smooth, since M is exceptional. Thus
Proposition yields that the map Homg (U, 7): Homg (U, M) — Homg(U, M/U) is
surjective. This means Ext({?(U, U)=0.

By Corollary there exists up to isomorphism at most one exceptional Q)-repre-
sentation with dimension vector d. Thus U is unique up to isomorphism. O
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3.5 Representation finite case

Example 3.5.8. Let @ be the following quiver

A
B

Since Q is of type A;, we use Remark [2.2.10, For n € N let M (n) be an indecomposable
preprojective Q-representation with dimension vector (n,n + 1) (see Figure 3.5.1)).

1 1 1 1 1 1 1
M(7>:< v Ny Ny Ny Ny Ny Ny N )
2 2 2 2 2 2 2 2
N i Logy 1os
M<1>2@M<2>=< o N ) @( o Ny N )
2 2 2 2 2

Figure 3.5.1: The Q-representations M (7) and M (1)? & M (2).

Let m € N and d = (di,dz2) a dimension vector. Thus M(m) is a sub-d-finite and
exceptional string module and the quiver Grassmannian Grq(M (m)) is non-empty if and
only if 0 < dy < do < m + 1. By Proposition there is an exceptional Q-represen-
tation U with Grq(M(m)) = Cy(k) in this case. Using again Remark [2.2.10| there are
unique numbers p,r,s € N with r > 0and U = M (p)" &M (p+1)°. Thus r+s = da —dy,
0 <s<dy—d; and (do — dy)p+ s = d;. Summing up, we get p,s € N by division
algorithm with divisor do — d; and dividend dj.

Form=7Tandd = (4,7) we get p=1,r = 2 and s = 1. We illustrate this example in
Figure[3.5.1). For an indecomposable preinjective Q-representation we get a dual result.
But for a regular @-representation we need a new strategy.

Example 3.5.9. Let Q be a quiver without oriented cycles. A Q-representation M,
which is projective or injective in the abelian category rep(Q), is exceptional.

Let i € Qo. The projective cover (resp. injective hull) of the simple @Q-representa-
tion S(i) is a projective (resp. injective) Q-representation M with top M = S(i) (resp.
soc M = S(i)). We denote it by P(i) (resp. 1(i)). For each projective (resp. injective) Q-
representation M exists a unique tuple k = (k;)icq, € N such that this representation
is isomorphic to

Pk) =D, PO (resp. I(k) = @iEQOI(i)’”) . (3.5.1)

Let @ be the quiver described in the picture in Figure In Figure |3.5.3| we give
pictures for projective @)-representations.

53



3 Geometric properties of quiver Grassmannians

K3/jﬂ4
Q= / \j{"/

Figure 3.5.3: The projective Q-representations P(i) with i € Q.

Corollary 3.5.10. Let QQ be a quiver without oriented cycles, d a dimension vector and
M a Q-representation such that Grq(M) is non-empty.
1. If M is a projective Q-representation, then Grq(M) = Cy (k) with some projective
Q-representation U.
2. If M is injective, then Grq(M) = C{,(k) with some injective Q-representation V.
3. If M is a projective-injective Q-representation, then Grq(M) = Cy,v (k) with some
projective Q-representation U and some injective Q-representation V.

We consider an example to this corollary in Section [3.6.6
Proof. Since the category rep(Q) is hereditary each subrepresentation of a projective Q-

representation is again projective. By Equation (3.5.1]) all projective Q-representations
are sub-d-finite for each dimension vector d. O

3.6 Examples

In this section we decompose for some examples the quiver Grassmannians Grgq(M)
into its irreducible components. The considered Q)-representations M are both sub- and
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3.6 Examples

factor-d-finite in all cases. Thus by Part [3|of Proposition [3.5.5 we get an irreducible com-
ponent Cy; pr/i7 (k) of Grq(M) for each U € Grgq(M) such that the (GLg (k) x GLn—a(k))-
orbit (O(U) x O(M/U)) is maximal in the variety

Uveanyan Q) X O/V) € repg(Q) X tepy_a(Q): (3.6.1)

Using Example in general these are not all irreducible components of Grq(M).
Nevertheless, if this is the case, we use the following strategy.

Setting. Let Q be a quiver, d a dimension vector and M a sub- and factor-d-finite
Q-representation with dimension vector n. Let rk: Grq(M) — Ng(M) be a surjective
map such that each subrepresentation U in Grq(M) is mapped to its GLq(k)-orbit O(U)
in repq(Q). Thus the set Ng(M) is finite and Gra(M) = Uo(ryeny anCu (k).

Strategy. Now we define for each example some subset Mq (M) of Ng(M) and associate
to each O(U) € Mq(M) an orbit in rep, 4(@), denoted by O(U*). We claim that
the set {(O(U) x O(U*))|O(U) € Myq(M)} is the set of maximal orbits in the variety
described in Equation . Moreover, we request that the decomposition of Grq(M)
into irreducible components is given by

Gra(M) = UO

We determine the cases such that the points in Cyy+ (k) are smooth points of Grq(M)
and the cases such that the subset of smooth points is dense.

o (k). 3.6.2
@emaqn @0 F) (36.2)

Idea of proof. We show Equatio in the following way. Let U € Grq(M). If
tk(U) € Myq(M), we prove U € Cyy+(k). Otherwise we construct some V' € Grq(M)
with V 2 U and U € Cy (k).

Now we prove that for each O(U) € Mq(M) the orbit (O(U) x O(U*)) is maximal in
the variety described in Equation . Using the first part and Proposition [3.5.5] we
know that the converse is true. So it is enough to prove O(U*) € O(V*) in rep,,_4(Q)
for each O(U),O0(V) € Mgq(M) with U 2V and O(U) C O(V) in repq(Q). O

We observe the following examples:

1. For Q@ = 1 — 2 our strategy succeeds for each )-representation M and each
dimension vector d. In this case the subset of smooth points is dense.

2. For @ =1 — 2 — 3 we decompose the quiver Grassmannian Grq(M) into irre-
ducible components only for Q-representations M with dimension vectors of the
form (n,n,n) and dimension vectors d = (d, d, d). In this case the subset of smooth
points is not dense in general.

3. For the one-loop-quiver @ (see Figure our strategy succeeds again for each
Q-representation M and each dimension vector d. But in this case the subset of
smooth points is not dense in general.

4. For the cyclically oriented two-cycle-quiver @ (see Figure our strategy fails
since in general Part [3] of Proposition do not describe all irreducible compo-
nents of Grq(M).
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3 Geometric properties of quiver Grassmannians

5. Let N € Nwith N > 2, @ the cyclically oriented N-cycle-quiver (see Figure
and M a projective-injective (Q, a'V)-representation. Using our strategy we de-
compose the quiver Grassmannian Grq(M) into irreducible components for each
dimension vector d. In this case the subset of smooth points is again dense.

By Gortz [30] Section 4] and Pappas, Rapoport and Smithling [40, Section 7] these
quiver Grassmannians Grq(M) with dimension vectors d of the form (d,...,d)
occur in the context of local models of Shimura varieties.

6. For Q =1— 2 — --- — N we can use the previous results for each projective or
injective @)-representation M and each dimension vector d. In this case the quiver
Grassmannian Grq(M) is smooth.

3.6.1 Quiver of type A,

LetQ=13%2,n= (n1,mn2) and d = (d1, d2) dimension vectors and k € N. If &£ < n; and
k < nglet M(n, k) be a Q-representation with dim M (n, k) = n and rk, (M (n, k)) = k.
This parametrizes up to isomorphism all ()-representations.

Proposition 3.6.1. Let Q = 1 3 2, n = (ny,n2) and d = (di,ds) dimension vectors
and k € N with k < n; and k < ny. Let rk: Grg(M(n,k)) — Z,U — 1ko(U) and
Na(n, k) the image of this map. Define a subset of Ng(n,k) by Ma(n, k) = {d1} if
d1+n2—d2 Sk‘ and

Ma(n, k) = {r c N) max{0, k + dy — 1,k +ds — na} <1 < min{k,dl,dg}}

otherwise and set

T =

. {ng—dz if di +no — do <k,

k—r otherwise

for each r € Mq(n, k). Then the decomposition of Grq(M (n,k)) into irreducible com-
ponents is given by

Gra(M(n, k)) = Crope ()

UTEMd(n,k)
with Crr+ = Crr(d,r),M(n—d,r+) for short. Moreover, forr € Ma(n, k) all points in Cy = (k)
are smooth points of Gra(M (n,k)).

Thus the subset of smooth points is dense.

Proof. For all r € Mq(n, k) the tuple (r,7*) is maximal in the order on Z induced by
degenerations. Let U € Grq(M(n, k)). By Proposition we can decompose the Q-
representation M (n, k) such that M(n, k) = A© A’ ® A® B® B'® B and the following
holds. This decomposition is illustrated in the picture in Figure [3.6.1
o Let AA'® A= M((k,k),k), B =0, B =0 and B, = 0 with B = (By, B2, By,),
B = (Bi, Bé, B&) and E = (El,EQ,Ea).
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(ot ee () ()
Je(d D)= (TD)e (" )= )=(000)

Figure 3.6.1: The @Q-representations U and M (n, k).

0«0
0« O

(

0O
0< O

e Let U=A3dAd B® B with 4] = 0 and Ay = Al with A= (Al,flg,fla) and
A= (A, AL AL).
If A =0, then rko(U) + rko(U) = k and thus U € Cox(u),rk(y* (k). Also if B = 0 and
By =0, then U € Cay ny—a,(k) and dy + ng — da < k. Let {a1,...,a,} be a basis of A
and {by,...,bs} one of By. If A# 0 and B # 0, then

UN) =A®(ay,...,ar,Aa; + b1, b, ..., bs) @ B € Grq(M(n, k))

for A € k. Moreover, U(0) = U and rk(U(})) = rk(U) + (1,0) for each A\ € k*. Thus
U S Crka(U)—&-l,Ea(U) (k) And if A % 0 and BQ 7£ 07 then U S Crka(U),Ea(U)—&-l(k)'

This calculation shows the following. If ny —da+dy < k, then for all U € Cy, ,—a, (k)
holds

dim Cy, ny—ay (k) = dy (n1 — dy) + (do — dy) (ng — do) = dimy, Ty (Gra(M(d, k))).

Otherwise by Corollary all points of C,;_,(k) are smooth in Grq(M(d,k)) for
r € Ma(n, k). U

3.6.2 Quiver of type A3
Let Q=132 53 Forie {1,234} let

be the Q-representation such that M (i) = Ms(i) = M3(i) = k with a basis {e1, e2, e3}
and e; € M;(i) for all j € Qo, My(1) = Mg(1) = My(2) = Mg(3) = idy, and Mg(2) =
M,(3) = M,(4) = Mpg(4) = 0. Thus these Q-representations are described by the
pictures in Figure Let n = (n,n,n) be a dimension vector. Thus each @Q-rep-
resentation with dimension vector n is isomorphic to some M (1) = M (1)1 @ M(2)"2 @
M(3)3 @ M(4)4 with 1€ N* and Iy +lo + I3 + 1y = n.

For the dimension vector d = (d,d,d) and each k € N* we decompose the quiver
Grassmannian Grq(M (k)) into irreducible components. First we consider one important
example.

Example 3.6.2. Let {e;1,ej2]j € Qo} be a basis of M = M(1) & M(4) such that
€1 € Mj(l) and ejo € Mj(4) for all j € Qp. Let U = (e11 + 612>Q, V = (e12,e21 + 622>Q
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3 Geometric properties of quiver Grassmannians

e1 €1

e e

e2 |, M2)=|e€e |, M3)=]|e |,M4=|e
18 18

€3

€3 €3 €3

Figure 3.6.2: The Q-representations M (i) with i € {1,2,3,4}.

€11 €12 €11 + €12 €12 €12
la la

M=1e1 ex |, U= €21 ,V=1|en+exn |, W= €22
18 18 18
€31 €32 €31 es1 e31 + e32

Figure 3.6.3: The Q-representations M, U, V and W.

and W = (e12, €22, €31 +e32)@ in Gr(1,1,1)(M). These Q-representations are described by
the picture in Figure 3.6.3

Then holds Gr(; ;1) = Cy(k) UCy (k) UCw(k) and the irreducible components are
Cu(k), Cy(k) and Cw (k). Moreover, the set Cy(k) is open, the set Cy (k) is locally
closed and Cy (k) is closed. Since dimy Homg(U, M/U) = dimy Homg(V,M/V) =
dim Homg (W, M/W) = 1 the smooth part of Grq(M) is Cy (k) U Cyaryv (k) U
Cw,nayw (K).

Proposition 3.6.3. Let Q =15 2 LA 3,d = (d,d,d) a dimension vector and k € N*.
Let tk: Grq(M(k)) — 2%, U — 1 with U = M(1). Define a subset of the image Ny(k) of
this map rk by

Mak) ={1eNYly + 1+ 13+ 1y =d i < ki, lp < ko,
L4103 < ki + ks ls+ 1y < kg +ka,ly < ka}

and the tuple

I k-1 if I3 < ks,
(k1 — 11+ ks —l3, ko —lo — ks +13,0,ks — s+ kg — 1) ifl3 > k3

for each 1 € My(k). Then the decomposition of Grq(M (k)) into irreducible components
is given by

Grg(M(k)) = UleMd(k)CM(l),M(l*)(k)-

Forl e My(k) each point in Cpry ey (k) is smooth in Gra(M (k)) if and only if I3 < k3
orly =0.
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3.6 Examples

Thus the subset of smooth points is dense if and only if d € {0,1,n} or kikoks = 0.

Proof. For all 1 € Mg4(k) the tuple (1,1*) is maximal in the order induced by degenera-
tions. Let U € Grq(M (k)). We consider an injective homomorphism f: M (1) — M (k)
of Q-representations such that U = Im f. For example instead of the injective homo-
morphism M (4) — M (2) & M (3) we can consider without loss of generality the injective
homomorphism M (2) — M (2) @ M(3). Thus without loss of generality we can assume
l1 < ki, ls < ko, Iy < k4 and that the homomorphism f is given by a matrix of the form

L,lojo]o
00|fo0
01,00
0|00/ 0
00 |f2]0
0001,
00| fs|0

with some smaller homomorphisms f1: M(3)%® — M(1)M=h for M(3) — M(3)ks
and f3: M(3)® — M(4)*~!4. Moreover, if I3 < k3 we can assume that fp is given

by the matrix (163>, fi = 0 and f3 = 0, otherwise we assume fo = (I 0), fi =
(8 113*69391) and f3 = (8 Il3*6“392) such that g1: M(3) — M(1) and g2: M(3) — M(4)
are homomorphisms of )-representations with maximal image. Thus there is some exact
sequence 0 — M (1) ER M (k) — M(I*) — 0 with 1* defined in the proposition.

By Proposition [2.3.12] and Theorem holds for U € Cpra),ma+) (k)

dimy Ty (Gra(M(d, k))) — dim Carqry,arx) (K)

= dimy, Homg (M (1), M (1*)) — (dimy Homg (M (1), M (k)) — dimy Endg (M (1))
= dimy, Homg (M (1), M (1* +1)) — dimy Homg (M (1), M (k)).

This is zero if I3 < k3 (see also Corollary [3.1.8]) and otherwise this equals

(I3 — k) ( dimy Homg (M (1), M(2) & M (3)) — dimy, Homg (M (1), M (1) & M(4)))
=ly(I3 — k3).

This yields the proposition. ]

3.6.3 The one-loop-quiver

Let @ = ({o},{a}) be the one-loop-quiver. This is described by the picture in Fig-
ure 3.6.41

A Q-representation M = (M, M,) is a finite-dimensional vector space M, together
with an endomorphism M, of M,. By the Jordan decomposition of M we decompose the
abelian category rep(Q) of finite-dimensional @Q-representations into direct summands.
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«

)

(e]

Figure 3.6.4: The one-loop-quiver Q).

Each direct summand is equivalent to the abelian category nil(Q) of finite-dimensional
nilpotent @)-representations. Thus it is enough to consider nilpotent Q)-representations.
Let n € N. A partition n = (n1,...,n,) of n is a tuple of integers such that r € N,
ny >ng > ...>n, > 0 and Z:Zlni = n. We denote such a partition by n - n. In
literature often n, > 0 is required, but we allow also n,, = 0 for simplicity. To compensate
this we identify each partition (ni,...,n,) with the partition (ni,...,n,,0). Thus we
can assume for each partition without loss of generality that the last entry vanishes.

For [ € N we define an indecomposable nilpotent Q-representation M = (M, M,) by
M, = k! and M, to be the nilpotent Jordan block of size I. Following this we define
for each partition 1 = (I1,...,l,) a Q-representation as a direct sum of the @Q-repre-
sentation associated to the natural numbers [q,...,[.. This Q)-representation is unique
up to isomorphism. Moreover, for d € N the isomorphism classes of finite-dimensional
nilpotent Q)-representations of dimension d can be canonically parametrized by partitions
1 of d.

Using this we identify each partition with the associated Q-representation. Let 1 and
m be partitions. Then 1&m is well-defined as a direct sum of Q-representations. And the
number of indecomposable direct summands of the Q-representation 1 is called the length
of the partition 1, denoted by I(1), i.e. (1) = max(¢|l; > 0) for a partition 1 = (I1,...,1l,).

Now we introduce some notions of tuples of integers. For d € Z, r € N and d,n € Z"
we define rd and d +n componentwise. Since all partitions are tuples of integers we can
use this also for partitions with the same number of integers. For d,n € Z with d < n let
[d,n]={d,d+1,...,n—1,n}. Forasubset ] CZandd e Zlet [ +d={i+d|i € I}.
And for a partition 1 = (I1,...,0l), d € [I,r] and I = {i; < iz < ... < ig} C [1,7] we
define the partition 1y = (l;;, liy, . . ., Li,)-

Example 3.6.4. The partitions of 7 with length 3 are (5,1,1), (4,2,1), (3,3,1) and
(3,2,2). For the direct sum holds (5,4,3,3,2) ® (4,3,1,1) =2 (5 ,4,4, ,3,3,2,1,1).

With some tuples we get 3(1,3) — (7,0) = (—4,9) and (1 1) (4,4,3,2) +
2(4,3,2,1) = (5,4,2,1). For the subset I = {-7,0,2,3,4} o we get [ +5 =
{=2,5,7,8,9}. Moreover, (8,5,4,2)12<4y = (5,2), (8,5,4 2){2<4} 1= ( 4) and finally
(4,4,4,4,3,3,3,2,2,1) (3c4<5<10) = (4,4,3,1).

Let n be a partition and d € N. The aim of this section is to decompose the variety
Grg(n) into irreducible components. For this we define subvarieties. For i € N let

Gri(m) = {U € Gran)|U = (ky, ... k)}.

We will see this is a closed subvariety of Grg(n). Moreover, Gri(n) C Gr’(n) for each
i € N and Grg(n) = Grfj(n)(n).
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We define a partial order on the partitions. Let d € N and 1 = (I4,...,l,) and
m = (my,...,ms) be partitions of d. Then let 1 < m if and only if 3% 1; < Z?Zlmj
for each k € N with [; = 0 for ¢ > r and m; = 0 for j > s. For d € N it is well-known
that this order of partitions of d is equivalent to the degeneration order induced by the
variety repy(Q, o).

Proposition 3.6.5. Let QQ be the one-loop-quiver, d € N and 1 = (l1,...,l,),m =
(mi,...,ms) Fd. Then O(1) C O(m) in repy(Q) if and only if 1 < m.

For the quiver Grassmannian Grg(n) we get the following decomposition into irre-
ducible components.

Proposition 3.6.6. Let Q) be the one-loop-quiver, d,n € N and n = (ny,...,n,) b n
with n, = 0. Let tk: Grg(n) — {1 - d},U — 1 with U = 1. Define a subset of the
image Ny(n) of this map rk by

My(n) = {1‘1 - d,3F: [1,11)] = [L,7] injective, IUJ = [1,1(1)] -
Ly =nyn, f() #L,f0U) =1 ¢ Im fingg <lj <ngpg-1Vj€ J}-
and a partition I* of n — d by np )\ (m fu(r)-1)) © Mgy + nppy—1 — 1y) for each

1 € My(n) with f and J as above. This is well-defined and the decomposition of Grg(n)
into irreducible components is given by

Grg(n) = UleMd(n)C‘v‘*(k)' (3.6.3)

Forle Mg(n) each point in Cy = (k) is smooth in Grg(n) if and only if 1 & 1* = n.

Thus, for example the subset of smooth points is dense if {j € N|1 < j < min{n,d}}
is contained in {n;|i}.

Proof. In Lemma we show Equation . Now we prove (1,1*) is maximal for
alll € Mg4(n). Let 1, m € My(n) with 1 < m.

Let f: [1,1(1)] = [1,7] and g: [1,I(m)] — [1,7] be the corresponding maps with [UJ =
[1,{(1)] and I'UJ" = [1,1(m)]. Let ¢ € [1,1(1)] minimal such that l; < m;. Then f(t) >
g(t) and without loss of generality f(i) = g(i) for each i € [1,t — 1]. Thus without loss
of generality we assume that ¢t = 1.

If 1 € I, we assume without loss of generality g(1) = 1. Let ny = ... = ns = my for
the maximal s € [1,7]. Since [} < mj = n,, we get f(1) > s. Thus m} < np1 =my =1}
for all i € [1,s — 1] and m} < nspq <.

If 1 € J', we assume without loss of generality g(1) = 2. Then ny < m; < nj. Thus if
i >nagwegetmi=ni+ne—mi <nmi+ne—h =0andmi=n1+n2—miy <ny =10
otherwise.

By Proposition [3.6.6)a point U € Cy+ (k) is smooth in the scheme Gry(n) if and only if
dimy, Ty (Grg(n)) = dim Ci(k). Using Proposition and Theorem we consider

dimk TU(Grd(n)) — dim C](k)
=dimy Homg(1,1*) — (dimy Homg(1, n) — dimy, Endg(1))
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=dimy HOInQ(l, (nf(J) +ng)-1— IJ) D lJ) — dimy, HOInQ(l, Ny D nf(J)_l)
1)
= Z Z dlmk HomQ(li7 (nf(J) + Ng(H—1 — lj7 l])) - dlmk HomQ(lia (nf(j)—h nf(])))

i=1jeJ —0, if i%j

= Z(min(lj’ ngy +npg—1 — L) + 1) = U +ng)
jed

= min(l; = ns(), 401~ &)
jed

with some f: [1,1(1)] = [1,7] such that I* = njy )\ (1 fu(r()=1)) © per) + 051 —17).
Thus ny|J| > dimg Ty (Grg(n)) — dimy Gryg(n) > |J|. This yields the proposition. O

Let n = (n1,...,n,) be a partition. Then {e;;|1 <i <7, 1 < j <n;}is a vector space
basis of the @-representation n described by the picture in Figure [3.6.5
€1n,
: €2no
: Crn,
€12 | €22 :
€11 e | v olerl

Figure 3.6.5: Basis of the Q-representation n.

Using this basis we can describe the endomorphism ring Endg(n) for a partition
n=(ny,...,n,). It is easy to see that

Endo((n)) == E[T]/T™, (e1n > e1) — T"F,
Autg((n)) — (K[T]/T™)" = {p € k[T]/T"|p(0) # 0}

It is well-known that []" ; Autg((n;)) is a subgroup of Autg((n)). Let 1 < ip < r and
gi € Homg((ny,), (n;)) for i # ip. Then these defines a g € Autg((n)) by g(eiy;,) =
Ciojo T D1 iziyJi(€iojo) and g(ei;) = ey for each 1 < jo <y, i #dp and 1 < j < n;.

Lemma 3.6.7. Let Q be the one-loop-quiver, d € N and n = (ni,...,n,) a partition
with d < ny and n, = 0. Then

Gr(]:_l(n) — C(d),(nl,...,m_l,m+1,...,nr)(k) /l’f El/l’ 6 {17T] : ni = d7
C(d),(n1,...,m,g,ni,1+n¢7d,m+1,...,nr) (k) Zf Jdi e [LT] tn; <d<njq.

Proof. Let U € Grl(n). Then

U= (v=3 3 M)

with >\ij €k and d < nj.
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o If d < ny, for some 1 < iy < r, then define Uy = (v + Xejpa)g € Grg(n) for each
X € k. Thus Uy = U and by some automorphism g € Autg((n;,)) we get gUy =
(Cigd+D i1 iz 2o j1 Nij€ij) @ for each A # —)\; 4. Using again some automorphism

g’ € Autg((n)) defined as above we get ¢'gUx = (€ipd + D1 jmig 2y
o If d > n;, for some 1 < ip < r, then define Uy = (v + )\eion¢0>Q

1Aij€ij) Q-
€ Gryg(n)

for each A\ € k. Thus Uy = U and by some g € Autg((n;,)) we get gUy =
(Cigniy D oim1 ity 2o je1 Nij€ij) @ for each A #£ — N, . Again holds ¢'gUx = (eign,, +

EZ 1 Z<ZoZ] 1)\1]613>Q with some g

Using the proof of Proposition [3.6.6] this yields the lemma.

Lemma 3.6.8. Let Q be the one-loop-quiver, d € N and n = (nq,...,

with n, = 0. Then

2,0\ _
Gry(n) = UleMd(n), z<1)g2cl’1*(k)'

Proof. Let U € Gri(n) N Cym(k). Then

o= T B = L K,

O

ny) a partition

with A;j, i; € k. By the proof of Lemma we can assume that one of the following
cases holds. Some of these are illustrated in Figure [3.6.6] and [3.6.7]

1.
2.

If U € Grl(n), we are done by Lemma 3.6.7L
If there is some i € [1,r] with n; = {1 and n;+1 < l2, then

U - <ein¢) ei—LlQ + ei+1,ni+1>Q'
If nj_1 = ny, then 1 € My(n) and

*
m = (ny,...,M-2,0-1 + Nip1 — l2,ni42,...,n,) =17

If there are some i, j € [1,7] with i < j, n; = 1 and n; = lz, then U = (en,, €jn;) Q-

Thus 1€ My(n) and m=n—-1=1*.

If there are some ¢,j € [1,7] with ¢ < j —1, n; = l; and n; < ly < nj_1, then

U= <€mi, €j—11, + ejnj)Q. Thus 1 € My(n) and

*
m = (nla"'7ni717ni+17"'3nj727nj71+nj_l27nj+1"'7n7“) =1

If ny <l < nq and n3g < lo, then
U = (eu, + eany, €20, + T+ €30;3)0

with o = 327" ujes; and pi; € k for all j € [1,1; — 1].
If there is some ¢ € [3,r] with n; < 1 < n;—; and n;41 < la, then

U = <ei—1,l1 + ein” ei—Q,lQ + ,U’lgeilg + x4+ ei-i-l,nprl >Q

with @ = 327 yjei;, pu; € ki for all j € 1,1y — 1] and p; = 0 for all j € N with

7> n,.
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7. If there are some i,j € [2,r] with i < j, n; < i < nj—1 and n; = Iz, then
U = (€i—11, + €in;s€jn;)q. Thus 1 € My(n) and

*
m = (ny,...,n-2,M-1+n —l1,ni1,..., N1, 7541 ...,n) = 1%

8. If there are some 7,5 € [2,7] with ¢ < j —1, n; <y < n;—1 and n; < lp < nj_1,
then U = <€i—1,ll + €ing» €j—1,15 T ejnj>Q. Thus 1 € My(n) and

*
m=(ng,...,ni-2,M-1+n; —l1,nip1,...,nj-2,n5-1+n; —la,njr1...,n.) =1%
Ak
€1
A%
€2no €2no
—€Cl1x
€1,
T
T
€3ns x €3ns
xT

Figure 3.6.6: subrepresentations Uy occurring in Case [2| with ¢ = 2 and in Case

A% (=N)*x A
€91, €21,
€3ns3 €3ns3
(—)\)** —62’*
(=A)"*
ellQ 6112
x T
x X
x Cana X €4ny
X X

Figure 3.6.7: subrepresentations Uy occurring in Case @ with ¢ = 3 such that py, =0 or
i, = 1.

By considering these cases only Cases and [6] are left.
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o If we are in Case [2| with n;_1 > n;, then define Uy = (v1,v2)q for each A € k with

V1 = A€i—1,,+1 + €ings

V2 = €i—1l;, T €itln; -

Thus Uy = U and dimy, Uy, < d, since a/27 vy = €i—1,1 = A Loty for all A € k*.
Using that rk is the lower semicontinuous, we get Uy € Grg(n) for most A € k and
Ux=(li+1,lp—1) >1for A € k*.

o If we are in Case |5} then define Uy = (v, v2)¢ for each A € k with

v1 = Aep 41 + ey + €2n,,

V2 = —€111+ly—ny T T+ €3ns.

Thus Uy = U, Uy € Grg(n) for most A € k and Uy = (1 + 1,12 — 1) > 1for A # 0,
since —(\ + a)al2"lyy = A1l —not1+ €11 —ny = @"v1 and no + (la + 11 —ng) = d.

e Now assume we are in Case [0} If y, = 0, then we can treat this case very similar
to Case[2} Otherwise if 11, # 0, then we use Case[5} In detail we get the following.
Define Uy = (v1,v2)q for each A € k with

1 lh—ni+1
v =y, (=N e o 1+ Aei—1 0,41+ €im10y F €ings

l1—n; .

V2 = Zj:O (_)‘)]ei—Q,lz-i-j — Wiy €i—1l1+ly—n; + T + Citlmiq-
Thus Uy = U, Uy € Grg(n) for most A € k and again Uy = (I +1,l — 1) > 1 for
A # 0, since again —ulgl()\ + a)al2"lyy = o™iy,

Using again the proof of Proposition this yields the lemma. ]

Lemma 3.6.9. Let Q be the one-loop-quiver, d € N and n a partition. Then Equa-

tion (3.6.3|) holds.

This completes the proof of Proposition [3.6.6]

Proof. Let U € Cym(k). By induction over s = [(1) there is an injective map f: [1,s —
1] = [1,r] and IUJ = [1,s — 1] such that

r . .
U= <ef(’i),li’€f(j)_1,lj + ef(j)a”f(j)’v = thl)\tetls + .'L"Z el je J>Q

with \; € k for each t € [1,7], z = Z::1Z§;1Mijeij and p;; € k for ¢ € [1,r] and
j € [1,ls — 1]. An example of such a representation is illustrated in the picture in
Figure Without loss of generality we assume Ay = 0 if i € I and Ap(;)—y = 0 if
Jel. Iftnys_1)41 > ls, we can assume without loss of generality v = ey,_1)41, + =
and we are done.

Thus we assume v = Z{S{l))\tetls + z. Let ty be maximal in [1, f(s — 1)] with
A, 7 0. Such a ty exists since (v)g = (Is). If to ¢ f(J), we can assume without loss of
generality v = A e, + . This case can be treated very similar to Case [2| of the proof

of Lemma B.6.8
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€2,12
€3.11
€4,10
€59 €69

)\ x + )\ ez

€77

€85
:E)\** :|:/\*>I< —€74 €94
:E)\** :|:/\*>I< €10,3 [€11.3
A1e12 A5€52
T xT x T T ‘

Figure 3.6.8: Example for a subrepresentation Uy occurring in the proof of Lemmam
with U = (eg9, €11,3,€2,12 + €3,13, €4,10 + €59, €77 + €85, €94 + €103, Me12 +
Asesz + es2 + )@, jo = 3 and to = f(jo) = 8.

Thus we assume ¢y € f(J) and v = Zi(’:EQ)\tetls + e, + 2. Let jo € J with f(jo) = to.
Then define similar to Case [5| of the proof of Lemma the subrepresentations

Uy = <ef(i),livef(j)—1,lj +er()mpy V1 v2|t € 1,5 € .5 # jo>Q
for each A\ € k with

to—2 Li—m
— E - +1
v = i—1 <_A) 70 to Atet,lj0+1 + )\etofl,lj(fl’l + etofl,ljo + etontov

to—2 'r‘LtO
E E >\t€tl i T Cto—1ljyHs—ny, T T

Thus Uy = U, Uy € Grg(n) for most A € k and now Uy = 1y 1)\ 110} © (It +1,1s —1) > 1
for A # 0, since again

o to—2 —ng
— (At a)aTlyy=—A+a <Z Z C(=AY Meer i1 — erg lm—m0+1)

to—2 Li —m
_E to+1 T
- =1 ( )\> J0 0 )\t@t ljofnt0+1 + Aeto 1 ljofnt0+1 + eto 1 ZJO —Nty T a 0vy.

3.6.4 The two-cycle-quiver

Example shows that the converse of Part [3] of Proposition is not true. This
section gives another example. Our strategy for computing all irreducible components
of the quiver Grassmannian Grq (M) fails, since they are in general not parametrized by
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the maximal elements in Ng(M). In the following we give an example. Therefore, we do
not force to decompose all Grassmannians for all representations of the two-cycle-quiver.

Let @ = (Qo, Q1) be the (cyclically oriented) two-cycle-quiver with Qo = Z/2Z and
Q1 ={a;: i — i+ 1|i € Qp}. This is described by the picture in Figure We study

Figure 3.6.9: The cyclically oriented two-cycle-quiver Q.

again the abelian category of finite-dimensional nilpotent @Q-representations nil(Q). For
i € Nso let M(i) be a Q-representation with dimension ¢ and soc M (i) = S(1). This
is unique up to isomorphism and has a basis {e;;|1 < j < i} with e;; € M(i); and
M (i)a,(€ij) = e;j—1 for all 1 < j < 4. The pictures in Figure describe these
representations. Let M = M(4)® M (3) @ M (1). Then {eyq, €43, €42, €41, €33, €32, €31, €11 }

€44

€33 €43

€22 €32 €42

’ €11 ‘ €21 €31 €41

Figure 3.6.10: The Q)-representations M (1), M(2), M(3) and M (4).

is a basis of M. Let U = (e, €11)g and U’ = (e33,€42)(-

Then U, U’ € Grggo) (M), U = M(4) & M(1), U' = M(3) & M(2), M/U = M(3) and
M/U" = M(1) @ M(2). Thus there are exact sequences 0 — M (3) - U — M(2) — 0
and 0 - M(2) - M/U — M(1) — 0. Moreover,

Cuyu(k) = {{eas + aesa, Bes1 + e11)gla, B € k},
Cur v (k) = {{aeas + e33 + Berr, ea2)qla, B € k}

and Gr(z2)(M) = Cyrajv (k) U Cypgyo(k), but U ¢ Cyayo(k), since for all V' e
CU,M/U(k) holds V C <644, es32, 611>Q and es3 € U'.

Nevertheless, the quiver Grassmannian Gr s 9)(M) has two irreducible components the
set N3 9)(M) contains a unique maximal element. This is induced by the subrepresenta-
tion U of M. Thus there is no generalization of Proposition [3.6.6]for this case. Moreover,
dimCU,M/U = 2 = dimy, TU(GTd(M)) and dimCU/,M/U’ =2 < 3 = dimy TU/(GTd(M)).
Thus the smooth part of Gr(39)(M) is Cy /-

3.6.5 The N-cycle-quiver

Let N € N with N > 2 and Q = (Qo, Q1) the (cyclically oriented) N-cycle-quiver with
Qo = Z/NZ and Q1 = {a;: i — i+ 1]i € Qp}. This is described by the picture in
Figure[3.6.11] Let o be the admissible ideal generated by all paths of length N. Then
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a1/> 9 (%)
o 1 3
(o3 ai 1 2 068/' \043
(Y 122 e« Je 8 1
1 o 4.3 ar\ Jos
as 7 5
a0~ 6<%

Figure 3.6.11: The cyclically oriented N-cycle-quiver @ for N € {1,2,4,8}.

we study the abelian category rep(Q, a™) of finite-dimensional (Q, a”)-representations.
For i € Qo and j € {1,..., N} let M(i, ) be an indecomposable (Q, a”)-representation
with dimension j, soc M(i,7) = S(i) and top M (i,5) = S(i — j + 1). This is unique up
to isomorphism and has a basis {ex|1 < k < j} with ex € M (7, j); 41 forall 1 <k <j
and M (4,7)a;_,.,(ex) = er—1 for all 1 < k < j. Moreover, we set M (i,0) = 0 for all
1 € QQo. The pictures in Figure describe some of these (@, alN )-representations.

0 0 0 1 1
k0 ET 70 ET Tk ET Tk ET Tk
O L Y e T R O
0. 0 ko _k ko _k k. 0 k. _k
0 1 1 0 1

Figure 3.6.12: The indecomposable, nilpotent (Q, o'¥)-representations M (1,1), M(1,3),
M(1,4), M(2,3) and M(2,4) for N = 4.

Let M be a (@, o!V)-representation. Then there exists a unique tuple
k = (kij)i; € NQo* (LN}
such that

N . . ..
M= @ier@jle(z’j)k”'

All (Q, aV)-representations are of this form and we call this (Q,a”)-representation
M (k). In the following way we can consider k = (k;;); ; € NQ*{1--N} a5 a matrix with
N lines, N columns and entries in N:

ki1 kiz - kin
ko1 ka2 - kan
ka1 kna - knn

A (Q,a™)-representation M (k) is projective-injective in the category rep(Q, o!V) if and
only if all k;; = 0 for all i € Qg and j € {1,...,N — 1}, i.e. the only non-vanishing
entries in the matrix k are in the last column.
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Example 3.6.10. Let N = 4. The matrices for a projective-injective (Q, a4)-representa-
tion M (k) and the (Q, a*)-representation M (1) = M (1,1)&M (1,3)OM (2,3)3dM (2,4)?
with k,1 e NQox{L-4} are the following ones:

000 kag 0032
000 kss | 0000 |-
000 kga 0000
N

Proposition 3.6.11. Let N €
vector. Fort € N define

KP = {1 lLij=0Vi€Qo,je{l,...,N— 1},ZierliN =t}7

KO — {1‘ dim M (1) = d, l;x = 0 Vi € Qo,

with N > 2, Q the N-cycle-quiver and d a dimension

lij # 0= liphy =0 Vi € Qo joj k€ {1, . N=1Lk<j < j+k <N}

be subsets of NQ*{L--N} ' Then the decomposition of repq(Q, oY) into irreducible com-
ponents is given by

Ny _ Yy TNY

repa(@0™) = U e vexs O T, (3.6.4)

Moreover, ifd = (d, . ..,d), then the decomposition of repyq(Q, oY) into irreducible com-
ponents is given by

repg(Q, ™) = _,OM(D), (3.6.5)

leK?h

N—Il; . . . .
there are Z(l1,...,ld+1)i—dH§l:1 < le?) irreducible components and each has dimension

d*(N —1).

For each t € N it is very easy to list all elements of K?. This is not true for ng
with an arbitrary d. Since it is not really hard to check if some 1 € NQox{1--N} ig ip
ng we have to reduce the number of candidates, which can be in ICg. This is done in

Proposition [3.6.13

Remark 3.6.12. Let N € N with N > 2, @ the N-cycle-quiver, d = (d;)icq, a dimen-
sion vector and ¢t € N.
1. For 1 € K7 the (Q, a'V)-representation M (1) is projective-injective with dimension
vector (t,...,t) and for each i € Qy holds

rko, (M(1) =t — L. (3.6.6)

Each projective-injective (Q, o!V)-representation is of this form.

2. For 1 € KY the (Q,a")-representation M (1) has no projective-injective direct
summand in the category rep(Q, oY) and by definition holds for all i € Qg and
i ke{l,..., N—1}withk<j <j+k<N

lij #0=ligy =0 (3.6.7)
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3 Geometric properties of quiver Grassmannians

And dually for all i € Qg and j, 7, ke {1,..., N -1} withk<j<j+ k<N
lij #0 = l;_p j = 0.
Moreover, for i € Qo and j € {1,..., N — 1} holds
lij#0=1_jy=0and 1y =0Vj €{1,...,N —1}.
If Injr # 0 for some j € {1,..., N — 1} the matrix I is given in Figure

0 w0 Dy gy hino1 O
l21
In—jro1 = InojrioiN—ji—2 Tln—ji-1N-1
0 0 0
Iv_jryrn o lngya Ny v INCjpi Nt
IN—2,N—1
0 0
IN1 vy INN_1 O

Figure 3.6.13: The matrix 1 = (;;);; € K3 with Ixj # 0 for some j' € {1,..., N —1}.

Since soc M (i — j,5') = S(i — j) and top M (i + j', ') =2 S(i + 1) for all i € Qg and
J.j €{l,...,N — 1} we get

lij 75 0= difj < di7j+1 and di+1 < d@
fori € Qo and j € {1,..., N —1}. Since M (1) has no projective-injective direct

summand we get for i € Qo that d; < d;41 if and only if M (1),, is injective and
d; > d;y1 if and only if M(1),, is surjective. Moreover, for all i € @y holds
l"kai (M(l)) = min(di, di—&—l)‘ (368)
3. Let 1 € KY, io € Qo, jo,jy € {1,..., N —1} and ko € {0,..., N — 1} with ;,;, # 0
and Uiy, 5, # 0. The (Q, a™)-representation M (ig, jo) and M (ig + ko, jh) are
illustrated by the picture on the left side of Figure Then by Equation (3.6.7))
holds kg >j(/),j6 > jo + ko, jo+ ko > N or kg = 0.
o If ji, > jo + ko, then dim M (ig, jo) < dim M (ig + ko, jj))-
e If ko = 0, we can assume by the previous case that jo > jj. Thus in this case
dim M (i, jo) > dim M (ip + kio,jé).
o If ko > jj and jo + ko < N we get

(M (io, jo) ® M (io + ko, 59));, 1 = 05
(M (io, jo) ® M (io + ko jo))

and thus the support of M (ig, jo) & M (ig + ko, jy) is not connected.

io+jo
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If ko > j, and N < jo + ko < N + j, we get lio+ko,j6 #0, l(io—i-ko)-l—(N—ko),jo =
livjo # 0 and N — ko < jo < jo,+ (N — ko) < N. This is a contradiction to
Equation .

If ko > j{ and N+j} < jo+ko we get for each k € {ko—j{+1, ko—jj+2,...,ko}
the equation dimy M (io, jo)ig+r = 1 = dimy M (ip + kO,j(l))io—f—k: since N — jo +
1<ko—jb+1<k<ko<N. Thus dim M(ig, jo) > dim M (io + ko, ).

If jo + ko > N and ko = jj we get a contradiction to Part

Thus if jo + ko > N, we can assume by the previous cases that ky < j{. This
yields

M (io, jo
M (io, jo

(@0, Jo
M (io, jo

~— ~— ~— ~—

Moreover, dim (M (ig, jo) ® M (io + ko, j3)) >

Thus we get always one of the following cases:

Proof of Proposition[3.6.11] Let U € repq(Q, o

dim M (ig, jo) > dim M (7o + k‘o,j(,]).
The support of M (ig, jo) ® M (io + ko, j)) is not connected.
dim (M (io, jo) ® M (i + ko, j3)) > (1,...,1).

N with a tuple 1 = (Lij)ij € NQox{L,....N}

such that U = M(1). Let I?, 1O € NQoX (LN} wwith 1y = iy, I, = 0, 10y = O and IY; = 1;;
forall i € Qo and j € {1,. —1}. This means 1P +1° =1, I? € K Wlth t =2 icq,liN-
Moreover, dim M (1) = d - (t, sy t).
€j € M(i,j)i—jr1 €tk
ot i
er € M(i,5)i ept1 € M(i+k,j")i Ch+1 e1
ex € M(i+k,j )it ek
er € M(i+k,j")isk e1

Figure 3.6.14: The (Q, oY

Let i € Qo, 4, ke {1,...,N

)-representations M (i,j), M (i + k,j"), M(i + k,j + k) and
M(i, ' — k).

— 1} with k <j' <j+k <N, lij # 0 and L4 5 # 0.

Using the pictures in Figure |3.6.14] we get a short exact sequence

0= M(i+k,j) = M(i+k,j +k) & M(i, j' — k) = M(i, ) = 0.
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3 Geometric properties of quiver Grassmannians

Notice for this that k < 7/ and j + k < N. Thus

M(i+k,j)®M(i,j) € O(M(i+k,j+k)®M(3,j —k)).
Moreover, without loss of generality 1° € ICO At 1) and Equation (3.6.4)) holds.
Let t,¢' € N, P € K, 1P € K}, 1 € K,y and 1P €Ky, with M(IP +1°) C
O(M (1P + 1’0)) Now we show that t =1/, 1P =1 and 1° = 1. Using Proposition m

and Equation (3.6.6)) and (| we get

IRy = min(d;, dit1) — tka, (M7 +1°)) < min(d;, dit1) — tka, (M (1P +1°)) =17

for all i € Qp. Using Proposition again we get

"y = d; — dimy Homg (M (1 +1°), M (i, N — 1))
< d; — dimy Homg (M (I” +1°), M (i, N — 1)) = I},

for all i € Qp. Thus 1P =17 and t = t'.
We assume 1° # 1°. Using Part [2 of Remark [3.6.12] we get

N
Zj lir; = max{dy — dy41,0} = ZJ R (3.6.9)
N
ijlli%jfl,j = max{dy —dy_1,0} = Zj i 1, (3.6.10)
for all ¥/ € Qp. Thus there is some ig € Qo and jo € {1,...,N} with 9 b l;gjo

Without loss of generality we assume ig = N and that one of the following two cases
holds:

1. jo <5 and If; <19 for alli € Qo and j € {1,...,jo — 1} U{N —jo+1,...,N}.

2. jo>% and I, <Uff forallie Qpand j € {l,...,N—jo—1}U{jo+1,...,N}.
Since l?\fjo > 139110 > 0 the matrix 1 looks like in Figure [3.6.13

In the first case for i € {N — jo,..., N — 1} holds

Iy <19 for j € {1,...,jo — 1},
ZQA:OforjE{jo,---aN_jO} and
lo<l’0forj€{N—]0+1 SN

Thus by Equation we get lO = l’O for all ¢ € {N — jo,...,N — 1} and j €
{1,...,N}. ForiG{N—]O—l—Q N} holds

l’?—i—] 1]§lz+] 1]f01"]€{1 0—1}’
llﬂ 1]—0f0r]€{j0,..., — jo} and
lz—i—] 1g<lz+] 1]f01“j€{N—]0—}—1 LN}
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Thus by Equation (3.6.10) we get l?+- = l;oﬂ 1 foralli € {N - ]0 —l— 2,...,N} and
j€{1,...,N}. Using Proposition agaln we get by Equation (3

i=N+jo 0 ) _ 0
Zl N— jOZ Zz N_ Jozj N —dlmkHomQ (M(N7]0+1),M(1 ))

. i—N+jo
< Zi:N—jOthll;? — dimy HomQ (M(N jo+1 1/0 Zz N-— ]OZ /0'

This means

i—N+jo
0< ZZ . JOZ (19 —1%)

DSOS RIS s (WU NI
- i=N—jo (N—j+1)+j—-1,4 (N—j+1)+j—1,5

(ZNJO lN]O)_lNJO lN]o

This is a contradiction to ZJOV]() > 17 Nijo- 10 the second case we get a contradiction by using
dy — dimy, Homg (M(1°), M(N, jo — 1)) < dn — dimy, Homg (M (1), M(N, jo — 1)).

Letd = (d,...,d),t € Nand1€ K3, . By Part[2]of Remark[3.6.12]we get M (1)a,
is an isomorphism for all i € Q. Thus K3 de(tot) = = {0} if d = ¢ and K d-(to.t) = 2
otherwise. This yields Equation (3.6.5). In thls case the irreducible components are
in bijection with the set {(lzN)zEQo € D\l ’21662 iN = d}. By reordering this tuples
we get for each such tuple in this set a unique partition of d. Thus there is a map

1 from this set to the partitions of d by taking each tuple to the corresponding dual

partition (see e.g. [50}, Section 5] for the definition of a dual partition). The preimage of a
N—lj41
Ly —ZJJ'+1

dimy, Endg (M (1)) = d? in this case. O

partition (I1,...,l4+1) of d under the map 1) contains H;-lzl ( ) tuples. Moreover,

Now we describe the elements in Icg in more detail.

Proposition 3.6.13. Let N € N with N > 2, Q) the N-cycle-quiver and d = (d;)icq, @
dimension vector. For i € Qo define

La(i) = {1

N
: g L di <
dimg M(1); = d; E eoo g j:ll”’dlm M() <d,
dimy,(top M (1)) < max{0,dy — dy_1},

dimk(SOC M(l)i/ S maX{O, di/ — di’+1} Vi, S Qo}

Let ig € Qo, I € Lq(ip) and d' = d — dim M(V'). We define inductively the tuple
1) = (1(V)i3)i5 € Ko by

(V)i =

M(i, j)y # 0} — Z(i/,j/)gSul(l')z"f (3.6.11)
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3 Geometric properties of quiver Grassmannians

with Sij = {(7',j') € Qo x {1,...,N}|dim M (i, ) < dim M(i',5')} for all i € Qo and
j€{l,...,N}. Then holds for each iy € Qo

ICS - {1/ + 1(1’)‘1/ c ﬁd(io)} c N@ox{L...N}

In general there is no reason for I’ +1(I') to be in Y, but for small d;, there are only
a few cases to check. So we should require d;, = min{d;|i € Qo} for simplicity.

Remark 3.6.14. Let N € N with N > 2, @ the N-cycle-quiver, d = (d;);eq, a dimen-
sion vector, ig € Qo and 1" € L4(ip).
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1. For je{1,...,N}, ke {0,...,N — 1} with [ # 0 holds

i0+k,J

digrit1 < digrk N digrk—j < digyk—jr1 Ak < g Adimg M(ig + k, j)i, = 1.

. Fori € Qo and j € {1,..., N} holds

/ . — JE— / )
l(l )'L] =d Z(i/,j/)esijl(l )'L J
/ ]
(i’,j’)GSi,j_,_ll(l )l]

=d =111 = 1)1 + 10142 — Y
- 150 1100
Z(i/vj') ( ) J +Z(i,1j,)63i+1,]‘+2 ( ) J

:d—min{d’- d} —min{d,dgﬂ}—i—min{d{ d,d;_H} >0

1—3 1—3

€Sit1,5+1

with d = min {d}, |’ € Qo, M (i,j)y # 0} since S; j11US ;1,541 U{(4,5+ 1), (i +
1,7+ 1)} = Sij and Siyj+1 N S¢+17]‘+1 = S¢+1’j+2 U {(Z +1,7+ 2)} Thus 1(1/) > 0.

CIEI(Y)ij, # 0 and {(V)j4,,51 # O for some i € Qo and jo, jo. ko € {1,...,N — 1}

with ko < jj < jo + ko < N, then
/ : U / /
0 <1()ijo =min{dj_j ,,...,di} - Z(i,J/)eSijoz(l )irjt

0 < UV )ik gy = min {dfy g o yoeo gy} — Z(M/)GS. 1)y,

i+ko,d(,

Combining this two equations we get for all &' € {—jo+ 1, —jo+2,...,ko}

ek > <Z(

since Siyko,jo+ko Y {(7 + Ko, Jo + ko) } € Sijo N Sitho.jy- Thus

l(ll)i/j/> + l(l/)i+k0,j0+ko'

1,5 )E€Sitkg,io+ko

/ . / ’ ’
l<l )i+k07j0+k0 = min {di—jo-i-l’ M) i+ko} B Z(i’,j’)65i+ko7jo+kol(l >i/j,

> l(ll)i—l—ko,jo-i-ko .

This is a contradiction and therefore 1(1') € KY,. Moreover, by Proposition [3.6.13
we get K§ C {l' +1(1)|V € La(io),V € ngimM(l,)} for each iy € Qo.
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Example 3.6.15. Let N € N with N > 2, @ the N-cycle-quiver, ig € Qo, d = (d;)icq,
a dimension vector with d;;, =0 and t € N. Let I? € K} and 1 € Kt(:)l—(t,...,t)' Then t = 0,
1P =0 and Ed(io) = {0}
By Part [3] of Remark we get always one of the following cases for ig € Qo,

Jjo.jo €{1,...,N —1} and kg € {0,..., N — 1} with l;,;, # 0 and Ligtko,jt = 0:

e dim M(io,jg) < dim M(ZO + ko,j(l))

e dim M (ig, jo) > dim M (ip + ko,jé).

e The support of M (ig, jo) & M (ip + ko, j}) is not connected.
It is clear that this rule defines 1 uniquely. Moreover, we can use Equation in
Proposition to define 1 as 1(0). This is illustrated in the picture in Figure
d1 =1 | €71
do =2 |eg||e
dy =T |es||es
dy =4 |eq||e1]|e1] €1
ds =1 les|
dg =3 |ea||ea)
d7 =3 leif|el]
dg =0

Figure 3.6.15: The (Q,a®)-representation M(1) for the unique element 1 in the set

0
K127,41.330)

Using Proposition [3.6.11| the orbit O(M(1)) is dense in repq(Q,a’Y). Moreover, by
Proposition [2.3.3 holds

dimrepg(Q, ™) = Zier (d7 — $(di — dit1)?) = Zierdz‘diH-

This is well-known since the variety repq(Q, ') is isomorphic to the affine variety
[Licg, Mat(dit1 x d;, k) in this case.

Proof of Proposition[3.6.13 Let 1 € K4 and iy € Q. We define a tuple I’ = (lij)ij €
[NQ()X{L...,N} by
U = {lij if M(imj)io 7& 0,
ij

0 otherwise.

Now we test if ' € Lq4(ip) and 1(1') = 1—1. The first part is clear by its definition
and Part |2| of Remark For the second part we recognize that 1(1'),1 — 1" € K,
with d' = d — dim M (1) by Part [3| of Remark Moreover, since d = 0 by
Example the set ng, has exactly one element. O

Now we decompose the quiver Grassmannian Grq(M) for each projective-injective
(Q, alN )-representation with an arbitrary dimension vector d.
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Proposition 3.6.16. Let N,n € N with N > 2, Q the N-cycle-quiver, d a dimension
vector and k € Kh, i.e. M (k) is a projective-injective (Q, o™ )-representation with dimen-
sion vector n = (n,...,n). Let tk: Grq(M(k)) — NQO{LN} 17 s 1 with U = M(1)
and Ng(k) the image of this map. Define for t € {0,...,n} the subsets

MY (k) = {1 €KY

liv < ki ¥i € Qo},

M) = {1€ K&IS" 1 < kv Vi € Qo]

of NQoX{LsNY and for each tuple 1 € NQoX{L-N}Y ¢ gyple 1¥ = GAIRES NQox {1 N} py

oo Fl1<j<N,
R L VL A (3.6.12)
kiN - Zj'illij’ Zf_] =N

foralli € Qo and j € {1,...,N}. Then the decomposition of Grq(M (k)) into irreducible
components is given by

Gra(M (k) = Carr+10) a1y (B) - (3.6.13)

te{0,...,n}, IreM?P (k), 19e MO

d—(t,...,t) (k—1?)

and the points of Cprar410), m((r410y4) (k) are smooth in Gra(M(k)) for all I’ € M{ (k)
and 1° € Mod,(t“_ t)(k —17) with t € {1,...,n}. Moreover, ifd = (d,...,d), then the
decomposition of Grq(M (k)) into irreducible components is given by

Grq(M(k)) = UleMp(k)CM(l),M(k_l)(k?), (3.6.14)
d

‘ N5}~ . .
there are Z(ll,...,ld+1)l—dH§‘l:1 (HZGQO‘I}:T};]E' l]+1) irreducible components and each has

dimension d(n — d).
Thus the subset of smooth points is dense.

Remark 3.6.17. Ford = (d, ..., d) Gortz [30, Section 4.3] describes also the decompo-
sition into irreducible components by Schubert cells. Their index sets are quotients of
the Weyl group. To study this see also [35].

Example 3.6.18. Let N € N with N > 2, @ the N-cycle-quiver, iy € Qo, d = (d;)icq,
a dimension vector with d;;, = 0, k € K, n = (n,...,n) and t € {0,...,n}. Let
1 € MV(k) and 1 € Mgi(t“_"t) (k —I?). Then as in Example holds t =0,1?P =0
and Ed(i0> = {0}

Using Proposition we get Grg(M(k)) = Carqy,mx) (k). Moreover, by Theo-
rem [3.1.1] holds

dim Gra(M (k)) = ZieQOdik’iN —Yd; —di1)? = Zierdi (kin — di + dig1) -
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lea]|es||e6| €7 5]

di =4 [e)[eo] es] eq]

€2
|

)
d=3  |eles]|es] ea||es|eaes|[es|  [eg] s
ds = 2 e1]| e es[eal|es|  les|[es| es]
di=3 erlled eallesl[ea]  [e|led] [e2] e
ds =2 eq|[ez|[er][ea][es]  [es|[es|[er][en] e
ds =3 es||eg|[er|[er][ea]  [eoflea] [er] en
dr =2 ealles|e)[edler]  [edled]  [es)[ed[ed]

Figure 3.6.16: The (Q, a")-representations M (1? +1°), M (k) and M ((1? 4 1°)*).

Example 3.6.19. Let @ be the 7-cycle-quiver, d = (4, 3,2, 3,2, 3,2) a dimension vector,
k € NQALsNb with k7 = 1 and ki = 0 for all i € Qg and j € {1,...,6}, I? € M¥(k)
with I, = 1 and all other IJ; = 0 fori € Qoand j € {1,...,7} and 1° € Mg_(l 77777 (k=17
with 19; = 19, = 195 = {3 = 1 and all other l?j =0forie€ Qoand je {1,...,7}. The
(Q, a7)-representations M (1P +1°), M (k) and M ((I” +1°)*) are illustrated in the pictures
in Figure Thus holds

dimy, Endg (M(IP +1°)) =1+2+3+3+2=11,
dimy, Homg (M (1P +1°), M(k)) =1 +2+7+6 + 3 = 19,
dimy, Homg (M1 +1°), M((? +1°)*)) =0+ 0+4+3+1=8.

Moreover, the points in Cps(1p410) p((1p-410)+) (k) are smooth in Grgq(M (k)).

Remark 3.6.20. Let N € N with N > 2, ) the N-cycle-quiver, d a dimension vector,
keKh, n=(n,...,n) and t € {0,...,n}. For I’ € MV (k) and 1° € M(c)l—(t,...,t)(k —17)
there exists a U € Grq(M(k)) such that tk(U) = 1P +1°. Thus I? +1° € Ng(k),
Carr+410) (k) is non empty and the following lemma yields Cps1y (k) = Carq1), a7y (k) for
each 1 € NQox{L-.N},

Before proving Proposition [3.6.16| we consider some useful lemma. For this it is im-
portant that the (Q, a!V)-representation M (k) is projective-injective.

Lemma 3.6.21. Let N € N with N > 2, Q the N-cycle-quiver, d = (di,...,dn) a
dimension vector, k € Kb and n = (n,...,n). Let U € Grq(M(k)) with U = M (1) and
for each m € Qo x {1,...,N} define

S(m) = {(i,j,k) € Qo x {1,...,N} x N|1 < k <my;}.

Then there is a basis {fLN’k,l’(i,N, k) € S(k),l € {1,...,N}} of M(k) such that the
following holds
e For each tuple (i, N,k) € S(k) andl e {1,...,N} is fingg in M(k)iti—1.
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3 Geometric properties of quiver Grassmannians

e For each tuple (i, N,k) € S(k) holds M(k)a,., ,(fiNki) = finki-1 for all | €
{2, cee ,N} and M(k)ai(fi,N,k,l) =0.
o There is some injective map S(U): S(1) — S(k) such that

U = (fsw)ijr),j|i4.k) € 5(1)>Q-

Moreover, M/U = M(1*) with 1* € NQ*{1-N} defined in Equation in Propo-
sition [3.0.10.

Proof. For each m € N@0*{L-~N} define a basis {e;x|(i, 5, k) € S(m),l € {1,...,5}}
of M(m) = ¢, @;Vzl M (i, 7)™ such that e; j; is in the k-th copy of M(i,j) and
in M(m);4;—q for all (4,7,k) € S(m) and [ € {1,...,5}.

Since M (k) is projective-injective k;; = 0 for all i € Qg and j € {1,..., N — 1}. Let
v: M(1) — M(k) be an embedding with image U. Thus {¢(e;jx ;)|(i, 7, k) € S(1)} is a
minimal set generating the Q-representation U. Let \; ;i1 v € k be the coefficients
such that

L(ezjkj)zz E 7 )‘ijki’k’l’ei’]\fk’l’
21V, (i’,N,k/)GS(k) l/=1 2V ¥ Ty 1t Vv

for all (7, j,k) € S(1). Since ¢: M(1) — M (k) is an injective homomorphism of ()-repre-
sentations we get that

J
{Z(ilvak/)ES(k) Zl’:lAi’j’k7ilvk,7lleilyNakl7N+ll_j

generates the minimal direct summand of the @Q-representation M containing the sub-
representation U. This direct summand is isomorphic to M (k") with k], = Z;V: 1Li; for
each i € QQp. And let

S(1): 8(1) = SO, .3 k) > (i N+ 3 1)

(id.k) € S(l)}

be a bijective map and ¢1: M(1) — M ('), e jxj = €s(.)(,jk),; the induced homomor-
phism of Q-representations. Now we consider the injective homomorphism

J
/ § E
f: M(k ) — M(k), € N,k N — (i N.E)eS (k) Z/ZIAivjvk//,i/,]g’,l/ei’,N,k’,N+l/fj

for S(:1)7'(i, N, k) = (i,7,k"”). Since the image of this homomorphism f is the direct
summand of M (k) considered above, this homomorphism splits and we get an isomor-
phism

(fg): M(K)® M(k — k') — M(k).
Since the diagram in Figure is commutative it is enough to complete the set
{fi7N7k7l = f(ei,N,k,l)‘(ia Nv k) € S(kl)’l € {L C) N}}

to a basis of M(k) by fi N k1 = g(eingy) for all (i, Nk) € Sk — k') and | €
{1,...,N}. O
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M (1) : M(k)

%W

MK)® Mk -X)

Figure 3.6.17: A commutative diagram for the proof of Lemma |3.6.21

Now we are ready to prove Proposition

Proof of Proposition|5.6.16. By Proposition Equation is left to show. Let
1= (lij)ij € NQ>{LN} and U € Grg(M(k)) with rk(U) = L. Let S(U): S(1) — S(k)
and {fi N x| (i, N, k) € S(k),l € {1,...,N}} a basis of M(k) as in Lemma

Let ig € Qo and jo,j(l),ko e {l,...,N — 1} with ligjo # 0, li0+k0,j6 # 0 and kg < ](l) <
Jo + ko < N. Using again the pictures in Figure [3.6.14] we define

Ux = (30 oo 1)jo T M) Giot+korg1)dotko JSW) gk 5| (5 5, k) € S(1) = {(do, o, 1)}>Q

for X € k. Then Uy € Grq(M(k)) for all A € k, Uy = U and for all A € k* holds
rk(Uy) # 1. Thus we can assume without loss of generality for 1 = (I;;); ; holds

lj 0= ik y =0Vi € Qo 4,5 ke {l,.... N -1} k<j <j+k<N.

Let IV = (I7); ;,1° = (19,): NQOX“ N} with By = liy, I, = 0, 10y = 0 and I, = 1
for all i € Qo and j € {1,. —1}. This means I”? + 1 = I, 1”7 € M?(k) and
19 ¢ ./\/l0 t)(k 1?) with t = ZZGQOZZN Thus Equation (3.6.13)) holds.

By some ‘straightforward generalization of Example [3:6.19] we get that each point of
COM(IPHB)@M((IPHO) +y(k) is smooth in Grq(M(k)) for t € {0,...,n}, ¥ € M (k) and
e Mg .. t)(k —17).

Let d = (d,...,d), t € {0,...,n}, 1 € M{(k) and I € MY _ (t.. )(k—l). As in the
proof of Proposition|3.6.11|we get MY _, t)(k—l) ={0}ifd=t and Mg_(t pk=1) =
& otherwise. This yields Equation (3.6.14). As in the proof of Proposition |3.6.11| the
irreducible components are in bijection with the set

liNE{O,l,... ZN}Z zN— }

By reordering this tuples we get again for each such tuple in this set a unique partition
of d. Thus there is the map v taking each tuple to the corresponding dual partition.
The preimage of a partition (l1,...,l341) of d under the map v contains in this case

Hd Hi€Qolkin>j}—lj+1
j=1 lj—lj+1

dimy, Homg (M (1), M (k —1)) = d(n — d) this quiver Grassmannian has dimension d(n —
d). O

{(liN)iGQo €z

) tuples. Moreover, dimy, Endg (M (1)) = d? in this case. Since

Before closing this subsection we give an explicit list of the irreducible components for
some representation of the 6-cycle-quiver.
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3 Geometric properties of quiver Grassmannians

Example 3.6.22. Let @ be the 6-cycle-quiver, r,s € N with » > s, d = (r,s,7,s,7,5)
a dimension vector and k € K such that kg = r for each i € Qp. Thus M (k) is a

projective-injective (@, a%)-representation with dimension vector (6r,...,6r). Fori € Qg
andj S {1, .. ,6} let €5 = ((eij)i’,j’)i’,j’ S D\IQOX{L""6} with

1 ifi=14d,5=74,
(€ij)ijr = .
0 otherwise,

for all i’ € Qo and j' € {1,...,6}. Then

M (k) = {Zier Ai€i6

fort € N. Let t e N witht <sand 1P =}

Ai € {0, 1,..., S}, Zier)\i = If}

icgoNi€is € My (k). Then

Mod—(t,...,t) (k—1°) :{(j —2s+7r+t)(en +es +es)
+(s —t—2j)(ei1 +€ira3+€ita5) + j(eis +ess5+ 955)‘
JEN2j<s—1,25—r—t<jie {1,3,5}}.

Thus by Proposition [3.6.16 each irreducible component of the variety Grq(M (k)) is of
the form CN(t,Al,/\2,)\3,>\4,/\5,)\6,j,i)(k) such that t, A1, A2, A3, Ag, A5, A € {O, 1,..., S} with
3s—2r<tand ) ;.o N =1t jENwWith2j <s—tand2s —r—t<j, i€ {l1,3,5} and

N (8, A1, A2, X, Ay Xs, A, 5:1) = €D, Meio)™ @ (S(1) @ §(3) @ S(5))

© M(ej1 +eiya3 +eiras) ¥ @ M(ers + ess + ess) .

This @-representation is described in the picture in Figure [3.6.18] If 25 = s — t, it does
not depend on i € {1,3,5}.

3.6.6 Quiver of type Ay

Let Ne Nand Q =152 2 ... WEN. Again we describe the @Q-representations
by tuples in N@*{1--N} " Tet i € Qp and j € {1,...,i}. Then the Q-representation
M (3, j) is defined as in Sectionwith soc M (i,75) = S(i) and dimy M (4, j) = j. Thus
for each tuple 1 = (I;;);; € N@o*{LN} with [;; = 0 for all i € Qg and j € {i+1,..., N}
we define a (Q-representation

M) =, B, M09

This parametrizes all isomorphism classes of Q)-representations.
A Q-representation M (1) with 1 = (l;;);; € N@>{L-N} is injective in the abelian
category rep(Q®), if and only if the linear map Mg is surjective for each 8 € Qq, i.e.
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3.6 Examples

di =1 [ei[esl[es]|ea] [es][ e le1)]esl[es
dy=s 555?36—4?5 ?2?4
dg =71 [es| [eg|[e1]]eal[es] | ea] es| e[ es)
dy=s |ea||es|[eo] e1]]ea]es ea| e
ds=r |es|[e| es| [eg] [ed] [e2] les)[es] ed]
ds =5 [eal[es)[ealles] [es][e1] lea] [eaf[ed]
multiplicities: A1 Aoy A3 A\ A5 A¢ j—2s+r+t s—t—2j5 i

Figure 3.6.18: The (Q, a%)-representation N(t, A\, A2, A3, A, A5, X6, 7, 1).

et lex
Figure 3.6.19: Some injective and projective Q-representations with N = 5.

lij = 0 for each i € Qo and j € {1,...,4 — 1}. Dually a Q-representation M(l) is
projective, if and only if My is injective for each 8 € Q1, i.e. l;; = 0 for each ¢ € Qo and
j€{l,...,N} with i # N. In Figure[3.6.19 we give pictures for injective and projective
Q-representations.

The first corollary is well-known. Nevertheless it follows by Example [3.6.15

Corollary 3.6.23. Let N € N, Q =1 25 2 2% ... ' N gnd d = (di)icq, @
dimension vector. Then repq(Q) = O(M(1)) with 1 = (I;;);; € NN defined
inductively by

li;; = min {dy |i' € Qo, M(i,5)in # 0} — Z(i’,j’)e&jli/jl (3.6.15)
and Si; = {(7',j') € Qo x {1,..., N} dim M (i, j) < dim M (¢, ')} for alli € Qo and
jed{l,...,N}

Equation ([3.6.15]) is some special case of Equation (3.6.11)). The following result is a
corollary of Corollary [3.5.10| and the last section.

[e%) aN—1

Corollary 3.6.24. Let N e N, Q=1-"52 2 ... 25 N, d = (di)icq, a dimension
vector and M (k) a Q-representation with k = (ki;)i; € NN and dimension
vector n.
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3 Geometric properties of quiver Grassmannians

e If the Q-representation M (k) is injective, then holds Gra(M (k)) = Car(1), 11 (m) (k)
with the tuple 1 € N@Qo*{L...N} given by FEquation (3.6.15) and the tuple m =
(mij)ij € N@QoX{L-N} s defined by

) (3.6.16)
0 otherwise

{kii —d;+diy1 ifj =1,
mij =
with dy+1 =0 for alli € Qo and j € {1,...,N}.
o If M(k) is projective, then holds Grq(M(k)) = Car1y,ar(m)(k) with the tuple 1 €
NQox{LN}Y given by a dual version of Equation (3.6.16) and m € N@Qox{1-.N}

given by Equation (3.6.15)) with n — d instead of d.
Moreover, Grq(M(k)) is smooth in these cases.

Proof. We use Proposition [3.6.13[ and [3.6.16| In the first case we consider the (N + 1)-
cycle-quiver Q' with d' = (d})ieq, such that d; = d; for each i € {1,...,N} and dy_, =
0. Let k' = (K})icqy jeq1,...n+1y € Nt NT with K = ky; for each i € {1,..., N}
and k;; = 0 otherwise. Thus we can consider M (k) as a subrepresentation of the
projective-injective (@', o’V T1)-representation M (k’). Moreover, each subrepresentation
(Ui)ieq, of the Q'-representation M (k') with Un1 = 0 is a subrepresentation of the Q'
representation M (k) and thus also a subrepresentation of the @Q-representation M (k).
Using Proposition we get an isomorphism of varieties Grq(M (k)) — Grq(M (K')).
Since dy11 = 0 we can use Example By Equation holds the formula for
1. For m Equation yields

N—i i
mi; = ki + Zj,_lli—l-j’,j’ - Zj,_llz‘j’ = ki —d; + dita

for i € Qo. Since M (k) is exceptional Proposition [2.3.12] yields the smoothness of
Gra(M(k)). The second case is the dual of the first one. O
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4 Euler characteristics of quiver
Grassmannians

In this chapter let k& be the field of complex numbers C. We compute now the Fuler
characteristic xq(M) of a quiver Grassmannian Grq(M) associated to a tree or band
module M. Moreover, we formulate very similar results for covering theory.

4.1 Gradings

To compute the Euler characteristic of a quiver Grassmannian Grq(M) we define some
algebraic actions of the one-dimensional torus C* on the projective variety Grq(M) in
this section.

4.1.1 Definitions

Let @ be a quiver and M = (M;, M,)icQy.acq, & @-representation. Let I be the set
{1,2,...,dimy M} and E = {e;|j € I'} be a basis of P, Mi such that E C {J,cq, M-

Definition 4.1.1. A map 0: F — 7 is called a grading of M.

So every grading depends on the choice of a basis . It is useful to change the basis
during calculations. A vector m = Zje[ mje; € M with m; € C is called 9-homogeneous
of degree n € Z if 0 (e;) = n for all j € I with m; # 0. In this case we set 9(m) = n.

The following grading was studied by Riedtmann [44, Lemma 2.2]: Let M = @, _, Ny,
where Nj, is a subrepresentation of the Q-representation M for all k and E C J;_; Ni.
Then the grading 0: £ — Z with 0 (e;) = k for e; € Ny, is called Riedtmann grading (or
R-grading for short).

Definition 4.1.2. Let 0 and 0y,...,0, be gradings of M and A(y,z,a) € Z for all
y,z € 7" and a € Q1 such that

A((Om(es)1smers Om(e)1cmer,a) = Dles) = O(ey) (4.1.1)
for all i,j € I and a € Q1 with e; € My, e; € Myq) and m; # 0 for My(e;) =
> rer Miek. Then O is called a nice 0, ..., 0y-grading.

The definition of nice 0y, .. ., ,-gradings generalizes the gradings introduced by Cerulli
Irelli [I4, Theorem 1]. He only considers the nice @-gradings, i.e. 7 = 0. We say nice
grading for short. Now we can successively apply these gradings. For example each
R-grading is a nice grading.
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4 Fuler characteristics of quiver Grassmannians
Example 4.1.3. Let @ be the following quiver

4
17 22
b

and M = (M, M, My, M) the Q-representation with My = My = C%, M, = (99) and
My = (). Let {e; = ({),fi = (})} be the canonical basis of M; for each i € Qo and
E = {el,fl,ez,fg}. Let 0,01: E — Z be gradings with 8(61) = 8(f1) =0, 8(62) = 3,
d(f2) =5, 01(e;) = 0 and 01(f;) = 1 for each i € Q. Then 0 is a nice d;-grading, since
A(0,0,b) = 0(e2) —d(e1) = 3 and A(1,1,b) = 9(f2) — I(f1) = 5. Moreover, J is a not a
nice grading.

Example 4.1.4. In this example we state two extreme cases of gradings.
e Let 0 and & be gradings such that 0': E — Z is an injective map. Then 0 is a
nice &’-grading.
e Let O be a grading such that d(e;) = 0(e;) for all ¢, j € I. Then 0 is a nice grading.

By the following remark, we describe a way to visualize a nice 0y, ..., d.-grading 0 of
a @Q-representation of the form Fj(1g).

Remark 4.1.5. Let Q and S be quivers and F': S — @ a winding. Let M = F,(1g)
and {f; € (1s)i|i € So} be a basis of P,cg,(1s)i- Then E = {F.(f;)]i € So} is a basis
Of ®i€Qo Mz
e Now we illustrate each grading 9: £ — Z of M by a labelling of the quiver S. For
this we identify the set E and Sp. Thus 0: So — Z,i — O(Fx(fi))-
e For each nice 0y,...,0.-grading d we further extend 0 in a meaningful way to
So U S1 by

8(@) = A((am(s(a)))1§m§r7 (am(t(a»)lgmsw F (a))
for all a € S1. Then by Equation
d(a) = 9(t(a)) — I(s(a)) (4.1.2)

holds for all a € ;.

e Let 9: Sy U ST — Z be a map with the following conditions:
(S1) Equation holds for all a € 5.
(S2) 9(a) = O(b) for all a,b € Sy with Fi(a) = Fi(b), Om(s(a)) = Om(s(b)) and

Om(t(a)) = O (t(b)) for all m.

Then the map 0 induces a nice 9y, ...,0,-grading 0: £ — Z on M.

e Let 0: S| — Z be a map. If S is a tree and condition (S2) holds, then the map
0 induces a nice 01, ...,0-grading 0: £ — Z on M. If S is connected, such an
induced grading 9 is unique up to some shift.
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4.1 Gradings

Example 4.1.6. Let F,(1g) be the tree module described by the following picture.

1 1
'l v S @= (o))

N

Then F,(1g) has a basis E = {F.(f1), Fx(f1/), Fx(f2), Fx(f2r), Fx(f3)} as above.

Let 01:S1 — Z,v — 1 for all v € S; and 01(Fi(f1)) = 0. This induces by the
previous remark a unique nice grading 0y of Fy(1g). In particular d;(1) = 91(1") = 0,
01(2) =01(2') =1 and 01(3) =2. Let 92: S1 = Z,8— 1,7 — 0 for all 5 # v € S; and
02(Fy(f1)) = 0 . This induces a unique nice 0;-grading 02 of Fi(1g). So in particular
Br(1) = 0r(2) = 0, Da(1') = Ba(2) = (3) = 1.

F: 5=

4.1.2 Stable gradings

Let @ be a quiver, M a Q-representation and 0 a grading. The algebraic group C* acts
by

pa: C* = Endc (M), pa(N)(ej) := A, (4.1.3)

on the vector space M. This defines in some cases a C*-action on the quiver Grassman-
nian Grq(M).

Definition 4.1.7. Let X be a locally closed subset of Grq(M) and 0 a grading of M. If
for all U € X and X\ € C* the vector space pg(A)U is in X, then the grading 0 is called
stable on X.

For a locally closed subset X of Grq(M) and gradings 01, ..., 0, let

X010 = {U € X‘U has a basis, which is J;-homogeneous for each z} (4.1.4)

By definition, each stable grading on X is also a stable grading on X&1»9r

Lemma 4.1.8. Let Q be a quiver, M a Q-representation and d a dimension vector.
Let U € Grg(M) and 9, ...,0, gradings. Then U € Grq(M)%9 if and only if
o, (AU = U as vector spaces for all i and X € C*.

Proof. If U € Grq(M) has a basis, which is 0;-homogeneous for each i, we get g, (\)U =
U for each i and A € C*.

Let U € Grq(M) such that g, (\)U = U for all i and A € C*. Our aim is to find
a basis for U, which is 0;-homogeneous for each i. Let s € N with 1 < s < r and
{mi,...,mi} be a basis of U, which is 0;-homogeneous for each ¢ with 1 < i < s. For
each j with 1 < j <t let m; = >, ; Nijje; with \j; € C. For each z € Z and j € N
with 1 < j < ¢ define m; , := Zie[,a(ei):z Aije; € M. Then mj . is 0;-homogeneous for
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4 Fuler characteristics of quiver Grassmannians

each i with 1 <17 <'s, @y, (X)(mj.) = N*m;, for all A € C* and m; = >, m;.. Then
o, (AN)(my) = >, cz A*my . € U for all A € C* and so m;. € U for all z € Z and all j.
Since {m;.|1 < j <t,z € Z} generates U, a subset of this set is a basis of the vector
space U, which is d;-homogeneous for each ¢ with 1 < i < s. The statement follows by
an induction argument. O

We will show that each nice grading is stable on Grq(M).

Lemma 4.1.9. Let 01,...,0, and 0 be gradings of M. Then 0 is stable on the variety
Grg(M)%9 for all d € N9 if and only if for all X € C*, a € Q1 and 04, ...,0,-
homogeneous elements u € M we have

Mo (pa(Mu) € pa(M)Ua,,..a, (u), (4.1.5)

where Uy, ... s, (u) is the minimal subrepresentation of M such that u € Uy, . a,(u) and
Us,....0,(u) € Gre(M)219 for some ¢ € N0,

If U € Grg(M)%9% and V € Gre(M)%9 then Lemma implies UNV €
Grdim(Umv)(M)al’“"a’“. So the submodule Uy, .. 5, (u) is well-defined and unique.

Proof. If 9 is stable on Grgq(M)?9 for all d € N?°, then ©a(AN)Us,.... 5, (u) is a sub-
representation of M for all A € C* and u € M.

Let U € Grd(M)al""’ar. If Equation holds forall A € C*, a € Q1 and 01, ..., 0p
homogeneous u € M, then M, (gpa()\)Us(a)) C pa(A\)Uy for all A € C* and a € Q1,
since U is generated by 0y, ..., d,-homogeneous elements. Thus ps(A\)U € Grq(M). O

Lemma 4.1.10. Let Q be a quiver, M a Q-representation and d a dimension vector.
Then every nice 01, . .., 0-grading 0 is stable on Grq(M )29,

Proof. By Lemma[4.1.9] it is enough to consider A € C*, a € ()1 and a homogeneous u €
M. We write u = ), o urer with uy, € C, My(ex) = Zje[ mjre; with mj, € Cforallk €
I and M,(u) = > ,cz7r Mg With (O (mz))m = 2. So m,; = Zk,jel,(am(ej))mzz UK j1E;
and

— d(e _ d(e . .
Ma (po(Au) = ZkefukMa (A ( k)ek> - Zk,jelukA “mipe;

- Zk jel/\a(Ek)_a(Ej)ukmjkwa(/\)ej

= a(A) (Zk,jel)‘A((am(u))m’(am(ej))m’a)ukmjkej)

= pa(N) (ZZEZT)\A((am(u))m,z,a)mz) € pa(NUa, .o, (u).

This gives the lemma. O
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4.2 Preliminaries

4.2 Preliminaries

By the following theorem it is enough to compute the Euler characteristic of the subset of
fixed points under the induced C*-action on the Grassmannian Grq(M ). This generalizes
some result of Cerulli Irelli [I4, Theorem 1].

Theorem 4.2.1. Let Q be a locally finite quiver, M a finite-dimensional representation
of Q, X C Grq(M) a locally closed subset and O a stable grading on X. Then X2 is
a locally closed subset of Grq(M) and the Euler characteristic of X equals the Euler
characteristic of X9. If the subset X is non-empty and closed in Grq(M), then X9 is
also non-empty and closed in Grq(M).

The following well-known proposition is used to prove this theorem.

Proposition 4.2.2 (Bialynicki-Birula [5, Corollary 2]). Let C* act on a locally closed
subset X of a projective variety Y. Then the subset of fized points X under this action
is a locally closed subset of Y and x(X) = x(X"). If the subset X is non-empty and
closed in'Y, then X© is also non-empty and closed in'Y .

Proof. The subset of fixed points X¢ is closed in X. By [6], this is non-empty if X is
non-empty and closed in Y (see also [16, Corollary 2.4.2.]).

So we decompose X into the locally closed subset of fixed points X© and its comple-
ment U = X\X* in X. So x(X) = x (X*") 4+ x(U). Since U is the union of the non
trivial orbits in X, the projection U — U/C* is an algebraic morphism. Since x(C*) =0
the Euler characteristic of U is also zero. O

Proof of Theorem [{.2.1. The action ¢y of the algebraic group C* on the projective va-
riety X is well-defined. Thus Proposition |4.2.2] yields the equality of the Euler charac-
teristic of X and the Euler characteristic of the set of fixed points under this action. By
Lemma, a subrepresentation U of M in X is a fixed point of ¢y if and only if U
has a basis of 9-homogeneous elements. O

Theorem yields directly the following corollary, since different C*-actions com-
mute. So we can use more than one grading at the same time.

Corollary 4.2.3. Let Q be a quiver, M a Q-representation and 01, ...,0, gradings of
M such that for all 1 < i < r the grading 0; is a stable grading on Grgq(M)%v%i-1,
Then xa (M) = x (Grd(M)al""’aT).

The following result is well-known by Riedtmann [44]. Nevertheless, we prove it using
our notation.

Proposition 4.2.4 (Riedtmann). Let Q be a quiver, d a dimension vector and M and
N @Q-representations. Then

Xa(M@&N)=>" Xe(M)xa—c(N).

0<c<d
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4 Fuler characteristics of quiver Grassmannians

Using this proposition it is enough to consider the Euler characteristic of quiver Grass-
mannians associated to indecomposable representations.

Proof. We choose any basis of M and any basis of N. So the union induces a basis
of M & N. Using a R-grading 0, we have to compute the Euler characteristic of the
set of fixed points. This variety Grq(M @ N)? can be decomposed into a union of
locally closed sets X, where the subrepresentation of M has dimension vector ¢ and the
subrepresentation of N has dimension vector d —c. Then xq(M) = > jcccqg X(Xc) =

Eogcgd Xe(M)xa—c(V). ]

4.3 Main Theorem

The main result of this chapter is the following result. It is proven in Section

Theorem 4.3.1.
1. Let Q and S be finite quivers, F: S — @Q a tree or a band, d a dimension vector
of Q and V a finite-dimensional S-representation. Then

Xa(F(V)) = ZteF—l(d)Xt(V)' (4.3.1)

2. Let S be a quiver of type Ay, t= (ti)ics, a dimension vector of S and V € 1g,
i.e. V is a band module of S and dim¢ V; = n for some 1 € Syg. Then

n—1t) t;! 1
x(M) =1 1] (t‘) 11 CpT 11 T (4.3.2)

! t —1 !
i€80 v i€8o acs, ‘ta) 5(11))
source sink

with 0! =1, s! =0 and % =0 for all negative s € Z.

3. Let Q be a locally finite quiver, G a free (abelian) group, which acts freely on Q,
and m: Q — Q the induced projection. Let d be a dimension vector of QQ = Q/G
and V a finite-dimensional Q—representation. Then

Xa(m (V) =3y X (V): (4.3.3)

Since Part [3] of this theorem holds for free and free abelian groups, we write “free
(abelian) group”. Corollaries, examples and further explanations of this theorem are
given in the following sections.

4.4 Tree and band modules

All the corollaries and examples of this section are strictly related to Part [I] and [2] of
Theorem [4.3.1]
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4.4 Tree and band modules

Corollary 4.4.1. Let F: S — @ be a tree or a band and d a dimension vector of Q.
Then we have to count successor closed subquivers of S with dimension vectors in F~1(d)
to compute xa(Fy(1g)).

This corollary follows immediately from Part [I] of Theorem

Corollary 4.4.2. Let QQ be a quiver, M a tree or band module and d a dimension vector
of Q such that the variety Grq(M) is non-empty. Then xa(M) > 0.

Proof. The inequality xq(M) > 0 is clear by Theorem We prove the statement of
Part [1| of Theorem by applying Theorem [4.2.1] several times. So also the stronger
inequality xq(M) > 0 follows. O

If the quiver S is an oriented cycle, each band module B, (V') has a unique filtration
with n = dime V; pairwise isomorphic simple factors of dimension |Sp|. In this case
Part [2[ of Theorem holds (see Example [4.4.3).

Therefore we assume without loss of generality that S is not an oriented cycle. Let
{i1,...,i,} be the sources of S and {é}...,4.} the sinks. We assume that » > 0 and
1<iy <} <ig<ihy...<i, <i. <l Then the quiver S is visualized in Figure m

11
pe ~
- ~

S/

i it —1

¥ /4‘—1 1’2 1’2—1 7./1
T

Figure 4.4.1: A quiver of type A;_;.

Example 4.4.3. Let S, V and t be as in Part [2| of Theorem Lett) =to=... =
t; <n. Then x4 (V) = 1.
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4 Fuler characteristics of quiver Grassmannians

The next example shows one result of [14, Proposition 3] as a special case of Part

of Theorem [4.3.11
Example 4.4.4. Let S, V and t be as in Part [2| of Theorem Let r =1, =1

and ¢f = 1. Then
tl> <n—t1> (t —t1)!
V)= .
xe (V) <t1 n—t Hij(tiﬂ —t;)!

Example 4.4.5. Let (), B be as in Example and V € Ig. Using Theorem m
it is easy to calculate the Euler characteristics yq(B«(V')). For instance,

Xa(B«(V)) = x(0,0,2,2)(V) + X(0,20,2) (V) + x0,1,1,2) (V) + x(1,1,1,1)(V)
=141444+1=7

since F~1(4) = {t = (t1,t2,t3,ts) € NPOt; +ty +t3 +t4 = 4} and Gry(V) = @ if
s(a) > t(a) for some a € Sy or t; > 2 for some i € Sp.

Example 4.4.6. If F is a tree or a band, Part [T] of Theorem holds for each S-rep-
resentation V. Let F' be the tree described by the following picture.

F: 5= lﬁ / ﬁQ:(aCODﬂ)

1—"54-">3
Let V' be an indecomposable S-representation with dimension vector (1,1,1,2). Then
the dimension vector of a subrepresentation U of the S-representation V' with dim; U = 3
is in {(1,0,1,1),(0,1,1,1),(0,0,1,2)}. Thus
X3 (Fx(V)) = x(1,01,)(V) + X(0,1,1,1) (V) + X(0,0,1,2) (V) = 3.

Example 4.4.7. If S is not a tree and not a band, Equation (4.3.1)) does not hold in
general. To see this we consider the winding F' described by the following picture.

%3
o v B
F:S5= 1—2 2! 5 —>Q:<1L>2:;3>
Y
Ng/

Then F,(1g) is indecomposable and

X(0,1,1) (Fx(1s)) =2 #0= ZteF—l((O . 1))Xt(1s)~
It is easy to see that there exists no quiver .S and no winding F’ such that a formula similar

to Equation (4.3.1]) holds. So it is not possible to describe these Euler characteristics
purely combinatorial using our techniques.
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4.5 Quiver flag varieties

4.5 Quiver flag varieties

Definition 4.5.1. Let Q be a quiver, M a Q-representation and d, ..., d™ dimension
vectors. Then the closed subvariety

Fdw . am (M) := {O cuWc...cumcmue Grym (M) Vi}

of the classical partial flag variety is called the quiver flag variety.

We denote the Euler characteristic of Fqa) gt (M) by xq0) g (M). The following
corollaries of Part [I] of Theorem follow immediately from the analogous statements
for the quiver Grassmannians.

Corollary 4.5.2 (Riedtmann). Let Q be a quiver, dV),...,d") dimension vectors and
M and N Q-representations. Then

Xaw,.. am (M @& N) = Z(ch<d(i)xc<1>,_,,,c<r)(M)Xdu)fcu),_,,,dm7C<v~) (V).

Corollary 4.5.3. Let Q and S be quivers, dV, ... d") dimension vectors of Q and V
a S-representation. If F': S — @Q is a tree or a band, then

Xd(n,,,,,d(’“) (F*(V)) = Zt(i)EFil(d@))Xt(l)""’t(r) (V)

In particular we have to count flags of successor closed subquivers of S with dimension
vectors in F~1(d®) to compute Xam _am (Fi(Ls)).

Corollary 4.5.4. Let Q be a quiver, M a tree module and d),... d") dimension
vectors of Q) such that Fd(l)w_,d(r)(M) is non-empty. Then Xd(l)r'.’d(r)(M) > 0.

Example 4.5.5. Let Q@ = (1 = 2), n € N with n > 3 and M an indecomposable
Q-representation with dimension vector (n,n). We show x(; 2y (2,3) (M) = 8(n — 2).

Let B: Q — Q be the identity winding. For each pu € C there is an automorphism of
the algebra CQ such that B.(\,n) is mapped to B.(A — p,n). This is not necessarily a
band module. So we assume without loss of generality that M is a string module. Let

1(1) 1(2) 1(n)
S RN S ]
9(1) 2(2) coo 9(n—1) 9(n)
L) © L)
L NN ~
2(1) 2(2) ... 2(n—1)

Thus to prove the equation above we have to count flags of successor closed subquivers
of the following quiver 7™ associated to the dimension vectors (1,2) and (2,3). For
each subquiver V of T let

dimV = (|{i1D e v}, [{if2) € }]).
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4 Fuler characteristics of quiver Grassmannians

For dimension vectors ¢ and d of () we set

X (V) = {R C V|R is a successor closed subquiver of V,dim R = c},
Xea(V)={RCSC V!R € Xc(9),5 € Xa(V)}.

Using Corollary [E53} it is enough to show the following equality.
| X (12),2.3) (T™) :Zj 1\{ (RC S) € X(19),(23) (T(n))‘l(i) € Ry}
=|X (0,0, (T V) + 3, [ X (U HOUTC=9))|
)Xo (107D + (}Xw,l)(T("‘2 )] + X0 (T02)])
+Zj:_31(|X<171>(U(i_1))\ + X (T)]) + [ X (0)|
=2(("2) +("?) (") + 1)+ (n=3) 2+ 1) +2=8(n—2).

4.6 Coverings of quivers

We give two examples of coverings. In one case the formula in Part [3] of Theorem
holds and in the other it fails. This shows for this statement G has to be (abelian) free
and to act freely on Q.

Example 4.6.1. Let Q = (Z,Z) and G = Z with s(n) = n, t(n) =n+1 and gk = g+ k
for all k£ € QOUQ1 and g € G. Let I be an ideal of (DQ generated by the paths of Q of
length m and I = I /G. Then Q = Q /G is the one loop quiver and CQ/I is isomorphic
to C[T]/(T™). Let I < m. For each indecomposable CQ/I-module M of length [ there
is an indecomposable CQ/I-module N with 7, (N) = M. Then for 0 < k < [ holds
xe(M) = x({U € N|dim, U = k}) = 1.

Example 4.6.2. Let 7: Q — @ be the winding described by the following picture:

/ \ 1
T 2| — aub
\ e 2

Then 1 4 is indecomposable and has only one two-dimensional subrepresentation, but
m(]lQ) is decomposable and has three two-dimensional subrepresentations. Thus

X (m(1g) =240=3" xt(1).

tem—1((1,1))

4.7 Proof of the main Theorem

4.7.1 Proof of Part [1l of Theorem 4.3.1]

If F is a tree, Part 3| of Theorem yields this theorem by the following property. If
F: S — Qisatreeand 7: Q — @ a universal covering, then a factorization F' = m¢ exists
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4.7 Proof of the main Theorem

such that ¢: S — Q is injective. Nevertheless, we give in this section an independent
prove.

For this it is enough to consider V = 1g. By Remark[d.1.5the set E = {F..(f;)|i € So}
is a basis of F(1g). We write d(i) instead of d(F.(f;)) for all i € Sy. To prove Part [I] of
Theorem we will use the following proposition inductively. This proposition holds
in general and not only for trees and bands, but in the case of trees and bands there
exist enough nice gradings such that Part |1| of Theorem follows (see Lemma m

and .

Proposition 4.7.1. Let Q and S be locally finite quivers, T a finite subquiver of S,
F: S5 = Q a winding of quivers and d a dimension vector of Q. Let O be a nice grading
of F.(17). Define a quiver Q" by

Qo ={(Fo(i),0(:))[i € So}
={(9(s(a)), d(t(a)), F1(a))|a € S1}
8’(3(8(00))73@(@))7Fl(a)) =(s(F1(a)), d(s(a)))
t'(0(s(a)),d(t(a)), Fi(a)) =t(Fi(a)),d(t(a))) for all a € Qy

Define windings F': S — Q' by 1 i
G: Q" — Q by (Fo(i),0(i)) — Fo(i), (0(s(a)),0(

— /
Xa(Fi(1r)) = ZteG,l(d)Xt(F «(17)).
Proof. By definition of @', F’ and G holds F' = GF" and Grq(F,(17))? =
{U C F*(]lT)‘ dimU =d, U has a 0-homogeneous vector space basis.}
= UteG Grt (Fi(17)).
Thus Theorem [£.2.1] implies
xa(Pu(1r)) = x (Cra(F.(0)) = 37, o xe(Fi2r).

d

Example 4.7.2. We have a look at Example Let Q" and F’ be described by the
following picture.

S:

1 1/
I O

Using the nice grading 0, it is enough to observe F.(1g) and xt (F.(1g)) to compute
Xd(Fx(Lg)). So the nice 0;-grading d2 induces a nice grading of Fj(1g).
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4 Fuler characteristics of quiver Grassmannians

Lemma 4.7.3. Equation (4.3.1)) holds for each tree module Fy(1g).

Proof. By Proposition[4.7.1]it is enough to treat the cases when Fy: Sy — Qg is surjective
and not injective. If 4,j € Sy exist with Fy(i) = Fy(j) and i # j, we construct a nice
grading 0 of Fi(1g) such that 9(i) # 9(j). So we do an induction over |Sp| — |Qo].

Let S’ be a minimal connected subquiver of S such that there exist i,j € S, with
Fy(i) = Fo(j) and i # j. Then S’ is of type A;. Let F': S’ — @ be the winding induced
by F. Since S is a tree, every nice grading of F(1g/) can be extended to a nice grading
of Fiy(1g).

So without loss of generality let S’ be equal to S. So Sy = {1,...,l} and S; =
{s1,52,...,81} as in Section 2.2 and Fy(1) = Fy(l) and 1 < 1. So 9: So — Z,i + 61
defines a grading of Fi(1g) with 9(1) =1 # 0 = 9(l). Since Fy(2) # Fo(l — 1), we have
Fi(s1)7c # Fi(s;-1)%-! and so for all 1 < k < [ the equation Fj(s1) # Fi(si) holds by
the minimality of S. Therefore 0 is a nice grading. O

Lemma 4.7.4. Equation (4.3.1)) holds for each band module Fy(1g).

Proof. Let i,j € Sp with Fy(i) = Fy(j), ¢ < j and j — ¢ minimal (i.e. Fy(k) # Fp(m) for
all k,m € Sp with i <k <m < jand (4,5) # (k,m)). If no such tuple (i,7) € Sy x Sp
exists, we are done. By Proposition it is again enough to construct a nice grading
0 of Fy(1g) such that (i) # 9(j).
For each a € Q1 let p(a) := 22:1 €i0q,Fy (s;) and 9@ Q= Z,b > 64 a map.
e If a € Q; with p(a) = 0, then 9*) induces a nice grading 9(*) of F,(1g) such that

i—1
9@ (i) — 9@ (j) = Z;:i‘gkdaﬂ(sk)'
o If a,b € Qq, then 9@ := p(a)d®) — p(b)d®) induces similarly a nice grading §(®*)
of Fi(1g).
If p(F1(s;)) = 0, then 9F1(52)) (3) — 9UF(s1))(5) = ¢; since j — i is minimal. Thus F}(s;) #
Fi(sg) for all k € Sp with i < k < j.

If p(Fi(s;)) # 0, we should have a look at the grading 9U1(5:)-F1(sx)) for all k € Sp. If
QL) Fa(sk)) (7) — gl (s):Fi(sk)) (5) 2 0 for some k € Sp, we are done. So let us assume
O (s:):Fi(se)) () — 9UF(s:). F1i(sk)) () = 0 for all k € Sy and for all tuples (i,4) € Sp x Sp
with 0 < j — 4 minimal. If F;(s;) # Fi(sk), then

)7
)7

0 = ) F1lsk)) () — Uil Filse)) ()
j—1
= p(F1(s:)) (Zm:i+15m5F1(sk),F1(sm)> — p(Fi(sk))e
= p(F1(s:))er — p(F1(sk))ei

for some k' € Sy with ¢ < k' < j and Fi(sg) = Fi(sgr). So erp(Fi(sk)) = emp(F1(5m))
for all k,m € Sp. In other words, p(Fi(sx)) # 0 for all k£ € S} and ¢ = &, for all
k,m € Sp with Fi(sg) = Fi(sm). So some r € Z~g exists such that Fy(s;) = F1(Sgtr)
for all k € Sp. By Example the representation Fi(lg) is decomposable if r < [.
This is a contradiction. O
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4.7.2 Proof of Part 2] of Theorem 4.3.1]

Let S be a quiver of type A;_; and {il, ...,y } be the sources and {i},...,i.} be the
sinks of S. It is visualized in Figure For all i, € Sp with i < j let S¥ be the full
subquiver of S with S5 = {i,i +1,.. .,j}

Lemma 4.7.5. Let S be a quiver as above, V € Ig and t = (t1,...,t;) be a dimension
vector of S. For all s,t € Sy and a, 3,7,5 € N we define Xi{s’ﬁt)7 s(t) to be

” (M(Si’s+1,i;fl)a @ M(Si’s+1,i1fl)5 @ M(SitJrl,i;fl)fy @ M(Suﬂ,irl)é) ’

where M(SY) is an indecomposable S¥ -representation with dimension j —i + 1 for all
1,7 € So with i < j. Then

xe (V) = Zkez (t? ) (n " )Xt(zll 1—)k kykn—t;, k() (4.7.1)
with

1:/ _ (07ti1+1 - tila e 7ti'171 - ti17ti/1 - til - k7ti/1+1 - tila cee 7ti1—1 - tzl) ZfT = 17
(O’ti1+1 _tila"'vti’l _tiuti’l—i-l?"'ati’r—lvti’r —tiyye s tip—1 _til) if r > 1.

We use here the convention ( ) for all r,s € Zif s < 0 or s > r. We visualize
the S-representations M (S%t1ir—1), (SZ ctlin=1y pp(Sitlin=1y and M(Sit1a-1) in

Figure [£.7.1]

ls41 ls41
\ 11— 1
AN
i,
41 41

AN

Z

Figure 4.7.1: Modules occurring in the definition of X(isg),y s(t).

Proof. Using Remark we get a basis {ej|i € Sp,1 < k < n} of V= (V;, Vi, )ies,
such that the following hold.
1. For all 1 < m < n, the vector space V(™ .= (eikli € Sp,1 < k < m)is a
subrepresentation of V' and a band module.
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4 Fuler characteristics of quiver Grassmannians

2. There exists a nilpotent endomorphism 1 of V' such that ¥ (e;1) = 0 and ¥(e;) =
eir—1 forall 1 <k <mnand all i € Sp.
Let U = (Ui, Vs, |u, )ies, € Gre(V). Using the Gaufl algorithm, a unique tuple

JU)=0<jii<jp<...<jy <n) (4.7.2)
and unique A;;(U) € C exist such that
{eiljm + ijl,jyéjka)\mj(U)eilj I<m< til}

is a basis of the vector space U;,. The variety Gr¢ (V') is decomposed into a disjoint union
of locally closed subsets

Gre(V)y = {U S V|dimU = t,jU) =},
where j € N1, For each such tuple j let
Gry(V) = {U c V‘ dimU = t,j(U) = j, \;(U) = OV]'}.
These are locally closed subsets of Gr¢(V'). The projection 7: Gr¢(V); — Grt(V)J(-) with
Jji—1 sy —1
U — szl (14 A (U= (U) (4.7.3)

is an algebraic morphism with affine fibres, since the map Gr¢(V); — Gr¢(V); with
U~ (1 + Alj(U)wﬁ*j) (U) for each 1 < j < j; can be described by polynomials and
for each U € Grt(V)JQ holds:

ﬂ-il(U) - {Hj;:l (1 + Mjwjlij) (U)‘Mh co -1 € ﬂ:} o~ -l

Thus x(Gr¢(V);) = x (Grt(V)J(-)>.
For U ¢ Grt(V)J(J let U be the subrepresentation of V' generated by e; ;. Let Vj be
the subrepresentation of V' with vector space basis

{eiklit <k <n}U{eplit #i € So, 1 <k < nj}.

Then U; CU C V; C V and thus Grt(V)? = Gry—dimu; (Vj/Uj). This implies

— 0y —
(V) =D X (Gre(V)F) = 3 e, Xemaimey (Vi/Up) (4.7.4)
Using the representation theory of S, we get

0 ifd <i<i,

2 ifr=14 =iand j1 > 1,

1  otherwise.

(dim )

i
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So if j1 = 1 we get
Vi/U; 2 VD g M (Si'ﬁl’i'r—l) : (4.7.5)
and if j; > 1 we get
Vi/Uy = Vi) @ M (S5 @ b (S ) @ (s TR (46)

Let nj := [{1 < i < nli # jmV¥m,3Im i+ 1 = j,,}|. A simple calculation shows

g == (") (")

We do an induction over t;,. Then Equation (4.7.6) occurs nj-times, Equation (4.7.5)
occurs (t;; — nj)-times and so Equation (4.7.1) holds in general by an inductive version

of Equation (4.7.4)). O

The rest of the proof of Part [2] of Theorem is done in the next two combinatorial
lemmas.

Lemma 4.7.6. Let a,b,c,d, e, f € N. Then

() ()= G=9C)
Eoee (o) (27 (5) (757 = () () GH50),

Proof. The first equation can be shown using the definition. The second equation is a
consequence of the first one. O

and

Lemma 4.7.7. Let S, V, t, n as above and 1 < m <r. Then

_ t; —t; (m,m)
Xt <V) _Amrilim Zkel ( timl—k ) ( " k ' >Xtim —k,k,tiy —tip, +hn—t;, *k(t/)

with

m—1(n—t; ) ! j-1 1
A — +1 k [ —
m II/<;:1 t,! (n—ty )V K Hk:i (ek(tk — th1))!

*k
and

(0,...,0,tu+1 _tim---ati;fl —ti,.,

¢ — i —tiy — kot — i, ooyt -1 — i) ifm=r,
(07"‘70)tim+1 _timu"' 7t’L’m _timati;n-f—lw . '7ti;—17
tir —tiys s tip—1 — i) if m <.
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Proof. For m = 1 this is the statement of Lemma We prove the lemma by
induction. Let 1 < m < r. Then

i 1, 1
Xt (V) :Amflrilim 1 ( —k (n i ) (m n}c kz 7tim_1+k,n7til *k‘(t,)

Zm 1

zm 1 )

ti, —t; +k

- o n—t;, 117 Yim—1 n—t;, —k
—Am—lruzm 1 ( tip, 1 k)( ) (t;n L tz‘m,l—P)( ;)1 )
. _ . T. . (m—1,m) "
(tz;nfl tlmfl)-rzm,n;n,lXt _1—k p,k-&-p,til—ti/m_l-&-k-l-p,n—til—k‘—P(t )

t; . ti—ti  +k ok
o 2 : i1 n—t;; 1 "'m—1 n—tiy
_Am 1F111 1 :: ( (timflik) ( k ) (til —ti;n71+p> <n7ti1 7p)
p k
(m—1,m) "
(ti;n,l 7 1)'X fp,p,t 7ti;n_1+p,n7tilfp(t )

with t” = (0,...,O,ti/m71+1,...,t,-Hl —tiyy eyt o1 — i) Lemmamyields

'y t; ty
W) =Analug 32 (750 () (1)
p

(m—1,m)

(tijn,l 7 1) t/ 7p,p,t —t; +p,n— tllfp(t//)

-1

ti/ _ ! ty —p
:Amflmilrnzm ) ( )(t T ) ( Zl_l_k )(Il;)

i, !

(mvm) /
(ti;nq - tlm)'riﬁn,llthlm —k,k,t; _tim+k7n_ti1 —k,‘(t )

e (S (5 () () (1)

(mzm) /
- tim)!Xti kk,t; —tim+k,n—ti1—k(t )

m~ vHivbeg

(ty

m—1

Using Lemma [1.7.6] again, we get

n—t; n—t;
X(V) Aml mlF““"Z(zm )< Iqt”)(n t;n1>
(t’m 1 tim)!Xt(Z’Tﬁ,m- i hn—ts, (&)

t; i
:Amrilim Z (timl_k»> (n kt 1 )X(m le oty —to, et 7k(t,).
k

Corollary 4.7.8. Let S, V, t and n as above. Then Equation (4.3.2)) holds.
Proof. We have to show x¢ (V) = Ay 1141 with ¢; ,, =¢;,. Lemma implies

t; —t )
xt (V) = ATy, Z (tirik) (n e >X15(£7;)k,k,til —ti, +kn—ti, _k(t/)
k
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with t' = (0,...,0,¢;,41 — ti,,- .- slin—1 — i, by — iy — ]{,ti/TJrl —tiyye s tiy—1 — tiy). So
we have

t; n—t; n—t;; —k (r,r) m
— .. 1 @ 1 )
Xt (V) _A"‘FZN'T Z (t k;) < k ! ) (ti;._til —k ) XtiT—k,ti/ —til by —tin m—ty (t )

i

k
t; —t; n—t; —k
:ATI‘Z-”-T Z (tirik> (n kt 1 ) (ti; _tjl _k ) (ti'lr — til)!ri/ﬂl (ti'/r — tir)!riri’r
k

with t"” = (0,...,0,t541 —tipye -, tir—1 — ti,, 0, birv1 — iy ooy tip—1 — t;,). Using again
Lemma we obtain

n—t; t.
xe (V) =M () ()t = )1ty = )t = ApiaTraa.

4.7.3 Proof of Part 3] of Theorem 4.3.1]

This proof is divided into two parts.

First we assume that G is a finite abelian group. For this it is enough to consider
the representation V' = 17 with some finite subquiver T = (T, T1) of the quiver Q. So
without loss of generality we assume that G is of finite rank, e.g. G = Z" for some n € N.
By induction and Proposition [£.7.1] it is enough to assume G = Z. Let Ry be a set of
representatives of the Z-orbits in Qo. Since Z acts freely on Q, there is a unique z; € Z
and r; € Ry for each i € Qo with ¢ = zr;. The Q-representation m.(1r) has a basis
{fili € To}. We define a grading of 7.(17) by 9(f;) = z;. This grading is well-defined
and so it is enough to show that 0 is a nice grading. Let a,b € T such that they are
lying in the same Z-orbit, i.e. it exists z € Z with za = b. Thus zs(a) = s(za) = s(b)
and 2,(,) + 2 = 2g4). S0

9 (fuw) =0 (Faw) = 210) = 2sy) = (i) +2) = (Za(a) +2) = 9 (fiw) = 9 (fi(a)) -
This proofs Equation (4.3.3) for a free abelian group. O

Now we assume that G is a free group. In this case we use again some induction and
Part [3] of Theorem with G = Z. To illustrate the following construction we give an
example afterwards. Let G be generated by {g;|t € I} with some set I as a free group.
Thus

G = {gfll gf:‘n eNyer,...,en €{=1,1},t1,...,t, € I}.

For to € I we define a normal subgroup G of G by

n
{g;:ll .. gf: S G‘ijl(stotjej = 0} .

The quotient G/G™ is isomorphic to Z and this group G% is isomorphic to the free
group generated by

{gt(j) = g1, 99, |(t, 5) € (I — {to}) x Z}-
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4 Fuler characteristics of quiver Grassmannians

Q———Q
N
Q'
Figure 4.7.2: A commutative diagram for the proof of Part [3| of Theorem

Let Q% = Q /G rto: Q) — Q' the canonical projection and pfo: Q' — @Q the projec-
tion induced by the action of G/G¥ (see Figure . By the first part of this proof
Equation holds for the winding p'®: Q' — Q. Thus it is enough to consider the
action of the free group G* on Q

Let V = (%’Va)ieéo,aeél be a Q-representation. If there is some j € Qp with
‘{z € ﬁal(j)|dimk1/; + O}| > 2, let 41 and 49 be such two diverse elements. Let
g=9; ...9;" € G with giy = i5. Since n > 0, we can apply the previous induction step
for t;. If g ¢ G", we are done, otherwise write g = 9, (1)1 ... gy ,(jn/)E;’ with n’ € N,
eyl e {=11}, (th 1), (t, gw) € I —{t:1}) x Z. In this case 0 < n’ < n.

Thus by induction we assume Hz € 7r0_1(j)| dimy V; # O}} =1 for all j € Qp. In this
case Equation is trivial. Thus it holds for a free group in general. U

Example 4.7.9. Let Q = ({o},{«,5}) be as in Example and m: Q — Q the
universal covering. The fundamental group of Q is a free group with two generators,
called a and b, such that e.g. as(a/) = t(a’) for each o/ € 7, ().

Let g = ababa='b~'a~! € G. The quiver Q* and the canonical projection 7%: Q* — @
are described by the picture in Figure [1.7.3]

o (T T ) L e

Bo B1 B2 B3

Figure 4.7.3: The covering 7*: Q% — Q.
Since g € G we get g = bibab " with b; = b(i) for i € Z. For (Q*)"* see the picture

in Figure In (G*)"* holds g = by 1y with bg; ;) = b;(i) for (j,i) € (Z —{1}) x Z.
The corresponding quiver ((Q“)b1 )b(z’l) is described by the picture in Figure
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4.7 Proof of the main Theorem

(0% (0%
(0,00 % (1,0) % (2,0) =22 (3,0) ——
(J (J (J
Booy P00 Ba.0) B30
« e «
s (0,1) 2 (1,1) (2,1 2 (3,1) ——
(J (J (J
5(0,1) 5(1’1) 5(2,1) 5(3,1)
« o «
5 (0,2) 22 (1,2) -2 (2,2) 22 (3,2) ——
(J ) (J
B(o,2) B(2,2) B(3,2)

Figure 4.7.4: The quiver (Q%)%.
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Figure 4.7.5: The quiver ((Q®)™ )b(m_

« o o
. ——(0,0,0) 000 (1,0,0) 000 (2,0,0) @00 (3,0,0) —— -+
J J J
B(0,0,0) B(2,0,0) B(3,0,0)
(0,0,1) o (1,0,1) o (2,0,1) o (3,0,1) —— -+
U (0,0,1) (1,0,1) U (2,0,1) / *
B(0,0,1) Br1.00) , B(2,0,1) B(3,0,1)
(1,0,1)
5 (0,1,0) 01O (1,1,0) 2L (2,1,0) — 10 (3,1,0) — ...
) N )
B0,1,0) B(3,1,0)
(0,1,1) SREY (1,1,1) SRR (2,1,1) 1D (3/, 1,/r1) ..
J \ (U
Bo,1,1) B , . B(3,1,1)
(1,1,1) :
o (07 27 O) 020 (17 27 0) 220 (27 27 0) 20 (37 27 0) o
U J J
B(0,2,0 B(2,2,0) B(3,2,0)
(0,2,1) = (1,2,1) »(2,2,1) (3,2,1) —— - -~
, (0,2,1) Q(1,2,1) ) Q(2,2,1) X
J J )
B(0,2,1) B2,2,1) B(3,2,1)

surruueuwsse.Iyr) .IQA_Tl'lb JO sonjsLejovIRyd I9[N



5 Ringel-Hall algebras

In this chapter let k& be again the field of complex numbers C. We apply the results of
the last chapter to the study of Ringel-Hall algebras.

In the first section of this chapter we construct a morphism of the Ringel-Hall algebras
for some windings. Thereafter we study the images of functions of the form 1y Bnp.
Together with the notion of gradings this simplifies the computations of products of
functions of the form 1 B n. In the last section we apply these results to string algebras.

5.1 Morphisms of Ringel-Hall algebras

Each winding ¢: S — @ of locally finite quivers induces a functor ¢,: mod(CS) —
mod(CQ) and moreover a map of constructible and GL(C)-stable functions

H(p): H(CQ) — H(CS), f = fops.

This is in general not an algebra homomorphism, but functorial, since H(idcg) = idyc@)
and H(F o G) = H(G) o H(F') for windings F' and G. For trees, bands, and coverings
we get the following statement.

Theorem 5.1.1.
1. Let F: S — @ be a tree or a band and A = CQ/I and B = CS/J finite-dimensional
algebras. If F induces a functor Fy: mod(B) — mod(A), then the map

C(F): C(A) = C(B), f s foF,

is a Hopf algebra homomorphism. If F is injective, this homomorphism C(F) is
surjective. If each A-module can be lifted to a B-module, i.e. Fy is dense, the
homomorphism C(F) is injective.

2. Let Q be a locally finite quiver and G a free (abelian) group, which acts freely on Q
Let QQ = Q/G, A=CQ/I and B = (EQ/J be algebras and m: Q — Q the canonical
projection. If w induces a functor m,: mod(B) — mod(A), then the map

C(m): C(A) = C(B), f — fom,

is a Hopf algebra homomorphism. If each A-module can be lifted to a B-module,
this homomorphism is injective.

Proof. For V € mod(B) and dimension vectors d() € N@ holds:

c(F) (TT taw) (V)
- X({o U0 ... cum= F*(V)‘ dim (U“)/U(i—l)> - d@')w})
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5 Ringel-Hall algebras

= X({ =UuOc...cum™= F*(V)’ dim (U(i)/U(iﬂ)) _ d(i)vi}617...78n>
= X({ —v®c. . cu™ =v|dim (F* (U(i)/U(i—1)>) — d(i)Vi}>

= (TT_ et (ae)) ()

i=1

with some gradings 01, ..., 0, as in the proofs of Theorem Lemma and
For d € N%° holds

C(F)(1a) = ZteF,l(d)ﬂt, C(F)(Ls@)) = ZteF,l(d)ﬂS(t)-

Thus C(F) is a well-defined algebra homomorphism. For each f € C(A) and A-modules
V and W holds

(C(F) @ C(F)) (A(f) (V. W) = (A(f) o (Fx, Fx)) (V, W) = A(f) (E(V), E(W))
= [(F(V) o BE(W)) = f(F(VeW)) =C(E)(f) (VoW)=ACE)() (V,W)

and using Lemma we get for d € N®o

SO =5 (X, i) = CDIE, s g T =€) (ST,

By this C(F) is actually a Hopf algebra homomorphism.

If F: S — Q is injective, Fi: mod(B) — mod(A) is injective and C(F')(1gq)) = 1a
holds for each dimension vector d € N%. The functor F, induces an embedding of
varieties mod(B,d) — mod(A, F(d)). Thus C(F) is surjective.

Let f € KerC(F) and W € mod(A). If F,: mod(B) — mod(A) is dense, a B-module
V with F.(V) =2 W exists. By f(W) = f(F.(V)) = C(F)(f)(V) =01is KerC(F) =0
and C(F') injective.

The second part can be proven in a very similar way. O

5.2 Liftings
Let F: S — @ be a winding and F = (F(l),...,F(T)) with F(): 8@ — Q be a tuple
of windings. In this section we study the image H(F)(1gBn). For this we define the

following set of tuples: Let Gp(F) be a set of representatives of the equivalence classes
of the set

{]7“ = (ﬁ(l), . ,15(’“)) ‘ﬁ("): S — Q winding, FF®) = @ Vi}

with the equivalence relation ~ defined by F ~ F’ if and only if 1 = 1, in H(A).
Thus for all ¢ the diagram in Figure commutes. If r = 0, the set Gp(F) consists by
convention of one trivial element.
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5.2 Liftings

ﬁ(w\ N F@)
S@)

Figure 5.2.1: The lifting property.

Theorem 5.2.1. Let F be a tuple of trees, B a tuple of bands and n a tuple of positive
integers.
1. Let Q be a finite quiver and F: S — Q a tree or a band. Then

H(F) (]1F,B,n) = ZfegF(F),fBEQF(B)]lﬁvﬁ”n'

2. Let QA be a locally ﬁmte quiver, G a free (abelian) group, which acts freely on Q,
Q=Q/G and m: Q — Q the canonical projection. Then

H(r) (Appn) = 3

~ ~ I~ .
FeG.(F)Beg,(B) F.Bn
This theorem is a direct consequence of the following lifting property.

Lemma 5.2.2 (Lifting property). Let F be a tuple of trees, B a tuple of bands and n a
tuple of positive integers.

1. Let F: S — @ be a tree or a band and V € rep(S) such that 1 B n(Fx(V)) = 1.
Then there exists a tuple (F,B) € Gp(F) x Gp(B) with ﬂf,ﬁ,n(v) =1.

2. Let Q be a locally finite quiver, G a free (abelian) group, which acts freely on
Q, Q = Q/G and 7: Q — Q the canonical projection. Let V & rep(@) such
that 1 Bn(m«(V)) = 1. Then there is a tuple (F,B) € G.(F) x G.(B) with

]lﬁ71§7n(V) =1.

Proof of Part[l If F is a tree, a lifting F' = 7. with the universal covering 7: Q—Q
and an embedding ¢: .S — Q exists (see Figure left hand side). By the additivity of
F, and [28, Lemma 3.5] we assume without loss of generality that V', 1.(V') and Fy (V') are
indecomposable. The module F, (V) can be lifted to a Q-module. By 1 g n(Fi(V)) = 1
the module Fi (V) is a tree or a band module. If F, (V) is a band module, it cannot be
lifted to a Q—module since Q is a tree. This is a contradiction.

So F. (V) = F*(l)(llsm) is a tree module. Since F(1 is a tree, there exists another
lifting () = 7/ with an embedding ¢/: S@ < Q (see Figure left hand side).
Using the proof of [28, Theorem 3.6(c)] we get (V) is (up to shift by some group
element) isomorphic to ¢, (1ga)). So we can modify ¢/ such that ¢, (V) = ¢/ (1g1)) and
a winding FM: s 5 § exists such that the diagram in Figure commutes. In
particular V' is a tree module.

If F is a band, then V is a direct sum of some string and band modules. Since
F, is additive we assume again without loss of generality that V' is indecomposable.
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5 Ringel-Hall algebras

|
| \
| . N D
Y Ho (| FO)
(% S(l)

S

Figure 5.2.2: Windings occurring in the proof of Part |1| of Lemma |5.2.2

Thus V is a tree or a band module and it exists a winding G: T — S and W € I;E,
with G.(W) =2 V. Since FG: T — Q is a winding and 1y g o ((F'G)«(W)) = 1 we get
(F)+1(B) =

If {((F) =1, then (FG).(W) = F*(l)(]ls(m). By Lemma exists an isomorphism of
quivers H: S0 — T such that (FG)H = F(). By setting F)) = GH the statement

follows (see Figure right hand side). For {(B) = 1 the result follows analogously.
O

Proof of Part[4 By the additivity of Fy and [28, Lemma 3.5] we assume without loss of
generality that V' and 7, (V') are indecomposable. And by 1 B n(7«(V')) = 1 the module
m«(V') is a tree or a band module.

If 7. (V) is a tree module, we get 7, (V) = (115(1)) Since G acts on Q and Q = Q/G
the tree F(1) factors through 7r Le F® be the lifting, e.g. rFO = p) (see Figure
left hand side). Then 77*( m)) = Ils(l>) =~ 1,(V) and by the proof of [28,
Theorem 3.6(c)] we get oS (IL S(1>) is (up to shlft by some group element) isomorphic to

V. So we can modify again F!) such that U )(15(1)) >~V and still 7F®) = FO),

Q —"%Q Q — »Q
S A~ K\
F(1) B : B(l)\ . TB(I)
g1 7(1) T»T(l)

Figure 5.2.3: Windings occurring in the proof of Part [2| of Lemma

If (V') is a band module, we get 7, (V) = Bil)(V ) for some Vi € T4, Let p: T -
T™W be the universal covering of T (see Figure right hand side). Since 7, (V') =

Z?£1)(V1) and G is a free (abelian) group, which acts freely on Q, we get not only a lifting
BW of BMp but also a lifting B of BM). Then the result follows as above. O
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5.3 Gradings

5.3 Gradings

To consider the multiplication of the Ringel-Hall algebra H(A) we have to compute the
Euler characteristics of the constructible subsets

{N € Gra(M)|N € X, M/N ¢ Y}

of the quiver Grassmannian Grq(M) with some constructible and GL(C)-stable subsets
X Crepy(A) and Y C rep.(A). We use the gradings to simplify the calculations of
these Euler characteristics.

In the following section we study the products of functions of the form 1 B n, in H(A).
It turns out that it is enough to study the following cases and simple generalizations.
For a Q-representation M and U € Grq(M) let

Gra(M)V = {v € Gra(M)|V 2 U, M)V = M/U}.

Lemma 5.3.1. Let Q be a quiver, M be a Q-representation and U € Grq(M). Then
every R-grading O is stable on Grq(M)Y

Proof. The linear map pg(\): M — M is an automorphism of @Q-representations for all
Are O

Lemma 5.3.2. Let Q be a quiver, M a Q-representation and Fy(1g) C M with F: S —
Q a tree such that M/F,(1g) is a tree module, too. Let O be a nice grading on Grq(M).
Then 0 is also stable on Grg(M)F=(1s),

Proof. Let a € Q1, A € C* and U € Grg(M)F(s), Since 9 is a nice grading we know
Mupa(N) = XN@py(N)M, by the proof of Lemma Let i € Sp and p; the unique
not necessarily oriented path in S from 4 to some j € Sy. Then we associate an integer
d(p;) to each path p; such that f; — A%(3) f; induces an isomorphism U — 5 (\)(U) of
quiver representations. The same holds for the quotient. ]

Lemma 5.3.3. Let Q@ and S be quivers, B: S — @ a winding, M a Q-representation
and 0 a nice grading on Grq(M). Let

X = {U e Grd(M)‘EB*(V) band module : U = B*(V)},

a locally closed subset of Grq(M). Then O is also stable on X.

Proof. We use the proof of Lemma In this case the representations U and pa(\)(U)
are in general non-isomorphic, but they are both band modules for the same quiver S
and the same winding B: S — Q. O

The next example shows that this lemma is not true if we restrict the action to one
orbit of a band module.
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5 Ringel-Hall algebras

Example 5.3.4. Let Fi(1g) be the tree module described by the following picture.
1 1/ 1
F: OXKZ‘/Q — a%ﬁ

Let U be the subrepresentation of Fi(1g) generated by Fi.(f1 + f1/). Let A € C* with
A # 1 and 0 a nice grading of Fy(1g) with d(«) = 1 and 9(3) = 0 (see Remark {4.1.5)).
Then pg(A\)U is generated by Fi(f1+Af1/), and U and ps(A)U are non-isomorphic band
modules.

5.4 Product in the Ringel-Hall algebra

Now we study the products of functions of the form 1g B, in the Ringel-Hall algebra
H(A). Using the following lemma and following example, it is enough to consider the
images of indecomposable A-modules of the products of functions of the form 1g gy in

H(A).

Lemma 5.4.1. Let A = CQ/I be an algebra, f,g € C(A) and M and N be A-modules.
Then

(Frgara Ny =37 (£ g") (1) (£7 597 ) V),

),

where A(f) = 3, V@ £ and A(g) = ¥, o'V @ g2

Proof. By definition A(f)(M,N) = f(M @& N) for each f € C(A). Since C(A) is a
bialgebra the comultiplication A is an algebra homomorphism. O

Example 5.4.2. Let F be a tuple of trees, B a tuple of bands and n a tuple of positive
integers. Then

A(lpBn) = > 1pm) BO ) ® Lp@) B@) n@ -
FOOUF®—F BOUB®=B,n()(n(® =n

In this example we have been a little bit lazy: 1g B, is not necessarily in C(A), but we
can extend the comultiplication in a natural way to all functions of the form 1p B n.

Combining Theorem and we get useful corollaries to compute the products
of these functions 1 B n in H(CQ). For this again it is not important if we compute the
images in #(CQ) resp. H(CQ) or in #(A). It is only essential that F resp. 7 induces a
well-defined functor mod(B) — mod(A).

Corollary 5.4.3. Let F and F' be tuples of trees, B and B’ tuples of bands and n and
n’ tuples of positive integers.
1. Let Q be a finite quiver and F': S — Q a tree or a band. Then

H(F) (]]-F,B,n % ]]-F’,B’,n’) = H(F) (]]-F,B,n) k H(F) (:H-F’,B’,n’) .
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5.4 Product in the Ringel-Hall algebra

2. Let QA be a locally ﬁnite quiver, G a free (abelian) group, which acts freely on Q,
Q=Q/G and w: Q — Q the canonical projection. Then

H(TI’) (:H-F,B,n * ]]_Fl7Bl7n/) = H(T{') (:H-F,B,n) * 7—[(7‘(’) (ﬂ_F/’B/,nl) .

The functions 1y Bn, 15/ B/ o and the corresponding products are in H(CQ). The
functions H(F) (1r,B.n), (F) (]lF/ B/.n) are in H(CS) and the functions H(7) (1p,B.n),
H(r) (Lp B/n) are in H(CQ). So this corollary shows: To calculate

(1pBn * 1p B o) (Fu(V))

for a tree or band F': S — @ it is enough to consider some combinatorics and S-repre-
sentations, where S is a tree or a quiver of type A;_1.

Proof. Let F': S — @ be a tree or band and V' € rep(S). Then we have to show
(temn* Ter ) (F(V) = 3 (1.5 0 % L g ) (V),

where the sum is over (F,F',B,B’) € QF( ) X Gr(F') x Grp(B) x QF(B’). By the proof
of Part [I] of Theorem [5.1.1] Lemmas [5.3.2] and [5.3.3] and Theorem [5.2.1] we get

(1pBn * 1p B w) (Fi(V))
- ({v € PV [tena®) =1 10w w(Fv)) = 1))
- X({U - V)JLF,B,H(F*(U)) = 1,1p B (Fu(V/U)) = 1})
— (H(F) (e mn) * H(F) (e 50) ) (V)

_Z< FBn* 15 B, ,) (V).

So we only have to use the representation theory of trees and quivers of type Zl,l to
calculate the Euler characteristics of the occurring varieties.
The second case can be proven similarly. O

Proposition 5.4.4. Let A be a finite-dimensional algebra, F and F’ be tuples of trees,
B and B’ tuples of bands and n and n’ tuples of positive integers.
1. Let F.(1g) be a tree module of A such that (1p Bn * 1e B/ w) (Fi(Lg)) # 0. Then
I(B)=1I1(B')=0.
2. Let B.(V) be a band module of A such that (ILF,B,n * 1p B/ o/ ) B.(V)) # 0. Then
B,B’ € {0,(B)}, F and ¥’ are tuples of strings and [(F) = I(F ), where [(F)
denotes the length of the tuple F.

Proof. Let A=CQ/I. Corollarynshows to compute (1p Bn*1lp B/ n ) (F(V)) with
a tree or band F': S — ) we have only to consider the products (]lF B.n * 1 B B n,)(V)

where S is a tree or a quiver of type A;_1, and some combinatorics.
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5 Ringel-Hall algebras

Thus for Part [I] we assume without loss of generality that () is a tree and F' is the iden-
tity winding. So we have to compute (]lEB’n * ]lF@B/,n/) (1g) in H(CQ). All sub- and fac-
tor modules of the tree module 1 are again tree modules. If (]1F,B,n * :H-F’,B’,n’) (1g) # 0,
then [(B) = [(B’) = 0.

For Part [2| we assume without loss of generality that Q is a quiver of type A;_1. All
Q-modules are string or band modules B, (V') such that B’: Q@ — @ is the identity
winding. If (1p,Bn * 1p B/ ) (V) # 0, then {(B),[(B’) < 1 holds by Remark

The equality [(F) = [(F’) is shown by induction. Let V be a band module and U a
submodule, which is isomorphic to a string module. It is enough to show that for the
representation V/U = (W;, Wy,)icQo,ac@, the equality

dimg (V/U) = 1= 1k(W,)

a1

holds, where rk(W,) is the rank of the linear map W,. This is clear since V is a band
and U a string module with dimU ¢ Z(1,...,1). O

The calculation of the image of a tree module under a product 1y Bn * 1/ B/ 0/
is now a purely combinatorial task. Using this proposition it is enough to consider

(II-(F(I)W.’F(T)) * ﬂ-(F/(l)’...’Fl(s)))(F*(ILS)). By Corollary it is even enough to count
successor closed subquivers T of the quiver S with F,(1r) = @)_, F¥(14u) and
Fi(1s/1r) = @f:l F/(Z)(]ls/(i))-

Example 5.4.5. Let F' be the string described by the following picture.
1 5 P! 1 1 5

F:s=1{ U/ N\ SN | me=| VN

2 2 3.7

Let F=2—-Q,38323) -Q andF =1 - Q132 — Q). We compute
(1g * 1pr) (Fi(1g)) with Corollary Then
Gr(F)={2—5,323)—>5),2 = 5,323) =9},
Gr(F)={(1>5(152) =29, =532 =5,

/

(128 (1S 2)=8), (1 =81 %2) > S)
and thus (1p % 1g/) (Fi(1g)) = 2 by counting these subquivers.
Proposition 5.4.6. Let Q be a quiver of type A;_1, F and F' be tuples of strings,

B: Q — Q the identity winding, m € N and A € C*.
1. Let n,n' € N with n +n’ <m. Then

(1r,Bn * e o) (Bi(A,m)) = (L * 1) (B(A,m — n —n')).
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5.4 Product in the Ringel-Hall algebra

2. Let n € N, F a string and F(n) = (F,..., F) with [ (F(n)) = n such that F.(1g)
and F*(l)(]ls(i)) are preprojective, dimy Fy(1g) > dimy F*(Z)(]lsm) and Fi(lg) 2
Ff)(]ls(i)) for alli. Then (]1F(n)UF * ]lF/) (B«(A\,m)) =

Zkl,...,kneN (1p * 1p) (B* ()\’ me Zj:lki) @ @;1‘%)

with Iy, is an indecomposable representation with dimension vector (ki, ..., ki) —
dim F,(1g) for all i.

If dim By (A, k;) > dim Fi(1g), the module I exists, is preinjective and determined
up to isomorphism uniquely by Remark [2.2.10
Let Q be a quiver of type A;_1, F” and F’ be tuples of strings and V € I such

that (Lpr x 1g/) (V) # 0. Without loss of generality we assume that dimg F:(l)(]ls) >
dimy, F!(i)(]ls) for all i. Then F!(i)(]lg) is preprojective for all i and we apply Part
of Proposition with F = F"() and F = {F"0|F"0)(14) 2 F(1g)}. Thus before
proving Proposition [5.4.6| we get the following corollary.

Corollary 5.4.7. Let A = CQ/I be an algebra, M a direct sum of tree and band modules
of Q such that M is an A-module. Let F and F' be tuples of trees, B and B’ tuples of
bands and n and 0’ tuples of positive integers. Then 1rBn * Ly B/ o (M) is given by a
combinatorial description.

Proof of Proposition[5.4.6, First we prove Part [} Let M := B,(\,m) be an A-module,
w: M — By(\,m — n) a projection, K := &P, F*Z)(JIS(Z')) and K' := P, FL(Z)(]IS,@)). By
Remark there exists a unique U C B, (A, m) with U = B,(\, n), so we can assume

B.(\,n) C By(\,m —n') C B,(A\,m). Define the varieties
X ::{U c M‘U ~ B,(\n)® K, M/U = B,(\n') & K’}
X ;:{V c M’v ~ |, M)V = K’}

with U := (U N B«(A\,m — n'))/B«(A,n) for all B,(\,n) C U C M and an algebraic
morphism ¢: X — X by U + U. Using Remarkagain, B.(A\,n) CU C By,(\,m —
n') for all U € X. So ¢ is well-defined and injective.

Let V € X. Since V = K and M/V = K’ we have B,(\,m —n')/7~%(V) = K’ and
M/B.(A\,m —n’) = B,(\,n). There exist two short exact sequences

0— B.(\n) » 7 Y (V)= K =0
0 K — M/ (V) = B.(\,n') =0

Using Remark we assume without loss of generality that the direct summands
of K are preprojective Q-representations and the direct summands of K’ are preinjec-
tive ones. So both sequences split and this means that 7= (V) = B.(\,n) & K and
M/7= Y (V)2 K' @ B.(\,n'). Thus 7=}(V) € X and 7=1(V) = V. This shows that the
Euler characteristics of both varieties are equal.

Part [2] of Proposition follows inductively by the following lemma. O
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5 Ringel-Hall algebras

Lemma 5.4.8. Let Q, m, B: Q — Q, F: S — Q, F(n), F and F’ as in Part[J of
Proposition . Let M = B.(\,m) and n € Z~o. Then

(ﬂF(n)UF * JlF/) (M) = Zkew ((Appo1) ®1) * A(1p) * A (L)) (Bo(A,m — k), I,

with Iy, is an indecomposable module and dim I}, = dim B,(\, k) — dim F,(1g).

Proof. Let M = (M;, My)ic0pacqy, © = dim F,(1g), d® = dim F\” (1) for all i and
d=nc+) d®. By Remark [2.2.10, we know 1p(n) * Ir = Llp(mur- So we have to
calculate the Euler characteristic of

X ={(0CUCW C M) € FrealM)|ipu(U) = 1e(W/U) = 1w (M/W) = 1}.

We use now the arguments of the proof of Lemma in Section Let {e;x|i €
Qo,1 < k < m} be a basis of M such that the following hold.
1. For all 1 < p < m, the vector space M®) .= (eikli € Qo1 < k < p)isa
subrepresentation of M isomorphic to B.(\,p).
2. There exists a nilpotent endomorphism 1 of M such that 1(e;1) = 0 and ¥(e;) =
eir—1 forall 1 <k <m and all i € Q.
The quiver S is of type A|¢| such that S = {1,...,|c[} and S1 = {s1,...,S|c|-1}
Let (0 CUCWCM)e X. Then U = F,(1g)". Using the Gauf§ algorithm, there
exists a unique tuple j(U) = (1 < j1 < j2 < ... < jn < m) as in Equation and
unique Ag;(U) € C such that the vector space U is spanned by

£q - Jp—1
(M;i(sl) e MFl(Sq)) (eFO(l) Jp T Zg 1,7#5:Vk pj U)eFO(l)’j>

with 1 < p < mand 0 < ¢ < |c|]. This is well-defined since all linear maps M, are
isomorphisms. The variety X can be decomposed into a disjoint union of locally closed
subsets X, := {(U C W) € X|(j(U)), = k}. Define a locally closed subset of X for each
kby X9 :={(U CW) € X \1;(U) =0 Vj}. Equation defines again an algebraic
morphism 7: X — X7 with affine fibres.

For each k there exists a Uy, C M such that Uy & Fy(1g), Uy C U forall (U C W) € X}
and M / Uk >~ M(m=k) ¢ [, with an indecomposable module Ij, as in the lemma. Since
lc| > |d®)] for all i and F,(1g) is preprojective, all sequences of the form

0— F.(1g) = 7 X(W) = F.(1g)" ' @ @F( (Lgw) = 0
with a projection 7: M — M/F,(1g) and a submodule W C M/F,(1g) split. Let
e (v 2w ) (<)
Lpu-1)(U) = Le(W/U & W) = 1w (MD)W & 1/w') =1},
Using an R-grading, we conclude, as in the proof of Part [1| of Proposition that
X (X0) =x (XTQ) = ((tpge_y) ® 1) * A (1p) * A (1p)) (M(m‘k), Ik)

and by x (X) = Y ,cnX (X}) the lemma. O
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5.5 String algebras

In this section we consider the Ringel-Hall algebras of string algebras. We apply the
results of the previous sections to this special case.

Corollary 5.5.1. Let A be a string algebra. Let F be a tuple of strings, B a tuple of
bands and n a tuple of positive integers. Then 1p x 1B n = lg Bn = 1B n * 1F.

Proof. If A is a string algebra, then every indecomposable A-module is a string or a
band module. So this corollary follows directly from Lemma [5.4.1, Example and

Proposition [5.4.4] O

Example 5.5.2. Let Q = (1 = 2), F and F’ tuples of strings, m € Nand V € 7§ such
that (]lF * ]1F’) (V) 7§ 0. Then

- I(F)! I(F)!
[Ty e IEON T oy o (O]

(1 * 1pr) (V) (5.5.1)

where {F(?)|i}/ 2 is the set of isomorphism classes and |[F(*)]| is the number of elements
in the isomorphism class of F(). For instance,

(Ls@ym-—repay * Ls@ym—sar@)s) (V) = (7) (%)

for each V € Ig“”urs with m,r,s € N, S(i) € rep(Q) is the simple representation
associated to the vertex i € Qo and P(i) € rep(Q) (resp. I(7)) is the projective cover
(resp. injective hull) of S(i) for each i € Qo (see Example [3.5.9).

Equation can be proven by iterated use of Part [2| of Proposition By
Example alternatively it is enough to show Equation @ for a string module
with dimension vector (m,m). Using Theorem this can be computed by counting
all listings of the strings in F and in F’.

In general it is much harder to give an explicit formula for (1 * 1g/) (V).

Corollary 5.5.3. Let A be a string algebra. Then every function in C(A) is a linear
combination of functions of the form 1g B n with some tuple F of strings, some tuple B
of bands and some tuple n of positive integers.

Proof. We use an induction over dimension vectors of (). Let d be a dimension vector.
Then the set

Hy = {JlF,B,n

M € 1epg(Q) : Trm(M) # 0}

is finite and the function 14 is the sum of all functions in Hy.

It remains to show that each product 1g B n*1g B/ 0 € Ha(A) is a linear combination
of functions in Hq. Using Lemmal[5.4.1] and Example [5.4.2] we have to check that for all
bands B and m € N the integer (1p B n * 1g/ B/n) (B«(X,m)) is independent of A € C*.
This is clear by Part [2| of Proposition [5.4.6{ and an induction argument. O
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5 Ringel-Hall algebras

In general the functions of the form 1g g n do not belong to C(A) for a string algebra
A. Nevertheless they are linearly independent. So we get the following result. Unfortu-
nately it is not clear how a basis looks like in general or if C(A) = H(A) holds for each
representation finite (string) algebra A.

Theorem 5.5.4. Let A = CQ/I be a string algebra, such that @ has no loops and
cyclically oriented two-cycles. Then C(A) = H(A) if and only if A is representation
finite. Moreover, in this case the set of functions of the form 1y with some tuple F of
strings is a vector space basis of C(A).

For each finite-dimensional representation finite algebra A the set of characteristic
functions 1 of the orbits of A-modules M is a basis of the vector space H(A). To prove
the theorem we obtain the following two lemmas.

Lemma 5.5.5. Let A be a finite-dimensional algebra.
1. If A is representation finite and 1y € C(A) for each indecomposable A-module M,
then C(A) = H(A).
2. If A is representation infinite, then C(A) # H(A).

Proof. For the first part we consider an A-module N and a decomposition N = @;" | N;
of N in indecomposable A-modules. We use a result of Riedtmann [44] Lemma 2.2]
and some induction over the number of indecomposable direct summands m. Since A is
representation finite, we get

T
Iy, *...% 1y, = My + ZizlAiﬂMi

with r € N, A\, Aq,..., A\ € C* and A-modules M; such that the number of indecompos-
able direct summands of M; is smaller than m. Thus 1), € C(A) for each A-module
M.

Otherwise, if A is representation infinite, there exists some dimension vector d with
infinitely many isoclasses of A-modules with dimension vector d (see Bautista [4, The-
orem 2.4]). Since {15/|M € mod(A)} is a basis, the vector space Hq(A) is - in contrast
to Ca(A) - not finite-dimensional. This yields C(A) # H(A). O

Lemma 5.5.6. Let N € N and Q = (Qo, Q1) be the cyclically oriented quiver of type
An—1,ie. Qo={1,...,N} and Q1 = {«;: i = i+ 1|i € Qo}. For each admissible ideal
I holds C(CQ/I) =H(CQ/I).

Proof of Theorem[5.5.4. Let A be representation finite. Thus each indecomposable A-
module is a string module. By Lemma it is enough to show 1p € C(A) for each
string F': S — ). We use some induction over the dimension d of Fy(1g). If d = 1, we
are done. Thus we assume d > 2.

Let G: T — @ be a string and i € Q. Then by Corollary we get

-
Ly *1g —Lg *1g;) = ijlej]lF(]-) (5.5.2)
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5.5 String algebras

Figure 5.5.1: Possible strings FU): TU) — Q.

with 7 € N, ¢; € {—1,1} and strings FU): TU) - Q of the representation finite algebra
A. Since ) has no loops and cyclically oriented two-cycles, we get 0 < r < 2 by the
picture in Figure

Moreover, if r = 2, we obtain the following string. Let ¢ be the dimension of G, (1r).
Then without loss of generality we get a quiver 7" = (T, T]) of type A;io with T) =
{0,1,...,t,t+1} and a string G': T" — Q of @Q such that the following holds. For r, s € N
with 0 <r < s < t+1 let T™* be the full subquiver of 77 with the points {r,r+1,...,s}.
The quiver 7%t = T, 70t = 7@ TL+l = 70 Gpw = G, G'|por = F® and
G'|preir = FO) (see Figure . We remark that G/ (17+) is not necessarily an A-
module.

0- 1- ¢ t+1

Figure 5.5.2: The quiver 7" with subquivers T, T and T(®.

Let F': S — @ be the string with Sy = {1,...,d} and d > 2 as above. For r;s € N
with 1 <r < s < d let S™° be the full subquiver of S with the points {r,...,s}. Then
we set G = F|51 a-1: SH1 5 @ and i = Fy(d). Without loss of generality F(1) = F in
Equation (5.5.2). If »r = 1, we are done. Otherwise we get a quiver 77 and a G': T — Q
as above Wlth d = t+1 and T ! = §. Moreover, we obtain a quiver S of type Ad 1 with
Sp = Sp by identifying the points 0 and ¢ + 1 in T’ and an induced winding G: S — Q
with G\S = F and G; = GY. Now we continue with the string G = G'|po,4-2: T2 = Q
and 1 = Fy(d—1) and so on. If this construction stops sometime, we are done. Otherwise,
without loss of generality this quiver S is cyclically oriented, since the algebra A = cQ /1
is representation finite. This means Sy = {a;: i — i + 1|i € Sp} with d +i := i in Sp.

Furthermore, we assume that the winding G:5—Qis surjective. Forr,s € {1,...,d}
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5 Ringel-Hall algebras

we define a subquiver 5™ = (55’8, 5{8) of S of type A by

gns_{{r,...,s} if r <s,

o {r,...,d+ s} otherwise,
ST% = {ayli € S5°,i # s}.

We remark again that G, (1 g) is not an A-module, but G.(1 grs) is an A-module for all
r,s€{l,...,d}.

Now we prove G (a,) = G1(as) for all 7,5 € Sy with Go(rr) = Go(s). This yields that
Q is a cyclically oriented quiver of type A (see Figure . This case is covered in
Lemma

Let G be not injective and 7,5 € N with 1 < r < s < d and Go(r) = Go(s). Now
we construct a quiver S’ of type A4 by taking the disjoint union of S™* and S*" and
identifying the points 7 and s crosswise (see Figure .

~ (a7 Opr41 As—1
ST - r < r 1 N — S

Figure 5.5.3: The construction of the quiver S’.

This quiver is not cyclically oriented. If the induced morphism S” — @ of quivers is
a winding, we get a band of A. However, A is representation finite. Thus G1(ay,_1) =
él(as_l) or (?1(047«) = él(as). We assume the first case. Since A is a string algebra we
get él(a,n_i) = G’l(ozs_,-) foralli e Nwith?>0,7<s—7randi<r—s+d. Without
loss of generality we assume r — s +d < s — 7. In this case Gy () = G1(ags_r_q) and
r<2s—r—d<s Thus Go(s) = Go(25s — r — d). We construct another quiver S” of
type Ay vy by taking the disjoint union of Sr2s—r=d and S5 and identifying the points
rand 25 —r —d in S7?*~"~¢ and the points  and s in 5" crosswise (see Figure .

This quiver induces again a morphism S” — @ of quivers. This is again not a band.
Thus by an induction over the number of points in S’ and S” we get Gy (a,) = Gy (a).
Moreover, there is a r € N with 1 < r <, él(ai) = Gl(aprr) as in Example @ O

Proof of Lemmal5.5.6, For r € N with r > 0 let M, be an indecomposable, nilpotent
Q)-representation with top M, = S(1) and dim M, = r (see Figure[5.5.5). Using the first
part of the proof of Theorem L7, € C(A) for all € N\NN (see Equation (5.5.2)).

If for all 7 € N holds 1y, € C(A), we get Ly, € C(A) by induction over r and the
following equation

r—1 - _
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5.5 String algebras

S's,r: re_ cee g 1 d = =g

Qr—1 a1 Qg xg—1 Qs

Figure 5.5.4: The construction of the quiver S”.

aq 0 1 ((1)(1))
17 %2 ET 0 ET Ok k27 k2
N ) S N TR N
43 0. 0 0. k ko k
a3 0 0 1

Figure 5.5.5: The quiver ) and the Q-representations My, M3 and Mg for N = 4.

Thus it is enough to show 17 € C(A) for all r € N. Let (Ps) be the following property
for s e {1,...,N}:

Lg(@emr € C(A) Vr € N,d € N9,

Property (P;) holds by Lemma and Property (Py) yields the lemma. Let d =
(di)icq, be a dimension vector. If N > 2, we get by induction over the dimension for all
le{l,....r}

l .
Ls(d+(r—l)er+res) * Ls(1yr = Zizo (dlffﬂ) gi € C(A) (5.5.3)

with g; := Lg(ai(r—ijes+(r—ijes)ons for all @ € {0,...,r}. Thus Property (P1) yields
go € C(A). By Equation and another induction over | we get g; € C(A) for all
i €{0,...,r}. Thus g, = Lg@a)eny € C(A) and Property (P») holds.

Now we assume that Property (Ps) holds for some s € {2,..., N — 1}. Again we get
forall l € {1,...,7}

! i
Ls@tressnyomy—t * It = Zizo (151) g €C(4) (5.5.4)

with g; := ]ls(dJr(r_Z.)esﬂ)@Msr_z@]\/[;-+1 for all ¢ € {0,...,7}. Thus Property (Ps) yields

go € C(A). By Equation (5.5.4) and another induction over [ we get again g; € C(A) for
all i €{0,...,r}. Thus g, = Lg@emr,, € C(A) and Property (Psy1) holds. O

By the following example this proof cannot be generalized to each representation finite
string algebra.
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5 Ringel-Hall algebras
Example 5.5.7. Let Q be the following quiver
(e
122 )0
B

and I = (af,Ba,~¥?) an admissible ideal. Thus A = CQ/I is a string algebra. This
algebra is representation finite since up to an isomorphism all strings are described by
the pictures in Figure [5.5.6

1 2 2
(1), (2), F=| O |, re=| 07 | For=| ]|

2 1 2

1 2

N b
F(ya) = 2 |, F(py) = 2 |

b y
2 1

1 2 2

Fola) = | S | Fe=|
2 1 2
1 2

N e lﬁ/} Bt

:\; 1A 1%

Figure 5.5.6: Strings of the string algebra A.

Then holds
Ls(2) * Lr() = Lr@) ¥ 1s@) = Lr(ye) ~ Lp(yta);
Ls(2) * 1) — Lr(p) * Ls(2) = — Lpsy) + Lrg-14),
Ls) *1r(y) = 1p(y) * Lsa) = = Lr(rva) T 1rgy) = Lr(y-1a) T Lrg-14)-

Thus the proof of Theorem fails for this example, but C(A) = H(A) by some
straightforward calculation.
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