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Abstract

Let k be an algebraically closed field, Q a finite quiver and M a finite-dimensional
Q-representation. The quiver Grassmannian Grd(M) is the projective variety of sub-
representations of M with dimension vector d.

Quiver Grassmannians occur naturally in different contexts. Fomin and Zelevinsky in-
troduced cluster algebras in 2000. Caldero and Keller used Euler characteristics of quiver
Grassmannians for the categorification of acyclic cluster algebras. This was generalized
to arbitrary antisymmetric cluster algebras by Derksen, Weyman and Zelevinsky. The
quiver Grassmannians play a crucial role in the construction of Ringel-Hall algebras.
Moreover, they arise in the study of general representations of quivers by Schofield and
in the theory of local models of Shimura varieties. Motivated by this, we study the ge-
ometric properties of quiver Grassmannians, their Euler characteristics and Ringel-Hall
algebras. This work is divided into three parts.

In the first part of this thesis, we study geometric properties of the quiver Grass-
mannian Grd(M). In some cases we compute the dimension of this variety, we detect
smooth points and we prove semicontinuity of the rank functions and of the dimensions
of homomorphism spaces. Moreover, we compare the geometry of the quiver Grassman-
nian Grd(M) with the geometry of the module variety repd(Q) and we develop tools to
decompose Grd(M) into irreducible components.

In the following we consider some special classes of quiver representations, called
string, tree and band modules. There is an important family of finite-dimensional k-
algebras, called string algebras, such that each indecomposable module is either a string
or a band module.

In the second part, for k = C we compute the Euler characteristics of quiver Grass-
mannians Grd(M) and of quiver flag varieties Fd(1),...,d(r)(M) in the case that M is a
direct sum of string, tree and band modules. We prove that these Euler characteristics
are positive if the corresponding variety is non-empty. This generalizes some results of
Cerulli Irelli.

In the third part, we consider the Ringel-Hall algebra H(A) of a string algebra A over
C. We give a complete combinatorial description of the product of the subalgebra C(A)
of the Ringel-Hall algebra H(A).

In covering theory we obtain the following results, which resemble the results of the
last two parts. Let Q̂ be a locally finite quiver with a free action of a free or free abelian
group and π : Q̂→ Q the corresponding projection on the orbit space Q. Thus for each
finite-dimensional Q̂-representation V we get a Q-representation π∗(V ) and π induces

a map π : NQ̂0 → NQ0 of dimension vectors. We show that the Euler characteristic of
the quiver Grassmannian Grd(π∗(V )) is the sum of the Euler characteristics of Grt(V ),
where t runs over all dimension vectors in π−1(d). Moreover, the morphism π : Q̂→ Q
of quivers induces a morphism C(π) : C(CQ)→ Ĉ(CQ̂) of the Ringel-Hall algebras.
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1 Introduction

Let k be an algebraically closed field, Q = (Q0, Q1) a locally finite quiver, M =
(Mi,Mα)i∈Q0,α∈Q1 a finite-dimensional Q-representation and d = (di)i∈Q0 a dimension
vector. A subrepresentation of M with dimension vector d is a tuple (Ui)i∈Q0 of di-
dimensional subspaces Ui of the k-vector space Mi such that (Ui,Mα|Us(α))i∈Q0,α∈Q1 is
again a Q-representation. The quiver Grassmannian Grd(M) is the projective variety
over k of all these subrepresentations of M with dimension vector d. This is a closed
subvariety of a product of classical Grassmannians (see Lemma 2.3.7).

Following [46] quiver Grassmannians appear in the study of general representations of
quivers (see Crawley-Boevey [19] and Schofield [48]) and their Euler characteristics in
the theory of cluster algebras (see Caldero and Chapoton [9], Caldero and Keller [11] and
Derksen, Weyman and Zelevinsky [21]). Cluster algebras were introduced by Fomin and
Zelevinsky [24, 25, 26] in 2000. For instance, Caldero and Keller [10, 11] showed that the
Euler characteristic plays a central role for the categorification of cluster algebras. In this
context the positivity of these Euler characteristics is essential. The Euler characteristic
of such a projective variety is a much studied, but very rough invariant (see Caldero
and Zelevinsky [13] and Cerulli Irelli [14]). The representation theoretic properties of
these quiver Grassmannians are studied for instance by Fedotov [23], Lusztig [39] and
Reineke [42]. Moreover, Görtz [30, Section 4] showed that they appear in the theory of
local models of Shimura varieties.

It is easy to see that an ideal I of a quiver Q does not affect our results. Let M be
a (Q, I)-representation. So M is also a Q-representation. Each subrepresentation of the
Q-representation M is also a subrepresentation of the (Q, I)-representation M . Thus
the variety Grd(M) for a finite-dimensional (Q, I)-representation M equals the variety
Grd(M) for the Q-representation M .

This thesis is organized as follows: After this introduction we state the necessary
basic notions in Chapter 2. Most of these definitions and results are well-known. In
the remaining three chapters we present our own results. In Chapter 3 we study the
geometry of the quiver Grassmannian Grd(M) as a scheme. In Chapter 4 we compute
the Euler characteristics of some quiver Grassmannians. These results are applied to
Ringel-Hall algebras in Chapter 5. Some results of the last two chapters are already
published in [32].

1.1 Geometric properties of quiver Grassmannians

We study basic geometric properties of quiver Grassmannians Grd(M) building on work
of Caldero and Reineke [12] (see also Cerulli Irelli and Esposito [15], Schofield [48] and
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1 Introduction

Wolf [54]). For this it is convenient to consider a k-scheme Grd(M) such that its k-
rational points form the variety Grd(M).

The module variety repd(Q) =
∏
α∈Q1

Mat
(
dt(α) × ds(α), k

)
is very well-known in

representation theory. This affine variety parametrizes in some sense all Q-represen-
tations with dimension vector d. The algebraic group GLd(k) =

∏
i∈Q0

GLdi(k) acts
by conjugation on the module variety repd(Q). The orbits under this action are in
bijection with the isomorphism classes of Q-representations with dimension vector d.
They are irreducible, locally closed, smooth and their dimensions are well-known (see
Proposition 2.3.3). The closure of such an orbit is the union of orbits. This defines the
degeneration order on the set of orbits. We say an orbit O(U) is bigger than another
orbit O(V ) if and only if the orbit O(V ) is contained in the closure of the orbit O(U) (see
e.g. [43]). For each (semi-)admissible ideal I there is a closed subvariety repd(Q, I) of
repd(Q), which parametrizes all (Q, I)-representations with dimension vector d. Since
this variety is not irreducible in general it is natural to decompose it into irreducible
components (see e.g. [3, 20, 41, 45, 50]).

This suggest to decompose the quiver Grassmannian Grd(M) into irreducible compo-
nents. The isomorphism classes CU (k) of subrepresentations U of a Q-representation M
in the quiver Grassmannian Grd(M) are in general not orbits of some natural action (see
Remark 3.3.6). Nevertheless, these locally closed subschemes CU of the scheme Grd(M)
are irreducible, smooth and have dimension dimk HomQ(U,M)−dimk EndQ(U) for each
U ∈ Grd(M) by Theorem 3.1.1. In Proposition 3.1.7 we give a homological condition on
U ∈ Grd(M) such that CU (k) is an irreducible component of the variety Grd(M). More-
over, in Corollary 3.1.8 we use this criterion to construct a lot of examples of irreducible
components. In these cases all points in CU (k) are smooth in the quiver Grassmannian
Grd(M).

Each homomorphism f : M → N of Q-representations induces an isomorphism of
closed subschemes of the quiver Grassmannians Grd(M) and Grd−dimKer f (N) (see
Proposition 3.2.1). Rank functions on the module variety repd(Q) are lower semicontin-
uous and dimensions of homomorphism spaces of Q-representations are upper semicon-
tinuous. We show the analogous statements for the quiver Grassmannian Grd(M) (see
Proposition 3.3.1 and 3.3.3).

Comparing the degeneration order defined by the module variety repd(Q) and the
topology of the quiver Grassmannian Grd(M) we get the following result (see Theo-
rem 3.4.1). Let U, V ∈ Grd(M). If U ∈ CV (k) in the quiver Grassmannian Grd(M),
then O(U) ⊆ O(V ) in the module variety repd(Q). Using Example 3.4.4 or the example
in Section 3.6.4 we see that the converse of this theorem is not true. Nevertheless, this
gives us some irreducible components of the quiver Grassmannian Grd(M) if there are
only finitely many isomorphism classes of subrepresentations of the Q-representation M
with dimension vector d (see Proposition 3.5.5).

Let M be an exceptional Q-representation, i.e. Ext1
Q(M,M) = 0. By Caldero and

Reineke [12, Corollary 4] the corresponding quiver Grassmannian Grd(M) is empty or
smooth (see Proposition 2.3.12). Moreover, we show in Proposition 3.5.7 the following. If
Grd(M) is non-empty and there are only finitely many isomorphism classes in Grd(M),

10
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there is an exceptional Q-representation U such that the isomorphism class CU (k) of U
is dense in Grd(M).

Of course, there are dual versions of all these results by replacing sub- by factor
representations.

In Section 3.6 we consider the quiver Grassmannians Grd(M) in some examples. We
try to decompose it into irreducible components and detect smooth points. The following
examples are studied:
• Linearly oriented quivers of type A: We consider the quiver 1→ 2 for each Q-rep-

resentation M and each dimension vector d, the quiver 1 → 2 → 3 for Q-repre-
sentations M with dimension vectors of the form (n, n, n) and dimension vectors
d = (d, d, d) and the quiver 1 → 2 → · · · → N for a projective or injective Q-rep-
resentation M and each dimension vector d.
• Cyclically oriented quivers of type Ã: We study the one-loop-quiver (see Fig-

ure 3.6.4) for each representation and each dimension vector and one example for
the oriented two-cycle-quiver (see Figure 3.6.9). Finally, we consider the oriented
N -cycle-quiver Q (see Figure 3.6.11) with each projective-injective (Q,αN )-rep-
resentation and a dimension vector for N ∈ N and N ≥ 2. Görtz [30, Section
4] studied this example in the context of local models of Shimura varieties (see
Remark 3.6.17 and also Pappas, Rapoport and Smithling [40, Section 7]).

1.2 Euler characteristics of quiver Grassmannians

Let k be the field of complex numbers C. We use and improve a technique of Cerulli
Irelli [14] to compute Euler characteristics χd(M) of quiver Grassmannians Grd(M). In
general it is hard to compute the Euler characteristic of such projective varieties, but in
the case of a direct sum of tree and band modules we show that this is only a simple
combinatorial task.

Some special morphisms of quivers F : S → Q are called windings of quivers (see
Section 2.2). Each winding induces a functor F∗ : rep(S) → rep(Q) of categories of
finite-dimensional quiver representations and a map F : NS0 → NQ0 of dimension vectors
of the corresponding quivers. Let S be a finite tree and 1S the S-representation such
that every vector space of this representation is one-dimensional and every linear map
is non-zero. This representation 1S is up to isomorphism uniquely determined and its
image under the functor F∗ is called a tree module. Let n ∈ Z>0, S be a quiver of type
Ãn−1 and InS the set of indecomposable S-representations V = (Vi, Va)i∈S0,a∈S1 with Va is
an isomorphism for each a ∈ S1 and dimC Vi = n for some i ∈ S0. The Q-representation
F∗(V ) is called a band module if V ∈ InS and F∗(V ) is indecomposable.

In Theorem 4.3.1 we compute the Euler characteristics of quiver Grassmannians of all
tree and band modules. Let F∗(1S) be a tree module. By Part 1 of Theorem 4.3.1 the
Euler characteristic of Grd(F∗(1S)) is the sum of the Euler characteristics of the quiver
Grassmannians Grt(1S), where t runs over all dimension vectors in F−1(d). By definition
of 1S it is very easy to compute the Euler characteristic χt(1S) in this case, namely
Grt(1S) contains at most one point (see Corollary 4.4.1). For each indecomposable
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1 Introduction

band module M we give an explicit formula for the Euler characteristic χd(M) in Part 2
of Theorem 4.3.1. Moreover, we prove the positivity of each Euler characteristic χd(M)
in the case that M is a direct sum of tree and band modules (see Corollary 4.4.2).

In the proof of Theorem 4.3.1 we use the following result of Bialynicki-Birula [5,
Corollary 2]. For a quasi-projective variety with a C∗-action its Euler characteristic
equals the Euler characteristic of the fixed points under this action (see Theorem 4.2.1).
To construct C∗-actions on the quiver Grassmannian Grd(M) we introduce the notion
of gradings in Section 4.1.

The projective variety Fd(1),...,d(r)(M) of flags of subrepresentations of a Q-represen-

tation M with dimension vectors d(1), . . . ,d(r) is called quiver flag variety. The results
for the Euler characteristics of quiver Grassmannians can be generalized to analogous
statements for such quiver flag varieties (see Corollary 4.5.3).

Let Q̂ be a locally finite quiver and G a free or free abelian group. An action of the
group G on Q̂ is a pair of maps G× Q̂0 → Q̂0, (g, i) 7→ gi and G× Q̂1 → Q̂1, (g, a) 7→ ga
such that gs(a) = s(ga) and gt(a) = t(ga) for all g ∈ G and a ∈ Q̂1. We say, the group G
acts freely on the quiver Q̂ if for all i ∈ Q̂0 and all a ∈ Q̂1 the stabilizers are trivial. Let
Q = Q̂/G be the orbit quiver of such an action and π : Q̂→ Q the canonical projection.
If G acts freely on the quiver Q̂, then π is a winding.

Let V be a finite-dimensional Q̂-representation. In Part 3 of Theorem 4.3.1 we show
that the Euler characteristic of a quiver Grassmannian of the Q-representation π∗(V )
is determined by the Euler characteristics of the quiver Grassmannians of V . More
precisely, for each dimension vector d the Euler characteristic of Grd(π∗(V )) is the sum
of all Euler characteristics of Grt(V ), where t runs over all dimension vectors in π−1(d).

1.3 Ringel-Hall algebras

Let Q be a locally finite quiver, I an admissible ideal and A = CQ/I the corresponding
C-algebra. We associate to the algebra A the Ringel-Hall algebra H(A), its subalgebra
C(A) and its completions Ĥ(A) and Ĉ(A) (see Section 2.4). We assume one of the
following cases.

1. Let ϕ : S → Q be a tree or a band and A = CQ/I and B = CS/J finite-dimensional
algebras such that ϕ induces a functor ϕ∗ : mod(B)→ mod(A).

2. Let Q̂ be a locally finite quiver and G a free or free abelian group, which acts
freely on Q̂. Let Q = Q̂/G be the orbit quiver, A = CQ/I and B = CQ̂/J
algebras and ϕ : Q̂ → Q the canonical projection such that ϕ induces a functor
ϕ∗ : mod(B)→ mod(A).

Then the winding of quivers ϕ induces a functorial homomorphism

C(ϕ) : C(A)→ Ĉ(B), f 7→ f ◦ ϕ∗

of Hopf algebras (see Theorem 5.1.1). Moreover, this map C(ϕ) can be extended to the
Ringel-Hall algebras H(ϕ) : H(A) → Ĥ(B), but this map is in general not an algebra
homomorphism.
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1.3 Ringel-Hall algebras

Let F =
(
F (1), . . . , F (r)

)
with F (i) : S(i) → Q be a tuple of trees, B =

(
B(1), . . . , B(s)

)
with B(i) : T (i) → Q a tuple of bands and n = (n1, . . . , ns) a tuple of positive integers.
Let

1F,B,n(M) =

{
1 if ∃Vi ∈ IniT (i) : M ∼=

⊕r
i=1 F

(i)
∗ (1S(i))⊕

⊕s
i=1B

(i)
∗ (Vi),

0 otherwise.

for each Q-representation M . This defines constructible functions 1F,B,n in H(A), which
are not necessarily in C(A). We compute the image of such a function 1F,B,n under the

map H(ϕ) : H(A)→ Ĥ(B) in Theorem 5.2.1. Roughly speaking, this is given by the sum
of all maps 1

F̃,B̃,n
, where F̃ and B̃ runs over all liftings of F and B by the winding ϕ

(see Figure 1.3.1).

S
ϕ

// Q

S′
F̃

__?
?

? F

??������

Figure 1.3.1: Lifting F̃ : S′ → S of F : S′ → Q by ϕ : S → Q.

Using this we can study the products of functions of the form 1F,B,n in H(A). This
gives us a combinatorial description of (1F,B,n ∗ 1F′,B′,n′)(M) for each C-algebra A and
each direct sum of tree and band modules M such that M is an A-module (see Corol-
lary 5.4.7).

Actually for a string algebra A = CQ/I each function in C(A) is a linear combination
of functions of the form 1F,B,n and the computation of arbitrary products in C(A) is
reduced to a purely combinatorial task (see Definition 2.2.11 and Corollary 5.5.3). If
A is representation finite and Q has no loops and cyclically oriented two-cycles, then
C(A) = H(A) (see Theorem 5.5.4). Moreover, in this case the functions 1F with some
tuple F of strings form a vector space basis.
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2 Preliminaries

Let k be an algebraically closed field. We denote by N the natural numbers including
0. Each algebra is an associative k-algebra with a unit. For a ring R and d, n ∈ N let
Mat(d×n,R) be the free R-module of matrices with d rows, n columns and entries in R.
Moreover, let GLn(R) be the group of invertible elements in the R-algebra Mat(n×n,R).
The identity matrix in Mat(n× n,R) is denoted Id for each ring R.

Let S be a set and d = (di)i∈S ,n = (ni)i∈S ∈ NS some tuples. In most cases we
assume that at most finitely many entries of such a tuple are non-zero. If di ≤ ni for
each i ∈ S we write d ≤ n. Moreover, if d ≤ n and d 6= n, we write d < n. For a
ring R we denote the product

∏
i∈S Mat(di × ni, R) by Mat(d× n, R) and the same for

GLn(R).

2.1 Quivers and quiver representations

In this section we give a short introduction to the representation theory of quivers and
we explain the relations to finite-dimensional k-algebras. Most of these definitions and
results can be found in several books (see e.g. [1]).

Let Q = (Q0, Q1, s, t) be a locally finite quiver (or Q = (Q0, Q1) and quiver for short),
i.e. an oriented graph with vertex set Q0, arrow set Q1 and maps s, t : Q1 → Q0 indicating
the start and terminal point of each arrow such that in each vertex only finitely many
arrows start and end. A finite-dimensional representation M = (Mi,Mα)i∈Q0,α∈Q1 of the
quiver Q (or Q-representation for short) is a tuple of finite-dimensional k-vector spaces
{Mi|i ∈ Q0} and a tuple of k-linear maps {Mα : Ms(α) →Mt(α)|α ∈ Q1} such that only
finitely many of the vector spaces are non-zero. A homomorphism f = (fi)i∈Q0 : M →
N of Q-representations is a tuple of k-linear maps {fi : Mi → Ni|i ∈ Q0} such that
ft(α)Mα = Nαfs(α) for all α ∈ Q1 (see Figure 2.1.1). The vector space of homomorphisms

Ms(α)

Mα
��

fs(α)
// Ns(α)

Nα
��

Mt(α)
ft(α)

// Nt(α)

Figure 2.1.1: The condition for a homomorphism f : M → N of Q-representations.

f : M → N of Q-representations is denoted by HomQ(M,N). Let rep(Q) denote the
category of finite-dimensional Q-representations.
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2 Preliminaries

Let Q be a quiver and M = (Mi,Mα)i∈Q0,α∈Q1 a Q-representation. A subrepre-
sentation N = (Ni)i∈Q0 of the Q-representation M is a tuple of subspaces {Ni ⊆
Mi|i ∈ Q0} such that Mα(Ns(α)) ⊆ Nt(α) for all α ∈ Q1. So every subrepresentation
N = (Ni)i∈Q0 of a Q-representation M = (Mi,Mα)i∈Q0,α∈Q1 is again a Q-representation
(Ni,Mα|Ns(α))i∈Q0,α∈Q1 and there is a canonical injective homomorphism ι : N → M
of Q-representations, which is called the canonical embedding. In this case we write
N ⊆ M . Let M be a Q-representation and S a subset of M . Then 〈m|m ∈ S〉Q de-
notes the minimal subrepresentation of M containing S. A factor representation and
the canonical projection are defined dually. Let M be a Q-representation. Then there is
a unique largest semisimple subrepresentation of Q. This is called socle and denoted by
socM . Dually the largest semisimple quotient of M is called top and denoted by topM .

The dimension dimkM of a Q-representation M is the dimension of the corresponding
vector space

⊕
i∈Q0

Mi. Thus dimkM =
∑

i∈Q0
dimkMi. The dimension vector of M

is the tuple dimM = (dimkMi)i∈Q0 ∈ NQ0 . So a dimension vector of Q is a tuple
d = (di)i∈Q0 ∈ NQ0 with at most finitely many non-zero entries. This means for a
dimension vector d = (di)i∈Q0 ∈ NQ0 holds |d| :=

∑
i∈Q0

di < ∞. The support of
a Q-representation M = (Mi,Mα)i∈Q0,α∈Q1 is the full subquiver of Q with vertices
{i ∈ Q0|Mi 6= 0}.

Let n ∈ N. An oriented path α1 . . . αn of the quiver Q of length n is the concatenation
of some arrows α1, . . . , αn ∈ Q1 such that t(αi+1) = s(αi) for all 1 ≤ i < n. Additionally
we introduce a path ei of length zero for each vertex i ∈ Q0. The path algebra kQ of a
quiver Q is the following k-algebra. The underlying k-vector space has a basis given by
the set of oriented paths of Q. The product of basis vectors is given by the concatenation
of paths if possible or by zero otherwise, e.g. et(α) · α · es(α) = α for all α ∈ Q1.

Let Q be a locally finite quiver and kQ+ the ideal of the path algebra kQ generated
by all arrows. An ideal of the path algebra kQ contained in (kQ+)2 is called semiad-
missible ideal and each semiadmissible ideal containing (kQ+)n for some n ∈ N is called
admissible. Thus the zero ideal is always semiadmissible, but not admissible in general.
Based on the following observation we call also an ideal I of the path algebra kQ an
ideal of the quiver Q.

Let Q be a quiver, I a semiadmissible ideal of Q and M = (Mi,Mα)i∈Q0,α∈Q1 a
Q-representation. Let

∑n
i=1λiαi1 . . . αini be a linear combination of oriented paths in

the ideal I with n, ni ∈ N, ni ≥ 2, λi ∈ k and αij ∈ Q1 for all i ∈ {1, . . . , n} and
j ∈ {1, . . . , ni} such that there are i0, j0 ∈ Q0 with s(αini) = i0 and t(αi1) = j0 for all
i ∈ {1, . . . , n}. Then the Q-representation M is called a (Q, I)-representation if for each
linear combination in I the linear map∑n

i=1
λiMαi1 ◦ . . . ◦Mαini

: Mi0 →Mj0

vanishes. Moreover, the full subcategory of (Q, I)-representations of rep(Q) is denoted
by rep(Q, I).

An additive category is called Krull-Remak-Schmidt if each object is isomorphic to a
direct sum of indecomposable objects and this decomposition is unique. It is well-known
that the category rep(Q, I) (especially rep(Q)) is abelian and Krull-Remak-Schmidt for
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2.1 Quivers and quiver representations

each semiadmissible ideal I. The category rep(Q, I) is called representation finite if
the set of isomorphism classes of indecomposable (Q, I)-representations is finite. By a
theorem of Gabriel [29, Satz 1.2] the category rep(Q) is representation finite if and only
if the underlying graph of the quiver Q is a disjoint union of Dynkin graphs of type A,
D or E.

For a quiver Q and a semiadmissible ideal I it is well-known that the category of
finite-dimensional kQ/I-modules mod(kQ/I) is equivalent to the category rep(Q, I).
So we think of (Q, I)-representations as kQ/I-modules and vice versa. Especially the
categories rep(Q) and mod(kQ) are equivalent. Moreover, for each finite-dimensional
k-algebra A exists a finite quiver Q and an admissible ideal I such that rep(Q, I) and
mod(A) are equivalent (see e.g. [1, Corollary I 6.10., Theorem II 3.7.]).

A Q-representation M is called nilpotent if there is a n ∈ N such that M is a
(Q, (kQ+)n)-representation. Moreover, let nil(Q) be the full subcategory of nilpotent
representations of rep(Q). This category nil(Q) is an abelian and extension closed sub-
category of the category rep(Q).

For i ∈ Q0 we denote the Q-representation (Mj ,Mα)j∈Q0,α∈Q1 with Mi = k, Mj = 0
for each other j ∈ Q0 and Mα = 0 for all α ∈ Q1 by S(i). These are up to isomorphism all
simple Q-representations in nil(Q) and in rep(Q, I) for each admissible ideal I. Thus for
a finite quiver Q and an admissible ideal I the k-algebra kQ/I is finite-dimensional and
the isomorphism classes of simple representations are given by {S(i)|i ∈ Q0}. Moreover,
we denote the semisimple Q-representation (Mj ,Mα)j∈Q0,α∈Q1 with dimension vector d
and Mα = 0 for all α ∈ Q1 by S(d).

Let i ∈ N, Q a quiver and I a semiadmissible ideal. The i-th cohomology group
of extensions of (Q, I)-representations M and N in the category rep(Q, I) is denoted
by Exti(Q,I)(M,N). If I = 0, we write ExtiQ(M,N) for short. Let M be a (Q, I)-

representation. If the functors Exti(Q,I)(M,−) are vanish for all i ∈ N with i ≥ 1,

we call it projective in the category rep(Q, I) (or a projective (Q, I)-representation for
short). Dually the (Q, I)-representation M is called injective in the category rep(Q, I)
(or an injective (Q, I)-representation for short) if Exti(Q,I)(−,M) = 0 for all i ∈ N with

i ≥ 1. Moreover, if a (Q, I)-representation is both projective and injective, we call it
projective-injective. If I = 0, the category rep(Q) is hereditary, i.e. ExtiQ(M,N) = 0 for
all Q-representations M and N and i ∈ N with i ≥ 2. Let d = (di)i∈Q0 and n = (ni)i∈Q0

be dimension vectors. Since rep(Q) is hereditary the Euler form

〈d,n〉 =
∑

i∈Q0

dini −
∑

α∈Q1

ds(α)nt(α) (2.1.1)

of the quiver Q behalves very well, e.g.

〈dimM,dimN〉 = dimk HomQ(M,N)− dimk Ext1
Q(M,N) (2.1.2)

for each Q-representations M and N .
Let Q be a quiver and M a Q-representation. If Ext1

Q(M,M) = 0, we call the Q-rep-
resentation M exceptional. Thus for instance projective and injective Q-representations
are exceptional.

17



2 Preliminaries

Example 2.1.1. Let Q be the following quiver

1
α
((

β

66 2 γ
ee .

Let M = (M1,M2,Mα,Mβ,Mγ) be the Q-representation with M1 = k, M2 = k2,
Mα = ( 1

0 ), Mβ = ( 0
1 ) and Mγ = ( 0 0

0 1 ). The Q-representations S(1), S(2) and M
are illustrated in the pictures in Figure 2.1.2.

(
k

0
((

0

66 0 0ee

)
,

(
0

0
((

0

66 k 0ee

)
,

 k

( 1
0 )
))

( 0
1 )
55 k2 ( 0 0

0 1 )
hh


Figure 2.1.2: The Q-representations S(1), S(2) and M .

Thus S(1) is a factor and S(2) a subrepresentation of M . Moreover,

HomQ(S(2),M) =
{ (

0,
(
λ
0

)) ∣∣λ ∈ k} ∼= k.

The dimension vector of the Q-representation M is (1, 2) and the support of S(2) is the
quiver ({2}, {γ}). Let I = (γα) be the ideal generated by γα. Thus I is a semiadmissible
ideal, which is not admissible, and M is an indecomposable (Q, I)-representation, which
is not nilpotent. Using the Euler form of Q we can compute

dimk Ext1
Q(S(2),M) = dimk HomQ(S(2),M)− 〈(0, 1), (1, 2)〉 = 1− (2− 2) = 1,

dimk Ext1
Q(N,S(1)) = dimk Homk(N1, k)− 〈(d1, d2), (1, 0)〉 = d1 − d1 = 0

for each Q-representation N = (N1, N2, Nα, Nβ, Nγ) with dimension vector d = (d1, d2).
Thus the Q-representation S(1) is injective.

2.2 Tree and band modules

Let Q = (Q0, Q1, s, t) and S = (S0, S1, s
′, t′) be two quivers. A winding of quivers

F : S → Q (or winding for short) is a pair of maps F0 : S0 → Q0 and F1 : S1 → Q1 such
that the following hold:

1. F is a morphism of quivers, i.e. sF1 = F0s
′ and tF1 = F0t

′.
2. If a, b ∈ S1 with a 6= b and s′(a) = s′(b), then F1(a) 6= F1(b).
3. If a, b ∈ S1 with a 6= b and t′(a) = t′(b), then F1(a) 6= F1(b).

This generalizes Krause’s definition of a winding [37]. Let V be a S-representation. For
i ∈ Q0 and a ∈ Q1 set

(F∗(V ))i =
⊕

j∈F−1
0 (i)

Vj and (F∗(V ))a =
⊕

b∈F−1
1 (a)

Vb.

18



2.2 Tree and band modules

This induces a functor F∗ : rep(S)→ rep(Q) and a map of dimension vectors F : NS0 →
NQ0 . The concatenation of windings behaves very well: Let F : S → Q and G : T → S
be windings then FG : T → Q is again a winding and the functors (FG)∗ and F∗G∗ are
naturally isomorphic.

Let Q be a finite quiver. Then the Q-representation (Mi,Ma)i∈Q0,a∈Q1 with Mi = k
for all i ∈ Q0 and Ma = idk for all a ∈ Q1 is denoted 1Q. For n ∈ N let InQ be the
set of all indecomposable Q-representations (Mi,Ma)i∈Q0,a∈Q1 with dimkMi = n for all
i ∈ Q0 and Ma is an isomorphism for all a ∈ Q1.

A simply connected and finite quiver S is called a tree, i.e. for two vertices in the
quiver S exists a unique not necessarily oriented path from one vertex to the other.

Definition 2.2.1. Let Q and S be quivers and F : S → Q a winding. If S is a tree,
then the representation F∗(1S) is called a tree module. We call such a winding F a tree,
too.

By [28, Lemma 3.5] all tree modules are indecomposable.

Example 2.2.2. Let Q, S and F be described by the following picture.

F : S =

 1

α ��
>>>>>> 2
β

��

3
γ

~~}}}}}}

3′
γ′
// 3′′

→ Q =

 1

α
��

====== 2
β

��

3 γ
ee


This means for the morphism F : S → Q of quivers holds F0(1) = 1, F0(2) = 2, F0(3) =
F0(3′) = F0(3′′) = 3, F1(α) = α, F1(β) = β and F1(γ) = F1(γ′) = γ. Then 1S and
F∗(1S) are described by the following pictures, F : S → Q is a tree and F∗(1S) a tree
module.

1S =

 k

1 ��
====== k

1
��

k
1

��������

k
1 // k

 , F∗(1S) =


k

(
0
1
0

)
��

?????? k( 0
1
0

)
��

k3
(

0 0 0
1 0 0
0 1 0

)
hh


A quiver S = (S0, S1, s, t) is called of type Al for some l ∈ Z>0 (or of type A for short)

if S0 = {1, . . . , l} and S1 = {s1, . . . , sl−1} such that for all i ∈ S0 with i 6= l there exists a
εi ∈ {−1, 1} with s(sεii ) = i+1 and t(sεii ) = i. We use here the convention s(a−1) = t(a)
and t(a−1) = s(a) for all a ∈ S1. A quiver S of type Al is called linearly oriented if
εi = −1 for all i ∈ {1, . . . , l − 1}. Figure 2.2.1 visualizes a linearly oriented quiver of
type Al.

1
s1 // 2

s2 // 3 // · · · // l − 1
sl−1

// l

Figure 2.2.1: A linearly oriented quiver of type Al.

Definition 2.2.3. Let Q and S be quivers, S of type Al, F : S → Q a winding and
F∗(1S) a tree module. Then F is called a string and F∗(1S) a string module.
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2 Preliminaries

Example 2.2.4. Let Q = ({◦}, {α, β}) a quiver and F the string described by the
following picture.

F : S =


1

α ��
==== 3

β������ α′

��
==== 9

β′′′

������

2 4

α′′ ��
==== 6
β′

������ α′′′

��
==== 8

β′′������

5 7

→ Q =
(

◦α
%%

β
yy

)

In this case the string module F∗(1S) has a basis {ei|i ∈ S0} and is visualized by the
picture in Figure 2.2.2. This means the vertices of this quiver correspond to the basis

e1

α
  BBBBBBB e3

β~~|||||||
α

  BBBBBBB e9
β

~~|||||||

e2 e4

α
  BBBBBBB e6

β

~~|||||||
α

  BBBBBBB e8

β~~|||||||

e5 e7

Figure 2.2.2: A string module F∗(1S).

vectors {ei|i ∈ S0} of F∗(1S) and the arrows describe the linear maps corresponding to
the arrows of Q. For example the basis vector e1 is mapped to e2 by the linear map
F∗(1S)α and to zero by F∗(1S)β.

A quiver S is called of type Ãl−1 for some l ∈ Z>0 (or of type Ã for short) if S0 =
{1, . . . , l} and S1 = {s1, . . . , sl} such that for all i ∈ S0 a εi ∈ {−1, 1} exists with
s(sεii ) = i + 1 and t(sεii ) = i. We set l + i := i in S0, sl+i := si in S1 and εl+i := εi for
all i ∈ S0. A quiver S of type Ãl−1 is called cyclically oriented if εi = −1 for all i ∈ S0.
We draw pictures of quivers of type Ãl−1 in Figure 3.6.11 and 4.4.1.

Definition 2.2.5. Let Q and S be quivers, B : S → Q a winding and V ∈ InS . If S is
of type Ãl−1 and B∗(V ) is indecomposable, then B∗(V ) is called a band module. The
winding B is called a band if S is of type Ãl−1 and B∗(1S) is indecomposable.

Let S be a quiver of type Ãl−1 and B : S → Q a winding. The module B∗(1S) is
not necessarily indecomposable. This well-known feature is explained in the following
example.

Example 2.2.6. Let Q and S be quivers, S of type Ãl−1, B : S → Q a winding and
V ∈ InS .

1. If there is no integer r with 1 ≤ r < l, B1(si) = B1(si+r) and εi = εi+r for
all 1 ≤ i ≤ l and the Jordan normal form of the linear map V ε1

s1 . . . V
εl
sl

is an
indecomposable Jordan matrix, then B∗(V ) is indecomposable.

2. If there is an integer r with r > 0 as above, then B∗(V ) ∼=
⊕s

i=1M
(i) with

s = l
gcd(r,l) and Q-representations M (i) of dimension n gcd(r, l).
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2.2 Tree and band modules

Remark 2.2.7. Using the Jordan normal form, the indecomposable modules of the
polynomial ring k[T, T−1] of dimension r are canonically parametrized by k∗ for each
r ∈ Z>0. Let ϕr : k∗ → mod(k[T, T−1]) describe this parametrization and ϕ : k∗×Z>0 →
mod(k[T, T−1]) with ϕ(λ, r) = ϕr(λ).

Let B : S → Q be a band and mod(k[T, T−1]) the category of finite-dimensional
k[T, T−1]-modules. There exists a full and faithful functor F : mod(k[T, T−1])→ rep(S)
such that F (V ) ∈ Idimk V

S for each indecomposable V ∈ mod(k[T, T−1]).

The map k∗ × Z>0
ϕ−→ mod(k[T, T−1])

F−→ rep(S)
B∗−→ rep(Q) is a parametrization

of all band modules of the form B∗(V ). The image of (λ, r) ∈ k∗ × Z>0 under this map
is denoted B∗(λ, r). Additional we define B∗(λ, 0) = 0 for all λ ∈ k∗. We remark that
neither the functor F nor our parametrization of band modules of the form B∗(V ) is
unique.

Let λ ∈ k∗ and r, s ∈ N with r ≥ s. Then a surjective homomorphism B∗(λ, r) �
B∗(λ, s) and an injective homomorphismB∗(λ, s) ↪→ B∗(λ, r) ofQ-representations exists.
Let ϕ : B∗(λ, r)→ B∗(λ, s) be such a homomorphism. Then the kernel and the image of
ϕ are independent of ϕ. So for all r, s ∈ N with r ≥ s exists a unique sub- and a unique
factor module of B∗(λ, r) isomorphic to B∗(λ, s).

Example 2.2.8. Let Q = ({◦}, {α, β}) be as in Example 2.2.4, λ ∈ k∗ and B the band
described by the following picture.

B : S =


1

β

������ α
��

====

2

α′ ��
==== 3

β′���
���

4

→ Q =
(

◦α
%%

β
yy

)

In this case we can assume that the band module B∗(λ, 3) has a basis {eij |i ∈ S0, j ∈
{1, 2, 3}} and is visualized in Figure 2.2.3. In this case there are written some scalar
multiples. This means for example B∗(λ, 3)β(e31) = λe41 and B∗(λ, 3)β(e33) = e42+λe43.

Crawley-Boevey [18] and Krause [37] constructed a basis of the homomorphism spaces
of tree and band modules. This description yields the following lemma.

Lemma 2.2.9. Let Q, S, T be connected quivers, F : S → Q and G : T → Q trees
or bands, V ∈ InS and W ∈ ImT . If F∗(V ) ∼= G∗(W ), then a unique bijective winding
H : S → T exists such that F = GH and H∗(V ) ∼= W .

Proof. Since F∗(V ) is indecomposable the endomorphism ring EndQ(F∗(V )) is local.
Thus by [18] and [37] such a winding H exists. Since F and G are trees or bands
the modules H∗(V ) and W are isomorphic. The winding H is unique since there is
no non-trivial automorphism H ′ : S → S with F = FH ′ for a connected tree or band
F : S → Q.

Remark 2.2.10. Let Q be a quiver of type Ãl−1. The category rep(Q) is well-known
and described in [52]. The indecomposable Q-representations are divided into three
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Figure 2.2.3: A band module B∗(λ, 3).

classes: The classes of preprojective, regular and preinjective representations. Let M be
a band module and N a string module of Q. Then the band module M is regular and
the following hold:
• Let N be preprojective. Then N is exceptional, determined up to isomorphism

by its dimension vector, HomQ(N,M) 6= 0 and HomQ(M,N) = 0. If dimkN ≤
dimkM , then an injective homomorphism N ↪→ M of Q-representations and an
indecomposable preinjective representation with dimension vector dimM−dimN
exists. All short exact sequences 0 → M → L → N → 0 with a Q-representation
L split.
• If N is regular, then HomQ(N,M) = 0 and HomQ(M,N) = 0.
• Let N be preinjective. Then N is again exceptional, determined up to isomorphism

by its dimension vector, HomQ(N,M) = 0 and HomQ(M,N) 6= 0. All short exact
sequences 0→ N → L→M → 0 with a Q-representation L split.

Let M and N be indecomposable preprojective Q-representations such that dimkM ≥
dimkN . Then HomQ(M,N) = 0 if M � N and all short exact sequences 0 → M →
L→ N → 0 with a Q-representation L split.

These notions of string and band modules were introduced to study the following class
of finite-dimensional k-algebras.

Definition 2.2.11. Let Q be a finite quiver and I an admissible ideal. Then A = kQ/I
is called a string algebra if the following hold:

1. At most two arrows start and at most two arrows end in each vertex of Q.
2. Let α, β, γ ∈ Q1. If α 6= β, then αγ ∈ I or βγ ∈ I. If β 6= γ, then αβ ∈ I or
αγ ∈ I.
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2.3 Algebraic geometry

3. The ideal I is generated by oriented paths of Q.

Example 2.2.12. Let Q = ({◦}, {α, β}) be as in Example 2.2.4 and 2.2.8 and I =
(α2, β2, αβα) the admissible ideal of kQ generated by α2, β2 and αβα. Then A = kQ/I
is a string algebra and the set {e◦, α, β, αβ, βα, βαβ} of paths is a basis of the vector
space A.

Let A be a string algebra. By [53, Proposition 2.3.] it is well-known that every
indecomposable A-module is a string or a band module.

2.3 Algebraic geometry

Algebraic varieties and schemes are basic objects in algebraic geometry (see [8, 22, 31,
51]). In our studies each variety is a reduced quasi-projective variety, which is not
necessarily irreducible. For example module varieties and quiver Grassmannians are
studied in representation theory. Roughly speaking the quiver Grassmannian of a quiver
representation is the collection of subrepresentations of this quiver representation with
a fixed dimension vector. These “collections“ turn out to be algebraic varieties (see
Section 2.3.2) and actually algebraic schemes (see Section 2.3.3).

In representation theory module varieties are more common. These affine varieties
parametrize in some sense all quiver representations for a fixed quiver and a fixed di-
mension vector. Again these varieties turn out to be algebraic schemes (see [8, Section
3.1] and Section 2.3.3). Since we compare module varieties and quiver Grassmannians in
Section 3.4, we have to introduce the module variety in detail (see Section 2.3.1). First
of all we repeat some notions from algebraic geometry.

Let X be a topological space (e.g. an algebraic variety). A map ϕ : X → Z is called
upper semicontinuous if for all n ∈ Z the set {x ∈ X|ϕ(x) ≥ n} is closed in X. Dually
it is called lower semicontinuous if {x ∈ X|ϕ(x) ≤ n} is closed for all n ∈ Z.

Example 2.3.1. Let d, n ∈ N and rk: Mat(n× d, k)→ Z the usual rank function. We
consider Mat(n× d, k) as an affine variety. Let r ∈ N and B an r-minor of the matrices
in Mat(n× d, k). The induced algebraic morphism B : Mat(n× d, k)→ k is continuous
and thus B−1(0) is closed in Mat(n× d, k). The map rk is lower semicontinuous, since{

M ∈ Mat(n× d, k)
∣∣ rk(M) ≤ r

}
=
⋂

B, (r + 1)-minor
B−1(0).

Let X be an algebraic variety and x ∈ X. We denote the maximum of the dimensions
of irreducible components of X containing x as the dimension dimxX of X at x.

Let k[ε] = k[X]/(X2) be the dual numbers of k, X a k-scheme and x a k-valued
point of X. Using [22, VI.1.3] the tangent space TxX of the k-scheme X is the set of
k[ε]-valued points, which lift the point x. If the k-scheme X is affine, i.e. X = SpecA
for a commutative k-algebra A, we get for each k-valued point x ∈ Homk-Alg(A, k)

TxX ∼=
{
f ∈ Homk-Alg(A, k[ε])

∣∣πf = x
}
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as vector spaces with the canonical projection π : k[ε]→ k. In general the dimension of
the vector space TxX is at least the dimension of X(k) in x. We call a k-valued point x
of a k-scheme X smooth if dimk TxX = dimxX.

Let X be a complex algebraic variety. We denote the Euler characteristic of the
topological space X with the analytical topology by χ(X) (see e.g. [27, Section 4.5]).
Then for example χ(X) = χ(U) + χ(X\U) holds for each constructible subset U of
X. Moreover, for a morphism f : X → Y of complex algebraic varieties holds χ(X) =
χ(Y )χ(f−1(y)) for each y ∈ Y if the map Y → Z, y 7→ χ(f−1(y)) is constant.

2.3.1 The module variety

Let Q = (Q0, Q1, s, t) be a quiver and d a dimension vector. Each tuple (Mα)α∈Q1 of
matrices in

∏
α∈Q1

Mat
(
dt(α) × ds(α), k

)
is a Q-representation (Mi,Mα)i∈Q0,α∈Q1 with

Mi = kdi for all i ∈ Q0. Moreover, for a semiadmissible ideal I some of these tuples
(Mα)α∈Q1 are (Q, I)-representations.

Definition 2.3.2. Let Q be a quiver and d a dimension vector. The affine variety∏
α∈Q1

Mat
(
dt(α) × ds(α), k

)
is called module variety and denoted by repd(Q). Each semiadmissible ideal I yields a
closed subvariety

repd(Q, I) =

{
(Mα)α∈Q1 ∈ repd(Q)

∣∣∣∣(kdi ,Mα

)
i∈Q0,α∈Q1

∈ rep(Q, I)

}
of (Q, I)-representations of the affine variety repd(Q).

The dimension of the variety repd(Q) is
∑

α∈Q1
ds(α)dt(α). In general the algebraic

group GLd(k) acts by conjugation on the variety repd(Q, I). For U ∈ repd(Q, I) the
orbit under this action is denoted by O(U). These GLd(k)-orbits in repd(Q, I) are in
bijection with the isomorphism classes of (Q, I)-representations with dimension vector
d. Thus we can associate to each Q-representation N with dimension vector d the
corresponding orbit. This is denoted by O(N) although N is in general not a point of
the variety repd(Q). The geometry of these orbits is very well-known by the following
proposition (see [8, Proposition 2.1.7]).

Proposition 2.3.3. Let Q be a quiver, I a semiadmissible ideal, d a dimension vector
and U ∈ repd(Q, I). Then the subset O(U) of repd(Q, I) is irreducible, locally closed,
smooth and has dimension dim GLd(k)− dimk EndQ(U).

Since the closure of an orbit in the variety repd(Q, I) is a union of orbits we get a
partial order on the isomorphism classes of (Q, I)-representations with dimension vector
d. This much studied partial order is called degeneration order (see for example works
of Bongartz, Kraft, Riedtmann and Zwara). It is well-known that if there is a short
exact sequence of the form 0 → U → M → U ′ → 0 with Q-representations U , M and
U ′, then O(U ⊕ U ′) ⊆ O(M) holds in the variety repdimM (Q).

The following proposition is well-known (see Example 2.3.1 and [43, Proposition 2.1]).
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Proposition 2.3.4. Let Q be a quiver and d a dimension vector. For β ∈ Q1 the map

rkβ : repd(Q)→ Z, (Uα)α∈Q1 7→ rk (Uβ)

is lower semicontinuous. For each Q-representation N the maps

dimkHomQ(−, N) : repd(Q)→ Z, U 7→ dimkHomQ(U,N),

dimkHomQ(N,−) : repd(Q)→ Z, U 7→ dimkHomQ(N,U)

are both upper semicontinuous.

Using [8, Section 3.1] we can generalize the definition of a module variety repd(Q, I)
and define a corresponding k-scheme such that its k-valued points are repd(Q, I) (see
also Section 2.3.3). Moreover, by [36, Section 2.7] or [8, Corollary 3.2.3] the normal space
of the orbit O(U) of a k-valued point U in this scheme is isomorphic to Ext1

(Q,I)(U,U).

Thus for the module variety repd(Q) we get the following well-known and unsurprising
result.

Lemma 2.3.5. Let Q be a quiver and d a dimension vector. There is a Q-representation
M with repd(Q) = O(M) if and only if there is an exceptional Q-representation with
dimension vector d.

Proof. Using Proposition 2.3.3 and the Euler form we get for each M ∈ repd(Q)

dim repd(Q)− dimO(M) = dimk EndQ(M)− 〈d,d〉 = dimk Ext1
Q(M,M).

Thus M is exceptional if and only if repd(Q) = O(M).

Corollary 2.3.6. Let Q be a quiver. Then there exists up to isomorphism at most one
exceptional Q-representation to each dimension vector.

2.3.2 Grassmannians as varieties

The classical Grassmannians Gr ( nd ) are well-known and much studied geometric objects.
We use them to define the quiver Grassmannians Grd(M). It turns out that we need
a schematic version of this. Nevertheless, first of all we will define it as an algebraic
variety.

Let d, n ∈ N with d ≤ n. The algebraic group GLd(k) acts freely by right multiplication
on the open subset of matrices of rank d in Mat(n × d, k). The quotient of this set is
called (classical) Grassmannian Gr ( nd ). Using the Plücker embedding this is a projective
variety (see e.g. [51, Chapter I, Section 4]). Let

π :
{
A ∈ Mat(n× d, k)

∣∣ rk(A) = d
}
� Gr ( nd ) (2.3.1)

be the induced canonical projection. Thus the Grassmannian Gr ( nd ) parametrizes all
d-dimensional subspaces of a fixed n-dimensional k-vector space.
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Now we define an open affine covering of the Grassmannian Gr ( nd ). This means the
Grassmannian is the glueing of these subvarieties. For each d-minor B of matrices in
Mat(n× d, k) we define

UB =
{
π(A)

∣∣A ∈ Mat(n× d, k), det(B(A)) 6= 0
}

an open subset of Gr ( nd ). This variety is isomorphic to the affine variety Mat((n− d)×
d, k). Let B be the d-minor of the first d rows. Then

πB : Mat((n− d)× d, k)→ UB, C 7→ π
(
Id
C

)
(2.3.2)

is a well-defined isomorphism of algebraic varieties.
Let Q = (Q0, Q1, s, t) be a quiver and n = (ni)i∈Q0 and d = (di)i∈Q0 dimension

vectors. We consider the products of classical Grassmannians Gr ( n
d ) =

∏
i∈Q0

Gr
( ni
di

)
.

Let B = (Bi)i∈Q0 be a tuple such that Bi is a di-minor of the matrices in Mat(ni×di, k)
for each i ∈ Q0 we call this tuple a d-minor. For a d-minor we define the following
product UB =

∏
i∈Q0

UBi with the affine subsets UBi of Gr
( ni
di

)
for all i ∈ Q0. This

forms a covering of open affine sets of Gr ( n
d ) indexed by the d-minors. Let B be the

d-minor of the first rows. Then

πB : Mat((n− d)× d, k)→ UB, (Ci)i∈Q0 7→
(
π
(
Idi
Ci

))
i∈Q0

(2.3.3)

is again a well-defined isomorphism of algebraic varieties.

Lemma 2.3.7. Let Q be a quiver, M a Q-representation with dimension vector n and
d another dimension vector. Then the subset

Grd(M) =
{
U ⊆M

∣∣dimU = d
}

of Gr ( n
d ) is closed. So this subvariety Grd(M) of the product of classical Grassmannians

Gr ( n
d ) is called quiver Grassmannian.

Hence this is a projective k-variety. In general the quiver Grassmannian Grd(M) is not
connected and not equidimensional, i.e. the dimensions of the irreducible components
differ (see Example 2.3.9). By the following example it is neither smooth nor irreducible
in general.

If k is the field of complex numbers C, we denote the Euler characteristic χ(Grd(M))
of a quiver Grassmannian Grd(M) by χd(M) for short.

Example 2.3.8. Let Q = 1
α−→ 2, M1 = M2 = k2 and Mα : M1 → M2 a linear map

with rk(Mα) = 1. Then M = (M1,M2,Mα) is a Q-representation such that Gr(1,1)(M)
can be described as ({∗}×P1

k)∪ (P1
k×{∗}) ⊆ P1

k×P1
k. This projective variety is neither

smooth nor irreducible. By the way, if k = C, then χ(1,1)(M) = 3.

Proof of Lemma 2.3.7. We have to prove that the quiver Grassmannian is really de-
scribed by some closed condition as a subvariety of the product of classical Grassmanni-
ans. Without loss of generality, let M = (Mi,Mα)i∈Q0,α∈Q1 be the Q-representation with
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Mi = kni for all i ∈ Q0 and Mα ∈ Mat(nt(α)×ns(α), k) for all α ∈ Q1. We use the affine
sets UB with d-minors. Let B be the d-minor of the first rows. Thus Equation (2.3.3)
holds and it is enough to show that the set{

(Ci)i∈Q0 ∈ Mat((n− d)× d, k)

∣∣∣∣∃(Xα)α∈Q1 ∈
∏

α∈Q1

Mat(dt(α) × ds(α), k) :

Mα

(
Ids(α)
Cs(α)

)
=
(
Idt(α)
Ct(α)

)
Xα ∀α ∈ Q1

}
(2.3.4)

is closed in Mat((n− d)× d, k). If we write for each α ∈ Q1 the matrix Mα as a block
matrix such that(

M1,α M2,α

M3,α M4,α

)
∈ Mat

((
(dt(α)) + (nt(α) − dt(α))

)
×
(
(ds(α)) + (ns(α) − ds(α))

)
, k
)
,

then Equation (2.3.4) yields the following two equations:

M1,α +M2,αCs(α) =Xα,

M3,α +M4,αCs(α) =Ct(α)Xα.

Thus we have to prove that the set{
(Ci)i∈Q0

∣∣∣∣M3,α +M4,αCs(α) = Ct(α)M1,α + Ct(α)M2,αCs(α) ∀α ∈ Q1

}
is closed in Mat((n− d)× d, k). This set is obviously given by polynomials.

Example 2.3.9. Let Q be the following quiver

1
α
((

β

66 2 ,

M = (M1,M2,Mα,Mβ) the Q-representation with M1 = M2 = k, Mα = idk and
Mβ = 0 and N = (N1, N2, Nα, Nβ) with N1 = N2 = k, Nα = 0 and Nβ = idk. Then
Gr(1,1)(M ⊕ N) = {M,N} and in general for i, j ∈ Z with i ≥ 1 and j ≥ 1 the quiver

Grassmannian Gr(1,1)(M
i ⊕ N j) is isomorphic to the disjoint union of Pi−1

k and P
j−1
k .

Thus this variety is not connected and in general not equidimensional.

The following lemma allows us to dualize most statements.

Lemma 2.3.10. Let Q = (Q0, Q1, s, t) be a quiver, M = (Mi,Mα)i∈Q0,α∈Q1 a Q-repre-
sentation and d a dimension vector. Let Qop = (Q0, {α : t(α) → s(α)|α ∈ Q1}) be the
opposite quiver and M∗ = (M∗i ,M

∗
α)i∈Q0,α∈Qop

1
the dual Qop-representation. Then

(−)∗ : Grd(M)→ GrdimM−d(M∗), U 7→ (M/U)∗

is an isomorphism of algebraic varieties.
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Proof. For each diagram of vector spaces with exact rows

0 // U1

fα|U1
��

//M1
//

fα
��

M1/U1
//

fα
��

0

0 // U2
//M2

//M2/U2
// 0

the dual is

0 oo U∗1OO
(fα|U1

)∗

oo M∗1 ooOO
f∗α

(M1/U1)∗ oo
OO

(fα)
∗

0

0 oo U∗2 oo M∗2 oo (M2/U2)∗ oo 0

and has again exact rows. Thus the morphism (−)∗ : Grd(M) → GrdimM−d(M∗) is a
well-defined morphism of algebraic varieties. Using the duality M∗∗ ∼= M the morphism
GrdimM−d(M∗)→ Grd(M∗∗) is an inverse map of (−)∗.

2.3.3 Grassmannians as schemes

We define also a k-scheme, i.e. a representable functor from the category of commutative
k-algebras to sets, called quiver Grassmannian Grd(M), which is the schematic version
of the variety Grd(M). For this we use some observations of Caldero and Reineke [12,
Section 4].

Let Q = (Q0, Q1, s, t) be a quiver and d = (di)i∈Q0 and n = (ni)i∈Q0 dimension vectors
of Q. First we define the schematic version of the module variety as in [8, Section 3.1].
Let repn(Q) be the affine k-scheme defined by repn(Q) = Spec (R(Q,n)) with R(Q,n)

the polynomial algebra over the field k with coefficients in X
(α)
ij for α ∈ Q1, 1 ≤ i ≤ nt(α)

and 1 ≤ j ≤ ns(α). Let A be a commutative k-algebra. Then the A-valued points of
repn(Q) are

repn(Q)(A) = Homk-Alg(R(Q,n), A) ∼=
∏

α∈Q1

Mat(nt(α) × ns(α), A).

Analogously we define an affine k-scheme Hom(d,n) by Hom(d,n) = Spec (H(d,n))

with the polynomial ring H(d,n) over k with coefficients in Y
(l)
ij for l ∈ Q0, 1 ≤ i ≤ nl

and 1 ≤ j ≤ dl. Thus Hom(d,n)(A) ∼= Mat(n × d, A). Moreover, we define the open
subscheme Hom0(d,n) of Hom(d,n) by

Hom0(d,n) =
⋃

B, d-minor
Spec

(
H(d,n)(B)

)
.

A monomorphism f : V →W of free modules is called a split monomorphism if there is a
homomorphism g : W → V of free modules such that gf = idV . Using this notation the
scheme Hom0(d,n) parametrizes the split monomorphisms from a tuple of free modules
with dimension vector d to a tuple of free modules with dimension vector n.

These schemes are used to define the quiver Grassmannian. The most important case
of the scheme Hom0(d,n) is the scheme GLd = Hom0(d,d) of tuples of invertible matri-
ces. Then for the k-valued points holds GLd(k) ∼= GLd(k). Let M = (Mi,Mα)i∈Q0,α∈Q1
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be a Q-representation with Mi = kni for all i ∈ Q0 and Mα ∈ Mat(nt(α) × ns(α), k)

for all α ∈ Q1. Then we define the closed subscheme Hom0
Q(d,M) of the scheme

repd(Q)×Hom0(d,n) by

Hom0
Q(d,M) =

⋃
B, d-minor

Spec
(
H0(Q,d,M,B)

)
where H0(Q,d,M,B) is the quotient of the algebra R(Q,d)⊗k H(d,n)(B) by the ideal
generated by the relations induced by the matrix multiplications(
Y

(t(α))
ij

)
1≤i≤nt(α),1≤j≤dt(α)

(
X

(α)
ij

)
1≤i≤dt(α),1≤j≤ds(α)

−Mα

(
Y

(s(α))
ij

)
1≤i≤ns(α),1≤j≤ds(α)

for all α ∈ Q1. Thus the A-valued points Hom0
Q(d,M)(A) of the scheme Hom0

Q(d,M)
are {(

(Uα)α∈Q1 , (fl)l∈Q0

)
∈
∏

α∈Q1

Mat dt(α) × ds(α), A)×Mat(n× d, A)
∣∣∣

∃B = (Bl)l∈Q0 : Bl(fl) ∈ A∗ ∀l ∈ Q0, ft(α)Uα = Mαfs(α) ∀α ∈ Q1

}
for each commutative k-algebra A. Thus this scheme Hom0

Q(d,M) parametrizes the
Q-representations of dimension vector d together with a homomorphism of Q-represen-
tations to M , which is a split homomorphism of free modules.

The A-linear morphisms

GLd(A)× repd(Q)(A)→ repd(Q)(A),
(
(gl)l∈Q0 , (Mα)α∈Q1

)
7→
(
gt(α)Mαg

−1
s(α)

)
α∈Q1

define a natural transformation of the functors A 7→ GLd(A) × repd(Q)(A) and A 7→
repd(Q)(A) from the category of commutative k-algebras to the category of sets. Thus
this induces a morphism of k-schemes and an action of the scheme GLd on the scheme
repd(Q). Using

GLd(A)×Hom0(d,n)(A)→ Hom0(d,n)(A),
(
(gl)l∈Q0 , (fl)l∈Q0

)
7→
(
flg
−1
l

)
l∈Q0

for a commutative k-algebra A we define an algebraic action of GLd on the scheme
Hom0(d,n). This action is free. These both actions induce a free action of GLd on the
scheme Hom0

Q(d,M).
Now we review the well-known definition of the classical Grassmannian as a scheme.

For the quiver Q = ({◦},∅) with one point and no arrow and d, n ∈ N the quotient of
the scheme Hom0((d), (n)) by GL(d) is again a scheme since these action is free. This
scheme is called (classical) Grassmannian Gr ( nd ). For each d-minor B of Mat(n× d, k)
we get an open affine subscheme UB of Gr ( nd ) defined as in Section 2.3.2. Thus the
scheme UB is isomorphic to the affine k-scheme Hom((d), (n− d)).

Let Q be an arbitrary quiver. For a commutative k-algebra the morphism

Hom0
Q(d,M)(A)→ Hom0(d,n)(A),

(
(Uα)α∈Q1 , (fl)l∈Q0

)
7→ (fl)l∈Q0
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is injective and thus the induced morphism Hom0
Q(d,M)→ Hom0(d,n) of schemes is an

embedding. Generalizing the proof of Lemma 2.3.7, the image of this morphism turns
out to be closed.

Using the free action of GLd on the schemes Hom0(d,n) and Hom0
Q(d,M) we can

define the quiver Grassmannian in the following way (see also [12, Lemma 2]). The
quotient of the scheme Hom0(d,n) by GLd is again a k-scheme since these action is free.
This is the product of Grassmannians Gr ( n

d ) =
∏
i∈Q0

Gr
( ni
di

)
.

Definition 2.3.11. Let Q be a quiver, M a Q-representation with dimension vector n
and d another dimension vector. Then the quotient of the scheme Hom0

Q(d,M) by GLd

is a closed subscheme of the product of Grassmannians Gr ( n
d ). This subscheme is called

quiver Grassmannian Grd(M).

The induced projection is denoted by

π : Hom0
Q(d,M) � Grd(M). (2.3.5)

Since Grd(M)(k) ∼= Grd(M) the scheme Grd(M) is the schematic version of the variety
Grd(M). In general Grd(M) is not reduced (see Example 3.1.10) - in particular not
smooth. The scheme Grd(M) carries more information and is more natural in some
sense than the variety Grd(M). Thus we study the geometry of the quiver Grassmannian
Grd(M) instead of the geometry of the corresponding variety Grd(M).

For example Schofield [48, Lemma 3.2] and Caldero and Reineke [12, Proposition 6
and Corollary 4] computed the tangent space of the scheme Grd(M). This result was
generalized by [21, Proposition 3.5] to a so called general representation in a module
variety.

Proposition 2.3.12. Let Q be a quiver, M a Q-representation with dimension vector
n, d another dimension vector and U ∈ Grd(M). Then TU (Grd(M)) ∼= HomQ(U,M/U)
and 〈d,n− d〉 ≤ dim Grd(M) ≤ 〈d,n− d〉+ dimk Ext1

Q(M,M).

If M is exceptional, then Grd(M) is empty or smooth with dimension 〈d,n− d〉.

In general we get again an open affine covering UB of the product of Grassmannians
Gr ( n

d ) indexed by the d-minors B such that there is an isomorphism

πB : Hom(d,n− d)→ UB (2.3.6)

of k-schemes and UB(k) ∼= UB for each d-minor B. Moreover, for each d-minor B =
(Bl)l∈Q0 the A-valued points of UB ∩Grd(M) are

π
({(

(Uα)α∈Q1 , (fl)l∈Q0

)
∈
∏

α∈Q1

Mat(dt(α) × ds(α), A)×Mat(n× d, A)
∣∣∣

Bl(fl) ∈ A∗ ∀l ∈ Q0, ft(α)Uα = Mαfs(α) ∀α ∈ Q1

})
.
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2.4 Ringel-Hall algebras

The Ringel-Hall algebras of finite-dimensional hereditary algebras over finite fields are
well-known objects (see [47] for an introduction). In this section let k be the field of
complex numbers C. We consider the Ringel-Hall algebra H(A) of constructible functions
over the module varieties repd(Q, I) of a C-algebra A = CQ/I with a locally finite quiver
Q and an admissible ideal I. This is an idea due to Schofield [49], which also appears
in works of Lusztig [38] and Riedtmann [44]. An introduction to the construction of
Kapranov and Vasserot [34] and Joyce [33], which we are using here, can be found in [7,
Section 4]. For completeness we review the definition.

Let A = CQ/I be a path algebra of a locally finite quiver Q and an admissible ideal
I. A function f : X → C on a variety X is called constructible if the image is finite and
every fibre is constructible. A constructible function f : repd(Q, I)→ C on the module
variety repd(Q, I) is called GLd(C)-stable (or GL(C)-stable for short) if the fibres are
GLd(C)-stable sets.

Let Hd(A) be the vector space of constructible and GLd(C)-stable functions on the
variety repd(Q, I). For a constructible and GL(C)-stable subset X ⊆ repd(Q, I) let
1X be the characteristic function of X in Hd(A). Let H(A) =

⊕
d∈NQ0 Hd(A) and

∗ : H(A)⊗H(A)→ H(A) with

(1X ∗ 1Y )(M) = χ
({
N ∈ Grd(M)

∣∣∣N ∈ X,M/N ∈ Y
})

for all M ∈ repc+d(Q, I) and all constructible and GL(C)-stable subsets X ⊆ repd(Q, I)
and Y ⊆ repc(Q, I). For a dimension vector d let 1d be the characteristic function of
all representations with dimension vector d and 1S(d) the characteristic function of the
semisimple representations with dimension vector d in Hd(A). For an A-module M let
1M be the characteristic function of the orbit of the module M in HdimM (A).

Proposition 2.4.1. Let A = CQ/I be a path algebra of a locally finite quiver Q and an
admissible ideal I. The vector space H(A) with the product ∗ is a NQ0-graded algebra
with unit 10.

This algebra H(A) is called Ringel-Hall algebra. Let C(A) be the subalgebra of H(A)
generated by the set

{
1d

∣∣d ∈ NQ0
}

. This algebra turns out to be a Hopf algebra although

H(A) is not a Hopf algebra in general. Let Ĥ(A) =
∏

d∈NQ0 Hd(A) be the completion

of the Ringel-Hall algebra H(A) and Ĉ(A) the one of C(A).

Lemma 2.4.2. Let A = CQ/I be a path algebra of a locally finite quiver Q and an
admissible ideal I. The algebra C(A) is a cocommutative Hopf algebra with the coproduct
∆: C(A)→ C(A)⊗C(A) defined by ∆(f)(M,N) = f(M⊕N) and the counit η : C(A)→ C

defined by η(f) = f(0) for all f ∈ C(A) and all Q-representations M and N . For each
dimension vector d and the antipode S of C(A), S (1d) = (−1)|d|1S(d) and S

(
1S(d)

)
=

(−1)|d|1d.

Moreover, the algebra C(A) is also generated by
{
1S(d)

∣∣d ∈ NQ0
}

since the subalgebra
of C(A) generated by this set is a Hopf algebra. The first part of this lemma is known
by Joyce [33] and also stated in [7, Section 4.2].
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Proof of the second part. Since C(A) is a Hopf algebra, ∗(S ⊗ 1)∆ = η10 holds. Using
∆ (1d) =

∑
c∈NQ0 , c≤d 1c ⊗ 1d−c, S(10) = 10 and S (1d) = −

∑
c∈NQ0 , c<d S (1c) ∗ 1d−c

for d ∈ NQ0 with d 6= 0. By induction we get the following result for each M ∈ repd(Q, I)
with d 6= 0. Let d′ = (d′i)i∈Q0 be the dimension vector of socM . Thus 0 < d′ ≤ d and(

(−1)|d|1S(d) − S(1d)
)

(M) =
∑

c∈NQ0

(
(−1)|c|1S(c) ∗ 1d−c

)
(M)

=
∑

c∈NQ0

(∏
i∈Q0

(−1)ci
(
d′i
ci

))
=
∏

i∈Q0

(∑d′i

j=0
(−1)j

(
d′i
j

))
=
∏

i∈Q0

(1− 1)d
′
i = 0.

The other equation follows analogously.
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Grassmannians

In this chapter we can assume for simplicity that all occurring quivers are finite. We
study geometric properties of the quiver Grassmannians Grd(M). After defining the
subschemes CU of subrepresentations of M isomorphic to U , we define another class
of closed subschemes of Grd(M) and construct morphisms between them. In the last
section of this chapter we decompose the quiver Grassmannian Grd(M) into irreducible
components in some examples.

3.1 Isomorphism classes

The GLd(k)-orbits in the module variety repd(Q) are in bijection to the isomorphism
classes ofQ-representations with dimension vector d. For these orbits Proposition 2.3.3 is
well-known, i.e. they are irreducible, locally closed and smooth. The isomorphism classes
of subrepresentations of a Q-representation are in general not orbits of some algebraic
action (see Remark 3.3.6). Nevertheless, these subschemes of the scheme Grd(M) are
by the following theorem locally closed, irreducible and smooth. The intention of this
section is to prove this theorem and some corollaries.

Let Q be a quiver, M a Q-representation with dimension vector n = (ni)i∈Q0 , d =
(di)i∈Q0 another dimension vector and N = (Ni, Nα)i∈Q0,α∈Q1 a Q-representation with
Ni = kdi for all i ∈ Q0 and Nα ∈ Mat(dt(α) × ds(α), k) for all α ∈ Q1. Then the A-linear
maps

GLd(A)→ repd(Q)(A), (gi)i∈Q0 7→
(
gt(α)Nαg

−1
s(α)

)
α∈Q1

with a commutative k-algebra A induce a morphism GLd → repd(Q) of schemes. The
image is denoted by O(N) and

O0(N,M) = (O(N)×Hom0(d,n)) ∩Hom0
Q(d,M). (3.1.1)

By Proposition 2.3.3 the subscheme O(N) of the scheme repd(Q) is locally closed. By
definition Hom0

Q(d,M) is closed in repd(Q)×Hom0(d,n). Thus the k-scheme O0(N,M)

is a locally closed subscheme of Hom0
Q(d,M). This parametrizes the Q-representations

isomorphic to N with an injective homomorphism of Q-representations to M .
This subscheme O0(N,M) is also GLd-stable and thus the quotient

CN = O0(N,M)/GLd (3.1.2)
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is a well-defined locally closed subscheme of Grd(M) = Hom0
Q(d,M)/GLd. Thus CN is

the subscheme of Grd(M) of subrepresentations of the Q-representation M isomorphic
to N . Dually we define the subscheme C′N of Grd(M) of subrepresentations of M such
that M/N is isomorphic to N .

Theorem 3.1.1. Let Q be a quiver, M,N Q-representations and d a dimension vector.
If CN (k) is non-empty in Grd(M), then it is locally closed, irreducible, has dimension

dimk HomQ(N,M)− dimk EndQ(N)

and the scheme CN is smooth. Moreover,

TU (CN ) ∼= HomQ(N,M)/EndQ(N)

for U ∈ CN (k). If C′N (k) is non-empty, then it is also locally closed, irreducible, smooth
and has dimension dimk HomQ(M,N)− dimk EndQ(N).

In general we do not get that the locally closed subscheme CN,N ′ = CN ∩ C′N ′ is
irreducible. The subvarieties CN (k) of Grd(M) are defined similarly to the orbits O(N)
in the variety repd(Q). Nevertheless, U ∈ CV (k) does not imply CU (k) ⊆ CV (k), since
the set CV (k) is in general not an orbit of some action and thus CV (k) is in general not a
union of CU (k)’s (see Example 3.1.3). However, in general for each quiver Q, dimension
vector d and Q-representation M ,

Grd(M) =
⋃

N∈repd(Q)
CN (k) =

⋃
N ′∈repdimM−d(Q)

C′N ′(k)

=
⋃

(N,N ′)∈repd(Q)×repdimM−d(Q)
CN,N ′(k). (3.1.3)

We remark that these unions are not necessarily finite and they do not hold for the
corresponding schemes.

Corollary 3.1.2. Let Q be a quiver, M a Q-representation, d a dimension vector and
U ∈ Grd(M). Then the normal space NU (CU/Grd(M)) is isomorphic to the image of
the first connecting morphism HomQ(U, δ) of the long exact sequence of the short exact
sequence 0→ U →M →M/U → 0 and the functor HomQ(U,−), i.e.

NU (CU/Grd(M)) ∼= Im HomQ(U, δ).

Moreover, this normal space is a subspace of Ext1
(Q,I)(U,U) for each semiadmissible ideal

I such that M is a (Q, I)-representation. Dually NU (C′U/Grd(M)) ∼= Im HomQ(δ, U).

Before proving the theorem and this corollary we consider some useful lemmas. By
the corollary or by Proposition 2.3.12 we get dim CN ≤ dimk HomQ(N,M/N) and
dim C′M/N ≤ dimk HomQ(N,M/N). Using Lemma 2.3.10 both statements of the the-
orem and of the corollary are dual. Thus it is enough to consider the scheme CN in the
following lemmas. If CN (k) is empty, there is nothing to prove.
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Example 3.1.3. Let Q = 1
α→ 2 and M = (M1,M2,Mα) the Q-representation such

that M1 = k2 with basis {e1, e2}, M2 = k2 with basis {f1, f2} and Mα = ( 1 0
0 0 ). Let

U = 〈e1〉Q, V = 〈e2, f1〉Q, V ′ = 〈e2, f2〉Q ∈ Gr(1,1)(M). Then V ∼= V ′,

CU (k) = {〈e1 + λe2〉Q|λ ∈ k}, CV (k) = {〈e2, f〉Q|f ∈M2, f 6= 0} ⊆ Gr(1,1)(M),

V ∈ CU (k), V ′ /∈ CU (k) and thus CV (k) ∩ CU (k) 6= ∅ and CV (k) * CU (k).

Lemma 3.1.4. Let Q be a quiver, M,N Q-representations and d a dimension vector.
Then CN (k) is irreducible in Grd(M).

Proof. Let U, V ∈ CN (k) and ϕ : U → V an isomorphism of Q-representations. We
consider the homomorphisms

ϕ(t) = tιU + (1− t)ιV ϕ : U →M

of Q-representations with ιU : U → M, ιV : V → M are the canonical embeddings and
t ∈ k. Let W (t) be the image of ϕ(t). Thus W (t) is a subrepresentation of M , W (0) = V ,
W (1) = U and if dimW (t) = d, then W (t) ∈ CN (k) for all t ∈ k.

Let {u1, . . . , ud} be a basis of the vector space U . Then {ϕ(t)(u1), . . . , ϕ(t)(ud)}
generates the vector space W (t). Let

M(t) = (ϕ(t)(u1) . . . ϕ(t)(ud)) ∈ Mat(d× n, k)

be the matrix with columns ϕ(t)(u1), . . . , ϕ(t)(ud) for all t ∈ k. Now we consider the
following maps M : k → Mat(n × d, k), t 7→ M(t) and rk: Mat(n × d, k) → Z,M 7→
rk(M). Since rk is lower semicontinuous by Example 2.3.1 and M is continuous, also
rk ◦M is lower semicontinuous. Thus X = {t ∈ k| rkM(t) = d} = {t ∈ k|W (t) ∈ CN (k)}
is open in k. Since 0 ∈ X this set X is dense in k. Moreover, W : X → CN (k), t 7→W (t)
is a well-defined morphism of algebraic varieties. Since X is irreducible, CN (k) is also
irreducible.

In the dual case for C′N let ψ : M/V → M/U be an isomorphism. Then the kernel of
ψ(t) = tπU + (1− t)ψπV : M →M/U gives a family of points in C′N (k).

Lemma 3.1.5. Let Q be a quiver, M a Q-representation, d a dimension vector and
N ∈ repd(Q) with CN (k) is non-empty in Grd(M). Then

dim CN = dimk HomQ(N,M)− dimk EndQ(N).

Proof. By Proposition 2.3.3 dimO(N) = dim GLd(k) − dimk EndQ(N). The projection
on the first component

π1 : O0(N,M)(k)→ O(N)(k),
(
(Uα)α∈Q1 , (fi)i∈Q0

)
7→ (Uα)α∈Q1

has fibres isomorphic to the subset of injective homomorphisms in HomQ(N,M). This
set is open and non-empty in the affine space HomQ(N,M). Thus

dim CN = dimO0(N,M)− dim GLd(k)

35



3 Geometric properties of quiver Grassmannians

= dimO(N) + dimk HomQ(N,M)− dim GLd(k)

= dimk HomQ(N,M)− dimk EndQ(N).

This proves Lemma 3.1.5.

Lemma 3.1.6. Let Q be a quiver, M a Q-representation, d a dimension vector, N ∈
Grd(M) and U ∈ CN (k). Then TU (CN ) ∼= HomQ(N,M)/EndQ(N) and moreover CN is
smooth.

Proof. As in the proof of Proposition 2.3.12 of this thesis in [12, Proposition 6] we
compute the tangent space TU (CN ) by fixing a point (U, f) = ((Uα)α∈Q1 , (fi)i∈Q0) ∈
Hom0

Q(d,M)(k) in the fibre π−1(U) with π defined in Equation (2.3.5), computing the
tangent space T ofO0(N,M) at this point and factoring it by the image of the differential
of the action of GLd.

Let n = (ni)i∈Q0 be the dimension vector of M . Without loss of generality we assume
M = (Mi,Mα)i∈Q0,α∈Q1 with Mi = kni for all i ∈ Q0 and Mα ∈ Mat(nt(α) × ns(α), k)
for all α ∈ Q1. To compute T , we perform a calculation with dual numbers. Since
repd(Q)×Hom(d,n) is just an affine scheme, an element of the tangent space at the point
(U, f) looks like ((Uα + εVα)α∈Q1 , (fi + εgi)i∈Q0), with ((Vα)α∈Q1 , (gi)i∈Q0) ∈ repd(Q)×
Mat(n× d, k). The conditions for this to belong to the tangent space T are:

Mα(fs(α) + εgs(α)) = (ft(α) + εgt(α))(Uα + εVα),

∃(hi)i∈Q0 ∈ Mat(d× d, k) : (Uα + εVα)(1 + εhs(α)) = (1 + εht(α))Uα

for all α ∈ Q1, which yields the conditions

Mαgs(α) = ft(α)Vα + gt(α)Uα, (3.1.4)

∃(hi)i∈Q0 ∈ Mat(d× d, k) : Uαhs(α) + Vα = ht(α)Uα

for all α ∈ Q1. The differential of the action of GLd is computed by applying the
definition of the action to a point (1 + εxi)i∈Q0 of T1 GLd:

(1 + εxi)i∈Q0((Uα + εVα)α∈Q1 , (fi + εgi)i∈Q0)

=((Uα + ε(Vα + xt(α)Uα − Uαxs(α)))α∈Q1 , (fi + ε(gi − fixi))i∈Q0).

By the calculation above, we get the following formula for the tangent space TU (CN ):{
((Vα)α∈Q1 , (gi)i∈Q0)

∣∣∣∣∀α ∈ Q1 :
Mαgs(α) = ft(α)Vα + gt(α)Uα,

Vα = ht(α)Uα − Uαhs(α)

}
{

((xt(α)Uα − Uαxs(α))α∈Q1 , (−fixi)i∈Q0)
} (3.1.5)

with (Vα)α∈Q1 ∈ repd(Q), (gi)i∈Q0 ∈ Mat(n × d, k), (hi)i∈Q0 ∈ Mat(d × d, k) and
(xi)i∈Q0 ∈ T1 GLd.

To understand this conditions better, we can assume without loss of generality the
following:

Mα =
(
Uα U ′α
0 Wα

)
, fi = ( 1

0 ) , gi =
(
g′i
g′′i

)
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for all α ∈ Q1 and i ∈ Q0. Then Condition (3.1.4) reads(
Uα U ′α
0 Wα

)(
g′
s(α)

g′′
s(α)

)
= ( 1

0 )Vα +

(
g′
t(α)

g′′
t(α)

)
Uα,

yielding the two conditions

Uαg
′
s(α) + U ′αg

′′
s(α) = Vα + g′t(α)Uα (3.1.6)

Wαg
′′
s(α) = g′′t(α)Uα (3.1.7)

for all α ∈ Q1. The subspace to be factored out reads{(
(xt(α)Uα − Uαxs(α))α∈Q1 ,

(−xi
0

)
i∈Q0

)}
.

Let ((
ht(α)Uα − Uαhs(α)

)
α∈Q1

,
(
g′i
g′′i

)
i∈Q0

)
∈ TU (CN )

with (hi)i∈Q0 ∈ Mat(d× d, k), (g′i)i∈Q0 ∈ Mat(d× d, k) and (g′′i )i∈Q0 ∈ Mat((n− d)×
d, k). Using Equation (3.1.6) and (3.1.7) holds

(
g′i+hi
g′′i

)
i∈Q0

∈ HomQ(U,M). Thus the

Formula (3.1.5) yields the following short exact sequence

0→ EndQ(U)→ HomQ(U,M)→ TU (CN )→ 0

defined by

(hi)i∈Q0 7→
(
hi
0

)
i∈Q0

,
(
hi
g′′i

)
i∈Q0

7→
((
ht(α)Uα − Uαhs(α)

)
α∈Q1

,
(

0
g′′i

)
i∈Q0

)
This implies together with Lemma 3.1.5 the statement.

Now we are able to prove Corollary 3.1.2.

Proof of Corollary 3.1.2. Let 0 → U → M
π−→ M/U → 0 be a short exact sequence

and I a semiadmissible ideal such that M is a (Q, I)-representation. Then we use the
following part of the corresponding long exact sequence.

0 // EndQ(U) // HomQ(U,M)
HomQ(U,π)

// HomQ(U,M/U) ED
BC

GF
HomQ(U,δ)

@A
// Ext1

(Q,I)(U,U).

(3.1.8)

By the proof of Lemma 3.1.6,

NU (CU/Grd(M)) =
TU (Grd(M))

TU (CU )
∼=

HomQ(U,M/U)

Im HomQ(U, π)
∼= Im HomQ(U, δ).
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3 Geometric properties of quiver Grassmannians

The following proposition gives a homological condition on a smooth point U in
Grd(M) such that the set CU (k) is an irreducible component of Grd(M).

Proposition 3.1.7. Let Q be a quiver, M a Q-representation, d a dimension vector
and U ∈ Grd(M).

1. The linear map HomQ(U, π) : HomQ(U,M)→ HomQ(U,M/U) with the canonical
projection π : M →M/U is surjective if and only if U is a smooth point in Grd(M)
and CU (k) is an irreducible component of Grd(M).

2. The linear map HomQ(ι,M/U) : HomQ(M,M/U) → HomQ(U,M/U) with the
canonical embedding ι : U → M is surjective if and only if U is a smooth point
in Grd(M) and C′M/U (k) is an irreducible component of Grd(M).

Moreover, these irreducible components have dimension dimk HomQ(U,M/U).

By Example 3.1.10 for a non-smooth point U the set CU (k) can be also an irreducible
component of Grd(M). Before proving this proposition we give a corollary.

Corollary 3.1.8. Let Q, M , d, U , ι : U → M and π : M → M/U as in Proposi-
tion 3.1.7.

1. If Grd(M) is smooth, then HomQ(U, π) is surjective if and only if CU (k) is an

irreducible component and HomQ(ι,M/U) is surjective if and only if C′M/U (k) is
an irreducible component.

2. Let I be a semiadmissible ideal such that M is a (Q, I)-representation.
If Ext1

(Q,I)(U,U) = 0, then CU (k) is an irreducible component of Grd(M). If

Ext1
(Q,I)(M/U,M/U) = 0, then C′M/U (k) is an irreducible component of Grd(M).

3. If the maps HomQ(U, π) and HomQ(ι,M/U) are both surjective, then CU,M/U (k)
is an irreducible component.

4. Especially if M ∼= U ⊕ V for Q-representations U and V , then CU,V (k) is an
irreducible component with dimension dimk HomQ(U, V ).

Moreover, all points in these sets CU,M/U (k) are smooth in Grd(M).

By Proposition 2.3.12 the quiver Grassmannian Grd(M) is empty or smooth if M
is exceptional. This case is discussed in Section 3.5 in more detail. After proving the
proposition we show Part 3 and 4 of this corollary. The other parts follow immediately.

Proof of Proposition 3.1.7. Since Part 2 is dual to Part 1 by Lemma 2.3.10, it is enough
to prove Part 1. We use the again the exact sequence in (3.1.8). By Theorem 3.1.1 holds

dimk HomQ(U,M/U) = dimk TU (Grd(M)) ≥ dimU Grd(M) (3.1.9)

≥dim CU (k) = dimk HomQ(U,M)− dimk EndQ(U).

Thus if HomQ(U, π) is surjective, we get dim CU (k) = dimU Grd(M) and U is smooth in
Grd(M). Moreover, CU (k) is dense in one irreducible component of Grd(M) and thus
CU (k) is one irreducible component.

If the point U is smooth in Grd(M) and CU (k) is an irreducible component, Equa-
tion (3.1.9) yields dimk HomQ(U,M/U) = dimk HomQ(U,M)− dimk EndQ(U) and thus
HomQ(U, π) is surjective.
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Since each regular local ring is an integral domain (see [2, 11 Dimension Theory]) we
get the following lemma.

Lemma 3.1.9. Let U be a smooth point of a projective variety X. Then U lies in a
unique irreducible component of X.

Proof of Corollary 3.1.8. Using Lemma 3.1.9 we get in Part 3 that the sets CU (k) and
CM/U (k) coincide. Since the sets CU (k) and CM/U (k) are locally closed, the set CU,M/U (k)
is dense in this irreducible component (see [31, II, Exercise 3.18]).

For Part 4 choose ι : U → M and π : M → V to be the canonical embedding and
projection induced by the isomorphism M ∼= U ⊕V . Then the exact sequence 0→ U

ι→
M

π→ V → 0 splits and we apply Part 3.

Example 3.1.10. Let Q be the following quiver

◦

α

��

and M = (M◦,Mα) the Q-representation with M◦ = k2, basis {e1, e2} and Mα = ( 00
10 ).

Let U = 〈e2〉Q ∈ Gr1(M). The exact sequence 0→ U →M
π→M/U → 0 is described in

Figure 3.1.1. Then HomQ(U, π) : HomQ(U,M)→ HomQ(U,M/U) is not surjective and

0 −→
(
e2
)
−→

 e1

α
��
e2

 π−→
(
e1
)
−→ 0

Figure 3.1.1: The exact sequence 0→ U →M →M/U → 0.

Gr1(M) = {U} = CU,M/U (k) as varieties. Since CU is smooth and Gr1(M) is not smooth
this equation holds only for varieties and not for schemes.

3.2 Morphisms induced by homomorphisms

In this section we construct to each homomorphism of Q-representations an isomorphism
of closed subschemes of the corresponding quiver Grassmannians.

Let Q be a quiver, n and d dimension vectors and M = (Mi,Mα)i∈Q0,α∈Q1 a Q-
representation with Mi = kni and the standard basis {e1, . . . , eni} for all i ∈ Q0. Let
V = (Vi)i∈Q0 be a subrepresentation of M with basis {e1, . . . , eti} of Vi for all i ∈ Q0.
The maps

ψA : Mat((n− t)× (d− t), A)×GLd(A)→Mat(n× d, A),(
(Ci)i∈Q0 , (gi)i∈Q0

)
7→
((

Iti 0
0 Ci

)
g−1
i

)
i∈Q0
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for a commutative k-algebra A induce a morphism ψ : Hom(d − t,n − t) × GLd →
Hom(d,n) of schemes. Let

U0
d(V,M) = (repd(Q)× Imψ) ∩Hom0

Q(d,M). (3.2.1)

This is GLd-stable. For each d-minor B the scheme π(U0
d(V,M))∩UB with the projec-

tion π defined in Equation (2.3.5) is by the isomorphism πB defined in Equation (2.3.6)
isomorphic to a closed subscheme of Hom(d,n − d). Thus this scheme U0

d(V,M) is a
closed subscheme of Hom0

Q(d,M) and parametrizes subrepresentations of the Q-repre-
sentation M with an injective homomorphism of Q-representations to M such that the
image contains the subrepresentation V of M . The geometric quotient Ud(V,M) =
U0
d(V,M)/GLd of the scheme U0

d(V,M) by the group GLd is a well-defined closed sub-
scheme of Grd(M) = Hom0

Q(d,M)/GLd .
This can be generalized to each pair V,M of Q-representations with an embedding

V ↪→ M . Moreover, by the canonical embedding the scheme Grd(V ) is a closed sub-
scheme of Grd(M).

In Corollary 3.2.2 we study the tangent space of the scheme Ud(V,M). First we show
that each homomorphism f : M → N of Q-representations induces an isomorphism of
closed subschemes of this form of the corresponding quiver Grassmannians.

Proposition 3.2.1. Let Q be a quiver, d a dimension vector and f : M → N a homo-
morphism of Q-representations. Then

f∗ : Ud(Ker f,M)→ Grd−dimKer f (Im f), U 7→ f(U),

f∗ : Grd−dimKer f (Im f)→ Ud(Ker f,M), U 7→ f−1(U)

are both well-defined morphisms of schemes, which are inverse to each other.

Proof. Let n = (ni)i∈Q0 ∈ NQ0 . Without loss of generality let M = (Mi,Mα)i∈Q0,α∈Q1

and N = (Ni, Nα)i∈Q0,α∈Q1 with Mi = kni and Ni = kn
′
i for all i ∈ Q0, Mα ∈

Mat(nt(α) × ns(α), k) and Nα ∈ Mat(n′t(α) × n′s(α), k) for all α ∈ Q1, t = dim Ker f ,

Ker f = (Vi, Vα)i∈Q0,α∈Q1 and the linear maps fi : Mi → Ni are described by the ma-

trices
(

0 Ini−ti
0 0

)
for all i ∈ Q0. Thus let Mα =

(
Vα Mα

0 M ′α

)
for all α ∈ Q1. Let A be a

commutative k-algebra.
For each ((Uα)α∈Q1 , (Ci)i∈Q0) ∈ Hom0

Q(d− t, Im f)(A) we get((
Vα MαCs(α)
0 Uα

)
α∈Q1

,
(
Iti 0
0 Ci

)
i∈Q0

)
∈ U0

d(Ker f,M)(A)

with f−1(ImCi) = Im
(
Iti 0
0 Ci

)
for all i ∈ Q0. Thus this induces a morphism of schemes

f̃∗ : Hom0
Q(d− t, Im f)→ U0

d(Ker f,M),

which factors to the morphism f∗ : Grd−t(Im f)→ Ud(Ker f,M) with

(f∗)A : Grd−t(Im f)(A)→ Ud(Ker f,M)(A), U 7→ f−1(U)
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Hom0
Q(d− t, Im f)

����

f̃∗
// U0

d(Ker f,M)

����

f̃∗

**TTTTTTTTTTTT

����

Grd−t(Im f)
f∗

//______ Ud(Ker f,M)
f∗

//_____ Grd−t(Im f)

Figure 3.2.1: A commutative diagram for the proof of Proposition 3.2.1.

as in the commutative diagram in Figure 3.2.1.
Now we construct an inverse map of the morphism f∗. For a commutative k-algebra

A let ((Uα)α∈Q1 , (hi)i∈Q0) ∈ U0
d(Ker f,M)(A). Thus there is a tuple (gi)i∈Q0 ∈ GLd(A)

of invertible matrices, a representation (U ′α)α∈Q1 ∈ repd−t(Q)(A) and a tuple (Ci)i∈Q0 ∈
Hom0(d− t,n− t)(A) of matrices such that Uα = gt(α)

(
Vα MαCs(α)
0 U ′α

)
g−1
s(α) for all α ∈ Q1

and hi =
(
Iti 0
0 Ci

)
g−1
i for all i ∈ Q0. These matrices gi and Ci are not unique for each

i ∈ Q0. Nevertheless, the image of Ci is uniquely determined by hi for all i ∈ Q0. And
so this defines a well-defined morphism (f̃∗)A : U0

d(Ker f,M)(A)→ Grd−t(Im f)(A),((
gt(α)

(
Vα MαCs(α)
0 U ′α

)
g−1
s(α)

)
α∈Q1

,
((

Iti 0
0 Ci

)
g−1
i

)
i∈Q0

)
7→(ImCi)i∈Q0 .

This morphism factors again to the morphism

f∗ : Ud(Ker f,M)→ Grd−t(Im f), U 7→ f(U).

Moreover, these morphisms f∗ and f∗ are inverse to each other.

If f : M → N is an injective homomorphism of Q-representations, then this induces
a closed embedding f∗ : Grd(M) → Grd(N), U 7→ f(U). If f : M → N is surjective,
then f∗ : Grd−dimKer f (N) → Grd(M), V 7→ f−1(V ) is again a closed embedding. In
Example 3.2.3 we study an example.

Corollary 3.2.2. Let Q be a quiver and M , U and V Q-representations such that
dimU = d and V ⊆ U ⊆M . Then

TU (Ud(V,M)) ∼= HomQ(U/V,M/U).

By Proposition 3.2.1 the scheme Ud(V,M) is isomorphic to the quiver Grassmannian
Grd−t(M/V ) with dimV = t and thus this corollary is clear by Proposition 2.3.12.
Nevertheless, we give an independent proof. Using the canonical projection U → U/V
of Q-representations the normal space NU (Ud(V,M)/Grd(M)) is isomorphic to the quo-
tient space

HomQ(U,M/U)/HomQ(U/V,M/U).

Moreover, NV (Grt(U)/Grt(M)) ∼= HomQ(V,M/V )/HomQ(V,U/V ) holds by the em-
bedding U/V →M/V .
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Proof. Without loss of generality let dimM = n = (ni)i∈Q0 , dimU = d = (di)i∈Q0 ,
dimV = t = (ti)i∈Q0 and M = (Mi,Mα)i∈Q0,α∈Q1 a Q-representation with Mi = kni

and basis {e1, . . . , eni} for all i ∈ Q0 and

Mα =
(
Uα U ′α
0 Wα

)
∈ Mat

(
(d + (n− d))t(α) × (d + (n− d))s(α), k

)
,

Uα =
(
Vα V ′α
0 Xα

)
∈ Mat

(
(t + (d− t))t(α) × (t + (d− t))s(α), k

)
for all α ∈ Q1. Moreover, we assume that U = (Ui)i∈Q0 and V = (Vi)i∈Q0 are the
subrepresentations of M with the basis {e1, . . . , edi} of Ui and {e1, . . . , eti} of Vi for all
i ∈ Q0.

We use the proof of Lemma 3.1.6. Thus

(
(Uα)α∈Q1 ,

(
Idi
0

)
i∈Q0

)
∈ π−1(U) with π

defined in Equation (2.3.5). Let ((Yα)α∈Q1 , (gi)i∈Q0) ∈ repd(Q) × Homk(d,M). The
conditions for (

(Uα + εYα)α∈Q1
,
((

Idi
0

)
+ gi

)
i∈Q0

)
belonging to the tangent space T of U0

d(V,M) are (see Equation (3.1.4)):

Mαgs(α) =
(
Idt(α)

0

)
Yα + gt(α)Uα

and there exist hi ∈ Mat(di×di, k), D′i ∈ Mat((di− ti)× (di− ti), k) and Di ∈ Mat((ni−
di)× (di − ti), k) for all i ∈ Q0 such that(

Idi
0

)
+ εgi =

((
Idi
0

)
+ ε

(
Iti 0

0 D′i
0 Di

))
(Idi + εhi)

for all i ∈ Q0. With gi =
(
g′i
g′′i

)
for all i ∈ Q0 this yields:

Uαg
′
s(α) + U ′αg

′′
s(α) = Yα + g′t(α)Uα, Wαg

′′
s(α) = g′′t(α)Uα, g

′
i =

(
Iti0

0D′i

)
+ hi, g

′′
i = ( 0 Di )

with hi ∈ Mat(di×di, k), D′i ∈ Mat((di− ti)× (di− ti), k) and Di ∈ Mat((ni−di)× (di−
ti), k) for all i ∈ Q0. For each i ∈ Q0, g′i and D′i we can choose some hi ∈ Mat(di×di, k).
So we can drop the third condition.

As in the proof of Lemma 3.1.6 the vector space TU (Ud(V,M)) is isomorphic to{((
Uαg

′
s(α) − g

′
t(α)Uα + U ′αg

′′
s(α)

)
α∈Q1

,
(
g′i
g′′i

)
i∈Q0

)∣∣∣∣Wαg
′′
s(α) = g′′t(α)Uα,

g′′i = ( 0 Di )

}
{((

xt(α)Uα − Uαxs(α)

)
α∈Q1

,
(−xi

0

)
i∈Q0

)}
with (xi)i∈Q0 ∈ T1 GLd(k). Setting xi = g′i for all i ∈ Q0 this vector space is isomorphic
to

{(Di)i∈Q0 ∈ Mat((n− d)× (d− t), k)|Wα ( 0 Ds(α) ) = ( 0 Dt(α) )Uα} .
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3.3 Semicontinuity and group action

Using the definition of Uα for all α ∈ Q1 we get

TU (Ud(V,M)) ∼=
{

(Di)i∈Q0

∣∣WαDs(α) = Dt(α)Xα

} ∼= HomQ(U/V,M/U).

Example 3.2.3. Let Q = ({◦}, {α}) be the quiver defined in Example 3.1.10 (see also
Section 3.6.3). For each n ∈ N let M(n) = (M(n)◦,M(n)α) be a Q-representation with
M(n)◦ = kn and M(n)α the nilpotent Jordan block of size n. Then for n > 0 the Q-
representation M(n) is indecomposable, nilpotent and up to isomorphism unique. For
d, n ∈ N with d ≤ n exists an injective homomorphism ι : M(d) → M(n). For such an
embedding the image is unique and M(n)/M(d) ∼= M(n− d).

For d, n ∈ N with d ≤ n the variety Grd(M(n)) contains a unique element, but the
schemes Grd(M(n)) are in general pairwise non-isomorphic.

Let n,m ∈ N and f : M(n) → M(m) a homomorphism of Q-representations with
Ker f ∼= M(t). Then by Proposition 3.2.1 the induced morphism f∗ : Ud(M(t),M(n))→
Grd−t(M(n− t)) is an isomorphism of schemes. Moreover

TM(d)(Ud(M(t),M(n))) ∼= HomQ(M(d− t),M(n− d))

∼= HomQ(M(d− t),M(n− t)/M(d− t)) ∼= TM(d−t)(Grd−t(M(n− t))).

Let t, n ∈ N with t ≤ n and g : M(n)→M(n−t) a surjective homomorphism of Q-repre-
sentations. Then the induced morphism g∗ : Grd−t(M(n− t))→ Grd(M(n)) is a closed
embedding of schemes. Moreover, for all d, d′, n, n′ ∈ N with d′ ≤ d and n′ − d′ ≤ n− d
there is a closed embedding of schemes Grd′(M(n′))→ Grd′(M(n−d+d′))→ Grd(M(n)).

3.3 Semicontinuity and group action

There are some well-known results for the module variety repd(Q). By Proposition 2.3.4
rank functions on the module variety repd(Q) are lower semicontinuous and dimensions
of homomorphism spaces of Q-representations are upper semicontinuous. In this section
it turns out that this is also true for the quiver Grassmannians Grd(M). In the last part
we study a canonical operation of the automorphism group AutQ(M) of the Q-represen-
tation M on the quiver Grassmannian Grd(M). This is useful for the computations in
Section 3.6.

Proposition 3.3.1. Let Q be a quiver, M = (Mi,Mα)i∈Q0,α∈Q1 a Q-representation, d
a dimension vector and β ∈ Q1. Then the maps

rkβ : Grd(M)→ Z, (Ui)i∈Q0 7→ rk
(
Mβ|Us(β) : Us(β) → Ut(β)

)
rkβ : Grd(M)→ Z, (Ui)i∈Q0 7→ rk

(
(M/U)β : Ms(β)/Us(β) →Mt(β)/Ut(β)

)
are lower semicontinuous.

Using Lemma 2.3.10 both statements are dual. Thus it is enough to consider the case
of the map rkβ. In the proof of the proposition we use the following lemma.
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3 Geometric properties of quiver Grassmannians

Lemma 3.3.2. Let d,m, n ∈ N with d ≤ n and M ∈ Mat(m×n, k). For v1, . . . , vd ∈ kn
let (v1 . . . vd) ∈ Mat(n× d, k) be the matrix with columns v1, . . . , vd. Then the map

rkM : Gr ( nd )→ Z, 〈v1, . . . , vd〉 → rk(M · (v1 . . . vd))

is well-defined and lower semicontinuous.

Proof of Proposition 3.3.1. Let n = (ni)i∈Q0 be the dimension vector of M . Then the
map rkβ : Grd(M)→ Z factorizes in the following way

Grd(M) ↪→ Gr ( n
d )

πs(β)−→ Gr
(
ns(β)
ds(β)

) rkMβ−→ Z

with the canonical projection πs(β). These maps are all continuous or lower semicontin-
uous.

Proof of Lemma 3.3.2. Let U ∈ Gr ( nd ) and v1, . . . , vd and v′1, . . . , v
′
d bases of U . Then

there exists g ∈ GLd(k) with (v1 . . . vd) · g = (v′1 . . . v
′
d). Thus

rk(M · (v1 . . . vd)) = rk(M · (v1 . . . vd) · g) = rk(M · (v′1 . . . v′d))

and the map rk is well-defined.
Now we use the open affine covering {UB}B of Gr ( nd ) defined in Section 2.3.2. Let B

be the d-minor of the first d rows and πB the isomorphism defined in Equation (2.3.2).
Moreover, we define the following linear map

χ : Mat((n− d)× d, k)→ Mat(m× d, k), C 7→M
(
Id
C

)
.

We consider the commutative diagram in Figure 3.3.1.

Mat((n− d)× d, k)

χ ..

∼
πB

// UB
� � // Gr ( nd )

rkM // Z

Mat(m× d, k) rk

JJ

Figure 3.3.1: A commutative diagram for the proof of Lemma 3.3.2.

To prove that rkM is lower semicontinuous it is enough to show this for the map
rkM |UB : UB → Z. This map is the concatenation of the continuous map χπ−1

B and the
lower semicontinuous map rk: Mat(m× d, k)→ Z (see Example 2.3.1).

Proposition 3.3.3. Let Q be a quiver, M,N Q-representations and d a dimension
vector. Then the maps

dimk HomQ(−, N) : Grd(M)→ Z, U 7→ dimk HomQ(U,N)

dimk HomQ(N,−) : Grd(M)→ Z, U 7→ dimk HomQ(N,U)

dimk HomQ(−, N) : Grd(M)→ Z, U 7→ dimk HomQ(M/U,N)

dimk HomQ(N,−) : Grd(M)→ Z, U 7→ dimk HomQ(N,M/U)

are upper semicontinuous.
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3.3 Semicontinuity and group action

Some of the maps defined in the following proof are used again in the proof of Theo-
rem 3.4.1.

Proof. We use the following result of Crawley-Boevey [17, Section 3, Special Case]: Let
X be a variety, V a vector space and for all x ∈ X let Vx be a subspace of V such that
the set {(x, v)|v ∈ Vx} is locally closed in X × V . Then the map X → Z, x 7→ dimk Vx
is upper semicontinuous.

Let m = dimM , M = (Mi,Mα)i∈Q0,α∈Q1 with Mi = kmi for all i ∈ Q0 and Mα ∈
Mat(mt(α)×ms(α), k) for all α ∈ Q1, n = dimN , N = (Ni, Nα)i∈Q0,α∈Q1 with Ni = kni

for all i ∈ Q0 and Nα ∈ Mat(nt(α) × ns(α), k) for all α ∈ Q1, ι : Grd(M) ↪→ Gr ( m
d )

the canonical inclusion and {UB}B the affine open covering of Gr ( m
d ) defined in Sec-

tion 2.3.2.
For each U ∈ Grd(M) let VU be the subspace {f ∈ Mat(n×m, k)|f |U ∈ HomQ(U,N)}

of Mat(n×m, k). We show that the set{
(U, f) ∈ (Grd(M) ∩ UB)×Mat(n×m, k)

∣∣f ∈ VU} (3.3.1)

is closed in (Grd(M) ∩ UB) ×Mat(n ×m, k) for each B. The maps used for this are
summarized in the commutative diagrams in Figure 3.3.2 and 3.3.3.

Grd(M) � � ι // Gr ( m
d )

Grd(M) ∩ UB
� �

ι|Grd(M)∩UB //

Ψ

,,

?�

OO

UB
?�

OO

Mat((m− d)× d, k)

πB

OO

ψ
��

πj
// //Mat((mj − dj)× dj , k)

repd(Q)
πβ

// //Mat(dt(β) × ds(β), k)

Figure 3.3.2: A commutative diagram for the proof of Proposition 3.3.3 and Theo-
rem 3.4.1 with j ∈ Q0 and β ∈ Q1.

Without loss of generality we assume B = (Bi)i∈Q0 is the d-minor such that Bi is the
di-minor of the first di rows for all i ∈ Q0. Thus the isomorphism πB : Mat((m− d)×
d, k)

∼−→ UB is given by Equation (2.3.3). We define the following linear maps

ψ : Mat((m− d)× d, k)→ repd(Q), (Ci)i∈Q0 7→
(

( Idt(α) 0 ) ·Mα ·
(
Ids(α)
Cs(α)

))
α∈Q1

,

πβ : repd(Q)→ Mat(dt(β) × ds(β), k), (Lα)α∈Q1 7→ Lβ,

πj : Mat((m− d)× d, k)→ Mat((mj − dj)× dj , k), (Ci)i∈Q0 7→ Cj ,

ϕβ : Mat((m− d)× d, k)×Mat(n×m, k)→ Mat(nt(β) × ds(β), k),

((Ci)i∈Q0 , (fi)i∈Q0) 7→ Nβfs(β)

(
Ids(β)
Cs(β)

)
− ft(β)

(
Idt(β)
Ct(β)

)
πβψ((Ci)i∈Q0)

45



3 Geometric properties of quiver Grassmannians

(Grd(M) ∩ UB)×Mat(n×m, k) � �

(
ι|Grd(M)∩UB

0

0 id

)
//

Φ
,,

UB ×Mat(n×m, k)

Mat((m− d)× d, k)×Mat(n×m, k)

(
πB 0
0 id

)OO

(ϕα)α∈Q1
��∏

α∈Q1
Mat(nt(α) × ds(α), k)

Figure 3.3.3: A commutative diagram for the proof of Proposition 3.3.3.

for j ∈ Q0 and β ∈ Q1. Moreover, we get the following morphisms of varieties

Ψ: Grd(M) ∩ UB → repd(Q), U 7→ ψπ−1
B ι(U),

Φ: (Grd(M) ∩ UB)×Mat(n×m, k)→
∏

α∈Q1

Mat(nt(α) × ds(α), k),

(U, f) 7→
(
ϕα(π−1

B ι(U), f)
)
α∈Q1

.

Let (U, f) ∈ (Grd(M) ∩ UB) × Mat(n ×m, k). Since U is a subrepresentation of M ,
there is some tuple (gα)α∈Q1 ∈

∏
α∈Q1

Mat(dt(α) × ds(α), k) such that

Mβ

(
Ids(β)

πs(β)π
−1
B ι(U)

)
=

(
Idt(β)

πt(β)π
−1
B ι(U)

)
gβ

for each β ∈ Q1. This equation shows gβ = πβΨ(U) for each β ∈ Q1. Thus the left
hand side of the diagram in Figure 3.3.4 is commutative. Using the hole diagram in
Figure 3.3.4 we get f ∈ VU if and only if ϕβ(π−1

B ι(U), f) = 0 for all β ∈ Q1.

kds(β)

πβΨ(U)

��

� �

(
Ids(β)

πs(β)π
−1
B ι(U)

)
// kms(β)

Mβ

��

fs(β)
// Ns(β)

Nβ
��

kdt(β)
� �

(
Idt(β)

πt(β)π
−1
B ι(U)

)
// kmt(β)

ft(β)
// Nt(β)

Figure 3.3.4: A not necessarily commutative diagram for f ∈ VU with β ∈ Q1.

Thus the set defined in Equation (3.3.1) is Φ−1({0}) and closed in (Grd(M) ∩ UB)×
Mat(n × m, k). Since dimk VU = dimk HomQ(U,N) +

∑
i∈Q0

(mi − di)ni for all U ∈
Grd(M), the map dimk HomQ(−, N) is upper semicontinuous.

Using the subset {(U, f) ∈ Grd(M)×Mat(m× n, k)|f ∈ HomQ(N,U)} of Grd(M)×
Mat(m× n, k) and Lemma 2.3.10 the same holds in the other cases.
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3.4 Connections to degenerations of representations

The group GLd(k) operates on the variety repd(Q). The orbits under this action are
the isomorphism classes of Q-representations in repd(Q). By Remark 3.3.6 there is no
such natural action for Grd(M), but by the following proposition the group AutQ(M)
operates on Grd(M).

Proposition 3.3.4. Let Q be a quiver, M a Q-representation and d a dimension vector.
Then the group AutQ(M) operates on Grd(M). This operation stabilizes CN (k), CN (k),

C′N (k) and C′N (k) for all Q-representations N .

Proof. The operation of AutQ(M) on M induces one on Grd(M). If U ∼= N with
U ∈ Grd(M) and g ∈ AutQ(M), then gU ∼= N .

Let g ∈ AutQ(M). Since ϕg : Grd(M) → Grd(M), U 7→ g−1U is continuous and

CN (k) is closed, ϕ−1
g

(
CN (k)

)
= gCN (k) is also closed. So by CN (k) = gCN (k) ⊆ gCN (k)

holds CN (k) ⊆ gCN (k). Thus CN (k) = gCN (k) by symmetry.

Using the following example the number of AutQ(M)-orbits of the quiver Grassman-
nian Grd(M) is not necessarily finite and do not describe the subschemes of isomorphism
classes.

Example 3.3.5. Let Q be the following quiver

1

α ��
===== 2
β
��

3

γ�������

4

and M = (M1,M2,M3,M4,Mα,Mβ,Mγ) the Q-representation with M1 = M2 = M3 =
k, M4 = k2, Mα = ( 1

0 ), Mβ = ( 1
1 ) and Mγ = ( 0

1 ). Then AutQ(M) ∼= k and
Gr(0,0,0,1)(M) ∼= P1

k, although CS(4)(k) = Gr(0,0,0,1)(M).

Remark 3.3.6. In general there is no algebraic group G with an action on the quiver
Grassmannian Grd(M) such that the orbits are the subsets CU (k).

We assume there is such a continuous action in general. In this case the closure of an
orbit is the union of some orbits (see proof of Proposition 3.3.4). However, this is not
true in Example 3.1.3.

3.4 Connections to degenerations of representations

Let Q be a quiver, M a Q-representation and d a dimension vector. Then we study in
this section the relations of the topology of the module variety repd(Q) and the quiver
Grassmannian Grd(M). For example we can guess

CU (k) ⊆ CV (k)⇔ O(U) ⊆ O(V ) (3.4.1)

for U, V ∈ Grd(M) or even

CU,M/U (k) ⊆ CV,M/V (k)⇔ O(U) ⊆ O(V ) ∧ O(M/U) ⊆ O(M/V ) (3.4.2)
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3 Geometric properties of quiver Grassmannians

for U, V ∈ Grd(M). Only one of the implications in Equivalence (3.4.2) is true by the
following theorem, the other is wrong by Example 3.4.4.

Theorem 3.4.1. Let Q be a quiver, M a Q-representation, d a dimension vector and
U, V ∈ Grd(M) with U ∈ CV (k). Then O(U) ⊆ O(V ) in the variety repd(Q).

This is even stronger than the first part of Equivalence (3.4.1). However by using the
dual, adding trivial implications, taking the negation and using the definitions we get
the following two corollaries. Thereafter we prove the theorem.

Corollary 3.4.2. Let Q be a quiver, M a Q-representation, d a dimension vector and
U, V ∈ Grd(M).

• If U ∈ C′M/V (k), then O(M/U) ⊆ O(M/V ).

• If CU (k) ⊆ CV (k), then O(U) ⊆ O(V ) and if C′M/U (k) ⊆ C′M/V (k), then O(M/U) ⊆
O(M/V ).
• Let U � V . If U ∈ CV (k), then O(V ) * O(U) and if U ∈ C′M/V (k), then

O(M/V ) * O(M/U).

• Let U � V . If O(U) ⊆ O(V ), then CV (k) * CU (k) and if O(M/U) ⊆ O(M/V ),

then C′M/V (k) * C′M/U (k).

Corollary 3.4.3. Let Q be a quiver, d and n dimension vectors, M a Q-representation
with dimension vector n and U ∈ Grd(M).

1. If the orbit O(U) is closed in the topological space
⋃
V ∈Grd(M)O(V ) ⊆ repd(Q),

then CU (k) is also closed in Grd(M).
2. If the orbit O(M/U) is closed in the topological space

⋃
V ∈Grd(M)O(M/V ) ⊆

repn−d(Q), then C′M/U (k) is also closed in Grd(M).

This corollary does not mean that all closed orbits are of this form.

Proof of Theorem 3.4.1. We use the notations as in the proof of Proposition 3.3.3. The
maps used in this proof are again summarized in the commutative diagram in Fig-
ure 3.3.2. Let B be again the d-minor of the first rows. Without loss of generality we
assume that U ∈ UB.

Let W = (Wi)i∈Q0 ∈ Grd(M) ∩ UB. Then W is a subrepresentation of M and thus
by (Wi,Mα|Ws(α)

: Ws(α) → Wt(α))i∈Q0,α∈Q1 canonically a Q-representation. The tuple

Ψ(W ) is a point in repd(Q) and thus by (kdi , παΨ(W ))i∈Q0,α∈Q1 again a Q-represen-
tation. Using the left hand side of the diagram in Figure 3.3.4 with W = U , we get
that this Q-representations W and Ψ(W ) are isomorphic and Ψ(W ) ∈ O(W ) for each
W ∈ Grd(M) ∩ UB.

Since Ψ is continuous the set Ψ−1
(
O(V )

)
is a closed subset of Grd(M) ∩ UB and

Ψ−1
(
O(V )

)
∪ (Grd(M)\UB) a closed subset of Grd(M) containing CV (k). This means(

CV (k) ∩ UB

)
⊆ Ψ−1

(
O(V )

)
. Thus Ψ(U) ∈ O(V ) and O(U) ⊆ O(V ).
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3.4 Connections to degenerations of representations

In the following example we give a quiver Q, Q-representations M,N and N ′, a di-
mension vector d and subrepresentations U,U ′ and V of M such that there are exact
sequences

0→ U → V → U ′ → 0 and 0→ N →M/V → N ′ → 0, (3.4.3)

M/(U + U ′) ∼= N ⊕N ′ and CU⊕U ′,N⊕N ′(k) * CV (k). In this case O(U ⊕ U ′) ⊆ O(V ) in

repd(Q) and O(N ⊕N ′) ⊆ O(M/V ) in repdimM−d(Q).

Example 3.4.4. Let Q be the following quiver

1β 99 2
αoo

and M = (M1,M2,Mα,Mβ) the Q-representation such that M1 = k4, M2 = k2, Mα =(
00
00
10
01

)
and Mβ =

(
0000
1000
0100
0000

)
. Let {e1, e2, e3, e4} be the canonical basis of M1 and {f1, f2}

of M2. This representation M is described by one picture in Figure 3.4.1. We define
the following sub- and factor representations of M . Let U = 〈f2〉Q ∈ Gr(1,1)(M),
U ′ = 〈e2〉Q ∈ Gr(2,0)(M), V = 〈e1, f1〉Q ∈ Gr(3,1)(M), W = 〈e2, e4, f1〉Q ∈ Gr(3,1)(M),
N = M/〈e2, f1, f2〉Q and N ′ = M/〈e1, f2〉Q. Then these representations are described

M =


e1

β
��
e2

β
��

f1

α~~}}}}
⊕ f2

α
��

e3 e4

 , U =

 f2

α
��
e4

 , U ′ =

 e2

β
��
e3

 ,

V =


e1

β
��
e2

β
��

f1

α~~}}}}

e3

 , W =

 e2

β
��

f1

α~~}}}}

e3

⊕ e4

 , N =
(
e1
)
, N ′ =

(
f1

)

Figure 3.4.1: The Q-representations M , U , U ′, V , W , N and N ′.

by the pictures in Figure 3.4.1. There are exact sequences as in Equation (3.4.3). Using
Theorem 3.1.1 for the variety Gr(3,1)(M) holds

CU⊕U ′,N⊕N ′(k) = {〈e2, f2 + µf1〉Q|µ ∈ k},
CV,M/V (k) = {〈e1 + λe4, f1〉Q|λ ∈ k},
CW,M/W (k) = {W} = {〈e2, e4, f1〉Q}

and Gr(3,1)(M) = CU⊕U ′,N⊕N ′(k) ∪ CV,M/V (k) ∪ CW,M/W (k). Since dim CU⊕U ′ = 1 =

dim CV the irreducible components of Gr(3,1)(M) are CU⊕U ′,N⊕N ′(k) and CV,M/V (k).

Especially CU⊕U ′,N⊕N ′(k) * CV ∪ CM/V (k), O(U ⊕ U ′)(k) ⊆ O(V )(k) in the variety

rep(3,1)(Q) and O(N ⊕N ′)(k) ⊆ O(M/V )(k) in rep(1,1)(Q).
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3 Geometric properties of quiver Grassmannians

By some calculations dimk HomQ(U ⊕U ′, N ⊕N ′) = 2, dimk HomQ(V,M/V ) = 1 and
dimk HomQ(W,M/W ) = 3. Thus the smooth part of Gr(3,1)(M) is CV,M/V (k).

3.5 Representation finite case

Let Q be a quiver, d a dimension vector and M a Q-representation. The representation
M is called sub-d-finite if the set of isomorphism classes of subrepresentations of M with
dimension vector d is finite. M is called factor-d-finite if the set of isomorphism classes
of factor representations of M with dimension vector dimM − d is finite.

Example 3.5.1. If I is an admissible ideal such that rep(Q, I) is representation finite,
then M is sub- and factor-d-finite for each (Q, I)-representation M and each dimension
vector d. In this case for each dimension vector d the decomposition of the module
variety repd(Q, I) into irreducible components is given by repd(Q, I) =

⋃
M∈Md

O(M)
with Md the set of elements M ∈ repd(Q, I) such that O(M) is maximal under the
degeneration order.

Using Equation (3.1.3), Theorem 3.1.1 yields the following corollary.

Corollary 3.5.2. Let Q be a quiver, d a dimension vector and M a Q-representation.
1. If M is sub-d-finite, then each irreducible component of Grd(M) is of the form
CN (k) with some Q-representation N .

2. If M is factor-d-finite, then each irreducible component of Grd(M) is of the form
C′N (k) with some Q-representation N .

3. If M is sub- and factor-d-finite, then each irreducible component of Grd(M) is of
the form CN,N ′(k) with some Q-representations N and N ′. Especially CN,N ′(k) is
irreducible in this case.

Using Proposition 3.1.7, we get the following proposition.

Proposition 3.5.3. Let Q be a quiver, d and n dimension vectors, M a Q-representa-
tion with dimension vector n and U ∈ Grd(M).

1. If M is sub-d-finite, then the set⋃
U∈Grd(M), HomQ(U,π) surjective

CU (k)

with the canonical projection π : M →M/U is dense in the smooth part of Grd(M).
2. If M is factor-d-finite, then the set⋃

U∈Grd(M), HomQ(ι,M/U) surjective
C′M/U (k)

with the canonical embedding ι : U →M is dense in the smooth part of Grd(M).
3. If M is sub- and factor-d-finite, then the set⋃

U∈Grd(M), HomQ(U,π), HomQ(ι,M/U) both surjective
CU,M/U (k)

is dense in the smooth part of the quiver Grassmannian Grd(M).

50



3.5 Representation finite case

Example 3.5.4. Let Q = 1
α→ 2, d = (1, 1) and M = (M1,M2,Mα) a Q-representation

such that M1 = k2 with basis {e1, e2}, M2 = k with basis {f} and Mα = ( 1 0 ). Let
U = 〈e1〉Q, V = 〈e2, f〉Q ∈ Gr(1,1)(M). Then

Gr(1,1)(M) = CU (k) ∪ CV (k) = CU (k) = C′S(1)(k).

Moreover, the quiver Grassmannian Gr(1,1)(M) is smooth. Let 0→ U
ιU→M

πU→M/U →
0 and 0→ V

ιV→M
πV→ M/V → 0 be the canonical short exact sequences. Since the first

one splits, HomQ(U, πU ) and HomQ(ιU , U) are surjective, but HomQ(V,M/V ) is not
surjective since HomQ(V, πV ) vanishes and HomQ(V,M/V ) is one dimensional. Thus
the set CU (k) for Part 1 of Proposition 3.5.3 is a proper subset of the smooth part of
Grd(M).

Using Theorem 3.4.1 and Corollary 3.4.2, we get the following proposition.

Proposition 3.5.5. Let Q be a quiver, d and n dimension vectors, M a Q-representa-
tion with dimension vector n and U ∈ Grd(M).

1. If M is sub-d-finite and the orbit O(U) is maximal in the variety⋃
V ∈Grd(M)

O(V ) ⊆ repd(Q),

then CU (k) is an irreducible component of Grd(M).
2. If M is factor-d-finite and the orbit O(M/U) is maximal in the variety⋃

V ∈Grd(M)
O(M/V ) ⊆ repn−d(Q),

then C′M/U (k) is an irreducible component of Grd(M).

3. If M is sub- and factor-d-finite and the (GLd(k)×GLn−d(k))-orbit (O(U)×O(W ))
is maximal in the variety⋃

V ∈Grd(M)
(O(V )×O(M/V )) ⊆ repd(Q)× repn−d(Q),

then CU,W (k) is an irreducible component of Grd(M) with dimension

dim CU,W (k) = dimk HomQ(U,M)− dimk EndQ(U)

= dimk HomQ(M,W )− dimk EndQ(W ).

Example 3.5.6. Let Q = 1
α→ 2, d = (1, 1) and M = (M1,M2,Mα) a Q-representation

with M1 = M2 = k2 and rk(Mα) = 1. Then⋃
V ∈Grd(M)

O(V ) =
⋃

V ∈Grd(M)
O(M/V ) = repd(Q) ∼= k

and with the identification repd(Q)2 ∼= k2 holds⋃
V ∈Grd(M)

(O(V )×O(M/V )) ∼= {(a, b) ∈ k2|ab = 0} ( k2.
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3 Geometric properties of quiver Grassmannians

Example 3.4.4 and Section 3.6.4 shows that in general these are not all irreducible
components of Grd(M) for a sub- and factor-d-finite Q-representation M . Nevertheless,
in Section 3.6 we prove that in some special cases all irreducible components are of this
form.

In both cases the smooth points are not dense in the quiver Grassmannian. We look
for some example such that there exists a U ∈ Grd(M) with CU,M/U (k) is an irreducible
component, each point of CU,M/U (k) is smooth and O(U)×O(M/U) is not maximal in
the variety described in Part 3 of Proposition 3.5.5. By the way, in this case the linear
map HomQ(U, π) : HomQ(U,M)→ HomQ(U,M/U) is surjective by Proposition 3.1.7.

If a Q-representation M is exceptional we get the following simple result for the quiver
Grassmannian Grd(M).

Proposition 3.5.7. Let Q be a quiver, d a dimension vector and M an exceptional
Q-representation such that Grd(M) is non-empty.

1. If M is sub-d-finite, then Grd(M) = CU (k) with some exceptional Q-representation
U .

2. If M is factor-d-finite, then Grd(M) = C′U (k) with some exceptional Q-represen-
tation U .

3. If M is sub- and factor-d-finite, then Grd(M) = CU,V (k) with some exceptional
Q-representations U and V .

We remind to Part 2 of Corollary 3.1.8. Using this each exceptional subrepresentation
U with dimension vector d of an arbitrary Q-representation M provides an irreducible
component CU (k) of Grd(M). By this proposition the irreducible component CU (k) is
the hole quiver Grassmannian Grd(M) if the Q-representation M is also exceptional.

Proof. Again it is enough to prove the first part. By Corollary 3.5.2 each irreducible
component of Grd(M) is of the form CU (k) with a U ∈ Grd(M). Let U be such a
subrepresentation of M and 0→ U → M

π−→ M/U → 0 the corresponding short exact
sequence. Using a result of [12, Proof of Corollary 3] we get Ext1

Q(U,M) = 0 for the
subrepresentation U of the exceptional Q-representation M . We use the following part
of the corresponding long exact sequence:

0 // EndQ(U) // HomQ(U,M)
HomQ(U,π)

// HomQ(U,M/U) ED
BC

GF
HomQ(U,δ)

@A
// Ext1

Q(U,U) // Ext1
Q(U,M) // . . .

Using Proposition 2.3.12 the scheme Grd(M) is smooth, since M is exceptional. Thus
Proposition 3.1.7 yields that the map HomQ(U, π) : HomQ(U,M)→ HomQ(U,M/U) is
surjective. This means Ext1

Q(U,U) = 0.
By Corollary 2.3.6 there exists up to isomorphism at most one exceptional Q-repre-

sentation with dimension vector d. Thus U is unique up to isomorphism.
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3.5 Representation finite case

Example 3.5.8. Let Q be the following quiver

1
α
((

β

66 2 .

Since Q is of type Ã1, we use Remark 2.2.10. For n ∈ N let M(n) be an indecomposable
preprojective Q-representation with dimension vector (n, n+ 1) (see Figure 3.5.1).

M(7) =

(
1

α
����� β

��
=== 1

α
����� β

��
=== 1
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����� β

��
=== 1
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����� β

��
=== 1

α
����� β

��
=== 1

α
����� β

��
=== 1

α
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��
===

2 2 2 2 2 2 2 2

)
,

M(1)2 ⊕M(2) =

(
1

α
����� β

��
===

2 2

)2

⊕

(
1

α
����� β

��
=== 1

α
����� β

��
===

2 2 2

)
.

Figure 3.5.1: The Q-representations M(7) and M(1)2 ⊕M(2).

Let m ∈ N and d = (d1, d2) a dimension vector. Thus M(m) is a sub-d-finite and
exceptional string module and the quiver Grassmannian Grd(M(m)) is non-empty if and
only if 0 ≤ d1 < d2 ≤ m + 1. By Proposition 3.5.7, there is an exceptional Q-represen-
tation U with Grd(M(m)) = CU (k) in this case. Using again Remark 2.2.10, there are
unique numbers p, r, s ∈ N with r > 0 and U ∼= M(p)r⊕M(p+1)s. Thus r+s = d2−d1,
0 ≤ s < d2 − d1 and (d2 − d1)p + s = d1. Summing up, we get p, s ∈ N by division
algorithm with divisor d2 − d1 and dividend d1.

For m = 7 and d = (4, 7) we get p = 1, r = 2 and s = 1. We illustrate this example in
Figure 3.5.1). For an indecomposable preinjective Q-representation we get a dual result.
But for a regular Q-representation we need a new strategy.

Example 3.5.9. Let Q be a quiver without oriented cycles. A Q-representation M ,
which is projective or injective in the abelian category rep(Q), is exceptional.

Let i ∈ Q0. The projective cover (resp. injective hull) of the simple Q-representa-
tion S(i) is a projective (resp. injective) Q-representation M with topM ∼= S(i) (resp.
socM ∼= S(i)). We denote it by P (i) (resp. I(i)). For each projective (resp. injective) Q-
representation M exists a unique tuple k = (ki)i∈Q0 ∈ NQ0 such that this representation
is isomorphic to

P (k) =
⊕

i∈Q0

P (i)ki
(

resp. I(k) =
⊕

i∈Q0

I(i)ki
)
. (3.5.1)

Let Q be the quiver described in the picture in Figure 3.5.2. In Figure 3.5.3 we give
pictures for projective Q-representations.
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Q =

1
α

%%KKKKKK

3

γ
((

δ

66 4

2
β
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ε
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Figure 3.5.2: The quiver Q for Example 3.5.9.
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Figure 3.5.3: The projective Q-representations P (i) with i ∈ Q0.

Corollary 3.5.10. Let Q be a quiver without oriented cycles, d a dimension vector and
M a Q-representation such that Grd(M) is non-empty.

1. If M is a projective Q-representation, then Grd(M) = CU (k) with some projective
Q-representation U .

2. If M is injective, then Grd(M) = C′V (k) with some injective Q-representation V .

3. If M is a projective-injective Q-representation, then Grd(M) = CU,V (k) with some
projective Q-representation U and some injective Q-representation V .

We consider an example to this corollary in Section 3.6.6.

Proof. Since the category rep(Q) is hereditary each subrepresentation of a projective Q-
representation is again projective. By Equation (3.5.1) all projective Q-representations
are sub-d-finite for each dimension vector d.

3.6 Examples

In this section we decompose for some examples the quiver Grassmannians Grd(M)
into its irreducible components. The considered Q-representations M are both sub- and
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factor-d-finite in all cases. Thus by Part 3 of Proposition 3.5.5 we get an irreducible com-
ponent CU,M/U (k) of Grd(M) for each U ∈ Grd(M) such that the (GLd(k)×GLn−d(k))-
orbit (O(U)×O(M/U)) is maximal in the variety⋃

V ∈Grd(M)
(O(V )×O(M/V )) ⊆ repd(Q)× repn−d(Q). (3.6.1)

Using Example 3.4.4, in general these are not all irreducible components of Grd(M).
Nevertheless, if this is the case, we use the following strategy.

Setting. Let Q be a quiver, d a dimension vector and M a sub- and factor-d-finite
Q-representation with dimension vector n. Let rk: Grd(M) → Nd(M) be a surjective
map such that each subrepresentation U in Grd(M) is mapped to its GLd(k)-orbit O(U)
in repd(Q). Thus the set Nd(M) is finite and Grd(M) =

⋃
O(U)∈Nd(M)CU (k).

Strategy. Now we define for each example some subsetMd(M) of Nd(M) and associate
to each O(U) ∈ Md(M) an orbit in repn−d(Q), denoted by O(U?). We claim that
the set {(O(U) × O(U?))|O(U) ∈ Md(M)} is the set of maximal orbits in the variety
described in Equation (3.6.1). Moreover, we request that the decomposition of Grd(M)
into irreducible components is given by

Grd(M) =
⋃
O(U)∈Md(M)

CU,U?(k). (3.6.2)

We determine the cases such that the points in CU,U?(k) are smooth points of Grd(M)
and the cases such that the subset of smooth points is dense.

Idea of proof. We show Equation (3.6.2) in the following way. Let U ∈ Grd(M). If
rk(U) ∈ Md(M), we prove U ∈ CU,U?(k). Otherwise we construct some V ∈ Grd(M)

with V � U and U ∈ CV (k).
Now we prove that for each O(U) ∈Md(M) the orbit (O(U)×O(U?)) is maximal in

the variety described in Equation (3.6.1). Using the first part and Proposition 3.5.5 we
know that the converse is true. So it is enough to prove O(U?) * O(V ?) in repn−d(Q)

for each O(U),O(V ) ∈Md(M) with U � V and O(U) ⊆ O(V ) in repd(Q). �

We observe the following examples:
1. For Q = 1 → 2 our strategy succeeds for each Q-representation M and each

dimension vector d. In this case the subset of smooth points is dense.
2. For Q = 1 → 2 → 3 we decompose the quiver Grassmannian Grd(M) into irre-

ducible components only for Q-representations M with dimension vectors of the
form (n, n, n) and dimension vectors d = (d, d, d). In this case the subset of smooth
points is not dense in general.

3. For the one-loop-quiver Q (see Figure 3.6.4) our strategy succeeds again for each
Q-representation M and each dimension vector d. But in this case the subset of
smooth points is not dense in general.

4. For the cyclically oriented two-cycle-quiver Q (see Figure 3.6.9) our strategy fails
since in general Part 3 of Proposition 3.5.5 do not describe all irreducible compo-
nents of Grd(M).
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3 Geometric properties of quiver Grassmannians

5. Let N ∈ N with N ≥ 2, Q the cyclically oriented N -cycle-quiver (see Figure 3.6.11)
and M a projective-injective (Q,αN )-representation. Using our strategy we de-
compose the quiver Grassmannian Grd(M) into irreducible components for each
dimension vector d. In this case the subset of smooth points is again dense.
By Görtz [30, Section 4] and Pappas, Rapoport and Smithling [40, Section 7] these
quiver Grassmannians Grd(M) with dimension vectors d of the form (d, . . . , d)
occur in the context of local models of Shimura varieties.

6. For Q = 1 → 2 → · · · → N we can use the previous results for each projective or
injective Q-representation M and each dimension vector d. In this case the quiver
Grassmannian Grd(M) is smooth.

3.6.1 Quiver of type A2

Let Q = 1
α→ 2, n = (n1, n2) and d = (d1, d2) dimension vectors and k ∈ N. If k ≤ n1 and

k ≤ n2 let M(n, k) be a Q-representation with dimM(n, k) = n and rkα(M(n, k)) = k.
This parametrizes up to isomorphism all Q-representations.

Proposition 3.6.1. Let Q = 1
α→ 2, n = (n1, n2) and d = (d1, d2) dimension vectors

and k ∈ N with k ≤ n1 and k ≤ n2. Let rk : Grd(M(n, k)) → Z, U 7→ rkα(U) and
Nd(n, k) the image of this map. Define a subset of Nd(n, k) by Md(n, k) = {d1} if
d1 + n2 − d2 ≤ k and

Md(n, k) =
{
r ∈ N

∣∣∣max{0, k + d1 − n1, k + d2 − n2} ≤ r ≤ min{k, d1, d2}
}

otherwise and set

r? =

{
n2 − d2 if d1 + n2 − d2 ≤ k,
k − r otherwise

for each r ∈ Md(n, k). Then the decomposition of Grd(M(n, k)) into irreducible com-
ponents is given by

Grd(M(n, k)) =
⋃

r∈Md(n,k)
Cr,r?(k)

with Cr,r? = CM(d,r),M(n−d,r?) for short. Moreover, for r ∈Md(n, k) all points in Cr,r?(k)
are smooth points of Grd(M(n, k)).

Thus the subset of smooth points is dense.

Proof. For all r ∈ Md(n, k) the tuple (r, r?) is maximal in the order on Z induced by
degenerations. Let U ∈ Grd(M(n, k)). By Proposition 3.3.4 we can decompose the Q-
representation M(n, k) such that M(n, k) = A⊕A′⊕A⊕B⊕B′⊕B and the following
holds. This decomposition is illustrated in the picture in Figure 3.6.1.

• Let A⊕A′⊕A ∼= M((k, k), k), B2 = 0, B′1 = 0 and Bα = 0 with B = (B1, B2, Bα),
B = (B′1, B

′
2, B

′
α) and B = (B1, B2, Bα).
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(
◦
��

· · · ◦
��

◦ · · · ◦

)
⊕

(
a1 · · · ar

)
⊕ 0⊕

(
b1 · · · bs

)
⊕

(
◦ · · · ◦

)
⊕ 0

(
◦
��

· · · ◦
��

◦ · · · ◦

)
⊕

(
◦
��

· · · ◦
��

a1 · · · ar

)
⊕

(
◦
��

· · · ◦
��

◦ · · · ◦

)
⊕

(
b1 · · · bs

)
⊕

(
◦ · · · ◦

)
⊕

(
◦ · · · ◦

◦ · · · ◦

)

Figure 3.6.1: The Q-representations U and M(n, k).

• Let U = A ⊕ Ã ⊕ B ⊕ B′ with Ã1 = 0 and Ã2 = A′2 with Ã = (Ã1, Ã2, Ãα) and
A′ = (A′1, A

′
2, A

′
α).

If Ã = 0, then rkα(U) + rkα(U) = k and thus U ∈ Crk(U),rk(U)?(k). Also if B = 0 and

B2 = 0, then U ∈ Cd1,n2−d2(k) and d1 + n2 − d2 ≤ k. Let {a1, . . . , ar} be a basis of Ã
and {b1, . . . , bs} one of B1. If Ã 6= 0 and B 6= 0, then

U(λ) = A⊕ 〈a1, . . . , ar, λa1 + b1, b2, . . . , bs〉k ⊕B′ ∈ Grd(M(n, k))

for λ ∈ k. Moreover, U(0) = U and rk(U(λ)) = rk(U) + (1, 0) for each λ ∈ k∗. Thus
U ∈ Crkα(U)+1,rkα(U)(k). And if Ã 6= 0 and B2 6= 0, then U ∈ Crkα(U),rkα(U)+1(k).

This calculation shows the following. If n2−d2 +d1 ≤ k, then for all U ∈ Cd1,n2−d2(k)
holds

dim Cd1,n2−d2(k) = d1(n1 − d1) + (d2 − d1)(n2 − d2) = dimk TU (Grd(M(d, k))).

Otherwise by Corollary 3.1.8 all points of Cr,k−r(k) are smooth in Grd(M(d, k)) for
r ∈Md(n, k).

3.6.2 Quiver of type A3

Let Q = 1
α→ 2

β→ 3. For i ∈ {1, 2, 3, 4} let

M(i) = (M1(i),M2(i),M3(i),Mα(i),Mβ(i))

be the Q-representation such that M1(i) = M2(i) = M3(i) = k with a basis {e1, e2, e3}
and ej ∈ Mj(i) for all j ∈ Q0, Mα(1) = Mβ(1) = Mα(2) = Mβ(3) = idk and Mβ(2) =
Mα(3) = Mα(4) = Mβ(4) = 0. Thus these Q-representations are described by the
pictures in Figure 3.6.2. Let n = (n, n, n) be a dimension vector. Thus each Q-rep-
resentation with dimension vector n is isomorphic to some M(l) = M(1)l1 ⊕M(2)l2 ⊕
M(3)l3 ⊕M(4)l4 with l ∈ N4 and l1 + l2 + l3 + l4 = n.

For the dimension vector d = (d, d, d) and each k ∈ N4 we decompose the quiver
Grassmannian Grd(M(k)) into irreducible components. First we consider one important
example.

Example 3.6.2. Let {ej1, ej2|j ∈ Q0} be a basis of M = M(1) ⊕ M(4) such that
ej1 ∈Mj(1) and ej2 ∈Mj(4) for all j ∈ Q0. Let U = 〈e11 + e12〉Q, V = 〈e12, e21 + e22〉Q
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M(1) =


e1

α
��
e2

β
��
e3

 , M(2) =


e1

α
��
e2

e3

 , M(3) =


e1

e2

β
��
e3

 , M(4) =


e1

e2

e3


Figure 3.6.2: The Q-representations M(i) with i ∈ {1, 2, 3, 4}.
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Figure 3.6.3: The Q-representations M , U , V and W .

and W = 〈e12, e22, e31 +e32〉Q in Gr(1,1,1)(M). These Q-representations are described by
the picture in Figure 3.6.3.

Then holds Gr(1,1,1) = CU (k) ∪ CV (k) ∪ CW (k) and the irreducible components are

CU (k), CV (k) and CW (k). Moreover, the set CU (k) is open, the set CV (k) is locally
closed and CW (k) is closed. Since dimk HomQ(U,M/U) = dimk HomQ(V,M/V ) =
dimk HomQ(W,M/W ) = 1 the smooth part of Grd(M) is CU,M/U (k) ∪ CV,M/V (k) ∪
CW,M/W (k).

Proposition 3.6.3. Let Q = 1
α→ 2

β→ 3, d = (d, d, d) a dimension vector and k ∈ N4.
Let rk : Grd(M(k))→ Z4, U 7→ l with U ∼= M(l). Define a subset of the image Nd(k) of
this map rk by

Md(k) =
{
l ∈ N4

∣∣l1 + l2 + l3 + l4 = d, l1 ≤ k1, l2 ≤ k2,

l1 + l3 ≤ k1 + k3, l3 + l4 ≤ k3 + k4, l4 ≤ k4

}
and the tuple

l? =

{
k− l if l3 ≤ k3,

(k1 − l1 + k3 − l3, k2 − l2 − k3 + l3, 0, k3 − l3 + k4 − l4) if l3 > k3

for each l ∈Md(k). Then the decomposition of Grd(M(k)) into irreducible components
is given by

Grd(M(k)) =
⋃

l∈Md(k)
CM(l),M(l?)(k).

For l ∈Md(k) each point in CM(l),M(l?)(k) is smooth in Grd(M(k)) if and only if l3 ≤ k3

or l2 = 0.
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Thus the subset of smooth points is dense if and only if d ∈ {0, 1, n} or k1k2k4 = 0.

Proof. For all l ∈ Md(k) the tuple (l, l?) is maximal in the order induced by degenera-
tions. Let U ∈ Grd(M(k)). We consider an injective homomorphism f : M(l) → M(k)
of Q-representations such that U = Im f . For example instead of the injective homo-
morphism M(4)→M(2)⊕M(3) we can consider without loss of generality the injective
homomorphism M(2) → M(2)⊕M(3). Thus without loss of generality we can assume
l1 ≤ k1, l2 ≤ k2, l4 ≤ k4 and that the homomorphism f is given by a matrix of the form

Il1 0 0 0
0 0 f1 0

0 Il2 0 0
0 0 0 0

0 0 f2 0

0 0 0 Il4
0 0 f3 0


with some smaller homomorphisms f1 : M(3)l3 → M(1)k1−l1 , f2 : M(3)l3 → M(3)k3

and f3 : M(3)l3 → M(4)k4−l4 . Moreover, if l3 ≤ k3 we can assume that f2 is given

by the matrix
(
Il3
0

)
, f1 = 0 and f3 = 0, otherwise we assume f2 = ( Ik3 0 ), f1 =(

0 Il3−k3g1
0 0

)
and f3 =

(
0 Il3−k3g2
0 0

)
such that g1 : M(3) → M(1) and g2 : M(3) → M(4)

are homomorphisms of Q-representations with maximal image. Thus there is some exact

sequence 0→M(l)
f→M(k)→M(l?)→ 0 with l? defined in the proposition.

By Proposition 2.3.12 and Theorem 3.1.1 holds for U ∈ CM(l),M(l?)(k)

dimk TU (Grd(M(d,k)))− dim CM(l),M(l?)(k)

= dimk HomQ

(
M(l),M(l?)

)
−
(

dimk HomQ

(
M(l),M(k)

)
− dimk EndQ

(
M(l)

))
= dimk HomQ

(
M(l),M(l? + l)

)
− dimk HomQ

(
M(l),M(k)

)
.

This is zero if l3 ≤ k3 (see also Corollary 3.1.8) and otherwise this equals

(l3 − k3)
(

dimk HomQ

(
M(l),M(2)⊕M(3)

)
− dimk HomQ

(
M(l),M(1)⊕M(4)

))
=l2(l3 − k3).

This yields the proposition.

3.6.3 The one-loop-quiver

Let Q = ({◦}, {α}) be the one-loop-quiver. This is described by the picture in Fig-
ure 3.6.4.

A Q-representation M = (M◦,Mα) is a finite-dimensional vector space M◦ together
with an endomorphism Mα of M◦. By the Jordan decomposition of M we decompose the
abelian category rep(Q) of finite-dimensional Q-representations into direct summands.
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◦

α

��

Figure 3.6.4: The one-loop-quiver Q.

Each direct summand is equivalent to the abelian category nil(Q) of finite-dimensional
nilpotent Q-representations. Thus it is enough to consider nilpotent Q-representations.

Let n ∈ N. A partition n = (n1, . . . , nr) of n is a tuple of integers such that r ∈ N,
n1 ≥ n2 ≥ . . . ≥ nr ≥ 0 and

∑r
i=1ni = n. We denote such a partition by n ` n. In

literature often nr > 0 is required, but we allow also nr = 0 for simplicity. To compensate
this we identify each partition (n1, . . . , nr) with the partition (n1, . . . , nr, 0). Thus we
can assume for each partition without loss of generality that the last entry vanishes.

For l ∈ N we define an indecomposable nilpotent Q-representation M = (M◦,Mα) by
M◦ = kl and Mα to be the nilpotent Jordan block of size l. Following this we define
for each partition l = (l1, . . . , lr) a Q-representation as a direct sum of the Q-repre-
sentation associated to the natural numbers l1, . . . , lr. This Q-representation is unique
up to isomorphism. Moreover, for d ∈ N the isomorphism classes of finite-dimensional
nilpotent Q-representations of dimension d can be canonically parametrized by partitions
l of d.

Using this we identify each partition with the associated Q-representation. Let l and
m be partitions. Then l⊕m is well-defined as a direct sum of Q-representations. And the
number of indecomposable direct summands of the Q-representation l is called the length
of the partition l, denoted by l(l), i.e. l(l) = max(i|li > 0) for a partition l = (l1, . . . , lr).

Now we introduce some notions of tuples of integers. For d ∈ Z, r ∈ N and d,n ∈ Zr
we define rd and d+n componentwise. Since all partitions are tuples of integers we can
use this also for partitions with the same number of integers. For d, n ∈ Z with d ≤ n let
[d, n] = {d, d+ 1, . . . , n− 1, n}. For a subset I ⊆ Z and d ∈ Z let I + d = {i+ d|i ∈ I}.
And for a partition l = (l1, . . . , lr), d ∈ [1, r] and I = {i1 < i2 < . . . < id} ⊆ [1, r] we
define the partition lI = (li1 , li2 , . . . , lid).

Example 3.6.4. The partitions of 7 with length 3 are (5, 1, 1), (4, 2, 1), (3, 3, 1) and
(3, 2, 2). For the direct sum holds (5, 4, 3, 3, 2)⊕ (4, 3, 1, 1) ∼= (5, 4, 4, 3, 3, 3, 2, 1, 1).

With some tuples we get 3(1, 3) − (7, 0) = (−4, 9) and (1, 2, 1, 1) − (4, 4, 3, 2) +
2(4, 3, 2, 1) = (5, 4, 2, 1). For the subset I = {−7, 0, 2, 3, 4} of Z we get I + 5 =
{−2, 5, 7, 8, 9}. Moreover, (8, 5, 4, 2){2<4} = (5, 2), (8, 5, 4, 2){2<4}−1 = (8, 4) and finally
(4, 4, 4, 4, 3, 3, 3, 2, 2, 1){3<4<5<10} = (4, 4, 3, 1).

Let n be a partition and d ∈ N. The aim of this section is to decompose the variety
Grd(n) into irreducible components. For this we define subvarieties. For i ∈ N let

Grid(n) := {U ∈ Grd(n)|U ∼= (k1, . . . , ki)} .

We will see this is a closed subvariety of Grd(n). Moreover, Grid(n) ⊆ Gri+1
d (n) for each

i ∈ N and Grd(n) = Gr
l(n)
d (n).
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We define a partial order on the partitions. Let d ∈ N and l = (l1, . . . , lr) and
m = (m1, . . . ,ms) be partitions of d. Then let l ≤ m if and only if

∑k
i=1li ≤

∑k
j=1mj

for each k ∈ N with li = 0 for i > r and mj = 0 for j > s. For d ∈ N it is well-known
that this order of partitions of d is equivalent to the degeneration order induced by the
variety repd(Q,α

d).

Proposition 3.6.5. Let Q be the one-loop-quiver, d ∈ N and l = (l1, . . . , lr),m =
(m1, . . . ,ms) ` d. Then O(l) ⊆ O(m) in repd(Q) if and only if l ≤m.

For the quiver Grassmannian Grd(n) we get the following decomposition into irre-
ducible components.

Proposition 3.6.6. Let Q be the one-loop-quiver, d, n ∈ N and n = (n1, . . . , nr) ` n
with nr = 0. Let rk : Grd(n) → {l|l ` d}, U 7→ l with U ∼= l. Define a subset of the
image Nd(n) of this map rk by

Md(n) =
{

l
∣∣∣l ` d,∃f : [1, l(l)]→ [1, r] injective, I∪̇J = [1, l(l)] :

lI = nf(I), f(j) 6= 1, f(j)− 1 /∈ Im f, nf(j) < lj < nf(j)−1∀j ∈ J
}
.

and a partition l? of n − d by n[1,r]\(Im f∪(f(J)−1)) ⊕ (nf(J) + nf(J)−1 − lJ) for each
l ∈Md(n) with f and J as above. This is well-defined and the decomposition of Grd(n)
into irreducible components is given by

Grd(n) =
⋃

l∈Md(n)
Cl,l?(k). (3.6.3)

For l ∈Md(n) each point in Cl,l?(k) is smooth in Grd(n) if and only if l⊕ l? ∼= n.

Thus, for example the subset of smooth points is dense if {j ∈ N|1 ≤ j ≤ min{n1, d}}
is contained in {ni|i}.

Proof. In Lemma 3.6.9 we show Equation (3.6.3). Now we prove (l, l?) is maximal for
all l ∈Md(n). Let l,m ∈Md(n) with l < m.

Let f : [1, l(l)]→ [1, r] and g : [1, l(m)]→ [1, r] be the corresponding maps with I∪̇J =
[1, l(l)] and I ′∪̇J ′ = [1, l(m)]. Let t ∈ [1, l(l)] minimal such that lt < mt. Then f(t) ≥
g(t) and without loss of generality f(i) = g(i) for each i ∈ [1, t − 1]. Thus without loss
of generality we assume that t = 1.

If 1 ∈ I ′, we assume without loss of generality g(1) = 1. Let n1 = . . . = ns = m1 for
the maximal s ∈ [1, r]. Since l1 < m1 = ns, we get f(1) > s. Thus m?

i ≤ ni+1 = m1 = l?i
for all i ∈ [1, s− 1] and m?

s ≤ ns+1 < l?s .
If 1 ∈ J ′, we assume without loss of generality g(1) = 2. Then n2 < m1 < n1. Thus if

l1 > n2 we get m?
1 = n1 +n2−m1 < n1 +n2− l1 = l?1 and m?

1 = n1 +n2−m1 < n1 = l?1
otherwise.

By Proposition 3.6.6 a point U ∈ Cl,l?(k) is smooth in the scheme Grd(n) if and only if
dimk TU (Grd(n)) = dim Cl(k). Using Proposition 2.3.12 and Theorem 3.1.1 we consider

dimk TU (Grd(n))− dim Cl(k)

= dimk HomQ(l, l?)− (dimk HomQ(l,n)− dimk EndQ(l))
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= dimk HomQ(l, (nf(J) + nf(J)−1 − lJ)⊕ lJ)− dimk HomQ(l,nf(J) ⊕ nf(J)−1)

=

l(l)∑
i=1

∑
j∈J

dimk HomQ(li, (nf(j) + nf(j)−1 − lj , lj))− dimk HomQ(li, (nf(j)−1, nf(j)))︸ ︷︷ ︸
=0, if i 6=j

=
∑
j∈J

(min(lj , nf(j) + nf(j)−1 − lj) + lj)− (lj + nf(j))

=
∑
j∈J

min(lj − nf(j), nf(j)−1 − lj)

with some f : [1, l(l)]→ [1, r] such that l? ∼= n[1,r]\(Im f∪(f(J)−1))⊕ (nf(J) + nf(J)−1− lJ).
Thus n1|J | ≥ dimk TU (Grd(n))− dimU Grd(n) ≥ |J |. This yields the proposition.

Let n = (n1, . . . , nr) be a partition. Then {eij |1 ≤ i ≤ r, 1 ≤ j ≤ ni} is a vector space
basis of the Q-representation n described by the picture in Figure 3.6.5.

e11 e21
. . . er1

e12 e22
...

...
... ernr

... e2n2

e1n1

Figure 3.6.5: Basis of the Q-representation n.

Using this basis we can describe the endomorphism ring EndQ(n) for a partition
n = (n1, . . . , nr). It is easy to see that

EndQ((n))
∼−→ k[T ]/Tn, (e1n 7→ e1k) 7→ Tn−k,

AutQ((n))
∼−→ (k[T ]/Tn)∗ = {p ∈ k[T ]/Tn|p(0) 6= 0}

It is well-known that
∏n
i=1 AutQ((ni)) is a subgroup of AutQ((n)). Let 1 ≤ i0 ≤ r and

gi ∈ HomQ((ni0), (ni)) for i 6= i0. Then these defines a g ∈ AutQ((n)) by g(ei0j0) =
ei0j0 +

∑r
i=1,i 6=i0gi(ei0j0) and g(eij) = eij for each 1 ≤ j0 ≤ ni0 , i 6= i0 and 1 ≤ j ≤ ni.

Lemma 3.6.7. Let Q be the one-loop-quiver, d ∈ N and n = (n1, . . . , nr) a partition
with d ≤ n1 and nr = 0. Then

Gr1
d(n) =

{
C(d),(n1,...,ni−1,ni+1,...,nr)(k) if ∃i ∈ [1, r] : ni = d,

C(d),(n1,...,ni−2,ni−1+ni−d,ni+1,...,nr)(k) if ∃i ∈ [1, r] : ni < d < ni−1.

Proof. Let U ∈ Gr1
d(n). Then

U =
〈
v =

∑r

i=1

∑ni

j=1
λijeij

〉
Q

with λij ∈ k and d ≤ n1.
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• If d ≤ ni0 for some 1 ≤ i0 ≤ r, then define Uλ = 〈v + λei0d〉Q ∈ Grd(n) for each
λ ∈ k. Thus U0 = U and by some automorphism g ∈ AutQ((ni0)) we get gUλ =
〈ei0d+

∑r
i=1,i 6=i0

∑ni
j=1λijeij〉Q for each λ 6= −λi0d. Using again some automorphism

g′ ∈ AutQ((n)) defined as above we get g′gUλ = 〈ei0d +
∑r

i=1,i>i0

∑ni
j=1λijeij〉Q.

• If d ≥ ni0 for some 1 ≤ i0 ≤ r, then define Uλ = 〈v + λei0ni0 〉Q ∈ Grd(n)
for each λ ∈ k. Thus U0 = U and by some g ∈ AutQ((ni0)) we get gUλ =
〈ei0ni0 +

∑r
i=1,i 6=i0

∑ni
j=1λijeij〉Q for each λ 6= −λi0ni0 . Again holds g′gUλ = 〈ei0ni0 +∑r

i=1,i<i0

∑ni
j=1λijeij〉Q with some g′.

Using the proof of Proposition 3.6.6 this yields the lemma.

Lemma 3.6.8. Let Q be the one-loop-quiver, d ∈ N and n = (n1, . . . , nr) a partition
with nr = 0. Then

Gr2
d(n) =

⋃
l∈Md(n), l(l)≤2

Cl,l?(k).

Proof. Let U ∈ Gr2
d(n) ∩ Cl,m(k). Then

U =
〈
v1 =

∑r

i=1

∑ni

j=1
λijeij , v2 =

∑r

i=1

∑ni

j=1
µijeij

〉
Q

with λij , µij ∈ k. By the proof of Lemma 3.6.7 we can assume that one of the following
cases holds. Some of these are illustrated in Figure 3.6.6 and 3.6.7.

1. If U ∈ Gr1
d(n), we are done by Lemma 3.6.7.

2. If there is some i ∈ [1, r] with ni = l1 and ni+1 < l2, then

U = 〈eini , ei−1,l2 + ei+1,ni+1〉Q.

If ni−1 = ni, then l ∈Md(n) and

m = (n1, . . . , ni−2, ni−1 + ni+1 − l2, ni+2, . . . , nr) = l?.

3. If there are some i, j ∈ [1, r] with i < j, ni = l1 and nj = l2, then U = 〈eini , ejnj 〉Q.
Thus l ∈Md(n) and m = n− l = l?.

4. If there are some i, j ∈ [1, r] with i < j − 1, ni = l1 and nj < l2 < nj−1, then
U = 〈eini , ej−1,l2 + ejnj 〉Q. Thus l ∈Md(n) and

m = (n1, . . . , ni−1, ni+1, . . . , nj−2, nj−1 + nj − l2, nj+1 . . . , nr) = l?.

5. If n2 < l1 < n1 and n3 < l2, then

U = 〈e1l1 + e2n2 , e2l2 + x+ e3,n3〉Q

with x =
∑l2−1

j=1 µje2j and µj ∈ k for all j ∈ [1, l2 − 1].
6. If there is some i ∈ [3, r] with ni < l1 < ni−1 and ni+1 < l2, then

U =
〈
ei−1,l1 + eini , ei−2,l2 + µl2eil2 + x+ ei+1,ni+1

〉
Q

with x =
∑l2−1

j=1 µjeij , µj ∈ k for all j ∈ [1, l2 − 1] and µj = 0 for all j ∈ N with
j > ni.
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7. If there are some i, j ∈ [2, r] with i < j, ni < l1 < ni−1 and nj = l2, then
U = 〈ei−1,l1 + eini , ejnj 〉Q. Thus l ∈Md(n) and

m = (n1, . . . , ni−2, ni−1 + ni − l1, ni+1, . . . , nj−1, nj+1 . . . , nr) = l?.

8. If there are some i, j ∈ [2, r] with i < j − 1, ni < l1 < ni−1 and nj < l2 < nj−1,
then U =

〈
ei−1,l1 + eini , ej−1,l2 + ejnj

〉
Q
. Thus l ∈Md(n) and

m = (n1, . . . , ni−2, ni−1 + ni − l1, ni+1, . . . , nj−2, nj−1 + nj − l2, nj+1 . . . , nr) = l?.

e3n3

e2n2

e1l2

λ∗

e3n3

x

x

x

x

e2n2

e1l1

−e1∗

λ∗

Figure 3.6.6: subrepresentations Uλ occurring in Case 2 with i = 2 and in Case 5.

e4n4

x

x

x

x

e3n3

e2l1

e1l2

λ∗

e4n4

x

x

x

x

e3n3

−e2,∗

e2l1

λ∗

e1l2

(−λ)∗∗
(−λ)∗∗

(−λ)∗∗

Figure 3.6.7: subrepresentations Uλ occurring in Case 6 with i = 3 such that µl2 = 0 or
µl2 = 1.

By considering these cases only Cases 2, 5 and 6 are left.
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• If we are in Case 2 with ni−1 > ni, then define Uλ = 〈v1, v2〉Q for each λ ∈ k with

v1 = λei−1,l1+1 + eini ,

v2 = ei−1,l2 + ei+1,ni+1 .

Thus U0 = U and dimk Uλ ≤ d, since αl2−1v2 = ei−1,1 = λ−1αl1v1 for all λ ∈ k∗.
Using that rk is the lower semicontinuous, we get Uλ ∈ Grd(n) for most λ ∈ k and
Uλ ∼= (l1 + 1, l2 − 1) > l for λ ∈ k∗.
• If we are in Case 5, then define Uλ = 〈v1, v2〉Q for each λ ∈ k with

v1 = λe1,l1+1 + e1l1 + e2n2 ,

v2 = −e1,l1+l2−n2 + x+ e3n3 .

Thus U0 = U , Uλ ∈ Grd(n) for most λ ∈ k and Uλ ∼= (l1 + 1, l2 − 1) > l for λ 6= 0,
since −(λ+α)αl2−1v2 = λe1,l1−n2+1 + e1,l1−n2 = αn2v1 and n2 + (l2 + l1−n2) = d.
• Now assume we are in Case 6. If µl2 = 0, then we can treat this case very similar

to Case 2. Otherwise if µl2 6= 0, then we use Case 5. In detail we get the following.
Define Uλ = 〈v1, v2〉Q for each λ ∈ k with

v1 = µ−1
l2

(−λ)l1−ni+1ei−2,l1+1 + λei−1,l1+1 + ei−1,l1 + eini ,

v2 =
∑l1−ni

j=0
(−λ)jei−2,l2+j − µl2ei−1,l1+l2−ni + x+ ei+1,ni+1 .

Thus U0 = U , Uλ ∈ Grd(n) for most λ ∈ k and again Uλ ∼= (l1 + 1, l2 − 1) > l for
λ 6= 0, since again −µ−1

l2
(λ+ α)αl2−1v2 = αniv1.

Using again the proof of Proposition 3.6.6 this yields the lemma.

Lemma 3.6.9. Let Q be the one-loop-quiver, d ∈ N and n a partition. Then Equa-
tion (3.6.3) holds.

This completes the proof of Proposition 3.6.6.

Proof. Let U ∈ Cl,m(k). By induction over s = l(l) there is an injective map f : [1, s −
1]→ [1, r] and I∪̇J = [1, s− 1] such that

U =
〈
ef(i),li , ef(j)−1,lj + ef(j),nf(j) , v =

∑r

t=1
λtetls + x

∣∣∣i ∈ I, j ∈ J〉
Q

with λt ∈ k for each t ∈ [1, r], x =
∑r

i=1

∑ls−1
j=1 µijeij and µij ∈ k for i ∈ [1, r] and

j ∈ [1, ls − 1]. An example of such a representation is illustrated in the picture in
Figure 3.6.8. Without loss of generality we assume λf(i) = 0 if i ∈ I and λf(j)−1 = 0 if
j ∈ I. If nf(s−1)+1 ≥ ls, we can assume without loss of generality v = ef(s−1)+1,ls + x
and we are done.

Thus we assume v =
∑f(s−1)

t=1 λtetls + x. Let t0 be maximal in [1, f(s − 1)] with
λt0 6= 0. Such a t0 exists since 〈v〉Q ∼= (ls). If t0 /∈ f(J), we can assume without loss of
generality v = λt0et0ls + x. This case can be treated very similar to Case 2 of the proof
of Lemma 3.6.8.
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x x x x x

λ1e12

±λ∗∗
±λ∗∗

λ5e52

±λ∗∗
±λ∗∗ −e74

e2,12

e3,11

e4,10

e59 e69

e94

e10,3 e11,3

±λ∗∗±λ∗∗ λe78

e77

e85

Figure 3.6.8: Example for a subrepresentation Uλ occurring in the proof of Lemma 3.6.9
with U = 〈e69, e11,3, e2,12 + e3,13, e4,10 + e59, e77 + e85, e94 + e10,3, λ1e12 +
λ5e52 + e82 + x〉Q, j0 = 3 and t0 = f(j0) = 8.

Thus we assume t0 ∈ f(J) and v =
∑t0−2

t=1 λtetls +et0ls +x. Let j0 ∈ J with f(j0) = t0.
Then define similar to Case 5 of the proof of Lemma 3.6.8 the subrepresentations

Uλ =
〈
ef(i),li , ef(j)−1,lj + ef(j),nf(j) , v1, v2

∣∣∣i ∈ I, j ∈ J, j 6= j0

〉
Q

for each λ ∈ k with

v1 =
∑t0−2

t=1
(−λ)lj0−nt0+1λtet,lj0+1 + λet0−1,lj0+1 + et0−1,lj0

+ et0nt0 ,

v2 =
∑t0−2

t=1

∑lj0−nt0
j=0

(−λ)jλtet,ls+j − et0−1,lj0+ls−nt0 + x.

Thus U0 = U , Uλ ∈ Grd(n) for most λ ∈ k and now Uλ ∼= l[1,s−1]\{t0}⊕ (lt0 +1, ls−1) > l
for λ 6= 0, since again

− (λ+ α)αls−1v2 = −(λ+ α)

(∑t0−2

t=1

∑lj0−nt0
j=0

(−λ)jλtet,j+1 − et0−1,lj0−nt0+1

)
=
∑t0−2

t=1
(−λ)lj0−nt0+1λtet,lj0−nt0+1 + λet0−1,lj0−nt0+1 + et0−1,lj0−nt0 = αnt0v1.

3.6.4 The two-cycle-quiver

Example 3.4.4 shows that the converse of Part 3 of Proposition 3.5.5 is not true. This
section gives another example. Our strategy for computing all irreducible components
of the quiver Grassmannian Grd(M) fails, since they are in general not parametrized by
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the maximal elements in Nd(M). In the following we give an example. Therefore, we do
not force to decompose all Grassmannians for all representations of the two-cycle-quiver.

Let Q = (Q0, Q1) be the (cyclically oriented) two-cycle-quiver with Q0 = Z/2Z and
Q1 = {αi : i→ i+ 1|i ∈ Q0}. This is described by the picture in Figure 3.6.9. We study

1
α1
((
2

α2

hh

Figure 3.6.9: The cyclically oriented two-cycle-quiver Q.

again the abelian category of finite-dimensional nilpotent Q-representations nil(Q). For
i ∈ N>0 let M(i) be a Q-representation with dimension i and socM(i) ∼= S(1). This
is unique up to isomorphism and has a basis {eij |1 ≤ j ≤ i} with eij ∈ M(i)j and
M(i)αj (eij) = ei,j−1 for all 1 < j ≤ i. The pictures in Figure 3.6.10 describe these
representations. Let M = M(4)⊕M(3)⊕M(1). Then {e44, e43, e42, e41, e33, e32, e31, e11}

e11 e21

e22

e31

e32

e33

e41

e42

e43

e44

Figure 3.6.10: The Q-representations M(1), M(2), M(3) and M(4).

is a basis of M . Let U = 〈e44, e11〉Q and U ′ = 〈e33, e42〉Q.
Then U,U ′ ∈ Gr(3,2)(M), U ∼= M(4)⊕M(1), U ′ ∼= M(3)⊕M(2), M/U ∼= M(3) and

M/U ′ ∼= M(1) ⊕M(2). Thus there are exact sequences 0 → M(3) → U → M(2) → 0
and 0→M(2)→M/U →M(1)→ 0. Moreover,

CU,M/U (k) = {〈e44 + αe32, βe31 + e11〉Q|α, β ∈ k},
CU ′,M/U ′(k) = {〈αe43 + e33 + βe11, e42〉Q|α, β ∈ k}

and Gr(3,2)(M) = CU ′,M/U ′(k) ∪ CU,M/U (k), but U ′ /∈ CU,M/U (k), since for all V ∈
CU,M/U (k) holds V ⊆ 〈e44, e32, e11〉Q and e33 ∈ U ′.

Nevertheless, the quiver Grassmannian Gr(3,2)(M) has two irreducible components the
set N(3,2)(M) contains a unique maximal element. This is induced by the subrepresenta-
tion U of M . Thus there is no generalization of Proposition 3.6.6 for this case. Moreover,
dim CU,M/U = 2 = dimk TU (Grd(M)) and dim CU ′,M/U ′ = 2 < 3 = dimk TU ′(Grd(M)).
Thus the smooth part of Gr(3,2)(M) is CU,M/U .

3.6.5 The N-cycle-quiver

Let N ∈ N with N ≥ 2 and Q = (Q0, Q1) the (cyclically oriented) N -cycle-quiver with
Q0 = Z/NZ and Q1 = {αi : i → i + 1|i ∈ Q0}. This is described by the picture in
Figure 3.6.11. Let αN be the admissible ideal generated by all paths of length N . Then
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Figure 3.6.11: The cyclically oriented N -cycle-quiver Q for N ∈ {1, 2, 4, 8}.

we study the abelian category rep(Q,αN ) of finite-dimensional (Q,αN )-representations.
For i ∈ Q0 and j ∈ {1, . . . , N} let M(i, j) be an indecomposable (Q,αN )-representation
with dimension j, socM(i, j) ∼= S(i) and topM(i, j) ∼= S(i − j + 1). This is unique up
to isomorphism and has a basis {ek|1 ≤ k ≤ j} with ek ∈M(i, j)i−k+1 for all 1 ≤ k ≤ j
and M(i, j)αi−k+1

(ek) = ek−1 for all 1 < k ≤ j. Moreover, we set M(i, 0) = 0 for all
i ∈ Q0. The pictures in Figure 3.6.12 describe some of these (Q,αN )-representations.

k
0
''
0

0
��

0

0

HH

0
0

gg

k
0
''
0

0
��

k

1

HH

k
1

gg

k
0
''
k

1
��

k

1

HH

k
1

gg

k
1
''
k

0
��

k

1

HH

0
0

gg

k
1
''
k

0
��

k

1

HH

k
1

gg

Figure 3.6.12: The indecomposable, nilpotent (Q,αN )-representations M(1, 1), M(1, 3),
M(1, 4), M(2, 3) and M(2, 4) for N = 4.

Let M be a (Q,αN )-representation. Then there exists a unique tuple

k = (kij)i,j ∈ NQ0×{1,...,N}

such that

M ∼=
⊕

i∈Q0

⊕N

j=1
M(i, j)kij .

All (Q,αN )-representations are of this form and we call this (Q,αN )-representation
M(k). In the following way we can consider k = (kij)i,j ∈ NQ0×{1,...,N} as a matrix with
N lines, N columns and entries in N: k11 k12 ··· k1N

k21 k22 ··· k2N
...

...
...

kN1 kN2 ··· kNN

 .

A (Q,αN )-representation M(k) is projective-injective in the category rep(Q,αN ) if and
only if all kij = 0 for all i ∈ Q0 and j ∈ {1, . . . , N − 1}, i.e. the only non-vanishing
entries in the matrix k are in the last column.
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Example 3.6.10. Let N = 4. The matrices for a projective-injective (Q,α4)-representa-
tion M(k) and the (Q,α4)-representation M(l) = M(1, 1)⊕M(1, 3)⊕M(2, 3)3⊕M(2, 4)2

with k, l ∈ NQ0×{1,...,4} are the following ones:(
0 0 0 k14
0 0 0 k24
0 0 0 k34
0 0 0 k44

)
,

(
1 0 1 0
0 0 3 2
0 0 0 0
0 0 0 0

)
.

Proposition 3.6.11. Let N ∈ N with N ≥ 2, Q the N -cycle-quiver and d a dimension
vector. For t ∈ N define

Kpt =
{

l
∣∣∣lij = 0 ∀i ∈ Q0, j ∈ {1, . . . , N − 1},

∑
i∈Q0

liN = t
}
,

K0
d =

{
l
∣∣∣dimM(l) = d, liN = 0 ∀i ∈ Q0,

lij 6= 0⇒ li+k,j′ = 0 ∀i ∈ Q0, j, j
′, k ∈ {1, . . . , N − 1}, k ≤ j′ < j + k ≤ N

}
be subsets of NQ0×{1,...,N}. Then the decomposition of repd(Q,αN ) into irreducible com-
ponents is given by

repd(Q,αN ) =
⋃

t∈N, lp∈Kpt , l0∈K0
d−(t,...,t)

O(M(lp + l0)). (3.6.4)

Moreover, if d = (d, . . . , d), then the decomposition of repd(Q,αN ) into irreducible com-
ponents is given by

repd(Q,αN ) =
⋃

l∈Kpd
O(M(l)), (3.6.5)

there are
∑

(l1,...,ld+1)`d
∏d
j=1

(
N−lj+1

N−lj

)
irreducible components and each has dimension

d2(N − 1).

For each t ∈ N it is very easy to list all elements of Kpt . This is not true for K0
d

with an arbitrary d. Since it is not really hard to check if some l ∈ NQ0×{1,...,N} is in
K0

d we have to reduce the number of candidates, which can be in K0
d. This is done in

Proposition 3.6.13.

Remark 3.6.12. Let N ∈ N with N ≥ 2, Q the N -cycle-quiver, d = (di)i∈Q0 a dimen-
sion vector and t ∈ N.

1. For l ∈ Kpt the (Q,αN )-representation M(l) is projective-injective with dimension
vector (t, . . . , t) and for each i ∈ Q0 holds

rkαi
(
M(l)

)
= t− liN . (3.6.6)

Each projective-injective (Q,αN )-representation is of this form.
2. For l ∈ K0

d the (Q,αN )-representation M(l) has no projective-injective direct
summand in the category rep(Q,αN ) and by definition holds for all i ∈ Q0 and
j, j′, k ∈ {1, . . . , N − 1} with k ≤ j′ < j + k ≤ N

lij 6= 0⇒ li+k,j′ = 0. (3.6.7)
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And dually for all i ∈ Q0 and j, j′, k ∈ {1, . . . , N − 1} with k ≤ j < j′ + k ≤ N

lij 6= 0⇒ li−k,j′ = 0.

Moreover, for i ∈ Q0 and j ∈ {1, . . . , N − 1} holds

lij 6= 0⇒ li−j,j′ = 0 and li+j′,j′ = 0 ∀j′ ∈ {1, . . . , N − 1}.

If lNj′ 6= 0 for some j′ ∈ {1, . . . , N − 1} the matrix l is given in Figure 3.6.13.

0 ··· ··· ··· 0 l1,j′+1 ··· ··· l1,N−1 0

l21
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

. . .
...

...

lN−j′−1,1 ··· lN−j′−1,N−j′−2

. . .
. . . lN−j′−1,N−1

...

0 ··· ··· ··· 0 ··· ··· ··· 0
...

lN−j′+1,1

. . .
. . . lN−j′+1,N−j′+2 ··· lN−j′+1,N−1

...
...

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . lN−2,N−1

...
...

. . . 0 ··· ··· ··· 0
...

lN1 ··· ··· ··· lN,j′ ··· ··· ··· lN,N−1 0


Figure 3.6.13: The matrix l = (lij)i,j ∈ K0

d with lNj′ 6= 0 for some j′ ∈ {1, . . . , N − 1}.

Since socM(i− j, j′) ∼= S(i− j) and topM(i+ j′, j′) ∼= S(i+ 1) for all i ∈ Q0 and
j, j′ ∈ {1, . . . , N − 1} we get

lij 6= 0⇒ di−j < di−j+1 and di+1 < di

for i ∈ Q0 and j ∈ {1, . . . , N − 1}. Since M(l) has no projective-injective direct
summand we get for i ∈ Q0 that di ≤ di+1 if and only if M(l)αi is injective and
di ≥ di+1 if and only if M(l)αi is surjective. Moreover, for all i ∈ Q0 holds

rkαi
(
M(l)

)
= min(di, di+1). (3.6.8)

3. Let l ∈ K0
d, i0 ∈ Q0, j0, j

′
0 ∈ {1, . . . , N − 1} and k0 ∈ {0, . . . , N − 1} with li0j0 6= 0

and li0+k0,j′0
6= 0. The (Q,αN )-representation M(i0, j0) and M(i0 + k0, j

′
0) are

illustrated by the picture on the left side of Figure 3.6.14. Then by Equation (3.6.7)
holds k0 > j′0, j′0 ≥ j0 + k0, j0 + k0 > N or k0 = 0.
• If j′0 ≥ j0 + k0, then dimM(i0, j0) ≤ dimM(i0 + k0, j

′
0).

• If k0 = 0, we can assume by the previous case that j0 > j′0. Thus in this case
dimM(i0, j0) > dimM(i0 + k0, j

′
0).

• If k0 > j′0 and j0 + k0 < N we get(
M(i0, j0)⊕M(i0 + k0, j

′
0)
)
i0+1

= 0,(
M(i0, j0)⊕M(i0 + k0, j

′
0)
)
i0+j0

= 0

and thus the support of M(i0, j0)⊕M(i0 + k0, j
′
0) is not connected.
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• If k0 > j′0 and N ≤ j0 + k0 < N + j′0 we get li0+k0,j′0
6= 0, l(i0+k0)+(N−k0),j0 =

li0j0 6= 0 and N − k0 ≤ j0 < j′0 + (N − k0) ≤ N . This is a contradiction to
Equation (3.6.7).
• If k0 > j′0 andN+j′0 ≤ j0+k0 we get for each k ∈ {k0−j′0+1, k0−j′0+2, . . . , k0}

the equation dimkM(i0, j0)i0+k = 1 = dimkM(i0 + k0, j
′
0)i0+k since N − j0 +

1 ≤ k0 − j′0 + 1 ≤ k ≤ k0 ≤ N . Thus dimM(i0, j0) ≥ dimM(i0 + k0, j
′
0).

• If j0 + k0 > N and k0 = j′0 we get a contradiction to Part 2.
• Thus if j0 + k0 > N , we can assume by the previous cases that k0 < j′0. This

yields

dimk

(
(M(i0, j0)⊕M(i0 + k0, j

′
0))i0+1

)
= 1,

dimk

(
(M(i0, j0)⊕M(i0 + k0, j

′
0))i0

)
= 2,

dimk

(
(M(i0, j0)⊕M(i0 + k0, j

′
0))i0+k0+1

)
= 1,

dimk

(
(M(i0, j0)⊕M(i0 + k0, j

′
0))i0+k0

)
= 2.

Moreover, dim
(
M(i0, j0)⊕M(i0 + k0, j

′
0)
)
> (1, . . . , 1).

Thus we get always one of the following cases:
• dimM(i0, j0) ≤ dimM(i0 + k0, j

′
0).

• dimM(i0, j0) ≥ dimM(i0 + k0, j
′
0).

• The support of M(i0, j0)⊕M(i0 + k0, j
′
0) is not connected.

• dim
(
M(i0, j0)⊕M(i0 + k0, j

′
0)
)
> (1, . . . , 1).

Proof of Proposition 3.6.11. Let U ∈ repd(Q,αN ) with a tuple l = (lij)i,j ∈ NQ0×{1,...,N}

such that U ∼= M(l). Let lp, l0 ∈ NQ0×{1,...,N} with lpiN = liN , lpij = 0, l0iN = 0 and l0ij = lij
for all i ∈ Q0 and j ∈ {1, . . . , N−1}. This means lp+ l0 = l, lp ∈ Kpt with t =

∑
i∈Q0

liN .

Moreover, dimM(l0) = d− (t, . . . , t).

e1 ∈M(i, j)i

...

...

...

ej ∈M(i, j)i−j+1

e1 ∈M(i+ k, j′)i+k

...

ek ∈M(i+ k, j′)i+1

ek+1 ∈M(i+ k, j′)i

...

ej′

e1

...

ek

ek+1

...

...

...

ej+k

e1

...

ej′−k

Figure 3.6.14: The (Q,αN )-representations M(i, j), M(i + k, j′), M(i + k, j + k) and
M(i, j′ − k).

Let i ∈ Q0, j, j′, k ∈ {1, . . . , N − 1} with k ≤ j′ < j + k ≤ N , lij 6= 0 and li+k,j′ 6= 0.
Using the pictures in Figure 3.6.14 we get a short exact sequence

0→M(i+ k, j′)→M(i+ k, j + k)⊕M(i, j′ − k)→M(i, j)→ 0.
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Notice for this that k ≤ j′ and j + k ≤ N . Thus

M(i+ k, j′)⊕M(i, j) ∈ O
(
M(i+ k, j + k)⊕M(i, j′ − k)

)
.

Moreover, without loss of generality l0 ∈ K0
d−(t,...,t) and Equation (3.6.4) holds.

Let t, t′ ∈ N, lp ∈ Kpt , l′p ∈ Kpt′ , l0 ∈ K0
d−(t,...,t) and l′0 ∈ K0

d−(t′,...,t′) with M(lp + l0) ⊆
O(M(l′p + l′0)). Now we show that t = t′, lp = l′p and l0 = l′0. Using Proposition 2.3.4
and Equation (3.6.6) and (3.6.8) we get

l′piN = min(di, di+1)− rkαi
(
M(l′p + l′0)

)
≤ min(di, di+1)− rkαi

(
M(lp + l0)

)
= lpiN

for all i ∈ Q0. Using Proposition 2.3.4 again we get

lpiN = di − dimk HomQ

(
M(lp + l0),M(i,N − 1)

)
≤ di − dimk HomQ

(
M(l′p + l′0),M(i,N − 1)

)
= l′piN

for all i ∈ Q0. Thus lp = l′p and t = t′.

We assume l0 6= l′0. Using Part 2 of Remark 3.6.12 we get∑N

j=1
l0i′j = max{di′ − di′+1, 0} =

∑N

j=1
l′0i′j , (3.6.9)∑N

j=1
l0i′+j−1,j = max{di′ − di′−1, 0} =

∑N

j=1
l′0i′+j−1,j (3.6.10)

for all i′ ∈ Q0. Thus there is some i0 ∈ Q0 and j0 ∈ {1, . . . , N} with l0i0j0 > l′0i0j0 .
Without loss of generality we assume i0 = N and that one of the following two cases
holds:

1. j0 ≤ N
2 and l0ij ≤ l′0ij for all i ∈ Q0 and j ∈ {1, . . . , j0 − 1} ∪ {N − j0 + 1, . . . , N}.

2. j0 >
N
2 and l0ij ≤ l′0ij for all i ∈ Q0 and j ∈ {1, . . . , N − j0 − 1} ∪ {j0 + 1, . . . , N}.

Since l0Nj0 > l′0Nj0 ≥ 0 the matrix l0 looks like in Figure 3.6.13.

In the first case for i ∈ {N − j0, . . . , N − 1} holds

l0ij ≤ l′0ij for j ∈ {1, . . . , j0 − 1},
l0ij = 0 for j ∈ {j0, . . . , N − j0} and

l0ij ≤ l′0ij for j ∈ {N − j0 + 1, . . . , N}.

Thus by Equation (3.6.9) we get l0ij = l′0ij for all i ∈ {N − j0, . . . , N − 1} and j ∈
{1, . . . , N}. For i ∈ {N − j0 + 2, . . . , N} holds

l0i+j−1,j ≤ l′0i+j−1,j for j ∈ {1, . . . , j0 − 1},
l0i+j−1,j = 0 for j ∈ {j0, . . . , N − j0} and

l0i+j−1,j ≤ l′0i+j−1,j for j ∈ {N − j0 + 1, . . . , N}.
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Thus by Equation (3.6.10) we get l0i+j−1,j = l′0i+j−1,j for all i ∈ {N − j0 + 2, . . . , N} and
j ∈ {1, . . . , N}. Using Proposition 2.3.4 again we get by Equation (3.6.9)∑N

i=N−j0

∑i−N+j0

j=1
l0ij =

∑N

i=N−j0

∑N

j=1
l0ij − dimk HomQ

(
M(N, j0 + 1),M(l0)

)
≤
∑N

i=N−j0

∑N

j=1
l′0ij − dimk HomQ

(
M(N, j0 + 1),M(l′0)

)
=
∑N

i=N−j0

∑i−N+j0

j=1
l′0ij .

This means

0 ≤
∑N

i=N−j0

∑i−N+j0

j=1

(
l′0ij − l0ij

)
=
∑N−1

i=N−j0

∑i−N+j0

j=1

(
l′0ij − l0ij

)
+
∑j0−1

j=1

(
l′0(N−j+1)+j−1,j − l

0
(N−j+1)+j−1,j

)
+
(
l′0Nj0 − l

0
Nj0

)
= l′0Nj0 − l

0
Nj0 .

This is a contradiction to l0Nj0 > l′0Nj0 . In the second case we get a contradiction by using

dN − dimk HomQ

(
M(l0),M(N, j0 − 1)

)
≤ dN − dimk HomQ

(
M(l′0),M(N, j0 − 1)

)
.

Let d = (d, . . . , d), t ∈ N and l ∈ K0
d−(t,...,t). By Part 2 of Remark 3.6.12 we get M(l)αi

is an isomorphism for all i ∈ Q0. Thus K0
d−(t,...,t) = {0} if d = t and K0

d−(t,...,t) = ∅
otherwise. This yields Equation (3.6.5). In this case the irreducible components are

in bijection with the set
{

(liN )i∈Q0 ∈ NQ0

∣∣∣∑i∈Q0
liN = d

}
. By reordering this tuples

we get for each such tuple in this set a unique partition of d. Thus there is a map
ψ from this set to the partitions of d by taking each tuple to the corresponding dual
partition (see e.g. [50, Section 5] for the definition of a dual partition). The preimage of a

partition (l1, . . . , ld+1) of d under the map ψ contains
∏d
j=1

(
N−lj+1

lj−lj+1

)
tuples. Moreover,

dimk EndQ
(
M(l)

)
= d2 in this case.

Now we describe the elements in K0
d in more detail.

Proposition 3.6.13. Let N ∈ N with N ≥ 2, Q the N -cycle-quiver and d = (di)i∈Q0 a
dimension vector. For i ∈ Q0 define

Ld(i) =

{
l

∣∣∣∣dimkM(l)i = di =
∑

i′∈Q0

∑N

j=1
li′j ,dimM(l) ≤ d,

dimk(topM(l))i′ ≤ max{0, di′ − di′−1},

dimk(socM(l)i′ ≤ max{0, di′ − di′+1} ∀i′ ∈ Q0

}
.

Let i0 ∈ Q0, l′ ∈ Ld(i0) and d′ = d − dimM(l′). We define inductively the tuple
l(l′) = (l(l′)ij)i,j ∈ K0

d′ by

l(l′)ij = min
{
d′i′
∣∣i′ ∈ Q0,M(i, j)i′ 6= 0

}
−
∑

(i′,j′)∈Sij
l(l′)i′j′ (3.6.11)
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with Sij =
{

(i′, j′) ∈ Q0 × {1, . . . , N}
∣∣dimM(i, j) < dimM(i′, j′)

}
for all i ∈ Q0 and

j ∈ {1, . . . , N}. Then holds for each i0 ∈ Q0

K0
d ⊆

{
l′ + l(l′)

∣∣l′ ∈ Ld(i0)
}
⊆ NQ0×{1,...,N}.

In general there is no reason for l′ + l(l′) to be in K0
d, but for small di0 there are only

a few cases to check. So we should require di0 = min{di|i ∈ Q0} for simplicity.

Remark 3.6.14. Let N ∈ N with N ≥ 2, Q the N -cycle-quiver, d = (di)i∈Q0 a dimen-
sion vector, i0 ∈ Q0 and l′ ∈ Ld(i0).

1. For j ∈ {1, . . . , N}, k ∈ {0, . . . , N − 1} with l′i0+k,j 6= 0 holds

di0+k+1 < di0+k ∧ di0+k−j < di0+k−j+1 ∧ k < j ∧ dimkM(i0 + k, j)i0 = 1.

2. For i ∈ Q0 and j ∈ {1, . . . , N} holds

l(l′)ij = d−
∑

(i′,j′)∈Sij
l(l′)i′j′

= d− l(l′)i,j+1 − l(l′)i+1,j+1 + l(l′)i+1,j+2 −
∑

(i′,j′)∈Si,j+1

l(l′)i′j′

−
∑

(i′,j′)∈Si+1,j+1

l(l′)i′j′ +
∑

(i′,j′)∈Si+1,j+2

l(l′)i′j′

= d−min
{
d′i−j , d

}
−min

{
d, d′i+1

}
+ min

{
d′i−j , d, d

′
i+1

}
≥ 0

with d = min
{
d′i′
∣∣i′ ∈ Q0,M(i, j)i′ 6= 0

}
since Si,j+1 ∪ Si+1,j+1 ∪ {(i, j + 1), (i +

1, j + 1)} = Sij and Si,j+1 ∩ Si+1,j+1 = Si+1,j+2 ∪ {(i+ 1, j + 2)}. Thus l(l′) ≥ 0.
3. If l(l′)ij0 6= 0 and l(l′)i+k0,j′0 6= 0 for some i ∈ Q0 and j0, j

′
0, k0 ∈ {1, . . . , N − 1}

with k0 ≤ j′0 < j0 + k0 ≤ N , then

0 < l(l′)i,j0 = min
{
d′i−j0+1, . . . , d

′
i

}
−
∑

(i′,j′)∈Sij0
l(l′)i′j′ ,

0 < l(l′)i+k0,j′0 = min
{
d′i+k0−j′0+1, . . . , d

′
i+k0

}
−
∑

(i′,j′)∈Si+k0,j′0
l(l′)i′j′ .

Combining this two equations we get for all k′ ∈ {−j0 + 1,−j0 + 2, . . . , k0}

d′i+k′ >

(∑
(i′,j′)∈Si+k0,j0+k0

l(l′)i′j′

)
+ l(l′)i+k0,j0+k0 .

since Si+k0,j0+k0 ∪ {(i+ k0, j0 + k0)} ⊆ Sij0 ∩ Si+k0,j′0 . Thus

l(l′)i+k0,j0+k0 = min
{
d′i−j0+1, . . . , d

′
i+k0

}
−
∑

(i′,j′)∈Si+k0,j0+k0
l(l′)i′j′

> l(l′)i+k0,j0+k0 .

This is a contradiction and therefore l(l′) ∈ K0
d′ . Moreover, by Proposition 3.6.13

we get K0
d ⊆

{
l′ + l(l′)

∣∣l′ ∈ Ld(i0), l′ ∈ K0
dimM(l′)

}
for each i0 ∈ Q0.
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Example 3.6.15. Let N ∈ N with N ≥ 2, Q the N -cycle-quiver, i0 ∈ Q0, d = (di)i∈Q0

a dimension vector with di0 = 0 and t ∈ N. Let lp ∈ Kpt and l ∈ K0
d−(t,...,t). Then t = 0,

lp = 0 and Ld(i0) = {0}.
By Part 3 of Remark 3.6.12 we get always one of the following cases for i0 ∈ Q0,

j0, j
′
0 ∈ {1, . . . , N − 1} and k0 ∈ {0, . . . , N − 1} with li0j0 6= 0 and li0+k0,j′0

6= 0:
• dimM(i0, j0) ≤ dimM(i0 + k0, j

′
0).

• dimM(i0, j0) ≥ dimM(i0 + k0, j
′
0).

• The support of M(i0, j0)⊕M(i0 + k0, j
′
0) is not connected.

It is clear that this rule defines l uniquely. Moreover, we can use Equation (3.6.11) in
Proposition 3.6.13 to define l as l(0). This is illustrated in the picture in Figure 3.6.15.

d8 = 0

d7 = 3

d6 = 3

d5 = 1

d4 = 4

d3 = 7

d2 = 2

d1 = 1

e1

e2

e3

e4

e5

e6

e7

e1

e2

e1

e2

e3

e1

e2

e1

e2

e1

e2 e1 e1 e1

Figure 3.6.15: The (Q,α8)-representation M(l) for the unique element l in the set
K0

(1,2,7,4,1,3,3,0).

Using Proposition 3.6.11 the orbit O(M(l)) is dense in repd(Q,αN ). Moreover, by
Proposition 2.3.3 holds

dim repd(Q,αN ) =
∑

i∈Q0

(
d2
i − 1

2(di − di+1)2
)

=
∑

i∈Q0

didi+1.

This is well-known since the variety repd(Q,αN ) is isomorphic to the affine variety∏
i∈Q0

Mat(di+1 × di, k) in this case.

Proof of Proposition 3.6.13. Let l ∈ K0
d and i0 ∈ Q0. We define a tuple l′ = (l′ij)i,j ∈

NQ0×{1,...,N} by

l′ij =

{
lij if M(i, j)i0 6= 0,

0 otherwise.

Now we test if l′ ∈ Ld(i0) and l(l′) = l − l′. The first part is clear by its definition
and Part 2 of Remark 3.6.12. For the second part we recognize that l(l′), l − l′ ∈ K0

d′

with d′ = d − dimM(l′) by Part 3 of Remark 3.6.14. Moreover, since d′i0 = 0 by
Example 3.6.15 the set K0

d′ has exactly one element.

Now we decompose the quiver Grassmannian Grd(M) for each projective-injective
(Q,αN )-representation with an arbitrary dimension vector d.
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Proposition 3.6.16. Let N,n ∈ N with N ≥ 2, Q the N -cycle-quiver, d a dimension
vector and k ∈ Kpn, i.e. M(k) is a projective-injective (Q,αN )-representation with dimen-
sion vector n = (n, . . . , n). Let rk : Grd(M(k)) → NQ0×{1,...,N}, U 7→ l with U ∼= M(l)
and Nd(k) the image of this map. Define for t ∈ {0, . . . , n} the subsets

Mp
t (k) =

{
l ∈ Kpt

∣∣∣liN ≤ kiN ∀i ∈ Q0

}
,

M0
d(k) =

{
l ∈ K0

d

∣∣∣∑N

j=1
lij ≤ kiN ∀i ∈ Q0

}
of NQ0×{1,...,N} and for each tuple l ∈ NQ0×{1,...,N} a tuple l? = (l?ij)i,j ∈ NQ0×{1,...,N} by

l?ij =

{
l′i+j,N−j if 1 ≤ j < N,

kiN −
∑N

j′=1l
′
ij′ if j = N

(3.6.12)

for all i ∈ Q0 and j ∈ {1, . . . , N}. Then the decomposition of Grd(M(k)) into irreducible
components is given by

Grd(M(k)) =
⋃

t∈{0,...,n}, lp∈Mp
t (k), l0∈M0

d−(t,...,t)
(k−lp)

CM(lp+l0),M((lp+l0)?)(k) (3.6.13)

and the points of CM(lp+l0),M((lp+l0)?)(k) are smooth in Grd(M(k)) for all lp ∈ Mp
t (k)

and l0 ∈ M0
d−(t,...,t)(k − lp) with t ∈ {1, . . . , n}. Moreover, if d = (d, . . . , d), then the

decomposition of Grd(M(k)) into irreducible components is given by

Grd(M(k)) =
⋃

l∈Mp
d(k)
CM(l),M(k−l)(k), (3.6.14)

there are
∑

(l1,...,ld+1)`d
∏d
j=1

(
|{i∈Q0|kiN≥j}|−lj+1

lj−lj+1

)
irreducible components and each has

dimension d(n− d).

Thus the subset of smooth points is dense.

Remark 3.6.17. For d = (d, . . . , d) Görtz [30, Section 4.3] describes also the decompo-
sition into irreducible components by Schubert cells. Their index sets are quotients of
the Weyl group. To study this see also [35].

Example 3.6.18. Let N ∈ N with N ≥ 2, Q the N -cycle-quiver, i0 ∈ Q0, d = (di)i∈Q0

a dimension vector with di0 = 0 , k ∈ Kpn, n = (n, . . . , n) and t ∈ {0, . . . , n}. Let
lp ∈ Mp

t (k) and l ∈ M0
d−(t,...,t)(k − lp). Then as in Example 3.6.15 holds t = 0, lp = 0

and Ld(i0) = {0}.
Using Proposition 3.6.16 we get Grd(M(k)) = CM(l),M(l?)(k). Moreover, by Theo-

rem 3.1.1 holds

dim Grd(M(k)) =
∑

i∈Q0

dikiN − 1
2(di − di+1)2 =

∑
i∈Q0

di (kiN − di + di+1) .
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Figure 3.6.16: The (Q,α7)-representations M(lp + l0), M(k) and M((lp + l0)?).

Example 3.6.19. Let Q be the 7-cycle-quiver, d = (4, 3, 2, 3, 2, 3, 2) a dimension vector,
k ∈ NQ0×{1,...,N} with ki7 = 1 and kij = 0 for all i ∈ Q0 and j ∈ {1, . . . , 6}, lp ∈ Mp

1(k)
with lp37 = 1 and all other lpij = 0 for i ∈ Q0 and j ∈ {1, . . . , 7} and l0 ∈M0

d−(1,...,1)(k−lp)

with l011 = l022 = l046 = l063 = 1 and all other l0ij = 0 for i ∈ Q0 and j ∈ {1, . . . , 7}. The

(Q,α7)-representations M(lp+ l0), M(k) and M((lp+ l0)?) are illustrated in the pictures
in Figure 3.6.16. Thus holds

dimk EndQ
(
M(lp + l0)

)
= 1 + 2 + 3 + 3 + 2 = 11,

dimk HomQ

(
M(lp + l0),M(k)

)
= 1 + 2 + 7 + 6 + 3 = 19,

dimk HomQ

(
M(lp + l0),M((lp + l0)?)

)
= 0 + 0 + 4 + 3 + 1 = 8.

Moreover, the points in CM(lp+l0),M((lp+l0)?)(k) are smooth in Grd(M(k)).

Remark 3.6.20. Let N ∈ N with N ≥ 2, Q the N -cycle-quiver, d a dimension vector,
k ∈ Kpn, n = (n, . . . , n) and t ∈ {0, . . . , n}. For lp ∈ Mp

t (k) and l0 ∈ M0
d−(t,...,t)(k− lp)

there exists a U ∈ Grd(M(k)) such that rk(U) = lp + l0. Thus lp + l0 ∈ Nd(k),
CM(lp+l0)(k) is non empty and the following lemma yields CM(l)(k) = CM(l),M(l?)(k) for

each l ∈ NQ0×{1,...,N}.

Before proving Proposition 3.6.16 we consider some useful lemma. For this it is im-
portant that the (Q,αN )-representation M(k) is projective-injective.

Lemma 3.6.21. Let N ∈ N with N ≥ 2, Q the N -cycle-quiver, d = (d1, . . . , dN ) a
dimension vector, k ∈ Kpn and n = (n, . . . , n). Let U ∈ Grd(M(k)) with U ∼= M(l) and
for each m ∈ Q0 × {1, . . . , N} define

S(m) =
{

(i, j, k) ∈ Q0 × {1, . . . , N} × N
∣∣1 ≤ k ≤ mij

}
.

Then there is a basis
{
fi,N,k,l

∣∣(i,N, k) ∈ S(k), l ∈ {1, . . . , N}
}

of M(k) such that the
following holds
• For each tuple (i,N, k) ∈ S(k) and l ∈ {1, . . . , N} is fi,N,k,l in M(k)i+l−1.
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3 Geometric properties of quiver Grassmannians

• For each tuple (i,N, k) ∈ S(k) holds M(k)αi+l−1
(fi,N,k,l) = fi,N,k,l−1 for all l ∈

{2, . . . , N} and M(k)αi(fi,N,k,1) = 0.
• There is some injective map S(U) : S(l)→ S(k) such that

U =
〈
fS(U)(i,j,k),j

∣∣(i, j, k) ∈ S(l)
〉
Q
.

Moreover, M/U ∼= M(l?) with l? ∈ NQ0×{1,...,N} defined in Equation (3.6.12) in Propo-
sition 3.6.16.

Proof. For each m ∈ NQ0×{1,...,N} define a basis
{
ei,j,k,l

∣∣(i, j, k) ∈ S(m), l ∈ {1, . . . , j}
}

of M(m) =
⊕

i∈Q0

⊕N
j=1M(i, j)mij such that ei,j,k,l is in the k-th copy of M(i, j) and

in M(m)i+l−1 for all (i, j, k) ∈ S(m) and l ∈ {1, . . . , j}.
Since M(k) is projective-injective kij = 0 for all i ∈ Q0 and j ∈ {1, . . . , N − 1}. Let

ι : M(l) → M(k) be an embedding with image U . Thus {ι(ei,j,k,j)|(i, j, k) ∈ S(l)} is a
minimal set generating the Q-representation U . Let λi,j,k,i′,k′,l′ ∈ k be the coefficients
such that

ι(ei,j,k,j) =
∑

(i′,N,k′)∈S(k)

∑j

l′=1
λi,j,k,i′,k′,l′ei′,N,k′,l′

for all (i, j, k) ∈ S(l). Since ι : M(l)→M(k) is an injective homomorphism of Q-repre-
sentations we get that{∑

(i′,N,k′)∈S(k)

∑j

l′=1
λi,j,k,i′,k′,l′ei′,N,k′,N+l′−j

∣∣∣∣(i, j, k) ∈ S(l)

}
generates the minimal direct summand of the Q-representation M containing the sub-
representation U . This direct summand is isomorphic to M(k′) with k′iN =

∑N
j=1lij for

each i ∈ Q0. And let

S(ι1) : S(l)→ S(k′), (i, j, k) 7→
(
i,N, k +

∑j−1

j′=1
lij′
)

be a bijective map and ι1 : M(l) → M(k′), ei,j,k,j 7→ eS(ι1)(i,j,k),j the induced homomor-
phism of Q-representations. Now we consider the injective homomorphism

f : M(k′)→M(k), ei,N,k,N 7→
∑

(i′,N,k′)∈S(k)

∑j

l′=1
λi,j,k′′,i′,k′,l′ei′,N,k′,N+l′−j

for S(ι1)−1(i,N, k) = (i, j, k′′). Since the image of this homomorphism f is the direct
summand of M(k) considered above, this homomorphism splits and we get an isomor-
phism

( f g ) : M(k′)⊕M(k− k′)→M(k).

Since the diagram in Figure 3.6.17 is commutative it is enough to complete the set{
fi,N,k,l = f(ei,N,k,l)

∣∣(i,N, k) ∈ S(k′), l ∈ {1, . . . , N}
}

to a basis of M(k) by fi,N,k′iN+k,l = g(ei,N,k,l) for all (i,N, k) ∈ S(k − k′) and l ∈
{1, . . . , N}.
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M(l)
( ι10 )

((QQQQQQQQQQQ
ι //M(k)

M(k′)⊕M(k− k′)

( f g )
66lllllllllll

Figure 3.6.17: A commutative diagram for the proof of Lemma 3.6.21.

Now we are ready to prove Proposition 3.6.16.

Proof of Proposition 3.6.16. By Proposition 3.6.11 Equation (3.6.13) is left to show. Let
l = (lij)i,j ∈ NQ0×{1,...,N} and U ∈ Grd(M(k)) with rk(U) = l. Let S(U) : S(l) → S(k)
and

{
fi,N,k,l

∣∣(i,N, k) ∈ S(k), l ∈ {1, . . . , N}
}

a basis of M(k) as in Lemma 3.6.21.
Let i0 ∈ Q0 and j0, j

′
0, k0 ∈ {1, . . . , N − 1} with li0j0 6= 0, li0+k0,j′0

6= 0 and k0 ≤ j′0 <
j0 + k0 ≤ N . Using again the pictures in Figure 3.6.14 we define

Uλ =
〈
fS(U)(i0,j0,1),j0 + λfS(U)(i0+k0,j′0,1),j0+k0 , fS(U)(i,j,k),j

∣∣(i, j, k) ∈ S(l)− {(i0, j0, 1)}
〉
Q

for λ ∈ k. Then Uλ ∈ Grd(M(k)) for all λ ∈ k, U0 = U and for all λ ∈ k∗ holds
rk(Uλ) 6= l. Thus we can assume without loss of generality for l = (lij)i,j holds

lij 6= 0⇒ li+k,j′ = 0 ∀i ∈ Q0, j, j
′, k ∈ {1, . . . , N − 1}, k ≤ j′ < j + k ≤ N.

Let lp = (lpij)i,j , l
0 = (l0ij)i,j ∈ NQ0×{1,...,N} with lpiN = liN , lpij = 0, l0iN = 0 and l0ij = lij

for all i ∈ Q0 and j ∈ {1, . . . , N − 1}. This means lp + l0 = l, lp ∈ Mp
t (k) and

l0 ∈M0
d−(t,...,t)(k− lp) with t =

∑
i∈Q0

liN . Thus Equation (3.6.13) holds.
By some straightforward generalization of Example 3.6.19 we get that each point of
CM(lp+l0)⊕M((lp+l0)?)(k) is smooth in Grd(M(k)) for t ∈ {0, . . . , n}, lp ∈ Mp

t (k) and
l0 ∈M0

d−(t,...,t)(k− lp).

Let d = (d, . . . , d), t ∈ {0, . . . , n}, l ∈ Mp
t (k) and l0 ∈ M0

d−(t,...,t)(k − l). As in the

proof of Proposition 3.6.11 we getM0
d−(t,...,t)(k−l) = {0} if d = t andM0

d−(t,...,t)(k−l) =

∅ otherwise. This yields Equation (3.6.14). As in the proof of Proposition 3.6.11 the
irreducible components are in bijection with the set{

(liN )i∈Q0 ∈ ZQ0

∣∣∣liN ∈ {0, 1, . . . , kiN},∑
i∈Q0

liN = d
}
.

By reordering this tuples we get again for each such tuple in this set a unique partition
of d. Thus there is the map ψ taking each tuple to the corresponding dual partition.
The preimage of a partition (l1, . . . , ld+1) of d under the map ψ contains in this case∏d
j=1

(
|{i∈Q0|kiN≥j}|−lj+1

lj−lj+1

)
tuples. Moreover, dimk EndQ

(
M(l)

)
= d2 in this case. Since

dimk HomQ

(
M(l),M(k− l)

)
= d(n− d) this quiver Grassmannian has dimension d(n−

d).

Before closing this subsection we give an explicit list of the irreducible components for
some representation of the 6-cycle-quiver.
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Example 3.6.22. Let Q be the 6-cycle-quiver, r, s ∈ N with r ≥ s, d = (r, s, r, s, r, s)
a dimension vector and k ∈ Kp6r such that ki6 = r for each i ∈ Q0. Thus M(k) is a
projective-injective (Q,α6)-representation with dimension vector (6r, . . . , 6r). For i ∈ Q0

and j ∈ {1, . . . , 6} let eij = ((eij)i′,j′)i′,j′ ∈ NQ0×{1,...,6} with

(eij)i′j′ =

{
1 if i = i′, j = j′,

0 otherwise,

for all i′ ∈ Q0 and j′ ∈ {1, . . . , 6}. Then

Mp
t (k) =

{∑
i∈Q0

λiei6

∣∣∣λi ∈ {0, 1, . . . , s},∑
i∈Q0

λi = t
}

for t ∈ N. Let t ∈ N with t ≤ s and lp =
∑

i∈Q0
λiei6 ∈Mp

t (k). Then

M0
d−(t,...,t)(k− lp) =

{
(j − 2s+ r + t)(e11 + e31 + e51)

+(s− t− 2j)(ei1 + ei+4,3 + ei+2,5) + j(e15 + e35 + e55)
∣∣∣

j ∈ N, 2j ≤ s− t, 2s− r − t ≤ j, i ∈ {1, 3, 5}
}
.

Thus by Proposition 3.6.16 each irreducible component of the variety Grd(M(k)) is of
the form CN(t,λ1,λ2,λ3,λ4,λ5,λ6,j,i)(k) such that t, λ1, λ2, λ3, λ4, λ5, λ6 ∈ {0, 1, . . . , s} with
3s− 2r ≤ t and

∑
i∈Q0

λi = t, j ∈ N with 2j ≤ s− t and 2s− r− t ≤ j, i ∈ {1, 3, 5} and

N(t, λ1, λ2, λ3, λ4, λ5, λ6, j, i) =
⊕

i∈Q0

M(ei6)λi ⊕ (S(1)⊕ S(3)⊕ S(5))j−2s+r+t

⊕M(ei1 + ei+4,3 + ei+2,5)s−t−2j ⊕M(e15 + e35 + e55)j .

This Q-representation is described in the picture in Figure 3.6.18. If 2j = s− t, it does
not depend on i ∈ {1, 3, 5}.

3.6.6 Quiver of type AN

Let N ∈ N and Q = 1
α1−→ 2

α2−→ · · · αN−1−→ N . Again we describe the Q-representations
by tuples in NQ0×{1,...,N}. Let i ∈ Q0 and j ∈ {1, . . . , i}. Then the Q-representation
M(i, j) is defined as in Section 3.6.5 with socM(i, j) ∼= S(i) and dimkM(i, j) = j. Thus
for each tuple l = (lij)i,j ∈ NQ0×{1,...,N} with lij = 0 for all i ∈ Q0 and j ∈ {i+ 1, . . . , N}
we define a Q-representation

M(l) =
⊕

i∈Q0

⊕N

j=1
M(i, j)lij .

This parametrizes all isomorphism classes of Q-representations.
A Q-representation M(l) with l = (lij)i,j ∈ NQ0×{1,...,N} is injective in the abelian

category rep(Q), if and only if the linear map Mβ is surjective for each β ∈ Q1, i.e.
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Figure 3.6.18: The (Q,α6)-representation N(t, λ1, λ2, λ3, λ4, λ5, λ6, j, 1).
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Figure 3.6.19: Some injective and projective Q-representations with N = 5.

lij = 0 for each i ∈ Q0 and j ∈ {1, . . . , i − 1}. Dually a Q-representation M(l) is
projective, if and only if Mβ is injective for each β ∈ Q1, i.e. lij = 0 for each i ∈ Q0 and
j ∈ {1, . . . , N} with i 6= N . In Figure 3.6.19 we give pictures for injective and projective
Q-representations.

The first corollary is well-known. Nevertheless it follows by Example 3.6.15.

Corollary 3.6.23. Let N ∈ N, Q = 1
α1−→ 2

α2−→ · · · αN−1−→ N and d = (di)i∈Q0 a

dimension vector. Then repd(Q) = O(M(l)) with l = (lij)i,j ∈ NQ0×{1,...,N} defined
inductively by

lij = min
{
di′
∣∣i′ ∈ Q0,M(i, j)i′ 6= 0

}
−
∑

(i′,j′)∈Sij
li′j′ (3.6.15)

and Sij =
{

(i′, j′) ∈ Q0 × {1, . . . , N}
∣∣dimM(i, j) < dimM(i′, j′)

}
for all i ∈ Q0 and

j ∈ {1, . . . , N}.

Equation (3.6.15) is some special case of Equation (3.6.11). The following result is a
corollary of Corollary 3.5.10 and the last section.

Corollary 3.6.24. Let N ∈ N, Q = 1
α1−→ 2

α2−→ · · · αN−1−→ N , d = (di)i∈Q0 a dimension
vector and M(k) a Q-representation with k = (kij)i,j ∈ NQ0×{1,...,N} and dimension
vector n.
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3 Geometric properties of quiver Grassmannians

• If the Q-representation M(k) is injective, then holds Grd(M(k)) = CM(l),M(m)(k)

with the tuple l ∈ NQ0×{1,...,N} given by Equation (3.6.15) and the tuple m =
(mij)i,j ∈ NQ0×{1,...,N} is defined by

mij =

{
kii − di + di+1 if j = i,

0 otherwise
(3.6.16)

with dN+1 = 0 for all i ∈ Q0 and j ∈ {1, . . . , N}.
• If M(k) is projective, then holds Grd(M(k)) = CM(l),M(m)(k) with the tuple l ∈
NQ0×{1,...,N} given by a dual version of Equation (3.6.16) and m ∈ NQ0×{1,...,N}

given by Equation (3.6.15) with n− d instead of d.
Moreover, Grd(M(k)) is smooth in these cases.

Proof. We use Proposition 3.6.13 and 3.6.16. In the first case we consider the (N + 1)-
cycle-quiver Q′ with d′ = (d′i)i∈Q0 such that d′i = di for each i ∈ {1, . . . , N} and d′N+1 =

0. Let k′ = (k′ij)i∈Q′0,j∈{1,...,N+1} ∈ NQ
′
0×{1,...,N+1} with k′iN = kii for each i ∈ {1, . . . , N}

and kij = 0 otherwise. Thus we can consider M(k) as a subrepresentation of the
projective-injective (Q′, αN+1)-representation M(k′). Moreover, each subrepresentation
(Ui)i∈Q′0 of the Q′-representation M(k′) with UN+1 = 0 is a subrepresentation of the Q′-
representation M(k) and thus also a subrepresentation of the Q-representation M(k).
Using Proposition 3.2.1 we get an isomorphism of varieties Grd(M(k))→ Grd(M(k′)).
Since dN+1 = 0 we can use Example 3.6.18. By Equation (3.6.11) holds the formula for
l. For m Equation (3.6.12) yields

mii = kii +
∑N−i

j′=1
li+j′,j′ −

∑i

j′=1
lij′ = kii − di + di+1

for i ∈ Q0. Since M(k) is exceptional Proposition 2.3.12 yields the smoothness of
Grd(M(k)). The second case is the dual of the first one.
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4 Euler characteristics of quiver
Grassmannians

In this chapter let k be the field of complex numbers C. We compute now the Euler
characteristic χd(M) of a quiver Grassmannian Grd(M) associated to a tree or band
module M . Moreover, we formulate very similar results for covering theory.

4.1 Gradings

To compute the Euler characteristic of a quiver Grassmannian Grd(M) we define some
algebraic actions of the one-dimensional torus C∗ on the projective variety Grd(M) in
this section.

4.1.1 Definitions

Let Q be a quiver and M = (Mi,Ma)i∈Q0,a∈Q1 a Q-representation. Let I be the set
{1, 2, . . . ,dimkM} and E = {ej |j ∈ I} be a basis of

⊕
i∈Q0

Mi such that E ⊆
⋃
i∈Q0

Mi.

Definition 4.1.1. A map ∂ : E → Z is called a grading of M .

So every grading depends on the choice of a basis E. It is useful to change the basis
during calculations. A vector m =

∑
j∈I mjej ∈M with mj ∈ C is called ∂-homogeneous

of degree n ∈ Z if ∂ (ej) = n for all j ∈ I with mj 6= 0. In this case we set ∂(m) = n.
The following grading was studied by Riedtmann [44, Lemma 2.2]: Let M =

⊕r
k=1Nk,

where Nk is a subrepresentation of the Q-representation M for all k and E ⊆
⋃r
k=1Nk.

Then the grading ∂ : E → Z with ∂ (ej) = k for ej ∈ Nk is called Riedtmann grading (or
R-grading for short).

Definition 4.1.2. Let ∂ and ∂1, . . . , ∂r be gradings of M and ∆(y, z, a) ∈ Z for all
y, z ∈ Zr and a ∈ Q1 such that

∆
(

(∂m(ej))1≤m≤r, (∂m(ei))1≤m≤r, a
)

= ∂(ei)− ∂(ej) (4.1.1)

for all i, j ∈ I and a ∈ Q1 with ei ∈ Mt(a), ej ∈ Ms(a) and mi 6= 0 for Ma(ej) =∑
k∈I mkek. Then ∂ is called a nice ∂1, . . . , ∂r-grading.

The definition of nice ∂1, . . . , ∂r-gradings generalizes the gradings introduced by Cerulli
Irelli [14, Theorem 1]. He only considers the nice ∅-gradings, i.e. r = 0. We say nice
grading for short. Now we can successively apply these gradings. For example each
R-grading is a nice grading.
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4 Euler characteristics of quiver Grassmannians

Example 4.1.3. Let Q be the following quiver

1
a
((

b

66 2

and M = (M1,M2,Ma,Mb) the Q-representation with M1 = M2 = C2, Ma = ( 00
10 ) and

Mb = ( 10
01 ). Let {ei = ( 1

0 ) , fi = ( 0
1 )} be the canonical basis of Mi for each i ∈ Q0 and

E = {e1, f1, e2, f2}. Let ∂, ∂1 : E → Z be gradings with ∂(e1) = ∂(f1) = 0, ∂(e2) = 3,
∂(f2) = 5, ∂1(ei) = 0 and ∂1(fi) = 1 for each i ∈ Q0. Then ∂ is a nice ∂1-grading, since
∆(0, 0, b) = ∂(e2)− ∂(e1) = 3 and ∆(1, 1, b) = ∂(f2)− ∂(f1) = 5. Moreover, ∂ is a not a
nice grading.

Example 4.1.4. In this example we state two extreme cases of gradings.

• Let ∂ and ∂′ be gradings such that ∂′ : E → Z is an injective map. Then ∂ is a
nice ∂′-grading.
• Let ∂ be a grading such that ∂(ei) = ∂(ej) for all i, j ∈ I. Then ∂ is a nice grading.

By the following remark, we describe a way to visualize a nice ∂1, . . . , ∂r-grading ∂ of
a Q-representation of the form F∗(1S).

Remark 4.1.5. Let Q and S be quivers and F : S → Q a winding. Let M = F∗(1S)
and {fi ∈ (1S)i|i ∈ S0} be a basis of

⊕
i∈S0

(1S)i. Then E := {F∗(fi)|i ∈ S0} is a basis
of
⊕

i∈Q0
Mi.

• Now we illustrate each grading ∂ : E → Z of M by a labelling of the quiver S. For
this we identify the set E and S0. Thus ∂ : S0 → Z, i 7→ ∂(F∗(fi)).
• For each nice ∂1, . . . , ∂r-grading ∂ we further extend ∂ in a meaningful way to
S0 ∪ S1 by

∂(a) = ∆
((
∂m(s(a))

)
1≤m≤r,

(
∂m(t(a))

)
1≤m≤r, F1(a)

)
for all a ∈ S1. Then by Equation (4.1.1)

∂(a) = ∂(t(a))− ∂(s(a)) (4.1.2)

holds for all a ∈ S1.
• Let ∂ : S0 ∪ S1 → Z be a map with the following conditions:

(S1) Equation (4.1.2) holds for all a ∈ S1.
(S2) ∂(a) = ∂(b) for all a, b ∈ S1 with F1(a) = F1(b), ∂m(s(a)) = ∂m(s(b)) and

∂m(t(a)) = ∂m(t(b)) for all m.
Then the map ∂ induces a nice ∂1, . . . , ∂r-grading ∂ : E → Z on M .
• Let ∂ : S1 → Z be a map. If S is a tree and condition (S2) holds, then the map
∂ induces a nice ∂1, . . . , ∂r-grading ∂ : E → Z on M . If S is connected, such an
induced grading ∂ is unique up to some shift.
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4.1 Gradings

Example 4.1.6. Let F∗(1S) be the tree module described by the following picture.

F : S =


1

α
��

1′

β′
��

2

β ��
<<<<< 2′

α′�������

3

→ Q =
(

◦α 99 βee

)

Then F∗(1S) has a basis E = {F∗(f1), F∗(f1′), F∗(f2), F∗(f2′), F∗(f3)} as above.
Let ∂1 : S1 → Z, γ 7→ 1 for all γ ∈ S1 and ∂1(F∗(f1)) = 0. This induces by the

previous remark a unique nice grading ∂1 of F∗(1S). In particular ∂1(1) = ∂1(1′) = 0,
∂1(2) = ∂1(2′) = 1 and ∂1(3) = 2. Let ∂2 : S1 → Z, β 7→ 1, γ 7→ 0 for all β 6= γ ∈ S1 and
∂2(F∗(f1)) = 0 . This induces a unique nice ∂1-grading ∂2 of F∗(1S). So in particular
∂2(1) = ∂2(2) = 0, ∂2(1′) = ∂2(2′) = ∂2(3) = 1.

4.1.2 Stable gradings

Let Q be a quiver, M a Q-representation and ∂ a grading. The algebraic group C∗ acts
by

ϕ∂ : C∗ → EndC(M), ϕ∂(λ)(ej) := λ∂(ej)ej (4.1.3)

on the vector space M . This defines in some cases a C∗-action on the quiver Grassman-
nian Grd(M).

Definition 4.1.7. Let X be a locally closed subset of Grd(M) and ∂ a grading of M . If
for all U ∈ X and λ ∈ C∗ the vector space ϕ∂(λ)U is in X, then the grading ∂ is called
stable on X.

For a locally closed subset X of Grd(M) and gradings ∂1, . . . , ∂r let

X∂1,...,∂r :=
{
U ∈ X

∣∣∣U has a basis, which is ∂i-homogeneous for each i
}
. (4.1.4)

By definition, each stable grading on X is also a stable grading on X∂1,...,∂r .

Lemma 4.1.8. Let Q be a quiver, M a Q-representation and d a dimension vector.
Let U ∈ Grd(M) and ∂1, . . . , ∂r gradings. Then U ∈ Grd(M)∂1,...,∂r if and only if
ϕ∂i(λ)U = U as vector spaces for all i and λ ∈ C∗.

Proof. If U ∈ Grd(M) has a basis, which is ∂i-homogeneous for each i, we get ϕ∂i(λ)U =
U for each i and λ ∈ C∗.

Let U ∈ Grd(M) such that ϕ∂i(λ)U = U for all i and λ ∈ C∗. Our aim is to find
a basis for U , which is ∂i-homogeneous for each i. Let s ∈ N with 1 ≤ s ≤ r and
{m1, . . . ,mt} be a basis of U , which is ∂i-homogeneous for each i with 1 ≤ i < s. For
each j with 1 ≤ j ≤ t let mj =

∑
i∈I λijei with λij ∈ C. For each z ∈ Z and j ∈ N

with 1 ≤ j ≤ t define mj,z :=
∑

i∈I,∂(ei)=z
λijei ∈ M . Then mj,z is ∂i-homogeneous for
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4 Euler characteristics of quiver Grassmannians

each i with 1 ≤ i ≤ s, ϕ∂s(λ)(mj,z) = λzmj,z for all λ ∈ C∗ and mj =
∑

z∈Zmj,z. Then
ϕ∂s(λ)(mj) =

∑
z∈Z λ

zmj,z ∈ U for all λ ∈ C∗ and so mj,z ∈ U for all z ∈ Z and all j.
Since {mj,z|1 ≤ j ≤ t, z ∈ Z} generates U , a subset of this set is a basis of the vector
space U , which is ∂i-homogeneous for each i with 1 ≤ i ≤ s. The statement follows by
an induction argument.

We will show that each nice grading is stable on Grd(M).

Lemma 4.1.9. Let ∂1, . . . , ∂r and ∂ be gradings of M . Then ∂ is stable on the variety
Grd(M)∂1,...,∂r for all d ∈ NQ0 if and only if for all λ ∈ C∗, a ∈ Q1 and ∂1, . . . , ∂r-
homogeneous elements u ∈M we have

Ma (ϕ∂(λ)u) ∈ ϕ∂(λ)U∂1,...,∂r(u), (4.1.5)

where U∂1,...,∂r(u) is the minimal subrepresentation of M such that u ∈ U∂1,...,∂r(u) and
U∂1,...,∂r(u) ∈ Grc(M)∂1,...,∂r for some c ∈ NQ0.

If U ∈ Grd(M)∂1,...,∂r and V ∈ Grc(M)∂1,...,∂r , then Lemma 4.1.8 implies U ∩ V ∈
Grdim(U∩V )(M)∂1,...,∂r . So the submodule U∂1,...,∂r(u) is well-defined and unique.

Proof. If ∂ is stable on Grd(M)∂1,...,∂r for all d ∈ NQ0 , then ϕ∂(λ)U∂1,...,∂r(u) is a sub-
representation of M for all λ ∈ C∗ and u ∈M .

Let U ∈ Grd(M)∂1,...,∂r . If Equation (4.1.5) holds for all λ ∈ C∗, a ∈ Q1 and ∂1, . . . , ∂r-
homogeneous u ∈ M , then Ma

(
ϕ∂(λ)Us(a)

)
⊆ ϕ∂(λ)Ut(a) for all λ ∈ C∗ and a ∈ Q1,

since U is generated by ∂1, . . . , ∂r-homogeneous elements. Thus ϕ∂(λ)U ∈ Grd(M).

Lemma 4.1.10. Let Q be a quiver, M a Q-representation and d a dimension vector.
Then every nice ∂1, . . . , ∂r-grading ∂ is stable on Grd(M)∂1,...,∂r .

Proof. By Lemma 4.1.9, it is enough to consider λ ∈ C∗, a ∈ Q1 and a homogeneous u ∈
M . We write u =

∑
k∈I ukek with uk ∈ C, Ma(ek) =

∑
j∈I mjkej withmjk ∈ C for all k ∈

I and Ma(u) =
∑

z∈Zr mz with (∂m(mz))m = z. So mz =
∑

k,j∈I,(∂m(ej))m=z ukmjkej
and

Ma (ϕ∂(λ)u) =
∑

k∈I
ukMa

(
λ∂(ek)ek

)
=
∑

k,j∈I
ukλ

∂(ek)mjkej

=
∑

k,j∈I
λ∂(ek)−∂(ej)ukmjkϕ∂(λ)ej

= ϕ∂(λ)
(∑

k,j∈I
λ∆((∂m(u))m,(∂m(ej))m,a)ukmjkej

)
= ϕ∂(λ)

(∑
z∈Zr

λ∆((∂m(u))m,z,a)mz

)
∈ ϕ∂(λ)U∂1,...,∂r(u).

This gives the lemma.
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4.2 Preliminaries

4.2 Preliminaries

By the following theorem it is enough to compute the Euler characteristic of the subset of
fixed points under the induced C∗-action on the Grassmannian Grd(M). This generalizes
some result of Cerulli Irelli [14, Theorem 1].

Theorem 4.2.1. Let Q be a locally finite quiver, M a finite-dimensional representation
of Q, X ⊆ Grd(M) a locally closed subset and ∂ a stable grading on X. Then X∂ is
a locally closed subset of Grd(M) and the Euler characteristic of X equals the Euler
characteristic of X∂. If the subset X is non-empty and closed in Grd(M), then X∂ is
also non-empty and closed in Grd(M).

The following well-known proposition is used to prove this theorem.

Proposition 4.2.2 (Bialynicki-Birula [5, Corollary 2]). Let C∗ act on a locally closed
subset X of a projective variety Y . Then the subset of fixed points XC∗ under this action
is a locally closed subset of Y and χ(X) = χ(XC∗). If the subset X is non-empty and
closed in Y , then XC∗ is also non-empty and closed in Y .

Proof. The subset of fixed points XC∗ is closed in X. By [6], this is non-empty if X is
non-empty and closed in Y (see also [16, Corollary 2.4.2.]).

So we decompose X into the locally closed subset of fixed points XC∗ and its comple-
ment U = X\XC∗ in X. So χ(X) = χ

(
XC∗

)
+ χ(U). Since U is the union of the non

trivial orbits in X, the projection U → U/C∗ is an algebraic morphism. Since χ(C∗) = 0
the Euler characteristic of U is also zero.

Proof of Theorem 4.2.1. The action ϕ∂ of the algebraic group C∗ on the projective va-
riety X is well-defined. Thus Proposition 4.2.2 yields the equality of the Euler charac-
teristic of X and the Euler characteristic of the set of fixed points under this action. By
Lemma 4.1.8, a subrepresentation U of M in X is a fixed point of ϕ∂ if and only if U
has a basis of ∂-homogeneous elements.

Theorem 4.2.1 yields directly the following corollary, since different C∗-actions com-
mute. So we can use more than one grading at the same time.

Corollary 4.2.3. Let Q be a quiver, M a Q-representation and ∂1, . . . , ∂r gradings of
M such that for all 1 ≤ i ≤ r the grading ∂i is a stable grading on Grd(M)∂1,...,∂i−1.
Then χd (M) = χ

(
Grd(M)∂1,...,∂r

)
.

The following result is well-known by Riedtmann [44]. Nevertheless, we prove it using
our notation.

Proposition 4.2.4 (Riedtmann). Let Q be a quiver, d a dimension vector and M and
N Q-representations. Then

χd(M ⊕N) =
∑

0≤c≤d
χc(M)χd−c(N).
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4 Euler characteristics of quiver Grassmannians

Using this proposition it is enough to consider the Euler characteristic of quiver Grass-
mannians associated to indecomposable representations.

Proof. We choose any basis of M and any basis of N . So the union induces a basis
of M ⊕ N . Using a R-grading ∂, we have to compute the Euler characteristic of the
set of fixed points. This variety Grd(M ⊕ N)∂ can be decomposed into a union of
locally closed sets Xc, where the subrepresentation of M has dimension vector c and the
subrepresentation of N has dimension vector d − c. Then χd(M) =

∑
0≤c≤d χ(Xc) =∑

0≤c≤d χc(M)χd−c(N).

4.3 Main Theorem

The main result of this chapter is the following result. It is proven in Section 4.7.

Theorem 4.3.1.

1. Let Q and S be finite quivers, F : S → Q a tree or a band, d a dimension vector
of Q and V a finite-dimensional S-representation. Then

χd(F∗(V )) =
∑

t∈F−1(d)
χt(V ). (4.3.1)

2. Let S be a quiver of type Ãl−1, t = (ti)i∈S0 a dimension vector of S and V ∈ InS ,
i.e. V is a band module of S and dimC Vi = n for some i ∈ S0. Then

χt (V ) =

 ∏
i∈S0

source

(n− ti)!
ti!


∏
i∈S0
sink

ti!

(n− ti)!


∏
a∈S1

1

(tt(a) − ts(a))!

 (4.3.2)

with 0! = 1, s! = 0 and 1
s! = 0 for all negative s ∈ Z.

3. Let Q̂ be a locally finite quiver, G a free (abelian) group, which acts freely on Q̂,
and π : Q̂ → Q the induced projection. Let d be a dimension vector of Q = Q̂/G
and V a finite-dimensional Q̂-representation. Then

χd(π∗(V )) =
∑

t∈π−1(d)
χt(V ). (4.3.3)

Since Part 3 of this theorem holds for free and free abelian groups, we write “free
(abelian) group”. Corollaries, examples and further explanations of this theorem are
given in the following sections.

4.4 Tree and band modules

All the corollaries and examples of this section are strictly related to Part 1 and 2 of
Theorem 4.3.1.
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4.4 Tree and band modules

Corollary 4.4.1. Let F : S → Q be a tree or a band and d a dimension vector of Q.
Then we have to count successor closed subquivers of S with dimension vectors in F−1(d)
to compute χd(F∗(1S)).

This corollary follows immediately from Part 1 of Theorem 4.3.1.

Corollary 4.4.2. Let Q be a quiver, M a tree or band module and d a dimension vector
of Q such that the variety Grd(M) is non-empty. Then χd(M) > 0.

Proof. The inequality χd(M) ≥ 0 is clear by Theorem 4.3.1. We prove the statement of
Part 1 of Theorem 4.3.1 by applying Theorem 4.2.1 several times. So also the stronger
inequality χd(M) > 0 follows.

If the quiver S is an oriented cycle, each band module B∗(V ) has a unique filtration
with n = dimC Vi pairwise isomorphic simple factors of dimension |S0|. In this case
Part 2 of Theorem 4.3.1 holds (see Example 4.4.3).

Therefore we assume without loss of generality that S is not an oriented cycle. Let
{i1, . . . , ir} be the sources of S and {i′1 . . . , i′r} the sinks. We assume that r > 0 and
1 ≤ i1 < i′1 < i2 < i′2 . . . < ir < i′r ≤ l. Then the quiver S is visualized in Figure 4.4.1.
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Figure 4.4.1: A quiver of type Ãl−1.

Example 4.4.3. Let S, V and t be as in Part 2 of Theorem 4.3.1. Let t1 = t2 = . . . =
tl ≤ n. Then χt (V ) = 1.

89



4 Euler characteristics of quiver Grassmannians

The next example shows one result of [14, Proposition 3] as a special case of Part 2
of Theorem 4.3.1.

Example 4.4.4. Let S, V and t be as in Part 2 of Theorem 4.3.1. Let r = 1, i1 = 1
and i′1 = l. Then

χt (V ) =

(
tl
t1

)(
n− t1
n− tl

)
(tl − t1)!∏l−1

i=1(ti+1 − ti)!
.

Example 4.4.5. Let Q, B be as in Example 2.2.8 and V ∈ I2
S . Using Theorem 4.3.1,

it is easy to calculate the Euler characteristics χd(B∗(V )). For instance,

χ4(B∗(V )) = χ(0,0,2,2)(V ) + χ(0,2,0,2)(V ) + χ(0,1,1,2)(V ) + χ(1,1,1,1)(V )

= 1 + 1 + 4 + 1 = 7

since F−1(4) = {t = (t1, t2, t3, t4) ∈ NS0 |t1 + t2 + t3 + t4 = 4} and Grt(V ) = ∅ if
s(a) > t(a) for some a ∈ S1 or ti > 2 for some i ∈ S0.

Example 4.4.6. If F is a tree or a band, Part 1 of Theorem 4.3.1 holds for each S-rep-
resentation V . Let F be the tree described by the following picture.

F : S =

 2

β
��

1
α // 4

α′ // 3

→ Q =
(

◦α
%%

β
yy

)

Let V be an indecomposable S-representation with dimension vector (1, 1, 1, 2). Then
the dimension vector of a subrepresentation U of the S-representation V with dimk U = 3
is in {(1, 0, 1, 1), (0, 1, 1, 1), (0, 0, 1, 2)}. Thus

χ3 (F∗(V )) = χ(1,0,1,1)(V ) + χ(0,1,1,1)(V ) + χ(0,0,1,2)(V ) = 3.

Example 4.4.7. If S is not a tree and not a band, Equation (4.3.1) does not hold in
general. To see this we consider the winding F described by the following picture.

F : S =


3

1
α // 2

β
77oooooooooo

γ′ ''OOOOOOOOOO 2′
β′

��
????

γ

??~~~~~

3′

→ Q =

(
1

α // 2
β
//

γ
// 3

)

Then F∗(1S) is indecomposable and

χ(0,1,1) (F∗(1S)) = 2 6= 0 =
∑

t∈F−1((0,1,1))
χt(1S).

It is easy to see that there exists no quiver S and no winding F such that a formula similar
to Equation (4.3.1) holds. So it is not possible to describe these Euler characteristics
purely combinatorial using our techniques.
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4.5 Quiver flag varieties

4.5 Quiver flag varieties

Definition 4.5.1. Let Q be a quiver, M a Q-representation and d(1), . . . ,d(r) dimension
vectors. Then the closed subvariety

Fd(1),...,d(r)(M) :=
{

0 ⊆ U (1) ⊆ . . . ⊆ U (r) ⊆M
∣∣∣U (i) ∈ Grd(i)(M) ∀i

}
of the classical partial flag variety is called the quiver flag variety.

We denote the Euler characteristic of Fd(1),...,d(r)(M) by χd(1),...,d(r)(M). The following
corollaries of Part 1 of Theorem 4.3.1 follow immediately from the analogous statements
for the quiver Grassmannians.

Corollary 4.5.2 (Riedtmann). Let Q be a quiver, d(1), . . . ,d(r) dimension vectors and
M and N Q-representations. Then

χd(1),...,d(r)(M ⊕N) =
∑

0≤c(i)≤d(i)
χc(1),...,c(r)(M)χd(1)−c(1),...,d(r)−c(r)(N).

Corollary 4.5.3. Let Q and S be quivers, d(1), . . . ,d(r) dimension vectors of Q and V
a S-representation. If F : S → Q is a tree or a band, then

χd(1),...,d(r)(F∗(V )) =
∑

t(i)∈F−1(d(i))
χt(1),...,t(r)(V ).

In particular we have to count flags of successor closed subquivers of S with dimension
vectors in F−1(d(i)) to compute χd(1),...,d(r)(F∗(1S)).

Corollary 4.5.4. Let Q be a quiver, M a tree module and d(1), . . . ,d(r) dimension
vectors of Q such that Fd(1),...,d(r)(M) is non-empty. Then χd(1),...,d(r)(M) > 0.

Example 4.5.5. Let Q = (1 ⇒ 2), n ∈ N with n ≥ 3 and M an indecomposable
Q-representation with dimension vector (n, n). We show χ(1,2),(2,3) (M) = 8(n− 2).

Let B : Q→ Q be the identity winding. For each µ ∈ C there is an automorphism of
the algebra CQ such that B∗(λ, n) is mapped to B∗(λ− µ, n). This is not necessarily a
band module. So we assume without loss of generality that M is a string module. Let

T (n) =

 1(1)

""EEEE 1(2)

||yyyy
""EEEE 1(n)

zzuuuuu
""FFFF

2(1) 2(2) . . . 2(n−1) 2(n)

 ,

U (n) =

 1(1)

""EEEE 1(2)

||yyyy
""EEEE 1(n)

zzuuuuu

2(1) 2(2) . . . 2(n−1)

 .

Thus to prove the equation above we have to count flags of successor closed subquivers
of the following quiver T (n) associated to the dimension vectors (1, 2) and (2, 3). For
each subquiver V of T (n) let

dimV =
(∣∣{i∣∣1(i) ∈ V0

}∣∣, ∣∣{i∣∣2(i) ∈ V0

}∣∣).
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4 Euler characteristics of quiver Grassmannians

For dimension vectors c and d of Q we set

Xc(V ) =
{
R ⊆ V

∣∣R is a successor closed subquiver of V,dimR = c
}
,

Xc,d(V ) =
{
R ⊆ S ⊆ V

∣∣R ∈ Xc(S), S ∈ Xd(V )
}
.

Using Corollary 4.5.3, it is enough to show the following equality.∣∣X(1,2),(2,3)

(
T (n)

)∣∣ =
∑n

i=1

∣∣{(R ⊆ S) ∈ X(1,2),(2,3)

(
T (n)

)∣∣1(i) ∈ R0

}∣∣
=
∣∣X(0,1),(1,2)

(
T (n−1)

)∣∣+
∑n

i=2

∣∣X(1,1)

(
U (i−1)∪̇T (n−i))∣∣

= ( 2
1 )
∣∣X(1,2)

(
T (n−1)

)∣∣+
(∣∣X(0,1)

(
T (n−2)

)∣∣+
∣∣X(1,1)

(
T (n−2)

)∣∣)
+
∑n−1

i=3

(∣∣X(1,1)

(
U (i−1)

)∣∣+
∣∣X(1,1)

(
T (n−i))∣∣)+

∣∣X(1,1)

(
U (n−1)

)∣∣
=2
((

n−2
1

)
+
(
n−2

1

))
+
((

n−2
1

)
+ 1
)

+ (n− 3) (2 + 1) + 2 = 8(n− 2).

4.6 Coverings of quivers

We give two examples of coverings. In one case the formula in Part 3 of Theorem 4.3.1
holds and in the other it fails. This shows for this statement G has to be (abelian) free
and to act freely on Q̂.

Example 4.6.1. Let Q̂ = (Z,Z) and G = Z with s(n) = n, t(n) = n+ 1 and gk = g+k
for all k ∈ Q̂0∪̇Q̂1 and g ∈ G. Let Î be an ideal of CQ̂ generated by the paths of Q̂ of
length m and I = Î/G. Then Q = Q̂/G is the one loop quiver and CQ/I is isomorphic
to C[T ]/(Tm). Let l ≤ m. For each indecomposable CQ/I-module M of length l there
is an indecomposable CQ̂/Î-module N with π∗(N) ∼= M . Then for 0 ≤ k ≤ l holds
χk(M) = χ({U ⊆ N |dimk U = k}) = 1.

Example 4.6.2. Let π : Q̂→ Q be the winding described by the following picture:

π :


1

a
������ b

��
@@@@

2 2′

1′
a′

??����b′

^^====

→
 1

a
�� b��

2


Then 1Q̂ is indecomposable and has only one two-dimensional subrepresentation, but
π∗(1Q̂) is decomposable and has three two-dimensional subrepresentations. Thus

χ(1,1)(π∗(1Q̂)) = 2 6= 0 =
∑

t∈π−1((1,1))
χt(1Q̂).

4.7 Proof of the main Theorem

4.7.1 Proof of Part 1 of Theorem 4.3.1

If F is a tree, Part 3 of Theorem 4.3.1 yields this theorem by the following property. If
F : S → Q is a tree and π : Q̂→ Q a universal covering, then a factorization F = πι exists
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4.7 Proof of the main Theorem

such that ι : S → Q̂ is injective. Nevertheless, we give in this section an independent
prove.

For this it is enough to consider V = 1S . By Remark 4.1.5 the set E = {F∗(fi)|i ∈ S0}
is a basis of F∗(1S). We write ∂(i) instead of ∂(F∗(fi)) for all i ∈ S0. To prove Part 1 of
Theorem 4.3.1 we will use the following proposition inductively. This proposition holds
in general and not only for trees and bands, but in the case of trees and bands there
exist enough nice gradings such that Part 1 of Theorem 4.3.1 follows (see Lemma 4.7.3
and 4.7.4).

Proposition 4.7.1. Let Q and S be locally finite quivers, T a finite subquiver of S,
F : S → Q a winding of quivers and d a dimension vector of Q. Let ∂ be a nice grading
of F∗(1T ). Define a quiver Q′ by

Q′0 ={(F0(i), ∂(i))|i ∈ S0}
Q′1 ={(∂(s(a)), ∂(t(a)), F1(a))|a ∈ S1}

s′(∂(s(a)), ∂(t(a)), F1(a)) =(s(F1(a)), ∂(s(a)))

t′(∂(s(a)), ∂(t(a)), F1(a)) =(t(F1(a)), ∂(t(a))) for all a ∈ Q1.

Define windings F ′ : S → Q′ by i 7→ (F0(i), ∂(i)), a 7→ (∂(s(a)), ∂(t(a)), F1(a)) and
G : Q′ → Q by (F0(i), ∂(i)) 7→ F0(i), (∂(s(a)), ∂(t(a)), F1(a)) 7→ F1(a). Then

χd(F∗(1T )) =
∑

t∈G−1(d)
χt(F

′
∗(1T )).

Proof. By definition of Q′, F ′ and G holds F = GF ′ and Grd(F∗(1T ))∂ ={
U ⊆ F∗(1T )

∣∣∣dimU = d, U has a ∂-homogeneous vector space basis.
}

=
⋃̇

t∈G−1(d)
Grt(F

′
∗(1T )).

Thus Theorem 4.2.1 implies

χd(F∗(1T )) = χ
(

Grd(F∗(1T ))∂
)

=
∑

t∈G−1(d)
χt(F

′
∗(1T )).

Example 4.7.2. We have a look at Example 4.1.6. Let Q′ and F ′ be described by the
following picture.

S =


1

α
��

1′

β′
��

2

β ��
<<<<< 2′

α′�������

3

 F ′−→ Q′ =


1

α
��
β′
��

2
β
��
α′
��

3

 G−→ Q =
(

◦α 99 βee

)

Using the nice grading ∂1, it is enough to observe F ′∗(1S) and χt (F ′∗(1S)) to compute
χd(F∗(1S)). So the nice ∂1-grading ∂2 induces a nice grading of F ′∗(1S).
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Lemma 4.7.3. Equation (4.3.1) holds for each tree module F∗(1S).

Proof. By Proposition 4.7.1 it is enough to treat the cases when F0 : S0 → Q0 is surjective
and not injective. If i, j ∈ S0 exist with F0(i) = F0(j) and i 6= j, we construct a nice
grading ∂ of F∗(1S) such that ∂(i) 6= ∂(j). So we do an induction over |S0| − |Q0|.

Let S′ be a minimal connected subquiver of S such that there exist i, j ∈ S′0 with
F0(i) = F0(j) and i 6= j. Then S′ is of type Al. Let F ′ : S′ → Q be the winding induced
by F . Since S is a tree, every nice grading of F ′∗(1S′) can be extended to a nice grading
of F∗(1S).

So without loss of generality let S′ be equal to S. So S0 = {1, . . . , l} and S1 =
{s1, s2, . . . , sl−1} as in Section 2.2 and F0(1) = F0(l) and 1 < l. So ∂ : S0 → Z, i 7→ δi1
defines a grading of F∗(1S) with ∂(1) = 1 6= 0 = ∂(l). Since F0(2) 6= F0(l − 1), we have
F1(s1)−ε1 6= F1(sl−1)εl−1 and so for all 1 < k < l the equation F1(s1) 6= F1(sk) holds by
the minimality of S. Therefore ∂ is a nice grading.

Lemma 4.7.4. Equation (4.3.1) holds for each band module F∗(1S).

Proof. Let i, j ∈ S0 with F0(i) = F0(j), i < j and j − i minimal (i.e. F0(k) 6= F0(m) for
all k,m ∈ S0 with i ≤ k < m ≤ j and (i, j) 6= (k,m)). If no such tuple (i, j) ∈ S0 × S0

exists, we are done. By Proposition 4.7.1 it is again enough to construct a nice grading
∂ of F∗(1S) such that ∂(i) 6= ∂(j).

For each a ∈ Q1 let ρ(a) :=
∑l

i=1 εiδa,F1(si) and ∂(a) : Q1 → Z, b 7→ δab a map.

• If a ∈ Q1 with ρ(a) = 0, then ∂(a) induces a nice grading ∂(a) of F∗(1S) such that

∂(a)(i)− ∂(a)(j) =
∑j−1

k=i
εkδa,F1(sk).

• If a, b ∈ Q1, then ∂(a,b) := ρ(a)∂(b)−ρ(b)∂(a) induces similarly a nice grading ∂(a,b)

of F∗(1S).
If ρ(F1(si)) = 0, then ∂(F1(si))(i)−∂(F1(si))(j) = εi since j− i is minimal. Thus F1(si) 6=
F1(sk) for all k ∈ S0 with i < k < j.

If ρ(F1(si)) 6= 0, we should have a look at the grading ∂(F1(si),F1(sk)) for all k ∈ S0. If
∂(F1(si),F1(sk))(i)− ∂(F1(si),F1(sk))(j) 6= 0 for some k ∈ S0, we are done. So let us assume
∂(F1(si),F1(sk))(i)− ∂(F1(si),F1(sk))(j) = 0 for all k ∈ S0 and for all tuples (i, j) ∈ S0 × S0

with 0 < j − i minimal. If F1(si) 6= F1(sk), then

0 = ∂(F1(si),F1(sk))(i)− ∂(F1(si),F1(sk))(j)

= ρ(F1(si))
(∑j−1

m=i+1
εmδF1(sk),F1(sm)

)
− ρ(F1(sk))εi

= ρ(F1(si))εk′ − ρ(F1(sk))εi

for some k′ ∈ S0 with i < k′ < j and F1(sk) = F1(sk′). So εkρ(F1(sk)) = εmρ(F1(sm))
for all k,m ∈ S0. In other words, ρ(F1(sk)) 6= 0 for all k ∈ S1 and εk = εm for all
k,m ∈ S0 with F1(sk) = F1(sm). So some r ∈ Z>0 exists such that F1(sk) = F1(sk+r)
for all k ∈ S0. By Example 2.2.6, the representation F∗(1S) is decomposable if r < l.
This is a contradiction.
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4.7.2 Proof of Part 2 of Theorem 4.3.1

Let S be a quiver of type Ãl−1 and {i1, . . . , ir} be the sources and {i′1, . . . , i′r} be the
sinks of S. It is visualized in Figure 4.4.1. For all i, j ∈ S0 with i ≤ j let Sij be the full
subquiver of S with Sij0 = {i, i+ 1, . . . , j}.

Lemma 4.7.5. Let S be a quiver as above, V ∈ InS and t = (t1, . . . , tl) be a dimension

vector of S. For all s, t ∈ S0 and α, β, γ, δ ∈ N we define X
(s,t)
α,β,γ,δ(t) to be

χt

(
M(Si

′
s+1,i′r−1)α ⊕M(Si

′
s+1,i1−1)β ⊕M(Sit+1,i′r−1)γ ⊕M(Sit+1,i1−1)δ

)
,

where M(Sij) is an indecomposable Sij-representation with dimension j − i + 1 for all
i, j ∈ S0 with i ≤ j. Then

χt (V ) =
∑

k∈Z

(
ti1
k

)(
n−ti1
k

)
X

(1,1)
ti1−k,k,k,n−ti1−k

(t′) (4.7.1)

with

t′ =

{
(0, ti1+1 − ti1 , . . . , ti′1−1 − ti1 , ti′1 − ti1 − k, ti′1+1 − ti1 , . . . , ti1−1 − ti1) if r = 1,

(0, ti1+1 − ti1 , . . . , ti′1 − ti1 , ti′1+1, . . . , ti′r−1, ti′r − ti1 , . . . , ti1−1 − ti1) if r > 1.

We use here the convention ( rs ) = 0 for all r, s ∈ Z if s < 0 or s > r. We visualize
the S-representations M(Si

′
s+1,i′r−1), M(Si

′
s+1,i1−1), M(Sit+1,i′r−1) and M(Sit+1,i1−1) in

Figure 4.7.1.

ir

�������

��
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����������

��
;;;;;; ir



���������

��
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����������

��
;;;;;;

i1 − 1

��
555555

i′r − 1 i′s + 1 i′s + 1

. . . i′r . . .

ir

�������

��
&&&&&&&&&& it+1



����������

��
111111111 ir



���������

��
&&&&&&&&&& it+1



����������

��
111111111

it + 1

���������
i1 − 1

��
555555 it + 1

���������
i′r − 1

. . . i′t i′r . . . i′t

Figure 4.7.1: Modules occurring in the definition of X
(s,t)
α,β,γ,δ(t).

Proof. Using Remark 2.2.7 we get a basis {eik|i ∈ S0, 1 ≤ k ≤ n} of V = (Vi, Vsi)i∈S0

such that the following hold.
1. For all 1 ≤ m ≤ n, the vector space V (m) := 〈ei,k|i ∈ S0, 1 ≤ k ≤ m〉 is a

subrepresentation of V and a band module.
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2. There exists a nilpotent endomorphism ψ of V such that ψ(ei1) = 0 and ψ(eik) =
ei,k−1 for all 1 < k ≤ n and all i ∈ S0.

Let U = (Ui, Vsi |Ui)i∈S0 ∈ Grt(V ). Using the Gauß algorithm, a unique tuple

j(U) := (1 ≤ j1 < j2 < . . . < jti1 ≤ n) (4.7.2)

and unique λkj(U) ∈ C exist such that{
ei1jm +

∑jm−1

j=1,j 6=jk∀k
λmj(U)ei1j

∣∣∣1 ≤ m ≤ ti1}
is a basis of the vector space Ui1 . The variety Grt(V ) is decomposed into a disjoint union
of locally closed subsets

Grt(V )j :=
{
U ⊆ V

∣∣∣dimU = t, j(U) = j
}
,

where j ∈ Nti1 . For each such tuple j let

Grt(V )0
j :=

{
U ⊆ V

∣∣∣dimU = t, j(U) = j, λ1j(U) = 0∀j
}
.

These are locally closed subsets of Grt(V ). The projection π : Grt(V )j → Grt(V )0
j with

U 7→
∏j1−1

j=1

(
1 + λ1j(U)ψj1−j

)−1
(U) (4.7.3)

is an algebraic morphism with affine fibres, since the map Grt(V )j → Grt(V )j with
U 7→

(
1 + λ1j(U)ψj1−j

)
(U) for each 1 ≤ j < j1 can be described by polynomials and

for each U ∈ Grt(V )0
j holds:

π−1(U) =
{∏j1−1

j=1

(
1 + µjψ

j1−j) (U)
∣∣∣µ1, . . . , µj1−1 ∈ C

}
∼= C

j1−1.

Thus χ(Grt(V )j) = χ
(

Grt(V )0
j

)
.

For U ∈ Grt(V )0
j let Uj be the subrepresentation of V generated by ei1j1 . Let Vj be

the subrepresentation of V with vector space basis

{ei1k|j1 ≤ k ≤ n} ∪ {eik|i1 6= i ∈ S0, 1 ≤ k ≤ n}.

Then Uj ⊆ U ⊆ Vj ⊆ V and thus Grt(V )0
j
∼= Grt−dimUj

(Vj/Uj). This implies

χt(V ) =
∑

j∈Nti1
χ
(
Grt(V )0

j

)
=
∑

j∈Nti1
χt−dimUj

(Vj/Uj) . (4.7.4)

Using the representation theory of S, we get

(dimUj)i =


0 if i′1 < i < i′r,
2 if r = 1, i′1 = i and j1 > 1,
1 otherwise.
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So if j1 = 1 we get

Vj/Uj
∼= V (n−1) ⊕M

(
Si
′
1+1,i′r−1

)
, (4.7.5)

and if j1 > 1 we get

Vj/Uj
∼= V (n−j1) ⊕M

(
Si
′
1+1,i1−1

)
⊕M

(
Si1+1,i′r−1

)
⊕M

(
Si1+1,i1−1

)j1−2
. (4.7.6)

Let nj := |{1 ≤ i ≤ n|i 6= jm∀m,∃m : i+ 1 = jm}|. A simple calculation shows

|{j|nj = k}| =
(
ti1
k

)(
n−ti1
k

)
.

We do an induction over ti1 . Then Equation (4.7.6) occurs nj-times, Equation (4.7.5)
occurs (ti1 − nj)-times and so Equation (4.7.1) holds in general by an inductive version
of Equation (4.7.4).

The rest of the proof of Part 2 of Theorem 4.3.1 is done in the next two combinatorial
lemmas.

Lemma 4.7.6. Let a, b, c, d, e, f ∈ N. Then(
a
b

)(
b
c

)
=

(
a− c
b− c

)(
a
c

)
and ∑

m∈Z

(
a

b−m

)(
b−m
c

)(
d

e+m

)(
e+m
f

)
=

(
a
c

)(
d
f

)(
a+ d− c− f
a+ d− b− e

)
.

Proof. The first equation can be shown using the definition. The second equation is a
consequence of the first one.

Lemma 4.7.7. Let S, V , t, n as above and 1 ≤ m ≤ r. Then

χt (V ) =ΛmΓi1im
∑

k∈Z

(
ti1

tim−k

)(
n−ti1
k

)
X

(m,m)
tim−k,k,ti1−tim+k,n−ti1−k

(t′)

with

Λm =
∏m−1

k=1

(n− tik+1
)!

tik !

ti′k !

(n− ti′k)!
, Γij =

∏j−1

k=i

1

(εk(tk − tk+1))!

and

t′ =


(0, . . . , 0, tir+1 − tir , . . . , ti′r−1 − tir ,

ti′r − ti1 − k, ti′r+1 − ti1 , . . . , ti1−1 − ti1) if m = r,

(0, . . . , 0, tim+1 − tim , . . . , ti′m − tim , ti′m+1, . . . , ti′r−1,

ti′r − ti1 , . . . , ti1−1 − ti1) if m < r.
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Proof. For m = 1 this is the statement of Lemma 4.7.5. We prove the lemma by
induction. Let 1 < m ≤ r. Then

χt (V ) =Λm−1Γi1im−1

∑
k

(
ti1

tim−1
−k

)(
n−ti1
k

)
X

(m−1,m−1)
tim−1

−k,k,ti1−tim−1
+k,n−ti1−k

(t′)

=Λm−1Γi1im−1

∑
k

(
ti1

tim−1
−k

)(
n−ti1
k

)∑
p

( ti1−tim−1
+k

ti′m−1
−tim−1

−p

)(
n−ti1−k

p

)
(ti′m−1

− tim−1)!Γim−1i′m−1
X

(m−1,m)
ti′m−1

−k−p,k+p,ti1−ti′m−1
+k+p,n−ti1−k−p

(t′′)

=Λm−1Γi1i′m−1

∑
p

(∑
k

(
ti1

tim−1
−k

)(
n−ti1
k

)( ti1−tim−1
+k

ti1−ti′m−1
+p

)(
n−ti1−k
n−ti1−p

))
(ti′m−1

− tim−1)!X
(m−1,m)
ti′m−1

−p,p,ti1−ti′m−1
+p,n−ti1−p

(t′′)

with t′′ = (0, . . . , 0, ti′m−1+1, . . . , ti′r+1 − ti1 , . . . , ti1−1 − ti1). Lemma 4.7.6 yields

χt (V ) =Λm−1Γi1i′m−1

∑
p

(
n−ti1
p

)( ti1
ti′m−1

−p
)( ti′m−1

tim−1

)
(ti′m−1

− tim−1)!X
(m−1,m)
ti′m−1

−p,p,ti1−ti′m−1
+p,n−ti1−p

(t′′)

=Λm−1

ti′m−1
!

tim−1 !
Γi1i′m−1

∑
p

(
n−ti1
p

)( ti1
ti′m−1

−p
)∑

k

( ti′m−1
−p

tim−k

)(
p
k

)
(ti′m−1

− tim)!Γi′m−1im
X

(m,m)
tim−k,k,ti1−tim+k,n−ti1−k

(t′)

=Λm−1

ti′m−1
!

tim−1 !
Γi1im

∑
k

(∑
p

(
n−ti1
p

)( ti1
ti′m−1

−p
)( ti′m−1

−p
tim−k

)(
p
k

))
(ti′m−1

− tim)!X
(m,m)
tim−k,k,ti1−tim+k,n−ti1−k

(t′).

Using Lemma 4.7.6 again, we get

χt (V ) =Λm−1

ti′m−1
!

tim−1 !
Γi1im

∑
k

(
ti1

tim−k

)(
n−ti1
k

)(
n−tim
n−ti′m−1

)
(ti′m−1

− tim)!X
(m,m)
tim−k,k,ti1−tim+k,n−ti1−k

(t′)

=ΛmΓi1im
∑
k

(
ti1

tim−k

)(
n−ti1
k

)
X

(m,m)
tim−k,k,ti1−tim+k,n−ti1−k

(t′).

Corollary 4.7.8. Let S, V , t and n as above. Then Equation (4.3.2) holds.

Proof. We have to show χt (V ) = Λr+1Γ1,l+1 with tir+1 = ti1 . Lemma 4.7.7 implies

χt (V ) = ΛrΓi1ir
∑
k

(
ti1

tir−k

)(
n−ti1
k

)
X

(r,r)
tir−k,k,ti1−tir+k,n−ti1−k

(t′)
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with t′ = (0, . . . , 0, tir+1 − tir , . . . , ti′r−1 − tir , ti′r − ti1 − k, ti′r+1 − ti1 , . . . , ti1−1 − ti1). So
we have

χt (V ) =ΛrΓi1ir
∑
k

(
ti1

tir−k

)(
n−ti1
k

)(
n−ti1−k
ti′r
−ti1−k

)
X

(r,r)
tir−k,ti′r−ti1 ,ti′r−tir ,n−ti′r

(t′′′)

=ΛrΓi1ir
∑
k

(
ti1

tir−k

)(
n−ti1
k

)(
n−ti1−k
ti′r
−ti1−k

)
(ti′r − ti1)!Γi′ri1(ti′r − tir)!Γiri′r

with t′′′ = (0, . . . , 0, tir+1 − tir , . . . , ti′r−1 − tir , 0, ti′r+1 − ti1 , . . . , ti1−1 − ti1). Using again
Lemma 4.7.6, we obtain

χt (V ) =ΛrΓ1l

(
n−ti1
n−ti′r

)(
ti′r
tir

)
(ti′r − ti1)!(ti′r − tir)! = Λr+1Γ1,l+1.

4.7.3 Proof of Part 3 of Theorem 4.3.1

This proof is divided into two parts.
First we assume that G is a finite abelian group. For this it is enough to consider

the representation V = 1T with some finite subquiver T = (T0, T1) of the quiver Q̂. So
without loss of generality we assume that G is of finite rank, e.g. G = Zn for some n ∈ N.
By induction and Proposition 4.7.1 it is enough to assume G = Z. Let R0 be a set of
representatives of the Z-orbits in Q̂0. Since Z acts freely on Q̂, there is a unique zi ∈ Z
and ri ∈ R0 for each i ∈ Q̂0 with i = ziri. The Q-representation π∗(1T ) has a basis
{fi|i ∈ T0}. We define a grading of π∗(1T ) by ∂(fi) = zi. This grading is well-defined
and so it is enough to show that ∂ is a nice grading. Let a, b ∈ T1 such that they are
lying in the same Z-orbit, i.e. it exists z ∈ Z with za = b. Thus zs(a) = s(za) = s(b)
and zs(a) + z = zs(b). So

∂
(
ft(b)

)
− ∂

(
fs(b)

)
= zt(b) − zs(b) = (zt(a) + z)− (zs(a) + z) = ∂

(
ft(a)

)
− ∂

(
fs(a)

)
.

This proofs Equation (4.3.3) for a free abelian group. �

Now we assume that G is a free group. In this case we use again some induction and
Part 3 of Theorem 4.3.1 with G = Z. To illustrate the following construction we give an
example afterwards. Let G be generated by {gt|t ∈ I} with some set I as a free group.
Thus

G =
{
gε1t1 . . . g

εn
tn

∣∣n ∈ N, ε1, . . . , εn ∈ {−1, 1}, t1, . . . , tn ∈ I
}
.

For t0 ∈ I we define a normal subgroup Gt0 of G by{
gε1t1 . . . g

εn
tn ∈ G

∣∣∣∑n

j=1
δt0tjεj = 0

}
.

The quotient G/Gt0 is isomorphic to Z and this group Gt0 is isomorphic to the free
group generated by {

gt(j) := gjt0gtg
−j
t0

∣∣∣(t, j) ∈ (I − {t0})× Z
}
.
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Q̂
π //

πt0 ��
@@@@@@ Q

Qt0
ρt0

??~~~~~~

Figure 4.7.2: A commutative diagram for the proof of Part 3 of Theorem 4.3.1.

Let Qt0 = Q̂/Gt0 , πt0 : Q̂ → Qt0 the canonical projection and ρt0 : Qt0 → Q the projec-
tion induced by the action of G/Gt0 (see Figure 4.7.2). By the first part of this proof
Equation (4.3.3) holds for the winding ρt0 : Qt0 → Q. Thus it is enough to consider the
action of the free group Gt0 on Q̂.

Let V = (Vi, Vα)i∈Q̂0,α∈Q̂1
be a Q̂-representation. If there is some j ∈ Q0 with∣∣{i ∈ π−1

0 (j)
∣∣ dimk Vi 6= 0

}∣∣ ≥ 2, let i1 and i2 be such two diverse elements. Let
g = gε1t1 . . . g

εn
tn ∈ G with gi1 = i2. Since n > 0, we can apply the previous induction step

for t1. If g /∈ Gt1 , we are done, otherwise write g = gt′1(j1)ε
′
1 . . . gt′

n′
(jn′)

ε′
n′ with n′ ∈ N,

ε′1, . . . , ε
′
n′ ∈ {−1, 1}, (t′1, j1), . . . , (t′n′ , jn′) ∈ (I − {t1})× Z. In this case 0 < n′ < n.

Thus by induction we assume
∣∣{i ∈ π−1

0 (j)
∣∣ dimk Vi 6= 0

}∣∣ = 1 for all j ∈ Q0. In this
case Equation (4.3.3) is trivial. Thus it holds for a free group in general. �

Example 4.7.9. Let Q = ({◦}, {α, β}) be as in Example 2.2.4 and π : Q̂ → Q the
universal covering. The fundamental group of Q is a free group with two generators,
called a and b, such that e.g. as(α′) = t(α′) for each α′ ∈ π−1

1 (α).
Let g = ababa−1b−1a−1 ∈ G. The quiver Qa and the canonical projection πa : Qa → Q

are described by the picture in Figure 4.7.3.

πα :

 . . . // 0

β0

YY

α0 // 1

β1

YY

α1 // 2

β2

YY

α2 // 3

β3

YY
// . . .

→ (
◦ βeeα 99

)

Figure 4.7.3: The covering πa : Qa → Q.

Since g ∈ Ga we get g = b1b2b
−1
1 with bi = b(i) for i ∈ Z. For (Qa)b1 see the picture

in Figure 4.7.4. In (Ga)b1 holds g = b(2,1) with b(j,i) = bj(i) for (j, i) ∈ (Z − {1}) × Z.

The corresponding quiver
(

(Qa)b1
)b(2,1) is described by the picture in Figure 4.7.5.
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4.7 Proof of the main Theorem

...

��

. . . // (0, 0)

β(0,0)

VV

α(0,0)
// (1, 0)

β(1,0)

��

α(1,0)
// (2, 0)

β(2,0)

VV

α(2,0)
// (3, 0)

β(3,0)

VV
// . . .

. . . // (0, 1)

β(0,1)

VV

α(0,1)
// (1, 1)

β(1,1)

��

α(1,1)
// (2, 1)

β(2,1)

VV

α(2,1)
// (3, 1)

β(3,1)

VV
// . . .

. . . // (0, 2)

β(0,2)

VV

α(0,2)
// (1, 2)

��

α(1,2)
// (2, 2)

β(2,2)

VV

α(2,2)
// (3, 2)

β(3,2)

VV
// . . .

...

Figure 4.7.4: The quiver (Qa)b1 .
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��

...

��

. . . // (0, 0, 0)

β(0,0,0)

VV

α(0,0,0)
// (1, 0, 0)

β(1,0,0)

��

α(1,0,0)
// (2, 0, 0)

β(2,0,0)

VV

α(2,0,0)
// (3, 0, 0)

β(3,0,0)

VV
// . . .

. . . // (0, 0, 1)

β(0,0,1)

VV α(0,0,1)

// (1, 0, 1)

β(1,0,1)

��

α(1,0,1)

// (2, 0, 1)

β(2,0,1)

VV α(2,0,1)

// (3, 0, 1)

β(3,0,1)

VV
// . . .

. . .

��
>>>>>>

. . . // (0, 1, 0)

β(0,1,0)

VV

α(0,1,0)
// (1, 1, 0)

β(1,1,0)

��

α(1,1,0)
// (2, 1, 0)

β(2,1,0)

##GGGGGGG

α(2,1,0)
// (3, 1, 0)

β(3,1,0)

VV
// . . .

. . . // (0, 1, 1)

β(0,1,1)

VV α(0,1,1)

// (1, 1, 1)

β(1,1,1)

��

α(1,1,1)

// (2, 1, 1)

��
>>>>>> α(2,1,1)

// (3, 1, 1)

β(3,1,1)

VV
// . . .

. . .

. . . // (0, 2, 0)

β(0,2,0)

VV

α(0,2,0)
// (1, 2, 0)

��

α(1,2,0)
// (2, 2, 0)

β(2,2,0)

VV

α(2,2,0)
// (3, 2, 0)

β(3,2,0)

VV
// . . .

. . . // (0, 2, 1)

β(0,2,1)

VV α(0,2,1)

// (1, 2, 1)

��

α(1,2,1)

// (2, 2, 1)

β(2,2,1)

VV α(2,2,1)

// (3, 2, 1)

β(3,2,1)

VV
// . . .

...
...

Figure 4.7.5: The quiver
(

(Qa)b1
)b(2,1) .
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5 Ringel-Hall algebras

In this chapter let k be again the field of complex numbers C. We apply the results of
the last chapter to the study of Ringel-Hall algebras.

In the first section of this chapter we construct a morphism of the Ringel-Hall algebras
for some windings. Thereafter we study the images of functions of the form 1F,B,n.
Together with the notion of gradings this simplifies the computations of products of
functions of the form 1F,B,n. In the last section we apply these results to string algebras.

5.1 Morphisms of Ringel-Hall algebras

Each winding ϕ : S → Q of locally finite quivers induces a functor ϕ∗ : mod(CS) →
mod(CQ) and moreover a map of constructible and GL(C)-stable functions

H(ϕ) : H(CQ)→ Ĥ(CS), f 7→ f ◦ ϕ∗.

This is in general not an algebra homomorphism, but functorial, sinceH(idCQ) = idH(CQ)

and H(F ◦ G) = H(G) ◦ H(F ) for windings F and G. For trees, bands, and coverings
we get the following statement.

Theorem 5.1.1.
1. Let F : S → Q be a tree or a band and A = CQ/I and B = CS/J finite-dimensional

algebras. If F induces a functor F∗ : mod(B)→ mod(A), then the map

C(F ) : C(A)→ C(B), f 7→ f ◦ F∗

is a Hopf algebra homomorphism. If F is injective, this homomorphism C(F ) is
surjective. If each A-module can be lifted to a B-module, i.e. F∗ is dense, the
homomorphism C(F ) is injective.

2. Let Q̂ be a locally finite quiver and G a free (abelian) group, which acts freely on Q̂.
Let Q = Q̂/G, A = CQ/I and B = CQ̂/J be algebras and π : Q̂→ Q the canonical
projection. If π induces a functor π∗ : mod(B)→ mod(A), then the map

C(π) : C(A)→ Ĉ(B), f 7→ f ◦ π∗

is a Hopf algebra homomorphism. If each A-module can be lifted to a B-module,
this homomorphism is injective.

Proof. For V ∈ mod(B) and dimension vectors d(i) ∈ NQ0 holds:

C(F )
(∏n

i=1
1d(i)

)
(V )

= χ
({

0 = U (0) ⊆ . . . ⊆ U (n) = F∗(V )
∣∣∣dim

(
U (i)/U (i−1)

)
= d(i)∀i

})
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5 Ringel-Hall algebras

= χ
({

0 = U (0) ⊆ . . . ⊆ U (n) = F∗(V )
∣∣∣dim

(
U (i)/U (i−1)

)
= d(i)∀i

}∂1,...,∂n)
= χ

({
0 = U (0) ⊆ . . . ⊆ U (n) = V

∣∣∣dim
(
F∗

(
U (i)/U (i−1)

))
= d(i)∀i

})
=
(∏n

i=1
C(F ) (1d(i))

)
(V )

with some gradings ∂1, . . . , ∂n as in the proofs of Theorem 4.3.1, Lemma 4.7.3 and 4.7.4.
For d ∈ NQ0 holds

C(F )(1d) =
∑

t∈F−1(d)
1t, C(F )(1S(d)) =

∑
t∈F−1(d)

1S(t).

Thus C(F ) is a well-defined algebra homomorphism. For each f ∈ C(A) and A-modules
V and W holds

(C(F )⊗ C(F )) (∆(f)) (V,W ) = (∆(f) ◦ (F∗, F∗)) (V,W ) = ∆(f) (F∗(V ), F∗(W ))

= f (F∗(V )⊕ F∗(W )) = f (F∗(V ⊕W )) = C(F )(f) (V ⊕W ) = ∆(C(F )(f)) (V,W )

and using Lemma 2.4.2 we get for d ∈ NQ0

S (C(F )(1d)) = S

(∑
t∈F−1(d)

1t

)
= (−1)|d|

∑
t∈F−1(d)

1S(t) = C(F ) (S(1d)) .

By this C(F ) is actually a Hopf algebra homomorphism.

If F : S → Q is injective, F∗ : mod(B) → mod(A) is injective and C(F )(1F(d)) = 1d

holds for each dimension vector d ∈ NS0 . The functor F∗ induces an embedding of
varieties mod(B,d)→ mod(A,F(d)). Thus C(F ) is surjective.

Let f ∈ Ker C(F ) and W ∈ mod(A). If F∗ : mod(B)→ mod(A) is dense, a B-module
V with F∗(V ) ∼= W exists. By f(W ) = f(F∗(V )) = C(F )(f)(V ) = 0 is Ker C(F ) = 0
and C(F ) injective.

The second part can be proven in a very similar way.

5.2 Liftings

Let F : S → Q be a winding and F =
(
F (1), . . . , F (r)

)
with F (i) : S(i) → Q be a tuple

of windings. In this section we study the image H(F )(1F,B,n). For this we define the
following set of tuples: Let GF (F) be a set of representatives of the equivalence classes
of the set {

F̃ =
(
F̃ (1), . . . , F̃ (r)

)∣∣∣F̃ (i) : S(i) → Q winding, FF̃ (i) = F (i) ∀i
}

with the equivalence relation ∼ defined by F̃ ∼ F̃′ if and only if 1
F̃

= 1
F̃′ in H(A).

Thus for all i the diagram in Figure 5.2.1 commutes. If r = 0, the set GF (F) consists by
convention of one trivial element.
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5.2 Liftings

S
F // Q

S(i)
F̃ (i)

``A
A

A
F (i)

>>||||||

Figure 5.2.1: The lifting property.

Theorem 5.2.1. Let F be a tuple of trees, B a tuple of bands and n a tuple of positive
integers.

1. Let Q be a finite quiver and F : S → Q a tree or a band. Then

H(F ) (1F,B,n) =
∑

F̃∈GF (F),B̃∈GF (B)
1
F̃,B̃,n

.

2. Let Q̂ be a locally finite quiver, G a free (abelian) group, which acts freely on Q̂,
Q = Q̂/G and π : Q̂→ Q the canonical projection. Then

H(π) (1F,B,n) =
∑

F̃∈Gπ(F),B̃∈Gπ(B)
1
F̃,B̃,n

.

This theorem is a direct consequence of the following lifting property.

Lemma 5.2.2 (Lifting property). Let F be a tuple of trees, B a tuple of bands and n a
tuple of positive integers.

1. Let F : S → Q be a tree or a band and V ∈ rep(S) such that 1F,B,n(F∗(V )) = 1.

Then there exists a tuple (F̃, B̃) ∈ GF (F)× GF (B) with 1
F̃,B̃,n

(V ) = 1.

2. Let Q̂ be a locally finite quiver, G a free (abelian) group, which acts freely on
Q̂, Q = Q̂/G and π : Q̂ → Q the canonical projection. Let V ∈ rep(Q̂) such
that 1F,B,n(π∗(V )) = 1. Then there is a tuple (F̃, B̃) ∈ Gπ(F) × Gπ(B) with
1
F̃,B̃,n

(V ) = 1.

Proof of Part 1. If F is a tree, a lifting F = πι with the universal covering π : Q̂ � Q
and an embedding ι : S ↪→ Q̂ exists (see Figure 5.2.2, left hand side). By the additivity of
F∗ and [28, Lemma 3.5] we assume without loss of generality that V , ι∗(V ) and F∗(V ) are
indecomposable. The module F∗(V ) can be lifted to a Q̂-module. By 1F,B,n(F∗(V )) = 1
the module F∗(V ) is a tree or a band module. If F∗(V ) is a band module, it cannot be
lifted to a Q̂-module since Q̂ is a tree. This is a contradiction.

So F∗(V ) ∼= F
(1)
∗ (1S(1)) is a tree module. Since F (1) is a tree, there exists another

lifting F (1) = πι′ with an embedding ι′ : S(1) ↪→ Q̂ (see Figure 5.2.2, left hand side).
Using the proof of [28, Theorem 3.6(c)] we get ι∗(V ) is (up to shift by some group
element) isomorphic to ι′∗(1S(1)). So we can modify ι′ such that ι∗(V ) ∼= ι′∗(1S(1)) and

a winding F̃ (1) : S(1) → S exists such that the diagram in Figure 5.2.2 commutes. In
particular V is a tree module.

If F is a band, then V is a direct sum of some string and band modules. Since
F∗ is additive we assume again without loss of generality that V is indecomposable.
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S F

��

� p

ι
!!B

B
B

B

Q̂
π // // Q

S(1)
F (1)

JJ

. �
ι′
>>}

}
}

F̃ (1)

OO�
�
�
�
�
�

T
G // S

F // Q

S(1)
F (1)

EE

H

XX

L
B

6
F̃ (1)

OO�
�
�

Figure 5.2.2: Windings occurring in the proof of Part 1 of Lemma 5.2.2.

Thus V is a tree or a band module and it exists a winding G : T → S and W ∈ In′T
with G∗(W ) ∼= V . Since FG : T → Q is a winding and 1F,B,n((FG)∗(W )) = 1 we get
l(F) + l(B) = 1.

If l(F) = 1, then (FG)∗(W ) ∼= F
(1)
∗ (1S(1)). By Lemma 2.2.9 exists an isomorphism of

quivers H : S(1) → T such that (FG)H = F (1). By setting F̃ (1) = GH the statement
follows (see Figure 5.2.2, right hand side). For l(B) = 1 the result follows analogously.

Proof of Part 2. By the additivity of F∗ and [28, Lemma 3.5] we assume without loss of
generality that V and π∗(V ) are indecomposable. And by 1F,B,n(π∗(V )) = 1 the module
π∗(V ) is a tree or a band module.

If π∗(V ) is a tree module, we get π∗(V ) ∼= F
(1)
∗ (1S(1)). Since G acts on Q̂ and Q = Q̂/G

the tree F (1) factors through π. Let F̃ (1) be the lifting, e.g. πF̃ (1) = F (1) (see Figure 5.2.3,

left hand side). Then π∗
(
F̃

(1)
∗ (1S(1))

)
= F

(1)
∗ (1S(1)) ∼= π∗(V ) and by the proof of [28,

Theorem 3.6(c)] we get F̃
(1)
∗ (1S(1)) is (up to shift by some group element) isomorphic to

V . So we can modify again F̃ (1) such that F̃
(1)
∗ (1S(1)) ∼= V and still πF̃ (1) = F (1).

Q̂
π // // Q

S(1)

F (1)

OO

F̃ (1)

``A
A

A
A

Q̂
π // // Q

T̂ (1)
ρ
// //

B̂(1)

OO�
�
�

T (1)

B(1)

OO

B̃(1)

bbD
D

D
D

D

Figure 5.2.3: Windings occurring in the proof of Part 2 of Lemma 5.2.2.

If π∗(V ) is a band module, we get π∗(V ) ∼= B
(1)
∗ (V1) for some V1 ∈ In1

T (1) . Let ρ : T̂ (1) →
T (1) be the universal covering of T (1) (see Figure 5.2.3, right hand side). Since π∗(V ) ∼=
B

(1)
∗ (V1) and G is a free (abelian) group, which acts freely on Q̂, we get not only a lifting

B̂(1) of B(1)ρ but also a lifting B̃(1) of B(1). Then the result follows as above.
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5.3 Gradings

To consider the multiplication of the Ringel-Hall algebra H(A) we have to compute the
Euler characteristics of the constructible subsets{

N ∈ Grd(M)
∣∣∣N ∈ X,M/N ∈ Y

}
of the quiver Grassmannian Grd(M) with some constructible and GL(C)-stable subsets
X ⊆ repd(A) and Y ⊆ repc(A). We use the gradings to simplify the calculations of
these Euler characteristics.

In the following section we study the products of functions of the form 1F,B,n in H(A).
It turns out that it is enough to study the following cases and simple generalizations.
For a Q-representation M and U ∈ Grd(M) let

Grd(M)U =
{
V ∈ Grd(M)

∣∣∣V ∼= U,M/V ∼= M/U
}
.

Lemma 5.3.1. Let Q be a quiver, M be a Q-representation and U ∈ Grd(M). Then
every R-grading ∂ is stable on Grd(M)U .

Proof. The linear map ϕ∂(λ) : M →M is an automorphism of Q-representations for all
λ ∈ C∗.

Lemma 5.3.2. Let Q be a quiver, M a Q-representation and F∗(1S) ⊆M with F : S →
Q a tree such that M/F∗(1S) is a tree module, too. Let ∂ be a nice grading on Grd(M).
Then ∂ is also stable on Grd(M)F∗(1S).

Proof. Let a ∈ Q1, λ ∈ C∗ and U ∈ Grd(M)F∗(1S). Since ∂ is a nice grading we know
Maϕ∂(λ) = λ∂(a)ϕ∂(λ)Ma by the proof of Lemma 4.1.10. Let i ∈ S0 and ρj the unique
not necessarily oriented path in S from i to some j ∈ S0. Then we associate an integer
∂(ρj) to each path ρj such that fj 7→ λ∂(ρj)fj induces an isomorphism U → ϕ∂(λ)(U) of
quiver representations. The same holds for the quotient.

Lemma 5.3.3. Let Q and S be quivers, B : S → Q a winding, M a Q-representation
and ∂ a nice grading on Grd(M). Let

X =
{
U ∈ Grd(M)

∣∣∣∃B∗(V ) band module : U ∼= B∗(V )
}
,

a locally closed subset of Grd(M). Then ∂ is also stable on X.

Proof. We use the proof of Lemma 5.3.2. In this case the representations U and ϕ∂(λ)(U)
are in general non-isomorphic, but they are both band modules for the same quiver S
and the same winding B : S → Q.

The next example shows that this lemma is not true if we restrict the action to one
orbit of a band module.
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5 Ringel-Hall algebras

Example 5.3.4. Let F∗(1S) be the tree module described by the following picture.

F :

 1

α ��
<<<< 1′

β������

2

→
 1

α
��
β
��

2


Let U be the subrepresentation of F∗(1S) generated by F∗(f1 + f1′). Let λ ∈ C∗ with
λ 6= 1 and ∂ a nice grading of F∗(1S) with ∂(α) = 1 and ∂(β) = 0 (see Remark 4.1.5).
Then ϕ∂(λ)U is generated by F∗(f1 +λf1′), and U and ϕ∂(λ)U are non-isomorphic band
modules.

5.4 Product in the Ringel-Hall algebra

Now we study the products of functions of the form 1F,B,n in the Ringel-Hall algebra
H(A). Using the following lemma and following example, it is enough to consider the
images of indecomposable A-modules of the products of functions of the form 1F,B,n in
H(A).

Lemma 5.4.1. Let A = CQ/I be an algebra, f, g ∈ C(A) and M and N be A-modules.
Then

(f ∗ g)(M ⊕N) =
∑

i,j

(
f

(1)
i ∗ g

(1)
j

)
(M)

(
f

(2)
i ∗ g

(2)
j

)
(N),

where ∆(f) =
∑

i f
(1)
i ⊗ f

(2)
i and ∆(g) =

∑
j g

(1)
j ⊗ g

(2)
j .

Proof. By definition ∆(f)(M,N) = f(M ⊕ N) for each f ∈ C(A). Since C(A) is a
bialgebra the comultiplication ∆ is an algebra homomorphism.

Example 5.4.2. Let F be a tuple of trees, B a tuple of bands and n a tuple of positive
integers. Then

∆(1F,B,n) =
∑

F(1)∪̇F(2)=F,B(1)∪̇B(2)=B,n(1)∪̇n(2)=n

1F(1),B(1),n(1) ⊗ 1F(2),B(2),n(2) .

In this example we have been a little bit lazy: 1F,B,n is not necessarily in C(A), but we
can extend the comultiplication in a natural way to all functions of the form 1F,B,n.

Combining Theorem 5.1.1 and 5.2.1 we get useful corollaries to compute the products
of these functions 1F,B,n in H(CQ). For this again it is not important if we compute the

images in H(CQ) resp. Ĥ(CQ) or in H(A). It is only essential that F resp. π induces a
well-defined functor mod(B)→ mod(A).

Corollary 5.4.3. Let F and F′ be tuples of trees, B and B′ tuples of bands and n and
n′ tuples of positive integers.

1. Let Q be a finite quiver and F : S → Q a tree or a band. Then

H(F )
(
1F,B,n ∗ 1F′,B′,n′

)
= H(F ) (1F,B,n) ∗ H(F )

(
1F′,B′,n′

)
.
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5.4 Product in the Ringel-Hall algebra

2. Let Q̂ be a locally finite quiver, G a free (abelian) group, which acts freely on Q̂,
Q = Q̂/G and π : Q̂→ Q the canonical projection. Then

H(π)
(
1F,B,n ∗ 1F′,B′,n′

)
= H(π) (1F,B,n) ∗ H(π)

(
1F′,B′,n′

)
.

The functions 1F,B,n, 1F′,B′,n′ and the corresponding products are in H(CQ). The
functions H(F ) (1F,B,n), H(F )

(
1F′,B′,n′

)
are in H(CS) and the functions H(π) (1F,B,n),

H(π)
(
1F′,B′,n′

)
are in Ĥ(CQ̂). So this corollary shows: To calculate(

1F,B,n ∗ 1F′,B′,n′
)

(F∗(V ))

for a tree or band F : S → Q it is enough to consider some combinatorics and S-repre-
sentations, where S is a tree or a quiver of type Ãl−1.

Proof. Let F : S → Q be a tree or band and V ∈ rep(S). Then we have to show(
1F,B,n ∗ 1F′,B′,n′

)
(F∗(V )) =

∑(
1
F̃,B̃,n

∗ 1
F̃′,B̃′,n′

)
(V ),

where the sum is over (F̃, F̃′, B̃, B̃′) ∈ GF (F)×GF (F′)×GF (B)×GF (B′). By the proof
of Part 1 of Theorem 5.1.1, Lemmas 5.3.2 and 5.3.3 and Theorem 5.2.1 we get(

1F,B,n ∗ 1F′,B′,n′
)

(F∗(V ))

= χ
({
U ⊆ F∗(V )

∣∣∣1F,B,n(U) = 1,1F′,B′,n′(F∗(V )/U) = 1
}∂1,...,∂n)

= χ
({
U ⊆ V

∣∣∣1F,B,n(F∗(U)) = 1,1F′,B′,n′(F∗(V/U)) = 1
})

=
(
H(F ) (1F,B,n) ∗ H(F )

(
1F′,B′,n′

) )
(V )

=
∑(

1
F̃,B̃,n

∗ 1
F̃′,B̃′,n′

)
(V ).

So we only have to use the representation theory of trees and quivers of type Ãl−1 to
calculate the Euler characteristics of the occurring varieties.

The second case can be proven similarly.

Proposition 5.4.4. Let A be a finite-dimensional algebra, F and F′ be tuples of trees,
B and B′ tuples of bands and n and n′ tuples of positive integers.

1. Let F∗(1S) be a tree module of A such that
(
1F,B,n ∗ 1F′,B′,n′

)
(F∗(1S)) 6= 0. Then

l(B) = l(B′) = 0.
2. Let B∗(V ) be a band module of A such that

(
1F,B,n ∗ 1F′,B′,n′

)
(B∗(V )) 6= 0. Then

B,B′ ∈ {0, (B)}, F and F′ are tuples of strings and l(F) = l(F′), where l(F)
denotes the length of the tuple F.

Proof. Let A = CQ/I. Corollary 5.4.3 shows, to compute
(
1F,B,n∗1F′,B′,n′

)
(F∗(V )) with

a tree or band F : S → Q we have only to consider the products
(
1
F̃,B̃,n

∗ 1
F̃′,B̃′,n′

)
(V ),

where S is a tree or a quiver of type Ãl−1, and some combinatorics.
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5 Ringel-Hall algebras

Thus for Part 1 we assume without loss of generality that Q is a tree and F is the iden-
tity winding. So we have to compute

(
1F,B,n ∗ 1F′,B′,n′

)
(1Q) inH(CQ). All sub- and fac-

tor modules of the tree module 1Q are again tree modules. If
(
1F,B,n ∗ 1F′,B′,n′

)
(1Q) 6= 0,

then l(B) = l(B′) = 0.

For Part 2 we assume without loss of generality that Q is a quiver of type Ãl−1. All
Q-modules are string or band modules B′∗(V

′) such that B′ : Q → Q is the identity
winding. If

(
1F,B,n ∗ 1F′,B′,n′

)
(V ) 6= 0, then l(B), l(B′) ≤ 1 holds by Remark 2.2.7.

The equality l(F) = l(F′) is shown by induction. Let V be a band module and U a
submodule, which is isomorphic to a string module. It is enough to show that for the
representation V/U = (Wi,Wa)i∈Q0,a∈Q1 the equality

dimk(V/U)− 1 =
∑

a∈Q1

rk(Wa)

holds, where rk(Wa) is the rank of the linear map Wa. This is clear since V is a band
and U a string module with dimU /∈ Z(1, . . . , 1).

The calculation of the image of a tree module under a product 1F,B,n ∗ 1F′,B′,n′
is now a purely combinatorial task. Using this proposition it is enough to consider(
1(F (1),...,F (r)) ∗ 1(F ′(1),...,F ′(s))

)
(F∗(1S)). By Corollary 5.4.3 it is even enough to count

successor closed subquivers T of the quiver S with F∗(1T ) ∼=
⊕r

i=1 F
(i)(1S(i)) and

F∗(1S/1T ) ∼=
⊕s

i=1 F
′(i)(1S′(i)).

Example 5.4.5. Let F be the string described by the following picture.

F : S =

 1
α
������ β

��
;;;; 1′

β′

������ α′

��
????

2 3
γ
// 3′ 2′

→ Q =

 1
α
������ β

��
====

2 3 γ
ee


Let F = (2 → Q, (3

γ→ 3′) → Q) and F′ = (1 → Q, (1
α→ 2) → Q). We compute

(1F ∗ 1F′) (F∗(1S)) with Corollary 5.4.3. Then

GF (F) = {(2→ S, (3
γ→ 3′)→ S), (2′ → S, (3

γ→ 3′)→ S)},

GF (F′) = {(1→ S, (1
α→ 2)→ S), (1′ → S, (1

α→ 2)→ S),

(1→ S, (1′
α′→ 2′)→ S), (1′ → S, (1′

α′→ 2′)→ S)}

and thus (1F ∗ 1F′) (F∗(1S)) = 2 by counting these subquivers.

Proposition 5.4.6. Let Q be a quiver of type Ãl−1, F and F′ be tuples of strings,
B : Q→ Q the identity winding, m ∈ N and λ ∈ C∗.

1. Let n, n′ ∈ N with n+ n′ ≤ m. Then(
1F,B,n ∗ 1F′,B,n′

)
(B∗(λ,m)) = (1F ∗ 1F′) (B∗(λ,m− n− n′)).
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5.4 Product in the Ringel-Hall algebra

2. Let n ∈ N, F a string and F(n) = (F, . . . , F ) with l (F(n)) = n such that F∗(1S)

and F
(i)
∗ (1S(i)) are preprojective, dimk F∗(1S) ≥ dimk F

(i)
∗ (1S(i)) and F∗(1S) �

F
(i)
∗ (1S(i)) for all i. Then

(
1F(n)∪̇F ∗ 1F′

)
(B∗(λ,m)) =∑

k1,...,kn∈N
(1F ∗ 1F′)

(
B∗

(
λ,m−

∑n

i=1
ki

)
⊕
⊕n

i=1
Iki

)
with Iki is an indecomposable representation with dimension vector (ki, . . . , ki) −
dimF∗(1S) for all i.

If dimB∗(λ, ki) > dimF∗(1S), the module Ik exists, is preinjective and determined
up to isomorphism uniquely by Remark 2.2.10.

Let Q be a quiver of type Ãl−1, F′′ and F′ be tuples of strings and V ∈ InQ such

that (1F′′ ∗ 1F′) (V ) 6= 0. Without loss of generality we assume that dimk F
′′(1)
∗ (1S) ≥

dimk F
′′(i)
∗ (1S) for all i. Then F

′′(i)
∗ (1S) is preprojective for all i and we apply Part 2

of Proposition 5.4.6 with F = F ′′(1) and F = {F ′′(i)|F ′′(i)(1S) � F (1S)}. Thus before
proving Proposition 5.4.6 we get the following corollary.

Corollary 5.4.7. Let A = CQ/I be an algebra, M a direct sum of tree and band modules
of Q such that M is an A-module. Let F and F′ be tuples of trees, B and B′ tuples of
bands and n and n′ tuples of positive integers. Then 1F,B,n ∗ 1F′,B′,n′(M) is given by a
combinatorial description.

Proof of Proposition 5.4.6. First we prove Part 1. Let M := B∗(λ,m) be an A-module,

π : M → B∗(λ,m − n) a projection, K :=
⊕

i F
(i)
∗ (1S(i)) and K ′ :=

⊕
i F
′(i)
∗ (1S′(i)). By

Remark 2.2.7, there exists a unique U ⊆ B∗(λ,m) with U ∼= B∗(λ, n), so we can assume
B∗(λ, n) ⊆ B∗(λ,m− n′) ⊆ B∗(λ,m). Define the varieties

X :=
{
U ⊆M

∣∣∣U ∼= B∗(λ, n)⊕K,M/U ∼= B∗(λ, n
′)⊕K ′

}
X :=

{
V ⊆M

∣∣∣V ∼= K,M/V ∼= K ′
}

with U :=
(
U ∩ B∗(λ,m − n′)

)
/B∗(λ, n) for all B∗(λ, n) ⊆ U ⊆ M and an algebraic

morphism φ : X → X by U 7→ U . Using Remark 2.2.7 again, B∗(λ, n) ⊆ U ⊆ B∗(λ,m−
n′) for all U ∈ X. So φ is well-defined and injective.

Let V ∈ X. Since V ∼= K and M/V ∼= K ′ we have B∗(λ,m − n′)/π−1(V ) ∼= K ′ and
M/B∗(λ,m− n′) ∼= B∗(λ, n

′). There exist two short exact sequences

0→ B∗(λ, n)→ π−1(V )→ K → 0

0→ K ′ →M/π−1(V )→ B∗(λ, n
′)→ 0

Using Remark 2.2.10, we assume without loss of generality that the direct summands
of K are preprojective Q-representations and the direct summands of K ′ are preinjec-
tive ones. So both sequences split and this means that π−1(V ) ∼= B∗(λ, n) ⊕ K and
M/π−1(V ) ∼= K ′ ⊕B∗(λ, n′). Thus π−1(V ) ∈ X and π−1(V ) = V . This shows that the
Euler characteristics of both varieties are equal.

Part 2 of Proposition 5.4.6 follows inductively by the following lemma.
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5 Ringel-Hall algebras

Lemma 5.4.8. Let Q, m, B : Q → Q, F : S → Q, F(n), F and F′ as in Part 2 of
Proposition 5.4.6. Let M = B∗(λ,m) and n ∈ Z>0. Then(

1F(n)∪̇F ∗ 1F′
)

(M) =
∑

k∈N

((
1F(n−1) ⊗ 1

)
∗∆ (1F) ∗∆ (1F′)

)
(B∗(λ,m− k), Ik)

with Ik is an indecomposable module and dim Ik = dimB∗(λ, k)− dimF∗(1S).

Proof. Let M = (Mi,Ma)i∈Q0,a∈Q1 , c = dimF∗(1S), d(i) = dimF
(i)
∗ (1S(i)) for all i and

d = nc +
∑

i d
(i). By Remark 2.2.10, we know 1F(n) ∗ 1F = 1F(n)∪̇F. So we have to

calculate the Euler characteristic of

X =
{

(0 ⊆ U ⊆W ⊆M) ∈ Fnc,d(M)
∣∣∣1F(n)(U) = 1F(W/U) = 1F′(M/W ) = 1

}
.

We use now the arguments of the proof of Lemma 4.7.5 in Section 4.7.2. Let {eik|i ∈
Q0, 1 ≤ k ≤ m} be a basis of M such that the following hold.

1. For all 1 ≤ p ≤ m, the vector space M (p) := 〈ei,k|i ∈ Q0, 1 ≤ k ≤ p〉 is a
subrepresentation of M isomorphic to B∗(λ, p).

2. There exists a nilpotent endomorphism ψ of M such that ψ(ei1) = 0 and ψ(eik) =
ei,k−1 for all 1 < k ≤ m and all i ∈ Q0.

The quiver S is of type A|c| such that S0 = {1, . . . , |c|} and S1 = {s1, . . . , s|c|−1}.
Let (0 ⊆ U ⊆ W ⊆ M) ∈ X. Then U ∼= F∗(1S)n. Using the Gauß algorithm, there

exists a unique tuple j(U) = (1 ≤ j1 < j2 < . . . < jn ≤ m) as in Equation (4.7.2) and
unique λkj(U) ∈ C such that the vector space U is spanned by(

M ε1
F1(s1) . . .M

εq
F1(sq)

)−1 (
eF0(1),jp +

∑jp−1

j=1,j 6=jk∀k
λpj(U)eF0(1),j

)
with 1 ≤ p ≤ n and 0 ≤ q < |c|. This is well-defined since all linear maps Mi are
isomorphisms. The variety X can be decomposed into a disjoint union of locally closed
subsets Xk := {(U ⊆W ) ∈ X|(j(U))1 = k}. Define a locally closed subset of X for each
k by X0

k := {(U ⊆W ) ∈ Xk|λ1j(U) = 0 ∀j}. Equation (4.7.3) defines again an algebraic
morphism π : Xk → X0

k with affine fibres.
For each k there exists a Uk ⊆M such that Uk ∼= F∗(1S), Uk ⊆ U for all (U ⊆W ) ∈ X0

k

and M/Uk ∼= M (m−k) ⊕ Ik with an indecomposable module Ik as in the lemma. Since
|c| ≥ |d(i)| for all i and F∗(1S) is preprojective, all sequences of the form

0→ F∗(1S)→ π−1(W )→ F∗(1S)n−1 ⊕
⊕

i
F

(i)
∗ (1S(i))→ 0

with a projection π : M →M/F∗(1S) and a submodule W ⊆M/F∗(1S) split. Let

X0
k :=

{(
U ⊆W ⊆M (m−k)

)
,
(
W ′ ⊆ Ik

)∣∣∣
1F(n−1)(U) = 1F(W/U ⊕W ′) = 1F′

(
M (m−k)/W ⊕ Ik/W ′

)
= 1
}
.

Using an R-grading, we conclude, as in the proof of Part 1 of Proposition 5.4.6, that

χ
(
X0
k

)
= χ

(
X0
k

)
=
((
1F(n−1) ⊗ 1

)
∗∆ (1F) ∗∆ (1F′)

) (
M (m−k), Ik

)
and by χ (X) =

∑
k∈Nχ

(
X0
k

)
the lemma.
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5.5 String algebras

In this section we consider the Ringel-Hall algebras of string algebras. We apply the
results of the previous sections to this special case.

Corollary 5.5.1. Let A be a string algebra. Let F be a tuple of strings, B a tuple of
bands and n a tuple of positive integers. Then 1F ∗ 1B,n = 1F,B,n = 1B,n ∗ 1F.

Proof. If A is a string algebra, then every indecomposable A-module is a string or a
band module. So this corollary follows directly from Lemma 5.4.1, Example 5.4.2 and
Proposition 5.4.4.

Example 5.5.2. Let Q = (1 ⇒ 2), F and F′ tuples of strings, m ∈ N and V ∈ ImQ such
that (1F ∗ 1F′) (V ) 6= 0. Then

(1F ∗ 1F′) (V ) =
l(F)!∏

{F (i)|i}/∼= |[F (i)]|!
l(F′)!∏

{F ′(i)|i}/∼= |[F ′(i)]|!
, (5.5.1)

where {F (i)|i}/ ∼= is the set of isomorphism classes and |[F (i)]| is the number of elements
in the isomorphism class of F (i). For instance,(

1S(2)m−r⊕P (1)r ∗ 1S(1)m−s⊕I(2)s
)

(V ) = (mr ) (ms )

for each V ∈ Im+r+s
Q with m, r, s ∈ N, S(i) ∈ rep(Q) is the simple representation

associated to the vertex i ∈ Q0 and P (i) ∈ rep(Q) (resp. I(i)) is the projective cover
(resp. injective hull) of S(i) for each i ∈ Q0 (see Example 3.5.9).

Equation (5.5.1) can be proven by iterated use of Part 2 of Proposition 5.4.6. By
Example 4.5.5, alternatively it is enough to show Equation (5.5.1) for a string module
with dimension vector (m,m). Using Theorem 5.1.1, this can be computed by counting
all listings of the strings in F and in F′.

In general it is much harder to give an explicit formula for (1F ∗ 1F′) (V ).

Corollary 5.5.3. Let A be a string algebra. Then every function in C(A) is a linear
combination of functions of the form 1F,B,n with some tuple F of strings, some tuple B
of bands and some tuple n of positive integers.

Proof. We use an induction over dimension vectors of Q. Let d be a dimension vector.
Then the set

Hd :=
{
1F,B,n

∣∣∣∃M ∈ repd(Q) : 1F,B,n(M) 6= 0
}

is finite and the function 1d is the sum of all functions in Hd.
It remains to show that each product 1F,B,n∗1F′,B′,n′ ∈ Hd(A) is a linear combination

of functions in Hd. Using Lemma 5.4.1 and Example 5.4.2, we have to check that for all
bands B and m ∈ N the integer

(
1F,B,n ∗ 1F′,B′,n′

)
(B∗(λ,m)) is independent of λ ∈ C∗.

This is clear by Part 2 of Proposition 5.4.6 and an induction argument.
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In general the functions of the form 1F,B,n do not belong to C(A) for a string algebra
A. Nevertheless they are linearly independent. So we get the following result. Unfortu-
nately it is not clear how a basis looks like in general or if C(A) = H(A) holds for each
representation finite (string) algebra A.

Theorem 5.5.4. Let A = CQ/I be a string algebra, such that Q has no loops and
cyclically oriented two-cycles. Then C(A) = H(A) if and only if A is representation
finite. Moreover, in this case the set of functions of the form 1F with some tuple F of
strings is a vector space basis of C(A).

For each finite-dimensional representation finite algebra A the set of characteristic
functions 1M of the orbits of A-modules M is a basis of the vector space H(A). To prove
the theorem we obtain the following two lemmas.

Lemma 5.5.5. Let A be a finite-dimensional algebra.

1. If A is representation finite and 1M ∈ C(A) for each indecomposable A-module M ,
then C(A) = H(A).

2. If A is representation infinite, then C(A) 6= H(A).

Proof. For the first part we consider an A-module N and a decomposition N =
⊕m

i=1Ni

of N in indecomposable A-modules. We use a result of Riedtmann [44, Lemma 2.2]
and some induction over the number of indecomposable direct summands m. Since A is
representation finite, we get

1N1 ∗ . . . ∗ 1Nm = λ1N +
∑r

i=1
λi1Mi

with r ∈ N, λ, λ1, . . . , λr ∈ C∗ and A-modules Mi such that the number of indecompos-
able direct summands of Mi is smaller than m. Thus 1M ∈ C(A) for each A-module
M .

Otherwise, if A is representation infinite, there exists some dimension vector d with
infinitely many isoclasses of A-modules with dimension vector d (see Bautista [4, The-
orem 2.4]). Since {1M |M ∈ mod(A)} is a basis, the vector space Hd(A) is - in contrast
to Cd(A) - not finite-dimensional. This yields C(A) 6= H(A).

Lemma 5.5.6. Let N ∈ N and Q = (Q0, Q1) be the cyclically oriented quiver of type
ÃN−1, i.e. Q0 = {1, . . . , N} and Q1 = {αi : i→ i+ 1|i ∈ Q0}. For each admissible ideal
I holds C(CQ/I) = H(CQ/I).

Proof of Theorem 5.5.4. Let A be representation finite. Thus each indecomposable A-
module is a string module. By Lemma 5.5.5 it is enough to show 1F ∈ C(A) for each
string F : S → Q. We use some induction over the dimension d of F∗(1S). If d = 1, we
are done. Thus we assume d ≥ 2.

Let G : T → Q be a string and i ∈ Q0. Then by Corollary 5.4.3 we get

1S(i) ∗ 1G − 1G ∗ 1S(i) =
∑r

j=1
εj1F (j) (5.5.2)
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i
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Figure 5.5.1: Possible strings F (j) : T (j) → Q.

with r ∈ N, εj ∈ {−1, 1} and strings F (j) : T (j) → Q of the representation finite algebra
A. Since Q has no loops and cyclically oriented two-cycles, we get 0 ≤ r ≤ 2 by the
picture in Figure 5.5.1.

Moreover, if r = 2, we obtain the following string. Let t be the dimension of G∗(1T ).
Then without loss of generality we get a quiver T ′ = (T ′0, T

′
1) of type At+2 with T ′0 =

{0, 1, . . . , t, t+1} and a string G′ : T ′ → Q of Q such that the following holds. For r, s ∈ N
with 0 ≤ r ≤ s ≤ t+1 let T r,s be the full subquiver of T ′ with the points {r, r+1, . . . , s}.
The quiver T 1,t = T , T 0,t = T (2), T 1,t+1 = T (1), G′|T 1,t = G, G′|T 0,t = F (2) and
G′|T 1,t+1 = F (1) (see Figure 5.5.2). We remark that G′∗(1T ′) is not necessarily an A-
module.

T

0 1 · · · t t+ 1

T (2) T (1)

Figure 5.5.2: The quiver T ′ with subquivers T , T (1) and T (2).

Let F : S → Q be the string with S0 = {1, . . . , d} and d ≥ 2 as above. For r, s ∈ N
with 1 ≤ r ≤ s ≤ d let Sr,s be the full subquiver of S with the points {r, . . . , s}. Then
we set G = F |S1,d−1 : S1,d−1 → Q and i = F0(d). Without loss of generality F (1) = F in
Equation (5.5.2). If r = 1, we are done. Otherwise we get a quiver T ′ and a G′ : T ′ → Q
as above with d = t+1 and T 1,t+1 = S. Moreover, we obtain a quiver S̃ of type Ãd−1 with
S̃0 = S0 by identifying the points 0 and t+ 1 in T ′ and an induced winding G̃ : S̃ → Q
with G̃|S = F and G̃1 = G′1. Now we continue with the string Ĝ = G′|T 0,d−2 : T 0,d−2 → Q
and î = F0(d−1) and so on. If this construction stops sometime, we are done. Otherwise,
without loss of generality this quiver S̃ is cyclically oriented, since the algebra A = CQ/I
is representation finite. This means S̃1 = {αi : i→ i+ 1|i ∈ S̃0} with d+ i := i in S̃0.

Furthermore, we assume that the winding G̃ : S̃ → Q is surjective. For r, s ∈ {1, . . . , d}
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we define a subquiver S̃r,s = (S̃r,s0 , S̃r,s1 ) of S̃ of type A by

S̃r,s0 =

{
{r, . . . , s} if r ≤ s,
{r, . . . , d+ s} otherwise,

S̃r,s1 = {αi|i ∈ S̃r,s0 , i 6= s}.

We remark again that G̃∗(1S̃) is not an A-module, but G̃∗(1S̃r,s) is an A-module for all
r, s ∈ {1, . . . , d}.

Now we prove G̃1(αr) = G̃1(αs) for all r, s ∈ S̃0 with G̃0(r) = G̃0(s). This yields that
Q is a cyclically oriented quiver of type Ã (see Figure 3.6.11). This case is covered in
Lemma 5.5.6.

Let G̃ be not injective and r, s ∈ N with 1 ≤ r < s ≤ d and G̃0(r) = G̃0(s). Now
we construct a quiver S′ of type Ãd−1 by taking the disjoint union of S̃r,s and S̃s,r and
identifying the points r and s crosswise (see Figure 5.5.3).

S̃r,s : r
αr //

WWWWWWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWWWWWW r + 1
αr+1

// · · · αs−1
// s

g g g g g g g g g g g g g g g g g g g g g g g g

g g g g g g g g g g g g g g g g g g g g g g g g

S̃s,r : r · · ·
αr−1

oo 1α1

oo dαd
oo · · ·

αd−1

oo s
αs

oo

Figure 5.5.3: The construction of the quiver S′.

This quiver is not cyclically oriented. If the induced morphism S′ → Q of quivers is
a winding, we get a band of A. However, A is representation finite. Thus G̃1(αr−1) =
G̃1(αs−1) or G̃1(αr) = G̃1(αs). We assume the first case. Since A is a string algebra we
get G̃1(αr−i) = G̃1(αs−i) for all i ∈ N with i > 0, i ≤ s− r and i ≤ r − s+ d. Without
loss of generality we assume r − s + d < s − r. In this case G̃1(αs) = G̃1(α2s−r−d) and
r < 2s − r − d < s. Thus G̃0(s) = G̃0(2s − r − d). We construct another quiver S′′ of
type Ãs−r−1 by taking the disjoint union of S̃r,2s−r−d and S̃s,r and identifying the points
r and 2s− r−d in S̃r,2s−r−d and the points r and s in S̃s,r crosswise (see Figure 5.5.4).

This quiver induces again a morphism S′′ → Q of quivers. This is again not a band.
Thus by an induction over the number of points in S′ and S′′ we get G̃1(αr) = G̃1(αs).
Moreover, there is a r ∈ N with 1 ≤ r < l, G̃1(αi) = G̃1(αi+r) as in Example 2.2.6.

Proof of Lemma 5.5.6. For r ∈ N with r > 0 let Mr be an indecomposable, nilpotent
Q-representation with topMr

∼= S(1) and dimMr = r (see Figure 5.5.5). Using the first
part of the proof of Theorem 5.5.4 1Mr ∈ C(A) for all r ∈ N\NN (see Equation (5.5.2)).

If for all r ∈ N holds 1Mr
N
∈ C(A), we get 1MrN

∈ C(A) by induction over r and the
following equation

1MrN
=
∑r−1

i=1
(−1)i−1

1M(r−i)N ∗ 1M i
N

+ (−1)r−1r1Mr
N
.
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S̃r,2s−r−d : r
αr //

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY r + 1
αr+1

// · · ·
α2s−r−d−1

// 2s− r − d
α2s−r−d

//____

j j j j j j j j j j j j j j j j j j j

j j j j j j j j j j j j j j j j j j j
· · · αs−1

//______ s

S̃s,r : r · · ·
αr−1

oo 1α1

oo dαd
oo · · ·

αd−1

oo s
αs

oo

Figure 5.5.4: The construction of the quiver S′′.
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Figure 5.5.5: The quiver Q and the Q-representations M1, M3 and M6 for N = 4.

Thus it is enough to show 1Mr
N
∈ C(A) for all r ∈ N. Let (Ps) be the following property

for s ∈ {1, . . . , N}:

1S(d)⊕Mr
s
∈ C(A) ∀r ∈ N,d ∈ NQ0 .

Property (P1) holds by Lemma 2.4.2 and Property (PN ) yields the lemma. Let d =
(di)i∈Q0 be a dimension vector. If N ≥ 2, we get by induction over the dimension for all
l ∈ {1, . . . , r}

1S(d+(r−l)e1+re2) ∗ 1S(1)l =
∑l

i=0

(
d1+r−i
l−i

)
gi ∈ C(A) (5.5.3)

with gi := 1S(d+(r−i)e1+(r−i)e2)⊕M i
2

for all i ∈ {0, . . . , r}. Thus Property (P1) yields

g0 ∈ C(A). By Equation (5.5.3) and another induction over l we get gi ∈ C(A) for all
i ∈ {0, . . . , r}. Thus gr = 1S(d)⊕Mr

2
∈ C(A) and Property (P2) holds.

Now we assume that Property (Ps) holds for some s ∈ {2, . . . , N − 1}. Again we get
for all l ∈ {1, . . . , r}

1S(d+res+1)⊕Mr−l
s
∗ 1M l

s
=
∑l

i=0

(
r−i
l−i
)
gi ∈ C(A) (5.5.4)

with gi := 1S(d+(r−i)es+1)⊕Mr−i
s ⊕M i

s+1
for all i ∈ {0, . . . , r}. Thus Property (Ps) yields

g0 ∈ C(A). By Equation (5.5.4) and another induction over l we get again gi ∈ C(A) for
all i ∈ {0, . . . , r}. Thus gr = 1S(d)⊕Mr

s+1
∈ C(A) and Property (Ps+1) holds.

By the following example this proof cannot be generalized to each representation finite
string algebra.
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Example 5.5.7. Let Q be the following quiver

1
α
((
2

β

hh γ
ee

and I = 〈αβ, βα, γ2〉 an admissible ideal. Thus A = CQ/I is a string algebra. This
algebra is representation finite since up to an isomorphism all strings are described by
the pictures in Figure 5.5.6.

(
1
)
,
(

2
)
, F (α) =

 1
α

��
======

2
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��������

1
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 2
γ
��

2

 ,
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2
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��������
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 1

α ��
====== 2

γ
��

2
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 2
β

��������
γ
��

1 2
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1
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��������
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1
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Figure 5.5.6: Strings of the string algebra A.

Then holds

1S(2) ∗ 1F (α) − 1F (α) ∗ 1S(2) = 1F (γα) − 1F (γ−1α),

1S(2) ∗ 1F (β) − 1F (β) ∗ 1S(2) = − 1F (βγ) + 1F (β−1γ),

1S(1) ∗ 1F (γ) − 1F (γ) ∗ 1S(1) = − 1F (γα) + 1F (βγ) − 1F (γ−1α) + 1F (β−1γ).

Thus the proof of Theorem 5.5.4 fails for this example, but C(A) = H(A) by some
straightforward calculation.
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