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CHAPTER I: INTRODUCTION

1.1 G protein-coupled receptors and their signal

transduction pathways

G protein-coupled receptors (GPCR) can be classified into five major families. The

largest family is the Rhodopsin-like receptor family, while the other smaller families

are the Secretin family, the Adhesion family, the Glutamate family and the

Frizzled/Taste family.[1]

The members of the Rhodopsin-like receptor family, in particular, are one of the

most important therapeutical drug targets on the pharmaceutical market, because

they are involved in a broad spectrum of diseases like stroke, asthma,

schizophrenia, cancer, neurological pain, migraine, allergies, gastric ulcers,

diabetes, obesity and hypertension.[2-4]

GPCRs are proteins located in the cytoplasma membrane. They consist of seven

-helical transmembrane domains that are connected by intracellular and

extracellular loops; the N-terminus is extracellular and the C-terminus intracellular.

These receptors are classically activated upon ligand binding and transduce

signals from the extracellular compartment to the interior via biochemical

processes involving GTP-binding proteins, so-called G proteins. Activated GPCRs

act as guanine nucleotide exchange factors (GEFs) for the G subunit of a

heterotrimeric G protein, catalyzing the release of GDP and the binding of GTP for

G protein activation. The activated G protein subunits G and G can then

associate with downstream effectors to modulate various aspects of cellular

physiology. The downstream effector activated or inhibited by the G protein divides

the group of G proteins into the following classes: Gq, Gs, Gi/o and G12/13 (Figure

1).[5] Each class activates specific signal transduction pathways within the cell.



CHAPTER I: INTRODUCTION

2

cAMP
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Figure 1. Different signal transduction pathways are linked to G protein-coupled
receptors (GPCR). Upon stimulation, GPCRs activate one or more different
classes of G proteins (Gi/o, Gs, Gq/11, G12/13) which promote the activation of certain
signal transduction pathways, resulting either in an accumulation, in a
concentration decrease of intracellular second messengers (cAMP, Ca2+) or in an
activation of other downstream molecules (RhoGEF).

G protein-dependent signal transduction pathways

Upon activation, the heterotrimeric Gq protein dissociates into its Gq and

Gsubunits. The Gq subunit recruits phospholipase C, which catalyses the

degradation of phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol

1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 subsequently binds to IP3

sensitive receptors on intracellular calcium stores, leading to a release of calcium

from these stores. In the presence of calcium and DAG protein kinase C (PKC) is

activated, which modulates different target proteins by phosphorylation and hence

further signal transduction pathways.[6] Among these, the mitogen-activated

protein kinase (MAPK) pathway is activated by PKC. The MAPK pathway activates

among others the transcription factor cAMP-response element binding protein

(CREB).[7]

The Gs subunit activates the enzyme adenylyl cyclase, which catalyses the

formation of cyclic adenosine monophosphate (cAMP) from adenosine

monophosphate. cAMP regulates cardiac hypertrophy, insulin secretion,

cytoskeletal dynamics, the cell cycle, proliferation, transcriptional activation and

neurite outgrowth.[8-14] These processes are modulated by the ability of cAMP to

regulate different proteins like protein kinase A (PKA) and exchange proteins

activated by cAMP (EPAC), which probably act as transcription regulators.[15] PKA

regulates important proteins involved in signalling processes such as GPCRs, IP3

receptors and transcription factors like CREB by phosphorylation.[15-21]



CHAPTER I: INTRODUCTION

3

The heterotrimeric G protein, consisting of a Gi/o and a G subunit, modulates

diverse pathways. As the adversary of the Gs protein, the Gi/o subunit inhibits the

adenylyl cyclase. Furthermore, the G subunit activates PLC isoforms and both

subunits activate the MAPK pathway.[22-25]

Finally, the activation of the G12/13 pathway plays a key role in stress fibre

formation, nuclear signalling and cell transformation.[26, 27] These processes are

initiated upon G12/13 subunit-dependent activation of a family of Rho guanine

nucleotide exchange factors (RhoGEFs). The G12/13 family of G proteins therefore

acts directly upstream of RhoA by binding and activating a distinct family of

RhoGEFs.[28, 29]

Ligand and G protein-independent functions and signal transduction

pathways

It has been reported that GPCRs have functions that are not dependent on their

ability to activate G proteins. These functions are based on their ability to interact

with each other or with other membrane bound proteins. The function of GPCRs

and/or their surface expression can be modified by the formation of GPCR

heteromers like GPR17 and type 1 cysteinyl-leukotriene receptor (CysLT1), the

subtype 1 melatonin receptor (MT1) and GPR50 or the subtype D Mas-related

gene (MrgD) and MrgE.[30-32] Furthermore, the formation of heterodimers can be

essential for the export of a receptor to the cell surface and G protein coupling.[33]

In addition, a GPCR cannot only be modulated by its own ligand but also by a

ligand that binds to its heterodimer partner. This modulation has been shown for

the heterodimers of taste receptors: T1R3 forms a heterodimer with either T1R1 or

T1R2. Both cyclamate and lactisole regulate the pharmacology of the respective

heterodimer by binding to T1R3.
[34]

For a long time,-arrestin and G protein-coupled receptor kinases (GRK) have

been known to play a central and coordinated role in the ‘desensitisation’ of

G protein activation by GPCRs, but it now becomes clear that GPCRs can also

signal through these two protein families.

It has been shown that -arrestin activates ERK1/2 as well as p38 MAPK

pathways upon receptor stimulation. [35, 36] Furthermore, GPCRs respond to

-arrestin mediated by RhoA.[37] The protein kinase B pathway is modulated by
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protein phosphatase 2A (PP2A), which is activated by -arrestin.[38] In addition,

GPCRs activate c-Src in a -arrestin-dependent fashion. c-Src is a member of the

nonreceptor tyrosin kinase family, which also results in the activation of the ERK

cascade.[39]

GRKs have been identified as modulators of -arrestin signalling on the one hand

and on the other hand as direct interactors with protein kinase B and MEK1, a

MAPK kinase.[40, 41] Protein kinase B and MEK1 are inhibited by the interaction

with GRK.[42, 43]

There are several GPCRs which are constitutively active independently of any

ligand. Examples of GPCRs that function by their constitutive activity, are the

human orphan herpesvirus-8-encoded receptor ORF74, which is responsible for

its oncogenic potential to cause Kaposi’s sarcoma-like lesions, the Epstein-Barr

virus (EBV) induced receptor 2 (EBI2), the Gs coupled receptor GPR3, which

prevents premature ovarian ageing and maintains meiotic arrest in oocytes, as

well as GPR3, GPR6 and GPR12, which promote neurite outgrowth.[14, 44-47]

1.2 Orphan G protein-coupled receptors and their

deorphanisation

At present, there are still approximately 100 orphan receptors. Orphan receptors

are GPCRs whose endogenous ligand is not identified.[3] Owing to their relevance

as potential drug targets, it is not surprising that the deorphanisation of GPCRs is

a major goal in the development of new therapeutic approaches.

The chief strategy in the deorphanisation of GPCRs is the so-called reverse

pharmacology.[3] This strategy is composed of two steps. First, the orphan receptor

has to be recombinantly overexpressed in an appropriate cell system. Eukaryotic

cells are therefore transfected with the corresponding receptor cDNA in an

appropriate expression vector. Second, potential receptor ligands can be tested

with regard to their binding abilities or their ability to change intracellular second

messenger levels as a result of receptor activation. Membranes of the receptor

expressing cells or whole cells are used for this purpose.[48]
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1.3 G protein-coupled receptor 17 (GPR17)

Bläsius et. al. were the first to report on a novel orphan G protein-coupled receptor

primarily expressed in the brain.[49] The coding sequence of this receptor localized

on human chromosomal band 2q21 has been identified on a cDNA clone called

R12.[49, 50] The cDNA clone consists of three exons and two introns. Two receptor

versions, a long and a short version, are possible because there are two starting

codons in exon 2 as well as in exon 3. These two versions are generated by

alternative splicing of the receptor mRNA.

Figure 2. Structure of cDNA clone R12 coding for the human GPR17 as described
by Bläsius et. al.[49] R12 consists of three exons (grey), two introns and a
3’-untranslated region (UTR). There are in-frame starting codons on exons 2 and
3, so that two GPR17 proteins are possible, a long (1104 bp) and a short version
(1020 bp).

As already mentioned GPR17 is mainly expressed in the brain.[49, 51] However, it is

also expressed in heart, kidney and in peripheral blood monocytes.[30, 51, 52]

CD11c+ dendritic cells and bone marrow-derived macrophages developed from

monocytes also express GPR17.[53]

The GPR17 expression pattern has been further investigated within different

regions and distinct cell types of the brain. GPR17 is expressed highly in

hypothalamus, cerebellum, amygdala, cerebellar hemisphere, frontal cortex,

hippocampus and putamen.[54] Reports concerning the expression of GPR17 in

different cell types within the brain are contrary. The following cell types have been

identified to express GPR17: pyramidal neurons, hippocampal neuroprogenitor

cells, microglia/macrophages, adult oligodendrocyte precursor cells, ependymal

cells lining the central cord, nerve growth factor (NGF) induced rat
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pheocromocytoma cells (PC12), and CD11c+ dendritic cells.[51, 53, 55-57] By

contrast, it has been reported that GPR17 expression is restricted to

oligodendrocytes and that it is not expressed in neurons or astrocytes.[58, 59]

However, there are several indications that GPR17 expression is induced under

certain conditions, such as after ischemic events, which might explain the contrary

reports.

Ciana et. al. proposed that GPR17 belongs to the group of P2Y receptors and

cysteinyl-leukotriene receptors (CysLT) (Figure 3).[51] They therefore aligned the

protein sequence of nucleotide receptors P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12,

P2Y13 and P2Y14 with the CysLT receptors type 1 and 2 (CysLT1, CysLT2). Based

on the results of the alignment, they created a phylogenetic tree. This phylogenetic

tree shows two distinct clusters of receptors: P2Y1-like and P2Y12-like receptors.

The first cluster consists of P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11 while the second

contains P2Y12, P2Y13 and P2Y14 as well as the CysLT receptors type 1 and 2 and

GPR17 (Figure 3).

0.1

P2Y11
P2Y1

P2Y6
P2Y2
P2Y4

GPR17
CysLT1

CysLT2
P2Y14
P2Y12
P2Y13

Figure 3. Phylogenetic tree showing the relationship between GPR17, P2Y- and
cysteinyl-leukotriene receptors. The figure has been modified according to Ciana
et. al.[51]

Until 2006, GPR17 belonged to the group of orphan GPCRs, but then Ciana et. al.

claimed that GPR17 is a dual uracil nucleotides and cysteinyl-leukotriene receptor.

The uracil nucleotide UDP and its derivatives UDP-glucose and UDP-galactose as

well as the CysLTs leukotrienes C4 (LTC4) and D4 (LTD4) have been characterised

as agonists for GPR17. Moreover, the characterisation of GPR17 reveals that it

has the ability to couple to the Gi and Gq pathways.[51] The CysLT receptor

antagonists montelukast and pranlukast as well as cangrelor, a P2Y12/P2Y13
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receptor antagonist and MRS2179, a P2Y1 receptor antagonist, have been

reported as potent GPR17 antagonists.[51] It has been shown that ATPS acts as

an antagonist for the longer splice variant of GPR17 and that it couples to K+

channels.[60]

Yet there are also contrary results indicating the ability of the published agonists

and antagonists to activate or inhibit GPR17. Maekawa et. al. reported that both

the human and the mouse GPR17 do not respond to LTC4 and LTD4, and that the

mouse receptor cannot be activated by UDP-glucose.[30] Partially in line with these

observations, Benned-Jensen and Rosenkilde described that LTC4 and LTD4

neither activate nor bind to GPR17. Furthermore they could not confirm binding of

montelukast to GPR17.[54] Instead, Maekawa et. al. proposed ligand-independent

functions of GPR17. They claimed that GPR17 negatively regulates the function

and/or surface expression of the type 1 cysteinyl-leukotriene receptor (CysLT1) in

a ligand-independent manner.[30, 61]

First reports suggest that GPR17 plays a key role in the development of brain

injury after ischemic events. After ischemia, GPR17 expression is up-regulated in

the affected areas and GPR17 knock-down as well as pharmacological GPR17

inhibition protect the brain from injury.[51] On the other hand, GPR17 promotes

pre-oligodendrocyte differentiation to mature myelinating cells, the infiltration of the

lesioned area with microglia cells expressing GPR17 and remodelling processes

of the injured area.[56] A comparable GPR17 function has been observed after

spinal cord injury. Here, GPR17 seems to be responsible for the degradation of

neurons and oligodendrocytes in the lesioned area in the early phases after injury,

whereas microglia and ependymal cells expressing GPR17 in a later state initiate

local remodelling and repair processes, respectively.[57] There is further evidence

that GPR17 plays a role in remodelling and repair mechanisms: GPR17 is

expressed in nerve growth factor (NGF) treated PC12 cells, and GPR17

stimulation with proposed GPR17 agonists leads to pro-survival effects as well as

to neurite outgrowth of these cells.[62] Contrary to these findings, Chen et. al. report

that GPR17 inhibits oligodendrocyte maturation and thus myelinogenesis, which

implies that GPR17 does not act as a modulator of brain repair after injury.[58]

In addition to functions in the brain or spinal cord after ischemia or in myelination

processes, GPR17 acts as a negative regulator of the CysLT1 receptor, a mediator

of inflammatory processes.[30] It has been reported that coexpression of GPR17
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and CysLT1 blocks signalling of the CysLT1 receptor. Furthermore, there are

indications that GPR17 negatively regulates the in vivo CysLT1 receptor surface

expression.[30, 61] The modulating effect on the CysLT1 receptor and its impact on

inflammation have been shown. In two inflammation models, a model for the

detection of vascular permeability in mast cell-mediated passive cutaneous

anaphylaxis (PCA) and a pulmonary inflammation model, GPR17 knock-down

leads to an increased inflammatory response as well as in the second model to an

enhanced CysLT1 receptor expression level.[30, 61]

1.4 Scope of the present study

GPR17 acts as a mediator in pathological processes like ischemia and

inflammation and is therefore a predestined therapeutic target. Since contrary

functions are described for GPR17 in these diseases, the development of

pharmacological tools for the activation and inhibition of GPR17 is of outstanding

relevance.

A suitable recombinant cell system based on the strategy of reverse pharmacology

has to be generated for the identification and characterisation of novel GPR17

activators.

A small GPR17 ligand, previously identified in studies by our group, and its

derivatives synthesised in collaboration with the group of Professor C. E. Müller,

University of Bonn, have to be characterised in different functional assays.

Signal transduction pathways which couple to GPR17 and their crosstalk have to

be characterised in different, appropriate second messenger assays (cAMP, IP3,

calcium) as well as with the novel label-free dynamic mass redistribution

technology (DMR).

Compounds from different natural sources which mimic the published GPR17

ligands or our own ligands are tested to identify novel agonistic and inhibitory lead

structures.

Finally, a series of P2Y2 and P2Y12 receptor antagonists and their derivatives

containing an anthraquinone scaffold are tested for their ability to inhibit GPR17.
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CHAPTER II: RESULTS

2.1 Generation of recombinant cell systems stably

expressing GPR17

It was necessary to generate an appropriate test system in order to identify novel

GPR17 ligands and characterise signal transduction pathways which couple to

GPR17. Since it was postulated by Ciana et. al. that GPR17 is activated by uracil

nucleotides such as UDP, UDP-glucose and UDP-galactose, 1321N1 astrocytoma

cells were chosen as an appropriate test system, because it was known that this

cell line does not express endogenous nucleotide receptors.[63, 64] The stable

transfection of this cell line with GPR17 was performed using a retrovirus. Both the

cell line and the retroviral expression system were kindly provided by Professor

C. E. Müller, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of

Bonn.

In order to investigate potential differences in receptor signalling as a function of

the cellular background, GPR17 was expressed and analysed in a further cell

system. This cell system, a recombinant Chinese hamster ovary (CHO) cell line

stably expressing GPR17, was generated previously by our group. The CHO cell

line was transfected with the Flp-In™ T-Rex™ expression system. Here,

expression of GPR17 was induced after adding doxycycline.
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2.2 Examination of positive pharmacological GPR17

modulators

2.2.1 Compound analysis using the calcium assay

Based on the classification of GPR17 into the group of P2Y receptors, a selection

of nucleotides and synthetic nucleotide mimetics was tested for their ability to

activate GPR17 (AG Kostenis, unpublished data). These investigations identified a

small compound, which is available from ChemDiv Inc., San Diego, CA 92121,

USA (ID 3341-1774) and activates GPR17. The ligand, also referred to as

RA-II-150, has an indole scaffold and mimics the phosphate groups of a nucleotide

such as UDP with its two carboxylic groups. Furthermore, the aromatic

substructure of the indole is dichloro-substituted at positions 4 and 6 (Figure 4).

N

Cl

Cl

COOH

COOH

H

1

2

34

5

6
7

Figure 4. A small nucleotide mimetic, found in previous studies in our group, was
identified as a GPR17 agonist. In the working group of Professor C. E. Müller,
University of Bonn, it was synthesised by Rhallid Akkari. The different possible
substitution positions of the indole scaffold are numbered consecutively.

RA-II-150, and later all of its derivatives, were characterised in a cell population

based calcium assay. These derivatives had been synthesised in collaboration

with the working group of Professor C. E. Müller, Pharmaceutical Institute,

Pharmaceutical Chemistry I, University of Bonn.

Upon addition, RA-II-150 showed a GPR17-dependent increase of intracellular

calcium in 1321N1 cells as well as CHO cells stably expressing GPR17, but not in

the corresponding native cells (Figure 5 and Figure 6).
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Figure 5. Real-time calcium efflux measurements in 1321N1 (A) and CHO (B)
cells expressing GPR17 recombinantly after addition of RA-II-150 in the specified
concentration. In both cell systems, concentration-dependent calcium mobilisation
occured. Representative data are shown for both cell systems (n = 1 of 29).

The pEC50 of RA-II-150 is 6.09 (± 0.06) in the 1321N1 cell system and 8.20

(± 0.08) in the CHO cell system. Interestingly, the potencies of RA-II-150 and its

active derivatives are higher in the CHO cells than in the astrocytoma cells. This

relation may is due to differences in the receptor expression level in both cell lines

or to the presence of so-called “spare receptors.” This term means that a full

agonist can cause a maximum response while occupying only a fraction of the

total receptor population. Thus, not all of the receptors in the cell are required to

achieve a maximum response. Yet although the receptors may not all be needed

for a maximum response, they all contribute to the measured responses, so that

the potency of full agonists is enhanced by the presence of the spare receptors.[65]

In this particular case the recombinant CHO cell system appears to be a

pharmacological system that includes spare receptors. Unfortunately, both

explanations for the differences in the pEC50 values between the different cell lines

cannot be verified with the assay used. Further investigations have therefore to be

undertaken.

In both cell systems the following compounds are active in addition to RA-II-150:

RA-III-40, RA-III-55, KL16-1, KL28 and KL126. In the recombinant CHO cell

system RA-III-20, RA-III-56, KL16-2, KL21, KL91, KL94 and KL118 are also active

(Figure 6). KL94 seems to be a partial GPR17 agonist (Figure 6).
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Figure 6. Dose response curves of compounds being active in the 1321N1 (A)
and CHO cell systems (B) expressing GPR17 recombinantly (n = 3-29). For
reference purposes the DRC of the lead compound RA-II-150 is shown in all plots
(closed red squares). The pEC50 values of all compounds are summarised in
Table 1.

After RA-II-150 was identified as a potent GPR17 activator in both cell systems, 21

derivatives of the lead compound RA-II-150 had been synthesised and analysed in

both cell systems (Table 1). All test compounds share an indole scaffold which

carries a carboxylic group at position 2. As already described for RA-II-150, the

potencies of all other test compounds are increased in CHO cells compared with

astrocytoma cells.

There are several indications of a structure activity relationship. The deletion of the
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3-(2-carboxyethyl) group terminates stimulatory properties of the compound

(KL99). Yet whether both the 3-(2-carboxyethyl) group and the 2-carboxylic group

or only 3-(2-carboxyethyl) are needed for compound activity cannot be verified,

because until now it had not been possible to remove the 2-carboxylic group. The

importance of the 3-(2-carboxyethyl) group is evident from its exchange with a

3-(3-carboxypropyl) (KL72) or a 3-(2-carboxyeth-1-en-1-yl) group (KL118): While

KL118 is inactive in the 1321N1-GPR17 cell system and weakly active in the

CHO-GPR17 cell system, KL72 is completely inactive in both systems. In

additional, the deletion of the 3-(2-carboxyethyl) group cannot be compensated by

the introduction of a 1-carboxymethyl group at position 1 (KL110). This compound

is inactive in both cell lines (Table 1).

Substitutions at position 1 are tolerated if they are charged. Depending on the cell

line, a lipophilic methyl group at this position leads to a loss of function or a

considerable decrease in ligand potency (RA-III-20), while the insertion of a further

2-carboxyethyl group results in a significant decrease in compound activity

(RA-III-40) without this activity actually disappearing.

Many different substitution patterns on the aromatic ring substructure of the indole

scaffold were realised to investigate their influence on compound activity. This

activity disappears almost completely, if the ring is unsubstituted (RA-III-56) and

decreases dramatically, if the 4,6-dichloro substitution pattern is exchanged for a

4,6-dimethyl (RA-III-55) or 4,6-difluoro pattern (KL28). However, these two

compounds are still active in both cell systems. With a 4,6-dibromo substitution

pattern (KL126), activity is enhanced in the 1321N1-GPR17 cell system but slightly

decreased in the CHO-GPR17 system compared to the activity of RA-II-150 in the

corresponding cell system (Table 1). It seems to be important that substitutions at

these positions are bulky and less electronegative.

Furthermore, the crucial relevance of the chlorination at position 6 compared to

that at position 4 was shown by testing derivatives which are only chlorinated at

one of these positions. While the activity of 6-chlorinated compound (KL16-1) is

only slightly decreased, the potency of the 4-chlorinated compound (KL16-2)

decreases dramatically (Table 1).

Obviously, a substitution at position 5 terminates any compound activity. Even if a

5-substituted compound shares structural elements with very potent compounds,

the activity is lost (Table 1).
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Table 1. Potencies and efficacies of RA-II-150 and its derivatives in the
1321N1-GPR17 and CHO-GPR17 cell systems. The pEC50 values of six and
thirteen compounds, respectively, are determined. Data in recombinant 1321N1
and CHO cells are normalised to the response of 30 µM and 0.3 µM RA-II-150
(column 3), respectively. For all other compounds the activity is below the
determination limit or the compounds are inactive (n = 3-29). Unspecific effects of
active compounds are tested on native 1321N1 or CHO-K1 cells. Here, data are
normalised to the response of 100 µM carbachol or 100 µM ATP (column 4)
(n = 3-4). Inactive compounds were not tested on native 1321N1 or CHO-K1 cells
(n. a.). *The pEC50 of KL91 is calculated after extrapolation, because the maximum
response was not reached up to a concentration of 100 µM.

Chemical structure and internal

designation of the test compounds

pEC50 (± SEM)

1321N1-GPR17/

CHO-GPR17

% of response of 30 µM

compound (± SEM)

1321N1-GPR17/

CHO-GPR17 cells

% response of 30 µM

compound (± SEM)

Native 1321N1

cells/CHO-K1 cells

N

OH
O

OH

O

H

Cl

Cl

RA-II-150

6.09 (0.06)/

8.20 (0.08)

100 (0.00)/

100 (0.00)

(0.3 µM compound)

-0.49 (1.88)/

0.17 (1.27)

(0.1 µM compound)

N

OH
O

OH

O

CH
3

Cl

Cl

RA-III-20

n. d./

5.05 (0.12)

16.1 (4.45)/

54.6 (3.60)

-3.50 (1.63)/

0.92 (3.96)

N

OH
O

OH

O

Cl

Cl

O
OH

RA-III-40

5.28 (0.08)/

6.73 (0.12)

80.4 (6.05)/

85.2 (5.19)

(1 µM compound)

1.16 (0.60)/

0.59 (0.93)

(1 µM compound)

N

OH
O

OH

O

H

F

RA-III-52

n. d./

n. d.

8.70 (5.93)/

11.0 (6.51)

n. a./

2.39 (4.22)

N

OH
O

OH

O

H RA-III-54

n. d./

n. d.

6.33 (2.25)/

7.13 (5.96)

n. a./

0.82 (1.62)
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Chemical structure and internal

designation of the test compounds

pEC50 (± SEM)

1321N1-GPR17/

CHO-GPR17

% of response of 30 µM

compound (± SEM)

1321N1-GPR17/

CHO-GPR17 cells

% response of 30 µM

compound (± SEM)

Native 1321N1

cells/CHO-K1 cells

N

OH
O

OH

O

H

CH3

CH3

RA-III-55

4.86 (0.10)/

6.47 (0.05)

75.8 (6.36)/

68.2 (1.86)

(1 µM compound)

0.79 (0.54)/

1.19 (1.19)

(1 µM compound)

N

OH
O

OH

O

H RA-III-56

n. d./

4.78 (0.10)

7.56 (1.74)/

64.3 (10.2)

n. a./

6.50 (5.37)

N

OH
O

OH

O

H

Cl

RA-III-57

n. d./

n. d.

11.1 (1.77)/

11.6 (1.46)

-2.95 (1.10)/

4.02 (1.13)

N

OH
O

OH

O

H

O

CH3

RA-III-64

n. d./

n. d.

5.27 (3.44)/

7.34 (3.93)

n. a./

1.36 (3.43)

N

OH
O

OH

O

H

Cl

Cl

RA-III-65A

n. d./

n. d.

11.2 (8.20)/

6.47 (2.02)

0.70 (2.30)/

4.43 (1.69)

N

OH
O

OH

O

H

Cl

Cl

Cl RA-III-65B

n. d./

n. d.

15.9 (11.6)/

1.08 (1.08)

0.81 (2.26)/

2.79 (2.25)

N

OH
O

OH

O

H

Cl

KL16-1

5.43 (0.14)/

7.69 (0.10)

83.5 (6.20)/

94.3 (6.66)

(1 µM compound)

3.76 (2.67)/

1.23 (1.90)

(0.3 µM compound)
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Chemical structure and internal

designation of the test compounds

pEC50 (± SEM)

1321N1-GPR17/

CHO-GPR17

% of response of 30 µM

compound (± SEM)

1321N1-GPR17/

CHO-GPR17 cells

% response of 30 µM

compound (± SEM)

Native 1321N1

cells/CHO-K1 cells

N

OH
O

OH

O

H

Cl

KL16-2

n. d./

4.96 (0.16)

52.2 (16.3)/

67.8 (4.93)

-2.36 (0.80)/

4.44 (0.83)

N

OH
O

OH

O

H

KL21

n. d./

4.82 (0.18)

0.33 (2.23)/

61.3 (10.2)

n. a./

0.65 (2.34)

N

OH
O

OH

O

H

F

F

KL28

5.13 (0.13)/

6.79 (0.10)

77.2 (2.23)/

96.5 (4.58)

(3 µM compound)

1.93 (1.38)/

0.99 (2.08)

(3 µM compound)

N OH

O

H

OH

O

Cl

Cl

KL72

n. d./

n. d.

0.60 (0.60)/

27.3 (9.23)

n. a./

1.47 (2.57)

N

OH
O

OH

O

HCl KL91

n. d./

4.72 (0.18)*

-4.87 (3.01)/

20.9 (6.54)

n. a./

3.73 (0.94)

N

OH
O

OH

O

HCl

Cl

KL94

n. d./

4.97 (0.11)

1.23 (1.04)/

37.5 (6.46)

n. a./

1.28 (1.13)

N

Cl

Cl
H

OH

O

KL99

n. d./

n. d.

1.17 (0.59)/

3.65 (1.62)

n. a./

3.16 (0.92)
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Chemical structure and internal

designation of the test compounds

pEC50 (± SEM)

1321N1-GPR17/

CHO-GPR17

% of response of 30 µM

compound (± SEM)

1321N1-GPR17/

CHO-GPR17 cells

% response of 30 µM

compound (± SEM)

Native 1321N1

cells/CHO-K1 cells

N OH

O

Cl

Cl

OH

O

KL110

n. d./

n. d.

0.09 (0.29)/

2.39 (0.73)

n. a./

n. a.

N

OH
O

OH

O

H

Cl

Cl

KL118

n. d./

5.82 (0.10)

21.8 (3.63)/

92.3 (1.14)

-2.17 (1.48)/

0.19 (2.20)

N

OH
O

OH

O

H

Br

Br

KL126

6.71 (0.01)/

7.87 (0.16)

106 (1.24)

(10 µM compound)/

89.3 (1.47)

(0.3 µM compound)

0.11 (0.67)/

0.18 (0.08)

(0.3 µM compound)

The substitution pattern of KL94 is a combination of the substitution pattern of

KL16-2 on the one hand and KL91 on the other hand. KL16-2 and KL91 are

monochlorinated at positions 4 and 7 respectively, while KL94 is 4,7-dichlorinated.

KL16-2 and KL91 are similarly potent to KL94 (Table 1). When additionally

chlorinated at position 5 compared with KL94, RA-III-65B does not show any

activity (Figure 6). Interestingly, the chlorination at position 7 seems to leads to a

partial agonism of test compounds. All other active test compounds are full

agonists.

All compounds with the ability to activate GPR17 in the 1321N1 and/or CHO cell

systems do not cause an unspecific increase of the intracellular calcium

concentration in native 1321N1 or CHO-K1 cells (Table 1).

To sum up, the 3-(2-carboxyethyl), the hydrogen at position 5 and the bulky, less

electronegative substitution at position 4 are essential structural elements of

GPR17 agonists with an indole scaffold (Figure 7).
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Figure 7. Structure activity relationship of GPR17 agonists with an indole scaffold.
Whereas acidic groups at positions 2 and 3 as well as bulky, less electronegative
substitutions at position 4 and a hydrogen at position 5 are important for activity,
substitutions at position 7 are well tolerated and may lead to partial agonism.

A Pearson correlation of their pEC50 values was performed to permit a comparison

of the compound potencies in both cell lines. This correlation is based on the

assumption that both X and Y values, in this case the pEC50 values in both cell

lines, are sampled from populations that follow an at least approximately Gaussian

distribution. The P value of 0.04 was computed as a two-tailed value, and a

confidence interval of 95% was chosen. The r value is 0.83 and the coefficient of

determination r2 for this correlation is 0.69 (Figure 8), which means there is a good

correlation between the compound potencies in both cell lines.
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Figure 8. Correlation between the pEC50 values of the compounds which are
active in the 1321N1-GPR17 and CHO-GPR17 cell systems. The dotted lines
indicate the 95% confidence interval. The P value of the correlation is 0.04.
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2.2.2 GPR17 agonist RA-II-150 does not activate related P2Y receptors

Since there are many reasons for the appearance of side-effects of a drug, such

as the modulation of molecules besides the desired target, the selectivity of

RA-II-150 to GPR17 needs to be determined. Therefore it was analysed whether

RA-II-150 activates the related human nucleotide receptors P2Y2 and P2Y4. Both

nucleotide receptors are recombinantly expressed in 1321N1 astrocytoma test

systems. Since these receptors couple to the calcium signal transduction pathway,

the receptor activation was determined by measuring calcium concentration

increase after adding the compound.[66] This analysis showed the selectivity of

RA-II-150 for GPR17, because it did not activate the tested nucleotide receptors

up to a concentration of 30 µM (Figure 9). This information is very important for

further in vitro or in vivo studies of diseases, because with a specific compound

the effect observed in this kind of model can be attributed to the modulation of

GPR17 by the compound.
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Figure 9. Determination of the selectivity of RA-II-150 for GPR17. Representative
real-time measurements of changes in the intracellular calcium concentration after
adding 30 µM RA-II-150 to recombinant 1321N1 astrocytoma cells stably
expressing GPR17 (A), human P2Y2 (B) and human P2Y4 (C) are shown. The
response of the human P2Y2 and P2Y4 receptor to 30 µM RA-II-150 is compared
to the corresponding response to 3 µM or 1 µM UTP. Neither the human P2Y2 nor
the human P2Y2 can be activated by RA-II-150.
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2.2.3 Compound analysis using inositol phosphate accumulation assays

Next, selected compounds were analysed in inositol phosphate accumulation

assays using the more sensitive recombinant CHO-GPR17 cell system.

Constitutive GPR17 activity in this cell system can be excluded, because the basal

inositol phosphate levels in recombinant and native CHO cells are identical (Figure

10A).

After addition, all selected compounds lead to a concentration-dependent

accumulation of inositol phosphates (Figure 10B). The potencies decrease within

the series: RA-II-150 [pEC50 6.27], KL16-1 [pEC50 5.28], RA-III-40 [pEC50 5.04],

KL28 [pEC50 4.72] and RA-III-55 [pEC50 4.65] (Table 2).

A

RA-II-
150

Buffer CHO-GPR17

Buffer CHO-K1

0

100

200

300

400

500

10 µM

in
o
si

to
l
p
h
o
sp

h
a
te

a
cc

u
m

u
la

ti
o
n

[c
p
m

]

B

10 -8 10 -7 10 -6 10 -5 10 -4

0

25

50

75

100
RA-II-150

RA-III-40

RA-III-55

KL16-1

KL28

log c [M]

[3
H

]-
IP

3
a
cc

u
m

u
la

ti
o
n

(%
o
f

R
A

-I
I-

1
5
0
)

Figure 10. Inositol phosphate accumulation assays with CHO-GPR17 cells. While
the basal inositol phosphate level in native and CHO-GPR17 cells does not differ
significantly, it increases when agonist is added in CHO-GPR17 cells (A) (n = 2-5).
The dose response curves of selected GPR17 agonists in the CHO-GPR17 cell
system are shown in (B) (n = 3-5). Data are normalised to the response of 10 µM
RA-II-150.
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Table 2. pEC50 values and efficacies of selected agonists of GPR17 in the CHO
cell system. The efficacies are referred to the response of 10 µM RA-II-150
(column 3) (n = 3-5).

Test compound

CHO-GPR17 cells

pEC50

(± SEM)

% of response of

100 µM (± SEM)

RA-II-150 6.27 (0.13)
100 (0.00)

(10 µM compound)

RA-III-40 5.04 (0.02) 94.8 (1.08)

RA-III-55 4.65 (0.11) 84.8 (4.92)

KL16-1 5.28 (0.06) 94.8 (6.78)

KL28 4.72 (0.16) 84.1 (1.79)

In the inositol phosphate accumulation assay the dose response curves for all

compounds are obviously shifted to the right compared to those in the calcium

assay. All agonists in this assay with the exception of RA-III-55 appear to be full

GPR17 agonists. The DRC of RA-III-55 does not reach the upper plateau up to a

concentration of 100 µM. Unfortunately, it is not possible to increase the RA-III-55

concentration, because of cytotoxical solvent concentration reaching at agonist

concentrations more than 100 µM, so that it remains unclear whether RA-III-55 is a

partial or a full GPR17 agonist here.

A Pearson correlation was performed to permit a comparison of the compound

potencies in the inositol phosphate accumulation assay and the cell population

based calcium assay. The P value of 0.02 was computed as a two-tailed value and

a confidence interval of 95% was chosen. The r value is 0.93 and the coefficient of

determination r2 for this correlation is 0.86 (Figure 11), meaning that the potencies

in both assays correlate with each other.
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Figure 11. Comparison of the calcium assay and the inositol phosphate
accumulation assay. The P value of the linear regression analysis is 0.02. The
dotted lines indicate the 95% confidence interval.

2.2.4 Compound analysis using the dynamic mass redistribution assay

The lead compound RA-II-150 as well as RA-III-40, RA-III-55, KL16-1 and KL28

were analysed in dynamic mass redistribution assays (DMR) in both recombinant

cell lines (only RA-II-150 and KL16-1 in 1321N1-GPR17 cells). Representative

agonist DMR signatures in 1321N1-GPR17 (Figure 12A and B) are shown. For the

recombinant 1321N1 cell system pEC50 values of 6.44 (± 0.13) and 5.66 (± 0.15)

were calculated for RA-II-150 and KL16-1. The following pEC50 values were

calculated for selected GPR17 agonists in CHO-GPR17 cells: 7.49 (± 0.08)

(RA-II-150), 5.75 (± 0.14) (RA-III-55), 5.56 (± 0.16) (RA-III-40), 6.57 (± 0.10)

(KL16-1), 5.03 (± 0.42) (KL28) (Figure 12C and I; Table 3). Compared to the

DRCs of RA-II-150 and KL16-1 in the 1321N1-GPR17 cell system, the

corresponding DRCs in the CHO-GPR17 cell system are shifted to the left (Figure

12C and I). The same behaviour was observed in the cell population based

calcium assay (Figure 6 and Table 1). Interestingly, the DRCs in the recombinant

CHO cell system, as determined in the DMR assay, are shifted to the right

compared to those in the calcium assay, while the opposite can be observed in

case of the 1321N1-GPR17 cell system. Here, the agonists are more potent in the

DMR assay than in the calcium assay (Table 1 and Table 3).
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The DMR signatures of all agonists within a cell system are very similar. However,

the shape of the signature differs slightly between the two cell lines. A rapidly

increasing positive wavelength shift can be observed in both cell lines. The signal

decreases again after the maximum is reached. The total wavelength shift is

higher in the CHO cell line than in the astrocytoma cell line. Both the increase and

the decrease in the positive wavelength shift are faster in the astrocytoma cell line

than in the CHO cell line (Figure 12). In 1321N1-GPR17 cells the rapid signal

decrease is replaced by a further slight signal increase (“shoulder”) at high

concentrations, which is subsequently replaced by a permanent signal decrease

(Figure 12A and B). This “shoulder” cannot be observed at concentrations below

1 µM. At 0.3 µM the signal remains on the same level after the rapid decrease. At

concentrations below 0.3 µM the signal decreases again to the basal level, leading

to the formation of a single peak (Figure 12A and B).

In CHO-GPR17 cells at high concentrations the signal increases again after the

maximum has been reached. It then remains approximately at the same level. At

concentrations of less than 1 µM no further significant increase of the signal

occurs; instead there is a slow decrease, which is replaced by a signal that

remains constant (Figure 12C-G).

The DMRs of GPR17 are different in the two cell lines, reflecting the cell

line-specific signalling of GPR17. In both cell lines the DMRs are partially

comparable to those published for a Gi coupled receptor.[67] A Gi component

explains the initial, fast, positive DMR upon activation of the receptor. The Gi

pathway activation was verified by performing cAMP assays (2.5.2).
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Figure 12. Positive DMR and the resulting DRCs (A-C) in 1321N1-GPR17 and
CHO-GPR17 cells (D-I) as a result of receptor activation by the specified agonist.
The figure shows the averaged (+ error bar in one direction), baseline corrected
signatures of a representative experiment (n = 3-6).
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Table 3. Collection of potencies and efficacies of selected compounds analysed in
the DMR assay (n = 3-6). The data are normalised to the response of 30 µM
(column 3) or 10 µM RA-II-150 (column 5).

Test compound

1321N1-GPR17 CHO-GPR17 cells

pEC50

(± SEM)

% of response of

100 µM (± SEM)

pEC50

(± SEM)

% of response of

100 µM (± SEM)

RA-II-150 6.44 (0.13) 100 7.49 (0.08) 100

RA-III-40 n. a. n. a. 5.75 (0.14) 63.6 (9.55)

RA-III-55 n. a. n. a. 5.56 (0.16) 76.6 (3.66)

KL16-1 5.66 (0.15) 85.3 (7.15) 6.57 (0.10) 72.3 (9.50)

KL28 n. a. n. a. 5.03 (0.42) 63.1 (7.06)

A negative control with untransfected, native 1321N1 or CHO-K1 cells showed that

these cells did not respond to the GPR17 agonists up to a concentration of 30 µM

or 10 µM respectively (Figure 13A and B). Representative DMR signatures of the

corresponding agonists are shown in Figure 13A and B. 100 µM carbachol and

ATP were used as endogenous controls.
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Figure 13. Representative DMR signatures of GPR17 agonists are shown on
native 1321N1 (A) and CHO-K1 cells (B). Native cells do not respond to GPR17
agonists but to the corresponding control agonists carbachol and ATP respectively
(n = 1 of 2-6).

Next, it was investigated whether the initial fast rising part of the signature is due

to the activation of the Gi pathway. Cells were therefore pretreated with PTX.

The positive DMRs in recombinant 1321N1 cells decrease considerably and full

activation cannot be achieved in PTX pretreated cells (Figure 14A-D). The
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“shoulder” observed in 1321N1-GPR17 cells at high concentrations disappears

completely. Interestingly, the DMR does not disappear completely, suggesting

another, as yet undefined, signalling pathway that is engaged by GPR17. This is

possibly an instance of a G12/13 signal transduction pathway or -arrestin

recruitment. Nevertheless, the substantial contribution of the Gi pathway to the

DMR of all test compounds was demonstrated in 1321N1-GPR17 cells.
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Figure 14. Effects of PTX pretreatment on the DMR of RA-II-150 and KL16-1 in
1321N1-GPR17 cells. Signatures of a representative experiment with PTX
pretreated recombinant 1321N1-GPR17 cells and two selected GPR17 agonists
are presented in (A) and (C). A signature of the corresponding agonist with
untreated cells is also shown. PTX treatment has a strong impact on the DMR of
RA-II-150 and KL16-1 in 1321N1-GPR17 (A and C). Even if full activation is not
achieved, GPR17 still responds to its agonist. The corresponding DRCs are given
in (B) and (D).

A similar behaviour was observed in CHO-GPR17 cells (Figure 15). In this cell line

the signal elevation at the same concentration decreases drastically in pretreated

cells. At high concentrations, on the other hand, the signal rises again (Figure 15).

The DMR shapes of these signals are comparable to those described in the

literature for the Gq signal transduction pathway.[67] The DRCs of all tested GPR17

agonists are shifted to the right under the influence of PTX compared to standard

assay conditions.
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Figure 15. Effects of PTX pretreatment on the DMR of selected GPR17 agonists
in CHO-GPR17 cells. Signatures of a representative experiment with PTX
pretreated recombinant CHO-GPR17 cells and selected GPR17 agonists are
presented in (A), (C), (E), (G) and (I). A signature of the corresponding agonist
with untreated cells is also shown in each case. PTX treatment has a strong
impact on the DMR of all test compounds in CHO-GPR17 cells (A and C). Even if
all compound DRCs are shifted to the right, full activation appears to be possible
(B, D, F, H and J).
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The agonist potencies in the inositol phosphate accumulation assay correlate with

those in the DMR assay for both untreated and PTX treated cells (Figure 16A and

B). Both correlations fit (r2 0.90 and 0.86). But it was expected that the data from

the inositol phosphate accumulation assays fit more to the DMR data with PTX

treated cells than to the DMR data with the untreated cells, because under the

influence of PTX the Gi signalling is blocked and it was expected to analyse the Gq

pathway in isolation with the DMR assay under these conditions. In this case the

DMR should be equivalent to the data from the inositol phosphate accumulation

assay. This observation indicates that the remaining DMR signal in CHO cells after

PTX treatment consists of the Gq-dependent signal transduction pathway and

another yet unidentified pathway.
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Figure 16. Comparison of the pEC50 values of selected GPR17 agonists with
CHO-GPR17 cells in the inositol phosphate accumulation assay and the DMR
assay under standard conditions (A) and under PTX conditions (B). The P values
of the linear regression analysis are 0.01 and 0.02. The dotted lines indicate the
95% confidence interval.
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2.3 Uracil nucleotides proposed as GPR17 agonists

2.3.1 Compound analysis using calcium assays

In 2006, Ciana et. al. claimed that GPR17 can be activated by UDP, UDP-glucose

and UDP-galactose (Figure 17).[51] According to this report GPR17 activation leads

to an adenylyl cyclase inhibition, an increased intracellular calcium concentration

and GTPS binding. The EC50 values of these compounds are 1.14 µM UDP,

12 µM UDP-glucose and 1.1 µM UDP-galactose.[51]
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Figure 17. Uracil nucleotides proposed as GPR17 agonists.[51]

At the beginning, the ability of uracil nucleotides UDP, UDP-glucose and

UDP-galactose to increase the intracellular calcium concentration was investigated

in recombinant 1321N1 cells stably expressing GPR17.

Compared to RA-II-150, neither UDP and UDP-glucose nor UDP-galactose

causes a calcium response up to 100 µM in 1321N1-GPR17 cells (Figure 18A

and B).

When UDP-glucose and UDP-galactose are added, no calcium mobilisation is
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detectable in recombinant CHO-GPR17 cells (Figure 18C and D). After adding,

30 µM UDP, the intracellular calcium concentration is increased (Figure 18C and

D). An even stronger response to the addition of UDP occurs in native CHO-K1

cells, indicating that this response is due to the activation of endogenously

expressed P2Y receptors in CHO cells and not to the activation of GPR17 (Figure

18E and F).
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Figure 18. Representative calcium traces of uracil nucleotides in 1321N1-GPR17
(A), CHO-GPR17 (C) and native CHO-K1 (E) cells. The corresponding normalised
DRCs or data are shown in (B), (D) and (F). The addition of uracil nucleotides
does not cause an increase in the intracellular calcium concentration in
1321N1-GPR17 cells (A and B). Whereas the addition of UDP to CHO-GPR17
cells leads to calcium mobilisation, CHO-GPR17 cells do not respond to UDP-
glucose or UDP-galactose (C and D). However, CHO-K1 cells also respond to
UDP in a concentration-dependent manner (F), meaning that the response of
CHO-GPR17 to UDP is not due to the activation of GPR17.
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The response of 1321N1-GPR17 cells to 300 µM UDP-galactose was analysed in

a single-cell calcium assay. UDP-galactose fails to increase the intracellular

calcium concentration also in this assay (Figure 19). By contrast, GPR17 is

activated by RA-II-150.
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Figure 19. Representative real-time calcium measurement data in a single-cell
calcium assay in 1321N1-GPR17 cells. Each signature represents the response of
a single cell. No calcium response is detectable following UDP-galactose
superfusion. After UDP-galactose elution, 10 µM RA-II-150 is superfused to the
cells and calcium mobilisation occurs.

2.3.2 Compound analysis using DMR technology based assays

Since uracil nucleotides did not increase the intracellular calcium concentration, it

was investigated whether the addition of these compounds causes DMR in

1321N1-GPR17 and CHO-GPR17 cells. UDP-glucose and UDP-galactose fail to

cause DMR in either 1321N1-GPR17 or CHO-GPR17 cells (Figure 20A and B).

The injection of UDP in this assay leads to stronger DMR signals in native

CHO-K1 cells in comparison to CHO-GPR17 cells, indicating that the response to

the addition of UDP is due to the activation of endogenously expressed receptors,

namely P2Y receptors, and not to the activation of GPR17 in this cell line (Figure

20B)
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Figure 20. Uracil nucleotides do not lead to GPR17-dependent DMR in
recombinant 1321N1-GPR17 (A) and CHO-GPR17 (B) cells (n = 2-3). DMR
occurring upon UDP addition in CHO-GPR17 cells is also observable - and even
stronger - in native CHO-K1 cells (n = 2-3), which is may be due to endogenously
expressed P2Y receptors and not to the activation of GPR17.

2.4 CysLT1 receptor antagonists proposed as GPR17

antagonists

2.4.1 Compound analysis using calcium assays

Among others, Ciana et. al. identified and characterised montelukast and

pranlukast (Figure 21), two CysLT1 specific antagonists, as potent GPR17

antagonists.[51, 68] The IC50 values for the characterised antagonists determined in

GTPS binding experiments are in the nanomolar and subnanomolar range.

In the following, pranlukast, montelukast and zafirlukast, another CysLT1 receptor

antagonist, were tested in calcium assays for their ability to inhibit GPR17. All

tested CysLT1 receptor antagonists inhibit GPR17 (Figure 22), but an analysis of

the corresponding antagonist DRCs revealed that both pranlukast and

montelukast are considerably less potent than published (Figure 22D). Their

potency is decreased by a factor of 240 and 255 respectively (Table 4).

No unspecific increase of intracellular calcium is detectable after adding 30 µM of

one of the CysLT1 receptor antagonists (Table 4).
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Figure 21. Pranlukast and montelukast, two potent CysLT1 receptor antagonists,
were proposed as antagonists of GPR17.[51, 68] Zafirlukast, another potent CysLT1

receptor antagonist, was also tested in this thesis.

A 3 µM RA-II-150 + montelukast

0 5 10 15 20 25

0

5000

10000

15000

20000
Buffer

3 µM RA-II-150

0.1 µM montelukast

0.3 µM montelukast

1 µM montelukast

3 µM montelukast

10 µM montelukast

30 µM montelukast

time [sec]

a
rb

it
ra

ry
u
n
it
s

B 3 µM RA-II-150 + pranlukast

0 5 10 15 20 25

0

5000

10000

15000

20000
Buffer

3 µM RA-II-150

0.03 µM pranlukast

0.3 µM pranlukast

1 µM pranlukast

3 µM pranlukast

10 µM pranlukast

30 µM pranlukast

time [sec]

a
rb

it
ra

ry
u
n
it
s

C 3 µM RA-II-150 + zafirlukast

0 5 10 15 20 25

0

5000

10000

15000

20000
Buffer

3 µM RA-II-150

0.03 µM zafirlukast

0.3 µM zafirlukast

1 µM zafirlukast

3 µM zafirlukast

10 µM zafirlukast

30 µM zafirlukast

time [sec]

a
rb

it
ra

ry
u
n
it
s

D

10 -7 10 -6 10 -5

0

25

50

75

100 montelukast

pranlukast

zafirlukast

log c [M]

%
o
f

re
sp

o
n
se

o
f

3
µ

M
R

A
-I

I-
1
5
0

1321N1-GPR17

Figure 22. Analysis of antagonistic effects of montelukast and zafirlukast in
calcium assays. The representative calcium real-time responses of
1321N1-GPR17 cells after adding 3 µM RA-II-150 in the absence of a
corresponding CysLT1 receptor antagonist or in the presence of a defined
concentration of montelukast (A), pranlukast (B) or zafirlukast (C) are presented
here. Dose response curves were calculated from this data (D).
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Table 4. Collection of pIC50 values and inhibition data of CysLT1 receptor
antagonists tested in the recombinant 1321N1-GPR17 cell system (n = 3-5). Test
compounds were applied in a concentration of 30 µM. The data are normalised to
the response of 3 µM (column 3) or 30 µM RA-II-150 (column 4).

Chemical structure of the test

compounds

1321N1-GPR17

pIC50 (± SEM)

% of inhibition by test

compound

(± SEM)

% of response of test compound

(± SEM)

Montelukast 4.85 (0.05) 84.9 (6.43) 0.92 (0.30)

Pranlukast
5.57 (0.02)

95.2 (1.53) 1.23 (1.62)

Zafirlukast
5.06 (0.06)

97.3 (2.85) 0.27 (0.28)

2.4.2 Compound analysis using inositol phosphate accumulation assays

The CysLT1 receptor antagonists montelukast, pranlukast and zafirlukast were

also tested in inositol phosphate accumulation assays for their ability to inhibit

GPR17 activation in the recombinant CHO-GPR17 cell system. No unspecific

inositol phosphate accumulation occurs in the presence of 30 µM test compound

(Figure 23A). Montelukast does not significantly inhibit GPR17 in this assay

(Figure 23B), but pranlukast and zafirlukast do (Figure 23B). The corresponding

DRCs for pranlukast and zafirlukast are shown in Figure 23C.

Pranlukast and zafirlukast inhibit the RA-II-150-dependent activation of GPR17 in

both this assay and the cell population based calcium assay (Table 4). The DRCs

in the inositol phosphate accumulation assay are shifted slightly to the left

compared to those in the calcium assay. Pranlukast is more potent than zafirlukast

in both assays. Montelukast inhibits GPR17 in the calcium assay but not in the IP3

accumulation assay (Table 5).
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Figure 23. The addition of the CysLT1 receptor antagonists pranlukast,
montelukast and zafirlukast does not cause an unspecific inositol phosphate
accumulation in CHO-GPR17 cells (A) (n = 3-4). Whereas montelukast does not
inhibit GPR17 activation up to a concentration of 30 µM, GPR17 is blocked by
pranlukast and zafirlukast (B) (n = 3-4). DRCs of pranlukast (n = 3) and zafirlukast
(n = 1) were determined by analysing an inositol phosphate accumulation of 1 µM
RA-II-150 in the presence of a defined antagonist concentration (C).

Table 5. pIC50 values and inhibition values of montelukast, pranlukast and
zafirlukast at a concentration of 30 µM (n = 1-3). The inhibition values are
normalised to the response of 1 µM RA-II-150.

CHO-GPR17 cells

Test compound
pIC50

(± SEM )

% of inhibition of test compound

(± SEM)

Montelukast n. d. 14.0 (6.49)

Pranlukast 6.04 (0.08) 95.8 (1.51)

Zafirlukast 5.32 (0.00) 88.3 (5.05)
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2.5 Investigations of signal transduction pathways

coupled to GPR17 and discovery of a novel calcium

release mechanism in 1321N1 cells

Cell population based calcium assays (Figure 5) with 1321N1-GPR17 and

CHO-GPR17 cells as well as fluorescence microscopy based single cell calcium

assays (Figure 19) with recombinant 1321N1-GPR17 cells suggested a GPR17

coupling to the calcium signalling cascade. This classical calcium cascade

consists of phospholipase C, which is activated by a Gq subunit or a G subunit

liberated from PTX-sensitive Gi family proteins, and IP3 receptors on intracellular

calcium stores, which are activated by IP3, a product of the PLC-catalysed

reaction. The intracellular calcium stores are emptied after the IP3 receptors have

been activated.

2.5.1 PTX pretreatment reveals participation of the Gi pathway in the calcium

mobilisation mechanism

It is well known that the G subunit liberated from PTX-sensitive Gi family proteins

also activates PLC- isoforms (except PLC-4) as well as PLC-.[24, 25, 69, 70] For

this reason the involvement of the Gi pathway in the calcium mobilisation

mechanism was analysed. The participation of the Gi pathway was confirmed by

PTX pretreatment, since in pretreated 1321N1-GPR17 cells the calcium response

disappeared (Figure 24A and B), while the calcium response of endogenously

expressed muscarinic M3 receptors was not affected, indicating the functionality of

the cells under these conditions (Figure 24C).

By contrast, the calcium mobilisation is also affected in CHO-GPR17 cells, but

GPR17 is still completely activated at higher agonist concentrations (Figure 24D

and E). The pEC50 of RA-II-150 is decreased from 8.20 in untreated cells to 7.16

(± 0.14) in PTX-pretreated cells.
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Figure 24. Influence of PTX on the calcium release in 1321N1-GPR17 and
CHO-GPR17 cells. (A) Representative real-time measurements of the changes in
intracellular calcium in PTX-pretreated 1321N1-GPR17 upon agonist addition.
Under these conditions the calcium mobilisation of GPR17 is completely blocked
so that no DRC can be determined for RA-II-150 (B). By contrast, the calcium
signalling of endogenously expressed muscarinic M3 receptor is not affected by
PTX pretreatment (C). Representative real-time measurements of the changes in
intracellular calcium levels in PTX-treated CHO-GPR17 upon RA-II-150 addition
(D) and corresponding DRC showing that GPR17 is still fully activated, but its DRC
has been shifted to the right (E).

2.5.2 Confirmation of GPR17 Gi coupling by determination of cAMP decrease

The results of the calcium assays with PTX-treated 1321N1-GPR17 and

CHO-GPR17 cells indicated the dependence on, or contribution to, respectively
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the Gi pathway in the calcium response of GPR17. The Gi coupling of GPR17 was

analysed using the HTRF® cAMP assay. Constitutive Gi activity of GPR17 can be

ruled out because the pEC50 value of forskolin is determined to be 6.14 in

recombinant 1321N1-GPR17 cells and 5.75 in native cells (Figure 25). In the event

of constitutive Gi activity, the potency should have been decreased.
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Figure 25. GPCR-independent adenylyl cyclase activation by forskolin in native
1321N1 cells (open squares) and recombinant 1321N1-GPR17 cells (closed
squares) (n = 3-4). The DRC for forskolin in the recombinant cell system is shifted
slightly to the left. The data were normalised to the cAMP accumulation of 100 µM
forskolin.

The Gi coupling of GPR17 was then analysed in detail using RA-II-150 as a

representative agonist. A concentration of 1 µM forskolin, which causes

approximately 55% of the maximum forskolin response (Figure 25), was added to

the cells in parallel with different RA-II-150 concentrations for this analysis. These

investigations indicated an agonist concentration-dependent inhibition of the

forskolin-dependent adenylyl cyclase activation. The Gi signal transduction

cascade is activated at low agonist concentrations (Figure 26), while at RA-II-150

concentrations higher than 0.1 µM a stimulatory Gs signal cascade outweighs the

inhibitory response (Figure 26). This behaviour results in a bell-shaped dose

response curve (Figure 26). In native astrocytoma cells this behaviour cannot be

observed, meaning that the effect of RA-II-150 in the recombinant cell system is

due to the activation of GPR17.

Since PTX pretreatment blocked the observed inhibition of the adenylyl cyclase, it

can be confirmed that this inhibitory effect is due to the activation of the Gi signal

transduction cascade by GPR17 (Figure 27).[71] Furthermore, under these
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conditions the activation of the stimulatory Gs pathway disappeared, indicating that

the activation of this pathway is dependent on a previous activation of the Gi

pathway (Figure 27).
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Figure 26. Dose response curves of 1321N1-GPR17 and native 1321N1 cells as
deduced from cAMP assays. Challenge of 1321N1-GPR17 cells with RA-II-150
(closed squares) (n = 6) leads to a bell-shaped DRC, while treatment of native
1321N1 cells with the lead agonist (open squares) does not show any effect
(n = 3).

The activation of the Gi and Gs pathways by selected GPR17 agonists in the

CHO-GPR17 cells was already shown by Stephanie Hennen (unpublished data)

and Marieke Böckman genannt Dallmeyer.[72]
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Figure 27. Dose response curves of 1321N1-GPR17 and native 1321N1 cells as
deduced from cAMP assays. Challenge of 1321N1-GPR17 cells with RA-II-150
(closed squares) (n = 6) leads to a bell-shaped DRC, while treatment of native
1321N1 cells with the lead agonist (open squares) does not show any effect
(n = 3). After PTX pretreatment the Gi response of GPR17 disappears (open
circles) (n = 4). Furthermore, no Gs coupling can be detected (closed circles)
(n = 6).
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2.5.3 A phosphatidylinositol-specific phospholipase C is involved in the

calcium release mechanism in 1321N1-GPR17 cells

The data from the calcium assay indicated the contribution of phospholipase C by

the G subunit liberated from PTX-sensitive proteins of the Gi family in 1321N1

cells as well as the participation of the Gq pathway in CHO-GPR17. For this

reason the influence of the PLC inhibitor U-73122 and its inactive derivative

U-73343 on the calcium mobilisation mechanism was investigated (Figure 28).

The addition of an effective concentration of the PLC inhibitor U-73122 (2.5 µM for

the 1321N1-GPR17 cell system and 5 µM in the CHO-GPR17 cell system) does

not lead to an increase in the intracellular calcium concentration (Figure 28A and

D), meaning that the inhibitory effects are not due to unspecific calcium

mobilisation but to PLC inhibition. In the presence of the PLC inhibitor the maximal

calcium response of RA-II-150 decreases significantly in the recombinant 1321N1

astrocytoma cell system (Figure 28B and C) as well as in the CHO-GPR17 cell

system (Figure 28E and F). The pEC50 values of RA-II-150 in the corresponding

cell system are 6.16 (± 0.16) and 7.24 (± 0.13), respectively (under standard

conditions: 6.09 (± 0.06) and 8.20 (± 0.08)). By contrast, the inactive U-73122

homolog does not influence the calcium mobilisation in either cell system (Figure

28B, C and E, F). This means that phospholipase C is involved in the calcium

mobilisation mechanism in both cell systems.
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Figure 28. Investigations concerning the influence of the PLC-inhibitor U-73122 on
the calcium release in 1321N1-GPR17 cells and CHO-GPR17 cells. The
intracellular calcium concentration increases neither in 1321N1-GPR17 nor in
CHO-GPR17 upon PLC inhibitor addition (A and D). The calcium mobilisation in
1321N1-GPR17 (B, C) and CHO-GPR17 (E, F) cells is decreased in the presence
of the PLC inhibitor U-73122, but not in the presence of the inactive derivative
U-73343 (n = 3-10). Representative real-time calcium signatures are shown in (B)
and (E), whereas in (C) and (F) the DRC of RA-II-150 under standard assay
conditions is compared to that of RA-II-150 in the presence of 2.5 µM U-73122 or
U-73343 (1321N1-GPR17 cells) or 5 µM U-73122 or U-73343 (CHO-GPR17 cells).

Next, it was investigated whether a phosphatidylinositol-specific phospholipase C

(PI-PLC) is involved in the calcium release mechanism. The PI-PLC was therefore
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selectively blocked by edelfosine.[73, 74] Within 30 minutes after adding edelfosine,

the intracellular calcium concentration is not elevated (Figure 29A). A significant

decrease in intracellular calcium mobilisation can be observed in the presence of

2.5 µM edelfosine, while the calcium signal disappears in the presence of 5 µM

(Figure 29B and Figure 29C). The agonist potency in the presence of the inhibitor

(2.5 µM) is slightly increased compared to its potency under standard conditions

(Figure 29D). Calcium signalling is completely blocked in the presence of 5 µM

edelfosine (Figure 29D). These results indicate the contribution of a PI-PLC.
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Figure 29. Influence of the PI-PLC-specific inhibitor on the calcium release in
1321N1-GPR17 cells upon agonist addition. No significant calcium mobilisation in
1321N1-GPR17 cells can be detected within 30 minutes after adding 5 µM of the
phosphatidylinositol-specific phospholipase C inhibitor edelfosine (A). The
maximum calcium response of GPR17 upon RA-II-150 addition decreases with the
concentration of edelfosine (B and C) (n = 2-9). DRCs in the presence of different
inhibitor concentrations are shown in (D) (n = 2-29). In the presence of 2.5 µM
edelfosine the potency of RA-II-150 is slightly increased compared to that under
standard conditions (n = 3-29).
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2.5.4 GPR17 activation does not lead to an accumulation of inositol

phosphates in 1321N1-GPR17 cells

Since the data from the calcium assay suggested the involvement of a PI-PLC in

the calcium release mechanism in 1321N1 cells, and the activation of the PLC in

CHO-GPR17 was verified by inositol phosphate accumulation assays (Figure 10

and Figure 30A), it was very surprising that no inositol phosphate accumulation

was detected in 1321N1-GPR17 cells upon agonist addition (Figure 30B).

Carbachol was used as an endogenous control for assay conditions. These data

indicate a novel calcium release mechanism in 1321N1-GPR17 cells, which

depends on PI-PLC activation without leading to an inositol phosphate

accumulation.

The involvement of the PLC in CHO-GPR17 was investigated further by its

inhibition. The inositol phosphate accumulation decreases upon agonist addition in

CHO-GPR17 depending on the inhibitor concentration (Figure 30A). In

CHO-GPR17 neither 5 µM nor 10 µM U-73122 leads to an inositol phosphate

accumulation (Figure 30C).
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Figure 30. Inositol phosphate accumulation analysis in CHO-GPR17 and
1321N1-GPR17 cells. The inositol phosphate accumulation decreases upon
inhibitor addition dependent on its concentration (A). Cells are stimulated with
10 µM RA-II-150 In 1321N1-GPR17 the intracellular inositol phosphate
concentration is not elevated upon agonist addition (up to 100 µM RA-II-150) (B).
Carbachol is used as an endogenous control. No unspecific inositol phosphate
accumulation is detectable after adding 5 µM or 10 µM U-73122 in CHO-GPR17
cells (C).
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2.5.5 Intracellular calcium stores are the major sources of GPR17-mediated

calcium flux

Next, the calcium source from which the detected calcium is released was

identified. There are basically two possibilities. Either calcium can be released

from intracellular calcium stores, for example the endoplasmic reticulum, as a

result of receptor activation, or it is pumped into the cell from the extracellular

environment. These two possibilities were investigated using the

sarco/endoplasmic reticulum Ca2+ transport ATPases (SERCA) inhibitor

thapsigargin as well as assay conditions without extracellular calcium.[75]

Thapsigargin depletes intracellular calcium stores within 30 minutes after addition

(Figure 31A). Thus, thapsigargin selectively inhibits SERCA channels, which pump

cytoplasmic calcium back into intracellular calcium stores. This inhibition leads to

an elevation of the cytoplasmic calcium level.[76]

The calcium responses of GPR17 towards RA-II-150 disappear after pretreatment

with thapsigargin (Figure 31B und D), indicating that intracellular calcium stores

are the major calcium source.

Nevertheless, it was investigated whether the calcium response of GPR17

consists at least partially of calcium from the extracellular environment. For this

purpose the standard Krebs HEPES buffer (KHB) was replaced with a

calcium-free KHB. Whereas the GPR17-dependent maximum calcium response

significantly decreases under these conditions (Figure 31C and E), the pEC50

value of RA-II-150 (pEC50 6.00 (± 0.09)) is not affected (standard conditions:

pEC50 6.09 (± 0.06)).

These results indicate the minor relevancy of extracellular calcium for the calcium

response of GPR17 in 1321N1 cells.



CHAPTER II: RESULTS

45

A

0 200 400 600 800 1000 1200 1400 1600 1800

0

2000

4000

6000

8000

Buffer

30 µM RA-II-150

1 µM thapsigargin

time [sec]

a
rb

it
ra

ry
u
n
it
s

B in the presence of 1 µM thapsigargin

0 5 10 15 20 25

0

2500

5000

7500

10000

12500
Buffer

30 µM RA-II-150
w/o thapsigargin

0.3 µM RA-II-150

1 µM RA-II-150

3 µM RA-II-150

10 µM RA-II-150

30 µM RA-II-150

time [sec]

a
rb

it
ra

ry
u
n
it
s

C under calcium free buffer conditions

0 5 10 15 20 25

0

2500

5000

7500

10000

12500
Buffer

30 µM RA-II-150
standard buffer

0.01 µM RA-II-150

0.1 µM RA-II-150

0.3 µM RA-II-150

1 µM RA-II-150

3 µM RA-II-150

30 µM RA-II-150

time [sec]

a
rb

it
ra

ry
u
n
it
s

D

10 -8 10 -7 10 -6 10 -5 10 -4

0

25

50

75

100

RA-II-150
+ 1 µM thapsigargin

RA-II-150

RA-II-150
calcium free buffer

log c [M]

%
o

f
re

sp
o
n

se
o
f

3
0

µ
M

R
A

-I
I-

1
5
0

st
a
n
d
a
rd

co
n
d

it
io

n
s

Figure 31. Investigations of the calcium source of the calcium response.
Treatment with 1 µM thapsigargin, an inhibitor of the sarco/endoplasmic reticulum
Ca2+ ATPase, leads to the depletion of the intracellular calcium stores (A). After
preincubation with 1 µM thapsigargin, no calcium response is detectable upon
GPR17 activation (B). Under calcium-free buffer conditions the calcium response
of GPR17 (C) is significantly decreased but does not disappear (P value < 0.0001)
(n = 3-7). These results are rendered in the DRCs of RA-II-150 under
corresponding conditions (D).

2.5.6 IP3 receptors on intracellular calcium stores gate the efflux of calcium

After intracellular calcium stores had been identified as the main calcium source, it

was investigated whether ryanodine receptors (RYRs) or IP3-dependent receptors

(IP3R) are responsible for the release of calcium to the cytoplasm.

The role of ryanodine receptors was investigated first. RYRs are cation channels

in the membrane of intracellular calcium stores like the endoplasmic reticulum that
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upon stimulation pump calcium to the cytoplasm. RYRs are inhibited by an

effective concentration of dantrolene (20 µM).[77, 78] The effect of 20 µM dantrolene

on the maximum calcium response of GPR17 towards their agonists RA-II-150

was determined. Within a time period of 30 minutes there is no elevation of the

intracellular calcium level in 1321N1-GPR17 cells (Figure 32A). Furthermore,

dantrolene does not attenuate the maximal calcium response of GPR17 (Figure

32B). By contrast, the pEC50 value of RA-II-150 is significantly increased in the

presence of dantrolene (pEC50 6.85 (± 0.03)) compared to its pEC50 under

standard conditions (pEC50 6.09 (± 0.06)) (Figure 32E).

IP3 receptors are intracellular ligand-gated Ca2+ release channels localised

primarily in the endoplasmic reticulum membrane.[79] This type of channel can be

blocked by 2-aminoethoxydiphenyl borate (2-APB).[80] 2-APB does not elevate the

intracellular calcium level in 1321N1-GPR17 cells upon addition (Figure 32C). In

the presence of 2-APB the elevation of calcium concentration is decreased

significantly compared to the calcium response under standard conditions (Figure

32D). The pEC50 of RA-II-150 in the presence of 2-APB is significantly increased

from 6.09 (± 0.06) to 6.56 (± 0.04) (Figure 32E).

Since dantrolene does not attenuate the agonist-induced calcium rise but 2-APB

attenuates it by more than 20%, the contribution of IP3 receptors can be

confirmed. The significantly increased potency of RA-II-150 in the presence of

both inhibitors is probably due to a shift in the calcium equilibrium from the

cytoplasm towards the intracellular calcium stores.
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Figure 32. Analysis of the calcium source in 1321N1-GPR17 cells. Dantrolene, a
ryanodine receptor inhibitor, does not elicit unspecific calcium mobilisation in
1321N1-GPR17 cells within 30 minutes after injection (A). Representative calcium
signatures of RA-II-150 in the presence of 20 µM dantrolene show that the
maximum response of RA-II-150 is not affected (B). Upon addition of 2-APB, an
IP3 receptor antagonist, the intracellular calcium concentration is also not affected
(C). Representative calcium signals show that in the presence of 2-APB the
maximum response is significantly decreased (D; P < 0.01; n = 3-4). The potency
of the GPR17 agonist RA-II-150 is increased in the presence of 2-APB (D;
n = 3-29). The potency of RA-II-150 in the presence of dantrolene as well as of
2-APB is significantly increased (pEC50[dantrolene] 6.85 ± 0.03; pEC50[2-APB]
6.56 (± 0.04); pEC50[standard] 6.09 (± 0.06) (n = 3-29)) (E).
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2.5.7 The role of calmodulin in the calcium release mechanism

Next, the involvement of calmodulin in the release mechanism was investigated.

Calmodulin is a ubiquitous and highly conserved calcium binding protein. It confers

to calcium-dependent regulation of many proteins, including ion channels like

ryanodine as well as IP3 receptors in the endoplasmic reticulum membrane.[81-83]

N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide hydrochloride (W-7) and

fluphenazine are two calmodulin inhibitors which have been used to verify the

participation of calmodulin in the calcium release mechanism.[84, 85]

First, the possibility that the addition of 30 µM W-7 or fluphenazine causes an

unspecific calcium mobilisation in 1321N1-GPR17 is ruled out (Figure 33A).

In the presence of W-7 and fluphenazine the maximum elevation of calcium

concentration elevation upon GPR17 activation is significantly decreased, whereby

the effect of fluphenazine is stronger than that of W-7 (Figure 33B and C). The

potency of RA-II-150 increases in the presence of W-7 and fluphenazine from a

pEC50 value of 6.09 (± 0.06) to 6.61 (± 0.09) and 6.46 (± 0.09), respectively

(Figure 33D).

Since calmodulin inhibits the IP3 receptor-mediated calcium release from

intracellular stores by direct interaction with these channels, it was expected that

the calcium release would be enhanced in the presence of a calmodulin

inhibitor.[86, 87] Surprisingly, the opposite is observed. However, these results can

be explained by the unspecific effects of the antagonists that are used. It was

reported that both inhibitors block IP3 receptors directly in a

calmodulin-independent manner.[88-90] These data are consistent with the 2-APB

data that identifies IP3 receptors as the responsible calcium release channels.
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Figure 33. Investigations of the role of calmodulin in the calcium release
mechanism in 1321N1-GPR17 cells. The effect of two calmodulin inhibitors on the
calcium mobilisation mechanism of the calcium signalling of GPR17 after adding
RA-II-150 was tested. Within 30 minutes of adding 30 µM W-7 or fluphenazine,
respectively, no unspecific calcium mobilisation but rather a decrease in
cytoplasmic calcium is detected (A). Representative real-time measurements of
intracellular calcium changes upon agonist addition in the presence of 30 µM W-7
(B) or fluphenazine (C) reveal that the maximum calcium response is decreased in
contrast to the response under standard conditions. The effect of 30 µM
fluphenazine (D; n = 5-6) on the maximum calcium response is stronger than that
of 30 µM W-7 (D; n = 6-7). The potency of RA-II-150 is significantly increased in
the presence of both compounds (P values < 0.01 and < 0.05; n = 5-29).
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2.5.8 Protein kinases and their influence on the calcium release mechanism

Finally, the putative influence of protein kinases A (PKA) and protein kinase C

(PKC) on the calcium signalling of GPR17 was investigated. Protein kinases

modulate a variety of processes within the cell by phosphorylation of the proteins

involved. PKA and PKC phosphorylate IP3 receptors and G protein-coupled

receptors and modulate their functions in this way.[17-20]

For this reason it was investigated, whether the inhibition of PKA or PKC

influences the calcium response of GPR17 upon receptor activation in

1321N1-GPR17 cells.

PKA was inhibited by 1 µM H 89 and PKC by 1 µM bisindolylmaleimide

GF 109203X.[91, 92] Neither H 89 nor GF 109203X causes an unspecific calcium

elevation in 1321N1-GPR17 within a period of 30 minutes after addition (Figure

34A).

Interestingly, the maximum response is not affected in the presence of the PKA

inhibitor and the pEC50 value (6.77 ± 0.11) is significantly increased (Figure 34B

and D), while in the presence of the PKC inhibitor the maximum response of

GPR17 upon agonist addition is significantly increased by approximately 50%, and

the pEC50 is unchanged (Figure 34C and D).

The effect of the corresponding protein kinase inhibitor suggests that both kinases

modulate the calcium response. Protein kinase C seems to be responsible for the

inactivation or desensitisation of certain constituents of the calcium mobilisation

mechanism, while the involvement of PKA remains enigmatic. In both cases it

remains unclear which pathway constituent is modulated by the phosphorylation of

these protein kinases. Further investigations concerning this are necessary.
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Figure 34. Investigations of the modulatory role of protein kinases A and C on the
calcium release mechanism in 1321N1-GPR17 cells. Neither 1 µM of the PKA
inhibitor H 89 nor 1 µM of the PKC inhibitor GF 109203X cause unspecific calcium
mobilisation in 1321N1-GPR17 cells (A). Real-time measurements of the changes
in the intracellular calcium concentration upon agonist addition reveal that the
maximum calcium response of GPR17 towards RA-II-150 is not significantly
affected in the presence of H 89 (B) but is affected in the presence of GF 109203X
(C; P value < 0.001). The pEC50 value of RA-II-150 is significantly increased in the
presence of H 89 (D; P value < 0.01), while it is not affected in the presence of
GF 109203X (n = 4-29).
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2.6 Characterisation of potential endogenous ligands of

GPR17

2.6.1 Selected endogenous compounds and biosynthesis pathway

intermediates as potential GPR17 ligands

To gain an insight into the role of an orphan receptor, it is important on the one

hand to know when and where it is expressed and on the other to know its

endogenous ligand.

For this reason several types of natural products were tested in the cell population

based calcium assay.[66] It was investigated whether these compounds activate or

inhibit GPR17.

2.6.2 Selected amino acids and folic acid as potential ligands of GPR17

Tryptophane, tyrosine, folic acid and kynurenic acid were tested first. Tryptophane

shares the indole scaffold as well as the carboxylic group at a similar position to

RA-II-150. Tyrosine shows the carboxylic group at the same distance from a ring

structure as the lead compound. Folic acid contains two carboxylic groups and an

amino group with the same constitution as in the lead compound RA-II-150.

Tryptophane is metabolised in the kynurenine pathway. Several metabolites of this

pathway are proposed to be involved in the pathogenesis of Alzheimer’s

disease.[93] One of these metabolites is kynurenic acid, which is an endogenous

antagonist of the N-methyl-D-aspartate receptor.[94] The antagonistic effect of

kynurenic acid leads to a reduction in neuronal damage in primary neuronal

cultures exposed to excitotoxins, a reduction in the infarct volume after middle

cerebral artery occlusion in rats and the protection of hippocampal pyramidal

neurones after transient carotid occlusion in gerbils.[95-97]



CHAPTER II: RESULTS

53

However, neither the amino acids tryptophane and tyrosine nor folic acid and

kynurenic acid activate or inhibit GPR17 (Table 6).

Table 6. Summary of the stimulatory and inhibitory effects of test compounds
(n = 3-5). Test compounds were applied in a concentration of 30 µM. The data are
normalised to the response of 30 µM (column 2) or 3 µM RA-II-150 (column 3).
Kynurenic acid was originally provided by Professor Reuter, Institute for
Pharmaceutical Biology, University of Jena and a gift of Professor E. Leistner,
Institute of Pharmaceutical Biology, University of Bonn.

Test compound

1321N1-GPR17 cells

% of response of test compound

(± SEM)

% of inhibition by test compound

(± SEM)

N

NH
3

O
O

H

H

+

Tryptophane

-0.44 (1.14) 0.43 (1.19)

NH
3

O
O

H

OH

+

Tyrosine

0.36 (0.43) 1.90 (1.76)

N

N N

N

OH

NH
2

NH

O

N

OOH

OH

O H

Folic acid

0.43 (1.43) 6.51 (1.69)

N
OH

O

OH Kynurenic acid

0.19 (0.78) 1.13 (5.91)
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2.6.3 Selected intermediates of the citric acid cycle as potential GPR17

ligands

Next, three free acids of citric acid metabolites were tested. All the compounds

share two carboxylic components with the lead structure RA-II-150.

Neither citric acid and succinic acid nor fumaric acid activate or inhibit GPR17 in

calcium assays up to a concentration of 30 µM (Table 7).

Table 7. Summary of the stimulatory and inhibitory effects of natural occurring
organic acids (n = 3-9). Test compounds were applied in a concentration of 30 µM.
The data are normalised to the response of 30 µM (column 2) or 3 µM RA-II-150
(column 3).

Test compound

1321N1-GPR17 cells

% of response of test compound

(± SEM)

% of inhibition of test compound

(± SEM)

OH

OO

OH
OH

OOH

Citric acid

0.03 (0.27) 1.43 (2.14)

OH

O

OH

O Succinic acid

0.15 (0.65) 6.78 (1.80)

OH

O

OH

O Fumaric acid

1.63 (1.48) 4.74 (2.72)

2.6.4 Selected purines and pyrimidine bases and a nucleoside as potential

GPR17 ligands

Purine and pyrimidine bases are structural elements of nucleic acids. Several of

these bases were tested together with orotic acid, an intermediate of the

pyrimidine nucleotide synthetic pathway, uric acid and inosine. The latter is

commonly found in transfer RNAs.[98, 99]

None of the tested compounds showed an ability to activate GPR17 or inhibit the

RA-II-150-dependent activation of GPR17 (Table 8).
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Table 8. Summary of the stimulatory and inhibitory effects of test compounds
(n = 3-6). Test compounds were applied in a concentration of 30 µM. The data are
normalised to the response of 30 µM (column 2) or 3 µM RA-II-150 (column 3).

Test compound

1321N1-GPR17 cells

% of response of test compound

(± SEM)

% of inhibition by test compound

(± SEM)

N

N
H

O

CH
3

H

O

Thymine

2.30 (1.63) 0.78 (2.56)

N

N

NH
2

H

O

Cytosine

3.48 (0.92) 0.70 (2.87)

N

N

O

H

O

H

Uracil

0.43 (0.98) 7.63 (2.22)

N

N

O

H

O

H

OH

O
Orotic acid

2.25 (0.76) 0.05 (4.07)

N

N
N

N

NH
2

H
Adenine

2.20 (0.66) 2.60 (3.86)

N

N
N

N

OH

H

OH

OH

Uric acid

7.63 (2.22) 5.74 (3.07)

N

N
N

N

O

H

O

OH OH

OH

Inosine

3.33 (2.39) 0.46 (3.31)
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2.6.5 Neurotransmitters and their metabolites as modulators of GPR17

GPR17 expression occurs in tissue which undergoes ischemic damages.[51] One

of these tissues is the brain. For this reason -aminobutyric acid (GABA), the most

important inhibitory neurotransmitter in the mammalian central nervous system,

and 5-hydroxyindoleacetic acid (5-HIAA), the main metabolite of serotonin, were

tested. 5-HIAA is interesting, because its chemical structure shows some

similarities to that of RA-II-150. It is composed of an indole scaffold and two

carboxylic groups (Table 9). However, neither 5-HIAA nor GABA activate or inhibit

GPR17 (Table 9).

Table 9. Summary of the agonistic and inhibitory effects of -aminobutyric acid
(GABA) and 5-hydroxyindoleacetic acid (n = 3-4). Test compounds were applied in
a concentration of 30 µM. The data are normalised to the response of 30 µM
(column 2) or 3 µM RA-II-150 (column 3).

Test compounds

1321N1-GPR17 cells

% of response of test

compound

(± SEM)

% of inhibition by test

compound

(± SEM)

NH
2

O

OH -aminobutyric acid
0.69 (0.53) 4.56 (2.15)

N OH

O

H

OH

OH

O

5-hydroxyindoleacetic acid

0.74 (2.24) 6.68 (8.95)

In summary, it was not possible to identify the endogenous ligand of GPR17. Only

a small number of endogenous compounds were tested here, however, which

share structural similarities with the identified agonists and proposed agonists of

GPR17. There are probably other essential, but unknown, functional groups in

addition to those already identified, in a defined arrangement that are essential

features of the endogenous ligand. Until now, GPR17 remains an orphan

G protein-coupled receptor.
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2.7 Products from natural sources as GPR17 modulators

2.7.1 Compounds from marine and endophytic fungi and marine sponges

The relevance of compounds from natural, especially marine, sources is

summarised in many review articles.[100-103] In 2006 more than 650 new

compounds from marine sources with biological activities were isolated.[101] Mayer

et. al. report in their review on the preclinical pharmacology of 183 chemically

characterised marine compounds.[103] The molecular target was identified for 58 of

these compounds.[103] Most of the compounds are antitumor, antiviral,

antibacterial, and antifungal reagents, though compounds were also identified

which bind to structures localised on the cell surface. The nicotinic acetylcholine

receptor and the ionotropic glutamate receptor are just two examples.[103]

In collaboration with the working group of Professor G. M. König, Institute of

Pharmaceutical Biology, University of Bonn, a library of different classes of natural

products from different sources was made available and tested in the cell

population based calcium assay.[66] It was investigated whether these compounds

activate or inhibit GPR17.

Dr. Alexander Pontius isolated mellein, a new aromatic polyketide, ascochrom as

well as AK 6, AK 7 and 707-4.4-R-2, three heterodimeric chromanones, from

different algicolous or endophytic fungi.[104-106] Dr. Kerstin Neumann isolated

KN935 from the marine derived fungus Trichoderma saturnisporium as part of her

PhD thesis.

The analysis of these compounds showed that all compounds are inactive (Table

10).
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Table 10. Agonistic and inhibitory effects of different compounds isolated by Dr.
Alexander Pontius. None of the tested compounds showed any agonistic or
antagonistic effect (n = 3-4). Test compounds were applied in a concentration of
30 µM. The data are normalised to the response of 30 µM (column 2) or 3 µM
RA-II-150 (column 3).

Internal designation of the test compound

1321N1-GPR17 cells

% of response of test compound

(± SEM)

% of inhibition by test compound

(± SEM)

O

O OHOH

CH3

OH

OH

O

O

OHCH
3

OH

OH

CH
3

CH
3

Ascochrom

0.09 (0.94) 0.46 (2.44)

O

CH3

OH

OH O

CH3

Mellein

0.95 (1.78) 0.67 (5.06)

O
CH3

O

OOH

CH
3

O

CH3

O

CH
3O

O

CH
3

O

OH

AK6

0.19 (0.41) 10.1 (3.73)

O

CH
3

O

O

OH

CH3

O

O

OH

CH
3

O

CH
3

O

OH

O

AK7

-0.22 (0.65) -7.36 (4.03)

O

OOH

CH
3

O

O

OH CH
3

O

O

O

O
CH3

O

O

CH
3

OH

O

O

CH
3

707-4.4-R-2

0.09 (0.81) 2.29 (7.42)

O

O

OH

OH

OHO

O

OH

KN935

0.18 (1.92) 6.23 (5.56)
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Next, Anomalin A and 3,6,8-trihydroxy-1-methylxanthone were tested. Both were

isolated by Ahmed Abdel Lateff and containing a xanthone scaffold,.[107] The

xanthone scaffold of both compounds carries a methyl substitution at position one

and hydroxyl substitutions at positions three, six and eight. Anomalin A is

differentiated from 3,6,8-trihydroxy-1-methylxanthone by a further hydroxyl

substitution at position two (Table 11).

Both compounds were tested for their ability to activate GPR17. Neither

anomalin A nor 3,6,8-trihydroxy-1-methylxanthone increased the amount of

intracellular calcium (Table 11).

Interestingly, both compounds inhibit GPR17. Anomalin A exhibits a pIC50 of 5.20

and is more potent than 3,6,8-trihydroxy-1-methylxanthone (pIC50 of 4.68

(extrapolated)) (Table 11 and Figure 35).

It was not possible to test these compounds on other related receptors for

selectivity purposes because access to them is limited.

Table 11. Agonistic and inhibitory effects of Anomalin A and 3,6,8-trihydroxy-1-
methylxanthone. Both compounds showed antagonistic effects but no agonistic
effects (n = 4-7). Test compounds were applied in a concentration of 30 µM (or 10
µM). The data are normalised to the response of 30 µM (column 3) or 3 µM
RA-II-150 (column 4).

Internal designation of the test

compounds

1321N1-GPR17 cells

pIC50

(± SEM)

% of response of test

compound (± SEM)

% of inhibition by test

compound (± SEM)

OOH

OH

OH

O

OH

Anomalin A

5.20 (0.11) 9.96 (2.11) 86.7 (4.49)

OOH

OH

OH

O

H

3,6,8-trihydroxy-1-methylxanthone

4.68 (0.02)
0.11 (0.66)

(10 µM compound)
62.0 (2.01)
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Figure 35. Dose response curves of anomalin A (closed squares) and
3,6,8-trihydroxy-1-methylxanthone (open circles). The pIC50 values in
1321N1-GPR17 cells are 5.20 µM (± 0.11) for anomalin A and 4.68 (± 0.02)
(n = 4-7) for 3,6,8-trihydroxy-1-methylxanthone.

Finally, a serial of compounds derived from sponges of the species Dysidea were

tested.[108, 109] These compounds are polybrominated and share a diphenyl ether

scaffold (Figure 36).

O

I II

Figure 36. Diphenyl ether scaffold of test compounds extracted from sponges of
the species Dysidea. The aromatic rings are numbered.

Four compounds, numbered Dysidea sp. 1 to sp. 4, were tested. All the

compounds consist of a dibrominated ring II, with an identical substitution pattern,

and a dibrominated (Dysidea sp. 3) or tribrominated ring I (Dysidea sp. 1, sp. 2

and sp. 3) (Table 12). Furthermore, both ring systems are substituted with a single

hydroxyl or methyl ether group (Table 12).

After adding 30 µM test compound, no increase in intracellular calcium

concentration is detected but all compounds inhibit GPR17 activation. The

compound potencies decrease as followed: Dysidea sp. 2 (pEC50 5.37) > Dysidea

sp. 1 (pEC50 5.14) > Dysidea sp. 4 (pEC50 5.04) > Dysidea sp. 3 (pEC50 5.03)

(Table 12 and Figure 37). Dysidea sp. 2, the only compound with a single hydroxyl
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group at each ring system, is the most potent compound in this series.

It was not possible to test these compounds on other related receptors for

selectivity purposes because access to them is limited.

Table 12. Agonistic and inhibitory effects of different Dysidea species (n = 3-5).
Test compounds were applied in a concentration of 30 µM. The data are
normalised to the response of 30 µM (column 3) or 3 µM RA-II-150 (column 4).

Internal designation of the test

compounds

1321N1-GPR17 cells

pIC50

(± SEM)

% of response of test

compound (± SEM)

% of inhibition by test

compound (± SEM)

O

O

Br

Br Br

Br

Br

OH

Dysidea sp. 1

5.14 (0.01) 0.70 (1.10) 90.0 (4.33)

O

OH

Br

Br Br

Br

Br

OH

Dysidea sp. 2

5.37 (0.02) 1.63 (3.24) 99.8 (2.99)

O

O

Br Br

Br

Br

OH

Dysidea sp. 3

5.03 (0.06) -1.92 (1.16) 86.1 (5.79)

O

OH

Br Br

Br

Br

O

Br Dysidea sp. 4

5.04 (0.04) -1.29 (1.07) 102 (0.91)
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Figure 37. Dose response curves of Dysidea sp. 1 (red triangle), sp. 2 (blue
triangle), sp. 3 (yellow rhombus) and sp. 4 (green circle). All the compounds show
antagonistic activities, though Dysidea sp. 2 is the most potent antagonist.
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A comparison of the structure of anomalin A and its derivative identified the

hydroxylic group at position 2 as very important for compound potency. The

elimination of this group leads to a considerable decrease in potency. No further

information is available about important structural elements. Interestingly, the

diphenyl ether scaffold of the Dysidea species is completely integrated in the

xanthone scaffold of anomalin A and its derivative. However, the scaffold of

anomalin A and its derivative is planar, while the aromatic Dysidea rings rotate

around the bridging atom. A planar structure and free rotation of both rings around

the linking bridge are not possible, because of the ring substitution pattern.

Furthermore, the formation of ether at one of the two hydroxylic groups leads to

decreased compound potency, indicating the relevance of the free hydroxylic

groups.

2.7.2 Compounds from bacterial sources

Bacteria are another very important source of new compounds. For this reason a

few compounds from this source were tested.

Both 131A and 131B, which were isolated by Dr. Birgit Ohlendorf from the

proteobacteria Mycococcus sp., have a tyrosine derived core structure

glycosylated with rhamnose and acylated with unusual fatty acids such as (Z)-15-

methyl-2-hexadecenoic or (Z)-2-hexadecenoic acid.

Pyochelin, a sideophore which was isolated by Dr. Harald Gross, was also

tested.[110]

All the compounds fail to activate or inhibit GPR17 up to a concentration of 30 µM

(Table 13).
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Table 13. Summary of the agonistic and inhibitory effects of 131A, 131B and
pyochelin (n = 3-6). Test compounds were applied in a concentration of 30 µM.
The data are normalised to the response of 30 µM (column 2) or 3 µM RA-II-150
(column 3).

Internal designation of the test compounds

1321N1-GPR17 cells

% of response of test compound

(± SEM)

% of inhibition by test compound

(± SEM)

O

OH
OH

OH

O

N

O

H

131A

0.83 (1.19) 10.4 (2.32)

O

OH
OH

OH

O

N

O

H

131B

2.17 (5.43) 0.78 (6.13)

S

N

S

N OH

O
CH3

OH

Pyochelin

0.24 (2.04) 1.24 (1.71)

2.7.3 Compounds from terrestrial plants

Higher plants in particular have a long history of use in the treatment of human

diseases, which is why this part focuses on compounds derived from this source.

There are many plant-derived drugs on the market or in clinical trials.[111] All the

compounds described in this part were kindly provided by Professor E. Leistner,

Institute of Pharmaceutical Biology, University of Bonn, unless otherwise

mentioned.

4'-O-Methylpyridoxine, better known as ginkgotoxin, was tested together with its

5’ phosphorylated derivative (4’-O-deoxypyridoxine-5’-phosphate).

4’-O-deoxypyridoxine-5’-phosphate is commercially available while bilobalide was

provided by the Dr. Willmar Schwabe GmbH and Co. KG, Karlsruhe. All the

compounds in this series fail to activate or inhibit GPR17 (Table 14).
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Table 14. Agonistic and inhibitory effects of Ginkgotoxin, its derivatives and
bilabolide. The natural products of this series do not activate or inhibit GPR17
(n = 3-6). Test compounds were applied in a concentration of 30 µM. The data are
normalised to the response of 30 µM (column 2) or 3 µM RA-II-150 (column 3).

Test compounds

1321N1-GPR17 cells

% of response of test compound

(± SEM)

% of inhibition by test compound (±

SEM)

N

OH
OH

OMe

OH

4'-O-Methylpyridoxine (Ginkgotoxin)

1.79 (0.58) 3.99 (4.29)

NCH
3

OH
O

P
OH

OH

O

OMe

4’-O-Methylpyridoxine-5’-phosphate

(Ginkgotoxin phosphate)

3.14 (0.74) 1.50 (4.06)

NCH
3

OH
O

P
OH

OH

O

4’-Deoxypyridoxine-5’-phosphate

2.76 (0.63) 4.94 (3.58)

O

O

O

H

H

OH

O

O

O

OH

Bilobalide

0.30 (1.01) 3.16 (4.38)

Umbelliferone, herniarin and imperatorin share a coumarin scaffold. p-Coumaric

acid is a derivative of cinnamic acid which can be synthesised from phenylalanine

and ferullic acid. The alkaloid capsaicin, rutin, a citrus flavonoid glycoside, arbutin,

aloin, betulinic acid, which has a pentacyclic triterpenic carboxylic acid scaffold,

and mollugin were also tested. However, none of compounds shows any activity.
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Table 15. Agonistic and inhibitory effects of different natural occurring compounds.
All the compounds fail to activate or inhibit GPR17 RA-II-150 (n = 3-5). Test
compounds were applied in a concentration of 30 µM. The data are normalised to
the response of 30 µM (column 2) or 3 µM RA-II-150 (column 3). All the
compounds are commercially available.

Chemical structure and designation of the test

compounds

1321N1-GPR17 cells

% of response of test

compound

(± SEM)

% of inhibition by test

compound

(± SEM)

O OOH

Umbelliferone
-1.84 (0.50) 5.65 (2.78)

O OCH
3
O

Herniarin
-0.43 (0.53) 11.0 (1.45)

OO O

O

Imperatorin

-0.53 (0.83) 2.11 (3.51)

OH

O

OH p-Coumaric acid

0.93 (1.08) 8.85 (1.35)

OH

O

OH

MeO

Ferulic acid

-0.93 (0.39) -1.39 (1.46)

N

OH

O

H

OMe Capsaicin

1.16 (0.73) 0.70 (4.58)

OHOH
O

OH

O

O
OOH

OH

OH

OH

O

CH
3 O

OH

OH
OH Rutin

0.02 (2.16) 4.62 (9.04)
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Chemical structure and designation of the test

compounds

1321N1-GPR17 cells

% of response of test

compound

(± SEM)

% of inhibition by test

compound

(± SEM)

O

OH

OH

OH

OH

O

OH

Arbutin

2.71 (1.27) 3.70 (6.99)

O

OH

OH

OH

OH

O OHOH

HOH

Aloin

0.32 (0.75) 2.11 (4.04)

H

O

OH

H

OH

H

Betulinic acid

-0.12 (0.60) 0.27 (2.20)

O

O

OOH

Mollugin

0.97 (1.59) 0.57 (5.49)

A series of compounds with a napthoquinone scaffold were tested next (Figure

38).

O

O

1

2

3

45

Figure 38. Napthoquinone scaffold of juglone and its derivatives. The positions of
the substitutions are numbered.

Juglone, its -D-glucoside and hydrojuglone and its -D-glucopyranoside neither
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activate nor inhibit GPR17. Plumbagin and deoxylapachol, two derivatives of

juglone, do not activate GPR17 but inhibit GPR17 activation in a

concentration-dependent manner. The receptor activation is inhibited by 99.8%

and 37.4% respectively in the presence of 30 µM plumbagin and deoxylapachol

(Table 16).

Table 16. Agonistic and inhibitory effects of compounds containing a
napthoquinone scaffold. The compounds were tested for their ability to activate or
inhibit GPR17 in a calcium assay (n = 3-7). Test compounds were applied in a
concentration of 30 µM. The data are normalised to the response of 30 µM
(column 2) or 3 µM RA-II-150 (column 3).

Test compounds

1321N1-GPR17 cells

% of response of test compound

(± SEM)

% of inhibition by test compound

(± SEM)

O

OOH Juglone

1.74 (1.05) 6.34 (5.95)

O

OOH Plumbagin

0.21 (1.07) 99.8 (0.97)

O

OO
O

OH

OH

OH

OH

Juglone--D-glucoside

2.07 (1.08) 3.30 (2.75)

O

O Deoxylapachol

1.48 (0.53) 37.4 (2.58)

OH

OHOH
4 Hydrojuglone

-2.13 (1.07) 6.98 (2.64)

OH

OOH
O

OH

OH

OH

OH

4,8-Dihydroxy-1-naphthalenyl--D-
glucopyranoside

0.43 (0.85) 10.7 (3.14)
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The selectivity of plumbagin and deoxylapachol was investigated by testing their

inhibitory effects on related receptors like human P2Y2 and P2Y4 as well as rat

P2Y6. Apparently, plumbagin also blocks the calcium response of human P2Y2,

human P2Y4 and rat P2Y6 towards their corresponding standard agonists (Figure

39A). Even human P2Y2 and P2Y4 are blocked by deoxylapachol, the inhibitory

effect of which is more selective for GPR17 than for the other two receptors

(Figure 39B).

Finally, a serial of natural products which share an anthraquinone scaffold were

tested.[112, 113] Whereas emodin and lucidin neither activate nor inhibit GPR17,

purpurin inhibited GPR17 activation without leading to any increase in intracellular

calcium concentration on its own (Table 17).
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Figure 39. Investigations of compound selectivity. Since plumbagin blocks related
receptors, such as human P2Y2, P2Y4 and rat P2Y6, its inhibitory effect is not
selective for GPR17 (A). By contrast, deoxylapachol is more selective for GPR17
than plumbagin (B). Therefore, the receptor calcium response upon addition of
3 µM UTP, 1 µM UTP or 3 µM UDP in the presence of 30 µM test compound was
related to the corresponding response in the absence of test compound.
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Table 17. Summary of the agonistic and inhibitory effects of different natural
products (n = 3-5). Test compounds were applied in a concentration of 30 µM. The
data are normalised to the response of 30 µM (column 2) or 3 µM RA-II-150
(column 3). All the test compounds are commercially available.

Test compounds

1321N1-GPR17 cells

% of response of test compound

(± SEM)

% of inhibition by test compound

(± SEM)

OH

O

O OH

OH

Emodin

0.97 (1.16) 2.53 (10.1)

O

O

OH

OH

OH

Lucidin

1.48 (0.67) 0.26 (3.73)

O

O OH

OH

OH
Purpurin

4.06 (0.73) 71.1 (2.33)

Purpurin was tested for its ability to inhibit other related receptors of GPR17. The

inhibitory effect of purpurin is selective for GPR17 compared to the activity on

human P2Y2 and P2Y4 (Figure 40).

GPR17

human P2Y2

human P2Y4

0

20

40

60

80

in the presence of
30 µM purpurin

%
o
r

in
h
ib

it
io

n
o
f

3
µ

M
R

A
-I

I-
1
5
0
/3

µ
M

U
T

P
/1

µ
M

U
T

P

Figure 40. Determination of compound selectivity. The inhibitory effect of purpurin
on human P2Y2 and P2Y4 receptor is less than on GPR17 in a calcium assay
(n = 3-4).

Plumbagin and deoxylapachol, both GPR17 inhibitors, share a

1,4-naphthoquinone scaffold whereas juglone with the same scaffold and

hydrojuglone with a very similar scaffold are inactive. It seems that further
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methylation or 2-methylpropenylation at a certain position is essential for activity.

In addition, the hydroxylation of the 1,4-naphthoquinone scaffold terminates

compound activity. The scaffold of these two compounds is a substructure of the

purpurin scaffold, another inhibitor of GPR17. However, a comparison of purpurin,

which is multiply hydroxylated, with related structures does not allow any definite

statement about essential substitution patterns.

2.8 Characterisation of synthetic anthraquinone

compounds as negative modulators of GPR17

As already described earlier, GPR17 is closely related to the P2Y receptor family.

Compounds with an anthraquinone scaffold (Figure 41), such as reactive blue 2,

had been characterised as antagonists for P2Y12.
[114] A few further investigations

concerning the antagonistic behaviour of these compounds were carried out on

the P2Y1-like receptor, the P2Y2 receptor, the P2Y12 receptor, the P2X receptors

and ectonucleoside triphosphate diphosphohydrolases.[115-120] These compounds

were synthesised by Dr. Stefanie Weyler and Dr. Younis Baqi of the group of

Professor C. E. Müller, Pharmaceutical Institute, Pharmaceutical Chemistry I,

University of Bonn.[119, 121, 122] They share a 1,4-diamino-2-sulfoanthraquinone

scaffold which is substituted with different aliphatic or aromatic side chains over

the amino group at position 4 (Figure 41).

O

O

NH2

SO3 Na

N
H

- +1

2

4

= AQ

Figure 41. Anthraquinone scaffold of test compounds. All the test compounds
share an anthraquinone scaffold, which is substituted with one sulphonate and two
amino groups whereas one amino group functions as the linker to the varied
residue. This scaffold structure is abbreviated in the following tables as “AQ.”
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2.8.1 Substitution of the anthraquinone scaffold with a phenyl group

A group of anthraquinones with a single phenyl substituent at position 4 were

tested, whereas the phenyl ring contained different substitution patterns (Figure

42). This group consists of 55 members, whereas 27 compounds were already

characterised for at least one of the following receptors: P2Y1-like receptor, P2Y2

and/or P2Y12. The results of certain compounds for the P2Y12 and P2Y2 receptor

are especially interesting.

AQ

para

meta

ortho

meta

ortho

Figure 42. Phenyl scaffold of anthraquinone (AQ) side chains.

The IC50 values for selected anthraquinones were determined for 1321N1

astrocytoma cells stably expressing P2Y2 receptors in a cell population based

calcium assay comparable to that already described (2.2.1) but using another

microplate reader.[123-125] Anthraquinones already tested for the P2Y2 receptor

were potent in the following order [IC50 in µM]: YB033 [3.04] > YB022 [5.31] >

YB076 [5.43] > YB025 [5.61] > YB075 [7.95] > YB072 [9.26] > YB016 [9.82]

> YB071 = YB015 [11.5] > YB077 [15] > YB036 [24.9] > YB062 [> 30].[119]

Baqi et. al. determined the Ki value of selected anthraquinones for P2Y12 in

radioligand binding assays at human platelet membranes.[114] The affinities of the

tested anthraquinones for the P2Y12 receptor decrease as follows [Ki in µM]:

YB001 [2.1] > YB002 [2.39] > YB045 [3.13] > YB062 [6.76] > YB003 [7.07] >

YB022 [7.35] > YB025 [9.83] > YB004 [12.2] > YB007 [12.3] > YB005 [25.1]. The

Ki values of several other compounds were ~10 or >10 (YB010, YB11 and YB020,

YB019, YB028, YB023).[114]

All compounds of this series were tested for their agonistic and antagonistic

behaviour at GPR17 in a cell population based calcium assay. A DRC of the

compound was determined in case of activity. For this purpose compound

concentrations up to a concentration of 30 µM or 100 µM were tested. Even
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unspecific calcium mobilisation as a matter of compound addition was determined

up to a concentration of 10 µM. Named unspecific effects at concentrations higher

than 10 µM, which may led to the observed antagonistic effects of a test

compound, could be ruled out by performing a so-called validation. Since the

compounds are preincubated with the cells unspecific mobilisation events could be

detected in form of a concentration-dependent enhanced background

fluorescence, which was determined by the validation. Unless otherwise

mentioned, no increased background fluorescence was detected at concentrations

higher than 10 µM.

Apart from YB001, YB002 shows the highest affinity towards P2Y12. YB001 and

YB002 are constitutional isomers, whereas the sulphonate and amino groups are

substituted with each other. However, the potency of YB001 in the

1321N1-GPR17 test system is considerably reduced (pIC50 4.27) compared to that

of YB002, a very potent compound at GPR17 (pIC50 5.45).

When the sulphonate group of YB002 is substituted with a carboxylate group

(YB037; pIC50 4.28), the potency decreases to a similar level compared to YB001

(Table 18).

All compounds which carry a single carboxylic group or an additional substitution

besides this substitution are considerably less active or completely inactive. These

compounds are: YB003 (pIC50 4.33), YB004 (pIC50 4.69), YB005 (inactive), YB006

(pIC50 4.66), YB007 (pIC50 4.45), YB008, YB038 (inactive), YB046 (pIC50 4.89),

YB049, YB051 (pIC50 4.27), YB052 (inactive) and YB053 (pIC50 4.70). YB004,

YB007 and YB005 are also less active on the P2Y12 receptor. By contrast, YB003

shows a high affinity to P2Y12 but a reduced activity towards GPR17 (Table 18).

A single methylation at the meta position is well accepted (YB033; pIC50 5.41) but

at the para position (YB036; pIC50 4.62) the potencies decrease considerably. The

pEC50 value for YB033 on the P2Y2 receptor is 5.52 and therefore comparable to

that on GPR17 (pIC50 5.41) (Table 18). Furthermore, YB033 is one of the most

potent compounds in this series.

A single methoxylation at the ortho (YB016; pIC50 4.93) or para (YB015; pIC50

4.99) position leads to less active compounds than methoxylation at the meta

position (YB012; pIC50 5.26). However, a combination of both ortho and para

substitution leads to a compound (YB078; pIC50 5.21) that is similarly potent to the

single meta substituted compound (YB012).
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Next, compounds with a monoamino-substituted phenyl ring were tested. YB019 is

para amino substituted and with a pIC50 of 5.11 more potent than the meta amino

substituted YB021 (pIC50 4.95) and YB020 (pIC50 4.69), which is ortho amino

substituted (Table 18). The potency of YB021 is considerably enhanced when

additional methylation occurs at the ortho position (YB048; pIC50 5.29). An

additional sulphonation at the meta position (YB002; 5.45) likewise increases the

potency of YB019. By contrast, sulphonation of YB021 at the para position

decreases the potency, resulting in a pIC50 of 4.27 (YB001) (Table 18).

Compounds with a halogenated phenyl ring were analysed subsequently. Here,

the anthraquinone with the mono chlorinated phenyl ring at the ortho position

(YB084) is more potent with a pIC50 of 5.42 than that with a mono fluorination at

the meta position (YB096; pIC50 5.34) or a bromination at the para position

(YB034; pIC50 4.97) (Table 18). YB084 is the most potent antagonist in this series

at GPR17 apart from YB011 and YB002. YB011 (pIC50 of 5.46), which was not

tested on either P2Y2 or P2Y12, carries a hydroxyl substitution at the para position.

When the phenyl ring is hydroxylated at the ortho position (YB010), the potency

decreases to a pIC50 of 5.05 and disappears if a carboxylic group is also added at

the meta position (YB046; pIC50 4.89) (Table 18).

Table 18. pIC50 and inhibition values of anthraquinone derivatives with a phenyl
substitution. The increase in intracellular calcium as a result of compound addition
is also summarised (n = 3-4). Test compounds were applied in a concentration of
10 µM (columns 3 and 4). The data are normalised to the response of 3 µM
(column 3) or 30 µM RA-II-150 (column 4). For some compounds no pIC50 value
could be determined, because they were inactive or their potencies were too small
(n.d.).

Side residue and internal designation

of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ

YB025
5.12 (0.01) 70.9 (1.68) 2.40 (1.50)

AQ

F

YB095

5.34 (0.02)

(not completely

soluble)

62.0 (3.10) 3.14 (3.04)
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Side residue and internal designation

of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ F

YB096
5.34 (0.15) 61.4 (3.84) 1.75 (1.07)

AQ

F YB013

4.93 (0.13)

(not completely

soluble)

30.3 (3.27) 1.14 (0.54)

AQ F

F YB079

5.13 (0.09)

(not completely

soluble)

61.7 (3.86) 6.44 (2.32)

AQ

Cl

YB084

5.42 (0.06) 79.9 (3.08) -0.31 (1.45)

AQ Cl

YB062

n. d.

(not completely

soluble)

24.7 (3.38) 2.19 (1.67)

AQ

Cl YB022

5.21 (0.08)

(not completely

soluble)

57.4 (4.79) 0.36 (0.29)

AQ Br

YB014

4.93 (0.03)

(stock solution not

completely dissolved)

34.5 (2.27) 3.01 (1.39)

AQ

Br YB034
4.97 (0.03) 41.2 (4.15) 0.02 (0.52)

AQ CH3

YB033
5.41 (0.07) 91.8 (2.12) 1.55 (0.62)

AQ

CH3 YB036
4.62 (0.33) 9.56 (1.83) -0.19 (0.37)

AQ CH
3

CH
3

YB075

5.11 (0.08)

(not completely

soluble)

64.3 (3.40) 0.59 (1.42)
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Side residue and internal designation

of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ

CH
3

CH3 YB076

5.19 (0.18)

(not completely

soluble)

58.9 (3.64) 4.47 (1.20)

AQ CH3

CH3 YB059

4.96 (0.12) 35.8 (5.80) 0.03 (0.54)

AQ

CH
3

CH3CH3 YB028

5.06 (0.10)

(not completely

soluble)

45.7 (8.13) 2.24 (1.64)

AQ

CH3

NH2

CH3CH3

YB023

5.14 (0.12) 66.0 (4.88) 0.14 (0.85)

AQ

CH
3

NH2

CH
3

CH
3

SO3 Na
- +

YB024

4.38 (0.34) 31.7 (4.07) 2.01 (1.48)

AQ

YB072
5.06 (0.04) 65.7 (5.16) 2.47 (1.32)

AQ

YB073

5.01 (0.04)

(not completely

soluble)

50.8 (3.52) -0.09 (0.97)

AQ

YB074

5.15 (0.09)

(not completely

soluble)

68.2 (6.66) -2.23 (0.40)

AQ

OH

YB010

5.05 (0.21) 40.6 (4.88) 2.61 (0.79)

AQ

OH YB011
5.46 (0.02) 92.6 (1.38) 1.51 (1.01)

AQ

OMe

YB016

4.93 (0.03) 23.9 (3.56) 0.53 (0.97)
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Side residue and internal designation

of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ OMe

YB012
5.26 (0.05) 73.1 (1.08) 2.41 (0.83)

AQ

OMe YB015
4.99 (0.01) 51.0 (5.29) 0.03 (0.50)

AQ OMe

OMe YB078

5.21 (0.02) 72.6 (3.97) 1.46 (0.57)

AQ

O YB077
4.99 (0.22) 50.1 (5.87) 0.47 (1.24)

AQ

O YB071
5.09 (0.09) 60.1 (4.08) 1.37 (0.82)

AQ

COOH

YB005

n. d. 0.58 (1.23) 0.86 (3.19)

AQ COOH

YB006
4.66 (0.17) 14.2 (5.58) 0.49 (1.84)

AQ

COOH YB008

4.98 (0.02)

(no complete

inhibition up to 30

µM)

18.4 (1.97) 0.19 (0.59)

AQ

COOH

YB038
n. d. 0.64 (2.72) 2.74 (3.32)

AQ

SO
3

Na
- +

YB009

5.15 (0.14) 47.1 (5.57) -0.38 (0.73)

AQ

SO3 Na- +
YB045

4.42 (0.29) 29.2 (4.71) 1.06 (0.69)
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Side residue and internal designation

of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ

NH
2

YB020

4.69 (0.24) 10.7 (5.40) -2.67 (0.94)

AQ NH2

YB021
4.95 (0.03) 48.0 (2.60) 0.26 (0.71)

AQ

NH2 YB019
5.11 (0.03) 63.2 (2.31) 1.83 (1.22)

AQ

N

O

H YB047

4.98 (0.01)

(not completely

soluble)

32.9 (1.97) 1.17 (0.80)

AQ

F

COOH

YB052

n. d. 6.66 (4.65) -1.18 (0.71)

AQ

COOH

F YB053

4.70 (0.61) 6.20 (4.98) 0.97 (1.86)

AQ

Br

COOH

YB051

4.27 (0.24) 35.2 (4.82) 1.22 (1.24)

AQ

OH

COOH

YB049

4.75 (0.15)

(not completely

soluble)

17.6 (2.02) 1.48 (0.84)

AQ NH2

COOH YB003

4.33 (0.11) 9.76 (5.21) 0.15 (0.92)

AQ

NH2

COOH

YB037
4.28 (0.33) 5.89 (2.40) 0.36 (0.42)

AQ

OH

COOH

YB046
4.89 (0.03) 26.3 (2.85) 2.02 (1.17)
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Side residue and internal designation

of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ

Cl

COOH

YB004

4.69 (0.23) 44.1 (9.90) -1.12 (0.51)

AQ

COOH

Cl YB007

4.45 (0.23) 17.3 (4.68) -2.15 (0.67)

AQ NH2

SO3 Na
- +

YB001
4.27 (0.35) 11.0 (3.62) 0.21 (1.04)

AQ

NH2

SO3 Na
- +

YB002

5.46 (0.00) 93.5 (2.29) 0.95 (1.27)

AQ NH2

CH3

YB048

5.29 (0.17) 70.3 (6.54) 0.14 (2.54)

AQ

Cl

CH3

YB089

4.97 (0.20) 39.1 (4.74) 0.11 (0.56)

AQ CH3

Cl YB085

5.06 (0.04)

(not completely

soluble)

51.2 (1.59) 2.09 (1.54)

AQ

P

O

OMe
OMe YB031

n. d. (not completely

soluble)
10.3 (3.66) 0.38 (1.59)

AQ

S

N YB099

5.34 (0.14)

(not completely

soluble)

61.4 (6.87) 0.69 (0.87)
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2.8.2 Substitution of the anthraquinone with a side chain containing a benzyl

or phenethyl scaffold or an ethylthiophenyl side chain

This compound series consists of 10 compounds with an unsubstituted or

substituted benzyl or phenethyl scaffold or an ethylthiophenyl (Table 19).

Some compounds in this series are similar to those in Table 18, except that the

corresponding phenyl ring is not directly linked to the anthraquinone over the

amino group but by a methyl or ethyl bridge (Table 19).

Whereas YB025 carries the phenyl ring directly at the amino group of the

anthraquinone (Table 18), YB035 is the benzyl substituted derivative of YB025.

YB035 has a Ki of >>10 at P2Y12 but is inactive on GPR17.[114] The ethyl bridge of

YB094 does not affect the potency compared to YB025. Both compounds have a

pIC50 of 5.12 (Table 18 and Table 19). Whereas fluorination of the phenethyl ring

at the para position (YB093) increases the potency compared to YB094 (pIC50 of

5.22), the activity of YB094 decreases drastically when the ethyl linker is

hydroxylated (YB088; pIC50 4.46) (Table 19).

YB029 is meta and para methoxylated and does not show any antagonistic activity

(Table 19). If the phenyl ring of YB094 is replaced by a thiophene, the potency

decreases considerably (pIC50 4.92).

YB082 carries a benzyl ring which is methoxylated at the meta position. In contrast

to the inactive YB035, which carries the unsubstituted benzyl ring, YB082 is the

most potent compound in this series with a pIC50 of 5.41. This compound is

similarly potent to YB011 (pIC50 5.46). YB081, with a para hydroxylated phenethyl

ring, is only slightly less active than YB011 (pIC50 5.25).
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Table 19. pIC50 and inhibition values of anthraquinone derivatives containing a
phenyl substitution. The increase in intracellular calcium as a result of compound
addition is also summarised (n = 3). Test compounds were applied in a
concentration of 10 µM (columns 3 and 4). The data are normalised to the
response of 3 µM (column 3) or 30 µM RA-II-150 (column 4).

Side residues and internal

designation of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ

YB094
5.12 (0.12) 60.5 (7.44) 4.86 (4.10)

AQ

OH

YB088

4.46 (0.39) 14.2 (2.07) -1.00 (1.32)

AQ

OMe YB080

5.03 (0.13)

(not completely

soluble)

43.6 (6.25) 0.45 (1.03)

AQ OMe

OMe YB029
n. d. 12.7 (7.22) 0.45 (1.83)

AQ

F YB093
5.22 (0.11) 72.8 (3.71) 1.72 (0.46)

AQ

Cl YB087

5.47 (0.03)

(not completely

soluble)

60.5 (3.81) 0.84 (1.16)

AQ

OH YB081
5.25 (0.06) 59.9 (4.71) 1.06 (0.50)

AQ

S
YB083

4.92 (0.05) 42.6 (2.33) -3.52 (1.60)

AQ

YB035
n. d. 10.1 (1.97) 1.22 (0.71)

AQ
OMe

YB082
5.41 (0.23) 77.4 (5.22) -0.05 (3.42)
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2.8.3 Substitution of the anthraquinone containing an aliphatic scaffold

This series of anthraquinones is substituted with a relatively simple aliphatic side

chain (Table 20). The compounds were not tested on other receptors.

In YB090 the cyclohexane is replaced by a cylopentane. This replacement leads to

a slightly less active compound than YB032.

Three compounds carry an isobutane (YB086), propane (YB091) or isopropane

(YB092) scaffold. These compounds are less potent than YB090 or YB032 (Table

20).

YB042 carries a hydroxyl-substituted cyclohexane side chain (Table 20). This is

the only inactive compound in this series. By contrast, YB032 carries a

nonsubstituted cyclohexane side chain. With a pIC50 of 5.03 it is the most potent

antagonist in this series.

Table 20. pIC50 and inhibition values of anthraquinone derivatives containing an
aliphatic side chain. The increase in intracellular calcium concentration as a result
of compound addition is also summarised (n = 3). Test compounds were applied in
a concentration of 10 µM (columns 3 and 4). The data are normalised to the
response of 3 µM (column 3) or 30 µM RA-II-150 (column 4).

Side residues and internal

designation of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ

YB086
4.75 (0.15) 18.8 (2.22) -2.47 (1.09)

AQ

YB091 4.83 (0.12) 13.6 (6.16) 0.39 (0.66)

AQ

YB092
4.65 (0.13) 10.7 (8.12) 6.21 (3.27)

AQ

YB032
5.03 (0.05) 47.6 (3.88) 0.36 (0.75)

AQ

OH YB042
n. d. 1.97 (4.81) 0.46 (0.70)

AQ

YB090
4.96 (0.12) 32.7 (6.58) 1.35 (0.56)
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2.8.4 Substitution of the anthraquinone with a side chain containing a

naphthalene or anthracene scaffold

This series consists of nine compounds with an unsubstituted or a substituted

naphthalene scaffold or an unsubstituted anthracene scaffold (Figure 43 and Table

21).

AQ

AQ
12

5
6

7
8

Figure 43. The naphthalene (black) or the anthracene (black + blue) is substituted
with the anthraquinone (AQ) at positions 1 or 2. The naphthalene is also
substituted at the labelled positions.

YB040 and YB041 are isomers and not substituted. The naphthalene scaffold of

YB040 is coupled to the amino group of the anthraquinone at position 1 while that

of YB041 is coupled at position 2 (Table 21). With a pIC50 of 5.47, YB041 is slightly

more potent than YB040 with a pIC50 of 5.38. YB040 is the only compound in this

series which had been tested on P2Y12. A Ki value of more than 10 had been

determined for P2Y12.
[114]

YB064 is the corresponding anthracene derivative of YB040. The potency of

YB064 is increased (pIC50 of 5.58) while the potency of YB063, the corresponding

anthracene derivative of YB041, is decreased (pIC50 of 4.94) (Table 21).

A single sulphonation of the 1-naphthyl ring system at positions 5 (YB055; pIC50

5.01), 6 (YB056; pIC50 4.79) and 8 (YB057; pIC50 5.19) lead to a further decrease

in compound potency. The activity disappears in the presence of a residue beeing

sulphonated at position 9 (YB058) (Table 21).

Carboxylation of the 2-naphthyl ring system at position 6 is tolerated (YB065)

(pIC50 of 5.47), while the potency of the unsubstituted derivative YB041 is

decreased (pIC50 of 5.14) (Table 21).
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Table 21. pIC50 and inhibition values of anthraquinone derivatives containing side
chains comprised of a naphthalene or anthracene scaffold. The increase in
intracellular calcium as a result of compound addition is also summarised
(n = 3-4). Test compounds were applied in a concentration of 10 µM (columns 3
and 4). The data are normalised to the response of 3 µM (column 3) or 30 µM
RA-II-150 (column 4).

Side residues and internal

designation of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition of 10 µM

compound (± SEM)

% of calcium efflux of 10 µM

compound (± SEM)

AQ

YB040

5.38 (0.05) 81.6 (1.73) 3.79 (0.38)

AQ

SO3 Na
- +

YB055

5.01 (0.07) 38.1 (5.16) 6.16 (2.36)

AQ

SO
3

Na
- +

YB056

4.79 (0.14) 18.9 (5.94) 2.38 (4.13)

AQ

Na O3S
+ -

YB057

5.19 (0.10) 54.8 (4.16) -0.70 (0.42)

AQ

Na O3S
+ -

YB058

n. d. 8.69 (1.78) -0.10 (0.38)

AQ

YB064

5.58 (0.12) 95.3 (1.00) 1.14 (0.65)

AQ

YB041
5.47 (0.05) 76.3 (4.74) -0.93 (1.76)

AQ

COOH
YB065

5.14 (0.11) 62.7 (2.89) -0.59 (0.64)

AQ

YB063
4.94 (0.01) 34.6 (4.62) 0.77 (0.89)
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2.8.5 Substitution of the anthraquinone with a side chain consisting of two

substituted or unsubstituted phenyl rings bridged by different atoms

This series of anthraquinone derivatives is comprised of 14 compounds (Table

22). Four compounds were tested on the P2Y12 receptor and one of these four

additionally on P2Y2. Each compound has one mono-substituted and one or two

unsubstituted phenyl rings which are bridged by different atoms. The phenyl ring

which is linked directly to the anthraquinone by the amino group at position 4 of

this anthraquinone is referred to as ring I and the second ring as ring II (Figure 44).

YB069 exhibits a methoxylated phenyl ring II at the ortho position and an amino

bridging group, but the modification of ring II does not significantly influence the

potency (pIC50 5.39) compared to that of the unsubstituted YB026 (pIC50 5.41).

There are several other derivatives which contain oxygen as a bridging atom.

These are YB030, which is sulphonated at ring I at the meta position, YB050, the

ring II of which is chlorinated at the para position, and YB066, which is brominated

at ring II at the para position. With a pIC50 of 5.39, YB066 is more potent than

YB050 (pIC50 5.08) and YB030 (pIC50 4.95) (Table 22). Interestingly, YB030 is one

of the most affine compounds on the P2Y12 receptor. A Ki value of 0.063 µM was

determined for YB030.

X

AQ

I II
po

m

o

mo

m

m

op

Figure 44. The anthraquinone (AQ) is substituted at the amino group at position 4
with two phenyl rings. Ring I is directly coupled to the anthraquinone and the
second ring (ring II). The two rings are coupled to each other by different bridging
atoms (X). The positions of potential substitutions are labelled (o = ortho,
m = meta, p = para).

Ring II of YB129 is not coupled to ring I at its para position but at its meta position.

Oxygen can be found as a bridging atom and is also active (pIC50 5.17) (Table 22).

Compounds YB017, YB026, YB018 and YB027 have two unsubstituted phenyl

rings but their rings are bridged by different atoms. They are linked in YB017 by a

methylene, in YB026 by an amino group, in YB018 by an oxygen atom and in
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YB027 by a thioether (Table 22). YB017, YB026 and YB027 were also tested on

P2Y12. A high affinity at P2Y12 had been determined for all of them (YB017,

Ki 0.614 µM; YB026, Ki 1.85 µM; YB027, Ki 0.884 µM).[114] YB026 is also very

potent at the P2Y2 receptor. The pIC50 for YB026 on the P2Y2 receptor is exactly

the same as for GPR17 (pIC50 5.41) .[119] The most potent compounds are YB017

and YB026 with similar pIC50 values (5.43 and 5.41, respectively). The potency is

decreased with a thioether bridging group (YB027) (pIC50 5.05) (Table 22).

Some compounds appear to have unspecific effects. These unspecific effects can

be explained by the physical properties of the compounds, which lead to the

absorption of the excitation wavelength for stimulating the calcium-dye complex or

to the absorption of the wavelength that is emitted from the stimulated calcium-dye

complex in the calcium assay. Furthermore, these observations can be explained

by an unspecific elevation of the calcium concentration as a result of compound

addition. This unspecific effect could be the result of activation of endogenously

expressed cells on the cell surface or of cytotoxic compound properties. But there

are still many very potent alternatives to these “dirty” compounds, however.

Table 22. pIC50 and inhibition values of anthraquinone derivatives containing two
substituted or unsubstituted phenyl rings as side residues. The increase in
intracellular calcium as a result of compound addition is also summarised
(n = 3-4). Test compounds were applied in a concentration of 10 µM (columns 3
and 4). The data are normalised to the response of 3 µM (column 3) or 30 µM
RA-II-150 (column 4).

Side residues and internal

designation of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ

YB017
5.43 (0.07) 83.2 (2.57) 2.13 (1.98)

AQ

N

H YB026

5.41 (0.08) 88.1 (2.25) -0.98 (0.47)

AQ

O YB018

4.94 (0.05)

(not completely

soluble)

33.2 (6.58) 0.40 (0.98)
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Side residues and internal

designation of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ

S YB027
5.05 (0.08) 33.6 (5.84) 2.14 (1.75)

AQ

N

H

OMe

YB043

5.11 (0.14)

(not completely

soluble)

53.9 (9.86) -0.02 (1.05)

AQ

N

H OMe YB069

5.39 (0.09) 84.5 (2.72) 0.90 (0.42)

AQ

O

SO3 Na- +
YB030

4.95 (0.01) 40.2 (1.87) 2.82 (1.74)

AQ

O

F

YB060

5.33 (0.07)

(not completely

soluble)

99.3 (0.90) 0.09 (0.50)

AQ

O

Cl

YB050
5.08 (0.09) 62.4 (4.79) -0.93 (0.28)

AQ

O

Br

YB066
5.39 (0.02) 85.8 (1.82) 0.06 (0.46)

AQ

O

OEt

YB067

5.53 (0.01)

(not completely

soluble)

93.7 (1.96) -0.74 (0.46)

AQ

O

OMe YB097

4.57 (0.25)

(not completely

soluble)

15.9 (2.44 0.55 (0.76)

AQ

YB128

5.26 (0.08)

(not completely

soluble; absorption

with Fura)

67.6 (3.25) 1.03 (0.79)

AQ O

YB129
5.17 (0.14) 51.4 (4.04) 1.70 (2.14)
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2.8.6 Substitution of the anthraquinone containing a side chain consisting of

a phenyl ring and a triacinyl or pyrimidinyl ring

This series of anthraquinone derivatives consists of 9 compounds (Table 23). Five

compounds were already also tested on the P2Y12 receptor. Here, all

anthraquinones carry a mono-substituted or unsubstituted phenyl ring which is

directly coupled to the amino group at position 4 of the anthraquinone. This phenyl

ring is linked by an amino group to a substituted triacinyl at the meta or para

position or to an unsubstituted pyrimidinyl ring system at the para position (Figure

45).

AQ

NN

N N

N

H

N

NN

H

X

Y

Cl

Cl

m

p

Figure 45. The anthraquinone (AQ) is coupled to the phenyl ring by its 4-amino
group (Figure 41). This phenyl ring is linked over an amino group to an
unsubstituted pyrimidinyl ring at the para (p) position (black; N (green) is replaced
with a C; X and Y = H) or by a triacinyl ring with variable substituents (green)
(Table 23). Furthermore, the phenyl ring can be substituted over an amino group
with a dichloro triacinyl ring at the meta (m) position (blue). Equivalent
substitutions at the phenyl ring are realised at the meta and para positions.

Since the phenyl ring is sulphonated at the para position in YB1-1 and the dichloro

triacinyl ring is linked by the amino group at the meta position, and these two

substituents are also substituted with each other in YB2-1 (Table 23), YB1-1 and

YB2-1 are constitutional isomers. Whereas no data for other receptors is available

for YB1-1, YB2-1 shows high affinity to P2Y12.
[114] YB1-1 is the most potent

antagonist at GPR17 (pIC50 of 6.22). However, its isomer YB2-1 is still very potent

(pIC50 5.21) and comparable with other anthraquinone antagonists.

Structurally, YB21-1 is identical to YB1-1 but it lacks the sulphonate substituent at

the meta position of the phenyl ring. In this case the potency is decreased to a

similar level compared to YB2-1 (pIC50 5.16).
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If the sulphonate group at the para position of YB1-1 is removed and a carboxylate

group is inserted at the meta position, another very potent antagonist is generated

(YB3 1) (pIC50 5.59).

The other isomers tested are YB2-1 and YB19-1, the latter beeing was also tested

on P2Y12 (Ki of 1.90 µM), as well as YB2-1-2 and YB19-1-2. YB2-1 and YB19-1

share the dichloro triacinyl ring at the para position, whereas YB19-1 lacks the

sulphonate substituent at the meta position of the phenyl ring.[114] YB2-1-2 and

YB19-1-2 carry a triacinyl ring which is dihydroxylated instead of beeing

dichlorinated (Table 23). YB2-1-2 additionally carries a sulphonate group at the

meta position of the phenyl ring. In the case of YB2-1-2 and YB2-1 the potency

decreases when the sulphonate group is eliminated (pIC50[YB2-1] 5.21;

pIC50[19-1] 4.94 and pIC50[YB2-1-2] 5.15; pIC50[19-1-2] 4.81).

YB2-1-1 is sulphonated at the meta position of the phenyl ring, while the triacinyl

ring is meta chlorinated and meta methoxylated. By contrast, the substituted

triacinyl ring is substituted with an unsubstituted pyrimidinyl ring (YB2-3). These

compounds have a pIC50 of 4.50 and 4.77 respectively. Interestingly, YB2-3 shows

one of the highest affinities at P2Y12 (Table 23). The Ki value for YB2-3 is 0.0507

µM.[114] YB2-1-1 also has a very high affinity at P2Y12. Here, the Ki value is 0.66

µM.[114] These results indicate that it is possible to generate compounds which are

selective for certain related receptors.

Table 23. pIC50 and inhibition values of anthraquinone derivatives containing a
phenyl ring and a triacinyl or pyrimidinyl substitution. The increase in intracellular
calcium as a result of compound addition is also summarised (n = 3-4). Test
compounds were applied in a concentration of 10 µM (columns 3 and 4). The data
are normalised to the response of 3 µM (column 3) or 30 µM RA-II-150 (column 4).

Side residues and internal

designation of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ

N
H

N N

N

Cl

Cl

YB21-1

5.16 (0.08) 51.0 (6.91) 0.44 (0.65)
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Side residues and internal

designation of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ

SO3 Na

N
H

N N

N

Cl

Cl

- +

YB1-1

6.22 (0.07) 98.1 (0.84) 0.68 (0.98)

AQ

N
H

N N

N

Cl

Cl

COOH

YB3-1

5.59 (0.11) 83.3 (4.65) 2.07 (1.54)

AQ

NH

N

N

N

Cl Cl
YB19-1

4.94 (0.18) 45.8 (5.40) 0.18 (0.92)

AQ

NH

N

N

N

OH OH
YB19-1-2

4.81 (0.05) 11.5 (2.98) 1.41 (0.99)

AQ

NH

SO3 Na

N

N

N

Cl Cl

- +

YB2-1

5.21 (0.18) 33.8 (4.52) 1.52 (1.68)

AQ

NH

SO3 Na

N

N

N

Cl OMe

- +

YB2-1-1

4.50 (0.20) 23.3 (6.26) 0.26 (0.94)

AQ

NH

SO3 Na

N

N

N

OH OH

- +

YB2-1-2

5.15 (0.14) 35.6 (2.05) 1.42 (1.13)

AQ

NH

SO
3

Na

N N

- +

YB2-3

4.77 (0.02) 29.9 (3.98) 4.25 (2.07)
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2.8.7 Substitution of the anthraquinone containing a side chain consisting of

a phenyl ring substituted with at least a sulphonate or carboxylate group

Finally, a series of anthraquinone derivatives consisting of 21 compounds (Table

24) was tested. None of these compounds were tested on the P2Y2 or P2Y12

receptor. In this group the anthraquinone scaffold is substituted at the 4-amino

group (Figure 41) with a phenyl group that, as a minimum, is modified with a

sulphonate or a carboxylate at the meta position (Figure 46). Other substituents

are coupled to this phenyl ring by an amino group at the para position (Figure 46).

The second phenyl ring of YB103 and YB105 is substituted with an ethyl or

methoxyl group. YB103 is (pIC50 5.45) more potent than YB105 (pIC50 5.13) (Table

24).

YB119 and YB120 are similar compounds. A benzyl residue is coupled to the para

amino group of the meta carboxylated phenyl ring of YB120 and, in the case of

YB119, the benzyl residue is replaced by a phenethyl residue. The phenethyl

residue is better accepted (pIC50 5.61) than the benzyl residue (pIC50 4.74) (Table

24).

AQ

OH O

SO3

N

Y

X

Na
+

p

m

-

Figure 46. The 4-amino group of the anthraquinone (AQ) (Figure 41) is
substituted, as a minimum, with a carboxylate (black) or a sulphonate (blue) at the
meta position. Other substituents are added over an amino group at the para
position. The residues, abbreviated as X and Y, are identical or different,
respectively.

The para amino group is then substituted with a cyclohexane (YB117) and a

cyclopentane (YB118). Here, the cyclopentane residue (pIC50 5.47) is better

tolerated than the cyclohexane residue (pIC50 4.93) (Table 24).

Next, simple aliphatic residues are fused to the para amino group of the meta

carboxylated phenyl ring. YB123 is substituted with an iso-propanyl while YB122 is
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modified with an n-propanyl, YB121 with an iso-butanyl and YB127 with two

n-propanyl residues (Table 24). They are very potent with the exception of YB127,

which has a pIC50 value of 4.79 (pIC50[YB121] 5.35, pIC50[YB122] 5.11,

pIC50[YB123] 5.03).

YB126 is the only compound in this series with no free linking amino group. The

linking amino group is integrated in a cyclopentane ring (Table 24). The potency of

this compound is 5.02 (Table 24).

YB039 is the only compound in this series that carries a sulphonate group at the

meta position of the phenyl ring. All other compounds are modified at this position

with a carboxylate. Furthermore, a second phenyl ring is linked to the first one by

an amino group at the para position.

Radioligand binding assays with membranes carrying P2Y12 receptors had

identified YB039 as the antagonist with the highest affinity. The Ki value

determined for this compound is 0.0249 µM[114], though for GPR17 it is only a

weak antagonist (pIC50 4.91).

YB100 is a related structure of YB039. However, the sulphonate group is

substituted with a carboxylate group. Compared to YB039 the potency of YB100

(pIC50 5.57) is considerably increased (Table 24).

The pIC50 values of YB124 (ortho fluorophenyl), YB125 (meta fluorophenyl) and

YB108 (para fluorophenyl) are not significantly influenced compared to YB100 by

the insertion of single fluoro substituents into the second phenyl ring (Table 24).

Table 24. pIC50 and inhibition values of anthraquinone derivatives containing a
phenyl ring substituted, as a minimum, with a sulphonate or carboxylate group.
The increase in intracellular calcium as a result of compound addition (n = 3-4) is
also summarised. Test compounds were applied in a concentration of 10 µM
(columns 3 and 4). The data are normalised to the response of 3 µM (column 3) or
30 µM RA-II-150 (column 4).

Side residues and internal

designation of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ

N
H

SO3 Na- +
YB039

4.91 (0.09) 91.7 (2.15) 2.69 (2.07)
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Side residues and internal

designation of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ

N

H
OH O YB100

5.57 (0.10) 91.9 (1.25) 1.67 (1.04)

AQ

N

H
OH O

F

YB124

5.20 (0.09) 80.1 (3.78) 0.34 (1.80)

AQ

N

H
OH O

F

YB125

5.70 (0.08) 92.7 (1.23) 6.81 (1.22)

AQ

N

H
OH O

F

YB108

5.13 (0.11) 76.2 (4.32) 0.92 (0.73)

AQ

N

H
OH O YB101

5.71 (0.12)

(not completely soluble)
75.8 (5.46)

13.6 (2.46)

(unspecific background)

AQ

N

H
OH O YB102

5.83 (0.14)

(absorption or raised

background depending

on the fluorescent dye)

90.2 (2.83)
23.2 (1.96)

(unspecific background)

AQ

N

H
OH O YB103

5.45 (0.02) 95.0 (2.03) 2.04 (0.71)

AQ

N

H
OH O

CH3

CH3

YB111

5.48 (0.04)

(absorption or raised

background depending

on the fluorescent dye)

96.8 (1.95) 3.39 (0.78)

AQ

N

H
OH O

CH3

CH3

YB114

5.68 (0.13)

(absorption or raised

background depending

on the fluorescent dye)

86.2 (3.42)
12.7 (2.92)

(unspecific background)

AQ

N

H
OH O

OMe

YB105

5.13 (0.08) 66.3 (4.91) -2.73 (2.72)
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Side residues and internal

designation of the test compounds

1321N1-GPR17 cells

pIC50 (± SEM)
% of inhibition by test

compound (± SEM)

% of calcium efflux of test

compound (± SEM)

AQ

N

H
OH O

O

YB115

5.41 (0.03)

raised background with

Fura and OG at high

concentrations

90.1 (1.92) 1.92 (1.60)

AQ

N

H
OH O

O

YB116

5.63 (0.09)

raised background with

Fura and OG at high

concentrations

97.0 (1.08) 2.52 (0.47)

AQ

N

H
OH O YB117

4.93 (0.04) 50.4 (7.95) 0.21 (0.54)

AQ

N

H
OH O YB118

5.47 (0.07) 83.3 (2.84) -0.30 (0.63)

AQ

N

H
OH O YB120

4.74 (0.20)

(only partial DRC)
19.5 (6.00) 0.23 (0.63)

AQ

N

H
OH O YB119

5.61 (0.08) 94.1 (1.96) 3.34 (0.91)

AQ

N

H
OH O YB121

5.35 (0.07) 74.8 (2.65) 0.14 (0.81)

AQ

N

H
OH O YB122

5.11 (0.04) 57.2 (1.67) -0.19 (0.50)

AQ

N

H
OH O YB123

5.03 (0.05) 47.3 (0.88) 0.96 (0.47)

AQ

N

OH O YB126

5.02 (0.14) 45.0 (3.17) -0.60 (1.05)

AQ

N

OH O

YB127

4.79 (0.09) 19.4 (3.34) 0.99 (1.22)
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It has been shown that GPR17 is inhibited by a wide variety of anthraquinone

derivatives. Even though they are also active on other closely related receptors,

there are anthraquinones that prefer GPR17 and evidence exists of structural

elements that are important to enhance their selectivity. At this point the

characterised inhibitors are very useful tools for the in vitro characterisation of

GPR17 and they are novel lead structures for the development of highly selective

GPR17 inhibitors.
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CHAPTER III: DISCUSSION

3.1 Identified GPR17 ligands – useful in vitro tools

A major aim in the development of new therapies for the treatment of diseases is

to identify the cellular components involved in these diseases. For several

decades now, the family of G protein-coupled receptors has been one of the most

important drug target families, because GPCRs play a role in many human

diseases such as stroke, asthma, schizophrenia, cancer, neurological pain,

migraine, allergies, gastric ulcers, diabetes, obesity and hypertension.[2-4] It is thus

of outstanding importance to deorphanise the approximately 100 human orphan

GPCRs. GPR17 was only deorphanised quite recently and has been less

extensively pharmacologically investigated in comparison to other GPCRs.

However, since there are contrary reports concerning the agonistic properties of

the proposed GPR17 agonists, the major goal of this thesis was to identify and

characterise novel lead structures for the activation and inhibition of GPR17.

Like the members of the P2Y receptor family and the related cysteinyl-receptor

family, GPR17 has certain highly conserved ligand binding motifs such as the

H-X-X-R/K motif in transmembrane domain 6.[126] In GPR17 this motif consists of

the amino acids histidine 252 and arginine 255.[127] The corresponding basic

arginine residues in the P2Y receptor family mediate ligand binding by interacting

with the negatively charged phosphate groups of the nucleotide.[127] The presence

of this important residue in transmembrane domain 6 of GPR17 implicates at least

one negatively charged substructure in a putative GPR17 ligand. In the case of the

P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11 receptors the arginines at positions 128 and

310 have been identified as essential basic residues for ligand binding and

receptor activation.[128] Since both residues are lacking in GPR17, it is self-evident
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that GPR17 is not activated, or only weakly activated, by nucleotides.[127]

Nevertheless, Ciana et. al. proposed that GPR17 is activated by uracil nucleotides.

However, our results from different functional assays and a label-free assay are in

line with the assumption, derived from the sequence comparison and other

reports, that GPR17 cannot be activated by the proposed nucleotidic agonists.[30,

51] Unfortunately, molecular modelling and dynamics studies of GPR17 published

previously give no explanation for the decreased compound potency or failed

activity of pranlukast and montelukast, which were proposed GPR17 antagonists

in our studies.[51, 127] Screening of negatively charged compounds that mimic

nucleotidic phosphates identifies RA-II-150, a GPR17 ligand with two carboxylic

groups and an indole scaffold. The relevance of at least one of these two

carboxylic groups was shown, since the deletion of the 3-(2-carboxyethyl) group

leads to a loss of activity, indicating that basic residues such as arginine 255

mediate RA-II-150 binding. The involvement of arginine 255 and other residues in

ligand binding and activation must be verified in future by site directed

mutagenesis.

However, on the one hand the charged structures are necessary for receptor

binding and activation, while on the other hand this feature limits the utilisation of

the compound and its derivatives as a potential therapeutical drug. Since it has

been shown that GPR17 is mainly expressed in brain under certain conditions, it

has to pass the brain-blood-barrier to reach the affected cells. The

brain-blood-barrier is a physiological border that separates brain from blood. The

brain-blood-barrier hence consists of endothelial cells that are linked by tight

junctions, which limit the compound permeability. Furthermore, there are several

mechanisms that limit access to the brain by the brain-blood-barrier, such as very

effective transporters, enzymatical degradation and alternate transport pathways,

so that 100% of large-molecule drugs and more than 98% of small-molecule drugs

do not cross this barrier.[129, 130] The brain-blood-barrier can be traversed by

multiple, highly specific, endogenous transporters within this barrier, however, as

well as by passive diffusion. Small molecules with appropriate lipophilicity,

molecular weight and charge will diffuse from blood into the brain. Since it has

been reported that more than one carboxylic group aborts brain-blood-barrier

transport, it is obvious that the identified novel GPR17 agonist RA-II-150 and its

active derivatives are not appropriate drugs for the treatment of brain injuries after
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ischemic events.

Several pharmacological approaches have been established to enhance the brain

penetration of a drug. Functional groups of a drug that limits penetration can be

modified by acetylation, methylation, conjugation with amantadine and

adamantidine derivatives or the attachment of fatty acid or cholesterol esters.[131-

133] Unfortunately, these modifications which are necessary for drugs to cross the

brain-blood-barrier often result in loss of the desired activity or turn it into a

substrate for the efflux pumps.[129] Since the carboxylic groups must be modified to

permit GPR17 agonists to pass the brain-blood-barrier and these groups appear to

be essential for agonist activity, these modifications may lead to a loss of function.

Nevertheless, RA-II-150 and its derivatives are suitable in vitro tools for the

characterisation of GPR17 and the signal transduction pathways coupled to the

receptor. Furthermore, it has been shown that RA-II-150 is very potent and

selective for GPR17, since related P2Y receptor cannot be activated by RA-II-150.

3.2 First indications of functionally selective GPR17

ligands

Functionally selective ligands activate a fraction of the signal transduction

pathways coupled to a receptor. It has been shown that even small changes in the

chemical structure of a compound can lead to functional selectivity. Fenoterol is a

selective 2-adrenoceptor agonist. Whereas the (S,R) stereoisomer of fenoterol

activates Gs and Gi pathways, the (R,R) stereoisomer only activates the Gs signal

transduction pathway in native rat cardiomyocytes.[134, 135] The selective activation

of the Gs pathway eliminates side effects of unselective 2-adrenoceptor agonist.

These side effects, which are due to the Gi activation, disappear upon application

of the functionally selective stereoisomer.[135] Functionally selective ligands have

also been reported for the CB1 cannabinoid receptor and there are several

publications dealing with functionally selective ligands.[134, 136-139]

Since GPR17 couples to at least the Gi, Gs and cell type specificly to the Gq

pathway and exhibits positive and negative features that may be due to the
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activated signal transduction pathways, it would be interesting to develop

functionally selective GPR17 ligands for the development of therapies that prevent

brain injury and promote remodelling processes after ischemic events. Preliminary

unpublished data supplied by Marieke Böckmann genannt Dallmeyer, suggest that

certain substitution patterns may lead to functionally selective GPR17

compounds.[72] These preliminary results are supported by the comparison of the

results of the calcium assay and the inositol phosphate accumulation assay within

this thesis. Since the potency of KL16-1 in the calcium assay is also at the upper

border confidence interval, the considerable big part of the Gi pathway to the

overall calcium signalling of GPR17 upon receptor activation with KL16-1 is

indicated. A structural analysis reveals that KL16-1, which is monochlorinated, has

Gi pathway preference. It is necessary to investigate whether the functional

selectivity of KL16-1 for the Gi pathway can be enhanced, so that the Gi is

exclusively activated. The substitution of the chlorination at position 6 with other

functional groups probably increases functional selectivity. Furthermore, the

development of functionally selective agonists, which activate certain other

pathways exclusively, would be interesting because there has so far been no

investigation to determine which pathway or pathways mediate the different

GPR17 functions.

3.3 Novel calcium mobilisation mechanism proposed for

GPR17

Investigations within the scope of this thesis of a proposed novel calcium

mobilisation mechanism led to the identification of several involved components,

such as a PTX sensitive Gi protein, a phosphatidylinositol-specific phospholipase

C (PI-PLC) and IP3 receptors on intracellular stores, which are the major calcium

source. However, calcium release is independent of an inositol phosphate

accumulation, due to the classical activation of a phospholipase C like the involved

PI-PLC. Similar observations have been already reported by Mirabet et. al. They

describe a calcium release mechanism which is independent of an inositol



CHAPTER III: DISCUSSION

99

phosphate production for the A2b adenosine receptor expressed in Jurkat cells.[140]

Since all components of the novel calcium release mechanism are localised in the

plasma membrane or the membrane of the endoplasmic reticulum (ER), they are

in close proximity as required for signal transduction. The close proximity of the

two membrane systems and the interactions between proteins localised in these

membrane systems have been reviewed.[141, 142] The following model was claimed

for the novel calcium release mechanism: A Gi protein is activated upon receptor

stimulation. A PI-PLC is then recruited by the Gi protein. The two proteins form a

complex which binds to IP3 sensitive calcium channels localised in the ER. These

IP3 receptors are activated by the complex, and calcium is subsequently released

from the ER (Figure 47). Since it is not possible with functional assays under the

usage of PTX to discriminate whether the Gi or the G subunit mediates the

PI-PLC activation, it remains unclear which subunit transduces the signal to the

ER. However, there is one indication that the G subunit recruits the PI-PLC, since

in 2003 Zeng et. al. described a novel calcium release mechanism, where a direct

interaction between a G subunit and IP3 receptors is proposed.[143] Interestingly,

the calcium release mechanism chosen by GPR17 is independent of a

PI-PLC-dependent inositol phosphate accumulation as deduced from inositol

phosphate accumulation with 1321N1-GPR17 cells (2.5.4).



CHAPTER III: DISCUSSION

100

Figure 47. Model of a novel calcium release mechanism being involved in GPR17
signalling. In panel (A) all cellular constituents involved are shown in their initial
state. (B) After agonist-dependent receptor stimulation the associated inhibitory
heterotrimeric Gi protein dissociates into its active Gi and G subunits. Whereas
the Gi subunit inhibits the adenylyl cyclase (AC), the G subunit recruits a
phosphatidylinositol-specific phospholipase C (PI-PLC). The G-PI-PLC complex
moves to the inositol 1,3,4-triphosphate sensitive receptors (IP3R) located in the
membrane of intracellular calcium stores (ER) and activates them. Upon
activation, calcium (Ca2+) is gated by IP3R into the cytoplasm.

3.4 Screening of natural products does not deorphanise

GPR17, but identifies novel antagonist lead structures

In literature several examples of originally orphan G protein-coupled receptors

have been described. Endogenous ligands of these receptors are intermediates of

metabolism pathways or other unusual ligands previously not know to modulate
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GPCRs. For example GPR91 and GPR99 are activated by intermediates of the

citric acid cycle, GPR40 by long-chain fatty acids, the endothelial differentiation

gene-1 receptor by sphingosine 1-phosphate and GPR109A, GPR109B and

GPR81 by hydroxy-carboxylic acids.[144-147] For this reason several native

compounds and intermediates of metabolism pathways were tested on GPR17

within the scope of this thesis. The tested compounds were due to structural

similarities either with the lead compound RA-II-150 and its derivatives or with the

proposed nucleotidic GPR17 agonists (2.2.1 and 2.3.1). Unfortunately, all the

compounds tested here failed to activate or inhibit GPR17, so that GPR17 could

not be deorphanized.

A wide variety of natural products have been described as modulators of GPCR

functions. Morphine and codeine are ligands of the -, -, and -opiod receptors

while caffeine acts as a nonselective adenosine A1 and A2A receptor

antagonist.[148, 149] These few selected examples show the potential of natural

products as GPCR ligands. Therefore in order to identify novel agonist and

antagonist lead structures compound libraries comprised of natural products,

kindly provided by the group of Professor G. M. König and Professor E. Leistner,

Institute of Pharmaceutical Biology, University of Bonn, as well as commercially

available natural compounds were screened. Screening these compounds allowed

several new GPR17 antagonists to be identified. Since natural products are often

cytotoxic and they occur in small amounts in the producing organism, the access

to these compounds is limited. Moreover, their complex structure is difficult or

impossible to synthesize, which is why natural products are often not suitable as

drugs. Even though the compounds identified as GPR17 antagonists are not very

potent and their antagonistic activity is particularly nonselective for GPR17, these

compounds reveal novel lead structures for the development of GPR17

antagonists. The modification of these GPR17 antagonists probably enhances

compound potency and selectivity.



CHAPTER III: DISCUSSION

102

3.5 Anthraquinone derivatives as potent in vitro GPR17

antagonists

Anthraquinone and its derivatives such as emodin, aloe-emodin, and rhein have

anti-cancer and laxative properties.[150] Furthermore, anthraquinone derivatives

have been described as potent P2Y1-like receptors, P2X receptors, P2Y2

receptors, P2Y12 receptors and ectonucleoside triphosphate diphosphohydrolases

antagonists.[115-120] Owing to the close relationship to this receptor family, the

potential of anthraquinone derivatives as potent P2Y receptor antagonists

indicates that these compounds may also inhibit GPR17. The majority of the

tested anthraquinone derivatives, kindly provided by the group of Professor C. E.

Müller, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn,

inhibit GPR17, as shown in 2.8.

The structural analysis of these compounds reveals several similarities between

YB1-1, the most potent antagonist, and the lead GPR17 agonist RA-II-150. The

two chloro substitutions of the triacinyl ring and the secondary amine of YB1-1 are

thus in the same steric configuration compared to RA-II-150. Additionally, it is

possible that the sulphonate group mimics the 2-carboxyethyl group of RA-II-150,

even they do not exhibit in the same steric configuration (Figure 48). A similar

arrangement of certain structural elements in YB1-1 on the one hand and

RA-II-150 on the other hand is probably responsible for the high potency of YB1-1,

whereas the anthraquinone substructure mediates the inhibitory effect in general.

It would be interesting to see whether sulphonation or carboxylation at the ortho

position of the first ring, which is more equivalent to the steric arrangement of the

2-carboxyethyl group of RA-II-150, or the substitution of the sulphonate with a

carboxylate leads to a further increase in compound potency.

Nevertheless, these structures are not suitable for the in vivo application owing to

side effects such as the increased colorectal cancer risk and cytotoxicity, both of

which are due to the anthraquinone scaffold.[151] Furthermore, access of these

compounds to the brain is restricted by the brain-blood-barrier and their activity is

not very selective. Even though their utilisation in light and fluorescence based

functional assays is limited due to their intensive colour, they are very useful tools

for in vitro analysis.
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Figure 48. Structural similarities between the side chain of the antagonist YB1-1
(A) and the agonist RA-II-150 (B). The 4,6-dichloro triacinyl ring of YB1-1 mimics
the 4,6-dichlorobenzenyl ring of RA-II-150. Furthermore, both compounds share a
secondary amine in the same steric configuration. The benzol ring of YB1-1 is
twisted around the bridging group while the indole is planar. The sulphonate of
YB1-1 may mimic the 2-carboxylethyl group.

3.6 Putative in vivo role of GPR17

Lecca et. al. reported that GPR17 expression is up-regulated at the boundaries of

the lesioned area in phases following ischemia. This has been attributed to the

initiation of local remodelling and repair responses, suggesting that GPR17 acts as

a coordinator of brain remodelling processes.[56] It has been shown that the

endogenous cAMP level, controlled for example by G protein-coupled receptors,

modulates neurite outgrowth in the central nervous system, whereby high amounts

promote neurite outgrowth and small amounts attenuate it.[13, 14, 152, 153] However,

other findings assert that Go/i coupled receptors, like the cannabinoid receptor CB1,

the D2 dopamine receptor and the serotonin receptor, induce neurite outgrowth by

reducing cAMP levels.[154-157] It has been demonstrated in this thesis that GPR17

couples to both Gi and Gs pathways and that the signalling of GPR17 is dependent

on the cellular background (2.5). Furthermore, there are indications that certain

agonists display functional selectivity. Even though the endogenous ligand of

GPR17 has still not been identified, the function of GPR17 is dependent on the

ligand and the cells expressing the receptor. Summarizing the results from this

thesis and from literature the following model can be proposed for the in vivo
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function of GPR17. The destructive function of GPR17 is probably due to its

signalling as well as to its negative regulatory function with regard to CysLT1, while

its remodelling function in later phases following ischemia is attributable to the

activation of GPR17 by a specific endogenous ligand that appears subsequently.

This ligand is presumed to be a compound that is released when cells are

decomposed, so that the ligand concentration increases after ischemia. The Gi

pathway is activated at low agonist concentrations immediately following ischemia,

so that the cAMP level within the cells is decreased, inhibiting remodelling

processes. In later phases the agonist concentration increases, so that there is a

switch from the Gi pathway to the Gs pathway; the intracellular cAMP level also

increases, subsequently promoting neurite outgrowth and remodelling processes.

Assuming that GPR17 is not affected in the presence of CysLT1, the initially low

ligand concentrations and the delayed presence of GPR17 on the cell surface in

the lesioned area together explain why GPR17 does not attenuate neuronal cell

death. It is difficult to develop a therapy that exploits the dualistic function of

GPR17. On the one hand its presence is unwanted because of its destructive

inhibitory CysLT1 function, while on the other this presence is desired because of

its remodelling function. If it is possible to interrupt the GPR17-CysLT1 dimer

formation by modulation of GPR17 activaty immediately after the ischemic event,

the progression of ischemia could be delayed or even halted. Furthermore, the

activation of GPR17 in later phases may decrease the consequences of injury.
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CHAPTER IV: SUMMARY

In order to discover a set of tools suitable to be employed in its in vitro

characterization, the recently deorphanized G protein coupled receptor GPR17

was investigated by using different classical second messenger assays and the

new dynamic mass redistribution technology.

Contrary to reports from the literature which claim a function of GPR17 as a

nucleotide receptor or as ligand and signalling independent, the receptor was

found to be activated by a new class of GPCR ligands sharing an indole scaffold.

Besides agonists, different classes of natural and synthetic compounds have been

identified and characterised to display antagonistic activity at the receptor.

Detailed compound analysis shows first evidence of functional selectivity. Both,

the identified agonists and antagonists are potent lead structures for the

development of novel therapies for ischemia and inflammation, two diseases

which are promoted or modulated by GPR17.

Furthermore, it could be shown that the receptor, upon activation, dependent on

the cellular background is linked to the Gq, Gi and Gs signal transduction

pathways.

A detailed analysis of the signal transduction network reveals a novel calcium

release mechanism in 1321N1 astrocytoma cells recombinatly expressing GPR17.

This mechanism is characterized by a Gi dependent activation of a

phosphatidylinositol (PI) specific phospholipase C. According to a hypothesis this

in turn leads to a stimulation of intracellular calcium stores by IP3 receptors which

is independent from inositol phosphate formation. Our model proposes the

activation of IP3 receptors by the formation of a Gi-PI-PLC-IP3 receptor complex.
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CHAPTER V: EXPERIMENTAL SECTION

5.1 Devices and materials

5.1.1 Devices

Autoclave 3850 ELV, Systec

Incubator for bacteria Innova 4200 Incubator Shaker, New

Brunswick Scientific, NJ 08818-4005, USA

Balances TE64, Sartorius, D-37075 Göttingen

(precision balances)

TE6101, Sartorius, D-37075 Göttingen

Camera Imago charge-coupled device camera, Till

Photonics, D-82166 Gräfelfing

Flasks for cell culture 25 cm2, 75 cm2, 175 cm2, Sarstedt, D-51582

Nümbrecht and Corning® Incorporated, NY

14831 USA

Centrifuges Allgegra™ 21 R, Beckman Coulter™, CA

92822-8000, USA

Avanti™ J-20I, Beckman Coulter™, CA

92822-8000, USA

Biofuge pico, Heraeus, D-63450 Hanau
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Centrifuges MiniSpin, Eppendorf, D-22339 Hamburg

Centrifuge 5810, Eppendorf, D-22339

Hamburg

CO2 incubator HERAcell® 240, Heraeus, D-63450 Hanau

Dry block heater Thermomixer® comfort, Eppendorf, D-22339

Hamburg

Electrophoresis chambers Schütt Labortechnik, D-37079 Göttingen

Mini-Sub® cell GT, Bio Rad, CA 94547, USA

Wide Mini-Sub® cell GT, Bio Rad, CA

94547, USA

Microbiological safety cabinets S@fe flow 1.2, Nunc™, NY 14625-2385,

USA

Miroflow® Biological Safety Cabinet, Nunc™,

NY 14625-2385, USA

HeraSafe HS12, Thermo Electron

Corporation, MA 02454, USA

Microplate readers NOVOstar®, BMG LABTECH, D-77656

Offenburg

Mithras LB940 Multimode reader, Berthold

Technologies, D-75323 Bad Wildbad

TopCount NXT™ microplate scintillation

counter, PerkinElmer Life Sciences, MA

02451, USA

Microscopes Axiovert 25, Zeiss

Wilovert 30, hund WETZLAR, D-35580

Wetzlar

CKX31, Olympus, D-20097 Hamburg

Axiovert 100 microscope, Zeiss

Microwave Microwave 800, Severin, D-59846 Sundern

Monochromator Polychrome II monochromator, Till

Phototomics, D-82166 Gräfelfing

UV/VIS spectrophotometer DU® 530, Beckman Coulter™, CA 92822-

8000, USA
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PCR cycler Px2 Thermal Cycler, Thermo Electron

Corporation, MA 02454, USA

GeneAmp® PCR System 9700, Applied

Biosystems

2720 Thermal Cycler, Applied Biosystems,

CA 92008, USA

pH meter SevenEasy™, Mettler Toledo, D-35353

Giessen

Objective Oil immersion F-Fluar 40x, Zeiss

Photo documentation system Universal Hood II, Bio Rad, CA 94547, USA

De Vision DBOX, Decon Science Tec

Pipettes 0.5-10 µl; 10-100 µl; 20-200 µl; 100-1000 µl

physiocare concept pipettes, Eppendorf

research (Eppendorf, D-22339 Hamburg)

25-250 µl MultiMate Liquidsystems, Mettler

Toledo

Pipette tips Sarstedt, D-51582 Nümbrecht

CyBio, D-07745 Jena 384/25 µl (for the

Epic® system)

Power supplies (electrophoresis) PowerPac 300, Bio Rad, CA 94547, USA

PowerPac HC™, Bio Rad, CA 94547, USA

Elite 300 plus, Bio Rad, CA 94547, USA

Vortex Vortex genius 3, IKA® , D-79219 Staufen

Freezer (-80°C) Ultra Low, Sanyo, D-81829 Munich

5.1.2 Consumables

Agarose UltraPure Invitrogen™, D-64293 Darmstadt; #15510-27

Aloin Sigma, D-21147 Hamburg; #B6906

Ampicillin sodium salt Roth, D-76231 Karlsruhe; #K029.1

γ-Aminobutyric acid Sigma, D-21147 Hamburg; #A44401 
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2-Aminoethoxydiphenylborane Biozol, D-85386 Eching; #64970

(2-APB)

Arbutin Sigma, D-21147 Hamburg; #A4256

Betulinic acid Sigma, D-21147 Hamburg; #855057

BisindolylmaleimideI Tocris, Bristol BS11 0QL, UK; #0741

(GF 109203X)

Bromphenol blue Fluka, D-21147 Hamburg; #32712

Calcium chloride, dehydrate Sigma, D-21147 Hamburg; #C3306

Capsaicin Sigma, D-21147 Hamburg; #M2028

p-Coumaric acid Sigma, D-21147 Hamburg; #C9008

Dantrolene, sodium salt Tocris, Bristol BS11 0QL, UK; #0507

DMSO Riedel-de Haen, D-30926 Seelze; #60153

dNTP Mix Promega, WI 53711, USA; #U1511

Edelfosine Tocris, Bristol BS11 0QL, UK; #3022

EDTA, disodium salt, dihydrate Roth, D-76231 Karlsruhe; #8040.3

EGTA Roth, D-76231 Karlsruhe; #3054

Emodin Sigma, D-21147 Hamburg; #E7881

Ferulic acid Sigma, D-21147 Hamburg; #46278

Forskolin Tocris, Bristol BS11 0QL, UK; #1099

Fura-2/AM Molecular Probes, D-64293 Darmstadt;

#F-1221

D-(+)-glucose Sigma, D-21147 Hamburg; #G7021

Fluphenazine dihydrochloride Sigma, D-21147 Hamburg; #F4765

Glycerol Sigma, D-21147 Hamburg; #G2025

HBSS-buffer Invitrogen™, D-64293 Darmstadt; #14025

HEPES (free acid) Applicem; #A3268

Herniarin Sigma, D-21147 Hamburg; #64951

Hydrochloric acid Applichem, D-64291 Darmstadt; #0659

H 89 (N-[2-(p-Bromocinnamylamino) Sigma, D-21147 Hamburg; #B1427

ethyl]- 5-isoquinolinesulphonamide

dihydrochloride

3-Isobutyl-1-methylxanthine Tocris, Bristol BS11 0QL, UK; #2845

(IBMX)

Imperatorin Sigma, D-21147 Hamburg; #I6659
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Lipofectamine™ 2000 Invitrogen™, D-64293 Darmstadt;

#11668019

Lithium chloride solution Sigma, D-21147 Hamburg; #L7026

LB agar Invitrogen™, D-64293 Darmstadt;#22700041

LB powder medium (Luria/Miller) Applichem, D-64291 Darmstadt; #A0854

Magnesium chloride, hexahydrate Fluka, D-21147 Hamburg; #63068

Magnesium sulphate, heptahydrate Applichem, D-64291 Darmstadt; #A1037

Montelukast Biozol, D-85386 Eching; #10008318

Oregon Green® BAPTA-1/AM Molecular Probes, D-64293 Darmstadt;

#O6807

Pertussis toxin (PTX) Sigma, D-21147 Hamburg; #2980

Phenol red Sigma, D-21147 Hamburg; #P0290

Pluronic®-F127 Molecular Probes, D-64293 Darmstadt;

#O6807

Polybrene Aldrich, D-21147 Hamburg; #10,768-9

Polylysine coated yttrium silicate Amersham Biosciences, Buckinghamshire

scintillation proximity assay (SPA) HP7 9NA, UK; #TRK911

beads

Potassium chloride Fluka, D-21147 Hamburg; #60128

Potassium dihydrogen phosphate ZVE, D-53121 Bonn; #234984

Pranlukast Biozol, D-85386 Eching; #10008319

Purpurin Sigma, D-21147 Hamburg; #82631

Sodium acetate Applichem, D-64291 Darmstadt; #4555

Sodium butyrate Fluka, D-21147 Hamburg; #19364

Sodium chloride Fluka, D-21147 Hamburg; #71376

Sodium dodecyl sulphate (SDS) Applichem, D-64291 Darmstadt; #1502

Disodium hydrogen phosphate, Roth, D-76231 Karlsruhe; #4984

dihydrate

Sodium hydrogen carbonate Merck, D-64293 Darmstadt; #1.06323.2500

Sodium hydroxide Fluka, D-21147 Hamburg; #71689

Thapsigargin Tocris, Bristol BS11 0QL, UK; #1138

TRIS UltraPure Roth, D-76231 Karlsruhe; #5426

Tryptone Roth, D-76231 Karlsruhe; #8952.1
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U-73343 Enzo Life Sciences, PA 19462-1202, USA;

#BML-ST392-0005

U-73122 Biozol, D-85386 Eching; #70740

Umbelliferone Sigma, D-21147 Hamburg; #93979

W-7 (N-(6-Aminohexyl)-5-chloro- Aldrich, D-21147 Hamburg; #283916

1-naphthalenesulphonamide

hydrochloride

Xanthine Sigma, D-21147 Hamburg; #X7375

Yeast extract Applichem, D-64291 Darmstadt; #3732

Zafirlukast Biozol, D-85386 Eching; #10008282

5.1.3 Kits

IP-One HTRF® assay kit Cisbio Bioassays, BP 84175, France;

#62P1APEB

cAMP Dynamic 2 HTRF® assay kit Cisbio Bioassays, BP 84175, France;

#62AM4PEC

(cell based assay)

QIAquick® Gel Extraction Kit QIAGEN GmbH, D-40724 Hilden; #28706

QIAquick® PCR purification Kit QIAGEN GmbH, D-40724 Hilden; #28106

QIAprep® Spin Miniprep Kit QIAGEN GmbH, D-40724 Hilden; #27106

Plasmid Midi Kit QIAGEN GmbH, D-40724 Hilden; # 12145

5.1.4 Radioligands

[2-3H]Myo-inositol Amersham Biosciences, Buckinghamshire

HP7 9NA, UK; #TRK911
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5.1.5 Software

Office Excel 2002 Microsoft® Corporation, D-85716

Unterschleißheim

Office PowerPoint® Microsoft® Corporation, D-85716

Unterschleißheim

Office Word 2002 Microsoft® Corporation, D-85716

Unterschleißheim

Prism® 4.02 GraphPad Software, Inc, CA 92037, USA

MicroWin 2000 AdvII v4.41 Mikrotek Laborsysteme GmbH, D-51491

Overath

Quantity One® Version 4.4.0 Bio Rad, CA 94547, USA

DeVision G v1.0 Decon Science Tec GmbH, D-37318

Hohengandern

Assay Development Mode Epic™ Corning® Incorporated, NY 14831, USA

V1.22.2

Microplate Analyzer v1.5 Corning® Incorporated, NY 14831, USA

modified for Excel 2002

NOVOstar® 1.20-0 BMG LABTECH, D-77656 Offenburg

TopCount NXT™ 1.06 PerkinElmer Life Sciences, MA 02451, USA

TILLvisION imaging system Till Photonics, D-82166 Gräfelfing

EndNote 9.0.0 (Bld 1425) Thomson, PA 19130, USA

ClustalW 2.0.12 Des Higgins, Julie Thompson and Toby

Gibson

ClustalX 2.0.12 Des Higgins, Julie Thompson and Toby

Gibson

TreeView (Win32) 1.6.6 Roderic D. M. Page

MDL ISIS™/Draw 2.5 MDL Information System, Inc., CA 95051,

USA
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5.2 Cell culture

5.2.1 Cell lines

Cell line Species Organ Source

GPR17-1321N1 Human Brain
Recombinant cell line which was

created within this PhD thesis

1321N1 Human Brain

Working group of Professor C. E.

Müller, Pharmaceutical Institute,

Pharmaceutical Chemistry I,

University of Bonn

GPR17-CHO
Chinese

hamster
Ovaries

Recombinant cell line; working

group Professor E. Kostenis,

Institute of Pharmaceutical

Biology, University of Bonn

CHO-K1
Chinese

hamster
Ovaries

ATCC® number

CCL-61

GP+envAM12 Mouse
Embryonic

fibroblasts

Recombinant cell line; AK

Professor W. Kolanus, Institute of

Molecular Physiology and

Developmental Biologie,

University of Bonn
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5.2.2 Materials and supplements for cell culture

Blasticidin InvivoGen; #ant-bl-1

Doxycycline hyclate Sigma, D-21147 Hamburg; # D9891

Foetal calf serum (FCS) Sigma, D-21147 Hamburg; #-0804

Geniticin 418 (G418) Gibco, Paisley PA4 9RF, UK; #11811

Hygromycin B Merck, D-64293 Darmstadt; #400052

Hypoxanthine Applichem, D-64291 Darmstadt; #A0700

Mycophenolic acid Tocris, Bristol BS11 0QL, UK; #1505

Penicillin-Streptomycin solution Invitrogen™, D-64293 Darmstadt;

#15140-122

Trypsin Lonza, 4002 Basel, Switzerland; #17-160

5.2.3 Solutions for cell culture

Phosphate buffered saline (PBS)

150 mM NaCl, 2.5 mM KCl, 7.5 mM Na2HPO4, 1.5 mM KH2PO4 are dissolved in a.

dem.. The pH value of 7.2 is adjusted with hydrochloric acid and the solution

afterwards autoclaved.

Trypsin/EDTA solution (0.05%/0.6 mM)

For the preparation of 1 l of a trypsin/EDTA solution 6 ml of a 0.1 M EDTA stock

solution are filled up to 1 l with PBS and autoclaved. Afterwards 20 ml of a sterile

2.5% trypsin solution and 750 µl of a sterile 0.5% phenol red solution (final

concentration 0.01%) are added under sterile conditions. The solution is splitted

and stored at 4°C.

Hypoxanthine solution (10 mg/ml)

Hypoxanthine is suspended in 80% of the final amount of a. dem.. 1 N

hydrochloric acid is added in portions until the substance is completely dissolved.
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Afterwards the residual amount of a. dem. is added and sterilised. The solution is

stored at -20°C.

Xanthine solution (10 mg/ml)

Xanthine is suspended in 80% of the final amount of a. dem.. 1 N hydrochloric acid

is added in portions until the substance is completely dissolved. Afterwards the

residual amount of a. dem. is adjoined and sterilised. The solution is stored at -

20°C.

Solution of mycophenolic acid (10 mg/ml)

Mycophenolic acid is suspended in 80% of the final amount of a. dem.. 1 N

hydrochloric acid is added in portions until the substance is completely dissolved.

Afterwards the residual amount of a. dem. is adjoined and sterilised. The solution

is stored at -20°C in the absence of light.

Solution of sodium butyrate (500 mM)

55.05 mg sodium butyrate are dissolved in 1 ml of a. dem. The solution is

sterilised and stored at -20°C.

Polybrene solution (4 mg/ml)

For the preparation of 5 ml polybrene solution, 20 mg of the substance are

dissolved in the above-mentioned amount of a. dem. Afterwards the solutions is

sterilised and stored at 4°C.

Geniticin 418 (G418) (50 mg/ml)

50 mg of active substance of geniticin is dissolved in 1 ml of a. dem. The final

concentration of G418 in the selection medium is 800 µg/ml. The solution is

sterilised and stored at -20°C.
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Doxycycline (1 mg/ml)

1 mg of doxycycline is dissolved in 1 ml of a. dem. The final concentration of

doxycycline in the medium for the induction of receptor expression in CHO-GPR17

cells is 1 µg/ml. Doxycycline stock solution is stored at -20°C.

5.2.4 Media for mammalian cells

HXM medium for GP+envAM12 packaging cells

50 ml of foetal calf serum (FCS), 5 ml of penicillin G / streptomycin solution (final

concentration 100 U/ml penicillin, 100 µg/ml streptomycin), 1% ultra glutamine,

0.75 ml of hypoxanthine (10 mg/ml), 12.5 ml of xanthine (10 mg/ml), 1.25 ml of

mycophenolic acid (10 mg/ml) and 2 ml of hygromycin B (50 mg/ml) are added to

of 500 ml DMEM. If necessary, the pH value must be adjusted again by adding a

few drops of concentrated hydrochloric acid. In this case the medium has to be

sterilised by filtering.

Medium for native 1321N1 astrocytoma cells

DMEM medium, including 10% foetal calf serum (FCS), is used for culturing native

1321N1 astrocytoma cells.

Medium for retrovirally transfected 1321N1 astrocytoma cells

G418 (800 µg/ml G418) is added to DMEM medium with 10% FCS for preparation

of medium to cultivate 1321N1 astrocytoma cells stably expressing GPR17.

Medium for native Chinese hamster ovary (CHO) cells

DMEM/F-12 medium with 10% FCS is used to cultivate native CHO cells.
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Medium for Flp-In T-rex-CHO (FLIPR) cells (= CHO-GPR17 cells)

DMEM/F-12 medium with 10% FCS, 30 µg/ml of blasticidin and 500 µg/ml of

hygromycin B is used for culturing stable CHO cells generated by using the Flp-In

T-rex system. Doxycycline is added up to a concentration of 1 µg/ml for the

induction of receptor expression in this cell line.

5.2.4 Cell culture techniques

Breeding of cells

Eukaryotic cells are cultured in an incubator at 37°C, 5% carbon dioxide and a

humidity of 95%. Normally, cells grow adherent at the bottom of a cell culture flask

of different sizes (T25 cm2, T75 cm2 or T175 cm2). When cells are grown

confluently, up to 80-90%, cells have to be subcultured by removing the medium

and rinsing the cell monolayer with PBS buffer (5.2.3). Afterwards PBS buffer is

removed and a trypsin/EDTA solution is added (0.5 ml, 1 ml and 1.5 ml

respectively; 5.2.3). The cells are incubated until they are detached. The reaction

of trypsin is stopped by adding fresh medium. After resuspension with a pipette,

cells are transferred to a new cell culture flask. The amount of cells which are

transferred depends on the required splitting ratio. Afterwards fresh medium

(5.2.4) is added to obtain a total volume of 5 ml, 12 ml and 20 ml respectively.

Thawing of cells

A cryotube is taken out of the liquid nitrogen and incubated in a water bath (37°C)

until the ice has just about melted. The cells are transferred to a centrifuge tube

with fresh, warmed-up medium (5.2.4). They are then pelleted by centrifugation for

5 min at 200 g. The supernatant is aspirated and the cells are resuspended with

fresh medium without antibiotics (corresponding to the medium used for native

cells; 5.2.4). The cells are transferred to a fresh T75 cm2 cell culture flask prefilled

with culture medium without antibiotics (5.2.4). The next day the medium is

replaced with cultivation medium (if necessary with antibiotics; 5.2.4).



CHAPTER V: EXPERIMENTAL SECTION

118

Freezing of cells

The cells are harvested as described previously (5.2.4) and transferred to a

centrifuge tube. After being pelleted by centrifugation (200 g at 4°C), the cells are

resuspended in precooled freezing medium consisting of 90% FCS and 10%

DMSO. The cell suspension is transferred to cryotubes. The cryotubes are placed

into a special freezing container, which in turn is placed into a -80°C freezer

overnight. The next day, the cryotubes are transferred to a liquid nitrogen tank for

long-time storage.

Counting of cells

An improved Neubauer counting chamber is used for counting of cells. 10 µl of a

cell suspension are injected between the counting surface and a cover slip. The

numbers of cells of four big squares, each subdivided into 16 smaller squares, are

counted. Finally, the cell number can be calculated by the following term: cells per

ml = (counted cells x 10000)/4.

Retroviral transfection of 1321N1 astrocytoma cells

Background

Retroviruses are viruses whose RNA genome is transcribed into DNA by a reverse

transcriptase after infection of a host cell. Then DNA is inserted into the host

genome. The advantages of a transfection method using retroviruses are the

generation of stably transfected cells and the high efficiency.

The virus genome consists of the essential genes gag, env, pol and the packaging

signal  (psi), which are flanked by long terminal repeats (LTR). The gag gene

codes for capsid polypeptides, the env gene for virus envelope polypeptides and

the pol gene for the virus reverse transcriptase and integrase. LTR regions

function as a promoter, enhancer, regulatory sequences for the reverse

transcription and the insertion of virus genes into the host genome. The

sequences between the flanking LTR regions are also reversely transcribed and

inserted.[158]
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A helper cell line, a so-called packaging cell line which produces replication

deficient viruses, is used for the retroviral transfection. It is important that deficient

viruses are used for the infection of the host cell, because wild type retroviruses

weaken and destroy the host cell by virus production. In this case the amphotropic

packaging cell line GP+envAM12, which is derived from mouse embryonic

fibroblasts, is used.[159, 160] The packaging cell line is stably transfected with two

plasmids. The first plasmid carries the envelope gene and the gene for the

resistance against the aminoglycoside hygromycin B. The second gene carries the

information for capsid proteins (gag), reverse transcriptase (pol) of the murine

leukaemia virus (MuLV) and a gpt gene which codes a xanthine-guanine-

phosphoribosyl transferase. The packaging cell line is cultivated by adding

hygromycin B, xanthine, hypoxanthine and mycophenolic acid to the medium as

supplements under selective conditions. Mycophenolic acid inhibits the

endogenous purine synthesis, so that the cell line is dependent on the xanthine-

guanine-phosphoribosyl transferase which produces purines. The packaging cell

line lacks the packaging signal , so that no virus production takes place.[159, 161,

162] All components necessary for the production of infectious viruses are not

present until the packaging cell line is transfected with the vector pLXSN

containing the receptor DNA of interest, because the vector also carries the

packaging signal .In this case the information for the inserted receptor, viral

promoters and packaging signal is packed into the virus in contrast to the

information about the other viral proteins, so that no new viruses can be produced

in the host cell.[158] To enhance the efficiency of infection by the virus, the

packaging cell line is co-transfected with a second retroviral pLXSN plasmid,

which carries the information for the G glycoprotein of the envelope of the

vesicular stomatitis virus (VSV-G). The so-called pseudo-typing facilitates the virus

by the presentation of the glycoprotein, to bind not only to specific receptors on the

surface but to all phospholipids of the host cell.[163] After the transfection of the

host cell with the deficient viruses which carry the receptor information, the

successfully transfected cells can be selected by the addition of the neomycin

derivative G418, because the resistance against this antibiotic is transfected

together with the receptor information (Figure 49).
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Procedure

The retroviral transfection of 1321N1 astrocytoma cells is performed as

described.[66] The packaging cell line GP+envAM12 is cultivated in HXM medium

(5.2.4). One day before transfection 1.5 x 106 cells are seeded and incubated

overnight at 37°C, 5% CO2 and 95% humidity in a 25 cm2 cell culture flask

containing medium without antibiotics (5.2.4). For at least two hours before

transfection the medium is exchanged for 6.25 ml DMEM medium without any

additive. Two solutions are prepared for the transfection. The first solution consists

of 25 µl of Lipofectamine™ 2000 (final concentration 2%) and 600 µl of DMEM

medium without any additives while the second solution is composed of 6.25 µg of

pLXSN-GPR17 and 3.75 µg of pLXSN-VSV-G vector DNA. The second solution is

filled up with DMEM medium without any additives. Solution one is incubated for 5

min at room temperature before both solutions are combined and incubated for

20 min, also at room temperature. Afterwards the sample is added to the

packaging cell line and incubated for 12-15 h. The medium is then replaced with

3 ml of fresh medium containing 30 µl of a 500 mM sodium butyrate solution. The

virus production is stimulated by sodium butyrate and takes place by incubation for

48 h at 32°C and 95% humidity. One day before infection 500,000 of 1321N1

astrocytoma cells are seeded in a 25 cm2 cell culture flask. After 48 h of virus

production, the retroviruses are harvested and sterilised by filtration through a filter

with a pore size of 45 µm. The host cell medium is replaced with the sterilised

virus supernatant containing 6 µl of polybrene solution (5.2.3) and the infection of

the host cells takes place for further 48 h of incubation at 37°C, 95% humidity and

5% CO2. After incubation, the transfected cells are transferred to a 175 cm2 cell

culture flask and selected by adding medium containing G418 (5.2.4). The

efficiency of infection and stable transfection using this method is up to 95%.
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Figure 49. Scheme of a retroviral transfection. The packaging cell line produces
virus proteins but it lacks the packaging signal . Upon transfection with a plasmid
carrying a packaging signal and a gene of interest (GOI), the packaging cell line
starts to produce infectious but replication defect viruses, whereas the viruses are
loaded with GOI transcripts but lack the information for other virus proteins. After
infection, the GOI is inserted via the GOI flanking long terminal repeat (LTR)
regions into the genome of the host cell line, and the GOI protein biosynthesis
takes place. The figure is modified according to Hu and Pathak.[158]
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5.3 Molecular biology

5.3.1 Solutions for molecular biology

TAE buffer for agarose gel electrophoresis (50x)

TAE buffer consists of 2 M TRIS and 50 mM EDTA in a. dem.. The pH value is

adjusted by adding 57.1 ml of glacial acetic acid. The solution is autoclaved and

stored at room temperature. Before usage the buffer is diluted to 1-fold.

DNA loading dye (6x)

DNA loading dye is prepared by dissolving 25 mg of bromphenol blue (0.25%) in

equivalent amounts of glycerol and a. dem.. The dye is stored at 4°C.

Ribonuclease A (RNase A) solution for DNA preparation

20 mg of RNase A are dissolved in 1 ml of 50 mM TRIS/1 mM EDTA buffer. For

the inactivation of DNases the solution is incubated for 10 min at 99°C. The

sample is splitted (40 µl) and stored frozen at -20°C. Before usage the sample is

filled up to 1 ml with sterile a. dem..

10 mM EDTA, pH value 8.0

EDTA is dissolved in a. dem. and the pH value of 8.0 is calibrated by adding 1 N

sodium hydroxide solution. Afterwards the solution is autoclaved.

TRIS-EDTA/sodium hydroxide/SDS solution for DNA preparation

The following buffers are needed for the preparation of 500 ml of TENS solution.

50 ml 100 mM TRIS-buffer are prepared by dissolving 605 mg of TRIS in 45 ml of
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a. dem. (final concentration 10 mM) and adjusting the pH value to 7.4. Afterwards

the solution is filled up to 50 ml with a. dem.. In addition, 50 ml of 10 mM EDTA

(final concentration 1 mM) are separately prepared by staggering 146 mg of EDTA

with 45 ml of a. dem.. EDTA is dissolved by adding sodium hydroxide (pH 8.0).

Then the solution is filled up to 50 ml with a. dem.. Afterwards the two solutions

are pooled and 12.5 ml of a 20% SDS solution (final concentration 0.5%), and 50

ml of a 1 N sodium hydroxide (final concentration 0.1 N) solution are added. The

buffer is filled up to 500 ml with a. dem., autoclaved and stored at room

temperature.

Sodium acetate solution (3 M) for DNA preparation

For the preparation of 100 ml of 3 M sodium acetate solution, 24.6 g of sodium

acetate are dissolved in 90 ml of a. dem. and the pH value is adjusted up to 5.2.

Finally, the solution is filled up to 100 ml by adding the required amount of a. dem..

The solution can be stored at room temperature.

Ampicillin stock solution (100 mg/ml)

100 mg of ampicillin are dissolved in 1 ml of a. dem.. For the selection of

recombinant bacteria, the stock solution has to be diluted to a concentration of

100 µg/ml of ampicillin in LB medium (5.3.3).

5.3.2 Bacteria

One Shot® TOP 10 chemically competent E. coli Invitrogen™, D-64293

Darmstadt; #C4040-10
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5.3.3 Media for bacterial cultures

LB-medium for bacteria

25 g of LB powder medium are dissolved in 900 ml of a. dem., and the pH value of

the medium is adjusted up to 7.5 with 1 N sodium hydroxide solution. The volume

is filled up to 1 l and afterwards the medium is autoclaved. If necessary, antibiotics

are added after cooling down.

LB agar plates for cultivation of bacteria

For the preparation of 1 l of medium for LB agar plates, 32 g of an LB agar

ready-to-use mixture (according to manufacturer’s instructions; Invitrogen™,

D-64293 Darmstadt) are dissolved in a. dem.. The solution is autoclaved and

cooled down to a temperature of approximately 50°C. At this point antibiotics (if

necessary for selection) are added to the liquid solution and the solution is spilled

into 10 cm dishes. The agar sets while cooling down at room temperature. The

plates are stored upside down at 4°C.

SOC medium for bacteria

20 g of tryptone, 5 g of yeast extract, 0.5 g of sodium chloride, 10 ml of a 0.25 M

KCl stock solution, 5 ml of a 2 M MgCl2 stock solution and 20 ml of a 1 M glucose

solution are dissolved in 1 l of a. dem. for the preparation of 1 l SOC medium. The

pH value of the medium is adjusted up to 7.0 and afterwards the medium is

autoclaved.

5.3.4 Enzymes

VentR
® DNA polymerase New England BioLabs®, MA 01938-2723,

USA; #M0254S

XhoI (restriction endonucleases) New England BioLabs®, MA 01938-2723,
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USA; #R0146S

EcoRI (restriction endonucleases) New England BioLabs®, MA 01938-2723,

USA; #R0101S

T4-DNA ligase New England BioLabs®, MA 01938-2723,

USA; #M0202S

5.3.5 Vectors and molecular weight markers

pLXSN Working group of Professor R. Nicolas,

Department of Pharmacology, University of

North Carolina, Chapel Hill, USA

Lambda DNA/EcoRI+HindIII Fermentas, D-68789 St. Leon-Rot, #SM0191

PhiX174 DNA/BsuRI (HaeIII) Fermentas, D-68789 St. Leon-Rot, #SM0251

5.3.6 Protocols for molecular biological techniques

Breeding of bacteria

Prokaryotic cells are bred in 4 ml of LB-medium (with antibiotics, if required)

overnight at 200 rpm and 37°C. The LB-medium is inoculated by a single bacterial

colony or from a frozen glycerol stock by picking with a sterile pipette tip into the

stock and discarding the used pipette tip into a prepared liquid LB-medium culture.

Freezing of bacteria

Prokaryotic cells are grown as described above and settled by centrifugation. The

supernatant is removed and the cells are resuspended in LB-medium with 15%

glycerol. The bacterial suspension is stored at -80°C.



CHAPTER V: EXPERIMENTAL SECTION

126

Insertion of receptor DNA into the retroviral expression vector pLXSN

The sequence for the human GPR17 was present as a cDNA clone and had to be

subcloned into the vector pLXSN, which can be used for retroviral transfection of

the human astrocytoma cell line 1321N1. The vector pLXSN is commercially

available from Clontech Laboratories, CA 94043, USA (catalogue number

#631509; GenBank accession no. M28248) and was kindly provided by the

working group of Professor C. E. Müller, Pharmaceutical Institute, Pharmaceutical

Chemistry I, University of Bonn.

Primer design

Two flanking oligonucleotides were designed for the subcloning of receptor DNA.

Both oligonucleotides consist of a restriction site, a short sequence which is

homologous to parts of the GPR17 sequence and a short overhang. An EcoRI

restriction site and a XhoI restriction site, respectively, have been introduced into

the forward primer and and the reverse primer. Both sites are unique restriction

sites in the multiple cloning site of the target plasmid pLXSN.
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Sequence
Melting

point

Forward

oligonucleotide
5’-ata tat ata tG’A ATT ,CAT GAA TGG CCT TG-3’ 58.2°C

Reverse

oligonucleotide

5’-ata tat ata tC’T CGA ,GTC ACA GCT CTG

ACT T-3’
62.9°C

The overhang is marked with lower case letters. Sequences representing

restriction sites are underlined, the cutting site is marked with a single quotation

mark and a comma, and the start and stop codons are on a grey background.

Information concerning the melting points was provided by the supplier

MWG-Biotech AG, D-85560 Ebersberg.

Polymerase chain reaction (PCR)

The proof reading VentR
® DNA polymerase (5.3.4) is used to reduce the mutation

frequency for the amplification of receptor DNA and two specific oligonucleotides

(5.3.6) are added in a final concentration of 10 pmol/µl each. Each

deoxyribonucleotide triphosphate at 0.5 mM dNTPs and 2.5 mM MgSO4 are used.

A standard sample for the polymerase chain reaction is composed of the following

ingredients:

1 µl forward primer

+ 1 µl reverse primer

+ 5 µl VentR
® DNA polymerase buffer (10x)

+ 0.5 µl VentR
® DNA polymerase (1 U)

+ 0.5 µl dNTP-Mix

+ 2.5 µl MgSO4

+ 1 µl template (~ 20 ng)

+ 38.5 µl a. dem.

50 µl
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The protocol for the amplification is as follows:

94°C 2 min

94°C 1 min

45°C 45 sec 25 cycles

72°C 1.5 min

72°C 7 min

 4°C  ∞ 

Agarose gel electrophoresis

Agarose is suspended in 1-fold TAE buffer (5.3.1). 1-2% agarose gels are used,

depending on the DNA fragment length. Fragments with a length of 500-6000 bp

are differentiated on a 1% gel while smaller fragments are analysed on a 2%

agarose gel. The suspension is boiled in a microwave until the agarose is

completely dissolved. Afterwards ethidium bromide is added at a ratio of 1 to 1000

(v/v) to the liquid agarose solution. The solution is transferred to a prepared gel

chamber with a comb. The comb forms the slots for the DNA samples in the solid

gel. The gel is transferred to an electrophoresis chamber which is filled with 1-fold

TAE buffer, so that the gel is completely covered with buffer. DNA samples are

prepared by mixing with 6-fold DNA loading dye (final concentration 1-fold) and if

necessary with a. dem. before they are added to the gel. A DNA molecular weight

marker (5.3.5) is also pipetted into one slot for analysing the fragment length

and/or concentration. A current of 100 V is used to separate DNA fragments. The

fragments are analysed using a photo documentation system (5.1.1) (Figure 50).
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Figure 50. Agarose gel electrophoresis of a PCR (5.3.6) for the amplification of
GPR17 receptor DNA. A DNA fragment with a molecular mass of approximately
1020 bp was expected.

Extraction of DNA from agarose gels

The agarose gel is exposed to UV radiation for a short time period and the

fragments of choice are cut out of the gel with a sharp scalpel. The piece of gel is

transferred to an Eppendorf tube and the DNA is extracted with the QIAquick® Gel

Extraction Kit from QIAGEN GmbH, D-40724 Hilden. The DNA extraction is

performed accordingly to the manufacturer’s instructions.

Restriction digest

Vector DNA and PCR products are digested with restriction endonucleases under

buffer conditions which are recommended by the manufacturer. Buffer conditions

under which both enzymes have maximum activity are chosen for digestion with

two different enzymes. If recommended by the manufacturer, albumin from bovine

serum (BSA) is added to the digestion. The digestion takes place in a dry block

heater for 1 h at 37°C and is terminated by incubating the sample for 20 min at

80°C (if possible; see manufacturers’ instructions).
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A standard composition for restriction digest is as follows:

X µl Vector DNA or PCR products

+ 0.5 µl EcoRI (10 U)

+ 0.5 µl XhoI (10 U)

+ 2.5 µl EcoRI-buffer

+ 2.5 µl BSA (10-fold)

+ Y µl a. dem.

25 µl

Purification of the digestion products

The digestion of vector DNA and PCR products is normally performed to prepare

these DNA molecules for ligation (Figure 51). To eliminate side products, the

fragments of choice are purified with the QIAquick® PCR Purification Kit from

QIAGEN GmbH, D-40724 Hilden following the manufacturer’s instructions.

Figure 51. Agarose gel electrophoresis of the GPR17 PCR and pLXSN vector
fragments after restriction with EcoRI and XhoI (5.3.6.7) and purification (5.3.6.8).

Ligation of DNA fragments

The ligation of two DNA fragments which are prepared by digestion and

purification is performed using T4-DNA ligase (5.3.4). The insert (GPR17-DNA)

and the vector (pLXSN) are used in a molar ratio of 4:1, which corresponds to a
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molecular weight ratio of approximately 1:1. Combined DNA of 0.1 to 0.4 µg is

used. The ligation takes place at 16°C overnight in a dry block heater. A standard

composition is as follows:

X µl Digested GPR17 insert-DNA (0.05-0.2 µg)

+ Y µl Digested pLXSN vector-DNA (0.05-0.2 µg)

+ 0.5 µl T4-DNA ligase (200 U)

+ 2 µl T4-DNA ligase buffer (10-fold)

+ 2 µl ATP (100 mM)

+ Z µl a. dem.

20 µl

Transformation of competent bacteria

10 to 50 ng of plasmid DNA or 2 µl of a ligation sample (5.3.6) are added to 100 µl

of competent E. coli TOP10 bacteria from Invitrogen™, D-64293 Darmstadt

(5.3.2), then thawed on ice and mixed carefully with a pipette tip. After 30 min of

incubation on ice, a heat shock is applied by placing the tube with the bacteria for

2 min into a water bath preheated to 37°C. Afterwards the bacteria are cooled

down on ice for 2 min and 200 µl of SOC medium (5.3.3) are added to the sample.

Within 1 h of incubation at 37°C and 200 rpm the bacteria develop the antibiotic

resistance which is provided by the transformed plasmid. They are then pelleted

by centrifugation (17900 g for 1 min) and the supernatant is removed by

decanting. Bacteria are resuspended in residual medium by pipetting and

distributed with a Drigalski applicator on an LB agar plate (5.3.3) containing the

suitable antibiotic. Successfully transformed bacteria form colonies after incubation

overnight at 37°C.

Preparation of plasmid DNA from bacteria

For the amplification of a plasmid of choice, bacteria were transformed (5.3.6) and

grown under selection conditions (5.3.6). There are two protocols for the

preparation of plasmid DNA. The TENS protocol (see below) is used to prepare

the plasmid DNA from many cultures to check whether the subcloning was
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successful. The second protocol for preparation using a kit is preferred when

purified plasmid DNA for sequencing or further steps are needed (Figure 52).

Figure 52. After subcloning, the vector DNA is isolated from the bacteria. To verify
the isolated vector DNA, it was digested with the restriction enzymes EcoRI and
XhoI (5.3.6.7). A vector fragment (~ 5900 bp) and a GPR17 insert fragment (1020
bp) were detected.

Preparation of plasmid DNA using the TENS method

Bacteria are settled by centrifugation for 2 min at 17900 g. The supernatant is

discarded and the bacteria are resuspended in 40 µl of RNase A solution. Bacteria

are lysed by the addition of 300 µl of TENS solution (5.3.1). After adding 150 µl of

3 M sodium acetate, the sample is mixed carefully and the developing precipitate

is pelleted by centrifugation for 10 min at 17900 g. The supernatant is transferred

to a new Eppendorf tube. Plasmid DNA precipitates after the addition of 900 µl of

ice-cold absolute ethanol. After precipitation, the plasmid DNA is separated from

other soluble cell components by centrifugation (2 min, 17900 g). The supernatant

is discarded and the plasmid DNA pellet is washed carefully with 1 ml of ice-cold

ethanol (70%). After another centrifugation step, the ethanol is removed and the

pellet is dried in a dry block heater. Plasmid DNA is dissolved in 40 µl of sterile a.

dem. after the pellet has dried completely. Plasmid DNA which has been isolated

in this way cannot be used, for example for sequencing because applied EDTA

when not removed completely nterferes with this.
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Preparation of plasmid DNA using a kit

If clean plasmid DNA is needed, it can be prepared from bacteria using the

QIAprep® Spin Miniprep Kit from QIAGEN GmbH, D-40724 Hilden. The

preparation is performed according to manufacturer’s recommendations.

Midi-preparation of plasmid DNA

Large amounts of plasmid DNA are needed for the transfection of astrocytoma

cells. In this case a midi-preparation of plasmid DNA is necessary. The

preparation is performed using the Plasmid Midi Kit from QIAGEN GmbH,

D-40724 Hilden and handled as described according to the manufacturer’s

instructions.

Photometrical determination of DNA concentration

For the photometrical determination of the concentration of a DNA sample 2 µl of

the DNA are diluted in 1 ml of a. dem., and the absorption of that dilution is

detected at a wavelength of 260 nm in a photometer. For reference a. dem. is

used.

Determination of the receptor DNA sequence inserted in the vector pLXSN

The receptor DNA subcloned into the retroviral vector pLXSN is sequenced by

GATC-Biotech, D-78467 Konstanz. 1 µg of plasmid DNA dissolved in sterile

a. dem. is needed for sequencing. The oligonucleotides used for sequencing were

designed by Dr. Petra Hillmann, Institute for Pharmaceutical Chemistry I,

University of Bonn. The sequences of the primers are as follows:

Sequence

Forward oligonucleotide 5’-CCC TTG AAC CTC CTC GTT CGA CC-3’

Reverse oligonucleotide 5’-CCA CAC CTG CTT GCT GAC TA-3’

Both oligonucleotides bind to pLXSN sequences which are close to the multiple

cloning site of the vector where the receptor DNA is inserted.
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5.4 Functional assays

5.4.1 Solutions for functional assays

Solutions for measuring intracellular calcium release

Krebs HEPES buffer (KHB)

The KHB buffer consists of an aqueous solution of 118.6 mM NaCl, 4.7 mM KCl,

1.2 mM KH2PO4, 4.2 mM NaHCO3, 11.7 mM D-glucose, 10 mM HEPES (free

acid). A 5-fold concentrated buffer without CaCl2 and MgSO4 is prepared and

stored at -20°C. After diluting this buffer to 1-fold, MgSO4 and CaCl2 are added at

1.3 mM and 1.2 mM, respectively. The pH value of 7.4 is adjusted by adding 1 N

sodium hydroxide.

Calcium-free Krebs HEPES buffer

The composition of the calcium-free KHB buffer is the same as for the standard

KHB except that 1.2 mM CaCl2 of the standard KHP buffer is exchanged for

1.2 mM MgCl2. EGTA is added to a final concentration of 100 µM. The pH value of

this solution is adjusted up to 7.4.

Oregon Green® stock solution

A 1 mM stock solution is prepared by adding 39.7 µl of DMSO to 50 µg of the

fluorescence dye Oregon Green® 488 BAPTA-1/AM (Mr = 1258.07 g/mol). Since

the dye is sensitive towards light, the dissolution should take place in the absence

of light. The sample is splitted to amounts of 3 µl. The aliquots are stored at -20°C

in the absence of light.
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Fura-2 stock solution

A 1 mM stock solution of the calcium indicator fura-2/AM (Mr = 1001.86 g/mol) is

prepared by dissolving 50 µg of the dye in 49.9 µl of DMSO. The sample is splitted

to amounts of 3 µl. Since the dye is sensitive to light, the aliquots are stored in the

absence of light at -20°C.

Pluronic®-F127 stock solution

The stock solution is prepared by dissolving 200 mg of pluronic®-F127 in 800 µl of

DMSO. The solution is stored at room temperature.

2-Aminoethoxydiphenylborane (2-APB) (10 mM)

2-APB is dissolved in DMSO up to a concentration of 10 mM. Inositol

1,4,5-triphosphate (IP3) receptors, which gate the calcium release from

intracellular calcium stores, can be blocked by the cell-permeable antagonist

2-APB.[80, 164] For inhibition, 10 µM of this compound are incubated for 30 min

together with the cells before being measured. The solution is stored at -20°C.

Dantrolene (10 mM)

Dantrolene is dissolved in DMSO up to a concentration of 10 mM. Dantrolene

inhibits the release of Ca2+ from sarcoplasmic reticulum by inhibiting ryanodine

receptor (RYR) channels.[77, 165, 166] It displays selectivity for RYR1 and RYR3 over

RYR2. For the inhibition of ryanodine receptor channels, 20 µM of the substance

are incubated for 30 min together with the cells before being measured. The stock

solution is stored at -20°C.

H 89 (10 mM)

A H 89 stock solution is dissolved in DMSO up to a concentration of 10 mM. As a

very potent and selective inhibitor of the protein kinase A, it is preincubated in a

final concentration of 1 µM with both 1321N1 and CHO cells for 30 min before

starting measurement in.[91] The solution is stored at -20°C.
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GF 109203X (10 mM)

A GF 109203X stock solution is dissolved in DMSO up to a concentration of 10

mM. As a very potent and selective inhibitor of the protein kinase C (selective for

the and  isoforms), it is preincubated in a final concentration of 1 µM with both

1321N1 and CHO cells for 30 min before starting measurement.[92, 167-169] The

solution is stored at -20°C.

Thapsigargin (10 mM)

Thapsigargin solid is dissolved in DMSO up to a concentration of 10 mM. The

SERCA inhibitor is preincubated in a final concentration of 1 µM with both 1321N1

and CHO cells for 30 min before starting measurement.[76, 170, 171] The stock

solution is stored at -20°C.

Edelfosine (10 mM)

Edelfosine is dissolved in DMSO up to a concentration of 10 mM. Edelfosine

inhibits phosphatidylinositol-specific phospholipase C.[73, 74] The effective final

concentration is 5 µM. The compound is preincubated with the cells for 30 min

before being measured. The stock solution is stored at -20°C.

U-73122 (1 mM)

U-73122 is dissolved in DMSO up to a concentration of 1 mM. As an inhibitor of

PLC-dependent processes, it is preincubated in a final concentration of 2.5 µM

with 1321N1 cells and 5 µM in CHO cells 5 min before starting measurement.[172-

174] The stock solution is stored at -20°C.

U-73343 (1 mM)

U-73343 is dissolved in DMSO up to a concentration of 1 mM. The inactive

derivative of U-73122 is preincubated in a final concentration of 2.5 µM with

1321N1 cells and 5 µM in CHO cells 5 min before starting measurement. The

stock solution is stored at -20°C.
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N-(6-Aminohexyl)-5-chloro-1-naphthalenesulphonamide hydrochloride (W-7)

(10 mM)

W-7 is a calmodulin inhibitor that is dissolved in DMSO up to a concentration of

10 mM. It is preincubated in a final concentration of 30 µM with both 1321N1 and

CHO cells 30 min before starting measurement.[84] The stock solution is stored at -

20°C.

Fluphenazine (10 mM)

Fluphenazine is a calmodulin inhibitor that is dissolved in DMSO up to a

concentration of 10 mM. It is preincubated in a final concentration of 30 µM with

both 1321N1 and CHO cells 30 min before starting measurement.[85] The stock

solution is stored at -20°C.

Solutions for single cell calcium imaging

Superfusion-buffer

An aqueous buffer containing 135 mM sodium chloride, 4.8 mM potassium

chloride, 1.3 mM calcium chloride, 1.2 mM potassium dihydrogen phosphate,

10 mM glucose and 10 mM HEPES is prepared for the superfusion of cells in a

superfusion chamber. The solution is stored at 4°C.

Solutions for measurement of inositol phosphate accumulation

Formic acid (1 M)

Solid formic acid is dissolved in DMSO up to a concentration of 1 mM. The

solution is stored at 4°C and has to be diluted 100-fold in HBSS-buffer without

lithium chloride before use.
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Solutions to determine the accumulation of cAMP

Forskolin (10 mM)

Forskolin is dissolved in DMSO up to a concentration of 10 mM. The solution is

stored at -20°C.

3-isobutyl-1-methylxanthine (IBMX) (50 mM)

IBMX is dissolved in ethanol up to a concentration of 50 mM. The stock solution is

stored at -20°C.

Assay buffer

An HBSS buffer (5.1.2) supplemented with 20 mM HEPES is used to perform the

assay.

5.4.2 Microplates for functional assays

Number of wells Plate ID Assay

96 Rotilabo® microplate V-profile; Calcium assay

Roth, D-76231 Karlsruhe #9292.1

96 Clear F-bottom UV-Transparent Calcium assay

microplate; Corning® Incorporated, (fura-2/AM)

NY 14831, USA; #3635

96 PS, F-bottom µclear, black; Calcium assay

Greiner bio one, 4550 (Oregon Green®

Kremsmünster, Austria #655096 BAPTA-1/AM)

96 Solid white F-bottom, PS, Radioactive IP3

TC-treated, with lid, sterile; accumulation

Corning® Incorporated, NY 14831, assay

USA; #3917
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96 TC, F-bottom with lid, sterile; Radioactive IP3

Sarstedt, D-51582 accumulation

Nümbrecht; #83.1835 assay

384 LIA plate, white, TC, F-form HTRF® IP-One

Greiner bio one, 4550 assay and

Kremsmünster, Austria; #784080 HTRF® cAMP

assay

384 Epic® fibronectin-coated cell assay DMR assay

microplate; Corning® Incorporated,

NY 14831, USA; #5042

384 Clear round bottom, PP, untreated, DMR assay

without lid, nonsterile; Corning®

Incorporated, NY 14831, USA; #3657

5.4.3 Protocols for functional GPCR analysis

Measurement of intracellular calcium efflux using the NOVOstar® microplate

reader

Background

PLC activation and IP3 accumulation result in a release of calcium from

intracellular calcium stores, for example the endoplasmic reticulum. In order to

detect the released calcium, cells are loaded with a cell membrane permeable

dye, which is converted within the cell into its active form by the cleavage of ester

bonds. The active form of the dye binds the released calcium. The fluorescence

properties of the dye change after calcium binds to the dye. These changes can

be detected automatically (in this case the NOVOstar® microplate reader, BMG

LABTECH, D-77656 Offenburg) and represent the ligand-dependent receptor

activation (Figure 53).
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Figure 53. Principle of calcium efflux from intracellular calcium stores and its
detection using Oregon Green® BAPTA-1/AM (OG) dye. Cells are loaded with the
cell permeable calcium chelator OG (alternatively fura-2/AM), the ester bonds of
which are cleaved intracellularly. After receptor activation, the built inositol
phosphates stimulate the calcium channels of intracellular calcium stores. The
activated channels pump calcium into the cytoplasm where they form a complex
with the fluorescence dye. This complex can be stimulated, and the emitted
fluorescence of the complex is detected.

Procedure

The assay is performed as described previously.[66, 124, 125] Cells from two

confluently grown (80 to 90%) 175 cm2 cell culture flasks are needed for a calcium

assay using the NOVOstar® microplate reader (approximately 150,000 cells per

well).

Cells are harvested after removing the medium, washed once with PBS buffer and

detached using a trypsin/EDTA solution. After incubation for 45 min at 37°C and

5% CO2, the cells are pelleted by centrifugation (5 min, 200 g). Cells are

resuspended in 994 µl of Krebs HEPES buffer (KHB; 5.4.1) and loaded in the

absence of light with one of two available fluorescents, namely Oregon Green®

488 BAPTA-1/AM dye or fura-2/AM (5.4.1), by incubating them for one hour at

28°C and 700 rpm in an Eppendorf Thermomixer (Eppendorf, D-22339 Hamburg )

(5.1.1) in the presence of Pluronic® F-127 (5.4.1). Pluronic® F-127 is

supplemented so that the cells can better absorb the dye. The cells are washed

twice with 1 ml of KHB buffer (three centrifugation steps, each for 15 sec at



CHAPTER V: EXPERIMENTAL SECTION

141

2700 rpm) before being seeded in a 96-well microplate in a total volume of 160 µl

or 180 µl for antagonist or agonist testing respectively. In the case of antagonist

testing the antagonists are submitted to the plate in 10-fold concentration (20 µl)

before addition of the cell suspension. A 10-fold concentrated agonist solution

(35 µl) is added to another 96-well microplate with a V-profile. Both plates are

placed into the NOVOstar® microplate reader and incubated there for 20 min. If

pathway inhibitors are used, the incubation time must be matched to the time at

which the inhibitor effect occurs.

After incubation, the required gain is determined by the microplate so that the

fluorescence background of the cells is between 38,000 and 42,000 fluorescence

units. This background is an optimal range for starting the measurement, because

it is in the middle of the reader’s detection range. Normally, the background in

each well of a microplate should be the same. The background is determined by

performing a so-called validation. A validation is performed to detect irregularities

in cell densities between different wells, fluorescence or absorption properties as

well as unspecific antagonist effects. These irregularities are noticeable when the

background is significantly increased or decreased compared to the normal range.

Afterwards, 20 µl of agonist are injected from the source plate to the measurement

plate by the injector unit of the NOVOstar®, and the increase in fluorescence is

determined as a function of the calcium efflux resulting from receptor stimulation

(Figure 54).
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Figure 54. Plot of the intracellular calcium increase in a cell population assay as a
function of time. The calcium response after agonist addition is dependent on the
agonist concentration.
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Parameters of measurement
Oregon Green®

BAPTA-1/AM
Fura-2/AM

Excitation wavelength
485 nm (band

width: 25 nm)

320 nm (band width:

25 nm)

Emission wavelength
520 nm (band

width: 20 nm)

520 nm (band width:

20 nm)

Number of flashes per well

and interval (validation)
10 (10) 10 (10)

Gain Variable Variable

Number of intervals

(validation)
60 (1) 60 (1)

Interval time 0.4 s 0.4 s

Injection start time 11.5 s 11.5 s

Pump speed [µl/s] 65 65

Positioning delay 0.2 s 0.2 s

Temperature Room temperature Room temperature

Cell number per well
Approximately

150,000

Approximately

150,000

Data evaluation of calcium assays

The evaluation of the data starts with Microsoft® Excel (5.1.5). Fluorescence units

measured immediately after injection are used for reference purposes. These

values are subtracted from each additional data point. A mean value is determined

for all data points of one well. This mean value is plotted against the agonist and

antagonist concentrations in order to generate a dose response curve (DRC).

Each data point of a single experiment represents the mean of a triplicate. Further

data evaluation is performed using GraphPad Prism® 4.02 (5.1.5). Dose response

curves are generated by a non-linear sigmoidal fit (variable slope). DRC

parameters are calculated by the software. Each DRC shown in this thesis is the

mean of at least three independent experiments.

To permit a comparison of the potencies of different compounds, the EC50 or IC50

value (molar concentration of an agonist or antagonist which produces 50% of that

agonist or antagonist’s maximum possible effect) is converted into a pEC50 or
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pIC50 value, which is the negative logarithm to the base of 10.[65]

Single cell calcium imaging

Realisation

Single cell calcium imaging is performed as described previously.[175]

1321N1-GPR17 cells cultured overnight on cover slips in cell culture dishes with

medium are incubated with fura-2/AM (final concentration 2 µM) for 30 min at

37°C, 5% CO2 and 95% humidity. A cover slip is fixed between two platinum

electrodes in a superfusion chamber and mounted on the stage of a Zeiss Axiovert

100 microscope equipped with an oil immersion F-Fluar 40x objective (Zeiss,

Jena, Germany). The cells are superfused with superfusion buffer at 1 ml/min.

After a presuperfusion period of 20 min, cells are superfused with test compound

solution in the final concentration. A second compound can be tested after a wash-

out phase of 12 min with superfusion buffer. The dead time between starting

superfusion and signal appearance depends on the length of the flexible tube and

the position of the analysed cells on the cover slip. Fluorescence emission is

measured after alternating excitation at 340 nm and 380 nm, each applied for 5 to

9 ms and repeated every 1 s using a Polychrome II monochromator, an Imago

charge-coupled device camera and the TILLvisION imaging system (Till

Photonics, D-82166 Gräfelfing) (Figure 55).

Evaluation of single cell imaging data

The term (fluorescence emission due to excitation at 340 nm)/(fluorescence

emission due to excitation at 380 nm) (F340 nm/F380 nm) is evaluated in order to

estimate the changes in intracellular calcium concentration (Figure 55).
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Figure 55. Plot of the intracellular calcium increase resulting from a single cell
assay as a function of time using fluorescence microscopy. Each signature
represents the response of a single cell. The signal is described as the ratio of the
fluorescence at 340 nm and 380 nm.

Radioactive inositol phosphate (IP) accumulation assays

Background

The yttrium silicate scintillation proximity bead assay (YSi-SPA) is based on the

radioactive decay of tritiated inositol phosphates and contains beads with a

polylysine coated surface and an yttrium core.

Cells expressing the receptor of interest are fed with tritiated myo-inositol which is

incorporated into cellular phosphatidylinositol 4,5-bisphosphate (PIP2). The latter is

degradated to radioactive IP3 and DAG according to the activation of

phospholipase C. Tritiated IP3 and unlabeled IP3 bind with their negatively charged

phosphate groups to the positively charged polylysine coated bead surface after

cell lysis. The tritiated IP3 and the yttrium core, which functions as a scintillator, are

in close proximity after binding. The scintillator converts the radioactive radiation,

which is a --decay, into detectable, non-radioactive radiation. For this reason, the

amount of detected light reflects the amount of radioactive IP3 bound to the beads

and thus the activity of PLC representing receptor activation.
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Procedure

The inositol phosphate accumulation assay is performed as described

previously.[176] 40,000 CHO cells and 30,000 1321N1 cells are seeded in 100 µl of

culture medium in 96-well tissue culture plates and loaded with 0.5 µCi

(18.500 Bq) of [2-3H]myo-inositol per well. The next day, the cells are washed

twice in 200 µl of HBSS-buffer (5.1.2). The supernatant is completely removed,

and 80 µl of HBSS-buffer with 10 mM LiCl are added to the cells. Receptor

activation is stimulated by adding 20 µl of a 5-fold concentrated agonist solution in

HBSS buffer supplemented with 10 mM LiCl and incubated for 45 min at 37 °C. In

the case of antagonist testing, 60 µl of HBSS-buffer with LiCl are added as well as

20 µl of antagonist solution 10 min before agonist supplementation. Reactions are

terminated by aspiration and by the addition of 50 µl of 10 mM ice-cold formic acid

per well. After a 90 min incubation on ice, 20 µl of the resulting cell extract is

transferred to 80 µl of yttrium silicate scintillation proximity assay beads (12.5

mg/ml; Amersham Biosciences, Buckinghamshire HP7 9NA, UK), and shaken for

60 min at 4°C. Yttrium silicate beads are centrifuged to settle before counting on a

TopCount NXT™ microplate scintillation counter (PerkinElmer Life Sciences, MA

02451, USA).

Data evaluation of the IP accumulation assay

GraphPad Prism® 4.02 (5.1.5) is used for data evaluation. Inositol phosphate

accumulation is plotted against agonist concentration. Each data point of a single

experiment represents the mean of a triplicate. Dose response curves are

generated by a non-linear sigmoidal fit (variable slope). DRC parameters are

calculated by the software. Each DRC shown in this thesis is the mean of at least

three independent experiments.

Homogeneous time resolved fluorescence (HTRF®) assays

Background

Homogeneous time-resolved fluorescence (HTRF®) technology is a combination of
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fluorescence resonance energy transfer (FRET) and time-resolved fluorometry

(TRF).

FRET uses two fluorophores, a donor and an acceptor. Both fluorophores have

defined excitation and emission spectra. When the emission spectrum of the donor

overlaps with the excitation spectrum of the acceptor, energy transfer takes place

if the donor is stimulated by light with a certain wavelength and both fluorophores

are within a certain distance of, and have a certain orientation to each other. The

light emitted by the acceptor is less energetic than the excitated light for

stimulating the donor.

TRF combines long-lived fluorophores and fluorescence detection is delayed

between excitation and emission. Lanthanides are complexed for this purpose with

organic moieties that harvest light and transfer it to the lanthanide by means of

intramolecular, non-radiative processes.

HTRF® cAMP accumulation assays

Two signal transduction pathways that influence the activity of the adenylyl cyclase

in oppositional ways can be activated upon receptor activation. Whereas the Gs

pathway stimulates the adenylyl cyclase-dependent catalysation of cAMP

formation, the Gi pathway inhibits it. The detection of cAMP accumulation is based

on the HTRF® technology described above. In this case a monoclonal antibody

specific to cAMP is the donor fluorophore while the acceptor fluorophore d2 is

fused to cAMP. Total Gi signalling of the cell has to be blocked by treatment with

pertussis toxin in order to analyse the Gs pathway. The analysis of the Gi pathway

is based on the direct activation of the adenylyl cyclase, for example, by forskolin.

Upon activation, the Gi pathway inhibits the forskolin-dependent activation of the

adenylyl cyclase, leading to decreased cAMP accumulation.

The inhibition of forskolin-stimulated cAMP accumulation in 1321N1 or CHO cells

is performed as described above using the HTRF® cAMP dynamic kit (Cisbio

Bioassays, BP 84175, France).[176] Cells are resuspended in assay buffer with

1 mM 3-isobutyl-1-methylxanthine (IBMX) supplemented and dispensed in 384-

well microplates at a density of 50,000 cells/well in a volume of 5 µl. After

preincubation in assay buffer for 30 min, the cells are stimulated by adding 5 µl of

agonist in the respective concentration of forskolin. The final concentration of
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forskolin is dependent on the cell line which is employed in the assay. Adenylyl

cyclase is stimulated with 1 µM forskolin in 1321N1-GPR17 cells and with 10 µM

forskolin in CHO-GPR17 cells, followed by incubation for 30 min at room

temperature. The reaction is terminated by lysis of the cells, which results from the

addition of 5 µl of d2-conjugate followed by the addition of 5 µl of anti-IP1-cryptate

(both supplements are diluted in conjugate and lysis buffer). The assay is

incubated for 60 min at room temperature and time-resolved FRET signals are

measured at an excitation wavelength of 320 nm using the Mithras LB 940

multimode reader (Berthold technologies, D-75323 Bad Wildbad).

Data evaluation of HTRF® accumulation assays

The evaluation of HTRF® data is performed following the instructions of the kit

manufacturer. Data analysis is based on the fluorescence ratio emitted by labelled

cAMP (665 nm) over the light emitted by the europium cryptate-labelled anti-cAMP

(620 nm). Levels of cAMP are normalised to the amount of cAMP elevated by

10 µM or 1 µM forskolin alone.

Dynamic mass redistribution (DMR) assay using the EPIC® system

Background

A beta version of the Corning® Epic® system (Corning® Incorporated, NY 14831

USA), consisting of a temperature control unit, an optical detection unit and an on-

board robotic liquid handling device, was used in the experiments of the present

thesis. Each well of the 384-well Epic® microplate contains a resonant waveguide

grating biosensor. The system measures changes in the local index of refraction

upon mass redistribution within the cell monolayer grown on the biosensor.

Amongst other things, mass redistribution is a result of receptor activation after

ligand addition. Following receptor activation, specific macromolecules are

activated within the cell and start to move. If macromolecules move into or out of

the range of the biosensor (up to 150 nm above the sensor surface) the DMR in

living cells is manifested as a shift in the wavelength of light that is reflected from

the sensor. The magnitude of this wavelength shift is proportional to the amount of



CHAPTER V: EXPERIMENTAL SECTION

148

DMR. An increase in mass contributes negatively to the overall response.[177, 178]

The shape of the signature obtained depends on the respective signal

transduction pathway(s). In contrast to the other measurement techniques, this

technology does not measure a single pathway or a defined second messenger

but all processes in parallel that are initiated upon receptor activation in real time

(Figure 56).

Figure 56. Measurement principle of live cell imaging using dynamic mass
redistribution.[67] After the application of a ligand, the downstream signalling
cascade of a GPCR is activated, leading to a movement of masses in the form of
signalling molecules within the cell. One consequence of this movement is a
change in the optical density within the range of the biosensor which is integrated
in the bottom of the measurement plate. This change in the optical density results
in a wavelength shift, which is reflected in comparison to the shift that was
reflected before agonist addition. The signalling molecules which are activated are
characteristic of a certain receptor and its signal transduction pathways.

Procedure

Dynamic mass redistribution in 1321N1 or CHO cells is performed as described

above.[176] On the day prior to the measurement, cells are seeded onto fibronectin-

coated 384-well Epic® sensor microplates at a density of 12,500 cells/well for

1321N1 cells or 15,000 cells/well (in 40 µl of medium per well) for CHO cells, then

cultured for 16-20 h at 37°C, 5% CO2 and 95% humidity to obtain a confluent

monolayer. The cells are washed twice with assay buffer. The supernatant is

completely removed to 10 µl by an eight-channel manifold for this purpose, and
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30 µl of assay buffer (5.4.1) are added. This step is repeated once and then finally

20 µl of assay buffer are added to the wells. A second plate, the source plate, is

loaded with 20 µl of the 4-fold concentrated test compounds. Both plates are kept

simultaneously for 1 h in the Epic® reader at a constant temperature of 28°C.

Afterwards the sensor plate is scanned and a baseline optical signature is

recorded for five minutes. Then 10 µl of the test compounds are injected onto the

sensor plate by the on-board liquid handling device and DMR is monitored for at

least 3600 s.

Data evaluation

Data from DMR assays are evaluated by calculating the area under curve (AUC)

of a signature which has been baseline-corrected. The AUCs from three or more

single wells with cells treated with a defined agonist concentration are averaged.

Other parameters were specified for the calculation of the area under curve: the

time limit for summarising data points was set to 1000 sec and the baseline to an

ordinate value of -10 or -20. The measured DMR signal does not fall below a value

of -10 or -20 within 1000 sec. Since the baseline is set to -10 or -20, it is possible

to calculate an AUC for the baseline-corrected buffer signature.



CHAPTER VI: TABLE OF ABBREVIATIONS

150

CHAPTER VI: TABLE OF ABBREVIATIONS

A

a. dem. demineralised water

ADP adenosine 5’-diphosphate

AC adenylyl cyclase

AMP adenosine monophosphate

ATP adenosine 5’-triphosphate

AQ anthraquinone

AUC area under curve

B

bp base pairs

BSA bovine serum albumin

C

cAMP cyclic adenosine monophosphate

cDNA complementary DNA

CHO Chinese hamster ovary

Ci Curie

CREB cAMP-response element binding protein

CysLT cysteinyl-leukotriene

CysLT1 type 1 cysteinyl-leukotriene receptor

CysLT2 type 2 cysteinyl-leukotriene receptor
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D

DAG diacylglycerol

DMEM Dulbecco’s modified eagle medium

DMR dynamic mass redistribution

DMSO dimethyl sulfoxide

DNA deoxyribonucleic acid

dNTP deoxynucleotide phosphate

DRC dose response curve

E

EBI2 Epstein–Barr virus-induced receptor 2

EBV Epstein-Barr virus

E. coli Escherichia coli

EC50 concentration of half maximum effect

EDTA ethylenediaminetetraacetic acid

EGTA ethylene glycol-bis(2-aminoethylether)

N,N,N′,N′-tetraacetic acid

EPAC exchange protein activated by cAMP

ER endoplasmic reticulum

ET-18-OCH3 Edelfosine

F

FCS fetal bovine serum

FLIPR Flp-In T-rex

FRET fluorescence resonance energy transfer

FRT Flp Recombination Target site

Fsk forksolin

G

g acceleration by gravity

G418 geniticin 418

GDP guanosine 5′-diphosphate 

GEF guanine nucleotide exchange factor

GMP guanosine 5′-monophosphate 
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GOI gene of interest

GPCR G protein-coupled receptor

GRK G protein-coupled receptor kinases

GTP guanosine 5′-triphosphate 

H

h human

h hours

H 89 N-[2-(p-Bromocinnamylamino)ethyl]-

5-isoquinolinesulphonamide

dihydrochloride

HBSS Hanks' balanced salt solutions

H4-folat tetrahydrofolate

5-HIAA 5-hydroxyindoleacetic acid

HTRF® homogeneous time resolved fluorescence

HEPES 4-(2-Hydroxyethyl)piperazine-1-

ethanesulphonic acid

HXM hypoxanthine, xanthine and mycophenolic

acid

I

IBMX 3-Isobutyl-1-methylxanthine

IC50 concentration of half maximum inhibition

IP1 inositol 4-phosphate

IP3 inositol 1,3,4-triphosphate

IP3R IP3 receptor

K

KHB Krebs-HEPES-buffer

L

LB-medium Lennox-Broth-medium

LTR long terminal repeats
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M

MAPK mitogen-activated protein kinase

min minutes

Mrg Mas-related gene

MT1 subtype 1 melatonin receptor

MuLV murine leukaemia virus

N

n number

n. d. not detectable

NGF nerve growth factor

no. number

O

OG Oregon Green® BAPTA-1/AM

P

PC12 pheocromocytoma cells

pEC50 negative logarithm of EC50

PI phosphatidylinositol

PI-PLC phosphatidylinositol specific phospholipase C

pIC50 negative logarithm of IC50

PIP2 phosphatidylinositol 4,5-bisphosphate

PBS phosphate buffered saline

PCR polymerase chain reaction

PKA protein kinase A

PKC protein kinase C

PLC phospholipase C

PP polypropylene

PP2A protein phosphatase 2A

PS polystyrene

PTX Pertussis toxin
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R

rpm rounds per minute

RNA ribonucleic acid

RNase A ribonuclease A

RT room temperature

RYR ryanodine receptor channel

S

s seconds

SDS sodium dodecyl sulfate

SEM standard error of mean

SERCA Sarco/endoplasmic Ca2+-ATPase

SOC super optimal broth with glucose

SPA scintillation proximity assay

T

TAE TRIS-acetate EDTA solution

TC tissue culture

TENS TRIS-EDTA sodium hydroxide-SDS-solution

TM transmembrane

TRF time resolved fluorometry

TRIS tris(hydroxymethyl)aminomethane

U

U units

UniProtKB Universal Protein Resource

UTR untranslated region

UV ultraviolet

V

VIS visible light

VSV-G glycoprotein G of the vesicular Stomatits-

virus
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W

W-7 N-(6-Aminohexyl)-5-chloro-1-

naphthalenesulphonamide hydrochloride

Y

 retroviral packaging signal

YSi Yttrium silicate
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