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Summary
In this thesis, we study connections between vector bundles on degenerations of elliptic
curves and the classical, quantum and associative Yang-Baxter equation. Let g = sln(C)
and let U denote the universal enveloping algebra of g. The classical Yang-Baxter
equation (CYBE) is given as follows:

[
r12(y1, y2), r

23(y2, y3)
]
+

[
r12(y1, y2), r

13(y1, y3)
]
+

[
r13(y1, y3), r

23(y2, y3)
]

= 0,

where r : C2 → g⊗ g is a meromorphic function and rij(yi, yj) : g⊗ g → U ⊗ U ⊗ U is
the embedding given by (i, j). This equation plays an important role in mathematical
physics, representation theory and integrable systems.
In 1982, Belavin and Drinfeld gave a classification of solutions of the CYBE. In par-
ticular, they proved that any solution of the CYBE is either elliptic, trigonometric or
rational. Moreover, they described all elliptic and trigonometric solutions. Their work
has been extended by Stolin, who gave a certain classification of rational solutions.

Result A. Let E = V (wv2 − 4u3 − g2uw2 − g3w3) ⊂ P2 be a Weierstraß cubic curve,
0 < d < n a pair of coprime integers and A = Ad(P), where P is a simple vector bundle
of rank n and degree d on E. Consider the map

g
∼=−→ A

∣∣
y1

res−1
y1−→ H0

(
A(y1)

) evy2−→ A
∣∣
y2

∼=−→ g,

where resy1 is the residue map, evy2 is the evaluation map and the first and the last maps
are induced by a certain trivialization of A. Then the tensor r(E,n,d)(y1, y2) ∈ g ⊗ g,
obtained from the map above using the Killing form, is a solution of the CYBE.

This result extends an earlier construction given in works of Polishchuk and Burban-
Kreußler. The core of our method is the computation of certain triple Massey products
in the derived category Db

(
Coh(E)

)
.

Result B. Let E be a cuspidal cubic curve. Then the solution r(E,n,d) from above is
rational. We explicitly describe the Stolin triple (L, B, k) (where L is a Lie subalgebra
of g, B is a 2-cocycle of L and k ∈ ) such that r(E,n,d) = r(L,B,k).

Result C. We have found new elliptic solutions of the associative Yang-Baxter equation
of the form

r(v, y) =
∑

0≤k≤n−1
0≤l≤n−1

∇kl

(
σ(v, y)

) ∑

1≤i≤n−l
1≤j≤n−k

ei,j+k ⊗ ej,i+l,

where σ(v, y) is the Kronecker function and ∇kl are certain differential operators. This
leads to new identities for the higher derivatives of the Kronecker function.

Result D. We elaborate a relation between solutions of the associative, classical and
quantum Yang-Baxter equations, generalizing results of Polishchuk.
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1. Introduction

In this thesis, I incorporate and explain in greater detail the results presented in [12],
[13] and [26]. Although these papers are quite different from each other with respect
to the methods and tools we use - analytical, combinatorial, algebro-geometric and
Lie-theoretic - there still is a common denominator for the studies we pursue. Namely,
we aim for a better understanding of the Yang-Baxter equations and their solutions by
application of the theory of coherent sheaves on degenerations of elliptic curves.

The Yang-Baxter equations – or to be more precise, the classical Yang-Baxter equation
(CYBE), the quantum Yang-Baxter equation (QYBE) and the associative Yang-Baxter
equation (AYBE) – are important objects appearing in mathematical physics, especially
in integrable systems and statistical mechanics. Moreover they are studied in the con-
text of representation theory. There are different versions for each of these equations,
differing from each other with respect to the number of spectral variables involved. The
version of the CYBE that we shall be mostly interested in is of the following form. Let
g = sln(C) and r : (C2, 0) → g⊗ g be a meromorphic function. Then r is a solution of
the CYBE if it satisfies the equality

[
r12(y1, y2), r

23(y2, y3)
]
+

[
r12(y1, y2), r

13(y1, y3)
]
+

[
r13(y1, y3), r

23(y2, y3)
]

= 0.

Here rij = τij ◦ r denotes r followed by the obvious inclusions g⊗2 → U
(
g
)⊗3 with U(g)

denoting the universal enveloping algebra of g, e.g. τ13(a ⊗ b) = a ⊗ 1 ⊗ b. We shall
focus our studies on solutions r which satisfy two additional assumptions. Firstly, we
will assume that r is unitary:

r12(y1, y2) = −r21(y2, y1).

Secondly, r will always be non-degenerate, that is its image under the isomorphism
g⊗ g −→ End(g), a⊗ b (→

(
c (→ tr(ac) · b

)

is an invertible operator for some (and hence, for a generic) value of the spectral pa-
rameters (y1, y2). On the set of solutions of the CYBE there exists a natural action of
the group of holomorphic function germs φ : (C, 0) −→ Aut(g) given by the rule

r(y1, y2) (→ r̃(y1, y2) =
(
φ(y1)⊗ φ(y2)

)
r(y1, y2).

It is easy to see that r̃(y1, y2) is again a solution of the CYBE. Moreover, r̃(y1, y2)
is unitary respectively non-degenerate provided r(y1, y2) is unitary respectively non-
degenerate. The solutions r(y1, y2) and r̃(y1, y2) related by the equality above are called
gauge equivalent.

It was shown by Belavin and Drinfeld [3] that any non-degenerate solution of the
CYBE is either elliptic (two-periodic), trigonometric (one-periodic) or rational. More-
over, they classified all elliptic and trigonometric solutions completely [3, Proposition
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5.1 and Theorem 6.1]. Especially, explicit formulas for these solutions can be derived,
see for instance [17]. In this thesis, we are mainly interested in rational solutions. As
we shall explain below, Stolin [42] derived a quite sophisticated classification of rational
solutions in terms of Lie-algebraic data.

It was shown by Polishchuk [37] that solutions of the CYBE can be obtained from
solutions of the AYBE. We shall study the AYBE mostly in the form

r12(u; y1, y2) r23(u + v; y2, y3) =
= r13(u + v; y1, y3) r12(−v; y1, y2) + r23(v; y2, y3) r13(u; y1, y3).

for meromorphic function germs r : (C3, 0) → A ⊗ A. Here A = Matn×n(C) and we
use the notation rij = r ◦ ρij for the composition of r with the canonical embedding
ρij : A⊗2 → A⊗3. In order to obtain a solution of the CYBE from r, consider the
canonical projection pr : A → g given by X (→ X − trX

n 1. Then
r̄(y1, y2) = limv→0(pr⊗ pr) r(v; y1, y2)

-if it exists - is the corresponding solution of the CYBE. Actually Polishchuk [37], who
studied only solutions of the AYBE which satisfy
(1.1) r(v; y1, y2) = r(v; y1 + x, y2 + x),

proved that any elliptic solution of the CYBE can be obtained from some solution of
the AYBE. But as was shown by Schedler [40], even for trigonometric solutions this
statement can not be generalized.

Polishchuk [38] also established a connection of the AYBE with the QYBE. To this
end, he imposes two further conditions on r. Firstly, he assumes that r has the following
Laurent expansion:

(1.2) r(v; y1, y2) =
1⊗ 1

v
+ r0(y1, y2) + v r1(y1, y2) + v2 r2(y1, y2) + . . .

This condition is automatically satisfied in many examples, see [14, 26]. Also note that
in this case, r̄0(y1, y2) = (pr⊗pr) (r0(y1, y2)) is the corresponding solution of the CYBE.
Secondly, Polishchuk assumes that r̄0 has no infinitesimal symmetries, i.e. that there is
no non-trivial a ∈ g such that

[
r̄0(y1, y2), a⊗ 1+ 1⊗ a

]
= 0.

We were able to generalize Polishchuk’s results, dropping the assumption (1.1):

Result 1 [26] Let r(v; y1, y2) be a non-degenerate unitary solution of the AYBE of the
form (1.2). If r̄0(y1, y2) = (pr ⊗ pr) (r0(y1, y2)) has no infinitesimal symmetries, then
the following hold.
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(1) For fixed v0 ∈ C×, r̃(y1, y2) = r(v0; y1, y2) is a solution of the QYBE:
r̃12(y1, y2) r̃13(y1, y3) r̃23(y2, y3) = r̃23(y2, y3) r̃13(y1, y3) r̃12(y1, y2).

(2) Let s(v; y1, y2) be another non-degenerate unitary solution of the AYBE of the
form (1.2) with (pr ⊗ pr) (s0) = r̄0. Then there exists a meromorphic function
g : C → C such that

(1.3) s(v; y1, y2) = exp
(
v (g(y2)− g(y1))

)
r(v; y1, y2).

Loosely speaking, statement (2) says that solutions of the AYBE with Laurent expan-
sion as above are uniquely determined up to (a weak version of) gauge equivalence by
the corresponding solutions of the CYBE, as long as the latter do not have infinitesimal
symmetries. For the solutions of the AYBE constructed from stable vector bundles on
Weierstraß cubic curves by Burban and Kreußler [14], see below, the map g appearing
in (1.3) is always holomorphic. Thus in that case, (1.3) is a proper gauge equivalence
between r and s.

The starting point of the papers [12] and [13] was a paper of Burban and Kreußler
[14]. Developing ideas of Polishchuk [37], Burban and Kreußler showed that solutions
of the AYBE can be obtained by the computation of certain triple Massey products
in the bounded derived category of coherent sheaves Db(Coh(E)) for any Weierstraß
cubic curve E ⊂ P2. In homogeneous coordinates such a curve is given by the equation
zy2 = 4x3 + g2xz2 + g3z3, where g2, g3 are elements of the algebraically closed field k.
These curves, which are irreducible and of arithmetic genus one, fall under the following
trichotomy. If )(g2, g3) = g3

2 + 27g2
3 *= 0, then E is an elliptic curve (especially, E is

smooth). Otherwise E is singular. Unless g2 = g3 = 0, the singularity is a node
(ordinary double point), whereas in the case g2 = g3 = 0 the singularity is a cusp.

!!
!!

""
""

y2z = x3 + x2z y2z = x3

In particular, Burban and Kreußler used the theory of stable vector bundles on a Weier-
straß cubic curve E in order to make the computation of triple Massey products in
Db(Coh(E)) accessible to explicit computations. In [12], we showed how the construc-
tion of Burban and Kreußler can be generalized for semi-stable vector bundles on an
elliptic curve:

Result 2 [12] Fix a complex parameter τ ∈ C such that Im(τ) > 0 and an invertible
matrix B ∈ GLn(C). Let Λ = Z + τZ be the corresponding lattice in C and G(B) =
{λ1, . . . , λn} the spectrum of B. We denote by Σ = ΣB the lattice

{
λ− λ′

∣∣ exp(2πiλ), exp(2πiλ′) ∈ G(B)
}

+ Λ ⊂ C.
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Then we attach to the pair (B, τ) a meromorphic tensor-valued function

rB = rB(v, y) : C× C −→ Matn×n(C)⊗Matn×n(C)

having the following properties:
(1) The function rB is a non-degenerate unitary solution of the AYBE.
(2) Moreover, rB depends analytically on the entries of the matrix B and is holo-

morphic on (C \ Σ)× (C \ Λ).
(3) Let S ∈ GLn(C) and A = S−1BS. Then we have:

rA(v, y) = (S−1 ⊗ S−1)rB(v, y)(S ⊗ S).

(4) If B = diag
(
exp(2πiλ1), . . . , exp(2πiλn)

)
for some λ1, . . . , λn ∈ C, then the

corresponding solution rB is given by the following formula:

rB(v, y) =
n∑

k, l=1

σ(v − λkl, y) el,k ⊗ ek,l,

where λkl = λk − λl and σ(u, x) is the Kronecker function.
(5) If B = Jn(1) is the Jordan block of size n× n with eigenvalue one then

rB(v, y) =
∑

0≤k≤n−1
0≤l≤n−1

∇kl

(
σ(v, y)

) ∑

1≤i≤n−l
1≤j≤n−k

ei,j+k ⊗ ej,i+l,

where ∇kl are certain differential operators.
Interestingly, the solutions we obtain from semi-stable vector bundles do not yield solu-
tions of the CYBE. In particular, they have higher order poles and are not of the form
(1.2). It is worthwhile mentioning that our results include an explicit algorithm for the
construction of the solutions rB, making it possible to compute the solutions presented
in (4) and (5) by hand.

The final aim of our studies was to apply the theory of vector bundles on degenerations
of elliptic curves to solutions of the classical Yang-Baxter equation. Before our own
contributions, to be presented in [13], the state of the art was as follows. As already
mentioned above, the work of Polishchuk [37] respectively Burban and Kreußler [14]
yields a construction of solutions of the CYBE via solutions of the AYBE obtained
from stable vector bundles works for any Weierstraß cubic curve. The input data for
the construction is given by a triple (E, n, d), where E is a prescribed Weierstraß cubic
curve and n and 0 < d < n are coprime integers corresponding to the rank respec-
tively degree of the stable vector bundles fixed in the construction. Polishchuk proved
that if E is elliptic, then the associated solution of the AYBE respectively CYBE is
elliptic [37]. However, Polishchuk’s approach is rather indirect and uses formulae for
higher multiplications in the Fukaya category of a complex torus as well as homological



12

mirror symmetry in dimension one [39]. See also [14, Section 4.3] for a detailed direct
computation in the case (n, d) = (2, 1). Nonetheless Polishchuk shows that in this case
one precisely recovers the list of Belavin and Drinfeld of all elliptic solutions of the
CYBE. In particular, if 1 ≤ d *= d′ < n then the solutions r(E,n,d) and r(E,n,d′) are
not gauge equivalent. In the subsequent paper [38], Polishchuk describes the solutions
of the AYBE corresponding to simple vector bundles on Kodaira cycles of projective
lines. See also [14, Section 5.2] for a detailed computation in the case E when is a
Weierstraß nodal cubic curve and (n, d) = (2, 1). Polishchuk’s computation is based
on a classification of simple vector bundles on Kodaira cycles obtained in [11, Theorem
5.3]. In this case, one obtains a certain class of trigonometric solutions of the CYBE.

The final aim of our studies was thus twofold. Firstly, we further developed ideas pro-
posed by Polishchuk [37] concerning the direct construction of solutions of the CYBE
via similar methods as were used for the construction of solutions of the AYBE. The
first main result of [13] can be stated as follows:

Result 3 [13] Let E = V (wv2− 4u3− g2uw2− g3w3) ⊂ P2 be a Weierstraß cubic curve
over C, o ∈ E some fixed smooth point and 0 < d < n a pair of coprime integers.
Consider the sheaf of Lie algebras A = Ad(P), where P is a simple vector bundle of
rank n and degree d on E (note that up to automorphism, A does not depend on a
particular choice of P). For any pair of distinct smooth points y1, y2 of E, consider the
map A

∣∣
y1
−→ A

∣∣
y2

defined as follows:

A
∣∣
y1

res−1
y1−→ H0

(
A(y1)

) evy2−→ A
∣∣
y2

where resy1 is the residue map and evy2 is the evaluation map. Choosing some isomor-
phism of Lie algebras ξ : A(U) −→ sln

(
O(U)

)
for some small neighborhood U of o, we

get the tensor rξ
(E,n,d)(x, y) ∈ g⊗ g. Then we have:

(1) The tensor rξ
(E,n,d) is a non-degenerate unitary solution of the CYBE.

(2) Moreover, rξ
(E,n,d) is analytic with respect to the parameters g2 and g3.

(3) A different choice of trivialization ζ : A(U) −→ sln
(
O(U)

)
gives a gauge equiv-

alent solution rζ
(E,n,d).

In the second step, we were interested in studying rational solutions obtained by the
procedure developed in Result 3. Burban and Kreußler [14] already gave some examples
that indicated the validity of the natural conjecture that if E is cuspidal, then the
associated solution of the CYBE will be rational. We prove this conjecture in [13].
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Moreover, we show that the rational solutions obtained are always of the form

(1.4) r(y1, y2) =
Ω

y2 − y1
+ r′(y1, y2), r′(y1, y2) ∈ g[y1]⊗ g [y2] ,

where g [y] = g ⊗ C [y], r′ is not constant and Ω denotes the Casimir element. Thus,
the solutions we obtain belong precisely to the class of rational solutions of the CYBE
studied by Stolin [42]. His classification goes as follows. Stolin states that there is a
bijection between rational solutions of the CYBE of the form (1.4) and triples (L, B, k),
where L ⊆ g is a a Lie subalgebra, B : L × L → C is a skew-symmetric 2-cocycle and
where 1 ≤ k ≤ n− 1 encodes the following compatibility condition. Let Pk denote the
k-th parabolic subalgebra of g, then

(1) L + Pk = g.
(2) B is non-degenerate on (L ∩Pk)× (L ∩Pk).

It is natural to ask which triples correspond to the solutions r(E,n,d) obtained from
the geometric construction described in Result 3. Since the construction of a rational
solution r(E,n,d) depends on the choice of two coprime integers 0 < d < n only (E being
the cuspidal cubic curve), it is natural to assume that one should choose L = g = sln(C).
In that case, a triple (L, B, k) is already determined by choosing a Frobenius functional
F for the Frobenius Lie algebra Pk, extending it by zero to g and then choosing B to be
given by the Kirillov form B(x, y) = F ([x, y]). Frobenius functionals were studied by
Elashvili [20, 21] and also Dergachev and Kirillov [18]. For our work, the more indirect
approach to this question by Elashvili is essential. In his paper [21], Elashvili gives
a recursive procedure that allows to construct a Frobenius functional F for a given
Frobenius Lie algebra F from the Frobenius functional F ′ of some smaller Frobenius
Lie algebra F ′ ⊂ F which is the stabilizer under a certain action on F .

It turns out that in the setup we work in, the recursive procedure of Elashvili is
exactly the same as the algorithm for the construction of a universal family of stable
vector bundles of fixed rank and degree on the cuspidal cubic curve as established by
Bodnarchuk [5]. Using the theory of matrix problems developed by Drozd and Greuel
[19], Bodnarchuk showed that this universal family is basically encoded by a certain
matrix J = J(n, n − d), where n is the rank of the vector bundles considered and d
denotes the degree. Interestingly, Bodnarchuk, Drozd and Greuel [5, 8] showed that
these results can also be explained in terms of the representation theory of differential
graded biquivers. The second main result of [13] is as follows:

Result 4 [13] Let E be the cuspidal Weierstraß cubic curve and 0 < d < n be a
pair of mutually prime integers. We set BJ(a, b) = tr

(
J t · [a, b]

)
for a, b ∈ g, where

J ∈ Matn×n(C) is a certain matrix uniquely determined by n and d. Let (g, BJ , n− d)
be the corresponding Stolin triple and r = r(g,BJ ,n−d) the corresponding solution of the
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CYBE. Then the solution r(E,n,d) from Result 3 is gauge equivalent to the solution
r(g,BJ ,n−d). Using this result we also show that the solutions r(E,n,d) and r(E,n,n−d) are
gauge equivalent.

Remark 1.1. Let E be an elliptic curve, E ′ the cuspidal Weierstraß cubic curve and
0 < d < n be a pair of mutually prime integers. Combining Results 3 and 4, we see
that any elliptic solution r(E,n,d) has two limits of rational solutions: r(E′,n,n−d) and
r(E′,n,d). It is not easy to give a direct proof of this statement.

To summarize, the main results of this thesis are the following:
• we study an interplay between the associative, quantum and classical Yang-

Baxter equations, generalizing results of Polishchuk [37], see Theorem 6.2 and
Theorem 7.1.

• we have found new elliptic solutions of the AYBE, see Theorem 18.5. This leads
to new identities for (higher derivates of) the Kronecker function σ.

• we give a geometric construction of solutions of the CYBE based on the theory
of vector bundles on Weierstraß cubic curves, developing ideas of Polishchuk [37]
and Burban-Kreußler [14], see Theorem 9.1.

• we describe rational solutions of the CYBE arising from simple vector bundles
on a cuspidal cubic curve and express them in terms of Stolin’s classification,
see Theorem 22.1. Via this approach, we establish new results about rational
degenerations of elliptic solutions of the CYBE, see Proposition 22.10. We also
give a concrete recipe to lift these rational solutions of the CYBE to solutions
of the QYBE and AYBE, see Subsections 15.1 and 15.3.

1.1. Organization of the material. This thesis is organized as follows. In Part 1,
we recall standard notions and results for the theory of the classical, quantum and
associative Yang-Baxter equations. The main results of this part are Theorems 6.2 and
7.1, which yield Result 1.

Next we present the construction of solutions of the AYBE respectively the CYBE
via the calculation of triple Massey products in Db(Coh(E)), see Part 2. After recalling
the theory of (semi-) stable vector bundles on an elliptic and cuspidal cubic curve E in
Part 3, we then translate the constructions form Part 2 into explicit algorithms. This
is contained in Part 4. In Part 5, we compute the elliptic solutions of the AYBE given
in Result 2. The main results of Parts 2 to 5 are Theorems 9.1 and 18.5. Together with
the results of (Sub-) Sections 14.3 and 17, these are precisely Results 2 and 3.

Part 6 is devoted to the study of rational solutions of the CYBE. First, we ex-
plain Stolin’s classification [42]. Then we apply the procedure for the construction
of Frobenius functionals by Elashvili [21] in order to construct a certain Stolin triple
(g, BJ , n − d), see Proposition 21.16 and Corollary 21.21. The main result of Part 6,
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presented in Theorem 22.1, establishes a concrete gauge equivalence between the ratio-
nal solution corresponding to the triple (g, BJ , n− d) and the rational solution r(E,n,d)

obtained via Result 3. Finally, Proposition 22.10 gives a gauge equivalence between the
rational solutions r(E,n,d) and r(E,n,n−d). Summarizing the most important statements
of Part 6, we obtain Result 4.

Finally, in Part 7 we present Mathematica implementations for the algorithms ob-
tained in Part 4.
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Part 1. Yang-Baxter equations: Interplay

In this part, we recall some standard notions and results for the theory of the classical,
quantum and associative Yang-Baxter equations. Moreover, we will explain our work on
the interconnection between these equations as presented in [26]. All proofs contained
in this part are purely analytical.
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2. The classical Yang-Baxter equation

We start by explaining the classical Yang-Baxter equation and the classification re-
sults by Belavin and Drinfeld [3]. Although their theory is established for any finite-
dimensional simple complex Lie algebra, we will concentrate on the case g = sln(C)
for reasons which will become obvious later. Let r : C2 → g ⊗ g be the germ of a
meromorphic function in a neighbourhood of zero. Then r is a solution of the classical
Yang-Baxter equation (CYBE) if it satisfies the following equality

(2.1) [r12(u1, u2), r23(u2, u3)] + [r12(u1, u2), r13(u1, u3)] +
+ [r13(u1, u3), r23(u2, u3)] = 0.

Here rij = τij ◦ r denotes r followed by the obvious inclusions g⊗2 → U
(
g
)⊗3 , e.g.

τ13(a⊗ b) = a⊗ 1⊗ b. Throughout this thesis, we shall be interested in solutions r of
(2.1) which satisfy two additional conditions.

Definition 2.1. Let r(u, v) be a solution of the CYBE.

(1) r is called non-degenerate if its image under the isomorphism
g⊗ g −→ End(g), a⊗ b (→

(
c (→ tr(ac) · b

)

is an invertible operator for some (and hence, for a generic) value of the spectral
parameters (u, v).

(2) r is called unitary if r12(u, v) = −r21(v, u).
On the set of solutions of (2.1) there exists an equivalence relation called gauge equiv-
alence. This is induced by the action of the group of germs of holomorphic functions
ϕ : (C, 0) → Aut(g) given by

r(u, v) (→ (ϕ(u)⊗ ϕ(v)) r(u, v).

The operator ϕ(u)⊗ϕ(v) is called gauge transformation or gauge equivalence and r(u, v)
is said to be gauge equivalent to (ϕ(u)⊗ ϕ(v)) r(u, v).

Proposition 2.2. [2] Up to gauge equivalence, any non-degenerate unitary solution of
the CYBE is equivalent to a solution r(u, v) = r(u−v) depending only on the difference
of the spectral parameters. Denoting this solution by r(x), this means that r satisfies
the equation
(2.2)

[
r12(x), r23(y)

]
+

[
r12(x), r13(x + y)

]
+

[
r13(x + y), r23(y)

]
= 0.

Let us illustrate the above definitions by some examples. To this end, we let
{ei,j}1≤i(=j≤n ∪ {hl}1≤l≤n−1

denote the standard basis of g. That is, for any 1 ≤ i, j ≤ n, ei,j denotes the element of
Matn×n(C) whose entry at the position (i, j) is equal to one and zero everywhere else
and hl = el,l − el+1,l+1.
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Example 2.3. The following functions are non-degenerate unitary solutions of (2.2)
for g⊗ g = sl2(C)⊗ sl2(C):

1) r(x) = 1
x

(
1
2h1 ⊗ h1 + e1,2 ⊗ e2,1 + e2,1 ⊗ e1,2

)

2) r(x) = 1
2cot(x)h⊗ h + 1

sin(x)
(e1,2 ⊗ e2,1 + e2,1 ⊗ e1,2) + sin(x)e2,1 ⊗ e2,1

3) r(x) = cn(x)
sn(x)h⊗h+ 1+dn(x)

sn(x) (e1,2 ⊗ e2,1 + e2,1 ⊗ e1,2)+
1−dn(x)
sn(x) (e1,2 ⊗ e1,2 + e2,1 ⊗ e2,1)

The functions cn, sn, dn in example 3) are Jacobi elliptic functions on a fixed elliptic
curve E.
Remark 2.4. Solution 1) of the above example was historically the first solution found
for (2.2). It is due to Yang. Solution 2) was discovered by Baxter, while solution 3)
was found by Baxter, Belavin and Skylanin.
The above examples illustrate the following results by Belavin and Drinfeld. In order to
formulate them properly, recall that for our choice of a basis of g, the Casimir element
of g⊗ g is given by

Ω =
∑

1≤i(=j≤n

ei,j ⊗ ej,i +
∑

1≤l≤n−1

ȟl ⊗ hl

where ȟl is the dual of hl with respect to the trace form (x, y) (→ tr(x · y) (the trace
form is a scalar multiple of the non-degenerate Killing form on sln(C)).
Theorem 2.5. [3, Proposition 2.1 and 4.1] Let r be a non-constant non-degenerate
solution of (2.2). Then

• r has a simple pole at zero and the residue is given by Resx (r(x)) = aΩ, a ∈ C.
• r is unitary, r12(x) = −r21(−x).

Theorem 2.6. [3, Theorem 1.1] Let r be a non-degenerate solution of (2.2). Then r
extends meromorphically to all of C. Moreover, the poles of r form a discrete subgroup
Γ ⊂ C. Write r(x) =

∑
1≤k,l≤n2−1 αkl(x)Ik ⊗ Il where {Ik}1≤k≤n2−1 = {ei,j}1≤i(=j≤n ∪

{hl}1≤l≤n−1. If
• rk Γ = 2, then all αkl are elliptic functions.
• rk Γ = 1, then all αkl are trigonometric functions.
• rk Γ = 0, then all αkl are rational functions.

Especially, there are three disjoint families of non-degenerate solutions of (2.2): elliptic,
trigonometric and rational.

Remark 2.7. We will see that the definition of elliptic, trigonometric and rational so-
lutions can be extended to solutions of the associative Yang-Baxter equation (to be
introduced in the next section), see Remark 7.2.
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Even though Proposition 2.2 guarantees existence of a gauge equivalence which trans-
forms solutions of (2.1) into solutions of (2.2), we will mostly study solutions of (2.2).
The reason for this is that constructing a gauge transformation which maps r(u, v) to
r′(u, v) = r′(u − v) in practice is highly non-trivial. Moreover, as we shall see later,
from a geometric point of it seems more natural to work with solutions of (2.1).
Clearly the nomenclature for solutions of (2.2) extends to solutions of (2.1). Finally, let
us recall the following notion, which shall play an important role in the next sections:

Definition 2.8. An infinitesimal symmetry of a solution r of (2.1) is given by an
element a ∈ g such that [r(u, v), a⊗ 1+ 1⊗ a] = 0 for all u, v. Furthermore we say
that r has no infinitesimal symmetries if the only infinitesimal symmetry of r is given
by a = 0.

3. The associative Yang-Baxter equation

In this section, we give the definition of the associative Yang-Baxter equation. More-
over, we will recall some results by Polishchuk [37] respectively Burban and Kreußler
[14] on the relationship between this equation and the classical Yang-Baxter equation.
As for the classical Yang-Baxter equation, see (2.1) and (2.2), there are multiple ver-
sions of the associative Yang-Baxter equation, differing with respect to the number
of variables. We start with solutions of the most general version of the associative
Yang-Baxter equation (AYBE):

(3.1) r12(v1, v2; y1, y2) r23(v1, v3; y2, y3) =
= r13(v1, v3; y1, y3) r12(v3, v2; y1, y2) + r23(v2, v3; y2, y3) r13(v1, v2; y1, y3)

Here r : (C4, 0) → A⊗A is the germ of a meromorphic function in a neighbourhood of
zero and A = Matn×n(C). Similar to the case of the CYBE, for i *= j ∈ {1, 2, 3}, we
use the notation rij = r ◦ ρij for the composition of r with the canonical embedding
ρij : A⊗2 → A⊗3. However, in this part we will mostly study solutions of (3.1) depending
on the difference of the first pair of spectral parameters

r(v1, v2; y1, y2) = r(v1 − v2; y1, y2) = r(v; y1, y2).

That is, we study solutions of the associative Yang-Baxter equation in three spectral
variables

(3.2) r12(u; y1, y2) r23(u + v; y2, y3) =
= r13(u + v; y1, y3) r12(−v; y1, y2) + r23(v; y2, y3) r13(u; y1, y3).

for meromorphic function germs r : (C3, 0) → A ⊗ A. Similarly to the situation of
the CYBE, we are mainly interested in solutions of the AYBE with the following two
additional properties:

Definition 3.1. Let r(v1, v2; y1, y2) be a solution of (3.1). Then
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(1) r is called non-degenerate if r(v1, v2; y1, y2) ∈ A⊗ A ∼= End(A) is invertible for
generic (v1, v2; y1, y2).

(2) r is called unitary if r12(v1, v2; y1, y2) = −r21(v2, v1; y2, y1).

Remark 3.2. For solutions of (3.2), the unitarity condition obviously translates to
r12(v; y1, y2) = −r21(−v; y2, y1).

Interestingly, solutions of the AYBE also satisfy a sort of dual version of that equation:

Lemma 3.3. [14, Lemma 2.7] Let r(v1, v2; y1, y2) be a unitary solution of (3.1). Then
writing rij(v1, v2) as short-hand for rij(v1, v2; yi, yj), r also satisfies

r23(v2, v3) r12(v1, v3) = r12(v1, v2) r13(v2, v3) + r13(v1, v3) r23(v2, v1).

Corollary 3.4. If r(v; y1, y2) is a unitary solution of (3.2), then we also have

(3.3)
r23(u + v; y2, y3) r12(u; y1, y2) =

= r12(−v; y1, y2) r13(u + v; y1, y3) + r13(u; y1, y3) r23(v; y2, y3).

The notion of gauge equivalence can also be adapted to the situation of the AYBE:

Definition 3.5. Let φ : (C2, 0) → GLn(C) be the germ of a holomorphic function and
let r(v1, v2; y1, y2) be a solution of (3.1). Then the tensor valued function

r′(v1, v2; y1, y2) =
(
φ(v1; y1)⊗ φ(v2; y2)

)
r(v1, v2; y1, y2)

(
φ−1(v2; y1)⊗ φ−1(v1; y2)

)

is also a solution of (3.1). The solutions r and r′ are said to be gauge equivalent and φ
is called a gauge transformation.

In order to show how this notion translates to solutions of (3.2), it is best to have a
look at an example.

Example 3.6. Let r(v1, v2; y1, y2) ∈ A⊗ A be a solution of (3.1), c ∈ C and φ(v, y) =
exp(cvy) · 1 : (C2, 0) → GLn(C) be a gauge transformation. Then

exp
(
c (v2 − v1) (y2 − y1)

)
r(v1, v2; y1, y2)

is a solution of (3.1), gauge equivalent to r.
Similarly, assume that r(v1, v2; y1, y2) = r(v; y1, y2) is a solution of (3.1) which de-

pends only on v = v1 − v2, y1, y2. Thus r(v; y1, y2) is a solution of (3.2). Consider the
gauge transformation φ(v, y) = exp(vg(y)) ·1 : (C2, 0) → GLn(C) for some holomorphic
function g : C → C. Then r′(v; y1, y2) = exp

(
v (g(y2)− g(y1))

)
r(v; y1, y2) is a solution

of (3.2) as well.

Finally, there is also the associative Yang-Baxter equation in only two spectral vari-
ables
(3.4) r12(u; x) r23(u + v; y) = r13(u + v; x + y) r12(−v; x) + r23(v; y) r13(u; x + y),
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with straightforward adaptions for the definitions of non-degeneracy and unitarity. As
to the definition of gauge equivalence, simply assume g = c ∈ C to be constant in
example 3.6 to get a corresponding example.
The following statement, first discovered by Polishchuk for the AYBE in two variables,
see [37, Lemma 1.2], gives the decisive relationship between solutions of the AYBE
respectively the CYBE:

Lemma 3.7. [14, lemma 2.11] Let r(v; y1, y2) be a unitary solution of (3.2) and let
pr : Matn×n(C) → sln(C) denote the projection X (→ X− trX

n 1. If (pr⊗ pr) r(v; y1, y2)
exists, then

r̄(y1, y2) = lim
v→0

(pr⊗ pr) r(v; y1, y2)

is a unitary solution of (2.1).

An interesting subclass of solutions of (3.2) is given by those solutions that have a
particular kind of Laurent expansion with respect to the variable v:

(3.5) r(v; y1, y2) =
1⊗ 1

v
+ r0(y1, y2) + v r1(y1, y2) + v2 r2(y1, y2) + . . .

Solutions with Laurent expansion of the form (3.5) behave well with respect to gauge
equivalence:

Proposition 3.8. [14, Proposition 2.12] Let r be a solution of (3.3) of the form (3.5).
For any gauge transformation φ such that

r′(v1, v2; y1, y2) =
(
φ(v1; y1)⊗ φ(v2; y2)

)
r(v1, v2; y1, y2)

(
φ−1(v2; y1)⊗ φ−1(v1; y2)

)

is again a function of v = v1 − v2, r′(v; y1, y2) is of the form (3.5) as well.
Moreover, if r is unitary, then so is r′ and the corresponding solutions r̄0 = (pr⊗pr)r0

and r̄′0 = (pr⊗ pr)r′0 of (2.1) are gauge equivalent as well.

Finally, note the following result by Polishchuk which we shall generalize in Section 6:

Theorem 3.9. [37, Theorem 6] Let r(v; y) be a unitary solution of (3.4) with Laurent
expansion analogous to (3.5) and such that r̄0 = (pr ⊗ pr)r0 is non-degenerate. Let
s(v; y) be another non-degenerate unitary solution of the AYBE (3.4) with Laurent
expansion analogous to (3.5) and (pr⊗ pr)s0 = r̄0. Then there exists α ∈ C such that

s(v; y) = exp
(
αvy

)
r(v; y).

4. Relationship with the quantum Yang-Baxter equation

The interplay between the AYBE (3.4) and the CYBE (2.2) with the quantum Yang-
Baxter equation is explained by the following theorem of Polishchuk:
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Theorem 4.1. [38, Theorem 1.4] Let r(v; y) be a non-degenerate unitary solution of
(3.4) with Laurent expansion analogous to (3.5) and let r̄0 = (pr⊗ pr)r0.

(1) r̄0 is a non-degenerate solution of (2.2)
(2) The following are equivalent:

(a) For fixed v0 ∈ C×, r̃(y) = r(v0; y) is a solution of the quantum Yang-Baxter
equation (QYBE)

r̃12(x) r̃13(x + y) r̃23(y) = r̃23(y) r̃13(x + y) r̃12(x).

(b) there exits a scalar function ϕ(v; y) such that

r(v; y) r(−v; y) = ϕ(v; y) (1⊗ 1) .

(c) there exists a scalar function ψ(y) such that
∂

∂y
(r0(y)− r0(y)) = ψ(y) (1⊗ 1) .

(d) we have

(pr⊗ pr⊗ pr)
[
r12
0 (x) r13

0 (x + y)− r23
0 (y, ) r12

0 (x) + r13
0 (x + y) r23

0 (y)
]

= 0.

(3) The above conditions are satisfied if either r0(y) has no infinitesimal symmetries
or is periodic (elliptic or trigonometric).

One of the main results of [26] is that this statement can be extended to the AYBE
and CYBE in the form (3.2) respectively (2.1) and the QYBE in the form

(4.1) r12(y1, y2) r13(y1, y3) r23(y2, y3) = r23(y2, y3) r13(y1, y3) r12(y1, y2).

The precise statement along with all proofs is presented in Section 7.

5. Poles of solutions of the AYBE

In this section, we study the poles of solutions of (3.2) along y1 = y2. We start with
the following easy fact on P =

∑
1≤i,j≤n ei,j ⊗ ej,i ∈ A⊗ A.

Fact 5.1. Any tensor θ ∈ A⊗A such that θ(x⊗ 1) = (1⊗ x)θ for all x ∈ A is a scalar
multiple of P . Moreover P (1⊗ x) = (x⊗ 1)P for any x ∈ A.

Lemma 5.2. (see [38, Lemma 1.3]) Let r(u; y1, y2) be a non-degenerate unitary solution
of (3.2). Assume that r(u; y1, y2) has a pole along y1 = y2. Then this pole is simple and
limy2→y1(y1 − y2) r(u; y1, y2) = c · P for some c ∈ C.

Proof. Write r(u; y1, y2) = α(u; y1 − y2) + β(u; y1, y2) and assume that no summand of
β(u; y1, y2) depends only on u and y = y1 − y2. Let α(u; y) = θ(u)

yk + η(u)
yk−1 + . . . be the
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Laurent expansion near y = 0. In order to see that k ≤ 1, we consider the polar parts
in (3.2) as y3 → y1, which yields

(5.1) θ13(u + v) r12(−v; y1, y2) + r23(v; y2, y1) θ13(u) = 0.

Analogously, for y2 → y1

(5.2) θ12(u) r23(u + v; y1, y3)− r13(u + v; y1, y3) θ12(−v) = 0.

Let V ⊆ A be the minimal subspace such that θ(u) ∈ V ⊗A for all u where θ(u) is de-
fined. Obviously r23(u; y1, y2) θ13(u) ∈ V⊗A⊗A hence by (5.1) θ13(u+v) r12(−v; y1, y2) ∈
V ⊗ A⊗ A as well. Thus, r12(u; y1, y2) ∈ A1 ⊗ A, where

A1 = {a ∈ A| θ(u) (a⊗ 1) ∈ V ⊗ A for all u} .

By non-degeneracy A1 = A, thus V A ⊆ V . Similarly, using (5.2), we get AV ⊆ V , so
that V is a two-sided non-zero ideal in A. Hence V = A.

Let us come back to (3.2). We want to have a look at the coefficient of (y1−y2)1−k in
the expansion of (3.2) near y2−y1 = h equal to zero. The terms contributing to this only
depend on r12(u; y1, y1 +h) r23(u+ v; y1 +h, y3) and r13(u+ v; y1, y3) r12(−v; y1, y1 +h).
Thus the coefficient of h1−k consists of two summands, the first one being η12(u) r23(u+
v; y1, y3) − r13(u + v; y1, y3) η12(−v) and second one being θ12(u) times the coefficient
of h in r23(u + v; y1 + h, y3). Note that for this last summand to be non-zero we must
assume k > 1. Now r23(u + v; y1 + h, y3) − r23(u + v; y1, y3) equals the summand of
r23(u + v; y1 + h, y3) divisible by h, hence the coefficient of h1−k is exactly

η12(u) r23(u + v; y1, y3)− r13(u + v; y1, y3) η12(−v) + θ12(u)
∂r23

∂y1
(u + v; y1, y3).

Examining the polar parts in the above expression for y1 − y3 in a neighborhood of
zero, we deduce that θ12(u) θ23(u + v) = 0. Setting v = 0 this amounts to saying that
θ(u) = {a⊗ b| ab = 0}. Since V = A this is a contradiction. Therefore k = 1.

Next, we have a look at the polar parts in (3.3) near y3 = y2. We deduce θ23(u +
v) r12(u; y1, y2) = r13(u; y1, y2) θ23(v). Hence r(u; y1, y2) ∈ A⊗ A(u), where

A(u) = {a ∈ A |θ(u + v)(x⊗ 1) = (1⊗ x)θ(v) for all v} .

Since A is non-degenerate this implies A(u) = A for generic u, in which case 1 ∈ A(u)
and thus θ(u + v) = θ(u). Hence θ = θ(0) is constant. Recalling Fact 5.1 finishes the
proof. !
Corollary 5.3. (see [38, Lemma 1.5]) Let r(u; y1, y2) be a non-degenerate unitary so-
lution of (3.2) of the form (3.5). Then r(u; y1, y2) has a simple pole along y1 = y2 with
residue a scalar multiple of P .
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Proof. This is essentially the same proof as that of Lemma 1.5 in [38], using Lemma
5.2 where Polishchuk refers to Lemma 1.3 of his paper. !

6. Uniqueness of lifts from CYBE to AYBE

In this section, we will extend Theorem 3.9 to solutions of (3.2) respectively (2.1).
Let us start by generalizing one particular part of the original proof of Polishchuk’s
result for later usage:

Lemma 6.1. Let r(v; y1, y2) be a unitary solution of (3.2) of the form (3.5). Then r
is uniquely determined by r0 and r1. Moreover, we have

(6.1)
r12
1 (y1, y2) + r13

1 (y1, y3) + r23
1 (y2, y3) =

= r12
0 (y1, y2) r13

0 (y1, y3)− r23
0 (y2, y3) r12

0 (y1, y2) + r13
0 (y1, y3) r23

0 (y2, y3).

Proof. First we show that r is uniquely determined by r0, r1 and r2. To this end, we
fix k > 2 and show how to construct rk from {ri}0≤i≤k−1. Let us insert the Laurent
expansion (3.5) of r into (3.3) and examine the terms of total degree k − 1 in the
variables u and v. We derive the equation

(6.2)
r12
k (y1, y2)

[
(−v)k

u + v
− uk

u + v

]
+ r13

k (y1, y3)

[
uk

v
− (u + v)k

v

]
+

+r23
k (y2, y3)

[
vk

u
− (u + v)k

u

]
= . . .

where the ride-hand side contains terms ri with i < k only. The polynomials in u and v
on the left-hand side are linearly independent for k > 2. Indeed, if we place everything
over a common denominator and focus on the coefficients of uk in the respective terms

u(−v)k+1 − vuk+1, uk+1(u + v)− u(u + v)k+1, (u + v)vk+1 − v(u + v)k+1

then these are −vu, u(u + v) −
(

k+1
2

)
v2 and − (k + 1) v2 respectively. This proves our

claim that r is determined by the rk with k ≤ 2.
In the next step, we show that r2 is already determined by r0 and r1. Indeed, for

k = 2 equation (6.2) reads
(v − u) r12

2 (y1, y2) − (2u + v) r13
2 (y1, y3)− (u + 2v) r23

2 (y2, y3) = . . .

that is
−u ·

(
r12
2 (y1, y2) + 2r13

2 (y1, y3) + r23
2 (y2, y3)

)
+

+v ·
(
r12
2 (y1, y2)− r13

2 (y1, y3)− 2r23
2 (y2, y3)

)
= . . .

with the the right-hand side depending on r0 and r1 only. Let us denote the coefficient
of −u on the left-hand side by a, that of v by b. Since a, b are determined by r0 and r1

only, so is a+2b
3 = r12

2 (y1, y2) − r23
2 (y2, y3). Thus, r2(y1, y2) is determined by r0 and r1.

Putting k = 1 in (6.2), we obtain (6.1). !
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Now, we can directly head to the main result of this section:

Theorem 6.2. Let r(u; y1, y2) and s(u; y1, y2) be a unitary solutions of (3.2) of the
form (3.5). Assume that the corresponding solution r0(y1, y2) = (pr⊗ pr) (r0(y1, y2)) of
the CYBE (2.1) is non-degenerate, has no infinitesimal symmetries and that s0(y1y2) =
r0(y1, y2). Then there exists a meromorphic function g : C → C such that s(u; y1, y2) =
exp

(
u
(
g(y2)− g(y1)

))
r(u; y1, y2).

Proof. First, we show that r is uniquely determined by r0. By Lemma 6.1 r is uniquely
determined by r0 and r1 and moreover r1 is a solution of a certain equation in r0 which
is given by (6.1). If r′1 *= r1 was a solution of (6.1) with the same properties as r1, then
taking the difference we would obtain a meromorphic function α : (C2, 0) → A⊗A with
α21(y2, y1) = α(y1, y2) and
(6.3) α12(y1, y2) + α13(y1, y3) + α23(y2, y3) = 0.

Using Lemma 5.2, we also know that the residue of r(u; y1, y2) near y1 = y2 is inde-
pendent of u. Comparing this to the Laurent expansion (3.5), we derive that r1(y1, y2)
has no poles along y1 = y2, hence the same is true for α(y1, y2). To prove that r1 is
determined by r0, we need only show that α is already zero. Choosing y3 = y2 and
then applying pr ⊗ id ⊗ id to (6.3) we derive that (pr ⊗ id) (α(y1, y2)) = 0. Similarly,
(id ⊗ pr) (α(y1, y2)) = 0, hence α(y1, y2) = f(y1, y2)1 ⊗ 1 where f is a meromorphic
function such that f(y1, y2)+f(y1, y3)+f(y2, y3) = 0. Since r1(y1, y2) has no pole along
y1 = y2 by Lemma 5.2, α(y1, y1) exists. We may deduce that 2f(y1, y2) = −f(y2, y2),
so f depends only on the second variable. But then choosing y2 = y1 = y3 we read
3f(y1, y1) = 0, thus f = 0.We have proved that r is uniquely determined by r0.

It remains to prove that, provided r0 has no infinitesimal symmetries, r can be uniquely
recovered from r0 up to the factor exp (u (g(y2)− g(y1))) for some meromorphic function
g : C → C. Note that this is equivalent to showing that r0(y1, y2) is uniquely determined
by r0(y1, y2) = (pr⊗pr) (r0(y1, y2)) up to a summand of the form (g(y2)− g(y1)) 1⊗1.
By assumption (s0(y1, y2), s1(y1, y2)) is another tuple satisfying (6.1) such that

s21
0 (y2, y1) = −s0(y1, y2), s21

1 (y2, y1) = s1(y1, y2).

We claim that
s0(y1, y2) = r0(y1, y2) + (g(y2)− g(y1)) 1⊗ 1.

Since s0(y1, y2) = r0(y1, y2), we may write
s0(y1, y2) = r0(y1, y2) + φ1(y1, y2)− φ2(y2, y1) + ψ(y1, y2)1⊗ 1

for a sln(C) valued function φ and a scalar function ψ. Denoting the left-hand side of
(6.1) by LHS(r), we have

0 = (pr⊗ pr⊗ pr) (LHS(s)− LHS(r)) = r12
0 (y1, y2)

[
φ3(y3, y2)− φ3(y3, y1)

]
+
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+r23
0 (y2, y3)

[
φ1(y1, y3) −φ1(y1, y2)

]
+ r13

0 (y1, y3)
[
φ2(y2, y3)− φ2(y2, y1)

]
.

If the function φ is not constant then contracting this equation with a generic functional
in the third component we derive that r0 is a sum of two decomposable tensors, that
is r̄0 = a1 ⊗ b1 + a2 ⊗ b2 where all terms depend on y1, y2. But r̄0 is non-degenerate by
assumption, so spanC ({a1, a2}) ∼= g, which is impossible for any n ≥ 2. Thus φ ∈ g is
constant. Applying (pr⊗ pr⊗ id) to LHS(s)− LHS(r) yields

(6.4)
(pr⊗ pr⊗ id) (s12

1 (y1, y2)− r12
1 (y1, y2)) = (pr⊗ pr⊗ id) (r12

0 (y1, y2)φ1−

− φ2r12
0 (y1, y2)

)
− φ1φ2 + (ψ(y1, y3)− ψ(y2, y3)) r12(y1, y2).

This implies that ψ(y1, y3)−ψ(y2, y3) is actually independent of y3, hence equal to some
function β(y1, y2). Also, we know by unitarity of r that ψ(y1, y2) = −ψ(y2, y1), thus
β(y1, y2) = ψ(y1, y3)+ψ(y3, y2). It follows from Lemma 5.2 that r0 and s0 have the same
pole along y1 = y2, hence ψ(y1, y1) exists and we may deduce that β(y1, y2) = ψ(y1, y1)+
ψ(y1, y2) = ψ(y1, y2). Thus the definition of β reads ψ(y1, y2) = ψ(y1, y3) − ψ(y2, y3).
Therefore, defining g(y) = ψ(y, a) for some fixed a ∈ C, we have ψ(y1, y2) = g(y1) −
g(y2). Altogether

(6.5) s0(y1, y2) = r0(y1, y2) + φ1 − φ2 + (g(y1)− g(y2)) 1⊗ 1

Since s0 and r0 are both meromorphic, so is ψ and thus also g.
Next, we replace r(u; y1, y2) by exp (u (g(y2)− g(y1))) r(u; y1, y2) and hence may as-

sume that g = 0 in the above formula for s0. Thus (6.4) yields

(pr⊗ pr) (s1(y1, y2)− r1(y1, y2)) = (pr⊗ pr)
(
r0(y1, y2)φ

1 − φ2r0(y1, y2)
)
− φ1φ2.

We exchange the first two components, make the substitutions y1 ↔ y2, y2 ↔ y1 and
use unitarity of r for both sides of the resulting equation. Comparing the result with
the above equation, we derive

(pr⊗ pr)
(
r0(y1, y2)φ

1 − φ2r0(y1, y2)
)

= (pr⊗ pr)
(
−r0(y1, y2)φ

2 + φ1r0(y1, y2)
)
.

By Fact 7.5 a) we deduce that [r0(y1, y1), φ1 + φ2] = 0. But then φ is an infinitesimal
symmetry of r0, so φ = 0. Thus s0 = r0. !
Remark 6.3. As we will see in Theorem 7.1 (1), the assumption of Theorem 6.2 on the
non-degeneracy of r̄0 is automatically satisfied if r itself is non-degenerate. Moreover, we
deduce from the proof of Theorem 6.2 that in that case r is already uniquely determined
by r0.

Corollary 6.4. In the notations of Theorem 6.2, assume that r0(y1, y2) and s0(y1, y2)
have the same poles on

(
C2 \ V

(
(y1 − y2)

))
. Then g is a holomorphic function. Thus,

r and s are gauge equivalent.
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Proof. It follows from the assumption and Lemma 5.2 that the poles of r0 and s0

coincide. By (6.5) this implies that g is holomorphic. The remaining statement follows
from the discussion in example 3.6. !

7. Quantization of solutions of CYBE coming from solutions of AYBE

In this section, we generalize Theorem 4.1:

Theorem 7.1. Let r(u; y1, y2) be a non-degenerate unitary solution of (3.2) of the
form (3.5) and let r0(y1, y2) = (pr⊗ pr) (r0(y1, y2)).

(1) r0(y1, y2) is a non-degenerate unitary solution of the CYBE (2.1).
(2) The following conditions are equivalent:

(a) for fixed u ∈ C×, r̃(y1, y2) = r(u; y1, y2) satisfies the QYBE
r̃12(y1, y2) r̃13(y1, y3) r̃23(y2, y3) = r̃23(y2, y3) r̃13(y1, y3) r̃12(y1, y2).

(b) there exits a scalar function ϕ(u; y1, y2) such that
r(u; y1, y2) r(−u; y1, y2) = ϕ(u; y1, y2) (1⊗ 1) .

(c) for i ∈ {1, 2} there exists a scalar function ψi(y1, y2) such that
∂

∂yi
(r0(y1, y2)− r0(y1, y2)) = ψi(y1, y2) (1⊗ 1) .

(d) we have
(pr⊗ pr⊗ pr)

[
r12
0 (y1, y2) r13

0 (y1, y3)−
−r23

0 (y2, y3) r12
0 (y1, y2) + r13

0 (y1, y3) r23
0 (y2, y3)

]
= 0.

(3) These conditions are satisfied if r0(y1, y2) has no infinitesimal symmetries.

Remark 7.2. By Theorem 7.1 1), we can extend the nomenclature of elliptic, trigono-
metric and rational solutions to non-degenerate unitary solutions of the AYBE. That is,
a non-degenerate unitary solution r of (3.2) is called elliptic, trigonometric respectively
rational exactly if the non-degenerate and unitary solution r0(y1, y2) of the CYBE is.

Before proving the theorem above, we first need to establish some auxiliary results.
The reader might wish to postpone checking them and to go to the proof of Theorem
7.1 at the end of this section immediately.

Lemma 7.3. (see [38, Lemma 1.6]) For any triple of variables u1, u2, u3 set uij = ui−uj.
Let r(u; y1, y2) be any unitary solution of (3.2) and s(u; y1, y2) = r(u; y1, y2) r(−u; y1, y2).
Then

r12(u12; y1, y2) r13(u23; y1, y3) r23(u12; y2, y3)−
−r23(u23; y2, y3) r13(u12; y1, y3) r12(u23; y1, y2) =
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= s23(u23; y2, y3) r13(u13; y1, y3)− r13(u13; y1, y3) s23(u21; y2, y3) =

= r13(u13; y1, y3) s12(u32; y1, y2)− s12(u12; y1, y2) r13(u13; y1, y3).

Proof. Let us write rij(u) as short-hand for rij(u; yi, yj). Since we may assume u = u12,
v = u23 and u + v = u13, (3.2) may be written as

(7.1) r12(u12) r23(u13) = r13(u13) r12(u32) + r23(u23) r13(u12).

Analogously, putting u = u13 and v = u21, (3.3) reads

(7.2) r23(u23) r12(u13) = r12(u12) r13(u23) + r13(u13) r23(u21).

Multiplying (7.2) with r23(u12) from the right yields

r23(u23) r12(u13) r23(u12) = r12(u12) r13(u23) r23(u12) + r13(u13) s23(u21)

while switching u2 and u3 in (7.1) followed by multiplication with r23(u23) from the left
yields

r23(u23) r12(u13) r23(u12) = r23(u23) r13(u12) r12(u23) + s23(u23) r13(u13).

Subtracting these equations, we end up with

r12(u12) r13(u23) r23(u12)− r23(u23) r13(u12) r12(u23) =

= s23(u23) r13(u13)− r13(u13) s23(u21).

Switching indices 1 and 3 and using unitarity of r yields the other identity. !

For the next statement we need the notion of an infinitesimal symmetry of a solution
r of (3.2), which is simply that of an element a ∈ g such that [r(u; y1, y2), a1 + a2] = 0,
where a1 = a⊗ 1 and a2 = 1⊗ a.

Lemma 7.4. (see [38, Lemma 1.7]) Let r(u; y1, y2) be a unitary solution of (3.2) of the
form (3.5) and s(u; y1, y2) = r(u; y1, y2) r(−u; y1, y2). Assuming that r(u; y1, y2) has a
simple pole along y1 = y2 with residue cP for some c ∈ C, we have

s(u; y1, y2) = a⊗ 1 + 1⊗ a + (f(u) + g(y1, y2))1⊗ 1

where f(u) = f(−u), g(y1, y2) = g(y2, y1) and a ∈ g is an infinitesimal symmetry of
r(u; y1, y2). Moreover, we may write

r0(y1, y2) = r0(y1, y2) + α(y2)⊗ 1− 1⊗ α(y1) + h(y1, y2)1⊗ 1

with r0(y1, y2) mapping to g⊗ g, α(y) to g, h(y1, y2) a scalar function and

α(y) = α(0) +
y

cn
a.
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Proof. By assumption r(u; y1, y2) = c
y1−y2

P + r̃(u; y1, y2) where r̃(u; y1, y2) does not have
a pole along y1 = y2. Let us write r(u; yij) and r̃(u; yij) as short-hand for r(u; yi, yj)
and r̃(u; yi, yj) respectively. Then starting from (3.3) we derive that for v = −u + h:
(7.3)

r13(u; y13) r23(−u + h; y23) = r23(h; y23) r12(u; y12)− r12(u− h; y12) r13(h; y13) =

= [r23(h; y23) r12(u; y12)− r12(u; y12) r13(h; y13)] +

+ [r12(u; y12)− r12(u− h; y12)] r13(h; y13).

Let us rewrite the expression in the first bracket on the right-most side as
(

r23(h; y23)
c

y1 − y2
P 12 − c

y1 − y2
P 12 r13(h; y13)

)
+

+r23(h; y23) r̃12(u; y12)− r̃12(u; y12) r13(h; y13).

Using Fact 5.1, we know that P 12 r13(h; y13) = r23(h; y13) P 12, hence the right-most side
of (7.3) equals

r23(h; y23)− r23(h; y13)

y1 − y2
cP 12 + r23(h; y23) r̃12(u; y12)−

−r̃12(u; y12) r13(h; y13) +
[
r̃12(u; y12)− r̃12(u− h; y12)

]
r13(h; y13).

Passing to the limit y2 → y1, we see that

(7.4)
r13(u; y13) r23(−u + h; y13) = −∂r23

∂y1
(h; y13) cP 12 + r23(h; y13) r̃12(u; y11)−

− r̃12(u; y11) r13(h; y13) + [r̃12(u; y11)− r̃12(u− h; y11)] r13(h; y13).

We want to apply the operator µ⊗ id : A⊗A⊗A → A⊗A to this equation, where µ
is the product in A. Observe that

(µ⊗ id)
(
a13b23

)
= ab, (µ⊗ id) (a23b12 − b12a13) = 0

where a, b ∈ A⊗A and the notation is best explained by the example a13 = a1⊗1⊗ a2

for a = a1 ⊗ a2. Moreover, using that
∑

i,j eijaeji = tr(a)1 for any a ∈ A clearly, we
derive that for tr1 = tr⊗ id : A⊗ A → A we have

(µ⊗ id) (a23P 12) = 1⊗ tr1(a).

Hence applying µ⊗ id to (7.4) yields

r(u; y13) r(−u + h; y13) = −c · 1⊗ tr1

(
∂r

∂y1
(h; y13)

)
+

+ (µ⊗ id)
([

r̃12(u; y11)− r̃12(u− h; y11)
]

r13(h; y13)
)
.
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Now, take the limit h → 0. The left-hand side of yields s(u; y1, y3). As for the right-
hand side, we invoke our assumption on the existence of a certain Laurent expansion
(3.5) to derive that

lim
h→0

∂r

∂y1
(h; y13) =

∂r0

∂y1
(y1, y3) .

Moreover

lim
h→0

([
r̃12(u; y11)− r̃12(u− h; y11)

]
r13(h; y13)

)
=

∂r̃12

∂u
(u; y11)

(
lim
h→0

r13(h; y13) · h
)

.

Again using (3.5), we see that the second factor of this last term is simply 1 ⊗ 1 ⊗ 1.
Putting all this together, we end up with

s(u; y1, y3) = −c · 1⊗ tr1

(
∂r0

∂y1
(y1, y3)

)
+ µ

(
∂r̃

∂u
(u; y1, y1)

)
⊗ 1.

Hence we may write s(u; y1, y2) = 1 ⊗ β(y1, y2) + γ(u, y1) ⊗ 1. Note that β(y1, y2) =

pr (β(y1, y2)) + tr (β(y1,y2))
n 1. Using the same trick for γ(u, y1), we may actually write

s(u; y1, y2) = a(u, y1)⊗ 1+ 1⊗ b(y1, y2) + (f(u, y1) + g(y1, y2))1⊗ 1

where now both

a(u, y1) = pr µ

(
∂r̃

∂u
(u; y1, y1)

)
, b(y1, y2) = −c · pr tr1

(
∂r0

∂y1
(y1, y2)

)

map to g. Note that unitarity of r(u; y1, y2) implies that s21(−u; y2, y1) = s12(u; y1, y2).
Applying pr⊗ 1 to this equation yields a(u, y1) = b(y2, y1). It follows that both a and
b depend on the second variable only and actually coincide, hence

s(u; y1, y2) = a(y1)⊗ 1+ 1⊗ a(y2) + (f(u, y1) + g(y1, y2))1⊗ 1.

In order to show the statement concerning the form of s, we have to prove that a(y1)
is constant. To this end, we substitute the form of s just calculated into the second
equation of the equality stated in Lemma 7.3. We derive that

(7.5)
[a1(y1) + a3(y3), r13(u13; y1, y3)] = r13(u13; y1, y3)·
· (f(u32, y1) + f(u21, y2)− f(u12, y1)− f(u23, y2)) .

Let us focus on the left-hand side. This equals
[
a1(y1) + a3(y3),

cP 13

y1 − y3

]
+

[
a1(y1) + a3(y3), r̃

13(u13; y1, y3)
]
.

By Fact 5.1, we may rewrite the first summand as
a1(y1)− a1(y3)

y1 − y3
cP 13 +

a3(y3)− a3(y1)

y1 − y3
cP 13
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thus the limit y3 → y1 of the left-hand side of (7.5) is given by
d

dy1

(
a1(y1)− a3(y1)

)
cP 13 +

[
a1(y1) + a3(y1), r̃

13(u13; y1, y1)
]
.

In particular, the limit y3 → y1 of the right-hand side of (7.5) exists as well. But
r13(u13; y1, y3) has a pole along y1 = y3 and the other factor on the right-hand side is
independent of y3. Hence we conclude that

f(u32, y1) + f(u21, y2)− f(u12, y1)− f(u23, y2) = 0.

In particular, the left-hand side of (7.5) equals zero. Focusing on the polar part yields
[
a1(y1) + a3(y3),

cP 13

y1 − y3

]
= 0

which, by the above, implies
d

dy1

(
a1(y1)− a3(y1)

)
cP 13 = 0.

But then da
dy (y) must be zero, so that a(y) = a ∈ g is constant. Therefore s(u; y1, y2) =

a⊗1+1⊗a+(f(u, y1) + g(y1, y2))1⊗1. By (7.5) we also see that a is an infinitesimal
symmetry of r(u; y1, y2).
Finally, we want to prove the statement concerning r0(y1, y2). Clearly, we may write

r0(y1, y2) = r0(y1, y2) + α(y2, y1)⊗ 1− 1⊗ α(y1, y2) + h(y1, y2)1⊗ 1

with α mapping to g. Note that in the discussion above we derived that

a = b(y1, y2) = −c · pr tr1

(
∂r0

∂y1
(y1, y2)

)
.

Since both r0 and α map to g, so will their partial derivatives. This implies

a = −cn · pr
(
−

(
∂

∂y1

)
α(y1, y2) +

∂h

∂y1
(y1, y2) · 1

)
.

Hence ∂
∂y1

α(y1, y2) = a
cn , which gives the formula for α. In particular, α(y1, y2) does not

depend on the second argument. This completes the proof of the formula for r0. !
Before we finally prove Theorem 7.1, we need to state one more easy fact:

Fact 7.5. a) For any x, y, φ ∈ A, i ∈ {1, 2} and φ1 = φ ⊗ 1 respectively φ2 = 1 ⊗ φ,
we have

(pr⊗ pr)
[
x⊗ y, φi

]
=

[
(pr⊗ pr) (x⊗ y) , φi

]
.

b) Let r be a non-degenerate solution of (3.2), a ∈ g and [r, 1⊗ a] = 0. Then a = 0.
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Proof. a) is straightforward. As to b), write r =
∑

i∈I r′i ⊗ r′′i for some index set I and
let ϕ : A⊗A → End(A) denote the isomorphism given by X ⊗ Y (→ (Z (→ X tr (Y Z)).
Then 0 = ϕ ([r, 1⊗ a]) (b) =

∑
i∈I r′i tr ([r′′i , a] b) =

∑
i∈I r′i tr (r′′i [a, b]) = ϕ(r) ([a, b]) for

all b ∈ A. Now r is non-degenerate, hence ϕ(r) is an isomorphism. This yields [a, b] = 0
for all b ∈ A, especially all b ∈ g. But the Lie bracket is non-degenerate on g, hence we
derive that a = 0. !

Proof of Theorem 7.1.
(1) By Lemma 3.7 r̄0 is a unitary solution of the CYBE (2.1). The rest is immediate

by Lemma 5.3 and the fact that (pr⊗ pr) (P ) is the Casimir element of g ⊗ g with
respect to the trace form (x, y) (→ tr(x · y).

(2) Setting u1 = u, u2 = 0 and u3 = −u in Lemma 7.3, we derive that r(u; y1, y2)
satisfies the QYBE (4.1) for u fixed if and only if

s23(u; y2, y3) r13(2u; y1, y3) = r13(2u; y1, y3) s23(−u; y2, y3).

Applying Lemma 7.4 this is equivalent to

(7.6) [r(u; y1, y2), 1⊗ a] = 0

which, by Fact 7.5 b) is equivalent to a = 0. By Lemma 7.4 this last condition holds
if and only if either of conditions (b) or (c) of the Theorem are satisfied. It remains
to show equivalence with condition (d). To this end, recall (6.1). Denote the right-
hand side of this equation by AY BE[r0](y1, y2, y3). Then (d) simply reads (pr ⊗ pr ⊗
pr) AY BE[r0](y1, y2, y3) = 0. To show the equivalence of this with a = 0, express r0 in
terms of r0 as stated in Lemma 7.4. Then

−cn · (pr⊗ pr⊗ pr) (AY BE [r0] (y1, y2, y3)− AY BE [r0] (y1, y2, y3)) =

= (y1 − y3) r13
0 (y1, y3) a2 + (y1 − y2) r12

0 (y1, y2) a3 + (y3 − y2) r23
0 (y2, y3) a1.

It is immediate by (6.1) that (pr⊗ pr⊗ pr) AY BE [r0] (y1, y2, y3) = 0. Hence if a
is zero, this implies (pr ⊗ pr ⊗ pr) AY BE[r0] = 0. On the other hand, assuming
(pr⊗ pr⊗ pr) AY BE[r0] = 0 we deduce

(y1 − y3) r13
0 (y1, y3) a2 + (y1 − y2) r12

0 (y1, y2) a3 + (y3 − y2) r23
0 (y2, y3) a1 = 0.

We will show that this implies a = 0. Indeed, by Lemma 5.3 we know that r0(y1, y2) =
cP

y1−y2
+ r̃0(y1, y2) with r̃0 being defined along y1 = y2 and similarly for r0. Hence passing

to the limit y1, y2, y3 → y yields

(pr⊗ pr⊗ pr)
[
P 13a2 + P 12a3 + P 23a1

]
= 0.

Let us write a =
∑

aijeij. Looking at the coefficient of eij⊗ eji⊗ eij in the above equa-
tion for i *= j, we derive aij = 0. But then projecting the above equation to e12⊗e21⊗g,
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we may deduce that a = 0.

(3) As we just saw, the conditions of (2) are satisfied if a = 0. But a is an infinitesimal
symmetry of r by Lemma 7.4, hence one of r0. Invoking Fact 7.5 a), we deduce that a
is an infinitesimal symmetry of r0 and so a = 0. !
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Part 2. Triple Massey products and the Yang-Baxter equations

Let E be a reduced projective curve with trivial dualizing sheaf. Recalling the work
of Polishchuk [37] respectively Burban and Kreußler [14], we show how triple Massey
products in Db(E) can be used in order to construct solutions of the associative Yang-
Baxter equation, see Section 8. In [13], we show how to obtain the corresponding
solutions of the CYBE via similar methods directly. Our results are contained in Sec-
tion 9.

We fix the following notations:

• k denotes an algebraically closed field of characteristic zero.
• Given an algebraic variety X, Coh(X) respectively VB(X) denotes the category

of coherent sheaves respectively vector bundles on X.
• By Db

Coh(E) we denote the triangulated category of bounded complexes of OX-
modules with coherent cohomology, whereas Perf(E) stands for the triangulated
category of perfect complexes i.e. the full subcategory of Db

Coh(E) admitting a
bounded locally free resolution.

• We always write Hom and Ext when working with coherent sheaves whereas Lin
is used when we work with vector spaces. If not explicitly otherwise stated, Ext
always stands for Ext1.

• For a vector bundle F on X and x ∈ X we denote by F
∣∣
x

the fiber of F over
x, whereas kx denotes the skyscraper sheaf of length one supported at x.

• A Weierstraß cubic curve is a plane cubic curve given in homogeneous coordi-
nates by an equation zy2 = 4x3 +g2xz2 +g3z3, where g1, g2 ∈ k. Such a curve is
always irreducible. It is singular if and only if ∆(g2, g3) = g3

2 +27g2
3 = 0. Unless

g2 = g3 = 0, the singularity is a node (ordinary double point), whereas in the
case g2 = g3 = 0 the singularity is a cusp.

• A Calabi-Yau curve is a reduced projective Gorenstein curve with trivial dual-
izing sheaf. Note that the complete list of such curves is actually known, see for
example [41, Section 3]: E is either
(1) an elliptic curve,
(2) a Kodaira cycle of n ≥ 1 projective lines (for n = 1 it is a nodal Weierstraß

curve), also called Kodaira fiber of type In,
(3) a cuspidal plane cubic curve (Kodaira fiber II), a tachnode cubic curve

(Kodaira fiber III) or a generic configuration of n concurrent lines in Pn−1

for n ≥ 3.
The irreducible Calabi-Yau curves are precisely the Weierstraß curves.

• Next, Ω will denote the sheaf of regular differential one forms on a Calabi-Yau
curve E, which we always view as a dualizing sheaf. Taking a non-zero section
w ∈ H0(Ω), we get an isomorphism of O-modules O w−→ Ω.
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• Let Ī be an irreducible component of E and I = Ī \ Esing. We take a pair of
distinct points x, y ∈ I.

• Finally, P is a simple vector bundle on E, i.e. a locally free coherent sheaf
satisfying End(P) = k. Note that we automatically have: Ext(P ,P) ∼= k.
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8. Triple Massey products and the AYBE

8.1. Algebraic Triple Massey products. Let E be a reduced projective curve over
C with trivial dualizing sheaf Ω ∼= O. Assume we are given two vector bundles F1 ! F2

such that
Hom(F1,F2) = 0 = Ext(F1,F2).

Then for any y1, y2 ∈ E, y1 *= y2, the following linear map
(8.1) m3 = mF1,F2

y1,y2
: Hom(F1, Cy1)⊗ Ext(Cy1 ,F2)⊗ Hom(F2, Cy2) −→ Hom(F1, Cy2),

called triple Massey product, is defined as follows. Let
a ∈ Ext(Cy1 ,F2), g ∈ Hom(F1, Cy1), f ∈ Hom(F2, Cy2)

and 0 → F2
α→ A β→ Cy1 → 0 be an extension representing the element a. The vanishing

of Hom(F1,F2) and Ext(F1,F2) implies that we can uniquely lift the morphisms g and
f to morphisms g̃ : F1 → A and f̃ : A → Cy2 such that βg̃ = g and f̃α = f . So, we
obtain the following commutative diagram

F1

g

!!

g̃

""##
##

##
##

a : 0 ## F2
α ##

f
!!

A
β

##

f̃""$$
$$

$$
$$

Cy1
## 0

Cy2

and the triple Massey product is defined as m3(g ⊗ a⊗ f) = f̃ g̃.

For any pair of objects F ,G ∈ Perf(E) we have the bilinear form
(8.2) 〈− , −〉 = 〈− , −〉wF ,G : Hom(F ,G)× Ext(G,F) −→ k

defined as the composition

Hom(F ,G)× Ext(G,F)
◦−→ Ext(F ,F)

TrF−→ H1(O)
w−→ H1(Ω)

t−→ k,

where ◦ denotes the composition operation, TrF is the trace map and t is the canonical
morphism described in [14, Subsection 4.3]. The following result is well-known, see for
example [14, Corollary 3.3] for a proof.

Theorem 8.1. For any F ,G ∈ Perf(E) the pairing 〈− , −〉wF , G is non-degenerate. In
particular, we have an isomorphism of vector spaces
(8.3) S = SF , G : Ext(G,F) −→ Hom(F ,G)∗,

which is functorial in both arguments.
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Now let

(8.4) m̃F1,F2
y1,y2

: Hom(F1, Cy1)⊗ Hom(F2, Cy2) −→ Hom(F2, Cy1)⊗ Hom(F1, Cy2)

be the image of mF1,F2
y1,y2

under the isomorphism of vector spaces

Lin
(
Hom(F1, Cy1)⊗ Ext(Cy1 ,F2)⊗ Hom(F2, Cy2), Hom(F1, Cy2)

) ∼=

Lin
(
Hom(F1, Cy1)⊗ Hom(F2, Cy2), Hom(F2, Cy1)⊗ Hom(F1, Cy2)

)
.

The following result is due to Polishchuk [37] respectively Burban and Kreußler [14].

Theorem 8.2. Let E be a Weierstrass cubic curve. The linear map m̃F1,F2
y1,y2

satisfies
the following “triangle equation”

(8.5) (m̃F3,F2
y1,y2

)12(m̃F1,F3
y1,y3

)13 − (m̃F1,F3
y2,y3

)23(m̃F1,F2
y1,y2

)12 + (m̃F1,F2
y1,y3

)13(m̃F2,F3
y2,y3

)23 = 0.

Here both sides of the equality (8.5) are viewed as linear maps

Hom(F1, Cy1)⊗ Hom(F2, Cy2)⊗ Hom(F3, Cy3) −→

−→ Hom(F2, Cy1)⊗ Hom(F3, Cy2)⊗ Hom(F1, Cy3).

Moreover, the tensor m̃F1,F2
y1,y2

is non-degenerate and skew-symmetric:

(8.6) ρ(m̃F1,F2
y1,y2

) = −m̃F2,F1
y2,y1

,

where ρ is the isomorphism

Hom(F1, Cy1)⊗ Hom(F2, Cy2) −→ Hom(F2, Cy2)⊗ Hom(F1, Cy1)

given by the rule ρ(f ⊗ g) = g ⊗ f .

Proof. Let us briefly sketch the main ideas of the proof. Since E is Gorenstein, we have
a commutative diagram

Perf(E)
! "

!!

##
∼= Hotb

Coh (Inj (E))
! "

!!

Db
Coh(E) ##

∼= Hot+,b
Coh (Inj (E)) .

Here HotCoh (Inj (E)) denotes the subcategory of the homotopy category Hot (Inj (E))
whose objects are complexes such that all cohomologies are coherent sheaves on E.
Note that for B = Com+,b

Coh (Inj(E)), we have

Hot+,b
Coh (Inj (E)) = H∗(B).

That is, Hot+,b
Coh (Inj (E)) is the homology category of the differential graded category

B. Hence homological perturbation theory implies that Perf(E) is an A∞-category [29].
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As part of the A∞-structure, there exists a collection of higher products {m∞
n }n≥2 on

Perf(E), where for any given objects X0,X1,...,Xn of Perf(E), we have

Exti1 (X0, X1)⊗ Exti2 (X1, X2)⊗ . . .⊗ Extin (Xn−1, Xn)

m∞
n

!!

Exti1+...+in−(n−2) (X0, Xn) .

Moreover, these higher products satisfy the A∞-relations. That is, for each n ≥ 2 we
have
(8.7)

∑
(−1)r+stm∞

r+t+1

(
1⊗r ⊗m∞

s ⊗ 1⊗t
)

= 0,

where the sum is indexed by all decompositions n = r + s + t and where we adopt the
sign convention of [24]. For example, taking n = 5, we derive

(8.8)
0 = m∞

3 (m∞
3 ⊗ 1⊗ 1+ 1⊗m∞

3 ⊗ 1+ 1⊗ 1⊗m∞
3 ) +

+m∞
4 (m∞

2 ⊗ 1⊗3 − 1⊗m∞
2 ⊗ 1⊗2 + 1⊗2 ⊗m∞

2 ⊗ 1− 1⊗3 ⊗m∞
2 ) +

+m∞
2 (m∞

4 ⊗ 1− 1⊗m∞
4 ) .

It is known that m∞
2 is just the usual composition of morphisms, but the collection

{m∞
n }n≥3 is not uniquely determined. However, it can be shown, see [34, 37], that

m3 = m∞
3 where m3 is the triple Massey product in the sense of triangulated categories

as defined in (8.1). Next, consider both sides of equation (8.8) as a linear operator
mapping the tensor product
H = Hom(F1, Cy1)⊗ Ext1(Cy1 ,F2)⊗ Hom(F2, Cy2)⊗ Ext1(Cy2 ,F3)⊗ Hom(F3, Cy3)

to the vector space Hom(F1, Cy3). Using the vanishing of the Hom- and Ext-spaces
between the Fi respectively Cyi involved, equation (8.8) implies
(8.9) m3 ◦ (m3 ⊗ 1⊗ 1+ 1⊗m3 ⊗ 1+ 1⊗ 1⊗m3) = 0.

For the case where E is an elliptic curve, the last crucial step of Polishchuk’s proof
[37, Theorem 1] goes as follows. The equality (8.6) follows from existence of an A∞-
structure on Perf(E) which is cyclic with respect to the pairing (8.2). In particular,
this means that for any a⊗ α⊗ b⊗ β ∈ H we have
(8.10) 〈m3(a, α, b), β〉 = −〈a, m3(α, b, β)〉 = −〈m3(b, β, a), α〉 .
A proof of the existence of such an A∞-structure has been outlined by Polishchuk in
[36, Theorem 1.1], see also [33, Theorem 10.2.2] for a different approach using non-
commutative symplectic geometry. From this, both (8.5) and (8.6) can be derived.

For the case where E is a cuspidal or nodal cubic curve, we refer to Burban and Kreußler
[14, Section 6]. The crucial idea behind their proof is to use the continuity of Massey
products. !
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Remark 8.3. So far, there is no complete proof that one can always find an A∞-structure
on Perf(E) for a singular Calabi-Yau curve E, which is cyclic with respect to the pairing
(8.2). For deeper insights into the theory of dg- and A∞-algebras respectively categories,
we recommend [32, 31, 30].

8.2. Geometric Massey Products. Our next aim is to reinterpret the map m̃F1,F2
y1,y2

in
another way which is more suitable for explicit computations. We have an isomorphism
O ∼= Ω given by a nowhere vanishing differential form, e.g. by ω = dz. For any x ∈ E
consider the canonical short exact sequence

(8.11) 0 → Ω → Ω(x)
resx−→ Cx → 0.

Let F and G be a pair of vector bundles on E. We identify the line bundles Ω and
O using the differential form ω, tensor the sequence (8.11) with G and then apply the
functor Hom(F , − ). As a result, we obtain a long exact sequence
(8.12) 0 −→ Hom(F ,G) −→ Hom

(
F ,G(x)

)
−→ Hom

(
F ,G ⊗ Cx

)
−→ Ext(F ,G).

Definition 8.4. The linear map resF ,G
x (ω) : Hom

(
F ,G(x)

)
→ Lin

(
F

∣∣
x
, G

∣∣
x

)
is the

composition of the following canonical morphisms
Hom

(
F ,G(x)

)
−→ Hom

(
F ,G ⊗ Cx

)
−→ Lin

(
F

∣∣
x
, G

∣∣
x

)
,

where the first map comes from the long exact sequence (8.12) and the second one is a
canonical isomorphism. The morphism resF ,G

x (ω) is called residue map.

The following lemma is a straightforward corollary of the definition and the long exact
sequence (8.12).

Lemma 8.5. Let F and G be a pair of vector bundles on E such that Hom(F ,G) =
0 = Ext(F ,G). Then for any x ∈ E the residue map resF ,G

x (ω) is an isomorphism.

Definition 8.6. Let F and G be a pair of vector bundles on E and x, y ∈ E be a
pair of distinct points. Then the linear map evF ,G(x)

y defined as the composition of the
following canonical morphisms

Hom
(
F ,G(x)

)
−→ Hom

(
F ⊗ Cy,G(x)⊗ Cy

) ∼=−→ Lin
(
F

∣∣
y
, G

∣∣
y

)

is called evaluation map.

Lemma 8.7. Let F and G be a pair of vector bundles on E and x, y ∈ Ereg be a
pair of distinct points such that Hom

(
F(y),G(x)

)
= 0 = Ext

(
F(y),G(x)

)
. Then the

evaluation map evF ,G(x)
y is an isomorphism.

Proof. Consider the short exact sequence

(8.13) 0 −→ O(−y) −→ O
evy−→ Cy −→ 0.
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It induces a short exact sequence of coherent sheaves

0 ## G(x− y) ## G(x)
1⊗evy ## G(x)⊗ Cy

## 0 .

Using the vanishing Hom
(
F ,G(x − y)

)
= 0 = Ext

(
F ,G(x − y)

)
, we get an isomor-

phism Hom
(
F ,G(x)

)
→ Hom

(
F ,G(x)⊗Cy

)
. It remains to observe that evF ,G(x)

y is the
composition of the following canonical isomorphisms:

Hom
(
F ,G(x)

)
−→ Hom

(
F ,G(x)⊗ Cy

)
−→ Hom

(
F ,G ⊗ Cy

)
−→ Lin

(
F

∣∣
y
, G

∣∣
y

)
.

!
For F1,F2 and y1, y2 as at the beginning of this section, consider the linear map

r̃F1,F2
y1,y2

: Lin
(
F1

∣∣
y1

,F2

∣∣
y1

)
−→ Lin

(
F1

∣∣
y2

,F2

∣∣
y2

)

defined by the following commutative diagram of vector spaces:

(8.14)

Hom
(
F1,F2(y1)

)

resF1,F2
y1 (ω)

∼=$$%%%%%%%%%%%%%%

∼=

evF1,F2(y1)
y2

%%&&&&&&&&&&&&&&

Lin
(
F1

∣∣
y1

,F2

∣∣
y1

) r̃
F1,F2
y1,y2 ## Lin

(
F1

∣∣
y2

,F2

∣∣
y2

)
.

The next Theorem relates the map just defined with m̃F1,F2
y1,y2

. As we will see in the Part
4, this result is crucial for the development of concrete algorithms suitable for explicit
computations.

Theorem 8.8. [14, Theorem 4.17] r̃F1,F2
y1,y2

is the image of m̃F1,F2
y1,y2

under the canonical
isomorphism of vector spaces

Lin
(
Hom(F1, Cy1)⊗ Hom(F2, Cy2), Hom(F2, Cy1)⊗ Hom(F1, Cy2)

) ∼=

Lin
(
Lin

(
F1

∣∣
y1

,F2

∣∣
y1

)
, Lin

(
F1

∣∣
y2

,F2

∣∣
y2

))
.

9. Triple Massey products and the CYBE

In this section we prove the following theorem.

Theorem 9.1. Let E = V (wv2 − 4u3 − g2uw2 − g3w3) ⊂ P2 be a Weierstrass cubic
curve over C, o ∈ E some fixed smooth point and 0 < d < n a pair of coprime integers.
Consider the sheaf of Lie algebras A = Ad(P), where P is a simple vector bundle of
rank n and degree d on E (note that up to automorphism, A does not depend on a
particular choice of P). For any pair of distinct smooth points x, y of E, consider the
map A

∣∣
x
−→ A

∣∣
y
defined as follows:

(9.1) A
∣∣
x

res−1
x−→ H0

(
A(x)

) evy−→ A
∣∣
y
,
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where resx is the residue map and evy is the evaluation map. Choosing some isomor-
phism of Lie algebras ξ : A(U) −→ sln

(
O(U)

)
for some small neighborhood U of o, we

get the tensor rξ
(E,n,d)(x, y) ∈ sln(C)⊗ sln(C). Then we have:

(1) The tensor rξ
(E,n,d) is a non-degenerate unitary solution of the classical Yang-

Baxter equation (2.1).
(2) Moreover, rξ

(E,n,d) is analytic with respect to the parameters g2 and g3.
(3) A different choice of trivialization ζ : A(U) −→ sln

(
O(U)

)
gives a gauge equiv-

alent solution rζ
(E,n,d).

9.1. Preliminaries from linear algebra. In this short subsection we collect some
basic results from linear algebra which will be used in what follows.

For a finite dimensional vector space V over k we denote by sl(V ) the Lie subalgebra
of End(V ) consisting of endomorphisms with zero trace and pgl(V ) := End(V )/〈 V 〉.
Since the proofs of all statements from this subsection are completely standard and
elementary, they are left to the reader as an exercise.

Lemma 9.2. The non-degenerate bilinear pairing tr : End(V ) × End(V ) −→ k,
(f, g) (→ tr(fg) induces another non-degenerate pairing tr : sl(V ) × pgl(V ) −→ k,
(f, ḡ) (→ tr(fg). In particular, for any finite dimensional vector space U we get a
canonical isomorphism of vector spaces

(9.2) pgl(U)⊗ pgl(V ) −→ Lin
(
sl(U), pgl(V )

)
.

Lemma 9.3. The Yoneda map Y : End(V ) −→ End(V ∗), assigning to an endomor-
phism f its adjoint f ∗, induces an anti-isomorphisms of Lie algebras

(1) Y1 : sl(V ) −→ sl(V ∗) and
(2) Y2 : sl(V ) −→ pgl(V ∗), f (→ f̄ ∗, where f̄ ∗ is the equivalence class of f ∗.

Note that the fist part of the statement is valid for any field k, whereas the second one
is only true if dimk(V ) is invertible in k.

Lemma 9.4. Let H ⊆ V be a linear subspace. Then we have the canonical linear
map rH : End(V ) −→ Lin(H, V/H) sending an endomorphism f to the composition
H −→ V

f−→ V −→ V/H. Moreover, the following results are true.
(1) We have: rH( V ) = 0. In particular, there is an induced canonical map r̄H :

pgl(V ) −→ Lin(H,V/H).
(2) Let f ∈ End(V ) be such that for any one-dimensional subspace H ⊆ V we have:

rH(f) = 0. Then f̄ = 0 in pgl(V ).
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(3) Let U be a finite dimensional vector space and g1, g2 : U −→ pgl(V ) be two linear
maps such that for any one-dimensional subspace H ⊆ V we have: r̄H ◦ g1 =
r̄H ◦ g2. Then g1 = g2.

9.2. Triple Massey products revisited. Let E, P and x, y be as at the beginning
of this part. Consider the following vector space

(9.3) K := Ker
(
Hom(P ,kx)⊗ Ext(kx,P)

◦−→ Ext(P ,P) ∼= k
)
.

Let H ⊆ Hom(P ,ky) be a one-dimensional linear subspace.

Definition 9.5. The triple Massey product is the linear map
(9.4) MH : K −→ Lin

(
H, Hom(P ,ky)/H

)

defined as follows. Let t =
∑p

i=1 fi ⊗ ωi ∈ K and h ∈ H. Consider the following
commutative diagram in the triangulated category Perf(E):

(9.5)

P

f̃

&&''
''

''
''

''
''

''
''

f=

0

@
f1

...
fp

1

A

!!

P ı ##

h
!!

A
p

##

h̃&&''
''

''
''

kx ⊕ · · · ⊕ kx

(ω1,...,ωp)
## P [1].

ky

The horizontal sequence is a distinguished triangle in Perf(E) determined by the mor-
phism (ω1, . . . , ωp). Since

∑p
i=1 ωifi = 0 in Ext(P ,P), there exists a morphism f̃ :

P −→ A such that pf̃ = f . Note that such a morphism is only defined up to a trans-
lation f̃ (→ f̃ + λı for some λ ∈ k. Since Hom(kx,ky) = 0 = Ext(kx,ky), there exists a
unique morphism h̃ : A −→ ky such that h̃ı = h. We set:

(9.6)
(
MH(t)

)
(h) := h̃f̃ .

It is well-known that MH is well-defined, i.e. it is independent of a presentation of t ∈ K
as a sum of simple tensors and a choice of the horizontal distinguished triangle, and
that MH is a linear map, see for instance [22, Exercise IV.2.3].
Next, note the following easy fact.

Lemma 9.6. Let K be as in (9.3). Then the linear isomorphism

S : Hom(P ,kx)⊗ Ext(kx,P)
⊗ S−−−→ Hom(P ,kx)⊗ Hom(P ,kx)

∗ ev−→ End
(
Hom(P ,kx)

)

identifies the vector space K from (9.3) with sl
(
Hom(P ,kx)

)
.
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Consider the linear map

m = m∞
3 : Hom(P ,kx)⊗ Ext(kx,P)⊗ Hom(P ,ky) −→ Hom(P ,ky).

It induces another linear map K −→ End
(
Hom(P ,ky)

)
assigning to an element t ∈ K

the functional g (→ m(t⊗g). Taking the composition of this map with the canonical pro-
jection End

(
Hom(P ,ky)

)
−→ pgl

(
Hom(P ,ky)

)
and identifying K with sl

(
Hom(P ,kx)

)

as above, we get the linear map

(9.7) mx, y : sl
(
Hom(P ,kx)

)
−→ pgl

(
Hom(P ,ky)

)
.

Finally, applying Lemma 9.2, we end up with the tensor

(9.8) mx,y ∈ pgl
(
Hom(P ,kx)

)
⊗ pgl

(
Hom(P ,ky)

)
.

Proposition 9.7. The tensor mx,y does not depend on a particular choice of an A∞-
structure on Perf(E).

Proof. First note that for any choice of an A∞-structure on Perf(E) and any one-
dimensional linear subspace H ⊆ Hom(P ,ky), the following diagram

(9.9)
K

MH
''(((((((((((((((

emx,y ## pgl
(
Hom(P ,ky

)

r̄H(()))))))))))))))

Lin
(
H, Hom(P ,ky)/H

)

is commutative. Here, MH is the triple Massey product (9.4), m̃x,y = mx,y ◦S and r̄H is
the canonical linear map from Lemma 9.4. A proof of this statement can for instance
be found in [34]. Let {m′

n}n≥3 be another A∞-structure on Perf(E). From the last part
of Lemma 9.4 it follows that mx,y = m′

x,y. This implies the claim. !

The following result is due to Polishchuk, see [37, Theorem 2].

Theorem 9.8. Let E be an elliptic curve, P be a simple vector bundle on E and
x1, x2, x3 ∈ E be pairwise distinct. Then we have the following equality

(9.10)
[
m12

x1,x2
, m13

x1,x3

]
+

[
m12

x1,x2
, m23

x2,x3

]
+

[
m12

x1,x2
, m13

x1,x3

]
= 0,

where both sides are viewed as elements of g1 ⊗ g2 ⊗ g3. Here, gi = pgl
(
Hom(P ,kxi)

)

for i = 1, 2, 3. Moreover, the tensor mx1,x2 is unitary:

(9.11) mx2,x1 = −τ
(
mx1,x2

)

where τ : g1 ⊗ g2 −→ g2 ⊗ g1 is the map permuting both factors.
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Idea of the proof. The proof is very similar to that of Theorem 8.2. The identity
(8.10) applied to F1 = F2 = P leads to the equality (9.11). The fact that mx1,x2 satisfies
the classical Yang-Baxter equation (9.10) follows from (9.11) and the equality

m ◦ (m⊗ ⊗ + ⊗m⊗ + ⊗ ⊗m) + other terms = 0

(which is one of the equalities (8.7)) viewed as a linear map

Hom(P ,kx1)⊗Ext(kx1 ,P)⊗Hom(P ,kx2)⊗Ext(kx2 ,P)⊗Hom(P ,kx3) → Hom(P ,kx3).

!

Remark 9.9. In order to derive the identities (9.10) and (9.11) for a singular Weierstraß
cubic curve E, we use a different approach which is similar in spirit to the work [14],
see Remark 8.3. Following [37], we give another description of the tensor mx,y and show
some kind of its continuity with respect to the degeneration of the complex structure
on E. This approach will also allow to compute the tensor mx,y explicitly.

9.3. On the sheaf of traceless endomorphism of a simple vector bundle. Let
X be a projective algebraic variety over k and F a vector bundle on X. Consider
the morphism of OX-modules TrF : End(F) −→ O defined via commutativity of the
following diagram of vector bundles on X:

F∨ ⊗F
evF ##

can ))********** O

End(F)
TrF

**+++++++++

Definition 9.10. The locally free sheaf Ad(F) of the traceless endomorphisms of F is
the kernel of the canonical morphism TrF . In particular, we have the following short
exact sequence of vector bundles on X:

(9.12) 0 −→ Ad(F) −→ End(F)
TrF−→ O −→ 0.

In the proposition below we collect some basic facts on the vector bundle Ad(F). Here
we essentially use the fact that the characteristic of the base field k is zero.

Proposition 9.11. In the above notation the following statements are true.
(1) The vector bundle Ad(F) is a sheaf of Lie algebras on X.
(2) Next, we have: H0

(
Ad(F)

)
= 0.

(3) For any L ∈ Pic(X) we have the natural isomorphism of sheaves of Lie algebras
Ad(F) −→ Ad(F ⊗ L) which is induced by the natural isomorphism of sheaves
of algebras End(F) −→ End(F ⊗ L).
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(4) We have a symmetric bilinear pairing

Ad(F)× Ad(F) −→ O
given on the level of local sections by the rule (f, g) (→ tr(fg). This pairing

induces an isomorphism of O-modules Ad(F) −→ Ad(F)∨.

As the next step, we shall describe some further properties of the sheaf Ad(P) in the
case P is a simple vector bundle on a Calabi-Yau curve E.

Definition 9.12. Let
{
E(1), . . . , E(p)

}
be the set of the irreducible components of a

Calabi-Yau curve E. For a vector bundle F on E we denote by

deg(F) = (d1, . . . , dp) ∈ Zp

its multi-degree, where di = deg
(
F

∣∣
E(i)

)
for 1 ≤ i ≤ p.

For a given ∈ Zp we denote Pic (E) :=
{
L ∈ Pic(E)

∣∣ deg(L) =
}
. In particular,

for = (0, . . . , 0) we set: J(E) = Pic (E). Then J(E) is an algebraic group called
Jacobian of E.

Proposition 9.13. For k = C we have the following isomorphisms of Lie groups:

(9.13) J(E) ∼=






C/Λ if E is elliptic,
C∗ if E is a Kodaira cycle,
C in the remaining cases.

Moreover, for any multi-degree we have a (non-canonical) isomorphism of algebraic
varieties J(E) −→ Pic (E).

A proof of this result follows from [25, Exercise II.6.9] or [6, Theorem 16].

Next, recall the description of simple vector bundles on Calabi-Yau curves.

Theorem 9.14. Let E be a reduced plane cubic curve with p irreducible components
and P be a simple vector bundle on E. Then the following statements are true.

(1) Let n = rk(P) be the rank of P and d = d1(P) + · · ·+ dp(P) = χ(P) its degree.
Then n and d are mutually prime.

(2) If E is irreducible then P is stable.
(3) Let n ∈ N and = (d1, . . . , dp) ∈ Zp be such that gcd(n, d1 + · · · + dp) = 1.

Denote by ME(n, ) the set of simple vector bundles on E of rank n and multi-
degree . Then the map det : ME(n, ) −→ Pic (E) is a bijection. Moreover,
for any P *∼= P ′ ∈ ME(n, ) we have: Hom(P ,P ′) = 0 = Ext(P ,P ′).

(4) The group J(E) acts transitively on ME(n, ). Moreover, given P ∈ ME(n, )
and L ∈ J(E), we have: P ∼= P ⊗ L ⇐⇒ L⊗n ∼= O.
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Comment on the proof. In the case of elliptic curves all these statements are due
to Atiyah [1]. The case of a nodal Weierstraß cubic curve has been treated by the
first-named author in [9], the corresponding result for a cuspidal cubic curve is due to
Bodnarchuk and Drozd [7]. The remaining cases (Kodaira fibers of type I2, I3, III and
IV) are due to Bodnarchuk, Drozd and Greuel [8]. Their method actually allows to
prove this theorem for arbitrary Kodaira cycles of projective lines. In that case, one
can also deduce this result from another description of simple vector bundles obtained
in [11, Theorem 5.3]. On the other hand, this result is still open for n concurrent lines
in Pn−1 if n ≥ 4.

Proposition 9.15. Let E be a reduced plane cubic curve and P be a simple vector
bundle on E of rank n and multi-degree . Then the following results are true.

(1) The sheaf of Lie algebras A = An, := Ad(P) does not depend on the choice of
P ∈ ME(n, ).

(2) We have: H0(A) = 0 = H1(A). Moreover, this result remains true for an
arbitrary Calabi-Yau curve.

(3) For L ∈ J(E)\{O} we have: H0(A⊗L) *= 0 if and only if L⊗n ∼= O. Moreover,
in this case we have: H0(A⊗ L) ∼= k ∼= H1(A⊗ L).

Proof. The first part follows from the transitivity of the action of J(E) on ME(n, )
(see Theorem 9.14) and the fact that Ad(P) ∼= Ad(P ⊗ L) for any line bundle L (see
Proposition 9.11). The second statement follows from the long exact sequence

0 → H0(A) −→ End(P)
H0(TrP )−−−−−→ H0(O) −→ H1(A) −→ Ext(P ,P) −→ H1(O) → 0,

the isomorphisms End(P) ∼= k ∼= Ext(P ,P), H0(O) ∼= k ∼= H1(O) and the fact that
H0(TrP)( P) = rk(P).

In order to show the last statement, note that we have the exact sequence

0 −→ H0(A⊗ L) −→ Hom(P ,P ⊗ L) −→ H0(L)

and H0(L) = 0. By Theorem 9.14 we know that Hom(P ,P ⊗ L) = 0 unless L⊗n ∼= O.
In the latter case, H0(A⊗L) ∼= End(P) ∼= k. Since A⊗L is a vector bundle of degree
zero, by the Riemann-Roch formula we obtain that H1(A⊗ L) ∼= k. !

9.4. Residues and traces. Let E, Ω, w and x be as at the beginning of the section.
First recall that we have the following canonical short exact sequence

(9.14) 0 −→ Ω −→ Ω(x)
resx−−→ kx −→ 0.

Choosing a non-zero section w ∈ H0(Ω), we get the induced short exact sequence

(9.15) 0 −→ O −→ O(x) −→ kx −→ 0.
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Hence, for any vector bundle F we get a short exact sequence of coherent sheaves

(9.16) 0 −→ F ı−→ F(x)
resFx−−→ F ⊗ kx −→ 0.

Next, recall the following result relating categorical traces with the usual trace of an
endomorphism of a finite dimensional vector space.

Proposition 9.16. In the above notation, the following results are true.

(1) There is an isomorphism of functors δx : Hom(kx, − ⊗ kx) −→ Ext(kx, − )
from the category of vector bundles on E to the category of vector spaces over
k, given by the boundary map induced by the short exact sequence (9.16).

(2) For any vector bundle F on E and morphisms b : F −→ kx, a : kx −→ F ⊗ kx,
we have the equality:

(9.17) tw
(
TrF(δx(a) ◦ b)

)
= tr(a ◦ bx),

where TrF : Ext(F ,F) −→ H1(O) is the trace map and tw is the composition
H0(O)

w−→ H0(Ω)
t−→ k of the isomorphism induced by w and the canonical

map t described in [14, Subsection 4.3].

Comment on the proof. The first part of the statement is just [14, Lemma 4.18]. The
content of the second part is explained by the following commutative diagram:

0 ## F ##

!!

Q ##

!!

F ##

b
!!

0

0 ## F ##

!!

R ##

!!

kx
##

a

!!

0

0 ## F ı ## F(x)
resFx ## F ⊗ kx

## 0.

The lowest horizontal sequence of this diagram is (9.16). The middle sequence corre-
sponds to the element δx(a) ∈ Ext(kx,F) and the top one corresponds to δx(a) ◦ b ∈
Ext(F ,F). The endomorphism a ◦ bx ∈ End(F

∣∣
x
) is the induced map in the fiber of F

over x. The equality (9.17) follows from [14, Lemma 4.20]. !
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Proposition 9.17. The following diagram of vector spaces is commutative.

Hom(F ,kx)⊗ Ext(kx,F)
⊗ S ## Hom(F ,kx)⊗ Hom(F ,kx)∗

Hom(F ,kx)⊗ Hom(kx,F ⊗ kx)

⊗ δFx

++

◦
!!

⊗ tr ## Hom(F ,kx)⊗ Hom(F ⊗ kx,kx)∗

⊗ can

++

ev
!!

Lin(F
∣∣
x
,F

∣∣
x
)

Y1 ## End
(
Lin(F

∣∣
x
, k)

)
.

Here, S is given by (8.3), δFx is the isomorphism from Proposition 9.16, ◦ is the com-
position of morphisms composed with taking the induced map in the fiber over x, Y1 is
the canonical isomorphism of vector spaces from Lemma 9.2, ev and tr are canonical
isomorphisms of vector spaces and can is the isomorphism induced by resFx .

Proof. The commutativity of the top square is given by [14, Lemma 4.21]. The com-
mutativity of the lower square can be easily verified by diagram chasing. !
As a consequence, we get the following result.

Lemma 9.18. The following diagram of vector spaces is commutative.

Hom(F ,kx)⊗ Ext(kx,F)
S ##

T

!!

End
(
Hom(F ,kx)

)

!!

K
S ##

T
!!

# $

,,,,,,,,,,,,,,,,,,,,
sl

(
Hom(F ,kx)

)% &

----------------

!!

sl(F
∣∣
x
)

Y1 ##
'(

$$%%%%%%%%%%%%%%%
sl

(
Lin(F

∣∣
x
,k)

)
) *

%%&&&&&&&&&&&&&&

End(F
∣∣
x
) Y ## End

(
Lin(F

∣∣
x
,k)

)

In this diagram, S is the isomorphism induced by the Serre duality (8.3), Y and Y1

are canonical isomorphisms from Lemma 9.3, K is the subspace of Hom(F ,⊗kx) ⊗
Ext(kx,F) defined in (9.3), T is the composition of ⊗ (δFx )−1 from Proposition 9.17
and ◦, whereas T is the restriction of T . The remaining arrows are canonical morphisms
of vector spaces.

Proof. Commutativity of the big square is given by Proposition 9.17. For the left small
square it follows from the equality (9.17) whereas the commutativity of the remaining
parts of this diagram is obvious. !
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9.5. Algebraic versus geometric Massey products. Let E, P , x and y be as at
the beginning of this section. In what follows, we shall frequently use the notation
A := Ad(P) and E := End(P).

Lemma 9.19. We have a canonical isomorphism of vector spaces

(9.18) resx := H0(resAx ) : H0
(
A(x)

)
−→ A

∣∣
x

induced by the short exact sequence (9.16). Moreover, we have the canonical morphism

(9.19) evy := H0(evAy ) : H0
(
A(x)

)
−→ A

∣∣
y

obtained by composing the induced map in the fibers with the canonical isomorphism
A(x)

∣∣
y
−→ A

∣∣
y
. When E is a reduced plane cubic curve, evy is an isomorphism if and

only if n ·
(
[x]− [y]

)
*= 0 in J(E), where n = rk(P).

Proof. The short exact sequence

0 −→ A ı−→ A(x)
resAx−→ A⊗ kx −→ 0

yields the long exact sequence

0 −→ H0(A) −→ H0
(
A(x)

) resx−−→ A
∣∣
x
−→ H1(A).

Thus, the first part of the statement follows from the vanishing H0(A) = 0 = H1(A)
given by Proposition 9.15.
In order to show the second part note that we have the canonical short exact sequence

0 −→ O(−y) −→ O
evy−→ ky −→ 0

yielding the short exact sequence

0 −→ A(x− y) −→ A(x) −→ A(x)⊗ ky −→ 0.

Hence, we get the long exact sequence

0 −→ H0
(
A(x− y)

)
−→ H0

(
A(x)

) evy−−→ A
∣∣
y
−→ H1

(
A(x− y)

)
.

Since the dimensions of H0
(
A(x)

)
and A

∣∣
y

are the same, evy is an isomorphism if and
only if H0

(
A(x − y)

)
= 0. By Proposition 9.15 this vanishing is equivalent to the

condition n ·
(
[x]− [y]

)
*= 0 in J(E). !

Now we give a proof of the following key result, stated for the first time in [37, Theorem
4].
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Theorem 9.20. In the notation as at the beginning of this section, the following dia-
gram of vector spaces is commutative:

(9.20)

sl
(
Hom(P ,kx)

)

mx,y

!!

A
∣∣
x

Y 1..

H0
(
A(x)

)
resx

++

evy

!!

pgl
(
Hom(P ,ky)

)
A

∣∣
y
.

Y 2..

In this diagram, mx,y is the linear map (9.7) induced by the triple product in Perf(E),
resx and evy are the linear maps (9.18) and (9.19), whereas Y 1 and Y2 are obtained by
composing the canonical isomorphisms Y1 and Y2 from Lemma 9.3 with the canonical
isomorphisms induced by Hom(P , kz) −→ Lin

(
P

∣∣
z
, k

)
for z ∈ {x, y}.

We split the proof of this theorem into several logical steps.
Step 1. First note that we have a well-defined linear map

ı! : Hom
(
P ,P(x)

)
−→ End

(
Hom(P ,ky)

)

defined as follows. Let g ∈ Hom
(
P ,P(x)

)
and h ∈ Hom(P ,ky) be arbitrary morphisms.

Then there exists a unique morphism h̃ ∈ Hom(P ,ky) such that ı ◦ h̃ = h, where
ı : P −→ P(x) is the canonical inclusion. Then we set: ı!(g)(h) = h̃ ◦ g. It follows from
the definition that ı!(ı) = Hom(P,ky). This yields the following result.

Lemma 9.21. We have a well-defined linear map

(9.21) ı̄! :
Hom

(
P ,P(x)

)

〈ı〉 −→ pgl
(
Hom(P ,ky)

)

given by the rule: ı̄!(ḡ) = h (→ g ◦ h̃.

Lemma 9.22. The canonical morphism of vector spaces

(9.22)  : H0
(
A(x)

)
−→

Hom
(
P ,P(x)

)

〈ı〉
given by the composition

H0
(
Ad(P)(x)

)
↪→ H0

(
End(P)(x)

)
−→ Hom

(
P ,P(x)

)
−→

Hom
(
P ,P(x)

)

〈ı〉
is an isomorphism.
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Proof. The short exact sequences (9.12) and (9.15) together with the vanishing H0(A) =
0 = H1(A) imply that we have the following commutative diagram

0 ## H0(O) ## H0
(
O(x)

) 0 ## k ## H1(O)

0 ## H0(E) ##

++

H0
(
E(x)

)

++

## E
∣∣
x

tr
++

## H1(E)

++

0 ## 0

++

## H0
(
A(x)

)

++

resx ## A
∣∣
x

++

## 0.

++

The fact that  is an isomorphism follows from a straightforward diagram chase. !

Lemma 9.23. The following diagram is commutative.

Hom
(
P ,P(x)

) evy ##

ı!

!!

End(P
∣∣
y
)

Y
!!

End
(
Hom(P ,ky)

) can ## End
(
Lin(P

∣∣
y
,k)

)
.

Proof. The result follows from a straightforward diagram chase. !

Proposition 9.24. The following diagram is commutative.

(9.23)

H0
(
A(x)

) evy ##



!!

sl(P
∣∣
y
)

Y2

!!
Hom

(
P ,P(x)

)

〈ı〉
ı̄! ## pgl

(
Hom(P ,ky)

)
## pgl

(
Lin(P

∣∣
y
,k)

)
.

In particular, if E is a reduced plane cubic curve then ı̄! is an isomorphism if and only
if n ·

(
[x]− [y]

)
*= 0 in J(E).
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Proof. Note that the following diagram is commutative:

sl
(
P

∣∣
y

)
+ ! ## End(P

∣∣
y
)

Y

//.................................

H0
(
A(x)

)
evy

++

+ ! ##


))///////////

Hom
(
P ,P(x)

) ı! ##

!!

evy

++

End
(
Hom(P ,ky)

)
##

!!

End
(
Lin(P

∣∣
y
,k)

)

!!
Hom

(
P ,P(x)

)

〈ı〉
ı̄! ## pgl

(
Hom(P ,ky)

)
## pgl

(
Lin(P

∣∣
y
,k)

)
.

Indeed, the right top square is commutative by Lemma 9.23, the commutativity of the
remaining parts is straightforward. This implies that the diagram (9.23) is commuta-
tive, too.

Next, observe that all maps in the diagram (9.23) but ı̄! and evy are isomorphisms.
By Lemma 9.19, the map evy is an isomorphism if and only if n ·

(
[x]− [y]

)
*= 0 in J(E).

This proves the second part of this Proposition. !
Note that from the exact sequence (9.16) we get the induced map

R := H0
(
resEnd(P)

x

)
: Hom

(
P ,P(x)

)
−→ End

(
P

∣∣
x

)

sending an element g ∈ Hom
(
P ,P(x)

)
to

(
resPx ◦ g)x ∈ End

(
P

∣∣
x

)
. Clearly, R(ı) = 0,

thus we obtain the induced map

(9.24) R :
Hom

(
P ,P(x)

)

〈ı〉 −→ End
(
P

∣∣
x

)
.

Lemma 9.25. In the above notation, the following statements are true.
(1) Im(R) = sl

(
P

∣∣
x

)
.

(2) Moreover, the map R :
Hom

(
P ,P(x)

)

〈ı〉 −→ sl
(
P

∣∣
x

)
is an isomorphism.

Proof. The result follows from the commutativity of the diagram

H0
(
Ad(P)(x)

) resx ##



!!

sl
(
P

∣∣
x

)
"!

!!Hom
(
P ,P(x)

)

〈ı〉
R ## End

(
P

∣∣
x

)

and the facts that resx and  are isomorphisms. !
Step 2. The next result is the key part of the proof of Theorem 9.20.
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Proposition 9.26. The following diagram is commutative.

(9.25)

sl
(
P

∣∣
x

) T ## K
MH

%%&&&&&&&&&&&&&&&&&&&&&&

Hom
(
P ,P(x)

)

〈ı〉

R

++

ı! ## pgl
(
Hom(P ,ky)

) r̄H ## Lin
(
H, Hom(P ,ky)/H

)
.

Proof. We show this result by diagram chasing. Recall that the vector space K is
the linear span of the simple tensors f ⊗ ω ∈ Hom(P ,kx) ⊗ Ext(kx,P) such that
ω ◦ f = 0. Let 0 −→ P κ−→ Q p−→ kx −→ 0 be a short exact sequence corresponding
to an element ω ∈ Ext(kx,P). Recall that by Proposition 9.16 there exists a unique
a ∈ Hom(kx,P ⊗ kx) such that ω = δx(a).

Since Hom(kx,ky) = 0 = Ext(kx,ky), for any h ∈ Hom(P ,ky) there exist unique
elements h̃ ∈ Hom(Q,ky) and h̃′ ∈ Hom

(
P(x),ky

)
such that the following diagram is

commutative:

(9.26)

P

f

!!

f̃

0000000000000000000000

0 ## P κ ##

h 111
11

11
11

1

P

!!

Q
p

##

t

!!

h̃2222
22

22
22

2
kx

##

a

!!

0

ky

0 ## P ı ##

h
33''''''''

P(x)

h̃′
4433333333

resPx ## P ⊗ kx
## 0.

Although a lift f̃ ∈ Hom(P ,Q) is only defined up to a translation f̃ (→ f̃ +λκ for some

λ ∈ k, we have a well-defined element t ◦ f̃ ∈ Hom
(
P ,P(x)

)

〈ı〉 such that R
(
t ◦ f̃

)
= a◦fx.

By definition, T (a ◦ fx) = f ⊗ ω. It remains to observe that
(
r̄H ◦ ı̄!([tf̃ ])

)
(h) = [h̃′tf̃ ] = [h̃f ] =

(
MH(f ⊗ ω)

)
(h).

Since R and T are isomorphisms and the vector space K is generated by simple tensors,
this concludes the proof. !
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Step 3. Now we are ready to proceed with the proof of Theorem 9.20. Note that the
following diagram is commutative.

sl
(
Hom(P ,kx)

) can1 ## sl
(
Lin(P

∣∣
x
,k)

)

K

S
55))))))))))))))))))))

MH

!!

emx,y

6644444444444444444444444444444 sl(P
∣∣
x
)

Y1

77((((((((((((
T..

Hom
(
P ,P(x)

)

〈ı〉

R
8855555555555

ı̄!

99666666666666

H0
(
A(x)

)
..

resx

++

evy

!!

pgl
(
Hom(P ,ky)

)

r̄H$$))))))))))))))))

can2 %%,,,,,,,,,,,,,

Lin
(
H, Hom(P ,ky)/H

)
pgl

(
Lin(P

∣∣
y
,k)

)
sl

(
P

∣∣
y

)Y2..

Indeed, by Lemma 9.18 we have the equality Y1◦T = can1◦S, which gives commutativity
of the top square. Next, the equality r̄H ◦ m̃x,y = MH just expresses the commutativity
of the diagram (9.9). The equality R ◦  = resx follows from the definition of the map
R, see (9.24).

The equality Y2 ◦ evy = can2 ◦ ı̄! ◦  is given by Proposition 9.24, yielding the com-
mutativity of the right lower part. Finally, by Proposition 9.26 we have the equality
r̄H ◦ ı̄! = MH ◦ T ◦ R. Since this equality is true for any one-dimensional subspace
H ⊆ Hom(P ,ky), Lemma 9.4 implies that m̃x,y ◦ T ◦ R = ı̄!. This finishes the proof of
commutativity of the above diagram.

It remains to conclude that the commutativity of the diagram (9.20) follows as well
and Theorem 9.20 is proven. !

Corollary 9.27. Let E be an elliptic curve over k, P a simple vector bundle on E,
A = Ad(P) and x, y ∈ R two distinct points. Let rx,y ∈ A

∣∣
x
⊗A

∣∣
y

be the image of the
linear map evy ◦ res−1

x ∈ Lin(A
∣∣
x
,A

∣∣
y
) under the linear isomorphism Lin(A

∣∣
x
,A

∣∣
y
) −→

A
∣∣
x
⊗A

∣∣
y

induced by the Killing form A
∣∣
x
×A

∣∣
x
−→ k, (a, b) (→ tr(a ◦ b). Then rx,y is

a solution of the classical Yang-Baxter equation: for any pairwise distinct points x1, x2

and x3 of E we have:

(9.27)
[
r12
x1,x2

, r13
x1,x3

]
+

[
r12
x1,x2

, r23
x2,x3

]
+

[
r12
x1,x2

, r13
x1,x3

]
= 0,
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where both sides of the above identity are viewed as elements of A
∣∣
x1
⊗ A

∣∣
x2
⊗ A

∣∣
x3

.
Moreover, the tensor rx1,x2 is unitary:

(9.28) rx2,x1 = −τ
(
rx1,x2

)
,

where τ : A
∣∣
x1
⊗A

∣∣
x2
−→ A

∣∣
x2
⊗A

∣∣
x1

is the map permuting both factors.

Proof. By Theorem 9.20, the tensor rx,y is the image of the tensor mx,y from (9.7) under
the isomorphism

pgl
(
Hom(P ,kx)

)
⊗ pgl

(
Hom(P ,ky)

) Y 2⊗Y 2−−−−→ A
∣∣
x
⊗A

∣∣
y
.

Since Y 2 is an anti-isomorphism of Lie algebras, the equality (9.27) is a corollary of
(9.10). In the same way, the equality (9.28) is a consequence of (9.11). !
Our next goal is to generalize Corollary 9.27 to the case of singular Weierstraß cubic
curves.

9.6. Genus one fibrations and the CYBE. We start with the following geometric
data.

• Let E
p−→ T be a flat projective morphism of relative dimension one between

algebraic varieties. We denote by Ĕ the regular locus of p.
• We assume there exists a section ı : T → Ĕ of p.
• Moreover, we assume that for all points t ∈ T the fiber Et is an irreducible

Calabi-Yau curve.
• The fibration E

p−→ T is embeddable into a smooth fibration of projective
surfaces over T and ΩE/T

∼= OE.

Example 9.28. Let ET ⊂ P2 × A2 −→ A2 =: T be the elliptic fibration given by the
equation zy2 = 4x3 + g2xz2 + g3z3 and let ∆(g2, g3) = g3

2 + 27g2
3 be the discriminant of

this family. This fibration has a section (g2, g3) (→
(
(0 : 1 : 0), (g2, g3)

)
and satisfies the

condition ΩE/T
∼= OE.

The following result is well-known.

Lemma 9.29. Consider (n, d) ∈ N × Z such that gcd(n, d) = 1. There exists P ∈
VB(E) such that for any t ∈ T its restriction P

∣∣
Et

is simple of rank n and degree d.

Sketch of the proof. Let Σ := ı(T ) ⊂ E and I∆ be the structure sheaf of the diagonal
∆ ⊂ E ×T E. Let FMI∆ be the Fourier-Mukai transform with the kernel I∆. By
[16, Theorem 2.12], FMI∆ is an auto-equivalence of the derived category FMI∆ . By
[15, Proposition 4.13(iv)] there exists an auto-equivalence F of the derived category
Db

Coh(E), which is a certain composition of the functors FMI∆ and − ⊗O(Σ) such that
F(OΣ) ∼= P [0], where P is a vector bundle on E having the required properties. !



56

Now we fix the following notation. Let P be as in Lemma 9.29 and A = Ad(P).
Next, we set X := E ×T Ĕ ×T Ĕ and B := Ĕ ×T Ĕ. Let q : X −→ B be the
canonical projection, ∆ ⊂ Ĕ ×T Ĕ the diagonal, B := B \ ∆ and X := q−1(B).
The elliptic fibration q : X −→ B has two canonical sections hi, i = 1, 2, given by
hi(y1, y2) = (yi, y1, y2). Let Σi := hi(B) and A be the pull-back of A on X.

Note that the relative dualizing sheaf Ω = ΩX/B is trivial. Similarly to (9.14) one
has the following canonical short exact sequence

(9.29) 0 −→ Ω −→ Ω(Σ1)
resΣ1−→ OΣ1 −→ 0,

see [14, Subsection 3.1.2] for a precise construction. By the assumptions from the
beginning of this section, there exists an isomorphism OX −→ ΩX/B induced by a
nowhere vanishing section w ∈ H0(ΩE/T ). It gives the following short exact sequence

(9.30) 0 −→ A −→ A(Σ1)
resAΣ1−→ A

∣∣
Σ1
−→ 0.

In a similar way, we have another canonical sequence

(9.31) 0 −→ A(Σ1 − Σ2) −→ A(Σ1) −→ A(Σ1)
∣∣
Σ2
−→ 0.

Proposition 9.30. In the above notation, the following results are true.
(1) We have the vanishing q∗(A) = 0 = R1q∗(A).
(2) The coherent sheaf q∗

(
A(Σ1)

)
is locally free.

(3) Moreover, we have the morphism of locally free sheaves on B given by the com-
position q∗

(
A(Σ1)

)
−→ q∗

(
A(Σ1)

∣∣
Σ2

)
−→ q∗

(
A

∣∣
Σ2

)
, which is an isomorphism

outside of the closed subset

(9.32) ∆n :=
{
(t, x, y)

∣∣ n ·
(
[x]− [y]

)
= 0 ∈ J(Et)

}
⊂ B.

Proof. Let z = (t, x, y) ∈ B be an arbitrary point. By the base-change formula we
have: Lı∗z

(
Rq∗(A)

) ∼= RΓ(A
∣∣
Et

) = 0, where the last vanishing is true by Proposition
9.15. This proves the first part of the theorem.

Thus, applying q∗ to the short exact sequence (9.30), we get an isomorphism

(9.33) res1 := q∗
(
resAΣ1

)
: q∗

(
A(Σ1)

)
−→ q∗

(
A

∣∣
Σ1

)
.

For i = 1, 2, let pi : B := Ĕ × Ĕ −→ E be the composition of i-th canonical projection
with the canonical inclusion Ĕ ⊆ E. It is easy to see that we have a canonical isomor-
phism γ : q∗

(
A

∣∣
Σi

)
−→ p∗i (A). This shows that the coherent sheaf q∗

(
A(Σ1)

)
is locally

free on B.
To prove the last part, consider the canonical morphism of vector bundles q∗

(
A

∣∣
Σ2

)
−→

q∗
(
A(Σ1)

∣∣
Σ2

)
. This is an isomorphism on B. Moreover, by Proposition 9.15, the subset
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∆n is precisely the support of the complex Rq∗
(
A(Σ1 −Σ2)

)
. In particular, this shows

that ∆n is a proper closed subset of B. Finally, applying q∗ to the short exact sequence
(9.31), we get a morphism of locally free sheaves

(9.34) ev2 : q∗
(
A(Σ1)

)
−→ p∗2(A),

which is an isomorphism on the complement of ∆n. This proves the proposition. !
Theorem 9.31. In the above notation, let r ∈ Γ

(
B, p∗1(A)⊗p∗2(A)

)
be the meromorphic

section which is the image of ev2 ◦ res−1
1 under the canonical isomorphism

Hom
(
p∗1(A), p∗2(A)

)
−→ H0

(
p∗1(A)∨ ⊗ p∗2(A)

)
−→ H0

(
p∗1(A)⊗ p∗2(A)

)
.

The last isomorphism above is induced by the canonical isomorphism A −→ A∨ from
Proposition 9.11. Then the following statements are true.

(1) The poles of r lie on the divisor ∆. In particular, r is holomorphic on B.
(2) Moreover, r is non-degenerate on the complement of the set ∆n.
(3) The section r satisfies a version of the classical Yang-Baxter equation:

(9.35)
[
r12, r13

]
+

[
r12, r23

]
+

[
r13, r23

]
= 0,

where both sides are viewed as elements of H0
(
p∗1(A)⊗ p∗2(A)⊗ p∗3(A)

)
.

(4) Moreover, the section r is unitary. This means that

(9.36) σ∗(r) = −r̃ ∈ H0
(
p∗2(A)⊗ p∗1(A)

)
,

where σ is the canonical involution of B = Ĕ ×T Ĕ and r̃ is the section corre-
sponding to the morphism ev1 ◦ res−1

2 .
(5) In particular, the statement of Corollary 9.27 is also true for singular Weierstraß

cubic curves.

Proof. By Proposition 9.30, we have the following morphisms in VB(B):

p∗1(A)
res1←− q∗

(
A(Σ1)

)
−→ q∗

(
A(Σ1)

∣∣
Σ2

) ı←− q∗
(
A

∣∣
Σ2

) γ−→ p∗2(A).

Moreover, γ is an isomorphism, whereas res1 and ı become isomorphisms after restricting
on B. This shows that the section r ∈ Γ

(
B, p∗1(A)⊗p∗2(A)

)
is indeed meromorphic with

poles lying on the diagonal ∆. Since ev2 ◦ res−1
1 is an isomorphism on B\∆n, the section

r is non-degenerate on B \∆n.
To prove the last two parts of the theorem, assume first that the generic fiber of E

is smooth. Let t ∈ T be such that Et is an elliptic curve. Then in the notation of
Corollary 9.27, for any z = (t, x, y) ∈ B have have:

ı∗z(r) = rx,y ∈
(
A

∣∣
Et

)∣∣∣
x
⊗

(
A

∣∣
Et

)∣∣∣
y
,
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where we use the canonical isomorphism

ı∗z
(
p∗1(A)⊗ p∗2(A)

)
−→

(
A

∣∣
Et

)∣∣∣
x
⊗

(
A

∣∣
Et

)∣∣∣
y
.

Let x1, x2 and x3 be three pairwise distinct points of Et and x̄ = (t, x1, x2, x3) ∈
Ĕ ×T Ĕ ×T Ĕ. By Corollary 9.27 we have:

(9.37) ı∗x̄

([
r12, r13

]
+

[
r12, r23

]
+

[
r13, r23

])
= 0.

In a similar way, we have the equality:

(9.38) ı∗z
(
σ∗(r) + r̃

)
= 0.

Since the section r is continuous on B, the equalities (9.37) and (9.38) are true for the
singular fibers of E as well. In particular, the statement of Corollary 9.27 is also true for
singular Weierstraß cubic curves. This implies that Theorem 9.31 is true for arbitrary
genus one fibrations satisfying the conditions from the beginning of this section. !

Corollary 9.32. Let E
p−→ T , ı : T −→ E and w ∈ H0

(
ΩE/T

)
be as at the beginning

of the section, P be a relatively stable vector bundle on E of rank n and degree d (recall
that we automatically have gcd(n, d) = 1) and A = Ad(P). For any closed point of
the base t ∈ T let U be a small neighborhood of the point ı(t) ∈ Et0, V be a small
neighborhood of

(
t, ı(t), ı(t)

)
∈ E ×T E, O = Γ(U,O) and M = Γ(V, M), where M is

the sheaf of meromorphic functions on E×T E. Taking an isomorphism of Lie algebras
ξ : A(U) −→ sln(O), we get the tensor-valued meromorphic function

(9.39) rξ = rξ
n,d ∈ sln(M)⊗M sln(M),

which is the image of the canonical meromorphic section r ∈ Γ
(
E×T E, p∗1(A)⊗p∗2(A)

)

from Theorem 9.31. Then the following statements are true.
(1) The poles of rξ lie on the diagonal ∆ ⊂ E ×T E.
(2) Moreover, for a fixed t ∈ T this function is a unitary solution of the classical

Yang-Baxter equation (2.1) in variables (y1, y2) ∈ {t}×(U∩Et)×(U∩Et) ⊂ V ⊂
E ×T E. In other words, we get a family of solutions rξ

t (y1, y2) of the classical
Yang-Baxter equation, which is analytic as the function of the parameter t ∈ T .

(3) Let ξ′ : A(U) −→ sln(O) be another isomorphism of Lie algebras and ρ :=
ξ′ ◦ ξ−1. Then we have the following commutative diagram:

A(U)
ξ

::777777777 ξ′

;;888888888

sln(O)
ρ

## sln(O).
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Moreover, for any (t, y1, y2) ∈ V \∆ we have:

(9.40) rξ′(y1, y2) =
(
ρ(y1)⊗ ρ(y2)

)
· rξ(y1, y2) ·

(
ρ−1(y1)⊗ ρ−1(y2)

)
.

In other words, the solutions rξ and rξ′ are gauge equivalent.

Remark 9.33. One possibility to generalize Theorem 9.31 and Corollary 9.32 for an
arbitrary Calabi-Yau curve E can be achieved by showing that any simple vector bundle
on E can be obtained from the structure sheaf O by applying an appropriate auto-
equivalence of the triangulated category Perf(E). Some progress in this direction has
been recently achieved by Hernández Ruipérez, López Martín, Sánchez Gómez and
Tejero Prieto in [27].
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Part 3. Vector bundles on degenerations of elliptic curves

In this part we study vector bundles on elliptic curves and a cuspidal cubic curve.
To be more precise, Section 10 contains the theory of semi-stable vector bundles on
a one-dimensional complex torus as presented in [12, Subsection 3.1]. The remaining
sections of this part deal with the theory of simple vector bundles on the cuspidal cubic
curve E = V (zy2 − x3). The techniques employed for this study, i.e. the theory of the
category of triples and the translation to matrix problems, were developed by Drozd
and Greuel [19] and further elaborated by Bodnarchuk and Burban, see for instance [5]
and [10]. As in [8], we present the study of simple vector bundles on E in terms of the
representation theory of differential biquivers.
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10. Vector bundles on a one-dimensional complex torus

Let τ ∈ H, Λ = Z + τZ ⊂ C and E = C/Λ be the corresponding complex torus. In
this section we recall the basic techniques for dealing with holomorphic vector bundles
on E.

Definition 10.1. Let A : C → GLn(C) be a holomorphic function satisfying the
condition A(z + 1) = A(z) for all z ∈ C. Such a function A, called automorphy factor,
defines the following topological space E(A) := C× Cn/ ∼, where (z, v) ∼ (z + 1, v) ∼
(z + τ, A(z)v). Note that we have a Cartesian diagram of complex manifolds

C× Cn ##

pr1
!!

E(A)

!!
C π ## E

and E(A) is a vector bundle of rank n on the torus E.

Remark 10.2. Let π : C → C/Λ = E be the quotient map. Another way to define the
locally free sheaf E(A) is the following.

The open subsets U ⊂ E for which all connected components of π−1(U) map iso-
morphically to U , form a basis of the topology of E. For such U , we let U0 be
a connected component of π−1(U) and denote Uγ = γ + U0 for all γ ∈ Λ. Then
π∗On

C
(
U

)
=

∏
γ∈ΛOn

C(Uγ) and we define

E(A)
(
U

)
:=

{
(Fγ(z))γ∈Λ ∈ π∗(On

C)
(
U

) ∣∣∣∣
Fγ+1(z + 1) = Fγ(z)
Fγ+τ (z + τ) = A(z)Fγ(z)

}
.

In this way we get an embedding mA : E(A) ⊂ π∗On
C as well as a trivialization γA of

π∗
(
E(A)

)
given by the composition π∗E(A)

π∗(mA)−−−−→ π∗π∗On
C

can−→ On
C.

The following classical result is due to A. Weil.

Theorem 10.3. Let E = C/Λ be a one-dimensional complex torus.
(1) For any holomorphic rank n vector bundle E on the torus E there exists an

automorphy factor A : C → GLn(C) such that E ∼= E(A).
(2) For any automorphy factors A : C → GLn(C) and B : C → GLm(C) we have:

Hom
(
E(A), E(B)

) ∼= SolA,B :=




Φ : C → Matm×n(C)

∣∣∣∣∣∣

Φ is holomorphic
Φ(z + 1) = Φ(z)
Φ(z + τ)A(z) = B(z)Φ(z)






and E(A)⊗ E(B) ∼= E(A⊗B).
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Proof. This result is a corollary of the monoidal equivalence of the category of Λ-
equivariant holomorpic vector bundles on C and holomorphic vector bundles on the
quotient torus E = C/Λ. See [4] or [28] for a detailed proof. !
Corollary 10.4. For any pair of automorphy factors A, S : C → GLn(C) we have an
isomorphism of vector bundles E(A) ∼= E(B), where B(z) = S(z + τ)−1A(z)S(z). In
particular, we have an isomorphism E(A) ∼= E(Â), where Â(z) = exp(2πiτ)A(z).

In the next step, we need an explicit description of the indecomposable semi-stable
vector bundles on E of degree zero.

Theorem 10.5. Let E = C/Λ be a complex torus.
(1) The map C → Pic(E) assigning to λ ∈ C the line bundle Lλ := E

(
exp(2πiλ)

)

yields a bijection between the points of E and the isomorphy classes of degree
zero line bundles on E.

(2) For any m ≥ 1 let

Jm = Jm(1) =





1 1 0 . . . 0
0 1 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . 1 1
0 0 . . . 0 1




∈ GLm(C).

Then E(Jm) is isomorphic to the Atiyah bundle Am defined as follows. For
m = 1 we set A1 = O and for m ≥ 2 the vector bundle Am is recursively defined
by the following property: it is the unique (up to an isomorphism) vector bundle
occurring as the middle term of a non-split short exact sequence

0 −→ Am−1 −→ Am −→ O −→ 0.

(3) Let B ∈ GLn(C) and J = Jm1(µ1) ⊕ · · · ⊕ Jmt(µt) be the Jordan normal form
of B with µl = exp(2πiλl) for some λl ∈ C, 1 ≤ l ≤ t. Then we have:

E(B) ∼= (Lλ1 ⊗Am1)⊕ · · · ⊕ (Lλt ⊗Amt).

In particular, E(B) is a semi-stable vector bundle of degree zero on the torus E,
whose Jordan-Hölder quotients are Lλ1 , . . . ,Lλt. Moreover, for any semi-stable
vector bundle E of rank n and degree zero on the torus E there exists a matrix
B ∈ GLn(C) such that E ∼= E(B).

Proof. A proof of the first two statements can for instance be found in [14, Section
8.1] or in [28]. To show the third one observe that by Corollary 10.4 we have an
isomorphism E(B) ∼= E(J). Since for any λ ∈ C and m ∈ N we have an isomorphism
E
(
Jm(λ)

) ∼= Lλ ⊗Am, we have: E(J) ∼= (Lλ1 ⊗Am1) ⊕ · · · ⊕ (Lλt ⊗Amt). Hence, the
result follows from Atiyah’s classification of vector bundles on E [1]. !
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Corollary 10.6. Let A ∈ GLn(C) and G(A) =
{
exp(2πiλ1), . . . , exp(2πiλn)

}
be its

spectrum, B ∈ GLm(C) and G(B) =
{
exp(2πiµ1), . . . , exp(2πiµm)

}
be its spectrum.

Assume that λk − µl /∈ Λ for all 1 ≤ k ≤ n and 1 ≤ l ≤ m. Then we have:
Hom

(
E(A), E(B)

)
= 0 = Ext1

(
E(A), E(B)

)
.

Proof. The assumption on the eigenvalues of A and B implies that the degree zero
semi-stable vector bundles E(A) and E(B) have no common Jordan-Hölder quotients.
From this fact it follows that

Hom
(
E(A), E(B)

)
= 0 = Hom

(
E(B), E(A)

) ∼= Ext1
(
E(A), E(B)

)∗
,

where the last isomorphism is given by the Serre duality. !
Lemma 10.7. Let ϕ(z) = exp(−πiτ−2πiz), x ∈ C and [x] be the corresponding divisor
of degree one on E. Then we have an isomorphism:

OE

(
[x]

) ∼= E
(
ϕ(z +

τ + 1

2
− x)

)
.

Proof. A proof of this result can be for instance found in [14, Section 8.1]. !

11. The category of triples and Matrix problems

11.1. The category of Triples. In this subsection, we recall a general technique to
describe vector bundles on singular projective curves, see [6] and [14, Section 5.1] as
well as references therein.

Let X be a reduced singular (projective) curve, π : X̃ −→ X its normalisation,
I := HomO

(
π∗(O eX),O

)
= AnnO

(
π∗(O eX)/O

)
the conductor ideal sheaf. Denote by

η : Z = V (I) −→ X the closed Artinian subspace defined by I (its topological support
is precisely the singular locus of X) and by η̃ : Z̃ −→ X̃ its preimage in X̃, defined by
the Cartesian diagram

(11.1)
Z̃

η̃
##

π̃
!!

X̃

π

!!
Z

η
## X.

In what follows we shall denote ν = ηπ̃ = πη̃.
In order to relate vector bundles on X and X̃ we need the following construction.

Definition 11.1. The category TriX is defined as follows.
(1) Its objects are triples

(
F̃ ,V , m̃

)
, where F̃ ∈ VB eX , V ∈ VBZ and

m̃ : π̃∗V −→ η̃∗F̃
is an isomorphism of O eZ-modules, called the gluing map.
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(2) The set of morphisms HomTriX
(
(F̃1,V1, m̃1), (F̃2,V2, m̃2)

)
consists of all pairs

(f, g), where f : F̃1 −→ F̃2 and g : V1 −→ V2 are morphisms of vector bundles
such that the following diagram is commutative

π̃∗V1
em1 ##

π̃∗(g)

!!

η̃∗F̃1

η̃∗(f)
!!

π̃∗V2
em2 ## η̃∗F̃2.

The main reason to introduce the above Definition is the following result.

Theorem 11.2. Let X be a reduced curve. Then the following results are true.

(1) Let F : VBX −→ TriX be the functor assigning to a vector bundle F the triple
(π∗F , η∗F , m̃F), where m̃F : π̃∗(η∗F) −→ η̃∗(π∗F) is the canonical isomorphism.
Then F is an equivalence of categories.

(2) Let G : TriX −→ Coh(X) be the functor assigning to a triple (F̃ ,V , m̃) the
coherent sheaf F := ker

(
π∗F̃ ⊕ η∗V

(c m)−−−→ ν∗η̃∗F̃
)
, where c = c eF is the canon-

ical morphism π∗F̃ −→ π∗η̃∗η̃∗F̃ = ν∗η̃∗F̃ and m is the composition η∗V
can−→

η∗π̃∗π̃∗V
=−→ ν∗π̃∗V

ν∗(em)−−−→ ν∗η̃∗F̃ . Then the coherent sheaf F is locally free.
Moreover, the functor G is quasi-inverse to F.

For a proof of this result, see [10, Theorem 1.3]. !

Lemma 11.3. Let Ti = (F̃i,Vi, m̃i), i = 1, 2 be a pair of objects of TriX and Fi = G(Ti).
Then we have:

(11.2) F
(
HomX(F1,F2)

) ∼=
(
Hom eX(F̃1, F̃2),HomZ(V1,V2), h(m̃1, m̃2)

)
,

where h(m̃1, m̃2) is the morphism making the following diagram commutative:

π̃∗HomZ(V1,V2)
h(em1,em2)

##

can

!!

η̃∗Hom eX(F̃1, F̃2)

can
!!

Hom eZ(π̃∗V1, π̃∗V2)
cnj(em1,em2)

## Hom eZ(η̃∗F̃1, η̃∗F̃2).

In this diagram, cnj(m̃1, m̃2)(ϕ) = m̃2 ◦ ϕ ◦ m̃−1
1 .
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Proof. Since F and G are quasi-inverse equivalences of categories, Ti
∼=

(
π∗Fi, η∗Fi, m̃Fi

)

for i = 1, 2. Note that we have the following commutative diagram

π̃∗η∗HomX(F1,F2)

can
!!

emHom(F1,F2)
## η̃∗π∗HomX(F1,F2)

can
!!

Hom eZ(π̃∗η∗F1, π̃∗η∗F2)
cnj(emF1 ,emF2 )

## Hom eZ(η̃∗π∗F1, η̃∗π∗F2).

This implies the claim. !

Proposition 11.4. Let T = (F̃ ,V , m̃) ∈ TriX and F = G(T ). Then we have:

(11.3) F
(
Ad(F)

) ∼=
(
Ad(F̃), Ad(V), ad(m̃)

)
,

where ad(m̃) is the morphism making the following diagram commutative:

π̃∗Ad(F)
ad(em)

##

can

!!

η∗Ad(F̃)

can
!!

Ad(π∗F)
cnj(em)

## Ad(η̃∗F̃).

Sketch of the proof. Let F be an arbitrary vector bundle on X. Then the following
diagram of coherent sheaves is commutative:

0

!!

0

!!

0

!!

0 ## Ad(F) ##

!!

π∗Ad(π∗F)⊕ η∗Ad(η∗F) ##

!!

ν∗Ad(ν∗F) ##

!!

0

0 ## End(F) ##

!!

π∗End(π∗F)⊕ η∗End(η∗F) ##

!!

ν∗End(ν∗F) ##

!!

0

0 ## OX
##

!!

π∗O eX ⊕ η∗OZ ##

!!

ν∗(O eZ) ##

!!

0

0 0 0

The middle horizontal sequence in this diagram is exact by Lemma 11.3. It shows that
the first horizontal sequence is exact, too. This proves the formula (11.3). !
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11.2. Reduction to Matrix problems. In this very short subsection, we introduce
the category of Matrix problems.

Definition 11.5. Let MPX be the following Krull-Schmidt category:

• an object of MPX is given by a map m̃ for which there exists a triple
(
F̃ ,V , m̃

)
∈

TriX .
• for two objects m̃1, m̃2 with corresponding triples

(
F̃1,V1, m̃1

)
and

(
F̃2,V2, m̃2

)

respectively, a morphism from m̃1 to m̃2 is given by a pair (η̃∗F, π̃∗f) such that
η̃∗F ◦ m̃1 = m̃2 ◦ π̃∗f , where (F, f) ∈ HomTriX

((
F̃1,V1, m̃1

)
,
(
F̃2,V2, m̃2

))
.

Corollary 11.6. The functor H : TriX → MPX which sends an object
(
F̃ ,V , m̃

)
to

m̃ and a morphism (F, f) to (η̃∗F, π̃∗f) is full and dense.

The reasons for our interest in this category will become obvious in the following sub-
sections.

11.3. Matrix problem for the cuspidal cubic curve. In this subsection, let X = E
be the cuspidal cubic curve given by the equation zy2 = x3 and k = C. Going through
the construction of TriE and MPE in this specific case, we will see that both objects
and morphisms in MPE can actually be interpreted as matrices over C.

First note that X̃ = Ẽ equals P1. We choose homogeneous coordinates (z0 : z1) on
P1. Thus the normalization map is given by π(z0 : z1) = (z2

0z1 : z3
0 : z3

1) and the
preimage of the singular point s = (0 : 0 : 1) ∈ E is π−1(s) = (0 : 1) = ∞. Let
U ′ = {(z0 : z1)| z1 *= 0} be an affine neighbourhood of ∞ ∈ P1 with local coordinate
t = z0/z1 and set U = π(U ′). Then locally π is given by C[U ] = C [t2, t3] ↪→ C[t].
Moreover, Z is the reduced point s with structure sheaf OZ = Cs . Since the conductor
equals I =< t2, t3 > on U , the structure sheaf OZ̃ of the non-reduced point Z̃ = {∞}
is given by R = (C[ε]/ε2)∞. Next, recall the following result:

Theorem 11.7. (Birkhoff-Grothendieck). Any vector bundle E on P1 splits into a direct
sum of line bundles, E ∼= ⊕i∈ZOP1(i)ni. Moreover, the degree gives an isomorphism

deg: Pic(P1)
∼= ## Z.

Thus it follows from Theorem 11.2 that if F ∈ VBE with rkF = n and F(F) =(
F̃ ,V , m̃

)
∈ TriX , then F̃ ∼= ⊕OP1(i)ni with

∑
i∈Z ni = n. Moreover, V ∼= On

Z . Next,
we want to use these results in order to show how to interpret m̃ as a matrix.

By the construction of TriE, m̃ : π̃∗V → η̃∗F̃ is an isomorphism of OZ̃-modules. We
have π̃∗V ∼= On

Ẽ
canonically. We also have η̃∗F̃ ∼= On

Z̃
, but there are some choices
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involved. Indeed, we need to choose trivializations OẼ(i) ⊗ OẼ/I → OZ̃ for each i,
which we will assume to be given by

(11.4) ζ ⊗ 1 (→ pr
(

ζ

zi
1

)

for a local section ζ of OẼ(i). Here pr : C[U ] → C[ε]/ε2 is the map induced by the
canonical map C[t] → C[ε]/ε2, t (→ ε. Thus finally, m̃ can indeed be interpreted as an
element µ of GLn(R). In other words, m̃ corresponds to

µ = µ0 + εµε

with µ0, µε ∈ Matn×n(C). It is easy to see that m̃ being an isomorphism is equivalent
to µ0 ∈ GLn(C).

Let us examine the morphisms in MPE. Since we have chosen coordinates (z0 : z1) on
Ẽ = P1, any morphism OP1(i) → OP1(j) is given by a homogeneous form Q(z0 : z1) of
degree j − i, that is

HomP1 (OP1(i),OP1(j)) ∼= C [z0, z1]j−i .

Thus for two objects
(
F̃1,V1, m̃1

)
and

(
F̃2,V2, m̃2

)
of TriE with F̃1

∼= ⊕OP1(i)ai and

F̃2
∼= ⊕OP1(j)bj , the first part F of a morphism (F, f) :

(
F̃1,V1, m̃1

)
→

(
F̃2,V2, m̃2

)

is simply given by a matrix (Fij) where Fij ∈ Matai×bj

(
C [z0, z1]j−i

)
.

Remark 11.8. Note that if F is an endomorphism, then Fij = 0 for any j > i, so (Fij)
is lower triangular. Moreover, F is an isomorphism if and only if each Fii is invertible.

Due to the chosen trivializations (11.4), any morphism OP1(i) → OP1(j) given by a
homogeneous form Q(z0, z1) of degree j− i induces a map OP1(i)⊗OZ̃ → OP1(j)⊗OZ̃

given by

pr
(
Q(z0 : z1)/z

j−i
1

)
= Q(0 : 1) + ε

dQ

dz0
(0 : 1).

Hence, identifying the gluing matrices m̃1, m̃2 with matrices µ1, µ2 as above, for a mor-
phism (η̃∗F, π̃∗f) : µ1 → µ2 we have

η̃∗F = F (0 : 1) + ε
dF

dz0
(0 : 1) ∈ Mat

(
C [ε] /ε2

)
.

Here we identify F with the induced matrix (Fij) from above in order for this to make
sense. Finally, the second component π̃∗f of a morphism (η̃∗F, π̃∗f) : µ1 → µ2 can be
interpreted as an element of Mat(C) of appropriate size as well.
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11.4. Primary reduction. Using the results from the previous subsections, we show
how to recover families of simple vector bundles of fixed rank and degree on E from the
study of the corresponding matrix problem. As it shall turn out, simple vector bundles
correspond essentially to bricks of a given Matrix problem.

Definition 11.9. A vector bundle F on E is called simple if End(F) ∼= C. By SimpE

we denote the subcategory of simple objects of VBE. Likewise, an object m̃ of MPE is
called a brick if End(m̃) ∼= C and we denote the subcategory of bricks of MPE by MPs

E.

Since we are mostly interested in simple vector bundles on E = V (x3 − y2z), let us
recall the following result:

Lemma 11.10. [14, Lemma 9.6 and 9.7] Let F be a simple vector bundle of rank n on
E and F̃ = π∗F . Then

(11.5) F̃ ∼= OP1(c)n1 ⊕OP1(c + 1)n2

for certain c ∈ Z and n1 + n2 = n. Moreover deg(F) = deg(F̃).

Remark 11.11. Note that if F is a any vector bundle of rank n and degree d on E such
that F̃ = On1

P1 ⊕OP1(1)n2 , then n1 = n− d and n2 = d. Especially, n ≥ d.

Definition 11.12. Let VB0
E denote the full subcategory of VBE satisfying (11.5) for

c = 0. Furthermore, by VBE(n, d) we denote the subcategory of VBE whose objects
have rank n and degree d and let VB0

E(n, d) denote the corresponding subcategory of
VB0

E. Moreover, by Simp0
E and Simp0

E(n, d) we denote the subcategory of simple vector
bundles of VB0

E and VB0
E(n, d) respectively.

Recall that the first part of a morphism (η̃∗F, π̃∗f) in MPE derives from a matrix
F = (Fij)1≤i,j≤2. The induced block decomposition of η̃∗F can be used to define a
certain subcategory of MPE:

Definition 11.13. For any r = (r1, r2) ∈ N2, let MP(r) denote the full subcategory of
MP with objects µ having a block decomposition of the form

µ =

(
A11 A12

A21 A22

)
r1

r2
.

Here each Aij is a matrix over C[ε]/ε2 and we use the notation above to indicate that
Aij is of size ri × rj. By MPs

E(r) we denote the subcategory of bricks of MPs
E(r).

Proposition 11.14. [14, Proposition 9.11] For any n ∈ N and d ∈ Z, the restriction
of the composition VBE

F ## TriE
H ## MPE yields an equivalence of categories

VB0
E (n, d) ∼= MPE(n− d̄, d̄),
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where 0 ≤ d̄ < n is determined by d̄ ≡ d mod n. Especially, we have

Simp0
E (n, d) ∼= MPs

E(n− d̄, d̄).

It follows from the definitions that in the category MPE(r1, r2), the isomorphism class
of an object µ = µ0 + εµε is given by all objects of the form η̃∗F · µ · π̃∗f−1. Choosing
F = id and f = µ0, we see that µ is isomorphic to 1 + εµ′ε where µ′ε = µεµ

−1
0 . Next,

write
µε =

(
(µ′ε)11 (µ′ε)12

(µ′ε)21 (µ′ε)22

)
r1

r2
and let F =

(
1 0

(−µ′ε)21 1

)
r1

r2
.

Then
η̃∗F =

(
1 0
0 1

)
+

(
0 0

(−µ′ε)21 0

)
r1

r2
.

Choosing f = id, we conclude that µ is isomorphic to 1+ εθ where

θ =

(
X1 Y
0 X2

)
r1

r2
.

for certain matrices X1, X2, Y .

Definition 11.15. Let MPE(r) denote the subcategory of MPE(r) with objects of the
form µ = 1+ εθ where

θ =

(
X1 Y
0 X2

)
r1

r2
.

Moreover, let prr denote the projection map on Mat(r1+r2)×(r1+r2)(C) given by
(

X1 Y
M X2

)
r1

r2
(→

(
X1 Y
0 X2

)
r1

r2
.

It is clear that if we want to preserve the form µ = 1+ εθ, we have to restrict to those
morphisms (η̃∗F, π̃∗f) starting in µ which satisfy π̃∗f = (η̃∗F )−1.

Corollary 11.16. [14, Lemma 9.31] The following hold:

(1) In the category MPE(r), the set of morphisms between objects µ = 1 + εθ and
µ′ = 1+ εθ′ is given by

HomMPE(r)
(µ, µ′) = {S ∈ S |prr (Sθ) = prr (θ′S)} ,

where
S =

{(
S1 0
A S2

)
r1

r2

}
⊂ GLr1+r2(C).

(2) The natural inclusion MPE(r) ↪→ MPE(r) is an equivalence of categories.
Combining the results obtained so far yields:
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Corollary 11.17. There is an equivalence of categories VB0
E (n, d) ∼= MPE(n − d̄, d̄).

Especially, we have Simp0
E (n, d) ∼= MPs

E(n − d̄, d̄), where the latter category’s objects
consist of all bricks in MPE(n− d̄, d̄).

12. Differential Biquivers

In this and the next section we explain how to classify objects in VBs
E(n, d). The

first step in solving this problem is the translation to the category of bricks of the cor-
responding matrix problem as stated in Corollary 11.17. The next step is to express
the classification of isomorphism classes of objects in MPs

E(r) in terms of the represen-
tation theory of a certain differential biquiver. Before going into details, we recall some
general notions and results from the theory of differential biquivers.

12.1. Differential biquivers. Recall that a quiver Q is given by a set of vertices I
and for each i, j ∈ I a (possibly empty) set of arrows Q(i, j).

Example 12.1. Let I = {1, 2, 3, 4}. An example for a quiver with vertex set I is given
by

1
##
##

<<!
!!

!!
!!

2

==
>>""

""
""

"

3
))

4

++

Definition 12.2. The category of representations RepQ of a quiver Q with vertex set
I over a field k is defined as follows:

• an object M consists of a collection of k-vector spaces {Mi}i∈I together with
k-linear maps Ma : M(i) → M(j) for each arrow a ∈ Q(i, j).

• a morphism f between a representation M and a representation N is given by
a collection of k-linear maps {fi}i∈I such that for each arrow a : i → j the
following diagram is commutative

Mi
fi ##

M(a)
!!

Ni

N(a)
!!

Mj
fj ## Nj.

To any quiver Q we may associate the path algebra kQ over the field k as follows.
A path is a concatenation of composable arrows, where two arrows a ∈ Q(i, j) and
b ∈ Q(l, m) are called composable if j = l, in which case the concatenation is written
as ba. As a vector space, kQ has a basis given by the set of paths in Q plus the set of
so called trivial paths {ei}i∈I , where ei behaves as a loop at the vertex i with respect
to composition. Multiplication of two basis elements of kQ is given by concatenation,
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the product being zero if the paths are not composable. It is a standard fact from
the representation theory of quivers that ModkQ, the category of modules over kQ, is
equivalent to the category RepQ.

Definition 12.3. Recall the notion of a differential biquiver:

• A biquiver Q = (I,Q0, Q1) is given by a vertex set I and two sets of arrows, Q0

and Q1 such that both (I,Q0) and (I,Q1) are quivers. The elements of Q0 and
Q1 are called solid and dotted arrows respectively.

• Given a biquiver Q = (I,Q0, Q1), we equip the path algebra kQ = k(Q0 ∪Q1)
with a grading as follows:

– to any solid arrow and any trivial path ei we assign the degree zero.
– to any dotted arrow we assign the degree one.
– to any path we assign the degree given by the number of dotted arrows it

contains.
• Given a biquiver Q = (I,Q0, Q1), then a k-linear map ∂ : kQ → kQ is called

differential for Q if it satisfies:
– ∂ raises degree by one and ∂2 = 0
– ∂(ei) = 0 for each trivial path ei

– for any two paths a, b ∈ kQ, the Leibniz rule holds

∂(xy) = ∂(x) y + (−1)deg x x ∂(y).

• A differential biquiver is a tuple (Q, ∂) where Q is a biquiver and ∂ is a differ-
ential for Q.

Next, we will explain the category of representations of a differential biquiver.

Definition 12.4. The category of representations Rep(Q,∂) of a differential biquiver
Q = (I,Q0, Q1) over the field k is defined as follows:

• an object M is given by a representation of the quiver Q0.
• in order to explain morphisms in Rep(Q,∂), we need to introduce another quiver

Γ. The quiver Γ consists of two copies of Q0, denoted Q0 and Q′
0 plus some

additional arrows from vertices of Q0 to vertices of Q′
0. Namely, for each i ∈ I,

there is an arrow wi : i (→ i′ and for each dotted arrow v : i ""# j in Q1, there is a
corresponding arrow v : i → j in Γ. Now a morphism S between representations
M and N is a representation of the quiver Γ such that the restriction of S to
Q0 and Q′

0 are exactly M and N respectively and such that for any solid arrow
a : i → j the following relation holds:

S (∂(a)) = N(a′)S(wi)− S(wj)M(a).

The composition T ◦S of two morphisms S : L → M and T : M → N is defined
as follows:
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– for wi : i → i′: (T ◦ S) (wi) = T (wi) · S(wi).
– for a dotted arrow v : j ""# i, let us write

∂(v) =
∑

α p1up2u
′p3,

where pi are paths of solid arrows and u,u′ are dotted arrows such that
p1up2u′p3 is a path from i to j and α ∈ k. Then

(T ◦ S)(v) = T (wi) · S(v) + T (v) · S(wj) +
∑

α N(p1) · T (u) ·M (p2) · S (u′) · L (p3) .

Finally, let us give the following definitions:
Definition 12.5. Let (Q, ∂) be a differential biquiver and M ∈ Rep(Q,∂). Then the
dimension vector dim(M) is defined to be the vector (dimk Mi)i∈I . Moreover, M is
called a brick if End(M) ∼= k.
12.2. Small reduction.
Definition 12.6. Let (Q, ∂) be a differential biquiver. Then (Q, ∂) is said to be of
BT-type if there exists

• a set of distinguished loops x = {xi ∈ Q0(i, i)| i ∈ I}.
• an injective map v : Q0\x ↪→ Q1 mapping a solid arrow a : i → j to a dotted

arrow va : j ""# i.
such that for each distinguished loop xi ∈ x the following condition holds:

∂ (xi) =
∑

c:·→i

c · vc −
∑

d:i→·

vd · d.

Example 12.7. The following differential biquiver (Q, ∂) is of BT-type for the obvious
choices of x and v:

(Q, ∂) 1x1
))

a

??9
:

; /
<

2 x2@@y
..

with differential given by
∂ (x1) = ya ∂ (x2) = −ay ∂ (a) = 0 .

The reason why we are interested in differential biquivers of BT-type is the following
property:
Proposition 12.8. [8, Proposition 7.2] Let (Q, ∂) be a differential biquiver of BT-type,
b ∈ Q0 and let M ∈ Rep(Q,∂) be a brick. Then M(b) has maximal rank.
As we shall see below, this property of BT-type differential biquivers is essential for the
inductive construction of bricks of a given dimension vector. Moreover, the procedure
will translate to an algorithm for constructing simple vector bundles on a cuspidal cubic
curve.
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12.3. Differential biquiver for the cuspidal cubic curve. Let µ = 1 + εθ ∈
MPE(r),

θ =

(
X1 Y
0 X2

)
r1

r2
.

Then µ is a representation of the differential biquiver given in example 12.7. A straight-
forward comparison of the definitions involved yields the following result:

Lemma 12.9. The procedure described above extends to an equivalence of categories
MPE

∼= Rep(Q,∂).

Combining this result with Corollary 11.16 yields:

Corollary 12.10. MPs
E(r1, r2) ∼= Reps

(Q,∂)(r1, r2).

Hence by Proposition 11.14, we can study simple vector bundles on E via studying the
categories Reps

(Q,∂)(r1, r2).

Lemma 12.11. [5, Section 3.2] If r1, r2 ∈ N are not coprime, then Reps
(Q,∂)(r1, r2) = ∅.

By Proposition 12.8, the following definitions make sense:

Definition 12.12. Let r1, r2 ∈ N2 be coprime.

• If r1 > r2, let R(12) : Reps
(Q,∂)(r1, r2) → Rep(Q,∂)(r1 − r2, r2) be given by




X1 Y 0
0 X2 1
0 0 0



 (→
(

X1 Y
0 X2

)
.

• If r1 < r2, let R(21) : Reps
(Q,∂)(r1, r2) → Rep(Q,∂)(r1, r2 − r1) be given by




0 1 0
0 X1 Y
0 0 X2



 (→
(

X1 Y
0 X2

)
.

Proposition 12.13. [5, Section 7.1] The following hold true for any coprime integers
r1, r2 ∈ N2:

• the assignment R(12) is an equivalence of categories

Reps
(Q,∂)(r1, r2) ##

∼= Reps
(Q,∂)(r1 − r2, r2) .

• the assignment R(21) is an equivalence of categories

Reps
(Q,∂)(r1, r2) ##

∼= Reps
(Q,∂)(r1, r2 − r1) .
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Clearly, this result indicates a certain reduction procedure. In order to make this precise,
note that any pair of coprime integers a, b ∈ N induces a sequence of pairs of coprime
integers {(ai, bi)} ending with the pair (1, 1) as follows. Assuming that (a, b) *= (1, 1),
we set

ε(a, b) =

{
(a− b, b), a > b
(a, b− a), a < b.

We put (a0, b0) = (a, b) and, as long as (ai, bi) *= (1, 1), we set (ai+1, bi+1) = ε(ai, bi). By
Proposition 12.13, the sequence {(ai, bi)} (and hence the tuple (a, b)) induces a sequence
of equivalences

R(a, b) : Reps
(Q,∂)(a, b) ##

∼= Reps
(Q,∂)(a1, b1) ##

∼= . . . ##
∼= Reps

(Q,∂)(1, 1)

Remark 12.14. The functor R(a, b) can be interpreted as a path on the graph

◦(21)
AA

(12)
BB

,

where the arrow (ij) corresponds to the functor R(ij).

13. Vector bundles on the cuspidal cubic curve

Let E ⊂ P2 be the cuspidal cubic curve given by zy2 = x3. In this section we
summarize the results from the previous sections in order to obtain the following special
case of [8, Theorem 1.2]:

Theorem 13.1. For (n, d) ∈ N × Z, let SimpE(n, d) denote the set of isomorphism
classes of SimpE(n, d). If n, d are not coprime, then SimpE(n, d) = ∅. Otherwise, the
determinant yields a bijection det: SplE(n, d) → Pic(E).

Moreover, we will give a concrete algorithm that, starting only with two coprime inte-
gers 0 < d < n, constructs the family Simp0

E(n, d) explicitly. Finally, we shall give an
important property regarding homomorphism and extension spaces in Simp0

E(n, d).

13.1. Classification. We sketch the proof of Theorem 13.1. Combining Proposition
11.14 and Corollary 12.10, there exists an equivalence of categories

Simp0
E (n, d) ∼= Reps

(Q,∂)(n− d̄, d̄),

where 0 ≤ d̄ < n is determined by d̄ ≡ d mod n. If n and d are not coprime, then
Lemma 12.11 yields that Simp0

E (n, d) = ∅. Otherwise, the functor R(n − d̄, d̄) :
Reps

(Q,∂)(n− d̄, d̄) → Reps
(Q,∂)(1, 1) is an equivalence. It can be shown that the induced
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equivalence Simp0
E (n, d) → Simp0

E (1, 1) leaves the determinant unchanged. Finally,
Reps

(Q,∂)(1, 1) is given by matrices of the form

θλ =

(
λ 1
0 0

)
, λ ∈ C,

and the determinant induces a map θλ (→ λ. Since the Picard group Pic(E) is isomorphic
to C as well, this finishes the proof.

13.2. Algorithm for construction of simple vector bundles. Next we present an
algorithm which constructs Simp0

E(n, d) for two coprime integers 0 ≤ d < n explicitly:

Step 1: construction of the matrix Jλ(n− d, d).
We introduce the following map defined on all tuples of coprime integers (a, b) *= (1, 1):

ε(a, b) =

{
(a− b, b), a > b
(a, b− a), a < b

By assumption (n, d) is a tuple of coprime integers. Hence it induces a finite sequence
of tuples ending with (1, 1), defined as follows. We put (a0, b0) = (n−d, d) and, as long
as (ai, bi) *= (1, 1), we set (ai+1, bi+1) = ε(ai, bi). Next, for fixed λ ∈ C, let

Jλ(1, 1) =

(
λ 1
0 0

)
∈ Mat2×2(C).

Assuming

Jλ(a, b) =

(
J1 J2

0 J3

)

with J1 ∈ Mata×a(C) and J3 ∈ Matb×b(C) has already been defined and that (a, b) =
ε(p, q), we set

Jλ(p, q) =









0 1 0
0 J1 J2

0 0 J3



 , p = a




J1 J2 0
0 J3 1
0 0 0



 , q = b.

Hence, to (n, d) we may associate the n× n matrix Jλ(n− d, d) that is obtained from
the matrix Jλ(1, 1) and the sequence

{
(n − d, d), ..., (1, 1)

}
by applying the recursive

procedure described above.
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Example 13.2. Let (n, d) = (5, 2). We obtain an induced sequence
{
(3, 2), (1, 2), (1, 1)

}

and Jλ(3, 2) is constructed as follows

(
λ 1
0 0

)
→




0 1 0
0 λ 1
0 0 0



 →





0 1 0 0 0
0 λ 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0




.

Step 2: Translation to TriE.
Let T (λ) =

(
F̃ ,V , m̃(λ)

)
∈ TriE be given by F̃ = On−d

P1 ⊕OP1(1)d, V = Cn
s and m̃(λ) =

µ0 + εµε(λ), where µ0 = 1 and µε(λ) = Jλ(n− d, d). Setting H =
{(
F̃ ,V , m̃(λ)

)}

λ∈C
,

we obtain Simp0
E(n, d) by applying G : TriE → VBE to H.

Finally, let us note the following result:

Lemma 13.3. [8, Remark 11.2] Let J ′
λ(a, b) = J0(a, b)+λ·1. Then m̃(λ) is isomorphic

to m̃′(λ) = µ0 + εµε(λ) given by µ0 = 1 and µε(λ) = J ′
λ(a, b) in MPE. Especially,

Simp0
E(n, d) =

{
G

(
On−d

P1 ⊕OP1(1)d, Cn
s , m̃′(λ)

)}
λ∈C .

13.3. Hom and Ext vanishing. Motivated by Lemma 13.3, we introduce the fol-
lowing objects:

Definition 13.4. For any λ ∈ C, let E(λ) = G
(
On−d

P1 ⊕OP1(1)d, Cn
s , m̃′(λ)

)
where

m̃′(λ) is defined as in Lemma 13.3.

The following result shall prove essential for the computation of triple Massey prod-
ucts later on:

Proposition 13.5. [8, Proposition 12.3] Let E(λ1), E(λ2) ∈ Simp0
E(n, d) and λ1 *= λ2.

Then Hom (E(λ1), E(λ2)) = 0.
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Part 4. From vector bundles on Weierstraß cubic curves to solutions of the
Yang-Baxter equations

We use the theory of vector bundles on Weierstraß cubic curves as developed in Part
3 in order to obtain concrete algorithms for the computation of solutions of the Yang-
Baxter equations from the abstract procedures described in Part 2. This will allow us
to prove further results on the solutions obtained.

In Section 14, we present the algorithm for elliptic solutions of the AYBE as developed
in [12, 14], while in Section 15 we discuss the procedure for rational solutions of the
AYBE which was already established by Burban and Kreußler [14]. As we discussed
earlier, such solutions yield solutions of the CYBE under certain conditions. As we
proved in Section 9, there is a direct way to compute these. The corresponding algorithm
is presented in Section 16. The procedure is discussed in detail in [13], while some of
the ideas were already developed by Polishchuk [37].
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14. From vector bundles on the elliptic curve to solutions of the
AYBE

In this section we show how the abstract results from Section 8 can be translated to
a concrete algorithm for the computation of elliptic solutions r : (C2, 0) → A⊗ A of

(14.1) r12(u, x)r23(u + v, y) = r13(u + v, x + y)r12(−v, x) + r23(v, y)r13(u, x + y),

where A = Matn×n(C). First, we present the algorithm, see Subsection 14.1. The proofs
for all statements involved are contained in subsections 14.2 and 14.3. In particular,
we demonstrate how the procedure of Subsection 14.1 is connected to the concepts of
Section 8, especially (8.14).

14.1. Construction of the elliptic solutions rB of the AYBE. In this subsection
we present an algorithm attaching to a pair (B, τ) ∈ GLn(C) × H, where H ⊂ C is
the upper half-plane, a non-degenerate unitary solution of the associative Yang-Baxter
equation (14.1) with values in Matn×n(C)⊗Matn×n(C). The explanation of this method
as well as proofs will be given in the next subsection.
In what follows, we denote Λ = Z + τZ. Let G(B) =

{
λ1, . . . , λn

}
be the spectrum of

B and Σ = ΣB ⊂ C be the lattice
{
λ− λ′

∣∣ exp(2πiλ), exp(2πiλ′) ∈ G(B)
}

+ Λ. We
construct the tensor-valued function

rB : (C \ Σ)× (C \ Λ) −→ Matn×n(C)⊗Matn×n(C)

in the following way.
• For any v ∈ C consider the function

e(z) = e(z, v, τ) := − exp
(
−2πi(z + v + τ)

)
.

• Let Sol = SolB, v, τ be the following complex vector space:

Sol =




Φ : C −→ Matn×n(C)

∣∣∣∣∣∣

Φ is holomorphic
Φ(z + 1) = Φ(z)
Φ(z + τ)B = e(z)BΦ(z)




 .

• For any y ∈ C \Λ consider the evaluation map evy : Sol → Matn×n(C) given by
the formula evy(Φ) = 1

θ̄(y+ τ+1
2 )

Φ(y), where

θ̄(y) = θ3(y|τ) = 1 + 2
∞∑

n=0

qn2
cos

(
2πny

)

is the third Jacobian theta-function with q = exp(πiτ). Next, consider the
residue map res0 : Sol → Matn×n(C) given by the formula res0(Φ) = Φ(0).
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Proposition 14.1. For any v ∈ C and B ∈ GLn(C) the vector space SolB, v, τ has
dimension n2. Moreover, if v /∈ Σ then the linear map res0 : SolB, v, τ → Matn×n(C) is
an isomorphism.

For a proof of this Proposition, see Corollary 14.4, Theorem 14.5 and Remark 14.6.

Next, we continue the construction of the tensor valued function rB.
• For any pair (v, y) ∈ (C \Σ)× (C \Λ) consider the linear map r̃B(v, y) given by

the following commutative diagram:

(14.2)
Matn×n(C)

r̃B(v,y)
## Matn×n(C)

SolB, v, τ

res0

@@=========== evy

CC55555555555

In other words, r̃B(v, y) := evy ◦ res−1
0 .

• Let rB(v, y) ∈ Matn×n(C)⊗Matn×n(C) be the tensor corresponding to the linear
map r̃B(v, y) via the canonical map of vector spaces

can : Matn×n(C)⊗Matn×n(C) −→ HomC
(
Matn×n(C), Matn×n(C)

)

sending a simple tensor X ⊗ Y to the linear map Z (→ Tr(XZ)Y .

Theorem 14.2. Let (B, τ) ∈ GLn(C)×H.
(1) The function (C \Σ)× (C \Λ) → Matn×n(C)⊗Matn×n(C), assigning to a pair

(v, y) the tensor rB(v, y) constructed above, is a non-degenerate holomorphic
unitary solution of the associative Yang-Baxter equation (14.1). Moreover, this
function is meromorphic on C× C.

(2) Let S ∈ GLn(C) and A = S−1BS. Then for any (v, y) ∈ (C \ Σ)× (C \ Λ) we
have the following equality:

rA(v, y) = (S−1 ⊗ S−1)rB(v, y)(S ⊗ S).

In particular, the solutions rA and rB are gauge-equivalent in the sense of [14,
Definition 2.5].

The proof of this Theorem is given in several steps, see Theorem 14.7, Proposition 14.8
and Proposition 14.10.

14.2. Identification of the geometric method and Algorithm 14.1. In this sub-
section we will prove Theorem 14.2 and Proposition 14.1. The main idea is to connect
the algorithm of the previous subsection with (8.14).
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Lemma 14.3. For B ∈ GLn(C) and v ∈ C we set Fv = E
(
exp(2πiv)B

) ∼= E(B)⊗Lv.
Then for any v1, v2 ∈ C and y ∈ E we have:

dimC
(
Hom

(
Fv1 ,Fv2(y)

))
= n2.

Proof. The vector bundle Fv2(y) is semi-stable of slope one. Hence, we have:

Ext
(
Fv1 ,Fv2(y)

) ∼= Hom
(
Fv2(y),Fv1

)∗
= 0.

Thus, the statement of Lemma is a consequence of the Riemann-Roch formula. !
Corollary 14.4. For any v, y ∈ C the dimension of the complex vector space

(14.3) Sol = SolB, v, y, τ :=




Φ : C −→ Matn×n(C)

∣∣∣∣∣∣

Φ is holomorphic
Φ(z + 1) = Φ(z)
Φ(z + τ)B = e(z)BΦ(z)






is n2, where e(z) = e(z, v, y, τ) = − exp
(
−2πi(z + v − y + τ)

)
.

Proof. By Theorem 10.3 and Lemma 10.7, we have an isomorphism of vector spaces
Sol ∼= Hom

(
Fv1 ,Fv2(y)

)
, where v = v1 − v2. Hence, by Lemma 14.3, the dimension of

Sol is n2. Taking y = 0 ∈ E, we also recover the first part of Proposition 14.1. !
Theorem 14.5. Let B ∈ GLn(C) and ω = θ̄′(1+τ

2 )dz ∈ H0(ΩE). Let U ⊂ C be a small
neighborhood of 0. Using the projection map π : C → E, we identify U with a small
neighborhood of π(0) ∈ E. Then for all v1, v2; y1, y2 ∈ U such that y1 *= y2 the following
diagram of vector spaces is commutative:

Lin
(
Fv1

∣∣
y1

,Fv2

∣∣
y1

)

!!

Hom
(
Fv1 ,Fv2(y1)

)resFv1 ,Fv2
y1 (ω)

..
evFv1 ,Fv2 (y1)

y2 ##

!!

Lin
(
Fv1

∣∣
y2

,Fv2

∣∣
y2

)

!!

Matn×n(C) SolB, v, y1, τ

resy1..
evy2 ## Matn×n(C),

where v = v1 − v2, the middle vertical arrow is the isomorphism from Theorem 10.3,
whereas the first and the last vertical arrows are isomorphisms induced by trivializations
γ from Remark 10.2. The maps resy1 and evy2 are given by the formulae:

resy1

(
Φ(z)

)
= Φ(y1) and evy2

(
Φ(z)

)
=

1

θ̄(y2 − y1 + τ+1
2 )

Φ(y2),

where θ̄(y) is the third Jacobian theta-function.

Proof. The proof of this Theorem is literally the same as the one given in [14, Section
8.2], see in particular [14, Corollary 8.10]. !
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Remark 14.6. Let v1, v2 ∈ C be such that v1 − v2 does not belong to the lattice Σ. By
Corollary 10.6 we get the vanishing Hom(Fv1 ,Fv2) = 0 = Ext(Fv1 ,Fv2). Next, Lemma
8.5 implies that the morphism resFv1 ,Fv2

y1 (ω) is an isomorphism. The commutativity of
the left square of the diagram from Theorem 14.5 implies that the linear map resy1 is an
isomorphism, too. Setting y1 = 0, we obtain a proof of the second part of Proposition
14.1.

Hence we can finally prove Theorem 14.2:

Theorem 14.7. Let B ∈ GLn(C), v1, v2 ∈ C such that v = v1 − v2 /∈ Σ and y1, y2 ∈ C
such that y2 − y1 /∈ Λ. Consider the linear map r̃B(v1, v2; y1, y2) : Matn×n(C) →
Matn×n(C) defined via the commutative diagram

(14.4)
Matn×n(C)

r̃B(v1,v2; y1,y2)
## Matn×n(C)

SolB, v, y1, τ

resy1

DD>>>>>>>>>>> evy2

88???????????

where resy1 and evy2 are as in Theorem 14.5. Let rB(v1, v2; y1, y2) ∈ Matn×n(C) ⊗
Matn×n(C) be the tensor corresponding to the linear map r̃B(v1, v2; y1, y2) via the canon-
ical isomorphism of vector spaces

Matn×n(C)⊗Matn×n(C) −→ Lin
(
Matn×n(C), Matn×n(C)

)
,

which sends a simple tensor X⊗Y to the linear map Z (→ Tr(XZ)Y . Then the obtained
function of four variables

rB : C4
(v1,v2; y1,y2) −→ Matn×n(C)⊗Matn×n(C)

satisfies the following version of the associative Yang-Baxter equation:

(14.5) rB(v1, v2; y1, y2)
12rB(v1, v3; y2, y3)

23 = rB(v1, v3; y1, y3)
13rB(v3, v2; y1, y2)

12+

+rB(v2, v3; y2, y3)
23rB(v1, v2; y1, y3)

13.

Moreover, the tensor-valued function r is unitary, i.e. it satisfies the condition

(14.6) rB(v1, v2; y1, y2)
12 = −rB(v2, v1; y2, y1)

21.

Proof. For v ∈ C we set Fv = E
(
exp(2πiv)B

) ∼= E(B) ⊗ Lv and Fi = Fvi for both
i = 1, 2. By Theorems 8.2 we obtain m̃F1,F2

y1,y2
, which satisfies equation 8.5. Via the

canonical isomorphism described in Theorem 8.8, m̃F1,F2
y1,y2

maps to r̃F1,F2
y1,y2

, which was
defined by the diagram 8.14. Theorem 14.5 implies that r̃B(v1, v2; y1, y2) coincides with
r̃F1,F2
y1,y2

. The main ideas for the rest of the proof are as follows.
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• Let A be an arbitrary automorphy factor, F = E(A) and y ∈ E. Then we have an
isomorphism of vector spaces

γ(A, y) : Hom(F , Cy) −→ Hom(F ⊗ Cy, Cy) −→ F
∣∣∗
y
−→ Cn,

induced by the trivialization γA from Remark 10.2. For any v ∈ C we denote by γ(v, y)
the isomorphism Hom(Fv, Cy) → Cn. We obtain a linear map r̄B(v1, v2; y1, y2), defined
by the following commutative diagram of vector spaces:

Hom(Fv1 , Cy1)⊗ Hom(Fv2 , Cy2)
emF1,F2

y1,y2 ##

γ(v1, y1)⊗ γ(v2, y2)

!!

Hom(Fv2 , Cy1)⊗ Hom(Fv1 , Cy2)

γ(v2, y1)⊗ γ(v1, y2)

!!
Cn ⊗ Cn

r̄B(v1,v2; y1,y2)
## Cn ⊗ Cn.

• Using the canonical isomorphism Lin(Cn⊗Cn, Cn⊗Cn) → Matn×n(C)⊗Matn×n(C),

we end up with a tensor-valued meromorphic function

C2
(v1,v2) × C2

(y1,y2)
rB−→ Matn×n(C)⊗Matn×n(C),

satisfying the Yang-Baxter equation (14.5) and the unitarity condition (14.6). More-
over, for any v1, v2; y1, y2 ∈ C such that v1 − v2 /∈ Σ and y1 − y2 /∈ Λ the tensor
rB(v1, v2; y1, y2) coincides with the image of r̃F1,F2

y1,y2
under the composition of the canon-

ical isomorphism of vector spaces

Lin
(
Lin

(
F1

∣∣
y1

,F2

∣∣
y1

)
, Lin

(
F1

∣∣
y2

,F2

∣∣
y2

))
−→ Lin

(
F2

∣∣
y1

,F1

∣∣
y1

)
⊗ Lin

(
F1

∣∣
y2

,F2

∣∣
y2

))

with the isomorphism Lin
(
F1

∣∣
y2

,F2

∣∣
y2

))
−→ Matn×n(C)⊗Matn×n(C) induced by triv-

ializations γ from Remark 10.2. !

14.3. Remarks on the solutions rB. In the previous subsections we have seen how
one can attach a unitary solution

C2 × C2 rB−→ Matn×n(C)⊗Matn×n(C)

of the associative Yang-Baxter equation (14.5) to a matrix B ∈ GLn(C), see diagram
(14.4) from Theorem 14.7.

Proposition 14.8. For general v1, v2, u; y1, y2, x ∈ C we have the equality

rB(v1 + u, v2 + u; y1 + x, y2 + x) = rB(v1, v2; y1, y2).

In other words, the function rB(v1, v2; y1, y2) depends only on the differences v = v1−v2

and y = y2 − y1. In particular, the function rB(v, y) = rB(v1, v2; y1, y2) satisfies the
associative Yang-Baxter equation (14.1).
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Proof. Since the vector space SolB, v, y1, τ from Theorem 14.5 only depends on the differ-
ence v = v2−v1, whereas resy1 and evy2 depend only on y1 and y2, we have the equality
rB(v1 + u, v2 + u; y1, y2) = rB(v1, v2; y1, y2). To show the translation invariance of the
function rB with respect to the second pair of spectral variables note that we have the
following commutative diagram:

SolB, v, y1, τ
resy1

EE55555555555 evy2

''>>>>>>>>>>>

tx

!!

Matn×n Matn×n

SolB, v, y1+x, τ

resy1+x

DD>>>>>>>>>>> evy2+x

8855555555555

where tx
(
Φ(z)

)
= Φ(z−x). It proves that rB(v1, v2; y1+x, y2+x) = rB(v1, v2; y1, y2). !

Remark 14.9. Proposition 14.8 implies that in order to compute the linear map rB(v, y)
we can take y1 = 0 and y2 = y in the commutative diagram (14.4). In particular, the
solution rB(v, y) can be computed using the diagram (14.2).

Proposition 14.10. Let B, S ∈ GLn(C) and A := S−1BS. Then we have:

rA(v, y) =
(
S−1 ⊗ S−1

)
rB(v, y)

(
S ⊗ S

)
.

Proof. For simplicity of notation we denote SolB = SolB, v, y, τ and rB = rB(v, y). Ob-
serve that we have an isomorphism of vector spaces ϕS : SolB → SolA mapping a
function Φ ∈ SolB to S−1 Φ S ∈ SolA. We have a commutative diagram

(14.7)
Matn×n(C)

cS

!!

SolB
res0..

evy ##

ϕS

!!

Matn×n(C)

cS

!!

Matn×n(C) SolA
res0..

evy ## Matn×n(C),

where cS(X) = S−1XS. This implies that for any X ∈ Matn×n(C) we have:

r̃A(S−1XS) = S−1r̃B(X)S.

The matrix S defines the following linear automorphism

ψS : Lin
(
Matn×n(C), Matn×n(C)

)
−→ Lin

(
Matn×n(C), Matn×n(C)

)

sending l ∈ Lin
(
Matn×n(C), Matn×n(C)

)
to the linear map X

ψS(l)−−−→ S−1 l(SXS−1) S.
Then we have: ψS(r̃B) = r̃A.
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Finally, let can : Matn×n(C)⊗Matn×n(C) → Lin
(
Matn×n(C), Matn×n(C)

)
be the canon-

ical isomorphism of vector spaces mapping a simple tensor X ⊗ Y to the linear map
Z (→ Tr(XZ)Y . Then the following diagram is commutative:

Matn×n(C)⊗Matn×n(C)

cS ⊗ cS

!!

can ## Lin
(
Matn×n(C), Matn×n(C)

)

ψS

!!

Matn×n(C)⊗Matn×n(C)
can ## Lin

(
Matn×n(C), Matn×n(C)

)
.

But this implies that rA(v, y) =
(
S−1 ⊗ S−1

)
rB(v, y)

(
S ⊗ S

)
. !

It still remains to be shown that rB is a meromorphic function in v and y, holomorphic
on (C \Σ)× (C \Λ) and with an analytic dependence on the matrix B. Although this
fact can be verified by a direct computation, we prefer to give an abstract proof based
on the technique of semi-universal families of semi-stable sheaves.

• Let G = GLn(C) and P ∈ VB(E ×G) be defined as follows

P := C×G× Cn/ ∼, where (z, g, v) ∼ (z + 1, g, v) ∼ (z + τ, g, g · v)

for all (z, g, v) ∈ C×G× Cn. Note that we have a Cartesian diagram

(C×G)× Cn ##

pr1
!!

P

!!

C×G
π×1 ## E ×G,

where π : C → C/Λ = E is the quotient map. Note that for any g ∈ G we have an iso-
morphism P

∣∣
E×{g}

∼= E(g), where E(g) is the semi-stable degree zero vector bundle on E

determined by the automorphy factor g ∈ GLn(C). Thus, the constructed vector bun-
dle P is a semi-universal family of degree zero semi-stable vector bundle on the torus E.

• Let I = Pic0(E) be the Jacobian of E. One can identify I with the torus E using the
following construction. Consider the line bundle L on E ×E = C/Λ× C/Λ defined as
the quotient space L := (C× C)× C/ ∼, where

(z, w, v) ∼ (z + 1, w, v) ∼ (z, w + 1, v) ∼ (z, w + τ, v) ∼ (z + τ, w, exp(2πiw)v)

for all (z, w, v) ∈ (C × C) × C. The constructed line bundle L is a universal family of
degree zero vector bundles on E.
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• We denote X = E×I×I×E×E×G, T = I×I×E×E×G and set q : X → T and
p : X → E × G to be the canonical projection maps. Similarly, for i = 1, 2 we define
pi : X → E×I and hi : T → X to be given by the formulae pi(x, v1, v2, y1, y2, g) = (x, vi)
and hi(v1, v2, y1, y2, g) = (yi, v1, v2, y1, y2, g). Note that h1 and h2 are sections of the
canonical projection q.

• For i = 1, 2 we define Fi := p∗P⊗p∗iL. Obviously, for any point t = (v1, v2, y1, y2, g) ∈
T we have: Fi

∣∣
q−1(t)

∼= P
∣∣
E×{g} ⊗ L

∣∣
E×{vi}

∼= E
(
exp(2πvi) · g

)
.

Lemma 14.11. The coherent sheaf q∗HomX(F1,F2) is supported on a proper closed
analytic subset of T .

Proof. By Grauert’s direct image Theorem, the sheaf q∗HomX(F1,F2) is coherent,
hence it is supported on a closed analytic subset ∆ of the base T . Since HomX(F1,F2)
is a vector bundle on X, it is flat over T and for any point t = (v1, v2, y1, y2, g) ∈ T
we have a base-change isomorphism

q∗HomX(F1,F2)⊗ Ct
∼= HomE

(
E(g)⊗ Lv1 , E(g)⊗ Lv2

)
.

By Corollary 10.6, we have the vanishing HomE

(
E(g)⊗Lv1 , E(g)⊗Lv2

)
= 0 for gener-

ically chosen v1, v2 ∈ J and g ∈ G. Hence, ∆ is a proper subset of T . !
The following result can be proved along the same lines as Lemma 14.11.

Lemma 14.12. Let Di := Im(hi) ⊆ X. Then the sheaf q∗HomX

(
F1(D2),F2(D1)

)
is

supported on a proper closed analytic subset ∆′ of T and q∗HomX

(
F1,F2(D1)

)
is a

vector vector bundle of rank n2.

• Let T̆ := T \ (∆ ∪ ∆′) and X̆ := q−1(T̆ ). For the sake of simplicity we denote
the restrictions of F1 and F2 on X̆ by the same symbols. Let ω ∈ H0

(
ΩX̆/T̆

)
be the

pull-back of the differential form dz ∈ H0
(
ΩE). Note that we are in the situation of

[14, Section 5.3]. In particular, we have the following commutative diagram in Coh(T̆ ),
where all arrows are isomorphisms of vector bundles on T̆ :

(14.8)

q∗HomX̆

(
F1,F2(D1)

)

resF1,F2
h1

(ω)

(()))))))))))))))) evF1,F2(D1)
h2

FF@@@@@@@@@@@@@@@@

HomT̆

(
h∗1F1, h∗1F2

) r̃
F1,F2
h1, h2 ## HomT̆

(
h∗2F1, h∗2F2

)
.

The morphisms resF1,F2
h1

(ω) and evF1,F2(D1)
h2

are induced by the short exact sequences

0 → ΩX̆/T̆ → ΩX̆/T̆ (D1)
resD1−→ OD1 → 0, 0 → OX̆(−D2) → OX̆ → OD1 −→ 0,
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see [14, Section 5.3]. By [14, Theorem 5.17], after tensoring the diagram (14.8) with
Ct, where t = (v1, v2, y1, y2, g) ∈ T̆ , and applying base change isomorphisms, we get the
commutative diagram (8.14). In particular, the function r̃B(v1, v2; y1, y2) from Theo-
rem 14.7 is just the isomorphism of vector bundles r̃F1,F2

h1, h2
written with respect of the

trivialization γ, described in Remark 10.2. This implies that the tensor rB(v, y) is
non-degenerate.
In a similar way, the isomorphism r̃B(v1, v2; y1, y2) determines a holomorphic section
rF1,F2
h1, h2

∈ H0
(
T̆ ,HomT̆

(
h∗1F2, h∗1F1

)
⊗ HomT̆

(
h∗2F1, h∗2F2

))
. Trivializing F1 and F2 as

in Remark 10.2, the section rF1,F2
h1, h2

becomes the tensor-valued function rB(v, y) from
Theorem 14.7. This proves that rB(v, y) is holomorphic on (C \ ΣB) × (C \ Λ) and
as a function of the input matrix B. To show that rB(v, y) is meromorphic on C × C
note that resF1,F2

h1
(ω) and evF1,F2(D1)

h2
are morphisms of vector bundles of rank n2 on the

whole base T and r̃F1,F2
h1, h2

= evF1,F2(D1)
h2

◦
(
resF1,F2

h1
(ω)

)−1 is a meromorphic isomorphism
of HomT

(
h∗1F1, h∗1F2

)
and HomT

(
h∗2F1, h∗2F2

)
.

15. From vector bundles on the cuspidal cubic curve to solutions of
the AYBE

Let E be the cuspidal cubic curve given by V (y2z − x3) ⊂ P2. In this section
we present an algorithm which takes as input a pair of coprime numbers (n, d) with
0 ≤ d < n and produces a rational solution r(n,d) of the AYBE

(15.1) r12(u; y1, y2) r23(u + v; y2, y3) =
= r13(u + v; y1, y3) r12(−v; y1, y2) + r23(v; y2, y3) r13(u; y1, y3).

Here r : (C3, 0) → A ⊗ A is the germ of a meromorphic function for A = Matn×n(C)
with values in A ⊗ A where A = Matn×n(C). We will first present the algorithm,
see Subsection 15.1. Then we verify the algorithm and all statements involved, see
Subsection 15.2. The main idea is to demonstrate how the procedure of Subsection
15.1 is connected to the concepts of Section 8. Finally, in Subsection 15.3 we give some
examples of solutions of the CYBE (2.1) obtained from solutions of (15.1). We see that
these solutions satisfy the assumptions of Theorem 7.1 and hence yield solutions of the
QYBE (4.1) as well.

15.1. Construction of the rational solutions r(n,d) of the AYBE. Let (n, d) be a
pair of coprime integers such that 0 < d < n. We give an algorithm that constructs a
rational solution r(n,d) of the AYBE (15.1).

1. Construct the matrix J = J0(n− d, d) from Algorithm 13.2.
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2. For the partition of A = Matn×n(C) induced by the partition of J as in step 1, we
introduce the following subspace of the polynomial ring A[z]:

Wn,d =

{
F (z) =

(
W X
Y Z

)
+

(
W ′ 0
Y ′ Z ′

)
z +

(
0 0

Y ′′ 0

)
z2

}
.

Next, for F (z) ∈ Wn,d we denote

F0 =

(
W ′ X
Y ′′ Z ′

)
and Fε =

(
W 0
Y ′ Z

)
.

Then for v, y1 ∈ C, we define the following subspace of Wn,d:

Solv,y1
n,d =

{
F (z) ∈ Wn,d

∣∣∣ [F0, J ] + (y1 − v)F0 + Fε = 0
}

.

Proposition 15.1. The vector space Solv,y1
n,d has dimension n2 and for y1 *= y2 ∈ C,

evy2 : Solv,y1
n,d → A defined by evy2

(
F (z)

)
= 1

y2−y1
F (y2) is an isomorphism. For v *= 0,

resy1 : Solv,y1
n,d → A given by resy1

(
F (z)

)
= F (y1) is an isomorphism as well.

Remark 15.2. The proof of this and the next statement can be found in the following
subsection.

We will assume that v *= 0 and y1 *= y2 for the rest of this section. Then we get a lin-
ear automorphism r̃(n,d) of the matrix algebra A given by the formula r̃(n,d)(v; y1, y2) =
evy2 ◦ res−1

y1
.

3. Note that we have a canonical isomorphism of vector spaces
can : A⊗ A → EndC(A), X ⊗ Y (→

(
Z (→ tr(XZ)Y

)
.

For fixed v, y1, y2, we set r(n,d)(v; y1, y2) = can−1
(
r̃(n,d)(v; y1, y2)

)
.

Theorem 15.3. The tensor-valued function r(n,d) :
(
C3

(v;y1,y2), 0
)
→ A⊗A is a rational

solution of (15.1). Moreover r(n,d)(v; y1, y2) is holomorphic on
(
C3 \ V

(
v(y1 − y2)

))
.

Example 15.4. For any n ∈ N, let P =
∑

1≤i,j≤n eij ⊗ eji ∈ A⊗ A.

i) Let (n, d) = (2, 1). Then we have
r(2,1)(v; y1, y2) =

1

2v
1⊗ 1+

1

y2 − y1
P+

+ (v − y1) e21 ⊗ ȟ + (v + y2) ȟ⊗ e21 −
v(v − y1)(v + y2)

2
e21 ⊗ e21,

where ȟ = diag(1
2 ,−

1
2).
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ii) Let (n, d) = (3, 1). Then we have

r(3,1)(v; y1, y2) =
1

3v
1⊗ 1+

1

y2 − y1
P−

−e21 ⊗ ȟ1 + ȟ1 ⊗ e21 + e32 ⊗ e12 − e12 ⊗ e32 − y1e32 ⊗ ȟ2 + y2ȟ2 ⊗ e32+

+(v − y1)e31 ⊗ e12 + (v + y2)e12 ⊗ e31 + ve32 ⊗ (e11 − e33) + v(e11 − e33)⊗ e32+

+
1

3
v(y1 − 3v)e32 ⊗ e21 +

1

3
v(y2 + 3v)e21 ⊗ e32 + v(v − y1)e31 ⊗ ȟ1−

−v(v + y2)ȟ1 ⊗ e31 +
2

3
v2(y1 − v)e31 ⊗ e21 −

2

3
v2(y2 + v)e21 ⊗ e31+

+
1

3
v2(y2 + v)(3v − y1)e32 ⊗ e31 +

1

3
v2(y1 + v)(3v + y2)e31 ⊗ e32+

+
2

3
ve21 ⊗ e21 +

2

3
v3(v − y1)(v + y2)e31 ⊗ e31

+
1

3
v(−6v2 + 3v(y1 − y2) + 2y1y2)e32 ⊗ e32,

where ȟ1 = diag(2
3 ,−

1
3 ,−

1
3) and ȟ2 = diag(1

3 ,
1
3 ,−

2
3).

15.2. Identification of the geometric method and Algorithm 15.1. Similarly to
the case of the elliptic curve, the key observation of this subsection is that (8.14) can
be connected to the algorithm presented in the previous subsection. First recall the
description of the simple vector bundles on the cuspidal Weierstraß cubic curve as in
Section 13.

Let π : P1 −→ E be the normalization of E. We choose homogeneous coordinates
(z0 : z1) on P1 in such a way that π

(
(0 : 1)

)
is the singular point of E. In what follows,

we denote ∞ = (0 : 1) and 0 = (1 : 0). Abusing the notation, for any x ∈ k we also
denote by x ∈ Ĕ the image of the point x̃ = (1 : x) ∈ P1, identifying in such a way Ĕ
with A1 = P1 \ {∞} =: U∞. Denote u = z0

z1
then k[U∞] = k[u]. Let R = k[ε]/ε2 and

k[u] −→ R, u (→ ε be the canonical projection. Then in the notation of the previous
subsection we have: Z ∼= Spec(k) and Z̃ ∼= Spec(R).

1. By the theorem of Birkhoff-Grothendieck, for any F ∈ VB(P1) we have:

(15.2) π∗F ∼=
⊕

c∈Z
OP1(c)⊕nc .

A choice of homogeneous coordinates on P1 yields two distinguished sections z0, z1 ∈
H0

(
OP1(1)

)
. In such a way, for any e ∈ we get a distinguished basis of the space
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HomP1

(
OP1 ,OP1(e)

)
given by the monomials ze

0, z
e−1
0 z1, . . . , ze

1. Next, for any c ∈ Z we
fix the following isomorphism

OP1(c)
∣∣

eZ −→ O eZ

sending a local section p to p

zc
1

∣∣
eZ

. Thus, for any vector bundle F̃ =
⊕
c∈Z

OP1(c)⊕nc of rank

n on P1 we have the induced isomorphism ζ
eF : F̃

∣∣
eZ −→ O⊕n

eZ
.

2. Given 0 < d < n mutually prime and λ ∈ k, we take the matrix J = J0(n− d, d)
constructed in Algorithm 13.2 and let

(15.3) M = Mn,d,λ = + ε
(
λ + J

)
∈ GLn(R).

Any such matrix defines the morphism m : η∗OZ −→ ν∗O eZ . Let P̃ = P̃n,d = O⊕e
P1 ⊕

OP1(1)⊕d. Then we consider the following vector bundle P = Pn,d,λ on E:

(15.4) 0 −→ P
( ı

q )−→ π∗P̃ ⊕ η∗O⊕n
Z

(ζ
eP m)−−−−→ ν∗O⊕n

eZ
−→ 0.

Then P is a simple vector bundle of rank n and degree d on the cuspidal Weierstraß
cubic curve E. Moreover, in an appropriate sense (15.4) describes a universal family
of stable vector bundles of rank n and degree d on E, see [14, Theorem 5.1.40]. The
following result shall prove useful later:

Corollary 15.5. Let 0 < d < n be a pair of coprime integers, and J = J0(n− d, d) ∈
Matn×n(k) be the matrix constructed in Algorithm 13.2. Consider the vector bundle A
given by the following short exact sequence

(15.5) 0 −→ A
( 

r )−→ π∗Ã ⊕ η∗
(
Ad(O⊕n

Z )
)

(
ζAd( eP) cnj(m)

)
−−−−−−−−−→ η∗

(
Ad(O⊕n

eZ
)
)
−→ 0,

where P̃ = O⊕e
P1 ⊕ OP1(1)⊕d and Ã = Ad(P̃). Then A ∼= Ad(P), where P is a simple

vector bundle on E of rank n and degree d. Moreover, for any trivialization ξ : P̃
∣∣
U∞
−→

O⊕n
U∞

we get the following isomorphisms of sheaves of Lie algebras

(15.6) A
∣∣
Ĕ

−→ π∗
(
Ad(P̃)

)∣∣
Ĕ
−→ π∗Ad

(
O⊕n

U∞

) can−→ Ad
(
O⊕n

Ĕ

)
,

where the second morphism is induced by ξ.

3. In the above notation, for any x ∈ Ĕ ∼= A1 the corresponding line bundle OE

(
[x]

)

is given by the triple
(
OP1(1),k, 1− x · ε

)
, see [14, Lemma 5.1.27].

The following theorem finishes the proof of correctness of Algorithm 15.1:
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Theorem 15.6. [14, Section 10, in particular Algorithm 10.7] Let

χ : P
∣∣
Ereg

∼= ## π∗P̃
∣∣
Ereg

∼= ## On
Ereg

denote the trivialization induced by ζ
eP . For λ1 *= λ2 ∈ C, set Fi = Pn,d,λi for both

i = 1, 2. Then for any y1 *= y2 ∈ Ereg and λ = λ1 − λ2 ∈ C×, the following diagram is
commutative

Lin
(
F1

∣∣
y1

,F2

∣∣
y1

)

!!

Hom
(
F1,F2(y1)

)resF1,F2
y1 (ω)

..
evF1,F2(y1)

y2 ##

φ

!!

Lin
(
F1

∣∣
y2

,F2

∣∣
y2

)

!!

Matn×n(C) Wn,d evy2

##
resy1

.. Matn×n(C),

where all vertical arrows are induced by the trivialization χ. Moreover, im φ = Solλ,y1
n,d .

15.3. Obtaining rational solutions of the CYBE from solutions of the AYBE.
Combining Theorem 7.1 1) with example 15.4, we derive that r(2,1) and r(3,1) induce
solutions of the CYBE (2.1). Let us denote these by c(2,1) and c(3,1) respectively. Also,
let Ω be the Casimir element of sln(C)⊗ sln(C) with respect to the trace form (x, y) (→
tr(x · y)

Ω =
∑

1≤i(=j≤n

ei,j ⊗ ej,i +
∑

1≤l≤n−1

hl ⊗ ȟl.

Observing that (pr⊗ pr) (P ) = Ω, we derive the following formulae:

c(2,1)(y1, y2) =
Ω

y2 − y1
+ y2ȟ⊗ e21 − y1e21 ⊗ ȟ ∈ sl2(C)⊗ sl2(C)

and

c(3,1)(y1, y2) =
Ω

y2 − y1
+ y2ȟ2 ⊗ e32 − y1e32 ⊗ ȟ2 + y2e12 ⊗ e31 − y1e31 ⊗ e12−

−e21 ⊗ ȟ1 + ȟ1 ⊗ e21 + e32 ⊗ e12 − e12 ⊗ e32 ∈ sl3(C)⊗ sl3(C).

Moreover, it can be verified that neither c(2,1) nor c(3,1) has any infinitesimal symme-
tries. Thus Theorem 7.1 1) yields that for fixed v0 ∈ C×, both r(2,1)(v0; y1, y2) and
r(3,1)(v0; y1, y2) satisfy the QYBE (4.1). In the next section, we give a more direct way
to compute the solutions c(n,d)
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16. From vector bundles on the cuspidal cubic curve to solutions of
the CYBE

In this section we describe the recipe to compute the solution c(n,d) of the CYBE cor-
responding to the triple (E, n, d), where E is the cuspidal Weierstraß cubic curve and
0 < d < n a pair of coprime integers (c(n,d) was denoted r(E,n,d) in the introduction).
As before, we first present the algorithm, see Subsection 16.1. Then we develop a gen-
eral formula for the solutions c(n,d), see Subsection 16.2. Only then will we verify the
algorithm , see Subsection 16.3. The main idea is identify the algorithm of Subsection
16.1 with the procedure described in Section 9.

16.1. Construction of the rational solutions c(n,d) of the CYBE. Let 0 < d < n
such that gcd(n, d) = 1 be given.

(1) We first compute the matrix J = J0(n− d, d) given by Algorithm 13.2.
(2) Next, for the block decomposition of Matn×n(k) induced by J , consider the

following subspace of sln ⊗ k[z]:

Vn,d =

{
F (z) =

(
W X
Y Z

)
+

(
W ′ 0
Y ′ Z ′

)
z +

(
0 0

Y ′′ 0

)
z2

}
.

Given F (z) ∈ Vn,d, we denote

F0 =

(
W ′ X
Y ′′ Z ′

)
and Fε =

(
W 0
Y ′ Z

)
.

For u ∈ C, we determine a basis of the following subspace of Vn,d:

Solun,d =
{

F (z) ∈ Vn,d

∣∣∣ [F0, J ] + uF0 + Fε = 0
}

.

(3) We choose a basis for sln(k) and compute the images of the basis vectors under
the map

sln(k)
res−1

u−→ Solun,d
evv−→ sln(k).

Here resu(F (z)) = F (u) and evv(F (z)) = 1
v−uF (v). For a proof that resu is an

isomorphism, we refer to Subsection 16.3.
(4) Using the trace form, we obtain a canonical isomorphism of vector spaces

can : sln(k)⊗ sln(k) → Endk(sln(k)), X ⊗ Y (→
(
Z (→ tr(XZ)Y

)
.

For fixed u, v, we set r(E,n,d)(u, v) = can−1
(
evv ◦ res−1

u

)
∈ sln(k)⊗ sln(k).

Theorem 16.1. The map c(n,d) is a non-degenerate unitary solution of the classical
Yang-Baxter equation (2.1).
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Remark 16.2. In the introduction, the solution c(n,d) was denoted r(E,n,d) , where E is
the cuspidal cubic curve. The proof of the statement above can be found in Subsection
16.3.

16.2. The solution c(n,d) for a particular choice of basis. It is convenient to
develop a more concrete formula for c(n,d). To this end, we fix the standard basis
{ei,j}1≤i(=j≤n∪{hl}1≤l≤n−1 of sln(k). Since resu : Solun,d → sln(k) given by F (z) (→ F (u)
is an isomorphism, we have

res−1
u (ei,j) = ei,j + Gu

i,j(z) 1 ≤ i *= j ≤ n
res−1

u (hl) = hl + Gu
l (z) 1 ≤ l ≤ n− 1,

where Gu
i,j(z), Gu

l (z) ∈ Vn,d are uniquely determined by the properties

(16.1) ei,j + Gu
i,j(z), hl + Gu

l (z) ∈ Solun,d

Gu
i,j(u) = 0 = Gu

l (u).

Proposition 16.3. In the notations as above, we have

c(n,d)(u, v) =
1

v − u

[
Ω +

(
∑

1≤i(=j≤n

ej,i ⊗Gu
i,j(v)

)
+

(
∑

1≤l≤n−1

ȟl ⊗Gu
l (v)

)]
,

where ȟl denotes the dual of hl with respect to the trace form and Ω denotes the Casimir
element. Especially, c(n,d) is rational.

Proof. It follows directly from the definitions that

evv ◦ res−1
u (ei,j) = 1

v−u

(
ei,j + Gu

i,j(v)
)

1 ≤ i *= j ≤ n
evv ◦ res−1

u (hl) = 1
v−u (hl + Gu

l (v)) 1 ≤ l ≤ n− 1,

Since ej,i respectively ȟl is the dual of ei,j respectively hl with respect to the trace form,
applying can−1 yields

(
ei,j (→ 1

v−u

(
ei,j + Gu

i,j(v)
))
(→ ej,i ⊗ 1

v−u

(
ei,j + Gu

i,j(v)
)

1 ≤ i *= j ≤ n(
hl (→ 1

v−u (hl + Gu
l (v))

)
(→ ȟl ⊗ 1

v−u (hl + Gu
l (v)) 1 ≤ l ≤ n− 1.

But

Ω =
∑

1≤i(=j≤n

ei,j ⊗ ej,i +
∑

1≤l≤n−1

ȟl ⊗ hl,

hence the statement easily follows. !
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16.3. Identification of the geometric method and Algorithm 16.1. In this sub-
section we prove Theorem 16.1. We fix the following notation.

1. As before, E = V (zy2 − x3) is the cuspidal Weierstraß cubic curve, π : P1 −→ E
the normalization map, (z0 : z1) are homogeneous coordinates on P1, ∞ = (0 : 1) and
0 = (1 : 0). As in the previous subsection, we assume that π(∞) is the singular point of
E. For any x ∈ k we set x̃ = (1 : x) ∈ P1. Let U0 = P1 \ {∞}. Using the normalization
map π, we identify U0 and Ĕ. Moreover, for any x ∈ k we also denote by x = π(x̃)
the corresponding smooth point of E. Let z = z1

z0
, then w := dz is the meromorphic

differential form on P1 which descends to a regular differential form on E yielding an
isomorphism ΩE −→ OE.
2. For any c ∈ Z we fix the trivialization ξ : OP1(c)

∣∣
U0
−→ OU0 given on the level of

local sections by the rule p (→ p
zc
0

∣∣
U0

. Thus, for any vector bundle F̃ = ⊕OP1(c)⊕nc we

get the induced trivialization ξ
eF : F̃

∣∣
U0
−→ O⊕n

U0
, where n = rk(F̃).

3. For a pair of coprime integers 0 < d < n, let A be the sheaf of Lie algebras on E

given by the short exact sequence (15.5). Then we automatically have the trivialization
A : A

∣∣
Ĕ
−→ O⊕n

Ĕ
, given by the formula (15.6) and the trivialization ξ

eA : Ã
∣∣
U0
−→

O⊕n
U0

.
The main result of this subsection is the following theorem, which yields Theorem 16.1.

Theorem 16.4. In the above notation, the following results are true.

1. Let x *= y ∈ Ĕ. Then the following diagram is commutative:

A
∣∣
x

Ax
!!

H0
(
A(x)

)resx(w)
..

evy ##

π̄∗

!!

A
∣∣
y

Ay
!!

sln(k)
"!

!!

sln(k)
! "

!!

Matn(k) H0
(
Ẽ(1)

)resx..
evy ## Matn(k)

where the following notation is used.
(1) resx(w) = resAx (w) is the residue map (9.18) at the point x given by the differ-

ential form w = dz and evy = evAy is the evaluation map (9.19).
(2) ξAx and ξAy are isomorphisms given by the trivialization A.
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(3) Ẽ = End(P̃), where P̃ = O⊕e
P1 ⊕OP1(1)⊕d. Note that we have:

(16.2) Ẽ =





O . . . O O(−1) . . . O(−1)
...

. . .
...

...
. . .

...
O . . . O O(−1) . . . O(−1)

O(1) . . . O(1) O . . . O
...

. . .
...

...
. . .

...
O(1) . . . O(1) O . . . O





where O(c) := OP1(c) for c ∈ {−1, 0, 1}. The sizes of the diagonal blocks in the
presentation (16.2) are e× e and d× d respectively.

(4) In the above notation we have:

(16.3) H0
(
Ẽ(1)

)
=

{
F =

(
z0W + z1W ′ X

z2
0Y + z0z1Y ′ + z2

1Y
′′ z0Z + z1Z ′

)}

where W,W ′ ∈ Mate×e(k), Z, Z ′ ∈ Matd×d(k), Y, Y ′, Y ′′ ∈ Matd×e(k) and X ∈
Mate×d(k).

(5) For any F ∈ H0
(
Ẽ(1)

)
as in (16.3) we have:

(16.4) resx(F ) = F (1, x) and evy(F ) =
1

y − x
F (1, y).

(6) The morphism π̄∗ is defined as follows. We compose the canonical map π∗ :
H0

(
A(x)

)
−→ H0

(
π∗A(x̃)

)
with the morphism induced by the following mor-

phism of sheaves

π∗A(x̃) −→ π∗π∗Ã(x̃) −→ Ã(x̃) ↪→ Ẽ(x̃)
tσ−→ Ẽ(1),

where tσ is the isomorphism induced by σ = z1 − xz0 ∈ H0
(
OP1(1)

)
.

2. Let Soln,d := Im(π̄∗) ⊂ H0
(
Ẽ(1)

)
. Then we have:

(16.5) Soln,d =
{

F
∣∣∣ tr(W + Z) = 0 = tr(W ′ + Z ′), [F0, J ] + xF0 + Fε = 0

}
,

where F is a matrix whose entries are homogeneous forms as in (16.3), whereas

(16.6) F0 :=

(
W ′ X
Y ′′ Z ′

)
and Fε :=

(
W 0
Y ′ Z

)
.

Proof. First note that the following diagram is commutative:
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A
∣∣
x

π̂∗x
!!

Ax

GG

H0
(
A(x)

)resAx (w)
..

evAy ##

π̂∗

!!

A
∣∣
y

π̂∗y
!!

Ay

HH

Ã
∣∣
x̃

"!

!!

H0
(
Ã(x̃)

) ev
eA

ỹ ##
res

eA
x̃ (w)

..
! "

!!

Ã
∣∣
ỹ! "

!!

Ẽ
∣∣
x̃

ξ
eE
x̃

!!

H0
(
Ẽ(x̃)

)res
eE
x̃(w)

..
ev

eE
ỹ ##

(tσ)∗
!!

Ẽ
∣∣
ỹ

ξ
eE
ỹ

!!

sln(k) + ! ## Matn(k) H0
(
Ẽ(1)

)resx..
evy ## Matn(k) sln(k)., "..

Let us explain our notation. In the notation used in (15.5), the composition

γA : π∗A π∗(ı)−→ π∗π∗Ã
can−→ Ã

is an isomorphism of vector bundles on P1. The morphisms π̂∗x and and π̂∗y are the
induced maps in the fibers, obtained by composing π∗ and γA. Similarly, π̂∗ is the
induced map of global sections. The commutativity of the first two top squares follows
from the “locality” of the morphisms resx(w) and evy, see [14, Proposition 2.2.8 and
Proposition 2.2.12] as well as [14, Section 5.2] for a detailed proof.

Next, recall that Ẽ = EndP1(P̃) and Ã = Ad(P̃), so we have the obvious inclusion
Ã ↪→ Ẽ . This morphism induces inclusion of the fibers of Ã and Ẽ over x̃ and ỹ as well
as the map of global sections. The commutativity of two middle squares is obvious.
The commutativity of two lower squares is given by [14, Corollary 5.2.1] and [14,

Corollary 5.2.2] respectively. In particular, the explicit formulae (16.4) for the maps resx

and evy are given there. Finally, see [14, Subsection 5.2.2] for the proof of commutativity
of two side diagrams. This proves the first part of Theorem 16.4.
To prove the second part of the theorem note that Soln,d = Soln,d ∩ ker(T ), where we

use the following notation.

(16.7) Soln,d := Im
(
H0

(
E(x)

) π̄∗−→ H0
(
Ẽ(1)

))
⊂ H0

(
Ẽ(1)

)
,
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where π̄∗ = (tσ)∗ ◦ cnj(γP) ◦ π∗. Next, the map T is such that the following diagram

(16.8)

H0
(
End(P̃)(x̃)

) (tσ)∗ ##

H0(Tr eP (x̃))
!!

H0
(
Ẽ(1)

)

T
!!

H0
(
OP1(x̃)

) tσ ## H0
(
OP1(1)

)

is commutative. It is not difficult to show that for F ∈ H0
(
Ẽ(1)

)
written in the matrix

form (16.3) we actually have:
(16.9) T (F ) = tr(W + Z)z0 + tr(W ′ + Z ′)z1.

Let P be a simple vector bundle of rank n and degree d on E given by (15.4). Then
E = EndE(P) is given by the triple

(
EndP1(P̃), Matn×n(OZ), cnj(M)

)
, see Lemma 11.3.

The isomorphism cnj(M) : Matn×n(R) −→ Matn×n(R) is given by the formula X (→
M ◦ X ◦M−1, where M is the matrix given by (15.3) for λ = 0. Note that M−1 =
− εJ(e, d).

As it was already mentioned above, the line bundle OE

(
[x]

)
corresponds to the triple

(
OP1(1),k, − x · ε

)
. Since the tensor product of vector bundles on E corresponds to

the tensor product in Tri(E), we have the following statement for F ∈ H0
(
Ẽ(1)

)
:

(16.10) F ∈ Soln,d ⇐⇒ F
∣∣

eZ = (1− x · ε) ·M · A ·M−1 ∈ Matn×n(k)[ε]

for some A ∈ Matn(k), where F
∣∣

eZ = F0 + εFε and F0, Fε are given by (16.6). See
also [14, Subsection 5.2.5] or a computation in a similar situation. Now, the fact that
Soln,d = Soln,d ∩ ker(T ), combined with the formulae (16.9) and (16.10), proves the
formula (16.5). The theorem is proved. !
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Part 5. Computations of elliptic solutions of the AYBE

In this part we compute the solutions of the associative Yang-Baxter equation (14.1)
attached to a diagonal matrix and to a Jordan block, see sections 17 and 18 respectively.
The general procedure for these computations was described in Subsection 14.1. Since
the computation of solutions attached to a Jordan block involves some rather lengthy
combinatorics, we postpone the most tiresome proofs (those of Proposition 18.3 and
Lemma 18.20) to Section 19. Those are precisely the proofs omitted in [12, Section 4.2].
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17. Solution obtained from a diagonal matrix

All our computations are based on the following standard fact.

Lemma 17.1. Let ϕ(z) = exp(−πiτ − 2πiz). Then the vector space

(17.1)




f : C −→ C

∣∣∣∣∣∣

f is holomorphic
f(z + 1) = f(z)
f(z + τ) = ϕ(z)f(z)






is one-dimensional and generated by the third Jacobian theta-function

θ̄(z) = θ3(z|τ) =
∑

n∈Z
exp(πin2τ + 2πinz).

Proof. A proof of this result can for instance be found in [35, Chapter 1]. !

Theorem 17.2. Let B = diag
(
exp(2πiλ1), . . . , exp(2πiλn)

)
for some λ1, . . . , λn ∈ C.

Then the corresponding solution of the associative Yang-Baxter equation described in
Theorem 14.7 is given by the following formula:

(17.2) rB(v, y) =
n∑

k, l=1

σ(v − λkl, y) el,k ⊗ ek,l,

where λkl = λk − λl for all 1 ≤ k, l ≤ n and σ(u, x) is the Kronecker function.

Proof. Let Φ(z) =
(
akl(z)

)
be an element of Sol = SolB, v, 0, τ , where v = v1 − v2. Then

for all 1 ≤ k, l ≤ n we have:
{

akl(z + 1) = akl(z)
akl(z + τ) = exp

(
−πiτ − 2πi(z + v + τ+1

2 − λkl)
)
akl(z).

Hence, there exist βkl ∈ C such that akl(z) = βklθ̄(z + v + τ+1
2 − λkl).

If A = (αkl) ∈ Matn×n(C) is such that res0

(
Φ(z)

)
= A then βkl = 1

θ̄(v+ τ+1
2 −λkl)

αkl. If
C = (γkl) := evy

(
Φ(z)

)
then for all 1 ≤ k, l ≤ n we have

γkl =
θ̄(v + y − λkl + τ+1

2 )

θ̄(v − λkl + τ+1
2 ) θ̄(y + τ+1

2 )
αkl =

1

i exp(−πi τ
4 )

θ(v − λkl + y)

θ(v − λkl)θ(y)
αkl,

where we have used the well-known relation between the first and the third Jacobian
theta functions θ̄(z + τ+1

2 ) = i exp(−πi(z + τ
4 ))θ(z). Hence, the linear map r̃B(v, y) :

Matn×n(C) → Matn×n(C) sends the basis vector ek,l to exp(πi τ
4 )

iθ′(0) σ(v − λkl, y)ek,l. Ne-

glecting the constant exp(πi τ
4 )

iθ′(0) , we end up with the solution rB(v, y) given by (17.2). !
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18. Solution attached to a Jordan block

In this section we compute the solution of the associative Yang-Baxter equation (14.1)
attached to a Jordan block of size n× n. Fist note the following easy fact.

Lemma 18.1. For any n ∈ N and λ ∈ C∗ the solution rJn(λ)(v, y) constructed in
Theorem 14.7, is gauge equivalent to rJ(v, y), where Jn(λ) is the Jordan block of size
n× n with eigenvalue λ and J = Jn(1).

Proof. Since the matrices Jn(λ) and λ · J are conjugate, Proposition 14.10 implies that
the corresponding solutions are gauge equivalent. From the algorithm of the construc-
tion of solutions of (14.1) presented in Theorem 14.7 it is clear that the matrices λ · J
and J give the same solutions. !

Hence, it suffices to describe the solution of the associative Yang-Baxter equation (14.1)
attached to the Jordan block J .

Definition 18.2. Let n ∈ N be fixed. For all 1 ≤ k ≤ n− 1 we set ak = (−1)k

k ,

A0 =





0 · · · · · · 0

a1
. . .

...
...

. . .
. . .

...
an−1 · · · a1 0




and Ak = −ak · 1n×n.

Next, consider the following matrix N from Matn2×n2(C):

(18.1) N =





A0 A1 · · · An−1

0
. . .

. . .
...

...
. . .

. . . A1

0 · · · 0 A0




.

Next, we list all statements concerning N necessary for the following discussion. We
recommend that the reader should take only a passing look at them now and postpone
studying each statement and its proof to a later moment when it becomes relevant in
the discussion. The proofs are contained in Section 19.1.

Proposition 18.3. The following hold:

(1) For r ∈ N,

N r =





N
(r)
0 N

(r)
1 ··· N

(r)
n−1

0
. . .

. . .
...

...
. . .

. . . N
(r)
1

0 ··· 0 N
(r)
0




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where each N (r)
i , 0 ≤ i ≤ n− 1 is a n× n matrix given by

N (r)
i =

r∑

k=0

( r
k ) Ar−k

0

∑

s∈Sk
i

k−1∏

l=0

Asl−sl+1

where for k, i ∈ N

Sk
i =

{
(sj)0≤j≤k ∈ Nk+1

∣∣∣∣
s0=i
sk=0

sj+1<sj , 0≤j≤k

}
.

(2) For all i, j, r ∈ N we have

et
j N (r)

i e1 =
r∑

k=0

( r
k )




∑

t∈Sr−k
j−1

(−1)j−1

∏r−k−1
l=0 (tl − tl+1)








∑

s∈Sk
i

(−1)i+k

∏k−1
l=0 (sl − sl+1)



 .

(3) N is nilpotent. More precisely N2n−1 = 0.

(4) For all 1 ≤ i, j ≤ n and any r ∈ N, et
j N (i+j+r)

i e1 = 0.

(5) We have exp(N) = J ⊗ J̃ .
(6) For any i, j, χ ∈ N, (up)1≤p≤χ ∈ [0, 2n− 1]χ and u =

∑χ
p=1 up:

∑

(αp,βp)1≤p≤χ∈Wχ
(i,j)

χ∏

p=1

et
βp+1 N (up)

αp
e1 = et

j+1 N (u)
i e1

where

Wχ
(i,j) =

{
(αp, βp)1≤p≤χ ∈ (N× N)χ

∣∣∣∣∣(αp, βp) *= (0, 0);

(
χ∑

p=1

αp,
χ∑

p=1

βp

)
= (i, j)

}
.

By Proposition 18.3 (3), the following definition makes sense:

Definition 18.4. Consider the differential operator ∇ = − 1
2πi ·

d
dz acting on the vector

space M of meromorphic functions on C. For all 0 ≤ k, l ≤ n− 1 we define the linear
operator ∇k,l : M→M given by the following formula:

(18.2) ∇k,l = et
n(n−k−1)+l+1 exp (∇N) en(n−1)+1.

Since the matrix N is nilpotent, the operators ∇k,l are polynomials in ∇. Note that
∇0,0 = et

n(n−1)+1 exp (∇N) en(n−1)+1 is the identity operator.

Now we can state the main result of this section.
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Theorem 18.5. Let J be the Jordan block of size n×n with eigenvalue one. Then the
corresponding solution of the associative Yang-Baxter equation, described in Theorem
14.7, is given by the following formula:

(18.3) rJ(v, y) =




∑

0≤k≤n−1
0≤l≤n−1

∇k,l

(
σ (v, y)

) ∑

1≤i≤n−l
1≤j≤n−k

ei,j+k ⊗ ej,i+l



 ,

where σ(v, y) is the Kronecker function and ∇k,l acts on the first spectral variable.

Remark 18.6. Let 1 ≤ a, b, c, d ≤ n. Then the coefficient of the tensor ea,b ⊗ ec,d in the
expression for rJ(v, y) from Equation (18.3) is zero unless d ≥ a and b ≥ c. Moreover,
this coefficient depends only on the differences d− a and b− c.

Example 18.7. Let n = 2 and J = ( 1 1
0 1 ). Note that

N =





0 0 1 0
-1 0 0 1
0 0 0 0
0 0 -1 0



 , N2 =





0 0 0 0
0 0 -2 0
0 0 0 0
0 0 0 0





and that all higher powers of N are zero. Hence,

exp(∇N) = 1 +∇N +
∇2 N2

2
=





1 0 ∇ 0
−∇ 1 −∇2 ∇

0 0 1 0
0 0 −∇ 1





and we derive that

rJ(v, y) = σ(v, y)
(
e11 ⊗ e11 + e22 ⊗ e22 + e12 ⊗ e21 + e21 ⊗ e12

)
+

∇σ(v, y)
(
e12 ⊗ h− h⊗ e12

)
−∇2σ(v, y)e12 ⊗ e12,

where h = e11 − e22.

Remark 18.8. From the fact that the function rJ(v, y) from example 18.7 satisfies the
associative Yang-Baxter equation (14.1) we obtain the following identity for derivatives
of the Kronecker function with respect to the first spectral variable:

σ′(u, x + y)σ′(v, y)− σ′(u, x)σ′(u + v, y)− σ′(−v, x)σ′(u + v, x + y)

= σ(u, x)σ′′(u + v, y)− σ(−v, x)σ′′(u + v, x + y).
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Example 18.9. For n = 3 and J =
(

1 1 0
0 1 1
0 0 1

)
we have

N =





0 0 0 1 0 0 -1
2 0 0

-1 0 0 0 1 0 0 -1
2 0

1
2 -1 0 0 0 1 0 0 -1

2
0 0 0 0 0 0 1 0 0
0 0 0 -1 0 0 0 1 0
0 0 0 1

2 -1 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 1

2 -1 0





.

Note that

exp(∇N) e7 =





0
0
0
0
0
0
1
0
0





+





−1
2
0
0
1
0
0
0

−1
1
2





∇+





1
1

−1
2
0

−2
1
0
0
1





∇2

2
+





0
−3

0
0
0
3
0
0
0





∇3

6
+





0
0
6
0
0
0
0
0
0





∇4

24

and that ∇k,l = et
3(2−k)+l+1

(
exp(∇N) e7

)
. Carrying out computations, we end up with

the following solution of the associative Yang-Baxter equation:

rJ(v, y) =σ
∑

1≤i,j≤3

ei,j ⊗ ej,i +∇σ
∑

1≤i≤3
1≤j≤2

(
ei,j+1 ⊗ ej,i − ej,i ⊗ ei,j+1

)
+

(
−1

2
∇+

1

2
∇2

)
σ

∑

1≤i≤3

ei,3 ⊗ e1,i +
(1

2
∇+

1

2
∇2

)
σ

∑

1≤i≤3

e1,i ⊗ ei,3

(1

2
∇2 − 1

2
∇3

)
σ

∑

1≤i≤2

ei,3 ⊗ e1,i+1 +
(1

2
∇2 +

1

2
∇3

)
σ

∑

1≤i≤2

e1,i+1 ⊗ ei,3+

−∇2σ
∑

1≤i,j≤2

ei,j+1 ⊗ ej,i+1 +
(
−1

4
∇2 +

1

4
∇4

)
σe1,3 ⊗ e1,3,

where σ = σ(v, y) is the Kronecker function.

Proof of Theorem 18.5. We divide the proof into several steps.
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Computation of a basis of Sol. First, we compute a basis of the vector space

(18.4) SolJ, v, 0, τ :=




Φ : C → Matm×n(C)

∣∣∣∣∣∣

Φ is holomorphic
Φ(z + 1) = Φ(z)
Φ(z + τ)J = e(z)JΦ(z)




 ,

where e(z) = e(z, v, τ) = − exp
(
−2πi(z + v + τ)

)
. The proof of the following result is

straightforward.

Lemma 18.10. Let C : C → GLn(C) and D :→ GLm(C) be a pair of automorphy
factors. Let D̃ :=

(
D−1

)t be the transpose of the inverse matrix of D. Next, we set

C ⊗ D̃ =




c11D̃ . . . c1nD̃

...
. . .

...
cn1D̃ . . . cnnD̃



 .

(1) In the notations of Theorem 10.3, we have isomorphisms

Hom
(
E(C), E(D)

) ∼=−→ SolC, D
α−→ Sol(1), C⊗ eD

∼=−→ H0
(
E(C ⊗ D̃)

)
,

where for Φ =
(
fij

)
1≤i,j≤n

∈ SolC, D we set α
(
Φ

)
=

(
fn(i−1)+j

)
1≤i,j≤n

.
(2) We have: J ⊗ J̃ = exp(N), where N is the matrix from Definition 18.2.

The following result is due to Polishchuk and Zaslow [39, Proposition 2].

Proposition 18.11. As above, let ∇ = − 1
2πi ·

d
dz and e(z) = − exp

(
−2πi(z + v + τ)

)
.

Then we have an isomorphism of vector spaces:

δ : H0
(
E
(
e(z)

))
⊗ Cn2 −→ H0

(
E
(
e(z) · exp(N)

))

given by the rule δ(f⊗u) =
(
exp(∇N)f

)
u =

∑∞
m=0

∇m(f)
m! Nm(u) for any f ∈ H0

(
E
(
e(z)

))

and u ∈ Cn2.
Let θ̄v(z) = θ̄(z+v+ τ+1

2 ). Then we have an isomorphism of vector spaces ∆ : Cn2 →
SolJ, v, 0, τ mapping a vector u ∈ Cn2 to the matrix-valued function ∆(u), where for any
1 ≤ k, l ≤ n we have:

(
∆(u)

)
k, l

(z) = et
n(k−1)+l

(
exp(∇N)θ̄v(z)

)
u.

Proof. By Lemma 17.1, the vector space H0
(
E(e(z))

)
is one-dimensional and θ̄v(z) =

θ̄(z +v+ τ+1
2 ) is its basis element. Hence, Proposition 18.11 is a consequence of Lemma

18.10 and Proposition 18.11. !
Definition 18.12. In the notations of Proposition 18.11, let U be the element of
Sol = SolJ, v, 0, τ corresponding to u = en(n−1)+1 ∈ Cn2 . Note that

(
U(z)

)
n,1

= θ̄v(z).
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Proposition 18.13. Let K = Jn(0) be the Jordan block of size n × n with eigenvalue
zero. For all 1 ≤ i, j ≤ n we set Fij = Kn−iUKj−1. Then we have:

(1) All matrix-valued functions Fij : C → Matn×n(C) belong to Sol.
(2) If 1 ≤ p, q ≤ n are such that i < p ≤ n or 1 ≤ q < j then we have:

(
Fij

)
p, q

= 0.
Moreover,

(
Fij

)
i, j

= θ̄v. In other words, all non-zero entries of Fij are located
in the rectangle whose lower left corner is (i, j).

(3) Moreover,
{
Fij

}
1≤i,j≤n

is a basis of the vector space Sol.

Proof. The statement that Fij belongs to Sol is equivalent to the equality

(18.5) Kn−i U(z + τ) Kj−1 J = e(z)J Kn−i U(z) Kj−1.

Since the matrices K and J commute, Equality (18.5) is equivalent to

Kn−i
(
U(z + τ)J − e(z)JU(z)

)
Kj−1 = 0,

which is true since U belongs to Sol. The second part of the Proposition follows from
the definition of the functions Fij. From this part also follows that all elements of the
set

{
Fij

}
1≤i,j≤n

are linearly independent. By Corollary 14.4, the dimension of Sol is
n2. Thus,

{
Fij

}
1≤i,j≤n

is a basis of Sol. !

Example 18.14. Let n = 2. Similarly to example 18.7, we obtain:

F2,1 = U =

(
∇θ̄v −∇2θ̄v

θ̄v −∇θ̄v

)
.

Moreover, we have:

F1,1 =

(
θ̄v −∇θ̄v

0 0

)
, F2,2 =

(
0 ∇θ̄v

0 θ̄v

)
and F1,2 =

(
0 θ̄v

0 0

)
.

Computation of res−1
0 . As the next step, we compute the preimages of the elementary

matrices
{
ea,b

}
1≤a,b≤n

under the isomorphism res0 : Sol→Matn×n(C).
Let X = (xp,q)1≤p,q≤n ∈ Matn×n(C) be a given matrix and A ∈ Sol be such that

res0(A) = X. By Proposition 18.13, we have an expansion A =
∑

1≤i, j≤n ηi,jFi,j for
certain uniquely determined ηi,j ∈ C. It is clear that for all 1 ≤ p, q ≤ n we get:

(18.6) xp,q =
∑

p≤i≤n
1≤j≤q

ηi,j

(
Fi,j(0)

)
p,q

.
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Next, for all 1 ≤ p, q ≤ n we have
(
Fp,q(z)

)
p,q

= θ̄v(z). This implies that

(18.7) ηp,q =
1

θ̄v(0)




xp,q −

∑

p≤i≤n
1≤j≤q

(i,j) (=(p,q)

ηi,j

(
Fi,j(0)

)
p,q




.

Hence ηp,q can be expressed as a linear combination of those xi,j for which p ≤ i ≤ n
and 1 ≤ i ≤ q. Moreover, due to the recursive structure of the Equality (18.7), it is
clear that ηp, q can be written as a certain linear combination of xi,j, whose structure is
controlled by the set of paths starting at (p, q) and ending at (i, j). In order to make
this more precise, let us make the following definition.

Definition 18.15. For any χ ∈ N and (i, j), (p, q) ∈ N× N such that i ≥ p and j ≤ q
we denote

Wχ
(p,q),(i,j) =

{
(αs, βs)0≤s≤χ ∈ (N× N)χ+1

∣∣∣∣∣

αs≤αs+1, βs≥βs+1

(αs,βs) (=(αs+1,βs+1)
(α0,β0)=(p,q)
(αχ,βχ)=(i,j)

}
.

In other words, Wχ
(p,q),(i,j) is the set of all paths of length χ on the square lattice N×N

starting at (p, q), ending at (i, j) and going in the “south-west” direction.

Applying the recursive formula (18.7), we end up with the following result.

Lemma 18.16. Let X =
(
xi,j

)
1≤i,j≤n

∈ Matn×n(C) and
{
ηp,q(X)

}
1≤p,q≤n

be such that
the equality (18.6) is true. Then we have:

(18.8) ηp,q(X) =
∑

p≤i≤n
1≤j≤q

xi,j




i−p+q−j∑

χ=0

∑

Wχ
(p,q),(i,j)

(−1)χ

θ̄v(0)χ+1

χ−1∏

s=0

(
Fαs+1,βs+1(0)

)
αs,βs



 ,

where the third sum runs over all elements
(
αs, βs

)
0≤s≤χ

of Wχ
(p,q),(i,j).

Corollary 18.17. Let
{
ea,b

}
1≤a,b≤n

be the standard basis of Matn×n(C). If a ≥ p and
b ≤ q then we have:

ηp,q (ea,b) =
a−p+q−b∑

χ=0

∑

(αs,βs)0≤s≤χ∈Wχ
(p,q),(a,b)

(−1)χ

θ̄v(0)χ+1

χ−1∏

s=0

(
Fαs+1,βs+1(0)

)
αs,βs

,



106

whereas in the remaining cases ηp,q(ea,b) = 0. Hence, res−1
0 (ea,b) = γa,b, where

γa,b(z) =
∑

1≤p≤a
b≤q≤n

Fp,q(z)




a−p+q−b∑

χ=0

∑

(αs,βs)0≤s≤χ∈Wχ
(p,q),(a,b)

(−1)χ

θ̄v(0)χ+1

χ−1∏

s=0

(
Fαs+1,βs+1(0)

)
αs,βs



 .

Denote the matrix entries of
(
γa,b(z)

)
c,d

by γa,b
c,d(z). If c < a or d < b then γa,b

c,d(z) = 0.
On the other hand, if a ≥ c and d ≥ b then we get:

(18.9) γa,b
c,d(z) =

∑

c≤p≤a
b≤q≤d

[(
Fp,q(z)

)
c,d

a−p+q−b∑

χ=0

∑

Wχ
(p,q),(a,b)

(−1)χ

θ̄v(0)χ+1

χ−1∏

s=0

(
Fαs+1,βs+1(0)

)
αs,βs

]
.

Remark 18.18. In the formula (18.9) the function γa,b
c,d depends on one variable z. How-

ever, from its definition it is clear that it also depends on the parameter v ∈ C \ Λ.
Hence, in what follows, we shall consider it as a function of two variables z and v.

Computation of r̃J(v, y) : Matn×n →Matn×n. Recall that r̃B(v, y) : Matn×n(C) →
Matn×n(C) is the composition evy◦res−1

0 . The tensor rB(v, y) ∈ Matn×n(C)⊗Matn×n(C)
is the image of r̃B(v, y) under the canonical isomorphism

Lin
(
Matn×n(C), Matn×n(C)

)
−→ Matn×n(C)⊗Matn×n(C).

In the standard basis
{
ea,b

}
1≤a,b≤n

of Matn×n(C) this map is given as follows:
(

ea,b (→
∑

1≤c, d≤n

αa,b
c,d ec,d

)
(→

∑

1≤c, d≤n

αa,b
c,d eb,a ⊗ ec,d.

Hence, the solution of the associative Yang-Baxter equation (14.1) attached to the
Jordan block J is the following:

rJ(v, y) = 1
θ̄( 1+τ

2 +y)

∑

0≤k≤n−1
0≤l≤n−1

∑

1≤i≤n−l
1≤j≤n−k

γj+k,i
j,i+l (v, y) ei,j+k ⊗ ej,i+l,(18.10)

where γj+k,i
j,i+l (v, y) are given by (18.9). Our next goal is to simplify this expression.

Definition 18.19. For any i, j, χ in N, we set

Wχ
(i,j) =

{
(αs, βs)1≤s≤χ ∈ (N× N)χ

∣∣∣∣∣(αs, βs) *= (0, 0);

(
χ∑

s=1

αs,
χ∑

s=1

βs

)
= (i, j)

}
.

We may think of Wχ
(i,j) as the set paths of length χ in N × N starting at the point

(0, 0), ending in (i, j) and going in the “north-east” direction. Note that any path{
(αs, βs)

}
0≤s≤χ

from Wχ
(j+a,i+b),(j+k,i) corresponds to the element

{
(αs+1 − αs, βs −
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βs+1)s

}
1≤s≤χ

of Wχ
(k−a,b). For the sake of simplicity, we shall use the same notation{

(αs, βs)
}

0≤s≤χ
for both elements.

In these notations, the formula (18.9) can be rewritten as follows:

γj+k,i
j,i+l (y) =

∑

0≤a≤k
0≤b≤l




(
Fj+a,i+b(y)

)
j,i+l

·
k−a+b∑

χ=0

∑

Wχ
(k−a,b)

(−1)χ

θ̄v(0)χ+1

χ∏

s=1

(
Fαs+1,βs+1(0)

)
αs,βs



 ,

where the third sum is taken over all elements
(
αs, βs

)
1≤s≤χ

of Wχ
(k−a,b). Recall that(

Fα,β

)
γ,δ

= 0 if γ > α or β > δ. For α ≥ γ and δ ≥ β we have:
(
Fα,β

)
γ,δ =

U(n−(α−γ),δ−β+1), where
(
U(v, z)

)
α,β

= et
n(α−1)+β exp(∇N)θ̄v(z) en(n−1)+1. Hence,

γj+k,i
j,i+l (v, y) =

∑

0≤a≤k
0≤b≤l




(
U(v, y)

)
(n−a,l−b+1) ·

k−a+b∑

χ=0

∑

Wχ
(k−a,b)

(−1)χ

θ̄v(0)χ+1

χ∏

s=1

(
U(0)

)
n−αs,βs+1





From Proposition 18.3(1) it follows that for all 0 ≤ α < n, 1 ≤ β ≤ n we have:

(
U(v, z)

)
n−α,β

= et
n(n−α−1)+β exp(∇z N)θ̄v(z) en(n−1)+1 =

2n−1∑

r=0

et
β N (r)

α e1

∇r
z

(
θ̄v(z)

)

r!
.

Recall that θ̄v(z) = θ̄(z + v + 1+τ
2 ). Note that we have:

∇r
z

(
θ̄v(z)

)
= ∇r

v

(
θ̄v(z)

)
=

(
∂

∂v

)r

θ̄

(
z +

τ + 1

2
+ v

)
.

Therefore, we can rewrite the expression for γj+k,i
j,i+l (v, y) as follows:

(18.11) γj+k,i
j,i+l (v, y) =

∑

0≤a≤k
0≤b≤l

((
2n−1∑

r=0

et
l−b+1 N (r)

a e1

∇r
v

(
θ̄v(y)

)

r!

)
·

·
k−a+b∑

χ=0

∑

(αs,βs)1≤s≤χ∈Wχ
(k−a,b)

(−1)χ

θ̄v(0)χ+1

χ∏

s=1

(2n−1∑

rs=0

et
βs+1 N (rs)

αs
e1

∇rs
v

(
θ̄v(0)

)

rs!

))
.

Next, we need the following generalization of the Leibniz formula. The proof, consisting
of some lengthy combinatorial argument, is postponed to Subsection 19.2.
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Lemma 18.20. Let f, g be any meromorphic functions on C and ∇ = − 1
2πi

d
dz . Then

in the notations of Definition 18.4 the following formula is true:

∇k,l

(f

g

)
=

∑

0≤a≤k
0≤b≤l

[(2n−1∑

r=0

et
l−b+1 N (r)

a e1
∇r(f)

r!

)
·
(k−a+b∑

χ=0

∑

(αs,βs)1≤s≤χ∈Wχ
(k−a,b)

(−1)χ

gχ+1
·

·
χ∏

s=1

2n−1∑

rs=0

et
βs+1 N (rs)

αs
e1
∇rs(g)

rs!

)]
.

Applying Lemma 18.20 to equality (18.11), we finally get:

1

θ̄
(

1+τ
2 + y

)γj+k,i
j,i+l (v, y) =

(
∇k,l

)
v

(
θ̄(y + τ+1

2 + v)

θ̄
(

1+τ
2 + y

)
· θ̄( τ+1

2 + v)

)
.

Recall that the first and third theta functions θ and θ̄ are related by the equal-
ity θ̄

(
z + 1+τ

2

)
= i q(z) θ(z), where q(z) = exp(−πi(z + τ

4 )). Thus, up to the con-
stant exp(πi τ

4 )

iθ′(0) , the coefficient of the tensor ei,j+k ⊗ ej,i+l in the expansion (18.10) is
(∇k,l)v

(
σ(v, y)

)
. This finishes the proof of Theorem 18.5.

Remark 18.21. The algorithm from Subsection 14.1 assigning to a matrix B ∈ GLn(C)
and a complex torus E a solution of the associative Yang-Baxter can be generalized
to the case when E is a singular Weierstrass cubic curve. In this case, one can use a
description of semi-stable vector bundles on E following the approach of [6], see also
[14]. However, all solutions produced in this way turn out to be degenerations of the
constructed elliptic solutions, where we replace the Kronecker function σ(u, x) by its
trigonometric or rational degenerations cot(u) + cot(x) or

1

u
+

1

x
.

19. Combinatorial proofs

19.1. Proof of Proposition 18.3.

1) We proceed by induction on r. For r = 0 we have N r = 1n2×n2 , hence the statement
is correct. So assume the statement is correct for r. Note that for two n× n matrices
of the form

C =




c0 c1 ··· cn−1

0
. . .

. . .
...

...
. . .

. . . c1
0 ··· 0 c0



 , C ′ =





c′0 c′1 ··· c′n−1

0
. . .

. . .
...

...
. . .

. . . c′1
0 ··· 0 c′0




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we have

(19.1) (CC ′)ij =
n∑

k=1

(C)i,k(C
′)k,j =

j∑

k=i

ck−i c
′
j−k =

j−i∑

t=0

ct c
′
j−i−t.

Hence N r+1 is indeed a n×n upper triangular block matrix with entries n×n matrices
depending on the difference between column and row index. Next the formula above
implies

(19.2) N (r+1)
i =

i∑

t=0

Ai−tN
(r)
t =

{
A0N

(r)
0 i = 0

A0N
(r)
i + AiN

(r)
0 +

∑i−1
t=1 Ai−tN

(r)
t else

.

Let us focus on the case i = 0. Since Sk
0 = ∅ for all k *= 0, the statement we have to

show reads
N r+1

0 = Ar+1
0 .

Combining (19.2) with the inductive assumption settles the case i = 0 immediately.

Hence, for the rest of this proof, assume that i *= 0. Applying the inductive assumption
to (19.2) yields

N (r+1)
i =

r∑

k=1

( r
k ) Ar+1−k

0

∑

s∈Sk
i

k−1∏

l=0

Asl−sl+1
+ AiA

r
0 +

r∑

k=1

( r
k ) Ar−k

0

i−1∑

t=1

Ai−t

∑

s∈Sk
t

k−1∏

l=0

Asl−sl+1
.

By definition of Sk
i , the first summand of this equals

( r
1 ) Ar

0Ai +
r−1∑

k=1

( r
k+1 ) Ar−k

0

∑

s∈Sk+1
i

k∏

l=0

Asl−sl+1

while the last equals
r∑

k=1

( r
k ) Ar−k

0

∑

s∈Sk+1
i

k∏

l=0

Asl−sl+1
.

Thus

N (r+1)
i = Ar

0Ai ((
r
1 ) + 1) +

r∑

k=1

(( r
k+1 ) + ( r

k )) Ar−k
0

∑

s∈Sk+1
i

k∏

l=0

Asl−sl+1

where we use that ( r
r+1 ) = 0. Since ( r

k ) + ( r
k+1 ) =

(
r+1
k+1

)
this equals

Ar
0Ai(r + 1) +

r∑

k=1

(
r+1
k+1

)
Ar−k

0

∑

s∈Sk+1
i

k∏

l=0

Asl−sl+1
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= Ar
0Ai(r + 1) +

r+1∑

k=2

( r+1
k ) Ar+1−k

0

∑

s∈Sk
i

k−1∏

l=0

Asl−sl+1

=
r+1∑

k=1

( r+1
k ) Ar+1−k

0

∑

s∈Sk
i

k−1∏

l=0

Asl−sl+1
.

2) Obviously, nearly the same arguments as in (1) yield that

Ar
0 =





a
(r)
0 0 ··· 0

a
(r)
1

. . .
. . .

...
...

. . .
. . . 0

a
(r)
m−1 ··· a

(r)
1 a

(r)
0





with

a(r)
j =

r∑

k=0

( r
k ) ar−k

0

∑

s∈Sk
j

k−1∏

l=0

asl−sl+1

where a0 = 0. it follows from the definitions that

a(r)
j =

∑

s∈Sr
j

(−1)j

∏r−1
l=0 (sl − sl+1)

.

By definition we also have
∑

s∈Sk
i

k−1∏

l=0

Asl−sl+1
= 1n×n ·

∑

s∈Sk
i

(−1)i+k

∏k−1
l=0 (sl − sl+1)

hence by (1) we get

et
j N (r)

i e1 =
r∑

k=0

( r
k )

(
et

j Ar−k
0 e1

) ∑

s∈Sk
i

(−1)i+k

∏k−1
l=0 (sl − sl+1)

=
r∑

k=0

( r
k )




∑

t∈Sr−k
j−1

(−1)j−1

∏r−k−1
l=0 (tl − tl+1)








∑

s∈Sk
i

(−1)i+k

∏k−1
l=0 (sl − sl+1)



 .

3) We use (1) to show that each summand of N2n−1
i equals zero. Obviously, the k-th

summand in formula (1) is non-zero only if both A2n−1−k
0 *= 0 and Sk

i *= ∅. Since
An−1

0 = 0 the former implies k > n− 1, while the latter implies k ≤ i. But i ≤ n− 1.
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4) We show that for each 0 ≤ k ≤ i + j + r, the k-th summand in formula (2) is zero.
Indeed, for fixed i, j, k, we show that at least one of Si+j+r−k

j−1 and Sk
i is empty. Assume

Sk
i *= ∅. Then k ≤ i, so i + j + r− k ≥ j + r > j − 1. Hence Si+j+r−k

j−1 = ∅ in that case.

5) Note that exp(N) = J ⊗ J̃ if and only if log(J ⊗ J̃) = N . In order to apply the
power series formula for the logarithm, we set M = J ⊗ J̃ − 1n×n, hence

(19.3) log(J ⊗ J̃) =
∞∑

r=1

(−1)r−1

r
M r.

This makes sense as we will see immediately that M is nilpotent. Copying the proof of
(1) we see that

M r =





M
(r)
0 M

(r)
1 ··· M

(r)
n−1

0
. . .

. . .
...

...
. . .

. . . M
(r)
1

0 ··· 0 M
(r)
0





with

(19.4) M (r)
i =

r∑

k=0

( r
k ) Br−k

0

∑

s∈Sk
i

k−1∏

l=0

Bsl−sl+1

where Bi = M (1)
0 i.e.

Bi =






J̃ − 1n×n i = 0

J̃ i = 1

0 else.

Thus we may omit in (19.4) any s = (sl)0≤l≤k ∈ Sk
i such that sl − sl+1 > 1 for some

0 ≤ l ≤ k− 1. Since sl − sl+1 > 0 anyway, this implies that only the unique element in
Si

i contributes non trivially, hence

(19.5) M (r)
i = ( r

i ) Br−i
0 Bi

1.

Since Bn
0 = 0 , this implies that M is nilpotent, therefore (19.3) makes sense and is

indeed equivalent to
∞∑

r=1

(−1)r−1

r
M (r)

i = Ai, 0 ≤ i ≤ n− 1.
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Applying (19.3) once more, this means that we have to prove

(19.6) Ai =

{∑n−1
r=1

(−1)r−1

r Br
0 i = 0

Bi
1

∑n−1
r=0

(−1)r+i−1

r+i ( r+i
i ) Br

0 else.

In any of these two cases, we have to compare two lower triangular matrices whose
entries depend only on the difference between row and column index, cf. (19.1). Anal-
ogous to 2), we see that

Br
0 =





b
(r)
0 0 ··· 0

b
(r)
1

. . .
. . .

...
...

. . .
. . . 0

b
(r)
n−1 ··· b

(r)
1 b

(r)
0





with

b(r)
j =

r∑

k=0

( r
k ) br−k

0

∑

s∈Sk
j

k−1∏

l=0

bsl−sl+1
.

But now the situation simplifies considerably in comparison to that of 2): firstly, b0 = 0
hence

(19.7) b(r)
j =

∑

s∈Sr
j

k−1∏

l=0

bsl−sl+1
.

Secondly, for all j, k and s ∈ Sk
j

k−1∏

l=0

bsl−sl+1
=

k−1∏

l=0

(−1)sl−sl+1 = (−1)j.

Thus
∑

s∈Sk
j

k−1∏

l=0

bsl−sl+1
=

{
1 (j, k) = (0, 0)(

j−1
k−1

)
(−1)j else.

Combining this with (19.7), we infer that

(19.8) b(r)
j =

{
1 (j, r) = (0, 0)(

j−1
r−1

)
(−1)j else.

Now we can prove (19.6). Let us start with i = 0. We have to show

aj =
m−1∑

r=1

(−1)r−1

r
b(r)
j , 0 ≤ j ≤ n− 1.
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For j = 0 the left hand side is zero by definition as is the right hand side by (19.8). For
j *= 0, using (19.8) once more, we may rewrite the claim as

(−1)j

j
=

j∑

r=1

(−1)r−1

r

(
j−1
r−1

)
(−1)j

which is true if and only if

1 =
j∑

r=1

(−1)r−1 j

r

(
j−1
r−1

)
.

Now
j∑

r=1

(−1)r−1 j

r

(
j−1
r−1

)
=

j∑

r=1

(−1)r−1 ( j
r ) = (−1)j−1 +

j−1∑

r=1

(−1)r−1
((

j−1
r−1

)
+ ( j−1

r )
)

=

= (−1)j−1 +
(

j−1
0

)
+

(
j−1
j−1

)
(−1)j−2 = (−1)j−1 + 1 + (−1)j−2

which proves the claim for j > 0.

So assume i *= 0 in (19.6). Then the assertion is that

−ai · 1n×n = Bi
1

n−1∑

r=0

(−1)r+i−1

r + i
( r+i

i ) Br
0

or, setting H = J t, equivalently

(19.9) −ai ·H i =
m−1∑

r=0

(−1)r+i−1

r + i
( r+i

i ) Br
0.

Note that analogous to the case of M r, the powers of H are of the form

Hr =





h
(r)
0 0 ··· 0

h
(r)
1

. . .
. . .

...
...

. . .
. . . 0

h
(r)
n−1 ··· h

(r)
1 h

(r)
0





with
h(r)

i = ( r
i ) hr−i

0 hi
1 = ( r

i ) .

Thus (19.9) holds if and only if for all 0 ≤ j ≤ n− 1 we can show that

(−1)i−1

i
h(i)

j =
n−1∑

r=0

(−1)r+i−1

r + i
( r+i

i ) b(r)
j
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i.e.
(

i
j

)
=

n−1∑

r=0

(−1)r ( r+i−1
r ) b(r)

j .

For j = 0 both sides evaluate to one by (19.8), hence we assume j > 0. Again by (19.8)
we may reformulate the above as

(19.10)
(

i
j

)
= (−1)j

j∑

r=0

(−1)r ( r+i−1
r )

(
j−1
r−1

)
.

Note the following easy combinatorial fact:

( i+r−1
r ) =

r∑

l=1

( i
l )

(
r−1
r−l

)
.

Applying this to the right-hand side of (19.10) yields

(−1)j
j∑

r=1

(−1)r
(

j−1
r−1

) r∑

l=1

( i
l )

(
r−1
r−l

)
= (−1)j

j∑

l=1

( i
l )

j∑

r=l

(−1)r
(

j−1
r−1

) (
r−1
r−l

)
.

We claim that
j∑

r=l

(−1)r
(

j−1
r−1

) (
r−1
r−l

)
=

{
(−1)j l = j

0 else
.

Note that this would prove (19.10), hence finally (19.9). Hence, let us proceed to verify
the above claim:

j∑

r=l

(−1)r
(

j−1
r−1

) (
r−1
r−l

)
=

(j − 1)!

(l − 1)!

j∑

r=l

(−1)r 1

(j − r)! (r − l)!
=

=
(j − 1)!

(l − 1)!
(−1)l

j−l∑

t=0

(−1)t 1

(j − l − t)! t!
=

=
(j − 1)!

(l − 1)!

(−1)l

(j − l)!

j−l∑

t=0

(−1)t
(

j−l
t

)
=

(j − 1)!

(l − 1)!

(−1)l

(j − l)!
(1− 1)j−l

which proves the claim. As mentioned above, this implies (19.9), which finishes the
proof of (5).
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6) Let us denote the right-hand side of the statement by R, the left-hand side by L.
By (2) we have

R =
u∑

k=0

( u
k )




∑

t∈Su−k
j

(−1)j

∏u−k−1
l=0 (tl − tl+1)








∑

s∈Sk
i

(−1)i+k

∏k−1
l=0 (sl − sl+1)



 .

Since we will compare R to L by examining the single summands on each side, we shall
need the notation

ρk,t,s =

(
(−1)j

∏u−k−1
l=0 (tl − tl+1)

)

︸ ︷︷ ︸
ρ′k,t,s

·
(

(−1)i+k

∏k−1
l=0 (sl − sl+1)

)

︸ ︷︷ ︸
ρ′′k,t,s

.

Fixing 0 ≤ k ≤ u, we introduce the following disjoint union:

Rk = <(t,s)∈Su−k
j ×Sk

i

{
ρ(k,t,s)

}
.

Then clearly

(19.11) R =
u∑

k=0

( u
k )

∑

ρ∈Rk

ρ.

On the other hand, applying (2) to L, we see that L equals

∑

(αp,βp)1≤p≤χ∈Wχ
(i,j)

χ∏

p=1




up∑

kp=0

( up

kp

)
·

·




∑

tp∈S
up−kp
βp

(−1)βp

∏up−kp−1
l=0 ((tp)l − (tp)l+1)








∑

sp∈S
kp
αp

(−1)αp+kp

∏kp−1
l=0 ((sp)l − (sp)l+1)







 .

Analogous to above, we denote

λ(αp,βp,kp,tp,sp) =

(
(−1)βp

∏up−kp−1
l=0 ((tp)l − (tp)l+1)

)

︸ ︷︷ ︸
λ′(αp,βp,kp,tp,sp)

·
(

(−1)αp+kp

∏kp−1
l=0 ((sp)l − (sp)l+1)

)

︸ ︷︷ ︸
λ′′(αp,βp,kp,tp,sp)

.

We also need, for any 0 ≤ k ≤ u, the following set

Uk =

{
(kp)1≤p≤χ ∈ ([0, up])1≤p≤χ

∣∣∣
χ∑

p=1

kp = k

}
.
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For fixed (kp)1≤p≤χ ∈ Uk, we let L(kp)1≤p≤χ
denote the disjoint union

<(αp,βp)1≤p≤χ∈Wχ
(i,j)

{
<

(tp,sp)1≤p≤χ∈
“
S

up−kp
βp

×S
kp
αp

”

1≤p≤χ

{
χ∏

p=1

λ(αp,βp,kp,tp,sp)

}}
.

If we keep track of all the notations, it’s easy to see that

(19.12) L =
u∑

k=0

∑

(kp)1≤p≤χ∈Uk

[
χ∏

p=1

( up

kp

)
]

∑

λ∈L(kp)1≤p≤χ

λ.

We shall prove that, fixing 0 ≤ k ≤ u, for any (kp)1≤p≤χ ∈ Uk we actually have
L(kp)1≤p≤χ

= Rk. Once this is verified, the equality L = R immediately follows by
applying the easy combinatorial fact

∑

(kp)1≤p≤u∈Uk

χ∏

p=1

( up

kp

)
=

( Pχ
p=1 upPχ
p=1 kp

)
= ( u

k )

to (19.12) and comparing this to (19.11).

So let us prove L(kp)1≤p≤χ
= Rk for fixed 0 ≤ k ≤ u and (kp)1≤p≤χ ∈ Uk. We will

construct a bijection

σ : <(αp,βp)1≤p≤χ∈Wχ
(i,j)

{
(αp, βp)1≤p≤χ ×

(
Sup−kp

βp
× Skp

αp

)

1≤p≤χ

}
→ Sp−k

j × Sk
i

such that

(19.13)

(
χ∏

p=1

λ′(αp,βp,tp,sp),
χ∏

p=1

λ′′(αp,βp,kp,tp,sp)

)
=

=



ρ′
σ

(
(αp,βp)1≤p≤χ,(tp,sp)1≤p≤χ

), ρ′′
σ

(
(αp,βp)1≤p≤χ,(tp,sp)1≤p≤χ

)



 .

Note that we may assume kp ≤ αp and up−kp ≤ βy for 1 ≤ p ≤ χ, else the corresponding
set Sup−kp

βp
× Skp

αp is empty anyway. Clearly, showing existence and bijectivity of σ
immediately implies L(kp)1≤p≤χ

= Rk.
As to the definition of σ, we first need to define an auxiliary map

∏
:
(
Sap

bp

)

1≤p≤χ
→ Sa

b , a =
χ∑

p=1

ap and b =
χ∑

p=1

bp.
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To any (sp)1≤p≤χ ∈
(
Sap

bp

)

1≤p≤χ
this map

∏
simply assigns the concatenation of sχ, ..., s1,

after removing the entry 0 from all sq with 2 ≤ q ≤ χ and subsequent addition of the
value

∑
1≤p≤q−1 bp to all entries of sq. In short, for any 1 ≤ q ≤ χ and any 0 ≤ w ≤ aq,

we let (
χ∏

p=1

sp

)

a−
P

1≤p≤q ap+w

= (sq)w +
∑

1≤p≤q−1

bp.

Note that this is well defined even though there are two different ways of expressing
c = a−

∑
1≤p≤q′ ap for chosen 1 ≤ q′ < χ: we could choose q = q′ and w = 0 or choose

q = q′ + 1 and w = aq′+1.
Now we can define the map σ as follows:

σ
(
(αp, βp)1≤p≤χ, (tp, sp)1≤p≤χ

)
=

(
χ∏

p=1

tp,
χ∏

p=1

sp

)
.

It follows immediately from the definitions that we have (19.13) if we restrict to ab-
solute values. Indeed, the absolute value of say ρ′′

σ((αp,βp)1≤p≤χ,(tp,sp)1≤p≤χ)
is given by

the inverse of the product of all differences between two subsequent entries of
∏χ

p=1 sp.
But each such difference is just the the difference between two subsequent elements
of some sp, 1 ≤ p ≤ χ. As to signs, observe that for (kp)1≤p≤χ ∈ Uk the sign of∏χ

p=1 λ′′(αp,βp,kp,tp,sp) equals (−1)
Pχ

p=1(αp+kp) = (−1)i+k , which is exactly the sign of
ρ′′

σ((αp,βp)1≤p≤χ,(tp,sp)1≤p≤χ)
and similarly for the first entry on either side of (19.13).

All that remains is to proof bijectivity of σ. We do this by constructing an inverse of σ.
First, we need to fix the notations. Given an element (c, d) ∈ Sp−k

j × Sk
i , we determine

a unique element (αp, βp)1≤p≤χ ∈ Wχ
(i,j) and then a unique element (tp, sp)1≤p≤χ ∈(

Sup−kp

βp
× Skp

αp

)

1≤p≤χ
such that σ

(
(tp, sp)1≤p≤χ

)
= (c, d). Note that since (kp)1≤p≤χ

is fixed, determining the αp’s and sp’s from d is independent from determining the
βp’s and tp’s from c. Since both tasks are obviously alike, we will only show how,
starting with d ∈ Sk

i , we determine (αp)1≤p≤χ and (sp)1≤p≤χ ∈
(
Skp

αp

)

1≤p≤χ
such that

∏
1≤p≤χ sp = d. Actually, this is pretty easy if we recall the definition of

∏
. The details

are as follows: we let k̄1 = k − k1, α1 = dk̄1
and set (s1)w = dk̄1+w for all 0 ≤ w ≤ k1.

Obviously, s1 ∈ Sk1
α1

. Next, we let d(2) = (dw − α1)0≤w≤k̄1
∈ S k̄1

i−α1
. Assuming k̄l−1 and

d(l) ∈ S
k̄l−1

i−
Pl−1

j=1 αj
have been defined, we set k̄l = k̄l−1 − kl, αl = d(l)

k̄l
and (sl)w = d(l)

k̄l+w

for all 0 ≤ w ≤ kl. We leave it to the reader to check that this construction is inverse
to

∏
.
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19.2. Proof of Lemma 18.20.

First, let us manipulate the left-hand side (denoted LHS), using Proposition 18.3 (1):

(19.14)
et

n(n−k−1)+l+1 exp(∇N)
(

f
g

)
en(n−1)+1 =

∑2n−1
a=0 et

l+1
N

(a)
k
a! e1∇a

(
f
g

)
=

=
∑2n−1

a=0 et
l+1

N
(a)
k
a! e1

∑a
i=0 ( a

i ) ∇(a−i) (f) ∇i
(

1
g

)
.

Recall the Faá di Bruno formulae, which states that
(

d

dz

)n

(f ◦ g) =
∑

(k1,...,kn)∈Kn

n!∏n
i=1(ki!)

((
d

dz

)Pn
i=1 ki

f

)
(g) ·

n∏

i=1

(
1

i!

(
d

dz

)i

g

)ki

.

where Kn =
{

(k1, ..., kn) ∈ Nn
∣∣∣
∑n

j=1 kj · j = n
}

. Hence

∇n

(
1

g

)
=

∑

(k1,...,kn)∈Kn

n!∏n
i=1(ki!)

(
∑n

i=1 ki)! (−1)
Pn

i=1 ki

g1+
Pn

i=1 ki

n∏

i=1

(
∇ig

i!

)ki

.

Combining this with (19.14), LHS equals

2n−1∑

a=0

et
l+1 N (a)

k e1

a∑

i=0

( a
i )

i!

a!
∇(a−i) (f) ·

∑

(k1,...,ki)∈Ki

(
∑i

j=1 kj)!
∏i

j=1(kj!)

(−1)
Pi

j=1 kj

(g)1+
Pi

j=1 kj

i∏

j=1

(
∇jg

j!

)kj

.

Setting r = i − a and introducing Kχ
i =

{
(k1, ..., ki) ∈ Ki

∣∣∣
∑i

j=1 kj = χ
}

, we deduce
that LHS is equal to

2n−1∑

i=0

2n−1−i∑

r=0

et
l+1 N (r+i)

k e1
∇rf

r!

i∑

χ=0

χ! (−1)χ

(g)1+χ

∑

(k1,...,ki)∈Kχ
i

∏i
j=1

(
∇jg
j!

)kj

∏i
j=1(kj!)

.

Finally, some further reordering and application of Proposition 18.3 (3) yields the fol-
lowing form of LHS

(19.15)
2n−1∑

r=0

∇rf

r!

2n−1∑

i=0

et
l+1 N (r+i)

k e1

i∑

χ=0

χ! (−1)χ

(g)1+χ

∑

(k1,...,ki)∈Kχ
i

∏i
j=1

(
∇jg
j!

)kj

∏i
j=1(kj!)

.
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Next let us work on the right-hand side, which we will denote by RHS. First, note
that

χ∏

s=1

(2n−1∑

rs=0

et
βs+1 N (rs)

αs
e1
∇rsg

rs!

)
=

∑

(rs)1≤s≤χ∈[0,2n−1)]χ

(
χ∏

s=1

et
βs+1 N (rs)

αs
e1
∇rsg

rs!

)
.

Thus
∑

(αs,βs)1≤s≤χ∈Wχ
(k−a,b)

χ∏

s=1

(2n−1∑

rs=0

et
βs+1 N (rs)

αs
e1
∇rsg

rs!

)
=

=
∑

(rs)1≤s≤χ∈[0,2n−1)]χ

(
χ∏

s=1

∇rsg

rs!

)
∑

(αs,βs)1≤s≤χ∈Wχ
(k−a,b)

χ∏

s=1

et
βs+1 N (rs)

αs
e1.

By Proposition 18.3 (6), we moreover have

∑

Wχ
(k−a,b)

χ∏

s=1

et
βs+1 N (rs)

αs
e1 = et

b+1 N
(
Pχ

s=1 rs)
k−a e1

and therefore
∑

(αs,βs)1≤s≤χ∈Wχ
(k−a,b)

χ∏

s=1

(2n−1∑

rs=0

et
βs+1 N (rs)

αs
e1
∇rsg

rs!

)
=

=
∑

(rs)1≤s≤χ∈[0,2n−1)]χ

(
χ∏

s=1

∇rsg

rs!

)
et

b+1 N
(
Pχ

s=1 rs)
k−a e1.

Next, let us write
∑χ

s=1 rs = i. Then i ≤ 2n− 1 by Proposition 18.3 (3). Moreover, if
we order the rs by their multiplicities using Kχ

i , we derive that the expressions above
equal

2n−1∑

i=0

et
b+1 N (i)

k−a e1

∑

(k1,...,ki)∈Kχ
i

(
i∏

j=1

(
∇jg

j!

)kj
)

χ!
∏i

j=1 (kj!)
.

Hence, RHS is equal to

∑

0≤a≤k
0≤b≤l

[(2n−1∑

r=0

et
l−b+1 N (r)

a e1
∇rf

r!

)
·
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·




2n−1∑

i=0

et
b+1 N (i)

k−a e1

i∑

χ=0

χ! (−1)χ

( g )χ+1

∑

(k1,...,ki)∈Kχ
i

(∏i
j=1

(
∇jg
j!

)kj
)

∏i
j=1 (kj!)







 .

Note that we did some reordering and also made use of the fact that Kχ
i = ∅ for χ > i.

Next, we reorder RHS again and obtain
2n−1∑

r=0

∇rf

r!

2n−1∑

i=0

i∑

χ=0

χ! (−1)χ

( g )χ+1
·

·
∑

(k1,...,ki)∈Kχ
i

(∏i
j=1

(
∇jg
j!

)kj
)

∏i
j=1 (kj!)




∑

0≤a≤k
0≤b≤l

(
et

l−b+1 N (r)
a e1

) (
et

b+1 N (i)
k−a e1

)


 .

By Proposition 18.3 (6), the sum in the square brackets equals et
l+1N

(r+i)
k e1. Comparing

the resulting formula for RHS to the form (19.15) of LHS finishes the proof.
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Part 6. Theory of rational solutions

This part contains the main results on rational solutions of this thesis. In a condensed
form, these results are presented in [13]. We start by recalling the classification of
rational solutions of the classical Yang-Baxter equation by Stolin in Section 20. In
Section 21 we will then show how Stolin’s results can be used to obtain a concrete
algorithm that attaches a rational solution s(n,n−d) of the CYBE to any pair of coprime
integers 0 < d < n. Notably, we will employ the matrix J = J0(n−d, d) occurring in the
classification of simple vector bundles on the cuspidal cubic curve for the construction of
a Frobenius functional for a Stolin triple describing s(n,n−d) (hence s(n,n−d) was denoted
r(g,BJ ,n−d) in the introduction). This is done by using the work of Elashvili [21] in order
to identify the recursive construction of J (see Subsection 13.2) with the recursive
construction of Frobenius functionals for the parabolic subalgebra Pn−d ⊂ sln(C).

In Section 22 we will then be able to prove gauge equivalence between the rational
solutions s(n,n−d) and the c(n,d). Moreover, we will apply this gauge equivalence in order
to exhibit additional structural results for both s(n,n−d) and c(n,d), see Subsection 22.3.

Finally, in Section 23 we will carry out the algorithm from Section 21 for the tuple
(n, d) = (n, n − 1) explicitly. Thus we will obtain a concrete formula for s(n,1) for any
n ≥ 2.
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20. Classification of rational solutions

In this section, we recall the results of Stolin [42] concerning the classification of rational
solutions of the CYBE

(20.1) [r12(u1, u2), r23(u2, u3)] + [r12(u1, u2), r13(u1, u3)] +
+ [r13(u1, u3), r23(u2, u3)] = 0,

where r : C2 → g⊗ g is a meromorphic function. Since we discuss the case g = sln(C)
only, we would like to mention that [42] contains Theorems 20.2 and 20.4 for the case
where g is any simple finite dimensional Lie algebra.

Definition 20.1. For the remainder of this part, we fix the following notations:

(1) Let g = sln(C), g [u] = g ⊗ C [u], g [[u−1]] = g ⊗ C [[u−1]] and g ((u−1)) =
g⊗ C ((u−1)).

(2) A solution r of the CYBE (20.1) is called rational if it is non-degenerate, unitary
and of the form

r(u, v) =
Ω

v − u
+ r′(u, v)

where r′(u, v) ∈ g[u]⊗ g[v] is non-constant.
Note that the form (·, ·) : g ((u−1))×g ((u−1)) → C given by (f, g) = Resu tr

(
f(u)·g(u)

)

is non-degenerate. Here Resu

∑
i∈Z aiui = a−1 for any

∑
i∈Z aiui ∈ Matn×n(C) ((u−1)).

Theorem 20.2. [42, Theorem 1.1] There exists a bijection between rational solutions
of the CYBE (20.1) and Lie subalgebras W ⊂ g ((u−1)) satisfying

(1) W ⊕ g [u] = g ((u−1)) as complex vector spaces.
(2) W ⊂ uNg [[u−1]] for some N ∈ N.
(3) W is a Lagrangian subspace with respect to the form (·, ·), i.e. W = W⊥.

Fact 20.3. It follows from the proof of Theorem 20.2 that given a Lie subalgebra W ⊂
g ((u−1)) satisfying the conditions of Theorem 20.2, the corresponding non-degenerate
rational solution X(u, v) of the CYBE (20.1) is obtained as follows (see also [43, p.
286]). By conditions (1) and (3) we deduce that the form (·, ·) is non-degenerate on
g [u] ×W . Let {Im} be an orthonormal basis of g with respect to the trace form and,
for any k ∈ N, let

{
Ǐm,k(u)

}
⊂ W be the dual basis elements of {Imuk} with respect to

(·, ·). Then

(20.2) X(u, v) =
∑

k∈N
uk

(
n2−1∑

m=1

Im ⊗ Ǐm,k(v)

)
.

The notion of gauge equivalence for solutions of the CYBE has the following counterpart
in the world of Lie subalgebras of g ((u−1)) as above:
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Theorem 20.4. [42, Theorem 1.2] Let X(u, v) and X̃(u, v) be rational solutions of
(20.1) with corresponding Lie subalgebras W respectively W̃of g ((u−1)). Then for any
polynomial σ(u) : C → Aut (g) we have X = (σ(u)⊗ σ(v))

(
X̃

)
if and only if W =

σ(u)
(
W̃

)
.

Corollary 20.5. In formula (20.2), we may replace the basis {Im}1≤m≤n−1 by any
basis {bm}1≤m≤n−1 of g if we simultaneously replace

{
Ǐm,k(u)

}
⊂ W by the dual basis{

b̌m,k

}
⊂ W of {bmuk} with respect to (a, b) (→ Resu tr(a · b).

Proof. Let η ∈ Autg be defined by η(Im) = bm for all m. Then (η−1 ⊗ η−1) (X(u, v))

is a rational solution X̃(u, v) =
∑

k∈N uk
(∑n2−1

m=1 Im ⊗ Ǐm,k(v)
)
. Here {Ǐm,k(u)} is the

dual basis of {Imuk} with respect to (a, b) (→ Resu tr(a · b) in the Lie subalgebra W̃ ⊂
g ((u−1)) corresponding to X̃(u, v). From Theorem 20.4 it follows that η

(
W̃

)
= W ,

hence η
(
Ǐm,k

)
∈ W for all m and k. Also, (a, b) (→ Resu tr(a · b) is invariant under base

change. Thus X(u, v) = (η ⊗ η)
(
X̃(u, v)

)
=

∑
k∈N uk

(∑n2−1
m=1 bm ⊗ b̌m,k(v)

)
indeed.

!
The following statement is crucial for the classification of rational solutions by Stolin.

Theorem 20.6. [42, Section 2] For any rational solution X(u, v) there exists a gauge
equivalent solution X̃(u, v) such that the corresponding Lie subalgebra W̃ satisfies W̃ ⊂
ηk(u)−1g [[u−1]] ηk(u), where ηk(u) = diag(1, ..., 1︸ ︷︷ ︸

k

, u, ...u) ∈ GLn(C ((u−1))).

Definition 20.7. In the notation of Theorem 20.6, W̃ is said to be of class k.

Proposition 20.8. [42, Corollary 2.3] For any Lie subalgebra W ⊂ g ((u−1)) with
corresponding rational solution X(u, v), there exists a gauge equivalent solution X̃(u, v)
with corresponding Lie subalgebra W̃ ⊂ g ((u−1)) of class 1 ≤ k ≤ n/2.

For practical purposes, the above result is much less useful than it might seem, see
Remark 20.11. The next step in Stolin’s classification is to translate Lie subalgebras
W ⊂ g ((u−1)) of a given class k to certain triples of Lie algebraic data which we shall
call Stolin triples. In order to explain these triples, we need the following notion:

Definition 20.9. For any 1 ≤ k ≤ n, let Pk denote the parabolic subalgebra of g
corresponding to the k-th simple root, i.e. the Lie subalgebra spanned by all root
spaces of those roots that do not contain the negative k-th simple root as a summand.
That is,

Pk =

{(
A B

0(n−k)×k D

)
∈ g

}
.
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Now we can give the definition of Stolin triples:

Definition 20.10. A Stolin triple (L, B, k) is given by the following data

• a Lie subalgebra L ⊆ g.
• a skew symmetric bilinear form B : L× L → C which is a 2-cocycle, i.e.

B
(
[x, y] , z

)
+ B

(
[y, z] , x

)
+ B

(
[z, x] , y

)
= 0.

• an integer 1 ≤ k ≤ n− 1.
satisfying the following conditions

(1) L + Pk = g.
(2) B is non-degenerate on (L ∩Pk)× (L ∩Pk).

Remark 20.11. a) Condition (2) in the above definition is equivalent to requiring that
L ∩Pk is a quasi-Frobenius Lie algebra with respect to B.

b) Proposition 20.8 is not useful for practical purposes, because replacing a Stolin
triple (L, B, k) with 1 ≤ k < n by a Stolin triple (L′, B′, k′) satisfying 1 ≤ k′ ≤
n/2 might yield much more complicated data L′ and B′. See also fact 20.15, where
we describe the procedure that is applied to obtain a Lie subalgebra W ⊂ g ((u−1))
corresponding to the triple (L, B, k).

Theorem 20.12. [42, Theorem 3.1] For any 1 ≤ k ≤ n − 1, let Wk be the set of Lie
subalgebras W ⊂ g ((u−1)) of class k and ST k = {(L, B) |(L, B, k) is a Stolin triple}.
Then there is a bijection between Wk and ST k.

We briefly sketch the proof given in [42, section 7] for the procedure that associates a
Stolin triple (L, B, k) to a Lie subalgebra W of class k. Let W ′ = ηk(u)Wηk(u)−1 ⊂
g [[u−1]] and note that W⊥ = W by condition (3) of Theorem 20.2. It follows that
u−2g [[u−1]] = (g [[u−1]])⊥ ⊂ (W ′)⊥ = W ′. Hence we may consider the image XW of W ′

under the canonical projection g [[u−1]] → g [[u−1]] /u−2g [[u−1]] = g [ε].

Proposition 20.13. [42, Proposition 7.2] The assignment W (→ XW ⊂ g [ε] is bijective.
Moreover, XW is Lagrangian with respect to the inner product on g [ε] induced by the
inner product Resu tr on g ((u−1)) and XW ⊕ (Pk + εPk) = g [ε].

Let L denote the image of XW ′ under the map g [ε] → g given by a + εb (→ a. Then
XW ⊂ L + εg. Since XW is Lagrangian, it follows that XW ⊇(L + εg)⊥ = L⊥, where
L⊥ is the dual of L with respect to the trace form on g. One shows that L + εg/εL⊥ ∼=
L + εL∗, where now L∗ is the dual space of L. From this it is possible to deduce that
XW is uniquely determined by a Lagrangian subspace X̃W = {l + εfB(l)}l∈L ⊂ L+ εL∗,
where fB : L → L∗ is given by fB(x)(y) = B(x, y) for a certain 2-cocycle B on L. Thus
XW =

{
l + εfB(l) + εL⊥

}
l∈L

. Here we use the epimorphism g → g/L⊥ ∼= L∗ given by
x (→ tr (x · −) in order to identify

{
fB(l) ∪ L⊥

}
l∈L

with a subset of g. Finally, use
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Lemma 20.14. [42, Lemma 7.4] The following conditions are equivalent:

• XW ∩
(
Pk + εP⊥

k

)
= {0}.

• XW + Pk + εP⊥
k = g [ε].

• L + Pk = g and B is non-degenerate on L ∩Pk.
This finishes the proof for the assignment W (→ (L, B, k).

Fact 20.15. The proof of Theorem 20.12 implies that for a given Stolin triple (L, B, k)
the corresponding Lie subalgebra W ⊂ g ((u−1)) of class k is constructed as follows. Let
χ′ : L → L∗ denote the linear map given by χ′(l)(−) = B

(
l,−

)
and let a ⊂ u−1g ⊕ L

denote the following pullback:

0 ## u−1L⊥ ## a ##

!!

L ##

χ′

!!

0

0 ## u−1L⊥ ## u−1g
ν ## L∗ ## 0

Here ν(u−1x) = tr (x · −) and L⊥ denotes the dual of L with respect to the trace form
on g× g. Then we first consider the following subspace of g ((u−1)):

W ′ = u−2g
[[

u−1
]]
⊕ a.

Recalling ηk(u) ∈ GLn(C ((u−1))) from Theorem 20.6, we have W = ηk(u)−1W ′ηk(u).
Note that for L = g, we have L⊥ = 0 and thus we obtain a well defined map

χ = ρ ◦χ′ : L → g, where ρ : g∗ → g denotes the the isomorphism induced by the trace
map. Hence in that case

W ′ = u−2g
[[

u−1
]]
⊕ spanC

({
l + u−1χ(l)

}
l∈g

)
.

Combining Theorems 20.2 and 20.12, we obtain

Corollary 20.16. To any Stolin triple (L, B, k) we may associate a uniquely determined
rational solution of the CYBE (20.1).

Remark 20.17. The above assignment

{Stolin triples} →{ rational solutions of the CYBE}

is surjective, but not injective. This due to the fact that a Lie subalgebra W ⊂ g ((u−1))
as in Theorem 20.2 can be gauge equivalent to subalgebras Wk *= Wk′ of different classes
k *= k′.
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21. The rational solution s(n,n−d)

In this section we discuss an algorithm which attaches to any pair (n, d) of coprime
integers with 1 ≤ d < n a rational solution of the classical Yang-Baxter equation
s(n,n−d) (denoted r(g,BJ ,n−d) in the introduction). As we will explain in Subsection 21.3,
this procedure derives from the classification of rational solutions of the CYBE by Stolin
as presented in Section 20. The actual algorithm is presented in Subsection 21.1, while
in Subsection 21.2 we develop a formula for s(n,n−d) for a particular choice of basis of g.

21.1. Algorithm: Construction of s(n,n−d).

Step 1: construction of the space W .
Let J = J0(n− d, d) be the matrix constructed in step 1 of Algorithm 13.2. We define
the following C-subspace of g [[u−1]]:

(21.1) W ′ = u−2g
[[

u−1
]]
⊕ spanC

({
x + u−1

[
J t, x

]}
x∈g

)
.

Moreover, for the block decomposition of Matn×n(C) induced by J , let

η(u) =

(
1 0
0 1 · u

)
∈ GLn

(
C

((
u−1

)))
.

Then we obtain the following subspace of g ((u−1)):
(21.2) W = η(u)−1W ′η(u) ⊂ g

((
u−1

))
.

Lemma 21.1. Let Resu : C ((u−1)) → C denote the residue map
∑

i∈Z aiui (→ a−1. The
bilinear form (· , ·) : g [u]×W → C given by (x, y) (→ Resutr(x · y) is non-degenerate.

Hence, for any basis {Im} of g, there exists a dual basis
{
Ǐm,k(u)

}
⊂ W of {Imuk} ⊂

g [u] with respect to (· , ·).

Step 2: definition of the tensor s(n,n−d)(u, v).

Proposition 21.2. In the same notations as above, let

s(n,n−d)(u, v) =
∑

k∈N
uk

(
n2−1∑

m=1

Im ⊗ Ǐm,k(v)

)
.

Then s(n,n−d)(u, v) is a rational solution of the classical Yang-Baxter equation.

Remark 21.3. For a different basis {I ′m} of g, the resulting rational solution is the same
as the one obtained for {Im}, see Corollary 20.5.

Correctness of Lemma 21.1 and Proposition 21.2 follow form the discussion in Subsec-
tion 21.3.
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Remark 21.4. In the introduction, the solution s(n,n−d) was denoted r(g,BJ ,n−d). At this
point however, it is not clear at all which Stolin triple corresponds to s(n,n−d).

21.2. The solution s(n,n−d) for a particular choice of basis.
Choose

{
{ei,juk}1≤i(=j≤n ∪ {ȟluk}1≤l≤n−1

}
k∈N as basis of g[u], where ȟl denotes the dual

of hl with respect to the trace form. The dual basis elements in W with respect to the
non-degenerate form (x, y) = Resu tr(x · y) on g [u]×W will be denoted w(i,j,k)(u) and
w(l,k)(u) for ei,juk and ȟluk respectively. The following fact follows easily from the
definitions:

Fact 21.5. Consider the canonical projection pr− : g ((u−1)) → u−1g [[u−1]]. Then
pr−

(
w(i,j,k)(u)

)
= ej,iu−k−1 1 ≤ i *= j ≤ n

pr−
(
w(l,k)(u)

)
= hlu−k−1 1 ≤ l ≤ n− 1.

In particular, pr−
(
w(i,j,k)(u)

)
∈ W implies w(i,j,k)(u) = ej,iu−k−1 and pr−

(
w(l,k)(u)

)
∈

W implies w(l,k)(u) = hlu−k−1.

For the block decomposition of Matn×n (C) induced by J , let W1 denote the following
subspace

W1 =

{(
u−2A u−1B
u−3C u−2D

)
· C[[u−1]]

∣∣∣∣

(
A B
C D

)
∈ g

}

of g ((u−1)) and let W2 = u2W1. Note that by (21.1) we have u−2g [[u−1]] ⊂ W ′ ⊂
g [[u−1]]. Hence from the definition of W , see (21.2), it follows that
(21.3) W1 ⊂ W ⊂ W2.

This already yields that

(21.4) w(i,j,k)(u) = ej,iu−k−1 1 ≤ i *= j ≤ n,
w(l,k)(u) = hlu−k−1 1 ≤ l ≤ n− 1

for all k ≥ 2.

The careful reader will observe that we may extract much more information from (21.3).
We will investigate all relevant implications later, but for now, let us content ourselves
with (21.4). From Proposition 21.2 we deduce that

s(n,n−d)(u, v) =
Ω

v

∑

k≥2

(u

v

)k

+
∑

0≤k≤1

uk

(
∑

1≤i(=j≤n

ei,j ⊗ w(i,j,k)(v) +
∑

1≤l≤n−1

ȟl ⊗ w(l,k)(v)

)
.

Next, note that up to permutation of u and v (s(n,n−d) is unitary) we generically have

Ω ·
∑

k∈N

uk

vk+1
= Ω · 1

v

(
1

1− u
v

)
=

Ω

v − u
.

At this point, it is convenient to introduce the following notation:
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Definition 21.6. For any 1 ≤ i *= j ≤ n and any 1 ≤ l ≤ n− 1, we let
w̃i,j(u, v) = (v − u)

[
w(i,j,0)(v)− v−1eji + u

(
w(i,j,1)(v)− v−2eji

)]
,

w̃l(u, v) = (v − u)
[
w(l,0)(v)− v−1hl + u

(
w(l,1)(v)− v−2hl

)]
.

Proposition 21.7. In the notations as above

s(n,n−d)(u, v) =
1

v − u

[
Ω +

(
∑

1≤i(=j≤n

ei,j ⊗ w̃i,j(u, v)

)
+

(
∑

1≤l≤n−1

ȟl ⊗ w̃l(u, v)

)]
.

As already mentioned, we have not yet fully studied all implications of (21.3), which
will be our next task. This is a quite technical business and the reader might wish to
have only a fleeting glance at the results at this moment. However, these implications
turn out to be crucial for the proofs in Section 22. Also, they allow us to develop a
more concrete formula for s(n,n−d), see Corollary 21.11, which is well suited for explicit
computations as we will see in Section 23. In order to formulate the results properly, we
fix the block decomposition of Matn×n (C) induced by J = J0(n− d, d), see Algorithm
13.2. This block decomposition induces a partition of the set {i, j}1≤i,j≤n into four
quadrants, which we picture enumerated in the following way:

(
4 1
3 2

)
.

For convenience, we introduce “Kronecker delta functions” for these quadrants:

Definition 21.8. For any 1 ≤ i, j ≤ n let

δ1(i, j) =

{
1 1 ≤ i ≤ n− d, n− d < j ≤ n

0 else

δ2(i, j) =

{
1 n− d < i ≤ n, n− d < j ≤ n

0 else

δ3(i, j) =

{
1 n− d < i ≤ n, 1 ≤ j ≤ n− d

0 else

δ4(i, j) =

{
1 1 ≤ i ≤ n− d, 1 ≤ j ≤ n− d

0 else

Lemma 21.9. The following hold:

(1) For any 1 ≤ i *= j ≤ n and k ∈ N, we may write

w(i,j,k)(v)− v−k−1ej,i =

(
Ak Bk + vB′

k

0 Dk

)
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where Ak, Bk, B′
k, Dk are uniquely determined complex matrices depending only

on k and (i, j). The analogous statement is true for w(l,k)(v)− v−k−1hl for any
1 ≤ l ≤ n− 1, k ∈ N.

(2) If (δ2 + δ4) (i, j) = 1, then w(i,j,0)(v) = η(v)−1 (x + v−1 [J t, x]) η(v) where

x =

(
A0 B′

0

0 D0

)
and

[
J t, x

]
=

(
0 B0

0 0

)
+ ej,i.

The analogous statement is true for w(l,0)(v) for any 1 ≤ l ≤ n− 1.
(3) Let δ1(i, j) = 1 and k ∈ {0, 1}, then w(i,j,k)(v) = η(v)−1 (x + v−1 [J t, x]) η(v)

where

x =

(
A0 B′

0

0 D0

)
+ ej,i and [J t, x] =

(
0 B0

0 0

)
k = 0

x =

(
A1 B′

1

0 D1

)
and [J t, x] =

(
0 B1

0 0

)
+ ej,i k = 1

(4) For any 1 ≤ l ≤ n− 1 we have w̃l(u, v) = (v − u)
(
w(l,0)(v)− hlv−1

)
. Moreover,

for any 1 ≤ i *= j ≤ n we have

w̃i,j(u, v) =

{
(v − u) ·

(
w(i,j,0)(v)− ej,iv−1

)
δ1(i, j) *= 1

0 δ3(i, j) = 1.

Proof. By Fact 21.5 we have w(i,j,k)(u)− u−k−1ej,i ∈ g [u]. Since w(i,j,k)(u) ∈ W , clearly
(21.3) implies (1). But then (2) and (3) easily follow from (21.1) and (21.2) by examining
the u-grading (replaced by a v-grading in the statements) of the expressions involved.
As to (4), taking a closer look at (21.3), we deduce that v−2hl ∈ W and also v−2ej,i ∈ W
if δ1(i, j) *= 1, so w(l,1)(v) = v−2hl and w(i,j,1)(v) = v−2ej,i for δ1(i, j) *= 1 respectively
by Fact 21.5. Taking an even closer look at (21.3), we see that actually v−1ej,i ∈ W if
δ3(i, j) = 1 and thus w(i,j,0)(v) = v−1ej,i by Fact 21.5 in that case as well. !
Remark 21.10. Note that the cases listed in statement 4 of Lemma 21.9 are not mutually
exclusive.

The following formula, though much too technical for theoretical purposes, is important
for explicit calculations.

Corollary 21.11. Let I =
{

(i, j) ∈ {1, ..., n}2
∣∣ i *= j

}
and, for 1 ≤ k ≤ 4, set Ik =

{(i, j) ∈ I |δk(i, j) = 1}. Then

s(n,n−d)(u, v) =
Ω

v − u
+ u

∑

(i,j)∈I1

ei,j ⊗
(
w(i,j,1)(v)− ej,iv

−2
)
+

+
∑

(i,j)∈I1∪I2∪I4

ei,j ⊗
(
w(i,j,0)(v)− ej,iv

−1
)

+
∑

1≤l≤n−1

ȟl ⊗
(
w(l,0)(v)− hlv

−1
)
.
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Proof. The formula is an easy consequence of Proposition 21.7 and Lemma 21.9. !

21.3. Verification of the construction of s(n,n−d) . In this subsection we construct
a certain Stolin triple and prove that s(n,n−d) is the rational solution determined by this
triple via Algorithm 21.1. In order to do so, we start with some generalities.

Definition 21.12. Let F be a complex Lie algebra with Lie bracket [−,−]. Then F is
a quasi Frobenius Lie algebra if there exists a non-degenerate skew-symmetric bilinear
form B : F × F → C which is a 2-cocycle, that is

B
(
[x, y] , z

)
+ B

(
[y, z] , x

)
+ B

(
[z, x] , y

)
= 0.

Moreover, F is called a Frobenius Lie algebra if there exists a functional f : F → C
such that F is quasi-Frobenius with respect to the bilinear form defined by B(x, y) =
f
(
[x, y]

)
. In that case, f is called a Frobenius functional for F .

Remark 21.13. It is was shown by Elashvili [21, 20] that for 1 ≤ k ≤ n− 1, Pk ⊂ g is
a Frobenius Lie algebra if and only if gcd(n, k) = 1. Other examples of Frobenius Lie
algebras include the so called Seaweed algebras which were studied by Dergachev and
A. Kirillov [18] and also Gerstenhaber and Giaquinto [23]. Obviously, if any 2-cocyle in
the Koszul complex of a given quasi-Frobenius Lie algebra F is already a coboundary,
i.e. H2(F ) = 0, then F is automatically a Frobenius Lie algebra.

The following fact follows easily from the definitions:

Fact 21.14. Let 1 ≤ k ≤ n−1 with gcd(n, k) = 1 and let f be any Frobenius functional
for Pk. Extend f to all of g via f(x) = f

(
prPk

(x)
)
, where prPk

: g → Pk denotes the
canonical projection. Let B(x, y) = f

(
[x, y]

)
for all x, y ∈ g. Then (g, B, k) is a Stolin

triple.

Next, recall the matrix Jλ(n− d, d) from Algorithm 13.2.

Definition 21.15. For any coprime integers a, b, let J(a, b) = J0(a, b). Also, we set
J = J(n, n− d).

Proposition 21.16. f : Pn−d → C defined by f(x) = tr (J t · x) is a Frobenius func-
tional. Moreover, the same formula gives an extension of f to all of g with the property
that f(x) = f

(
prPn−d

(x)
)
.

In order to prove this result, we need an auxiliary result which goes back to Elashvili
[21, first Lemma] and which was kindly explained to the author by Alexander Stolin.
Recall that for any Lie algebra L and its dual vector space L∗, the coadjoint action
ad∗ : L → EndC (L∗) is defined as

ad∗(l)(m)(l′) = m ([l′, l]) l, l′ ∈ L, m ∈ L∗.
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Lemma 21.17. Let L be any complex Lie algebra, L ⊂ L a Lie subalgebra and N ⊂ L
a commutative ideal such that L = L ⊕ N as vector spaces. Assume that there exists
n∗ ∈ N∗ such that N∗ ⊆ ad∗(L)(n∗) and let

S = {l ∈ L |n∗ ([l,−]) = 0} .

If S is a Frobenius Lie algebra with respect to the Frobenius functional s∗ ∈ S∗, then L
is a Frobenius Lie algebra with respect to the Frobenius functional n∗ + s∗.

Proof. Assume that there exist l1 ∈ L and n1 ∈ N such that for all l2 ∈ L and all
n2 ∈ N we have (n∗ + s∗) ([l1 + n1, l2 + n2]) = 0. Since N is a commutative ideal, this
is equivalent to

n∗ ([l1, n2] + [n1, l2]) + s∗ ([l1, l2]) = 0.

Choosing l2 = 0 we obtain 0 = n∗ ([l1, n2]) for all n2 ∈ N , hence l1 ∈ S by definition of
S. But s∗ is Frobenius functional for S, thus for l1 *= 0 there exists some s1 ∈ S such
that s∗ ([l1, s1]) *= 0. Choosing l2 = s1 and n2 = 0 it follows that

n∗ ([n1, s1]) + s∗ ([l1, s1]) = 0.

But the first term is zero because s1 ∈ S and the second is nonzero if l1 is unequal to
zero. Therefore l1 = 0, which means that

n∗ ([n1, l2]) = 0

for all l2 ∈ L. Since N∗ ⊆ ad∗(L)(n∗), there exists some l′2 ∈ L such that ad(l′2)(n
∗)

equals n∗1, the dual of n1. But then n∗ ([n1, l′2]) *= 0 if n1 was not already equal to zero,
which would give a contradiction. Therefore n1 = 0 as well, which shows that n∗ + s∗

is indeed a Frobenius functional for L. !
Fact 21.18. The following hold:

(1) The trace form is invariant, i.e. for any matrices A, B, C ∈ Matn×n(C), we have
tr(A, [B, C]) = tr([A, B], C).

(2) In the situation of Lemma 21.17, let L ⊆ g and N t = {nt|n ∈ N}. Assume that
the map N t → N∗ given by nt (→ tr (nt · −) is injective. Then N∗ ⊆ ad∗(L)(n∗)
if and only if N t ⊆ [nt, L]. Moreover, s ∈ L satisfies ad∗(s)(n∗) = 0 if and only
if tr ([nt, s] · l′) = 0 for all l′ ∈ L.

Proof. (1) is obvious. As to (2), let τ : g → g∗ be the isomorphism induced by the
trace map. We claim that for any l ∈ L we have ad∗(l)(n∗) = −τ ([nt, l]). Indeed, given
l′ ∈ L, the definition of the coadjoint action and (1) yield ad∗(l)(n∗)(l′) = n∗ ([l′, l]) =
tr (nt · [l′, l]) = −tr ([nt, l] · l′). This immediately yields the second statement of (2).
Since nt (→ tr (nt · −) is injetive by assumption, we have τ−1(N∗) = N t. !
Applying Fact 21.18, we obtain the following version of Lemma 21.17:
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Corollary 21.19. Let L ⊆ g be a complex Lie algebra, L ⊂ L a Lie subalgebra and
N ⊂ L a commutative ideal with N t → N∗ given by nt (→ tr (nt · −) injective such that
L = L⊕N as vector spaces. Assume that there exists n ∈ N such that N t ⊆ [nt, L] and
let S ⊆ L be the maximal subalgebra of L such that tr ([nt, s] · L) = 0 for all s ∈ S. If
S is a Frobenius Lie algebra with respect to the Frobenius functional x (→ tr(st · x) for
some s ∈ S, then L is a Frobenius Lie algebra with respect to the Frobenius functional
x (→ tr ((nt + st) · x).

Before we prove Proposition 21.16, we need one additional combinatorial result:

Lemma 21.20. Let a ∈ N and consider the Lie algebra

Sa =

{(
X Y

0(n−a)×a Z

)∣∣∣∣ 2tr(X)+tr(Z) = 0

}
⊂ Matn×n(C)

with Lie bracket given by the commutator. Then there exists a Lie algebra isomorphism
ν mapping Pa ⊂ sln(C) to Sa which satisfies ν(J) = J .

Proof. First note that a generating set of Pa is given by {hi, ei,i+1, ei+1,i}1≤i≤n−1 \
{ea+1,a} while a generating set of Sa is given by

{
h̃i, ei,i+1, , ei+1,i

}

1≤i≤n−1
\ {ea+1,a}

where

h̃i =

{
hi i *= a

hi − ea+1,a+1 i = a.

We define the C-linear map ν : Pa → Sa by giving its images on the fixed generators
of Pa from above as follows. Let ν(ei,i+1) = ei,i+1, ν(ei+1,i) = ei+1,i and

ν(hi) =

{
h̃i i *= a∑n−1

j=1 tjh̃j i = a.

Here {tj}1≤j≤n−1 is a set of complex numbers yet to be defined. Namely, we want to
ensure that ν is an isomorphism of Lie algebra. For this it suffices to choose {tj}1≤j≤n−1

in a way such that ν(ha) *= 0 and such that the relations

(21.5) ν ([hk, ei,i+1]) = [ν (hk) , ν (ei,i+1)] 1 ≤ i, k ≤ n− 1
ν ([hk, ei+1,i]) = [ν (hk) , ν (ei+1,i)] 1 ≤ i, k ≤ n− 1, i *= a

are satisfied. Indeed, since ea+1,a is not among the generators of Pa, the remaining
relations that need to be checked are immediate.

Now, for fixed i, a relation from the first set of conditions of (21.5) reads
αi,i+1(hk)ei,i+1 = [ν (hk) , ei,i+1]

where αi,j denotes the root of sln(C) corresponding to the root space spanned by ei,j.
This condition is obviously satisfied for all k *= a by definition of h̃k. However, for k = a
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we obtain the following condition on {tj}1≤j≤n−1:

(21.6) αi,i+1(ha)ei,i+1 =

[
n−1∑

j=1

tjhj, ei,i+1

]
− ta [ea+1,a+1, ei,i+1] .

Since
[∑n−1

j=1 tjhj, ei,i+1

]
=

∑n−1
j=1 tjαi,i+1(hj) and

(21.7) [ea+1,a+1, ei,i+1] =






−ea,a+1 i = a

ea+1,a+2 i = a + 1

0 else,

we may rewrite (21.6) as

τi =
n∑

j=1

tjσij

with τi = αi,i+1(ha) and certain integers σij. Indeed,

(σij)1≤i,j≤n =





2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 3 −1
−2 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2





where the unique entry 3 stands in the (a, a)-th position and correspondingly the unique
entry −2 in the (a + 1, a)-th position. It is easy to see that this matrix has full rank,
thus a (unique) solution {tj}1≤j≤n−1 for (21.6) exists. We fix this choice in order to
complete the definition of the map ν. Note that since {αi,i+1}1≤i≤n−1 is a basis of h∗,
not all τi can be equal to zero, hence there exists a tj which is not equal to zero. Since
the elements of

{
h̃j

}

1≤j≤n−1
are linear independent, this implies ν (ha) *= 0.

It remains to check the second set of conditions of (21.5), which we rewrite as

αi+1,i(hk)ei+1,i = [ν (hk) , ei+1,i] .

As above, this condition is immediately satisfied for k *= a by definition of h̃k. As for
k = a, note that

[ν (ha) , ei+1,i] = αi+1,i

(
n−1∑

j=1

tjhj

)
ei+1,i − ta [ea+1,a+1, ei+1,i] .
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Recall from (21.7) that [ea+1,a+1, ei,i+1] = ciei,i+1 for certain integers ci. It is easy to see
that [ea+1,a+1, ei+1,i] = −ciei+1,i in all cases to be considered, i.e. i *= a. Hence

[ν (ha) , ei+1,i] =

(
αi+1,i

(
n−1∑

j=1

tjhj

)
+ cita

)
ei+1,i.

On the other hand, since αi,j = −αj,i, we have

αi+1,i(ha) = −αi,i+1(ha) = −
(

αi,i+1

(
n−1∑

j=1

tjhj

)
− cita

)
.

Thus all conditions of (21.5) are satisfied. Hence with respect to the choice of {tj}1≤j≤n−1

we made, ν is a Lie algebra automorphism. The fact that ν(J) = J is immediate from
the definition of ν and the fact that all diagonal entries of J are zero. !
Now we can prove Proposition 21.16:

Proof. Let a, b be two coprime integers and recall the construction of J = J0(n− d, d)
from Algorithm 13.2. We will prove that f(x) = tr (J(a, b)t · x) is a Frobenius func-
tional for Pa ⊂ sla+b(C), while considered as a functional on sla+b(C) it satisfies
f(x) = f

(
prPa

(x)
)
. The proof runs by induction along the order of construction

of J(a, b) = J0(a, b).

0) Start with (a, b) = (1, 1). Then

J(1, 1)t =

(
0 0
1 0

)
∈ Mat2×2(C).

and for arbitrary x = x1h + x2e1,2, y = y1h + y2e1,2 in P1 we derive

tr
(
J(1, 1)t · [x, y]

)
= tr (e2,1 · [x1h + x2e1,2, y1h + y2e1,2]) = 2 (y2x1 − y1x2) .

Hence f(x) (→ tr (J(1, 1)t · x) is a Frobenius functional for P1 ⊂ sl2(C) indeed. More-
over tr(J(1, 1)t · e2,1) = 0 immediately yields f(x) = f

(
prP1

(x)
)
.

1) Assume a < b. Then

J(a, b) =

(
0 1 0
0 J(a, b− a)

)
=

(
0 0
0 J(a, b− a)

)
+ n

and by the induction hypothesis x (→ tr (J(a, b− a)t · x) is a Frobenius functional for
Pa ⊂ slb(C). In order to prove the statement for the tuple (a, b), we want to apply
Corollary 21.19. To that end, let us write Pa = L⊕N with

L =

(
L1 0
0 L2

)
, N =

(
0 N1

0 0

)
.
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Here, we make use of the block decomposition of Matn×n(C) induced by J(a, b). Clearly
L is a Lie subalgebra of Pa and N is a commutative ideal with the property that
N t → N∗ given by nt (→ tr (nt · −) is injective. Now

[
nt, L

]
=








0 0
1 0
0 0



 ,

(
L1 0
0 L2

)

 =




0 0

L1 − L(1)
2 0

−L(3)
2 0





where, for appropriate sizes of the matrices L(i)
2 , 1 ≤ i ≤ 4, we use the notation

L2 =

(
L(1)

2 L(2)
2

L(3)
2 L(4)

2

)
.

Hence N t ⊂ [nt, L] and the stabilizer S is of the form

S =




L1 0 0
0 L1 L(2)

2

0 0 L(4)
2



 ∼=




0 0 0
0 L1 L(2)

2

0 0 L(4)
2



 .

Using the isomorphism from Lemma 21.20, we derive that

S ∼=
(

0 0
0 Pa

)
⊂

(
0 0
0 slb(C)

)
.

Thus the image of S under the first isomorphism is a Frobenius Lie algebra with Frobe-
nius functional x (→ tr (J(a, b− a)t · x) by the induction hypothesis. Since

(
0 0
0 J(a, b− a)t

)
+ nt =




0 0
1

J(a, b− a)t

0



 = J(a, b)t,

it follows from Corollary 21.19 that x (→ tr (J(a, b)t · x) is a Frobenius functional for
Pa ⊂ sla+b(C). Because prN (J(a, b)t) = 0, the statement concerning the extension of
f easily follows.

2) Assume a > b. Then

J(a, b) =



 J(a− b, b)
0
1

0 0



 =

(
J(a− b, b) 0

0 0

)
+ n

and by the induction hypothesis x (→ tr (J(a− b, b)t · x) is a Frobenius functional for
Pa−b ⊂ sla(C). We proceed exactly as in 1), writing Pa−b = L⊕N with the analogous
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definitions for L and N . This time
[
nt, L

]
=

[(
0 0 0
0 1 0

)
,

(
L1 0
0 L2

)]
=

(
0 0 0

L(3)
1 L(4)

1 − L2 0

)

where, for appropriate sizes of the matrices L(i)
1 , 1 ≤ i ≤ 4, we use the notation

L1 =

(
L(1)

1 L(2)
1

L(3)
1 L(4)

1

)
.

Hence N t ⊂ [n′, L] and the stabilizer S is of the form

S =




L(1)

1 L(2)
1 0

0 L2 0
0 0 L2



 ∼=




L(1)

1 L(2)
1 0

0 L2 0
0 0 0



 ∼=
(

Pa−b 0
0 0

)
⊂

(
sla(C) 0

0 0

)
.

Here we use the appropriate analogue of Lemma 21.20 for the second isomorphism.
Thus the image of S under the first isomorphism is a Frobenius algebra with Frobenius
functional x (→ tr (J(a− b, b)t · x) by the induction hypothesis. Since

(
J(a− b, b)t 0

0 0

)
+ nt =

(
J(a− b, b)t 0
0 1 0

)
= J(a, b)t,

it follows from Corollary 21.19 that x (→ tr (J(a, b)t · x) is a Frobenius functional for
Pa ⊂ sla+b(C). Because prN (J(a, b)t) = 0, the statement concerning the extension of
f easily follows. !

Combining Fact 21.14 and Proposition 21.16 finally yields:

Corollary 21.21. Let BJ(x, y) = tr (J t · [x, y]) for all x, y ∈ g. Then (g, BJ , n− d) is
a Stolin triple.

Before presenting the main result of this subsection, let us state the following fact on
the map χ : g → g defined in Fact 20.15.

Fact 21.22. For any x ∈ g we have χ(x) = [J t, x].

Proof. Recall from Fact 20.15 that χ(x) = ρ (tr (J t · [x,−])) where ρ−1 : g → g∗, x (→
tr (x · −) is the isomorphism induced by the trace form. Moreover

ρ
(
tr

(
J t · [x,−]

))
= ρ

(
tr

([
J t, x

]
· −

))

by Fact 21.18. But ρ (tr (a · −)) = a for any a ∈ g by definition. !
Proposition 21.23. Given two coprime integers 1 ≤ d < n, let BJ(x, y) = tr(J t · [x, y])
for any x, y ∈ g. Then (g, BJ , n− d) is a Stolin triple, whose corresponding rational
solution of (20.1) is computed by performing Algorithm 21.1.
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Proof. We have seen in Corollary 21.21 that (g, BJ , n− d) is a Stolin triple. As we
have seen in Section 20, the corresponding rational solution is constructed in two steps.
First, Fact 20.15 gives an algorithm to construct the corresponding Lie subalgebra
W ⊂ g ((u−1)). Due to Fact 21.22, this is exactly the same procedure as described in
step one of Algorithm 21.1. Next, Fact 20.3 shows how to construct the actual solution
from W . By Corollary 20.5, we are free to choose any basis of g while doing so. Hence
step two of Algorithm 21.1 corresponds exactly to this second step of construction. !

22. Connections between the solutions s(n,n−d) and c(n,d)

As in the previous section, we let J = J0(n− d, d), see Algorithm 13.2. This section
is devoted to the main result of this thesis:

Theorem 22.1. The matrix J induces an automorphism of Lie algebras ϕJ : g → g
such that

(ϕJ ⊗ ϕJ) c(n,d) = s(n,n−d).

Remark 22.2. In the introduction, the solutions c(n,d) and s(n,n−d) were denoted r(E,n,d)

(for E the cuspidal cubic curve) and r(g,BJ ,n−d) respectively.

Furthermore, we will study certain structural consequences for both c(n,d) and s(n−d,d)

which can be obtained by application of this Theorem, see Subsection 22.3. However,
we first need to properly define the map ϕJ occurring in Theorem 22.1.

22.1. The map ϕJ . We start with the following Lie algebraic statement:

Lemma 22.3. Write J =
∑n−1

k=1 eik,jk
and let γk denote the root corresponding to the

root space {eik,jk
}C of the standard Cartan h ⊂ g. Then {γk}1≤k≤n−1 is a basis of h∗

with the property that any root α of g can be written, in a unique way, in the form
α =

∑n−1
k=1 akγk with ai ∈ Z.

Proof. For 1 ≤ i *= j ≤ n, let αi,j denote the root corresponding to the root space
spanC ({ei,j}). Since Π = {αi,i+1}1≤i≤n−1 is a simple system of the root system of g,
it clearly suffices to prove the second part of the statement for α ∈ Π. The proof of
the whole statement runs via a double induction. The first induction is along the order
of construction of J . The induction starts with J(1, 1) = e1,2 ∈ sl2(C). In that case
γ1 = α1,2 and there is nothing left to prove. So let a, b be two coprime integers.

1) Assume a < b. For any 0 ≤ t ≤ a, let It =
(

0 0
0 J(a,b−a)

)
+

∑t
s=1 es,t+s. Since

Ia = J(a, b), it clearly suffices to prove the statement for each 0 ≤ t ≤ a. So we do
another induction, namely via t. However, for t = 0 we have I0 = J(a, b − a). There-
fore the induction hypothesis of the first induction implies correctness of the basis of
induction by t. Thus we may assume that the statement is correct for t− 1 < a. The
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roots {γk}1≤k≤b+(t−1)−1, originally roots of slb+t−1(C), are clearly also roots of slb+t(C).
But since they derive from a smaller subspace, they are linearly independent from
γb+t−1 = α1,t+1, where It =

(
0 0
0 It−1

)
+e1,t+1. Hence {γk}1≤k≤b+t−1 is a basis of h∗ indeed.

As to the remaining assertion, we know that we can write γb+t−1 =
∑b+t−1

k=1 bkαk,k+1

with uniquely determined integers bk with |bk| ≤ 1 because Π is a simple system of g.
Note that b1 *= 0 by a similar argument as the one given for the linear independence
of {γk}1≤k≤b+t−1 above. Hence α1,2 = b−1

1 γb+t−1 −
∑b+t−1

k=2 b−1
1 bkαk,k+1. Now this last

sum may be interpreted as a root of slb+t−1(C), thus by the induction hypothesis (of
the induction via t) we may deduce −

∑b+t−1
k=2 b−1

1 bkαk,k+1 =
∑b+t−2

k=1 akγk with ak ∈ Z
uniquely determined for all 2 ≤ k ≤ b + t − 1. Setting ab+t−1 = b−1

1 , this finishes the
proof of the induction via t.

2) The proof for the case a > b runs exactly parallel to that for a < b. !
Definition 22.4. In the notation of Lemma 22.3, let α =

∑n−1
k=1 akγk be any root

of g. Let ht(α) =
∑n−1

k=1 |ak| be the height of α. For 1 ≤ i *= j ≤ n, denote the root
corresponding to the root space spanC ({ei,j}) by αi,j. Let zi,j be the image of ht(αi,j)+1
in F2 and set zi,i = 1. We define ZJ ∈ Matn×n(F2) by (ZJ)i,j = zi,j.

Fact 22.5. For all 1 ≤ i, j, k ≤ n we have zi,j + zj,k + 1 = zi,k in F2 and zi,j = zj,i.

Proof. All computations are in F2. Since αi,j = −αj,i, the second statement follows
easily from the definitions. As to the first statement, this is obvious at least for i = k
because of the validity of the second statement. So assume i *= k. Then [ei,j, ej,k] = ei,k,
which implies αi,j + αj,k = αi,k. Let αi,j =

∑
arγr, αj,k =

∑
brγr and αi,k =

∑
crγr

as in Lemma 22.3, then that same Lemma yields that ar + br = cr by uniqueness of
the coefficients cr. Hence ht (αi,j) + ht (αj,k) = ht (αi,k). The rest follows from the
definitions. !

Combining Definition 22.4 and Fact 22.5 gives a concrete recipe to construct the
matrix ZJ . This recipe is best explained by the following examples:

Example 22.6. By Definition 22.4, zi,j = 0 whenever Ji,j = 1 and zi,i = 1 for all
1 ≤ i, j ≤ n. Moreover, zi,j = zj,i for all 1 ≤ i, j ≤ n.

• Since for (n, d) = (2, 1) we have J = J0(1, 1) = ( 0 1
0 0 ), this implies ZJ = ( 1 0

0 1 ).
• For (n, d) = (3, 2), we have

J = J0(1, 2) =
(

0 1 0
0 0 1
0 0 0

)
, and thus ZJ =

( 1 0 z1,3

0 1 0
z3,1 0 1

)
.

But by Fact 22.5 we have z1,3 = z1,2 + z2,3 + 1 as an element of F2. Hence

ZJ =
(

1 0 1
0 1 0
1 0 1

)
.
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Lemma 22.7. The linear map ϕJ : g → g induced by
{

ei,j (→ (−1)zi,jej,i 1 ≤ i *= j ≤ n

hi (→ (−1)zi,ihi = −hi 1 ≤ i ≤ n− 1

is a Lie algebra automorphism of g such that ϕJ(J) = J t.

Proof. The equality ϕJ(J) = J t is a direct consequence of Lemma 22.3 and Definition
22.4.

Hence it suffices to check that ϕJ is a Lie algebra homomorphism. Since ϕJ stabilizes
h, this means that it suffices to check

{
ϕJ ([ei,j, ek,l]) = [ϕJ (ei,j) , ϕJ (ek,l)] 1 ≤ i *= j, k *= l ≤ n

ϕJ ([hi, ek,l]) = [ϕJ (hi) , ϕJ (ek,l)] 1 ≤ i ≤ n− 1, 1 ≤ k *= l ≤ n.

As to the first claim, we need to consider the following cases

[ei,jek,l] =






0 i *= l, j *= k

ei,l i *= l, j = k

−ek,j i = l, j *= k

ei,i − ej,j i = l, j = k,

, so ϕJ ([ei,j, ek,l]) =






0 i *= l, j *= k

(−1)zi,lel,i i *= l, j = k

(−1)zk,j+1ej,k i = l, j *= k

ej,j − ei,i i = l, j = k.

On the other hand

[ϕJ (ei,j) , ϕJ (ek,l)] = (−1)zi,j+zk,l [ej,i, el,k] = (−1)zi,j+zk,l ·






0 i *= l, j *= k

−el,i i *= l, j = k

ej,k i = l, j *= k

ej,j − ei,i i = l, j = k.

Applying Fact 22.5 yields the equality in all four cases.
As to the second claim, ϕJ ([hi, ek,l]) = αk,l (hi) (−1)zk,lel,k while [ϕJ (hi) , ϕJ (ek,l)] =

αl,k(hi)(−1)zl,k+1el,k. Applying Fact 22.5 once more and recalling αk,l = −αl,k shows
that ϕJ is a Lie algebra automorphism indeed. !

22.2. Gauge equivalence of s(n,n−d) and c(n,d). Now that we have defined ϕJ prop-
erly, we can finally attack the proof of Theorem 22.1. As it turns out, the essential
parts of the proof are direct consequences of Lemma 21.9.

Theorem 22.8. The following hold:

(1) (ϕJ ⊗ ϕJ)
(
ej,i ⊗Gu

i,j(v)
)

= ei,j ⊗ w̃i,j(u, v) for any 1 ≤ i *= j ≤ n.
(2) (ϕJ ⊗ ϕJ)

(
ȟl ⊗Gu

l (v)
)

= ȟl ⊗ w̃l(u, v) for any 1 ≤ l ≤ n− 1.
In particular (ϕJ ⊗ ϕJ) c(n,d) = s(n,n−d).
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Proof. 1) Using the definition of ϕJ , the statement reads

ϕJ

(
Gu

i,j(v)
)

= (−1)zj,iw̃i,j(u, v).

In order to check this claim, let us recall the defining properties (16.1) of Gu
i,j(z). Since

w̃i,j(u, u) = 0 by Definition 21.6, it follows that the claim is correct if and only if
(−1)zj,i (ej,i + w̃i,j(u, z)) ∈ ϕJ

(
Solun,d

)
i.e.

(22.1) ej,i + w̃i,j(u, z) ∈ ϕJ

(
Solun,d

)
.

In order to prove this, we need to go into the definition of Solun,d. Recalling the nomen-
clature introduced in Algorithm 21.1, we may write

ϕJ (Vn,d) =

{
FJ(z) =

(
W Y
X Z

)
+

(
W ′ Y ′

0 Z

)
z +

(
0 Y ′′

0 0

)
z2

}
.

For FJ(z) ∈ ϕJ (Vn,d), we set

P0 (FJ) =

(
W ′ Y ′′

X Z ′

)
and Pε (FJ) =

(
W Y ′

0 Z

)
.

Lemma 22.7 states that ϕJ is a morphism of Lie algebras such that ϕJ(J) = J t. To-
gether this implies

ϕJ

(
Solun,d

)
=

{
FJ ∈ ϕJ (Vn,d)

∣∣∣
[
P0 (FJ) , J t

]
+ uP0 (FJ) + Pε (FJ) = 0

}
.

On the other hand, it follows from Definition 21.6 and Lemma 21.9 (1) that, setting
A(u) = A0 + uA1, B(u) = B0 + uB1, B′(u) = B′

0 + uB′
1, D(u) = D0 + uD1, we have

w̃i,j(u, z) =

(
−uA(u) −uB(u)

0 −uD(u)

)
+

(
A(u) B(u)− uB′(u)

0 D(u)

)
z +

(
0 B′(u)
0 0

)
z2.

Thus w̃i,j(u, z) ∈ ϕJ (Vn,d) and hence also w̃i,j(u, z) + ej,i ∈ ϕJ (Vn,d). We have

P0 (w̃i,j(u, z) + ej,i) =

(
A(u) B′(u)

0 D(u)

)
+ δ3(ej,i)

and
Pε (w̃i,j(u, z) + ej,i) =

(
−uA(u) B(u)− uB′(u)

0 −uD(u)

)
+ (δ2 + δ4)(ej,i),

where, by abuse of notation, we let δk(ei,j) = δk(i, j) · ei,j for any 1 ≤ k ≤ 4 and
1 ≤ i, j ≤ n.

Summarizing, (22.1) and therefore statement (1) is satisfied if and only if

(22.2)
[(

A(u) B′(u)
0 D(u)

)
+ δ3(ej,i), J

t

]
+

(
0 B(u)
0 0

)
+(δ2 +δ4)(ej,i)+uδ3(ej,i) = 0.
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Since δ3(ej,i) = δ1(i, j) · ej,i, Lemma 21.9 (4) implies that the left hand-side of (22.2)
equals zero in the case δ3(i, j) = 1. So (22.2) is immediate for δ3(i, j) = 1. As to the
other cases, further arguments are necessary. From the u-grading of (22.2) we deduce
that (22.2) holds true already if

(22.3)
(

0 B0

0 0

)
+ (δ2 + δ4)(i, j) · ej,i =

[
J t,

(
A0 B′

0

0 D0

)
+ δ1(i, j) · ej,i

]

and

(22.4)
(

0 B1

0 0

)
+ δ1(i, j) · ej,i =

[
J t,

(
A1 B′

1

0 D1

)]
.

Now for (δ2 + δ4) (i, j) = 1, (22.3) is immediate by Lemma 21.9 (2). Moreover all terms
occurring in (22.4) are zero in that case by Lemma 21.9 (4) and Definition 21.6, because
they correspond to w(i,j,1)(v) − ej,iv−2 = 0. Finally, for δ1(i, j) = 1, both (22.3) and
(22.4) are direct consequences of Lemma 21.9 (3) for k = 0 and k = 1 respectively.

2) This case is treated completely parallel to the case (δ2 + δ4) (i, j) = 1 in 1).

3) As to the remaining statement that (ϕJ ⊗ ϕJ) c(n,d) = s(n,n−d), note that the Casimir
element Ω ∈ g⊗ g is invariant under base change. Thus, in view of the formulas given
for c(n,d) and s(n,n−d) in Propositions 16.3 and 21.7 respectively, the statement is a direct
consequence of (1) and (2). !
22.3. Structure results. Let us start with some further notations.

Definition 22.9. Let ψ : g → g be the Lie algebra automorphism induced by ψ(ei,j) =
(−1)zi,j en+1−j,n+1−i.

In this subsection, we prove:

Proposition 22.10. The following hold

(1) We have (ψ ⊗ ψ) s(n,n−d) = s(n,d), (ψ ⊗ ψ) c(n,d) = c(n,n−d).
(2) Let prh : g → h denote the projection to the traceless diagonal matrices h ⊂ g.

Then
(
prh⊗ prh

) (
s(n,n−d)(u, v)− Ω

v − u

)
= 0 =

(
prh⊗ prh

) (
c(n,d)(u, v)− Ω

v − u

)
.

Remark 22.11. In the introduction, the solutions c(n,d) and s(n,n−d) were denoted r(E,n,d)

(for E the cuspidal cubic curve) and r(g,BJ ,n−d) respectively.

Let us start with the proof of Proposition 22.10 (1).

Lemma 22.12. We have ψ (J (d, n− d)) = J (n− d, d).
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Proof. Let a, b be two coprime integers and for any k ∈ N let ψk ∈ Aut(slk(C)) be the
map induced by ψ (ei,j) = (−1)zi,j ek+1−j,k+1−i. We prove that ψ (J(a, b)) = J(b, a).
The proof runs by induction along the order of construction of J(a, b) = J0(a, b), see
Algorithm 13.2.

0) Start with (a, b) = (1, 1). Then ψ2(J(1, 1)) = ψ2(e1,2) = e1,2.

1) Assume a < b. Then

J(a, b) =

(
0 1 0
0 J(a, b− a)

)
and J(b, a) =



 J(b− a, a)
0
1

0 0



 .

Note that we are dealing with two different block decompositions of Mat(a+b)×(a+b)(C)
here. But

ψa+b (J(a, b)) =



 ψb (J(a, b− a))
0
1

0 0



 = J(b, a),

because the induction hypothesis guarantees ψb (J(a, b− a)) = J(a, b− a) and

ψ

(
a∑

i=1

ei,a+i

)
=

a∑

k=1

eb−a+k,b+k.

Here we use that zi,j = 0 whenever Ji,j *= 0. This proves the step of the induction for
a < b.

2) Clearly, the case a > b is treated similarly. !
Proposition 22.13. The following hold:

(1) (ψ ⊗ ψ) s(n,n−d) = s(n,d).
(2) (ψ ⊗ ψ) c(n,d) = c(n,n−d).

Proof. 1) Let W(n,n−d) ⊂ g ((u−1)) be the Lie subalgebra given by (21.2), i.e.

W(n,n−d) = η−1
n−d(u)

(
u−2g

[[
u−1

]]
⊕ spanC

({
l + u−1χ(n−d,d)(l)

}
l∈g

))
ηn−d(u).

Here ηn−d(u) = diag (1, ..., 1, u, .., u) with n−d many 1’s and χ(n−d,d)(l) = [J(n− d, d)t, l],
see Fact 21.22. Analogously, let

W(n,d) = η−1
d (u)

(
u−2g

[[
u−1

]]
⊕ spanC

({
l + u−1χ(d,n−d)(l)

}
l∈g

))
ηd(u).
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Then W(n,n−d) corresponds to s(n,n−d) while W(n,d) corresponds to s(n,d), cf. Subsection
20. From Theorem 20.4 we deduce that it suffices to show ψ

(
W(n,n−d)

)
= W(n,d). It

is easily verified that ψ
(
η−1

n−d(u) · a · ηn−d(u)
)

= η−1
d (u) · ψ(a) · ηd(u) for any a ∈ g

and hence for any a ∈ g ((u−1)). Moreover ψ (g) = g by definition of ψ. Thus, it
suffices to check ψ

(
l + u−1χ(n−d,d)(l)

)
= ψ(l) + u−1χ(d,n−d)(ψ (l)) for any l ∈ g. But

ψ ◦ χ(n−d,d)(l) = ψ ([J(n− d, d)t, l]) = [ψ (J(n− d, d)t) , ψ(l)] = [J(d, n− d)t, ψ(l)] =
χ(d,n−d) (ψ(l)). For this last computation we make use of Fact 21.22, the fact that ψ
commutes with transposition and Lemma 22.12.

2) Combining (1) and Theorem 22.8 immediately yields the claim. !

Let us go on with the following Lemma, which is the crucial step in the proof of
Proposition 22.10 (2).

Lemma 22.14. For any 1 ≤ l ≤ n− 1, there exists a strictly upper triangular element

xl ∈ Pn−d ⊂ g such that χ(xl) = hl +

(
0 Yl

0 0

)
for some Yl ∈ Mat(n−d)×d(C).

Proof. Let a, b be two coprime integers. We will prove that for any 1 ≤ l ≤ n− 1 there
exists xl ∈ sla+b(C) strictly upper triangular and Xl ∈ Mata×b(C) such that

(22.5)
[
xl, J(a, b)t

]
= hl +

(
0 Yl

0 0

)
.

The statement follows then by Fact 21.22 (after replacing xl by −xl) and the easy fact
that any upper triangular matrix is contained in Pk for any k. The proof runs by
induction along the order of construction of J(a, b) = J0(a, b), see Algorithm 13.2.

0) Start with (a, b) = (1, 1). Then [e1,2, J t] = [e1,2, e2,1] = h1. So x1 = e2,1 and Y1 = 0.

1) Assume a < b. Then

J(a, b) =

(
0 1 0
0 J(a, b− a)

)
.

By the induction hypothesis there exists, for any a + 1 ≤ l ≤ a + b − 1, some x′l ∈(
0 0
0 slb(C)

)
⊂ sla+b(C) strictly upper triangular and Y ′

l ∈ Mata×(b−a)(C) such that

[
x′l,

(
0 0
0 J(a, b− a)

)]
= hl +




0 0 0
0 0 Y ′

l

0 0 0



 .
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The proof of the step of the induction goes as follows. First, we will adjust x′l for
a + 1 ≤ l ≤ a + b− 1 in an appropriate way to obtain xl and Bl for the corresponding
indices. Then we will construct xl and Yl for 1 ≤ l ≤ a.
So let us assume a + 1 ≤ l ≤ a + b − 1. Clearly we may write x′l =

∑
i∈I αi ea+pi,a+qi

for some index set I, coefficients αi ∈ C and tuples of integers (pi, qi) ∈ {1, ..., b}2. Let
Ia = {i ∈ I |1 ≤ pi, qi ≤ a}. Then

[
∑

i∈I

αi ea+pi,a+qi , J(a, b)t

]
=

=

[
∑

i∈I

αi ea+pi,a+qi ,
a∑

j=1

ea+j,j

]
+

[
∑

i∈I

αi ea+pi,a+qi ,

(
0 0
0 J(a, b− a)t

)]
=

=




∑

i∈Ia

αi ea+pi,qi



 +

(
hl +

∑

r∈R

βr ea+sr,2a+tr

)
,

where the sum in the second bracket corresponds to Y ′
l by definition. We claim that

we may choose xl = x′l +
∑

i∈Ia αi epi,qi +
∑

r∈R βr esr,2a+tr . Since xl is strictly upper
triangular, we need only check existence of the corresponding Yl ∈ Mata×b(C) such that
(22.5) is satisfied. This is done by the following two simple computations:

[
∑

i∈Ia

αi epi,qi , J(a, b)t

]
=

=

[
∑

i∈Ia

αi epi,qi ,
a∑

j=1

ea+j,j

]
+

[
∑

i∈Ia

αi epi,qi ,

(
0 0
0 J(a, b− a)t

)]

︸ ︷︷ ︸
=0

=

= −
∑

i∈Ia

αi ea+pi,qi

and secondly [
∑

r∈R

βr esr,2a+tr , J(a, b)t

]
=

=

[
∑

r∈R

βr esr,2a+tr ,
a∑

j=1

ea+j,j

]
+

[
∑

r∈R

βr esr,a+tr ,

(
0 0
0 J(a, b− a)t

)]
=

= −
∑

r∈R

βr ea+sr,2a+tr +
∑

r∈R

βr esr,a+tr ·
(

0 0
0 J(a, b− a)t

)
.
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Since sr ≤ a, the last product is an element of
(

0 Mata×b(C)
0 0

)
. This yields Yl.

It remains to construct xl and Yl for 1 ≤ l ≤ a. Start with setting x′l = el,a+l. Then
[
x′l, J(a, b)t

]
=

=

[
el,a+l,

a∑

j=1

ea+j,j

]
+

[
el,a+l,

(
0 0
0 J(a, b− a)t

)]
= el,l − ea+l,a+l +

(
0 Y ′

l

0 0

)

for some Y ′
l ∈ Mata×b(C). Note that el,l − ea+l,a+l =

∑a−1
k=0 hl+k, hence existence of xl

and Yl follows for 1 ≤ l ≤ a by reverse induction as follows. Setting xa = x′a−
∑a−1

k=1 xa+k

we deduce from the computation above that

[
xa, J(a, b)t

]
= ha +

[(
0 Y ′

l

0 0

)
−

a−1∑

k=1

(
0 Ya+k

0 0

)]
.

Hence the square brackets define Ya in a way such that (22.5) holds. Next, assume
that we have already proved existence of xi, Yi for l < i ≤ a where 1 ≤ l. Then we
set xl = x′l −

∑a−1
k=1 xl+k and proceed as for l = a in order to obtain Yl. Thus, having

constructed all xl, Yl for 1 ≤ l ≤ a + b− 1 such that (22.5) is satisfied, this finishes the
proof in the case a < b.

2) Assume a > b. Then

J(a, b) =



 J(a− b, b)
0
1

0 0



 .

By the induction hypothesis we know that there exists, for any 1 ≤ l ≤ a − 1, some

x′l ∈
(

sla(C) 0
0 0

)
⊂ sla+b(C) strictly upper triangular and Y ′

l ∈ Mat(a−b)×b(C) such

that
[
x′l,

(
J(a− b, b) 0

0 0

)]
= hl +




0 Y ′

l 0
0 0 0
0 0 0



 .

The proof of the step of the induction is similar to that in 1). First, we will adjust
x′l for 1 ≤ l ≤ a − 1 in an appropriate way to obtain xl and Bl for the corresponding
indices. Then we will construct xl and Yl for a ≤ l ≤ a + b− 1.
So let us assume 1 ≤ l ≤ a − 1. Clearly we may write x′l =

∑
i∈I αi epi,qi for some

index set I, coefficients αi ∈ C and tuples of integers (pi, qi) ∈ {1, ..., a}2. Let Ia−b =
{i ∈ I |a− b < pi, qi ≤ a} and p′i = pi−(a−b) as well as q′i = qi−(a−b) for all i ∈ Ia−b.
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Then [
∑

i∈I

αi epi,qi , J(a, b)t

]
=

=

[
∑

i∈I

αi epi,qi ,
b∑

j=1

ea+j,a−b+j

]
+

[
∑

i∈I

αi epi,qi ,

(
J(a− b, b)t 0

0 0

)]
=

=



−
∑

i∈Ia−b

αi ea+p′i,qi



 +

(
hl +

∑

r∈R

βr esr,a−b+tr

)
,

where the sum in the second bracket corresponds to Y ′
l by definition. We claim that we

may choose xl = x′l +
∑

i∈Ia−b
αi ea+p′ia+,q′i

−
∑

r∈R βr esr,a+tr . Since xl is strictly upper
triangular, we need only check existence of the corresponding Yl ∈ Mata×b(C) such that
(22.5) is satisfied. This is done by the following two simple computations:




∑

i∈Ia−b

αi ea+p′ia+,q′i
, J(a, b)t



 =

=




∑

i∈Ia−b

αi ea+p′i,a+q′i
,

b∑

j=1

ea+j,a−b+j



 +




∑

i∈Ia−b

αi ea+p′i,a+q′i
,

(
J(a− b, b)t 0

0 0

)



︸ ︷︷ ︸
=0

=

=
∑

i∈Ia+b

αi ea+p′i,qi

and secondly [
−

∑

r∈R

βr esr,a+tr , J(a, b)t

]
=

= −
[
∑

r∈R

βr esr,a+tr ,
b∑

j=1

ea+j,a−b+j

]
−

[
∑

r∈R

βr esr,a+tr ,

(
J(a− b, b)t 0

0 0

)]
=

= −
∑

r∈R

βr ea+sr,a−b+tr +

(
J(a− b, b)t 0

0 0

)
·
∑

r∈R

βr esr,a+tr .

Since a + tr > a, the last product is an element of
(

0 Mata×b(C)
0 0

)
. This yields Yl.

It remains to construct xa+l and Ya+l for 0 ≤ l ≤ b − 1. Start with setting x′a+l =
ea+b+l+1,a+l+1. Then [

x′a+l, J(a, b)t
]

=
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=

[
ea−b+l+1,a+l+1,

b∑

j=1

ea+j,a−b+j

]
+

[
ea−b+l+1,a+l+1,

(
J(a− b, b)t 0

0 0

)]

= ea−b+l+1,a−b+l+1 − ea+l+1,a+l+1 +

(
0 Y ′

a+l

0 0

)

for some Y ′
l ∈ Mata×b(C). Note that ea−b+l+1,a−b+l+1 − ea+l+1,a+l+1 =

∑b
k=1 ha−b+l+k,

hence existence of xa+l and Ya+l follows for 0 ≤ l ≤ b − 1 by induction as follows.
Setting xa = x′a −

∑b−1
k=1 xa−b+k we deduce from the computation above that

[
xa+l, J(a, b)t

]
= ha +

[(
0 Y ′

l

0 0

)
−

b−1∑

k=1

(
0 Ya−b+k

0 0

)]
.

Hence the square brackets define Ya in a way such that (22.5) holds. Next, assume that
we have already proved existence of xa+i, Ya+i for 0 ≤ i < l where l ≤ b − 1. Then
we set xa+l = x′a+l −

∑b−1
k=1 xa−b+l+k and proceed as for l = 0 in order to obtain Ya+l.

Thus, having constructed all xl, Yl for 1 ≤ l ≤ a + b − 1 such that (22.5) is satisfied,
this finishes the proof in the case a > b. !
Proposition 22.15. Let prh : g → h denote the projection to the traceless diagonal
matrices h ⊂ g. Then

(
prh⊗ prh

) (
s(n,n−d)(u, v)− Ω

v − u

)
= 0 =

(
prh⊗ prh

) (
c(n,d)(u, v)− Ω

v − u

)
.

Proof. Since (ϕJ ⊗ ϕJ)
(
c(n,d)(u, v)

)
= s(n,n−d)(u, v) by Theorem 22.8 and ϕJ stabilizes

h, cf. Lemma 22.7, it clearly suffices to prove that
(
prh⊗ prh

) (
s(n,n−d)(u, v)− Ω

v−u

)
= 0.

By Proposition 21.7, this is equivalent to showing prh (w̃l(u, v)) = 0 for each 1 ≤ l ≤ n−
1. As stated in Lemma 21.9 (4) respectively (2), w̃l(u, v) = (v − u)

(
w(l,0)(v)− v−1hl

)

and w(l,0)(v) = η−1(v) (x + v−1χ(x)) η(v) where

x =

(
A0 B′

0

0 D0

)
and χ(x) =

(
0 B0

0 0

)
+ hl.

Now x is uniquely determined by Lemma 21.9 (1), hence x = xl, B0 = Yl by Lemma
22.14. Since xl is strictly upper triangular, the statement is proved. !

23. Explicit computation of s(n,1)

In what follows, we are going to work out the essential steps of the algorithm described
in Subsection 21.1 for the tuple (n, d) = (n, n − 1). Thus, we will make explicit the
formula for s(n,1) given in Corollary 21.11.
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It is a easy to see that J = J0(1, n − 1) =
∑n−1

k=1 ek,k+1, see the inductive construction
in Algorithm 13.2. Next, we determine

W = η−1(u)
(
u−2g

[[
u−1

]]
⊕ spanC

({
l + u−1

[
J t, l

]}
l∈g

))
η(u)

where η(u) = diag (1, u, ..., u) ∈ GLn(C ((u−1))). The first step is to do so is to deter-
mine [J t, l] on a basis of g:

Lemma 23.1. For any 1 ≤ i *= j ≤ n and

[
J t, ei,j

]
=






ei+1,j − ei,j−1 i ≤ n− 1, 2 ≤ j

ei+1,j i ≤ n− 1, j = 1

−ei,,j−1 i = n, 2 ≤ j

0 i = n, j = 1.

Moreover, for any 1 ≤ l ≤ n− 1 we have

[
J t, hl

]
=






2el+1,l − (el,l−1 + el+2,l+1) 2 ≤ l ≤ n− 2

−el,l−1 + 2el+1,l l = n− 1

−el+2,l + 2el+1,l l = 1.

Proof. For i ≤ n − 1, j ≥ 2 we have
[∑n−1

k=1 ek+1,k, ei,j

]
= ei+1,i · ei,j − ei,j · ej,j−1. The

remaining cases for ei,j follow immediately. Let αi,j, 1 ≤ i *= j ≤ n, denote the roots
corresponding to the roots spaces spanC ({ei,j}) of the standard Cartan h ⊂ g. Note that
αi,j = −αj,i and that αk,k+1(hl) = 0 for k < l−1 as well as k > l+1. Hence for 2 ≤ l ≤
n− 2 we deduce

[∑n−1
k=1 ek+1,k, hl

]
=

∑n−1
k=1 αk,k+1 (hl) ek+1,k =

∑l+1
k=l−1 αk,k+1 (hl) ek+1,k.

Since αl−1,l(hl) = αl+1,l+2(hl) = −1 and αl,l+1(hl) = 2 the rest is obvious. !
Corollary 23.2. For any 1 ≤ i *= j ≤ n, let en+1,j = 0 = ei,0. Then

(1) for 1 ≤ i *= j ≤ n we have

η−1(u)
(
ei,j + u−1

[
J t, ei,j

])
η(u) =






ue1,2 − u−1h1 (i, j) = (1, 2)

ue1,j + u−1e2,j − e1,j−1 i = 1, 2 ≤ j

u−1ei,1 + u−2ei+1,1 2 ≤ i, j = 1

ei,2 + u−1ei+1,2 − u−2ei,1 2 ≤ i, j = 2

ei,j + u−1(ei+1,j − ei,j−1) 2 ≤ i, 3 ≤ j.

(2) for any 1 ≤ l ≤ n− 1we have

η−1(u)
(
hl + u−1

[
J t, hl

])
η(u) =






h1 + 2u−2e2,1 − u−1e3,2 l = 1

h2 + 2u−1e3,2 − u−2e2,1 − u−1e4,3 l = 2

hl + u−1 (2el+1,l − el,l−1 − el+2,l+1) 3 ≤ l.
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According to Corollary 21.11, it remains to determine w(l,0)(u) for all 1 ≤ l ≤ n− 1, as
well as w(i,j,0)(u) for δ1(i, j) *= 1 and w(i,j,1)(u) for δ3(i, j) = 1. This is done in the next
three Lemmata. We shall also need the following fact:

Fact 23.3. For all 1 ≤ l ≤ n− 1,

ȟl =

(
1− l

n

) n−1∑

j=1

l · hl −
n−1∑

j=l+1

(j − l)hj =
l∑

j=1

j
n− l

n
hj +

n−1∑

j=l+1

l
n− j

n
hj.

Lemma 23.4. Let 1 ≤ i *= j ≤ n such that δ3(i, j) = 1. Then

w(i,j,1) (u) =

{
u−2e2,1 + ȟ1 (i, j) = (1, 2)

u−2ej,1 −
∑n−j

k=0 ej+k,k+2 i = 1, 2 ≤ j.

Proof. First, let us prove that both expressions on the right-hand side are elements of
W . To that end, we claim that

u−2e2,1 + ȟ1 =
n− 1

n

(
h1 + 2u−2e2,1 − u−1e3,2

)
+

n− 2

n
·
(
h2 + 2u−1e3,2−

−u−2e2,1 − u−1e4,3

)
+

n−1∑

l=3

n− l

n

[
hl + u−1 (2el+1,l − el,l−1 + el+2,l+1)

]
.

Indeed, for all l ≥ 2 the coefficient of el+1,l on the right-hand side equals

u−1

(
−n− l − 1

n
+ 2

n− l

n
− n− l + 1

n

)
= 0.

Moreover it is easily checked to be equal to zero for l = 1 as well. Since ȟ1 =
∑n

l=1
n−l
n hl

by Fact (23.3), this proves our claim. But then, all summands on the right-hand side
of this equality are contained in W by Corollary 23.2 2). Thus u−2e2,1 + ȟ1 ∈ W .
Next, we claim that

u−2ej,1 −
n−j∑

k=0

ej+k,k+2 =
(
−ej,2 − u−1ej+1,2 + u−2ej,1

)
−

−
n−j∑

k=1

(
ej+k,k+2 + u−1(ej+k+1,k+2 − ej+k,k+1)

)
.

Indeed, the coefficient of ej+l,l+1 on the right-hand side is − (−u−1) − u−1 = 0 for all
l ≥ 2 and also equals zero for l = 1. Form the last two cases of Corollary 23.2 1) we
deduce that u−2ej,1 −

∑n−j
k=0 ej+k,k+1 ∈ W .

It remains to check that the terms given on the right-hand side of the statement are
the duals of ei,ju with respect to (x, y) (→ Resutr(x · y) on g [[u]] ×W . But since the
projection of these terms to u−2g [[u−1]] is exactly u−2ej,i, this is clear. !
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Lemma 23.5. Let 1 ≤ i *= j ≤ n such that δ1(i, j) *= 1. Then

w(i,j,0) (u) =






u−1ej,1 +
∑n−j

k=1 ej+k,k+1 i = 1, 2 ≤ j

u−1ei+1,i + ȟi 3 ≤ j = i + 1 ≤ n

u−1ej,i −
∑n−j

k=0 ej+k,i+k+1 4 ≤ i + 2 ≤ j

u−1ej,i + ue1,i−j+2 − e1,i−j+1 +
∑j−2

k=1 ej−k,i−k+1 3 ≤ j + 1 ≤ i.

Proof. The proof is similar to that of the previous Lemma: first we show that all
expressions on the right-hand side are elements of W . Only then do we prove that they
are the actual duals with respect to (x, y) (→ Resutr (x · y).
Let us start with the following claim:

ej,1u
−1 +

n−j∑

k=1

ej+k,k+1 =
(
u−1ej,1 + u−2ej+1,1

)
+

(
ej+1,2 + u−1ej+2,2 − u−2ej+1,1

)
+

+
n−j∑

k=2

(
ej+k,k+1 + u−1 (ej+k+1,k+1 − ej+k,k)

)
.

Indeed, the coefficient at ej+l,l equals −u−1 + u−1 = 0 for all l ≥ 2 and is obvi-
ously zero for l = 1 as well. By the last three cases of Corollary 23.2 1), this shows
ej,1u−1 +

∑n−j
k=1 ej+k,k+1 ∈ W .

The second case is the most tedious. We claim that for 3 ≤ i + 1 ≤ n:

ei+1,iu
−1 + ȟi =

i∑

j=1

j
n− i

n
zj +

n−1∑

j=i+1

i
n− j

n
zj

where z1 = h1 + 2u−2e2,1− u−1e3,2, z2 = h2 + 2u−1e3,2− u−2e2,1− u−1e4,3 and zj = hj +
u−1 (2ej+1,j − ej,j−1 − ej+2,j+1) for all 3 ≤ j ≤ n− 1. Once this equality is established,
we know that ei+1,iu−1 + ȟi ∈ W thanks to Corollary 23.2 2). Now, note that by Fact
23.3, the hi on the right-hand side add up to ȟi. Thus, all that remains is to check that
the coefficient at ek,k−1 is zero if k *= i + 1 and u−1 else. This is done via a case by case
analysis:
Let i + 3 ≤ k. Then the coefficient at ek,k−1 is

i
n− (k − 2)

n

(
−u−1

)
+ i

n− (k − 1)

n

(
2u−1

)
+ i

n− k

n

(
−u−1

)
= 0.

while for i + 2 = k it is

i
n− i

n

(
−u−1

)
+ i

n− (i + 1)

n

(
2u−1

)
+ i

n− (i + 2)

n

(
−u−1

)
= 0.
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For i + 1 = k, the coefficient at ei+1,i is

(i− 1)
n− i

n

(
−u−1

)
+ i

n− i

n

(
2u−1

)
+ i

n− (i + 1)

n

(
−u−1

)
= u−1.

As for the case k ≤ i, we have to distinguish between the two sub cases 3 ≤ k (which
was immediate for i + 1 ≤ k) and k < 3. First, assume that 3 ≤ k, then the coefficient
at ek,k−1 equals

(k − 2)
n− i

n

(
−u−1

)
+ (k − 1)

n− i

n

(
2u−1

)
+ k

n− i

n

(
−u−1

)
= 0

The last sub case, k < 3, simply requires to check the coefficient at e2,1, which is zero.

The third case of the statement follows a lot easier from the claim that

ej,iu
−1 −

n−j∑

k=0

ej+k,i+k+1 = −
n−j∑

k=0

(
ej+k,i+k+1 + u−1 (ej+k+1,i+k+1 − ej+k,i+k)

)
.

To verify this claim, we only need to check that the coefficient at ej+l,i+l equals −u−1 +
u−1 = 0. Thus ej,iu−1 −

∑n−j
k=0 ej+k,i+k+1 ∈ W by the last case of Corollary 23.2 1).

As for the last case of the statement, we claim that

ej,iu
−1 + ue1,i−j+2 − e1,i−j+1 +

j−2∑

k=1

ej−k,i−k+1 =

=
(
ue1,i−j+2 + u−1e2,i−j+2 − e1,i−j+1

)
+

j−1∑

k=2

(
ek,i−j+k+1 + u−1 (ek+1,i−j+k+1 − ek,i−j+k)

)
.

To see this, check that the coefficient at el,i−j+l is u−1 − u−1 = 0 for all 2 ≤ l ≤ j − 1,
while at ej,i it is just u−1. Moreover, note that

∑j−1
k=2 ek,i−j+k+1 =

∑j−2
l=1 ej−l,i−l, which

proves the claim, showing ej,iu−1 + ue1,i−j+2 − e1,i−j+1 +
∑j−2

k=1 ej−k,i−k+1 ∈ W by com-
bining the second and the last case of Corollary 23.2 1).

Finally, we have to check that the terms given on the right-hand side of the statement
are the duals of ei,j with respect to (x, y) (→ Resutr(x · y) on g [[u]]×W . But since the
projection of these terms to u−1g [[u−1]] is exactly u−1ej,i, this is obvious. !
Lemma 23.6. For all 1 ≤ l ≤ n− 1 we have

w(l,0) (u) =

{
−ue1,2 + u−1h1 l = 0

−el,l+1 + u−1hl 2 ≤ l.
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Proof. Note that both terms on the right-hand side is are W by the first and last case
of Corollary 23.2 1). It remains to check that the terms given on the right-hand side of
the statement are the duals of ȟlu with respect to (x, y) (→ Resutr(x · y) on g [[u]]×W .
But since the projection of these terms to u−1g [[u−1]] is exactly u−1hl, this is clear. !
Proposition 23.7. We have

s(n,1)(u, v) =
Ω

v − u
+

+u

[
e12 ⊗ ȟ1 −

n∑

j=3

e1,j ⊗
(

n−j+1∑

k=1

ej+k−1,k+1

)]
−

−v

[
ȟ1 ⊗ e12 −

n∑

j=3

(
n−j+1∑

k=1

ej+k−1,k+1

)
⊗ e1,j

]
+

+
n−1∑

j=2

n−j∑

k=1

(e1,j ⊗ ej+k,k+1 − ej+k,k+1 ⊗ e1,j) +
n−1∑

i=2

(
ei,i+1 ⊗ ȟi − ȟi ⊗ ei,i+1

)
+

+
n−2∑

i=2

n−i∑

k=2

n−i−k+1∑

l=1

(ei+k+l−1,l+i ⊗ ei,i+k − ei,i+k ⊗ ei+k+l−1,l+i) .

Proof. Let us insert the results obtained in Lemmata 23.4, 23.5 and 23.6 into the formula
for s(n,n−1)(u, v) given in Corollary 21.11. Firstly, we deduce from Lemma 23.4 that

u
∑

(i,j)∈I1

ei,j ⊗
(
w(i,j,1) (v)− v−2ej,i

)
=

= u

(
e1,2 ⊗ ȟ1 −

n∑

j=3

e1,j ⊗
(

n−j−1∑

l=1

ej+l−1,l+1

))
.

Also, Lemma 23.6 yields
n−1∑

l=1

ȟl ⊗
(
w(l,0) (v)− v−1hl

)
= −vȟ1 ⊗ e12 −

n−1∑

l=2

ȟl ⊗ el,l+1.

Next, let
J =

{
(i, j) ∈ {1, ..., n}2

∣∣ 3 ≤ j + 1 ≤ i
}

,
L =

{
(i, j) ∈ {1, ..., n}2

∣∣ 4 ≤ i + 2 ≤ j
}

.

Then we derive from Lemma 23.5 that
n∑

(i,j)∈I1∪I2∪I4

ei,j ⊗
(
w(i,j,0) (v)− v−1ej,i

)
=
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=
n∑

j=2

e1,j ⊗
(

n−j∑

k=1

ej+k,k+1

)
+

n−1∑

i=2

ei,i+1 ⊗ ȟi −
∑

(i,j)∈L

ei,j ⊗
(

n−j∑

k=0

ej+k,i+k+1

)
+

+
∑

(i,j)∈J

ei,j ⊗
(

ve1,i−j+2 − e1,i−j+1 +
j−2∑

k=1

ej−k,i−k+1

)
.

Clearly, the sums over L and J require some shift of indices in order to fit into the
formula of the statement. This is done in several steps:

It follows from the definition of J that if we set l = i − j + 2 for (i, j) ∈ J , then
3 ≤ l ≤ n. Hence, if we let k = j − 1, then

v
∑

(i,j)∈J

ei,j ⊗ e1,i−j+2 = v
n∑

l=3

(
n−l+1∑

k=1

el+k−1,k+1

)
⊗ e1,l,

where we use that k ≤ n− l + 1 if and only if i ≤ n.

Next, for (i, j) ∈ J , let l = i− j + 1. Then 2 ≤ l ≤ n− 1. Thus, for k = j − 1,

−
∑

(i,j)∈J

ei,j ⊗ e1,i−j+1 = −
n−1∑

l=2

(
n−l∑

k=1

el+k,k+1

)
⊗ e1,j,

where we use that k ≤ n− l if and only if i ≤ n.

As to the last sum term of the sum over J , let a = j − k and b = i − j + 1. Then
2 ≤ a ≤ n − 2 due to the bounds of j and k, and 2 ≤ b ≤ n − a where we use that
b ≤ n− a if and only if i ≤ n. Hence

∑

(i,j)∈J

ei,j ⊗
j−2∑

k=1

ej−k,i−k+1 =
n−2∑

a=2

(
n−a∑

b=2

(
n−a−b+1∑

k=1

ea+b+k−1,k+a

)
⊗ ea,a+b

)
,

where we use that k ≤ n− a− b + 1 if and only if i ≤ n.

Finally, for (i, j) ∈ L, let a = j− i. Then 2 ≤ a ≤ n− i. Thus, for b = k +1, we deduce
that

−
∑

(i,j)∈L

ei,j ⊗
(

n−j∑

k=0

ej+k,i+k+1

)
= −

n−2∑

i=2

(
n−i∑

a=2

ei,i+a ⊗
(

n−i−a+1∑

b=1

ei+a+b−1,b+i

))
,

where we use that b ≤ n− i− a + 1 if and only if k ≤ n− j. !
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Part 7. PC Implementations

In this part we present the source code of the implementations in mathematica for
the algorithms producing r(n,d)(v; y1, y2) and c(n,d)(y1, y2) respectively s(n,n−d)(u, v).
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23.1. The program for r(n,d) and c(n,d).
The implementation of the algorithm for the construction of r(n,d)(v; y1, y2) is straight-
forward. The input parameters n and d are defined in the first two lines, which are n = 2
and d = 1 in the form of the source code printed below. Assuming that r(n,d)(v; y1, y2)
has a Laurent expansion of the form (3.5), the program also computes the correspond-
ing solution c(n,d)(y1, y2) of the CYBE. Moreover, it constructs and applies the gauge
equivalence ϕJ ⊗ ϕJ to c(n,d)(y1, y2), yielding s(n,n−d)(y1, y2), see Theorem 22.1.

(*-----------------------------------------------------------------*)
(*----------------------------------------------------------------*)
n=2;
d =1;

Comm[x_,y_]:=x.y-y.x;

(*--------------------- construct J(n− d, d) ----------------------*)

J[a_,b_]:=(

If [a==b, Return[{{0,1},{0,0}}]];
If[a>b,(
A= J[a-b,b];
U= Table[0, {i,a+b}, {j,a+b}];
Do[U[[i,j]]= A[[i,j]], {i,a}, {j,a}];
Do[U[[a-b+k,a+k]]=1, {k,b}];
Return[U];
)];

If[a< b,(
A= J[a,b-a];
U= Table[0, {i,a+b}, {j,a+b}];
Do[U[[i+a,j+a]]= A[[i,j]], {i,b}, {j,b}];
Do[U[[k,a+k]]=1, {k,a}];
Return[U];
)];);

J = J[n-d,d];

(*------------------- construct Solv,y1
n,d -----------------*)

F[z0_,z1_]:= Table[ If[(i <= n-d && j <= n-d) || (i > n-d && j>n-d),
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f[i,j]*z0 + f’[i,j]*z1 , If[i>n-d && j <= n -d ,
f[i,j]*z0^2+f’[i,j]*z0*z1+f”[i,j]*z1^2,f[i,j]]],{i,n},{j,n}];

F0 = F[eps,1] /. eps -> 0;
Feps = Coefficient [F[eps,1], eps];

R = Comm[F0,J]+ Feps+(y1-v)* F0;

(* solve the equations imposed by Solv,y1
n,d on entries

of a general element of Wn,d *)
redlist= Complement[Flatten[ Union[ Feps,
Take[Transpose[Take[F0, n-d]], -d]]],{0}];
V =Transpose[Solve[R==0, redlist]] // FullSimplify;
Vlist =Union[Flatten[V]];

(* impose relations of Solv,y1
n,d on a general element of Wn,d and

evaluate at z0 = 1 *)
G[z_]=F[1,z] //. Vlist // FullSimplify;

(* compute res−1
y1

*)
bluelist=Complement[Flatten[Union[F[1,0], F[0,1],
Coefficient[F[z0,z1], z0*z1]]], Union[redlist, {0}]];

T = Solve[G[y1]== Table[ a[i,j], {i,n}, {j,n}], bluelist ];
Transpose[T] // MatrixForm // FullSimplify;

(* compute evy2 ◦ res−1
y1

*)
PreAMatrix = (G[y2]/(y2-y1) //. Vlist
//. Flatten[T]) // FullSimplify;

(* compute limx→0

(
evy2 ◦ res−1

y1

)
*)

PreR2Matrix=(((( PreAMatrix - Table[ a[i,j] ,{i,n}, {j,n}]/(y2-y1)
-Sum[a[i,i],{i,n}]*IdentityMatrix[n]/(n*v))//FullSimplify)
//. v->0 )) // FullSimplify;

(* ---------------- processing the output ---------------------*)
Do[ e[i,j]=Normal[SparseArray[{i,j}->1,{n,n}]], {i,n}, {j,n}];
AMatrix=Sum[Outer[Times, e[i,j], Coefficient[PreAMatrix,
a[j,i]]],{i,n},{j,n}] // FullSimplify;
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Print["The AMatrix r(n, d)(v; y1, y2)"];
AMatrix // MatrixForm

(*construct c(n,d) = Ω/ (y2 − y1) + R2Matrix as a tensor*)
pr[X_]:= X-IdentityMatrix[n]*(Tr[X]/n);

R2Matrix = Sum[Outer[Times, e[i,j], pr[Coefficient[PreR2Matrix,
a[j,i]]]],{i,n},{j,n}] // FullSimplify;

(* note that the above algorithm treats a[i,i] as h[i],
which is not correct; hence we have to apply some corrections*)
CorrectionOfDiagonalCoeff={};
Do[
CorrectionOfDiagonalCoeff=Union[CorrectionOfDiagonalCoeff,
{a[i,i]->a[i,i]-1/n*Sum[a[j,j],{j,n}]}],{i,n}];

R2Matrix=R2Matrix //. CorrectionOfDiagonalCoeff// FullSimplify;

Print["R2Matrix in basis
{
{ei,j}1≤i,j≤n

}⊗2

of Matn×n(C)⊗ Matn×n(C)"];
R2Matrix// MatrixForm

(* --------------- compute ϕJ ⊗ ϕJ(cn,d)-------------------*)

(* first, construct ZJ *)
Z=Table[zfake,{i,n},{j,n}];
Z=Z-(J+Transpose[J])*zfake+IdentityMatrix[n]*(1-zfake);
While[Coefficient[Z,zfake]!= IdentityMatrix[n]*0,
Do[ If[Z[[a,c]]== zfake && (Z[[a,b]]/. {zfake->-1})!=-1 &&
(Z[[b,c]]/. {zfake->-1})!=-1,
Z[[a,c]]=Mod[Z[[a,b]]+Z[[b,c]]+1,2];
],{a,n},{b,n},{c,n}];];

(*next, construct ϕJ*)
ApplyGaugeToentry[X_,Z_]:=( GaugeReturn2 =
Table[ X[[i,j]]*(-1)^Z[[i,j]],{i,n},{j,n}];
Return[Transpose[GaugeReturn2]]);

ApplyGauge[X_,Z_]:=( Return[
Sum[Outer[Times,ApplyGaugeToentry[e[i,j],Z],
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ApplyGaugeToentry[X[[i,j]],Z]],{i,n},{j,n}]]);

(* apply ϕJ ⊗ ϕJ*)
GaugedR2Matrix =ApplyGauge[R2Matrix,Z];

Print["ϕJ ⊗ ϕJ(R2Matrix) in basis
{
{ei,j}1≤i,j≤n

}⊗2

of Matn×n(C)⊗ Matn×n(C)"];
GaugedR2Matrix// MatrixForm

(*-------------------------------------------------------*)
(*-------------------------------------------------------*)

Example 23.8. The output of the mathematica program above will consist, along with
some explanatory text, of the following three matrices in the case (n, d) = (2, 1):

(23.1)





( 1
2v + 1

−y1+y2 0
v+y2

2
1
2v

) (
0 0
1

−y1+y2 0

)

( v−y1
2

1
−y1+y2

−1
2v(v − y1)(v + y2) 1

2(−v + y1)

) (
1
2v 0

1
2(−v − y2) 1

2v + 1
−y1+y2

)





(23.2)





(
0 0
y2
2 0

) (
0 0
0 0

)

(
−y1

2 0
0 y1

2

) (
0 0
−y2

2 0

)





(23.3)





(
0 −y2

2
0 0

) ( y1
2 0
0 −y1

2

)

(
0 0
0 0

) (
0 y2

2
0 0

)





These matrices correspond to r(2,1)(v; y1, y2), c(2,1)(y1, y2) and (ϕJ ⊗ ϕJ) c(2,1)(y1, y2) re-
spectively. To interpret them correctly, let us agree on the following conventions. First,
we choose {ei,j}1≤i,j≤n as a basis of Matn×n(C). Hence any tensor A⊗B ∈ Matn×n(C)⊗2

may be identified with the matrix (ai,j ·B)1≤i,j≤n, where A = (ai,j)1≤i,j≤n. This explains
the presentation of r(2,1)(v; y1, y2) in (23.1). Next, we make use of the fact that c(n,d)

is of the form c(n,d)(y1, y2) = Ω
v−u + c′(n,d)(y1, y2) (in the source code, c′(n,d)(y1, y2) is

called “R2Matrix”). Note that the canonical embedding sln(C) → Matn×n(C) allows
to identify any tensor A ⊗ B ∈ sln(C)⊗2 with the matrix (ai,j ·B)1≤i,j≤n where again
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A = (ai,j)1≤i,j≤n. Via this identification, (23.2) corresponds exactly to c′(2,1)(y1, y2).
Analogously, (23.3) corresponds to (ϕJ ⊗ ϕJ) c′(2,1)(y1, y2).

23.2. The program for s(n,n−d).
The mathematica implementation of the algorithm for s(n,n−d)(u, v) is based on the
formula given in Proposition 21.7. Thus, only w(i,j,k)(u) and w(l,k)(u) for k ≤ 1 need to
be computed for all 1 ≤ i, j ≤ n respectively 1 ≤ l ≤ n − 1 (in the source code, these
elements are denoted by w[i, k], where 1 ≤ i ≤ n2 − 1 and k ∈ {0, 1}). This implies
that much of the information contained in W as defined in (21.2) is superflous. Indeed,
V = {w(u) ∈ W | − 2 ≤ degu (w(u)) ≤ 1} already contains all w[i, k] for 1 ≤ i ≤ n− 1
and k ∈ {0, 1}, see Lemma 21.9. The rest of the implementaion is straightforward.
Note however that the integer n− d is replaced by the symbol p in the sourcecode.

(*---------------------------------------------------------*)
(*------------------------------------------------------*)
n=2;
p=1; (*p <-> n-d*)

Do[ e[i,j]=Normal[SparseArray[{i,j}->1,{n,n}]], {i,n}, {j,n}];
Do[h[i] = e[i,i]-e[i+1,i+1], {i,n-1}];

Comm[x_,y_]:=x.y-y.x;

(*------------------ construct J(p, n− p) -----------------*)

J[a_,b_]:=(

If [a==b, Return[{{0,1},{0,0}}]];
If[a>b,(
A= J[a-b,b];
U= Table[0, {i,a+b}, {j,a+b}];
Do[U[[i,j]]= A[[i,j]], {i,a}, {j,a}];
Do[U[[a-b+k,a+k]]=1, {k,b}];
Return[U];
)];

If[a< b,(
A= J[a,b-a];
U= Table[0, {i,a+b}, {j,a+b}];
Do[U[[i+a,j+a]]= A[[i,j]], {i,b}, {j,b}];
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Do[U[[k,a+k]]=1, {k,a}];
Return[U];
)];);

(* frob <-> J(p, n− p)t *)
frob =Transpose[J[p,n-p]];

(*---- construct V = part of W containng all g(u)
with −2 ≤ deg(g(u)) ≤ 1 ------*)

(* create list of standard basis of g *)
Basislist= Array[Dummy,n^2];
Do[ If[i!=j,Basislist[[(i-1)*n+j]]= e[i,j],
If[i<n,Basislist[[(i-1)*n+j]]=h[i],
Basislist[[(i-1)*n+j]]=0]],{i,n}, {j,n}];

(*construct conjugation by η(u) *)
eta=Table[If[i!= j,0,If[i>k, 1/u, 1]] , {i,n}, {j,n} ];
Conjug[x_]=eta.x.Inverse[eta];

(*construct list containing basis of η−1(u) · (l + 1/u · [J t, l]) · η(u) *)
Do[z’[i]=Basislist[[i]]+1/u *Comm[frob,Basislist[[i]] ], {i,n^2-1}];
Do[z[i]=Conjug[z’[i]], {i,n^2-1}];

(* construct list containing basis of η−1(u) · (u−2g) · η(u) *)
Do[z[i+n^2-1]=Conjug[Basislist[[i]]]*1/u^2, {i,n^2-1}]

(*----- for 0 ≤ k ≤ 1 and 1 ≤ i ≤ n2 − 1, determine w[i, k]-------*)

(* first, create a matrix that contains all values Resutr(x, y)
where x runs over basis of V and y over basis of g + ug *)
T’ = Table[If[i<n^2, Coefficient[z[j].Basislist[[i]]*u,1/u],
Coefficient[z[j].Basislist[[i-(n^2-1)]],1/u]],
{i,2*(n^2-1)}, {j,2*(n^2-1)}];
T = Table[Tr[T’[[i,j]]], {i,2*(n^2-1)}, {j,2*(n^2-1)}];
l= LinearSolve[T];

(*the dual basis of the standard basis of g wrt to the trace form*)
Do[f[i,j]=e[j,i], {i,n},{j,n}]
Do[dualcoeff[i]= 1-i/n;
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g[i]= Sum[j*dualcoeff[i]*h[j], {j,n-1}]
-Sum[(j-i)*h[j],{j,i+1,n-1}],{i,n-1}];
DualBasislist= Array[Dummy,n^2];
Do[ If[i!=j,DualBasislist[[(i-1)*n+j]]= f[i,j],
If[i<n,DualBasislist[[(i-1)*n+j]]=
g[i], DualBasislist[[(i-1)*n+j]]=0]],{i,n}, {j,n}];

(*now, determine the w[i,1]; if Basislist[[i]] · u−k is in W
for all k ≥ 1, the program does only know that Basislist[[i]] · u−1 is
in V, so the corresponding row of T is zero; hence in this case
we have to tell the programm that
w[i, 1] = Basislist[[i]] · u−2 explicitely*)
Do[
If[Sum[Abs[T[[i,j]]],{j,2*(n^2-1)}]== 0,
w[i,1]=DualBasislist[[i]]*1/v^2,
{sol = l[UnitVector[2*(n^2-1),i]];w[i,1]=
Sum[z[j]*sol[[j]] /. u->v, {j,2*(n^2-1)}]}], {i,n^2-1}]

(* the w[i,0], corresponding to w(i,j,0)(v), are computed formally*)
Do[{sol = l[UnitVector[2*(n^2-1),i]];
w[i-(n^2-1),0]=Sum[z[j]*sol[[j]]
/. u->v, {j, 2*(n^2-1)}];}, {i,n^2 , 2*(n^2-1)}];

(*---- s(n,k)(u, v) = Ω
v−u + R2Matrix as a tensor ----------*)

(* determine all y[i] <-> (v − u) · (w̃i,j(u, v)) and (v − u) · (w̃l(u, v) *)
Do[y[i]= u*(w[i,1]- DualBasislist[[i]]*1/v^2)
+w[i,0]- DualBasislist[[i]]*1/v; ,{i,n^2-1}];
y[n^2]=0*IdentityMatrix[n];
R2Matrix=Sum[Outer[Times,e[i,j], y[(i-1)*n+j] ], {i,n},{j,n}];

(*--------------- output -------------------*)

Print["R2Matrix in basis
{
{ei,j}1≤i,j≤n

}⊗2

of Matn×n(C)⊗ Matn×n(C)"];
Table[If[i!=j, R2Matrix[[i,j]], If[1<i,-R2Matrix[[i-1,i-1]],
IdentityMatrix[n]*0 ]+R2Matrix[[i,i]]],{i,n},{j,n}] // MatrixForm

(*---------------------------------------------------------*)
(*---------------------------------------------------------*)
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Example 23.9. The output of the mathematica program above will consist, along with
some explanatory text, of the following matrix in the case (n, d) = (2, 1):

(23.4)





(
0 −v

2
0 0

) (
u
2 0
0 −u

2

)

(
0 0
0 0

) (
0 v

2
0 0

)





In order to understand how this matrix represents s(2,1)(u, v), we again have to agree on
some conventions. Similar to the treatment of c(n,d) above, we use the fact that s(n,n−d)

is of the form s(n,n−d)(u, v) = Ω
v−u + s′(n,n−d)(u, v). Also, we choose {ei,j}1≤i,j≤n as a

basis of Matn×n(C) again and use the canonical embedding sln(C) → Matn×n(C). This
allows to identify any tensor A ⊗ B ∈ sln(C)⊗2 with the matrix (ai,j ·B)1≤i,j≤n where
A = (ai,j)1≤i,j≤n. Via this identification, s′(2,1)(u, v) corresponds exactly to (23.4). Note
that s′(n,n−d)(u, v) is denoted “R2Matrix” in the source code. Also, since the program

works with the standard basis
{
{ei,j}1≤i(=j≤n ∪ {hl}1≤l≤n−1

}
of sln(C), some adjustment

is needed at the end in order to convert R2Matrix to the basis
{
{ei,j}1≤i,j≤n

}⊗2

. This
explains the last few lines of the source code.
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