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Abstract

In this thesis we study a spatial population model based on a class of interacting locally
regulated branching processes. The results consist of three parts which are independent
of each other. The first part, which is the main part of this thesis as presented in
Chapter 2 and 3, is concerned with a three-time-scale analysis of a spatially structured
population specified with adaptive fitness landscape. More precisely, we obtain a new
model, the so-called trait substitution tree (TST), in the limiting system by taking a rare
mutation limit against a slow migration limit. These limits can be either simultaneous
with a large population limit from a microscopic point of view (Chapter 3), or based
on a deterministic approximation (Chapter 2). The TST process is a measure-valued
Markov jump process with a well-described branching tree structure. The novelty of our
work is that every phenotype, which may nearly die out on the migration time scale,
has a chance to recover and further to be stabilized on the mutation time scale because
of a change in the fitness landscape due to a new-entering mutant.

The second part (Chapter 4) deals with the neutral mutation case, i.e., the fixation
probability of an advantageous mutant is of order 1

Kλ (0 < λ ≤ 1) in terms of a large
population size K. We proceed by two cases. For 0 < λ < 1 we consider the rescal-
ing limit on a time scale of accumulated mutations and extend the trait substitution
sequence model. For λ = 1 we obtain a rescaling limit in a weak sense, i.e., under
conditioning on non-extinction up to observation time.

In the last part (Chapter 5) we study the fluctuation limit of the locally regulated
population, and we obtain a limiting process as the solution both of a martingale problem
and of a generalized Langevin equation. Under appropriate conditions we prove that
the fluctuation limit and the long term limit are interchangeable.
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1 Introduction

1.1 Biological background

One of the main purposes in the study of various population models (such as popula-
tion genetics and branching population models) is to understand the complex pattern
whereby the distribution of phenotype or genotype in a population changes over time.
Moreover, it is of particular interest to understand what is the relative importance of
mutation, selection, migration and population subdivision for the genetic diversity ob-
served today. This origins can be traced back to Charles Darwin’s pioneer work On the
Origin of Species [14] published in 1859.

Apart from the discussions it brought about on a non-scientific level, there were also
controversial debates where both biologists and mathematicians were involved. One of
the points at issue was the claim that the driving force of evolution was natural selection,
and among selectionists, there was disagreement about the nature of selectively induced
evolutionary changes. Darwin adhered to the gradualist point of view, that changes in
the nature of organisms in populations were gradual and incremental. Other biologists,
like T. H. Huxley and F. Galton, were saltationists, believing that evolutionary changes
usually occur in the form of jumps with considerable height. The main difference is that
according to Darwin the evolution of well-adapted organisms depends on selection acting
on a large number of slight variants of the same trait, whereas much of Mendel’s work
focuses on discontinuous changes in traits due to a mutation of a single gene. However,
as we will see later, these two arguments do not contradict each other since they can be
interpreted respectively on different time scales. Depending on the time scale which is
chosen to measure the evolutionary changes, one can get different interpretation of the
picture.

Up to the rediscovery of Mendelian genetics by Fisher, Haldane and Wright et al.
around 1900, Darwin’s theory of evolution driven by natural selection was finally rec-
onciled with Mendelism, which was of course appealing to the saltationists. Indeed,
the former relies crucially on the latter, and further it would be difficult to conceive
a Mendelian system without any consideration of natural selection associated with it.
To see why this should be the case, it is necessary to turn to some rigorous mathemat-
ical justification showing that natural selection can act extremely fast. In a series of
papers starting from 1922, Wright introduced the conception of adaptive landscape, in
which natural selection would drive a population towards a local maximum (in terms of
fitness optimization), but a genetic drift could push the population away from such a
peak paving the way for natural selection to push it towards another peak. During the
last twenty years, due to further developments of mathematical tools, there has raised
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particular interest in reconsidering the consistency between natural selection and dra-
matically discontinuous changes in traits. We now give a short overview of the biological
literature dealing with this question.

In 1997 Coyne et al. [13] published a perspective that questioned the validity and im-
portance of Wright’s shifting balance theory, which allows selection to act on alternative
adaptive peaks, corresponding to different deterministic equilibria. Natural selection
pushes populations towards one or another peak, which may then spread by various
kinds of group selection. It is consistent with Darwin’s theory of evolution that the
main engine of adaption is natural selection. An obvious question from a mathemati-
cal point of view is whether we can interpret the shifting balance theory on the level of
individual-based models? To discuss this issue, we first have to identify the evolutionary
mechanisms that contribute to natural selection, such as reproduction, mortality, com-
petition, migration and mutation, and how they fit into the spatial structure constraints
of a population.

Back to one decade earlier, Newman et al. [41] investigated an evolutionary phe-
nomenon called punctuated equilibria in a well-written biological paper that also caters
mathematicians’ taste. They emphasize random variation and natural selection as the
two central elements of neo-Darwinian evolution. In Wright’s view, these lead to random
drift of mean population characters in fixed multiply peaked adaptive landscape with
long periods spent near fitness peaks. They show that the transitions between peaks are
rapid and undirectional even though random variation is small and transitions initially
require movement against selection. They thus claim that punctuated equilibrium, the
palaeontological pattern of rapid transitions between morphological equilibria, is a natu-
ral manifestation of standard Wrightian evolutionary theory. In their paper they employ
a dynamical system with small random perturbations to illustrate a population with a
random genetic variation. However, they mention the idea of different time scales only
verbally without giving explicit mathematical justification.

Recently a so-called trait substitution sequence (TSS) model, proposed by Metz et
al. [39] and justified by Champagnat [8], aims to describe the evolution as a Markov
jump process at the population level in the space of phenotypic traits characterizing
individuals. In this model, the population is monomorphic at any time (i.e., composed
of individuals holding the same trait value). The evolution proceeds by a sequence of
appearance of new mutant traits, which invade the population and replace, after a selec-
tive competition on a shorter time scale, the previous dominant trait. The TSS model
belongs to the recent biological theory of evolution called adaptive dynamics. The the-
ory of adaptive dynamics investigates the effects of the ecological aspects of population
dynamics on the evolutionary process, and thus describes the population on the pheno-
typic level instead of genotypic level. The TSS model is one of the fundamental models
for adaptive dynamics and it turns out to be a powerful tool for understanding various
evolutionary phenomena, such as polymorphism (stable coexistence of different traits)
and evolutionary branching (evolution from monomorphic population to a polymorphic
one that may lead to speciation).
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1.2 Motivation

The heuristics leading to the TSS model is based on the biological assumptions of large
population and rare mutation, and on another assumption that no two different types
of individuals can coexist on a long time scale: the selective competition eliminates one
of them. Therefore, coexistence and diversity after entering of new mutants are not
allowed due to the deficient spatial structure. On the other hand, natural selection is
not only limited to competition mechanism but also is often combined with a survival
strategy-migration mechanism. In spite of this heuristics, this model is still lack of a
rigorous mathematical basis.

The adaptive-dynamics approach is controversially debated since it was criticized only
feasible in the context of phenotypic approach. However, the link with its corresponding
genetic picture is rarely developed (see Eshel [17]). As far as the natural selection
is concerned, the population-genetics approach has dominated for many years mostly
because it is proved powerful to model the sexual reproduction of diploid populations
on the genetic level. For a fixed finite gene pool, most evolutionary mechanisms like
recombination, selection, and inheritance are theoretically tractable even they can take
a role in a very complicated way after recombination gets involved. In particular, the
effect of recombination is far more complicated to characterize the long-term evolution
since random shuffling of genes may create many genotypes for natural selection (e.g.,
see [12] for a three-genotype (combined by two genes) case). In contrast, adaptive-
dynamics approach is mainly concerned with the long-term evolutionary property but
usually ignoring the genetic complications. Is there one way to embody the features
such as sexual production and the recombination mechanism arising from the genetic
level but at the same time one can still analyze it on the quantitative trait level, i.e.,
taking advantage of adaptive-dynamics approach on a phenotypic level? This is the
biological motivation of the main part of this thesis. In this thesis we propose a new
model to justify the above arguments. We introduce a spatial migration mechanism
among possible phenotypes, which can be viewed as the results of recombination in a
fixed finite gene pool of a sexual population. After natural selection on a short-term
evolution time scale, the population can attain an equilibrium configuration according
to the fitness landscape. Every time there comes a new mutant gene into the gene
pool, the phenotype (trait) space is enlarged due to recombination mechanism, and
the spatial migration can be used to characterize the reshuffling procedure on the way
to a new equilibrium configuration. Loosely speaking, the spatial movement is used
to compensate the simplicity of genetic recombination in adaptive-dynamics approach.
The critical point we need to take care is to distinguish these different time scales after
introducing fitness spatial structure in the model.

The approach of this model differs from previous models in three key aspects. Firstly,
no genetic information is lost on any time scale. Some phenotype containing a specific
deleterious gene may be invisible due to its temporary low fitness on the migration time
scale, but it can recover based on the reshuffling due to a new mutant gene on the longer
mutation time scale. For example, some epidemic virus may become popular again
periodically because of a change of its mutated genetic structure or a genetic change
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of its potential carrier. Secondly, thanks to the fitness spatial structure endowed on
finite phenotype space, coexistence is allowed under the assumption of nearest-neighbor
competition and migration. This distinguishes our model from the classical adaptive-
dynamics system, which usually converges to a monomorphic equilibrium. What is more,
we derive a well-defined branching tree structure in the limiting system, which is like
a spatial version of the Galton-Watson branching process. Last but not least, the idea
to introduce the spatial movement to interpret population genetics can build a bridge
between adaptive-dynamics and its genetics counterpart. In particular, we believe that
more can be done to quantify our model from the genetic side by mapping migration
among phenotypes to recombination among genotypes.

As a reminder, we want to mention a genetic counterpart of the interacting branching
population model described in next section, namely an interacting probability measure-
valued population studied by Evans et al. [11, 21]. They study a continuous time
dynamical system that models the evolving distribution of genotypes in an infinite-
many or even a continuum of loci population where recombination acts on a faster
time scale than mutation and selection. The intuition behind their asymptotic result is
that the mutation preserves the Poisson property whereas selection and recombination
respectively drive the population distribution away from and toward Poisson. If all three
processes are operating together, we expect that the resulting system will preserve the
Poisson property, and in the limit the detailed features of the recombination mechanism
disappear. They call it mutation-selection balance model.

1.3 Mathematical framework

Most of the current research in biological mathematics is concerned with either phe-
notypic or genetic models, both of which trace back to the well-known Galton-Watson
branching process or the Wright-Fisher model. Since the 1970s it has become very pop-
ular for mathematicians to study measure-valued stochastic processes (superprocesses)
[15, 18, 37]. On the one hand, this research shows abundant spatial structures beyond
the one-dimensional processes. On the other hand, it builds a beautiful bridge between
probability theory and infinite-dimensional analysis. There are mainly two classes of
superprocesses, Dawson-Watanabe superprocess and Fleming-Viot superprocess, which
are essentially generalizations of resp. the Galton-Watson process and the Wright-Fisher
process enriched by various spatial structures. From the biological point of view, they
can be interpreted as resp. infinite-many type and infinite-many allele models endowed
with spatial motions. We now start with a short survey on a recent framework proposed
for spatially structured phenotypic models.

Since individuals can reproduce, mutate and die in varying rates according to their
different spatial characteristics (phenotypes), one reasonable improvement one can make
is to add spatial components to both branching and dispersal parameters. However, the
spatial-dependent components destroy the independent relationship between branching
and dispersal while bringing us abundant information from the biological point of view.
Even though, the model is still deficient: such as in the finite-dimensional branching
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process model, a population either dies out or escapes to infinity, depending on the
mean matrix of the offspring distribution. The model thus can not predict a non-trivial
equilibrium which actually happens quite often in the biological world. Bolker and
Pacala [4] propose a locally regulated model which attains the above two improved
features. By employing the mechanism of the logistic branching random walks, they
introduce a quadratic competition term in the density-dependent populations, which
can help us to build some equilibria within subdivided populations. However, the loss
of the branching property can also cause some new technical difficulties for the analysis
of the model.

Law and Dieckmann [35] study this model in parallel with Bolker and Pacala [4]. We
simply call it BPDL model. In recent years, this model has been extensively studied by
Etheridge [19], Fournier and Méléard [22], Champagnat [8], Lambert [33], Dawson and
Greven [16]. Etheridge [19] studies two diffusion limits, one is a stepping stone version
of the BPDL model (interacting diffusions indexed by Zd) and another is a superpro-
cess version of it. Also sufficient conditions are given for survival and local extinction.
Fournier and Méléard [22] formulate a pathwise construction of the BPDL process in
terms of a Poisson point process. Under a finiteness of third moment condition, they
rigorously obtain a deterministic approximation (law of large numbers) of the BPDL
processes. Our work is based on the formalization of Fournier and Méléard [22]. Cham-
pagnat [8], Champagnat and Méléard [10], Dawson and Greven [16] investigate long
term behavior by the method of multiple time scale analysis in respective populations.

In this thesis a main goal is to to understand how the mechanisms of reproduction,
competition, migration and mutation determine the manner in which the distribution
of a spatial population changes over time. In particular, we prescribe relative strengths
of these evolutionary mechanisms by constraints on corresponding parameters in order
to study their relative importance on different time scales. In the first two chapters
we study how the population starting from one single trait eventually colonizes the
whole trait space comprised of finite/infinite-many traits as time evolves, meaning that
a positive spatial density is reached and a local equilibrium situation arises where locally
the process neither becomes extinct nor grows and becomes infinitely large as t → ∞.
This is in contrast to the behavior of classical branching models with their survival
versus extinction dichotomy in a finite-many trait space and reflects limited resources
in a given colony.

More precisely, the scaled population is characterized by a sequence of finite measure-
valued processes with the following infinitesimal generator

LK,εF (ν) =

∫
X

[
F (ν +

δx
K

)− F (ν)

]
b(x)Kν(dx)

+

∫
X

[
F (ν − δx

K
)− F (ν)

](
d(x) +

∫
X
α(x, y)ν(dy)

)
Kν(dx)

+ ε

∫
X

∫
X

[
F (ν +

δy
K
− δx
K

)− F (ν)

]
m(x, dy)1y∈supp{ν}Kν(dx),

(1.3.1)

where we denote by b(x) the birth rate of an individual with trait x, and resp. d(x) its
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death rate, α(x, y) the competition pressure felt by one with trait x from another with
trait y, m(x, y) the migration kernel from x to y. Parameter ε is used to govern the
migration strength in the population.

In Chapter 2 we firstly attain the large population approximation by letting K →∞.
Then we identify the right time scale O

(
ln 1

ε

)
for fixation and describe the equilibrium

configuration on a finite-many trait space X . By adding rare mutation events driven by
Poisson point processes, we enlarge the trait space every time there enters a new mutant
and push the process to evolve as a well-defined trait substitution tree (TST) process, a
measure-valued Markov jump process, on the mutation time scale.

In Chapter 3 we aim to justify the TST process by constraining migration and mu-
tation strength to be sufficiently small simultaneously in terms of large population size.
For the case on a finite geographic trait space without any mutation, under the condition

1� Kε� K, (1.3.2)

we prove the right time scale for fixation is O(ln 1
ε
), and provide some specific paths on

the way to their equilibria (see Fig. 1.1).

Figure 1.1: Simulations of TST on the migration time scale O
(
ln 1

ε

)
For the population on an infinite-many trait space with mutations, we specify the

process with its infinitesimal generator

LK,ε,σF (ν) =L̃K,εF (ν)

+ σ

∫
X

∫
Rd

[
F (ν +

δx+h

K
)− F (ν)

]
µ(x)p(x, dh)Kν(dx),

(1.3.3)

where the last term represents mutant transition parameterized by σ, and the operator
L̃K,ε is a modification of LK,ε with migration kernel’s domain of integration supp{ν}
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rather than X . Combining with the constraint (1.3.2) for the migration rate, we impose
one more constraint on the mutation rate

ln
1

ε
� 1

Kσ
� eKC . (1.3.4)

By taking the large population limit, we attain the TST process (see Fig. 1.3), which is
defined in Chapter 2 on the mutation time scale O( 1

Kσ
). Note that the effect of migration

and competition is indistinguishable in the limiting system, where at any time it takes
a value as the equilibrium configuration on a corresponding finite-many trait space.

STESTE

departure from an
unstable system

departure from an
unstable system

STE
of the relabeled system

STE
of the relabeled system

mutant enters

mutant enters

short-term evolution

short-term evolution

long-term evolution
(generations)

T

T+1

fitness maximization

fitness maximization

Figure 1.2: Long-term evolution from one STE at generation T to another at generation T+1

In all, we identify that there are three time scales which are related with different
evolutionary mechanisms. The shortest one is of course the life cycle time scale of a
single individual with no direct concern when studying the evolutionary processes. A
middle level time scale is concerned with changes and interactions in a population from
one generation to the next due to reproduction, competition and migration. We call
it migration time scale. This is usually the topic of classical population dynamics or
genetics, and we call it short-term evolution. On the longest one-a mutation time scale,
we study the rapid transition from one equilibrium on the short-term scale to another
due to the invasion of a new mutant type. More precisely, from one time step to the
next on the long-term scale, we switch between three systems: one at the old short-term
equilibrium (STE), one during short-term evolution (by one-mutant extension), and one
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at the new STE. We borrow a nice picture from Schneider [42] to illustrate the idea (see
Fig. 1.2).

In Chapter 4 the goal is to consider the case when the fixation probability of the
new mutant is nearly neutral (slightly advantageous). This idea can be realized by
accelerating the branching rate (birth rate and death rate) in a suitable way, i.e., take
individual birth rate bK = Kλr + b and death rate dK = Kλr + d for 0 < λ ≤ 1, where
the parameter K is proportional to the initial population size. This procedure is highly
reminiscent of the scaling method from branching particle systems to superprocesses
(see [15, 37]). To prevent the population from rapid extinction, one either needs to
make the assumption of large population, or to condition the process on not attaining
0 before the time of observation. We will show that, on a single mutation time scale,
the fixation probability of the advantageous type is of order 1

Kλ , which converges to 0
under the large population limit. Obviously, it is not the proper time scale to rescale
the population process.

For 0 < λ < 1 the large population limit of the population process (branching random
walks system) is a deterministic measure-valued process. In particular, it satisfies an
ODE which has a stable equilibrium (carrying capacity) for a one-type population with-
out mutation. In order to find the suitable time scale to separate successively arising
mutations, our argument proceeds by the way of an intermediate approximation, based
on the trait substitute sequence approximation obtained in Champagnat [8]. Eventually,
we justify the TSS model on an accumulation time scale of mutations. In other words,
the invasion is not due to a single absolutely advantageous mutant, but due to relatively
often occurring mutations.

For λ = 1 the large population limit is a superprocess with a quadratic competition
term. The randomness is generated by the accelerating birth and death events and is
usually called “demographic stochasticity”. In particular, as for the one dimensional
case, the rescaled logistic branching process converges to a so called logistic Feller diffu-
sion. As shown in [33], the diffusion will be absorbed at 0 with probability 1. Thus, to
capture the long time behavior in some sense, we study the process conditioned on never
attaining 0. This conditioned process , named Q-process, is studied in [7, 36]. It can be
realized by compensating proper immigration to the system (see [34]). As for the fixation
period, we use a classical result about the extinction probability for branching processes
in random environments (see Kaplan [29]) to build up the non-coexistence condition,
and further to give an implicit expression for the fixation probability of the advanta-
geous type. Nevertheless, we can formulate the limiting processes both for 0 < λ < 1
and λ = 1 in an unified regime in the context of random environments (see Remark
4.2.3).

In Chapter 5 based on the deterministic approximation of the BPDL processes studied
by Fournier and Méléard [22], a fluctuation theorem is proved under a second order mo-
ment condition. The limiting process is justified to be an infinite-dimensional Gaussian
process solving an inhomogeneous generalized Langevin equation. As an application, we
study its properties in the one dimensional case. Finally, under some specific conditions
we consider the stationary behavior of the BPDL processes and its fluctuation limit. We
prove that the fluctuation limit and the long time limit are interchangeable.
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Figure 1.3: Simulations of TST on the mutation time scale O( 1
Kσ )

Figure 1.4: Evolution tree of all (from Wikipedia)
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2 Trait substitution tree model based
on a deterministic system

In this chapter we consider two continuous-mass population models as analogues of
spatially structured branching random walks, one is supported on finite-many trait space
and the other one is supported on infinite-many trait space. For the first model with
nearest-neighbor competition and migration, we justify a well-described evolutionary
path to the short-term equilibrium on a slow migration time scale. For the second
one with an additional evolutionary mechanism-mutation, a Markov jump process-trait
substitution tree model is established under a combination of rare mutation and slow
migration limits. The transition rule of the tree highly depends on the relabeled trait
sequence determined by the fitness landscape.

2.1 Introduction

In recent years a spatially structured population with migration (namely mutation in [8])
and local regulation proposed by Bolker and Pacala [4], Dieckmann and Law [35] (BPDL
process) has attracted particular interest both from biologists and mathematicians. It
has several advantages over the traditional branching processes, which make it more
natural as population models: the quadratic competition term is used to prevent the
population size from escaping to infinity and the migration term is used to transport
the population mass from one colony to unoccupied colonies for survival, and further
to get colonized. There are mainly two highlights of related papers. Etheridge [19],
Fournier and Méléard [22], Hutzenthaler [26] , and Hutzenthaler and Wakolbinger [27]
study the extinction and survival problems. Champagnat [8], Champagnat and Lambert
[9], Méléard and Tran [38], Dawson and Greven [16] focus more on its long time behavior
by multiscale analysis methods.

This paper is motivated partially by the time scales separation procedure used in [8, 9]
and partially by the idea of virgin island model introduced in [26]. In [8], a so-called
trait substitution sequence model is derived from an individual-based branching particle
system under a combination of large population and rare migration (namely mutation
there) limits. More precisely, rare migration rate is constrained by the large population
parameter to guarantee that the fixation period is not visible on the migration time
scale. Under a non-coexistence assumption, the unfit subpopulation can be killed off on
the migration time scale since it evolves in the form of discrete-mass population, which
is actually a subcritical branching process.

In this paper we will focus on an extreme case where we firstly let population size tend
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to infinity, and further consider a slow migration rescaling limit based on the continuous-
mass population model. Thus, some subpopulations with unfit traits get a chance to
recover due to the fact that the competition is only between nearest neighbors. For
a finite-many trait space, some specific conditions can be imposed on the fitness and
demographic parameters, and a well-described evolutionary path to the short-term equi-
librium can be obtained on the slow migration time scale. We call it a trait substitution
tree (TST) on the finite trait space. For any given sequence of traits, the equilibrium
configuration is determined by their labeled order according to their fitness landscape.

Mutation, a key ingredient to determine the direction of evolution, always takes
a significant role in the consideration of population dynamics. In the framework of
continuous-mass populations, we want to characterize how the population starting with
one single trait type spreads and eventually colonizes over the entire trait space. This
leads to speciation and further diversity of population configurations. It can be realized
by adding some Poisson-driven mutations to the finite TST. Then the trait space is
enlarged every time when there enters a new mutant. Meanwhile, the trait sequence
is relabeled according to their fitness values. By constraining a relative strength be-
tween mutation rate and migration rate, on the rare mutation time scale one obtains a
jump-type TST process as time moves on. We call it a trait substitution tree on the
infinite-many trait space.

Notice that here the term “rare” means phenomenon in the sense of stochastic whereas
“slow” can be interpreted in the sense of deterministic dynamics.

The remainder of the paper is structured as follows. In Section 2.2, we briefly de-
scribe the model and give some preliminary results. In particular, we recall the law
of large numbers of the BPDL processes. In Section 2.3, in a slow migration limit,
for a finite-many trait space we retrieve a well-defined short-term evolution path to its
TST configuration on the migration time scale O

(
ln 1

ε

)
. In Section 2.4, under the rare

mutation constraint we obtain a jump-type TST process on a longer evolutionary time
scale-the mutation time scale. In Section 2.5, we provide proofs of the results in Section
2.3 and Section 2.4. Finally, for better understanding the TST process we provide a
simulation algorithm in Section 2.6.

2.2 Microscopic model

2.2.1 Notations and description of the processes

Following [4], we assume the population at time t is composed of a finite number I(t) of
individuals characterized by their phenotypic traits x1(t), · · · , xI(t)(t) taking values in a
compact subset X of Rd.

We denote by MF (X ) the set of non-negative finite measures on X . Let Ma(X ) ⊂
MF (X ) be the set of atomic measures on X :

Ma(X ) =

{
n∑
i=1

δxi : x1, · · · , xn ∈ X , n ∈ N

}
.
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Then the population process can be represented as:

νt =

I(t)∑
i=1

δXi(t).

Let B(X ) denote the totality of functions on X that are bounded measurable. For
ν ∈MF (X ) and φ ∈MF (X ), denote by 〈ν, φ〉 =

∫
φdν.

Let’s specify the population processes (νnt )t>0 by introducing a sequence of biological
parameters, for n∈ N:

• bn(x) is the rate of birth from an individual with trait x.

• dn(x) is the rate of death of an individual with trait x because of “aging”.

• αn(x, y) is the competition kernel felt by some individual with trait x from another
individual with trait y.

• Dn(x, dy) is the children’s dispersion law from its mother with trait x. In partic-
ular, it can be decomposed into two parts-local birth at location x and a small
portion of migration based on birth, i.e.

Dn(x, dy) = (1− ε)1x=y + εmn(x, dy)1x 6=y. (2.2.1)

Here, mn(x, dy) is the transition density of migration, which satisfies∫
y∈X

mn(x, dy) = 1.

We will omit the superscript ε in Dn in the sequel when this leads no ambiguity.

Fournier and Méléard [22] has formulated a pathwise construction of the BPDL process
{(νnt )t≥0;n ∈ N} in terms of Poisson random measures and justified its infinitesimal
generator defined for any Φ ∈ B(Ma(X )):

Ln0 Φ(ν) =

∫
X
ν(dx)

∫
Rd

[Φ(ν + δy)− Φ(ν)] bn(x)Dn(x, dy)

+

∫
X
ν(dx) [Φ(ν − δx)− Φ(µ)]

[
dn(x) +

∫
X
αn(x, y)ν(dy)

]
.

(2.2.2)

The first term is used to model birth events, while the second term which is nonlinear
is interpreted as natural death and competing death.

Instead of studying the original BPDL processes defined by (2.2.2), our goal is to
study the rescaled processes

Xn
t :=

νnt
n
, t ≥ 0 (2.2.3)

since it provides us a macroscopic approximation when we take the large population
limits (we will see later, the initial population is proportional to n in some sense). The
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infinitesimal generator of the rescaled BPDL process has the following form, for any
Φ ∈ B(MF (X )):

LnΦ(ν) =

∫
X
nν(dx)

∫
Rd

[
Φ(ν +

δy
n

)− Φ(ν)

]
bn(x)Dn(x, dy)

+

∫
X
nν(dx)

[
Φ(ν − δx

n
)− Φ(ν)

] [
dn(x) +

∫
X
αn(x, y)nν(dy)

]
.

(2.2.4)

2.2.2 Preliminary results

Let’s denote by (A) the following assumptions:

(A1) There exist b(x), d(x), m̄(x) ∈ B(X ), α(x, y) ∈ B(X ×X ) with m̄(x) a probability
density for x, y ∈ X , n ∈ N, such that

0 < bn(x) ≡ b(x), 0 < dn(x) ≡ d(x), mn(x, y) ≤ m̄(y),

0 < αn(x, y) =
α(x, y)

n

(A2) b(x)− d(x) > 0.

The first assumption implies that there exist constants b̄, d̄, ᾱ such that b(x) ≤
b̄, d(x) ≤ d̄, α(x, y) ≤ ᾱ. Furthermore, it guarantees the existence of the BPDL process
(see [22]).

By neglecting the high order moment, Bolker and Pacala [4] use the “moment closure”
procedure to approximate the stochastic population processes. As we can see from the
generator formula (2.2.4), it should be enough to “close” the second order moment due
to the quadratic nonlinear term. Actually, we indeed can improve the result of Fournier
and Méléard [22] by giving a second moment condition sup

n≥1
E〈Xn

0 , 1〉2 <∞ rather than

the finiteness of the third moment condition. Since there is no essential difficulty in the
improved proof, we only list the result here without repeating the proof.

Theorem 2.2.1 (Fournier and Méléard [22], convergence to an integrodifferenial equa-
tion). Under the assumption (A1), consider a sequence of processes (Xn

t )t≥0 defined
in (2.2.3). Suppose that (Xn

0 ) converges in law to some deterministic finite measure
X0 ∈ MF (X ) as n → ∞ and satisfies sup

n≥1
E〈Xn

0 , 1〉2 < ∞. Then the sequence of

processes (Xn
t )t≥0 converges in law as n → ∞, on D([0,∞),MF (X )), to a determin-

istic measure-valued process (Xt)t≥0 ∈ C([0,∞),MF (X )), where (Xt)t≥0 is an unique
solution satisfying

sup
t∈[0,T ]

〈Xt, 1〉 <∞, (2.2.5)

and for any φ ∈ B(X ),

〈Xt, φ〉 =〈X0, φ〉+

∫ t

0

ds

∫
X
Xs(dx)b(x)

∫
Rd
φ(y)D(x, dy)

−
∫ t

0

ds

∫
X
Xs(dx)φ(x)

[
d(x) +

∫
X
α(x, y)Xs(dy)

]
.

(2.2.6)
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2.3 TST on finite trait space: without mutation

The trait substitution sequence (in short TSS) model is a powerful tool in understanding
various evolutionary phenomena, such as evolutionary branching which may lead to
speciation (see Bovier and Champagnat [5]). More precisely, it says that the population
follows the “hill climbing” process on the fitness increasing landscape and always keeps
monomorphic trait on a long time scale. This model is proposed by Metz [39] and
mathematically studied in [8, 9, 38].

Notice that the dispersal kernel D(x, dz) implicitly depends on a parameter ε (see
(2.2.1)). Rather than taking large population and rare migration limits simultaneously
as in [8], we justify a so-called trait substitution tree (in short TST) here from a macro-
scopic point of view. More precisely, we first consider the large population limit to at-
tain the macroscopic approximation of the individual-based model (see Theorem 2.2.1).
Then, we consider the slow migration limit by a rescaling procedure based on the macro-
scopic limit. In contrast to the model in Champagnat [8], the migration rate here doesn’t
need to be restricted by the demographic parameter (population size) in the microscopic
model.

Here, the so-called TST process arises under the slow migration limit when we assume
the nearest-neighbor competition. Note that a variety of short-term evolution paths can
be attained by specifying different competition strengths. In other words, the order of
invasion and recovery has no special significance even here we restrict the picture by
forward invasion into the fitter direction and backward recovery into the unfit direction
along the fitness landscape. However, these different paths are indistinguishable on a
longer scale-the mutation time scale in next section. Nevertheless, besides the interesting
tree structure TST model also brings us some insights into speciation phenomena -
evolution from a monomorphic ancestor to diverse species.

Denote by (C) the following assumptions:

(C1) Monomorphic initial trait: Xn
0 =

Nn
0

n
δx0 , and

Nn
0

n

law→ ξ̄(x0),

(C2) Nearest-neighbor competition and migration: α(xi, xj) = m(xi, xj) ≡ 0 for |i−j| >
1, and non-coexistence condition: fi,i−1 > 0, fi−1,i < 0 for any 1 ≤ i ≤ L, where

fitness function fi,j := b(xi)− d(xi)− α(xi, xj)ξ̄(xj), and ξ̄(xj) :=
b(xj)−d(xj)

α(xj ,xj)
.

(C3) For any i ≥ 2,

i

b(xi)− d(xi)
≥ 1

fi,i−1

+
1

fi−1,i−2

+ · · ·+ 1

f1,0

. (2.3.1)

(C4) For any i ≥ 0,
|fi,i+1|
fi+2,i+1

< 1, and

|fi,i+1|
fi+2,i+1(b(xi)− d(xi))

− 1

fi+3,i+2

>
|fi+1,i+2|

fi+3,i+2(b(xi+1)− d(xi+1))
(2.3.2)

which implies that the recovery time of trait xi is later than that of type xi+1.
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Notice that (C3-C4) are just technical assumption for results in this section but not
necessary for results in next section.

Firstly, we consider the macroscopic limit (2.2.6) which involves parameter ε and
rewrite it in another form, for any φ ∈ B(X ),

〈Xε
t , φ〉 =〈X0, φ〉+ ε

∫ t

0

ds

∫
X
Xε
s(dx)b(x)

∫
X

[φ(y)− φ(x)]m(x, dy)

+

∫ t

0

ds

∫
X
Xε
s(dx)φ(x)

[
b(x)− d(x)−

∫
X
α(x, y)Xε

s(dy)

]
.

(2.3.3)

Suppose that the current measure is supported on a finite-many trait space

X = {x0, x1, · · · , xL},

and it only has nearest-neighbor range competition and migration as in assumption
(C2). From the above generator form, it leads to a system which satisfies the following
equations

ξt(xi) =ξ0(xi) +

∫ t

0

[
b(xi)− d(xi)−

∑
j=i±1,i

α(xi, xj)ξs(xi)

]
ξs(xj)ds

+ ε

∫ t

0

∑
j=i±1

[ξs(xj)m(xj, xi)− ξs(xi)m(xi, xj)] ds, 1 ≤ i ≤ L.

(2.3.4)

The existence and uniqueness of the processes is implied straightforwardly from The-
orem 2.2.1. The quadratic regulation term prevents the population from escaping to
infinity.

In the following theorem, we build a trait substitution tree model based on the above
macroscopic approximation by rescaling on another time scale as migration rate ε tends
to 0.

Theorem 2.3.1. Admit assumptions (A) and (C), consider the deterministic measure-
valued processes (Xε

t )t≥0 defined by (2.3.4) on the trait space X = {x0, x1, x2, · · · , xL},
for any L ∈ N. Then the sequence of rescaled processes

(
Xε
t·ln 1

ε

)
t≥0

converges, as ε→ 0,

to (Ut)t≥0 which has the following forms depending on the integer L is even or odd.

(i) When L = 2l for some l ∈ N ∪ 0,

Ut ≡



ξ̄(x0)δx0 for 0 ≤ t ≤ I1,
ξ̄(xk)δxk for Ik < t ≤ Ik+1, k = 1, · · · , L− 1,
ξ̄(xL)δxL for IL < t ≤ IL + SL−2,
l∑
i=j

ξ̄(x2i)δx2i
for I2j+2 + S2j < t ≤ I2j + S2j−2, j = l − 1, · · · , 1,

l∑
i=0

ξ̄(x2i)δx2i
for t > I2 + S0.

(2.3.5)

where Ik =
k∑
i=1

1
fi,i−1

, and Sk =
|fk,k+1|

fk+2,k+1(b(xk)−d(xk))
.
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(ii) When L = 2l + 1 for some l ∈ N ∪ 0,

Ut ≡



ξ̄(x0)δx0 for 0 ≤ t ≤ I1,
ξ̄(xk)δxk for Ik < t ≤ Ik+1, k = 1, · · · , L− 1,
ξ̄(xL)δxL for IL < t ≤ IL + SL−2,
l+1∑
i=j

ξ̄(x2i−1)δx2i−1
for I2j+1 + S2j−1 < t ≤ I2j−1 + S2j−3, j = l, · · · 2,

l+1∑
i=1

ξ̄(x2i−1)δx2i−1
for t > I3 + S1.

(2.3.6)

50 100 150 200 250 300
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Figure 2.1: Numerical simulations of evolution of a dynamical system with monomorphic initial type
and finite trait space (the upper left one has X = {x0, x1, x2} while the upper right
one has X = {x0, x1, x2, x3}). Curves describing ξt(x0), ξt(x1), ξt(x2), ξt(x3) are colored
black, blue, red, green, resp.. The equilibrium configuration for the first case is δx0 + 3δx2

and is 2δx1 + 4δx3 for the second one. The lower panel gives their corresponding “trait
substitution tree” structure.

Remark 2.3.2. (1) As time passes on, in the beginning the limiting process Ut keeps
monomorphic substitution up to the domination of the fittest trait. Afterwards, the
relatively unfit traits start to recover along the fitness decreasing direction. From the
fittest trait back to the initial one every second one appears in the limit. For in-
stance, when X = {x0, x1, x2}, the stable configuration has support {x0, x2}; when
X = {x0, x1, x2, x3}, the stable configuration has support {x1, x3} (refer to Figure 2.1).
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This happens because the competition is only between the nearest neighbors and the trait
on the RHS is always fitter than the traits on the LHS.

(2) The TST process indexed by L+2 can be constructed from the TST process indexed
by L by adding a three-type subtree on top of it. For instance, in Figure 2.2, it is showed
that the TST (L = 4) can be constructed from a smaller TST (L = 2) by connecting
another excursion consisting of traits {x2, x3, x4}.

x0

x1

x2

time

trait

x1

x2

x3

x4

x3

x4

time

trait

trait

x0

x2

I1 I2 I2+S0

I1 I2 I2+S0 I3 I4 I4+S2

Figure 2.2: Trait substitution tree constructed by embedding excursions.

We postpone the proof of the above result in Section 2.5.1.

2.4 TST on infinite trait space: with mutation

In Section 2.3 we analyze a continuous-mass population on a finite-many trait space
defined by equation (2.3.4). On the way to approach its equilibrium configuration,
under some specific conditions, a deterministic evolutionary picture is obtained on the
slow migration time scale O

(
ln 1

ε

)
. An extension to an infinite trait space is natural for

our further consideration to complete the whole picture.

In order to enlarge the finite trait space, we introduce another evolutionary mechanism-
mutation with a mutant variation density p(x, dh). More precisely, we specify the new
model with the following infinitesimal generator, for any ε, σ ≥ 0 and proper testing
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functions F and φ,

Lε,σF (ν) =

∫
X

[
b(x)− d(x)−

∫
X
α(x, y)ν(dy)

]
δF (ν;x)

δν
ν(dx)

+ ε

∫
X
A
(δF (ν;x)

δν

)
ν(dx)

+ σ

∫
X

∫
Rd

[F (ν + δx+h)− F (ν)]µ(x)p(x, dh)ν(dx),

(2.4.1)

where the differentiation of F is defined by

δF (ν;x)

δν
= lim

ε→0+

F (ν + εδx)− F (ν)

ε
(2.4.2)

and the operator A coincides with the migration term in (2.3.4)

Aφ(x) =

∫
X

[
φ(y)− φ(x)

]
1{y∈supp{ν}}m(x, dy). (2.4.3)

The first term of the generator describes the local regulation of the population dynamics.
The second term describes the migration among support sites. Notice that migration
here is not based on birth anymore as in (2.3.4) since it doesn’t make any difference
if we view on a longer time scale. The last term brings new mutant trait in the form
of discontinuous mass to current population dynamics. Non-negative function µ(x)
describes the mutation rate from the resident trait x. Parameters ε and σ are used to
rescale the strength of migration and mutation of the population. For more discussion
on discontinuous superprocesses with a general branching mechanism, one can refer to
[37].

We list the following assumptions to guarantee that the limiting process is well-defined.

(D1) For given distinct traits {x0, x1, · · · , xn} ⊂ X , n ∈ N, there exists a total order
relation

xi0 ≺ xi1 ≺ · · · ≺ xin−1 ≺ xin , (2.4.4)

where x ≺ y means that the fitness functions satisfy f(x, y) := b(x) − d(x) −
α(x, y)ξ̄(y) < 0, and f(y, x) := b(y)− d(y)− α(y, x)ξ̄(x) > 0.

For simplicity of notation, we always assume x
(n)
0 ≺ x

(n)
1 ≺ · · · ≺ x

(n)
n with x

(n)
i =

xi. Every time there enters a new trait x whose fitness is between x
(n)
j and x

(n)
j+1

for some 0 ≤ j ≤ n, we relabel new traits by order as following

x
(n+1)
0 ≺ x

(n+1)
1 ≺ · · · ≺ x(n+1)

n ≺ x
(n+1)
n+1 , (2.4.5)

where x
(n+1)
i = x

(n)
i for 0 ≤ i ≤ j, x

(n+1)
j+1 = x and x

(n+1)
i = x

(n)
i−1 for j+2 ≤ i ≤ n+1.

(D2) Competition and migration only occurs between nearest neighbors, i.e., for totally

ordered traits in (D1), we have m(x
(n)
i , x

(n)
j ) = α(x

(n)
i , x

(n)
j ) ≡ 0 for | i− j |> 1.



20 Chapter 2. Trait substitution tree model based on a deterministic system

Notice that assumption (C3-C4) is not necessary for the following results, where we
will give the rescaling limit on a longer time scale than O

(
ln 1

ε

)
. On the migration time

scale, there are a variety of different paths to approach the equilibrium configuration
by giving different parameters. Under the restrictive condition (C3-C4), it can provide
us one specific clear-described evolutionary path on the migration time scale. However,
the equilibrium configuration of system (2.3.4) is always the same up to the ordered
sequence determined as in assumption (D1) and the convergence time scale is always of
order O(ln 1

ε
).

Definition 2.4.1. A Markov jump process {Γt : t ≥ 0} characterized as following is
called a trait substitution tree with the ancestor Γ0 = ξ̄(x0)δx0.

(i) For any nonnegative integer l, it jumps from Γ(2l) :=
∑l

i=0 ξ̄(x
(2l)
2i )δ

x
(2l)
2i

to Γ(2l+1)

with transition rate ξ̄(x
(2l)
2k )µ(x

(2l)
2k )p(x

(2l)
2k , dh) for any 0 ≤ k ≤ l, where

– Γ(2l+1) =
∑j

i=1 ξ̄(x
(2l)
2i−1)δ

x
(2l)
2i−1

+ ξ̄(x
(2l)
2k + h)δ

x
(2l)
2k +h

+
∑l

i=j+1 ξ̄(x
(2l)
2i )δ

x
(2l)
2i

if there exists 0 ≤ j ≤ l s.t. x
(2l)
2j ≺ x

(2l)
2k + h ≺ x

(2l)
2j+1,

– Γ(2l+1) =
∑j

i=1 ξ̄(x
(2l)
2i−1)δ

x
(2l)
2i−1

+
∑l

i=j ξ̄(x
(2l)
2i )δ

x
(2l)
2i

if there exists 0 ≤ j ≤ l s.t. x
(2l)
2j−1 ≺ x

(2l)
2k + h ≺ x

(2l)
2j .

Then, we relabel the trait squence according to the total order relation as in (D1):

x
(2l+1)
0 ≺ x

(2l+1)
1 ≺ · · · ≺ x

(2l+1)
2l ≺ x

(2l+1)
2l+1 , (2.4.6)

where in associate with the first case

x
(2l+1)
i := x

(2l)
i for 0 ≤ i ≤ 2j, x

(2l+1)
2j+1 := x

(2l)
2k + h,

x
(2l+1)
i := x

(2l)
i−1 for 2j + 2 ≤ i ≤ 2l + 1,

and in associate with the second case

x
(2l+1)
i := x

(2l)
i for 0 ≤ i ≤ 2j − 1, x

(2l+1)
2j := x

(2l)
2k + h,

x
(2l+1)
i := x

(2l)
i−1 for 2j + 1 ≤ i ≤ 2l + 1.

(ii) For nonnegative integer l, it jumps from Γ(2l+1) :=
∑l+1

i=1 ξ̄(x
(2l+1)
2i−1 )δ

x
(2l+1)
2i−1

to Γ(2l+2)

with transition rate ξ̄(x
(2l+1)
2k−1 )µ(x

(2l+1)
2k−1 )p(x

(2l+1)
2k−1 , dh) for any 1 ≤ k ≤ l+ 1, where

– Γ(2l+2) =
∑j

i=1 ξ̄(x
(2l+1)
2(i−1))δx(2l+1)

2(i−1)

+ξ̄(x
(2l+1)
2k−1 +h)δ

x
(2l+1)
2k−1 +h

+
∑l+1

i=j+1 ξ̄(x
(2l+1)
2i−1 )δ

x
(2l+1)
2i−1

if there exists 1 ≤ j ≤ l + 1 s.t. x
(2l+1)
2j−1 ≺ x

(2l+1)
2k−1 + h ≺ x

(2l+1)
2j ,
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– Γ(2l+1) =
∑j

i=1 ξ̄(x
(2l+1)
2(i−1))δx(2l+1)

2(i−1)

+
∑l+1

i=j ξ̄(x
(2l+1)
2i−1 )δ

x
(2l+1)
2i−1

if there exists 1 ≤ j ≤ l + 1 s.t. x
(2l+1)
2j−2 ≺ x

(2l+1)
2k−1 + h ≺ x

(2l+1)
2j−1 .

Then, we relabel the trait sequence according to the total order relation as in (D1):

x
(2l+2)
0 ≺ x

(2l+2)
1 ≺ · · · ≺ x

(2l+2)
2l+1 ≺ x

(2l+2)
2l+2 , (2.4.7)

where in associate with the first case

x
(2l+2)
i := x

(2l+1)
i for 0 ≤ i ≤ 2j − 1, x

(2l+2)
2j := x

(2l+1)
2k−1 + h,

x
(2l+2)
i := x

(2l+1)
i−1 for 2j + 1 ≤ i ≤ 2l + 2,

and in associate with the second case

x
(2l+2)
i := x

(2l+1)
i for 0 ≤ i ≤ 2j − 2, x

(2l+2)
2j−1 := x

(2l+1)
2k−1 + h,

x
(2l+2)
i := x

(2l+1)
i−1 for 2j ≤ i ≤ 2l + 2.

Theorem 2.4.2. Admit assumption (A) and (D), consider processes {Xε,σ
t , t ≥ 0} de-

scribed by the generator (2.4.1). Suppose that Xε,σ
0 = ξε(x0)δx0 and ξε(x0) → ξ̄(x0) in

law, as ε→ 0. If it holds that
1

σ
� ln

1

ε
, (2.4.8)

(Xε,σ
t
σ

)t≥0 converges to the trait substitution tree (Γt)t≥0 defined in Definition 2.4.1 in the

sense of f.d.d. as ε tends to 0.

We postpone the proof of the above result in Section 2.5.2.

2.5 Outline of proofs

2.5.1 Proof of Theorem 2.3.1

In this section, we provide rigorous proofs of results in Section 2.3. The main idea
behind the proof is that the migration spreads linearly and the nearest neighbor com-
petitive growth is in exponential speed. Before proving Theorem 2.3.1, let’s give some
preliminary results which are key ingredients for the proof of Theorem 2.3.1.

The following lemma provides the non-coexistence condition for a dimorphic Lotka-
Volterra system. We will include the proof in Appendix A.

Lemma 2.5.1. Consider a dimorphic system ξ̇t(xi) =
(
b(xi)− d(xi)− α(xi, xi)ξt(xi)− α(xi, xi+1)ξt(xi+1)

)
ξt(xi)

ξ̇t(xi+1) =
(
b(xi+1)− d(xi+1)− α(xi+1, xi)ξt(xi)− α(xi+1, xi+1)ξt(xi+1)

)
ξt(xi+1)

(2.5.1)

with some positive initial value. If fi,i+1 < 0, fi+1,i > 0, then
(
0, ξ̄(xi+1)

)
is the only

stable equilibrium.
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The following two propositions will be used as basic ingredients to prove Theorem
2.3.1.

Proposition 2.5.2. Admit the same conditions as in Theorem 2.3.1. Consider the case
when L = 2, i.e. X = {x0, x1, x2}. Then, the limit process (Ut)t≥0 has the form

Ut ≡


ξ̄(x0)δx0 for 0 ≤ t ≤ I1,
ξ̄(x1)δx1 for I1 < t ≤ I2,
ξ̄(x2)δx2 for I2 < t ≤ I2 + S0,
ξ̄(x0)δx0 + ξ̄(x2)δx2 for t > I2 + S0.

(2.5.2)

Proof. (a) Firstly, suppose that the population comprises of only two types, i.e. X =
{x0, x1}. We proceed our proof by dividing the entire invasion period into four steps as
in Figure 2.3.

T ε,1 T η,1 eT η,1 T ε,0

density

time

ξεt (x0)

ξεt (x1)

η

ε

O(1) f−1
1,0 ln η

ε O(1)
ρ1 ln η

ε

ξ̄(x0)

ξ̄(x1)

Figure 2.3: Four-step invasion analysis for a dimorphic system
.

Let ξεt (x0) := 〈Xε
t , 1{x0}〉 and ξεt (x1) := 〈Xε

t , 1{x1}〉, from (2.3.4), one obtains

ξ̇εt (x0) =
(
b(x0)− d(x0)− α(x0, x0)ξεt (x0)− α(x0, x1)ξεt (x1)

)
ξεt (x0)

− εξεt (x0)b(x0)m(x0, x1) + εξεt (x1)b(x1)m(x1, x0),
(2.5.3)

and

ξ̇εt (x1) =
(
b(x1)− d(x1)− α(x1, x0)ξεt (x0)− α(x1, x1)ξεt (x1)

)
ξεt (x1)

− εξεt (x1)b(x1)m(x1, x0) + εξεt (x0)b(x0)m(x0, x1),
(2.5.4)

where ξε0(x0) = ξ̄(x0) and ξε0(x1) = 0.

Step 1. For any fixed η > 0, ∀ 0 < ε < η, let T ε,1 be the time when dynamics(
ξεt (x0), ξεt (x1)

)
leaves the ε−neighborhood of (ξ̄(x0), 0), i.e. T ε,1 = inf

{
t ≥ 0 : ξεt (x1) >
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ε, ξεt (x0) < ξ̄(x0) − ε
}

. From (2.5.4), for t < T ε,1, the dynamics ξεt (x1) satisfies the
following differential inequality

ξ̇εt (x1) ≥
(
b(x1)− d(x1)− α(x1, x0)ξ̄(x0)− εα(x1, x1)− εb(x1)m(x1, x0)

)
ξεt (x1)

+ ε
(
ξ̄(x0)− ε)b(x0)m(x0, x1)

=
(
f1,0 − ε(α(x1, x1) + b(x1)m(x1, x0))

)
ξεt (x1) + ε

(
ξ̄(x0)− ε)b(x0)m(x0, x1).

(2.5.5)
Since f1,0 = b(x1)−d(x1)−α(x1, x0)ξ̄(x0) > 0, we can choose ε sufficiently small such

that the first term on the right hand side of above inequality is positive. By omitting the
positive term, one obtains ξεt (x1) can be controlled at least by ξ̌t(x1), i.e. ξ̌t(x1) ≤ ξεt (x1),
where ξ̌0(x1) = 0, and

˙̌ξt(x1) = ε
(
ξ̄(x0)− ε)b(x0)m(x0, x1). (2.5.6)

Thus, T ε,1 can be bounded from above by Ť ε,1 =
(
(ξ̄(x0) − ε)b(x0)m(x0, x1)

)−1
, which

is the time length for ξ̌t(x1) reaching ε−level. So, T ε,1 is of order O(1).
Step 2. Since time T ε,1, we consider the evolution of the population

(
ξεt (x0), ξεt (x1)

)
until the time (mark by T η,1) when it leaves η−neighborhood of (ξ̄(x0), 0). From (2.5.4),
by omitting the term εξεt (x0)b(x0)m(x0, x1), we get

ξ̇εt (x1)

≥
(
b(x1)− d(x1)− α(x1, x0)ξεt (x0)− α(x1, x1)ξεt (x1)

)
ξεt (x1)− εξεt (x1)b(x1)m(x1, x0)

≥
(
b(x1)− d(x1)− α(x1, x0)ξ̄(x0)− ηα(x1, x1)

)
ξεt (x1)− ηξεt (x1)b(x1)m(x1, x0)

=
(
f1,0 − ηČ

)
ξεt (x1),

(2.5.7)
where Č = α(x1, x1) + b(x1)m(x1, x0). On the other hand, by omitting some negative
terms in (2.5.4), we get

ξ̇εt (x1) ≤
(
b(x1)− d(x1)− α(x1, x0)ξεt (x0)

)
ξεt (x1) + εξεt (x0)b(x0)m(x0, x1)

≤
(
b(x1)− d(x1)− α(x1, x0)(ξ̄(x0)− η)

)
ξεt (x1) + εξ̄(x0)b(x0)m(x0, x1)

≤ (f1,0 + ηĈ)ξεt (x1),

(2.5.8)

where Ĉ = α(x1, x0) + ξ̄(x0)b(x0)m(x0, x1).
By applying Gronwall’s inequality to (2.5.7) and (2.5.8), the flow ξεt (x1), starting with

ξεT ε,1(x1) = ε, can be bounded from below by ξ̌t(x1) and from above by ξ̂t(x1), which
satisfy the following equations

˙̌ξt(x1) = (f1,0 − Čη)ξ̌t(x1), (2.5.9)

and
˙̂
ξt(x1) = (f1,0 + Ĉη)ξ̂t(x1), (2.5.10)

with ξ̌T ε,1(x1) = ξ̂T ε,1(x1) = ε.
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The time length needed for ξ̌t(x1) and ξ̂t(x1) to reach η−level can be solved explicitly
and has the form Ť η,1 − T ε,1 = (f1,0 − Čη)−1 ln η

ε
and T̂ η,1 − T ε,1 = (f1,0 + Ĉη)−1 ln η

ε

respectively. Because T̂ η,1 < T η,1 < Ť η,1 for any η > 0, T η,1 − T ε,1 is of order f−1
1,0 ln 1

ε
.

Step 3. After time T η,1, dynamic flow
(
ξεt (x0), ξεt (x1)

)
comprising of populations x0

and x1 can be approximated by the following equations as ε tends to 0:{
ξ̇t(x0) =

(
b(x0)− d(x0)− α(x1, x0)ξt(x0)− α(x1, x1)ξt(x1)

)
ξt(x0)

ξ̇t(x1) =
(
b(x1)− d(x1)− α(x1, x0)ξt(x0)− α(x1, x1)ξt(x1)

)
ξt(x1),

(2.5.11)

which has a stable equilibrium (0, ξ̄(x1)) under assumption f1,0 > 0, f0,1 < 0 (see Lemma

2.5.1). Let T̃ η,1 be the time until when (ξεt (x0), ξεt (x1)) reaches η-neighborhood of the

equilibrium (0, ξ̄(x1)), i.e. ξeT η,1(x0) = η. Thus, T̃ η,1 − T η,1 is of order O(1).

Step 4. Since time T̃ η,1, we consider the time length needed for x1 getting fixed (i.e.
x0 gets absorbed by 0). From (2.5.3), one obtains the lower bound differential inequality

ξ̇εt (x0)

≥
(
b(x0)− d(x0)− α(x0, x0)ξεt (x0)− α(x0, x1)ξεt (x1)

)
ξεt (x0)− εξεt (x0)b(x0)m(x0, x1)

≥
(
b(x0)− d(x0)− ηα(x0, x0)− α(x0, x1)ξ̄(x1)

)
ξεt (x0)− ηb(x0)m(x0, x1)ξεt (x0)

=
(
f0,1 − ηČ

)
ξεt (x0),

(2.5.12)
where Č = α(x0, x0) + b(x0)m(x0, x1). As for the upper bound, we observe that

ξ̇εt (x0) ≤
(
b(x0)− d(x0)− α(x0, x1)ξεt (x1)

)
ξεt (x0) + εξεt (x1)b(x1)m(x1, x0)

≤
(
b(x0)− d(x0)− α(x0, x1)(ξ̄(x1)− η)

)
ξεt (x0) + εξ̄(x1)b(x1)m(x1, x0)

≤ (f1,0 + ηĈ)ξεt (x1),

(2.5.13)

where Ĉ = α(x0, x1) + ξ̄(x1)b(x1)m(x1, x0).
By applying Gronwall’s inequality to (2.5.12) and (2.5.13), we get that ξεt (x0), starting

with ξεeT η,1(x0) = η, can be bounded from below by ξ̌t(x0) and from above by ξ̂t(x0), which
satisfy the following equations

˙̌ξt(x0) = (f0,1 − Čη)ξ̌t(x0), (2.5.14)

and
˙̂
ξt(x0) = (f0,1 + Ĉη)ξ̂t(x0), (2.5.15)

with ξ̌eT η,1(x0) = ξ̂eT η,1(x0) = η.
Since f0,1 = b(x0)−d(x0)−α(x0, x1)ξ̄(x1) < 0, we can choose η small enough such that

f0,1+Ĉη < 0. Therefore, both ξ̌t(x0) and ξ̂t(x0) decay exponentially. For any ρ1 > 0, the

process ξ̂t(x0), in time length of order ρ1 ln η
ε
, gets into the ε−ρ1(f0,1+ηĈ)−neighborhood

of 0 while ξ̌t(x0) gets into the ε−ρ1(f0,1−ηČ)−neighborhood of 0. Let T ε,0 := T̃ η,1 +ρ1 ln η
ε
.

Hence, lim
ε→0

ξεT ε,0(x0) = lim
ε→0

ε−ρ1f0,1 ·O(η) = 0, then type x1 eventually gets fixed.
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In all, by combining the above four-step analysis, one concludes that the right time
scale for the more fit population x1 getting fixed is

(f−1
1,0 + ρ1) ln

1

ε
. (2.5.16)

(b) (See Figure 2.4) Furthermore, we consider the case when there are three pheno-
types X = {x0, x1, x2} supporting the system (2.3.4). At the same time as the mass
on trait site x0 migrates towards new trait site x1 as showed in (1), the mass on trait
site x1 can also migrate to another site x2. Let ξεt (x2) := 〈Xε

t , 1{x2}〉. In the follow-
ing, we reanalyze the evolution process by adding one more trait x2 into the original
trait space {x0, x1}. There will be two kinds of resource to contribute the growth of
population on x2. One of them is indirect migration from trait site x0. More precisely,
ξε0(x2) = εξε0(x1) = ε2ξ̄(x0). Thus, starting with mass of order ε2, the time length needed
for ξεt (x2) to reach some η-level is of order 2

b(x2)−d(x2)
ln 1

ε
.

As observed in Figure 2.4, because of assumption (C3): 2
b(x2)−d(x2)

> 1
f1,0

, population

x2 is still negligible before time T η,1 when dynamics x1 reaches the η−level. Since
T̃ η,1 − T η,1 = O(1), population x2, starting with ξεeT η,1(x2) = ε · O(1), evolves under the
competition from its resident population x1 as follows

ξ̇εt (x2) =
(
b(x2)− d(x2)− α(x2, x1)ξεt (x1)− α(x2, x2)ξεt (x2)

)
ξεt (x2)

− εξεt (x2)b(x2)m(x2, x1) + εξεt (x1)b(x1)m(x1, x2),
(2.5.17)

where ξεeT η,1(x1) ∈ (ξ̄(x1)− η, ξ̄(x1) + η). On the other hand, populations x0 and x1 still

behaves as in Step 1-Step 4 before time T̃ η,1. Thus, we embed Figure 2.3 into Figure
2.4 and continue the proof based on the four-step analysis in (a).

T ε,1 eT η,2 T η,0

density

time

η

ε

ξ̄(x)

T η,1 eT η,1 T η,2

rebirth of x0

Figure 2.4: Three-type phase evolution
.

Let T η,2 be the entrance time of the dynamics ξεt (x2) into the η−level above 0. By
similar arguments as used in Step 2, one can control ξεt (x2) by way of ξ̌t(x2) ≤ ξεt (x2) ≤
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ξ̂t(x2) described as follows, for T̃ η,1 < t < T η,2,

˙̌ξt(x2) = (f2,1 − Čη)ξ̌t(x2), (2.5.18)

and
˙̂
ξt(x2) = (f2,1 + Ĉη)ξ̂t(x2), (2.5.19)

where constants Č, Ĉ change from line to line and ξ̌eT η,1(x2) = ξ̂eT η,1(x2) = ε ·O(1). Then,
it follows

1

f2,1 + Ĉη
ln

1

ε
< T η,2 − T̃ η,1 < 1

f2,1 − Čη
ln

1

ε
. (2.5.20)

In all, from the comparison assumption (C3): 2
b(x2)−d(x2)

> 1
f1,0

+ 1
f2,1

, we conclude that(
1

f1,0

+
1

f2,1

− δ
)

ln
1

ε
< T η,2 <

(
1

f1,0

+
1

f2,1

+ δ

)
ln

1

ε
. (2.5.21)

During time interval [T̃ η,1, T η,2], population ξεt (x0) still decays exponentially as in Step
4 with estimates ξ̌t(x0) < ξεt (x0) < ξ̂t(x0) described by inequality (2.5.12) and (2.5.13)

ξ̌t(x0) = ξ̌eT η,1(x0)e(f0,1−Čη)(t−eT η,1), (2.5.22)

and
ξ̂t(x0) = ξ̂eT η,1(x0)e(f0,1+Ĉη)(t−eT η,1) (2.5.23)

with ξ̌eT η,1(x0) = ξ̂eT η,1(x0) = η.
Combining with (2.5.20), one obtains

ηε
−
f0,1−Čη
f2,1−Čη < ξ̌T η,2(x0) < ξεT η,2(x0) < ξ̂T η,2(x0) < ηε

−
f0,1+Ĉη

f2,1+Ĉη . (2.5.24)

Taking the migration from neighbor site x1 into account, the mass on x0 should be of

order ε
|f0,1|
f2,1 ∨ ε. Due to assumption (C4) : |f0,1|

f2,1
< 1, one obtains that ε

|f0,1|
f2,1 ∨ ε = ε

|f0,1|
f2,1 .

Short after T η,2, as ε tends to 0, ξεt (x1) and ξεt (x2) can be approximated by Lotka-

Volterra system as in Step 3. Mark by T̃ η,2 the time when (ξεt (x1), ξεt (x2)) enters the

η−neighborhood of the equilibrium (0, ξ̄(x2)), i.e. ξεeT η,2(x1) = η. Also, T̃ η,2 − T η,2 is of
order O(1). Thus, one obtains

ε
−
f0,1−Čη
f2,1−Čη ·O(η) < ξεeT η,2(x0) = ξεT η,2(x0) ·O(1) < ε

−
f0,1+Ĉη

f2,1+Ĉη ·O(η). (2.5.25)

Let T η,0 denote the time when ξεt (x0) reaches η−level after time T̃ η,2. For T̃ η,2 < t <
T η,0, ξεt (x0) is governed approximately by a logistic equation

ξ̇t(x0) = (b(x0)− d(x0)− α(x0, x0)ξt(x0))ξt(x0). (2.5.26)

Then, we have the differential inequality

(b(x0)− d(x0)− α(x0, x0)η)ξt(x0) < ξ̇t(x0) < (b(x0)− d(x0))ξt(x0), (2.5.27)
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with ξeT η,2(x0) satisfying (2.5.25). Then, by Gronwall’s inequality, one obtains

− f0,1 + Ĉη

(f2,1 + Ĉη)(b(x0)− d(x0))
ln

1

ε
< T η,0 − T̃ η,2

< − f0,1 − Čη
(f2,1 − Čη)(b(x0)− d(x0)− α(x0, x0)η)

ln
1

ε
.

(2.5.28)
After T η,0, ξεt (x0) approaches ξ̄(x0) in time of order 1.

By combining analysis in Step 2, and estimates in (2.5.20) and (2.5.28) together,
because η is arbitrary, it follows that

lim
η→0

T η,1

ln 1
ε

=
1

f1,0

,

lim
η→0

T η,2 − T̃ η,1

ln 1
ε

=
1

f2,1

,

lim
η→0

T η,0 − T̃ η,2

ln 1
ε

=
−f0,1

f2,1(b(x0)− d(x0))
.

(2.5.29)

Therefore, the dynamics Xε
t , rescaled on time scale of order ln 1

ε
, converges to the TST

Ut (L = 2) with the form (2.5.2). �

Proposition 2.5.3. Admit the same conditions as in Theorem 2.3.1. Consider the case
when L = 3, i.e. X = {x0, x1, x2, x3}. Then, the limit process (Ut)t≥0 has the form

Ut ≡


ξ̄(x0)δx0 for 0 ≤ t ≤ I1,
ξ̄(x1)δx1 for I1 < t ≤ I2,
ξ̄(x2)δx2 for I2 < t ≤ I3,
ξ̄(x3)δx3 for I3 < t ≤ I3 + S1,
ξ̄(x1)δx1 + ξ̄(x3)δx3 for t > I3 + S1.

(2.5.30)

Proof. (See Figure 2.5) From assumption (C3): 3
b(x3)−d(x3)

> 1
f1,0

+ 1
f2,1

, it implies that

population on trait site x3 is negligible before T η,2 and therefore it can not influence the
evolution picture until T η,2. Notice that we inherit the analysis and notations such as
T η,1, T̃ η,1, T η,2, T̃ η,2 from the proof of Proposition 2.5.2.

Let ξεt (x3) := 〈Xε
t , 1{x3}〉. Because ξεt (x3) accounts for ε proportion of ξεt (x2), it is

negligible until T̃ η,2. Then, we have

ξ̇εt (x3) =
(
b(x3)− d(x3)− α(x3, x2)ξεt (x2)− α(x3, x3)ξεt (x3)

)
ξεt (x3)

− εξεt (x3)b(x3)m(x3, x2) + εξεt (x2)b(x2)m(x2, x3),
(2.5.31)

with initial value ξεeT η,2(x3) = ε ·O(1).

Let T η,0 and T η,3 be the first time (resp.) for ξεt (x0) and ξεt (x3) to reach η−level after

T̃ η,2. By similar analysis to derive (2.5.20), we get

T η,3 − T̃ η,2 ∼ f−1
3,2 ln

1

ε
(2.5.32)
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eT η,2 T η,1,1

density

time

η

ε

ξ̄(x)

T η,3 eT η,3
rebirth of x1

Figure 2.5: Four-type phase evolution
.

where relation f(ε) ∼ g(ε) means lim
ε→0

f(ε)/g(ε) = 1.

From (2.5.28), recall that

T η,0 − T̃ η,2 ∼ −f0,1

f2,1(b(x0)− d(x0))
ln

1

ε
. (2.5.33)

From assumption (C4), one obtains that

−f0,1

f2,1(b(x0)− d(x0))
− 1

f3,2

>
−f1,2

f3,2(b(x1)− d(x1))
> 0, (2.5.34)

which implies T η,3 < T η,0. Then, for t ∈ [T̃ η,2, T η,3], ξεt (x0) stays in some ε−dependent
infinitesimal neighborhood of 0. Furthermore, by some comparison results as in previous
argument, ξεt (x1) is mainly influenced from competition of ξ̄(x2), one obtains, at time
T η,3,

ξεT η,3(x1) = ξεeT η,2(x1)ef1,2(T η,3−eT η,2)

= ηef1,2f
−1
3,2 ln 1

ε

∼ ηε
−
f1,2
f3,2 .

(2.5.35)

Similarly as in Step 3, short after T η,3, ξεt (x2) and ξεt (x3) exchange rapidly in time of

order 1 and ξεt (x2) decreases into the η−neighborhood of 0 at time T̃ η,3. After time

T̃ η,3, ξεt (x1) evolves approximately as logistic growth curve since there is only negligible
competition from neighbors x0, x2, i.e.

ξ̇εt (x1) = (b(x1)− d(x1)− α(x1, x1)ξεt (x1))ξεt (x1), (2.5.36)

with initial value ξεeT η,3(x1) ∼ ηε
−
f1,2
f3,2 .



2.5. Outline of proofs 29

Denote by T η,1,1 the second time for x1 to reach η−level again after the first one T η,1.
Because of the exponential growth of logistic curve in the beginning period, in a similar
method to deduce (2.5.33), one gets

T η,1,1 − T̃ η,3 ∼ − f1,2

f3,2(b(x1)− d(x1))
ln

1

ε
. (2.5.37)

Again from (2.5.34), one observes that T η,1,1 < T η,0, that is, ξεt (x1) recovers to reach
η−level earlier than ξεt (x0). Consequently, ξεt (x0) will drift to 0 due to competition from
fitter type x1.

Combining (2.5.32), (2.5.37) and the first two equations in (2.5.29) together, we con-
clude the TST limit for L = 3 on a new time scale. �

Lemma 2.5.4. Assumption (C4) implies the following inequalities, for any 4 ≤ L ∈ N

−f0,1

f2,1(b(x0)− d(x0))
>

1

f3,2

+ · · ·+ 1

fL,L−1

,

−f1,2

f3,2(b(x1)− d(x1))
>

1

f4,3

+ · · ·+ 1

fL,L−1

,

...

−fL−3,L−2

fL−1,L−2(b(xL−3)− d(xL−3))
>

1

fL,L−1

(2.5.38)

and

−fL−4,L−3

fL−2,L−3(b(xL−4)− d(xL−4))
− 1

fL−1,L−2

− 1

fL,L−1

>
−fL−2,L−1

fL,L−1(b(xL−2)− d(xL−2))
...

(2.5.39)
and so on.

The proof of this Lemma follows straightforward iterations from assumption (C4).
Roughly speaking, from (2.5.38), it says that, when it passes to the limit process Ut,
all dynamics except ξεt (xL) stay in ε−dependent infinitesimal neighborhoods of 0 at
time T η,L which denotes the dominating time for type xL. It leads to monomorphic
transportation of the mass from initial trait x0 to the fittest trait xL in the first half
period. On the other hand, from (2.5.39), it guarantees that the fitter one recovers
earlier than the unfit traits alternatively backwards to the most unfit one. .

Proof of Theorem 2.3.1. After proving the first two cases in previous propositions, we
proceed our proof along two lines, one line is the case when L is an even integer while
the other one is when L is an odd integer. Due to the similar fashion, we just do the
recursive procedure from L = 2 to L = 4 (see Figure 2.2). Here, X = {x0, x1, x2, x3, x4}.

Based on the analysis in Proposition 2.5.3, after time T̃ η,3, we move forward by intro-
ducing T η,4, which is defined as the first hitting time of η−level for ξεt (x4). As before,
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we can show that T η,4 is far more longer than T̃ η,3 from assumption (C3). One observes
that

T η,4 − T̃ η,3 ∼ 1

f4,3

ln
1

ε
. (2.5.40)

It follows mass exchange between trait site x3 and x4 until T̃ η,4 when ξεeT η,4(x3) = η. Then,
ξεt (x2) begins to recover due to the lack of competition from ξεt (x3). The time length
needed for ξεt (x2) to reach η−level again (mark by T η,2,2) can be computed explicitly

T η,2,2 − T̃ η,4 ∼ −f2,3

f4,3(b(x2)− d(x2))
ln

1

ε
. (2.5.41)

Then, it will approach equilibrium ξ̄(x2) according to logistic growth. Consequently,
ξεt (x1) will drift to 0 due to competition from the more fitter neighbor x2. Recall from
(2.5.33), one obtains

T η,0 − T̃ η,4 ∼
[ −f0,1

f2,1(b(x0)− d(x0))
− 1

f3,2

− 1

f4,3

]
ln

1

ε
. (2.5.42)

Combining the above two estimates with assumption (2.5.39), one observes that

T η,2,2 − T̃ η,4 < T η,0 − T̃ η,4. (2.5.43)

Furthermore, we have

lim
η→0

T η,2,2

ln 1
ε

=
1

f1,0

+
1

f2,1

+
1

f3,2

+
1

f4,3

+
|f2,3|

f4,3(b(x2)− d(x2))

= I4 + S2,

(2.5.44)

and

lim
η→0

T η,0

ln 1
ε

= I2 + S0. (2.5.45)

We thus get the explicit form of (2.3.5) when L = 4. Recursively, we get another TST
process (L = 6) by connecting the TST process (L = 4) with a subtree consisting traits
{x4, x5, x6} defined as in Proposition 2.5.2. So on and so forth, it follows (2.3.5) for all
even integers L. �

2.5.2 Proof of Theorem 2.4.2

The proof of Theorem 2.4.2 should consist of two parts, firstly the convergence of expo-
nential jump times on a proper time scale and secondly the transition rule from current
configuration to the new one. To show the idea of proof, we’ll just prove the first case in
Definition 2.4.1. The proof of the second case is in a same fashion. We use the induction
method to prove it. We list the following lemmas which are key to the proof of Theorem
2.4.2.
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For nonnegative integer l, denote by Γ(2l) the atomic measure with finite support, i.e.,
Γ(2l) =

∑l
i=0 ξ̄(x

(2l)
2i )δ

x
(2l)
2i

. Similarly, set Γ(2l+1) =
∑l+1

i=1 ξ̄(x
(2l+1)
2i−1 )δ

x
(2l+1)
2i−1

, whose form is

described as in Definition 2.4.1. From Γ(0) to Γ(1), it is trivial to prove the theorem
as done in Proposition 2.5.2 (a). To the end, we will deduce it still holds from Γ(2l)

to Γ(2l+1). Denote by PΓ(2l) the law of the process Xε,σ
· with initial configuration Γ(2l).

Denote by τ ε the first time after 0 when there occurs a new mutant trait.

Lemma 2.5.5. Admit the same conditions as in Theorem 2.4.2.

lim
ε→0

PΓ(2l)

(
τ ε >

t

σ

)
= exp

(
− t

l∑
i=0

ξ̄(x
(2l)
2i )µ(x

(2l)
2i )
)
. (2.5.46)

lim
ε→0

PΓ(2l)

(
at time τ ε, mutant comes from traitx

(2l)
2k

)
=

ξ̄(x
(2l)
2k )µ(x

(2l)
2k )∑l

i=0 ξ̄(x
(2l)
2i )µ(x

(2l)
2i )

. (2.5.47)

The proof of this lemma can be deduced from the expression of its construction as
done in [8, Lemma 2 (c)]. We will not show the details here.

Lemma 2.5.6. Assume Xε,σ
0 = Γ(2l) + δ

x
(2l)
2k +h

. Then, for any ε > 0, there exists a

constant C > 0 such that

lim
ε→0

P
(

sup
t∈(C ln 1

ε
,τε)

‖Xε,σ
t − Γ(2l+1)‖ < ε

)
= 1 (2.5.48)

where Γ(2l+1) is defined as in Definition 2.4.1 (i) and ‖ · ‖ is the total variation distance.

Proof. From Lemma 2.5.5, one concludes that, for any C > 0,

lim
ε→0

P
(
τ ε > C ln

1

ε

)
= 1.

According to the fitness landscape, there will be one and only one ordered position for
the new trait x

(2l)
2k + h in Γ(2l). Suppose there exists x

(2l)
2j such that x

(2l)
2k + h fits between

x
(2l)
2j and x

(2l)
2j+1. Then, one has the local fitness order

x
(2l)
2j−1 ≺ x

(2l)
2j ≺ x

(2l)
2k + h ≺ x

(2l)
2j+1. (2.5.49)

Since it is unpopulated for both traits x
(2l)
2j−1 and x

(2l)
2j+1 in Γ(2l), we consider

(
x

(2l)
2j , x

(2l)
2k +

h
)

as an isolated pair without competition from others. As the same analysis as being

done in Proposition 2.5.2, the two-type system will converge to
(
0, ξ̄(x

(2l)
2k +h)δ

x
(2l)
2k +h

)
in

time O
(
ln 1

ε

)
. On the right hand side of the pair, nothing changes due to their isolation.

Whereas on the left hand side of the pair, trait x
(2l)
2j−1 increases exponentially due to the

decay of its fitter neighbor x
(2l)
2j . So on and so forth, the mass occupation switches on

the left hand side of x
(2l)
2j . The entire rearrangement process can be completed in time

of order O(ln 1
ε
) as the same arguments in the finite trait case (see Section 2.5.1).
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We can prove the other case when the fitness location of x
(2l)
2k + h is on the left hand

side of x
(2l)
2j , that is

x
(2l)
2j−1 ≺ x

(2l)
2k + h ≺ x

(2l)
2j ≺ x

(2l)
2j+1,

in a similar method. In all, we give the new configuration Γ(2l+1) by relabeling the traits
as done in Definition 2.4.1 (i). �

From Lemma 2.5.5, it shows us the mutation occurs on the time scale O( 1
σ
). Recall

from Section 2.3 in the finite trait case that the fixation time scale is O
(
ln 1

ε

)
. Combining

them with the time scale separation constraint 1
σ
� ln 1

ε
, thanks to the characterization

of the rate of exponentially distributed waiting time and transition rule of configurations
proved in previous lemmas, the proof of Theorem 2.4.2 will be straightforward by the
general construction of a Markov jump process.

2.6 Simulation algorithm

The pathwise construction of the TST process defined in Definition 2.4.1 leads to the
following numerical algorithm for simulation of the TST process.

Step 0. Specify with initial condition: Γ0 = Γ(0) = ξ̄(x0)δx0 .

Step 1. Simulate τ1 exponential distributed with parameter ξ̄(x0)µ(x0). Sample a new trait

(x0+h) with density p(x0, dh). If f(x0+h, x0) > 0, relabel x
(1)
0 := x0, x

(1)
1 := x0+h.

Otherwise, relabel x
(1)
0 := x0 + h, x

(1)
1 := x0.

Set Γ(1) = ξ̄(x
(1)
1 )δ

x
(1)
1

, and Γt = Γ(0) for t ∈ [0, τ1).

Step 2. Simulate τ2 exponential distributed with parameter ξ̄(x
(1)
1 )µ(x

(1)
1 ).

Set Γt = Γ(1) for t ∈ [τ1, τ1 + τ2).

Sample a new trait
(
x

(1)
1 + h

)
with density p(x

(1)
1 , dh).

Choose one from the following to carry out:

– if f(x
(1)
1 + h, x

(1)
1 ) > 0, relabel x

(2)
0 := x

(1)
0 , x

(2)
1 := x

(1)
1 , x

(2)
2 := x

(1)
1 + h;

– if f(x
(1)
1 + h, x

(1)
1 ) < 0, f(x

(1)
1 + h, x

(1)
0 ) > 0, relabel x

(2)
0 := x

(1)
0 , x

(2)
1 :=

x
(1)
1 + h, x

(2)
2 := x

(1)
1 ;

– if f(x
(1)
1 + h, x

(1)
0 ) < 0, relabel x

(2)
0 := x

(1)
1 + h, x

(2)
1 := x

(1)
0 , x

(2)
2 := x

(1)
1 .

Set Γ(2) = ξ̄(x
(2)
0 )δ

x
(2)
0

+ ξ̄(x
(2)
2 )δ

x
(2)
2

.

Step 2l+1. Generate Γ(2l+1) from Γ(2l) =
l∑

i=0

ξ̄(x
(2l)
2i )δ

x
(2l)
2i

for l = 1, 2, · · · .

Simulate τ2l+1 exponential distributed with parameter
l∑

i=0

ξ̄(x
(2l)
2i )µ(x

(2l)
2i ).

Set Γt = Γ(2l) for t ∈
[ 2l∑
i=1

τi,
2l+1∑
i=1

τi
)
. Select one trait x

(2l)
2k , for any 0 ≤ k ≤ l,
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to mutate with probability
ξ̄(x

(2l)
2k )µ(x

(2l)
2k )Pl

i=0 ξ̄(x
(2l)
2i )µ(x

(2l)
2i )

. Sample a new trait
(
x

(2l)
2k + h

)
with

probability density p(x
(2l)
2k , dh). Choose one from the following three cases to carry

out:

– if f(x
(2l)
2k + h, x

(2l)
2l ) > 0, relabel x

(2l+1)
2l+1 := x

(2l)
2k + h, x

(2l+1)
i := x

(2l)
i for 0 ≤ i ≤

2l;

– if f(x
(2l)
2k + h, x

(2l)
0 ) < 0, relabel x

(2l+1)
i := x

(2l)
i−1 for 1 ≤ i ≤ 2l + 1, and

x
(2l+1)
0 := x

(2l)
2k + h;

– otherwise, there exists 0 ≤ j < l s.t. f(x
(2l)
2k + h, x

(2l)
2i ) < 0 for j < i ≤ l, and

f(x
(2l)
2k + h, x

(2l)
2j ) > 0. Furthermore,

∗ if f(x
(2l)
2k + h, x

(2l)
2j+1) < 0, relabel x

(2l+1)
i := x

(2l)
i for 0 ≤ i ≤ 2j , x

(2l+1)
i :=

x
(2l)
i−1 for 2j + 2 ≤ i ≤ 2l + 1, and x

(2l+1)
2j+1 := x

(2l)
2k + h;

∗ if f(x
(2l)
2k + h, x

(2l)
2j+1) > 0, relabel x

(2l+1)
i := x

(2l)
i for 0 ≤ i ≤ 2j + 1 ,

x
(2l+1)
i := x

(2l)
i−1 for 2j + 3 ≤ i ≤ 2l + 1, and x

(2l+1)
2j+2 := x

(2l)
2k + h.

Set Γ(2l+1) =
l+1∑
i=1

ξ̄(x
(2l+1)
2i−1 )δ

x
(2l+1)
2i−1

.

Step 2l+2. To generate Γ(2l+2) from Γ(2l+1) =
l+1∑
i=1

ξ̄(x
(2l+1)
2i−1 )δ

x
(2l+1)
2i−1

for l = 1, 2, · · · .

This can be done as similar as the induction from Γ(2l) to Γ(2l+1). So forth.
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3 Microscopic interpretation of the
trait substitution tree model

We consider a structured population model with competition and migration between
nearest neighbors. We are particularly interested in the asymptotic behavior of the total
population partition on supporting trait sites, under combination of large population
and rare migration. For the population without mutation on a finite-many trait space,
we give the equilibrium configuration and characterize the right time scale for fixation.
For the model with mutation on an infinite-many trait space, a Markov jump process-
trait substitution tree model is established on the rarer mutation time scale against the
rare migration constraint in terms of a large population limit.

3.1 Introduction

In recent years a spatially structured population with migration (dispersion) and local
regulation, proposed by Bolker and Pacala [4], Dieckmann and Law [35] (in short BPDL
process), has attracted particular interest both from biologists and mathematicians. It
has several advantages over general branching processes, which make it more natural as
population models: the quadratic competition term is used to prevent the population size
from escaping to infinity and migration term is used to transport the population mass
from one colony to unoccupied colonies for survival, and to further get colonized. There
are mainly two highlights of related papers. Etheridge [19], Fournier and Méléard [22],
Hutzenthaler and Wakolbinger [27], and Hutzenthaler [26] have studied the extinction
and survival problems. Champagnat [8], Champagnat and Lambert [9], Méléard and
Tran [38], Dawson and Greven [16] focus more on its long time behavior by multiscale
analysis methods.

The main ingredient behind this model is logistic branching random walks, that is, a
combination of logistic branching populations with spatial random walks (or migration)
on trait sites. In [8], a so-called trait substitution sequence model (in short TSS) is
derived under a combination of a large population and rare migration (namely mutation
there) limit. More precisely, rare migration rate is constrained by the large population
parameter so that the fixation period is not visible on the migration time scale. It
is guaranteed that a single migrant arises in the resident population and no further
migrants occur until the fate of the first migrant population is known. In other words,
the migration time scale and branching time scale can be separated clearly.

In this paper we are interested in the case when the migrant event is still rare with
respect to branching events but not that rare as in [8] (see Figure 3.1). In contrast, we



36 Chapter 3. Microscopic interpretation of the trait substitution tree model

assume that there are infinite migrants from a resident population on the natural time
scale. Let a parameter ε be the migration rate and K be proportional to the initial
population size. We will impose the rare migration constraint 1 � Kε � K on the
population (see parameter region II in Figure 3.1). As far as a finite-trait dynamic
system is concerned, to find out the exact fixation time scale expressed in terms of the
migration rate and population size is of particular interest for us. Since the original
model is not easy for us to study due to the complicated interactions, we present here a
slightly modified model of the one in [8] but retaining the essential machinery founded
in the original model. This paper is restricted with nearest-neighbor competitions and
migrations along the monotone fitness landscape. What is more, in order to study the
long time behavior, we introduce mutations to drive the population to move towards
more fitter configuration on a rare mutation time scale, which is longer than the fixation
time scale. Note that the limit theorem arising in [8] can be applied consistently in the
model developed in this paper.

The purpose of this paper and the accompanying one [6] is to justify a trait substitu-
tion tree process (in short TST) to illustrate the coexistence phenomenon with spatial
structure in evolution theory, which is a purely atomic finite measure-valued process.
The present one is derived from the microscopic point of view while the other one in [6]
is from the macroscopic point of view. Combined these two papers together with [8],
the entire framework on (rare) migration against (large) population limit can be fully
characterized and it generates different rescaling limits-TSS and TST respectively on
different time scales. In summary, the entire framework is as follows:

• Take large population and rare migration simultaneously by Kε � 1
lnK

, it leads
to a TSS limit in [8].

• Firstly let K → ∞, then add rare mutation by ln 1
ε
� 1

σ
as ε → 0, it leads to a

TST limit in [6].

• Take large population, rare migration and even rarer mutation all simultaneously
constrained by 1� Kε� K, ln 1

ε
� 1

Kσ
. That is our goal in this paper.

The remainder of the paper is structured as follows. In Section 3.2, we present a
description of the individual-based model. In Section 3.3, we consider the case without
mutation but on a finite-trait space, and characterize the rare migration limit against the
large population limit. In Section 3.4, concerning a modified population supported on
an infinite-trait space by introducing mutations, we justify a so-called trait substitution
tree process in the rare mutation limit, which already appeared in [6]. In the last section,
related proofs for results in previous sections are provided.

3.2 Microscopic model

We begin with an individual-based model. Assume that the population at time t is
composed of a finite number It individuals characterized by their phenotypic traits
x1(t), . . . , xIt(t) belonging a compact subset X of Rd. We denote by MF (X ) the set
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ε=ε(K)

e−CK

1
K lnK

1
K

K→∞

ε→0

I

II

Figure 3.1: Parameter region separation: migration rate ε against population size K
.

of non-negative finite measures on X . Let Ma(X ) ⊂ MF (X ) be the set of counting
measures on X :

Ma(X ) =

{
n∑
i=1

δxi : x1, . . . , xn ∈ X , n ∈ N

}
.

Then, the population process at time t can be represented as:

νt =
It∑
i=1

δXi(t).

Let B(X ) denote the totality of functions on X which are bounded and measurable. For
any f ∈ B(X ), ν ∈MF (X ), we use notation 〈ν, f〉 =

∫
fdν.

Let’s specify the population process (νt)t>0 by introducing a sequence of biological
parameters:

• b(x) is the birth rate from an individual with trait x.

• d(x) is the death rate of an individual with trait x because of “aging”.

• α(x, y) is the competition kernel felt by some individual with trait x from another
individual with trait y.

• m(x, dy) is the migration law of an individual from trait site x to site y.

• µ(x) is the mutation rate of an individual with trait x.

• p(x, dh) is the law of mutant variation h = y − x between a mutant y and its
resident trait x. Since the mutant trait y = x + h should belong to X , this law
has its support in X − x := {y − x : y ∈ X} ⊂ Rd.
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To specify the model without mutation mechanism, the infinitesimal generator of the
Ma(X )-valued process is given as follows, for any F ∈ B(Ma(X )):

LF (ν) =
I∑
i=1

[F (ν + δxi)− F (ν)] b(xi)

+
I∑
i=1

[F (ν − δxi)− F (ν)]

(
d(xi) +

I∑
j 6=i

α(xi, xj)

)

+
I∑
i=1

∑
xj 6=xi

[
F (ν + δxj − δxi)− F (ν)

]
m(xi, xj).

(3.2.1)

The first term above describes the clonal reproduction at the mother’s site. The second
term describes death of an individual xi either due to aging or competition from another
individual xj. And the last term describes the migration of an individual from trait site
xi to site xj.

By introducing a parameter K ∈ N, we rescale the population size and competition
kernel by K. We will show later, as K tends to infinity, one can get different large
population limits by well-chosen rescaling procedure. Furthermore, the population pro-
cess can be parameterized by another parameter ε governing the rate of migration law
m(xi, xj) in terms of population size scaling parameter K.

For any K ∈ N, instead of studying the above process (νKt )t≥0, it is more convenient
to consider a sequence of rescaled measure-valued processes:

XK
t :=

1

K
νKt =

1

K

IKt∑
i=1

δxi (3.2.2)

where XK
· is a MF (X )−valued process with the following infinitesimal generator:

LKF (ν) =

∫
X

[
F (ν +

δx
K

)− F (ν)

]
b(x)Kν(dx)

+

∫
X

[
F (ν − δx

K
)− F (ν)

](
d(x) +

∫
X
α(x, y)ν(dy)

)
Kν(dx)

+ ε

∫
X

∫
X

[
F (ν +

δy
K
− δx
K

)− F (ν)

]
m(x, dy)Kν(dx).

(3.2.3)

Notice that we actually rescale the competition kernel α by K so that the system
mathematically makes sense when we take a large population limit. From the biological
point of view, K can be interpreted as scaling the resource or area available.

Let us denote by (A) the following assumptions.

(A1) ∃ b̄, d̄, α , ᾱ, such that 0 < b(x) ≤ b̄, 0 < d(x) ≤ d̄, 0 < α ≤ α(x, y) ≤
ᾱ, and b(x)− d(x) > 0, ∀x ∈ X .
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(A2) ∀ x, y ∈ X , f̄(x, y) · f̄(y, x) < 0, where the fitness functions

f̄(y, x) = b(y)− d(y)− α(y, x)n̄(x) and n̄(x) = b(x)−d(x)
α(x,x)

,

f̄(x, y) = b(x)− d(x)− α(x, y)n̄(y) and n̄(y) = b(y)−d(y)
α(y,y)

.

Notice that assumption (A1) guarantees that the process with infinitesimal genera-
tor (3.2.3) is well defined (refer to [22]). Assumptions (A2) gives the non-coexistence
condition for any pair of competing populations.

3.3 Early time window on finite trait space as K →∞
We firstly review some already known results. Champagnat [8, Theorem 1] proved the
following result by the time scales separation technique, which can be extended to a
more general case in accelerated population dynamics [45].

Theorem 3.3.1. Admit assumptions (A1) and (A2). Suppose that XK
0 =

NK
0

K
δx such

that
NK

0

K

law→ n0 > 0 as K → +∞, and ∀ C > 0,

exp{−CK} � Kε� 1

lnK
. (3.3.1)

Then, (XK
t/Kε, t ≥ 0) converges in the sense of f.d.d to

Yt =

{
n0δx, t = 0
n̄(ηt)δηt , t > 0

where the Markov jump process (ηt, t ≥ 0) satisfies η0 = x with an infinitesimal genera-
tor:

Aϕ(x) =

∫
X

(ϕ(y)− ϕ(x))n̄(x)
[f̄(y, x)]+
b(y)

m(x, dy). (3.3.2)

Remark 3.3.2. • The migration time scale is of order 1
Kε

whereas the fixation time
scale starting from one migrant is of order lnK. The population is kept monomor-
phic on the rare migration time scale. The rare migration parameter region imposed
by (3.3.1) is denoted by the region I in Figure 3.1.

• As showed in Figure 3.2, it simulates a TSS model with trait space comprising
of three types in the left one while in the right one it simulates a four-type case.
We mark the population density of trait x0, x1, x2, x3 by red, blue, green and black
colored curve respectively. Take b(x0) = 3, b(x1) = 6, b(x2) = 8, b(x3) = 10 and
death rates d(xi) ≡ 0, i = 0, 1, 2, 3. Take competition kernel α ≡ 1, migration
kernel m ≡ 0.5, and migration parameter ε = K−2, where initial population size
K = 100.
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Figure 3.2: Simulations of the trait substitution sequence model arising in Theorem 3.3.1.

In [6], we firstly let K tend to infinity in (3.2.3) and get a deterministic limit. Then,
we consider the rescaling limit of the deterministic system supported on a finite trait
space under a slow migration limit. This is actually an extreme case where it attains the
limiting process (trait substitution tree) by taking sequence limits along the marginal
path (see dashed line in Figure 3.1). In terms of the individual-based population, it is of
particular interest for us to give a microscopic interpretation of the TST process under
some suitable conditions. Prior to the following theorem, we give assumption (B) to
assist the following results.

(B1) For any finite number of types L ∈ N, it has a monotonously increasing fitness
landscape: x0 ≺ x1 ≺ . . . ≺ xL, where x0 ≺ x1 denotes f̄(x0, x1) < 0, f̄(x1, x0) >
0.

(B2) Nearest neighbor migration and competition, i.e. m(xi, xj) = α(xi, xj) = 0 for any
| i− j |> 1.

(B3) For any i ≥ 2,

i

b(xi)− d(xi)
≥ 1

f̄(xi, xi−1)
+

1

f̄(xi−1, xi−2)
+ · · ·+ 1

f̄(x1, x0)
. (3.3.3)

Note that assumption (B3) is not necessary for us to obtain the following theorem.
There actually exist a variety of different possible paths to converge to the equilibrium
configuration determined up to the ordered sequence of traits as in assumption (B1).
However, thanks to assumption (B3), it brings us a lot convenience to prove the theorem
without losing intrinsic content.

We inherit some notations from [6], denote configurations by Γ(L) :=
l∑

i=0

n̄(x2i)δx2i
if

L = 2l and
l+1∑
i=1

n̄(x2i−1)δx2i−1
if L = 2l + 1 for any l ∈ N ∪ 0.
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Theorem 3.3.3. Admit assumptions (A1) and B. Consider the processes (XK
t )t≥0 on

the trait space X = {x0, x1, . . . , xL}. Suppose that XK
0 =

NK
0

K
δx0 such that

NK
0

K

law→ n0 > 0
as K → +∞, and

1� Kε� K. (3.3.4)

Then there exists a constant t̄L > 0, such that for any t > t̄L, lim
K→∞

XK
t ln 1

ε

(d)
= Γ(L) under

the total variation norm.

Figure 3.3: Simulations of a trait substitution tree model arising in Theorem 3.3.3 on a three- and
four-type trait space.

Remark 3.3.4. • We illustrate the theorem by simulations (see Figure 3.3). We

take all the same parameters as in Figure 3.2 except replacing ε = K−
4
5 in the

three-type case and ε = K−
3
4 in the four-type case, initial population size K = 1000.

Obviously, they both satisfy conditions (3.3.4).

• The rare migration parameter region constrained by (3.3.4) is denoted by the upper
right area II in Figure 3.1. As analyzed in Theorem 3.3.3, the fixation time scale
is of order ln 1

ε
. The stable configuration for the three-type case is Γ(2) = 3δx0 +8δx2

and it is Γ(3) = 6δx1 +10δx3 for the four-type case. We will show in Theorem 3.4.2
that the TST process jumps from Γ(2) to Γ(3) on an even rarer mutation time scale
of order 1

Kσ
(see Figure 3.4).

3.4 Late time window with mutation as K →∞
Following the framework we build up in [6], in order to study the asymptotic behavior
on an even longer time scale, we introduce another mutation mechanism into the popu-
lation generated by (3.2.3). We now study the model with mutations formulated by the
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following generator supported on a compact set X :

LK,ε,σF (ν) =

∫
X

[
F (ν +

δx
K

)− F (ν)

]
b(x)Kν(dx)

+

∫
X

[
F (ν − δx

K
)− F (ν)

](
d(x) +

∫
X
α(x, y)ν(dy)

)
Kν(dx)

+ ε

∫
X

∫
X

[
F (ν +

δy
K
− δx
K

)− F (ν)

]
m(x, dy)1{y∈supp{ν}}Kν(dx)

+ σ

∫
X

∫
Rd

[
F (ν +

δx+h

K
)− F (ν)

]
µ(x)p(x, dh)Kν(dx).

(3.4.1)

Here we denote the process by XK,ε,σ
· with one more superscript σ, distinguishing

from the one without mutation in previous section.

Notice that the mutation kernel p(x, dh) is used to introduce a new trait site to
previous finite trait space and enlarge the supporting trait space by one each time there
enters a mutant, whereas the migration kernel only acts on current support sites of the
population. Later we will see, under some rare mutation constraint (with respect to
migration rate), the dominating power for fixation is mainly from exponential growth of
migration particles. Before proceeding towards the main theorem, we briefly give some
assumptions and the definition of the trait substitution tree, which already appeared in
[6].

Assumption (C).

(C1) For given distinct traits {x0, x1, · · · , xn} ⊂ X , n ∈ N, there exists a total order
relation

xi0 ≺ xi1 ≺ · · · ≺ xin−1 ≺ xin , (3.4.2)

where x ≺ y means that the fitness functions satisfy f̄(x, y) = b(x) − d(x) −
α(x, y)n̄(y) < 0, and f̄(y, x) = b(y)− d(y)− α(y, x)n̄(x) > 0.

For simplicity of notation, we always assume x
(n)
0 ≺ x

(n)
1 ≺ · · · ≺ x

(n)
n with x

(n)
i = xi

for 0 ≤ i ≤ n. By adding a new trait x whose fitness is between x
(n)
j and x

(n)
j+1 for

some 0 ≤ j ≤ n, we relabel new traits as following

x
(n+1)
0 ≺ x

(n+1)
1 ≺ · · · ≺ x(n+1)

n ≺ x
(n+1)
n+1 , (3.4.3)

where x
(n+1)
i = x

(n)
i for 0 ≤ i ≤ j, x

(n+1)
j+1 = x and x

(n+1)
i = x

(n)
i−1 for j+2 ≤ i ≤ n+1.

(C2) Competition and migration only occurs among nearest neighbors, i.e. for totally

ordered traits in (C1), we have m(x
(n)
i , x

(n)
j ) = α(x

(n)
i , x

(n)
j ) ≡ 0 for | i− j |> 1.
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Under above assumptions we can rewrite the generator (3.4.1) as following

LK,ε,σF (ν) =

∫
X

[
F (ν +

δx
K

)− F (ν)

]
b(x)Kν(dx)

+

∫
X

[
F (ν − δx

K
)− F (ν)

](
d(x) +

∫
X
α(x, y)1{x−, x, x+}ν(dy)

)
Kν(dx)

+ ε

∫
X

∫
X

[
F (ν +

δy
K
− δx
K

)− F (ν)

]
1{x−, x+}m(x, dy)Kν(dx)

+ σ

∫
X

∫
Rd

[
F (ν +

δx+h

K
)− F (ν)

]
µ(x)p(x, dh)Kν(dx)

(3.4.4)
where x− and x+, specified by the total order relation in assumption (C1), are elements
in supp{ν} ⊂ X satisfying

x− = sup{y ∈ supp{ν} : f̄(y, x) < 0}

and
x+ = inf{y ∈ supp{ν} : f̄(y, x) > 0}.

On the migration time scale, there are a variety of different paths to approach the
equilibrium configuration by giving different coefficient. However, the equilibrium config-
uration of a finite trait system is always the same up to the ordered sequence determined
as in assumption (C1) and the time scale for convergence is always of order O(ln 1

ε
) as

showed in Theorem 3.3.3.

Definition 3.4.1. A Markov jump process {Γt : t ≥ 0} characterized as following is
called a trait substitution tree (in short TST) with the ancestor Γ0 = n̄(x0)δx0.

(i) For any nonnegative integer l, it jumps from Γ(2l) :=
∑l

i=0 n̄(x
(2l)
2i )δ

x
(2l)
2i

to Γ(2l+1)

with transition rate n̄(x
(2l)
2k )µ(x

(2l)
2k )p(x

(2l)
2k , dh) for any 0 ≤ k ≤ l, where

– Γ(2l+1) =
∑j

i=1 n̄(x
(2l)
2i−1)δ

x
(2l)
2i−1

+ n̄(x
(2l)
2k + h)δ

x
(2l)
2k +h

+
∑l

i=j+1 n̄(x
(2l)
2i )δ

x
(2l)
2i

if there exists 0 ≤ j ≤ l s.t. x
(2l)
2j ≺ x

(2l)
2k + h ≺ x

(2l)
2j+1,

– Γ(2l+1) =
∑j

i=1 n̄(x
(2l)
2i−1)δ

x
(2l)
2i−1

+
∑l

i=j n̄(x
(2l)
2i )δ

x
(2l)
2i

if there exists 0 ≤ j ≤ l s.t. x
(2l)
2j−1 ≺ x

(2l)
2k + h ≺ x

(2l)
2j .

Then, we relabel the traits according to the total order relation as in (C1):

x
(2l+1)
0 ≺ x

(2l+1)
1 ≺ · · · ≺ x

(2l+1)
2l ≺ x

(2l+1)
2l+1 , (3.4.5)

where in associate with the first case

x
(2l+1)
i := x

(2l)
i for 0 ≤ i ≤ 2j, x

(2l+1)
2j+1 := x

(2l)
2k + h,

x
(2l+1)
i := x

(2l)
i−1 for 2j + 2 ≤ i ≤ 2l + 1,
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and in associate with the second case

x
(2l+1)
i := x

(2l)
i for 0 ≤ i ≤ 2j − 1, x

(2l+1)
2j := x

(2l)
2k + h,

x
(2l+1)
i := x

(2l)
i−1 for 2j + 1 ≤ i ≤ 2l + 1.

(ii) For nonnegative integer l, it jumps from Γ(2l+1) :=
∑l+1

i=1 n̄(x
(2l+1)
2i−1 )δ

x
(2l+1)
2i−1

to Γ(2l+2)

with transition rate n̄(x
(2l+1)
2k−1 )µ(x

(2l+1)
2k−1 )p(x

(2l+1)
2k−1 , dh) for any 1 ≤ k ≤ l+ 1, where

– Γ(2l+2) =
∑j

i=1 n̄(x
(2l+1)
2(i−1))δx(2l+1)

2(i−1)

+n̄(x
(2l+1)
2k−1 +h)δ

x
(2l+1)
2k−1 +h

+
∑l+1

i=j+1 n̄(x
(2l+1)
2i−1 )δ

x
(2l+1)
2i−1

if there exists 1 ≤ j ≤ l + 1 s.t. x
(2l+1)
2j−1 ≺ x

(2l+1)
2k−1 + h ≺ x

(2l+1)
2j ,

– Γ(2l+1) =
∑j

i=1 n̄(x
(2l+1)
2(i−1))δx(2l+1)

2(i−1)

+
∑l+1

i=j n̄(x
(2l+1)
2i−1 )δ

x
(2l+1)
2i−1

if there exists 1 ≤ j ≤ l + 1 s.t. x
(2l+1)
2j−2 ≺ x

(2l+1)
2k−1 + h ≺ x

(2l+1)
2j−1 .

Then, we relabel the traits according to the total order relation as in (C1):

x
(2l+2)
0 ≺ x

(2l+2)
1 ≺ · · · ≺ x

(2l+2)
2l+1 ≺ x

(2l+2)
2l+2 , (3.4.6)

where in associate with the first case

x
(2l+2)
i := x

(2l+1)
i for 0 ≤ i ≤ 2j − 1, x

(2l+2)
2j := x

(2l+1)
2k−1 + h,

x
(2l+2)
i := x

(2l+1)
i−1 for 2j + 1 ≤ i ≤ 2l + 2,

and in associate with the second case

x
(2l+2)
i := x

(2l+1)
i for 0 ≤ i ≤ 2j − 2, x

(2l+2)
2j−1 := x

(2l+1)
2k−1 + h,

x
(2l+2)
i := x

(2l+1)
i−1 for 2j ≤ i ≤ 2l + 2.

Theorem 3.4.2. Admit assumption (A1) and (C). Consider the process {XK,ε,σ
t , t ≥ 0}

described by the generator (3.4.4). Suppose that XK,ε,σ
0 =

NK
0

K
δx0 and

NK
0

K
→ n̄(x0) in

law as K →∞. In addition to the condition (3.3.4), suppose it also holds that

ln
1

ε
� 1

Kσ
� eKC for any C > 0. (3.4.7)

Then (XK,ε,σ
t/Kσ )t≥0 converges as K → ∞ to the trait substitution tree (Γt)t≥0 defined in

Definition 3.4.1 in the sense of f.d.d. on MF (X ) equipped with the topology induced by
mappings ν 7→ 〈ν, f〉 with f a bounded measurable function on X .
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Figure 3.4: Simulations of a trait substitution tree on the mutation time scale arising in Theorem
3.4.2 on four- and five-type trait space.

Remark 3.4.3. • There are two time scales for the individual-based population,
which can be observed from Theorem 3.3.3 and the generator (3.4.4). One is the
fixation time scale of order ln 1

ε
while the other one is the mutation time scale of

order 1
Kσ

, which are constrained on LHS of the inequality (3.4.7). By adopting the
time scales separation technique used in [8], we can get a nice limiting structure-
TST in the large population limit. The RHS of the inequality (3.4.7) is used to
guarantee that system can not drift away from the TST equilibrium configuration
on the mutation time scale (see Freidlin and Wentzell [23]).

• As showed in Figure 3.4, we simulate the trait substitution tree processes by in-
troducing a mutation mechanism. Note that the simulation shows a special case
where the population always reproduces a mutant which is more fitter than any of
already existing traits. The birth rate of red-colored population is 3, while the blue
one, the green one, the black one and the yellow one have birth rates 6, 8, 10, 12
resp.. Their death rates are constant 0. We take ε = K−0.8 and σ = K−1.5, where
initial scaling parameter K = 400. On a longer mutation time scale, the fixation
process due to migration is not visible any more. However, if we zoom into the
infinitesimal fixation period, we get the picture as in Figure 3.3.

3.5 Outline of proofs

In order to illustrate the basis idea of proof, we start with a three-type toy model. But
notice that our analysis is not reduced only to the three-trait case. All the machinery is
still available for any finite-trait space, which will be shown later. However, the explicit
proof are more difficult to write down without some restrictive conditions. That is why
we impose assumption (B3) in Theorem 3.3.3.
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Proposition 3.5.1. Admit the same condition as in Theorem 3.3.3. Consider a se-
quence of processes on a trait space X = {x0, x1, x2}. Then, there exists a constant
t̄2 > 0, such that for any t > t̄2

lim
K→∞

XK
t ln 1

ε

d
= Γ(2) (3.5.1)

under the total variation norm.

Proof. (see Figure 3.5).

Let ξKt (x0) :=
NK
t

K
and ξKt (xi) :=

NK,i
t

K
= 〈XK

t , 1{xi}〉 for i = 1, 2.

Sε1
eSη2 Sη0

density

time

η

ε

n̄(x0)

Sη1 eSη1 Sη2

recovery of x0

n̄(x1) n̄(x2) n̄(x0)
n̄(x2)

growth of x1 growth of x2

Figure 3.5: Phase evolution of mass bars in early time window on the three-trait site space
.

Step 1. Firstly, consider the emergence and growth of population at trait site x1.

Set Sε1 = inf{t > 0 : ξKt (x1) ≥ ε}. Thanks to
NK

0

K
→ n0 > 0 in law as K → ∞ and by

applying the law of large numbers of random processes (see Chap.11, Ethier and Kurtz
1986), one obtains from the last term in generator (3.2.3) that, for any δ > 0, T > 0,

lim
K→∞

P
(

sup
0≤t≤T

∣∣∣∣ξKt (x1)

ε
− nt(x1)

∣∣∣∣ < δ

)
= 1

where nt(x1) is governed by equation ṅ(x1) = m(x0, x1)n0 with initial n0(x1) = 0.
Therefore,

lim
K→∞

P
(

1

m(x0, x1)n0

− δ < Sε1 <
1

m(x0, x1)n0

+ δ

)
= 1, (3.5.2)

that is, Sε1 is of order 1.
For any η > 0, set Sη1 = inf{t : t > Sε1, ξ

K
t (x1) ≥ η}. Consider a sequence of rescaled

processes
(
NK,1
t

Kε

)
t≥Sε1

with
NK,1
Sε1

Kε
=

ξK
Sε1

(x1)

ε
→ 1 as K → ∞. As before, by law of large
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numbers of random processes (see Chap.11 Ethier and Kurtz 1986), one obtains, for any
δ > 0, T > 0,

lim
K→∞

P

(
sup

0≤t≤T

∣∣∣∣∣NK,1
t

Kε
−mt

∣∣∣∣∣ < δ

)
= 1, (3.5.3)

where mt is governed by equation ṁ = f̄(x1, x0)m = (b(x1)− d(x1)− α(x1, x0)n̄(x0))m
with m0 = 1.

Set T
η/ε
1 = inf{t− Sε1 : t > Sε1,

NK,1
t

Kε
≥ η/ε}, and t

η/ε
1 = inf{t > 0 : mt ≥ η/ε}. Then,

for any δ > 0, there exists δ
′
> 0 such that

lim
K→∞

P
((

1

f̄(x1, x0)
− δ
)

ln
1

ε
< Sη1 − Sε1 <

(
1

f̄(x1, x0)
+ δ

)
ln

1

ε

)
= lim

K→∞
P
((

1

f̄(x1, x0)
− δ
)

ln
1

ε
< T

η/ε
1 <

(
1

f̄(x1, x0)
+ δ

)
ln

1

ε

)
= lim

K→∞
P

((
1

f̄(x1, x0)
− δ

2

)
ln

1

ε
< t

η/ε
1 <

(
1

f̄(x1, x0)
+
δ

2

)
ln

1

ε
,

sup
0≤t≤tη/ε1

| N
K,1
t

Kε
−mt |< δ

′

)
=1

(3.5.4)

where the last equal sign is due to (3.5.3).
After population of trait x1 reaches some η threshold, the dynamics

(
ξKt (x0), ξKt (x1)

)
can be approximated by the solution of a two-dimensional Lotka-Volterra equations.
Then, it takes time of order 1 (mark this time coordinator by S̃η1 ) for the two subpopu-
lations switching their mass distribution and gets attracted into η−neighborhood of the
stable equilibrium (0, n̄(x1)).

Step 2. Now consider the emerging and growth of population ξKt (x2) := 〈XK
t , 1{x2}〉

at trait site x2. Set Sε2 = inf{t : t > S̃η1 , ξ
K
t (x2) ≥ ε}. Similarly as is done for Sε1 in

(3.5.2), one can get that lim
K→∞

P(Sε2 − S̃
η
1 = O(1)) = 1. On a longer time scale, we will

not distinguish Sε2 from S̃η1 .
Set Sη2 = inf{t : t > Sε2, ξ

K
t (x2) ≥ η}. One follows the same procedure to derive

(3.5.4) and asserts that for any δ > 0,

lim
K→∞

P
((

1

f̄(x2, x1)
− δ
)

ln
1

ε
< Sη2 − S̃

η
1 < (

1

f̄(x2, x1)
+ δ) ln

1

ε

)
= 1. (3.5.5)

Note that assumption (B3) 2
b(x2)−d(x2)

≥ 1
f̄(x1,x0)

+ 1
f̄(x2,x1)

guarantees that ξKt (x2) can not

grow so fast in exponential rate b(x2) − d(x2) such that it reaches some η-level before
Sη2 .

During time period (S̃η1 , S
η
2 ), population at site x0, on one hand, decreases due to the

competition from more fitter trait x1. On the other hand, it can not go below ε level due
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to the successive migration in a portion of ε from site x1. More precisely, by neglecting
migrant contribution, ξKt (x0) converges nt(x0) in probability as K tends to ∞, where

ṅt(x0) = (b(x0)− d(x0)− α(x0, x1)n̄(x1))nt(x0) = f̄(x0, x1)nt(x0) (3.5.6)

with n0(x0) = η. Let ∆Sη2 = Sη2 − S̃
η
1 . Then, for any δ > 0,

lim
K→∞

P
(
ξKSη2

(x0) ∈ (n∆Sη2
(x0)− δ, n∆Sη2

(x0) + δ)
)

= lim
K→∞

P
(
ηef̄(x0,x1)∆Sη2 − δ < ξKSη2

(x0) < ηef̄(x0,x1)∆Sη2 + δ
)

= lim
K→∞

P
(
ηε|f̄(x0,x1)|/f̄(x2,x1) − δ < ξKSη2

(x0) < ηε|f̄(x0,x1)|/f̄(x2,x1) + δ
)

= 1

(3.5.7)

where the second equality is due to (3.5.5). Taking the migration from site x1 into
account, we thus have

lim
K→∞

P
(
ξKSη2

(x0) = O(ε|f̄(x0,x1)|/f̄(x2,x1) ∨ ε)
)

= 1. (3.5.8)

We proceed as before for S̃η1 in step 1. After time Sη2 , the mass bars on dimorphic system
(ξKt (x1), ξKt (x2)) can be approximated by ODEs and will be switched again in time of

order 1 (marked by S̃η2 as in Figure 3.5), and they are attracted into η− neighborhood
of (0, n̄(x2)). As for the population density on site x0, one obtains from (3.5.8)

lim
K→∞

(
ξKeSη2 (x0) = O(εc1)

)
= 1 (3.5.9)

where c1 = |f̄(x0,x1)|
f̄(x2,x1)

∧ 1 ≤ 1.

Step 3. We now consider the recovery of subpopulation at trait site x0. Recovery
arises because of the lack of effective competitions from its neighbor site x1, or under
negligible competitions since the local population density on x1 is very low under the

control of its fitter neighbor x2. Without lose of generality, we suppose c1 := |f̄(x0,x1)|
f̄(x2,x1)

< 1

in (3.5.8).

Set Sη0 = inf{t : t > S̃η2 , ξ
K
t (x0) ≥ η}. We proceed as before in step 1. From (3.5.8),

ξKeSη2 (x0)

εc1
converges to some positive constant (say m0) in probability as K →∞. Thus, by

applying law of large numbers to the sequence of processes
NK
t

Kεc1
, for any δ > 0, T > 0,

lim
K→∞

P
(

sup
0≤t≤T

∣∣∣∣ξKt (x0)

εc1
−mt

∣∣∣∣ < δ

)
= 1 (3.5.10)

where mt is governed by logistic equation ṁ = (b(x0)− d(x0))m starting with a positive
initial m0.
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Following the same way to obtain (3.5.4), time length Sη0−S̃
η
2 can be approximated by

time needed for dynamics m to approach η/εc1 level, which is of order c1
(b(x0)−d(x0))

ln 1
ε
,

i.e. for any δ > 0,

lim
K→∞

P
((

c1

b(x0)− d(x0)
− δ
)

ln
1

ε
< Sη0 − S̃

η
2 <

(
c1

b(x0)− d(x0)
+ δ

)
ln

1

ε

)
= 1.

(3.5.11)
At the same time, ξKt (x1) converges in probability to ψt which satisfies equation ψ̇ =
f̄(x1, x2)ψ with ψeSη2 = η. Then, we can justify the following estimate for population

density at site x1,

lim
K→∞

P
(
ξKSη0

(x1) = O(εc2 ∨ ε)
)

= 1 (3.5.12)

where c2 = c1|f̄(x1,x2)|
b(x0)−d(x0)

.

We now combine all these estimates (3.5.4),(3.5.5), (3.5.11) together, and conclude
that

lim
K→∞

P
(
‖XK

t ln 1
ε
− Γ(2)‖ < δ

)
= 1 (3.5.13)

for t > t̄2 := 1
f̄(x1,x0)

+ 1
f̄(x2,x1)

+ c1
b(x0)−d(x0)

under the total variation norm ‖·‖ onMF (X ).

�

Proof of Theorem 3.3.3. We proceed the proof by the induction method over the super-
script L ∈ N of trait space X (L) = {x0, x1, . . . , xL}.

(1). When L = 2, it is already proved in Proposition 3.5.1 that there exists a constant
t̄2 > 0 such that for any t > t̄2

lim
K→∞

XK
t ln 1

ε

(d)
= Γ(2) (3.5.14)

under the total variation norm.
(2). Without loss of generality, suppose it holds that for any L = 2l there exists a

constant t̄2l such that for any t > t̄2l

lim
K→∞

XK
t ln 1

ε

d
= Γ(L). (3.5.15)

We need to prove the same relation also holds for the case L = 2l + 1.
We firstly consider the invasion time scale of population at site x2l+1.
Denote by ξKt (x2l+1) := 〈XK

t , 1{x2l+1}〉. If Kε2l+1 � 1, it follows a similar proof as in
Proposition 3.5.1. So, now we only need to consider the case when Kε2l+1 � 1, that

is, the mass at site x2l+1 is large in the very beginning. In fact, since
NK

0

K
→ n0 in

law as K → ∞ and the nearest-neighbor mass migrates from site x0 to site x2l+1 by
passing through x1, . . . , x2l, one applies the law of large numbers for random processes
and obtains that

lim
K→∞

P
(

sup
0≤t≤T

∣∣ξKt (x2l+1)− nt(x2l+1)
∣∣ < δ

)
= 1 (3.5.16)
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where nt(x2l+1) satisfies the equation ṅt(x2l+1) = ε2l+1
∏2l+1

j=1 m(xj, xj−1)n0. So, it takes

time of order 1 for ξKt (x2l+1) to reach ε2l+1 level (mark the time coordinator by Sε2l+1).
Set Sη2l+1 = inf{t : t > Sε2l+1, ξ

K
t (x2l+1) ≥ η}. For t ∈

(
Sε2l+1, S

η
2l+1

)
, again by law of

large numbers,
ξKt (x2l+1)

ε2l+1 converges to φt which satisfies φ0 = 1 and

φ̇ = (b(x2l+1)− d(x2l+1))φ. (3.5.17)

Thus, ∆Sη2l+1 := Sη2l+1 − Sε2l+1 can be approximated by the time length (say ∆t2l+1)
needed for dynamics φ to reach η/ε2l+1 level, i.e.

lim
K→∞

P
((

2l + 1

b(x2l+1)− d(x2l+1)
− δ
)

ln
1

ε
< ∆Sη2l+1 <

(
2l + 1

b(x2l+1)− d(x2l+1)
+ δ

)
ln

1

ε

)
lim
K→∞

P
((

2l + 1

b(x2l+1)− d(x2l+1)
− δ
)

ln
1

ε
< ∆t2l+1 <

(
2l + 1

b(x2l+1)− d(x2l+1)
+ δ

)
ln

1

ε

)
= 1.

(3.5.18)
We inherit the notation Sη2l as the hitting time of η-level for the population at site x2l.
Due to the hypothesis for L = 2l case, we know that Sη2l is of order([

f̄(x2l, x2l−1)
]−1

+ . . .+
[
f̄(x1, x0)

]−1
)

ln
1

ε
. (3.5.19)

Thanks to assumption (B3), i.e.

2l + 1

b(x2l+1)− d(x2l+1)
>

1

f̄(x2l, x2l−1)
+ . . .+

1

f̄(x1, x0)
, (3.5.20)

it implies that before time Sη2l, population at site x2l+1 is still under negligible level (of
order εc for some positive constant c) and can not influence the invasion process up to
x2l.

Following a similar procedure as deriving (3.5.19) (see Figure 3.5) to analyze the
colonization of population at site x2l+1 due to migration from site x2l with exponential
rate f̄(x2l+1, x2l), one obtains that Sη2l+1 should be of order([

f̄(x2l+1, x2l)
]−1

+ . . .+
[
f̄(x1, x0)

]−1
)

ln
1

ε
. (3.5.21)

Comparing two time scale estimates (3.5.18) and (3.5.21) for Sη2l+1 under assumption
(B3), one gets (3.5.21) is the right one for the fixation of population at site x2l+1.

Now we consider the total recovery time by summing up recovery time of all sub-
population on every second site backwards from x2l+1 to x0, one can do calculations
repeatedly as in Step 3 of the proof for Proposition 3.5.1. More precisely, for 1 ≤ i ≤ l,
the initial population ξK(x2i−1) on site x2i−1 which is prepared for recovering is no less
than ε-level due to the consistent migration from its fitter neighbor site x2i. On the other
hand, it grows exponentially at least with a rate f̄(x2i−1, x2i−2) = b(x2i−1)− d(x2i−1)−
α(x2i−1, x2i−2)n̄(x2i−2) due to the possibly strongest competition from its unfit neighbor
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x2i−2. In all, the recovery time (mark by Sη,22i−1) for the population ξK(x2i−1) to reach
η-level can be bounded from above

lim
K→∞

P
(
Sη,22i−1 <

(
1

f̄(x2i−1, x2i−2)
+ δ

)
ln

1

ε

)
= 1. (3.5.22)

We now combine both time estimates (3.5.21) and (3.5.22). Let

t̄2l+1 := 2
([
f̄(x2l+1, x2l)

]−1
+ . . .+

[
f̄(x1, x0)

]−1
)
. (3.5.23)

Then, one can conclude that for any t > t̄2l+1, for any δ > 0 and 0 ≤ i ≤ l,

lim
K→∞

P
(∣∣∣〈XK

t ln 1
ε
, 1{x2i+1}〉 − n̄(x2i+1)

∣∣∣ < δ
)

= 1,

lim
K→∞

P
(
〈XK

t ln 1
ε
, 1{x2i}〉 < δ

)
= 1.

(3.5.24)

It follows the conclusion for any t > t̄2l+1,

lim
K→∞

XK
t ln 1

ε

d
= Γ(2l+1). (3.5.25)

�

Proof of Theorem 3.4.2. The proof of this result is similar to the proof of [8, Theorem
1]. We will not repeat all the details and only focus more on supporting lemmas which
are cornerstones of the proof.

For any ε > 0, t > 0, L ∈ N, B ⊂ X measurable, take the integer part L1 :=
⌊
L+2

2

⌋
and denote by

AK,ε,σ(ε, t, L,B) :=
{

Supp(XK,ε,σ
t
Kσ

) has L+ 1 elements, and L1 out of them, say {x1, . . . ,

xL1} ⊂ B, satisfy
∣∣∣〈XK,ε,σ

t
Kσ

, 1{xi}〉 − n̄(xi)
∣∣∣ < ε, 1 ≤ i ≤ L1,

and the other L+ 1− L1 traits, say y1, . . . , yL−L1 , satisfy

〈XK,ε,σ
t
Kσ

, 1{yj}〉 < ε, 1 ≤ j ≤ L+ 1− L1

}
.

(3.5.26)
To the end, it is enough to establish that

lim
K→∞

P
(
AK,ε,σ(ε, t, L,B)

)
= P (Supp(Γt) ⊂ B and has L1 elements ) (3.5.27)

where (Γt)t≥0 is defined in Definition 3.4.1.
The first key ingredient of the proof is the characterization of exponentially distributed

waiting time of every mutation event. It can be proved from the expression of the
generator (3.4.4).
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Lemma 3.5.2. Assume that XK,ε,σ
0 = Γ(L), w.o.l., take L = 2l. Let τ be the first

mutation time after 0. Then,

lim
K→∞

P
(
τ >

t

Kσ

)
= exp

(
−t

l∑
i=0

n̄(x
(2l)
2i )µ(x

(2l)
2i )

)
. (3.5.28)

lim
K→∞

P
(

at time τ, mutant comes from trait x
(2l)
2k

)
=

n̄(x
(2l)
2k )µ(x

(2l)
2k )∑l

i=0 n̄(x
(2l)
2i )µ(x

(2l)
2i )

. (3.5.29)

The second ingredient can been seen as a corollary of Theorem 3.3.3. It demonstrates
that fixation of new configuration takes time of order ln 1

ε
, which is invisible on the

mutation time scale.

Lemma 3.5.3. Assume that XK,ε,σ
0 = Γ(2l) + 1

K
δ
x

(2l)
2k +h

for some 0 ≤ k ≤ l. Then there

exists a constant C > 0, for any δ > 0, such that

lim
K→∞

P

(
τ > C ln

1

ε
, sup
t∈(C ln 1

ε
,τ)

‖XK,ε,σ
t − Γ(2l+1)‖ < δ

)
= 1 (3.5.30)

where Γ(2l+1) is defined as in Definition 3.4.2 (i) and ‖ · ‖ is the total variation distance.

The proof of this lemma is similar to the one of Lemma 2.5.6.
Thus we conclude the proof of the Theorem. �



4 Trait substitution sequence with
nearly neutral mutations

We consider a spatial population model with mutation and competition undergoing
an acceleration of branching rates by Kλ, λ ∈ (0, 1], where K is proportional to the
initial population size. By time scales separation constraints, we obtain pure jump
processes in the large population and rare mutation limit for both 0 < λ < 1 and λ = 1
cases. The novelty here is that the fixation probability of the advantageous mutant is
nearly neutral and proportional to 1

Kλ . Therefore, we rescale the population process
on an accumulation of the mutation time scale. For 0 < λ < 1 it generalizes the trait
substitution sequence (TSS) studied in [8] (λ = 0), where the population density jumps
from one stable equilibrium of some ODE to another. For λ = 1 we need some results on
branching processes in random environment to analyze the fixation period, and employ
quasi-stationary theory to predict the equilibrium density of the fixed type.

4.1 Introduction

In recent years a locally regulated population model proposed by Bolker and Pacala
[4] has attracted particular interest both from biologists and mathematicians. To our
knowledge, Fournier and Méléard [22], using the idea of interacting branching random
walks, formulated a pathwise construction of the model in terms of Poisson random
measures. In parallel, Etheridge [19] studied the extinction and survival problem of
this model and considered the coexistence problem of derivative models in the following
papers (see [2]). In particular, for the one dimensional version (without mutation),
Lambert formulated it as logistic branching processes and studied the probabilistic and
analytic properties in both discrete and continuous setting (see [7, 33]).

In this paper we are interested in the long time behavior of the locally regulated
(density-dependent) populations. In particular, to figure out how the mutation strength
influences the evolutionary fixation makes more sense. Mutations that occur in the
resident population usually can be classified into three categories (w.r.t. resident pop-
ulation): advantageous, neutral, and deleterious. Respectively, they correspond to the
supercritical, critical and subcritical cases in the branching process setting. The advan-
tageous mutation makes the subpopulation with its trait fixed in a positive probability
while the subpopulation from deleterious mutation dies out with probability 1; the fate
of the neutral mutants is still unclear for us. It is of particular interest for us to con-
sider the fate of neutral mutants. Now we explain by a few more words how different
mutations influence the fixation of populations in a specific way.
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Heuristically, it is usually guaranteed that a single mutant arises in the resident popu-
lation and no further mutations occur until the fate of that mutant population is known.
So it is enough to just consider a two-type system. On the one hand, competition for
limited resource can eliminate one type under some non-coexistence assumption. On
the other hand, the logistic growth term may impede the fixed type to be stabilized near
its equilibrium on a long time scale. The biologically motivated assumption of rare mu-
tations guarantees that, on the mutation time scale, the width of time intervals during
which the population is polymorphic vanishes, so that the population appears monomor-
phic at each time. This is the so called “trait substitution sequence model” proposed
by Metz et al. [39] and mathematically justified by Champagnat [8], Champagnat and
Lambert [9]. In their arguments, the fixation probability of a selective mutation is a
strictly positive constant (independent of the population size K). More precisely, the
fixed type is strictly advantageous in [8] while the deleterious one can also be fixed but
with a random density in [9].

The purpose of this paper is to consider the case when the fixation probability of
the new mutant is nearly neutral (slightly advantageous). This idea can be realized by
accelerating the branching rate (birth rate and death rate) in a suitable way, i.e., take
individual birth rate bK = Kλr + b and death rate dK = Kλr + d for 0 < λ ≤ 1, where
the parameter K is proportional to the initial population size. This procedure is highly
reminiscent of the scaling method from branching particle systems to superprocesses
(see [15, 37]). To prevent the population from rapid extinction, one also has to rescale
the population size, so that making assumption of large population. We will show that,
on a single mutation time scale, the fixation probability of the advantageous type is of
order 1

Kλ , which converges to 0 under the large population limit. Obviously, it is not
the proper time scale to rescale the population process.

For 0 < λ < 1 the large population limit of the population process (branching particle
system) is a deterministic measure-valued process. In particular, it satisfies an ODE
which has a stable equilibrium (carrying capacity) for one-type population without mu-
tation. To find the suitable time scale to separate successively arising mutations, our
argument proceeds by a way of intermediate approximations based on the trait sub-
stitute sequence model obtained in Champagnat [8]. Eventually, we rejustify the TSS
model on an accumulation of the mutation time scale. In other words, the invasion is
not due to the absolute advantage of a mutant type, but due to the relatively often
coming neutral mutants.

For λ = 1 the large population limit is a superprocess with a quadratic competition
term. The randomness is generated due to the accelerating birth and death events and
usually called “demographic stochasticity”. In particular, as for the one dimensional
case, the rescaled logistic branching process converges to the so called logistic Feller dif-
fusion. As shown in [33], the diffusion will be absorbed at 0 with probability 1. Thus, to
capture the long time behavior in some sense, we study the process conditioned on never
attaining 0. This conditioned process , named Q-process, is studied in [7, 36], which can
be realized by compensating proper immigration onto the system (see [34]). As for the
fixation period, we use a classical result about the extinction probability for branching
processes in random environments (see Kaplan [29]) to build up the non-coexistence
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condition, and further to give an implicit expression for the fixation probability. Never-
theless, we can formulate the rescaling limit processes for both 0 < λ < 1 and λ = 1 in
an unified regime in the context of random environments (see Remark 4.2.3).

The remainder of the paper is structured as follows. In Section 4.2, we present the
description of the models and state the main results. In Section 4.3, we get the large
population limit of the interacting branching particle system for both 0 < λ < 1 and λ =
1, and study some properties for one and two dimensional cases. In Section 4.4, we derive
the trait substitution sequence based an intermediate-approximation result for the case
0 < λ < 1. In Section 4.5, for λ = 1 the conditioned trait substitution sequence is proved
by employing the Q-process theory and branching processes in random environments,
which are used to characterize the long time behavior and provide the non-coexistence
criterion.

4.2 Model and main results

4.2.1 Locally regulated spatial population model

We assume the population at time t is composed of a finite number It of individuals
characterized by their phenotypic traits x1(t), . . . , xIt(t) belonging a compact subset
X of Rd. We denote by MF (X ) the set of non-negative finite measures on X . Let
M(X ) ⊂MF (X ) be the set of counting measures on X :

M(X ) =

{
n∑
i=1

δxi : x1, . . . , xn ∈ X , n ∈ N

}
.

Then, the population process at time t can be represented as:

νt =
It∑
i=1

δXi(t).

Let B(X ) denote the totality of functions on X that are bounded measurable. For any
f ∈ B(X ), ν ∈MF (X ), we use notation 〈ν, f〉 =

∫
fdν.

Let’s specify the population process (νt)t>0 by introducing a sequence of biological
parameters:

• b(x) is the birth rate from an individual with trait x.

• d(x) is the death rate of an individual with trait x because of “aging”.

• α(x, y) is the competition kernel felt by some individual with trait x from another
individual with trait y.

• µ(x) is the mutation probability of an individual with trait x.
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• m(x, dh) is the law of trait difference h = y− x between a mutant individual with
trait y born from an individual with trait x. Since the mutant trait y = x + h
must belong to X , this law has its support in X − x := {y− x : y ∈ X} ⊂ Rd. We
assume that m(x, dh) has a density on Rd which is uniformly bounded in x ∈ X
by some integrable function m̄(h).

To specify the model, the infinitesimal generator of theM(X )-valued process is given
as follows, for any φ ∈ B(M(X )):

Lφ(ν) =
I∑
i=1

[φ(ν + δxi)− φ(ν)] (1− µ(xi))b(xi)

+
I∑
i=1

∫
X−xi

[φ(ν + δxi+h)− φ(ν)]µ(xi)b(xi)m(xi, dh)

+
I∑
i=1

[φ(ν − δxi)− φ(ν)] (d(xi) +
I∑
j 6=i

α(xi, xj)).

The first term above describes the clonal reproduction without mutation. The second
term describes the mutant offspring with trait xi + h from mother with trait xi. And
the last term describes death of an individual xi either due to aging or competition from
another individual xj.

By introducing a parameter K ∈ N, we rescale the population size by K. We will show
later, as K tends to infinity, we can get different large population limits by well-chosen
renormalization. Furthermore, the population process can be parametrized by another
parameter uK governing the strength of mutation probability µ(·) w.r.t. population size
scaling parameter K.

Given a sequence of processes denoted by (νKt )t≥0 with an accelerating exponent
λ ∈ (0, 1], assume the corresponding parameters have the following form, for K ∈ N:

• bK(x) = Kλr(x) + b(x).

• dK(x) = Kλr(x) + d(x).

• αK(x, y) = α(x, y)/K.

Notice that, we rescale the competition kernel by K as above, so that the system math-
ematically makes sense when we take large population limit. Biologically, K can be
interpreted as scaling the resource or area available.

Instead of studying the above processes (νKt )t≥0, it is more convenient to consider a
sequence of rescaled measure-valued processes:

XK
t :=

1

K

IKt∑
i=1

δxi (4.2.1)

where XK
t is in the space MF (Rd) comprising of finite measures.
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The infinitesimal generator of the Markov process (XK
t )t≥0 can be expressed as follows:

LKφ(ν) =

∫
X

[
φ(ν +

δx
K

)− φ(ν)

]
(1− uKµ(x))bK(x)Kν(dx)

+

∫
X

∫
Rd\{0}

[
φ(ν +

δx+h

K
)− φ(ν)

]
uKµ(x)bK(x)m(x, dh)Kν(dx)

+

∫
X

[
φ(ν − δx

K
)− φ(ν)

](
dK(x) +

∫
X
α(x, y)ν(dy)

)
Kν(dx).

(4.2.2)

Let us denote by (A) the following assumptions.

(A1) ∃ b̄, d̄, r̄, α , ᾱ, such that 0 < b(x) ≤ b̄, 0 < d(x) ≤ d̄, 0 < r(x) ≤ r̄, 0 < α ≤
α(x, y) ≤ ᾱ, and b(x)− d(x) > 0, ∀x ∈ X .

(A2) ∀ x, y ∈ X , f̄(x, y) · f̄(y, x) < 0, where

f̄(y, x) = b(y)− d(y)− α(y, x)n̄(x) and n̄(x) = b(x)−d(x)
α(x,x)

,

f̄(x, y) = b(x)− d(x)− α(x, y)n̄(y) and n̄(y) = b(y)−d(y)
α(y,y)

.

(A3) ∀ x, y ∈ X , Ef(x, y) ·Ef(y, x) < 0, where e.g. f(y, x) = b(y)−d(y)−α(y, x)n(x),
and random variable n(x) has the distribution π(x) as in Remark 4.3.11. Fitness
function f(x, y) takes the symmetric form.

For fixed K ∈ N, assumption (A1) guarantees that the process with the infinitesimal
generator (4.2.2) is well defined (refer to [22]). Assumptions (A2) and (A3) give the
non-coexistence condition for 0 < λ < 1 and λ = 1, resp..

4.2.2 Statement of main results

Theorem 4.2.1 (0 < λ < 1). Admit assumptions (A1) and (A2). Suppose that XK
0 =

NK
0

K
δx and are such that

NK
0

K

law→ n0 > 0, as K → +∞, and exp{−CK1−λ} � uK �
1

K1+λ lnK
, ∀ C > 0. Then, (XK

t/KuK
, t ≥ 0) converges in the sense of f.d.d to

Yt =

{
n0δx, t = 0
n̄(ηt)δηt , t > 0

where the Markov jump process (ηt, t ≥ 0) satisfies η0 = x with an infinitesimal genera-
tor:

Aϕ(x) =

∫
Rd

(ϕ(x+ h)− ϕ(x))µ(x)n̄(x)
r(x)

r(x+ h)
[f̄(x+ h, x)]+m(x, dh). (4.2.3)

Definition 4.2.2 (λ = 1). For any t ≥ 0, define a measure-valued Markov jump process
Vt = n(ηt)δηt with singular support as following
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(i) (ηt, t ≥ 0) is a Markov jump process on X with initial value η0 = x and the
transition density from x to x+ h given by

q(x, dh) = γ(x)E
[
gx(ξ(x), h)

gx(ξ(x))

]
m(x, dh), (4.2.4)

where

γ(x) = µ(x)r(x)E [n(x)gx(n(x))] (4.2.5)

and

P (ξ(x) ∈ dz) =
zgx(z)π(x)(dz)

E [n(x)gx(n(x))]
(4.2.6)

and

gx(z) =

∫
Rd
gx(z, h)m(x, dh) (4.2.7)

with

gx(z, h) = 1{Ef(x+h,x)>0}

∫
C([0,+∞),R∗+)

Q(x)
z (dω)(

r(x+ h)

∫ ∞
0

exp

{
−
(
tb(x+ h)− td(x+ h)−

∫ t

0

α(x+ h, x)ωτ (x)dτ

)}
dt

)−1

.

i.e. the infinitesimal generator of (ηt, t ≥ 0) has the form:

Af(x) =

∫
Rd\{0}

(f(x+ h)− f(x)) q(x, dh),

where Q(x)
z is a law on path space C([0,∞),R∗+) such that ω0(x) = z and π(x) is

the law of random variable n(x) on R∗+. They are both defined in Remark 4.3.11.

(ii) Conditioned on (ηt1 , . . . , ηtn) = (x1, . . . , xn) for any 0 < t1 < . . . < tn,, all n(ηti)
are independent and distributed as π(xi), respectively.

Observe that γ(x) can be seen as the mean successful mutant production rate of a

stationary (in some sense) x-type population and that E
[
gx(ξ(x),h)m(x,dh)

gx(ξ(x))

]
is the proba-

bility density of fixation of a successful mutant x + h-type population entering a pure
(resident) x-type population with a biased stationary size ξ(x).

Remark 4.2.3. (1) When 0 < λ < 1, the TSS limit is a measure-valued Markov jump
process with singular support and the corresponding density is determined (non-
random) by its trait. When λ = 1, which will be shown, the TSS limit is still a
Markov jump process as in Definition 4.2.2 but with some random density.
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(2) In fact, the above two TSS limits are consistent. The first result can be embedded

into the second one by taking π(x) = δn̄(x) and Q(x)
z (dω) = δn̄(x) in the formula

of transition rate q(x, dh). In this degenerate case, ωt(x) ≡ n̄(x), t ≥ 0 and
n(x) ≡ n̄(x). Thus, we can compute the transition rate explicitly,

q(x, dh) =
µ(x)r(x)1{Ef(x+h,x)>0}

r(x+ h)
n̄(x)

·
(∫ ∞

0

exp

{
−(tb(x+ h)− td(x+ h)−

∫ t

0

α(x+ h, x)n̄(x)dτ)

}
dt

)−1

=
µ(x)r(x)n̄(x)1{f̄(x+h,x)>0}

r(x+ h)

(∫ ∞
0

exp
{
−tf̄(x+ h, x)

}
dt

)−1

m(x, dh)

=
µ(x)r(x)n̄(x)

r(x+ h)
[f̄(x+ h, x)]+m(x, dh).

(4.2.8)

4.3 Auxiliary results on convergence

4.3.1 Convergence to a deterministic flow for 0 < λ < 1

Firstly, we give the following martingale properties for (XK
t )t≥0, which will take a key role

in the proof of weak convergence results. As a convention, we inherit all the notations
and parameters in Section 4.2.

Proposition 4.3.1. Admit assumption (A1) and for some p ≥ 2, sup
K

E[〈XK
0 , 1〉]p <∞.

Then, for any bounded measurable function f , the process

MK,f
t

= 〈XK
t , f〉 − 〈XK

0 , f〉 −
∫ t

0

∫
Rd

(
b(x)− d(x)−

∫
Rd
α(x, y)XK

s (dy)
)
f(x)XK

s (dx)ds

−
∫ t

0

∫
Rd
uKµ(x)

(
Kλr(x) + b(x)

)( ∫
Rd\{0}

f(x+ h)m(x, dh)− f(x)
)
XK
s (dx)ds

(4.3.1)
is a square integrable martingale with quadratic variation

〈MK,f
. 〉t

=
1

K

{ ∫ t

0

∫
Rd

(
2Kλr(x) + b(x) + d(x) +

∫
Rd
α(x, y)XK

s (dy)

)
f 2(x)XK

s (dx)ds

+

∫ t

0

∫
Rd
uKµ(x)

(
Kλr(x) + b(x)

)(∫
Rd\{0}

f 2(x+ h)m(x, dh)− f 2(x)

)
XK
s (dx)ds

}
.

(4.3.2)
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Remark 4.3.2. By choosing different range of the exponent λ and studying the explicit
representation of semi-martingale 〈XK , f〉, one can have either a deterministic or a
stochastic large population limit depending on whether the asymptotic limit of quadratic
variation of the martingale part vanishes or not.

Proof. By martingale problem theory, for any bounded measurable functional φ on
MF (X ), one knows that the process

φ(XK
t )− φ(XK

0 )−
∫ t

0

LKφ(XK
s )ds (4.3.3)

is a càdlàg martingale. Let φ(ν) = 〈ν, f〉 , ∀f ∈ B(X ), we obtain that

MK,f
t

:= 〈XK
t , f〉 − 〈XK

0 , f〉 −
∫ t

0

∫
Rd

(
b(x)− d(x)−

∫
Rd
α(x, y)XK

s (dy)
)
f(x)XK

s (dx)ds

−
∫ t

0

∫
Rd
uKµ(x)(Kλr(x) + b(x))

( ∫
Rd\{0}

f(x+ h)m(x, dh)− f(x)
)
XK
s (dx)ds

is a square integrable martingale.
By applying Itô formula to 〈XK

t , f〉2 w.r.t. semimartingale 〈XK
t , f〉, one obtains

〈XK
t , f〉2 − 〈XK

0 , f〉2 − 2

∫ t

0

∫
Rd

{(
b(x)− d(x)−

∫
Rd
α(x, y)XK

s (dy)
)
f(x)

+ uKµ(x)(Kλr(x) + b(x))
( ∫

Rd\{0}
f(x+ h)m(x, dh)− f(x)

)}
〈XK

s , f〉XK
s (dx)ds

− 〈MK,f
. 〉t

is a martingale.
On the other hand, let φ(ν) = 〈ν, f〉2 in (4.3.3), we get the following martingale

〈XK
t , f〉2 − 〈XK

0 , f〉2 −
∫ t

0

LK〈XK
s , f〉2ds

=〈XK
t , f〉2 − 〈XK

0 , f〉2

− 1

K

{ ∫ t

0

∫
Rd

(
2Kλr(x) + b(x) + d(x) +

∫
Rd
α(x, y)XK

s (dy)
)
f 2(x)XK

s (dx)ds

+

∫ t

0

∫
Rd
uKµ(x)

(
Kλr(x) + b(x)

)( ∫
Rd\0

f 2(x+ h)m(x, dh)− f 2(x)
)
XK
s (dx)ds

}
−
∫ t

0

∫
Rd

{(
b(x)− d(x)−

∫
Rd
α(x, y)XK

s (dy)
)
f(x)

+ uKµ(x)(Kλr(x) + b(x))
( ∫

Rd\{0}
f(x+ h)m(x, dh)− f(x)

)}
2〈XK

s , f〉XK
s (dx)ds.
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By uniqueness of a semimartingale decomposition, the quadratic variation would be

〈MK,f
. 〉t

=
1

K

{ ∫ t

0

∫
Rd

(
2Kλr(x) + b(x) + d(x) +

∫
Rd
α(x, y)XK

s (dy)

)
f 2(x)XK

s (dx)ds

+

∫ t

0

∫
Rd
uKµ(x)

(
Kλr(x) + b(x)

)(∫
Rd\{0}

f 2(x+ h)m(x, dh)− f 2(x)

)
XK
s (dx)ds

}
,

which concludes the proof. �

More precisely, we obtain the following convergence results for both 0 < λ < 1 and
λ = 1 in the subsequent subsection.

Proposition 4.3.3. Assume λ ∈ (0, 1), uK = 0, and XK
0 converges in law to X0 under

the weak topology on MF (X ) as K → +∞, and supK E(〈XK
0 , 1〉3) <∞.

Then, ∀T > 0, a sequence of processes (XK
t , t ∈ [0, T ]) ∈ D([0, T ],MF (X )) converges

in law to an unique process (Xt, t ∈ [0, T ]) ∈ C([0, T ],MF (X )), satisfying the following:

sup
t∈[0,T ]

E(〈Xt, 1〉3) <∞, (4.3.4)

and for any bounded measurable function f ,

〈Xt, f〉 = 〈X0, f〉+

∫ t

0

∫
Rd

(b(x)− d(x)−
∫

Rd
α(x, y)Xs(dy))f(x)Xs(dx)ds. (4.3.5)

Remark 4.3.4. (a) For the one-dimensional case, if XK
0 =

NK
0

K
δx and

NK
0

K
→ n0 in law,

then (
NK
t

K
, t ∈ [0, T ]) converges to (nt, t ∈ [0, T ]) which satisfies logistic equation

ṅt = (b− d− αnt)nt. (4.3.6)

(b)Similarly, for the dimorphic case, we have the following limit{
ṅt = (b(x)− d(x)− α(x, x)nt − α(x, y)mt)nt
ṁt = (b(y)− d(y)− α(y, x)nt − α(y, y)mt)mt

. (4.3.7)

This Proposition and the next one can be deduced from Proposition 4.3.1 by the
classical uniqueness-compactness argument. Please refer to [22] for similar proofs.

4.3.2 Convergence to a superprocess with competition for λ = 1

Classical Lotka-Volterra model is described by a set of ordinary differential equations as
in last subsection. By stability analysis, we can determine the domain of attraction for
coexistence or competitive exclusion according to the relative strengths of competitions
within and between the species. In this section, we justify a stochastic version of Lotka-
Volterra models in the settings of one-type and two-type system.

Firstly, we give a general form of stochastic Lotka-Volterra systems by a superprocess
characterization. We always assume λ = 1 and uK = 0 in this section.
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Proposition 4.3.5. Assume XK
0 converges in law to X0 under the weak topology on

MF (X ) as K → +∞, and that supK E(〈XK
0 , 1〉3) <∞.

Then, ∀T > 0, the sequence of processes (XK
t , t ∈ [0, t]) ∈ D([0, T ],MF (X )) con-

verges in law to an unique process (Xt, t ∈ [0, T ]) ∈ C([0, T ],MF (X )), satisfying the
following:

sup
t∈[0,T ]

E(〈Xt, 1〉3) <∞, (4.3.8)

and for any bounded measurable function f ,

M f
t := 〈Xt, f〉 − 〈X0, f〉 −

∫ t

0

∫
Rd

(
b(x)− d(x)−

∫
Rd
α(x, y)Xs(dy)

)
f(x)Xs(dx)ds

(4.3.9)
is a continuous martingale with quadratic variation

〈M f〉t = 2

∫ t

0

∫
Rd
r(x)f 2(x)Xs(dx)ds. (4.3.10)

Remark 4.3.6. The process X above can be rewritten in a weak form

∂tXt(x) =
(
b(x)− d(x)−

∫
Rd
α(x, y)Xt(dy)

)
Xt(x) + Ṁt. (4.3.11)

Proof. We need to prove uniqueness of the solution of the martingale problem by Daw-
son’s Girsanov transform. Tightness of process sequence (XK

t , t ∈ [0, T ]) can be proved
by Aldous-Rebolledo criterion. Convergence limit of the martingale sequence can be
deduced by Proposition 4.3.1. �

Logistic type Feller diffusion and its Q-process

When there is only one type without mutation, it is called logistic branching process
(jump case) or logistic Feller diffusion (diffusion case) studied by Lambert [33] and
Etheridge [19], respectively.

Definition 4.3.7 (Logistic branching process). For any fixed K ∈ N, an integer-valued
process NK

t is called a (binary) logistic branching process if the transition rates have the
following form:

qKi,j =


bKi if j = i+ 1,

(dK + α i−1
K

)i, if j = i− 1,

−(bK + dK + α i−1
K

)i, if j = i,

0 otherwise.

Corollary 4.3.8 (Logistic Feller diffusion). Consider the process (ZK
t )t≥0 defined by

ZK
t := NK

t /K. Suppose ZK
0

law→ Z0 as K →∞. For all T > 0, (ZK
t , t ∈ [0, T ]) converges

in law to a logistic Feller diffusion (Zt, t ∈ [0, T ]) which satisfies the solution of the
following stochastic differential equation:

dZt = (b(x)− d(x)− α(x, x)Zt)Ztdt+
√

2r(x)ZtdBt, t > 0. (4.3.12)
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Proof. According to Proposition 4.3.5, we know (ZK
t , 0 ≤ t ≤ T ) converges to (Zt, 0 ≤

t ≤ T ) which is a solution of the following equation

∂tZt = (b(x)− d(x)− α(x, x)Zt)Zt + Ṁt, (4.3.13)

where Mt is a continuous martingale satisfying

〈M〉t = 2r(x)

∫ t

0

Zsds.

Since the continuous martingale can be represented by Itô integral, we have

Mt =

∫ t

0

√
2r(x)ZsdBs,

where Bt is one dimensional standard Brownian motion. Then (4.3.13) can be rewritten
as

dZt = (b(x)− d(x)− α(x, x)Zt)Ztdt+
√

2r(x)ZtdBt, t > 0,

which concludes the proof. �

Further more, as proved in [33], the diffusion limit defined by (4.3.12) will get extinct
in finite time a.s. provided there is no immigration from outside. The point 0 is thus
an absorbing state for the process. Nevertheless, the time for extinction can be large
compared to human time scale and it may fluctuate for a long time before extinction
actually occurs. On the other hand, the long time behavior of an absorbed Markov
process can be well described by the distribution of the trajectories which never attains 0.
When it exists, we define a new conditioned process and study its stationary distribution.

Definition 4.3.9 (Q-process). The distribution Qz is the law of a process issued from
z > 0 and conditioned to never attain 0. When it exists, it is defined as follows: for
s > 0 and for any Borel set B ⊂ C(([0, s],R∗+),

Qz(Z ∈ B) = lim
t→∞

Pz(Z ∈ B|t < T0), (4.3.14)

where T0 = inf{t > 0, Zt = 0}. This limiting procedure defines the law of a diffusion pro-
cess that never reaches 0 called its corresponding Q-process. Denote the new conditional
process of Z· by Z↑· .

By spectral theory arguments, one can get the quasi-stationary distribution of a diffu-
sion process. What is more, one can express the law of the Q-process and its stationary
distribution in terms of the quasi-stationary measure. Concerning the existence and
uniqueness of a quasi-stationary measure for the process defined by (4.3.12), we can
refer to [7]. Since it can not be written down in an explicit form, Villemonais [43] pro-
vides an approximation method to simulate the quasi-stationary distribution based on
a Fleming-Viot system. Concerning the Q-process, one can view it as a modification
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of the original process by adding some immigration structure on it (see [34]). For fixed
x ∈ X , consider the logistic Feller diffusion

dZt = (b(x)− d(x)− α(x, x)Zt)Ztdt+
√

2r(x)ZtdBt, t ≥ 0. (4.3.15)

By letting Z̃t =
√

2Zt
r(x)

, one obtains a drifted Brownian motion on (0,∞)

dZ̃t = dBt − q(Z̃t)dt. (4.3.16)

Lemma 4.3.10 ([7]). (i) For all z > 0, s ≥ 0, the law of the Q-process of the pro-

cess (Z̃t)t≥0 exists as a probability measure Q̃(x)
z on path space C([0,∞),R∗+) with

transition probability given by

q(s, z, y) = eλ1s
ξ1(y)

ξ1(z)
p(s, z, y)e−Q(y), (4.3.17)

where

Q(y) := 2

∫ y

0

q(z)dz,

and ξ1 is the corresponding eigenfunction of the first (positive) spectrum λ1 of the
operator:

Lg =
1

2
g′′ − qg′,

where q(z) = 1
2z
− (b(x)−d(x))z

2
+ α(x,x)r(x)z3

4
.

(ii) For any Borel set A ⊂ R∗+ and any z > 0,

lim
s→∞

Q̃(x)
z (Zs ∈ A) =

∫
A

ξ2
1(y)e−Q(y)dy =: π̃(x)(A). (4.3.18)

Remark 4.3.11. The Q-process distribution for Z̃ and Z are related by an immediate
change of variables, so that above results for Z̃ can be straightforward translated to
results on Z. We denote by Q(x)

z (·) the distribution of the Q-process of Z issued from
z > 0 indexed with a phenotype x ∈ X . Furthermore, we denote by π(x)(·) the invariant
measure of the Q-process.

Lotka-Volterra type Feller diffusion

Concerning another example-a binary branching system with competition, we can obtain
a set of Feller diffusions with Lotka-Volterra drift in a time-space scaling limit. Firstly,
we define the following binary branching process with density dependent competition as
a N2-valued process (NK

t ,M
K
t ).

Suppose that the transition rates of (NK
t ,M

K
t ) are

QK =


bK(x)i, (i, j)→ (i+ 1, j)

(dK(x) + α(x, x) i−1
K

+ α(x, y) j
K

)i, (i, j)→ (i− 1, j)

bK(y)j, (i, j)→ (i, j + 1)

(dK(y) + α(y, x) i
K

+ α(y, y) j−1
K

)j, (i, j)→ (i, j − 1).
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Consider a sequence of rescaled processes (
NK
t

K
,
MK
t

K
)t≥0.

Corollary 4.3.12 (Lotka-Volterra type Feller diffusion). Suppose (
NK

0

K
,
MK

0

K
) converges

in distribution to (Z1
0 , Z

2
0) (maybe random) as K →∞. Then for any T > 0,

(
Z1,K
t , Z2,K

t

)
:=
(
(
NK
t

K
,
MK
t

K
), t ∈ [0, T ]

)
converges to

(
(Z1

t , Z
2
t ), t ∈ [0, T ]

)
in distribution as K → ∞,

where (Z1
t , Z

2
t )t≥0 satisfies the following SDEs{

dZ1
t = (b(x)− d(x)− α(x, x)Z1

t − α(x, y)Z2
t )Z1

t dt+
√

2r(x)Z1
t dB

1
t

dZ2
t = (b(y)− d(y)− α(y, x)Z1

t − α(y, y)Z2
t )Z2

t dt+
√

2r(y)Z2
t dB

2
t .

(4.3.19)

Here, (B1
t )t≥0 and (B2

t )t≥0 are two independent standard Brownian motion.

Remark 4.3.13. By using some comparison argument, we can easily get that (Z1
t , Z

2
t )t≥0

will be absorbed by (0, 0) in finite time with probability 1. In fact, assume that (Z3
t , Z

4
t )t≥0

(without interspecific competition) satisfies the following equations:{
dZ3

t = (b(x)− d(x)− α(x, x)Z3
t )Z3

t dt+
√

2r(x)Z3
t dB

1
t

dZ4
t = (b(y)− d(y)− α(y, y)Z4

t )Z4
t dt+

√
2r(y)Z4

t dB
2
t .

(4.3.20)

Obviously, (Z1
t , Z

2
t )t≥0 can be dominated by (Z3

t , Z
4
t )t≥0 a.s.. Since it is already known

that (Z3
t , Z

4
t )t≥0 can be absorbed by (0, 0) in finite time with probability 1, so does

(Z1
t , Z

2
t )t≥0. Hence, we will study its long time behavior by the stationary distribution of

its Q-process (see Proposition 4.5.4).

Proof. Let XK
t =

NK
t

K
δx +

MK
t

K
δy in Proposition 4.3.5 and suppose the limiting process

(Xt)t≥0 has the form Xt = Z1
t δx + Z2

t δy. If we take f = 1{x}, then

M f
t = Z1

t − Z1
0 −

∫ t

0

(b(x)− d(x)− α(x, x)Z1
s − α(x, y)Z2

s )Z1
sds

is a continuous martingale with quadratic variation

〈M f〉t = 2

∫ t

0

r(x)Z1
sds.

So, we get process (Z1
t )t ≥ 0 satisfying the equation

dZ1
t = (b(x)− d(x)− α(x, x)Z1

t − α(x, y)Z2
t )Z1

t dt+
√

2r(x)Z1
t dB

1
t

for some standard Brownian motion (B1
t )t≥0. By taking f = 1{y}, we can prove (Z2

t )t≥0

satisfying the equation

dZ2
t = (b(y)− d(y)− α(y, x)Z1

t − α(y, y)Z2
t )Z2

t dt+
√

2r(y)Z2
t dB

2
t ,

where (B2
t )t≥0 is a standard Brownian motion independent from (B1

t )t≥0. �
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4.4 TSS limit for 0 < λ < 1

In this section we will attain the trait substitute sequence model for accelerating expo-
nent λ ∈ (0, 1) by taking a rare mutation limit. Since the fixation probability of the
selectively neutral mutation approaches 0 under the large population limit, the succes-
sive substitutions are not visible any more on a single mutation time scale. Therefore,
we choose the accumulation of mutation time scale as a proper renormalization scale.
Our result proceeds by the way of an intermediate approximation based on the result
in Champagnat [8].

4.4.1 Intermediate-scaling approximation on the mutation time
scale

For any K ∈ N, define

Y K
t :=

{
n0δx, t = 0
n̄(ηKt )δηKt , t > 0

(4.4.1)

where ηK is a Markov jump process starting from x and with an infinitesimal generator:

AKϕ(x) =

∫
Rd

(ϕ(x+ h)− ϕ(x))µ(x)n̄(x)
r(x)

Kλr(x+ h)
[f̄(x+ h, x)]+m(x, dh). (4.4.2)

The next Lemma is used to give an intermediate approximation of XK on the mutation
time scale 1/K1+λuK .

Proposition 4.4.1. Admit assumptions (A1) and (A2). Suppose that XK
0 =

NK
0

K
δx and

are such that
NK

0

K

law→ n0 > 0 as K → +∞. Further suppose that exp{−CK1−λ} � uK �
1

K1+λ lnK
, ∀C > 0.

Then (XK
t/K1+λuK

, t ≥ 0) can be approximated by (Y K
t )t≥0 in the sense of f.d.d., i.e. for

any n ≥ 1, ε > 0, 0 < t1 < t2 < ... < tn <∞, and for any measurable sets Γ1, ...,Γn ⊂ X ,

lim
K→∞

P(∀1 ≤ i ≤ n,∃xi ∈ Γi : Supp(XK
ti/K1+λuK

) = {xi}, |〈XK
ti/K1+λuK

, 1〉 − n̄(xi)| < ε)

P(∀1 ≤ i ≤ n, ηKti ∈ Γi)

= 1.
(4.4.3)

Remark 4.4.2. (a) Since the individual growth rate bK(x) − dK(x) = b(x) − d(x) is
preserved independently from K, the selectively advantageous type evolves like a super-
critical branching process with exponential growth. Thus, the fixation time is of order
lnK. On the other hand, the large population limit of a monomorphic population with-
out mutation is deterministic as the solution of a logistic differential equation (4.3.6).
Thus, it has a locally stable equilibrium density.
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(b) The fixation probability of the slightly advantageous mutant is the surviving prob-
ability of the asymptotic critical branching process:

bK(x+ h)− dK(x+ h)− α(x+ h, x)n̄(x)

bK(x+ h)
∨ 0 =

[f̄(x+ h, x)]+
Kλr(x+ h) + b(x+ h)

while the transition rate is µ(x)n̄(x)r(x) on the mutation time scale O(1/K1+λuK).

The proof of this proposition is similar to the proof in [8, Theorem 1] by just replacing
the auxiliary lemmas with the following ones. Instead of proving the proposition itself,
we list the following results which are crucial for the detailed proof.

Denote by τn the first mutation time after τn−1, n ≥ 1. Denote by θn the first time
after τn when the population gets monomorphic again and γn be the corresponding
survival type. Set τ0 = 0. Inductively, we can define τn, θn, γn, n ≥ 2. Obviously, we
have the relation: θn−1 < τn < θn, n ≥ 2.

We list the following Lemmas to furnish the proof of the Proposition. The first Lemma
gives the characterization of the exponentially distributed waiting time of mutation
occurrence.

Lemma 4.4.3. Under the same condition as in Proposition 4.4.1,

lim
K→+∞

PNK0
K

δx
(τ1 >

t

K1+λuK
) = exp{−n̄(x)µ(x)r(x)t}. (4.4.4)

Lemma 4.4.3 and its counterpart Lemma 4.5.9 for λ = 1 case, can be proved by a
similar approach used in [8, Lemma 2]. The next Lemma characterizes the fixation
probability of the selectively advantageous population in a dimorphic system.

Lemma 4.4.4. Under the same condition as in Proposition 4.4.1, and further assume
NK

0

K

law→ n̄(x). Then,

lim
K→+∞

Kλ · PNK0
K

δx+ 1
K
δx+h

(γ0 = x+ h) =
[f̄(x+ h, x)]+
r(x+ h)

.

Rather than proving this lemma, we will prove its counterpart Lemma 4.5.8 in next
section. The arguments are nearly the same by taking λ in different ranges.

As for the time needed for the process to drift out of the stable equilibrium, we give
the following estimation.

Lemma 4.4.5. Assume the same condition as in Remark 4.3.4 (a). Obviously, n̄ = b−d
α

is the stable equilibrium. ∀ 0 < δ < n̄, define σK = inf{t > 0 :
NK
t

K
∈ [n̄ − δ, n̄ + δ]c}.

For any subset U ⊆ [n̄− δ, n̄+ δ], there exists a constant V̄ > 0, s.t.

lim
K→+∞

inf
x∈U

Px(σK ≥ eK
1−λV̄ ) = 1. (4.4.5)
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Proof. The infinitesimal generator of (
NK
t

K
, t ≥ 0) can be written, for g(·) ∈ C2

b (R),

LKg(z) = (g(z +
1

K
)− g(z))(Kλr + b)Kz

+ g(z − 1

K
)− g(z))(Kλr + d+ αz)Kz

= g′(z)(b− d− αz)z +
Kλr + b

K
[g(z +

1

K
)− g(z)− 1

K
g′(z)]K2z

+
Kλr + d+ αz

K
[g(z − 1

K
)− g(z) +

1

K
g′(z)]K2z. (4.4.6)

Concerning the problem of exit from the domain on the above equation perturbed by
random small noise, we can handle it in the same approach as the following diffusion

dZK
t = (b− d− αZK

t )ZK
t dt+

√
1

K1−λ

√
2rZK

t dBt. (4.4.7)

From the well known Freidlin-Wentzell theory (see [23]), there exists a constant V̄ > 0,
s.t. ∀δ > 0,

lim
K→+∞

inf
x∈U

Px(eK
1−λ(V̄−δ) < σK < eK

1−λ(V̄+δ)) = 1. (4.4.8)

So we can conclude the results.
�

4.4.2 Rescaling on an accumulation of mutations time scale

Theorem 4.4.6 (0 < λ < 1). Admit assumptions (A1) and (A2). Suppose that XK
0 =

NK
0

K
δx and are such that

NK
0

K

law→ n0 > 0, as K → +∞, and exp{−CK1−λ} � uK �
1

K1+λ lnK
, ∀ C > 0. Then, (XK

t/KuK
, t ≥ 0) converges in the sense of f.d.d to

Yt =

{
n0δx, t = 0
n̄(ηt)δηt , t > 0

(4.4.9)

where the Markov jump process (ηt, t ≥ 0) satisfies η0 = x with an infinitesimal genera-
tor:

Aϕ(x) =

∫
Rd

(ϕ(x+ h)− ϕ(x))µ(x)n̄(x)
r(x)

r(x+ h)
[f̄(x+ h, x)]+m(x, dh). (4.4.10)

Remark 4.4.7. For large K, we can see the mutant type evolves as an asymptotic crit-

ical branching process with (K-dependent) fixation probability [f̄(x+h,x)]+
Kλr(x+h)+b(x+h)

while the

accumulation rate of mutants is of order Kλ = K1+λuK
KuK

. Therefore, the total transition

rate is approximated by r(x)
r(x+h)

[f̄(x+ h, x)]+. In other words, the phase transition is not
because the new mutant has absolute preferability than the resident one but because the
mutations occur more intensively.
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Proof. Because of Proposition 4.4.1, in order to prove the convergence from (XK
t/KuK

)t≥0

to (Yt)t≥0, it is sufficient to prove (Y K
t·Kλ)t≥0 converges to (Yt)t≥0.

From (4.4.3), one obtains the following by replacing ti = siK
λ,

lim
K→∞

P(∀1 ≤ i ≤ n,∃xi ∈ Γi : Supp(XK
si/KuK

) = {xi}, |〈XK
si/KuK

, 1〉 − n̄(xi)| < ε)

P(∀1 ≤ i ≤ n, ηK
si·Kλ ∈ Γi)

= 1.
(4.4.11)

Furthermore, it is not hard to prove (ηK
s·Kλ)s≥0 converges to (ηs)s≥0 from the conver-

gence of generators KλAK to A as K →∞. Meanwhile, the convergence from n̄(ηK
s·Kλ)

to n̄(ηs) is implied. As K →∞, the limit of P(∀1 ≤ i ≤ n, ηK
si·Kλ ∈ Γi) exists and

lim
K→∞

P(∀1 ≤ i ≤ n, ηKsi·Kλ ∈ Γi) = P(∀1 ≤ i ≤ n, ηsi ∈ Γi), (4.4.12)

where η is defined as in (4.4.10). By combining (4.4.11) and (4.4.12), one obtains

lim
K→∞

P(∀1 ≤ i ≤ n,∃xi ∈ Γi : Supp(XK
si/KuK

) = {xi}, |〈XK
si/KuK

, 1〉 − n̄(xi)| < ε)

= P(∀1 ≤ i ≤ n, ηsi ∈ Γi),
(4.4.13)

which yields the f.d.d. convergence. �

4.5 Conditioned TSS limit for λ = 1

4.5.1 Birth and death processes in random environments

Kaplan (see [29]) formulated a continuous time branching model in random environments
and gave a sufficient and necessary condition for extinction. In our regime, it is of
particular interest to consider the binary branching case, that is, with linear birth and
death rates. More precisely, one is given a stationary ergodic process (ωt)t≥0 taking
values in R∗+ with the initial distribution π. It amounts to assuming that for process
(Xt)t≥0 both birth rate b(t, ω) and death rate d(t, ω) per individual at time t are specified
by an environmental process ω. For a realization of environmental process ω, we can
get a continuous time non-homogeneous birth and death process as in [25, Chapter 5].
Notice that there are two different sense of probability measures in our framework. One
is probability measure P ω(·) called “quenched” and its corresponding expectation Eω if
the environment ω is specified in advance. Another one is P , which is defined on the
environment space Ω = {(ωt)t≥0 : ω ∈ C([0,+∞),R∗+)}. We denote by P = P ⊗ P ω the
product of measures.

Firstly, we give sufficient and necessary conditions for a.s. extinction as well as the
probability for non-extinction case.

Lemma 4.5.1. Let ρ(ω) := b(0, ω) − d(0, ω). Assume P (X0 = 1) = 1 and 0 is an
absorbing state. Then



70 Chapter 4. Trait substitution sequence with nearly neutral mutations

(i) P ω( lim
t→∞

Xt = 0) + P ω( lim
t→∞

Xt =∞) = 1.

(ii) P ω( lim
t→∞

Xt = 0) = 1 a.e., iff

Eρ(ω) =

∫
(b(0, ω)− d(0, ω))dπ ≤ 0. (4.5.1)

(iii) If Eρ(ω) > 0, then the quenched extinction probability

qω := P ω( lim
t→∞

Xt = 0)

=

∫∞
0
d(t, ω)e

R t
0 (d(τ,ω)−b(τ,ω))dτdt

1 +
∫∞

0
d(t, ω)e

R t
0 (d(τ,ω)−b(τ,ω))dτdt

(4.5.2)

Proof. We can refer to [29] for the proof of (i) and (ii).
From related results of non-homogeneous branching process (Page 104, [25]), we get

the quenched extinction probability with one ancestor initially

qω := P ω( lim
t→∞

Xt = 0) = lim
t→∞

P1,0(t)

= lim
t→∞

∫ t
0
d(s, ω)e

R s
0 (d(τ,ω)−b(τ,ω))dτds

1 +
∫ t

0
d(s, ω)e

R s
0 (d(τ,ω)−b(τ,ω))dτds

.

This concludes the proof of (iii). �

Define TK = inf{t ≥ 0 : Xt = K} and T0 is the extinction time. The following
lemma will give estimation of order of time needed to exceed some given level provided
non-extinction.

Lemma 4.5.2. Assume Eρ(ω) > 0, Eρ(ω)2 <∞. Then,

(i) as t→∞,

(Xt exp(−tEρ))t
−1/2 −→ WeV (4.5.3)

in distribution, where W and V are independent, P(W = 0) = 1 − P(W = 1) =
P( lim

t→∞
Xt = 0) = EP (qω) =: q and V has a normal distribution N (0, σ2).

(ii)

lim
K→∞

P(TK < T0) = 1− q (4.5.4)

∀ tK � lnK, lim
K→∞

P(TK < tK | TK < T0) = 1 (4.5.5)

∀ sK � lnK, lim
K→∞

P(TK > sK | TK < T0) = 1 (4.5.6)
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Remark 4.5.3. Actually, (i) is deduced by the central limit theorem for lnXt (see [30,
31]). Heuristically, it can be written as

Xt ∼ WetEρ+t1/2V+◦(t1/2) for large t. (4.5.7)

We see that, provided non-extinction (W = 1), the process (Xt)t≥0 behaves almost like
an exponential growth model.

(4.5.5) and (4.5.6) together give a sharp estimation of order of the hitting time TK,
which is O(lnK).

Proof. Proof of (ii).

lim
K→∞

P(TK < T0) = P(T0 =∞) = P( lim
t→∞

Xt =∞)

= 1− q

Now we prove (4.5.5). ∀ tK � lnK,

lim
K→∞

P(TK < tK | TK < T0) = lim
K→∞

P(XtK > K | TK < T0)

= lim
K→∞

P(WetKEρ > K | W = 1)

= 1

where the second equal sign is due to (4.5.3).
The proof of (4.5.6) is similar. �

4.5.2 Fixation and extinction analysis

According to Lemma 4.3.10, each equation in (4.3.20) defines its Q-process and the
Q-processes have stationary distributions as random variables n(x) and n(y) defined
in Remark 4.3.11. The following results provide us a non-coexistence condition for a
dimorphic system based on the results in Section 4.5.1. In contrast to the deterministic
fitness function defined in [8], the fitness function here will be random.

Proposition 4.5.4 (non-coexistence condition). Consider Lotka-Volterra type Feller
diffusion (Z1

t , Z
2
t )t≥0 (see (4.3.19)) conditioned to be never attaining (0,0) (Z1

t +Z2
t > 0),

starting with some positive initial state (z1
0 , z

2
0). Assume

Ef(x, y)f(y, x) < 0, (4.5.8)

where
f(x, y) = b(x)− d(x)− α(x, y)n(y),
f(y, x) = b(y)− d(y)− α(y, x)n(x).

(4.5.9)

Then, the Q-process (Z1
t , Z

2
t )↑t≥0 of (Z1

t , Z
2
t )t≥0 has stationary distribution as (0, n(y))

or (n(x), 0), depending on whether Ef(y, x) > 0 or Ef(x, y) > 0 resp. More precisely,



72 Chapter 4. Trait substitution sequence with nearly neutral mutations

(i)

P
(
(Z1

t , Z
2
t )↑

L→ (n(x), 0) or (0, n(y))
)

= 1. (4.5.10)

(ii)

P
(
(Z1

t , Z
2
t )↑

L→ (0, n(y))
)

= 1{Ef(x,y)<0}

P
(
(Z1

t , Z
2
t )↑

L→ (n(x), 0)
)

= 1{Ef(y,x)<0}.
(4.5.11)

Proof. (i) Because of the stochastic domination in (4.3.20), for the double variables
system (Z1

t , Z
2
t )t≥0 conditioned on never absorbed by (0, 0), the union of axes R∗+ × 0 ∪

0× R∗+ is accessible and absorbing. And its complementary set is transient.
(ii)According to the definition of Q-process, we have

P
(
(Z1

t , Z
2
t )↑

L→ (0, n(y))
)

= P
(
(Z1

t , Z
2
t
↑
)
L→ (0, n(y))

)
. (4.5.12)

Therefore, it is sufficient to prove

P
(
(Z1

t , Z
2
t
↑
)
L→ (0, n(y))

)
= 1{Ef(x,y)<0}. (4.5.13)

Obviously, by neglecting some terms in (4.3.19), we get the following stochastic domi-
nation relation: (

Z1
t , Z

2
t

)
�
(
Z5
t , Z

4
t

)
, (4.5.14)

where {
dZ5

t = (b(x)− d(x)− α(x, y)Z4
t )Z5

t dt+
√

2r(x)Z5
t dB

1
t

dZ4
t = (b(y)− d(y)− α(y, y)Z4

t )Z4
t dt+

√
2r(y)Z4

t dB
2
t .

(4.5.15)

Then, it implies (
Z1
t , Z

2
t
↑) � (Z5

t , Z
4
t
↑)
, (4.5.16)

where Z5
t is the updated solution by substituting coefficient Z4

t with Z4
t
↑
, i.e.

dZ5
t = (b(x)− d(x)− α(x, y)Z4

t
↑
)Z5

t dt+
√

2r(x)Z5
t dB

1
t . (4.5.17)

By Lemma 4.3.10, we get Z4
t
↑

converges in distribution to a random variable n(y) gov-
erned by measure π(y). So, we can view Z5

t as a continuous state branching process
in random environments. If the drift coefficient satisfies Ef(x, y) < 0, it means Z5

t is
subcritical and further implies

P
(
Z5
t → 0

)
= 1. (4.5.18)

Then, by (4.5.16), we have P
(
Z1
t → 0

)
= 1. Finally, it follows

P
(
(Z1

t , Z
2
t
↑
)
L→ (0, n(y))

)
= 1{Ef(x,y)<0}. (4.5.19)

The other formula can be proved similarly. �
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Let’s denote by Assumption (B) the following: for any x ∈ X ,

b(x) ≡ b, d(x) ≡ d, α(x, x) ≡ α, r(x) ≡ r.

This assumption guarantees that the killing rate of logistic Feller diffusion (its minimal
positive spectrum) is independent of the traits (refer to [7]). Unfortunately, this condi-
tion is very restrictive. However, the interspecific competition parameter is still free of
choice.

Under the above assumptions, we can get the main result of this section.

Theorem 4.5.5 (λ = 1). Admit assumptions (A1), (A3) and (B). Denote by βK1 , . . . , β
K
l

the occurrence times of the first l successful mutations of XK
·/KuK and β1, . . . , βl of the

first l jump times of the process V defined in Definition 4.2.2. Let P be the distribution
of the process V .

Suppose that XK
0 =

NK
0

K
δx and are such that

NK
0

K

law→ n0 > 0 as K → +∞, and
K2uK � 1

lnK
. Then, for any l ∈ N, and 0 = t0 < t1 < . . . < tl = t, and for any

measurable subsets A1, . . . , Al of R∗+, B1, B2, . . . , Bl of X ,

lim
K→∞

P
(

there exist merely l successful mutations before time t, such that ∀1 ≤ i ≤ l,

βKi ∈ (ti−1, ti); ∃xi ∈ Bi : Supp(XK
ti/KuK

) = xi; 〈XK
ti/KuK

, 1〉 ∈ Ai
∣∣ 〈XK

t/KuK
, 1〉 > 0

)
= P

(
there exist merely l successful mutations before time t, such that ∀1 ≤ i ≤ l,

βi ∈ (ti−1, ti); ηti ∈ Bi; n(ηti) ∈ Ai
)
.

(4.5.20)

Remark 4.5.6. We divide the entire invasion process into three steps:

(a) Quasi-stationary behavior of resident type before the first mutation.
Suppose there is a single type x initially. Conditioned on non-extinction, its long
time behavior can be characterized by the stationary distribution of its Q-process,
which is governed by the invariant measure π(x)(·) as in Remark 4.3.11. By ergodic
theorem, we will see that the first mutation happens asymptotically in exponentially
distributed time with a parameter γ(x). Since 1/K2uK � lnK, one obtains that〈
XK

βK1 −
KuK

, 1

〉
, conditioned on non-extinction, converges a random variable with a

biased distribution of stationary size n(x).

(b) Population arising from new mutant evolves in stationary random
environments constituted by the resident type. Short after there comes
a mutant, we can view mutant population (x + h) evolving in stationary random
environments constituted by resident type x. The environmental process has initial
distribution π(x). According to Lemma 4.5.1, either the mutant type is subcritical,
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i.e.
Eρ(ω) = E

(
b(0, ω)− d(0, ω)

)
= E

(
b(x+ h)− (d(x+ h) + α(x+ h, x)n(x))

)
= Ef(x+ h, x) < 0,

(4.5.21)

then it dies out with probability 1, or the mutant type is supercritical (Eρ(ω) =
Ef(x+ h, x) > 0), then we get the quenched probability for the population (x+ h)
to reach some given ε−level is (1−qω). As for the latter case, according to Lemma
4.5.2, the time needed for population (x+h) to exceed the ε−level is of order lnK.

(c) Extinction of disadvantageous type. Suppose that we have condition Ef(x+
h, x) > 0, Ef(x, x + h) < 0. Once mutant type population reaches ε−level,
according to Proposition 4.5.4, the two-type population process conditioned on
never absorbed by (0, 0) would converge in distribution to a stationary distribution
(0, n(x + h)) with probability 1. That is the so-called “invasion implies fixation”
principle. In all, the entire invasion period takes time of order lnK.

As in Section 4.4.1, we endow (τn, θn, γn)n≥0 with the same explanation. In parallel,
we list the following Lemmas to furnish the proof of the main theorem. Lemma 4.5.8
gives the fixation probability which is of order 1/K. Lemma 4.5.9 gives the right time
scale of the mutation occurrence governed by exponential distribution.

Lemma 4.5.7. Consider the processes ZK
· and Z· given in Corollary 4.3.8 and Corollary

4.3.12. Then it implies that ZK
·
↑

converges weakly Z·
↑ as K →∞.

Proof. Due to similarity, we just prove the case in Corollary 4.3.8. For any Borel B ∈
C([0,+∞),R∗+),

lim
K→∞

P(ZK
·
↑ ∈ B)

= lim
K→∞

lim
s→∞

P(ZK
· ∈ B | T

(K)
0 > s)

= lim
K→∞

lim
s→∞

P(ZK
· ∈ B, T

(K)
0 > s)

P(T
(K)
0 > s)

= lim
s→∞

P(Z· ∈ B, T0 > s)

P(T0 > s)

= P(Z↑· ∈ B)

(4.5.22)

where T
(K)
0 denotes the hitting time of 0 by ZK

· and T0 denotes the one by Z·. �

Lemma 4.5.8. Under the same condition as in Theorem 4.5.5, consider the processes
defined in Corollary 4.3.12.

(i) If Ef(x+ h, x) < 0, then for any z > 0,

lim
K→∞

Pzδx+ 1
K
δx+h

(
(Z1,K

t , Z2,K
t )↑

L→ (n(x), 0)
)

= 1. (4.5.23)
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(ii) If Ef(x+ h, x) > 0, then for any z > 0,

lim
K→∞

K · Pzδx+ 1
K
δx+h

(
(Z1,K

t , Z2,K
t )↑

L→ (0, n(x+ h))
)

=

∫
C([0,+∞),R∗+)

Q(x)
z (dω)

(
r(x+ h)

∫ ∞
0

exp
{
− (tb(x+ h)− td(x+ h)−

∫ t

0

α(x+ h, x)ωτ (x)dτ)
}
dt
)−1

=: gx(z, h).

Proof. As analyzed in Remark 4.5.6, after there comes a mutant type (x + h), the
population of type (x + h) can be approximated by a birth and death process evolving
in random environments constituted by resident population x. The proof of (i) is simply
implied in Remark 4.5.6 (b). We only need to prove (ii). Obviously, one has

Pzδx+ 1
K
δx+h

(
(Z1,K

t , Z2,K
t )↑

L→ (0, n(x+ h))
)

= EQ(x)

[
P ω
zδx+ 1

K
δx+h

(
(Z1,K

t , Z2,K
t )↑

L→ (0, n(x+ h))
)]
.

(4.5.24)

By a similar arguments as in [8], as analyzed in Remark 4.5.6, the fixation probability
of population (x+h) issued from a single mutant is the probability for it to exceed some

given ε−level. Denote by T
(x)
k the hitting time of level k by population of type x. By

Markov property, for given environment ω, one obtains

lim
K→∞

K · P ω
zδx+ 1

K
δx+h

(
(Z1,K

t , Z2,K
t )↑

L→ (0, n(x+ h))
)

= lim
K→∞

K · P ω
zδx+ 1

K
δx+h

(
(Z1,K

t , Z2,K
t )↑

L→ (0, n(x+ h)) | T (x+h)
bεKc < T

(x+h)
0

)
· P ω

zδx+ 1
K
δx+h

(T
(x+h)
bεKc < T

(x+h)
0 )

= lim
K→∞

K · Pzδx+εδx+h

(
(Z1

t , Z
2
t )↑ → (0, n(x+ h))

)
· P ω

zδx+ 1
K
δx+h

(T
(x+h)
bεKc < T

(x+h)
0 )

= 1{Ef(x,x+h)<0} · lim
K→∞

K · P ω
zδx+ 1

K
δx+h

(T
(x+h)
bεKc < T

(x+h)
0 )

= lim
K→∞

K · P ω
zδx+ 1

K
δx+h

(T
(x+h)
bεKc < T

(x+h)
0 )

(4.5.25)
where the second equality is due to Lemma 4.5.7 and the third equality is due to Propo-
sition 4.5.4 (ii). By substituting back into (4.5.24), the proof ends up.

For Lemma 4.5.1 (iii), one gets b(t, ω) ≡ Kr(x+ h) + b(x+ h) and d(t, ω) = Kr(x+



76 Chapter 4. Trait substitution sequence with nearly neutral mutations

h) + d(x+ h) + α(x+ h, x)ωt(x). From Lemma 4.5.2 (ii), one obtains, for Q(x)− a.s.,

lim
K→∞

K · P ω
zδx+ 1

K
δx+h

(T
(x+h)
bεKc < T

(x+h)
0 )

= lim
K→∞

K(1− qω)

= lim
K→∞

K
(

1−
∫∞

0
d(t, ω)e

R t
0 (d(τ,ω)−b(τ,ω))dτdt

1 +
∫∞

0
d(t, ω)e

R t
0 (d(τ,ω)−b(τ,ω))dτdt

)
= lim

K→∞
K
(

1 +

∫ ∞
0

(Kr(x+ h) + d(x+ h) + α(x+ h, x)ωt)

× exp
{
− (tb(x+ h)− td(x+ h)−

∫ t

0

α(x+ h, x)ωτ (x)dτ)
}
dt
)−1

=
(
r(x+ h)

∫ ∞
0

exp
{
− (tb(x+ h)− td(x+ h)−

∫ t

0

α(x+ h, x)ωτ (x)dτ)
}
dt
)−1

.

It eventually follows the conclusion by substituting above equation back into (4.5.25).
�

Lemma 4.5.9. Under the same condition as in Theorem 4.5.5,

(
βK1 ,

〈
XK

βK1 −
KuK

, 1

〉)

conditioned on event

{〈
XK

βK1
KuK

, 1

〉
> 0

}
converges to a couple of independent random

variables (β1, ξ(x)), where β1 is exponentially distributed with parameter γ(x) defined in
(4.2.5), and ξ(x) is obtained as a biased distribution of n(x):

P (ξ(x) ∈ dz) =
zgx(z)π(x)(dz)

E [n(x)gx(n(x))]
(4.5.26)

.

Proof. Denote by ZK
t

KuK

=

〈
XK

t
KuK

, 1{x}

〉
for t < βK1 . For any bounded measurable

function φ on R∗+,

lim
K→∞

E

[
φ

(〈
XK

βK1 −
KuK

, 1

〉)
, βK1 < t

∣∣∣ 〈XK
βK1
KuK

, 1

〉
> 0

]

= lim
K→∞

lim
∆t→0

E

[
φ

(
ZK
βK1 −∆t

KuK

)
, βK1 < t

∣∣∣ ZK
βK1 −∆t

KuK
+ ∆t
KuK

> 0

]

= lim
K→∞

µ(x)r(x)

∫ t

0

dsE
[
φ
(
ZK

s
KuK

↑
)
ZK

s
KuK

↑
gx

(
ZK

s
KuK

↑
)

exp
(
−KuKµ(x)r(x)

∫ s/KuK

0

ZK
u

↑
gx(Z

K
u

↑
)du
)]

(4.5.27)
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= µ(x)r(x)

∫ t

0

dsE [φ(n(x))n(x)gx(n(x))] exp (−sµ(x)r(x)E [n(x)gx(n(x))])

=
E [φ(n(x))n(x)gx(n(x))]

E [n(x)gx(n(x))]

∫ t

0

γ(x)e−γ(x)sds

(4.5.28)

where the second equality above is due to definition of Q-process. The third equality is

due to Lemma 4.5.7, and one obtains KuK
∫ s/KuK

0
ZK
u
↑
gx(Z

K
u
↑
) → E[n(x)gx(n(x))] a.s.

as K →∞ by applying ergodic theorem on the Q-process. �

Proof of Theorem 4.5.5. Let Px denote the law of Vt as defined in Definition 4.2.2 with
Supp(V0) = η0 = x. For any i ≥ 1, any fixed t > 0, measurable subset A ⊂ R∗+ and
B ⊂ X , applying the strong Markov property at β1

Px (βi < t < βi+1,∃y ∈ B : Vt = n(y)δy, n(y) ∈ A)

=

∫ t

0

γ(x)e−sγ(x)ds

∫
Rd

Px+h (βi−1 < t− s < βi,∃y ∈ B : Vt = n(y)δy, n(y) ∈ A)

× E
[
gx(ξ(x), h)

gx(ξ(x))

]
m(x, dh).

(4.5.29)
In particular,

Px (0 < t < β1,∃y ∈ B, n(y) ∈ A) = 1{x∈B}e
−tγ(x) ×P(n(x) ∈ A). (4.5.30)

A finite dimensional distribution of the process V can be fully characterized by the two
relations above. The idea to prove the Theorem is to show that the same relations
hold for process XK

·/KuK , conditioned on some event, when we replace βi by βKi and the

support of Vt by the support of XK
·/KuK in the limit K → ∞. More precisely, we have

the following claim, which will be proved later.

Claim 4.5.10. Admit same conditions as in Theorem 4.5.5, and βK0 = 0. For any
i ≥ 0,

pi(t, A,B, x)
def
= lim

K→∞
PNK0

K
δx

(
βKi < t < βKi+1,∃y ∈ B : XK

t
KuK

=

〈
XK

t
KuK

, 1

〉
δy,〈

XK
t

KuK

, 1

〉
∈ A

∣∣∣ 〈XK
βK
i+1
KuK

, 1

〉
> 0
)

exists and satisfies the following relation, for i ≥ 1,

pi(t, A,B, x) =

∫ t

0

γ(x)e−γ(x)sds

∫
Rd
pi−1(t− s, A,B, x+ h)E

[
gx(ξ(x), h)

gx(ξ(x))

]
m(x, dh)

(4.5.31)

p0(t, A,B, x) = 1{x∈B}e
−tγ(x) × P(n(x) ∈ A). (4.5.32)
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By comparing chain relations (4.5.29), (4.5.30) with (4.5.31) and (4.5.32), one obtains
that

pi(t, A,B, x) = Px (βi < t < βi+1,∃y ∈ B : Vt = n(y)δy, n(y) ∈ A) , i ≥ 0. (4.5.33)

For any measurable subsets A1, . . . , Al of R∗+, B1, B2, . . . , Bl of X ,

lim
K→∞

P
(

there exist merely l successful mutations before time t, such that ∀1 ≤ i ≤ l,

βKi ∈ [ti−1, ti); ∃xi ∈ Bi : Supp(XK
ti/KuK

) = xi; 〈XK
ti/KuK

, 1〉 ∈ Ai
∣∣ 〈XK

t/KuK
, 1〉 > 0

)
= lim

K→∞
P
(
∀0 ≤ i ≤ l − 1, βKi < ti ≤ βKi+1;

∃xi ∈ Bi : Supp(XK
ti/KuK

) = xi; 〈XK
ti/KuK

, 1〉 ∈ Ai
∣∣ 〈XK

t/KuK
, 1〉 > 0

)
= lim

K→∞

l−1∏
i=0

P
(
βKi < ti ≤ βKi+1; ∃xi ∈ Bi : Supp(XK

ti/KuK
) = xi; 〈XK

ti/KuK
, 1〉 ∈ Ai;

〈XK
βKi+1/KuK

, 1〉 > 0; 〈XK
t/KuK

, 1〉 > 0
) /

P
(
〈XK

t/KuK
, 1〉 > 0

)
= lim

K→∞

l−1∏
i=0

[
P
(
βKi < ti ≤ βKi+1; ∃xi ∈ Bi : Supp(XK

ti/KuK
) = xi; 〈XK

ti/KuK
, 1〉 ∈ Ai∣∣∣ 〈XK

βKi+1/KuK
, 1〉 > 0

)
· PXK

βK
i
/KuK

(
〈XK

βKi+1/KuK
, 1〉 > 0

) ]
· PXK

βK
l
/KuK

(
〈XK

t/KuK
, 1〉 > 0

)/
P
(
〈XK

t/KuK
, 1〉 > 0

)

=
l−1∏
i=0

P
(
βi < ti ≤ βi+1; ηti ∈ Bi; n(ηti) ∈ Ai

)
· lim
K→∞

l−1∏
i=0

PXK

βK
i
/KuK

(
〈XK

βKi+1/KuK
, 1〉 > 0

)
P
(
〈XK

t/KuK
, 1〉 > 0

)
· PXK

βK
l
/KuK

(
〈XK

t/KuK
, 1〉 > 0

)
= P

(
∀0 ≤ i ≤ l − 1, βi < ti ≤ βi+1; ηti ∈ Bi; n(ηti) ∈ Ai

)
= P

(
there exist merely l successful mutations before time t, such that ∀1 ≤ i ≤ l,

βi ∈ [ti−1, ti); ηti ∈ Bi; n(ηti) ∈ Ai
)
.

In above arguments, the third equal sign is due to strong Markov property at βKi /KuK
for any 1 ≤ i ≤ l, the fourth one can be deduced from (4.5.33), and the fifth equal sign
arises from the following argument.

In fact, conditioned on Supp(XK
ti/KuK

) = xi for 0 ≤ i ≤ l − 1,

PXK

βK
i
/KuK

(
〈XK

βKi+1/KuK
, 1〉 > 0

)
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can be expressed in terms of the killing rate κ(xi) which is determined by spectral
analysis developed in [7], i.e.

PXK

βK
i
/KuK

(
〈XK

βKi+1/KuK
, 1〉 > 0

)
' e

−κ(xi)
βKi+1−β

K
i

KuK for large K, (4.5.34)

PXK

βK
l
/KuK

(
〈XK

t/KuK
, 1〉 > 0

)
' e

−κ(xl)
t−βKl
KuK for large K. (4.5.35)

Due to assumption (B), one can conclude that the killing rate of any type is the same
constant κ. For instance, as in previous approximation, κ(xi) ≡ κ for 1 ≤ i ≤ l.
Furthermore,

P
(
〈XK

t
KuK

, 1〉 > 0

)
'

∞∑
l=1

ml exp

(
−

l−1∑
j=0

κ(x
(l)
j )(βKj+1 − βKj )/KuK

)
· exp

(
−κ(x

(l)
l )(t− βKl )/KuK

)
≡

∞∑
l=1

ml exp (−κt/KuK)

= e−κt/KuK

(4.5.36)

where {ml}l∈N denotes the probability in which the number of successful mutations

before time t/KuK is l, and x
(l)
j , 1 ≤ j ≤ l, denote the l successful mutant traits. Thus,

one can conclude

lim
K→∞

l−1∏
i=0

PXK

βK
i
/KuK

(
〈XK

βKi+1/KuK
, 1〉 > 0

)
P
(
〈XK

t/KuK
, 1〉 > 0

) · PXK

βK
l
/KuK

(
〈XK

t/KuK
, 1〉 > 0

)

= lim
K→∞

l−1∏
i=0

e
−κ(xi)

βKi+1−β
K
i

KuK · e−κ(xl)
t−βKl
KuK

e−κt/KuK

= 1

(4.5.37)

�

To close the proof of the Theorem, we just need to prove the Claim stated in above
proof by induction methods over i ≥ 0.

Proof of Claim 4.5.10. We first prove an easy result.

p0(t, A,B, x)

def
= lim

K→∞
PNK0

K
δx

(
0 < t < βK1 , ∃y ∈ B : XK

t
KuK

=

〈
XK

t
KuK

, 1

〉
δy,

〈
XK

t
KuK

, 1

〉
∈ A

∣∣∣ 〈XK
βK1
KuK

, 1

〉
> 0

)
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= lim
K→∞

1{x∈B}E

[
1
{

*
XK

t
KuK

,1

+
∈A}

exp

(
−µ(x)r(x)KuK

∫ t/KuK

0

〈XK
s , 1〉gx(〈XK

s , 1〉)ds

)
∣∣∣ 〈XK

βK1
KuK

, 1

〉
> 0

]
= 1{x∈B}P(n(x) ∈ A) exp (−tµ(x)r(x)E [n(x)gx(n(x))]) ,

in the last line where it holds due to the ergodic theorem .
Let

pKi (t, A,B, ν) := Pν
(
βKi < t < βKi+1, ∃y ∈ B : XK

t
KuK

=

〈
XK

t
KuK

, 1

〉
δy,〈

XK
t

KuK

, 1

〉
∈ A

∣∣∣ 〈XK
βK
i+1
KuK

, 1

〉
> 0
)
.

Suppose that pi−1(t, A,B, x) = lim
K→∞

pKi−1(t, A,B, nδx) exists. To the end, we need

prove lim
K→∞

pKi (t, A,B, nδx) exists.

By applying strong Markov property two times,we have

pKi (t, A,B, nδx) =

∫
Rd

Enδx

[
1{βK1 <t} · pKi−1

(
t− βK1 , A,B,

〈
XK

βK1 −
KuK

, 1

〉
δx +

1

K
δx+h

)

·
gx

(〈
XK

βK1 −
KuK

, 1

〉
, h

)

gx

(〈
XK

βK1 −
KuK

, 1

〉) ·m(x, dh)
∣∣∣ 〈XK

βK
i+1
KuK

, 1

〉
> 0

]

=

∫
Rd

Enδx

[
1{βK1 <t} · pKi−1

(
t− βK1 −KuKρ0, A,B, 〈XK

ρ0
, 1〉δx+h

)

·
gx

(〈
XK

βK1 −
KuK

, 1

〉
, h

)

gx

(〈
XK

βK1 −
KuK

, 1

〉) ∣∣∣∣∣
〈
XK

βK
i+1
KuK

, 1

〉
> 0

]
m(x, dh),

(4.5.38)
where ρ0 is the fixation time of type x+ h.

Applying Lemma 4.5.9 to terms on RHS of the above equation, we obtain

lim
K→∞

pKi (t, A,B, nδx) =

∫ t

0

dsγ(x)e−sγ(x)

·
∫

Rd
pi−1(t− s, A,B, x+ h)E

[
gx(ξ(x), h)

gx(ξ(x))

]
m(x, dh).

(4.5.39)

�



5 Fluctuation limit of a locally
regulated population

We consider a locally regulated spatial population model introduced by Bolker and
Pacala. Based on the deterministic approximation obtained by Fournier and Méléard,
a fluctuation theorem is proved under a second order moment condition. The limiting
process is justified to be an infinite-dimensional Gaussian process solving a generalized
Langevin equation. In particular, we further study its properties in the one dimensional
setting. Finally, we consider the stationary behavior of the Bolker-Pacala processes and
its fluctuation limit under some specific conditions. We prove that the fluctuation limit
and the long term limit are interchangeable.

5.1 Introduction

It is well known that branching processes have been widely used to model the evolu-
tion in biological populations. If, in addition, the individuals are assumed to follow
some independent motions (like Brownian motion or random walks), the system can be
approximated by the so-called Dawson-Watanabe superprocess (refer to [15, 18, 37]).
The most common feature of these processes is that branching and spatial motion are
independent.

Since individuals can reproduce, mutate and die in varying rates according to their
different quantitative characteristics (phenotypes), one reasonable improvement we can
make is to add spatial components to both branching and dispersal parameters. Nev-
ertheless, the spatial-dependent components destroy the independent relationship be-
tween branching and dispersal while bringing us abundant information from the phe-
notypic point of view, and even though, the model is still deficient: such as in the
finite-dimensional branching process model, a population either dies out or escapes to
infinity, depending on the mean matrix of its offspring distribution. The model thus can
not predict a non-trivial equilibrium which actually happens quite often in the biological
world. Bolker and Pacala [4] propose a self-regulated model which attains the above
two improved features. By employing the idea of the ordinary logistic growth equation,
they introduce a competition term in the density-dependent population, which can help
us to build some equilibria under specific conditions. However, the loss of branching
property can also cause some new technical difficulties when we study some properties
such as weak convergence from branching particle systems to a continuum limit.

Law and Dieckmann [35] study this model in parallel with Bolker and Pacala [4]. We
simply call it BPDL model. In recent years, this model has been extensively studied by
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Etheridge [19], Fournier and Méléard [22], Champagnat [8], Lambert [33], Dawson and
Greven [16]. Etheridge [19] studies two diffusion limits, one is a stepping stone version
of the BPDL model (interacting diffusions indexed by Zd) and another is a superpro-
cess version of it. In that paper, sufficient conditions are given for survival and local
extinction. Fournier and Méléard [22] formulate a pathwise construction of the BPDL
process in terms of Poisson point processes. Under the finiteness of third moment con-
dition, they rigorously obtain a deterministic approximation (law of large numbers) of
the BPDL processes from a macroscopic perspective. Our work originates from Bolker
and Pacala [4] and is based on the formalization of Fournier and Méléard [22]. In the
papers Champagnat [8], Champagnat and Méléard [10], Dawson and Greven [16], they
investigate long term behaviors by the method of multiple time scale analysis in respec-
tive populations.

In this paper we aim to present and prove the fluctuation limits in an unified gen-
eral framework, which covers the cases mentioned above, including applications in the
derivative models studied by referred authors. As for a sequence of density-dependent
population processes with only finite-many types of individuals, Kurtz [32] proves its
central limit theorem, which is characterized by some finite-dimensional diffusion pro-
cess. As for infinite-dimensional population models, Gorostiza and Li [24] prove the
high-density fluctuations of a branching particle system with immigration, where they
use the classical Laplace transform method owing to the branching property. In our
setting, this approach doesn’t work anymore due to the loss of branching property.

The remainder of the paper is structured as follows. In Section 5.2, we list some
preliminary results on the model and give the fluctuation theorem. We recall the law of
large numbers of the BPDL processes under a finite second moment rather than a third
moment condition as in Fournier and Méléard [22]. In Section 5.3, in order to better un-
derstand the limiting process, we justify it to be the solution of an infinite-dimensional
inhomogeneous Langevin equation, which can be viewed as living in a deterministic
medium. Concerning applications, we will explore them in two directions as follow-
ing. In Section 5.3.2, we consider a degenerate case, the one dimensional version of the
fluctuation limit. A precise characterization of the fluctuating diffusion is given as a
time-inhomogeneous Ornstein-Uhlenbeck process. We study its stationary distribution
as well. In Section 5.4, we consider the stationary behavior in a specific setting. The so-
lution of the above Langevin equation turns out to have a well-defined stationary limit.
We show that this limit coincides with the one obtained by first letting time tending to
infinity in the original BPDL processes and then attaining its fluctuation limit. In some
sense, this interchangeability of limits also extends our fluctuation theorem from time
interval [0,∞) to time interval [0,∞]. In Section 5.5, we provide the proofs on the tight-
ness and the finite-dimensional convergence based on moment estimates in subsequent
sections.
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5.2 Model and main results

5.2.1 Notations and description of the processes

Following [4], we assume the population at time t is composed of a finite number I(t) of
individuals characterized by their phenotypic traits x1(t), · · · , xI(t)(t) taking values in a
compact subset X of Rd.
We denote by MF (X ) the set of finite measures on X (including negative measures).
Let Ma(X ) ⊂MF (X ) be the set of counting measures on X :

Ma(X ) =

{
n∑
i=1

δxi : x1, · · · , xn ∈ X , n ∈ N

}
.

Then, the population process can be represented as:

νt =

I(t)∑
i=1

δXi(t).

Let B(X ), C∞(X ) denote the totality of functions on X that are bounded measurable,
and infinitely differentiable, respectively. Let S(X ) denote the Schwartz space of (in-
finitely differentiable, rapidly decreasing) testing functions on X whose topological dual
space is S ′(X ), and 〈·, ·〉 the canonical bilinear form on S ′(X )×S(X ). When µ ∈ S ′(X )
is a (signed) measure, then 〈µ, φ〉 =

∫
φdµ, φ ∈ S(X ).

Let’s specify the population processes (νnt )t>0 by introducing a sequence of biological
parameters, for n∈ N:

• bn(x) is the rate of birth from an individual with trait x.

• dn(x) is the rate of death of an individual with trait x because of “aging”.

• αn(x, y) is the competition kernel felt by some individual with trait x from another
individual with trait y.

• Dn(x, dz) is the children’s dispersion law from the mother with trait x. In partic-
ular, it can be decomposed into two parts-a majority of clonal copies and a small
portion of mutants based on birth, i.e.

Dn(x, dz) = (1− ε)1z=0 + εmn(x, dz)1z 6=0. (5.2.1)

Here, mn(x, dz) is the probability density of mutation, which satisfies∫
z∈Rd,x+z∈X

mn(x, dz) = 1.

We will omit the superscript ε in Dn in the sequel when this leads no ambiguity.
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Fournier and Méléard [22] has formulated a pathwise construction of the BPDL process
{(νnt )t≥0;n ∈ N} in terms of Poisson random measures and justified its infinitesimal
generator defined for any Φ ∈ B(Ma(X )):

Ln0 Φ(ν) =

∫
X
ν(dx)

∫
Rd

(
Φ(ν + δx+z)− Φ(ν)

)
bn(x)Dn(x, dz)

+

∫
X
ν(dx)

(
Φ(ν − δx)− Φ(µ)

)(
dn(x) +

∫
X
αn(x, y)ν(dy)

)
.

(5.2.2)

The first term is used to model birth events, while the second term which is nonlinear
is interpreted as natural death and competing death.
Instead of studying the original BPDL processes defined by (5.2.2), our goal is to study
the rescaled processes

Xn
t :=

νnt
n
, t ≥ 0 (5.2.3)

since it provides us a macroscopic approximation when we take the large population
limits (we will see later, the initial population is proportional to n in some sense).
The infinitesimal generator of the rescaled BPDL process has the form, for any Φ ∈
B(MF (X )):

LnΦ(µ) =

∫
X
nµ(dx)

∫
Rd

(
Φ(µ+

δx+z

n
)− Φ(µ)

)
bn(x)Dn(x, dz)

+

∫
X
nµ(dx)

(
Φ(µ− δx

n
)− Φ(µ)

)(
dn(x) +

∫
X
αn(x, y)nµ(dy)

)
.

(5.2.4)

5.2.2 Preliminary results

Let’s denote by (A) the following assumptions:
(A1) There exist b(x), d(x), m(x, dy), α(x, y) ∈ C∞(X ) such that, for x, y ∈ X , n ∈

N,
0 < bn(x) ≡ b(x), 0 < dn(x) ≡ d(x), mn(x, dz) ≡ m(x, dz),

0 < αn(x, y) =
α(x, y)

n
.

(A2) b(x)− d(x) > 0.

The first assumption implies that there exist constants b̄, d̄, ᾱ such that b(x) ≤
b̄, d(x) ≤ d̄, α(x, y) ≤ ᾱ.

By neglecting the high order moment, Bolker and Pacala [4] use the “moment closure”
procedure to approximate the stochastic population processes. As we can see from the
generator formula (5.2.4), it should be enough to “close” the second order moment due
to the quadratic nonlinear term. Actually, we indeed can improve the result of Fournier
and Méléard by giving a second moment condition sup

n≥1
E〈Xn

0 , 1〉2 < ∞ rather than

the finiteness of the third moment condition. Since there is no essential difficulty in the
improved proof, we only list the result here without giving the detailed proof repeatedly.



5.2. Model and main results 85

Theorem 5.2.1 (Fournier and Méléard [22], convergence to an integrodifferenial equa-
tion). Under the assumption (A1), and consider the sequence of processes (Xn

t )t≥0 de-
fined in (5.2.3). Suppose that (Xn

0 ) converges in law to some deterministic finite measure
X0 ∈ MF (X ) as n → ∞ and satisfies sup

n≥1
E〈Xn

0 , 1〉2 < ∞. Then, a sequence of pro-

cesses (Xn
t )t≥0 converges in law as n → ∞, on D([0,∞),MF (X )), to a deterministic

measure-valued process (Xt)t≥0 ∈ C([0,∞),MF (X )), where (Xt)t≥0 is an unique solu-
tion satisfying

sup
t∈[0,T ]

〈Xt, 1〉 <∞, (5.2.5)

and for any φ ∈ B(X ),

〈Xt, φ〉 =〈X0, φ〉+

∫ t

0

ds

∫
X
Xs(dx)b(x)

∫
Rd
φ(x+ z)D(x, dz)

−
∫ t

0

ds

∫
X
Xs(dx)φ(x)

(
d(x) +

∫
X
α(x, y)Xs(dy)

)
.

(5.2.6)

Finally, it turns out a natural question: how does (Xn
t )t≥0 fluctuate around the macro-

scopic limit (Xt)t≥0 given above? A natural candidate to investigate is the centralized
processes sequence:

Y n
t :=

νnt − nXt√
n

=
√
n(Xn

t −Xt). (5.2.7)

In the following proposition, we will give some martingale properties of the processes
(Y n

t )t≥0, which will play a key role in the proof of the main theorem.

Proposition 5.2.2. Admit the same assumptions as in Theorem 5.2.1. For fixed n ∈ N
and φ ∈ B(X ), the process

Mn
t (φ) :=〈Y n

t , φ〉 − 〈Y n
0 , φ〉 −

∫ t

0

ds

∫
X
Y n
s (dx)b(x)

∫
Rd
φ(x+ z)D(x, dz)

+

∫ t

0

ds

∫
X
φ(x)d(x)Y n

s (dx)

+
√
n

∫ t

0

ds

∫
X
Xn
s (dx)φ(x)

∫
X
α(x, y)Xn

s (dy)

−
√
n

∫ t

0

ds

∫
X
Xs(dx)φ(x)

∫
X
α(x, y)Xs(dy)

(5.2.8)

is a càdlàg square integrable martingale with quadratic variation

〈Mn
· (φ)〉t =

∫ t

0

ds

∫
X
Xn
s (dx)b(x)

∫
Rd
φ2(x+ z)D(x, dz)

+

∫ t

0

ds

∫
X
Xn
s (dx)φ2(x)

(
d(x) +

∫
X
α(x, y)Xn

s (dy)
)
.

(5.2.9)
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Proof. Recall the generator (5.2.4), for bounded measurable functional Φ on MF (X ),
the process

Φ(Xn
t )− Φ(Xn

0 )−
∫ t

0

LnΦ(Xn
s )ds

is a càdlàg square integrable martingale. If we take Φ(µ) = 〈µ, φ〉, ∀φ ∈ B(X ), one
obtains that

Nn
t (φ) :=〈Xn

t , φ〉 − 〈Xn
0 , φ〉 −

∫ t

0

ds

∫
X
Xn
s (dx)b(x)

∫
Rd
φ(x+ z)D(x, dz)

+

∫ t

0

ds

∫
X
Xn
s (dx)φ(x)

(
d(x) +

∫
X
α(x, y)Xn

s (dy)
) (5.2.10)

is a càdlàg martingale. By applying Itô’s formula to 〈Xn
t , φ〉2, we have

〈Xn
t , φ〉2 − 〈Xn

0 , φ〉2 − 2

∫ t

0

ds〈Xn
s , φ〉

∫
X
Xn
s (dx)

{
b(x)

∫
Rd
φ(x+ z)D(x, dz)

− φ(x)
(
d(x) +

∫
X
α(x, y)Xn

s (dy)
)}
− 〈Nn

· (φ)〉t

is a martingale. On the other hand, if we take Φ(µ) = 〈µ, φ〉2, it follows

〈Xn
t , φ〉2 − 〈Xn

0 , φ〉2 −
∫ t

0

LnΦ(Xn
s )ds

=〈Xn
t , φ〉2 − 〈Xn

0 , φ〉2 − 2

∫ t

0

ds〈Xn
s , φ〉

∫
X
Xn
s (dx)

{
b(x)

∫
Rd
φ(x+ z)D(x, dz)

− φ(x)
(
d(x) +

∫
X
α(x, y)Xn

s (dy)
)}

− 1

n

∫ t

0

ds

∫
X
Xn
s (dx)b(x)

∫
Rd
φ2(x+ z)D(x, dz)

− 1

n

∫ t

0

ds

∫
X
Xn
s (dx)φ2(x)

(
d(x) +

∫
X
α(x, y)Xn

s (dy)
)

(5.2.11)
is a martingale. By comparing the above two decompositions of semimartingale 〈Xn

t , φ〉2,
one obtains

〈Nn
· (φ)〉t =

1

n

∫ t

0

ds

∫
X
Xn
s (dx)b(x)

∫
Rd
φ2(x+ z)D(x, dz)

+
1

n

∫ t

0

ds

∫
X
Xn
s (dx)φ2(x)

(
d(x) +

∫
X
α(x, y)Xn

s (dy)
)
.

(5.2.12)

Owing to (5.2.10) and (5.2.6), do the operation
(
〈Xn

t , φ〉 − 〈Xt, φ〉
)

and let Mn
t (φ) :=√

nNn
t (φ), we conclude the proof by the definition of (Y n

t ) in (5.2.7). �
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5.2.3 Fluctuation theorem

In this section, our aim is to study the asymptotic behavior of (Y n
t )t≥0 as n→∞. The

following theorem, the main result of the paper, shows that (Y n
t )t≥0 indeed converges to

an unique solution of a martingale problem.
In the following sections, we will use the notations given in Section 5.2 without dec-

laration. We always assume assumption (A1) holds.

Theorem 5.2.3. Admit assumption (A1) and suppose there exists a deterministic finite
nonnegative measure X0 ∈ MF (X ) such that Y n

0 =
√
n(Xn

0 −X0), for any φ ∈ B(X ),
satisfying

sup
n≥1

sup
‖φ‖∞≤1

E〈Y n
0 , φ〉2 <∞. (5.2.13)

Suppose that (Y n
0 ) converges in law to a finite (maybe random) measure γ as n→∞.

Then, the process (Y n
t )t≥0 converges in law as n→∞ on D([0,∞),S ′(X )) to a process

(Yt)t≥0 ∈ C([0,+∞),S ′(X )) where (Yt)t≥0 satisfies, for any φ ∈ S(X ),

〈Yt, φ〉 = 〈γ, φ〉+

∫ t

0

ds
〈
Ys, b(·)

∫
Rd
φ(·+ z)D(·, dz)

〉
−
∫ t

0

ds
〈
Ys, d(·)φ(·)

〉
−
∫ t

0

ds
〈
Ys,

∫
X
α(x, ·)φ(x)Xs(dx)

〉
−
∫ t

0

ds
〈
Ys, φ(·)

∫
X
α(·, y)Xs(dy)

〉
+Mt(φ).

(5.2.14)

Here, (Xt)t≥0 is the solution of the deterministic nonlinear equation (5.2.6), while Mt(φ)
is a continuous martingale with quadratic variation

〈M·(φ)〉t =

∫ t

o

ds

∫
X
Xs(dx)b(x)

∫
Rd
φ2(x+ z)D(x, dz)

+

∫ t

0

ds

∫
X
Xs(dx)φ2(x)

(
d(x) +

∫
X
α(x, y)Xs(dy)

)
.

(5.2.15)

Remark 5.2.4. The argument above makes essentially use of the initial moment (5.2.13)
condition and initial convergence condition. These conditions fulfil the assumptions
needed in Theorem 5.2.1. Therefore, the large number limit (Xt)t≥0 is well defined (see
Lemma 5.5.1).

Proving the theorem is the content of the last section.

Corollary 5.2.5. Given a deterministic nonnegative finite measure X0 in MF (X ), for
any n ≥ 1, suppose the original BPDL process has initial state νn0 ∈ M(X ) which is
a Poisson random measure with intensity measure (nX0). Then, the same conclusion
holds as in Theorem 5.2.3.
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It is easy to verify the conditions in Theorem 5.2.3. In fact,

sup
n≥1

sup
‖φ‖∞≤1

E〈Y n
0 , φ〉2 = sup

n≥1
sup
‖φ‖∞≤1

1

n
E(〈νn0 , φ〉 − n〈X0, φ〉)2

= sup
n≥1

sup
‖φ‖∞≤1

1

n
× n〈X0, φ〉

= sup
‖φ‖∞≤1

〈X0, φ〉

= 〈X0, 1〉 <∞.

Furthermore, Y n
0 =

νn0−nX0√
n

converges in law as n→∞ to an isonormal Gaussian random

measure with variance intensity measure X0 on X , i.e., N (0, X0(dx)).

5.3 Links with a generalized Langevin equation

5.3.1 Statement of the result

A criterion for an infinite-dimensional Gaussian process (distribution-valued process)
to satisfy a generalized Langevin equation is given in [3], where both of the evolution
term and the white noise term are time-inhomogeneous. In this section, we apply the
criterion to our fluctuation limit obtained in previous section.

Definition 5.3.1. An S ′(X )-valued process {Wt; t ∈ R+} is called (centered) Gaussian
if {〈Wt, φ〉; t ∈ R+, φ ∈ S(X )} is a (centered) Gaussian system.

Definition 5.3.2. A centered Gaussian S ′(X )-valued process W = {Wt; t ∈ R+} is
called a generalized Wiener process if it has continuous path and its covariance functional
C(s, φ; t, ψ) := E[〈Ws, φ〉〈Wt, φ〉] has the form

C(s, φ; t, ψ) =

∫ s∧t

0

〈Quφ, ψ〉du, s, t ∈ R+, φ, ψ ∈ S(X ), (5.3.1)

where the operators Qu : S(X )→ S ′(X ) have the following properties:

1. Qu is linear, continuous, symmetric and positive for each u ∈ R+,

2. the function u→ 〈Quφ, ψ〉 is right continuous with left limit for each φ, ψ ∈ S(X ).

We then say that W is associated to Q.

Let’s remind that we inherit the same notations as in Section 5.2.
Define Qtφ ∈ S ′(X ) for any φ ∈ S(X ) and t ∈ R+ by

〈Qtφ, ψ〉 :=

∫
X
Xt(dx)

[
b(x)

∫
Rd
φ(x+ z)ψ(x+ z)D(x, dz)

+ φ(x)ψ(x)
(
d(x) +

∫
X
α(x, y)Xt(dy)

)]
, for ψ ∈ S(X ).

(5.3.2)
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Recall the quadratic variation form of Mt(φ) in (5.2.15). It follows a direct fact that
〈M.(φ)〉t =

∫ t
0
〈Quφ, φ〉du. Then, we have

Theorem 5.3.3. The fluctuation limit process (Yt)t≥0 obtained in Theorem 5.2.3 is an
unique solution of a time inhomogeneous Langevin equation{

dYt = A∗tYtdt+ dWt, t > 0
Y0 = γ

, (5.3.3)

where A∗t denotes the adjoint operator of At defined by

Atφ(x) = b(x)

∫
Rd
φ(x+ z)D(x, dz)− φ(x)

(
d(x) +

∫
X
α(x, y)Xt(dy)

)
−
∫
X
α(y, x)φ(y)Xt(dy),

(5.3.4)

and (Wt)t≥0 is an S ′(X )-valued Wiener process with covariance

E
[
〈Ws, φ〉〈Wt, ψ〉

]
=

∫ s∧t

0

〈Quφ, ψ〉du, s, t ≥ 0, φ, ψ ∈ S(X ). (5.3.5)

Remark 5.3.4. 1. An S ′(X )-valued process (Yt)t≥0 is said to be a solution of (5.3.3)
if for each φ ∈ S(X ),

〈Yt, φ〉 = 〈γ, φ〉+

∫ t

0

〈Yu, Auφ〉du+ 〈Wt, φ〉, for t ∈ R+. (5.3.6)

2. (Wt)t≥0 has independent increments but not stationary property since covariance
functional Q depends on time.

Proof. Existence. According to Theorem 5.2.3, the covariance functional of continuous
martingale Mt on testing functions is deterministic, which implies (Mt)t≥0 is a S ′(X )-
valued mean zero Gaussian process (see Walsh[44, Proposition 2.10]). Hence, (Yt)t≥0 is
also an S ′(X )-valued Gaussian process.
Set K(s, φ; t, ψ) := E[〈Ys, φ〉〈Yt, ψ〉]. To the end, one needs eventually to show that

∂

∂t
K(t, φ; t, ψ)−K(t, Atφ; t, ψ)−K(t, φ; t, Atψ) = 〈Qtφ, ψ〉. (5.3.7)

By using (5.2.14), we have

∂

∂t
K(t, φ; t, ψ) =

∂

∂t
E[〈Yt, φ〉〈Yt, ψ〉]

= E
{
〈Yt, ψ〉

∂

∂t
〈Yt, φ〉+ 〈Yt, φ〉

∂

∂t
〈Yt, ψ〉

}
= E

{
〈Yt, ψ〉

(
〈Yt, Atφ〉+ Ṁt(φ)

)
+ 〈Yt, φ〉

(
〈Yt, Atψ〉+ Ṁt(ψ)

)}
= E[〈Yt, ψ〉〈Yt, Atφ〉] + E[〈Yt, φ〉〈Yt, Atψ〉]

+ E[Mt(ψ)Ṁt(φ)] + E[Mt(φ)Ṁt(ψ)]

= K(t, Atφ; t, ψ) +K(t, φ; t, Atψ) +
∂

∂t
E[Mt(ψ)Mt(φ)]

= K(t, Atφ; t, ψ) +K(t, φ; t, Atψ) + 〈Qtφ, ψ〉,

(5.3.8)
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where the last equality is due to (5.2.15) and (5.3.2).
On the other hand, it is not hard to check that (Qt)t≥0 satisfies the conditions required
in Definition 5.3.2. Finally, by the results of [3, Theorem 2], there exists an S ′(X )-valued
Wiener process (Wt)t≥0 associated to the covariance functional (Qt)t≥0 such that (Yt)t≥0

satisfying the generalized Langevin equation (5.3.3) driven by the generalized Wiener
process (Wt)t≥0.

Uniqueness. Since all coefficients are bounded, the linear operator At on S(X ) is
uniformly bounded for t ∈ [0, T ] for any T > 0. Therefore, the equation (5.3.3) has an
unique S ′(X )-valued solution given by the mild form:

Yt = T ∗0,tγ +

∫ t

0

T ∗r,tdWr, (5.3.9)

where {Tr,t : 0 ≤ r ≤ t < +∞} is an unique reversed evolution system generated by
(At)t≥0 and T ∗r,t is its adjoint operator of Tr,t. We refer the reader to [28, Theorem 2.1]
for more details on evolution systems. �

5.3.2 One dimensional case: inhomogeneous OU process

In this subsection, we will study a simple case as an example of Theorem 5.3.3. Consider
the case when there is no spatial dispersal and all the individuals stay at the same
position, i.e., ε = 0 in dispersal kernel (5.2.1).

Proposition 5.3.5. Suppose that the same assumptions hold as in Theorem 5.2.3. In
particular, assume Xn

t = ξnt δx and ε = 0 in (5.2.1). Then, (ξnt , η
n
t )t≥0 converge in law

to (ξt, ηt)t≥0 as n→∞ which satisfies the following equations:{
dξt =

(
b(x)− d(x)− α(x, x)ξt

)
ξtdt

dηt =
(
b(x)− d(x)− 2α(x, x)ξt

)
ηtdt+

√(
b(x) + d(x) + α(x, x)ξt

)
ξtdBt,

(5.3.10)

where ηnt :=
√
n(ξnt − ξt).

Remark 5.3.6. We can regard the above system as an inhomogeneous Ornstein-Uhlenbeck
(OU) process living in a deterministic environment. We refer the reader to [20, Theo-
rem 11.2.3] for a general form defined in an one-dimensional inhomogeneous Langevin
equation.

Proof. Due to D(x, dz) = 1{z=0}, by taking φ = 1 in (5.2.6), we can easily show that
there exists a process (ξt)t≥0 defined by ξt := 〈Xt, 1〉 solving the first equation in (5.3.10).
Taking φ = 1, from (5.3.4), we have

〈Yt, At1〉 =
(
b(x)− d(x)− 2α(x, x)ξt

)
〈Yt, 1〉. (5.3.11)

From (5.3.2) and (5.3.5), we have

〈W·, 1〉t =

∫ t

0

(
b(x) + d(x) + α(x, x)ξs

)
ξsds. (5.3.12)
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Define

Bt =

∫ t

0

[(
b(x) + d(x) + α(x, x)ξs

)
ξs

]− 1
2
d〈Ws, 1〉. (5.3.13)

Then, its quadratic variation 〈B〉t = t. Thus, (Bt)t≥0 is a standard Brownian motion.
Furthermore, we have

d〈Wt, 1〉 =
√(

b(x) + d(x) + α(x, x)ξt
)
ξt · dBt. (5.3.14)

Let ηt := 〈Yt, 1〉, by plugging (5.3.11) and (5.3.14) back to (5.3.6) when φ = 1, the
second equation in (5.3.10) follows. �

In the next result, we give the stationary distribution of equations (5.3.10).

Proposition 5.3.7. Suppose the process (ηt)t≥0 is defined as in equations (5.3.10).

Then, it has a stationary distribution which is Gaussian N (0, b(x)
α(x,x)

).

Remark 5.3.8. The result is somewhat surprising. As long as d(x) < b(x), in a long
term, it always has the same fluctuation no matter which value death rate takes.

Proof. Let
θt := −

(
b(x)− d(x)− 2α(x, x)ξt

)
,

σt :=
√(

b(x) + d(x) + α(x, x)ξt
)
ξt.

From (5.3.10), it follows that

dηt = −θtηtdt+ σtdBt. (5.3.15)

The characteristic function of (ηt)t≥0 has the form

Eη0

[
eizηt

]
= exp

{
ize−

R t
0 θuduη0 −

1

2
z2

∫ t

0

σ2
ue
−2

R t
u θvdvdu

}
. (5.3.16)

Since ξt in (5.3.10) has steady equilibrium b(x)−d(x)
α(x,x)

, it follows lim
t→∞

θt = b(x)− d(x) > 0

and lim
t→∞

σ2
t = 2b(x)

(
b(x)− d(x)

)
/α(x, x).

Then,

lim
t→∞

log Eη0

[
eizηt

]
= − lim

t→∞

1

2
z2 ·

∫ t
0
σ2
ue

2
R u
0 θvdvdu

e2
R t
0 θudu

= −1

2
z2 · lim

t→∞

σ2
t

2θt

= −1

2
z2 b(x)

α(x, x)
.

(5.3.17)

Finally, we conclude that (ηt)t≥0 has stationary distribution N (0, b(x)
α(x,x)

). �
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5.4 Interchangeability of the long term and the
fluctuation limits

In this section, we will discuss the stationary behavior and fluctuation limits of a se-
quence of particular BPDL processes under some specific conditions. Furthermore, we
can show that the stationary limits and fluctuation limits are interchangeable. This sec-
tion is in parallel with previous section both as applications of Section 5.2.3 and Section
5.3.1.

Denote the following assumptions by (B).
(B1) Trait-independent parameters: b(x) ≡ b, d(x) ≡ 0, D(x, z) = D(z),
α(x, y) = α(x− y) and symmetric property: α(z) = α(−z), D(z) = D(−z).

(B2) Suppose λ(x)
def
=
∫
X α(x, y)dy exists and λ(x) ≡ λ is trait-independent. Set

α̂(x, y) = α(x,y)
λ

, then
∫
X α̂(z)dz = 1.

(B3) Detailed balanced condition: α̂(z) = D(z) and α̂(0) = 0.
In this section, we will only consider a sequence of BPDL processes {(νnt )t≥0;n ∈ N}
defined by (5.2.2) which satisfy the assumptions in (A1) and (B). Let’s rewrite its
generator under above assumptions:

Ln0 Φ(ν) =

∫
X
ν(dx)

∫
Rd

(
Φ(ν + δx+z)− Φ(ν)

)
bD(dz)

+

∫
X
ν(dx)

(
Φ(ν − δx)− Φ(ν)

)λ
n

∫
X
α̂(x, y)ν(dy).

(5.4.1)

Lemma 5.4.1 (Long time behavior of νnt ). For fixed n ∈ N, let νn∞ be a Poisson
random measure with intensity nb

λ
dx. Then, (νnt )t≥0 starting from νn∞ is a stationary

BPDL process, i.e. E[Ln0 Φ(νn∞)] = 0, for Φ ∈ B(M(X )).

The proof of this Lemma can be deduced directly from [22, Proposition 7.9]. In
the following Proposition, we would consider the fluctuation limits based on long term
behavior limits of νnt .

Proposition 5.4.2 (Fluctuation limit of νn∞). Let Λn(dx)
def
= nb

λ
dx be a sequence of

biased Lebesgue measures on X . Then, νn∞−Λn√
n

converges in law as n → ∞ to a mean

zero isonormal Gaussian random measure W∞ with variance intensity b
λ
dx.

The above Proposition can be easily proved by martingale central limit theorem. In
some sense, the fluctuation limit here extend the convergence result in Theorem 5.2.3
from [0,∞) to [0,∞].
In the next Proposition, we would firstly apply the fluctuation theorem 5.2.3 and then
take the long time limit. By taking φ = 1A for any Borel set A ⊆ X and doing some
easy calculations, we write down the differential form of equations (5.2.6) and (5.3.6) as
following:

dXt(A)

dt
= b

∫
A

dx

∫
X
Xt(dy)D(x− y)− λ

∫
A

Xt(dx)

∫
X
Xt(dy)α̂(x− y), (5.4.2)
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and

dYt(A) = b

∫
A

dx

∫
X
Yt(dy)D(x− y)dt− λ

∫
A

Xt(dx)

∫
X
Yt(dy)α̂(x− y)dt

− λ
∫
A

Yt(dx)

∫
X
Xt(dy)α̂(x− y)dt+ dWt(A),

(5.4.3)
where

d

dt
〈W.(A)〉t = b

∫
A

dx

∫
X
Xt(dy)D(x− y) + λ

∫
A

Xt(dx)

∫
X
Xt(dy)α̂(x− y). (5.4.4)

Proposition 5.4.3. Assume condition (B) and the same conditions as in Theorem 5.2.3
hold. Then, (Yt)t≥0 converges in law as t→∞ to a Gaussian random measure W∞ with
mean zero and variance intensity b

λ
dx.

Proof. For any fixed Borel set A in X , due to the assumption α̂(x− y) = D(x− y), we
rewrite (5.4.2) as:

dXt(A)

dt
=

∫
A

(
bdx− λXt(dx)

) ∫
X
Xt(dy)α̂(x− y). (5.4.5)

Let Λ be the Lebesgue measure on X . Then Xt(A) converges to b
λ
Λ(A) as t→∞. Since

A is arbitrary, Xt converges to b
λ
Λ as t → ∞. In the following, we will approximate

deterministic measure Xt by b
λ
Λ in (5.4.3) and (5.4.4) when considering the stationary

behavior of the process (Yt)t≥0.
Therefore, the first two terms on RHS of (5.4.3) can cancel with each other when we
take a long time limit. Meanwhile, the third term can be approximated by

λ

∫
A

Yt(dx)

∫
X

b

λ
dyα̂(x− y) = bYt(A). (5.4.6)

And the quadratic variation (5.4.4) can be approximated by

b

∫
A

dx

∫
X

b

λ
dyD(x− y) + λ

∫
A

b

λ
dx

∫
X

b

λ
dyα̂(x− y)

= 2
b2

λ
Λ(A).

(5.4.7)

Concerned the stationary distribution of Yt(A) given by (5.4.3) and (5.4.4), due to the
above approximations it is equivalent to consider the following real-valued Ornstein-
Uhlenbeck process:

dỸt(A) = −b · Ỹt(A)dt+

√
2
b2

λ
Λ(A)dWt. (5.4.8)

Obviously, the stationary distribution of
(
Ỹt(A)

)
t≥0

is Gaussian N (0, b
λ
Λ(A)) .

Hence, (Yt)t≥0 converges in law as t → ∞ to an isonormal Gaussian random measure
W∞ on X with mean zero and variance intensity b

λ
dx. �
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Remark 5.4.4. Comparing with Proposition 5.3.7 without a zero death rate assumption,
we may hope that a similar result still holds here but without so restrictive assumption
(B1). In other words, the natural death term may not take essential role concerning the
long term behavior.

In all, the results in this section suggest us that under a weak interspecific competition,
not only the macroscopic limit has equilibrium measure but also its fluctuation limit has
a stationary distribution. Moreover, both of the above equilibria are independent for
disjoint spatial area.

5.5 Outline of proofs

5.5.1 Moment estimates and tightness

The tightness criterion is established for semimartingales based on the moment estimates
(see [18]). Our first two lemmas give the uniform second order moment estimates for a
sequence of processes over finite time intervals.

Lemma 5.5.1. Suppose that a sequence of random variables (Y n
0 ) in MF (X ) satisfies

the same condition as in Theorem 5.2.3. Then, Xn
0

in law−→ X0 as n→∞ and

sup
n≥1

E〈Xn
0 , 1〉2 <∞. (5.5.1)

Hence, Theorem 5.2.1 holds.
In particular, for any T <∞, there exists a constant C

(1)
T > 0 such that

sup
n≥1

E[ sup
0≤t≤T

〈Xn
t , 1〉2] ≤ C

(1)
T . (5.5.2)

Proof. In fact, the convergence from (Xn
0 ) toX0 in law can be implied by the convergence

from (Y n
0 ) to γ.

On the other hand, because of the definition of (Y n
0 ) as in (5.2.7),

sup
n≥1

E〈Xn
0 , 1〉2 ≤ 2〈X0, 1〉2 + 2 sup

n≥1

1

n
E〈Y n

0 , 1〉2 <∞.

Now concern the proof of the moment estimate (5.5.2).
For fixed n ∈ N, the rescaled total population {〈Xn

t , 1〉; t ≥ 0} is a N/n-valued process.
It can be bounded by a N/n-valued pure birth process with birth rate nb̄. In other
words, take Φ(µ) = 〈µ, 1〉2 in (5.2.4) and neglect the death terms, one obtains

〈Xn
t , 1〉2 =〈Xn

0 , 1〉2 +

∫ t

0

((
〈Xn

s−, 1〉+
1

n

)2 − 〈Xn
s−, 1〉2

)
b̄n〈Xn

s−, 1〉N(ds)

=〈Xn
0 , 1〉2 + 2

∫ t

0

ds
(
〈Xs−, 1〉/n+ 2〈Xn

s−, 1〉2
)
b̄N(ds)

(5.5.3)
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where N(ds) is a standard Poisson point process, and the term sup
n≥1

E[ sup
0≤s≤T

〈Xn
s , 1〉] can

also be proved to be bounded by some constant C
(0)
T in a similar argument.

By taking expectations of supremums over time interval [0, T ] on both sides , we get

E[ sup
0≤t≤T

〈Xn
t , 1〉2] ≤ sup

n≥1
E〈Xn

0 , 1〉2 + C
(0)
T + 2b̄E

[
sup

0≤t≤T

∫ t

0

〈Xn
s , 1〉2ds

]
≤ sup

n≥1
E〈Xn

0 , 1〉2 + C
(0)
T + 2b̄

∫ T

0

E
[

sup
0≤u≤s

〈Xn
u , 1〉2

]
ds

(5.5.4)

where C
(0)
T changes from line to line but independent of n.

According to Gronwall’s inequality, one eventually obtains

E[ sup
0≤t≤T

〈Xn
t , 1〉2] ≤

(
sup
n≥1

E〈Xn
0 , 1〉2 + C

(0)
T

)
e2b̄T def

= C
(1)
T .

Finally, the independence of C
(1)
T w.r.t. n implies (5.5.2). �

Lemma 5.5.2. Suppose that a sequence of random variables Y n
0 ∈ MF (X ) satisfies

(5.2.13). Then, for any T <∞, there exists a constant C
(2)
T > 0 such that

sup
n≥1

sup
‖φ‖∞≤1

E[ sup
0≤t≤T

〈Y n
t , φ〉2] ≤ C

(2)
T . (5.5.5)

Proof. From Proposition 5.2.2, by Hölder inequality, one obtains

〈Y n
t , φ〉2 ≤ 2

{
〈Y n

0 , φ〉2 + t

∫ t

0

(∫
X
Y n
s (dx)b(x)

∫
Rd
φ(x+ z)D(x, dz)

)2

ds

+ t

∫ t

0

(∫
X
Y n
s (dx)d(x)φ(x)

)2

ds

+ nt

∫ t

0

(∫
X
Xn
s (dx)φ(x)

∫
X
α(x, y)Xn

s (dy)

−
∫
X
Xs(dx)φ(x)

∫
X
α(x, y)Xs(dy)

)2

ds

+
[
Mn

t (φ)
]2
}

(5.5.6)
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≤ 2

{
〈Y n

0 , φ〉2 + t

∫ t

0

(∫
X
Y n
s (dx)b(x)

∫
Rd
φ(x+ z)D(x, dz)

)2

ds

+ t

∫ t

0

(∫
X
Y n
s (dx)d(x)φ(x)

)2

ds

+ 2t

∫ t

0

(∫
X
Y n
s (dx)φ(x)

∫
X
α(x, y)Xn

s (dy)
)2

ds

+ 2t

∫ t

0

(∫
X
Xs(dx)φ(x)

∫
X
α(x, y)Y n

s (dy)
)2

ds

+
[
Mn

t (φ)
]2
}
.

(5.5.7)

For fixed T < ∞, firstly take the supremum over time interval [0, T ], then take expec-
tation on both sides. It follows that, for any φ ∈ B(X ) satisfying ‖φ‖∞ ≤ 1,

E[ sup
0≤t≤T

〈Y n
t , φ〉2]

≤ 2E〈Y n
0 , φ〉2 + 2T b̄2

∫ T

0

E sup
0≤u≤s

(∫
X
Y n
u (dx)

b(x)

b̄

∫
X
φ(x+ z)D(x, dz)

)2

ds

+ 2T d̄2

∫ T

0

E sup
0≤u≤s

(∫
X
Y n
u (dx)

d(x)

d̄
φ(x)

)2

ds

+ 4T ᾱ2

∫ T

0

E sup
0≤u≤s

(∫
X
Y n
u (dx)φ(x)

∫
X

α(x, y)

ᾱ
Xn
u (dy)

)2

ds

+ 4T ᾱ2

∫ T

0

E sup
0≤u≤s

(∫
X
Xu(dx)φ(x)

∫
X

α(x, y)

ᾱ
Y n
u (dy)

)2

ds

+ 2E
{

sup
0≤t≤T

[Mn
t (φ)]2

}
def
= 2E〈Y n

0 , φ〉2 + I + II + III + IV+V.

(5.5.8)

To the end, we give estimate of every term in above equation separately.
As for term V, by Doob’s maximal inequality and (5.2.9), we have

V ≤ 2× 4E
[
Mn

T (φ)2
]

≤ 8E[〈Mn
· (1)〉T ]

≤ 8(b̄+ d̄)E
{∫ T

0

sup
0≤u≤s

〈Xn
u , 1〉ds

}
+ 8ᾱE

∫ T

0

sup
0≤u≤s

〈Xn
u , 1〉2ds

≤ 8(b̄+ d̄+ ᾱ)T · (C(0)
T + C

(1)
T ),

(5.5.9)

where the last inequality is due to (5.5.2).

Since ‖ b(x)

b̄

∫
Rd φ(x+ z)D(x, dz)‖∞ ≤ 1, ‖d(x)

d̄
φ(x)‖∞ ≤ 1, one obtains

I + II ≤ 2T 2
(
b̄2 + d̄2

) ∫ T

0

sup
‖φ‖∞≤1

E[ sup
0≤u≤s

〈Y n
u , φ〉2]ds. (5.5.10)
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.
Similarly, III and IV can be bounded by 4T 2ᾱ2C

∫ T
0

sup
‖φ‖∞≤1

E[ sup
0≤u≤s

〈Y n
u , φ〉2]ds with

some constant C determined by bounded moment estimates in Lemma 5.5.1.
Let Gn(T ) := sup

‖φ‖∞≤1

E[ sup
0≤t≤T

〈Y n
t , φ〉2], by combining the above estimates and (5.5.8),

one obtains

Gn(T ) ≤2 sup
n≥1

sup
‖φ‖∞≤1

E〈Y n
0 , φ〉2 + 8(b̄+ d̄+ ᾱ)T · (C(0)

T + C
(1)
T )

+
(

2T 2(b̄2 + d̄2) + 4T 2ᾱ2C
)∫ T

0

Gn(s)ds

(5.5.11)

By Gronwall’s lemma, we have

Gn(T ) ≤
(

2 sup
n≥1

sup
‖φ‖∞≤1

E〈Y n
0 , φ〉2 + 8(b̄+ d̄+ ᾱ)T · (C(0)

T + C
(1)
T )
)

· exp
{(

2T 2(b̄2 + d̄2) + 4T 2ᾱ2C
)
T
}

def
= C

(2)
T .

(5.5.12)

Since C
(2)
T is a n-independent constant, the lemma follows by taking supremum over

n ∈ N on both sides of the last inequality. �

Proposition 5.5.3. Consider a sequence of processes (Y n
t )t≥0 in D([0,∞),MF (X )) and

Y n
0 satisfying (5.2.13). Then, for any φ ∈ S(X ), the sequence of laws of the processes
{〈Y n

· , φ〉;n ≥ 1} is tight in D([0,∞),R).

Proof. Since {〈Y n
· , φ〉;n ≥ 1} is a sequence of semimartingale, we verify the tightness

criteria given by Aldous [1] and Rebolledo (see, e.g., Etheridge[18, Theorem 1.17]).
For any fixed t > 0, {〈Y n

t , φ〉;n ≥ 1} is tight due to Lemma 5.5.2.
To the end, we will prove the tightness criterion of finite variation part (say Ant ) and
quadratic variation of martingale part Mn

t (φ) of {〈Y n
· , φ〉;n ≥ 1}, respectively.

For any ε > 0 and T > 0, given a sequence of stopping time τn bounded by T. W.O.L.G.,
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assume ‖φ‖∞ ≤ 1. As for the finite variation part Ant of (5.2.8), we have

sup
n≥1

sup
θ∈[0,δ]

P
[∣∣∣A(n)

τn+θ−A
(n)
τn

∣∣∣ > ε
]

≤ 1

ε2
sup
n≥1

sup
θ∈[0,δ]

E
(
A

(n)
τn+θ − A

(n)
τn

)2

Hölder

≤ δ

ε2
sup
n≥1

sup
θ∈[0,δ]

∫ τn+θ

τn

E
{∫
X
Y n
s (dx)b(x)

∫
Rd
φ(x+ z)D(x, dz)

−
∫
X
Y n
s (dx)d(x)φ(x)

−
∫
X
Y n
s (dx)φ(x)

∫
X
α(x, y)Xn

s (dy)

−
∫
X
Xs(dx)φ(x)

∫
X
α(x, y)Y n

s (dy)
}2

ds

≤ 2δb̄2

ε2
· sup
n≥1

∫ T

0

E sup
0≤u≤T

〈Y n
u , ,

b(·)
b̄

∫
X
φ(·+ z)D(·, dz)〉2ds

+
2δd̄2

ε2
· sup
n≥1

∫ T

0

E sup
0≤u≤T

〈Y n
u ,
d(·)
d̄
φ(·)〉2ds

+
2δᾱ2C

ε2
· sup
n≥1

∫ T

0

E sup
0≤u≤T

〈Y n
u , φ̂〉2ds

≤ δTC
(2)
T C,

(5.5.13)
where C changes from line to line and ‖φ̂‖∞ ≤ 1. On the other hand, from (5.2.9), we
have

sup
n≥1

sup
θ∈[0,δ]

P
[∣∣∣〈Mn

· (φ)〉τn+θ−〈Mn
· (φ)〉τn

∣∣∣ > ε
]

≤ δ(b̄+ d̄)

ε
· sup
n≥1

E sup
0≤u≤T

〈Xn
u , 1〉ds

+
δᾱ

ε
· sup
n≥1

E sup
0≤u≤T

〈Xn
s , 1〉2ds

≤ δ(C
(0)
T + C

(1)
T )C.

(5.5.14)

According to moment estimates results in Lemma 5.5.1 and Lemma 5.5.2, both in-
equalities (5.5.13) and (5.5.14) can be less than ε if we take δ (which only depends on
T, ε, ‖φ‖∞) small enough, i.e.,

sup
n≥1

sup
θ∈[0,δ]

P
[∣∣∣A(n)

τn+θ−A
(n)
τn

∣∣∣ > ε
]
< ε,

sup
n≥1

sup
θ∈[0,δ]

P
[∣∣∣〈Mn

· (φ)〉τn+θ−〈Mn
· (φ)〉τn

∣∣∣ > ε
]
< ε,

which fulfils the Aldous-Rebolledo tightness condition. �
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5.5.2 Convergence in the f.d.d. sense

In this section, we prove a weak limit of {(Y n
t )t≥0;n ≥ 1} in the sense of f.d.d. conver-

gence is a solution of some martingale problem.

Proposition 5.5.4. Under the conditions given in Theorem 5.2.3, the finite dimensional
distributions of (Y n

t )t≥0 converge as n→∞ to those of an S ′(X )-valued Markov process
(Yt)t≥0 satisfying that for φ ∈ S(X ), the process

Mt(φ) :=〈Yt, φ〉 − 〈γ, φ〉 −
∫ t

0

〈
Ys, b(·)

∫
Rd
φ(·+ z)D(·, dz)

〉
ds

+

∫ t

0

〈
Ys, d(·)φ(·)

〉
ds

+

∫ t

0

〈
Ys,

∫
X
α(x, ·)φ(x)Xs(dx)

〉
ds

+

∫ t

0

〈
Ys, φ(·)

∫
X
α(·, y)Xs(dy)

〉
ds

.

(5.5.15)

is a continuous martingale with quadratic variation

〈M·(φ)〉t =

∫ t

o

ds

∫
X
Xs(dx)b(x)

∫
Rd
φ2(x+ z)D(x, dz)

+

∫ t

0

ds

∫
X
Xs(dx)φ2(x)

(
d(x) +

∫
X
α(x, y)Xs(dy)

)
.

(5.5.16)

Proof. By Proposition 5.5.3, we already proved {〈Y n
· , φ〉;n ≥ 1} is tight in D([0,∞),R)

for any φ ∈ S(X ). Following Mitoma [40] (see e.g., Ethier and Kurtz [20, Theorem
3.9.1]), we conclude that the sequence {(Y n

t )t≥0;n ≥ 1} is tight in D([0,∞),S ′(X )).
Hence, we can assume there exists a weak limit (Yt)t≥0 of a subsequence of {(Y n

t )t≥0;n ≥
1}.
Firstly, we check that (Yt)t≥0 is a.s. continuous. By the construction of (Y n

t ), we have

sup
t∈[0,T ]

sup
‖f‖≤1

|〈Y n
t , f〉 − 〈Y n

t−, f〉| ≤ sup
t∈[0,T ]

sup
‖f‖≤1

√
n
{
|〈Xn

t , f〉 − 〈Xn
t−, f〉|+ |〈Xt −Xt−, f〉|

}
≤
√
n

1

n
+ 0

=
1√
n
.

(5.5.17)
By letting n→∞, it implies the continuity of (Yt)t≥0, i.e. (Yt)t≥0 ∈ C([0,+∞),S ′(X)).

To prove (Mt(φ))t≥0 is a martingale, it suffices to prove

E[Mt(φ)] = 0. (5.5.18)
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Let

M̃n
t (φ) :=〈Y n

t , φ〉 − 〈Y n
0 , φ〉 −

∫ t

0

ds

∫
X
Y n
s (dx)b(x)

∫
Rd
φ(x+ z)D(x, dz)

+

∫ t

0

ds

∫
X
d(x)φ(x)Y n

s (dx)

+

∫ t

0

ds

∫
X
Xs(dx)φ(x)

∫
X
α(x, y)Y n

s (dy)

+

∫ t

0

ds

∫
X
Y n
s (dx)φ(x)

∫
X
α(x, y)Xs(dy).

(5.5.19)

Then, for fixed t > 0 and any n ∈ N, we have

|E[Mt(φ)]| ≤ |E[Mn
t (φ)− M̃n

t (φ)]|+ |E[M̃n
t (φ)−Mt(φ)]|+ |E[Mn

t (φ)]|. (5.5.20)

According to Proposition 5.2.2, we have E[Mn
t (φ)] = 0.

Since {(Y n
t )t≥0;n ≥ 1} converges in law to (Yt)t≥0 as n → ∞ and

(
M̃n

t (φ) −Mt(φ)
)

is
homogeneous w.r.t.

(
Y n
t − Yt

)
, we get

lim
n→∞

|E[M̃n
t (φ)−Mt(φ)]| = 0. (5.5.21)

As for the first term on RHS of (5.5.20),

|E[Mn
t (φ)− M̃n

t (φ)]|

=

∣∣∣∣∣E
{
√
n

∫ t

0

ds

∫
X

(Y n
s (dx)√
n

+Xs(dx)
)
φ(x)

∫
X
α(x, y)

(Y n
s (dy)√
n

+Xs(dy)
)

−
√
n

∫ t

0

ds

∫
X
Xs(dx)φ(x)

∫
X
α(x, y)Xs(dy)

−
∫ t

0

ds

∫
X
Xs(dx)φ(x)

∫
X
α(x, y)Y n

s (dy)

−
∫ t

0

ds

∫
X
Y n
s (dx)φ(x)

∫
X
α(x, y)Xs(dy)

}∣∣∣∣∣
≤ 1√

n

∣∣∣∣∣E
∫ t

0

ds

∫
X
Y n
s (dx)φ(x)

∫
X
α(x, y)Y n

s (dy)

∣∣∣∣∣
≤ 1√

n
ᾱT‖φ‖∞C(2)

t

n→∞−→ 0,
(5.5.22)

where C
(2)
t is determined as in Lemma 5.5.2.

By combining the above estimates together, we conclude |E[Mt(φ)]| = 0.



5.5. Outline of proofs 101

In the remainder we will justify the quadratic variation of Mt(φ) has the form (5.5.16).
By applying Itô’s formula to 〈Yt, φ〉2, according to the semimartingale decomposition
(5.5.15) of 〈Yt, φ〉, we have

〈Yt, φ〉2 = 〈γ, φ〉2 + 2

∫ t

0

〈Ys, φ〉d[〈Ys, φ〉] + 〈M.(φ)〉t

= 〈γ, φ〉2 + 〈M.(φ)〉t

+ 2

∫ t

0

〈Ys, φ〉ds
{∫
X
Ys(dx)b(x)

∫
Rd
φ(x+ z)D(x, dz)−

∫
X
Ys(dx)d(x)φ(x)

−
∫
X
Ys(dx)φ(x)

∫
X
α(x, y)Xs(dy)−

∫
X
Xs(dx)φ(x)

∫
X
α(x, y)Ys(dy)

}
+ martingale.

(5.5.23)

On the other hand, according to the definition of (Y n
t ), we have

〈Y n
t , φ〉2 = 〈

√
n(Xn

t −Xt), φ〉2

= n
[
〈Xn

t , φ〉2 − 2〈Xn
t , φ〉〈Xt, φ〉+ 〈Xt, φ〉2

]
.

(5.5.24)

To simplify the computations, let us introduce new notations:

A(s) :=

∫
X
Xs(dx)

[
b(x)

∫
Rd
φ(x+ z)D(x, dz)− φ(x)

(
d(x) +

∫
X
α(x, y)Xs(dy)

)]
,

Bn(s) :=

∫
X
Xn
s (dx)

[
b(x)

∫
Rd
φ(x+ z)D(x, dz)− φ(x)

(
d(x) +

∫
X
α(x, y)Xn

s (dy)
)]
.

(5.5.25)
From (5.2.10), (5.2.11) and (5.2.6), respectively, it follows

〈Xn
t , φ〉 = 〈Xn

0 , φ〉+

∫ t

0

Bn(s)ds+ martingale,

〈Xn
t , φ〉2 = 〈Xn

0 , φ〉2 + 2

∫ t

0

〈Xn
s , φ〉Bn(s)ds+

1

n

∫ t

0

ds

∫
X
Xn
s (dx)[

b(x)

∫
Rd
φ2(x+ z)D(x, dz) + φ2(x)

(
d(x) +

∫
X
α(x, y)Xn

s (dy)
)]

+ martingale,

〈Xt, φ〉 = 〈X0, φ〉+

∫ t

0

A(s)ds.

(5.5.26)
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By substituting every term above into (5.5.24), we have

〈Y n
t , φ〉2 = n〈Xn

0 , φ〉2 +

∫ t

0

ds

∫
X
Xn
s (dx)

[
b(x)

∫
Rd
φ2(x+ z)D(x, dz)

+ φ2(x)
(
d(x) +

∫
X
α(x, y)Xn

s (dy)
)]

+ 2n

∫ t

0

〈Xn
s , φ〉Bn(s)ds

− 2n
[
〈Xn

0 , φ〉+

∫ t

0

Bn(s)ds
][
〈X0, φ〉+

∫ t

0

A(s)ds
]

+ n
[
〈X0, φ〉+

∫ t

0

A(s)ds
]2

+ martingale.

(5.5.27)

Set

Dt,n,1 :=

∫ t

0

ds

∫
X
Xn
s (dx)

[
b(x)

∫
Rd
φ2(x+z)D(x, dz)+φ2(x)

(
d(x)+

∫
X
α(x, y)Xn

s (dy)
)]
.

(5.5.28)
By combining all the quadratic term at time 0 in (5.5.27) together, it follows

(5.5.27) =n〈Xn
0 −X0, φ〉2 +Dt,n,1

+ 2n

∫ t

0

〈Xn
s , φ〉Bn(s)ds− 2n〈Xt, φ〉

∫ t

0

Bn(s)ds

− 2n〈Xn
0 , φ〉

∫ t

0

A(s)ds+ 2n〈X0, φ〉
∫ t

0

A(s)ds

+ n
[ ∫ t

0

A(s)ds
]2

+ martingale

(5.5.29)

=〈Y n
0 , φ〉2 +Dt,n,1

+ 2n

∫ t

0

〈 Y
n
s√
n

+Xs, φ〉Bn(s)ds− 2n〈Xt, φ〉
∫ t

0

Bn(s)ds

− 2
√
n〈Y n

0 , φ〉
∫ t

0

A(s)ds+ n
[ ∫ t

0

A(s)ds
]2

+ martingale

(5.5.30)

=〈Y n
0 , φ〉2 +Dt,n,1

+ 2
√
n

∫ t

0

〈Y n
s , φ〉Bn(s)ds

+ 2n

∫ t

0

〈Xs, φ〉Bn(s)ds− 2n〈Xt, φ〉
∫ t

0

Bn(s)ds

− 2
√
n〈Y n

0 , φ〉
∫ t

0

A(s)ds+ n
[ ∫ t

0

A(s)ds
]2

+ martingale

(5.5.31)
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Integration by parts
= 〈Y n

0 , φ〉2 +Dt,n,1

+ 2
√
n

∫ t

0

〈Y n
s , φ〉Bn(s)ds

− 2n

∫ t

0

dsA(s)

∫ s

0

Bn(r)dr − 2
√
n〈Y n

0 , φ〉
∫ t

0

A(s)ds

+ n
[ ∫ t

0

A(s)ds
]2

+ martingale

(5.5.32)

ReplaceBn(s) by(5.5.25)
= 〈Y n

0 , φ〉2 +Dt,n,1

+ 2

∫ t

0

〈Y n
s , φ〉ds

{∫
X
Y n
s (dx)

[
b(x)

∫
Rd
φ(x+ z)D(x, dz)− φ(x)

(
d(x)

+

∫
X
α(x, y)Xn

s (dy)
)]
−
∫
X
Xs(dx)φ(x)

∫
X
α(x, y)Y n

s (dy)
}

+ 2
√
n

∫ t

0

〈Y n
s , φ〉A(s)ds

− 2n

∫ t

0

dsA(s)

∫ s

0

Bn(r)dr − 2
√
n〈Y n

0 , φ〉
∫ t

0

A(s)ds

+ n
[ ∫ t

0

A(s)ds
]2

+ martingale.

(5.5.33)
Set

Dt,n,2 := 2

∫ t

0

〈Y n
s , φ〉ds

{∫
X
Y n
s (dx)

[
b(x)

∫
Rd
φ(x+ z)D(x, dz)− d(x)φ(x)

− φ(x)

∫
X
α(x, y)Xn

s (dy)
]
−
∫
X
Xs(dx)φ(x)

∫
X
α(x, y)Y n

s (dy)
}
.

(5.5.34)

Replace 〈Y n
s , φ〉 and Bn(r) by (5.2.8) and (5.5.25) respectively, one obtains

(5.5.33) =〈Y n
0 , φ〉2 +Dt,n,1 +Dt,n,2

+ 2
√
n

∫ t

0

dsA(s)

∫ s

0

dr

∫
X
Y n
r (dx)

[
b(x)

∫
Rd
φ(x+ z)D(x, dz)− d(x)φ(x)

]
− 2n

∫ t

0

dsA(s)

∫ s

0

dr

∫
X
Xn
r (dx)φ(x)

∫
X
α(x, y)Xn

r (dy)

+ 2n

∫ t

0

dsA(s)

∫ s

0

dr

∫
X
Xr(dx)φ(x)

∫
X
α(x, y)Xr(dy)

− 2n

∫ t

0

dsA(s)

∫ s

0

dr

∫
X
Xn
r (dx)

[
b(x)

∫
Rd
φ(x+ z)D(x, dz)

− φ(x)
(
d(x) +

∫
X
α(x, y)Xn

r (dy)
)]

+ n
[ ∫ t

0

A(s)ds
]2

+ martingale

(5.5.35)
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=〈Y n
0 , φ〉2 +Dt,n,1 +Dt,n,2

+ 2
√
n

∫ t

0

dsA(s)

∫ s

0

dr

∫
X
Y n
r (dx)

[
b(x)

∫
Rd
φ(x+ z)D(x, dz)− d(x)φ(x)

]
+ 2n

∫ t

0

dsA(s)

∫ s

0

dr

∫
X
Xr(dx)φ(x)

∫
X
α(x, y)Xr(dy)

− 2n

∫ t

0

dsA(s)

∫ s

0

dr

∫
X
Xn
r (dx)

[
b(x)

∫
Rd
φ(x+ z)D(x, dz)− d(x)φ(x)

]
+ n
[ ∫ t

0

A(s)ds
]2

+ martingale.

(5.5.36)

Combine Xn
r , Xr and Y n

r , it thus follows

〈Y n
t , φ〉2 =〈Y n

0 , φ〉2 +Dt,n,1 +Dt,n,2

− 2n

∫ t

0

dsA(s)

∫ s

0

A(r)dr

+ n
[ ∫ t

0

A(s)ds
]2

+ martingale

Integration by parts
= 〈Y n

0 , φ〉2 +Dt,n,1 +Dt,n,2 + martingale.

(5.5.37)

Obviously, both Dt,n,1 and Dt,n,2 converge as n→∞.
Finally, we get

〈Yt, φ〉2 = 〈γ, φ〉2 +

∫ t

o

ds

∫
X
Xs(dx)b(x)

∫
Rd
φ2(x+ z)D(x, dz)

+

∫ t

0

ds

∫
X
Xs(dx)φ2(x)

(
d(x) +

∫
X
α(x, y)Xs(dy)

)
+ 2

∫ t

0

〈Ys, φ〉ds
{∫
X
Ys(dx)

[
b(x)

∫
Rd
φ(x+ z)D(x, dz)− d(x)φ(x)

− φ(x)

∫
X
α(x, y)Xs(dy)

]
−
∫
X
Xs(dx)φ(x)

∫
X
α(x, y)Ys(dy)

}
+ martingale.

(5.5.38)
By comparing the representations of (5.5.23) and (5.5.38), we conclude

〈M.(φ)〉t =

∫ t

o

ds

∫
X
Xs(dx)b(x)

∫
Rd
φ2(x+ z)D(x, dz)

+

∫ t

0

ds

∫
X
Xs(dx)φ2(x)

(
d(x) +

∫
X
α(x, y)Xs(dy)

)
.

(5.5.39)

�



A Stability of a Lotka-Volterra system

Consider a Lotka-Volterra system (n(x), n(y)) satisfying the following equations.{
ṅt(x) = (b(x)− d(x)− α(x, x)nt(x)− α(x, y)nt(y))nt(x)
ṅt(y) = (b(y)− d(y)− α(y, x)nt(x)− α(y, y)nt(y))nt(y).

(A.0.1)

Suppose that n0(x), n0(y) > 0 and f(y, x) := b(y) − d(y) − α(y, x)n̄(x) > 0, n̄(x) =
b(x)−d(x)
α(x,x)

, and its symmetric form f(x, y) < 0. Then we conclude that (0, n̄(y)) is the
only stable point.

In fact, there are four fixed points of above system, namely, (0, 0), (n̄(x), 0), (0, n̄(y)),
and (n∗(x), n∗(y)), where (n∗(x), n∗(y)) is such that{

b(x)− d(x)− α(x, x)nt(x)− α(x, y)nt(y) = 0
b(y)− d(y)− α(y, x)nt(x)− α(y, y)nt(y) = 0.

By simple calculation, we obtain that{
n∗(x) = α(y,y)f(x,y)

α(x,x)α(y,y)−α(x,y)α(y,x)

n∗(x) = α(x,x)f(y,x)
α(x,x)α(y,y)−α(x,y)α(y,x)

.

To make sense of the solution as a population density (which must be non-negative),
one needs f(x, y) · f(y, x) > 0. It contradicts the assumption f(x, y) < 0, f(y, x) > 0.
We thus exclude the solution (n∗(x), n∗(y)).

The Jacobian matrix for the system (A.0.1) at point (0, 0) is(
b(x)− d(x) 0

0 b(y)− d(y)

)
.

Obviously its eigenvalues are both positive. Thus (0, 0) is unstable.
The Jacobian matric at point (n̄(x), 0) is(

− (b(x)− d(x)) −α(x, y)n̄(x)
0 b(y)− d(y)− α(y, x)n̄(x)

)
=

(
− (b(x)− d(x)) −α(x, y)n̄(x)

0 f(y, x)

)
.

Since one of its eigenvalue − (b(x)− d(x)) is negative whereas the other one is f(y, x) >
0, the equilibrium (n̄(x), 0) is unstable.

The Jacobian matric of system (A.0.1) at point (0, n̄(y)) is(
b(x)− d(x)− α(x, y)n̄(y) 0

−α(y, x)n̄(y) − (b(y)− d(y))

)
=

(
f(x, y) 0

−α(y, x)n̄(y) − (b(y)− d(y))

)
,
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whose eigenvalues are both negative because of the condition f(x, y) < 0. Thus (0, n̄(y))
is the only stable equilibrium of the system (A.0.1).



B R-programming for TST

Figure 3.4 is generated by the following R-programming functions:

output<- TST-4(4*10^7, 10^3, 2*10^2, 2.5, c(3,6,8,10), c(0,0,0,0), 1, 0.8, 1.5)

output<- TST-5(4*10^7, 10^3, 4*10^2, 2.5, c(3,6,8,10,12), c(0,0,0,0,0), 1, 0.8,

1.5).

Take the second line as an example, the output for the last stored vector output[1001]
is as follows:

> output[1001,6]

[1] 11.5825

> output[1001,5]

[1] 0.2475

> output[1001,4]

[1] 7.5675

> output[1001,3]

[1] 0.1025

> output[1001,2]

[1] 3.0775

We enclose the code of the function TST-5 as follows.

1 sim.BDCM125type <- function(iter , plot.points , scale.K, init.density =2.5,

2 B=c(3,6,8,10,12), D=c(0,0,0,0,0), c=1, alpha=.5, beta =1.5)

3 {

4 # The function sim.BDCM simulates a birth -death process with competition

5 # and mutation between the two species.

6 #

7 # Input:

8 # iter - number of iterations

9 # plot.points - number of points stored in the vector N and M

10 # scale.K - scaling parameter

11 # init.density - initial density

12 # B - vector of birth rates

13 # D - vector of death rates

14 # c - scalar of competition kernel

15 # alpha - exponent of mutation given in the form scale.Ksim^(- alpha)

16 #

17 # Output:

18 # data.frame - containing the history of N and M

19

20 # Initializing needed arrays

21 output.T <- vector(length=plot.points );

22

23 output.N <- vector(length=plot.points );

24 output.M <- vector(length=plot.points );

25 output.Q <- vector(length=plot.points );

26 output.R <- vector(length=plot.points );



108 Chapter B. R-programming for TST

27 output.S <- vector(length=plot.points );

28

29 # Set initial values

30 store.dist <- floor(iter/plot.points );

31 store.break <- store.dist;

32

33 N <- scale.K * init.density;

34 M <- 0;

35 Q <- 0;

36 R <- 0;

37 S <- 0;

38

39 t <- 0;

40 j <- 2;

41

42 output.N[1] <- N;

43 output.M[1] <- M;

44 output.Q[1] <- Q;

45 output.R[1] <- R;

46 output.S[1] <- S;

47

48 output.T[1] <- t;

49

50 # Set migation probability of a birth

51 p <- scale.K^(-alpha );

52 # Set mutation probability of a birth

53 q <- scale.K^(-beta);

54 # Simulation loop

55 for (i in seq(1,iter))

56 {

57 # Computation of the corresponding rates

58 frakN <- (B[1] + D[1] + c * N/scale.K + c * M/scale.K );

59 frakM <- (B[2] + D[2] + c * M/scale.K + c * N/scale.K + c * Q/scale.K);

60 frakQ <- (B[3] + D[3] + c * Q/scale.K + c * M/scale.K + c * R/scale.K );

61 frakR <- (B[4] + D[4] + c * R/scale.K + c * Q/scale.K + c * S/scale.K );

62 frakS <- (B[5] + D[5] + c * S/scale.K + c * R/scale.K );

63

64 # Simulate the length of the timestep

65 t <- t + rexp(1, rate= N * frakN + M * frakM +

66 Q * frakQ + R * frakR + S * frakS );

67

68 # Generate random events

69 v1 <- rbinom(1, 1, N/(N + M + Q + R + S));

70 v2 <- rbinom(1, 1, M/(N + M + Q + R + S));

71 v3 <- rbinom(1, 1, Q/(N + M + Q + R + S));

72 v4 <- rbinom(1, 1, R/(N + M + Q + R + S));

73 v5 <- rbinom(1, 1, S/(N + M + Q + R + S));

74

75 u1 <- rbinom(1, 1, B[1]/frakN);

76 u2 <- rbinom(1, 1, B[2]/frakM);

77 u3 <- rbinom(1, 1, B[3]/frakQ);

78 u4 <- rbinom(1, 1, B[4]/frakR);

79 u5 <- rbinom(1, 1, B[5]/frakS);

80

81 w1 <- rbinom(1, 1, q);

82 w2 <- rbinom(1, 1, q);

83 w3 <- rbinom(1, 1, q);

84 w4 <- rbinom(1, 1, q);

85

86 # Update rules#

87

88 if (v1==1&&u1==1&&w1==1)

89 {

90 ##mutation from type1 to type2 ##

91 M <- M+1;

92 }
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93 else if (v1==1&&u1==1&&w1==0)

94 {

95 ##birth from type1 non -mutation ##

96 m = rbinom(1, 1, p);

97 if (m==1&&M>0)

98 {

99 ### migration birth ###

100 M <- M+1;

101 }

102 else

103 {

104 ### copy birth ###

105 N <- N+1;

106 }

107 }

108

109 else if (v1==1&&u1==0)

110 {

111 ##death of type1 ##

112 N <- N-1;

113 }

114 else if (v2==1&&u2==1&&w2==1)

115 {

116 ##mutation from type2 to type3 ##

117 Q <- Q+1;

118 }

119 else if (v2==1&&u2==1&&w2==0)

120 {

121 #### birth from type2 non -mutation ####

122 m <- rbinom(1, 1, p);

123 m1 <- rbinom(1, 1, 1/2);

124

125 if (m==1&&Q==0)

126 {

127 ### migation birth to left -truncate right ###

128 N <- N+1;

129 }

130 else if (m==1&&Q>0&&m1==1)

131 {

132 ### migration birth to left ###

133 N <- N+1;

134 }

135 else if (m==1&&Q>0&&m1==0)

136 {

137 ### migration birth to right ###

138 Q <- Q+1;

139 }

140 else

141 {

142 ### copy birth ###

143 M <- M+1;

144 }

145 }

146

147 else if (v2==1&&u2==0)

148 {

149 ##death of type2 ##

150 M <- M-1;

151 }

152 else if (v3==1&&u3==1&&w3==1)

153 {

154 ##mutation from type3 to type4 ##

155 R<- R+1;

156 }

157 else if (v3==1&&u3==1&&w3==0)

158 {
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159 ##birth from type3 non -mutation ##

160 m <- rbinom(1, 1, p);

161 m1 <- rbinom(1, 1, 1/2);

162

163 if (m==1&&R==0)

164 {

165 ### migation birth to left -truncate right ###

166 M <- M+1;

167 }

168 else if (m==1&&R>0&&m1==1)

169 {

170 ### migration birth to left ###

171 M <- M+1;

172 }

173 else if (m==1&&R>0&&m1==0)

174 {

175 ### migration birth to right ###

176 R <- R+1;

177 }

178 else

179 {

180 ### copy birth ###

181 Q <- Q+1;

182 }

183 }

184 else if (v3==1&&u3==0)

185 {

186 ##death of type3 ##

187 Q <- Q-1;

188 }

189 else if (v4==1&&u4==1&&w4==1)

190 {

191 ##mutation from type4 to type5 ##

192 S<- S+1;

193 }

194 else if (v4==1&&u4==1&&w4==0)

195 {

196 ##birth from type4 non -mutation ##

197 m <- rbinom(1, 1, p);

198 m1 <- rbinom(1, 1, 1/2);

199

200 if (m==1&&S==0)

201 {

202 ### migation birth to left -truncate right ###

203 Q <- Q+1;

204 }

205 else if (m==1&&S>0&&m1==1)

206 {

207 ### migration birth to left ###

208 Q <- Q+1;

209 }

210 else if (m==1&&S>0&&m1==0)

211 {

212 ### migration birth to right ###

213 S <- S+1;

214 }

215 else

216 {

217 ### copy birth ###

218 R <- R+1;

219 }

220 }

221 else if (v4==1&&u4==0)

222 {

223 ##death of type4 ##

224 R <- R-1;
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225 }

226 else if (v5==1&&u5==1)

227 {

228 ##birth of type5 ##

229 m <- rbinom(1, 1, p);

230 if (m==1)

231 {

232 ### migration birth to left ###

233 R <- R+1;

234 }

235 else

236 {

237 ### copy birth ###

238 S <- S+1;

239 }

240 }

241 else if (v5==1&&u5==0)

242 {

243 ##death of type5 ##

244 S <- S-1;

245 };

246

247 # Store output

248 if (i == store.break)

249 {

250 output.T[j] <- t;

251 output.N[j] <- N;

252 output.M[j] <- M;

253 output.Q[j] <- Q;

254 output.R[j] <- R;

255 output.S[j] <- S;

256 j <- j+1;

257

258 store.break <- store.break + store.dist

259 }

260 }

261

262 # Graphical output

263 plot(output.T, output.N/scale.K, type="s", col="red", ylim=range (0 ,13))

264 lines(output.T, output.M/scale.K, type="s", col="blue", ylim=range (0 ,13))

265 lines(output.T, output.Q/scale.K, type="s", col="green", ylim=range (0 ,13))

266 lines(output.T, output.R/scale.K, type="s", col="black", ylim=range (0 ,13))

267 lines(output.T, output.S/scale.K, type="s", col="yellow", ylim=range (0 ,13))

268

269

270 # Output

271 data.frame(time=output.T, N=output.N/scale.K, M=output.M/scale.K,

272 Q=output.Q/scale.K, R=output.R/scale.K, S=output.S/scale.K)

273 }
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