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Summary 

Nitrogen (N) utilisation in dairy farms is inefficient. High N inputs through expensive 

protein concentrates and fertilisers are not in balance with agricultural outputs 

(reproduction, growth, milk). Large losses of N occur through animal excretion and its 

poor management, as well as leaching from fertilised soils, leading to environmental 

pollution. Nitrogen inputs are also expensive to farmers and the cheapest sources are often 

imported soy products. A high dependency on imports, however, is detrimental to the 

environment and economy, thus local sources of protein, such as forages, are preferable. 

Combining these factors it appears that a major goal of dairy farming is to decrease N 

inputs and increase efficiency of N utilisation.   

One crucial step in achieving this goal is to accurately assess and quantify the amino acid 

supply and requirement of dairy cows. This is much easier said than done as dietary crude 

protein (CP) is altered qualitatively and quantitatively by rumen microbes. The present 

study has focussed on assessing the CP quality of fresh and conserved forages, in particular 

focussing on post rumen quality and quantity of undegraded feed CP and total CP passing 

to the intestines, where amino acid absorption occurs.  

The first part of the study attempted to improve the accuracy of estimation of the 

proportion of feed CP escaping degradation in the rumen (RUP), using in situ and in vitro 

methods. The in situ method is the most commonly used and accepted method. However, it 

is prone to error and a large source of it comes from colonisation of the residues by rumen 

microbes. This is particularly problematic for forage evaluation as microbial CP can 

compile over half of the residue CP, thus greatly overestimating RUP. In this study a novel 

combination of existing methods was used to correct residues for microbial attachment. 

The results were promising and further validation and standardisation would be highly 

beneficial for future analyses using the in situ technique. The in vitro methods used were: 

CP fractionation according to the Cornell net carbohydrate and protein system (CNCPS), 

and enzymatic degradation using the protease Streptomyces griseus. Both in vitro methods 

show high potential for future routine analysis of forage RUP and the results here support 

this further, though further research is required. The CP fractionation method requires a 

much larger data bank before robust regression equations can be formulated for RUP 

estimation. The S. griseus method estimated the RUP of most samples to a high degree of 

accuracy and further validation is also required.   
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The second part of the study applied the recently developed modified Hohenheim gas test 

as a new, rapid and simple method of assessing the protein value of forages. Utilisable 

crude protein (uCP) is the accepted measure of protein value in Germany and it is defined 

as the sum of microbial CP (MCP) and RUP at the duodenum. Multiplication by constants 

for amino acid content and intestinal digestibility convert uCP to the more internationally 

used value, metabolisable protein (MP), which more accurately describes the amino acid 

supply to the animal. The problem in estimating MP in most international systems is that it 

requires separate estimates of MCP and RUP and current methods in estimating these 

variable have large inherent sources of error. The modified Hohenheim gas test provides a 

direct estimate of combined MCP and RUP and, as it involves incubation in rumen fluid, it 

is sensitive to the degradation characteristics and interactions of individual feedstuffs. The 

results were very promising; further validation with a larger variety of feedstuffs and with 

in vivo data is required.  

The third part of the study draws attention to how conservation methods could be 

employed to improve the protein value of forages. Grass silage was pre-wilted to four 

levels of dry matter (DM: 20, 35, 50 and 65%) at two rates (fast, slow) and the effect on 

CP degradability, protein value and amino acid content was observed. The protein quality 

was improved by fast wilting. Furthermore, wilting to 65% DM increased the level of RUP 

and decreased the non-protein N concentration. Utilisable CP was significantly improved 

by fast wilting, but not by increasing DM however; this is probably due to the decreased 

content of metabolisable energy. Finally, there was a large treatment effect on the amino 

acid profile of the silages. However, these effects were mostly lost after incubation in the 

rumen. Animal performance trials as well as a repetition of the experiment under practical 

ensiling conditions are recommended.  

Overall, the results of these studies support those of many others showing that protein 

quality and supply from forages can be improved through methods used for conservation. 

The improvement of in vitro methods will aid in leading to higher levels of accuracy in 

estimating duodenal CP supply as well as presenting a range of other benefits such as 

reduced labour and financial expenditure and improved animal welfare through decreased 

requirement for experimental animals.  
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Zusammenfassung 

Stickstoff (N) wird in Milchviehbetrieben nicht optimal genutzt. Hohe N-Einfuhren durch 

Eiweißfuttermittel und Düngemittel stehen nicht im Gleichgewicht mit landwirtschaftlich 

erzeugten Produkten (Reproduktion, Wachstum, Milch) und deren Ausfuhren aus dem 

Betrieb. Erhebliche N-Verluste entstehen durch tierische Ausscheidungen und ineffizientes 

Management, sowie durch Emissionen aus gedüngten Böden und dies trägt zur Umwelt-

belastung bei. Des Weiteren belasten N-Überschüsse das Betriebsergebnis negativ. Somit 

ist ein Ziel bei der Milchproduktion, die N-Einträge zu senken und dadurch die N- Ausnut-

zung zu steigern. 

Zur Erreichung dieses Ziels müssen die Aminosäureversorgung und der -bedarf der 

Milchkühe genauer quantifiziert werden. Dies ist schwierig, da das Rohprotein (XP) aus 

dem Futter qualitativ und quantitativ durch Pansenmikroben verändert wird. Grünlandauf-

wüchse liefern regional erzeugte und kostengünstige Futtermittel mit einem großen Poten-

zial für eine bessere N Nutzung bei Wiederkäuern. Die vorliegende Studie konzentrierte 

sich auf die Beurteilung der XP-Qualität von frischen und konservierten Grünlandauf-

wüchsen, wofür verschiedene  methodische Ansätze verwendet wurden.  

Ziel des ersten Teils der Studie war es, eine verbesserte Schätzgenauigkeit des im Pansen 

nicht abgebauten Futter-XP (ruminally undegraded dietary crude protein, UDP) zu 

erreichen. Dazu wurden in situ- und in vitro-Methoden genutzt. Die in situ-Methode, 

obwohl weltweit verbreitet und anerkannt, ist anfällig für Fehler. Eine große Fehlerquelle 

stellt die mikrobielle Besiedelung der in situ-Residuen im Pansen dar, was zu einer 

Unterschätzung des ruminalen XP-Abbaus führt. In dieser Studie wurde eine neuartige 

Kombination vorhandener Methoden verwendet, mit der die mikrobielle Besiedelung 

gezielt korrigiert werden konnte. Die Ergebnisse waren plausibel, eine Validierung sowie 

Standardisierung für zukünftige Anwendungen sollten die nächsten Schritte sein. Die 

verwendeten in vitro-Methoden beinhalteten: Eine XP-Fraktionierung gemäß dem „Cornell 

net carbohydrate and protein system“ (CNCPS) sowie den enzymatischen Abbau mithilfe 

einer Streptomyces griseus-Protease. Beide in vitro-Methoden hatten ein großes Potential 

für zukünftige Routineanalysen. Die XP-Fraktionierung erfordert eine größere Grobfutter-

Datenbasis, bevor robuste Regressionsgleichungen für die UDP-Schätzung abgeleitet 

werden können. Mit der S. griseus-Methode wurden die UDP-Gehalte in den meisten 
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Proben mit einer hohen Genauigkeit geschätzt, aber auch hier sind weitere Validierungen 

erforderlich. 

Der zweite Teil der Studie verwendete den modifizierten Hohenheimer Futterwerttest 

(HFT) als eine neue, schnelle und einfache Methode zur Bewertung des Proteinwertes von 

Grünlandaufwüchsen anhand des im deutschen Proteinbewertungssystem zentralen Krite-

riums „nutzbares Rohprotein am Duodenum“ (nXP). Das nXP stellt die Summe aus im 

Pansen synthetisiertem mikrobiellem XP (MXP) und UDP am Duodenum dar.  Durch die 

Erweiterung der Schätzgleichung mit Konstanten für die Konzentrationen an Aminosäuren 

im nXP und dessen intestinale Verdaulichkeit kann der nXP-Wert zur international 

gebräuchlicheren Kenngröße umsetzbares Protein (metabolisable protein, MP) umgewan-

delt werden. Das Problem bei der Schätzung von MP ist in den meisten Systemen, dass 

separate Schätzungen des MXP und des UDP erforderlich sind und die aktuellen Methoden 

für die Schätzung dieser Variablen große inhärente Fehlerquellen haben. Der modifizierte 

HFT ermöglicht demgegenüber eine direkte Schätzung des nXP. Die Ergebnisse waren 

plausibel und sollten mit einer größeren Vielfalt an Futtermitteln und in vivo Daten 

validiert werden. 

Im dritten Teil der Studie wurden unterschiedliche Methoden der Grünfutterkonservierung 

hinsichtlich ihrer Auswirkungen auf den Proteinwert von Grünlandaufwüchsen untersucht.    

Grüngut wurde vor der Silierung auf vier verschiedene Trockenmassegehalte (TM: 20, 35, 

50 und 65 %) bei zwei Geschwindigkeiten (schnell, langsam) angewelkt und an den 

Silagen die Auswirkungen dieser Vorgehensweisen auf den XP-Abbau im Pansen, den 

Proteinwert und die Aminosäuregehalte beobachtet. Schnelles Anwelken verbesserte die 

Proteinqualität. Anwelken auf 65 % TM erhöhte das UDP-Niveau und verringerte die 

Nicht-Protein-N-Konzentrationen. Die nXP-Gehalte wurden durch die Erhöhung der TM-

Gehalte nicht beeinflusst. Dies ist wahrscheinlich auf die verringerten Gehalte an umsetz-

barer Energie zurückzuführen. Studien zur tierischen Leistung sowie eine Wiederholung 

des Experiments unter Praxisbedingungen werden empfohlen. 

Die Ergebnisse dieser Studie belegen, dass Proteinqualität und die Proteinversorgung aus 

Futterpflanzen durch die Art der Konservierungsmethode verbessert werden kann. Eine 

verbesserte Vorhersagegenauigkeit der Proteinqualität von Grünlandaufwüchsen durch 

standardisierte in vitro-Messungen kann somit dazu beitragen, N-Bilanzüberschüsse von 

Milchviehbetrieben auszugleichen und die Milcherzeugung zu optimieren. 
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CHAPTER 1  GENERAL INTRODUCTION 

Environmental pollution from agriculturally associated nitrogen (N) is the result of 

unbalanced N supply, demand and utilisation. A significant contributor to N pollution is dairy 

farming. Global ammonia (NH3) emissions from ruminants surpass all other domestic species 

(Bouwman et al., 1997). Ammonia is produced and evaporated from urinary excretion and 

contributes to ecosystem acidification and eutrophication (Galloway and Cowling, 2002). Use 

of mineral fertilisers is the second largest contributor to global ammonia emissions, after 

domestic animals (Bouwman et al., 1997). Application of mineral N-fertiliser and manure to 

the soil is also largely responsible for increased nitrous oxide (N2O) emissions, which 

contribute to tropospheric warming and stratospheric ozone depletion, and nitrate (NO3) 

pollution in soils and water systems through leaching (Tamminga, 2003). Generally, the 

utilisation of N in intensive dairy farming is highly inefficient with large inputs, large 

amounts of waste, and only a fraction of the dietary N supply being converted into milk 

protein. To add further insult to injury, protein is usually the most expensive component of 

dairy cow diets, particularly as many supplements are imported, a factor in itself which is by 

no means environmentally friendly. 

Ideally, dairy cow requirements should be met by their natural feed; forage.  High production 

demands and limited space however make high energy and protein supplements an essential 

part of the diet. The problem is not always a factor of low crude protein (CP) from forages but 

rather poor efficiency of CP utilisation. For example, grass silage provides a high proportion 

of dietary CP but production responses are improved with added protein supplements. The 

inefficient utilisation of silage CP is based largely on the composition of N components 

(Givens et al., 2004). A high proportion of forage true protein is degraded during ensiling to 

form non-protein N, which is rapidly degraded to ammonia in the rumen. A significant 

portion of this is excreted due to insufficient rapidly available energy to the microbes to 

capture the ammonia-N. Rumen degradation is highly dependent on the structure of N 

components and this may be altered by the type of conservation (hay vs. silage) and methods 

used within conservation type, such as pre-ensiling wilting. Thus a more clear understanding 

of the effect of forage conservation on protein quality will aid in improving the efficiency of 

N utilisation by ruminants and decrease dependency on expensive, protein rich supplements.    

 In order to meet growth, reproduction and, in particular, lactation demands ruminants must 

receive an adequate supply of absorbable amino acids.  Metabolisable protein (MP) is the 

most commonly used and accepted measure of duodenal protein supply and compiles 
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microbial CP (MCP) and undegraded feed CP (RUP), or more accurately, amino acids, that 

can be digested in the small intestine. Both portions are important in terms of amino acid 

composition. Microbial amino acids make up the majority of duodenal supply and their 

composition is generally quite uniform (Storm and Ørskov, 1983), though minor variations do 

occur with diet type (Boisen et al., 2000). Any deficit in requirement must be met by RUP.  

Unfortunately, both MCP and RUP are exceedingly difficult to accurately measure because 

the ingested dietary amino acid supply is altered both quantitatively and qualitatively in the 

rumen by microbial action. Whilst the N requirement of rumen microbes must be met, simply 

increasing the concentration of dietary CP will often lead to a higher level of N excretion and 

to the previously described environmental and economical problems. On the other hand, 

insufficient ruminally available N can suppress microbial growth (Russell et al., 1992) and 

diminish the supply of MP to the animal. Clearly a balance must be found that optimises 

efficiency, however the complicated, interacting processes occurring in the rumen and 

affecting microbial production make this a challenging goal.  

Essentially, an ideal protein evaluation system should accurately quantify the proportion of 

both MCP and RUP in MP as well as the requirements by rumen microbes of rumen 

degradable protein (RDP) and by the host animal of MP. Improvement in protein evaluation 

systems have aided in more accurately quantifying these variables but a higher level of 

accuracy is required. Currently used methods still rely heavily on fistulated animals. Besides 

the obvious ethical concerns, in situ and in vivo methods are associated with high costs in 

money, labour and time. Furthermore they are difficult to standardise and bring about high 

levels of error (Nocek, 1988). In vitro methods are preferable; however they must first be 

validated against in vivo or in situ data. 
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CHAPTER 2  SCOPE OF THE THESIS 

This is a cumulative thesis composed of three papers directly or indirectly addressing the 

problems mentioned in the general introduction. The third to fifth chapters compile 

manuscripts that are formatted according to the regulations of the journal chosen for 

submission.  

The third chapter focuses on measuring RUP using a variety of techniques. The in situ method 

is the most widely accepted method in analysis of RUP, however it is very difficult to 

standardise, results are highly variable, and it requires access to surgically modified animals. 

It is, however, the accepted standard in estimating RUP and was thus used in this study with 

an additional improvement. Many attempts have been and are being made to accurately 

predict RUP using in vitro methods, as they are generally much easier to standardise and 

reproduce results as well as having ethical advantages. Two well researched methods were 

chosen and recent improvements were applied in an attempt to improve the accuracy of RUP 

prediction of forages and identify further steps to be taken.  

The fourth chapter applies a recently developed in vitro method which provides a direct 

estimate of utilisable CP at the duodenum. Utilisable CP is simply the sum of MCP and RUP 

at the duodenum and is the accepted estimate of protein value in Germany. It can be converted 

to MP using constants for amino acid concentration and digestibility. A direct measurement 

reduces the number of variables required, as would be necessary for an indirect estimation, 

and their associated prediction error, providing a theoretically more accurate quantification. 

The new method was validated against the currently used method in Germany. 

The fifth chapter focuses on using conservation methods to improve protein quality. More 

specifically: the effect of wilting grass on protein quality and amino acid composition of 

silage.  Techniques from the previous two chapters were applied as well as a full amino acid 

analysis of the silages before and after incubation in the rumen.   

Extensive additional analyses to those reported were conducted in the course of this PhD. The 

results were selected based on their quality and usefulness in furthering our understanding and 

assessment of protein quality in dairy farming.  
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Abstract 

Feed crude protein (CP) escaping rumen degradation (RUP) from a variety of forages was 

estimated using two in vitro procedures: the Cornell protein fractionation procedure and 

enzymatic degradation procedure by Streptomyces griseus protease. Some recent 

improvements to both in vitro procedures were applied. The in situ technique served as a 

reference method and a novel combination of methods was used to correct for microbial 

colonisation of residues. Twenty-five forages, varying in conservation type (fresh, ensiled, 

dried) were analysed. Assumed passage rates of 0.02, 0.04 and 0.06 h-1 were applied to 

estimates of RUP using in situ and chemical fractionation. Results from both in vitro 

procedures correlated linearly with in situ values (P<0.05). Enzymatic degradation was the 

more accurate method in estimating in situ RUP (r2 = 0.69, P<0.0001). In both in vitro 

procedures, silage and dried forage were more accurately estimated than freshly harvested 

forage, which may be explained by the higher and more variable concentration of 

intermediately degraded CP fraction B2 in the latter. Estimation of RUP from CP fractions 

needs further improvement. The results imply that in vitro procedures may soon be applied 

for routine analysis of RUP in forages with a higher level of confidence. 

 

 

Keywords: crude protein fractionation, Streptomyces griseus protease, methods, forage 

conservation, microbial contamination 
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Introduction 

Crude protein (CP) degradation in the rumen is a very complex process and its 

quantification is an ongoing challenge to ruminant nutritionists. Ruminally undegraded feed 

CP (RUP) for individual feed products is required by most feed evaluation systems in the 

calculation of metabolisable protein (NRC, 2001; Tamminga et al., 2007; Volden, 2011). 

Moreover, constant attempts to increase RUP supply to the intestines of high producing dairy 

cows call for accurate, reproducible and simple methods for routine analysis. The 

determination of RUP in vivo is too expensive, time-consuming and labour-intensive for 

routine analysis and animal welfare is questionable (Stern et al., 1997).  

In situ techniques mimic in vivo conditions and are widely adopted as the standard method 

for analysing RUP as well as providing reference values against which in vitro techniques are 

correlated. However, the procedure is prone to various sources of error, one of which is 

colonisation of the residues by rumen microbes. Microbial markers such as diaminopimelic 

acid (DAPA) or mechanical pummelling are often used as a means of correction, although the 

former technique is not accurate for reasons described by Tedeschi et al. (2001) and the latter 

requires access to a stomacher. The commonly used purine analysis method (Zinn and Owens, 

1996) has also been shown to be inaccurate for reasons described by Klopfenstein et al. 

(2001). For these reasons, and in circumstances where markers have not been or can not be 

used, a simple and standardised method is required. Mass et al. (1999) reported that microbial 

matter is soluble in neutral detergent solution. Provided no feed-associated neutral detergent 

soluble material remains, this knowledge can be used to remove microbes from residue. 

However, for the calculation of effective degradability the in situ procedure requires some 

short incubation times (< 16 h) in which not all neutral detergent soluble material is degraded. 

Krawielitzki et al. (2006) found that microbial colonisation of residues was exponential with 

time and provided an equation, which required a variable describing the maximum attachment 

of microbes at saturation point. In the following study, maximum microbial attachment at 

saturation point was estimated by boiling in neutral detergent solution (Mass et al., 1999) and 

the results applied to the equation of Krawielitzki et al. (2006). The corrected in situ RUP 

served as reference values.  

Although the in situ method is widely used as the reference method in estimating RUP, it is 

labour-intensive and requires access to rumen cannulated animals. Based on these problems, 

in vitro methods are desirable for routine analysis of protein degradability. Two methods used 

currently include CP fractionation according to the Cornell Net Carbohydrate and Protein 
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System (CNCPS: Sniffen et al., 1992) and enzymatic degradation by commercial proteases 

(Krishnamoorthy et al., 1983). Estimation of RUP by these methods is still unreliable and 

requires refinement and standardisation. The main source of error in the CP fractionation 

system is the relatively low reproducibility of the CP degradation rate, which is highly 

influential on the level of CP escaping rumen degradation. In an attempt to bypass the need to 

estimate CP degradation rate, Shannak et al. (2000) developed regression equations from in 

situ RUP values using CP and fibre fractions. These equations, however, are validated for 

concentrates and were proven inaccurate for forages (Kirchhof, 2007). New equations for 

forages were developed (Kirchhof, 2007) and have been used in this study. Regarding in vitro 

studies with protease, many variants of the procedure have been used, making interpretation 

of results very difficult. An attempted standardisation of the procedure using Streptomyces 

griseus protease (SGP) was presented by Licitra et al. (1998, 1999) and these 

recommendations have been applied here. 

The main objective of the present study was to apply this new information to the in situ and 

in vitro (CP fractionation and SGP) methods and to assess their accuracy in estimating the 

RUP of forages. An additional objective was to gain a better understanding of the suitability 

of these techniques in assessing a variety of forage types (fresh, ensiled, dried).  

Materials and Methods 

Animals  

For the in situ trial six non-lactating German Holstein cows (≈ 750 kg body weight) were 

used. Cows were fitted with a 10 cm diameter rumen cannula (#2C, Bar Diamond Inc., Parma 

ID, USA) and housed side by side in a 20°C climate controlled stall. All animals were 

tethered to individual feeding troughs and allowed ad libitum access to water. Feeding 

occurred at 07:00 and 16:00 h daily in two equal meals meeting maintenance requirements. 

The ration was composed of approximately 0.22 soybean meal and mineral concentrate, 0.53 

maize silage and 0.26 grass hay as a proportion of total DM. The hay was given 30 minutes 

after the concentrate/silage mix. The diet was started 14 days before the trial and finished on 

the day of the last incubation. 

Feedstuffs 

From southern Germany twenty-five forage samples (Table 1) from harvest year 2008 were 

selected to cover a range of conservation methods and species. Samples included: freshly 

harvested (n = 12), silage (n = 8), hay (n = 1) and artificially dried (n = 4). Of the freshly 



Chapter 3 Estimating ruminal crude protein degradation  

 9 

harvested forages two of the following samples from the same parent material were taken: 

white clover (Trifolium repens), perennial ryegrass (Lolium perenne), ryegrass/white clover 

sown field and meadow grass from two fields located approximately 50 km apart (field 1: 

approximately 0.80 grass, 0.15 legumes, 0.05 herbs; field 2: approximately 0.80 grass, 0.10 

legumes, 0.10 herbs). Two lucerne samples were also taken; however these came from 

different sources i.e. not the same parent material. All fresh samples were frozen within two 

hours of harvesting except for meadow grass-field 2 and lucerne, which were collected from 

the drying plant directly before drying and used to compare the effects of artificial drying on 

CP degradability. The material had been field wilted prior to transportation to the drying plant 

(see Table 1 for wilting times). Once collected these samples were also frozen. 

Eight silage samples were obtained from the same parent material in a controlled trial 

investigating the effects of wilting extent and speed on ruminal CP degradation (results to be 

published in a future paper). Meadow grass (approximately 0.80 grass, 0.10 legumes and 0.10 

herbs; second harvest, heading) was subdivided and wilted in the sun (fast) or shade (slow) to 

200, 350, 500 and 650 g/kg DM. The grass was then ensiled in triplicate, without additives, in 

1.75 l glass jars according to the scheme for silage testing (Bundesarbeitskreis 

Futterkonservierung, 2006). The trial was conducted at the Landwirtschaftliches Zentrum 

Baden-Württemberg (LAZBW), Aulendorf, Germany. 

The hay and artificially dried samples have been combined to represent dried forages. The 

single hay sample originated from meadow grass-field 1 (first harvest) in a controlled trial. A 

subsample of the grass was field wilted for 56 hours with manual turning to promote even 

drying.  Once a dry matter (DM) content of > 850 g/kg was reached, the hay was stored in a 

cool room at 4°C.  

Of the four artificially dried samples, two were derived from meadow grass-field 2 and one 

from each lucerne sample. Processing took place in different factories. The meadow grass was 

chopped to a theoretical length of 0.5 cm, dried (entrance temperature 350°C, exit temperature 

98°C) milled and pelleted. The lucerne samples were chopped to a theoretical length of 1 cm 

and dried (entrance temperature 540°C and 410°C and exit temperature 112°C and 109°C for 

harvest 1 and 3 respectively) without subsequent processing. Drying time for both forage 

types was about eight minutes and the starting and finishing temperature depended on the 

water content of the material. 
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General analysis 

All samples were freeze-dried and milled through a 3 mm screen for the in situ trial and a 1 

mm screen for all other analyses. Proximate analysis was done according to the German 

Handbook of Agricultural Experimental and Analytical Methods (VDLUFA, 2004) and 

method numbers are given. The DM of the forages and incubation residues was determined 

by oven-drying of a subsample at 105°C (3.1). Ash and crude lipids (CL) were analysed using 

methods 8.1 and 5.1.1 respectively. Crude protein was determined by Dumas combustion 

(4.1.2) for original forage material and in situ residues and by Kjeldahl (4.1.1) for CP 

fractionation analysis using Vapodest 50s carousel (Gerhardt, Königswinter, Germany) for 

automated distillation and titration. Neutral detergent fibre (6.5.1; assayed without heat stable 

amylase) and acid detergent fibre (ADF; 6.5.2) are expressed inclusive of residual ash. 

Additionally, ADF without residual ash (ADFom) was estimated by NIRS for use as a 

variable in calculating metabolisable energy (ME: GfE, 2008; see Table 1 for calculation).  

In situ procedure 

Rumen CP degradability was measured in an in situ trial conducted at the Department of 

Animal Nutrition of the Technical University of Munich (TUM), Freising-Weihenstephan. 

The procedure followed the basic method of Madsen and Hvelplund (1994) and Shannak et 

al. (2000) with the following alterations and specifications. In preparation, 4 ± 0.05 g of 

feedstuff was weighed into 10 x 20 cm Polyester-Monofilament (N-free) bags, pore size 50 ± 

15 µm (R1020. Ankom Technology, Macedon, NY, USA). Bags were incubated at least in 

triplicate in the ventral rumen of three cows; the number or replications depending on 

incubation time, expected degradability, and amount of residual material required for post-

incubation analyses. Plastic cable ties were used to seal the bags and attach them to an 800 g 

cylindrical plastic weight used for incubation. The weight was attached to the inside of the 

fistula with an 80 cm long line. All incubations began at 06:30 h, 30 minutes before the 

morning feed. Incubation periods were 2, 4, 8, 16, 24, 48 and 96 h. Directly after removal, all 

bags were immersed in ice-water to inhibit further microbial action and then washed by hand 

and then in a washing machine using cold water (without soap or spinning) with two water 

changes for 20 minutes. The bags were then freeze-dried, allowed to equilibrate to air 

moisture, and reweighed. Incubation residues were pooled per cow and incubation time. 

Three bags per feedstuff were also allocated for the calculation of the 0 h washout fraction. 

Disappearances were determined by following the same machine washing procedure as for 

the incubated bags. Water soluble material was estimated by mixing duplicate samples in 100 
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ml, 40°C distilled water and then filtering through No. 5951/2, diameter 270 mm filter paper 

(Schleicher and Schuell, Dassel, Germany). Water-insoluble CP escaping as small particles 

(SP) was estimated by subtracting water-soluble (WS) CP from 0 h CP washout.  The 

equation of Hvelplund and Weisbjerg (2000) was used to correct (C) the CP disappearance 

(DI) for small particle loss for each feedstuff (i) at each incubation time point:  

CDIi = DIi - SP (1 - ((DIi - (SP + WS)) / (1 - (SP + WS)))). 

Correction for microbial attachment (MA: mg/g residue CP) to undegraded particles was 

carried out using the exponential equation of Krawielitzki et al. (2006): 

),e-(1 A MA -Rt
max=  

where Amax is the maximum extent of bacterial colonisation at t ≈ ∞, R is the rate of 

colonisation (h-1) and t denotes the incubation time (hours). The rate of microbial attachment 

was calculated as (Krawielitzki et al. 2006): 

R (h-1) = (133 + 0.09 NDF (g/kg DM) - 0.35 CP (g/kg DM))/1000.  

The Amax was estimated by treating a subsample of the residue (t ≥ 16 h) with neutral 

detergent solution with the assumption that the residues only contained cell wall bound CP 

(estimated from neutral detergent insoluble N; NDIN) and microbial matter was soluble in 

neutral detergent (Mass et al., 1999). Due to small sample size and large number of samples, 

fibre bags (38 µm pore size; Gerhardt, Königswinter, Germany) were used instead of manual 

filtration on filter paper. Duplicates of 0.5 g were boiled for 1 h in neutral detergent solution, 

rinsed thoroughly with distilled water, oven-dried overnight at 60°C, reweighed and analysed 

for CP. The difference in CP between pre- and post neutral detergent-treated residues was 

taken as microbial CP.  The mean from the 16, 24, 48 and 96 h residues was used to represent 

Amax. Krawielitzki et al. (2006) found a significant relationship between NDF and CP content 

of the original material and Amax (r² = 0.57: P=0.006) where: 

Amax (mg/g residue CP) = (506 + 0.48 NDF (g/kg DM) - 0.77 CP (g/kg DM)) / 10 

Results of this calculation were compared with those of extraction by neutral detergent. The 

time and sample specific MA estimation was subtracted from the original residue CP before 

further degradability calculations were carried out.  
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Table 1 Feedstuff description and proximate parameters  

Feedstuff Harvest Maturity 

Wilting  

time DM CP Ash CL NDF ADF MEb 

   h g/kg ----------g/kg DM---------- 
MJ/kg 
DM 

Fresh            

Perennial ryegrass 1 Early head  239 109 64 21 427 225 11.0 

Perennial ryegrass 3 Mid head  184 148 100 41 419 278 11.0 

White clover 1 Early bud  135 241 113 15 227 235 10.9 

White clover 3 Mid bud  166 276 102 21 291 238 11.3 

Ryegrass/white clover  1 Early bud  237 163 89 25 391 256 11.0 

Ryegrass/white clover 1 Late bud  163 148 83 21 412 - 10.7 

Meadow grass 1 1 Late head  212 140 86 23 437 281 10.2 

Meadow grass 1 2 Early flower  180 149 90 26 476 310 9.9 

Meadow grass 2 1 Early head 5 256 184 87 29 446 212 11.4 

Meadow grass 2 1 Early head 24 309 193 88 27 413 209 11.4 

Lucerne 1 Mid bud 15 262 185 96 21 346 259 9.7 

Lucerne 3 Early flower 12 362 191 100 19 396 330 9.3 

Silage
a
           

Fast 200 2 Mid head 3 194 188 113 54 386 244 11.0 

Slow 200 2 Mid head 5 193 189 114 60 376 227 11.2 

Fast 350 2 Mid head 7 381 189 113 59 377 247 11.2 

Slow 350 2 Mid head 31 373 191 116 54 394 254 10.8 

Fast 500 2 Mid head 9 499 186 112 50 391 256 10.8 

Slow 500 2 Mid head 33 466 195 117 51 386 249 10.8 

Fast 650 2 Mid head 26 692 179 111 40 442 275 10.1 

Slow 650 2 Mid head 50 669 191 115 41 431 275 10.0 

Dried           

Meadow grass 1-hay 1 Late head 56 >830 128 70 23 513 270 10.3 

Meadow grass 2 1 Early head 5 >900 190 88 40 397 205 11.5 

Meadow grass 2 1 Early head 24 >900 194 87 40 380 198 11.5 

Lucerne 1 Mid bud 15 >900 206 111 25 395 304 9.4 

Lucerne 3 Early flower 12 >900 178 101 20 388 298 9.2 
a Fast and slow refer to the rate the grass was wilting at and the following number refers to DM content. 
b ME (MJ/kg DM; GfE, 2008) = 7.81 + 0.07559 GP - 0.00384 Ash + 0.00565 CP + 0.01898 CL - 0.00831 
ADFom. All DM fractions are expressed as g/kg DM. 
DM, CP, CL, NDF, ADF, ADFom, GP and ME are respectively dry matter, crude protein, crude fat, neutral 
detergent fibre (inclusive of residual ash), acid detergent fibre (inclusive of residual ash), acid detergent fibre 
(exclusive of residual ash), gas production at 24 hours (ml/200 mg DM)  and metabolisable energy. 
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Time specific degradation of CP and effective CP degradability was calculated using the 

equation of McDonald (1981) with the modification of Wulf and Südekum (2005), which 

assumes that no degradation occurs during the lag phase: 

Effective degradability (g/kg CP) = a + (bc / (c + Kp))e
-KpL 

where Kp is the rate of passage through the rumen, a is the soluble fraction, b is the insoluble 

but potentially rumen degradable fraction (calculated as d - a, where d is the potentially 

ruminal degradable fraction), c is the rate constant of disappearance of fraction b and L is the 

lag phase. Effective degradability was estimated at assumed passage rates (Kp) of 0.02, 0.04 

and 0.06 h-1 (Kp2, 4, 6) to represent low, medium and high feeding amounts and typical rates 

of ruminal solid outflow for forages. The RUP from the in situ analysis was calculated as 

1000-effective degradability. 

Crude protein fractionation 

Division of CP into five fractions (A, B1, B2, B3 and C) based on characteristics of 

degradability was done according to the CNCPS (Sniffen et al., 1992) using standardisations 

and recommendations of Licitra et al. (1996). Briefly, the A fraction is non-protein nitrogen 

(NPN), the B fraction is degradable true protein and the C fraction is undegradable true 

protein. The B fraction is further divided into B1, B2 and B3. Fraction B1 is buffer soluble 

and rapidly degraded in the rumen, B2 degrades at an intermediate rate and B3, which 

represents NDIN, degrades slowly in the rumen. All fractions, as well as CP, were analysed in 

triplicate and the N content was analysed using the Kjeldahl procedure. Regression equations 

of Kirchhof (2007) for Kp 0.02, 0.05 and 0.08 h-1 were used to estimate RUP from CP, CP 

fractions, PNDF and PADF. Subsequent linear regression of RUP values allowed prediction 

of Kp4 and 6. The equations are as follows: 

RUP 2 = 204.3207 + (1.0753 x C) + (-0.0014 x (CP x (A + B1))) 

RUP 5 = 321.9023 + (0.1676 x PADF) + (-0.0022 x (CP x (A + B1))) + (0.0001 x (CP 

x C2)) 

RUP 8 = 285.5459 + (1.2143 x C) + (0.0005 x (PNDF x B2)) + (-110.1740 x ((A + 

B1)/PNDF)) 

where PNDF and PADF refer to NDF and ADF estimated from the residue after boiling in the 

respective solution according to Licitra et al. (1996). Initially, the equations of Shannak et al. 

(2000) were used to calculate RUP from CP fractions. However, these equations were 
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validated for concentrates and are unsuitable for forages, as found by Kirchhof (2007), 

Kirchhof et al. (2010) and again in this study. 

Enzymatic in vitro procedure 

Simulated rumen protein degradation was estimated using S. griseus protease (5.8 U/mg) 

following the standardised protocol of Licitra et al. (1998). The addition of the protease 

solution was based on the true protein concentration of the sample and the incubation was at 

pH 6.7. The true protein content had already been estimated from the CP fractionation 

procedure (CP - NPN). An incubation period of 24 h with an enzyme activity of 0.58 U/ml, 

making a ratio of 24 U/g true protein, was chosen for forages based on the findings of Licitra 

et al. (1999). Previous studies have indicated that degradation using proportionally higher 

enzyme concentrations and shorter incubation times provides similar results (Coblentz et al., 

1999; Licitra et al., 1999) however; the longer time was chosen to offset any lag effects and 

reduce the standard error between runs. 

For the analysis approximately 2.5 g dried sample was accurately weighed into a conical 

flask and 200 ml borate-phosphate buffer (pH 6.7-6.8) was added. The flasks were then 

incubated for 1 h at 39°C in a shaking water bath. After 1 h the calculated amount of protease 

solution was added to each flask and incubation continued for another 24 h. At the end of the 

incubation time the flasks were removed and the whole contents filtered through fibre filter 

bags (38 µm pore size) using a mild vacuum and rinsed with 1.25 l distilled water. The bags 

were freeze-dried, weighed and analysed for CP and DM. The RUP was calculated as:  

RUP (g/kg CP) = ((residual CP / initial CP in flask) x 1000) / CP 

Samples were repeated in three flasks over two runs, making a total of six repeats per sample. 

Statistics 

The non-linear in situ variables a, b, c and L were estimated by SAS (SAS version 9.1) 

using the NLIN-procedure set to the algorithms of Marquardt (1963). Linear regression was 

used to compare RUP results from different methods, using the reference values (in situ) as 

the dependent variable. Relationships are described using the coefficient of determination (r2), 

and root mean square error (RMSE), which describes the standard deviation of the error, and 

regression coefficients (slope, intercept).  Proc GLM was used to analyse differences between 

means for non-continuous data using least squares means.  
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Results 

Proximate analysis 

Results of the proximate analysis are presented in Table 1.  Dry matter, CP, ash, CL, NDF, 

ADF and ME were all within the expected range for the respective feedstuff. 

In situ 

Individual feedstuff data for microbial attachment correction variables Amax and rate of 

attachment (R) can be viewed in Table 2, where two sets of Amax values are presented. The 

measured values were generally lower than the calculated ones. Initial regression analysis 

revealed a significant (P<0.05) but weak correlation between calculated and measured values 

(r2 = 0.26). The outlying measurements were from both white clover and third-harvest lucerne 

samples. Removal of these four values improved the r2 to 0.59.  

Means and standard deviations of soluble (a), insoluble but potentially degradable (b) and 

undegradable (u) fractions for the three forage types (fresh, ensiled, dried) are shown in Table 

3. The a fraction of silage was higher than fresh and dried forage, whilst the b fraction was 

lower (P<0.05). There were no differences between fresh and dried forages (P>0.05) for a and 

b fractions and all forage types had the same level of undergradable CP (fraction c). Mean 

RUP values based on forage type are presented at three assumed rates of passage in Table 4. 

Values (Kp4 only) are presented on a per feedstuff basis in a companion paper (Edmunds et 

al., 2012; Chapter 4). Tabulated RUP values (Universität Hohenheim – Dokumentationsstelle, 

1997) corresponding to forage type, harvest number and maturity, are also presented as a 

mean. The results for fresh forage, hay and silage were within the range of the tabulated data 

however, not at one consistent rate of passage. Most often Kp2 values resembled tabulated 

data but in some cases Kp4 or Kp6 was a closer match. Tabulated data for artificially dried 

forage estimates RUP to be approximately 400 g/kg of CP, which is 3 to 4 times more than 

similar fresh material. The in situ RUP estimates for the four artificially dried samples were 

only about 30% higher than their fresh counterparts. 

Crude protein fractionation 

Unfortunately, after the proximate and in situ analysis there was insufficient material from 

the 200 g/kg DM slow wilted silage for the in vitro analyses. Crude protein fractions for the 

three forage groups are shown in Table 3. Silage had higher A and lower B2 levels. Fraction 

B1 was higher in fresh forage and B2 tended to be higher in fresh than in dried forage 
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(P=0.089). Fractions B3 and C were higher in dried forage. Table 4 provides mean RUP 

values for forage groups. As a general trend, RUP from dried forage was highest followed by 

fresh and ensiled forage, which is the same trend as in situ determined RUP. Means from the 

entire data set were not different from in situ means for the corresponding passage rate (Kp2 

130 vs 139, P=0.997; Kp4 184 vs 201, P=0.946; Kp6 229 vs 264, P=0.340).  

Table 5 shows regression equations and statistics for each passage rate. Relationships at all 

assumed rates of passage were linear and significant (P<0.0001). The r2 at all rates of passage 

was approximately 0.5. The slope was closest to one at Kp6, however this was still quite low 

(0.61) and all intercepts were different from zero (P<0.001). The RMSE was lowest at Kp2 

(19.03). Study of the data within forage type at Kp4 (Figure 1) revealed that there was no 

correlation in RUP between CP fractionation and in situ methods for fresh forages (r2 = 0.12, 

P>0.05) and this was due to four samples, which were all legumes. Removal of these samples 

improved the r2 to 0.76 (n = 7, P=0.001) and the slope (0.94) and intercept (-24.6) approached 

one and zero, respectively. Using this grass-specific regression line, the two white clovers 

were under-predicted, even though the first-harvest sample was only 20 g/kg CP less than the 

in situ Kp4 value. Both of the lucerne samples were over-predicted by CP fractionation. Their 

artificially dried counterparts were also over-predicted by about 60 g/kg CP. Silages (n = 7) 

were slightly underestimated by CP fractionation at all passage rates; however the prediction 

equation was strong (r2 = 0.91 at Kp4, P<0.0001; Figure 1). Artificially dried grass samples (n 

= 2) were over-predicted by approximately 30 g/kg CP at Kp4. The single hay sample was 

well estimated with in situ and CP fractionation values of 269 and 254 g/kg CP, respectively, 

at Kp4. 
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Table 2 Microbial colonisation data providing rate (R) and extent (Amax) of attachment as 

calculated by Krawielitzki et al. (2006) and mean and standard deviations of Amax of four in 

situ residues (t = 16, 24, 48 and 96 h) measured from treatment with neutral detergent 

solution. 

Feedstuff Rate  Amax  

 (R) Calculated Measured ± 

 h-1 mg microbial CP / g residue CP 

Fresh      

Perennial ryegrass 0.13 627 564 85 

Perennial ryegrass 0.12 593 521 69 

White clover 0.07 429 496 55 

White clover 0.06 434 365 51 

Ryegrass/white clover  0.11 568 462 31 

Ryegrass/white clover 0.12 590 543 108 

Meadow grass 1 0.12 608 526 56 

Meadow grass 1 0.12 620 535 84 

Meadow grass 2 0.11 578 511 49 

Meadow grass 2 0.10 556 519 86 

Lucerne 0.10 530 451 104 

Lucerne 0.10 549 361 55 

Silage     

Fast 200 0.10 546 488 90 

Slow 200 0.10 541 499 57 

Fast 350 0.10 542 452 17 

Slow 350 0.10 548 514 81 

Fast 500 0.10 550 437 42 

Slow 500 0.10 541 478 106 

Fast 650 0.11 581 462 61 

Slow 650 0.10 566 485 37 

Dried     

Meadow grass 1- hay 0.13 654 569 83 

Meadow grass 2 0.10 550 421 55 

Meadow grass 2 0.10 539 436 24 

Lucerne 0.10 537 382 16 

Lucerne 0.11 555 282 84 

     

mean 0.11 557 470  

st dev 0.02 49 69  

 a Fast and slow refer to the rate the grass was wilting at and the following number refers to DM content. 
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 Table 3 Division of crude protein fractions based on degradability in situ (IS) or solubility in 

various media (PF). Means and standard deviations for freshly harvested (n = 12), ensiled (IS: 

n = 8, PF: n = 7) and dried (n = 5) forages are provided. 

  --------------In situ------------ ------------------CP fractionation------------------ 

  a b u A B1  B2 B3 C 

  g/kg CP 

Fresh  mean 308a 635 a 57 205 a 134 b 523 a 115 a 25 a 

 ± 81 82 15 35 36 75 71 9 

          

Silage mean 537b 406 b 57 540 b 39 a 277 b 118 a 26 a 

 ± 138 139 05 126 12 63 68 3 

          

Dried mean 244 a 692 a 64 199 a 40 a 446 a 271 b 42 b 

 ± 82 96 35 27 34 22 43 16 

a = immediately degradable (soluble) CP A = non protein N 

b = insoluble but potentially degradable CP B1 = rapidly degraded true protein 

u = undegradable CP B2 = intermediately degraded true protein 

     B3 = slowly degraded true protein 

     C = undegradable true protein 

 

Enzymatic degradation 

Mean RUP values within forage type, generated from incubating the samples for 24 h using 

0.58 U/ml protease (24 U/g true protein), are presented in Table 4. The mean RUP value (n = 

24, 233 ± 75) was closest to in situ Kp6 (232 ± 54, excluding 200 g/kg DM slow wilted silage; 

P=1.0). Linear regression against all three in situ values yielded a significant correlation 

(P<0.0001; Table 5). Slopes were similar to those from the CP fractionation regression and 

diverged from unity with decreasing passage rate. As with CP fractionation RMSE was lowest 

at Kp2 (14.94). The determination coefficient was reasonable for all three comparisons with 

0.69, 0.71 and 0.69 for Kp2, 4 and 6 respectively. Three samples were responsible for 

lowering the r2 values: ryegrass first-harvest and the two white clover samples. Removal of 

these samples increased the r2 to 0.88 at Kp4 and 6 and 0.81 in Kp2.  Slopes and intercepts 

were also improved e.g. at Kp4 the slope increased from 0.46 to 0.58 and the intercept 

decreased from 77.7 to 47.2. 

Further study within conservation type at Kp4, revealed again that silage and dried forage 

(both hay and artificially dried) were more accurately predicted than freshly harvested forage 

(Figure 2). Removal of the three aforementioned outlying samples, which all belonged to the 
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fresh category, improved the r2 of the fresh forage (0.27 to 0.73) and greatly improved the 

slope (0.26 to 0.71) and intercept (120.9 to 10.6). Conserved forages (silage and dried) 

analysed together had an r2 of 0.96 a slope of 0.56 and an intercept of 58.6. 
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Figure 1 Linear regression of RUP (g/kg CP) estimated by crude protein fractionation (X-

axis) and by in situ analysis (Y-axis) for freshly harvested, ensiled and dried forages at Kp4. 

Points highlighted with an arrow are legumes.   
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Figure 2 Linear regression of RUP (g/kg CP) estimated by enzymatic degradation (SGP; X-

axis) and by in situ analysis (Y-axis) for freshly harvested, ensiled and dried forages at Kp4. 
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Table 4 Published RUP (g/kg CP) values for 24 forages (Table: Universität Hohenheim – 

Dokumentationsstelle, 1997) and RUP estimated by in situ and crude protein fractionation 

methods at three assumed rates of passage (Kp2, 4 and 6) and enzymatic degradation (SGP). 

  Table In situ CP fractionation SGP 

   Kp2 Kp4 Kp6 Kp2 Kp4 Kp6  

Fresh mean 154 124 179 225 151 214 276 226 

 ± 33 20 30 39 27 37 48 62 

          

Silage mean 150 116 160 196 81 128 181 181 

 ± 0 21 38 51 37 46 52 62 

          

Dried
a
 mean 360 162 238 299 193 272 350 322 

 ± 89b 23 24 28 13 22 33 39 

a Includes one hay and four artificially dried forages. 
b Tabulated RUP values for grass hay and artificially dried forages are 200 and 400 g/kg CP, respectively 

(Universität Hohenheim – Dokumentationsstelle, 1997). 

 

 

Table 5 Linear regression parameters of RUP from 24 forages estimated from crude protein 

fractionation (CPF) calculated to three rates of passage, and single time point enzymatic 

degradation by S. griseus (SGP) regressed against in situ estimated RUP (dependent variable) 

calculated to Kp2, 4 and 6. 

 
 Slope SEslope Intercept SEintercept Pintercept r2 RMSE P 

         

CPF-2 0.38 0.08 76.38 11.79 <0.0001 0.51 19.03 < 0.0001 

CPF-4 0.47 0.09 91.29 19.85 <0.0001 0.53 29.01 < 0.0001 

CPF-6 0.61 0.12 109.06 25.95 0.0004 0.50 37.94 < 0.0001 

SGP-2 0.29 0.04 60.89 10.12 <0.0001 0.69 14.94 < 0.0001 

SGP-4 0.46 0.06 77.74 15.43 <0.0001 0.71 22.79 < 0.0001 

SGP-6  0.60 0.09 93.37 20.90 0.0002 0.69 30.87 < 0.0001 
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Discussion 

Estimation of RUP in vitro 

The main objective of this study was to apply recent improvements to the CP fractionation 

and SGP procedures and validate them against RUP determined by the in situ procedure.  The 

RUP from both in vitro procedures yielded strong linear relationships with in situ values. In 

terms of variation around the regression line, the SGP procedure was more accurate than CP 

fractionation. The results from a similar study (Gosselink et al., 2004) using 11 forages 

varying in conservation type failed to show a correlation between RUP analysed in situ and 

using SGP, and only a weak relationship was found using CP fractionation. This may be 

explained by the variations to the in vitro methods used. Gosselink et al. (2004) used a set 

amount of SGP for all forage samples, rather than sample specific amount based on true 

protein. Additionally, the Cornell software program was used to analyse RUP from CP 

fractions, rather than the regression equations used in this study.   

Regarding CP fractionation, the equations of Shannak et al. (2000) were originally used to 

calculate RUP from CP fractions. These equations were validated mainly for concentrates (n 

= 29) and regression against in situ data in the present study yielded no or only a very weak 

relationship at all rates of passage. The equations of Kirchhof (2007), which were derived 

from grass-based forages, provided a better estimate of in situ data, but there was still a high 

amount of variation around the regression line (Table 5). The equations of Kirchhof (2007) 

were derived from 61 forage samples comprising 47 fresh forages from alpine pasture (0.80 

grass content) of various harvests and maturities as well as seven grass hay and seven maize 

silage samples. These equations are thus specific for that data set and probably not very 

robust, particularly for the analysis of legumes. The purpose of their work was mainly to 

highlight that the equations of Shannak et al. (2000) were not suitable for forages. Thus, the 

forage-specific equations of Kirchhof (2007) were not published with the intention of 

widespread use for RUP estimation. Establishment of empirical equations must be based on 

large data sets covering a wide variety of nutritional compositions. As expected, multiple 

stepwise regression of the present data set resulted in equations (equations not shown) 

differing from those of both Shannak et al. (2000) and Kirchhof (2007) and thus reinforcing 

the need for a much larger data set and diversity of feedstuffs to be analysed before such 

equations can be developed and applied for routine forage analysis.  

Regarding rumen simulated protein degradation using SGP; the results are promising for 

the possible use of the method in routine analysis of RUP in forages. When compared with in 
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situ values (Kp6), which correlated strongest with SGP data, ten out of the 24 samples differed 

by less than 20 g/kg CP from in situ values and five of these were under 10 g/kg. The three 

samples that showed the greatest deviation were at the lower and upper extremes of CP 

content in the sample set, which may indicate a methodological limitation. All three were 

fresh forages. However, in another study involving 20 forages with CP values ranging from 

33 to 220 g/kg DM (Coblentz et al., 1999) this result was not observed. A slightly different 

technique was used by Coblentz et al. (1999) in which the pH of the buffer solution was 8.0 

(rather than 6.7) and a constant ratio of enzyme activity to sample CP was maintained (rather 

than enzyme activity to true protein). This procedure was also used by Mathis et al. (2001) 

and correlation between in vitro and in situ values was strong in both studies. Because almost 

all previous studies using commercial protease degradation differ in their methodology, 

making comparisons between published data difficult, this study used methods recommended 

by Licitra et al. (1998, 1999). The results agreed well with in situ data but a comparison 

between the method described in this paper, and that used by Coblentz et al. (1999) would be 

valuable. In general, more studies using a single, standardised protocol and a large variety of 

forages must be generated before this procedure can be used confidently. The objective of use 

of RUP values in protein evaluation systems should also be considered. If a reasonably 

accurate ranking of the extent of degradation of feeds at high rates of passage is all that is 

required, then the results of this study show high potential for use of this method in routine 

forage analysis in the near future, particularly for conserved forages. If values representing 

slower rates of passage are required it may be possible to use multiple incubation times to 

calculate effective RUP. Degradation kinetics using commercial proteases have been 

attempted (Krishnamoorthy et al., 1983) however; accurately assessing the rate of degradation 

still requires development. 

It must not be forgotten that the reference values generated from in situ analysis are not so 

reproducible (Michalet-Doreau and Ould-Bah, 1992; Schwab et al., 2005). A collaborative 

study by Mathis et al. (2001) with five laboratories revealed significant location based 

fluctuations in RUP. If this can occur in a controlled study with some standardisation, it 

seems likely that even higher differences could occur between institutes using variations of 

the in situ procedure. This implies that a higher level of agreement between the methods can 

not really be expected. The attractiveness of in vitro methods is that they are completely 

independent of the animal and thus easier to standardise. However, as validation of these 

methods is usually attempted against in situ data, a suitable standardisation of the procedure 
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will be difficult. Validation against in vivo data is also not without its problems, not only 

relating to cost and time but to the accuracy of the method itself.   

Forage type 

The second objective of this paper was to gain a better understanding of the suitability of 

the in vitro techniques in assessing various forage types (fresh, ensiled and dried). The general 

observation was that conserved forage is much more reliably predicted than fresh forage. In 

fact, based on the results of the CP fractionation procedure, a universal equation for all 

forages may prove difficult, if possible at all. Instead, it will probably be easier and more 

effective to categorise forages (e.g. fresh, ensiled and dried) with possible further subdivisions 

of fresh into grass and legumes and possibly in some cases even species, particularly for 

legumes.  

Species have been shown to have a greater effect on CP composition (CP fractions) than 

maturity (Elizalde et al., 1999) and the present study revealed large differences between 

legume species. The in situ parameters a, b and u of the two lucerne samples analysed in this 

study were in good agreement with those in other studies (Elizalde et al., 1999; Julier et al., 

2003) whilst results of the CP fractions were both complimentary (Eilizalde et al., 1999; 

Grabber, 2009) and contradictory (Yu et al., 2003; Kirchhof et al., 2010). The white clover 

analysed by Kirchhof et al. (2010) had much lower B1 and higher B2 content than the 

samples in the present study, though both studies suggest very low levels of B3, which is 

characteristic of white clover due to its low level of NDF. The RUP of both the white clovers 

was underestimated by both in vitro procedures. Coblentz et al. (1999) reported an 

overestimation in RUP of high quality legumes using an enzymatic procedure, though white 

clover was not included in that study. The high level of standardisation of the CP fractionation 

procedure suggests that contradictions in results within species are due to biochemical factors. 

As concluded by Kirchhof et al. (2010), a more detailed analysis of legume CP and associated 

cell wall composition is necessary for more accurate quantification of rumen protein 

degradation.  Further studies are warranted using forages of highly variable composition, 

especially CP.  

The more accurate estimation of RUP from conserved forages may be explained by the 

effect of conservation on CP fractions. Grabber and Coblentz (2009) showed that 

conservation type (silage or hay) had a larger effect on CP fractions A, B1 and B2 than 

polyphenols or mechanical conditioning. Fraction B2, with its intermediate rate of 

degradation, can have a big effect on the level of CP escaping degradation in the rumen, 
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particularly at faster rates of passage. Generally, when forages are conserved through ensiling 

or drying, there is a shift in the proportion of B1 and B2 towards A (NPN) in silage and B3 in 

dried products (Table 3). As NPN is already degraded and B3 is cell wall associated protein 

which can only be released slowly by microbial enzyme action, a better prediction of RUP 

from conserved forages based on either the A or B3 fractions is possible. Regression of B3 

against RUP results from the present study supports this statement with 60% of the variation 

in RUP explained by the B3 fraction in silage and dried forages combined and zero in fresh 

forages (data not shown). Fresh forage has a much higher variation in B1 and B2 

concentration, both between and within species, and the rate of degradation of these fractions 

by rumen microorganisms depends not only on their solubility and susceptibility to 

hydrolysis, but also on their protein structure (e.g. cross-linking and disulphide linkages; 

Mahadevan et al., 1980). Diversity of proteins between plant species, as well as the numerous 

natural and production factors (e.g. maturity, fertilisation, climate) affecting their structure 

and thus degradation, can make accurate estimation of rumen degradability of fresh forages, 

with their large B2 fraction, difficult. 

Correction for microbial attachment 

Regarding the method of correction for microbial colonisation of in situ residues; the Amax 

parameter, which is the maximum value of bacterial contamination at saturation state, was 

originally estimated by Krawielitzki et al. (2006) using 15N as a marker. Results from that 

study showed maximum contamination of perennial ryegrass at 455, 622 and 849 mg/g 

residue CP for immature, mid-maturity and mature grass respectively. The Amax measured in 

this study was estimated by boiling in neutral detergent solution to remove microbial matter 

and yielded results for perennial ryegrass of 560 and 520 mg/g residue CP for mid-maturity 

first and second harvest respectively. An earlier, unrelated study by González et al. (1998) 

also described attachment of microbes to incubated feed particles using 15N as being 

exponential and the same model as that of Krawielitzki et al. (2006) was defined. Considering 

the ease of obtaining estimates of Amax, the use of neutral detergent solution appears to be an 

effective and simple method of correcting forage in situ residues for microbial contamination. 

This has been confirmed by Klopfenstein et al. (2001). Nevertheless, some further validation 

focusing particularly on legumes would be advisable as measured estimates differed 

somewhat from calculated estimates for most of the legume samples used in this study. It may 

be that legumes simply do not conform to the Amax equation of Krawielitzki et al. (2006). 
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Conclusions 

In situ analysed RUP was predicted with a high level of accuracy by an enzymatic 

procedure using S. griseus protease. It is thought the good agreement could be due to a higher 

level of accuracy of in situ data due to the methods of microbial attachment used in this study 

as well as application of recently standardised procedures in the S. griseus protease method. 

Calculation of RUP using equations based on CP and fibre fractions has potential but requires 

a much larger data set to improve accuracy and robustness. Establishment of such a data base 

is currently underway in Germany. Conserved forages were more accurately predicted than 

fresh forages in both in vitro procedures.  
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CHAPTER 4   

 

Estimating utilisable crude protein at the duodenum, a precursor to 
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Abstract 

As protein evaluation systems are evolving, they are increasing in their sophistication and 

complexity. In almost all systems estimates of microbial crude protein (MCP) and ruminally 

undegraded feed CP (RUP) must be determined. The problem lies mainly in the accuracy of 

these measurements, especially RUP, which is often estimated by the controversial in situ 

technique. A new in vitro method has been developed which provides a direct estimate of 

combined MCP and RUP. The modified Hohenheim gas test (modHGT) involves incubation 

of a feedstuff in rumen fluid. The non-ammonia N content after incubation is used to 

determine utilisable crude protein at the duodenum (uCP) which is defined as the sum of 

MCP and RUP at the duodenum. In this study 23 forages were tested using the modHGT and 

presented at three assumed rates of rumen passage (Kp 0.02, 0.04 and 0.06 h-1). The results 

were regressed against uCP values calculated using the standard procedure in Germany. 

Calculated uCP correlated significantly with determined uCP at all rates of passage (Kp2: 

P<0.038, r2 = 0.19; Kp4: P<0.0001, r2 = 0.56; Kp6: P<0.0001, r2 = 0.67). Due to the simplicity 

of the reference method it is possible that the modHGT provides more accurate results. 

Although the new method is also simple, it considers interactions between carbohydrate and 

protein degradation by rumen microbes and uCP is estimated from the fermentation end 

product, ammonia crude protein may then be used to calculate metabolisable protein.. 

Utilisable  

 

 

Keywords: Rumen, Forage, Protein value, Metabolisable protein, Methods 
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Introduction 

Balanced dairy systems should meet the amino acid requirement of cows but not exceed 

it. Excess N is harmful to the environment and costly to the farmer. But meeting the amino 

acid requirement of dairy cows is a complicated and challenging goal. Worldwide, protein 

evaluation systems are constantly being updated and are increasing in their sophistication. 

They are also becoming very complex.  

Protein evaluation systems should accurately quantify supply of microbial crude protein 

(MCP) and rumen undegraded CP (RUP) at the duodenum as well the N and amino acid 

requirements, respectively, of the rumen microbes and the host animal. Most systems attempt 

this, although methods and assumptions differ in the estimation of these variables. For 

example, estimating MCP usually requires an estimate of energy available for microbial 

fermentation and growth. However, the definition of rumen available energy still varies 

between systems; the French PDI system (INRA, 1989) uses fermentable organic matter, total 

digestible nutrients is used in the NRC system (NRC, 2001), digestible organic matter minus 

RUP in Finnish system (MTT, 2010) and fermentable organic matter in the rumen in the 

Dutch system (Tamminga et al., 2007; Van Duinkerken et al., 2010). Estimating microbial 

efficiency also varies; particularly as using a constant to describe microbial efficiency is being 

abandoned for more complex equations in newer systems. The Dutch, British (FiM: Thomas, 

2004) and the new NorFor (Volden et al., 2011; Denmark, Norway, Sweden and Iceland) 

systems calculate microbial efficiency from fractional rumen outflow rates (Kp). However, in 

the Dutch system this is substrate specific whilst the British and NorFor systems use 

fractional outflow rates based on dry matter intake. The Cornell Net Carbohydrate and Protein 

System (CNCPS: Fox et al., 2004) is different again in that it assumes efficiency is related to 

fractional degradation rate.  

Another highly complex variable is RUP and large differences in its estimation exist 

among systems. Most systems derive degradability estimates from the in situ procedure, a 

method which is subject to large amount of error and variation (Nocek and Russell, 1988; 

Michalet-Doreau and Ould-Bah, 1992; Hvelplund and Weisbjerg, 2000; Schwab et al., 2005). 

Ongoing problems still occur in the repeatability of the in situ procedure, even where 

attempted standardisation has been made (Madsen and Hvelplund, 1994; Mathis et al., 2001). 

In fact, using a constant to represent protein degradability has been shown to be just as 

accurate as using in situ determined, feed-specific RUP values (Touri et al., 1998; Schwab et 

al., 2005). The point is that the measurement, calculation and assumptions used in estimating 
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the large and increasing number of variables in modern protein evaluation systems are all 

subject to error and accumulated error could actually decrease the robustness and thus 

accuracy of the final result: the protein value of the feed. 

In vitro procedures offer alternatives to animal-dependent experiments using in situ or in 

vivo methods. In a companion paper (Edmunds et al., 2012; Chapter 3) two in vitro methods 

were analysed for their accuracy in estimating RUP. This paper presents a new, simple, 

substrate-specific, and labour-efficient in vitro method of analysing feed protein. The method 

bypasses the need to estimate RUP altogether. The modified Hohenheim gas test (modHGT) 

was developed by Steingaß et al. (2001) and applies a modification (Raab et al., 1983) to the 

standard Hohenheim gas test (Menke and Steingaß, 1988) whereby ammonia is measured 

after incubation with rumen fluid. The non-ammonia-N concentration at the end of the 

incubation forms the basis in calculating utilisable CP at the duodenum (uCP), which is 

defined at the sum of MCP and RUP at the duodenum. The procedure also shows potential for 

calculating ‘effective uCP’ to represent selected rates of ruminal passage, which would 

provide a more suitable uCP value for animals fed at various levels. The present study 

focused on assessing the validity of this new method for its potential use in routine forage 

analysis. The current German system (GfE, 2001), with the variable RUP estimated using the 

in situ procedure, was used to validated the procedure. It was expected that the modHGT 

would estimate uCP as well as the GfE system but with a higher sensitivity to the nutritional 

characteristics of individual feeds. 

Materials and Methods 

Feedstuffs 

Twenty three forage samples from harvest year 2008 were selected to cover a variety of 

conservation types. Samples included fresh (n = 12: white clover, lucerne, perennial ryegrass, 

ryegrass/white clover mixed sward and meadow grass), and conserved forage: hay (n = 1: 

meadow grass), silage (n = 6: meadow grass wilted to 350, 500 and 650 g DM at a fast or 

slow rate of moisture loss) and artificially dried (n = 4: meadow grass and lucerne). A detailed 

description of the samples can be read in Chapter 3, Table 1. 

General analysis 

All feeds were freeze-dried and milled through a 3 mm screen for the in situ trial and a 1 

mm screen for all other analyses. A complete description of analyses of proximate variables 

can be read in Chapter 3. Metabolisable energy was calculated according to GfE (2008): 
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ME (MJ/kg DM) = 7.81 + 0.07559 GP - 0.00384 Ash + 0.00565 CP + 0.01898 CL -  

0.00831 ADFom 

where GP is in vitro gas production at 24 hours (ml/200 mg DM), CL  is crude lipids (g/kg 

DM), ADFom is acid detergent fibre expressed without residual ash (g/kg DM) and Ash and 

CP are expressed in g/kg DM.  

In situ procedure 

Methods describing the in situ trial can be read in detail in Chapter 3. Briefly, the 

procedure followed basic guidelines of Madsen and Hvelplund (1994) with incubation periods 

of 2, 4, 8, 16, 24, 48 and 96 hours and using three non-lactating cows per feedstuff. Water 

soluble material was estimated by mixing duplicate samples in 100 ml, 40°C distilled water 

and then filtered through No. 5951/2, diameter 270 mm filter paper (Schleicher and Schuell, 

Dassel, Germany). The equation of Hvelplund and Weisbjerg (2000) was used to correct CP 

disappearance for small particle loss at each incubation time point. Correction for microbial 

attachment to undegraded feed particles was carried out according to Edmunds et al. (2012; 

Chapter 3). Effective degradability of CP (g/kg CP) at assumed passage rates of 0.02, 0.04 

and 0.06 h-1 (Kp2, 4, 6) was calculated according to McDonald (1981), but with the 

assumption that no degradation occurred during the lag phase (Wulf and Südekum, 2005). 

Finally, RUP (g/kg CP) was calculated as 1000-effective degradabilty. 

Modified Hohenheim gas test 

The modHGT (Steingaß et al., 2001) was developed with the aim of directly measuring 

ammonia N following incubation of a feedstuff in a rumen fluid/buffer solution. The non-

ammonia-N multiplied by 6.25 represents uCP. The modHGT follows procedures of the 

regular HGT (Menke and Steingaß, 1988) with a chemical alteration of 2 g/l increase in 

NH4HCO3 and 2 g/l decrease in NaHCO3 in the buffer solution. This modification prevents N 

from becoming a limiting factor. Recommended incubation times are 8 and 24 h for 

concentrates and 8 and 48 h for forages (Leberl et al., 2007). Incubation for 24 h is unsuitable 

for forages (Edmunds, unpublished). Rumen fluid from cows or sheep may be used. 

In the present study rumen fluid was collected from two to three fistulated sheep receiving 

a 50:50 grass hay:pelleted compound maintenance ration twice daily in unequal proportions: 

one third at 07:00 and two thirds at 15:30 h. The fluid was extracted before the morning feed 

and transported in a pre-warmed thermos, which was completely filled, and immediately 

sealed. The rumen fluid was filtered through two layers of cheese cloth into a warm flask and 
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then added to the reduced buffer solution. After allowing 15 minutes to acclimatise, 30 ml of 

the solution was added to a pre-warmed syringe containing 200 ± 30 mg substrate. Syringes 

were immediately placed in a rotary incubator which had been pre-warmed to 39°C. The 

starting time of the incubation was recorded after all syringes had been filled. Each feedstuff 

was analysed in duplicate and over two runs i.e. two different batches of rumen fluid, which 

were considered as biological replicates. At the end of each incubation time (8 and 48 h) gas 

volume was recorded and syringes put on ice to stop microbial activity. Gas production (GP) 

was also recorded at 24 h for use in the calculation of ME. At both the 8 and 24 h readings the 

plunger was set back to 30 ml (not done for the blank). A blank, containing rumen fluid/buffer 

solution without added substrate (NH3Nblank), was also incubated in duplicate alongside the 

samples i.e. for 8 and 48 h. Ammonia-N (mg NH3-N/30 ml) from both the blank and from the 

syringes containing substrate (NH3Nsample) was measured by distillation (Vapodest 50s 

carousel; Gerhardt, Königswinter, Germany) and used in the following calculation (H. 

Steingaß, unpublished): 

uCP (g/kg DM) = ((NH3Nblank +  Nsample - NH3Nsample )/weight (mg DM)) x 6.25 x 1000 

where Nsample is N added to the syringe from the measured amount of feedstuff (mg), weight is 

the amount of sample weighed into the syringe and calculated to DM and other variables are 

as previously described. 

When using a live product such as rumen fluid small biological fluctuations between runs 

are inevitable. To correct for this a protein standard (provided by the University of 

Hohenheim) was analysed with every run. The standard was a concentrate mix of (per kg 

DM) 450 g rapeseed meal, 300 g faba beans and 250 g molassed sugar beet pulp, and had a 

CP content of 225 g/kg DM. The correction follows the same method as for gas production 

(Menke and Steingaß, 1988) whereby the mean uCP value for the standard (at 8, 24 or 48 h) is 

divided by the recorded value of the standard for that run and all other samples are multiplied 

by the resulting correction factor. Runs were repeated if the correction factor, for either 

incubation time, lay outside the range of 0.9 to 1.1. The hay and concentrate standards 

typically used for correcting gas production were also included in the incubation not only to 

correct gas production values, but to ensure the rumen fluid solution followed typical 

fermentation. 

An attempt was made to calculate effective uCP. Like effective protein degradability, 

effective uCP should represent various rates of solid flow through the rumen i.e. passage rate. 
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Following correction using the protein standard, uCP values from the two incubation time 

points of one run were plotted against a log time (ln(t)) scale, where ‘t’ is the time of 

incubation, and the resulting regression equation was used to calculate effective uCP to 

assumed passage rates (Kp) of 0.02, 0.04 and 0.06 h-1 using the formula: 

effective uCP = y + a x ln(1/Kp) 

where y is the intercept and a is the slope. Between-run regression equations will differ 

slightly due to methodological error, however variations to the slope and intercept balance out 

to provide effective uCP values that can be used as repeats (see Table 2). Effective uCP 

should only be calculated if the standard samples are within the range of 0.9 to 1.1 i.e. they 

differ by ≤ 10% from their average value. The assumption of a linear decrease in uCP with ln 

time was demonstrated using soybean meal incubated at several time points spanning 4 to 48 

h (H. Steingaß, unpublished). Forages do not follow this linearity as closely as concentrates 

and uCP after 24 hours incubation is often higher than or equal to uCP at 8 hours (Edmunds, 

unpublished). The legitimacy of this calculation will be discussed later in the paper. 

Calculations and statistics 

Reference values, against which results of the modified HGT were validated, were 

calculated from one of 12 equations defined by Lebzien and Voigt (1999) and adopted by the 

GfE (2001). The chosen equation was specific for feedstuffs containing less than or equal to 

70 g crude lipids/kg DM and using ME rather than digestible organic matter, as a measure of 

available energy: 

uCP (g/kg DM) = [11.93 - (6.82 x (RUP/CP))] x ME + 1.03 x RUP 

where RUP and CP are in g/kg DM and ME is in MJ/kg DM. Effective RUP at Kp 0.02, 0.04 

and 0.06 h-1, estimated by in situ analysis, was the only alteration in providing the three 

calculated uCP values for each sample. These values were used to represent the three chosen 

rates of passage. Utilisable CP determined by the modHGT (independent variable) was 

regressed against calculated values (dependent variable) using the PROC REG procedure of 

SAS (version 9.1). Relationships were deemed significant at P<0.05. Relationships are 

described using the coefficient of determination (r2), and root mean square error (RMSE), 

which describes the standard deviation of the error, and regression coefficients (slope, 

intercept). Predicted values (dependent variable) were regressed against residuals to determine 

the presence or absence of linear bias.  
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Results 

Results of the proximate and in situ analyses are presented in detail in a companion paper 

(Edmunds et al., 2012; Chapter 3) and Table 1 presents a quick overview of the mean, 

standard deviation and range in proximate variables. Twenty five forage samples were 

analysed in the companion paper, however insufficient material remained from the two 

highest moisture silage samples for subsequent analyses. Thus only 23 forages have been 

presented in this paper. 

 

Table 1 Mean, standard deviation (SD) and range of dry matter (DM), crude protein (CP), 

ash, crude lipids (CL), neutral detergent fibre (NDF: assayed without heat stable amylase) and 

acid detergent fibre (ADF) both presented inclusive of residual ash, and metabolisable energy 

(ME) of the 23 analysed forages. 

 DM CP Ash CL NDF ADF ME 

 g/kg -------------------------g/kg DM-------------------------- MJ/kg DM 

        

Mean 424.1 180.6 97.4 31.8 398.9 257.4 10.6 

SD. 277.0 35.3 14.8 13.0 57.4 35.4 0.7 

Maximum 900.0 276.0 116.6 59.0 513.3 329.8 11.5 

Minimum 135.0 109.0 64.0 14.8 226.6 197.8 9.2 

        

 

 

Results from the standard protein sample demonstrate the high between run repeatability 

of the modHGT. Table 2 presents data from 5 runs. The expected values of the protein 

standard were 232 and 97 for incubation times 8 and 48 h, respectively. The recorded 

averages were 221 ± 6 and 102 ± 12 for 8 and 48 h, respectively. A slightly different average 

is expected due to inter-laboratory variations. One of the purposes of the standard is to reduce 

this variation. The correction factor was within range for all runs except run 3, where the 48 h 

value deviated by more than 10% from the expected value. This run, therefore, was not used 

in the analysis and all samples within this run were repeated. The slope and intercept used for 

calculating effective uCP are also presented along with effective uCP at the three assumed 

passage rates (Table2). From this data it is clear that seemingly large between-run variation of 
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the slope and intercept do not translate into similar variation in the effective uCP values. In 

fact, the between-run repeatability is remarkable good. To further demonstrate this, corrected 

uCP values of all samples from each incubation time of two runs were regressed against each 

other (n = 23). The coefficient of determination for 8 and 48 hours was 0.90 and 0.77, 

respectively. The average difference in uCP (run 1 - run 2) for 8 and 48 hours was 1.24 ± 8.92 

and 3.31 ± 6.46 g/kg DM, respectively. This high correlation carried over to effective uCP 

with r2 of 0.76, 0.96 and 0.93 for Kp2, 4 and 6, respectively. Generally, repeatability was 

slightly higher at the shorter incubation time. 

  

Table 2 Between run variation shown by the standard protein sample where uCP is 

uncorrected utilisable crude protein after 8 or 48 h incubation, correction factor is the 

proportional variation of uCP to the expected value of the standard, slope and intercept 

originate from regression of uCP against log (time) within a run and effective uCP (g/kg DM) 

is uCP presented at three assumed rates of passage.  

Run Time uCP  Correction  Slope Intercept Effective uCP 

 h g/kg DM factor  g/kg DM Kp2 Kp4 Kp6 

1 8 220 1.06 -71.17 367.80 89 139 168 

 48 92 1.05      

2 8 220 1.06 -64.56 353.85 101 146 172 

 48 104 0.93      

3 8 212 1.09 -50.70 317.71 119 155 175 

 48 121 0.80      

4 8 229 1.01 -76.65 388.86 89 142 173 

 48 92 1.05      

5 8 222 1.04 -68.94 365.49 96 144 172 

 48 99 0.98      

 

 

Table 3 presents CP, ME, RUP (Kp4) and effective uCP (calculated: GfE, 2001 and 

determined: modHGT) on a per feedstuff basis. The modHGT results are presented as a 

difference from their respective calculated value (calculated - determined). Determined uCP 

was generally lower than calculated uCP at Kp2 and higher at Kp6. Based on the differences 

between the mean for each method and the RMSE (Table 4), calculated uCP was best 



Chapter 4 A new method for estimating protein value  

 38 

predicted at Kp4. The largest between-method difference at Kp4 was from the first-cut, 

artificially dried lucerne sample with determined uCP being 26 g/kg DM higher than 

calculated uCP. This sample also had an unusually high CP concentration (206 g/kg DM) 

compared to its fresh counterpart (185 g/kg DM). Reanalysis of CP using the Kjeldahl method 

reduced the difference in CP between the two samples to only 5 g/kg DM (177 and 182 g CP 

in fresh and dried material, respectively). Recalculation of uCP at Kp4 reduced the difference 

from the calculated value to 14 g/kg DM. The original uCP value of this sample has been 

retained in the regression analysis as it was not out of range of the expected values. It should 

be noted, however, that this sample does slightly reduce the coefficient of determination. 

Results of the linear regression analysis between calculated and determined uCP at the 

three assumed rates of passage are presented in Table 4. There was a significant correlation at 

all rates of passage, though this was only weak at Kp2 (P=0.038) and the r2 was low (0.19). 

The strength of the relationship improved with increasing passage rate (Kp4: r2 = 0.56, 

P<0.0001; Kp6: r2 = 0.67, P<0.0001). Slope, intercept and RMSE were similar for Kp4 and 6. 

Analysis of the residuals against predicted values revealed no linear bias at any of the three 

passage rates (P>0.05). Division of the data into forage types (fresh, ensiled, dried) presented 

a better picture of the origins of the variation (Figure 1; Kp4). 
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Table 3 Calculated (GfE) and determined (modHGT) utilisable crude protein (uCP; g/kg DM) 

presented at assumed passage rates of 0.02, 0.04 and 0.06 h-1. Utilisable CP from modHGT is 

expressed as a difference (g/kg DM) from the calculated value (GfE - modHGT). Crude 

protein (CP; g/kg DM) and ruminally undegraded dietary CP (RUP0.04; g/kg CP) are also 

presented. 

    -----uCP0.02----- -----uCP0.04----- -----uCP0.06----- 

Feedstuff Harvest CP RUP GfE modHGT GfE modHGT GfE modHGT 

Fresh           

Perennial ryegrass 1 109 200 141 -31 143 -4 144 12 

Perennial ryegrass 3 148 222 131 -12 138 13 143 27 

White clover 1 241 175 152 -29 162 6 171 23 

White clover 3 276 192 159 -19 172 11 183 24 

Ryegrass/white clover 1 163 180 139 -19 144 7 149 21 

Ryegrass/white clover 1 148 145 131 -16 134 11 137 26 

Meadow grass 1 1 140 208 137 -29 141 -6 145 6 

Meadow grass 1 2 149 222 130 -10 136 9 140 19 

Meadow grass 2 1 184 168 148 -22 154 9 160 25 

Meadow grass 2 1 193 162 149 -21 156 8 162 23 

Lucerne 1 185 129 127 -25 131 5 135 22 

Lucerne 3 191 148 128 -15 133 14 137 29 

          

Grass Silage
a
          

Fast 350 2 189 142 137 -34 141 -4 145 13 

Slow 350 2 191 123 133 -32 137 -11 140 1 

Fast 500 2 186 152 135 -27 140 -2 145 11 

Slow 500 2 195 129 136 -34 140 -9 143 5 

Fast 650 2 179 230 138 -44 147 -13 154 3 

Slow 650 2 191 189 137 -34 145 -10 151 2 

          

Dried          

Meadow grass 1-hay 1 128 269 136 -36 141 -15 145 -4 

Meadow grass 2 1 190 230 154 -45 164 -1 172 23 

Meadow grass 2 1 194 225 155 -46 165 1 173 26 

Lucerne 1 206 210 133 -7 142 26 150 43 

Lucerne 3 178 255 134 -24 141 9 148 26 
a Fast and slow refer to the rate of moisture loss during wilting, the number refers to DM content (g/kg). 
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Table 4 Results of linear regression analysis between calculated (GfE, 2001) and determined 

(modHGT) uCP (mean and standard deviation (SD)) from 23 forages. The r2, slope, intercept, 

root mean squared error (RMSE) and P values of intercept and the model are presented at 

three assumed rates of passage (Kp). 

 Kp uCP SD Slope Intercept Pintercept RMSE r2 P 

 h-1 g/kg DM        

GfE  0.02 139.0 8.6 0.36 96.50 <0.0001 8.38 0.19 0.038 

modHGT  112.7 11.3       

          

GfE 0.04 145.3 10.6 0.54 65.29 <0.001 7.59 0.56 <0.0001 

modHGT  148.0 15.5       

          

GfE  0.06 150.4 12.4 0.56 56.97 <0.001 7.64 0.67 <0.0001 

modHGT  168.6 19.3       
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Figure 1 Correlation between calculated (GfE, 2001: Y-axis) and determined (modHGT: X-

axis) utilisable crude protein at the duodenum (uCP, g/kg DM) of different forage types at 

passage rate 0.04 h-1. The point highlighted with an arrow represents the hay sample. 
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Discussion 

The significant correlation between calculated and determined uCP at all assumed rates of 

passage indicates that the modHGT displays accuracy in ranking feeds according to protein 

value. A similar experiment using 10 rapeseed meal and 7 soybean meal samples and 

incubation times of 8 and 24 h gave similar results at a passage rate of 0.05 h-1 (r2 = 0.68, 

P<0.0001; Nibbe et al., 2001; Südekum et al., 2003), demonstrating that the method is also 

suitable for concentrates. To improve understanding of the accuracy of the modHGT, 

averaged uCP results (Kp4) for fresh forage (n = 12) and silage (n = 6) from the present study 

were compared to tabulated DVE averages. By definition, DVE is intestinally digestible 

protein and is the Dutch equivalent of metabolisable protein. Tabulated averages of RUP and 

MCP for fresh forage (n = 65) and grass silage (n = 500: Tamminga et al., 2007) were 

summed to produce DVE values at an assumed passage rate of 0.045 h-1. Utilisable CP 

determined from the modHGT were converted to metabolisable protein using the constants 

0.73 and 0.85, which represent the proportion of amino acid-N in duodenal non-ammonia-N 

and the absorption coefficient of amino acid-N, respectively (GfE, 2001). The results were 

remarkably similar. For fresh forage and silage respectively, metabolisable protein (g/kg DM) 

was 94.5 and 82.9 for the modHGT system and 98.6 and 82.7 for the Dutch system. This is a 

clear demonstration that the modHGT provides realistic estimates of metabolisable protein.    

One might point out that the coefficients of determination from the results of the present 

study are not very strong. This can mainly be explained by the limitations of the GfE (2001) 

equation. The equation was derived from results of in vivo trials conducted at various feeding 

levels using mixed rations. No doubt this will cause discrepancies when analysing individual 

feeds and calculating them to represent varying rates of passage. Furthermore, the only factor 

that changes in the calculation of the three GfE values is effective RUP. Consideration of the 

effect of passage rate on RUP alone severely limits the accuracy of such an equation in 

predicting effective uCP and the effect of passage rate on MCP synthesis should also be 

considered. Additionally, RUP was calculated using the in situ technique, which is subject to 

high levels of variation, adding further error to the calculated values. The values used in this 

study are, however, associated with a high level of confidence due to the use of highly 

standardised methods and correction for microbial attachment (Edmunds et al., 2012; Chapter 

3). Moreover, replacing in situ RUP with tabulated RUP did not improve the results. For these 

reasons it is likely that the modHGT provides a more accurate representation of uCP at the 
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chosen rate of passage. Stronger regression statistics between GfE (2001) and modHGT 

values were not and should not be expected. 

The fact is, it is difficult to ascertain just how accurate the results are as no good reference 

method exists. In vivo measurements are generally accepted as the ‘gold standard’. However, 

this technique requires access to ruminally and duodenally canulated animals and is also 

subject to a certain level of error, mainly due to the use of markers and variation between 

animals (Stern et al., 1997). Additionally, due to the high labour input and time taken to run 

the experiment, only a small number of samples can be analysed using in vivo techniques. The 

problem concerning generation of accurate reference values against which to validate new 

methods is ongoing. Despite the previously described problems, the reference values used in 

this study were calculated using a method that has been proven to be robust and accurate in 

predicting metabolisable protein and milk protein yield. Schwab et al. (2005) compared the 

accuracy of predicting of milk protein yield from metabolisable protein between six protein 

evaluation systems (British: AFRC, 1992; French: INRA, 1989; USA: NRC, 2001; Danish: 

Madsen et al., 1995; Finnish: Tuori et al., 1998; German: GfE, 2001) using Finnish data sets. 

To predict uCP the simplest GfE equation was chosen, which required knowledge of only ME 

and CP. Using the previously described constants (0.73 and 0.85: GfE, 2001) uCP was 

converted to metabolisable protein. Despite its simplicity, the German system performed as 

well as other systems, even though it used a constant for rumen CP degradability for all 

feedstuffs. It is well known that rumen degradability differs among feeds so why the German 

system performed so well is not entirely clear. Touri et al. (1998) also observed improved 

prediction of milk protein yield using a constant degradability rather than in situ determined 

protein degradability. It could be supposed that these results reflect the inaccuracy of effective 

degradability measured by ruminal in situ incubation (Schwab et al., 2005; Huhtanen and 

Hristov, 2009; Huhtanen, 2010). 

 In the pursuit of accuracy protein evaluation systems must be improved. Although robust, 

one of the main limitations of the current GfE method is that it is not very sensitive to the 

composition of individual feedstuffs. In the previously mentioned study by Schwab et al. 

(2005) metabolisable protein estimated from the GfE system had a comparatively low 

between-sample standard deviation. This was attributed to the simplicity of the model and its 

failure to incorporate many of the factors affecting flow of MCP and RUP to the small 

intestine. Despite inclusion of RUP in the equation used in the present study, the model is still 

not sophisticated enough to accurately describe changes to uCP on a per sample basis. In this 
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respect, the modHGT is highly advantaged. As clearly demonstrated in Table 4, at all 

assumed rates of passage the between sample standard deviation is higher from modHGT. If 

interactions between the rate and extent of carbohydrate and protein degradation are assumed 

to occur naturally during incubation in rumen fluid, then the method can be assumed to be 

highly sensitive to degradation characteristics of individual feedstuffs. Another advantage of 

the method is that mixed rations may also be analysed, providing a possibly more accurate 

result than the additive value calculated from analysis of individual feed components. 

There are, of course, limitations to this in vitro method. Firstly, it is a closed system and 

therefore does not consider the effect of continual rumen flow and the introduction of new 

carbohydrates to the rumen through feeding and the subsequent effect on the microbial 

population. Nitrogen recycling is also not considered; although the method has been 

developed so that N is not limiting therefore any effects of N recycling would be minimal and 

probably insignificant. In analysing low CP feeds a further increase of N in the buffer solution 

may be considered. Secondly, adoption of fractional passage flow rates in other systems 

describing the passage of solid (based on forage or concentrate) and liquid pools would imply 

that the method of calculation to passage rate described in this study may be too simple. The 

legitimacy of the mathematics used to calculate effective uCP may also be debated. 

Nevertheless is it a step forward from the current method which uses singular uCP values for 

animal at all levels of production. As of yet it is unclear how to combine uCP values with 

knowledge on fractional passage rate and whether or not it would improve the accuracy of the 

results. More work is required in this area. Thirdly, correction of forage uCP data through use 

of a concentrate standard may be further improved through use of a forage-based standard. 

Components of concentrates and forages are metabolised by different bacteria (Russell et al., 

1992) thus small weekly fluctuations in initial microbial composition may affect metabolism 

patterns of feed types, namely concentrates and forages, in different ways. Additionally, the 

type of substrate and the rate of appearance of fermentation end products may also affect the 

microbial population during incubation. A concentrate would favour growth of non-structural 

carbohydrate-fermenting bacteria, which can produce ammonia and use ammonia, amino 

acids or peptides as an N source. Forage would favour structural carbohydrate-fermenting 

bacteria, which do not ferment peptides or amino acids and only use ammonia as an N source 

(Russell et al., 1992). The point is that weekly fluctuations in fermentation characteristics of a 

concentrate may not reflect that of forages. Therefore it may make more sense to use a forage-

based standard when analysing forages. 
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Conclusions 

The new modified gas test shows high potential for use as an accurate method of 

estimating uCP. The procedure is simple, has a high level of repeatability, and requires 

knowledge only of CP prior to incubation. Validation with in vivo data is recommended. 

Incorporation of uCP into protein evaluation systems could be a progressive step in 

simplification and subsequent reduction in error as it gives a direct estimate of the sum of 

MCP and RUP at the duodenum. Conversion to metabolisable protein should employ the 

same knowledge and assumptions on endogenous CP, amino acid content and digestibility as 

already used in current systems. 
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Abstract 

Despite a high crude protein (CP) concentration, the protein value of grass silage is generally 

poor due to high degradability and inefficient capture of released N by rumen microbes. 

Wilting grass prior to ensiling decreases rumen degradability and the present study attempted 

to describe this effect more specifically by wilting grass to four dry matter (DM) contents 

(200, 350, 500, 650 g kg-1) at two different rates (fast, slow), creating a total of 6 silages and 2 

haylages. There was a quadratic relationship (P < 0.05) between ruminally undegraded CP 

(RUP) and DM, with the increase occurring between DM-500 and DM-650. This effect was 

accentuated by rapid wilting (P < 0.05). Chemical fractionation of CP revealed decreases in 

non-protein-N and increases in true protein fractions (B2 and B3) between DM-500 and DM-

650 for both fast and slow treatments, indicating significant retardation of proteolysis was 

initiated at a DM above 500 g kg-1. Utilisable CP at the duodenum, a measure of feed protein 

value, was increased by rapid wilting (P < 0.05) but was not affected by DM due to a lower 

content of metabolisable energy. Wilting treatment influenced the amino acid (AA) 

composition of the silages, but most of these effects were lost in the rumen. The haylages had 

a higher total AA content (P < 0.05) due to the higher level of RUP. The AA composition 

after rumen incubation was similar across treatments. Conclusively, fast-wilted silage and 

haylage was superior in terms of protein value and protein quality. Achieving such results in 

practice may, however, be challenging. 

 

Keywords: silage, rumen, crude protein degradation, dry matter, utilisable crude protein, 

crude protein fractions, amino acids 
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Introduction 

Grass silage is one of the most commonly used preserved forages in central and northern 

Europe. However, dairy cows supplied grass silage containing rations have consistently been 

shown to be inefficient in N utilisation (Givens et al., 2004). Although grass silage provides a 

large proportion of dietary crude protein (CP), protein supplements continue to improve 

production responses indicating a lack of efficiency of microbial capture of N from silage. 

The characteristic effect of ensiling is a decrease in water soluble carbohydrates and an 

increase in non-protein N (NPN; McDonald et al., 1991). This means that fewer 

carbohydrates are immediately available for microbial use in the rumen whilst there is an 

abundance of readily available N. In other words, the availability of energy and N to rumen 

microbes is not in synchrony. This can potentially result in a large N loss in urine and limited 

N supply to support microbial growth as the cell wall is degraded. Slower degrading protein 

supplements solve this problem; however, the overall increase in dietary N is associated with 

increased environmental N emissions and monetary costs to the farmer. 

Re-evaluating methods used in making silage to improve efficiency of N capture by rumen 

microbes may offer a cheap solution to the aforementioned problems. Wilting grass before 

ensiling has been shown to decrease CP degradability (Merchen and Satter, 1983; Van 

Vuuren et al., 1990; Lebzien and Gädeken 1996; Verbič et al., 1999), however, results 

describing the extent of this influence on degradability have been inconsistent and an 

interaction with the rate of moisture loss was not examined. Wilting has the potential to be a 

powerful tool not only in improving efficiency of N utilisation but increasing the amount of 

ruminally undegraded dietary CP (RUP) reaching the duodenum, providing a valuable source 

of amino acids (AA) to the animal. As the importance of establishing a protein system based 

on limiting AA heightens, greater understanding of the composition and amount of AA 

provided by RUP is required. 

This study investigated the effect of wilting to four concentrations of dry matter (DM: 200, 

350, 500 and 650 g kg-1 fresh matter) at two rates of moisture loss (fast and slow) on CP 

quality and changes in AA composition of ensiled grass. An intensive examination of N 

components was performed including analysis of: RUP via the in situ technique, CP fractions 

via the Cornell net carbohydrate and protein system (CNCPS; Sniffen et al., 1992), utilisable 

crude protein at the duodenum (uCP) via the modified Hohenheim gas test (modHGT), and 

AA composition both prior to and after rumen incubation. 
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Materials and Methods 

Preparation of silages 

Eight silages were derived from the same parent material (meadow grass: approximately 0.85 

perennial rye grass, 0.08 legumes and 0.07 herbs, second harvest, heading) from the 2008 

harvest in Aulendorf, Baden-Württemberg, Germany. The grass was subdivided and either 

wilted thinly spread on black plastic in the sun (fast; F) or on white plastic in the shade (slow; 

S) to a DM content of approximately 200, 350, 500 and 650 g kg-1, thus creating six silages 

and two haylages. Weather conditions during the wilting period were sunny and hot, with 

maximum temperatures around 30°C over the two days required to achieve all treatment DM 

targets. When the desired DM was reached the grass was chopped at a 20 mm setting and then 

ensiled in triplicate, without additives, in 1.75 l glass jars according to the scheme for silage 

testing in Germany (Bundesarbeitskreis Futterkonservierung, 2006). Ninety days fermentation 

was allowed in a temperature controlled storage room at 25°C. Wilting times of each 

treatment can be viewed in Table 1. The treatments will accordingly be referred to as: F-200, 

S-200, F-350, S-350, F-500, S-500, F-650 and S-650. 

General analysis 

The silages were pooled, freeze-dried and milled through a 3 mm screen for the in situ trial 

and through a 1 mm screen for all other analyses. Proximate analysis was done according to 

VDLUFA (2004) and method numbers are given. The DM of the forages and incubation 

residues was determined by oven-drying of a subsample at 105°C (3.1). Ash and crude lipids 

(CL) were analysed using methods 8.1 and 5.1.1 respectively. Crude protein was determined 

by Dumas combustion (4.1.2) for original forage material and in situ residues and by Kjeldahl 

(4.1.1) for CP fractionation analysis using a Vapodest 50s carousel (Gerhardt, Königswinter, 

Germany) for automated distillation and titration. The same equipment was also used to 

measure ammonia, by distillation, after incubation in rumen fluid as part of the modHGT. 

Neutral detergent fibre (NDF: 6.5.1; assayed without heat stable amylase) and acid detergent 

fibre (ADF: 6.5.2) are expressed inclusive of residual ash. Additionally, ADF without residual 

ash (ADFom) was determined using NIRS for use as a variable in calculating metabolisable 

energy (ME: GfE, 2008, see Table 1 for calculation). Silages were not corrected for DM 

losses associated with drying (Weissbach and Kuhla, 1995) as the correction is based on 

oven-dried, not freeze-dried material. 
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In situ procedure 

Methods describing the in situ trial can be read in detail in Edmunds et al. (2012a; Chapter 3). 

Briefly, the procedure followed basic guidelines of Madsen and Hvelplund (1994) with 

incubation periods of 2, 4, 8, 16, 24, 48 and 96 hours and using three non-lactating German 

Holstein cows, fitted with rumen cannula, per feedstuff. Cows received a diet of 

proportionately and approximately 0.22 soy bean meal and mineral concentrate, 0.53 maize 

silage and 0.26 grass hay (DM basis) at 07:00 and 16:00 h daily in two equal meals meeting 

maintenance requirements. The number of bags used as replicates changed with incubation 

time depending on expected degradability and amount of residue required for subsequent 

analysis. For each incubation time, bags were inserted directly before the morning feed and 

were immediately immersed in ice-water upon removal. All bags underwent machine washing 

in cold water and were subsequently freeze-dried. Incubation residues were pooled per cow 

and incubation time. Three bags that had not undergone any incubation were also machine 

washed to calculate the washout fraction. Water soluble material was estimated by mixing 

duplicate samples in 100 ml, 40°C distilled water and then filtered through No. 5951/2, 

diameter 270 mm filter paper (Schleicher and Schuell, Dassel, Germany). The equation of 

Hvelplund and Weisbjerg (2000) was used to correct CP disappearance for small particle loss 

at each incubation time point. Correction for microbial attachment (MA: g kg-1 residue CP) to 

undegraded feed particles was carried out using the exponential equation of Krawielitzki et al. 

(2006). The Amax parameter of the equation, describing maximum MA at time t ≈ ∞, was 

estimated by boiling a subsample of the residue (t ≥ 16 h) in neutral detergent solution to 

extract microbes (Mass et al., 1999). Time specific degradation of CP was calculated as 

effective degradability of CP (EDP: g kg-1 CP) at an assumed passage rate of 0.04 h-1 (Kp4) 

according to McDonald (1981), but with the assumption that no degradation occurred during 

the lag phase (Wulf and Südekum, 2005). Finally, RUP was calculated as 1000-EDP. 

Protein Fractionation 

Division of CP into five fractions (A, B1, B2, B3 and C) based on characteristics of 

degradability was done according to the CNCPS (Sniffen et al., 1992) using standardisations 

and recommendations of Licitra et al. (1996). All fractions, including CP, were analysed in 

triplicate. See Edmunds et al. (2012a; Chapter 3) for a more detailed description. 
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Modified gas test 

Methods describing the modHGT (Steingass et al., 2001) can be read in detail in Edmunds et 

al. (2012b; Chapter 4). Briefly, the method followed basic procedures of the original 

Hohenheim gas test (Menke and Steingass, 1988), the modifications being a 2 g l-1 increase in 

(NH4)HCO3 and a 2 g l-1 decrease in NaHCO3 in the buffer solution and measurement of 

ammonia at the end of each incubation. Rumen fluid was collected from two to three 

fistulated sheep receiving a 50:50 grass hay:pelleted compound maintenance ration twice 

daily. One third of the ration was given at 07:00 and two thirds at 15:30 h. Approximately 200 

mg DM sample was incubated for 8 and 48 hours. At the termination of the incubation, the 

entire contents of the syringe (30 ml) was analysed for ammonia N and uCP was calculated as 

follows: 

uCP (g kg-1 DM) = ((NH3Nblank +  Nsample - NH3Nsample )/weight (mg DM)) x 6.25 x 1000 

where NH3N is in mg 30 ml-1, ‘blank’ refers to rumen fluid/buffer solution without added 

substrate, ‘sample’ is the solution with added sample, Nsample is N added to the syringe from 

the measured amount of feedstuff (mg) and weight is the amount of sample weighed into the 

syringe and calculated to DM. 

Biological between run fluctuations were corrected using a protein standard (provided by the 

University of Hohenheim), which was analysed with every run. The correction follows the 

same method as that used for gas production (Menke and Steingass, 1988), with deviations of 

higher than 10% from the reference mean of the standard requiring repetition of that run. 

Following correction of uCP, values from the two incubation time points were plotted against 

a log (ln(time)) scale and the resulting regression equation was used to calculate effective uCP 

to passage rates of 0.02, 0.04 and 0.06 h-1, which will hereafter be referred to as: uCP2, uCP4, 

uCP6. 

Amino acid analysis 

The original material and 16 h in situ residues, underwent a complete AA profile analysis, 

performed in CARAT laboratory, Adisseo, Commentry, France. The AA contents were 

measured by cation exchange chromatography after acid hydrolysis for 24 h (Directive 

98/64/EC, 3/09/99 – Norme NF EN ISO 13903, Antony, France). Analysis of methionine was 

performed after initial oxidation of samples with performic acid. Phenylalanine was analysed 

without oxidation.  
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Correction for added AA coming from microbial colonisation of in situ residues was 

performed using the following procedure. The amount of microbial matter was estimated for 

each residue as described in the section: ‘in situ procedure’. Next, the AA composition of the 

microbes had to be estimated. Microbial matter has been shown to be relatively consistent in 

its AA composition (Storm and Ørskov, 1983; Chamberlain et al., 1986) and, although this 

assumption has been debated (Clark et al., 1992), it was taken advantage of in the present 

study and values published by Storm and Ørskov (1983) were used to correct each sample. As 

not all N in microbial matter is AA, the calculated extent of microbial contamination was 

multiplied by a factor of 0.8 (Storm and Ørskov, 1983). The resulting number was then 

multiplied by the published value for each individual AA and subtracted from the measured 

concentration of the residue AA as in the following calculation:  

AAcorrect (g kg-1 DM) = AAi - (MA x 0.8 x (MAAi/1000) x (CP/1000)) 

where AAi is the measured concentration of the ith amino acid from the residue (g kg-1 DM), 

MA is the amount of estimated microbial CP of the residue (g kg-1 residue CP) as calculated 

from the equation of Krawielitzki et al. (2006), MAAi is the concentration of the ith AA in 

microbial matter (g kg-1 AA: Storm and Ørskov, 1983) and CP is the concentration of residue 

crude protein (g kg-1 DM). Summation of individual, corrected AA provided the corrected 

total AA content. 

Statistics 

All statistical analyses were performed using SAS version 9.1 (SAS, 2002). Linear and 

quadratic effects, with DM as the covariable and wilting speed as the fixed effect, were used 

to determine any significant relationships of treatment on RUP and CP fractions. Due to 

insufficient material from the S-200 treatment for analysis by CP fractionation and modHGT, 

statistics analysing results from these procedures include treatments with DM 350 to 650 g 

only. Treatment effects on uCP and total AA were determined using the proc GLM procedure 

of SAS using least squares means. Differences were deemed significant at P < 0.05. 

Results and Discussion 

Silage quality 

Results of the proximate analysis and exact DM at ensiling are presented in Table 1. Crude 

protein did not change between treatments (P > 0.05), NDF and ADF increased with 

increasing DM by approximately 70 g and 45 g respectively and ME decreased by 

approximately 1 MJ kg-1 DM in the haylages (P < 0.05). Buffering capacity was low, at less 



Chapter 5 Effect of wilting on protein composition of grass silage  

 55 

than 100 g lactic acid per kg DM, and sugar level at ensiling was above 80 g kg-1 DM, 

indicating good potential for rapid lowering of the pH (Table 1). Upon opening the silages no 

visible evidence of moulding or warming was present and the aroma was typical of silage 

fermented primarily by lactic acid bacteria.  

Table 1 Wilting time (h), dry matter (DM; g/kg) at ensiling and proximate variables of silages 

wilted to various DM content at two rates of moisture loss (F = fast, S = slow). Buffering 

capacity (g lactic acid/kg DM) and sugar content (g/kg DM) of the unensiled material are also 

included. 

 

Rumen undegraded crude protein 

Quantitative comparisons of RUP are difficult to make with published data as so many factors 

affect degradability and its estimation. Such factors include N composition of the plant 

material itself, variations in methodological techniques and errors associated with the in situ 

analysis including presence or absence of correction for microbial attachment. Therefore 

analysis of the results in this study is focused on trends rather than numbers, although the 

RUP results do fall within the normal range for grass silage (150-250 g kg-1 CP: Universität 

Hohenheim – Dokumentationsstelle, 1997) in the fast treatments. The slow wilted silages 

(DM-200 to DM-500 g kg-1) were slightly lower than 150 g kg-1 CP (Figure 1a). 

The RUP increased quadratically with increasing DM (P < 0.0001). Figure 1a clearly shows 

that there was no effect of DM on RUP up to and including DM-500. At DM-650, RUP 

increased (P < 0.001) by 60 and 78 g for slow and fast wilted treatments respectively. Wilting 

speed was also significant, with rapid wilting giving rise to a higher level of RUP (P < 

Treatment Wilting 
time 

DM CP NDF ADF MEa Buffering 
capacity 

Sugar 

F-200 3 194 188 417 244 11.0 53 94 

S-200 5 193 189 406 227 11.2 53 96 

F-350 7 381 189 434 247 11.2 48 104 

S-350 31 373 191 444 254 10.8 51 84 

F-500 9 499 186 450 256 10.8 47 114 

S-500 33 466 195 436 249 10.8 46 93 

F-650 26 692 179 484 275 10.1 46 117 

S-650 50 669 191 472 275 10.0 45 118 
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0.0001). This is not surprising as longer wilting times lead to more extensive proteolysis. The 

increase in RUP with DM supports findings from Van Vuuren et al. (1990) and Lebzien and 

Gädeken (1996). However, Van Vuuren et al. (1990), who analysed silages with DM contents 

of 220, 300 and 450 g kg-1, observed RUP increases between all DM levels. Lebzien and 

Gädeken (1996) also observed a curvilinear increase in RUP with increasing DM in grass 

silage with the sharp decline in degradability occurring between DM 390 and 600 g kg-1. The 

threshold DM at which the sharp decline in degradability occurs is not clear and, although the 

present study suggests this is at DM > 500 g kg-1, it is most probably influenced by multiple 

factors.  

Crude protein fractions 

To more clearly understand the effect of wilting on the degradability of protein, CNCPS CP 

fractionation was performed. Unfortunately insufficient material remained from S-200; 

however trends between fast and slow were similar between the higher DM treatments for the 

A, B2 and B3 fractions so a rough idea can be obtained through results of F-200.  

Non-protein nitrogen 

The A fraction, which represents NPN, decreased quadratically with increasing DM (P < 

0.0001). As is characteristic of silages, NPN was high (approximately 600 g kg-1 CP) in F-200 

and both DM-350 silages. This was also true for the DM-500 treatments. In both haylages 

NPN was largely reduced (P < 0.001), indicating decreased degradation by proteolysis. 

Additionally, F-650 had a lower proportion of NPN (300 g kg-1 CP) than S-650 (450 g kg-1 

CP) and this trend extended, though not so extremely, to the lower dry matter contents (Figure 

1b). Muck et al. (1987) demonstrated that the rate of proteolysis of lucerne in-silo decreases 

linearly with increasing DM concentration. Naturally, a faster rate of moisture loss will 

induce earlier retardation of proteolysis, which explains the higher level of true protein (TP: 

CP - NPN) in the fast wilted silages. However, following this principle one would expect a 

lower concentration of NPN in the S-500 treatment. Muck (1988) observed a similar response 

and explained it as an interaction between DM and its subsequent effect on the growth of 

lactic acid bacteria and time taken to lower the pH. One might also expect NPN content to 

increase with wilting time due to the longer exposure to proteolytic plant enzymes. However, 

in the present study, the NPN concentration correlated negatively with wilting time but with 

the presence of a strong interacting effect of DM. For example, although there was a 

difference of wilting time of 24 h between F-500 and S-500, the NPN was only higher by 66 g 
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kg-1 CP in the slow treatment. Such a small difference between fast and slow treatments 

probably indicates that most proteolysis occurs during ensiling. It may also be, for the fast 

wilted treatments, that the decreasing rate of proteolysis with advancing moisture loss was 

slightly offset by an initial increase in rate caused by higher temperature; a result of wilting in 

direct sunlight.  
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Figure 1 Effect of dry matter (DM) at ensiling at two rates of wilting on: 
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True protein fractions 

Treatment had no effect on the B1 (soluble TP) fraction and the concentration was low (mean: 

39 g, maximum: 61 g kg-1 CP) in all treatments. Fresh, unensiled forage usually contains B1 

at above 100 g kg-1 CP (Kirchhof et al., 2010; Edmunds et al., 2012a; Chapter 3) and the low 

values here indicate its susceptibility to proteolytic attack. Likewise, the B2 fraction suffered 

losses due to the effects of wilting and ensiling. A study comparing conservation methods and 

their effects on CP fractions revealed an average B2 fraction of 520 g kg-1 CP in fresh forage 

(n = 12; Edmunds et al., 2012a; Chapter 3), whereas the silages in the present study contained 

an average of 280 g kg-1. The loss of B2 followed a quadratic trend (P = 0.0001) with a higher 

concentration remaining at higher DM and heavier losses resulting from slower wilting (P < 

0.0001: Figure 1c). 

Both linear and quadratic trends (P < 0.0001) described the increase in B3 with increasing 

DM concentration and fast wilting provided higher B3 than slow wilting (P < 0.0001: Figure 

1d). The sharp rise in B3 between DM-500 and DM-650 resulted in B3 concentrations above 

that which was found in fresh meadow grass of a similar composition and maturity (Edmunds 

et al., 2012a; Chapter 3). This is in agreement with Nguyen et al. (2005) who observed an 

increase in B3 of 65 g kg-1 CP above its fresh counterpart in an orchardgrass silage with a DM 

content of 600 g kg-1. The reason for the increase in the B3 fraction at low moisture contents 

is not yet clear. A possible explanation could be a combination of decreased in-silo 

proteolysis and denaturation of proteins caused by heating: a result of respiration using 

trapped air. Nguyen et al. (2005) suggest sunlight exposure during wilting alters the 

properties of proteins and forms bonds between proteins and carbohydrates. However, the B3 

fraction also increases through conserving forage as hay or through rapid, artificial drying at 

high temperatures. Artificially dried forage often has limited sunlight exposure; therefore the 

increase in B3 may simply be a case of decreased solubility caused by precipitation of 

proteins during drying.  

Perhaps the most interesting observation is the relationship between B3 and RUP. Generally, 

RUP is composed mainly of B3 and C fractions, with some remaining B2. In the present 

study, regression of B3 + C against RUP revealed a strong linear relationship (n = 7, R2 = 

0.89, P < 0.0001: Figure 2). There were no differences between the treatments in the C 

fraction, thus the linearity was entirely due to B3. The one sample that deviated from the trend 

line was that of the F-200 treatment. Removal of this sample increased the R2 to 0.99. This 
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strong trend is more likely to occur in conserved forages due to the depleted B2 fraction and 

could serve as a rapid and useful estimation of RUP.  

The C fraction remained stable (mean = 26 ± 3 g kg-1 CP) across all treatments. This is in 

contrast to the results from Merchen and Satter (1983) who observed significant increases of 

the C fraction in silage with a DM content of 660 g kg-1. Nguyen et al. (2005) also observed a 

slight increase in the C fraction in silages containing 600 g DM in comparison with moister 

silages (450 g and 240 g DM), although this increase was very small (98 to 113 g kg-1 total 

N). The stability of the C fraction in this study indicates that heat accumulation during 

ensiling was not enough to initiate the reaction causing indigestible Maillard products. This is 

attributable to good compaction and air-tight sealing, which is easy to achieve in experimental 

glass silos. The results may not be reflected in practice, which is suggested by the results from 

Merchen and Satter (1983) who used tower silos.  
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Figure 2 Relationship between RUP and the summation of B3 and C fractions. 

 

Overall the observed trend of decreased protein degradability with increasing DM was in 
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and Gädeken 1996; Verbič et al., 1999; Nguyen et al., 2005) and this study revealed that rapid 
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from either DM-200 treatments. Initial analysis of uCP revealed some results that went 

against expectations: F-650 was lower than S-650 at uCP2 (uCP estimated to ruminal passage 

flow rate of 0.02 h-1). Assessment of nutritional components analysed using the proximate 

analysis indicated that this was probably due to CP values (Table 1). Although statistically the 

same, CP appeared to vary more than would be expected for forage coming from the same 

parent material. Reanalysis reduced the between treatment standard deviation. These 

discrepancies in CP content made it difficult to obtain a clear picture of the effects of 

treatment on uCP. Since CP is calculated from total N and total N should not change under 

such controlled experimental conditions, a singular CP concentration of 186 g kg-1 DM (the 

average CP concentration after reanalysis) was assigned to all samples and uCP was 

recalculated. The results are presented in Table 2.  

Faster wilting yielded significantly higher uCP at all passage rates (P < 0.05). The trend 

existed at all levels of DM (350-650). Such an effect can be explained by reduced proteolysis 

and a subsequent higher proportion of TP, particularly insoluble TP, entering the rumen. A 

higher concentration of insoluble TP, namely the B3 fraction, reduces the rate of microbial 

degradation and increases the amount of RUP entering the duodenum. The higher soluble N 

content (A + B1) of the slow wilted silages results in a greater increase in the ammonia pool 

than the fast wilted silages. Utilisation of ammonia by microbes can only occur if there is a 

suitable carbohydrate source (Nocek and Russell, 1988). Assuming the amount and rate of 

fermentation of carbohydrates was the same between fast and slow wilted samples in vitro, 

the ammonia pool will remain higher in the slow wilted silages and uCP will consequently be 

lower.  

Utilisable CP increased mildly with increasing DM; however this increase was not significant. 

From DM-350 to DM-650, uCP4 and uCP6 increased by 6 and 10 g kg-1 DM respectively in 

fast wilted silages. In the slow wilted silages the increase was 8 and 11 g kg-1 for uCP4 and 

uCP6 respectively. The mild increase in uCP, despite a larger proportion of RUP, can be 

explained by the decrease in ME (approximately 1 MJ kg-1 DM) at DM-650 (Table 1). 

Microbial growth is heavily dependent on rumen available energy and thus the lower RUP in 

high moisture silages is compensated for by an increased proportion of microbial CP. It must 

be remembered that the in vitro modHGT is a closed system. In in vivo situations this 

compensatory effect may be reduced as a result of early N loss due to the higher proportion of 

soluble N from lower DM silages. Indeed, an in vivo trial by Verbič et al. (1999) revealed a 

larger amount of microbial N reaching the duodenum from sheep fed highly wilted silage 
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(DM 520 g kg-1) and hay than from unwilted (210 g kg-1) and moderately wilted (430 g kg-1) 

silage. Additionally, increased intake commonly associated with high DM silages (Dawson et 

al., 1999; Wright et al., 2000) will aid in compensating for its lower ME content.    

 

Table 2 Effective utilisable crude protein (uCP; g/kg DM) of silages (n = 4) and haylages (n = 

2) wilted to different DM contents at two rates of moisture loss (F = fast, S = slow) and 

calculated to three assumed rates of passage (0.02, 0.04 and 0.06 h-1) using a fixed CP value 

of 186 g/kg DM. 

 uCP2 uCP4 uCP6 

F-350 100 135 155 

S-350 96 121 136 

F-500 105 138 157 

S-500 93 122 139 

F-650 101 141 164 

S-650 99 130 148 

    

Fast 102a ± 2.4 138a ± 3.0 159a ± 4.7 

Slow 96b ± 2.9 124b ± 4.9 141b ± 6.2 

Different letters within columns indicate a significant difference (P < 0.05). 

 

Amino acid composition 

Effects of ensiling 

Clear treatment effects on the AA composition of the silages were observed. However, with 

the knowledge that AA composition of most feeds changes during rumen incubation (Erasmus 

et al., 1994; Van Straalen et al., 1997; Von Keyserlingk et al., 1998; Gonzalez et al., 2001) 

these ensiling related changes will only be discussed briefly. There was no difference between 

treatments for total AA content (mean = 131 ± 4 g kg-1 DM; P > 0.05), indicating that the 

plant enzymes were responsible for most of the proteolysis. The mean AA content of CP was 

695 ± 31 g kg-1. Figure 3a presents treatment related changes for individual AA. Only DM-

350 and DM-650 have been presented for reasons of simplicity. The changes were calculated 

as percent change from a fresh, unensiled meadow grass sample (Fr-0; second harvest, 2008). 

The Fr-0 sample was chosen as a representative based on the   closenesss of its AA profile to 
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published values (Degussa Feed Additives, 1996; Misciattelli et al., 2002) and was preferred 

to published values based on geographical location, harvest, and the fact that it was analysed  

using the same procedure as the silages. Worthy of remark is the higher retention of arginine 

both with increasing DM and fast wilting. There was an overall decrease in cysteine and 

methionine. The sharp rise in proline in the slow wilted silages supports findings of Kemble 

and Macpherson (1954) and is a typical sign of water stress (Boggess and Stewart, 1976). One 

of the precursors for proline is orthinine (Kemble and Macpherson, 1954) for which arginine 

is a precursor (Ohshima and McDonald, 1978), which partly explains the large decrease in 

arginine. Generally, for most AA, concentrations were lower in slow wilted silages. The lack 

of difference in total AA can be explained by the higher level of proline.  

 Effects of rumen exposure 

Whilst the previously described changes are interesting they may be of little use when trying 

to establish supply of AA to the duodenum of ruminants. Gonzalez et al. (2009), who also 

reported changes in the AA profile after ensiling, observed that these effects were lost during 

rumen incubation. Other studies also support this observation (Van Straalen et al., 1997; Von 

Keyserlingk et al., 1998) with evidence that the extent of change in the rumen is more specific 

to the original forage composition. Therefore, it is of interest to know how wilting speed and 

DM at ensiling affect the AA profile after rumen exposure. The present study analysed in situ 

residues for AA content following 16 h in the rumen.  

The averaged concentrations (g kg-1 DM) of total and individual AA of the original silage 

sample (GS-0) and after 16 h rumen exposure (GS-16) are presented in Table 3. Regarding 

total AA, an average of 31% remained at GS-16. The haylages held a higher total AA content 

(P < 0.05) than all other levels of DM by approximately 44% (61.1 and 58.3 g kg-1 DM for F-

650 and S-650, respectively), which can be directly related to the higher level of RUP. There 

were slight, but non-significant, increases in total AA as a result of fast wilting (data not 

shown). Regarding individual AA, highest losses occurred from alanine and proline, whilst 

AA showing least amount of degradation were cysteine (67% remaining at 16 h) and 

methionine (40% remaining at 16 h). The strong hydrophobic nature and disulphur bond of 

cysteine explains the higher resistance to enzymatic activity (Mahadevan et al., 1980).  

Changes to the AA profile from GS-0 to GS-16 for treatments DM-350 and DM-650 are 

further highlighted in Figure 3b. As in Figure 3a, data is presented as percent change which is 

calculated from data expressed as g/100 g total AA. There appeared to be a mirror effect for 

many of the changes in AA observed after ensiling (Figure 3a). From the effect of ensiling, 
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arginine, cysteine and methionine decreased whilst proline increased.  The opposite is true 

after rumen exposure thus all major effects from ensiling seem to be lost in the rumen. Thus, 

to obtain a clearer picture of the combined effects of ensiling and rumen incubation on the AA 

composition of RUP, a net change in AA was calculated. Net change is simply the percent 

change in AA directly calculated from Fr-0 (The original AA profile of an unensiled sample) 

to GS-16. From this calculation it was immediately apparent that most treatment effects had 

been lost (data not shown). 

The Fr-0 sample had also been incubated in the rumen as part of a larger study using the same 

materials and methods. The changes from the Fr-0 to Fr-16 (AA composition of unensiled 

sample after 16 h rumen exposure) and Fr-0 to GS-16 (net changes after ensiling and rumen 

incubation) are included in Figure 4, where the silages have been presented as a mean for 

improved clarity. The results are remarkably similar. For all individual AA the percent change 

from Fr-0 follows the same trend for both Fr-16 and GS-16. Noticeable differences did 

however occur for arginine, cysteine, histidine, isoleucine, and methionine in that the fresh 

sample appeared to have a higher level of resistance to degradation than the ensiled samples 

(except for cysteine, where the silages had a higher retention). Gonzalez et al. (2009) also 

compared AA composition fresh grass (Italian ryegrass) and its silage before and after rumen 

exposure. Changes in the AA profile after ensiling were reported, however these effects were 

lost during rumen incubation and the conclusion was that the AA profile of RUP of both 

forages was similar. The same observation was made in this study. Thus, in estimating supply 

of RUP-AA to the duodenum, it may be possible to use the AA composition of RUP from a 

representative sample of similar botanical composition.  
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Table 3 Average amino acid concentration (g/kg DM) of grass silage and haylage prior to 

(GS-0; n = 7) and following incubation in the rumen for 16 h (GS-16; n = 7). 

 GS-0 ± GS-16 ± 

Total 130.77 3.55 41.09 12.87 

Alanine 11.07 0.42 2.73 0.88 

Arginine 5.40 1.69 1.92 0.82 

Aspartic acid 13.84 0.31 4.62 1.28 

Cystine 1.26 0.08 0.84 0.08 

Glutamic acid 14.13 0.87 4.87 1.49 

Glycine 7.54 0.45 2.66 0.79 

Histidine 2.79 0.13 0.87 0.32 

Isoleucine 7.00 0.28 2.14 0.63 

Leucine 12.31 0.80 4.00 1.48 

Lysine 7.23 0.60 2.55 0.53 

Methionine 2.34 0.21 0.93 0.31 

Phenylalanine 8.26 0.26 2.47 0.91 

Proline 10.86 3.26 2.01 0.88 

Serine 6.21 0.25 2.22 0.66 

Threonine 6.87 0.21 2.44 0.73 

Tyrosine 4.63 0.41 1.13 0.42 

Valine 9.03 0.32 2.70 0.71 
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Figure 3 Change (%) in AA composition of silages wilted to various contents of dry matter at 

two different rates (F = fast, S = slow) as compared to a representative fresh grass sample. 
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Figure 4 Change (%) in AA composition of silages wilted to various contents of dry matter at 

two different rates (F = fast, S = slow) from 0 to 16 hours rumen exposure. 
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Figure 5 Change (%) in AA after 16 h rumen exposure for fresh grass (Fr-16, n = 1) and 

silage (GS-16, n = 6). The AA composition of the fresh grass sample at 0 h rumen exposure 

(Fr-0) was used to calculate net changes in silage i.e. the total effect of ensiling and rumen 

exposure on the AA profile. 

 

General discussion 

Whilst laboratory results from controlled trials suggest high potential for improved protein 

and AA supply to dairy cows from high DM silages, ensiling of such low moisture grass must 

be considered in practical conditions. Dry matter of 300 - 400 g kg-1 is the usual 

recommendation (Thaysen, 2004). Ensiling at DM above 400 g kg-1 can result in particle loss 

during transport, low compactibility and warming after opening for use (Nussbaum, 2009). 

Weather conditions during wilting also pose a problem. It has been well established that rapid 

wilting favours silage quality as does harvesting at an earlier maturity. The challenge for 

farmers is finding the ideal time to harvest to optimise these two factors. The use of 

conditioners may be useful in speeding up the rate of moisture loss during wilting.  

Equally as important is the effect of high DM silage on intake and animal performance. Past 

studies have generally shown an increase in DM intake associated with wilting (Dawson et 

al., 1999), however this and subsequent animal performance is poorly understood. In a review 

of 85 data sets by Wright et al. (2000) positive responses of DM intake, milk energy output 

and live weight gain were shown to be positively and linearly associated with both the extent 

and rate of field wilting. More studies are required in this field.  
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Conclusions 

Protein value of grass silage is improved through rapid and extensive wilting. The proportion 

of RUP and the AA content were significantly higher at a DM of 650 g kg-1 and RUP was 

further improved by a faster rate of moisture loss. Utilisable crude protein at the duodenum 

was positively influenced by rapid wilting. Increasing DM did not have improve uCP due to a 

decrease in ME. Finally, although ensiling alters the AA profile, the net effect of ensiling and 

rumen exposure on the AA profile was not greatly influenced by treatment and the total 

changes were similar to that of a fresh, unensiled grass of similar botanical composition. This 

implies that the difference in AA composition between the original material and RUP are due 

to rumen exposure and not ensiling. 
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CHAPTER 6  GENERAL CONCLUSIONS 

This thesis focussed on improving the accuracy of protein evaluation and understanding of N 

partitioning from fresh and conserved forages with the distant goal of improving the 

efficiency of N utilisation in dairy farming.  General conclusions drawn are: 

1) The method used to correct for microbial attachment to rumen incubated residues shows 

high potential as a simple and accurate solution to a large source of error in the in situ 

procedure. Further steps are required to validate and standardise this technique. 

2) Estimation of RUP by CNCPS protein fractionation is not yet accurate enough to be widely 

employed. The publicised equations frequently used (Shannak et al., 2000) are based on 

concentrates and a relatively small data set. There is a strong potential for this method to 

accurately estimate RUP to various passage rates, provided it is validated against accurate in 

situ or in vivo data. To achieve this goal, a much larger data set is required. 

3) Estimation of RUP by enzymatic degradation following the standardised protocol of Licitra 

et al. (1999) shows promise as a quick, reliable and easy to standardise method for routine 

forage evaluation. Estimation to various passage rates should be possible by adjusting the 

enzyme concentration and/or incubation time. Further validation is required for a large range 

of feedstuffs. 

4) Estimation of uCP using the modified gas test shows high promise as a rapid, accurate and 

simple method for evaluation of protein value. The method is sensitive to the biochemical 

structure and interacting degradation characteristics of individual feedstuffs. Thus it is 

probably more accurate than the equations currently used in Germany (GfE, 2001). 

Furthermore, it does not rely on separate analyses of MCP and RUP, and the inherent sources 

of error associated with their estimation. The procedure is, however, sensitive and care must 

be taken to follow the protocol exactly and monitor external factors that could influence 

results e.g. analysis of CP, filling syringes with exactly 30 ml, incubation temperature and 

time, equipment used for ammonia analysis. Further validation of this method, preferably 

against in vivo data, is required.  

5) Wilting grass silage to 65% DM improved the RUP content. This was further improved by 

rapid wilting. In practice loss of DM during extended wilting, transport and respiration 

associated with lower compactibility of such dry material may offset the benefits of reduced 

protein degradability. More importantly, these results may not be replicated in practice due to 

difficulty in achieving anaerobic stability. Studies under practical conditions are required. 
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6) The non-protein N content of grass silage decreased with rapid wilting and increasing DM, 

particularly between 50 and 65% DM. The implications of this are: improved efficiency of N 

utilisation by the animal and a reduced loss of N through excretion. Studies assessing animal 

performance are recommended. 

7) The RUP and uCP content of grass silage was increased by rapid wilting. Rapid wilting is 

already a desirable practise in silage making and is largely dependent on weather conditions. 

What should be considered is whether postponing harvest at the expense of CP content, until 

favourable weather prevails, is beneficial in terms of final protein value. Increasing DM did 

not improve uCP due to decreased energy supply. This effect can be easily offset by 

increasing the energy content of the ration, thus increasing the potential to provide a higher 

supply of protein to the animal. 

8) Amino acid composition was affected by DM content and ensiling. However, most of these 

affects appeared to be lost after incubation in the rumen. In fact, the amino acid profile of the 

silage RUP was similar to that of an unensiled sample of similar botanical composition. This 

observation, if supported by repeated studies, will allow easier and more accurate assessment 

of the composition of RUP and thus supply of absorbable amino acids from grass silage. 
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