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Interrelationships between mutualistic endophytic microorganisms, the root-knot 

nematode Meloidogyne incognita and the sap-sucking insect Aphis gossypii on tomato, 

squash and Arabidopsis 

The effects of single and combined applications of three endophytic microorganisms on the 
biocontrol of the root-knot nematode Meloidogyne incognita and the sap-sucking insect Aphis 

gossypii in tomato, squash and Arabidopsis were investigated. The studied endophytes were the 
fungus Fusarium oxysporum strain Fo162 (Fo162), the mycorrhiza fungus Glomus intraradices 
strain 510 (AMF) and the bacterium Rhizobium etli strain G12 (G12). In addition, factors that 
can negatively affect the interrelationships between the endophytic microorganisms in relation 
to their biocontrol activity were studied. Greenhouse experiments were conducted to investigate 
the biological control of M. incognita in tomato by single or combined applications of Fo162, 
AMF and G12. The individual application of each of the biocontrol agents resulted in a 
significant reduction in the number of M. incognita that penetrated into tomato roots. However, 
concomitant enhancement with Fo162 together with AMF or with G12 did not improve the 
reduction of M. incognita penetration. Triple-split-root experiments showed that the 
simultaneous, but spatially separated inoculation of both Fo162 and G12, also did not lead to a 
significant increase in the reduction of M. incognita penetration, when compared to the 
individual inoculation. In these experiments a reduction in Fo162 colonization also was 
observed, demonstrating that the growth of the antagonistic fungus can be systemically 
inhibited by the bacterium. Other experiments demonstrated that Fo162 and G12 root 
colonization restrained M. incognita development when the two organisms are present in the 
same root system. Greenhouse experiments were performed to study the biocontrol of A. 

gossypii in squash by single or combined applications of Fo162, AMF or G12. A small level of 
biological control activity toward A. gossypii was observed when the insects were exposed to 
squash plants inoculated with AMF. Conversely, Fo162 and G12 when present alone reduced 
significantly the population development of A. gossypii on squash. However, there was no 
evidence of a synergistic interaction toward the aphid when Fo162 together with AMF or with 
G12 were inoculated simultaneously to squash. Split-root experiments showed that the 
simultaneous, but spatially separated inoculation of both Fo162 and G12 did not improve the 
biocontrol of A. gossypii. In vivo and in vitro experiments were conducted to investigate the 
interrelationships between Fo162 and G12. The combined application, onto the same root 
system, of both Fo162 and G12 showed a significant reduction in tomato root colonization by 
Fo162. Moreover, the simultaneous but spatially separated inoculation of both endophytes, in a 
split-root system, resulted again in a reduction in Fo162 colonization, indicating that the growth 
of the fungus can be systemically inhibited by the bacterium. Antibiosis tests indicated that 
there was a reduction in radial growth of Fo162, when challenged with G12. In vivo and in 

vitro trails were then conducted on Arabidopsis to study the interrelationship between Fo162 
and M. incognita. Results indicated that Fo162 was able to effectively colonize the Arabidopsis 
root system. Fo162 treatment resulted in a significant reduction in the number of M. incognita 
that penetrated into Arabidopsis roots. Split-root Arabidopsis experiments also demonstrated 
that Fo162 was able to systemically reduce M. incognita number of galls. Moreover, the 
colonization of Arabidopsis roots by Fo162 caused distinct plant growth enhancement activity. 
The results obtained demonstrated that the combination of “Arabidopsis-Fo162-M. incognita” 

could be used as a model system to elucidate the molecular basis of the interactions of these 
three organisms.  
 



Interaktion zwischen mutualistischen endophytischen Mikroorganismen, der 

Wurzelgallennematode Meloidogyne incognita und dem Phloem-saugenden Insekt Aphis 

gossypii an Tomate, Zucchini und Arabidopsis  

 

In der vorliegenden Arbeit wurden Einzel- und Kombinationsanwendungen endophytischer 
Mikroorganismen auf ihre biologische Kontrollaktivität gegenüber des Wurzelgallennematode 
Meloidogyne incognita und dem Phloem-saugenden Insekt Aphis gossypii an Tomate, Zucchini 
und Arabidopsis untersucht.  
 
Die untersuchten Endophyten waren der Ascomycet Fusarium oxysporum Fo162 (Fo162), der 
Mycorrhizapilz Glomus intraradices 510 (AMF) und das Bakterium Rhizobium etli G12 (G12). 
Zusätzlich wurden Faktoren untersucht, die die Wechselbeziehung zwischen den genannten 
Endophyten und ihrer biologische Kontrollaktivität negativ beeinflussen können. Biologische 
Kontrolle von Einzel- und Kombinationsanwendung von Fo162, AMF und G12 gegenüber 
M.incognita an Tomatenpflanzen wurden in Gewaechshausexperimenten untersucht.  
 
Einzel Anwendung der jeweiligen Endophyten, resultierte in einer signifikanten Verringerung 
des Eindringens von M. incognita in Tomatenwurzeln. Kombinierte Anwendung hatte jedoch 
keinen synergistischen Effekt auf die Biokontrolle gegenüber M. incognita. Auch eine 
räumliche Trennung der Endophyten in Triple Split-Wurzelexperimenten zeigten keinen 
synergistischen biokontroll Effekt gegenüber M. incognita. Jedoch, wird die Fo162 
Kolonisierung an Tomatenwurzeln durch G12 systemisch signifikant reduziert. 
 
Gewächshausexperimente wurden durchgeführt, um das biologische Verhalten von A. gossypii 
an Zucchini bei Einzel- und Kombinationsinokulation von Fo162, AMF, G12 zu untersuchen. 
Ein geringe biologische Kontrollaktivität konnte mit AMF gegen A. gossypii an Zucchini 
beobachtet werden. Fo162 und G12 hingegen konnten beide die Populationsentwicklung von A. 

gossypii signifikant reduzieren. Es gab jedoch keinen Nachweis für einen synergetischen Effekt 
durch eine kombinierte Applikation von Fo162 mit AMF oder G12. Split-Wurzel Experimente 
haben gezeigt, dass gleichzeitig aber räumlich voneinander getrennte Inokulation von Fo162 
und G12 ebenfalls keinen synergetischen Effekt gegenüber A. gossypii hat. 
 
Antibiosistest haben gezeigt, dass G12 das radiale Wachstum von Fo162 signifikant inhibiert. 
Die Ergebnisse demonstrieren, dass in Co-inoculations Strategien mit Fo162 und G12 auch die 
mikrobiellen Interaktionen berücksichtigt werden sollte. In vivo und in vitro Experimente 
wurden mit Fo162, Arabidopsis und M.incognita durchgeführt. Fo162 ist in der Lage das 
Wurzelsystem von Arabidopsis zu kolonisieren und resultierte in einer signifikanten 
Reduzierung von penetrierenden M. incognita. Split-Wurzel Experimente mit Arabidopsis 
zeigen, dass Fo12 die Anzahl an Gallen systemisch reduzieren kann. Darüber hinaus zeigten 
Fo162-kolonisierte Arabidopsis pflanzen einen characteristischen Phänotyp. Die Ergebnisse 
zeigen, dass Arabidopsis-Fo162-M. incognita als Modelsystem für Interaktionen zwischen der 
mutualistische Endophyt Fo162 und M. incognita genutzt werden könnte. 
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Chapter 1 

General introduction 

 

1.1. Importance of tomato, squash and Arabidopsis 

 

Tomato (Lycopersicon esculentum Mill) is one of the most important vegetable cultivated for 

human consumption. It is grown on every continent in the world in fields, greenhouses, 

plastic tunnels and in net houses (Wener, 2000). World production of tomato and its 

cultivated area has increased at a rate of 4.6 million metric tons year-1 and 41 thousand 

hectares year-1 in the period from 2000 to 2009 (Fig. 1.1). Thus, world production of tomato 

in 2009 exceeded 150 million metric tons and occupied approximately 4.4 million hectares 

(Fig. 1.1).  

 

Increased production of tomato is related with important advances in production and 

processing technology. Additionally, modern breeding methods supported by molecular 

techniques are contributing importantly to shorten the development time for cultivars with 

plant resistance to pest and diseases. The increase in the importance of vegetables, including 

tomato, is evident in countries with rapidly expanding populations, e.g. Africa and Asia, 

where large amounts of land near urban centers are dedicated to vegetable production (Sikora 

and Fernandez, 2005). 

 

Squash (Cucurbita pepo L.) is an annual herbaceous climbing plant, which belongs to the 

family Cucurbitaceae. This family includes many economically important vegetables such as 

cucurbits, cucumber, melon and watermelon; which are normally used as fruit, for cooking 

and for decoration (Jeffrey, 1990; Lira and Caballero, 2002; Wehner and Maynar, 2003). 

This group of vegetables is grown worldwide with worldwide production and cultivated area 

under pumpkins, squash and gourds in the period from 2000 to 2009 increasing by 9.64 

thousand metric tons year-1 and 20.3 thousand hectares year-1, respectively (Fig. 1.2). 

Therefore, world production of cucurbits type vegetables in 2009 exceeded 750 thousand 

metric tons and occupied approximately 1.7 million hectares (Fig. 1.2). 
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Arabidopsis thaliana is a small flowering plant native to Europe, Asia and northwestern 

Africa. Arabidopsis is popular as a model organism in plant biology, genetics and plant-

pathogen interactions. It was chosen as model plant for research, because of ease with which 

it can be cultivated, its rapid life cycle and high production of seeds (Wixon, 2001). This 

plant has one of the smallest genomes among plants (125 Mb) and is, therefore the first plant 

genome to be sequenced in 2000 by the Arabidopsis Genome Initiative (Wixon, 2001; Micali 

et al., 2008).  

 

Knepper and Day (2010) mentioned that a parallel is drawn between research advances in 

humans and those that can be directly attributed to studies first conducted in the model plant 

Arabidopsis. In this sense, around 70% of the genes related with the development of cancer 

in humans have orthologs present in Arabidopsis. Furthermore, innate immune receptor 

identification in Arabidopsis plants have made significant impacts in the understanding of 

disease signaling in human. Resistance proteins were for example first identified and 

characterized in Arabidopsis before their counterparts in humans (Knepper and Day, 2010) 

 

The scientific progress made on Arabidopsis pathology has gain popularity; particularly, the 

study of obligate biotrophic and hemibiotrophic pathogens such as mildews, bacteria and 

nematodes and has significantly contributed to our knowledge regarding the molecular basis 

of plant defense mechanisms (Sijmons et al., 1991; Katagiri et al. 2002; Micali et al. 2008). 
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Figure 1.1. Total cultivated area and production of tomato worldwide from 2000 to 2009 and 
its regression curve. Data from FAOSTAT.  
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Figure 1.2. Total cultivated area and production of pumpkins, squash and gourds worldwide 
from 2000 to 2009 and its regression curve. Data from FAOSTAT.  
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1.2. Meloidogyne incognita and its management 

 

Root-knot nematodes are the most economically important group of plant parasitic 

nematodes worldwide, reducing both yield and crop quality (Sasser and Freckman, 1987; 

Moens et al., 2009). This group of nematodes parasitizes over 2000 plants species and have a 

highly specialized and complex feeding relationship with their host (Hussey and Janssen, 

2002). Plant roots damaged by nematodes become susceptible to soil-borne pathogens. This 

interaction results in increased plant damages due to the resulting synergistic disease 

complexes (Sikora and Carter, 1987; Dong et al., 2009; Manzanilla-López and Starr, 2009).  

 

Four species, Meloidogyne incognita, M. javanica, M. arenaria and M. hapla, are the most 

important species to agriculture. Of these, M. incognita is the most economically important 

species. This nematode is responsible for an estimated average crop loss of 5% around the 

world and is one of the major obstacles to crop production in many developing countries 

(Hussey and Janssen, 2002). The life cycle of Meloidogyne spp. consists of five stages. 

Embryonic development that occurs in the egg leads to the formation of the vermiform first 

stage juvenile (J1), which later moults inside the egg into the second-stage juvenile (J2). The 

J2 hatches by breaking through the egg shell, at which time it becomes the only infective 

stage. All other stages take place inside root tissue (Abad et al., 2009). Hatching of 

Meloidogyne is temperature depended and occurs without requiring stimulus from plant root 

exudates. Nevertheless, exudates have been shown to stimulate hatching in some instances 

(Karssen and Moens, 2006; Ploeg and Maris, 1999; Curtis et al., 2009). 

 

Infective J2 migrate through the soil and are attracted to roots, penetrating behind the root tip. 

The J2 migrate intercellularly through the cortical tissue towards the differentiating vascular 

cylinder. The nematode injects secretory proteins produced in their oesophageal gland cells 

via the stylet into five to seven undifferentiated procambial cells to transform them into 

specialized feeding cells known as giant cells, becoming the nematode permanent feeding 

site (Bird, 1962; Jung and Wyss, 1999; Hussey and Janssen, 2002; Karssen and Moens, 2006; 

Abad et al., 2009). Root tissue surrounding the nematode feeding site undergoes hyperplasia 

or hypertrophy, originating the galls or root-knots. The juveniles continue developing in the 
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root, the J2 moults to the third-stage juvenile (J3), then to the fourth-stage juvenile (J4) and 

finally to the adult stage (Moens et al., 2009). The vermiform males leave the root, while the 

females develop into a pear shaped adult (Manzanilla-López, 2004). Meloidogyne females 

reproduce using mitotic parthenogenesis. Their eggs are deposited in a gelatinous matrix, 

known as egg-mass, on the outer surface of the galled roots (Hussey and Janssen, 2002). 

Starr (1993) reported a mean of 770 ± 190 eggs per egg-mass of M. incognita on cotton. 

 

Galled roots are the primary symptom related to root-knot nematodes infection. The size and 

form of the gall depends on the species implicated, the number of nematodes in the root, host 

and plant age. The galls interfere with normal root function, reducing water and nutrient 

uptake; consequently, leading to stunting, wilting and growth inhibition (Sikora and 

Fernandez, 2005). Root-knot nematodes are managed by means of different strategies, such 

as cultural, biological and chemical measures. These measures of control include crop 

rotation, resistant varieties, flooding, fallow, incorporation of organic matter, soil solarization, 

steam heating, biological control and nematicides (Noling and Becker, 1994; Manzanilla-

Lopez, 2004; Sikora et al., 2005). Nematicides are still one of the primary control measures 

for nematodes. These chemicals are highly effective when use properly, but do not always 

kill the nematode in the soil. Nevertheless, the use of nematicides has been restricted and 

many removed from the market due to their potential negative effects on the environment, 

human health and in some cases due to a reduction of their effectiveness by biodegradation. 

Therefore, there is a necessity to develop new, safe and effective alternative measures of 

nematode control (Zuckerman and Esnard, 1994). 

 

1.3. Aphis gossypii and its management 

 

Sucking insects are specialized in their mode of feeding (Jones, 2003). While herbivores 

cause extensive damage to their host plants, sucking insects such as aphids cause modest 

damage to their host plants (Walling, 2008). Sucking insects pose important challenges to 

plants, since they reduce sucrose and amino acids produced in leaf, which normally are 

transported to the shoot, roots and seeds (Winter et al., 1992). This group of insects contains 

many vectors of viruses and also are known to introduce chemical and/or protein effectors 
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that alter plant defense signaling, as well as normal plant development (Kaloshian and 

Walling, 2005). The interrelationship between sucking insects and the host plant is more 

analogous to a plant biotrophic pathogen interaction, in which the pathogen is sustained in a 

localized area and is dependent on living cells (Puterka and Burton, 1991; Zarate et al., 2007). 

This group of insects causes important losses to agriculture due to their broad host range, 

high reproductive rate, highly evolved feeding strategies, the ability to adapt to a wide range 

of habitats as well as the emergence of insecticide resistant strains (Goggin, 2007). 

 

Aphis gossypii Glover (Homoptera: Aphididae), commonly known as the cotton or melon 

aphid, is widely distributed around the world, infesting over 900 plant species 

(Margaritopoulos et al., 2009). This aphid is a serious problem of field and greenhouse crops, 

particularly cotton, cucurbitaceous and ornamental plants, since it transmits more than 50 

plant viruses as well as causing stunting, discoloration and deformation of host plants 

(Margaritopoulos et al., 2009; Sadeghi et al., 2009).  

 

A. gossypii is polymorphic with significant variation in both size and color (Rosenheim et al., 

1995). Its live cycle is complex, involving sexual and asexual (parthenogenetic) reproduction 

(Minks and Harrewijn, 1986). A major form of aphid polyphenism is the switch between 

viviparous parthenogenesis and sexual reproduction by eggs, depending on environmental 

conditions. Normally, aphids reproduce during the entire year by viviparous parthenogenesis. 

A parthenogenetic female is able to produce approximately 120 genetically identical embryos 

in 10 days (Tagu et al., 2008). Both winged and wingless (alate and apterous) individuals are 

produced and multiple generations exist on the same host plant. Some aphids require regular 

alternation of plant hosts where sexual morphs mate and lay eggs on the primary host for 

several generations and give rise to a generation of alate morphs that move to a secondary 

host, which is usually a different host plant. On the secondary host, the parthenogenic mode 

of reproduction is initiated and used for subsequent generations (Kaloshian and Walling, 

2005). 

 

Aphids can be managed by chemical, biological and/or integrated method. Biological 

methods include the use of entomopathogenic microorganisms, as well as those that are 
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mutualistic endophytes. Biorational compounds are also used in control and they are 

considered compatible with integrated pest management. These compounds include various 

classes of insect growth regulators, microbial products and synthetic molecules with novel 

modes of action and plant derived compounds (Horowitz and Ishaaya, 2004; Sadeghi et al., 

2009). Also the application of pheromones and natural enemies has been shown to be 

important (Steinkraus et al., 2002; Adachi et al., 2009). Chemical methods include important 

groups of insecticides such as organophosphates, carbamates and pyrethroids. These groups 

of insecticides have a long history of use. However, over time resistance to them has become 

a serious problem to farmers. They also negatively impact beneficial insects and the 

environment if used at the wrong times and improperly applies (Després et al., 2007; Sadeghi 

et al. 2009). Because of these known side-effects, there is an increasing need to develop new, 

safe and effective alternative aphid control methods. 

 

1.5. Mutualistic endophytic microorganisms as biocontrol agents 

 

The term endophyte was coined by Heinrich Anton De Bary in 1884 and it is referred to 

fungi or bacteria that colonize internal plant tissues without causing any apparent symptoms 

to the host plant (Petrini, 1991; Wilson, 1995). Fungal and bacterial endophytes have been 

isolated from a great number of plants, such as wheat (Larran et al., 2002), bananas 

(Pocasangre et al., 2000), soybeans (Larran et al., 2002), potato (Racke and Sikora, 1992; 

Sturz et al., 1999) and tomato (Hallman and Sikora 1994). 

 

Numerous studies have shown that fungi (Kerry, 1987; Whitehead, 1998; Meyer, et al., 2000; 

Kiewnik and Sikora, 2004) and bacteria (Hallmann, 2001; Siddiqui and Shaukat, 2004; 

Reimann et al., 2008) applied as biocontrol agents on soil infested with nematodes reduce 

their negative impact to the host plant. Among economically important nematodes that have 

been targeted for biological control are M. incognita, Rotylenchulus reniformis, Globodera 

pallida and Radopholus similis (Sikora et al., 2008). Other fungal antagonists also have been 

used as biocontrol agents: Arthrobotrys irregularis, Paecilomyces lilacinus, Pochonia 

chlamydosporia, Trichoderma spp. and Fusarium oxysporum that infect or prey on 

nematodes in the soil. A number of endophytic bacteria are also important in regulating 
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nematode populations: species of Pseudomonas, Bacillus and Rhizobium have been shown to 

have antagonistic activity (Hasky-Günther et al., 1998; Sikora et al., 2007; Chaves et al., 

2009). 

 

The mechanisms of action responsible for nematode biocontrol mediated by endophytes are 

variable and include: the production of toxic secondary metabolites, competitive exclusion, 

competition for nutrients, predation, production of repellent compounds, alteration of root 

exudates, the induction of systemic resistance or a combination of these elements (Becker et 

al., 1988; Kerry, 1990; Leeman et al. 1995; van Loon et al., 1998; Sturz et al., 1999; Siddiqui 

and Shaukat, 2003; Kiewnick and Sikora, 2006; Sikora et al., 2007). 

 

Several reports have shown that endophytes provide protection against insects (Breen, 1994; 

Clement et al., 1997, Akello et al., 2009). The most studied endophytes affecting insects are 

grass endophytes in the genus  eotyphodium (Clavisipitaceae), formerly classified as 

Acremonium (Azevedo et al., 2000; Vega, 2008). Breen (1994) reported control activity on 

23 species of insects in 10 families distributed within 5 orders associated to Acremomium. 

This group of endophytes are obligate seed-borne fungi that colonize the aerial parts of 

grasses (Breen, 1994). Consequently, the control effect toward insects has been related to 

allelochemical(s) production. Therefore, the greatest activity takes place against foliar 

feeding insects, especially when concentration of the fungus and associated allelochemicals 

are high (Breen, 1993, 1994). 

 

The roll of mycorrhizal fungi in control of nematodes and insects also has been reported 

(Saleh and Sikora, 1984; Diedhiou et al., 2003; Elsen et al., 2008; Gehring and Bennett, 2009; 

Vannette and Hunter, 2009). Positive, neutral and negative effects of mycorrhiza colonization 

on performance of insects have been reported (Rieske, 2001; Barker et al., 2005; Kempel et 

al., 2010) and on nematodes positive bioprotectional effects have been observed (Diedhiou et 

al., 2003; de la Peña et al. 2006; Sikora et al., 2007; Elsen et al., 2008). However, the use of 

this group of obligate symbiotic fungi was not readily adaptable to field conditions, because 

there are obligate symbionts that can only be produced commercially in large densities on 

living plants at high cost (Sikora et al., 2007). 
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1.5.1. /on-pathogenic Fusarium oxysporum 

 

F. oxysporum is a common and diverse species among soil fungi in cultivated soil around the 

world. It survives long periods of time as chlamydospores and grows on organic matter as 

well as in the ectorhiza and endorhiza of many plant species. This group of fungi includes a 

number of important plant pathogens that negatively affect economically important crops in 

particular wilt fungi. The majority of F. oxysporum isolates, however, are saprophytes and 

some also have been isolated from healthy roots and shown to be non-pathogenic to plants. 

These isolates are interesting for pest and disease management studies, since some of them 

are able to induce resistance against nematodes, fungi and/or insects (Alabouvette et al., 1998; 

Trouvelot et al., 2002; Sikora et al., 2007; Martinuz, 2010; Menjivar et al. 2011a,b).  

 

Research has shown that non-pathogenic isolates of F. oxysporum reduced significantly the 

number of root-knot nematodes that penetrated, produced galls, and egg masses on 

biologically enhanced plants (Hallmann and Sikora, 1994; Dababat and Sikora, 2007; Sikora 

et al., 2008). Similar results were reported in banana when non-pathogenic F. oxysporum 

isolates were tested against Radopholus similis (Pocasangre et al., 2000; Vu et al., 2006; 

Mendoza and Sikora, 2008; Chaves et al., 2009). Martinuz and Sikora (2010), Menjivar 

(2010) and Menjivar et al. (2011a) observed reduced population development of A. gossypii 

and changes in host choice of Trialeurodes vaporariorum when the insects were exposed to 

squash and tomato plants inoculated with F. oxysporum. 

 

1.5.2. Arbuscular mycorrhizal fungi 

 

Between 70 to 90% of land plant species form arbuscular mycorrhiza (Smith and Read, 

2008). Thus, the symbiosis of plants and mycorrhiza is of major importance for all  terrestrial 

ecosystems (Schüßler et al., 2001). Research has demonstrated that the mycorrhizal fungus , 

Glomus intraradices is the most frequently used member of the Glomeromycota. In this 

respect, Stockinger et al. (2009) indicated that more than 1200 publications refer to this 

species.  
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The effect of Glomus spp.towards nematodes has been previously reported (Elsen et al., 2003; 

Elsen et al., 2008; Reimann et al., 2008); however, with a few exceptions little is known 

about the influence of this genus against insects (Wurst et al., 2004; Kempel et al., 2010). In 

addition, conflicting results have being obtained in that there are studies that demonstrated no 

effect and others enhancement of insect performance after treating plants with Glomus spp. 

(Gange et al., 1999; Vicari et al., 2002; Curriea et al., 2011).  

 

1.5.3. Endophytic bacteria 

 

Hallmann et al. (1998) defined endophytic bacteria as bacteria that can be isolated from 

surface-disinfected plant tissues, without causing visible harm to the plant. Pseudomonas spp. 

and Rhizobium etli are two of the most studied endophytic bacteria towards nematodes. R. 

etli G12, initially identified as Agrobacterium radiobacter, was originally isolated from the 

rhizosphere of potatoes and was initially shown to reduce Globodera pallida infection 

(Racke and Sikora, 1992). The ability of this bacterium to suppress early infection by M. 

incognita and G. pallida has been demonstrated (Racke and Sikora, 1992; Hasky-Günther et 

al., 1998; Hallmann et al., 2001; Reimann et al., 2008).  

 

Lipopolysaccharides, short-chain sugar molecules in the outer cell wall membrane of the 

bacterium, were identified as an inducing agent of induced resistance (Reitz et al., 2000) and 

the mechanism involved in resistance development seems to be directly related to nematode 

recognition and penetration of the root (Reitz et al., 2001). R. etli was recently reported to 

induce resistance towards T. vaporariorum and A. gossypii on squash plats (Martinuz and 

Sikora, 2010) and also against Fusarium wilt (Mwangi et al., 2002; Mwangi et al., 2008).  

 

1.6. Combination of endophytic microorganisms as a biocontrol strategy 

 

The variation in the level of biocontrol, mediated by biocontrol agents, is considered a 

serious disadvantage for practical applications. This lack of consistency may be caused by 

different factors, like the level of colonization by the biocontrol endophyte and the fact that 

these biological strategies are normally based on the application of a single microorganism. 

Fluctuations in biotic and abiotic conditions may also limit the colonization efficacy of a 
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biological agent in space and time (Dunne et al., 1998). Consequently, co-inoculation 

strategies, in which different microorganisms with different mechanisms of action are 

combined, have been suggested to enhance biocontrol activity (El-Tarabily et al., 2000; 

Reimann et al., 2008; Chaves et al., 2009; Sikora et al., 2010).  

 

Combining biocontrol agents could result in additive level of protection against nematodes 

and insects as indicated in previous works (Gadelhak et al., 2005; Mendoza and Sikora, 2008; 

Chaves et al. 2009; Reimann et al., 2008). Whether synergistic control levels can be reached 

has to date not been shown. Nevertheless, their mutual direct and indirect interactions should 

be taken into account when combining biocontrol agents, since the concomitant inoculation 

could result in improved, neutral or even reduced levels of biocontrol. For instance, 

combined application of T. harzianum and arbuscular mycorrhizal fungi (AMF) inhibited the 

AMF development and colonization (Wyss et al., 1992), whereas AMF establishment was 

enhanced in presence of another isolate of the same fungus (Filion et al., 1999). In addition, 

other studies demonstrated that the co-inoculation of AMF and G12 in biocontrol of M. 

incognita led to an additive level of the nematode biocontrol (Reimann et al., 2008). The co-

application of F. oxysporum and G. corantum, on the other hand, did not enhance the 

biocontol of M. incognita (Diedhiou et al., 2003). F. oxysporum and R. etli when co-

inoculated also did not additively or synergistically improve the control of A. gossypii or M. 

incognita (Martinuz and Sikora, 2010). Detailed characterization of the defense mechanisms 

triggered by the various biocontrol agents when simultaneously inoculated and knowledge of 

the sensitivity of the individual biocontrol agents to another or to specific defense 

mechanisms would help in making predictions about compatibility and increased efficacy 

when they are used in combination for enhanced biocontrol. 
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1.7. Scope of the study 

 

The present in vivo and in vitro study was initiated to investigate the interrelationship 

between the endophytic microorganisms Fusarium oxysporum strain Fo162, Glomus 

intraradices strain 510 and Rhizobium etli strain G12 when applied together on infection of 

the root-knot nematode, Meloidogyne incognita and the sucking insect Aphis gossypii (Hom., 

Aphididae).  

 

The objectives of these investigations were to determine the: 

 

1. Biological control activity of single and combined application of F. oxysporum Fo162, 

G. intraradices 510 and R. etli G12 on M. incognita infection of tomato. 

 

2. Biological control activity of single and combined application of F. oxysporum Fo162, 

G. intraradices 510 and R. etli G12 on A. gossypii (Hom., Aphididae) in squash.  

 

3. In vitro and in vivo interactions between F. oxysporum Fo162 and R. etli G12. 

 

4. Ability of F. oxysporum Fo162 to enhance plant growth and to depress M. incognita 

infection in the model plant Arabidopsis thaliana.   
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Chapter 2 

General materials and methods 

 

General materials and methods used in this study are described in this chapter. Additional 

techniques and procedures applied in individual experiments are described within the 

respective chapter. 

 

2.1. Biocontrol agents 

 

2.1.1. Origin and culture of Fusarium oxysporum strain Fo162 

 

The mutualistic endophyte F. oxysporum strain Fo162 was originally isolated from the 

cortical tissue of surface sterilized tomato root, Lycopersicon esculentum Mill. cv. 

“Moneymarker” in Kenya by Hallmann and Sikora (1994). The fungus was stored at -80 °C 

using cryo vials (CryobankTM, Master Group, Merseyside, UK). For production of the fungal 

inoculum for all experiments, a single frozen pellet was transferred onto Potato Dextrose 

Agar (PDA) plates (Difco, Sparks, MD, USA) supplemented with 150 mg 1-1 of streptomycin 

sulfate and chloramphenicol to avoid bacterial contamination. The fungal culture was 

incubated for 3 weeks at 25 ºC in darkness. Then, the mycelium and conidia formed were 

scraped from the media surface with a spatula and suspended in autoclaved water. Spores 

were separated from the mycelium by sieving the content through four layers of fine sterile 

cheese-cloth. Finally, spore density was determined using an hemacytometer (Thomas 

Scientific, Philadelphia PA) and then adjusted to 106 spores g-1 substrate with autoclaved 

water. In all experiments that include the fungus, plants were inoculated with 5 ml of spore 

suspension into three holes in the substrate located 1 cm from each plant.  

 

2.1.2. Origin and propagation of Glomus intraradices strain 510 

 

Inoculum of Glomus intraradices strain 510 in expanded clay was kindly provided by Dr. H. 

von Alten, University of Hannover. For all experiments which included mycorrhiza, the 

inoculum in the expanded clay was incorporated in the soil at a rate of 5% of total substrate 

volume.  



Chapter 2                                                                                               Materials and methods 

 22

 

2.1.3. Origin and culture of Rhizobium etli strain G12 

 

R. etli strain G12 was originally isolated from the rhizosphere of potatoes (Racke and Sikora 

1992) and initially identified as Agrobacterium radiobacter, but in 1998 after additional 

testing was renamed Rhizobium etli G12 (Hasky-Güther et al., 1998). The bacterium was 

stored at -80 ºC in cryo vials (CryobankTM, Master Group, Merseyside, UK). For production 

of the bacterial inoculum, pellets containing the bacteria were transferred from cryo vials 

onto plates containing solid King’s B medium and incubated for 36 h at 28 ºC (King et al., 

1954). A loop of bacteria was then transferred from the pre-culture into an Erlenmayer flask 

containing 100 ml of liquid King’s B medium. The bacterium was cultured for 36 h at 28 ºC 

on a rotary shaker at 100 rpm. This suspension was then centrifuge at 5000 g for 20 min at 10 

ºC. The resulting pellet was re-suspended in sterile ¼ concentrated Ringer solution (Merk) 

and the concentration was adjusted to an optical density of 2 at 560 nm (OD560 = 2). This 

concentration represents approximately 1.2 x 1010 cfu ml-1 (Hasky-Günther, 1996; Reitz et al., 

2000). In all experiments that include the bacterium inoculum, plants were inoculated with 5 

ml of bacterial suspension by drenching the substrate surface. Control plants were treated 

with the same volume of tap water.  

 

2.2. /ematode 

 

2.2.1. Origin and culture of Meloidogyne incognita 

 

The root-knot nematode Meloidogyne incognita (Kofoid and White) Chitwood race 3 was 

originally isolated from an infested field in Florida, USA. The nematode was kindly provided 

by Dr. D. Dickson, University of Florida, Gainsville, USA and was maintained in a box (150 

x 80 x 40 cm) filled with sandy loam and permanently cultivated with the susceptible tomato 

cultivar Furore (Lycopersicon esculentum Mill.) in a greenhouse at 27 ± 5 °C. Nematode 

eggs were extracted from 2 months old heavily galled tomato roots, using the modified 

extraction technique of Hussey and Barker (1973). Roots were washed free from soil under 

tap water, cut into 1 cm pieces and macerated in a warring blender at high speed for 20 s and 

collected in a glass bottle. Sodium hypochloride (NaOCl) was added to obtain a final 
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concentration of 1.5% active Chlorine and the bottle was shaken vigorously for 3 min. The 

suspension was then thoroughly washed with tap water through a sieve combination 250, 100, 

45 and 25 µm mesh to remove the NaOCl. Eggs were collected on the 25 µm sieve and then 

transferred to a glass bottle. The egg suspension was supplied with oxygen from an aquarium 

pump over 10 days to induce juvenile hatching. To separate active J2 from unhatched eggs or 

dead J2, a modified Baermann technique over 24 h was used (Oostenbrink, 1960). The 

collected active J2 were adjusted to 1000 J2 5 ml-1 and used immediately as inoculum. 

 

2.3. Insect 

 

2.3.1. Origin and reproduction of Aphis gossypii Glover 

 

The initial Aphis gossypii Glover (Homoptera: Aphididae) colony was initiated with aphids 

obtained from Bayer Crop Science (Bayercode: APHIGO, Bayer CropSeience Deutschland 

GmbH, Langenfeld) in January 2000. For all experiments, with this insect, apterous adults 

were collected from a colony maintained on cotton (Gossypium hirsutum cv Cukurva 1518) 

in an incubator at 25 ± 2ºC with relative humidity of 60%, light intensity of 2000 Lux and 

light/dark photoperiod of 16 h/8h.  

 

2.4. Plants used for experiments 

 

2.4.1. Treatment of seeds 
 

Seeds of tomato cv. Moneymaker (Lycopersicon esculentum Mill.) and seeds of squash cv. 

Eight Ball (Cucurbita pepo) were surface sterilized by first shaking them in a 75% Ethanol 

solution for 1 min and then in a 1.5% Sodium hypochloride (NaOCl) solution for 3 min. 

Subsequently, the seeds were washed with autoclaved water and transferred to autoclaved 

sand for germination as described below.  

 

Seeds of Arabidopsis thaliana wild type Columbia were surface sterilized as described above. 

For experiments conducted under sterile conditions, seeds were transferred into sterile Petri 

dishes on 2% Knop medium, as previously described by Sijmons et al. (1991) or autoclaved 

sand. For experiments conducted in a climatic chamber, seeds were sown in 4 cm diameter 
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pots containing autoclaved sand. The seeded Petri dishes or pots held at 4 °C for 3 days prior 

to incubation in a climatic chamber as described below.  

 

2.4.2. Tomato plants 

 

Sterile seeds of tomato cv. Moneymaker (Lycopersicon esculentum Mill.) were sown in 96-

well multi-pot trays (50.5 x 30 x 5 cm) each containing approximately 1 kg of autoclaved 

sand passed through a 2 mm mesh screen. The trays were maintained in a climatic chamber 

at 25 ± 3 °C with 16 h day-1 supplemental artificial light. The tomato seedlings were 

fertilized with 5 ml of a commercial fertilizer (14-10-14, 2 g l-1) (AGLUKON, Düsseldof, 

Germany) as needed. After 2 weeks the seedlings were considered ready for experiments. 

 

2.4.3. Squash plants 

 

Sterile seeds of squash cv. Eight Ball (Cucurbita pepo) were sown in 70-plug commercial 

seedlings trays containing approximately 800 g of autoclaved sand passed through a 2 mm 

mesh screen. The trays were maintained in a climatic chamber at 25 ± 3 °C with 16 h day-1 

supplemental artificial light. Seedlings were fertilized with 5 ml of a commercial fertilizer 

(14-10-14, 2 g l-1) (AGLUKON, Düsseldof, Germany) as needed. After 2 weeks the 

seedlings were considered ready for experiments. 

 

2.4.4. Arabidopsis thaliana plants 

 

Experiments under sterile condition: Sterile seeds of A. thaliana wild type Columbia were 

sown in Petri dishes on 2% Knop medium (Sijmons et al., 1991). The dishes containing 5 

seeds plate-1 were incubated in a climatic chamber at 25 ± 1 °C with 16 h day-1 supplemental 

artificial light. After 2 weeks the seedlings were considered ready for experiments.  

 

Experiments under climatic chamber condition: sterile seeds of A. thaliana wild type 

Columbia were sown in 4 cm diameter pots containing 50 g of a mixture of autoclaved 

sand:soil, 3:1, v/v. The seedlings were maintained in a climatic chamber at 25 ± 3 °C with 16 

h day-1 supplemental artificial light. Seedlings were fertilized with 2 ml of a commercial 
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fertilizer (14-10-14, 2 g l-1) (AGLUKON, Düsseldof, Germany) once per week. After 2 

weeks the seedlings were considered ready for experiments. 

 

2.5. Substrate for experiments 

 

The substrate for all greenhouse experiments consisted of a mixture of field soil (15% clay, 

78% silt and 8% sand) and sand in a rate of 1:2 v/v. Before mixing, both the soil and sand 

were passed through a 2 mm mesh screen. The mixed substrate was placed in plastic bags 

and autoclaved for 60 min at 121 °C. One week after autoclaving, plastic bags containing the 

substrate were opened for air drying and stabilization at room temperature for 48 h. After this 

period the substrate was considered ready for experiments.  

 

2.6. Culture media and reagents 

2.6.1. Potato Dextrose Agar (PDA) 

Potato Dextrose Broth (Oxoid LTD) 24 g 

Agar (AppliChem GmbH) 18 g 

Deionized water 1 l 

Chloramphenicol 150 ppm 

Streptomycin sulfate 150 ppm 

2.6.2. Solid King’s B media (Fluka) 

Peptone 20 g 

Heptahydrated Magnesium Sulfate 1.5 g 

Potassium Hydrogen Phosphate 1.5 g 

Bacteriological Agar 15 g 

Glycerol 10 ml 

Deionized water 1 l 

2.6.4. Fuchsin acid (Merk) 

1% fuchsin acid solution: 

Fuchsin acid powder 2 g 

Tap water  198 ml 
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Lactic acid solution: 

Lactic acid 1750 ml 

Glycerine 126 ml 

Tap water 124 ml 

1 % of the fuchsin acid added to lactic acid solution  

2.6.5. Phloxine B (MERCK) 

Phloxine B 15 mg 

Tap water 1000 ml 

2.6.6. Modified Knop medium 

 

The 2 % Knop medium contained (Sijmons et al., 1991): 2.5 mM K+, 1.27 mM Ca2+, 0.2 mM 

Mg2+, 2.54 mM NO3
-, 0.5 mM H2PO4

-, 0.2 mM SO4
2-, 2 µM Na2+, 1.8 µM Mn2+, 0.14 µM 

Zn2+, 60 nM Cu2+, 24 nM Co2+, 24 µM Cl-, 9 µM BO3
3-, and 60 nM MoO4

2-. Fe was added as 

20 µM Fe3--NaEDTA. The pH was adjusted to 6.4 with KOH. Before autoclaving (20 min at 

121 °C), 2% (w/v) sucrose, 0.8% Daishin agar (Brunschwig Chemie BV) (w/v), and B5 

vitamins (Gamborg’s solution) were added.  

 

2.7. Statistical analysis 

 

Data from all experiments were tested for normality and homogeneity of variances and 

subjected to one-way analysis of variance (ANOVA). The data found to be non-homogenous 

and/or non-normal were log or square-root transformed before statistical analysis and back 

transformed after analysis. When the overall F-test was significant, the mean values per 

treatment were compared using the least significant difference test (LSD) at P ≤ 0.05. 

Experiments that had only two treatments were analyzed according to a t-test for comparing 

two independent samples at P ≤ 0.05. In Chapter 5, non-lineal regression analysis [Y(t) = α + 

(3.6-α)exp(-β*t)] was used to analyze the in vitro effect of R. etli G12 incubation period on F. 

oxysporum Fo162 radial growth. All statistical analysis was performed using the statistical 

software InfoStat/Professional version 2009 (InfoStat Group, FCA., AR). 
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Chapter 3 

Influence of single or multiple inoculation of tomato with the mututalistic 

endophytes Fusarium oxysporum strain Fo162, Glomus intraradices strain 510 

and Rhizobium etli strain G12 on Meloidogyne incognita infection and 

development 

 

3.1. Introduction 

 

The control of root-knot nematodes is normally achieved with soil fumigants or systemic 

nematicides (Masadeh et al., 2004). Due to the loss of these pesticides from the market place 

and to high toxicity, biological measures of control are urgently being investigated 

worldwide. The mutualistic endophytic fungi Fusarium oxysporum strain Fo162, Glomus 

intraradices strain 510 and the endophytic bacterium Rhizobium etli strain G12 are 

considered as potential non-chemical alternatives (Hallman et al., 2001; Sikora et al., 2007; 

Reimann et al., 2008).  

 

Hallmann and Sikora (1994) and Dababat and Sikora (2007) demonstrated that tomato plants 

biologically enhanced with F. oxysporum Fo162 reduced the penetration of the root-knot 

nematode Meloidogyne incognita. Similar results were reported in banana when non-

pathogenic F. oxysporum isolates were tested against Radopholus similis (Vu et al., 2006; 

Chaves et al., 2009). 

 

Reimann et al. (2008) and Elsen et al. (2008) showed that tomato and banana plants treated 

with G. intraradices reduced effectively M. incognita and R. similis. Moreover, Mycorrhiza 

fungi have been shown to be important plant growth and health promoting factor (Saleh and 

Sikora, 1984; Barea and Jeffries, 1995). Dehne (1982) and Singh et al. (2000) mentioned that 

mycorrhiza colonization is able to provide protection against a broad range of soil-borne 

fungal pathogens. 
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Hasky-Günther and Sikora (1995) and Schäfer et al. (2006) reported the effect of R. etli G12 

against the sedentary nematodes Globodera pallida and M. incognita, in potato and tomato 

respectively. In all cases, the presence of the endophytic bacterium resulted in lower juvenile 

penetration in the root system.  

 

The variation in the level of biocontrol mediated by endophytes is considered a serious 

disadvantage for commercial application. This lack of consistency may be caused by 

different factors such as the level of root colonization by the endophyte and the moderate 

level of colonization by any one of the antagonist. This is a problem due to the fact that 

biological control is normally based on the application of a single microorganism. 

Fluctuations in biotic and abiotic conditions in the soil may also alter root colonization 

efficacy in space and time (Dunne et al., 1998). Consequently, it has been suggested that 

multiple inoculation strategies, in which different microorganisms with different mechanisms 

of action, are used could enhance biocontrol activity (El-Tarabily et al., 2000; Mendoza and 

Sikora, 2009).  

 

The objectives of these investigations were to: 

 

1. Determine the effect of single and dual applications of F. oxysporum strain Fo162 with 

G. intraradices strain 510 or with R. etli strain G12 on the penetration of M. incognita. 

2. Evaluate the influence of dual inoculation with F. oxysporum strain Fo162 and R. etli 

strain G12, in a spatially-separated plant bioassay on the early root penetration of M. 

incognita. 

3. Determine the effect of single inoculation with F. oxysporum strain 162 or R. etli strain 

G12 on the rate of development of M. incognita  after penetration  
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3.2. Materials and methods 

 

3.2.1. Plants and substrate 

 

Tomato plants cv. Moneymaker were used in all experiments. Plants were cultivated until 

ready for experiments as described in Chapter 2, Sections 2.4.1 and 2.4.2. The substrate for 

all experiments in this study was prepared as indicated in Chapter 2, Section 2.5. 

 

3.2.2. Microorganisms 

 

3.2.2.1. Fusarium oxysporum Fo162 

 

F. oxysporum Fo162 (Fo162) was stored at -80 °C using cryo vials (CryobankTM, Master 

Group, Merseyside, UK). For production of the fungal inoculum for all experiments, a single 

frozen pellet was transferred onto Potato Dextrose Agar (PDA) plates (Difco, Sparks, MD, 

USA) supplemented with 150 mg 1-1 of streptomycin sulfate and chloramphenicol to avoid 

bacterial contamination. The fungal culture was incubated for 3 weeks at 25 ºC in darkness. 

Then, the mycelium and conidia formed were scraped from the media surface with a spatula 

and suspended in autoclaved water. Spores were separated from the mycelium by sieving the 

content through four layers of fine sterile cheese-cloth. Finally, spore density was determined 

using a hemacytometer (Thomas Scientific, Philadelphia PA) and then adjusted to 106 spores 

g-1 substrate with autoclaved water.  

 

3.2.2.2. Glomus intraradices 510 

 

Glomus intraradices 510 (AMF) in expanded clay was kindly provided by Dr. H. von Alten, 

University of Hannover. For all experiment which included mycorrhiza, the inoculum was 

incorporated in expanded clay at a rate of 5% of total substrate volume. 

 

3.2.2.3. Rhizobium etli G12 

 

R. etli G12 (G12) was stored at -80 ºC in cryo vials. For production of the bacterium 

inoculum, pellets containing bacteria was transferred from cryo vials onto plates containing 



Chapter 3                       Biocontrol of M. incognita by co-inoculation of different antagonist 
 

 31

solid King’s B medium for 36 h at 28 ºC (King et al., 1954). A loop of bacteria was 

transferred from the pre-culture into an Erlenmayer flask containing 100 ml of liquid King’s 

B medium. The bacterium was cultured for 36 h at 28 ºC on a rotary shaker at 100 rpm. The 

bacterial suspension was centrifuge at 5000 g for 20 min at 10 ºC. The resulting pellets was 

re-suspended in sterile ¼ concentrated Ringer-solution (Merk) and the concentration was 

adjusted to an optical density of 2 at 560 nm (OD560 = 2).  

 

3.2.2.4. Meloidogyne incognita 

 

M. incognita was maintained in a box (150 x 80 x 40 cm) filled with sandy loam and 

permanently cultivated with the susceptible tomato cultivar Furore (Lycopersicon esculentum 

Mill.) in a greenhouse at 27 ± 5 °C. Nematode eggs were extracted from 2 month old heavily 

galled tomato roots, using the modified extraction technique of Hussey and Barker (1973). 

Roots were washed free from soil under tap water, cut into 1 cm pieces and macerated in a 

warring blender at high speed for 20 s and collected in a glass bottle. Sodium hypochloride 

(NaOCl) was added to obtain a final concentration of 1.5% active Chlorine and the bottle was 

shaken vigorously for 3 min. The suspension was then thoroughly washed with tap water 

through a sieve combination 250, 100, 45, and 25 µm mesh to remove the NaOCl. Eggs were 

collected on the 25 µm mesh sieve and then transferred to a glass bottle. The egg suspension 

was supplied with oxygen from an aquarium pump over 10 days to induce juvenile hatching. 

To separate active J2 from unhatched eggs or dead J2, a modified Baermann technique over 

24 h was used (Oostenbrink, 1960). The collected active J2 were adjusted to 1000 J2/5 ml 

and used immediately as inoculum. 

 

3.2.3. Bioassays 

 

3.2.3.1. Single and dual application of Fo162 with AMF or G12 on M. incognita 

penetration 

 

To assess whether a co-application of Fo162 with AMF or G12 lead to additive or synergistic 

biocontrol activity towards M. incognita, two bioassays were setup as follow:  

 



Chapter 3                       Biocontrol of M. incognita by co-inoculation of different antagonist 
 

 32

Bioassay 1. Two weeks old tomato plants were inoculated with water, Fo162, AMF or 

Fo162+AMF.  

 

Bioassay 2. Two weeks old tomato plants were inoculated with water, Fo162, G12 or 

Fo162+G12. 

 

Fo162 was applied with 5 ml of a spore suspension at a concentration of 1 x 106 CFU g-1 of 

substrate dispensed over 3 holes around the selected plant base. AMF contained in expanded 

clay was incorporated at a rate of 5% of total substrate volume. G12 was applied with 5 ml 

pot-1 of a bacterial suspension (OD560 = 2) as a drench around the stem base of the selected 

plant. Fo162 and G12 inoculations were repeated 2 weeks later as previously described by 

Dababat and Sikora (2007). Four weeks after the first inoculation, all plants were inoculated 

with a 5 ml tap water suspension containing 1000 J2 plant-1. The nematodes were added to 

three 5 cm deep holes, 1 cm from the plant base.  

 

Eight plants per treatment were used and the experiment was conducted twice. The plants 

were randomly arranged in a green house at 27 ± 3°C with 16 h day-1 diurnal light. Two 

weeks after nematode inoculation, the number of penetrated nematodes was determined by 

staining the roots with 0.1% acid fuchsin solution, followed by heating to boiling using a 

microwave for 1.5 to 2 min (Ferris, 1985; Dababat and Sikora, 2007). After cooling for 60 

min, excess acid fuchsin was removed by rinsing the roots with tap water. The roots were 

then macerated twice for 10 s in 25 ml water at high speed (11000 rpm) using an Ultra 

Turrax® T25 (Whatman GmbH, Dassel, Germany). The macerated root suspension was 

adjusted to 100 ml with tap water and thoroughly mixed by shaking. From this, two winding-

track counting trays (Hooper et al., 2005) were immediately filled with 10 ml aliquots each. 

The number of penetrated J2 was then counted under a stereomicroscope (100x 

magnification) and the total number of J2 per root system calculated. 
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3.2.3.2. Spatially-separated dual inoculation of Fo162 and G12 on M. incognita 

penetration and endophyte colonization 

 

The shoots of 6-week-old tomato plants were completely detached from their respective root 

system and the basal part of the shoot split longitudinally into three sections, over 7 cm in 

length. Each section was replanted in a separate 11 cm pot filled with 300 g of autoclaved 

substrate (Chapter 2, Section 2.5) and each pot was separated approximately 1-cm to 

guarantee complete physical separation (Fig. 3.1). The lower leaves were pruned to reduce 

transpiration during the growth of adventitious roots. The triple-split-rooted plants were 

maintained in a greenhouse for 2 weeks at 27 ± 3°C with 16 h day-1 diurnal light. 

 

Two sections of the triple-split-root plants were then labeled ‘inducer’, and the third section 

was labeled ‘responder’ (Fig. 4.1). One inducer root section was inoculated with Fo162, and 

the other inducer section was inoculated with G12. Three controls were included in the 

experiment, in which both of the inducer sections were inoculated with Fo162, G12, or water. 

Fo162 was applied as a spore suspension in 5 ml pot-1 at a concentration of 1 x 106 CFU g-1 

of substrate. The inoculum was dispensed into three holes around the selected inducer section 

and inoculation repeated two weeks later as previously described by Dababat and Sikora 

(2007). G12 was applied with 5 ml pot-1 of a bacterial suspension (OD560 = 2) as a drench 

around the inducer section of the plant and inoculation repeated 2 weeks later as described by 

Reimann et al. (2008). Four weeks after the first inoculation, the responder section of each 

plant was inoculated with a 5 ml suspension containing 1000 J2. The nematode suspension 

was dispensed into three 2-cm-deep holes around the responder root section. 

 

Treatments were replicated six times and the experiment was conducted twice. The plants 

were arranged in a completely randomized design in the same greenhouse at 27 ± 3°C with 

16 h day-1 diurnal light. Two weeks after nematode inoculation, inducer roots and responder 

roots were collected separately. Nematode penetration was then determined by staining the 

responder roots with 0.1% acid fuchsin solution as detailed in Section 3.2.3.1. 
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To determine Fo162 colonization in the inducer root sections, the roots were surface 

sterilized by submersion in a 1.5% NaOCl solution for 3 min, followed by three rinses in 

sterile distilled water. The roots were then imprinted on PDA to verify surface sterilization 

(Schulz et al., 1999). The surface sterilized inducer roots were then cut into 0.5 cm sections 

and 18 root segments per treatment were randomly selected and placed on two Petri dishes 

(150 mm diameter) containing PDA medium (Chapter 2, section 2.6.1). After 4 to 7 days of 

growth at 25°C in the dark, fungi emerging from each root segment were phenotypically 

verified as being Fo162. These data were used for calculating the percentage of root 

colonization per inducer root section. The density of G12 was not determined due to the 

similarity of the colonies with other root inhabiting microorganisms. 

Inducer 1 Inducer 2

Responder

Inducer 1 Inducer 2

Responder

 

Figure 3.1. Triple-split-root plant designed to study the effect of spatially-separated 
inoculation of Fusarium oxysporum strain Fo162 and Rhizobium etli strain G12 on the 
penetration of Meloidogyne incognita on tomato. 

 

3.2.3.3. Influence of Fo162 and G12 on the development of M. incognita 

 

To determine the effect of single applications of Fo162 or G12 on the development of M. 

incognita, nematode penetration was synchronized to establish uniformity of development 

over treatments. Tomato plants were initially inoculated with Fo162 or G12 two and four 

weeks before transplanting into the experiment pots Plants treated with water serve as 

controls. Fungal and bacterial density and application techniques were described in section 

3.2.3.1. The 4 week old treated plantlets were transplanted into plastic pots filled with 300 g 
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of substrate. After transplanting, pots were arranged in a completely randomized design on a 

greenhouse bench at 27 ± 3°C with 16 h day-1 supplemental artificial light. One week after 

transplanting, all plants were inoculated with 5 ml tap water suspension containing 2000 J2 

plant-1. The nematodes were added to five 4 cm deep holes, 1 cm from the plant base. Two 

days after nematode inoculation, the plants were removed from their pots and carefully 

washed free from substrate and non-penetrated J2. Immediately thereafter, the plants were 

replanted into new pots containing 800 g of autoclaved substrate. Each treatment was 

replicated 18 times and the experiments were repeated. After transplanting into the new soil, 

the pots were arranged in a completely randomized design on a greenhouse bench under the 

conditions previously indicated.  

 

The developmental stages J2, J3, J4 and adults were determined 14 and 21 days after 

nematode inoculation. Six plants per treatment and interval were randomly selected and 

removed from their pots and carefully washed free from substrate. Nematodes were separated 

from the root tissue by staining and blending (Section 3.2.3.1) and the different stages 

counted under the microscope. Female fecundity was determined 35 days post nematode 

inoculation by uprooting 6 plants and gently washing the roots free from substrate. Egg-

masses were then stained in 0.015% Phloxine B for 20 minutes (Chapter 2, section 2.6.5), 

washed with tap water to remove extra stain and then 10 egg masses were randomly selected 

and placed into a 100 ml graduated cylinder containing 10 ml of 1.5% NaOCl solution for 15 

min. The egg suspension was then thoroughly washed with tap water through a 25 µm mesh 

sieve to remove the NaOCl. Eggs remaining on the sieve were transferred to a 100 ml 

graduated cylinder and the solution, adjusted to 30 ml with tap water. Eggs in two 2 ml 

aliquots were counted and total number of eggs per egg-mass extrapolated. 
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3.3. Results 

 
3.3.1. Single and dual application of Fo162 with AMF or G12 on M. incognita 

penetration 

 
3.3.1.1. Bioassay 1, Fo162 and AMF 

Two weeks after nematode inoculation, nematode penetration per root system was 

significantly reduced in plants inoculated with Fo162 and AMF alone or in combination in 

both Experiments (Table 3.1). The application of Fo162 or AMF singly decreased nematode 

penetration 78 and 58 percent in Experiment 1 and 51 and 44 percent in Experiment 2, when 

compared to the control, respectively. Combined application of Fo162 with AMF caused a 

slight higher reduction in penetration of 68 and 48 percent in both experiments, when 

compared to the control, respectively. However, the combined application of Fo162 with 

AMF did not lead to synergistic or additive levels of reduction in penetration when compared 

to their individual application (Table 3.1). 

Table 3.1. Effect of single and dual application of Fusarium oxysporum strain Fo162 (Fo162) 
and Glomus intraradices strain 510 (AMF) on Meloidogyne incognita penetration, two weeks 
after nematode inoculation. 

 Nematodes per root system¹,² 

Treatment  Exp.1 Exp.2 

Fo162 18.75 ± 4.79 a 48.75 ± 5.49 a 

AMF 36.25 ± 4.60 b 55.00 ± 7.79 a 

Fo162+AMF 27.5 ± 4.53 ab 51.25 ± 6.11 a 

Control 86.25 ± 12.53 c 98.75 ± 9.15 b 

P-value <0.0001 0.0001 

LSD 21.56 21.08 

1Data are expressed as mean ± standard error; 2Columns with different letters are 
significantly different after LSD test (P ≤ 0.05, n = 8).  

 

3.3.1.2. Bioassay 2, Fo162 and G12 

Penetration per root system, assessed two weeks after nematode inoculation, was 

significantly reduced when the plants were inoculated with Fo162 and G12 alone or 
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combined in two independent experiments (Table 3.2). Single application of Fo162 or G12 

reduced nematode penetration by 57and 53 percent in Experiment 1 and by 39 and 45 percent 

in Experiment 2, when compared to M. incognita inoculated control, respectively. 

Concomitant inoculation of Fo162 and G12 decreased penetrated nematodes by 46 and 37 

percent in both Experiment 1 and 2, when compared to the control, respectively. Nonetheless, 

the combined application of both Fo162 and G12 did not lead to additive or synergistic levels 

of reduction in penetration, when compared to their individual effects (Table 3.2).  

Table 3.2. Effect of single and dual application of Fusarium oxysporum strain Fo162 (Fo162) 
and Rhizobium etli strain G12 (G12) on Meloidogyne incognita penetration, two weeks after 
nematode inoculation. 

1Data are expressed as mean ± standard error; 2Columns with different letters are 
significantly different after LSD test (P ≤ 0.05, n = 8). 

 

3.3.2. Spatially-separated dual inoculation of Fo162 and G12 on M. incognita 

penetration 

 

A triple split-root experiment was used to evaluate the ability of Fo162, G12 or a 

combination of both endophytes to reduce M. incognita penetration when all organisms were 

separately inoculated (Fig. 3.1). Two weeks after nematode inoculation, M. incognita 

penetration in the responder section of the triple-split-root system was reduced significantly 

following fungal inducer, bacterial inducer and both fungal and bacterial inducer in 

Experiment 1 (P=0.0006, LSD=24.61) and Experiment 2 (P=0.0052, LSD=108.86), when 

compared to the nematode penetration of control plants treated with water (Fig. 3.2). 

However, the number of penetrated nematodes detected on those roots treated with Fo162 at 

one side and G12 at the other (Fig. 3.2; fungal-bacterial inducer) was non-significantly 

 Nematodes per root system¹,² 

Treatments Exp.1 Exp.2 

Fo162 30.57 ± 8.37 a 53.38 ± 9.27 a 

G12  35.57 ± 12.05 a 48.63 ± 17.88 a 

Fo162+G12  41.00 ± 9.06 a 59.75 ± 14.94 a 

Control 127.0 ± 15.40 b 131.1 ± 13.94 b 

P-value <0.0001 0.0009 

LSD 33.75 41.55 
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different when compared to those which were treated with either G12 or Fo162 at both 

inducer sides in either of the two experiments (Fig. 3.2).  

 

Re-isolation of Fo162 from the Fo162 inoculated section of the root system, in both 

experiments, revealed a reduction in root colonization of 35% (P=0.0164) and 39% 

(P=0.0306) when G12 was inoculated on a separate inducer root section in Experiment 1 and 

2, respectively (Fig. 3.3). Fo162 was neither detected in the water control root sections nor in 

the root sections inoculated with G12. 
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Figure 3.2. Effect of spatially separated co-inoculation of Fusarium oxysporum strain Fo162 
and Rhizobium etli G12 on Meloidogyne incognita penetration. Vertical bars represent 
standard error of the mean values. Columns with different letters are significantly different 
after LSD test (P ≤ 0.05, n = 6). (a) Experiment 1 and (b) Experiment 2.  
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Figure 3.3. Re-isolation of F. oxysporum Fo162 (Fo162) from the inducer side of a triple 
split-root chamber designed to study the systemic activity towards M. incognita as induced 
by spatially-separated inoculation of F. oxysporum Fo162 and R. etli G12. Vertical bars 
represent standard error of the mean values. Means with (*) indicates significantly different 
after t-test for independent samples (P ≤ 0.05, n=6). 
 

3.3.3. Influence of Fo162 and G12 on the development of M. incognita 

 

3.3.3.1. Fo162 

The influence of Fo162 on M. incognita development was assessed after synchronizing the 

nematode penetration. Fourteen days after nematode inoculation, the number of J2 was 

significantly higher 114 and 34 percent in Fo162 treated plants than in untreated plants in 

both experiments (Fig. 3.4 a and b). Conversely, the number of J3 was significantly lower, 48 

and 73 percent, in Fo162 treated plants when compared to untreated plants in the two 

experiments. The number of J4s was reduced 72 percent in the Fo162 treated plants in the 

first experiment (Fig. 3.4a), but high variability and low numbers of J4s did not yield 

significant differences. In the second experiment J4 stages were not produced.  

 

The number of J2s that developed to adults was reduced significantly 82 and 69 percent 21 

days after nematode inoculation in plants inoculated with Fo162 in both experiments (Fig. 
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3.4 b and c). The number of J2s that developed to the J4 stage also was reduced, 39 and 31 

percent, in the Fo162 treated plants. Conversely, the number of J2 and J3s was higher in 

plants treated with Fo162 than in untreated plants in both experiments (Fig. 3.4 b and c). 

Moreover, female fecundity in plants treated with Fo162 was negatively affected. Egg 

production per female, 35 days after nematode inoculation, was reduced by 59 and 41 percent 

in both tests. (Fig. 3.4 e and f). There was a highly significant reduction of 40 and 29 percent 

in the total number of nematodes in the roots of Fo162 treated plants when all developmental 

stages were added together in both experiments (Fig. 3.5). These results reconfirmed those 

obtained in the previous experiments presented in Tables 3.1 and 3.2. The results 

demonstrated high levels of suppression of penetration and delayed nematode development 

within the root of Fo162 colonized plants. 

 

3.3.3.2. G12 

Fourteen days after nematode inoculation, the number of J2 was not significantly different 

when compared to the untreated control in either experiment (Fig. 3.6 a and b). However, the 

presence of G12 cased a significant reduction in the number of J3, 35 and 52 percent when 

compared to controls in both Experiments (Fig. 3.6 a and b). The number of J4s, which were 

only produced in Experiment 2 were not affected by G12 when compared to the control. 

Twenty-one days after nematode inoculation, a significant decreased in the number of 

juveniles that developed to adults was detected, 60 and 38 percent, in both experiments (Fig. 

3.6 b and c). J3 and J4 stages developed in both experiments but significant differences were 

not detected. 

 

Moreover, in plants treated with G12 a significant reduction in fecundity was observed. The 

number of eggs per female, 35 days after nematode inoculation was significantly reduced 22 

percent in the first experiment and non-significantly 14 percent in the second experiment (Fig. 

3.6 e and f). Furthermore, overall nematode penetration calculated by adding the different 

live stages resulted in a significant reduction of 34 and 32 percent in G12 treated plants in 

both experiments (Fig. 3.7). These results reconfirmed the results obtained with G12 in the 

experiments on penetration shown in Tables 3.1 and 3.2. Overall the results demonstrated 
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high levels of G12 inhibition of nematode root penetration and suppression of nematode 

development within the root after penetration. 
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Figure 3.4. Effect of F. oxysporum strain Fo162 (Fo162) on the development of the root-knot 
nematode M. incognita. Vertical bars represent standard error of the mean. Means with (*) 
indicates significantly different after t-test for independent samples (P ≤ 0.05, n=6). Means 
with ‘n.s.’ indicates not significantly different. (a) and (b) nematode live stages assessed 14 
days post nematode inoculation (dpi) in Experiment 1 and 2 respectively. (c) and (d) 
nematode live stages determined 21 dpi in Experiment 1 and 2 respectively. (e) and (f) 
nematode fecundity evaluated 35 dpi in Experiment 1 and 2 respectively.  
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Figure 3.5. Meloidogyne incognita penetration in plants treated with Fusarium oxysporum 
strain Fo162 (Fo162) and untreated control plants, after synchronizing nematode penetration. 
Vertical bars represent standard error of the mean. Means with (*) indicates significantly 
different after t-test for independent samples (P ≤ 0.05, n=12). 
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Figure 3.7. Meloidogyne incognita penetration of plants treated with Rhizobium etli strain 
G12 (G12) and untreated control plants, after synchronizing the nematode penetration. 
Vertical bars represent standard error of the mean. Means with (*) indicates significantly 
different after t-test for independent samples (P ≤ 0.05, n=12). 
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Figure 3.6. Effect of Rhizobium  etli strain G12 (G12) on the development of the root-knot 
nematode M. incognita. Vertical bars represent standard error of the mean. Means with (*) 
indicates significantly different after t-test for independent samples (P ≤ 0.05, n=6). Means 
with ‘n.s.’ indicates not significantly different. (a) and (b) nematode live stages assessed 14 
days post nematode inoculation (dpi) in Experiment 1 and 2 respectively. (c) and (d) 
nematode live stages determined 21 dpi in Experiment 1 and 2 respectively. (e) and (f) 
nematode fecundity evaluated 35 dpi in Experiment 1 and 2 respectively.  
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3.4. Discussion 

 

This study reports on the biocontrol of M. incognita by single and combined application of 

Fo162, AMF and G12. The initial experiments analyzed the ability of the antagonists to 

reduced M. incognita penetration of the root when applied single or combined. In the second 

set of experiments the ability of Fo162 and G12 to reduce systemically M. incognita 

penetration, when applied in a spatially-separated way to the same plant, was studied. Finally, 

the influence of Fo162 or G12 alone on nematode development was examined.  

 

Single and dual application of Fo162 with AMF or G12 provided enhanced biological control 

towards M. incognita. However, the combined application of the beneficial organisms did not 

result in an additive or synergistic effect in reducing penetration. Similar results have been 

reported by Mendoza and Sikora (2009) when they tested Paecilomyces lilacinus and Fo162 

in dual tests for activity towards Radopholus similis. They attributed the lack of any additive 

effects to the fact that Fo162 and P. lilacinus are applied at different times. This was also the 

reason that they felt the two antagonists did not interact negatively with each other. 

Furthermore, Khan et al. (2006) reported similar results when they tested P. lilacinus and 

Monacrosporium lysipagum towards different plant parasitic nematodes on different crops. 

They found that the combined applications of the beneficials were more effective than their 

single application, but the effect were still not additive or synergistic. 

 

Reimann et al. (2008) demonstrated the effective use of dual application of G12 and AMF for 

the control of M. incognita on tomato. They concluded that specific combinations of plant 

health promoting bacteria and mycorriza fungi could lead to improved mycorrhizal 

colonization and improved nematode control. They suggested that the combination of agents 

with different mechanisms of action was responsible for the higher levels of nematode 

control. In addition, Chaves et al. (2009) tested the co-application of different endophytic 

fungi and bacteria to control R. similis. They found that combined application of Tricoderma 

atroviride with Bacillus or Pseudomonas and F. oxysporum with Pseudomonas led to a 

higher level of nematode control when compared to their individual application. They 

concluded that endophytic fungi and bacteria have different modes of action towards the 
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nematode and that a combination of these mechanisms can lead to a better nematode 

suppressive efficacy. 

 

In the present studies a triple split-root experiment demonstrated the ability of both Fo162 

and G12 to reduce systemically M. incognita penetration of tomato. This confirmed previous 

work regarding the systemic biocontrol activity of each of these two organisms inoculated 

singly (Hasky-Günther et al., 1998; Vu et al., 2006; Schäfer et al., 2006; Dababat and Sikora, 

2007). The simultaneous and spatially-separated application of both beneficial organisms to 

the individual inducer sides of the triple split-root system also resulted in a significant 

reduction of M. incognita penetration at the responder side of the triple split-root system. 

However, the level of reduction was not significantly different from the treatments where 

only one of the biocontrol agents was present. The presence of both microorganisms 

apparently did not increase the intensity of the systemic resistance response in the plant. Very 

important was the fact that the presence of G12 at one inducer side, negatively affected the 

colonization level of Fo162 at the other inducer side. 

 

This indicates that systemic resistance mechanisms initiated by the bacterium not only affect 

the colonization of the nematode, but also the colonization of Fo162. This was confirmed 

after re-isolation of the fungus from the inducer sides of a split-root system, showing a 

reduced colonization of the fungus, when both micro-organisms were simultaneously 

inoculated in a spatially-separated way in the same plant. These results are to some extent 

similar to those of Liu et al. (1995) who used a split-root system to study the systemic 

induced resistance (SIR) produced by two plant growth-promoting rhizobacteria, 

Pseudomonas putida and Serratia marcescen, towards Fusarium wilt, caused by F. 

oxysporum f. sp. cucumerinum. Both bacteria were able to a delayed disease symptom 

development and retarded colonization of the pathogen. Moreover, van Peer and Schippers 

(1992) showed that associated lipopolysaccharides (LPS), short-chain sugar molecules in the 

outer cell wall membrane of the bacterium, of Pseudomonas spp. induce resistance against 

Fusarium wilt caused by F. oxysporum f. sp. dianthi in carnation. Apparently, some bacteria 

are able to induce resistance in plans towards F. oxysporum species. It is conceivable that 
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bacterial induced resistance to species of Fusarium is universal and not limited to pathogenic 

strains as has been shown in the present study. 

 

The results obtained here indicated that some biocontrol agents may be incompatible when 

colonizing the same plant, thus negatively affecting each other in a direct or indirect way and 

reducing the biocontrol efficacy. Until now, the type of defense responses initiated by the 

individual biocontrol agent may be too general to predict the effect of applying two or more 

biocontrol agents in order to better control a plant disease or pest. Reitz et al. (2000) 

demonstrated that induced resistance produced by G12 towards cyst nematode was not 

accompanied by enhanced accumulation of specific PR proteins, such as chitinase and β-1,3-

glucanase. In split-root experiments Selim (2010) demonstrated SIR towards M. incognita in 

tomato after treatment of the inducer half with salicylic acid (SA), metyl jasmonate or Fo162. 

It was concluded that both jasmonic acid (JA)- and SA- dependent signaling pathways are 

involved in induced resistance against M. incognita in tomato, suggesting that both systemic 

acquired resistance (SAR) and induced systemic resistance (ISR) are the pathways that 

influence antagonism towards the nematode. 

 

Reduced nematode root penetration could indicate that the root exudates either did not attract 

or they repelled the J2 from the roots. The lack of attraction of J2 by root exudates produced 

in Fo162 colonized plants was demonstrated by Dababat (2007) and Dababat and Sikora 

(2007). They used a linked twin-pot chamber to analyze the effect of Fo162 on M. incognita 

J2 attraction to and penetration of tomato plants. Their results suggested that Fo162 either 

produces substances that directly repel the nematode, or the fungus alters the root exudates 

pattern affecting the nematode attraction. In this respect, Selim (2010) analyzed by HPLC 

root exudates collected from Fo162 treated tomato plants and untreated plants. He found an 

accumulation of unique compounds in the exudates coming from Fo162 treated plants when 

compared to control plants; thus, demonstrating alteration in root exudates pattern. Moreover, 

Vu (2005) combined a split-root system with a twin-pot attraction chamber demonstrating 

that when the inducer pot of the split-root plant was inoculated with Fo162, the exudates 

produced in the responder half of the split-root plant was less attractive to R. similis than the 
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exudates produced from the control plant in a third pot attached by a bridge to the responder 

root segment.  

 

The present experiments with synchronized nematode penetration showed that second-stage 

juveniles of M. incognita that those J2 that are able to penetrated roots of Fo162 and G12 

treated tomato plants are negatively affected in the plant during development. Nematode 

development was retarded in plants enhanced biologically with Fo162 and G12 in 

comparison to untreated plants. Similar results were obtained by Saleh and Sikora (1984) in 

plants colonized by G. fasciculatum. Egg production was also lower in Fo162 and G12 

inoculated plants than in control plants, which indicates competition for nutrients in the root 

tissue after penetration. 

 

Proite et al. (2008) studied the post-infection development of M. arenaria on susceptible and 

resistant peanut cultivars. They concluded that penetration and development of the nematode 

in the resistant cultivar was reduced when compared to susceptible ones. The authors 

reported a hypersensitive-like (HR) response of infested resistance host cells, which occurred 

8-19 days after nematode infection; thus, interfering with the normal formation and 

functioning of the giant cell system. Furthermore, they demonstrated that the nematode 

development was delayed, since the nematode completed his live cycle in resistant host in 63 

days after inoculation, while in susceptible host the nematode completed his live cycle in 

only 32 days after inoculation. Moreover, HR reactions have been accepted as an important 

post-infection plant response in nematode resistant cultivars (Moens et al., 2009). To our 

knowledge, HR has not yet been reported in an interaction between a fungus and a root. The 

few reports in this respect are related to the case of plant resistant to nematode infection 

(Williamson and Hussey, 1996; Proite et al., 2008). The observations reported in this study 

were strictly related to effects of endophyte-treated plans on nematode development, and it 

would by necessary to perform detailed histological observations of the nematode-

endophyte-root interactions to investigate an HR process. 

 

The delayed nematode development could be also related to nutritional competition as a 

result of the nematode-endophyte interaction. This idea is in line with Chen et al., (2010) 
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who recently identified a new class of sugar transporters (named SWEETs). They indicated 

that bacterial symbionts and fungal and bacterial pathogens were capable to induce the 

expression of SWEET genes, suggesting that the sugar efflux function of SWEET 

transporters is possible targeted by symbionts and pathogens. 

 

3.5. Conclusions 

 

The biological activity of single or combined application of the antagonists Fusarium 

oxysporum strain Fo162, Glomus intraradices strain 510 and Rhizobium etli strain G12 was 

investigated in this study. From the results the following can be concluded: 

 

1. The individual application of F. oxysporum, G. intraradices and R. etli results in a 

significant reduction in the number of M. incognita that penetrated into tomato roots. 

However, concomitant enhancement with F. oxysporum together with G. intraradices or 

with R. etli did not lead to significant synergistic interactions. 

 

2. The simultaneous application of F. oxysporum and R. etli was tested through a triple 

split-root experiment. This experiment indicated that the simultaneous but spatially-

separated inoculation of both endophytes did not lead to a significant additive effect with 

respect to reducing M. incognita penetration. Furthermore, this co-inoculation showed a 

significant reduction in root colonization by F. oxysporum. This effect demonstrates that 

the lack of additive or synergism in biocontrol may be due to incompatibility. 

 

3. Single inoculations of F. oxysporum and R. etli on tomato resulted in a reduction of the 

number of juveniles that developed to adult females, 14 and 21 days after nematode 

inoculation, when compared to the untreated control in each time-point respectively. 

Moreover, fungal and bacterial treated plants showed a significant reduction in number of 

eggs per adult female, 35 days after nematode inoculation. The data indicate that F. 

oxysporum and R. etli lead to retardation in M. incognita development and a reduction in 

fecundity. The mechanism responsible for these effects need further study. 
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Chapter 4 

Influence of single or multiple inoculation of squash with the mututalistic 

endophytes Fusarium oxysporum strain Fo162, Glomus intraradices strain 510 

and Rhizobium etli strain G12 on Aphis gossypii infection 

 

4.1. Introduction 

Aphid control is normally achieved through the used of insecticides belonging to one of the 

three main pesticide active ingredients: organophosphates, carbamates or pyrethroids. 

However, due to their long application history, aphid resistance to insecticides has become a 

serious problem to the growers (Sadeghi et al., 2009). In addition, these pesticides if used 

improperly can be harmful to human health, natural enemies of aphids and other potentially 

beneficial insects. These negative side effects strengthen the need for biological alternatives 

for aphid control. These alternatives include the use of biorational compounds derived from 

living organisms or the use of classical biocontrol strategies. Biorational compounds are 

considered compatible with integrated pest management and include various classes of insect 

growth regulators, microbial based products, synthetic molecules with novel modes of action 

and plant-derived compounds (Horowitz and Ishaaya, 2004; Sadeghi et al., 2009). Biocontrol 

strategies include the application of entomopathogenic microorganisms -e.g. Bauveria 

bassiana and Metarizium anisopliae, the release of predacious and parasitic beneficial insects, 

entomopathogenic nematodes and the used of endophytes that directly or indirectly influence 

insect development and/or behavior. 

 

The best studied endophytes for use in insect management are the grass endophytes in the 

genus  eotyphodium (Clavisipitaceae), formerly classified as Acremonium (Azevedo et al., 

2000; Vega, 2008). Breen (1994) reported controlling effects of 23 species of insects in 10 

families distributed within 5 orders associated with the presence of Acremomium in the plant 

foliar tissue. The endophytes in this group are obligate seed-born fungi, colonizing the aerial 

parts of grasses (Breen, 1994). The mechanism of insect control associated with these fungi 

has been related to allelochemical production. Consequently, the efficacy against foliar 

feeding insects is most effective where the accumulation of hyphae and synthesized 

allelochemicals are high (Breen, 1993, 1994).  
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The role of endophytic mycorrhizal fungi towards insects also has been extensively reviewed 

(Gehring and Bennett, 2009; Vannette and Hunter, 2009). Positive, neutral and negative effects 

of mycorrhization on the performance and development of insects have been reported (Rieske, 

2001; Barker et al., 2005; Kempel et al., 2010; Koricheva et al., 2009). Koricheva et al. (2009) 

demonstrated by means of a meta-analysis that the density and consumption of chewing insects 

were higher on mycorrhized plants, although plant damage did not increase. They also reported 

that sucking insects even benefited from mycorrhizal infection. Mesophyll feeders, however, 

decreased on mycorrhized plants and sucking insects performed better on plants colonized by 

endomycorrhiza when compared to those colonized by ectomycorrhiza. 

 

Endophytic fungi and bacteria also can reduce infection of plant pathogens. The fungus 

Fusarium oxysporum strain Fo162 and the bacterium Rhizobium etli strain G12, have been 

shown to increase plant resistance towards root-knot nematodes (Sikora et al., 2007). Both 

organisms colonize the host ecto- and endorhiza and thereby increased resistance by one or 

more mechanisms of action: production of toxic secondary metabolites, competitive 

exclusion, competition for nutrients, the generation of pathogen repelling components in root 

exudates, the induction of systemic resistance or a combination of these elements (Becker et 

al., 1988; Kerry, 1990; Leeman et al. 1995; van Loon et al., 1998; Sturz et al., 1999; Siddiqui 

et al., 2003; Kiewnick and Sikora, 2006; Sikora et al., 2007; Hasky-Günther and Sikora, 1995; 

Schäfer et al., 2006; Vu et al., 2006; Dababat and Sikora, 2007; Reimann et al., 2008; Sikora 

et al., 2008). Recent work has shown that the presence of Fo162 and G12 can also reduce 

colonization by insects (Martinuz, 2010; Menjivar, 2010; Menjivar et al., 2011). 

 

The objectives of the following investigations were to: 

1. Determine the effect of single and dual applications of F. oxysporum strain Fo162 with 
G. intraradices strain 510 or R. etli strain G12 on the performance of A. gossypii.  

2. Evaluate the influence of dual inoculation with F. oxysporum strain Fo162 and R. etli 
strain G12, in a spatially-separated plant bioassay on the performance of A. gossypii. 

3. Determine the effect of single inoculation with F. oxysporum strain Fo162 and R. etli 
strain G12 on host preference of A. gossypii, in intact plant choice bioassay.  
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4.2. Materials and methods 

 

4.2.1. Plants and substrate 

 

Squash plants were used in all experiments. Plants were cultivated until ready for 

experiments as described in Chapter 2, Sections 2.4.1 and 2.4.3. The substrate for all 

experiments in this study was prepared as indicated in Chapter 2, Section 2.5. 

 

4.2.2. Organisms 

 

4.2.2.1. Fusarium oxysporum Fo162 

 

F. oxysporum Fo162 (Fo162) was stored at -80 °C using cryo vials (CryobankTM, Master 

Group, Merseyside, UK). For production of the fungal inoculum for all experiments, a single 

frozen pellet was transferred onto Potato Dextrose Agar (PDA) plates (Difco, Sparks, MD, 

USA) supplemented with 150 mg 1-1 of streptomycin sulfate and chloramphenicol to avoid 

bacterial contamination. The fungal culture was incubated for 3 weeks at 25 ºC in darkness. 

Then, the mycelium and conidia formed were scraped from the media surface with a spatula 

and suspended in autoclaved water. Spores were separated from the mycelium by sieving the 

content through four layers of fine sterile cheese-cloth. Finally, spore density was determined 

using a hemacytometer (Thomas Scientific, Philadelphia PA) and then adjusted to 106 spores 

g-1 substrate with autoclaved water.  

 

4.2.2.2. Glomus intraradices 510 

 

Glomus intraradices 510 (AMF) in expanded clay was kindly provided by Dr. H. von Alten, 

University of Hannover. For all experiment which included mycorrhiza, the inoculum was 

incorporated in expanded clay at a rate of 5% of total substrate volume. 
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4.2.2.3. Rhizobium etli G12 

 

R. etli G12 (G12) was stored at -80 ºC in cryo vials. For production of the bacterium 

inoculum, pellets containing bacteria was transferred from cryo vials onto plates containing 

solid King’s B medium for 36 h at 28 ºC (King et al., 1954). A loop of bacteria was 

transferred from the pre-culture into an Erlenmayer flask containing 100 ml of liquid King’s 

B medium. The bacterium was cultured for 36 h at 28 ºC on a rotary shaker at 100 rpm. The 

bacterial suspension was centrifuge at 5000 g for 20 min at 10 ºC. The resulting pellets was 

re-suspended in sterile ¼ concentrated Ringer-solution (Merk) and the concentration was 

adjusted to an optical density of 2 at 560 nm (OD560 = 2).  

 

4.2.2.4. Aphis gossypii  

 

Aphis gossypii was maintained on susceptible cotton cv. Çukurva 1518, propagated in 300 g 

pots containing sandy loam soil in an incubator. The incubator was set to 25 ± 2ºC with a 16 

h diurnal light. Apterous adult aphids were collected from heavily infected cotton leaves and 

immediately used for the bioassays. 

 

4.2.3. Bioassays 

 

4.2.3.1. Single and dual application of Fo162 with AMF or G12 on A. gossypii 

performance 

 

To assess whether a co-application of Fo162 with AMF or G12 lead to additive or synergistic 

biocontrol activity towards A. gossypii, two bioassays were setup as follow:  

 

Bioassay 1. Two week old squash plants were inoculated with water, Fo162, AMF or 

Fo162+AMF.  

Bioassay 2. Two week old squash plants were inoculated with water, Fo162, G12 or 

Fo162+G12. 
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Fo162 was applied with 5 ml of a spore suspension at a concentration of 1 x 106 CFU g-1 of 

substrate dispensed over 3 holes around the selected plant base. AMF contained in expanded 

clay was incorporated at a rate of 5% of total substrate volume. G12 was applied with 5 ml 

pot-1 of a bacterial suspension (OD560 = 2) as a drench around the stem base of the selected 

plant. Fo162 and G12 inoculations were repeated 1 week later as previously indicated by 

Dababat and Sikora (2007) and Reimann et al. (2008). Two weeks after the first inoculation, 

10 wingless adult aphids were introduced, on the abaxial side of the third leaf of each plant 

and retained by a clip-cage. After 48 hours, the clip-cages were removed to avoid leaf 

damage. Flowers were continuously removed to avoid fruit development. Eight plants per 

treatment were used and the experiment was conducted twice. The plants were randomly 

arranged in a growth chamber at 25 ± 3°C with 16 h day-1 diurnal light. Twenty days after 

aphid introduction, the number of aphids per plant was determined.  

 

4.2.3.2. Spatially-separated dual inoculation of Fo162 and G12 on A. gossypii 

performance 

 

Shoots of 2 week old squash plants were detached from the root system and then the basal 

part of the shoot split longitudinally into 2 sections over a length of 5 cm. Each section of the 

shoot was then placed in a separate 11 cm pot, filled with 300 g of autoclaved substrate 

(Chapter 2, Section 2.5). The two pots were separated approximately 1-cm from each other 

(Fig. 4.1). The split-root plants were maintained in a growth chamber for 2 weeks at 25 ± 3°C 

with 16 h day-1 diurnal light to promote the development of adventitious roots. 

 

The two sections of the split-root plants were considered as ‘inducers’ and the shoot was 

considered as ‘responder’ section. For a simultaneous but spatially separated inoculation with 

the biocontrol agents, one root section was inoculated with Fo162, whereas the other root 

section was inoculated with G12. Three controls were included in the experiment, in which 

both root sections were inoculated with Fo162, G12, or water (Fig. 4.1). The fungus was 

applied at a density of 1 x 106 CFU g-1 of soil dispensed in 3 holes around the selected 

inducer root section. At the same time, the bacterium was applied with 5 ml pot-1 of a 

bacterial suspension (OD560 = 2) as a drench around the root section. This inoculation was 
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repeated 1 week later. Two weeks after the first inoculation, the responder sections were 

infected with 10 wingless adult aphids on the abaxial side of the third leaf, and retained by a 

clip-cage. After 48 hours, the clip-cages were removed to avoid leaf damage. Flowers were 

continuously removed to avoid fruit development. Six plants per treatment were used and the 

experiment was conducted twice. The plants were randomly arranged in a growth chamber 

under the conditions previously indicated. Twenty days after aphid introduction, the number 

of aphids per plant was determined. 
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Figure 4.1. Split-root system to study systemic induced resistance with various combinations 
of spatially separated co-inoculation of Fusarium oxysporum strain Fo162 and Rhizobium etli 
strain G12 towards Aphis gossypii on squash. 
 

4.2.3.3. Influence of single application of Fo162 and G12 on A. gossypii host preference 

 

Through a choice experiment, the effect of single inoculations with Fo162 or G12 on A. 

gossypii host preference was evaluated. For this, 2 week old squash plants were inoculated 
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with water (control), Fo162 or G12. The fungus and the bacterium were applied as previously 

described. These inoculations were repeated 1 week later. Two weeks after the first 

inoculation, the plants were organized in the following pairs: a) Fo162-Fo162, b) Fo162-G12, 

c) Fo162-control, d) G12-control, e) G12-G12 and f) control-control.  

 

Each pair of treated squash plants were connected by a rectangular plastic box (15 x 8 x 4.5 

cm), in which an opening (4.5 x 0.5 cm) had been cut out at each side. The petiole of the 

third leaf of one plant was passed through each hole (Fig. 4.2). The box was divided in two 

sections and labeled as A and B (Fig 4.2). Immediately thereafter, ten wingless aphid adults 

were placed at the border between section A and B, the boxes were then closed with a plastic 

lid (15 x 8 x 0.7 cm). Each lid contained three 3 cm ventilation holes, covered by a 70 µm 

mesh nylon sieve. The boxes were held in place by buret clamps attached to lab support 

stands (Fig. 4.2).  

 

Each plant pair was repeated five times and the experiment was conducted twice. The plant 

pairs were randomly arranged in a growth chamber under the conditions indicated above. 

After 48 h, the distribution of the aphids over the two leaves was determined for each plant 

pair.  

Endophytes application into the 

soil

Section A Section B

Deposition of aphids 

Endophytes application into the 

soil

Section A Section B

Deposition of aphids 

 

Figure 4.2. Design of a choice experiment with intact squash plants to study the effect of 
Fusarium oxysporum Fo162 and Rhizobium etli G12 treated plants on Aphis gossypii host 
preference.  
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4.3. Results 

 

4.3.1. Single and dual application of Fo162 with AMF or G12 on A. gossypii 

performance 

 

4.3.1.1. Bioassay 1, Fo162 and AMF 

 

The ability of Fo162, AMF or a combination of the two endophytes to reduce A. gossypii 

population development was assessed in two pot experiments. Twenty days after the 

introduction of 10 aphids, the numbers of A. gossypii were significantly lower on plants 

threated with either Fo162 or AMF when compared to those on the control plants (Fig. 4.3; 

Exp.1: P=0.0139, LSD=117.96; Exp.2: P=<0.0001, LSD=30.681). However in Experiment 1, 

the reduction in number of aphids was not as distinct for AMF-treated plants in comparison 

to control plants (Fig. 4.3). The aphid numbers on the plants inoculated with a combination 

of Fo162 and AMF was not significantly different from those found on the individual 

endophyte treatments, Fo162 or AMF, indicating that no additive effect with respect to aphid 

control was present. 

 

4.3.1.2. Bioassay 2, Fo162 and G12 

 

Another set of pot experiments was used to evaluate the ability of Fo162, G12 or a 

combination of the two endophytes to reduce A. gossypii population development. Twenty 

days after the introduction of 10 aphids, the numbers of A. gossypii were significantly lower 

on plants with the application of either Fo162 or G12 when compared to those on the control 

plants (Fig. 4.4; Exp.1: P=<0.0001, LSD=12.878; Exp.2: P=0.0031, LSD=12.916). The 

reduction averaged 23 and 15 percent for Fo162 and G12 in Experiment 1, respectively; 

while in Experiment 2 the average reduction was 16 and 12 percent for Fo162 and G12, 

respectively (Fig. 4.4). The aphid numbers on the plants inoculated with a combination of 

Fo162 and G12 was not significantly different from those found on the individual endophyte 

treatments, Fo162 or G12, indicating that no additive effect with respect to aphid control had 

occurred.  
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Figure 4.3. Effect of individual and combined application of Fusarium oxysporum strain 
Fo162 (Fo162) and Glomus intraradices strain 510 (AMF) on Aphis gossypii performance in 
squash. Vertical bars represent the standard error of the mean. Columns with different letters 
are significantly different after LSD test (P ≤ 0.05, n=8). 
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Figure 4.4. Effect of individual and combined application of Fusarium oxysporum strain 
Fo162 (Fo162) and Rhizobium etli strain G12 (G12) on Aphis gossypii performance in squash. 
Vertical bars represent the standard error of the mean. Columns with different letters are 
significantly different after LSD test (P ≤ 0.05, n=8). 
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4.3.2. Spatially-separated dual inoculation of Fo162 and G12 on A. gossypii 

performance 

 

A split-root experiment was used to monitor the ability of Fo162, G12 or a combination of 

the two endophytes to systemically reduce the A. gossypii population growth, when the 

biocontrol organisms were applied on the root system in a spatially separated way (Fig. 4.1). 

Twenty days after the introduction of 10 aphids per plant, the A. gossypii numbers on the 

leaves of the split-root plants inoculated with either Fo162 (Fungal inducer) or G12 

(Bacterial inducer), were significantly lower than the aphid numbers on the control plants 

treated with water in two independent experiments (Fig. 4.5; Exp.1: P=0.0048, LSD=108.24; 

Exp.2: P=0.0037, LSD=37.464). When the plant roots were inoculated with Fo162 at one 

side and G12 at the other (Fungal-bacterial inducer) of the same plant, the aphid population 

reduction was similar to those plants treated with Fo162 or G12 at the inducer sections. The 

results demonstrated that the combined but spatial inoculation with the two microorganisms 

did not cause a synergistic or additive increase in the biocontrol efficacy.  
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Figure 4.5. Effect of individual and spatially separated combination of Fusarium oxysporum 

strain Fo162 and Rhizobium etli strain G12 on Aphis gossypii performance in squash plants. 
Vertical bars represent the standard error of the mean. Columns with different letters are 
significantly different after LSD test (P ≤ 0.05, n=6). 
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4.3.3. Influence of single application of Fo162 and G12 on A. gossypii host preference 

 

Through a pair wise choice experiment, with squash plants either endophyte inoculated or 

non-treated, the leaf preference of A. gossypii was determined (Fig. 4.2). Forty-eight hours 

after introducing the aphids in the chamber in between the two plant leaves, the distribution 

of A. gossypii over the two leaves were not different when both plants had been inoculated 

with the same endophyte, Fo162 or G12, and when both plants were not inoculated (Control) 

(Table 4.1). When the leaf of an endophyte inoculated plant, Fo162 or G12, was paired with 

a non-inoculated plant, the distribution of aphids over the two leaves was not equal, with 

preference for the non-inoculated control leaf. When the leaves of plants inoculated with the 

different endophytes, Fo162 and G12, were paired, the majority of the aphids were found on 

the G12-inoculated plant leaf. All three unequal distributions were significant.  

 

Table 4.1. Percentage of Aphis gossypii that migrated towards to one of the the two leaves of 
endophyte, Fo162 or G12, treated or untreated (Control) squash plants as determined by a 
pair wise choice experiment. 

 Experiment 1  Experiment 2 

 
Percentage of aphids 

present on leaf   
Percentage of aphids 

present on leaf  

Treatment paira (A-B) Ab Bb P-valuec   A B P-value 

Control-Control 50 ± 4 40 ± 5 0.298  44 ± 4 48 ± 4 0.587 
Fo162-Fo162 44 ± 6 40 ± 4 0.688  42 ± 6 46 ± 4 0.670 

G12-G12 38 ± 8 38 ± 7 0.999  48 ± 6 42 ± 4 0.553 
Fo162-Control 20 ± 5 46 ± 5 0.003  26 ± 5 64 ± 9 0.011 

G12-Control 30 ± 6 46 ± 5 0.019  34 ± 5 54 ± 7 0.013 
Fo162-G12 22 ± 6 46 ± 7 0.051   30 ± 4 58 ± 6 0.031 

aThe third leaf of two endophyte treated and/or untreated plants were placed on opposite 
sides of a closed plastic box, divided into two sections. Aphids were released in between the 
two leaves. bA and B refer to the plant treatment and the values represent the mean ± the 
standard error of five plants. cDifference in the proportions of aphids within each treatment 
pair were compared by a paired t-test at P≤0.05; n=5.  
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4.4. Discussion 

 

The results from the current study confirmed the ability of both Fo162 and G12 to 

systemically influence A. gossypii performance on squash (Martinuz and Sikora, 2010; 

Menjivar, 2010). The simultaneous application of both biocontrol agents onto the squash root 

system resulted in a significant reduction in the A. gossypii final population. However, this 

reduction was not greater than the levels of population reduction obtained in treatments with 

the individual biocontrol agents. Furthermore, the simultaneous and spatially-separated 

application of Fo162 and G12 to the individual inducer sides of a split-root experiment also 

resulted in a significant decrease of A. gossypii final population, but this reduction again was 

not greater than the levels of control obtained when single applications of the endophytes 

were used. Thus, even when applied in a spatial way, the two biocontrol agents cannot 

improve the reduction in A. gossypii population in squash.  

 

Martinuz et al. (2011) using a triple-split-root tomato plant setup demonstrated that spatially-

separated but simultaneous inoculation of both Fo162 and G12 did not lead to additive 

reductions in the root-knot nematode (Meloidogyne incognita) infection, suggesting that 

similar defense mechanisms, triggered by Fo162 and G12, may be involved in induced 

resistance towards both A. gossypii and M. incognita. Rajendran et al. (2011) reported that 

following soil treatments of cotton plants with the endophytic bacteria Bacillus subtilis and 

Pseudomonas fluorescens the population of A. gossypii was effectively reduced under 

greenhouse conditions. Similarly, Kempel et al. (2009) demonstrated that G. intraradices 

was able to induce resistance towards Spodoptera littoralis (Lep., Noctuidae) in four 

different grass plants. In an attempt to elucidate the bases of induced resistance against A. 

gossypii, Omer et al. (2001) sprayed cotton plants with jasmonic acid (JA). It was found that 

JA-induction reduced adult aphid survival 40% and reproduction 75%, when compared to the 

control. McConn et al. (1997) showed that jasmonate is essential for induction of resistance 

against insects. It was observed that Bradysia impatiens (Dip., Sciaridae) caused high 

mortality of an Arabidopsis mutant (fad3-2, fad7-2, fad8) that is deficient in the jasmonate 

precursor linolenic acid. However, application of exogenous methyl jasmonate substantially 

protected the mutant plants and reduced their mortality. Conversely, Inbar et al. (2001) 
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sprayed cotton plants with benzo (1,2,3) thiadiazole-7-carbothioic acid (S) methyl ester 

(BTH), an elicitor of systemic acquired resistance (SAR), concluding that SAR induction via 

the salicylic acid pathway in cotton has negligible effect on Bemisia tabaci (Hom., 

Aleyrodidae) and Helicoverpa armigera (Lep., Noctuidae).  

 

A choice experiment with intact squash plants demonstrated that A. gossypii migrated to a 

lesser extent towards leaves of endophyte inoculated plants than to leaves of un-inoculated 

plants. Vicari et al. (2002) paired leaf disks taken from ryegrass plants treated with  . lolii 

and/or G. mosseae or from endophyte-free plants. They found that larvae of Phlogophora 

meticulosa (Lep., Noctuidae) preferred to feed on endophyte-free plants than on endophyte-

inoculated plants regardless of mycorrhizal infection status. Nevertheless, a choice 

experiment with intact plants showed that P. meticulosa preferred to feed on endophyte-free 

plants than on G. mosseae-inoculated plants (Vicari et al., 2002). In this respect, Omer et al. 

(2001) showed that A. gossypii host preference was reduced by more than 60% on JA-

induced leaves compared with controls determined by a choice experiment with leaf disks of 

cotton plants. This suggests that a JA-dependent signaling pathway is involved in the 

observed negative effect on aphid preference and performance.  

 

An SA-dependent pathway has been proposed in endophytic Fusarium induced resistance 

towards pathogens and nematodes in studies with asparagus and tomato (He and Wolyn, 

2005; Dababat and Sikora, 2007; Selim, 2010). Conversely, a rhizobacteria-mediated induced 

resistance was shown to be controlled by JA and ethylene (ET) pathways (Pieterse et al., 

1998; Pieterse et al., 2001). Several studies on the cross-talk between the JA- and SA-

dependent signaling pathways have shown that negative interactions can occur, with 

consequences for host resistance against pest and/or pathogens (Bostock et al., 2001). Thus, 

the lack of additive systemic effects against A. gossypii reported in this study could be related 

to antagonism of the JA- and SA-dependent signaling pathways; however this hypothesis 

needs to be evaluated. 
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4.5. Conclusions 

 

The biological activity of single or combined application of the antagonists Fusarium 

oxysporum strain Fo162, Glomus intraradices strain 510 and Rhizobium etli strain G12 was 

investigated in this study. From the results the following can be concluded: 

 

1. The individual application of F. oxysporum, G. intraradices or R. etli results in a 

significant reduction in the population of A. gossypii on squash leaves. 

2. Concomitant enhancement with F. oxysporum together with G. intraradices or with R. 

etli does not lead to significant synergistic interactions. 

3. The simultaneous application of F. oxysporum and R. etli on a split-root experiment 

showed that the simultaneous but spatially-separated inoculation of both endophytes 

did not lead to significant additive effects with respect to reducing A. gossypii 

population.  

4. The leaf preference of A. gossypii in a pair-wise choice experiment on squash plants 

showed that A. gossypii preferred to feed on endophyte-free plants than on the 

endophyte-inoculated plants. When plants inoculated with Fo162 and G12 were paired, 

the majority of A. gossypii was found on G12-inoculated plants. 

5. Overall, the present research results seems to indicate that a more detailed 

characterization of the defense mechanisms, triggered by the various endophytic 

biocontrol agents together with knowledge on the sensitivity of pest insects to specific 

defense mechanisms would help to increase efficacy when microorganisms are 

combined to improve biocontrol of pathogens and pests 
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Chapter 5 

Interactions between the endophytic fungus Fusarium oxysporum strain Fo162 

and the endophytic bacterium Rhizobium etli strain G12 

 

5.1. Introduction 

 

The facultative fungus, Fusarium oxysporum, is a common and highly variable soil 

inhabitant. This species of Fusarium includes a number of important plant pathogens that 

affects negatively crops of economic importance worldwide. Nevertheless, most F. 

oxysporum isolates are saprophytes that feed on the organic matter in the soil. Others have 

been isolated from the internal tissue of plant roots after surface disinfection. Non-pathogenic 

Fusarium isolates are important to crop production, since some have been shown to induce 

resistance in host plants; thus, increasing the plant’s ability to defend itself from pathogen 

and pest attack (Alabouvette et al., 1998; Larkin and Fravel, 1999; Pereira et al., 1999; 

Trouvelot et al., 2002; Sikora et al., 2008).  

 

There are many bacteria associated with the root system having different forms of influence 

on the plant. In the recent past, rhiozobacteria that live on the surface of the root and that 

stimulate plant growth (plant growth promoting rhizobacteria, PGPRs) were of great interest 

to biological science (Kloepper and Schroth, 1981; Liu et al., 1995; Hallmann et al., 1998). 

More recently, endophytic bacteria that have been isolated from internal plant tissues after 

surface-sterilization of the root surface have become interesting to those working in plant 

health management (Vidal et al., 1998; Hasky-Günther et al., 1998; Sikora et al., 2007). They 

have been shown to be able to colonize the root internal but also the shoots leaves and 

flowers (Hallman et al., 2001). The potential these bacteria have in pest and disease 

management was demonstrated in several studies (Sturz et al., 2000; El-Batanony, 2007; 

Sikora et al., 2007). The authors showed that inoculation of different vegetables with 

rhizobacteria strains reduced diseases caused by soil-born pathogens and nematodes, thus 

resulting in promotion of plant growth and health. This led to the term plant health promoting 

rhizobacteria PHPR (Sikora et al., 2007). 
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The inconsistency in the level of biocontrol, often associated with application of 

microorganisms to plants, has been considered a limiting factor when using antagonistic 

bacteria for plant protection against soil-born pests and pathogens. The lack of consistency is 

probable due to the fact that all management strategies are based on the application of a 

single microorganism usually for economic reasons. In such cases, control is limited to a 

short period of time and is futher influenced by existing fluctuations in biotic and abiotic 

conditions in the soil (Dunne et al., 1998; Reimann et al., 2008). Consequently, it has been 

suggested that co-inoculation strategies or combining different microorganisms to enhance 

biocontrol activity is needed (Dunne et al., 1998; El-Tarabily et al., 2000; Chaves et al., 2009; 

Sikora et al., 2010).  

 

The use of different types of beneficials that colonize the plant differently or at different 

times and beneficials with different mechanisms of action could be more effective in pest and 

disease suppression. For instance, inhibition of pathogens by antibiosis; the production of 

microbial inhibiting metabolites like siderophore; competition for nutrients; competitive 

exclusion due to initial site colonization; induction of plant resistance; degradation or 

inhibition of hatch; or germination and production of plant growth enhancement through 

phytohormones production that increases tolerance (Deshwal et al., 2003; El-Mehalawy, 

2004; Sikora et al., 2007).  

 

However, direct and indirect interactions that could have negative impact on co-inoculated 

endophytes themselves needs to be taken into account before such strategies are fully 

developed. For example, concomitant application of Trichoderma harzianum and arbuscular 

mycorrhizal fungi (AMF) inhibited the development and colonization of AMF (Wyss et al., 

1992), whereas AMF establishment was enhanced in presence of another isolate of the same 

fungus (Filion et al., 1999). Other studies demonstrated that combined inoculation of Glomus 

intraradices and Rhizobium etli G12 for the biocontrol of M. incognita led to additive effects 

(Reimann et al., 2008). Similar tests with co-application of F. oxysporum and Bacillus firmus 

also lead to additive reduction in the number of Radopholus similis that penetrated banana 

roots and not the synergistic activity that was expected (Mendoza and Sikora, 2009). When 

the endophyte F. oxysporum and the egg pathogen Paecilomyces lilacinus were combined the 
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result was not even additive with regards to control of R. similis in banana (Mendoza and 

Sikora, 2009). In recent studies the combination of F. oxysporum and R. etli G12 produced 

similar levels of control as single inoculations towards M. incognita and Aphis gossypii in 

tomato and squash respectively (Martinuz and Sikora, 2010).  

 

These results seems to indicate that competition between the antagonistic microorganisms, 

both in or on the root system could lead to competition and thereby reduced colonization 

and/or activity of one or more of the microorganisms being used to enhance biological 

control efficacy through co-inoculation. 

 

The objectives of the present investigations were to: 

 

1. Evaluate the in vitro interactions between the endophytic fungus Fusarium oxysporum 

strain Fo162 and the endophytic bacterium Rhizobium etli strain G12.  

2. Determine the in vivo direct interactions between the endophytic fungus Fusarium 

oxysporum strain Fo162 and the endophytic bacterium Rhizobium etli strain G12. 

3. Assess the influence of spatial separation of the endophytes Fusarium oxysporum strain 

Fo162 and Rhizobium etli strain G12 on endophyte colonization.  
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5.2. Materials and methods 

 

5.2.1. Plants and substrate 

 

Tomato plants cv. Moneymaker were used in all experiments. Plants were cultivated until 

ready for experiments as described in Chapter 2, Sections 2.4.1 and 2.4.2. The substrate for 

all experiments in this study was prepared as indicated in Chapter 2, Section 2.5. 

 

5.2.2. Microorganisms 

 

5.2.2.1. Fusarium oxysporum Fo162 

 

F. oxysporum Fo162 (Fo162) was stored at -80 °C using cryo vials (CryobankTM, Master 

Group, Merseyside, UK). For production of the fungal inoculum for all experiments, a single 

frozen pellet was transferred onto Potato Dextrose Agar (PDA) plates (Difco, Sparks, MD, 

USA) supplemented with 150 mg 1-1 of streptomycin sulfate and chloramphenicol to avoid 

bacterial contamination. The fungal culture was incubated for 3 weeks at 25 ºC in darkness. 

Then, the mycelium and conidia formed were scraped from the media surface with a spatula 

and suspended in autoclaved water. Spores were separated from the mycelium by sieving the 

content through four layers of fine sterile cheese-cloth. Finally, spore density was determined 

using a hemacytometer (Thomas Scientific, Philadelphia PA) and then adjusted to 106 spores 

g-1 substrate with autoclaved water.  

 

5.2.2.2. Rhizobium etli G12 

 

R. etli G12 (G12) was stored at -80 ºC in cryo vials. For production of the bacterium 

inoculum, pellets containing bacteria was transferred from cryo vials onto plates containing 

solid King’s B medium for 36 h at 28 ºC (King et al., 1954). A loop of bacteria was 

transferred from the pre-culture into an Erlenmayer flask containing 100 ml of liquid King’s 

B medium. The bacterium was cultured for 36 h at 28 ºC on a rotary shaker at 100 rpm. The 

bacterial suspension was centrifuge at 5000 g for 20 min at 10 ºC. The resulting pellets was 
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re-suspended in sterile ¼ concentrated Ringer-solution (Merk) and the concentration was 

adjusted to an optical density of 2 at 560 nm (OD560 = 2).  

 

5.2.3. In vitro interactions between Fo162 and G12 

 

5.2.3.1. Culture media 

 

A dual culture system using 9 mm diameter Petri dishes filled with different nutrient media 

was used to assess interactions of G12 on Fo162 development. Each dish was filled with 25 

ml of either potato dextrose agar (PDA), Sabouraud dextrose agar (SDA), tryptone soya agar 

(TSA), or root tissue agar (RTA). PDA, SDA, and TSA were prepared according to fabricant 

instructions. For RTA 30 g of fresh root tissue from 4 week old tomato plants was macerated 

and mixed with 500 ml of distilled water containing 18 g of agar. The mixture was then 

calibrated to 1 l and autoclaved at 121 °C for 20 min.  

 

The bioassay was performed separately on each of the media. G12 was initially cultured on 

solid King’s B, (Chapter 2, Section 2.1.3) and was then streaked in two parallel lines on PDA, 

SDA, TSA, or RTA in the dishes. Each line was placed 2 cm from the center of the Petri dish. 

Control plates were not inoculated with the bacterium (Fig. 5.1). The plates were then 

incubated for 3 days at 28 ºC in the dark. Thereafter, a 5 mm plug of Fo162, taken from 3 

weeks old culture grown on PDA (Chapter 2, Section 2.1.1), was plated in the center of each 

Petri dish (Fig. 5.1). The plates were then incubated for 3 to 5 days at 28 ºC in the dark. Each 

treatment was replicated 10 times and the bioassay was repeated. The influence of the 

bacterium on fungal growth was assessed by measuring radial mycelia growth. 

 

5.2.3.2. Duration of bacterial incubation 

 

The amount of antimicrobial compounds produced by bacteria in culture is influenced by the 

duration of fermentation or growth on culture media. To test this factor a dual culture system 

was used to test the influence of the G12 incubation time on Fo162 radial growth on 9 mm 

diameter Petri dishes containing 25 ml of PDA. G12 cultured on solid King’s B,  was 
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streaked in two parallel lines on PDA. Each line was placed 2 cm from the center of the Petri dish. 

Control plates were not inoculated with the bacterium. The plates were then incubated for 

1,2,3,4 and 5 days at 28 ºC in the dark (Fig. 5.2). Thereafter, a 5 mm plug of Fo162, taken 

from a 3 week old culture grown on PDA was plated in the center of each Petri dish. The 

plates were then incubated for 3 days at 28 ºC in the dark (Fig. 5.2). Each treatment was 

replicated 6 times and the bioassay was repeated once. The influence of the bacterium on 

fungus growth was evaluated by measuring radial mycelia growth after 3 days exposure. 
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Figure 5.1. Flow diagram of the bioassay used for assessment of the influence of Rhizobium 

etli G12 on the growth of Fusarium oxysporum Fo162. Modified from Reimann (2005). 
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Figure 5.2. Flow diagram of bioassay used to test the influence of Rhizobium etli G12 
incubation time on Fusarium oxysporum Fo162 radial growth. Modified from Reimann 
(2005). 
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5.2.4. In vivo interaction between Fo162 and G12 

 

5.2.4.1. Single antagonist inoculations 

 

To study the in vivo interactions between Fo162 and G12 a pot experiment was performed in 

which the plants were inoculated singly or in combination. Tomato plants, cultivated as 

indicated above, were inoculated with Fo162, G12 or Fo162+G12. Plants treated with water 

serve as controls. Fo162 was applied with 5 ml of a spore suspension at a concentration of 

1x106 CFU g-1 of substrate dispensed over 3 holes around the selected plant base. G12 was 

applied with 5 ml pot-1 of a bacterial suspension (OD560 = 2) as a drench around the stem 

base of the selected plant. The same inoculation procedure was repeated two weeks after 

transplanting to improve root colonization. Pots were arranged in a completely randomized 

design and kept in a greenhouse at 25 ± 3°C with 16 h day-1 supplemental artificial light. 

Each treatment was replicated 6 times and the experiment was repeated. 

 

The existence of an interaction between the two endopyhtes was evaluated by determining 

the efficiency of Fo162 root colonization. The density of G12 was not determined due to the 

similarity of the colonies with other root inhabiting microorganisms. Root colonization by 

Fo162 was determined 4 weeks after the first inoculation by the surface sterilization and 

imprint method, followed by plating on PDA as described in Chapter 3 Section 3.2.3.2. 

 

5.2.4.2. Split-root systemic activity experiment 

 

The systemically mediated influence of G12 on Fo162 colonization was tested with a split-

root system (Fig. 5.3). Tomato plants were transplanted into plastic pots containing 300 g of 

an autoclaved substrate and kept under green house condition at 27 ± 3°C with 16 h day-1 

supplemental artificial light. Two weeks after transplanting, plants were separated from the 

root system 0.5 cm above the soil surface and the shoot split in half longitudinally 5 cm. The 

lower leaves were pruned to reduce transpiration. Two plastic pots were filled with 300 g of 

the autoclaved substrate and placed one next to one another (Fig. 5.3). Each half of the split 

shoot was inserted into the substrate of a pot. The plants were kept in a greenhouse for 2 
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weeks under the same condition previously indicated. During this period, the shoots 

developed a strong adventitious root system and were suitable for further experimentation.  

 

Each side of the split-root system was then labeled as either the inducer root or the responder 

root (Fig. 5.3). The inducer sides were inoculated with Fo162, G12 or water. One week later 

the responder sides were inoculated with Fo162. The split-root plants were arranged in a 

completely randomized design in a greenhouse under the same condition previously 

indicated. Each treatment was replicated six times and the experiment was repeated. Four 

weeks after inducer treatment, the roots on the responder side were washed free of substrate 

with tap water. Root colonization by Fo162 on the responder half was then determined 

trough the surface sterilization and imprint method, followed by plating on PDA as detailed 

in Chapter 3 Section 3.2.3.2. 

 

 

Figure 5.3. Split-root plant system used to determine the systemic interaction of Rhizobium 

etli G12 and Fusarium oxysporum Fo162 on tomato. 
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5.3. Results 

 

5.3.1. In vitro interactions between Fo162 and G12 

 

5.3.1.1. Culture media 

 

In the dual culture bioassays, Fo162 radial growth was significantly inhibited when growing 

in the presence of G12 when compared to the control plates (Fig. 5.4 a and b). The results 

were similar in all media tested, except in SDA which showed no difference between 

treatments. Observations performed under light microscope showed no morphological 

changes in Fo162 mycelium induced by the presence of G12. 

 

5.3.1.2. Duration of bacterial incubation 

 

Fo162 radial growth decreased significantly as bacterial incubation time increased. Non-

lineal regression analysis demonstrated a negative relationship (Fig. 5.5). Fungal radial 

growth decreased in the first  experiment: 10, 17, 22, 26 and 28 percent and in the second 

experiment: 22, 35, 43, 48 and 50 percent  in comparison to the control, when the bacterium 

was cultured for 1, 2, 3, 4 or 5 days before inoculating Fo162, respectively. 
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Figure 5.4. Influence of Rhizobium etli strain G12 (G12) on Fusarium oxysporum strain Fo162 
(Fo162) radial growth in vitro after a period of 3 to 5 days of co-culture at 28 ºC. Vertical bars 
represent standard error of the mean values. Means with (*) indicates significantly different after t-
test for independent samples (P ≤ 0.05, n=10). (a) Experiment 1 and (b) Experiment 2. PDA, potato 
dextrose agar; SDA, Sabouraud dextrose agar; TSA, tryptone soya agar; RTA, root tissue agar. 
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Figure 5.5. Influence of Rhizobium etli G12 on Fusarium oxysporum Fo162 radial growth assessed 
under in vitro conditions and its non-lineal regression curve [Rg(t) = α + (3.6-α)exp(-β*t); P ≤ 
0.05, n=6]. (a) Experiment 1 and (b) Experiment 2. 
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5.3.2. In vivo interactions between Fo162 and G12 

 

5.3.2.1. Single antagonist inoculations 

 

Four weeks after the first inoculation of the two antagonists, the colonization of Fo162 in the 

roots co-inoculated with the two organisms was significantly reduced 34 and 49 percent in 

the two experiments, when compared to the fungus colonization on plants treated only with 

Fo162, respectively. The fungus Fo162 could not be detected in the treatment with water nor 

in the treatment with the bacteria G12. 

 

5.3.2.2. Split-root systemic activity experiment 

 

Four weeks after Fo162 inoculation on the responder side of the split-root system, systemic 

inhibition of Fo162 root colonization was observed. In the presence of G12 at the inducer 

side, the percentage colonization by Fo162 on the responder side was repressed 

approximately 50 percent when compared to the water controls in the two experiments (Fig. 

5.7). Inoculation of the inducer section of the root system with water or with Fo162 had no 

significant effect on Fo162 colonization on the responder side. In this case, the level of 

Fo162 colonization on the responder side was 17.8 and 22.2 percent in Experiment 1 and 2, 

respectively, which was similar to the levels of colonization obtained with water as the 

inducer, being 15.6 and 25.0 percent in both experiments, respectively (Fig. 5.7). 
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Figure 5.6. Fusarium oxysporum strain Fo162 (Fo162) endophytic colonization of tomato 
roots in the presence of Rhizobium etli G12 (G12) four weeks after the first inoculation. 
Vertical bars represent standard error of the mean values. Means with (*) indicates 
significantly different after t-test for independent samples (P ≤ 0.05, n=6). 
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Figure 5.7. Systemic activity of Rhizobium etli strain G12 (G12) on Fusarium oxysporum 
strain Fo162 (Fo162) colonization in the responder half of a split-root system. Vertical bars 
represent standard error of the mean values. Columns with different letters are significantly 
different after LSD test (P ≤ 0.05, n = 6). 
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5.4. Discussion 

 

The results obtained in Chapter 3 and 4 of this thesis research showed that single and dual 

application of Fo162 and G12 enhanced plant resistance to M. incognita in the root system 

and Aphis gossypii on the shoots. However, the combined application of both antagonistic 

endophytes did not result in additive or synergistic levels of activity towards the nematode or 

the insect. There was evidence that indicate that a concomitant application of two antagonists, 

each having different modes of action and colonization nitchs in the root, could lead to 

improved suppressive efficacy towards nematodes (Reimann et al. 2008; Chaves et al. 2009). 

Conversely, it also has been reported that non-additive effects against nematodes can occur 

when using combination of beneficial bacteria and fungi (Castillo et al., 2006; Mendoza and 

Sikora, 2009). Although the role of specific endophytic microorganisms, especially fungi and 

bacteria, in the suppression of insect and nematode infection has been thoroughly reviewed 

(Clay, 1989; Breen, 1994; Saikkonen et al., 1998; Azevedo et al., 2000; Sikora et al., 2007; 

Sikora et al., 2008), little is known about biological enhancement of pests following 

concomitant inoculation of different types of endophytic microorganisms (Gaylord et al., 

1996; Diedhiou et al., 2003; Martinuz and Sikora, 2010). The in vitro and in vivo interaction 

studies conducted here between Fo162 and G12 were devised to investigate concomitant 

interactions between the two organisms on tomato.  

 

The antibiosis tests performed in this investigation resulted in a reduction in Fo162 radial 

growth when challenged with G12. This reduction also was positively correlated with 

increased duration of G12 incubation on solid media. Similar results were reported by El-

Botanony et al. (2007) who tested, in vitro and in vivo, the inhibitory effect of cultural 

filtrates of wild Rhizobium spp. against soil-born pathogens including F. oxysporum. They 

found that the inhibitory effects, expressed as an inhibition of mycelial growth increased with 

increasing concentration of the filtrates. They concluded that the endophytes tested exerted 

antagonistic activity towards soil-born pathogenic fungi suppressing their growth and 

increasing plant resistance.  
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In the present studies, the inhibitory effects observed between G12 and Fo162 could be 

related, in part, to antagonism caused by the accumulation of toxic metabolites produced by 

the endophytic bacterium while reproducing on root exudates. The lack of an additive or 

synergistic increase in biological control, detected in these studies, therefore could be related 

to the fact that both microorganisms are applied at the same time and this causes direct and 

immediate competion for space and nutrients. To test this last hypothesis, an experiment was 

performed to study the influence of G12 on the colonization of Fo162. Results showed lower 

root colonization by Fo162 when it was applied in association with G12.  

 

The manner in which these organisms colonize the host plant may be important in the 

interaction. Olivian et al. (2003) studied the colonization of flax roots by the non-pathogenic 

F. oxysporum strain Fo47. They reported that the fungus actively colonized the root surface. 

Afterwards, the fungus penetrated into epidermal cells, and then colonized heavily the 

hypodermis. On the other hand, Hallmann et al. (2001) studied the external and internal 

colonization of potato and Arabidopsis roots by G12 containing a plasmidborne trp promoter 

green fluorescent protein transcriptional fusion. They found that the bacterium colonized the 

entire root surface; however, they preferentially colonized root tips and the emerging lateral 

roots. Internal colonization was located in epidermal cells, as well as in or near vascular 

tissues. Furthermore, Diedhiou et al. (2003) co-inoculated G. coronatum and Fo162 in an 

attempt to improved M. incognita biocontrol. They showed that the presence of Fo162 

stimulated G. coronatum colonization and that roots already colonized by G. coronatum were 

not internally colonized by Fo162. The manner in which they interact therefore may be 

influenced by nitch factors. Very quick colonization of the surface of the root by G12 may 

reduce the ability of Fo162 to recognize the host plant or may even repell colonization due to 

the toxic metabolites that were shown here to have inhibitory activity on Fo162. 

 

Systemic induced resistance (SIR) has been reported as a mode of action of G12 (Hasky-

Günther et al., 1998). SIR can have activity towards fungi as has been shown by Mwangi et 

al. (2002). Therefore, it can not be excluded as a factor affecting the interaction with non-

pathogenic Fusarium. Thus, a split-root experiment was designed to analyze the systemic 

influence caused by G12 on the colonization of Fo162. The results showed again a 
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significant decrease in Fo162 colonization, when the inducer half of the split-root system was 

inoculated with the bacterium.  

 

These results are similar to those of Liu et al. (1995) who used a split-root system to study 

the SIR produced by P. putida and S. marcescens towards Fusarium wilt caused by F. 

oxysporum f. sp. cucumerinum. They concluded that both bacteria were able to delayed 

disease symptom development and retarded colonization of the pathogen. Nevertheless, they 

could not explain whether the SIR activity produced by the bacterial strains was related to 

transportable substances induced or produced by the bacteria. Conversely, Reitz et al. (2000) 

using split-root essay demonstrated that lipopolysaccharides of G12 works as inducing agent 

of systemic resistance towards Globodera pallida in potato. Futhermore, van Peer and 

Schippers (1992) associated lipopolysaccharides of plant growth promoting Pseudomonas 

spp. to SIR against Fusarium wilt caused by F. oxysporum f. sp. dianthi in carnation. Mwangi 

et al. (2002) demonstrated that Bacillus sphaericus B43 induce systemic resistance to the 

fungal wilt pathogen F. oxysporum f.sp. lycopersici in tomato. They found that peroxidase 

activity in the stem of bacterial treated plants significantly increased over a short period of 

time; while the β-1,3-glucanase activity was not affected by the prencense of the bactirium.  

 

The overall results of these studies suggest that G12 affected not only M. incognita and A. 

gossypii, but also had a negative effect on Fo162 establishment in the root system. Therefore, 

synergistic levels of biological control towards the nematode or the insect, due to dual 

application of both antagonists, did not materialize as seen in Chapters 3 and 4. Three modes 

of action have been considered important in nematode control with endophytic bacteria 

(Hallmann et al., 2001; Sikora et al., 2007): a) preemptive colonization, b) direct antagonism 

though toxic metabolites and c) systemic induced resistance. Conversely, in insect biological 

control (a) displayed phenotypic plasticity (e.g. increase of trichome densities), (b) 

allelochemical(s) production and (c) systemic induced resistance are considered important 

modes of action when using endophytes as biological agents (Breen, 1994; Traw and 

Bergelson, 2003). 
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Although these modes of action have been demonstrated to have an influence on nematodes 

and insects in the present studies, they have negative impact to the extent that they also can 

lead to the inhibition of Fo162 development and therefore the lack of additive or synergistic 

effect towards M. incognita and A. gossypii as shown in Chapters 3 and 4. Therefore, it is 

important to highlight that, although both Fo162 and G12 are recognized as beneficial 

microorganisms, their mutual direct or indirect interactions on each other also have to be 

taken into account in co-inoculation strategies in biocontrol. 

 

5.5. Conclusions 

 

The in vitro and in vivo interactions between F. oxysporum Fo162 and R. etli G12 were 

investigated in the present study. From the results obtained the following can be concluded: 

 

1. The in vitro dual-culture challenge tests showed that the bacterium caused a 

significant reduction in F. oxysporum radial growth. The reduction in radial growth 

was positively correlated with the bacterial incubation period.  

2. In greenhouse experiments the simultaneous application of F. oxysporum and R. etli 

resulted in a reduction of F. oxysporum colonization, indicating that the fungus can be 

directly repressed by the bacterium.  

3. A split-root experiment showed that the simultaneous but spatially-separated 

inoculation of both F. oxysporum and R. etli resulted in a reduction in F. oxysporum 

colonization, indicating that the fungus can be systemically repressed by the 

bacterium. 

4. The results demonstrate the need to test for incompatibility between microbial 

biocontrol agents when considering co-inoculation treatment. 
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Chapter 6 

Interactions between the endophytic fungus Fusarium oxysporum strain Fo162 

and the root-knot nematode Meloidogyne incognita in Arabidopsis thaliana 

 

6.1. Introduction 

 

The root-knot nematode, Meloidogyne incognita, is an obligate biotrophic plant parasite that 

evolved unique strategies to infect a large number of plants. The infective second-stage 

juveniles (J2) penetrate behind the root tip and migrate between cells to invade the vascular 

cylinder. Each J2 then establishes and maintains a permanent group of feeding cells, known 

as giant cells, which constitute the exclusive source of nutrients for the developing nematode. 

Hyperplasia and hypertrophy of the surrounding cells lead to the formation of the typical root 

gall, constituting the primary visible symptom of infection (Caillaud et al., 2008). The galls 

interfere with normal root function, reducing water and nutrient uptake; consequently, 

leading to stunting, wilting and growth inhibition (Sikora and Fernandez, 2005). Root-knot 

nematodes are managed by means of different strategies, such as cultural, biological and 

chemical measures. These measures of control include crop rotation, resistant varieties, 

flooding, fallow, incorporation of organic matter, soil solarization, steam heating, 

nematicides and biological control (Noling and Becker, 1994; Manzanilla-Lopez, 2004; 

Sikora et al., 2005).  

 

The mutualistic endophytic fungus Fusarium oxysporum strain Fo162 (Fo162) is considered 

as a potential non-chemical alternative (Hallman et al., 2001; Sikora et al., 2007). However, 

variations in the level of biocontrol mediated by the endophyte constitute a disadvantage for 

commercial application. This lack of consistency may be caused by different factors such as 

the level of root colonization by the endophyte and fluctuations in biotic and abiotic 

conditions in the soil (Dunne et al., 1998). Thus, a more detailed characterization of the 

defense mechanisms triggered by Fo162 together with knowledge on the sensitivity of M. 

incognita to specific defense mechanisms would help in increasing efficacy when endophytes 

are used to enhance biocontrol of pathogens and pests.  
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In order to further study plant defense responses towards M. incognita triggered by the 

endophyte Fo162, the interaction between the endophyte and the model plant Arabidopsis 

thaliana was assessed. A. thaliana is a flowering plant belonging to the Brassicaceae that is 

parasitized by M. incognita and some species of Fusarium (Sijmons et al., 1991; van 

Hemelrijck et al., 2006; Hallmann et al., 2001). In the 1980s, Pseudomonas syringae became 

the first pathogen demonstrated to be able to infect Arabidopsis and to cause disease 

symptoms in laboratory experiments (Katagiri et al., 2002), establishing the relevance of this 

plant as a scientific tool for plant-microbe interaction studies. Since then, Arabidopsis has 

been used to unravel basic plant defense response mechanisms that reach beyond the plant 

biology boundaries (Micali et al., 2008). The progress made on Arabidopsis pathology 

research has recently gained importance; particularly, the study of obligate biotrophic and 

hemibiotrophic pathogens has contributed to the understanding of the molecular basis of 

basal and isolate-specific defense mechanisms (Micali et al., 2008).  

 

The objectives of these investigations were to: 

 

1. Determine the ability of F. oxysporum Fo162 to colonize the root system of A. thaliana 

wild type Columbia.  

2. Evaluate the influence of Fo162 on plant growth parameters. 

3. Determine the effect of single inoculation with Fo162 on the penetration of M. 

incognita. 

4. Evaluate the influence of single inoculation with Fo162 in a spatially-separated plant 

bioassay on root gall formation of M. incognita. 

5. Investigate the effect of inducing host plant systemic resistance using different 

combinations of chemical elicitors on root gall formation of M. incognita. 
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6.2. Materials and methods 

 

6.2.1. Plants and substrate 

 

Arabidopsis plants of the wild type Columbia were used in all experiments. Plants were 

cultivated until ready for experiments as described in Chapter 2, Sections 2.4.1 and 2.4.4. 

The substrate for all experiments in this study was prepared as indicated in Chapter 2, 

Sections 2.5 and 2.6.6. 

 

6.2.2. Microorganisms 

 

6.2.2.1. Fusarium oxysporum Fo162 

 

Fo162 was stored at -80 °C using cryo vials (CryobankTM, Master Group, Merseyside, UK). 

For production of the fungal inoculum for all experiments, a single frozen pellet was 

transferred onto PDA dishes (Chapter 2, Section 2.6.1). The fungal culture was incubated for 

3 weeks at 25 ºC in darkness. Then, the mycelium and conidia formed were scraped from the 

media surface with a spatula and re-suspended in autoclaved water. Spores were separated 

from the mycelium by sieving the content through four layers of fine sterile cheese-cloth. 

Finally, spore density was determined using a hemacytometer (Thomas Scientific, 

Philadelphia PA) and then adjusted to 106 spores g-1 substrate with autoclaved water.  

 

6.2.2.2. Meloidogyne incognita 

 
M. incognita was maintained in a box (150 x 80 x 40 cm) filled with sandy loam and 

permanently cultivated with the susceptible tomato cv Furore in a greenhouse at 27 ± 5 °C. 

Nematode eggs were extracted from 2 month old heavily galled tomato roots, using the 

modified extraction technique of Hussey and Barker (1973). Roots were washed free from 

soil under tap water, cut into 1 cm pieces and macerated in a warring blender at high speed 

for 20 s and collected in a glass bottle. NaOCl was added to obtain a final concentration of 

1.5% active Chlorine and the bottle was shaken vigorously for 3 min. The suspension was 
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then thoroughly washed with tap water through a sieve combination 250, 100, 45 and 25 µm 

mesh to remove the NaOCl. Eggs were collected on the 25 µm mesh sieve and then 

transferred to a glass bottle. The egg suspension was supplied with oxygen from an aquarium 

pump over 10 days to induce juvenile hatching. To separate active J2 from unhatched eggs or 

dead J2, a modified Baermann technique over 24 h was used (Oostenbrink, 1960). The 

collected active J2 were adjusted to 1000 J2 ml-1 and used immediately as inoculum. 

 

6.2.3. Root colonization by Fo162 

 

Two week old Arabidopsis plants placed in 4 cm diameter pots containing 50 g of a mixture 

of autoclaved sand:soil (3:1, v/v), were inoculated with Fo162 or with water (control). The 

fungus was applied as a spore suspension in 3 ml pot-1 at a concentration of 1 x 106 CFU g-1 

of substrate. The inoculum was dispensed into three holes around the selected plants. For the 

water control, 5 ml sterilized water was used. Pots were arranged in a completely randomized 

design in a climatic chamber at 25 ± 3 °C with 16 h day-1 supplemental artificial light. Each 

treatment was replicated 10 times and the experiment was repeated. 

 

Root colonization by Fo162 was determined 4 weeks after inoculation by washing the roots 

free of substrate with tap water. Thereafter, roots were surface sterilized by submersion in a 

0.5% NaOCl solution for 3 min, followed by three rinses in sterile distilled water. The roots 

were then imprinted on PDA (Chapter 2, Section 2.6.1) to verify surface sterilization (Schulz 

et al., 1999). The surface sterilized roots were then cut into 0.5 cm sections and 18 root 

segments per treatment were randomly selected and placed on two Petri dishes containing 

PDA medium. After 4 to 7 days of growth at 25°C in the dark, fungi emerging from each 

root segment were phenotypically verified as being Fo162. These data were used for 

calculating the percentage of root colonization per root system, i.e. (the number of root 

segments colonized by Fo162/total number of root segments)*100 (Mendoza and Sikora, 

2009). 

 

 

 



Chapter 6                                   Interactions between Fo162 and M. incognita in Arabidopsis 

 95

6.2.4. Influence of Fo162 on plant growth promotion 

 

6.2.4.1. Plant weight 

 

Sterile seeds of Arabidopsis were sown in Petri dishes containing 25 g of a mixture of 

autoclaved sand:soil (3:1, v/v) and 7 ml of sterile water . The dishes containing 5 seeds dish-1 

were incubated for two weeks in a climatic chamber at 25 ± 1 °C with 16 h day-1 

supplemental artificial light (Fig. 6.1). Afterwards, each Petri dish was inoculated with Fo162 

or with water (control). The fungus was applied as a spore suspension in 1 ml dish-1 at a 

concentration of 1 x 106 ml-1. The inoculum was applied as a drench at the center of the Petri 

dish. For the water control, 1-ml sterilized water was used. Dishes were arranged in a 

completely randomized design in a climatic chamber at 25 ± 1 °C with 16 h day-1 

supplemental artificial light. Each treatment was replicated 10 times and the experiment was 

repeated. Two weeks after inoculation, the 5 plants dish-1 were carefully uprooted and 

washed free of substrate with tap water. The plans were then blotted between two paper 

tissues and total fresh weight of the 5 plants dish-1 was recorded. This data were used to 

calculate plant fresh weight (shoot + root).  

 

Figure 6.1. System used to study the influence of Fusarium oxysporum Fo162 on the plant 
fresh weight of Arabidopsis thaliana. 
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6.2.4.2. Root length and average diameter 

 

Sterile seeds of A. thaliana wild type Columbia were sown in Petri dishes on 2% Knop 

medium (Chapter 2). The dishes containing 5 seeds plate-1 were incubated in a climatic 

chamber at 25 ± 1 °C with 16 h day-1 supplemental artificial light (Fig. 6.2). Two weeks later, 

each Petri dish was inoculated with Fo162 or with water (control). The fungal endophtye was 

applied as a spore suspension in 10 µl dish-1 at a concentration of 1 x 106 ml-1. The inoculum 

was carefully spread across the center of the Petri dish. For the water control, 10 µl dish-1 of 

sterilized water was used. Dishes were arranged in a completely randomized design in a 

climatic chamber at 25 ± 1 °C with 16 h day-1 supplemental artificial light. Each treatment 

was replicated 10 times and the experiment was repeated. Two weeks after inoculation, 

plants shoots were carefully detached from their roots and root length and average diameter 

were measured with a Comair root length scanner (Hawker de Havilland) (Diedhiou et al., 

2003). 

 

 

Figure 6.2. System used to study the influence of Fusarium oxysporum Fo162 on 
Arabidopsis thaliana wild type Columbia root length and average diameter.  
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6.2.5. Influence of Fo162 on M. incognita penetration 

 

Two week old Arabidopsis plants placed in 4 cm diameter pots containing 50 g of a mixture 

of autoclaved sand:soil (3:1, v/v), were inoculated with Fo162 or with water (control). The 

inoculum was applied as detailed in Section 6.2.3. Pots were arranged in a completely 

randomized design in a climatic chamber at 25 ± 3 °C with 16 h day-1 supplemental artificial 

light. Each treatment was replicated 10 times and the experiment was repeated. Two weeks 

after fungal inoculation, each plant was inoculated with a 200 µl suspension containing 200 

M. incognita J2. The nematode suspension was dispensed into three 0.5-cm-deep holes 

around the plants. Two weeks after nematode inoculation, nematode penetration was 

determined by staining the roots with 0.1% acid fuchsin solution, followed by heating to 

boiling using a microwave for 1.5 to 2 min (Ferris, 1985; Dababat et al., 2007). After cooling 

for 60 min, excess acid fuchsin was removed by rinsing the roots with tap water. The roots 

were then macerated twice for 10 s in 15 ml water at high speed (11000 rpm) using an Ultra 

Turrax® T25 (Whatman GmbH, Dassel, Germany). The macerated root suspension was 

adjusted to 50 ml with tap water and thoroughly mixed by shaking. From this, two winding-

track counting trays (Hooper et al., 2005) were immediately filled with 10 ml aliquots each. 

The number of penetrated J2 was then counted under a stereomicroscope (100x 

magnification) and the total number of J2 per root system calculated. 

 

6.2.6. Influence of spatial separated inoculation of Fo162 on M. incognita gall formation 

 

Sterile seeds of A. thaliana wild type Columbia were sown in Petri dishes on 2% Knop 

medium. The dishes containing 10 seeds plate-1 were incubated in a climatic chamber at 25 ± 

1 °C with 16 h day-1 supplemental artificial light. Two weeks later, each plant was transferred 

to a 3-section Petri dish containing 15 g of a mixture of autoclaved sand:soil (3:1, v/v) and 5 

ml of sterile water in two of the sections (Fig. 6.3). One week after transplanting, the inducer 

side of the two roots was inoculated with Fo162. The roots at the responder side remained 

untreated. Plants treated with tap water at the inducer side served as controls. The fungus was 

applied as a spore suspension in 1-ml plate-1 at a concentration of 1 x 106 CFU ml-1. The 

inoculum was dispensed in the center of the inducer section. For the water control, 1-ml 
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sterilized water was used. Two weeks after fungal inoculation, the responder root section of 

each plant was inoculated with a 200 µl suspension containing 200 M. incognita J2. The 

nematode suspension was placed at the center of the responder root section. Treatments were 

replicated eight times and the experiment was conducted twice. The plants were arranged in a 

completely randomized design in a growth chamber at 25 ± 1 °C with 16 h day-1 

supplemental artificial light. Twenty days after nematode inoculation, the responder roots 

were collected and carefully washed free from substrate. The number of galls per root system 

was then determined by counting.  

 

 

Figure 6.3. Split-root system used to study systemically induced resistance of Fusarium 

oxysporum strain Fo162 towards Meloidogyne incognita on Arabidopsis. 
 

6.2.7. Induction of host plant systemic resistance by different combinations of chemical 

elicitors on M. incognita gall formation 

 

The ability of two known chemical elicitors to induce systemic resistance in Arabidopsis 

towards M. incognita was investigated using salicylic acid (SA) and methyl jasmonate 

(MeJA). The experiment was setup as outlined in Section 6.2.6 and Fig. 6.3, with the 

following modification: the inducer compartment of the split-root system was treated with 5 
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ml of a mixture of different combinations of SA and MeJA, while the responder section 

received 5 ml of sterile water. Stock solutions of SA and MeJA substrates were prepared with 

concentrations of 20 mM and 10 mM respectively by adding the SA or MeJA to water 

followed by shaking for 1 h on a magnetic stirrer. These stock solutions were stored in the 

dark and used for preparing the desired concentrations (Selim, 2010). 

 

The following mixtures of chemical elicitors were used as treatments (data represent µM of 

SA + µM of MeJA): 

0+0 0+10 0+50 0+100 0+250 

10+0 10+10 10+50 10+100 10+250 

50+0 50+10 50+50 50+100 50+250 

100+0 100+10 100+50 100+100 100+250 

250+0 250+10 250+50 250+100 250+250 

 

One week after treating the inducer sides with the elicitors, the roots at the responder side 

were inoculated with a 200 µl suspension containing 200 M. incognita J2. Treatments were 

replicated four times and the experiment was conducted twice. The plants were arranged in a 

completely randomized design in a growth chamber at 25 ± 1 °C with 16 h day-1 

supplemental artificial light. Twenty days after nematode inoculation, the responder roots 

were collected and carefully washed free from substrate. The number of galls per root system 

was then counted.  
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6.3. Results 

 

6.3.1. Root colonization by Fo162 and influence on growth promotion 

 

Fo162 was successfully re-isolated from Arabidopsis roots four weeks after fungal 

inoculation in two independent experiments (Fig. 6.4). In general, the level of the endophyte 

colonization was similar in both experiments, being 32.17 percent for Experiment 1 and 

28.83 percent for Experiment 2. It was not possible to re-isolate the fungus from control 

plants. Arabidopsis root colonization by Fo162 resulted in a significant increase in plant fresh 

weight, root length and average root diameter in both experiments, when compared to 

endophyte-free plants (Table 6.1 and Fig. 6.5).  

 

6.3.2. Influence of Fo162 on M. incognita penetration 

 

Two weeks after nematode inoculation, M. incognita penetration was reduced significantly 

following Fo162 inoculation in Experiment 1 (P=0.0036) and Experiment 2 (P=0.0025), 

when compared to the nematode penetration of control plants treated with water (Fig. 6.6). 

Nematode penetration was reduced 50 percent in Experiment 1 and 35 percent in Experiment 

2 when compared to the untreated control respectively.  

 

6.3.3. Influence of spatial separated inoculation of Fo162 on M. incognita gall formation 

 

A split-root experiment was used to monitor the ability of Fo162 to reduce systemically M. 

incognita gall development when both organisms were separately inoculated (Fig. 6.3). 

Twenty days after nematode inoculation, M. incognita gall development in the responder 

section of the split-root system was reduced significantly following fungal inoculation in 

Experiment 1 (P=0.010) and Experiment 2 (P=0.0011), when compared to the nematode gall 

development of control plants treated with water (Fig. 6.7).  
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Figure 6.4. Re-isolation of Fusarium oxysporum strain Fo162 from the root system of 
Arabidopsis wild type Columbia, determined four weeks after fungal inoculation. Vertical 
bars represent standard error of the mean values (n=10). 
 

 

Table 6.1. Effect of Fusarium oxysporum Fo162 on plant weight, root length and root 
average diameter of Arabidopsis wild type Columbia.  

 Experiment 1  Experiment 2 

Treatment 
Plant fresh 

weight (mg) 
Root length 

(cm) 
Root average 
diameter (µm)  

Plant fresh 
weight (mg) 

Root length 
(cm) 

Root average 
diameter (µm) 

Control 15.41 ± 1.55a 13.63 ± 1.76 25.12 ± 0.56  17.42 ± 2.56 24.20 ± 5.18 23.68 ± 0.83 

Fo162 24.76 ± 2.61 52.69 ± 4.10 29.54 ± 0.65  25.28 ± 2.79 39.06 ± 3.32 30.33 ± 1.34 

P-valueb 0.0065* <0.0001* 0.0001*  0.0554 0.0301* 0.0008* 
aData represent mean ± standard error. bData with (*) indicates significant differences with 
the t-test for independent samples (P ≤ 0.05, n=10). 
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                    A  

 

   B 

 

Figure 6.5. Selected treatment to illustrate the effect of Fusarium oxysporum Fo162 on 
Arabidopsis shoot (A) and root system (B).  
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Figure 6.6. Effect of Fusarium oxysporum Fo162 on Meloidogyne incognita early root 
penetration in Arabidopsis wild type Columbia. Vertical bars represent standard error of the 
mean values. Means with (*) indicates significant different after t-test for independent 
samples (P ≤ 0.05, n=10). A, Experiment 1 and B, Experiment 2. 
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Figure 6.7. Systemically induced resistance of Fusarium oxysporum strain Fo162 on 
Meloidogyne incognita galls formation in an Arabidopsis split-root system. Vertical bars 
represent standard error of the mean values. Means with (*) indicates significant differences 
after t-test for independent samples (P ≤ 0.05, n=8).  
 

6.3.4. Induction of host plant systemic resistance by different combinations of chemical 

elicitors on M. incognita gall formation 

 

This experiment showed that different combinations of SA and MeJA inhibited M. incognita 

infection on the responder side of the split-root Arabidopsis plants. Twenty days after 

nematode inoculation, the total number of galls per root system was significantly reduced at 

the responder side of the Arabidopsis plants treated with 10 µM SA + 10 µM MeJA, 50 µM 

SA + 10 µM MeJA, 50 µM SA + 250 µM MeJA, 100 µM SA + 0 µM MeJA, at the inducer 

side of the split-root Arabidopsis plants in Experiment 1 (P=<0.0001) and Experiment 2 

(P=<0.0001) (Fig. 6.8, indicated by vertical arrows). In Experiment 1, the reductions in 

number of galls per root system with respect to control plants (0 µM SA + 0 µM MeJA) were 

46, 59, 56 and 54 percent in plants treated with the combinations of 10, 50, 50, 100 µM SA 

with 10, 10, 250, 0 µM MeJA respectively; while in Experiment 2, the reductions in number 

of galls per root system for the treatments combinations of 10, 50, 50, 100 µM SA with 10, 

10, 250, 0 µM MeJA were 18, 27, 22 and 11 percent respectively.  
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Figure 6.8. Salicylic acid (SA) interactions with methyl jasmonate (MeJA) on Meloidogyne 

incognita galls formation at the responder side of a split-root Arabidopsis plant. The inducer 
root section was treated with a mixture of 0, 10, 50, 100, 250 µM SA with 0, 10, 50, 100, 250 
µM MeJA. Number of galls was counted at the responder side of the split-root system 20 
days after nematode inoculation. Data are presented as Log(x+1). Vertical bars represent 
standard error of the mean. Columns with different letters are significantly different based on 
the Scott-Knott test (P≤0.05, n=4). A, Experiment 1 and B, Experiment 2. 
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6.4. Discussion 

 

The results from the current study demonstrated the ability of F. oxysporum Fo162 to 

successfully colonize Arabidopsis roots, resulting in enhanced plant fresh weight, root length 

and root diameter. These results on colonization are similar to those reported by Peskan-

Berghöfer et al. (2004), who demonstrated the ability of Piriformospora indica, an 

endophytic fungus of the Sebacinaceae family, to colonize Arabidopsis roots and to 

stimultate shoot fresh weight and root dry weight. Conversely, Epple et al. (1995) reported 

that wild type Arabidopsis plants grown under lab conditions developed disease symptoms 

after inoculation with F. oxysporum f.sp. matthiolae. Also, the wheat pathogens F. 

graminearum and F. culmorum were shown to develop disease symptoms on wild type 

Arabidopsis plants after inoculation of the flowers (Urban et al., 2002). Interestingly, the 

percentage of Fo162 root colonization was similar to that reported by other authors. Mendoza 

and Sikora (2009) reported that Fo162 colonized banana roots to a level of 25%, while for 

the same fungal isolate Menjivar et al. (2011), Selim (2010) and Martinuz and Sikora (2011) 

reported root colonization rates between 15 to 50% in pepper, melon and tomato. 

 

Arabidopsis plants treated with Fo162 resulted in reduced penetration of M. incognita in the 

root when compared to non-inoculated control plants. These results confirmed the ability of 

Fo162 to repress M. incognita colonization as observed in tests with tomato, melon and 

pepper (Dababat and Sikora, 2007; Menjivar et al., 2011). The level of nematode biocontrol 

encountered in the present research is probably the result of a reduction in attractiveness of 

Arabidopsis to M. incognita. This activity may be a form of resistance that may also be 

induced systemically by Fo162 as reported earlier in tomato (Dababat and Sikora, 2007; 

Selim, 2010). Dababat (2006), Diedhiou et al. (2003) and Selim (2010) also showed that 

Fo162 reduced M. incognita infestation by preventing juveniles from invading the roots and 

by interfering with juvenile development within the root tissue.  

 

The results in the present studies also demonstrated the ability of Fo162 to systemically 

reduce M. incognita infection in Arabidopsis in a split-root system. Similar results for the 

same fungal isolate in tomato was earlier reported by Dababat and Sikora (2007) and 
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Martinuz and Sikora (2011). In both cases, the presence of Fo162 at the inducer side of a 

split-root tomato plant resulted in lower juvenile penetration at the responder side.  

 

In split-root experiments, Selim (2010) demonstrated systemically induced resistance against 

M. incognita in tomato after treatment of the inducer half with F. oxysporum Fo162, SA or 

MeJA. The experiment demonstrated that both jasmonic acid (JA)- and SA- dependent 

signaling pathways were involved in induced resistance towards M. incognita in tomato. 

Therefore, both systemic acquired resistance (SAR) and induced systemic resistance (ISR) 

may be pathways that are involved in increased plant resistance towards the nematode. By 

using triple-split-root tomato plants, Martinuz and Sikora (2011) demonstrated that spatially-

separated but simultaneous inoculation of two different types of endophytes (F. oxysporum 

Fo162 and Rhizobium etli G12) did not lead to additive reductions in M. incognita infection. 

Moreover, spatially-separated inoculation of Fo162 and G12 led to a reduction in fungal root 

colonization. It was discussed that the suppressive activity of G12 on Fo162 and M. incognita 

is possibly related to negative interactions between the JA- and SA-dependent signaling 

pathways, preventing therefore an additive effect on the nematode biocontrol.  

 

The cross-talk between the JA- and SA-dependent signaling pathways towards M. incognita 

was tested through a split-root Arabidopsis plant. This experiment demonstrated that co-

treatments of various concentrations of SA and MeJA at the inducer side resulted in a 

reduction in the number of galls per root system at the responder side of the split-root system. 

This reduction in number of galls was observed when both elicitors were applied at low 

concentrations. 

 

Mur et al. (2006) in studies investigating gene expression and cell death reported similar 

results after treating tobacco and Arabidopsis plants with a mixture of various concentrations 

of SA and JA. They concluded that there was an enhancement in the expression of genes 

associated with either JA (PDF1.2 and Thi1.2) or SA (PR1) signaling when both signals were 

applied at concentrations ranging from 10 to 100 µM. Conversely, antagonism was observed 

at higher concentrations and prolonged treatment times, resulting in cell death.  
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Overall, the results demonstrated that the Arabidopsis–Fo162 interaction is an ideal model 

system for research on plant defense responses towards M. incognita, in the presence of a 

mutualistic endophytic fungus. This system opens the possibility to increase our 

understanding of the molecular basis of microbial induced resistance using a fungus and an 

animal parasite. 

 

6.5. Conclusions 

 

1. The mutualistic endophytic fungus F. oxysporum Fo162 was able to effectively 

colonize Arabidopsis plants. 

2. Arabidopsis plant fresh weight, root length and average root diameter improved after 

plant treatment with the endophyte. 

3. Fo162 caused a significant level of biocontrol activity towards M. incognita in 

Arabidopsis.  

4. In a split-root experiment with Arabidopsis and spatially-separated inoculation of 

both Fo162 and M. incognita, a systemic reduction in the number of galls per root 

system was demonstrated. 

5. In a split-root test with Arabidopsis, co-treatments of various concentrations of SA 

and MeJA at the inducer side resulted in a reduction in the number of galls per root 

system at the responder side of the system. The interactions between the JA- and SA-

dependent signaling pathways therefore are important for the biocontrol of M. 

incognita in Arabidopsis. 
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Chapter 7 

General conclusions 

 

− The variation in the level of biocontrol, mediated by microbial antagonists, is considered 

an important disadvantage for commercial applications. This lack of consistent levels of 

control can be caused by a number of biotic and abiotic factors. For example, the level of 

colonization by the biocontrol agent is affected by abiotic factors such as moisture, 

temperature and pH. Colonization can also be affected by competition with other 

rhizosphere and endosphere organisms for similar habitats in and on the root. Another 

factor that might affect control is related to the fact that normally only a single 

microorganism is applied to the soil, seed or seedling and they usually only have one 

mode of action for control or the target pest or pathogen. 

 

− Therefore, co-inoculation strategies, in which different microorganisms with different 

mechanisms of action are combined, have been suggested as a means of enhancing 

biocontrol activity (El-Tarabily et al., 2000; Sikora et al., 2007; Reimann et al., 2008; 

Sikora et al., 2008; Chaves et al., 2009; Sikora et al., 2010). Combining biocontrol agents 

could result in additive and possibly even synergistic increases in the level of protection 

against nematodes or insects as indicated in previous works (Gadelhak et al., 2005; 

Mendoza and Sikora, 2008; Reimann et al., 2008; Chaves et al., 2009). Whether 

synergistic control levels can be reached has to date not been shown. Thus, the objective 

of the present study was to investigate the interrelationship between Fusarium oxysporum 

strain Fo162 (Fo162), Glomus intraradices strain 510 (AMF) and Rhizobium etli strain 

G12 (G12) when applied together on infection of Meloidogyne incognita and Aphis 

gossypii. This combination includes three organisms from vary different antagonistic 

groups that are considered to have different colonization behavious and most likely 

different mode of action.  

 

− In a large array of experiments designed the following effects were examined: 1) the 

effect of single and dual applications of Fo162 with AMF or G12 on the biocontrol of M. 

incognita in tomato to determined the ability of the antagonists to reduced M. incognita 
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penetration when applied alone or in combination; 2) the ability of Fo162 and G12 to 

reduce systemically M. incognita penetration, when applied to the plant in a spatially-

separated manner and 3) the influence of Fo162 or G12 alone on nematode development. 

 

− As expected, the individual application of each of the biocontrol agents on tomato 

resulted in a significant reduction in the number of root-knot nematodes penetrating the 

roots. However, the combined application of both Fo162 and G12 did not cause an 

additive reduction in nematode penetration. A triple-split-root experiment showed that 

the simultaneous but spatially separated inoculation of both Fo162 and G12 also did not 

lead to a significant difference in M. incognita penetration when compared to the 

individual inoculation. More importantly and unexpectedly, a significant reduction in 

Fo162 root colonization was observed when the plant was colonized simultaneously with 

G12. This demonstrated for the first time that the colonization of an antagonistic 

endophytic fungus can be systemically inhibited by an antagonistic bacterium. Additional 

experiments demonstrated that Fo162 and G12 root colonization reduced the rate of 

development of the nematode from the second stage juvenile to the adult stage in 

endophyte treated plants when compared to the untreated controls. In addition, fungal and 

bacterial endophyte treatments led to a significant reduction in the number of eggs per 

female. 

 

− In further investigations, single and dual applications of Fo162 with AMF or G12 were 

studied on squash to determine the ability of the antagonists to reduced A. gossypii 

populations. Spatially separated dual inoculation of Fo162 and G12 on A. gossypii 

performance also was studied as was the influence of a single application of Fo162 and 

G12 on A. gossypii host preference. 

 

− The individual application of each of the antagonists on squash resulted in a significant 

reduction of A. gossypii final population. However, concomitant inoculations with Fo162 

together with AMF or with G12 did not lead to significantly higher reductions. A split-

root experiment showed that the simultaneous but spatially separated inoculation of both 

endophytes reduced the aphid population in comparison to untreated squash plants. 
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Nevertheless, the concomitant treatment again did not lead to significant additive nor 

synergistic additive levels of biocontrol activity with respect to reducing the aphid 

population when compared to individual inoculation. A pair wise choice experiment with 

intact squash plants demonstrated that A. gossypii preferred to feed on endophyte-free 

plants than on the endophyte-inoculated plants; when plants inoculated with Fo162 and 

G12 were paired, the majority of A. gossypii was found on G12-inoculated plants. 

 

− The results demonstrated that competition between the antagonistic microorganisms, both 

in or on the root system, could lead to direct or indirect competition and thereby reduced 

colonization and/or activity of one or more of the microorganisms being used to enhance 

biological control efficacy through co-inoculation. The interaction between the fungus 

Fo162 and the bacteria G12 was then analyzed in vitro and in vivo. Antibiosis tests 

showed that there was a significant reduction in radial growth of Fo162 when challenged 

with G12 and that this reduction in radial growth was positively correlated with the 

bacterial incubation period. Greenhouse experiments with tomato indicated that 

simultaneous inoculation of Fo162 and G12 resulted in reduction of Fo162 root 

colonization, indicating that fungal colonization can be directly inhibited by the presence 

of the bacteria. In an additional split-root experiment, spatial separation of Fo162 and 

G12 again resulted in a reduction of Fo162 root colonization, indicating that the fungus 

can also be systemically inhibited by the bacterium. 

 

− Overall, the results demonstrated that antagonists not only induce resistance to a target 

pest but can also have side-effects on other organisms present in or on the plant. It also 

showed the need to test for incompatibility between microbial biocontrol agents when 

considering a co-inoculation strategy. 

 

− The plant defense responses towards M. incognita triggered by the endophyte Fo162 

were further studied on the model plant Arabidopsis thaliana. The initial experiments 

analyzed the ability of Fo162 to colonize Arabidopsis roots and its effect on plant growth 

parameters. In the second set of experiments the ability of Fo162 to reduced M. incognita 

penetration, when applied single or in a spatially-separated way to the same plant, was 



Chapter 7                                                                                                    General conclusions 

 115

studied. Finally, the effect of inducing host plant systemic resistance using different 

combinations of chemical elicitors on root gall formation of M. incognita was examined. 

 

− The results demonstrated the ability of Fo162 to successfully colonize Arabidopsis roots, 

resulting in enhanced plant fresh weight, root length and root diameter. Arabidopsis 

plants treated with Fo162 resulted in reduced penetration of M. incognita in the root 

when compared to non-inoculated control plants. A split-root experiment showed that the 

simultaneous but spatially separated inoculation of both Fo162 and M. incognita lead to a 

significant reduction in the number of galls per root system when compared to the water 

control. 

 

− In a split-root experiment, concomitant treatments of various concentrations of salicylic 

acid (SA) and methyl jasmonate (MeJA) at the inducer side resulted in a reduction in the 

number of galls per root system at the responder side of the system. The interactions 

between the JA- and SA-dependent signaling pathways therefore are important for the 

biocontrol of M. incognita in Arabidopsis. Overall, the results demonstrated that the 

Arabidopsis–Fo162 interaction is an ideal test system for research on microbial induced 

plant defense responses towards the root-knot nematode M. incognita. This system opens 

the possibility to increase our understanding of the molecular basis of microbial induced 

resistance using a fungal antagonists and a highly specialize sedentary plant parasitic 

nematode. 
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