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Zusammenfassung

Hierarchische und räumliche Strukturen zur Interpretation von Bildern
anthropogener Szenen unter Nutzung graphischer Modelle

Ziel der semantischen Bildinterpretation ist es, Bildregionen und ihre gegenseitigen
Beziehungen zu kennzeichnen und in sinnvolle Klassen einzuteilen. Dies ist eine der
Hauptaufgabe in vielen Bereichen des maschinellen Sehens, wie zum Beispiel der Objek-
terkennung, 3D Rekonstruktion oder der Wahrnehmung von Robotern. Insbesondere
Bilder anthropogener Szenen, wie z.B. Fassadenaufnahmen, sind durch starke räum-
liche und hierarchische Strukturen gekennzeichnet. Diese Strukturen zu modellieren ist
zentrale Teil der Interpretation, für deren statistische Modellierung graphische Mod-
elle ein geeignetes konsistentes Werkzeug darstellen. Bayes Netze und Zufallsfelder
sind zwei bekannte und häufig genutzte Beispiele für graphische Modelle zur Erfassung
kontextabhängiger Informationen. Die Motivation dieser Arbeit liegt in der Überzeu-
gung, dass wir eine generische Formulierung der Bildinterpretation mit klarer seman-
tischer Bedeutung finden können, die die Vorteile von Bayes Netzen und Zufallsfeldern
verbindet.

Der Hauptbeitrag der vorliegenden Arbeit liegt daher in der Entwicklung eines
generischen statistischen graphischen Modells zur Bildinterpretation, welches unter-
schiedlichste Typen von Bildmerkmalen und die räumlichen sowie hierarchischen Struk-
turinformationen über eine multiskalen Bildsegmentierung integriert. Das Modell vere-
inheitlicht die existierender Arbeiten zugrunde liegenden Ideen, wie bedingter Zufalls-
felder (conditional random field (CRF)) und Bayesnetze (Bayesian network (BN)).
Dieses Modell hat eine klare statistische Interpretation als Maximum a posteriori (MAP)
Schätzer eines mehrklassen Zuordnungsproblems. Gegeben die Struktur des graphis-
chen Modells und den dadurch definierten Faktorisierungseigenschaften leiten wir die
Wahrscheinlichkeitsverteilung des Modells ab. Dies führt zu einer Energiefunktion,
die näherungsweise optimiert werden kann. Der jeweilige Typ der Bildmerkmale, die
räumliche sowie hierarchische Struktur ist von dieser Formulierung unabhängig.

Wir zeigen die Anwendung des vorgeschlagenen graphischen Modells anhand der
mehrklassen Zuordnung von Bildregionen in Fassadenaufnahmen. Wir demonstrieren,
dass das vorgeschlagene Verfahren zur Bildinterpretation, durch die Berücksichtigung
räumlicher sowie hierarchischer Strukturen, signifikant bessere Klassifikationsergeb-
nisse zeigt, als klassische lokale Klassifikationsverfahren. Die Leistungsfähigkeit des
vorgeschlagenen Verfahrens wird anhand eines öffentlich verfügbarer Datensatzes evalu-
iert. Zur Klassifikation der Bildregionen nutzen wir ein Verfahren basierend auf einem
effizienten Random Forest Klassifikator. Aus dem vorgeschlagenen allgemeinen graphis-
chen Modell werden konkret zwei spezielle Modelle abgeleitet, ein hierarchisches bed-
ingtes Zufallsfeld (hierarchical CRF) sowie ein hierarchisches gemischtes graphisches
Modell. Wir zeigen, dass beide Modelle bessere Klassifikationsergebnisse erzeugen als
die zugrunde liegenden lokalen Klassifikatoren oder die einfachen bedingten Zufalls-
felder.



Abstract

Hierarchical and Spatial Structures for Interpreting Images of Man-made
Scenes Using Graphical Models

The task of semantic scene interpretation is to label the regions of an image and their
relations into meaningful classes. Such task is a key ingredient to many computer vision
applications, including object recognition, 3D reconstruction and robotic perception.
It is challenging partially due to the ambiguities inherent to the image data. The
images of man-made scenes, e. g. the building facade images, exhibit strong contextual
dependencies in the form of the spatial and hierarchical structures. Modelling these
structures is central for such interpretation task. Graphical models provide a consistent
framework for the statistical modelling. Bayesian networks and random fields are two
popular types of the graphical models, which are frequently used for capturing such
contextual information. The motivation for our work comes from the belief that we can
find a generic formulation for scene interpretation that having both the benefits from
random fields and Bayesian networks. It should have clear semantic interpretability.

Therefore our key contribution is the development of a generic statistical graphical
model for scene interpretation, which seamlessly integrates different types of the image
features, and the spatial structural information and the hierarchical structural infor-
mation defined over the multi-scale image segmentation. It unifies the ideas of existing
approaches, e. g. conditional random field (CRF) and Bayesian network (BN), which
has a clear statistical interpretation as the maximum a posteriori (MAP) estimate of
a multi-class labelling problem. Given the graphical model structure, we derive the
probability distribution of the model based on the factorization property implied in
the model structure. The statistical model leads to an energy function that can be
optimized approximately by either loopy belief propagation or graph cut based move
making algorithm. The particular type of the features, the spatial structure, and the
hierarchical structure however is not prescribed.

In the experiments, we concentrate on terrestrial man-made scenes as a specifically
difficult problem. We demonstrate the application of the proposed graphical model on
the task of multi-class classification of building facade image regions. The framework for
scene interpretation allows for significantly better classification results than the stan-
dard classical local classification approach on man-made scenes by incorporating the
spatial and hierarchical structures. We investigate the performance of the algorithms
on a public dataset to show the relative importance of the information from the spatial
structure and the hierarchical structure. As a baseline for the region classification, we
use an efficient randomized decision forest classifier. Two specific models are derived
from the proposed graphical model, namely the hierarchical CRF and the hierarchical
mixed graphical model. We show that these two models produce better classification
results than both the baseline region classifier and the flat CRF.
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Chapter 1

Introduction

Everything you can imagine is real.

-Pablo Picasso (1881 - 1973)

1.1 Motivation

The problem of scene interpretation in terms of classifying various image components,
say pixels, regions, or objects, in the images is a challenging task partially due to the
ambiguities in the appearance of the image data (Tsotsos, 1988). These ambiguities
may arise either due to the physical conditions such as the illumination and the pose of
the scene components with respect to the camera, or due to the intrinsic nature of the
data itself. Images of man-made scenes, e. g. building facade images, exhibit strong
contextual dependencies in the form of spatial interactions among the components.
Neighbouring pixels tend to have similar class labels, and different regions appear in
restricted spatial configurations. Modelling these spatial structures is crucial to achieve
good classification accuracy, and help alleviate the ambiguities. For example, as shown
in Fig. 1.1 on page 2, one region from a chimney may locally appear very similar to
another region from a building facade. With the help of neighbouring spatial context,
it is more likely that the object between the roof and the sky is a chimney.

Graphical models, either directed models or undirected models, provide consistent
frameworks for the statistical modelling. Two types of graphical models are frequently
used for capturing such contextual information, i. e. Bayesian networks (BNs) (Sarkar
& Boyer, 1993) and random fields (RFs) (Besag, 1974), corresponding to directed and
undirected graphs. RFs mainly capture the mutually dependent relationships such as
the spatial correlation. Attempts were made to exploit the spatial structure for semantic
image interpretation by using RFs. Early since nineties, Markov random fields (MRFs)
have been used for image interpretation (Modestino & Zhang, 1992); the limiting fac-
tor that MRFs only allow for local features has been overcome by conditional random

1



1. INTRODUCTION

Figure 1.1: Classification of image regions is difficult due to the ambiguities in their
appearance. The chimney region (upper red square patch) and the facade region (lower
red square patch) look very similar. Neighbouring spatial context, such as the object
between the roof and the sky more likely to be a chimney region than a building region,
can help resolve these ambiguities. (Best view in colour.)

fields (CRFs) (Lafferty et al., 2001; Kumar & Hebert, 2003a), where arbitrary features
can be used for classification, at the expense of a purely discriminative approach. On
the other side, BNs usually model the causal relationships among random variables.
Early in nineties, Sarkar & Boyer (1993) have proposed the perceptual inference net-
work with the formalism based on Bayesian networks for geometric knowledge-base
representation. Both have been used to solve computer vision problems, yet they have
their own limitations in representing the relationships between random variables. BNs
are not suitable to represent symmetric relationships that mutually relate random vari-
ables. RFs are natural methods to model symmetric relationships, though not restricted
to symmetric relations (cf. Korč 2011), but they are not suitable to model causal or
part-of relationships.

Furthermore, for the real world vision problems, there are often complex relation-
ships among the image entities. Fig. 1.2 on page 3 shows a synthetic example of image
classification to illustrate this situation. Two layers are connected via overlap of the
regions from the multi-scale segmentation. The hierarchical part-of relations can be
captured by the directed edges. In the meantime, neighbouring region relationships
representing the interactions between the spatial regions, can be captured by the undi-
rected edges. Capturing and exploiting these spatial and hierarchical relationships are
very important in solving some difficult computer vision problems. The aim of the
thesis is to develop a consistent graphical model framework, which generalizes RFs and
BNs, and apply this framework to scene interpretation to demonstrate its potential.

2



1.2 Goal and achievements of the thesis

1 2

3 4 5

Figure 1.2: A synthetic example of image classification to illustrate the complex re-
lationships among the image entities. Each number represents one image region. The
spatial neighbouring region relationships are modelled by the undirected edges, while the
hierarchical part-of relations are modelled by the directed edges.

1.2 Goal and achievements of the thesis

The goal of this work is to perform the semantic scene interpretation task, which is
to label regions of an image and their relations into meaningful classes. Such task is
a key ingredient to many computer vision applications, including object recognition,
3D reconstruction and robotic perception. The key achievement is a sound consistent
probabilistic graphical model framework for the classification problem, which unifies
conditional random fields and Bayesian networks by incorporating the spatial struc-
ture and the hierarchical structure. The key idea for integrating the spatial and the
hierarchical structural information into the interpretation process is to combine them
with the low-level region class probabilities in a classification process by constructing
the graphical model on the multi-scale image regions.

1.3 Application domain

Applications of graphical models are numerous, including information extraction, speech
recognition, computer vision, medical disease diagnosis, and protein structure classi-
fication. Although our method is applicable to each of these problems, we will focus
on semantic scene interpretation, where the goal is the interpretation of the scene con-
tained in an image as a collection of meaningful regions. As a specifically difficult
problem, we direct our attention to terrestrial man-made scenes, i. e. building facade
images. Building facades may appear as a narrow domain, yet facades comprise a mul-
titude of object structures in terms of varying configurations of storeys, window arrays,
balconies, entrance ensembles, and simultaneously a multitude of object appearances.
Fig. 1.3 on page 4 shows a selection of some facades with moderate variability. There
are single windows, but simultaneously window arrays, balcony windows and entrance
windows. Windows constitute more than 50% of all facade objects but are almost in-

3



1. INTRODUCTION

Figure 1.3: Some example images of terrestrial man-made scenes: a selection of some
building facade images. From these images, we see the facades comprise a multitude of
object structures in terms of varying configurations of window arrays, entrance ensembles,
and simultaneously a multitude of object appearances.

conclusive regarding possible aggregates of which they might be a part. The structural
variability has the natural consequence for probabilistic models. Both, the probabilities
for the existence of aggregates given certain parts, and the probabilities for particular
spatial relations between parts are not very decisive.

1.4 Challenges in image interpretation

In this section, we highlight the challenge issues that image interpretation faces.
Many satisfactory studies on image interpretation have been presented since the

nineties (Modestino & Zhang, 1992; Kumar & Hebert, 2003a; Dick et al., 2004), yet it
remains an unsolved problem, because possibly it is one of the most challenging and
ambitious problems in computer vision. Humans are able to recognize a tree even if
it is far away from a building, or if it is very close to a building. The same tree has
different appearances depending on the season of the year: it has no leaves in winter,
brown leaves in autumn, green leaves in spring etc., which humans can recognize in all
these situations. Humans can recognize and interpret objects in many different scenes,
but for machines this is far from an easy task. Here are the major aspects we have to
take into account to perform an image interpretation task.

Illumination change in the images is critical for image interpretation. For example, if
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Figure 1.4: Illumination challenge: three building scenes affected by different illumination
conditions. Left : a snowy day scene. Middle: a cloudy day scene. Right : a night scene.

Figure 1.5: Intra-class & Inter-class variation problem. Left : different windows present
high intra-class variation, and there are windows with different sizes, windows with rolling
shutter. Right : the pavement looks very similar to the road on the ground level, and there
is no clear border between road and pavement.

we look at Fig. 1.4, we can recognize three building scenes even though the illumination
in all images is rather different. So we have to consider that it must also be able to
recognize objects and scenes under different illumination conditions.

Intra-class variability is also one reason. Identifying instances of general scene
classes is an extremely difficult problem, partly because of the variations among in-
stances of many common object classes, many of which do not afford precise definitions.
For example, a window can appear in different positions, in different shapes, with or
without rolling shutter, as shown in Fig. 1.5 Left. This means we need an approach
that can generalize across all possible instances of a certain class.

Inter-class variability within the model is another major difficulty. We do not want
to confuse between scenes of different classes that are quite similar. For example, the
pavement and road are not labelled as the same class and we can see in Fig. 1.5 Right
that would easily be confused.

5
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Figure 1.6: Appearance variation problem. Left : flowers in front of windows as decorative
objects. Middle: tree branches occluding the building and the sky. Right : windows
reflecting tree branches, which are not even seen in this image.

Variability of appearances also exists in most of the vision tasks. For the scene
interpretation task, the following three appearance variation problems exist extensively:
decorative objects, occluded objects, and reflective objects. Three examples are given
in Fig. 1.6.

Scale invariance is also important to take into account for the scene interpretation
problem. We can have images with a balcony in front of us, or images with a balcony
far away and in both cases it is a balcony class that the system must classify. We can
also have some objects ( e. g. a building) which appear at different scales in the images.

Furthermore, for the scene interpretation task there are other factors related to
the human perception on which we would like to comment: the ambiguities and the
subjectivity of the viewer. The obtainable classification accuracies depend strongly on
the consistency and accuracy of the manual annotations, and sometimes annotation
ambiguities are unavoidable.

Apart from the above mentioned problems, different approaches (Feng et al., 2002;
Kumar & Hebert, 2003a; Mortensen & Jia, 2006; Toyoda & Hasegawa, 2008) have
been developed for capturing the probabilistic nature of structural information. In one
class of approaches, the spatial structures of man-made scenes are modelled by means of
Markov random fields and conditional random fields. In another class of approaches, the
probabilistic structures of aggregates are modelled by Bayesian networks. Providing an
unified probabilistic framework integrating both random fields and Bayesian networks
will be a key challenge.

We try to address and resolve these challenges using a generic graphical model
framework, by exploiting spatial and hierarchical structures in the images.

1.5 Outline

This thesis is organized as follows:

Previous work In Chapter 2, we start by introducing some previous work on in-
terpreting images of man-made scenes, and work on the approaches for facade inter-
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pretation. Then, we review some classification methods based on Bayesian networks,
Markov random fields, and conditional random fields. At the end, we discuss some
techniques concerning integration of random fields and Bayesian networks. The review
will show the strengths and weaknesses of previous attempts to solve the interpretation
problem.

Theoretical basis In Chapter 3, we present a theoretical basis needed for this thesis.
First, we survey some of the basic notations in graph theory. Then, we introduce two
graphical frameworks for representing probability distributions, i. e. Bayesian networks
and random fields, corresponding to directed and undirected graphs. In addition, we
introduce two approaches to build relations between them: a moral graph, which con-
verts a directed graph to an undirected graph; a factor graph, which could represent
both directed and undirected graphical models.

A generic framework for image interpretation of man-made scenes In Chap-
ter 4, we develop a generic graphical model framework for scene interpretation that in-
cludes both information about the spatial structure and the hierarchical structure. We
start by constructing the graphical model. The graphical model could consist of either
the directed edges or the undirected edges. We can parametrize the directed edges by
conditional probabilities, and the undirected edges by potential functions. Then, the
statistical model is formulated as a multi-class labelling problem, where we derive the
corresponding energy function. We compare our model with the previous models and
show that at certain choices of the parameters of our model, these methods fall out
as special cases. We also derive particular models for the energy potentials and the
conditional probability energy that are suited well for scene interpretation. We derive
the features from each region obtained from the unsupervised segmentation algorithm,
and employ a classifier to calculate the label distribution for the local unary potential.
We give one particular formulation for each of the pairwise potentials and the condi-
tional probability energy. Finally, we discuss the learning and the inference issues of
this graphical model.

Experimental results In Chapter 5, we present a number of experimental results
that characterize the performance of the proposed model, and demonstrate the appli-
cation of the proposed model on building facade image classification.

Conclusion and future work In Chapter 6, we give the concluding remarks and
discuss the limitations and some potential future directions.

1.6 Notation

A list of frequently used mathematical symbols is given in Table 1.1. It covers the
major part of symbols occurring in this thesis.
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With a few exceptions, we will denote sets by calligraphic uppercase letters, vectors
by bold lowercase letters, and matrices by bold uppercase letters. Elements of a set
are either represented by their index, or the same letter as the set itself and carry their
index as a lower right subscript. The first element in a set has index 1. For example,
the set V representing a set of nodes in a graph is {1, · · · , i, · · · , n}.

Finally, we denote the discrete probability of a random variable x by P (x = x),
abbreviated as P (x).

Table 1.1: List of mathematical symbols and notation.

symbol meaning

G graph
V set of nodes
A set of directed edges
E set of undirected edges
D directed graph
H undirected graph
Pai parents of the node i
Chi children of the node i
Ni neighbours of the node i
N neighbourhood system of the random field
(i, j) node j is the child of node i and i is the parent of j
{i, j} nodes i, j are neighbours
〈i, j〉 nodes i, j are adjacent

x1, · · · ,xn random variables (vectors)
{xi, i ∈ V} a set of variables, defined over a graph
x compound random vector containing all the random vectors
Pa(xi) the random variable, associated with the parent of the node i
E(·) Gibbs energy function
c clique
C the set of cliques
φ(·) potential function
Z partition function (normalization constant)
F factor graph
fs(·) a factor function
h feature sets
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Chapter 2

Previous Work

The stones of those hills, May be made into grind-stones.

The stones of those hills, May be used to polish gems.

-He Ming, Minor odes of the kingdom

The Book of Odes (1100 B.C. - 600 B.C.)

In this chapter we will review the most recent and significant work in the fields of
image interpretation of man-made scenes, Markov random fields, conditional random
fields, and Bayesian networks. The review will show the strengths and weaknesses
of previous attempts to solve the interpretation problem. We start by introducing
some previous work on interpreting images of man-made scenes, and work on the ap-
proaches for facade interpretation. Then, we review some classification methods based
on Bayesian networks, Markov random fields, and conditional random fields. At the
end of this chapter, we discuss some work concerning integration of random fields and
Bayesian networks.

2.1 Interpreting images of man-made scenes

Automatic interpretation of man-made scenes and particularly building facades has
been a consistent interest early since eighties. As an often cited early approach for
the extraction of buildings, Herman & Kanade (1984) uses AI-focused 3D-reasoning
and heuristics about the vertical and horizontal directions of lines to extract buildings
as rectangular prisms. Comprehensive study and comparison of automatic building
extraction can be found in Mayer (1999).

Early attempts to 3D city modelling are based on sets of prototypes or parametrized
geometrical models (Fischer et al., 1997) with the possibility of aggregation (Fischer
et al., 1999), on the restriction to roof structures (Brenner et al., 2001) made possi-
ble by using the ground planes of the buildings from a 2D GIS. Practical approaches
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are clearly interactive, e. g. InJect (Gülch et al., 1998), CyberCityModeler (Gruen &
Wang, 1999), with some support by automatic procedures. Modelling the architecture
of complete building blocks by using generative models (Dick et al., 2004) pushes theo-
retical research onto a new level. Dick et al. (2004) describe the automatic acquisition
of 3D architectural models for reconstruction from images, which introduces reversible
jump Markov Chain Monte Carlo (MCMC) techniques for estimation. A building is
described as a set of walls together with a ’Lego’ kit of parameterised primitives, such
as doors or windows. A prior on wall layout, and a prior on the parameters of each
primitive are defined. Part of this prior is learned from training data and part comes
from expert architects. Their model, however, only consists of walls and primitives.
Mayer & Reznik (2006, 2007) use image data. They get special information using im-
plicit shape models by means of MCMC and plane sweeping for the reconstruction of
windows in a building facade. But, MCMC based techniques are quite slow for conver-
gence in general. Frahm et al. (2010) present a system approaching fully automatic 3D
modelling of large-scale environments. The system achieves high computational per-
formance through algorithmic optimizations for efficient robust estimation, the use of
image-based recognition for efficient grouping of similar images, and two-stage stereo
estimation for video streams that reduces the computational cost while maintaining
competitive modelling results. All the aforementioned approaches only exploit a coarse
scale of level of detail (LOD) in building modelling. They fall into geometric modelling
category, not semantic modelling. In the similar spirit of the methods discussed above,
but being closer to ours, there is a work of Micusik & Kosecka (2010), which presents
an approach utilizing properties of piecewise planarity and restricted number of plane
orientations to suppress reconstruction and matching ambiguities. The problem of the
3D reconstruction is formulated as an MRF framework. Similar to our work where we
choose image regions as an image representation, they choose superpixels as an im-
age representation. Our work, focusing on semantic image classification, could be an
important pre-step for 3D city modelling, where the resulting 3D model has semantic
meanings for each element.

Facade classification is an important subtask for scene interpretation and auto-
matically building large 3D city models. Despite the substantial improvements during
the past decade, the classification of building facade images remains a challenging
problem, which receives a great deal of attention in the photogrammetry community
(Rottensteiner et al., 2007; Korč & Förstner, 2008; Micusik & Kosecka, 2009; Fröhlich
et al., 2010; Kluckner & Bischof, 2010; Teboul et al., 2010). Micusik & Kosecka (2009)
present an approach for image semantic segmentation of street scenes into coherent
regions. They introduce an explicit model of spatial co-occurrence of visual words as-
sociated with superpixels and utilization of appearance, geometry and contextual cues
in a probabilistic framework yielding a second-order MRF with unary and binary func-
tions. The weighting parameters of the unary and binary terms are set manually, while
in our setting, these parameters are learned from training images automatically. They
use image sequences and employ 3D geometric information from Structure-from-Motion
estimation to improve the recognition accuracy. In our experiments, we only have single
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images, no image sequences. Multi-class facade segmentation by combining a machine
learning approach with procedural modelling as a shape prior is presented by Teboul
et al. (2010). Generic shape grammars are constrained so as to express buildings only.
Randomized forests are used to determine a relationship between the semantic elements
of the grammar and the observed image support. Fröhlich et al. (2010) also show a pix-
elwise labelling method of facade images using an efficient randomized decision forest
classifier and the robust local opponent-SIFT features (van de Sande et al., 2010). Both
Teboul et al. (2010) and Fröhlich et al. (2010) show that a randomized decision forest is
a good local classifier for image classification, therefore, we also employ a randomized
decision forest as the local classifier for our graphical model. However, Fröhlich et al.
(2010) only exploit local features, no spatial neighbourhood information is considered.
While Teboul et al. (2010) use shape grammars to impose global constraints, the gram-
mars lack flexibility compared to the pairwise potential functions in Markov random
fields. Drauschke & Mayer (2010) evaluate the potential of seven texture filter banks
for the pixel-based classification of terrestrial facade images. They provide some useful
features for our scene interpretation task.

In recent years, mobile mapping systems increasingly provide terrestrial data, which
changes the focus on facades. Due to their specific structure models based on gram-
matical rules have been developed, exploiting the long tradition in natural language
understanding. Stochastic attribute grammars (Abney, 1997) have evolved and today
appear as generalizations of Markov random fields and Bayesian networks, cf. (Liang
et al., 2009). Müller et al. (2006) introduce split grammars in order to model the
structure of 2D facades and 3D buildings by irregular tessellations and hierarchical
volumetric models. Becker (2009) adapts and extends this approach for the reconstruc-
tion of facades from terrestrial images and 3D point clouds, and learns context-free
production rules. Ripperda & Brenner (2009) use formal grammars and a reversible
jump Markov chain Monte Carlo approach to estimate the building model parame-
ters. Integrating graphical models and the grammar is an ongoing research direction.
Liang et al. (2009) present a nonparametric Bayesian generalization of the probabilistic
context-free grammars based on the hierarchical Dirichlet process. Schmittwilken et al.
(2009) propose a concept for integration of low- and high- level reasoning for the inter-
pretation of images of man-made objects including a one-layer-graphical model for mid
level reasoning integrated with a stochastic grammar for simple aggregates of facade
objects. A single image reconstruction of building scenes is promised in Koutsourakis
et al. (2009). The authors use a special shape grammar which translates to a tree-
based MRF. For the work of this thesis, we will not address the problem of integrating
graphical models and the grammar. We put this as a future work.

Many man-made and natural structures consist of similar elements arranged in reg-
ular patterns. Hartz & Neumann (2007) show that ontological concept descriptions
for spatially related objects and aggregates can be learned from positive and negative
examples. Using examples from the buildings domain, the authors show that learned
aggregate concepts for window arrays, balconies and other structures can be success-
fully applied to discover repetitive patterns of objects. Hartz et al. (2009) introduce an
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automatic way of incremental model learning for the interpretation of complex scenes
by using annotated examples. The authors present a learning, interpretation, and eval-
uation cycle to deal with repetitive patterns of objects. Spinello et al. (2010) present an
unsupervised approach for discovering and reasoning on repetitive patterns of objects
in a single image. CRFs are used as a formalism to predict the location of elements
at places where they are partially occluded or detected with very low confidence. Wu
et al. (2010) present a robust framework to analyse large repetitive structures in urban
scenes, which finds the salient boundaries of the repeating elements even when the rep-
etition exists along only one direction. Wendel et al. (2010) introduce an approach for
segmenting individual facades from streetside images, which incorporates prior knowl-
edge about arbitrarily shaped repetitive regions. These repetitive regions are detected
using intensity profile descriptors and a voting-based matcher. In Yang et al. (2010b);
Yang et al. (2011), the authors present a general scheme for automatically aligning
two widely separated 3D scenes via the use of the viewpoint invariant features. The
viewpoint invariant features provide robust local feature information including patch
scale and dominant orientation for effective repetitive structure matching in man-made
environments. Our work focus on probabilistic graphical modelling. So, we do not
have to deal with repetitive structures in the scene. However, if repetitive structures
are detected ( e. g. a window detector (Wenzel & Förstner, 2008)) and serve as priors,
better classification results will surely be achieved.

The cited works, which are far from complete, show the progress regarding the
particular methods which contribute to the overall problem of interpreting man-made
scenes. For a long time, the difficulty of interpreting man-made scenes has been under-
estimated. The main reason is the high variability of man-made structures and their
appearance, and the resulting complexity of the acquired data. In this thesis, we try to
address these challenges by exploiting spatial and hierarchical structures in the images
of man-made scenes. We focus on probabilistic graphical models, e. g. Markov random
fields (MRFs) and Bayesian networks (BNs), which can be employed for modelling the
spatial structures and the partonomies.

2.2 Previous work on Markov and conditional random
fields

Markov random fields (MRFs) are the most commonly used undirected graphical mod-
els in computer vision, which allow one to incorporate local contextual information in
a principled manner. MRFs have been made popular in computer vision by the early
work of Besag (1974); Geman & Geman (1984); Besag (1986). Their limiting factor
that they only allow for local image features has been overcome by conditional random
fields (CRFs) (Lafferty et al., 2001; Kumar & Hebert, 2003a), where arbitrary features
can be used for classification, at the expense of a purely discriminative approach. In
this section, we review most recent works on MRFs and CRFs that address the spatial
neighbourhood relationships, the combination of global and local features, the higher
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order potentials, and the hierarchical relationships.

There are many recent works on contextual models that exploit the spatial depen-
dencies between the objects. For this, several authors explore MRFs and CRFs for the
probabilistic modelling of local dependencies, e. g. (Modestino & Zhang, 1992; Barnard
& Forsyth, 2001; Kumar & Hebert, 2003a; He et al., 2006; Shotton et al., 2006). The
goal of these works is to label every pixel in the image with a single class label. Typ-
ically, these algorithms construct (conditional) Markov random fields over the pixels
with a unary term based on pixel appearance and a pairwise smoothness term to en-
courage neighboring pixels to take the same label. The works differ in the details of the
energy functions and the inference algorithms used. Kumar & Hebert (2003a) present a
discriminative conditional random field framework for the classification of image regions
by incorporating neighbourhood interactions in the labels as well as the observed data.
The advantage of this model is its flexibility in using any type of class relevant observa-
tions, especially such which allow to discriminate between classes. This in general leads
to much better classification results than achievable with MRFs. The disadvantage is,
common with all discriminative models, that incremental learning is at least difficult,
if not impossible. Shotton et al. (2006) propose an approach for learning a discrimina-
tive model of object classes, incorporating texture, layout, and contextual information.
Unary classification and feature selection is achieved using a boosting scheme. Image
segmentation is achieved by incorporating the unary classifier in a CRF, which captures
the spatial interactions between class labels of neighboring pixels. They use an absolute
location prior as a feature in their probabilistic construction, which we also adopt this
idea. They only use local features, while we use both local and global features in our
approaches. Levin & Weiss (2006) propose an approach that learns a CRF to combine
bottom-up and top-down cues for class specific object segmentation. A similar purpose
serves the harmony potentials, proposed by Gonfaus et al. (2010). They impose global
shapes as a top-down cue, however, generalizing their binary classification formulation
to a multi-class classification task is not straightforward.

A number of CRF models for image interpretation address the combination of global
and local features (Brunn & Weidner, 1997; He et al., 2004; Yang et al., 2007; Reynolds
& Murphy, 2007; Gould et al., 2008; Toyoda & Hasegawa, 2008; Plath et al., 2009;
Schnitzspan et al., 2009). They showed promising results and specifically improved
performance compared with making use of only one type of feature - either local or
global. He et al. (2004) propose a multi-layer CRF to account for global consistency,
which shows improved performance. The authors introduce a global scene potential to
assert consistency of local regions. Thereby, they are able to benefit from integrating the
context of a given scene. This method infers a single scene context and do not allow
the discovery of one class to influence the probability of finding others. Yang et al.
(2007) propose a model that combines appearance over large contiguous regions with
spatial information and a global shape prior. The shape prior provides local context
for certain types of objects ( e. g. cars and airplanes), but not for regions representing
general objects ( e. g. animals, buildings, sky and grass). Gould et al. (2008) propose
a method for capturing global information from inter-class spatial relationships and
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encoding it as a local feature. Toyoda & Hasegawa (2008) present a proposal of a
general framework that explicitly models local and global information in a CRF. Their
method resolves local ambiguities from a global perspective using the global image
information. It enables locally and globally consistent image recognition. But their
model needs to train on the whole training data simultaneously to obtain the global
potentials, which results in high computational time.

Besides the above approaches, there are more popular methods to solve multi-class
classification problems using higher order conditional random fields (Kohli et al., 2007,
2009; Ladicky et al., 2009). Kohli et al. (2007) introduce a class of higher order clique
potentials called Pn Potts model. The higher order potential functions proposed in
Kohli et al. (2009) take the form of the Robust Pn model, which is more general than the
Pn Potts model. The higher order potentials, motivated by overcoming the smoothing
properties of the CRFs with pairwise potentials, have been used to integrate results
from multiple segmentations, to obtain crisper boundaries, and to improve the error
due to an incorrect initial segmentation. Ladicky et al. (2009) generalize the Robust Pn

model to Pn based hierarchical CRF model. Inference in these models can be performed
efficiently using graph cut based move making algorithms. However, the work on solving
higher order potentials using move making algorithms has targeted particular classes of
potential functions. Developing efficient large move making for exact and approximate
minimization of general higher order energy functions is a difficult problem. Parameter
learning for a higher order CRF is also a challenging problem. Delong et al. (2010)
propose the use of a soft cost over the number of labels present in an image for clustering.
Their work extends α-expansion so that it can simultaneously optimize label costs as
well. Ladicky et al. (2010) consider a class of global potentials defined over all variables
in the CRF model. They add one cue called global object co-occurrence statistics, a
measure of which classes (such as chair or motorbike) are likely to occur in the same
image together. These approaches for capturing global contextual information about
spatial co-occurrence of different class label are meaningful when the number of classes
per image and the change of the viewpoint are relatively small as in the MSRC dataset
(Shotton et al., 2006). There, the cows typically appear next to grass and below the
sky. In the man-made scenes with the larger number of object class appearing in the
same image, these types of contextual relationships are no longer so persistent (Micusik
& Kosecka, 2009) (cf. Fig. 1.3 on page 4).

The use of multiple different over-segmented images as a preprocessing step is
not new to computer vision. For example, Russell et al. (2006) use multiple over-
segmentations for finding objects in the images, and many of the depth reconstruction
methods, e. g. (Hoiem et al., 2007), make use of over-segmentations for computing
feature statistics. In the context of multi-class image classification, the work of Plath
et al. (2009) comprises two aspects for coupling local and global evidences both by
constructing a tree-structured CRF on image regions on multiple scales, which largely
follows the approach of Reynolds & Murphy (2007), and using global image classifi-
cation information. Thereby, Plath et al. (2009) neglect direct local neighbourhood
dependencies. The work of Schnitzspan et al. (2008) explicitly attempts to combine
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the power of global feature-based approaches with the flexibility of local feature-based
methods in one consistent framework. Briefly, Schnitzspan et al. (2008) extend classical
one-layer CRF to a multi-layer CRF by restricting the pairwise potentials to a regular
4-neighbourhood model and introducing higher-order potentials between different lay-
ers. Yang et al. (2010a) present a concept of a hierarchical CRF that models region
adjacency graph and region hierarchy graph structure of an image. Yang & Förstner
(2011b) realize this concept in the application of classifying the images of man-made
scenes. Rather than 4-neighbourhood graph model in Schnitzspan et al. (2008), Yang
et al. (2010a); Yang & Förstner (2011b) build region adjacency graph based on unsu-
pervised image segmentation, which leads to a irregular graph structure. Also, they
apply an irregular pyramid to represent different layers, while Schnitzspan et al. (2008)
use a regular pyramid structure. Third, their model only exploits up to second-order
cliques, which makes learning and inference much easier.

2.3 Previous work on Bayesian networks

Although not as popular as random fields (MRFs and CRFs), Bayesian networks (BNs)
have also been used to solve computer vision problems (Sarkar & Boyer, 1993; Feng
et al., 2002; Mortensen & Jia, 2006; Zhang & Ji, 2011). BNs provide a systematic
way to model the causal relationships among the entities. By explicitly exploiting
the conditional independence relationships (known as prior knowledge) encoded in the
structure, BNs could simplify the modelling of joint probability distributions. Based
on the BN structure, the joint probability is decomposed into the product of a set of
local conditional probabilities, which is much easier to specify because of their semantic
meanings (Zhang & Ji, 2010; Zhang et al., 2011).

Early in nineties, Sarkar & Boyer (1993) have proposed the perceptual inference
network with the formalism based on BNs for the geometric knowledge-base represen-
tation. The network provides a scheme to combine the bottom-up process of recognizing
the regular components in the images and the top-down process of inferring the geomet-
ric structures from multiple cues and the knowledge of Euclidean geometric structures.
This is the first application of BNs to low-level vision. Feng et al. (2002) integrates
BNs with neural networks for scene segmentation. The BN models the prior distribu-
tion of the label fields. Neural networks are used to make local predictions given the
pixel features. The predictions can be combined with the prior in a principled manner
using the scaled-likelihood method. This model has a fixed structure and good ini-
tialization is required for the variational inference approach. Mortensen & Jia (2006)
present a semi-automatic segmentation technique called Bayesian cut that formulates
object boundary detection as the most probable explanation of a BN’s joint probability
distribution. A two-layer BN structure is formulated from a planar graph representing
a watershed segmentation of an image. The network’s prior probabilities encode the
confidence that an edge in the planar graph belongs to an object boundary while the
conditional probability tables (CPTs) enforce the global contour properties of closure
and simplicity. Although these works have successfully applied BN in their specific
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problems, most of them only use a simple BN structure (typically a naive BN). For
complex problems, these models may not be expressive enough to model many different
kinds of image entities and their relationships. How to effectively capture these rela-
tionships using a BN is crucial to solving these difficult problems. In Zhang & Ji (2011),
the authors propose a BN model for both automatic and interactive image segmenta-
tion. A multilayer BN is constructed from an over-segmentation to model the statistical
dependencies among regions, edge segments, vertices and their measurements. The BN
also incorporates various local constraints to further restrain the relationships among
these image entities. Given the BN model and various image measurements, belief
propagation is performed to update the probability of each node. Image segmentation
is generated by the most probable explanation inference of the true states of both region
and edge nodes from the updated BN. Although their model improves segmentation
results on the Weizmann horse dataset (Borenstein et al., 2004), they need a lot of do-
main expert knowledge to design the local constraints. Their BN model is focused on
the figure\ground segmentation problem, generalizing to multi-class segmentation faces
the difficulty of designing and changing local constraints due to the complex boundaries
in a multi-class segmentation.

2.4 Integration of random fields and Bayesian networks

From the last two sections, we see graphical models, underlying undirected and di-
rected graphs, have reached a state where both, hierarchical and spatial neighbourhood
structures can be efficiently handled. The concept of factor graphs allows integrating
Bayesian networks (BNs) which are efficient for modelling partonomies, and random
fields (RFs) which are standard for modelling spatial neighbourhoods in a common
Markov field (Zhang & Ji, 2010). RFs and BNs are suitable for representing different
types of statistical relationships among the random variables. RFs mainly capture the
mutually dependent relationships such as the spatial correlation, while BNs usually
model the causal relationships among random variables. Their combination can create
a more powerful and flexible probabilistic graphical model. Yet only a few previous
works focus on integrating RFs with BNs.

Kumar & Hebert (2003b) present a generative model based approach to man-made
structure detection in 2D natural images. They use a causal multiscale random field as a
prior model on the class labels. Labels over an image are generated using Markov chains
defined over coarse to fine scales. Instead of assuming the conditional independence of
the observed data, they propose to capture the local dependencies in the data using a
multiscale feature vector. However, the spatial neighbourhood relationships are only
considered at the bottom scale. So, essentially, this model is a tree-structured belief
network (Feng et al., 2002) plus a flat Markov random field. Kumar et al. (2005)
propose a combination of an MRF with a layered pictorial structure model for object
detection and segmentation. The layered pictorial structure model represents the global
shape of the object and restrains the relative location of different parts of the object.
They formulate the layered pictorial structure model using a fully connected MRF.
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Therefore, the whole model is essentially an extended MRF model. Liu et al. (2006)
propose an integration of a BN with an MRF for image segmentation. A naive Bayes
model is used to transform the image features into a probability map in the image
domain. The MRF enforces the spatial relationships of the labels. The use of a naive
Bayes model greatly limits the capability of this method because it is hard to model
the complex relationships between the random variables using a naive Bayes model.

Hinton et al. (2005) present a learning procedure for a chain graphical model that
contains both directed and undirected connections. Their model is constructed by
connecting several MRFs at different layers using the directed edges. In Hinton et al.
(2005), they show that combining multiple MRFs into causal hierarchies as a chain
graphical model has a major advantage over combining them into one big MRF by using
the undirected connections. The causal connections between layers act as insulators
that prevent the partition functions of the individual MRF from combining together
into one large partition function. This also gives us motivation to build our graphical
model. However, compared to Hinton et al.’s, our model has two major differences. In
their model, the configuration of a top-level MRF provides the biases that influence
the configuration of the next level MRF through the directed edges. While, in our
model, the directed edges capture the causalities among the image regions and the
undirected edges capture the spatial neighbourhood relationships conditioned on the
observation. Their model exploits an approximation of the true posterior probability
distribution of the hidden nodes by implicitly assuming the posterior of each hidden
node is independent of each other. In contrast, we derive the factored probability
distribution based on the graphical model structure, and therefore, do not have such
an assumption.

Zhang & Ji (2010) propose a unified graphical model that can represent both the
causal and noncausal relationships among the random variables and apply it to the
image segmentation problem. They first employ a CRF to model the spatial rela-
tionships among the image regions and their measurements. Then, they introduce a
multilayer BN to model the causal dependencies. The CRF model and the BN model
are then combined through the theories of the factor graphs to form a unified proba-
bilistic graphical model. Their graphical model is too complex in general. While the
CRF part performs region-based image segmentation, the BN part performs edge-based
segmentation, which is constructed to capture the causalities among the regions, edges,
vertices (or junctions), and their measurements. The two parts are connected through
the region nodes. The region nodes act as the parents of an edge node. The parents
of the edge node correspond to the two regions that intersect to form this edge. Al-
though their model improves state of the art results on the Weizmann horse dataset
(Borenstein et al., 2004) and the MSRC dataset (Shotton et al., 2006), they need a lot
of domain expert knowledge to design the local constraints. Also, they use a combi-
nation of supervised parameter learning and manual parameter setting for the model
parameterization. Simultaneously learn the BN and CRF parameters automatically
from the training data is not a trivial task. In Zhang et al. (2011), the authors apply a
similar strategy to extend the conventional chain-like chain graphical model to a chain
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graphical model with more general topology, which essentially appears to be a restrict
version of their unified graphical model in Zhang & Ji (2010). There, they apply an
approximate learning approach called the contrastive divergence learning, where the
distribution over the n-step reconstruction of the sampled data are generated by n
full-step Markov Chain Monte Carlo sampling via Gibbs sampling. This procedure
produces better local minimum but rather slow. This kind of parameter learning re-
mains a difficult problem and is also the most time-consuming part (Alahari et al.,
2010).

Compared to the graphical models in Kumar & Hebert (2003b) and Liu et al.
(2006), which are too simple, the graphical models in Zhang & Ji (2010) and Zhang
et al. (2011) are too complex in general. Our graphical model lies in between (cf. Fig. 4.2
on page 36). We try to construct our graphical model that is not too simple in order to
model the rich relationships among the neighbourhood of pixels and image regions in
the scene, yet not too complex in order to make parameter learning and probabilistic
inference efficiently. Furthermore, our model underlies a clear semantic meaning. If
the undirected edges are ignored, meaning no spatial relationships are considered, the
graph is a tree representing the hierarchy of the partonomy among the scales. Within
each scale, the spatial regions are connected by the pairwise edges.

In this chapter we have surveyed the work in the field of scene interpretation mainly
using the graphical models. These models include Markov random fields, conditional
random fields, Bayesian networks, and integration of random fields and Bayesian net-
works. It can be observed that the existing approaches score well in some scenarios.
However, performing semantic scene interpretation in general still seems to be very
challenging.
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Chapter 3

Theoretical Basis

Everything should be made as simple as possible, but not simpler.

-Albert Einstein (1879-1955)

3.1 Overview

Graphical models are a marriage between probability theory and graph theory (Jordan,
1998). As a modelling and inference tool, graphical models use intuitive, powerful,
and flexible graph structures to represent the probability distributions of the random
variables. The graph structures encode the conditional dependency and independency
among the random variables. The nodes in the graph are identified with the random
variables, the edges linking the nodes represent the statistical relationships between the
random variables, and the joint probability distributions are defined as the products
over the functions of the connected subsets of the nodes.

In this chapter, we first introduce basic notations in graph theory. We then present
two types of graphical models for representing the probability distributions: one with
the directed graphs and one with the undirected graphs. Then we discuss the relations
between directed and undirected graphical models in terms of the moral graphs and
the factor graphs.

3.2 Basic notations in graph theory

In this section we survey some of the basic notations in graph theory used in the
thesis. We will briefly describe graph, directed graph, undirected graph, path, trail,
and directed acyclic graph (cf. Bang-Jensen & Gutin, 2008; Koller & Friedman, 2009).

Definition 3.1 Graph. A graph is a structure consisting of a non-empty finite set of
the nodes and a set of the edges connecting pairs of the nodes.
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3. THEORETICAL BASIS

In the following we denote the graph with G. A pair of the nodes can be connected by a
directed edge or an undirected edge. We will often write G = (V,E,A), which means that
V, E, and A are the set of the nodes V = {1, · · · , i, · · · , n}, the set of the undirected
edges E = {{i, j} | i, j ∈ V}, and the set of the directed edges A = {(i, j) | i, j ∈ V},
respectively. We denote the directed edge as (i, j) and the undirected edge as {i, j}.
An example of a graph G with the directed and undirected edges is given in Fig. 3.1.
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Figure 3.1: An example of a graph G with the directed and undirected edges.

In many cases, we want to define the graphs that contain only edges of one kind or
another.

Definition 3.2 Directed graph. A graph is directed if all edges are directed.

Definition 3.3 Undirected graph. A graph is undirected if all edges are undirected.

A directed graph means E = ∅ in a graph G = (V,E,A). An undirected graph means
A = ∅ in a graph G. In the following we denote a directed graph with D = (V,A), and
an undirected graphs with H = (V,E). Examples of a directed graph and an undirected
graph are given in Fig. 3.2.

1

2 3

4 1

2 3

4

Figure 3.2: Examples of a directed graph D and an undirected graph H. Left : all the
edges are directed. Right : all the edges are undirected.

Given a graph G = (V,E,A), when we have that (i, j), we say that j is the child of i
in G, and i is the parent of j in G. When we have {i, j}, we say that i, j are neighbours
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in G. We say that i, j are adjacent whenever i and j are connected via some edge,
whether directed or undirected, denoted as 〈i, j〉. We use Pai to denote the parents of
the node i, Chi to denote its children, and Ni to denote its neighbours. For example,
in Fig. 3.1, node 1 is the only parent of node 2, and node 3 is the child of node 2. The
only neighbour of node 2 is node 5, but its adjacent nodes are 1, 3, 5.

In many cases, we want to consider only the part of the graph that is associated
with a particular subsets of nodes. A subgraph is complete if every two nodes in this
subgraph are connected by some edge. This kind of set is called a clique.

Using the basic notation of edges, we can define different types of connections in
the graph.

Definition 3.4 Path. We say that s1, · · · , sk form a path in the graph G = (V,E,A),
S = {s1, · · · , sk} ⊆ V, if we have that either (si, si+1) or {si, si+1}, for every i =
1, · · · , k − 1. A path is directed if we have (si, si+1), for at least one i.

Definition 3.5 Trail. We say that s1, · · · , sk form a trail in the graph G = (V,E,A),
S = {s1, · · · , sk} ⊆ V, if si, si+1 are adjacent, for every i = 1, · · · , k − 1.

In Fig. 3.1 on page 20, nodes 1, 2, 5, 6, 8 form a path, and hence also a trail. On the
other hand, nodes 1, 2, 3, 6, 5 form a trail, which does not form a path.

Definition 3.6 Cycle. A cycle in G is a directed path s1, · · · , sk where s1 = sk. A
graph is acyclic if it contains no cycles.

Definition 3.7 Loop. A loop in G is a trail s1, · · · , sk where s1 = sk.

The graph G of Fig. 3.1 on page 20 is acyclic. However, if we add the undirected edge
{1, 5} to G, we have a path 1, 2, 5, 1 from node 1 to itself. Clearly, adding a directed
edge (5, 1) would also lead to a cycle.

Definition 3.8 DAG: directed acyclic graph. A DAG is a directed graph with no di-
rected cycles.

DAGs are the basic graphical representation that underlies Bayesian networks (cf. Sec-
tion 3.3). An example of a DAG is given in Fig. 3.3.

We sometimes convert a graph to an undirected graph by ignoring the directions
on the edges (Koller & Friedman, 2009).

Definition 3.9 Graph’s undirected version. Given a graph G = (V,E,A), its undirected
version is a graph H = (V,E′), where every directed edge is replaced by an undirected
edge.

Undirected version H of G in Fig. 3.1 on page 20 is given by Fig. 3.4.
The different types of graphs used in this thesis and their characteristic property

are listed in Table 3.1 on page 22. We see the following relations among these different
graphs: DAG ⊆ D ⊆ G and H ⊆ G.
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Figure 3.3: An example of a DAG. There is no directed cycle in this graph.
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Figure 3.4: Undirected version of the graph in Fig. 3.1 on page 20.

Table 3.1: List of the graph types.

name symbol characteristic

Graph G structure with a set of nodes and a set of edges
Directed graph D all edges are directed
Undirected graph H all edges are undirected
Directed acyclic graph DAG directed graph with no directed cycles

3.3 Directed graphical models - Bayesian networks

Directed graphical models use the directed edges to link the nodes in the graph. These
directed edges encode the casual relationships among the random variables. Here, we
introduce one type of directed graphical models, Bayesian networks (BNs). A Bayesian
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3.3 Directed graphical models - Bayesian networks

network is a probabilistic graphical model that represents a set of the random variables
and their conditional dependencies via a directed acyclic graph (DAG). For example, a
BN could represent the probabilistic relationships between labels and observations in
image classification. Given the observations, the network can be used to compute the
probabilities of the presence of different labels.

3.3.1 Bayesian networks

Consider a set of the random variables {xi, i ∈ V} defined over a DAG D = (V,A).
Each random variable xi is associated with a node i ∈ V = {1, · · · , i, · · · , n}. The
random variable, associated with the parents of the node i, is denoted as Pa(xi). In
this thesis, we restrict the random variable xi to random vectors, then all the random
vectors could be put into a large compound vector x = [x1; · · · ;xi; · · · ;xn].

Definition 3.10 Bayesian network. x is a Bayesian network with respect to D if its
joint distribution P can be expressed as a product

P (x) =
∏
i∈V

P (xi | Pa(xi)) (3.1)

If xi does not have a parent, the conditional probability P (xi | Pa(xi)) becomes the
prior probability of xi. Eq. (3.1) is called the chain rule for Bayesian networks. This key
equation expresses the factorization properties of the joint distribution for a directed
graphical model. The individual factor P (xi | Pa(xi)) is the conditional probability
distribution. For the DAG in Fig. 3.3 on page 22,

P (x) = P (x1)P (x2 | x1,x4)P (x3 | x2)P (x4)P (x5 | x4)P (x6 | x5)P (x7 | x5).

If the joint distribution over a set of the random variables is given as a product
of the conditional distributions, i. e. (3.1), then we could test whether any potential
conditional independence property holds in principle. In practice, such test would
be time consuming. A decent feature of the graphical models is that the conditional
independence properties of the joint distribution can be read directly from the graph
without having to perform any analytical manipulations. The general framework for
achieving this is called d-separation (Pearl, 1988). For detail description, we refer the
reader to Bishop (2006); Koller & Friedman (2009).

A conditional Bayesian network is a BN conditioned on the observed data. Each
random variable xi representing the class membership of the corresponding region node
i is modelled in condition of the observed features in the image. In the tree-structured
conditional Bayesian network (Drauschke & Förstner, 2011), the classification of a
region is based on the unary features derived from the region and the binary features
derived from the relations of the region hierarchy graph.
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3.3.2 Inference in Bayesian networks

The inference problem for a BN aims at calculating the marginal probability. The task
is to infer the most probable or maximum a posteriori (MAP) labelling x∗ of the BN,
which is defined as follows

x∗ = arg max
x

P (x) (3.2)

The inference algorithms can be roughly divided into exact inference methods, such
as belief propagation algorithm (Pearl, 1988), junction tree algorithm (Lauritzen &
Spiegelhalter, 1988), and approximate inference methods, such as loopy belief propaga-
tion, variational algorithms (Jordan et al., 1999) and Monte Carlo algorithms (MacKay,
2002).

For tree-structured BNs, belief propagation (BP) (Pearl, 1988; Yedidia et al., 2000)
can find the exact solution based on the local message-passing principle. Loopy belief
propagation (LBP) is a widely used approximate inference method. The LBP directly
applies the BP principle to a graphical model with loops. It can produce an approximate
solution and may not guarantee the convergence of the message-passing process in
general. However, the LBP works surprisingly well in many applications involving
networks with loops (Murphy et al., 1999; Yedidia et al., 2000).

3.4 Undirected graphical models - random fields

Undirected graphical models use undirected edges to link the nodes in the graph. These
undirected edges encode the mutual dependency relationships among the random vari-
ables. In this section, we introduce two types of undirected graphical models, Markov
random fields (MRFs) and conditional random fields (CRFs). MRFs are appropri-
ate in situations when associations between the random variables are considered to be
more correlational than causal. The CRFs are the discriminative models that directly
model the conditional distribution over the labels. This approach allows one to cap-
ture arbitrary dependencies between the observations without resorting to any model
approximations. Both MRFs and CRFs are undirected graphical models.

3.4.1 Random field models

Consider a set of the random variables {xi, i ∈ V} defined over a undirected graph
H = (V,E). Each random variable xi is associated with a node i ∈ V = {1, · · · , n} and
takes a vector value from the label set L = {l1, · · · , lC}. x = [x1; · · · ;xi; · · · ;xn] is
called a random field. Any possible assignment of the labels to the random variables
is called a labelling or configuration, which is denoted by the vector x and takes values
from the set Ln. The neighbourhood system N of the random field is defined by the
sets {Ni, i ∈ V}, where Ni denotes the set of all neighbours of the node i. Three
typical neighbourhood graphs (Pérez, 1998) used in image interpretation, i. e. a
rectangular lattice grid, an irregular graph associated to an image partition, and a
pyramid for hierarchical models, are shown in Fig. 3.5. For each graph, the blue nodes
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are the neighbours of the white node. A rectangular lattice grid (Fig. 3.5 Left) is
used to build the conditional random field model for the image region classification
by Kumar & Hebert (2003a), an irregular graph (Fig. 3.5 Middle) for building facade
image classification by Yang & Förstner (2011c), and a tree-structure as a simplified
version of a pyramid (Fig. 3.5 Right) is used to build the hierarchical random field
model for scene classification by Yang & Förstner (2011b). A clique c is as a subset of
the nodes in a graph such that there exists an edge between all pairs of nodes in the
subset. In the following, we give a formal definition of Markov random fields.

Figure 3.5: Three typical graphs supporting MRF-based models for image interpretation:
Left a rectangular lattice grid; Middle an irregular graph associated to an image partition;
Right a pyramid for hierarchical models. For each graph, the blue nodes are the neighbours
of the white one. The rectangular lattice grid (Left) is used to build the conditional random
field model for image region classification by Kumar & Hebert (2003a), the irregular graph
(Middle) for building facade image classification by Yang & Förstner (2011c), and a tree-
structure as a simplified version of the pyramid (Right) is used to build the hierarchical
random field model for scene classification by Yang & Förstner (2011b). (Figure courtesy
of Patrick Pérez (Pérez, 1998).)

A Markov random field (MRF) models the probability of the labelling x, denoted
by P (x). According to the Bayes’ rule, the posterior probability is proportional to the
product of the likelihood and the prior probabilities as follows

P (x | d) ∝ P (d | x)P (x) (3.3)

where P (d | x) is the likelihood, d is the data, and P (x) is known as the prior.

Definition 3.11 Markov random field. A random field x is said to be a Markov ran-
dom field (MRF) with respect to a neighbourhood system N = {Ni, i ∈ V} if and only if
it satisfies the positivity property: P (x) > 0, and the Markov property

P (xi | xV−{i}) = P (xi | xNi
) (3.4)

The Markov property (3.4) implies that the prior probability of the assignment xi = xi
depends only on the labelling of its neighbouring random variables given by Ni.

Using the Hammersley-Clifford theorem 1 (Hammersley & Clifford, 1971), the dis-

1A probability distribution that has a positive distribution satisfies the pairwise Markov property
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tribution P (x) over the labellings of the MRF is a Gibbs distribution 1 and can be
written in the form

P (x) =
1

Z
exp (−E(x)) =

1

Z
exp

(
−
∑
c∈C

φc(xc)

)
(3.5)

where C is the set of cliques formed by the neighbourhood system N, and Z =∑
x exp (−E(x)) is a normalization constant called the partition function. The term

φc(xc) is known as potential function of the clique c, where xc = {xi, i ∈ c}. The term
E(x) is the so-called Gibbs energy function.

For a pairwise MRF, by assuming only up to pairwise clique potentials to be nonzero,
the energy function E can be written as

E(x) =
∑
i∈V

E1(xi) +
∑
{i,j}∈N

E2(xi,xj) (3.6)

where the set N is the set of unordered pairs of the neighbouring nodes. E1 is called as
the unary potential, which models the likelihood of the label assignment xi = xi. E2 is
called as the pairwise potential, which models the cost of the assignment xi = xi and
xj = xj . While E1 depends on the data, E2 is independent of the data. In computer
vision, a pairwise potential commonly takes the form of the Potts model (Potts, 1952),
which gives a low energy value when xi = xj , and penalizes with a high energy values
otherwise.

A conditional random field (CRF) may be viewed as an MRF globally conditioned
on the observed data d. The conditional distribution P (x | d) (Lafferty et al., 2001)
over the labellings of the CRF is a Gibbs distribution and can be written in the form

P (x | d) =
1

Z
exp (−E(x | d)) =

1

Z
exp

(
−
∑

c
φc(xc | d)

)
(3.7)

where xc is the set of the nodes in a clique c, the term φc(xc | d) is the potential
function of the clique c, and Z =

∑
x exp (−E(x | d)) is a normalization constant.

The term E(x | d) is the Gibbs energy function.

For a pairwise CRF, by assuming only up to pairwise clique potentials to be nonzero,

(Koller & Friedman, 2009) with respect to an undirected graph H if and only if it is a Gibbs random
field, that is, its distribution can be factorized over the cliques of the graph. The pairwise Markov
property says any two non-adjacent variables are conditionally independent given all other variables.

1A distribution is a Gibbs distribution (Geman & Geman, 1984) if the joint distribution can be
written as a product of the potential functions over the maximal cliques of the graph.
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we can express the energy function E 1 more specifically as

E(x | d) =
∑
i∈V

E1(xi | d) +
∑
{i,j}∈N

E2(xi,xj | d) (3.8)

where the set N is the set of unordered pairs of the neighbouring nodes. E1 and E2

are the unary and pairwise potentials respectively, which both depend on the observed
data d.

The most probable or maximum a posteriori (MAP) labelling x∗ of the random
field 2is defined as

x∗ = arg max
x∈Ln

P (x | d) (3.9)

and can be found by minimizing the energy function E.

3.4.2 Inference in random field models

The task is to infer the most probable or MAP labelling x∗ of the random field, which
is defined as (3.9), and can be found by minimizing the energy function E. In general,
minimizing the energy function E is NP-hard. But, there exist a number of algorithms
which compute the exact solution for a particular family of the energy functions in
polynomial time. For example, max-product belief propagation exactly minimizes the
energy functions defined over the graphs with no loops (Yedidia et al., 2000). And,
some submodular energy functions (Fujishige, 1990) can be minimized by solving an
st-MINCUT problem (Greig et al., 1989; Kolmogorov & Zabih, 2004). However, many
energy functions encountered in MRF and CRF models do not fall under the above
classes, and are NP-hard to minimize (Kolmogorov & Rother, 2007). Most multi-label
energy functions are non-submodular. For example, the Potts model potential (Potts,
1952) is a non-submodular function. They are instead solved using the approximate al-
gorithms. These algorithms belong to two categories: message passing algorithms, such
as sum-product algorithm, belief propagation (Yedidia et al., 2000), tree-reweighted
message passing (Wainwright et al., 2005; Kolmogorov, 2006), and move making algo-
rithms, such as Iterated Conditional Modes (Besag, 1986), αβ-swap, and α-expansion
(Boykov et al., 2001).

As will be seen in Chapter 4, the inference of the hierarchical CRF model is carried
out with the multi-label graph optimization library of Boykov et al. (2001); Kolmogorov
& Zabih (2004); Boykov & Kolmogorov (2004) using αβ-swap and α-expansion. There-
fore, in the following part, we will provide an overview of αβ-swap and α-expansion
algorithms.

αβ-swap and α-expansion are the two most popular graph cut algorithms, which
are widely used to minimize the energy functions involving multi-valued discrete vari-
ables. Both algorithms work by repeatedly computing the global minimum of a binary

1Note that the CRF model with this specific energy function is denoted as the flat CRF in Chapter 5,
to distinguish it from the hierarchical CRF.

2Note that the posterior probability distribution in the case of an MRF is proportional to the joint
distribution.
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labelling problem in their inner loops. This process converges to a local minimum. For
a pair of labels α, β, a swap move takes some subset of the nodes currently given the
label α and assigns them the label β and vice versa. The swap-move algorithm finds
a local minimum such that there is no swap move, for any pair of labels α, β, that
will produce a lower energy labelling. An expansion move for a label α increases the
set of the nodes that are given this label. The expansion-move algorithm finds a local
minimum such that there is no expansion move, for any label α, that will produce a
labelling with lower energy.

3.5 Relations between directed and undirected graphical
models

We have introduced two graphical frameworks for representing the probability distribu-
tions, corresponding to directed and undirected graphs, and it is instructive to discuss
the relationship between these. In this section, we introduce two most common ap-
proaches: a moral graph, which converts a directed graph to an undirected graph; and
a factor graph, which can represent both directed and undirected graphical models.

3.5.1 Moral graph representation

We convert the distribution specified by a factorization over a directed graph into one
specified by a factorization over an undirected graph. This can be achieved if the
clique potentials of the undirected graph are given by the conditional distributions
of the directed graph. In order for this to be valid, we must ensure that the set
of the variables that appears in each of the conditional distributions is a member of
at least one clique of the undirected graph. For the nodes on the directed graph
having just one parent, this is achieved simply by replacing the directed edge with
an undirected edge. However, for nodes in the directed graph having more than one
parent, this is not sufficient. Consider the example of a DAG in Fig. 3.3 on page 22,
which is shown in Fig. 3.6 Left on page 29. The joint distribution takes the form
P (x1)P (x2 | x1,x4)P (x3 | x2)P (x4)P (x5 | x4)P (x6 | x5)P (x7 | x5). We see that the
factor P (x2 | x1,x4) involves the three variables x1, x2, and x4, and so these must all
belong to a single clique if this conditional distribution is to be absorbed into a clique
potential. To ensure this, we add an extra edge between the pair of parents of the node
2, as shown in Fig. 3.6 Right.

In general, to convert a directed graph into an undirected graph, we first need to
add the undirected edges between all pairs of the parents for each node in the graph
and then replace all directed edges with undirected edges. This process is known as
moralization, and the resulting undirected graph is called the moral graph (Cowell et al.,
1999; Bishop, 2006). To derive the joint probability distribution of the moral graph, we
first initialize all of the clique potentials. Then, we assign each conditional probability
distribution in the original directed graph to one of the clique potentials. Note that
in all cases the partition function Z is 1. We see we have to discard some conditional

28



3.5 Relations between directed and undirected graphical models

1

2

3

4

5

6 7

1

2

3

4

5

6 7

Figure 3.6: Left : the example of a DAG in Fig. 3.3 on page 22. Right : the corresponding
moral graph. For nodes 3, 5, 6, 7 having just one parent, the directed edges are replaced
by undirected edges. For node 2 having two parent nodes 1, 4, an extra edge has to be
linked between the pair of parents, and then the directed edges are replaced by undirected
edges.

independence properties from the graph from a directed graph to an undirected graph
representation. The process of moralization adds the fewest extra edges and so retains
the maximum number of independence properties (Cowell et al., 1999).

3.5.2 Factor graph representation

As we see from previous sections, both directed and undirected graphs allow a global
function of several variables to be expressed as a product of the factors over the subsets
of those variables. Here we introduce a graphical construction called a factor graph
(Kschischang et al., 2001), which makes this decomposition explicit by introducing
additional nodes for the factors themselves in addition to the nodes representing the
variables.

A factor graph F is a bipartite graph (Bang-Jensen & Gutin, 2008) containing
two types of the nodes: the variable nodes (denoted as circles), and the factor nodes
(denoted as grey squares). The graph only contains the edges between the variable
nodes and the factor nodes. The joint distribution P over a set of the variables can be
expressed as a product of the factors

P (x) =
∏
s

f s(xs) (3.10)

where xs denotes a subset of the nodes. Each factor f s is a function of a corresponding
set of the nodes xs.

Undirected graphs, given by (3.7) on page 26, are the special cases in which the
factors f s(xs) are the potential functions. Directed graphs, whose factorization is
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Figure 3.7: Factor graph representation of a directed graph. Left : a directed graph
D, same as in Fig. 3.3 on page 22, with the factorization P (x1)P (x2 | x1,x4)P (x3 |
x2)P (x4)P (x5 | x4)P (x6 | x5)P (x7 | x5). Right : a factor graph representing the same
distribution with factors f1(x1) = P (x1), f2(x1,x2,x4) = P (x2 | x1,x4), f3(x2,x3) =
P (x3 | x2), f4(x4) = P (x4), f5(x4,x5) = P (x5 | x4), f6(x5,x6,x7) = P (x6 | x5)P (x7 |
x5).

defined by (3.1) on page 23, represent the special cases of (3.10) in which the factors
are the conditional distributions.

To convert a directed graph to a factor graph, we simply create the variable nodes
and the factor nodes in the factor graph, where the variable nodes are same as the nodes
of the directed graph and the factor nodes correspond to the conditional distributions.
Then, we add appropriate edges between appropriate variable nodes and factor nodes.
The conversion of a directed graph to a factor graph is illustrated in Fig. 3.7.

It is also simple to convert an undirected graph to a factor graph. We create the
variable nodes and the factor nodes in the factor graph, where the variable nodes are
same as the nodes of the undirected graph and the factor nodes correspond to the
maximal cliques xs. The factors fs(xs) are equal to the clique potentials. Note that
there may be multiple factor graphs that correspond to the same undirected graph,
which is illustrated in Fig. 3.8.

3.6 Summary

In this chapter, we have presented a theoretical basis needed for this thesis. We give
some of the basic notations in graph theory ( e. g. directed graph, undirected graph,
cycle, and directed acyclic graph). Bayesian networks (BNs) is introduced briefly as one
type of the directed graphical models, which is built on the directed acyclic graphs and
the factorization properties. Markov random fields (MRFs) and conditional random
fields (CRFs) are introduced as two types of the undirected graphical models. MRFs
mainly capture the mutually dependent relationships such as the spatial neighbourhood
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Figure 3.8: Factor graph representation of an undirected graph, illustrating the undi-
rected graph may not yield a unique factor graph. Left : an undirected graph H, same
as in Fig. 3.2 on page 20. Middle: a factor graph with factor f1(x1,x2,x3)f2(x3,x4)
representing the same distribution as the undirected graph. Right : a different factor graph
representing the same distribution with cliques of maximum degree two, whose factors
satisfy f3(x1,x2)f4(x2,x3)f5(x1,x3)f6(x3,x4).

relationships. CRFs are the discriminative models that directly model the conditional
distribution over the labels. At the end of this chapter, we introduce two approaches
to build the relations between directed graph and undirected graph: a moral graph,
which converts a directed graph to an undirected graph; a factor graph, which could
represent both directed and undirected graphical models.
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Chapter 4

A Generic Framework for Image
Interpretation of Man-made
Scenes

Between the idea
And the reality

Between the motion
And the act

Falls the Shadow

-Thomas Stearns Eliot (1888 - 1965)

4.1 Overview

As motivated in Section 1.1, spatial and hierarchical relationships are two valuable
cues for image interpretation of man-made scenes. In this chapter we will develop a
consistent graphical model representation for image interpretation that includes both
information about the spatial structure and the hierarchical structure. The key idea
for integrating the spatial and the hierarchical structural information into the inter-
pretation process is to combine them with the low-level region class probabilities in a
classification process by constructing the graphical model on the multi-scale image re-
gions. We will start by constructing the graphical model. Then, the generic statistical
model will be formulated as a multi-class labelling problem, where we will derive the
corresponding energy function. Then, we will compare our model with the previous
models and show that at certain choices of the parameters of our model, these methods
fall out as the special cases. We will also derive the particular models for the energy
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potentials and the conditional probability energy that are suited well for scene inter-
pretation. We will derive the features from each region obtained from the unsupervised
segmentation algorithm. Then we employ a classifier to calculate the label distribution
for the local unary potential. Then we give one particular formulation for each of the
pairwise potentials and the conditional probability energy. Finally, we will discuss the
learning and the inference issues of this graphical model.

The complete proposed workflow for interpreting images of man-made scenes is
sketched in Fig. 4.1. First, the test image is partitioned into regions by some un-
supervised segmentation algorithms. Then, different features are extracted from the
segmented regions. These features are passed to the learned graphical model to pro-
duce the final classification results. The graphical model is learned from the training
images beforehand. The illustration in Fig. 4.1 shows that the graphical model can
provide a consistent model representation including spatial and hierarchical structures,
and therefore outperforms the classical local classification approach.

Figure 4.1: The basic dataflow for image interpretation of a test image for the graphical
model framework. First, the test image is partitioned into regions by some unsupervised
segmentation algorithms. Then, different features are extracted from the segmented re-
gions. These features are passed to the learned graphical model to produce the final
classification results. The graphical model is learned from the training images beforehand.

4.2 Statistical model for the interpretation problem

In the following sections, we will derive a generic model for the scene interpretation
problem, which is formulated as a multi-class labelling problem. We will end up with
an energy function that can be optimized approximately. Before defining the statistical
model, we need to construct the graphical model first.
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4.2 Statistical model for the interpretation problem

4.2.1 The graphical model construction and parametrization

By constructing the graphical model, we can flexibly choose either directed edges or
undirected edges to model the relationships between the random variables based on the
semantic meaning of these relationships.

We use an example image to explain this model construction process. Given a test
image, Fig. 4.2 on page 36 shows the corresponding multi-scale segmentation of the
image, and the corresponding graphical model for image interpretation. Three layers
are connected via a region hierarchy. The development of the regions over several scales
is used to model the region hierarchy. Drauschke (2009) defined a region hierarchy
with the directed edges between the regions of the successive scales. Furthermore,
the relation is defined over the maximal overlap of the regions. Nodes connection
and numbers correspond to the multi-scale segmentation. The blue edges between the
nodes represent the neighbourhoods at one scale, and the red dashed edges represent
the hierarchical relation between the regions. The pairwise interactions between the
spatial neighbouring regions can be modelled by the undirected edges. The pairwise
potential functions can be defined to capture the similarity between the neighbouring
regions. The hierarchical relation between regions of the scene partonomy representing
parent-child relations or part-of relations can be modelled by either the undirected
edges or the directed edges.

The graphical model could consist of either the directed edges or the undirected
edges. In general, we can parametrize the directed edges by the conditional probabili-
ties, and the undirected edges by the potential functions. In Fig. 4.2, there are both di-
rected edges and undirected edges. The potential functions are used to parametrize the
undirected edges. The relationship between x1 and x2 is parametrized by the pairwise
potential function φ(x1,x2). We use the local conditional probabilities to parametrize
the directed edges. When the edge between node 1 and node 4 is a directed edge, the
relationship between x4 and its parent x1 is parametrized by the conditional proba-
bility P (x4 | x1). When the edge between node 1 and node 4 is a undirected edge,
the relationship between x4 and x1 is parametrized by the pairwise potential function
φ(x1,x4). Other edges are parametrized accordingly.

4.2.2 Representation as a multi-class labelling problem

As we see from previous sections, both directed and undirected graphs allow a global
function of several variables to be expressed as a product of the factors over the subsets
of those variables. As in other graphical representations, the structure of the graph
G = (V,E,A) can be used to define a factorization for a probability distribution over
G according to the conditional independence relationships encoded in the graphical
structure.

Consider a set of the random variables {xi, i ∈ V} defined over a graph G = (V,E,A).
x = [x1; · · · ;xi; · · · ;xn]. Each random variable xi is associated with a node i ∈ V =
{1, · · · , i, · · · , n} and takes a vector value from the label set L = {l1, · · · , lC}. Any
possible assignment of the labels to the random variables is called a labelling, which is
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(a) Example image of
a man-made scene

(b) Multi-scale segmentation (from left to right: top, middle
and bottom scale)
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(c) The graphical model

Figure 4.2: Illustration of the graphical model architecture. (a). An example image of
a man-made scene. (b). The boundary maps of the segmented image corresponding to
the multi-scale segmentation of mean shift (Comaniciu & Meer, 2002) algorithm (from left
to right: top, middle and bottom scale). (c). The graphical model construction, with
three layers connected via a region hierarchy. Nodes in the graph, indicated by numbers,
correspond to the segmented regions. The blue edges between the nodes represent the
neighbourhoods at one scale (undirected edges), and the red dashed edges represent the
hierarchical relation between regions (undirected or directed edges).
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denoted by the vector x and takes values from the set Ln. Therefore, we present the
scene interpretation problem as a multi-class labelling problem. Given the observed
data d, the distribution P over a set of the variables x can be expressed as a product
of the factors 1

P (x | d) =
1

Z

∏
i∈V

f i(xi | d)
∏
{i,j}∈E

f ij(xi,xj | d)
∏
〈i,k〉∈S

f ik(xi,xk | d) (4.1)

where the factors f i,f ij ,f ik are the functions of the corresponding sets of the nodes,
and Z is the normalization factor. The set V is the set of the nodes in the complete
graph, and the set E is the set of pairs collecting the neighbouring nodes within each
scale. S is the set of pairs collecting the parent-child relations between regions with
the neighbouring scales, where 〈i, k〉 denotes nodes i and k are connected by either a
undirected edge or a directed edge. Note that this model only exploits up to second-
order cliques, which makes learning and inference much faster than the model involving
high-order cliques.

To get a better understanding of the model, we illustrate the stochastic model of
Fig. 4.2 in the form of a factor graph, which is previously discussed in Section 3.5.2.
The factor graph representation is shown in Fig. 4.3, by omitting all the factors on
each node. Each square in this factor graph corresponds to the factor which is a
local function of the involved variables. For example, the square connecting nodes 1
and 2 corresponds to the factor f12(x1,x2), and the square connecting nodes 1 and
4 corresponds to the factor f14(x1,x4). This graph makes obvious that the model
assumes only binary cliques, without the higher order cliques among the nodes.

By simple algebra calculation, the probability distribution given in (4.1) can be
written in the form

P (x | d) =
1

Z
exp

∑
i∈V

log f i(xi) +
∑
{i,j}∈E

log f ij(xi,xj) +
∑
〈i,k〉∈S

log f ik(xi,xk)


(4.2)

where we drop the factor conditioned on the data d for simplicity. Therefore, the
probability distribution for this graphical model is a Gibbs distribution

P (x | d) =
1

Z
exp (−E(x | d)) (4.3)

The term

E(x | d) = −
∑
i∈V

log f i(xi)−
∑
{i,j}∈E

log f ij(xi,xj)−
∑
〈i,k〉∈S

log f ik(xi,xk) (4.4)

is the energy function. For the consistency with most other works ( e. g. Shotton et al.,

1The formal theoretical proof is linked to a graphical model defined over a chain graph, which is
a generalization of both the undirected graph and the directed graph, see Appendix A for a detail
description.
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Figure 4.3: A factor graph representation of the graphical model shown in Fig. 4.2 on
page 36, without depicting all the factors on each node. The dashed lines indicate the 3D
structure of this graph.
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2006; Kohli et al., 2009; Yang & Förstner, 2011c) in the literature, in the following, the
energy function in (4.4) is defined as

E(x | d) =
∑
i∈V

E1(xi | d) + α
∑
{i,j}∈E

E2(xi,xj | d) + β
∑
〈i,k〉∈S

E3(xi,xk | d) (4.5)

where α and β are the weighting coefficients in the model. E1 is the unary potential,
which represents the relationships between the variables and the local observed data. E2

is the pairwise potential, which represents the relationships between the variables of the
neighbouring nodes within each scale. E3 is either the hierarchical pairwise potential
or the conditional probability energy, which represents the relationships between the
regions of the scene partonomy with neighbouring scales. This graphical model is
illustrated in Fig. 4.2 on page 36.

The most probable or maximum a posteriori (MAP) labelling x∗ is defined as

x∗ = arg max
x∈Ln

P (x | d) (4.6)

and can be found by minimizing the energy function E(x | d).

4.3 Relation to previous models

In this section, we draw comparisons with the previous models for image interpretation
(Plath et al., 2009; Fulkerson et al., 2009; Yang et al., 2010a; Drauschke & Förstner,
2011; Yang & Förstner, 2011c) and show that at certain choices of the parameters of
our framework, these methods fall out as the special cases. We will now show that our
model is not only a generalization of the standard flat CRF over the image regions, but
also of the hierarchical CRF and the conditional Bayesian network.

4.3.1 Equivalence to flat CRFs over regions

Let us consider the case with only one layer segmentation of the image (the bottom
layer of the graphical model in Fig. 4.2 on page 36). In this case, the weight β is set to
be zero, the set V1 is the set of nodes in the graph of the bottom layer, and the set E1

is the set of pairs collecting the neighbouring nodes in the bottom layer. This allows
us to rewrite (4.5) as

E(x | d) =
∑
i∈V1

E1(xi | d) + α
∑
{i,j}∈E1

E2(xi,xj | d) (4.7)

which is exactly the same as the energy function associated with the flat CRF defined
over the image regions with E1 as the unary potential and E2 as the pairwise potential.
In this case, our model becomes equivalent to the flat CRF models defined over the
image regions (Gould et al., 2008; Batra et al., 2008; Fulkerson et al., 2009; Yang &
Förstner, 2011c).
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4.3.2 Equivalence to hierarchical CRFs

Let us now consider the case with the multi-scale segmentation of the image. If we
choose E3 as a pairwise potential in (4.5), the energy function reads

E(x | d) =
∑
i∈V

E1(xi | d) + α
∑
{i,j}∈E

E2(xi,xj | d) + β
∑
{i,k}∈S

E3(xi,xk | d) (4.8)

which is exactly the same as the energy function associated with the hierarchical CRF
defined over the multi-scale of the image regions with E1 as the unary potential, E2 as
the pairwise potential within each scale, and E3 as the hierarchical pairwise potential
with the neighbouring scales. In this case, our model becomes equivalent to the hier-
archical CRF models defined over multi-scale of image regions (He et al., 2004; Yang
et al., 2010a; Yang & Förstner, 2011b).

If we set α to be zero, and choose E3 as a pairwise potential in (4.5), the energy
function reads

E(x | d) =
∑
i∈V

E1(xi | d) + β
∑
{i,k}∈S

E3(xi,xk | d) (4.9)

which is the same as the energy function associated with the tree-structured CRF
by neglecting the direct local neighbourhood dependencies on the image regions on
multiple scales. In this case, our model becomes equivalent to the tree-structured CRF
models defined over multi-scale of the image regions (Reynolds & Murphy, 2007; Plath
et al., 2009).

4.3.3 Equivalence to conditional Bayesian networks

If we set α to be zero, and choose E3 as the conditional probability energy in (4.5), the
energy function reads

E(x | d) =
∑
i∈V

E1(xi | d) + β
∑

(i,k)∈S

E3(xi,xk | d) (4.10)

which is the same as the energy function associated with the tree-structured condi-
tional Bayesian network defined over the multi-scale of the image regions. In the
tree-structured conditional Bayesian network, the classification of a region is based on
the unary features derived from the region and the binary features derived from the
relations of the region hierarchy graph. In this case, our model becomes equivalent to
the tree-structured conditional Bayesian network defined over multi-scale of the image
regions (Drauschke & Förstner, 2011).
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4.4 Data-driven modelling of energy potentials and con-
ditional probability

The proposed energy function (4.5) consists of three basic elements:

1. The unary potential E1(xi | d) describes how likely it is to predict a particular
class label xi, given the local observed data.

2. The local pairwise potential E2(xi,xj | d) describes the category compatibility
between the neighbouring labels xi and xj given the data.

3. The hierarchical pairwise potential or the conditional probability energy E3(xi,xk |
d) describes the likelihood for a relationship between the regions of the scene
partonomy with the neighbouring scales given the data.

In this section, we will derive the particular models for the energy potentials and the
conditional probability energy that are suited well for scene interpretation. Note that
the use of these particular models is not prescribed by our framework. They should be
considered as one possible implementation of the proposed method.

We will derive the features from each region obtained from the unsupervised seg-
mentation algorithm. Then we employ a classifier called randomized decision forest
(RDF) to calculate the label distribution for the local unary potential. Then we give
one particular formulation for each of the pairwise potentials and the conditional prob-
ability energy. Note that the setup of energy potentials and the conditional probability
energy is identical to that used for the final experiments.

4.4.1 Features

Features contains the information needed to make the class-specific decisions while
being highly invariant with respect to extraneous effects such as changing object ap-
pearance, pose, illumination and background clutter. Several well-engineered features
have been experimentally found to be well fit for image classification task (Drauschke
& Mayer, 2010; Yang & Förstner, 2011a). We use the following five feature sets
h =

⋃5
i=1 hi from each image region obtained from the unsupervised segmentation

algorithms. In our experiment presented in Chapter 5, we use the mean shift segmen-
tation (Comaniciu & Meer, 2002) and the watershed segmentation (Vincent & Soille,
1991).

Basic features h1: First feature set h1 are eleven basic features including (1) the
number of the components of the region (C); (2) the number of the holes of the region
(H); (3) Euler characteristic for planar figures (Lakatos, 1976) (E = C −H); (4) the
area (A); (5) the perimeter (U); (6) the form factor (F = U2/(4πA)); (7) the height of
the bounding box; (8) the width of the bounding box; (9) the area ratio between the
region and its bounding box; (10) the ratio between the center of the region and the
height of the image; (11) the ratio between the center of the region and the width of
the image.
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Colour features h2: For representing the spectral information of the region, we use
nine colour features (Barnard et al., 2003) as second feature set h2: the mean and the
standard deviation of R-channel, G-channel and B-channel respectively, in the RGB
colour space; and the mean of H-channel, S-channel and V-channel respectively, in the
HSV colour space.

Peucker features h3: Twelve Peucker features are derived from the generalization
of the region’s border as third feature set h3, and represent parallelity or orthogonality
of the border segments. We select the four points of the boundary which are farthest
away from each other. From this polygon region with four corners, we derive three
central moments, and eigenvalues in direction of major and minor axis, aspect ratio of
eigenvalues, orientation of the polygon region, coverage of the polygon region, and four
angles of the polygon region boundary points.

Texture features h4: We use eighteen texture features derived from the Walsh trans-
form (Petrou & Bosdogianni, 1999; Lazaridis & Petrou, 2006) as fourth feature set h4,
because the features from Walsh filters are among the best texture features from the
filter banks (Drauschke & Mayer, 2010). We determine the magnitude of the response
of nine Walsh filters. For each of the nine filters, we determine the mean and the
standard deviation for each region.

SIFT features h5: Fifth feature set h5 are mean SIFT (Scale-Invariant Feature
Transform) descriptors (Lowe, 2004) of the image region. SIFT descriptors are ex-
tracted for each pixel of the region at a fixed scale and orientation, which is practically
the same as the HOG descriptor (Dalal & Triggs, 2005), using the fast SIFT framework
in Vedaldi & Fulkerson (2008). The extracted descriptors are then averaged into one
l1-normalized descriptor vector for each region.

These features are roughly listed in Table 4.1. The resulting 178 features are then
concatenated into one feature vector.

4.4.2 Unary potential

The local unary potential E1 independently predicts the label xi based on the image
d:

E1(xi | d) = − logP (xi | d) (4.11)

The label distribution P (xi | d) is usually calculated by using a classifier. Here, we
employ randomized decision forest (RDF) (Breiman, 2001) as the classifier, where the
derived features from the image regions for the RDF classifier are chosen from Table 4.1.
Existing work has shown the power of decision forests as the classifiers (Maree et al.,
2005; Lepetit et al., 2005; Bosch et al., 2007). As illustrated in Fig. 4.4, a RDF is an
ensemble classifier that consists of T decision trees (Shotton et al., 2008). The feature
vector di of image region i is classified by going down each tree. This process gives a
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Table 4.1: List of the derived features from the image regions: basic features, colour
features, Peucker features, texture features, SIFT features. The number indicates the
feature numbers in each feature set.

h1 basic features (11)
region area and perimeter, height and width of the bounding box, etc.

h2 colour features (9)
mean and standard deviation of the RGB and the HSV colour spaces

h3 Peucker features (12)
moments and eigenvalues of a region as orthogonality or parallelity

h4 texture features (18)
texture features derived from the Walsh transform

h5 SIFT features (128)
mean SIFT descriptor features

class distribution at the leaf nodes and also a path for each tree. The class distributions
P (xi | di) is obtained by averaging the class distribution over the leaf nodes for all T
trees. This classification procedure is identical to Shotton et al. (2008).

Figure 4.4: Randomized decision forest. A decision forest is an ensemble classifier
that consists of T decision trees. A feature vector is classified by going down each tree.
This process gives a class distribution at the leaf nodes and also a path for each tree.
(Figure courtesy of Jamie Shotton (Shotton et al., 2008).)

Based on the fact that the RDF classifier does not take the location information
explicitly, we incorporate the location potential (similar to Shotton et al. (2006)) in
the unary potential. The location potential − logQ(xi | d) is the negative logarithm of
the function of the class labels xi given the image coordinates zi as the center of the
region i, where

Q(xi | d) = W (xi | zi) (4.12)

The location potential captures the dependence of the class label on the rough location
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of the region in the image. The learning of W (xi | zi) is described in Section 4.5.2 in
detail. Therefore, the unary potential E1 is written as

E1(xi | d) = − logP (xi | d)− logQ(xi | d) (4.13)

4.4.3 Pairwise potentials

The local pairwise potential E2 describes the category compatibility between the neigh-
boring labels xi and xj given the image d, which takes the form (Boykov & Jolly, 2001)

E2(xi,xj | d) = gij(1− δ(xi = xj)) (4.14)

where δ(·) is the Kronecker delta. In this work, the feature function gij measures
the colour difference between the neighbouring regions, as suggested by Rother et al.
(2004),

gij =
1 + 4 exp(−2cij)

0.5(Ni +Nj)

where cij is the l2 norm of the colour difference between the regions in the HSV colour
space. Ni is the number of the regions neighbored to region i, and Nj is the number of
the regions neighbored to j. The potentials E2 are scaled by Ni and Nj to compensate
for the irregularity of the graph G. We refer the reader to Boykov & Jolly (2001);
Shotton et al. (2006); Gould et al. (2008) for more details about designing the pairwise
potential.

The hierarchical pairwise potential E3,h describes the category compatibility be-
tween the hierarchically neighbouring labels xi and xk given the image d, which takes
the similar form as the local pairwise potential

E3,h(xi,xk | d) = g
′
ik(1− δ(xi = xk)) (4.15)

where the feature function g
′
ik relates to the hierarchical pairs of the regions (i, k), and

is defined as
g
′
ik = (1 + 4 exp(−2cik))

with cik being the l2 norm of the colour difference between the regions in the HSV colour
space. The hierarchical pairwise potential acts as a link across the scale, facilitating
propagation of the information in the model.

Note that here we give two simple pairwise potential formulations compared with
the unary potentials. The results could be better if more sophisticated features for the
pairwise potentials would be used. Furthermore, the pairwise potentials are usually
represented by a weighted summation of many features functions (Shotton et al., 2006),
and the parameters with the size as same as feature number are learned from the
training data. But this kind of parameter learning remains a difficult problem (Alahari
et al., 2010).
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4.4.4 Conditional probability energy

The conditional probability energy E3,c takes the form

E3,c(xi,xk | d) = − logP (xi = lr | xk = lt,d) = − logP (xr | xt) (4.16)

where lr, lt ∈ L, and P (xr | xt) denotes the random variable xi is in the r-th state and
its parents xk is in the t-th state. For the specific construction of our graphical model,
the node xi always has one unique parent xk, which lives in the successive scale, as
illustrated in Fig. 4.2. If we have no prior information about the node labels, uniform
distribution is adopted, which means there is no bias for the node label. The learning
procedure of the conditional probabilities P (xr | xt) is described in Section 4.5.3 in
detail.

4.5 Learning and inference for the graphical model

In this section, we discuss the learning and the inference issues of the graphical model
in (4.5). The classifier and the location potential for the unary potential, and the
weighting parameters α, β, and the conditional probability energy are the model pa-
rameters that should be learned. We take the learning approach based on piecewise
training (Sutton & McCallum, 2005). Piecewise training involves dividing the graphical
model into pieces corresponding to the different terms in (4.5). Each of these terms is
then learned independently, as if it were the only term in the model.

In (4.5), when the nodes in E3 are connected by the directed edges, meaning E3

is the conditional probability energy, we convert this model into a factor graph, and
the inference is carried out by loopy belief propagation (Pearl, 1988; Yedidia et al.,
2000). When the nodes in E3 are connected by the undirected edges, meaning E3 is
the hierarchical pairwise potential, the inference is carried out with the α-expansion
(Boykov et al., 2001), which is a graph cut (Boykov & Kolmogorov, 2004) based move
making algorithm (Boykov et al., 2001).

4.5.1 Learning the classifier

The classifier operates in the image regions defined by the unsupervised segmentation.
In order to train the RDF classifier, we take the ground-truth label of each region to
be the majority vote of the ground-truth pixel labels. Then a RDF is trained on the
labelled data for each of the classes. According to a decision tree learning algorithm,
a decision tree recursively splits left or right down the tree to a leaf node. We use
the extremely randomized trees (Geurts et al., 2006) as learning algorithm. Each tree
is trained separately on a small random subset of the training data. The learning
procedure is identical to Shotton et al. (2008). We refer the reader to Shotton et al.
(2008) for more details.
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4.5.2 Learning the location potential

The location potential − logQ(xi | d) = − logW (xi | zi) takes the form of a look-up
table with an entry for each class xi and the region center location zi, where

W (xi | zi) =

(
Nxi,ẑi

+ 1

Nẑi
+ 1

)2

(4.17)

The index ẑi is the normalized version of the region center zi, where the normalization
allows for the images of different sizes: the image is mapped onto a canonical square
and ẑi indicates the pixel position within this square. Nxi,ẑi

is the number of the
regions of the class xi at the normalized location in ẑi, and Nẑi

is the total number of
the regions at the location in ẑi.

For example, in our experiment, we use part of the annotation images in 8-class
eTRIMS dataset (Korč & Förstner, 2009) to learn the location potential, but ensure no
overlap between these images and the testing images in the experimental part. Some
learned location potentials are illustrated in Fig. 4.5. From Fig. 4.5, we see sky tends
to occur at the top part of images, while road tends to occur at the bottom part of
images, and building tends to occur in the middle part of images. Here, the dark blue
area indicates the most likely locations of one class, while the dark red area indicates
the most unlikely locations.

4.5.3 Learning the conditional probability energy

When the random variables involved are discrete, the conditional probability distribu-
tions in the graphical model become the conditional probability tables (CPTs) (Mur-
phy, 1998). The conditional probability energy E3,c(xi,xk | d) = − logP (xr | xt) takes
the form of CPTs with an entry θirt for each xi is in the r-th state and its parents xk
is in the t-th state. Suppose the graphical model has s layers (cf. Fig. 4.2 on page 36).
We generate (s− 1) CPTs of which each has C × C elements, where C is the number
of the class labels. For example, in Fig. 4.2, s = 3; therefore, we generate two CPTs.

The parameter θirt is estimated using the maximum likelihood method. We count
the co-occurrences of the parent region and the child region. We could minimize the
negative logarithm of the likelihood of the parameter θirt

θ∗irt = − arg min
θirt

∑
i,r,t

log θNirt
irt

s.t.
∑
r

θirt = 1 (4.18)

where Nirt is the number of times that xi appears in the r-th state and its parents xk
in the t-th state, which is simply counted from the training samples. Minimizing (4.18)
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(a) building (b) road

(c) sky (d) vegetation

Figure 4.5: Example location potentials. Part of the annotation images in 8-class eTRIMS
dataset (Korč & Förstner, 2009) is used to learn the location potentials, with no overlap
between these images and the testing images in the experimental part. The annotation
images are mapped onto a canonical square. The size of each image is 100× 100 here. Sky
tends to occur at the top part of images, while road tends to occur at the bottom part of
images, and building tends to occur in the middle part of images. Here, the dark blue area
indicates the most likely locations of one class, while the dark red area indicates the most
unlikely locations.
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leads to the following analytical solution

θ∗irt =
Nirt∑
rNirt

(4.19)

This result is analogous to the standard maximum likelihood estimation for Bayesian
networks (Koller & Friedman, 2009).

4.5.4 Learning the weights

Having learned the potentials and the conditional probability energy as described ear-
lier, the problem remains of how to assign appropriate weights. In our formulation (4.5),
we have two weights α and β which represent the trade-off among the confidence in the
local unary potential E1, the local pairwise potential E2, and the hierarchical pairwise
potential E3,h or the conditional probability energy E3,c.

The training of model parameters in general is not an easy problem and there is a
wide body of literature dealing with it, (cf. Taskar et al., 2004; He et al., 2006; Korč &
Förstner, 2008; Alahari et al., 2010). We estimate α and β by 5-fold cross validation
on the training data.

4.5.5 Inference

In (4.5), when the nodes in E3 are connected by the directed edges, the graphical
model in Fig. 4.2 consists of the undirected edges and the directed edges. To perform
a consistent inference, we convert this model into a factor graph (Section 3.5.2). Given
the factor graph representation, we use OpenGM package provided by Andres et al.
(2010) to perform the inference in the factor graph using loopy belief propagation
(Pearl, 1988; Yedidia et al., 2000).

In (4.5), when the nodes in E3 are connected by the undirected edges, the graphical
model in Fig. 4.2 only consists of the undirected edges. It has been experimentally
shown (Kolmogorov & Rother, 2006; Russell et al., 2010), that for most computer
vision problems graph cut (Boykov & Kolmogorov, 2004) based move making algorithms
(Boykov et al., 2001) tend to outperform other approaches in terms of speed and quality.
As the pairwise potentials of the energy function in (4.5) are composed of metrics 1 , the

1The potential function φ is called a metric (Boykov et al., 2001) on the space of labels Ln, if for
any xi,xj ,xk ∈ Ln, it satisfies the following three properties

φ(xi,xi) = 0

φ(xi,xj) = φ(xj ,xi) ≥ 0

φ(xi,xj) ≤ φ(xi,xk) + φ(xk,xj)

If φ only satisfies the first two properties, it is called a semi-metric. The α-expansion algorithm can
only be used with metric term. Otherwise, the αβ-swap can be used with semi-metric and metric
term. While the α-expansion move algorithm produces a labelling, which is within a known factor of
the global minimum, the αβ-swap does not guarantee any closeness to the global minimum (Veksler,
1999). It is trivial to show that E2 (4.14) and E3,h (4.15) are both metrics.
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energy can be minimized approximately using the well known α-expansion algorithm
(Boykov et al., 2001). Therefore, the inference is carried out with the multi-label graph
optimization library of Boykov et al. (2001); Kolmogorov & Zabih (2004); Boykov &
Kolmogorov (2004) using α-expansion, which is explained in Section 3.4.2.

4.6 Summary

In this chapter we have presented a generalization of many previous region based meth-
ods within a principled graphical model framework. This generic graphical model is
used to solve the task of scene interpretation, which is formulated as a multi-class
labelling problem. The statistical model leads to an energy function that can be op-
timized approximately by either loopy belief propagation (Pearl, 1988; Yedidia et al.,
2000) or graph cut based move making algorithm (Boykov et al., 2001).

Our approach enables the integration of the features and the spatial structural
information and the hierarchical structural information defined over the multi-scale
image segmentation in one optimization framework. We also derive three reasonable
energy potentials, i. e. the local unary potential, the local pairwise potential, the
hierarchical pairwise potential, and the conditional probability energy from the training
data, which we will use for our particular implementation of the framework. The energy
function for the statistical model for the interpretation problem is shown in (4.5) on
page 39. In the experiments presented in Chapter 5, we will compare the following four
different models.
Region classifier: When the weights α and β are set to be zero, and the set V1 is the
set of nodes in the graph of the bottom layer of the graphical model, (4.5) becomes

E(x | d) =
∑
i∈V1

E1(xi | d) (4.20)

which is the energy function associated with the region classifier.
Flat CRF: When the weight β is set to be zero, the set V1 is the set of nodes in the
graph of the bottom layer, and E1 is the set of pairs collecting the neighbouring nodes
in the bottom layer, (4.5) becomes

E(x | d) =
∑
i∈V1

E1(xi | d) + α
∑
{i,j}∈E1

E2(xi,xj | d) (4.21)

which is the energy function associated with the flat CRF defined over the image
regions.
Hierarchical CRF: If E3 is chosen as a hierarchical pairwise potential in (4.5), the
graphical model only consists undirected edges. The energy function reads

E(x | d) =
∑
i∈V

E1(xi | d) + α
∑
{i,j}∈E

E2(xi,xj | d) + β
∑
{i,k}∈S

E3,h(xi,xk | d) (4.22)
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which is the energy function associated with the hierarchical CRF defined over the
multi-scale of the image regions.
Hierarchical mixed graphical model: If E3 is chosen as the conditional probability energy
in (4.5), the graphical model consists both undirected edges and directed edges. The
energy function reads

E(x | d) =
∑
i∈V

E1(xi | d) + α
∑
{i,j}∈E

E2(xi,xj | d) + β
∑

(i,k)∈S

E3,c(xi,xk | d) (4.23)

which is the energy function associated with the hierarchical mixed graphical model.
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Chapter 5

Experimental Results

A thousand miles begins with a single step.

-Lao Tzu (600 B.C. - 470 B.C.)

5.1 Overview

In this chapter, we will show that the framework for scene interpretation developed
in Chapter 4 allows for significantly better classification results than the standard
classical local classification approach on man-made scenes by incorporating spatial and
hierarchical structures. We will investigate the performance of the algorithm on a public
database, namely the eTRIMS dataset (Korč & Förstner, 2009), to show the relative
importance of information from the spatial structure and the hierarchical structure. We
will also see that the graphical model can provide a consistent model representation,
and therefore appears to be the right tool for our task.

We will consider a classification result better than another one in terms of the
classification accuracy. The results are evaluated by average classification accuracy
across all classes. The classification accuracy for a class is given by

classification accuracy =
tp + tn

tp + fp + fn + tn
(5.1)

where tp, tn, fp, and fn refer to true positives, true negatives, false positives, and false
negatives, respectively.

We rewrite the energy function for the statistical model for the interpretation prob-
lem in Chapter 4 as follows

E(x | d) =
∑
i∈V

E1(xi | d) + α
∑
{i,j}∈E

E2(xi,xj | d) + β
∑
〈i,k〉∈S

E3(xi,xk | d) (5.2)
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The set V is the set of the nodes in the complete graph, and the set E is the set of pairs
collecting the neighbouring nodes within each scale. S is the set of pairs collecting
the parent-child relations between regions with the neighbouring scales, where 〈i, k〉
denotes nodes i and k are connected by either a undirected edge or a directed edge.
This stochastic model is illustrated in Fig. 4.2 on page 36.
Let us consider the case with only one layer segmentation of the image (the bottom
layer of the graphical model in Fig. 4.2). When the weights α and β are set to be zero,
and the set V1 is the set of nodes in the graph of the bottom layer, (5.2) becomes

E(x | d) =
∑
i∈V1

E1(xi | d) (5.3)

which is the energy function associated with the region classifier.
When the weight β is set to be zero, the set V1 is the set of nodes in the graph of the
bottom layer, and E1 is the set of pairs collecting the neighbouring nodes in the bottom
layer, (5.2) becomes

E(x | d) =
∑
i∈V1

E1(xi | d) + α
∑
{i,j}∈E1

E2(xi,xj | d) (5.4)

which is the energy function associated with the flat CRF defined over the image
regions.
Let us now consider the case with the multi-scale segmentation of the image. If E3 is
chosen as a hierarchical pairwise potential in (5.2), the energy function reads

E(x | d) =
∑
i∈V

E1(xi | d) + α
∑
{i,j}∈E

E2(xi,xj | d) + β
∑
{i,k}∈S

E3,h(xi,xk | d) (5.5)

which is the energy function associated with the hierarchical CRF defined over the
multi-scale of the image regions.
If E3 is chosen as the conditional probability energy in (5.2), the energy function reads

E(x | d) =
∑
i∈V

E1(xi | d) + α
∑
{i,j}∈E

E2(xi,xj | d) + β
∑

(i,k)∈S

E3,c(xi,xk | d) (5.6)

which is the energy function associated with the hierarchical mixed graphical model.
The features used for region classifier are basic features, colour features, Peucker fea-
tures, texture features, and SIFT features, which is listed in Table 4.1 on page 43. The
formulations of unary potential, local pairwise potential, hierarchical pairwise potential,
and conditional probability energy are described in Section 4.4.

We will start by describing the setup for the following experiments. We introduce
one specific image database of man-made scenes. In the interpretation workflow de-
scribed in Fig. 4.1, image segmentation serves as pre-step for the system. We use two
segmentation methods, namely the watershed algorithm by Vincent & Soille (1991)
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and the mean shift algorithm by Comaniciu & Meer (2002), to demonstrate the role of
the initial segmentation algorithms in the final classification results. Then we show the
region classification results using a random forest classifier as a baseline. Incorporated
with the spatial and hierarchical structures, we show the hierarchical CRF produces
better classification results than both the region classifier and the flat CRF. In the end
of this chapter, we will demonstrate the applicability of the graphical model for scene
interpretation. We want to show that the hierarchical mixed graphical model results
are comparable to the results obtained with the hierarchical CRF.

We conduct the experiments to evaluate the performance of the proposed model
on eTRIMS dataset (Korč & Förstner, 2009). In all experiments, we take the ground
truth label of a region to be the majority vote of the ground truth pixel labels. At the
test stage, to ensure no bias in favor of our method, we compute our accuracy at the
pixel level.

5.2 Experimental setup

5.2.1 Image database

We use the eTRIMS dataset (Korč & Förstner, 2009) to evaluate the image inter-
pretation of man-made scenes in terms of building facade image region classification
accuracy. The dataset is a collection of annotated images of street scenes from vari-
ous European cities including: Basel, Berlin, Bonn, and Heidelberg. Several example
images are shown in Fig. 1.3 on page 4. Ground truth annotation is provided on the
pixel level. Each image pixel is assigned with a class label. The ground truth labelling
is approximate, with foreground labels often overlapping the background objects.

There are 60 annotated images in the eTRIMS dataset. We consider all eight
object classes: building, car, door, pavement, road, sky, vegetation, window. These
classes are the typical objects which can appear in the images of building facades. In
the experiments, we randomly divide the images into a training set with 40 images
and a testing set with 20 images. Table 5.1 summarizes the number of the objects and
the images for each annotated class. In total, there are 1702 annotated objects in the
dataset.

The dataset is comprised of the images and the corresponding ground truth. An ex-
ample image with ground truth labelling from the dataset is shown in Fig. 5.1. Ground
truth is created by human interpretation of the images, it refers to the appearance of
the objects in the images, not to their 3D-structure. Therefore, occluded parts of an
object are not annotated as part of an object. Furthermore, the window region in a
building region is not annotated as part of an building object (cf. Fig. 5.1 (b)). Ground
truth labels each pixel with the ground truth class or background. The ground truth
is represented as an indexed image. The pixel values 1, 2, 3, . . . , 8 correspond to class
names in the alphabetical order (1=building, 2=car, 3=door, 4=pavement, 5=road,
6=sky, 7=vegetation, 8=window). The pixel value 0 corresponds to background. More
example images with ground truth labelling from the dataset are shown in Fig. 5.2.
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Table 5.1: Statistics of the 8–Class eTRIMS dataset.

Class Name Images Objects

Building 60 142
Car 27 67
Door 53 85
Pavement 56 76
Road 49 51
Sky 60 71
Vegetation 56 194
Window 60 1016

Total 60 1702

Note that the ground truth labelling is not pixel accurate (cf. auxiliary visualization of
the object boundaries in Fig. 5.1 (c)).

(a) (b) (c)

Figure 5.1: An example image with ground truth labelling from the eTRIMS dataset.
(a) Example image. (b) Ground truth showing building, car, door, pavement, road, sky,
vegetation, window labels. The black region corresponds to background. (c) Visualization
of ground truth object boundaries with polygons in pink colour.

5.2.2 Segmentation algorithms

In the experiments, our graphical model works on the region level. A region is defined
by the boundary of an image partition, where each pixel only belongs to one region.
Therefore, the initial unsupervised segmentation algorithms may play an important
role in the final classification results. The result of image segmentation is a set of
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Basel

Bonn Munich

Berlin

Heidelberg Prague

Karlsruhe

UK Hamburg

Figure 5.2: Example images from the 8–Class eTRIMS dataset (Korč & Förstner, 2009).
Column 1 and 3 show the example images. Column 2 and 4 show the ground truth with
building, car, door, pavement, road, sky, vegetation, window labels. The bottom row is the
Legend. City names of origin are given below the example images.
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segmented regions that cover the entire image. To test how much the influence of
the segmentation algorithms would be, we employ two different segmentation methods,
namely the watershed algorithm (Vincent & Soille, 1991) and the mean shift algorithm
(Comaniciu & Meer, 2002), each of which has two variants, namely a baseline version
and a multi-scale version.

5.2.2.1 Baseline watershed

We segment the images using the watershed method (Vincent & Soille, 1991), which
turns out to give approximately 900 regions per image. As a result, we obtain an image
partition, where each pixel only belongs to one region. In all 60 images, we extract
around 56 000 regions. We take the ground truth label of a region to be the majority
vote (above 50%) of the ground truth pixel labels. We have following statistics. Almost
34% of all the segmented regions get the class label building. 28% of all regions get the
class label window. These statistics are very comprehensive, because the facade images
show the facades typically contain many windows. Furthermore, 23% of the regions get
the class label vegetation, 2% belong to sky, and the last 13% of the regions are spread
over most of other classes. Table 5.2 summarizes the statistics for the percentage of
each class label, the average size of the region of each class, and the percentage of the
image covered by each class for the baseline watershed segmentation in the 8-Class
eTRIMS dataset (Korč & Förstner, 2009).

Table 5.2: Statistics of the percentage of each class label, the average size of the region of
each class, and the percentage of the image covered by each class for the baseline watershed
segmentation in the 8-Class eTRIMS dataset (Korč & Förstner, 2009). (b = building, c =
car, d = door, p = pavement, r = road, s = sky, v = vegetation, w = window.)

Baseline watershed
b c d p r s v w

class percentage 34 4 1 2 2 2 23 28

average size of region 614 268 477 684 1490 4096 209 152

class covering percentage 49 3 1 4 6 16 11 10

5.2.2.2 Baseline mean shift

We segment the images using the mean shift algorithm (Comaniciu & Meer, 2002),
tuned to give approximately 480 regions per image. In all 60 images, we extract around
30 000 regions. We have following statistics. Compared to the ground truth labelling,
almost 36% of all the segmented regions get the class label building. 26% of all regions
get the class label window. Furthermore, 21% of the regions get the class label vege-
tation, and 2% belong to sky, and the last 15% of the regions are spread over most of
other classes. Table 5.3 summarizes the statistics for the percentage of each class label,
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the average size of the region of each class, and the percentage of the image covered
by each class for the baseline mean shift segmentation in the 8-Class eTRIMS dataset
(Korč & Förstner, 2009).

Table 5.3: Statistics of the percentage of each class label, the average size of the region
of each class, and the percentage of the image covered by each class for the baseline mean
shift segmentation in the 8-Class eTRIMS dataset (Korč & Förstner, 2009). (b = building,
c = car, d = door, p = pavement, r = road, s = sky, v = vegetation, w = window.)

Baseline mean shift
b c d p r s v w

class percentage 36 5 2 2 2 2 21 26

average size of region 1014 424 569 1671 2563 6741 380 310

class covering percentage 48 3 1 4 6 16 11 11

5.2.2.3 Multi-scale watershed

We segment the images using the multi-scale watershed method (Drauschke, 2009) on
the smoothed version of the original image, tuned to give approximately 1000 regions
per image counting all scales. We determine the segmentation from the boundaries on
the image’s gradient magnitude, and then use the Gaussian scale space for obtaining the
regions at several scales, which has been described by Drauschke et al. (2006). For each
scale, we convolve each image channel with a Gaussian filter and combine the channels
to compute the gradient magnitude. We determine the scale-specific neighbourhood
graph on each image partition by the spatial arrangement (cf. Fig. 3.5 Middle). In all
60 images, we extract around 62 000 regions. We use three layers in the scale space
for the experiments. The bottom layer often contains 900 or more regions, and the
number decreases down to 15 in the top layer. Three layers are connected via a region
hierarchy. The development of the regions over the scales is used to model the region
hierarchy. Furthermore, the relation is defined over the maximal overlap of the regions
(cf. Fig. 4.2). Multi-scale watershed segmentation results of one example image in
eTRIMS dataset are shown in Fig. 5.3, where the region boundaries are superimposed
on the smoothed versions at three different scales of the example image. Table 5.4
summarizes the statistics for the percentage of each class label, the average size of the
region of each class, and the percentage of the image covered by each class for the
multi-scale watershed segmentation in the 8-Class eTRIMS dataset (Korč & Förstner,
2009).

5.2.2.4 Multi-scale mean shift

Our approach uses the Gaussian scale-space for obtaining the regions at several scales.
For each scale, we convolve each image channel with a Gaussian filter and apply the
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Figure 5.3: Multi-scale watershed segmentation (Drauschke, 2009) results of an example
image. From left to right : the segmentation results at scale 1, 2, 3, respectively. Region
boundaries, shown in yellow, are superimposed on the smoothed versions at different scales
of the original image.

Table 5.4: Statistics of the percentage of each class label, the average size of the region
of each class, and the percentage of the image covered by each class for the multi-scale
watershed segmentation in the 8-Class eTRIMS dataset (Korč & Förstner, 2009). (b =
building, c = car, d = door, p = pavement, r = road, s = sky, v = vegetation, w = window.)

Multi-scale watershed
b c d p r s v w

class percentage 34 4 1 2 2 2 22 28

average size of region 1613 449 816 1140 2432 7887 427 254

class covering percentage 48 2 1 2 4 16 8 6
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mean shift algorithm (Comaniciu & Meer, 2002) to segment the smoothed image. As a
result of the mean shift algorithm, we obtain a complete partitioning of the image for
each scale, where every image pixel belongs to exactly one region. We determine the
scale-specific neighbourhood graph on each image partition by the spatial arrangement
(cf. Fig. 3.5 Middle). In all 60 images, we extract around 61 000 regions. We use
three layers in the scale space for the experiments. The bottom layer often contains
around 500 regions, and the number decreases down to 200 in the top layer. Three
layers are connected via a region hierarchy. The development of the regions over the
scales is used to model the region hierarchy. Furthermore, the relation is defined over
the maximal overlap of the regions (cf. Fig. 4.2). Fig. 5.4 shows the region results of
one example image in eTRIMS dataset from the multi-scale mean shift segmentation,
where the colour of each region is assigned randomly that the neighbouring regions are
likely to have different colours.

Figure 5.4: The region images of the mean shift (Comaniciu & Meer, 2002) segmentation
result at scale 1, 2, 3, respectively. The colour of each region is assigned randomly that
the neighbouring regions are likely to have different colours.

Table 5.5 summarizes the statistics for the percentage of each class label, the average
size of the region of each class, and the percentage of the image covered by each class
for the multi-scale mean shift segmentation in the 8-Class eTRIMS dataset (Korč &
Förstner, 2009).
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Table 5.5: Statistics of the percentage of each class label, the average size of the region of
each class, and the percentage of the image covered by each class for the multi-scale mean
shift segmentation in the 8-Class eTRIMS dataset (Korč & Förstner, 2009). (b = building,
c = car, d = door, p = pavement, r = road, s = sky, v = vegetation, w = window.)

Multi-scale mean shift
b c d p r s v w

class percentage 36 5 2 2 2 3 20 24

average size of region 1507 639 750 2102 3150 5239 633 473

class covering percentage 47 3 1 4 6 16 11 10

5.3 Results for the baseline region classifier

In this section, we present the experimental results for a RDF classifier as a baseline
with both baseline mean shift segmentation and baseline watershed segmentation.

5.3.1 Results with baseline mean shift and the RDF classifier

We give the RDF classification results on the regions from the baseline mean shift
segmentation with all the feature sets from the images in the eTRIMS dataset (Korč
& Förstner, 2009). The feature sets are basic features h1, colour features h2, Peucker
features h3, texture features h4, and SIFT features h5 (cf. Section 4.4.1). We run
experiments five times, and obtain overall averaging classification accuracy 58.8%. The
number of the decision trees is chosen as T = 250. Fig. 5.5 Left shows the classification
results over all 8 classes. The classification accuracy with respect to the numbers of the
decision trees T for training are shown in Fig. 5.5 Right. While increasing the number
of the decision trees, the classification accuracy also increases. After 250 iteration, the
accuracy converges. So we choose T = 250 for performing the experiments.

To emphasize the importance of the each feature set, we give the RDF classification
results on the regions from the baseline mean shift segmentation with the each feature
set. The overall classification accuracy is listed in Table 5.6, when applying the RDF
classifier on each feature set. The number of the decision trees is chosen as T = 250.
A random classifier for 8 classes, the expected classification accuracy is 12.5%.

Table 5.6: Average accuracy using a randomized decision forest (RDF) classifier with the
baseline mean shift segmentation on each feature set of eTRIMS dataset (Korč & Förstner,
2009). The feature sets are basic features h1, colour features h2, Peucker features h3,
texture features h4, and SIFT features h5.

feature set h1 h2 h3 h4 h5

accuracy 43.8% 49.6% 40.9% 27.9% 54.1%
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Figure 5.5: The classification accuracy of each class of the RDF classifier with baseline
mean shift and the accuracy with respect to the numbers of the decision trees. Left : the
classification accuracy of each class of the RDF classifier with baseline mean shift on the
feature sets h. Right : the RDF classification accuracy with respect to the numbers of the
decision trees for training. (b = building, c = car, d = door, p = pavement, r = road, s =
sky, v = vegetation, w = window.)

Fig. 5.6 presents some result images of the RDF method. The black regions in all
the result images and ground truth images correspond to background. The qualitative
inspection of the results in Fig. 5.6 shows that the RDF classifier yields some reasonable
results. There exists some misclassification for each class. For example, the incorrect
results at windows are often due to the reflectance of vegetation and sky in the window
panes. A sky region is assigned label car in one image (cf. the third column in Fig. 5.6).
This can be resolved simply by introducing some kind of the spatial prior (Gould et al.,
2008), such as sky is above the building, road and pavement are below the building,
car is above the road, and window is surrounded by building. A full confusion matrix
summarizing the RDF classification results over all 8 classes is given in Table 5.7,
showing the performance of this method.

Here, the features are extracted at a local scale. The classification results are
achieved from bottom up on these local features by the classifier, which leads to incor-
rect labelling and noisy boundaries in the test images. To enforce consistency, a Markov
or conditional random field (Shotton et al., 2006) is often introduced for refinement,
which will likely improve the performance (cf. Section 5.4).
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Figure 5.6: Qualitative classification results of a RDF classifier with the baseline mean
shift on the testing images from the eTRIMS dataset (Korč & Förstner, 2009). (1st-row)
Testing images. (2nd-row to 3rd-row) Classification results using the RDF classifier (RDF),
and the ground truth (GT), respectively. (4th-row) Legend.

Table 5.7: Accuracy of RDF classifier with the baseline mean shift segmentation on
the eTRIMS 8-class dataset (Korč & Förstner, 2009). The confusion matrix shows the
classification accuracy for each class (rows) and is row-normalized to sum to 100%. Row
labels indicate the true class (Tr), and column labels the predicted class (Pr). (b = building,
c = car, d = door, p = pavement, r = road, s = sky, v = vegetation, w = window.)

H
HHH

HHPr
Tr

b c d p r s v w

b 60 8 2 2 2 1 9 16
c 22 40 1 3 1 2 29 2
d 46 0 15 0 0 0 8 31
p 40 16 0 12 4 4 16 8
r 40 20 0 14 23 3 0 0
s 29 2 0 5 2 48 7 7
v 11 5 1 1 1 0 76 5
w 24 1 2 0 0 1 4 68
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5.3.2 Results with baseline watershed and the RDF classifier

To test whether the classification result mainly benefits from the mean shift segmenta-
tion method, and not from the feature sets we use, we also employ another unsupervised
segmentation method, namely the watershed algorithm by Vincent & Soille (1991), to
segment the facade images.

The overall classification accuracy is 55.4%, with the RDF classifier on all the feature
sets h and the number of the decision trees chosen as T = 250. The confusion matrix
is given in Table 5.8.

In comparison with Table 5.7, the accuracy for each class remains similar, which
shows that the type of finding image regions from the image segmentation algorithms is
not critical and the low classification performance results from the lack of either good
features or contextual information.

Table 5.8: Pixelwise accuracy of the image classification using the RDF classifier and the
watershed segmentation on the eTRIMS 8-class dataset (Korč & Förstner, 2009). The con-
fusion matrix shows the classification accuracy for each class (rows) and is row-normalized
to sum to 100%. Row labels indicate the true class (Tr), and column labels the predicted
class (Pr). (b = building, c = car, d = door, p = pavement, r = road, s = sky, v =
vegetation, w = window.)

HH
HHHHPr

Tr
b c d p r s v w

b 59 4 1 3 5 9 11 7
c 67 21 0 5 2 0 3 2
d 19 0 12 0 0 0 62 7
p 57 3 0 9 30 0 0 1
r 14 1 0 58 23 1 3 1
s 17 0 0 6 0 73 2 1
v 13 4 1 2 1 13 61 4
w 29 1 1 1 0 6 3 57

5.4 Results for the hierarchical CRF

The hierarchical CRF model is defined over the multi-scale of the image regions when
we choose E3 as a pairwise potential in (4.5) on page 39, the corresponding energy
function is shown in (5.5). In this section, we present the experimental results for the
hierarchical CRF with both multi-scale mean shift segmentation and multi-scale wa-
tershed segmentation, and the comparison with the baseline RDF region classification
results and the flat CRF classification results.
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5.4.1 Results with multi-scale mean shift and the hierarchical CRF

Fig. 5.7 shows the classification results for the hierarchical CRF with the multi-scale
mean shift segmentation.

Figure 5.7: One example of the classification results using the hierarchical CRF from
3-scale mean shift segmentation. From left to right : the classification result at scale 1, 2,
3, respectively.

Table 5.10 shows the confusion matrix obtained by applying the hierarchical CRF
to the whole test set. Accuracy values in the table are computed as the percentage
of the image pixels assigned to the correct class label, ignoring the pixels labelled as
void in the ground truth. The overall classification accuracy is 69.0%. The weighting
parameter settings, learned by cross validation on the training data, are α = 0.1,
β = 0.65. For comparison, the baseline RDF classifier alone gives an overall accuracy
of 58.8% (cf. Section 5.3.1), and the flat CRF (α = 0.8, β = 0) gives an overall accuracy
of 65.8% (Yang & Förstner, 2011c). Therefore, the hierarchical potential increases the
accuracy by 3.2%. This seemingly small numerical improvement corresponds to a large
perceptual improvement (cf. Fig. 5.8).

Compared to the confusion matrix showing the flat CRF with with the baseline
mean shift in Table 5.9 (Yang & Förstner, 2011c), the hierarchical CRF performs
significantly better on pavement, vegetation, road, and window classes, slightly better
on car and sky classes, and slightly worse on building and door classes.

Qualitative results of the hierarchical CRF with the multi-scale mean shift on the
eTRIMS dataset are presented in Fig. 5.8. The qualitative inspection of the results
in these images shows that the hierarchical CRF yields large improvement over the
baseline RDF region classification results and the flat CRF classification results. The
greatest accuracies are for classes which have low visual variability and many training
examples (such as window, vegetation, building, and sky) whilst the lowest accuracies
are for classes with high visual variability or few training examples (for example door,
car, and pavement). We expect more training data and the use of features with better
invariance properties will improve the classification accuracy. Objects such as car,
door, pavement, and window are sometimes incorrectly classified as building, due to
the dominant presence of the building in the image. Detecting windows, cars, and
doors should resolve some of such ambiguities.
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Figure 5.8: Qualitative classification results of the hierarchical CRF with the multi-scale
mean shift segmentation on the testing images from the eTRIMS dataset (Korč & Förstner,
2009). The qualitative inspection of the results in these images shows that the hierarchical
CRF yields large improvement over the flat CRF results and the RDF region classifier
results. (1st-row) Testing images. (2nd-row to 5th-row) Classification results using the
RDF region classifier (RDF), the flat CRF model (CRF) (Yang & Förstner, 2011c), the
hierarchical CRF model (HCRF), and the ground truth (GT), respectively. (6th-row)
Legend.
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Table 5.9: Pixelwise accuracy of the image classification using the flat CRF (Yang &
Förstner, 2011c) with the baseline mean shift segmentation on the eTRIMS 8-class dataset
(Korč & Förstner, 2009). The confusion matrix shows the classification accuracy for each
class (rows) and is row-normalized to sum to 100%. Row labels indicate the true class
(Tr), and column labels the predicted class (Pr). (b = building, c = car, d = door, p =
pavement, r = road, s = sky, v = vegetation, w = window.)

H
HHH

HHPr
Tr

b c d p r s v w

b 71 2 1 1 1 2 10 12
c 12 35 0 12 11 0 30 0
d 42 0 16 1 6 0 8 27
p 11 15 0 22 36 0 14 2
r 4 8 0 44 35 0 9 0
s 13 0 0 0 0 78 8 1
v 18 5 2 1 1 0 66 7
w 19 1 1 0 0 1 3 75

Table 5.10: Pixelwise accuracy of the image classification using the hierarchical CRF with
the multi-scale mean shift segmentation on the eTRIMS 8-class dataset (Korč & Förstner,
2009). The confusion matrix shows the classification accuracy for each class (rows) and
is row-normalized to sum to 100%. Row labels indicate the true class (Tr), and column
labels the predicted class (Pr). (b = building, c = car, d = door, p = pavement, r = road,
s = sky, v = vegetation, w = window.)

H
HHH

HHPr
Tr

b c d p r s v w

b 67 3 1 4 5 1 8 11
c 17 36 0 11 9 0 26 1
d 50 5 14 8 0 0 7 16
p 6 4 0 85 1 0 4 0
r 0 11 0 21 53 0 15 0
s 11 0 0 0 0 80 8 1
v 9 5 1 0 1 0 78 6
w 15 0 1 0 0 2 2 80

5.4.2 Results with multi-scale watershed and the hierarchical CRF

With multi-scale watershed segmentation, Table 5.12 shows the confusion matrix ob-
tained by applying the hierarchical CRF to the whole test set. Accuracy values in
the table are computed as the percentage of image pixels assigned to the correct class
label, ignoring pixels labelled as void in the ground truth. The overall classification
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accuracy is 65.3%. The weighting parameter settings, learned by cross validation on
the training data, are α = 0.8, β = 0.1. For comparison, the RDF classifier alone gives
an overall accuracy of 55.4%, and the flat CRF ( α = 1.08, β = 0) gives an overall ac-
curacy of 61.8% (Yang & Förstner, 2011c). Therefore, the location, local pairwise, and
hierarchical potentials increase the accuracy by 7%. Compared to the confusion matrix
showing the flat CRF with with the baseline watershed in Table 5.11, the hierarchical
CRF gains better accuracy on building, car, sky, vegetation, and window classes.

Table 5.11: Pixelwise accuracy of the image classification using the flat CRF with baseline
watershed on the eTRIMS 8-class dataset (Korč & Förstner, 2009). The confusion matrix
shows the classification accuracy for each class (rows) and is row-normalized to sum to
100%. Row labels indicate the true class (Tr), and column labels the predicted class (Pr).
(b = building, c = car, d = door, p = pavement, r = road, s = sky, v = vegetation, w =
window.)

HHH
HHHPr

Tr
b c d p r s v w

b 66 2 1 2 3 3 12 11
c 44 10 2 9 23 0 7 5
d 35 0 13 0 1 0 36 15
p 26 8 1 52 5 0 4 4
r 22 10 1 15 38 0 13 1
s 10 0 0 0 0 78 10 2
v 28 11 2 2 1 0 48 8
w 20 1 2 0 0 0 2 75

Qualitative results of the hierarchical CRF on the eTRIMS dataset are presented in
Fig. 5.9. The qualitative inspection of the results in these images shows that the hierar-
chical CRF yields large improvement over the baseline RDF region classification results
and the flat CRF classification results. However, some misclassification still exists. For
example, 11% of pavement is misclassified as road, and 42% of road is misclassified as
pavement (cf. Table 5.12). Objects such as pavement and road can be confused with
each other. This effect is partially attributable to inaccuracies in the manual ground
truth labelling, where pixels are often mislabelled near object boundaries. Pavement
and road have the similar appearance, therefore, no discriminative features have been
found to distinguish them.
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Figure 5.9: Qualitative classification results of the hierarchical CRF with the multi-scale
watershed segmentation on the testing images from the eTRIMS dataset (Korč & Förstner,
2009). The qualitative inspection of the results in these images shows that the hierarchical
CRF yields large improvement over the flat CRF results and the RDF region classifier
results. (1st-row) Testing images. (2nd-row to 5th-row) Classification results using the
RDF region classifier (RDF), the flat CRF model (CRF), the hierarchical CRF model
(HCRF), and the ground truth (GT), respectively. (6th-row) Legend.
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Table 5.12: Pixelwise accuracy of the image classification using the hierarchical CRF with
multi-scale watershed on the eTRIMS 8-class dataset (Korč & Förstner, 2009). The confu-
sion matrix shows the classification accuracy for each class (rows) and is row-normalized to
sum to 100%. Row labels indicate the true class (Tr), and column labels the predicted class
(Pr). (b = building, c = car, d = door, p = pavement, r = road, s = sky, v = vegetation,
w = window.)

H
HHH

HHPr
Tr

b c d p r s v w

b 67 4 1 3 3 3 8 11
c 48 34 1 7 6 0 3 1
d 26 0 9 0 2 0 59 4
p 49 8 0 17 11 0 11 4
r 8 5 0 42 31 0 14 0
s 9 0 0 0 0 81 9 1
v 11 4 1 1 1 0 79 3
w 20 0 1 0 0 0 1 78

5.5 Results for the hierarchical mixed graphical model

The hierarchical mixed graphical model is defined over the multi-scale of the image
regions when we choose E3 as the conditional probability energy in (4.5) on page 39, the
corresponding energy function is shown in (5.6). In this section, we first calculate the
conditional probability tables for the energy term. Then, we present the experimental
results for the hierarchical mixed graphical model with both multi-scale mean shift
segmentation and multi-scale watershed segmentation, and the comparison with the
baseline region classifier, the flat CRF, and the hierarchical CRF classification results.

5.5.1 Conditional probability tables

Following the learning procedure presented in Section 4.5.3, we derive the conditional
probability tables (CPTs).

The two tables corresponding to the three layers of the multi-scale mean shift seg-
mentation on the training data of eTRIMS dataset (Korč & Förstner, 2009) are pre-
sented in Table 5.13 and Table 5.14. We obtain the following information regarding
the probability tables. They have each 8× 8 = 64 elements. All two tables have many
elements equal zero or almost equal zero, which means that the relationship between
two classes does not occur at all.

For the image regions resulting from the multi-scale watershed segmentation, the
CPT of 1st layer and 2nd layer is given in Table 5.15. For example, if we have given
a building region, then the probability for the target of one of its children is 0.88 for
representing a building as well, but we find a window as child with a probability of
0.35.
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Table 5.13: Conditional probability table (CPT) of 1st layer and 2nd layer of the multi-
scale mean shift segmentation. The table shows the conditional probability for each class
(rows) given its parent and is row-normalized to sum to 100%. Column labels indicate
the parent class, and row labels the given class. (b = building, c = car, d = door, p =
pavement, r = road, s = sky, v = vegetation, w = window.)

HHH
HHHxi

xk b c d p r s v w

b 95 0 1 0 0 0 1 3
c 1 96 0 0 2 0 0 1
d 4 0 94 0 1 0 1 0
p 5 2 0 83 9 0 1 0
r 0 2 0 4 93 0 1 0
s 1 0 0 0 0 99 0 0
v 3 0 0 0 0 0 96 1
w 11 0 0 0 0 0 1 88

Table 5.14: Conditional probability table (CPT) of 2nd layer and 3rd layer of the multi-
scale mean shift segmentation. The table shows the conditional probability for each class
(rows) given its parent and is row-normalized to sum to 100%. Column labels indicate
the parent class, and row labels the given class. (b = building, c = car, d = door, p =
pavement, r = road, s = sky, v = vegetation, w = window.)

HHH
HHHxi

xk b c d p r s v w

b 88 0 0 0 0 9 2 1
c 88 9 0 0 0 0 0 3
d 49 0 44 0 0 0 7 0
p 56 0 0 44 0 0 0 0
r 21 0 0 0 69 0 10 0
s 15 0 0 0 0 80 5 0
v 37 0 1 0 0 8 52 2
w 78 0 0 0 0 2 0 20
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Table 5.15: Conditional probability table (CPT) of 1st layer and 2nd layer of the multi-
scale watershed segmentation. The table shows the conditional probability for each class
(rows) given its parent and is row-normalized to sum to 100%. Column labels indicate
the parent class, and row labels the given class. (b = building, c = car, d = door, p =
pavement, r = road, s = sky, v = vegetation, w = window.)

HHH
HHHxi

xk b c d p r s v w

b 88 0 1 1 1 4 2 3
c 16 78 0 0 1 0 4 1
d 13 0 81 2 1 0 3 0
p 16 1 0 65 13 0 5 0
r 12 4 0 9 65 0 10 0
s 2 0 0 0 1 94 3 0
v 12 0 1 0 0 2 85 0
w 35 0 0 0 1 0 1 63

5.5.2 Results with multi-scale mean shift and the hierarchical mixed
graphical model

Table 5.16 shows the confusion matrix obtained by applying the hierarchical mixed
graphical model to the whole test set. The overall classification accuracy is 68.9%. The
weighting parameters, learned by cross validation on the training data, are α = 0.8,
β = 1. For comparison, the RDF region classifier gives an overall accuracy of 58.8%,
the flat CRF gives an overall accuracy of 65.8%, and the hierarchical CRF gives an
overall accuracy of 69.0%.

Qualitative results of the hierarchical mixed graphical model with the multi-scale
mean shift on the eTRIMS dataset (Korč & Förstner, 2009) are presented in Fig. 5.10.
The qualitative inspection of the results in these images shows that the hierarchical
mixed graphical model yields significant improvement. The hierarchical mixed graph-
ical model yields more accurate and cleaner results than the flat CRF and the RDF
region classifier, and comparable to the hierarchical CRF model.
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Figure 5.10: Qualitative classification results of the hierarchical mixed graphical model
with the multi-scale mean shift segmentation on the testing images from the eTRIMS
dataset (Korč & Förstner, 2009). The hierarchical mixed graphical model yields more
accurate and cleaner results than the flat CRF and the RDF region classifier, and com-
parable to the hierarchical CRF model. (1st-row) Testing images. (2nd-row to 6th-row)
Classification results using the RDF region classifier (RDF), the flat CRF model (CRF)
(Yang & Förstner, 2011c), the hierarchical CRF model (HCRF), the hierarchical mixed
graphical model (HMGM), and the ground truth (GT), respectively. (7th-row) Legend.
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Table 5.16: Pixelwise accuracy of the image classification using the hierarchical mixed
graphical model with the multi-scale mean shift segmentation on the eTRIMS 8-class
dataset (Korč & Förstner, 2009). The confusion matrix shows the classification accu-
racy for each class (rows) and is row-normalized to sum to 100%. Row labels indicate the
true class (Tr), and column labels the predicted class (Pr). (b = building, c = car, d =
door, p = pavement, r = road, s = sky, v = vegetation, w = window.)

H
HHH

HHPr
Tr

b c d p r s v w

b 70 3 1 3 3 1 8 11
c 37 28 0 8 5 0 20 2
d 66 2 11 2 0 0 9 10
p 8 2 0 76 1 1 10 2
r 4 3 0 23 60 0 7 3
s 12 0 0 0 0 80 7 1
v 10 6 0 1 2 0 78 3
w 18 1 2 0 0 1 3 75

5.5.3 Results with multi-scale watershed and the hierarchical mixed
graphical model

Table 5.17 shows the confusion matrix obtained by applying the hierarchical mixed
graphical model to the whole test set. Accuracy values in the table are computed as
the percentage of the image pixels assigned to the correct class label, ignoring the pixels
labelled as void in the ground truth. The overall classification accuracy is 68.0%. The
weighting parameters, learned by cross validation on the training data, are α = 1.08,
β = 1. For comparison, the RDF region classifier gives an overall accuracy of 55.4%,
the flat CRF gives an overall accuracy of 61.8%, and the hierarchical CRF gives an
overall accuracy of 65.3%.

Compared to the confusion matrix showing the flat CRF with the baseline watershed
in Table 5.11 on page 67, the hierarchical mixed graphical model performs significantly
better on car, vegetation, and road classes, slightly better on building, window, and sky
classes, and significantly worse on door class.

Qualitative results of the hierarchical mixed graphical model on the eTRIMS dataset
are presented in Fig. 5.11. Compared to the classification results showing the flat CRF
with the baseline watershed segmentation and the hierarchical CRF with the multi-scale
watershed segmentation, the hierarchical mixed graphical model produces significantly
better results than the results from the flat CRF, and slightly better than the results
from the hierarchical CRF.
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Figure 5.11: Qualitative classification results of the hierarchical mixed graphical model
with the multi-scale watershed segmentation on the testing images from the eTRIMS
dataset (Korč & Förstner, 2009). The qualitative inspection of the results in these im-
ages shows that the hierarchical mixed graphical model yields more accurate and cleaner
results than the flat CRF and the RDF region classifier, and comparable to the hierarchical
CRF model. (1st-row) Testing images. (2nd-row to 6th-row) Classification results using
the RDF region classifier (RDF), the flat CRF model (CRF), the hierarchical CRF model
(HCRF), the hierarchical mixed graphical model (HMGM), and the ground truth (GT),
respectively. (7th-row) Legend.
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Table 5.17: Pixelwise accuracy of the image classification using the hierarchical mixed
graphical model with the multi-scale watershed on the eTRIMS 8-class dataset (Korč &
Förstner, 2009). The confusion matrix shows the classification accuracy for each class
(rows) and is row-normalized to sum to 100%. Row labels indicate the true class (Tr), and
column labels the predicted class (Pr). (b = building, c = car, d = door, p = pavement, r
= road, s = sky, v = vegetation, w = window.)

H
HHH

HHPr
Tr

b c d p r s v w

b 68 3 2 3 3 1 10 10
c 26 38 0 5 7 0 23 1
d 35 0 0 2 1 0 45 17
p 31 3 1 52 9 0 1 3
r 12 10 1 13 60 0 3 1
s 8 0 0 0 0 82 9 1
v 8 6 0 2 2 0 80 2
w 21 0 1 0 0 0 1 77

5.6 Summary

By visual inspection of the classification results for some challenging test images, e. g.
Fig. 5.10 and Fig. 5.11, we have demonstrated that our graphical model framework
outperforms the method either with only spatial information (Yang & Förstner, 2011c)
or without contextual information.

The overall performance of the classification methods on the eTRIMS dataset (Korč
& Förstner, 2009) in terms of the pixelwise classification accuracy is listed in Table 5.18.
We observe that the classification results from the mean shift segmentation are con-
sistently better than the results from the watershed segmentation. This is probably

Table 5.18: Pixelwise accuracy comparison of four image classification methods with two
segmentation algorithms on the eTRIMS 8-class dataset (Korč & Förstner, 2009). (C:
classification, S: segmentation, RDF: randomized decision forest, CRF: flat conditional
random field, HCRF: hierarchical conditional random field, HMGM: hierarchical mixed
graphical model.)

HHH
HHHC

S
watershed mean shift

RDF 55.4% 58.8%
CRF 61.8% 65.8%
HCRF 65.3% 69.0%
HMGM 68.0% 68.9%
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because the mean shift preserves more consistent segmentation boundaries. By using
the spatial neighbourhood information, the flat CRF (Yang & Förstner, 2011c) out-
performs the RDF region classifier significantly (approx. 7% for each segmentation
algorithm). Furthermore, by using additional hierarchical information, the hierarchical
CRF and the hierarchical mixed graphical model outperform the flat CRF, which con-
firms the aforementioned visual inspection. Note that the hierarchical mixed graphical
model with watershed segmentation gains accuracy of 6.2% than the flat CRF, com-
pared to the hierarchical mixed graphical model with mean shift segmentation (3.1%).
The difference in these results may be caused by the different scale-selection schemes
in two segmentation algorithms. The highest scale of the watershed segmentation gives
very few regions, compared to the highest scale of the mean shift segmentation.

We summarize the classification results over all eight classes on the eTRIMS dataset
(Korč & Förstner, 2009) from eight confusion matrix tables in Fig. 5.12. The flat CRF

Figure 5.12: The classification results over all eight classes from all eight cases of four
classification methods with two segmentation algorithms on the eTRIMS dataset (Korč
& Förstner, 2009). The legend shown on the top right corner. RDF+MS: RDF region
classifier with mean shift segmentation, RDF+WS: RDF region classifier with watershed
segmentation, CRF+MS: flat CRF with mean shift segmentation, CRF+WS: flat CRF
with watershed segmentation, HCRF+MS: hierarchical CRF with multi-scale mean shift
segmentation, HCRF+WS: hierarchical CRF with multi-scale watershed segmentation,
HMGM+MS: hierarchical mixed graphical model with multi-scale mean shift segmentation,
HMGM+WS: hierarchical mixed graphical model with multi-scale watershed segmentation.
Note that each colour represents one of the eight cases of four classification methods with
two segmentation algorithms, and should not be confused with the colour in other figures.
(b = building, c = car, d = door, p = pavement, r = road, s = sky, v = vegetation, w =
window.)
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outperforms the RDF region classifier for all eight classes except the class car. The
hierarchical CRF and the hierarchical mixed graphical model outperforms the flat CRF
for most classes. The best accuracies for each class are the flat CRF with mean shift
for class building, the RDF classifier with mean shift for class car, the flat CRF with
mean shift for class door, the hierarchical CRF with mean shift for class pavement,
the hierarchical mixed graphical model with mean shift and watershed for class road,
the hierarchical mixed graphical model with watershed for class sky, the hierarchical
mixed graphical model with watershed for class vegetation, and the hierarchical CRF
with mean shift for class window. The greatest accuracies are for classes which have
low visual variability and many training examples, e. g. window, sky, building, and
vegetation, whilst the lowest accuracies are for classes with high visual variability or
few training examples, e. g. car and door.

We want to emphasize that our experiments should be seen as a demonstration of
a consistent and convenient probabilistic model to incorporate the contextual infor-
mation, e. g. the spatial structure and the hierarchical structure. With the current
settings for the local and hierarchical pairwise potential functions, our method tends to
produce rather low classification rate for the object classes with minor instances, e. g.
car and door, as in all eight cases of four classification methods with two segmenta-
tion algorithms on the eTRIMS dataset (Korč & Förstner, 2009) (cf. Fig. 5.12). An
investigation into more sophisticated potential functions might resolve this problem.
In computer vision, the pairwise potentials are usually represented by a weighted sum-
mation of many features functions (Shotton et al., 2006), and the parameters with the
size as same as feature number are learned from the training data. By maximizing the
conditional log-likelihood, better accuracy usually obtained. But this kind of parame-
ter learning remains a difficult problem and also is most time-consuming part (Alahari
et al., 2010). While in our proposed graphical model formulation, we simply have two
weighting parameters (similar to Gould et al. (2008); Fulkerson et al. (2009); Ladicky
et al. (2009)). So this is the trade-off between efficiency and accuracy.

Compared to the higher order conditional random fields, our graphical model frame-
work only exploits up to second-order cliques. The work on solving higher order poten-
tials using move making algorithms has targeted the particular classes of the potential
functions. Developing efficient large move making for exact and approximate minimiza-
tion of general higher order energy functions is a difficult problem. Parameter learning
for the higher order CRF is also a challenging problem. Furthermore, there are standard
techniques for transforming arbitrary high-order factors into pairwise ones called order
reduction (Ishikawa, 2009; Gallagher et al., 2011). Order reduction methods operate by
expressing each high order term as an expression with only the pairwise interactions by
introducing auxiliary variables. Order reduction is followed by an inference procedure
on the order-reduced random field. Since there are many possible ways to perform
order reduction, it is difficult to ascertain a better reduction that generates easier pair-
wise inference problems. On the other hand, our proposed model makes learning and
inference much easier.
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Chapter 6

Conclusion and Future Work

The way ahead is long, I see no ending.

Yet high and low I’ll search with my will unbending.

- Qu Yuan (340 B.C. - 278 B.C.)

In this thesis, we have addressed the problem of incorporating two different types
of the contextual information, namely the spatial structure and the hierarchical struc-
ture for image interpretation of man-made scenes. Towards this, the thesis makes the
following key contributions:

• We propose a statistically motivated, generic probabilistic graphical model frame-
work for scene interpretation, which seamlessly integrates different types of the
image features, and the spatial structural information and the hierarchical struc-
tural information defined over the multi-scale image segmentation. It unifies the
ideas of the existing approaches, e. g. conditional random fields (CRFs) and
Bayesian networks (BNs), which has a clear statistical interpretation as the MAP
estimate of a multi-class labelling problem. Given the graphical model structure,
we derive the probability distribution based on the factorization property implied
in the model structure. The statistical model leads to an energy function that
can be optimized approximately by either loopy belief propagation or graph cut
based move making algorithm. The particular type of the features, the spatial
structure, and the hierarchical structure however is not prescribed.

• We demonstrate the application of the proposed model on the building facade
image classification task. We show that the framework for scene interpretation
allows for significantly better classification results than the standard classical
local classification approach on man-made scenes by incorporating spatial and
hierarchical structures. We investigate the performance of the algorithms on
a public dataset to show the relative importance of the information from the
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spatial structure and the hierarchical structure. We present an approach for the
region classification using an efficient randomized decision forest classifier as a
baseline. Incorporated with the spatial structure and the hierarchical structure,
we show that both the hierarchical CRF and the hierarchical mixed graphical
model produce better classification results than both the baseline region classifier
and the flat CRF.

In this work, we restrict our experiments on man-made scenes, however, we would
like to point out that our method is general enough to be applied to other applications
in photogrammetry and computer vision. As long as the spatial and hierarchical struc-
tures exist, our method can be applied. These applications includes image retrieval,
image categorization, object class segmentation, object recognition, and remote sensing
data classification. The original motivation for our approach was not to outperform
other classification methods, but to give an integrated graphical model having both
the benefits from random fields and Bayesian networks. Our method should be seen
as a construction of a consistent probabilistic model to incorporate the spatial and
hierarchical structures.

We want to emphasize that the choice of the crafted application-dependent features
is crucial for the final success. Even more, we think that the discriminative power in
the features of unary and pairwise potentials is the key to the overall performance of
the graphical models. To make these graphical models applicable to the generic real-
world applications, it is unavoidable to incorporate the methods for automatic feature
extraction from the image and feature selection from the feature pool.

So far, our work has made some progress towards the long-term goal of scene in-
terpretation. However, there are still plenty of work to be done. In the following, we
address some possible future directions for building on our work.

First, the theory of the graphical model developed in Chapter 4 is linked to a chain
graphical model defined over a chain graph, which is a generalization of both the undi-
rected graph and the directed graph, and could be applied to other applications in pho-
togrammetry, computer vision, and beyond these domains, such as sequence labelling,
human motion recognition, gene and protein classification, rather than scene interpre-
tation. The chain graphical model may allow integrating more complex heuristic BNs
in the chain graph, rather than our intuitive graphical model for image interpretation
which is too simple and specific.

Second, the occluded parts of an object are not annotated as part of an object in
eTRIMS dataset (Korč & Förstner, 2009). In our models, we don’t take occlusion into
account. But, one important cue that we can derive from scene structure is knowing
the relative location of objects. So, we are able to reason about the occlusion to a
certain extend. An interesting research direction is in developing the graphical models
that make better use of the geometric understanding of a man-made scene to determine
what parts of an object are occluded and taking that information into account. Hoiem
et al. (2011) believe surface information can help to recover the occlusion boundaries.
Motivated by Drauschke et al. (2009), we believe that 3D information, either from the
laser scan data or the range data derived from the multi-view images, appear to be
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very useful.
Third, our methods operate on the region level resulting from certain unsupervised

segmentation algorithm, which allows for fast inference. However, one disadvantage
of such an approach is that the mistakes in the initial unsupervised segmentation, in
which regions span multiple object classes, cannot be recovered from. For each region
from the segmentation, a class label is commonly assigned to the region according to
the majority vote of the ground truth pixel labels. At the starting point, ambiguity
is introduced in the region ground truth labelling. One may resolve this problem by
assigning a class probability vector to the region, not assigning most probable label to
the region. We could result in a probability estimation model of the image segmentation
regions. One could also eliminate the inconsistent regions by employing Hierarchical
CRFs (Ladicky et al., 2009), which allow for the integration of the region-based CRFs
with a low-level pixel based CRF.

Fourth, our method presented in this thesis could be seen as a mid-level graph-
ical model representation. An exciting direction for future work is to integrate this
mid-level model with a high-level model for an incremental built-up of a context aware
scene description. It will provide a smart integration of the bottom-up and the top-
down reasoning and allowing to incorporate the prior knowledge. The mid-level model
establishes both a spatial aggregation structure and a hierarchical partonomy. In the
high-level model, one could exploit attribute grammars, which uses the attributes and
the probabilities of the classified regions from the mid-level model, to control the seman-
tic reconstruction of the scene. The result of the high-level module is a highly structured
interpretation of the complete scene, given its own priors and the evidence provided by
the mid-level model. The grammar model representing the semantic high-level struc-
ture again serves as a prior for the mid-level model. This bottom-up-top-down cycle is
repeated until the interpretation appears stable enough. A concept for the interpreta-
tion of integrating CRFs with a stochastical attribute grammar in order to capture the
structural complexity of the scene has been developed in Schmittwilken et al. (2009).

Fifth, the structures of the proposed graphical model is fixed. The fixed structure
is in fact constructed based on expert’s a priori knowledge about the relationships
between image pixels, regions and objects. On the other hand, the problem of select-
ing from the exponentially large space of the possible network structures becomes of
great importance. In fact, unsupervised discovery of the structured, predictive models
from the sparse data is a central problem in artificial intelligence (Lee et al., 2006).
There are recent works that tackle this issue, which deal with either the random field
model, e. g. (Lee et al., 2006; Lin et al., 2009; Zhu et al., 2010), or the Bayesian network
model, e. g. (Mansinghka et al., 2006; Xie et al., 2006). It would be interesting to test
whether these methods are applicable to the mixed graphical model as well.
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Appendix A

Chain graphical model

Chain graphical model was originally introduced in the statistic society (Lauritzen &
Wermuth, 1989; Frydenberg, 1990). The basic graphical representation that underlies
the chain graphical model is a chain graph, which contains both directed and undirected
edges to capture different types of the relationships among the random variables.

In Section 3.5, we have introduced two approaches, a moral graph and a factor
graph, to exploit the relations between directed and undirected graphical models. In
this section, we introduce a chain graphical model framework, including the model
parametrization and the joint probability distribution.

A.1 Chain graph and model parametrization

A chain graphical model consists of both the directed edges and the undirected edges.
We can parametrize the directed edges by the conditional probabilities, and the undi-
rected edges by the potential functions.

We give a definition of a chain graph as follows.

Definition A.1 Chain graph. A chain graph is an acyclic graph containing both di-
rected and undirected edges.

We denote a chain graph with K. Fig. A.1 shows an example of a chain graph. If we
add the undirected edge {2, 6} to K, we have a directed path 2, 3, 6, 2 from node 2 to
itself, which breaks the acyclicity requirement, therefore, the resulting graph is not a
chain graph anymore. The acyclicity requirement on a chain graph implies that the
graph can be decomposed into a directed graph of the chain components K1, · · · ,Kl,
where the nodes within the chain component are connected to each other only with the
undirected edges, and any edge between the nodes in two chain components can only
be a directed edge. Note l is the number of chain components in K. For example, in the
chain graph of Fig. A.1, we have five chain components: {3, 6, 8} , {2, 5} , {1} , {4} , {7}.
Note that when the chain graph is an undirected graph, the whole graph forms a single
chain component, while when the chain graph is a directed graph, each node is its own
chain component.
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A. CHAIN GRAPHICAL MODEL

In Fig. A.1 (same as shown in Fig. 3.1 on page 20), there are both the directed edges
and the undirected edges. We use the local conditional probabilities to parametrize
the directed edges. The relationship between x2 and its parent x1 is parametrized
by the conditional probability P (x2 | x1). The relationship between x8 and its par-
ents x5, x7 is parametrized by the conditional probability P (x8 | x5,x7). Potential
functions are used to parametrize the undirected edges. The relationship between x6

and x8 is parametrized by the pairwise potential function φ(x6,x8). Other edges are
parametrized accordingly.

1

2

3

4

5

6

7

8

Figure A.1: A chain graph K. There are both the directed edges and the undirected
edges, but no directed cycles.

A.2 Joint probability distribution

Given a chain graphical model and the parametrization, we can derive the joint proba-
bility distribution. As we can see from previous sections, both directed and undirected
graphs allow a global function of several variables to be expressed as a product of the
factors over the subsets of those variables.

Similar to the moralized version of a directed graph, there exists the concept of mor-
alization of a chain graph (Frydenberg, 1990). Let K be a chain graph and K1, · · · ,Kl

be its chain components. We use PaKi
to denote the parents of the nodes in Ki. The

moralized graph of K is an undirected graph. We first link any pair of the nodes using
the undirected edges in PaKi

, for all i = 1, · · · , l, and then convert all directed edges
into undirected edges.

Consider a set of the random variables {xi, i ∈ V} defined over a chain graph K.
x = [x1; · · · ;xi; · · · ;xn]. Each random variable xi is associated with a node i ∈ V. si
is denoted as the set of the random variables corresponding to the chain component Ki.
The set of random variables, associated with the parents of the chain component Ki, is
denoted as Pa(si). As in other graphical representations, the structure of a chain graph
K can also be used to define a factorization for a probability distribution. Intuitively,
the factorization for a chain graphical model represents the distribution as a product
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A.3 Factor graph representation

of each of the set of the random variables si given its parents P (si | Pa(si)) (Koller &
Friedman, 2009).

First, we define a set of the factors f i(xc), i = 1, · · · , l, c ∈ C , where xc = {xi, i ∈
c}, such that the induced subgraph Hc is a complete subgraph in the moralized graph
of K. Each f i(xc) corresponds to either the conditional probability or the potential
function. Note l is the number of the chain components in K, and C is the set of the
cliques.
Then, we associate the factor f i(xc) with a single chain component Ki, where the nodes
are connected to each other only with the undirected edges, Hc ⊆ Ki∪PaKi

. Recalling
the definition of CRFs in Section 3.4, we define P (si | Pa(si)) as a CRF with these
factors. Then, the joint probability distribution is defined as

P (x) =

l∏
i=1

P (si | Pa(si))

=
l∏

i=1

1

Zi(Pa(si))

∏
c∈C

f i(xc) (A.1)

where Zi(Pa(si)) =
∑

si

∏
c∈C f i(xc).

Eq. A.1 is called the chain rule for a chain graph. This key equation expresses the
factorization properties of the joint distribution for a chain graphical model.

By simple algebra calculation, the joint probability distribution given in (A.1) can
be written in the form

P (x) =
1

Z
exp

(
l∑

i=1

∑
c∈C

log f i(xc)

)
(A.2)

where Z =
∏l
i=1

1
Zi(Pa(si))

is a normalization constant. Therefore, the joint probability

distribution for a chain graphical model is a Gibbs distribution

P (x) =
1

Z
exp (−E(x)) (A.3)

The term

E(x) =

l∑
i=1

∑
c∈C
− log f i(xc) (A.4)

is the energy function.

A.3 Factor graph representation

In the following, we introduce a factor graph representation, which is a notion of uni-
fying the undirected graphs, the directed graphs, and the chain graphs. The chain
graphical model represents a joint probability distribution that is factorized as a prod-
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A. CHAIN GRAPHICAL MODEL

1
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3

4

5
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7

8

f31

f41
f21

f22

f23

f11

f12

f13

f14

f15

f51

Figure A.2: A factor graph representation of a chain graph K in Fig. A.1 on page 84.
Each square corresponds to a factor in (A.5). For example, the square connecting nodes 1
and 2 corresponds to the factor f21(x1,x2), and the square connecting nodes 8 and 5, 7
corresponds to the factor f15(x5,x7,x8).

uct of the factors over the subsets of the variables. Therefore, we can apply rules
discussed in Section 3.5.2 to convert the chain graphical model into a factor graph
representation.

In Fig. A.1 on page 84, we require that the conditional distribution P (x2,x5 |
x1,x4) is defined as a normalized product of the factors 1

Z2(x1,x4)
f21(x1,x2)f22(x2,x5)

f23(x4,x5), where Z2(x1,x4) =
∑

x2,x5
f21(x1,x2)f22(x2,x5)f23(x4,x5). A similar

factorization applies to P (x3,x6,x8 | x2,x5,x7). Therefore, the joint probability dis-
tribution is given by

P (x) =P (x3,x6,x8 | x2,x5,x7)P (x2,x5 | x1,x4)P (x1)P (x4)P (x7)

=

{
1

Z1(x2,x5,x7)
f11(x2,x3)f12(x3,x6)f13(x5,x6)f14(x6,x8)f15(x5,x7,x8)

}
{

1

Z2(x1,x4)
f21(x1,x2)f22(x2,x5)f23(x4,x5)

}
f31(x1)f41(x4)f51(x7)

(A.5)

where Z1(x2,x5,x7) =
∑

x3,x6,x8
f11(x2,x3)f12(x3,x6)f13(x5,x6)f14(x6,x8)

f15(x5,x7,x8), and Z2(x1,x4) =
∑

x2,x5
f21(x1,x2)f22(x2,x5)f23(x4,x5).

Based on the joint probability distribution of (A.5), the example graph in Fig. A.1
on page 84 can be converted into a factor graph representation as shown in Fig. A.2.
Each square corresponds to a factor in (A.5). For example, the square connecting the
nodes 1 and 2 corresponds to the factor f21(x1,x2), and the square connecting the
nodes 8 and 5, 7 corresponds to the factor f15(x5,x7,x8). Given this factor graph, we
can use principled methods, such as the max-product algorithm, to infer the optimal
states of all random variables that produce the maximum joint probability (Bishop,
2006).
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Korč, Filip. 2011. Tractable learning for a class of global discriminative models for con-
text sensitive image interpretation. Ph.D. thesis, University of Bonn, Bonn, Germany.
2
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