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Abstract 

 

There is a need to improve rice productivity to meet the increasing demand for rice in 

West Africa since it is acknowledged that existing rainfed rice cultivation practices deal 

with irregularities of climate like drought or submergence with iron toxicity risk on the 

one hand and on the other hand land management associated with soil fertility and the 

topography. This study addressed the above issues by investigating experimental 

results in both rainfed lowland and upland system.  

In a rainfed lowland system, the study examined first the constraints to rice production 

in inland valleys in West Africa which depend on the rainfall distribution and the 

heterogeneity of the topography that leads frequently to mobilization of Fe2+ and runoff 

causing erosion and loss of N. During 4 years (2007 to 2010), a three factorial trial 

showed that the grain yield across the seasons had quite diverse response with 

respect to slope position (up and down) and management practices (bunds and 

fertilizer). The impact of fertilizer has been significant in the year 2009 leading to the 

increase of grain yield by 0.45 Mgha-1 with fertilizer compared to the control. Negative 

correlation with Fe concentration in rice was only found at the upper slope position. 

Our findings showed that, at the upslope, Fe concentration in rice is higher with 

bunding. At downslope position, rice yield was significantly correlated with ponding 

water level in the first month, cation exchange capacity and organic C of the soil and N 

concentration in the rice tissue.  

As the exploitation of lowland inland valleys for rice production requires improved 

understanding of the effect of management practices on soil water, nutrient dynamics 

and rice yield, the crop model EPIC (Environmental Policy Integrated Climate) was 

further applied to the upper slope position in order to capture processes involved in 

crop development and yield in temporarily inundated rice fields and to assess the 

suitability of the model for this specific agroecosystem. The model was parameterized 

using observed soil water characteristics and crop parameters and run against 

observation data. The simulated LAI development, aboveground biomass and grain 

yield compared well with field observations. MRE (mean relative error) of simulated 

yield was 6 to 18 % except for with bund plots in 2009 and 2010, where grain yield 

was overestimated by the model when no fertilizer was applied (MRE=45%). This was 

due to the negative effect of elevated iron concentration in the rice plant, which the 

model was not able to consider in the simulations.  

In upland rice experiments, our study was motivated by the challenge for increasing 

productivity to grow rice on low-input farmland. Therefore, we assessed improved 

upland varieties in 6 sites of Benin Republic. Although uniform fertilizer input was 
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applied across the experiments, the effect of site and interaction between site and 

years appeared as factors that strongly influence rice production. Environments with 

higher organic carbon coupled with sufficient rainfall water during the cropping period 

led to higher grain yield. These conclusions therefore confirmed that the test of the 

performance of field scale crop models under different agro-ecological conditions is a 

prerequisite for the evaluation of the impact of management strategies for larger 

scales. Therefore, the EPIC model was again tested for upland land rice production by 

taking into account seasonal variability in Guinean and Guinean-Sudanian zones in 

Benin and Nigeria (West Africa). The results showed the accuracy of the model to 

simulate LAI, total above ground biomass and grain yield. The model exhibited more 

variability in yield for increasing N fertilizer application than P. In addition, general 

precision in model output is reduced when considering farmer’s field condition. Large 

root mean square RMSE in calibration (<35) and the validation (>100) suggested that 

robustness of the model became restrictive under severe drought condition while the 

rice response to N fertilizer became reduced.  

The general use of the model for rainfed rice production at a large scale requires 

identification of areas with iron toxicity, drought and flooding risk and improvement of 

the model with respect to the impacts of iron toxicity and drought on rainfed rice.  
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Zusammenfassung 

 

Es besteht ein Bedarf die Produktivität des Anbaus von Reis zu verbessern, um der 

steigenden Nachfrage nach Reis in Westafrika Sorge zu tragen.  Bestehende 

Regenfeldbau-Praktiken beschäftigen sich mit durch den Klimawandel 

hervorgerufenen Unregelmäßigkeiten wie Dürren oder Überflutungen mit den Risiken 

Eisentoxizität auf der einen Seite und auf der anderen Seite mit der von der 

Topographie abhängigen Bodenfruchtbarkeit.  

Diese Studie behandelt die genannten Probleme durch die Untersuchung 

experimenteller Ergebnisse sowohl im Regenfeldbau der Standorte im Tief- und 

Hochland. 

In einem Regen bewässerten Tiefland-System wurden für die Studie zunächst die 

Limitierung der Reisproduktion in Tälern im Landesinneren in Westafrika, verursacht 

durch Fe2 + Mobilisierung und Verlust von Verfügbarem Stickstoff durch Erosion 

untersucht. Diese Faktoren variieren in Abhängigkeit von der Niederschlagsverteilung 

und der Heterogenität der Topographie. Während eines Zeitraums von  4 Jahren 

(2007 bis 2010), zeigte eine diese drei Faktoren betreffende Studie, dass der 

Kornertrag durch die Jahreszeiten ganz unterschiedliche Reaktion in Bezug auf 

Steilheit Position (nach oben und unten) und Management-Praktiken (Dämme und 

Dünger) hatte. Die Auswirkung von Düngemitteln zeigte im Jahr 2009, eine Erhöhung 

der Ausbeute von 0,45 Korn Mgha-1 mit Dünger. Diese war  im Vergleich zur 

Kontrollgruppe signifikant.  

Negative Korrelation mit der Fe-Konzentration wurde nur in den Höhenlagen 

gefunden. Unsere Ergebnisse zeigen, dass mit steigender Meereshöhe, die 

Unverträglichkeit von Reispflanzen gegenüber der Fe-Konzentration mit ansteigt. In 

den Tallagen korreliert die Reis-Ausbeute deutlich mit dem Wasserniveau im ersten 

Monat, der Kationenaustauschkapazität und der Konzentration organischen 

Kohlenstoffs des Bodens und N-Konzentration im Gewebe der Reispflanzen. 

Die Nutzung von Tiefland Tälern im Hinterland für die Reisproduktion erfordert 

verbessertes Verständnis der Wirkung von Bodenmanagement-Praktiken auf die 

Wasser-, Nährstoffdynamik und die verbundenen Auswirkungen auf den Ertrag.   

Zudem wurde das EPIC Erntemodell (Environmental Policy Integrated Climate) auf die 

Höhenlagen angewendet, um die Entwicklung der Kulturen und den Ertrag in 

zeitweise überschwemmten Reisfeldern zu beobachten und die Eignung des Modells 

für dieses spezifische Agrarökosystem zu beurteilen.  

Das Modell, wurde auf die beobachtetes Bodenwassercharakteristika und 

Anbaubedingungen von Reis angewendet.  
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Der simulierte LAI Entwicklung, die oberirdische Biomasse und Kornertrag stimmen 

gut mit den Feldbeobachtungen überein. Der MRE (mittlere relative Fehler) der 

simulierten Ausbeute betrug 6 bis 18% mit Ausnahme von eingedämmten Parzellen in 

2009 und 2010, wo der Kornertrag durch das Modell überschätzt wurde, wenn kein 

Dünger aufgebracht wurde (MRE = 45%). Dieser entstand aufgrund der negativen 

Auswirkungen der erhöhten Eisenkonzentrationen, die durch das Modell nicht 

simuliert werden konnten. 

 

Bei den Versuchen in den Höhenlagen bestand die Motivation die Produktion unter 

Anwendung extensiver Bewirtschaftungsweise zu erhöhen. 

Daher beurteilen wir verbesserte Hochland-Sorten an 6 Standorten der Republik 

Benin.  

Trotz einheitlichem Dünger-Eintrag auf allen Flächen, übten die Lage, bzw. die Lage 

in Abhängigkeit zum Anbaujahr einen starken Einfluss auf die Reisproduktion aus. 

Böden mit höherem Gehalt an organischem Kohlenstoff bei ausreichenden 

Niederschlägen während der Erntezeit hatten höheren Kornertrag.  

Diese Schlussfolgerungen bestätigten, dass die Betestung der Leistungsfähigkeit der 

Erntemodelle im Feld-Maßstab unter verschiedenen agro-ökologischen Bedingungen 

eine Voraussetzung für die Evaluierung der Auswirkungen von Strategien für größere 

Maßstäbe ist.  

Daher wurde das EPIC-Modell ein weiteres Mal für die Hochland Reisproduktion unter 

Berücksichtigung jahreszeitlich bedingter Unterschiede in der Guinea- und Guinea-

Sudan-Zone in Benin und Nigeria (Westafrika) getestet.  

Die Ergebnisse zeigten die Genauigkeit des Modells zur Simulation von LAI, gesamter 

oberirdischer Biomasse und Kornertrag. Das Modell zeigte mehr Variabilität im Ertrag 

bei der Erhöhung der Düngung mit N als mit P.  

Darüber hinaus reduziert der unterschiedliche Zustand der einzelnen Flächen die 

Gesamtpräzision der Modellierung.  

Die Messung der Wurzeldurchmesser (RMSE in Kalibrierung (<35) und Validierung (> 

100)) zeigt, eine Schwäche des Modells unter starker Dürre, und gleichzeitig eine 

reduzierte Antwort der Reispflanzen auf N-Düngung. 

Die allgemeine Verwendung des Modells für Regenfeldbau in der Reisproduktion in 

großem Maßstab erfordert die Identifizierung von Gebieten mit erhöhter Eisen 

Toxizität, Dürre- und Überschwemmungsrisiko und die Verbesserung des Modells in 

Bezug auf die Auswirkungen der Eisen-Toxizität und Dürre auf Regen bewässerten 

Reis. 
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1.1.  Rice  

Rice is a cereal crop, a member of the grass family, Graminae. It belongs to the 

genus Oryza L.. Vaughan et al. (2008) described that the taxonomy of the A-genome 

of Oryza species has long been ‘a matter of opinion’, and the distinction of species 

has mainly been based on three criteria: geography, annual/perennial habit and 

cultivated or wild habitat (Table 1.1).  

In West Africa, rice cultivation is probably not more than 3500 years old. The 

cultivated species (O. glaberrima) was domesticated from the wild annual O. barthii. 

The Asian species O. sativa introduced into West Africa in the 17th century is rapidly 

spreading into rainfed lowland areas formerly dedicated to O. glaberrima (Chang, 

1976). Rice is a self-pollinated crop. Because of this, genetically segregated lines 

remain relatively unchanged from generation to generation. Genetic changes occur 

mostly through deliberate "crossing" or hybridizing of parental cultivars (Evenson and 

Gollin, 1997). Rice is an essential food for more than two billion people. 

 

Table 1.1: Geographic distribution, life cycle and cultivation status of A-genome Oryza 

species (Vaughan et al., 2008). 

 

 

 

 

1.2. Importance of rice in West Africa  

 

Rice has long been the food staple in many traditional communities and in major 

cities in West Africa. Since the early 1970s, it is a major source of calories intake in 

West Africa and comes third after maize and cassava for the continent as whole 

(Diagne et al., 2010).  Indeed, the annual rice consumption increased at the rate of 

6.5% (Olaleye et al., 2002, WARDA, 2007) which made the demand increase faster 

than anywhere in the World. This is due to both population growth (2.6% per year) 

and the increasing proportion of rice in the African diet (1.1% per year) (Cuero, 2006, 

Defoer et al., 2002).  In fact, the per capita rice consumption in West Africa increased 

from 14 kg in the 1970s to 22 kg per person per year in the 1980s, and in 2005 it is 

almost 32 kg per person per year (Fig. 1.1).  The demand for rice in West Africa has 

also far outpaced the production. It is reported that rice imports in West Africa have 

grown at an annual average rate of 8% since 1997 (WARDA, 2002). 
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Figure 1.1: Evolution of rice consumption in Africa and West-Africa from FAO, 2009 (Diagne 

et al., 2010). 

 

In general, the rice cropping systems in West Africa refer to determinant factors 

including field position, labour, capital inputs and management. Andriesse and 

Fresco (1991) made a distinction in rainfed system between permanent, wet rice 

cropping systems (lowland type) and shifting rainfed rice cropping systems (upland 

type).  

 

1.2.1. The lowland type 

 

The West Africa sub-region has many lowland types, notably river flood plains, inland 

valley swamps, interior plains, coastal plains and delta uplands, inland swamps, 

irrigated humid, irrigated Sahelian and mangrove environments (Africa Rice, ex-

WARDA, 1988). In the inland valley, annual crops are traditionally grown on uplands 

and upper slopes, but increasing pressure on land leads to a shift of cropping down-

slope to the lowlands (van de Giessen, 2005). 

Paddy rice systems have been observed to be economically sustainable and 

ecologically sound due their high efficiency in nutrient replenishing mechanisms and 

their intrinsic resistance to soil erosion (Issaka et al., 1997). Buri et al. (1999) have 

reported the potential and nutrient supplying capacity of the inland valley swamps 

and river flood plains for the essential macronutrients, which has also been reported 

for the microelements (Buri, 2000).   

Furthermore, Baghat et al. (1999) found that saturated soil conditions save more than 

40 % water compared to continuous shallow ponding and produced the same rice 

yield when weeds were controlled by herbicides. In the inland valley system, water is 

the major driving force for interaction between adjacent sections of the 
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toposequence. The water balance of the hydromorphic part of lowland systems 

derives from rain falling on the upland portion which may partially leave this agro-

ecosystem as runoff water, moving down-slope as surface flow. The rest infiltrates 

and may either be lost as evapotranspiration or may percolate into deeper layers 

down to the groundwater table (van de Giesen et al., 2005).   

 

1.2.2. The upland type 

 

The upland system refers to rice grown on both flat and sloping fields that were 

prepared and seeded under dry conditions, and generally exclusively depend on 

rainfall for moisture (IRRI, 1975). Upland rice varieties are grown much like maize. 

Whereas they account for major share of often extreme poverty; they are a rich 

source of diversity in cropping type (monoculture, rotation with legume crops, 

intercropping).                                                                                                                                                 

In sub-Saharan Africa, upland rice yields are less than 1 Mgha-1 on average despite a 

potential near 4 Mgha-1 (Dingkuhn et al., 1998, Dingkuhn, 2000).  

1.3. The study area  

The study covers Benin and South-West Nigeria; both are located in Western Africa 

at the Guinea Coast (see Fig. 1.2).  

The two countries truly represent the climatic profile from the very wet to the semi-

arid ends of the subcontinent. The average annual temperatures are approximately 

27°C, with temperature amplitudes of 5–6 °C. The Benin Republic covers about 

112,622 km², whereby the distance between North and South extends 650 km (6°-

12°30N) and about maximal 120 km from East to West (0°30´-4°E), respectively. 

 

The North and the Centre areas are essentially dominated by tropical ferruginous 

soils (Dubroeucq, 1977), originally from Precambrian crystalline rocks (granite and 

gneiss). In the Centre region particularly this type of soil is rather deep, without 

laterite, and often has a somewhat higher inherent fertility (Saidou et al., 2004). A 

major landscape feature of Southern Benin and Southwest Nigeria is a series of low-

lying plateaus with red soils called “terre de barre” that occupy approximately 5320 

km² (INRAB, 1997, Carsky, 2003). In general, small-scale variability of the soils is 

very high (Giertz and Hiepe, 2009).  

 

 

 



 

 

1. Ikenne      

 3. Matéri      

 5. Niaouli     

7. IITA           

 9. Erokowar

11. Tanguiét

                        
Lo

      
      

12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Rice ha

drastica

Centre,

the cou

(Adégbo

patterns

foods s

several 

matter (

Nigeria 
Benin
7

Site 
 

Upland condition  

              2. Tohoué    

             4. Ganpkétin                              

             6. Bohicon    

              8. Kobli      

i            10. Kpakpazoumé          

a 

                         
wland inland valley 

                       
12. Dogué 

 

 

 

 

 

Figure 1.2: Geographical location of the study area. 
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order to cope with these trends, strategies to boost agricultural production have been 

implemented at the national level. These strategies include management of lowlands, 

the extension of high yielding varieties, the design and delivery of an improved 

framework for postharvest processing (Adegbola et al., 2008).  

From a farmer survey in 2008, it appeared that rice in Benin was grown in lowlands 

with a share of 10% of production area of which 88% were irrigated and upland (2%) 

(Table 1.2). All the systems presented a real potential for expansion (Fig. 1.3).  

Indeed, since 1990, production is steadily increasing in all the districts. According to 

the national statistics, DPP (2008), paddy rice production increased from 10,940 Mg 

in 1998 to 64,937 Mg in 2007.  
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Table 1.2: Estimated share (%) of rice production for different production systems and two 

countries, adapted from Africa Rice (1997) and Adégbola et al. (2008). 

 

Country Mangrove 

swamp 

Deep-

water 

floating 

Irrigated Rainfed 

lowland 

Rainfed 

upland 

   Sahel Savannah  

/humid 

  

Benin % 0 0 0 88 10 2 

Nigeria % 1 3 0 27 53 17 

 

1.4. The NERICA rice  

 

NERICA (New Rice for Africa) represents fertile interspecific progenies between 

Oryza sativa L. and O. gaberrima Steud. (Fig. 1.4). It is obtained after a backcrossing 

and doubled haploid breeding developed by the Africa Rice Centre. NERICA is, 

therefore, not genetically modified. It combined the high yield potential of O. sativa, 

resulting from high spikelet number caused by secondary branches on the panicle, 

with useful traits of O. glaberrima such as rapid leaf canopy establishment and high 

N responsiveness. The progenies partly inherited the O. glaberrima parents’ high 

specific leaf area (SLA) during early growth, theoretically improving competitiveness 

with weeds, and from the O. sativa parents the rapid decrease in SLA towards the 

reproductive stage, theoretically allowing for high leaf photosynthetic rates and high 

grain yield (Jones et al., 1997). 

The NERICA varieties were developed from out of the thousands of crosses which 

allow to distinguish two families of elite material: at first, 18 varieties suited for upland 

systems (NERICA1 to NERICA18) most of them developed from O.sativa and parent 

CG4 (O.glaberrima); Indeed, the average yield of NERICA per hectare is found to be 

2.5 Mg on farms in Uganda (Kijima et al., 2006), which is significantly higher than the 

average upland rice yield of one ton per hectare in SSA (Balasubramanian et al., 

2007).  

Furthermore, Africa Rice scientists addressed the demand for production by taking 

into account stresses related to lowland ecologies (Moukombi et al., 2009). 60 

varieties suited for lowland systems, NERICA-L (NERICA-L1 to NERICA-L60) are 
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developed from their most frequently used parents IR64 (O. sativa) and TOG5681 

(O. glaberrima) (Diagne et al., 2010). The most important breeding objectives for the 

lowland varieties of NERICA were yield potential, grain quality, high environmental 

adaptation and tolerance against Rice Yellow Mottle Virus and African Gall Midge 

(Rodenburg et al., 2009). Up to date the superior yielding ability of NERICA-L41 over 

the parents under drought was demonstrated in Bocco et al. (2012).  

In Benin Republic, being one of the selected pilot countries, there is high hope for 

increased rice production with the introduction of NERICA. Adégbola et al. (2002) 

estimated the total area under NERICA varieties was 5,000 ha in 2003. There was 

evidence that the adoption of NERICA increases the income of NERICA adopters 

significantly in Benin (Adekambi et al., 2008). The National Project for Nerica 

Dissemination (PDRN) promoted series of on-farm experiments that allowed farmer’s 

capacity to self-produce seeds as commonly done with other rice varieties. This 

should exclude the need to purchase new seeds for several years, which enables the 

wide adoption of NERICA in the country where rice seed markets are 

underdeveloped (Kijima et al., 2011). 

 

 

 

 

 

 

 

 

(a)                                               (b)                                       (c)     

Figure 1.4: NERICA culture in Benin, (a) maturation phase of Nerica 1 crop in the field at 

Tohoué (2009), (b) promising NERICA lines disseminated during the participatory varietal 

selection, (c) preparation of with bund field for NERICA-L on farm station in Dogué village 

(2010). 

1.5. Problem statement  

1.5.1. Challenges for food security in SSA 

 

Increasing attention is given to food crop production technologies in order to enhance 

productivity, safeguard food security and alleviate poverty. It is recommended that 

the adoption the new high yielding varieties (that led to the green revolution in Asia) 

could lead to significant increases in agricultural productivity in Africa and stimulate 
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the transition from low productivity subsistence agriculture to a high productivity agro-

industrial economy (World Bank, 2008). This required that important issues for 

transferring the sustainable productivity techniques in recent years in Asia (i.e., use 

of bund, high yielding variety) to sub-Saharan’s unfavourable production 

environments had to be addressed. It also directed breeding activities towards the 

development of drought tolerance in rice at flowering and severe drought stress 

(CGIAR, 2006). It is reported that improved varieties have recently become available: 

for irrigated rice, improved varieties occupied 97% of the planted area, whereas they 

were present only for 39% of the rainfed upland rice area (UNEP, 1998).  In 

controversy there is a risk that adoption of new varieties may tend to be temporary 

because in the wake of dry years, farmers revert to their traditional, low but stably 

yielding cultivars. This makes a return of investment of national crop breeding 

programs low and often negative (Dingkuhn, 2006). Consequently, the choice of well 

adapted cultivars should be coupled with cultural practices and decision criteria for 

optimal use of fertilizer and water resources in West Africa. 

 

1.5.2. Constraints of rice cultivation in West Africa 

 

Fig. 1.5 shows the constraints associated to rice culture types in West Africa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Major production constraints of rice production systems in different agro-

ecological zones (Defoer, 2004) 
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Lowland constraints 

Iron toxicity is one of the major constraints to rice production in the lowlands of West 

Africa (Becker and Asch, 2005). Ferrous iron (Fe2+) is abundantly taken up by the 

plant and becomes concentrated in the leaves, causing limb discoloration, reduced 

tillering, stunted growth and substantially reducing yields (Chérif et al., 2009). Iron 

toxicity is associated with poor water control, resulting in reducing soil conditions that 

promote the accumulation of soluble ferrous iron in the soil solution. Under these 

specific water conditions, soluble iron in the soil solution (Fe2+) is absorbed by roots 

and accumulates in leaves (Audebert and Fofana, 2009). The critical iron content in 

leaves above which yield loss occurs is about 500 mg Fe kg in dry leaf weight 

(Marschner, 1995).  

In addition, as lowlands are composed of adjacent land units comprising uplands, 

hydromorphic valley fringes and seasonally flooded valley bottoms, it makes soil N 

fertility likely to be eroded along the slopes of inland valleys, primarily in the nitrate 

form, to the contiguous lowlands (Bognonkpe and Becker, 2009).  

 

Upland constraints  

Originally, upland production is characterized by slash-and-burn systems where 

farmers used extended fallow to restore soil fertility (Saito et al. 2010b). The 

increasing demand of land due to population growth causes intensification in rice 

culture leading to problems of weeds, crop disease, low soil fertility and high soil 

acidity (Becker et al., 1995, Becker and Johnson, 2001). The supply of inorganic 

fertilizer to overcome the low soil fertility is in most of the case justified. Many studies 

discussed and propagated the use of leguminous crops in rotation for the fixation of 

nitrogen (Becker and Johnson, 1998, Oikeh et al., 2008).  

Rice plants in upland systems also respond to drought by enhanced leave 

senescence due to the decrease of leaf conductance and leaf water potential. As a 

consequence, the intercepted photosynthetically active radiation is reduced which 

decreases dry matter production and grain yield. It is known that the response of rice 

yield to drought depends on the timing of the drought in relation to plant 

development, partly because the reproductive stage is very sensitive.  

 

1.5.3. Agricultural and rice issues in Benin 

 

Rice demand in Benin is by far higher than the domestic production resulting in a 

chronic annual importation of rice. The country has a comparative advantage to 

produce rice locally while national production only contributes 0.31% to the entire 
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West African production (Ahoyo, 1996). For the rice production at smallholder farms, 

irrigation is only rarely an option. Large scale irrigation systems exist and were 

installed as a part of a program of technical cooperation between the Republic of 

China and Benin during the 1960s in Malanville, Dévé and Koussin-Lélé in order to 

produce paddy rice. However, due to management failure there was the 

degeneration of all installed irrigation systems in the 1970s. The inland valleys, 

mainly spread over the Centre and North of Benin, are not traditionally used for 

agricultural production. Currently, only 1300 ha, which represents about 0.7% of the 

potential area for agricultural production in inland valley is used for rice production 

despite financial support and technical aid by the FAO and the Beninese government 

(Grüber et al., 2009). 

 

Physical, chemical, and biological soil deteriorations have already become critical 

problems in Benin as in other countries in Africa. The use of fertilizers and other off-

farm input remains low due to the poor development of functioning subsidies, 

agricultural credit and extension services. Assessments about fertilizer use often 

refer to cotton production. Farmers who produce cotton have taken advantage of 

fertilizer market arrangements because the related programs aim to increase fertilizer 

use (Adégbidi et al., 2000). However, the decline in world market prices for cotton 

has led to stagnating cotton areas which in turn resulted in declining fertilizer use to 

62,000 tons in 2007. Other information about fertilizer use refers to the commune 

level and suggests that the application of fertilizer per hectare has remained stable at 

approximately 45 kg NPK fertilizer during the last decade, with large differences 

between communes. Applications of 50 kg per hectare and more are frequently 

recorded in the Northern and Central regions, whereas for most regions in the south, 

no use of the input is reported (Kuhn et al., 2010). Moreover, farmers in the country 

tend to use fertilizers more on cotton and less on staple crop such as maize 

(Kormowa et al., 2003).  

Finally, at the field scale, Adégbola et al. (2008) recorded among 215 farmers in 4 

major rice growing areas in Benin abiotic stresses that limit production in different 

types of production systems. The constraints that are applicable to all production 

systems were soil fertility and post-harvest losses. In addition, farmers indicated for 

the upland system the effect of drought as an important constraint. For lowland rice, 

constraints indicated by farmers refer to the weak capacity of water management, the 

drought, the flooding and the plant lodging.  
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1.5.4. Which soil-crop simulation models for rainfed rice culture in West Africa? 

 

Early works on rice modelling and simulation in 1990s attempted to determine critical 

traits for high yield potential in rice (Dingkuhn et al., 1991; Kropff et al., 1992). As 

such, the maximum rice yield of 10 Mgha-1 has been achieved in tropical 

environments (Kropff, 1994). However, optimum crop production estimation became 

more complex because of the involvement of several factors like fertilizer, pest 

control, genotype, environment and cultural practices (Kumar, 2005). The simulation 

models in rice have been developed according to specific research objectives which 

determined the underlying model assumptions.  

 

Table 1.3: Example of models used for rice development. 

 

Type of model  Characteristics Application reference  

CERES-rice (Ritchie 

and Otter, 1985) 

variety-specific, water-balance, nitrogen balance Rainfed rice             

(Mahmood et al., 2004) 

Cropsyt (Stöckle and 

Nelson, 1994) 

multiyear, multicrop, daily time step, soil erosion, 

soil-plant nitrogen budget, residue decomposition, 

soil erosion, pest 

Flooding rice    

(Confalonieri and Bocch, 

2005) 

ORYZA-2000 

(Bouman et al., 

2001) 

variety specific, simulation in seedbed with 

transplanting shock, phenological development, 

photosynthesis parameters from leaf N calculation 

of spikelet numbers and grain numbers for sink 

limitation 

Irrigated lowland               

(Feng et al., 2007) 

Lowland and upland 

(Bouman et al., 2001, 

Bouman et al., 2006) 

EPIC (Williams, 

1995) 

N,P,K balance, biomass accumulation, 

photosynthesis from Leaf area index, rotation , soil 

erosion 

 

Upland rice 

(Adejuwon, 2004) 

 

Some of the most popular rice models are ORYZA2000 (Bouman et al., 2001) and 

CERES-Rice (Ritchie and Otter, 1985). They consider the influence of soil, water and 

climatic variables on rice productivity (Table 1.3). These models may be suitable to 

address some of the issues relevant for rice production in West Africa particularly if 

sufficient data for model application are available. For instance in Benin, as in many 

other developing countries, data on soil and landscape have been collected over 

several decades, but so far they have been used only to a very limited extent in 

identifying and targeting technologies (Igué et al., 2004). However, Adam et al. 

(2011) stressed the risk associated with the reuse of a model without any adaptation 

which might lead to inaccuracies in model outputs, caused by the misrepresentation 
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of processes in the model, the incorrect input data including parameter values, or a 

misinterpretation of the system. Appropriate data are of great importance to improve 

a model and the parameter estimation. Niu et al. (2009) highlighted that in irrigated 

systems, crop parameters related to photosynthesis and leaf area had a large 

uncertainty, while in rainfed environments soil and weather inputs were more 

important than crop parameters in introducing uncertainty. Therefore, the application 

of the model for rainfed conditions should mainly help to understand the relationship 

between the soil water availability during monsoon and potential productivity 

(Mahmood, 2004). Moreover special nutrition problems in West Africa relate not only 

to low levels of food availability but also to seasonality and to the high year-to-year 

variability of food production. There is vulnerability in agricultural land to high 

variability in climate at different time and space scales. This is worsened by the low 

capacity to adapt the developing world to the effects of climate change (Thomas and 

Twyman, 2005). Furthermore, resource use efficiencies particularly for N at plot and 

farm scales are highly affected by spatial heterogeneity as well. In fact, this spatial 

heterogeneity within the farm is firstly reflected by crop growth and crop management 

intensity e.g. plant density, also the variability at farm scales including topography 

and soil types, history of use, degradation intensities and the soil physical 

discontinuities (Titonell et al., 2006).   

In addition, it has been reported that models should be used with the genetic 

parameters of the varieties grown, the use of default parameters may lead to 

unsatisfactory results (Akponikpè et al., 2010). Satisfactory modelling results were 

achieved when rice varieties within a region were assumed to be of the same 

ecotype, which was then considered for the upscaling from the region to the county 

level as shown for CERES-Rice (Min and Zhi-qing, 2009). In the case of EPIC, it was 

demonstrated that the model was able to simulate the sensitivity of the crop 

production systems to seasonal rainfall. Further, for rainfed upland rice, the model 

simulated yields that varied between 109 and 117 percent of observed yields.  A key 

issue for validating the model was the multiplicity of crop varieties with contrasting 

performances under similar field conditions (Adejuwon, 2004). 

Clearly, in order to explain the general processes of yield formation of rice in West 

African, a simulation model should sufficiently cover the different varieties grown and 

the wide range of pedoclimatic conditions (Graf et al., 1991). 
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1.6.  Objectives of the thesis  

The main research aim of this thesis is to explore the lowland and upland rice culture 

in the West African environment by addressing some local management strategies 

for smallholder farming systems by means of experimentation and modelling. 

Four objectives were derived: 

 

§ Determining effects of topography, fertilizer and bunds application on 

NERICA lowland productivity in a representative inland valley in Sudanian 

zone in Benin Republic; 

 

§ Making a multi-variable calibration of the EPIC model for lowland rice 

productivity using 4 years experimental data; 

 

§ Assessing the pedoclimatic effects on the productivity of improved upland rice 

varieties in the Benin Republic; 

 

§ Making multi site calibration and validation of the EPIC model for NERICA 

rice across different agroecological zones of West Africa.  

The thesis follows an interdisciplinary approach by combining issues in agronomy, 

soil hydrology and ecophysiology. Factors of the physical environment affecting the 

rice crop such as the rainfall variability and soil characteristics are of particular 

interest in this study. 

 

 

 

Figure 1.6: Overview of the methodological steps in the thesis. 

Model validation 

Model Calibration  

Dataset in national 
extension services 
(INRAB, CERPA) 

Observations and measurements 
in lowland and upland systems  

Identification of variation in 
farmers cropping system 

Identification of 
environmental variability 

Identification of grain yield 
constraints 

(Anova, correlation 
analysis) 

Reported data 
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The adopted method is summarized in Fig. 1.6. I made use of one on-farm lowland 

experiment (Objective 1, Chapter 2) and 6 upland experiments (Objective 2, Chapter 

3) for farm field analysis in order to identify major environmental variability at the 

spatial and time scale. In addition, self-designed field experiments, on-farm 

experiments and the capitalization of previous experimental data are used to either 

calibrate the EPIC model or to perform a model validation (Objectives 3 and 4, 

Chapter 3 and 5).   
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2. Spatial and temporal variability of rice yield and 

growth constraints in rainfed lowland systems 
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2.1. Introduction 

Inland valleys constitute over 38% of the total wetlands in the sub-Saharan region 

and are cropped extensively with lowland rice in the wet season (WARDA, 2008). 

The rainfed lowland rice cropping has attributes of non-irrigated with bund fields 

occasionally flooded during a certain period of time. Low and unstable yields were 

recorded on about two-thirds of total rainfed lowland rice area due to water shortage 

during the growing period, flooding and nutrient limitation (Tsubo et al., 2006, Haefele 

et al., 2006, Samson et al., 2004, Fukai, 1999, Fujisaka, 1990). Yields are strongly 

influenced by seasonal characteristics as well as by spatial heterogeneity over soil 

types, topographic sequences and agrohydrologic conditions (Wade et al., 1998). 

The topography is the main driver of leaching and soil erosion on one hand and on 

the other hand it influences the duration of submergence period, resulting in 

heterogeneity in inherent soil fertility. The soils in areas of higher altitude become 

less fertile as a result of depletion of nutrients due to runoff which generates in 

contrast a higher organic carbon and clay content in the soils in the lower position 

(Homma et al., 2003, Tsubo et al., 2005). These records from rainfed lowland from 

Asia may be different for West Africa where the use of water control means such as 

simple bund and short canals constructed by cultivators is less common. Raes et al. 

(2007) by a mean of modelling demonstrated that bund could appreciably increase 

the production of rain-fed lowland rice in Tanzania more in wet year than the normal 

year. The bund are reported to have benefit to the production by increasing the 

ponded water depth, regulating the hydric regime and producing increases in grain 

yield through enhancing fertilizer use efficiency (Touré et al., 2009, Srivastava et al., 

2009).  

Iron in the soils is also recognized to be another source of variation in rainfed lowland 

environment. Chérif et al. (2009) confirmed that the iron toxicity is one of the 

constraints of the cultivated lowland in West African savanna. It occurs on average in 

more than 50 % of the lowlands and approximately 60 % of cultivated rice fields are 

affected by this constraint. Fe toxicity produces nutritional disorders associated with a 

reduction process of Fe3+ into Fe2+ in the flooded conditions. Indeed, nutrient and 

water management are reported in Becker and Asch (2005) as methods to alleviate 

the risk of iron toxicity.  

Therefore, a good understanding of the yield determining factors in lowlands is a 

prerequisite for the management in terms of fertilization and water retention. Beside, 

there is absence of long-term trial on rice crop yields inland valley of West Africa that 

combines effect of bund and fertilizer. This study examined variation in the 
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production of dry matter and grain yield under lowland conditions in four consecutive 

years at Dogué inland valley, Benin. The objective of this chapter is to quantify the 

effect of slope position, bund and fertilizer application on rice yield and to point out 

the some constraints to rice yield in relation to slope position.  

2. 2. Materiel and methods 

2.2.1. Site description 

The experiment was conducted in a researcher managed on-farm trial located in 

Dogué village (9°05´N, 01°55´E). The area is located in southern Donga district, 

North West of Benin Republic (West Africa). The rainfall is presented as mono-modal 

distribution across the 4 years. Daily weather data were collected from the research 

climate station of the IMPETUS project at about 1 km from the field. The rainfall 

pattern is shown in Fig. 2.1. During the growing period from July to November, the 

rainfall recorded in 2007, 2008, 2009 and 2010 was 793, 833, 690 and 1191 mm, 

respectively. The onset of the dry season was earlier in 2009 than in the other years.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Monthly rainfall in 2007, 2008, 2009, 2010 during the growing period in Dogué 

village. 

 

2.2.2. Experiment 

 

A spilt plot design was laid out with the combination of three factors: (1) slope 

position: upslope (up) and downslope (down), (2) fertilizer inputs: with and without 

mineral fertilizer at a rate of 60kgN and 40kgPha-1 and (3) runoff control (bund): with 

and without bund.  
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d slope position each (Fig. 2.2). Subplot size was 5 m x 5 m. Experiments 

peated for four years (2007 to 2010) at the same position for all the plots.  

 is characterized by ferruginous tropical soils in the well drained areas. The 

f 3 % situated between an upland with sandy loams overlying ironstone and 

tom with more hydromorphic and loamy soils. According to FAO soil 

ation the soils at the upper slope are Lixisols and at the lower slopes 

s.  

ield management  

al and physical soil characteristics were summarized in Table 2.1. Every 

g cycle was separated by a fallow period during the dry season. After clearing 

pletely removing the fallow vegetation that is grown in dry season, the land 

nd ploughed then sown with the lowland rice variety NERICAL-26. The rice 

-F and + 
F plots 

-F and + F 
plots -F and + F 

plots 

-F and + F 
plots 

     no bund                 bund  

DoBu DoUn 



 22

was dibble seeded at 20 cm x 20 cm spacing and thinning at to 2 plants per hills. The 

sowing date varied between years: 18, 1, 7 and 3 July in 2007, 2008, 2009 and 2010. 

Weeding was carried out when necessary. Harvest was made on 17 Nov., 7 Nov., 6 

Nov. and 19 Nov. in 2007, 2008, 2009 and 2010 respectively. All crop residues were 

removed from the plots after harvest. 

 

Table 2.1: Soil physical and chemical properties of the 0-20 cm layer in Dogué experimental 

field trial. n is the number of samples. SD is the standard deviation.  

 

Soils properties Unit Upslope Downslope 

Mean 

(n=16) 

SD 

(n=16) 

Mean 

(n=16) 

SD 

(n=16) 

Physical properties 

Fine earth 

(elements < 2mm) 

% 96.00 4.00 90.00 7.00 

Sand % 39.42 - 25.15 - 

Clay % 4.10 - 18.50 - 

Chemical properties  

pH (H2O) - 5.36 0.27 5.63 0.34 

Corg % 0.65 0.07 0.93 0.27 

Total N % 0.039 0.005 0.064 0.015 

Bray P ppm 1.21 0.64 1.76 0.98 

CEC cmol kg-1 4.17 0.56 5.53 1.36 

K+ cmol kg-1 1.64 0.53 2.36 1.41 

Ca2+ cmol kg-1 0.19 0.17 0.23 0.13 

Mg2+ cmol kg-1 0.56 0.08 0.69 0.18 

Na+ cmol kg-1 0.00 0.00 0.03 0.04 

 

 

2.2.4. Field measurements and lab analysis 

 

Total aboveground biomass was collected at 38 DAS from two subplots of 1m x 1m. 

Leaf samples were extracted for analyses of Fe and N concentration with one 

repetition per treatment for Fe and two for N in 2007, with two repetitions for both Fe 

and N in 2008, whereas in 2009 and 2010, it was performed 4 repetitions for Fe and 

N. Fe concentration was determined by atomic absorption spectrometry and the total 

N with a CNS auto-analyzer. The plant uptake was calculated as the product of the 

total aboveground biomass at 38 DAS with the obtained N leaf concentration.  
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At maturity, rice grain and total aboveground biomass were obtained. For both plant 

biomass and grain the sampling area was made of two randomly selected 1m x 1m 

area. The weight of samples was corrected to the number of hills and the moisture 

content after 72h oven drying. 

Soil samples for each plot (total of 32 plots) were collected in 2006 during the fallow 

period at up- and down-slope positions from 0 to 20 cm depth. Soil texture was 

determined using pipette method. Organic carbon estimation was made using 

Walkley and Black method (1934). The total N in the soil was measured with the 

Kjeldahl method. The exchangeable bases were extracted with the acetate of 

ammonium and measured by spectro-photometry with atomic absorption. The Cation 

Exchange Capacity (CEC) is determined by an extraction with chloride of potassium 

followed by micro distillation and titrimetry. The assimilable phosphorus was 

determined by modified method Bray.  

During the appearance of ponding water, water level was recorded with a ruler 

periodically (1 to 3 times in the week) during the cropping season. 

 

2.2.5. Statistical Analysis 

 

Data were analyzed using SAS (Version 9.0). PROC mixed procedure using the 

Restricted Maximum Likehood method was performed for ANOVA. The model was 

firstly run with slope position, bund, fertilizer and year factors as main effects. 

Random effect concerned the nested effect of bund in position level.  Furthermore, 

the model was run by classifying year.  The Tukey test was used and allowed mean 

separation when the analysis of variance showed a significant factorial effect. We 

used Pearson correlation coefficients (R) to examine the relationship among grain 

yield, ponded water level, Fe concentration and N concentration in rice (SAS 

Institute, 2003). The significance level was fixed at p < 0.05. 

2.3. Results  

 

2.3.1. Growth and Grain Yield 

 

Examination of the factors position, bund, fertilizer and year on grain yield, N and Fe 

in leaves content is made in Table 2.2 for the combined 4 years. The effect of year 

variation was significant for the three explained variables (grain yield, N leave content 

and Fe concentration). In addition, bund and fertilizer had significant effect on rice 

yield. Year to year variation interacted also with the position and fertilizer effects on 
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grain yield. Fig. 2.3 shows in combination of 4 years, that the highest grain yield was 

observed in the upper slope position and significantly with bund condition and for 

fertilizer application. N in plant was only significantly responsive to position level and 

bund.  Position had also significant effect on Fe concentration in addition to many 

other interactions. The interactions concerned mainly the position with bund, fertilizer 

and year. The three levels interactions were related to year, position and fertilizer.    

 

Table 2.2: Effects of position (P), bund (B), fertilizer (F) and year variation (Y) on grain yield, 

N leaf content (N plant) and Fe concentration for 4 years combined. d.f.: degree of freedom; 

DDF: denominator degree of freedom of covariance parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          ns, not significant at the <0.05 probability level, nd = not determined 

 

 

 

 

 

 Factors d.f DDF F ratio 

 

   Grain 

yield 

N plant Fe 

concentration 

Y 3 84 0.03 <0.0001 <0.0001 

P 1 12      ns 0.03 <0.0001 

B 1 12 0.03 0.002 ns 

F 1 84 0.0001 ns ns 

PxB 1 12 ns ns 0.01 

BxF 1 84 ns ns ns 

FxP 1 84 ns ns <0.0001 

BxPxF 1 84 ns ns ns 

YxP 3 84 <0.0001 ns <0.0001 

YxB 3 84 ns ns 0.04 

YxF 3 84 0.03 ns ns 

PxBxY 3 84 ns ns ns 

FxBxY 3 84 ns ns ns 

PxFxY 3 84 ns ns 0.02 

FxBxPxY 3 84 ns ns ns 
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Figure 2.3: Overall trends of factors impact of rice grain yield.  Year 2007, 2008, 2009, 2010 

are combined. Up and Down refer to upslope and downslope position respectively. Fert and 

no fert refer to fertilizer and no fertilizer application respectively. 

 

Table 2.3 presents the effect of the three experimental factors on the grain yield, N in 

plant and Fe concentration at maturity for each year. Grain, N in plant and Fe 

concentration had diverse responses on bund and slope position during the 4 years 

of observation. For grain yield, the slope position had a significant effect 2 out of 4 

years (2008 and 2010). The bund effect was also significant only in 2007. Fertilizer 

impact on grain yield started with the two last years. Significance of interaction 

between factor sources was limited to the position and bund in 2008 and 2010. 

 In the case of N in plant, there was in addition to position effect in 2008, bund and 

fertilizer effects in 2008 and 2009, the interaction between position and fertilizer 

application in 2007.  Fe concentration was affected by position in all year except 

2009 however in this year, position rather interacted with bund.  
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Table 2.3: ANOVA table grain yield, N leaf content (N plant) and Fe leaf concentration as 

function of slope position (P), bund (B) and fertilizer (F) input in 2007, 2008, 2009 and 2010. 

 

Source of 

variation  

Year  Grain 

yield  

N plant Fe 

concentration 

P 2007 ns ns nd 

2008 0.001 0.005 0.01 

2009 ns ns ns 

2010 0.008 ns 0.03 

B 2007 0.02 ns nd 

2008 ns 0.004 ns 

2009 ns 0.005 ns 

2010 ns ns ns 

F 2007 ns ns nd 

2008 ns 0.01 ns 

2009 0.0006 0.002 ns 

2010 0.02 ns ns 

F x P 2007 ns 0.001 nd 

2008 ns ns ns 

2009 ns ns ns 

2010 ns ns ns 

P x B 2007 ns ns nd 

2008 0.03 ns ns 

2009 ns ns 0.0009 

2010 0.009 ns ns 

B x F 2007 ns ns nd 

2008 ns ns ns 

2009 ns ns ns 

2010 ns ns ns 

P x B x F 2007 ns ns nd 

2008 ns ns ns 

2009 ns ns ns 

2010 ns ns ns 

                 ns, not significant at the <0.05 probability level, nd = not determined 

 

 
 
 

 



 27

0

1

2
3

4

5

6
7

8

9

U
p

D
ow

n

B
un

d 

N
o 

bu
nd

F
er

til
iz

er

N
o 

fe
rt

iliz
er

U
sl

op
e

bu
nd

U
ps

lo
pe

 n
o

bu
nd

D
ow

ns
lo

pe
bu

nd

D
ow

ns
lo

pe
no

 b
un

d

Treatment

G
ra
in
 Y
ie
ld
 (
M
g
h
a-
1)

2007

2008

2009

2010

Table 2.4: Mean grain yield, mean N content and Fe concentration by year in Dogué field 

trials. 

 

Year  2007 2008 2009 2010 

Grain yield (Mgha-1) 3.81 4.14 4.37 4.36 

N plant (%)  1.65 2.13 2.40 2.11 

Fe concentration (ppm) 669 411 206 647 

CV (%) grain yield 31 31 33 26 

 

2.3.2. Spatio-temporal evolution of rice production and relationship with N, Fe and 

water level according to fertilizer bund and position factors  

 

The year 2007 showed the lowest yield during the 4 years of observation (Table 2.4). 

Bund operation was the significant factor on yield in this year (Table 2.3). No effect of 

fertilizer application was recorded but bund contributed to the increase of grain yield 

(Fig. 2.4). The upslope plots with bund showed slightly higher N concentrations than 

the downslope plots. However, N was lower in the fertilizer plots in upslope and 

higher in the fertilizer plots in downslope. In controversy, higher iron content above 

800 ppm was recorded in the downslope plots at 38 DAS.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Grain yield average under different management practices over 4 seasons. 

 

More grain yield on average was gained in 2008 (Table 2.4). The overall mean N 

content in plant was increased compared to 2007 (Fig. 2.5). These changes may be 

responsible for the average grain yield increase in 2008. The factor significance was 

limited to slope position and its interaction with bund. The plots with bund in 
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downslope had higher grain yield but no bund plots were higher in upslope (Fig.  2.4). 

At 38 DAS, the N content in the plants was higher in the upslope position, with bund 

and all fertilizer plots (Fig. 2.5). The highest iron concentration at 38 DAS was 

observed for downslope plots with fertilizer. The value exceeded the threshold of 500 

ppm whereas the upslope plots had lower concentrations. The years 2009 and 2010 

showed the highest yield (Table 2.4). Fertilizer represented the highest importance in 

terms of significance level in 2009 for grain yield, N in plant and N uptake (Table 2.5). 

The highest N content and N uptake corresponded to the highest yield obtained and 

correlated as well with the fertilizer application what justifies the level of significance 

observed with the factor fertilizer in this year. Fe concentration was recorded as the 

lowest value and is only affected by interaction between position and bund. Position 

and fertilizer had a significant effect on rice productivity in 2010 and the effect of 

position was inversed the trends of yielding: the mean grain yield was estimated at 

5.2 Mgha-1 in the downslope position, whereas at the upper slope it was 3.8 Mgha-1 

(Fig. 2.4).  

The impact of bund was observed through accumulation of ponding water during the 

cropping period (Table 2.6). In all the situations, downslope plots held more water 

than plots at the upper slope position. The mean ponded water depth was more 

enhanced by the bund in downslope than in the upslope plots. The water level in 

upslope plots with bund was particularly high in the year 2010 while highest amount 

of rainfall was observed. The effect of bund on ponding water started earlier within 

the first month after sowing. All treatments were significantly different from each other 

in downslope.  

Fertilizer and position interact yearly highly with reference with F ratio in the total 

experiment (Table 2.2). The effect of fertilizer on Fe concentration in rice is shown 

per year in Fig. 2.6. For downslope plots there was a trade-off between the fertilizer 

application and the Fe concentration in 2007 and 2008. However in the upslope plots 

the Fe risk was associated to the no fertilizer plots in 2007 and 2010.  
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(b) 

Figure 2.5 : Seasonal evolution of N (a) and Fe (b) proportion according to the different 

management options. UpBuO = Upslope with bund, no fertilizer, UpBuF =Upslope with bund 

and fertilizer, UpUnO= Upslope no bund no fertilizer, UpUnF=Upslope no bund with fertilizer, 

DoBuO= Downslope bund no fertilizer, DoBuF =Downslope with bund and fertilizer, 

DoUnO=Downslope no bund no bund no fertilizer. DoUnF = Downslope no bund with 

fertilizer. Values with the same letter within the same year are not significantly different 

(p=0.05).  

 

 
 

 

 

 

 

 

 

Figure 2.6:  Effect of fertilizer on Fe concentration at 38 DAS according to the year and the 

land position. DoO: Downslope without fertilizer, DOF: Downslope with fertilizer, UpO= 

Upslope without fertilizer UpF = Upslope with fertilizer. 
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Table 2.5: Effect of slope, bund and fertilizer on Fe concentration,  N in plant content at 38 

DAS  and N uptake according to the year in Dogué experimental field trial.  

Up= Upslope, Do=Downslope, Bu=bund, Un= No bund, Fert= fertilizer, No Fert = no fertilizer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year Variables 2007 2008 2009 2010 

Position  Up Do Up Do Up Do Up Do 

Fe concentration 

(ppm) 

428 911 320 501 217 195 551 744 

N content (%) 1.7 1.6 2.3 1.9 2.5 2.3 2.2 2.0 

N-Uptake (kg ha-1) 41 28 85 65 138 112. 62 36 

Bund  Bu Un Bu Un Bu Un Bu Un 

Fe  concentration 

(ppm) 

614 725 390 432 196 215 716 579 

N plant (%) 1.9 1.4 2.3 1.9 2.6 2.2 2.1 2.1 

N-Uptake (kg ha-1) 40 29 80 70 138 112 39 59 

Fertilizer  Fert No fert Fert No fert  Fert No fert  Fert No fert  

Fe concentration 

(ppm) 

655 684 460 361 197 214 604 691 

N plant (%) 1.7 1.6 2.2 2.0 2.6 2.2 2.1 2.2 

N-Uptake (kg ha-1) 40 29 94 56 169 81 64 34 
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Table 2.6: Combined effect of slope and with bund on mean ponded watertable level during 

the growing period and during 30 DAS (first month of growing cycle), Fe and N concentration 

in leaves and grain yield. Fe con. refers to leaves Fe concentration at 38 DAS, n is the 

number of samples. The numbers with same letters are not statistically different at p<0.05 

within the same year.  

 

 

Year 

 

Position 

 

Bund 

Mean 

Ponded 

water level 

(cm) (n=8) 

Mean 

Ponded 

water level 

at 30 DAS 

LWM1(cm) 

(n=8) 

Mean 

grain yield 

(Mgha-1) 

(n=8) 

Fe con. 

(ppm) 

N in plant 

(%) 

2007 Upslope Bund 1.74b 0.54b 4.65a 427.50c 2.03a 

  No bund 0.55b 0.10b 3.77a 429.50c 1.40a 

 Downslope Bund 3.56a 2.16a 4.09a 801.05b 1.75a 

  No bund 0.83b 0.24b 1.71b 1021.00a 1.45a 

2008 Upslope Bund 1.23b 1.11b 4.85a,b 356.00b 2.50a 

  No bund 0.68b 0.35b 5.81a 285.00a,b 2.05b 

 Downslope Bund 3.81a 2.71a 3.84b,c 579.25a 2.06b 

  No bund 1.06b 0.84b 2.07c 424.50a,b 1.92b 

2009 Upslope Bund 0.70b 0.84b 5.65a 250.04a 2.74a 

  No bund 0.48b 0.15b 4.53a 184.54a,b 2.28b 

 Downslope Bund 5.74a 3.90a 4.32a 143.45b 2.45 a,b 

  No bund 0.98b 0.89b 3.00a 247.09a 2.17b 

2010 Upslope Bund 2.59b 2.07b 3.32b 613.32a,b 2.30a 

  No bund 0.45c 0.43c 3.88b 489.77b 2.08a 

 Downslope Bund 4.90a 3.53a 6.35a 819.84a 2.01a 

  No bund 1.57b 1.41b 3.90b 668.35a,b 2.08a 

2.4. Discussion 

The rainfall conditions during the experimental seasons were on average uniform 

during the first three years but in 2010, total rainfall was above the average. Mean 

grain yield of the 4 years ranged from 3.81 Mgha-1 to 4.36 Mgha-1.  

 

2.4.1. Effect of land position  

Soil characteristics of the experimental field were representative for topography 

induced soils. The gap in grain yield between the up and downslope was reduced in 

2009 and reinversed in 2010 (Fig. 2.4). The higher ponding water depth in early 

season and across the season in 2010 supported the hypothesis of intensified N-

leaching and hence N-losses in 2010 in upslope plots. The land position is 

associated with fertility: decline of soil fertility is mainly caused by erosion due to the 
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frequent depletion of N from the upper slope during the rain events. It has been 

shown differences in soil texture and organic C between upper and lower slope 

(Table 2.1). This reinforced the hypothesis of erosion occurrence in upper slope 

because organic C, N and available P are associated with the selective transport of 

fine aggregates which are chemically richer than the coarser ones (Wan and El-

Swaify, 1997). Moreover, the cropping frequency at upslope explains also the loss of 

organic C and N through an enhanced mineralization and crop export due to 

historically more frequent cropping activities (Wezel et al., 2002). 

 

2.4.2. Effect of fertilizer application  

 

On average over all treatments, fertilizer application (60kgN and 40kgPha-1) 

increased yield whereas this increase was not significantly different for the first two 

years (Table 2.3). The impact of fertilizer has been high in the year 2009 leading to 

the increase of grain yield by 0.45 Mgha-1 with fertilizer. Boling et al. (2010) found N 

deficiency in no fertilized plots was responsible for 35%-63% of yield gaps on 

farmer’s fields in Java. In year 2009, where the strongest effect was recorded and in 

2010, the fertilizer resulted in a higher yield at upper slope than in the lower position.  

 

2.4.3. Effect of bund 

 

Bund appears to have in overall experiment duration a positive impact on grain yield 

although in yearly variation it was only significant in 2007 and interacted with position 

in 2008 and 2010. The bund was important in maintaining flooded conditions on the 

plots by preventing runoff and N loss through runoff. The use of water control 

technology was described by former works to reduce spatial variability in soil water 

content and to be effective for weeds management (Hayashi et al., 2009). In 

downslope position, maximum water accumulation seems not to be related to the 

total rainfall since maximum of ponded water level was obtained in year 2009, 

recorded as the driest year. The observed fluctuations came in line with the findings 

of Touré et al. (2009) where the mean ponded water depth in plots with bund 

increased from valley fringe (0-9 cm) toward valley bottom (2-20cm). In this study, 

the upslope soil presented high sand proportion and that facilitated the downward 

water movement and by this way reduces the impact of bund on water availability. It 

was also consistent with Touré et al. (2009) who observed that fields without bund 

had increased water supply towards the downslope position. In addition, the bund 

contributes to the conservation of nitrogen. N acquisition was increased by bund at 
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upslope condition significantly in 2008 and 2009 and at downslope in 2009 (Table 

2.6). The same impact of bund was recorded previously by Touré et al. (2009). They 

described the enhancement of soil temperature that might be higher in upland 

condition and thereby have accelerated the dissolution of N from fertilizer used in the 

experiment. In addition, it is expected that soil humidity and inundation condition 

during the first month of crop establishment is associated with the distribution and 

quantity of rainfall.  In year 2008 and 2010, bund had positive effect on yield in 

downslope plots but not in upslope plots (Fig. 2.4). Saito et al. (2010a) determined 

that the lowland interspecific genotypes performed better under flooded condition 

which is associated with biomass accumulation. However, 2008 and 2010 had the 

highest amount of rain and highest ponded water levels in downslope without bund 

compared to 2009 and 2007. There occurred a continuous flow of water which 

caused N loss and generated lower N uptake in plots without bund in downslope. In 

these years, the interaction between position and bund was significant (Table 2.3).  
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3. Simulation of soil water dynamics and rice 

crop growth as affected by bund and fertilizer 

application in inland valley systems of West 

Africa 
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3.1. Introduction  

Benin has an estimated 322,000 ha of wetland with high potential for agricultural 

production but only a small proportion of this area is used for food production. The 

wetland is mainly used for rainfed lowland rice production (Adegbola and Singbo, 

2003, Verlinden and Soulé, 2003). Farmers in the country still have limited access to 

water sources and extraction of groundwater because of poor low organizational 

structure for water management (Grüber et al., 2009). Therefore, the use of inland 

valleys for rainfed lowland rice systems presents potential for benefiting from soil 

moisture for crops. Lowlands in inland valleys represent non-irrigated field for rice 

that are flooded for at least some part of the cropping season at water depths that do 

not exceed 50 cm for more than 10 consecutive days (Meertens et al., 1999). These 

lowlands constitute attractive land for rice production intensification in West Africa.  

Alternating water was shown to contribute to effective water save in the case of 

irrigated conditions (de Vries et al. 2010). However, the temporal and spatial 

variability of water fluxes in inland valleys was illustrated by Bognonkpe and Becker 

(2009) with a loss of upland N to the lowland at 18 kg N ha-1 in a month depending on 

N supply by the upland and rainfall intensity. Previous studies have shown that water 

management related to bund or nutrient management is major interventions to be 

considered when using inland valleys for rice production in West Africa (Becker and 

Johnson, 1999; Touré et al., 2009).  

Simulation models can provide tools for making appropriate management decisions 

towards sustainable rice culture development at farm and regional scale. The results 

from models can be integrated with knowledge in crop physiology, environmental 

conditions and technical operations. Previously, rice was a focus in numerous 

modelling works: At the process scale, modelling was concerned with determinants 

of production such as leaf area index (Yoshida et al., 2007) or emphasized on key 

processes like lateral flow dynamics at field scale (Tsubo et al., 2007). The modelling 

of a precise water balance has been targeted by recent works with concern on 

processes such as percolation, groundwater recharge, drainage and seepage 

(Wopereis et al., 1993, Panigrahi et al., 2001, de Silva and Rushton, 2008, 

Antonopoulos, 2010, Inthavonga et al., 2011). In fact, Wopereis (1993) concluded 

that water retention characteristics seem to have a higher impact on rice grain yield 

simulation rather than soil hydraulic conductivity characteristics. Indeed, the 

approach used by Wang et al. (2011) for the EPIC (Environmental Policy Integrated 

Climate) model suggested additional soil texture parameters for improving the 
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precision of simulated soil water balance and for obtaining higher model efficiency. In 

addition, the EPIC model offers a suitable complexity in process integration for 

analyzing at the same time the effects of soil fertility and water availability on growth 

and crop yield. EPIC has been subjected to calibration and validation for wheat 

(Wang and Li, 2010) after evaluation of soil moisture condition. It was used also for 

other cereals, mainly maize from temperate to tropical climate conditions (Kiniry et 

al., 1995, Brown et al., 1997, Ko et al., 2009). However, the multi-site test for the 

model evaluation in Gaiser et al. (2010a) revealed the importance to consider site 

specific farm management options e.g. the use of improved varieties, Aluminium (Al) 

toxicity risk or soil pH. Niu et al. (2009) highlighted that in irrigated systems, crop 

parameters related to photosynthesis and leaf area had a large uncertainty, while in 

rainfed environments soil and weather inputs were more important than crop 

parameters in introducing uncertainty. Therefore, the application of the model for 

rainfed conditions should mainly help to understand the relationship between the soil 

water availability during monsoon and potential productivity (Mahmood, 2004).  

Moreover special nutrition problems in West Africa relate not only to low levels of 

food availability but also to seasonality and to the high year-to-year variability of food 

production. There is vulnerability in inland valleys to high variability in climate at 

different time and space scales. Furthermore, resource use efficiencies particularly 

for N and Fe inducing iron toxicity at plot and farm scales are highly affected by 

spatial heterogeneity as well (Srivastava et al., 2009). This spatial heterogeneity 

within the farm is reflected by crop growth and crop management (presence of bund), 

also the variability at farm scales including topography and the soil physical 

discontinuities which affect soil water distribution.  At present, little attempt has been 

made to simulate soil water dynamics and its interaction with bund and fertilizer 

application in inland valley systems of West Africa. This study therefore sort to 

understand soil water dynamics and rice crop growth as affected by bunding and 

fertilizer application in inland valley systems of West Africa using the EPIC model.  

use four seasons experiment for calibrating the EPIC model on rice productivity 

under two management options Lacking simulation models to describe the complex 

processes affecting rice production in inland valleys, the objective of the present 

study is to use four seasons experiment for calibrating the EPIC model on rice 

productivity under two management options (bund and fertilizer application). The 

simulation of potential yield in more precise soil water and ponding water level 

dynamics during the rice growing period should contribute to quantify the effect of 

any kind of stress such as iron toxicity in a sloping terrain of inland valleys. 
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3.2. Material and methods  

3.2.1. Simulation model   

 

EPIC (Williams, 1990, Jones, 1991) originally set up in the year 1980s to quantify the 

effect of erosion by wind or water on soil productivity is currently adapted to be a 

decision support system for analyzing the productivity and sustainability of complex 

cropping systems. Gassman et al. (2004) compiled the complete record of the model 

validation among which soil management impact, crop growth and yield studies are 

presented. EPIC is a field scale model and consists of 6 sub-modules: weather, soil, 

field operation, crop, erosion and economy. The main data inputs are: daily weather 

data, initial conditions for soils and operation files. The outputs relevant to this study 

are data on crop production (total biomass, leaf are index, grain yields) and water 

balance. The aboveground biomass is estimated by a reduction of 40% of the 

biomass to root weight at emergence and 20% at maturity.   

Concerning crop production, the model has been parameterized for rice among other 

138 crops. Biomass is produced from the interception of active radiation by the plant 

canopy which is characterized by the leaf area index (LAI). The LAI grows with the 

number of accumulated heat units until the maximal value at anthesis is reached in 

the case of cereals and then decreases. For simulating the phenological 

development, the model uses the approach of daily accumulation of heat. Total 

biomass is linearly correlated with the light interception which is converted into 

biomass through a crop parameter dependent concept of radiation use efficiency. 

Indeed Confalonieri et al. (2009) using this relatively simple approach, were able to 

adequately describe rice production. Final grain yield is generated from the product 

of total final biomass with the harvest index (HI). The model considers different levels 

of stresses represented as reducing factors for daily LAI and biomass production: 

mineral nutrients (N, P and K), water, aeration in the root zone and temperature. The 

fertilizer amount at the specified depth on the scheduled date is used in data input. 

The application rate is the difference between the average annual N uptake rate and 

the amount of N present in the root zone.  

In the output file the number of days with stress is generated after a daily balance.  

For instance, with reference to the water balance module, the model works at daily 

time step by using equation 1. Soil water dynamics in EPIC is linked with water 

movement influenced by evapotranspiration, runoff, sublateral flow, percolation with 

 

R = ET + Q + SSF + PRK +CST (eq.1) 

http://www.sciencedirect.com/science/article/pii/S0304380008004067#bbib40


 

 

Where R is the amount of rainfall (mm), ET is evapotranspiration (mm), Q is runoff 

(mm), SSF is subsurface flow (mm), PRK is percolation (mm) and CST is the 

change in soil water storage (mm).  

The storage routing technique allows in fact vertical or horizontal flow from a soil 

layer when soil water content exceeds field capacity. EPIC executes the soil water 

movement from the fluctuation in soil water content. Above field capacity, the water 

loss by percolation increases groundwater recharge. Water drains from the layer with 

regard to layer storage and saturated conductivity until the storage returns to field 

capacity. There is user defined possibility for allocating the maximum ponded water 

depth by negative value in minimum water table depth.  

 

 3.2.2. Experiment  

The experimental data used for calibration of the model was obtained in a four years 

experiment in the northern part of the Ouémé catchment (Benin Republic). 

The area is characterized by a mosaic of dense savannah vegetation and cropped 

area. 

The soil was characterized as a Ferric Lixisol with iron oxide concretions. 

   

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Experimental layout as
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3.2.3. Weather input  

The weather input consisted of daily precipitation, maximum and minimum air 

temperature, radiation and relative humidity.  

 

 

 

 

 

 

 

 

Figure 3.2: Average monthly maximum and minimum temperature (temp) and rainfall 

distribution for 10 years (2001-2010) at Dogué research station. 

 

The mean monthly distribution of some climatic parameters is shown in Fig. 3.2. 

Manual tillage was carried out around 2 weeks prior to sowing. Data was collected 

from a weather station installed close to the field. The rainfall is rather uniformly 

distributed with the maximum precipitation occurring during September. The mean 

relative humidity ranges from 20 % in the dry season to 80% during the monsoon. 

The Penman–Monteith method (1965) was used to estimate the potential 

evapotranspiration as described in Williams (1995).  

 

3.2.4. Data collection  

 

Table 3.1 records the sequence of field operations during 4 years of observation.  

 

Table 3.1: List of field operations for rice cropping in Dogué. 

 

Year Clearing Tillage/Bund 

construction 

Crop treatment 

Sowing Fertilizer application Harvest 

2007 18-Jun 2-Jul 18-Jul 18-Jul 17-Nov 

2008 19-Jun 21-Jun 1-Jul 1-Jul 7-Nov 

2009 7-Jul 13-Jul 7-Jul 7-Jul 6-Nov 

2010 18-Jun 26-Jun 3-Jul 3-Jul 19-Nov 

 

Bund was constructed with the height of 30 cm above the soil surface just after the 

tillage. The cultivar ‘NERICA-L26’ was used. It was sown by direct seeding at 20cm x 
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20cm with 5 seeds per hill each year. The density was reduced to 50 000 plants per 

hectare by manual thinning. The sowing dates (18 July 2007, 1 July 2008, 7 July 

2009 and 3 July 2010) in the rainy season were representative for farmer’s practice 

in the region. The applied fertilizer rate was 60 Kg N+ 40 Kg P2O5  ha-1 at sowing.   

 

Weed management was done by hand hoeing.  Each year, at 38, 60 DAS and at 

maturity, the above ground biomass was collected from 2 replicates of 0.36 m² per 

plot and weighted. Grain yield was also collected from 2 replicate subplots of 1 m² at 

maturity. The dry weight of grain and shoot biomass was obtained after 72 h in the 

oven. In parallel, at 21, 60 and 87 DAS, LAI was measured with the LAI-2000 (Li-

COR, 1992, 2004) in year 2010 acc. to Sone et al. (2009). 12 replications were done 

during the reading.   

Attention was given to evaluate the iron toxicity risk in the field being one potential 

external factor leading to a difference between observed and simulated crop 

productivity. Leaves were oven-dried at 70 °C after being collected, at 38 DAS in all 

years and 60 DAS in 2010 and 2008.  

Initial soil conditions were measured in 2007 (Table 3.2). Soil texture and chemical 

characteristics were determined on a profile pit prior to the installation of the 

experiment. The methods used for chemical and physical analyses are presented in 

Srivastava et al. (2009). The layers consist of overall sandy materials, slightly acid 

with low nitrogen content. In addition, a low cation exchange capacity (CEC) is 

noticeable due to the depletion in clay minerals. In addition, at each plot, the depth of 

ponded water was measured every week using a ruler.  

 

                   Table 3.2: Soil parameters of the plots used in the model simulations. 

 

 

 

 

 

 

 

 

 

 

Proprieties Unit Layers 

 Cm 0-14 14-28 28-50 50-85 

Silt % 13 12 12 12 

Sand % 76 82 82 82 

Bulk density t m-3 1.47 1.43 1.47 1.55 

%C % 1.84 0.65 0.48 0.48 

%N % 0.06 0.05 0.03 0.03 

pH  5.80 6.10 6.30 6.30 

Bases cmol kg-1 6.82 2.70 1.23 1.64 

CEC cmol kg-1 11.50 6.00 4.00 5.50 
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Year 2007 and 2008 were used as reference to examine hydrological conditions in 

the experiment. Soil moisture content values were measured at 16 points with TDR 

probes. Data were collected during the wet season in 2007 and the dry-wet seasons 

in 2008 at 0-20, 20-40 and 40-60 cm depth. A total of 12 tensiometers were used to 

record the soil water potential at weekly intervals. Tensiometers were installed in the 

center of the plot close to the TDR probes. The three (3) tensiometers in each plot 

covered the depths of 30 cm, 50 cm and 70 cm. For pressure heads around -330 

mbar (field capacity), soil water content in each depth was estimated from Fig. 3.3. 

The estimation of the wilting point was done with the minimal value of soil water 

content during the dry season.  

The plots with bund and without bund comprised a set of 4 piezometers installed to 

monitor the variations of the groundwater table depth during and after rain events at 

weekly frequency. 

In-field variability and inaccuracy of sampling and measurements of aboveground 

biomass in the experimentation have been taken into account during the calibration 

process.  Therefore, the elimination of outliers was performed on total aboveground 

biomass and grain yield from the observed data over the 4 years for each treatment 

using the box plot analysis in SPSS V2 software. This exercise allows narrowing the 

standard deviation in observation data that will be used to compare with the 

simulations from 1.90 to 1.56 Mgha-1 for grain yield and 6.08 to 4.89 Mgha-1. The 

separation of means was performed after running One-way-Anova in SPSS using the 

LSD method.   

 

3.2.3. Model calibration and evaluation  

 

The calibration started with a warm up period of 6 years in order to stabilize the soil 

organic carbon pools in the model. Graphical presentations and statistical 

measurements were used for evaluation of the model. In graphic representations, the 

simulated (y) and measured (x) values of soil water content through the soil profile, 

the depth of ponded water, crop aboveground biomass and crop grain yield were 

compared. Linear regression was obtained from scatter diagrams and expressed by 

equation 2. 

                                                    y = αx + β (eq.2) 

 

where α and β are slope and intercept of the linear regression between observed (x) 

and predicted values(y); 
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                                                                                       (eq.3) 

 

                                                                                        (eq.4) 

  

Mean residual Error ME and mean Relative Error MRE were calculated with equation 

3 and 4 respectively, where n is the number of pairs of observed (xi) and 

corresponding simulated values (yi).                                                                                                                                        

Coefficient of determination (R²), mean residual error (ME) (eq.3) and mean relative 

error (MRE) (eq.4) are presented as the statistical parameters used for evaluating the 

goodness of fit between the observed and simulated data. A value of the ME and 

MRE of close to 0, expresses little systematic deviation or bias in the entire data set. 

A negative ME indicates that the model overall underestimates the predictions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Determination of soil water at field capacity using pressure heads and soil water 

distribution over a record period in 2007 (H: pressure heads measured in three soil depths, 

SW: soil water measured at the three soil depths) Bu is plots with bund, Un refers to plots 

without bund.   
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Figure 3.4: Groundwater distribution in the cropping period in 2007 at Dogué field station for 

with and without bund treatment. 

 

3.3. Results and Discussion 

3.3.1. Parameters used for calibration  

For terrain characterization, a slope inclination at 3% was used. The soil water 

routine of the model was calibrated for adequately representing hydraulic condition 

under the two bund treatments.  

 

Table 3.3:  Soil input parameters used for calibration of soil water dynamics.  

 

Treatment    Soil depth 

(cm) 

Water content 

 

Saturated 

conductivity 

(mm/h)1  Maximum 

groundwater 

storage (mm) 

Maximum 

watertable 

(m)  

Minimum 

watertable 

(m) 

 Field 

Capacity 

(m³/m³) 

Wilting 

Point 

(m³/m³) 

Bund 150 0.8 -0.04     

    0-14 0.16 0.08 11.69 

    14-28 0.15 0.10 12.45 

    28-50 0.38 0.10 12.45 

    50- 80 0.38 0.10 12.45 

No Bund 100 0.8 -0.03     

    0-14 0.10 0.02 11.69 

    14-28 0.15 0.05 12.45 

    28-50 0.37 0.05 12.18 

    50- 80 0.37 0.10 12.18 

1 model estimation 
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Soil water retention and water table input characteristics for bund and no bund 

treatment are presented in Table 3.3.  

The corresponding field capacity of each layer has been recorded in the field with 

reference to the pressure heads (Fig. 3.3). Slightly different soil water contents at 

field capacity (FC) were determined in the bund treatments. The difference may be 

attributed to the field heterogeneity particularly within the plots with bund where 

abundant coarse fragments were identified at 60 cm depth in some plots. The no 

bund treatment had a lower wilting point due to the slightly sandier texture.  

The dynamics of soil water are determined by hydraulic forces. As described by 

Williams and Izaurralde (2006), the vertical or percolation component flows to the 

groundwater is lost from the system except when the capillary rise occurs. One 

constraint to this flow is the volume of groundwater storage capacity. In the 

experiment, records with piezometer in 2007 (Fig. 3.4) showed differences in 

groundwater depth distribution according to the treatment. During the growing 

season, the saturation of the soil with water appeared earlier in no bund than in plots 

with bund. This may be due to higher percolation rates (i.e. higher groundwater 

storage capacity) in plots with bund. The value of 100 mm was then adapted as 

groundwater storage capacity for the no bund condition and 150 mm for bund 

condition.  

 

The model drives the water table up and down between input values of maximum 

and minimum depths from the soil surface. The definition of the maximum level of 

ponded water during the simulation shaped the distribution of water for 

submergence. A negative value of the maximal water table level expresses the 

submergence level above the soil surface. According to the average value in 

observations, a level of -0.03m was set for no bund condition whereas it was 

increased to -0.04m in the case of bund condition in order to represent the effect of 

bund in retaining surface water. 

Factors of mineralization of nitrogen are reported to have high sensitivity to the crop 

in tropical areas, as shown with maize data by Gaiser et al. (2010b). The adjustment 

of denitrification threshold at 0.001 and parameter 30 at 0.99 was carried out 

according to Gaiser et al. (2010a) and Gaiser et al. (2010b).  

The potential heat unit was calculated from the daily temperature as accumulated 

temperature from sowing to maturity minus the crop base temperature. Then, due to 

annual air temperature fluctuations and crop duration, the value ranged from 1500-

1700°C. LAI dynamics are driving the photosynthetic activity and depend on the crop 

development. DMLA is the potential leaf area index which corresponds to the LAI at 
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anthesis. It was increased to 7 instead of 6. It can be considered that the NERICA-

L26 as an improved variety that has been developed for low potential conditions to 

have potentially favorable growth traits for weed suppression with broad and droopy 

leaves, high straw biomass production, tallness and high LAI (Heuer et al., 2003).  

 

Table 3.4: Main changes in crop parameters related to the calibration of the model for the rice 

cultivar NERICAL-26. Default crop parameters are in bracket.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A list of the modified parameters for the NERICA-L26 variety used in this experiment 

is presented in Table 3.4. DLAP1 and DLAP2 describe the shape of the LAI growth 

curve. They are a function of the accumulated thermal heat which controls the growth 

of the plant from emergence until maturity. For NERICA-L26 the DLAP1 was 

changed from the default values 30.01 to 25.10 and the DLAP2 from 70.95 to 80.95. 

The DLAP2 was identified by Félix and Xanthoulis (2005) to strongly influence 

biomass accumulation among 16 other controlled variables in legume species. The 

modified DLAP2 is in line with Bocco et al. (2012) who observed with NERICA-L lines 

a 50% flowering stage at around 79 days when maturity DAS was 102. The potential 

increase in biomass growth depends mainly on the product of the energy biomass 

ratio WA and the intercepted photosynthetically active radiation. Considering that the 

cultivar is a modern variety the WA was increased by 10kgha-1/MJm-2.  At a value of 

35kgha-1/MJm-2, WA fits among other cereals and the rate published in Kiniry et al. 

(1996) and Kiniry et al. (1988). The value of maximum harvest index HI was adapted 

to 0.40 instead of 0.50 which is the model default value corresponding to high 
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yielding US varieties (Lang, 1996). The final harvest index calculated by the model is 

mainly influenced by water stress.  

Sheehy and Johnson (1988) reported that at a given temperature and concentration 

of atmospheric CO2, canopy photosynthesis is governed by irradiance, canopy 

architecture, and leaf photosynthesis. The rate of photosynthesis depends not only 

on the fractional light interception or the maximum quantum yield of an individual leaf 

but on the rate of canopy photosynthesis. Therefore, the adapted plant population 

LAI rate was increased from 20 plants for 20 % of the maximum LAI value to 10 

plants for 20 % of maximum LAI value (PPC1 and PPC2).  

 

3.3.2. Simulation of soil water regimes 

 

Soil water measured in two consecutive years 2007 and 2008 was compared to the 

simulated estimation on 2 treatments (presence or not presence of bund). Data was 

modeled using measured field capacity and wilting point at -0.33 bar and -15 bar. 

Results of the water content simulation under bund and no bund condition compared 

with observed soil water content are presented in Fig. 3.5. In both treatments water 

content simulations reached the saturation point coinciding with the observations 

during the rainy season in 2007 and 2008. However, in 2007, water storage 

decreased more gradually in the observations than in the simulation. In this year, the 

model did not simulate well the delay of the water loss as the soil matrice potential 

increased. Even though the model estimated the saturated hydraulic conductivity to 

12 mm/h using the percentage of clay and the soil strength factor, the estimated 

hydraulic conductivity seemed to be much lower. The soil strength factor 

determinants are bulk density and texture.  

The EPIC model at field scale resolution may not be able to fully capture the 

desiccation phase at the end of the rainy season in this particular slope situation. 

Some investigations aiming at elucidating the terrain controls on soil moisture have 

shown that topography becomes increasingly important in wet periods, but during dry 

periods soil moisture patterns depend primarily on soil properties, with topography 

having a limited effect (Penna, 2008, Grayson et al., 1997, Meyles et al., 2003). 

In addition, during inundation periods the soil may form a crust on the surface, which 

on the one hand reduces water infiltration, but can also cause a delay in soil drying 

after the rainy season. The SCS approach implemented in EPIC, considers the effect 

of crusting on infiltration, but not on delayed soil drying. Other models such as 

ORYZA2000 are considering this effect of puddle formation in computing the soil 

water dynamics for lowland soils with the module PADDY (Bouman et al., 2001, Feng 
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et al., 2007).  The estimation of water content at different depth gives the vertical 

representation of water content distribution through the soil profile down to 60 cm 

depth (Fig. 3.6).  

In 2007, where data were mainly collected during the rainy season, the largest bias 

was obtained with a general underestimation of soil water content in both treatments 

and all layer depths. This is attributed to the rapid drop of soil water content after the 

rainy season in contrast to the observed delay (Fig. 3.5). 

                                                                                                                                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Mean simulated and measured soil water contents in 0–60 cm soil depth over two 

years. Bu is plots with bund; Un refers to plots without bund. 
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Figure 3.6: Vertical distribution of mean annual soil water content for bund (Bu), without bund 

(Un). 

 
In 2008, the covered data collection period included the dry season.  On average 

over the entire year, the model slightly underestimated soil water content in different 

depths under bund condition (Fig. 3.6) whereas for no bund, the model showed slight 

overestimation of soil water content through all depths in the profile. However, the 

difference between simulated and observed soil water content was not significant. 

The simulation results confirmed the calibration results of Wang et al. (2011). In fact, 

with a long-term experiment on the Loess plateau in China, though the difference 

between the simulation and measurement of available soil water was not significant, 

soil water was slightly overestimated in extreme drought years and was slightly 

underestimated in extreme wet years (comparable to bund condition in 2007 and 

2008).  

The regression equations given in Fig. 3.7 demonstrate a scattered distribution of 

simulated versus observed soil water contents for two years. The best agreement 

between observed and simulated values was found for the no bund treatment as 

confirmation of trends observed in Fig. 3.5 and 3.6. With regard to different depths, 

the model explained more variability for the deeper layers.  In general, the model was 

less precise than presented in Wang et al. (2011) who reported R²values of 0.82 to 

0.96 at different layers down to 2 m depth compared to 0.48 to 0.68 in our study. 

However, the estimation of Wang et al. (2011) was made with long-term data 

collected on a monthly basis. Over the two years, the model underestimated soil 

water content in all treatments by 3 to 7 m3 m-3 as shown in Table 3.5. 
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Figure 3.7: Comparison between the measured and simulated soil water contents in bund 

and no bund plots at 20, 40 and 60 cm soil depth (Solid line is linear relationship,  R²: 

coefficient of determination). 

 
Table 3.5: Estimation of mean soil water content over 2 years (2007 and 2008), mean 

residuals error (ME) and mean relative error (MRE) for EPIC simulation under bund and no 

bund condition. 

 

 Soil water mean (m³/m³) 

Depth  Bund No bund 

 n ME MRE Simulated Observed ME MRE Simulated Observed 

 

0-20 

 

70 -0.03 -0.22 0.11 0.15 -0.07 -0.53 0.08 0.15 

20-40 

 

70 -0.04 -0.33 0.14 0.18 -0.07 -0.53 0.11 

 

0.18 

 

40-60 

 

70 -0.06 -0.31 0.15 0.22 -0.00 0.00 0.15 

 

0.15 

 

0-60 70   0.13 0.19   0.11 0.16 

 

3.3.3. Simulation of water table dynamics  

 

Temporal evolution of the level of ponded water in the rice plots was influenced by 

the amount of groundwater storage, rainfall events and soil moisture conditions. 

Water levels for both observation and simulation looked similar in all treatments 

during submergence of plots (Fig. 3.8).  

However, the occurrence of a ponded water table was slightly delayed during the 

simulation in years 2007, 2009 and 2010 in fields with bund. The higher groundwater 
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storage capacity (Table 3.3) was responsible for this delay in the simulations 

because a part of the rainfall during the early stage was used for filling the 

groundwater aquifer. External factors may also have contributed to explain the 

difference between simulation and observations in the plots with bund. Belder et al. 

(2005) suggested that, at lower slope positions, continuously subsurface flow from 

surrounding fields can make the groundwater table rise to shallow depths. However, 

this type of lateral fluxes between slope elements can not be represented by a one-

dimensional model like EPIC.  

 

  

 

(a) Bund 

 

 

 

 

 

 

(b)No bund 

 

 

 

 

 

 

 

Figure 3.8:  Simulated and observed temporal evolution of ponded water level over 4 years: 

(a) plots with bund, (b) plots without bund. 

 

Mean ponded water level during the experiment period was given in Table 3.6. Best 

agreement between simulation and observation with respect to ME was obtained for 

no bund condition in the years 2007, 2008 and 2009. Under bund condition, 2008 

only yielded an acceptable value of mean absolute error. The observed delay in Fig. 

3.8 explained the larger ME and lower R2 in others years.  The model underestimated 

the ponded water level in most years except in 2009 for both treatments and in 2010 

for no bund plots. Year 2010 presented the highest ME in terms of absolute values. 

In this year, the highest rainfall amount was recorded, i.e. 1400 mm against the 
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average of 1200 mm. By setting a maximal depth for the watertable in Table 3.3, this 

constrains the simulated water level in case of excessive amount of rain as it is the 

case in the plots with bund. The effectiveness of bund in this year was shown by the 

statistical difference with a P-value less than 0.05 (Chapter 2). At the same time, the 

gap between simulated and observed water level in no bund field was higher by the 

assumed higher runoff in 2010. Thus, in 2010, the model seemed to underestimate 

the water loss process in no bund plots. Without the particular year 2010, no bund 

average water level is 7.3 mm in observation versus 7.6 mm in simulations and with 

bund average water level is 12.0 mm versus 10.3 mm (Table 3.6).  

 

 

Table 3.6: Comparison of simulated and observed average ponded water level in mm during 

4 years (2007, 2008, 2009 and 2010). The numbers with the same letters within the same 

year are not statistically different among each for pairwise comparison. n: number of pairs for 

observation and simulation at a specific date. Xmean: observed water level during the growing 

period from 16 plots of observation. Xsdmean is the mean of the standard deviation of the 

observations. Ymean is the mean of simulations during the growing period. 

 

 n x mean 

(mm) 

x 

sdmean 

y 

mean 

(mm) 

R² A β ME (mm) 

Bund 

2007 12 17a 7 9 0.18 0.32 3.29 -8.3 

2008 16 12a 7 12 0.10 0.35 7.70 -0.2 

2009 16 7a 5 10 0.01 0.14 8.51 2.5 

2010 19 26a 8 14 0.34 0.37 4.01 -12.4 

No bund 

2007 12 8b 1 7 0.38 0.69 1.67 -0.7 

2008 16 7a 7 6 0.01 -0.05 5.87 -1.2 

2009 16 7a 5 10 0.45 1.10 0.01 2.5 

2010 19 4b 2 14 0.51 2.49 2.79 9.5 
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3.3.4. Simulation of crop growth development and grain yield  

 

3.3.4.1.   Leaf Area Index 

LAI development is simulated according to the number of cumulated degree-days 

triggered by the planting density and the biomass accumulation. In EPIC, biomass 

accumulation depends on reduction factors which take into account possible stresses 

like a lack of nutrients, water or with environmental constraints such as aluminum 

toxicity.  

 

 

(a)                                                                 (b) 

 

 

 

 

 

 

 

 

 

Figure 3.9: (a) Observed mean LAI over four treatments and simulated values (b) regression 

between simulated and observed LAI (points represent LAI values from 27, 60 and 87 DAS, 

solid line is linear relationship, R² is the coefficient of determination). 

 

In the calibration process DLMA, the DLAP1 and the DLAP2, were used as 

parameters to control LAI growth from emergence to maturity. Fig. 3.9 shows the 

comparison between the simulated and observed mean LAI value at three growth 

stages (21, 58 and 87 DAS). The goodness of fit of the simulations is shown by an 

overall determination coefficient of 0.87. 

 

When comparing measured and simulated LAI in bund and no bund treatments (Fig. 

3.10), the correlation showed higher coefficient of determination in no bund (0.97) 

than in bund treatment (0.67). For no bund plots, the average absolute mean 

difference between the observed and simulated values was approximately 0.30 and 

that for bund condition was 0.40. Furthermore, there were slight differences between 

fertilized and unfertilized treatment. In no bund plots, it appears that the model 
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overestimated the LAI in unfertilized plots at the middle stage of the crop 

development.  In no bund plots, simulated LAI at 27 and 87 DAS showed the best 

goodness of fit with observations.   

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Regression between observed and simulated LAI of NERICA-L26 grown in 2010 

under different hydrological conditions and fertilisation rate (R² is coefficient of determination 

of the regression equation, ME: mean residual error, MRE: mean relative error) Bu is plots 

with bund; Un refers to plots without bund.  

  

Many studies discussed the reliability of the EPIC model under stress environment: 

particularly the tendency of the model for underestimating LAI growth was 

demonstrated in Srivastava and Gaiser (2009). They showed that there could be a 

tradeoff between water stress and N-limitations. The lack of nutrients seemed to 

have a smaller impact on model simulations compared to the observations. In this 

experiment, an overestimation of LAI by the model was obtained only plots with bund 

and without fertilizer application (Fig. 3.14). The analysis of iron concentration in 

2010 showed that there iron toxicity might occur in plots with bund and without 

fertilizer application. The current version of the EPIC model does not consider Fe 

stress. Indeed plots in bund and without fertilizer yielded the highest iron 

concentration in leaves, being well above the critical threshold of 500 ppm at both 38 

DAS and 60 DAS. Previous works (Kirk, 2004, Becker and Asch, 2005) pointed out 

that in West African inland valleys; in-situ Fe toxicity is aggravated by the depletion of 

nutrients and reducing the rice plants’ ability to exclude Fe2+. 

 

3.3.4.2.    Total above ground biomass development  

The results of the calibration for the above-ground biomass are illustrated in Fig. 3.11 

for all treatments from 2007-2010.  

 

ME=0.30 
MRE =0.36 

ME=0.40 
MRE =0.77 
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Figure 3.11:  Observed and simulated total aboveground biomass over 4 years (solid line is 

linear relationship between simulated and observed total above ground biomass,  R²: 

coefficient of determination).  

 

Fig. 3.11 shows relatively high goodness of fit between the observed data and the 

simulations. In all years, the comparison of simulated and observed biomass 

accumulation indicated a satisfactory representation of biomass accumulation at 

harvest over all treatments (Fig. 3.12 & Fig. 3.13). However, across the different 

treatments, the model slightly overestimated the above-ground biomass at 60 DAS in 

each year. This can be related to the bias observed in LAI at middle stage (Fig. 3.9). 

There is consistency with the overestimation of LAI. Plots with fertilizer presented 

model underestimation in 2010 at harvest. Some underestimations were reported by 

Srivastava and Gaiser (2009), He et al. (2006) and Cabelguenne et al. (2006) for the 

model for diverse crops under optimal N input. The authors suggested an 

overestimation of nitrogen demand by the crops at different growth stages.  The 

goodness of fit in the simulation of above-ground biomass at maturity was higher in 

no bund plots with an R² value of 0.51 compared to plots with bund (R²= 0.27). The 

MRE and ME in every treatment summarized well the trends observed (Table 3.7 

and Figure 3.13).  
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Figure 3.12: Observed and simulated total aboveground biomass depending on treatment 

and year (biomass 1=biomass at 38 DAS, biomass 2= biomass at 60 DAS and biomass 3 = 

biomass at maturity) Bu is plots with bund; Un refers to plots without bund.  

 

 

Table 3.7:  Means of observed and simulated total above-ground biomass and rice yield over 

4 years with respect to bund and fertilizer application. 

  Bund No bund 

  Fertilizer No fertilizer Fertilizer No fertilizer 

Total aboveground biomass at maturity (Mgha-1) 

 Observed (n=16) 14.86 11.64 13.57 11.66 

 Simulated (n=4) 13.27 13.21 12.87 12.18 

 ME  (Mgha-1) -1.60 1.57 -0.70 0.52 

 MRE (%) -0.10 0.17 -0.05 0.05 

Grain yield (Mgha-1) 

 Observed (n=16) 4.98 3.81 4.69 3.92 

 Simulated (n=4)  5.07 5.03 4.93 4.66 

 ME (Mgha-1) 0.65 1.22 0.23 0.73 

 MRE (%) 0.16 0.45 0.06 0.18 
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Figure 3.13: Regression between observed and simulated total aboveground biomass of 

NERICA-L26 at maturity over 4 years under different bund conditions and fertilizer rates (R² is 

the coefficient of determination of the regression equation. ME: mean residual error, MRE: 

mean relative error). Bu is plots with bund; Un refers to plots without bund.  

 

The model overestimated the biomass at maturity in plots with bund and without 

fertilizer in 2010. The highest MRE was observed in these plots. This overestimation 

of plant biomass in 2010 can be attributed to the effects of iron toxicity (Fig. 3.14). 
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Figure 3.14: Mean iron concentration in rice at 38 and 60 DAS in different treatments in 2010 

(treatments with the same letters are not statistically different at P=0.05). 
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Figure 3.15:  Regression between observed aboveground biomass of NERICA-L26 with Fe 

concentration in leaves at 38 DAS over 4 years under different bund treatments (R² is the 

coefficient of determination of the regression equation Bu is plots with bund, Un refers to plots 

without bund). 

 

The relationship between the iron concentration and the total above ground biomass 

is more pronounced under bund than under no bund condition as shown in Fig. 3. 15 

when all years were cumulated. Because of the longer period of flooding, the plots 

with bund are subject to toxic concentrations of reduced substances such as reduced 

iron (Fe2+) (Dobermann, 2004). Therefore, in the case of iron toxicity during the 

vegetative stages a reduction of plant height and dry-matter accumulation can be 

observed particularly with the tiller formation and the total shoot biomass (Becker and 

Asch, 2005). 

 

3.3.4.3.    Grain yield  

The grain yield was obtained in the model from a conversion of the total aboveground 

biomass by a factor of harvest index.  
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Overall R² after calibration was 0.23 and 0.65 for with and without bund plots 

respectively for grain yield (Fig. 3.16). 

Rice yield simulation in average for the 4 years ranged from 4.66 Mgha-1 to 5.07 

Mgha-1 against 3.81 Mgha-1 to 4.98 Mgha-1 in the observations (Table 3.7). This 

suggested an overall trend of overestimation of the model. The overestimation of the 

model (ME>0) in no fertilizer and bund is the consequence of an overestimation of 

biomass production which is related to the effect of iron toxicity, not represented by 

the model.  Indeed, a critical MRE value was obtained only for plots without fertilizer 

(Table 3.7). The case of occurrence of iron toxicity during the late vegetative or early 

reproductive growth phases is associated with fewer panicles per hill which can 

contribute to considerable yield reduction (Becker and Asch, 2005). 
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  4.Pedoclimatic affects on improved upland 

rice varieties in different agroecological zones 

of Benin republic 
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4.1. Introduction  

Rice cropping at large scale was introduced in 1960 in Benin Republic. It is becoming 

next to maize, cassava and sorghum a popular staple food crop. The interest for rice 

has increased due to incentive from governmental and international policies (Bonou, 

2006). Upland rice is cultivated on smallholdings. Meanwhile, a review of the land 

evaluation showed that there existed very strong disparities in soil nutrient availability 

within the same agroecological zone inside the country (Igué et al., 2004). This 

increases the challenge to develop upland rice varieties with higher yield potential 

and yield stability under highly variable soil conditions.  

At present, the variety development programmes target their objective for developing 

varieties for suitable areas with introduction of breeding lines that present favourable 

traits such as water stress tolerance in low-input environments. The adopted upland 

NERICA varieties showed relatively high yields which vary in a controlled 

environment from 4.0 to 7.0 Mgha-1 (Akintayo et al., 2008).  Since then the test of the 

interspecific crosses was done either for understanding the ability to overcome 

drought (Asch et al., 2005)  or to tolerate temporary inundation via flash flooding 

(Kawano et al., 2009) or for low nitrogen environment  (Saito & Futakuchi, 2009, 

Oikeh et al., 2008). Beside the 18 released varieties, 10 new varieties are assessed 

through the Participatory Varietal selection (PVS) in order to identify genotypes that 

perform well across or within a specific target environment. Basically, the PVS 

consists of trials in collaboration with farmers in order to identify promising cultivars 

for further evaluation by the farmers themselves (Obilana and Okumu 2005). Two 

agroecological zones in Benin with three pilot sites each were chosen for NERICA 

testing and dissemination i.e. Ganpkétin/Erokowari/kpakpazoumé and 

Tanguiéta/Pingou/Kobli.  

Since leaf photosynthesis rate depends on genotype parameters such as leaf N 

content and relative crop growth rate in rice cultivars (Yoshida et al. 2007), Yoshida 

and Horie (2010) reported large variations in dry grain yield for 9 rice genotypes 

grown at 7 locations in Asia. In addition, Saito et al. (2010) evaluated 14 rice 

genotypes (lowland and upland) across several lowland locations in Benin and 

determined a G x E (Genotype x Environment) interaction on grain yield. Those 

previous records confirmed our hypothesis that the yields are influenced by the 

changes in growing environment and the plant heredity. However those studies were 

conducted with no water limitation during the cropping period. Our study rather aimed 

in identifying the effect of environmental factors on grain yield in on-farm trials e.g. 
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with moderate access to fertilizer under pure rainfed conditions in different agro 

ecological zones of the West African Savanna.  

4.2. Material and Method  

4.2.1. Site general characteristics 

 

For the purpose of varieties testing and dissemination, the National Agricultural 

Research Institute (INRAB) conducted a series of trials from 2007 to 2009 with the 

cooperation of local farmers. Six sites were used and located in (Table 4.1):  

Pingou, Kobli and Tanguiéta (Atacora District) are located in Sudanian -Guinean 

Savanna Zone which extends in the country from 8° up to 11° North. The zone 

presents a semi-humid tropical climate with a weak mono-modal to bi-modal rainfall 

distribution (Thamm et al. 2005, Röhrig 2008). The 30 years annual rainfall average 

is 1013 mm (Fig. 4.1). 

Kpakpazoumé, Gankpétin and Erokowari (Collines District) are located in the 

Guinean Zone which extends from the coast up to about 8° North. The climate is 

tropically wet with usually two rainy seasons, a longer one from May to July and a 

shorter one from September to November with about 250 rainy days altogether 

(White 1983). The 30 years annual average is 1171 mm. 

Daily weather parameters (precipitation, air temperature and moisture) were also 

collected from synoptic weather stations located nearest to the trials.  

The area is located in the Southern sedimentary basin as a majority by ferrallitic soils 

formed on the sandy to sandy-clay material. All the sites are charaterized by tropical 

soils (Alfisol) in which ferric hydroxid particles are associated with aluminium oxides 

(Azontonde, 1991).  The soils represented about 70% of the soils  in Benin and 

across the transitional zone to the sudanian climate.  

 

 
 
 
 
 
 
 
 
 
 
 



 62

Table 4.1: Experimental sites used for upland vraieties evaluation in Benin Republic. Gan is 

Gankpétin, Kpa is Kpakpazoumé, Ero is Erokowari, Pin is Pingou, Tan is Tanguiéta and Kob 

is Kobli. 

 

Locations 

 Gan Ero Kpa Tan Pin Kob 

Coordinates 7° 42´N 

2° 14´E 

7°51´N 

2°07´E 

7° 55´N 

2°15´E 

10°37´N 

1°26´E 

10° 45´N 

0° 59´E 

10°29´N 

0°59´E 

Soil type 

(FAO)  

Ferric 

Alisol 

 

Ferric 

Acrisol  

Plinthic Luvisol  Alisol  Dystric 

Plinthisol 

 

Luvisol 

USD 

classification 

Alfisol Alfisol Alfisol Alfisol  Alfisol 

 

Alfisol 

Landscape 

position 

lowland lowland upland upland upland lowland 

Year 07 08 07 08 07 08 09 09 07 09 09 

Rain in 

growing cycle 

(mm) 

617 712 617 709 685 930 569 641 646 902 993 

Sowing date 

(Jul-) 

18 17 19 22 17 21 16 30 20 20 28 

Crop 

residues1 

nd nd nd 1 nd nd 1 1,0 nd 0 1,0 

Crop 

intensity2 

nd nd nd 3,8,7,

0 

nd 0,1 8 1,2,3,6 nd 3,4,

5,7 

0,1,7,3 

  nd :not determined 

1: Code crop fallow residue: 0: grass fallow, 1: grass fallow + rice residue,  

2: crop intensity is associated with previous crop sequence for 3 years before the season. 

Crop includes: rice or maize or sorghum.   0:  grass + cowpea at any sequence, 1:   grass   

grass  grass , 2:   grass  grass   crop,   3:   grass   crop    grass, 4:  grass   crop    crop, 5:  

crop    grass  grass,, 6:  crop     grass  crop , 7:  crop     crop   grass, 8 :  crop     crop     crop . 
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(a)                                                                            (b) 

  

 

 

 

 

 

 

(c)                                                  (d)                                            (e) 

Figure 4.1: (a) and (b): Meteorological conditions in Benin Republic. Synoptic station data 

from 1975-2005. (a) Savé refers to Gankpétin, Kpakpazoumé and Erokowari.  Natitingou 

refers to Pingou, Tanguiéta and Kobli. (c), rainfall in 2007, (d) rainfall in 2008, (e) rainfall in 

2009. Gan is Gankpétin, Kpa is Kpakpazoumé, Ero is Erokowari, Pin is Pingou, Tan is 

Tanguiéta, Kob is Kobli. 

 

4.2.2.  Experiment description  

 

The experimental design on each site is arranged as a simple RCBD. It is comprised 

of 3 varieties: two improved and one traditional variety used as control. The 

traditional variety was subject to modification depending on the site and the year. 

This was the main reason that it was not taken into account in the present evaluation. 

The block was repeated with 2 farmers. The improved cultivars included 10 

interspecific progenies from O. sativa × O. glaberrima derived from the Africa Rice 

collection. 

A uniform recommended management level was applied. Each cultivar was sown on 

individual plots of 3m x 15m surrounded by bund. Tillage and plowing were carried 

out at the depth of 20-25 cm. Two weeding were made during the growing cycle. 

Sowing was direct with a spacing of 10cm x 30cm. NPK (16-16-16) fertilizer was 

applied as basal fertilizer the day of sowing at rate of 200 kgha-1. 100 kgha-1 of urea 

Save Natitingou 
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was applied at 40 DAS (days after sowing). 228 plots were analyzed after removing 

plots with total yield failure.  

In some plots, rice residues were left on the field during the fallow period (Table 4.1). 

Information of crop intensification is given for 76 sites and allowed to score the 

cropping intensity from 0 to 8. 0 corresponds to less intensified, 8 represents highest 

intensification with consecutive 3 years of rice cropping before the seasons.  

 

4.2.3. Data collection  

 

In each site, one representative field was selected for soil description in 2009 during 

the fallow period for Kpakpazoumé, Pingou and Erokowari and in 2011 for Kobli and 

Tanguiéta. Topsoil samples are randomly collected from the fields at 5 points at 0–20 

cm depth. Secondly it was dug a profile per site down to root zone depth. The 

samples were sieved (2-mm mesh) before analysis. The pH was determined using a 

soil-water ratio of 1:2. The organic carbon and organic N were analysed using the 

elemental analysis for Kpakpazoumé, Pingou and Erokowari. The dichromate 

oxidation method of Walkley and Black was used for Kobli and Tanguiéta. 

Exchangeable bases (Mg, K, Ca and Na) were extracted with 1 mol L−1 NH4 Acetate; 

Ca and Mg in the extract were measured using the atomic absorption 

spectrophotometer (AAS) while Na and K were determined by flame photometry. The 

potential cation exchangeable capacity was determined by extraction with 1 mol l−1 

BaCl2. 

 

4.2.4. Statistical analysis  

 

Data analysis consisted of running analysis of variance with a general linear model, 

of Principal Component Analysis (PCA) and correlation analysis at a 95% confidence 

level.  Means separation was performed with Tukey Least Significant Difference 

(LSD) method at 0.05 probability level. SPSS (version 16.0) was used to perform 

analyses. 

4.3. Results and discussion 

4.3.1.  Soils characteristics 

The physicochemical properties of the topsoil (0-20 cm) layer of the locations are 

presented in Table 4.2. Soil texture classes were dominated by sandy loam texture 

except in Kobli which presented the highest clay content. The soils were 

characterized by moderate to acid pH.  Southern sites were more acidic and 
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presented lower pH values than northern sites. There were no large differences for 

nitrogen among the sites. The soil organic carbon content was highest in Kobli and 

lowest in Erokowari.  

 

Table 4.2: Soils description from 0-20 cm layer.  

 

1. Igué  (2006) 

 

4.3.2. Agronomic responses  

 

The General Linear Procedure model with mixed effect (Table 4.3) across 11 

cropping seasons showed that upland rice productivity in Benin depends strongly on 

soil type. Site x year interaction was also highly significant, while variety effect was 

not significant. 

 

 

 

 

 

 

 

 

  Gankpétin1 Erokowari Kpakpazoumé Tanguiéta Pingou Kobli 

Material content       

 Sand (%) 88 55 66 72 70 38 

 Clay (%) 6 10 29 12 7 26 

Texture class  SL SL SL SL SL LS 

Chemical properties  

 pH (H20) 5.60 4.70 5.79 5.70 6.30 7.30 

 Corg (%) 1.20 0.78 0.91 0.98 0.84 1.34 

 N (%) 0.10 0.05 0.06 0.04 0.06 0.06 

 CEC      (cmol 

kg-1) 

5.10 5.93 8.45 12.00 7.03 21.00 

 Bases   (cmol 

kg-1) 

      

 K+ 0.24 0.20 0.03 0.05 0.16 0.13 

 Ca2+ 2.75 0.39 0.31 4.17 0.36 6.51 

 Mg2+ 0.61 -- -- 0.98 3.67 5.23 

 Na+ 0.08 0.08 0.24 0.15 0.79 0.26 
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Table 4.3: F ratios from the combined analysis of variance across 6 experiments for rice traits 

evaluated for 10 varieties. d.f.: degree of freedom; DDF: Denominator Degree of Freedom of 

covariance parameters; ns, not significant at the <0.05 probability level. 

 

Source of variation 

 

d.f. DDF F probability 

Variety 9 161 ns 

Site 6 161 <0.0001 

Year 2 161 ns 

Variety x Site 42 161 ns 

Site x Year 3 161 <0.0001 

Variety x Year 14 161 ns 

Variety x Site x Year  65 161 ns 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Rice yield in 6 experimental sites of Benin. The numbers followed by the same 

letters are not different at p<0.05. 

 

Sites could be ranged into 3 classes (Fig. 4.2), Kobli exhibited higher potential for 

rice than in the other experiments. Low to moderate yield was obtained in 

Kpakpazoumé. Low yielding sites comprised Tanguiéta, Pingou, Erokowari and 

Gankpétin.  

 

 

 

 

 

 

c c c 

a 
b 

c 



 67

Table 4.4: Grain yield distribution across years 2007, 2008 and 2009. Figures with same 

letter are not statically different across the year. 

 

   

2007 

 

  

2008 

  

  

2009 

  

Site n Mean 

 (Mgha-1) 

Cv 

(%) 

n Mean 

 (Mgha-1) 

Cv (%) n Mean 

 (Mgha-1) 

Cv 

(%) 

Gankpétin 20 1.08d,e 26.85 18 1.20d,e 46.67  - - 

          

Erokowari 20 1.76c 43.18 18 0.92d,e 51.09  - - 

          

Kpakpazoumé 20 1.49c,d 59.73 20 2.39b 25.41 12 2.68 a,b 16.42 

          

Pingou 20 1.97bc 43.15  - - 30 0.76e 20.54 

          

Tanguiéta  - -  - - 30 1.11d,e 70.27 

          

Kobli  - -  - - 20 3.00a 22.00 

          

Total/average 80 1.58  56 1.50  92 1.88  

 

Grain yield per site across all years and sites was presented in Table 4.4. Mean grain 

yields of the 10 rice genotypes ranged from 0.76 to 3 Mgha-1 across the experiments. 

The higher yield was obtained in 2009 in Kobli and Kpakpazoumé. In 2008, 

Erokowari presented yield below 1 Mgha-1. In 2007, the yield ranged from 1.08 to 

1.97 Mgha-1 across 4 sites where Pingou was the highest. In sum, there is an 

increase of yield from 2007 to 2009.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 68

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Table 4.5: Correlation matrix including variable grain yield, soil characteristics at 0-20cm and 

rainfall during the growing season. Numbers in bold are significant at p<0.001. 

 

 Sand (%) Clay (%) N (%) Corg 

(%) 

Rain 

(mm) 

Grain 

yield 

(Mgha-1) 

Grain yield -0.50 0.51 0.20 0.52 0.29 1 

Rain  -0.43 0.63 0.22 0.53 1  

Corg -0.56 0.79 0.45 1   

N 0.16 -0.03 1    

Clay -0.65 1     

Sand 1           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Scatter plot for Principal Component Analysis of rice yield, seasonal rain and soil 

characteristics. (Axis I is the first principal component. Axis II is the second principal 

component). 

 

 

The internal relationship of seasonal rainfall amount, soil texture, soil organic C and 

N at 0-20 cm, with grain yield is illustrated in Table 4.5. The grain yield appeared 

significantly correlated in positive term with soil organic carbon, clay content and 

Conponent 1 

Conponent 2 

Clay  

Sand  

N 

Corg 

Yield 
Rain  



 69

rainfall amount during the cropping season. Correlation between rice yield and sand 

content was negative. The principal component analysis was performed with the 

same variables. Fig. 4.3 shows the results of this analysis. The first principal 

component explained 53% and the second principal component explained 21% of the 

variation. In the second principal component (Axis II) the coefficient of rain, organic 

carbon and N content showed a positive value, while clay and sand content were 

more loaded on the component I suggesting that the first principal component 

explains the soil texture variability. Therefore, clay versus sand was plotted in the 

negative portion of Axis I. This graph confirms that increase of grain yield conferred 

to high amount in organic carbon, nitrogen and rain, but sand content adversely 

affected grain yield. 

 

4.3.3.  Discussion 

In general West African farmers are experiencing low rice productivity in rainfed rice 

(Lançon et al. 2001). The average yield of this study on upland rice fits with national 

average estimated at 2 Mgha-1 (MAEP 2011). In the same line with this study, Saito 

and Futakuchi (2009) estimated the average grain yield across all upland cultivars in 

low fertility (low Corg content) to be 54% of that in high fertility soils (156 vs. 

340 Mgha-1) under irrigation. In the study through the PVS, interspecific genotypes 

were evaluated to cope with local farmer’s conditions which include in addition to low 

inherent soil fertility, the occurrence of drought or flood. This multisite evaluation 

didn’t show any type of interaction between variety and environment. Using the same 

approach, Mandel (2010) found smaller genetic variance for grain yield under low-

input conditions in India as confirming the results in our study. Several kind of stress 

may limit varietal selection progress under unfavourable environments (Banziger and 

Cooper 2001). 

 

Many studies reported that nutrient deficiencies in rice are very common in West 

Africa (Oikeh et al. 2009, Okeleye et al. 2006). The difference in grain yield was 

attributed mainly to soil Corg and clay content. The situation of Kobli in the lowland 

with highest yield allowed rice to respond favourably to the N and water contributed 

from the slope. For instance, Bognonkpe and Becker (2009) evaluated that N uptake 

is higher in plots adjacent to uplands with fallow vegetation compared to plots 

cultivated with maize. The other sites such as Pingou and Tanguiéta presented the 

lowest grain yield and which is linked to soil fertility degradation, because they have 

been extensively used formerly for long-term cotton culture. In addition, the region is 

characterized by rare fallow land because of the strong pressure on the land (Saidou 
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et al. 2004). Indeed, the clearing of natural vegetation and its replacement by 

intensive annual cultures such as cotton should result very quickly in an intense 

mineralization of the organic matter (Saïdou, 1992). A decrease of soil fertility from 

one year to another during three consecutive seasons was observed to not be fully 

able to be corrected with 80N-and 100P kgha-1 application (Dingkuhn et al. 1998). In 

our study, the supply in NP elements was far less.  

 

All the sites in the Guinean zone (Erokowari and Gankpétin) reported the lowest 

yields (Fig. 4.2). Previous works reported that a bimodal rainfall zone is subject to a 

short cessation of the rainy season during the middle season particularly during the 

reproductive phase of rice crop. It was reported that this water shortage is often the 

source of N-uptake reduction during the vegetative stage and the reproductive 

growth stages of rice crops particularly during the midseason (Kamara et al. 2010, 

Oikeh et al. 2008). The year 2007 for the southern sites (Gankpétin, Erokowari and 

Kpakpazoumé) showed clearly bimodal pattern for rainfall (Fig.4.1). However, the 

rainfall in August and September was still high, thus the grain yield cannot be linked 

to the water shortage. Furthermore, Koné et al. (2009) proved that there was also a 

significant (P = 0.004) decreasing effect of Zn (28%), N (34%) and K (36%) exclusion 

on the mean grain yield in the Ferralsol soils in south of Benin. These results attested 

the existence of Zn and K deficiencies which may reduce the sustainability of upland 

rice production.  The high correlation of soil texture with grain yield confirmed the 

relationship between water capacity retention and soil management. In Guinean zone 

dominated by Ultisols and Alfisols the water retention is a main limitation to 

cultivation, in particular in coarse-textured and moderately deep or shallow soils 

(Andriese and Fresco, 1991). In addition negative correlation among sand and 

organic matter contents existed.  

 

 

 

 

 

 

 

 

 

 

 



 71

 

 

 

 

 

 

 

 

 

 

 

5. Multisite evaluation of the EPIC model for 

NERICA rice cropping in different 

agroecological zones of West Africa 
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5.1. Introduction 

The operation of crop growth models is of interest for extrapolating results gained on 

experimental stations. Beside, simulation modelling represents a research tool for 

assessing climatic change patterns and their impacts on crop growth and yield. 

Modelling a cropping system requires to understand the complex crop-water-soil 

interaction and to suggest some empirical parameters which are applicable to diverse 

conditions and environments. However, the attempt to use crop growth models under 

extremely unfavourable growth conditions i.e. water scarcity combined with low soil 

fertility or with indigenous management practices remains a challenge in tropical 

cropping systems such as in Africa or in Latin America (de Barros et al., 2004, Gaiser 

et al., 2010a). 

Indeed, for the rice crop that has a relatively long history in modelling, model 

development is now geared to the issue of resources limitation due to expansion of 

rainfed rice systems. For instance, the water and nitrogen modules in the latest 

version of ORYZA2000 formerly developed for estimating potential rice production 

suggest repeated model simulations with real-world data in order to increase the 

confidence in the suitability of the model for a certain purpose (Bouman and van 

Laar, 2006). Even the agroecological system models such as the Environmental 

Policy Integrated Climate (EPIC) which addresses crop simulation in response to 

weather and nutrient cycling, is still not widely used to explore management 

strategies (Probert, 2004). As result, in rainfed low-input systems such as 

smallholdings in West Africa, models developed for optimal management conditions 

fail to meet the needs of researchers and extension workers (Palm et al., 1997). This 

is a key issue in Africa where about 80% of the rice production depends on rainfed 

conditions.  

Although the basic use of crop models was to calculate crop growth and 

development for a single field, there is increasing interest in studies that concern 

multiple fields evaluation (Leenhardt et al., 2007, Hartkamp et al., 1999). This 

depends on the assumption that field scale model can be useful for evaluating 

management strategies at a broader scale. In rainfed upland systems in West Africa, 

rice yield is seldom above 2 Mg ha-1. The constraints in West Africa include rainfall 

uncertainty, weeds and limited soil nitrogen availability. Indeed, soil nutrient 

availability for upland rice cultivation has also been described to be related to land 

use and ecology (Becker and Johnson, 2001). It is therefore, important for crop 

modelling targeted on upland rice to be tested on various environmental and 

management conditions to provide more confidence for further upscaling exercises.  
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The objective of this study was a multisite calibration and validation of the EPIC 

model for upland NERICA rice in contrasting agroecoystems; and the identification of 

site-specific model sensitive parameters. Therefore, we analyzed the sensitivity of 

the crop model to fertilizer and water inputs with data from experimental and on-farm 

fields in the Guinea and Sudan agroecosystems of Benin and Nigeria (West Africa). 

The EPIC model was chosen due to its capacity to consider the effect of abiotic 

stresses due to limiting water and nutrients such as nitrogen and phosphorus on rice 

productivity.  

5.2. Material and Methods 

5.2.1.  Study area 

Table 5.1: Dataset for calibration and validation of crop growth simulation. GY: Grain Yield, 

TAB: Total Aboveground Biomass, LAI: Leaf Area Index, C refers to data used for Calibration 

and V for Validation.  

 

Site  

 No 

Location Latitude 

Longitude 

Elevation 

(m) 

Year Variables for 

simulation 

Activity Reference 

1 Ikenne 6°54´N 

3°42´E 

71 2004 GY; TAB C Oikeh et al., 

(2008) 

2 Bohicon  7°11´N,  

 2°04´E 

77 2006, 

2007 

GY V Sokei et al. 

(2010) 

3 Niaouli 6° 44´N 

 2° 07´E 

81 2005, 

2006 

GY V Koné et al. 

(2008) 

4 IITA 6° 20´N   

2° 20´E 

457 2006, 

2007 

LAI; TAB; GY C Saito and 

Futakuchi, 

2009) 

5 Pingou 10° 45´N 

 0° 59´E 

100 2009, 

2010 

GY V  

6 Kpakpazoumé 7° 55´N 

 2° 15´E 

174 2009, 

2010 

GY; TAB C  

7 Tchankpéhoun 10° 45´N 

 0° 59´E 

187 2009, 

2010 

GY; TAB C  

8 Tohoué 6° 25´N 

 2° 40´E 

14 2009 GY; TAB C  

 

The model evaluation followed a calibration and validation process. Experimental 

data were collected from 8 experiments carried out in 2004, 2005, 2009 and 2010 in 

Benin and Nigeria, West Africa (Table 5.1). The locations are listed from South to 

North: IITA (The International Institute for Tropical Agriculture, Cotonou) (4), Tohoué 

(8), Ikenne (1, Nigeria), Niaouli (3), Bohicon (2), Kpakpazoumé (6), Tchankpéhoun 

(7) and Pingou (5). The calibration dataset was obtained from sites 1, 4, 6, 7 and 8. 

Validation plots were from sites 2, 3 and 5. The experimental sites ranged from the 
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humid forest, Guinea savanna, to the Sudan savanna agroecosystems (Table 5.2) 

with bimodal rainfall distribution in the humid forest and Guinea savanna, and a 

monomodal rainfall distribution in the Sudan savanna. The annual precipitation is 

over 1400 mm in the humid forest with declining rainfall northwards. There is 

regionally higher rainfall close to the Atacora mountain range for the case of Pingou 

and Tchankpéhoun locations (Röhrig, 2008). The length of growing season 

decreases also from South to North (250 to 130 days).  In general, the rainfall 

distribution allows cultivation of two crops per year in the southern areas (Igué, 

2000).  
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Table 5.2: Pedoclimatic conditions of test sites used for model calibration and validation.  

 
Site Climate 

zone 

Rainfall1 

(mm)  

Synoptic 

station 

Station Soil type 

FAO/US 

classification 

Texture2 Soil 

organic 

carbon 

(%)² 

Reference 

for soil 

profile 

1 Guinean  1287 FAO Ibeju-

Ode 

Typic 

Haplustult/ 

Ultisol 

S 0.86 Heuberger 

(1998) 

2 Guinean  1208 Bohicon Bohicon Haplic 

Alisol/Alfisol 

SL 2.38 Atchade 

(2006) 

CENAP 

3 Guinean  1065 Cotonou Niaouli Acrisol/Alfisol S 1.89 Atchade 

(2006) 

CENAP, 

Koné et al. 

(2008) 

4 Guinean  1352 Cotonou IITA Haplic Alisol/ 

Alfisol 

S /SC 1.96/0.7 Atchade 

(2006) 

Saito and 

Futakuchi 

(2009) 

5 Soudan-

Guinean  

1103 Nati- 

tingou 

Matéri Dystric 

Plinthisol 

/Alfisol 

 

SL 0.84 - 

6 Soudan-

Guinean 

1209 Savé Kpakpa -

zoumé 

Dystric 

Plinthisol 

/Alfisol 

SL 0.91 - 

7 Soudan-

Guinean 

1103 Nati-

tingou 

Matéri Luvisol/Alfisol LS 0.82 - 

8 Guinean 1082 Cotonou Porto- 

Novo 

Dystric 

Cambisol / 

Inceptisol 

 

S 0.65 - 

 

1.  Rainfall in site 1, in 2005, in site 2 is average 2007 and 2008, in site 3 is average 2005 and 2006, in 

site 4 is average 2006 and 2007, in site 5 and 7 are average 2009 and 2010, in site 6, average 2009 

and 2010, site 8 refers to 2009, 

 2. Texture and soil organic carbon in 0-20cm or 15 cm depth.  
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5.2.2.  Model data input and source 

 

Table 5.3: Description of the experiments with field operation. N1 and N4 refer to NERICA1 

and NERICA4 respectively. 

 

Site Year Variety  Planting 

density 

(cm x cm) 

Amount of inorganic 

fertilizer (kgha-1) 

Sowing 

date 

Irrigation 

application 

N P K 

Research station 

1. Ikenne  

(Oikeh et al., 

2008) 

 

 

 

 

 

 

 

2004 

 

 

 

 

 

 

 

 

 

N1 

 

 

 

 

 

 

 

 

 

20x20 

 

 

 

 

 

 

 

 

 

0 0 25 16 Jun 

 

 

 

 

 

 

 

 

no 

 

 

 

 

 

 

 

 

30 0 25 

60 0 25 

120 0 25 

0 26 25 

30 26 25 

 60 26 25 

120 26 25 

2. Bohicon  

(Sokei et al., 

2010) 

2007 

2008 

N1 

 

20x20 60 13 25 29 May 

31May 

No 

0 0 0 

3. Niaouli  

(Koné et al., 

2008) 

 

 

2004 

2005 

 

 

 

N4 

 

 

 

 

20x20 

 

 

 

 

0 0 0 3 Jun 

5 May 

 

 

 

no 

 

 

 

 

100 100 100 

0 100 100 

100 0 100 

4. IITA 

(Saito and 

Futakuchi, 2009) 

(Sone et al., 

2009) 

2006 

2007 

N1 20x20 

 

50 13 25 19 Sep 

27 Feb 

Yes 

50 13 25 

On farm –research  

5. Pingou 

 

2009 N4 

 

30x10 

 

66 14 27 4 Aug No 

2010 34 - - 13 Jul No 

6. Kpakpazoumé 

 

2009 N1 

 

30x10 

 

63 14 27 14 Jul No 

2010 66 17 33 15 Jul No 

Farmland  

7.Tchankpéhoun 

 

2009 N1 

 

30x10 

 

39 14 27 28 Jul No 

2010 35 7 13 14 Jul No 

8. Tohoué 2009 N1 30x10 44 16 25 27 May Yes 
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Crop management dates are summarized in Table 5.3. For the experiments in sites 

1, 2, 3 and 4, the field layouts have been described in previous studies (Oikeh et al., 

2008, Saito and Futakuchi, 2009, Sokei et al., 2010, Koné et al., 2008). For 5, 6, 7 

and 8, the experimental design varies according to the location. Plots of 3 m x 15 m 

were used in Kpakpazoumé and Pingou. The farmland in Tohoué occupied 1250 m² 

and 5000 m² in Tchankpéhoun. In all the experiments, NERICA1 or NERICA4 variety 

was used.  

Soil information was provided from soil profiles dug during the fallow period in 2009 

for sites 2, 3, 4, and 8. Topsoil samples were randomly collected from the fields at 5 

points of 0–20 cm depth. Secondly it was done along a profile per site down to root 

zone depth. The samples were sieved through 2-mm mesh before analysis. The pH 

was determined using a soil-water ratio of 1:2. The organic carbon and organic N 

were analysed using the elemental analysis for samples from Kpakpazoumé, Pingou 

and Erokowari. The dichromate oxidation method of Walkley and Black (1934) was 

used for samples from Kobli and Tanguiéta. Exchangeable bases (Mg, K, Ca and 

Na) were extracted with 1 mol L−1 NH4 Acetate; Ca and Mg in the extract were 

measured using the atomic absorption spectrophotometer (AAS) while Na and K 

were determined by flame photometry. The potential cation exchangeable capacity 

was determined by extraction with 1 mol L1 BaCl2.  

Atchade (2006) reported chemical and physical characteristics of soil profiles in IITA, 

Niaouli and Bohicon (Cana Sud) from 2005. The top soil properties (0-15cm) were 

adapted according to Saito and Futakuchi (2009) at IITA. Two fields were used at 

IITA: one with low soil fertility (IITAlow) and the other with high soil fertility (IITAhigh). 

Soil data in Ikenne was obtained from Heuberger (1998).  The profiles were 

described during the fallow period at Kpakpazoumé, Pingou and Tchankpéhoun in 

2009. Ikenne and Niaouli have sandy textured topsoil (Table 5.2). However, except 

Tohoué, all the sites have loamy to clayey subsoil (Alfisols and Ultisols).  

The soils were usually acid with low nitrogen content except in Bohicon and IITAhigh. 

In the 0-15 cm soil depth, soil organic carbon content of the locations was classified 

in the order: 

Bohicon>IITAhigh>Kpakpazoumé>Pingou>Ikenne>Tchankpéhoun>Niaouli>IITAlow> 

Tohoué.  

Daily meteorological data (maximum and minimum air temperature and global solar 

radiation) were collected from the synoptic weather station which was as nearest as 

possible to the fields (Table 5.2). For synoptic data in Ikenne, the model weather 

generator was used from FAO climate database (LocClim, 2002) for monthly mean 

temperature. Solar radiation at Ikenne was derived from Apkabio and Etuk (2003) 
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and the Hargreaves (Hargreaves and Samani, 1985) method was used for potential 

evapotranspiration (ETP) estimation. For all other sites, Penman Monteith Method 

was applied. Daily rainfall was retrieved from the closest rainfall gauge.  

 

5.2.3. Modelling with EPIC 

 

The version 3060 of the EPIC model (Williams, 1990) was used to simulate rice 

productivity. The EPIC model is a field-based model designed to simulate crop 

production based on information about soil, crop rotation and management system. A 

full description is presented in the model documentation by William et al. (1990). 

Among various subroutines, the model considers N and P cycling by flows between 

inorganic and organic stocks.  

For N mineralization, EPIC couples C and N cycling in the soil. Simulated C and N 

compounds in EPIC are stored in either biomass, slow, or passive soil organic matter 

pools. Direct interaction is simulated between these pools as the function of soil 

moisture, temperature, nutrient content and clay content functions (Izaurralde et al., 

2006, Gaiser et al., 2010a).  

For P mineralization, two sources of mineralization are considered: the fresh organic 

P pool, associated with crop residue and microbial biomass and the stable organic P 

pool, associated with the soil humus. The mineral P is then transferred among three 

pools: labile (which comprises fertilizer), active mineral and stable mineral. Flow 

between the labile and active mineral pools is governed by the equilibrium equation 

that implies the mineral P flow, the amount in the active mineral P pool and P 

sorption coefficient defined as the fraction of fertilizer P remaining in the labile pool 

after the initial rapid phase of P sorption is completed. 

 

5.2.4.  Model evaluation 

 

The evaluation of the model was done by producing linear regressions between 

measured and simulated variables and calculating the correlation coefficient R². The 

different comparison methods in Table 5.4 that highlight the feature of data and the 

model response were also used. The mean error (ME), mean relative error (MRE), 

mean absolute error (MAE), and root mean square error (RMSE) were presented 

where n was the sample number, x the observed, and y the simulated value. The 

MRE is positive when the model overestimates values compared to the observed 

values. The negative sign relates to underestimation. The root mean square error 

(RMSE) estimates the precision and reliability of the prediction for single yield 
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estimation points. Model efficiency is used to assess the predictive power of the 

model taking into account the variability inside the observation dataset.  

 
 
 
Table 5.4: Measure of agreement between a model and observed data. 

 

Name  Equation Optimum value 

Mean error  

 

0 

Mean relative error  

 

0 

Mean absolute error  

 

0 

Model efficiency 

 

1 

Root mean square  

 

0 

 

 

5.3. Results and discussion  

5.3.1. Calibration of crop parameters 

 

The calibration and validation runs started with a warm up period of 8-9 years in 

order to stabilize the soil organic carbon pools in the model. The approach used for 

the calibration was to modify some initial values of the model parameters in order to 

iteratively fit simulation values as close as possible to the observed yield values. 

Therefore, we adjusted the default crop parameters for rice to the NERICA varieties, 

because they are short duration low management plant types that are adapted to 

resource-limited smallholder production systems (Dingkuhn 1998). However, no 

varietal distinction was taken into account in the crop file. The NERICA 1 and 4 

passport data published by the Africa Rice Centre (2008) represented no feature for 

distinguishing the two varieties in the crop file of the EPIC model such as the number 

of days to maturity which determine the Potential Heat Unit (PHU) or flowering age. 

In the process of LAI calibration, the parameters DLAP1 and DLAP2 were used to 

control the crop growth. Félix (2006) considered that the sub-model of EPIC for LAI 
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development is based on a strong amount of empiricism, as the mechanism that 

controls the rate of development of LAI is not yet well understood. Therefore, DLAP1 

was changed from 30.01 to 30.20 and the DLAP2 from 70.95 to 60.95 for the two 

varieties.  The plant population density was also modified from 125.600 to 50.600 in 

PPC1 and 250.600 to 250.900 in PPC2.  

 

Table 5.5: Parameter setting for rice in the EPIC crop file: original defaults and values after 

calibration (WA, biomass-energy conversion factor; HI, potential harvest index; WSYF, 

minimum harvest index; LAImax, maximum leaf area index; PPC1/PPC2 & PPT1/PPT2, 

DLAP1, DLAP2: LAI development parameters linked to plant density). 

 

Parameters Explanation 

  

Original  Used in the 

parameterization 

WA  Radiation use efficiency (kg ha-1/MJm-2 ) 25 25 

HI  Harvest index (decimal fraction) 

 

 

0.50 0.55 

PHU Potential heat unit (degree days) 1500 1500 

WSYF  Minimum harvest index under water stress 

condition (decimal fraction) 

0.25 0.01 

LAI max  Potential maximum leaf area index (m²m²) 6 6 

DLAP1 First point on optimal leaf area curve 

.Percentage of heat unit 

30.01 30.20 

DLAP2 Second  point on optimal leaf area curve 

.Percentage of heat unit 

70.95 60.95 

PPC1/PPC2 1st point of plant population density for crops 

(plants m²)/Fraction of potential leaf area index 

at 1st point (decimal fraction) 

125/600 50/600 

PPT1/PPT2 2nd point of plant population density (plants 

m²)/PPT2 Fraction of potential leaf area index 

at 2nd point (decimal fraction) 

250/900 250/600 
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(a)                                                                 (b) 

Figure 5.1: Comparison between simulated and observed leaf are index (LAI), (a) situation 

before and (b) after calibration.  

 

The model outputs and the observations with regard to the LAI before and after the 

calibration were graphically compared. Figure 5.1 shows that the model first 

underestimated the values of LAI with a negative mean relative error of -0.28 (Table 

5.6). After calibration, the average relative difference between the observed values 

and the simulated LAI was approximately 6% with a model efficiency of 98%. The LAI 

development was satisfactorily calibrated similar to Yoshida et al. (2007) using a 

complex and detailed phenological model as a function of relative crop growth rate, 

leaf nitrogen content and air temperature.  The LAI was estimated under full irrigation 

at relatively high soil fertility level (Org C = 19.6 g kg-1 and total nitrogen up to 2.2 g 

kg-1). The observed value was average of 5 cultivars including NERICA1 grown 

under high soil fertility conditions (Saito and Futakuchi, 2009). The authors did not 

detect any difference in rice cultivars in LAI at 42 and 56 days after seeding (DAS), 

and no traits from the early vegetative stage were observed to relate to grain yield.  

The relative increase in LAI at 30 % of the PHU (DLAP1) compared to the default 

value is in line with the high weed competitiveness feature reported for NERICA 

varieties (Ekeleme et al., 2009). 

 

5.3.2. Calibration of soil parameter 

 

Before calibration, the model showed low sensitivity to the supply of inorganic N and 

P on a highly weathered and strongly acid low-activity clay soils at Ikenne (Fig. 5.2), 

as the experimental layout was made to test the effect of fertilizer application in the 

humid forest agroecosystem on Ultisols (Table 5.3). Leenhardt et al. (2006) 

suggested the use of pedotransfer functions to estimate soil properties during the 
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simulation process as a solution for unavailable data. However, Gaiser et al. (2010a) 

using sensitivity analysis estimated the fraction of microbial biomass across some 

different soil types under cropland in West Africa. The fraction of biomass in the soil 

organic matter pool (FBM) triggers the mineralisation of soil nitrogen, which is the 

main growth constraint in low-input smallholder systems in West Africa. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Model sensitivity to supply of N and P before and after calibration for Ikenne site 

in 2004 (N0, N1, N2, N3 is 0, 30, 60 and 120 kgNha-1, P0 and P1 is 0 and 26 kgPha-1 

respectively). 

 

 

Gaiser et al. (2010a) set a value of FBM to 0.01, which is more realistic for West 

African savanna soils instead of the default value of 0.04 that is more representative 

for soils with high organic matter content (Niu et al., 2009). The recommended value 

of 0.01 was therefore, used for all sites. In addition, the fraction of humus in the 

passive pool expresses the proportion of carbon (and nitrogen) in the soil organic 

matter pool that has a low turnover rate. It was set to 0.99 making less nitrogen 

available to the plant, thus generating more response of the crop to additional 

nitrogen supply.  

 

More sensitivity of yield to P fertilizer application in the model was found when initial 

labile phosphorus concentration in the first layer (0 – 15 cm) for the acid Ultisol was 

set to a value of 0.05 ppm. Labile phosphorus (CSP) is considered to correlate with P 

uptake (Sharpley, 1985). The labile P concentration factor allows optimum uptake 

rates when CSP was above 20 ppm which was the default value used as critical 

labile P concentrations for a range of crops and soils.  

The soils in Ikenne are classified by USDA as Typic Haplustult (Chromic Ultisols, 

FAO classification). They are considered to be low in CEC and bases due to the 
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translocation of the clay to the subsoil and high leaching. They present a high P 

sorption to Fe- and Al-hydroxides in the subsoil (Mokwunye, 1979) or kaolinite in the 

clay fraction (Wisawapipat et al., 2009). Daroub et al. (2002) in developing a soil-

plant P model for highly weathered soils recorded for maize an overestimation of the 

P uptake by the model. Apparently, their model was not able to reproduce P fixation 

which is much higher than in less-acid soils found in temperate climates.  

The analysis of rainfed upland system refers also to the evaluation of the water 

availability which depends on soil texture. The coarse fragments (CF) influence soil 

physical hydraulic properties. In EPIC model, the role of this parameter addresses 

directly to the water erosion engine but it has soil functioning oriented for estimation 

of water retention capacity at the same stand as the bulk density. In fact, Chow et al. 

(1997) observed that by incorporating 10 to 30% CF into the plough layer of the 

Northern American Podsol, it increased significantly the soil bulk density and this 

increase reduced the porosity and soil water retention capacity.  In our study, the 

sensitivity analysis of CF was done at 4 sites where substantial CF was identified in 

soil profile to show the influence of this parameter on grain yield.  

Figure 5.3 shows at 2 to 3 soil layers across 4 sites (Bohicon, Kpakpazoumé, Pingou 

and Tchankpéhoun), variation in CF ranged from 0 to 80%. It appeared that a strong 

influence of CF was obtained when all the layers were concerned by the limitation in 

water storage capacity and grain yield showed the higher sensitivity to CF at the 

upper layers. 
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Figure 5.3: Sensitivity analysis of coarse fragment content on: (a) mean water retention 

capacity of the soil layers at Bohicon, Pingou, Tchankpéhoun and Kpakpazoumé (b) grain 

yield depending on the variations of coarse fragment content at different soil layers (Bohicon: 

layer1=0-15cm, layer2=15-33cm, layer3 =33-76 cm; Kpakpazoumé: layer1=0-20cm, 

layer2=20-50cm, layer3=50-67 cm; Pingou : layer1=0-20cm, layer2=20-40cm; 

Tchankpéhoun: layer1=0-14cm, layer2=14-30cm). 

 

 

5.3.3. Calibration results for total aboveground biomass and grain yield 

 

Figure 5.2 shows that the model reflects after calibration, the effect of N and P 

application on NERICA yield on Ultisols when P and N are limiting. This is in 

accordance with Nigerian humid forest agroecosystems where high split application 

of 90 to 120 kg N ha–1 has been recommended for e rice cultivars to optimize yields 

(Enwezor et al., 1989). The model results showed that 7 out of 8 treatments did not 

significantly differ from the observed yield of NERICA.  
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The P stress has been simulated adequately to allow the expression of nitrogen 

stress among the treatments with application and without application of P. By 

simulating adequately the processes in P deficient soils, the model agrees with the 

results of Sahrawat et al. (1995), suggesting that P fertilization of acid-tolerant upland 

rice cultivars can significantly improve the productivity of Ultisols.  

 

Table 5.6: Mean simulated and observed rice LAI (m²m²), total above ground biomass (TAB), 

grain yields in Mgha-1  as well as mean error (ME in Mgha-1), mean relative error (MRE), 

mean absolute error (MAE), model efficiency (EF) and mean root square error (RSME) before 

and after model calibration over 6 sites. 

 

Sites n Obs. Sim. ME MRE MAE EF RMSE 

Before calibration 

LAI (m²m²) 4 2.38 1.48 -0.89 -0.28 0.90 0.37 50.84 

TAB(Mgha-1) 15 6.33 6.04 -0.30 0.04 1.55 0.09 30.15 

GY(Mgha-1) 15 3.03 2.97 -0.06 0.23 0.71 0.32 33.13 

After calibration 

LAI (m²m²) 4 2.38 2.44 0.06 0.06 0.14 0.98 8.39 

TAB(Mgha-1) 15 6.33 6.33 0.00 0.05 1.55 0.61 21.10 

GY(Mgha-1) 15 3.03 3.15 0.11 0.24 0.47 0.67 23.01 

 

Before the calibration and across all five sites, grain yield and total aboveground 

plant biomass had an RMSE of more than 30% (Table 5.6). Farmland fields 

contributed most to overestimation of the model by a magnitude of 88% on average 

for the 2 years (Fig. 5.4).  For the calibration at Tchankpéhoun, the plant density was 

reduced from the theoretical plant population to the measured plant density at 

maturity. During the two seasons, many hills were missing thus reducing the total 

yield observed.  Affholder (2001) pointed out that a model developed in high input 

environment such as the US where the planting density is very homogeneous need 

numerous modifications to be applied under the conditions of West Africa where high 

variability of plant densities at sowing is a big factor influencing variability in 

productivity. Oikeh et al. (2009) didn’t show relationship between the grain yield and 

NERICA plant density, whereas density effects appeared only for tiller and panicle 

densities. In the study of Oikeh et al. (2009), the seasonal differences in rainfall 

distribution and moisture availability might have reduced the simple effects of N and 

spacing (plant density) on NERICA grain yield. In our study, Tchankpéhoun got 

adequate monomodal rainfall supply for the two years.  
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Figure 5.4: Scatter plot between observed and simula

(a) and after the calibration (b), grain yield before (c) a

 

After calibration, the goodness of fit of the m

aboveground biomass and the grain yield (Fig. 

calibration, indicating that a higher fraction 

accounted for by the model (Table 5.6). 

 

5.3.4. Model validation  

 

The calibration of the EPIC model for upland

phosphorus as main constraints to crop growth.

sites (Niaouli, Bohicon and Pingou) over 2 s
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focused on different levels of N and P inputs, at Bohicon NPK application was tested, 

and Pingou was an on-farm field experiment (Table 5.3).  

 

 

Table 5.7: Validation of the EPIC model with respect to yield of rice in Mgha-1. Obs. is 

observed and sim. is simulated value, n is the number of pair of observed and simulated grain 

yield, a is the regression slope.  The mean error (ME in Mgha-1), mean relative error (MRE), 

mean absolute error (MAE) and mean root square error (RSME) are calculated over 3 sites. 

 

Grain yield (Mgha-1) 

N Obs. Sim. ME MRE MAE RMSE (%) 

14 1.3 2.5 1.2 3.0 1.2 116.30 

 

The validation of the model showed a relatively high gap between averages 

simulated (2.5 Mg ha-1) and observed yield (1.3 Mg ha-1). The mean error was 1.2 Mg 

ha-1 whereas the mean relative error was 3.0 which showed a very large 

overestimation of the simulated yields at plot level. The variation of the individual 

plots was also quite high resulting in root mean square error of 116.30%. The 

observed mean grain yield was lower than the average in the calibration, suggesting 

various stress effects. Indeed some causes of rice failure have been attributed to 

floods and drought for NERICA evaluated at five locations with similar pedoclimatic 

conditions as those in experiments in Benin Republic (JAICAF, 2007).  Therefore, 

before the use of the model to assess the impacts of and adaptations to climate 

variability and climate change in spatial studies, there is need for improvement in the 

amount and quality of available data collection.  
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(a)                                                                           (b) 

Figure 5.5 : Scatter plots for NERICA validation, (a) represents model validation for all plots, 

(b) refers to plot without the particular year Niaouli 2006. 

 

 

A scattered plot of the observed and simulated values of sites used for model 

validation presented in Table 5.5, showed that the average yield in plots used for 

validation was relatively low. This was due to crop failure in 2006 in Niaouli where the 

average yield was below 1 Mg ha-1 leading to the model overestimation. In fact, the 

experimental design was originally set up to evaluate the tolerance of NERICA 

varieties to drought with nutrients application. Niaouli is located in the sub humid 

zone with bimodal rainfall pattern. The mid season rainfall pattern associated with the 

sandy topsoil texture induced severe drought stress. The soil type “terre de barre” 

was described by Azontonde (1991) as soil with good physical hydraulic 

characteristics but with low water storage and their structure can be rapidly destroyed 

when there is no proper technique for maintaining organic matter.  

The sensitivity of NERICA varieties to water stress is well documented. Akinbile et al. 

(2007) showed that with NERICAs, yield decreased under optimal satisfactory 

conditions almost linearly with evapotranspiration, thus indicating that water 

application remained the dominant factor at all the stages of production. In EPIC 

model, the potential harvest index (HI) was adjusted daily according to water stress 

suffered by the crop (Williams, 1995). During the calibration, the sensitivity of the 

model was increased by setting the water stress impact (WSYF parameter) which 

allowed harvest index to drop to 0.01 in case of severe drought. The effect of water 

stress could only be limited to HI reduction. Fuji et al. (2004) reported that some 

NERICA lines showed high dry matter production under drought condition among 

y=0.18x+2.71 
R²=0.01 

y=1.51x-0.20 
R²=0.51 
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other rice cultivars and this have been correlated with stomata conductance 

(R=0.63**). However, an intensive rain of short duration followed by long dry spells 

which occurred during the flowering period, led to increase in sterility and decrease in 

grain weight (Xue et al., 2008, O´Toole and Moya, 1981).  De Barros et al. (2004) 

observed a slight overestimation of grain yield by the EPIC simulations and attributed 

this to high rates of floral abortion caused by the dry spells during the flowering 

periods because this factor was not considered in the model.  

After removing the plots with crop failure induced by the drought in 2006 in Niaouli, 

the goodness of the fit of the model improved from 0.01 to 0.51. Table 5.8 lists the 

simulation results for the remaining plots.  Pingou also had yield below 1 Mg ha-1 in 

2010 which was lower than the preceding year. In this year, a shallow groundwater 

was observed during the wet season at sowing (end of July) which was followed by 

transplanting. Therefore, the first possibility for the model overestimation was that the 

model could not consider transplanting shock that caused a delay in phenological 

development resulting in reduced vegetative period in the field. However, there are 

no reported analyses on the negative impact of flooding on upland NERICA. In 

contrast, high developmental plasticity of NERICA1 to recovery from short and 

intense moisture stress at the seedling emergence stage had been reported by 

Fofana (2008), and also midseason drought escape under low N was reported by 

Oikeh et al. (2008). . 

 

Table 5.8:  Validation data results without Niaouli 2006, with reference to fertilizer treatment, 

year and observed grain yield, + symbol refers to presence and - the absence of fertilizer 

input. 

Year Site Treatment (fertilizer) Grain yield (Mgha-1) 
  N P Observed Simulated 

2007 Bohicon - - 1.64 1.49 
2008 Bohicon - - 1.24 1.36 
2007 Bohicon + + 2.20 3.74 
2008 Bohicon + + 1.88 3.67 
2009 Pingou + + 1.14 1.80 
2010 Pingou + + 0.73 1.60 
2005 Niaouli - - 1.60 1.51 
2005 Niaouli - + 1.75 1.60 
2005 Niaouli + - 1.90 2.62 
2005 Niaouli + + 2.00 2.92 

 

The presence of ferric cuirasses in Pingou might have resulted in low saturated 

conductivity at the mid-soil depth, thus increasing the submergence and runoff risk. 

The relatively high soil moisture might have caused the low yield because sowing 
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was done only by direct seeding in 2009. Indeed Ogunremi at al (1986) 

demonstrated direct-seeded rice was adversely affected by the transient flooding 

conditions during the seedling stage on Ultilisol in Southern Nigeria. The grain yield 

obtained decreased with increasing penetrometer resistance.The tendency of 

overestimation of yield response to fertilizer was observed in Bohicon and Niaouli 

(Figure 5.5). Even at Niaouli in 2005, where the experiment received relatively high 

amount of NP (100kg ha-1), the observed yield was lower than the modelled yield.   

Under limiting water conditions, there could be less capacity of the crop to continue 

taking up water which could probably reduce transport to the roots through mass 

flow. Undeniably, some traits of upland rice (japonica type) related to less 

adventitious roots per hill result in relatively weak ability in N uptake (Zhang, 2008). 

In addition, a severe drought that occurred just after the application of the first split of 

N could have induced urea loss resulting from the lack of N dissolution, thus reducing 

grain yield (Oikeh et al., 2008).  
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 6. General discussion 
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6.1. Rice productivity in rainfed lowland and upland systems 

In the present study, grain yield and total aboveground biomass of rice were 

assessed in West African production systems under different ecological conditions. 

The average grain yield in inland valley experiment with lowland rice variety was 

higher compared to the average of grain yield obtained in upland experiments (4 

Mgha-1 vs. 2 Mgha-1) using at both sides moderate fertilizer application. The impact of 

land management was investigated in both systems. It was shown for the inland 

valley system, that grain yield responded to bund through water level fluctuation, 

fertilizer application, N and Fe availability at two slope positions, while in the upland 

system, soil fertility as related to organic carbon contents and rainfall were decisive 

for the increase of grain yield. In chapter 4, the upland system was evaluated by a 

simple correlation model analyzing the potential effect of environmental factors, but 

without taking into account soil variability. In this chapter, I will discuss the potential 

effects of e.g. fallow residue management and cropping as they varied between 

farms.  

 

6.1.1. Relationship between water level, soil parameters, N and Fe uptake by the 

plant in inland valley system  

 

With the first experiment in this thesis (Chapter 2), the spatio-temporal variability of 

the total aboveground biomass and grain yield was assessed for lowland rice 

cropped in an inland valley. A large variability was observed with regard to soil 

characteristics among plots and with variables such as Fe and N uptake, water level, 

total dry matter and grain yield over 4 years. A multi- regression analysis using 

stepwise elimination of factors with lower effect was run and allowed to limit the effect 

of heterogeneity of soil characteristics to soil carbon content and CEC (Table 6.1). 

The study showed that differences in yield response to landscape and management 

are due to the interaction of water level, Fe and N uptake by rice. In the upslope 

position, the grain yield was negatively correlated with the Fe concentration (in 

leaves) whereas downslope its correlation with leaf N content, CEC and soil organic 

carbon was positive.  
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Table 6.1: Pearson correlation coefficient between yield, nutrients and water level in the first 

month for NERICAL-26 grown under 2 toposequence positions.    

 

  LWM1 Fe N-Uptake CEC Corg Grain (Mgha-1) 
Downslope 

N in plant (%) 0.32** -
0.64** 

0.65** 0.14 0.09 0.30* 

LWM1 (cm)  -0.13 0.17 0.09 -0.00 0.54** 
Fe concentration 
(ppm) 

  -0.55** 0.00 -0.01 0.07 

N-Uptake (kgha-1)    0.15 0.03 0.18 
CEC (cmol kg-1)     0.74** 0.36** 
Corg (%)      0.31* 

Upslope 
Nplant (%) 0.21 -0.14 0.41** -0.07 -0.04 0.20 
LWM1 (cm)  0.29* -0.11 0.19 0.19 0.06 
Fe concentration 
(ppm) 

  -0.47** -0.03 -0.15 -0.37** 

N-Uptake (kgha-1)    -0.01 0.14 0.49** 
CEC (cmol kg-1)     0.88** 0.07 
Corg (%)      0.20 

 
Data for the 4 years were combined for calculation of the coefficient. Level of significance: significance 

at *p<0.05, **p<0.01. LWM1: Ponded water level at first month of growing period (cm), Corg: organic 

carbon (%), Nplant: N content in plant at 38 DAS (%).  

 

Additional visual score was made in 2007 and showed the symptoms of Fe toxicity 

such as bronzing on some leaves at vegetative phase. Inland valley swamps are 

known to provide the soil and water conditions to develop iron toxicity in rice (Virmani 

1979). Becker and Asch (2005) reported that in inland valleys with low clay content, 

symptoms usually occur very early in the rice plant’s development and are 

associated with the onset of interflow from the slopes. In upslope, a significant 

relationship was observed between the water level and Fe concentration in leaves at 

30 to 38 DAS. Audebert (2005) confirmed the effect of the redox potential and 

oxygen content on the incidence of iron toxicity while pH has a normal value for rice 

farming that does not contribute to the processing of ferric ion into ferrous ion, which 

is easily absorbable by the plant but toxic at high concentration. Fe toxicity may 

produce yield losses of 43 % over 42 varieties. It affects growth and development 

such as height, number of tillers per m² and number of panicles per m².  

In both positions, the N uptake of rice a 38 DAS was also negatively affected by iron 

toxicity. According to Inthapanya et al. (2000) the occurrence of iron toxicity in plots 

with fertilizer created a nutrient disorder limiting the response to fertilizer application. 

However, on our site in the upslope position and plots with bund, the fertilizer in all 

the recorded years was limiting the Fe uptake by rice. Previous studies provided 
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further evidence that the application of P, K and Zn in conjunction with N is an 

effective way of reducing iron toxicity (Sahrawat et al., 1996, Yamauchi, 1989; 

Yoshida, 1981). The application of nutrients such as P, Zn and K strengthens the rice 

plant, “dilutes” toxic Fe2+ via enhanced biomass growth, and especially bivalent 

cations may also act as competing ions. Some authors suggest that P could enhance 

oxidizing potential of the rhizosphere decreasing the availability of ferrous iron (van 

Breemen & Moorman, 1978). 

Indeed on toxic field, Diatta and Audebert (2005) observed that N alone may 

contribute to enhance the productivity only slightly from 4.47 Mgha-1 to 4.59 Mgha-1, 

but in combination with P the yield was enhanced up to 6.7 Mgha-1. 

In downslope plots, a relationship among standing water in the first month, plant N 

concentration and grain yield was demonstrated by correlation analysis. However, Fe 

concentration affected grain yield negatively only in upslope plots.  The application of 

60kg of N was most likely not sufficient to counteract the negative effects of Fe2+ on 

N uptake in upslope plots, whereas in the downslope plots higher soil N content may 

have provided more mineral N by mineralization from organic N. Thus, the N supply 

in downslope plots was sufficient to counteract the negative effect of high Fe 

concentrations. The contribution of the other macronutrients such as P and K should 

be investigated later on.  

 

6.1.2. Relationship between grain yield, soil fertility (Corg) and crop intensity in 

upland systems 

 

In chapter 4 the response of improved upland rice varieties grown under different 

agroecological conditions of low-input agriculture in West Africa was shown. Yield 

turned out to be related to soil organic carbon and clay contents as well as seasonal 

rainfall. In addition, management of residues and cropping sequences prior to the 

experiments were varied between farmers and was supposed to be a controlling 

factor. In some plots, rice residues were left on the field during the fallow period 

(Table 4.1). Information of crop intensification was given for 76 sites and allowed to 

score the crop sequence from 0 to 8, where 0 corresponds to less intensified system, 

8 represents highest intensification with consecutive 3 years of rice cropping before 

the starting of the experiment.  
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Table 6.2: Correlation coefficients between cropping intensity and grain yield, crop residues 

and organic carbon at 0-20 cm (76 plots were considered). (* = correlation coefficients are 

significantly different at p<0.05).  

  

 Grain yield 

(Mgha-1) 

Corg (%) Crop intensity Residues 

Residues  0.12 -0.10 0.06 1 

Crop intensity 0.04 0.30* 1  

Corg 0.51* 1   

Grain yield  1    

 

Table 6.2 shows correlations between cropping intensity, grain yield, Corg content 

and residue application during the fallow period. Crop intensity did not appear to be 

significantly correlated with grain yield. However rice yield was slightly higher in the 

field following 3 consecutive years for rice cropping than in the year after fallow. In 

the cropping pattern in both Atacora and Collines region, Saidou et al. (2004) found 

that the cereals may benefit from the residual effect of fertilizer applied to the 

previous crop.  

A positive relationship was also observed between soil organic C and crop 

intensification which is in contrast with results from Becker and Johnson (2001) who 

showed that the soil N supplying capacity was lowest in the bimodal Guinean 

savanna zone and declined with crop intensification (-26% in average across sites).  

But Igué (2006) reported after 6 years of rice cultivation in Gankpétin (one of the sites 

covered by the study) an increment of soil organic matter content from 1.23% to 

3.15%. Nitrogen, phosphorus and potassium availability changed positively as well. 

Indeed, rice shavings amendment was found in Ultisols not to generate significant 

differences in the pH whereas it has been shown to increase organic matter and 

nitrogen concentration during 2 years (Mbagwu et al., 1992). The use of crop 

residues may have contributed to the maintenance of soil fertility but apparently not 

in our case. 
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6.2. Modelling the rainfed lowland and upland with EPIC  

 

6.2.1. Simulation outputs  

LOWLAND SYSTEM 

As the exploitation of lowland inland valleys for rice production requires improved 

understanding of the effect of management practices on soil water and nutrient 

dynamics on rice yield, the crop model EPIC (Environmental Policy Integrated 

Climate) was applied to the upslope of inland valley situated at Dogué in order to 

capture processes involved in crop growth and yield in temporarily inundated rice 

fields and assess the suitability of the model for this specific agroecosystem (Chapter 

3).  

From the observations above, we derived input values for soil and growth parameters 

required for the modelling of rice growth and development. At first we described soil 

moisture conditions based on experimental treatments of water control and fertilizer 

application. The calibration of the model EPIC0509 was made with a dataset of 4 

years of rice-fallow succession in savannah inland valley. The exercise was carried 

out for five (5) model outputs: soil water content, ponded water level, LAI and 

aboveground biomass development, as well as grain yield. 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: MRE summary for no bund plots. SW is soil water content at 20, 40, 60 depths, 

LAI leaf area index, GY grain yield, FTAB Final Total Aboveground Biomass, growth TAB : 

Total Aboveground Biomass at different growth stages. Note that the optimal MRE value is 0 

(red line) and positive and negative deviations from 0 indicate an overestimation or 

underestimation, respectively, by the model. 

 

The model simulations were presented for MRE in the plots with and without bund for 

simulated variables (Figure 6.1). The optimal MRE value is 0 and positive sign show 

an overestimation by the model. The ponded water level was not included in the 

Bund No bund 
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evaluation because of the null value in the observations. In the no bund plots, the 

model simulations represented best the final biomass followed by the grain yield. The 

soil water content in topsoil and LAI had the highest MRE values in absolute terms in 

no bund and bund plots respectively. In no bund condition, this is due to the 

differences between simulated and observed soil water content before and after the 

growing cycle. In addition, the model must be improved through integration of 2 D 

water flows.  

In plots with bund, the bias was higher for grain yield and LAI in 2010. It has been 

shown that the model poorly represents crop productivity in bund condition due to the 

occurrence of iron toxicity. However, the simulation of soil water matches the 

observations with bund.  

 

 UPLAND SYSTEM 

 

From the data derived from the upland experiments, the EPIC model was calibrated 

and parameterized in a multisite evaluation, which is particularly important for rice 

production because of its high dependency on nutrients and water (Chapter 5). The 

results showed the accuracy of the model to simulate LAI, total above ground biomass 

and grain yield. In the model validation the variation of simulations for individual plots 

was higher than the observed variation. Large root mean square RMSE for validation 

(>100) suggested that robustness of the model became restricted under severe 

drought conditions where the rice response to N fertilizer was less pronounced.  

 

6.2.2.  Importance and limitation of the EPIC model simulations with respect to 

influence of water and N balance on grain yield in rainfed rice system   

6.2.2.1.   Water budget and relationship with grain yield 

  

LOWLAND SYSTEM  

 

From 2007-2010, the water-nitrogen budgets simulated by the EPIC model on a 

control plot (without fertilizer) are presented in Table 6.3. For the water balance, it is 

observed that ET and runoff processes were most important for water losses. Raes 

et al. (2007) formulated the sensitivity of rice grown in bund condition to water stress 

with relative evapotranspiration. From the waterbalance simulated by the model in 

Table 6.3, it can be reported that the model estimated 2066 mm of 

evapotranspiration, which is equivalent to the mean rate of 5.66 mm/day. This value 
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is within the range of wetlands in subtropical and tropical zones, similar cases were 

recorded in rice fields (Tomar and O´Toole, 1980).  

The bund contributed to reduce the runoff from 430 mm to 198 mm and percolation 

from 42 mm to 23 mm. Eventually, the process of percolation and runoff in no bund 

plots should be increased when water accumulates after reaching the saturation 

point. In the simulations the model showed in 3 of 4 years water stress at some days 

(Table 6.3). Examination of the water balance showed the highest water stress in 

2007, but this could be a consequence of the underestimation of soil water found in 

the calibration process. The estimation of runoff in 2010 was increased by the high 

rain intensity but seems not to have effect on water stress.  

 

Table 6.3: Water balance and N-loss generated in plots without fertilizer by EPIC model using 

climate and soil data in Dogué Research field. ET evapotranspiration, Q amount of water in 

runoff (Q),  in subsurface flow (SSF), percolation(PRK), amount of N loss in eroded sediment 

(YON), runoff (QNO3), SSFN (subsurface flow), denitrification (DN), volatilization (AVOL) and 

number of stress days (NS : nitrogen stress, WS: water stress, PS: phosphorus stress, TS: 

temperature stress). 

 
Treatment 

  

Year Water balance (mm) N-loss (kgha-1) 

 Rain ET Q SSF PRK YON QNO3 SSF

N 

PRKN DN AVOL WS NS PS TS 

No bund                 

  2007 1126 1873 91 5.7 50.0 1.7 1.6 0.6 27.4 8.6 18.4 25 3 0 0 

  2008 1255 2473 477 7.1 53.1 17.6 5.2 0.8 12.9 6.6 22.9 0 3 0 0 

  2009 1237 2147 399 7.5 36.1 5.0 3.7 0.8 9.1 7.6 20.7 8 4 0 0 

  2010 1400 1771 756 4.3 30.2 12.2 7.0 0.4 3.7 3.2 18.1 7 3 0 0 

  Mean  1255 2066 430.75 6.1 42.4 9.1 4.4 0.70 13.3 6.5 20.0 10 3 0 0 

Bund                 

  2007 1126 1873 79 4.7 17.5 1.0 0.7 0.7 19.0 15.9 23.0 19 0 0 1 

  2008 1255 2475 79 5.8 16.3 12.0 0.7 0.8 16.8 10.9 26.1 0 0 0 1 

  2009 1237 2147 44 7.5 49.5 0.8 0.3 1.6 16.9 15.2 26.6 5 0 0 1 

  2010 1400 1771 592 4.7 8.7 29.7 8.2 0.6 4.3 11.6 22.6 6 0 0 1 

  Mean  1255 2066 198.50 5.7 23.0 10.9 2.5 0.9 14.3 13.4 24.6 8 0 0 1 

 

 

UPLAND SYSTEM  

EPIC estimates water retention capacity from soil texture information particularly 

when input such as water content at field–capacity, wilting–point and soil saturated 

conductivity are missed. In Niaouli, Fig. 6.2 shows the relatively good agreement of 

the model estimation for water retention capacity at the Niaouli site. This low water 

retention capacity throughout different soil layers effectively allowed conditions for 

water stress experiment.  
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Figure 6.2: Estimation by the model compared to the measured water retention capacity at 

Niaouli site in the rooting zone. 

 

However, the sensitivity analysis of the model has also shown that the coarse 

fragment content had a more or less high influence on the water retention capacity of 

soil layers. In four out of eight sites, the model was parameterized for the coarse 

fragment content (CF) limiting water retention capacity in different layers. A modified 

CF was needed for the site of Bohicon. The results of the final calibration are shown 

in Fig. 6.3. Indeed, the model estimation of water retention capacity required an 

adaptation in CF and this adaptation reduced the yield gap between observed and 

simulated values from 1.60 Mgha-1 to 0.74 Mgha-1 on the average. As a 

consequence, when simulating rainfed rice in uplands it appears to be a prerequisite 

to provide detailed site-specific soil input parameters including water retention 

capacity among the soil physical characteristics.  
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Figure 6.3: (a) Comparison between estimated and measured water retention after 

adjustment of coarse fragment content at Bohicon (b) effect of coarse fragment (CF) on grain 

yield simulation and comparison with observed grain yield in Bohicon. 

 

6.2.2.2. Nutrient budget  

 

IN LOWLAND SYSTEM  

 

N loss during 2007 to 2010 of runoff almost doubled from bund to without bund with 

higher amounts of QNO3 (Table 6.3). Excessive soil water may limit the availability of 

fertilizer N by increasing the risk of loss through surface runoff and percolation 

(Brown and Rosenberg, 1997). The risk of N loss was estimated to range between 10 

to 60 % under moist conditions (Mengel, 1985), caused by the denitrifying bacterial 

activity in alternatively saturated and non-saturated conditions and by leaching. In 

fact, Antonopoulos (2010) confirmed that in addition to leaching to groundwater, 

surface and subsurface runoff are significant processes of nitrogen loss from the soil 

system in irrigated rice flied in Greece. Gaseous losses of nitrogen (via volatilization) 

and denitrification being higher under condition with bund, were also substantial 

processes reducing nitrogen availability in the flooded compartment (AVOL and DN 

in Table 6.3). The nitrogen balance model used on irrigated flooded fields in southern 

Greece produced an average of N leaching loss of 13%. The denitrification of NO3-N 

and volatilization of NH4-N accounted for 30 % with a total N loss of 282.7kg ha-1 

(Antonopoulos, 2010). In this lowland rice system, volatilization was estimated by 

EPIC to 20 Kg ha-1 and denitrification accounted for 10 kg ha-1 over a total N-loss of 
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60 kg ha-1. The experiment in Greece was implemented with higher nitrogen input 

(fertilizer at 150kg ha-1 N in irrigation water). It can be assumed that the lowland 

experiment in Dogué presented lower overall depletion of N than the irrigated field in 

Greece even though the share of volatilization and denitrification remained similar.  

The model evaluation showed that nitrogen stress seems not to be critical for the 

development of crop production in the presence of bund. A higher nitrogen uptake is 

expected in the plots with bund (Touré et al. 2010). The authors found that bunding 

improved the agronomic N use efficiency with an increase of rice yield of up to 40%. 

In the previous chapter it had been shown that the N content in plants was higher for 

all years in the plots with bund in upslope, being significant in 2008 and 2009. The 

use of relatively short-term experiments to calibrate the model shows the complexity 

of factors controlling the growth of plant and grain yield in lowland systems. Based on 

this complexicity, the validation of the model remains essential for refining processes 

in the rhizosphere and their effects on biomass growth of rice plants under alternately 

flooded conditions.   

 

IN UPLAND SYSTEM  

 

The model was well calibrated to simulate observed crop responses to NP 

fertilization. However, model validation results show some overestimation of grain 

yield with fertilizer application. One reason might be that micronutrient availability has 

not been adequately addressed in the model. Several experiments conducted on 

highly weathered soils in Africa showed that when sufficient N and P are applied to 

maize, micronutrient deficiencies may appear (Gaiser et al., 1999). Voortman et al. 

(2000) estimated micronutrients deficiencies on about 60% of the cropland in sub-

Saharan Africa. This confirms the need to consider the introduction of routines with 

micronutrient availability in crop models. 

 

The general use of the model for rainfed rice production at a large scale requires 

identification of areas with iron toxicity, risk of drought and flooding. It should be 

improved to consider the impact of iron toxicity and drought on rainfed rice. 
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Conclusion at a glance  

In order to assess different rainfed rice systems in West Africa by examining land 

position, fertilizer application, bund function, rainfall and soil characteristics, two 

types of analyse were performed: an empirical analysis and crop modelling.  From 

the results, the following conclusions can be drawn: 

 

- In upland rice, the rice grain yield was on average lower than in the lowland 

system, estimated at 2 Mgha-1 vs. 4 Mgha-1 with a moderate fertilizer input.  

 

- Constraints for rice production vary under both ecological conditions:  

 

§ In upland systems, conserving existing soil organic matter and 

proper management of water supply (irrigation, bund building or 

drainage) can to be useful for improving rice productivity.  

 

§ In inland valleys with lowland rice, temporal and spatial variation 

of water ponding is seen as the key driver that determines the 

impact of factors such as Fe toxicity, N uptake by the plant and 

N loss through runoff at different topographic positions. Fe 

concentration in leaves was negatively correlated with the grain 

yield only in upslope condition and positively with the water level 

increase induced by bund.  

 

- With a multi-year calibration, 2 versions of the EPIC model 0509 and 3060 

were able to simulate multiple variables such as leaf area index, grain yield, 

plant total aboveground biomass and soil humidity conditions under fertilizer, 

bund and irrigation application with acceptable accuracy at field scale for both 

upland and lowland systems. Application of the model in each system requires 

specific inputs.  

 

§ In upland systems, relevant soil parameters for calibration are 

different pools of nitrogen and phosphorus in the soil and 

coarse fragment content limiting soil water retention capacity.  

§ In inland valleys, soil water retention and water table are the 

principal characteristic inputs for hydraulic dynamics in bund 

and no bund treatments. 
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- Generally, the model constantly overestimated rice productivity. To reduce the 

bias in predicting crop production, modeling the rainfed rice  should consider:  

 

§ an upgrade for simulation with bund and without fertilizer 

application by including an iron toxicity model routine in inland 

valley systems. It should also provide a routine for the effects of 

micronutrients on grain yield; 

§ more input data with a better quality for the estimation of 

drought spell impact on grain yield; 

§ better representation of the impact of drought periods on the 

reduction of harvest index and how it is linked to floral abortion; 

fertilizer responsiveness under severe drought condition needs 

to be assessed, too. 
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