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Effect of niacin on the efficiency of nitrogen utilisation  

in the rumen of dairy cows 

 

The aim of the present study was to investigate the effect of an oral niacin supplementation of 

6 g per day to a diet deficient in ruminally degradable protein (RDP) on rumen metabolism, 

microbial protein synthesis, nitrogen (N) balance and N utilisation in lactating cows. It should 

be assessed to what extend a niacin supplementation can compensate for restricting effects of 

a negative rumen N balance (RNB) on rumen fermentation.  

A total of 9 ruminally and duodenally fistulated lactating multiparous German Holstein cows 

was used and the diets varied as follows: RNB0 with energy, utilisable crude protein (uCP), 

and RNB (0.08 g N/MJ ME) according to the average requirement of the animals; RNB- with 

energy and uCP at the duodenum according to the average requirement of the animals, but 

with a negative RNB (-0.41 g N/MJ ME); and diet NA, which was the same ration as RNB-, 

but supplemented with 6 g niacin/d.  

Reducing the amount of RDP in the diet caused several effects in the N metabolism of the 

animals. The negative RNB reduced N excretion with urine, the total N excreted with urine 

and faeces, and the N balance. Plasma and milk urea content were lower as well as ammonia 

content in rumen fluid. Also the digestibility of the diet, in particular NDF, was reduced. 

Number of protozoa in rumen fluid was enhanced while the amount of microbial crude 

protein (MP) and the amount of uCP reaching the duodenum declined during N deficiency, 

but the use efficiency of N for MP synthesis and for milk production was higher.  

Supplemental niacin decreased the daily N excretion with faeces and elevated the N balance. 

No effects on milk yield and composition were observed, but the ammonia content in rumen 

fluid was higher. Addition of niacin could compensate for the decline in NDF digestibility. 

The number of protozoa in rumen fluid was higher in NA treatment as compared to RNB-. 

The amount of MP reaching the duodenum per day was unaffected by niacin administration, 

but the efficiency of MP synthesis from RDP was elevated compared to RNB-.  

In conclusion, supplemental niacin to diets with a negative RNB induced a more efficient use 

of rumen degradable N. A shift in the rumen microbial community which was mainly due to 

an increased number of protozoa may have led to modifications of rumen fermentation and 

changes in the composition of MP reaching the duodenum. 



 

 

Effekte von Niacin auf die Effizienz der Stickstoffausnutzung 

im Pansen von Milchkühen 

 

Das Ziel der vorliegenden Arbeit war es, die Effekte einer oralen Niacingabe von 6 g zu einer 

Ration mit negativer ruminaler Stickstoff (N)-Bilanz (RNB) auf den Pansenmetabolismus, die 

mikrobielle Proteinsynthese, die N-Bilanz und die N-Verwertung bei laktierenden 

Milchkühen zu untersuchen und zu bewerten, in wieweit die Niacinsupplemetation die 

restriktiven Effekte einer negativen RNB auf die Pansenfermentation kompensieren kann. 

Die Studie wurde mit insgesamt neun pansen- und dünndarmfistulierten laktierenden 

Deutschen Holstein Kühen durchgeführt. Die gefütterten Rationen waren wie folgt konzipiert: 

RNB0: Energiegehalt und Menge an nutzbarem Rohprotein (nXP) entsprechend dem Bedarf 

der Tiere und eine ausgeglichene RNB (0,08 g N/MJ ME); RNB-: Energie- und nXP-Gehalt 

entsprechend dem Bedarf der Tiere, jedoch mit negativer RNB (-0,41 g N/MJ ME); NA: 

Ration identisch mit RNB-, jedoch mit zusätzlicher Gabe von 6 g Niacin je Tier und Tag. 

Die Reduktion der Menge pansenabbaubaren Proteins (RDP) in der Ration RNB- hatte 

diverse Effekte auf dem Metabolismus der Tiere. Die negative RNB reduzierte die N-

Ausscheidung mit dem Harn, sowie die Gesamt-N-Ausscheidung und die N-Bilanz. Plasma- 

und Milchharnstoff waren  verringert, gleiches galt für den Ammoniakgehalt im Pansensaft. 

Auch die ruminale und die Gesamttrakt-Verdaulichkeit der Ration, insbesondere der NDF-

Fraktion, waren herabgesetzt. Während die Protozoenkonzentration im Pansensaft erhöht war, 

wurde die Menge mikrobiellen Rohproteins am Dünndarm (MP), sowie die Menge nXP durch 

den N-Mangel reduziert. Allerdings war die Nutzungseffizienz des N für die mikrobielle 

Synthese und die Milchproduktion erhöht. 

Der Zusatz von Niacin verringerte die tägliche N-Ausscheidung mit dem Kot und erhöhte die 

N-Bilanz. Der Ammoniakgehalt im Pansensaft war höher aber es gab keine Effekte auf 

Milchmenge und -zusammensetzung. Die Niacingabe konnte die reduzierenden Effekte der 

negativen RNB auf die Verdaulichkeit der NDF kompensieren. Die Anzahl Protozoen im 

Pansensaft wurde durch Niacin erhöht, die tägliche Menge MP blieb unbeeinflusst. Jedoch 

stieg die Effizienz der MP-Synthese aus RDP im Vergleich zur Behandlung RNB-. 

Aus den vorliegenden Ergebnissen kann geschlussfolgert werden, dass der Niacin-Zusatz von 

6 g je Tier und Tag zu einer Ration mit negativer RNB eine effizientere Nutzung des RDP zur 

Folge hat. Verschiebungen in der mikrobiellen Population des Pansens auf Grund einer 

höheren Protozoenkonzentration könnten zu Modifizierungen des Pansenmetabolismus und 

zu einer veränderten Zusammensetzung des MP geführt haben. 
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Chapter 1: General introduction and review of literature 

 

Environmental impact of nitrogen originating from animal production, especially from 

ruminants 

The demand of consumers for more animal products of higher quality is rising constantly 

and this trend will continue during the next years. While in the affluent societies of the 

industrial countries animal foodstuffs produced with the highest standards of animal 

welfare, quality, and hygiene throughout the production chain are desired, the ever-

increasing human population in emerging and developing countries will lead to an 

increasing demand for foodstuffs from animal origin in general (Flachowsky, 2011). These 

processes will be accompanied by further intensifying of livestock production systems like 

increasing stocking rates. Therefore, sustainability of animal production, especially the 

protection against detrimental effects on the environment, is focused by research and 

policy. 

Besides the emission of methane and phosphorus, nitrogen (N) emissions in form of nitrate 

(NO3), nitrous oxide (N2O), and ammonia are directly linked to meat and milk production. 

The main sources of N input into the environment by farms are manure and fertilizers. 

Urea, which is the main form of N in manure, is quickly converted into ammonia after 

excretion because of the presence of urease in the environment (Tamminga, 1992). 

Ammonia leads to eutrophication of nutrient poor ecosystems and surface water and causes 

acidification of soil. Under aerobic conditions, ammonia is converted into nitrate, which 

pollutes groundwater. In the absence of oxygen, as occurring in the deeper layers of the 

ground, NO3 is converted into nitrite (NO2) and subsequently into gaseous N2 by bacterial 

denitrification. During this process, N2O can be formed, which is harmful to the ozone 

layer (Hristov et al., 2011). 

Ruminants are inefficient in converting dietary N into milk and meat protein. On average, 

in cattle the N use efficiency, which characterizes the amount of N converted into meat- or 

milk-N per unit of N intake, is approximately 30% (Tamminga, 1992). Kalscheur et al. 

(2006) reported a milk N efficiency (MNE) in dairy cows between 28 and 35%. Huhtanen 

and Hristov (2009) estimated the MNE to be on average up to only 28% with a large 

variation between 16% and 40%. Hence, in intensive feeding systems about 72% of the N 

ingested by dairy cows is excreted with urine and faeces. As shown by several authors 
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In a meta-analysis of 16 N balance trials with lactating dairy cows, Nennich et al. (2006) 

confirmed this positive correlation (Figure 1) and van Duinkerken et al. (2005) observed a 

linear relationship between the RDP supply to lactating cows and emissions of ammonia 

from dairy cow houses. 

 

Effects of feeding reduced amounts of rumen degradable protein as an approach for 

reducing N excretions by ruminants 

Generally, diets for ruminants have to cover the N requirement of the microbial population 

in the rumen and meet the amino acids requirement of the host animal (Schwab et al., 

2005). The effects of a reduction of RDP in diets for cattle on rumen metabolism and the 

production performance were investigated intensively during the last few years.  

The effects of reduced amounts of RDP on milk performance reported in the literature are 

inconsistent. In the study of Canfield et al. (1990), milk yield decreased when the diet was 

calculated to have 9.2% RDP and Cyriac (2009) found a trend for a decreased milk yield in 

an experiment with ruminally and duodenally fistulated cows feeding a diet containing 

7.6% RDP. In contrast, Gressley and Armentano (2007) and Agle et al. (2010) found no 

effect after feeding a diet calculated to have 7.4% or 7.1% RDP, respectively, according to 

the NRC (2001) model. Milk composition, except urea-N in milk, was unaffected by RDP 

in most of the trials investigating different levels of RDP (Armentano et al., 1993; Kluth et 

al., 2003; Geerts et al., 2004), but Reynal and Broderick (2005) observed reduced milk 

protein values after feeding a diet with a measured RDP content of 11.7% compared to a 

diet with 13.2% RDP. 

The major fibre digesting microbes in the rumen are the bacterial genera Ruminococcus, 

Fibrobacter and Butyrivibrio as well as some species of Eubacterium and Clostridium 

(Dehority, 2003). These bacterial groups are eminently sensitive to an ammonia-N 

deficiency in the rumen (McAllan and Smith, 1974). Thus, feeding RDP below 

requirements can compromise ruminal digestion of carbohydrates, in particular NDF, as 

shown in vitro (Nagadi et al., 2000; Griswold et al., 2003) and in situ (Erdman et al., 1986; 

Caton et al., 1988). In in vivo studies, a calculated content of 7.4% RDP in DM was found 

to be sufficient for ruminal degradation of NDF, but the digestion of starch was reduced 

(Gressley and Armentano, 2007). In another experiment, Lebzien et al. (2006) showed that 

the amount of NDF fermented in the rumen was significantly decreased when the rumen  
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nitrogen balance (RNB) in the fed diet became negative (-0.3 or -0.6 g N/MJ ME). 

Consequently, passage rate and DM intake can also be influenced by low levels of RDP in 

the diet. A shortage of RDP decreased feed intake in beef cattle (Wheeler et al., 2002) and 

sheep (Mehrez and Ørskov, 1978). Reynal and Broderick (2005) observed a lower feed 

intake when the measured RDP supply was reduced from 11.7% to 10.6% of DM in diets 

for dairy cows. Cyriac (2009) also found a linear decline in DM intake when RDP content 

in the diet decreased from 11.3% to 7.6%, while the content of ruminally undegraded CP 

(RUP) was unchanged. The author suggested that the decreased dietary RDP content may 

not have met the N requirement of rumen microbes and therefore was not adequate for 

maintaining DM intake (Cyriac, 2009). 

When N for the microbial synthesis was limited due to reduced intake of RDP, the 

microbial CP flow at the duodenum was decreased in beef cattle (Martín-Orúe et al., 

2000), sheep (Chandrasekharaiah et al., 2011), and dairy cows (Aldrich et al., 1993). 

Nevertheless, at a feed intake of about 15 kg DM/d of lactating dairy cows, Riemeier 

(2004) found only a low correlation between rumen nitrogen balance and microbial CP 

synthesis (r2 = 0.1). In vitro studies showed that an ammonia-N concentration of 50 mg/L 

in ruminal fluid is needed for optimal microbial growth of mixed rumen fluid associated 

bacteria (Satter and Slyter, 1974), but nothing is gained by further supplementation of 

RDP, whereas particle associated bacteria may need higher ammonia concentrations in 

rumen fluid (McAllan and Smith, 1983). 

 

Estimation of the N requirements of rumen microbes and the host animal 

In light of these inconsistent results from literature, the importance of further 

understanding the requirements of microbes and host animals for RDP becomes clear. The 

different national protein evaluation systems for dairy cows in Europe predict different 

requirements for RDP based on different assumptions to calculate the variables of N 

supply to the rumen microbial population.  

In the German system (GfE, 2001), the protein supply for the host animal is calculated 

using estimated equations and expressed as utilisable crude protein at the duodenum (uCP, 

in German nutzbares Rohprotein am Duodenum, nXP), which is the sum of RUP and 

microbial crude protein. Contrary to other systems, in the estimated equations for nXP, 

microbial crude protein and RUP are not calculated separately. To characterize the N 
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supply to the rumen microbes, the German system uses the RNB which is defined as: RNB 

[g/d] = (CP intake [g/d] - uCP [g/d])/6.25. The GfE (2001) recommended a balanced RNB 

in diets for lactating dairy cows, but a positive RNB up to 50 g/d was considered as 

tolerable. Although, the German system is relatively simple compared to others, in a study 

by Schwab et al. (2005) it predicted milk protein yield better than most of the other 

systems using feed-specific degradability and digestibility values of UDP. 

For characterizing the protein supply to the animal, the French PDI system (INRA, 1989) 

calculates two individual protein values for each diet or feedstuff, using either RDP 

(PDIN) or energy (PDIE) as limiting factor for the microbial synthesis. The PDIN is 

calculated as: PDIN = PDIA + PDIMN and the PDIE = PDIA + PDIME, where PDIA is 

the truly digestible RUP, PDIMN is the amount of microbial true protein calculated from 

RDP, and PDIME is the amount of microbial true protein calculated from energy. The 

lower of the two protein values is used for calculations when the feedstuff is fed alone and 

the higher value reflects the potential amount of microbial CP that can be obtained if it is 

fed together with appropriate other feedstuffs. The calculated amount of microbial CP 

based on the supply with RDP is calculated as: CP ·  [1 - 1.11 ·  (1 - deg)] ·  0.9, whereby 

deg is the theoretical degradability in sacco and it is assumed that the rumen microbes can 

use 90% of RDP for protein synthesis. 

The Dutch DVE system is based on the French PDI system (Tamminga et al., 2007). Each 

feed has a DVE value, expressing the protein supply to the host animal, composed of the 

digestible true protein contributed by RUP, microbial CP synthesized in the rumen and a 

correction for endogenous CP losses in the digestive tract. Each feed also has a degraded 

protein balance (OEB) reflecting the (im)balance between microbial protein synthesis 

potentially possible from RDP and that potentially possible from the energy obtained by 

anaerobic fermentation in the rumen. The recommended optimum for the OEB value in a 

diet is therefore zero or slightly above. 

In the UK system “Feed into milk” (Thomas, 2004), the amount of metabolisable protein 

for the host animal consists of digestible undegradable protein (DUP) and digestible 

microbial true protein (DMTP). The DUP is defined as RUP corrected for acid detergent 

N. Furthermore, it is assumed that 10% of RUP are theoretically rumen degradable. To 

determine the supply with microbial CP, for each feed in the diet the potential amount of 

microbial CP arising from ATP and the potential amount of microbial CP arising from 

effectively degraded N is determined and summed up to get the respective value for the 
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whole diet. The lower of these two values is used to calculate DMTP. For the calculation 

of DMTP, it is assumed that the true protein content of microbial CP is 75% and that the 

digestibility of true protein is 85%.  

In the Nordic countries, the NorFor-system (Volden, 2011) is used to predict N supply to 

the microbes and the host animal. In NorFor, the protein balance in the rumen (PBVN) is 

used to evaluate the adequacy of protein supply for microbial growth and is calculated as: 

PBVN = rd_CP + (CP intake ·  0.046) – r_mcp, whereby rd_CP is the degradation of CP, 

0.046 is the proportion of dietary protein (N · 6.25) recycling back to the rumen, and 

r_mcp is the microbial CP flow out of the rumen. The supply with metabolisable protein 

for the animal is calculated as the amount of amino acids absorbed from the small intestine. 

This value is composed of dietary, microbial, and endogenous amino acids digested in the 

small intestine. To estimate the microbial amino acid supply from the rumen, the efficiency 

of microbial protein synthesis, the degradation of starch, NDF, carbohydrates, crude fat 

and CP corrected for urea and ammonia as well as the liberation of feed fermentation 

products is taken into account. 

An essential difference between the above described systems is the consideration of urea 

recycling in the rumen as N source for the microbes. While in the German system it is 

assumed that up to 20% of the N requirements for the microbial protein synthesis can be 

covered by recycled urea N (GfE, 2001), the PDI system in France calculates with 0% to 

9% of recycled urea N for protein synthesis in the rumen (INRA, 1989) and in NorFor it is 

assumed that 4.6% of the dietary N is recycling back to the rumen. In the Dutch DVE 

system (Tamminga et al., 2007) it is assumed, that between 175 and 280 g of RDP are 

provided by urea recycling per day. In the Feed into milk system (Thomas, 2004) N 

reaching the rumen via the rumino-hepatic cycle is not considered. The disregard of urea 

recycling may lead to significant overestimation of RDP requirements, as shown by 

Huhtanen and Hristov (2009). 

 

Approaches to manipulate rumen microbial fermentation to increase the use efficiency 

of nitrogen in ruminants 

Several attempts have been undertaken to reduce the N excretion with manure by 

increasing the efficiency of microbial protein synthesis or modifying the N metabolism in 

the rumen. Hereafter, some of the most frequently investigated and promising approaches 

will be addressed. 
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Synchronizing the availability of N and energy in the rumen was considered as a 

possibility to improve efficiency of ruminal fermentation (Cabrita et al., 2006; 

Chumpawadee et al., 2006). In former studies, it was already stated that this strategy may 

support the establishment of a more consistent fermentation with less diurnal variation 

(Satter and Baumgardt, 1962) and therefore promote an improved N utilization (Baldwin 

and Denham, 1979). Sinclair et al. (1993) established an equation for a synchronicity index 

on an hourly basis and recommended an amount of 25 g N/kg truly rumen digested OM as 

optimum relation between the supply with N and energy. To achieve this synchronization, 

feeding management strategies like variation of feeding frequency (Chen et al., 1987; 

Cecava et al., 1990; Shabi et al., 1998; Thivierge et al., 2002) as well as the combination of 

carbohydrate (Johnson, 1976; Gozho and Mutsvangwa, 2008; Oba, 2011) and protein 

sources with different degradabilities (Belasco, 1954; Ahn and Moon, 1990; Froidmont et 

al., 2009; Kozloski et al., 2009; Budag and Bolat, 2010) have been investigated during the 

last decades in ruminant nutrition.  

Besides dietary composition and feeding management, numerous chemical substances have 

been tested as supplements to diets for dairy and beef cattle during the last decades to 

manipulate protein metabolism in the rumen and to improve N utilisation. Antibiotic 

ionophores like monensin presented a very successful opportunity to reduce protein and 

energy losses in the rumen, but the use of antibiotics in animal diets is forbidden in the EU 

since the beginning of 2006 (European Commission, 2003) and furthermore the acceptance 

for antibiotics in animal nutrition is continuously shrinking among the public. 

During the last years, the use of phytochemical substances like essential oils, tannins, or 

saponins have been focused by research to modify the ruminal fermentation and to 

improve the use efficiency of nutrients (Calsamiglia et al., 2007). 

Essential oils are steam-volatile or organic solvent extracts of plants. The main effects of 

essential oils in the rumen include the reduction of degradation of protein and starch from 

the diet and an inhibition of degradation of amino acids, based on selective action on 

certain rumen bacteria (Hart et al., 2008). One mode of action assumed for essential oils is 

therefore an effect on the bacterial colonisation of feedstuffs as they enter the rumen, in 

particular starch rich components (Patra and Saxena, 2009a). Also, an inhibition of hyper 

ammonia producing bacteria involved in amino acid deamination was observed after the 

supplementation of diets with essential oils (Wallace et al., 2002). A large variety of 

essential oils was studied including garlic oil, cinnamaldehyde (active component of 
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cinnamon oil), and anethol (active component of anise oil) as well as the phenolic 

substances thymol (active component of thyme oil), eugenol (active component of the 

clove bud), and capsaicin (active component of hot peppers). Results indicated that garlic 

oil, cinnamaldehyde, eugenol, capsaicin, and anethol modified proteolysis, peptidolysis, or 

deamination in the rumen as summarized by Calsamiglia et al. (2007). Problematically, 

there was considerable variation in the content of active compounds in the extracts used in 

different studies because of variety in the cultivated plants, growing conditions, and 

processing methods and therefore, the comparability of results from literature concerning 

the effects on rumen metabolism is limited (Calsamiglia et al., 2007). Furthermore, after 

studying a blend of essential oils containing among others thymol and eugenol, McIntosh 

et al. (2003) suggested that the effective concentration of biologically active compounds in 

in vitro experiments to affect the protein metabolism should be higher than 35 g/L of 

rumen fluid. That level of supplementation would be difficult to achieve under in vivo 

conditions. Besides this lack of clarity concerning the dosage, in several studies the 

observed effects of essential oils within 24 to 48 h after supplementation were not always 

confirmed in long-term tests (Szumacher-Strabel and Cieslak, 2010). It was suspected that 

the rumen microbial population may adapt to the essential oils already after 6-7 days of 

supplementation (Busquet et al., 2005; Benchaar et al., 2008a). 

Altering the rumen microbial ecosystem by removal of protozoa from the rumen 

(defaunation) inhibits the predation of rumen bacteria by protozoa and therefore enhances 

the efficiency of bacterial protein synthesis (Jouany and Ushida, 1998). At present it is 

difficult to achieve total defaunation because no practical method has been developed to 

date to eliminate protozoa efficiently and safely (Teferedegne, 2000). Saponins are known 

to be the most effective naturally occurring substance in plants with the potential to limit 

the number of protozoa in the rumen and hence to increase the efficiency of microbial 

protein synthesis and the protein flow to the duodenum (Szumacher-Strabel and Cieslak, 

2010). Yet, the effects of saponins on rumen fermentation have not been found to be 

consistent (Shete et al., 2011). Lu and Jorgensen (1987) observed a decrease in bacterial 

nitrogen flow to the duodenum after intra ruminal administration of alfalfa saponins (2 or 

4% of DM intake) in sheep, whereas Klita et al. (1996) reported increased microbial flow 

after the same dose and source of saponins. These discrepancies seem to be based on the 

chemical structure of saponins, the diet composition as well as the microbial population 

and its adaptation to saponins in the diet (Patra and Saxena, 2009b). 
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Tannins are able to form stable complexes with proteins. These complexes are resistant to 

microbial degradation and therefore tannins may provide a possibility to interfere the 

rumen protein metabolism (Patra and Saxena, 2009a). However, their effectiveness in 

altering rumen metabolism was not consistent in experimental studies. Microbial protein 

synthesis observed in vitro was increased after supplementation of quebracho tannins (50 

or 100 g/kg DM), but tannic acid in the same concentration had no effect (Getachew et al., 

2008). Contrary, another in vitro study showed that tannic acid even at lower 

concentrations (0.1%) increased bacterial growth (Hristov et al., 2003). Results of in vivo 

studies are considerable scarcer and the effect of tannins remained unclear. A tannin 

concentration of 3% of DM (McSweeney et al., 1998) as well as a pure Leucaena hybrid 

diet containing 11.6% tannins (McNeill et al., 2000) had no effect on microbial protein 

flow in sheep. Similar to the saponins, the lack of effects of tannin supplementation in vivo 

may be due to the adaptation of microbial population to tannins in the diet during the 

experimental period or to bacterial degradation of tannins (Benchaar et al., 2008b). 

Another possibility to influence the composition of the microbial population and thus the 

ruminal fermentation, is the addition of fungi or live yeast as probiotics to diets for 

ruminants. Saccharomyces cerevisiae has been used extensively as feed additive for 

ruminants, especially for dairy cattle (McAllister et al., 2011). From a meta-analysis 

Desnoyers et al. (2009) concluded that supplemental Saccharomyces cerevisiae increased 

dry matter intake, rumen pH, concentration of volatile fatty acids in rumen fluid and 

organic matter digestibility. Yeast contains micronutrients that may stimulate the growth of 

the microbial population (Robinson and Erasmus, 2009) and by utilising small amounts of 

oxygen occurring in the rumen it has the ability to establish an environment that is more 

beneficial for anaerobic rumen bacteria (Jouany et al. 1999). Hence, Saccharomyces 

cerevisiae may lead to an incremented bacterial population and cause shifts in rumen 

bacterial populations towards fibrolytic rumen bacteria, which would result in improved 

ruminal fiber digestion and higher use efficiency of nutrients (McAllister et al., 2011). 

Lately, additional long-term in vivo experiments with defined doses of active compounds 

have to be carried out and the potential adaptation of the rumen microbial population as 

well as their ability for degradation of these compounds has to be considered. 
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Niacin in ruminant nutrition 

The B-vitamin niacin is part of the coenzymes nicotinamide adenine dinucleotide (NAD) 

and nicotinamide adenine dinucleotide phosphate (NADP) and therefore it is involved in 

several energy providing processes in the metabolism (Bender, 1992). Ruminants can 

obtain niacin to cover their requirements from feedstuffs, from the enzymatic conversion 

of tryptophan and quinolinic acid into niacin (Bender, 1992), and from the microbial 

synthesis in the rumen (Abdouli and Schaefer, 1986). The niacin content in feedstuffs for 

ruminants can vary widely. According to the Subcommittee on Feed Composition (1982), 

niacin content of cereal grains varied between 64 mg/kg DM in wheat and 83 mg/kg DM in 

barley. Variation in commonly used protein feedstuffs in concentrates for cattle was much 

higher as solvent-extracted soybean meal contained 31 mg/kg DM and postextraction 

rapeseed meal 161 mg/kg DM. Niacin content in maize silage was assumed to be 47 mg/kg 

DM (Subcommittee on Feed Composition, 1982). 

The formation of niacin from tryptophan is ineffective since 50-60 mg of tryptophan is 

needed for 1 mg of niacin (Dreosti, 1984). Therefore, it can be assumed that tryptophan is 

only used for niacin formation beyond the need for protein synthesis.  

Since the 1940s, it is known that the bacterial population in the rumen is able to synthesize 

niacin (Menke, 1973). The rate of synthesis was estimated to be 1804 mg per day (NRC, 

2001). Further, the NRC (2001) estimated the niacin requirement of a lactating cow with 

650 kg body weight and 35 kg milk yield to be 289 mg per day. From these calculations it 

seems to be obvious that microbial synthesis of niacin would exceed the requirements 

many times over. Hence, it was assumed that the sum of niacin naturally occurring in 

feedstuffs and niacin synthesized by the rumen microbes would meet the requirements of 

the animal (GfE, 2001; NRC, 2001). However, the requirements have not been determined 

experimentally, but derived from the data available for lactating sows (NRC, 2001). 

Furthermore, ruminal niacin synthesis varied when different diets were applied (Niehoff, 

2009). 

Although, it was supposed that rumen bacteria are able to synthesis niacin, studies showed 

that bacteria from the genera Streptococcus required niacin or that additional niacin had 

stimulatory effects on them (Dehority, 2003). The protozoa in the rumen are generally 

unable to synthesize water-soluble vitamins (Brent and Bartley, 1984) and thus they have 

been shown to benefit from the supplementation of niacin in vitro (Erickson et al., 1990) as 

well as in vivo (Doreau and Ottou, 1996). In more recent in vivo experiments with 
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buffaloes (Kumar and Dass, 2005) and dairy cows (Niehoff, 2009) it was demonstrated 

that the supplementation of diets with niacin changed the ruminal fermentation pattern and 

increased the flow of microbial CP to the duodenum. Thus, the supplementation of RDP-

deficient diets with niacin may modify the rumen metabolism and enhance the use 

efficiency of RDP and therefore provide a possibility to lower the N excretion with manure 

while simultaneously maintaining the uCP supply to the host animal. 
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Chapter 2: Scope of the thesis 

 

In consideration of the depicted diverse effects of reduced supply of ruminants with 

ruminally degraded crude protein (RDP) and having regard to the expected effects of 

addition of niacin to diets for cattle, the aim of this thesis was to examine the effects of 

niacin supplemented to a diet deficient in RDP for dairy cows. 

Therefore, an animal experiment with fistulated lactating German Holstein cows was 

conducted and the results are presented in chapters three and four. These chapters comprise 

manuscripts which have been submitted for publication in scientific journals. 

Chapter three focuses the environmental aspect of feeding reduced amounts of RDP and 

niacin. The effects of a reduced intake of RDP and a niacin supplementation of 6 g/(cow · 

day) on the nitrogen balance and overall nitrogen use efficiency, expressed as milk 

nitrogen relative to nitrogen intake, were investigated. Therefore, the nitrogen excretion 

with urine, faeces and milk were determined. Milk composition, in particular milk fat, milk 

protein, and milk urea content were evaluated. Several blood variables as well as the total 

tract nutrient digestibility were measured. The reduced RDP supply was expected to reduce 

nitrogen excretion and to enhance the nitrogen use efficiency, but also an interfering effect 

on milk performance may have been expected. The potential of supplemental niacin to 

compensate for these impairing effects of a reduced nitrogen supply to the rumen was 

studied in this chapter. 

In chapter four the effect of a reduced RDP supply and supplemental niacin on rumen 

metabolism is emphasized. Hence, rumen fermentation variables were measured and 

ruminal digestibility of fibre fractions as well as rumen liquid turnover and the nutrient 

flow to the small intestine were estimated. The microbial crude protein synthesis was 

assessed and the microbial community, in particular the protozoal population, was 

investigated. As a reduced nitrogen supply for the rumen microbes decreases the microbial 

protein synthesis, the supplementation of niacin to the diet was evaluated as a possibility to 

compensate for this decline and to improve the use efficiency of nitrogen in the rumen. 

In chapter five general conclusions are drawn to work out the capabilities for the use of 

supplemental niacin to compensate for the effects of a reduced amount of RDP in diets for 

lactating dairy cows. 
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Abstract 

The aim of the present experiment was to determine if a niacin supplementation of 6 g/d to 

lactating dairy cow diets can compensate negative effects of a rumen nitrogen balance 

(RNB) deficit. A total of 9 ruminally and duodenally fistulated lactating multiparous 

German Holstein cows were successively assigned to one of three diets consisting of 10 kg 

maize silage (dry matter, DM, basis) and 7 kg DM concentrate: RNB- (n = 6) with energy 

and utilisable crude protein at the duodenum (uCP) according to the average requirement 

of the animals, but with a negative RNB (-0.41 g N/MJ metabolisable energy (ME)); 

RNB0 (n = 7) with energy, uCP at the duodenum, and a RNB (0.08 g N/MJ ME) according 

to the average requirement of the animals and, finally, diet NA (nicotinic acid; n = 5), 

which was the same diet as RNB-, but supplemented with 6 g niacin/d. Samples of milk 

were taken on two consecutive days, blood samples were taken on one day pre- and post- 

feeding and faeces and urine were collected completely over five consecutive days. The 

negative RNB reduced milk and blood urea content and apparent total tract digestibility of 

DM, organic matter, and neutral detergent fibre (NDF). Also N excretion with urine, the 

total N excreted with urine and faeces, and the N balance were reduced when the RNB was 

negative. Supplementation of niacin elevated plasma glucose concentration after feeding 

and the N balance increased. Supplementing the diet with a negative RNB with niacin led 

to a more efficient use of dietary N thereby avoiding the negative effects of the negative 

RNB on the digestibility of DM, organic matter and NDF. 

 

 

Keywords: niacin, rumen nitrogen balance, nitrogen excretion, nitrogen utilisation, 

digestibility 
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Introduction 

 

Nitrogen (N) emissions from animal husbandry lead to rising pollution of groundwater and 

air. In particular, ruminants cause a major proportion of these N emissions. On average, the 

efficiency of use of dietary N in cattle amounts only to 23% (Kohn et al., 2005). Hence, 

improving the N use efficiency in ruminants is a point of focus in research. 

Rumen metabolism has been identified as the most important factor contributing to the 

inefficient use of N in ruminants (Tamminga, 1992). Because N excretion in manure is 

strongly correlated with N intake, one way to lower N excretion and therefore to enhance 

the N efficiency is the reduction of the amount of rumen degradable N in diets of dairy 

cows (Burgos et al., 2007), but a shortage in N supply for the microbes results in a 

decreased ruminal fermentation (Lebzien et al., 2006). It was stated that maximum 

efficiency of N utilisation would only occur at the expense of some losses in production 

performance (Calsamiglia et al., 2010). 

Niacin is of great importance in the metabolism of humans and animals. Apart from 

feedstuffs as a niacin source and niacin synthesis from tryptophan, ruminants can use the 

niacin synthesised by several species of rumen microbes (Niehoff et al., 2009a). 

Nevertheless, studies showed that an additional oral niacin supplementation improved the 

energy balance of high yielding lactating dairy cows (Niehoff et al., 2009a). Furthermore, 

some microbial species in the rumen, especially the protozoa, are not able to synthesise the 

essential B-vitamins like niacin and therefore it is assumed that they benefit from 

supplemental niacin (Doreau and Ottou, 1996). Recent research has shown that microbial 

protein flow at the duodenum was enhanced after niacin supplementation to diets of 

buffaloes (Kumar and Dass, 2005) and dairy cows (Niehoff, 2009). Also, greater synthesis 

of microbial protein relative to fermented organic matter (OM) and feed intake was 

suspected (Shields et al., 1983). Therefore, the aim of the present study was to investigate 

whether a niacin supplementation for lactating dairy cows can compensate the negative 

effects of a deficiency in ruminally degradable N on nutrient digestibility, N utilisation and 

milk and blood variables. In this way niacin may allow the lowering of N content in diets 

for dairy cows and therefore provide a possibility for the reduction of N excretion with 

manure without compromising performance. 
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Materials and methods 

 

Experimental design and animals 

The experiment was conducted at the experimental station of the Friedrich-Loeffler-

Institute in Braunschweig according to the European Community regulations concerning 

the protection of experimental animals and approved by the Regional Council of 

Braunschweig, Niedersachsen, Germany (file number 33.9.42502-04/057/07). A total of 9 

German Holstein cows were used. The cows were equipped with large rubber cannulas in 

the dorsal sac of the rumen (inner diameter: 10 cm) and t-shaped cannulas at the proximal 

duodenum close to the pylorus (inner diameter 2 cm). The animals were housed in a 

tethered stall with neck straps and individual troughs with free access to water. Cows were 

milked at 05:30 and 15:30 h daily. 

At the beginning of the experiment, animals had an average body weight of 599 kg (SD 

±38 kg). All cows were lactating (79 ± 41.4 days in milk at the beginning) during the 

whole experimental period. Lactation numbers ranged from second to fourth lactation. The 

experimental diets consisted of 10 kg dry matter (DM) maize silage and 7 kg DM 

concentrate. To ensure the intended maize/concentrate ratio, the DM of maize silage was 

determined twice a week. Maize silage and concentrates were given in two equal portions 

at 5:30 h and 15:00 h. The pelleted concentrates were hand mixed with the silage in the 

trough. 

In three periods the cows were assigned to the following experimental diets: RNB-, with 

energy and utilisable crude protein at the duodenum (uCP) according to the average 

requirement of the animals and a negative rumen N balance (RNB = -0.41 g N/MJ ME); 

RNB0, with energy, uCP, and RNB according to the average requirement of the animals 

(RNB = 0.08 g N/MJ metabolisable energy (ME)) by adding urea to the diet RNB-; and 

diet NA, with the same composition as diet RNB-, but plus 6 g/(cow · d) niacin as nicotinic 

acid. Due to different calving dates, not every cow could be used in all periods. In period 

one each of the three treatments was fed to two cows. In the second period two cows were 

respectively assigned to diets RNB0 and RNB- and one animal to diet NA. In the third 

period three cows received diet RNB0 and two cows were respectively fed diet RNB- or 

NA. No cow received the same treatment twice. The allocation of animals to diets and 

periods is shown in Table 1. 
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Table 1. Allocation of animals to diets and periods 

 Experimental period 

Treatment A B C 

RNB0† 1* 3 5 

 2 4 8 

   9 

RNB-‡ 3 1 4 

 6 5 7 

NA# 4 7 1 

 5  3 

Notes: †RNB0, ruminal nitrogen balance in the diet = 0.08 g N/MJ ME; ‡RNB-, ruminal nitrogen 
balance in the diet = -0.41 g N/MJ ME; #NA, ruminal nitrogen balance in the diet = -0.41 g N/MJ 
ME plus 6 g niacin per day; *1-9 are animal ID numbers 

 

 

The composition of the concentrates is given in Table 2. Niacin was mixed in an additional 

100 g of mineral and vitamin mix (without niacin) and one half of this mixture was top-

dressed on the concentrate during the morning feeding, the other half in the afternoon. The 

cows without niacin supplementation only received the additional amount of 100 g of 

mineral and vitamin mix in the same way. 

 

 

Table 2. Composition of the concentrates 

Components [%] RNB0† RNB-‡ / NA# 

Soybean meal, solvent-extracted 20 20 

Barley grain 21.9 22.7 

Wheat grain 21.9 22.7 

Maize grain 18 18.8 

Sugar beet pulp, dried 14.2 14.8 

Urea 3 0 

Mineral- and vitamin-mix* 1 1 

Notes: †RNB0, ruminal nitrogen balance in the diet = 0.08 g N/MJ ME; ‡RNB-, ruminal nitrogen 
balance in the diet = -0.41 g N/MJ ME; #NA, ruminal nitrogen balance in the diet = -0.41 g N/MJ 
ME plus 6 g niacin per day; *Composition per kg: 175 g Ca, 100 g Na, 50 g P, 30 g Mg, 1 g Fe, 1.3 
g Cu, 6 g Zn, 4 g Mn, 0.05 g I, 0.05 g Se, 0.03 g Co, 1,000,000 IU vitamin A, 100,00 IU vitamin 
D3 and 4 g vitamin E. 
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Sample collection 

Each experimental period consisted of three weeks of adaptation to the diet followed by 

three weeks of sample collection. During the first and second sampling week, samples of 

maize silage and concentrate as well as feed refusals, if any, were collected daily and 

pooled on a weekly basis. Feed samples and refusals were dried at 60°C before analysis. 

During the first sampling week, faeces and urine were collected completely. For that 

purpose the cows were equipped with urine devices, which were fitted around the vulva 

and allowed a separate collection of urine and faeces. Urine was piped from the urine 

device through a tube into a canister with 500 ml of sulphuric acid (10%, v/v). The amount 

was recorded every day and a subsample was taken and stored at -20°C. Faeces samples 

were taken every day, homogenized, and weighed. An aliquot of 2% was taken daily, 

pooled on a weekly basis, and freeze-dried. Milk yields were recorded daily. Milk samples 

were collected over two days of consecutive morning and evening milking in the first 

sampling week. A sample of 50 ml from each milking was conserved with bronopol and 

kept at 8°C until analysis for milk components. For the determination of milk urea, 

aliquots of the two daily milk samples were mixed and frozen at -20°C. During the second 

sampling week, duodenal chyme was collected for subsequent investigations. During the 

third sampling week, blood was collected in heparinised tubes on one day just before 

feeding at 5:30 h and at 8:00 h from a Vena jugularis externa. Sampling procedure was the 

same for both sampling times and for all animals. Stress level and animal treatment during 

sampling was exactly the same for all cows. Blood samples were kept at 15°C for 30 min 

and were centrifuged at 3000 ·  g for 30 min at 15°C. Afterwards plasma was frozen at         

-20°C until analysis. 

 

Analysis 

Feedstuffs, refusals, and faeces were analysed for dry matter (DM), crude protein (CP), 

crude ash (ash), ether extract (EE), and crude fibre according to methods of the VDLUFA 

(2007). The NDF was determined as described by Van Soest et al. (1991) and ADF 

analysis was done according to method number 6.5.2 of the VDLUFA (2007). Both were 

expressed without residual ash. Milk samples were analysed for fat, protein, and lactose 

using an infrared milk analyser (Milkoscan FT 6000 combined with a Fossomatic 5000; 

Foss Electric, Hillerød, Denmark). Milk urea-N concentration was determined 

enzymatically (Harnstoff/Ammoniak-Test, R Biopharm, Darmstadt, Germany). The N 
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concentration in freshly thawed urine was measured according to the method of Kjeldahl. 

Plasma glucose concentration, plasma urea-N, and β-hydroxybutyrate (BHB) in plasma 

were analysed photometrically (Eurolyser CCA 180 VET; Greiner Diagnostic, Bahlingen, 

Germany). 

 

Calculations and statistics 

The ME [MJ] content was calculated according to GfE (2001) from the digestion trial: 

ME [MJ/kg DM] = 0.0312 g DEE + 0.0136 g DCF + 0.0147 g (DOM - DEE - 

DCF) + 0.00234 g CP 

Where DEE = digestible ether extract [g/kg DM]; DCF = digestible crude fibre [g/kg DM] 

and DOM = digestible OM [g/kg DM]. 

 

Fat corrected milk (FCM) was estimated as follows: 

Fat corrected milk [kg/d] = ((% milk fat ·  0.15) + 0.4) ·  kg milk yield (Helfferich 

and Gütte, 1972). 

 

N balance was calculated with the following equation: 

 Balance [g/d] = N intake [g/d] - faecal N [g/d] - urinary N [g/d] - milk N [g/d] 

 

The SAS software package (Version 9.1.3., procedure mixed, SAS Institute Inc., Cary, NC, 

USA) was used to analyse the data. The procedure “MIXED” was applied. Feeding group 

and period were considered as fixed effects in the model. Additionally, to analyse plasma 

variables, the sampling time was also included. The fact that the cows were used in several 

periods for different treatments was taken into account by using the “RANDOM” 

statement for the individual cow effect. Variances were evaluated with the restricted 

maximum likelihood method and degrees of freedom were calculated according to the 

Kenward-Roger method. The “PDIFF” option was applied to test differences between least 

square means (LSMeans), using a Tukey-Kramer test for post-hoc analysis.  

Main effects of the three different feeding regimes were considered as significant if F-

statistics revealed p<0.05, a trend was considered if p<0.10 and >0.05. Because data were 

unbalanced, results are reported as LSMeans with the standard error of means (SEM), 

except for chemical composition of feedstuffs. 
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Results  

 

Diet composition  

Table 3 shows the means values for the chemical composition of the diets. The calculated 

energy [MJ ME] content varied slightly between the diets due to varying digestibility.  

 

 

Table 3. Nutrient composition [g/kg DM] and realised metabolisable energy* of the silage 

and the experimental diets (arithmetic means of six observations ± standard deviation) 
 

Silage 

 

Experimental diets 

RNB0† 

 

RNB-‡ / NA# 

 

Organic matter 961 ±3.8 959 ±2.9 958 ±2.9 

Crude protein 74 ±2.3 156 ±4.4 122 ±2.3 

Ether extract 34 ±1.8 31 ±2.6 32 ±2.7 

Crude fibre 196 ±7.0 143 ±4.8 143 ±4.7 

ADF 224 ±4.8 167 ±1.8 167 ±1.2 

NDF 434 ±25.2 342 ±15.9 343 ±17.5 

ME [MJ/kg DM] - 10.97 ±0.2 10.57¥/10.76§ 
±0.2 

Notes: *Based on the measured digestibility; †RNB0, ruminal nitrogen balance in the diet = 0.08 g 
N/MJ ME; ‡RNB-, ruminal nitrogen balance in the diet = -0.41 g N/MJ ME; #NA, ruminal nitrogen 
balance in the diet = -0.41 g N/MJ ME plus 6 g niacin per day; ¥Energy content of diet RNB-; 
§Energy content of diet NA 

 

 

Milk yield and composition  

No significant effects of rumen degradable N level or supplementation of niacin to the diet 

were observed for milk yield, FCM yield, milk fat and milk protein content as well as for 

yields of milk fat, protein, and lactose (Table 4). The milk protein content tended to be 

0.15 percentage points higher (p = 0.09) in the NA diet compared to diet RNB-. Diet 

RNB0 had lower milk lactose content by about 0.11 percentage points compared to diet 

RNB-, but no effect compared to NA was observed. Both, RNB- and NA significantly 

decreased milk urea-N concentration. 
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Table 4. Effects of rumen nitrogen balance and supplementation of niacin to dairy cows on 
milk production and composition (LSMeans with their standard errors) 

  Experimental diets 

 RNB0† 

(n = 7) 

RNB-‡ 

(n = 6) 

NA# 

(n = 5) 

Milk [kg/d] 29.3 ±0.93 29.8 ±0.99 28.8 ±1.05 

FCM [kg/d] 25.5 ±1.18 25.6 ±1.25 25.0 ±1.31 

Milk composition [%]    

 Fat 3.14 ±0.19 3.04 ±0.20 3.11 ±0.21 

 Protein 3.12 ±0.04 2.99 ±0.04 3.14 ±0.05 

 Lactose 4.67 ±0.05b 4.79a ±0.05 4.74ab ±0.05 

Yield [g/d]    

 Fat 919 ±62.9 909 ±66.6 898 ±70.1 

 Protein 909 ±33.5 889 ±37.1 891 ±41.4 

 Lactose 1375 ±56.1 1430 ±58.8 1370 ±71.3 

Urea [mg/L] 215.5 ±9.6a 71.9 ±9.8b 65.1 ±9.9b 

Notes: †RNB0, ruminal nitrogen balance in the diet = 0.08 g N/MJ ME; ‡RNB-, ruminal nitrogen 
balance in the diet = -0.41 g N/MJ ME; #NA, ruminal nitrogen balance in the diet = -0.41 g N/MJ 
ME plus 6 g niacin per day; a,b,c Means in the same row with different superscripts differ (p<0.05). 

 

 

Plasma variables  

Plasma urea and glucose data as well as BHB concentrations are shown in Table 5. Cows 

fed the diets RNB- and NA showed lower urea-N concentrations in plasma compared to 

diet RNB0 before and after feeding. All diets caused a decline in plasma glucose 

concentration between the two sampling times, but only RNB- and NA reduced plasma 

glucose concentration significantly by 35.1% and 30.5%, respectively. Post-feeding, 

plasma glucose concentration showed differences between the three treatments. The 

concentration was highest for RNB0 and lowest for RNB-, with NA intermediate. The diet 

had no influence on the BHB concentration in plasma, but the BHB content was enhanced 

after feeding in all groups compared to pre-feeding samples (Table 5). 
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Table 5. Effects of rumen nitrogen balance and supplementation of niacin to dairy cows on blood metabolites (LSMeans with their standard 
errors) 
 RNB0† 

(n = 7) 

RNB-‡ 

(n = 6) 

NA# 

(n = 5) 

p 

 5:30 h 8:00 h 5:30 h 8:00 h 5:30 h 8:00 h diet time diet x 

time 

Plasma glucose  

[mmol/L] 

2.94 ±0.14 2.71 ±0.14 3.07 ±0.15 1.96 ±0.15 3.43 ±0.17 2.26 ±0.17 0.06 <0.01 <0.01 

Plasma urea nitrogen 

[mmol/L] 

8.63 ±0.57 10.72 ±0.57 4.32 ±0.62 4.16 ±0.62 3.95 ±0.69 4.57 ±0.69 <0.01 0.09 0.16 

BHB* 

[mmol/L] 

0.41 ±0.20 1.07 ±0.2 0.21 ±0.22 1.45 ±0.22 0.35 ±0,24 1.70 ±0.24 0.45 <0.01 0.20 

Notes: †RNB0, ruminal nitrogen balance in the diet = 0.08 g N/MJ ME; ‡RNB-, ruminal nitrogen balance in the diet = -0.41 g N/MJ ME; #NA, ruminal 
nitrogen balance in the diet = -0.41 g N/MJ ME plus 6 g niacin per day; *BHB, β-Hydroxybutyrate. 
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Apparent digestibility  

As shown in Table 6, diet had no effect on apparent total tract digestibility of crude fibre 

and ADF. The apparent digestibility of DM and OM was higher for RNB0 than RNB- and 

supplementation of niacin to RNB- tended to increase OM digestibility (p = 0.08). The 

apparent digestibility of NDF was significantly increased for NA versus RNB-, whereas no 

effect was observed for diet NA compared to diet RNB0 (Table 6). 

 

 

Table 6. Effects of rumen nitrogen balance and supplementation of niacin to dairy cows on 
total tract apparent digestibility of nutrients [%] (LSMeans with their standard errors) 

  Experimental diets 

 RNB0† 

(n = 7) 

RNB-‡ 

(n = 6) 

NA# 

(n = 5) 

Dry matter 70.8 ±0.65a 68.0 ±0.71b 69.6 ±0.78ab 

Organic matter 72.1 ±0.62a 68.8 ±0.69b 71.0 ±0.76ab 

Crude protein* 64.9 ±1.05 65.3 ±1.25 67.7 ±1.3 

Crude fibre 45.8 ±2.78 41.6 ±3.06 46.4 ±3.36 

ADF 49.0 ±2.05 43.0 ±2.26 45.4 ±2.50 

NDF 53.4 ±1.4a 46.6 ±1.45b 53.4 ±1.68a 

Notes: †RNB0, ruminal nitrogen balance in the diet = 0.08 g N/MJ ME; ‡RNB-, ruminal nitrogen 
balance in the diet = -0.41 g N/MJ ME; #NA, ruminal nitrogen balance in the diet = -0.41 g N/MJ 
ME plus 6 g niacin per day; * Crude protein intake corrected for urea nitrogen; a,b,c Means in the 
same row with different superscripts differ (p<0.05). 

 

 

Partitioning of dietary N 

Faecal N excretion was lower for NA (107.7 g/d) compared to RNB- (119.4 g/d). Diets 

RNB- and NA resulted in a lower excretion of urinary N (Table 7). Milk N excretion did 

not differ among diets. As a proportion of N intake (i.e., milk N efficiency) the milk 

protein yield was greater for RNB- and NA and furthermore NA tended (p = 0.08) to be 

higher (by 3.0 percentage units) in milk N efficiency than RNB-. The N balances showed 

differences between the three treatments. RNB0 resulted in the highest N balance. 

Furthermore, NA increased the N balance by 19.2 g/d in comparison to RNB- (Table 7). 

The live weight gain varied between -27 kg and 30 kg and was unaffected by treatment (p 

> 0.05, Data not shown) 
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Table 7. Effects of rumen nitrogen balance and supplementation of niacin to dairy cows on 
nitrogen excretion and nitrogen balance (LSMeans with their standard errors) 

  Experimental diets 

 RNB0† 

(n = 7) 

RNB-‡ 

(n = 6) 

NA# 

(n = 5) 

Faecal nitrogen [g/d] 115.3 ±2.48ab 119.4 ±2.66a 107.7 ±2.85b 

Urinary nitrogen [g/d] 112.6 ±3.82a 48.5 ±4.21b 44.0 ±4.70b 

Inefficiently used nitrogen [g/d]* 228.2 ±5.18a 168.4 ±5.72b 152.5 ±6.46b 

Milk nitrogen [g/d] 141.2 ±5.38 140.6 ±5.81 137.5 ±6.25 

Milk nitrogen efficiency [%] 33.1 ±1.17b 40.6 ±1.24a 41.6 ±1.30a 

Nitrogen balance [g/d]§ 52.6 ±2.63a 20.6 ±2.91c 39.8 ±3.12b 

Efficiently used nitrogen [g/d]¥ 192.8 ±5.21a 157.4 ±5.77b 170.9 ±6.20b 

Inefficiently used nitrogen / 

efficiently used nitrogen 

1.18 ±0.05a 1.07 ±0.06ab 0.89 ±0.06b 

Notes: †RNB0, ruminal nitrogen balance in the diet = 0.08 g N/MJ ME; ‡RNB- ,ruminal nitrogen 
balance in the diet = -0.41 g N/MJ ME; #NA, ruminal nitrogen balance in the diet = -0.41 g N/MJ 
ME plus 6 g niacin per day; * Inefficiently used nitrogen, sum of faecal and urinary nitrogen; 
§Nitrogen balance = nitrogen intake – faecal nitrogen –urinary nitrogen – milk nitrogen; ¥Efficiently 
used nitrogen, sum of milk nitrogen and balance nitrogen; a,b,c Means in the same row with different 
superscripts differ (p<0.05). 

 

 

The sum of milk N and N balance, hereafter designated efficiently used N, was greater in 

treatment RNB0. Although the difference was not significant, diet NA increased the 

efficiently used N by 13.5 g N/d in comparison to RNB-. Hence, the sum of faecal and 

urinary N losses, described as inefficiently used N, was highest with RNB0 and lower for 

NA and RNB- (Table 7). 

The ratio between inefficiently and efficiently used N, which indicates the units of N that 

are excreted in urine and faeces relative to N use for milk and retention, was reduced by 

NA (0.89) compared to RNB0 (1.18) with RNB- being intermediate (1.07). 
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Discussion 

 

Milk 

Consistent with our results, Zimmerman et al. (1992) found no treatment effects on milk 

yield, FCM, milk fat content, and milk fat yield in multiparous cows fed an N deficient diet 

and an N balanced diet with 13.7% and 18.8% CP, respectively after niacin 

supplementation of 12 g/d. This agrees with other studies where the effect of 6 or 12 g/d of 

dietary niacin was investigated at a balanced N supply (Christensen et al., 1996; Ghorbani 

et al., 2008). Other researchers have reported increased yields of FCM when 12 g/d niacin 

was supplemented (Drackley et al., 1998). Only one study reported an increase of milk fat 

proportion with 10 g/d of supplemental niacin (Belibasakis and Tsirgogianni, 1996). In the 

present study, the reduced RNB level of the diet (RNB0 versus RNB-) had no impact on 

milk yield and composition, which is consistent with the study of Agle et al. (2010). 

However, it may be assumed that long-term trials with a marked deficit in rumen 

degradable N will lead to a depression in milk yield. The decreased digestibility of the 

RNB deficient diet in this study (Table 5) or reduced rumen fermentation (Lebzien et al. 

2006) due to a nitrogen deficiency in the rumen may lead to a lack of energy for milk 

synthesis. Consistent with our results, others have reported trends towards increased milk 

protein concentrations when niacin was supplemented (Drackley et al., 1998; Niehoff et 

al., 2009b). Increased microbial protein synthesis in the rumen may lead to higher milk 

protein proportions or niacin may enhance the amino acid uptake in the mammary gland 

due to the effect of insulin (Erickson et al., 1992). However, other studies reported that 

milk protein proportions were neither affected by niacin supplementation (Ottou et al., 

1995; Ghorbani et al., 2008) nor by the N level of the diet (Steinwidder et al., 2009; Agle 

et al., 2010). As expected, a reduced dietary N supply to the rumen decreased milk urea-N 

content. Significant reductions of milk urea-N concentrations have been previously 

observed (Roseler et al., 1993; Monteils et al., 2002; Lebzien et al., 2006). Only few 

authors have studied the effect of a niacin supplementation on milk urea-N. Consistent 

with our results, Niehoff et al. (2009b) observed no effect of niacin on urea-N 

concentration in milk 
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Blood variables 

Generally, it must be considered that the blood samples were only taken at two time points 

and thus they are not representative for the variation during a whole day. The deficit in 

ruminally degradable N in the RNB- and NA diets decreased plasma urea-N irrespective of 

sampling time, corroborating previous findings (Lebzien et al., 2006; Agle et al., 2010). 

Roseler et al. (1993) concluded that plasma urea-N concentration reflects the CP intake in 

lactating dairy cows and Rodriguez et al. (1997) and Niehoff et al. (2009b) determined a 

positive correlation between rumen ammonia concentration and concentration of plasma 

urea-N. Riemeier (2004) found a strong positive correlation (r2 = 0.83) between the 

concentration of urea-N in blood and milk of dairy cows, which complies with the present 

study, where a correlation coefficient of 0.68 was found. In contrast to Belibasakis and 

Tsirgogianni (1996), who observed a lower urea-N concentration in plasma and Niehoff et 

al. (2009b), who reported a greater urea concentration in plasma after an oral niacin 

supplementation, most other researchers found in accordance with the present study no 

response of plasma urea-N to niacin supplementation neither with an N deficient diet 

(Zimmerman et al. 1992) nor with N balanced diets (Christensen et al., 1996; Madison-

Anderson et al., 1997). Niehoff et al. (2009b) mentioned a potential impact of sampling 

time in relation to time after feeding on urea-N concentration in plasma. These effects 

might explain the different findings concerning the effects of niacin supplementation on 

blood urea nitrogen. 

The post-feeding decline in plasma glucose concentration in all feeding groups agreed with 

other studies (Oba and Allen, 2003; Plaizier et al., 2005). The secretion of insulin, which is 

responsible for the regulation of plasma glucose concentration, depends on the 

concentration of short-chain fatty acids, especially propionate, in the blood of dairy cows 

(Oba and Allen, 2003). Others also observed a reduced plasma glucose concentration when 

low-N diets were fed (Zimmerman et al., 1992). Perhaps the reduced availability of 

glucogenic amino acids or a declined yield of propionate due to the impaired microbial 

fermentation activity in the rumen caused a limitation in the gluconeogenetic activity. 

However, most researchers reported no significant effects of niacin on plasma glucose 

concentration (Cervantes et al., 1996; Madison-Anderson et al., 1997). In accordance with 

this study, Niehoff et al. (2009b) and Ghorbani et al. (2008) observed increased plasma 

glucose concentrations after niacin administration. Niacin is incorporated into the 

coenzymes NAD and NADP and therefore it is intimately involved in the Krebs cycle and 
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gluconeogenesis. Consistent with the present study, neither niacin supplementation 

(Cervantes et al., 1996) nor a reduced N level of the diet (Rius et al., 2010) had an impact 

on BHB concentrations. The enhanced after-feeding concentration of plasma BHB in all 

groups might be related to the production of BHB from butyrate in rumen epithelial cells 

(Nielsen et al., 2003).  

                                                                                                                                                                               

Apparent total tract digestibility 

In accordance with the current results, a positive relationship between total tract 

digestibility of DM and OM and the N supply in dairy cows was reported by others 

(Röhrmoser et al., 1984; Broderick et al., 2009). A depression in NDF digestibility was 

observed in the present study when the content of ruminally degradable N in the diet was 

reduced. Similar results have been reported by Broderick et al. (2009). Cellulolytic bacteria 

in the rumen need ammonia from dietary protein as N source to build microbial protein, 

otherwise the fermentation of fibre is restrained (Bryant, 1973). 

This restraining effect could be compensated for by niacin supplementation. Similar to this 

study, Horner et al. (1988) found that niacin supplementation enhanced NDF digestibility, 

whereas the digestibility of ADF was unaffected by treatment. These authors (Horner et al., 

1988) assumed a shift in the rumen microbial population due to higher ruminal availability 

of niacin, which resulted in an improved digestion of hemicelluloses. As protozoa are 

niacin consumers (Niehoff et al., 2009a) and known to be strongly involved in the 

digestion of fibre (Takenaka et al., 2004), particularly hemicelluloses (Bailey and Mac 

Rae, 1970), a positive effect of supplemental niacin on the efficiency of NDF digestion by 

the protozoal population could be assumed. However, no effect of niacin on apparent total 

tract digestibility of ADF and NDF was found by other authors (Erickson et al., 1992; 

Doreau and Ottou, 1996). Flachowsky (1993) stated that type of diet, level of added niacin 

and experimental conditions may influence the results of digestibility studies, which may 

explain the inconsistent findings considered above. 

 

Nitrogen balance  

Numerous studies have been performed on the influence of the amount of ruminally 

degradable N on N losses and N balance of lactating dairy cows. Reduced urinary N 

excretion has often been observed when the amounts of CP, ruminally degradable N, or 

rumen degradable protein in the diets were reduced (Röhrmoser et al., 1984; Weiss et al., 
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2009). With regard to the environment, it has to be considered that N excreted in urine is 

more susceptible to N leaching and emission losses than N in faeces (Bussink, 1998). In 

the dynamic N metabolism model of Kebreab et al. (2001) N output exhibits an 

exponential relation to increasing levels of N intake with a high coefficient of 

determination (r2 = 0.79). In accordance with our results, in several other investigations the 

faecal N output was unaffected by a moderate reduction in the amount of ruminally 

degradable N (Gressley and Armentano, 2007; Broderick et al., 2009). 

Studies concerning the impact of niacin on N balance and N losses of ruminants are scarce. 

As in the present study, Kung et al. (1980) did not observe changes in the amount of N 

excreted in urine when niacin was supplemented at 6 g/d to dairy cows. In contrast to Kung 

et al. (1980), who found no influence of an oral niacin supplementation on the faecal N 

excretion, a decrease in faecal N excretion by 9.7% was observed in the current study 

when niacin was added to the RNB- diet. In an analysis of 159 digestion trials with sheep, 

N excretion in faeces was negatively correlated with OM digestibility of the diets (Wang et 

al., 2009). Thus, one explanation for the observed decreased faecal N excretion in the 

niacin supplemented group may be the above mentioned greater NDF digestibility and the 

trend towards improved OM degradation. 

The N excretion with milk did not differ among diets in the present study, corroborating 

previous findings by Monteils et al. (2002), who investigated the effect of different dietary 

CP levels (13%, 14.7% and 16.3%) with a deficit in ruminally degradable N on N 

utilisation in dairy cows. In the study of Kung et al. (1980), milk N excretion was also not 

affected by a niacin supplementation of 6 g/d. An equal output of milk N with a 

simultaneous reduction in the sum of urinary and faecal N losses consequently caused an 

improvement in the efficiency of transformation of dietary N into milk protein by 22% 

when feeding RNB- (Table 7). Huhtanen and Hristov (2009) performed a meta-analysis 

including a wide range of diets and animal performance variables and concluded that the 

level of dietary CP was the most important determinant for milk N efficiency in lactating 

cows. In accordance with the values for the milk N efficiency, the ratio between 

inefficiently and efficiently used N, which can be used as an additional measure for the 

efficiency of N utilisation, decreased numerically when dietary N was deficient and was 

significantly lowered when diet NA was fed in comparison to RNB0. 

The N balance showed differences between the diets. Surprisingly, even the animals with a 

deficiency of N in the diet showed a positive balance, although the body weight was 
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unaffected by treatment. Nonetheless, it has to be considered that measured N balances in 

experiments with adult ruminants are very often greater than expected (Reynolds and 

Kristensen, 2008). The N balance over a whole lactation is approximately zero, although 

the calculated N retention can be positive or negative in short-term experiments. Possible 

reasons for this overestimation of the N balance are numerous. Faecal ammonia N losses, 

losses in hair and scurf, nitrate formation, and some gaseous losses as well as pregnancy 

have to be considered (Huhtanen et al., 2008). The total sum of these minor losses may be 

important (Reynolds and Kristensen, 2008). Spanghero and Kowalski (1997) highlighted 

another important issue concerning N balance studies. The authors assumed an 

overestimation of retained N due to losses occurring during collection and analysis 

(Spanghero and Kowalski, 1997). Nevertheless, in the present trial, sampling procedure 

and data evaluation were the same for all animals and treatments. Therefore, balance data 

can depict differences between the treatments within the trial. As expected, the N balance 

was higher in animals fed the RNB0 diet. Niacin supplementation resulted in increased N 

balances as compared to RNB-, which indicated a higher amount of N which was not 

excreted. However, further evaluation of the intra-ruminal processes is needed to clarify 

the N retention in the body and the effects of N and niacin on the microbial population and 

the fermentation pattern as well as on the flow of nutrients at the duodenum. 

 

Conclusion 

 

A limitation of the supply with ruminally degradable nitrogen reduced the milk and blood 

urea content as well as the apparent total tract digestibility of dry matter, organic matter, 

and neutral detergent fibre. Also, nitrogen excretion with urine and the sum of nitrogen 

excreted with urine and faeces was lower compared to the diet with a balanced nitrogen 

supply. Furthermore, the milk nitrogen efficiency was enhanced and the nitrogen balance 

was reduced. 

The supplementation of 6 g niacin per cow and day to a diet with a negative rumen 

nitrogen balance (RNB-) compensated for the negative effect of RNB- on the digestibility, 

the N excretion with faeces and tended to increase the milk protein content. Additionally, 

the nitrogen balance was elevated. Also, the negative effect of a reduction of rumen 

nitrogen balance on the amount of efficiently used N could be partly compensated by 

niacin supplementation. With regard to the environment, this seems to be a possible 
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approach for a reduction of the nitrogen emitting potential in milk production, but long-

term experiments with a higher number of observations are needed. 
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Effect of niacin supplementation on rumen fermentation parameters and 

nutrient flow at the duodenum in lactating dairy cows fed a diet with a 

negative rumen nitrogen balance 
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Abstract 

The aim of the present experiment was to determine if a niacin supplementation of 6 

g/(cow · d) to lactating dairy cow diets can compensate for the decrease in rumen 

microbial fermentation due to a negative rumen nitrogen balance (RNB). A total of 9 

ruminally and duodenally fistulated lactating multiparous German Holstein cows was used. 

The diets consisted of 10 kg (dry matter, DM) maize silage and 7 kg DM concentrate and 

differed as follows: RNB- (n = 6) with energy and utilisable crude protein (CP) at the 

duodenum (uCP) according to the average requirement of the animals, but with a negative 

RNB (-0.41 g N/MJ metabolisable energy (ME)); RNB0 (n = 7) with energy, uCP, and 

RNB (0.08 g N/MJ ME) according to the average requirement of the animals; and diet NA 

(nicotinic acid; n = 5), which was the same diet as RNB-, but supplemented with 6 g 

niacin/d. The negative RNB affected the rumen fermentation pattern and reduced ammonia 

content in rumen fluid and the daily duodenal flows of microbial CP (MP) and uCP. Niacin 

supplementation increased the apparent ruminal digestibility of neutral detergent fibre. The 

efficiency of microbial protein synthesis per unit of rumen degradable CP was higher, 

whereby the amount of MP reaching the duodenum was unaffected by niacin 

supplementation. The number of protozoa in rumen fluid was higher in NA treatment. The 

results indicated a more efficient use of rumen degradable N due to changes in the 

microbial population in the rumen when niacin was supplemented to diets deficient in 

RNB for lactating dairy cows. 

 

 

Keywords: niacin, rumen nitrogen balance, microbial protein, nitrogen utilisation, ruminal 

digestibility 
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Introduction 

 

Reduction of nitrogen (N) emissions from animal husbandry has been a focus of research 

in recent times (Kohn et al., 2005). In particular, N losses from ruminants and thus the 

utilisation of dietary N in the rumen were highlighted as important factors (Tamminga, 

1992). The average milk N efficiency (milk N/N intake) in European dairy cattle was 

estimated to amount to only 28% with a large variation between 16% and 40% (Huhtanen 

and Hristov, 2009). Furthermore, N intake is positively correlated with N losses (Burgos et 

al., 2007). Therefore, one approach to reduce N emissions is the limitation of N in the diet 

for dairy cows. However, the rumen microbial population is very sensitive to deficient N 

supply. This became obvious as the flow of microbial crude protein at the duodenum (MP) 

was reduced when the rumen nitrogen balance (RNB) in the diet was -0.6 g N/MJ ME as 

shown by Lebzien et al. (2006). 

Niacin is of great importance for the energy metabolism of the animal because it is an 

integral part of the coenzymes nicotinamide adenine dinucleotide (NAD) and nicotinamide 

adenine dinucleotide phosphate (NADP) (Bender, 1992). In reduced form, these 

coenzymes are involved in several essential metabolic pathways like synthesis of fatty 

acids, supply of amino nitrogen through aspartate, and urea biosynthesis as well as in the 

pentose phosphate pathway and gluconeogenesis (Bender, 1992). Both NAD and NADP 

can also be present in an oxidised form as NAD+ and NADP+. They are important electron 

acceptors in the Krebs cycle and the glycolytic pathway (Bender, 1992). Apart from 

dietary niacin, ruminants use endogenous niacin synthesis from tryptophan and microbial 

niacin synthesis in the rumen as a niacin source (Niehoff et al., 2009). Both GfE (2001) 

and NRC (2001) assume that these sources are sufficient to meet the niacin requirements of 

dairy cows. As reviewed by Niehoff et al. (2009), studies concerning the effect of dietary 

niacin on rumen metabolism provide inconsistent results. Nevertheless, in several studies 

supplemental niacin improved MP synthesis in the rumen of buffaloes and dairy cows 

(Riddell et al., 1980; Kumar and Dass, 2005; Niehoff, 2009) and the efficiency of use of 

dietary N and the N balance (Aschemann et al., 2012). These effects might be attributed to 

protozoa which are not able to synthesize niacin and thus benefit in particular from 

additional niacin in the diet (Doreau and Ottou, 1996). Therefore, it was the aim of the 

present study to determine if a supplementation of 6 g niacin per day could compensate for 
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the decreased microbial fermentation due to a negative RNB in a diet for lactating dairy 

cows. 

 

Materials and methods 

 

Experimental design and animals 

The experiment was conducted at the experimental station of the Friedrich-Loeffler-

Institute in Braunschweig according to the European Community regulations concerning 

the protection of experimental animals and approved by the Regional Council of 

Braunschweig, Niedersachsen, Germany (file number 33.9.42502-04/057/07). A total of 9 

German Holstein cows were used. The cows were equipped with large rubber cannulas in 

the dorsal sac of the rumen (inner diameter: 10 cm) and t-shaped cannulas at the proximal 

duodenum close to the pylorus (inner diameter: 2 cm). The animals were housed in a 

tethered stall with neck straps and individual troughs with free access to water. Cows were 

milked at 05:30 h and 15:30 h daily.  

At the beginning of the experiment, animals had an average body weight of 599 kg (SD 38 

kg). All cows were lactating (79 days in milk at the beginning; SD 41.44) during the whole 

experimental period. Lactation numbers ranged from second to fourth lactation. The 

experimental diets consisted of 10 kg dry matter (DM) maize silage and 7 kg DM 

concentrate. To ensure the intended maize/concentrate ratio, the DM of maize silage was 

determined twice a week. Maize silage and concentrates were given in two equal portions 

at 5:30 h and 15:00 h. The pelleted concentrates were hand-mixed with the silage in the 

troughs. 

In three periods the cows were assigned to the following experimental diets: RNB-, with 

energy and utilisable crude protein at the duodenum (uCP) according to the average 

requirement of the animals and a negative rumen N balance (RNB = -0.41 g N/MJ ME); 

RNB0, with energy, uCP, and RNB according to the average requirement of the animals 

(RNB = 0.08 g N/MJ metabolisable energy (ME)) by adding urea to the diet RNB-; and 

diet NA, with the same composition as diet RNB-, but plus 6 g/(cow · d) niacin as nicotinic 

acid. Due to different calving dates not every cow could be used in all periods. In period 

one each of the three treatments was fed to two cows. In the second period, two cows were 

respectively assigned to diets RNB0 and RNB- and one animal to diet NA. In the third 

period three cows received diet RNB0 and two cows were respectively fed diet RNB- or 
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NA. No cow received the same treatment twice. The composition of the concentrates is 

given in Table 1. 

 
 
Table 1. Composition of the concentrates 

Components [%] RNB0† RNB-‡ / NA# 

Soybean meal, solvent-extracted 20 20 

Barley grain 21.9 22.7 

Wheat grain 21.9 22.7 

Maize grain 18 18.8 

Sugar beet pulp, dried 14.2 14.8 

Urea 3 0 

Mineral- and vitamin-mix* 1 1 

Notes: †RNB0, ruminal nitrogen balance in the diet = 0.08 g N/MJ ME; ‡RNB-, ruminal nitrogen 
balance in the diet = -0.41 g N/MJ ME; #NA, ruminal nitrogen balance in the diet = -0.41 g N/MJ 
ME plus 6 g niacin per day; *Composition per kg: 175 g Ca, 100 g Na, 50 g P, 30 g Mg, 1 g Fe, 1.3 
g Cu, 6 g Zn, 4 g Mn, 0.05 g I, 0.05 g Se, 0.03 g Co, 1,000,000 IU vitamin A, 100,00 IU vitamin 
D3 and 4 g vitamin E. 
 
 
Niacin was mixed in an extra 100 g of mineral and vitamin mix (without niacin) and one 

half of this mixture was top-dressed on the concentrate during the morning feeding, the 

other half in the afternoon. The cows without niacin supplementation only received the 

mineral and vitamin mix in the same way. 

 

Sample collection 

Each experimental period consisted of three weeks of adaptation to the diets followed by 

three weeks of sample collection. During the first and second sampling week, samples of 

maize silage and concentrate as well as any feed refusals were collected daily and pooled 

on a weekly basis. Feed samples and refusals were dried at 60°C. 

During the first sampling week, samples of ruminal fluid (approximately 100 ml) were 

withdrawn from the ventral sac through the rumen cannula using a hand vacuum pump. 

Fluid was taken before first feeding at 5:30 h in the morning and 30, 60, 90, 180, 300, and 

420 minutes afterwards. Also in the first sampling week, urine and faeces were sampled 

completely. For that purpose, the cows were equipped with urine devices which were 

adhered around the vulva and allowed to separate urine from faeces. The amount of urine 
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and faeces was recorded every day and a subsample was taken and stored at -20°C for 

further analysis. 

During the second sampling week, duodenal chyme was collected over five consecutive 

days in two-hour intervals. At each sampling, four 100 ml samples were taken through the 

duodenal cannula from each cow. Immediately after withdrawal, the pH was measured 

using a glass electrode (pH525, WTW, Weilheim, Germany) and the sample with the 

lowest pH was added to the daily pooled sample from each cow and stored at -18°C (Rohr 

et al., 1984). To estimate the digesta flow, chromium oxide (Cr2O3) marker (19.8% Cr2O3, 

79.2% wheat flour and 0.67% Al2SO4) was used. The marker was given in two portions of 

50 g at 5:15 h and 17:15 h into the rumen beginning 10 days before the start of duodenal 

chyme collection. One day before and then during the sampling period, 25 g were 

administered every 6 h at 5:45 h, 11:45 h, 17:45 h, and 23:45 h. 

In the third sampling week, rumen liquid turnover and the protozoal population were 

examined. For estimation of rumen liquid volume and turnover a single dose of 25 g 

cobalt-EDTA was used as marker. Cobalt-EDTA complex was prepared as described by 

Udén et al. (1980) and dispersed in the liquid phase of the rumen of each cow via the 

cannula at 5:30 h, just after the morning feeding. Approximately 100 ml of rumen fluid 

was taken every hour over 12 h beginning 2 h after marker application using a hand 

vacuum pump. The samples were centrifuged at 2000 ·  g for 5 min at 4°C immediately 

after withdrawal and the supernatant was frozen at -20°C. 

For the investigation of the protozoal population, on one day 15 ml of rumen fluid of each 

cow were taken 3 h after morning feeding, mixed with 15 ml of methylgreen-formalin 

solution (Ogimoto and Imai, 1981), and stored at room temperature in the dark until 

protozoa counting.  

 

Analyses 

Feedstuffs, faeces, and refusals were analysed according to methods of the VDLUFA 

(2007) and method numbers are given. Crude ash (ash) was determined using method 8.1. 

Crude fibre (CF) and ether extract (EE) were analysed according to methods 6.1.1 and 

5.1.1, respectively. The NDF was determined as described by Van Soest et al. (1991) and 

ADF analysis was done according to method number 6.5.2 of the VDLUFA (2007). Both 

were expressed without residual ash. Crude protein (CP) in feedstuffs and refusals was 

analysed using Dumas combustion (Method number 4.1.2). The CP content in faeces and 
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freshly thawed duodenal chyme was measured according to the method of Kjeldahl 

(Method number 4.1.1). Immediately after collection of rumen fluid, pH of each sample 

was measured with a glass electrode (pH525, WTW, Weilheim, Germany). Short chain 

fatty acids (SCFA) were analysed according to Geissler et al. (1976) using a gas 

chromatograph (Hewlett Packard 5580, Avondale, PA, USA) equipped with a flame 

ionization detector. Ammonia-N (NH3-N) in rumen fluid and freshly thawed duodenal 

chyme was analysed according to DIN 38406-E5-2 (Anonymous, 1998). The following 

analyses of duodenal chyme were carried out with freeze-dried and ground material. The 

DM and ash contents were analysed in the daily pooled samples by the same methods 

described above for feedstuffs. The proportion of microbial-N of the non-ammonia-N 

(NAN) in duodenal chyme was estimated using near infrared spectroscopy according to 

Lebzien and Paul (1997). Cr2O3 in duodenal chyme was measured using an inductively 

coupled plasma optical emission spectrometry (ICP-OES; Quantima, GBC Sientific 

Equipment Pty Ltd, Victoria, Australia) after sample preparation according to Williams et 

al. (1962). The chromium content was used to calculate the daily duodenal DM flow. 

According to the daily flows, one aliquot pooled sample per cow per week was generated. 

In the pooled samples, NDF, ADF, and CF were quantified applying the same methods as 

for feedstuffs. Protozoa were counted under an optical microscope using a Fuchs-

Rosenthal chamber and differentiated into Holotricha and Entodimiomorpha. 

Concentration of cobalt in rumen fluid samples for the estimation of the rumen fluid 

volume, outflow rate and turnover rate was also analysed by ICP-OES, using the same 

equipment as described above. 

 

Calculations and statistics 

The ME [MJ] content was calculated according to GfE (2001) from the digestion trial: 

 

ME [MJ/kg DM] = 0.0312 g DEE + 0.0136 g DCF + 0.0147 g (DOM - DEE - 

DCF) + 0.00234 g CP 

Where DEE = digestible ether extract [g/kg DM]; DCF = digestible crude fibre [g/kg DM] 

and DOM = digestible OM [g/kg DM]. 
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Daily duodenal dry matter flow (DMF) was calculated as follows: 

 

 DMF [kg/day] = 
[ ]

[ ]
1000/

DM mg/gionconcentratchromiumduodenal

mg/dnapplicatiochromium

 

 

The daily duodenal flows of organic matter (OM) and nutrients were estimated by 

multiplication of their respective concentrations in duodenal digesta with DMF. 

 

The uCP at the duodenum was estimated following Lebzien and Voigt (1999): 

 

uCP [g/d] = CP flow at the duodenum [g/d] - NH3-N · 6.25 [g/d] -  

endogenous CP (EP) [g/d]. 

 

EP was calculated according to Brandt and Rohr (1981) using DMF at the duodenum: 

 

EP [g/d] = (3.6 ·  kg DMF) ·  6.25 

 

The RNB and ruminally degraded CP (RDP), ruminally undegraded feed CP (RUP) and 

ruminally fermented OM (FOM) were calculated with the following equations: 

 

RNB [g/d] = (CP intake [g/d] - uCP [g/d])/6.25 

 

RUP [g/d] = 6.25 ·  (NAN at the duodenum [g/d] - microbial N [g/d]) - EP [g/d] 

 

RDP [g/d] = CP intake [g/d] - RUP [g/d] 

 

FOM [kg/d] = OM intake [kg/d] - (duodenal OM flow [kg/d] - microbial OM 

[kg/d]) 

 

The microbial OM was estimated as described by Schafft (1983): 

 

Microbial OM [kg/d] = 11.8 ·  microbial N [kg/d] 
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Rumen turnover time and pool size were calculated from the concentration of cobalt in 

sequential samples of rumen fluid. It was assumed that the decline in marker concentration 

followed first order kinetics (Barboza et al., 2006): 

 

Ct = C0 ·  e
-kt 

where Ct is the marker concentration at time t (h after dosing), C0 is the marker 

concentration at the time of dosing, and k the elimination constant. C0 was calculated by 

least square regression method. The size of the ruminal fluid pool was calculated by 

dividing the dose of cobalt [mg] with the concentration of marker [mg/L] predicted at t0 

from the regression. 

The SAS software package (Version 9.1.3., procedure MIXED, SAS Institute Inc., Cary, 

NC, USA) was used to analyse the data. Feeding group and period were considered as 

fixed effects. Additionally, to analyse rumen variables, the sampling time was also 

included. The fact that a cow was used in several periods for different treatments was taken 

into account by using the “RANDOM” statement for the individual “COW” effect. 

Variances were evaluated with the restricted maximum likelihood method (“REML”) and 

degrees of freedom were calculated according to the Kenward-Roger method. The 

“PDIFF” option was applied to test differences between least squares means, using a 

Tukey-Kramer test for post-hoc analysis.  

Main effects of the three different feeding regimes were considered as significant, if F-

statistics revealed p<0.05 and differences between the treatments were taken as significant, 

if Tukey-Kramer test revealed p<0.05. Except for chemical composition of feedstuffs, 

results are reported as least squares means (LSMeans) with standard error of means 

because data were unbalanced. 

 

Results 

 

There was no effect of the experimental period on any of the variables. 

 

Diet composition  

Table 2 shows the mean values of the chemical composition of the silage and the diets. The 

calculated energy content varied slightly between the diets due to differences in measured 
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digestibilities. The analysed CP content was 15.6% for the balanced diet and 12.2% for 

diets RNB- and NA.  

 
 
Table 2. Nutrient composition [g/kg DM] and realised metabolisable energy* of the silage 

and the experimental diets (arithmetic means of six observations ± standard deviation) 
 

Silage 

 

Experimental diets 

RNB0† 

 

RNB-‡ / NA# 

 

Organic matter 961 ±3.8 959 ±2.9 958 ±2.9 

Crude protein 74 ±2.3 156 ±4.4 122 ±2.3 

Ether extract 34 ±1.8 31 ±2.6 32 ±2.7 

Crude fibre 196 ±7.0 143 ±4.8 143 ±4.7 

ADF 224 ±4.8 167 ±1.8 167 ±1.2 

NDF 434 ±25.2 342 ±15.9 343 ±17.5 

ME [MJ/kg DM] - 10.97 ±0.2 10.57¥/10.76§ 
±0.2 

Notes: *Based on the measured digestibility; †RNB0, ruminal nitrogen balance in the diet = 0.08 g 
N/MJ ME; ‡RNB-, ruminal nitrogen balance in the diet = -0.41 g N/MJ ME; #NA, ruminal nitrogen 
balance in the diet = -0.41 g N/MJ ME plus 6 g niacin per day; ¥Energy content of diet RNB-; 
§Energy content of diet NA. 

 
 
Rumen measurements 

The analysed rumen variables showed effects of time after feeding. Because these 

relationships are well known and have been discussed several times (Nikkaha, 2011; 

Nikkaha et al., 2011), they will not be presented here in detail. 

As shown in Table 3, the pH value was unaffected by the diet. The content of ammonia in 

rumen fluid was higher over the whole sampling time with diet RNB0 compared to diet 

RNB- with NA being intermediate.  

No effects for ruminal SCFA were observed at the particular measurement times between 

the three treatments. Therefore, LSMeans over the whole sampling time with their standard 

error are presented in Table 3. A reduction in RDP (RNB-) reduced the molar proportion of 

propionic acid, valeric acid, and iso valeric acid, whereas the molar percentage of butyric 

acid and the ratio between acetic acid and propionic acid was enhanced for RNB-. The 

supplementation of niacin increased the proportion of valeric acid, iso valeric acid, iso 
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butyric acid as well as propionic acid, whereas the percentage of acetic acid was reduced. 

Consequently, NA decreased the ratio between acetic acid and propionic acid. The total 

concentration of SCFA in rumen fluid was unaffected by treatment (Table 3). 

 
 
Table 3. Effects of rumen nitrogen balance and supplementation of niacin to dairy cows on 
rumen fermentation parameters (LSMeans with their standard errors) 

  Experimental diets 

 RNB0† 
(n = 7) 

RNB-‡ 
(n = 6) 

NA# 
(n = 5) 

pH 6.4 ±0.07 6.4 ±0.07 6.4 ±0.08 
NH3 [mmol/L] 14.2 ±0.56a 2.3 ±0.64c 4.0 ±0.67b 
SCFA total [mmol/L]* 135.3 ±4.9 122.3 ±5.8 125.9 ±6.1 
Acetic acid [mol%] 58.4 ±1.57ab 59.7 ±1.64a 57.0 ±1.68b 
Propionic acid [mol%] 23.2 ±1.17a 19.7 ±1.22c 21.1 ±1.24b 
Butyric acid [mol%] 13.7 ±0.99b 16.8 ±1.02a 17.2 ±1.05a 
Valeric acid [mol%] 3.9 ±0.42a 2.3 ±0.43b 2.7 ±0.43a 
Isobutyric acid [mol%] 0.5 ±0.04b 0.5 ±0.04b 0.6 ±0.04a 
Isovaleric acid [mol%] 1.6 ±0.18b 1.0 ±0.19c 1.4 ±0.19a 
Acetic acid : propionic acid 2.6 ±0.19b 3.2 ±0.20a 2.9 ±0.21b 

Notes: †RNB0, ruminal nitrogen balance in the diet = 0.08 g N/MJ ME; ‡RNB-, ruminal nitrogen 
balance in the diet = -0.41 g N/MJ ME; #NA, ruminal nitrogen balance in the diet = -0.41 g N/MJ 
ME plus 6 g niacin per day; *SCFA, short chain fatty acids; a,b,c Means in the same row with 
different superscripts differ (p<0.05). 

 
 
Diet type had no effect on rumen liquid volume (p = 0.72) or the turnover rate of rumen 

fluid (p = 0.74; Table 4). Average values for rumen fluid volume ranged from 58.0 L 

(± 4.25 L) in animals fed diet RNB0 to 53.2 L (± 5.11 L) for the animals in group NA. The 

outflow varied slightly from 9.1 ± 0.68 L/h (RNB-) to 8.5 ± 0.62 L/h (RNB0). 

As presented in Table 4, number of Holotricha was unaffected by RNB in the diet, whereas 

treatment RNB- increased the counts of Entodiniomorpha, the total concentration of 

protozoa, and the ratio between Entodiniomorpha and Holotricha compared to treatment 

RNB0. Niacin supplementation increased the concentration of protozoa in rumen fluid. 

This increase concerned Holotricha as well as Entodiniomorpha and the total number. The 

ratio between Entodiniomorpha and Holotricha was unaffected by niacin. 
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Table 4. Effects of rumen nitrogen balance and supplementation of niacin to dairy cows on 
rumen liquid volume, turnover and concentration of protozoa (·103/ml) in rumen fluid 
(LSMeans with their standard errors) 

  Experimental diets 

 RNB0† 
(n = 7) 

RNB-‡ 
(n = 6) 

NA# 
(n = 5) 

Rumen liquid volume [L] 58.0 ±4.25 55.1 ±4.65 53.2 ±5.11 
Rumen liquid outflow    
 Volume [L/h] 8.5 ±0.62 9.1 ±0.68 9.1 ±0.75 
 Rate [%/h] 14.7 ±0.78 16.5 ±0.85 17.2 ±0.93 
Protozoal population     
 Entodiniomorpha 292 ±65c 465 ±66b 702 ±67a 
 Holotricha 9 ±2ab 8 ±2b 11 ±2a 
 Entodiniomorpha : Holotricha 38.4 ±11.2b 70.2 ±12.1a 70.9 ±19.4a 
 Total protozoa 301 ±65.1c 473 ±66.6b 714 ±67.5a 

Notes: †RNB0, ruminal nitrogen balance in the diet = 0.08 g N/MJ ME; ‡RNB-, ruminal nitrogen 
balance in the diet = -0.41 g N/MJ ME; #NA, ruminal nitrogen balance in the diet = -0.41 g N/MJ 
ME plus 6 g niacin per day; a,b,c Means in the same row with different superscripts differ (p<0.05). 

 
 
Nutrient flow at the duodenum 

Nutrient flows at the duodenum are presented in Tables 5 and 6. Diet had no effect on the 

proportion of FOM of OM intake. Supplementation of niacin increased apparent ruminal 

digestibility of NDF while values for digestibility of OM and ADF were unaffected by the 

respective diet (Table 5). 

An inadequate supply of microorganisms with rumen degradable N resulted in decreased 

daily flows of N, NAN, MP, RUP, and uCP at the duodenum (Table 6). Also, the amount 

of RUP as percentage of CP intake decreased when diet RNB- was compared to RNB0. 

Diet RNB- also reduced the efficiency of MP synthesis per MJ ME (-13.7%), but enhanced 

the amount of MP per g of RDP (+10.4%) compared to animals fed the balanced diet. Diets 

had no effect on the amount of MP per kg FOM. Supplementation of 6 g niacin per day 

numerically increased most of the parameters of N and MP flow at the duodenum, but 

differences were not significant with the exception of amount of microbial protein per unit 

of RDP, which was elevated when diet NA was fed. The effects of the negative RNB on 

MP/MJ ME and on RUP were no longer significant after NA supplementation. Realized 

RNB, based on realized CP intake and measured uCP flow, was 0.26 g/MJ ME (±0.03) in 

diet RNB0 and -0.15 g/MJ ME (±0.04) in diets RNB- and NA (Table 6). 
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Table 5. Effects of rumen nitrogen balance and supplementation of niacin to dairy cows on 
nutrient flows at the duodenum, apparent rumen digestibilities and amount of fermented 
organic matter (LSMeans with their standard errors) 

  Experimental diets 

 RNB0† 
(n = 7) 

RNB-‡ 
(n = 6) 

NA# 
(n = 5) 

OM [kg/d]* 10.6 ±0.24 10.2 ±0.28 9.7 ±0.29 
 ARD [%]§ 37.5 ±1.12 36.9 ±1.31 39.9 ±1.37 
NDF [kg/d] 3.7 ±0.05ab 3.8 ±0.06a 3.5 ±0.06b 
 ARD [%] 36.0 ±0.78ab 33.3 ±0.91b 39.1 ±0.95a 
ADF [kg/d] 1.9 ±0.07 1.9 ±0.08 1.8 ±0.09 
 ARD [%] 32.2 ±1.83 31.2 ±2.09 34.5 ±2.23 
FOM[kg/d]¥  9.6 ±0.27 9.1 ±0.32 9.4 ±0.34 
FOM of OM intake [%] 59.4 ±1.23 56.4 ±1.49 58.6 ±1.56 

Notes: †RNB0, ruminal nitrogen balance in the diet = 0.08 g N/MJ ME; ‡RNB-, ruminal nitrogen 
balance in the diet = -0.41 g N/MJ ME; #NA, ruminal nitrogen balance in the diet = -0.41 g N/MJ 
ME plus 6 g niacin per day; *OM, organic matter; §ARD, apparent ruminal digestibility; ¥FOM, 
fermented organic matter; a,b,c Means in the same row with different superscripts differ (p<0.05). 

 
 
Table 6. Effects of rumen nitrogen balance and supplementation of niacin to dairy cows on 
nitrogen flow at the duodenum and microbial crude protein synthesis (LSMeans with their 
standard errors) 

  Experimental diets 

 RNB0† 
(n = 7) 

RNB-‡ 
(n = 6) 

NA# 
(n = 5) 

Nitrogen [g/d] 437 ±9.54a 366 ±12.32b 383 ±11.53b 
Non-ammonia nitrogen [g/d] 415 ±9.11a 346 ±10.97b 348 ±11.72b 
MP  [g/d]* 1901 ±53.1a 1590 ±65.1b 1666 ±62.3b 
 per FOM [g/kg]§ 202 ±8.82 170 ±10.81 185 ±10.35 
 per ME [g/MJ]¥ 10.2 ±0.27a 8.8 ±0.33b 9.3 ±0.32ab 
 per RDP [g/g]£ 0.77 ±0.02c 0.85 ±0.02b 0.91 ±0.02a 
RUP [g/d]$  428 ±16.5a 333 ±20.3b 369 ±19.4ab 
 [% of feed crude protein]1) 22.0 ±1.00a 17.0 ±1.16b 18.7 ±1.20ab 
RDP [g/d] 2423 ±33.4a 1776 ±39.2b 1745 ±40.9b 
RNB [g/MJ ME] 0.26 ±0.03a -0.15 ±0.04b -0.15 ±0.04b 
uCP  [g/d]¶ 2335 ±50.9a 1930 ±65.3b 2022 ±62.2b 

Notes: †RNB0, ruminal nitrogen balance in the diet = 0.08 g N/MJ ME; ‡RNB-, ruminal nitrogen 
balance in the diet = -0.41 g N/MJ ME; #NA, ruminal nitrogen balance in the diet = -0.41 g N/MJ 
ME plus 6 g niacin per day; *MP, microbial crude protein; §FOM, fermented organic matter; ¥ME, 
metabolisable energy; £RDP, rumen degradable protein; $RUP, rumen undegradable protein; 
¶utilisable crude protein; 1)corrected for urea nitrogen; a,b,c Means in the same row with different 
superscripts differ (p<0.05). 
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Discussion 

 

Rumen measurements 

In the present trial, pH in rumen fluid was unaffected by the amount of RDP in the diet. 

That complied with previous experiments (Song and Kennelly, 1990; Riemeier, 2004; 

Steinwidder et al., 2009). Only Monteils et al. (2002) found a decline in rumen pH when 

the CP level of the diet rose from 12% or 14% up to 16%, whereby the diet composition in 

that study was different for the different CP levels and the proportion of concentrate 

increased with increasing CP levels from 26% for the diet with 12% CP to 34% in the diet 

with 16% CP, which may have had more effects on ruminal pH than the CP content itself 

and may explain the differences to the findings in the current and the above mentioned 

experiments.  

As in the present study, the supplementation of 6 g niacin per cow and day had no effect on 

rumen pH in most other trials (Kung et al., 1980; Horner et al., 1988; Doreau and Ottou, 

1996). Madison-Anderson et al. (1997) administered 12 g nicotinic acid per cow and day 

without an impact on rumen pH. Only under in vitro conditions Riddell et al. (1980) 

described a decrease of pH in rumen fluid when niacin was supplemented with 1 g/L to the 

fermentation vessel, which was a considerably higher supplementation than in the present 

in vivo experiment. Not only higher doses of niacin in in vitro studies could be an 

explanation for the different findings. The absence of effects of supplemental niacin in in 

vivo trials could have been due to sufficient microbial synthesis of niacin in the rumen, 

which is not present under in vitro conditions (Ottou and Doreau, 1996). 

Treatment did not alter total SCFA concentration in rumen fluid, according to the pH 

values. Also in other trials neither level of RNB (Lebzien et al., 2006; Agle et al., 2010) 

nor supplementation of niacin (Christensen et al., 1996; Ottou and Doreau, 1996; Madison-

Anderson et al., 1997) had an effect on concentration of total SCFA in rumen fluid. 

In an evaluation of published data, Harmeyer and Kollenkirchen (1989) assumed that in 

vitro experiments showed inconsistent effects of additional niacin on fermentation 

characteristics in rumen fluid and Niehoff et al. (2009a) summarized that the response of 

SCFA to niacin supplementation varied greatly among the data sets from in vivo trials. 

In the present experiment, the molar proportion of acetic acid in rumen fluid was reduced 

in niacin supplemented animals. Christensen et al. (1996) also found a trend for reduced 
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acetic acid values after administering 12 g nicotinic acid per day to German Holstein cows. 

The presence of an enhanced number of protozoa may be an explanation for the current 

observations. In an in vivo study with sheep Dönmez et al. (2003) established a negative 

relationship between the acetic acid content and the number of protozoa in the rumen. The 

present results confirm these findings, as the number of protozoa in the NA group was 

higher (Table 4).  

A trend for an enhanced content of propionic acid in rumen fluid after niacin 

supplementation was found in trials with cows (Christensen et al., 1996) and growing bulls 

(Flachowsky et al., 1993), while Madison-Anderson et al. (1997) found no effect. 

According to Itabashi and Kandatsu (1975), there is a positive correlation between number 

of protozoa and propionic acid release in the rumen which would match the present 

observations. In a former study, Riddell et al. (1980) found an increase of propionic acid 

content in the rumen after niacin supplementation only 6 h after feeding. That study 

(Riddell et al., 1980) demonstrated the possible impact of sampling time in relation to 

feeding time on the composition of ruminal SCFA and this might be a reason for 

inconsistent results reported in the literature.  

Due to a reduced proportion of acetic acid and an enhanced percentage of propionic acid 

the ratio of these two SCFA was also reduced in the niacin treatment. This matched the 

findings of Riddell et al. (1980), who measured a decreased ratio at 3 and 6 h after feeding 

in cows given a diet based on hay and concentrate with a niacin concentration of 200 

mg/kg fresh matter. However, the comparability with the present results is limited because 

the aforementioned authors (Riddell et al., 1980) did not show niacin concentration in DM.  

In contrast to our results, butyric acid was the most affected SCFA by niacin 

supplementation in in vivo trials reviewed by Niehoff et al. (2009a), but the effects were 

inconsistent. It was assumed that an increasing number of protozoa led to effects on butyric 

acid concentration (Jouany, 1991) after niacin supplementation. This assumption is not in 

line with the present study and with the study of Samanta et al. (2000), as an increase in 

number of protozoa did not affect butyric acid concentration. These findings may indicate 

that, besides the effect of niacin on protozoa, there could be another way in which niacin 

altered SCFA production in the rumen. 

Contrary to our results, Niehoff (2009) found a decrease in the molar proportions of valeric 

acid. However, in vitro studies showed elevated values for valeric acid proportions (Ottou 
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and Doreau, 1996) and Horner et al. (1988) found an effect on valeric acid proportion 

when a diet with a niacin concentration of 400 mg/kg DM was administered, but no effect 

was found when the same amount of nicotinamide was given to the fermenters. This may 

indicate different effects of niacin on rumen metabolism depending on the chemical 

structure of the supplemented niacin. 

In most studies, different levels of nitrogen in the diet had no effect on the molar 

proportions of SCFA (Teather et al., 1980; Gabler and Heinrichs, 2003; Lebzien et al., 

2006). In contrast to the aforementioned experiments and the present findings, Zimmerman 

et al. (1992) found an increase in the proportions of valeric acid, iso valeric acid, and iso 

butyric acid in cows fed a diet deficient in RDP with a moderate fibre content (35.8% 

NDF). According to Cline et al. (1958), in in vitro studies rumen organisms grown in a 

medium deficient in urea nitrogen appeared to intensively synthesize valeric acid. Hence, a 

deficiency in RDP may stimulate the synthesis of valeric acid in the rumen in vivo. 

It is known that the branched chain fatty acids iso butyric acid and iso valeric acid 

originate from degradation of protein or amino acids in the rumen (Russell and Hespell, 

1981) and that these SCFA are growth factors for several microbial species including 

cellulolytic bacteria (Allison and Bryant, 1958). In the present study, animals fed the N 

balanced diet showed a higher content of iso valeric acid in rumen fluid, whereas the 

proportion of iso butyric acid was unaffected by N content of the diet, which may indicate 

that the above mentioned production of some branched chain fatty acids is also stimulated 

by non-protein N.  

Consistent with the present study, Cunningham et al. (1996) found an increased ratio of 

acetate to propionate when the CP content of the diet declined, whereby different amounts 

of soybean meal were used to change the CP content of the diet. Often, changes in content 

of CP or RDP of experimental diets were accompanied by changes in composition of the 

diets. These effects of diet composition may cover the effect of reduced N supply on the 

composition of SCFA and therefore lead to inconsistent results regarding the effect of 

reduced RDP supply on ruminal fermentation in literature data.  

The measured ammonia concentration in rumen fluid was above the critical concentration 

of 3.6 mmol/L (Satter and Roffler, 1975) at all sampling times in the treatment RNB0. The 

ammonia concentration in the groups NA and RNB- were below this value at 90 minutes 
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and at 90 and 150 minutes after feeding, respectively (data not shown). These results were 

expected as the amount of RDP was higher in treatment RNB0. 

In most studies, no effect of supplemental niacin on the ruminal ammonia concentration 

was found, neither in vivo (Kung et al., 1980; Zimmerman et al., 1992) nor in vitro 

(Hannah and Stern, 1985; Ottou and Doreau, 1996). Similar to the present results, Niehoff 

(2009) found elevated ammonia concentrations in rumen fluid after administering 6 g 

niacin per cow per day and in an earlier study a niacin supplementation of 200 mg/kg to a 

diet consisting of hay and concentrate resulted in an increase of ammonia 6 h after feeding 

(Riddell et al., 1980). The enhanced values might be explainable by the higher number of 

protozoa in rumen fluid after niacin administration. In several studies, faunated animals 

showed higher ammonia concentrations than defaunated animals (Eugène et al., 2004; 

Firkins et al., 2007) because protozoa contribute significantly to protein degradation and 

deamination, but are not able to use ammonia as an N source (Hristov and Jouany, 2005). 

Regarding the rumen ammonia concentration, it has also to be considered that there is a 

large diurnal variation in relation to time after feeding. According to Gustafsson and 

Palmquist (1993), the ammonia peak occurred 1.5 h to 2 h after feeding. This may partly 

explain some of the differences in the literature data because it cannot be excluded that 

some of the observed effects of niacin were rather due to diurnal variation in the rumen 

than a response to niacin. 

The estimated values for the volume of rumen fluid and the turnover are within the range 

of those shown in other studies (Gasa et al., 1991; Reynolds et al., 2004), and Hartnell and 

Satter (1979) observed a high variation among individual cows in liquid fill of the rumen 

as well as in liquid turnover. In line with the present experiment, no influence of 

supplemental niacin (12 g per cow per day) on volume and outflow was found by 

Christensen et al. (1996) and Campbell et al. (1994).  

As in several other studies (Erickson et al., 1990; Doreau and Ottou, 1996; Kumar and 

Dass 2005), number of protozoa was enhanced in niacin supplemented animals. As 

protozoa are unable to synthesize niacin (Brent and Bartley, 1984), they have to obtain 

niacin from feed or from rumen bacteria which can synthesize niacin (Menke, 1973). 

The decreased protozoa count in animals fed diet RNB0 may be due to the presence of 

additional urea in the diet. Rumen protozoa are deficient in the enzyme urease which is 

responsible for hydrolysis of urea (Onodera, 1977). 
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Duodenal flow of nutrients and microbial protein 

Numerous studies are available concerning the effect of RDP level on the apparent ruminal 

digestibility of nutrients. Lebzien et al. (2006) reported no effect of a reduction of the RNB 

(-0.3 and -0.6 g N/MJ ME) on degradability of OM and ADF, but they found a decreased 

apparent ruminal digestibility of NDF. Colmenero and Broderick (2006) also did not detect 

a change in apparent ruminal digestibility of OM, NDF and ADF when increasing the RDP 

content of the diet from 9.3 to 12.7% of DM calculated according to NRC (2001). It has to 

be considered that diet composition changed with changing RDP levels in the 

aforementioned study (Colmenero and Broderick, 2006) and therefore effects of changes in 

the diet composition may cover effects of N reduction. In in vitro studies, an amount of 

RDP of 8% of DM reduced the degradability of NDF compared to a diet with 11% of RDP 

(Griswold et al., 2003). The CP content of 12.2% of DM or rather the RNB of -0.41 g 

N/MJ ME in diet RNB- in the present study may not have been low enough to decrease the 

activity of the cellulolytic bacteria in the rumen. Alternatively, the microbial population 

may have adapted to the reduced N supply during the adaptation period before the 

sampling weeks because apparent ruminal digestibility of NDF was not affected (Table 5). 

In the present study, effects of supplemental niacin on the daily flow of OM and on the 

amount of FOM as proportion of OM intake were not significant, which complies an in 

vivo study of Doreau and Ottou (1996), who also supplemented 6 g niacin per cow and day 

without an effect on apparent and true ruminal digestibility. Former in vitro studies also 

found no impact of niacin on OM degradation (Shields et al., 1983; Hannah and Stern, 

1985). Niehoff (2009) observed a decreased apparent ruminal digestibility of OM 

independent of the forage-to-concentrate ratio in the diet when 6 g niacin were 

administered, but the amount of FOM was unaffected by treatment, which can be 

explained by the higher flow of MP to the duodenum after NA supplementation in that 

study. In the recent experiment, the unaffected liquid outflow rates and SCFA production 

in the rumen (Tables 3 and 4) matched the unchanged OM degradation rates. Studies 

concerning the effect of niacin on ruminal fibre digestion are scarce. Christensen et al. 

(1996) found no effect on ruminal degradation of ADF and NDF when 12 g niacin per day 

were given to dairy cows fed an N balanced diet and in an in vitro study an addition of 100 

mg niacin per kg DM with sufficient N supply to the microbes resulted in slightly higher, 

but not significantly different values for the degradation of fibre fractions (Hannah and 

Stern, 1985). These results, as compared to the present trial where a diet with a negative 
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RNB was fed, may indicate that niacin had less beneficial effects on ruminal fibre 

degradation when the N supply for the microbial population is optimal. Since between 25% 

and 30% of the fibre breakdown in the rumen is performed by protozoa (Lee et al., 2000), 

this may explain the observed increase in ruminal NDF digestibility in the NA treatment as 

protozoal counts increased. Removal of protozoa decreased the rate of degradation of plant 

cell wall components in the rumen (Jouany, 1991) and was found to be associated with an 

increased retention time of plant particles (Jouany, 1996). Horner et al. (1988) also 

suspected a shift in rumen microbial population due to higher availability of niacin in the 

rumen, which resulted in an improved digestion of hemicelluloses. 

The measured values for the RNB at the duodenum were slightly higher than calculated at 

the beginning of the experiment because treatments themselves had an effect on nutrient 

digestibilities and the ruminal N turnover. The N deficit in the rumen in treatment RNB- 

was sufficient to reduce microbial protein synthesis as compared to RNB0. In accordance 

with Lebzien et al. (2006), who worked with an RNB of -0.6 g/MJ ME, the microbes 

attempted to compensate for the deficit in RDP by increasing the feed CP degradation as 

can be seen from the decreased ratio of g RUP/g CP intake in the treatments RNB- and 

NA. As a result of the simultaneous reduction of the daily flows of MP and RUP at the 

duodenum, the amount of uCP was also reduced when diet RNB- was fed. The efficiency 

of use of RDP for the MP synthesis was elevated from 0.77 to 0.85 when N supply to the 

rumen became deficient. 

Results from studies observing the effect of niacin on microbial protein flow at the 

duodenum are inconsistent. As in the present study, no effects have been found after 

administering 6 or 12 g of niacin/d to dairy cows in some studies (Christensen et al., 1996; 

Doreau and Ottou, 1996), whereas other researchers reported enhanced daily amounts of 

MP flow after niacin supplementation in vitro (Riddell et al., 1980) and in beef cattle 

(Kumar and Dass, 2005). Niehoff (2009) observed an increase in the flow of MP by 250 

g/d when 6 g of niacin were supplemented, whereby these authors, contrary to the present 

trial, fed a diet with an RNB according to the requirement of the microbes. The unchanged 

amounts of MP at the duodenum after niacin supplementation in the current study seem to 

be contradictory because of higher numbers of protozoa. Faunated animals normally show 

decreased efficiencies of microbial CP synthesis due to bacterial predation by protozoa 

(Firkins et al., 2007). Due to the fact that, depending on the diet, between 20 and 40% of 

the total microbial N at the duodenum could originate from protozoa (Sylvester et al., 
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2005), it seems to be possible that the composition of the microbial protein reaching the 

duodenum changed in NA treatment. The proportion of protozoal protein might have 

increased and overcompensated for the expected decrease in the amount of bacterial 

protein. This assumption of an increasing flow of protozoal protein to the duodenum was 

in line with other results from the same trial (Aschemann et al., 2012) as the faecal N 

excretion was reduced in the niacin supplemented animals. It is known that the digestibility 

of protozoal protein ranged between 87 and 91%, while bacterial protein had lower 

digestibilities between 74 and 79% (Owens and Zinn, 1988). Thus, microbial protein 

containing a higher proportion of protozoal protein may have been digested more 

comprehensive in the small intestine and therefore, the N excretion with faeces was 

reduced in niacin treatment. 

As assumed by Firkins et al. (2007) and Niehoff (2009), the predation of bacteria by 

protozoa may be reduced due to a higher ruminal liquid passage rate after niacin 

supplementation. This assumption could not be supported by the present trial, as the rumen 

volume and the outflow rates were not different between the three treatments. 

The amount of RUP remained unchanged in NA treatment. Hence, there were no 

differences in the amount of dietary protein digested in the rumen, which might seem to be 

inconsequent regarding the higher amounts of ammonia in rumen fluid, but the possible 

reasons for this higher amount of ammonia, founded in the changes of the microbial 

community in the rumen, are discussed above. The results from other in vivo studies 

concerning the effect of niacin on the degradation of feed CP are inconsistent and the 

detailed mechanism of impact of niacin on the proteolytic activity in the rumen is not 

clarified yet. Doreau and Ottou (1996) found a trend for increased RUP flows when niacin 

was supplemented, whereas no effect of niacin has been observed in vitro (Hannah and 

Stern, 1985) and the opposite trend has been shown in another in vivo trial (Horner et al., 

1988). 

The amount of MP expressed per g of RDP increased from 0.85 to 0.91, which implies an 

elevated efficiency of MP synthesis from ruminally degraded protein. These results 

correspond with additional findings from the same trial (Aschemann et al., 2012), as an 

elevated N balance and a more efficient use of dietary N were observed when niacin was 

added to the diet deficient in RNB. 
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Conclusion 

 

A negative rumen nitrogen balance (RNB) decreased the ammonia content in rumen fluid 

and the flow of microbial crude protein at the duodenum (MP), whereas the use efficiency 

of rumen degradable protein (RDP) for microbial synthesis was enhanced. Furthermore, 

the negative RNB induced changes in the microbial population and therefore the ruminal 

fermentation pattern was affected.  

Addition of 6 g niacin per cow and day to the RNB deficient diet enhanced ruminal 

degradation of NDF. The amount of MP reaching the duodenum per day was unaffected, 

but the efficiency of MP synthesis from RDP was elevated. The decreasing effects of the 

negative RNB on rumen undegradable protein and MP/MJ ME were no longer significant 

when niacin was administered. The increase in number of protozoa in niacin supplemented 

animals seems to be a major reason for the observed effects of niacin on rumen metabolism 

and further research should clarify the detailed impact of supplemental niacin on the rumen 

microbial community and the composition of MP reaching the duodenum. The use of 

supplemental niacin may be an attempt to compensate to some extent for the negative 

effects of a reduced N intake of dairy cows on the supply with utilisable crude protein. 
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Chapter 5: General Conclusion 

 

The aim of the present thesis was to evaluate the use of supplemental niacin to improve the 

efficiency of microbial protein synthesis in the rumen during feeding a diet deficient in 

rumen degradable protein as a possibility to reduce nitrogen emissions from dairy cows 

without diminishing the supply with utilisable crude protein. 

As expected, the deficit in rumen degradable protein in the diet entailed several effects on 

rumen metabolism. Since these principal interrelationships are well known, hereafter, 

general conclusions drawn from the supplementation of niacin to compensate for these 

effects are focused. 

The supplementation of 6 g niacin/(cow · day) to a rumen degradable protein deficient diet 

changed fermentation patterns in the rumen resulting in a more propionate-pronounced 

fermentation. In addition, the average ammonia concentration in rumen fluid increased. 

Niacin supplementation furthermore resulted in greater fibre degradation in the rumen as 

could be seen from the increased apparent ruminal and total tract digestibility of neutral 

detergent fibre in niacin treatment. 

These effects on rumen metabolism may possibly be traced back to the increased number 

of protozoa in rumen fluid in supplemented animals, causing a change in activity and/or 

composition of the rumen microbial community, resulting in higher ammonia production, 

and a more comprehensive fibre digestion. 

Although, normally an increasing number of protozoa reduces the efficiency of the 

synthesis of microbial protein due to predation of bacteria, in the present study the flow of 

microbial crude protein to the duodenum was not impaired by a higher concentration of 

protozoa in rumen fluid. Therefore, an overcompensation of the expected reduced flow of 

bacterial protein by increasing amounts of protozoal protein appeared likely. 

The use efficiency of rumen degraded protein for microbial synthesis was elevated when 

niacin was supplemented, as could be seen from higher amounts of microbial crude protein 

per g of rumen degraded crude protein. Furthermore, the decreasing effects of deficient 

supply with rumen degradable protein on the efficiency of microbial crude protein 

synthesis (g of microbial crude protein per MJ metabolisable energy) and on rumen 

undegraded protein were no longer significant. 
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Faecal nitrogen excretion was the lowest in animals receiving the niacin supplemented 

diet, although, the amount of utilisable crude protein reaching the duodenum was 

unaffected. Consequently, the digestibility of utilisable crude protein was higher when 

niacin was administered, which may be the result of a better digestibility of protozoal 

protein compared to bacterial protein in the small intestine. Another explanation for the 

reduced nitrogen content in faeces may be that, due to a more comprehensive degradation 

in the rumen, less amounts of carbohydrates, in particular neutral detergent fibre reached 

the colon and resulted in restrained bacterial growth. 

Contrary to the nitrogen excretion with faeces, urinary and milk nitrogen excretions were 

unchanged by niacin administration. Thus, the nitrogen balance was enhanced which 

indicated that more nitrogen was retained in the body of the animals. 

Further research should concentrate on the fate of this balance nitrogen in the animal and 

on possible metabolic losses, as well as on methodical aspects of estimating the nitrogen 

balance. Additional studies should clarify the detailed impact of supplemental niacin on the 

rumen microbial community, especially the effect on proteolytic and cellulolytic activity. 

Also the shift in the composition of the microbial population and the composition of 

microbial crude protein reaching the duodenum should be investigated. 

The use of supplemental niacin may be an attempt to compensate to some extent for the 

restraining effects of a reduced supply with rumen degradable protein on the ruminal 

fermentation and the amount of utilisable crude protein. 

With regard to the environment and from an animal nutrition point of view, this seems to 

be a possible approach for a reduction of the nitrogen emitting potential in milk 

production. 
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Summary 

 

Nitrogen (N) emissions from agricultural animal husbandry have attracted increasing 

attention during the last few years. In particular, N losses from ruminants were coming into 

focus because the average use efficiency of dietary N in dairy cattle amounts only to 28% 

with a wide range of variation between 16 and 40%. Because N losses with manure are 

rather high and positively correlated with the N intake of the animals, one attempt to 

reduce the N emissions of dairy cows is to reduce the N intake. However, this approach 

would result in decreased ruminal fermentation as the microbial population in the rumen 

responds very susceptible to limited N supply. Consequently, the flow of microbial protein 

to the duodenum would be reduced and the degradation of feed components would be 

restrained when the rumen nitrogen balance (RNB) in the diet is negative.  

The B-vitamin niacin is part of the coenzymes nicotinamide adenine dinucleotide (NAD) 

and nicotinamide adenine dinucleotide phosphate (NADP) and therefore it is involved in 

several energy providing processes in the metabolism. Besides niacin from feed and 

tryptophan catabolism, ruminants can use niacin synthesized by rumen microbes. 

However, several studies showed that additional oral administration of niacin not only 

improved the energy balance of lactating dairy cows, but also enhanced the flow of 

microbial crude protein at the duodenum (MP). 

Therefore, in this thesis, the effect of an oral niacin supplementation to a diet deficient in 

ruminally degradable protein (RDP) on rumen metabolism and microbial protein synthesis 

as well as on N balance and N utilisation in lactating cows was investigated and it should 

be assessed to what extend a niacin supplementation can compensate for the above 

mentioned restricting effects of a negative RNB on rumen fermentation. 

A total of 9 ruminally and duodenally fistulated lactating multiparous German Holstein 

cows was used. The fed diets varied as follows: RNB0 with energy, utilisable crude protein 

(uCP), and RNB (0.08 g N/MJ ME) according to the average requirement of the animals; 

RNB- with energy and uCP at the duodenum according to the average requirement of the 

animals, but with a negative RNB (-0.41 g N/MJ ME); and diet NA which was the same 

ration as RNB-, but supplemented with 6 g niacin/d.  
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For determining the N balance, the N excretion, and the total tract digestibility, faeces and 

urine were collected completely over five consecutive days and samples of milk were 

taken on two consecutive days. Furthermore, blood samples were taken from a Vena 

jugularis externa on one day prefeeding and 2.5 h postfeeding. Rumen fluid was taken on 

one day just before feeding and 6 times after feeding in the morning. The rumen liquid 

volume and liquid turnover rate were determined using cobalt-EDTA as a marker and the 

protozoal population was investigated. Duodenal chyme was collected every two hours 

over five consecutive days, using chromium oxide as a marker to calculate ruminal 

digestibilities of nutrients and MP synthesis.  

Reducing the amount of RDP in the diet caused several effects in the N metabolism of the 

animals. The negative RNB in diet RNB- reduced N excretion with urine, the total N 

excreted with urine and faeces, and the N balance. The supplementation of 6 g niacin per 

cow and day to the diet with a negative RNB had no effect on N excretion with urine, but 

the daily amount of N excreted with faeces was lower, whereas the N balance was 

elevated. 

Plasma urea content was decreased with deficient N supply, but remained unchanged by 

addition of niacin, whereas the postfeeding plasma glucose concentration was higher after 

niacin feeding.  

Milk yield and contents of fat and protein were not altered by treatment, but a negative 

RNB enhanced milk N efficiency and reduced milk urea content.  

Total tract digestibility of dry matter and organic matter were decreased with diet RNB- as 

compared to treatment RNB0. The degradability of neutral detergent fibre (NDF) also 

decreased with reduced N supply, but niacin supplementation could compensate for this 

decline which could be seen from an enhanced NDF digestibility in treatment NA, which 

was due to a more comprehensive fermentation of NDF in the rumen. 

Ammonia content in rumen fluid was lower with diet RNB-, but enhanced after niacin 

administration. The negative RNB in treatment RNB- affected the composition of the short 

chain fatty acids in rumen fluid and increased the number of protozoa. Furthermore, the 

daily duodenal flows of MP, rumen undegradable protein (RUP) and uCP as well as the 

amount of MP per MJ ME were reduced as compared to treatment RNB0. However, the 

use efficiency of ruminally degradable N for microbial synthesis was enhanced.  
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The amount of MP reaching the duodenum per day was unaffected by niacin 

administration, but the efficiency of MP synthesis from RDP was elevated compared to 

RNB-. After niacin supplementation, the effects of the negative RNB on the amount of MP 

per MJ ME and on RUP were no longer significant. The number of protozoa was higher in 

NA treatment as compared to RNB-. This observed change in the microbial population in 

niacin supplemented animals may be the reason for reduced effects of the negative RNB on 

rumen fermentation parameters 

In conclusion, supplemental niacin to diets with a negative RNB induced a more efficient 

use of rumen degraded N. This effect may mainly be attributed to a shift in the rumen 

microbial community or a change in the fermentation activity due to an increased number 

of protozoa, which may have led to modifications of rumen metabolism and changes in the 

composition of MP reaching the duodenum. Regarding the environmental impact of milk 

production, these results may provide a potential approach for the reduction of nitrogen 

emissions originating from dairy cows without compromising production performance. 
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Zusammenfassung 

 

Die Emissionen von Stickstoff (N) aus der landwirtschaftlichen Tierhaltung haben in den 

letzten Jahren immer mehr an Beachtung gewonnen. Insbesondere die Stickstoffausschei-

dungen von Wiederkäuern gerieten zunehmend ins Blickfeld, denn die Nutzungseffizienz 

von Futter-N bei Milchkühen beträgt im Durchschnitt nur etwa 28 % mit großen 

Schwankungen zwischen 16 und 40 %. Da die N-Verluste mit Kot und Harn sehr hoch sind 

und stark positiv mit der N-Aufnahme korrelieren, ist die Reduzierung der N-Aufnahme 

ein möglicher Ansatzpunkt zur Reduzierung der Emissionen. Aus einer reduzierten N-

Aufnahme würden jedoch negative Effekte auf die Pansenfermentation resultieren, da die 

mikrobielle Population sehr empfindlich auf eine restriktive N-Versorgung reagiert. So 

wurde beispielsweise der Fluss von mikrobiellem Protein am Dünndarm reduziert und die 

ruminale Verdaulichkeit der Ration wurde herabgesetzt, wenn die ruminale N-Bilanz 

(RNB) der Ration negative war. 

Das B-Vitamin Niacin übernimmt als Bestandteil der Co-Enzyme Nicotinamid-Adenine-

Dinucleotide (NAD) und Nicotinamid-Adenin-Dinucleotid-Phosphat (NADP) eine 

wichtige Rolle in zahlreichen Vorgängen des Energiemetabolismus. Neben Niacin aus dem 

Futter und dem Tryptophan-Katabolismus können Wiederkäuer als zusätzliche Quelle auch 

das von den Mikroben im Pansen synthetisierte Niacin nutzen. Dennoch zeigten Studien, 

dass eine zusätzliche Supplementation von Niacin nicht nur die Energiebilanz laktierender 

Milchkühe verbesserte, sondern auch den Fluss von mikrobiellem Rohprotein am 

Dünndarm (MP) erhöhte. 

Daher war es Ziel der vorliegenden Arbeit, den Effekt einer Niacin-Supplementation zu 

einer Ration mit negativer RNB auf den Pansenmetabolismus und die mikrobielle 

Proteinsynthese, sowie auf die N-Bilanz und die N-Verwertung von laktierenden Kühen zu 

untersuchen. Des Weiteren sollte abgeschätzt werden, in welchem Ausmaß eine 

Supplementation von Niacin zu einer Ration mit negativer RNB die oben genannten 

restriktiven Wirkungen eines Mangels an pansenverfügbarem N auf die 

Pansenfermentation kompensieren kann. 

Die Studie wurde mit insgesamt neun pansen- und dünndarmfistulierten laktierenden 

Deutschen Holstein Kühen durchgeführt. Die gefütterten Rationen waren wie folgt 

konzipiert: RNB0: Energiegehalt und Menge an nutzbarem Rohprotein (nXP) 
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entsprechend dem Bedarf der Tiere mit einer ausgeglichene RNB (0,08 g N/MJ ME); 

RNB-: Energie- und nXP-Gehalt entsprechend dem Bedarf der Tiere, jedoch mit negativer 

RNB (-0,41 g N/MJ ME); NA: Ration identisch mit RNB-, jedoch mit zusätzlicher Gabe 

von 6 g Niacin je Tier und Tag. 

Zur Kalkulation der N-Bilanz, der N-Ausscheidung und der Verdaulichkeit der 

Rohnährstoffe wurde eine Totalsammlung von Kot und Harn über einen Zeitraum von fünf 

Tagen durchgeführt und es wurden an zwei Tagen Milchproben gewonnen. Außerdem 

wurden an einem Tag, jeweils direkt vor und zweieinhalb Stunden nach der 

Morgenfütterung, Blutproben aus einer Vena jugularis externa entnommen. 

Pansenflüssigkeit wurde an einem Tag direkt vor und zu 6 Zeitpunkten nach der Fütterung 

entnommen, außerdem erfolgte eine Probenahme zur Untersuchung der Protozoen-

Population. Zur Abschätzung des Pansenflüssigkeitsvolumens und zur Berechnung des 

Flüssigkeits-Turnovers im Pansen wurde Cobalt-EDTA als Marker verwendet. 

Darmchymus wurde im zweistündigen Intervall an fünf aufeinanderfolgenden Tagen 

entnommen, wobei Chromoxid als Flussmarker verwendet wurde um die ruminale 

Verdaulichkeit sowie die synthetisierte Menge MP abschätzen zu können. 

Die Reduzierung des Gehaltes an pansenverfügbarem Stickstoff in der Ration führte zu 

verschiedenen Effekten auf den Stickstoffmetabolismus der Tiere. Die negative RNB in 

der Behandlung RNB- reduzierte die Stickstoffausscheidung mit dem Harn, sowie die 

Gesamtausscheidung über Kot und Harn und die Stickstoffbilanz. Die zusätzliche Gabe 

von 6 g Niacin pro Tag zu dieser Ration hatte keine Effekte auf die tägliche 

Stickstoffausscheidung mit dem Harn, während die Ausscheidung mit dem Kot verringert 

und die Stickstoffbilanz erhöht war.  

Der Harnstoffgehalt im Plasma wurde durch die negative RNB reduziert, wurde aber durch 

Niacin nicht beeinflusst, während die Glukosekonzentration im Plasma in der Behandlung 

NA nach dem Füttern erhöht war. 

Die Behandlung zeigte keinen Effekt auf die Milchleistung, sowie die Gehalte an Fett und 

Eiweiß in der Milch. Jedoch erhöhte die negative RNB die Milch-N-Effizienz und 

verringerte den Milchharnstoffgehalt. 

Die Verdaulichkeit der Trockensubstanz und der organischen Masse waren bei reduzierter 

Versorgung mit pansenverfügbarem N in der Gruppe RNB- herabgesetzt. Auch die totale 

Verdaulichkeit der Neutralen-Detergenzien-Faser (NDF) war in dieser Behandlung 
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verringert. Jedoch konnte die Supplementation von Niacin zur Ration mit negativer RNB 

(Behandlung NA) diesen Rückgang durch eine bessere Verdaulichkeit der NDF im Pansen 

kompensieren, was anhand der höheren ruminalen Verdaulichkeit der NDF nach Fütterung 

der supplementierten Ration deutlich wurde. 

Der Ammoniakgehalt der Pansenflüssigkeit war bei reduzierter N-Versorgung verringert, 

die Niacin-Supplementation erhöhte jedoch den Ammoniakgehalt. Die reduzierte N 

Versorgung beeinflusste das Fettsäuremuster der Pansenflüssigkeit und erhöhte die 

Protozoenkonzentration. Außerdem waren der MP-Fluss, sowie die Mengen an nXP und 

unabgebautem Futterprotein (RUP) geringer als bei ausgeglichener RNB und die Menge 

MP pro MJ ME war reduziert. Jedoch zeigte sich eine höhere Nutzungseffizienz des im 

Pansen abgebauten Proteins für die mikrobielle Synthese. 

Die synthetisierte Menge MP war durch die Niacingabe nicht erhöht aber die Effizienz der 

mikrobiellen Synthese aus pansenverfügbarem Stickstoff war gesteigert und Effekte der 

negativen RNB auf die Menge an RUP und die Menge an MP pro MJ ME waren nicht 

mehr signifikant. Die Protozoen-Konzentration in der Pansenflüssigkeit der 

supplementierten Tiere war im Vergleich zur Behandlung RNB- höher. Die beobachteten 

Veränderungen in der Zusammensetzung der mikrobiellen Population durch den Zusatz 

von Niacin könnte der Grund für die Reduktion der oben genannten Effekte des N-

Mangels auf die Pansenfermentation sein. 

Aus der vorliegenden Arbeit kann geschlussfolgert werden, dass eine Niacin-

Supplementation bei Rationen mit negativer RNB zu einer effizienteren Nutzung des 

pansenverfügbaren N führt. Dieser Effekt ist vermutlich auf eine Veränderung der 

Mikrobenpopualtion im Pansen zurückzuführen, die hauptsächlich in einer steigenden 

Anzahl von Protozoen begründet ist und zu einer Modifikation des Pansenmetabolismus, 

sowie zu einer veränderten Zusammensetzung des am Dünndarm anflutenden MP führt. Im 

Hinblick auf die umweltrelevanten Emissionen aus der Milchviehhaltung liefern diese 

Ergebnisse einen möglichen Ansatz zur Reduzierung der N-Ausscheidungen ohne die 

Leistung von Milchkühen nachhaltig zu beeinträchtigen. 
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