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Abstract 
 
Introduction: The incidence of breast cancer in Eastern Asia is approximately 3-
times lower than in western countries, and nutrition seems to play an important role. 
The traditional East Asian diet is rich in soy, which is the main source of the 
isoflavones (ISO) genistein (GEN), daidzein (DAI), and glycitein (GLY). Some 
evidence suggests that ISO intake must be high during certain windows of 
development to exert anti-cancerogenic action. The aim of the present thesis was to 
investigate the effects of soy ISO exposure in different periods of life on the 
estrogen sensitivity of the mammary gland and homeostasis of the small intestine in 
female rats. 

Methods: In a first experiment, animals were exposed to an ISO-free (IDD), an ISO-
rich (IRD; 248 µg GEN, 213 µg DAI, 59 µg GLY per g diet) or an IDD diet 
supplemented with GEN (GRD; 700 µg GEN per g diet), throughout their whole 
lifetime. At the age of 50 (PND 50) and 80 days (PND 80) proliferative activity was 
analysed in the mammary gland and compared to ISO serum concentrations. 
Additionally, the tissue homeostasis of the small intestine was determined. In order 
to analyze estrogen sensitivity of the mammary gland IDD, IRD and GRD rats (PND 
80) were ovariectomized and treated either with vehicle (OVX), estradiol (E2; 7.8 
µg/g BW/day), or GEN (19.6 mg/kg BW/day). In a second experiment, two group of 
rats were lifelong exposed to either an IDD or to an ISO-containing diet (ISD; 147 µg 
GEN, 114 µg DAI, 36 µg GLY per g diet). A third group received the ISD only from 
shortly before the onset of puberty (PND 30) up to the end of puberty (PND 60; 
pISD). Animals were treated with vehicle (OVX), E2 (4 µg/g BW/day) or GEN (10 
mg/kg BW/day). As in the first experiment, the responsiveness of the mammary 
gland was analysed. 

Results: At PND 50, PCNA expression showed an increase in the mammary gland 
of both IRD and GRD animals compared to the IDD group. In the small intestine an 
increased PCNA and PS2-expression could be measured. Differences in the 
expression of PCNA in the mammary gland could neither be detected in intact rats 
at PND 80, nor at PND 97 for OVX and GEN treated rats, whereas treatment with E2 

resulted in a significant lower proliferative (PCNA expression) and estrogenic (PR 
and ERα expression) response of the mammary gland in the IRD and GRD group 
compared to the IDD animals. In contrast, the expression of estrogen receptor beta 
(ERβ) and PS2 was significantly higher in IRD and GRD fed animals compared to 
the IDD group. In the second experiment, the proliferative activity in the mammary 
gland was not affected by IDD and ISD, while a significant increase could be 
detected for pISD animals at day 50. The analysis of Ki-67 and PCNA mRNA 
expression showed that the proliferative response to E2 was significantly reduced in 
the pISD and ISD group compared to IDD. The induction of PR mRNA expression 
was significantly increased in both IDD and pISD animals compared to ISD.  

Conclusions: The data of the present studies provide evidence that lifelong 
exposure to soy ISO reduces the sensitivity of the mammary gland towards E2 and 
seems to improve protective mechanism of the small intestine. Additionally, it could 
be shown that ISO exposure starting first shortly pre-pubertal appears sufficient to 
reduce the proliferative response of the mammary gland towards estrogens. 

 

  



 

Kurzfassung 
 
Einleitung: Die Inzidenz von Brustkrebs ist in Ostasien um ein 3-faches niedriger 
als in westlichen Ländern und die Ernährung scheint hierbei eine bedeutende Rolle 
zu spielen. Die traditionelle ostasiatische Ernährung ist reich an Soja, welches die 
Hauptquelle für die Isoflavone (ISO) Genistein (GEN), Daidzein (DAI) und Glycitein 
(GLY) ist. Einige Studien deuten an, dass die ISO-Aufnahme zu bestimmten 
Entwicklungsstadien erfolgen muss, damit antikanzerogene Effekte erzielt werden 
können. Ziel der vorliegenden Dissertation war es zu untersuchen, wie sich eine 
ISO-reiche Ernährung zu verschiedenen Zeitpunkten des Lebens auf die 
Estrogensensitivität der Brustdrüse und die Gewebehomöostase des Dünndarms 
weiblicher Ratten ausübt. 

Methoden: In einem ersten Experiment erhielten die Tiere lebenslang entweder 
eine ISO-freie Diät (IDD), eine ISO-reiche Diät (IRD; 248 µg GEN, 213 µg DAI, 59 
µg GLY pro g Futter) oder eine IDD supplementiert mit Genistein (GRD; 700 µg 
GEN pro g Futter). Im Alter von 50 (PND 50) und 80 Tagen (PND 80) wurde die 
proliferative Aktivität in der Brustdrüse mit den ISO-Konzentrationen im Serum 
verglichen. Zusätzlich wurde die Gewebehomöostase im Dünndarm bestimmt. Um 
die estrogene Sensitivität der Brustdrüse zu analysieren wurden IDD, IRD und GRD 
Ratten ovariektomiert und entweder mit dem Lösungsmittel (OVX), Estradiol (E2; 7.8 
µg/g KG/Tag) oder GEN (19.6 mg/kg KG/Tag) behandelt. In einem zweiten 
Experiment erhielten zwei Tiergruppen entweder eine IDD oder eine ISO-haltige 
Diät (ISD; 147 µg GEN, 114 µg DAI, 36 µg GLY pro g Futter). Eine dritte 
Ernährungsgruppe wurde erst ab kurz vor Beginn der Pubertät (PND 30) bis zum 
Ende der Pubertät (PND 60) mit einer ISD gefüttert (pISD). Die Tiere wurden 
entweder mit dem Lösungsmittel (OVX), E2 (4 µg/g KG/Tag) oder GEN (10 mg/kg 
KG/Tag) behandelt. Auch in diesem Experiment wurde die Responsivität der 
Brustdrüse untersucht. 

Ergebnisse: An PND 50 war die PCNA Expression in der Brustdrüse von IRD und 
GRD Tieren, verglichen mit der IDD-Gruppe, erhöht. Im Dünndarm resultierten IRD 
und GRD in erhöhter Proliferation und PS2-Expression. An PND 80 waren keine 
Unterschiede in der PCNA Expression in der Brustdrüse von intakten, an PND 97 in 
OVX und GEN Tieren zu beobachten, wohingegen eine Behandlung mit E2 in einer 
signifikant niedrigeren proliferativen (PCNA Expression) und estrogenen (PR und 
ERα Expression) Responsivität der Brustdrüse in der IRD und GRD Gruppe 
verglichen mit der IDD resultierte. Im Gegensatz dazu war die Expression des 
Estrogenrezeptor Beta (ERβ) und von PS2 in Tieren, die eine IRD oder GRD 
erhielten signifikant höher als in der IDD-Gruppe. Im zweiten Experiment war die 
proliferative Aktivität an PND 50 durch IDD und ISD nicht beeinflusst, wobei ein 
signifikanter Anstieg bei pISD-Tieren beobachtet wurde. Die Analyse von Ki-67 und 
PCNA mRNA zeigte, dass die proliferative Antwort auf E2 in der pISD und ISD-
Gruppe, verglichen mit der IDD, signifikant reduziert war. Die Induktion der PR 
mRNA Expression war sowohl in IDD als auch in pISD-Tieren signifikant erhöht.  

Schlussfolgerungen: Die Ergebnisse der vorliegenden Studien belegen, dass eine 
lebenslange Exposition gegenüber ISO die Sensitivität der Brustdrüse gegenüber E2 

reduziert und wahrscheinlich den Schutzmechanismus des Dünndarms verbessert. 
Zusätzlich wurde gezeigt, dass eine ISO-reiche Ernährung, die erst kurz vor 
Einsetzen der Pubertät beginnt, ausreichend scheint, um in der Brustdrüse die 
proliferative Reaktion auf Estrogene zu reduzieren. 
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General Introduction 
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The most common hormone dependent cancer occurring to women is breast 

cancer, with increasing incidence in postmenopausal women. The second most 

common is bowel cancer. Although bowel cancer has not been regarded as being 

hormone-dependent for a long time, the observation that 2-times more men than 

premenopausal women are suffering from this disease indicates a protective role of 

female sex hormones. Underlined is this assumption by the observation that bowel 

cancer risk for women increases after menopause (Calle et al., 1995; Messina & 

Bennink, 1998; Di Leo et al., 2001). Furthermore, treatment with estrogens in the 

context of hormone replacement therapy decreases the risk of bowel cancer in 

postmenopausal women, whereas breast cancer risk increases at the same time 

(Chen et al., 1998; Nelson et al., 2002; Beral, 2003; Chlebowski et al., 2004; Wada-

Hiraike et al., 2006; Chlebowski et al., 2009).  

That the incidence of these hormone-dependent diseases is much lower in Eastern 

Asia compared to Europe or the United States has been characterized many years 

ago (Adlercreutz et al., 1992; Knight & Eden, 1996; Setchell & Cassidy, 1999; 

Messina & Wood, 2008). Questions arose about the factors reducing the cancer risk 

in the Asian population and migration studies were performed to analyse whether 

genetic differences were responsible for these effects. In respect to breast cancer it 

has been shown that Asian women which migrated to the United States lost the 

cancer protection if adapting the American diet (Ziegler et al., 1993; Stanford et al., 

1995). Further studies showed that the cancer protection persists if the migration 

occurred after puberty (Shu et al., 2001; Wu et al., 2002). These observations led to 

the assumption that nutrition in early life plays a key role in the prevention of 

hormone dependent cancers. 

The traditional East Asian diet is rich in soy-based food products. Soy is the main 

source of isoflavones (ISO; 10–30 mg ISO/g protein) and contains, in descending 

concentrations (10:8:1), the ISO genistein (GEN), daidzein (DAI), and glycitein 

(GLY) (Walz, 1931; Horn-Ross et al., 2000). ISO belong to the class of 

phytoestrogens, and because of their structural similarity to endogenous estrogens, 

ISO are able to bind to both estrogen receptors and subsequent initiate estrogen 

action. Although the estrogenic activity of ISO is 100 to 10,000-times lower 

compared to the endogenous estrogen 17β-estradiol (E2), the plasma 

concentrations of biological active ISO can reach 100 to 1,000-times of the level of 

free estrogens. This is due to the lower binding affinity of ISO to sexual-hormone-

binding globulines (Limer & Speirs, 2004). 
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Soy intake in the Asian population consuming a traditional diet range between 6 and 

11 g soy protein per day, resulting in 25–50 mg ISO (calculated as aglykone). About 

10 % of the Asians reach a high intake of 25 g soy protein per day (100 mg ISO as 

aglykone equivalent). In contrast, consumption of less than 1 mg soy protein per day 

is common in Europe (Adlercreutz, 1998; Setchell & Cassidy, 1999; Munro et al., 

2003; Sirtori et al., 2005). Beside differences in the daily ISO uptake, the exposure 

pattern differs between both populations. In Asia, relative large amounts of soy 

products are consumed throughout life, which result in an ISO exposure already in 

utero, because the fetus is exposed to the same ISO levels as found in the maternal 

circulation during pregnancy (Doerge et al., 2006). On the contrary, most European 

people do not consume large amounts of soy products in their life. In the last years, 

soy-based supplements are advertised as an effective and side-effect-free 

alternative to hormone replacement therapy in postmenopausal women. The users 

of these supplements are exposed to high doses of ISO in a purified form for the first 

time in their life in a late adult stage. The dosage of the soy-based dietary 

supplements varies between 20 and 80 mg ISO/day, but sometimes doses up to 

150 mg ISO/day are recommended (Wei et al., 2012; Ferrari, 2009).  

Although no harmful effects of soy ISO has been described so far if the consumption 

occurred as a regular part of the diet, the effects of isolated and/or high-dosed ISO 

consumption are discussed controversial. Health beneficial declarations of soy-

based dietary supplements usually refer to Asian populations and their consumption 

of soy, whereas epidemiologic studies in European populations have shown that the 

efficiency of ISO to treat hormone dependent diseases is questionable (Tomar & 

Shiao, 2008; Wu et al., 2008).  

Cell culture and animal studies even indicate that ISO increase the risk of breast 

cancer, especially estrogen-dependent carcinomas, because of their estrogenic 

activity. Furthermore, it has been shown that the stimulating effects of GEN on 

tumor growth depend on ISO concentration and estrogen status (Wang et al., 1996; 

Ju et al., 2006). Also, results of animal studies have indicated that ISO may either 

prevent or promote carcinogenesis, depending partly on the developmental stage of 

the animal and mostly on factors that have not yet been understood. Additionally, 

animal studies indicate that ISO exposure during pre-puberty provide protection 

against breast cancer later in life. In rats, pre-pubertal exposure to GEN until 

postnatal day 20 resulted in altered morphology of mammary glands, reduced 

numbers of terminal end buds, increased lobular differentiation, and reduced breast 
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cancer incidence when tumor growth was subsequently induced by carcinogen 

treatment (Warri et al., 2008).  

Regarding the intestine, several in vitro and in vivo studies showed that GEN and E2 

are able to influence intestinal homeostasis, whereas the results of these studies 

remain conflicting (Booth et al., 1999a; Booth et al., 1999b; Chen et al., 2005; Javid 

et al., 2005; Weige et al., 2009). It is assumed that GEN and E2 exert their effects in 

the intestine via activating the ERβ. It has been shown that over-expression of ERβ 

resulted in a reduction of proliferation in human cancer cells, suggesting that some 

key regulators of the cell cycle are modulated by the ERβ (Martineti et al., 2005). 

Altogether, GEN as a ligand of the ERβ may serve as potential regulators of 

intestinal tissue, whereas the underlying mechanisms are still unclear. 

Given the challenge to transfer data from animal models to the human situation, a 

number of clinical studies have investigated the effects of ISO exposure on human 

breast and intestine so far, but the results of these studies are conflicting and did not 

provide clear evidence with respect to health risks or benefits of ISO uptake 

(Nagata, 2010; Adlercreutz & Mazur, 1997; Setchell & Cassidy, 1999; Messina & 

Loprinzi, 2001; Adams et al., 2005; Duffy et al., 2007; Mense et al., 2008; Yang et 

al., 2009). This may be due to limitations of the study designs, such as the lack of 

suitable control groups, variations in or even unknown composition of the consumed 

products or limited number of readouts. It is questionable whether further clinical 

and epidemiologic studies alone will provide sufficient data to answer all the 

questions regarding the effect of ISO exposure on risk of breast and bowel cancer. 

To improve the knowledge about the apparently contradictory effects of ISO the 

underlying molecular mechanisms have to be investigated. 

To our knowledge, no data exists regarding the impact of lifelong exposure to ISO 

on estrogen sensitivity of the mammary gland and on tissue homeostasis of the 

small intestine of females. The present thesis should make an important contribution 

to understand molecular mechanisms that are affected by ISO and whether intake of 

ISO may be protective or adverse with respect to the risk of developing breast and 

bowel cancer. 
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OBJECTIVES OF THE THESIS 

 

The main research objective of the present thesis is to improve knowledge about the 

beneficial or adverse effects of ISO on the mammary gland and the small intestine. 

In order to make a contribution to the elucidation of involved molecular mechanisms, 

the major aim of this thesis was to investigate effects of lifelong ISO exposure on the 

estrogen sensitivity of the mammary gland and the small intestine of female rats. For 

this purpose, the thesis addresses the following three key research questions: 

 

• CHAPTER TWO: 

Is the estrogen sensitivity of the mammary gland influenced by in utero and 

postnatal exposure to soy ISO or to solely GEN via diet? 

 

• CHAPTER THREE: 

In which way is the tissue homeostasis of the small intestine of female rats 

modulated by lifelong exposure to ISO or to GEN? 

 

• CHAPTER FOUR: 

How important is the time of ISO exposure for their protective effects on the 

mammary gland? 
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CHAPTER TWO 

 

 

In utero and postnatal exposure to isoflavones results in a reduced 

responsivity of the mammary gland towards estradiol* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*published in Mol Nutr Food Res 2012; 56(3):399-409.  
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Abstract: 

Scope: Exposure scenarios during different stages of development of an organism 

are discussed to trigger adverse and beneficial effects of isoflavones (ISO). The aim 

of this study was to investigate how in utero and postnatal ISO exposure modulates 

the estrogen sensitivity of the mammary gland and to identify underlying molecular 

mechanisms.  

Methods and results: Therefore rats were exposed to either ISO-free (IDD), ISO-

rich (IRD) or genistein rich diet (GRD), up to young adulthood. Proliferative activity 

(PCNA expression) in the mammary gland at different ages and the estrogen 

sensitivity of the mammary gland to estradiol (E2) or genistein (GEN) in adult 

ovariectomized animals was determined and compared to the different treatments. 

Treatment with E2 resulted in a significant lower proliferative and estrogenic 

response of the mammary gland in IRD and GRD compared to IDD. This correlates 

to a change in the gene expression pattern and a decrease in the ratio of estrogen 

receptor alpha (ERα) beta (ERβ).  

Conclusion: Our results provide evidence that in utero and postnatal exposure to a 

diet rich in ISO but also to GEN reduces the sensitivity of the mammary gland 

towards estrogens and support the hypothesis that in utero and postnatal ISO 

exposure reduces the risk to develop breast cancer. 
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Introduction: 

The incidence of breast cancer in Eastern Asia is approximately 3-time lower than in 

western countries (Mense et al., 2008). It has been hypothesized that nutrition plays 

an important role in the prevention of hormone dependent breast cancer 

(Adlercreutz & Mazur, 1997). The traditional East Asian diet includes soy, which is 

the main source of isoflavones (ISO), belonging to the class of phytoestrogens. Soy 

ISO show a polyphenolic non-steroidal structure and their hydroxyl groups at C-7 of 

the A-ring and C-4´of the B-Ring of the ISO skeleton exhibit a distance similar to 

those of the endogenous estrogens. Because of this similarity, ISO exert the ability 

to bind to both estrogen receptor subtypes (ER), with a higher affinity to the ERβ, 

and subsequently initiate estrogen-dependent transcription (Newbold et al., 2001).  

The estrogenic potency of ISO is much lower compared to estrogens, but the 

circulating concentration of ISO can reach much higher levels after ingestion of soy 

food or soy-derived dietary supplements. The daily uptake of soy ISO in the various 

Asian countries range around 20–50 mg, resulting in ISO plasma concentrations of 

870 nM, while the Western population ingests 1 mg ISO per day (Setchell & 

Lydeking-Olsen, 2003), which lead to plasma concentrations of ISO as low as 10 nM 

(Adlercreutz et al., 1993). Intake of ISO via supplements normally range between 20 

and 80 mg/day, resulting in ISO plasma concentrations in the range of 1–3 µM. 

Whether effects of ISO are beneficial or not is controversially discussed. A 

protective effect of ISO towards bone health is described in animal studies (Branca, 

2003; Hertrampf et al., 2009a; Hertrampf et al., 2009b), although questionable for 

the human situation as neither a randomized double blind placebo controlled study 

nor a recent meta-analysis were able to provide evidence (Brink et al., 2008; Liu et 

al., 2009). A benefit of ISO on hot flushes is also controversially discussed (Ferrari, 

2009; Jacobs et al., 2009).  

The same controversy exists regarding the outcome of ISO intake in respect to 

breast cancer. For example in an animal model which mimics key aspects of 

postmenopausal conditions by inoculating MCF-7 breast cancer cells into 

immunodeficient nude mice an increase in breast tumor growth was detected after 

treatment with GEN (Ju et al., 2006). In vitro for MCF-7 breast cancer cells a 

biphasic effect on cell growth dependent on concentration could be observed in 

response to GEN (Wang et al., 1996). The National Toxicology Program (NTP) 

conducted a two years multigenerational GEN study in Sprague Dawley rats, which 

was recently reviewed by Doerge (Doerge, 2011). The key results relevant to this 
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study were that depending on the study arm a trend for increased incidences of 

mammary adenoma and adenocarcinoma could be observed in the 5 ppm and 100 

ppm GEN feeding group, which although the absolute numbers were relatively low, 

reached statistical significance in the 500 ppm feeding group (Doerge, 2011; 2008a; 

2008b). However, there is also evidence that in utero and postnatal or neonatal ISO 

or GEN exposure may protect against breast cancer (Whitsett & Lamartiniere, 2006; 

Lee et al., 2009). In addition, soy ISO intake was found to be inversely correlated to 

mortality and recurrence from breast cancer. 

To understand these controversial results it is important to have a closer look 

towards the risk factors involved in the development of breast cancer. Risk factors 

for breast cancer are early onset of menarche, late onset of menopause and high 

amounts of free circulating E2 in the serum of post-menopausal women (Toniolo et 

al., 1995; Lu et al., 1996; Hulka & Moorman, 2001). ISO has the ability to increase 

the amount of sex hormone binding globuline, which results in a reduction of free, 

bioavailable circulating estrogens (Adlercreutz et al., 1987). This conforms to the 

fact that compared to Western women the free serum-estradiol levels of Asian 

women are 40 % lower (Peeters et al., 2003). Beside the concentration of circulating 

estrogens also the estrogen sensitivity of the non-malignant breast tissue may be 

altered by ISO. There is evidence that ISO may influence the development of the 

mammary gland, starting already in utero. A rudimentary gland is present at birth, 

and during puberty, hormone-dependent development of the mammary gland occurs 

(Lanigan et al., 2007). Various studies suggest a protective effect of ISO if the 

ingestion starts before onset of puberty (Limer & Speirs, 2004; Browning et al., 

2005). Furthermore, it has been shown that pre-pubertal exposure to GEN alters the 

development of the mammary gland (Warri et al., 2008). Hence, it seems 

reasonable that the exposure to ISO has to begin before pubertal breast 

development starts in order to exert protective effects as recently proposed 

(Messina & Hilakivi-Clarke, 2009). 

Information whether the ISO exposure during puberty and in further developmental 

stages alters the sensitivity of breast tissue towards estrogens or ISO in 

postmenopausal woman is still limited. However, as recently reviewed the degree of 

maturation of terminal end buds appears to play a key role (Jenkins et al., 2012). 

While studies investigating environmental endocrine disrupters, e.g. bisphenol A, 

suggest that early embryonic exposure significantly impacts on tissue 

(patho)physiology and hormone responsiveness later in life by delaying maturation 

(Betancourt et al., 2010), the tumor preventive effect of neonatally administered 
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GEN appears to occur through advanced differentiation of these glandular structures 

which is paralleled by alterations in cell proliferation and apoptosis as well as up-

regulation of tumor-suppressor genes (reviewed in (Jenkins et al., 2012; Whitsett & 

Lamartiniere, 2006)). Taking into consideration that manufacturers advertise dietary 

soy supplements as an effective alternative to conventional HRT without adverse 

side effects, the understanding of the consequences of an early ISO exposure 

seems of fundamental importance. 

The aim of this study was to investigate the effect of in utero and postnatal ISO 

exposure on estrogen sensitivity of the mammary gland in adult intact and 

ovariectomized female rats. The animals were fed diets containing different amounts 

of ISO. The ISO exposure was initiated in utero, maintained during neonatal, and 

pre-pubertal stages of development and adhered until adulthood. It is well known 

that an increased cell proliferation rate is associated with a high risk of developing 

breast cancer. For that reason the proliferation in the mammary gland was 

determined as a biological endpoint for estrogen sensitivity. In addition, the 

expression of the progesterone receptor (PR), the estrogen receptor α (ERα) and 

estrogen receptor β (ERβ) and PS2 was investigated.  
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Materials and Methods 

Experimental animals and study design 

All animal handling and experimental conditions were carried out according to the 

“Institutional Animal Care and Use Committee guidelines”, regulated by the German 

federal law for animal welfare (Permission Number 50.203.2-K15). 

Wistar rats were obtained from Janvier (Le Genest St Isle, France) and kept under 

controlled conditions of temperature (20°C ± 1), relative humidity (50–80 %) and 

illumination (12 h dark, 12 h light). Female rats were mated and the dams (7 in each 

dietary group) were fed one of the three diets during pregnancy and nursing. After 

weaning the female offspring of each nutrition group (30 each group) was randomly 

assigned to five treatment groups (6 each group), to make sure that pups from 

different mothers generate a group. These rats had ad libitum access to the 

appropriate diet and water. 

 

Fig. 1: Timeline and experimental setting of the study depicting modes of isoflavone exposure (in 

utero, lactational, and dietary) and points of time for analysis. A In intact PND 50 and PND 80 the ISO 

content were measured in the serum and the proliferation were determined in the mammary gland. B 

After ovariectomie on PND 80, animals were treated with E2, GEN, or the vehicle from PND 94 up to 

PND 97 and were sacrified afterwards. In these animals the proliferation and the estrogenic response 

of the mammary gland were determined. 
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The first subgroup was sacrificed on postnatal day (PND) 50 (puberty), the second 

on PND 80 (adult). The other three subgroups of each nutrition group were 

ovariectomized at day 80. After 14 days of hormonal decline an uterotrophic assay 

was performed at day 94. These rats then received 17β-estradiol (E2; 7.8 µg/kg 

BW/day), genistein (GEN; 19.6 mg/kg BW/day), or the vehicle solely (OVX) 

subcutaneously for three days before they were sacrificed (PND 97). The estrogenic 

compounds were solved in 20 % DMSO/peanutoil. 

 

Diets 

The animals had free access to one of three diets containing different amount of 

ISO: an ISO-depleted diet (IDD; Ssniff R/M-H Ssniff GmbH, Soest, Germany), an 

ISO-rich diet (IRD; Harlan Teklad 8604 rodent diet, Harlan Winkelmann, Borchen, 

Germany), or an IDD supplemented with 700 µg GEN (GRD; 4´,5,7-

trihydroxyisoflavone, LC Laboratories, Woburn, USA). The compositions of the diets 

are depicted in Table 1. 

 

      IDD   IRD 

Brutto energy (kcal/g)   4   3.93 

Metabolizable Energy (kcal/g) 3   3.3 

Crude protein (%)   19.3   24.0 

Crude fat (%)    3.3   4.0 

Crude fiber (%)   4.4   4.5 

N-free extractive (%)   55.1   46.64 

C18:2 (Linols) (%)   1.49   1,87  

 

Tab. 1: Composition of the different diets. IDD = Isoflavone depleted diet (Ssniff). IRD = Isoflavone rich 

diet (Harlan Teklad) 

 

Indicated by the manufactures the protein source in the Ssniff R/M-H diet is cereals 

and potatoes, in the Harlan Teklad 8604 rodent diet soy, fish meal and yeast. The 

choice of these diets and the respective ISO content was based on results of former 

studies. In previous experiments of our laboratory, an oral dose up to 50 mg GEN 

per kg did not affect the uterine wet weights (Diel et al., 2001), while an oral GEN 
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dose of 100 mg/kg results in effects on several tissues in the animals (Seibel et al., 

2009). This very high dose is representative for an exposure scenario depicting 

supplementation with soy extracts or pure GEN. In contrast, in the used IRD the 

source of the high content of ISO is dehulled soybean meal. Based on the data from 

previous studies, where ISO-content of rodent diets from different vendors was 

analysed and compared (Degen et al., 2002), the ISO-rich diet (IRD) from Harlan-

Winkelmann was chosen because of its high ISO content. This diet depicts more an 

exposure scenario of an ISO-rich nutrition like consumed in Eastern Asia. 

Given the ISO content and daily food consumption (18–20 g/d/animal), the average 

oral intake resulted in 13.5 mg/kg BW for DAI and 15.7 mg/kg BW for GEN per adult 

animal in the IRD group, 42 mg/kg BW per adult animal and day for GEN in the 

GRD group, and less than 0.1 mg DAI or GEN/kg BW per day in the IDD group. 

 

ISO Standards 

The ISO aglycones daidzein, genistein, glycitein, their corresponding 7-O-ß-

glucosides daidzin, genistin, glycitin, as well as 6’’-O-acetyl-daidzin, -genistin and -

glycitin and 6’’-O-malonyl-daidzin, -genistin and -glycitin were obtained from Wako 

Chemicals GmbH (Neuss, Germany). Purity of the standard compounds was not 

less than 97 % (determined by HPLC/DAD analysis at 250 nm). 

 

Tissue preparation 

After weighing, animals were decapitated and blood was collected. The mammary 

gland and the uterus were removed and the uterus wet weights were determined. 

Specimen of each tissue were either snap frozen in liquid nitrogen for mRNA and 

protein preparation or fixed and embedded in paraffin for histological analysis. 

 

Quantification of ISO derivatives in the diet by HPLC/DAD analysis 

The pelleted diets IRD and IDD were crushed using mortar and pestle. Approx. 250 

mg of an accurately weighted sample of each homogenized diet powder were 

vortexed for 30 s in exactly 40 mL 65 % (v/v) methanol and extracted gently for 60 

min at room temperature using an overhead rotation shaker. The suspensions were 

centrifuged at 8600 g for 5 min and filtered using 15 mm 0.45 um PTFE syringe 
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filters. The filtrate was diluted by pipetting 1 ml of the solution into a 50 ml graduated 

flask and make up to the mark with 65 % (v/v) methanol.  

The LC-DAD analyses were performed on a Shimadzu LC system equipped with a 

controller (CBM-20A), a degasser (DGU-20A3), two pumps (LC-20AD), an 

autosampler (SIL-20AC HT), a column oven (CTO-20AC) and a diode array detector 

(SPD-M20A). The LC system was controlled by the software LC solution 1.24. 

Separation of the ISO derivatives was performed on a Phenomenex Kinetex PFP 

column (3.0 mm internal diameter, 100 mm length, 2.6 µm) with an oven 

temperature of 35°C. Solvent A was 0.1 % (v/v) formic acid in bidest. water and 

solvent B was acetonitrile (VWR, LC grade). Flow rate was 0.7 ml/min, the injection 

volume 10 µl. The LC gradient started with an initial period of 3 min at 10 % B, 

increasing linearly to 45 % B at 12 min, and finally to 100 % at 12.5–15.5 min, re-

equilibrating the system in a 7.5 min postrun (10 % B). Eluent was monitored 

between 200 and 500 nm using diode array detection. Peaks were integrated at 250 

nm. The identity of each compound was confirmed by the retention time and the UV-

Vis spectra. The limit of quantification (LOQ) and lowest calibration point was 0.8 

nmol for all target analytes. 

 

Measurement of the GEN and DAI serum concentrations 

GEN and DAI were quantified in the serum samples (100 µl) by capillary gas 

chromatography-mass spectrometry (1200 Varian Triple Quadruole system) as 

previously described in detail (Rufer et al., 2008) with the exception that the 

derivatization of the ISO was performed using N-(tert-butyldimethylsilyl)-N-

methyltrifluoroacetamide with 1 % tert-butyldimethylchlorosilane (Sigma-Aldrich, 

Taufkirchen, Germany). The two stable isotopically labeled ISO, [3,4,8-

13C3]daidzein, and [3,4,1′-13C3]genistein (Nigel Botting, University of St Andrews, 

UK) were used as internal standard compounds. 

 

Western Blot analysis 

Frozen mammary gland tissue specimen was powdered and homogenized in buffer 

(623.5 nM Tris pH 8 EDTA) containing enzyme inhibitors (5 mg/ml aprotonin, 5 

mg/ml leupeptin, 1 mg/ml pepstatin-A, 5 mg/ml antipain, 100 mM pefac in 0.5 M 

EDTA pH 8). Protein concentrations were measured with the method of Lowry 
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(Lowry et al., 1951) (Dc Protein Assay, Bio-Rad). Equal amounts of samples (40 µg 

protein) were loaded on 4–12 % Bis-Tris NUPAGE® Novex Gels (Invitrogen Life 

Technologies, Karlsruhe, Germany). For the electrophoresis the MES Buffer was 

used (Invitrogen Life Technologies, Karlsruhe, Germany). After electrophoresis the 

proteins were transferred onto nitrocellulose membranes and blocked with 5 % BSA 

in phosphate buffered saline solution at room temperature for 1 hour. The protein 

expressions of actin and PCNA were quantitative detected using specific antibodies 

(Anti Actin A 5060, Sigma-Aldrich, Taufkirchen, Germany; Anti PCNA M0879, Dako, 

Glostrup, Denmark). As species specific antibodies the Horseradish Peroxidase 

conjugated Polyclonal Rabbit Anti Mouse (Dako, Glostrup, Denmark) and Polyclonal 

Swine Anti Rabbit (Dako, Glostrup, Denmark) were used. The visualization of the 

blot signals was performed with the chemiluminescent POD-substrate and a 

Fluorchem Luminescent Imager. The densitometrical analysis was performed with 

the Image J program (ImageJ 1.33u, National Institute of Health, USA, 

http://rsb.info.nih.gov/ij/). Actin was used as reference protein and served as loading 

control. 

 

Immunhistochemical analysis 

The paraffin-embedded mammary glands were cut in 7 µm sections and were 

mounted on slides coated with polylysine (Menzel Gläser, Hilden, Germany). The 

mammary gland tissue was cleared, hydrated and antigen retrieval was performed 

using TrisEDTA. After overnight incubation in TrisEDTA at 60°C, the mammary 

gland tissues were washed four times with phosphate buffered saline (PBS). Then 

the tissue was incubated with a solution consisting of 0.5 M ammoniumchloride in 

0.25 % Triton-X/PBS for 10 min. After four wash steps the unspecific binding sites 

were blocked with 5 % BSA for one hour. Then the mammary gland tissue sections 

were incubated with the first antibody (Anti PCNA M0879, Dako, Glostrup, Denmark; 

Anti PR 1408, Beckman Coulter, Marseille, France; Anti ERβ (H-150) sc-8974, 

Santa Cruz Biotechnology, Santa Cruz, USA) at 4°C overnight. After 4 washsteps 

the second antibody (Polyclonal Rabbit Anti Mouse biotinylated, Dako, Glostrup, 

Denmark; Polyclonal Goat Anti Rabbit biotinylated, Dako, Glostrup, Denmark) was 

incubated for one hour at room temperature. To visualize the binding of the PCNA 

antibody, the tissue sections were incubated with FluoroLinkTM CyTM3 labelled 

streptavidin (PA 43001, Amersham Biosciences). To depict the percentage of 

proliferating nuclei, all nuclei were stained with DAPI (4´,6-Diamidino-2-
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phenylindole, D 9542, Sigma-Aldrich, Taufkirchen, Germany). Per slide 300 nuclei 

were analysed for PCNA expression and the percentage of PCNA-positive nuclei 

was calculated. In order to visualize the binding of the PR and the ERβ antibody, the 

tissue sections were incubated with Streptavidin-Biotinylated Horseradish 

Peroxidase Complex (RPN1051, GE Healthcare, Buckinghamshire, UK) and stained 

with Diaminobenzidin (DAB). 300 nuclei were counted per slide, and the percentage 

of PR positive nuclei was calculated. Staining of ERβ was utilized by densitometrical 

analysis using the Image J program (ImageJ 1.33u, National Institute of Health, 

USA, http://rsb.info.nih.gov/ij/). 

 

RNA preparation 

Frozen mammary gland tissue specimen was powdered and homogenized in 

TRIzol
®
. Total RNA was isolated from cells using the TRIzol

®
 (Invitrogen Life 

Technologies, Karlsruhe, Germany) standard protocol (Chomczynski & Sacchi, 

1987) followed by cDNA synthesis with the Quantitect® Reverse Transcription Kit 

(Quiagen, Hilden, Germany). 

 

Real-time RT-PCR 

Quantitative Real-time RT-PCR was performed in the MxPRO (Stratagene) with 

Platinum® Taq DNA Polymerase (Invitrogen, Karlsruhe, Germany). SybrGreen I® 

was used as detection dye. The Cytochrome-C-oxidase subunit 1A (1A) was used 

as housekeeping gene, and the expression of all genes was normalized to 1A. 

Specific primers were designed with the primer3 software (Whitehead Institute for 

Biomedical Research, Cambridge, USA) based on the cDNA sequences available at 

the EMBL database: 1A: up: 5’-CGTCACAGCCCATGCATTCG-3 ‘, dw: 5’-

CTGTTCATCCTGTTCCAGCTC-3 ‘; PR: up: 5’-CATGTCAGTGGACAGATGCT-3’ ‘, 

dw. 5’-ACTTCAGACATCATTTCCGG-3 ‘; PS2: up: 5´-

GGAAAGGGTTGCTGTTTTG-3´, dw: 5´-ACAGGTGTGTATGAAGCAGGTG-3´; 

ERα: up: 5´-GGAAGCACAAGCGTCAGAGAGAT-3´, dw: 5´-

AGACCAGACCAATCATCAGGAT-3´. The PCR program consisted of a first 

denaturation step at 95°C for 4 min, followed by 45 cycles of 30 sec at 94°C, 30 sec 

at 60°C and 30 sec at 72°C. The fluorescence was quantified during the 72°C 

elongation step and the product formation was confirmed by melting curve analysis 
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(55–95°C). For calculation of relative rates of gene expression the ∆∆CT method 

was used (Pfaffl, 2001). Gene expressions were compared to those of control 

animals fed with the ISO-free diet.  

 

Statistical analysis 

Statistical analysis was performed using the SPSS Statistical Analysis System, SAS, 

Version 12.0. All data are expressed as arithmetic means with their standard 

deviations. First a global Kruskal Wallis-H-Test was performed to analyse if there 

are significant differences between the groups. In case of differences, a Mann-

Whitney U-Test was additionally performed to identify the groups with statistical 

significant variance. Statistical significance was established at p < 0.05. 
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Results 

The experimental design of this study is depicted in Figure 1. The animals of this 

experiment received one of three different diets. The IDD contains no detectable 

amounts of ISO (< 10 µg/g). The IRD contains 248 µg GEN/g, 213 µg DAI/g and 59 

µg GLY/g (each calculated as aglykone). ISO in the diet were mainly (> 90 %) 

present as the respective glucoside and malonyl-glucoside derivatives. A detailed 

analysis of the ISO derivatives in the diet is given in Table 2. The GRD based on an 

IDD, enriched with 700 µg GEN/g (Hertrampf et al., 2009a). 

 

ISO derivative  MW  mean value mean value calculated  
      as 
      aglycone  
[g/mol] µg/g IRD µM/g IRD µg/g IRD 

Daidzein   254.24  8.83  0.035  8.83 

Genistein   270.24  8.59  0.032  8.59 

Glycitein   284.27  n.d.  -  - 

Daidzin   416.38  191.96  0.461  117.21 

Genistin   432.38  210.63  0.487  131.64 

Glycitin   446.40  58.82  0.132  37.46 

6''-O-Acetyl-Daidzin  458.41  48.21  0.105  26.73 

6''-O-Acetyl-Genistin  474.41  51.18  0.108  29.17 

6''-O-Acetyl-Glycitin  488.44  12.68  0.026  7.39 

6''-O-Malonyl-Daidzin  502.42  119.25  0.237  60.32 

6''-O-Malonyl-Genistin 518.42  150.04  0.289  78.19 

6''-O-Malonyl-Glycitin  532.45  26.28  0.049  14.04 

 

Sum of daidzein derivatives calculated as Daidzein aglycone in µg/g IRD  213.09 

Sum of genistein derivatives calculated as genistein aglycone in µg/g IRD 247.59 

Sum of glycitein derivatives calculated as glyciteinaglycone in µg/g IRD  58.89 

 

Tab. 2: Content of ISO derivatives in the ISO-rich diet (IRD). (nd = not detected) 
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Serum concentrations of GEN and DAI were measured at PND 50 and PND 80 

(Tab. 3). As expected, the serum concentrations of GEN and DAI significantly 

increased with the increasing ISO content in the diet. No differences were detected 

between PND 50 and PND 80.  

 

DAI (µM)  GEN (µM) 

PND 50 IDD  n.d.  0.24 ± 0.01  

   IRD  1.70 ± 0.67 1.09 ± 0.13* 

   GRD   n.d.  2.55 ± 0.23**++ 

PND 80  IDD  0.11 ± 0.24 0.26 ± 0.02 

IRD  2.15 ± 1,75 1.17 ± 0.31* 

GRD  0.21± 0.29 2.49 ± 0.44**+ 

 

Tab. 3: Genistein and Daidzein concentration (in µM) in the blood serum of 50 (PND 50) and 80 (PND 

80) days old rats. * = sign. vs. IDD (p < 0.05),** = sign. vs. IDD (p < 0.01), 
+
 = sign. vs IRD (p < 0.05), 

++
 

= sign. vs. IRD (p < 0.01); (Kruskal-Wallis H-Test followed by a Mann-Whitney U-Test) 
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As depicted in Table 4, neither treatment nor nutrition had influenced the body 

weights or the heart weights. The wet weights of the uteri significantly increased 

after treatment with E2 in all groups compared to their OVX groups. Additionally, IRD 

and GRD animals treated with E2 showed a significant increase in the wet weights of 

the uteri compared to the IDD group. Treatment with GEN had no significant effect 

on uterine wet weights in any group. 

 

 

Body Weight  Uterus   Heart  
(g)    (mg/kg BW) (mg/kg BW) 

PND 50  IDD  156 ± 7  1058 ± 73  3971 ± 178 

IRD  159 ± 6  1687 ± 171  3943 ± 283 

GRD  170 ± 7  1395 ± 223  3912 ± 265 

PND 80  IDD  251 ± 14  1110 ± 179  3347 ± 272 

  IRD  227 ± 3  1254 ± 222  3199 ± 215 

GRD  249 ± 10  1237 ± 206  2970 ± 272 

OVX  IDD  296 ± 7  469 ± 23  3370 ± 104 

IRD  299 ± 10  636 ± 39  3365 ± 122 

GRD  294 ± 11  553 ± 43  3273 ± 34 

E2  IDD  269 ± 13  1804 ± 124 **  3443 ± 112 

  IRD  286 ± 10  5620 ± 750 **++ 3533 ± 57 

  GRD  295 ± 6  5104 ± 372 **++ 3470 ± 68 

GEN  IDD  264 ± 8  527 ± 44  3615 ± 124 

  IRD  280 ± 10  712 ± 68  3475 ± 80 

  GRD  320 ± 10  691 ± 71  3306 ± 117 

 

Tab. 4: Body weights (g), uterus wet weights (mg/kg BW), heart weight (mg/kg BW). ** p < 0.01 vs. 

IDD OVX; 
++

 p < 0.01 vs. IDD E2; (Kruskal-Wallis H-Test followed by a Mann-Whitney U-Test) 
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To evaluate the influence of ISO on proliferation of the mammary gland, the protein 

expression of the Proliferating Cell Nuclear Antigen (PCNA) was determined. 

Western Blot analysis of PCNA showed a significant increase in the GRD fed 

animals compared to the IDD and IRD group at PND 50, but no differences were 

detected in PCNA expression at PND 80 in intact animals (Fig. 2). 
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Fig. 2: Protein expression of PCNA in the mammary gland of intact 50 and 80 days old rats. Depicted 

is a representative Western Blot of PCNA in intact animals and the quantitative analysis of the Western 

blots. IDD PND 50 served as control and were set to one. The bars shown are mean +SD. Six rats 

were included to each group. * = sign. vs. IDD PND 50 (p < 0.05); 
+
 = sign. vs. IRD PND 50 (p < 0.05); 

(Kruskal-Wallis H-Test followed by a Mann-Whitney U-Test) 

 

To investigate the influence of in utero and postnatal exposure to ISO on the 

sensitivity of the mammary gland towards estrogen exposure mammary gland tissue 

obtained from rats used in an uterotrophic assay was examined. Immunfluorescence 

analysis of the mammary gland of OVX animals showed no differences in the PCNA 

expression in the OVX animals of either diet, whereas treatment with E2 led to an 

increased proliferation rate (Fig. 3 A). No differences could be seen in GEN treated 

groups.  

+ 
* 
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Fig. 3: Protein expression of PCNA in the mammary gland of 97 days old ovariectomized animals. A 

Representative pictures of Immunhistochemical stained sections of the mammary gland. Proliferating 

nuclei were stained with PCNA labelled with Cy3 (black). Stained grey with DAPI are all nuclei. B 

Quantitative analysis of PCNA staining. C Depicted is a representative Western Blot of PCNA in the 

mammary gland of OVX rats and the quantitative analysis of the Western blots. IDD OVX served as 

control and were set to one. The bars shown are mean +SD. Six rats were included to each group. * = 

sign. vs. IDD OVX (p < 0.05); 
+
 = sign. vs. IDD E2 (p < 0.05); (Kruskal-Wallis H-Test followed by a 

Mann-Whitney U-Test) 
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Quantitative analysis showed a significant increase of PCNA expression in the E2 

treated groups compared to the OVX groups. Interestingly, after pre-exposure to 

IRD and GRD the E2 stimulation of PCNA protein expression detectable in IDD was 

found to be significantly diminished (Fig. 3 B). The observation was verified with 

western blot analysis. As in the immunfluorescence analysis, no differences in OVX 

and GEN treated animals were detected, but a significant increase in PCNA 

expression in IDD fed animals treated with E2 (Fig. 3 C). The IRD showed no 

increase in PCNA expression after E2 treatment, while in the GRD group an 

increase in PCNA expression was detected. 

A well established marker for estrogen action in the mammary gland is the 

progesterone receptor (PR) bearing an estrogen response element (ERE) in its 

promoter (Kraus et al., 1993). Immunhistochemical analysis of PR expression in the 

mammary gland revealed only a slight expression in OVX and GEN treated groups. 

E2 treatment results in a significant increase of PR staining in all groups (Fig. 4 A). 

Quantitative analysis of the immunhistochemical staining indicated that the increase 

was significant higher in the animals which received in utero and postnatal an IDD 

(Fig. 4 B). This observation was confirmed by semi-quantitative analysis of PR 

mRNA expression (Fig. 4 C). None of the GEN-treated groups showed differences 

in the mRNA expression of PR compared to the OVX groups. 
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Fig. 4: Expression of the progesterone receptor (PR) in the mammary gland of 97 days old 

ovariectomized rats. A Protein expression of the PR. Depicted are representative pictures of 

immunhistochemical stained sections of the mammary gland. B Quantitative analysis of PR staining. C 

mRNA expression of the PR in the mammary gland. IDD OVX served as control and were set to one. 

The bars shown are mean +SD. Six rats were included to each group. * = sign. vs IDD OVX (p < 0.05); 

+ = sign. vs. IDD E2 (p < 0.05); (Kruskal-Wallis H-Test followed by a Mann-Whitney U-Test) 
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Beside PR, the expression of the estrogen receptor α (ERα) and the PS2 gene was 

measured in the mammary gland using real-time RT-PCR. For ERα it has been 

demonstrated that mRNA and protein expression show a good regulation in this 

tissue (Schams et al., 2003). As shown in Figure 5 A, in utero and postnatal 

exposure to an IRD showed only a slight increase of ERα mRNA expression in OVX 

animals, while treatment with E2 resulted in a significant increase in ERα expression 

in the animals fed in utero and postnatal an IDD compared to those fed an IRD or 

GRD. PS2 expression (Fig. 5 B) was increased in OVX IRD and GRD animals 

compared to OVX IDD. E2 treatment resulted in a significant decrease of PS2 

expression in the IDD group but in a strong stimulation of PS2 expression in the IRD 

and GRD group. In response to GEN treatment, no significant differences could be 

measured. 
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Fig. 5: mRNA expression of the estrogen receptor α (ERα) (A) and PS2 (B) in the mammary gland of 

97 days old ovariectomized rats. IDD OVX served as control and were set to one. The bars shown are 

mean +SD. Six rats were included to each group. * = sign. vs. IDD OVX (p < 0.05); 
+
 = sign. vs. IDD E2 

(p < 0.05); (Kruskal-Wallis H-Test followed by a Mann-Whitney U-Test) 

 

To reveal differences in the expression patterns of the estrogen receptors, the 

protein expression of estrogen receptor β (ERβ) were analysed by 

immunhistochemistry (Fig. 6). ERβ staining of the mammary gland showed only 

marginal differences of its expression in the OVX groups (Fig. 6 A). After treatment 

with E2, an increase of expression could be detected in IRD and GRD animals but 

not in animals receiving an IDD. This observation was confirmed by densitometrical 
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analysis (Fig. 6 B). The highest expression of ERβ was measured after treatment of 

GRD animals with GEN. 
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Fig. 6: Expression of the estrogen receptor β (ERβ) in the mammary gland of 97 days old 

ovariecotmized rats. A Protein expression of the ERβ. Depicted are representative pictures of 

immunhistochemical stained sections of the mammary gland. B Densitometric analysis of ERβ staining. 

IDD OVX served as control and were set to one. The bars shown are mean +SD. Six rats were 

included to each group. * = sign. vs. IDD OVX (p < 0.05); 
+
 = sign. vs. IDD E2 (p < 0.05); (Kruskal-

Wallis H-Test followed by a Mann-Whitney U-Test) 
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Discussion: 

Epidemiological studies suggest that soy consumption is associated with a lower 

risk of developing breast cancer in the Asian population. It is hypothesized that the 

exposure to ISO has to start before adolescence sets in to exert protective effects. 

Studies investigating the effects of in utero and postnatal exposure to ISO are still 

inconsistent (Warri et al., 2008). The present study was performed to analyse the 

impact of in utero and postnatal exposure to ISO on the mammary gland. In order to 

make sure that the offspring was exposed to ISO already in utero the dams received 

one of three different diets, respectively. The IRD was chosen because of its high 

ISO content, as the aim of the study was to investigate estrogenic effects of an ISO-

rich diet on the mammary gland. The diets differ in protein and fat content, but in 

order that the IRD exert similar effects as the GRD, we can be sure that these 

differences did not influence the estrogenic response of the mammary gland (Tab. 

1). The long-term exposure to IRD and GRD consequently resulted in increased 

serum concentrations of GEN (Tab. 3). In case of the IRD increased concentrations 

of DAI and its colonic microbiota-derived metabolite equol have additionally to be 

taken into account. Unfortunately we have not determined the serum equol 

concentration in our study, but its remarkable formation in rodents is well described. 

For instance, Poulsen et al. found almost equally high DAI and equol plasma 

concentrations in ovariectomized rats fed a diet supplemented with DAI (Poulsen et 

al., 2009). 

As we observed a strong influence of ISO and GEN exposure on mammary gland 

biology the question arises about a potential developmental origin of these effects. 

Previous studies suggested that the placental transfer of ISO is high, whereas the 

lactational transfer is low to negligible (Doerge, 2011; Doerge et al., 2006). On the 

other hand, even if the lactational transfer seems to be low, quite significant 

alterations of the proteome can be achieved in mammary glands of prepubertal 

animals which were feed by lactating dams which were exposed to a diet containing 

250 ppm of GEN (Wang et al., 1996). Applying these findings to our study it has to 

be assumed that in utero exposure most likely contributes to the effects observed, 

however, a contribution to the effects through lactational exposure cannot be 

excluded. 

As shown in Table 4 and as reported before (Hertrampf et al., 2009a), no 

differences in the uterine wet weights could be detected in 50 and 80 days old intact 

animals, indicating a low estrogenic potential of the different diets. 
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In the first part of the present study the mammary gland was analysed at postnatal 

day (PND) 50 and at PND 80. As shown in Figure 2 no differences could be 

observed between the different dietary groups of 80 days old adult intact animals, 

whereas significant differences were observed at day 50 (Fig. 2), where PCNA 

expression was strongly stimulated in the GRD group. A recent review on xenobiotic 

exposure and breast cancer risk in animal models came to the conclusion that 

acceleration or delay of glandular maturation appears to be a crucial point regarding 

whether exposure to a xenobiotic leads to prevention or increases the risk to 

develop breast cancer (Jenkins et al., 2012). A possible explanation for our effect 

may indeed be an acceleration of the differentiation program of the mammary gland 

in response to GEN treatment which has already been shown by other groups 

(Warri et al., 2008). In fact, in a recent neonatal exposure study a transient, 

statistically not significant increase in Ki-67 immunoreactivity, occurring earlier than 

the increase in PCNA immunoreactivity in our study, was reported in response to 

GEN which decreased statistically significant later in life (Wang et al., 1996). 

To study if in utero and postnatal exposure to IRD or GRD alters the estrogen 

responsiveness of the mammary gland, in OVX animals serving as a model system 

of the situation in postmenopausal woman, an uterotrophic assay was performed. 

As shown in Table 4, E2 exposure always resulted in an increase of uterine wet 

weights, but the uterine weights of IRD and GRD were significantly higher than in 

IDD animals. These data indicate that the estrogen responsiveness of the uterus 

was highly modulated by long-term ISO exposure. Interestingly, no influence on 

uterine proliferation could be observed between the dietary groups after E2 

treatment, whereas the water homeostasis was highly affected. Möller et al. 

speculated that the methylation pattern of genes associated with transcellular water 

transport in the uterus was changed after in utero and postnatal ISO exposure 

(Moller et al., 2010). 

In the mammary gland of OVX IRD, IDD and GRD, similar to intact 80 days old 

animals, there were no significant differences in PCNA expression. In order to 

stimulate cell-proliferation in mammary gland tissue, animals were treated with E2 for 

3 days subcutaneously (s. c). In line with published data (Hertrampf et al., 2006; 

Rimoldi et al., 2007; Rachon et al., 2008) the protein expression of PCNA in the 

mammary gland increased significantly in response to the E2 treatment in all dietary 

groups. In contrast, exposure to GEN had no effect in treatment groups. This 

confirms a previous study from our laboratory (Hertrampf et al., 2006), where neither 

s. c. nor oral treatment with GEN affected the PCNA expression and only slight 



32 

 

effects on the PR expression in the mammary gland of adult OVX Wistar rats could 

be observed. 

A key result of the study presented here is the observation that the E2 induced 

stimulation of mammary gland PCNA expression was significantly lower following 

dietary exposure of animals in IRD and GRD groups if compared to IDD fed animals. 

This strengthens the hypothesis that pretreatment with ISO accounts for a lower 

sensitivity of mammary gland tissue towards estrogen treatment. 

A possible explanation for this altered sensitivity may be the anatomy of the 

mammary gland. Several studies have investigated the effects of in utero, perinatal 

and prepubertal exposure towards ISO on the morphology of the mammary gland 

(Warri et al., 2008). Whereas results obtained for in utero, perinatal and prenatal 

exposure scenarios are not consistent, it has been shown that pre-pubertal 

exposure to GEN increases mammary tissue differentiation by leading to a reduction 

in the number of terminal end buds (TEB) and an increase in the number of 

differentiated lobules (Hilakivi-Clarke et al., 1999; Cotroneo et al., 2002; 

Lamartiniere et al., 2002; Cabanes et al., 2004). It is possible that the lack of 

increased proliferation after treatment with E2 in the IRD fed group is a result of a 

reduced number of TEB in the mammary gland. 

Taken further, the present results show that not only proliferation, but also the 

expression of a variety of estrogen sensitive genes is altered. The expression 

patterns of the PR (Fig. 4) and ERα (Fig. 5 A) are very similar to those of the PCNA 

expression. Both receptors have been implicated in the etiology and the 

pathogenesis of breast cancer. In the normal mammary gland, progesterone is 

needed for lobulo-alveolar development and ductal branching, whilst estradiol 

regulates ductal elongation. Russo et al. (Russo et al., 1999) reported that the 

content of ERα and PR in the lobular structures in the breast is directly proportional 

to the rate of cell proliferation. In normal resting mammary glands, the percentage of 

ERα-positive cells is generally low, and increases in proliferative benign disease, 

particularly when associated with atypia (Roger et al., 2000). Additionally, the dual 

expression of the ER and the proliferating marker Ki-67 seemed to be the 

manifestation of an important early molecular change in the development of 

malignant breast neoplasia (Shoker et al., 1999). Furthermore, an important function 

of the ERα in the epithelium is the induction of PR (Saji et al., 2000), and it is known 

that co-expression of both is inversely associated with breast cancer risk among 

postmenopausal women (Lagiou et al., 2009). 
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Remarkable is the observation regarding the regulation of ERβ by E2 in the different 

nutritional groups. It is hypothesized that one function of ERβ is to counter that of 

ERα (Saji et al., 2005). In vitro studies showed a reduction in estrogen stimulated 

proliferation after introduction of the ERβ expression vector into representative ERα-

positive breast cancer cell lines MCF-7 and T47D (Omoto et al., 2003; Strom et al., 

2004). In line with these observations is our finding that the reduced sensitivity of the 

mammary gland to respond to E2 treatment by proliferation in GRD and IRD fed 

animals was associated with an elevated expression of ERβ (Fig. 6) and a 

decreased expression of ERα (Fig. 5 A). Also notable is the fact that the expression 

pattern of the PS2 gene is similar to that of ERβ (Fig. 5 B). There are speculations 

that high expression levels of PS2 may be protective against the development of 

breast cancer. Transgenic mice, which overexpress PS2 in their mammary gland do 

not develop tumors (Tomasetto et al., 1989). Our observation that PS2 expression 

can be induced by ISO is in line with results of Hargreaves et al. (Hargreaves et al., 

1999) showing that treatment of premenopausal women with dietary soy 

supplements for two weeks results in an increased expression of PS2 in the breast. 

Interestingly, the control of the PS2 gene also depends upon epigenetic factors 

(Chatagnon et al., 2010; Ribieras et al., 1998) as the tissue-specific methylation of 

its proximal promoter/enhancer region correlates directly with its expression (Martin 

et al., 1995; Martin et al., 1997). The increased mRNA expression of PS2 in the IRD 

fed group could lead to the suggestion that ISO could exert their protective effects 

via epigenetic modulation. Indeed, recently a variety of studies have shown 

epigenetic changes induced by ISO (Guerrero-Bosagna et al., 2008; Li et al., 2009; 

Molinie & Georgel, 2009) having positive effects on breast or prostate cancer. 

In summary, our results provide evidence that in utero and postnatal exposure to a 

diet rich in soy ISO in their natural chemical form as β-glucoside conjugates as well 

as to a diet solely enriched with GEN in the aglycone form may alter the gene 

expression of the mammary gland, which consequently results in a changed 

sensitivity of this tissue towards estrogens. This observation leads to the hypothesis, 

that in utero and postnatal ISO exposure may reduce the risk to develop breast 

cancer in a protective manner. To clarify the underlying mechanisms, i.e. if the 

altered susceptibility of the mammary gland is a result of epigenetic mechanisms 

during the development further studies are needed. 
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Lifelong exposure to isoflavones influences the gene expression in the small 

intestine of female rats* 
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Abstract 

Nutritive uptake of isoflavones (ISO) is discussed as one factor responsible for the 

low incidence of gastrointestinal cancer in Eastern Asia. Our aim was to investigate 

the effects of lifelong ISO exposure on the tissue homeostasis and estrogen 

sensitivity in the small intestine of female rats. 

Animals were exposed to either an ISO-free diet (IDD), ISO-rich diet (IRD) or an IDD 

supplemented solely with genistein (GRD). After sacrifice at postnatal days 25 (PND 

25), 50 (PND 50) and 80 (PND 80), the expression of molecular markers for 

proliferation (PCNA), intestinal tumor protection (p63, PS2) and estrogen receptor α 

and β (ERα, ERβ) was analysed in the small intestine. Furthermore, IDD, IRD and 

GRD rats were ovariectomized (PND 80) and treated either with vehicle (OVX) or 

estradiol (E2) for 3 days. 

Lifelong exposure to IRD or GRD results in increased expressions of PCNA and 

PS2 at PND 50 and 80. In ovariectomized animals p63 expression was lower in IRD 

and GRD, whereas E2 treatment resulted in a decrease of p63 in all groups. IRD 

and GRD OVX had lower ERα but higher ERβ expression. The expression of PS2 

was increased in GRD OVX, but decreased in all dietary groups after treatment with 

E2. 

In summary our results provide evidence that lifelong exposure to ISO improves 

intestine homeostasis, and modulate the expression of molecular markers related to 

tumor protection and the responsiveness of this tissue towards E2. Consequently, 

the susceptibility of this tissue to develop cancer is affected. 
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Introduction 

The incidence of gastrointestinal cancer is much lower in Eastern Asia compared to 

Europe or USA (Adlercreutz & Mazur, 1997; Martinez, 2005). Apart from other 

factors epidemiological and migration studies suggests that the soy rich diet 

containing high amounts (20–50 mg isoflavones per day) of the isoflavones (ISO) 

genistein (GEN) and daidzein (DAI) reduces the cancer susceptibility in these 

countries (Budhathoki et al., 2011; Adlercreutz, 1990; Lechner et al., 2005). ISO are 

naturally occurring soy compounds, and are able to bind to the estrogen receptor 

(ER) and initiate estrogenic action.  

Via binding to the ER estrogens are able to mediate the tissue homeostasis in the 

intestine, which is usually characterized by a steady state of proliferation and 

apoptosis (Lechner et al., 2005; Wada-Hiraike et al., 2006; Weige et al., 2009). A 

shift in this homeostasis is an initial event in tumor progression (Koornstra et al., 

2003). That estrogens have an impact on bowel cancer has been described in 1996. 

Di Domenico showed that the growth of the colon cancer cell line Caco-2 increased 

after treatment with Estradiol (E2) (Di Domenico et al., 1996). It has been shown that 

long-term supplementation with synthetic E2 lowers the risk of developing colorectal 

cancer (Nelson et al., 2002; Chlebowski et al., 2004). Many studies regarding the 

health effects of hormone replacement therapy (HRT) showed protective effects of 

estrogen treatment towards the intestine (Nelson et al., 2002; Wada-Hiraike et al., 

2006). 

The predominantly ER in the intestine is the ERβ (Kuiper et al., 1997; Campbell-

Thompson et al., 2001; Konstantinopoulos et al., 2003). Previous studies conducted 

with ERβ-selective ligands or ERβ-Knockout mice showed that activation of the ERβ 

is involved in cellular anti-inflammatory pathways and tissue homeostasis in the 

colon (Harris et al., 2003; Wada-Hiraike et al., 2006; Weige et al., 2009). The 

importance of these effects of the ERβ additional becomes apparent by the 

observation that its expression is significantly reduced in colon cancer cell lines 

(Konstantinopoulos et al., 2003; Jassam et al., 2005; Martineti et al., 2005). In this 

context ERβ-selective compounds seem to be useful in treating disease in the 

intestinal tract via activating the ERβ. 

Due to the specifically high binding affinity of ISO to the ERβ, GEN may serve as a 

potential regulator of intestinal tissue homeostasis. The action of ISO depends on 

several factors. Numerous studies have led to the suggestion that the time of ISO 

exposure is important for their protective effects (Cabanes et al., 2004; Padilla-
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Banks et al., 2006). Additionally, the action of ISO differs dependent on the estrogen 

status. The group of Hwang showed that in the presence of premenopausal level of 

E2 ISO act as estrogen antagonists and thus inhibits estrogenic action, whereas at 

lower E2 doses which occur in postmenopausal women, ISO act as estrogen 

agonists (Hwang et al., 2006).  

While many findings on these effects are available, the data regarding lifelong 

effects of ISO on homeostasis and estrogen sensitivity of the intestine are still 

limited. The purpose of this study was to evaluate the influence of lifelong ISO or 

GEN exposure on tissue homeostasis of the female intestine. Additionally, we aimed 

to analyse whether ISO influences the estrogen responsiveness of this tissue. As 

molecular read out the mRNA expression of markers for proliferation (PCNA), tumor 

protection (p63 and PS2) and of ERα and ERβ was determined in the small 

intestine. 
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Materials and Methods: 

Experimental animals and study design 

All animal handling and experimental conditions were carried out according to the 

“Institutional Animal Care and Use Committee guidelines”, regulated by the German 

federal law for animal welfare. 

Wistar rats were obtained from Janvier (Le Genest St Isle, France) and kept under 

controlled conditions of temperature (20°C ± 1), relative humidity (50–80 %) and 

illumination (12 h dark, 12 h light). Female rats were mated and the dams were fed 

one of three diets during pregnancy and nursing. After weaning the female offspring 

(n = 30 each dietary group) were fed the appropriate diet. The animals had ad 

libitum access to the diets and water. Each dietary group was further divided into 

five subgroups (n = 6 each group). The first subgroup was sacrificed on postnatal 

day (PND) 25 (childhood), the second on PND 50 (puberty), and the third on PND 

80 (adult). The other two subgroups were ovariectomized at day 80. An uterotrophic 

assay was performed at day 94: the animals received either 17β-estradiol (E2; 7.8 

µg/kg BW/day in 20 % DMSO/peanut oil) or purely the vehicle (OVX) 

subcutaneously for three days and were then sacrificed.  

 

Fig. 7: Timeline and experimental setting of the study depicting modes of isoflavone (ISO) exposure (in 

utero, lactational, and dietary). A Intact animals received an ISO-free diet (IDD), an ISO-rich diet (IRD) 

or an IDD supplemented with Genistein (GRD). The small intestine was analysed at postnatal day 
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(PND) 25, 50, and 80. B Animals received an IDD, IRD, or GRD were ovariectomized on PND 80 and 

were treated with E2, or the vehicle from PND 94 up to PND 97. 

 

Diets 

The rats had free access to one of three diets: an ISO-free diet (IDD; SSniff R/M-H, 

Ssniff GmbH, Soest, Germany), an ISO-rich diet (IRD; Harlan Teklad 8604 rodent 

diet, Harlan Winkelmann, Borchen, Germany), or an IDD supplemented with 700 µg 

GEN (GRD; 4´,5,7-trihydroxyisoflavone, LC Laboratories, Woburn, USA) per g diet. 

The IRD contains 248 µg GEN/g, 213 µg DAI/g and 59 µg glycitein/g diet (each 

calculated as aglykone). 

 

Tissue preparation 

Body weights of animals were determined. Afterwards, animals were decapitated 

and blood was collected. The small intestine and the uterus were removed and the 

uterus was weighted. Specimen of each was either snap frozen in liquid nitrogen for 

mRNA and protein preparation. 

 

RNA preparation 

Frozen tissue specimen of the intestine was powdered and homogenized in 

TRIzol
®
. Total RNA was isolated from cells using the TRIzol

®
 (Invitrogen Life 

Technologies, Karlsruhe, Germany) standard protocol (Chomczynski & Sacchi, 

1987) followed by cDNA synthesis with the Quantitect® Reverse Transcription Kit 

(Quiagen, Hilden, Germany). 

 

Real-time RT PCR 

To determine the mRNA expression of ERα, ERβ, p63, PCNA and PS2 quantitative 

real-time RT-PCR was performed in the MxPRO (Stratagene) with Platinum® Taq 

DNA Polymerase (Invitrogen, Karlsruhe, Germany). SybrGreen I® was used as 

detection dye. As housekeeping gene served the Cytochrome-C-oxidase subunit 1A 

(1A), and the expression of all genes was normalized to 1A. Specific primers were 
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designed with the primer3 software (Whitehead Institute for Biomedical Research, 

Cambridge, USA) based on the cDNA sequences available at the EMBL database: 

1A: up: 5’-CGTCACAGCCCATGCATTCG-3 ‘, dw: 5’-

CTGTTCATCCTGTTCCAGCTC-3 ‘; PS2: up: 5´-GGAAAGGGTTGCTGTTTTG-3´, 

dw: 5´-ACAGGTGTGTATGAAGCAGGTG-3´; ERα: up: 5´-

GGAAGCACAAGCGTCAGAGAGAT-3´, dw: 5´-AGACCAGACCAATCATCAGGAT-

3´; ERβ: up: 5´-CTACAGAGAGATGGTCAAAAGTGGA-3´, dw: 5´-

GGGCAAGGAGACAGA AAGTAAGT-3´; P63: up: 5’-

ATCGTTACTCTGGAAACCAG-3’, dw: 5’- CATGTGAGTGCCCATCATAG-3’. The 

PCR program consisted of a first denaturation step at 95°C for 4 min, followed by 45 

cycles of 30 sec at 94°C, 30 sec at 60°C and 30 sec at 72°C. The fluorescence was 

quantified during the 72°C elongation step and the product formation was confirmed 

by melting curve analysis (55–95°C). For calculation of relative rates of gene 

expression the ∆∆CT method was used (Pfaffl, 2001). Gene expressions were 

compared to those of control animals fed with the ISO-free diet.  

 

Statistical analysis 

Statistical analysis was performed using the SPSS Statistical Analysis System, SAS, 

Version 12.0. All data are expressed as arithmetic means with standard deviations. 

First a global Kruskal-Wallis-H-Test was performed to analyse if there are significant 

differences between the groups. In case of differences, additionally a Mann-

Whitney-U-Test was performed. At PND 25, 50, and 80 the nutrition groups were 

compared to each other, and E2 were compared to OVX. Statistical significance was 

established at p < 0.05. 
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Results 

The experimental setting of the study is depicted in Figure 7. ISO Serum 

concentrations were measured as reported before (Molzberger et al., 2012). 

Consumption of an IDD revealed no detectable serum concentrations of ISO, 

whereas an IRD resulted in 1.1 µM GEN and 2 µM DAI. After GRD 2.5 µM GEN was 

measured in the serum, whereas no DAI was detectable. 

To investigate the effects of the diets on estrogen mediated signaling pathways, we 

determined the ERα and ERβ mRNA expression at PND 25, 50 and 80. No 

significant differences in the gene expression of the ERα (Fig. 8 A) could be 

observed.  
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Fig. 8: mRNA Expression of ERα (A), ERβ (B), and p63 (C) in the small intestine of 25, 50, or 80 days 

old female wistar rats. IDD served as control and were set to one. The bars shown are mean +SD. Six 

rats were included to each group. * = sign. vs. IDD (p < 0.05); 
+
 = sign. vs. IRD (p < 0.05); (Kruskal-

Wallis H-Test followed by a Mann-Whitney U-Test) 
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The mRNA expression of ERβ (Fig. 8 B) was significantly decreased in GRD 

animals compared with all ages. As an additionally molecular marker we also 

studied the gene expression of the oncogene transformation related protein p63 in 

the small intestine, which were not affected by the diets (Fig. 8 C). 

To evaluate the influence of lifelong exposure to ISO on tissue homeostasis of the 

small intestine, the gene expression of PCNA and PS2 were determined in 25, 50 

and 80 days old intact female rats (Fig. 9). The mRNA expression of PCNA was 

significantly down-regulated in IRD and GRD animals at PND 25 but significantly 

increased at PND 50 and 80 (Fig. 9 A). The expression of PS2, a gene believed to 

be involved in mucosal repair, was significantly increased at day 25 in the IRD but 

not in the IDD and GRD group (Fig. 9 B). At PND 50 and 80, the PS2 gene 

expression was significant higher in IRD and GRD animals compared to IDD. 
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Fig. 9: mRNA Expression of PCNA (A) and PS2 (B) in the small intestine of 25, 50, or 80 days old 

female wistar rats. IDD served as control and were set to one. The bars shown are mean +SD. Six rats 

were included to each group. * = sign. vs. IDD (p < 0.05); 
+
 = sign. vs. IRD (p < 0.05); (Kruskal-Wallis 

H-Test followed by a Mann-Whitney U-Test) 

 

After ovariectomie, we investigated the effect of a lifelong exposure to different diets 

on the E2 sensitivity of the small intestine. As molecular markers, the gene 

expression of ERα, ERβ, p63, PCNA and PS2 were determined. The ERα mRNA 

expression (Fig. 10 A) was significantly reduced in OVX IRD and GRD compared to 

IDD animals. Treatment with E2 did not affect ERα mRNA expression in the IDD 
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group, whereas in the IRD and GRD group the mRNA expression of ERα and ERβ 

was reduced (Fig. 10 B). Additionally, the mRNA expression of p63 was reduced in 

OVX animals of the IRD and GRD group compared to IDD animals. After treatment 

with E2, a significant decrease could be measured in all dietary groups (Fig. 10 C).  
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Fig. 10: mRNA Expression of ERα (A), ERβ (B), and p63 (C) in the small intestine of ovariectomized 

wistar rats after treatment with E2 or the vehicle (OVX). IDD OVX served as control and were set to 

one. The bars shown are mean +SD. Six rats were included to each group. * = sign. vs. IDD OVX (p < 

0.05); 
+
 = sign. vs. IRD OVX (p < 0.05); 

#
 = sign. vs. IDD E2 (p < 0.05); 

†
 = sign. vs. IRD E2 (p < 0.05); 

(Kruskal-Wallis H-Test followed by a Mann-Whitney U-Test) 
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No differences in the PCNA expression in the small intestine could be observed 

between OVX animals of the respective nutrition groups, and also treatment with E2 

had no effect (Fig. 11 A). The PS2 expression (Fig. 11 B) was significantly 

decreased in OVX IRD animals but significantly increased in OVX GRD animals 

compared to the IDD group. Treatment with E2 resulted in a significant down-

regulation of PS2 in all dietary groups, with the lowest expression in IRD animals. 
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Fig. 11: mRNA Expression of PCNA (A) and PS2 (B) in the small intestine of ovariectomized wistar 

rats after treatment with E2 or the vehicle (OVX). IDD OVX served as control and were set to one. The 

bars shown are mean +SD. Six rats were included to each group. * = sign. vs. IDD OVX (p < 0.05); 
+
 = 

sign. vs. IRD OVX (p < 0.05); 
#
 = sign. vs. IDD E2 (p < 0.05); 

†
 = sign. vs. IRD E2 (p < 0.05); (Kruskal-

Wallis H-Test followed by a Mann-Whitney U-Test) 
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Discussion 

The ERβ is the predominantly expressed ER in the intestine, and it is known to 

affect the homeostasis of this tissue (Weige et al., 2009). In studies with ERβKO 

mice it was shown that the ERβ is essential for maintenance of tissue homeostasis. 

In a study of our group an ERβ-specific agonist and GEN were able to inhibit 

proliferation and to induce apoptosis in the large and small intestine of 

ovariectomized rats (Schleipen et al., 2011). This observation indicates that the 

activation of ERβ results in a modulation of homeostasis of intestine tissue which 

again may result in protection from tumor development. 

Analysis within our study of the ERα expression at different PND showed no 

significant differences between the nutrition groups (Fig. 8 A). Here it has to be 

stated that in the intestine the expression of ERα is generally low, and did not differ 

between normal and malign intestinal cells (Campbell-Thompson et al., 2001; 

Konstantinopoulos et al., 2003).  

In Figure 8 B it is clearly visible that GRD significantly reduced the expression of 

ERβ at PND 25, 50 and 80 but is not affected in the IDD and IRD group. The 

observed down regulation of ERβ mRNA expression may be due to the higher 

serum concentrations of GEN in the animals of the GRD group compared to IDD 

and IRD. This assumption is based on the knowledge that binding of a ligand to the 

ERβ results in a reduced ERβ mRNA expression and that GEN binds with high 

preference to ERβ (Barkhem et al., 1998; Wood et al., 2006).  

In our study at PND 25, 50 and 80 no significant differences in p63 expression could 

be detected. P63 is a homologue of p53, and is overexpressed in human tumors 

(Flores et al., 2005). A previous study of our laboratory showed that p63 expression 

decreases in response to GEN and the ERβ-specific ligand (Schleipen et al., 2011). 

It seems to play an important role in regulating epithelial proliferation and 

differentiation, and to be involved in tumorigenesis. P63 is able to bind to the ligand 

binding domain of the ER (Littlewood et al., 1995; Caserta et al., 2006; Nguyen et 

al., 2006). We hypothesized that expression of p63 is decreased after lifelong 

exposure to ISO or GEN solely, but no differences could be measured in its 

expression level. 

As shown in Figure 9 A the proliferative activity, indicated by the expression of the 

proliferating cell nuclear antigen (PCNA), was significantly lower compared to the 

IRD and GRD groups at day 25, but increased at PND 50 and PND 80. The reduced 
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expression of PCNA at day 25 is in line with observations in piglets (Chen et al., 

2005) demonstrating that treatment with GEN (5 mg GEN/kg BW/day) for 10 days 

resulted in inhibition of proliferation. It is assumed that activation of the ERβ is 

responsible for this inhibitory effect (Helguero et al., 2005; Martineti et al., 2005). 

Our observation that proliferation is increased at day 50 and 80 could be due to the 

fact that ISO act as estrogenic compounds in the presence of low estrogen 

concentrations, whereas at higher estrogen levels they act anti-estrogenic (Hwang 

et al., 2006). In line with this assumption PCNA expression was reduced at PND 25, 

because at this age the hormone concentrations are expected to be low. After 

gaining puberty around PND 35 the ovaries produce estrogens and therefore the 

ISO may act as anti-estrogens and so the PCNA expression raise at PND 50 and 

80. This hypothesis is supported by a study with ovariectomized rats with low 

estrogenic background where the expression of PCNA is reduced after three weeks 

treatment with GEN (Schleipen et al., 2011). 

The PS2 gene is described to have an important role in regenerating tissue during 

wound healing in inflammatory bowel diseases and stimulation of mucosal repair 

(Playford et al., 1996; Ribieras et al., 1998). PS2 is regulated by estrogens via 

transcriptional mechanisms (Berry et al., 1989). In our study IRD and GRD increase 

PS2 expression at PND 25, 50 and 80 (Fig. 9 B). This observation confirms a 

previous study in premenopausal women where supplementation with dietary soy 

(45 mg ISO/d) for two weeks resulted in an increased expression of PS2 in the 

breast (Hargreaves et al., 1999). We see two possible szenarios explaining our 

results that the exposure to ISO results in an increase of PS2 expression. On the 

one hand, a high nutritive GEN intake could lead to intestinal damage, and therefore 

the PS2 expression rose to induce wound healing and the proliferation increased 

resulting from regenerating cells. On the other hand, it could be an indication for an 

increased resistance to intestinal damage and protection against malignant 

transformation. The latter would follow the findings that loss of PS2 may occur as an 

early event in the malignant transformation process of intestinal-type tumors (Wu et 

al., 1998).  

In Figure 10 A and B it is demonstrated that lifelong exposure to ISO also affects the 

response of ERα and ERβ towards E2 treatment. Although the binding affinity of ISO 

is lower to the ERα than to the ERβ ISO are able to reduce the ERα expression. As 

the mRNA expression of the ER is down-regulated in response to binding of a 

ligand, it can be assumed that binding of ISO is what reduces ERα. Furthermore, 
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mRNA expression of ERβ is lower in the GRD than in the IRD group indicating a 

higher estrogenic potency of GEN solely. 

The expression of p63 was strongly effected as well by the diets and E2 (Fig. 10 C). 

It is clearly visible that IRD and GRD resulted in a decreased p63 expression in the 

intestine. The fact that treatment with E2 resulted in a down regulation of p63 also in 

the IDD group and further reduced the p63 expression in IRD and GRD animals, is 

in line with recent observations demonstrating that treatment with ERβ-specific 

agonists led to significant down-regulation of p63 expression (Schleipen et al., 

2011). 

Like shown in Figure 11 in this experimental design independent of the diet, 

administration of E2 does not affect intestinal proliferation (Fig. 11 A). PS2 displays a 

nutrition dependent E2 response in OVX animals. In our study the PS2 expression 

was highest in OVX rats who received a GRD throughout life which could be taken 

as an indicating for a tumor protective effect of GEN in this tissue (Fig. 11 B). A 

previous study from our laboratory points out that E2 decreases the expression of 

PS2 in the intestine of female rats (Hofer et al., 2010), which is confirmed by our 

own findings. E2 treatment resulted in a significant reduction of PS2 in all nutrition 

groups. Additionally, these results are supported by a study with postmenopausal 

macaques where the PS2 expression is down-regulated at high doses of ISO (509 

mg ISO (GEN + DAI) per day) in a high estrogenic environment (Wood et al., 2006). 

On the opposite, treatment with HRT over 3 months resulted in a rise of PS2 

expression in the postmenopausal female breast (Harding et al., 2000). However, as 

the intestine does not belong to the classical estrogen sensitive tissues, it can be 

assumed that the treatment period of three days was too short to induce estrogenic 

actions. 

Same argumentation can be applied to the PCNA expression of our study. Only a 

tendency of reduced proliferation could be observed possible due to the short 

treatment period regarding the inhibition of proliferation showed in the study of 

Schleipen (Schleipen et al., 2011), while a lot of studies showed a protective effect 

of HRT against developing cancer in the intestine (Nelson et al., 2002). The reduced 

expression of PS2 leads to the suggestion that on the one hand the protection 

against intestinal damage were lost after E2 treatment. On the other hand, E2 

treatment could result in a decrease of intestinal damage. This is underlined by the 

reduced expression of p63 in these groups, indicating a reduced risk of developing 

cancer. 
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In summary our results provide evidence that a lifelong exposure to an ISO-rich diet 

may improve intestine homeostasis, and modulate the expression of molecular 

markers related to tumor protection and the responsiveness of this tissue towards 

E2. Consequently, this may affect the susceptibility of this tissue to develop cancer. 
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CHAPTER FOUR 

 

Pre- to post-pubertal exposure to isoflavones modulates the sensitivity of the 

mammary gland towards estrogens in female rats 
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Abstract: 

The aim of this study was to identify critical periods during development responsible 

for the tissue specific alterations of estradiol (E2) sensitivity induced by isoflavones 

(ISO). Female rats were divided into three nutrition groups: first group received an 

ISO-free diet (IDD) throughout life, second group an ISO-containing diet (ISD) 

throughout life, and a third group was exposed to an ISD from postnatal day (PND) 

30 to PND 60 which cover the time period shortly before onset of puberty up to end 

of puberty (pISD). The onset of puberty was ascertained, the menstrual cycle length 

was measured and from each nutrition group one subset of animals was sacrificed 

during puberty (PND 50) and during adulthood (PND 80). Onset of puberty occurred 

significantly earlier in pISD and ISD compared to IDD. Menstrual cycle length was 

shortest in pISD. While proliferative activity and PR expression in the mammary 

gland was not affected by IDD and ISD, a significant increase could be detected in 

pISD animals at PND 50. Rats were ovariectomized and subcutaneously treated 

either with E2, GEN, or the vehicle (OVX), for three days (PND 77–80) to determine 

estrogen sensitivity. Analysis of Ki-67 and PCNA showed a reduced proliferative 

response to E2 in pISD and ISD compared to IDD, while the induction of PR was 

higher in both IDD and pISD compared to ISD. Our results indicate a reduction of 

the proliferative response of the mammary gland towards estrogens due to ISO 

exposure solely during PND 30 and 60, while this timeframe seems too late to 

influence estrogen sensitivity.   
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Introduction: 

There is increasing evidence that the reduced breast cancer risk in eastern Asian 

countries compared to Europe and the USA is related to high soy consumption 

(Ursin et al., 1994; Adlercreutz, 2002; Cassidy, 2003; Badger et al., 2005; 

Nichenametla et al., 2006; Usui, 2006). Soy is the main source of isoflavones (ISO), 

which are polyphenolic non-steroidal compounds. After ingestion, an initial 

hydrolysis of the sugar moiety of the glycosides seems to be required for absorption, 

which is catalysed by the brush border glucosidase in the small intestine or by 

bacterial β-glucosidases or β-glucuronidases in the colon (Setchell et al., 2002; 

Mortensen et al., 2009). The enterobacteria metabolize daidzein (DAI) to 

dihydrodaidzein (DH-DAI), which can be further converted to equol or O-

desmethylangolensin (Key et al., 1999). Genistein (GEN) is reduced to 

dihydrogenistein (DH-GEN) by the gut microbiota as well, and is further metabolized 

to 6´-hydroxy-O-desmethylangolensin (6´-OH-ODMA). The gut microbiota is 

essential for the metabolism of ISO, and its composition is influenced by 

physiological, pathological and environmental factors, but also by gender, genetics, 

and ethnicity (Mortensen et al., 2009).  

Because of their structural similarity to endogenous estrogens, ISO are able to bind 

to the estrogen receptor α (ERα) and β (ERβ). Both receptor subtypes can be found 

in the mammary gland. Albeit the expression of the ERα is generally low in normal 

mammary gland, it increases in proliferative benign tissue (Roger et al., 2000). The 

content of ERα in the breast is proportional to the rate of proliferation, and the co-

expression of ER and the proliferation marker Ki-67 is described as the 

manifestation of an important early molecular change in the development of cancer 

(Shoker et al., 1999). 

One function of the ERβ seems to be the counteraction of ERα (Saji et al., 2005; 

Chang et al., 2006). There is evidence that activation of the ERβ reduces the 

estrogen stimulated proliferation in MCF-7 and T47D breast cancer cells (Omoto et 

al., 2003; Strom et al., 2004). As the binding affinity of ISO is 30-times higher to ERβ 

than to ERα it seems reasonable to assume that ISO are able to protect from 

developing breast cancer via activating ERβ. Still, the effects of ISO are discussed 

controversially. Studies in breast cancer cells and animal cancer models described a 

higher growth of the tumor in response to treatment with ISO (Wang et al., 1996; Ju 

et al., 2006).  
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The controversial discussion might be resolved when taking the timing of the ISO 

exposure into account. Numerous studies have shown that ISO intake has to start 

pre-pubertal to exert protective effects. There is evidence that ISO may influence the 

development of the mammary gland, and therefore it seems to be reasonable that 

ingestion of ISO has to start before pubertal changing of the breast occurs (Cabanes 

et al., 2004; Padilla-Banks et al., 2006). Morphological alterations of the mammary 

gland are one factor of influencing breast cancer risk. Further risk factors for 

developing breast cancer is the extent of lifelong estrogen exposition implicating 

early onset of menarche, late onset of menopause, high levels of free circulating 

estrogens, and short menstrual cycle length (Toniolo et al., 1995; Lu et al., 1996; 

Hulka & Moorman, 2001). The critical role for estrogens in the development of 

breast cancer is under investigation for over thirty years (Noble & Cutts, 1959; Wotiz 

et al., 1978; Cavalieri & Rogan, 2006; Yager & Davidson, 2006; Santen et al., 2009). 

Elevated levels of endogenous estradiol in postmenopausal women have been 

found to increase the risk of developing breast cancer. Additionally, a recently 

performed meta-analysis found a positive association between premenopausal 

estrogen concentrations and breast cancer risk (Walker et al., 2011). 

A previous study from our laboratory showed a significant decrease in estrogen 

sensitivity of the mammary gland after lifelong exposure to an ISO-rich diet or GEN-

rich diet (Molzberger et al., 2012). In that study, the exposure to ISO started already 

in utero, but there is evidence that ISO exposure starting pre-pubertal is sufficient to 

exert protective effects towards developing breast cancer (Lee et al., 2009). To 

evaluate the relevance of the time of ISO exposure, we designed this further animal 

experiment, where lifelong exposure to an ISD is compared to an ISD starting just 

before puberty onset up to adulthood from postnattally day (PND) 30 to PND 60. 

Within the experiment puberty onset and menstrual cycle length were determined 

and the expression of Ki-67, PCNA, and PR was measured. 
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Materials and Methods: 

Diets 

The animals had free access to one of two diets containing different amount of ISO: 

an ISO-free diet (IDD; Sniff RM/H phytoestrogenfree, Ssniff GmbH, Soest, 

Germany), or an ISO-containing diet (ISD; Sniff RM/H, Ssniff GmbH, Soest, 

Germany). The ISO content of the diets are depicted in Tab. 5. 

 

Experimental animals and study design 

All animal handling and experimental conditions were carried out according to the 

“Institutional Animal Care and Use Committee guidelines”, regulated by the German 

federal law for animal welfare. 

Wistar rats were obtained from Janvier (Le Genest St Isle, France) and kept under 

controlled conditions of temperature (20°C ± 1), relative humidity (50–80 %) and 

illumination (12 h dark, 12 h light). The female rats were mated and the dams were 

fed one of the two diets during pregnancy and nursing (IDD: n = 14, ISD: n = 7). 

After weaning the female offspring were divided into three dietary groups (n = 30 

each dietary group) and had ad libitum access to the diets and water.  

The first dietary group received an IDD throughout life (IDD). The second received 

an ISD for part of their life (pISD) before onset of puberty up to young adulthood 

from postnatal day (PND) 30 to 60. The third dietary group received an ISD 

throughout life (ISD). Each dietary group was further divided into five subgroups (n = 

6 each group). The first subgroup of each dietary group was sacrificed in their 

puberty life period on postnatal day 50 (puberty), the second in the adult phase of 

life on PND 80. The other three subgroups were ovariectomized (PND 60) and an 

uterotrophic assay was performed at day 77. The animals received 17β-estradiol 

(E2; 4 µg/kg BW/day), genistein (GEN; 100 mg/kg BW/day), or purely the vehicle 

(OVX) subcutaneously for three days and were afterwards sacrificed. The 

estrogenic compounds were solved in 20 % DMSO/peanut oil. 
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Fig. 12: Timeline and experimental setting of the study. A Intact animals received either lifelong and 

IDD or ISD, or an ISD starting pre-pubertal up to the end of puberty (PND 30–PND 60, pISD). B 

Animals received an IDD, pISD or ISD were ovariectomized on PND 60 and were treated with E2, 

GEN, or the vehicle from PND 77 up to PND 80. Afterwards, these animals were sacrified and the 

proliferation and the estrogenic response of the mammary gland were determined 

 

Quantification of ISO derivatives in the diet by HPLC/DAD analysis 

The pelleted diet ISD was crushed using mortar and pestle. Approx. 250 mg of an 

accurately weighted sample of each homogenized diet powder were vortexed for 30 

s in exactly 40 mL 65 % (v/v) methanol and extracted gently for 60 min at room 

temperature using an overhead rotation shaker. The suspensions were centrifuged 

at 8600 g for 5 min and filtered using 15 mm 0.45 um PTFE syringe filters. The 

filtrate was diluted by pipetting 1 ml of the solution into a 50 ml graduated flask and 

make up to the mark with 65 % (v/v) methanol.  

The LC-DAD analyses were performed on a Shimadzu LC system equipped with a 

controller (CBM-20A), a degasser (DGU-20A3), two pumps (LC-20AD), an 

autosampler (SIL-20AC HT), a column oven (CTO-20AC) and a diode array detector 

(SPD-M20A). The LC system was controlled by the software LC solution 1.24. 

Separation of the ISO derivatives was performed on a Phenomenex Kinetex PFP 

column (3.0 mm internal diameter, 100 mm length, 2.6 µm) with an oven 

temperature of 35°C. Solvent A was 0.1 % (v/v) formic acid in bidest. water and 
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solvent B was acetonitrile (LC grade). Flow rate was 0.7 mL/min, the injection 

volume 10 µL. The LC gradient started with an initial period of 3 min at 10 % B, 

increasing linearly to 45 % B at 12 min, and finally to 100 % at 12.5–15.5 min, re-

equilibrating the system in a 7.5 min postrun (10 % B). Eluent was monitored 

between 200 and 500 nm using diode array detection. Peaks were integrated at 250 

nm. The identity of each compound was confirmed by the retention time and the UV-

Vis spectra. The limit of quantification (LOQ) and lowest calibration point was 0.8 

nmol for all target analytes. 

 

Chemicals used for measurement of ISO-metabolites in the blood serum 

DAI, GEN and glycitein were purchased from LC Laboratories (Woburn, MA, USA). 

Daidzin, genistin, glycitin, 6''-O-acetyl-daidzin, 6''-O-acetyl-genistin, 6''-O-acetyl-

glycitin, 6''-O-malonyl-daidzin, 6''-O-malonyl-genistin and 6''-O-malonyl-glycitin were 

purchased from Wako (Neuss, Germany). DH-DAI was purchased from Toronto 

Research Chemicals (North York, Canada). DH-GEN and equol were purchased 

from APIN Chemicals LTD (Abingdon, UK). ODMA and 6'-OH-ODMA were 

purchased from Plantech UK (Reading, UK). [3,4,8-13C3]daidzein was provided by 

Nigel Botting (University of St. Andrews, UK). 

 

Measurement of ISO-metabolites in the blood serum 

Rat serum samples (90 µl) were thawed and 5 µl of internal standard (2 µM [3,4,8-

13C3]daidzein stock solution in DMSO) was added. 500 µl of an ammonium acetate 

buffer (0.1 M, pH 5.0) containing 1,4-dithiothreitol (100 mM), 1200 U β-

glucuronidase (bovine liver, Typ B-3) and 120 U arylsulfatase (Helix pomatia, Typ H-

1) was added, and the mixture was incubated for 2 h at 37°C. The sample was 

acidified with 1200 µl of 50 mM H3PO4 solution (ice-cooled) and purified via SPE 

extraction. Therefore the SPE cartridges (Strata-X AW, 60 mg, 3 ml, Phenomenex, 

Torrance, USA) were conditioned with 2 ml of methanol and equilibrated with 2 ml of 

water. After loading with the sample solutions the cartridges were first washed with 2 

ml of 2 % (v/v) formic acid solution. The second wash step was performed with 2 ml 

of 50 % (v/v) methanolic solution. The analytes were eluted with 1 ml of 2 % (v/v) 

ammonia (25 %) in methanol and evaporated to dryness under a nitrogen stream. 

The residues were redissolved in 100 µl of 30 % (v/v) methanolic solution and an 

aliquot of each sample was analysed by LC/MS as described below. For calibration 
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blank plasma was worked up as described above and analytes were added before 

analysis in an end concentration range between 5 and 10,000 nM.  

The modest recovery rate of 6’-OH-ODMA was acceptable because of the fact that 

the measured levels of this metabolite were very low, and therefore not of biological 

significance. 

The HPLC-MS analyses were performed on an ABSciex QTrap 5500 mass 

spectrometer equipped with a Shimadzu LC system, which consisted of a controller 

(CBM-20A), a degasser (DGU-20A5), two pumps (LC-30AD), an autosampler (SIL-

30AC) and a column oven (CTO-20AC). The LC-MS system was controlled by the 

software Analyst 1.5.2. The Turbo Spray ESI Source was operated in the negative 

mode. The source parameters were as follows: Curtain gas (CUR) 40 psi, ion spray 

voltage (IS) -4500 V, ion source gas-1 (GS 1) 80 psi, ion source gas-2 (GS 2) 70 

psi, ion source gas-2 temperature (TEM) 600°C. Two multi-reaction monitoring 

(MRM) transitions (a quantifier and a qualifier ion transition for each compound) 

were used.  

Separation of the analytes was performed on a Waters Acquity HSS T3 (2.1 mm 

internal diameter, 100 mm length, 1.8 µm) with an oven temperature of 40°C. 

Solvent A was a 20 mM ammonium formate buffer (pH 3) and solvent B was an 

acetonitrile/methanol mixture (1 / 2.5, v/v) (LC grade). Flow rate was 0.5 ml/min, the 

injection volume 10 µl. The elution profile was as follows: 0–2.6 min isocratic with 3 

% B, 2.6–16.7 min from 3 % to 56 % B, 16.7–17.3 min from 56 % to 95 % B, 17.3–

19.9 min isocratic with 95 % B, 19.9–20.5 min from 95 % to 3 % B and 20.5–24.7 

min isocratic with initial conditions. The limits of quantification (LOQ) for each 

analyte in serum were as follows: 50 fmol for DAI, GEN, DH-DAI, DH-GEN, ODMA 

and 6’-OH-ODMA. The LOQ for equol was 1 pmol. We defined the limit of detection 

(LOD) as one third of the respective LOQ. 

 

Determining puberty onset and menstrual cycle length 

To investigate the puberty onset the day of vaginal opening was determined. 

Additionally, menstrual cycle length was measured. Therefore a vaginal smear test 

was performed daily for one week starting the day after puberty onset. 
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Tissue preparation 

Animals were decapitated after weighing and blood was collected. The mammary 

gland and the uterus were removed and the uteri were weighed. Specimen of each 

was snap frozen in liquid nitrogen for mRNA preparation. 

 

RNA preparation 

Frozen mammary gland tissues were powdered, pooled and homogenized in 

TRIzol
®
. Total RNA was isolated from cells using the TRIzol

®
 (Invitrogen Life 

Technologies, Karlsruhe, Germany) standard protocol (Chomczynski & Sacchi, 

1987) followed by cDNA synthesis with the Quantitect® Reverse Transcription Kit 

(Quiagen, Hilden, Germany). 

 

Real-time RT-PCR 

To determine the mRNA expression of Ki-67, PCNA and PR quantitative real-time 

RT-PCR was performed in the MxPRO (Stratagene) with Platinum® Taq DNA 

Polymerase (Invitrogen, Karlsruhe, Germany). SybrGreen I® was used as detection 

dye. The Cytochrome-C-oxidase subunit 1A (1A) was used as housekeeping gene, 

and the expression of all genes were normalized to 1A. Specific primers were 

designed with the primer3 software (Whitehead Institute for Biomedical Research, 

Cambridge, USA) based on the cDNA sequences available at the EMBL database: 

1A: up: 5’-CGTCACAGCCCATGCATTCG-3 ‘, dw: 5’-

CTGTTCATCCTGTTCCAGCTC-3 ‘; PR: up: 5’-CATGTCAGTGGACAGATGCT-3’ ‘, 

dw. 5’-ACTTCAGACATCATTTCCGG-3 ‘; PCNA: up: 

5´GAGCAACTTGGAATCCCAGAACAGG-3´,dw: 5´ 

CCAAGCTCCCCACTCGCAGAAAACT-3´; Ki-67: up: 5´-

AACCAGGACTTTGTGCTCTGTAA-3´, dw: 5´-CTCTTTTGGCTTCCATTTCTTC-3´. 

The PCR program consisted of a first a denaturation step at 95°C for 4 min, followed 

by 45 cycles of 30 sec at 94°C, 30 sec at 60°C and 30 sec at 72°C. The 

fluorescence was quantified during the 72°C elongation step and the product 

formation was confirmed by melting curve analysis (55–95°C). For calculation of 

relative rates of gene expression the ∆∆CT method was used (Pfaffl, 2001). Gene 

expressions are shown in relation to control animals fed with the ISO-free diet.  
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Statistical analysis 

Statistical analysis was performed using the SPSS Statistical Analysis System, SAS, 

Version 12.0. All data are expressed as arithmetic means with their standard 

deviations. First a global Kruskal-Wallis-H-Test was performed to analyse if there 

are significant differences between the groups. In case of differences, a Mann-

Whitney-U-Test was additionally performed to identify the groups with statistical 

significant variance. At PND 50 and 80 nutrition groups were compared to each 

other, and the different treatment groups were compared to the OVX control groups. 

Statistical significance was established at p < 0.05. 
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Results: 

The experimental design of this study is depicted in Fig. 12. The IDD contains no 

detectable amounts of ISO (< 10 µg/g). The ISD contains 113.54 µg GEN/g, 147.41 

µg DAI/g and 36.06 µg GLY/g (each calculated as aglycone) as depicted in Table 5. 

Food intake was monitored during the study but no significant differences could be 

shown between the nutrition groups (data not shown). 

 
 
ISO derivative  MW  mean value mean value calculated  

[g/mol] µg/g ISD µM/g ISD as aglyc. 

Daidzein   254.24  11.54  0.045  11.54 

Genistein   270.24  12.91  0.048  12.91 

Glycitein   284.27  1.66  0.006  1.66 

Daidzin   416.38  86.22  0.207  52.65 

Genistin   432.38  104.84  0.242  65.52 

Glycitin   446.4  33.38  0.075  21.26 

6''-O-Acetyl-Daidzin  458.41  19.83  0.043  11.00 

6''-O-Acetyl-Genistin  474.41  20.63  0.043  11.75 

6''-O-Acetyl-Glycitin  488.44  5.36  0.011  3.12 

6''-O-Malonyl-Daidzin  502.42  75.79  0.151  38.35 

6''-O-Malonyl-Genistin 518.42  109.78  0.218  57.23 

6''-O-Malonyl-Glycitin  532.45  18.76  0.035  10.02 

Sum of daidzein derivatives calculated as daidzein aglycone in µg/g ISD 113.54 

Sum of genistein derivatives calculated as genistein aglycone in µg/g ISD 147.41 

Sum of glycitein derivatives calculated as glycitein aglycone in µg/g ISD 36.06 

 

Tab. 5: Content of ISO derivatives in the ISO-standard diet (ISD). 
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In Table 6, body weights and uterus wet weights are listed. No significant influence 

could be observed in subject to nutrition or treatment related to body weights, 

whereas treatment with E2 led to a significant increase in uterus wet weights in all 

nutrition groups compared with their OVX groups. Treatment with GEN had no 

significant effect on uterus wet weights in any group. 

 

Body W.  Uterus    

(g)   (mg/kg BW)   

PND 50  IDD   194 ± 2  1986 ± 277   

pISD   182 ± 3  1348 ± 99   

ISD   195 ± 9  1300 ± 237   

PND 80 IDD   265 ± 4  982 ± 76   

  pISD   260 ± 9  1548 ± 176   

ISD   245 ± 8  1124 ± 100   

OVX   IDD   300 ± 7  266 ± 13   

pISD   301 ± 12  259 ± 19   

ISD   328 ± 14  273 ± 24   

E2  IDD   286 ± 6  1170 ± 98**  

  pISD   269 ± 8++  1264 ± 103**++  

  ISD   301 ± 5++  1464 ± 175**##  

GEN  IDD   297 ± 9  343 ± 16**  

  pISD   268 ± 7++  380 ± 30**++  

  ISD   324 ± 9++  340 ± 24*  

 

Tab. 6: Body weights (g) and uterus wet weights (mg/kg BW). ** p < 0.01 vs. IDD OVX; 
++

 p < 0.01 vs. 

pISD OVX; 
##

 p < 0.01 vs. ISD OVX; (Kruskal-Wallis H-Test followed by a Mann-Whitney U-Test) 

 

Table 7 shows the concentrations of DAI, GEN and the metabolites DH-DAI, DH-

GEN, ODMA, 6´-OH-ODMA and equol in the blood serum of 50 (PND 50) and 80 

(PND 80) days old female rats. No ISO-metabolites could be detected in IDD 

animals at PND 50 and 80. Measurement of GEN, DAI and DH-DAI in the blood 

serum revealed significant higher concentrations in the ISD compared to the pISD 

group, whereas no differences were found in case of DH-GEN, ODMA and equol. 

On day 50 and 80, the serum concentrations of GEN, DAI and their metabolites 

were significantly higher after ISD compared to the other diets. 
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DAI  GEN  Equol   DH-DAI  DH-GEN ODMA  6´-OH-ODMA 

        

PND 50  IDD n. d.  n. d.  n. d.  n. d.  n. d.  0.009±0.00 n. d.   

pISD 0.044 ± 0.06 0.016±0.03 1.644±0.40** 0.036±0.04** 0.068±0.08** 0.119±0.06** n. d.  

ISD 0.909±0.27**
++

 0.901±0.37**
++

 2.611±1.10** 0.213±0.10**
++

 0.062±0.04* 0.155±0.08** n. d.  

PND 80  IDD 0.011±0.01 n. d.  n. d.   n. d.  n. d.  n. d.  n. d. 

pISD 0.039±0.01 0.005±0.01 n. d.   0.028±0.02 n. d.  0.008±0.00  n. d. 

ISD 0.547±0.28**
++

 0.566±0.42**
++

 3.039±1.64**
++

 0.099±0.06**
++

 0.033±0.04*
+
 0.190±0.08**

++
 n. d.  

 

Tab. 7: Serum-concentrations (µM) of DAI, GEN and their metabolites equol, DH-DAI, DH-GEN, ODMA and 6´-OH-ODMA in 50 (PND 50) and 80 (PND 80) days old female 

rats. N. d. = not detectable. * = sign. vs. IDD (p < 0.05); ** = sign. vs. IDD (p < 0.01); 
+
 = sign. vs. pISD (p < 0.05); 

++
 = sign. vs. pISD (p < 0.01); (Kruskal-Wallis H-Test followed 

by a Mann-Whitney U-Test) 
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The influence of pre- to postpubertal and lifelong exposure to ISO on puberty onset 

and menstrual cycle length were determined. It could be shown that ISO exposure 

at any time led to an earlier onset of puberty (Fig. 13 A). Menstrual cycle length was 

shorter in animals where the exposure to ISO started prepubertal compared to those 

who were exposed lifelong or not at all (Fig. 13 B). 
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Fig. 13: A Puberty onset indicated by the day of vaginal opening (postnatal day, PND). B Length of 

menstrual cycle in days. IDD served as control and were set to one. The bars shown are mean +SD. * 

= sign. vs. IDD (p < 0.05); 
+
 = sign. vs. pISD (p < 0.05); (Kruskal-Wallis H-Test followed by a Mann-

Whitney U-Test) 
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To evaluate the influence of ISO exposure during different periods of life on the 

proliferation of the mammary gland, the expression of the proliferation markers Ki-67 

and PCNA were analysed. At PND 50, an elevated mRNA expression of Ki-67 and 

PCNA could be measured in pISD and ISD animals compared to IDD, whereas the 

expression in the ISD group were significant lower as in the pISD group (Fig. 14 

A/B). Measurement of Ki-67 and PCNA at PND 80 revealed a significant decrease in 

rats fed an ISD compared to those received and IDD or an pISD. In addition to the 

proliferation markers, the estrogen sensitivity was determined using the 

progesterone receptor (PR). A significant increase in PR mRNA expression could be 

shown in the pISD group at PND 50 and PND 80 (Fig. 14 C). 
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Fig. 14: mRNA expression of PCNA (A), Ki-67 (B) and PR (C) in the mammary gland of 50 (PND 50) 

and 80 (PND 80) days old female Wistar rats. IDD served as control and were set to one. The bars 

shown are mean +SD. Six rats were included to each group. * = sign. vs. IDD (p < 0.05); 
+
 = sign. vs. 

pISD (p < 0.05); (Kruskal-Wallis H-Test followed by a Mann-Whitney U-Test) 
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To investigate the influence of ISO exposure during different development stages on 

the estrogen responsivity of the mammary gland, adult female rats were 

ovariectomized and an uterotrophic assay was performed. In mammary gland tissue 

of these rats, proliferation (Ki-67, PCNA) and estrogen sensitivity (PR) were 

determined. No differences in Ki-67 and PCNA mRNA expression could be 

observed in OVX animals. In response to E2 treatment, the proliferation was 

increased in all nutrition groups, whereas pre-exposure to ISO (pISD, ISD) 

significantly diminished the E2 stimulated proliferation (Fig. 15 A/B).  
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Fig. 15: mRNA expression of PCNA (A), Ki-67 (B) and PR (C) in the mammary gland 80 days old 

female Wistar rats after ovariectomie followed by three days of treatment with the vehicle (OVX), 

estradiol (E2), or genistein (GEN). IDD OVX served as control and were set to one. The bars shown are 

mean +SD. Six rats were included to each group. * = sign. vs. IDD OVX (p < 0.05); 
+
 = sign. vs. IDD E2 

(p < 0.05); 
#
 = sign. vs. pISD E2 (p < 0.05); (Kruskal-Wallis H-Test followed by a Mann-Whitney U-Test) 
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The progesterone receptor was determined as estrogenic marker on mRNA level 

showing that treatment with E2 resulted in an elevated mRNA expression of PR in all 

groups, whereas IDD and pISD fed animals showed an additional increase 

compared to rats received an ISD (Fig. 15 C).  
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Discussion: 

Our observation that animals receiving ISO either lifelong or during puberty have a 

significant earlier onset of puberty than animals receiving no ISO confirms the 

animal study conducted by the group of Whitten (Whitten & Naftolin, 1992). They 

reported that chronic exposure (PND 22–PND 60) to dietary concentrations (0.1 % 

of the diet) of the phytoestrogen coumestrol led to an accelerated vaginal opening. 

Our results correlates as well with several studies which show that menstrual cycle 

length is elongated in response to ISO exposure (Lu et al., 1996; Kumar et al., 

2002). In our animal experiment, the menstrual cycle length was shortest for animals 

where the ISO exposure started prepubertal. As both puberty onset and menstrual 

cycle length being estrogen sensitive markers, these observations lead to the 

assumption that estrogen sensitivity increases if the ingestion of ISO starts 

prepubertal but not already in utero. 

Uterus wet weights remained unaffected by the different diets indicating a low 

estrogenic potential of the ISD. 

Regarding the ISO serum concentrations on PND 50, significant differences could 

be observed between pISD and ISD, although animals of both groups received the 

same diet at this time. Exposure to ISO starting prepubertal resulted in significant 

lower concentrations of GEN and DAI than lifelong ISO exposure, whereas their 

metabolites show no differences, which could lead to the assumption that ISO 

metabolism is altered in pISD animals. The ISO metabolism depends amongst 

others on enterobacteria (Mortensen et al., 2009). The different ISO content in the 

blood serum could be explained by altered gut microflora in animals receiving ISO 

pre- to postpubertal compared to animals receiving ISO lifelong. The gut microflora 

begins to develop within a week of birth and continues to change from infancy into 

adulthood. As it is known that ISO are able to cross the placenta and that they occur 

to a little extent in mothers milk, it could be assumed that animals where the 

exposure started in utero developed a different gut microflora compared to animals 

where ISO exposure started prepubertal. These differences in enterobacteria could 

be responsible for the altered metabolism of ISO in pISD compared to ISD animals. 

In a previous experiment of our group proliferation of the mammary gland was 

elevated after lifelong exposure to ISO or GEN solely at PND 50 (Molzberger et al., 

2012). This observation is confirmed by the results of the present study where pISD 

and ISD led to an increase of proliferation on PND 50 (Fig. 14 A/B). A possible 

explanation for this effect is a change in the differentiation of the mammary gland in 
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response to ISO. This explanation goes hand in hand with observations by Fritz et 

al. who showed that early exposure (GD 0–PND 21) to physiological doses of the 

ISO GEN (0, 25, 250 mg/kg diet) via diet induces cell differentiation. This 

reprogramming of the mammary gland resulted in a reduced susceptibility of this 

tissue to develop cancer (Fritz et al., 1998). 

To investigate whether the ISO exposure during different periods of life influences 

the estrogen responsivity of the mammary an uterotrophic assay was performed. 

This assay served as a model system of the situation in postmenopausal women 

receiving HRT (Odum et al., 1997). Treatment with E2 resulted in an increase of the 

uterus wet weights, whereas nutrition exerts no effects (Tab. 6). In a previous 

experiment of our laboratory, an additional increase in the uterine wet weights could 

be observed in animals which received lifelong an ISO-rich or GEN-rich diet 

compared to an IDD group (Moller et al., 2010). The ISD of the present study 

contained 2-times lower concentrations of ISO as the ISO-rich diet, indicating a 

dose-response effect of ISO on uterine wet weights. Additionally, a lower E2 

concentration was chosen in the present study, as it has been shown that E2 

concentrations at doses between 1 and 10 µg/kg BW (s. c.) exert physiological 

effects on the rat uterus (Odum et al., 1997). 

Analysis of the proliferation marker Ki-67 and PCNA on mRNA level revealed that 

the E2-induced proliferation was reduced after pre-exposure to ISO (Fig. 15 A/B). 

This observation indicates that exposure to ISO starting prepubertal is sufficient to 

reduce the estrogen induced proliferative response of the mammary gland. 

Numerous studies described that ISO exert protective effects on the mammary 

gland if the exposure starts prepubertal (Wu et al., 1996; Shu et al., 2001; 

Lamartiniere, 2002; Wu et al., 2002). This could be explained by the fact that GEN is 

able to alter the morphology of the mammary gland if the ingestion starts before 

pubertal breast development occurs. It has for example already been shown that 

prepubertal exposure to GEN increases the differentiation of the mammary gland by 

leading to an increase in the number of differentiated lobules and a reduction in the 

number of terminal end buds. The increased differentiation of the mammary gland 

results in a reduced risk to develop cancer in this tissue (Cotroneo et al., 2002; 

Lamartiniere, 2002; Cabanes et al., 2004). 

In contrast to proliferation, PR expression was induced in IDD as well as in pISD 

animals, suggesting an increased estrogen sensitivity in animals which received ISO 

only pre- to postpuberty (Fig. 15 C). This is in line with the observations in the PND 
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50 and 80 animals, which also showed an increased PR expression after pre- to 

postpubertal ISO exposure (Fig. 14 C). In addition to the earlier onset of puberty and 

the shorter menstrual cycle length, ISO exposure starting shortly before the onset of 

puberty seems to increase the estrogen sensitivity of the mammary gland. This led 

to the hypothesis that the imprinting of the estrogen sensitivity occurs at an earlier 

stage of life, before PND 30. As proliferation of the mammary gland is reduced after 

pre- to postpubertal ISO exposure, it could be assumed that the proliferative 

response of the mammary gland is formed at a later developmental stage, during 

PND 30 and 60. In line with other studies, it could be hypothesized that the reduced 

proliferative response to estrogens results from an altered pubertal breast 

development after ISO exposure. Our assumption is confirmed by a study of Clarke 

who showed that proliferating cells rarely express the PR, indicating that there are 

two distinct populations in normal mammary glands (Clarke et al., 1997).  

As reported before, numerous studies suggested a protective role of ISO exposure 

towards the development of breast cancer, if the ingestion starts prepubertal, 

because of the ability of ISO to alter the morphology of the mammary gland during 

pubertal breast growth (Limer & Speirs, 2004; Warri et al., 2008; Messina & Hilakivi-

Clarke, 2009). Further studies revealed that ISO are also able to induce epigenetic 

changes (Guerrero-Bosagna et al., 2008; Li et al., 2009; Molinie & Georgel, 2009). 

The group of Dolinoy showed that in utero exposure to Bisphenol A (50 mg/kg diet) 

resulted in epigenetic abnormalities, which could be reversed through maternal 

dietary supplementation with GEN (250 mg/kg diet) (Dolinoy et al., 2007). There is 

evidence that the early post-conceptional period displays a critical window, as it 

could be shown that in mammals the genomic methylation profile is reprogrammed 

during gametogenesis and in early embryogenesis (Barker, 2004; Gluckman et al., 

2007; Reik, 2007). This lead to the assumption that the increased estrogen 

sensitivity in the pISD compared to the ISD group could be due to epigenetic 

changes in the ISD which are mediated by early life ISO exposure.  

In summary, our results provide evidence that the imprinting of the estrogen 

sensitivity occurs in an earlier stage of life than the imprinting of the proliferative 

response of the mammary gland towards estrogens. In the present study, the 

estrogen induced proliferation was reduced due to ISO exposure solely during PND 

30 and 60, while this timeframe seems too late to influence estrogen sensitivity. 
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CHAPTER FIVE 

General discussion 
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Differences in the incidence of hormone dependent cancer between Eastern Asia 

and Europe or the US have been described many years ago (Ursin et al., 1994; 

Adlercreutz & Mazur, 1997; Martinez, 2005). Studies indicate that the traditional 

East Asian diet which is rich in soy may be responsible for cancer preventive effects.  

Aim of the present thesis was to analyse whether dietary exposure to ISO during 

different windows of development alters the estrogen susceptibility of the mammary 

gland and the tissue homeostasis of the small intestine in female rats. 

The first question addressed was whether lifelong exposure to dietary soy ISO or 

lifelong exposure solely to GEN influences the sensitivity of the mammary gland 

towards estradiol (E2). In the corresponding experiment three different kinds of diets 

were chosen: an ISO-free diet (IDD), an ISO-rich diet (IRD) and a GEN-rich diet 

(GRD). The IDD can be compared to the European nutrition containing less than 1 

mg ISO per day, resulting in plasma concentrations of 10 nM ISO (Adlercreutz et al., 

1993). The IRD reflects the Eastern Asian diet traditionally being rich in soy (20–50 

mg ISO/day), and resulting in a total serum ISO level (sum of GEN, DAI and equol) 

of 0.87 µM (Adlercreutz, 2002). The IRD used in the present study contained 248 µg 

GEN/ g, 213 µg DAI/g and 59 µg GLY/g diet (each calculated as aglycones). This 

results in an average daily ISO intake of 33 mg/kg BW of an adult female rat and 

ISO serum concentrations of 1.1 µM GEN and 2 µM DAI. Compared to the human 

situation, this concentration of the IRD is relatively high. 

During the last years the range of soy supplement products increases, although the 

effects of isolated intake of ISO are uncertain. In the present study, the GRD should, 

in regards to the daily ISO intake and the ISO plasma level, reflect the consumption 

of relatively high amounts of solely GEN (700 µg/g diet) in the form of soy 

supplements. It is described that consumption of soy supplements results in an 

average ISO intake of 20–80 mg/day, and plasma ISO levels of 1–3 µM are 

achieved (Gardner et al., 2009). Given the chosen diet, the adult female rats 

consuming the GRD accordingly reached a daily intake of 42 mg GEN/kg BW, 

resulting in serum concentrations of 2.5 µM.  

The results have shown that mammary gland proliferation was increased after IRD 

and GRD on PND 50. This suggests that puberty was still ongoing, and goes along 

with the assumption of an improved breast development after lifelong ISO exposure 

(Fritz et al., 1998). As expected, no proliferation could be detected at PND 80. Both 

results show that the points of time were appropriate to analyse the influence of ISO 

on the mammary gland in regards to the investigated hypothesis. 
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After ovariectomie and treatment with E2, the protective effects of ISO exposure 

became even more apparent. Lifelong exposure to IRD or GRD resulted in a 

reduced sensitivity of the mammary gland towards estrogens which was indicated 

by reduced expressions of PCNA and PR, increased expressions of PS2 and a 

decrease in the ratio of ERα:ERβ compared to IDD fed animals. The fact that an 

expected increase of proliferation could be detected after treatment with E2 

confirmed the general effectiveness of the treatment and thus the assay setup to 

analyse estrogenic effects in the mammary gland. 

Comparison of the results of the IRD and GRD groups revealed that both diets led to 

a similar reduction of estrogen sensitivity, whereas the IRD seemed more effective, 

although it contains less ISO than the GRD (IRD: sum of GEN, DAI, and GLY: 520 

µg/g diet; GRD: 700 µg GEN/g diet). This can be explained by the fact that the IRD 

included the ISO DAI, which is converted to equol in rodents. Equol has more 

estrogenic potency than GEN and DAI, and could therefore be responsible for the 

stronger effects of the IRD (Lamartiniere et al., 2002b; Rafii et al., 2007). Taken 

together, lifelong consumption of a diet containing the whole spectrum of soy ISO 

results in a further reduction of the mammary gland sensitivity than a diet containing 

high amounts of solely GEN.  

The second question addressed the effects of an IRD or GRD on the small intestine 

of female rats. The experiment utilized the same animals as from the first part of the 

thesis. In contrast to mammary gland, which is only rudimentary present before 

onset of puberty, the small intestine was additionally analysed on PND 25. In the 

small intestine, the elevated expression of PS2 and PCNA indicates an increased 

resistance of intestinal damage, in line with the hypothesis that loss of PS2 seems 

as an early indicator in developing intestinal cancer (Wu et al., 1998).  

The E2 treatment led to reduced expressions of p63 and PS2 and a tendency of 

reduced proliferation in the present experiment. As p63 and PS2 expressions were 

lowest after lifelong exposure to IRD or GRD it can be taken as an indication of 

improved intestinal protection. The fact that only a tendency of reduced proliferation 

was shown can be explained by the treatment period of three days which is very 

short for non-classical estrogen tissues like the small intestine. Previous 

experiments by other groups with long-term treatment with E2 have shown stronger 

protective effects (Chlebowski et al., 2004; Wada-Hiraike et al., 2006). 

Overall, lifelong dietary exposure to ISO may improve not only the development of 

the mammary gland but also the small intestine of female rats. Thus, these 
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observations as well confirmed the hypothesis that lifelong exposure to ISO and 

solely GEN protects against hormone-dependent cancers such as breast or bowel 

cancer. 

The third and final question addressed aimed to analyse whether not lifelong but 

only pre- to postpubertal exposure to ISO is sufficient to reduce the sensitivity of the 

mammary gland towards E2. For a better comparability of the diets, the IRD was 

replaced by an ISO-containing diet (ISD), which had the same composition as the 

IDD, but included soy ISO. The ISD contained less ISO than the IRD (ISD: 147.41 

µg GEN/g diet, 113.54 µg DAI/g diet, 36.06 µg GLY/g diet; IRD: 247.59 µg GEN/g 

diet, 213.09 µg DAI/g diet, 58.89 µg GLY/g diet, each calculated as aglycones). This 

results in a daily ISO consumption for an adult female rat of 33 mg/kg BW (for IRD) 

respectively of 19 mg/kg BW (for ISD). Given the high turn-over rate in rats 

compared to humans, a daily ISO intake of 17 mg/kg BW of rodents is comparable 

with an average ISO intake of 2.5 mg/kg BW in Eastern Asian populations, thus 

having the ISD appropriately reflecting the ISO intake of Asians. 

For the induction of estrogen-dependent proliferation in the mammary gland, an E2 

dose of 4 µg/kg BW was chosen. While this is a lower dose than in the first breeding 

experiment (7.8 µg/kg BW), it falls into the range between 1 and 10 µg/kg BW which 

exerts physiological estrogenic effects in the rat uterus (Odum et al., 1997). Both 

estrogen concentrations resulted in a significant increase of estrogen-induced 

proliferation in the mammary gland. 

The results of this breeding experiment revealed that pre- to postpubertal exposure 

to dietary ISO results in an earlier onset of puberty and a shorter menstrual cycle. 

Furthermore, these animals showed an increased PR expression in the mammary 

gland at PND 50 and 80. In response to treatment with E2 the PR expression was 

highest in pISD compared to IDD and ISD while the proliferation was reduced. This 

firstly suggests that pre- to postpubertal exposure is not effectual in reducing the 

estrogen sensitivity of the mammary gland. Secondly it could be assumed that the 

imprinting of estrogen sensitivity and proliferative response of the mammary gland 

occurs not contemporaneous but at different developmental stages. 

In summary, the results from both experiments provide evidence that lifelong 

exposure to dietary ISO cause reduced estrogen sensitivity and proliferative 

response of the mammary gland, which may lead to a reduced breast cancer risk. 

This reduction is more significant after the intake of the full spectrum of soy ISO than 

after GEN alone. Furthermore, the estrogen sensitivity of the mammary gland 
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seems to be formed at an earlier developmental stage compared to the estrogen-

dependent proliferation. Additionally, the tissue homeostasis of the small intestine 

was improved in the animals of the first breeding experiment, indicating a protection 

from developing cancer in the intestine.  

Given the indication from the present thesis that lifelong exposure to dietary ISO 

reduces the estrogen sensitivity of the mammary gland of female rats, whereas pre- 

to postpubertal exposure did not, future experiments may analyse different windows 

of development to more precisely define the time frame of protective ISO exposure. 

Future research should as well take into consideration which setup – animal or 

human studies – can achieve best results given the limitations of the circumstances. 

Extrapolations from in vivo studies to the human situation are quite difficult and 

should only be made cautiously. For example, this study used a conversation factor 

to improve comparability as the metabolism of nutrients occurs faster in rats than in 

humans (Setchell et al., 2011). Going further, some studies indicated that equol 

contributes to the protective effects of ISO, and while rats are able to convert DAI to 

the more estrogenic metabolit equol, this ability exerts on only 30–50 % of the 

human population.(Shor et al., 2012). Furthermore, nutritional composition differs 

between rats and humans, which may influence the metabolism of ISO. For 

example, it has been suggested that high intake of dietary fat impairs the production 

of ISO metabolites (Rowland et al., 2000).  

On the other hand, in human studies, it is not possible to include or even to 

determine and control all variables having an impact on the study readout, such as 

nutrition or life habits, making it difficult to compare the study subjects with each 

other. Furthermore, because of differences between the individuals, a large number 

of study subjects are needed to give evidence. Taken together, both study designs 

have advantages and disadvantages, resulting in the conclusion that a combination 

could be the method of choice. 

The present thesis investigated the impact of ISO on the most common cancers in 

females: breast and bowel cancer. Looking further, the question arises about the 

impact of ISO exposure on cancers in men. Most frequently in men are prostate and 

bowel cancer and differences in the incidence of bowel cancer in men and women 

have been discussed (Jimenez et al., 2011). The risk for bowel cancer seems to be 

dependent on the estrogen level as shown in studies where postmenopausal 

women receiving a hormone replacement therapy (HRT) have a lower cancer risk 

than women receiving no HRT (reviewed in (Di Leo et al., 2001; Nelson et al., 2002; 
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Kennelly et al., 2008)). Yet, the influence of ISO on bowel cancer in men is 

discussed controversial. The Fukuoka Colorectal Cancer Study showed an inverse 

relationship between nutritional intake of ISO and colorectal cancer risk in men and 

postmenopausal women, but not in premenopausal women (Budhathoki et al., 

2011). In contrast, a meta-analysis revealed that soy intake was associated with a 

reduction of colon cancer risk in women, but not in men (Yan et al., 2010). 

Furthermore, the incidence of prostate cancer is much lower for men from Eastern 

Asia compared to European men (Adlercreutz, 1995; Fritz et al., 2002; Kurahashi et 

al., 2007), and a lot of animal models showed a reduction in prostate cancer in 

response to GEN (Mentor-Marcel et al., 2001; Lamartiniere et al., 2002a; Wang et 

al., 2002). The underlying mechanisms are still unclear, but it has been described 

that GEN is able to improve prostate differentiation which may lead to reduced 

cancer development (Fritz et al., 2002). A further study showed a reduction in the 

weight of prostate and seminal vesicle after oral treatment with GEN (100 mg/kg 

BW) for 14 days. Additionally, in this study beneficial effect of GEN treatment in a 

model of chronic colitis could be observed (Seibel et al., 2009).  

The controversial discussion shows that while the results from this study strengthen 

the hypothesis on ISO impact for females, it cannot be easily transferred to men. 

Further studies are needed to identify the impact of ISO exposure on men.  
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