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Zusammenfassung

Sequentielles Lernen mit inkrementellen Import Vector Machines fiir die seman-
tische Segmentierung

Wir entwickeln einen neuen maschinellen Lernalgorithmus fiir die Klassifikation namens
inkrementelle Import Vector Machines. Der Klassifikator ist speziell fiir die Aufgabe des
sequentiellen Lernes entworfen, bei dem die Daten nacheinander dem Klassifikator prasentiert
werden.

Die Motivation fiir diese Arbeit entstand aus der Uberzeugung, einen Klassifikator for-
mulieren zu koénnen, der die Herausforderungen des sequentiellen Lernens bewéltigen kann
und dabei leistungsstark beziiglich der Klassifikationsgenauigkeit, Effizienz und aussagekrafti-
ger Ergebnisse ist. Eine Herausforderung des sequentiellen Lernens ist, dass die Daten dem
Lerner zu einem bestimmten Zeitpunkt nicht vollsténdig zur Verfiigung stehen, und in der
Regel das Warten auf eine reprisentative Anzahl von Daten nicht erwiinscht und unprak-
tisch ist. Um eine Klassifikation von gegebenen Daten zu jeder Zeit zu ermdglichen, muss
somit die Lernphase des Klassifikatormodells umgehend begonnen werden, auch wenn nicht
alle Trainingsbeispiele verfiigbar sind. Eine weitere Herausforderung ist, dass die Anzahl von
nacheinander ankommenden Daten sehr grofl oder sogar unendlich sein kann und somit nicht
alle Daten gespeichert werden konnen. Dariiber hinaus kann die Verteilung der Daten iiber
die Zeit variieren, und das Klassifikationsmodell muss stabil bleiben beziiglich nicht-relevanter
Daten, aber auch flexibel beziiglich neuer, relevanter Daten.

Unser Hauptbeitrag besteht daher in der Entwicklung, Analyse und Evaluierung eines lei-
stungsfihigen inkrementellen Lerners fiir das sequentielle Lernen, den wir inkrementelle Im-
port Vector Machines (I2VMs) nennen. Der Klassifikator basiert auf den nicht-inkrementellen
Import Vector Machines, die von Zhu and Hastie (2005) entwickelt wurden. I?VM ist ein
kernel-basierter, diskriminativer Klassifikator und ist deswegen in der Lage mit komplexen
Datenverteilungen umgehen zu kénnen. Desweiteren ist der Klassifikator diinnbesetzt, was
ein effizientes Training und Testen ermoglicht, und er ist probabilistisch. Ein zentraler Bei-
trag dieser Arbeit ist der Nachweis und die Analyse der diskriminativen und rekonstruktiven
Modellkomponente von IVM und I?VM. Wihrend diskriminative Klassifikatoren versuchen
die Klassen so gut wie moglich zu trennen, streben Klassifikatoren mit rekonstruktiver Kom-
ponente danach, moglichst viel Informationen iiber die Daten zu erhalten um die Verteilung
approximieren zu konnen. Beide Eigenschaften sind notwendig um einen leistungsfihigen
inkrementellen Klassifikator zu erhalten. Ein weiterer zentraler Beitrag ist die Formulierung
der inkrementellen Lernstrategie fiir 2°VM. Die Strategie enthilt das Hinzufiigen und Entfer-
nen von Datenpunkten und das Update der aktuellen Modellparameter. Desweiteren kénnen
sowohl neue Klassen als auch Merkmale hinzugefiigt werden. Die Lernstrategie adaptiert
kontinuierlich das Modell, hilt es aber gleichzeitig stabil und effizient.

In unseren Experimenten untersuchen wir die Eignung von I?VM fiir die semantische Seg-
mentierung von Bildern aus einer Bilddatenbank, fiir die Klassifikation von Landbedeckungen
grofler Gebiete in {iberlappten Fernerkundungsdaten und fiir die Objektverfolgung in Bild-
folgen. Wir zeigen, dass I?VM hohere oder kompetitive Klassifikationsgenaugkeiten wie ver-
gleichbare Klassifikatoren erzielen kann. Ein bedeutender Beitrag dieser Arbeit ist, dass die
Giite von I?VM unabhiingig von der Reihenfolge der Daten ist und dass bereits bearbeitete
Daten nicht nochmal fiir das Lernen in Betracht gezogen werden miissen. Ein weiterer Beitrag
besteht darin, dass I’VM in der Lage ist, ohne Verlust an Effizienz, mit langen Bildsequenzen
umgehen zu kénnen . Desweiteren liefert I?VM verlissliche a posteriori Wahrscheinlichkei-
ten, sodass Datenpunkte mit hohen Wahrscheinlichkeiten akkurat klassifiziert werden und
Datenpunkte mit niedriger Wahrscheinlichkeit eher falsch klassifiziert sein kénnen.



Summary

Sequential learning using incremental import vector machines for semantic seg-
mentation

We propose an innovative machine learning algorithm called incremental import vector
machines that is used for classification purposes. The classifier is specifically designed for
the task of sequential learning, in which the data samples are successively presented to the
classifier.

The motivation for our work comes from the effort to formulate a classifier that can man-
age the major challenges of sequential learning problems, while being a powerful classifier
in terms of classification accuracy, efficiency and meaningful output. One challenge of se-
quential learning is that data samples are not completely available to the learner at a given
point of time and generally, waiting for a representative number of data is undesirable and
impractical. Thus, in order to allow for a classification of given data samples at any time,
the learning phase of the classifier model needs to start immediately, even if not all training
samples are available. Another challenge is that the number of sequential arriving data sam-
ples can be very large or even infinite and thus, not all samples can be stored. Furthermore,
the distribution of the sample can vary over time and the classifier model needs to remain
stable and unchanged to irrelevant samples while being plastic to new, important samples.

Therefore our key contribution is to develop, analyze and evaluate a powerful incremental
learner for sequential learning which we call incremental import vector machines (I2VMs).
The classifier is based on the batch machine learning algorithm import vector machines, which
was developed by Zhu and Hastie (2005). I?VM is a kernel-based, discriminative classifier
and thus, is able to deal with complex data distributions. Additionally, the learner is sparse
for an efficient training and testing and has a probabilistic output. A key achievement of
this thesis is the verification and analysis of the discriminative and reconstructive model
components of IVM and I?VM. While discriminative classifiers try to separate the classes as
well as possible, classifiers with a reconstructive component aspire to have a high information
content in order to approximate the distribution of the data samples. Both properties are
necessary for a powerful incremental classifier. A further key achievement is the formulation of
the incremental learning strategy of I>VM. The strategy deals with adding and removing data
samples and the update of the current set of model parameters. Furthermore, also new classes
and features can be incorporated. The learning strategy adapts the model continuously, while
keeping it stable and efficient.

In our experiments we use I?VM for the semantic segmentation of images from an image
database, for large area land cover classification of overlapping remote sensing images and for
object tracking in image sequences. We show that I?VM results in superior or competitive
classification accuracies to comparable classifiers. A substantial achievement of the thesis is
that I’VM’s performance is independent of the ordering of the data samples and a reconsid-
ering of already encountered samples for learning is not necessary. A further achievement
is that I2VM is able to deal with very long data streams without a loss in the efficiency.
Furthermore, as another achievement, we show that I?VM provide reliable posterior proba-
bilities since samples with high class probabilities are accurately classified, whereas relatively
low class probabilities are more likely referred to misclassified samples.
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Chapter 1

Introduction

1.1 Overview

This thesis formulates and evaluates an innovative machine learning algorithm that is used
for classification purposes. Machine learning is a field of computer science, concerned with
the development of computer programs that are able to learn from data samples collected
through sensors. A more precise definition was formulated by Mitchell (1997) to specify the
term “machine learning”: “A computer program is said to learn from experience E with
respect to some class of tasks T' and performance measure P if its performance at tasks in
T, as measured by P, improves with experience E.” In this thesis we address a program
that learns from samples with given class-membership in order to solve a semantic image
segmentation task, i.e. a partitioning of an image in semantically meaningful regions. In the
first stage, we learn from experience decision boundaries between samples that are assigned
to pre-defined classes. In the second stage, we use the learned decision boundaries in order
to classify each sample from which we want to know the class-membership.

Particularly, we focus on the development of a machine learning algorithm which is specif-
ically designed for the task of sequential learning. Sequential learning treats the data succes-
sively, either because the task was designed in this way or the data does not allow any other
access. Instead of all data samples being available at once to the learning algorithm, the sam-
ples arrive over time (i.e. in streams), one by one or in batches. A batch is defined as group of
samples which arrive simultaneously. The most common data stream is a video sequence, in
which each image comprises a batch of samples. Sequential learning is also applied if the data
is completely available (in one batch), but has to be processed sequentially. This occurs when
the data set is too large to fit into the memory or to be processed in a practically tractable
way. Although sequential data has a time reference, this is not necessarily important for the
learning. The reference to time is due to the fact that a sample is made available to the
learner at a certain point of time. This is not necessarily the acquisition time. In the case
of real-time applications with continuous data streams the time of acquisition and usage can
coincide. Thus, we define sequentially processed data also as sequential data.

We define learning with sequential data as incremental learning, or more precisely: We
define sequential learning as the task to incrementally train a classifier with samples becoming
successively available, one at time or in blocks. A learner is incremental if the classifier model
is constantly updated with respect to the samples arriving sequentially. The model is built
upon a limited number of samples and its former model. Throughout this thesis we use
sequential learning and incremental learning interchangeably.
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1.2 Motivation

Machine learning methods have to manage three major challenges when dealing with sequen-
tial data:

(a) The samples are not completely available to the learner at a given point of time and
generally, waiting for a representative number of data is undesirable and impractical.
Thus, in order to allow for a classification of given data samples at any time, the learning
phase of the classifier model needs to start immediately.

(b) The number of sequentially arriving data samples can be very large or even infinite and
thus not all samples can be stored.

(c¢) In general sequentially arriving data does not follow the same static underlying dis-
tribution. The variation in the distribution is called concept-drift. Different types of
drifts are discussed in Hoens et al. (2012) and Jaber et al. (2011).

Batch learning algorithms, i.e. algorithms trained on one batch of data, are not able to deal
with sequential data. According to (a) and (b) waiting for a representative number of data is
undesirable and impractical for large data sets and even impossible for infinite data sets. Since
the number of sequential data increases over time, a storage of all samples for a simultaneous
processing is intractable. According to (c) batch learning algorithms ignore all new samples
and therefore cannot be adapted to important changes in the data distribution. Once they
have been learned, they are unable to describe newly arrived data samples.

In contrary to these algorithms an incremental learner can start to learn without any
delay and can be updated constantly regarding the sequentially arriving samples. Therefore,
these methods can adapt immediately to new samples. Furthermore, the learner does not
need to store all samples and can remove a part or all samples with respect to a suitable
criterion. Nevertheless, according to (c¢) an incremental learner is confronted with the so-
called stability-plasticity dilemma (Grossberg, 1988) which deals with the question how the
learner remains stable and unchanged to irrelevant samples while being plastic (i.e. flexible)
to new, important samples.

Due to the positive properties of incremental learners, several classifiers have been pro-
posed, extending classical and state-of-the-art batch classifiers. One classifier that has not
been extended yet are the import vector machines (IVMs) developed by Zhu and Hastie
(2005). They turn out to have properties which are useful for a powerful incremental learn-
ing and thus, IVM appears to be a suitable starting point for an incremental classifier. This
thesis focuses on the development of an incremental version of IVM and shows that the
classifier can manage the mentioned challenges when dealing with sequential data.

1.3 Goal and Achievements of the Thesis

The goal of this thesis is to develop and evaluate a powerful incremental learner for sequential
learning which we call incremental import vector machines (I*VMs). The learner is based
on the batch machine learning algorithm IVM, which was developed by Zhu and Hastie
(2005). A key achievement is the analysis of the yet unexplored properties of the learning
scheme of IVM which turns out to be useful for incremental learning. We show that under
certain conditions the IVM algorithm, though being a discriminative classifier, also has a
reconstructive model component. While discriminative classifiers try to separate the classes as
well as possible, classifiers with a reconstructive component aspire to have a high information

10



content in order to approximate the distribution of the data samples. Both properties are
necessary for a powerful incremental classifier. We analyze the IVM classification model in
detail and show that IVM has both a high discriminative power as well as reconstructive
abilities. Contrary to discriminative classifiers, IVM implicitly samples important parts of
the underlying distribution. These representative samples can be used as an approximation
to the distribution.

A further key achievement is the formulation of the incremental learning strategy of I*VM.
The strategy deals with adding and removing data samples and the update of the current
set of model parameters. Furthermore, I?VM is able to incorporate new classes and features,
which has been paid only little attention in the literature so far. The I?VM algorithm has
the following properties:

(a) Competitive performance. It performs comparably to its batch learning counter-
part. When applied to the same data samples, it is independent from the ordering of
the data. Thus, the learner is able to handle concept-drifts in data distribution without
suffering a loss in performance.

(b) Discriminative power. It separates the classes well, regardless of the complexity of
data distribution.

(c) Long sequences. It is able to deal with arbitrarily long data streams.

(d) Probabilities. It provides reliable posterior probabilities in order to allow for a mean-
ingful evaluation, to serve as input for further processing steps, e.g. graphical models,
or to provide criteria to decide on irrelevant data to keep the model sparse.

To meet requirements (a) and (b), incremental methods in general need a reconstructive
model component and should have a discriminative model component. A reconstructive
model component represents the significant sub-domain of the data distribution. It offers
robustness against the sequence of data samples as well as being effective in the case of
many competing classes. Additionally, it is also capable of adapting to actual or apparent
changes in the data distribution which appear as concept-drifts to the learner caused by either
changes within the class (intra-class variability) or by changes between the classes (inter-class
variability). A discriminative model component, though not necessary, is recommendable
in order to be efficient for distinguishing similar classes. Moreover, kernel-based learning
methods have shown good results when dealing with complex data distributions.

In order to meet requirement (c), I?’VM is able to add and remove data samples while at
the same time adapting the classifier model to the current conditions. In contrary to kernel-
based batch methods, incremental kernel-based approaches such as I?’VM demand strategies
for adding and removing data samples. However, the criteria for the addition and removal
of samples may differ depending on the application. When dealing with long data streams,
a long-term memory may be necessary; this requires a memory-efficient classifier model.
Among the diverse classifiers, sparse kernel-based batch learning methods have been shown
considerable success for achieving good performance with highly complex data distribution
while at the same time being sparse and therefore efficient.

In order to meet requirement (d), I*VM is be based on the probabilistic IVM classifier
model. While probabilistic models tend to rely on more computational resources than non-
probabilistic models, probabilities are often of interest and give the opportunity for further
processing steps.

In our experiments we prove that I?’VM can meet all requirements. We show that I2VM
results in competitive classification accuracies to comparable classifiers. A key achievement
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of the thesis is that I?’VM’s performance is independent of the ordering of the data samples
and a reconsideration of already encountered samples for learning is not necessary. A further
achievement is that I?VM is able to deal with very long data streams without a loss in
the efficiency. Furthermore, as another achievement, we show that I>VM provide reliable
posterior probabilities since samples with high class probabilities are accurately classified,
whereas relatively low class probabilities are more likely assigned to misclassified samples.

1.4 Applications of the Proposed Classifier

The applications of incremental learners are wide-ranging. They extend the scope of batch
learners to areas in which a sequential data treatment is necessary. We subdivide these
applications into the following groups:

(a) The generation of samples or blocks of samples is time-dependent.

(b) New samples arrive one by one or in blocks in arbitrary intervals in which the time-
dependency is not of interest.

(c) The data set is completely available but processed sequentially, because it is too large to
either fit into the memory or to be processed simultaneously in a practically tractable
way.

Case (a) comprises all applications that deal with streams, i.e. samples which arrive time-
dependently. The most common streams are time series data and video sequences, which we
will discuss in Section 2.3.3. As an example, Figure 1.1 shows representative images of a video
sequence, in which a rotating flower is meant to be tracked. The green contour indicates the
detected boundary of the tracked object. The image sequence includes for each image to
varying degrees, the challenge of changing color appearance, interframe motion and change
in object shape. A sequential learning algorithm can learn the appearance of both the object
and the background and is able to adapt to the changes automatically (Roscher et al., 2012;
Santner et al., 2010; Tang et al., 2007; Avidan, 2007). Additonally, the time-dependency of
the data stream can be exploited by introducing temporal relations between pixels or regions
of successive frames and enforcing a temporal consistency of their predicted labels.

FIGURE 1.1: Representative frames (numbers ¢ in the top right corners) of the tracking results for the image
sequence.

Remote Sensing, as another example for case (a), deals with data becoming available in
blocks or intervals. Earth sensing satellites acquire a large amount of data on worldwide
environmental changes over time such as e.g. tropical rain forest deforestation, climate in-
formation such as meteorological, oceanographic or atmospheric data or the amount of snow
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and ice in the polar regions. The intervals can range from a few hours, depending on the tem-
poral frequency of the satellite, to monitor short term changes, over few months to monitor
glacier surface velocities (Raup et al., 2007). The interval can also be several years to monitor
changes in vegetation (e.g. Stow et al. (2004); Turner (1990)). Of course, if the interval is
large enough, the task can also be solved by a non-incremental learner. Nevertheless, due to
the large amount of accumulated data, an incremental learner will be necessary because not
all data can be processed simultaneously.

Typical applications for (b) are those that use the so-called active learning. It is an
umbrella term for methods that are suitable for a sequential acquisition of samples using an
oracle that defines the label of the samples. Since the labeling of data is time-consuming,
expensive or potentially difficult, active learning enables a continuous training of the classifier.
For a comprehensive literature survey, we refer to Tuia et al. (2009) and Settles (2009). Self-
training can be considered as the easiest type of active learning. Starting with a limited
number of labeled samples, the classification result is used to acquire new labeled samples in
order to improve the classification result (Roscher et al., 2012; Li and Fei-Fei, 2010). Also
co-training (Blum and Mitchell, 1998) is used to update a classifier model by using different,
ideally complementary views of the data. These methods are also common in recent tracking
approaches (see Sec. 2.3.3). Another example is a land cover classification of large areas,
which consists of several composite remote sensing images. Generally, the images are not or
only partly labeled and they are characterized by both spatial and temporal differences, see
Figure 1.2. Thus, the labeled samples cannot represent the distribution of the features in all
images. In order to obtain a classification of the whole area, active learning is applied for
the acquisition of labeled samples in all images (Roscher et al., 2012; Knorn et al., 2009).
The example given in Figure 1.2 shows an area of about 285000 km? around Rondonia in
South America. The data set contains 9 Landsat 5 TM images from 2009, in which only the
center image comes with labeled samples. Applications like large area land cover classification
benefit from sequential learning strategies, because the classifier can be updated each time
new acquired data is available and need not to be retrained from scratch.

. Rondonia
e

FIGURE 1.2: The area of Rondonia with 9 overlayed Landsat images displayed with bands 4-3-2. The three
image strips are acquired in September (images 1, 4 and 7), July (images 2, 5 and 8), and August 2009 (images
3, 6 and 9). The underlaid image is taken from Google Earth. The classification aims at 4 land cover classes,
focused on FOREST, AGRICULTURE, WATER and URBAN.
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According to case (c), besides infinite data streams, also finite data sets can be too large
to either fit into the memory or to be processed in a practically tractable way. Csaté et al.
(2001) predict wind speed and direction over the ocean surface over a huge area of several
km? which is important for planning and construction activities in the oceanic area. They
present an approach to sequentially update an approximation to the posterior distribution
of the wind vectors which cannot be computed at once. In order to cluster huge amount of
data samples, such as astronomic data or document collections of web sites, Littau and Boley
(2009) sequentially scan each data sample in these data sets in order to find an approximation
to the whole data set. The subset can be clustered more efficiently than using the original
data set.

Also applications like the classification of large image databases can utilize sequential
learning algorithms in order to learn the appearance of many classes in a practically tractable
way by processing the images sequentially rather than simultaneously. One example for
such an application is illustrated in Figure 1.3, in which images of the Microsoft Research
Cambridge object recognition image database (Winn et al., 2005) are meant to be classified.
The appearance of the classes may change with each newly processed image and therefore
the classifier needs to be adapted during the learning process.

—

(c) (d)

FIGURE 1.3: (a)(c) Images of Microsoft Research Cambridge object recognition image database. (b)(d) Manual
classification aiming on the classes BUILDING (red), GRASS (green), TREE (light green), SKY (gray). Black pixels
have the class VOID.

The application of incremental learners are numerous. In this thesis we focus on the field
of semantic image segmentation in which each pixel is assigned to a pre-defined class. By
grouping adjacent pixels with the same class, we obtain segments with a semantic meaning.
In our experiments we exploit I?’VM for the semantic segmentation of images from an image
database, for large area land cover classification of overlapping remote sensing images and
for object tracking in image sequences.

1.5 Organization of the Thesis

The organization of the thesis is as follows. Chapter 2 gives an overview about sequential
learning strategies. We define the term “sequential learning” in order to define the considered
task in this thesis. We further review currently used algorithms for incremental learning and
their application using single images, image databases and image sequences. The review of
existing algorithms focuses on the properties mentioned in Section 1.3. Chapter 3 introduces
the theoretical background of the IVM classifier. Additionally, we discuss the relation of
IVM to similar classifiers. In Chapter 4 we show that IVM though being a discriminative
model inherently have a reconstructive component. We verify this by means of the analysis
of the objective function. Further, we underline our findings by an empirical study on the
distribution of the import vectors and discuss the requirements which must be met in order
to develop the reconstructive component. The core of the thesis is the formulation of the
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I?VM learner, an incremental realization of IVM. Chapter 5 develops the incremental learning
scheme and describes the addition and removal of data samples and the incremental update
of the classifier model. Furthermore, the incorporation of new classes and features is shown.
Chapter 6 presents experimental results showing the performance of I?VM. Our conducted
experiments comprise the classification of well-known benchmark data sets with and without
ordering effects, the semantic segmentation of large image databases, large area land cover
classification and an object tracking application. We conclude in Chapter 7 and discuss
possible further developments of IVM and I>VM.
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Chapter 2

Related Work

The overall goal in this thesis is to formulate, analyze and evaluate the learner 1?VM for
sequential learning with focus on semantic segmentation. This chapter provides on overview
of the most recent and significant work in the fields of the sequential learning problems, se-
quential learning algorithms and the application of sequential semantic segmentation. The
first section reviews different views on the sequential learning task in order to distinguish this
work from other conceptions. The second section reviews recently used algorithms which are
developed to solve sequential learning problems. In the last section we introduce some appli-
cations in which the samples are treated successively with focus on semantic segmentation.

2.1 Sequential Learning

In the field of machine learning, the term “sequential learning” is treated in different ways.
As stated in Chapter 1 we use sequential learning and incremental learning interchangeably
throughout this thesis, in which we define sequential learning as the task to incrementally
train a classifier with samples becoming successively available, one at time or in blocks. The
main distinction in the literature is what the word “sequential” is referred to; either to the
arrangement of the data or the learning task itself. One the hand the learning task can be
defined as the identification of a particular sequence of labels, in which the sequence has a
meaning (Dietterich, 2002). Such sequences are for example words as concatenation of letters
(Krallinger et al., 2008; Brefeld et al., 2005)) or DNA sequences (Leslie et al., 2002). These
samples are not drawn independently and identically from an joint distribution over the class
memberships and the samples themselves. On the other hand the term “sequential” does not
refer to the arrangement of the data but rather to the learning task, in which the learner has
a sequential access to the data. We define sequential learning as the task to incrementally
train a classifier with samples becoming available over time, one by one or in blocks. It is
important to note that although the data become available over time, this does not necessarily
mean that the time at which the sample is made available to the learner is of concern. We
will restrict ourselves to sequentially treated data independently of their nature.

Our point of view of sequential learning is also known as incremental learning. The
learning process deals with sequentially arriving data samples. The data can be of any nature,
which can make dealing with them challenging. The overall data stream can be massive
(Witten et al., 2011; Li and Fei-Fei, 2010; Hulten and Domingos, 2002), i.e. of high density
with many samples arriving in short intervals over a long period, or even infinite (Monteleoni
et al., 2011; Monteleoni and Kaariainen, 2007). To solve this learning task, incremental
learning algorithms are exploited that are specially designed for this purpose. Although this
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type of understanding is not new, Jain et al. (2006) and Giraud-Carrier (2000) have helped
to analyze and define the term “incremental learning” to make it better understood.

In the literature there exist several approaches considering different aspects of incremental
learning. They can be subdivided into three groups, namely

(a) the way how old samples are used,
(b) the kind of information that can be incorporated,

(c) the choice of the update interval.

The way how old samples are used. Reinke and Michalski (1988) introduced the term
full-memory learning. During the learning process the classifier model is updated by using
the newly arrived samples. However, the learner does also make use of all saved previous
training samples. In many applications, this would be impossible since the storage of the
data is not feasible.

A good compromise is to store only a bounded number of chosen examples, which are
selected by age (as in tracking scenarios, see Sec. 2.3.3) or by subset selection procedures.
Lange and Zilles (2003) show that learning with a limited number of carefully chosen samples
can be enough to ensure a good performance of incremental learners. Engelbrecht and Cloete
(1999) identify and retain the most informative samples, i.e. those samples that have the
highest influence on the learning objective. For example, the learning objective can be the
reduction of the misclassification error. The approach has been extended by Engelbrecht and
Brits (2001) by using only the most informative sample, which is identified by clustering a
group of newly incoming data samples. Maloof and Michalski (2000) introduced the term
“partial memory learning” in order to describe the usage of a bounded number of training
samples. They restrict the number of newly acquired samples by choosing only the extreme
ones, which are positioned near to the decision boundary. In a similar way, Zhang (1994)
use only critical examples to train the incremental learner. The criterion for selecting critical
samples depends on the information gain yielded by adding an sample. The information gain
is defined by the reduction in the objective function after adding the sample. The sample,
which leads to the largest reduction is chosen to be added.

Another possibility to retain knowledge seen so far is to built up a long-term memory,
which can be seen as prior knowledge. Ferrari and Jensenius (2008) use an optimization
problem to learn with newly arrived samples, subject to the prior knowledge formulated as
constraints. Holmes et al. (2004) take a different approach by remembering models learned
from groups of data rather than the data samples themselves. They divided the data set
into single batches and learn each one non-incremental. After all batches have been proposed
they combine the models learned in each batch to one global model.

Most work, however, strictly define incremental learning as an iterative learning of the
classifier, which has only access to the newly arrived data and the last model. In this case,
the classifier has no sample-memory. We will review such approaches regarding the used
algorithm in Section 2.2.

The kind of information that can be incorporated. Zhou and Chen (2002) introduced
the terms “example-incremental learning”, “class-incremental learning” and “attribute incre-
mental learning”. Example-incremental learning updates a classifier model using only a few
or none of previous seen samples. The new acquired knowledge of the samples is incorporated
into the model. When using class-incremental learning, the classifier model is updated regard-
ing the used classes. A new class is added without sacrificing the learned model too much.
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In attribute-incremental learning the model is updated by adding new attributes (i.e. fea-
tures) without sacrificing the previous learned model. For the last two methods there is only
little work in literature, since most algorithms have been proposed dealing with example-
incremental learning (see Section 2.2). Wenzel and Hotz (2010) subsequently add classes,
one class after the other to analyze the role of sequences for incremental learning. Also Po-
likar et al. (2001) add classes that may be introduced with newly acquired data samples.
Guan and Li (2001) sequentially add relevant features and thus, the feature dimension of the
samples increases. They retain the old classifier model and combine it with a newly trained
model with increased feature dimension to form an overall updated model. Skocaj et al.
(2006) proposed an incremental learning method that can both incorporate new features and
classes.

The choice of the update interval. Syed et al. (1999) introduced another distinction
of incremental learning by introducing the so-called “instance learning” and “block-by-block
learning”. Instance-learning updates the model after each newly arrived sample, whereas
block-by-block learning updates the model after grouping newly arrived samples into blocks
of a suitable size. Also Hoens et al. (2012) define incremental learning as learning with
data becoming available over time in streams of samples or batches, in which one batch is a
block of samples. Langley (1995) distinguish between three different temporal resolutions in
which the samples are processed. At the finest temporal resolution, the learner has access to
features of an sample, one at a time. At the intermediate resolution, the learner is updated
regarding the samples, one at a time and at the highest temporal resolution, the learner
has access to distinct blocks of samples, one at a time. Most of the proposed algorithms
(see Section 2.2) incrementally train the classifier using the samples one by one even if the
samples arrive in blocks. This can be time-consuming because the incremental update steps
need to be repeatedly applied to each single sample. Karasuyama and Takeuchi (2010), for
example, extended the approach of Cauwenberghs and Poggio (2001) by using an optimization
technique called parametric programming to perform the update with blocks of samples in a
single step rather than a series of optimization problems.

We have reviewed different views on sequential learning, which are concerned mostly in
the literature. In the next section, we discuss several recently used incremental classifiers,
which are designed particularly to solve sequential learning problems.

2.2 Incremental Learning Methods

Several incremental learning methods have been suggested, extending classical and state-of-
the-art batch methods. In the literature batch learning algorithms are also refereed to as
offline classifiers and incremental classifiers are often denoted as online algorithms. We use
the terms “incremental” or “sequential” and “batch” throughout the thesis. In this section,
we review common incremental learners with respect to the properties of VM mentioned
in Section 1.3. I?VM is a probabilistic multi-class learner with a high discriminative power,
showing a comparable performance to IVM . We will later show, that IVM inherently has a
reconstructive component to represent important parts of the underlying distribution.

Competitive performance. Incremental learning methods in general show comparable
performances to their batch version when there is no change in the data distribution over
time. The most recent methods showing these property vary from online discriminative ker-
nel density estimation (Kristan and Leonardis, 2010), on-line random forests (ORF) (Saffari
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et al., 2009), incremental support vector machines (Zheng et al., 2010; Karasuyama and
Takeuchi, 2010; Bordes et al., 2007; Fung and Mangasarian, 2002; Cauwenberghs and Poggio,
2001), online boosting algorithms (Grabner and Bischof, 2006) to online nearest neighbor
classifier (Gu et al., 2010). These methods are able to handle complex distributions, in con-
trast to incremental linear subspace learning with linear discriminant analysis and principal
component analysis (Uray et al., 2007; Kim et al., 2007). To deal with more complex data,
some incremental subspace methods have been extended to a kernel version (Chin and Suter,
2007).

If the distribution of the samples changes over time, we speak of concept-drifts. They may
cause severe problems for incremental learners. Like in tracking applications, old examples
are often misleading, which is why newly gathered training vectors should be more beneficial
than older ones. The incremental learner should be able to adapt to changes in the underlying
distribution of data samples. For example, Gu et al. (2010), Tang et al. (2007) and Grabner
et al. (2008) show that this necessary for a powerful object tracking. Explicitly identifying and
handling concept-drift has been considered by Scholz and Klinkenberg (2007) and Klinkenberg
and Joachims (2000), which show that incremental learner as online boosting and incremental
support vectors machines can deal well with detected drifts.

A weaker but nevertheless relevant drifting-effect may result from changing the sequence of
data samples, which results in so-called pseudo-concept-drifts, as shown by Wenzel and Hotz
(2010), Langley (1995) and Cornuéjols (1993). Such drifts can occur for example in medical
experiments if the data is collected for one patient at a time or in controlled experiments
with a test plan for which process parameters are tested successively, as already stated by
Riiping (2001). Several approaches have been suggested to overcome this problem. Talaveral
and Roure (1998) introduced a buffer to store difficult samples for a later evaluation or
McKusick and Langley (1991) rearranged the sequence . Bengio et al. (2009) introduced a
schedule to present the samples in a special order to a neural network classifier to increase the
performance. These methods are not useful for an incremental learner since in practice one
usually cannot wait until a sufficient part or even all data samples are ready for processing.

To deal with concept-drifts Uray et al. (2007) and Skocaj et al. (2006) stated that in-
cremental methods generally need a reconstructive model component. This is an inherent
property of generative approaches. They model the joint probability of the labels and the
features, and in a Bayesian way use priors to derive posterior probabilities. Incremental
generative classifier, such as online discriminative kernel density estimation (Kristan and
Leonardis, 2010), online nearest neighbors (Gu et al., 2010), an incremental Bayesian ap-
proach (Fei-Fei et al., 2007) or incremental linear discriminant analysis (Uray et al., 2007;
Pang et al., 2005), can therefore represent current and even previously removed training
samples. The approaches are very efficient, because the models can be defined by a few pa-
rameters describing the underlying distribution. This however requires the structure of the
underlying distribution to be known and to be approximable with sufficient accuracy. This
is not the case for many real-world data sets that have a complicated distribution without
known underlying structure. To overcome this problem, non-parametric density estimation
techniques such as k-nearest neighbor or kernel density estimation are used (Kristan and
Leonardis, 2010; Gu et al., 2010). Although they have several advantages, these models can
become very complex when the data distribution is approximated and the models have to be
reduced for incremental learning settings. Generative models are able to directly incorporate
unlabeled samples (Lasserre et al., 2006) and the model can be used as approximation of
discarded training samples, which is needed for robust incremental learning (Skocaj et al.,
2006; Uray et al., 2007).
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Discriminative power. In contrary to generative classifiers, discriminative classifiers such
as logistic regression directly model the posterior probability but do not contain a reconstruc-
tive component. Also support vector machines (SVMs) (Vapnik, 2000) that directly map the
inputs into decisions by determining a discriminant function do not contain this component.
Likewise decision trees (Breiman et al., 1984) are also based on the estimation of discriminant
functions. During the induction of a decision tree the training data is sequentially partitioned
into smaller increasingly homogeneous subsets by using a set of decision boundaries defined
at each node. Usually only the most relevant feature is used at each node, resulting in many
rather simple decision boundaries that are parallel to the axis in the feature space. The
accuracy of decision tree classifiers is often improved by using ensemble strategies. Classi-
fiers ensembles are based on the combination of independent variants of the same classifier,
i.e. the base classifier. Various strategies for generating variants of the same classifier have
been introduced, like boosting (Viola and Jones, 2004; Freund and Schapire, 1996), bagging
(Breiman, 1996) and random subspace methods (Ho, 1998). The decision tree-based classi-
fier ensemble random forests (Breiman, 2001) is a powerful alternative that combines the two
latter strategies.

It has been shown for various applications that discriminative classifiers can achieve higher
classification accuracies than generative classifiers if the posterior is a lot simpler than the
underlying distribution (Kumar and Hebert, 2006; Vapnik, 2000). This transfers to incre-
mental learners such as incremental SVM or ORF which present good performances, e.g. in
tracking tasks (Tang et al., 2007; Saffari et al., 2009).

Logistic regression is one of the oldest discriminative models, which historically goes back
early up to 19th century (Cramer, 2003). The basic concept has been extended in many
respects, such as by Friedman et al. (2000), which integrated the concept of boosting to an
additive logistic regression model or by Deselaers et al. (2011), which have incorporated latent
variables. Logistic regression is the basis for advanced models such as incremental logistic
regression (Bishop, 2006), kernel logistic regression (Karsmakers et al., 2007; Keerthi et al.,
2005; Cawley and Talbot, 2004; Roth, 2001) and sparse kernel logistic regression (Cawley
et al., 2007; Tipping, 2001). IVM constitutes a realization of sparse kernel logistic regression.
Among various developments of kernel discriminant classifiers, SVMs are presently one of
the most popular approach in recent applications. However, (Roscher et al., 2012; Braun
et al., 2011; Zhang et al., 2011) have shown that IVMs are comparable to SVMs regarding
the performance. A comprehensive empirical comparison of common batch classifiers was
conducted by Caruana and Niculescu-Mizil (2006).

The positive properties of generative and discriminative models have been integrated
in hybrid generative/discriminative classifiers. The motivation is to formulate a classifier
with a reconstructive component while exploiting the discriminative power. Most of the
approaches combine a generative and a discriminative classifier (Xue and Titterington, 2010;
Uray et al., 2007; Skocaj et al., 2006; Fritz et al., 2005). Others learn a generative model
using a sequence of discriminative models (Tu, 2007), interpolate between generative and
discriminative parameter estimation (McCallum et al., 2006; Lasserre et al., 2006; Raina
et al., 2003) or learn a sparse generative model while retaining as much discriminative power
as possible (Kristan and Leonardis, 2010). In considerations about IVM, we will show that
the model develops a reconstructive component while at the same time possessing a high
discriminative power. In contrary to this, discriminative classifiers such as SVM and random
forests inherently do not have a reconstructive component.

Long sequences. Incremental linear subspace learning methods adapt the model param-
eters by processing newly available data samples, while directly discarding the samples after
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they have been processed. In contrast, kernel-based algorithms allow a simple adaption of
the model by adding new training samples. In order to avoid a steadily increasing complexity
of the model when learning over a long time, all kernel-based learners need a component for
removing data. Approaches such that of Karasuyama and Takeuchi (2010), Kivinen et al.
(2004) or Fung and Mangasarian (2002) show considerable success in incremental learning
settings and in general provide update steps to remove data samples in a similar way as data
samples are added. The challenge is to perform efficient incremental update steps without
suffering a loss in performance.

Probabilities. Besides the predicted class labels of test data, a probabilistic output of the
classifier is often of interest. The probabilities can serve as confidence and can therefore be
used for either a more accurate evaluation of the classifier or for a further analysis of the
classified data. Giacco et al. (2010) for example use the probabilities for uncertainty analysis
of landcover classes. The probabilities can also serve as input into a graphical model, as
carried out by Roscher et al. (2012) and Kumar and Hebert (2006). In the context of active
learning, the probabilities can be used to decide on what data samples are useful in order to
extend or replace the current training set (Li et al., 2011; Iglesias et al., 2011). Roscher et al.
(2011) have shown that active learning can be performed using an incremental learner without
the need to repeatedly retrain the classifier. The probabilities are used to identify relevant
samples for updating the incremental learner, and non-informative samples are removed by
exploiting diagnostics tools. In contrast to kernel-based probabilistic models such as IVM and
sparse multinomial kernel logistic regression (Cawley et al., 2007; Krishnapuram et al., 2005;
Tipping, 2001), SVM is non-probabilistic. However, the output of SVM can be transformed
to be probabilistic. The most common technique to transform the output to a probability is
to fit a sigmoid to the output as proposed by Platt et al. (2000). Other methods are proposed
by Grandvalet et al. (2005) and Sollich (2002). Though resulting in an output lying in the
range [0, 1], this does not imply that the transformed output is a good approximation of
the posterior, i.e. the reliability of these values could be inadequate (Riiping, 2004; Tipping,
2001). The most recent discussion about this aspect can be found in (Franc et al., 2011), in
which a generative and semi-parametric probabilistic model is presented that is equivalent
to linear SVM. Decision trees provide probability estimates, which arise from frequency-
based calculations at the leaf nodes. Simply using the counts of classes at the leaf nodes
does not give good probability estimates, as already stated by Chawla and Cieslak (2006).
Therefore smoothing methods (Niculescu-Mizil and Caruana, 2005; Provost and Domingos,
2003; Zadrozny and Elkan, 2001) or bagging (Chawla and Cieslak, 2006) have been used to
improve the reliability of the estimates, which is why random forests generate better estimates
than decision trees.

We have discussed several classifiers regarding their performance, discriminative power,
their ability to deal with long-sequences and the their possibly probabilistic output. In the
next section, we review the application of incremental classifiers for semantic segmentation.

2.3 Semantic Segmentation

In this thesis, we focus on the application of I?VM for semantic image segmentation, in
which each pixel is assigned to a pre-defined class. By grouping adjacent pixels with the
same class, we get segments with a semantic meaning. Like all incremental learners discussed
before, I?VM is not restricted to this application. In this section, we review the application
of incremental learners for the semantic segmentation in single images, images from large
databases and image sequences.
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Since semantic segmentation is a crucial step for automatic image understanding, the field
of applications and algorithms is wide-ranging. The variety of further applications include
e.g. object detection/recognition, content-analysis, image understanding or image retrieval
and indexing. A review of batch/off-line methods for image segmentation can be found in
(Shankar, 2007), (Rogowska, 2000) and (Pal and Pal, 1993).

2.3.1 Semantic Segmentation in Single Images

In the field of semantic segmentation of single images incremental learning can be used to
adapt an pre-learned coarse model to the current image. Since the pre-learned model already
provides a good approximate solution to the final segmentation in the current image, usually
no further human interaction is necessary. Li et al. (2007) incrementally segment skin regions
or Wismiiller et al. (2004) segments magnetic resonance data sets of the human brain by an
incremental self-organized model adaptation.

Remotely sensed single images can be very large and labeling is costly. Therefore, active
learning is widely used to incrementally update the set of labeled samples to improve the
classification result (Tuia et al., 2009). Furthermore, a large land cover area may be divided
into multiple scenes, in which each of them can have both spatial and temporal differences.
For the sequential classification of the individual scenes, the classification model must be
adapted to the current spectral features. In contrary to Knorn et al. (2009), which re-train
the classifier after each data acquisition step, Roscher et al. (2012), Roscher et al. (2012) and
Bruzzone and Fernandez Prieto (1999) also update the classifier incrementally.

Incremental supervised methods are used in the field of user-interactive image segmen-
tation. The user specifies strokes or regions (Duchenne et al., 2008; Rother et al., 2004;
Boykov and Jolly, 2001), boxes (Lempitsky et al., 2009; Rother et al., 2004) or contours
(Mortensen and Barrett, 1995) within the image to define the training data. The training
data is used to learn the classifier model, which is directly applied to the whole image. Once
the segmentation has been obtained it can be refined by user-interaction. While most of
the approaches re-train the classifier after each refining step, Zhang and Ji (2011) update
the classifier model based on the former model. Besides semantic segmentation approaches
that classify the image into pre-defined classes such as object and background, contour-based
methods search for an optimal contour in the image between these classes. So-called live-
wire approaches such as intelligent scissors (Mortensen and Barrett, 1998) or live wire on
the fly (Falco et al., 2000), or the more efficient live lane approaches (Kang and Shin, 2002)
sequentially obtain a segmentation by defining the contour of the object step-by-step with
the help of human user interaction with the mouse. The user roughly traces the boundary
by setting some seed points, in which the algorithm chooses the minimum cost contour. The
cost function is adapted depending on the previous defined contour. These applications show
that incremental learners are useful to efficiently segment in single images.

2.3.2 Semantic Segmentation in Image Databases

Similar to incremental learning in single images, also large image databases can be treated
sequentially. The images in the database are presented sequentially to the classifier, because
the database can either be too large to be processed simultaneously or the number of images
increases continuously.

Vachkov (2010) classifies sequentially arriving images from an image database by com-
paring them to a core set of images, which define categories using some similarity measure.
The core set is extended by a further category if the current image is dissimilar to all given
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images in the core set. This approach would be equally well suited for semantic image seg-
mentation, where the first few classes with associated features are defined and further classes
are added sequentially. Ozawa et al. (2005) and Artac et al. (2002) use incremental PCA to
sequentially learn and recognize images in image databases, while keeping only the subspace
representation of the input images.

Another approach is online dictionary learning for sparse coding (Mairal et al., 2009),
which can treat millions of training samples. The goal is the ability to approximate each part
in an image as a linear combination of a few elements from the dictionary, which is also known
as sparse coding. Each dictionary element can additionally have a class label, as proposed
by Jiang et al. (2011), Ramirez et al. (2010) and Mairal et al. (2008) and dictionary elements
with the same class labels can be comprised to a class-specific dictionary. This approach
can be used for semantic segmentation by searching for this class-specific dictionary that can
approximate a part of the image best. Mairal et al. (2009) sequentially learn from image
databases by adapting the content of each dictionary to current images presented to the
learning algorithm.

These applications show that incremental learning algorithms are necessary to adapt
to current appearances of the classes. In the mentioned application the time-reference is
unimportant. Thus, the sequence of the images presented to the learner can be arbitrary
and should not influence the overall segmentation result of all images to be tested. The
situation is different when using image sequences in which the acquisition time and the time
the image is presented to the learner coincide. Instead of treating each image independently,
the time can be uses to formulate temporal relation between the image, which can improve
the performance of a classifier.

2.3.3 Semantic Segmentation in Image Sequences

One of the largest application for incremental learning is the tracking of objects in image
sequences. The main approaches are tracking-by-detection and tracking-by-segmentation. In
both cases the tracking task is defined as a classification of successively arriving images into
object and background. In contrast to tracking-by-detection where often only a bounding box
or an ellipse around the object is obtained, tracking-by-segmentation enables a tight object
boundary.

In the last years several tracking-by-detection approaches have emerged which use incre-
mental learning methods in order to handle appearance variability of a tracked object and/or
the background. The variability among others comprises pose variations, shape deformations,
illumination changes and camera motion. Lim et al. (2004) and Ross et al. (2004) use incre-
mental subspace learning to update the tracking model and Avidan (2007) use an adaptive
ensemble of classifiers. Grabner and Bischof (2006) use an incremental version of AdaBoost
in order to handle appearance changes and drifting of the detected object boundary. To
overcome the drifting problem that occurs when the update of the learner is performed with
incorrectly labeled data, the approach was extended to semi-supervised boosting (Grabner
et al., 2008). Tang et al. (2007) use semi-supervised online SVM in a co-training frame-
work utilizing color and histogram-of-gradients features (Dalal and Triggs, 2005). Santner
et al. (2010) use ORF as adaptive learner in combination with a complementary non-adaptive
template-based tracking approach to be robust against the drifting problem while at the same
time being adaptive to appearance changes. Babenko et al. (2011) introduce a robust tracker
that uses so-called multiple instance learning. This variation of supervised learning deals with
groups of acquired samples, which are labeled as object or background instead of labeling
each single data sample, which makes the tracking approach more robust against label errors.
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Several methods have been proposed treating tracking as a pixelwise binary classification
of object and background, which is also known as tracking-by-segmentation. Donoser et al.
(2011) deal with an adaptive semantic segmentation in images in an unsupervised manner,
whereby the current segmentation is constrained to be consistent to that one in the latter
frame. Similarly to this, Charron and Hicks (2010) update a learned mixture of Gaussian
model in subsequent frames enforcing coherency across successive frames. Ren and Malik
(2007) use a conditional random field (Lafferty et al., 2001) combining an adaptively learned
appearance model with the prior knowledge of a temporal-spatial model. Wang et al. (2011)
extract simple linear iterative clustering (SLIC) superpixels (Achanta et al., 2010) in each
image frame and update a learned generative appearance model to distinguish between the
object and the background. Chockalingam et al. (2009) also divide an image into multiple
regions and represent the object as a Gaussian mixture in feature-spatial space, i.e. each
region is represented by one sub-distribution of the mixture model. The regions are adapted
to the current image by a region growing procedure and the Gaussian mixture model is
updated by using the average mean of the last and current image statistics. Level-sets are
exploited to obtain accurate object contours.

The review indicate that incremental methods are necessary to adapt to the current
appearance of object and background. A static model only would be able to track an object
as long as its appearance do not change. The review also show that recent approaches use
temporal information in order to increase the performance of the algorithm.

The literature review about applications in the field of semantic segmentation shows that
the field of applications using incremental learning methods is wide-ranging and most recent
approaches have shown that incremental learners are more flexible than batch methods in the
mentioned applications. Incremental methods can adapt to current appearance changes, what
batch learner are not able to. Given the large area of applications, the biggest challenge is to
overcome the stability-plasticity dilemma, which deals with the question how the learner can
be stable to irrelevant samples and adaptive to new samples. After the classification of our
conception of sequential learning, the review of current incremental learners and applications,
in the next chapter we will introduce the theoretical background for the formulation of the
I?VM classifier.
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Chapter 3

Theoretical Background

This chapter aims at specifying the theoretical background to formulate the incremental
classifier ?VM and the task which is meant to be solved by I>VM. In Section 3.1 we define
our notation that it used throughout the thesis. In Section 3.2 we describe the supervised
sequential learning task comprising the task formulation and the definition of the class of
classification model that is used in this thesis. The theoretical background of the I?VM
classifier is presented in Section 3.3. In the last section we specify the sequential semantic
segmentation problem by means of the formulation of the learning task, the evaluation criteria
and the learning experience.

3.1 Notation

In this section we summarize the notation that is used throughout the thesis. We denote
vectors g = [gi] = [g1,- .-, 97)" with small bold symbols and matrices G = 9] = [91,---.97]
with elements g;; and column vectors g; with capital symbols. We use calligraphy symbols
for sets. The elements (scalars or vectors) of a set G can be collected in a vector g or a
matrix G by concatenation, using the same letter of the alphabet. The matrix or vector of
the concatenated elements of a subset F € G are denoted with Gr or gz, respectively.

In order to simplify the representation of certain matrix-operations, we use a selection
operator U7z (B), selecting the rows Z from a N x M matrix B, defined as

B_=Vz(B)=le]],.; B (3.1)

with eZN the i-th unit vector of length N. In a similar manner, the removal of columns can
be formulated with the transposition of the considered matrix.

3.2 Supervised Sequential Learning Problem

In this section we specify the general learning task for supervised classification problems and
expand it to the sequential learning task. Furthermore, we define groups of classification
models, define the reconstructive and discriminative model components and discuss their
meanings for incremental learning. In the last part we consider linear discriminative models
for classification which are meant to solve classification problems.
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3.2.1 Learning Task

In the following we denote the involved data and define the supervised learning task. We
assume to have a training set

{Zn,yn} €T, n=1,...,N (3.2)

of N labeled samples with M-dimensional feature vectors z,, € IRM and class labels y,, € C =
{1,...,¢,...,C}. The observations are collected in the (M x N)-matrix X = [@1,...,zn]",
while the corresponding labels are summarized in the vector y = [y, ... ,yN]T. Furthermore,
we have given a test set

{Zw,yut €U, u=1,...,U (3.3)

of U samples with M-dimensional feature vectors x, € IR and class labels y, € C =
{1,...,¢,...,C}.

We define the task of supervised learning as follows: Our goal is to infer a function f

Yy = f(Xu, M), (3.4)

which models the dependency of the labels y;, to given feature vectors X/, so that the
function f behaves similar as learned on the training set 7. In the ideal case the predicted
labels y;, are equal or at least close to the true labels y;,. The learned model is represented
with M and the function f is fixed and parametrized by M.

The function f can be of a different nature: In this thesis we specify f as a nonlinear
function, as described in Section 3.2.5. The function can also be a set of simple decision
rules as for decision trees or a set of sub-functions as this is the case for ensemble classifiers.
Depending on the specified function, the model M comprises the following entities: model
parameters a and optionally the training set 7 and meta-parameters such as a graph struc-
ture or tuning parameters. We refer to the function f, the components of M and the values
of the components as the internal representation of a classifier.

Until now we have assumed that the training and test data are available a priori. In the
next section we define the learning task for successively arriving training and test samples.

3.2.2 Sequential Learning Task

When learning from successively arriving training samples, we assume that at time step ¢
there exist a learned model M; comprising a training set

{X.yh e T; (3.5)

and the current parameters. The training set 7; consists of a subset of 7;_1 and the new
encountered samples. At time step £+ 1 a training set T;+1 including labeled training samples
is made available to the classifier. Given a test set

Xu,yu bt € Us (3.6)

the learned model M; provides a (probabilistic) class label y,,; for Xy;. The test set may
remain the same over time, but can also change steadily. The time step is referred to as the
time when the data is presented to the learner rather than the acquisition time. The task
of sequential supervised learning is defined as follows: At time step t our goal is to infer a
function fy

gut = ft(XUt’Mtth—l) ) (37)
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which models the dependency of the labels y,, to given feature vectors X,. This function
also depends on the last model M;_1. The predicted labels ¥, should be as close as possible
to the true labels v, .

We have described the learning task if the samples successively become available to the
learner. In the next section we describe different schemes to learn with sequential data in
order to solve a sequential learning task.

3.2.3 Learning with Sequential Data

In this section we mention various examples for learning with sequential data by means of
the change of the internal representation of a classifier. The most common changes are listed
below:

Adaption of the parameters. The model parameters are adapted with respect to the new
encountered samples. The adaptation is performed by adjusting the values of the parameters.
Examples using this approach are incremental logistic regression (Bishop (2006), Chapter 3)
and incremental subspace methods (Skocaj and Leonardis, 2003). The new samples are
discarded immediately after they have been processed and the number of parameters remains
the same.

Adaption of the number of parameters. The number of parameters are adjusted.
For example, online kernel density estimation (Kristan and Leonardis (2010)) determines
the class-conditional distribution of all data samples seen so far using a mixture model. If
the distribution changes, the number of used mixture components is adapted resulting in a
changed number of parameters. The number of parameters also changes if the number of
considered features or the number of classes changes, as this is the case for models such as
incremental logistic regression (Wenzel and Hotz (2010)).

Adaption of the set of training samples. Various classification methods need to store
training samples besides the model parameters. Thus, the set of stored samples changes when
new encountered samples are added or non-representative ones are removed. Examples using
this approach are incremental SVM (Bordes et al. (2007)) and I?VM. In this case, because
the decisions made for the classification process arise from a linear combination of the stored
training samples and the model parameter, an adaption of the set of training samples means
at the same time an adaption of the parameters.

Adaption of the internal complexity. Sparse classification models only use a part of
the current internal representation to make decisions for classification purposes. For example,
incremental SVM only use a subset of the stored training samples and just the parameters
assigned to these samples are non-zero. The complexity changes if the set of used samples
changes. Another example are online random forests (Saffari et al. (2009)). The structure of
the combination of decision trees are adapted when new samples are presented to the learner.

In most sequential learning task problems more than one adaption need to be used. In
this thesis we employ all four adaptations for I?’VM, which is discussed in more detail in
Chapter 5.

The adaptation of the internal representation is particularly needed if concept-drifts occur.
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We speak of concept-drift if the function f; significantly changes over time. Figure 3.1 1 23

shows an example for a concept-drift in an image database comprising images of the same
object, namely the newly constructed building Burj Khalifa. During the last years more and
more images were added successively. The database first included images of the construction
phase and later of the finished object. Furthermore, images by day and night or in different
seasons were added. Concept-drifts can be detected either by evaluating the performance
measures, e.g. the accuracy, or by evaluation the properties of the classification model. This
can be done by analyzing the complexity, or by evaluating the properties of the samples or
by analyzing the distribution of the samples.

riE

(a) August 2006 (b) March (c) December 2007 (d)  January (e) March (f) Decem- (g) 2010, by
2007 2008, in mist 2008 ber 2009  night

FIGURE 3.1: Timeline of the Burj Khalifa building in Dubai under different weather conditions. All images
can be found for example on the Google Image Search. Using such a database, a classifier that sequentially
learn the appearance of the building over time has to deal with concept-drift, i.e. a significantly change in the
distribution of the features of the images.

We have specified various changes of the internal representation of the classifier model
when dealing with sequential data. We further explained concept-drifts which occur if the
distribution of the samples changes over time. In the next section we specify the reconstructive
and discriminative model component of classifier, which are both necessary to enable a robust
incremental learning.

3.2.4 Reconstructive and Discriminative Model Components of Classifiers

In this section we specify the reconstructive and discriminative classifier model component
by means of the model definition and various examples. Following Skocaj et al. (2006), we
define a reconstructive and discriminative model component as follows.

Reconstructive component. Classifiers with a reconstructive component aspire to have
a high information content in order to approximate the distribution of the data samples as
well as possible. Their main goal is to cover the variability of the training samples rather than
to be task-dependent (i.e. to solve the classification task). For our further consideration we
relax the explanation to the following definition: Classifiers with a reconstructive component
are able to represent the important parts of the distribution. In this case important means
that the samples are on the one hand necessary for discrimination and on the other hand
necessary to cover the variability of all training samples.

1http ://www.allaboutskyscrapers.com
2http://en.wikipedia.org/wiki/Burj_Khalifa
3http://tnwp.blogspot.de/2010/06/at-top-of-burj-khalifa.html
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Discriminative component. Contrary to reconstructive models, classifiers with a discrim-
inative component are task-dependent and generally do not provide a good reconstruction
of the training samples. They try to discriminate the classes as well as possible. It has
been shown for various applications that classifiers with such a component can achieve higher
classification accuracies than models with a reconstructive component, if the posterior is a
lot simpler than the distribution of the samples (Kumar and Hebert, 2006; Vapnik, 2000).

In respect of a powerful incremental classifier, we are seeking for a model with a high
reconstructive power, as discussed by Skocaj et al. (2006) and Uray et al. (2007). This
is due to the following fact: Incremental learning methods strive to be efficient, with the
result that only a few samples can be kept in memory and the learner have only access to a
bounded number of already seen samples. If the model becomes to large, data samples have
to be removed with respect to a suitable criterion. Consequently, only the representation
of the previously encountered samples are available to the learner. In case of reconstructive
methods, the model component can be used as approximation for all discarded samples. In
contrary to this, discriminative models are not able to issue a good approximation due to the
lack of information about the data distribution.

Figure 3.2 shows exemplary the necessity of a reconstructive model component for in-
cremental learning. The figure illustrates the classification result of a reconstructive and a
discriminative model. At time step ¢ the decision boundaries of both models are similar,
in contrast to the result at time step ¢ + 1. After time step ¢t new samples are added and
non-representative ones are discarded. The discriminative model has no information about
the distribution of the samples and only these ones positioned near to the decision boundary
are kept in the model. The kept samples identified by the reconstructive model still represent
the distribution of the samples. Thus, reconstructive models proves to be stable with respect
to old learned information and flexible to new encountered ones.

In order to assign the components to different methods, we define groups of classifica-
tion models. Following Bishop (2006), we distinguish between three approaches to solve a
classification problem.

Discriminant functions. The simplest model determines linear discriminant functions
g(x), which divide the feature space into disjoint decision regions. A feature vector x is
directly assigned to a class. In this case, probabilities play no role. An example classifier
using this approach is SVM. Classifiers that estimates discriminant functions only have a
discriminative model component and no reconstructive one.

Generative models. This approach determines the posterior probabilities P(C|X) with a
generative approach by modeling the class conditional probabilities P(X|C) of the samples
and the prior probabilities P(C) separately for each class ¢ € C. Using Bayes’ theorem results
in the posterior probabilities P(C|X),

P(X|C)P(C)

P(CIX) = T PX) (3.8)
which allow for decisions. Generative models explicitly or implicitly model the distribution
of training as well as testing samples. They are called generative, because they are able to
generate new data points by sampling. The most common used classifier which is constructed
from a generative model is the maximum likelihood classifier. The classifier can be combined
with non-parametric methods such as kernel density estimation to define the class-conditional
distribution. Generative models are reconstructive models.
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(a) Classification result with recon- (b) Classification result with recon-
structive model at time step ¢ structive model at time step ¢ + 1

(c) Classification result with discrimi- (d) Classification result with discrimi-
native model at time step t native model at time step t + 1

FIGURE 3.2: Classification result with a reconstructive (top row) and a discriminative model (bottom row)
at time step ¢t and time step ¢ + 1. At time step t the same samples are presented to both models yielding
a similar decision boundary (shown in black). After time step t new samples are presented to the classifier
and non-representative samples were discarded. The reconstructive model keeps samples that represent the
underlying distribution of all samples, whereas the discriminative models keeps the samples that are necessary
for discrimination. Both the reconstructive and discriminative model results in similar decision boundaries
at time step t but significantly different decision boundaries at time step ¢ + 1. The contours of the true
distribution from which the points are sampled from are given in yellow.

Discriminative models. These models directly determine the posterior probabilities P(C|X)
without any assumption about the underlying distribution of the samples. Thus, they model
the dependency of on sample  and an outcome y in a probabilistic way. Using the probabili-
ties, decisions are made to assign a sample x to a class ¢ € C. The best known classifier which
is constructed using a discriminative model is the logistic regression classifier. Discriminative
models are not able to represent the underlying distribution of each class and are strictly
speaking no reconstructive models. Nevertheless, they model the posterior probability. With
our relaxed definition of a reconstructive model component, we can show that under certain
requirements the discriminative classifier IVM is also able to develop such a component. We
discuss these aspects in detail in Section 4.

We have introduced our relaxed definition of a reconstructive component of a classifier
model. Furthermore, we divided the classifiers into groups and label them, whether they have
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FIGURE 3.3: Illustration of a linear discriminant function in a three-dimensional feature space. The decision
surface (shown in gray) is perpendicular to the parameter vector w and the distance to the origin is controlled
by the bias wo. In the two-class case the sign of w'x + wo states the class the sample @ is assigned to. Figure
modified from (Duda et al. (2001), Chapter 5)

a reconstructive or discriminative component or both of them. In the next section we specify
the function f, which we use for classification.

3.2.5 Discriminative Models for Classification

Here we specify the function f for classification in (3.4). In this thesis we use a discriminative
model with a non-linear function f, which components are considered in the next section.

3.2.5.1 Generalized Linear Models

For the classification problem we use a class of models which are called generalized linear
models. They are described by

y=[f(G) (3.9)
with G = [gn.] defined by
Jne = 'wCT:cn 4 we (3.10)

with {w.,we} as the parameters of a discriminant function defining a hyperplane in the
M-dimensional feature space. We specify the function f as

exp ('wCTmn + wco)

E exp (w;r/xn + wc’O) 7
cl

f = argmax, (3.11)

which is known as the logistic regression model. The model can be simplified for the two-class
case, in which only one discriminant has to be determined. We will introduce this model in a
detailed way in 3.3.1. Figure 3.3 shows a discriminant g, i.e. a separating hyperplane, and a
feature vector x in the two-class problem in a three dimensional feature space. The so-called
bias parameter wq specifies the location of the discriminant. The feature vector is assigned
to the class y = 1, if f(x,w) > 0, if and only if the dot product w'x is larger than the bias
wp. The feature vector x is assigned to the class y = 2, if f(z, w) < 0. The decision surface
is f(x,w) = 0. The weight vector w specifies the orientation of the discriminant.
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We defined the class of models called generalized linear models, which we use in this
thesis. If the data samples are not linear separable, the estimation of linear discriminants in
the feature space may not be powerful enough for classification. In the next section we will
introduce kernels, which are used to estimate complex discriminant functions.

3.2.5.2 Classes of Kernels for Machine Learning

Using so-called kernel functions, from now on referred to as kernels, can increase the perfor-
mance of linear classifiers, as already stated by Vapnik (2000) and Cristianini and Shawe-
Taylor (2000). They enable the estimation of complex decision boundaries in the original

feature space. The original features x,, = [zpm],n =1,...,N,m =1,..., M are transformed
into new ones k,, = [k,|,n,n =1,..., N using a kernel function
kpn =k (T, ) Ty, Ty €T . (3.12)

The vectors k,, are concatenated in a N x N-kernel matrix K = [ky].

Besides the necessary condition of being symmetric and continuous, the kernel matrix
should be preferably positive (semi-)definite to ensure that a convex optimization problem
remains convex when using kernels. Following Genton (2002), we distinguish between different
types of kernels:

Stationary kernels. Stationary kernels are translation invariant:

k(n, xw) =k (xn — ), (3.13)

i.e. given an arbitrary translation vector r, the kernel depends only on the directional vector
between the features x, and x,,. Thus, the function is independent of the position of the
features. Examples of non-stationary kernels are the linear and the polynomial kernel.

Isotropic kernels. Isotropic stationary kernels, also known as radial basis functions,
only depend on the norm of the directional vector between two features, and thus are only a
function of the distance. In contrast, anisotropic kernels also depend on the direction and the
length of the features. Isotropic stationary kernels are also used in non-parametric density
estimation techniques. Examples for such kernels are the Cauchy kernel, the exponential
kernel and the Gaussian kernel, see Table 3.1.

In Chapter 4 we will show that using an isotropic stationary kernel is necessary to obtain
a reconstructive component for IVM. Using such a kernel, consequently, the kernel matrix
K consists of affinities between the given features of the training set and contains the new
features as rows or columns, see Fig. 3.4.

We have introduced kernel functions, which are used to estimate complex decision bound-
aries in the feature space. In the next section we consider different loss functions, which are
one part in the objective function. We estimate the parameters by minimizing the objective
function.

3.2.5.3 Loss-functions

In this section we define various commonly used loss-functions for generalized linear models.
The optimization function Q consists of a loss function Q and a penalty /regularization term
QR

Q=Qo+ Qrg- (3.14)
In the following we introduce specific loss-functions Q g used by common classifiers. Con-
veniently, we assume a two-class problem with targets t = {—1,1} and parameters . The
function h can be an arbitrary function as defined in Section 3.2.
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TABLE 3.1: Commonly used isotropic stationary kernels.

Name of the kernel kernel function plot
1
Cauchy quadratic W
"
Bl 0 i il 1
1
. 1 |xn—$n/‘
Exponential exp <_§T)
ll 0, 0 0, 1
1
. 1 |mn7mn/ |2
Gaussian exp (_§T>

FIGURE 3.4: Kernel features. Instead of using the original n-th feature vector @, one uses the affinities
k., = [k (zn, z,)] of the n-th data sample to all other N training samples n’, which depends on the distance
between x, to all features x,,.

0-1 loss function. If we only want to count the misclassifications we made, a logical
decision is to use the 0-1 loss function Q 0.1,

Qo0,0-1 = Zf(tnh(iﬂn;a) <0), (3.15)

where [ is the indicator function

1 if tyh(zp;a) <0 is true
toh (2 o0 (3.16)

. < —
I (tnh (Tn; o) <0) {0 if  tph( ) <0 s false

For a correct classification, the function h (x,; @) is positive and thus, a misclassification is
penalized. This loss function is hard to use, leading to a non-convex optimization problem
for which there is no efficient algorithm.

Hinge loss. The loss-function especially used by SVM is called hinge-loss defined by

Q0,hinge = Z [1 —tnh (wn; Oﬁ)]+ (317)

n
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= (-1 loss
— hinge loss
31 cross-entropy loss
= exponential loss
g2
1
O L L L

tf(z;a)

FIGURE 3.5: Loss functions for commonly used classifier: hinge loss (SVM), cross-entropy loss (logistic re-
gression), exponential loss (AdaBoost). Also shown is the 0-1 loss, which counts the misclassifications. The

cross-entropy loss is rescaled by a factor of @, so that it passes through the point (0, 1).

with [], denoting the positive part. SVMs are a maximum-margin classifier, i.e. min, y,h (z,; ).
The algorithm chooses a decision boundary which separates the samples of the classes as
cleanly as possible, i.e. it allows for some misclassified samples while maximizing the margin
between the nearest correct classified samples. The loss function indicates that the more the
margin is violated, the higher the penalty is.

Cross-entropy loss. The cross-entropy loss is used for logistic regression models and
is defined with

Qoce = Y _log (1 + exp (—tnh (Tn; @))) . (3.18)

Besides giving the class-membership of each sample, logistic regression also offers a probability
estimate. In general when using the cross-entropy loss-function the optimization problem is
no longer quadratic and all parameters are non-zero.

Exponential loss. The exponential loss is used in AdaBoost (Freund and Schapire,
1996). The loss function used there is

Qoe = Y_exp(—tnh (xn; ). (3.19)

All mentioned loss functions are plotted in Figure 3.5. For further loss-function in their
relation to commonly used classifiers, we refer to Li and Yang (2003). The hinge loss, cross-
entropy loss and exponential loss can be seen as an approximation to the 0-1 loss. All
are monotonically decreasing functions and differ in the strength of penalizing misclassified
samples. The exponential loss penalizes most, whereby the hinge and the cross-entropy loss
show a linearly behavior for samples far away from the decision boundary. The exponential
loss and the cross-entropy loss are smooth functions. It turns out that even if the training
error is zero, the optimization function need not to be converged and will further drive the
estimates to an optimal solution in terms of probability estimates. Due to this, using these

36



loss functions does not inherently lead to sparse solutions, in that sense that all samples
influence the solution.

We have introduced various loss-functions that are used in well-known classifiers such as
Adaboost, SVM and logistic regression. In the next section we rely on the introduced theo-
retical background to formulate the IVM classifier, which is a sparse kernel logistic regression
approach.

3.3 Import Vector Machines

The IVM classifier is based on the classical model of logistic regression, enriched by using
kernel features and made efficient by introducing sparsity. This section provides the theo-
retical basis in order to lay open the reconstructive properties of IVM in the next chapter
to motivate the extension to I?VM. We introduce IVM following the derivation of Zhu and
Hastie (2005).

3.3.1 Basis Model: Logistic Regression

The basic model of logistic regression starts from the two-class classification problem where
the posterior probability P, (y, = 1|x,; ) for class 1 of a feature vector x,, is assumed to
follow the logistic regression model

1

P = P = 1 N g .
nl (Ot) (yn ’xnv O[) 1 + exp (—aTxn)

The posterior probability for class 2 are accordingly P,o = 1 — P,,;. The extended feature
vector is x] = [I,2]] € RM*! and the extended parameters are a' = [wy,w'] € RM*H!
containing the bias wgy and the weight vector w.

The model can be generalized to the multi-class case with the probabilities P = [py,...,py]
obtained by

exp (achn)

Soexp (alxy,)
The unknown vector « of length ((M + 1) C) is a concatenation of all C' parameter vectors
a.. There exist one parameter vector a. for each class defining a hyperplane in the feature
space and thus, the number of model parameters increases linearly with the number of classes.
A sample is assigned to a class according to its posterior probability. The logistic regression
model uses the soft-mazimum function instead of the original maximum function, which is
why (3.20) is often referred to as softmax activation function. The soft-maximum is contained
in the denominator and defined as

log (exp (a?xn) +...+exp (azvx,L)) . (3.20)

Py (a) := P (y, = c|xp; @) =

The soft-maximum function approximates the original, hard-maximum by smoothing the
sharp corners. This is because the difference of the exponents of two values is a lot bigger
than the difference of the original values. As Figure 3.6 shows, both, the hard-maximum
max(z1,x2) and soft-maximum log(exp(x1) + exp(x2)) are convex functions. But the soft-
maximum function is smooth and indefinitely often differentiable, which make it comfortable
to use in convex optimization problems. Using this example, in a three-dimensional space,
the hard-maximum function is defined as the intersection of two planes, whereby the soft-
maximum function is a smoothed version of it. Transferred to logistic regression, the intersec-
tions are the decision boundaries defining the convex acceptance regions for each class. Three
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FIGURE 3.6: Contour plots of hard-maximum max(x1,z2), soft-maximum log(exp(z1) + exp(z2)) and the
difference between both. The soft-maximum function approximates the original, hard-maximum, but has
smooth corners.

synthetic examples are illustrated in Figure 3.7, showing classification results with logistic
regression. The posterior probabilities appear intuitive.

Because the probabilities of the classes sum to 1, the model only contains (M + 1) (C' — 1)
independent parameters. This can be seen by reducing the ratio in (3.20), e.g. by exp (alTxn)

without changing the posteriors, leading to P,; = 1/ (1 + Zg:Q exp <(ac/ —ay)’ xn>) Be-
cause of its symmetry, we prefer (3.20) in general, but sometimes use (3.20) for derivations.

The learning task is to estimate optimal parameters «. for each class from the training data,
while taking into account that M + 1 parameters are not identifiable.

1 fpo—ow= 1

0

(a) Three classes with one-dimensional | (.54
features

04
1 - —a- . s =-0=
0
(b) Two classes with one-dimensional fea- (c) Three classes with two-dimensional features
tures

FIGURE 3.7: Classwise posterior probabilities (vertical axis) arising from the multi-class logistic regression
classifier.
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3.3.1.1 Parameter Estimation with Iteratively Reweighted Least Squares

The parameters {a.} are directly determined by maximum likelihood estimation. The like-
lihood function is given by

1

n C

The estimation of the parameters is performed by minimizing the negative log-likelihood
function Qo (o),

Qo (a) - _% Z tnelog Ppe (a) (322)

with respect to e and VQ () = 0 as condition for the minimum. The indicator vector ¢,
for a feature vector x, belonging to class y, = ¢ is the n-th unit vector with all elements
zero except element c. The function Q g, up to the factor IV, is the cross-entropy between the
target probabilities ¢, and the estimated probabilities F,,.. The iteration process needs the
((M + 1)C)-dimensional gradient and the ((M + 1)C x (M + 1)C)-dimensional Hessian

VQo (@) = X7 (e (@) ~ t)ecr...c (3.23)
V2Qo (@) =1 X Rew (@) X, (324)

with the diagonal (N x N)-matrices

Reer = Diag ([ Ppe (at) (0(c, ) — Poe (@) Jn=1,..n) (3.25)

depending on the parameters « (see Appendix A). The (/N x M )-matrix X is the concatenation
of all feature vectors x,. The vector of the total gradient VQ o () is the concatenation of
the gradients Va, Qo (a) = & X7 (p, () — t.) w.r.t. each class. The total Hessian consists
of (C x C) blocks V%xc,aC,QO () = %XTRCC/X. The Hessian is negative semi-definite. It

has a rank deficiency of (M + 1), since it can be written as
1
v D (Pre (@) = (6(c,d) = P (@) @ XX,

and the left factor of the Kronecker product has rank (C'— 1) and eigenvector 1¢, reflecting
that M + 1 parameters are not identifiable. In the special case of the asymmetric two-class
model of (3.20), which we will use for showing I>VM in Section 5, the gradient and the
Hessian consist of only one component, referring to the parameters of class one.

In order to prevent overfitting one may introduce a prior over the parameters and optimize

Q () =Qo(ax)+ %aTLa (3.26)
with a positive definite symmetric matrix L and a positive regularization parameter A, usually
determined by cross-validation on the training data set. The matrix L is assumed to be the
unit matrix, thus L = /(3741)c, but in order to prevent a regularization of the bias parameters
wo. the diagonal entries for the bias are set to zero. Thus, only the steepness of the sigmoid
function, defined by w,, is regularized.

The iteration scheme can simply be formulated with the Newton-Raphson iteration method

a(t) = O‘(15—1) - (V2QO (a(t)) + )\L)il (VQO (a(t)) + )\La(t_l)) s (327)
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(a) Decision boundary (b) Classwise posterior probabilities (shown
as value on the vertical axis)

FIGURE 3.8: Result of a two-class problem with two-dimensional features arising from the kernel logistic
regression classifier.

where the regularization at the same time prevent overfitting and enforces numerical stability.
The current iteration is given by ¢. The Newton-Raphson iteration procedure can be inter-
preted as the iteratively reweighted least squares (IRLS) optimization method by rearranging
(B.1):

1 -1
Qo) = (NXTRCX + AL) XTRcz. (3.28)

with R, = Ree and L = /741, where [;7 = 0, and

1
Ze= —

& Xaw@-n = R (o~ 1)) - (3.29)

The derivation can be found in Appendix B.

3.3.1.2 Kernel Logistic Regression

The model of kernel logistic regression now presumes the a posteriori probabilities are given
by
exp (ol kn)

Py = . 3.30
(@) > o €Xp (agkn) ( )
with k,, as the n-th column of the kernel matrix K, the unknown model parameters a = [...; ;. . .
referring to the C classes.
The parameters are determined in an iterative way with
-1
Q. = ( KTR.K + )\K) KRz, (3.31)
1
=N (Kac (t-1) + Re Y(p.—to)) , (3.32)

by optimizing the regularized objective function (3.26) with L = K similar to (3.28) and
(3.29).

Figure 3.8 shows a synthetic example classified with kernel logistic regression. The exam-
ple illustrates that the classes are separated with a complex decision boundary.
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3.3.1.3 Sparse Kernel Logistic Regression

With the rapid development of kernel-based methods, e.g. Keerthi et al. (2005) and Cawley
and Talbot (2004) have extended the logistic regression to kernel logistic regression showing
a better accuracy but a higher complexity. Using logistic regression or especially its kernel
realization can be prohibitive regarding memory and time requirements if the dimension of
the features or the number of training samples is large. This is because all training samples
are used to train the classifier, which is computationally excessive and memory intensive for
large data sets.

Several sparse algorithms have been developed in the last years which enforce sparsity in
the kernel logistic regression model in order to control both the generalization capability of
the learned classifier model and the complexity. These are, for example, the explicit usage
of a sparsity enforcing prior over the parameters, an implicit prior, truncation methods or a
greedy subset selection as for the concept of import vector machines.

The relevance vector machines (RVMs) (Tipping, 2001) use an implicit prior as regular-
ization term, the so-called ARD (automatic relevance determination) (Neal, 1996) prior, to
induce sparsity. The prior includes several regularization parameters, also called hyperpa-
rameters, which are determined during the optimization process. The algorithm have shown
to be very sparse, but also tends to underfit leading to a non well-generalized model (Krish-
napuram et al., 2005). Additionally, the RVM uses an expectation-maximization (EM)-like
learning method and therefore, can suffer from local minima leading to non-optimal classifi-
cation results.

Alternatively, Cawley et al. (2007) and Krishnapuram et al. (2005) use a Laplace prior
enforcing sparsity which assigned regularization parameter is determined via cross-validation.
From the regularization point of view, a Laplace prior is the same as Lj-regularization.
It encourages the parameters to be significantly large or zero, which means at the same
time, that irrelevant features are removed from the model. Liu et al. (2007) propose the
L, with p < 1 and show, though leading to a non-convex optimization problem, that this
approach outperforms the L;- regularization. Although these approaches induce sparsity, the
optimization is still very expensive. For this reason, efficient optimization procedures such
as block-based Gauss-Seidel iterative procedure (Borges et al., 2006) or LORSAL (Li et al.,
2011) have been exploited.

Another way to obtain a sparse solution is proposed by Hérault and Grandvalet (2007)
which truncate the posterior probabilities to an interval [Ppin, Pmaz|. In preliminary results
the approach yields improvements over standard logistic regression regarding classification
accuracy.

There are two most common used approaches in order to enforce sparsity. The first ap-
proach is this one used by Tipping (2001), Cawley et al. (2007) and Krishnapuram et al.
(2005) that introduces a prior over the parameters, which claims that most of the parameters
are zero. The second approach is that used by Zhu and Hastie (2005) for IVM that selects a
representative subset of samples in order to approximate the full model as well as possible.
We refer to this approach as subset-search. In the first approach, the subset results automat-
ically after parameter estimation. The second approach particularly search for the subset,
whereas the parameters are estimated simultaneously or subsequently. Figure 3.9 illustrates
the difference between both approaches and to kernel logistic regression. The figure schemat-
ically shows the matrix multiplication, which is conducted in the softmax function (3.20).
For convenience, the lying parameter vectors {a.} are concatenated in a C' x N matrix. The
softmax function has to be evaluated in all iterations of both the optimization procedure and
the classification step. For kernel logistic regression the whole kernel matrix is set up and
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FIGURE 3.9: Schematic figure of the matrix multiplication conducted in the softmax function for different
realizations of kernel logistic regression. The boxes depict the kernel (upper right), parameter (left) and
resulting posterior probability matrices (lower right), by which the sizes of each matrix is written directly to
it.

all parameters have non-zero values. When using a sparsity enforcing prior some parameters
are set to zero, while the number of features remains the same. The corresponding features
contained in the kernel matrix therefore have no effect. In contrast to this, sparse kernel
logistic regression with subset-search only uses a fraction of the features. As a rule, in all
cases only a small percentage of the kernel matrix has to be computed, never the complete
matrix.

In the following we will consider the sparse kernel logistic approach that finds a subset
V of V samples out of the training set 7, comprising samples Xy = [x,], v = 1,...,V by
subset-search. Thus, only affinities k, between samples 7 and samples in the subset V are
collected in a kernel matrix Ky, whereas all other affinities are left out of consideration.
Following (3.31) the parameters in iteration ¢ are determined by

1 —1
ac,(t) = (NKﬁRCKV + AKR) KERczca (333)
1 _
Ze = N (KVac,(t—l) + Rc ! (pc - tc)) . (3.34)

The kernel matrix is given by Ky = [k (zy,, ,)] with @,, € T, and the regularization matrix
by Kr = [k (v, )] with @, x,, € V. In the following we omit the subscript V and use K
instead of Ky.

We have defined sparse kernel logistic regression, in which the subset of samples is found
by subset-search. In the following we define the import vector machines algorithm, which is
a realization of sparse kernel logistic regression.

3.3.2 Basic Import Vector Machines Algorithm

Following Zhu and Hastie (2005), we define import vector machines (IVM) as a classifier that
finds a sub-model to approximate the full kernel logistic regression model using subset-search.
In particular, the subset is found by using both the samples and the output, i.e. the posterior
probabilities. This distinguishes this approach from those that only use the samples, such as
random sampling or methods that identify cluster representatives. We refer to the samples
in the subset as import vectors.

The search through all possible subsets to determine the best set is intractable. Therefore,
Zhu and Hastie (2005) proposed the determination of the subset in a greedy forward manner.
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FIGURE 3.10: Import vectors. In order to achieve a small feature vector, here the length of four, only a
sparse set of training data is marked as important for the classification which is the set of the so-called import
vectors, here being the set {1,3,4,7}. Thus, only a subset of the the affinities between all samples are used.

We refer to this procedure within the IVM classifier as IVM algorithm, being aware that
the subset can also by determined by other techniques. The set of import vectors V is
chosen by successively adding data samples, one at a time, to the initially empty set until a
convergence criterion is reached. The data samples are selected according their contribution
to the solution, i.e. how much their incorporation to V decreases the negative log-likelihood
function. Figure 3.10 illustrates the effect when only a subset of data samples is used. We
revised the IVM algorithm in some respects, which is discussed in the following.

3.3.3 Revised Import Vector Machines Algorithm

In contrast to Zhu and Hastie (2005), we use a hybrid forward/backward strategy, which
successively adds import vectors to the set, but also tests if import vectors can be removed
in each step. Since we start with an empty import vector set and only add import vectors
sequentially in the first iterations, the decision boundary can be very different from its final
position. A pure forward selection is unable to remove import vectors that become obsolete
after the addition of other import vectors. Therefore a removal of import vectors can lead
to a sparser and more accurate solution than only using forward selection steps. To prevent
infinite loops between forward and backward steps leading to solutions with similar objective
value, deselected import vectors are excluded from selection for the next few iterations. This
strategy follows the idea of tabu-search introduced by Glover (1989), in which a memory is
used that remembers already visited solutions and user-defined rules. If a potential solution
was already selected in the last few iteration or it violates a rule, it is marked as tabu and not
selected in the current iteration. The forward /backward strategy is defined in Algorithm 1.

We have carried out another modification regarding the determination of kernel parame-
ter o and the kernel parameter A for which we use gridsearch other to Zhu and Hastie (2005):
For a given kernel parameter o, they use a simultaneous selection of the import vector set V
and the regularization parameter A. First, they split all training samples into a training and
a tuning set. Instead of searching through all combinations of A and o, as gridsearch works,
they propose to start with an empty set V and a large regularization parameter. Each time
the algorithm converges, A is reduced until a lower bound is reached. The optimal A\ corre-
sponds to the minimum classification error on the tuning set. In contrary to Zhu and Hastie
(2005), we use gridsearch with cross-validation to determine both the kernel and regulariza-
tion parameter. We decided to use gridsearch, because in our experiments we observed higher
accuracies, especially if the number of training samples is small. We use a five-fold cross vali-
dation and test through o € {273,2725 ... 24} and A € {exp(—12),exp(—11),...,exp(—4)}.
To guarantee that these are suitable parameters, we normalize our samples to be in the range
[—1,1].
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Initialize Vo := {}, T := {(@1,51) , .., (@, yn)}, €= 0;
repeat
Compute a4 for each class ¢ from the current set Viy);

foreach (x,,y,) € T \ V) do
Let ng) = V) U (Tn, Yn);
For each class determine o ® from V(’;) in a one-step iteration;
Evaluate error function Qa);

end

Find best point (z*,y*) = (2, yn) with n = argmin,, Q?t), Q (1) = min Q?t);

Update Vi) := V) U (2", y");

repeat

Compute a4 for each class ¢ from the current set Viy;

foreach (x,,y,) € V() do
Let Vi) = V) \ Ewn, Yn);
For each class compute o ) from Vé’t) in a one-step iteration;
Evaluate error function Q?t);

end

Find best point (z*,y*) = (xy, y») with v = argmin, Qi

if min Qz’t) < (Q(t) + ,u) then

| Update Vi) := Vi) \ (=%, y7);
end

until V(;) cannot be reduced any more ;
Update V1) =V, t:=1+1;
until Q converged ;

Algorithm 1: IVM: In every iteration ¢, each sample (x,,y,) € T(#) from the current
training set 7 is tested to be in the set of import vectors V). The point (x*,yk)
yielding the lowest error Q”t) is included. Import vectors are removed from Vi if
their exclusion do not increase the optimization function Q plus a small value €. The
algorithm stops as soon as Q converged.

We use the ratio € = |Q (1) — Q ¢—a¢)|/|Q )| as convergence criterion with a small integer
At, for example At = 1, as proposed in Zhu and Hastie (2005). Such as the regularization
and kernel parameter, the threshold for excluding import vectors p influences the sparsity of
the model. Figure 3.11 shows a synthetic example classified with IVM. The algorithm ap-
proximates the result of kernel logistic regression, which is underlined by a visual comparison
with Figure 3.8.

We have introduced the modified IVM algorithm, which is the basis for the incremental
realization 12VM. We compared it to other sparse realizations of kernel logistic regression.
For our further considerations about the discriminative and reconstructive component, we
restrict ourselves to the analysis of IVM. However, one can expect that the results look similar
for other realizations. The next section specifies the task of semantic image segmentation
the I’VM is meant to solve and explains the criteria by means of which we evaluate the
performance of VM on the task.
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(a) Decision boundary (b) Classwise posterior probabilities (shown
as value on the vertical axis)

FIGURE 3.11: Result of a two-class problem with two-dimensional features arising from IVM classifier. The
import vectors are bold plotted with a black boundary.

3.4 Semantic Image Segmentation

In this section we introduce the task of semantic image segmentation that I?VM is meant
to solve. Furthermore, we mention the criteria by means of which our proposed classifier is
evaluated.

3.4.1 Definition of Semantic Image Segmentation

In this section we define the term “semantic segmentation”. In general, a segmentation
refers to partitioning of an image into segments of equal features such as brightness, color,
or texture. However, they need not to be related to a meaningful object. These segments
sometimes are referred to as superpixels (Achanta et al., 2010; Levinshtein et al., 2009;
Shi and Malik, 2000). Unlike image segmentation, semantic image segmentation aims to a
partitioning of the image into regions that are relevant and nameable. Figure 3.12* shows
an example of the segmentation and the semantic segmentation of an image. In the middle
figure, the image is partitioned into distinct regions of equal color features. In the right figure,
the image is partitioned into the semantic meaningful segments with the classes beach ball
and background.

3.4.2 Semantic Image Segmentation Problem

The semantic image segmentation problem is one kind of learning problems. Following the
definition of a learning problem by Mitchell (1997), we will discuss the semantic image seg-
mentation task, the performance measure and the learning experience. The learning expe-
rience is discussed by means of the type of training experience available to the learner, the
controllability of the sequence of samples and the representativity of training samples in rela-
tion to test samples. We will discuss the (batch) semantic image segmentation problem and
the semantic image segmentation with sequentially arriving training samples. The semantic
image segmentation problem is given as follows.

Task. The task of semantic image segmentation is the partitioning of an image into semantic
meaningful segments. To achieve this the image is divided into non-overlapping regions such

4Photoshopessentials .com
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els using the approach of Levin-
shtein et al. (2009)

FIGURE 3.12: Example for segmentation and semantic segmentation: Segmentation aims on the partitioning
of the image into distinct segments of equal color features (middle), whereas the semantic segmentation aims
on the partitioning of the image into non-overlapping segments with a semantic meaning (right image). In
this case the image is partitioned into the classes beach ball and background.

TABLE 3.2: The structure of a confusion matrix. The major diagonal elements depict the true positives Nip,c.
The false negatives N, . and false positives N, . can be computed be summing over off-diagonal elements in
the corresponding row or column, respectively. The overall accuracy ao, is the sum of major diagonal elements
divided by the total number of elements. The class-wise accuracies @aa, are the sums of the rows divided by
the total number of elements and the class-wise reliabilities ar, are the sums of the columns divided by the
total number of elements. In general only the gray part is displayed for evaluation.

Reference class Aceurac
1 2 | ¢ Y
1 th,l an,l Gaaq
Predicted class | 2 Nip,2 Qaag
pr,l N
tp,c Gaa,
Reliability ar, Gr, ar, Qoa

as pixels, rectangular blocks or superpixels. Each region is classified with a suitable method
into a pre-defined class. Neighboring region with the same class are grouped to one semantic
segment.

Performance Measure. We evaluate the performance of a classifier by comparing the
predicted class labels y;, with the true labels y;, using 3 criteria. The criteria can be deter-
mined by evaluating the so-called confusion matrix. The confusion matrix is a square array
expressing the number of samples assigned to the true class relative to the number of samples
assigned to the predicted class.

In order to specify our used performance measure, we define three class-specific quantities,
which are the number of true positives NV, .,

Nipe =6 (§us ) 8 (yus ) (3.35)
the number of false negatives Ng, .,
Nine = (1= 8 (Fus ) 6 (yus ) (3.36)

and the number of false positives Ng, .,

Nipe =30 (fur€) (1= 8 (yusc)) - (3.37)
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True positive sample are correctly classified as class ¢, false negative samples belong to class
¢ but are incorrectly classified and false positive samples are incorrectly classified as class c.
The first criterion is the overall accuracy aoa,

1 N
Gon = S 1=6Fuya) =Y Nipe (3.38)

that is the percentage of misclassified pixels. The performance measure is meaningful if the
classes are equivalent and comprise the same number of samples. However, a more likely used
criterion is the test error a., which directly depends on a,q, since ae = 1 — ayq-
The second criterion is the average accuracy aaa. The class-specific accuracy aaa,c is given
by
th,c

_ 3.39
th,c + an,c ( )

Qaa,c =
from which the average accuracy is derived, defined by the mean of the class-specific accura-
cies,

1
Qaa = 6 ; Qaa,c- (340)

In contrary to the average accuracy, this performance measure considers different class sizes.

When dealing with remote sensing images, it is common to use the kappa coefficient,
which was introduced by Cohen (1960). Similar to a correlation coefficient is determines if
two segmentation results are significantly different. The kappa coefficient x is given by

Goa — Qe
=— 3.41
A — (3.41)
with a. as the so-called chance agreement
1
Qe = m Z (th,c + an,c) (th,c + pr,c) . (342)
C

The performance measure ranges from [—1, 1]. Landis and Koch (1977) suggest the following
interpretation of the values of k: k < 0 means a poor agreement, £ = [0, 0.2] means a slightly
agreement, x =]0.2,0.4] is a fair agreement, x =]0.4, 0.6] is moderate agreement, x =]0.6, 0.8]
is a substantial agreement and x =]0.8,1.0] is and almost perfect agreement.

Besides the error rates, the probabilistic output can be used to analyze the reliability and
the uncertainty of the classification result. We assess the reliability of the probabilities by
rejecting uncertain test samples and deriving the classification accuracy on the non-rejected
test points. Following Giacco et al. (2010), the accuracy provided by a classifier can be
represented as a function of the rejection rate in discrete intervals. The rejection rate is given
by a threshold on the posterior probability. A classifier yield reliable posterior probabilities
if samples with high class probabilities are accurately classified, whereas relatively low class
probabilities are more likely assigned to misclassified samples. Further the number of retained
samples can be represented as a function of the rejection rate, which indicates the uncertainty
of the classification result.

Training experience. The classifier has a direct access to labeled samples each consisting
of a feature vector extracted from the pixel itself and its neighborhood and a class mem-
bership. Furthermore, the classifier has a simultaneous access to all samples and thus, the
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sequence generally has no influence onto the classification result. To ensure a good perfor-
mance of the classifier, the distribution of the training samples should be similar to that of
the test samples, i.e. the training samples need to be representative.

We have defined the semantic image segmentation problem if all training samples are
given a priori. In the next section we apply this definition to the case of successively arriving
samples.

3.4.3 Sequential Semantic Image Segmentation Problem

In this section we define the learning problem for sequential semantic image segmentation
with successively arriving samples.

Task. As specified for semantic image segmentation, the task of sequential semantic image
segmentation is the partitioning of an image into semantic meaningful segments.

Performance measure. Besides the performance measures we use for semantic image
segmentation, we further use the stepwise overall accuracy ag, ) , which is defined as the
overall accuracy for each time step t. Since a learned classifier model can be seen as best
model learned so far, the learner can at any time produce a prediction for all test samples.
If the set of test samples do not change, the performance of the incremental learner should
improve over time.

Training experience. The training experience of an incremental classifier generally in-
creases over time. Nevertheless, if new encountered samples do not contain any new infor-
mation for the learner, the training experience can stagnate. Furthermore, if the classifier
is allowed to forget knowledge, the experience may decrease. If the forgetting has a large
negative effect onto the learning task, we speak of “catastrophic forgetting”.

In order to encounter new experience the learner needs access to labeled samples becom-
ing available over time. Labeled samples can be provided randomly outside of the learners
control or in a selective way, e.g. samples positioned near to the decision boundary. In many
applications the availability of labels for each sample cannot be guaranteed, which is why
active learning approaches are applied. In this case, the learner interactively query a user,
another information source or even the learner itself (also known as self-training) to label
unlabeled samples. These approaches need to be treated with caution, since it cannot be
guaranteed that the class assignments are correct.

In sequential learning problems the representativity of the training samples inherently
cannot be guaranteed. Thus, suitable criteria are needed to add and remove training samples
to keep the set representative. We will discuss criteria for removing training samples in
Section 5.6.

We have discussed the sequential semantic image segmentation problem which is meant
to be solved by I?VM. The next chapter will consider the reconstructive and discriminative
model component of IVM, which are both needed for a powerful incremental learning.
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Chapter 4

Discriminative and Reconstructive
Properties of Import Vector
Machines

In Section 3.2.4 we defined classifiers with a reconstructive component as those which are
able to represent the important parts of the distribution. Important samples are those that
are necessary for discrimination and at the same time necessary to cover the variability of all
training samples. Classifiers with a discriminative model component try to discriminate the
the classes as well as possible.

In this section we show that the IVM though being a discriminative model inherently have
a reconstructive component. We verify this fact by means of the analysis of the objective
function. Further, we underline our findings by an empirical study on the distribution of the
import vectors and the influence of various kernels onto the reconstructive component.

4.1 Statement of the Problem

In order to obtain a powerful incremental classifier, it need a high discriminative but also
reconstructive power, as stated in Section 3.2.4. Only generative classification models use an
estimate for the conditional distribution of the samples P (X|Y'), which is the base for an effi-
cient long-term learning of many classes. Probabilistic discriminative models including IVM
provide an estimate of P (Y|X). In contrast, discriminative function estimation procedures
such as SVM only provide estimates for the class membership of the data samples, which can
be transformed to probabilistic outputs. However, as stated in Section 2 this does not imply
that the transformed output is a good approximation of the posterior. Other probabilis-
tic classifier such as decision trees and random forests model frequency-based probabilities
rather than the conditional distribution. Thus, we are confronted with the problem that
discriminative learning methods, including probabilistic ones, do not necessarily contain a
reconstructive model component as generative models do. Nevertheless, in the next section
we formulate a hypothesis that IVM have both a discriminative and reconstructive model
component.

4.2 Hypothesis

We analyze the following hypothesis: Using a suitable kernel, the discriminative IVM classifier
develop a reconstructive model component with these properties:
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(a) The IVs cover the distribution of the data samples.

(b) Non-overlapping areas with a high density of data samples achieve a high posterior
probability.

(¢) Areas with no training samples obtain a posterior probability of approximately %

Properties (a) and (b) are necessary to enable a robust incremental learning even if the
distribution of the data samples changes. Property (c) is necessary to enable an immediate
response to the emergence of other classes in these areas and to make reliable claims about
the posterior probability of test samples. The latter claim is quite intuitive, because we
cannot make any assumption about the class membership of test samples lying in areas with
no training samples.

In order to obtain both a reconstructive and discriminative component, we exploit the
following property of IVM: Although IVM are based on the discriminative logistic regression
model, which estimates decision boundaries between the classes C, the IVs are selected in
order to decrease the negative log-likelihood function (see (3.22)), also called cross-entropy
objective function

- 7% Z Ztnc log Prc (Yn = c|n) - (4.1)

All samples x,, with label y,, = ¢ pursue to achieve a high posterior probability P, for class
c. Therefore, all samples chosen as IVs contribute to the posterior probability P,., though
they not necessarily influence the position of the decision boundary. In the following we
rewrite (4.1) in order to show the parts of the equation which lead the reconstructive and
discriminative component.

The non-regularized negative log-likelihood function of IVM which is meant to be mini-
mized is given by

1
g tnel 4.2
Qo(e) e 0% ( S expgne T gm) (42)

with gne = achn. We rewrite the equation yielding

= E t | 4.3
QO (a) nc ( og ( o €XD e/ > + gnc) ’ ( )
= —— E 1 - E E t . 4.4
og ( ,exp e ) N L ncYnc ( )

log-partition function weighted KDE

The first part sometimes is called log-partition function and the second part can be seen as
an unnormalized kernel density estimation. The log-partition function is not to be confused
with the logarithm of the partition function, as Qo (e) is not normalized. Conveniently, we
first discuss the second part.

The second part forms an unnormalized weighted kernel density estimation. Kernel den-
sity estimation (KDE) is a non-parametric method, often used in combination with generative
classifiers, to estimate the density p(X) of given data samples. Generally, the weighted kernel
density estimator is

= %Z'Ynk(xmx) ) (4'5)
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where ~,, are the weights for each point and k is the kernel function. If some weights are
zero, the estimator turns out to be sparse. For standard KDE the weights have to fulfill the
condition ) v, = 1, whereas for kernel logistic regression this condition is not necessary.
This means that the optimization of the second part in (4.4), considered on its own, leads
to a kernel density estimation of the given training data, additionally taking account of the
targets of the samples. Contrary to standard KDE, kernel logistic regression does not model
the density separately for each class and thus, is not a generative classifier. Assigned to kernel
logistic regression the parameters a are the weights v and the IVs are the centers of the used
kernels.

The partition function in the first part of the equation is used as normaliza-

Zc’ €XD Gne!
tion in order to determine the posterior probabilities P in (3.20), which are per definition in

the range [0, 1]. The function includes the samples of all classes and thus, changes in gy, also
influences all neighbored samples, independently of their class-membership. The magnitude
of the influence is defined by the kernel function k(x,,-) and its hyperparameters. For ex-
ample, using a Gaussian radial basis function kernel, the IV centered on it highly influences
all samples in the 1-o confidence region, whereas only slightly influences the samples beyond
the 3-0 confidence region.

The value of the partition function depends on the position of the selected IVs, due to
the usage of the exponent:

Z exp(gne) = Z eXp(aIkn) ) (4.6)

= exp(a) ki) +...exp(alk,) + ...+ exp(alky). (4.7)

If we consider 2 samples and gj. is a little bigger than gs., exp(g1.) will be a lot bigger than
exp(gec). That means, exponentiation exaggerates the difference between the values of g,
and go.. Due to this, the IVs tend to lie far from each other resulting in an uniformly coverage
of the IVs.

Working example 1. In order to show the dependency between the value of the log-
partition function and the position of the IVs, we design a working example with the following
boundary conditions: We choose 1000 one-dimensional samples within the range [—5, 5] and
neglect the class labels, because they have no influence on the example. The samples are
arranged in a grid resulting in equal distances between the samples. We use a Gaussian
radial basis function kernel with kernel width o = 1. We select the first IV to be positioned
at z, = 0 and vary the position of the second IV. We plot the value of >, exp(g,) and the
log-partition function as a function of the position of the second IV.

Figure 4.1 shows that the higher the distance between the IVs, the lower is the function
value of the log-partition function. Because the negative log-likelihood function includes the
negative log-partition function, the objective function is decreased most if the I'Vs are position
far from each other. The reason is that nearby I'Vs occasionally cause very high values, which
are enhanced by the exponent, and far apart IVs only cause relatively small values.

Working example 2. Figure 4.2 shows a working example that demonstrates the sample-
wise contribution of both discussed parts to the objective function. We choose 2 classes,
whereas each comprises 500 one-dimensional samples within the range [—5,5]. The samples
are arranged in a grid resulting in equal distances, whereas the samples of class 1 lie in the
range [—5, —2[ and [2,5] and the samples of class 2 lie in the range [—2,2[. We select the
first IV to be positioned at x, = 0 with label ¢, = 2. We plot the function value that each
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FIGURE 4.1: The dependency between the value of 3 exp(a'k,) and the log-partition function and the
position of the IVs. The first IV is positioned at x, = 0 and the position of the second IV is varied. The
higher the distance between the IVs, the lower is the function value of the log-partition function.

sample contribute to the log-partition function, the unnormalized KDE and the negative
log-likelihood function. We use a Gaussian radial basis function kernel with kernel width
o = 0.1. Conveniently, we set o = [—1,1].
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FIGURE 4.2: Sample-wise contribution to the log-partition function, the unnormalized kernel density function
and the negative log-likelihood function after the selection of the first IV positioned at z, = 0. The the
negative log-likelihood function is given by the sum of the negative log-partition function values and the
negative unnormalized weighted kernel density function values.

The log-partition function, illustrated in Figure 4.2 (a), results from the influence of all
samples. Figure 4.2 (b) shows the unnormalized weighted kernel density estimation. Due to
the multiplication with the targets the plot is characterized by two edges, which indicate a
change in the labels. Figure 4.2 (c) illustrates the negative log-likelihood. In plot 4.2 (b) it
can be seen that samples within the range [—2, 2[ have small values and samples beyond the
range have large function values. The largest values are obtained from samples that are near
to the selected IV with competitive class labels. Thus, due to the usage of both parts in the
objective function, the IVs are not only selected for reconstructive purposes but also retain
the discriminative power by penalizing the loss of discrimination.

Working example 3. In the following we consider a working example demonstrating the
successive selection of the IVs by means of the value of the log-partition function, the unnor-
malized weighted kernel density function and the negative log-likelihood function after the
selection. We choose 2 classes, whereas each comprises 9 one-dimensional samples within the
range [0,1]. We use a Gaussian radial basis function kernel with kernel width o = 0.1 and
conveniently, we fix the parameters for each IV and set it to o, = [—1,1]. Furthermore, we
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set the regularization parameter to A = 0.

The following plots show the one-dimensional data samples of the working example in
the upper part and the corresponding values of the log-partition function (light gray), the
unnormalized kernel density function value (medium gray) and the negative log-likelihood
function (dark gray) after the selection of the corresponding IV directly below as a bar
plot. The values are obtained by evaluating the objective function after the selection of
the corresponding IV. On the abscissa the values denote both the coordinates of the data
samples and the numbering of the points. One vertical line specifies the minimum value of
negative log-likelihood function (marked left on the ordinate) and one vertical line indicates
the maximum value (marked right on the ordinate). The data sample with the lowest negative
log-likelihood function value is selected as an IV. The IVs are bold plotted and the currently
selected IV is bordered violet.

The first IV is that one with the most neighbors of the same class membership. The value
of the log-partition function is the same for all candidate IVs, except for those on the margin.
The class-wise kernel density function value differs significantly depending on the class labels
of the neighbored samples.

00.0.0...00.0..@'.
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The second selected IV lies in the second densest region of samples with equal class label.
Again, the values for the log-partition function differ only slighty, whereas the unnormalized
weighted kernel density function value highly depends on the class labels of the neighbored
samples.
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When selecting the 11. IV we can see that the remaining samples are these ones, which

neighbors are already selected IVs and belonging exclusively to the same class, and these
ones, which neighbors are no IVs and belonging to the competitive class. The values for the
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log-partition function is lower in areas with low density of I'Vs.
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When selecting the 15. IV, the plot indicates that the remaining samples are these ones,
which neighbors are already selected IVs and belonging exclusively to the same class. Thus,
samples that are already covered by neighbored IVs of the same class result in the least de-
crease of the objective function and are selected in the end.
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Our considerations show that the objective function (4.4) which is used by IVM, causes a
coverage of the samples by IVs. Using the greedy selection procedure, the first selected IVs
are positioned in areas with a high density. Candidate IVs near to already selected ones are
only chosen if they can significantly decrease the objective function, i.e. if they can contribute
to a higher discriminative power. Usually, this is only the case when they have a competitive
class label. Due to this and the fact that the hyperparameters are selected equally for all IVs,
the IVs uniformly cover the samples independent of their density. Beside this reconstructive
properties, the selection of the IVs seeks a high level of discriminative power, resulting in the
effect that IVs beyond the decision boundary are only selected if they do not decrease the
discriminative power. In the next section we empirically analyze our hypothesis.

4.3 Empirical Study on the Distribution of Import Vectors

In this section we empirically analyze the distribution of IVs. First, we consider the usage
of different kernels to show that a kernel needs to have certain properties so that IVM
develop a reconstructive component. Second, we analyze the distribution of the IVs using
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synthetic data sets with separable and overlapping classes and real data sets characterized
by high dimensional features. Third, we show the influence of the kernel - and regularization
parameter onto the classification result. Our results are compared to the distribution of
support vectors of SVM.

4.3.1 Data

For our considerations we use the following data sets.

Ripley data set. For the analysis of the usage of various kernels we use the Ripley data
set (Ripley (2008))!, which is a well-known machine learning data set consisting of two
overlapping classes with 250 samples. The two-dimensional samples for each class have been
generated by a mixture of two Gaussian distributions.

Synthetic data set. For the analysis of the distribution of the IVs we use two synthetic
non-overlapping data sets. For each data set we generate 500 two-dimensional samples for
each class, which are simulated from a Gaussian mixture with two components and from an
uniform distribution. Furthermore, we use three data sets with overlapping classes, in which
each class contains 500 two-dimensional features. We use two data sets with 2 classes and
one with 4 classes.

Digits data set. We also analyze the distribution of IVs in a high-dimensional feature
space. We use the DI1GITS data set of Seewald (2005) consisting of 1900 training and 1800
test images of digits from 0 to 9. We compute HoG features of each image and use them for
classification purposes. Class 1 is comprised of the even images of digits 0, 2, 4, 6 and 8§,
which we refer to as sub-classes and class 2 is comprised of the odd images of digits 1, 3, 5,
7 and 9.

4.3.2 Experimental Setup

On the usage of various kernels. As described in Section 3.2.5.2, we can use different
kernels for kernel logistic regression. In this experiment we visually analyze the classifica-
tion result of IVM by means of property (a)-(c), which are necessary to obtain a suitable
reconstructive component. We use non-stationary kernels, isotropic stationary kernels with
compact support and isotropic stationary kernels with infinite support (see Section 3.2.5.2).
The kernel and regularization parameter were determined via 5-fold cross-validation.

Analysis of the distribution of import vectors. To analyze the distribution of IVs
we perform IVM using some representative examples with two classes, see Figure 4.4. We
start with two well separable classes, illustrate the distribution of the IVs and later show the
distribution for overlapping classes. In case of separable classes we run the total experiment
twice, once with the first IV selected according to Algorithm 1 and once selected randomly.
In all cases we use a common Gaussian radial basis function kernel and choose both suitable
kernel parameter o = 0.25 and regularization parameter A = exp(—5) to achieve a small
misclassification error. We repeat the procedure and accumulate the IVs, until at least 2000
IVs are accumulated. To visualize the distribution of the IVs we plot the accumulated IVs
shown as orange and blue dots. Furthermore, we attach to each IV its Gaussian kernel with
assigned kernel width (see Section 3.3.1.2), so that the accumulation of the kernels results in

Lavailable at http://www.stats.ox.ac.uk/pub/PRNN/
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the background shading in the images. In each run we compute the distances between all IVs
of each class and report the accumulated histograms. For comparison we show the theoretical
distribution of the distances between randomly selected samples derived from the underlying
distribution. In each run we choose as many random samples as IVs were selected.

4.3.3 Results and Discussion

In the following we present and discuss our results regarding the usage of different kernels
and the distribution of the I'Vs.

4.3.3.1 On the Usage of Various Kernels

Figure 4.3 shows the obtained classification results using common kernels, namely non-
stationary kernels such as linear and quadratic kernels, isotropic stationary kernels with
compact support such as uniform and Epanechnikov kernel and isotropic stationary kernels
with infinite support such as exponential, Cauchy and the most commonly used Gaussian
kernel.

Non-stationary kernels. Figure 4.3 (a) and (b) show the linear and the quadratic kernel.
The kernel function value depends in the position of each sample. This is shown in that the
greater the distance to the decision boundary the higher the posterior probability, indepen-
dently of the distance to IVs. Using a higher order polynomial kernel can lead to a more
complex and therefore better discriminating decision boundary, but property (c) cannot be
met.

Stationary kernels. Figure 4.3 (c¢) and (d) show isotropic stationary kernels with a com-
pact support. Although all properties are met, these kernels cannot model a suitable posterior
probability. The posterior probability distribution is not smooth, so that the decision bound-
ary and the 0.75 isolines coincides with the parts of the border of the compact support of the
kernel centered on the IVs.

Figure 4.3 (e) and (h) shows stationary kernels with infinite support. These kernels meet
all properties and obtain also a smooth posterior probability distribution.

4.3.3.2 Analysis of the Distribution of Import Vectors

In the following we discuss our results regarding the distribution of IVs using synthetic data
shown in Figure 4.4. Once we select the first IV according to Algorithm 1 (left column) and
once with select it randomly (right column). Furthermore, we discuss the case of overlapping
classes by means of the results given in Figure 4.6. We consider samples with high dimensional
features in Figure 4.8.

Separable classes. Figure 4.4 indicate that the IVs obviously are spread over the entire
data set. The left column in Fig. 4.4 shows that there is a hole around the center of each
class distribution. The reason is, that IVs which are selected first lie in a region with a high
density measured by the kernel, i.e. the center of each class, see Figure 4.5. Furthermore,
because of the sparsity property of the IVM algorithm and the property, that IVs tend to gain
distance towards one another, the neighboring samples are “covered” by IVs in the center of
the distribution. Therefore, the distribution of the I'Vs is not identical to the density of the
data samples. IVs are rather distributed so that areas with an adequate occurrence of data
samples are uniformly covered by IVs. These empirical findings underline our hypothesis
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(d) Epanechnikov

(g) Gaussian

FIGURE 4.3: Commonly used kernels: Non-stationary kernels such as linear and quadratic kernels, isotropic
stationary kernels with compact support such as uniform and Epanechnikov kernel and isotropic stationary
kernels with infinite support such as exponential, Cauchy and the most commonly used Gaussian kernel.
The kernel parameter, i.e. the width of the kernel, and regularization parameter were determined via 5-fold
cross-validation. The IVs are bold plotted with a black boundary.

formulated in Section 4.2, in which we explain these effects by means of the analysis of the
objective function.

The results are underlined by the histogram h(d) of the distances between IVs. The
histogram h(d) of the Gaussian mixture distribution as well as the uniform distribution tend
to have two peaks. Distances around the right peak belong to distances between samples in
the center and non-centered IVs, and distances between the sub-distributions in case of the
Gaussian mixture distribution, and the left peak are distances between IVs in the center or
distances outside the center.

We also report the analysis, provided that the first IV is chosen randomly in order to
identify its purpose, see right column in Figure 4.4. Now both peaks are less distinctive.
Nevertheless, small distances between IVs appear to be less frequent than sampled from the
original density.

Overlapping classes. The situation is slightly different in case of overlapping classes, see
Figure 4.6. Mostly, the IVs belonging to one class do not lie in the acceptance region of
the other class, but they uniformly cover the posterior probability distribution. Again, we
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FIGURE 4.4: Empirical distribution (dots) of import vectors (IVs) for features in a two class scenario with well
separated classes: Gaussian (upper row) and uniform (lower row) distribution of the features. The size of the
shown region is 2.5 x 2.5. The decision boundaries (black) estimated by IVM and the isolines of the 25 % and
the 75 % posterior probabilities (violet) are given. Joint distribution from 500 runs of an IVM, each yielding
appr. 15 IVs. The incremental sampling of the IVs starts either with the best vector (left, see Algorithm 1)
or with a random vector (right). The contours of the true distributions are given in yellow (3-o contour for
the upper row). The agglomerated histograms give the distribution of the distances between the IVs per run,
indicating that IVs tend to lie separately, as the occurrences of small distances between IVs appear to be less
frequent, compared to the theoretical distribution shown as lines. For the explanation of the holes see the text
below.

observe the existence of IVs far off the decision boundary. The sparsity property in all cases
is underlined by the fact that very small distances are the exception. The IVs try to resist
each other, i.e. they do not represent a density function.

Figure 4.7 shows an example with 4 overlapping classes using different kernel and regu-
larization parameter. Like in the two-class scenarios we can observe that the IVs are covering
the whole distribution. The center of the plots, which are characterized by an equal density
of all classes, are in most cases not covered. An IV in the overlapping area is only selected if
the discriminative power is not reduced. This is only the case if the range of influence of the
1V, defined by o, comprises significantly more samples of the same class than of competitive
classes. This can be seen in Figure 4.7 (a) and (b), where the kernel parameter is small and
thus, the range of influence is also small.

It can be seen that the results shown in Figure 4.7 (a), (c) and (e) have no 75% contours of
the posterior. That means, the maximum probability for all classes is smaller than 75%. This
is due to the regularization parameter, which influences the sharpness of the probabilities. The
results illustrated in Figure 4.7 (b), (d) and (f) have these contours, because the regularization
parameter is smaller than for the results shown in (a), (¢) and (e). By means of these contours
we can also see the influence of the kernel parameter. Using a small kernel parameter yield
contours that enclose the areas with high density, whereas the usage of large kernel parameters
yield contours that also enclose areas with a low density. Thus, the determination of a
suitable kernel and regularization is crucial and demand for strategies as grid-search with
cross-validation.
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FIGURE 4.5: Empirical distribution (dots) of the first selected import vectors for the Gaussian (left) and
uniform (right) distribution of the features. The decision boundaries (black) estimated by IVM and the
isolines of the 25 % and the 75 % posterior probabilities (violet) are given.
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FIGURE 4.6: Empirical distribution (dots) of import vectors (IVs) for Gaussian-distributed features in a two
class scenario with overlapping classes. The 3-0 contour of P (x | C) is given in yellow. The decision boundaries
(black) estimated by IVM and the isolines of the 25 % and the 75 % posterior probabilities (violet) are given.
Most of the IVs of a class lie in the acceptance region of the corresponding class.

Digits data set. The left column of Figure 4.8 shows the images of the IVs and the right
column shows the histogram of the distances between them. As stated before, the results
indicate that short distances between the IVs are the exception. All subclasses are covered
by the IVs as the left images show. Thus, also in high-dimensional spaces the selected IVs
represent the important parts of the distribution.

4.3.3.3 Comparison to SVM Regarding the Distribution of Support Vectors

We compare our results to that of standard SVM. Fig. 4.9 shows the results for SVM
with kernel parameter ¢ = 0.25, which we also use for the experiments with IVM. We use
A = exp(2) for the respective left plot and A = exp(0) for the respective right plot for both
the Gaussian mixture and the uniform distribution. In contrast to the uniformly distributed
IVs, support vectors (SVs) of SVM are only selected if they are necessary for discrimination.
Thus, most of the SVs are positioned near the decision boundary within the obtained margin
in the feature space of the kernels. This not necessarily results in the statement, that SVs are
positioned near to the decision boundary in the original feature space, as can also be seen in
the examples given by Schélkopf and Smola (2002), p. 207, and Hastie et al. (2009), p. 425.
We also plot the 75 % isolines of the posterior probabilities (violet) which we obtain using
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Platt’s method Platt et al. (2000). The figures show that the probabilities strongly depends
on the decision boundaries. Areas, which lie far from the decision boundary achieve a high
posterior probability, no matter if there are data samples. We observe the same effect, when
using non-stationary kernels with IVM.

Fig. 4.10 shows the results for SVM for overlapping classes. The kernel and regulariza-
tion parameter are determined via cross-validation. In these examples the SVs tend to be
positioned near the decision boundary. This is underline by the histograms over the distances
between the SVs, which shows that SVs are positioned close together covering only a small
area. It can also be observed that overlapping areas also achieve a relatively high posterior
probability, if they lie far enough away from the decision boundary.

4.4 Summary

We analyzed the objective function of IVM and showed that the classifier have both a re-
constructive and discriminative model component. The reconstructive part of the objective
function causes a uniformly coverage of the samples by IVs. Beside this reconstructive prop-
erties, the selection of the I'Vs seeks a high level of discriminative power, resulting in the effect
that I'Vs beyond the decision boundary are only selected if they do not decrease the discrim-
inative power. The analysis of the usage of various kernels has shown that only stationary
kernels with an infinite support are suitable for IVM in order to develop a reconstructive
component. The empirical analysis on the distribution of the IVs clearly indicates that the
IV selection leads to a sampling of the acceptance domain of the given training data. We
demonstrated that non-overlapping areas with a high density of data samples achieve a high
posterior probability and areas with no training samples obtain a posterior probability of
approximately % Thus, we confirmed our hypothesis that to our definition in Section 3.2.4,
IVM using a stationary kernel inherently have a reconstructive model component. In the
next chapter we formulate the I?VM classifier.
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FIGURE 4.7: Empirical distribution (dots) of import vectors (IVs) for Gaussian-distributed features in a four
class scenario with overlapping classes. The 3-0 contour of P (x | C) is given in yellow. The decision boundaries
(black) estimated by IVM and the isolines of the 25 % and the 75 % posterior probabilities (violet) are given.
Plot (a)-(f) show various combinations of different kernel and regularization parameters. A Gaussian radial
basis function kernel is used.
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FIGURE 4.8: The import vectors illustrated as images and the histogram of the distances between them. Class
1 (left 2 plots) is comprised of the even images of digits 0, 2, 4, 6 and 8, and class 2 (right 2 plots) is comprised
of the odd images of digits 1, 3, 5, 7 and 9. The selection of IVs from all subclasses verifies that the IVs cover
the entire feature space.

FIGURE 4.9: Empirical distribution (dots) of support vectors (SVs) for features in a two class scenario with well
separated classes: Gaussian (left) and uniform (right) distribution of the features. The decision boundaries
(black) estimated by SVM and the 25 % and the 75 % posterior probabilities (violet) obtained by Platt’s
method Platt et al. (2000) are given. We use ¢ = 0.25 for the kernel parameter and A = exp(2) for the
respective left plot and A = exp(0) for the respective right plot.
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FIGURE 4.10: Empirical distribution (dots) of support vectors (SVs) for Gaussian-distributed features in a
two class scenario with overlapping classes. The 3-0 contour of P (z | C) is given in yellow, the 75 % contours
of the posterior P (C | ) obtained by Platt’s method Platt et al. (2000) are given in violet for class ¢ resp.
Most of the SVs lie near to the decision boundary.
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Chapter 5

Incremental Learning with Import
Vector Machines

If the data samples become available sequentially, it is reasonable and more efficient to update
the IVM incrementally, rather than recomputing them from scratch. In this chapter we
introduce the I?VM learner. We describe how to deal with new training samples becoming
available at the current time step, how to remove training samples from older time steps and
how to update the set of import vectors. We further show the steps to incorporate new classes
and features. We will describe the learning procedure for the two class situation, dropping
the index ¢ for a simplified notation.

5.1 Conceptual Procedure for an Incremental Update Step

In this section we introduce the conceptual procedure for one incremental update step. We
distinguish between three update steps that serve a different purpose.

(1) The addition of training vectors allows the learner to add new samples to already
existing ones. As a result, the learner is able to adapt to new class-specific samples or
enhance or support existing ones.

(2) The removal of training vectors is necessary to maintain the learner of bounded size.
Depending on the application non-informative, counter-supportive or the oldest data
samples are removed.

(3) The set of import vectors has to be adapted, like in classical IVM. This includes the
adding of the new IVs from the new training samples to adapt to the current samples
and the removal of some import vectors, which do not represent the best subset any
more.

After introducing the internal representation of the learner in the next section, we explain
the update steps specified in this section in detail in Section 5.3.

5.2 Representing the Current State of the Learner

In this section we describe the current state of the learner by means of the model components
in order to define the internal representation of the classifier.

The state of the learner is represented by two sets and additional matrices and vectors,
which will change over time:
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e A training set T = {(xp,tn)},n =1,..., N being a subset of all training samples seen
so far.

e An import vector set V = {x,,t,},v = 1,...,V being a subset of 7. It is used for
defining the classifier model and implicitly specifies the decision boundaries.

The following vectors and matrices support efficient learning, and are partially redundant.
e the (IV x V)-kernel matrix K = [k,],

e the V-vector a of parameters,

e the N-vector p of probabilities, and for efficiency the N x N-matrix R,

e the (V x V)-matrix H = V2Q () being the Hessian of the optimization function and,
for efficiency, its inverse H~!, and

e the V-vector z.

Thus the state is represented by
S:{T7v; K7a7p7 R7 H7 Hfl?z}' (5'1)

When working in the incremental setting, we indicate the current time step with one prime
and next time step with a double prime. The learning procedure is a Markov chain in which a
new state S” only depends on the previous state S’, and the set of training data AT, becomes
available between state S’ and S” . We defined the state of the learner at a time step ¢ in
order to specify the internal representation of I?VM. In the next section we introduce the
learning procedure for I?VM.

5.3 Learning Procedure for Incremental Import Vector Ma-
chines

In this section we describe the update steps specified in Section 5.1 in detail. We have the
following three update steps:

1. Adding training vectors: Extend the old set of
training vectors 7' to 74 by including new vec-

tors AT, = AT": T V!

T+ =T UAT, (5.2)

2. Remove training vectors A7_, but not if they are
currently included in the set of import vectors V':

T// V/

T = To \ ATZ (5.3)
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3. Incremental and decremental IV-learning: Add im- AV,
port vectors AV, C (T7”\V’), and remove im-
port vectors AV_ C V' with a hybrid greedy for- T
ward /backward selection as described in Algorithm
1 in Section 3.3 until the objective function Q con-
verges:

V' = (V\AV.)UAY, (5.4)

The criteria for deleting training vectors depend on the application. In tracking applica-
tions, training vectors can be removed according their age, or if older class-specific features
are contradictory to newer ones. In contrary to this, for the incremental learning of large
data sets the sequence of the incoming training vectors should not influence the result. In
this case, a suitable criteria is to remove the training vectors depending on their contribution
to the model. We discuss several criteria in Section 5.6.

There are also several ways to realize step 3. One possibility is to test each data sample
in the current training set to be an import vector. Another possibility, which more likely
corresponds to incremental learning, is only to test the newly acquired data samples. We
choose the latter possibility, which is more efficient than the first one. In the next section
the three update steps are now made explicit.

5.4 Incremental and Decremental Update

In the following we describe the incremental and decremental update of training and import
vectors for the two-class case. For convenience we show the update of import vectors only
for one single import vector. The update can be extended to simultaneously or successively
add or remove groups of import vectors.

5.4.1 Adding and Removing Training Vectors

In the following we describe the addition and removal of one or more training samples.

5.4.1.1 Adding Training Vectors

We add AN, training vectors AX . with targets At so that N := N+ AN,. The kernel
submatrix of the new training vectors is given by AK . We extend the kernel matrix and
the target vector to

K’ ]
K, — , 5.5
Ny [Am (5:5)
t ]
t = . 5.6
N++x1 [At+ (5.6)

Using the current parameters o we first obtain the posteriors Ap_ from (3.30), AK, from
(3.12), AR, from (3.25) using Ap, and Az, from (3.32).
Starting from the Hessian

1

H = K'TR'K' + AK', (5.7)
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and its inverse from the previous iteration we update these matrices and the parameters o’
using the IRLS procedure, yielding

oy = H7! (K’TR’z’ n AKIAR+Az+) (5.8)
with
T R’ /
Hy = N—+K [ ARJK++AKR
=H +AH,,
N’ AN
<H’ + —AKTAR+AK+ + )\+KR> : (5.9)
- N, N’

With H’ given from (5.7) we update and invert the Hessian with (5.9). Since the inverse H, '
is only of size (V' x V') and the number of import vectors is usually small, the inverse can
be computed significantly faster than for non-sparse kernel logistic regression.

Applying oy we finally determine p, from (3.30), Ry from (3.25), and finally z4 from
(3.32), yielding the state S4 = {74,V ; Ky, a4, p,, R4, Hy, erl, zi}.

5.4.1.2 Removing Training Vectors

We delete I training vectors with indices Z and obtain the partitioning of the matrix K

K- 1 .
K+ == |: AK_ | with AK_ = \III(K+) y (511)
the target vector ¢4 )
t_ .
t+ = |: At | with At_ = \IJI (t+) s (512)
and the deleted parts of Ry and z
AR_ = Uz (\I/I (R+)T) : (5.13)
Az_ =V (z4). (5.14)

The update (5.8) can be formulated for a decreasing number of training vectors N” :=
Ni — AN_ in a similar manner, using an efficient determination of H_ as in (5.9):

o = H™! (K+TR+z+ - AKIAR_AZ_) (5.15)
with
1
Ho = KT <\I/T,,\Z (qu,,\Z(m)T)) K_ + K,
= Hy — AH_,
- (H+ N AKTARLAK, = A= KR> (5.16)

and the Hessian H from (5.9). Applying a_ we again obtain p_, R_, and z_ using (3.30),
(3.25) and (3.32), yielding the state S_ = {T",V;K_,a_,p_, R_, H_,H ' z_}.
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5.4.2 Adding and Removing Import Vectors

In the following we show how to add and remove import vectors. For convenience we only
show the addition and the removal of one import vector, in each case given the state S_. In
general an update step consists of several insertions and removals of import vectors, depending
on how much the model must be adapted.

5.4.2.1 Adding Import Vectors

To add an import vector {:cfdd, y?4Y € T out of the the current set of N training vectors,
we define a kernel vector Ak, = [k (mn, acadd)], a kernel vector Akp 4 = [k (wv, madd)] and

a kernel scalar AER,JF =k (madd, madd). We extend the kernel matrix and the regularization
matrix to
Ky = [ K. Ak, } : (5.17)
- K, Ak
Kpe=| -1 L (5.18)
AkR,+ Akp

leading to V; := V'’ + 1 import vectors. The parameters a are obtained from

~_1~

&, =H, KR z_. (5.19)

We use the Sherman-Morrison-Woodbury (SMW) formula Higham (2002) to efficiently com-
pute the inverse in (5.19) with

__ 1 ~ ~ ~ -1
A = (KIR_M + AKR,+> :

N/l
H_ a -1 H~! + (H:1 )6*1 (aTH:I) —H 'ae!
"l at b - —etaTH™? et ’ (5.20)
where
1 ~71 ~ ~
a = WK-FR_Ak'i' —+ )\AkR7+ s (521)
1  ~T ~ ~
b= WAI{:+R_AI<:+ + A\Akgr 4+, (5.22)
e=b—a'H 'a. (5.23)

~—1
Note that the determination of the inverse H, only incorporates an inverse e~ of size
(1 x 1), since the inverse H~! is already given from the last step. Using &, we obtain p s

= ~ . 1 5 >~~~ 5T 1. .

R4, and z, yielding the state S4 = {T",V4; K4, a4, p,, Ry, Hy, H, ,Z}. Further import
vectors can be added by extending the kernel and the regularization matrix again and using
the updated entities of 5.
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5.4.2.2 Removing Import Vectors

Using the set V' = {1,...,4,...,V’} of indices of the current import vectors a removal of an
import vector {x;,y;} reduces the kernel and regularization matrix and yields
~ T
K_— (‘Ifw\i (KI)) , (5.24)
~ W\ T
AK_ = (\If (K,)) : (5.25)
= T
KR’_ — \IIV’\’i (‘IIV’\Z' (K,R) ) 5 (526)
AR = (W (K)") (5.27)

the consequence being that the Hessian H_ is reduced to

Ho =Ty (‘I’v'\z‘ (H—)T) :

~—1
We can efficiently compute the inverse Hessian H_ by updating H_!, given from the last
step, with

H_' = H™' — hyhThs, (5.28)

whereby h; is the ith row from the Hessian H_. Both, the i-th row and the i-th column of
~—1
H_ become zero and must be removed to compute the updated parameters with

~_1~

& —H 'K R 2. (5.29)

Applying o we obtain p_, ﬁ: and z_. Further import vectors can be removed in the same
way by a further reduction of the kernel matrix and the Hessian.

Depending on the number of insertions and/or deletions of training and import vectors
we finally have the new state S”, consisting of the new sets 7" and V", the kernel matrix
K", the parameters a”, the probabilities p” and R”, the Hessian H”, its inverse H” ', and
the corrections z”, which will be updated in the next iteration.

We have described the incremental an decremental update steps for training samples and
import vectors. In the next section we show explain the steps which are necessary to add
further classes and features, which may be introduced with new samples.

5.5 Incorporation of New Classes and Features

In the last section we have formulated the incremental and decremental update of training
and import vectors. We specify the update for the two-class case with an unchanged number
of classes and features, not to be confused with feature vectors. Although the incorporation
of further classes and features is relevant to incremental learning strategies, there is only little
work in the literature which deals with this problem, see Section 2.1. Both, new classes and
features may be introduced with new samples. In the following sections we show that the
I?VM classifier is able to add new classes as well as new features.

5.5.1 Incorporating New Classes

In some cases the number of classes is not know beforehand and a re-training is undesirable.
In this section we show the incorporation of additional classes for the I?VM classifier.
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Before the learning procedure starts, we add ACy classes so that C” = C' + AC,.
Thus, the old set of classes C’ is extended by AC., yielding the new set of classes C” =

{1,...,¢,...,C"}. The target vector t’ is extended via the recursive update
t =[t on : 5.30
N'xC" |: N XAC+ j| ( )

We further extend the parameter vector so that o, for each ¢ € AC,, such that

O(/C/ = €Ey’x1, (5.31)
Vix1
where € is a vector with small values preventing a division by zero when the softmax function
is evaluated. After this, the incremental and decremental update steps can be performed as
introduced in Section 5.4.

5.5.2 Incorporating New Features

In this section we show the incorporation of additional features, sometimes also referred
to as attributes, for the I?VM algorithm. When dealing with kernel-based classifiers, an
incorporation of features only changes the current stored training and import vector set.
Because the kernel only depends on relations between the samples rather than the samples
themselves, an incorporation of features only affects the original feature vectors but not the
kernel vectors. Before the learning procedure starts, the original feature vectors x,, € 7’ and
x, € V' are extended by AM, features so that M" = M’ + AM:

/ 37;1

z = , 5.32

M1 [ Oanr, x1 ] ( )
/

z = Ty ] 5.33

2= Loaes 39

Note that for the considered kernel classes the extension does not affect the kernel matrix
K’', since the additional feature dimensions are all set to zero. After performing (5.32) and
(5.33), new samples with M"” features can be added as described in Section 5.4.

So far, we described the incorporation of further classes and features, which may be
introduced with new samples. In the next section we consider different criteria to identify
training samples, which are meant to be removed.

5.6 Criteria for Removing Training Vectors

In this section we introduce various criteria for the removal of training vectors. The removal of
data samples is necessary in order to keep the model efficient and to keep the set of samples
representative. With a suitable criteria non-representative training samples are removed,
leading to an adapted internal representation of the classifier which models the dependency
of the labels y;, to given feature vectors X, at time step t as well as possible. Non-
representative samples are both not necessary for discrimination and reconstruction. In the
following we give an overview about criteria for removing training samples.

5.6.1 Overview

The most naive way for sparse incremental learning methods is to remove all samples, whose
assigned parameters in the current classifier model are zero. For example Syed et al. (1999)
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and Riiping (2001) train the SVM classifier on the newly acquired training samples and on
the previous learned support vectors. When using SVM this reason seems intuitive because
the training on all samples yields the same result as training on selected support vectors only.
Nevertheless, as Cauwenberghs and Poggio (2001) stated this gives only approximate results
and also training samples could be kept in the model.

In various applications it is desirable to remove training vectors depending on their age.
In this case the algorithm focus more on recently acquired training samples than on older
ones. This is quite useful in tracking applications when the appearance of an object changes
and the recent observations are more likely to represent the current characteristics of the
object than would more distant ones.

One possibility is remove all samples which are older than a pre-defined number of time
steps. In this case a hard weight of 1 or 0 is assigned to an sample. Another possibility is to
additionally down-weight the samples depending on their age. This approach assumes that
the sequence of the data has a meaning and therefore cannot be applied to applications where
the arrangement of the data is irrelevant. The other way around, Riiping (2001) increase the
weight for old data samples to deal with concept-drifts.

Another intuitive way is to randomly remove training samples. This approach works
well if the distribution of the data does not change and new training samples are randomly
acquired from their underlying distribution. However, concept-drifts in the distribution will
lead to an imbalanced removal of samples, i.e. early seen parts of the distribution are more
likely to be under-represented than later seen ones.

In the following we introduce five different criteria that compute the influence of training
vectors, in which influential means that they are necessary to represent the model. Using
these criteria non-influential training vectors can be removed to keep the classifier model
efficient.

5.6.2 Cross-entropy

The first criterion referred to as cross-entropy computes a distance between the target vector
and the estimated probability. The cross-entropy is given by

bpce = —t, logp,,. (5.34)

This measure is part of the cross-entropy loss function, which is discussed in Section 3.2.5.3. A
small value means a small contribution to the objective function. Thus, all samples that have
a small influence onto the estimation of the model parameters are removed. This method tries
to remain as much discriminative power as possible by keeping samples near to the decision
boundary, but also samples in areas with a low posterior probability, e.g. the boundary of
dense regions.

5.6.3 Linear Independence

Nguyen-Tuong and Peters (2010) introduced a measure for linear independence. The measure
identifies samples that can be approximated by a linear combination of existing samples in
the training set. They define that a sample x, that cannot be explained be other samples
has a high linear independence and a sample x,, that can be approximated well using other
samples has a low linear independence and can be removed. Following Nguyen-Tuong and
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Peters (2010) we introduce the independence measure as

2

bm,ind = Z pyp — Lm ) (535)
n\m
= Z A T Ty — 2 Z N AL SR LIPS (5.36)
n’,n'\m n’

The measure can be seen as the reconstruction error of the kernel vector, where the parameters
a denote the coefficients of linear dependence. We replace the dot product of = a, by the
kernel k,,, yielding _

bnind = @' Kina — 2a" K, + Ky, (5.37)

TT

where Rm = <\I/m (Kil) , kp, is the m-th row of the kernel matrix K and k,,,, the m-th

diagonal element of the kernel matrix. The optimal parameter vector a can be determined
~—1
by minimizing by, inq obtaining a = K k,,. Thus, the independence measure is

bm,ind = kmm - kma~ (538)

The measure only depends on the kernel and is therefore independent of the current classifier
model. This method tries to remain as much reconstructive power as possible. The larger
the value of by, jnq, the more independent is x,, from the current training set.

5.6.4 Cook’s Distance

The Cook distance criteria identifies influential training vectors by means of the discriminative
power. In order to define the criteria, we make use of linear regression diagnostics, which can
be transferred to logistic regression diagnostics (Hosmer and Lemeshow, 2000). The latter
one can be directly applied to IVM. The hat matrix N is given by

-1
N=R3K (KTRK) KTR3 . (5.39)
The diagonal elements of the hat matrix are the leverage values
l =diag(N) . (5.40)

To compute the influence, which has a data sample onto the result, we use an analogous
measure to the Cook’s distance (Cook and Weisberg, 1982) for linear regression. The distance
bp,Cook is given by

r2l
by Cook = —2—— 5.41
,Cook (1- ln)2 ( )
with
= —n_n)_ (5.4
Pn (1 - pn)

defined as the Pearson residual. As in linear regression is the sum of all leverage values
Y nln =V is equal to the number of parameters. Contrary to the interpretation of the
leverage values in linear regression, where the leverage values increases with the distance
from the mean, in logistic regression extreme data samples in the feature space may not
have a high leverage value. (Hosmer and Lemeshow, 2000) shows that data samples with
small and large probabilities 0.1 < p, < 0.9 tend to have a small leverage value, whereby
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samples with probabilities in between have leverage values, which can be interpreted as some
kind of distance from the mean. Because we interpret import vectors, which have a large
probability, as data samples with high influence onto the result, we use the modified Cook
distance resulting from the usage of a modified version of (5.40),

T o7
Linod = diag (K (K RK) K ) . (5.43)
The modified distance b, cookMod is than given by

2
rnln,mod

(1 - ln,mod)Q . (544)

b, CookMod =

The subset of remaining training samples tries to remain as much discriminative power as
possible.

5.6.5 Weighted Sampling

This criterion uses a weighted random sampling strategy, in which the weights are derived
from the density of the samples using the kernel matrix. As stated in Chapter 4, the distri-
bution of the IVs represent the coverage of the training samples rather than their density. In
order to approximate the density of the samples, we use the non-parametric density estima-
tion method with histograms. The V' bins of the histogram are the cells in a Voronoi diagram
defined on the set of the IVs V. The heights of the bins are given by the number of samples
N, included. The distance from a training sample to each IV can directly be obtained from
the kernel matrix. For example, using the Gaussian radial basis function kernel an entry of
1 means the sample is identical to the IV and a very small value indicate that the sample is
far away from the I'V. In this case, we first determine the index j, of the maximum value in
each row of the kernel matrix k,,,

Jn = argmax, ky, . (5.45)

Further, we introduce an indicated (N x V)-matrix Ky, in which each row is a unit vector
with all elements zero except element j,. The (V' x 1)-histogram h of f is derived by

hy =Y 6(jn,v). (5.46)

Accordingly, the unnormalized weight for each kernel vector k,, is
w, = Krh (5.47)

and the normalized weights used for the sampling strategy are given by

1

= = =< Wy.
vav ‘

Using this method ensures that dense regions are thinned out and sparsely covered regions
are prevented from disappearing. As well as the independence measure, this method tries to
remain as much reconstructive power as possible.

(5.48)

Wy
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5.6.6 Increase of the Negative Log-likelihood Function

The last criterion operates similar to the greedy backward selection of import vectors. Each
sample is tested to be removed from the training set and the negative log-likelihood function
with the new set is computed. The sample that least increases the objective function value
is removed from the set. The value can be negative, what means that the removal of the
sample currently improves the classifier model. This criterion differs from all other, because
the model needs to be recomputed several times for each removal. All other criteria determine
the samples to be removed by only using the current model.

In this chapter we have introduced the I?VM classifier. We explained the learning scheme
and the update steps in order to add and remove training samples as well as to adapt the set of
IVs. Further we introduced various criteria that remove non-representative training samples.
We will use these criteria in our experiments when we deal with large image databases in
which not all samples can be stored. In this case, a suitable criteria will lead to a comparable
performance as been reached with the usage of all samples. In the next chapter, we show the
applicability of I?VM for various applications.
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Chapter 6

Applications

In the following section the potential of I?VM is analyzed in several applications. The ex-
periments are part of our work in (Roscher et al., 2012), (Roscher et al., 2012) and (Roscher
et al., 2012). We use the experiments in order to experimentally verify that I2VM have the
properties mentioned in Section 1.3, which are necessary to be a powerful incremental classi-
fier. Remember, the properties are a high performance independently of the ordering of the
samples and comparably to its batch counterpart, a high discriminative power, the ability to
deal with arbitrary long sequences and the applicability of the probabilistic output.

In our first experiment we compare the performance of I’VM by means of the accuracy
to other, well-known incremental learners using machine learning benchmark data sets. We
will also compare I?’VM to its batch counterpart. We will further analyze the influence of
ordering effects onto the performance of the learners. Due to the discriminative power of
I?VM we expect similar results as powerful classifiers such as SVM. Furthermore, due to the
reconstructive power, we expect that the classifier can cope with concept-drifts.

In our second experiment we show that I?VM can deal with long sequences of sequen-
tially encountered samples. We evaluate our introduced criteria from Section 5.6 to remove
samples in order to keep the model efficient. For this purpose, we use I?VM for semantic
segmentation of images from the Microsoft Research Cambridge Object Recognition Image
database. Starting from a coarse classifier model, we will refine the model by sequentially
learning from newly arriving images. We expect that I?VM can deal with long sequences and
a criterion can be found that can remove training samples without a loss in performance.

In our third experiment we show that I?VM is able to adapt to changes in the distribution
of the training samples in order to classify a current set of test samples as well as possible.
New training samples are acquired using the probabilistic output of the VM. We apply self-
training to classify the landcover of a large area consisting of composite remote sensing images,
which were acquired by a Landsat satellite. The scenes are characterized by both spatial and
temporal differences. We expect that I?VM can adapt to changes in the distribution of the
training samples and the probabilities are useful to acquire new samples.

In our forth experiment we show that I?VM is able to simultaneously cope with all chal-
lenges that appear when dealing with sequential data. We evaluate the algorithm for object
tracking in image sequences. Image sequences are arbitrarily long data streams that a char-
acterized by concept-drifts. The distinction of object and background requires a high dis-
criminative power. We use the algorithm within a tracking framework using the tracking-by-
segmentation approach. We use different benchmark image sequences, which are challenging
due to moving objects, changing illumination, varying object appearance, size and shape,
changing or moving background, and/or occlusions. We expect that I?VM turns out to be
an adaptive classifier that can deal with arbitrary long data streams. We further expect that
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I?VM is suitable to be integrated into a tracking framework showing at least similar results
as batch tracking methods.

6.1 Classification of Benchmark Data Sets

6.1.1 Comparison of I?’VM to IVM and Recent Incremental Classifiers

In this experiment we evaluate the performance of VM by means of the accuracy. In order to
do this, we show that the incremental method is competitive to a) its batch counterpart IVM
and b) to other incremental learning algorithms, by using benchmark data sets. Furthermore,
we quantitatively and visually analyze the influence of the concept-drifts onto the performance
of VM. Due to the discriminative power of I’VM we expect a similar accuracy as can be
reached by SVM. We expect that classifiers that also have a reconstructive model component
perform better than classifiers that only have a discriminative model component.

6.1.2 Data

Machine learning benchmark data sets with static distribution. We use well-known
machine learning data sets, including the DIcITS data set (Seewald, 2005), consisting of
images of digits from 0 to 9, as well as the data sets DNA, USPS, SATIMAGE and VOWEL
from the LibSVM repository (Chang and Lin, 2001). For the DicITs data set we compute
HoG features of each image and use them for classification purposes. For the DIGITS (2) data
set, class 1 is composed of the images of digits 0, 2, 4, 6 and 8 and class 2 is composed of the
images of digits 1, 3, 5, 7 and 9. The characteristics of the data sets are collected in Table
6.1.

TABLE 6.1: Characteristics of the used benchmark data sets.

Data set #Train  #Test F#Classes F#HFeatures

DigciTs 1900 1800 10 612
DicITs (2) 1900 1800 2 612
DNA 1400 1186 3 180
USPS 7291 2007 10 256
SATIMAGE 3104 2000 6 36
VOWEL 528 462 11 10

Machine learning benchmark data sets with concept-drift. In order to simulate a
concept-drift we sort the machine learning benchmark data sets. We sorted the training
data according to their class membership, i.e. the first part of the sequence contains all data
samples with class label y, < % and the second part contains all data samples with class
label y,, >= %

Synthetic data set with concept-drift. We further use synthetically generated data
with two classes, of which one class is fixed and the other has a concept-drift. The fixed
class is a Gaussian distribution placed in the center of the data set, see Figure 6.1. The
drifting class is generated by adding Gaussian distributed data samples with drifted mean
and changed variance, each time according to the sequence shown in the figure. We start with
25 samples per class simulated from two Gaussian distributions to train the classifier. Then
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the distribution of the second class changes for each time step. The test data is generated
from the complete Gaussian mixture distribution.

6.1.3 Methods

We compare [2VM to three multi-class classifiers: the online random forests (ORF) (Saffari
et al. (2009)), incremental PCA/LDA (Uray et al. (2007)) and LaRank (Bordes et al. (2007)),
an incremental SVM. Furthermore, batch IVM is used for comparison. For the ORF and the
LaRank algorithm we use the software available online and for the incremental PCA/LDA,
IVM and I?VM we use our own implementation in Matlab and C++. The kernel and reg-
ularization parameter for LaRank and I?VM are determined via 5-fold crossvalidation. For
the ORF we report the results for 1 and 10 epochs, where every individual data sample is
read once in each epoch. For the LaRank algorithm we only report the results for 1 epoch,
because the implementation with Gaussian radial basis function kernel does not provide the
usage of more epochs.

6.1.4 Experimental Setup

In our first experiment we analyze the performance of I?’VM on machine learning data sets
without a removal of data samples. We conduct the experiments by providing each classifier
the same (unsorted) sequence of training data. In our second experiment we use the sorted
machine learning data sets to simulate a concept-drift within the data. We report the error
rate in percentage of all incremental classifiers and IVM and the difference between the results
obtained by the sorted and unsorted data sets. The error rate is the difference of the overall
accuracy to 100%, see Section 3.4.2. In the last experiment we visually compare the results
of IVM and I?VM using the two-dimensional synthetic data set with concept-drift.

6.1.5 Results and Discussion

We summarize the results of IVM, I?VM and other incremental classifiers using benchmark
machine learning data sets with static distribution in Table 6.2. The classification results for
the benchmark machine learning data sets with concept-drift are given in Table 6.3.

6.1.5.1 Static Data

TABLE 6.2: Classification error on common machine learning data sets. Bold numbers indicate the best result
of an incremental learner. For comparison we also report the result of IVM in the last column.

Data set Incremental Batch
Inc. PCA/LDA [%] Online RF [%] LaRank [%] I*VM [%] IVM [%]
1 epoch 10 epochs

DiciTs 25.7 26.7 18.4 11.8 10.0 9.6
Dic1Ts (2 classes) 39.3 13.9 9.6 6.4 7.0 7.1
DNA 23.4 224 7.9 5.6 5.8 5.5
USPS 11.8 20.7 10.9 4.3 5.4 5.6
SATIMAGE 13.6 15.7 11.5 9.4 9.6 9.6
VOWEL 84.4 58.0 44.8 46.1 42.6 42.2
Synthetic 34.5 19.9 6.3 7.4 5.3 5.8
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It can be seen that I?VM is competitive to its batch version IVM. The largest difference
between both classifiers is 0.4% on the DI1GITS data set. The results indicate that discrimina-
tive models, such as LaRank, I?’VM and ORF, perform better than the generative classifier
PCA/LDA. Among the discriminative models the ORF classifier performs worse and needs
several epochs to provide a reliable result.

6.1.5.2 Data with Concept-Drift

TABLE 6.3: Classification error on synthetic data set with pseudo-concept-drift in one class and sorted machine
learning data sets. The best results of an incremental learner are bold printed. The numbers in brackets
indicate the difference to the corresponding result with unsorted data using the same classifier.

Data set (sorted) Inc. PCA/LDA [%] Online RF [%] LaRank (%] I*VM [%]
1 epoch 10 epochs

DIGITS 25.7(+0.0) 23.9(-2.8) 17.7(-0.7) 14.6(+2.8) 9.8(-0.2)

Diarrs (2) 42.9(+3.6) 18.3(44.4) 12.4(+2.8) 15.8(494) 7.2(40.2)
DIGITS reverse (2) 43.1(+3.8) 155(+2.8) 11.7(+2.1) 10.7(+4.3) 7.1(4+0.1)
DNA 23.2(-0.2) 42.1(+27.2) 11.4(+0.9) 28.5(+22.9) 5.8(£0.0)
USPS 11.6(-0.2) 18.6(-2.1)  14.3(+3.4) 13.7(+9.4) 5.8(+0.4)
SATIMAGE 14.3(+0.7) 18.5(42.8) 16.3(+4.8) 10.5(+1.1) 10.1(+0.5)
VOWEL 90.9(+6.5) 53.0(-5.0)  44.4(-0.4) 47.5(+14) 43.1(40.5)
Synthetic 34.5(£0.0) 24.0(+4.1)  6.5(+0.2) 24.0(+16.6) 5.5(+0.2)

All incremental classifiers except I2VM result in significantly larger error rates for the
sorted data set in comparison to the unsorted data set. The average loss in accuracy is
1.9% for incremental PCA/LDA, 1.9% for ORF, 8.5% for LaRank and 0.3% for I?VM. This
indicates that I?VM is on the one hand stable with respect to already encountered samples and
on the other hand flexible with respect to new encountered samples. Although, incremental
PCA/LDA and ORF outperform LaRank concerning the average loss in accuracy, LaRank
still results in higher accuracies. Thus, I?VM combines the power of a discriminative classifier
with a reconstructive component in order to be robust against concept-drifts.

Figure 6.1 shows the generated synthetic data set with concept-drift and the resulting
classification results of IVM and I?VM. The middle and the right plot show that the IVs are
spread over the entire data set, i.e. the IVs covers old and new samples equally. Both, the
batch and incremental version result in similar posterior probabilities, indicated in violet,
and similar decision boundaries, given in black.

Figure 6.2 shows the classification error of VM as function of the used training samples.
The number of training samples is identical to the number of added training samples, because
there is no need for an initial trained model. The plot shows the result for the synthetic data
set with concept-drift and random ordering. The stepwise shape of the curve of the sorted
data set indicates when a mixture of the distribution of class 2 was learned and included in
the model. Both orderings yield the same result verifying that I?VM is independent of the
ordering of the samples.

6.1.6 Summary

In this experiment we have shown that I>VM results in similar accuracies as IVM. We un-
derlined that I?VM is independent of the ordering of the samples and thus, can deal with
concept-drifts. The results verify that I*VM has a high discriminative power like SVM and
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(a) Synthetic data set (b) Classification result of IVM (c) Classification result of [’VM

FIGURE 6.1: Synthetic data set with generated concept-drift in the distribution of one class. Left: The yellow
circles are the 3-o intervals of the covariance matrices of the Gaussian mixture distribution of class 1 and
the dark gray circle is the Gaussian distribution of class 2 without concept-drift. The numbers next to the
yellow circles indicate the order, in which the samples are presented to the learner. We start with 2 Gaussian
distributions, one for each class, and further ones with concept-drift to the training samples. Middle: Result
with IVM. Right: Result with I*VM. The underlying color in the middle and right image represents the
frequency of the import vectors, the black line is the estimated decision boundary and the violet lines are the
P(C|X) = 0.75 isolines. The fat blue and orange dots are the IVs after finishing the training. The small blue
and orange dots are the training samples.

the reconstructive component causes the model to be stable and at the same time flexible as
this is a property of generative classifiers.

6.2 Semantic segmentation of Image Databases

6.2.1 Comparison of Criteria for the Removal of Training Samples

In this experiment we analyze the performance of I?VM when dealing with long sequences
in which not all seen training samples are meant to be stored in the internal representation
of the classifier. Thus, a part of the training samples have to be removed in order to keep
the model efficient. We evaluate I?VMs by applying them for the semantic segmentation of
image databases. Furthermore, we compare the applicability of various criteria mentioned
in Section 5.6 to remove training samples. The semantic segmentation of image databases is
challenging because the database can be very large and the ordering of the images in which
they presented to the classifier can be arbitrary. We expect that I?VM can adapt to new
encountered samples and a criterion can be found that can remove non-representative training
samples.

Besides the performance evaluation we use the probabilistic output to analyze the relia-
bility and the uncertainty of the classification result. We expect that I?VM is able to provide
reliable posterior probabilities. That means, it can be assumed that samples with high class
probabilities are accurately classified, whereas relatively low class probabilities are more likely
assigned to misclassified samples.

6.2.2 Data

Synthetic data set. We generate a synthetic data set with concept-drift as introduced
in Section 6.1.2 with 4800 training samples and 4800 test samples. The data set and the
reference classification result is shown in Figure 6.3. The data set simulates the variability
of image databases.
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FIGURE 6.2: Classification error of I’VM as a function of used training samples in the synthetic data set with
concept-drift and random ordering. The number of used training samples is identical to the number of added
training samples, because there is no need for an initial trained model.

FIGURE 6.3: Synthetic data set with 4800 training samples and generated concept-drift in the distribution of
one class. Shown is the reference result with no removed training samples. The underlying color in images
represents the frequency of the import vectors, the black line is the estimated decision boundary and the violet
lines are the P(C|X) = 0.75 isolines. The fat blue and orange dots are the IVs after finishing the training.
The small blue and orange dots are the training samples.

The Microsoft Research Cambridge Object Recognition Image database. The
Microsoft Research Cambridge Object Recognition Image (MSRC) database (Winn et al.,
2005) consists of 240 manually segmented and labeled 8-bit RGB photographs of size 213x320
pixels. The classification task is aiming on 9 classes, namely BUILDING, GRASS, TREE, COW,
SKY, AEROPLANE, FACE, CAR and BICYCLE. There is also an class vOID for samples, which
are not meant to be classified. Because in this database there are not enough training regions
to learn reasonable models of HORSES, WATER, MOUNTAIN and SHEEP we do not consider
these classes for training and testing. We divide the images into non-overlapping blocks, each
of size 10x10 pixels. From each block we extract Lab color features and HoG features and
concatenate the vectorized features. The class of the patch is obtained by majority voting.
The characteristics are summarized in Table 6.4.

6.2.3 Experimental Setup

In our experiments we incrementally train the I?VM and report the overall error rate com-
puted on the whole test set. For the synthetic data set we determine the error rate after
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TABLE 6.4: Characteristics of 9-class MSRC database

Class Color # Train samples # Test samples

VOID B 24087 26426
spuiping [ 8923 8389
GRASS B 18095 17430
TREE M| 7681 7227
cow B 4343 4203
SKY B 7848 7578
AEROPLANE . 2084 2107
FACE B 2483 2445
CAR B 4852 4646
BICYCLE . 4084 4029
60393 58054

each new encountered training samples and for the MSRC database we report the error after
every 50th new encountered training sample.

Furthermore, we compare the criteria for removing non-representative training samples
by means of the obtained error rates. The criteria that are evaluated are based on differ-
ent influencing entities. The Cook distance and the modified Cook distance compute the
influence of the removal of samples onto the current classifier model. They are based on the
posterior probabilities and therefore on the model parameters. The cross-entropy measures
the difference between the targets and the posterior probabilities and is therefore also based
on the current model. All three criteria try to retain as much discriminative power as pos-
sible. The approach of Nguyen-Tuong and Peters (2010) uses an independence measure to
remove training samples. Samples that can be well approximated by a linear combination
of existing samples are removed. The criteria only depends on the current set of training
samples rather than the classifier model. The weighted sampling computes a density of the
training samples using the current kernel and the set of import vectors. These criteria try to
retain as much reconstructive power as possible. The last criterion uses a greedy backward
selection procedure as for the removal of import vectors. These samples that least increase the
objective function are removed. This criterion tries to retain as much reconstructive, but also
discriminative power. Because the classifier model needs to be recomputed for each tested
training sample, the usage for the MSRC database is intractable. Thus, we only evaluated
this criterion for the synthetic data set.

Besides the error rates we use the probabilistic output to analyze the reliability and
the uncertainty of the classification result. We assess the reliability of the probabilities by
rejecting uncertain test samples and deriving the classification accuracy on the non-rejected
test points. Following Giacco et al. (2010) we show the accuracy provided by I2VM as a
function of the rejection rate in discrete intervals. The rejection rate is given by a threshold
on the posterior probability. We choose the threshold for rejection from 1 to 0 in steps of
0.01. We further report the number of retained samples, which indicates the uncertainty of
the classification result.
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6.2.4 Results and Discussion

In the following sections we discuss our obtained results on the synthetic data sets and the

MSRC database.

6.2.4.1 Synthetic Data Set
20k =10 removal - =m0 removal
~=Cook distance —Cook distance
60 —madified Cook distance G0 —modified Cook distance
Cross-entropy cross-entropy
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FIGURE 6.4: Test errors on a synthetic data set with 4800 training samples. We report the results for 500
and 1000 remaining samples and for the sorted and randomized data set.

Figure 6.4 (a)-(d) show the test errors on the data set using the the mentioned criteria
and the reference result with no removal of samples as solid black line. Table 6.5 and 6.6
summarize the accuracies and reports the number of import vectors. The plots and tables
indicate that remaining 1000 training samples yields significantly better results than remain-
ing 500 samples. Figure 6.4 (a) shows that only the linear independence criteria and the
weighted sampling are able to achieve a comparable accuracy to the reference result. The
most unstable results give the cross-entropy and the negative log-likelihood criteria. The rea-
son for the worse result of the negative log-likelihood is that the criterion tries to achieve a
low objective function value by removing sample. This is first achieved in that all samples are
removed that are incorrect classified and those which are near to the decision boundary. Due
to this, the decision boundary deteriorates and more and more samples near to the current
decision boundary are incorrect classified. As a result, only samples of one class and the IVs
remain, yielding a low objective function value. A possibility to improve this criteria is to
introduce an independent validation set on which the objective function value is evaluated.
However, the choice of a representative validation set remains challenging. Thus, the criteria
that retain as much reconstructive power as possible result in the highest accuracies.

Although plots (a) and (b) show that 500 samples are enough to achieve a low test error
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TABLE 6.5: Test errors with remaining 500 training samples using various criteria to remove samples. Reported
is the final test error, the mean error and the number of import vectors (IVs).

random sorted
final [%] mean [%] # IVs final [%] mean [%] # IVs
No removal 4.7 5.3 33 4.7 24.6 30
Cook distance 6.5 7.7 30 11.6 25.3 26
Mod. Cook distance 7.6 7.7 55 17.5 25.4 36
Cross-entropy 19.0 15.0 6 22.5 25.8 23
Weighted sampling 5.4 6.2 48 9.5 25.3 50
Independence 5.1 5.5 39 12.6 26.3 42
Negative log-likelihood 13.5 11.2 47 33.2 31.5 31

TABLE 6.6: Test errors with remaining 1000 training samples using various criteria to remove samples. Re-
ported is the final test error, the mean error and the number of import vectors (IVs).

random sorted
final [%] mean [%] # IVs final [%] mean [%] # IVs
No removal 4.7 5.3 33 4.7 24.6 30
Cook distance 8.5 6.0 26 4.6 24.7 26
Mod. Cook distance 8.4 6.4 30 5.2 24.4 28
Cross-entropy 34.6 8.1 6 5.0 24.9 31
Weighted sampling 4.4 5.1 29 5.2 24.7 23
Independence 5.0 5.4 31 7.0 25.2 35
Negative log-likelihood 14.1 9.4 34 24.7 30.1 25

none of the criteria is able to achieve a comparable accuracy in the sorted data set. However,
using 1000 samples for nearly all criteria result in accuracies, which do not differ significantly
to the reference result.

Figure 6.5 shows the classification results for all criteria with 1000 remaining training
samples on the synthetic data set with concept drift. Figure 6.3 is used as reference since no
samples were removed. Both the Cook distance and the modified Cook distance keep samples
that are positioned near to the decision boundary. That is reasonable, because these samples
have a high leverage value and influence the model most. Also the cross-entropy criteria
keeps only samples at the boundary and in areas with a low probability, e.g. overlapping
areas. The visually best result gives the linear independence criteria. Although using this
criteria gives the worst result (see Table 6.6 on the sorted data set) it looks the most similar
to the reference result. The worse result can be explained by the fact that less samples are
needed to accurately define the decision boundary than to represent the distribution of the
samples. Nevertheless, as shown in Section 3.2.4, only defining the decision boundary can
lead to worse results.

These results indicate that criteria that retain as much reconstructive power as possible
show better results if the number of kept samples is small. Criteria which retain as much
discriminative power as possible need more samples to show comparable accuracies.
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(a) Cook distance

(d) Weighted Sampling (e) Independence (f) Negative log-likelihood

FIGURE 6.5: Synthetic data set with 4800 training samples and generated concept-drift in the distribution of
one class. Shown is the result with remaining 1000 training samples using various criteria to remove training
samples. The underlying color in images represents the frequency of the import vectors, the black line is the
estimated decision boundary and the violet lines are the P(C|X) = 0.75 isolines. The fat blue and orange dots
are the I'Vs after finishing the training. The small blue and orange dots are the training samples.

6.2.4.2 Microsoft Research Cambridge Object Recognition Image Database

Figure 6.6 shows the classification results for all criteria with 10000 and 15000 remaining
training samples on the MSRC data set. The results show that keeping 15000 training
samples in the model shows significantly better results than keeping 10000 samples.

The criteria that retain as much reconstructive power as possible show better results than
these one that retain as much discriminative power as possible if the sample size is small.
In case of 15000 remaining samples the weighted sampling criterion and the independence
criterion show the best final error, but the discriminative models show a better mean error.

The confusion matrix of the classification result with weighted sampling and the modified
Cook distance is illustrated in Figure 6.7 (a) and (b). The matrices show that in both cases
the classes grass and sky are classified best. The classes aeroplane and cow give the worst
classification result. Both criteria show high accuracies in the best predicted classes, however,
the results differ significantly from each other.

Figure 6.8 presents 5 classification results of I2VM with modified Cook distance (second
row) and weighted sampling strategie (third row). The qualitative evaluation of the results
shows that I?VM yields reasonable results. As already stated, there exists some misclassi-
fication for each class. For example, the results underline that the classes grass and sky
result in high accuracies, whereas the class cow is falsely classified as bicycle when using the
modified Cook distance and as face when using the weighted sampling strategy. The class
aeroplane cannot be classified correctly.

84



100- = 1001
== Cook distance ==Cook distance
= modified Cook distance ==maodified Cook distance
o0k cross-entropy ook cross-entropy
=—=weighted sampling ==reighted sampling
linear independence | linear independence
50 [ 50
5 70 5 700
E 5
= 60 = 6o
a0 i \
10 40F
. .
0 15000 30000 45000 60393 0 15000 30000 45000 60393
number of added training samples number of added training samples
(a) 10000 remaining samples (b) 15000 remaining samples

FIGURE 6.6: Test errors on the MSRC data set with 10000 and 15000 remaining samples.

TABLE 6.7: Test errors with remaining 10000 training and 15000 samples using various criteria to remove
samples. Reported is the final test error, the mean error and the number of import vectors (IVs).

10000 remaining samples 15000 remaining samples

final [%] mean [%] # IVs final (%] mean [%] # IVs

Cook distance 80.7 64.1 99 46.1 45.2 77
Mod. Cook distance  82.4 60.3 79 44.3 44.8 77
Cross-entropy 87.8 61.5 99 49.5 45.6 72
Weighted sampling 56.3 49.0 32 42.1 45.6 89
Independence 48.5 48.6 125 42.6 46.0 100

In order to evaluate the probabilistic output, an analysis is shown in Figure 6.9. With
an increasing rejection threshold I?VM provides in both cases a decreasing test error. Conse-
quently, it can be assumed that samples with high class probabilities are accurately classified
by I?VM, whereas relatively low class probabilities are more likely referred to misclassified
samples. Figure 6.9 (a) and (c) indicate that the classes grass and sky are most certain,
whereas aeroplane and cow primarily contains uncertain classified pixel. Thus, the plots un-
derline our finding from Figure 6.7. Figure 6.9 (b) and (d) show that I?VM is able to provide
reliable posterior probabilities. If samples with a posterior smaller than 0.5 are rejected, a
test error of 0% can be obtained. A comparison of the two criteria shows that the curves
have the same trends, but the curves of the weighted sampling are more pronounced.

6.2.5 Summary

We analyzed the performance of [?’VM when dealing with long sequences in which not all
seen training samples are meant to be stored in the internal representation of the classifier.
We showed on a synthetic data set that a criterion for the removal of training samples can
be found with that I?VM can achieve the same accuracy as if all samples are used. Both
the synthetic data set and the MRSC data set verify that I?VM is able to remove training
samples. The criteria that retain reconstructive power show better results than the criteria
that retain discriminative power if the number of remained samples is small. If the sample
size is large enough also the criteria that retain discriminative power show good results.
Furthermore, we have shown that I?VM is able to provide reliable posterior probabilities,
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FI1GURE 6.7: Confusion matrix of classification results obtained with modified Cook distance and weighted
sampling criterion.

which can be used for uncertainty analysis. Despite the deletion of samples, this ability is
preserved. Summarizing, I?VM can deal with long sequences in which not all samples can be
stored. Furthermore, I?VM is able to predict both the class-memberships and the posterior
probabilities of test samples.

6.3 Large Area Land Cover Classification

6.3.1 Evaluation of I’VM for Large Area Land Cover Classification with
Self-training

In this experiment we evaluate I’VM concerning the ability for self-training in order to adapt
to changes in the data distribution. For this purpose we use a large area consisting of 9
composite remote sensing images, which were acquired by a Landsat satellite. Because we
have only access to labeled training samples in one image, we acquire new labeled training
samples using the probabilistic output of the I’VM. We apply self-training to update the
classifier in order to classify the landcover of all images. The scenes are characterized by
both spatial and temporal differences. We expect that I?VM can adapt to changes in the
distribution of the training samples and the probabilities are useful to acquire new samples.

6.3.2 Recent Approaches for Large Land Cover Classification

Land cover classification is one of the main applications in the field of remote sensing image
analysis. Currently, the development in land cover classification of remote sensing images is
mainly driven by methods based on the field of machine learning and pattern recognition and
the increased availability of remote sensing data (Richards, 2005). Furthermore, increasing
processing power and more sophisticated algorithms enables faster processing of huge data
sets. However, most methods are focusing on spatial limited areas, while many applications
require large area land cover maps (Cihlar, 2000; Franklin and Wulder, 2002). Hence, an ap-
propriate classification of large areas is an important and ongoing research topic in the field of
remote sensing (Knorn et al., 2009; Pekkarinen et al., 2009; Walker et al., 2010). The classifi-
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FIGURE 6.8: Classification results of 5 images of the MSRC database (top row) with modified Cook distance
(second row) and weighted sampling strategy (third row). The ground truth is given in the bottom row.

cation of data with high spatial resolution and often relative narrow swath, e.g. Landsat-line
data, is usually performed on individual images. In addition, most classifications are based
on a supervised method, which requires the — often costly and time consuming — selection of
adequate training data in the area covered by each individual image. As a matter of fact, the
mapping of large areas is challenging and requires an efficient classification concept. Never-
theless, the use of Landsat data seems interesting, due to (i) the long-term data archive, (ii)
the availability of free Landsat data by the USGS and (iii) the relatively large swath width
and adequate spatial resolution. Knorn et al. (2009), for example overcome the challenges
mentioned above by using overlapping areas of neighboring Landsat scenes. In the beginning
an initial image, with corresponding training data, is individually classified by a standard
SVM. The classification result is used to identify new training samples in the overlapping
areas. These training samples are used to train a new SVM model for the neighboring scene.
While this strategy was successfully used for generating a forest / non-forest map (i.e. , a
binary classification), we extended the concept to multi-class problems (Roscher et al., 2012).
Moreover, we use I?VM, which enables the efficient classification of neighboring Landsat
scenes with a larger number of training data.

6.3.3 Self-Training for Sequential Mosaic Classification

Self-training as a special case of active learning can be used to classify each scene in a mosaic,
when only a limited number of labeled data samples is available. For further discussion of
active learning we refer to Tuia et al. (2009). We pursue the following strategy: Starting with
an initial classification in a single image, the classification result in the overlapping area is
used to retrain or update the learned classifier for a neighboring scene. Given two neighboring
scenes /., the current scene, and /¢, the target scene, a classifier is trained on /. and labels
the unlabeled data in the overlapping area. The predictions which are selected with respect
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FIGURE 6.9: Evaluation of the probabilistic output using modified Cook distance and weighted sampling. The
reliability of the probabilities is obtained by rejecting uncertain test samples and deriving the classification
accuracy on the non-rejected test points. The uncertainty of the classification result is indicated by analyzing
the number of retained samples.

to a criteria are used as new training labels. These samples and the features of /; are used
as new training samples to retrain or update the classifier, and finally to classify the image.
Subsequently the remaining images can be classified by following the same procedure.

The general concept of this approach seems advantageous due to the fact that training
samples are only required for the initial image. However, this approach requires that all
classes of interest occur in each overlapping area. This cannot be guaranteed particularly for
small classes. To overcome this problem we keep old labeled training data and use I?VM to
incrementally adapt the model to the current target scene.

Although this approach is useful to acquire new labeled samples, it should be noted that
using self-training by itself does not necessarily lead to better results. The main problem of
self-training is that acquired samples with incorrect labels reinforce themselves. It is caused
by the assumption that the classifier’s own predictions with high confidence are correct. As
one can imagine this may not always be the case. Also correctly acquired samples may
deteriorate the model if they cause an imbalance in the data distribution or their distribution
is different to that of the labeled samples. If the number of labeled samples in the initial
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scene is to small the model may not be accurate enough to acquire new samples with correct
labels. On the other hand, if the number of labeled samples is too big, the model may not
be improved anymore. Therefore, the identification of confident samples, which also ensure
an improvement of the classifier model usually demand further strategies.

In the following we want to exploit the possibility of transferring a classifier over multiple
neighboring scenes using I?VM. Though we use the original data we are aware that adequate
preprocessing, see e.g. Bodart et al. (2011) can reduce the spatial and temporal variability
and thus further increase the performance.

6.3.4 Data

Figure 6.10 shows our chosen study site around Rondonia in South America. The data set
contains 9 Landsat 5 TM images from 2009, which are freely available by USGS Landsat
archive. The area covers about 285000 km?.

Rondonia,
T

FIGURE 6.10: The area of Rondonia with overlayed Landsat images displayed with bands 4-3-2. Numbers in
the upper left corner of the Landsat images are referred to the numbers in the text. The three image strips
are acquired in September (images 1, 4 and 7), July (images 2, 5 and 8), and August 2009 (images 3, 6 and
9). The underlaid image is taken from Google Earth.

The study site is dominated by forests and agriculture/deforestation, and characterized
by typical spatial patterns and temporal variation caused by different acquisition dates, i.e. ,
three image strips are acquired in September (images 1, 4 and 7), July (images 2, 5 and 8),
and August 2009 (images 3, 6 and 9).

The classification aims at 4 land cover classes, focused on FOREST, AGRICULTURE, WATER
and URBAN. A limited number of training and test data were collected by photointerpreta-
tion; using the Landsat images themselves and high-resolution images in Google Earth. The
land cover classes occur in every scene, but not in every overlap area. The availability is
given in Table 6.8 showing the number of pixels per class in each of the 9 scenes. We choose
500 pixels from each class for training and the rest for testing.
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TABLE 6.8: Number of labeled pixels in the 9 scenes.

Scene FOREST AGRICULTURE WATER URBAN

1 12693 21187 29067 2135
2 27668 49901 38307 40830
3 21168 46299 2131 3667
4 44730 31988 8685 19344
) 63697 21459 5849 12860
6 15913 32735 5113 12367
7 23913 112416 56190 15804
8 99127 106057 16930 4140
9 71931 90364 5494 52603

6.3.5 Experimental Setup

In our experiments we use the center image I5 as initial scene to train the initial classifier.
We randomly choose 500 samples per class and train the IVM as described in Section 3.3.

We compare different paths for transferring the classification model from the center image
to the other images:

1. We transfer the classification model to the direct neighbors, i.e. , 2, 4, 6 and 8, using
the corresponding overlapping regions 5-2, 5-4, 5-6, and 5-8.

(P+ 1-2 f(?* 2-3 »(?P
1-4 2-5 3-6
(‘39*4—5 ~@> 5-6 *(%)
4-7 5-8 6-9

FIGURE 6.11: Paths between the 9 images across-track and along-track. Each pair of overlapping images @
and j has a common area i — j which is used to transfer the classification model from ¢ to j or vice versa.

2. We transfer the classification model to the indirect neighbors, i.e. , to 1, 3, 7 and 9.
This can again be performed in two ways:

(a) We use single paths via one of the two the direct neighbors, e. g. 5 — 2 — 1 or
5 —4— 1

(b) We merge two single paths. E.g. we simultaneously use the overlapping regions
5-4 and 5-2 for reaching the image pair (2,4), and then use the two overlapping
regions 1-2 and 1-4 for reaching the image 1, see Figure 6.12, left.

Within each overlapping area we choose the most confident predictions measured by the
probability and randomly select not more than 1000 training samples per class. We fix the
confidence threshold to 0.8, i.e. samples with a posterior probability in [0,0.8] are discarded
and only those in ]0.8, 1] are considered as new training samples. All training samples are at
least 10 pixel apart from training samples assigned to other classes to ensure a more reliable
acquisition.
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FIGURE 6.12: Paths between the 9 images across-track, i. e. diagonal to the grid. The transfer from one
image to a diagonal one uses the two neighbors and the four overlapping regions.

To evaluate our results we classified each image separately, using a common IVM clas-
sification and individual training data for each image (from now on referred to as reference
classifications). We compare I?VM to the following approaches:

Old model We use the initial trained model in scene /. to classify the target scene /;.

IVM (overlap) We only use the training data from the overlapping area of /. and /; as
proposed in Knorn et al. (2009).

IVM (batch) We use the initial training data and the newly acquired training data from
the overlapping area(s) and retrain the model from scratch.

I’VM  We update our initial classifier incrementally by adding the new training data without
retraining from scratch.

We report the overall accuracy (OA), averaged class-wise accuracies (AA) and the kappa
coefficient Cohen (1960) for the classification.

6.3.6 Results and Discussion

TABLE 6.9: Reference classifications using 500 training samples per class. Reported are the overall accuracy
aoa, the average accuracy aqq, the kappa coefficient £ and the number of import vectors (IVs).

Scene  aoq[%] aaal%] kK #IV

1 93.0 91.3 0.89 191V
2 954 96.1 094 161V
3 95.8 96.4 092 141V
4 97.0 96.7 0.96 16 IV
5 97.3 96.1 0.95 201V
6 96.5 96.5 0.95 16 IV
7 92.6 944 0.88 191V
8 96.8 97.3 095 121V
9 93.5 943 0.90 16 IV

Table 6.9 shows the reference classification of each Landsat scene in the mosaic. The
overall accuracy ranges from 93% for scene 1 to 97.3% in the initial image with ID 5. The
results show that the number of IVs is not higher than 20, which is 1% of the used data
samples. This indicates that the model is very sparse, ensuring a fast classification and less
storage requirements.

Table 6.10 shows the accuracy assessment, following the proposed method.
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TABLE 6.10: Accuracy assessment of classified target scenes. We report the overall accuracy aoq, the average
accuracy aqq and the kappa coefficient k. We distinguish the two separate paths via a single image (first 4
rows) and the unique path via the two direct neighbor images. The best results with respect to the overall
accuracy is bold printed. Note that for IVM (overlap) in cases with no overlapping area no result can be
obtained.

Transfer 0Old model IVM (overlap) I2VM IVM (batch)
Qoa Qga R Goq Qgq R Qoa Qaq K Goq Qgq R
5—2 93.9 94.9 0.92 86.9 88.1 0.82 93.6 94.6 091 93.6 94.6 0.91
5—4 63.0 71.2 049 822 78.0 0.73 92.0 91.8 0.88 91.8 91.7 0.88
5—6 83.3 90.8 0.76 89.8 89.6 0.84 94.0 94.8 0.91 94.2 94.8 0.91

5—8 97.2 924 095 969 746 095 971 91.2 095 97.1 914 0.95

o—4—1 79.8 828 0.71 642 50.0 048 80.5 84.3 0.73 804 84.3 0.72
9—2—1 79.8 82.8 0.71 93.8 728 090 93.0 87.0 090 929 85.4 0.89
5—(4+2)—1 79.8 828 0.71 - - - 92,6 839 089 92.6 844 0.89

5—2—3 73.2 878 0.60 92.2 739 084 839 90.8 0.73 83.1 90.7 0.72
9—6—3 73.2 878 0.60 66.1 50.0 0.14 90.3 89.3 0.82 88.7 89.8 0.80
5—(2+6)—3 73.2 87.8 0.60 - - - 931 888 0.87 93.2 88.8 0.87

5—4—7 61.2 79.0 0.50 54.0 61.2 0.27 65.8 &83.7 0.56 66.0 83.8 0.56
5—8—=7 61.2 79.0 0.50 92.2 86.6 087 91.5 85.2 0.86 91.6 86.0 0.86
5—(4+8)—7 61.2 79.0 0.50 - - - 91.4 851 086 91.3 84.2 0.86

5—6—9 87.5 91.1 0.82 53.7 60.9 0.27 90.0 92.1 0.85 90.8 92.7 0.86
5—8—9 87.5 91.1 0.82 73.8 582 0.58 93.0 93.5 0.89 93.4 94.0 0.90
5—(6+8)—9 87.5 91.1 0.82 - - - 929 938 0.89 93.0 93.6 0.89

Classifying direct neighbors. The results show that in case of the initial transfer in
the along track (5—2, 5—8) the old model achieve the highest accuracies. We assume that
the reason for this fact is the identical acquisition date of all three images. However, the
overlapping area does not necessarily contains training samples for each class. Thus, using
solely the information in the overlapping area may results in a lower classification accuracy.
In this case misclassified pixels are incorrectly used as new training labels.

Using the difference to the reference classification, the loss in the overall accuracy is 12.1%
on average when using the old model, 7.5% when only training with the overlapping area and
2.3% when training with the batch or incremental version of the IVM using old and new
data.

Classifying indirect neighbors. The results for the chain classification indicate that
using the old model is not an adequate strategy for a reliable land cover classification. The
average loss in accuracy using the old model is 18.3%, 5.7% when using only training data
from the overlapping areas, 1.1% using I’VM and 1.0% using the batch version.

The highest accuracy can be achieved when the chain contains scenes of the same acqui-
sition date as long as possible. Also, going parallel and perpendicular to the strip direction
appears to be better than to go diagonally. The results show that the difference in the
accuracy between IVM and I?VM is not significant.

6.3.7 Summary

As stated before, we demonstrated that I?VM shows comparable results to IVM. We showed
in our experiments that I>?VM is suitable for self-training, i.e. the model remains stable with
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respect to old samples and flexible with respect new encountered ones. The probabilistic
output can be used to acquire new training samples in order to adapt the classifier model to
changes in the data distribution.

6.4 Tracking-by-Segmentation

6.4.1 Evaluation of the Applicability of I?VM for Data Streams

In this experiment we show that I?VM is able to simultaneously cope with the mentioned
challenges that appear when dealing with sequential data, see Chapter 1. For this purpose we
integrate I?VM into a framework for object tracking in image sequences following the concept
of tracking-by-segmentation. The separation of object and background is achieved by a
consecutive semantic superpixel segmentation of the images, yielding tight object boundaries.
I.e. , in the first image a model of the object’s characteristics is learned from an initial,
incomplete annotation. This model is used to classify the superpixels of subsequent images
to object and background employing graph-cut (Boykov et al., 2001). We assume the object
boundaries to be tight-fitting and the object motion within the image to be affine. To adapt
the model to radiometric and geometric changes we utilize I?VM with self-training. We
evaluate our tracking framework qualitatively and quantitatively on several image sequences.
We expect that I’VM can deal with arbitrary long data streams characterized by changes
in the data distribution. We further expect that I?VM is suitable to be integrated into a
tracking framework showing at least similar results as batch tracking methods.

6.4.2 Data Sets

For tracking purposes we use the following data sets.

Flower image sequence. For the qualitative analysis we use the FLOWER image sequence
comprising 163 images acquired with a stereo camera. In this sequence a flower is meant to
be tracked. We will use this sequences to have a detailed look on the incremental update

of the set of import vectors of VM. The sequence is characterized by rapid changes in the
shape and the color of the object.

TABLE 6.11: Characteristics of the FLOWER image sequence.

Data set FLOWER
# Images 163
Length [sec] 7
Resolution [pixel] 1024768

Used features Lab+pos+disparity

Example

SegTrack database. For an accurate evaluation we use the SegTrack database of Tsai
et al. (2011). The database comprises 6 image sequences with ground-truth segmentations
for each image. The data set includes for each image to varying degrees, the challenge of
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color overlap between object and background appearance, interframe motion and change in
object shape. The characteristics of the image sequences are summarized in Table 6.12.

TABLE 6.12: Characteristics of the SegTrack image sequences.

Data set PARACHUTE GIRL MONKEYDOG PENGUIN BIRDFALL CHEETAH
# Images 51 21 71 42 30 29
Length [sec] 2 1 3 2 2 2
Resolution [pixel] — 414x352 400x320 320%240 640x352 259x327 320%240
Used features Lab+pos Lab+pos Lab+pos Lab+pos Lab+pos Lab-+pos

! 4

Example

Annotation

Adafrag database. For a further comparison we use the Adafrag database of Chock-
alingam et al. (2009). The database consists of 5 image sequences with provided ground
truth in about every fifth frame of the intermediate frames. We skip one image sequence,
because it is already included in the SegTrack database. We also use this database for a com-
parison to IVM, using only Lab color features. The characteristics of the image sequences

are summarized in Table 6.13.

TABLE 6.13: Characteristics of the long image sequences.

Data set ELMO WALKTREE WALKCAR GIRL

# Images 401 221 286 181

Length [sec] 16 9 12 7

Resolution [pixel] 320x240  320x240  320x240  320x240

Used features Lab + pos Lab + pos Lab + pos Lab + pos
- o S T % i

Example

Annotation u - - -

Long image sequences. In order to evaluate the stability of I’VM over a long term we use
image sequences with more than 1000 frames. For a qualitatively analysis we use a famous se-
quence from the movie “American Beauty” called AMERICAN BEAUTY!, a video from Youtube

"http://www.youtube . com/watch?v=gHxi-HSgNPc
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called CHAMELEON? and a video acquired with a drone denoted with DRONE. Furthermore,
we perform a quantitative evaluation on the PROST tracking-by detection database com-
prising long image sequences with given ground truth rectangles®. The characteristics of the
image sequences are summarized in Table 6.14.

TABLE 6.14: Characteristics of the Adafrag image sequences.

Data set LEMMING LIQUOR BEAUTY CHAMELEON DRONE
# Images 1336 1741 4446 1064 2354
Length [sec] 16 9 187 42 95

Resolution [pixel]  640x480 640x480 480360 640x480 480270
Used features Lab + pos Lab + pos Lab 4+ pos HSV + pos Lab + pos
- -

i

Example

6.4.3 Tracking Framework

In this section we explain our proposed tracking framework in detail. We also consider the
extraction and tracking of superpixels and the formulation of the conditional random field
(CRF) (Lafferty et al., 2001) model. In the next paragraph we will give an overview of the
tracking framework and in the subsequent paragraphs we will explain the single steps in more
detail. The further details and results we refer to the report of Roscher et al. (2012).

6.4.3.1 Tracking Scheme

Our tracking framework is schemed in Figure 6.13. The extraction of superpixels R in the
image /(;) at a given time step and the tracking of superpixels from one time step to the
next one is explained in Section 6.4.3.2 and denoted with ST. If a stereo image pair Z is
given, we refer to the left image as reference image. Furthermore we have given a set of data
samples T;_1), a set of import vectors V(;_;) and a classifier model M,_;), which consists
of the estimated model parameters and necessary entities, that must be stored.

The framework is based on a classification step C yielding the segmentation and a learning
step L, in which the set of data samples and import vectors is updated and new model
parameters are estimated. After the segmentation step, new labeled training samples are
acquired, enabling the learned model M ;) to adapt to radiometric and geometric changes in
the learning step.

In the segmentation step we use a bounding box prior Pp (), which was obtained from
the segmented image C;_1). We use optical flow to transform the position of the box into the
current image /(;). The posteriors P(; are obtained by using the model M;_1) as well as the
bounding box, see Section 6.4.3.4. Given the posteriors we predict a new segmented image
C(t). From the segmentation C(;) we sample the most uncertain predictions as new labeled
data samples ATy, i.e. superpixels, and use it for the learning step in order to update the
model M;_y) yielding M ;). In order to prevent in continuous growing of data samples, we
delete the oldest ones A7T_.

2w . youtube. com/watch?v=KMT1FLzEn9I

3http://gpudvision.icg.tugraz.at/index.php?content=subsites/prost/prost.php
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Image /)

Rt-1) ST R
Segmentation
Cie-1) . Cee)
M-
ATy

M)

71(1571) U Z;(t)
(t)
Vie—1) 4
AT_

FIGURE 6.13: Using tracked superpixel regions R;_1), the classification C(;_1y and the model M ;_1) obtained
from the incremental learning procedure, we predict a segmentation C(). We update the set of labeled
training samples 7;_1), import vectors V(;_1y and the learned model M_1) to T), V1) and My to derive
a segmentation in the next iteration.

In the learning step we incrementally learn the new model M ;) in a self-training scheme,
denoted with L. With the new model and the updated sets 7(; and ;) we obtain the
segmentation in the next iteration.

6.4.3.2 Superpixel Tracking

The usage of superpixels has become popular in several applications with the need of feature
extraction. They catch redundancy in the image and reduce the complexity to train and to
test classifiers.

We follow the idea of Achanta et al. (2010) to generate superpixels R that are compact,
have a regular shape, but are also homogeneous in their spectral features. The complete set
of pixels {x;}, i € Z = {1,...,I} is clustered into a set of R superpixels X, with J, X, =T
based on their spectral appearance f, (Lab-color vector) and position in the image b,.
The algorithm is initialized by sampling R cluster centers from the image at a regular grid
interval of g pixels. Each pixel in the image is then assigned to one cluster center g,, using
the K-means-algorithm, where the distance of pixels and cluster centers is computed by the
similarity measure d,, = [|q, — g,|| with gy = [f ), %b(.)]T (Achanta et al., 2010). The
parameter wg weights the influence of spatial proximity. The higher wg is, the more compact
are the superpixels. The grid interval g adapts this weight to the image resolution.

In order to keep the affiliation of image structures to superpixels over time, we extend
this approach to a superpixel tracking scheme similar to the one presented in Levinshtein
et al. (2010). The basic idea is to predict the position of the superpixel centers b, ;1) in
the subsequent frame ¢ — 1, using the optical flow information of its assigned pixels. The
predicted centers b,. ;) are then used as initial cluster centers for the superpixel segmentation
of frame t. For dense optical flow computation we employ the approach of Chambolle and
Pock (2011). For a further description we refer to (Roscher et al., 2012).
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I/

FIGURE 6.14: Spatial and temporal relations between the superpixels of two frames t—1 and ¢. Each superpixel
is connected to its neighbors within the image and to its neighbor from the previous frame, assigned via
superpixel tracking.

6.4.3.3 Features for Object Representation

For each superpixel segment in R, we extract the following features: (1) radiometric ap-
pearance: mean RGB and Lab color, (2) motion: mean optical flow, and (3) geometry: mean
position and mean disparity (if stereo images are available).

In order to obtain a disparity measurement for nearly every pixel within the image, we
employ a dense stereo approach with an implementation from Gehrig et al. (2009), which
is based in the Semi-Global Matching algorithm from Hirschmiiller (2005). Pixels with no
disparity information, e.g. , caused by stereo shadow, are flagged as invalid and are not
considered for computing the mean disparity feature.

For optical flow the motion information is extracted using the approach of Chambolle and
Pock (2011), yielding a displacement vector for every pixel.

We use radiometric features in combination with geometric and /or geometric and motion
features within the I?VM learning procedure. In order to identify the most discriminating
features, we perform cross-validation using different concatenations of features in the first
image. We choose these features with the highest cross-validation accuracy.

6.4.3.4 Segmentation

To incorporate prior knowledge about the spatial and temporal relations between tracked
superpixels we model our task as a CRF, as shown in Figure 6.14. We prefer short object
boundaries and temporal consistency of the superpixel labels.

Our CRF model is defined as

E(y(t)) = - Z log P (yr,(t)‘Xn(t)) + Wtemp Z v (yr,(t)7§r,(t—1)7 qr,(t)’ar,(t))
TGR(t) TER(t)

twgpatial D P (Une) Y1) X (1) X (1)) - (6.1)
(T’,T")GN(t)

The labels of the superpixels are given by y,.. The first, unary term is defined as the negative
logarithm of the posteriors P ;) obtained by I2VM. The second, unary term given by the func-
tion V¥ is a temporal consistency term. Since we assume the final labeling of the superpixels to
be smooth within the image, we introduce this prior knowledge by means of a data-depended
Potts model in the third, binary term. The set of spatial neighbors is denoted by /\f(t). The
variables Wiemp and Wspatial are the weights between the terms. We use graph-cut(Boykov
et al., 2001) to solve for the best labeling y ;) = argminy(t) E(yq))-

To obtain a reliable classification and sampling of new data we introduce a bounding box
prior Pp. Depending on the object’s position in the previous frame we define a bounding
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box around the slightly dilated object. I.e. , the bounding box prior Pg is expressed as a
hard assignment of probability 0 to locations far away from the object’s previous position.
The final posterior probability is given by

1
P = Z'DM,(t—l) © Pp,) (6.2)

with ® as the Hadamard-product and Z given as normalization factor. The unary temporal
term is modeled as the similarity of the superpixel’s current feature vector g, and its
predicted feature vector Zjn(t) assigned via superpixel tracking. If the distance is small, it is
likely that both superpixels belong to the same class, and vice versa. The similarity is defined
as the cosine of the angle between the feature vectors ¢, = cos 2(q, ¢, q,.,) -

The binary term is modeled as the normalized length of the border b/, only considered
if two superpixels X, and X,» get different labels: ¢, = b/ b()- The normalization factor

b is estimated in each frame ¢ as mode of the beta-distribution of all border lengths b,;..

6.4.4 Experimental Setup

We start from an initial, user-defined, incomplete segmentation and train the first model M1
with the batch IVM. The output are posterior probabilities Py, of the features extracted
in image /1. The classification C yields a segmented image C;. In order to identify the most
discriminating features, we perform cross-validation using different concatenations of features
in the first image. The most discriminating features are identified using the obtained accuracy
and considered for the rest of the tracking procedure.

The weighting parameters wiemp and wWgpatial Within the CRF model are set empirically
via cross-validation using fully pixelwise annotation of the first three images of the image
sequence.

For the FLOWER data set we analyze the added and removed import vectors in order
to visually evaluate the I>VM update procedure. For the SegTrack database we report the
average number of false classified pixels over all frames. We compare our results to two
batch-tracking methods of Tsai et al. (2011) and the online tracking method Chockalingam
et al. (2009). For the Adafrag database we report the average number of false classified pixels
computed over all frames of the sequence and the number of false classified pixels in each
frame. We compare our results to that reported in Chockalingam et al. (2009), which use a
generative approach, in particular a Gaussian mixture model within a level set framework.
Furthermore, we compare our results to IVM.

For the two long image sequences of the PROST database, we compare our approach to
five tracking methods (Santner et al., 2010; Babenko et al., 2011; Adam et al., 2006; Saffari
et al., 2009; Klein and Cremers, 2011), that use a fixed-size bounding box. For evaluation
we use the distance score, which is the average euclidean distance between the centers of the
tracking rectangle and the ground truth rectangle. Our tracking rectangle is defined as the
bounding box of our segmentation, generalizing the highly resolved object region. We also
give the result with a fixed-size bounding box centered on the centroid of our segmentation.
The pascal distance is given as the percentage of frames, where the overlapping area of the
tracking rectangle and the ground truth rectangle exceeds 50 %.

6.4.5 Results and Discussion

In the following sections we discuss the results which are obtained by using I?VM and the
proposed tracking framework.
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6.4.5.1 Flower Image Sequence

FLOWER

FLOWER

FIGURE 6.15: Representative frames (numbers ¢ in the top right corners) of the tracking results for the
FLOWER image sequence.

Figure 6.15 shows representative results of the FLOWER sequence. We use Lab, position
and disparity feature within the framework. The results indicate that the flower can be
tracked successfully despite changes in color, shape and position. In this sequence, a batch
classifier as IVM would lost the object when the color of the object changes from red to
violet, because only feature vectors for the color red are learned for the object.

TABLE 6.15: Added and removed import vectors in the FLOWER image sequence (part I).

Frame 4 21 27 32 95 60 74

59 65
Added IVs . . - . .
Removed IVs . . . .

75
l

TABLE 6.16: Added and removed import vectors in the FLOWER image sequence (part II).

Frame 83 101 108 110 122 158

8 87 90 95
Added IVs . . . . .
Removed IVs - - . . .

Table 6.15 and 6.16 show a part of the color features which are added and removed during
the incremental learning scheme. The results show that color features which are necessary for
discrimination are added into the set of import vectors. Due to the rather hardly changing
disparity features and more slowly changing position feature the distribution drifts slightly
and the color features can adapt to the current appearance. Also old import vectors, which
are not supported by training samples any more, are removed.

6.4.5.2 SegTrack Database

Figure 6.16 shows representative segmentation results of the SegTrack database. In all image
sequences we use Lab features in combination with position features. Due to the low image
quality (e.g. jpeg compression artefacts) we could not use optical flow features. This was
underlined by the fact that in nearly all image sequences the best parameter wiemp for the
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PARACHUTE

GIRL

PENGUINMONKEYDOG

BIRDFALL

CHEETAH

FIGURE 6.16: Representative frames (numbers ¢ in the top right corners) of the tracking results for the
SegTrack image sequences.

CRF is 0. The results show that in nearly all image sequences we could segment the object
well. In the SEGTRACK-BIRDFALL sequence the object is to small to track it correctly. It can
be seen that the learner can be adapt to illumination changes (see PARACHUTE) and drastic
changes in the position of the object (see MONKEYDOG).

Table 6.17 shows the qualitative results. I?VM with the proposed tracking framework
yield better results than the incremental tracking approach of Chockalingam et al. (2009)
and competitive results to the batch tracking framework of Tsai et al. (2011). All result were
taken from Tsai et al. (2011).

6.4.5.3 Adafrag Database

Figure 6.17 shows representative segmentation results of the Adafrag database. The results
indicate that all objects can be tracked successfully, even if the object disappears (see WALK-
TREE and GIRL). For the GIRL image sequence we could not obtain reliable optical flow
features. Due to this and the heavy changes in the position of the object we did not use the
bounding box prior in this sequence.

Figures 6.18 (a)-(d) show the normalized error per frame. In comparison to IVM, I?VM
results in similar or lower test errors in the ADAFRAG-ELMO, ADAFRAG-WALKTREE and
ADAFRAG-WALKCAR sequence, but in a higher error in the ADAFRAG-GIRL sequence. In the

100



TABLE 6.17: Scores on the SegTrack database. The score is the average number of false classified pixels per
frame. The minimum error of an incremental algorithm is bold printed. Our tracking framework is compared
to the batch-tracking method of Tsai et al. (2011), the batch volume graphcut as described by Tsai et al.
(2011) and the incremental tracking method of Chockalingam et al. (2009). All result were taken from Tsai
et al. (2011).

Data set Batch algorithms Incremental algorithms

Tsai et al. (2011) Volume graphcut Chockalingam et al. (2009) 1>2VM
PARACHUTE 235 213 502 402
GIRL 1304 1566 1755 1381
MONKEYDOG 563 726 683 599
PENGUIN 1705 7041 6627 1825
BIRDFALL 252 304 454 444
CHEETAH 1142 2183 1217 1036

WALKCARWALKTREE ELMO

GIRL

FIGURE 6.17: Representative frames (numbers ¢ in the top right corners) of the tracking results for the
evaluated sequences.

ADAFRAG-GIRL sequence the head of the girl cannot be tracked by I?VM because it has a sim-
ilar appearance as the background. Additionally, due to the rapid changes and consequently
the erroneous optical flow we get worse results in the ADAFRAG-GIRL sequence. However,
one must note that the image sequences are not characterized by sharp color changes as the
FLOWER sequence and thus at least also a batch classifier is able to track the object. This
comparison is therefore primarily used to show that I?VM performs similarly as IVM in case
of moderate changes between the frames and superior in case of severe appearance changes as
within the FLOWER sequence. I?VM performs comparable to the approach of Chockalingam
et al. (2009) in the ADAFRAG-ELMO and ADAFRAG-WALKTREE image sequences and superior
in the ADAFRAG-WALKCAR image sequence. Unfortunately, we have only annotated images
until frame 125, that is, before the object disappears behind the tree. In the second part of
the ADAFRAG-WALKCAR image sequence we perform very well even if the object is partly
occluded.

A drawback of our proposed method can be seen in the last presented image of the
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FIGURE 6.18: Normalized error plots of the AdaFrag image sequences. The error is computed on each image

of the sequence as the number of pixels in the image misclassified as foreground or background, normalized
by the image size.

ADAFRAG-WALKCAR sequence. The man is occluded in nearly 150 frames. Consequently
relevant features are deleted due to their age. Therefore, the trousers of the man could not
segmented in the subsequent images. A meta-model, for example, storing relevant information
is necessary to re-activate features which are necessary for discrimination.

6.4.5.4 Long Image Sequences

Table 6.18 shows the results of our proposed I?VM tracking for the PROST-LEMMING and
PROST-LIQUOR image sequence of the PROST database in comparison to five other tracking
methods,

Table 6.18 shows the results of our proposed tracking approach with I?VM in comparison
to five other methods that use tracking-by-detection with a fixed-size bounding box. I?VM
(BB) achieves a high accuracy in the PROST-LEMMING and PROST-LIQUOR sequences
dealing with various appearance variations, occlusions and different illumination. In most of
the frames of the PROST-LIQUOR sequence the bottle is segmented only partly, because the
background surrounding the object has nearly the same appearance. Due to this, the pascal
performance measure for VM is low. The average percentage of the overlapping area of the
tracking rectangle and the ground truth rectangle is 30%. Nevertheless our algorithm tracks
the correct bottle during the whole time.

Figure 6.19 shows the number of import vectors over the whole image sequence. The
plots show that for all sequences the number remains nearly the same and varies according
the incremental and decremental learning of samples. Thus I?VM is able to adapt to changes
in the distribution while keeping the model efficient.

Figure 6.20 shows representative frames with the tracked objects in the long image se-
quences. The results show that the objects can be tracked successfully despite appearance
changes of the object and the background.
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TABLE 6.18: Pascal distance and distance score in the PROST-LEMMING and PROST-LIQUOR sequences in
comparison to five tracking methods. Distance score is the average euclidean distance between the centers
of the tracking rectangle and the ground truth rectangle. Our tracking rectangle is the bounding box of our
segmentation. In the last row (I*VM (BB)) we evaluate a fixed-size bounding box centered on the centroid of
our segmentation. The pascal distance is the percentage of frames, where the overlapping area of the tracking
rectangle and the ground truth rectangle exceeds 50 %.

Algorithm PROST-LEMMING PROST-LIQUOR
pascal  distance pascal distance

PROST 70.5 25.1 85.4 21.5
MILTrack  83.6 14.9 20.6  165.1
FragTrack  54.9 82.8 79.9 30.7
ORF 17.2 166.3 53.6 67.3
GRAD 78.0 28.4 91.4  11.9
I’VM 89.9 10.6 8.9 48.9
I?’VM (BB) 94.8 13.4 91.1 50.3

6.4.6 Summary

Our experiments show that our object tracking framework can handle occlusion and changes
in appearance and geometry. Furthermore, it provides a detailed segmentation and not only
a bounding box, making the algorithm versatile, for example for action recognition.

The computational bottlenecks of our tracking framework are the incremental learning
and the superpixel tracking. Both of them can be parallelized. The current Matlab/C++
implementation takes about 1 second on an Intel(R) Dual Core with 3.0 GHz for the in-
cremental learning. The extraction and tracking of 1000 superpixels takes about 1 second.
Thus, the overall computational effort takes about 3 seconds.
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FIGURE 6.19: Number of IVs in the long image sequences. The number remains nearly the same over a long
period and varies according the incremental and decremental learning of samples.

LEMMING

LIQUOR

DRONE CHAMELEON BEAUTY

FIGURE 6.20: Representative frames (numbers ¢ in the top right corners) of the tracking results in the long
image sequences.

104



Chapter 7

Conclusion and Outlook

We introduced a sparse kernel-based probabilistic discriminative incremental learner called
I?’VM. We formulated an incremental learning strategy for I>VM which contains update steps
for the addition of new samples, the removal of old samples and the estimation of the model
parameters without retraining from scratch. We further showed the incorporation of new
classes and features, which has been paid only little attention in the literature so far. In
order to keep the model efficient we evaluated various criteria to remove non-representative
data samples.

We confirmed our hypothesis that IVM and thus, also I?VM, inherently have a recon-
structive model component. In Section 3.2.4 we defined that classifiers with a reconstructive
component are able to represent the important parts of the distribution. Important means
on the one hand that these parts are necessary for discrimination and on the other hand
necessary to cover the variability of all training samples. We analyzed the reconstructive
component of the discriminative classifier IVM, which primarily aims to optimize the quality
of the posterior probability of the classification, rather than to optimize the decision bound-
ary. In our empirical study which analyzes the distribution of the import vectors, we showed
that stationary kernels are necessary to develop a reconstructive model component and the
selected import vectors uniformly cover the acceptance region of their class.

According to the requirements defined in Section 1.3 we showed that I?VM have the
following properties:

(a) Competitive performance. In our experiments we showed that I?VM performs
comparably to its batch learning counterpart. Due to the reconstructive component
the performance of I?VM is independent from the sequential order of the data samples.
Thus, it can handle concept-drifts in the data distribution. Furthermore, a reconsid-
eration of already encountered samples is not necessary, which makes the algorithm
efficient.

(b) Discriminative power. We showed that I*VM is a discriminative classifier and thus is
able to separate the classes well, even if the distribution is very complex. The classifier
achieved superior or competitive results to other incremental learners.

(c) Long sequences. The incremental learning scheme includes a step to remove data
samples. With a suitable criterion to identify non-relevant data samples the VM
model can be kept efficient in order to deal with long or even infinite data streams.

(d) Probabilities. In Chapter 4 and Section 6.2 we showed that 1>VM provides reliable
posterior probabilities. The posterior probability is high in non-overlapping areas with
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a high density of data samples, decreases in the direction of the decision boundary and
obtain a value of approximately % in areas with no data samples. Further, we showed
that samples with high class probabilities are accurately classified, whereas relatively
low class probabilities are more likely assigned to misclassified samples.

Thus, I’VM can meet all the mentioned requirements.

With our experiments we have indicated that the applications using I?VM are wide-
ranging. We used I?VM for semantic segmentation of images from the Microsoft Research
Cambridge Object Recognition Image database. With this experiment we showed that I?VM
can deal with long sequences and a criterion can be found that can remove training samples
without a loss in performance. Furthermore, we used I?VM and applied self-training to
classify the landcover of a large area consisting of composite remote sensing images. The
images are characterized by both spatial and temporal differences. We showed that I?VM
is able to adapt to changes in the distribution of the training samples in order to classify a
current set of test samples as well as possible. We further evaluated the algorithm for object
tracking in image sequences. I?VM turned out to deal with very long data streams that
are characterized by concept-drifts without a loss in efficiency. Moreover, I?VM also has a
high discriminative power in order to distinguish the object and background. Beside these
application also other areas can use this classifier.

Currently, a limitation factor is the training time which depends on the number of training
samples and import vectors that are involved in the model at a specific time step. Using the
current implementation the computational effort is tractable for keeping several thousands of
data samples in the model but intractable for a larger number. Thus, incremental learning
tasks with many relevant samples that must be kept in the model may be practically not
solvable yet. However, the greedy optimization procedure can be parallelized and the number
of tested candidate import vectors can be reduced significantly using knowledge about the
distribution of import vectors. Moreover, the proposed incremental learner I2VM is not
limited to be used with the iteratively reweighted least squares procedure. Thus, further work
could evaluate alternative optimization methods, e.g. quasi-Newton methods, that could lead
to a more efficient procedure.

Further research could also enhance focus on the development of a one-class classifier.
These classification methods focus on the estimation of a decision boundary without explic-
itly defining any other class. I’VM may be used to tackle this task exploiting the reconstruc-
tive properties and the estimated posterior probabilities in order to define such a decision
boundary. An useful extension, especially for the tracking procedure, would be the develop-
ment of a meta-model storing relevant information of removed samples, see Section 6.4.5.3.
For this purpose, removed import vectors could be used as representatives of these samples,.
Also further information, e.g. if they were removed when they lie in the acceptance area of
another class, could be useful. Summarizing, I*VM turned out to be a powerful probabilistic
incremental classifier bearing a high potential for further research.
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Appendix A

Derivatives of the Negative
Log-likelihood Function

In the following we derive the derivatives for the negative log-likelihood function that are
used within the Newton-Raphson optimization framework.

A.1 Derivatives of the Posterior Probabilities P,. with Re-

spect to the Linear Function g,. = achn

We have given the posterior probabilities

. exp (gne)
Py, =c|X;a.) = Ppe = =———— Al
(Y ‘ c) e Z exp (gne') ( )
C/
with 9n() = OéI)Xm To obtain the first derivative, we rewrite the denominator

exp (Ine) _ exp (gne) (A.2)
Z €xp (gnc’) Z €xp (gnc’) + exp (gnc”)
CI C/\C//

yielding the derivative for ¢’ = ¢

exp (gne) (Z exp (Gne) + €xp (9n0)> — exP (gnc) €xp (gne)

0P, c\c
9ne B 2 ’
(Z exXp (gnc’)>
_ €xp (9110) . €xXp (gn0>2
Z eXp (gnc’) 27
c <Z/ €xXp (gnc’))
— P (1—Py) (A.3)
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and for ¢’ # ¢

OPp. exp (gne) €xP (gne)
= — 5
Gne'
( > exp (gne) +exp (%w))
c/\c//
_ exp (9ne) exp (gner)
2 )
<Z eXp (gnc’)>
C/
— *Pnanc” .

The derivatives of P,. with respect to g, are thus in general

apnc
a.gnc”

= Ppe (6(c, ") — Pper)

(A.4)

(A.5)

with (-, ) as the the Kronecker delta, which is 1 if both inputs are equal and 0 if they are

unequal.

A.2 Derivative of the Negative Log-Likelihood Function with
Respect to the Parameters

The first derivate can be obtained by exploiting the chain rule given by

. 8Q 8Q, aPnc 0 nc'
vac, Qo= O Z Z aPn(i Z agnc” 8gac’ .

Using (A.5) we obtain

Thus, the gradient Var, Qo is given by the multiplication of (A.7)-(A.9)

vacl Q,O

C//

8QO _ tnc
aPnC N ‘Pnc ’

PTLC
Tt P (Ble) = ).
Ognen o 8(0‘2"’%) _ "o
U P o(c", )xp .

ZZ ZP

The second part is 0 if ¢’ # ¢/, thus we set ¢’ = ¢ yielding
p

VOCC/QO ZZ)V nc /)_Pnc’)xnv

= —Z tcn5 C,C)‘l‘tncpnc’) Xn s

n
= — Z tneXp + Z Ztncpnc/xn .
n n c
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Using the fact that _ ¢,. = 1, we obtain
(&

VOCC/ Qo= Z (Pnc’ - tnc’) Xn- (A14)

n

The second derivative Ve, Qo can be obtained using (A.8) and (A.9) yielding

Vac,ac, Qo= Z P, (5(6, C,) — Pnc/) anl . (A.15)

109



110



Appendix B

Relation Between Newton-Raphson
and Iteratively Reweighted Least
Squares

The Newton-Raphson iteration procedure can be interpreted as the iteratively reweighted
least squares (IRLS) optimization method by rearranging

o) = Op—1) — (V2Q0 (Ol(t)) + )\L)_l (VQ() (a(t)) + )\La(t_l)) , (B.l)

The matrix L is assumed to be the unit matrix, thus L = /(3741)¢, but in order to prevent a
regularization of the bias parameters wg. the diagonal entries for the bias are set to zero.

1 A
Qe (1) = Qe (t—1) — (NXRCX + M) (NX (Pe(ar) —tc) + )‘Lac,(t1)> (B.2)
1 A
T T
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1 e
T
1 -1
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1 -1
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Throughout the thesis, we use the IRLS procedure for the formulation of I?VM.
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Appendix C

Matrix Inversion with
Sherman-Morrisson Woodbury
formula

Within our incremental learning scheme we use the Sherman-Morrison-Woodbury formula
(SMW), see Higham (2002), to efficiently update the inverse of the Hessian if the number of
import vectors grow.

Given an M; x Mj-matrix A~!, the updated inverse of size (M + Ms) x (My + M) can

be computed with
AUl 1 AU A 0 oot
v c| I 0 C—-VA'U VA-L |

/
0
[ =AU (AT 0 I 0
o / 0 (C—VvAT'U) |-vAaTl |
A

A~ + A7U(C— VAU TvAt —Atu(C - VA‘1U)_1}

_(C_ VA—IU)—I VA—l (C— VA—1U)_1 (Cl)

Thus, instead of inverting the whole (M; + Ms) x (M; + Mas)-matrix, we only have to
compute an inverse of size My x Ms. We use this update formula for the incremental update
of the Hessian when adding new training vectors.
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