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Introduction

In recent years the world’s major financial markets have experienced dramatic downward move-

ments threatening the welfare of many societies. Similar to other episodes of financial turmoil,

the recent financial drawdown was preceeded by astonishing price increases, often termed as

bubbles, especially in the US housing market. Other factors that played a role in the financial

crisis were, among others, newly developed financial products and inappropriate risk assessment

(cf. Gennaioli, Shleifer, and Vishny, 2010).

The contribution of this dissertation is threefold. First, econometric procedures to test for

the occurence of asset price bubbles ex post and in real time are proposed. Real time monitoring

procedures represent an additional tool for financial agents to gauge whether or not a bubble is

building up in a financial market at the date of measurement. Second, we consider the problem

of risk assessment and performance measurement. Risk assessment is essential for determining

the amount of required capital. It is also important to counterbalance expected profits. The

focus here lies on the economic index of riskiness proposed by Aumann and Serrano (2008).

New theoretical properties of the index are established and estimation techniques are proposed.

It is brought to application as a counterweight to expected returns to measure the perfomance

of mutual funds and hedge funds.

While the previous approaches are designed for application to financial markets data, the

last part of the dissertation is of more basic econometric interest. It addresses the issue of

the validity of standard inference procedures in fixed effect panel data models. Ordinary least

squares inference about model parameters can be misleading if shocks to cross-sectional units

are correlated. Existing tests of cross-section error dependence aim at determining whether or

not there is cross-section error correlation per se. In this dissertation, a procedure is developed
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that aims at testing whether there is cross-section error correlation that invalidates ordinary

least squares inference. The remainder of the introduction gives a more detailed description of

the respective chapters.

Chapter 1, joint work with Jörg Breitung, proposes and compares several tests for spec-

ulative bubbles in stock markets. The tests build on a simple asset pricing model, where the

fundamental price of an asset is determined by the expected value of discounted future divi-

dend payments. Under the null hypothesis of no bubble, asset prices follow a random walk or a

random walk with drift. Under the alternative hypothesis that a bubble is present, stock prices

show exponentially increasing or explosive behavior. As explosive behavior typically is only

present in a part of the time series of a certain asset price, the tests are designed as structral

break tests, i.e. they test for a change from a random walk to an explosive process. Moreover,

in most cases one has no a priori knowledge of the date of the structural change, which suggests

the use of sequential testing procedures.

Bubbles seem to be recurring phenomena in financial markets and econometric testing that

pins down their existence has been suggested before. We mainly refer to the work of Phillips,

Wu, and Yu (2011), who proposed a forward recursive Dickey-Fuller (DF) test. As competitors

we suggest a Chow-type DF-test and adapted versions of tests that stem from the literature on

testing the random walk hypothesis against stationary alternatives or vice versa. Complement-

ing these tests we suggest several estimators for the date at which the structural change occurs.

In simulation experiments we find that the Chow-type DF-test and the pertaining break date

estimator show a very competitive performance. While these tests and estimators are conceived

to analyze bubble episodes ex post, we also propose monitoring procedures to detect ongoing

bubbles. In the empirical section several bubbles in stock price indices and also in housing

prices are detected ex post.

Chapters 2 and 3, joint work with Christian Pigorsch, are concerned with risk and per-

formance measurement. At the core of these chapters lies the economic index of riskiness of

Aumann and Serrano (2008). Chapter 2 makes use of the one-to-one relationship between

the index of riskiness and the adjustment coefficient from ruin theory. Existence conditions for
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general random variables or financial returns are established for the index of riskiness. Fur-

thermore, we give an approximate operational interpretation of the index, which states that

it represents the minimum level of required capital ensuring no bankruptcy with a certain

probability. Chapter 3 uses the index of riskiness to construct a performance measure that

generalizes the commonly used Sharpe ratio (Sharpe, 1966). In analogy to the economic in-

dex of riskiness the proposed performance measure is referred to as the economic performance

measure (EPM). It is equivalent to the Sharpe ratio when returns are normally distributed.

Generalizing the continuity result of Aumann and Serrano (2008) it can also be shown that

the EPM converges to a Sharpe ratio equivalent measure as the underlying return distribu-

tions converge to the normal distribution. In contrast to the Sharpe ratio, however, the EPM

takes into account higher order moments, which the typical investor is likely to care about.

This can have sizeable effects on the ranking of investment funds, especially hedge funds, as is

demonstrated in the empirical application.

Chapter 4 addresses the issue of testing cross-sectional independence of error terms in

fixed effect panel data models. If the independence hypothesis is violated, the reliability of

ordinary least squares inference is no longer guaranteed. Special interest is put in the case

where the time dimension T is small relative to the number of cross-sections N . In this case,

the LM test of Breusch and Pagan (1980) fails in that it is heavily size-distorted. Several

tests that make up for this defficiency have been suggested in the literature, see for instance

Pesaran, Ullah, and Yamagata (2008). While these tests check the null hypothesis of no error

cross-section dependence, we propose a test whose underlying null hypothesis is that no error

cross-section dependence is present that adversely affects standard parameter tests in the fixed

effects model. After all, this is most relevant for inference. The proposed test keeps the nominal

size, also when N is large relative to T , and has good power properties, as is shown by means

of simulation experiments.
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Chapter 1

Testing for speculative bubbles in stock

markets: a comparison of alternative

methods

1.1 Introduction

Phenomena of speculative excesses have long been present in economic history. Galbraith (1993)

starts his account with the famous Tulipomania, which took place in the Netherlands in the

17th century. More recently, the so called dot.com or IT -bubble came to fame during the end

of the 1990s. Enormous increases in stock prices followed by crashes have led many researchers

to test for the presence of speculative bubbles. Among these are Shiller (1981) and LeRoy

and Porter (1981), who proposed variance bounds tests, West (1987), who designed a two-step

test for bubbles, and Froot and Obstfeld (1991), who considered intrinsic bubbles. Moreover,

Cuñado, Gil-Alana, and Gracia (2005) and Frömmel and Kruse (2011) employed methods based

on fractionally integrated models, while Phillips, Wu, and Yu (2011) used sequential unit-root

tests. This list is by no means complete. Gürkaynak (2008) provides an overview of different

empirical tests on rational bubbles. In this chapter, we adopt the theoretical framework of

Phillips et al. (2011) and propose several other test procedures aiming to improve on the

testing power. The forward recursive unit-root test of Phillips et al. (2011) is an attempt to

overcome the weaknesses of the approach of Diba and Grossman (1988), who argue against the
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existence of bubbles in the S&P 500. Evans (1991) demonstrates that Diba and Grossman’s

(1988) tests do not have sufficient power to effectively detect bubbles that collapse periodically.

Phillips et al. (2011) also propose to use sequences of Dickey-Fuller statistics to estimate the

date of the emergence of a bubble, i.e. to estimate the date of a regime switch from a random

walk to an explosive process.

A main objective of this chapter is to provide alternative tests that are more powerful in

detecting a change from a random walk to an explosive process. To this end, we modify several

tests that have been proposed in a different context and transfer them to the bubble testing

framework. Our Monte Carlo simulations suggest that two of the alternative test procedures

outperform the recursive unit-root test of Phillips et al. (2011). Moreover, the empirical power

of these procedures is quite close to the power envelope. A second objective of this chapter

is to suggest reliable estimators for the break date, i.e. the starting date of the bubble. We

also look at the problem from a practitioners perspective and suggest a real time monitoring

approach to detect emerging bubbles.

The tests that we adapt to the bubble framework originate from the literature on tests for

a change in persistence. Kim (2000), Kim, Belaire-Franch, and Amador (2002), and Busetti

and Taylor (2004) proposed procedures to test the null hypothesis that the time series is I(0)

throughout the entire sample against the alternative of a change from I(0) to I(1), or vice

versa.1 We adapt these test procedures to the context of bubble detection and study their

power properties by means of Monte Carlo simulations. Additionally, two other tests will be

included in the study. One is based on Bhargava (1986), who tested whether a time series is

a random walk against explosive alternatives. Bhargava (1986) did not construct his test as a

test for a structural break. However, we will adjust this test to accommodate regime-switches

and apply it sequentially to different subsamples. The other test is a version of the classical

Chow-test.

When there is only a single regime switch in the sample, the proposed sequential Chow-test

and our modified version of Busetti and Taylor’s (2004) procedure exhibit the highest power.
1In Section 1.3 we will briefly discuss other tests for a change in persistence and the reason why we focus on

the tests of Kim (2000), Kim et al. (2002), and Busetti and Taylor (2004).
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Moreover, a breakpoint estimator derived from the Chow-test turns out to be most accurate.

This does no longer hold, however, if there are multiple regime changes due to bubble crashes.

In that case it is more appropriate to make a slight change of perspective and apply statistical

monitoring procedures. In principle, all tests can be redesigned as monitoring procedures, but

here we will focus on the sequential Dickey-Fuller t-statistic and a simple CUSUM procedure.

The remainder of Chapter 1 is organized as follows. In Section 1.2 we present the basic

theory of rational bubbles. We introduce a simple model for randomly starting bubbles and

review Evans’ (1991) periodically collapsing bubbles. In Sections 1.3 and 1.4, the above men-

tioned tests and estimation procedures are introduced. Monitoring procedures are considered

in Section 1.5. Furthermore, in Section 1.6 the performance of the procedures is analyzed via

Monte Carlo methods. Finally, in Section 1.7 the test and estimation procedures are applied

to Nasdaq index data and various other financial time series. Section 1.8 concludes.

1.2 Rational bubbles

Speculative bubbles in stock markets are systematic departures from the fundamental price of

an asset. Following Blanchard and Watson (1982) or Campbell, Lo and MacKinlay (1997) the

fundamental price of the asset is derived from the following standard no arbitrage condition:

Pt =
Et [Pt+1 +Dt+1]

1 +R
, (1.1)

where Pt denotes the stock price at period t, Dt+1 is the dividend for period t, R is the constant

risk-free rate, and Et [·] denotes the expectation conditional on the information at time t.

Solving Equation (1.1) by forward iteration yields the fundamental price

P f
t =

∞∑
i=1

1

(1 +R)i
Et [Dt+i] . (1.2)
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Equation (1.2) states that the fundamental price is equal to the present value of all expected

dividend payments. Imposing the transversality condition

lim
k→∞

Et

[
1

(1 +R)k
Pt+k

]
= 0 (1.3)

ensures that Pt = P f
t is the unique solution of (1.1) and thereby rules out the existence of

a bubble. However, if (1.3) does not hold, P f
t is not the only price process that solves (1.1).

Consider a process {Bt}∞t=1 with the property

Et [Bt+1] = (1 +R)Bt. (1.4)

It can easily be verified that adding Bt to P f
t will yield another solution to Equation (1.1). In

fact, there are infinitely many solutions. They take the form

Pt = P f
t +Bt, (1.5)

where {Bt}∞t=1 is a process that satisfies Equation (1.4). The last equation decomposes the price

into two components: the fundamental component, P f
t , and a part that is commonly referred to

as the bubble component, Bt. If a bubble is present in the stock price, Equation (1.4) requires

that any rational investor, who is willing to buy that stock, must expect the bubble to grow

at rate R. If this is the case and if Bt is strictly positive, this sets the stage for speculative

investor behavior: A rational investor is willing to buy an “overpriced” stock, since she believes

that through price increases she will be sufficiently compensated for the extra payment Bt. If

investors expect prices to increase at rate R and buy shares, the stock price will indeed rise

and complete the loop of a self-fulfilling prophecy.

The crucial condition for rational bubbles is given by (1.4). However, this restriction leaves

room for a variety of processes. We next present several models for rational bubbles, some of

which will also be considered in our Monte Carlo analysis. The simplest example of a process

that satisfies (1.4) is the deterministic bubble, given by Bt = (1 +R)tB0, where B0 is an initial

value. A somewhat more realistic example, in which the bubble does not necessarily grow
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forever, is taken from Blanchard and Watson (1982). The bubble process is given by

Bt+1 =


π−1(1 +R)Bt + µt+1, with probability π

µt+1, with probability 1− π
(1.6)

where {µt}∞t=1 is a sequence of iid random variables with zero mean. In each period, the bubble

described in Equation (1.6) will continue, with probability π, or collapse with probability 1−π.

As long as the bubble does not collapse, the realized return exceeds the risk-free rate R as a

compensation for the risk that the bubble bursts.

Not every process that satisfies (1.4) is consistent with rationality. For instance, given that

stock prices cannot be negative, negative bubbles can be excluded: Applying the law of iterated

expectations to (1.4) yields Et[Bt+τ ] = (1 + R)τBt. If at some time t, Bt was negative, then,

as τ goes to infinity, the expected bubble tends to minus infinity, implying a negative stock

price at some future time period. Furthermore, Diba and Grossman (1988) argue that a bubble

process cannot start from zero. Assume that Bt = 0 at some time t. Then Et[Bt+1] = 0,

by (1.4). Assuming nonnegative stock prices, we have Bt+1 ≥ 0. Together this implies that

Bt+1 = 0 almost surely.

Although rational bubbles cannot start from zero, they can take a constant positive value for

some time and start to grow exponentially with some probability π. For instance, consider the

following randomly starting bubble:

Bt =


Bt−1 + RBt−1

π
θt, if Bt−1 = B0

(1 +R)Bt−1, if Bt−1 > B0

for t = 1, . . . , T, (1.7)

where B0 > 0 is the initial value of the bubble. R is the risk-free rate and {θt}Tt=1 is an exogenous

iid Bernoulli process with Prob(θt = 1) = π = 1 − Prob(θt = 0), and π ∈ (0, 1]. A process

generated according to (1.7) starts at some strictly positive value B0 and remains at that level

until the Bernoulli process switches to unity. At that point, the process Bt makes a jump of size

RB0/π and from then on grows at rate R. One can easily verify that such a process satisfies

8
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Figure 1.1: Simulated price series with randomly starting bubble component

the no arbitrage condition for rational bubbles, given in (1.4). In our Monte Carlo analysis we

will simulate such a bubble process together with a fundamental price P f
t generated according

to (1.10) and (1.11). An example of the resulting price processes Pt = P f
t + Bt is given in

Figure 1.1 (solid line), which also depicts the fundamental price (dotted line). In this example

the parameters for the bubble process are π = 0.05, R = 0.05, and B0 = 1. Following Evans

(1991) the dividend process in (1.10) is simulated with drift µ = 0.0373, initial value D0 = 1.3

and identical normally distributed disturbances with mean zero and variance σ2 = 0.1574.

In his critique of Diba and Grossman’s (1988) testing approach Evans (1991) proposed the

following model for periodically collapsing bubbles:

Bt+1 =


(1 +R)Btut+1 if Bt ≤ α

[δ + π−1(1 +R)θt+1(Bt − (1 +R)−1δ)]ut+1 otherwise.
(1.8)

Here, δ and α are parameters satisfying 0 < δ < (1 + R)α, and {ut}∞t=1 is an iid process with

ut ≥ 0 and Et[ut+1] = 1, for all t. {θt}∞t=1 is an iid Bernoulli process, where the probability that

θt = 1 is π and the probability that θt = 0 is 1 − π, with 0 < π ≤ 1. It is easy to verify that

the bubble process defined in (1.8) satisfies (1.4). Letting the initial value B0 = δ, the bubble
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Figure 1.2: Simulated price with fundamental component (left) and bubble component (right)

increases until it exceeds some value α. Thereafter, it is subject to the possibility of collapse

with probability (1−π), in which case it will return to δut+1 (i.e. to δ in expectation). For our

simulations we will follow Evans (1991) and specify ut = exp(ξt− 1
2
τ 2), where ξt ∼ iid N(0, τ 2).

The parameter values are set to α = 1, δ = 0.5, τ = 0.05 and R = 0.05. Note that such

a periodically collapsing bubble never crashes to zero. Thus, it does not violate Diba and

Grossman’s (1988) finding that a bubble cannot restart from zero. Evans (1991) demonstrated

that Diba and Grossman’s (1988) tests lack sufficient power to detect periodically collapsing

bubbles, even if the probability of collapse is small. A realization of a periodically collapsing

bubble is shown in the right panel of Figure 1.2, where π = 0.85. The left panel of Figure 1.2

displays the fundamental price (dotted line), which is generated as above, and the observed

price (solid line). The observed price is constructed as

Pt = P f
t + 20Bt. (1.9)

As in Evans (1991), the bubble process is multiplied by a factor of 20. This is to ensure that

the variance of the first difference of the bubble component ∆(20Bt) is large relative to the

variance of the first difference of the fundamental price ∆P f
t .
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An obvious problem is that the fundamental component in (1.5) cannot be directly observed.

Therefore, assumptions have to be imposed to characterize the time series properties of the

fundamental price P f
t . A convenient – and nevertheless empirically plausible – assumption is

that dividends follow a random walk with drift

Dt = µ+Dt−1 + ut, (1.10)

where ut is a white noise process. Under this assumption the fundamental price results as

P f
t =

1 +R

R2
µ+

1

R
Dt, (1.11)

(e.g. Evans, 1991). Consequently, if Dt follows a random walk with drift, so does P f
t . This

allows us to distinguish the fundamental price from the bubble process that is characterized by

an explosive autoregressive process (see also Diba and Grossmann, 1988).

1.3 Test procedures

The test procedures are based on the time varying AR(1) model

yt = ρtyt−1 + εt , (1.12)

where εt is a white noise process with E(εt) = 0, E(ε2t ) = σ2 and y0 = c < ∞. To simplify

the exposition we ignore a possible constant in the autoregression. If the test is applied to a

series of daily stock prices, the constant is usually very small and insignificant. To account for a

possible constant in (1.12), the series may be detrended by running a least-squares regression on

a constant and a linear time trend. All test statistics presented in this section can be computed

by using the residuals of this regression instead of the original time series.2

Under the null hypothesis yt follows a random walk for all time periods, i.e.,

H0 : ρt = 1 for t = 1, 2, . . . , T. (1.13)
2In that case, Brownian motions are replaced by detrended Brownian motions in the limiting distribution of

the test statistics (see below).
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Under the alternative hypothesis the process starts as a random walk but changes to an explosive

process at an unknown time [τ ∗T ] (where τ ∗ ∈ (0, 1) and [τ ∗T ] denotes the greatest integer

smaller than or equal to τ ∗T ):

H1 : ρt =


1 for t = 1, . . . , [τ ∗T ]

ρ∗ > 1 for t = [τ ∗T ] + 1, . . . , T.

(1.14)

Various statistics have been suggested to test for a structural break in the autoregressive pa-

rameter. Most of the work focus on a change from a nonstationary regime (i.e. ρt = 1) to a

stationary regime (ρt < 1) or vice versa. Since these test statistics can be easily adapted to

the situation of a change from an I(1) to an explosive process, we first consider various test

statistics suggested in the literature.

a) The Bhargava statistic

To test the null hypothesis of a random walk (ρt = 1) against explosive alternatives ρt = ρ∗ > 1

for all t = 1, . . . , T , Bhargava (1986) proposed the locally most powerful invariant test statistic

B∗0 =

∑T
t=1(yt − yt−1)2∑T
t=1(yt − y0)2

. (1.15)

Since Bhargava’s (1986) alternative does not incorporate a structural break we employ a mod-

ified version of the inverted test statistic:

Bτ =
1

T − [τT ]


∑T

t=[τT ]+1(yt − yt−1)2

T∑
t=[τT ]+1

(yt − y[τT ])2


−1

=
1

s2
τ (T − [τT ])2

T∑
t=[τT ]+1

(yt − y[τT ])
2, (1.16)

where s2
τ = (T − [τT ])−1

∑T
t=[τT ]+1(yt − yt−1)2. To test for a change from I(1) to an explosive

process in the interval τ ∈ [0, 1− τ0], where τ0 ∈ (0, 0.5), we consider the statistic

supB(τ0) = sup
τ∈[0,1−τ0]

Bτ . (1.17)
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The test rejects the null hypothesis for large values of supB(τ0). Note that the original Bhargava

(1986) test rejects if B∗0 is small. Since all tests presented below reject for large values, our test

statistic is inversely related to the original Bhargava statistic.

The statistic (1.17) may be motivated as follows. Assume that we want to forecast the value

yT ∗+h at period T ∗ = [τT ]. Since it is assumed that the series is a random walk up to period

T ∗, the forecast results as ŷT ∗+h|T ∗ = yT ∗ . The Bτ -statistic is based on the sum of squared

forecast errors for yT ∗+1, . . . , yT . If the second part of the sample is generated by an explosive

process, then the random walk forecast becomes very poor as h gets large. Therefore, this test

statistic is supposed to have good power against explosive alternatives. The supremum of the

statistics Bτ is used to cope with the fact that the breakpoint is unknown.

The asymptotic distribution of this test statistic under null hypothesis was not derived in

the literature but easily follows from the continuous mapping theorem as

supB(τ0) ⇒ sup
τ∈[0,1−τ0]

{
(1− τ)−2

∫ 1

τ

(W (r)−W (τ))2 dr

}
,

where⇒ denotes weak convergence, and W denotes standard Brownian motion on the interval

[0, 1].

b) The Busetti-Taylor statistic

Busetti and Taylor (2004) proposed a statistic for testing the hypothesis that a time series

is stationary against the alternative that it switches from a stationary to an I(1) process at

an unknown breakpoint. Here we propose a modified version of the statistic to test the null

hypothesis (1.13) against the alternative (1.14):

supBT (τ0) = sup
τ∈[0,1−τ0]

BTτ , where BTτ =
1

s2
0(T − [τT ])2

T∑
t=[τT ]+1

(yT − yt−1)2. (1.18)

The supBT test rejects for large values of supBT (τ0). Note that BTτ employs the variance

estimator s2
0 based on the entire sample, while the inverted Bhargava statistic in (1.16) employs

s2
τ , which uses only the observations starting at [τT ]. Another way to illustrate the difference
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between the two test statistics is to note that the BT statistic is based on the sum of squared

forecast errors of forecasting the final value yT from the periods yT ∗ + 1, . . . , yT−1 by using

the null hypothesis that yt is generated by a random walk. Therefore the BT statistic fixes

the target to be forecasted, whereas the Bhargava statistic uses multiple forecast horizons of a

fixed forecast interval. The following result for the limiting distribution of supBT can easily

be derived:

sup
τ∈[0,1−τ0]

BTτ ⇒ sup
τ∈[0,1−τ0]

{
(1− τ)−2

∫ 1

τ

W (1− r)2dr

}
.

Remark: In their work Busetti and Taylor (2004) considered the process yt = β0 + µt + εt,

where β0 is a constant, εt ∼ iid N(0, σ2), and µt is a process that is I(0) under the null

hypothesis and switches from I(0) to I(1) under the alternative. They proposed the statistic

ϕ(τ) = σ̂−2(T−[τT ])−2
∑T

t=[τT ]+1

(∑T
j=t ε̂j

)2

where σ̂2 = 1
T

∑T
t=1 ε̂

2
t and ε̂t are the residuals from

OLS-regression of yt on an intercept. To obtain stationary residuals under the null hypothesis

(1.13), we use one-step-ahead forecast errors yt − yt−1 instead of OLS-residuals ε̂t, which leads

to (1.18).

c) The Kim statistic

Another statistic for testing the I(0) null hypothesis against a change from I(0) to I(1) was

proposed by Kim (2000). To transfer the statistic to the bubble-testing framework we apply

modifications similar to those in the remark above, which yields the following statistic:

supK(τ0) = sup
τ∈[τ0,1−τ0]

Kτ with Kτ =
(T − [τT ])−2

∑T
t=[τT ]+1(yt − y[τT ])

2

[τT ]−2
∑[τT ]

t=1 (yt − y0)2
. (1.19)

The test rejects for large values of supK(τ0). The statistic Kτ is computed over the symmetric

interval [τ0, 1−τ0]. It can be interpreted as the scaled ratio of the sum of squared forecast errors.

The prediction is made under the assumption that the time series follows a random walk. y0

is used to forecast y1, . . . , y[τT ] (denominator) and y[τT ] is the forecast of y[τT ]+1, . . . , yT . The
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limiting distribution is obtained as

sup
τ∈[τ0,1−τ0]

Kτ ⇒ sup
τ∈[τ0,1−τ0]

{(
τ

1− τ

)2
∫ 1

τ
(W (r)−W (τ))2dr∫ τ

0
W (r)2 dr

}
.

d) The Phillips/Wu/Yu statistic

To test for speculative bubbles, Phillips et al. (2011) suggest to use a sequence of Dickey-Fuller

(DF) tests. Let ρ̂τ denote the OLS estimator of ρ and σ̂ρ,τ the usual estimator for the standard

deviation of ρ̂τ using the subsample {y1, . . . , y[τT ]}.3 The forward recursive Dickey-Fuller (DF)

test is given by

supDF (τ0) = sup
τ0≤τ≤1

DFτ with DFτ =
ρ̂τ − 1

σ̂ρ,τ
. (1.20)

Usually, the standard Dickey-Fuller test is employed to test H0 against the alternative ρt = ρ <

1 (t = 1, . . . , T ), and the test rejects if DF1 is small. For the alternative considered here (see

(1.14)) we use upper-tail critical values and reject when supDF (τ0) is large. Note that the DF

statistic is computed for the asymmetric interval [τ0, 1]. Following Phillips et al. (2011) we will

set τ0 = 0.1 in the simulation experiments. The limiting distribution derived by Phillips at al.

(2011) is

sup
τ0≤τ≤1

DFτ ⇒ sup
τ0≤τ≤1

∫ τ
0
W (r)dW (r)√∫ τ

0
W (r)2dr

.

The test procedure does not take into account that both under the null hypothesis (1.13) and

under the alternative (1.14) yt is a random walk for t = 1, . . . , [τ ∗T ]. In this sense the supDF

test does not exploit all information.

e) A Chow-type unit root statistic for a structural break

The information that yt is a random walk for t = 1, . . . , [τ ∗T ] under both H0 and H1 can be

incorporated in the test procedure by using a Chow-test for a structural break in the autore-

gressive parameter. Under the assumption that ρt = 1 for t = 1, . . . , [τT ] and ρt − 1 = δ > 0

3In their paper, Phillips et al. (2011) apply augmented Dickey-Fuller tests and use a constant in their
regression.
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for t = [τT ] + 1, . . . , T , the model can be written as

∆yt = δ (yt−11{t>[τT ]}) + εt, (1.21)

where 1{·} is an indicator function that equals one when the statement in braces is true and

equals zero otherwise. Correspondingly, the null hypothesis of interest is H0 : δ = 0, which is

tested against the alternative H1 : δ > 0. It is easy to see that the regression t-statistic for this

null hypothesis is

DFCτ =

T∑
t=[τT ]+1

∆ytyt−1

σ̃τ

√
T∑

t=[τT ]+1

y2
t−1

, (1.22)

where

σ̃2
τ =

1

T − 2

T∑
t=2

(
∆yt − δ̂τyt−11{t>[τT ]}

)2

and δ̂τ denotes the OLS estimator of δ in (1.21). The Chow-type Dickey-Fuller statistic to test

for a change from I(1) to explosive in the interval τ ∈ [0, 1− τ0] can be written as

supDFC(τ0) = sup
τ∈[0,1−τ0]

DFCτ . (1.23)

The test rejects for large values of supDFC(τ0). The test, in fact, corresponds to a one-sided

version of the “supWald” test of Andrews (1993), where the supremum is taken over a sequence

of Wald statistics. Straightforward derivation yields:

supDFC(τ0) ⇒ sup
τ∈[0,1−τ0]

∫ 1

τ
W (r)dW (r)√∫ 1

τ
W (r)2dr

.

Note that the limiting distribution is analogous to the one found in (d). In finite samples, the

null distribution for both the supDFC and the supDF statistics are affected by the initial value

of the time series if the series is not demeaned or detrended. To overcome this problem we

suggest to compute the test statistics by using the transformed series {ỹt}Tt=1 with ỹt = yt− y0.

16



Further test procedures and infeasible point optimal tests

The test procedures presented so far fall into two categories: recursive DF t-statistics and tests

based on scaled sums of forecast errors. Recursive DF t-tests have originally been proposed to

test against stationary alternatives (cf. Banerjee, Lumsdaine, and Stock (1992) or Leybourne,

Kim, Smith, and Newbold (2003)). In that case lower-tail critical values are appropriate. In

order to test the I(1) hypothesis against explosive alternatives, Phillips et al. (2011) proposed

the use of forward recursive DF t-statistics and upper-tail critical values. In (e) we suggested DF

t-statistics which are essentially backward recursive. In the literature on tests for a change in

persistence several variants of Kim’s (2000) and Busetti and Taylor’s (2004) tests are available

(cf. Taylor and Leybourne (2004) and Taylor (2005)). We have also adapted these tests to the

bubble scenario, using the same logic as for the supBT and supK test. Monte Carlo simulations

have shown, however, that the resulting procedures perform worse than the supDFC and the

supBT tests in terms of power. To save space, these results are not reported here.

In (1.14) we have assumed that the break fraction τ ∗ is unknown. If, instead, τ ∗ is known,

point-optimal tests can be constructed by using the Neyman-Pearson lemma. This allows to

gauge the performance of the tests in a) to e) relative to the power envelope. Under the

additional assumption that the error terms in (1.12) follow a normal distribution with known

variance σ2 and for fixed τ ∗ and ρ∗ in (1.14), the most powerful level-α test of H0 against H1

rejects, if

PO(τ ∗, ρ∗) =
1

σ2

T∑
t=τ∗+1

(yt − yt−1)2 − (yt − ρ∗yt−1)2 > kα(τ ∗, ρ∗), (1.24)

where kα(τ ∗, ρ∗) denotes the critical value with respect to a significance level of α. For a known

break date this test is optimal against the alternative ρ = ρ∗. Replacing ρ∗ with the suitable

local alternative ρ∗ = 1 + b/T with b > 0 and rearranging terms, the asymptotic distribution

under H0 is readily derived as

PO(τ ∗, 1 + b/T ) ⇒ 2b

∫ 1

τ∗
W (r)dW (r)− b2

∫ 1

τ∗
W (r)2dr.

By determining the rejection probabilities of the point optimal tests by means of Monte Carlo
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simulations, we are able to compute the power envelope for our testing problem.

1.4 Estimation of the break date

Assume that the time series under consideration, {yt}Tt=0, can be described by (1.12) and (1.14),

where τ ∗ is unknown. First, consider the approach that has been proposed by Phillips et al.

(2011). In a simple version, the estimate for the starting date of the bubble, τ̂P , is given by

the smallest value of τ ∈ [τ0, 1] for which DFτ is larger than the right-tail 5% critical value

derived from the asymptotic distribution of the standard Dickey-Fuller t-statistic. Therefore,

the estimator results as4

τ̂P = inf
τ≥τ0
{τ : DFτ > 1.28}. (1.25)

The next estimator for a change point was proposed by Busetti and Taylor (2004). It

supplements their test for the existence of a structural change from I(0) to I(1). The idea is

to maximize the ratio of the sample variances of the first and second subsample. Intuitively,

for the correct break date the difference between the variance of the first subsample (which

is assumed to be I(0)) and the second sub-sample (which is assumed to be I(1) under the

alternative) should be maximal. This idea can be adapted for estimating the date of a change

from an I(1) to an explosive process. The estimator results as

τ̂BT = argmax
τ∈[τ0,1−τ0]

Λ(τ), where Λ(τ) =

(T − [τT ])−2
T∑

t=[τT ]+1

(∆yt)
2

[τT ]−2
[τT ]∑
t=1

(∆yt)2

. (1.26)

Finally, we suggest an estimator for the break point that is directly related to the supDFC test.

The estimator is given by

τ̂DFC = argmax
τ∈[0,1−τ0]

DFCτ , (1.27)

where DFCτ is as in Equation (1.22). The idea of this estimator is related to that in Leybourne,
4To obtain a consistent estimator the significance level has to go to zero as the sample size tends to infinity.

In their application Phillips et al. (2011) employ log(log(τT ))/100 as critical values. For a sample size of
T = 400 this roughly corresponds to a 4% significance level. The results of our simulation experiments remain
basically unchanged, if these critical values are used.
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Kim, Smith and Newbold (2003). These authors consider the case of a change from I(0) to I(1)

and propose a consistent estimator for the unknown break point. Note that this estimator also

maximizes the likelihood function with respect to the break date. Bai and Perron (1998) have

shown that the maximum likelihood estimator for the break date is consistent.

1.5 Real time monitoring

The test statistics considered in Section 1.3 are designed to detect speculative bubbles within

a fixed historical data set. As argued by Chu, Stinchcombe and White (1996) such test may be

highly misleading when applied to an increasing sample. This is due to the fact that structural

break tests are constructed as “one-shot” test procedures, i.e., the (asymptotic) size of the test

is controlled provided that the sample is fixed and the test procedure is applied only once to

the same data set (cf. Chu et al., 1996, and Zeileis et al., 2005). To illustrate the problem

involved assume that an investor is interested to find out whether the stock price is subject to

a speculative bubble. Applying the tests proposed in Section 1.3 to a sample of the last 100

trading days (say) he or she is not able to reject the null hypothesis of no speculative bubbles.

If the stock price continues to increase in the subsequent days the investor is interested to find

out whether the evidence for a speculative bubble has strengthened. However, repeating the

tests for structural breaks when new observations become available eventually leads to a severe

over-rejection of the null hypothesis due to multiple application of statistical tests.

Another practical problem is that the tests assume a single structural break from a random

walk regime to an explosive process. The results of our Monte Carlo simulations in Section

1.6.4 show that the tests generally lack power if the bubble bursts within the sample, that

is, if there is an additional structural break back to a random walk process. The monitoring

procedure suggested in this section is able to sidestep the problems due to multiple breaks.

Assume that, when the monitoring starts, a training sample of n observations is available

and that the null hypothesis of no structural break holds for the training sample. Then, in each

period n + 1, n + 2, . . . a new observation arrives. As we will argue below, it is important to

fix in advance the maximal length of the monitoring interval n + 1, n + 2, . . . , N = kn as the
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critical value depends on N . Following Chu et al. (1996) we consider two different statistics

(detectors):

CUSUM: Stn =
1

σ̂t

t∑
j=n+1

yj − yj−1 =
1

σ̂t
(yt − yn) (t > n) (1.28)

FLUC: Zt = (ρ̂t − 1)/σ̂ρt = DFt/n (t > n) (1.29)

where ρ̂t denotes the OLS estimate of the autoregressive coefficient, σ̂ρt denotes the correspond-

ing standard deviation, and σ̂2
t is some consistent estimator of the residual variance based on

the sample {y0, . . . , yt}. Note that Chu et al. (1996) suggest a fluctuation test statistic based

on the coefficients ρ̂t. Since the coefficient ρt is equal to unity under the null hypothesis, the

FLUC is essentially similar to the fluctuation statistic advocated by Chu et al. (1996). Also

note that both the FLUC detector and the recursive DF test from Section 1.3 make use of

standard Dickey-Fuller t-statistics. However, the two procedures apply to different scenarios.

While the latter is intended to analyze a given data set with a fixed last observation, the former

applies to a data set that increases with the duration of the monitoring. Moreover, the recursive

DF test is only concerned with whether or not a bubble has emerged within a given data set,

while for the FLUC and CUSUM detectors it also plays a role how quickly a structural change is

detected. Instead of using a constant critical value, one might prefer to use a critical boundary

that increases during the monitoring phase. Given that the bubble starts at the beginning of

the monitoring, an increasing instead of constant critical boundary should improve chances to

detect the bubble quickly.

Under the null hypothesis the functional central limit theorem implies as n→∞

1√
n
S[λn]
n ⇒ W (λ)−W (1) (1 ≤ λ ≤ k)

Z[λn] ⇒
∫ λ

0

W (r)dW (r)
/√∫ λ

0

W (r)2dr (1 ≤ λ ≤ k),

where W (r) is a Brownian motion defined on the interval r ∈ [0, k]. Our CUSUM monitoring
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is based on the fact that for any k > 1 (see Chu et al. 1996)

lim
n→∞

P
(
|Stn| > ct

√
t for some t ∈ {n+ 1, n+ 2, . . . , kn}

)
≤ exp(−bα/2), (1.30)

where

ct =
√
bα + log(t/n) (t > n). (1.31)

Since our null hypothesis is one-sided (i.e. we reject the null hypothesis for large positive values

of Stn) and Stn is distributed symmetrically around zero, a one-sided decision rule is adopted as

follows. The null hypothesis is rejected if St exceeds the threshold ct the first time, that is,

reject H0 if Stn > ct
√
t for some t > n. (1.32)

For a significance level α = 0.05, for instance, the one-sided critical value bα used to compute

ct in (1.31) is 4.6.

Such a test sequence has the advantage that if the evidence for a bubble process is sufficiently

large, the monitoring procedure eventually stops before the bubble collapses. Accordingly, such

a monitoring procedure sidesteps the problem of multiple breaks due to a possible burst of the

bubble.

For the second monitoring using the statistic DFt/n we apply the following rule:

reject H0 if DFt/n > κt for some t = n+ 1, . . . , N = kn (1.33)

where κt =
√
bk,α + log(t/n).5 Since the limiting distributions of the CUSUM and the FLUC

detectors differ and no theoretical result similar to that in (1.30) is available for the FLUC

detector, we determine the critical value bk,α by means of simulation (see Section 1.6.5). This

ensures that, under the null hypothesis, the probability of the event {DFt/n > κt, for some t =

n + 1, . . . , kn} does not exceed α. It turns out that for the usual significance levels bk,α is

monotonically increasing in k, the length of the monitoring period (including the training
5It is possible to employ different functional forms of the boundary function κt. Our choice is motivated by

facilitating comparisons between the performance of CUSUM and FLUC monitoring.
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sample) relative to the training sample. Thus, the maximal size of monitoring period has to be

fixed before starting the monitoring.

To account for a linear time trend in the data generating process (1.12), the time series

can be detrended before computing the detectors. However, it is well known that the DF t-

statistic possesses a sizable negative mean and, therefore, the critical values for the detrended

FLUC monotoring may be negative. However, our boundary function κt is restricted to positive

values. To overcome this problem the FLUC detector is computed by using the standardized

DF t-statistics Zt−mDF
σDF

. The asymptotic first moment mDF and standard deviation σDF of

the DF t-statistic are taken from Nabeya (1999), where mDF = −2.1814 and σDF = 0.7499.

Regarding the CUSUM procedure, instead of using the OLS-detrended series to compute St in

(1.28) one can replace the forecast error yj − yj−1 with wj =
√

j−1
j

(yj − yj−1 − µ̂j−1), where

µ̂j−1 = (j − 1)−1
∑j−1

l=1 ∆yl. Note that wj is the recursive CUSUM residual in the regression

of ∆yt on a constant. As is well known, the same asymptotic results for Stn hold when this

replacement is made. This means that one can proceed as in the case without drift and use the

same boundary function ct =
√
bα + log(t/n) with the same values for bα.

1.6 Monte Carlo analysis

We start our Monte Carlo analysis within our basic framework in (1.12) – (1.14). In Section

1.6.1 we report critical values and present the results for the power of the tests. In Section

1.6.2 we evaluate the properties of the break point estimators. Furthermore, we consider price

processes that contain explicitly modeled bubbles. We investigate the power of the tests to de-

tect randomly starting bubbles in Section 1.6.3. Periodically collapsing bubbles are considered

in Section 1.6.4, where we apply both tests and monitoring procedures. In Section 1.6.5 we

present further results for the monitoring procedures.

1.6.1 Testing for a change from I(1) to explosive

We use Monte Carlo simulation to calculate critical values for the test statistics supDF, supB,

supBT, supK, supDFC, and for the point-optimal statistics. Here and in the remainder of this
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Table 1.1: Large sample upper tail critical values for test statistics

Quantiles Test statistics

supDF supDFC supK supBT supB

(a) Critical values without detrending
0.90 2.4152 1.5762 31.4531 1.9317 3.2796
0.95 2.7273 1.9327 43.7172 2.4748 3.9253
0.99 3.3457 2.6285 79.5410 3.8878 5.3746
(b) Critical values with detrending
0.90 0.5921 0.9436 28.400 1.7374 2.7614
0.95 0.8726 1.3379 38.072 2.2736 3.3472
0.99 1.4176 2.0741 64.863 3.6088 4.6162

Notes: The critical values are estimated by simulation of (1.12) - (1.13) using Gaussian
white noise, a sample size of T = 5000, and 10,000 replications.

chapter we set τ0 = 0.1 for all test statistics and estimators. The data is generated according

to Equation (1.12) with ρt = 1 (for all t), an initial value y0 = 0, and Gaussian white noise.

To approximate asymptotic critical values we use a sample size of T = 5000. The number of

replications is 10, 000. We apply the test statistics to the original and to the detrended series,

i.e. to the residuals from the regression of yt on a constant and a linear time trend. The results

are reported in Table 1.1. To save space we leave out the critical values for the point-optimal

tests. These tests are of little practical use, when the break date is unknown.

To evaluate the empirical power of the tests we generate data according to (1.12) and (1.14)

with Gaussian white noise. 2000 replications are performed for the sample sizes T = 100,

T = 200 and T = 400. We consider a range of different break points τ ∗ and growth rates ρ∗.

The power of the tests is evaluated at a nominal size of 5%, i.e. a test rejects the null hypothesis

when the corresponding statistic is larger than the respective asymptotic 0.95-quantile in Table

1.1. The results are reported in Tables 1.2 and 1.3. The row labeled “actual size” shows that

the size of the tests is close to the nominal size, i.e. the asymptotic critical values also apply to

finite samples. Only the supB test is somewhat undersized. The actual size of the point-optimal

tests depends, apart from the sample size, on τ ∗ and on the value ρ∗ of the autoregressive slope

parameter under H1. The actual size of the point optimal tests ranges between 4.3% and 5.7%.

With regard to testing power, the supDFC test and the supBT test exhibit the best perfor-
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Table 1.2: Empirical power: the baseline case

Break point Test statistics

PO(τ ∗, ρ∗) supDF supDFC supK supBT supB

(a) Power for T = 100
actual size 0.057 0.050 0.049 0.060 0.023

τ ∗ = 0.7 ρ∗ = 1.02 0.347 0.166 0.312 0.085 0.282 0.128
ρ∗ = 1.03 0.526 0.293 0.483 0.137 0.466 0.218
ρ∗ = 1.04 0.679 0.429 0.634 0.211 0.615 0.342
ρ∗ = 1.05 0.780 0.559 0.750 0.316 0.741 0.459

τ ∗ = 0.8 ρ∗ = 1.02 0.273 0.107 0.247 0.067 0.214 0.072
ρ∗ = 1.03 0.414 0.181 0.379 0.088 0.348 0.118
ρ∗ = 1.04 0.545 0.264 0.508 0.117 0.468 0.168
ρ∗ = 1.05 0.662 0.369 0.605 0.171 0.589 0.240

τ ∗ = 0.9 ρ∗ = 1.02 0.177 0.069 0.169 0.054 0.139 0.031
ρ∗ = 1.03 0.276 0.086 0.238 0.061 0.207 0.034
ρ∗ = 1.04 0.364 0.112 0.322 0.068 0.288 0.035
ρ∗ = 1.05 0.460 0.150 0.397 0.077 0.372 0.034

(b) Power for T = 200
actual size 0.059 0.054 0.039 0.055 0.031

τ ∗ = 0.7 ρ∗ = 1.02 0.694 0.439 0.633 0.216 0.615 0.451
ρ∗ = 1.03 0.870 0.673 0.810 0.455 0.802 0.676
ρ∗ = 1.04 0.944 0.811 0.905 0.764 0.902 0.813
ρ∗ = 1.05 0.973 0.901 0.944 0.894 0.946 0.886

τ ∗ = 0.8 ρ∗ = 1.02 0.572 0.271 0.504 0.135 0.467 0.282
ρ∗ = 1.03 0.779 0.472 0.698 0.231 0.686 0.478
ρ∗ = 1.04 0.876 0.644 0.810 0.430 0.802 0.640
ρ∗ = 1.05 0.931 0.761 0.876 0.690 0.873 0.736

τ ∗ = 0.9 ρ∗ = 1.02 0.381 0.114 0.328 0.070 0.283 0.088
ρ∗ = 1.03 0.560 0.185 0.481 0.095 0.440 0.156
ρ∗ = 1.04 0.698 0.303 0.606 0.135 0.584 0.230
ρ∗ = 1.05 0.795 0.404 0.705 0.181 0.692 0.303

Notes: The empirical power is computed at a nominal size of 5%. The simulations are conducted with 2, 000
replications of (1.12) and (1.14). The true (simulated) breakpoint τ∗ is measured relative to the sample size.
ρ∗ is the autoregressive slope parameter under the explosive regime. In the row labeled actual size we report
rejection frequencies when the data generating process obeys H0.

mance among those tests that do not use knowledge of the true break date or of ρ∗. Moreover,

these two tests come close to the power envelope computed from the infeasible point-optimal

tests. The difference between the power of the supDFC test and the power envelope is never
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Table 1.3: Empirical power: the baseline case contd.

Break point Test statistics

PO(τ ∗, ρ∗) supDF supDFC supK supBT supB

(a) Power for T = 400
actual size 0.053 0.045 0.040 0.056 0.039

τ ∗ = 0.7 ρ∗ = 1.02 0.938 0.824 0.907 0.759 0.904 0.844
ρ∗ = 1.03 0.991 0.942 0.978 0.951 0.975 0.949
ρ∗ = 1.04 0.999 0.984 0.992 0.986 0.992 0.984
ρ∗ = 1.05 1.000 0.995 0.998 0.994 0.998 0.992

τ ∗ = 0.8 ρ∗ = 1.02 0.855 0.655 0.817 0.444 0.815 0.694
ρ∗ = 1.03 0.954 0.851 0.930 0.824 0.932 0.870
ρ∗ = 1.04 0.986 0.934 0.974 0.938 0.973 0.943
ρ∗ = 1.05 0.997 0.970 0.990 0.972 0.991 0.969

τ ∗ = 0.9 ρ∗ = 1.02 0.687 0.289 0.593 0.115 0.579 0.337
ρ∗ = 1.03 0.844 0.503 0.772 0.270 0.771 0.537
ρ∗ = 1.04 0.917 0.670 0.862 0.554 0.864 0.673
ρ∗ = 1.05 0.960 0.776 0.915 0.728 0.919 0.743

Notes: The empirical power is computed at a nominal size of 5%. The simulations are conducted with 2, 000
replications of (1.12) and (1.14). The true (simulated) breakpoint τ∗ is measured relative to the sample size.
ρ∗ is the autoregressive slope parameter under the explosive regime. In the row labeled actual size we report
rejection frequencies when the data generating process obeys H0.

larger than 10% and in many cases only about 5% or smaller.6 The supBT test performs com-

parably well. Taking into account that the original version of Busetti and Taylor (2004) was

constructed to test for a change from I(0) to I(1) and not from I(1) to explosive, the favorable

performance is quite remarkable. The power of the supB test is comparable with that of the

supDF test if T ≥ 200. For T = 100 supB performs worse than supDF, which is probably due

to the fact that supB is undersized.7 The supK test lacks power if the sample size is small. Note

that the supDFC test and the supBT test perform better than the supDF test in all parameter

constellations. The advantage over the supDF test tends to increase as the break fraction τ ∗

increases. For instance, when T = 400, ρ∗ = 1.03 and τ ∗ = 0.7 the power of the three tests is
6For a fixed value of ρ among 1.02, 1.03, 1.04, 1.05 and known variance σ2 we also considered statistics of

the form sup
τ∈[0,0.9]

PO(τ, ρ) (cf. (1.24)). None of the resulting feasible tests dominates the supDFC test in terms

of empirical power. That is, only for a few parameter constellations (T, τ∗, ρ∗) for the data generating process
can supDFC be sizeably outperformed, and there are parameter choices where supDFC performs better (not
shown).

7Further simulations have shown that if finite sample critical values are used, supB performs very similar to
supDF for all parameter constellations.
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approximately equal, while for T = 400, ρ∗ = 1.03 and τ ∗ = 0.9 the supDF test rejects the null

hypothesis in only 50% of the cases, whereas the supDFC test and the supBT test can reject

the null in more than 75% of the cases.

1.6.2 Estimating the break date

In this section we investigate the performance of the estimators from Section 1.4 to identify

the date where the time series switches from a random walk to an explosive regime. In the

simulation experiments Eqs. (1.12) and (1.14) are used to generate the data. The experiments

were conducted for different break points τ ∗ and for sample sizes T = 200 and T = 400. The

slope parameter ρ∗ was set to 1.05. For each parameter constellation 2, 000 replications were

performed. For the estimator proposed by Phillips et al. (2011), τ̂P , we take the 5% right

tailed critical value of the standard asymptotic Dickey-Fuller distribution (which equals 1.28)

as the signaling threshold for a change from I(1) to explosive (cf. (1.25)). If the threshold is

not exceeded for the entire sample, the respective observation is dropped. We set τ0 = 0.1 for

all estimators (cf. Eqs. (1.25) – (1.27)).

Table 1.4 reports the empirical mean and standard deviation (in parentheses) of the break

point estimates. The results show that for a sample size of T = 200 the accuracy of the estimates

is not very high: In several cases the mean value of the estimate is quite far off the true break

point and the standard deviations are fairly high. Cases in which the mean value of τ̂P or τ̂BT

is close to the true break point seem to be coincidences. The accuracy of the Chow-style break

point estimator, τ̂DFC , is more stable across different break points τ ∗. When the sample size is

increased to T = 400, τ̂DFC is clearly the most reliable estimator. The estimator τ̂P tends to

indicate the break too early. Among all estimators τ̂P has the largest standard deviation. The

estimator τ̂BT tends to lag behind the break date for roughly 10%.

Overall, we observe the best performance for the estimator τ̂DFC . The use of the estimators

τ̂P and τ̂BT cannot be recommended in samples with less than 400 observations.
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Table 1.4: Estimated break dates when ρ∗ = 1.05

Break point Sample Size T=200 Sample Size T=400

τ̂P τ̂DFC τ̂BT τ̂P τ̂DFC τ̂BT

τ ∗ = 0.4 0.4256 0.4616 0.6564 0.3784 0.4232 0.4901
(0.2004) (0.1037) (0.1334) (0.1513) (0.0456) (0.0601)

τ ∗ = 0.5 0.4807 0.5582 0.7636 0.4408 0.5207 0.5933
(0.2376) (0.0980) (0.1137) (0.1929) (0.0436) (0.0616)

τ ∗ = 0.6 0.5298 0.6493 0.8577 0.5009 0.6208 0.6991
(0.2741) (0.0862) (0.0692) (0.2361) (0.0441) (0.0621)

τ ∗ = 0.7 0.5658 0.7388 0.8967 0.5573 0.7207 0.8080
(0.3101) (0.0747) (0.0149) (0.2800) (0.0427) (0.0548)

τ ∗ = 0.8 0.5761 0.8184 0.8990 0.6070 0.8143 0.8903
(0.3432) (0.0612) (0.0036) (0.3208) (0.0329) (0.0185)

τ ∗ = 0.9 0.5129 0.8682 0.8978 0.6122 0.8890 0.8996
(0.3610) (0.0887) (0.0071) (0.3602) (0.0512) (0.0023)

Notes: The table reports mean values and standard deviations (in parentheses) of the break point estimators
τ̂P , τ̂DFC and τ̂K . These values as well as the true breakpoint τ∗ are expressed as fraction of the sample size
T . Data is generated according to Equation (1.12) and (1.14) for the sample size T = 200 and T = 400. The
autoregressive slope parameter under the explosive regime is ρ = 1.05. In each case 1000 replications are used.

1.6.3 Randomly starting bubbles

We now investigate how well the tests can detect randomly starting bubbles. We use the model

presented in Section 1.2. That is we simulate the price process as Pt = P f
t + Bt, where Bt is

generated as in (1.7) and P f
t follows (1.10) and (1.11). The parameters are also specified as in

Section 1.2. Since the fundamental price follows a random walk with drift, we detrend the time

series before applying the tests. The results are given in Table 1.5. The null and the alternative

hypotheses are as in Eqs. (1.12) – (1.14). The nominal size is 5% and the sample sizes are

T = 100 or T = 200. For each parameter constellation 2, 000 replications of the price process

Pt = P f
t +Bt are generated. Cases in which a bubble remains at its initial value for more than

90% of its realizations are excluded from the experiment. Note that for the first row of Table

1.5 no bubble component enters the price series. This suggests that all tests have correct size.

When the sample size equals T = 100, the supDFC test and the supBT test have the highest

rejection frequencies. In all cases they reject the null hypothesis at least 20% more often than

the supDF test or the supB test. As in Section 1.6, the supK test performs worst. When the
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Table 1.5: Rejection frequencies in the case of randomly starting bubbles

Initial value π Test statistics

supDF supDFC supK supBT supB

Rejection frequencies when the sample size is T = 100
B0 = 2 no bubble 0.036 0.049 0.034 0.060 0.020

0.02 0.419 0.636 0.054 0.647 0.413
0.05 0.382 0.741 0.051 0.732 0.388
0.10 0.343 0.825 0.061 0.829 0.365
0.25 0.288 0.907 0.067 0.907 0.365
0.50 0.277 0.930 0.072 0.924 0.359
1.00 0.272 0.931 0.072 0.929 0.367

Rejection frequencies when the sample size is T = 200
B0 = 0.05 no bubble 0.037 0.047 0.038 0.060 0.031

0.01 0.558 0.645 0.104 0.657 0.566
0.02 0.672 0.770 0.117 0.775 0.678
0.05 0.863 0.935 0.158 0.938 0.854
0.10 0.968 0.990 0.169 0.990 0.957

Notes: The tests are applied to series generated as Pt = P ft +Bt, with P
f
t as in (1.11) and Bt as in (1.7). The

number of replications is 2000. The “no-bubble” hypothesis is rejected when the test statistic exceeds the 95%
quantile from table 1.1. B0 is the initial value of the bubble. π is the probability that the bubble enters the
phase of explosive growth.

sample size is T = 200 and B0 is 0.05,8 the differences between the tests are less pronounced.

Still, the supK test shows the weakest performance among the tests, while the supDFC test

and the supBT test have the highest empirical power.

It is interesting to note that for T = 100 and B0 = 2 the power of some tests does not

increase if the probability of the bubble starting at the next period increases. This seems odd,

since the expected time for the start of the bubble, 1/π, decreases with increasing probability

π. However, the parameter π also has another effect on the bubble process. As can be seen

in Eq. (1.7), there is a jump in the bubble process at the time when it starts to grow. The

jump size is however inversely related to π. These two effects may offset each other, yielding

an ambiguous effect on the power. This phenomenon can be observed for the supDF test, the

supK test, and the supB test.

Summing up, the simulation experiments with randomly starting bubbles are very much in

line with the results of Section 1.6.1, i.e., the supDFC and the supBT tests clearly outperform
8When B0 is set to 2, all tests, except the supK test, have rejection frequencies close to 1 for π ≥ 0.05.
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all other tests.

1.6.4 Periodically collapsing bubbles

We now analyze how well the tests are suited to detect Evans’ (1991) periodically collapsing

bubbles. The price process Pt = P f
t + 20Bt is generated as described in Section 1.2. Again all

tests are applied to detrended data. As in the previous section, rejections at the 5% significance

level are considered as evidence for a speculative bubble.

Table 1.6 reports rejection frequencies of both test and monitoring procedures. In the Monte

Carlo experiment 2000 replications of the price process Pt have been generated for a sample

size of T = 100 and different values for the probability π that the bubble continues. First,

we discuss the results for the test procedures, whereas results for the monitoring scheme are

considered in the next section. Obviously, the power of the tests decreases if the probability π

gets smaller. The more striking finding is, however, the superiority of the supDF test relative to

all the other tests. For instance, if π = 0.85 the supDF test rejects in roughly 60% of the cases,

while the supK test rejects in 32% of the cases and the other tests have rejection frequencies

less than 10%.

There is an intuitive explanation for the superiority of the supDF test. In contrast to the

Table 1.6: Rejection frequencies in the case of periodically collapsing bubbles

π Test statistics Detectors

supDF supDFC supK supBT supB FLUC CUSUM

no bubble 0.043 0.049 0.033 0.062 0.020 0.045 0.045
0.999 0.803 0.881 0.045 0.934 0.117 0.947 0.942
0.990 0.824 0.589 0.192 0.642 0.119 0.788 0.763
0.950 0.715 0.164 0.371 0.223 0.076 0.618 0.535
0.850 0.593 0.057 0.324 0.072 0.026 0.535 0.379
0.750 0.515 0.040 0.261 0.040 0.018 0.467 0.269
0.500 0.393 0.020 0.235 0.022 0.010 0.342 0.031
0.250 0.248 0.020 0.190 0.023 0.010 0.205 0.015

Notes: The tests and monitoring procedures are applied to series generated as Pt = P ft + 20Bt, with P ft as
in (1.11) and Bt as in (1.8). The sample size equals T = 100. π is the probability that the bubble does not
collapse in the next period. For each case, 2000 replications are performed. The nominal size of the test and
monitoring procedure is 5%.
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Figure 1.3: Price containing periodically collapsing bubble (left) and DFτ -statistic (right)

other tests, the supDF test is based on subsamples of the form
{
P1, . . . , P[τT ]

}
. The DF t-

statistic for this subsample tends to be large if it contains a long period with a steady growth

of the bubble up to the end of the subsample. An obvious case is provided in Figure 1.3.

It shows a realization of the price process Pt with π = 0.85 and a corresponding plot of the

sequence of DFτ statistics.

In contrast to the supDF test, the idea behind the supK test is to compare the first part of the

sample
{
P1, . . . , P[τT ]

}
to the second part

{
P[τT ]+1, . . . , PT

}
. However, if the bubble collapses

several times during the whole sample the subsamples mix up periods with and without a

bubble. Therefore, the test statistics that are based on a comparison of the pre and post break

subsamples have difficulties to indicate a bubble component. Thus, among the alternative

tests, the supDF test has the highest power when applied to periodically collapsing bubbles.

However, in applications one typically has a clear indication for the end of the explosive regime,

just from visual inspection of the time series. If the subsequent observations are excluded from

the sample, the supDFC test and the supBT test are most powerful among the tests considered

here.
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Table 1.7: Critical values for FLUC monitoring

k 2 3 4 5 6 8 10
n α

i) FLUC monitoring without detrending
100 0.10 3.05 3.60 3.93 4.15 4.31 4.48 4.57

0.05 4.50 5.14 5.55 5.69 5.89 6.05 6.26
0.01 7.76 8.59 9.06 9.48 9.62 9.79 9.99

50 0.10 2.80 3.33 3.62 3.80 3.96 4.14 4.27
0.05 4.19 4.80 5.11 5.34 5.50 5.72 5.81
0.01 7.30 8.11 8.43 8.82 8.86 9.25 9.49

20 0.10 2.49 3.12 3.44 3.65 3.78 3.99 4.12
0.05 3.88 4.56 4.86 5.06 5.19 5.38 5.52
0.01 7.00 7.84 8.26 8.49 8.66 9.12 9.19

ii) FLUC monitoring with detrending
100 0.10 6.16 7.55 8.15 8.53 8.98 9.30 9.51

0.05 8.12 9.82 10.45 10.82 11.20 11.55 11.80
0.01 12.89 14.22 14.94 15.39 16.22 16.14 16.39

50 0.10 5.47 6.74 7.15 7.69 8.07 8.54 8.80
0.05 7.29 8.68 9.30 9.62 10.11 10.46 10.87
0.01 11.54 12.46 13.57 13.81 14.08 14.71 15.44

20 0.10 4.18 5.16 5.71 6.17 6.38 6.78 7.24
0.05 5.50 6.52 7.24 7.96 8.04 8.45 9.13
0.01 8.45 9.55 10.82 11.41 11.93 12.35 13.08

Notes: The table shows critical values for FLUC monitoring for different significance levels α, different lengths
n of the training sample, and for different lengths k of the monitoring period (measured in multiples of n).

1.6.5 Monitoring

The critical values bk,α in the expression for the boundary function κt =
√
bk,α + log(t/n) from

Section 1.5 are reported in Table 1.7 and 1.8 for different values of the significance level α and

different sizes of the monitoring sample k (measured relative to the training sample). They have

been obtained through application of the monitoring procedures to data simulated according

to (1.12) under the random walk null hypothesis with Gaussian white noise innovations. We

tabulate critical values for training sample sizes of n = 20, n = 50, and n = 100. It is important

to note that bk,α is monotonic increasing in k and the maximal length of the monitoring period

as measured by k has to be fixed before starting the monitoring. Table 1.8 reports values bk,α

for CUSUM monitoring in finite samples. Using the asymptotic 5%-critical value bα = 4.6 can
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Table 1.8: Critical values for CUSUM monitoring

k 2 3 4 5 6 8 10
n α

i) CUSUM monitoring without drift estimation
100 0.10 0.92 1.39 1.62 1.80 1.92 2.08 2.19

0.05 1.51 2.14 2.47 2.73 2.88 3.20 3.36
0.01 2.86 3.92 4.57 4.94 5.30 5.72 6.02

50 0.10 0.87 1.31 1.55 1.70 1.82 1.97 2.06
0.05 1.43 2.03 2.34 2.62 2.80 3.03 3.12
0.01 2.85 3.87 4.25 4.77 5.03 5.47 5.94

20 0.10 0.81 1.18 1.43 1.61 1.75 1.91 2.02
0.05 1.27 1.96 2.35 2.53 2.72 3.00 3.13
0.01 2.61 3.91 4.49 4.97 5.16 5.52 5.74

ii) CUSUM monitoring with drift estimation
100 0.10 0.92 1.38 1.59 1.78 1.90 2.06 2.16

0.05 1.45 2.11 2.43 2.66 2.80 3.06 3.18
0.01 2.76 3.78 4.49 4.84 5.12 5.68 5.96

50 0.10 0.91 1.32 1.56 1.69 1.80 1.96 2.08
0.05 1.43 2.03 2.37 2.57 2.75 2.99 3.14
0.01 2.71 3.90 4.39 4.74 4.97 5.43 5.62

20 0.10 0.83 1.20 1.43 1.60 1.72 1.86 2.00
0.05 1.34 1.90 2.24 2.47 2.67 2.88 3.02
0.01 2.65 3.76 4.42 4.77 5.01 5.53 5.65

Notes: The table shows critical values for CUSUM monitoring for different significance levels α, different lengths
n of the training sample, and for different lengths k of the monitoring period (measured in multiples of n).

lead to an empirical size below 1%, when the CUSUM monitoring procedure includes estimation

of a drift term.

The results for the FLUC and CUSUM monitoring (with detrending) when applied to

periodically collapsing bubbles is reported in the last two columns of Table 1.6. The first

n = 20 observations are used as training sample and the monitoring ends after 100 observations.

The tests are conducted at a nominal size of 5%, i.e. we use the finite sample critical values

b5,0.05 with n = 20. The residual variance for the CUSUM monitoring is estimated as σ̂2
t =

(t− 1)−1
∑t

j=1(∆yj − µ̂t)2, where µ̂t is the mean of {∆y1, . . . ,∆yt}. Similar to the supDF test,

the monitoring procedures are more robust against periodically collapsing bubbles. However,

except for one case, the monitoring procedures have less power than the supDF test. Moreover,
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Table 1.9: Performance of monitoring procedures

FLUC CUSUM

Breakpoint size/ power delay σ(delay) size/ power delay σ(delay)

a) size of training sample n = 40, size of total sample kn = 200

actual size 0.0570 - - 0.0574 - -
τ ∗ = 0.2 0.9766 0.2787 0.1779 0.9744 0.2816 0.1600
τ ∗ = 0.4 0.9330 0.2454 0.1379 0.9310 0.2415 0.1369
τ ∗ = 0.6 0.8148 0.2019 0.0969 0.8090 0.2042 0.0982
τ ∗ = 0.8 0.4696 0.1243 0.0471 0.4588 0.1255 0.0492

b) size of training sample n = 80, size of total sample kn = 400

actual size 0.0512 - - 0.0488 - -
τ ∗ = 0.2 0.9996 0.1368 0.0977 0.9996 0.1448 0.0906
τ ∗ = 0.4 0.9974 0.1318 0.0900 0.9972 0.1352 0.0908
τ ∗ = 0.6 0.9854 0.1250 0.0782 0.9844 0.1319 0.0803
τ ∗ = 0.8 0.8362 0.0977 0.0474 0.8126 0.1032 0.0484

Notes: The data is generated as a random walk switching to an explosive process at the relative break point τ∗
(cf. (1.12) and (1.14)). The autoregressive slope parameter is set to ρ∗ = 1.03 during the explosive phase. The
number of replications is 5, 000. The empirical power is computed at the 5% significance level. In the column
delay we report the average time needed to detect the regime switch relative to the sample size kn. The column
σ(delay) contains standard deviations of the detection delay relative to the sample size.

the FLUC monitoring performs better than the CUSUM monitoring. There are two conceptual

differences between the supDF test and the FLUC monitoring. First, the critical value of the

FLUC monitoring increases in time. Second – and more important – the different detrending

methods give rise to the different performance of these two related approaches. Before applying

the supDF test the time series is detrended once using the entire sample. In contrast, the

monitoring approach uses a sequential detrending scheme. Additional simulations suggest that

the empirical power of the FLUC monitoring is virtually identical to that of the supDF test,

if the FLUC monitoring uses the same detrending method (i.e. the residuals of a full sample

regression) as the supDF test.

We also evaluate the performance of the monitoring procedures in terms of time needed to

detect a bubble, a property that is irrelevant for the test procedures. The results are presented

in Table 1.9. The data is generated as in (1.12) and (1.14) with slope coefficient ρ∗ = 1.03 in

the explosive regime. The total sample size is set to N = 200 and N = 400. The size of the

training sample is set to n = 40 and n = 80, respectively. We use 5% critical values b5,0.05 with
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training sample size n = 50 and n = 100, respectively. The residual variance for the CUSUM

monitoring is estimated as σ̂2
t = t−1

∑t
j=1(∆yj)

2. The breakpoint τ ∗ is measured relative to the

total sample size. For each case 5000 replications are performed.

The actual size is given in the first row of each panel in Table 1.9. The columns labeled delay

report the mean delay (measured relative to the sample size) for detecting the bubble. Since

a rejection before the bubble starts is spurious, only rejections after the start of the bubble

enter the mean delay and standard deviations. Table 1.9 shows that the empirical power of the

CUSUM monitoring is comparable to that of the FLUC monitoring. The average time needed

to detect the bubble is also very similar for both monitoring procedures. The mean delay and

the standard deviation for both procedures decrease as the time of the break date τ ∗ increases.

This is probably due to the fact that the maximum delay is bounded by 1− τ ∗.

1.7 Applications

In Section 1.7.1 we start with a detailed discussion of the Nasdaq Composite Index and the

so-called dot.com bubble. A range of other financial time series that are often supposed to be

affected by speculative bubbles are considered in Section 1.7.2.

1.7.1 The Nasdaq composite index and the dot.com bubble

A price movement for which the term bubble is widely used is the development of the Nasdaq

composite price index in the late 90s. A mere look at the plot of this time series appears

to justify the name “dot.com bubble” (see Figure 1.4). Phillips et al. (2011) found decisive

empirical evidence for a speculative bubble during this period (see Shiller, 2001, for a detailed

discussion of this speculative bubble). In this section we reproduce their findings and also apply

the alternative tests presented in Section 1.3.

We use the same data as in Phillips et al. (2011). The time series of the Nasdaq composite

price index and the Nasdaq composite dividend yield are taken from Datastream International.

Phillips et al. (2011) considered monthly Nasdaq data from February 1973 to June 2005.

Figure 1.4 suggests that if there was a bubble it has definitely crashed in March 2000, after
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Figure 1.4: Real Nasdaq price and dividends (normalized)

the Nasdaq reached its all time high. If the observations after the peak are included, the

chance that the bubble tests detect the bubble will be very low (see Section 1.6.4). Therefore

we apply the tests to the restricted sample period from February 1973 to March 2000, which

yields T = 326 observations. The Nasdaq composite price index is multiplied by the Nasdaq

composite dividend yield to compute the time series of the total Nasdaq dividends. By use

of the Consumer Price Index from the Federal Reserve Bank of St. Louis, nominal data are

transformed to real data. Figure 1.4 shows a plot of the time series for the real Nasdaq price

index and the real Nasdaq dividends, where the time series have been normalized to 100 at the

beginning of the sampling period. While the price index shows an accelerated increase during

the late 1990s followed by a sharp drop, real index dividends are more or less constant.

For the logarithm of these two time series we conduct tests of the random walk hypothesis

against the alternative of a switch from I(1) to explosive. If the time series of the Nasdaq

composite price index turns out to have changed from I(1) to explosive, while the index dividend

series remained constant I(1), this would suggest the presence of bubbles.

In the applications we follow Phillips et al. (2011) more closely and use an augmented

Dickey-Fuller (ADF) test that includes an intercept term in the regression, i.e. the regression
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Table 1.10: Testing for an explosive root in the Nasdaq index

Test Statistics

supADF supDFC supK supBT supB

log price index 3.0420 4.5874 12.5203 7.8722 3.0242
log dividends -0.8563 -0.2086 5.0756 0.1438 2.0057

Upper tail critical values
1% 2.094 2.6285 79.5410 3.8878 5.3746
5% 1.468 1.9327 43.7172 2.4748 3.9253
10% 1.184 1.5762 31.4531 1.9317 3.2796

Notes: Table 1.10 reports the values of the test statistics applied to the log real Nasdaq price index
and dividends. The table also shows the corresponding critical values. Those for the supADF
statistic are taken from Phillips et al. (2011). The others correspond to our simulation results.

equation is

yt = α + ρyt−1 +

p∑
j=1

φj∆yt−j + εt, for t = 1, . . . , [τT ], (1.34)

where yt denotes the logarithm of either the Nasdaq price or dividends and εt is white noise. The

lag order p is determined by a general-to-specific test sequence. (1.34) leads to the augmented

DF t-statistic ADFτ . The supremum of ADFτ over τ ∈ [0.1, 1] is referred to as supADF. The

pertaining critical values are taken from Phillips et al. (2011).

The results are shown in Table 1.10. For the dividend series none of the tests rejects the

constant I(1) hypothesis at the 5% significance level. Even at the 10% significance level the

null hypothesis is not rejected. The application of the supADF test leads to results that are

very similar to those obtained by Phillips et al. (2011)9. The supDFC test and the supBT test

indicate a bubble in the Nasdaq index, while the supB test and the supK test fail to reject the

null hypothesis. Most of the results do not change when we consider weekly or daily data, the

only exception being the supB test, which becomes significant for higher sampling frequencies

(not shown). Thus the supDF test, the supDFC test, the supBT test, and partly the supB test

support the view that the Nasdaq price index has changed from I(1) to explosive, while the

dividend series remained I(1) throughout the sample. Under the assumptions of the present

value model in Eqs. (1.1) and (1.2) one may conclude that a bubble was indeed present in the
9They report a test value of 2.894 for the index price and a value of -1.018 for the index dividends.
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Figure 1.5: ADFτ Statistics for (log) real Nasdaq prices (solid line), with 5% right tail critical
value from asymptotic distribution of the standard Dickey-Fuller t-statistic (dotted line).

Nasdaq index.

This leads to the problem of identifying the starting date of the bubble. First consider the

approach of Phillips et al. (2011). Figure 1.5 contains the plots of the ADFτ statistic for the

log real Nasdaq price index (solid line). ADFτ is the augmented Dickey-Fuller t-statistic for

the subsample {y1, . . . , y[τT ]}. The estimated starting date is June 1995, which is the first time

where the ADFτ statistic is larger than the 5% critical value of the standard Dickey-Fuller

t-statistic (−0.08).10 We also estimate the date of the regime change based on the Chow-style

DF-statistics (τ̂DFC). The maximum of DFCτ is attained at τ̂DFC = 72.7%, corresponding to

October 1992.

1.7.2 Further applications: major stock indices, house prices, and

commodities

Besides the Nasdaq Composite index, other financial time series have shown phases of massive

growth, often combined with subsequent crashes. Frequently, the term bubble has been used
10Using log(log(τT ))/100 as critical value for ADFτ (cf. Phillips et al.(2011)) results in almost the same

estimate for the start of the bubble, namely July 1995.
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Figure 1.6: The figure shows several stock, house, and land price indices with time on the x-axis
and index values on the y-axis.

to describe such phases. Specifically, we consider the Japanese stock market index, Nikkei225,

which, during the 80s, exhibited a tremendous increase along with Japanese urban land prices

(see Figure 1.6). We also check whether the dot.com bubble has been paralleled by bubbles in

the S&P500 and the FTSE100. Furthermore, we analyze more recent upswings in major Chinese

stock market indices, the Hang Seng and the Shanghai stock index. During the recent subprime
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crisis housing markets have received much interest from financial analysts and researchers. We

consider the US S&P/Case-Shiller home price index (10-City composite) among other housing

indices. Finally, we also test for bubbles in two commodity time series, gold and crude oil. Note

that house and commodity prices do not directly fit into the theoretical framework of rational

bubbles, in which the fundamental price is based on a stream of future dividend payments.

Nevertheless, detecting a change from I(1) to explosive clearly points to excessive speculation.

Our results are presented in Table 1.11. We focus on the supDFC test, which together with

supBT performed very well in our Monte Carlo simulations, and on the supDF test. In most

cases the supBT test and the supDFC test lead to similar results, so we skip reporting the

results for the former. We apply the tests to the logarithm of the inflation adjusted time series

at different sampling frequencies: monthly, weekly, and daily. To adjust weekly and daily data

for inflation we employ linearly interpolated monthly consumer price indices. Data for house/

land price indices were only available at monthly, quarterly or annual frequency. The range of

the sampling period for each time series is given in Table 1.11. As in the foregoing section,

the price series end at their maximum. With regard to the real gold price we focus on the

recent run-up in gold prices and consider the time span from January 1985 to November 2010.

Most series were obtained from Datastream International. Consumer Price Indices for the US

and Hong Kong were downloaded from the websites of the Federal Reserve of St. Louis and

the Hong Kong Census and Statistics Department, respectively. The source for the Japanese

Urban Land Price Index (6 Major Cities average) is the Statistics Bureau of Japan.

As Table 1.11 shows, there is strong evidence that house prices have run through explosive

phases. For the US S&P/Case-Shiller home price index, the UK house price index, and the

Spanish house price index both tests reject the random walk hypothesis at the 1% level, indi-

cating bubble-like growth during the time preceding 2006/07. Similar results are obtained for

the Japanese land price index, where the explosive phase occurred before 1990. Interestingly,

also for the Nikkei225 index, the supDFC and the supDF tests detect explosive behavior prior

to January 1990. These results indicate that a land price bubble in Japan was paralleled by a

stock market bubble.
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Table 1.11: Testing for an explosive root

Series name monthly data weekly data daily data

supDFC supDF supDFC supDF supDFC supDF

Stock Market Indices:
S&P 500 *** * ** * *** *
(Jan80 - Mar00)
FTSE 100 * * * **
(Dec85 - Dec99)
Nikkei 225 *** ** *** ** *** ***
(Jan57 - Jan90)
Hang Seng ** ** **
(Oct80 - Oct07)
Shanghai ** *** ***
(Jan91 - Nov07)

Commodities:
Crude Oil
(Jan85 - Jul08)
Gold * * *
(Jan85 - Nov10)

House/ Land Prices:
US *** *** - - - -
(Jan87 - Mar06)
Spain *** *** - - - -
(87Q1 - 07Q1)
UK *** *** - - - -
(Jan91 - Oct07)
Japan *** ** - - - -
(1957 - 1990)

Notes: The table reports significance levels of the supDFC and supDF test applied to the logarithm of the
respective time series at monthly, weekly, and daily frequencies. For the house/ land prices data were not
available at a weekly or daily frequency. For Spanish house prices the data frequency is quarterly and for
Japanese urban land prices data was available only at an annual frequency.
“*(**/***)” signifies significance at the 10% (5%/ 1%) level.
“-” signifies that the data is not available at the corresponding frequency.

With regard to the S&P 500, both the supDFC and supDF tests detect explosive behavior.

The supDFC test rejects at the 5% or 1% level, while the supDF test rejects at the 10% level.

Thus, there is evidence that in the 90s not only the Nasdaq but also the S&P 500 was driven

by a bubble.
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The supDF test detects a bubble in the FTSE 100 series for weekly and daily data. The

explosive behavior, however, is not identified during the 90s, but several months before Black

Monday 1987. The DFτ statistic exceeds the critical values only when τ corresponds to July

1987.

Turning to Chinese stock market indices, the results in Table 1.11 show that for the Shanghai

Stock Exchange Index, the supDFC test finds clear evidence of explosive growth before Novem-

ber 2007, and for the Hang Seng Index, the supDFC test rejects the no bubble hypothesis at

the 5% level (independent of the sampling frequency).

Furthermore, there is no evidence for a bubble in the barrel price of Brent Crude oil. For

the price of a troy ounce of gold at the London Bullion Market the evidence is mixed. The

supDFC test is significant at the 10% level for monthly and weekly data, while the supDF test

is insignificant for all sampling frequencies.11 Test results are very different, when the real gold

price from January 1968 until its all time high in January 1980 is considered. The supDFC

and the supDF tests reject the hypothesis of no structural breaks at the 1% level, irrespective

of the data frequency.

Finally, the dividend series for the stock market indices were not available in all cases.

However, for the S&P 500 and for the Hang Seng we were not able to reject the constant I(1)

null hypothesis for the dividend series (not shown), which gives further support to the view,

that there has been a bubble in those stock markets.

For those time series where the supDFC detected a change from I(1) to explosive at the

5% level, we use the related estimator τ̂DFC to estimate the date of the change. The results

are reported in Table 1.12. Figure 1.6 shows the plots of the corresponding series. The shaded

regions highlight the phase from the estimated start date of the bubble until its presumed

collapse. The estimate for the Spanish house price index and for the Japanese house price

index should be interpreted with care, since the time series considered are rather short (81

respectively 34 observations). From Table 1.12 one can also see that the break date estimate

for a given time series is robust to the choice of the sampling frequency. Also note from the
11Interestingly, when we estimate the start of a supposed bubble using τ̂DFC , the result, July 2007, closely

coincides with the beginning of the subprime crisis and the failure of several Bear Stearns hedge funds.
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Table 1.12: Estimates for the date of change form I(1) to explosive

data frequency

Series name monthly weekly daily

Stock Market Indices:
S&P 500 1990-10-31 1990-10-16 1990-10-11
Nikkei 225 1982-10-03 1982-10-04 1982-10-01
Hang Seng 2003-03-31 2003-04-25 2003-04-25
Shanghai 2005-12-02 2005-12-05 2005-12-05
House/ Land Prices:
US 1999-15-06 - -
Spain 1997Q4 - -
UK 1999-01-15 - -
Japan 1985 - -

Notes: The table reports break date estimates for different financial time series using the estimator τ̂DFC from
Section 1.4.

results in Table 1.11 that in most cases, changing the observation frequency has only a minor

impact on the p-values of the tests. This seems to mirror the finding of Shiller and Perron

(1985) for unit root tests against stationary alternatives. Their theoretical analysis and Monte

Carlo simulations suggest that power depends more on the span of the data rather than on the

number of observations.

1.8 Conclusion

In this chapter the ability of several tests to detect rational bubbles has been investigated. The

main focus was on rational bubbles in stock markets. The basic idea is that a rational bubble

gives rise to an explosive component in stock prices. Therefore, a change from a random walk

to an explosive regime is considered to be an indication for the emergence of a speculative

bubble. Hence, all tests aim at detecting a switch from a random walk to an explosive regime.

The sequential Dickey-Fuller test, proposed by Phillips, Wu and Yu (2011) serves as a reference

point. We have also adapted various tests for a change in persistence to accommodate a possible

change from I(1) to an explosive regime. In a simple simulation framework it was shown that

a Chow-type Dickey-Fuller (supDFC) test and our modified version of Busetti and Taylor’s
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(2004) (supBT) test have higher finite sample power than the test of Phillips et al. (2011),

especially when the change from I(1) to explosive occurs late in the sample. This result was

confirmed in simulation experiments with randomly starting bubbles.

With regard to the estimation of the date where the bubble process starts, different proce-

dures were considered. It turned out that in typical sample sizes the estimator suggested by

Phillips et al. (2011) is downward biased and has a large standard deviation. On the other

hand, the estimator that results from maximizing the Chow-type test statistic (τ̂DFC) yields a

reliable and roughly unbiased estimator of the starting date.

Since Evans (1991) clearly demonstrated the potential problems of unit root tests to de-

tect periodically collapsing bubbles, we also study the properties of the tests under multiple

structural breaks. It turns out that the Phillips, Wu, and Yu (2011) test is much more ro-

bust against multiple breaks than all other tests. We also considered sequential Dickey-Fuller

t-statistics and CUSUM statistics within a real-time monitoring framework and present critical

values for different sizes of the monitoring sample.

The test of Phillips et al. (2011) provides strong evidence for a bubble in the Nasdaq

index at the end of the 90s. Their findings are even strengthened by our sequential Chow-type

Dickey-Fuller test and the modified version of Busetti and Taylor’s (2004) test. The estimation

of the starting date of the bubble indicates that the explosive regime emerged in the first half

of the 90s. Moreover, our results support the view that bubbles have occurred in several other

stock markets. Our sequential Chow-type Dickey-Fuller test and the supDF test of Phillips et

al. (2011) also indicate explosive behavior in US, UK, and Spanish house price indices prior to

the so-called subprime crisis.
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Chapter 2

An operational interpretation and

existence of the Aumann-Serrano index of

riskiness

2.1 Introduction

In a recent paper Aumann and Serrano (2008) proposed an economic index of riskiness that

has several desirable features. For instance, it extends the partial ordering of gambles induced

by first and second order stochastic dominance. Foster and Hart (2009) recognized that the

economic index of riskiness lacks an operational interpretation and “while attempting to provide

an operational interpretation for it, [they] were led instead to the different measure of riskiness”

(Foster and Hart, 2009, p. 787, ll. 17ff). According to Foster and Hart (2009) a measure is

operational, if it “is defined separately for each gamble and, moreover, has a clear interpretation

in monetary terms” (Foster and Hart, 2009, p. 787, ll. 22ff). We show in this chapter that such

an operational interpretation can be assigned to the economic index of riskiness of Aumann

and Serrano (2008) (in the following abbreviated as AS index).

The key to this result is the so-called adjustment coefficient from ruin theory, see e.g.

Grandell (1991). This coefficient has not been considered so far in Aumann and Serrano (2008)

or Foster and Hart (2009). However, we show that there is a one-to-one relationship between

the AS index and the adjustment coefficient, which allows to provide existence and uniqueness
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results for the AS index for more general gambles than those considered in Aumann and Serrano

(2008).

In the following we briefly restate the definition and some properties of the AS index and

the adjustment coefficient. We then combine these to provide an operational interpretation of

the AS index as well as existence and uniqueness results in the general case.

2.2 The Aumann-Serrano index of riskiness

Aumann and Serrano’s (2008) index of riskiness is an axiomatic approach to assign a meaning

to the word risky. It enables a decision maker to asses which of two gambles/investments is

riskier without referring to a specific preference order.

More specifically, let g be a gamble, i.e. a random variable, that takes on values in the real

numbers R (or a subset) with (i) positive probability of negative outcomes (P (g < 0) > 0) and

(ii) expected value greater than zero (E (g) > 0). An index Q is defined as a mapping that

assigns a positive real number to each gamble that satisfies the assumptions above. Of course,

not every index provides a meaningful summary of a gamble’s riskiness. Aumann and Serrano

(2008) argue that a reasonable risk index should satisfy the following two axioms:

D Duality: If i and j are two agents, such that i is uniformly more risk averse than j,1 and

if i accepts a gamble g at wealth w and Q(g) > Q(h), then j accepts the gamble h at

wealth w.

H Homogeneity: For any positive real number t, it holds that Q(tg) = tQ(g).

Aumann and Serrano (2008) show that any two indexes that satisfy D and H are positive

multiples of each other. Moreover, a specific index that satisfies D and H can be obtained as

the positive solution to the equation

E
(

e−
g
r

)
= 1. (2.1)

1Agent i is called uniformly more risk averse than agent j, if the fact that i accepts a gamble at some wealth
implies that j accepts that gamble at any wealth.
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We refer to the solution of (2.1) as the AS index rAS = rAS(g). If the gamble g takes on only

finitely many values Aumann and Serrano (2008) show that the assumptions (i) and (ii) are

necessary and sufficient for a unique positive solution to (2.1). However, this is no longer the

case, if the finiteness assumption on gambles is dropped, as we will discuss below.

2.3 The adjustment coefficient

The adjustment coefficient, denoted by rAC , is a well established quantity in ruin theory (see

for instance Grandell, 1991). It plays a crucial role in the assessment of the ruin probability

for a wealth process Wj, j = 0, 1, 2, . . .. To describe this process, let g0, g1, g2, . . . be a sequence

of independent and identically distributed gambles and W0 > 0 the initial wealth. The wealth

process evolves according to

Wn = W0 + g0 + g1 + . . .+ gn−1 ∀n ≥ 1. (2.2)

One can think ofW0 as the starting capital of an insurance company and gj as the premium pay-

ments the company receives minus the claims it has to pay during period j. Ruin or bankruptcy

occurs ifWj < 0 for some j ≥ 1. Let N = inf{j ≥ 1 : Wj < 0}, where conventionally inf ∅ =∞.

Denote the probability of ruin, that depends on the initial wealth W0, by ψ(W0) = P (N <∞).

To assess ψ(W0), we first need to define the adjustment coefficient rAC . For a gamble g it

is given by the positive solution of the equation

E
(
e−rg

)
= 1. (2.3)

If rAC exists it is also unique (see below). Now, if rAC is the adjustment coefficient of g1, then

ψ(W0) =
e−rACW0

E (e−rACWN |N <∞)
≤ e−rACW0 , (2.4)

with W0 > 0.

The similarity between the defining equation for the adjustment coefficient (2.3) and for the

AS index (2.1) is striking. We elaborate on it in the next section.
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2.4 An operational interpretation of the Aumann-Serrano index of

riskiness

In this section we provide an operational interpretation of the Aumann-Serrano index. From

the similarity between equations (2.1) and (2.3), it is obvious, that the AS index exists if and

only if the adjustment coefficient exists. As both are uniquely determined (see below), it follows

that

rAS =
1

rAC
. (2.5)

Now assume that we want to ensure that the probability of ruin for a wealth process de-

scribed by (2.2) does not exceed a certain level, say p ∈ (0, 1). Using (2.4) and (2.5) we

have

ψ(W0) ≤ e−W0/rAS = p

⇔ W0 = log(1/p)rAS.

Thus, an initial wealth level of log(1/p)rAS ensures that the probability of bankruptcy is no

larger than p. For small p, log(1/p)rAS is close to the minimal wealth W∗(p) that fulfills the

above requirement. To see this, note that the denominator in (2.4) is constant with respect to

p. Therefore,

log(1/p)rAS ≥ W∗(p) ≥ log(1/p)rAS −O(1)

and thus

W∗(p)/(log(1/p)rAS)→ 1

as p goes to zero.

For every p ∈ (0, 1), log(1/p)rAS is an index satisfying D and H. The AS-index arises as a

special case for p = e−1 and can be interpreted as the approximate wealth required to ensure

no bankrupty with a probabiltiy of 37%.

Note that the operational interpretation of the AS-index presented here does not depend on

a specific preference order. In contrast to that, Aumann and Serrano (2008) provide results that
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come close to an operational interpretation regarding agents with constant relative risk aversion.

Moreover their interpretation is only applicable to bounded gambles, while the interpretation

given here only presumes that the AS-index exists.

2.5 Existence of the AS index for non-finite gambles

Aumann and Serrano (2008) assume that the gambles, a decision maker faces, have finitely

many outcomes. This excludes many distributions used in financial applications. It is not

obvious which conditions are needed to guarantee the existence of the AS index, if we drop the

above assumption. Again, the one-to-one relation between the AS index and the adjustment

coefficient will prove extremely useful to solve this problem.

To begin with, denote the moment generating function (mgf) of a gamble or a random

variable g as

Mg (t) = E
(
etg
)
.

The mgf is a well-known concept in probability theory and statistics to derive the moments (of

functions) of random variables. Clearly, if there is a unique tR < 0 such that Mg(tR) = 1, it

immediately follows that the AS index is given by rAS = −1/tR and the adjustment coefficient

is given by rAC = −tR. However, it is not clear whether such a tR exists.

Again,we can draw upon results for the adjustment coefficient established by Mammitzsch

(1986). The above arguments show that the conditions for the existence of the AS index are

the same. Mammitzsch (1986) has shown that the necessary conditions for the existence of

the adjustment coefficients for general gambles are identical to those required by Aumann and

Serrano (2008) for bounded gambles with finitely many outcomes

(i) negative outcomes are possible, P (g < 0) > 0,

(ii) the expected outcome of the gamble is positive, E (g) > 0.

However, for continuous distributions these conditions are not sufficient. In fact, if we define

the interval of a finite mgf as Ig = {t ∈ R : Mg(t) <∞} and require that the lower bound
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Figure 2.1: This figure shows the mgf of a NIG distributed gamble.

l = inf Ig < 0, then the conditions (i) and (ii) are only sufficient if l 6∈ I. If l ∈ I the additional

condition

(iii) Mg(l) ≥ 1

must be satisfied. Observe that, if a gamble g has only finitely many outcomes then Ig =

(−∞,∞) and (i) and (ii) are sufficient for the existence of the AS index.

Provided that the AS index/the adjustment coefficient exists, uniqueness is automatically

ensured. Basically, the arguments made by Aumann and Serrano (2008) for gambles with

finitely many outcomes also hold for more general gambles.

We illustrate the practical relevance of condition (iii) by considering a normal inverse Gaus-

sian (NIG) distributed gamble. The NIG distribution is frequently used in the field of financial

econometrics, financial economics and mathematical finance (cf. Cont and Tankov (2004) and

the references therein).

The mgf for a NIG distributed gamble is given by

t 7→ e
µt+δ

(√
α2−β2−

√
α2−(β+t)2

)
,

with 0 ≤ |β| < α, δ > 0 and µ ∈ R. It is finite on the closed interval around zero

[− (α + β) , α− β] and therefore conditions (i) and (ii) are not sufficient for the existence of the

risk index. It will be shown in the next chapter that the additional condition (iii) is satisfied
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for this gamble whenever µ ≤ δ(α− β)/
√
α2 − β2. A case where this does not hold is depitced

in Figure 2.1, where the parameters are chosen as α = 1, β = 0, µ = 0, and δ = 1. For negative

arguments, the mgf stays below one and then discretely jumps to infinity at −1, i.e. it never

hits 1 in the negative reals.

2.6 Conclusion

We have shown that the AS index allows for an operational interpretation in terms of wealth

and ruin probabilities. The interesting link between the AS index and the Foster and Hart

(2009) measure is provided by the adjustment coefficient, a well-known parameter commonly

used to asses the ruin probability of an insurance company.

In addition to this new interpretation the so far unnoticed relation between the adjustment

coefficient and the AS index has also important implications, as well-known concepts from ruin

theory can be transferred to the latter. As an example we use the relation to derive conditions

for the existence of the AS index for gambles with uncountably many outcomes.
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Chapter 3

Beyond the Sharpe ratio: an application

of the Aumann-Serrano index to

performance measurement

3.1 Introduction

Performance measures are important tools for management decisions. They induce a total (or

partial) order of investment opportunities so that agents can reduce their decisions regarding

these investments to a simple comparison of these coefficients. Such decisions are, for instance,

concerned with ranking investment opportunities or evaluating money managers, such as fund

managers.

The Sharpe ratio (introduced as and also called reward-to-variability ratio), proposed by

Sharpe (1966, 1994), is one of the most prominent performance measures. It is the ratio of the

mean over the standard deviation of the expected excess return of an investment opportunity.

It thus corrects the expected return by taking into account a specific type of risk taken by the

investor. Its justification requires some restrictions on either the distributions of the returns

or the investor’s preferences. The typical distributional assumption is that all returns under

consideration belong to the same location-scale family, see Meyer (1987) and Schuhmacher

and Eling (2011) for a recent application of this argument. The most common example is

the normal distribution. Moreover, the Sharpe ratio is adequate if investors only care about
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the mean and variance of an investment. However, it is well known that financial returns very

often exhibit non-normal characteristics, such as (negative) skewness and excess kurtosis, which

differ between assets (cf. Agarwal and Naik, 2004; Malkiel and Saha, 2005). This rules out the

case that return distributions belong to the same location-scale family. Furthermore, empirical

and experimental studies show that it is unlikely that investors do not care about these higher

order moments (cf. Golec and Tamarkin, 1998; Harvey and Siddique, 2000). A prominent field

of application for the Sharpe ratio is fund-ranking. Since the Sharpe ratio ignores differences in

higher order moments the question arises as to what extent the ranking changes if one accounts

for non-normality.

This has led to the development of various performance measures which take into account

these stylized facts of financial returns. Most of them either replace the mean with a different

reward measure or they substitute the standard deviation with a different measure of the

(relevant) risk taken by the investor, or both. However, most of these measures are proposed

in a rather ad hoc way and their economic foundation is rather vague. For an overview we refer

to Cogneau and Hübner (2009a,b), Eling and Schuhmacher (2007) and Farinelli et al. (2008)

and the references therein.

In this chapter we propose a new performance measure that, in contrast to the Sharpe

ratio, meets the natural requirement that it is strictly monotone with respect to stochastic

dominance and can account not only for the mean and variance but also for higher moments.

The performance measure is obtained by dividing the mean of an investment opportunity by its

economic index of riskiness proposed by Aumann and Serrano (2008) (AS index henceforth).

As opposed to the risk measures mentioned above, the AS index is mainly derived from a choice

theoretic axiom, namely the axiom of duality. It requires an index to reflect the following natural

notion of less risky : given that an investment is accepted by some agent, less risk averse agents

accept less risky investments. As such it is an economically motivated axiom and Aumann and

Serrano (2008) therefore termed their index economic index of riskiness. To emphasize that our

performance measure is based on such an economic risk measure we refer to it as the economic

performance measure (EPM). If investment returns are normally distributed, the EPM and the
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Sharpe ratio produce the same ranking of these investments. The EPM, thus, generalizes the

Sharpe ratio with respect to non-normal distributions.

Moreover, we extend the continuity result of Aumann and Serrano (2008) and show that if

the distribution of the returns converges to the normal distribution, the EPM converges to two

times the squared Sharpe ratio. Thus, the EPM also asymptotically induces the same ranking as

the Sharpe ratio. This is especially appealing in connection with the aggregational Gaussianity

property of financial returns. This property states that for decreasing sampling frequency, e.g.

going from daily to monthly and down to yearly returns, the return distribution approximates

the normal distribution, see e.g. Cont (2001) and Rydberg (2000). While the Sharpe ratio is

appropriate for low frequency returns, the new performance measure is appropriate for both

low and high frequency returns, with no disadvantages compared to the Sharpe ratio in the

former case.

We propose a parametric and a non-parametric moment estimator for the EPM. For para-

metric estimation we assume that returns follow a normal inverse Gaussian (NIG) distribution

proposed by Barndorff-Nielsen (1997). As the NIG distribution is analytically tractable and has

several attractive properties it is widely used in financial applications. It allows to model skew-

ness and semi-heavy tails. We derive a closed form expression for the EPM of NIG-distributed

random variables (e.g. excess returns) in terms of the first four moments. This makes explicit

the dependence on skewness and kurtosis and provides a moment estimator for the EPM that

is virtually as easy to compute as the Sharpe ratio. For non-parametric estimation the crucial

idea is to use a moment condition that corresponds to the defining equation of the AS index.

Results on asymptotic normality can readily be inferred from the literature on the method of

moments. In a simulation study we address the issue of estimation uncertainty. Given that

higher moments are important to investors, our results suggest that even for data sets with

a limited number of observations, rankings based on the EPM are superior to Sharpe ratio

rankings.

We apply our two estimators to rank mutual funds and hedge funds via the EPM and

compare the results with a Sharpe ratio ranking. Imposing the parametric assumption of
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NIG-distributed returns yields a ranking of the funds that is very similar to the one implied

by the non-parametric estimation of the EPM, which indicates that the NIG-distribution is a

reasonable choice. While the distributions of the excess returns from the mutual funds are close

to Gaussian, the distributions of the hedge funds returns show pronounced skewness and excess

kurtosis. As a consequence, the ranking of the mutual funds is very similar under the Sharpe

ratio and the EPM. For the hedge funds, however, the two measures yield different rankings. In

particular, if a fund’s return distribution has relatively low (high) skewness and/ or relatively

high (low) excess kurtosis, the fund is typically ranked lower (higher) by the EPM than by the

Sharpe ratio.

The remainder of this chapter is structured as follows. The next section introduces the eco-

nomic performance measure. We derive properties of this new measure and discuss its relation

to the Sharpe ratio and other performance measures. In Section 3.3 we suggest estimators for

the EPM and conduct a Monte Carlo experiment. Section 3.4 provides an empirical illustra-

tion using mutual funds and hedge funds return data. Section 3.5 concludes. The Appendix

contains supplementary calculations.

3.2 An economic performance measure

Let r̃ denote the (stochastic) return of an investment portfolio, rf the (deterministic) risk-

free rate and r the resulting (stochastic) excess return. We define the economic performance

measure as the expected excess return relative to the AS index of riskiness of this return:

EPM (r) =
E (r)

AS (r)
=

E (r̃)− rf

AS (r̃ − rf )
. (3.1)

Thus, in contrast to the Sharpe ratio, the EPM divides the mean excess returns by its AS index

instead of dividing by its standard deviation. This has important implications for the properties

of the performance measure. In order to derive these properties we first briefly review the AS

index. In Section 3.2.2 we present the properties of the EPM. In particular, we generalize the

continuity property of the AS index, see Aumann and Serrano (2008), and extend this property

to the EPM. We discuss the relation to the Sharpe ratio and other performance measures in
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Section 3.2.3.

3.2.1 The Aumann-Serrano index of riskiness

Aumann and Serrano’s (2008) index of riskiness is an axiomatic approach to assign an objective

meaning to the word risky. It enables a decision maker to assess which of two investments is

riskier without referring to a specific utility function or preference order. Similar to the standard

deviation or value at risk (VaR), the AS index summarizes the properties of a gamble in a single

number, thereby making comparisons very easy.

Note that although the AS index was proposed for gambles in terms of absolute outcomes,

it can straightforwardly be applied to excess returns. Indeed, the excess return r̃ − rf can

be regarded as the outcome of a zero investment strategy that consists in borrowing $1 and

investing it in a risky asset for a given time span. In the remaining part of this article we will

refer to “the gamble” as the “excess return” with this zero investment strategy.

Let an index Q be a mapping that assigns a positive real number to each excess return/

random variable with values in R. Of course, not every index provides a meaningful summary

of an investment’s “riskiness”. Aumann and Serrano (2008) argue that a reasonable risk index

should satisfy the following two axioms:

D Duality: If i and j are two agents, such that i is uniformly more risk averse than j,1 and

if i accepts an excess return r(A) at wealth w and Q(r(A)) > Q(r(B)), then j accepts the

excess return r(B) at wealth w.

H Homogeneity: For any positive real number t, it holds that Q(tr(A)) = tQ(r(A)).

Here, for t > 0, tr(A) is the gamble/ excess return that results from r(A) by multiplying every

outcome of r(A) by t. It is quite natural to think that if the stakes are doubled, the risk is

also doubled, i.e. to require homogeneity. Note that axiom D is actually a mild requirement on

an index, since the numbers assigned to two gambles only have an implication for an agent’s

decision if strong preconditions are satisfied. Axiom D basically says, that if an agent accepts
1Agent i is called uniformly more risk averse than agent j, if the fact that i accepts an excess return at some

wealth implies that j accepts that excess return at any wealth.
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an excess return r(A), then a less risk averse agent should accept an excess return r(B) that is

less risky than r(A) according to the index.

Aumann and Serrano (2008) show that any two indices that satisfy D and H are positive

multiples of each other. Moreover, a specific index that satisfies D and H can be obtained as

the positive solution to the equation

E
(

e−
r(A)

s

)
= 1. (3.2)

The value of s > 0 that solves (3.2) is referred to as the AS index of r(A), AS
(
r(A)

)
.

The AS index of riskiness is objective in the sense that it does not depend on the preferences

of an individual agent. From the duality and homogeneity property it follows that the AS index

is also subadditive. Furthermore, Aumann and Serrano (2008) demonstrate that it is monotone

with respect to first and second order stochastic dominance. Since stochastic dominance plays

an important role, we briefly review it in the next paragraph. For a survey on this topic see

Levy (1992).

In the theory of choice under uncertainty, stochastic dominance is a widely acknowledged

concept. If an investment A stochastically dominates an investment B, then a “large” group of

investors will prefer A over B. More specifically, let FA and FB be the distribution functions

of the excess returns r(A) and r(B) corresponding to A and B, respectively. A first order

stochastically dominates B (A
1
� B), if FA(x) ≤ FB(x) for all x ∈ R and FA(x) < FB(x) for

some x ∈ R. If this is the case, then any decision maker with increasing utility function prefers

investment A over investment B. Moreover, the converse is also true. Unfortunately, many

investments cannot be ordered by first order stochastic dominance. A less restrictive assumption

about the relation of two gambles is made by second order stochastic dominance (
2
�). We say

that an investment A second order stochastically dominates an investment B (A
2
� B), if∫ y

−∞[FA(x) − FB(x)] dx ≤ 0 for all y ∈ R and strict inequality holds for some y ∈ R. Second

order stochastic dominance is implied by first order stochastic dominance. Similar to first order

stochastic dominance, it holds that, A
2
� B iff any investor with increasing and concave utility

function prefers A to B. Regarding risk measures, it is natural to require that a risk measure
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classifies alternative A as less risky than B if all risk averse investors unanimously prefer A

over B. The AS index has this property referred to as monotonicity with respect to stochastic

dominance.

Finally, it remains to clarify the question about its existence. If the excess return r takes

on only finitely many values, Aumann and Serrano (2008) show that the following assumptions

are necessary and sufficient for a unique positive solution to (3.2):

(i) possibly negative outcomes, i.e. P (r < 0) > 0, and

(ii) expected value greater than zero, i.e. E (r) > 0.

However, for continuous distributions, i.e. distributions with uncountable many outcomes,

the existence of this index is more delicate. The moment generating function (mgf) of an excess

return r is defined by

Mr (t) = E
(
etr
)
.

Furthermore, let Ir = {t ∈ R : Mr(t) <∞} and l = inf Ir < 0. In the previous chapter we have

shown that in addition to (i) and (ii) the following condition must also be satisfied to ensure

the existence of the AS index:

(iii) l /∈ Ir or Mr(l) ≥ 1.

Note that for excess returns with finitely many outcomes it holds that l = −∞ and, thus, (iii)

is satisfied.

3.2.2 Properties of the economic performance measure

We now derive useful properties of the EPM. Some of these are easily inferred from the proper-

ties of the AS index. Additionally, we also derive a general form of continuity for the AS index

and extend it to the EPM. In contrast to Aumann and Serrano (2008), this generalized conti-

nuity also applies to excess returns with infinitely many possible outcomes, which is typically

the case in financial return modeling.
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Scale invariance

Both the numerator and the denominator of the EPM (3.1) are homogeneous, so that the

EPM is scale invariant. Therefore the scale of the investment can be set to $1 without loss of

generality, identifying the excess return as the zero investment strategy using $1.

Interpretation

The EPM can be interpreted as a measure of reward to required capital. In the foregoing chapter

it has been shown that, for 0 < p < 1 and p close to zero, log(1/p)AS (r) is approximately equal

to the minimum required initial wealth that assures no bankruptcy with probability 1−p when

playing the zero investment strategy with excess return r infinitely often.2 We do not use the

factor log(1/p), however, since it is irrelevant for ranking purposes.

Stochastic dominance

Beyond the fact that the EPM uses a risk measure that is (strictly) monotone with respect

to first (“
1
�”) and second order (“

2
�”) stochastic dominance, the EPM itself has this property.

This follows immediately from the fact that the mean is monotone with respect to stochastic

dominance.3 In other words, if r(A)
1
� r(B) or r(A)

2
� r(B), then AS

(
r(A)

)
< AS

(
r(B)

)
and

E
(
r(A)

)
≥ E

(
r(B)

)
and therefore EPM

(
r(A)

)
> EPM

(
r(B)

)
.

Normally distributed returns

For normally distributed excess returns, r(N) ∼ N (µ, σ2), Aumann and Serrano (2008) deter-

mine the index of riskiness as σ2/(2µ). It follows that the EPM is given by

EPM
(
r(N)

)
=

µ

AS (r(N))
=

2µ2

σ2
.

2To be more explicit, let W0 denote initial wealth and let {rn}n≥1 a sequence of independent and identically
distributed excess returns, for which the AS index exists. Wealth at time n is given byWn = W0+r1+r2+. . .+rn.
Bankruptcy occurs as soon as Wn < 0.

3To see this, note that u(x) = x is increasing and concave and thus “r(A)
1
� r(B)” or “r(A)

2
� r(B)” implies

E
(
r(A)

)
= E

(
u(r(A))

)
≥ E

(
u(r(B))

)
= E

(
r(B)

)
.
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In this case the EPM equals two times the squared Sharpe ratio, EPM
(
r(N)

)
= 2SR2

(
r(N)

)
,

which means that the two measures produce identical rankings. Hence, for normally distributed

excess returns, where the Sharpe ratio is an appropriate performance measure, the EPM suits

equally well. But the EPM is also suitable, when other moments of the distribution, such as

skewness and kurtosis, are important. In the next paragraph we supplement this result and show

that, under some regularity conditions, as the distribution of an excess return r approximates

the normal distribution, the EPM of r approximates the EPM of a normally distributed excess

return.

Generalized continuity

We show that the continuity property of the AS index also applies to more general cases than

those considered by Aumann and Serrano (2008). From this and an additional assumption

the continuity of the EPM follows. The above mentioned result concerning the approximation

of normally distributed returns is a special case of this generalized continuity property of the

EPM.

Let r0 and {rn}n≥1 be random variables/ excess returns and denote their moment generating

function as Mn(t) = E (etrn) (n ≥ 0). Let “ d→” denote convergence in distribution.

Assumption 3.1. The economic index of riskiness AS (rn) exists for all n ≥ 0.

Assumption 3.2. There exists a real number b > 1/AS (r0) such that supnMn(−b) <∞.

Assumption 3.2 means that the left tails of the return distributions should not be too heavy.

With these two assumptions we can state the following

Proposition 3.3 (Generalized Continuity). If Assumptions 3.1 and 3.2 hold, then rn
d→ r0

implies AS (rn)→ AS (r0).

Proof. The proof of Proposition 3.3 is given in the appendix to this chapter. The main tool is

Theorem 5.4 in Billingsley (1968).

59



Note that Aumann and Serrano (2008) assume that the excess returns satisfy conditions

(i) and (ii), take only finitely many values, and that they be uniformly bounded.4 These

assumptions are stronger and indeed imply Assumptions 3.1 and 3.2. First, requiring that

the returns take on only finitely many values and satisfy conditions (i) and (ii) assures that

the AS index exists for the returns under consideration. Second, requiring that the sequence

of returns be uniformly bounded implies Assumption 3.2. To see this, let K > 0 such that

|rn| ≤ K for all n. Then, for b > 1/AS (r0), e−brn ≤ ebK almost surely for all n. Therefore,

Mn(−b) = E
(
e−brn

)
≤ ebK for all n and Assumption 3.2 holds.

So, we have the proof for generalized continuity for the AS index. To achieve continuity for

the EPM we have to make an additional assumption:

Assumption 3.4. The sequence {rn}n≥1 is uniformly integrable.5

Corollary 3.5 (Generalized Continuity for EPM ). If Assumptions 3.1, 3.2, and 3.4 hold, then

rn
d→ r0 implies EPM (rn)→ EPM (r0).

Assumption 3.4 together with rn
d→ r0 imply that E (rn) → E (r0) (cf. Billingsley, 1968).

Then the corollary immediately follows from generalized continuity. Furthermore, note that the

requirement of {rn}n≥1 being uniformly bounded, as in Aumann and Serrano (2008), guarantees

that Assumption 3.4 holds.

Corollary 3.5 is not only of theoretical importance but also of practical relevance. Note, that

the aggregational Gaussianity property of (excess) asset returns states that the distribution of

less frequent sampled returns, e.g. going from daily to monthly and down to yearly returns,

approximates the normal distribution. Under the assumptions of this section, this implies that

the EPM approximates the EPM of normally distributed returns as the sampling frequency

decreases. While the Sharpe ratio is appropriate for low frequency returns, the EPM is appro-

priate for both low and high frequency returns, with no disadvantages compared to the Sharpe

ratio in the former case.
4A sequence of excess returns {rn}n≥1 is uniformly bounded, if there is a K > 0 such that, for all n, |rn| ≤ K

almost surely. Note that this precludes that the distribution of rn converges to a normal distribution as n→∞.
5By definition, this means that limα→∞ supn E

(
|rn|I(|rn|≥α)

)
= 0.
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3.2.3 Relation to the Sharpe ratio and alternative performance mea-

sures

The Sharpe ratio of an investment opportunity is given by its mean excess return relative to

the standard deviation

SR (r) =
E (r̃)− rf√

V (r̃)
,

which is sensible if E (r̃) > rf . The Sharpe ratio plays an important role in a mean-variance

decision framework. There, the portfolio with the highest Sharpe ratio together with the risk

free asset determines the set of (mean-variance) efficient investments, e.g. see Sharpe (1966)

and Treynor (1965). The mean-variance framework is appropriate if investors have quadratic

utility or if all returns ri under consideration are equal in distribution to ai + bir for some

generic return r and ai ∈ R, bi > 0.6 However, returns typically differ not only in location and

scale but also in skewness and kurtosis, for instance. Such aspects are ignored by the Sharpe

ratio.7

Furthermore, the Sharpe ratio is not monotone with respect to first order stochastic dom-

inance. The following example provides an illustration. Consider two assets A and B, where

A yields an excess return r(A) of either −1%, 1% or 5%, with probability 0.1, 0.45 and 0.45,

respectively. Asset B yields an excess return r(B) of either −1%, 1% or 3%, with the same

probabilities 0.1, 0.45 and 0.45, respectively. Then SR
(
r(A)

)
≈ 1.16 < 1.30 ≈ SR

(
r(B)

)
, al-

though it would be natural to prefer A over B, since A performs strictly better than B in one

case and not worse than B in the other cases.

There is a variety of performance measures that aim to overcome the drawbacks of the

Sharpe ratio (cf. Cogneau and Hübner, 2009a,b). Typically, they replace the standard deviation

in the denominator of the Sharpe ratio by a different risk measure and in some cases use a
6Instead of requiring that all ri belong to a certain location-scale family, one can assume that this holds

for h(ri), where h is some monotonically increasing and concave function. This, however, comes at the cost of
restrictions on the utility function u: u ◦ h−1 has to be a concave function, with h−1 denoting the inverse of h.
This was investigated by Boyle and Conniffe (2008), who considered two parameter distributions for ri.

7To test the location-scale condition, Meyer and Rasche (1992) consider a generalization, where ai is replaced
by c+aiz, with c a constant and z a random variable that is independent of r. Assuming that E (r) = 0, expected
utility can be represented as function of the mean and the variance alone. However, it is an open question under
which conditions this function is increasing in the mean or quasi-concave.
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different reward measure in the numerator. The EPM also falls into the category of these so-

called reward-to-risk measures. Like other measures, the EPM is not in all dimensions superior

to all other reward-to-risk measures. First, there is no consensus about the relevant properties

of a performance measure. These depend rather on the context under which performance

evaluation is carried out. Second, the EPM has several attractive features which give it an

advantage over other performance measures in some respects as outlined below. A complete

discussion of how the EPM relates to each single reward-to-risk measure is beyond the scope

of this chapter. However, to gain a broad picture we consider relevant groups of reward-to-risk

measures and give some examples. For the purpose of the following discussion we distinguish

between the ad hoc approach, the axiomatic approach, and the economic approach.

Many reward-to-risk measures replace the standard deviation in the denominator of the

Sharpe ratio by another statistical summary measure, for instance by the semi-standard de-

viation (cf. Sortino and Price, 1994) or value at risk (cf. Dowd, 2000). This rather ad hoc

approach contrasts with the EPM, since the AS index is axiomatically founded on the theory

of decision making under risk. Nevertheless, the EPM shares common features with certain ad

hoc performance measures: The Sortino ratio (cf. Sortino and Price, 1994), the upside potential

ratio (Sortino et al., 1999) and the Calmar ratio8 also yield Sharpe ratio-equivalent rankings

when returns are normal (cf. Lien, 2002, Schuhmacher and Eling, 2011). Furthermore, the

interpretation of the EPM as reward-to-required-capital relates it to excess return on value at

risk (cf. Dowd, 2000) and drawdown-based performance measures. Although these measures

are very popular in practice, their theoretical properties are still subject to research, e.g. see

Schuhmacher and Eling (2011).

As opposed to the EPM, ad hoc performance measures, in general, use risk measures that

are not monotone with respect to stochastic dominance. We illustrate this for the case of the
8The Sortino ratio replaces the standard deviation with semi-standard deviation in the denominator of the

Sharpe ratio. The upside potential ratio additionally replaces the mean with the so-called upside potential
E(r1{r>0}). The Calmar ratio is computed from dividing the mean excess return by the maximum drawdown
for a certain period.
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excess return on value at risk: The excess return on value at risk is given by

ERVaRα =
E (r)

VaRα (r)
,

where r denotes the excess return and VaRα (r) is the threshold that negative excess returns

will not exceed with a given probability α. Now, consider the 90% VaR and let A and B be

two assets with excess returns r(A) and r(B). Assume that r(A) takes on the values −3%, −1%

or 4% with probabilities 5%, 5% and 90%, respectively, while r(B) takes on the values −2%

or 4% with probabilities 10% and 90%, respectively. It is easily verified that B second order

stochastically dominates A, and thus all profit seeking and risk averse investors prefer B over

A. If the risk, instead, is measured with respect to the VaR, then A is preferred over B as

VaR0.9

(
r(A)

)
= 1% < 2% = VaR0.9

(
r(B)

)
. Since the mean excess return of both assets is equal,

it also follows that ERVaR0.9

(
r(A)

)
> ERVaR0.9

(
r(B)

)
, which is again at odds with the choice

of risk averse investors. However, ERVaR is widely used because of regulatory requirements.

This is a case where the context has considerable influence on the choice of the (performance)

measure.

We now turn to the axiomatic approach. Artzner et al. (1999) propose so-called coherent risk

measures. But, their axioms give rise to a whole class of risk measures (instead of determining

one) and it is not guaranteed that they are monotone with respect to stochastic dominance

either. De Giorgi (2005) proposes an axiomatic definition for both the risk and the reward

measure. In both cases he requires that the measures are monotone with respect to second

order stochastic dominance. The only reward measure that fulfills all the requirements of

De Giorgi (2005) is the expected value. Moreover, to pin down a particular risk measure a

distortion of the objective probability measure has to be chosen. The author suggests that this

choice should depend on the risk characteristics of the investor, i.e. the utility function. The

EPM, on the other hand, uses objective reward and risk measures (independent of individual

preferences) and is thus more generally applicable.

Finally, Zakamouline and Koekebakker (2009) consider a simple economic model to define

their performance measure. They measure the performance of a risky asset as the maximal
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expected utility an agent can achieve by allocating his wealth between the risky and the riskless

asset. Again, this contrasts with the objectivity of the EPM. Also based on an economic model,

Foster and Hart (2009) suggest an operational measure of riskiness that, similarly to the AS

index, has a unique characterization and is independent of a specific preference relation. It also

respects stochastic dominance and is numerically quite close to the AS index. However, since

its restriction on the heaviness of the tails is rather strong, it cannot be directly applied to

distributions that are commonly used in modeling financial returns.

3.3 Estimation of the economic performance measure

In the following we discuss the estimation of our performance measure. In empirical applications

the probability measure P is not observable but instead we observe n independent and identically

distributed (iid) realizations {r1, . . . , rn} of the excess return r.9 Based on these observations we

want to estimate the EPM, the ratio of the mean of the excess returns over the corresponding

AS index of riskiness. As the estimation of the mean is straightforward we will concentrate on

the estimation of the AS index.

3.3.1 Parametric estimation and the normal inverse Gaussian distri-

bution

A typical parametric estimation approach consists of choosing a reasonable parametric distri-

bution, estimating the parameters of this distribution and, finally, computing the AS index

based on these estimates. Distributions for which the AS index is available in closed form are

for instance the normal distribution (see Aumann and Serrano, 2008) and the normal inverse

Gaussian distribution (see below) or the exponential, Gamma, Variance-Gamma, and Poisson

distributions (see Schulze, 2010). For other distributions the moment generating function (mgf)

might be available in closed form as a function of the distribution parameters, while the AS

index itself is not. In that case one can compute the mgf using estimated parameters and then
9Although we assume iid random variables in the following this is not essential and the estimator can be

straightforwardly generalized to a more general dependence structure.
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apply a numerical algorithm to solve for the AS index.10

Given its empirical adequacy, we suggest using the normal inverse Gaussian (NIG) dis-

tribution for parametric estimation. The NIG distribution is a well established distribution

in finance, econometrics and statistics. It is used, for example, to model unconditional as

well as conditional return distributions, see e.g. Andersson (2001); Bollerslev et al. (2009) as

well as Eriksson et al. (2009). Zakamouline and Koekebakker (2009) use this distribution for

performance measurement (cf. Section 3.2.3).

We derive the AS index and the EPM for NIG-distributed returns. Our representation of the

EPM in terms of the mean, variance, skewness, and excess kurtosis offers a simple estimation

scheme for the EPM. Furthermore, it makes explicit the role of higher order moments, which

are neglected in the Sharpe ratio.

A NIG-distributed excess return (random variable), r(NIG) ∼ NIG (α, β, ν, δ), is character-

ized by the following density

f (NIG)(x;α, β, ν, δ) =
αδ

π

K1

(
α
√
δ2 + (x− ν)2

)
√
δ2 + (x− ν)2

eδγ+β(x−ν) (3.3)

with 0 ≤ |β| < α, δ > 0, ν ∈ R, γ =
√
α2 − β2 and K1 (y) = (1/2)

∫∞
0

e−(1/2)y(z+z−1) d z the

modified Bessel function of the third kind with index 1. δ is a scaling parameter, ν is a location

parameter, β is an asymmetry parameter and α ± β determines the heaviness of the tails. It

follows from (3.3) that the moment generating function is given by

E
(

etr
(NIG)

)
= M (NIG) : [− (α + β) , α− β]→ R t 7→ eνt+δ(γ−

√
α2−(β+t)2) . (3.4)

For the derivation of the EPM and the AS index we first have to ensure that the latter is

well defined for NIG-distributed gambles. Note that the two assumptions (i) and (ii) in Section

3.2.1 are obviously satisfied whenever the mean (ν + δβ/γ) is positive. However, (i) and (ii)

are not sufficient for the existence of the risk index. For a NIG-distributed random variable

condition (iii) is satisfied, if ν ≤ δ(α − β)/γ. Using the defining Equation (3.2) and Equation
10This is in fact very simple, since the problem is one-dimensional and the function under consideration is

convex.
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(3.4) the AS index and the EPM for NIG-distributed gambles are given by:

AS(NIG) (α, β, ν, δ) = AS
(
r(NIG)

)
=

1

2

δ2 + ν2

βδ2 + γδν
(3.5)

EPM(NIG) (α, β, ν, δ) = EPM
(
r(NIG)

)
=

2(ν + δβ/γ)(βδ2 + γδν)

δ2 + ν2
. (3.6)

Details of the derivation are provided in the appendix to this chapter. Due to the parameter

restrictions implied by condition (ii) the AS index is always positive, as it should be. It also

can be easily verified that −1/AS(NIG) (α, β, ν, δ) is in the domain of M (NIG).

A representation of the AS index and of the EPM in terms of the moments is given by:

ÃS
(NIG) (

µ, σ2, χ, κ
)

=
(
3κµ− 4µχ2 − 6χσ + 9σ2/µ

)
/18 (3.7)

ẼPM
(NIG) (

µ, σ2, χ, κ
)

= 18µ/
(
3κµ− 4µχ2 − 6χσ + 9σ2/µ

)
(3.8)

with mean µ > 0, variance σ2 > 0, excess kurtosis κ > 0 and skewness |χ| <
√

3κ/5. The

derivation is provided in the appendix to this chapter. Note that assumption (iii) can also be

rewritten in terms of those moments as µ ≤ 3
√
σ2/ (3κ− 4χ2).

An obvious and efficient way to obtain parameter estimates is maximum likelihood estima-

tion. In this case, (3.6) can be used to compute the EPM. On the other hand, (3.8) suggests

estimating the EPM using empirical moments. This is computationally inexpensive compared

to maximum likelihood. However, estimation risk will be an issue (cf. Bai and Ng, 2005). An

in depth treatment of estimation risk is beyond the scope of this chapter, but we address this

issue via a small simulation study in Section 3.3.3.

Lastly, note that for χ = 0 and κ→ 0 in (3.8), we obtain the EPM for a normally distributed

gamble with mean µ and variance σ2: (2µ2)/σ2. Thus, the order induced by the EPM for

NIG-distributed returns approximates that induced by the Sharpe ratio if skewness and excess

kurtosis go to zero. As opposed to the Sharpe ratio, ẼPM
(NIG)

can easily account for skewness

and kurtosis in cases where these are not negligible.
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3.3.2 Non-parametric estimation

The choice of a reasonable parametric distribution is not always obvious and in certain cases

one might prefer a non-parametric approach to estimate the AS index of riskiness. A natural

way to estimate the AS index is given by Method of Moments (MM) (see Hansen, 1982). In

particular, set

f(x; s) = e−x/s−1 (s > 0)

and consider the moment equation

E (f(r; s0)) = E
(
e−r/s0 −1

)
= 0 (s0 > 0), (3.9)

where r is the excess return/ random variable underlying the realizations {r1, . . . , rn}. Note

that (3.9) corresponds to the defining equation for the AS index (3.2), i.e. s0 = AS (r). The

MM-estimator ŝn, where we use the subscript n to express the dependence on the sample size,

is given by the solution to the empirical counterpart of (3.9):

1

n

n∑
i=1

e−ri/s−1 = 0. (3.10)

Equation (3.10) has to be solved numerically. A unique positive solution can always be found if

some of the realizations ri are negative and 1
n

∑n
i=1 ri > 0. By the strong law of large numbers,

this will almost surely be the case, for a large sample size n, if the generic excess return r

satisfies conditions (i) and (ii) in Section 3.2.1.

Within the MM setup for uncorrelated random variables the asymptotic distribution of the

estimator is given by
√
n (ŝn − s0)

d→ N
(

0,
S

G2
0

)
(3.11)

where

G0 = E

(
∂f(r; s)

∂s

∣∣∣∣
s=s0

)
=

1

s2
0

E
(
e−r/s0 r

)
and

S = V (f(r; s0)) = E
(
f(r; s0)2

)
= E

(
e−2r/s0

)
− 1 (3.12)
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assuming the existence of the necessary moments, i.e. the mgf of r has to exist at −2/s0 (see

(3.12)). The variance of ŝn can be estimated using the empirical counterparts of G0 and S and

replacing s0 with ŝn.

Some insight can be gained by looking at the above estimation procedure from a different

perspective. Given realizations {r1, . . . , rn} of the random excess return r one can define the

empirical distribution function

F̂n(x) =
1

n

n∑
i=1

I(−∞,x] (ri) , (3.13)

where the indicator function I(−∞,x] (ri) equals 1 if ri ≤ x and 0 otherwise. F̂n(x) is the distri-

bution of a gamble/ excess return that takes on the values {r1, . . . , rn} each with probability

1/n. The mgf pertaining to F̂n(x) is the empirical mgf and is given by

M̂n(t) =
1

n

n∑
i=1

etri .

By the Glivenko-Cantelli theorem, F̂n(x) converges uniformly to the distribution function of

r.11 Therefore, one can hope that solving M̂n(−1/s) = 1 (s > 0) will yield a good estimate of

the AS index of r. In fact, this estimate is exactly ŝn.

In the following paragraphs we illustrate how Proposition 3.3 can be used to prove that ŝn is

strongly consistent. Furthermore, we demonstrate that mean-variance performance estimation

can be considered to be a rough simplification of the non-parametric estimation of the EPM.

Generalized continuity and strong consistency of ŝn

Consistency of ŝn as an estimator of the AS index can be obtained by applying generalized

continuity. For this, the requirement that the mgf of r exists at −2/AS can be replaced by

the weaker requirement that Mr exists at some b smaller than −1/AS. Consider the sequence

of gambles f1, f2, . . ., where fn follows the distribution F̂n(x) in (3.13) with outcomes given by

the realizations {r1, . . . , rn}. Almost surely, the AS index of fn exists for large n and equals ŝn
11Uniform convergence of a function Fn to F means that supx∈R |Fn(x)− F (x)| → 0 as n→∞.
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(assuming (i) and (ii) in Section 3.2.1 hold for r). Moreover, since Mr exists at some b smaller

than −1/AS, ebr is integrable. Then, by the strong law of large numbers, the mgf of fn at b,

M̂n(b), converges to Mr(b) almost surely. This implies that the sequence {M̂n(b)}n≥1 is (almost

surely) bounded. Since, by the Glivenko-Cantelli theorem, fn
d→ r, we can apply generalized

continuity and conclude that ŝn → s0 = AS (g) almost surely.

Truncation and the mean-variance framework

There is an interesting analogy to expected utility theory where mean-variance analysis is

justified by assuming either normal returns or that the utility function can be reasonably well

approximated by a second order Taylor-expansion. In fact, instead of solving (3.10) one could

equally well solve h(t) = log [M̂n(t)] = 0 (t < 0). Denoting the solution as t∗, ŝn is given by

−1/t∗. The second order Taylor-expansion of h can be written as

ĥ(t) = µ̂rt+
1

2
σ̂2
r t

2,

where µ̂r and σ̂2
r are the sample mean and variance of r. The solution of ĥ(t) = 0 (t < 0) leads

to an estimate σ̂2
r/(2µ̂r) for the AS index and 2µ̂2

r/σ̂
2
r for the EPM. The latter is the empirical

counterpart of the EPM for normal returns. Thus, similarly to truncating the expansion of

the utility function, approximating h by a second order Taylor-expansion leads back to the

mean-variance decision framework. Second order Taylor series approximations, however, risk a

serious loss of accuracy (cf. Loistl, 1976).

Relation to the adjustment-coefficient

There is a remarkable relation between the AS index and the so called adjustment coefficient

(AC) from ruin theory. In fact one is the reciprocal of the other

AS =
1

AC
.

Pitts et al. (1996) propose to estimate the adjustment coefficient as the solution of M̂(−s) =

1 (s > 0), which ends up being the reciprocal of ŝn. Without referring to the methods of
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moments, they show that their estimator is asymptotically normal with rate
√
n and asymptotic

variance
Mg(−2AC)− 1

M ′
g (−AC)2 ,

provided that the mgf of g, Mg, exists at −2AC. Using the reciprocal relation between the AS

index and the adjustment coefficient and applying the so-called Delta-method this could also

have been derived from (3.11–3.12), or vice versa.

3.3.3 Estimation uncertainty: a small simulation study

So far we have taken the standpoint that an important drawback of the Sharpe ratio is that

it only accounts for first and second moments. However, when it comes to the estimation of

distributional characteristics other than the mean and the variance, the induced estimation

error may thwart the merits of considering these characteristics in the performance ranking.

For example, the estimation of extreme quantiles, as required for the estimation of the VaR, is

notoriously challenging. The estimation of skewness and kurtosis also comes at the cost of a

higher estimation error than that of the mean or variance. We therefore conduct a small simu-

lation study, which allows us to analyze the sensitivity of the EPM with respect to estimation

uncertainty.

We assume that the true ranking is given by the EPM based on complete knowledge of

the underlying distribution. Mimicking the estimated NIG distributions for the hedge fund

returns in Table 3.3 we simulate a synthetic data set consisting of 25 return series with 250

observations each. For this sample we estimate the Sharpe ratio and the EPM and compute

the two corresponding rankings.12 As the underlying distribution is known, we can compare

the rankings based on the simulated data set with the true ranking. To measure the closeness

between the true ranking and the estimated rankings based on the Sharpe ratio and the EPM

we compute the rank correlation between these rankings. If the estimation error does not

dominate the effect of using the correct performance measure we would expect that the rank

correlation between the true ranking and the new performance measure is larger than that
12Note, that we focus here on the impact of the parametric estimation based on the NIG distribution. However,

the results are nearly identical if we use the non-parametric estimation.
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between the true ranking and the ranking based on the Sharpe ratio. To minimize the error

due to the simulation we use 5000 replications resulting in 5000 rank correlation pairs for each

performance measure. In 74.2% of these replications the rank correlation of the estimated EPM

is larger than that of the Sharpe ratio. This means that in 74.2% of all cases the ranking based

on the new performance measure is closer to the true ranking than the ranking based on the

Sharpe ratio. Of course, one would prefer a value that is closer to 100%, but with the small

number of observations (250) the estimation error of the additional distributional characteristics

is still not negligible. Increasing the sample size, however, yields further improvements in the

performance of our measure. In fact, for 1000 observations it outperforms the Sharpe ratio

in 80.3% of the cases. We can thus conclude that, even for smaller sample sizes like the one

encountered in our empirical analysis, our new performance measure systematically outperforms

the Sharpe ratio.

3.4 Empirical illustration

For our empirical illustration we consider two data sets. In our first example we consider the

25 largest-growth mutual funds (as of January 1998 in terms of overall assets managed) and

for our second example we use 25 hedge funds.

First, we consider monthly excess returns of mutual funds investments from January 1991

to September 2010 resulting in 237 observations. This is an extension of the data set employed

by Bao (2009). However, we drop the period from 1987 to 1990 in order to match the time

span for which hedge funds data are available. The excess returns are computed from monthly

fund returns and the one-month US Treasury bill rate. Standard tests cannot reject the null

hypothesis of no autocorrelation or no ARCH effects indicating that the iid assumption can be

maintained in our application.

The estimated values of the different performance measures for the mutual funds are re-

ported in Table 3.1. The second column reports estimates for two times the squared Sharpe ra-

tio. The third and the fourth columns display the values of the EPM for the non-parametric ap-

proach and for the maximum likelihood based parametric estimates assuming NIG-distributed
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Table 3.1: Performance measures for monthly excess returns of mutual funds (1991-2010).

name 2SR2 EPMNon EPMNIG skewness kurtosis

Amcap 0.0381 ( 5) 0.0364 ( 5) 0.0362 ( 5) -0.4762 ( 7) 4.4698 (10)
American Cent-Growth 0.0179 (21) 0.0177 (20) 0.0176 (20) -0.2420 ( 3) 3.5575 ( 1)
American Cent-Select 0.0098 (24) 0.0097 (24) 0.0096 (24) -0.4662 ( 6) 4.0436 ( 3)
Brandywine 0.0245 (15) 0.0235 (15) 0.0234 (15) -0.5856 (15) 4.4279 ( 9)
Davis NY Venture A 0.0425 ( 3) 0.0403 ( 3) 0.0401 ( 3) -0.5110 ( 9) 4.6986 (15)
Fidelity Contrafund 0.0754 ( 1) 0.0697 ( 1) 0.0693 ( 1) -0.5892 (16) 4.4079 ( 8)
Fidelity Destiny I 0.0188 (19) 0.0181 (19) 0.0180 (19) -0.6161 (17) 4.7790 (17)
Fidelity Destiny II 0.0356 ( 6) 0.0335 ( 7) 0.0334 ( 7) -0.7119 (22) 4.5791 (11)
Fidelity Growth 0.0322 ( 8) 0.0319 ( 8) 0.0317 ( 8) -0.0839 ( 1) 4.7482 (16)
Fidelity Magellan 0.0198 (18) 0.0189 (18) 0.0188 (18) -0.6961 (20) 5.1119 (21)
Fidelity OTC 0.0262 (12) 0.0256 (13) 0.0255 (13) -0.3085 ( 4) 4.1701 ( 5)
Fidelity Ret. Growth 0.0261 (13) 0.0257 (12) 0.0255 (12) -0.1506 ( 2) 5.7421 (22)
Fidelity Trend 0.0166 (22) 0.0157 (22) 0.0156 (22) -0.9246 (25) 6.7634 (24)
Fidelity Value 0.0394 ( 4) 0.0367 ( 4) 0.0365 ( 4) -0.5783 (14) 7.4093 (25)
Janus 0.0182 (20) 0.0175 (21) 0.0174 (21) -0.6700 (19) 4.7802 (18)
Janus Twenty 0.0354 ( 7) 0.0341 ( 6) 0.0339 ( 6) -0.4069 ( 5) 4.2764 ( 7)
Legg Mason Value Prim 0.0251 (14) 0.0242 (14) 0.0241 (14) -0.5354 (12) 4.2254 ( 6)
Neuberger & Ber Part 0.0241 (16) 0.0226 (16) 0.0225 (16) -0.8383 (24) 6.1787 (23)
New Economy 0.0292 (10) 0.0279 (10) 0.0278 (10) -0.5713 (13) 4.0798 ( 4)
Nicholas 0.0283 (11) 0.0271 (11) 0.0270 (11) -0.5118 (10) 4.9975 (20)
Prudential Equity B 0.0204 (17) 0.0195 (17) 0.0194 (17) -0.7118 (21) 4.5924 (12)
T. Rowe Price Growth 0.0321 ( 9) 0.0304 ( 9) 0.0303 ( 9) -0.6629 (18) 4.6323 (13)
Van Kampen Pace 0.0144 (23) 0.0140 (23) 0.0139 (23) -0.4780 ( 8) 4.6691 (14)
Vanguard U.S. Growth 0.0062 (25) 0.0060 (25) 0.0060 (25) -0.7414 (23) 4.9873 (19)
Vanguard/Primecap 0.0548 ( 2) 0.0518 ( 2) 0.0515 ( 2) -0.5126 (11) 4.0078 ( 2)

Note: This table reports the estimates of the performance measures for different mutual funds based on monthly
excess returns from 1991 until 2010. The third and fourth column provide the EPM based on a non-parametric
and a parametric estimator, respectively. The second column reports two times the squared Sharpe ratio. The
fifth and sixth column show the skewness and kurtosis, respectively.

excess returns, respectively.13 The rankings generated by the respective performance measure

are given in parentheses. The table also reports the sample skewness and kurtosis of the funds

along with the corresponding rankings.14 Sample mean excess returns are strictly positive, as

can be inferred from the EPM estimates. If average excess returns were negative for some

investment funds, this could be dealt with by setting the Sharpe ratio and the EPM equal to
13Note that the moment based parametric estimators of the EPM are nearly identical to the maximum

likelihood based estimates.
14We intuitively consider low kurtosis to be preferable to high kurtosis and high skewness to be preferable to

low skewness. It should be kept in mind, however, that one can find examples where not all risk averters agree
in this regard (see Brockett and Kahane, 1992).
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Table 3.2: Rank correlation (mutual funds)

Sharpe EPMNon EPMNIG
Sharpe 1.0000 0.9800 0.9800

EPMNon 0.9800 1.0000 1.0000
EPMNIG 0.9800 1.0000 1.0000

Note:This table presents the rank correlation (Kendall’s τ) for the rankings of Table 3.1 based on the Sharpe
ratio, the non-parametric estimator of the EPM and the parametric estimator of the EPM assuming NIG-
distributed returns.

zero in those cases.

The results show that the rankings induced by the two estimators for the EPM are identical.

This is also supported by their rank correlation coefficient (Kendall’s τ) which equals 1.0 (cf.

Table 3.2).15 Moreover, the rank correlation between the Sharpe ratio ranking and either of

the EPM rankings is close to one, i.e. it is 0.98. At a first glance this might be a surprising

result. However, the observed behavior is in line with the generalized continuity property. In

particular, the deviations of the mutual funds return distributions from the normal distribution

are not substantial, so that the differences between the rankings induced by the Sharpe ratio

and the EPM are negligible.

Furthermore, note that the numerical values of two times the squared Sharpe ratio (reported

in the second column) are very close to the value of the EPM for this data set indicating the

adequacy of the Sharpe ratio as a performance measure for the mutual funds data set. However,

this is not always the case as is demonstrated in the next example.

In our second application we estimate the performance measures for different hedge funds

over the same period, ranging from January 1991 until September 2010 resulting in 237 ob-

servations. In contrast to mutual funds, hedge funds are unconstrained from dynamic and

derivative trading strategies. Consequently, the distribution of the excess returns of hedge

funds investments can be expected to be different from that of mutual funds, e.g. we expect the

corresponding risk of hedge investments to differ significantly from the risk of mutual funds.

The data set consists of monthly excess returns of all hedge funds and the excess returns

are computed from monthly fund returns and the one-month US Treasury bill rate. Note that,
15Kendall’s τ equals 1 if two rankings perfectly agree, 0 if they are independent, and −1 if they perfectly

disagree.
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Table 3.3: Performance measures for monthly excess returns of hedge funds (1991-2010).

name 2SR2 EPMNon EPMNIG skewness kurtosis
Aetos Corporation 0.1460 (20) 0.1523 (17) 0.1514 (17) 0.7750 ( 3) 8.0579 (20)
Aurora Limited Partnership 0.2309 ( 9) 0.1633 (13) 0.1571 (14) -1.5496 (25) 9.2812 (21)
Corsair Capital Partners LP 0.1809 (16) 0.1606 (14) 0.1590 (13) -0.5449 (18) 4.3385 ( 4)
EACM Multi-Strategy Composite 0.1133 (22) 0.0924 (24) 0.0908 (24) -1.2210 (22) 7.8312 (19)
Equity Income Partners LP 2.5312 ( 1) 2.9873 ( 1) 3.1078 ( 1) 2.0812 ( 1) 12.0353 (24)
Gabelli Associates Limited 0.3451 ( 5) 0.2877 ( 5) 0.2700 ( 6) -0.0616 (10) 7.5461 (17)
GAM Diversity Inc. USD Open 0.1008 (24) 0.1010 (22) 0.1005 (22) 0.2681 ( 8) 5.6712 (11)
GAM Trading USD 0.2591 ( 7) 0.2856 ( 6) 0.2876 ( 5) 0.5736 ( 4) 4.3254 ( 3)
Genesee Balanced Fund Ltd 0.1003 (25) 0.0917 (25) 0.0908 (25) -0.4793 (17) 5.3130 ( 6)
High Sierra Partners I 0.3746 ( 4) 0.3518 ( 4) 0.3413 ( 4) 0.4531 ( 6) 6.9303 (15)
Hudson Valley Partners LP 0.1998 (13) 0.1563 (16) 0.1452 (19) -0.8134 (20) 10.0152 (23)
KDC Merger Arbitrage Fund LP 0.1972 (15) 0.1506 (19) 0.1476 (18) -1.1401 (21) 7.6845 (18)
Kingdon Associates 0.2447 ( 8) 0.2331 ( 9) 0.2319 ( 8) -0.1825 (12) 3.3525 ( 2)
KS Capital Partners, L.P. 0.2846 ( 6) 0.2505 ( 7) 0.2454 ( 7) -0.1468 (11) 5.6205 ( 9)
Libra Fund LP 0.2259 (11) 0.2341 ( 8) 0.2263 (10) 0.5567 ( 5) 6.6807 (14)
Millburn MCO Partners LP 0.1098 (23) 0.1001 (23) 0.0993 (23) -0.4155 (14) 5.4564 ( 8)
Millennium International Ltd 0.9931 ( 3) 0.6831 ( 3) 0.6092 ( 3) -0.4611 (15) 5.7819 (12)
Millennium USA LP Fund 1.0139 ( 2) 0.6964 ( 2) 0.6259 ( 2) -0.4615 (16) 5.6565 (10)
M. Kingdon Offshore Ltd. 0.2261 (10) 0.2138 (11) 0.2129 (11) -0.2365 (13) 3.3186 ( 1)
Pan Multi Strategy, LP 0.1993 (14) 0.1690 (12) 0.1669 (12) -0.7102 (19) 5.0048 ( 5)
P.A.W. Partners LP 0.2006 (12) 0.2279 (10) 0.2291 ( 9) 0.8180 ( 2) 5.3319 ( 7)
Sandler Associates 0.1553 (19) 0.1517 (18) 0.1519 (16) 0.2948 ( 7) 6.1078 (13)
SC Fundamental Value Fund 0.1608 (18) 0.1140 (20) 0.1084 (20) -1.2823 (24) 14.2166 (25)
Summit Private Investments I 0.1356 (21) 0.1081 (21) 0.1064 (21) -1.2787 (23) 7.5011 (16)
Triumph Master Fund Diversified 0.1775 (17) 0.1598 (15) 0.1557 (15) 0.2651 ( 9) 9.6181 (22)

Note: The table reports the same estimates as in Table 3.1 for monthly returns ranging from 1991 until
September 2010 for selected hedge funds.

hedge funds are not committed to report the return of their funds which reduces the number

of available hedge funds to 88. In accordance to the considered number of mutual funds and to

save space, we pick from these hedge funds those 25 that have the largest Sharpe ratio.16

The estimation results and the implied rankings are reported in Table 3.3. The rankings

induced by the two estimators for the EPM are very similar and in most cases identical. This is

also supported by the rank correlation coefficient which equals 0.9467 (cf. Table 3.4). The rank

correlation between the Sharpe ratio ranking and either of the EPM rankings is considerably
16We believe that this provides us with a selection of hedge funds that are most important to investors.

This importance could also be measured by the overall assets managed, however, due to the limited regulatory
requirements the volume of the hedge fund is often unavailable.
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Table 3.4: Rank correlation (hedge funds)

Sharpe EPMNon EPMNIG
Sharpe 1.0000 0.8600 0.8333

EPMNon 0.8600 1.0000 0.9467
EPMNIG 0.8333 0.9467 1.0000

Note: This table presents the rank correlation (Kendall’s τ) for the rankings of Table 3.3 based on the Sharpe
ratio, the non-parametric estimator of the EPM and the parametric estimator of the EPM assuming NIG-
distributed returns.

lower. In particular, hedge funds with a larger than average kurtosis (and/or smaller than

average skewness) are penalized more by our performance measure. Since the Sharpe ratio

neglects skewness and kurtosis, these measures can serve to explain the difference between the

Sharpe ratio ranking and the EPM rankings. In general a fund’s EPM ranking deteriorates

relative to the Sharpe ratio ranking if the fund’s skewness is low and/ or its kurtosis is high, and

vice versa. For example, the Aurora Limited Partnership fund, which exhibits a large kurtosis

and small skewness, now achieves only rank 13 (under the non-parametric estimator and 14

based on the NIG estimator) while under the Sharpe ratio it has been ranked number 9. The

Aetos Corporation fund instead moves from the Sharpe ratio rank 20 to rank 17 according to

our measure, which may be due to the small kurtosis and positive skewness.

The second example highlights a situation where the application of the EPM is preferable

as it accounts for empirically important properties of the excess return distribution that go

beyond the mean and the variance. The previous example, on the other hand, illustrates

that the ranking of the Sharpe ratio is maintained if the distributions are close to normal. A

question, that arises, is which of the two examples is more common in practice. Addressing

this question, however, goes beyond the scope of this chapter.

3.5 Conclusion

In this chapter we propose a new performance measure (EPM) that generalizes the Sharpe

ratio. Instead of standard deviation the EPM employs the Aumann and Serrano (2008) index

of riskiness as risk measure. In contrast to the Sharpe ratio, the EPM respects stochastic domi-

nance and accounts for skewness, kurtosis and higher order moments in the return distribution.
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If returns are normally distributed, the EPM and the Sharpe ratio induce equivalent rankings.

If the distribution of the returns converges to the normal distribution, the EPM converges to

two times the squared Sharpe ratio. In this sense, the EPM is asymptotically equivalent to the

Sharpe ratio.

We calculate the EPM for returns that follow a normal inverse Gaussian (NIG) distribution,

a distribution that is well suited to model financial returns. A representation of the EPM

for NIG-distributed returns in terms of the first four moments makes explicit how skewness

and kurtosis enter the performance measure. The NIG-distribution, furthermore, provides a

parametric way to estimate the EPM, which is virtually as easy as estimating the Sharpe ratio

with empirical moments. For non-parametric estimation of the EPM we consider the method

of moments with the defining equation of the Aumann-Serrano index as moment equation.

In our empirical illustration we rank mutual funds and hedge funds with the Sharpe ratio

and the EPM. The results show that the EPM penalizes investments with significant excess

kurtosis (or negative skewness), while the Sharpe ratio neglects these features. Whether EPM-

and Sharpe ratio-rankings differ depends on the data set under consideration. In any case, for

investors that care about higher moments, the EPM provides an economically justified way to

take these moments into account.
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Appendix to Chapter 3

Proof of Proposition 3.3

Let r0 and {rn}n≥1 be random variables with moment generating function Mn(t) = E (etrn)

(n ≥ 0). Assume that

• the economic index of riskiness AS(rn) exists for all n ≥ 0,

• there exists a real number b > 1/AS(r0) > 0 for which supnMn(−b) <∞, and

• rn
d→ r0

We want to show that AS(rn)→ AS(r0).

Proof: From rn
d→ r0 and the continuous mapping theorem it follows that e−trn

d−→ e−tr0 for

all t ∈ [0, b]. Moreover, for t ∈ (0, b) there exists ε > 0 such that (1 + ε)t = b. Therefore,

supnE
(
[e−trn ]1+ε

)
= supnE

(
e−brn

)
= supnMn(−b) <∞

⇒ {e−trn} is uniformly integrable

⇒ E
(
e−trn

)
→ E

(
e−tr0

)
(cf. Theorem 5.4 in Billingsley (1969).

So far we have shown that Mn(−t) → M0(−t) pointwise in [0, b). To see that this implies

AS(rn) → AS(r0), define Ln(t) ≡ Mn(−t) and αn ≡ 1/AS(rn) for n ≥ 0. It suffices to show

that αn → α0. Observe that the following holds for all n ≥ 0:

• Ln(0) = 1

• L′n(0) = −E (rn) < 0 (where L′n(0) is the derivative of Ln evaluated at 0)

• L′′n(t) = E (r2
n e−trn) ≥ 0

The second point is true, since E (rn) > 0 is necessary for the existence of the AS index. So

for each n, Ln(·) is convex. It takes on the value 1 at 0 and then initially decreases. Since
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Ln(αn) = 1, Ln must be strictly increasing in a neighborhood of αn. Now let ε > 0 arbitrary.

We can assume that [α0 − ε, α0 + ε] ⊆ (0, b). Furthermore,

L0(α0) = 1 ⇒ L0(α0 − ε) < 1 and L0(α0 + ε) > 1

Because of (pointwise) convergence, we can find a N(ε) ∈ N0 such that

Ln(α0 − ε) < 1 and Ln(α0 + ε) > 1 for all n ≥ N(ε).

But, by the properties of the functions Ln, this implies

αn ∈ (α0 − ε, α0 + ε) for all n ≥ N(ε)

Derivation of the AS index for NIG-distributed random variables

Let X be a random variable following the normal inverse Gaussian (NIG) distribution with

parameters α, β, ν and δ where 0 ≤ |β| < α, δ > 0 and ν ∈ R. The unique Aumann–Serrano

risk index s > 0 (if it exists) is implicitly defined as

E
(
e−X/s

)
= 1. (3.14)

Let MX denote the moment generating function (mgf) of X given by (3.4). Then (3.14) can

be equivalently written as

MX(ts) = 1 (3.15)
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with ts = −1/s. Solving for ts we obtain

e
νt+δ

(
γ−
√
α2−(β+t)2

)
= 1

⇔ νt+ δ
(
γ −

√
α2 − (β + t)2

)
= 0

⇔ νt+ δγ = δ
√
α2 − (β + t)2

⇒ ν2t2 + 2δγνt+ δ2γ2 = δ2α2 − δ2(β2 + 2βt+ t2)

⇔ (ν2 + δ2)t2 + 2(δγν + βδ2)t = 0

⇔ t = 0 ∨ t = −2
βδ2 + γδν

δ2 + ν2
=: ts.

For ts to be a valid solution, we have to check whether (a) ts is in the domain of MX , i.e.

ts ∈ [−(α + β), α− β], (b) ts indeed solves (3.15) and (c) ts < 0.

As to (a):

ts ≤ α− β

⇔ −2δνγ − 2δ2β ≤ (α− β)(ν2 + δ2)

⇔ −2δνγ − δ2β ≤ (α− β)ν2 + αδ2

⇔ (α− β)ν2 + 2δνγ + (α + β)δ2 ≥ 0.

Since γ =
√
α2 − β2 =

√
(α− β)(α + β) the last expression is equivalent to

(
√

(α− β)ν +
√

(α + β)δ)2 ≥ 0.

In a similar way one can show that ts ≥ −(α + β).

As to (b): Plugging ts into (3.15) yields (after some manipulations)

MX(ts) = e
δ

ν2+δ2
(Ψ−
√

Ψ2)

with Ψ = δ2γ − 2νδβ − ν2γ. Thus, MX(ts) = 1 iff Ψ ≥ 0. Ψ can be considered as a downward
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open second order polynomial in ν with roots (δ/γ)(−β ± α). Therefore, Ψ ≥ 0 iff ν ≤

(δ/γ)(α− β) and ν ≥ (δ/γ)(−α− β). Since E (X) = ν + δβ/γ, the latter inequality is fulfilled

if X has a positive mean.

As to (c): ts < 0 is equivalent to ν > −δβ/γ (which corresponds to the requirement E (X) > 0).

Summing up, if X is a NIG-distributed random variable with parameters α, β, δ and ν

where 0 ≤ |β| < α, δ > 0 and additionally ν ∈
(
− δ
γ
β, δ

γ
(α− β)

]
, then the unique strictly

positive solution of (3.14) is given by

s∗ =
1

2

δ2 + ν2

βδ2 + γδν
.

Moment based representations of the AS index

Moments of a NIG-distributed random variable

The following moments of a NIG-distributed random variable can be derived using the moment

generating function in (3.4):

mean µ = ν +
δβ

γ
; (3.16)

variance σ2 =
δα2

γ3
; (3.17)

third standardized moment (skewness) χ = 3
β

α
√
δγ

; (3.18)

and the fourth standardized moment (excess kurtosis) κ = 3
α2 + 4β2

δα2γ
. (3.19)

The inequality |χ| <
√

3κ/5

To see why |χ| <
√

3κ/5 for χ and κ defined in equations (3.18) and (3.19) note that

χ2

κ
= 3

β2

α2 + 4β2
= 3

(β/α)2

1 + 4(β/α)2
.
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Moreover, as α > |β| it holds that (β/α) < 1 and therefore

χ2

κ
<

3

5
and |χ| <

√
3κ/5.

The AS index in terms of the first four moments of a NIG-distributed random

variable

First note that the system of equations (3.16-3.19) can (uniquely) be solved for α, β, δ and ν

(given that χ2 < (3/5)κ):

α = 3

√
3κ− 4χ2

(3κ− 5χ2)σ
; β = 3

χ

(3κ− 5χ2)σ
; ν = µ− 3

χσ

3κ− 4χ2

and δ =
3
√

(3κ− 5χ2)σ2

3κ− 4χ2
.

This can be used to rewrite the index of riskiness

s∗ =
1

2

δ2 + ν2

βδ2 + γδν
=

1

18

(
3κµ− 4µχ2 − 6χσ + 9

σ2

µ

)

and the condition for the existence

ν ≤ δ

γ
(α− β)⇔ µ ≤ 3

√
σ2

(3κ− 4χ2)

in terms of these moments.
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Chapter 4

A directed test of error cross-section

independence in fixed effect panel data

models

4.1 Introduction

Cross-section dependence between disturbances in panel models can arise for various reasons:

unobserved global shocks, be they economic, political or technological in nature, or unobserved

shocks affecting only a subset of cross-sectional units to name a few. This dependence can

have dramatic effects on the asymptotic properties of the least squares estimator and standard

inference procedures (cf. Andrews, 2005).

One way to deal with potential cross-section error dependence is to use robust variance

matrix estimation techniques, for instance as proposed by Driscoll and Kraay (1998). A different

approach is to test for cross-section dependence and adjust estimation and inference procedures

according to the test result. To this end, Breusch and Pagan (1980) proposed a Lagrange

multiplier (LM) test. This test is appropriate for panels with large time dimension T and small

cross-section dimension N , in which case the seemingly unrelated equation approach of Zellner

(1962) is applicable. However, it is known that the LM test is severely oversized, when N

is large relative to T , see for instance Pesaran, Ullah, and Yamagata (2008). While the LM

test is based on squared Pearson correlation coefficients between the residuals, Frees (1995)
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suggests the use of Spearman rank correlation coefficients in his test called R2
AV E. In Monte

Carlo simulations, when the regression includes non-constant individual explanatory variables

and N is large relative to T , R2
AV E also exhibits size distortions. These distortions, however,

are by far less pronounced as in the case of the LM test.

Pesaran (2004) suggests another variant of the LM test. Basically, the test employs residual

Pearson correlation coefficients without squaring them. Pesaran (2004) provides asymptotic

results for both fixed N and large T and for fixed T and large N . The test has correct empirical

size in finite samples independent of the relation between N and T . However, it has low power

when error correlation is present with correlation coefficients summing up to zero. This can be

the case when the disturbances are generated from a factor model where the loadings average

to zero. More recently, Pesaran (2012) analyzes the implicit null hypothesis of Pesaran’s (2004)

test, which, for large N , rather describes weak dependence than indepence of errors between

cross-sections.

A direct approach to amend the size distortions of the LM test ist that of Pesaran et al.

(2008). These authors compute the expected values and variances of the empirical squared

Pearson correlation coefficients under the assumption of normally distributed disturbances.

The resulting bias-adjusted LM test (LMadj) is asymptotically normal as T →∞ first, followed

by N → ∞. The empirical size of the test is correct also for large N and small T .1 The

normality assumption does not appear to be restrictive, as simulation experiments with χ2-

and t-distributed errors document (cf. Pesaran et al., 2008, and Baltagi et al., 2011).

The above procedures test for error cross-section correlation in itself. The idea behind our

directed test is to test for cross-section correlation that impacts the variance matrix estimate

for the slope parameters. The procedure determines whether the simple OLS variance matrix

estimate differs from a simple robust estimate. In this sense it is akin to the information matrix

test of White (1982). The procedure basically augments the correlation coefficients in Pesaran’s

(2004) statistic with estimates of the cross-section covariance between explanatory variables.

This, of course, restricts the set of alternatives against which the test has power to those where
1Nonnegligible size distortions can occur, however, when N is very large relative to T (cf. Baltagi et al.,

2011)
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the regressor covariances differ from zero. However, from the standpoint of variance matrix

estimation and standard inference procedures, these are the relevant cases. In these cases the

directed test has considerable power, also when residual correlation coefficients approximately

sum up to zero. When the correlation coefficients all have the same sign, the directed test

inherits the good power properties of Pesaran’s (2004) test. A χ2 limit distribution of the test

is obtained for fixed N and T →∞. The directed test has correct empirical size independent of

the size of N relative to T and without presuming a specific distribution for the disturbances.

The remainder of this chapter is structured as follows. In Section 4.2 we introduce the

directed test and derive its asymptotic distribution. Before proceeding to extensive Monte

Carlo experiments in Section 4.4, we present the existing tests described above in Section 4.3.

Concluding remarks are made in Section 4.5. Mathematical details are given in the appendix.

4.2 The directed test

We start from the standard fixed effect panel data model

yi = ιαi +Xiβ + ui, i = 1, . . . , N ; (4.1)

where yi is a T ×1 vector containing the observations for cross-section i, ι is the T ×1 vector of

ones, αi is a scalar, Xi is a T × k regressor-matrix with rows x′it, β is a k× 1 vector, and ui is a

T × 1 disturbance vector. Letting ȳi and X̄i denote the variables after within-group demeaning

and stacking equations, yields

ȳ = X̄β + ū,

with ȳ = (ȳ′1, . . . , ȳ
′
N)′ and otherwise obvious notation. In the literature on tests of cross-

section independence it is commonly assumed that the errors are independent across time:

{ut}Tt=1 is an independent sequence, where ut = (u1t, . . . , uNT )′ gathers individual disturbances

at period t. So the covariance between uit and ujs is given by cov(uit, ujs) = 0, for s 6= t,

and cov(uit, ujs) = σij if s = t. More compactly, we write the variance of u = (u′1, . . . , u
′
N)′ as

var(u) = Ω⊗ IT , with ⊗ denoting the Kronecker-product and Ω = [σij]1≤i,j≤N . So the variance
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of the OLS estimator of β is given by

var(β̂) = (X̄ ′X̄)−1X̄ ′(Ω⊗ IT )X̄(X̄ ′X̄)−1.

Under the hypothesis of error cross-section independence, σij = 0 for all i 6= j and Ω can be

replaced by

Ω0 =



σ11 0 . . . . . . 0

0 σ22 0 . . . 0

... . . . ...

0 . . . . . . 0 σNN


.

The basic strategy behind the directed test of cross-section independence is to check whether

the following equation is significantly violated:

X̄ ′(Ω⊗ IT )X̄ = X̄ ′(Ω0 ⊗ IT )X̄.

This can be rewritten as

N∑
i=1

N∑
j=1

σijX̄
′
iX̄j =

N∑
i=1

σiiX̄
′
iX̄i

or
∑
j<i

σij(X̄
′
iX̄j + X̄ ′jX̄i) = 0.

Since X̄ ′iX̄j + X̄ ′jX̄i is symmetric, we can restrict our attention to its lower triangular elements.

Let vij = vech
(
X̄ ′iX̄j + X̄ ′jX̄i

)
denote the 1

2
k(k + 1)-dimensional vector containing these ele-

ments. The key component of our test statistic is given by

S =
∑
j<i

σ̂ijvij (4.2)

where σ̂ij is a consistent estimator for σij. It can be obtained from the residuals of the regressions

in (4.1) for cross-sections i and j: σ̂ij = (T − k)−1û′iûj. It will be useful to write ûi as a linear
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function of ui:

ûi = Miui with Mi = IT − Zi(Z ′iZi)−1Z ′i and Zi = [ι;Xi].

The statistic S yet has to be normalized by its variance. Let u = (u′1, . . . , u
′
N)′ and X =

(X ′1, . . . , X
′
N)′. We make the following assumptions:

Assumption 4.1. For each i, the disturbances, uit, are serially independent with zero mean

and positive variances σ2
i = σii ≤M <∞.

Assumption 4.2. The regressors X and the errors u are independent.

Assumption 4.3. The null hypothesis is specified as

H0 : uit = σiεit, with εit ∼ iid(0, 1) across i and t. (4.3)

The following lemma states properties of the summands σ̂ijvij of S in Equation (4.2) and

provides the resulting variance of S. We use tr(·) to denote the trace of a square matrix.

Lemma 4.4. Under Assumptions 4.1 - 4.3 the following holds:

(i) E[σ̂ijvij] = 0, for i 6= j,

(ii) E[σ̂ijvijσ̂ikvik] = 0, given that the indices i, j, and k differ,

(iii) var(σ̂ijvij) = (T − k)−2σiiσjjE
[
tr(MiMj)vijv

′
ij

]
, for i 6= j , and

(iv) var(S) = (T − k)−2
∑N

j<i σiiσjjE
[
tr(MiMj)vijv

′
ij

]
.

Proof. See appendix.

A natural estimator for the variance of S is given by

V̂ = (T − k)−2

N∑
j<i

σ̂jjσ̂iitr(MjMi)vijv
′
ij,

where, as above, σ̂ij = (T − k)−1û′iûj. We can assume that V̂ is invertible, at least asymptoti-

cally. Otherwise one can reduce the dimension of vij and consider only independent restrictions.
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Standardizing S with its estimated variance leads to the following statistic for the directed test

of cross-section independence:

CDσ
X = S ′V̂ −1S.

The following proposition states that CDσ
X is approximately χ2-distributed for fixed N and

large T . We use " d→" to denote convergence in distribution and let Xt = (x1t, . . . , xNt)
′.

Proposition 4.5. Let Assumptions 4.1 - 4.3 and the following regularity conditions hold:

(I) The sequence {Xt} is stationary and ergodic,

(II) The components of X have uniformly bounded second moments,

(III) E[xitx
′
jt] is non-singular for all i, j ∈ {1, . . . , N}.

Then, for fixed N and as T →∞

CDσ
X

d→ χ2(k(k + 1)/2),

where k is the number of nonconstant regressors in a cross-section.

Proof. See appendix.

A variant of the directed test is obtained by replacing the estimated covariances in S, cf.

Equation (4.2), by estimated correlation coefficients:

R =
N∑
j<i

ρ̂ijvij, where ρ̂ij =
û′iûj

(û′iûi)
1
2 (û′jûj)

1
2

. (4.4)

The resulting test, CDρ
X , shows a favorable performance in simulation experitments. However,

an additional assumption is needed.

Assumption 4.6. The errors εit in (4.3) are distributed symmetrically around zero.

Under Assumptions 4.1 - 4.6 and following Pesaran (2004) it can be shown that

var(R) =
N∑
j<i

E[ρ̂2
ij]E[vijv

′
ij].
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In practice, var(R) can be approximated using

V̂R =
1

T

N∑
j<i

vijv
′
ij,

since E[ρ̂2] ≈ T−1 for large enough T . The resulting statistic is denoted as2

CDρ
X = R′V̂ −1

R R.

The limit distribution of CDρ
X is given in the following proposition:

Proposition 4.7. Let Assumptions 4.1 to 4.6 and (I) - (IV) in Proposition 4.5 hold. Then,

for fixed N and T →∞,

CDρ
X

d→ χ2(k(k + 1)/2).

Proof. See appendix.

4.3 Alternative test procedures

In this section we describe existing tests that we consider for the purpose of comparison in the

simulation experiments in the following section. For completeness, we start with the LM test

of Breusch and Pagan (1980), although, because of its known severe size distortions when N is

large relative to T (cf. Pesaran et al., 2008, or Moscone and Tosetti, 2009), it is not included

in the Monte Carlo section.

LM test:

The LM test of Breusch and Pagan (1980) rests on the statistic

LM =

√
1

N(N − 1)

N∑
j<i

(T ρ̂2
ij − 1),

with ρ̂ij defined as in (4.4). Under the null hypothesis and as T →∞ first, followed by N →∞,

LM approaches a standard normal distribution. However, for small T , the term T ρ̂2
ij − 1 is not

centered at 0. For large N , this can lead to substantial overrejection.
2To ensure invertibility of V̂R a reduction of the length of vij might be necessary.
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Frees’ test:

The main component of Frees’ (1995) rank correlation test is given by

R2
AV E =

2

N(N − 1)

N∑
j<i

r̂2
ij,

where r̂ij is the Spearman rank correlation coefficient between residual ûi and ûj. Frees (1995)

derives the limit distribution of QN = N (R2
AV E − (T − 1)−1) for the case that the intercept

is the only regressor in (4.1). The resulting limit Q is a weighted sum of two independent χ2

random variables. Because of dependence on T , critical values are cumbersome to compute.

When T is large, Frees (1995) suggests to use the following approximately normally distributed

statistic

FRE =
QN√
var(Q)

, where var(Q) =
4(T − 2)(25T 2 − 7T − 54)

25T (T − 1)3(T + 1)
.

Pesaran’s test:

To work around the bias problem of the LM test for finite T Pesaran (2004, 2012) suggests to

use ρ̂ij instead of ρ̂2
ij and considers the statistic

CDP =

√
2T

N(N − 1)

N∑
j<i

ρ̂ij.

He shows that under Assumptions 4.1 - 4.6, E[ρ̂ij] = 0 and CDP approaches a standard normal

distribution for T,N →∞ in any order. Indeed, his test has correct empirical size also when N

is large relative to T . A standard critique of the test is that it lacks power against alernatives

under which
∑

j<i ρ̂ij ≈ 0.

The adjusted LM test:

Pesaran, Ullah, and Yamagata (2008) compute the exact finite sample expectations and variance

of ρ̂2
ij imposing that, in addition to Assumptions 4.1 - 4.6, the errors εit are normally distributed.
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Their statistic is given by

LMadj =

√
2

N(N − 1)

N∑
j<i

(T − k)ρ̂2
ij − µT ij

νT ij
,

where

µT ij = E[(T − k)ρ̂2
ij] =

1

T − k
tr [E(MiMj)] ,

ν2
T ij = V ar[(T − k)ρ̂2

ij] = {tr[E(MiMj)]}2 a1T + 2tr
{
E[(MiMj)

2]
}
a2T ,

a1T = a2T − (T − k)−2, a2T = 3

[
(T − k − 8)(T − k + 2) + 24

(T − k + 2)(T − k − 2)(T − k − 4)

]2

.

As T →∞ first, followed by N →∞, LMadj converges to a standard normal distribution. The

test keeps the nominal size also when N is large relative to T .

The John test:

A different approach is taken by Baltagi, Feng, and Kao (2011). Their procedure tests for

spheric disturbances. That is, apart from independence, the null hypothesis includes ho-

moskedasticity. Although this only allows for a limited comparison with tests of cross-section

independence, the John test is included in the Monte Carlo experiments, since Baltagi et al.

(2011) found a favorable performance relative to CDP and LMadj under homoskedasticity. The

test statistic is given by

J =
T [ 1

n
tr(Ω̂)]−2 1

n
tr(Ω̂2)− T − n
2

− 1

2
− n

2(T − 1)
, (4.5)

where Ω̂ = 1
T−k

∑T
t=1 v̂tv̂

′
t and v̂t = (v̂1t, . . . , v̂Nt) contains the residuals for period t from a

fixed effect regression in model (4.1).3 A crucial assumption of Baltagi et al. (2011) is that the

errors are normally distributed. Then, under H0, the statistic in (4.5) is asymtotically standard

normal as N, T →∞ with N
T
→ c ∈ [0,∞).

3This contrasts with the previous tests, where the residuals are obtained from separate cross-section regres-
sions. These separate regressions ensure that, under H0, the residuals are independent. One may conjecture
that the asymptotic results for those tests are still valid when fixed effect residuals are employed.

90



4.4 Monte Carlo simulations

In this section, the empirical size and power of the tests for cross-section independence is

assessed by means of Monte Carlo experiments. In Section 4.4.1 the simulation scenarios are

described. We present the results in Section 4.4.2.

4.4.1 Simulation framework

Similar to Pesaran et al. (2008) and Moscone and Tosetti (2009), we use the following data

generating process (for i = 1, . . . , N):

yit = αi + β1x1,it + β2x2,it + uit, where

uit = γift + σiεit, εit ∼ iidN(0, 1), ft ∼ iidN(0, 1),

αi ∼ iidN(1, 1), (4.6)

β1 = β2 = 1,

σ2
i ∼ iid χ2

2/2.

Several scenarios for the regressors xl,it and the factor loadings γi are considered. In contrast

to Pesaran et al. (2008) and Moscone and Tosetti (2009) we simulate regressors, that are

correlated across cross-sections. It comes at no surprise that whithout such correlation the

CDX test has little power, since the terms vij in (4.2) basically contain empirical covariances

between regressores in different sections. The point of the CDX test, however, is to check

whether standard inference procedures, such as the OLS t-test on a slope coefficient, that

neglect error cross-section correlation are invalid. Unreported Monte Carlo simulations show

that the t-test has correct empirical size in the absence of regressor cross-section correlation,

even if error cross-section correlation is neglected.

Scenario S0 represents two instances in which the null hypothesis in (4.3) holds: one case

in which the errors εit follow a normal distribution as in (4.6) and another case with χ2-errors.

In the second case we simulate the errors as εit ∼ iid(χ2
1 − 1)/

√
2. Note that χ2-errors neither
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fulfill the symmetry assumption of Pesaran (2004) nor the normality assumption of Pesaran

et al. (2008) or Baltagi et al. (2011). Parallel to the errors, the regressors exhibit a factor

structure:

S0: γi = 0 for all i = 1, . . . , N , and the regressors are generated as xl,it = f
(x)
l,t γl,i + εl,it, where

f
(x)
l,t ∼ iidN(0, 1), γl,i ∼ iid U(0.1, 0.3), and εl,it ∼ iidN(0, 0.1).

In the remaining scenarios we investigate the empirical power of the tests. While in scenario

S1 all covariances σij are positive, they will approximately net out in sceneario S2, such that∑N
j<i ρij ≈ 0. It has been argued (cf. Pesaran et al., 2008) that the CDP test lacks power in

the latter case.

S1: γi ∼ iid U(0.1, 0.3), with U(0.1, 0.3) denoting the uniform distribution on the intervall

[0.1, 0.3]. The regressors are generated as in S0.

In scenario S2 we simulate factor loadings that approximately sum up to zero. This entails that

cross-section error correlations approximately cancel out. Moreover, as in Moscone and Tosetti

(2009), we consider regressors containing an AR(1)-component:

S2: γi ∼ iid U(−0.4,−0.2), for i = 1, . . . , N
2
and γi ∼ iid U(0.2, 0.4), for i = N

2
+ 1, . . . , N .

The regressors are generated as xl,it = zl,it + f
(z)
t γl,i, with f

(z)
l,t ∼ iidN(0, 1) and where

γl,i is generated in the same way as γi. zl,it follows an AR(1) process of the form zl,it =

0.6zl,it−1 + vl,it, for t = −49, . . . , T, where zl,i−50 = 0, vl,it ∼ iidN(0, τ 2
li(1 − 0.62)), and

τ 2
li ∼ iid χ2

6/6. The observations for t = −49, . . . , 0 are discarded to dissipate possible

influence of initial values.

Scenario S3 is a case of weak cross-section or spatial dependence. We do not assume any specific

metric between the cross-sections, such as geographical distance, that could be exploited.

S3: The disturbances ut = (u1t, . . . , uNt)
′ are generated as ut = (IN + 0.5A)εt, where IN is

the identity matrix, A is a (N ×N) random matrix with elements aij ∼ iidN(0, 1), and

εt ∼ iidN(0, IN). The regressors are generated as xl,t = zl,t +
(
IN + 0.5A(x)

)
ε

(x)
t , with

zl,t as in S2 and A(x) and ε(x)
t analogous to (but independent from) A and εt.
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Finally, in scenario S4, we consider the case where disturbances are homoskedastic across the

whole panel. This allows for a comparison with the John test of spherical distrubances proposed

by Baltagi et al. (2011).

S4: As S1, except that σi in (4.6) is set to 1 for all i.

For each scenario and varying numbers of cross-sections N and time periods T we employ 2, 000

Monte Carlo replications. All tests are conducted at the 5% nominal level.

4.4.2 Simulation results

The empirical rejection frequencies in scenario S0 are displayed in Tables 4.1 (normal distur-

bances) and 4.2 (χ2 disturbances). All numbers are given in percentage points. When errors

are normal, the test are, in general, correctly sized. However, a few exceptions exist. The

rank-correlation test of Frees (1995), FRE, tends to be oversized as N grows relative to T .

Table 4.1: Scenario S0 - Empirical size, normally distributed disturbances

(T,N) 10 20 30 50 100 10 20 30 50 100

CDP CDσ
X

10 5.85 5.40 5.90 5.00 4.90 5.40 5.10 5.30 5.85 5.90
20 5.10 5.40 4.70 5.95 4.75 5.45 4.75 5.10 5.60 5.00
30 4.35 5.70 5.45 5.85 5.45 5.05 4.65 5.25 5.95 4.80
50 5.40 4.50 5.50 6.35 5.35 5.75 4.75 4.60 5.80 5.25
100 3.90 4.45 5.40 5.50 5.50 5.00 5.25 5.20 4.75 5.60

LMadj CDρ
X

10 5.20 5.00 4.80 5.40 8.45 8.35 7.00 9.00 8.20 6.85
20 5.55 5.10 4.35 6.10 6.25 7.05 5.75 6.80 6.45 7.50
30 4.45 5.40 4.75 4.85 5.55 5.70 6.00 6.20 6.80 6.25
50 4.95 5.50 4.85 5.55 5.60 6.35 5.25 5.40 6.05 5.40
100 4.65 5.45 4.75 5.10 4.60 4.30 4.25 5.70 5.60 6.85

FRE
10 6.50 5.95 6.60 9.00 17.85
20 6.15 6.15 5.75 7.40 7.85
30 5.85 5.60 5.30 5.35 6.90
50 6.35 5.70 4.80 6.05 5.85
100 6.55 5.60 5.00 4.95 5.20
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Table 4.2: Scenario S0 - Empirical size, χ2 distributed disturbances

(T,N) 10 20 30 50 100 10 20 30 50 100

CDP CDσ
X

10 5.80 6.20 4.85 5.10 4.85 4.25 5.95 5.15 5.10 5.70
20 5.15 5.10 5.25 4.90 4.85 5.45 5.25 5.65 4.65 5.55
30 5.40 5.05 5.50 6.05 4.75 5.15 4.50 5.75 6.00 6.00
50 4.35 5.00 5.65 4.40 5.60 5.70 4.95 4.70 4.65 4.55
100 4.30 4.45 5.10 5.30 4.60 4.65 4.90 5.25 5.15 4.80

LMadj CDρ
X

10 6.05 5.55 6.20 6.75 8.60 8.00 8.90 8.30 8.00 7.95
20 6.25 8.20 7.05 6.40 6.75 6.75 6.25 6.40 6.20 5.85
30 7.00 9.35 7.95 8.40 7.90 5.80 5.50 7.05 6.90 6.55
50 7.40 8.00 8.30 9.15 10.15 4.95 5.55 6.20 5.10 5.55
100 8.45 7.55 7.50 7.95 9.00 4.50 4.95 5.10 5.45 4.35

FRE
10 6.80 5.75 5.80 6.75 11.00
20 5.70 6.15 5.60 5.30 5.10
30 5.60 5.80 5.55 4.85 4.70
50 5.85 5.10 4.50 6.15 6.35
100 5.45 4.45 5.50 5.00 4.70

Although the empirical rejection rate for N = 100 and T = 10 is over 17%, this is dwarfed

by the original LM test of Breusch and Pagan (1980), where rejection rates in such cases are

close to 100% (cf. Moscone and Tosetti, 2009). Also the rejection rates of LMadj have a slight

tendency to increase when N grows relative to T . This becomes more apparent for T = 10 and

N = 200. In this case the empirical rejection rate of LMadj is 9.4% . Lastly, note that CDρ
X

is somewhat oversized when T = 10; probably because E[ρ̂2
ij] ≈ T−1 is not accurate enough in

that case. However, rejection rates remain unharmed by increasing N .

The results by and large do not change when χ2 errors are used, although CDP and LMadj

assume symmetric or normal errors. However, slight size distortions of the LMadj test can be

observed (Table 4.2).

The empirical power of the tests under scenario S1 is reported in Table 4.3. No size adjust-

ments are made. Pesaran’s (2004, 2012) test, CDP , shows the best performance followed by

CDρ
X . Using estimated error covariances instead of estimated correlation coefficients unambigu-
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Table 4.3: Scenario S1 - Empirical power, error cross-section correlations all positive

(T,N) 10 20 30 50 100 10 20 30 50 100

CDP CDσ
X

10 21.35 53.15 74.40 94.15 99.35 9.15 21.40 35.65 48.60 79.90
20 93.35 75.20 95.05 99.45 100.00 64.25 27.25 60.30 79.30 97.30
30 93.95 73.65 98.95 100.00 100.00 48.30 39.45 64.40 97.60 100.00
50 78.25 99.85 100.00 100.00 100.00 34.30 85.20 84.35 98.55 100.00
100 89.30 100.00 100.00 100.00 100.00 48.25 95.40 100.00 100.00 100.00

LMadj CDρ
X

10 6.25 12.15 17.10 44.00 56.50 17.40 40.10 59.25 85.90 96.55
20 66.15 23.45 45.75 75.15 96.25 85.70 62.05 88.55 98.80 100.00
30 80.80 15.90 72.10 89.75 99.65 86.55 62.50 96.85 100.00 100.00
50 44.60 89.55 97.35 98.70 100.00 68.05 99.15 99.60 100.00 100.00
100 62.60 100.00 100.00 100.00 100.00 81.70 100.00 100.00 100.00 100.00

FRE OLS t-test
10 7.75 12.50 19.10 44.90 66.55 3.20 4.90 5.20 6.60 11.60
20 62.35 21.45 43.15 73.05 95.80 5.80 5.45 6.40 9.70 12.00
30 78.45 16.25 68.30 88.30 99.70 5.80 5.80 6.50 11.30 18.55
50 43.35 86.50 95.90 98.20 100.00 5.40 7.35 6.90 9.45 15.90
100 60.00 100.00 100.00 100.00 100.00 5.40 6.65 9.85 10.80 18.15

Notes: The panel labeled “OLS t-test” reports the empirical size of the standard OLS t-test of the hypothesis
β1 = 1. The nominal test size is 5%.

ously reduces rejections rates, as the comparison between CDσ
X and CDρ

X shows. Compared

to LMadj, CDσ
X has higher empirical power for relatively small T while the converse is true

for larger T . The rejection rates of LMadj and FRE are comparable. The difference when

N = 100 and T = 10 can be explained by the size-distortions of FRE in that case. Table 4.3

also presents rejection frequencies for the OLS t-test of the hypothesis β1 = 1. The t-test is

based on standard fixed-effect estimation under the null of no cross-section error correlation.4

The results show that the test is oversized if the number of cross-sections is large.

In Table 4.4 the rejection frequencies for scenario S2 are displayed. In this case, where

error cross-section correlations are different from zero but approximately cancel out, CDP

has virtually no power. CDρ
X outperforms CDσ

X , and LMadj and FRE again exhibit similar
4More precisely, we compute the variance of the fixed-effect estimator of the slope parameters as(

X̄ ′X̄
)−1 (∑N

i=1 σ̂iiX̄
′
iX̄i

) (
X̄ ′X̄

)−1.
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Table 4.4: Scenario S2 - Empirical power, error cross-section correlations approximatively cancel
out

(T,N) 10 20 30 50 100 10 20 30 50 100

CDP CDσ
X

10 2.95 4.20 2.25 2.00 2.50 8.80 17.60 32.50 48.60 80.45
20 5.10 4.25 3.55 3.15 3.00 16.55 32.25 50.65 89.95 99.05
30 4.40 3.60 3.55 4.15 3.40 22.05 45.85 87.50 98.10 100.00
50 4.75 4.95 5.20 6.45 10.45 59.30 64.75 98.00 100.00 100.00
100 15.90 17.40 4.45 14.05 11.25 79.85 99.15 100.00 100.00 100.00

LMadj CDρ
X

10 9.80 31.45 47.25 78.00 88.55 17.65 37.25 59.40 80.05 94.75
20 49.75 48.30 86.90 99.60 99.95 33.35 58.05 77.50 99.10 99.95
30 29.65 86.05 99.60 99.90 100.00 30.50 77.30 99.55 99.95 100.00
50 72.75 99.55 100.00 100.00 100.00 86.25 93.95 100.00 100.00 100.00
100 98.45 100.00 100.00 100.00 100.00 97.00 100.00 100.00 100.00 100.00

FRE OLS t-test
10 11.25 32.40 49.00 81.10 94.15 4.30 3.10 5.15 6.40 11.20
20 46.50 45.15 85.45 99.25 99.90 5.30 5.30 5.30 8.80 11.55
30 28.15 82.60 99.25 99.90 100.00 5.60 5.20 7.00 7.55 13.35
50 69.80 99.15 100.00 100.00 100.00 4.60 5.80 7.10 10.95 14.10
100 98.40 100.00 100.00 100.00 100.00 5.50 5.85 7.35 9.20 14.60

Notes: The panel labeled “OLS t-test” reports the empirical size of the standard OLS t-test of the hypothesis
β1 = 1. The nominal test size is 5%.

rejection rates. CDρ
X also performs well compared to the latter two tests. The results for the

OLS t-test in this case are similar to those in scenario S1 (cf. Table 4.3).

The results for scenario S3 (weak dependence) are reported in Table 4.5. In this case FRE

and LMadj again perform similar to each other and favorably compared to the other tests. The

rejection rates of CDρ
X and CDσ

X are comparable and higher than those of CDP . Moreover,

the rejection rates of these tests decrease with increasing N . However, this is no problem in

terms of standard OLS t-tests, as can be seen from the bottom right panel of table 4.5. The

test clearly maintains the nominal size.

Finally, Table 4.6 reports rejection rates for scenario S4. It differs from S1 only in that

the errors are homoskedastic. This allows for a comparison between the test of cross-section

independence and Baltagi et al.’s (2011) test for spherical disturbances. The empirical power
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Table 4.5: Scenario S3 - Empirical power, weak dependence

(T,N) 10 20 30 50 100 10 20 30 50 100

CDP CDσ
X

10 7.90 6.65 6.65 5.25 4.95 14.45 11.45 8.75 7.80 6.15
20 17.00 9.90 8.80 8.15 5.55 34.45 18.75 16.35 10.15 7.60
30 25.60 16.40 11.80 9.75 6.80 49.55 31.45 22.30 15.80 9.30
50 37.55 25.85 20.25 15.40 9.50 68.40 47.90 37.75 26.15 14.05
100 53.30 39.85 32.30 23.90 14.90 84.35 70.70 59.30 45.60 25.90

LMadj CDρ
X

10 43.70 52.20 50.30 52.40 53.05 15.65 12.65 10.15 9.55 8.25
20 99.30 99.90 99.95 99.95 100.00 34.45 18.80 16.20 10.05 8.35
30 100.00 100.00 100.00 100.00 100.00 49.05 30.90 22.70 15.35 10.40
50 100.00 100.00 100.00 100.00 100.00 68.40 47.35 36.40 25.70 14.35
100 100.00 100.00 100.00 100.00 100.00 84.15 71.60 59.75 44.55 26.05

FRE OLS t-test
10 41.05 46.95 44.00 44.05 46.70 2.85 3.30 3.25 2.40 2.70
20 97.60 99.15 99.80 99.60 99.70 4.20 3.75 3.40 4.10 3.75
30 99.95 100.00 100.00 100.00 100.00 3.90 4.10 4.40 4.85 3.80
50 100.00 100.00 100.00 100.00 100.00 4.30 5.05 4.40 4.35 4.20
100 100.00 100.00 100.00 100.00 100.00 5.55 5.15 4.50 5.35 4.20

Notes: The panel labeled “OLS t-test” reports the empirical size of the standard OLS t-test of the hypothesis
β1 = 1. The nominal test size is 5%.

of this test is quite similar to that of FRE and LMadj, with some advantage for the former

when N is large.5 This advantage may be explained by the fact that the John test employs the

standard fixed effect estimates to compute residuals, while the other test run the regressions

cross-section wise. As in scenario S1, CDP exhibits again the highest empirical power. Also

CDσ
X and CDρ

X perform well. In fact, CDσ
X and CDρ

X display very similar rejection frequencies

as opposed to scenario S1. This is no big surprise since under homoskedasticity the statistic

S in (4.2) is approximately just a multiple of R in (4.4). The muliplicative factor cancels out

when normalizing S and R to yield CDσ
X and CDρ

X , respectively.
5The relatively high rejection rate of FRE when N = 100 and T = 10 is due to the fact that FRE is

oversized in that case.
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Table 4.6: Scenario S4 - Empirical power, homoskedastic disturbances

(T,N) 10 20 30 50 100 10 20 30 50 100

CDP CDσ
X

10 16.00 28.45 42.85 62.75 87.90 10.55 20.05 28.80 47.65 76.40
20 23.20 49.45 69.90 90.65 99.25 15.10 35.10 53.35 81.65 98.05
30 27.50 64.50 84.10 98.30 100.00 18.65 49.10 71.95 93.90 100.00
40 43.60 83.10 96.55 100.00 100.00 29.65 70.90 91.15 99.55 100.00
50 63.60 97.75 99.95 100.00 100.00 49.35 93.90 99.70 100.00 100.00

LMadj CDρ
X

10 5.10 5.80 6.90 7.15 12.80 14.40 22.85 31.95 49.90 76.35
20 6.50 7.00 10.05 13.20 28.35 16.35 35.90 54.40 81.20 97.85
30 7.35 10.30 13.15 20.95 45.95 19.55 50.10 72.15 93.65 100.00
50 9.75 15.85 23.55 41.60 80.80 30.20 71.00 91.00 99.50 100.00
100 15.40 36.70 57.20 85.00 99.10 49.25 93.65 99.65 100.00 100.00

FRE John
10 6.45 6.45 8.00 11.20 24.65 7.55 9.30 10.35 12.40 18.50
20 8.05 7.50 11.15 14.70 32.15 8.85 9.20 12.10 17.50 35.90
30 8.15 10.75 13.15 23.05 46.80 8.95 11.95 15.40 26.95 54.45
50 10.70 15.75 22.65 39.85 78.55 9.60 17.25 27.50 47.20 84.20
100 16.15 34.55 52.90 81.60 98.25 15.70 36.45 59.45 86.35 99.15

OLS t-test
10 3.45 5.35 4.95 6.20 11.10
20 4.85 6.30 6.90 9.70 12.95
30 4.65 7.00 7.10 9.30 17.55
50 5.50 6.60 7.40 11.25 14.70
100 5.90 6.60 8.15 11.45 16.80

Notes: The panel labeled “OLS t-test” reports the empirical size of the standard OLS t-test of the hypothesis
β1 = 1. The nominal test size is 5%.

4.5 Summary

We have introduced two variants of a directed test of error cross-section independence. The basic

idea is to test, whether error cross-section correlation can be neglegted when computing the

variance matrix of the fixed effect slope estimator. Compared to existing testing procedures,

this restricts the set of alternative hypotheses. However, from the standpoint of standard

inference regarding the slope parameters, these alternatives are most relevant. The asymptotic

distribution for T →∞ and fixedN of the directed tests has been shown to be χ2 with k(k+1)/2

98



degrees of freedom, where k is the number of nonconstant regressors.

In Monte Carlo simulations, the variant CDρ
X of the dircted tests exhibits a favorable

performance in term of empirical power under strong error cross-section correlation. It comes

closest to Pesaran’s (2004, 2012) CDP test, when all correlation coefficients have the same

sign. In contrast to CDP , CDρ
X still has high rejection rates, when correlation coefficients

approximately add up to zero. Under weak error cross-section dependence, CDρ
X has relatively

low empirical power. However, if this led a practitioner to ignore error cross-section dependence

when conducting, say, t-tests on the slope parameters, the tests would still be correctly sized.
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Appendix to Chapter 4

Proof of Lemma 4.4

For notational simplicity we show the results for deterministic X. For stochastic X they can

be obtained by conditioning on X.

(i):

E[σ̂ijvij] = vijE[
1

T
u′iMiMjuj]

=
1

T
vijE[tr(u′iMiMjuj)]

=
1

T
vijtr(σijMiMj)

H0= 0.

(ii):

E[σ̂ijvijσ̂ikv
′
ik] = (T − k)−2vijv

′
ikE[(Miui)

′Mjuj(Miui)
′Mkuk]

= 0 since under the null ui, uj, and uk are independent.

(iii) Note that

(T − k)2var(σ̂ijvij) = vijE[u′iMiMjuju
′
jMjMiui]v

′
ij

= vijE[tr(u′iMiMjuju
′
jMjMiui)]v

′
ij

= vijtr(MiMjE[uju
′
jMjMiuiu

′
i])v

′
ij

= vijtr(MiMjE
[
E[uju

′
jMjMiuiu

′
i|uj]

]
)v′ij

= σiitr(MiMjE[uju
′
j]MjMi)vijv

′
ij

= σiiσjjtr(MiMjMjMi)vijv
′
ij

= σiiσjjtr(MiMj)vijv
′
ij.

(iv): follows from (ii) and (iii).
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Proof of Proposition 4.5

The proof is conducted in three steps.

Step 1:
√
T − kσ̂ij = 1√

T−ku
′
iuj + op(1).

Proof : By definition, σ̂ij = 1
T−ku

′
iMiMjuj. Therefore,

√
T − kσ̂ij =

1√
T − k

u′iMiMjuj.

Rewrite 1√
T−ku

′
iMiMjuj as

1√
T − k

u′iMiMjuj =
1√
T − k

u′iuj (4.7)

− u′iXi√
T − k

(
X ′iXi

T − k

)−1
X ′iuj
T − k

− u′iXj

T − k

(
X ′jXj

T − k

)−1 X ′juj√
T − k

+
u′iXi√
T − k

(
X ′iXi

T − k

)−1
X ′iXj

T − k

(
X ′jXj

T − k

)−1 X ′juj

T − k
.

The proof of step 1 is completed by combining (4.7) with the following points:

1. 1√
T−kX

′
iui = 1√

T−k

∑T
t=1 xituit = Op(1),

2. 1
T−kX

′
iXj = 1

T−k
∑T

t=1 xitx
′
jt

a.s.→ E[xitx
′
jt], and

3. 1
T−kX

′
iuj = 1

T−k
∑T

t=1 xitujt = Op(
1√
T

),

where a.s.→ denotes almost sure convergence. To see the first point, note that

var( 1√
T−k

∑T
t=1 xituit) = O(1) by the boundedness of the second moments of xit and uit. The

second point follows from Theorem 3.34 in White (2001), because {xitx′jt} is stationary and

ergodic ((I) and Theorem 3.35 in White (2001)) and E[|x(l)
it x

(j)
jt |] < ∞ for j, l = 1, . . . , k ((II)

and Hölder’s inequality). Here, x(l)
it denotes the l-th component of the vector xit. The third

point is similar to the first and follows from the fact that var( 1
T−k

∑T
t=1 xitujt) = O( 1

T
).

Step 2: 1√
T−k

∑N
j<i σ̂ijvij

d→ N(0,
∑N

j<i σiiσjjcijc
′
ij), where cij contains the stacked lower di-

agonal elements of E[x̄itx̄
′
jt] + E[x̄jtx̄

′
it] and the vector x̄it contains the regressors xit after fixed
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effect demeaning.

Proof : Consider the N(N−1)k(k+1)
4

× 1 vector

ζT =
1√
T − k

(σ̂12v
′
12, σ̂13v

′
13, σ̂23v

′
23, . . . , σ̂1Nv

′
1N , . . . , σ̂N−1,Nv

′
N−1,N)′.

We will show that ζT is asymptotically normal. Rewrite ζT as

ζT =
1

T − k
VTZT ,

where

ZT =
√
T − k(σ̂12, σ̂13, σ̂23, . . . , σ̂1N , . . . , σ̂N−1,N)′,

and

VT =



v12 0 0 · · · 0

0 v13 0 · · · 0

... . . . ...

0 0 · · · 0 vN−1,N


︸ ︷︷ ︸

(N(N−1)k(k+1)
4

×N(N−1)
2 )

.

It follows from step 1 that

ZT =
1√
T − k

(u′1u2, u
′
1u3, u

′
2u3, . . . , u

′
1uN , u

′
N−1uN)′ + op(1)

=
1√
T − k

T∑
t=1

(u1tu2t, u1tu3t, u2tu3t, . . . , u1tuNt, . . . , uN−1,tuNt)
′︸ ︷︷ ︸

≡ξt

+op(1).

Note that {ξt} is an i.i.d. sequence of random vectors with zero mean and variance Σξ. Σξ is a

diagnoal matrix with diagonal elements given by the N(N−1)
2
×1 vector (σ11σ22, σ11σ33, σ22σ33, . . .

. . . , σN−1,N−1σNN)′. Therefore, by standard limit theorems

ZT
d→ N(0,Σξ).
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Regarding VT , note that, similar to point 2 in step 1, 1
T−kvij

a.s.→ cij. Thus,

1

T − k
VT

a.s.→ C ≡



c12 0 0 · · · 0

0 c13 0 · · · 0

... . . . ...

0 0 · · · 0 cN−1,N


.

As a consequence,

ζT
d→ N(0, CΣξC

′).

Finally, rewrite 1√
T−k

∑N
j<i σ̂ijvij = JζT , where J = ι′⊗ I k(k+1)

2

, ι is a N(N−1)
2
× 1 vector of ones,

and ⊗ denotes the Kronecker product. Obviously,

1√
T − k

N∑
j<i

σ̂ijvij
d→ N(0, JCΣξC

′J ′),

and by simple algebraic computations we obtain JCΣξC
′J ′ =

∑N
j<i σiiσjjcijc

′
ij.

Step 3: 1
T−k V̂

p→
∑N

j<i σiiσjjcijc
′
ij as T →∞, where p→ denotes convergence in probability.

Proof: We have

1

T − k
V̂ =

1

(T − k)3

N∑
j<i

σ̂jjσ̂iitr(MjMi)vijv
′
ij

=
N∑
j<i

σ̂jjσ̂ii
tr(MjMi)

T − k
vij

T − k
v′ij

T − k
.

From the derivations in step 1 and 2 it obviously follows that σ̂ii
p→ σii and 1

T−kvij
a.s.→ cij.

Using results from Yang and Feng (2002), it can be inferred that

T − 2(k + 1) ≤ tr(MjMi) ≤ T − (k + 1).

Hence, 1
T−k tr(MjMi) converges almost surely to 1.

Finally, combining step 1 to step 3 with standard results from probability theory completes the
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proof of Porpositon 4.5.

Proof of Proposition 4.7

The proof of Proposition 4.7 is analogous to that of Proposition 4.5. It suffices to establish the

following facts:

(i)
√
T ρ̂ij = 1√

T

∑T
t=1 εitεjt + op(1),

(ii) 1√
T

∑N
j<i ρ̂ijvij

d→ N(0,
∑N

j<i cijc
′
ij), and

(iii) 1
T
V̂R

p→
∑N

j<i cijc
′
ij.

(i) has been shown by Pesaran (2004) and, similar to step 1 above, also holds under the

assumptions made here. (ii) and (iii) can be shown using similar arguments as in step 2 and

step 3.
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