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Abstract 

We identified the four-and-a-half LIM domain protein 2 (FHL2) as a novel 

regulator of CCL19-induced dendritic cell (DC) migration. Initiation of migration 

is a hallmark of DC function and plays a central role in the induction and 

regulation of immune responses. In vivo, DCs continuously acquire Ag in the 

periphery and migrate to draining LNs, under the influence of local 

environmental chemotactic factors like CCL19/21 or sphingosine 1-phosphate 

(S1P). We investigated the role of S1P- and RhoA regulated FHL2 in this 

process.  

We found reduced nuclear localization of FHL2 in mature bone marrow-derived 

DCs (BMDCs), compared with immature BMDCs, following stimulation with 

CCL19. Furthermore, in vitro-generated murine FHL2-/- BMDCs displayed a 

significantly increased migratory speed, directionality, and migratory persistence 

toward the chemokine CCL19 compared with wild-type BMDCs. Moreover, in 

vivo, FHL2-/- BMDCs showed increased migration toward lymphoid organs. 

FHL2-/- BMDCs increased the expression of S1P receptor 1, which was 

associated with greater Rac activation. An S1PR1 antagonist and knock-down 

of S1PR1 abrogated the increased migratory speed of FHL2-/- BMDCs. Our 

results identify FHL2 as an important novel regulator of DC migration via 

regulation of their sensitivity toward environmental migratory cues like S1P and 

CCL19. 
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Zusammenfassung 

Dendritische Zellen (DZ) spielen eine entscheidende Rolle in der Initiierung und 

Regulierung adaptiver und angeborener Immunantworten. In der Peripherie 

nehmen unreife DZ ständig Antigen auf, prozessieren es und wandern zu den 

drainierenden Lymphknoten, um T Zellen ihr spezifisches Antigen zu 

präsentieren. Die Migration der DZ zu den Lymphknoten spielt eine wichtige 

Rolle in der Ausübung ihrer Aufgabe als Antigen präsentierende Zellen. Man 

weiß, dass das Aktin Zytoskelett bei der Ausübung von Migration eine 

entscheidende Rolle spielt. Wir haben herausgefunden, dass das Four-and-a-

half-Lim only protein (FHL2), das an Integrinen bindet und als Koaktivator von 

Transkriptionsfaktoren wirkt, an der Zellmigration von DZ beteiligt ist.  

FHL2 findet sich in reifen aus murinen Knochenmark gewonnen dendritischen 

Zellen (KMDZ) nach Stimulation mit CCL19 an der Membran statt im Zellkern 

wieder, wie es bei immaturen KMDZ der Fall ist. Geschwindigkeit, Direktionalität 

und Persistenz von aus FHL2-defizienten KMDZ ist in vitro  und in vivo 

signifikant erhöht. FHL2-/- prägen nicht konstitutiv den Chemokin Rezeptor 

CCR7, andere Maturationsmarker aus oder erhöhte Zytokin Produktion. 

Weiterhin hat FHL2 keinen Einfluss sowohl auf Rezeptor vermittelte als auch 

pinozytotische Antigenaufnahme und Präsentation von Ovalbumin zu T Zellen. 

Dafür weisen FHL2-defiziente KMDZ morphologisch einen reifen Phänotyp auf. 

Der Sphingosin-1-Phosphat Rezeptor 1ist in FHL2-/- KMDZ erhöht, was wohl zu 

einer höheren Rac Aktivierung führt. 

Anhand dieses Models wird zum ersten Mal ein Mechanismus beschrieben, der 

migratorische Geschwindigkeit unabhängig von der DZ Maturierung kontrolliert. 
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1. Introduction 

 

1.1 Cell migration 

Cell migration plays a central role in both normal and pathological processes, 

including embryonic development, wound healing, tumor metastasis, and 

inflammation (Chan et al., 2007). For example, leucocytes move toward 

inflammation, infection and injury, guided by gradients of chemokines or 

bacterial products. Angiogenic endothelial cells migrate toward ischaemic 

tissues which produce growth factors, such as vascular endothelial growth 

factor (VEGF). Fibroblasts migrate toward platelet-derived growth factor (PDGF) 

and other factors produced in wounds to facilitate healing. In metastasis, tumor 

cells migrate from the initial tumor mass into the circulatory system, which they 

subsequently leave and migrate into a new site (Moissoglu and Schwartz, 

2006). Cell migration is a multistep process involving changes in the 

cytoskeleton, cell-substrate adhesions and the extracellular matrix (ECM) which 

will be discussed below. 

 

1.1.1 The Cytoskeleton 

In most animal cells, the cytoskeleton is the essential component in creating 

motility-driving forces, and in coordinating the entire process of movement. The 

cytoskeleton is a polymer network, composed of three distinct biopolymer types: 

actin, microtubules (MT) and intermediate filaments (IF), which are 

differentiated principally by their rigidity (Ananthakrishnan and Ehrlicher, 2007). 

Actin is the most abundant protein in many eukaryotic cells, which is arranged 

in semiflexible polymers (Gittes et al., 1993). The filaments are double helical 

polymers of globular subunits all arranged head-to-tail to give the filament a 

molecular polarity (Fig. 1.1), whereas growth at the barbed end is favored over 

the other and actin filaments in cells are strongly oriented with respect to the 

cell surface, barbed ends outward (Pollard and Borisy, 2003).  
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MTs are the stiffest of the biopolymers (Dogterom et al., 2005) and exhibit 

similar dynamics to those of actin: They are functionally polar, treadmill, and 

can impart a force through polymerization. IFs are much more flexible than actin 

filaments and MTs. There are different classes of IFs such as vimentin, desmin, 

keratin, lamin and neurofilaments. Unlike actin filaments or MTs, IFs are not 

polarized, do not treadmill, do not generally depolymerize under physiological 

conditions. 

 

These three kinds of biopolymers build an internal cellular scaffold, known as 

the cytoskeleton − an organized and coherent structure that is formed by 

connecting these filaments via entanglements, and also crosslinking, bundling, 

binding motor and other proteins. These cytoskeletal assemblies then work 

together as a composite, dynamic material in cell functions such as structural 

integrity, shape, division, and organelle transport and cell motility. With respect 

to motility, although the other polymer assemblies in the cell also aid in 

coordinating movement and powering translocation, the actin cytoskeleton is 

regarded as the essential engine that drives cell protrusion, the first step of 

movement (Ananthakrishnan and Ehrlicher, 2007). 
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Figure 1.1: The dendritic nucleation model of actin dynamics at the leading edge of 
motile cells. Top: the barbed end branching model. (1) The branching complex made of G-
actin, Arp2/3, and WASP/N-WASP (or WAVE isoforms) binds to the barbed end of the filament. 
This incorporation is mediated by the actin subunit of the branching complex. (2) Arp2/3 
nucleates a lateral branch. The growth of the filaments drives membrane protrusion. (3) ATP 
hydrolysis on Arp2 induces debranching. (4) After depolymerization of the branched filament, 
Arp2/3 and actin are released. (5) Nucleotide exchange is required to recycle actin and Arp2/3. 
Bottom: the side branching model. This model proposes that Arp2/3 activated by the COOH-
terminal domain of WASP/N-WASP (or WAVE isoforms) binds to the side of an actin filament. In 
this activated state, Arp2-Arp3-G-actin mimics an actin nucleus to initiate a lateral branch (Le 
Clainche and Carlier, 2008).  

 

 

1.1.2 Components and structure of the actin cytoskeleton 

Actin filaments in vivo can assemble into different structures such as networks 

and bundles, which is carried out with the help of numerous accessory proteins 

(Pollard et al., 2000). Cells contain a pool of unpolymerized actin monomers, 

globular actin (G-actin), bound to profilin and thymosin-β4. Signaling pathways 

activate nucleation-promoting factors such members of the Wiskott-Aldrich 

Syndrome Protein (WASp) family of proteins to stimulate Actin-Related 



Introduction 

 

5 
 

Proteins2/3 (Arp2/3) complex to initiate a new filament in 70° angle (Fig. 1.1; 

Amann and Pollard, 2001). Cofilin facilitates subunit dissociation from the 

pointed end of actin filaments and induces filament severing and is essential for 

promoting filament treadmilling at the front of migrating cells. Also, actin 

filaments themselves bind Adenosine-5'-triphosphate (ATP), and hydrolysis of 

ATP stimulates destabilization of the polymer (Le Clainche and Carlier, 2008; 

Pollard and Borisy, 2003). All these proteins and many more work together to 

coordinate actin network formation and bring about leading edge motility in 

several steps. 

 

Although multicellular organisms contain a wide array of actin filament 

assemblies, the actin structures that play fundamental roles in cell migration can 

be roughly divided into three categories: lamellipodial actin network at the 

leading edge of the cell, unipolar filopodial bundles beneath the plasma 

membrane, and contractile actin stress fibers in the cytoplasm (Ridley et al., 

2003). 

The lamellipodium contains a network of short, branched actin filaments that 

produce the physical force for protrusion of the leading edge. The formation of 

new actin filaments at the leading edge is promoted by the Arp2/3 complex 

(Mullins et al., 1998; Svitkina and Borisy, 1999). Filopodia are thin cellular 

processes organized into long parallel bundles rope-like bundles (Welch and 

Mullins, 2002).  

In contrast to relatively well characterized lamellipodia and filopodia, the 

assembly mechanisms of actin stress fibers are still poorly understood. Stress 

fibers are contractile actomyosin bundles, which are essential for cell adhesion 

to the substratum and for changes in cell morphology, specifically the retraction 

of the trailing edge during migration. Stress fibers are composed of relatively 

short actin filaments with alternating polarity (Hotulainen and Lappalainen, 

2006). 

 

1.1.3 Pushing the cell forward 

After sensing the signal, the cell starts moving in response to the signal. If the 

signal is a chemoattractant, actin polymerizes in the region of the cell closest to 
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the signal, whereas if the signal is a chemorepellant, the cell moves away by 

polymerizing actin in the opposite side. As the extending edge moves forward, 

the cell constantly monitors the signal direction and tailors its direction of motion 

accordingly. The central dogma of cell motility divides movement into four 

sequential steps (Fig. 1.2).  

To migrate, cells must acquire a spatial asymmetry enabling them to turn 

intracellularly generated forces into net cell body translocation, i.e. a clear 

distinction between cell front and rear (Sullivan et al., 1984). Long, flexible actin 

filaments cannot sustain a pushing force without buckling. Cells overcome this 

problem by creating a dense array of short-branched filaments namely 

lamellipodia and filopodia, respectively. The membrane does not remain 

stationary but undergoes constant Brownian motion i.e. random thermal 

fluctuation. Polymerization of actin filaments towards the cell membrane at the 

leading edge can subsequently apply an elastic force on the membrane and 

push it forward. Actin filaments move rearward with respect to the substrate, 

and generally in a direction opposite to the movement of the cell, known as 

retrograde flow (Ananthakrishnan and Ehrlicher, 2007; Lauffenburger and 

Horwitz, 1996).  

 

 
Figure 1.2: The central dogma of cell motility divides movement into four sequential 
steps. Cells (1) extend a lamellipodium at the leading edge, (2) make new adhesive contacts, 
(3) contract to move the cell body forward, and (4) detach the trailing edge. These attachments 
prevent the protruding leading edge from retracting. Thus forward movement requires that new 
adhesive contacts form at the leading edge and old ones break in the trailing edge (Ridley, 
2001). 
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1.1.4 Small Rho GTPases 

Many different intracellular signaling molecules have been implicated in cell 

migration, including Ca2+-regulated proteins, mitogen-activated protein kinase 

cascades, protein kinases C, phosphatidylinositide kinases, phospholipases C 

and D, and tyrosine kinases (Ridley, 2001). However, one particular family of 

proteins seems to play a pivotal role in regulating the biochemical pathways 

most relevant to cell migration, the Ras homolog gene family (Rho) guanosine 

triphosphate (GTP)ases (Raftopoulou and Hall, 2004). 

Rho-family proteins make up a major branch of the Ras superfamily of small 

GTPases. All members contain sequence motifs characteristic of all GTP-

binding proteins, and are thought to cycle between active GTP-bound and 

inactive guanosine diphosphate (GDP)-bound states. The GDP/GTP cycling of 

Rho-family proteins is controlled mainly by three distinct functional classes of 

regulatory protein: Guanine nucleotide exchange factors (GEFs), GTPase 

activating protein (GAPs), and Guanine nucleotide dissociation inhibitors (GDIs) 

(Figure 1.3). When bound to GTP, they are active and interact with their 

downstream target proteins, which include protein kinases, lipid-modifying 

enzymes, and activators of the Arp2/3 complex (Charest and Firtel, 2007; 

Raftopoulou and Hall, 2004). 

 
Figure 1.3: Three distinct regulatory proteins control GDP/GTP cycling. GEFs stimulate the 
weak intrinsic exchange activity

 
of Rho-family proteins to promote an exchange of the bound 

GDP
 
for GTP; GAPs

 
stimulate the intrinsic GTP hydrolysis activity of Rho-family

 
proteins and 

thereby promote formation of the inactive GDP-bound
 
protein and GDIs inhibit

 
Rho proteins by 

blocking nucleotide exchange, and thus the binding
 
of effectors and GAPs to GTP-bound Rho 

GTPases (Wennerberg and Der, 2004). 
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Rho GTPases are pivotal regulators of actin and adhesion organization and 

control the formation of lamellipodia and filopodia. The major targets for Ras-

related C3 Botulinum Toxin Substrate (Rac) and Cell Division Cycle 42 

(CDC42) that mediate actin polymerization in protrusions are the WASP/ 

WASP-family verprolin-homologous protein (WAVE) family of Arp2/3 complex 

activators (Cory and Ridley, 2002). Rac stimulates Arp2/3-complex-induced 

actin polymerization by interacting with a complex of insulin receptor tyrosine 

kinase substrate p53 (IRSp53) and WAVE proteins. Rac can also induce actin 

filament uncapping by generating phosphatidylinositol 4,5-bisphosphate locally 

or, Rac acts via p21-activated kinases to stimulate LIM domain kinase, which 

inhibits cofilin-induced actin depolymerization (Ridley, 2001).     

The interaction of CDC42 with WASP together with binding to 

phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), relieves the autoinhibited 

conformation of WASP proteins and subsequently leads to activation of the 

ARP2/3 complex (Mattila and Lappalainen, 2008; Svitkina et al., 2003). 

Stress fiber assembly is regulated by a signaling cascade involving the RhoA 

small GTPases. The GTP bound form of RhoA activates Rho-associated kinase 

(Friedl and Brocker, 2000), which in turn promotes stress fiber formation by 

inhibiting actin filament depolymerization and by inducing contractility 

(Hotulainen and Lappalainen, 2006; Jaffe and Hall, 2005). 

 

1.2 The immune system 

Vertebrates have developed systems of immune defense enabling them to cope 

with the constant threat posed by environmental pathogens. The mammalian 

immune system represents a multilayered defense system comprising both 

innate and adaptive immune responses, characterized by the increasing 

complexity of their antigen-recognition systems (Moser and Leo, 2010). 

Innate immunity uses the genetic memory of germline-encoded receptors to 

recognize the molecular patterns of common pathogens (Janeway and 

Medzhitov, 2002). Adaptive immunity, akin to somatic memory, is a complex 

system by which the body learns to recognize a pathogen's unique antigens 

and builds an antigen specific response to destroy it. The effective development 
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of the overall immune response depends on careful interplay and regulation 

between innate and adaptive immunity.  

 

1.2.1 Innate versus adaptive immunity 

Cells of the innate immune system are able to detect an invading pathogen 

through a limited set of germ-line encoded receptors. The innate immune 

system uses various Pattern recognition receptors (PRRs) that are expressed 

on the cell surface, in intracellular compartments, or secreted into the blood 

stream and tissue fluids and recognize a series of conserved molecular 

structures expressed by pathogens. These pathogen-associated molecular 

patterns (PAMPs; Akira et al., 2006) are distinctive for a set of pathogens and 

include components of microbial membranes, cell walls, proteins, 

deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). On the basis of 

function, PRRs may be divided into endocytic PRRs or signaling PRRs. 

Signaling PRRs include the large families of membrane-bound Toll-like 

receptors (TLRs) and cytoplasmic NOD-like receptors (Medzhitov, 2001). 

Endocytic PRRs promote the attachment, engulfment and destruction of 

microorganisms by phagocytes, without relaying an intracellular signal.  

Due to the limited diversity of PRRs, pathogens displaying a high mutation rate 

can easily escape recognition from the innate immune system (Bowie and 

Unterholzner, 2008). Moreover, the ability of several pathogens such as viruses 

to replicate intracellularly renders their detection and elimination particularly 

challenging. The adaptive immune system constitutes a humoral and cellular 

part, B cells and T cells, respectively, which show high specificity and are at the 

same time very versatile due to their expression of receptors recognizing non-

conserved molecules. The possibility of the T and B cell receptor to undergo 

genetic recombination allows a small number of genes to form a nearly infinite 

number of receptors which will then be able to recognize a molecule never 

encountered before. B cells can also undergo somatic hypermutation which 

makes antibodies more and more specific and increases their affinity over time. 

Importantly, the adaptive immune response is able to form a memory, 

conferring life long protection from the respective pathogen to the organism. 

However, cells of the adaptive immune system cannot reliably discriminate 
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between self and non-self with potentially deleterious consequences to the 

organism. Therefore adaptive immune responses must be educated by the 

innate immune system and tightly controlled (Palm and Medzhitov, 2009). Any 

conversation between innate and adaptive immunity requires accurate and 

effective translation of the innate signals of infection or damage. Central to this 

translation is the dendritic cell (DC). 

 

1.2.2 Dendritic cells 

DCs next to macrophages and B cells belong to professional antigen presenting 

cells (APC). DC are the most potent APC that facilitate T cell activation and play 

a major role in the initiation and regulation of innate and adaptive immune 

responses to antigens (Kikuchi et al., 2005). They are a heterogeneous 

population that are derived from bone marrow (BM) progenitors, which may 

differentiate into circulating precursors that later home to peripheral tissue as 

immature myeloid DC (Sánchez-Sánchez et al., 2006). Myeloid DC are found in 

an immature state in epithelia and in the interstitial space of most solid organs 

(Sánchez-Sánchez et al., 2006) where they constantly sample their 

microenvironment for foreign and host antigens (Burns et al., 2004). After 

antigen engulfment they turn from highly efficient antigen capturing cells into 

APC with the capacity to prime T cells after they have migrated to the draining 

lymph nodes (LN).  

 

1.2.3 Antigen uptake and processing 

Immature DCs endocytose avidly through a variety of mechanisms, including 

‘nonspecific’ uptake by constitutive macropinocytosis and ‘specific’ uptake via 

receptor-mediated endocytosis and phagocytosis (Trombetta and Mellman, 

2005). Macropinocytosis represents a critical antigen uptake pathway allowing 

DCs to rapidly and nonspecifically sample large amounts of surrounding fluid. 

Phagocytosis, in contrast, is initiated by the engagement of specific receptors, 

triggering a cascade of signal transduction, which is required for actin 

polymerization and effective engulfment (Lanzavecchia, 1996). Receptor-
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mediated endocytosis allows the uptake of macromolecules through specialized 

regions of the plasma membrane, termed coated pits, and includes Fc, 

complement, heat shock proteins, scavenger and members of the c-type lectin 

family (Guermonprez et al., 2002).  

After antigen engulfment, DCs assemble small peptide epitopes of the pathogen 

or extracellular material in antigen–major histocompatibility complexes (MHC) 

and their skills to capture antigen declines (Johannessen et al., 2006). MHC 

molecules are cell-surface glycoproteins with a peptide-binding groove that 

allows intracellularly loaded peptides to be presented at the cell surface, where 

the combined ligand can be recognized by T cells receptors. There are two 

classes of MHC molecules, MHC class I and MHC class II, which bind peptides 

from proteins degraded in different intracellular compartments.  

MHC class I molecules bind peptides from proteins degraded in the cytosol i.e. 

derived from viruses and present these at the cell surface, where they are 

recognized by cluster of differentiation (CD)8 T cells (Banchereau and 

Steinman, 1998). These peptides which are usually 8 to 10 amino acids (aa) 

long are translocated into the endoplasmatic reticulum (ER) by a heterodimeric 

ATP-binding protein called transporters associated with antigen processing 

(TAP), and are then available for binding by partially folded MHC class I 

molecules that are held tethered to TAP (Ohl et al., 2004). In contrast, MHC 

class II molecules present peptides, which are at least 13 aa long, from 

pathogens and their products originating in the vesicular system to the cell 

surface, where they are recognized by CD4 T cells (Janeway et al., 2005). In 

addition, DCs have the ability to present exogenous antigens internalized 

through the endocytic pathway to CD8 T cells. The mechanisms responsible for 

so called cross-presentation are critical for initiating CD8 T cell responses to 

antigens that would not otherwise gain access to the MHC class I presentation 

pathway in DC (Jensen, 2007). 

 

1.2.4 Maturation 

The main function of DC in the induction of an adaptive immune response is to 

carry antigen from the periphery to lymphoid organs for presentation to T cells 

(Fig. 1.4). The interface between an APC and lymphocyte is called 
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immunological synapse, which consists of a central cluster of T cell receptors 

surrounded by a ring of adhesion molecule. 

A signal from pathogens, often referred to as a danger signal, induces DCs to 

enter a developmental program, called maturation, which transforms DCs into 

efficient APCs and T cell activators (Guermonprez et al., 2002). Immature DCs 

display a phenotype reflecting their specialized function as antigen-capturing 

cells. They are highly endocytic and express relatively low levels of surface 

MHC I and MHC II class molecules and costimulatory molecules such as CD80, 

CD86 and CD40 (Tan and O’Neill, 2005). Bacterial and viral products, as well 

as inflammatory cytokines and other nonself-molecules, induce DC maturation 

through direct interaction with specific DC surface receptors. The transition of 

immature to a mature DC is accompanied by a change of their phenotype which 

equips the DC to efficiently stimulate T cells. These phenotypic changes include 

increased production of MHC-peptide complexes, markers necessary of T cell 

binding, costimulatory molecules, and production of growth factors such as 

Interleukin-12 (IL-12), chemokines, and cytokines (Fig. 1.5; Steinman et al., 

2003). 

 

 

Figure 1.4: The migratory pathway of DC under steady-state and inflammatory 
conditions. DC reside in the periphery where continuously sample their environment for 
antigen. After antigen engulfment and concomitantly signaling via PRRs DC undergo a huge 
transition, which will equip them to present antigen to T cells in the draining LN. They highly 
upregulate CCR7 that will guide them the way towards CCL19 produced in the draining LN. 
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The interaction of naive T cells with DCs can lead to different forms of immune 

response depending on the type of DC and its activation state (Steinman et al., 

2003). Under steady state conditions, the outcome of T cell stimulation by DC 

can be apoptosis, anergy, or the development of regulatory T cells, which can 

result in T cell tolerance (Tan and O’Neill, 2005). Under conditions of infection 

or inflammation, DC encounter signals via TLR or other danger signals including 

proinflammatory cytokines and bacterial or viral products such as 

lipopolysaccharides (LPS), CpG motifs, and double-stranded RNA. These 

factors may induce maturation and activation of DC, rendering them 

immunogenic. 

The maturation state of DC is considered as a key determinant of the outcome 

of T cell activation leading to T cell tolerance or T cell immunity. DC with an 

immature phenotype are likely tolerogenic to T cells, and mature DC are 

immunogenic, but some level of maturation of DC is required for tolerance 

induction (Tan and O’Neill, 2005). 
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Figure 1.5: T cell stimulation requires three DC-derived signals. Signal 1 is the antigen-
specific signal that is mediated through T-cell receptor triggering by MHC class-associated 
peptides processed from pathogens after internalization through PRRs. Signal 2 is the 
costimulatory signal, mainly mediated by triggering of CD28 by CD80 and CD86 that are 
expressed by DCs after ligation of PRRs. Signal 3 is the polarizing signal that is mediated by 
various soluble or membrane-bound factors, such as IL-12 (Kapsenberg, 2003). 

 

 

1.2.5 The migratory phenotype of DC 

During the process of migration also the morphology of DC changes. Migration 

of DC from sentinel sites to lymphoid tissue entails the initiation and 

coordination of a complex series of cytoskeletal rearrangements resulting in 

polarized protrusion, formation of new adhesion points, and detachment (Burns 

et al., 2004). Immature DCs are characterized by a relatively small cell body, 

but very long membrane processes. These processes are known as filopodia 
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and are involved in anchorage to ECM. The dendrites are temporarily retracted 

during DC migration, as immature DC differentiate into the mature state after 

antigen uptake. DC morphology in the periphery is believed to increase the 

efficiency of antigen contact and uptake, while within lymphoid tissue it may 

maximize contact with T cells (Swetman et al., 2002). After antigen capture with 

subsequent migration to the LN, filopodia vanish, the membrane ruffles, 

lamellipodia and veils develop, which assist in detachment from the surface 

(Calle et al., 2004). 

In stark contrast to the situation found in the majority of resident connective 

tissue cells, migrating DCs possess neither stress fibers nor large focal 

adhesions. Instead, the cytoplasm contains a delicate tracery of microfilament 

bundles that concentrate at a series of discrete foci at the substratum interface 

termed podosomes (Adams, 2002). DCs, like all leukocytes, use amoeboid cell 

migration mechanisms to traffic within peripheral and lymphoid tissues (Friedl 

and Weigelin, 2008). Amoeboid migration is characterized by the acquisition of 

cell polarity, which then drives the development of a leading edge followed by 

the cell body and a posterior tail known as the uropod. Generally, polarization 

occurs in response to migration-promoting factors such as chemokines, which 

signal via G protein-coupled receptors. 

The formation of protrusions at the leading edge of DC is controlled by Rac and 

Cdc42 (Swetman et al., 2002), whereas Rho signaling regulates cytoskeletal 

reorganization upon DC maturation leading to cell contraction at the trailing 

edge of cells. Furthermore, Cdc42 activity is associated with the formation of 

filopodia in immature DC, while Rac activity induces the loss of filopodia and 

formation of lamellipodia in mature DC. This formation of lamellipodia in mature 

DC is thought to allow their rapid migration into the secondary lymphoid organs 

(Burridge and Wennerberg, 2004).  

 

Mechanistically, it was believed that migration of leukocytes, including DCs, 

relied upon interactions between surface receptors, such as integrins, and their 

ligands in the extracellular environment. However, it was demonstrated that DC 

locomotion occurred through alignment of the cell body to surrounding cell 

surfaces and/or ECM proteins independently of integrins (Lammermann et al., 

2008). Rather, cell movement is achieved by ‘squeezing and flowing’ of the 
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actin cytoskeleton, a process that appears to utilize weak-to-non-adhesive 

interactions and thus propels the DC along the path of least resistance towards 

the polarizing agent (Roediger et al., 2008). 

 

1.2.6 Chemokine, CC Motif, receptor 7 (CCR7) 

During the maturational processes, DCs also change their surface expression 

profile of chemokine receptors. Chemokines are small proteins that can bind G 

protein-coupled chemokine receptors (Yanagawa and Onoe, 2002), that confer 

DC the ability to detect and move directionally toward a chemotactic stimulus 

(Riol-Blanco et al., 2005). 

During the migration to the draining LN under inflammatory as well as under 

steady-state conditions, DC chemokine receptors CCR2 or CCR5 are 

downregulated that facilitate entry into inflamed tissues, while CCR7 is 

upregulated (Sallusto et al., 1998). CCR7 is essential for DC migration into 

dermal lymphatics and guidance to the draining LN (Ohl et al., 2004; Saeki et 

al., 1999). CCR7 has two ligands, chemokine, CC MOTIF, ligand 19 (CCL19) 

and CCL21 that are highly expressed by stromal cells in the T cell rich areas in 

the LN (Sánchez-Sánchez et al., 2006), endothelial cells, and DCs themselves 

(MartIn-Fontecha et al., 2003), and they each participate in the migration of DCs 

from peripheral tissues like skin to LNs (Robbiani et al., 2000). Because the two 

CCR7 ligands, CCL19 and CCL21, are expressed in the T cell area of 

secondary lymphoid organs, DCs migrate toward these ligands and finally 

aggregate in afferent lymphatic vessels and the T cell area of secondary 

lymphoid organs (Dieu-Nosjean et al. 1999).  
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1.3 Four-and-a-half lim domains 2 (FHL2) 

FHL2 belongs to the family of Four-and-a-half LIM only proteins which consist of 

five members: FHL1–4 and Activator of CREM in testis (ACT). Common 

synonymes are SLIM 3 and DRAL standing for ‘Downregulated in 

Rhabdomyosarcoma Lim Protein’, which how it was called by Genini et al. 

(1997), because they used subtractive cloning to isolate a gene that is 

downregulated during transformation of normal myoblasts to 

rhabdomyosarcoma cells. 

 

1.3.1 Structure and expression of FHL2 

The FHL2 gene encodes a 279 aa polypeptide with an observed mass of 32kD 

(Morgan and Madgwick, 1996), which was confirmed by Muller et al. (2000) and 

El Mourabit et al. (2003). The protein sequence contains four complete LIM 

domains and the second half of a fifth LIM domain (Fig. 1.6). The presence of a 

LIM domain is emerging as a hallmark of proteins that can associate with both 

the actin cytoskeleton and the transcriptional machinery (Johannessen et al., 

2006).  

 

 
Figure 1.6: Structure of FHL2. The LIM domain is a cysteine-rich motif with the consensus 
sequence CX2CX16–23HX2 CX2CX2CX16–21CX(C,H,D) that coordinately binds two zinc atoms and 
mediates protein–protein interactions. 

 

 

Northern blotting revealed that FHL2 is expressed at highest levels in heart and 

ovary, and at lower levels in skeletal muscle, prostate, testis, small intestine, 

and colon. Analysis of the expression pattern in normal human tissues revealed 

that FHL2 is expressed at high levels in the heart and skeletal muscle but also 

at lower levels in most other tissue, suggesting an important function in the 

specification of heart muscle cells (Genini et al., 1997). Therefore Chu et al. 
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(2000a), generated a mouse carrying a null mutation of the FHL2 gene, but 

failed to proof their hypothesis since FHL2 deficient mice are viable and 

maintain normal cardiac function both before and after acute mechanical stress 

induced by aortic constriction (Chu et al., 2000b).  

 

1.3.2 Function of FHL2 

FHL2 was shown by several other groups to be involved in various other cellular 

processes which can exert its function via two different mechanisms (Fig. 1.7). 

Stimulation of the Rho signaling pathway induces translocation of FHL2 to the 

nucleus (Morlon and Sassone-Corsi, 2003; Muller et al., 2002), where it acts as 

either transcription coactivator or corepressor in interaction with numerous 

transcription factors including the androgen receptor, AP1, CREB, PLZF, SKI, 

β-catenin, FOXO1, Runx2, Id2 and serum response factor (SRF; Chen et al., 

2003; Fimia et al., 2000; Gunther et al., 2005; Hamidouche et al., 2008; 

Labalette et al., 2004; Martin et al., 2002; Morlon and Sassone-Corsi, 2003; 

Muller et al., 2000; Paul et al., 2006; Philippar et al., 2004; Wei et al., 2003; 

Yang et al., 2005). SPP-induced FHL2 activation is mediated by Rho GTPases, 

but not by the GTPases Cdc42, Rac1 or Ras, and depends on Rho-kinase 

(Morlon and Sassone-Corsi, 2003; Muller et al., 2002). FHL2 may participate in 

a regulatory mechanism that coordinates cellular responses controlled by NF-

κB transcription factor (Stilo et al., 2002). All these data allude to FHL2 to play 

an important role in the modification of the transcriptional level of various genes.  

 

FHL2 has the capacity to interact, both in yeast and in mammalian cells, with 

itself, with the cytoplasmic domain of integrin α3A, α3B, α7A, and several β 

subunits, and with integrin-binding proteins (Wixler et al., 2000). This was 

investigated further by authors of Samson et al. (2004), who identified FHL2 

and FHL3 as novel α7β1 integrin-interacting proteins. Immunofluorescence 

studies with cells expressing full-length FHL proteins or their deletion mutants 

showed that FHL2 and FHL3 but not FHL1 colocalize with integrins at cell 

adhesion sites. Further, their recruitment to the membrane results from binding 

to either the alpha- or the beta-chain of the integrin receptor.  
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Figure 1.7: FHL2 plays a dual role within the cell. FHL2 can act as a co-activator of several 
transcription factors upon stimulation e.g. by Sphingosin-1-phosphate (S1P). Secondly, it binds 
to integrins which link the ECM and the actin cytoskeleton. 

 

 

1.3.3 FHL2 affiliates with actin associated proteins and structures 

FHL2 acts as an adaptor protein, regulating integrin trafficking, function or 

signaling pathways associated with cytoskeleton related genes, therefore may 

also play in migration. Co-localization of FHL2-(green fluorescent protein) GFP 

at focal adhesions was observed in C2C12, H9C2 myoblast as well as a 

nonmyogenic cell line, HepG2 cells. Moreover, FHL2 was observed along with 

F-actin and focal adhesion of C2C12 and H9C2 myotubes (Li et al., 2001). 

Cytoskeleton-associated proteins were shown to co-localize with FHL2 in cell 

lamellipodia (El Mourabit et al., 2004). FHL2 colocalizes to Grb7, which is an 

adaptor molecule and overexpression has been linked to enhanced cell 

migration and metastasis (Siamakpour-Reihani et al., 2009). Using 

mesenchymal stem cells from wt and FHL2-knockout mice, it was shown that 

inactivation of FHL2 leads to impaired assembly of ECM proteins on the cell 
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surface and to impaired bundling of focal adhesions (Park et al., 2008). A 

Disintegrin And Metalloproteinase (ADAM)-17 is a metalloprotease-disintegrin 

responsible for the ectodomain shedding of several transmembrane proteins, 

which colocalizes with FHL2 to the actin-based cytoskeleton (Canault et al., 

2006). 

 

Impaired cutaneous wound healing occurs in FHL2-deficient mice, which 

furthermore show collagen contraction and cell migration are severely impaired 

in FHL2-deficient cells. Consequently, the expression of alpha-smooth muscle 

actin is delayed in wounds of FHL2-deficient mice and the expression of 

p130Cas, which is essential for cell migration, is reduced in FHL2-deficient cells 

(Wixler et al., 2007). These results show impaired intestinal wound healing in 

FHL2-deficient mice is due to disturbed collagen III metabolism (Kirfel et al., 

2008). 

In a different study high levels of Lysine specific demethylase 1 (LSD1), nuclear 

expression of the FHL2 coactivator, high Gleason score and grade, and very 

strong staining of nuclear p53 correlate significantly with relapse during follow-

up. This suggests that LSD1 and nuclear FHL2 may serve as novel biomarkers 

predictive for prostate cancer with aggressive biology and point to a role of 

LSD1 and FHL2 in constitutive activation of AR-mediated growth signals (Kahl 

et al., 2006). 

 

1.4 Sphigosine-1-Phosphate Receptors (S1PR) 

FHL2 translocates into the nucleus upon binding of S1P and can act as a 

coactivator of transcription factors like AR or CREB/CREM in a cell type specific 

manner (Muller et al., 2002). S1P is a potent lysosphospholipid with a wide 

range of biological activities (Spiegel and Milstien, 2000) including regulation of 

cytoskeletal rearrangement and cell migration via the actions of five G-protein-

coupled receptors termed S1PR1-5, also known as endothelial differentiation 

gene (EDG), which mediate their functions through coupling of the receptor to 

heterotrimeric G-proteins (Takuwa et al., 2002). S1P is produced by platelets 

and red blood cells and circulates in the plasma at concentration of 10-7 M. S1P 

possess chemoattractive property for a variety of immune cells (Graeler and 
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Goetzl, 2002; Idzko et al., 2002), and has an impact of the egress of B and T 

cells from the LN and thymus (Matloubian et al., 2004). Furthermore, S1P is 

responsible for correct positioning of B cells and DC within the spleen (Cinamon 

et al., 2004; Czeloth et al., 2007).  

S1PR1 and S1PR3 usually promote cell migration via Gi pathways and Rac 

activation leading to lamellipodia formation (Paik et al., 2001), which 

observation could be extended to a variety of other cell types (Becker et al., 

2010; Gil et al., 2010; Liu et al., 2010). In contrast to S1PR2 which has a 

repellent effect on cell migration antagonizing Rac, stimulating G12/13 and Rho 

activation causing assembly of stress fibers (Fig. 1.8; (Arikawa et al., 2003; 

Okamoto et al., 2000; Sugimoto et al., 2003; Takashima et al., 2008). 

S1PR1-4 are expressed by a variety of immune cells, whereas expression of 

S1PR5 is mainly confined to cells of the central nervous system (Im et al., 

2000). S1P is the ligand for the five S1PRs, where S1PR1-4 are differentially 

expressed in T cells (Graeler and Goetzl, 2002) and bone marrow-derived 

dendritic cells (BMDC; Maeda et al., 2007). Depending on the maturation status 

of DC, they show a differential expression pattern of the S1PRs (Czeloth et al., 

2005; Maeda et al., 2007; Rathinasamy et al., 2010), which can either have an 

stimulatory or inhibitory regulation of migration (Sugimoto et al., 2003). This 

migratory effect is reflected by the expression pattern of S1PRs in DC causing a 

slower migratory behavior in their immature state leading to high migratory 

speed during maturation. Czeloth et al. (2005) showed that immature BMDC 

lack expression of S1PR1, and display only minor expression of S1PR3. These 

are highly upregulated after the maturation of BMDC, whereas expression of 

S1PR2 and 4 declines.   
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Figure 1.8: The coupling of the three S1P receptors to the Rho family GTPases. Both 
S1PR1 and S1PR3 mediate stimulation of Rac via Gi, leading to cell migration, whereas S1PR2 
mediates inhibition of Rac activity through an unknown mechanism, leading to inhibition of cell 
migration. S1PR3 and S1PR2 stimulate RhoA activity most likely via G12/13, however, stimulation 
of RhoA activity does not seem to be required for cell migration al least in CHO cells (Takuwa, 
2002). 
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1.5 Objective 

DCs are the first cells of defense against invading pathogens in an adaptive 

immune response. Therefore, DCs need to carry antigen, which they have 

taken up in the periphery, to the draining LN. Here, DCs present their antigen in 

MHC molecule to T cells. The communication between DC and T cell are very 

important in determining what kind of immune response is elicited, namely 

tolerance or immunity. Both can have detrimental effects for the organism: 

autoimmunity or no killing of the threatening pathogen. If a DC can reach the LN 

in a sufficient period of time, this is very critical to accomplish that task properly.  

FHL2 could play an important role in the mechanism of DC migration, since it is 

known to play in important role in fibroblast migration and subsequently wound 

healing and tumor formation. 

 

In this thesis the following questions will be addressed: 

1. What role does FHL2 play in DC migration? 

2. By which mechanism does FHL2 effect DC migration if at all. 

3. Does FHL2 play a role in other DC functions such as antigen uptake, 

antigen presentation and DC morphology? 
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2. Materials and Methods 

 

2.1 Materials 

2.1.1 Equipment 

Accurate Scales  PL-3001 (Mettler, Toledo, Greifensee, 

  Schweiz); BP211S 

(Sartorius;,Göttingen) 

Autoclave Tuttnauer 3870, Tuttnauer 5075 ELV  

(Biomedis, Gießen) 

Blotting Unit     XCell II Blot Module (Invitrogen,  

       Karslruhe) 

Bunsenburner    LABOGAZ 206 (Roth, Karlsruhe) 

Cell Separation   AutoMACS (Miltenyi, Bergisch 

Gladbach) 

Developer X-Omat 1000 Processor (Kodac, 

Rochester, USA) 

Electrophoresis Unit XCell SureLock Mini-Cell (Invitrogen, 

Karlsruhe) 

Electroporation Gene Pulser Xcell Electroporation 

System (Biorad, München) 

ELISA reader  ELX800 (BioTek Instruments, Bad 

Friedrichshall 

Flow Cytometer  FACS Canto (Becton Dickinson, 

Heidelberg) 

Fluorescence Microscope   IX71 (Olympus, Hamburg) 

Freezer (-20°C) 7081-598-03 (Liebherr, Biberach an der 

Riss) 

Freezer (-80°C)       HERAfreeze (Hereaus, Hanau) 

Ice machine     ZBE 70-35 (Ziegra, Isernhagen) 

Incubator  Cytoperm 2, BBD 6220 (Heraus, 

Hanau) 
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Laminar Flow Hood  HERAsafe, HERAguard (Heraeus, 

Hanau) 

Luminometer Centro LB 960 Berthold (VWR, 

Darmstadt) 

Magnetstirrer     RCT (IKA, Staufen) 

Microscope     Axiovert 40Cn (Zeiss, Oberkochen) 

Microwave     Microwave 800 (Severin, Sundern) 

Mini Centrifuge    Galaxy Mini (VWR, Darmstadt) 

Motorized rotor homogenizer  Fastprep (Sartorius, Göttingen) 

Orbital Shaker    VXR basic Vibrax (Ika, Staufen) 

pH Meter      Blueline pH 12 (Schott, Mainz) 

Power supply  Consort E835 (Rhys Scientific 

Ltd,,Lancashire, UK) 

Real-Time PCR System  7900HT (Applied Biosystems, 

Darmstadt)  

Refrigerator (+4°C)   7081-312-04 (Liebherr, Biberach an der 

Riss) 

Rocking Shaker           Duomax 1030 (Heidolph, Schwabach) 

Scale      440-45N (Kern, Balingen)  

Spectrophotometer  NanoDrop ND-1000  (PeqLab, 

Erlangen)  

Speed Rotator Intelli-Mixer RM-2 Elmi LV-1006 (Elmi, 

Riga, Latvia) 

Table Centrifuge     5417R (Eppendorf, Hamburg) 

Thermal cycler   MJ Research PTC-200 Peltier Thermal 

cycler (Biozym, Oldendorf) 

Thermomixer     Thermomixer  (Eppendorf, Hamburg) 

Timelapse Microscopy   IX81 (Olympus, Hamburg)    

Vortex Genie 2 (Scientific Industries, New 

York, USA) 

Waterbath WB/OB7-45 WBU45 (Memmert, 

Schwabach) 
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2.1.2 Consumables 

384 Microreader plate  Thermo Fisher Scientific, 

Langenselbold   

Beaker 25ml, 100ml, 500ml  TGI, Ilmenau 

Chamber Slide2 well Permanox  Nalge Nunc International, New York, 

USA 

Cell Culture flasks 75cm2   Corning, Wiesbaden 

Cell strainer 40µm    Becton Dickinson, Heidelberg 

Centrifuge round bucket 500ml  Heraeus, Hanau  

Conical Tubes 15ml, 50ml   Greiner, Solingen. Corning; Wiesbaden 

Cover slips     Leica, Wetzlar 

Cover Slips, ∅13 mm    Assistent, Sondheim 

Electroporation Cuvette    Biorad, München 

Erlenmeyer flask 50ml, 100ml,   Schott, Mainz 

250ml, 500ml, 1l 

Falcon round-bottom tubes  Becton Dickinson, Heidelberg 

Filterflasks 1L 0.2µm   Corning, Wiesbaden   

Filter paper Whatmann 3MM Schleicher & Schuell, Dassel  

High performance     GE Healthcare, München 

Chemiluminiscence film  

Lysing Matrix D    Q-Biogen, Heidelberg 

Microplates flat bottom 96, 48 well Corning, Wiesbaden 

PCR tubes 0.2ml Greiner, Frickenhausen 

Microplates round-bottom 96 well  Greiner, Frickenhausen 

Needle, 21G, 25G    Becton Dickinson, Heidelberg 

  

Neubauer Counting chamber  Roth, Karlsruhe 

Nitrocellulose membrane 0.2µm  BioRad, München 

Nunc Cryo tubes Thermo Fisher Scientific, 

Langenselbold   

Nylon Wool     Dunn Labortechnik, Asbach 

Petri dish, non tissue culture treated  Greiner, Frickenhausen 

10cm, 5cm    
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Petri Dish 15cm    TPP, Trasadingen, Schweiz 

Pipette accu-jet    Brand, Wertheim 

Pipettes 0.2-2µl, 0.5-10µl, 2-20µl,  Eppendorf, Hamburg 

20-100µl, 30-200µl, 100-1000µl     

Snap cap microcentrifuge tube  Eppendorf, Hamburg 

500µl, 1ml, 2ml 

Strainer, metal, 100µm University Bonn, Department 

„Feinmechanik“ 

Stripes Serological Pipets Corning, Wiesbaden 

Syringe 1ml, 5ml, 10ml   Becton Dickinson, Heidelberg  

Threaded bottles100ml, 250ml,   Schott, Mainz 

500ml, 1l, 2l  

Transwell 5µm, 24 well   Corning, Wiesbaden 

Ultrapure water system    Reinstwassersysteme, Leverkusen. 

NANOpure Diamond, Barnstead  

µ-Slide Chemotaxis    IBIDI, München 

 

2.1.3 Chemicals (liquid) 

Acetic acid (CH3COOH)    Merck, Darmstadt 

Acetone (C3H6O)    Merck, Darmstadt 

Bradford reagent    BioRad, München 

β-mercaptoethanol (C2H6OS)  Merck, Darmstadt 

Citric acid (C6H8O7)    Merck, Darmstadt 

Dimethyl sulfoxide (C2H6OS)  Sigma, Steinheim 

Ethanol (C2H6O)    Merck, Darmstadt 

Glycerol 87% (C3H8O3)   Merck, Darmstadt 

Hydrochloric acid (HCl)   Merck, Darmstadt   

Hydrogen peroxide (H2O2)   Roth, Karlsruhe 

Methanol (CH4O)    KMF, Lohmar 

Tween 20 (C58H114O26)   KMF, Lohmar 
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2.1.4 Chemicals (solid) 

Agarose (C12H18O9 )    Biozym, Oldendorf   

  

2,2'-azino-bis(3-ethylbenzo-   Sigma, Steinheim 

thiazoline-6-sulphonic acid)  

(C18H18N4O6S4)       

Bovine serum albumin   Biolabs, SIGMA 

Bromophenol blue (C19H10Br4O5S) Fluca, Steinheim 

Deoxycholic acid (C24H40O4)  Roth, Karkruhe 

Ethylenediaminetetraacetic acid  Merck, Darmstadt 

(C10H16N2O8 ) 

Gelatine     Sigma, Steinheim 

Milk powder     Merck, Darmstadt 

Nonidet P-40     Roth, Karlruhe 

Saponin     Merck, Darmstadt 

Sodiumazid (NaN3)   Sigma, Steinheim 

Sodium chloride (NaCl)   Merck, Darmstadt 

Sodium dodecyl sulfate    Roche, Berlin 

(NaC12H25SO4) 

Sodium hydrogen phosphate  Merck, Darmstadt 

(Na2HPO4) 

Sodium hydroxide (NaOH)   Merck, Darmstadt 

Tris(hydroxymethyl)aminomethane  Merck, Darmstadt 

(C4H11NO3)     

Triton X-100 (C14H22O(C2H4O)n)  Merck, Darmstadt 

Paraformaldehyde    Fluca, Steinheim 

(OH(CH2O)nH (n = 8 - 100))    

Xylencyanol (C25H27N2NaO6S2)   Roth, Karlsruhe 

 

2.1.5 Reagents 

5x First strand Buffer   Invitrogen, Karlsruhe 

10x PCR Rxn Buffer   Invitrogen, Karlsruhe 
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100bp Molecular Ruler   BioRad, München 

10x RT Buffer    Invitrogen, Karlsruhe 

Affinity purified mouse CCL19-Fc  eBioscience, San Diego, USA 

fusion protein   

AllStars negative control siRNA  Qiagen, Hilden 

Antibody diluent Dako, Hamburg 

Calibrate beads Becton Dickenson, Heidelberg 

Dithiothreitol     Invitrogen, Karlsruhe 

dNTP Mix     Invitrogen, Karlsruhe 

Ethidium bromide solution   Fluca, Steinheim 

LPS      Sigma, Steinheim 

Magnesium chloride   Invitrogen, Karlsruhe 

Mini Complete    Roche, Berlin 

Mounting medium    Dako, Hamburg 

Normal mouse serum   Sigma, Steinheim 

Normal rat serum    Sigma, Steinheim 

Oligo(dt)-Primer12-15    Invitrogen, Karlsruhe 

Prostaglandin E2    Sigma, Steinheim 

Protein G PLUS-Agarose    Santa Cruz Biotechnology, Heidelberg 

Proteinase K solution   Qiagen, Hilden 

PureCol Collagen Sigma, Steinheim  

RLT Buffer     Qiagen, Hilden 

RNase-free water    Qiagen, Hilden 

Rnase OUT     Invitrogen, Karlsruhe 

S1PR1 siRNA    Qiagen, Hilden 

SuperScript III Reverse Transcriptase  Invitrogen, Karlsruhe 

Taq DNA polymerase   Invitrogen, Karlsruhe   

Protein G PLUS-Agarose    Santa Cruz Biotechnology, Heidelberg 

 

2.1.6 Antibody coated beads  

CD4 (L3T4) MicroBeads   Miltenyi Biotec, Bergisch Gladbach 

CD8 (Ly-2) MicroBeads   Miltenyi Biotec, Bergisch Gladbach 

CD11c MicroBeads    Miltenyi Biotec; Bergisch Gladbach 
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2.1.7 Fluorochrome labeled ligands  

DextranFITC     Sigma, Steinheim 

OVAAlexa647     Invitrogen, Karlsruhe 

PhalloidinAlexa488    Invitrogen, Karlsruhe  

PhalloidinAlexa546    Invitrogen, Karlsruhe 

PhalloidinAlexa647    Invitrogen, Karlsruhe 

 

2.1.8 Fluorochromes  

Carboxyfluorescein succinimidyl   Molecular Probes, Karlsruhe 

ester (C25H15NO9)       

4',6-diamidino-2-phenylindole  Invitrogen, Karlruhe 

SNARF-1 carboxylic acid, acetate,  Molecular Probes, Karslruhe 

succicimidyl ester   

 

2.1.9 Enzymes  

Collagenase A    Sigma, Steinheim 

 

2.1.10  Proteins  

Ovalbumin     Serva, Heidelberg 

 

2.1.11 Inhibitors  

Brefeldin A     eBioscience, San Diego, USA 

CCG-1432     Cayman Chemical, Tallinn, Estonia 

Fasudil hydrochloride  Tocris Bioscience, Bristol, United 

Kingdom 

Monensin     eBioscience, San Diego, USA 

SEW8271     Cayman Chemical, Tallinn, Estonia 

S1P      Sigma, Steinheim 
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Y27632     Merck, Darmstadt 

 

2.1.12 Cytokines and Chemokines 

Recombinant IL-2    Peprotech, Hamburg  

Recombinant Mouse MIP-3/CCL19 R&D Systems, Wiesbaden-Nordenstadt 

Recombinant murine TNF-α  Peprotech, Hamburg 

 

2.1.13 Cell culture supplies 

ACK lysis buffer    Lonza, Köln 

Fetal calf serum    PAA, Cölbe 

G418      PAA, Cölbe 

IMDM medium    PAA, Cölbe 

L-Glutamine     Gibco, Karlsruhe 

Optimem     Invitrogen, Karlsruhe 

Penicillin/Streptomycin   PAA, Cölbe 

PBS      PAA, Cölbe 

RPMI Medium    Gibco, Karlsruhe 

Trypan blue     Sigma, Steinheim 

Trypsin-EDTA    PAA, Cölbe 

 

2.1.14 Western Blot supplies 

MOPS SDS Running Buffer (20x) Invitrogen, Karlsruhe 

Novex® Sharp Pre-stained Protein  Invitrogen, Karlsruhe 

Standard   

NuPAGE 4-12% Bis-Tris Gel   Invitrogen, Karlsruhe 

(1.5mmx15 well)   

NuPAGE LDS Sample Buffer (4x) Invitrogen, Karlsruhe 

NuPAGE Transfer Buffer (20x)  Invitrogen, Karlsruhe 
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2.1.15 Oligonucleotides       

All primers are HPLC purified and purchased ready lyophilized at a 

concentration of 10µM. They were 1:10 diluted in ddH20. SIGMA-Proligo, 

Steinheim. 

 

Table 2.1: The list of primers used for the PCRs. 

Name Sequence 5’ – 3’ 

Myco C GGGAGCAAACAGGATTAGATACCCT 

Myco D TGCACCATCTGTCACTCTGTTAACCTC 

FHL2 Exon1 F TTGCTGAAAGACAGGTGTCAGC 

FHL2 Exon1 R TTGCAGTCGCAGCCGATGGG 

b-actin F CTACGTCGCCCTGGACTTCGAGC 

b-actin R GATGGAGCCGCCGATCCACACGG 

18s F ACAGCCAGGTTCTGGCCAACGG 

18s R TGACCGCGGACACGAAGGCCC 

S1PR1 F TCTCTGACTATGGGAACTATG 

S1PR1 R CCAGGATGAGGGAGATGA 

S1PR2 F CCTTAACTCACTGCTCAATCC 

S1PR2 R GCTGGAAGATAGGACAGACAG 

S1PR3 F ACAAGGTCCGGGTGCTGA 

S1PR3 R GTAATGTTC CCGGAGAGTGTC 

S1PR4 F GCTATGCCCATTGTCCAGTAG 

S1PR4 R GGACCAGGTACTGATGTTCATG 

 

2.1.16 Antibodies 

Table 2.2: Antibodies used in Western blot or for Immunoprecipitation. 

Antigen Isotype Clone Remark Company 

b-actin IgG, mouse AC-15 monoclonal Sigma 

FHL2 IgG, rabbit  polyclonal self-produced 

FHL2 IgG1, mouse F4B2-B11 monoclonal 
Novus 
Bilogicals 
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Table 2.3: Antibodies used for flow cytometry. 

Antigen Isotype Clone Remark Company 

TNF-α IgG1 k, rat MP6-XT22   eBioscience 

IL-12 p35 IgG2a k, rat 4D10p35  eBioscience 

CD11c IgG, hamster N418 
Integrin αX 
chain 

eBioscience 

CD16/32 IgG2b k, rat 2.4G2 Fc RII/III self produced 

MHCI IgG2a κ, rat AF6-88.5 H-2Kb eBioscience 

MHCII IgG2b κ, rat M5/114.15.2 I-A b eBioscience 

CD40 IgG2a κ, rat HM40-3  eBioscience 

CD80 IgG, hamster 16-10A1 B7-1 eBioscience 

CD86 IgG2a κ, rat GL1 B7-2 eBioscience 

 

Table 2.4: Antibodies used for ELISA. 

Antigen Isotype Clone Remark Company 

IL-2 IgG2b, rat JES6 1A12 pure eBioscience 

IL-2 IgG2b, rat JES6 5H4 biotinylated eBioscience 

 

Table 2.5: Functional antibody used for in vivo injection. 

Antigen Isotype Clone Remark Company 

NK 1.1 IgG2a, mouse PK136 pure self produced 

 

 

2.1.17 Secondary antibodies 

Anti-mouse HRP     Sigma, Steinheim 

Anti-rabbit HRP     Invitrogen, Karslruhe 

Strepavidin PerCpcy5.5    eBioscience, San Diego, USA 

Anti-Human IgG (Fc gamma-specific)   eBioscience, San Diego, USA 

Anti-mouse IgG-Peroxidase antibody  Sigma, Steinheim 

anti-mouseTexas Red     Southern Biotech, Eching 
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2.1.18 Kits 

Amersham ECL Western blotting  GE Healthcare, München 

Analysis System  

Cell Proliferation Kit I (MTT)  Roche, Berlin 

mirVana miRNA Isolation   Ambion, Darmstadt 

NucleoSpin RNAII     Macherey&Nagel, Düren 

QuantiFast SYBR Green PCR Kit Qiagen, Hilden  

Rac1 ELISA Kit    Cytoskeleton, Offenbach 

RNeasy Midi Kit    Qiagen, Hilden 

RNeasy Mini Kit    Qiagen, Hilden 

 

2.1.19 Media, Solutions and Buffer 

1xTBS-T    10xTBS was diluted 1:10 in ddH2O 

0.1% Tween 

 

10xTBS   1l ddH2O 

200mM Tris  

1.4M NaCl 

adjusted to pH 7.6 with HCl 

 

50xTAE Buffer  1l ddH2O 

1M Tris  

17.51% acetic acid 

0.5M EDTA  

 

Freezing Medium  FCS 

    20% DMSO  

    

ABTS buffer   17.89g citric acid, monohydrate  

1000ml H
2
O  

pH 4.35  
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Acetic acid 100mM  50ml ddH20  

286µl acetic acid  

 

BMDC medium   500ml IMDM medium  

8% heat inactivated FCS 

2µM β-ME 

1x P/S 

2mM L-Glutamine. 

 

BMDC medium/BSA 500ml IMDM medium  

8% heat inactivated FCS 

2µM β-ME 

1x P/S 

2mM L-Glutamine 

2.5g BSA 

 

Coating buffer  0.1M Sodium hydrogen phosphate in ddH20  

 

EDTA 0.5M   50ml ddH20 

18.6g EDTA  

adjusted to pH8 with 5M NaOH 

 

FACS buffer    500ml 1xPBS 

0.1% Na azid 

1% BSA. 

 

Freezing Medium  FCS 

    20% DMSO  

 

Laemmli buffer  20% Glycerol, 1.5M Tris-HCl 

    0.01g bromphenolblue 

 

Loading dye   50ml ddH2O 

0.5ml of 1M Tris (pH8) 
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5µl of 0.5M EDTA (pH8) 

28.74ml of 87% glycerol 

0.025g Bromphenol blue 

0.025g Xylencyanol  

 

MACS buffer   500ml 1xPBS  

0.1% Na azid 

1% BSA 

2mM EDTA 

 

RIPA buffer   in ddH2O 

    150mM NaCl 

    0.5% Deoxycholic acid 

    1% NP-40  

    0.1% SDS  

    50mM Tris  

1 tablet Mini Complete was added to 10ml RIPA 

buffer   

 

T cell medium  RPMI medium  

8% FCS 

2µM β-ME 

1x P/S 

2mM L-Glutamine. 

 

2.1.20 Software 

Cell^R Imagingsystem  Olympus, Hamburg 

FlowJo    FlowJo, Ashland, USA 

SDS2.2    Applied Biosystems, Darmstadt 

Track-it software   Olympus, Hamburg 
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2.1.21 Cell lines 

Ag8653  GMCSF producing hybridoma cell line 

 

 

2.1.22  Mouse lines 

All mice were on the C57BL/6 background. Experimental animals were bred 

under specific pathogen free (SPF) conditions according to the FELASA 

guidelines in the central animal facility “Haus für Experimentelle Therapie” 

(HET) at the University Hospital Bonn. For all experiments mice between 6-20 

weeks of age were used in accordance with local animal experimentation 

guidelines.  

 

C57Bl/6 Inbreed line with MHC class I Haplotype H2K b 

FHL2-/-  (Kon et al, 2001) 

OT-I IxRag CD8 T cell transgene mouseline, H2KbSIINFEKL-restricted 

Vα2Vβ5 

T cell receptor (Hogquist et al., 1994). 

OT-II  CD4 T cell transgene mouseline, I-Ab  

 

 

2.2 Methods 

 

2.2.1 Cell Culture 

2.2.1.1 Primary cell isolation 

All mice used for organ removal to receive primary cells were between 6 and 20 

weeks old. Prior to organ removal mice were sacrificed by CO2 mediated 

asphyxiation. Body Surfaces were cleaned with 70% Ethanol and body cavity 

was opened under semi sterile conditions with forceps and scissors. 



Materials and Methods 

 

38 

2.2.1.2 Production of GMCSF 

The myeloma cell line AG8653 produces murine recombinant GMCSF under 

neomycin (G418) selection, which supernatant was added to the BMDC culture 

to turn bone marrow precursor cells into DC. Cells were expanded in IMDM 

medium under G418 selection with a final concentration of 1mg/ml for several 

days until the cells were about 80 to 90% confluent. Medium was aspirated, the 

cells were washed with PBS and detached from the plastic surface by Trypsin-

EDTA at 37°C for 5min. Reaction was stopped by adding equal volume of 

medium and centrifuged at 1500rpm for 5min. Cells were washed three times 

with PBS to remove G418  and in the in the end resuspended in IMDM medium 

and counted. 5x105 cells were plated on 15cm dishes in 20ml volume of IMDM 

medium for four days. The supernatant was collected in centrifuge buckets for 

centrifugation 1500rpm for 10min and filtered through 0.2µm pore size to 

exclude cells and stored at -20°C. 

 

2.2.1.3 Determination of cell number 

The harvested cell suspension was diluted with Trypan Blue, and 10µl were 

applied to the edge of the hemocytometer. It consists of four squares, each 

made up of another 16 smaller squares. All four big squares were counted, 

excluding dead cells characterized by a deep blue color and the concentration 

of the cell suspension was calculated by the help of following formula. In order 

to get an accurate number, the number of cells in the small square should be 

between 30 to 200. 

 

Number of cells/ml = Number of counted cells/4 * dilution factor * 10,000 

 

2.2.1.4 Generation of bone marrow derived dendritic cells 

Femur and tibia from FHL2-/- and wt mice were removed, and fur and muscle 

tissue carefully subducted with sterile forceps. The end on the bones were cut 

open and flushed through with IMDM medium, centrifuged at 1500rpm for 5min, 

resuspended in fresh medium and counted. 5x106 cells were cultured in 10cm 
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untreated Petri dishes in IMDM medium in a final volume of 10ml supplemented 

with 30% GMCSF containing supernatant prepared as described in 2.2.1.2. 

After four days, medium including BMDCs was transferred into a conical tube, 

washed twice with 3ml PBS and detached with 1mM EDTA/PBS including the 

cells in the medium. 3x106 cells were plated under the same conditions as 

described before for further three days. This yielded a 60 to 80% pure CD11c 

positive BMDC culture as determined by flow cytometry.  

Optionally on day seven, maturation was induced with either 100ng/ml LPS for 

24 hours or 30ng/ml TNF-α for 48 hours depending on the setup of the 

experiment. Incubation with several inhibitors was done as described in Results. 

 

2.2.2 Molecular Biological methods 

2.2.2.1 Mycoplasma PCR 

Contamination of cells with mycoplasma can lead to cell death or it could 

influence the phenotype of the cells, which could change the outcome of 

experiments. Therefore cells were checked for mycoplasma contamination on a 

regular basis by PCR with primers covering most strains. Medium of cells was 

not changed at least for two days. 200µl of medium was taken and heated up 

for 10min at 95°C. Every PCR reaction was done simultaneously with two 

positive control samples (Table 2.6). 
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Table 2.6: The recipe of the Mycoplasma PCR and the PCR program. 

Reagents Concentration Volume µl 

ddH20  16.8 

PCR Rxn Buffer 10x 2.5 

MgCl2  50mM 1 

dNTPs 10mM 10mM 0.5 

Primer Myco C 1µM 1 

Primer Myco D 1µM 1 

Taq DNA polymerase 5U/µl 0.2 

DNA sample  2 

   

Program: Temperature °C Time 

 94 3min 

 94 30s 

 55 30s 

 72 45s 

 33 cycles  

 

2.2.2.2 Isolation of total RNA from tissue 

In order to check for FHL2 expression in several organs RNA was isolated from 

lung, colon, muscle and heart tissue with the “RNeasy Midi” kit according to 

manufacturers’ instruction. 

100mg of tissue were taken up in 1ml RLT Buffer provided by the manufacturer 

supplemented with 10% β-ME and placed in a “Lysing Matrix D” vessel and 

disrupted with a motorized rotor homogenizer for 60s. Heart tissue was 

incubated in 20mg/ml Proteinase K solution dissolved in ddH20 at 55°C for 

20min to destroy contractile proteins, connective tissue and collagen. The 

concentration of RNA was determined with “Nano Drop”.  
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2.2.2.3 Isolation of total RNA from cell culture 

Total RNA was isolated out of seven to days BMDC using either the ‘RNeasy 

Mini Kit’ or ‘NucleoSpin® RNA II’ following manufacturers’ instruction. For every 

experiment the same number of cells was loaded on the spin columns and 

eluted in RNAse free water. The concentration of RNA was determined with 

‘Nano Drop’.  

 

2.2.2.4 RT-PCR 

The conversion of RNA isolated from BMDC cell culture and tissues into cDNA 

was performed with ‘SuperScript™ III Reverse Transcriptase’. For every 

experiment the same amount of RNA was used varying between 200ng to 1µg 

depending on the yield of RNA from each sample in a final volume of 11µl of 

RNase free water. To each reaction 1µl of 10mM dNTP mix (10mM each dATP, 

dGTP, dCTP and dTTP at neutral pH) and 1µl of 50mM Oligo(dt)12-18 was added 

to a nuclease-free microcentrifuge tube, and heated for 5min at 65°C and 

cooled down for a minute on ice. The following components were added to each 

mixture: 4µl of 5X First-Strand Buffer, 1µl 0.1M DTT, 1µl RNaseOUT™ 

Recombinant RNase Inhibitor (40U/µl), and 1µl of SuperScript™ III RT 

(200U/µl); and incubated in a thermocycler for 60min at 60°C and inactivated at 

70°C for 15min. The final volume of 20µl was further diluted 1:10 or sometimes 

1:20 before used in Real Time PCR. 

 

2.2.2.5 Semi-quantitative RT-PCR 

40ng of target cDNA was added to a thin-walled tube and mixed together with 

10x PCR Rxn Buffer, 2mM MgCl2, 0.2mM dNTP mix and 1U of Taq DNA 

Polymerase. 40nM of primers were used for the amplification of Exon1 of FHL2 

with FHL2 Exon1 F and R primer. As a positive control β-actin is amplified as 

well, since it is abundantly and ubiquitously expressed in tissue.  

The sample is heated to 94°C to cause denaturation, which is followed by 

rapidly cooling to 60°C allowing the primers to anneal. During elongation the 

temperature is raised to 72°C. This course was repeated 33 times. 
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2.2.2.6 Gel Electrophoresis  

To prepare a 1.5% concentrated agarose gel, 2.25g agarose was weighed and 

mixed with 150ml of 1x TAE Buffer, heated in a microwave until it is dissolved. 

To visualize DNA products, 20µl of ethidium bromide was added which 

intercalates into double stranded DNA. It was cooled down for a short period of 

time, and then cast in the form. 12.5µL of PCR-product together with 2.55µL 

brom phenol blue loading dye is loaded on 1.5% agarose gel, which was run for 

30 min at 150V. The sizes of fragments were compared to 100 bp-ladder 

creating 10 bands ranging from 100 to 1000 bp.  

 

2.2.2.7 Transfection of BMDC with siRNA 

A total of 4x106 in 200µl Optimem medium day 7 BMDCs were put in a cuvette 

together with 5µg S1PR1 siRNA, as well as with 5µg AllStars Negative Control 

siRNA. The cuvette was placed in ‘Gene Pulser Xcell Electroporation System’ to 

be electroporated with a square wave protocol (300V, 6ms), and plated in 5cm 

plate dish. 48hrs later, transfected BMDCs were allowed to migrate in a 

Transwell as described in 2.2.4.2, and in parallel RNA was isolated and 

converted to cDNA to assess the expression of S1PR1 with qRT-PCR as 

described in detail in previous and following sections. 

 

2.2.2.8 Quantitative Real-Time PCR 

In order to monitor expression levels of RNA in a quantitative way, we used the 

‘QuantiTect SYBR Green PCR Kit’. SYBR Green is an asymmetrical cyanine 

dye, which preferentially binds to double stranded DNA and the resulting DNA-

dye-complex absorbs blue light (λmax = 488nm) and emits green light (λmax = 

522nm). 5µl of ‘2x QuantiFast SYBR Green PCR Master Mix’ was mixed with 

1µl cDNA converted by ‘SuperScript™ III Reverse Transcriptase’, and 0.5µl 

each forward and reverse primer each having a final concentration of 50nM and 

filled up with RNAse free water to get a final volume of 10µl. Every sample was 
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referenced to a housekeeping gene i.e. 18s. Every sample reaction was set up 

in triplicates in a 384 well format, and run on the ‘7900 HT ABI Prism’ with the 

following course of program: 50°C for 2min, 95°C for 10min, 95°C for 15s and 

60°C for 1min and the last to steps repeated 40 times. The data were analyzed 

with SDS2.2. 

 

2.2.3 Protein Biochemical methods 

2.2.3.1 Sample Preparation for western blot 

Heart and skeletal muscle tissue was squeezed through a sieve to obtain single 

cells. These cells and BMDC harvested on day 7 were washed with PBS. The 

cells stayed on ice in 100µl of RIPA Buffer and were vortexed in between in 

order to release proteins. After 30 to 45min the samples were centrifuged for 

15min at 15,000rpm to gain the supernatant containing proteins, which were 

stored in a freezer at -20°C. 

 

2.2.3.2 Protein determination by Bradford Assay 

The Bradford assay determines protein concentration based on a shift of 

absorbance when the former red Bradford reagent is stabilized into Coomassie 

blue by the binding of protein. The concentration of each sample can be 

calculated from a calibration curve prepared from the Bradford reagent bound to 

BSA ranging in concentration from 0 to 10µg. Here, the varying amounts of BSA 

was pipetted to sterile water in a total volume of 80µl of ddH2O in 96 well flat 

bottom ELISA plate and 20µl of Bradford reagent was added to BSA. For the 

determination of the sample concentration 1µl was added to 20µl Bradford 

reagent and 79µl sterile water. The amount of the complex formed was read in 

an ELISA reader at 595nm. 

 

2.2.3.4 SDS-PAGE 

SDS-PAGE is a technique used to separate proteins according to their 

electrophoretic mobility. 20µg of protein were mixed with ‘NuPAGE LDS Sample 
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Buffer (4x)’ in a final volume of 20µl filled up with PBS and denatured for 5min 

at 95°C. Proteins were loaded on ‘NuPAGE 4-12% Bis-Tris Gel (1.5mmx15 

well)’, which is placed in the ‘XCell SureLock Mini-Cell’ device filled with 1x 

MOPS SDS Running Buffer. The size of the proteins is compared to the 

‘Novex® Sharp Pre-stained Protein Standard’ consisting of 12 pre-stained 

protein bands in the range of 3.5 to 260kDa. Proteins were separated for 1hr at 

170V. 

 

2.2.3.5 Western Blot 

The separated proteins were transferred from the gel to a Nitrocellulose 

membrane by the help of the ‘XCell II Blot Module’ containing ‘NuPAGE 

Transfer Buffer’ at 30V for 1hr. The membrane was washed with TBS-T. 

 

2.2.3.6 Detection of FHL2 and β-actin 

The membrane was blocked overnight at 4°C in 0.1%MP/TBS-T. Subsequently, 

the membrane was incubated in 0.1%MP/TBS-T with 50ng/ml monoclonal anti-

FHL2 antibody or 200ng/ml monoclonal anti-β-Actin antibody for 1 hour at RT. 

After washing the membrane five times for 5min in 0.1%MP/TBS-T, the 

membrane was exposed to 3.25µg/ml anti-mouse IgG (Fab specific)-Peroxidase 

antibody for 30min at RT. The membrane was washed as described before, 

which was followed by visualization with the ECL Western blotting detection 

reagents and analysis system.  

 

2.2.3.7 Immunoprecipitation  

For immunoprecipitation (IP), 1mg of total protein prepared as described in 

2.2.3.1 of total wt and FHL2-/- BMDC lysates were incubated with 4µg 

polyclonal Ab directed against FHL2 (a kind gift by R. Schüle, Freiburg, 

Germany) in total volume of 250µl. The complexes were precipitated using 

‘protein G PLUS-Agarose’ at 4°C overnight. Prior protein G PLUS-agarose was 

precleared with double volume of RIPA buffer for 1h at 4°C in a Speed shaker 
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and centrifuged for 5min at 2500rpm. At the next day the complexes were 

washed three times with RIPA buffer for 5min at 2,500rpm at 4°C, and 

subsequently boiled in 20µl Laemmli buffer for 10min at 95°C, which was 

loaded on “NuPAGE 4-12% Bis-Tris Gel (1.5mmx15 well)” to be analyzed for 

FHL2 expression as described previously in section 2.2.3.5. 

 

2.2.3.8 Immunofluorescence 

 The morphology of 2x105 BMDC was studied when staining for actin 

cytoskeleton and nucleus on collagen coated cover slips with a diameter of 

13mm put in a 24 well plate. Therefore, 3mg/ml Collagen diluted 1:100 in 

100mM acetic acid was polymerized for 30min at 37°C and washed twice with 

ddH20.  

BMDC were left to adhere for one hour at 37°C. BMDC were fixed with 4% PFA 

for 15min on ice, and subsequently permeabilized on ice for one hour in 

5%MP/0.1%Triton/1%serum/PBS. Actin filaments were stained with 0.4U/ml 

phalloidinAlexa546 in 0.1%Triton/1%mouse serum/PBS for 30min at 37°C. The 

nucleus was stained with DAPI in PBS for 15min at 37°C. Finally, the cover 

slips were put on a microscopic slide with mounting medium preserving the 

fluorescence. Stained BMDC were viewed with Olympus IX71. 

When stained for FHL2 another protocol was followed. Wt BMDCs were also 

plated on Collagen coated surfaces as described before. Cells were fixed for 

15min on ice with PFA, and subsequently permeabilzed for 5min at room 

temperature in 0.2% Triton/PBS. In between all incubation steps it was washed 

at least twice with PBS for 5min. Cells were blocked for 2hrs in 

0.2%gelatine/PBS. Actin filaments were stained with 1U/ml phalloidinAlexa488, 

and simultaneously FHL2 with monoclonal anti-FHL2 antibody diluted 1:50 in 

Antibody Diluent for 2hrs at RT. Secondary antibody anti-mouseTexas Red directed 

against FHL2 was, and simultaneously the nucleus was stained with DAPI in 

diluted 1:1,000 in Antibody Diluent for 2hrs at RT. Finally, the cover slips were 

put on a microscopic slide with mounting medium preserving the fluorescence. 

Stained BMDC were viewed with Olympus IX71. 
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2.2.4 Migration assays 

2.2.4.1 Timelapse-video microscopy 

Prior to use µSlides were coated with Collagen for 30min at 37°C, which was 

diluted in 100mM acetic acid 1:100 to receive a final concentration of 300µg/ml, 

and afterwards the slides were washed twice with PBS. 1x105 BMDC in IMDM 

Medium were allowed to adhere to µSildes for 45 min at 37°C. Timelapse 

images were taken every 15s for 30min to determine the migratory speed 

without chemokine stimulation using a Cell^R Imagingsystem. After that a 

CCL19 gradient was set up with 40µl of 20µg/ml chemokine and the cells were 

imaged for a further 60min at 37°C. 

Migratory speed, directionality and migratory distance were determined using 

the Track-it software. 

 

2.2.4.2 Transwell Assay 

2.5x105 unstimulated, LPS and TNF-α stimulated BMDC in 100µl BSA/IMDM 

medium were added to the top chamber of the insert of the Transwell with a 

pore size of 5µm. The bottom chamber was filled with 600µl IMDM/BSA 

medium containing 10ng/ml CCL19. Cells were allowed to transmigrate for 3hrs 

at 37°C, harvested from the bottom chamber using 2mM EDTA/PBS, and 

stained for CD11c positive cells. In order to quantify the number of cells arrived 

in the bottom chamber 5,000 Calibrate beads were added to each sample 

during acquisition with FACS Canto.  

 

2.2.4.3 In vivo migration 

107/ml TNF-α matured or nonmatured BMDC were incubated with either 1µM 

CFSE or 10µM SNARF for 10min at 37°C and reaction was stopped with 10% 

FCS. FHL2-/- and wt BMDC labeled with CFSE respectively SNARF were 

mixed in equal proportions and 2x106 BMDC in 20µl PBS were injected to the 

footpad of wt mice. To exclude any dye specific inhibition a dye switch was 

conducted. Twenty six hours later the cells were recovered from popliteal LN, 
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which was minced with the stamp of a syringe and squeezed through a cell 

strainer to get single cell suspensions. The sample were stained with a CD11c-

pacific Blue conjugated mAB for 30min on ice in the dark and analyzed on 

FACS Canto. In addition the mixture injected into the footpad was acquired to 

check that an equal proportion was injected and minor changes were 

considered for the calculation.  

 

2.2.4.4 Determination of survival by MTT Assay 

The assay is designed for the spectro-photometric quantification of cell growth 

and viability based on the cleavage of the yellow tetrazolium salt MTT labeling 

reagent (1x), to purple formazan crystals by metabolic active cells involving the 

pyridine nucleotide cofactors NADH and NADPH. Day 7 wt and FHL2-/- BMDC 

were harvested and 2x105 BMDC were plated in 100µl in 96 well plate 

flatbottom set up as a six fold determination and left to adhere for one hour 

which represent the reference group. At the same time BMDC adhered for 

24hrs and the same procedure described in the following was applied for both 

days. BMDC were incubated for 4hrs with 10µl of MTT labeling reagent (final 

concentration 0.5mg/ml) per well and 100µl Solubilization solution (10% SDS in 

0.01 M HCl) is added to each well and let stand overnight in the incubator until 

complete solubilization of the purple formazan crystals occurs. The 

spectrophotometrical absorbance of the samples was measured using an 

ELISA reader at 600nm and reference wavelength at 650nm. 

 

2.2.5 Flow cytometry 

2.2.5.1 Staining of surface markers 

Cells were washed in FACS buffer and incubated with 10µg/ml anti-Fc RII/III 

mAb to block unspecific binding of the following Ab reagents. PE-labeled mAbs 

(used at 5–20 µg/ml) against MHC class I, MHCII, and biotinylated mABs 

against CD40, CD80 and CD86 were used. Furthermore all cells were labeled 

with CD11c APC conjugated mAB. Isotype controls included purified rat IgG2a, 

either PE labeled or biotinylated IgG. After incubation with mAbs for 20 min at 
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4°C and washing in FACS buffer, cells coupled to a biotinylated mAB, were 

incubated with Strepavidin conjugated PerCPCy5.5. FACS analysis was 

performed on a flow cytometer FACS Canto. FACS data were analyzed using 

FlowJo software. 

 

2.2.5.2 Intracellular cytokine staining 

2x105 immature and LPS matured BMDCs plated in a 96 well flat bottom in 

100µl IMDM Medium were incubated in the presence of Monensin and Brefeldin 

A, which were diluted 1:1000, for 5h. After surface staining with CD11c PE, 

BMDCs were fixed with 4% PFA for 10min on ice, permeabilized with 0.5% 

saponin/FACS buffer for 15min on ice, and stained with Abs against IL-12 and 

TNF-α conjugated to Alexa647. 

 

2.2.5.3 Expression of CCR7 

CCR7 on BMDC were detected with the purified mouse CCL19-Fc fusion 

protein as described in (Hargreaves et al., 2001). Briefly, 0.1µg of CCL19-Fc 

fusion protein in 10µl FACS buffer per sample was incubated for 30min on ice. 

1µg of PE goat anti-human IgG Fcγ Fragment, which was pre absorbed in 2% 

mouse and rat serum in a ratio 1:1, and 50ng CD11c APC were added to the 

sample to a final volume of 50µl FACS buffer, and incubated for 15min on ice. 

FACS analysis was performed on a flow cytometer FACS Canto. FACS data 

were analyzed using FlowJo software. 

 

2.2.5.4 Quantification of F-actin by flow cytometry 

On day seven the medium of wt and FHL2-/- BMDC was substituted by medium 

containing 0.5% FCS for two days. Under both conditions the maturation was 

induced by TNF-α. BMDC were harvested and the surface was stained with 

CD11c-PE conjugated mAB, and afterwards stained intracellularly by fixing with 

4% PFA for 10min on ice and permeabilizing with 0.5% Saponin/FACS buffer 

for 15min on ice. F-actin was stained with 0.2U/ml phalloidin conjugated to 
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Alexa647 in 50µl FACS Buffer for 30min on ice, and analyzed by flow 

cytometry. All samples were set up in triplicates. 

 

2.2.6 Rac1 Activation Assay 

The activity of Rac1 was investigated with an ELISA based ‘Rac GLISA 

activation assay’ which is coated with RBD domain of Rac1-family effector 

proteins, where only the active GTP-bound form of the Rac-family protein, but 

not the inactive GDP-bound form will bind to the plate. The protocol provided by 

the company was followed with minor changes. 

Day 7 BMDCs were serum starved for two days in IMDM medium containing 

0.5% FCS. On day 9 BMDC were completely serum starved for at least 4h, 

harvested and 5x106 were lysed in 100µl G-LISA Buffer prepared according to 

manufacturer’s instructions and immediately frozen in liquid nitrogen. 10µl of 

each sample was removed for measuring the protein concentration with 

Precision Red™ Advanced protein assay reagent read in an ELISA reader at 

600nm. The concentration of lysates was adjusted to 0.5mg/ml and 50µl was 

used per well set up in triplicates. After antibody incubation the plate was 

extensively washed with the provided wash Buffer 6 times and in between 

inverse centrifuged to dry the plate to lower background signal. Signal intensity 

was measured at a Luminometer at 600nm.  

 

2.2.7 Immunological methods 

2.2.7.1 Antigen uptake 

2x105 BMDC in 200µl IMDM/medium were left to adhere for one hour at 37°C in 

a 96 well flatbottom. Medium was replaced by medium supplemented with 

either 200µg/ml Dextran coupled to FITC or with 2µg/ml OVA labeled Alexa 

647, respectively. BMDCs were incubated for 30min at 37°C and as a negative 

control for the same period of time at 4°C. BMDC were harvested with 2mM 

EDTA/PBS and stained with a CD11c-PE conjugated mAB. All samples were 

set up in triplicates and 20,000 events were recorded in a live gate by FACS 

Canto and evaluated by FlowJo software.  
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2.2.7.2 Purification of CD11c positive cells out of BMDC culture 

For T cell co culture assays the BMDC culture was purified for the CD11c 

positive cells only by AutoMACS separation. On day 7 BMDC were harvested 

and 108 in 500µl MACS and 100µl CD11c microbeads for 15min at 4°C 

incubated, washed twice with MACS buffer and separated from the negative 

fraction by AutoMACS with the program ‘possels’. The positive fraction was 

counted and used for in vitro studies. Staining with anti CD11c antibody and 

FACS analysis confirmed 95 to 98% purity of cells. 

 

2.2.7.3 Purification of CD8 and CD4 cells 

OVA antigen specific CD8 and CD4 positive T cells were isolated out of the 

spleen of OT-I and OT-II mice respectively. 48hrs before organ harvest the OT-I 

mouse was injected i.p. with 300µg anti NK1.1 antibody to deplete the NK and 

NKT cells. Prior 0.6g Nylon Wool in a 10ml syringe was equilibrated with RPMI 

medium without air bubbles for at least for an hour at 37°C. Spleens were 

minced through a large pored (250µm) metal sieve with a stamp of a syringe, 

centrifuged and taken up in 5ml medium, which was then transferred to nylon 

wool to retain B cells and myeloid cells. After at least 45min at 37°C the 

enriched T cells were flushed out of the syringe with 20ml medium, centrifuged 

at 1500rpm for 10min and incubated in 1ml ACK lysis buffer for 2min at room 

temperature to destroy the red blood cells. For the purification with the 

AutoMACS, 108 cells from the enriched spleen of the OT-I or OT-II were 

incubated with 500µl MACS Buffer and 50µl CD8 MicroBeads or CD4 

MicroBeads, respectively for 15min at 4°C. The cells were washed twice with 

MACS Buffer to remove unbound microbeads, send through a cell strainer 

(40µm pore size) and selected with the AutoMACS using the program ‘possels. 

The positive fraction was further employed in the in vitro studies. Staining with 

CD8 or CD4 antibody and FACS analysis confirmed 95 to 98% purity of cells. 
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2.2.7.4 Antigen presentation 

 On day 7, 2x105 wt and FHL2-/- BMDCs purified by AutoMacs using CD11c 

microbeads as described before in 2.2.7.2 were seeded in 100µl per well in a 

96 well flatbottom. After at least 45min at 37°C to let them allow adhering, 50µl 

medium was added to the BMDC containing OVA to reach a final concentration 

of 0, 0.01, 0.1, or 1mg/ml for 2hrs. A total of 1x105 in 50µl purified naive CD4+ 

and CD8+ T cells from OT-II and OT-I mice, respectively, were co-cultured with 

BMDCs. Twenty-four hours later, supernatants were collected and stored at -

20°C.  

 

2.2.7.5 IL-2 ELISA 

Supernatants collected from antigen presentation assay were subjected to a 

commercially available quantitative IL-2 a read out for T cell activation. A 96 

well ELISA plate flatbottom plate was coated with 50µl per well purified anti-IL-2 

first antibody diluted 1:500 in Coating Buffer having a final concentration of 

1µg/ml and incubated for 1h at 37°C. It was washed for four times with PBS and 

in between inverse centrifuged (1600rpm, 2min) to dry them more. This washing 

procedure was performed between all incubation steps. Unspecific binding sites 

were blocked with 50µl 1%BSA/PBS for 30min at RT. An IL-2 standard curve 

was established with recombinant IL-2 starting from 40ng/ml in a three fold 

dilution going down to 6pg/ml in RPMI medium. 100µl of the supernatants of the 

samples from the antigen presentation assay were added in triplicates to each 

well, and incubated at 4°C over night. 500ng/ml biotinylated rat anti-mouse IL-2 

secondary antibody was diluted 1:1000 in PBS and 50µl added to the samples 

one hour at 37°C. Streptavidin conjugated with HRP diluted 1:1000 in PBS was 

added for 30min at 4°C. Peroxidase substrate ABTS was diluted in ABTS buffer 

to receive a final concentration of 1mg/ml and 2µl 30% H202 was added per ml 

ABTS and the resulting green product is photometrically read in an ELISA 

Reader at 405nm. 
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2.2.7.6 T cell proliferation assay 

On day 7, 4x105 in 200µl IMDM medium wt and FHL2-/- BMDCs purified by 

AutoMacs using CD11c microbeads described before, were plated in a 48 well 

flatbottom per well. After two hours BMDC were pulsed with 100µl OVA with a 

final concentration of 1mg/ml or medium without OVA for 2 h. Purified CD4+ 

and CD8+ T cells from OT-II and OT-I mice, respectively, were labeled with 

1µM CFSE for 10min at 37°C and the reaction was stopped by FCS. The cells 

were washed and 2x105 T cells were added to each well in 200µl medium. 

Three days later, proliferation was assessed by flow cytometry counterstaining 

with CD4 and CD8 Abs. 

 

2.2.8 Statistics 

Statistics were calculated with Excel and SPSS. Error bars indicated Standard 

error of the mean (SEM). The Students T-test was used to analyze data for 

significant differences. P-values <0.05 were regarded as significant. And 

indicated in the figures as follows: *p≤ 0.05, **p≤0.01, ***p≤0.001. 
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3. Results 

 

3.1 Nuclear localization of FHL2 is lost in mature but not immature 

BMDC following stimulation with CCL19 

FHL2 deficient mice display wound healing disturbance due to defective 

migration of fibroblasts (Wixler et al., 2007). On the other hand, loss of FHL2 

activity is associated with increased epithelial cell migration in intestinal 

epithelium, which might allow eliminating of deleterious cells from proliferating 

crypt more efficiently and reducing the risk of tumorigenesis (Labalette et al., 

2010). FHL2 is known to associate with components of the actin cytoskeleton 

(Li et al., 2001), which could have an effect on the morphology of the cell (Bai et 

al., 2005). These published observations prompted us to initially study the role 

of FHL2 as a regulator of DC migration.  

In order to study DC functions in the mouse, DCs are usually generated in vitro 

out of BM precursors. In the presence of GMCSF, the hematopoietic stem cell 

will differentiate into DC defined by the expression of CD11c, a specific integrin 

alpha x. Therefore we always stained DC for CD11c for flow cytometric 

analysis, and gated on the CD11c positive population, so that only DCs were 

analyzed further (Fig 3.1, upper panel). After seven days in culture, BMDC are a 

heterogenous population: Although no additional external stimulus was present, 

a small fraction (usually between 10-15% of DC) show high expression levels of 

maturation markers (Fig. 3.1, lower panel; Petersen et al., 2000). Staining DCs 

with maturation markers CD86 and MHCII, three populations are visible by flow 

cytometry: a negative, an intermediate and a positive population. Especially, the 

number of cells in the gate of the bright population increases, after the addition 

of maturation reagents like LPS and TNF-α (45.9% and 19.6%, respectively 

versus 10.4%), which is even higher after the incubation with LPS. This is most 

likely caused by mitogenic factors present in FCS, because authors of Lutz and 

Rossner (2007) suspected high levels of glutamic oxaloacetic transaminase and 

lactate dehydrogenase correlated with a very large proportion of mature DC 

within the cultures, whereas low levels of these enzymes correlated with an 

inhibition of DC outgrowth. Other groups could also observe morphological 
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differences in BMDC culture (Burns et al., 2004). A high proportion of DC even 

in the absence of LPS provided sufficient stimulus for DC adhesion, 

polarization, and podosome formation, suggesting partial maturation. 

 

 
Figure 3.1: DCs generated out of BM show partial maturation. A day seven BMDC culture 
was incubated with 100ng/ml LPS and 30ng/ml TNF-α for 24hrs. BMDCs were harvested as 
described in Material and Methods 2.2.1.4, stained for CD11c, CD86 and MHCII, and analyzed 
by flow cytometry. In the upper panel, the gating strategy is depicted that we applied in all 
experiments: By plotting FSC versus SSC, a live gate was drawn, which contained the 
presumably living cells. Only these were analyzed for CD11c expression, where we gated on 
the CD11c positive fraction of cells. 

 

 

The localization of FHL2 within a cell could give us information of what kind of 

function FHL2 is playing. FHL2 can act as a co-activator or –repressor of 

several transcription factors, or it binds to integrins which link the ECM and the 

actin cytoskeleton. To determine FHL2 expression and the conformation of the 

actin cytoskeleton we stained immature or LPS-matured wt BMDC for FHL2 and 

phalloidin. Phalloidin is a toxin derived from a mushroom called death cap that 

binds to actin filaments much more tightly than to actin monomers, and can give 

us information about the structure of the actin cytoskeleton within a cell 

(Cooper, 1987; Sampath and Pollard, 1991). LPS treatment induces via TLR 4 

(Akira et al., 2001) a signal cascade that leads to DC maturation. As maturation 
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progressed an increasing proportion of DC assumed rounded cell morphology 

with multiple membrane-ruffles covering the surface of the cell (Burns et al., 

2004).  

We could observe the same observe in the LPS-matured culture where a higher 

number of DCs have a smaller and rounded appearance compared to the 

immature culture made visible by phalloidin staining (Fig. 3.2 A). Both immature 

and mature BMDC express FHL2, which localizes to the nucleus (Fig. 1A, upper 

and lower left corner). Before we further analyze whether FHL2 has a functional 

role in DC migration, we wanted to determine localization of FHL2. Therefore, 

we stained mature and immature BMDC for FHL2 that were stimulated with the 

CCR7 chemokine receptor ligand CCL19. In immature BMDC, CCL19 treatment 

did not alter FHL2 localization, which remained mainly in the nucleus (Fig. 3.2. 

A, upper right corner) Interestingly, CCR7 ligation in mature DC led to loss of 

nuclear localization of FHL2 redistributing towards the cell membrane, which we 

could mainly found in small rounded cells of the culture. Together, this indicates 

that the migratory chemokine CCL19 influences FHL2 localization and strongly 

suggests a functional role of FHL2 in DC migration. 

 

Before we further functionally addressed the role of FHL2 in CCL19 induced 

processes in DC migration, we wanted to confirm loss of FHL2 in FHL2-

deficient mice (Chu et al., 2000a). Here, we performed RT-PCR on various 

tissues and in vitro generated BMDC of wt C57BL/6 and FHL2-/- mice (Fig. 3.2 

B). FHL2 mRNA was highly expressed in the heart, skeletal muscle, 

gastrointestinal tract, lung and at lower levels in BMDC of wt mice, while 

expression was lost in FHL2-deficient mice. Moreover, FHL2 protein was not 

detectable by western blot in heart tissue that has the highest levels of FHL2 

expression in wt mice (Chu et al., 2000b), Fig. 3.2 C). Since expression of FHL2 

was relatively low in BMDC (Fig. 3.2 B), we performed IP of FHL2 protein with a 

monoclonal anti-FHL2 ab out of wt and FHL2-/- BMDC protein lysates, and 

loaded the concentrated lysate on a SDS-PAGE and performed western blot 

against FHL2. As expected we could confirm that FHL2 expression is not 

detectable at the protein level in FHL2-/- BMDC (Fig. 3.2 D). 
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Figure 3.2: Nuclear expression of FHL2 in mature BMDC is reduced following stimulation 
with CCL19. (A) Day 7 BMDC were either matured with LPS (100ng/ml) for one day or left 
untreated (immature). Subsequently they were left to adhere on glass cover slips in the 
presence or absence of CCL19 (10ng/ml) for 1h, fixed and stained with a polyclonal FHL2 
specific antibody (red), phalloidin (green) and DAPI (blue). (B) Detection of FHL2 mRNA by RT-
PCR in day 7 wt and FHL2-/- immature BMDC, heart, colon, skeletal muscle and lung using 
primers for exon 1. As positive control and loading reference ß-actin mRNA was detected. (C) 
Western blot analysis of FHL2 protein in cardiac muscle of wt and FHL2-/- mice. Detection of 
actin served as loading control. (D) IP of FHL2 and following analysis by western blot of wt and 
FHL2-/- BMDC. The data shown here is representative of three or more independent 
experiments. 
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3.2 FHL2-/- BMDC display enhanced migratory directionality, speed and 

persistence in vitro 

We showed that in mature DCs the actin conformation is changed to a rather 

small and rounded appearance compared to an immature DC. In the presence 

of CCL19, FHL2 localizes differently in this cell type rather in the cytoplasm than 

in the nucleus without CCL19 ligation. So, it seems FHL2 is involved in the 

conformation of the actin cytoskeleton of DC. The actin cytoskeleton needs to 

be rearranged in the cell depending on the need for slower or faster migration.  

To measure the influence of FHL2 expression on chemotactic directionality, 

migratory speed and directional persistence of BMDC more closely, we used 

timelapse video microscopy (Fig. 3.3). Timelapse microscopy can image the 

same object e.g. a cell at regular time intervals over several hours and compile 

the images into a movie. So, live-cell imaging enables us to monitor cell 

movements over time. Images are taken in real time and allows the speed of 

single cells and the distance they have covered to be measured directly in vitro. 

Briefly, immature BMDC were transferred into collagen-coated IBIDI µ-slide 

chambers and images were taken every 15s for a period of one hour after 

establishing a CCL19 gradient. Quantitative analysis of single BMDC tracks 

showed that both wt and FHL2-/- BMDC stayed nearly in the same position 

meaning they show hardly directionality when no chemokine gradient was 

applied (Fig. 3.3 A, upper left and right corner). Once the chemokine gradient 

was applied, both wt and FHL2-/- BMDC showed directed migration towards 

CCL19 from the right (Fig. 3.3 A, lower left and right panel). FHL2-/- BMDC 

covered a significantly longer distance (mean distance 100µm; n=90), 

measured as a direct line from their point of origin, than wt BMDC (mean 

distance 53µm; n=75) (Fig 3.3 B, left panel). This was partly due to a less 

torturous migratory path (Fig 3.2 A), but also to a significantly increased 

migratory speed: wt BMDC showed a mean migratory speed of 40µm/h and 

FHL2-/- BMDC 140µm/h (Fig 3.3 B, right panel). Furthermore, FHL2-/- BMDC 

showed a higher degree of directional persistence (Fig 3.3 A). 

Thus, timelapse video-microscopy conclusively showed that FHL2 has an 

impact on DC migration, namely that FHL2 loss leads to increased migratory 

speed, and also increased persistence and directionality. 
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Figure 3.3: Higher migratory speed and directionality towards a CCL19 gradient in FHL2-
/- BMDC compared to wt BMDC. Wt and FHL2-/- BMDC were generated as described. At day 
7 immature BMDC were harvested and 10

5
 BMDC were left to adhere in collagen-coated IBIDI 

µ-slides for 45min at 37°C and filmed simultaneously. After 45min a CCL19 gradient was 
established and BMDC were filmed for an additional 60min. Time-lapse images were taken 
every 15s. (A) Single tracks of migrating BMDC analyzed using the Track-it software. (B) Mean 
distance and speed of migrating BMDC calculated by the Track-it software from Olympus. In 
each group the tracks of at least 70 BMDC were analyzed. Values are depicted as mean and 
error bars +/-SEM. Statistical significance was calculated using a Student’s t-test: NS not 
significant, *p≤ 0.05, **p≤0.01, ***p≤0.001. The data shown here is representative of three or 
more independent experiments. 

 

 

3.3 Enhanced in vitro and in vivo migration of FHL2-deficient BMDC 

We wanted to confirm our results and to substantiate our conclusion gained 

from Time lapse microscopy by an additional methodology i.e. transwell. DCs 

were plated on an insert with a pore size of 5µm in transwells, which was placed 

in a well of a 24 well plate, making contact with the media filled in the bottom 

chamber. Here, the number of cells arrived in the bottom of the 24 well plate 

well which is quantified by flow cytometry correlates to their migratory capacity. 
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To examine the effect of FHL2 deficiency on CCL19-induced DC migration, 

immature wt or FHL2-/- BMDC were placed in the upper chamber of a transwell 

and left to migrate towards CCL19 or medium alone. When no CCL19 was 

present in the lower chamber, only a very low number of cells could be detected 

(Fig. 3.4 A). Both wt and FHL2-/- BMDC migrated in a CCL19 dependent 

manner as significantly more BMDC were counted when CCL19 was present in 

the lower well. Control experiments demonstrated when chemokine was added 

only to the upper or the upper and lower chamber no increased migration above 

basal levels was observed (Fig. 3.4 C). This was done to exclude that CCL19 

by itself might influence of the morphology of BMDC so that they could pass 

through the membrane more easily. This would not have been a matter of active 

migration but rather dropping through the pores of the membrane. So, we can 

assume that this effect was specific to CCL19 attracting BMDC to the lower 

chamber, where they actively migrated to. Furthermore, significantly more 

FHL2-/- BMDC migrated into the lower chamber in the given time period than wt 

BMDC indicating that FHL2 deficiency significantly increases the CCL19-

induced migration rate of BMDC (p value = 0.004). This difference was still 

significant when BMDC were matured either with LPS or TNF-α (Fig. 3.4 B). 

This difference between wt and FHL2-/- BMDC was even higher when matured 

with TNF-α when FHL2-/- BMDC showed approximately three fold increase in 

migration (Fig. 3.4 B, lower panel). Both demonstrated increased migratory 

speed after stimulation with TNF-α or LPS stimulated BMDC, but stimulated wt 

BMDC could never speed up to levels of immature FHL2-/- BMDC. Hence, we 

were able to confirm our results obtained from timelapse microscopy by 

transwell assays, i.e. FHL2-/- BMDC show increased migration towards CCL19. 
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Figure 3.4: FHL-/- BMDC show enhanced migration in a transwell assay towards CCL19, 
even after stimulation with LPS and TNF-α. Wt and FHL2-/- BMDC were generated. (A) At 
day 7, immature BMDC (A), LPS and TNF-α-matured (B) were harvested; and 2.5x10

5
 BMDC 

were cultured in 100µl medium containing 0.5% BSA in the upper chamber of a 5µm pore 
transwell insert. The bottom chamber was filled with 600µl medium containing 0.5% BSA alone 
or supplemented with 10ng/ml CCL19. After 3h, migrated BMDC were harvested from the lower 
chamber and stained for CD11c. The amount of migrated CD11c+ BMDC was quantified by flow 
cytometry by addition of a set amount of calibration beads and calculated as follows: total 
migrated BMDC = (beads total * BMDC sample)/beads sample. Values are depicted as mean 
and error bars +/-SEM. Statistical significance was calculated using a Student’s t-test: NS not 
significant, *p≤ 0.05, **p≤0.01, ***p≤0.001. The data shown here is representative of three or 
more independent experiments. 

 

 

Directional migratory speed in DC is known to be regulated amongst others by 

CCR7 (Ohl et al., 2004). Since FHL2 can act as a transcriptional co-activator or 

–repressor (Johannessen et al., 2006; Lai et al., 2006; Muller et al., 2000; 

Muller et al., 2002) and thus might affect CCR7 expression, we investigated 

whether CCR7 expression was increased in FHL2-/- BMDC. However, staining 

of immature BMDC with CCL19-IgG fusion protein (Fig. 3.5 A) did not reveal 

differences in CCR7 expression levels between wt and FHL2-/- BMDC. This 
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indicates that the enhanced CCL19-induced migration of FHL2-/- BMDC was 

not due to altered CCR7 surface expression. Additionally, the expression levels 

of CCR7 remained the same between wt and FHL2-/- BMDC after incubation 

with LPS and TNF-α (Fig. 3.5 B).  CCR7 was upregulated in both cell types, and 

with respect to TNF-α the expression of CCR7 in both cell types was slightly 

more in contrast to LPS matured. 

 

 
Figure 3.5: CCR7 expression is the same between FHL2-/- and wt BMDC.  Day 7 immature 
(A), matured with LPS and TNF-α (B) wt and FHL2-/- BMDC were stained with CCL19-Fc and 
anti-HuFc-PE or with anti-HuFc alone as a negative control and analyzed by flow cytometry. (A) 
CCR7 expression shown as a histogram. CCL19-Fc and anti-HuFc-PE (black lines) or anti-
HuFc alone (grey filled). (B) Expression levels are shown as mean fluorescence intensity (MFI). 
The data shown here is representative of three or more independent experiments. 

 

 

In vitro DC migration assays only partially resemble DC migration in vivo (Sixt et 

al., 2006). Therefore, we determined whether FHL2-/- BMDC also had altered 

migratory properties in vivo. To this end we injected equal amounts of immature 

or TNF-α matured (Cumberbatch et al., 1999; Cumberbatch and Kimber, 1992) 

wt and FHL2-/- BMDC that were fluorescently labeled with SNARF (FHL2-/-) 

and CFSE (wt) into the footpad of C57BL/6 recipient mice and quantified the 

number of CD11c positive BMDC that migrated into the draining popliteal LNs 

within 26h. In vivo studies suggest that the journey to the lymph node takes 

between 3–24 h (Kupiec-Weglinski et al., 1988; Roake et al., 1995) by which 

time DC express high levels of MHC complexes, and are functionally primed for 
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optimal interaction with T cells (Sallusto and Lanzavecchia, 1994). Both 

immature (Fig. 3.6 A, right panel) and TNF-α matured (Fig. 3.6 A, left panel) 

FHL2-/- and wt BMDC arrived in the draining LN in the given period of time, but 

the number of FHL2-/- BMDC was significantly higher. More interestingly, this 

effect was independent of the maturation status of the BMDC (Fig. 3.8) 

indicating that FHL2 deficiency also regulates migration of immature DC. We 

can also assume that this is not because of a better response to CCL19 or 

CCL21 because CCR7 is equally expressed on wt and FHL2-/- BMDC (Fig. 3.4, 

see Discussion). Dye swap experiments excluded possible dye specific effects, 

which can be seen in Figure 3.6 B: Representative dot plot depicting SNARF+ 

FHL2-/- and CFSE+ wt BMDC and the other way around within the recovered 

CD11c+ DC population. Regardless of which stain we used, SNARF or CFSE, 

FHL2-/- showed a higher migratory rate into the LN. To rule out that the loss of 

FHL2 had an effect on DC viability and therefore we could recover more FHL2-

/- BMDC out of the draining LN, we examined cell survival with the help of an 

MTT assay in vitro over the same period of time, i.e. 26h (Fig. 3.6 C). Here, we 

could not see an advantage of FHL2-/- BMDC over wt BMDC with respect to 

survival. Thus, the increased number of FHL2-/- BMDC recovered from the 

popliteal LN was not due to a survival advantage over wt BMDC. Collectively, 

this indicates that FHL2-deficiency in BMDC leads to enhanced migratory 

activity both in vitro and in vivo. 
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Figure 3.6: Enhanced in vivo migration of FHL2-/- BMDC. (A) Immature (left panel) or TNF-α 
matured (right panel) BMDC were harvested and wt and FHL2-/- BMDC were labeled with 
CFSE and SNARF, respectively. Wt and FHL2-/- BMDC were mixed at a ratio of 1:1 and 
injected into the footpad of wt recipient mice. After 26h single cell suspensions of the draining 
popliteal LNs were prepared, stained for CD11c and analyzed by flow cytometry. The total 
number of CD11c+ wt BMDC recovered from an individual popliteal LN was set to 1 and the 
number of FHL2-/- BMDC per wt BMDC is shown as fold increase. (B) Representative dot plot, 
gated on CD11c positive DC is shown. Numbers indicate the percentage of CFSE positive wt 
and SNARF positive FHL2-/- BMDC or the other way around within the DC population in the 
popliteal lymph node. (C) 2x10

5
 wt and FHL2-/- BMDC in six replicates were plated in a volume 

of 100µl in a 96 well plate. 24hrs later 10µl of MTT solution was added to each well. After 4hrs 
100µl Solubilization Buffer was added and incubated overnight at 37°C. Survival was 
determined in a photometer at 570nm. Values are depicted as mean and error bars +/-SEM. 
Statistical significance was calculated using a Student’s t-test: NS not significant, *p≤ 0.05, 
**p≤0.01, ***p≤0.001. The data shown here is representative of three or more independent 
experiments. 
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3.4 FHL2-/- BMDC express more lamellipodia than wt BMDC due to 

increased Rac1 activation 

Cell locomotion depends on the protrusion of the leading edge, the traction of 

the cell body, and the retraction of the tail. For all these individual processes 

reorganization of the actin cytoskeleton is necessary (Keren et al., 2008; Le 

Clainche and Carlier, 2008). In detail, cells that are stationary and hardly 

moving express mostly stress fibers. In order to initiate cell migration slender 

cytoplasmic projections are formed that allow moderate migration. In very 

mobile cells like keratinocytes of fish and frog, also actin projections are called 

lamellipodia are formed with an underlying two-dimensional actin mesh. With 

respect to DC these projections are mostly seen in a mature DC after trigger of 

PRRs, when the DC needs to carry the antigen to the LN as fast as possible. 

We could also see a different conformation of the actin cytoskeleton after 

stimulation with LPS (Fig. 3.2 A, lower panel) and this lead most likely to 

enhanced cell migration (Fig 3.4, upper panel).  

To answer the question, if there is a different reorganization of the actin 

cytoskeleton in FHL2-/- BMDC, the actin cytoskeletal conformation of immature 

FHL2-/- and wt BMDC was examined by immunofluorescent staining with 

phalloidin (Fig. 3.7 A). The morphology of FHL2-/- and wt BMDC differed 

significantly: While 90% of immature wt BMDC on collagen showed long 

protruding filopodia and only less than 10% of cells were small and veiled (Fig. 

3.7 A, upper panels), up to 50% of the cells in an FHL2-/- BMDC culture 

showed this phenotype (Fig. 3.7 A, lower panels). The quantification is found in 

Fig 3.7 A, right panel. As mentioned before, the BMDC culture system yields a 

heterogeneous population of BMDC where a small proportion of DC matured 

spontaneously. This we could see in our own culture system, which is a very 

mixed population of different cell types and not a pure population, which is 

reflected by the numbers after counting the different morphologies. In this 

context it is interesting to note that authors from Bai et al. (2005) could also 

observe a difference in organization of the cytoskeleton of osteoclasts isolated 

out of wt and FHL2-/- mouse. 

 

Fluorescent labeled phalloidin can be used to quantitative the amount of 

filamentous actin there is in a cell (Cooper, 1987; Koestler et al., 2009). 
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Phalloidin preferentially binds to polymerized F-actin, while lammellipodia are 

arranged of a more branched F-actin structure whereas in filopodia the structure 

of the actin cytoskeleton is more organized  (Le Clainche and Carlier, 2008), 

therefore lamellipodia stain more strongly with phalloidin. The amount of F-actin 

was compared quantitatively by flow cytometry in serum starved immature and 

TNF-α matured wt and FHL2-/- BMDC (Fig 3.7 B). FHL2-/- BMDC showed 

significantly higher amounts of polymerized F-actin than wt BMDC. The 

difference between wt and FHL2-/- in polymerized F-actin was even more 

pronounced in TNF-α matured BMDC. So, by a different approach we could 

confirm our previous observation that the cytoskeleton in FHL2-/- exhibits 

differences to wt BMDC. This might explain why we could see elevated 

migration of FHL2-/- BMDC in timelapse Microscopy, transwell assay and in 

vivo. 

 

The loss of filopodia and formation of veils or lamellipodia is associated with DC 

maturation and is thought to allow their rapid migration into secondary lymphoid 

organs (Burridge and Wennerberg, 2004; Calle et al., 2004b; Pollard and 

Borisy, 2003). The formation of protrusions at the leading edge of DC during 

migration is controlled by the small GTPases Rac and Cdc42 (Swetman et al., 

2002). In detail, Cdc42 activity induces filopodia in immature DC, while Rac 

activity induces the loss of filopodia and formation of lamellipodia upon 

maturation (Burns et al., 2004). Generally small GTPases cycle between a 

GTP-bound active form and a GDP-bound inactive form. When bound to GTP 

they interact with their downstream targets, which include protein kinases, 

activators of actin polymerization as well as adaptor proteins. To analyze 

whether the observed increased migration of FHL2-/- BMDC was due to 

increased Rac1 activation, we determined the amount of Rac-GTP in immature 

wt and FHL2-/- BMDC by an ELISA based Rac1 activation assay. We found a 

significantly higher amount of active Rac1 in FHL2-/- BMDC compared to wt 

BMDC (Fig. 3.7 C), indicating that in FHL2-/- BMDC deregulated control of the 

Rac GTPase is responsible for the lamellipodia formation observed leading to 

migratory changes. 
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Rho-kinase, an effector of the small GTP-binding protein Rho, plays an 

important role in various cellular functions including vascular smooth muscle 

contraction, proliferation, and migration as well as inflammatory cell mobility 

(Oka et al., 2007). In addition, FHL2 is known to translocate into the nucleus in 

RhoA-dependent manner (Muller et al., 2002). Therefore we wanted to know 

whether Rho is involved in the accelerated migration of FHL2-/- BMDC. To 

address this question, we blocked Rho with several inhibitors. Y27632 is a 

potent, ATP-competitive inhibitor of Rho-associated protein kinases including 

p160ROCK and ROCK-II (Darenfed et al., 2007; Ishizaki et al., 2000). Fasudil is 

a potent inhibitor of Rho-associated kinase II and additionally inhibits protein 

kinase C-related kinase 2, mitogen- and stress-activated protein kinase, and 

mitogen activated protein kinase-activated protein kinase 1b (Huentelman et al., 

2009). CCG-1423 is a specific inhibitor of Rho pathway-mediated signaling and 

activation of serum response factor (SRF) transcription (Evelyn et al., 2007).  

Wt and FHL2-/- BMDC were incubated together with these inhibitors during the 

migration towards CCL19 in a Transwell. Y27632 did not change migratory 

behavior of wt and FHL2-/- BMDC (Fig. 3.8 A). Fasudil and CCG-1423 seem to 

have a slight effect on the migration speed of wt and FHL2-/- (Fig. 3.8 B), but 

diminished migration level to the same extent. Also another group concluded 

that the Rho family GTPases Rac1 and Rac2 but not Rho itself control the 

formation of dendrites in mature DCs, their polarized short-range migration 

toward T cells, and T cell priming (Benvenuti et al., 2004). 

So, we can assume FHL2 exhibits its function in BMDC independent of Rho 

signaling, but show higher amounts of activated Rac1, which is known to induce 

lammellipodia which is formed to a higher number in FHL-/- BMDC culture.  
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Figure 3.7: FHL2-/- BMDC form more lamellipodia and have higher levels of Rac 
activation. (A) At day 7 immature BMDC were left to adhere on a collagen-coated cover glass 
for 2h. Then cells were fixed, permeabilized and stained with phalloidin. Left panel: Pictures of 
wt and FHL2-/- BMDC (40x). Right panel: Percentage of small, veiled BMDC, lacking filopodia 
within the immature wt BMDC population compared to immature FHL2-/- BMDC. n = the amount 
of BMDC analyzed in each group. (B)  On day 7, BMDC were cultured for further two days in 
medium containing 0.5% FCS. At the same time maturation was induced by 30ng/ml TNF-α. 
BMDC were stained intracellularly with Phalloidin

Alexa647
 for 30min on ice. Here, the mean 

fluorescence intensity of Phalloidin gated on CD11c+ cells is depicted. (C) Day 7 immature 
BMDC were cultured in medium containing 0.5% FCS. On day 9 BMDC were completely serum 
starved for at least 4h and then lysed. The protein lysate was investigated for Rac activity in an 
ELISA coated with Rac-GTP-binding protein. Signal intensity was measured with a luminometer 
at 600nm, and Rac activity is shown as relative luminometric units (RLU). Values are depicted 
as mean and error bars +/-SEM. Statistical significance was calculated using a Student’s t-test: 
NS not significant, *p≤ 0.05, **p≤0.01, ***p≤0.001. The data shown here is representative of 
three or more independent experiments. 
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Figure 3.8: FHL-/- DC migration is independent of Rho signaling. (A,B) Wt and FHL2-/- BMDC 
were pre incubated with 2µM and 10µM Y27632 (A), 2.5µM Fasudil and 2mM CCG-1432 (B) for 
one hour in the insert and then transferred on a transwell. In the lower well 200ng/ml CCL19 
was present as well as the previously mentioned inhibitors with the corresponding 
concentration. 

 

3.5 FHL2 deficiency does not lead to spontaneous BMDC maturation 

Both increased migration and the formation of lamellipodia are associated with 

DC maturation (Burns et al., 2004). FHL2 known to be a co-activator or –

repressor of several transcription factors e.g. NF-kB it could govern maturation 

of BMDC. To determine whether in the absence of FHL2, leads to 

spontaneously maturation, the expression of costimulatory molecules and MHC 

class molecules as well as the production of pro-inflammatory cytokines by 

immature wt and FHL2-/- BMDC was examined. However, the expression levels 

of CD40, CD80, CD86, MHC class I and II (Fig. 3.9 A, upper two rows) did not 

differ between immature wt and FHL2-/- BMDC. Furthermore, these markers 

were upregulated to the same extent on both wt and FHL2-/- BMDC by 

incubation with LPS or TNF-α (Fig. 3.9 A, four lower two rows). BMDC treated 

with TNF-α showed overall higher expression levels compared to LPS 

stimulation, which have been observed by other groups  (Landi et al., 2010).  

Also the ability to produce IL-12 and TNF-α at basal levels did not differ 

between wt and FHL2-/- BMDC (Fig. 3.9 B), indicating that FHL2-/-BMDC did 

not exist in a more mature state. As a positive control, we incubated BMDC with 

LPS, because it is known that LPS is a potent stimulator of IL-12 and TNF-α 
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production via TLR (Brightbill et al., 1999; Dumitru et al., 2000). Here, 

incubation with LPS induced the production of IL-12 and TNF-α to about 35% in 

wt and FHL2-/- BMDC. But also there we could not see a difference in cytokine 

production after LPS stimulation between wt and FHL2-/- BMDC. Incubation of 

BMDC with TNF-α did not have an effect on cytokine secretion. Together, these 

data show that the enhanced migratory capacity towards CCL19 of FHL2-/-

BMDC is associated with the formation of lamellipodia, but does not correlate to 

their maturation status. 
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Figure 3.9: FHL2-/- BMDC are not constitutively mature. (A) Immature and mature wt and 
FHL2-/- day 7 BMDC were stained for the maturation markers CD40, CD80, CD86, MHC class I 
and II. Black open histograms: specific Ab staining, grey filled histograms: isotype control. (B) 
Untreated and LPS matured wt and FHL2-/- day 7 BMDC were incubated for 5h with Monensin 
and Brefeldin A, and stained intracellularly with Abs against IL-12 and TNF-α, gated on CD11c+ 
cells. The percentage of BMDC producing IL-12 and TNF-α is shown. Values are depicted as 
mean and error bars +/-SEM. Statistical significance was calculated using a Student’s t-test: NS 
not significant, *p≤ 0.05, **p≤0.01, ***p≤0.001. The data shown here is representative of three or 
more independent experiments. 
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3.6 Antigen uptake and presentation in BMDC are not influenced by 

FHL2 

Antigen uptake by DCs is essential for the presentation of antigens by MHC 

molecules to T cells in the LN in order to evoke an efficient immune response. 

Immature DCs endocytose avidly through a variety of mechanisms, including 

‘nonspecific’ uptake by constitutive macropinocytosis and ‘specific’ uptake via 

receptor-mediated endocytosis and phagocytosis (Trombetta and Mellman, 

2005). The exact mechanism of antigen uptake is not completely understood, 

but it is known that actin and its regulation by Rho family GTPases play 

important roles in mediating phagocytosis and macropinocytosis. For example, 

macropinocytosis involves the extension of membrane ruffles, which requires 

polymerization and reorganization of actin (Caron and Hall, 1998). Rac has an 

important role in the constitutive formation of macropinosomes in DCs but may 

be required downstream of membrane ruffling (Nobes and Marsh, 2000; West 

et al., 2000). DCs developmentally regulate endocytosis at least in part by 

controlling levels of activated Cdc42 (Garrett et al., 2000). We know from our 

own observations that loss of FHL2 in BMDC leads to increased migration 

probably due to higher amounts of activated Rac which causes differential 

organization of actin cytoskeleton. Thus, we thought that also loss of FHL2 

might affect antigen uptake in BMDC. 

We, therefore, compared antigen uptake by immature wt and FHL2-/- BMDC, 

and as model antigens we used OVA and Dextran. Both are endocytosed by 

two different ways: OVA is endocytosed receptor mediated (Kindberg et al., 

1990), and Dextran is internalized by macropinocytosis (West et al., 1999). To 

this end, BMDC were incubated with fluorescently labeled Dextran or OVA for 

30min at 37°C or as a negative control 4°C, and fluorescence intensity was 

analyzed in flow cytometry (Fig. 3.10 A). When BMDC were incubated with 

OVAAlexa647 at 4°C (dashed lines) the histogram overlapped with unstained 

control (grey filled) which means they were not able to take up antigen. This 

changed dramatically when the BMDC were incubated with OVAAlexa647 at 37°C, 

where a big shift to the right could be seen. When incubated with DextranFITC at 

4°C, there was a small shift compared to unstained control, meaning that they 

still endocytose antigen unspecifically. This shift was amplified when BMDC 

were incubated at 37°C. However, we did not observe any significant 
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differences in case of incubation with OVA and Dextran between wt and FHL2-/- 

BMDC, indicating that FHL2 does not influence antigen uptake in BMDC.  

 

After engulfment of antigen by DC, it undergoes through a lot of changes to 

efficiently equip them as an APC. When the DC arrived in the LN and comes 

into contact with a lymphocyte, a so called immunological synapse is formed. It 

consists of a central cluster of T cell receptors (TCRs) interacting with MHC 

molecules on DC surrounded by a ring of adhesion molecules. There are active 

changes taking place in the T cell cytoskeleton i.e. accumulation of F-actin and 

other cytoskeletal proteins in the T cell at the contact point, which result in the 

dynamic clustering of T cell surface receptors and signaling molecules at the 

interface with the APC (Grakoui et al., 1999; Pardi et al., 1992). But also DC 

actin cytoskeletal rearrangement is critical for the clustering and activation of 

resting T cells, indicating an important role for the DC cytoskeleton in the 

establishment of the immunological synapse (Al-Alwan et al., 2003; Al-Alwan et 

al., 2001). Actin reorganization is usually conducted by members of the small 

Rho GTPases. Constitutive activation of Rho GTPases in DC differentially 

modifies a lot of DC functions like adherence, chemotaxis, endocytosis, and 

also antigen presentation (Ladwein and Rottner, 2008; Shurin et al., 2005). 

Although we know that loss of FHL2 has an impact on the composition of the 

cytoskeleton and migration, but not on other processes like maturation and 

antigen uptake as discussed in the previous sections. Still we were very 

interesting to find out if this holds true for antigen presentation. We already 

know that wt and FHL2-/- BMDC provide the same amount and kind of signals 

with respect to cytokine production, co-stimulatory molecules and antigen dose, 

so a difference could only because of a differential organized cytoskeleton.  

To test whether the loss of FHL2 affects antigen presentation by DC, we 

performed co-culture assays with BMDCs and T cells. We isolated T cells out of 

the spleen of OT-I and OT-II transgenic mice, which can specifically recognize 

the OVA peptide in the context of an MHC I and MHC II molecule, respectively. 

If a T cell has recognized its specific antigen on an APC, it undergoes a huge 

transition and amongst enters the mitotic cycle to augment its number for 

effective fight against the invading organism. This behavior by T cells serves as 

a helpful measure to check for efficient antigen presentation by BMDC. 
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Therefore, they were stained with CFSE and added to FHL2-/- and wt BMDC, 

which have been pulsed before with whole OVA protein for 2hrs (Fig. 3.10 B). 

CFSE can be used to monitor lymphocyte proliferation due to the progressive 

halving of CFSE fluorescence within daughter cells following each cell division 

as seen in flow cytometer (Lyons and Parish, 1994). When there was no OVA 

present, both OT-I and OT-II T cells did not respond to the DC as seen by a 

single and very bright population (grey filled). There was no difference in the 

proliferation profile of both OT-I and OT-II T cells stimulated by FHL2-/- or wt 

BMDC, but in both cases a higher proliferation index of OT-II could be 

observed.  

 

Antigen binding to the TCR stimulates the secretion of IL-2, and the expression 

of IL-2 receptors (IL-2R). The IL-2/IL-2R interaction then stimulates the growth, 

differentiation and survival of antigen selected T cells via the activation of the 

expression of specific genes. They produce high amounts of IL-2, which works 

in an autocrine loop to drive them into mitosis (Malek and Castro, 2010). Wt and 

FHL2-/- BMDC were incubated with various concentrations of OVA, OT-I and 

OT-II T cells were then added and as a read out for efficient antigen recognition 

by T cells IL-2 release in the supernatant was assessed after 24h by ELISA 

(Fig. 3.10 C and D). BMDCs do not tend to produce IL-2 by themselves as seen 

when no OVA was present, therefore the IL-2 originated exclusively from T 

cells. At lower OVA concentrations FHL2-/- BMDC induced slightly higher IL-2 

production by OT-I and OT-II T-cells, however these differences were not 

statistically significant. Also, at higher OVA concentration, there was no 

difference in the production of IL-2 induced by wt and FHL2-/- BMDC. Together, 

based on these data we concluded that although FHL2 influences the 

conformation of the cytoskeleton and subsequently the migratory behavior of 

DC it does not influence antigen uptake or presentation or T cell activation. 
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Figure 3.10: Antigen uptake and presentation via MHCI and MHCII is not altered in FHL2-/- 
BMDC. (A) Day 7 Wt and FHL2-/- BMDC were harvested and 2x10

5
 BMDC were left to adhere 

for 1h. BMDC were incubated with 200µg/ml Dextran
FITC

, 2µg/ml OVA or medium only at 37°C 
or as a negative control at 4°C. After 30min cells were harvested and analyzed by flow 
cytometry. Histograms depict cells gated on CD11c. Black lines: incubation with Dextran

FITC
 or 

OVA
Alexa647

 at 37°C, dashed lines: 4°C control, grey filled: medium only. (B-D) Day 7 wt and 
FHL2-/- CD11c+ BMDC were either loaded with OVA or left untreated and were then co-
cultured with CFSE-labeled (B) or unlabeled (C,D) CD8+ OT-I T cells or CD4+ OT-II T cells. (B) 
4x10

5
 BMDC were incubated for two hours with 1mg/ml OVA or medium alone. Proliferation of 

CFSE labeled CD8+ as well as CD4+ OVA-specific T cells were checked 72h later by flow 
cytometry by gating on CD8+ or CD4+ cells. Black open histograms: T cells co-cultured on 
BMDC incubated with OVA. Grey filled histograms: T cells co-cultured on BMDC without OVA. 
(C,D) After 24h of co-culture the supernatant was assayed by ELISA for IL-2. Grey bars: IL-2 
production after incubation with wt BMDC, black bars: FHL2-/- BMDC. Values are depicted as 
mean and error bars +/-SEM. Statistical significance was calculated using a Student’s T-test: 
NS not significant, *p≤ 0.05, **p≤0.01, ***p≤0.001. The data shown here is representative of 
three or more independent experiments. 
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3.7 Sphingosine-1-phosphate receptor 1 is upregulated in FHL2-/- 

BMDC 

Besides the CCR7 ligands CCL19 and CCL21, the lysophospholipid S1P also 

plays an important role in DC migration and positioning in the LN (Czeloth et al., 

2007). The S1P receptors S1PR1-4 are differentially expressed depending on 

the maturation status of DC (Czeloth et al., 2005) and this influences their 

migratory behavior. We therefore analyzed the expression pattern of the 

S1PR1-4 in immature and mature wt BMDC and FHL2-/- BMDC by qRT-PCR. 

Consistent with previous reports (Czeloth et al., 2005), we found that after 

maturation with TNF-α S1PR1 and S1PR3 mRNA levels were upregulated in wt 

BMDC, whereas S1PR4 mRNA levels were diminished and S1PR2 mRNA 

levels were unchanged (Fig. 3.11). Interestingly, in both immature and mature 

FHL2-/- BMDC we found significantly higher levels of S1PR1 mRNA (Fig. 3.11, 

upper left panel), whereas S1PR2-4 mRNA levels did not differ significantly 

from the levels in the wild type BMDC. As ligation of the S1PR1 by S1P in DC is 

associated with migration initiation or enhancement (Czeloth et al., 2005), these 

data suggest that FHL2 regulates DC migration via inhibiting the expression of 

S1PR1. 
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Figure 3.11: FHL2-/- BMDC show high expression levels of S1PR1. mRNA was isolated 
from day 7 immature or day 9 TNF-α-matured wt and FHL2-/- BMDC. The expression of 
S1PR1-4 was determined by quantitative RT-PCR. For calculation the ∆∆CT method was 
applied by normalizing to the constitutively expressed housekeeper 18s RNA. Grey bars: wt 
BMDC, black bars: FHL2-/- BMDC. Values are depicted as mean and error bars +/-SEM. 
Statistical significance was calculated using a Student’s t-test: NS not significant, *p≤ 0.05, 
**p≤0.01, ***p≤0.001. The data shown here is representative of three or more independent 
experiments. 

 

 

3.8 Downregulation of S1PR1 using siRNA and antagonist abrogates 

the increased migratory speed of FHL2-/- BMDC 

To investigate whether upregulation of S1PR1 in FHL2-/- BMDC functions as an 

accelerating receptor (Sugimoto et al., 2003), leading to the observed increased 

migration of FHL2-/- BMDC, we suppressed expression of S1PR1 by 

transfecting both immature wt and FHL2-/- BMDC with S1PR1-specific or 

unspecific control siRNA (scrambled). As expected, in FHL2-/- BMDC 

transfected with control siRNA, S1PR1 mRNA levels were significantly higher 
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compared to wt BMDC transfected with control siRNA (Fig. 3.12 A). 

Furthermore, in both wt and FHL2-/- BMDC we could successfully knock-down 

S1PR1 mRNA levels by transfection with S1PR1-specific siRNA. In wt BMDC 

this led to 72 % and in FHL2-/- BMDC to 75% knock-down (Fig. 3.12 B). Now wt 

and FHL2-/- showed similar expression levels of S1PR1. Knock-down of S1PR1 

in FHL2-/- BMDC significantly reduced their migratory rate to about half of the 

FHL2-/- BMDC transfected with control siRNA, which equaled the migratory rate 

of wt BMDC (Fig 3.12 B). Interestingly, although some S1PR1 knock-down was 

achieved in wt BMDC, this did not influence their migratory rate.  

In a second approach, we used the selective S1PR1 antagonist SEW2871 

(Sanna et al., 2004) in various concentration, which leads to receptor 

internalization, to inhibit S1PR1 function in FHL2-/- BMDC (Fig. 3.12 C, upper 

panel). Again, the increased migratory rate in FHL2-/- BMDC was significantly 

reduced by S1PR1 inhibition at already low concentrations (0.1µM). At very high 

concentrations (1µM), it seemed that also migration of wt BMDC was slightly 

reduced, but not as much as in FHL2-/- BMDC. Importantly, migratory speed of 

FHL2-/- BMDC was suppressed to levels of wt BMDC.  

In addition, we stained the BMDC incubated with SEW8271 with CD86 and 

MHCII (Fig. 3.12 C, lower panel) to be sure that SEW2871 does not influence 

the maturation of BMDC and this might change their migratory behavior. 

Indeed, in this experiment the fraction of the CD86 and MHCII highly positive 

cells ranged only between 12.51 and 15.10% in all treatments, which was not 

enough to influence their migratory behavior. 

In summary, these data indicate that in FHL2-/- BMDC, repression of S1PR1 is 

lost leading to its overexpression, and that signaling via S1PR1 is responsible 

for the increased migratory phenotype of FHL2-/- BMDC. 
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Figure 3.12: Enhanced migration of FHL2-/- BMDC is due to higher levels of S1PR1. (A,B) 
4x10

6
 day 7 wt and FHL2-/- BMDC were electroporated with either siRNA targeted against 

S1PR1 or non targeting siRNA. (A) Two days later, RNA was isolated from electroporated 
BMDC and converted to cDNA. The knock down of S1PR1 was quantified by RT-PCR. (B) In 
parallel, the electroporated BMDC were analyzed for their migratory behavior in a Transwell 
assay. (C,D) Day 7 wt and FHL2-/- BMDC were incubated for 16 h with 0, 0.1, 1 and 10µM 
SEW2871, harvested, analyzed for their migratory behavior in a Transwell assay (C), and in 
parallel for CD86 and MHCII expression by flow cytometry (D). Values are depicted as mean 
and error bars +/-SEM. Statistical significance was calculated using a Student’s t-test: NS not 
significant, *p≤ 0.05, **p≤0.01, ***p≤0.001. The data shown here is representative of three or 
more independent experiments. 
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3.9 External addition of S1P does not influence antigen uptake and 

migration of wt BMDC 

Knowing that S1PR1 is increased in FHL2-/- BMDC, which most likely leads to 

enhanced chemotaxis of FHL2-/- BMDC. We were interested in what way the 

ligand for the receptor namely S1P might have an influence on other DC 

function like antigen uptake and migration. Ligation of S1PR1 by S1P induces 

BMDC migration towards CCL19 to a small extent in a transwell assay. This 

small increase is probably due to the fact that even without the external addition 

of S1P to the culture medium, there is already S1P in the medium.  

Wt BMDCs were preincubated with S1P and then their migration was analyzed 

in a transwell assay, while S1P was still present during the migration (Fig. 3.13 

B). External addition of S1P did not change their migratory behavior. In addition 

to migration, we also wanted to check, whether S1P might impact BMDC in a 

functional assay, i.e. antigen uptake. Therefore, wt and FHL2-/- BMDC were 

preincubated with S1P. The ability to take up antigen was assayed as explained 

in section 3.6. We could not observe a difference between wt and FHL2-/- 

BMDC in their ability to take up antigen, if incubated with S1P or not (Fig. 3.13 

A). Since we could not observe any difference regarding their capability to take 

up antigen, we assume that wt and FHL2-/- BMDC after incubation with S1P 

would consequently do not show a difference in presenting antigen. This is the 

reason why we did not test, whether addition of S1P has an effect on antigen 

presentation. 

Thus, external addition of S1P did not change the phenotypes or functions of wt 

and FHL2-/- BMDC. 
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Figure 3.13: Migration and antigen uptake is not changed after incubation with S1P. (A,B) 
Day 7 BMDCs were incubated for 1h with 100nM S1P. Antigen uptake (A) and migration (B) 
was determined as described before, respectively. Values are depicted as mean and error bars 
+/-SEM. Statistical significance was calculated using a Student’s t-test: NS not significant, *p≤ 
0.05, **p≤0.01, ***p≤0.001. The data shown here is representative of three or more independent 
experiments. 
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4. Discussion 

 

DC reside in the periphery, where they continuously sample their environment 

for antigen, which they take up, process and display as peptides in the context 

of MHC class molecules and present to T cells in the LN. During an infection, 

DC encounter danger signals in the form of a distinct and highly conserved 

structure of a pathogen that will trigger PRRs to undergo a drastic change of 

their phenotype which ultimately will equip them as efficient APCs. They 

upregulate costimulatory and MHC molecules and increase production of 

inflammatory cytokines, which are very important for T cells to turn into 

activated effector T cells. They also change their chemokine receptor profile, i.e. 

they highly upregulate CCR7 receptor and concomitantly downregulate all other 

chemokine receptors, which aid the DC to find its way to the draining LN where 

T and B cell home, which in turn secrete the ligand for CCR7, CCL19 and 

CCL21. These chemokines are expressed by peripheral lymphatic endothelial 

cells as well as LN stroma cells and guide DCs to downstream LNs (MartIn-

Fontecha et al., 2003). This transition is accompanied by a huge change of their 

morphology of the actin cytoskeleton, which enable them to migrate very 

efficiently to the LN to interact with T cells. Given this complex life cycle, the 

ability of DCs and their progenitors to migrate throughout the body is a critical 

aspect of their immunological function. Thus, migration is a very important and 

critical part of DC function in order to exert their function as a professional APC 

and any misbalance might result in a different outcome of the immune response 

which might be detrimental for the organism (Alvarez et al., 2008).  

FHL2-/- mice display wound healing disturbance due to defective migration of 

fibroblasts (Wixler et al., 2007) and collagen metabolism (Kirfel et al., 2008). 

Nuclear expression of FHL2, high Gleason score and grade correlate with 

relapse during follow-up in prostate cancer (Kahl et al., 2006), and it is highly 

expressed in primary and metastatic colon cancer but not in normal tissues 

(Zhang et al., 2010). Furthermore, FHL2 is known to associate with actin 

cytoskeleton components (Li et al., 2001), and might influence the morphology 

of the cell (Bai et al., 2005).  
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These observations made it worth to study the role of FHL2 as a regulator of 

DC migration. Migration of DC is very important to fulfill their function as an APC 

to elicit a successful immune response during the crosstalk of T cell. For 

example, in a different mouse model, deficient of RBP-J (Feng et al., 2010), 

authors could observe the detrimental effect on tumor formation, when DCs 

show inefficient migration. The RBP-J deficient DCs expressed lower MHCII, 

CD80, CD86, and CCR7 resulting in inefficient DC migration and T cell 

activation in vitro and in vivo, so T cells did not possess efficient cytotoxicity 

against tumor cells. 

 

4.1 FHL2 is expressed in wt BMDC and localized at the membrane in 

mature DC after stimulation with CCL19 

First of all, we were interested in the localization of FHL2 within wt BMDC (Fig. 

3.2 A), because depending on the position of FHL2 within a cell it can exert two 

different mechanistically effects. In addition, we treated BMDC with LPS and 

CCL19, because both can influence the morphology and migration of DC which 

might be controlled by FHL2. In the immature culture, DCs showing an 

immature morphology characterized by filopodia formation FHL2 is located in 

the nucleus. Their large cytoplasm has filopodia structure and long dendrites, 

which are very helpful in capturing antigen (Svitkina et al., 2003). Stimulation of 

DC with LPS leads via TLR4 signaling to maturation of DC with a change in 

morphology to a smaller, veiled phenotype expressing lamellipodia, but still in 

these cells FHL2 remained in the nucleus. In addition to locomotion, CCR7 

controls several other factors of DC function: CCL19 induces the apparition of 

dendritic protrusions in DC (Yanagawa and Onoe, 2002), indicating that CCR7 

can regulate the cytoarchitecture probably by controlling the actin cytoskeleton. 

The same authors reported that the stimulation of CCR7 with ligands CCL19 

and CCL21 positively regulates the rate of endocytosis of the mature DCs with 

concomitant up-regulation of Cdc42 and Rac activities (Yanagawa and Onoe, 

2003). The same observation holds true for CCL19 treatment in our BMDC 

culture in combination with LPS treatment, where also the cytoarchitecture and 

localization of FHL2 changed dramatically. Now, FHL2 cannot be seen in the 

nucleus anymore, instead can be found at the membrane. FHL2 is known to be 



Discussion 

 

83 

associated with focal adhesions which are at the cell membrane making 

attachment to ECM, but since DC are devoid of focal adhesion, we would 

surmise these are podosomes that FHL2 rather associates to in DC. In the 

mature fraction of BMDC, FHL2 seems to move after CCL19 ligand binding out 

of the nucleus to the cell membrane, where it plays a different function, 

necessary for a DC to migrate to the LN after antigen uptake. 

 

Before we focus on our main issue the loss of FHL2 in DC migration in FHL2 

deficient mice to better answer our question how FHL2 impacts DC migration, 

we checked how FHL2 was expressed in wt BMDC and wanted to be sure that 

FHL2 is missing in FHL2 deficient BMDC. By RT-PCR (Fig. 3.2 B) as well as 

Western Blot (Fig. 3.2 C) we could show that FHL2 is lost in the KO mouse. 

FHL2 is completely lost in several organs like heart, colon, lung, muscle tissue 

and BMDC from KO mice shown by RT-PCR. Low levels expression of FHL2 in 

wt BMDC and lung compared to heart, colon and muscle can be observed on 

mRNA level. 

Western Blot analysis showed expression of FHL2 in heart tissue of wt mouse 

and absence of FHL2 in KO mouse proving that FHL2 is not present in the KO 

mouse. However, Western Blot failed to detect FHL2 in wt BMDC. There are 

possible explanations: First of all, FHL2 is highly expressed in heart tissue 

(Chan et al., 1998; Genini et al., 1997) and FHL2 is expressed in BMDC at 

lower levels compared to other organs as shown by RT-PCR which makes 

detection difficult. Wixler et al. (2000) were not able to detect FHL2 reliably in 

various other cell types or tissues other than heart. They reasoned that FHL2 

exhibits a different conformational state under experimental conditions so that 

the antibody cannot bind. They also stated that binding of FHL2 to integrins 

which are incorporated in the cell membrane is very tight. After lysis of BMDC to 

get access to the proteins, the whole sample is centrifuged to remove cell 

debris. So, FHL2 could still be bound to the cell membrane, which is not loaded 

on SDS-PAGE. For these reasons we concentrated FHL2 by IP with a 

polyclonal antibody in wt and FHL2-/- lysate of BMDC (Fig. 3.2 D) and loaded 

the enriched FHL2 on SDS-PAGE gel. Here we could detect FHL2 on protein 

level in wt BMDC, which was lost in FHL2-/- DC. So, FHL2 is expressed in wt 
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DC, but only in very small amounts, which is still sufficient leading to a different 

phenotype. 

 

4.2 Increased migration of FHL2-/- is not due to different expression 

levels of CCR7 

We answered the migration issue in a first experiment by timelapse microscopy. 

We observed that FHL2-/- deficient BMDC exhibited significant higher migratory 

speed on collagen coated surface than wt BMDC towards a CCL19 chemokine 

gradient (Fig. 3.3 A). Moreover, we could demonstrate that FHL2-/- BMDC 

travel with enhanced directionality and persistence (Fig.3.3 B) compared to wt 

BMDC. The difference in migratory speed between FHL2-/- and wt BMDC 

shown by timelapse microscopy could be confirmed by transwell assay towards 

CCL19 (Fig. 3.4 A).  

On possible explanation for observed enhanced migratory phenotype of BMDC 

lacking FHL2 is the upregulation of the CCR7 receptor, which is highly 

expressed in mature and fast migrating cells. Furthermore in mature DC ligand 

binding of CCL19 made FHL2 translocate from the nucleus to occur at the cell 

membrane (Fig. 3.2 A). CCR7 is not only the guide for the DC, it is also the 

accelerator for DC migration (Dieu et al., 1998; Sozzani et al., 1998). CCR7 

regulates in DC two signaling modules, one formed by Gi and a specific 

hierarchy of MAPK family members that regulates chemotaxis and another 

formed by Rho/Pyk2/cofilin that regulates the migratory speed of DCs. 

Therefore, the stimulation of CCR7 by its ligand leads to an increase in the 

activity of these signaling molecules and consequently to an increase in the 

migratory speed of the cells. The stimulation by CCR7 ligands of the intrinsic 

migratory speed axis behaves as an accelerator system that increases the 

speed at which DCs move toward the maximum concentrations of CCL19 and 

CCL21. In the in vivo context, this regulatory process would have the obvious 

advantage of more rapidly directing DCs to LN regions. FHL2 could be involved 

in this process acting as a co-activator of transcription factor of CCR7. Since we 

could not see any differences in CCR7 expression levels (Fig. 3.5 A), it does not 

seem that FHL2 acting as transcriptional co-activator has an influence on the 

expression levels of CCR7. So, all the previously described potential roles of 
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CCR7 increasing DC migration does not take place in our FHL2-/- model. So, 

another mechanism must be responsible for it. Even treatment with LPS and 

TNF-α (Fig. 3.5 B) could not change expression levels of CCR7 between wt and 

FHL2-/- BMDC, although the overall expression level was increased compared 

to immature DC. 

 

The passage of leukocytes through basement membranes involves proteolytic 

degradation of extracellular matrix (ECM) components executed by focalized 

proteolysis where matrix metalloproteinases (MMPs) are engaged. They were 

demonstrated to degrade and remodel numerous ECM components (Abecassis 

et al., 2003; Park et al., 2008), and thereby being important for the regulation of 

cellular functions, e.g. migration (Di Girolamo et al., 2006; Ratzinger et al., 

2002). ADAM-17 and FHL2 colocalize with the actin-based cytoskeleton that 

suggests that FHL2 might have a role in the regulation of ADAM-17 (Canault et 

al., 2006); and FHL2-/- mesenchymal stem cells show perturbed organization of 

ECM (Park et al., 2008). Maybe this would change the outcome for the 

migration of FHL2-/- BMDC in vivo compared to the in vitro situation, where we 

could see enhanced migration of FHL-/- BMDC. We could verify increased 

migratory speed of BMDC deficient of FHL2 in vivo by injection of unstimulated 

or TNF-α stimulated FHL2-/- and wt BMDC into the footpad of wt mice (Fig. 3.6 

A). So, in our mouse model, in vivo migration showed the same result as in 

vitro, i.e. FHL2-/- BMDC migrate faster than wt BMDC. It seems like that FHL2-

/- BMDCs do not alter their in vivo environment by e.g. ECM remodeling as 

proposed before in such a way that FHL2-/- BMDC behave complete differently 

with respect to migration: They were not slower or showed similar migration 

level. Maybe it had an effect in vivo, so that migration was amplified, but it is 

really hard to compare. Interestingly, the difference between wt and FHL2-/- 

BMDC was bigger when treated with TNF-α than not stimulated. Somehow, 

TNF-α amplified the phenotypical effects on FHL-/- BMDC. ADAM-17 mediates 

release of TNF from the cell surface (Black et al., 1997). Less ADAM-17 was 

detected at the surface of wt mouse macrophages compared to FHL2 deficient 

macrophages. Maybe, there is a connection between TNF-α signaling and 

FHL2 via ADAM-17. Although we never directly in one single experiment 

compared migratory velocities of immature and mature DCs in vivo, we would 
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expect that also here TNF-α matured DCs showed higher migration levels 

compared to immature DCs as determined by other groups (De Vries et al., 

2003).  

 

But maybe we were able to obtain more FHL2-/- BMDC from the LN, because 

FHL2 has an anti-apoptotic effect, which prevents BMDC deficient of FHL2 to 

die in contrast to wt BMDC. FHL2 is known to regulate the cell cycle (Martin et 

al., 2007), so it can trigger apoptosis (Scholl et al., 2000). In several different 

cell lines FHL2 inhibited growth in vitro (Amann et al., 2010; Ding et al., 2009), 

and in colon cancer cells it Inhibited tumorigenesis in nude mice (Wang et al., 

2007). One other group (Labalette et al., 2008a; Labalette et al., 2008b) could 

even see the opposite effect: FHL2 deficiency triggers a broad change of the 

cell cycle program that is associated with down-regulation of several G(1)/S and 

G(2)/M cyclins, and DNA replication machinery, thus correlating with reduced 

cell proliferation. Nevertheless, we could neither see a beneficial or detrimental 

effect on cell viability, i.e. we could not see that FHL2 regulate these processes 

in DCs by determining the survival of wt and FHL2-/- in vitro by a MTT (Fig. 3.6 

C). Overall, all these data indicate that FHL2-/- BMDC migrate faster than wt 

BMDC in vivo.  

This is in contrast to observations made by several other groups, where loss of 

FHL2 leads to a defect in migration. In human glioblastoma cells FHL2 

knockdown by short hairpin RNA inhibited cell proliferation and migration. 

Conversely, overexpression of FHL2 stimulated the proliferation, anchorage-

independent growth, and migration of glioblastoma cells (Li et al., 2008). Also, 

FHL2 overexpression markedly accelerated cell migration, whereas FHL2 

siRNA decreased SW480 cell invasion (Zhang et al., 2010). In these studies 

loss of FHL2 lead to impaired migration (Wixler et al., 2007), whereas our 

experiments or other groups (Labalette et al., 2010) observed accelerated cell 

migration. This can be explained by the fact that FHL2 associated cell migration 

is cell type specific due to intrinsic or external factors which varies in every 

environment. But there is a difference of leukocytes or DCs from other cell types 

with respect to the mode of migration. The most primitive and effective form of 

cell migration is amoeboid movement, which mimics features of the single-cell 

behavior of the amoeba. These cells use a fast ‘crawling’ type of movement that 
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is driven by short-lived and relatively weak interactions with the substrate, which 

ends up  to move at high velocities (2–30 µm/min; Friedl et al., 1998). Amoeboid 

movement is carried out by hematopoietic stem cells, leukocytes and certain 

tumor cells. In contrast to cells that use amoeboid migration, mesenchymal cells 

accomplish the complete four-step migration sequence. In 3D tissues, 

mesenchymal cells adopt a spindle-shaped, fibroblast-like morphology, as 

characteristic for fibroblasts, myoblasts, single endothelial cells or sarcoma 

cells. The elongated morphology is dependent on integrin-mediated adhesion 

dynamics and the presence of high traction forces on both cell poles (Friedl, 

2004).  

 

Integrin adhesion receptors are heterodimeric glycoproteins which are 

composed of noncovalently associated α and β transmembrane subunits (Lad 

et al., 2007). Integrins play a very important role for cell migration, since ligand 

binding to integrins leads to integrin clustering and recruitment of actin filaments 

and signalling proteins to the cytoplasmic domain of integrins (Brakebusch and 

Fassler, 2003). FHL2 also interacts with several integrins (Samson et al., 2004; 

Wixler et al., 2000). It was demonstrated integrins are involved in DC migration 

(van Helden et al., 2006). This contradicts to murine leukocytes, where all 

integrins heterodimers were ablated and that functional integrins do not 

contribute to migration in three-dimensional environments (Lammermann et al., 

2008). Instead, these cells migrate by the sole force of actin-network expansion, 

which promotes protrusive flowing of the leading edge. Therefore we did not 

check, if integrin signaling is involved in FHL2-/- BMDC migration. Although as 

determined in later conducted experiments: DCs without integrins could switch 

to a different migration mode (Quast et al., 2009; Renkawitz et al., 2009), and 

chemotactic DCs mechanically adapt to the adhesive properties of their 

substrate by switching between integrin-mediated and integrin-independent 

locomotion (Renkawitz et al., 2009).  
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4.3 FHL2-/- BMDC have more lamellipodia due to elevated levels of 

Rac1 

After taking up antigen and PRR signaling has been triggered, DC go through a 

lot of changes converting them from a drinking cell to an highly efficient antigen 

presenting cell (Norbury, 2006). To fulfill this task they have to transport the 

antigen to the LN swiftly, therefore also the actin cytoskeleton will change 

dramatically. Since reorganization of the actin cytoskeleton is the basis for 

cellular migration (Mitchison and Cramer, 1996), the cytoskeletal actin 

conformation of FHL2-/- and wt BMDC was examined by immunofluorescent 

staining with phalloidin (Fig. 3.7 A). As discussed before in section 3.1 in a 

seven day DC culture there are already a number of DCs that have matured 

spontaneously. The number of DC showing a typical more mature phenotype 

with expanding veils and lamellipodia was significant higher in the DC culture 

derived from FHL2-/- mouse than wt DC. Thus, FHL2 has an impact of the 

reorganization of the actin cytoskeleton, which probably contributes to the 

enhanced migration speed of FHL2-/- BMDC. Binding of phalloidin to F-actin 

mirrors the amount of filamentous actin which is higher in fast migrating cells 

(Fukui et al., 2001). This was quantified by intracellular staining of phalloidin in 

flow cytometry where significant higher amounts of F-actin were present in 

FHL2-/- BMDC (Fig. 3.7 B). This difference was more distinctive after 

stimulation with TNF-α, which is reflected by the in vivo migration of wt and 

FHL2-/- BMDC to popliteal LN, where the difference was higher when 

stimulated with TNF-α. It seems that TNF-α does not lead to enhanced 

maturation of FHL2-/- but is able to enhance the migratory capacity of FHL2-/- 

DC and levels of filamentous actin. Thus TNF-α seems to turn on two 

independent pathways in DC maturation: It stimulates properties necessary for 

migration, but does not induce maturation as compared e.g. LPS. Lamellipodia 

formation is caused mainly by activated Rac1, which we find higher amounts in 

FHL2-/- DC compared to wt DC. 
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4.4 FHL2-/- BMDC do not show a more mature phenotype and 

differences in antigen uptake and presentation 

To present antigens or pathogens to naive T cells, DC must mature after 

capturing and processing exogenous antigens and also provide three essential 

signals: An antigen presentation signal via an MHC-peptide complex to TCR, 

costimulatory signals e.g., CD40, CD80, and CD86, and proinflammatory 

cytokines e.g., IL-6, IL-12, and TNF-α (Lutz and Schuler, 2002). The expression 

of cell surface molecules and production of proinflammatory cytokines in DC are 

primarily regulated by NF-κB (Ouaaz et al., 2002; Rescigno et al., 1998). Thus, 

regulating NF-κB activation is of critical importance for immunoregulation and 

prevention of allograft rejection (Shinoda et al., 2010). Deficiency of FHL2 could 

influence the expression levels of costimulatory molecules by regulating NF-κB 

transcription, since nuclear translocation of the p65 subunit of NF-κB is 

enhanced in FHL2-deficient osteoclast precursors (Bai et al., 2005) and 

expression of FHL2 results in enhancement of NF-κB activation (Stilo et al., 

2002). After antigen uptake and processing, peptide is loaded on MHC and 

transported to the surface of the cell ready to communicate with T cells. 

Shuttling of MHC to cell surface also depends on the dynamics of the actin 

cytoskeleton and activation of small Rho GTPases like Rac1, and both incidents 

are different in FHL2-/- DC (Erickson et al., 1996; Turley et al., 2000; Luna et 

al., 2002). 

Maybe all the processes are changed in FHL2-/-BMDC and influence the 

maturation state. We found that the maturation markers such as MHCI, MHCII, 

CD80, CD86 and CD40 are expressed to similar level between FHL2-/- and wt 

BMDC (Fig. 3.8 A). After incubation with TNF-α, these markers were elevated to 

similar degree in FHL2-/- and wt BMDC. Even a higher expression was 

observed when BMDC were stimulated with LPS (Efron et al., 2005; Granucci et 

al., 2001). Thus, it seems that NF-κB signaling is not altered in FHL2-/- BMDC, 

which could have influenced the expression levels of costimulatory molecules. 

In order to determine, if NF-κB signaling is different in FHL2-/- BMDC, a further 

number of experiment, e.g. by Western Blot is required. Also Qiao et al., 2009 

failed to show a direct association of FHL2 with nuclear NF-κB in 

gastrointestinal cancer. Although the actin cytoskeleton is differentially arranged 
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in FHL2-/- BMDC this did not seem to affect transport of MHC class molecules 

to the surface. 

As a third signal DC provide soluble molecules to the T cell like IL-12 and TNF-

α to turn them into effector T cells. Differential production of IL-12 would rather 

lead to a Th1 phenotype during the crosstalk of DC and T cell (Macatonia et al., 

1995), and this effect is even enhanced by administration of LPS (Mellman and 

Steinman, 2001). Induction of IL-12 occurs in response to signals that require 

either p50 or cRel NF-κB family members (Murphy et al., 1995; Zhang et al., 

2000). DC-derived TNF-α is responsible for the development of IL-10-producing 

CD4+ regulatory T cells by immature DCs (Hirata et al., 2010). Another study 

confirmed this in vivo, where stimulation by TNF-α results in incompletely 

matured DCs (semi-mature DCs) which induce peptide-specific IL-10-producing 

T cells in vivo and prevent experimental autoimmune encephalomyelitis 

(Menges et al., 2002). But also here we could not observe any difference 

between wt and FHL2-/- DC with respect to production of IL-12 and TNF-α and 

also not after additional stimulation with LPS (Fig. 3.9 B). Incubation of BMDC 

with TNF-α did not induce secretion of IL-12 and TNF-α, which was speculated 

to be the reason that TNFα- matured DC rather induce tolerance (Menges et al., 

2002). Hence, we assume that increased migration in FHL2-/- is not due to a 

constitutive maturation of BMDC. FHL2 does not influence the maturation status 

of DC, but according to our until now conducted experiments migration of 

BMDC.  

 

The main task of DC is to present antigen to T cells after they have taken it up 

in the periphery, which will lead to an efficient immune response or tolerance 

depending on the signals provided by DC. Although we know that these signals 

i.e. maturation markers and cytokine production are not different, there still can 

be a difference regarding antigen uptake and presentation between wt and 

FHL2-/- DC, because also organization of the cytoskeleton influences the 

process of antigen uptake and presentation. Macropinocytosis and endocytosis 

are related processes, both depending on regulated actin assembly and thus 

the activity of the Rho family GTPases Cdc42 and Rac (Garrett et al., 2000; 

West et al., 2000). DCs have many routes to take up antigen either by 

macropinocytosis e.g dextran or receptor mediated like OVA. When feeding 
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both types of DC with OVA or dextran, we could not observe any difference in 

uptake (Fig. 3.10 A). Although FHL2 contributes to the organization of the 

cytoskeleton, this change does not seem relevant in the process of antigen 

uptake. We know that FHL2 has an influence on cell morphology and 

organization of the cytoskeleton, which is crucial in taking up antigen and in the 

crosstalk between DC and T cell. Selective Rac1 inhibition in DCs diminishes 

apoptotic cell uptake and cross-presentation in vivo (Benvenuti et al., 2004). 

Inhibition of the Rac-Cdc42-Ral pathway markedly reduces dendritic probings 

as well as short and long-term contacts with T cells in vitro (Swetman et al., 

2002). Rac1 signaling, which is enhanced in FHL2-/- BMDC, did not seem to 

play a role regarding antigen presentation in FHL2-/- BMDC. This we could 

observe for presenting the model antigen OVA to OVA specific T cells in a co-

culture, when we looked for proliferation of T cells by CFSE dilution and IL-2 

production (Fig. 3.10 B, C and D). 

 

4.5 S1PR1 expression is increased in FHL2-/- BMDC 

Ligand binding by S1P plays a role in FHL2 signaling in several cell lines 

leading to a translocation of FHL2 in the nucleus (Muller et al., 2002). 

Additionally, S1PR are differentially expressed in mature DC, which also have 

faster migrating abilities than immature DC, showing high expression levels of 

S1PR1 and 3 and diminished or steady expression of S1PR2 and 4 (Czeloth et 

al., 2005). Furthermore, CHO cells overexpressing S1PR1 and 3 show higher 

migration levels than their controls (Okamoto et al., 2000). All this made us 

elucidate the expression levels of S1PR further, because this might explain the 

increased migration behavior noticed in FHL2-/- DC. Indeed, we could detect 

higher expression levels of S1PR1 in FHL2-/- DC determined by qRT-PCR, and 

this effect was even more pronounced after stimulation with TNF-α (Fig. 3.10). 

The expression of S1PR2-4 does not seem to be different between wt and 

FHL2-/- BMDC and show differential expression levels to the same extent after 

incubation with TNF-α compared to non-treated, which is in accordance to the 

observations of other groups (Maeda et al., 2007; Rathinasamy et al., 2010).  

We could confirm this observation more functionally in a migration assay after 

knockdown of S1PR1 by electroporation with S1PR1 specific siRNA: S1PR1 
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loss reversed the phenotype of FHL2-/- BMDC (Fig. 3.13 A and B). We wanted 

to explore this further with the help of a specific small molecular inhibitor against 

S1PR1 SEW2871, which can have an agonistic or antagonistic effect on 

S1PR1. On the one hand cells including DC tend to migrate towards SEW2871, 

but on the other hand incubation of cells with it leads to internalization of S1PR1 

which is not fully functional anymore (Sanna et al., 2004). This happened when 

incubating SEW2871 with FHL2-/- DC which lead to slower migration compared 

to control and approaching the migration levels of wt DC (Fig. 3.12 C). We could 

exclude that SEW2871 itself might have an effect on the maturation status of 

BMDC, which could also cause differential migration capabilities of BMDC. 

Thus, S1PR1 must play a role in FHL2 signaling causing accelerated DC 

migration ability, but does not have an impact on several other DC functions like 

antigen uptake and presentation. But these processes seem to be regulated by 

other S1PRs like 3 rather than S1PR1 (Maeda et al., 2007), and endocytosis 

seems mainly to be controlled by Cdc42, which we did not look for. S1P by itself 

did not change antigen uptake ability (Fig. 3.13 A) or migration status (Fig. 3.13 

B) by immature DC, which fits to the observations made by (Maeda et al., 

2007), who did not observe that S1P affected mature DC regarding these 

processes. 

 

4.6 Summary  

Our observation suggests the following mechanism in FHL2-/- BMDC. We think 

that in FHL2-/- BMDC the following chain of events are occurring based on a 

combination of our findings and literature: Immature DC show high expression 

levels of S1PR2 (Czeloth et al., 2005) and signaling via S1PR2 by S1P, which 

is present in the serum supplemented to the media, leads to RhoA mediated 

FHL2 translocation into the nucleus (Muller et al., 2002). Being able to bind to 

proteins it will bind to an unknown transcription factor acting in this setting as a 

co-repressor of transcription of S1PR1 which we know is quite low in immature 

DC. This is supported by the fact that we mainly find FHL2 in the nucleus in 

immature BMDC. At the same time, residing in the periphery with slight 

expression of CCR7 it cannot respond to CCL19, therefore not being able to 

migrate quickly (Fig. 4.1 A). 
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We propose that in the KO setting the same scenario is taking place after a DC 

has matured after PRR stimulation (Fig. 4.1 B). In a mature DC signaling via 

S1PR2 by S1P declines, so no FHL2 is present in the nucleus inhibiting the 

transcription of S1PR1, which is increased in mature DC. We know that in 

mature DCs after ligand binding with CCL19 FHL2 is not present in the nucleus 

anymore, but can be found at the cell membrane. The same is true for KO DC 

where no FHL2 is present in the nucleus. S1PR1 lead via Gi receptor to higher 

amounts of Rac1 which entail lamellipodia formation and in the end increased 

migration (Takuwa, 2002).  

Literature hints that it is most likely S1PR2 working upstream of FHL2, but this 

theory has to be confirmed by e.g. knock down of S1PR2 and as a read out 

followed by a migration assay. In order to fortify the underlying mechanism it 

would be sufficient finding the missing link in the regulation of S1PR1 

transcription by FHL2. There is a pile of literature hinting to Forkhead Box O1 

(Foxo1) being the transcription factor for S1PR1. FHL2 inhibits Foxo4 (Shi et 

al., 2010) and Foxo1 transcriptional activity in prostate cancer cells by 

promoting the deacetylation of Foxo1 by Sirtuin1 (SIRT1; Yang et al., 2005). In 

quiescent T cells, nonphosphorylated active Foxos maintain expression of  

Kruppel-like factor 2 (KLF2), that regulates expression CCR7 and S1PR1 

(Finlay and Cantrell, 2010). Taken together, these results suggested that Foxo3 

may control expression of S1PR1. Indeed, there was a small, but consistent, 

reduction in S1PR1 mRNA in Foxo3−/− B cells to ∼75% of wt levels (Hinman et 

al., 2009). They demonstrate using transcriptional profiling that Foxo1 also 

increases transcripts of S1PR1 and 4 (Fabre et al., 2008). 
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Figure 4.1: Model of FHL2-mediated repression of S1PR1 expression and regulation of 
DC migration. (A) In immature wt DCs, signaling via S1PR2 leads to Rho activation, causing 
translocation of FHL2 into the nucleus, where FHL2 represses transcription of S1PR1 by 
binding to the transcription factor of the promoter region. Additionally, low expression levels of 
CCR7 blocks Rac activity. (B) Maturation of DCs leads to downregulation of S1PR2. 
Subsequent diminished Rho activation inhibits nuclear translocation of FHL2 into the nucleus, 
which has the same effect as FHL2 deficiency (i.e. reduced repression of S1PR1 transcription). 
S1P signaling via greater S1PR1 levels increases Rac activation, which leads to an increased 
migratory rate of mature or FHL2-/- DCs. 
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4.7 Conclusion 

The interaction of DC with naive T cells can lead to different forms of immune 

responses ranging from immunity or to T-cell tolerance, depending on the type 

of DC and its activation state (Shortman and Naik, 2007). The common view 

supposes that immature DC induce tolerance, whereas mature DC induce 

immunity to antigens (Sousa, 2006). The question is what the outcome would 

be in FHL2-/- BMDC or in FHL2-/- mice or would it be any different compared to 

wt DC? And how can we you use this information? Fainaru et al. (2005) 

reported that in Runx3 KO mice, expression of CCR7 is enhanced, resulting in 

increased migration of alveolar DC to the lung-draining LN. This increased DC 

migration and the consequent accumulation of activated DC in draining LN is 

associated with the development of asthma-like features. But they also showed 

higher expression levels of CD86 and MHCII what drove the T cells to a more 

activated state. However wt and FHL2-/- BMDC are equally mature. On the 

other hand disordered migratory DC cannot mount an effective T cell mediated 

specific immune response as seen in PI3K−/− DCs, which migrate poorly 

towards chemotactic factors in vitro and in vivo, leading to defective cutaneous 

hypersensitivity responses (Del Prete et al., 2004). FHL2-/- BMDCs are a very 

helpful model to study how migration influences T cell activation based on their 

migration on not what additional factors like maturation status or antigen 

presentation capabilities they are providing during the crosstalk of T cells. We 

postulate that FHL2-/- DC are able to induce tolerance to antigens, because 

immature FHL2-/- DC reach the LN earlier than wt DC and most likely cannot 

deliver an activation signal to antigen-specific T cells because of a lack of 

costimulatory molecules. FHL2-/- BMDC could serve as a convenient model to 

investigate the induction of tolerance to T cells. The role of migration of DC in a 

lot of diseases and tumor models can be studied on the basis of FHL2-/- BMDC, 

and the effect seen is only due to the enhanced migration of DC. If this is the 

case inhibition of FHL2 could be used as a therapeutic target  

Testing this hypothesis needs more complex in vivo experiments, and therefore 

it is necessary to look for altered ability in antigen uptake and presentation in 

FHL2-/- BMDC in contrast to wt BMDC in vivo. Because it is important to know 

that the effect seen in these kinds of experiments is only due the enhanced 



Discussion 

 

96 

migration of FHL2-/- BMDC. The current model of FHL2 signaling is 

recommended in Fig. 4.1. 
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Abbreviations 

aa  amino acids  

ab   antibody 

ABTS   2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulphonic acid)  

ACT  Activator of CREM in testis  

ADAM  A Disintegrin And Metalloproteinase  

APC  Allophycocyanin 

APC  antigen presenting cell 

Arp  Actin-Related Proteins  

ATP   Adenosine-5'-triphosphate 

β-ME  β-mercaptoethanol  

BM  bone marrow  

BMDC  bone marrow-derived dendritic cells  

Bp  base pairs 

BSA   Bovine serum albumin  

C  celsius 

cDNA  complementary DNA 

CFSE  Carboxyfluorescein succinimidyl ester 

CCL19  chemokine, CC MOTIF, ligand 19  

CCR7  Chemokine, CC Motif, receptor 7  

CD  cluster of differentiation 

Cdc42  cell division cycle 42 

cm   centimeter 

DAPI  4',6-diamidino-2-phenylindole  

DC  dendritic cell  

ddH2O double destilled water 

DMSO Dimethyl sulfoxide 

DNA  Deoxyribonucleic acid  

dNTP  di-Nucleoside triphosphate 

DTT  Dithiothreitol   

ECL  Electrochemiluminescence 

ECM  extracellular matrix  

EDG  endothelial differentiation gene  
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e.g.  Latin exempli gratia (for example) 

ELISA  Enzyme-linked immunosorbent assay 

ER  endoplasmatic reticulum  

et al.  Latin et alia (and others) 

F   forward 

F-actin filamentous actin 

FACS  Fluorescence-activated cell sorting 

FCS  Fetal calf serum  

Fig  Figure  

FITC  fluorescein isothiocyanate 

Foxo1  Forkhead Box O1  

FSC  Forward scatter 

g  gram 

G-actin globular actin 

GAP  GTPase activating protein  

GDI  Guanine nucleotide dissociation inhibitors  

GDP  Guanosine diphosphate  

GEF  Guanine nucleotide exchange factors  

GFP  green fluorescent protein 

GMCSF Granulocyte macrophage colony-stimulating factor 

GTP  Guanosine triphosphate 

i.e.  Latin id est (that is) 

HPLC  high performance liquid chromatography 

HRP  Horseradish peroxidase 

Hrs  hours 

IF  intermediate filaments  

IgG  Immunoglobin 

IL  Interleukin 

IMDM  Iscove's Modified Dulbecco's Media 

IP  Immunoprecipitation 

IRS  insulin receptor tyrosine kinase substrate  

kDa  kilo Dalton 

KLF2  Kruppel-like factor 2   

KO  knock out 
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l   liter 

LN  lymph node 

LPS  lipopolysaccharides  

LSD1  Lysine specific demethylase 1  

M   molar 

mAB  monoclonal antibody 

MACS  Magnetic Activated Cell Sorting 

MFI  mean fluorescence intensity  

mg  milligram 

MgCl2  Magnesium chloride 

MHC  major histocompatibility complex  

Min  minute 

miRNA microRNA 

ml  milliliter 

mM  millimolar 

MMP  Matrix metalloproteinases  

MP  Milk powder  

mRNA  messenger RNA 

ms   milliseconds 

MT  microtubules  

MTT  3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NADH  Nicotinamide adenine dinucleotide plus hydrogen (reduced) 

NADPH Nicotinamide adenine dinucleotide phosphate (reduced) 

NF-κB  nuclear factor–κB 

ng   nanogram 

NP-40  Nonidet P-40  

NK  Natural Killer 

NKT  Natural Killer T  

NS  not significant 

OVA  ovalbumin 

P  Penicillin 

PAGE  polyacrylamide gel electrophoresis 

PAMP  pathogen-associated molecular patterns  

PBS  Phosphate buffered saline 
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PCR  Polymerase chain reaction 

PDGF  platelet-derived growth factor  

PE  Phycoerythrin 

Percp  Peridinin-chlorophyll-protein complex 

PFA  Paraformaldehyde  

PRR  Pattern recognition receptors  

qRT-PCR Quantitative Real-Time PCR 

R   reverse 

RAC  Ras-related C3 botulinum toxin substrate  

RBD  Rac binding domain 

RhoA   Ras homolog gene family, member A 

RIPA  Radioimmunoprecipitation assay 

RLU  Relative Luminescence Units 

RNA  ribonucleic acid  

Rpm  rounds per minute 

mm   milimeter 

RPMI  Roswell Park Memorial Institute 

RT-PCR reverse transcriptase-PCR 

s   seconds 

S  Streptomycin  

S1P  Sphingosin-1-phosphate  

S1PR  Sphigosine-1-Phosphate Receptor 

SDS  Sodium dodecyl sulfate 

SEM  Standard error of the mean  

siRNA  small interfering RNA 

SIRT1  Sirtuin1  

SNARF-1 carboxylic acid, acetate, succicimidyl ester SNARF 

SPF  specific pathogen free  

SSC  Side Scatter 

T  Tween 

TAE  Tris-acetate-EDTA 

TAP  transporters associated with antigen processing  

Taq  Thermus aquaticus 

TBS  Tris Buffered Saline 
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TCR  T cell receptor 

TLR  Toll-like receptor 

TNF  tumor necrosis factor 

TRIS  Tris(hydroxymethyl)aminomethane  

U   units 

µl   microliter 

µm  micrometer 

µM   micromolar 

V   Volt 

VEGF  vascular endothelial growth factor 

WASp  Wiskott-Aldrich Syndrome Protein  

WAVE WASP-family verprolin-homologous protein  

w/o  without 

wt  wild type 
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