
Synthesizing Human Motions

Dissertation

Zur Erlangung des Doktorgrades (Dr. rer. nat)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Dipl.-Inform. Björn Peter Krüger

15. November 2011

Promotionskommission

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen

Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn.

- Erstgutachter: Prof. Dr. Andreas Weber

- Zweitgutachter: Prof. Dr. Bernd Eberhardt

- Fachnahes Mitglied: Prof. Dr. Joachim Anlauf

- Fachfremdes Mitglied: Prof. Dr. Jürgen Bajorath

Tag der Promotion: 23.03.2012

Erscheinungsjahr: 2012

III

Danksagung

Diese Arbeit wäre ohne Hilfe, die ich von vielen Seiten erfahren habe, so nicht

möglich gewesen. Dafür möchte ich mich an dieser Stelle bedanken.

Andreas Weber danke ich für die Unterstützung schon während meines

Studiums, für die Annahme als Doktorand, für das Schaffen einer angeneh-

men Arbeitsatmosphäre und für seine immer offene Tür für alle Fragen und

Gespräche. Bei meinen Kollegen Jochen Tautges, Arno Zinke, Jan Baumann,

Tomas Lay Herrera und Hassan Errami bedanke ich mich für die sehr gute

Zusammenarbeit an den Projekten und Papern sowie für die Korrekturen an

dieser Arbeit. Ihr seid nicht nur gute Kollegen, sondern auch gute Freunde

geworden.

Diese Arbeit wäre nicht möglich gewesen ohne einen großen Bestand an

Motion-Capture-Daten. Bei der Aufnahme der HDM05-Datenbank und vie-

len weiteren notwendigen Aufnahmesessions waren Jochen Boom und Bernd

Eberhardt immer eine große Hilfe. Ein weiteres Dankeschön geht an die Ar-

beitsgruppe von Meinard Müller am MPI in Saarbrücken für die gute Zusam-

menarbeit im Bereich der Annotationen mit Andreas Baak und im Bereich

der Rekonstruktion aus Beschleunigungsdaten mit Thomas Helten.

Mein größter Dank gilt Almud: Du hast mit mir die anstrengenden Zei-

ten vor Deadlines durchgehalten und mir für Konferenzreisen den Rücken

freigehalten. Wenn ich mit Dir zusammen bin, fällt es leicht, nicht an Arbeit

zu denken – ohne diese Pausen hätte mir an manchen Stellen die Kraft zum

Weitermachen gefehlt.

Eva-Lotta, ich freue mich, dass Du da bist und ich dabei sein darf, wenn

Du die Welt entdeckst!

V

Abstract

In this work different data-driven methods for the synthesis of natural human

full body motions are presented. My research in this area was based on the

following fundamental questions: Suppose we have all the motion capture

data ever recorded, how could we use them? What benefits do they offer us?

Which applications can arise?

In fact, most of the motion capture data recorded are used for one specific

project only and never reused although all these motion data contain valuable

information about how human motions look like. To be able to handle a large

amount of motion capture data I developed two basic techniques: A method

for fast similarity search of single poses and motion sequences and a method

for automatic annotation of motion capture data. Based on these two basic

techniques three different methods of motion synthesis have been developed.

In the first approach, tensor based multilinear representations are con-

structed from annotated motion sequences. As will be shown this represen-

tation is especially suitable for motion synthesis.

In the second approach, given motion sequences are enhanced with respect

to missing degrees of freedom using a technique for motion texturing. Here,

similar motions are retrieved efficiently from the database, using a novel

technique for fast similarity search. This fast motion retrieval was identified

as the essential step to use the database as prior-knowledge to drive the

synthesis process.

Finally a technique for motion synthesis from sparse key frames is in-

troduced. Employing the search algorithm again, a so called motion graph,

a structure for motion synthesis is computed on the fly. The result of this

VII

VIII

synthesis is then refined by the motion texturing approach.

All techniques and algorithms are tested and evaluated on the two largest

freely available motion capture databases.

Contents

1 Introduction 1

1.1 Organization . 2

2 Fast Similarity Searches 3

2.1 Introduction . 4

2.1.1 Our contributions . 4

2.2 Related Work . 6

2.2.1 Nearest-neighbor-search for human motion 6

2.2.2 Low and medium dimensional feature sets for human

motion . 7

2.3 Feature Sets . 7

2.3.1 Previously described distance measures and feature

sets for human motions 8

2.3.2 Devising novel medium dimensional feature sets 9

2.3.3 Comparing feature sets 10

2.4 Motion Matching . 19

2.4.1 A novel approach to fast global motion matching . . . 20

2.4.2 Comparing the global motion matching for different

feature sets . 23

2.5 Applications . 24

2.5.1 Numerical and Logical Similarity Searches 24

2.5.2 Reconstruction of Motions from Few Markers 25

2.5.3 Fast Fat Graphs . 27

2.6 Including Physics . 28

IX

X CONTENTS

2.6.1 Physics-based feature sets 29

2.6.2 Experiments and Results 30

2.7 Online Method . 32

2.8 Conclusion and Future Work 32

3 Motion Annotation 37

3.1 Related Work . 39

3.2 Annotation via Class Motion Templates 40

3.2.1 Motion Templates . 40

3.2.2 Annotation procedure 41

3.2.3 Experiments . 44

3.3 Parametrization via Class Motion Tensors 47

3.3.1 Motion Tensors . 47

3.3.2 Parametrization Procedure 49

3.3.3 Experiments . 50

3.4 Conclusion . 53

4 Motion Synthesis 55

4.1 Multilinear Representation . 56

4.1.1 Introduction . 57

4.1.2 Multilinear Algebra . 59

4.1.3 Motion Warping . 62

4.1.4 Experimental Results 67

4.1.5 Conclusion and Future Work 77

4.2 Data-driven Texturing of Human Motions 81

4.2.1 Introduction . 81

4.2.2 Overview . 82

4.2.3 Prior Terms . 83

4.2.4 Optimization procedure 85

4.2.5 Results . 86

4.2.6 Conclusion and Future Work 87

4.3 Dynamic Motion Graphs . 89

4.3.1 Related Work . 90

CONTENTS XI

4.3.2 Overview . 92

4.3.3 Motion Graph Construction 93

4.3.4 Cleaning the Intermediate Result 98

4.3.5 Results . 99

4.3.6 Conclusion and Future Work 105

5 Conclusion and Future Work 109

5.1 Conclusion . 109

5.2 Future Work . 110

Bibliography 111

“If I could see something—

You can see anything you want boy.

If I could be someone—

You can be anyone, celebrate boy.

If I could do something—

Well you can do something,

If I could do anything—

Well can you do something out of this world?”

Supertramp – Dreamer

1
Introduction

Motion capturing has become a standard technique in computer animation.

A wide variety of motion capture systems are available: Starting from con-

sumer electronics like Microsoft Kinect up to professional systems like Vicon

MX or Giant. Professional motion capture systems enable us to track and

record human motions at high spatial and temporal resolutions. The re-

sulting 3D motion capture data are used for motion analysis in fields such

as sports sciences, biomechanics, medical rehabilitation, or computer vision,

and in particular for motion synthesis in data-driven computer animation.

In all areas mentioned the demand for synthetic motion data increases:

There are more and more films produced that are totally or at least partially

based on animated characters. At the same time the percentage of animated

scenes increases, while the production time of films is getting shorter. Med-

ical applications employ motion capture data to document and analyze the

recovery of patients. In the sports area motion capture systems are used not

only in sport sciences, but also in popular sports. The display of these mo-

1

2 CHAPTER 1. INTRODUCTION

tions, which were recorded only in part with a few sensors, and the recording

of which may contain gaps, is gaining importance. In computer games, vir-

tual characters are becoming increasingly important, too. The gamers will

increasingly interact with virtual characters. Therefore virtual characters

must be able to react quickly, without acting unnaturally.

Today, in all these applications, the use of pre-recorded motion data only

plays a minor role. If one wants to extend utilization of all these motion

data, fast searching techniques are urgently needed. Time-consuming search

is not acceptable in interactive or even real-time scenarios. For this reason

I introduce a fast query by example searching technique that scales well to

huge motion capture databases. If the stored motion capture data have to

be structured, my motion annotation technique adds semantical information

to the motion capture data. This semantical information can be used to

improve keyword based motion retrieval techniques.

Based on these searching and annotation algorithms I develop new tech-

niques for the synthesis of human motions. The main goal of these techniques

for motion synthesis is to create natural full body animations that are not

restricted to a small set of motion classes and can be adapted to the require-

ments of the applications mentioned above.

1.1 Organization

The remainder of the thesis is organized as follows: In Chapter 2 we introduce

our fast searching technique for motion capture data and show its efficiency

in different applications. Chapter 3 describes a technique for annotation of

motion data based on two layers. Based on these frameworks three different

techniques for motion synthesis are presented in Chapter 4. Finally, we close

the thesis with a conclusion and proposals for future research activities.

“I remember doing the time warp

Drinking those moments when

The blackness would hit me

and the void would be calling

Let’s do the time warp again...

Let’s do the time warp again!”

Rocky Horror Picture Show

2
Fast Similarity Searches in Motion

Capture Databases

Fast searching of content in large motion databases is essential for efficient

motion analysis and synthesis. In this work we demonstrate that identify-

ing locally similar regions in human motion data can be practical even for

huge databases, if medium-dimensional (15 to 90 dimensional) feature sets

are used for kd-tree-based nearest-neighbor-searches. On the basis of kd-

tree-based local neighborhood searches we devise a novel fast method for

global similarity searches. We show that knn-searches can be used efficiently

within the problems of (a) “numerical and logical similarity searches”, (b)

reconstruction of motions from sparse marker sets, and (c) building so called

“fat graphs”, tasks for which previously algorithms with preprocessing time

quadratic in the size of the database and thus only applicable to small col-

lections of motions had been presented. We test our techniques on the two

largest freely available motion capture databases, the CMU and HDM05 mo-

3

4 CHAPTER 2. FAST SIMILARITY SEARCHES

tion databases comprising more than 750 minutes of motion capture data

proving that our approach is not only theoretically applicable but also solves

the problem of fast similarity searches in huge motion databases in practice.

2.1 Introduction

Searching for similar motion segments is of central importance for data driven

approaches of motion synthesis and content-based retrieval of motion data.

Whereas efficient indexing techniques being linear in the size of the motion

database have been described, for the problem of finding logically similar

motions, methods such as neighbor graphs or similarity matrices have been

used for tasks requiring numerically similar motions. These however require

a preprocessing time quadratic in the size of the motion capture database in

use and are therefore impractical for larger databases.

Due to the dimensionality of motion capture data and the “curse of di-

mensionality” of search structures such as BSP-trees or kd-trees [BBK01]

these had not been applied for similarity searches of motions, as was suc-

cinctly expressed by [KG04] (format of references adapted to our references):

“One challenge in finding matches is that individual frames are

high-dimensional objects with non-Euclidean distance metrics

[KGP02, LCR+02]. As a result, traditional methods for orga-

nizing the data into a spatial hierarchy (such as a BSP-tree) can

not be directly applied [BBK01].”

In contrast to kd-trees, which speed up searches using Euclidean distance

metrics, R-trees, which efficiently speed up searches in L1 norms, have already

been used in the context of motion data by [KPZ+04].

2.1.1 Our contributions

Devising feature sets for fast similarity searches

In this chapter we describe and analyze medium dimensional feature sets for

human motions (in general 15 to 90 dimensional ones). These can be used

2.1. INTRODUCTION 5

with naturally occurring Euclidean distance measures in standard spatial

data structures—specifically kd-trees—to perform fast exact and approxi-

mate similarity searches in large motion capture databases for various pur-

poses.

Analyzing different distance measures

We systematically compare previously-described distance measures with each

other and with those induced by our feature sets. This comparison is done

locally, i.e. on single frames, as well as globally, i.e. on motion segments, on

the basis of the CMU [Car04] and HDM05 [MRC+07] databases.

Expanding pose matching to motion matching

On the basis of the fast kd-tree-based pose matching and local motion match-

ing we devise a novel fast method for global motion matching. For a motion

database of size n and a query sequence Q consisting of m frames using local

k-nearest-neighbor-searches the overall complexity of the global similarity

search is O(km log n), with m� n and k � n.

Moreover, we show that distances on neighboring motion segments (pa-

rameterized by a local distance measure) induced by our novel technique are

in general equivalent to the similarity measures computed by dynamic time

warping (DTW) parameterized by the same local distance measure. Thus,

our method can be used as a fast alternative to subsequence DTW-based

alignment.

Demonstrating the usability of fast similarity searches for different

applications

We apply fast similarity searches of time complexity O(n log n) in the size of a

database n to the problems of “numerical similarity searches”, reconstruction

of motions from sparse marker sets, and building so called “fat graphs”, tasks

for which previous algorithms with quadratic preprocessing time have been

proposed.

6 CHAPTER 2. FAST SIMILARITY SEARCHES

2.2 Related Work

2.2.1 Nearest-neighbor-search for human motion

Chai and Hodgins [CH05] use a neighbor graph in a preprocessing step on

a motion database allowing fast nearest-neighbor-search. However, the pre-

processing step requires time quadratic to the size of the database and thus

does not scale well to larger motion databases.

Kovar and Gleicher [KG04] perform numerical and “logical” similar-

ity searches on collections of motion capture data. They build so called

“match webs” on dense distance matrices, thus requiring a preprocessing

time quadratic in the size of motion capture data.

The problem of finding short motion segments that are similar to a given

one is also of central importance when synthetic transitions between motions

are generated. Here the concept of “motion graphs” [KGP02, SO06, HG07,

SH07, MP07] has become a central tool. However, in all these approaches the

generation of the various variants requires an effort quadratic to the size of

the motion database and thus cannot be used for large collections of motions.

Müller et al. [MRC05] use binary geometric features and index structures

to address the problem of content-based retrieval on large motion databases.

Whereas the binary geometric features are well suited for defining notions

of logical similarity of motions and for coming up with “motion templates”

[MR06], they are not suitable in contexts requiring close numerical similarity

of motions.

The use of spatial search structures is well established for multi-media

databases [BBK01]. Also a “generic multimedia indexing approach” (GEM-

INI) [Fal96] has been widely used for multi-media applications for more than

a decade. However, the crucial step is to have suitable low-dimensional fea-

ture sets that can be used with an efficient spatial access method. In the

context of motion data, its use and the use of R-trees are abstractly discussed

in [FHP07], and Keogh et al. [KPZ+04] use R-trees for searching lower and

upper bounds, which naturally yield L1 norms, efficiently. However, prior to

our own work presented here we are not aware of any practical attempts to

2.3. FEATURE SETS 7

define low- or medium-dimensional feature sets for human motion data and

using them both for efficient spatial access methods for Euclidean distance

measures and for fast similarity searches in large motion databases.

The techniques of locality sensitive hashing (LSH) [AI08] for fast approx-

imate nearest-neighbor-search in high dimensions has recently been applied

to the problem of mining “motion motifs” from medium-sized collections of

motion data (of about 32 000 frames) [MYHW08].

2.2.2 Low and medium dimensional feature sets for hu-

man motion

For small databases it is well known that human motions have very good 7–

10 dimensional approximations [SHP04, EMMT04, CH05], which can be ob-

tained by simple techniques like PCA (principal component analysis) on the

angular skeleton representation. However, for large heterogenous databases

such low-dimensional approximations are less accurate [CH05] and higher

dimensional feature sets are required. Beaudoin et al. [BCPP08] use 18 di-

mensional PCA approximations of joint angle data.

The suitability of our medium dimensional geometric features for describ-

ing human poses is closely related to the well known analysis of the inverse

kinematics problem for anthropomorphic limbs [TGB00]. An evaluation of

different distance metrics for blending purposes is given in [BE09].

2.3 Feature Sets for Fast Similarity Searches

of Human Motions

In order to compare our newly-devised feature sets with existing ones, we will

first review various distance measures for human motions and feature sets

(with induced distance measures) that have been described in the literature.

Specifically we will fix the notations for them.

8 CHAPTER 2. FAST SIMILARITY SEARCHES

Figure 2.1: Visualizations of the 256 nearest neighbors for 9 exemplary poses.
All results were computed using feature set F 15

E on the union of CMU and
HDM05 motion database. The positions of the wrist and ankle joints as
well as head joints are visualized for the nearest neighbors (with color fad-
ing out with increasing distance). In all cases the nearest neighbors have
been computed in a few milliseconds within databases containing more than
750 minutes of motion capture data.

2.3.1 Previously described distance measures and fea-

ture sets for human motions

There are purely pose-based distance measures such as the one measuring

distances on joint angles [CH05]. As the distance measure depends on the

encoding of the joint angles, e.g., whether quaternion-based representations

or Euler angle-based representations are used, we denote the former one by

Dquat and the latter one by Deuler. More specifically, the Euler angles in

the standard asf/amc representation of the mocap data will be used. PCA-

based compression of pose-based feature sets [SHP04, CH05, BCPP08] will

be denoted by Fpn
pca. Here, n means the number of principal components

on joint positions in body frame—pre-computed on a fixed database, which

will be chosen to be the entire HDM05 database in all our experiments (n

dimensions).

In order to describe not only the properties of a pose statically but also

to encode the kinematic properties of a motion sequence in the feature set

of a frame, Kovar and Gleicher [KG04] introduced a point cloud distance

measure on a normalized window of the previous and subsequent n/2 poses.

In the following chapters this distance measure will be denoted by Dpcn .

In [LCR+02] the authors describe a cost function to determine transi-

tion points in motion streams, defining the distance between two frames as

the sum of weighted differences of joint angles as well as of joint veloci-

2.3. FEATURE SETS 9

ties. Whereas Lee et al. [LCR+02] propose a set of weights containing one

and zero only—setting the weights to one for the shoulders, elbows, hips,

knees, pelvis, and spine and setting all others to zero—Wang and Boden-

heimer [WB03, WB08] use a refined cost metric. By using motion capture

data to determine optimal values for all weights that modify the transition

costs, they reason that only certain joints are considered important and thus

are associated with non-zero weights–right and left hip, right and left knee,

right and left shoulder, right and left elbow. The resulting distance measure,

which is based on the optimized weights, will also be investigated and in the

following chapters will be denoted as Dwb.

2.3.2 Devising novel medium dimensional feature sets

We will devise several medium dimensional feature sets of increasing dimen-

sionality: we define frame-based geometric feature sets that can be extended

to local feature sets on frame windows.

Frame-based feature sets

For our geometric features we use normalized root positions and orientations,

as is the standard technique for features of human motion data [KG04, CH05,

AFO03]. Our primary feature set

F15
E consists of the positions of 4 end-effectors and head.

This 15-dimensional feature set is motivated by the following considerations:

• As is well known the geometry of anthropomorphic limbs is fully deter-

mined by the positions of the end-effectors, their orientation, and one

single additional scalar quantity—the so called “swivel angle” [TGB00].

Moreover, the corresponding inverse kinematics problem can be solved

very efficiently by using analytic solutions [TGB00, HJBC05].

• For typical human motions the orientations of the end-effectors are

statistically quite dependent on the end-effector positions, as are the

10 CHAPTER 2. FAST SIMILARITY SEARCHES

values of the swivel angles, so that the positions of the arms and legs

should be well determined.

• Given the positions of the legs, the arms, and the head as well as

the position of the root (due to normalization) there should be little

variability in body positions.

For the sake of comparison (and for statistically validating the claims

made above), we also use the following two pose-based geometric feature

sets:

F30
E Positions of 4 end-effectors, and head, as well as the 5 positions of the

elbows, knees and one chest joint (30 dimensions).

F39
E All features of F 30

E ; in addition position of the shoulders and one lower-

back joint (39 dimensions).

Feature sets on windows of frames

Purely pose-based feature sets such as F 15
E give no information about the

temporal evolution of a motion. In contrast, feature sets including several

frames on a small window represent the local evolution in time. Based on

this observation it is possible to extend every frame-based distance measure

Fn of dimension n to one on a window of l frames Fn× l of dimension nl.

We will sample the windows sparsely, using only 3 or 5 frames on a window

of fixed length 0.3 seconds—a value commonly used in the literature for the

size of local motion windows. The resulting feature sets will be denoted by

F 15×3
E , F 15×5

E , F 30×3
E , and F 39×3

E .

2.3.3 Comparing feature sets

Pose based comparisons

Our comparisons will be focused on feature sets designed to identify neigh-

borhoods of a pose, because they are of main concern in the applications. As

the search using kd-trees can be done efficiently for all of our feature sets,

2.3. FEATURE SETS 11

Table 2.1: Average computation times (in milliseconds) for searching 16 (256)
nearest neighbors using various feature sets on motions of HDM05 database
(380 813 frames at 30 Hz) and CMU database (1 038 388 frames at 30 Hz).

database #NN Fp8
pca Fp16

pca Fp25
pca F15

E F30
E F39

E F15× 3
E

F15× 5
E

F30× 3
E

HDM05 16 0.19 1.33 2.86 1.11 3.87 5.27 7.95 14.01 18.98
256 1.03 4.99 8.68 4.53 12.50 16.37 23.70 36.22 46.71

CMU 16 0.25 2.15 5.37 1.65 6.37 8.71 20.62 37.08 55.59
256 1.35 8.97 18.10 7.36 24.12 31.68 60.23 96.55 136.29

cf. Table 2.1, it is possible to do such comparisons systematically for large

motion capture databases. For all of our experiments k-nearest-neighbor-

searches were performed using the ANN library [MA06].

In Table 2.1 the computation times for the previously defined feature

sets searching for the nearest 16 resp. 256 nearest neighbors on the HDM05

database (380 813 frames at 30 Hz) and CMU database (1 038 388 frames at

30 Hz) are given for exact (ε = 0) nearest-neighbor-searches.

Our frame-based (15 to 39 dimensional) feature sets allow very fast

nearest-neighbor-searches and show the expected good scaling from a

database consisting of 380 813 to one consisting of 1 038 388 frames.

The running times of the previously described feature sets had the ex-

pected behavior according to their dimensionalities.

For the windowed feature sets (of dimension 45 to 90) the search times

are about one order of magnitude higher than for the ones based on single

frames—thus, being much better than worst case theoretical considerations

predict. Thus, even if these feature sets do not in general fulfill hard real

time requirements on current PCs for large motion databases, they are nev-

ertheless practical for many applications.

However, as will be shown below, the use of higher-dimensional feature

sets gives little or no advantage over the use of lower dimensional ones—

specifically the simple feature set F 15
E .

Pose-based comparisons on a small sample database

In Figure 2.4 the correlations between the previously-described feature sets

and distance measures are given. In order to compare the distance measures

we use Spearman’s rank correlation coefficient ρ [MW03], which is a robust

12 CHAPTER 2. FAST SIMILARITY SEARCHES

measure with respect to commonly used slight but non-linear variations of

the distance measures. This overall comparison is based on a small sample

database as for the high-dimensional distance measures we do not have a fast

nearest-neighbor-search method.

Note that the matrices are not symmetric, as we perform the correlations

on the nearest neighbors according to the feature set given on the vertical

axis. This asymmetric behavior is especially prominent for Dquat in com-

parison to Deuler and the frame-based feature sets with their counterparts

involving 3 or 5 frames. These observations are easily explainable: if the dis-

tance on angular representations given by Euler angles are similar, so are the

ones given by quaternions, whereas similar quaternion-based distances might

result in bigger differences in Euler angles (especially in “near gimbal lock”

configurations). And if the distances according to a feature set involving l

frames are similar, then so are the ones involving single frames, whereas vice

versa, the similarities in one frame, involving static information only might

result in fewer similar measures based on l frames.

Nevertheless, there is also a rather high rank correlation between Dpc1

and Dpc11, and frame-based feature sets and their counterparts involving 3 or

5 frames. Moreover, the distance measures based on F 15×3
E and F 15×5

E are very

highly correlated : using 5 frame samples instead of 3 gives little additional

information, so that the lower dimensional feature set can be used yielding

lower computation times.

The distance measures based on F 30
E and F 39

E are very highly correlated :

using the normalized root position, the head position and the ones of arms

and legs there is almost no additional statistical variety in the body positions.

Also F 15
E and F 30

E are highly correlated: there is already a very high statistical

determination of the arm and leg positions from their end-effector positions.

Whereas Fp16
pca is comparable in general to other feature sets, the use of

only 8 dimensions in Fp8
pca is connected with a strong loss in correlation. The

feature sets Fp16
pca and Fp25

pca are very highly correlated indicating that most

information on the motions is already contained in the first 16 principal

components.

2.3. FEATURE SETS 13

Pose-based comparisons on large databases

Using our fast similarity searches we can extend the correlation analysis to

large motion capture databases for the cases in which the correlations are

computed on nearest neighbors defined by one of the medium-dimensional

feature sets.

In general the findings are similar to the ones on the small sample

database described above. Especially, the correlations between F 15×3
E , F 15×5

E ,

and F 30×3
E are still very high, and these are highly correlated to Dpc11. The

single-frame-based feature sets F 30
E and F 39

E are still very highly correlated ,

and there is still a high correlation to F 15
E . Also a rather high correlation to

Dpc1 exists.

On this larger database the correlations to the PCA-based feature sets

are somewhat lower, and so are the correlations between the single frame

based feature sets and their counterparts involving 3 or 5 frames. Figure 2.5

shows all rank correlations corresponding to pose-based comparisons on a

large database.

Root normalizations

In the HDM05 database there are several actions that were performed on

a stair rather than on flat ground. Such motions tend to be numeri-

cally very different from other ground plane motions if standard 2D root

normalization—restricting the translations to the ground plane—is applied.

To avoid misalignment we instead use a full 3D normalization of the root

position for all of our new feature sets. Please note that—following the def-

initions found in the literature—only 2D translations have been previously

regarded for Dpc1 and Dpc11. Hence, not very surprisingly, the rank correla-

tions of F 15
E and Dpc1 increase from 0.55 to 0.62 (for 512 NN) if our feature

sets are computed under standard 2D normalization, cf. Figure 2.5.

Of course, we can easily define variants of our feature sets for which only

2D normalizations of the root positions are considered (or alternatively allow

3D translations in variants of Dpc1 or Dpc11). It is certainly application specific

whether the 2D or 3D normalizations of the root positions should be used.

14 CHAPTER 2. FAST SIMILARITY SEARCHES

Figure 2.2: Visualization of the neighborhood of five poses from different
motion classes (from left to right: walk, grab floor, kick, jumping jack and
cartwheel) with respect to various feature sets (top down: F 15

E ,F 30
E ,F 15×3

E , F p8
pca

and F p16
pca).

2.3. FEATURE SETS 15

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dpc1

Dpc11

Deuler

Dquat

Dwb

Fpca
pva20

Fpca
p8

Fpca
p16

Fpca
p25

FE
15

FE
27

FE
30

FE
39

FE
15 x 3

FE
15 x 5

FE
30 x 3

D p
c1

1

D e
ul

er

D q
ua

t

D w
b

F p
capv

a2
0

F p
cap8 F p
cap1

6

F p
cap2

5

F E15 F E27 F E30 F E39 F E15
 x

3

F E15
 x

5

F E30
 x

3

D p
c1

Figure 2.3: Rank correlations between various distance measures and feature
sets on an example database based on 76 motion clips taken from the HDM05
database: Average values for 1024 random samples choosing 512 nearest
neighbors according to the feature set given in the vertical axis with the
distance measure given in the horizontal axis.

0.4

0.5

0.6

0.7

0.8

0.9

Dpc1

Dpc11

Deuler

Dquat

Dwb

Fpca
pva20

Fpca
p8

Fpca
p16

Fpca
p25

FE
15

FE
27

FE
30

FE
39

FE
15 x 3

FE
15 x 5

FE
30 x 3

D p
c1

1

D e
ul

er

D q
ua

t

D
w

b

F p
capv

a2
0

F p
cap8 F p
cap1

6

F p
cap2

5

F E15 F E27 F E30 F E39 F E15
 x

3

F E15
 x

5

F E30
 x

3

D p
c1

Figure 2.4: Rank correlations for DTW-induced global distance measures
on motion segments (8 NN) taken from an example database based on 76
motion clips taken from the HDM05 database: Average values for all 76
motion clips choosing 8 nearest neighbors (restricted to the set of 76 cut
motion clips) according to the feature set on the vertical axis. The distances
between all motion clips were computed by DTW on the distance measures
on the horizontal axis as well as on the vertical axis.

16 CHAPTER 2. FAST SIMILARITY SEARCHES

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fpca
p8

Fpca
p16

Fpca
p25

FE
15

FE
27

FE
30

FE
39

FE
15 x 3

FE
15 x 5

FE
30 x 3

D p
c1

D p
c1

1

D e
ul

er

D q
ua

t

D
w

b

F p
capv

a2
0

F p
cap8 F p
cap1

6

F p
cap2

5

F E15 F E27 F E30 F E39 F E15
 x

3

F E15
 x

5

F E30
 x

3

Figure 2.5: Rank correlations between various distance measures and feature
sets on the entire HDM05 database: Rank correlations for local distance
measures (512 NN). Average values for 1024 random samples choosing 512
nearest neighbors according to the feature set given in the vertical axis with
the distance measure given in the horizontal axis.

0.4

0.5

0.6

0.7

0.8

0.9

Fpca
p8

Fpca
p16

Fpca
p25

FE
15

FE
27

FE
30

FE
39

FE
15 x 3

FE
15 x 5

FE
30 x 3

D p
c1

D p
c1

1

D e
ul

er

D q
ua

t

D
w

b

F p
capv

a2
0

F p
cap8 F p
cap1

6

F p
cap2

5

F E15 F E27 F E30 F E39 F E15
 x

3

F E15
 x

5

F E30
 x

3

Figure 2.6: Rank correlations between various distance measures and feature
sets on the entire HDM05 database: Rank correlations for induced global
distances according to the fast neighborhood search versus DTW-induced
global distance measures on motion segments. Average values for 76 motion
clips choosing 8 nearest neighbors found by the fast global neighborhood
search out of the entire HDM05 database according to the feature set on
the vertical axis. For feature sets on the vertical axis the global distances
according to the fast neighborhood search were ranked against the global
distances computed by DTW on the distance measures on the horizontal
axis.

2.3. FEATURE SETS 17

8 32 128 512 2048
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#NN

S
pe

ar
m

an
’s

 ρ

CMU HDM05

Dpc1

Dpc11

Deuler

Dquat

Dwb

Fpva20
pca

Fp8
pca

Fp16
pca

Fp25
pcaF27

E

F30
E

F39
E

F15x3
E

F15x5
E

F30x3
E

Dpc1

Dpc11

Deuler

Dquat

Dwb

Fpva20
pca

Fp8
pca

Fp16
pca Fp25

pcaF27
E

F30
E

F39
E

F15x3
E

F15x5
E

F30x3
E

8 32 128 512 2048
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#NN
S

pe
ar

m
an

’s
 ρ

Figure 2.7: Rank correlations between feature set F 15
E and other feature sets

on the entire CMU and HDM05 databases depending on the number of near-
est neighbors involved.

As we presume that the 3D normalizations should be more common, we have

used those for our comparisons.

Dependency on number of nearest neighbors involved

The rank correlation coefficients depend on the number of nearest neighbors

involved. In Figure 2.7 the rank correlations between feature set F 15
E and

other feature sets on the entire HDM05 and CMU databases depending on

the number of nearest neighbors involved are given (for 8 to 4096 NN). The

correlations depend on the number of nearest neighbors, decreasing in value

for 8 to 512 NN staying in about the same level for 512 to 4096 NN. How-

ever, as can be seen from Figure 2.7 the differences of correlations between

the different feature sets remain about the same. The computations on the

HDM05 and CMU databases qualitatively show the same behavior. We have

done corresponding computations for all of our feature sets with the same

qualitative result for all of them.

Motion segment based comparisons

We now focus on comparisons between motion segments, based on several

feature sets and distance measures. These comparisons show relationships

18 CHAPTER 2. FAST SIMILARITY SEARCHES

between the definitions of similarity induced by the feature sets and distance

measures.

As an example dataset we used 76 hand-cut motion sequences from the

HDM05 database. This example dataset contains nine motion classes where

at least eight motions of every class were available.

For direct comparison of the motion sequences we performed a dynamic

time warping between each pair of 76 motion sequences for every feature

set and distance measure. Based on this DTW-distances (accumulated pose

distances along the warping path) we performed a ranking. As a result we

obtained a ranked list of motions for each motion of the example dataset.

Since the use of similar feature sets or distance measures should give similar

rankings of the motion sequences, we computed rank correlations for the first

eight motions of this ranking.

This rather small number is motivated by the consideration that we are

concerned with the distance metrics on similar motions and not on very

different ones (say a walking and a grasping motion)—and we know that at

least eight motions of every class are available in the database.

In general the correlations are similar to the point-wise evaluations. There

is a higher correlation for Dwb to almost all other distance measures and

feature sets than for the point wise evaluation, whereas the correlations for

the PCA-feature sets decrease. The correlations between our feature sets

F 15
E , F 30

E , and F 39
E in between but especially to their counterparts involving

several frames increase. The latter observation can be explained by the fact

that for a point-wise evaluation the frame-based feature sets on the level

of single frames do not distinguish directions of the motion in contrast to

F 15×3
E , F 15×5

E , or F 30×3
E , but nevertheless the warping paths are quite similar,

cf. Figure 2.8.

Motion segment based comparisons on large databases

We could also perform motion segment-based comparisons on large databases

using the fast global motion-matching methods described in Section 2.4.

The main differences to the evaluation on a small database are the higher

2.4. MOTION MATCHING 19

correlations to the PCA-based feature sets. This finding might be explained

by the fact that the PCA-based features are computed on the entire database,

so that these perform better on random samples than on specifically-selected

samples.

Conclusions from the comparisons

As expected the low-dimensional feature sets F 15
E and the PCA-based feature

sets allow the fastest nearest-neighbor searches. As the correlation of F 15
E to

the higher-dimensional ones and to Dpc1 as well as to Dpc11 is higher than for

Fp16
pca the former one should be preferred.

As F 15
E as a purely frame-based feature set does not distinguish directions

of the motion in contrast to F 15×3
E , there will be certain applications for which

F 15×3
E should be used. However, we will show in Section 2.4 and Section 2.5

that for several applications, for which a priori one would suspect that in-

cluding temporal information in a feature set plays a major role, nevertheless

using the feature set F 15
E in the algorithms gives almost the same results as

F 15×3
E —but requires much shorter computation times.

So the simple feature set F 15
E seems to be the one of choice—especially

for real-time applications.

2.4 From Pose Matching to Motion Matching

In many applications regarding analysis and synthesis of motions the problem

of retrieving motion sequences within large unstructured motion databases,

that are similar to a given query, is of central importance [KGP02, AFO03,

KG04, SO06, HG07, SH07, MP07, BCPP08]. In the context of computer

animation this problem was previously tackled by applying either subsequence

DTW [Mül07] or match web [KG04] heuristics. Unfortunately, the above

mentioned methods are computationally very costly. The construction of

match webs in O(n2) and subsequence DTW has a complexity of O(nm)

where m is the size of the query and n is the number of frames included in

the database.

20 CHAPTER 2. FAST SIMILARITY SEARCHES

In this section we are going to present a novel method in O(m log n) that

gives similar results to subsequence DTW in practical scenarios and is more

general and robust than match webs, since no ad-hoc heuristics are used. Our

new approach is especially suitable for identifying closest matches to a given

query. Practical applications demonstrating the efficiency of the method are

given in Section 2.5.

2.4.1 A novel approach to fast global motion matching

In order to specify global motion-matching we follow the literature and define

a valid temporal alignment of two motions as a continuous and monotonic

mapping of poses [KG04]. For an optimal alignment of two motions we

have to search for a sequence of consecutive frames (with ascending indices),

which describes a discrete matching substitute to subsequence dynamic time

warping.

To efficiently find similar motion segments included in a database (a se-

quential collection of motion clips indexed by frame) for a given query Q

we propose to use a novel technique, based on a ”lazy neighborhood graph”

(LNG). The novel method consists of four different key steps:

1. preprocessing, where a kd-tree is constructed,

2. search, for identifying local similarities of Q and motions included in

the database,

3. graph construction, for creating a lazy neighborhood graph,

4. path search, for finding global optimal alignments by solving a shortest

path problem for this neighborhood graph.

Preprocessing As a preprocessing step we build a kd-tree for a motion

database D (of size n frames) with respect to the feature set F to be

considered.

For each query sequence Q = [q1 · · · qm] consisting of m frames we proceed

as follows:

2.4. MOTION MATCHING 21

Search Find nearest neighbors for each pose in Q using fixed radius k-

nearest-neighbor-search. The radius is given by r and the maximum

number of neighbors is limited by user defined parameter k. For each

pose qi of the query a set S(qi) of poses that are similar according to F
is retrieved in O(k log n). Thus, in total km neighboring poses have to

be stored, which requires km space.

Graph construction Build a weighted and directed graph based on the

sets S by regarding each reported neighbor hj(qi), 1 ≤ j ≤ k and

1 ≤ i ≤ m, as a node and adding edges between nodes that form

valid continuations. While many definitions of valid continuations are

thinkable, we define them equivalent to the basic steps most commonly

used in traversing DTW cost matrices, i.e. a diagonal, a horizontal and

a vertical step. Formally spoken, this leads to edges between

• hj(qi) and hl(qi+1) with hl(qi+1) = hj(qi)+1 (corresponding to the

diagonal step),

• hj(qi) and hl(qi) with hl(qi) = hj(qi) + 1 (corresponding to the

vertical step), and

• hj(qi) and hl(qi+1) with hl(qi+1) = hj(qi) (corresponding to the

horizontal step).

Associating each edge with costs defined by the distance dj of the node

they are pointing at—as reported by the kd-tree search—the task is now

to find the paths with minimal costs that start in a node hj(q1) ∈ S(q1)

and end up in a node hj(qm) ∈ S(qm).

Path search By adding one additional node to the graph and connecting

it via edges to all hj(q1) ∈ S(q1) this task turns into a single-source

shortest-path problem. Since the resulting graph is directed and acyclic

and a topological ordering of its nodes—which means, whenever there

is an edge from x to y, the ordering visits x before y—is directly given

by construction, this problem can be solved in linear time [CLRS01]

(Chapter 24.2).

22 CHAPTER 2. FAST SIMILARITY SEARCHES

This algorithm is parameterized by an arbitrary feature set F . The global

accumulated costs along the path define a global distance between the query

motion and the motion segments found in the database. Thus, the retrieved

motion segments can be ranked by their global distance according to the

selected feature set F . By this algorithm similar motion segments can be

extracted in O(km) time and the overall complexity for the similarity search

is given by O(km log n).

The algorithm returns a best path for each match. These paths give a

global optimal alignment between the query motion and the retrieved motion

segments with respect to the local neighborhoods of each frame of the query

motion.

The paths found by our method are equal to the paths found by subse-

quence dynamic time warping [Mül07] under the condition that all frames

assigned to each other by subsequence DTW are in the neighborhood of the

query motion. In tests on smaller databases such as the 76 cut motions this

assumption was fulfilled in 100 % of the cases. For the tests on the entire

HDM05 database the rank correlation between the global distances based on

our approach and the global distances computed by dynamic time warping

on the same feature sets was bigger than 0.99 for all feature sets (but not

1.0). Thus, for larger databases the assumption that all frames assigned to

each other by subsequence DTW are in the neighborhood of the query mo-

tion fails in a few rare cases. In addition this issue becomes less relevant

for applications in which only close matches are required. In such cases our

approach can be seen to be an extremely efficient substitute for subsequence

dynamic time warping.

Remark. Our algorithm was inspired by the trellis approach to extract

motion motifs by Meng et al. [MYHW08]. The trellis approach as well as ours

searches for local nearest neighbors parameterized by some distance measure.

However, in the trellis approach only constant distances dj independent of

the actual local costs are used. For that reason the original method fails to

provide a temporal alignment of motion segments as it is achieved by our

method. Moreover, there is no ranking of retrieved subsequences meaning

that closest matches cannot be identified. Another serious drawback of the

2.4. MOTION MATCHING 23

method described in [MYHW08] is the use of greedy strategies that in general

fail to find global optimal alignments.

2.4.2 Comparing the global motion matching for dif-

ferent feature sets

Based on the algorithm described in the previous section we compare the

results of our global matching with respect to various feature sets. For the

sake of simplicity only a small sample database containing six steps of a left-

turning walking motion, starting with the right foot, is considered. A motion

clip consisting of a two-step left-turning walking motion, starting with the

right foot, is used as query.

As can be seen from the similarity matrices in Figure 2.8 the pose-based

feature sets exhibit forward as well as backward diagonal structures for sim-

ilar frames of query and database, as these pose-based feature sets do not

incorporate velocity information and do not distinguish directly between for-

ward and backward in motions (e.g., walking and running). Note that the

windowed feature sets do not suffer from this issue. Nevertheless, the global

motion-matching algorithm is able to identify the expected walking motions

regardless of the feature set that was used for alignment. Note that the mo-

tion segments found by our algorithm are similar to the segments found by

subsequence DTW based on Dpc1. As the structure of the similarity matrices

suggests, the task of finding warping paths is less constrained for the frame-

based feature sets and thus more costly, since more potential alignments need

to be investigated.

We did a more complete evaluation on the entire HDM05 database us-

ing 128 random motions of length 1 second and 128 random motions of

length 3 seconds as queries. Searching alignments for windowed feature sets

(excluding k-nearest-neighbor-search) was about 1.5 times faster than for

frame-based ones. For the queries of length 1 second (3-sec) it took on av-

erage 0.03 seconds (0.08 seconds) to construct the alignments using exact

nearest-neighbor-searches for the feature set Fp16
pca . These experiments con-

firm that the asymptotic linear complexity in the length of the query of our

24 CHAPTER 2. FAST SIMILARITY SEARCHES

algorithm also occurs in practice. Using approximate (ε = 0.1) instead of ex-

act nearest-neighbor-searches gave exactly the same results—with computa-

tion times for the kd-tree searches being about 10 % lower. When increasing

epsilon to 0.5 about 99 % of the original alignments for the window-based

feature sets were found. For the frame-based feature sets this rate dropped

to 90 % to 95 % and the times for computing the alignment increased for

approximate k-nearest-neighbor-search: 0.02 to 0.06 seconds on average for

the 1 second queries (0.09 to 0.16 seconds for the 3 seconds queries). Note

that the total timings for global motion-matching are dominated by the costs

for k-nearest-neighbor-search (90%) cf. Table 2.1.

2.5 Applications

2.5.1 Numerical and Logical Similarity Searches

Kovar and Gleicher [KG04] presented a technique that allows numerical as

well as “logical” similarity searches in motion databases. However, their

technique does not scale to larger motion databases, as they have to compute

a dense distance matrix of size O(n2), where n is the number of frames in

the database. Using the novel algorithm described in Section 2.4.1 we have a

direct substitute for a “numerical similarity” search that scales well to huge

motion databases. This technique allows for a substantial speedup of “logical

similarity searches” originally proposed by Kovar and Gleicher [KG04]: use

the set of found similar motion segments as queries for new iterations of

similarity searches.

Not only do we avoid the preprocessing step of quadratic complexity to

the size of the database n, but also for each query the cost of our method is

only logarithmic to the size of the database instead of being linear as is the

one from Kovar and Gleicher [KG04].

The basic properties of our numerical similarity search approach and re-

sults on a very small data sample were already presented in Section 2.4.2. A

comparison of search results on a large motion database for different feature

sets is given in Table 2.2.

2.5. APPLICATIONS 25

Table 2.2: Results for numerical similarity searches on the entire HDM05
database. A motion clip semantically classified to the motion class in the
top row was used as query. The rows show the number of correct hits and in
brackets the number of wrong hits that were not identified by our reference
feature set F 15

E , the number of false hits and finally in brackets the number
of false hits not identified by F 15

E .

HDM bk kickRSide1Reps 007
F 15

E Fp8
pca Fp16

pca F 30
E F 15× 3

E F 30× 3
E

correct hits 5(-) 1(0) 4(0) 5(0) 3(0) 4(0)
wrong hits 0(-) 0(0) 0(0) 0(0) 0(0) 0(0)

HDM tr punchRSide1Reps 023
F 15

E Fp8
pca Fp16

pca F 30
E F 15× 3

E F 30× 3
E

correct hits 6(-) 4(0) 6(0) 8(2) 6(3) 9(6)
wrong hits 0(-) 0(0) 0(0) 0(0) 0(0) 2(2)

HDM bk skier1RepsLStart 011
F 15

E Fp8
pca Fp16

pca F 30
E F 15× 3

E F 30× 3
E

correct hits 9(-) 8(0) 9(0) 9(0) 10(1) 10(1)
wrong hits 0(-) 0(0) 0(0) 0(0) 0(0) 0(0)

As could be expected from the prototypical results on the very small

database given in Figure 2.8, the results using the simple feature set F 15
E are

the same or almost the same as for the higher dimensional feature sets F 30
E ,

F 39
E , F 15× 3

E , F 15× 5
E , and F 30× 3

E on the large database. Note that there are

examples for which the simple feature sets return more similar motions than

the higher-dimensional ones, and there are examples for which the higher

dimensional ones return more similar motions than F 15
E . Also the feature

sets Fp16
pca and Fp25

pca yield similar search results, whereas Fp8
pca differs and also

returns results not regarded as being similar by a human classification of the

motions.

2.5.2 Reconstruction of Motions from Few Markers

Reconstructing motions from only a few markers is a challenging task that

was recently tackled by Chai and Hodgins [CH05]. For their approach, iden-

tifying poses in a database as being similar to a given medium-dimensional

control signal (sparse marker position data) is of central importance. The

26 CHAPTER 2. FAST SIMILARITY SEARCHES

Table 2.3: Average (max) reconstruction errors (in cm per joint) for test
motions from CMU and HDM05 database. We give the values for motions
86 01, 86 08, and 86 15 of CMU database, and for motions HDM bk 01-01 01
and HDM bk 02-01 01 of HDM05 database. The average error over the 15
motions in collection 86 of the CMU database is denoted as CMU 86 avg.
We give the values for different databases for the pose priors. HDM: entire
HDM05 database (possibly without test motion). CMU−: CMU database
without collection 86. CMU: entire CMU database (possibly without test
motion). In all cases feature set F 15

E is used for the nearest-neighbor-search.

motion #frames HDM CMU− CMU
CMU 86 01 1145 2.63 (6.47) 2.06 (4.11) 1.30 (3.42)
CMU 86 08 2302 3.06 (6.67) 2.67 (6.95) 1.96 (6.82)
CMU 86 15 1773 3.37 (6.41) 2.64 (8.01) 2.31 (5.88)
CMU 86 avg 29040 2.79 (7.99) 2.30 (5.58) 1.74 (5.05)
HDM bk 01-01 01 2571 1.33 (5.13) 2.69 (5.04) 2.70 (5.43)
HDM bk 02-01 01 912 2.17 (6.45) 3.23 (8.68) 3.22 (8.65)

necessary pose-based nearest-neighbor-search was implemented by using a

neighborhood graph, which requires a preprocessing effort quadratic to the

size of the underlying motion capture database. Replacing the nearest-

neighbor-search in a static graph by our fast kd-tree-based search method

(on various of our feature sets) even orders of magnitude larger collections

of motions become practical. Moreover, with kd-trees we can search around

arbitrary, i.e. newly synthesized poses not included in the original database.

Hence, we do not have to approximate the nearest-neighbor-search by us-

ing nearest neighbors of previously synthesized frames, as has to be done in

[CH05].

In order to have ground truths for the quality of the reconstruction we

performed the reconstructions on synthetic data obtained from test motions

from the databases: the positions of the 4 end effectors, the head, and the

root are taken as “marker positions” randomly disturbed within a range of

1mm (simulating measurement errors of an optical marker tracking).

The results given in Table 2.3 indicate that using the basic technique

of Chai and Hodgins [CH05] a motion can be reconstructed reliably with

6 markers only, if large databases can be used to infer local statistics on

2.5. APPLICATIONS 27

Table 2.4: Average (max) reconstruction errors (in cm per joint) for a test
motion using different feature sets for nearest-neighbor-searches. Entire
CMU database without test motion was used for pose prior.

motion F 15
E Fp8

pca Fp16
pca Fp25

pca F 30
E

CMU 86 03 1.66 1.71 1.49 1.41 1.35
(4.73) (5.09) (5.25) (4.80) (4.55)

motion F 39
E F 15× 3

E F 15× 5
E F 30× 3

E

CMU 86 03 1.34 1.38 1.40 1.30
(4.92) (4.80) (4.79) (4.35)

motions (e.g., pose priors based on local linear models).

The quality of the reconstructions increases, if more motions related to the

one to be reconstructed from sparse marker data are available—a result which

is certainly expected but nevertheless shows the need to have fast similarity

searches for motions on huge motion databases, a possibility opened by our

method but not given by the original method of Chai and Hodgins [CH05].

As can be seen from the results shown in Table 2.4 the motion reconstruc-

tion procedure works quite well for all of the feature sets we have tested: it

is enough to build a local linear model on a set of somewhat-related neigh-

bors. Even those computed by a global 8 dimensional pca (as for feature

F 8
pca), which per se do not approximate the current motion segment well, are

sufficient as a basis for the used local linear model. On the other hand the

windowed feature sets F 15×3
E , F 15×5

E , or F 30×3
E give almost identical results, as

do their frame-based counterparts. Also exact nearest-neighbor-searches can

be substituted with approximate ones using ε = 0.5 without changing the

reconstruction results notably.

2.5.3 Fast Fat Graphs

We can also come up with a method of substituting the quadratic prepro-

cessing time in the construction of so-called “fat graphs” [SO06]—a method

for motion synthesis—with one in O(n log n) by using kd-tree-based searches.

The crucial step in building “fat graphs” is the computation of so-called “base

poses”, a clustering of motion capture data collections. For a collection of

28 CHAPTER 2. FAST SIMILARITY SEARCHES

motion data D = [d1 . . . dn], for which a “fat graph” is to be computed,

proceed as follows:

1. Search nearest neighbors for each frame f ∈ D in a fixed radius r; the

maximum number of neighbors is limited to k. This search can be done

in O(kn log n).

2. Find the pose with maximum number of neighbors and use it as “base

pose”. This step can be done in O(n).

As k � n is constant, the complexity of finding the base poses is only

O(n log n) instead of O(n2), as is the method used in [SO06].

As we have to use a distance measure related to one of our feature sets, the

search criterion will be different from the one used in the original construction

of “fat graphs”. However, in the experiments we performed, the synthesized

motions differ only slightly from the ones generated using the original fat

graph approach. Moreover, the visual quality of both results is comparable.

We refer to the accompanying video for examples.

2.6 Including Physics

The properties of a pose can not only be described statically. If we want to

describe the kinematic properties of a motion sequence we can either regard

a window of frames or consider velocities and accelerations as well.

While the 20 dimensional feature set Fpva20
pca described by Arikan et

al. [AFO03] can be used in fast kd-tree-based similarity searches, this fea-

ture set is strongly biased towards accelerations of human motions, since the

observed variance in accelerations is much higher than in velocities or joint

positions. Because of that fact this feature set is not well correlated to any

of the other feature sets.

Instead we propose to use specific physics-based features, which can be

estimated using standard mass distributions for human limbs, e.g., using a

population average obtained from [Lev96].

2.6. INCLUDING PHYSICS 29

2.6.1 Physics-based feature sets

In many motion sequences periods can be found where the body has no

contact with the environment. Such phases are known as free flight phases. It

is assumed that no external forces, except gravity, have effect on the human

body during these phases. For the detection of free flight phases physical

properties can be used. Already the acceleration of the center of mass (COM)

gives central information about the motion at a single point in time. Its one-

dimensional projection onto the direction of gravity can be used to identify

ground contact, other contact with the environment or free flight phases.

Another very useful one dimensional physical feature is the projection of

the angular momentum onto the direction of gravity, e.g., it very well dis-

tinguishes between “left turns” and “right turns” in locomotions. The dis-

tinction between a left and right turn in a walking motion and the detection

of rotational movements is very difficult at a geometric level using kinematic

features. Therefore, rotational parts of motions can be better described by

dynamic properties. Here rotations around specific axes are of particular

interest. Projecting the full body angular momentum onto the gravitational

axis allows a distinction of turning movements around the vertical axis, and

thus between left and right turns on the floor. By projecting onto a suitable

plane, a scalar property is sufficient to distinguish between clockwise and

counter clockwise rotations. In a straight walking motion minimal turns to

both sides are typical. Typical for a straight walking motion is thus a perma-

nent change in sign of this feature. For a clockwise rotation around the axis

of projection the sign is positive, for a counterclockwise rotation it is nega-

tive. By regarding the sign different rotations can be differentiated from each

other. Thus, this feature is not only well applicable for high-dynamic motions

and phases without contact—the settings in which it has been previously used

in the context of computer animation [LP02, SP05, ALP06, SH05]—but for

many other classes of motions too.

In addition to the detection of rotations around the vertical axis one can

choose any arbitrary planes or axes of rotation for the definition of dynamic

features. For example, the axes of the whole body motion direction can

30 CHAPTER 2. FAST SIMILARITY SEARCHES

be used in combination with the whole body velocity. In many cases the

rotational part in the direction of the motion is of special interest. Therefore,

the projection of the angular momentum along the axis perpendicular to

the axis velocity and gravity is useful. This can distinguish a cartwheel or

handspring from a normal walking motion, for example.

When computing these features, we scale the velocity and momentum

features linearly with the time interval ∆t under consideration, and acceler-

ation and force features quadratically with ∆t2. This scaling is a natural one

with respect to physical dimensions, and corresponds to a Taylor expansion

up to degree two of a non-linear motion function.

In particular, for the experiments in this section we make use of the

following feature sets:

F 17
EP Similar to F 15

E , additionally the acceleration of the center of mass in di-

rection of gravity—estimated from standard mass distribution and the

angular momentum projected to the direction of gravity are included.

F 19
EP Similar to F 15

E , additionally the acceleration of the center of mass in

direction of gravity, and in direction of velocity orthogonal to gravity;

angular momentum in direction of gravity and in direction of velocity

orthogonal to gravity are included.

2.6.2 Experiments and Results

We performed additional experiments for numerical as well as “logical” simi-

larity searches to compare kinematic feature sets and feature sets that include

additional physical properties.

Numerical similarity on a sample database

For the sake of simplicity only a small sample database containing seven

steps of a person walking in a circle to the left, starting with the right foot

(frames 1 to 110), a turn (frames 110 to 160), six steps walking in a circle

to the right (frames 160 to 270) and stand at place (frames 270 to 300) was

2.6. INCLUDING PHYSICS 31

used. As query a motion containing two steps walking on a left circle, start-

ing with the right foot was used. As can be seen from the similarity matrices

(cf. Figure 2.9), the pose based feature sets exhibit ascending as well as de-

scending diagonal structures, corresponding to similar frames of query and

database. Hence such pose-based feature sets are not suitable for separat-

ing forward and reverse cycles of motions (e.g., walking and running). Note

that the windowed feature sets do not suffer from this issue. Nevertheless,

the global motion matching algorithm is able to identify the expected walk-

ing motions regardless of the feature set that was used for alignment. Also,

as intended the physics-based feature sets (Figure 2.9, lower part) correctly

identify frames corresponding to walking in a circle to the left and exclude

alignments including also circles to the right. As the structure of the simi-

larity matrices suggests the task of finding warping paths is less constrained

for the frame-based feature sets and thus more costly since more potential

alignments need to be investigated.

Numerical and logical similarity

We performed experiments similar to the ones described in Section 2.5.1

on a large database including physics-based feature sets. Here the use of

physical features yields more restricted results, however, falling more closely

into the semantic classification given by a human. As can be seen from

the accompanying video the semantic classification is debatable—most of

the wrongly classified motions are still related (such as “descending” in a

walking motion). On the one hand, the effects of using purely geometric

features versus the physics-based features is rather transparent for a user and

it is desireable to have both variants at hand—for applications in which few

but closer matches are required, and for those also looking for broader and

even non-physical variations. On the other hand many aspects of the query

motion can be captured by regarding the temporal evolution. Thus, simple

feature sets like F 15
E give detailed information when used in combination

with the lazy neighborhood graph similar to the information included in the

stacked feature sets as well as in the physics based feature sets.

32 CHAPTER 2. FAST SIMILARITY SEARCHES

2.7 Online Method

Based on the lazy neighborhood graph (LNG) an online capable version called

”online lazy neighborhood graph“ (OLNG) was developed in a later work.

It was applied for searching similar motion segments based on accelerometer

data by Tautges et al. [TZK+11]. Based on the searching results a tech-

nique for the reconstruction of human motions from accelerometer data was

presented. The main idea of the OLNG is to use a sliding window over

the query motion sequence. This allows to reuse the local neighbors and

the graph structure already computed for previous frames and only add the

neighbors and edges for a current query frame. In addition modified step

size conditions allow to skip single frames in the graph structure. Based

on these modifications a significant speedup is possible so that the global

nearest-neighbor-search can be used in online scenarios.

I refer to Figure 2.10 for an illustrating example, taken from [TZK+11].

The motion texturing approach described in Section 4.2 makes use of this

extended online version, too.

2.8 Conclusion and Future Work

In this work, efficient approaches for local and global motion matching, which

are applicable even to huge databases, have been presented. Using these

novel techniques we have reduced the time complexity of being quadratic to

the size of the motion database n to one of at most O(n log n) for three very

different applications in the realm of data-driven animation. From a practical

point of view this means an enhanced applicability of these methods to large

databases.

We presume that for other problems something similar can be achieved.

In particular, we also consider the adaption of our approaches for local and

global motion matching to parametric motion graphs [HG07] and interpo-

lated motion graphs [SH07]. Moreover, the technique described by Chai

and Hodgins [CH07] to generate animations from user defined constraints,

which uses a global preprocessing on a medium-sized database of human mo-

2.8. CONCLUSION AND FUTURE WORK 33

tions seems to be localizable by our technique and thus extendable to huge

databases involving very different motions.

It turned out that fast kd-tree-based nearest-neighbor-searches together

with viable medium-dimensional feature sets are highly practical even for

amounts of motion capture data bigger by two orders of magnitude than has

been done with any previously applied technique.

The kd-trees for even the largest motion capture databases currently avail-

able still fit into main memory on current standard PCs, and the memory

requirements for kd-trees are much lower than the ones required when using

locality sensitive hashing for the same data. Nevertheless, our techniques

would not scale well if the kd-trees did not fit into the main memory. An

adaptation to out-of-core-techniques, e.g., lazy kd-trees [Nar96, HMF07], will

become a topic of future research if the available mocap data grow faster than

the available main memory.

On the basis of our techniques, data-driven approaches requiring nearest-

neighbor-searches on motion data can work efficiently on much larger collec-

tions of motion capture databases than are currently available.

The techniques described in this chapter have been applied in several

later works: The Pose searching algorithm has been used in the context

of motion synthesis by so called ”motion fields“ [LWB+10] and the ”dy-

namic motion graphs“ Section 4.3 and in the area of cleaning motion cap-

ture data [BKZW11b, BKZW11a]. The comparison of different feature sets

given in Section 2.4.2 give some basic ideas for a closer evaluation based on

a perceptual study [KBAW11].

34 CHAPTER 2. FAST SIMILARITY SEARCHES

Subsequence
DTW

20 40

20

40

60

80

100

120
1

2

3

4

5

6

7

FE
15

20 40

20

40

60

80

100

120 2

4

6

8

10

12

14

16

18

20

FE
30

20 40

20

40

60

80

100

120

5

10

15

20

FE
15x3

20 40

20

40

60

80

100

120
5

10

15

20

25

30

35

Fpca
p16

20 40

20

40

60

80

100

120
100

102

104

106

108

110

112

114

116

118

120

Dpc1

Figure 2.8: Aligning a query motion segment to similar motions of a small
database. The distance matrices implicitly computed by our approach are
plotted for four different feature sets. A distance matrix based on Dpc1 and
warping paths computed by subsequence DTW are shown for comparison.
Please note that only frames found during k-nearest-neighbor-search (indi-
cated by shades of grey, the darker the more similar) need to be considered
explicitly and that the blue regions do not have to be computed. The red
lines represent the recovered warping paths.

2.8. CONCLUSION AND FUTURE WORK 35

w
al

k
le

ft
ci

rc
le

tu
rn

w
al

k
rig

ht
 c

irc
le

st
an

d
w

al
k

le
ft

ci
rc

le
tu

rn
w

al
k

rig
ht

 c
irc

le
st

an
d

Fpca
p8

50

100

150

200

250

300
10

12

14

16

18

20

22

24

26

28

150 30

Fpca
p16

50

100

150

200

250

300 10

15

20

25

30

35

150 30

FE
15

50

100

150

200

250

300
4

6

8

10

12

14

16

18

150 30

FEP
17

50

100

150

200

250

300
5

10

15

20

150 30

FEP
19

50

100

150

200

250

300
4

6

8

10

12

14

16

18

20

150 30

FE
15x3

50

100

150

200

250

300
12

14

16

18

20

22

24

26

28

30

32

150 30

FEP
17x3

50

100

150

200

250

300

15

20

25

30

35

150 30

FEP
19 x 3

50

100

150

200

250

300

15

20

25

30

35

150 30

Figure 2.9: Aligning a query motion segment (walk left circle) to similar
motions of a small database. The distance matrices implicitly computed by
our approach are plotted for eight different feature sets. Please note that only
frames found during k-nearest-neighbor-search (indicated by shades of grey,
the darker the more similar) need to be considered explicitly and that the blue
regions do not have to be computed. The red lines represent the recovered
warping paths. The green annotations describe the motion classes of the
small database. The feature sets including physical properties distinguish
between walking a left and walking a right circle.

36 CHAPTER 2. FAST SIMILARITY SEARCHES

a) b)

c) d)

Figure 2.10: Online Lazy Neighborhood Graph (OLNG) with window size
M = 4 and K = 8 nearest neighbors. Each vertical column corresponds
to the K nearest neighbors (each neighbor indicated by a circle) of a sen-
sor reading αt−m+1, m ∈ [1 : M]. The edges encode temporal coherence
between the nearest neighbors. The figure illustrates the implementation of
the OLNG [TZK+11]. a) An OLNG is computed to frame t of the query
motion. b) A new query frame t+1 is added: The set of nearest neighbors is
found by the knn-search. New edges (red) are added according to the given
stepsize conditions. c) The neighbors and edges of the first frame are deleted
to match the window size. d) OLNG for the frame t+ 1.

“Under the bridge downtown is where I drew some blood,

under the bridge downtown I could not get enough,

under the bridge downtown forgot about my love,

under the bridge downtown I gave my life away!”

Red Hot Chili Peppers – Under the bridge

3
Motion Annotation

Our work is based on various motion representations and retrieval techniques

[KTMW08, Mül07, MRC05, MR06]. In this chapter, we extend previous

work not only by presenting novel annotation and parametrization procedures

but also by introducing a multi-layer annotation framework accounting for

different needs in motion analysis and synthesis applications.

In this chapter, we present a multi-layer approach for automatically an-

notating and parameterizing large unstructured collections of mocap data

at different temporal and semantic levels of granularity. Such a multi-layer

description, which comprises information on the overall course of a motion

as well as on finer motion details, accounts for different needs in computer

animation tasks. To be more precise, assume we are given an unknown mo-

cap document. Then the annotation task is to segment the document into

logical units and to locally classify and parametrize each segment according

to a given set of motion classes. Here, note that the problem of locally anno-

tating unknown motion data on the subsegment level is a much harder task

37

38 CHAPTER 3. MOTION ANNOTATION

than globally comparing and classifying motion data on the document level.

In our annotation scenario, we assume that each motion class is specified

by a set of semantically related example motions which reflect the range of

spatio-temporal variations appearing in valid motion realizations. Further-

more, each motion class is partitioned into subclasses, where each subclass

represents a specific stylistic aspect. For each motion class, we automatically

derive two different types of class representations, which are used in a kind of

orthogonal way in the annotation procedure. As a first class representation,

we learn a motion template (MT) that captures the common as well as the

varying aspects of the underlying training motions in an explicit and seman-

tically interpretable matrix representation [MR06, Mül07]. The MT based

annotation procedure can be assisted by a key frame-based search algorithm,

which not only efficiently narrows the set of candidate motions related to a

specific motion class but also improves the annotation quality by eliminating

false positive matches [BMS08, MBS09]. As a second class representation,

we build up a motion tensor, where one mode of the tensor corresponds to

the various styles given by the subclasses [KTMW08, KTW07].

Contributions

As the key contribution in this chapter, we present a comprehensive multi-

layer framework for annotating and parametrizing unknown motion data on

different temporal and semantic levels. Based on the concept of motion tem-

plates, we make use of an annotation procedure that locally labels a motion

document according to a given set of motion classes (Section 3.2.1). The

class label can be regarded as a coarse annotation that roughly describes the

overall course of the motion. This first step is assisted by a key frame-based

search algorithm, which not only efficiently narrows the set of candidate

motions related to a specific motion class but also improves the annotation

quality by eliminating false positive matches. Based on the concept of motion

tensors, we describe a novel analysis-by-synthesis parametrization procedure,

which is used to further classify the coarse annotated motion segments ac-

cording to finer motion subclasses (Section 3.3). To prove the practicability

3.1. RELATED WORK 39

of our annotation and parametrization approach, we describe various experi-

ments conducted on motion documents obtained from the two freely available

motion capture databases HDM05 [MRC+07] and CMU [Car04]. As our ex-

periments show, the techniques introduced by us are suitable to obtain robust

and accurate motion annotations even in the presence of large motion varia-

tions. Based on suitable classes, our framework is easily adaptable to specific

user needs by simply modifying the motion classes.

3.1 Related Work

The use of prerecorded motion capture data to create new realistic mo-

tions has become a standard technique in data-driven computer anima-

tion [GP00, PB02, AFO03, KG04, CH05, CHP07]. In view of motion syn-

thesis applications, one needs specialized and controlled data sets which are

often obtained from manually annotated material. For example, Rose et

al. [RCB98] group similar example motions into “verb” classes to synthe-

size new, user-controlled motions by suitable interpolation techniques. For

synthesizing new motions from motion graphs, Kovar et al. [KGP02] allow

the use of annotation constraints. However, no techniques are described

for the automatic generation of such annotations. Arikan et al. [AFO03]

show how to use SVMs to semi-automatically generate annotations, which

are then used for motion synthesis. In the last years, various retrieval and

classification algorithms have been proposed to automate the annotation pro-

cess, see, e. g., [WCYL03, KG04, KPZ+04, FF05, LZWM05, MRC05, MR06].

Here, the main difficulty arises from the fact that semantically similar mo-

tions may reveal significant numerical differences [KG04, MRC05]. Most of

the procedures cited above use motion representations that are semantically

close to the raw data. Here, problems occur when one has to cope with

strong pose deformations within a class of logically related motions. Ap-

proaches such as [LZWM05, MRC05] absorb spatial and temporal variations

already on the feature level, which then allows for a more robust and efficient

motion comparison. Several approaches to classification and recognition of

motion patterns are based on hidden Markov models, which are also a flex-

40 CHAPTER 3. MOTION ANNOTATION

ible tool to capture spatio-temporal variations, see, e. g., [BH00]. Temporal

segmentation of motion data can be viewed as another form of annotation,

where consecutive, logically related frames are organized into groups, see,

e. g., [BSP+04]. Our work is based on various motion representations and

retrieval techniques [KTMW08, Mül07, MRC05, MR06]. For a review of this

literature, we refer to the subsequent sections. In this chapter, we extend

previous work not only by presenting novel annotation and parametrization

procedures but also by introducing a multi-layer annotation framework ac-

counting for different needs in motion analysis and synthesis applications.

3.2 Annotation via Class Motion Templates

This section gives a short introduction to Motion Templates (MT) in-

troduced by Müller and Röder [MR06, Mül07], the annotation procedure

that is supported by the key frame-based searching algorithm by Baak et

al. [BMS08, MBS09] and reports on a series of experiments on the coarse

annotation level. For a more detailed description we refer to the original

works of the authors.

3.2.1 Motion Templates

We now summarize the main idea of motion templates and refer to [MR06]

for details. As underlying feature representation, we use the concept of re-

lational features that capture semantically meaningful boolean relations be-

tween specified points of the kinematic chain underlying the mocap data,

see [MRC05]. In the following, we use a set of f = 40 relational features,

where the first 39 features are defined as in [MR06] and the last feature ex-

presses whether the angular velocity of the root orientation is high or not.

Now, given a class C consisting of γ ∈ N example motions, the goal is to

automatically learn a motion class representation that grasps the essence of

the class. We start by computing the relational feature vectors for each of

the γ motions. Denoting the length of a given motion by K, we think of the

resulting sequence of feature vectors as a feature matrix X ∈ {0, 1}f×K .

3.2. ANNOTATION VIA CLASS MOTION TEMPLATES 41

Next, we compute a semantically meaningful average over the γ feature

matrices. To cope with temporal variations in the example motions, we use

an iterative warping and averaging algorithm [Mül07], which converges to

an output matrix XC referred to as a motion template (MT) for the class

C. The matrix XC has real-valued entries between zero and one and has

a length (number of columns) corresponding to the average length of the

training motions. The important observation is that zero/one values in a

class MT indicate periods in time (horizontal axis) where certain features

(vertical axis) consistently assume the same values zero/one in all training

motions, respectively. By contrast, non-zero and non-one values indicate

inconsistencies mainly resulting from variations in the training motions. In

other words, the zero/one values encode characteristic aspects that are shared

by all motions, whereas other values represent the class variations coming

from different realizations. Finally, for a given class MT XC, we introduce

a quantized MT by replacing each entry of XC that is below a quantization

threshold δ by zero, each entry that is above 1− δ by one, and all remaining

entries by a wildcard character ∗ indicating that the corresponding value is

left unspecified. In our experiments, we use the threshold δ = 0.05 that has

turned out to yield a good trade-off between robustness to motion variations

and discriminative power.

3.2.2 Annotation procedure

At this point we give a short review of the annotation procedure based on

motion templates, that is explained in detail in the original work [MBS09].

Distance Function

Given a mocap document D and a specific motion class C, a distance function

cQ(k, `) that reveals all motion subsegments of D correlating to C can be

defined, similar to the original works [MR06] (Section 5.2). The concept

of the employed distance function cQ(k, `) only accounts for the consistent

entries of X with X(k)i ∈ {0, 1} and leaves the other entries unconsidered.

Based on this local distance measure and a subsequence variant of dynamic

42 CHAPTER 3. MOTION ANNOTATION

time warping (DTW), one obtains a distance function ∆C : [1 : L]→ R∪{∞}
as described in [Mül07] with the following interpretation: a small value ∆C(`)

for some ` ∈ [1 : L] indicates the presence of a motion subsegment of D that

is similar to the motions in C starting at a suitable frame index a` < ` and

ending at frame index ` .

Annotation procedure

The basic idea of the annotation procedure is to locally compare a mocap

document with the various class motion templates and then to annotate all

frames within a suitable motion segment with the label of the motion class

that best explains the segment.

Therefore a modified distance function ∆̄τ
p : [1 : L] → R ∪ {∞} with re-

spect to a given matching threshold τ is defined iteratively [MBS09] (Section

4). Here, the idea is that ∆̄τ
p quantitatively describes which frames of the

unknown mocap document D closely correlate to motion class Cp.
Finally, we minimize the resulting functions over p ∈ [1 : P] to obtain a

single function ∆min : [1 : L]→ R ∪ {∞}:

∆min(`) := min
p∈[1:P]

∆̄τ
p(`), (3.1)

` ∈ [1 : L]. Furthermore, we store for each frame the minimizing index

p ∈ [1 : P] yielding a function ∆arg : [1 : L]→ [0 : P] defined by:

∆arg(`) := argmin
p∈[1:P]

∆̄τ
p(`), (3.2)

where ∆arg(`) is set to 0 in the case ∆min(`) =∞. On principle, the function

∆arg yields the annotation of the mocap document D by means of the class

labels p ∈ [1 : P].

Key frame-based Preselection

Our annotation procedure may cause a number of false positive annota-

tions. For example, the motion class ‘grabDepR’, which consists of right

3.2. ANNOTATION VIA CLASS MOTION TEMPLATES 43

Table 3.1: The 15 motion classes used in our experiments.

Class ID class description #(subclasses)
C1 neutral stand in a neutral position, hands lowered 1
C2 tpose stand in t-pose, hands horizontally extended 1
C3 move 2 steps (start left or right, walk, jog, shuffle, . . .) 26
C4 turn turn around left or right 2
C5 sitLieDown sit down on chair or floor, kneel, lie down on floor 4
C6 standUp stand up from chair or floor 4
C7 hopOneLeg jump with left or right leg 2
C8 jump jump with both feet, jumping jack 3
C9 kick kick to front or side with left or right leg 4
C10 punch punch to front or side with left or right hand 4
C11 rotateArms rotate both or single arms front or back 6
C12 throwR throw an item with right hand, sitting or standing 4
C13 grabDepR grab or deposit with right arm high, middle, low 6
C14 cartwheeel cartwheel with left or right hand starting 2
C15 exercise elbow to knee, skier, squat 4

hand grabbing and depositing motions, causes a number of confusions with

other classes. The reason is that grabbing and depositing motions are rather

short motions that possess only few characteristic aspects (basically, the right

hand is moving and nothing else happens). This leads to a rather unspecific

class MT, which reveals small distances to many motion fragments that are

actually part of other motion classes.

To cope with this problem, we additionally use a key frame-based prepro-

cessing step that allows to eliminate a large number of false positive anno-

tations. Here, a key frame query consists of a sequence of key frames, where

each key frame is specified by a feature vector in {0, 1, ∗}f that describes

characteristic relations of a specific pose. A key frame can be thought of

as a column of a quantized motion template. Then, the general strategy is

to extract all parts from the unknown motion database that exhibit feature

vectors matching the key frame feature vectors in the correct order within

suitable time bounds. For example, for the class ‘grabDepR’ one may use

two key frames enforcing that both feet do not move while the right hand

moves to the front (before grabbing) and is pulled back (after grabbing).

In this chapter, we use the key frame-based search algorithm as described

in [BMS08].

44 CHAPTER 3. MOTION ANNOTATION

3.2.3 Experiments

For our experiments, we assembled an evaluation dataset consisting of 109

mocap documents having an average length of 40 seconds each. The total

length amounts to roughly 74 minutes (133 019 frames at 30 Hz). To illustrate

the scalability of our annotation procedure, we used mocap data from two dif-

ferent sources: 60 minutes were drawn from the HDM05 database [MRC+07]

and 14 minutes from the CMU database [Car04]. We manually annotated

all 109 documents on the subsegment level according to the 15 classes de-

scribed in Table 3.1. Furthermore, we generated a training database consist-

ing of nine example motions for each subclass. These example motions were

manually cut out from additional HDM05 documents being disjoint to all

evaluation documents. We implemented the annotation algorithms in Mat-

lab while passing time critical parts to subroutines implemented in C/C++.

The experiments were run on an AMD Athlon
TM

64 X2 5000+ with 3.5 GB

of RAM.

We now describe two performance measures that are used to evaluate our

annotation procedure. As a first measure, we consider precision and recall

values on the frame level. More precisely, for a given mocap document D of

length L we define the sets

M(D) := {(`, p) ∈ [1 :L]× [1 :P] | frame ` manually annotated by p}

and

A(D) := {(`, p) ∈ [1 :L]× [1 :P] | frame ` automatically annotated by p}.

In other words, the set M(D) describes the manually generated or rele-

vant annotations, whereas the set A(D) describes the automatically gener-

ated or retrieved annotations produced by our procedure. Then, P1(D) :=
|M(D)∩A(D)|
|A(D)| expresses the precision and R1(D) = |M(D)∩A(D)|

|M(D)| the recall of

our annotation procedure. Furthermore, let F1(D) := 2P1(D)R1(D)
P1(D)+R1(D)

be the

resulting F-measure. Intuitively, P1(D) = 1 in the case that all retrieved an-

notations are among the relevant annotations (no “false positive”), whereas

3.2. ANNOTATION VIA CLASS MOTION TEMPLATES 45

Table 3.2: Various performance measures for our MT-based annotation pro-
cedure.

P1 R1 F1 P2 R2 F2

total
no keyf. 0.48 0.79 0.59 0.57 0.91 0.70
with keyf. 0.73 0.84 0.78 0.80 0.95 0.87

HDM
no keyf. 0.49 0.80 0.61 0.61 0.91 0.73
with keyf. 0.74 0.86 0.80 0.84 0.96 0.89

CMU
no keyf. 0.41 0.75 0.53 0.39 0.90 0.54
with keyf. 0.67 0.72 0.69 0.61 0.91 0.73

R1(D) = 1 in the case that all relevant annotations have been retrieved.

Note that the beginning and ending of a motion of a specific class is often

ambiguous. For example, consider a mocap document showing a person who

sits down on a chair and remains seated for a long time. Then, it is not clear

where exactly to set the end frame when manually annotating the document

with respect to the class ‘sitDownChair’. Also certain motion transitions

from one class to another (e.g., from ‘move’ to ‘turn’) can often not be ex-

actly specified. To account for such ambiguities, we use a second performance

measure by considering precision and recall on the segment level. Here, we

only check if a manually annotated motion segment with class label p has an

overlap with an automatically generated segment with the same class label

p. We then define the segment-based precision P2(D), recall R2(D), and

F-measure F2(D) analogously to the frame-based case.

To compute the performance measures on an entire set of mocap docu-

ments, we simply concatenate the various documents to form a single docu-

ment and apply the above calculation steps.

We computed the various performance measures for the 109 documents

of our evaluation datasets using our annotation procedure once without and

once with the key frame-based preselection step. The results are shown in

Table 3.2. For example, the precision P1 without using key frames is 0.48 and

increases significantly to 0.73 when using key frames. At the same time, the

recall R1 slightly increases from 0.79 to 0.84. While the increase of the pre-

cision is expected, the increase of the recall is somewhat surprising. This is

due to the fact that by eliminating false positives, some of the relevant anno-

tations that have previously been “overlayed” by false positive annotations,

46 CHAPTER 3. MOTION ANNOTATION

emerge when using our minimization strategy. This again demonstrates that

the key frame-based preselection step eliminates a large number of false pos-

itive annotations while not loosing (or even yielding) relevant annotations.

As expected, the segment-based precision and recall values are higher than

the frame-based values. For example, using key frames, one has P2 = 0.80

(opposed to P1 = 0.73). In other words, only 20% of the retrieved annotated

segments are false positives. For the segment-based recall, one obtains R2 =

0.95 (opposed to R1 = 0.84). Here, only 5% of the relevant annotations

are missing. Note that the frame-based performance measures are generally

too strict whereas the segment-based ones are generally too tolerant. So, in

summary, the actual performance of our overall annotation procedure can be

described by the two F-measures F1 = 0.78 (being pessimistic) and F2 = 0.87

(being optimistic).

To prove scalability, we evaluated our annotation procedure not only on

HDM05, but also on CMU data. Table 3.2 shows the various performance

measures for the HDM05 and CMU documents, respectively. Due to signif-

icant motion variations in the CMU data, which are not well reflected by

HDM05 training material, one has a decline in performance. For example,

the F-measure of our overall procedure declines from F1 = 0.80 respective

F2 = 0.89 for HDM05 data to F1 = 0.69 respective F2 = 0.73 for CMU data.

In all the above experiments, we used the matching threshold τ = 0.13.

Actually, the choice of τ influences the quality of the overall annotation

result. Note that a small value of τ poses a stronger condition on what to

consider similar, thus leading to higher precision and lower recall, while a

large value of τ has the opposite effect. To find a good trade-off of having

high precision as well as high recall, we computed the various performance

measures for different values of τ .

Our final choice of τ = 0.13 is motivated by the request of having high

recall values possibly at the expense of some additional false positive an-

notations. The false annotations can then be eliminated by more refined

annotation procedures on a finer level as described in Section 3.3.

3.3. PARAMETRIZATION VIA CLASS MOTION TENSORS 47

3.3 Parametrization via Class Motion Ten-

sors

The previously described MT-based annotation procedure was designed to

reliably annotate a given mocap document on a relatively coarse temporal

and semantic level. We now introduce a parametrization procedure with the

complementary goal to reveal the motion details that were previously dis-

regarded. Here, the motion details to be considered are represented by ex-

ample motions organized in suitable motion subclasses. As underlying data

representation we resort to the concept of motion tensors, which is briefly

reviewed in Section 3.3.1. Based on the analysis-by-synthesis paradigm, por-

tions of coarsely annotated motion subsegments are represented as weighted

combinations of the example motions (Section 3.3.2). The descriptive style

parameters, which correspond to the subclass labels, are then determined

from the weights. Our experiments are described in Section 3.3.3.

3.3.1 Motion Tensors

In the parametrization step, we use the concept of motion tensors [KTMW08]

to represent a motion class. Generally, a tensor is a multidimensional array

Θ ∈ Rd1×d2×...×dN based on N indices, where N ∈ N is called the order of the

tensor. The indices n ∈ [1 : N] are referred to as modes and the numbers dn

as dimensions of the modes. Sometimes, we also write Θd1×...×dN to indicate

order and dimensions. The tensor Θ can be decomposed by an N -mode

singular value decomposition (N -mode SVD) into a product of a core tensor

Φ having the same size as Θ and associated orthonormal matrices Un of

dimension dn, n ∈ [1 : N]:

Θ = Φ×1 U1 ×2 U2 ×3 . . .×N UN . (3.3)

For a definition of the product and further details, we refer to [VBPP05,

KTMW08].

In the motion context, we use a tensor of order N = 5. The first two

48 CHAPTER 3. MOTION ANNOTATION

modes are referred to as technical modes and correspond to the degree of

freedom of the underlying skeletal model (DOF mode) and to the length of

the motion in frames (frame mode), respectively. The last three modes are

referred to as natural modes and correspond to different actors performing

the motion sequences (actor mode), to different styles occurring in a mo-

tion class (style mode), and to different repetitions available for a specific

actor and a specific style (repetition mode), respectively. In the following,

we are particularly interested in the natural modes, which typically appear

in the context of a motion capture session and correspond to semantically

meaningful aspects.

We now describe how to build up a class motion tensor ΘC = Θd×f×a×s×r
C

for a specific motion class C. Here, d is the dimension of the DOF mode,

f of the frame mode, a of the actor mode, s of the style mode, and r of

the repetition mode. First, we assume that the class C is partitioned into s

subclasses representing the various styles or ways to perform a motion be-

longing to C. For example, the class ‘sitLieDown’ may be partitioned into

the s = 4 subclasses ‘sitDownFloor’, ‘sitDownChair’, ‘lieDownFloor’, and

‘kneelDown’. Each subclass, in turn, is represented by a · r example motions

containing r different performances (repetitions) of each of the a different

actors. Now, each example motion is modeled as matrix M ∈ Rd×fM , where

the integer d ∈ N refers to the DOFs needed to represent a pose of an under-

lying skeleton (e. g., encoded by Euler angles or quaternions) and the integer

fM ∈ N refers to the number of frames of the respective motion sequence.

Before building up a class motion tensor, we first establish temporal corre-

spondence between the various example motions while bringing them to the

same reference length f . This task can be accomplished by techniques based

on dynamic time warping (DTW) using a reference motion consisting of f

frames [BW95, KTMW08, Mül07]. The tensor ΘC is then defined as the

multidimensional array formed by the a · s · r warped example motions of

dimension d · f .

As indicated by (3.3), a motion tensor ΘC can be decomposed into a

core tensor ΦC and related matrices U1, . . . , U5. In this decomposition each

matrix Un corresponds to a specific mode and each row in Un corresponds

3.3. PARAMETRIZATION VIA CLASS MOTION TENSORS 49

to a specific aspect, e.g., a specific actor of the actor mode or a specific

style of the style mode. In the following sections, we are only interested in

the natural modes and therefore combine the technical modes with the core

tensor defining ΨC := ΦC ×1 U1 ×2 U2. This results in the decomposition

ΘC = ΨC ×3 U3 ×4 U4 ×5 U5 (3.4)

Note that each example motion M contained in ΘC is parametrized by three

row indices referring to the three matrices U3, U4, and U5, respectively. M

can then be recovered simply by multiplying ΨC with the corresponding rows

of the three matrices. Now, the decomposition (3.4) can be used in an obvious

way to synthesize new motion by multiplying ΘC with linear combinations of

respective matrix rows. More precisely, we express the linear combinations

by a list of parameter vectors λ = (α, β, γ) ∈ Ra × Rs × Rr and define

Mλ := ΨC ×3 α
TU3 ×4 β

TU4 ×5 γ
TU5. (3.5)

Intuitively, the motion Mλ is obtained by interpolating (or extrapolating)

the example motions using the entries of α, β, and γ, which can be inter-

preted according to the structure of the tensor. For example, a large entry

β2 dominating the other entries in the parameter vector β = (β1, . . . , βs) in-

dicates that the aspect or style expressed by the second subclass dominates

the motion Mλ. This property lies the foundation for our parametrization

and annotation procedure.

3.3.2 Parametrization Procedure

Now, suppose we are given a motion tensor ΘC for the motion class C and

a motion segment M annotated by C (e.g., using the annotation procedure

described in Section 3.2.1). First, we time-warp M to obtain a motion M ′

that has a length equal to the dimension f of the frame mode (here, we use

an average motion of ΘC as reference). The idea is to synthesize a motion

M̃ ′ using ΘC that best approximates or explains M ′. This can be formulated

50 CHAPTER 3. MOTION ANNOTATION

by the following optimization problem:

M̃ ′ := min
λ

(dist(M ′,Mλ)) , (3.6)

where the minimization is performed over a suitable subrange of Ra × Rs ×
Rr and Mλ is defined as in (3.5). The distance dist(M ′,Mλ) is measured

using the point cloud distance introduced in [KGP02], which has emerged as

suitable similarity measure for morphing applications in computer animation.

However, in our scenario, the point cloud is taken over the entire motion

sequences instead of using local frame windows. Let M̃ be the dewarped

motion of M̃ ′ reversing the above warping step and let λ̃ = (α̃, β̃, γ̃) be the

minimizing parameter vectors. Then, in the case that M̃ is close to the

original motion M , the entries of the parameter vector β̃ indicate the affinity

of M to the various styles represented by the subclass motions.

For the optimization, we use the function lsqnonlin from the Matlab

Optimization Toolbox. This function is an implementation of the large-scale

algorithm, which is designed for solving nonlinear least-square problems. In

the optimization, we constrain the entries of λ = (α, β, γ) to the interval

[−0.2, 1.2] to increase the optimization speed and to avoid extreme style

extrapolations. Finally, we note that the motion tensor Φ and the matrices Un

of (3.3) can be substantially reduced by truncating insignificant components.

In our implementations, we make use of the reduced model to further speed

up our optimization procedure. For details, we refer to [KTMW08, VBPP05].

3.3.3 Experiments

Our experiments on motion parametrization are based on the datasets de-

scribed in Section 3.2.3. For each class Cp of Table 3.1, we construct a class

motion tensor Θp := ΘCp using nine example motions (a = 3 actors, r = 3

repetitions) per subclass. The number s of subclasses depends on the re-

spective class and ranges between one and six. (For the class ‘move’ we

actually constructed two separate tensors for motions starting with left and

right, respectively. Furthermore, we only used s = 6 intermediate subclasses

comprising the 13 available subclasses.) For later usage, we synthesize an

3.3. PARAMETRIZATION VIA CLASS MOTION TENSORS 51

intermediate motion sequence Mp for each Θp.

Now, our overall multi-layer annotation procedure works according to

the following steps. In the first step, the unknown motion document D is

annotated on the coarse level, see Section 3.2.1. The following steps are con-

ducted for all annotated subsegments. Let S be such a subsegment labeled by

p ∈ [1 : 15]. In the second step, we locally compare S with the intermediate

motion sequence Mp using a subsequence DTW variant based on the point

cloud distance (using local frame windows), see [KGP02]. The local DTW

variant allows us to identify subsubsegments in S aligned to Mp. (Note that

S may contain several such subsubsegments.) In the third step, each identi-

fied subsubsegment is time-warped using Mp as reference and parametrized

by Θp as described in Section 3.3.2. Let λ = (α, β, γ) be the minimizing pa-

rameter vector with β = (β1, . . . , βs) referring to the subclasses (style mode).

Then the subsubsegment is labeled by the subclass that corresponds to the

maximal entry of β.

As an illustration, have a look at Fig. 3.1 (a), which indicates a multi-

layer annotation result. The upper part indicates the MT-based annotations

with respect to the 15 classes of Table 3.1 and the lower part the refined

tensor-based annotations with respect to the subclasses (only relevant sub-

classes are shown). In the underlying motion, the actor first sits down on

the floor, stands up, then sits down on a chair, stands up, kneels down,

and finally stands up again (with some beginning, intermediate, and final

steps). On the coarse annotation level, the three different ‘sitLieDown’ sub-

segments were correctly identified and labeled (red boxes in upper part).

From these subsegments, suitable subsubsegments were cut out using the

subsequence DTW variant (green boxes in upper part) and further classified

according to the four subclasses ‘sitDownFloor’, ‘sitDownChair’, ‘lieDown-

Floor’, and ‘kneelDown’. Also on the finer annotation level, all three oc-

curring ‘sitLieDown’ variants were annotated correctly (green boxes in lower

part). Similarly, the three occurring variants of ‘standUp’ motions were la-

beled correctly. However, two of the four labeled ‘move’ subsegments that

were identified by the MT-based annotation are lost on the finer annotation

level. Here, due to strong deviations, the two subsegments were rejected in

52 CHAPTER 3. MOTION ANNOTATION

the DTW-based cutting step using a quality threshold.

Similarly, Fig. 3.1 (b) and (c) show the multi-layer annotation results

for representative HDM05 and CMU documents, respectively. Looking at

(b), one can observe that the motions from the class ‘grabDepR’ (Table 3.1)

were subclassified according to the grabbing and depositing height. Note

that some of the coarsely annotated subsegments contain several annotated

subsubsegments. Furthermore, note that it is very hard to distinguish grab-

bing and depositing on the kind of mocap data we had in our experiments

(the hands are simply modeled by an end effector). Naturally, there is some

confusion between these two subclasses. The examples of Fig. 3.1 (b) and

(c) are shown and further discussed in the accompanying video.

For a quantitative evaluation of the tensor-based annotation, we con-

ducted the following experiment: We manually cut out 755 motion clips from

HDM05 documents (disjoint to the training clips) and manually annotated

them according to the subclasses. Using our tensor-based parametrization,

677 or 89.7% of these segments were labeled with the correct subclass. Now,

to evaluate the overall multi-layer annotation procedure, we applied the MT-

based annotation, the DTW-based cutting, and the tensor-based annotation

to 23 of the mocap documents of our evaluation dataset (Section 3.2.3). Man-

ually inspecting the resulting 319 annotated subsubsegments, it turned out

that 85% of these were labeled with the correct subclass (compared to 80%

precision P2 on the coarse annotation level, see Table 3.2)). Here, note that

a large number of false positive MT-based annotations is already rejected

by the DTW-based cutting step. This is justified by the following overall

strategy pursued in our multi-level annotation approach: The MT-based an-

notation step is designed to give a rough picture of what happens in the

unkown mocap documents thus aiming at high recall, possibly at the cost

of precision. The tensor-based annotation step is designed to give a detailed

picture of how something happens thus aiming at high precision, possibly at

the cost of recall.

3.4. CONCLUSION 53

3.4 Conclusion

In this chapter, we presented a multi-layer framework for annotating motion

capture data on different semantic and temporal levels. Using motion tem-

plates, we are able to identify logically related motions even in the presence

of significant numerical differences. Using motion tensors, we are able to

capture finer motion details that are specific for a certain subclass or motion

style. Based on our tensor-based motion parametrization procedure, we plan

to extend our framework in order to capture even finer motion nuances and

actor-specific subtleties.

Finally, in our analysis-by-synthesis approach, we globally optimize over

the tensor motions to approximate an unknown motion segment. This typi-

cally leads to a dominating coefficient in the parametrization allowing for an

accurate annotation (at the cost of approximation accuracy). Here, replac-

ing the global by a local optimization, we will further investigate the delicate

tradeoff between annotation and approximation accuracy.

54 CHAPTER 3. MOTION ANNOTATION

a)

b)

c)

0 200 400 600
walkR

jogR
shu�eR
sneakR

staircaseUpR
staircaseDownR

lieDownFloor
sitDownChair
sitDownFloor

kneelDown
standUpKneel

standUpLieFloor
standUpChair

standUpSitFloor
0 100 200 300 400 500 600 700

exercise
cartwheel
grabDepR

throwR
rotateArms

punch
kick

jump
hopOneLeg

standUp
sitLieDown

turn
move
tpose

neutral

HDM_bd_syntheticTake_01_120

0 500 1000 1500
walkR

jogR
shuffleR
sneakR

staircaseUpR
staircaseDownR

walkL
jogL

shuffleL
sneakL

staircaseUpL
staircaseDownL

turnLeft
turnRight
grabLow

depositLow
grap middleR

deposit middle
grab high

deposit high
0 500 1000 1500

exercise
cartwheel
grabDepR

throwR
rotateArms

punch
kick

jump
hopOneLeg

standUp
sitLieDown

turn
move
tpose

neutral

HDM_bd_02-02_01_120

0 100 200 300 400 500 600
turnLeft

turnRight
jump bothLegs

jumpDown
jumping jack

0 100 200 300 400 500 600
exercise

cartwheel
grabDepR

throwR
rotateArms

punch
kick

jump
hopOneLeg

standUp
sitLieDown

turn
move
tpose

neutral

CMU_01_jumping_01forwardMultiple+_120

Figure 3.1: Representative multi-layer annotation results for three different
mocap documents. The upper parts indicate the MT-based annotations with
respect to the 15 classes of Table 3.1 and the lower part the refined tensor-
based annotations with respect to the subclasses (only relevant subclasses
are shown).

“I hurt myself today to see if I still feel.

I focus on the pain, the only thing that’s real.

The needle tears a hole, the old familiar sting.

Try to kill it all away, but I remember everything.”

Jonny Cash – Hurt

4
Motion Synthesis

In this chapter we will present three data-driven methods for the synthesis of

human motion data. These methods differ significantly from the necessary

semantic pre-classification of the used motion capture data. In Section 4.1

featured multi-linear representations that are based on tensors make use of

semantically well-structured and pre-classified motion data. The classifica-

tion of the motion data can be performed with the annotation technique de-

scribed in Chapter 3. However, this method also needs pre-classified motion

data used for the calculation of the motion templates and the construction

of the motion tensors. Since the data have to be pre-classified for these pro-

cedure, there would be no advantage in using the fast neighborhood search

that is presented in Chapter 2.

In contrast, the procedures for motion synthesis based on dynamic motion

graphs (Section 4.3) and texturing of motion data (Section 4.2) make inten-

sive use of these searching techniques. Here no annotation or classification

of the underlying motion data is necessary. Thus, we can employ the fast

55

56 CHAPTER 4. MOTION SYNTHESIS

similarity search on unstructured motion databases. Both techniques handle

the general problem to fill motion data based on incomplete specifications.

In our case incomplete motion data can refer to different domains: Motion

sequences that are given by using few key frames only, are incomplete in

the temporal context. In this case, the dynamic motion graphs (Section 4.3)

can be used to generate natural looking animations that satisfy and connect

the given key frames. If a motion sequence contains only partially animated

poses, e.g., only the lower part of the body is animated, no root motion is

given or some poses are damaged by blending, the motion sequence is incom-

plete in the pose context. In this case, the motion sequence can be completed

using the motion texturing process introduced in Section 4.2. The process

of motion texturing also can be used as a post-processing of other motion

synthesis methods. Thus, the motion segments that were generated using

the dynamic motion graph are refined after construction to eliminate arti-

facts at the transition between different motion segments and to clean-up

foot skating.

4.1 Multilinear Representation of Motions

In this section, we investigate how a multilinear model can be used to repre-

sent human motion data. Based on technical modes (referring to degrees of

freedom and number of frames) and natural modes that typically appear in

the context of a motion capture session (referring to actor, style, and repeti-

tion), the motion data are encoded in the form of a high-order tensor. This

tensor is then reduced by using N -mode singular value decomposition. Our

experiments show that the reduced model approximates the original motion

better than previously introduced PCA-based approaches. Furthermore, we

discuss how the tensor representation may be used as a valuable tool for the

synthesis of new motions.

4.1. MULTILINEAR REPRESENTATION 57

4.1.1 Introduction

Motion capture or mocap systems allow to track and record human motions

at high spatial and temporal resolutions. The resulting 3D mocap data are

used for motion analysis in fields such as sports sciences, biomechanics, or

computer vision, and in particular for motion synthesis in data-driven com-

puter animation. In the last few years, various morphing and blending tech-

niques have been suggested to modify prerecorded motion sequences in order

to create new, naturally looking motions, see, for instance, [GP00, Tro02,

KGP02, SHP04, KG04, OBHK05, MZF06, CH07, SH07].

In view of motion reuse in synthesis applications, questions concern-

ing data representation, data organization, and data reduction as well as

content-based motion analysis and retrieval have become important top-

ics in computer animation. In this context, motion representations based

on linear models as well as dimensionality reduction techniques via prin-

cipal component analysis (PCA) have become well-established methods

[BSP+04, CH05, FF05, LZWM05, SHP04, GBT04, Tro02, OBHK05]. If no

skeleton based representation is used, PCA based techniques on absolute

joint positions have been used in the context of compression of motion cap-

ture data [Ari06]. Using these linear methods one neglects information of the

motion sequences, such as the temporal order of the frames or information

about different actors whose motions are included within the database.

In the context of facial animation, Vlasic et al. [VBPP05] have successfully

applied multilinear models of 3D face meshes that separably parametrizes

semantic aspects such as identity, expression, and visemes. The strength of

this technique is that additional information can be kept within a multilinear

model. For example, classes of semantically related motions can be organized

by means of certain modes that naturally correspond to semantic aspects

referring to an actor’s identity or a particular motion style. Even though

multilinear models are a suitable tool for incorporating such aspects into a

unified framework, so far only little work has been done to employ these

techniques for motion data [Vas02, RCO05, MK06].

In this section, we introduce a multi-linear approach for modeling classes

58 CHAPTER 4. MOTION SYNTHESIS

of human motion data. Encoding the motion data as a high-order tensor,

we explicitly account for the various modes (e. g., actor, style, repetition)

that typically appear in the context of a motion capture session. Using stan-

dard reduction techniques based on multi-mode singular value decomposition

(SVD), we show that the reduced model approximates the original motion

better than previously used PCA-reduced models. Furthermore, we sketch

some applications to motion synthesis to demonstrate the usefulness of the

multilinear model in the motion context.

The idea of a tensor is to represent an entire class of semantically related

motions within a unified framework. Before building up a tensor, one first

has to establish temporal correspondence between the various motions while

bringing them to the same length. This task can be accomplished by tech-

niques based on dynamic time warping [BW95, GP00, KG03, HPP05]. Most

features used in this context are based on spatial or angular coordinates,

which are sensitive to data variations that may occur within a motion class.

Furthermore, local distance measures such as the 3D point cloud distance as

suggested by Kovar and Gleicher [KG03] are computationally expensive. In

our approach, we suggest a multiscale warping procedure based on physics-

based motion parameters such as center of mass acceleration and angular

momentum. These features have a natural interpretation, they are invariant

under global transforms, and show a high degree or robustness to spatial

motion variation. As a further advantage, physics-based features are still se-

mantically meaningful even on a coarse temporal resolution. This fact allows

us to employ a very efficient multiscale algorithm for the warping step. De-

spite of these advantages, only few works have considered the physics-based

layer in the warping context, see [MZF06, SH05].

The remainder of this section is organized as follows. In Section 4.1.2,

we introduce the tensor-based motion representation and summarize the data

reduction procedure based on singular value decomposition (SVD). The mul-

tiscale approach to motion warping using physics-based parameters is then

described in Section 4.1.3. We have conducted experiments on systematically

recorded motion capture data. As representative examples, we discuss three

motion classes including walking, grabbing, and cartwheel motions, see Sec-

4.1. MULTILINEAR REPRESENTATION 59

tion 4.1.4. We conclude with Section 4.1.5, where we indicate future research

directions. In particular, we discuss possible strategies for the automatic

generation of suitable motion classes from a scattered set of motion data,

which can then be used in our tensor representation.

4.1.2 Multilinear Algebra

Our tensor representation is based on multilinear algebra, which is a nat-

ural extension of linear algebra. A tensor ∆ of order N ∈ N and type

(d1, d2, . . . , dN) ∈ NN over the real number R is defined to be an element in

Rd1×d2×...×dN . The number d := d1 · d2 · . . . · dN is referred to as the total

dimension of ∆. Intuitively, the tensor ∆ represents d real numbers in a

multidimensional array based on N indices. These indices are also referred

to as the modes of the tensor ∆. As an example, a vector v ∈ Rd is a tensor

of order N = 1 having only one mode. Similarly, a matrix M ∈ Rd1×d2 is a

tensor of order N = 2 having two modes which correspond to the columns

and rows. A more detailed description of multilinear algebra is given in

[VBPP05].

Tensor construction

In our context, we deal with 3D human motion data as recorded by motion

capture systems. A (sampled) motion sequence can be modeled as a matrix

M ∈ Rn×f , where the integer n ∈ N refers to the degrees of freedom (DOFs)

needed to represent a pose of an underlying skeleton (e. g., encoded by Euler

angles or quaternions) and the integer f ∈ N refers to the number of frames

(poses) of the motion sequence. In other words, the ith colum of M , in

the following also denoted by M(i), contains the DOFs of the ith pose,

1 ≤ i ≤ f . In the following examples, we will work either with an Euler angle

representation of a human pose having n = 62 DOFs or with a quaternion

representation having n = 119 DOFs (with n = 4 ·m+3 where m = 29 is the

number of quaternions representing the various joint orientations). In both

representations 3 DOFs are used to describe the global 3D position of the

root node of the skeleton.

60 CHAPTER 4. MOTION SYNTHESIS

We now describe how to construct a tensor from a given class of semanti-

cally related motion sequences. After a warping step, as will be explained in

Section 4.1.3, all motion sequences are assumed to have the same number of

frames. We will introduce two types of modes referred to as technical modes

and natural modes. We consider two technical modes that correspond to the

degrees of freedom and number of frames, respectively:

• Frame mode: This mode refers to the number of frames a motion

sequence is composed of. The dimension of the frame mode is denoted

by f .

• DOF mode: This mode refers to the degrees of freedom, which de-

pends on the respective representation of the motion data. The dimen-

sion of the DOF mode is denoted by n.

Sometimes the two technical modes are combined to form a single mode,

which is referred to as data mode:

• Data mode: This mode refers to an entire motion sequence, where

all motion parameters are stacked into a single vector. For a motion

sequence M ∈ Rn×f , the dimension of the data mode is f · n.

Additionally, we introduce natural modes that typically appear in the

context of a motion capture session:

• Actor mode: This mode corresponds to the different actors perform-

ing the motion sequences. The dimension of the actor mode (number

of actors) is denoted by a.

• Style Mode: This mode corresponds to the different styles occurring

in the considered motion class. The meaning of style differs for the

various motion classes. The dimension of the style mode (number of

styles) is denoted by s.

• Repetition mode: This mode corresponds to the different repetitions

or interpretations, which are available for a specific actor and a specific

style. The dimension of the repetition mode (number of repetitions) is

denoted by r.

4.1. MULTILINEAR REPRESENTATION 61

The natural modes correspond to semantically meaningful aspects that

refer to the entire motion sequence. These aspects are often given by some

rough textual description or instruction. The meaning of the modes may

depend on the respective motion class. Furthermore, depending on the avail-

ability of motion data and suitable metadata, the various modes may be

combined or even further subdivided. For example, the style mode may refer

to emotional aspects (e. g., furious walking, cheerful walking), motion speed

(e. g., fast walking, slow walking), motion direction (e. g., walking straight,

walking to the left, walking to the right), or other stylistic aspects (e. g.,

limping, tiptoeing, marching). Further examples will be discussed in Sec-

tion 4.1.4. Finally, we note that in [MK06] the authors focus on correlations

with respect to joints and time only, which, in our terminology, refer to

the technical modes. Furthermore, in [Vas02], the author discusses only a

restricted scenario considering leg movements in walking motions.

N-mode SVD

In our experiments, we constructed several data tensors with different num-

bers of modes from the data base described in Section 4.1.4. The tensor with

the smallest number of modes was created by using the three natural modes

(Actors, Style, and Repetition) and the data mode. With this arrangement

we obtain a tensor in the size of f · n × a × s × r. It is also possible to

use the Frame and the DOF mode, instead of the data mode, to arrange

the same motion sequences within the tensor. The natural modes are not

changed when using this strategy. Therefore a tensor of this type has a size

of f × n× a× s× r.

Similar to [VBPP05], a data tensor ∆ can be transformed by an N -mode

singular value decomposition (N -mode SVD). Recall that ∆ is an element in

Rd1×d2×...×dN . The result of the decomposition is a core tensor Φ of the same

type and associated orthonormal matrices U1, U2, . . . , UN . The matrices Uk

are elements in Rdk×dk where k ∈ {1, 2, . . . , N}. The tensor decomposition

in our experiments was done by using the N-way Toolbox [BA00]. Mathe-

62 CHAPTER 4. MOTION SYNTHESIS

matically this decomposition can be expressed in the following way:

∆ = Φ×1 U1 ×2 U2 ×3 . . .×N UN . (4.1)

This product is defined recursively, where the mode-k-multiplication ×k with

Uk replaces each mode-k-vector v of Φ×1U1×2U2×3 . . .×k−1Uk−1 for k > 1

(and Φ for k = 1) by the vector Ukv.

One important property of Φ is that the elements are sorted in a

way that the variance decreases from the first to the last element in each

mode [VBPP05]. A reduced model Φ′ can be obtained by truncation of in-

significant components of Φ and of the matrices Uk, respectively. In the

special case of a 2-mode tensor this procedure is equivalent to principal com-

ponent analysis (PCA) [Vas02].

Motion Reconstruction

Once we have obtained the reduced model Φ′ and its associated matrices

U ′k, we are able to reconstruct an approximation of any original motion se-

quence. This is done by first mode-multiplying the core tensor Φ′ with all

matrices U ′k, belonging to a technical mode. In a second step the resulting

tensor is mode-multiplied with one row of all matrices belonging to a natural

mode. Furthermore, with this model at hand, we can generate an arbitrary

interpolation of original motions by using linear combinations of rows of the

matrices U ′k with respect to the natural modes.

4.1.3 Motion Warping

During the last few years, several methods for motion alignment have been

proposed which rely on some variant of dynamic time warping (DTW), see,

e. g., [BW95, GP00, KG03, MR06]. The alignment or warping result depends

on many parameters including the motion features as well as the local cost

measure used to compare the features. In this section, we sketch an efficient

warping procedure using physics-based motion features (Section 4.1.3) and

applying an iterative multiscale DTW algorithm (Section 4.1.3).

4.1. MULTILINEAR REPRESENTATION 63

Physics-based Features

In our approach, we use physics-based motion features to compare different

motion sequences. Physics-based motion features are invariant under global

transforms and show a high degree of robustness to spatial variations, which

are often present in semantically related motions that belong to the same

motion class. Furthermore, our features are still semantically meaningful

even on a coarse temporal resolution, which allows us to employ them in our

multiscale DTW approach.

In our experiments, we used two different types of motion features: the

center of mass (COM) acceleration and angular momenta for all skeletal

segments. The 3D position of the COM is calculated for all segments of the

skeleton by using the anthropometric tables described in [RW03]. From these

positions and the mass of the segments one can calculate the COM position of

the whole body by summing up the products of the 3D centers of mass of each

segment and their corresponding mass and dividing this vector afterwards

by the mass of the whole body. The second derivative of the resulting 3D

positional data stream is the COM acceleration. Our second feature, the

angular momentum, is computed for each segment describing its rotational

properties. More precisely the angular momentum of how the segment’s

rotation would continue if no external torque acts on it. It is calculated by the

cross product between the vector from the point the segment rotates around

to the segment’s COM and the vector expressing the linear momentum.

Physics-based features provide a lot of information about the underlying

motion sequence. For example, considering the COM acceleration it is easy to

detect flight phases. More precisely, in case the body has no ground contact,

the COM acceleration is equivalent to the acceleration of gravity:

aCOM ≈ aearth =

 0.0

−9.81

0.0

 (4.2)

This situation is illustrated by Figure 4.1, which shows the COM acceleration

for a dancing motion. Note that there are three flight phases, which are

64 CHAPTER 4. MOTION SYNTHESIS

Figure 4.1: COM acceleration for a dancing motion containing three different
jumps. The acceleration is spliced into its x (dotted), y (solid) and z (dashed)
component, where the y component refers to the vertical direction. Note that
the y component reveals two long flight phases (frames 190 to 220 and frames
320 to 350, respectively) and one short flight phase (around frame 275).

revealed by the vertical component (y-axis) of the COM acceleration. Further

examples are discussed in Section 4.1.3.

Multiscale Dynamic Time Warping

Dynamic time warping (DTW) is a well-known technique to find an opti-

mal alignment (encoded by a so-called warping path) between two given se-

quences. Based on the alignment, the sequences can be warped in a non-linear

fashion to match each other. In our context, each motion sequence is con-

verted into a sequence of physics-based motion features at a temporal resolu-

tion of 120 Hz. We denote by V := (v1, v2, . . . , vn) and W := (w1, w2, . . . , wm)

the feature sequences of the two motions to be aligned. Since one of the mo-

4.1. MULTILINEAR REPRESENTATION 65

tions might be slower than the other, n and m do not have to be equal.

In a second step, one computes an n×m cost matrix C with respect to

some local cost measure c, which is used to compare two feature vectors. In

our case, we use a simple cost measure, which is based on the inner product:

c(v, w) := 1− 〈v|w〉
||v||2||w||2

(4.3)

for two non-zero feature vectors v and w (otherwise c(v, w) is set to zero).

Note that c(v, w) is zero in case v and w coincide and assumes values in

the real interval [0, 1] ⊂ R. Then, the cost matrix C with respect to the

sequences V and W is defined by

C(i, j) := c(vi, wj) (4.4)

for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Figure 4.2 shows such cost matrices with

respect to different features.

Finally, an optimal alignment is determined from the cost matrix C via

dynamic programming. Such an alignment is represented by a so-called (cost-

minimizing) warping path, which, under certain constraints, optimally allo-

cates the frame indices of the first motion with the frame indices of the

second motion. In Figure 4.2, such optimal warping paths are indicated in

red. Note that the information given by an optimal warping path can be used

to time-warp the second motion (by suitably omitting or replicating frames)

to match the first motion. Further details and references on DTW may be

found in [ZM06].

Note that the time and memory complexity of the DTW algorithm is

quadratic in the number of frames of the motions to be aligned. To speed up

the process, we employ an iterative multiscale DTW algorithm as described

in [ZM06]. Here, the idea is to proceed iteratively using multiple resolution

levels going from coarse to fine. In each step, the warping path computed

at a coarse resolution level is projected to the next higher level, where the

projected path is refined to yield a warping path at the higher level. To

obtain features at the coarse levels, we use simple windowing and averaging

66 CHAPTER 4. MOTION SYNTHESIS

procedures. In this context, the physics-based features have turned out to

yield semantically meaningful features even at a low temporal resolution. In

our implementation, we used six different resolution levels starting with a

feature resolution of 4 Hz at the lowest level. The overall speed-up of this

approach (in comparison to classical DTW) depends on the length of the

motion sequences. For example, the speed-up amounts to a factor of roughly

10 for motions having 300 frames and a factor of roughly 100 for motions

having 3000 frames.

Examples

Figure 4.2 shows two cost matrices, where we compared two walking motions

both consisting of 6 steps forward. In dark areas the compared poses are

similar with respect to the given features, whereas in lighter areas the poses

are dissimilar. The red line is the optimal warping path found by the DTW

algorithm. The cost matrix on the left side is based only on the COM

acceleration of the entire body. Using this single feature, the checkerboard-

like pattern indicates that one cannot differentiate between steps that were

done with the left or the right foot. Adding the features that measure the

angular momenta of the feet, the result visibly improves. The resulting cost

matrix is shown on the right hand side of Figure 4.2. The five dark diagonals

indicate that in this case only the steps made with the same foot are regarded

as similar.

Depending on the motions to be time-warped, one can select specific

features. For walking motions, the movement of the legs contains the most

important information in case the steps are to be synchronized. For time-

warping grabbing motions as used in our experiments, aspects concerning

the right hand were most important as the motions were performed by this

hand. For our cartwheel motions, good correspondences were achieved when

using features that concern the two hands and the two feet. For an example

of warped walking motions, we refer to the accompanying video.

4.1. MULTILINEAR REPRESENTATION 67

Figure 4.2: DTW cost matrices calculated on the whole body COM acceler-
ation (left) as well as on the basis of the COM acceleration and the angular
momenta of the hands and feet (right). The cost-minimizing warping paths
are drawn in red.

4.1.4 Experimental Results

Data Base

For our experiments, we systematically recorded several hours of motion

capture data containing a number of well-specified motion sequences, which

were executed several times and performed by five different actors. The

five actors all have been healthy young adult male persons. Using these

data, we built up a database consisting of roughly 210 minutes of motion

data. Then we manually cut out suitable motion clips and arranged them

into 64 different classes and styles. Each motion class contains 10 to 50

different realizations of the same type of motion, covering a broad spectrum

of semantically meaningful variations. The resulting motion class database

contains 1, 457 motion clips of a total length corresponding to roughly 50

minutes of motion data [MRC+07]. For our experiments, we considered three

motion classes. The first class contains walking motions executed in the

following styles:

• Walk four steps in a straight line.

68 CHAPTER 4. MOTION SYNTHESIS

• Walk four steps in a half circle to the left side.

• Walk four steps in a half circle to the right side.

• Walk four steps in place.

All motions within each of these styles had to start with the right foot and

were aligned over time to the length of the first motion of actor one.

The second class of motions we considered in our experiments consists of

various grabbing motions, where the actor had to pick an object with the

right hand from a storage rack. In this example the style mode corresponds to

three different heights (low, middle, and high) where the object was located

in the rack.

The third motion class consists of various cartwheels. Cartwheel motions

were just available for four different actors and for one style. All cartwheels

within the class start with the left foot and the left hand.

Motion Preprocessing

For all motion classes described in the previous section, we constructed data

tensors with motion representations based on Euler angles and based on

quaternions. Initially some preprocessing was required, consisting mainly of

the following steps. All motions were

1. filtered in the quaternion domain with a smoothing filter described as

in [LS02],

2. time-warped using physics-based features,

3. normalized by moving the root nodes to the origin and by orienting the

root nodes to the same direction,

4. finally sampled down to a frame-rate of 30 Hz.

Truncation Experiments

In this section, we discuss various truncation experiments for our three rep-

resentative example motion classes. In these experiments, we systematically

4.1. MULTILINEAR REPRESENTATION 69

truncated a growing number of components of the core-tensors, then recon-

structed the motions, and compared them with the original motions.

Based on the walking motions (using quaternions to represent the orien-

tations), we constructed two data tensors. The first tensor ∆f ·n×a×s×r
Walk was

constructed by using the data mode as technical mode. This is indicated by

the upper index, which shows the dimension of the tensor. The motions were

time-warped and sampled down to a length of 60 frames. The resulting size

of ∆f ·n×a×s×r
Walk is 7140× 5× 4× 3. Using the frame mode and DOF mode, we

obtained a second tensor ∆f×n×a×s×r
Walk of size 60× 119× 5× 4× 3. Table 4.1

shows the results of our truncation experiments. The first column shows the

size of the core tensors Φ′Walk after truncation, where the truncated modes

are colored in red. The second column shows the number of entries of the

core tensors, and the third one shows its size in percent compared to ∆Walk.

In the fourth column, the total usage of memory is shown. Note that the

total memory requirements may be higher than for the original data, since

besides the core tensor Φ′ one also has to store the matrices U ′k. The memory

requirements are particularly high in case one mode has a high dimension.

The last two columns give the results of the reconstruction. Etotal is an error

measurement which is defined as the sum over the reconstruction error Emot

over all motions:

Etotal =
1

a · s · r
·
∑
a

∑
s

∑
r

Emot (4.5)

The reconstruction error Emot of a motion is defined as normalized sum over

all frames and over all joints:

Emot =
1

f ·m
·

f∑
i=1

m∑
l=1

(arccos(〈qorgi,l |q
rec
i,l 〉) · 2) · 180

π
, (4.6)

where f denotes the number of frames and m the number of quaternions.

Here, for each joint, the original and reconstructed quaternions qorg and qrec

are compared by means of their included angle. We performed a visual

rating for some of the reconstructed motions in order to obtain an idea of

70 CHAPTER 4. MOTION SYNTHESIS

Figure 4.3: Reconstruction error Etotal for truncated frame and DOF mode.

the quality of our error measurement. Here, a reconstructed motion was

classified as good (or better) in case one could hardly differentiate it from

the original motion when both of the motions were put on top of each other.

The results of our ratings are given in the last column.

If the data mode is split up into the Frame and DOF mode, as in

∆f×n×a×s×r
Walk , one can truncate the two modes separately. The results are

shown in the lower part of Table 4.1 and Figure 4.3. For example, reducing

the DOF mode from 60 to 26, the error Etotal is still less than one degree. A

similar result is obtained by reducing the frame mode down to a size of 20.

This shows that there is a high redundancy in the data with respect to the

technical modes.

We also conducted experiments where we reduced the dimensions of the

natural modes. As the experiments suggest, the dimensions of the natural

modes seem to be more important than the ones of the technical modes. The

smallest errors (when truncating natural modes) resulted by truncating the

repetition mode. This is not surprising since the actors were asked to perform

the same motion several times in the same fashion. Note that different inter-

pretations by one and the same actor reveal a smaller variance than motions

performed by different actors or motions performed in different styles. Some

results of our experiments are illustrated by Figure 4.4. The displacement

grows with the size of truncated values from style- and personal mode.

For building the data tensors ∆f ·n×a×s×r
Grab and ∆f×n×a×s×r

Grab , all motions

were warped to the length of one reference motion. ∆f ·n×a×s×r
Grab has a size of

8449× 5× 3× 3, while ∆f×n×a×s×r
Grab has a size of 71× 119× 5× 3× 3. The

4.1. MULTILINEAR REPRESENTATION 71

Figure 4.4: Error Etotal of reconstructed motions where two natural modes
were truncated. Actor and style mode are truncated (left). Actor and repe-
tition mode are truncated (middle). Style and repetition mode are truncated
(right).

exact values for truncating the data mode and the DOF mode can be found

in Table 4.2.

In our third example, we consider a motion class consisting of cartwheel

motions. The core tensor ∆f ·n×a×s×r
Cart has a size of 7497 × 4 × 1 × 3. Here,

all motions could be reconstructed without any visible error for a size of no

more than 12 dimensions for the data mode. Further results are shown in

Table 4.3.

The number of necessary components of the data mode varied a lot in

the different motion classes. One would expect that a cartwheel motion is

more complex than a grabbing or walking motion. The results of previous

experiments do not support this prospect. But the results of these truncation

experiments are not comparable as they depend on all dimensions of the

constructed tensors. To get comparable results for the three motion classes,

we constructed a tensor including three motions from three actors for each

motion class. The style mode is limited to a size of one, since we have no

different styles for cartwheel motions. Therefore the resulting tensors have a

size of f · n × 3 × 3 × 1. When truncating the data mode of these tensors,

one gets the result that is shown in Figure 4.5. All motions are reconstructed

perfectly until the size of the data mode gets smaller than 12. At this size

the core tensor Φ′ and the matrices Uk have as many entries as the original

data tensor ∆. Then the error Etotal grows different for the three motion

classes. The least error is observed for the walking motions (solid). This

72 CHAPTER 4. MOTION SYNTHESIS

Figure 4.5: Reconstruction error Etotal for walking (solid), grabbing (dotted)
and cartwheel (dashed) motions, depending on the size of the data mode of
the core tensor.

could be expected for a cyclic motion that contains a lot of redundant frames.

The used grabbing motions (dotted) are more complex. The reason may be

that the motion sequences differ since some sequences include a step to the

storage rack while others do not. The cartwheel motions (dashed) are the

most complex class in this experiment, as we expected.

Comparison with PCA

To compare our multilinear model with linear models, as they are used for

principal component analysis (PCA), we constructed two tensors for our

model and two matrices for the PCA. The first tensor and the first matrix

were filled with walking motions, the second tensor and the second matrix

were filled with grabbing motions. The orientations were represented by

Euler angles. The resulting tensors had a size of 81×62×3×3×3 (walking)

and 64× 62× 3× 3× 3 (grabbing), respectively.

4.1. MULTILINEAR REPRESENTATION 73

Figure 4.6: Mean error of reconstructed motions with reconstructions based
on our model (blue) and based on a PCA (green). The result is shown for
walking motions.

After some data reduction steps, we compared the reconstructed motions

with the original motions by measuring the differences between all orien-

tations of the original and the reconstructed motions. Averaging over all

motions and differences, we obtained a mean error as is also used in [SHP04]

(we used this measure to keep the results comparable to the literature). Fig-

ures 4.6 and 4.7 show a comparison of the mean errors in the reconstructed

motions for the walking (left) and grabbing (right) examples. The mean

errors depend on the size of the DOF mode and the number of principal

components, respectively. Note that the errors for motions reconstructed

from the multi-mode-model are smaller than the errors from the motions

reconstructed from principal components. For example, a walking motion

can be reconstructed with a mean error of less than one degree (in the av-

erage) from a core tensor when the DOF mode is truncated to just three

74 CHAPTER 4. MOTION SYNTHESIS

Figure 4.7: Mean error of reconstructed motions with reconstructions based
on our model (blue) and based on a PCA (green). The result is shown for
grabbing motions.

components (see left part of Figures 4.6 and 4.7). Therefore, in cases where

a motion should be approximated by rather few components the reduction

based on the multilinear model may be considerably better than the one

achieved by PCA.

Motion Synthesis

As described in Section 4.1.2, it is possible to synthesize motions with our

multilinear model. For every mode k there is an appropriate matrix Uk,

where every row uk,j with j ∈ {1, 2, . . . , dk} represents one of the dimensions

of mode k. Therefore an inter- or extrapolation between the dk dimensions,

e.g., between the styles, actors and repetitions, can be done by inter- or

extrapolation between any row of Uk before they are multiplied with the

4.1. MULTILINEAR REPRESENTATION 75

Figure 4.8: Screenshot from the original motions of the styles walking for-
ward (left) and walking a left circle (right), the synthetic motion (middle) is
produced by a linear combination of these styles.

core tensor Φ to synthesize a motion. To prevent our results from artifacts

such as turns and unexpected flips resulting from a representation based

on Euler angles we used our quaternion based representation to synthesize

motions.

For the following walking example, we constructed a motion that was

interpolated between two different styles. The first style was walking four

steps straight forward and the second one was walking four steps on a left

circle. We made a linear interpolation by multiplying the corresponding rows

with the factor 0.5. The result is a four step walking motion that describes a

left round with a larger radius. One sample frame of this experiment can be

seen in Figure 4.8. Another synthetic motion was made by an interpolation

of grabbing styles. We synthesized a motion by an interpolation of the styles

grabbing low and grabbing high. The result is a motion that grabs in the

middle. One sample frame of this synthetic motion is shown in Figure 4.9.

With this technique we are able to make interpolation between all modes

simultaneously. One example is a walking motion that is an interpolation be-

tween the style and actors mode. One snapshot taken from the accompanying

animation video of this example is given in Figure 4.9.

76 CHAPTER 4. MOTION SYNTHESIS

Figure 4.9: Left: Screenshot from the original motions of the styles grab-
bing low (left) and grabbing high (right), the synthetic motion (middle) is
produced by a linear combination of these styles. Right: Screenshot from
four original walking motions and one synthetic motion, that is a result of
combining two, the personal and the style mode. The original motions of the
first actor are on the left side, the original motions of the second actor are
on the right side and the synthetic example can be seen in the middle.

Computation Times

In Table 4.4 the computation times of our Matlab implementations of the

N -mode SVD and PCA are given (on an 1.66 GHz Intel Core2 CPU T5500).

For the decomposition of a data tensor ∆f×n×a×s×r
Walk consisting of 95× 119×

4 × 3 × 2 = 273600 entries, the N -mode SVD needs 5.675 seconds, while

the PCA needs 0.636 seconds for a matrix of comparable size having 119 ×
2280 = 273 600 entries. As Table 4.4 shows, the computing time for the SVD

increases with the dimension of the tensor, while the computation time for

the PCA is nearly constant.

The SVD decomposition can be seen as a preprocessing step, where all

further calculations can be done on the core tensor and the corresponding

matrices. The reconstruction of a motion from the tensor Φf×n×a×s×r
Walk and

the matrices Uk can be performed at interactive frame rates—even in our

Matlab implementation the reconstruction only requires 0.172 seconds. As

a combination of motions of different modes is just a reconstruction with

modified weights, the creation of synthetic motions is also possible with a

similar computational cost.

4.1. MULTILINEAR REPRESENTATION 77

4.1.5 Conclusion and Future Work

In this Section, we have shown how multilinear models can be used for an-

alyzing and processing human motion data. The representation is based on

explicitly using various modes that correspond to technical as well as se-

mantic aspects of some given motion class. Encoding the data as high-order

tensors allows for reducing the model with respect to any combination of

modes, which often yields better approximation results than previously used

PCA-based methods. Furthermore, the multilinear model constitutes a uni-

fied and flexible framework for motion synthesis applications, which allows

for controlling each motion aspect independently in the morphing process.

As a further contribution, we described an efficient multiscale approach for

motion warping using physics-based motion features.

Multilinear motion representations constitute an interesting alternative

and additional tool in practically all situations in which current PCA-based

methods are used. We expect that our multi-modal model is helpful in

the context of reconstructing motions from low-dimensional control signals,

see, e. g., [CH05]. Currently, we also investigate how one can improve audi-

tory representations of motions as described in [RM05, EMWZ05] by using

strongly reduced motion representations.

In order to construct a high-order tensor for a given motion class, one

needs a sufficient number of example motions for each mode to be considered

in the model. In practice, this is often problematic, since one may only have

sparsely given data for the different modes. In such situations, one may em-

ploy similar techniques as have been employed in the context of face transfer,

see [VBPP05]. Another important research problem concerns the automatic

extraction of suitable example motions from a large database, which consists

of unknown and unorganized motion material. For the future, we plan to

employ efficient content-based motion retrieval strategies as described, e. g.,

in [KG04, MRC05, MR06] to support the automatic generation of multimodal

data tensors for motion classes that have a sufficient number of instances in

the unstructured dataset. From these techniques a motion reconstruction

based on accelerometer data [TKZW08] was developed in a later work.

78 CHAPTER 4. MOTION SYNTHESIS

Table 4.1: Results for truncating technical and natural modes from our ten-
sors filled with walking motions (using quaternions).

Dimension Entries Size core Memory Etotal visual
core tensor core tensor tensor usage rating

in percent in percent

Truncation of Data Mode of Φf ·n×a×s×r
Walk

7140× 5× 4× 3 428 400 100 % 12 000 % 0.0000 excellent
60× 5× 4× 3 3 600 0.8403 % 100.8520 % 0.0000 excellent
53× 5× 4× 3 3 180 0.7423 % 89.0873 % 0.0000 excellent
52× 5× 4× 3 3 120 0.7283 % 87.4066 % 0.0634 excellent
50× 5× 4× 3 3 000 0.7003 % 84.0453 % 0.2538 very good
40× 5× 4× 3 2 400 0.5602 % 67.2386 % 1.1998 very good
30× 5× 4× 3 1 800 0.4202 % 50.4318 % 2.1221 very good
20× 5× 4× 3 1 200 0.2801 % 33.6251 % 3.6258 good
10× 5× 4× 3 600 0.1401 % 16.8184 % 6.3961 good
5× 5× 4× 3 300 0.0700 % 8.4150 % 9.3932 satisfying
4× 5× 4× 3 240 0.0560 % 6.7344 % 10.4260 satisfying
3× 5× 4× 3 180 0.0420 % 5.0537 % 10.9443 sufficient
2× 5× 4× 3 120 0.0280 % 3.3730 % 11.5397 poor
1× 5× 4× 3 60 0.0140 % 1.6923 % 11.8353 poor

Truncation of Actor Mode of Φf ·n×a×s×r
Walk

60× 4× 4× 3 2 880 0.6723 % 100.6828 % 4.3863 satisfying
60× 3× 4× 3 2 160 0.5042 % 100.5135 % 6.4469 satisfying
60× 2× 4× 3 1 440 0.3361 % 100.3443 % 8.2369 satisfying
60× 1× 4× 3 720 0.1681 % 100.1751 % 10.7773 sufficient

Truncation of Style Mode of Φf ·n×a×s×r
Walk

60× 5× 3× 3 2 700 0.6303 % 100.6410 % 3.5868 good
60× 5× 2× 3 1 800 0.4202 % 100.4300 % 5.8414 sufficient
60× 5× 1× 3 900 0.2101 % 100.2190 % 8.5770 poor

Truncation of Repetition Mode of Φf ·n×a×s×r
Walk

60× 5× 4× 2 285 600 66,667 % 100.5712 % 2.7639 good
60× 5× 4× 1 142 800 33,333 % 100.2904 % 5.0000 good

Truncation of Frame and DOF Mode of Φf×n×a×s×r
Walk

26× 91× 5× 4× 3 141960 20.9288 % 22.8968 % 0.5492 very good
21× 91× 5× 4× 3 114660 16.9040 % 18.8020 % 0.7418 very good
21× 46× 5× 4× 3 57960 8.5449 % 9.6534 % 0.9771 very good
15× 34× 5× 4× 3 30 600 4.5113 % 5.3252 % 1.9478 good
14× 35× 5× 4× 3 29 400 4.3344 % 5.1519 % 1.9817 good
13× 37× 5× 4× 3 28 860 4.2548 % 5.0933 % 1.9724 good
12× 39× 5× 4× 3 28 800 4.1398 % 4.9994 % 1.9907 good

4.1. MULTILINEAR REPRESENTATION 79

Table 4.2: Truncation results for grabbing motions (using quaternions).

Dimension Entries Size core Memory Etotal visual
core tensor core tensor tensor usage rating

in percent in percent

Truncation of Data Mode of Φf ·n×a×s×r
Grab

8449× 5× 3× 3 380 205 100 % 18 775 % 0.0000 excellent
60× 5× 3× 3 2 700 0.7101 % 134.0548 % 0.0000 excellent
55× 5× 3× 3 2 475 0.6510 % 122.8845 % 0.0000 excellent
50× 5× 3× 3 2 250 0.5918 % 111.7142 % 0.0000 excellent
45× 5× 3× 3 2 025 0.5326 % 100.5439 % 0.0000 excellent
40× 5× 3× 3 1 800 0.4734 % 89.3736 % 1.2632 very good
35× 5× 3× 3 1 575 0.4143 % 78.2033 % 2.1265 very good
30× 5× 3× 3 1 350 0.3551 % 67.0330 % 2.9843 very good
25× 5× 3× 3 1 125 0.2959 % 55.8628 % 3.9548 good
20× 5× 3× 3 900 0.2367 % 44.6925 % 5.1628 good
15× 5× 3× 3 675 0.1775 % 33.5222 % 6.6799 satisfying
10× 5× 3× 3 450 0.1184 % 22.3519 % 8.8702 sufficient
5× 5× 3× 3 225 0.0592 % 11.1816 % 11.5604 sufficient
4× 5× 3× 3 180 0.0473 % 8.9475 % 12.4463 poor
3× 5× 3× 3 135 0.0355 % 6.7135 % 12.7304 poor
2× 5× 3× 3 90 0.0237 % 4.4794 % 13.4234 poor
1× 5× 3× 3 45 0.0118 % 2.2454 % 13.7150 poor

Truncation of DOF Mode of Φf×n×a×s×r
Grab

71× 91× 5× 3× 3 290 745 76.4706 % 80.6560 % 0.0000 excellent
71× 86× 5× 3× 3 274 770 72.2689 % 76.2978 % 0.0001 excellent
71× 61× 5× 3× 3 194 895 51.2605 % 54.5069 % 0.1311 excellent
71× 51× 5× 3× 3 162 945 42.8571 % 45.7906 % 0.4332 good
71× 41× 5× 3× 3 130 995 34.4538 % 37.0742 % 1.0450 satisfying
71× 31× 5× 3× 3 99 045 26.0504 % 28.3579 % 2.2182 sufficient
71× 21× 5× 3× 3 67 095 17.6471 % 19.6415 % 3.9491 sufficient
71× 11× 5× 3× 3 35 145 9.2437 % 10.9252 % 7.1531 poor
71× 6× 5× 3× 3 19 170 5.0420 % 6.5670 % 10.1546 poor
71× 1× 5× 3× 3 3 195 0.8403 % 2.2088 % 14.3765 poor

80 CHAPTER 4. MOTION SYNTHESIS

Table 4.3: Truncation results for cartwheel motions (using quaternions).

Dimension Entries Size core Memory Etotal visual
core tensor core tensor tensor usage rating

in percent in percent

Truncation of Data Mode of Φf ·n×a×s×r
Cart

30× 4× 3 360 0.4002 % 250.4279 % 0.0000 excellent
12× 4× 3 144 0.1601 % 100.1879 % 0.0000 excellent
11× 4× 3 132 0.1467 % 91.8412 % 1.6780 good
10× 4× 3 120 0.1334 % 83.4945 % 3.2163 satisfying
9× 4× 3 108 0.1200 % 75.1478 % 5.7641 sufficient
8× 4× 3 96 0.1067 % 66.8012 % 8.1549 poor
5× 4× 3 60 0.0667 % 41.7611 % 13.2847 poor
1× 4× 3 12 0.0133 % 8.3745 % 22.4095 poor

Table 4.4: Computation times for PCA and N -Mode-SVD for the data used
in the examples.

Dimension Time Dimension Time
Motion PCA Core N-mode SVD
Matrix (in sec.) Tensor (in sec.)

119× 2280 0.636 95× 119× 4× 3× 2 5.675
95× 2280 0.621 95× 95× 4× 3× 2 4.968
80× 2280 0.615 95× 80× 4× 3× 2 4.461
5× 2280 0.600 95× 5× 4× 3× 2 2.295

4.2. DATA-DRIVEN TEXTURING OF HUMAN MOTIONS 81

4.2 Data-driven Texturing of Human Mo-

tions

4.2.1 Introduction

Creating natural looking human animations is a challenging and time-

consuming task, even for skilled animators. As generating such motions man-

ually is very costly, tools for accelerating this process are highly desirable, in

particular for pre-visualization or animation involving many characters. In

this work a novel method for fully automated data-driven texturing of mo-

tion data is presented. Based on a database containing a large unorganized

collection of motion samples (mocap database) we are able to either

• transform a given ”raw” motion according to the characteristic features

of the motion clips included in the database (style transfer) or

• even complete partial animation, e.g., by adding the motion of the

upper body if only legs have been previously animated (motion com-

pletion) or

• enhance a low quality motion to a natural looking, fully animated mo-

tion sequence (motion texturing).

By choosing an appropriate database different artistic goals can be achieved

such as making a motion more natural or stylized. In contrast to existing

approaches like the seminal work by Pullen and Bregler [PB02] our method

is capable of dealing with arbitrary motion clips without manual steps, i.e.

steps involving annotation, segmentation or classification. Consequently, as

indicated by the examples, our technique is able to synthesize smooth transi-

tions between different motion classes if a large mocap database is available.

Finally, our synthesis yields realistic results for rough, extremely styled input

even missing spatial translation over time.

82 CHAPTER 4. MOTION SYNTHESIS

Output: textured
motion clip

OLNG-based
optimization

motion texturing

preprocessing

kD-tree
construction
required for

OLNG

mocap database

Input: original
motion clip

Figure 4.10: Workflow of the proposed method for texturing of human mo-
tions.

4.2.2 Overview

The basic idea of our method is to take advantage of motion samples from

large databases to improve a given motion.

To achieve this end, for each frame pose of the input motion, match-

ing motion segments of a few frames in length are retrieved from the mo-

tion capture database. For efficient retrieval a technique called Online Lazy

Neighborhood Graph (OLNG) is employed, see [TZK+11] and Section 2.7.

In essence this method is able to identify global temporal similarities based

on local neighborhoods in pose space.

Afterwards, a new motion is synthesized using multi grid optimization

techniques, based on the input and the prior information from the database.

For our implementation a skeleton-based pose representation with joints and

bones is assumed. However, since the method is directly applicable to other

motion data (i.e. positional marker data) this constitutes no general limita-

tion of our approach. In the following sections the individual steps of our

pipeline will be discussed in more detail.

Preprocessing

In a preprocessing step all mocap data from the prior-database are at first

normalized with respect to global position and orientation [KTWZ10]. Based

on normalized positional data of all available joints we then build an efficient

4.2. DATA-DRIVEN TEXTURING OF HUMAN MOTIONS 83

spatial indexing structure (kd-tree) that is required for OLNG. In addition,

linear marker velocities as well as accelerations are stored. These quantities

are needed for subsequent prior-based motion synthesis.

Motion synthesis

We use an energy minimization formulation which is frequently used in data

driven computer animation. Our specific choice of the energy terms to be

minimized most closely resembles the one used in [TZK+11]. Here, the ob-

jective function is consisting of four different terms: a control term Econtrol

that measures the distance of synthesized and given joint positions included

in the feature set, as well as pose Epose and motion priors Esmooth and Emotion

enforcing positions, acceleration and velocities of joints to be comparable to

examples retrieved from the database.

xbest = argmin
x

(Epose(x) + Emotion(x) + Esmooth(x) + Econtrol(x)) (4.7)

The terms of this energy function are explained in more detail in the

following Section 4.2.3, details on the minimization procedure are given in

Section 4.2.4.

4.2.3 Prior Terms

During the preprocessing step linear velocities and accelerations have been

computed and stored for all motion sequences included in the database.

Let (yi), i = [1..k] be the poses retrieved from the database by k-nearest-

neighbor-search and (νi), i = [1..k] and (αi), i = [1..k] the respective velocities

and accelerations and let ν and α be velocity and acceleration of a given pose.

We then use kernel regression for each of the prior terms along the lines

of [TZK+11]. Since the k-nearest-neighbor-poses were found on positional

data (instead of accelerations in the original work), we are able to employ a

84 CHAPTER 4. MOTION SYNTHESIS

Table 4.5: Overview of the joints and their associated weights of our skeleton
based representation.

ID Name Weight wj ID Name Weight wj
1 root 2.0 17 head 0.5
2 lhipjoint 0.0 18 lclavicle 0.5
3 lfemur 1.0 19 lhumerus 1.0
4 ltibia 2.0 20 lradius 2.0
5 lfoot 1.0 21 lwrist 2.0
6 ltoes 0.2 22 lhand 0.5
7 rhipjoint 0.0 23 lfingers 0.2
8 rfemur 1.0 24 lthumb 0.2
9 rtibia 2.0 25 rclavicle 0.5

10 rfoot 1.0 26 rhumerus 1.0
11 rtoes 0.2 27 rradius 2.0
12 lowerback 1.5 28 rwrist 2.0
13 upperback 1.5 29 rhand 0.5
14 thorax 1.5 30 rfingers 0.2
15 lowerneck 1.0 31 rthumb 0.2
16 upperneck 0.5

quadratic kernel function as less clusters should occur in pose space:

Epose(x) =
k∑
i=1

(w ◦ (yi − x))2 (4.8)

Emotion(x) =
k∑
i=1

(w ◦ (νi − ν) ·∆t)2 (4.9)

Esmooth(x) =
k∑
i=1

(w ◦ (αi − α) ·∆t2)2 (4.10)

with w denoting a vector to weight the influence of each joint of the under-

lying skeleton. A list of joints used in our representation and the associated

weights wj is given in Table 4.5. Please note that for all above priors joint

weights are considered by Hadamard vector multiplication.

4.2. DATA-DRIVEN TEXTURING OF HUMAN MOTIONS 85

4.2.4 Optimization procedure

The objective function (4.7) is minimized using a gradient descent approach.

As we are not handling an on-line scenario in this application, it is not

necessary to modify the input motion frame by frame. It is not possible to

optimize complete motion sequences at once because of the resulting large

number of variables. Instead we can make use of the techniques described in

this section to handle whole motion sequences at once. The essential idea is

to make only one optimization step for each frame, and to take into account

the predecessor and successor frames. The neighbor frames are taken into

account by the velocity and acceleration based motion and smoothness prior

terms since both properties are computed on a window of frames.

Multiscaling

To improve the robustness of our method and to speed up the process of

optimization, we employ a multiscale approach. This requires resampling

the motion to a predefined number of lower resolutions. When the error on

a certain resolution cannot be improved by at least a certain threshold (1 %

in our case), the algorithm switches to the next higher resolution. Given the

number of resolutions n and the highest resolution rmax, we calculate lower

resolutions ri by

ri =
rmax

2i
. (4.11)

For every possible scale, positions, velocities and accelerations have to be

precomputed in the prior-database. Moreover, separate kd-trees have to

be created. Please note that the memory requirements of the multiscale

approach is bounded by twice the original data.

Scheduling

To improve efficiency, only a subset of all frames is considered during opti-

mization. First this subset includes the frames with the highest associated

costs. Second the predecessor and successor frames are included, since they

indirectly affect synthesis results through temporal derivatives occurring in

86 CHAPTER 4. MOTION SYNTHESIS

motion and smoothness priors.

Interleaving

Frames that are considered to be optimized by the scheduler are optimized

employing an interleaving scheme. This ensures the motion to be smoothed

from both sides at discontinuous frames.

Footprint cleanup

To ensure footprint constraints and to avoid skating artifacts we make an

additional footprint cleanup after each iteration of the optimizer. In the

database all footprints were annotated using templates, according to the

work of Le Callennec and Boulic [LCB06]. On the basis of the annotation

of the nearest neighbors it will be decided whether there is a footprint, or

not, for the current frame. If there is a footprint it is guaranteed by using

an inverse kinematics algorithm.

4.2.5 Results

To test the effectiveness of our approach we made several tests for different

scenarios that might occur in practice:

1. Motion completion: For a given motion missing joints are synthesized.

In our case an animation of the lower body was used as an input to

our method, and a plausible upper body motion was created (see fig-

ure 4.11).

2. Motion texturing: In this case a rough low quality motion (e.g., from

interpolating few key frames) is transformed to a detailed full body

animation. We transform a rough walking and jumping jack motion

with stiff limbs and no root movement to a realistic full body animation

(see figure 4.12).

3. Style transfer: Here, characteristic features of one individual are trans-

ferred to another within the same motion class. More precisely, we took

4.2. DATA-DRIVEN TEXTURING OF HUMAN MOTIONS 87

Figure 4.11: Result for motion completion (scenario 1): Originally, the move-
ment of the upper body was not modeled (red stick figures). Using our
technique a full body motion was synthesized (green).

Figure 4.12: Result for motion texturing (scenario 2): Sample frames of the
original input motion showing stiff limbs and no root movement (red stick
figures). With our method a detailed full body animation was synthesized
(green).

a complex walking sequence and adopted this motion to match the style

of a different subject. This was achieved by using a database containing

only motion samples from the respective subject (see figure 4.13).

All resulting motion sequences can be found in the supplemental material.

We used the HDM05 database [MRC+07] for all of our examples.

The computation time for the examples presented in this section varies

from three to about 90 minutes, depending on the length of the motion

sequence using unoptimized Matlab code. Most of the time is spent on

optimization which can be accelerated significantly by porting to C++.

4.2.6 Conclusion and Future Work

In this work a general frame-work for automated data-driven motion tex-

turing, completion and style transfer for human motions was sketched. Our

88 CHAPTER 4. MOTION SYNTHESIS

Figure 4.13: Result for style transfer (scenario 3): An original walking motion
(red stick figures) is transformed by adopting characteristic features of an-
other subject. The result is shown in green. Please note that the differences
can be observed best in the supplemental video.

approach works reasonably well across different motion classes that previ-

ously could only be handled with massive user interaction.

Currently we define style by example motions of different subjects. How-

ever, we believe that style can not only be determined by a subject but also

by other entities such as emotion, age or skill level. Exploring this idea would

constitute an interesting direction of further research.

We need a mocap database containing motions which are suitable for

processing a given clip according to our method. Thus, the results strongly

depend on the prior information stored in the database. Investigating the

impact of using different databases is of fundamental importance and requires

more work.

The scenario of motion completion is a common challenge especially using

low-cost capturing systems as Kinect. The integration of our algorithms

into such a capturing pipeline is a topic for future research.

4.3. DYNAMIC MOTION GRAPHS 89

4.3 Dynamic Motion Graphs

In this section the so called Dynamic Motion Graphs (DMG) will be intro-

duced. The goal of this section is to provide a framework for synthesis of

human motion from sparse input data. The general problem, synthesizing

human motions from sparse input data, can be divided if we consider the do-

main the input data are sparse in. In this section the input data are sparse

in the temporal domain. Thus, we assume that a motion sequence to be

synthesized is described by only a few key frames. The basic idea is to first

construct motion graphs between subsequent key frames. Secondly, search

for a candidate motion that connects all key frames. Finally, the candidate

motion is improved with the motion texturing technique introduced in the

previous section.

If the user is not satisfied by the result he may add additional constraints

that are fulfilled after running the motion texturing procedure again. The

result of these considerations is an iterative animation scheme, that allows

for an interactive motion editing process. With this technique at hand it is

easy to animate complex human motion sequences in a short time, compared

to complete key framing, even for untrained artists. In contrast to existing

motion graph approaches, we do not compute a graph in advance, but build

the graph structure on the fly. The motion graph stays implicit, a fact that

results in faster computation time since we do not enroll a whole precomputed

graph into the environment. In contrast to prior motion synthesis approaches

that base on a static nearest neighbor graph our motion graph construction

does not suffer from a nearest-neighbor-search with quadratic runtime.

The next sections are organized as follows: A review of related work in

this area is given in Section 4.3.1, a short overview of our method is given

in Section 4.3.2, a detailed description on the construction of our dynamic

motion graphs follows in Section 4.3.3 and the cleaning step is explained in

more detail in Section 4.3.4. Results of this synthesis approach are given in

Section 4.3.5. We conclude this chapter in Section 4.3.6.

90 CHAPTER 4. MOTION SYNTHESIS

4.3.1 Related Work

In recent decades, many techniques have been developed for the synthesis of

natural human motions. We focus on the set of example based techniques

which reuse previously recorded data for motion synthesis. Many of the

methods are based on one or more of the following principles.

The first principle, parametric synthesis, generates motion spaces from a

given set of example motion sequences. Allowing interpolation [BW95], the

results can be adapted to specific spatial or temporal constraints [WH97,

KG04].

The second underlying principle is the concatenation of motion segments.

Short motion segments are linked together, at appropriate locations, to create

one long sequence. Motion graphs [KGP02, AF02, AFO03] have become

a standard technique in data-driven computer animation. They compute

possible transitions between motion sequences in advance. The transitions

and the corresponding motion sequences are subsequently stored in a graph

structure. Motion segments are then combined according to a path through

the graph, so that they meet the requirements of the user. While first works

on motion graphs did not allow to interpolate between motion segments,

newer extensions [SO06, HG07, SH07] combine concatenation and parametric

synthesis.

These extended motion graph techniques can be divided into Online

approaches and Offline approaches. Online approaches generate a mo-

tion of specific task interactive as feedback to users control. A typi-

cal example is running motion that can be controlled by a game con-

troller [LCR+02, SO06, HG07]. Offline approaches are used to generate

motions under a variety of given constraints [SH07]. Thus, the underly-

ing algorithms are more costly and not suitable to achieve interactive frame

rates. Using a global optimization requires for a precomputed motion graph

to find a solution. To search for such an optimal solution an A∗ search can

be employed.

In some works [WB03, WB08], the authors attempt to find optimal tran-

sitions between motion segments. In the evaluation [RP04, LK06, RP07] of

4.3. DYNAMIC MOTION GRAPHS 91

the motion graph-based methods it was found that many problems of these

methods are caused by the exponential complexity of the A∗ based path

planning in enrolled motion graphs. A problem that gets worse when more

motion data are added to the graph to generate more possible transitions.

All previous approaches work on small sets of given motion capture data

only. This is due to the fact that searching techniques with a quadratic

runtime were used in most applications. Chai and Hodgins [CH05] use a

neighbor graph, computed in a preprocessing step, on a motion database al-

lowing for fast nearest-neighbor-search. Kovar and Gleicher [KG04] perform

numerical and “logical” similarity searches on collections of motion capture

data. They build so-called “match webs” on dense distance matrices that are

quadratic in the size of the database. Müller et al. [MRC05] use binary geo-

metric features and index structures to address the problem of content-based

retrieval on large motion databases. Whereas the binary geometric features

are well suited for defining notions of logical similarity of motions and for

coming up with “motion templates” [MR06], they are not suitable in contexts

requiring close numerical similarity of motions. Krüger et al. [KTWZ10] in-

troduce a searching technique with a complexity of k log(n) where n is the

size of the database and k is the number of nearest neighbors. They make

use of numeric, medium dimensional feature sets and employ kd-trees for the

k-nearest-neighbor-search. The authors show that this searching technique

is applicable in different scenarios without loss of quality and scales well to

huge databases.

In the area of online approaches Lee et al. [LWB+10] introduce motion

fields. This interactive technique computes motion to an online control with-

out using any motion graph like structure. Therefore a combination of nearest

neighbor poses and a Markov decision process is used to compute the next

frames.

Lo and Zwicker [LZ10] make use of a bidirectional search algorithm when

enrolling motion graphs into the environment. Thus, the depth of search

trees has been halved, which gave a huge speed advantage. For motion

planning and enrolling the motion graph into the environment they employ

the technique described by Lau and Kuffner [LK05, LK06]. In this work the

92 CHAPTER 4. MOTION SYNTHESIS

input:
key frames ,

rought motion
description

output :
fully animated
motion clip

preprocessing

kD-tree
construction

mocap
database

DMG
construction

bidirectional
searching

intermediate
result:

uncleaned
motion sequence

motion
texturing

OLNG based
optimization

Figure 4.14: Workflow of the proposed method for synthesizing motion se-
quences.

motion capture data are put into a finite-state machine (FSM), and based

on that FSM a search tree is precomputed. Since the size of the search tree

grows exponentially with respect to the depth level, the amount of motion

data that can be handled with this method is limited. Additionally, the user

does not have full control over the animation since this technique does not

support key frames. Only points in space can be provided as constraints to

describe a scene.

4.3.2 Overview

Our method requires a rough description of the motion to be synthesized with

a few key frames as input. Based on the key frames we then search for motion

segments that might start or end at the key frames. The motion segments

are used to build a motion graph structure between subsequent key frames.

A candidate for the resulting motion is found by a shortest path algorithm

on the motion graph. We call this result intermediate motion. This motion

might have some blending or footskating artifacts. Thus, the intermediate

motion is cleaned by our motion texturing technique (see Section 4.2) to

obtain the final result. See Figure 4.14 for an overview.

4.3. DYNAMIC MOTION GRAPHS 93

4.3.3 Motion Graph Construction

This section describes the construction of a motion graph to compute a

motion sequence based on user defined key frames. In the following let

K = {k1, . . . ,kN}, where N ∈ N, be the description of the input motion

based on N key frames ki. The index i gives information about the temporal

order of the given key frames. Each key frame k is a vector including the

position of the root node of the underlying skeleton representation in the

world coordinate frame and the rotational data for each joint of the skeleton:

k =


proot

q1
...

qm


The rotational degrees of freedom are represented as quaternions and the

skeleton has m = 31 joints in our case. We construct a graph between two

key frames ki and ki+1 only. To obtain a motion sequence satisfying all key

frames, the resulting motions for all consecutive key frames are concatenated.

Bidirectional search

The main idea of our bidirectional searching is to construct a tree O of

outgoing motion segments from the first key frame ki and to construct a

tree I of incoming motion segments to the second key frame ki+1. The two

trees are then connected by blending suitable outgoing and incoming motion

segments. The result is a directed, acyclic graph G. We refer to this graph

as dynamic motion graph (DMG). This DMG can be searched for an optimal

motion between the two key frames.

For all key frames given as user input we are able to search for the k

nearest neighbor frames included in the database. As result of this nearest

neighbor search we get a ranked list Hi = [hi,1, . . . , hi,k] of indices of poses

in the database that are regarded to be similar to the key frame ki. In

this context we make use of the pose based similarity search introduced in

94 CHAPTER 4. MOTION SYNTHESIS

Chapter 2. Similarity of poses can be parametrized by any feature set F .

We make use of the feature set F 15
E in this application.

Based on Hi we get a set Oi = {Oi,1, . . . , Oi,k} of outgoing motion seg-

ments. We define an outgoing motion segment Oi,j of a key frame to be

the following frames of a nearest neighbor frame. Thus, an outgoing mo-

tion segment can be defined as list of indices Oi,j = [hi,j + 1, . . . , hi,j +Mi,j]

referring to frames in the database. A set of incoming motion segments of

previous frames can be defined in a similar way Ii = {Ii,1, . . . , Ii,k} with

Ii,j = [hi,j −Mi,j, . . . , hi,j − 1]. We denote the indices of a motion segment

Oi,j = [o1i,j, . . . , o
Mi,j

i,j] and the corresponding frames withOi = [o1
i,j, . . . ,o

Mi,j

i,j].

Mi,j ∈ N defines the length in number of frames of the motion segments. We

do not use a fixed length in our examples. Instead we follow a motion segment

until a change in contact with the environment appears. The information on

ground contacts is stored in the database.

We think of a node as a single frame and of an edge as motion sequence.

At every node a transition to another motion segment is possible. We start

the construction of the motion graph by setting a key frame ki as root node

of the tree O of outgoing motion segments and setting the key frame ki+1

as root node of the tree I of incoming motion segments. We then iterate

the following steps until either the two trees can be connected, or stop the

process after a fixed number of iterations.

1. tree continuation: Find k outgoing motion segments O and k incoming

motion segments I for the b best nodes of each tree. During the first

iteration there are only two nodes, corresponding to the two key frames.

2. add new nodes: Store the end frames [o
Mi,1

i,1 , . . . ,o
Mi,k

i,k] of the outgoing

segments and the start frames [i1i,1, . . . , i
1
i,k] of the incoming segments

in nodes.

3. check for connections: Check if an edge Oi,j of the tree O of outgoing

segments and an edge Ii,j of the tree I of incoming segments are close

enough to build a connection between the two trees.

If one ore more connections between the trees are found we compute con-

4.3. DYNAMIC MOTION GRAPHS 95

necting edges to finalize the graph G. This graph is then searched for a path

that connects the key frames.

Before the steps of the graph construction are explained in detail, we

must define a distance Dnode. This distance measure is used to define the

quality of all nodes in each tree. Based on that we can select the b best nodes

of the trees. If we consider that a node is useful for further construction if it

leads to a node in the other tree, we define:

Dnode(a) = argmin
b

Dpose(a,b) (4.12)

∀b ∈ I if a ∈ O and vice versa. This definition makes use of the pose based

distance:

Dpose(a,b) =
31∑
J=1

wJ |pJ(a)− pJ(b)| (4.13)

Where wJ is joint weight and pJ(a) describes the position of the J-th joint

of the pose a. w is chosen to be one for the hands, feet and the head joint of

the skeleton, and zero for all other joints. In words, Dnode(a) is the euclidean

distance between the hands, the feet and the head of the closest node in the

other tree. With this distance in hand the three steps for graph construction

are now explained in more detail:

Tree continuation: For both trees O and I we build a priority queue, stor-

ing pointers to the nodes of the corresponding tree. The priority of

the nodes is defined by the distance measure Dpose. In each iteration

of the tree construction we regard only the b best nodes of each tree.

Thus, only branches of the trees that are heading towards the other

tree are explored further. In the first iteration only the nodes that

correspond to the two key frames are explored. By storing the nodes

in the priority queue no nodes are discarded. If no good children are

found from a node that was considered in an iteration, a node that was

not considered may be regarded in a later iteration.

Add new nodes: For all motion segments that were regarded in an itera-

tion we add an edge containing the motion segment and a node to the

96 CHAPTER 4. MOTION SYNTHESIS

trees. The cost of an edge Ei,j is computed as:

Cedge(Ei,j) =
31∑
J=1

Mi,j∑
F=1

v(Ei,j(F, J)) (4.14)

where v(Ei,j(F, J) is the velocity of the J-th joint at the F -th frame

of the edge Ei,j. This cost function considers the number of frames

of the motion segment as well as the distance the motion traveled in

space during this time. Due to this distance function slow motions and

detours will be punished.

The end frames of the outgoing motion segments and the start frames

of the incoming motion segments are added as nodes to the trees. For

each new node the distance Cedge is computed and a pointer to this

node is added to one of the priority queues.

Check for connections: For each motion segment that is added to one of

the trees we check if a connection to the other tree is possible. A

connection is possible if the trees overlap in space and some edges are

close enough to allow a blending between the corresponding motion

segments.

First we check whether frames are close using the root-node positions.

For this reason we employ spatial hashing. The main idea is to quan-

tize the space into voxels and to use the quantized root node position

of a frame to compute its hash key. All positions that are close then

fall into neighboring voxels. Using hash maps, close frames in neigh-

boring voxels can be found in constant time. During our experiments

a voxelsize of 10 cm has proven to be useful.

Whenever an incoming motion segment Ii is added to the tree of in-

coming motion segments all frames [ii1, . . . , i
i
M] are added to a hash map

HI . All frames [oi1, . . . ,o
i
M] of outgoing motion sequence then are used

as a query to look for a close incoming motion segment.

In case some possible connections of the trees are found, we stop the iterative

searching procedure and connect edges of the trees where possible.

4.3. DYNAMIC MOTION GRAPHS 97

ki
ki+1

a)

ki
ki+1

b)

ki
ki+1

c)

ki
ki+1

d)

Figure 4.15: Illustrating example for edge connection. a) A set of outgoing
motion segments O from key frame ki is drawn blue and a set of incoming
motion segments I to key frame ki+1 is drawn green. b) Searching for close
frames identifies some frames of an incoming edge to be close to an outgoing
edge. c) Close frames of the outgoing and incoming segment are blended
(orange). d) The complete new edge (orange) is added to the graph.

Connecting Edges

The connection of edges converts the two trees of outgoing motion segments

for key frame ki and incoming segments for key frame ki+1 to a motion graph

that is enrolled into the environment.

If a window of close frames in two motion segments is found, we perform

a linear blending between [ois, . . . ,o
i
e] and [iis, . . . , i

i
e], where s and e denote

the start and end frames of the window in the incoming and outgoing motion

segment. This blending is performed on the skeleton’s root trajectory and on

the rotational data. The blended motion segment [b1, . . . ,be−s] is concate-

nated to a new motion segment B = [o1, . . . ,os−1,b1, . . . ,be−s, ie+1, . . . , iM].

The distance D(B) of the motion segment B is computed as it is for the

other motion segments. Finally a new edge is added to the graph, containing

the motion segment B and its associated cost D(B). An illustrative example

is given in Figure 4.15. Additionally an example based on real data is given

in Figure 4.18. This example corresponds to the walking motion that will be

98 CHAPTER 4. MOTION SYNTHESIS

k1 k3

k2

k1 k3

k2

a) b)

Figure 4.16: The concatenation of motion segments (blue and green) can
result in discontinuities at the key frames. The cleaning step based on our
motion texturing technique will give a smooth result, still respecting all given
constraints.

explained in more detail in Section 4.3.5.

Path search and Intermediate Result

Once a motion graph is constructed a path connecting the given keyframes k

must be found. Our graph is directed and acyclic by construction. Thus, we

can employ algorithms for directed acyclic graphs again (cf. Section 2.4.1).

As an intermediate result we use the motion that is concatenated of the

motion segments along the optimal path. In particular, foot skating artifacts

and discontinuous motions should be adjusted.

4.3.4 Cleaning the Intermediate Result

Especially around the key frames the simple concatenation of motion seg-

ments can lead to discontinuous motions. This problem is illustrated in the

sketch in Figure 4.16. The green and blue lines correspond to motion seg-

ments that both fulfill the key frame k2. Nevertheless, the motion sequence is

not continuous around that key frame. The red line is a symbol for a motion

sequence that is close to the given input motion, fulfills the key frame and is

continuous at the key frame. Thus, it is a desired result of the cleaning step.

The second problem that arises is that blending of motion segments can

introduce foot skating artifacts. Therefore, a further processing of the motion

is necessary. For this reason it is possible to employ the motion texturing

4.3. DYNAMIC MOTION GRAPHS 99

Figure 4.17: An example for a synthesized walking sequence: Red poses were
given as key frames. The poses in between (green to blue) were synthesized.

algorithm introduced in Section 4.2.

In this case the concatenated result is handled as a raw input motion.

Additionally, to make sure that all constraints are fulfilled, the original key

frames are fixed and not allowed to be changed during this process. Therefore

the frames around the key frames have to be adapted more precisely. Even if

the motion is given much more detailed here, fine details can be well adapted.

We refer to the result section for more details of how the cleaning process

contributes to the final result.

4.3.5 Results

In this section we give some examples of motions synthesized with our

method. In addition, certain examples are analyzed and evaluated in more

depth. For all experiments presented in this section we made use of the entire

HDM05 [MRC+07] database and excluded the motion files from which key

frames were taken.

Walking Example

The simplest specification of a scene consists of two key frames representing

the start and the end of a two step walking motion. The motion from which

100 CHAPTER 4. MOTION SYNTHESIS

these steps have been taken was removed from the database. The outgoing

motion segments and the incoming motion segments for the two key frames

are shown in Figure 4.18 a), key frame k1 and k2. Some frames from the

synthetic motion are shown in Figure 4.17. In both figures an additional third

key frame k3 is added. Thus, the resulting motions are—as expected—four

step walking motions.

In Figure 4.18 b) the motion segments are shown for a scene where the

key frame k2 was removed. Here the trees O and I had to be explored in

more depth before a connection could be found. The resulting motion is a

four step motion anyway. This simple example shows that on principle the

concept of our motion synthesis technique is working.

Systematic Evaluation

To evaluate how our technique reacts to different scenes we performed two

different experiments that are based on the walking motion example intro-

duced in the previous section. Since our graph is not computed in advance,

the evaluation methods proposed by Lau and Kuffner [LK06] and by Reitsma

and Pollard [RP04, RP07] are not suitable for our case. These methods eval-

uate how many paths lead to discrete cells of the environment when enrolling

the precomputed motion graph. Instead we sample the environment by mov-

ing a key frame k2 while key frame k1 stays fixed. To evaluate how the

DMG reacts to the given scenes we regarded the following properties of the

resulting motion sequences:

1. The length in frames of the resulting motion sequences. A good mo-

tion should be as short as possible according the construction and the

distances of the dynamic motion graph.

2. The cost Cedge for the complete final motion sequence.

The movement of k2 can be done in different ways, two are described and

evaluated in more detail in the following paragraphs:

4.3. DYNAMIC MOTION GRAPHS 101

200 180 160 140 120 100 80 60 40 200

10

20

30

40

50

60

70

80

90

100

200 180 160 140 120 100 80 60 40 2050

60

70

80

90

k2

k1

k1

k3

k3

position x-axis [cm]

position x-axis [cm]

po
si

tio
n

z-
ax

is
 [c

m
]

po
si

tio
n

z-
ax

is
 [c

m
]

a)

b)

Figure 4.18: Examples for edge connection based on real data (top view):
To the given key frames k1,k2,k3 outgoing motion segments (green) and
incoming motion segments (blue) were found. The frames along the motion
segments are represented by crosses, the nodes at the beginning of incoming
sequences and at the end of outgoing sequences are drawn as circles. The red
lines represent possible connections of close frames. The motion sequence in
a) was sketched using three key frames, while the sequence in b) was sketched
using two key frames. In b) more iterations were needed until connections
of the two trees were found. In this example only the four best nodes of the
incoming and outgoing segments were regarded for continuation.

Rotate second key frame For this experiment the second key frame

was rotated around the upward pointing y-axis at its original position. We

computed motions from the first key frame to the second one, where the

second key frame was rotated by ten degree steps. A picture of the key

frame k1 and the rotated copies of ke frame k2 is given in Figure 4.19 a),

while Figure 4.19 b) shows the trajectories of the root nodes for all resulting

motion sequences. Our algorithm found a solution for all given key frames

k2. The length in frames and the cost Cedge are visualized in Figure 4.20. As

expected motions to key frames that have slightly been rotated have the same

length as the non-rotated version. Key frames rotated in higher degrees lead

102 CHAPTER 4. MOTION SYNTHESIS

200 160 120 80 40 0

-80

-40

0

40

po
si

tio
n

z-
ax

is
 [c

m
]

position x-axis [cm]

a) b)

Figure 4.19: a) Key frames used for the first experiment. Key frame k1 is
drawn red, the rotated versions of the second key frame k2 are drawn from
green to blue. b) Top view on the root trajectories of the resulting motion
sequences.

to longer motion sequences. An interesting detail: rotations between 80 and

130 degrees as well as rotation between 300 and 320 degrees lead to longer

motion sequences than rotation between 140 and 290 degrees. This fact can

be explained by the structure of the database: If no appropriate turning

motion is included the resulting motion has a detour to go. Regarding the

results for the cost function it shows similar properties as the number of

frames. Thus, the change of the rotation angle does not influence the speed

of the motions leading to the key frame.

Move second key frame To create test scenes in this experiment the

position and orientation of the second key frame k2 was modified. First the

whole motion sequence was translated so that the first frame was moved

to the y-axis. Then the two key frames were extracted. The second key

frame was translated such that the distance varied from 0.5 to 1.5 times the

original distance in 0.2 steps. Additionally we rotated the second key frame

by 30 degree steps around the global y-axis. This corresponds to a rotation

around the first key frame k1 in the selected distance. In Figure 4.21 a)

all key frames are shown. The first key frame is drawn in red color, the

translated and rotated copies of the second one are drawn in a gradient from

4.3. DYNAMIC MOTION GRAPHS 103

0 50 100 150 200 250 300 3500

50

100

150

200

250

nu
m

be
r o

f f
ra

m
es

rotation of k2 in degrees
0 50 100 150 200 250 300 3500

100

200

300

400

500

600

700

800

co
st

 fu
nc

tio
n

C
ed

ge

rotation of k2 in degrees
a) b)

Figure 4.20: Results for the experiments rotating the second key frame k2.
a) Number of frames of the resulting motion sequences. b) Values of the cost
function Cedge.

blue to green color. We computed motion sequences for all created scenes.

For each of these key frame combinations a motion sequence was found using

the proposed method. For evaluation we regarded the same properties as

for the first experiment. The results are visualized in Figure 4.22. Here the

number of frames and the value of Cedge are visualized. The shortest motion

clips result from the second key frames that were translated but not rotated.

They correspond to walk to different distances on a line. Here again motions

that have to get to a key frame that was rotated around 90 degrees or 270

and 300 degrees need detours to reach the goal. Appropriate motions also

seem not to be included in the database. In this experiment some more

differences between the number of frames and the cost function were found.

The overall structure of both diagrams seems to be similar, but there are

slight differences. Regarding the motions in the 0 degree axis, they seem to

have a similar number of frames but having an increasing cost. Since the

motions have the same length but are traveling different distances in space

they have to do this with a higher velocity. Similar changes in speed of the

motions can be found for other differences, too. For example, some of the

104 CHAPTER 4. MOTION SYNTHESIS

200 100 0 -100 -200
-200

-100

0

100

200

po
si

tio
n

z-
ax

is
 [c

m
]

position x-axis [cm]

a) b)

Figure 4.21: a) Key frames used for the second experiment. Key frame k1

is drawn in red, the rotated and translated versions of the second key frame
k2 are drawn from green to blue. b) Top view on the root trajectories of the
resulting motion sequences.

resulting motion sequences along the 90 degree axis have a high number of

frames while their cost value is only medium. When regarding these motions,

one can see that they are partly standing at a point and are turning slowly

before they are able to continue walking towards the second key frame.

Large Synthetic Examples

We computed several examples by extracting a set of key frames from motion

capture recordings taken from the HDM05 database [MRC+07]. Every two

seconds a key frame was extracted. The motion sequence from which the key

frames were taken was deleted from the database. For results we refer to the

video in the supplemental material.

Evaluation of the Cleaning Step

We show the effect of the cleaning step on the basis of the walking example

introduced before. In this simple example the problems described already

arise. In Figure 4.23 a) the y-position of the skeletons root node is plotted

for the intermediate motion (blue line) and the final result (green line). The

red dashed lines represent time points at which a key frame is fulfilled. The

4.3. DYNAMIC MOTION GRAPHS 105

number of frames

36

72

109

146

183

220

256

293

330

367

404

0°

30

60

90

120

150

180

210

240

270

300

330

0.5 0.7 0.9 1.1 1.3 1.5

°

°

°

°

°

°

°

°

°

°

°

cost function Cedge

23

73

124

174

225

275

326

376

427

477

527

0°

30

60

90

120

150

180

210

240

270

300

330

°

°

°

°

°

°

°

°

°

°

°

0.5 0.7 0.9 1.1 1.3 1.5

a) b)

Figure 4.22: Results for the experiment where the second key frame was
moved: a) Number of frames of the resulting motion sequences. b) Value of
the cost function Cedge.

intermediate motion shows some artifacts around frames 18, 40 and 60. After

the cleaning step the root trajectory is more smooth; a desired result. Please

note that some extrema (frames 30 and 70) are more strongly pronounced

in the final result. A result that could not be obtained by applying a simple

filtering technique.

Figure 4.23 b) shows the absolute velocities of the right foot for the same

motion sequences. Here, we can identify two phases where the foot is having

ground contact between frames 20 and 40 and between frames 60 and 80.

The intermediate motion has a strong foot skating artifact around frame 75.

This as well as the blending artifacts is cleaned by our motion texturing

technique.

4.3.6 Conclusion and Future Work

In this section a technique for generating motion sequences from a few key

frames was introduced. We can handle challenging cases including different

styles of motions and large spatial distances between key frames. The sys-

tematic evaluation of our motion synthesis procedure shows that we are able

to compute motion sequences for key frames that are distributed differently

106 CHAPTER 4. MOTION SYNTHESIS

0 10 20 30 40 50 60 70 800

0.5

1

1.5

2

2.5

3

3.5

4
velocity right foot

time in frames

ve
lo

ci
ty

 [m
/s

]

0 10 20 30 40 50 60 70 8094.5

95

95.5

96

96.5

97

97.5

98

98.5

99
position root node

time in frames

y-
po

si
tio

n
[c

m
]

a) b)

Figure 4.23: a) Position of the root node for an intermediate walking motion
(blue) and the final motion after the cleanup step (green). The red lines
indicate key frame positions. b) Velocity of the right foot for the same
walking sequences.

in the scene.

Currently we search the database for incoming and outgoing motion se-

quences. These original motion capture sequences are later modified by

blending, inverse kinematics and the cleaning step. In contrast to inter-

polated motion graph approaches we do not extend a precomputed motion

graph with interpolated motion sequences. This strategy ensures fast syn-

thesis with diverse motion classes but allows to modify the motion capture

data anyway.

Nevertheless, we believe that allowing frame wise interpolations, like it is

done in the work of Lee et al. [LWB+10], in combination with our searching

and cleaning techniques might result in motion sequences that take shorter

tours in the environment.

Employing a frame wise interpolation requires a sophisticated distance

function. In the original work a Markov Decision Process is used in combi-

nation with reinforcement learning. The given cost function is a local one

and can not be used to plan a motion between two given key frames.

The integration into a commercial animation system, like 3dsMax, Maya,

4.3. DYNAMIC MOTION GRAPHS 107

Lightwave or Blender, and tests of these implementation by skilled animators,

is one topic for future work. Their comments would be helpful in designing

more appropriate techniques than the existing ones.

The influence of the underlying database is not only interesting for the

cleaning step, but also important for the bidirectional search. We assume

that the more motions are included in the database, the better results can

be obtained by our method. An assumption that has to be proved in later

research.

“Sure as I am breathing

Sure as I’m sad

I’ll keep this wisdom in my flesh

I leave here believing more than I had

And there’s a reason I’ll be

A reason I’ll be back”

Eddie Vedder – No Ceiling

5
Conclusion and Future Work

5.1 Conclusion

In this thesis several techniques and algorithms to handle motion capture

data were presented. As was shown, efficient similarity search is of funda-

mental importance for fast, high quality motion synthesis. Using the lazy

neighborhood graph presented in Chapter 2 we are able to search databases

with logarithmic complexity in the size of the underlying database. We also

showed that the proposed local and global similarity searches improve differ-

ent applications.

The multilinear representation of motion capture data can be used for fast

motion synthesis since only a few multiplications are needed to construct a

motion sequence. Examples of this synthesis are presented in Section 4.1.

With this technique for motion synthesis in hand we were able to annotate

unknown motion capture documents employing an analysis by synthesis ap-

proach in Chapter 3. The multilinear representation has a rigid structure and

109

110 CHAPTER 5. CONCLUSION AND FUTURE WORK

does not scale well if one wants to consider multiple motion classes. Thus,

this representation can only be used in some well defined scenarios.

More general tools for motion synthesis were introduced with the mo-

tion texturing technique in Section 4.2 and the dynamic motion graphs in

Section 4.3. Both techniques are based on our fast similarity search. Thus,

we are able to construct local models based on the nearest neighbors taken

from a huge database. With the help of the DMG we can synthesize motion

sequences based on sparse key frames. The effectiveness of this approach was

shown in some systematic evaluations and large scenes based on many key

frames.

5.2 Future Work

In this work physical properties of human motions were only considered as

part of feature sets. These feature sets were used for dynamic time warping

or for the fast similarity search. All motion synthesis approaches introduced

in this thesis only work on the kinematic level. To perform the synthesis

of motion sequences on physics based layer is one topic of future research.

A physics based layer is also needed when data-driven techniques should be

combined with controller based ones.

The extension from a pose based neighborhood search to a global search,

based on the lazy neighborhood graph (LNG) contains information on the

temporal evolution of the motion sequences. Using this temporal context one

could study the local dimension of the motion capture data, based on prin-

cipal component analysis, for example. This research can give an interesting

view on the dimensionality of human motions.

Based on the LNG search and its online version, the OLNG, an anticipa-

tion of the evolution in time of a stream of motion data can be done. This

prediction might be useful for the motion planning of robots, or reactive vir-

tual characters. First experiments in this direction show interesting results.

To use adapted variants of the LNG for other types of data will be another

topic of future research.

Bibliography

[AF02] Arikan, Okan ; Forsyth, D. A.: Interactive motion gener-

ation from examples. In: SIGGRAPH ’02: Proceedings of the

29th annual conference on Computer graphics and interactive

techniques. San Antonio, Texas : ACM Press, 2002. – ISBN

1–58113–521–1, S. 483–490 90

[AFO03] Arikan, Okan ; Forsyth, David A. ; O’Brien, James F.:

Motion synthesis from annotations. In: ACM Trans. Graph. 22

(2003), July, 402–408. http://dx.doi.org/10.1145/882262.

882284. – DOI 10.1145/882262.882284. – ISSN 0730–0301 9,

19, 28, 39, 90

[AI08] Andoni, Alexandr ; Indyk, Piotr: Near-optimal hash-

ing algorithms for approximate nearest neighbor in high di-

mensions. In: Commun. ACM 51 (2008), Nr. 1, S. 117–

122. http://dx.doi.org/10.1145/1327452.1327494. – DOI

10.1145/1327452.1327494. – ISSN 0001–0782 7

[ALP06] Abe, Y. ; Liu, C.K. ; Popović, Z.: Momentum-based param-

eterization of dynamic character motion. In: Graphical Models

68 (2006), Nr. 2, S. 194–211 29

[Ari06] Arikan, Okan: Compression of motion capture databases.

In: ACM Trans. Graph. 25 (2006), Nr. 3, S. 890–

897. http://dx.doi.org/10.1145/1141911.1141971. – DOI

111

http://dx.doi.org/10.1145/882262.882284
http://dx.doi.org/10.1145/882262.882284
http://dx.doi.org/10.1145/1327452.1327494
http://dx.doi.org/10.1145/1141911.1141971

112 BIBLIOGRAPHY

10.1145/1141911.1141971. – ISSN 0730–0301. – SIGGRAPH

2006 57

[BA00] Bro, Rasmus ; Andersson, Claus A.: The N-way Toolbox

for MATLAB. http://www.models.kvl.dk/nwaytoolbox/.

Version: 2000 61

[BBK01] Böhm, Christian ; Berchtold, Stefan ; Keim, Daniel A.:

Searching in high-dimensional spaces: Index structures for im-

proving the performance of multimedia databases. In: ACM

Comput. Surv. 33 (2001), Nr. 3, 322–373. http://dx.doi.

org/10.1145/502807.502809. – DOI 10.1145/502807.502809.

– ISSN 0360–0300 4, 6

[BCPP08] Beaudoin, P. ; Coros, S. ; Panne, M. van d. ; Poulin,

P.: Motion-Motif Graphs. In: Gross, M. (Hrsg.) ; James, D.

(Hrsg.): ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation, 2008 7, 8, 19

[BE09] Basten, B. J. H. ; Egges, A.: Evaluating distance metrics for

animation blending. In: FDG ’09: Proceedings of the 4th In-

ternational Conference on Foundations of Digital Games. New

York, NY, USA : ACM, 2009. – ISBN 978–1–60558–437–9, S.

199–206 7

[BH00] Brand, Matthew ; Hertzmann, Aaron: Style machines. In:

Proc. ACM SIGGRAPH 2000, ACM Press, 2000 (Computer

Graphics Proc.). – ISBN 1–58113–208–5, S. 183–192 40

[BKZW11a] Baumann, Jan ; Krüger, Björn ; Zinke, Arno ; Weber,

Andreas: Data-Driven Completion of Motion Capture Data.

In: Workshop on Virtual Reality Interaction and Physical Sim-

ulation (VRIPHYS), 2011 33

[BKZW11b] Baumann, Jan ; Krüger, Björn ; Zinke, Arno ; Weber,

Andreas: Filling Long-Time Gaps of Motion Capture Data. In:

http://www.models.kvl.dk/nwaytoolbox/
http://dx.doi.org/10.1145/502807.502809
http://dx.doi.org/10.1145/502807.502809

BIBLIOGRAPHY 113

SCA’11: Poster Proc. ACM SIGGRAPH/Eurographics Sympo-

sium on Computer Animation, 2011 33

[BMS08] Baak, Andreas ; Müller, Meinard ; Seidel, Hans-Peter: An

Efficient Algorithm for Keyframe-based Motion Retrieval in the

Presence of Temporal Deformations. In: Proceeding of the 1st

ACM international conference on Multimedia information re-

trieval ACM, 2008. – ISBN 978–1–60558–303–7, S. 451–458 38,

40, 43

[BSP+04] Barbič, Jernej ; Safonova, Alla ; Pan, Jia-Yu ; Falout-

sos, Christos ; Hodgins, Jessica K. ; Pollard, Nancy S.:

Segmenting motion capture data into distinct behaviors. In:

Heidrich, Wolfgang (Hrsg.) ; Balakrishnan, Ravin (Hrsg.):

Proceedings of the Graphics Interface 2004 Conference, Cana-

dian Human-Computer Communications Society, 2004. – ISBN

1–56881–227–2, 185–194 40, 57

[BW95] Bruderlin, Armin ; Williams, Lance: Motion signal pro-

cessing. In: Cook, Robert (Hrsg.): Proceedings of the 22nd

annual conference on Computer graphics and interactive tech-

niques, ACM Press, New York, 1995. – ISBN 0–80791–701–4,

97–104 48, 58, 62, 90

[Car04] Carnegie Mellon University Graphics Lab: CMU

Motion Capture Database. http://mocap.cs.cmu.edu.

Version: 2004 5, 39, 44

[CH05] Chai, Jinxiang ; Hodgins, Jessica K.: Performance anima-

tion from low-dimensional control signals. In: ACM Trans.

Graph. 24 (2005), July, 686–696. http://dx.doi.org/10.

1145/1073204.1073248. – DOI 10.1145/1073204.1073248. –

ISSN 0730–0301 6, 7, 8, 9, 25, 26, 27, 39, 57, 77, 91

[CH07] Chai, Jinxiang ; Hodgins, Jessica K.: Constraint-based Mo-

tion Optimization Using A Statistical Dynamic Model. In:

http://mocap.cs.cmu.edu
http://dx.doi.org/10.1145/1073204.1073248
http://dx.doi.org/10.1145/1073204.1073248

114 BIBLIOGRAPHY

ACM Transactions on Graphics 26 (2007), Nr. 3. – SIGGRAPH

2007 32, 57

[CHP07] Cooper, Seth ; Hertzmann, Aaron ; Popović, Zoran: Ac-

tive learning for real-time motion controllers. In: ACM Trans.

Graph. 26 (2007), Nr. 3, S. 5. http://dx.doi.org/10.1145/

1276377.1276384. – DOI 10.1145/1276377.1276384. – ISSN

0730–0301 39

[CLRS01] Cormen, T. H. ; Leiserson, C. E. ; Rivest, R. L. ; Stein,

C.: Introduction to Algorithms. MIT Press, 2001 21

[EMMT04] Egges, A. ; Molet, T. ; Magnenat-Thalmann, N.: Person-

alised real-time idle motion synthesis. In: 12th Pacific Confer-

ence on Computer Graphics and Applications (PG 2004), 2004,

S. 121–130 7

[EMWZ05] Effenberg, Alfred ; Melzer, Joachim ; Weber, Andreas ;

Zinke, Arno: MotionLab Sonify: A Framework for the Soni-

fication of Human Motion Data. In: Ninth International Con-

ference on Information Visualisation (IV’05). London, UK :

IEEE Press, Juli 2005. – ISBN 0–7695–2397–8, S. 17–23 77

[Fal96] Faloutsos, C.: Searching Multimedia Databases by Con-

tent. Springer, 1996 http://www.cs.cmu.edu/~christos/

mybookInfo.html 6

[FF05] Forbes, Kate ; Fiume, Eugene: An efficient search algo-

rithm for motion data using weighted PCA. In: Proc. 2005

ACM SIGGRAPH/Eurographics Symposium on Computer An-

imation, ACM Press, 2005. – ISBN 1–7695–2270–X, S. 67–76

39, 57

[FHP07] Faloutsos, Christos ; Hodgins, Jessica ; Pollard, Nancy:

Database techniques with motion capture. In: SIGGRAPH ’07:

ACM SIGGRAPH 2007 courses. San Diego, California : ACM,

2007, S. 1 6

http://dx.doi.org/10.1145/1276377.1276384
http://dx.doi.org/10.1145/1276377.1276384
http://www.cs.cmu.edu/~christos/mybookInfo.html
http://www.cs.cmu.edu/~christos/mybookInfo.html

BIBLIOGRAPHY 115

[GBT04] Glardon, Pascal ; Boulic, Ronan ; Thalmann, Daniel:

PCA-Based Walking Engine Using Motion Capture Data. In:

CGI ’04: Proceedings of the Computer Graphics International

(CGI’04). Washington, DC, USA : IEEE Computer Society,

2004. – ISBN 0–7695–2171–1, S. 292–298 57

[GP00] Giese, Martin A. ; Poggio, Tomaso: Morphable Mod-

els for the Analysis and Synthesis of Complex Motion Pat-

terns. In: International Journal of Computer Vision 38 (2000),

Nr. 1, 59-73. http://www.springerlink.com/content/

vw5g1624504m3npu/ 39, 57, 58, 62

[HG07] Heck, Rachel ; Gleicher, Michael: Parametric motion

graphs. In: I3D ’07: Proceedings of the 2007 symposium on In-

teractive 3D graphics and games. New York, NY, USA : ACM

Press, 2007. – ISBN 978–1–59593–628–8, S. 129–136 6, 19, 32,

90

[HJBC05] Hildenbrand, D. ; J., Zamora ; Bayro-Corrochano,

E.: Inverse kinematics computation in computer graphics and

robotics using conformal geometric algebra. In: International

Conference on Clifford Algebras and their Applications, 2005 9

[HMF07] Hunt, W. ; Mark, W. R. ; Fussell, D.: Fast and lazy

build of acceleration structures from scene hierarchies. In: IEEE

Symposium on Interactive Ray Tracing (RT ’07), 2007, S. 47–54

33

[HPP05] Hsu, Eugene ; Pulli, Kari ; Popović, Jovan: Style translation

for human motion. In: ACM Trans. Graph. 24 (2005), Nr. 3, S.

1082–1089. http://dx.doi.org/10.1145/1073204.1073315.

– DOI 10.1145/1073204.1073315. – ISSN 0730–0301. – SIG-

GRAPH 2005 58

[KBAW11] Krüger, Björn ; Baumann, Jan ; Abdallah, Mohammad ;

Weber, Andreas: A Study On Perceptual Similarity of Hu-

http://www.springerlink.com/content/vw5g1624504m3npu/
http://www.springerlink.com/content/vw5g1624504m3npu/
http://dx.doi.org/10.1145/1073204.1073315

116 BIBLIOGRAPHY

man Motions. In: Workshop on Virtual Reality Interaction and

Physical Simulation (VRIPHYS), 2011. – accepted for publica-

tion 33

[KG03] Kovar, Lucas ; Gleicher, Michael: Flexible Automatic Mo-

tion Blending with Registration Curves. In: Breen, D. (Hrsg.)

; Lin, M. (Hrsg.): Eurographics/SIGGRAPH Symposium on

Computer Animation, Eurographics Association, 2003, 214-224

58, 62

[KG04] Kovar, Lucas ; Gleicher, Michael: Automated extraction

and parameterization of motions in large data sets. In: ACM

Transactions on Graphics 23 (2004), Nr. 3, 559–568. http://

doi.acm.org/10.1145/1015706.1015760. – ISSN 0730–0301.

– SIGGRAPH 2004 4, 6, 8, 9, 19, 20, 24, 39, 57, 77, 90, 91

[KGP02] Kovar, Lucas ; Gleicher, Michael ; Pighin, Frédéric: Mo-

tion Graphs. In: ACM Transactions on Graphics 21 (2002), Nr.

3, 473–482. http://doi.acm.org/10.1145/566654.566605. –

ISSN 0730–0301. – SIGGRAPH 2002 4, 6, 19, 39, 50, 51, 57,

90

[KPZ+04] Keogh, Eamonn ; Palpanas, Themistoklis ; Zordan, Vic-

tor B. ; Gunopulos, Dimitrios ; Cardle, Marc: Indexing

large human-motion databases. In: VLDB ’04: Proceedings of

the Thirtieth international conference on Very large data bases,

VLDB Endowment, 2004. – ISBN 0–12–088469–0, S. 780–791

4, 6, 39

[KTMW08] Krüger, Björn ; Tautges, Jochen ; Müller, Meinard ; We-

ber, Andreas: Multi-Mode Tensor Representation of Motion

Data. In: Journal of Virtual Reality and Broadcasting (2008)

37, 38, 40, 47, 48, 50

[KTW07] Krüger, Björn ; Tautges, Jochen ; Weber, Andreas: Multi-

Mode Representation of Motion Data. In: Braz, J. (Hrsg.)

http://doi.acm.org/10.1145/1015706.1015760
http://doi.acm.org/10.1145/1015706.1015760
http://doi.acm.org/10.1145/566654.566605

BIBLIOGRAPHY 117

; Vazquez, P.-P. (Hrsg.) ; Madeiras Pereira, J. (Hrsg.):

The 2nd International Conference on Computer Graphics The-

ory and Applications (GRAPP 2007). Barcelona, Spain : IN-

STICC Press, März 2007. – ISBN 978–972–8865–72–6, S. 21–29

38

[KTWZ10] Krüger, Björn ; Tautges, Jochen ; Weber, Andreas ;

Zinke, Arno: Fast Local and Global Similarity Searches in

Large Motion Capture Databases. In: Proceedings of the 2010

ACM SIGGRAPH/Eurographics Symposium on Computer An-

imation. Aire-la-Ville, Switzerland, Switzerland : Eurographics

Association, Juli 2010 (SCA ’10), 1–10 82, 91

[LCB06] Le Callennec, Beno ; Boulic, Ronan: Robust Kinematic

Constraint Detection for Motion Data. In: Proceedings of ACM

SIGGRAPH / Eurographics Symposium on Computer Anima-

tion, 2006 86

[LCR+02] Lee, Jehee ; Chai, Jinxiang ; Reitsma, Paul S. A. ; Hodgins,

Jessica K. ; Pollard, Nancy S.: Interactive control of avatars

animated with human motion data. In: SIGGRAPH ’02: Pro-

ceedings of the 29th annual conference on Computer graphics

and interactive techniques. San Antonio, Texas : ACM Press,

2002. – ISBN 1–58113–521–1, S. 491–500 4, 8, 9, 90

[Lev96] Leva, P. de: Adjustments to Zatsiorsky-Seluyanov’s segment

inertia parameters. In: Journal of Biomechanics 29 (1996), Nr.

9, S. 1223–1230 28

[LK05] Lau, Manfred ; Kuffner, James J.: Behavior Planning for

Character Animation. In: 2005 ACM SIGGRAPH / Eurograph-

ics Symposium on Computer Animation, 2005, S. 271–280 91

[LK06] Lau, Manfred ; Kuffner, James J.: Precomputed search

trees: planning for interactive goal-driven animation. In: SCA

’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics

118 BIBLIOGRAPHY

symposium on Computer animation. Vienna, Austria : Euro-

graphics Association, 2006. – ISBN 3–905673–34–7, S. 299–308

90, 91, 100

[LP02] Liu, C. K. ; Popović, Zoran: Synthesis of complex dynamic

character motion from simple animations. In: SIGGRAPH ’02:

Proceedings of the 29th annual conference on Computer graphics

and interactive techniques. New York, NY, USA : ACM, 2002.

– ISBN 1–58113–521–1, S. 408–416 29

[LS02] Lee, Jehee ; Shin, Sung Y.: General Construction of Time-

Domain Filters for Orientation Data. In: IEEE Transactions

on Visualizatiuon and Computer Graphics 8 (2002), Nr. 2, 119–

128. http://csdl.computer.org/comp/trans/tg/2002/02/

v0119abs.htm. – ISSN 1077–2626 68

[LWB+10] Lee, Yongjoon ; Wampler, Kevin ; Bernstein, Gilbert ;

Popović, Jovan ; Popović, Zoran: Motion fields for in-

teractive character locomotion. In: ACM Trans. Graph. 29

(2010), Dezember, 138:1–138:8. http://dx.doi.org/10.1145/

1882261.1866160. – DOI 10.1145/1882261.1866160. – ISSN

0730–0301 33, 91, 106

[LZ10] Lo, Wan-Yen ; Zwicker, Matthias: Bidirectional Search for

Interactive Motion Synthesis. In: Computer Graphics Forum

29 (2010), Nr. 2, S. 563–573 91

[LZWM05] Liu, Guodong ; Zhang, Jingdan ; Wang, Wei ; McMillan,

Leonard: A system for analyzing and indexing human-motion

databases. In: Proc. 2005 ACM SIGMOD Intl. Conf. on Man-

agement of Data, ACM Press, 2005. – ISBN 1–59593–060–4, S.

924–926 39, 57

[MA06] Mount, David M. ; Arya, Sunil: ANN: A Library for Approx-

imate Nearest Neighbor Searching / Department of Computer

Science. Version: 2006. http://www.cs.umd.edu/~mount/

http://csdl.computer.org/comp/trans/tg/2002/02/v0119abs.htm
http://csdl.computer.org/comp/trans/tg/2002/02/v0119abs.htm
http://dx.doi.org/10.1145/1882261.1866160
http://dx.doi.org/10.1145/1882261.1866160
http://www.cs.umd.edu/~mount/ANN/

BIBLIOGRAPHY 119

ANN/. University of Maryland, College Park, Maryland, U.S.A.,

2006. – Programming Manual 11

[MBS09] Müller, Meinard ; Baak, Andreas ; Seidel, Hans-Peter: Ef-

ficient and Robust Annotation of Motion Capture Data. In:

Proceedings of the ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, 2009, S. 17–26 38, 40, 41, 42

[MK06] Mukai, Tomohiko ; Kuriyama, Shigeru: Multilinear Motion

Synthesis Using Geostatistics. In: ACM SIGGRAPH / Eu-

rographics Symposium on Computer Animation - Posters and

Demos, 2006, S. 21–22 57, 61

[MP07] McCann, James ; Pollard, Nancy: Responsive Characters

from Motion Fragments. In: ACM Transactions on Graphics

26 (2007), Nr. 3. – SIGGRAPH 2007 6, 19

[MR06] Müller, Meinard ; Röder, Tido: Motion Templates for

Automatic Classification and Retrieval of Motion Capture

Data. In: SCA ’06: Proceedings of the 2006 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation,

ACM Press, 2006, S. 137–146 6, 37, 38, 39, 40, 41, 62, 77,

91

[MRC05] Müller, Meinard ; Röder, Tido ; Clausen, Michael: Effi-

cient content-based retrieval of motion capture data. In: ACM

Trans. Graph. 24 (2005), July, 677–685. http://dx.doi.org/

10.1145/1073204.1073247. – DOI 10.1145/1073204.1073247.

– ISSN 0730–0301 6, 37, 39, 40, 77, 91

[MRC+07] Müller, Meinard ; Röder, Tido ; Clausen, Michael ; Eber-

hardt, Bernhard ; Krüger, Björn ; Weber, Andreas: Doc-

umentation: Mocap Database HDM05 / Universität Bonn.

Version: june 2007. http://www.mpi-inf.mpg.de/resources/

HDM05. 2007 (CG-2007-2). – Computer Graphics Technical Re-

port. – ISSN 1610–8892 5, 39, 44, 67, 87, 99, 104

http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/
http://dx.doi.org/10.1145/1073204.1073247
http://dx.doi.org/10.1145/1073204.1073247
http://www.mpi-inf.mpg.de/resources/HDM05
http://www.mpi-inf.mpg.de/resources/HDM05

120 BIBLIOGRAPHY

[Mül07] Müller, Meinard: Information Retrieval for Music and Mo-

tion. Springer, 2007. – ISBN 978–3–540–74047–6 19, 22, 37,

38, 40, 41, 42, 48

[MW03] Myers, Jerome L. ; Well, Arnold D.: Research design and

statistical analysis. Mahwah, N.J. : Lawrence Erlbaum Asso-

ciates, 2003 11

[MYHW08] Meng, J. ; Yuan, J. ; Hans, M. ; Wu, Y.: Mining Motifs

from Human Motion. In: Mania, K. (Hrsg.) ; Reinhard, E.

(Hrsg.): Eurographics 2008 – Short Papers, 2008, S. 71–74 7,

22, 23

[MZF06] Majkowska, Anna ; Zordan, Victor B. ; Faloutsos, Petros:

Automatic Splicing for Hand and Body Animations. In: ACM

SIGGRAPH / Eurographics Symposium on Computer Anima-

tion, 2006. – ISBN 3–905673–34–7, S. 309–316 57, 58

[Nar96] Nardelli, E.: Distributed k-d trees. In: Proceedings 16th

Conference of Chilean Computer Science Society (SCCC ’96),

1996, S. 142–154 33

[OBHK05] Ormoneit, Dirk ; Black, Michael J. ; Hastie, Trevor ;

Kjellström, Hedvig: Representing cyclic human motion us-

ing functional analysis. In: Image Vision Comput. 23 (2005),

Nr. 14, S. 1264–1276 57

[PB02] Pullen, Katherine ; Bregler, Christoph: Motion capture

assisted animation: texturing and synthesis. In: ACM Trans.

Graph. 21 (2002), July, 501–508. http://dx.doi.org/10.

1145/566654.566608. – DOI 10.1145/566654.566608. – ISSN

0730–0301 39, 81

[RCB98] Rose, Charles ; Cohen, Michael F. ; Bodenheimer, Bobby:

Verbs and adverbs: multidimensional motion interpolation. In:

IEEE Comput. Graph. Appl. 18 (1998), Nr. 5, S. 32–40. http://

http://dx.doi.org/10.1145/566654.566608
http://dx.doi.org/10.1145/566654.566608
http://dx.doi.org/10.1109/38.708559

BIBLIOGRAPHY 121

dx.doi.org/10.1109/38.708559. – DOI 10.1109/38.708559. –

ISSN 0272–1716 39

[RCO05] Rovshan, Kalanov ; Cho, Jieun ; Ohya, Jun: D-12-79

A Study of Synthesizing New Human Motions from Sampled

Motions Using Tensor Decomposition. In: Proceedings of the

IEICE General Conference 2005 (2005), Nr. 2, 229. http:

//ci.nii.ac.jp/naid/110004746409/en/ 57

[RM05] Röber, Niklas ; Masuch, Maic: Playing Audio-only Games:

A compendium of interacting with virtual, auditory Worlds. In:

Proceedings of Digital Games Research Conference. Vancouver,

Canada, 2005 77

[RP04] Reitsma, P. S. A. ; Pollard, N. S.: Evaluating motion graphs

for character navigation. In: SCA ’04: Proceedings of the 2004

ACM SIGGRAPH/Eurographics symposium on Computer ani-

mation. Aire-la-Ville, Switzerland, Switzerland : Eurographics

Association, 2004. – ISBN 3–905673–14–2, S. 89–98 90, 100

[RP07] Reitsma, Paul S. A. ; Pollard, Nancy S.: Evaluating motion

graphs for character animation. In: ACM Trans. Graph. 26

(2007), Nr. 4, S. 18. http://dx.doi.org/10.1145/1289603.

1289609. – DOI 10.1145/1289603.1289609. – ISSN 0730–0301

90, 100

[RW03] Robbins, K. L. ; Wu, Q.: Development of a Computer Tool

for Anthropometric Analyses. In: Valafar, Faramarz (Hrsg.)

; Valafar, Homayoun (Hrsg.): Proceedings of the Interna-

tional Conference on Mathematics and Engineering Techniques

in Medicine and Biological Sciences (METMBS’03). Las Ve-

gas, USA : CSREA Press, jun 2003. – ISBN 1–932415–04–1, S.

347–353 63

[SH05] Safonova, Alla ; Hodgins, Jessica K.: Analyzing the physical

correctness of interpolated human motion. In: Victor Zor-

http://dx.doi.org/10.1109/38.708559
http://dx.doi.org/10.1109/38.708559
http://ci.nii.ac.jp/naid/110004746409/en/
http://ci.nii.ac.jp/naid/110004746409/en/
http://dx.doi.org/10.1145/1289603.1289609
http://dx.doi.org/10.1145/1289603.1289609

122 BIBLIOGRAPHY

dan, Demetri T. (Hrsg.): SCA ’05: Proceedings of the 2005

ACM SIGGRAPH/Eurographics symposium on Computer an-

imation. New York, NY, USA : ACM Press, 2005. – ISBN

1–59593–198–8, S. 171–180 29, 58

[SH07] Safonova, Alla ; Hodgins, Jessica K.: Construction and Op-

timal Search of Interpolated Motion Graphs. In: ACM Trans-

actions on Graphics 26 (2007), Nr. 3. – SIGGRAPH 2007 6,

19, 32, 57, 90

[SHP04] Safonova, Alla ; Hodgins, Jessica K. ; Pollard,

Nancy S.: Synthesizing physically realistic human motion in

low-dimensional, behavior-specific spaces. In: ACM Transac-

tions on Graphics 23 (2004), Nr. 3, 514–521. http://doi.acm.

org/10.1145/1015706.1015754. – ISSN 0730–0301. – SIG-

GRAPH 2004 7, 8, 57, 73

[SO06] Shin, Hyun J. ; Oh, Hyun S.: Fat graphs: constructing an

interactive character with continuous controls. In: SCA ’06:

Proceedings of the 2006 ACM SIGGRAPH/Eurographics sym-

posium on Computer animation. Aire-la-Ville, Switzerland :

Eurographics Association, 2006. – ISBN 3–905673–34–7, S. 291–

298 6, 19, 27, 28, 90

[SP05] Sulejmanpaćić, Adnan ; Popović, Jovan: Adaptation of

performed ballistic motion. In: ACM Trans. Graph. 24 (2005),

Nr. 1, S. 165–179. http://dx.doi.org/10.1145/1037957.

1037966. – DOI 10.1145/1037957.1037966. – ISSN 0730–0301.

– SIGGRAPH 2005 29

[TGB00] Tolani, Deepak ; Goswami, Ambarish ; Badler, Norman I.:

Real-time inverse kinematics techniques for anthropomorphic

limbs. In: Graph. Models Image Process. 62 (2000), Nr. 5, S.

353–388. – ISSN 1077–3169 7, 9

http://doi.acm.org/10.1145/1015706.1015754
http://doi.acm.org/10.1145/1015706.1015754
http://dx.doi.org/10.1145/1037957.1037966
http://dx.doi.org/10.1145/1037957.1037966

BIBLIOGRAPHY 123

[TKZW08] Tautges, Jochen ; Krüger, Björn ; Zinke, Arno ; We-

ber, Andreas: Reconstruction of Human Motions Using Few

Sensors. In: Schumann, Marco (Hrsg.) ; Kuhlen, Torsten

(Hrsg.): Virtuelle und Erweiterte Realität – 5. Workshop der

GI-Fachgruppe VR/AR. Magdeburg, Germany : Shaker-Verlag,

September 2008. – ISBN 978–3–8322–7572–3, S. 1–12. – Preis

für besten Beitrag (Inhalt und Präsentation) 77

[Tro02] Troje, Nikolaus F.: Decomposing biological motion: A frame-

work for analysis and synthesis of human gait patterns. In:

Journal of Vision 2 (2002), Nr. 5, S. 371–387 57

[TZK+11] Tautges, Jochen ; Zinke, Arno ; Krüger, Björn ;

Baumann, Jan ; Weber, Andreas ; Helten, Thomas

; Müller, Meinard ; Seidel, Hans-Peter ; Eberhardt,

Bernd: Motion reconstruction using sparse accelerome-

ter data. In: ACM Trans. Graph. 30 (2011), May, 18:1–

18:12. http://dx.doi.org/10.1145/1966394.1966397. –

DOI 10.1145/1966394.1966397. – ISSN 0730–0301 32, 36, 82,

83

[Vas02] Vasilescu, M. Alex O.: Human motion signatures: Analysis,

synthesis, recognition. In: Proc. Int. Conf. on Pattern Recog-

nition. Quebec City, Canada, 2002, S. 456–460 57, 61, 62

[VBPP05] Vlasic, Daniel ; Brand, Matthew ; Pfister, Hanspeter

; Popović, Jovan: Face transfer with multilinear mod-

els. In: ACM Trans. Graph. 24 (2005), Nr. 3, S. 426–

433. http://dx.doi.org/10.1145/1073204.1073209. – DOI

10.1145/1073204.1073209. – ISSN 0730–0301. – SIGGRAPH

2005 47, 50, 57, 59, 61, 62, 77

[WB03] Wang, Jing ; Bodenheimer, Bobby: An evaluation of

a cost metric for selecting transitions between motion seg-

ments. In: SCA ’03: Proceedings of the 2003 ACM SIG-

GRAPH/Eurographics symposium on Computer animation.

http://dx.doi.org/10.1145/1966394.1966397
http://dx.doi.org/10.1145/1073204.1073209

124 BIBLIOGRAPHY

Aire-la-Ville, Switzerland, Switzerland : Eurographics Associa-

tion, 2003. – ISBN 1–58113–659–5, S. 232–238 9, 90

[WB08] Wang, Jing ; Bodenheimer, Bobby: Synthesis and evalua-

tion of linear motion transitions. In: ACM Trans. Graph. 27

(2008), Nr. 1, S. 1–15. http://dx.doi.org/10.1145/1330511.

1330512. – DOI 10.1145/1330511.1330512. – ISSN 0730–0301

9, 90

[WCYL03] Wu, M.-Y. ; Chao, S.P. ; Yang, S.N. ; Lin, H.C.: Content-

Based Retrieval for Human Motion Data. In: 16th IPPR Conf.

on Computer Vision, Graphics and Image Processing, 2003, S.

605–612 39

[WH97] Wiley, Douglas J. ; Hahn, James K.: Interpolation Synthesis

of Articulated Figure Motion. In: IEEE Comput. Graph. Appl.

17 (1997), Nr. 6, S. 39–45. http://dx.doi.org/10.1109/38.

626968. – DOI 10.1109/38.626968. – ISSN 0272–1716 90

[ZM06] Zinke, Arno ; Mayer, Dessislava: Iterative Multi Scale

Dynamic Time Warping / Universität Bonn. Version: 2006.

http://cg.cs.uni-bonn.de/publications/publication.

asp?id=283. 2006 (CG-2006-1). – Technical Report 65

http://dx.doi.org/10.1145/1330511.1330512
http://dx.doi.org/10.1145/1330511.1330512
http://dx.doi.org/10.1109/38.626968
http://dx.doi.org/10.1109/38.626968
http://cg.cs.uni-bonn.de/publications/publication.asp?id=283
http://cg.cs.uni-bonn.de/publications/publication.asp?id=283

	Introduction
	Organization

	Fast Similarity Searches
	Introduction
	Our contributions

	Related Work
	Nearest-neighbor-search for human motion
	Low and medium dimensional feature sets for human motion

	Feature Sets
	Previously described distance measures and feature sets for human motions
	Devising novel medium dimensional feature sets
	Comparing feature sets

	Motion Matching
	A novel approach to fast global motion matching
	Comparing the global motion matching for different feature sets

	Applications
	Numerical and Logical Similarity Searches
	Reconstruction of Motions from Few Markers
	Fast Fat Graphs

	Including Physics
	Physics-based feature sets
	Experiments and Results

	Online Method
	Conclusion and Future Work

	Motion Annotation
	Related Work
	Annotation via Class Motion Templates
	Motion Templates
	Annotation procedure
	Experiments

	Parametrization via Class Motion Tensors
	Motion Tensors
	Parametrization Procedure
	Experiments

	Conclusion

	Motion Synthesis
	Multilinear Representation
	Introduction
	Multilinear Algebra
	Motion Warping
	Experimental Results
	Conclusion and Future Work

	Data-driven Texturing of Human Motions
	Introduction
	Overview
	Prior Terms
	Optimization procedure
	Results
	Conclusion and Future Work

	Dynamic Motion Graphs
	Related Work
	Overview
	Motion Graph Construction
	Cleaning the Intermediate Result
	Results
	Conclusion and Future Work

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

