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Der Panther 

 

Im Jardin des Plantes, Paris 

 

Sein Blick ist vom Vorübergehn der Stäbe 

so müd geworden, daß er nichts mehr hält. 

Ihm ist, als ob es tausend Stäbe gäbe 

und hinter tausend Stäben keine Welt. 

 

Der weiche Gang geschmeidig starker Schritte, 

der sich im allerkleinsten Kreise dreht, 

ist wie ein Tanz von Kraft um eine Mitte, 

in der betäubt ein großer Wille steht. 

 

Nur manchmal schiebt der Vorhang der Pupille 

sich lautlos auf –. Dann geht ein Bild hinein, 

geht durch der Glieder angespannte Stille – 

und hört im Herzen auf zu sein. 

 

Rainer Maria Rilke, 1902, Paris 
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CITES Convention on International Trade in Endangered Species of Wild Fauna and Flora 

IUCN International Union for Conservation of Nature 

COI Mitochondrial cytochrome c oxidase I gene 
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SUMMARY 
Over-exploitation through illegal wildlife trade is a major threat to a wide range of endangered 

mammal species around the world, particularly to the Felidae. Illegal trade in wild cats is 

often in the form of bones, meat, skulls, claws and skins. In many cases, this material lacks 

detailed morphological features for specific identification and constitutes a significant 

problem for law enforcement or border control to classify them as endangered, protected or 

illegal wildlife trade. Moreover, wild cat parts are often traded across multiple international 

borders and along numerous trade routes, making poaching hotspots and potential trade 

routes difficult to identify. Successful wildlife forensic casework is thus challenged by 

unresolved issues such as species identification from animal parts and derivatives and the 

tracking of their geographic origin. 

 

The specific aims of this thesis are to test the feasibility of rapid, accurate and cost-effective 

methods for species identification and geographic provenancing of felid species in wildlife 

forensic investigations. The present study focuses on a comprehensive analysis of all thirty-

eight species from the highly endangered Felidae, by applying independent lines of 

evidence: (a) DNA barcoding and (b) multi-isotopic fingerprinting. For species identification, 

DNA barcoding of mitochondrial markers was applied because of its effective use in various 

types of animal tissues (bone, hair, blood, faeces, teeth, skin). To reconstruct the geographic 

origin of an organism, stable isotope analysis via Isotope Ratio Mass Spectrometry (IRMS) 

was used as tool for wildlife forensics. 

 

For DNA barcoding a total of 277 tissue samples from 28 felid species were genetically 

analysed using two different mitochondrial genes (COI and ATP6). Species analysis via 

barcoding can potentially be compromised by the inadvertent amplification of numts (i.e., 

nuclear copies of mitochondrial DNA). Thus, reliable identification of felid species via DNA 

barcoding requires careful examination of numt contaminations and their effect on the results 

of barcode analyses. Qualitative and quantitative analysis of numts in Felidae revealed that 

numt contamination does not constitute serious limitations for reliable identification of felid 

species. The results presented in this thesis demonstrate that DNA barcoding of felid taxa 

can be reliably performed using species diagnostic authentic mtDNA and numt gene 

sequences.  

Probabilistic provenance determination of felid species based on oxygen and hydrogen 

stable isotopes has strong potential to be applied to various body tissues as an investigative 

tool in wildlife forensic science. Both bone and hair tissue samples were isotopically analysed 

for their potential to record both long- and short-term information of their geographic origin. 

Understanding the incorporation of hydrogen and oxygen isotopes from the hydrosphere via 
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diet and drinking water into animal tissues is fundamental for geographic provenancing 

analysis. For this reason, the concept of geographic source determination based on H/O 

isotopes using feline carnivore hair and bone requires confirmation from animal tissues of 

known origin and a detailed understanding of the isotopic routing of dietary nutrients into felid 

body tissues.  

We used coupled hydrogen and oxygen isotope measurements of hair (δDh, δ
18Oh) from the 

North American bobcat (Lynx rufus) and puma (Puma concolor) with precipitation-based 

assignment isoscapes to test the feasibility of isotopic geo-location of Felidae. This study 

reveals that puma and bobcat hairs do not trace the expected pattern of H and O isotopic 

variation predicted by precipitation isoscapes for North America. The effective forensic 

application of water isotopes to trace the provenance of feline carnivores is likely 

compromised by major controls of their diet, physiology and metabolism on hair δ18O and δD 

related to body water budgets. 

We further investigated, whether puma and bobcat bone phosphate varied predictably in 

their oxygen isotopic composition (δ18Op) among isotopically distinct geographic locations 

and reflected the spatial pattern of isotopic variation in precipitation (δ18Ow). Previous studies 

on mammals demonstrated that fractionation between δ18Op and δ18Ow appears to be linear 

and species-specific but deviations from a constant oxygen fractionation have been 

documented for some species. Our results show that bobcats and pumas exhibit only a 

moderate linear relationship of oxygen isotopes in precipitation water (δ18Ow) and bone 

phosphate (δ18Op). This finding contrasts with previously published studies on δ18Op from 

omnivores and herbivores. Provenance determination of modern feline carnivores, that is 

solely based on δ18Op (such as for puma and bobcat), therefore lacks the required precision 

due to the rather weak δ18Op - δ18Ow relationship. Potential explanations causing the 

deviations from a constant oxygen fractionation between δ18Op and δ18Ow in feline carnivores 

include climate, diet, animal behaviour, physiology and metabolism. 

The results of this thesis demonstrate the species-diagnostic resolution power of DNA 

barcoding and potential pitfalls in using water isotopic fingerprinting for geographic 

provenancing of felids in wildlife forensic investigations. In light of evidence presented here, 

the combination of DNA barcoding and isotope research opens up new avenues of research 

with relevance and practical applications for wildlife forensics, border control, law 

enforcement and isotope- and biodiversity research studies. 
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CHAPTER 1 
1. GENERAL INTRODUCTION 
 
1.1. The magnitude of illegal wildlife trade 

Over-exploitation through illegal wildlife trade is a major threat to a wide range of endangered 

mammal species around the world. International and national CITES treaties and laws aim to 

regulate the international trade in endangered species of wild fauna and flora. The illegal 

trade, however, continues to boom, worth a ~20 billion US$ a year in protected live animals 

and animal products [1].  Illegal wildlife trade ranges at the second place right behind illegal 

drug and arms trade [2]. The European Union (EU) represents one of the three largest 

markets for wildlife and wildlife products in the world (along with the USA and Japan) [3]. The 

elimination of internal border controls in the EU has opened up new ways for cross-border 

wildlife trade crime. Interpol considers illegal wildlife trade as a global phenomenon that has 

serious implications for biodiversity, ecosystems and economies. Ecosystems worldwide are 

being disturbed by the removal of predators and other keystone species, causing a loss of 

biodiversity. Approximately 23% of all mammal species and 27% of all carnivores are at risk 

with extinction over the next few decades (Appendix S1 and S2).  

Today the cat family Felidae are among the most threatened groups of mammals. The IUCN 

Red List of Threatened Animals 2008 includes almost half (44.4%) of the family Felidae in 

the top three categories of threat (see Appendix S3 and S4). Market surveys and seizures of 

poached animals indicate that trade in Felidae continues to impact wild populations. 

Costumers of felid trophies can still be found all over the world, and valuable material is sold 

openly, as in some countries, or as hidden merchandise on black markets [4,5]. Each year, 

millions of endangered animals are illegally killed or captured for private zoo collections, 

hunting trophies, animal furs and skins for the luxury market, ornamental objects (e.g. skulls, 

teeth and claws), traditional Asian medicine (e.g. tiger bones and penis), human 

consumption (e.g. tiger meat) and collectors. Existing laws protecting felids are often difficult 

to enforce, due to challenges encountered in identifying commercial products containing wild 

cat parts and derivatives, determining the legality of these products. Moreover, wild cat parts 

and derivatives (e.g. skull, bones, and skins) are often smuggled across continents and 

international borders, making poaching hotspots and potential trade routes difficult to identify. 

The present difficulties to implement CITES laws and regulations have direct consequences 

for endangered species in view of the enormous market for their products.  

Wildlife forensic science is a multi-disciplinary field of research which facilitates the 

identification of illegal wildlife trade for law enforcement. Scientists in this field currently 

address two challenging issues: (i) Species identification from problematic biological sources 

(e.g.: bones, processed meat, faeces, blood, hair, tissue) and (ii) geographic provenancing to 
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track the origin of an unknown animal sample. These issues are crucial in wildlife crime 

investigations, food science and in ecological studies. Prior studies presented different 

techniques to address these topics but have turned out to be either impractical or too time-

consuming for applications in mammal forensic case work [6-10]. The need for reliable, rapid 

and cost-effective tools for the identification of illegal wildlife trade has led to initiate the 

present study. Felids represent ideal study species to assess the application of (i) DNA 

barcoding for species identification and (ii) multi-isotopic fingerprinting for geographic 

provenancing. 

 

1.2. The cat family Felidae  

Felids evolved about 35 million years (Ma) ago and are now distributed over all continents, 

except Antarctica [11]. The cat family Felidae encompasses thirty-eight species [12]. Figure 1 

shows the highly resolved molecular phylogeny of all living cat species that was derived from 

autosomal, X-linked, Y-linked and mitochondrial gene segments [12]. 

 

 

Figure 1.  Phylogenetic relations among felids and outgroup taxa depicted in a maximum likelihood 
tree. Felid species are grouped into 8 major lineages (framed in coloured boxes). Scientific names and 
branches are colour-coded to depict zoogeographical distribution patterns. Estimated divergence 
dates of lineage-defining nodes are in red (Modified after [12]). 
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The taxonomic group of Felidae is ideally suited to test the feasibility of DNA barcoding and 

multi-isotopic fingerprinting as a novel forensic toolbox for the identification of illegal wildlife 

trade. The availability of comprehensive sample material from zoos and museums, a well-

documented phylogenetic taxonomy (Figure 1) and numts’s catalogue of Felidae, and high-

resolution precipitation δ18O and δD isoscapes allowed us to assess the application and 

efficiency of this forensic toolbox for specific identification and source determination of feline 

carnivores.  

 

1.3. Aims and scope of the present thesis 

The purpose of the present thesis is to test the application and validity of (i) DNA barcoding 

for species identification and (ii) multi-isotopic fingerprinting for provenance determination of 

felid species in wildlife forensic investigations.  

The thesis is subdivided in four chapters. Each chapter represents an independent study with 

introduction, materials and methods, results, discussion and conclusions. The chronological 

order of the chapters reflects the logical sequence of steps from diagnostic identification to 

provenance determination of felid species in wildlife crime investigations. The specific goals 

of the chapters are as follows: 

Chapter 2 aims to test the validity of DNA barcoding as a forensic tool for the rapid, reliable 

and cost-effective identification of felid species. Prior studies demonstrate that DNA 

barcoding can potentially be compromised by the inadvertent amplification of numts (i.e., 

nuclear copies of mitochondrial DNA). A total of 277 tissue samples (blood, muscle, hair, 

faeces) was analysed from 28 zoo felid species using two different mtDNA genes (COI and 

ATP6) to examine the type and extent of numt contaminations and their effect on the 

barcode results.  

Chapter 3 and 4 both focus on the application of stable water isotopes for provenance 

determination of Felidae using different tissues types, hair and bone, respectively. 

Chapter 3 presents the forensic investigation of stable hydrogen and oxygen isotopes in hair 

(δDh and δ18Oh) to trace the geographic origin of two endangered felid species. However, 

reliably predicting the spatial distribution of δDh and δ18Oh requires confirmation from animal 

tissues of known origin and a detailed understanding of the isotopic routing of dietary 

nutrients into felid hair. A total of 88 hair samples were examined from North American 

bobcat (Lynx rufus) and puma (Puma concolor) museum specimens originating from 75 

known sites across the United States and Canada. Coupled δDh and δ18Oh measurements 

were compared with precipitation-based assignment isoscapes to assess the control factors 

of isotopic incorporation into hair and their implications for the feasibility of isotopic geo-

location of Felidae.  
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Chapter 4 explores the oxygen isotope compositions of felid bone phosphate (δ18Op) as a 

proxy for felid provenance and migratory patterns in paleontological, archaeological, 

ecological and wildlife forensics applications. However, previous studies demonstrated that a 

complex mixture of factors are controlling mammal δ18Op and deviations from a constant 

oxygen fractionation between δ18Op and δ18Ow of ingested precipitation water have been 

documented for some species. 107 bone samples of puma and bobcat specimens of known 

origin were analysed to determine whether δ18Op varied predictably among isotopically 

distinct geographic locations and reflected the spatial pattern of δ18Ow. Different factors like 

diet, physiology, metabolism and climate were identified to potentially contribute to deviations 

in δ18Op of feline carnivores. 
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ABSTRACT 

Background 

Many feline carnivore species are endangered and severely threatened by illegal trade. 

Genetic species identification is thus essential in wildlife crime investigations to detect illegal 

trade of protected species and morphologically indistinguishable species` derivatives (e.g. 

hair, bone powder). As demonstrated for several other species, DNA barcoding has strong 

potential to be applied to animal tissues as an investigative, rapid, and cost-effective tool in 

wildlife forensic science. However, DNA barcoding can potentially be compromised by the 

inadvertent amplification of numts (i.e., nuclear copies of mitochondrial DNA). Thus, reliably 

identifying feline species via DNA barcoding requires careful examination of numt 

contaminations and their effect on the results of barcode analyses.  

 

Methodology / Findings 

We used two different mtDNA genes (COI and ATP6) to test their validity as barcode 

markers for the identification of felid species in wildlife forensic investigations. A total of 277 

tissue samples (blood, muscle, hair, faeces) were genetically analyzed and originated from 

28 felid species held in European zoos. Numt contamination was shown to be present in 

Felidae and varied among the selected mtDNA markers, tissue types, individuals and 

species. However, most individual felid taxa are characterized by unique mitochondrial and 

numt barcode sequences.  

 

Conclusions / Significance 

Felid DNA barcoding using the two mitochondrial markers ATP6 and COI is accompanied by 

numt contaminations. However, with some exceptions, authentic mtDNA as well as numt 

sequences of the COI and ATP6 gene can be used as species-diagnostic barcode markers 

applicable for felid forensic investigations. In a few cases numts can potentially impede the 

species-diagnostic performance of mtDNA barcoding in Felidae. The tissue-specific 

amplification of ATP6 numts in several felid species and a shared COI numt in domestic and 

wild cats thus require the analysis of additional tissue materials and nuclear markers. 
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2.1. INTRODUCTION 

Many carnivore species are currently threatened and focus of intense conservation concerns 

[13]. Forensic species identification is essential in wildlife crime investigations to detect illegal 

poaching and trade of protected species and species` derivatives [14,15]. Feline carnivores 

in particular are often involved in the illegal wildlife trade [11,16]. In many cases, traded 

animal products like bones, meat, skulls, claws and skins lack detailed morphological 

features for species identification. Such cases require the application of molecular genetic 

tools based on DNA sequence similarity. BLAST search, the most commonly used tool, 

enables a researcher to compare an unknown query sequence with a database of 

authenticated reference DNA sequences (e.g. species barcodes, [17]). DNA barcoding, using 

the mitochondrial cytochrome c oxidase I (COI) marker [18,19], has strong potential to be 

applied to animal tissues as an investigative, rapid, and cost-effective tool in wildlife forensic 

science [17,20-23]. However, DNA barcoding can potentially be compromised by the 

presence of numts (nuclear mitochondrial DNA: [24,25]). Numts are copies of mitochondrial 

genes that were trans-located and incorporated into the nuclear genome [24-31]. The 

inadvertent (and often unnoticed) amplification of numts in addition to, or even instead of, the 

authentic target cytoplasmic mitochondrial DNA (cymt) sequence represents a substantial 

source of contamination and a major impediment to DNA barcoding [25]. Methods to detect 

and avoid numt contamination are often laborious, time-consuming and expensive, and most 

importantly none of these methods effectively eliminates the problem [24,25,32]. However, 

numts may not imperil DNA barcoding, if their sequence divergence coincides with species 

divergence.  

Some researchers suppose that numts can be easily identified and removed from 

data analysis [33] using “anti-numt” quality control strategies as suggested by Song et al. 

[25]. However, some numts were reported to lack any molecular features for reliable 

identification and thereby perfectly camouflage the authentic mitochondrial sequences [25]. 

Failure to differentiate between numts and cymt can lead to an overestimation of the number 

of species [25], species misidentification [25,34,35], incorrect phylogenetic relationships [24], 

and thus has important implication for future species conservation strategies (e.g. gorilla: 

[32,36]).  

Hakazani Covo et al. [37] considered numts as “molecular poltergeists” with many 

facets: they feature different size distributions (<1kb to >2000kb), various degrees of 

homology with their mitochondrial counterparts, diverse distribution patterns across the 

nuclear genome, and a positive correlation with genome size [24,37,38]. Richly and Leister et 

al. [38] documented the widespread occurrence of numts in a large number of eukaryotic 

clades including plants (e.g. [39]), birds (e.g. [29,40]), reptiles (e.g. [41]), mammals (e.g. 

[42,43]), and arthropods (e.g. [24,30,44,45]). For Felidae, two well documented cases of 
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independent numt integrations have been reported to date. The first consisted of the 1.8 

MYA old and 7.9 kb long tandemly repeated numt located on the chromosome D2 of the 

nuclear genome of the domestic cat (Felis catus) [28]. The second case described an 

independent 3.5 MYA old and 12.5 kb long numt insertion located on the chromosome F2 of 

the tiger (Panthera tigris and other Panthera species) [46]. Given this widespread occurrence 

of numts, Moulton et al. [47] postulated that “the more we search for numts, the more 

common they appear to be [26,38] and their presence may be more of a rule than an 

exception”. In the future, further whole genome sequencing initiatives will continue to 

elucidate the evolutionary dynamics of numts in other species [38,46]. 

Various factors were reported to affect numt amplification when using PCR and 

include: taxon [38], tissue-type [48-50], gene region [51,52], numt age [53], and universal 

primer use [25]. Hence, a complex molecular toolbox has been developed for the avoidance 

and detection of numts (for review see: [24,25,54-56]). Methods developed to avoid numt 

amplification include RT-PCR, long-range PCR, entire mtDNA genome-amplification, specific 

primer use, mtDNA enrichment, using mtDNA-rich tissue (e.g. muscle), and dilution of DNA 

extracts. Several post-PCR approaches should help to detect and identify numts like 

restriction digest, cloning, comparative sequence analysis and translation, checking for stop 

codons, insertions–deletions (indels), or frame-shift mutations within a coding mtDNA 

sequence, checking the secondary structure of RNA genes, ambiguity check of the 

electropherograms, gel-check for the existence of multiple bands.  

Here, we provided the first large-scale DNA barcoding analysis of the cat family 

Felidae using different tissue types (hair, faeces, blood, and muscle) commonly encountered 

in wildlife forensic investigations. Felids are ideally suited to test the strength of a barcode 

approach in determining species identity. The availability of comprehensive sample material 

from captive zoo-felids, a well-established phylogenetic taxonomy of Felidae, and the 

existence of two well-documented felid-specific numts allowed us to assess the application 

and efficiency of DNA barcoding for specific identification of feline carnivores in forensic 

investigations. 

Our study was designed to test the effect of numts on DNA barcoding based on 

barcoding analyses of numt and mtDNA sequences in eight divergent lineages of Felidae. 

We used two different mtDNA markers: a 658 bp segment of the standard barcode marker 

COI located within the range of the two reported cat numts, and a 126bp fragment of the 

ATP6 gene, which was reported to be highly variable in carnivores and located outside the 

two felid numts. We then assessed the extent of numt contamination and their effect on the 

results of DNA barcoding analyses.  
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2.2. MATERIALS AND METHODS 

2.2.1. Sampling 

A total of 277 tissue samples (blood, muscle, hair, faeces) were genetically analyzed and 

originated from 28 felid species.  Zoos, veterinary pathologies and zoological museums in 

Europe (see Appendix 1) supported us with sample materials from captive zoo felids. 

Samples were either non-invasively collected from the enclosure (faeces, hair), during 

veterinary checkups or from perished animals (muscle, blood, hair). Specimens were initially 

identified by the mammal curators in the zoos who followed the species nomenclature of 

Johnson et al. [12]. Each voucher specimen tissue was labelled with the complete scientific 

species name, sex and full collection record (collectors name, collection date and location). 

Vouchers will be deposited in the DNA- and tissue bank of the Museum Koenig and data will 

be accessible via online databases (BOLD in the project Barcoding cats [BACATS]) and 

NCBI (http://www.ncbi.nlm.nih.gov/)). Tissue samples like blood, muscle and faeces were 

stored frozen or preserved in 95–99% ethanol; hairs, however, were stored dry in an 

envelope at room temperature. 

 

2.2.2. DNA extraction, PCR amplification and DNA se quencing 

DNA extraction, PCR amplification and DNA sequencing of the COI and ATP6 gene was 

performed according to the standard laboratory protocols from BOLD and the quality control 

guidelines suggested by Song et al. [25]. The complete DNA barcode analyses were 

conducted at the DNA laboratory of the Zoological Museum Alexander Koenig in 

Bonn/Germany. 

Voucher specimens were subsampled and subjected to DNA extraction using ‘DNeasy Blood 

& Tissue Kit’ (Qiagen) for muscle, blood and hair, and ‘All-tissue DNA-Kit’ (Gen-ial) for 

faeces. Hairs were decontaminated from external sources of contamination prior to DNA 

extraction using the protocol developed by Gilbert et al. [57]. The hair shafts were manually 

washed in 0.1x concentration commercial bleach solution (≈0.5% final NaClO concentration; 

‘DanKlorix’) to remove any debris or contaminant DNA that was on the outside of the hair 

shaft, then rinsed several (2-6 times) in DNA-free H2O until all traces of the bleach had been 

removed. Digestion of the hair shafts was performed with 1 M DTT (dithiothreitol) according 

to the protocol for the ‘Isolation of total DNA from hair shafts’ (QIAamp DNA Investigator 

Handbook 12/2007).  

PCRs were performed using the QIAGEN Multiplex PCR Kit.  The 20 µl PCR reaction mixes 

included 3.3 µl of ultra pure water, 10 µl of Master Mix (HotStarTaq® DNA Polymerase, 

Multiplex PCR Buffer*, dNTP Mix), 2 µl Q-Solution, 1.6 µl of each primer (20pmol) and 1.5 µl 

of extracted DNA. Two different mitochondrial protein coding markers were selected for 

amplification (Figure 1):  
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Figure 1 . Mitochondrial barcode markers.  Mitochondrial genome showing the location of the two 
felid DNA barcode markers, COI and ATP6. 

 

The 658 bp long “Folmer region” at the 5′ end of the mitochondrial cytochrome c oxidase 

subunit 1 (COI) is the standard barcode region for almost all groups of higher animals [18]. A 

216 bp amplicon of the mitochondrial ATP synthase F0 subunit 6 (ATP6) gene was included 

for DNA barcoding analyses because of three reasons: (i) it was demonstrated to be quite 

variable in carnivores [58], (ii) it represents a short “mini-barcode” which enables PCR 

amplification of degraded DNA samples [59], (iii) and it lies outside of the two reported numts 

in the tiger [46] and the domestic cat [28] genomes (Figure 2). M13-tailed degenerate 

primers were designed to accommodate variation in mtDNA sequences among feline taxa 

and to reduce the potential for preferential amplification of nuclear pseudogenes [56]. The 

following PCR primers were used for this study: ATP6_F (5´-

TGTAAAACGACGGCCAGTAACGAAAATCTATTCRCCTCT-3´) and ATP6_R (5´-CAGG 

AAACAGCTATGACCCAGTATTTGTTTTRAYGTWAGTTG-3´) originally reported by Trigo et 

al. [58]; and COI_F (5´-TGTAAAACGACGGCCAGTTCTCAACCAACCACAARGAY ATYGG-

3´) and COI_R (5´-CAGGAAACAGCTATGACTAGACTTCTGGGTGGCCRAARAA YCA-3´), 

a standard primer pair for DNA barcoding of mammals developed by Ivanova et al. [60]. In 

addition, we also tested several primers targeting nuclear genes like the LSU rDNA D1-D2 

marker [61] and another 28S marker [48]. 
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PCR thermocycling was performed as a touchdown PCR under the following conditions: 15 

min at 95°C; 5 cycles of 35 sec at 94°C, 1.30 min a t 60°C, 1 min at 72°C; 35 cycles of 35 sec 

at 94°C, 1.30 min at 57°C, 1.30 min at 72°C; 10 min  at 72°C; 15 min at 4°C and held at 12°C.  

Successful PCR amplification was examined using an agarose gel-check and the most 

intense products were selected for sequencing. PCR products were cleaned using QIAquick 

PCR Purification Kit (Qiagen) and submitted for sequencing by an external sequencing 

service (Macorgen, Korea). Contigs and sequence alignments were generated using 

Geneious Version 5.1.7 [62].  

 

Figure 2. Reported cat numts. Schematic diagram of the relative positions of the Panthera and Felis 
numt and the targeted mtDNA barcode markers (ATP6 and COI). The scale bar in Kb corresponds to 
the domestic cat (Felis catus) mtDNA complete sequence [28] aligned with the Panthera (blue) [46] 
and Felis (purple) numt [28]. Protein-coding genes and rRNAs are indicated in grey boxes. The red 
box shows the relative position of the COI barcode marker within the tiger and cat numt region. The 
ATP6 gene highlighted with a green box is located outside the two reported cat numts. Modified after 
Kim et al. [46]. 
 

 

2.2.3. Data analysis 

2.2.3.1. Identification of numts and tissue-type comparison  

Pseudogenes (numts), i.e. mtDNA fragments incorporated in the nuclear genome [24], may 

represent a source of error since PCR-based analyses will often amplify both the authentic 

mitochondrial sequence and the pseudogene. We checked protein coding sequences for 

evidence of frame-shifts, stop codons and divergences in nucleotide composition between 

sequence types that might indicate that numts are present. We cross-checked clean 

sequences with COI and ATP6 sequences from published mitochondrial genomes of the 

most closely-related taxa of the investigated species. A tissue comparison experiment using 

hair, blood, muscle and faeces of the same individual was performed for several felid species 

to check, if (i) all tissues yield consistent sequences and (ii) if these match the cymt or numt 

sequence reported for this species.  



CHAPTER 2: DNA BARCODING 
 

14 
 

2.2.3.2. Tree building and genetic distance methods 

Pairwise nucleotide sequence divergences were calculated using the Kimura two-parameter 

(K2P) substitution model [63]. A neighbour-joining (NJ) tree of K2P sequence distances 

showing intra- and inter-specific variation was created using the ‘Taxon ID tree’ function of 

BOLD. K2P sequence divergences for all levels in the taxonomic hierarchy were determined 

using the ‘distance Summary’ tool on BOLD. We used the analytical tool ‘Nearest Neighbour 

Summary’ on BOLD to calculate nearest neighbour distances.  

 

2.3. RESULTS 

2.3.1. COI barcode marker 

120 full-length COI sequences were recovered from 23 taxa (61%) of the 38 extant species 

of Felidae, distributed among 10 genera and 8 felid lineages (Appendix 1 and 2). Individual 

species were represented by multiple individuals (average = 5.3, range = 1–18) for a total of 

106 sequences of a mean length of 658 bp. The original felid dataset consisted of 267 

specimens from 28 species. However, we failed to obtain sequences from 30 specimens of 5 

species. In addition, we excluded all sequences with >1% ambiguous nucleotides from the 

analyses (n = 20). Full-length COI barcodes were obtained for about 60% of the specimens. 

The reasons for our problems with obtaining COI sequences from a number of individuals 

are unknown, but may partly be due to primer mismatches for the standard COI primers in 

several felid taxa. Another reason might be the low DNA quality and quantity of some 

samples (e.g. hair and faeces), which might prevent the recovery of PCR fragments longer 

than 200 bp, thus impeding full length COI barcode (658 bp) recovery.  

 

2.3.1.1. Putative COI numts 

We detected presumptive pseudogenes in 6 (27%) of the 22 species sequenced for COI. 

Putative numts were recovered from the following felid species: Panthera tigris, Panthera leo, 

Otocolobus manul, Felis catus, Felis silvestris, and Felis libyca. The putative numts showed 

evidence of frame shifts, stop codons and nucleotide insertions between sequence types that 

might indicate that numts are present. The COI sequences obtained from the lion (Panthera 

leo) were classified as putative numts although they lacked any evidence of stop codons. But 

like others these presumptive numt sequences showed a higher sequence similarity with one 

of the two published felid numts (Panthera tigris numt: [46]; Felis catus numt: [28]) versus the 

authentic cymt sequence from the corresponding species or its sister species. Several 

different numt haplotypes were discovered for the three species of the Felis genus, while 

Panthera tigris, Panthera leo, Otocolobus manul each exhibited only one numt haplotype 

(see Table S1). 
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2.3.1.2. COI tissue-type comparison 

COI sequences were derived from different tissue types (hair, blood, muscle, faeces) of a 

single Panthera tigris individual. All tissue types yielded a putative COI numt. The 

presumptive pseudogene sequence of the tiger showed 99% sequence similarity with the 

previous reported tiger numt [46]. Figure 3 shows the several nucleotide and amino acid 

substitutions between the tiger COI cymt and numt sequences.  

 

2.3.1.3. COI-barcode analysis 

The NJ tree of sequence divergences (K2P) at the COI region indicated that most genera 

formed cohesive units (Figure 4). Putative numts are highlighted in grey and cluster 

separately from the cymt sequences. All species possessed a distinctive set of COI cymt and 

numt sequences, which showed low intraspecific divergences. The mean K2P sequence 

distance within species was 0.2%, while the mean divergence between congeners was 28-

fold higher at 5.6% (see Table 1, Figure 5). The minimum distances to the nearest neighbour 

is 0% and thus lower than the maximum intra-specific distance of 2.03% (see Figure 6). Felis 

catus shows a critically low distance of 0% to its nearest neighbour Felis silvestris, and 

Panthera leo only differs in 1.14% from its nearest neighbour Panthera tigris. 

 

Table 1.  Pairwise COI barcode nucleotide divergences for the Felidae using K2P distances (%). 
 

Level n Taxa Number of 
comparisons 

Min. Dist 
(%) 

Mean 
Dist (%) 

Max. Dist 
(%) 

SE Dist 
(%) 

Within Species  104 21 388 0 0.177 2.032 0.021 

Within Genus 105 10 653 0 5.643 10.312 0.099 

Within Family 105 1 4419 10.306 17.055 39.928 0.091 
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Figure 4 : COI NJ tree of Felidae.  NJ tree of COI sequences from 23 species in the family Felidae. 
Species affiliations with the respective felid lineages are highlighted with coloured boxes (according to 
Johnson et al. [12]). An asterisk indicates the presence of a stop codon. COI cymt and numt 
sequences derived from Genbank were included for comparison and are framed with a yellow box.  
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Figure 5 . Pairwise comparisons of nucleotide sequence differences in COI among 23 species of 
Felidae at various levels of taxonomic hierarchy: (A) intraspecific; (B) intragenic; (C) intergenic 
differences between individuals.  
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Figure 6 . Histogram showing the distribution of the nearest neighbor distances for COI across 23 felid 
species. 

 

2.3.2. ATP6 barcode marker 

198 full-length ATP6 sequences were recovered from 28 taxa (74%) of the 38 extant species 

of Felidae, distributed among 11 genera and 8 felid lineages (Appendix 1 and 2). Individual 

species were represented by multiple individuals (average = 6.5, range = 1–18) for a total of 

198 sequences of a length of 126 bp. The original felid dataset consisted of 210 specimens 

from 30 species. However, we failed to obtain sequences from 12 specimens of 2 species. In 

addition, we excluded all sequences with >1% ambiguous nucleotides from the analyses (n = 

20). 

2.3.2.1. Putative ATP6 numts 

We detected putative numts in 13 (46%) of the 28 species sequenced for ATP6. Putative 

pseudogenes were recovered from the following cat species: Acinonyx jubatus, Felis 

silvestris, Panthera leo, Panthera onca, Panthera pardus, Panthera tigris, Panthera uncia, 

Puma yaguarundi, Puma concolor, Leopardus pardalis, Leopardus tigrinus, Leopardus 

wiedii, Leopardus geoffroyi. The putative numt sequences showed no evidence of frame 

shifts, stop codons or base pair insertions. However all putative numt sequences derived 

from 13 different felid species were completely identical and a Blast search revealed 98% 

sequence similarity with Panthera pardus (see Figure 7). This putative ATP6 numt sequence 

differed from Panthera pardus in two bases located in bp-position 54 and 80 of the amplicon 

and in one amino acid. The coding triplet in bp-location 79-81 of the ATP6 numt codes for the 

amino acid serine, whereas the corresponding cymt sequences of all other felid species code 

for the amino acid asparagine (Figure 8). 
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Figure 7.  ATP6 numt and cymt sequences of cat hair. Nucleotide and amino acid sequence 
alignment of the ATP6 gene from Panthera pardus (Genbank: NC010641) and the putative ATP6 
numt sequences. One putative ATP6 numt haplotype was obtained from hair of 13 different felid 
species. The putative ATP6 numt shows highest sequence similarity (Blast hit: 98%) with the cymt 
ATP6 sequence of Panthera pardus. The cymt and numt sequences of the protein coding ATP6 gene 
differ (i) in two bases at positions 54 and 80 and (ii) in the coded amino acid at bp-position 79-81. 
Sequence differences are highlighted with red boxes.  
 

2.3.2.2. ATP6 tissue-type comparison 

The ATP6 sequence comparison of different tissues (hair, blood, muscle) from the same 

individuals was performed for five felid species (Felis silvestris, Panthera tigris, Panthera leo, 

Panthera uncia, Puma yaguarundi) and resulted in the detection of several nucleotide and 

amino acid substitutions between different tissue types (Figure 9). ATP6 sequences obtained 

from blood or muscle yielded the authentic cymt sequence, which was confirmed by correct 

blast results. Sequences derived from hair resulted in a putative numt sequence perfectly 

matching the above mentioned putative ATP6 numt haplotype. 

2.3.2.3. ATP6-barcode analysis 

The NJ tree of sequence divergences (K2P) at the ATP6 region indicated that most genera 

formed cohesive units (Figure 10). Putative numts are highlighted in grey and cluster 

separately from the respective cymt sequences. All species possessed a distinctive set of 

ATP6 sequences, which showed low intraspecific divergences. The mean K2P sequence 

distance within species was 0.15%, while the mean divergence between congeners was 57-

fold higher at 8.55% (see Table 2, Figure 11). Regression analysis indicated that neither 

mean nor maximum divergence values were significantly correlated to sample size (mean 

dist.: R2 = 0.000, P = 0.932; max dist.: R2 = 0.079, P = 0.182) (Figure 12). The distance to 
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the nearest neighbour is more than 3.28% and thus higher than the maximum intra-specific 

distance of 0.16% (see Figure 13). The distance of one individual of Felis catus to its nearest 

neighbour Felis silvestris is 0.8% and thus less than the maximum intra-specific distance of 

1.22%.  

 

 
Figure 8.  Schematic diagram of the coding triplets and the corresponding coded amino acids at the 
79-81 bp-region in the ATP6 gene (126 bp segment) represented for cymt of almost all felid lineages, 
humans, and the putative ATP6 cat numt. The putative ATP6 cat numt differs in its codon (AGT) and 
the coded amino acid (S = Serine) from all other felids (codons: AAC, AAT; amino acid: N = 
Asparagine) and humans (codon: AAA; amino acid: K = Lysine).  
*Cymt ATP6 reference sequences were obtained from the following complete mtDNA genome 
sequences in Genbank (framed with a yellow box): Acinonyx jubatus: NC_005212.1, AY463959.1, 
AF344830.1; Panthera tigris altaica: HM185182.1; Prionailurus bengalensis: HM185183.1; Panthera 
tigris amoyensis: NC_014770.1, HM589215.1, HM589214.1; Puma concolor: AH014071.1; Lynx 
canadensis: AH014070.1; Lynx rufus: NC_014456.1, GQ979707.3; Panthera uncia: EF551004.1, 
NC_010638.1; Felis catus: NC_001700.1; Neofelis nebulosa: NC_008450.1, DQ257669.1; Panthera 
tigris: NC_010642.1, EF551003.1; Panthera pardus: NC_010641.1, EF551002.1; Homo sapiens: 
GU392106.1; Herpestes javanicus: NC_006835.1. 
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Figure 9.  Tissue-specific amplification of ATP6 numts . ATP6 sequences determined from hair, 
blood or muscle of five different felid species. Sequences obtained from blood or muscle resulted in 
the authentic cymt sequence verified by Blast sequence search. If no reference sequences were 
available in Genbank (i.e., Felis silvestris, Panthera leo, Puma yagouaroundi), the sequence matching 
the sister species was classified as the authentic cymt sequence. The putative ATP6 numts derived 
from hair of all five felids are identical and show 98% sequence similarity with Panthera pardus 
(NC_010641.1). Differences in nucleotides and amino acids between numt sequences obtained from 
hair, and cymt sequences from blood or muscle were colour-shaded and highlighted with a red box. 
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2.3.3. Nuclear DNA barcode markers 

Initial tests using primers targeting the nuclear LSU D1-D2 region [61] and another region of 

the 28S [48] showed either no amplification success or no sequence variability between the 

closely related felid species (data not shown). It is known that compared to mtDNA, nuclear 

markers show less performance in species delineation of closely related taxa due to slower 

rates of evolution in the nucleus [64], and less amplification efficiency with vertebrate 

samples [61]. 

 

Table 2 . Pairwise ATP6 barcode nucleotide divergences for the Felidae using K2P distances (%). 

 

Level n  Taxa  Comparisons  Min. Dist 
(%) 

Mean 
Dist (%) 

Max. Dist 
(%) 

SE Dist 
(%) 

Within 
Species  160 24 157 0 0.145 2 0.016 

Within Genus  161 11 165 1 9 18.919 0.112 

Within Family  161 1 1889 4.135 14.949 26.691 0.036 
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Figure 10 . ATP6 NJ tree of Felidae. NJ tree of ATP6 sequences from 28 species in the family 
Felidae. Species affiliations with the respective felid lineages are highlighted with coloured boxes 
(according to Johsnon et al. [12]). COI cymt sequences derived from Genbank were included for 
comparison and are framed with a yellow box.  
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Figure 11 : Pairwise comparisons of nucleotide sequence differences in ATP6 among 28 species of 
Felidae at various levels of taxonomic hierarchy: (A) intraspecific; (B) intragenic; (C) intergenic 
differences between individuals. *Putative ATP6 numts were excluded for this analysis. 
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Figure 12 . The relationship between maximum and mean intraspecific sequence divergence (K2P) at 
ATP6 and the number of individuals analysed for each species (mean dist.: R2 = 0.000, P = 0.932; 
max dist.: R2 = 0.079, P = 0.182). 
 

 

 
Figure 13.  Histogram showing the distribution of the nearest neighbor distances for ATP6 across 23 
felid species. 
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2.4. DISCUSSION 

Amplification and sequencing of felid sample material provided 120 COI sequences and 198 

ATP6 sequences. They originate from a total of 28 species for ATP6 and 23 species for COI 

(see Appendix 1). The sequences were generated to assess their validity as barcoding 

markers and to identify numt contaminations that could potentially constitute substantial 

challenges for reliable species identification. To date, numts in felids have been identified in 

two species- the tiger [46] and the domestic cat [28] (see Figure 2).  

 

2.4.1. Characterization of numts 

Among the 120 sequences generated for COI, 43 sequences of 6 species exhibited high 

sequence similarities with previously reported numts (see Figure 4). The amplification of 

numts was most likely caused by the interaction of two different factors: (i) the existence of 

very high numt copy numbers in the COI region of cats [51] and (ii) the use of universal 

Folmer primers preferentially targeting numt sequences. Numts are generally more 

conserved among taxa, due to slower rates of evolution in the nucleus, and can thus 

represent ideal binding sites for universal primers [25,32,65]. 

Among the 198 sequences generated for ATP6, 21 sequences of 13 species indicated 

putative numts (see Figure 10). Two factors most probably controlled numt amplification 

predominately from hair samples: (i) hair exhibit rather low mtDNA content and ATP6 primers 

thus most likely anneal to nuclear sequences of mitochondrial origin (numts), present in 

higher copy numbers [48] and (ii) the existence of high numt copy numbers in the ATP6 

region of cats [51]. High copy numbers of numts homolog to the ATP6 gene region result 

from multiple independent numt insertions into the cat genome since the origin of Felidae 

approximately 10.8 MYA ago [12]. These numts are distributed across most cat 

chromosomes and include gene regions present (e.g. COI) and absent (e.g. ATP6) in the 

previous reported cat numt [28] and tiger numt [46]. 

2.4.2. Criteria for numt identification 

For the identification of putative numts in the ATP6 and COI dataset, we applied the “anti-

numt” quality control strategies suggested by Song et al. [25]. The numt identification was 

based on the following criteria: 

 

2.4.2.1. COI numts 

In most species, COI numt sequences could be differentiated from cymt protein coding gene 

sequences due to the presence of extra stop codons, insertions–deletions (indels), or frame-

shift mutations (see Table 1). The COI sequences generated from lions, however, lacked 

these typical molecular features. Similarly, Moulton et al. [47] detected a number of COI 

numts without stop codons or indels, making it difficult to distinguish them from mitochondrial 
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orthologues. However, we could identify this COI lion numt based on its high sequence 

similarity (97%) with the previous reported tiger numt. The observation of shared numts in 

two sister species (lion and tiger) can be explained by the age of the reported tiger numt. The 

tiger numt diverged from cymt around 3.45 MYA ago, exactly when the Panthera lineage 

began to diverge from the common felid ancestor [46]. This means that all Panthera species, 

and hence also the lion (Panthera leo), exhibit a similar numt haplotype belonging to the 

reported tiger-numt lineage.  

 

2.4.2.2. ATP6 numts 

ATP6 numt sequences lack additional stop codons, insertions–deletions (indels), or frame-

shift mutations for reliable identification (see Figure 10). ATP6 numts were hence identified 

by unusual amino acid changes absent from the cymt of all other Felidae. Uncommon amino 

acid changes were previously used by Magnacca et al. [66] to differentiate numts and cymt 

sequences. The unusual  amino acid Serine in position 79-81bp of the ATP6 numt not only 

differs from the amino acid Asparagine common in cymt of all other felids but also from the 

amino acid Lysine typical for humans (see Figure 8). Thereby we could not only corroborate 

the identity of a putative ATP6 numt but also exclude an inadvertent cross-contamination 

with human or felid DNA. 

Despite the rigorous implementation of the above mentioned criteria for numt 

identification, we can not fully exclude that numts remained undetected in our dataset. Many 

studies document the failure of numt identification and inadvertent incorporation of numts in 

data analysis and this certainly poses a challenge for quality control measures typically 

suggested for standard DNA barcoding studies (e.g. [25,37]). For example, Anthony et al. 

[67] and others documented not only the exclusive amplification of either numts or authentic 

cymt sequences but also the presence of  numt recombinants (co-amplifications), where 

cymt and numts combine during PCR (e.g. [32,53,67,68]). 

2.4.3. Tissue-specific numt amplification 

Several studies documented that DNA extracted from noninvasive samples may prove 

particularly likely to yield numts [32,42,48]. To test whether numts are preferentially amplified 

from specific tissue types, barcode sequences were generated from hair, blood muscle and 

faeces of a single specimen.  

COI sequences were obtained from a single tiger individual using four different tissues types. 

All sequences obtained matched with 99% identity the previous reported tiger numt [46] 

(Figure 3). We conclude that at least for the tiger, numt amplification cannot be excluded by 

tissue-type selection. Similar observations of tissue-independent numt amplification were 

reported for muskox by Koloktronis et al. [49]. Explanations for this phenomenon include the 



CHAPTER 2: DNA BARCODING 
 

29 
 

high copy number of numts in the COI gene region [51,52], numt age [52,53], and universal 

primer use [25]. 

Tissue-specific numt amplification in the ATP6 gene was performed for 5 species using 

either blood or muscle and hair (see Figure 9). For all species tested, sequences generated 

from hair samples resulted in the amplification of one putative ATP6 numt haplotype. 

Sequences obtained from muscle and blood, however, provided the authentic cymt 

sequences. We conclude that for the ATP6 gene, numts are preferentially amplified from 

specific tissues like hair. This phenomenon has previously been reported by Greenwood et 

al. [48] for elephants.  A possible explanation for this observation is that hair has a relatively 

low mtDNA content and hence numts may be preferentially retrieved over cymt by PCR [48]. 

Similarly, blood from birds has been observed to predominately yield numt sequences, which 

has been attributed to the fact that bird erythrocytes are nucleated and thus contain 

predominantly nuclear DNA as target for numt amplification [50].  The molecular genetic data 

reported here for ATP6 constitute the first report that tissue-specific numt amplification also 

exists in Felidae. For ATP6 the tissue specific amplification of authentic cymt DNA is 

considered to be dependent on the favourable ratio of mtDNA versus nuclear DNA copies 

[55]. Mitochondrial-rich tissues like muscle and mammalian blood, which contains anucleated 

red blood cells, represent a good source of mtDNA und thus enable organellar cymt DNA 

amplification [24,48]. However the numt age might also play an important role in tissue-

specific numt amplification [52,53]. We conclude that the ATP6 numt sequence haplotype 

derived from hair of several felid species, must have diverged from cymt around 10 MYA 

ago, before the eight Felidae lineages began to diverge from the common felid ancestor. The 

estimated old numt age seems to be correlated with the tissue-specific numt amplification. 

Similar observations were made for gorillas by Chung et al. [52], who found that 

“phylogenetically more anciently transferred numts were amplified with a greater incidence 

from the gorilla faecal DNA sample than from the high-quality gorilla sample”. 

Unlike for ATP6, numt amplification in the COI region of the tiger was shown to be 

independent of the tissue type. This is probably primarily related to the relative copy number 

of numts homolog to the corresponding protein-coding genes (see Figure 14). The domestic 

cat genome harbours more copies of independent numt insertions homolog to the COI gene 

versus the ATP6 gene region [51], (Figure 14). We assume that a similar distribution of numt 

copies (homolog to the COI gene) exists in the tiger genome based on observations made by 

Patterson et al. [69] for chimpanzees and humans. They found that the proportion of shared 

numts (that are orthologous numts present in both sister species genomes at identical loci) 

can be quite high (80%) for species which diverged less than 6.3 million years ago [70]. 

Antunes et al. [51] therefore concluded that “the domestic cat numts’s catalogue has 

potential utility for studies across the 38 species of the Felidae family, which originated less 
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than 10.8 million years ago [12].” Our observation of numt contaminations existing for both 

mtDNA gene regions and different felid taxa (other than domestic cat and tiger, for which 

numts where previously reported) confirm this hypothesis of shared numts.  

 
Figure 14.  Numt fragments (in red/pink) are mapped onto domestic cat chromosomes. Their 
molecular dating (MYA—million of years ago) is given on the right side. MtDNA genes are highlighted 
in green. The relative position of independent numt copies within the ATP6 and COI barcode marker 
region is marked with a red and blue box, respectively. The Lopez-numt copy is represented in yellow. 
Modified after Antunes et al. [51]. 
 

2.4.4. DNA barcoding analysis with numts 

The ultimate goal of the COI and ATP6 barcoding study conducted here was the 

identification of felid species. The current threat to Felidae imposed by humans (i.e., illegal 

poaching and trade), require a reliable tool for rapid molecular identification in wildlife 

forensic investigations. As outlined above numts constitute a potential challenge for species 

identification in DNA barcoding analyses. Numt contamination was also found among our 

sequence data sets. Moreover, our results confirm that various factors contribute to the 

amplification of numts such as taxon [38], gene region [51,52], individuals [48], numt age 

[53], universal primer use [25] and tissue-type [48-50].  
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Despite strong numt contamination, our analyses revealed that most individual felid taxa are 

characterized by unique and species diagnostic barcode sequences. The barcode 

sequences obtained indicate that this holds true for both ATP6 and COI (see Figure 4 and 

10). As such the unique features of individual felid sequences provide a molecular database 

that can be used for the identification of unknown felid material for forensic applications. The 

central concept in forensic species identification is to match an unknown sequence of a 

target item to a reference sequence through DNA similarity searches (Blast search: [71]). All 

sequences obtained in this study constitute the felid marker reference database and will be 

deposited in both BOLD and NCBI sequence databases. The intraspecific variability and 

authenticity of individual felid species was verified by analysing multiple voucher specimens 

(see Figure 12). Our findings thus indicate that both authentic cymt as well as numt 

sequences of the COI and ATP6 gene can be used as species-diagnostic barcode markers 

applicable for felid forensic investigations. The few exceptional cases, where the COI and 

ATP6 barcode markers show less performance at species level identification, are indicated 

below:   

The COI sequences generated so far allow the rapid and reliable identification of 21 felid 

species. To date, however two felid taxa are challenging. Felis catus and Felis silvestris 

share the same COI numt haplotype (see Figure 4), which enables generic-level assignment 

but not the identification of individual species. Low levels of species resolution are not a 

specific problem of numts. The diagnosis of species using authentic mtDNA was previously 

reported to be particularly difficult when species are young [72], or affected by hybridisation 

and introgression (e.g. [73]). Indeed, precisely these factors apply to F. catus (Domestic cat) 

and F. silvestris (European wild cat). The two sister species diverged less than 1 MYA ago 

(e.g. [12,74]) and introgressive hybridization between wild species and their domesticated 

relatives is a widespread phenomenon also common in these taxa (e.g. [75-77]). We 

conclude, that it is impossible for any mitochondrial-based barcode system, no matter 

whether cymt or numts, to fully resolve species identity in F. catus and F. silvestris so that 

supplemental analyses of one or more nuclear genes will be required (e.g. [78]). A similar 

situation has been reported for the differentiation of wolf and dog [79]. 

The ATP6 sequences generated so far allow the rapid and reliable identification of 28 felid 

species. To date, however amplification of ATP6 numts from hair of several felid species 

remains problematic. In particular, phylogenetically more anciently transferred numts, like 

this ATP6 numt, can be preferentially amplified from tissues like hair (e.g. [48,52]) regardless 

of which felid species was investigated. In wildlife forensic applications, the tissue-specific 

amplification of this ATP6 numt does not allow any inference about the identity of the felid 

species under investigation. However, a solution to this problem is either the DNA analysis of 

other tissues or the additional amplification of another barcode marker like the COI gene.   
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We conclude that in general the presence of numts can potentially compromise DNA 

barcoding analyses but in certain cases does not necessarily affect reliable species 

diagnosis. Our study demonstrates that DNA barcoding of well-documented felid taxa can be 

reliably performed using species diagnostic cymts and numts of the ATP6 and COI gene. 

This holds true even, if we cannot fully exclude unidentified numt contamination in our 

dataset. The availability of an existing numts catalogue for the domestic cat [51] and detailed 

investigation of further felid numts in this study form the basis for effective cymt-numt 

barcode-based species identification of Felidae in future forensic investigations.  

 

2.5. CONCLUSIONS 

The analysis of two felid DNA barcode markers leads to the following principal conclusions: 

 

a. Felid DNA barcoding using the two mitochondrial markers ATP6 and COI is 

accompanied by numt contaminations. Except for a few cases, numt amplification 

does not constitute serious limitations for reliable identification of felids species. 

b. The full extent of numts present in felids was not a priori known and varied among the 

selected mtDNA markers, tissue types, individuals and species. 

c. In a few cases numts can potentially compromise the species-diagnostic performance 

of the felid mtDNA barcoding system in wildlife forensic investigations. The tissue-

specific amplification of ATP6 numts in several felid species and a shared COI numt 

in domestic and wild cats require the analysis of additional tissue materials and 

nuclear markers. 
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ABSTRACT 

Background 

Several felids are endangered and threatened by the illegal wildlife trade. Establishing 

geographic origin of tissues of endangered species is thus crucial for wildlife crime 

investigations and effective conservation strategies. As shown in other species, stable 

isotope analysis of hydrogen and oxygen in hair (δDh, δ
18Oh) can be used as a tool for 

provenance determination. However, reliably predicting the spatial distribution of δDh and 

δ
18Oh requires confirmation from animal tissues of known origin and a detailed understanding 

of the isotopic routing of dietary nutrients into felid hair. 

 

Methodology/Findings 

We used coupled δDh and δ18Oh measurements from the North American bobcat (Lynx rufus) 

and puma (Puma concolor) with precipitation-based assignment isoscapes to test the 

feasibility of isotopic geo-location of Felidae. Hairs of felid and rabbit museum specimens 

from 75 sites across the United States and Canada were analyzed. Bobcat and puma lacked 

a significant correlation between H/O isotopes in hair and local waters, and also exhibited an 

isotopic decoupling of δ18Oh and δDh. Conversely, strong δD and δ18O coupling was found for 

key prey, eastern cottontail rabbit (Sylvilagus floridanus; hair) and white-tailed deer 

(Odocoileus virginianus; collagen, bone phosphate).  

 

Conclusions/Significance 

Puma and bobcat hairs do not adhere to expected pattern of H and O isotopic variation 

predicted by precipitation isoscapes for North America. Thus, using bulk hair, felids cannot 

be placed on δ18O and δD isoscapes for use in forensic investigations. The effective 

application of isotopes to trace the provenance of feline carnivores is likely compromised by 

major controls of their diet, physiology and metabolism on hair δ18O and δD related to body 

water budgets. Controlled feeding experiments, combined with single amino acid isotope 

analysis of diets and hair, are needed to reveal mechanisms and physiological traits 

explaining why felid hair does not follow isotopic patterns demonstrated in many other taxa.  
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3.1. INTRODUCTION 

Many carnivore species are currently threatened and are the focus of intense 

conservation concern [13]. Feline carnivores are often subject to illegal wildlife trade, thus the 

ability to estimate the geographic provenance of illegal tissue samples would constitute 

important information in wildlife crime investigations [11]. Probabilistic provenance 

determination based on O and H isotopes has strong potential to be applied to animal tissues 

as an investigative tool in wildlife forensic science [80-83]. Validation of isotopic methods has 

relevance and practical application in various fields like wildlife forensics and conservation 

biology.  

Measurements of the stable isotopes of hydrogen (δD) and oxygen (δ18O) of animal 

keratinous tissues have been used to track the geographic origin and migratory patterns in a 

wide variety of animals (e.g. [80,81,84-86]). To date, this approach is based on strong 

empirical correlations between δD values in animal tissues (δDt) with the isotopic 

composition of the amount-weighted mean annual or mean-growing season precipitation 

(δDw). The latter correlates inversely with latitude and elevation across the continents, 

especially in North America [87-89]. Few studies have coupled δD and δ18O measurements 

of the organic or inorganic fractions of animal tissues despite the strong covariance between 

these isotopes in environmental waters (hairs and nails: human [85,90-93]; CO2, body water, 

hair and enamel: woodrat [94]; chitin: brine shrimp [95]; chitin: chironomids [96]; plasma, 

blood and feathers: birds [97,98]; fat, blood, muscle, hair and collagen: pig [99]; carbonate 

and phosphate tooth enamel, bone collagen, subcutaneous fat and hair: laboratory rat [100]). 

Strong correlations between δDw and δDt have been found for many species [81]. The 

hydrogen and oxygen isotopic composition of animal tissues (hair, feathers, teeth) is related 

to the isotopic composition of body water (e.g. [101-104]) and ultimately to that of ingested 

water. Influences on isotopic composition of body water (δDbw, δ18Obw) of animals include 

abiotic (climate, drinking water) and biotic (diet and physiology) factors [105-112]. The 

incorporation of H and O isotopes from the hydrosphere via diet and drinking water into 

animal tissues is a complex process and our understanding of how these mechanisms affect 

the nature and variability of the empirically observed relationships is still poor (e.g. [90]). 

However, to reliably track the geographic origin of an animal requires a detailed 

understanding of the metabolic routing of dietary nutrients and mechanisms of H and O 

isotopic incorporation into animal tissues [113].  

Hydrogen and oxygen in animal tissues can be derived from two potential sources: 

dietary nutrients and body water, whereas oxygen is also derived from inhaled air. The body-

water pool, in turn, is derived from ingested drinking-, food-, and metabolic-water produced 

during the catabolism of food macromolecules [105,107,109,112,114-116]. The relative 
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contributions of all these sources to protein synthesis (i.e. keratin and collagen) are likely to 

vary among animals [117-119]. Controlled experiments are key to understand and model the 

incorporation of H and O isotopes into proteinaceous tissues like keratins (hair and feathers), 

collagen, and chitin, and have so far been developed for only a small number of species like 

woodrat (Neotoma cinerea and Neotoma stephensi; [94]), rat (Rattus norvegicus; [100]), 

Japanese quail (Coturnix japonica; [101]), house sparrow (Passer domesticus; [98]), humans 

(Homo sapiens; [85,90-93,104]), pig (Sus scrofa domesticus; [99]), brine shrimp (Artemia 

franciscana; [95]) and chironomids (Chironomus dilutus; [96]). These studies revealed that 

keratin δD and δ18O reflect both biological (diet, physiology) and environmental signals 

(water, geographic movement, climate; [90]). Deviations from a strong coupling between δDt 

and δDw, and δ18Ot and δ18Ow have been shown (e.g. [90,120]) and may be linked to: 1) 

climatic factors like relative humidity [114,121]; 2) isotopic disequilibrium of food and water 

contributions to δDt [104]; 3) possible trophic-level effects on δDt [122]; 4) impacts of 

metabolic rate and drinking water flux on δDbw and δ18Obw [103,105,107,109] (δ18O of 

phosphate (δ18Op) in urinary stone [123], bone [102] and tooth [124]); and 5) dietary and 

physiological controls on δ18Oh and δDh of hair [90]. 

Previous studies that successfully applied combined δDt and δ18Ot analysis to track 

the geographic origin and migration of animals focused on herbivores and omnivores (e.g. 

[80,86,94,98,99,101]). The fact that this method performs particularly well in omnivorous 

modern humans [85,90-93,125] is not surprising, because humans are well-hydrated and 

typically consume a constant local water source (e.g. tap water: [126-128]) and consistent 

homogenous diet across regions (e.g. fast food: [129]). But even for humans, hydrogen 

isotopic incorporation during keratin synthesis likely varies between different keratinous 

tissues like nail and hair [130]. Free-ranging carnivores, however, differ significantly in their 

nutritional, physiological and metabolic characteristics from herbivores and omnivores 

[131,132]. The house cat, Felis catus, is the most thoroughly studied mammalian carnivore 

[131]. Felids are strict carnivores and thus obtain much of their body water from the 

consumption of prey [131]. Owing to the lack of empirical H/O isotope studies on strict 

carnivores (other than raptors) it is unclear whether carnivore hairs track the spatially 

predictable meteoric water signal (despite their integrative high trophic position). However, 

Kohn [107] hypothesized, that “carnivore bone phosphate should track the meteoric water 

signal more closely than do herbivores”. For this reason, the concept of geographic source 

determination based on H/O isotopes using carnivore hairs as an investigative tool in wildlife 

forensic science needs to be tested.  

Here, we provided the first large-scale δD and δ18O analysis of hair samples from wild 

individuals of two North American feline carnivores, bobcat (Lynx rufus) and puma (Puma 

concolor). Both species were ideally suited to test the strength of the isotope approach in 
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assigning geographic origins of Felidae. The availability of skins from museum collections, 

high-resolution precipitation δ18O and δD isoscapes for North America and ecological 

differences between these study animals (e.g. body size, home-range size, habitat use, 

distribution and prey preferences) allowed us to assess the application and efficacy of H/O 

isotope fingerprinting for forensic spatial assignment in feline carnivores. 

Our study was designed to determine whether puma and bobcat hairs varied 

predictably in their isotopic composition among isotopically distinct geographic locations and 

reflected the spatial pattern of isotopic variation in precipitation. Furthermore, we examined if 

species- or sex-specific effects existed, and whether these could be explained by differences 

in diet, body size and foraging ecology. Our results demonstrated that the application of 

water isotopes for provenance determination of feline carnivores was compromised by major 

controls of their diet, physiology and metabolism on δ18Oh and δDh. The controlling factors 

and possibilities to quantify these will be discussed. 

 

3.2. MATERIALS AND METHODS 

3.2.1. Study species and sampling  

Eighty-eight hair samples from two North American felid species bobcat (Lynx rufus, 

n = 45) and puma (Puma concolor, n = 30), as well as the eastern cottontail rabbit 

(Sylvilagus floridanus, n = 13), the latter representing the preferred prey species of the 

bobcat, were obtained from the Smithsonian National Museum of Natural History in 

Washington D.C. and the Utah Museum of Natural History, Utah. Published isotope data of 

bone-phosphate (δ18Op) and bone collagen (δ18Obc) from white tailed deer (Odocoileus 

virginianus), constituting the major prey of the puma, were included for comparative analysis 

[133]. For each specimen, geographic location, sex and elevation was recorded (Table S1). 

All specimens studied originated from 75 different sites across the United States and Canada 

(Figure 1). Sample locations ranged in latitude from 25.8 to 48.2ºN and longitude from 124.4 

to 65.8ºW, covering strong altitudinal (2 to 3400m) and isotopic gradients (δ18Oriv = –17.5‰ to 

–0.1‰; δDriv = –132.7‰ to 0.6‰). 

 

3.2.2. Stable isotope analysis 

Sample preparation and H/O isotope analysis were conducted at Environment 

Canada. All keratin samples were physically cleaned of adhering debris and washed twice in 

a 2:1 mixture of chloroform and methanol to remove lipids from the keratin surface. After 

cleaning, all samples were air-dried for 24h. Hair samples were then cut into 0.5cm 

increments (H: 350±20µg; O: 700±50µg) and weighed into pre-combusted silver foil capsules 

for H and O isotope ratio analysis. For δD, in order to account for exchangeable hydrogen in 

hair proteins, we used comparative equilibration with in-house keratin working standards, 
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BWB (–108‰), CFS (–147.7‰), CHS (–187‰), for which the δD value of non-exchangeable 

H had been previously established [134]. For δ18O, we used the IAEA benzoic acid standards 

IAEA 601 and 602, with assigned δ18O values of +23.1‰ and +71.4‰, respectively. For H/O 

isotopic analyses, samples and reference materials were separately pyrolyzed on a 

Hekatech HTO elemental analyser at 1350ºC to H2 and CO for isotopic analysis on an 

Isoprime™ dual-inlet isotope-ratio mass spectrometer. The reference standards were used to 

normalize unknown samples to the Vienna Standard Mean Ocean Water-Standard Light 

Antarctic Precipitation (VSMOW-SLAP) standard scale [134].  

 
Figure 1. Map of sampling sites. Sample locations for both felines bobcat (n = 45) and puma (n = 
30) as well as their preferred prey species eastern cottontail rabbit (n = 13) and white-tailed deer (n = 
31,[133]), respectively, plotted on the δ18O precipitation map of North America [87].  
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3.2.3. Estimates of drinking water isotope composit ions ( δD, δ18O)  

The H and O isotopic composition of water ingested by both felid species indirectly 

from their prey were inferred from modelled isoscape values [135] as well as measured river 

water values across North America [136,137]. It was assumed that the place of death of each 

puma and bobcat reflected their lifetime habitat. For each locality the average δD and δ18O 

values for precipitation were determined using the Online Isotopes in Precipitation Calculator 

(OIPC) version 2.2 (http://www.waterisotopes.org). The OIPC provided a model estimation of 

long-term annually or monthly averaged precipitation isotope ratios at specified locations 

through spatial modelling of a large database of precipitation isotopic data covering the time 

period 1960–2004 [87,135]. The δD and δ18O data of the OIPC model were compared to 

those measured for local river waters [136,137]. In general, there was a good correlation 

between δDriv and δ18Oriv and δDw and δ18Ow for relatively small- to medium-sized drainage 

catchments (<130,000km2) [86]. As puma and bobcats have smaller home-range sizes 

(female bobcat: 21.7km2, [138,139]; female puma 175.8km2, [138]) local river water should 

reflect the average δD and δ18O values of ingested prey-derived drinking water. Therefore 

we compared the hair δDh and δ18Oh data with the river water data.  

Bobcat and puma hair isotope values were plotted against amount-weighted long-

term annual, spring (three months mean of March, April, May) and summer (three months 

mean of June, July and August) precipitation δDw and δ18Ow values, because the formation 

and isotopic incorporation of cat hair is limited to a rather short time period. For instance hair 

growth in domestic cats is not continuous [140], but rather includes an anagen phase of 

active growth and a telogen phase of rest [141]. The hair-growth phase takes 6-8 weeks and 

70% percent of the hair follicles are in the anagen phase during the summer [142]. Isotopic 

signals from drinking water and prey consumed during the anagen phase of growth are most 

likely integrated into the growing hairs. For this reason we related the isotope values of hair 

δDh and δ18Oh not only to annual average δDw and δ18Ow values but also to seasonal spring 

and summer precipitation to test if a better relation with water isotope values of the likely 

main hair growing season was obtained (Table S2).  

 

3.2.4. Statistical analysis 

First, we analysed the H and O isotopic variation of puma and bobcat hairs among 

locations and their correlation with the large-scale patterns of isotopic variation in 

precipitation. We tested whether the correlations significantly changed when using the 

annual and summer modelled precipitation or local river water data (Table S2). We 

compared hair H and O isotope data of predators and respective prey species and tried to 

establish a calibration equation between river water and hair for a feline carnivore. 

Relationships between mean annual δ18Oriv, δDriv and δ18Oh, δDh of puma, bobcat and rabbit 
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hairs were investigated using linear regressions (Figure 2 and 3). We also examined the 

relationship between δ18Oh and δDh (Figure 4). The effects of species, age, sex, seasonal 

precipitation and relative humidity on hair isotope values were examined using a General 

Linear Model (GLM) (Table S2). Statistical tests were conducted using XLSTAT (V 7.5.2). 

 
Figure 2. Hydrogen isotope values of keratin relati ve to river water. Plot of δD of hair (δDh) from 
bobcat, puma and eastern cottontail rabbit as well as bone collagen (δDbc) from white-tailed deer [133] 
vs. mean annual δD of river water (δDriv). 
 

 
Figure 3. Oxygen isotope values of keratin relative  to river water. Plot of δ18O of hair (δ18Oh) from 
bobcat, puma and eastern cottontail rabbit and bone phosphate (δ18Op) from white-tailed deer [133] 
vs. mean annual δ18O of river water (δ18Oriv). 
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3.3. RESULTS 

All hair δDh and δ18Oh values were plotted against mean annual δDriv and δ18Oriv 

values because using either amount-weighted mean annual, summer (June, July and 

August) or spring (March, April and May) OIPC modelled precipitation values did not 

significantly change the results (Table S2). The δ18Oh - δ18Ow correlation of bobcats was 

slightly improved by including relative humidity in the regression (R2 = 0.21, p = 0.01, n = 44). 

Relative humidity did show a significant modest effect on δ18Oh of bobcats (R2 = 0.21, p = 

0.002, n = 44) but no effect on δ18Oh of puma (R2 = 0.00, p = 0.818, n = 30). Relative 

humidity, however, did not affect δDh of bobcats (R2 = 0.05, p = 0.146, n = 44) and puma (R2 

= 0.068, p = 0.164, n = 30) (Table S2). The isotope composition of the analyzed hair samples 

spanned a range of 99.3 ‰ for δDh and 12.6 ‰ for δ18Oh in bobcat, and 95.4 ‰ for δDh, and 

18.2 ‰ for δ18Oh in puma (Figures 2 and 3). No significant relationship was found between 

δDh and δDriv for both species (bobcat: R2 = 0.005, p = 0.65, n = 44; puma: R2 = 0.040, p = 

0.291, n = 30) (Figure 2). Likewise δ18Oh and δ18Oriv were not significantly correlated (bobcat: 

R2 = 0.030, p = 0.261, n = 44; puma: R2= 0.055, p = 0.211, n = 30) (Figure 3). No effect of 

sex on the isotopic relationship between hair and water was observed for both species 

(Table S2). There was a weak correlation between δDh and δ18Oh values of the same hair 

samples in bobcat (R2 = 0.195, p = 0.003, n = 43) but not in puma (R2 = 0.0002, p = 0.939, n 

= 30) (Figure 4).  

 
Figure 4. Hydrogen and oxygen isotope ratios of ker atin. Hydrogen and oxygen isotope 
compositions are shown for hair samples (δDh, δ

18Oh) from puma, bobcat and eastern cottontail rabbit 
as well as collagen (δDbc) and bone phosphate (δ18Op) data from white-tailed deer [133]. 
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Results for the hair isotope compositions of cottontail rabbits exhibited a strong δDh–δDriv 

(δDh: R
2 = 0.81, p < 0.0001, n = 13) and a moderate δ18Oh – δ18Oriv (δ

18Oh: R
2 = 0.25, p = 

0.083, n = 13) positive relationship (Figures 2 and 3). The eastern cottontail rabbits also 

displayed a significant positive correlation between δDh and δ18Oh values of the same hair 

samples (R2 = 0.571, p = 0.003, n = 13) (Figure 4). 

3.4. DISCUSSION 

Both puma and bobcat lacked the expected correlation between water isotopes in 

local water and hair, and also exhibited a complete decoupling between δ18Oh and δDh. This 

finding contrasted strongly with results from numerous previously published studies on 

keratin tissues of omnivores and herbivores. Hence, tracing the provenance of feline 

carnivores such as puma and bobcat based on δ18Oh and δDh isoscapes does not appear to 

be possible, as individuals could not be reliably placed on δ18Ow and δDw maps. Potential 

explanations for this lack of correlation between hair and ambient water isotope compositions 

are discussed below. 

 

3.4.1. Can relative humidity affect carnivore δ
18Oh and δDh?  

In our study, relative humidity showed a significant modest effect on δ18Oh of bobcats 

(R2 = 0.21, p = 0.002) but not on puma (R2 = 0.00, p = 0.818) (Table S2). Previous studies on 

mammalian bone phosphate showed that relative humidity controls the δ18Op values of 

herbivore species with low drinking water requirements (e.g. [107]). For example, δ18Op 

values of Australian macropods [114], rabbits and hares [121] have been shown to correlate 

strongly with changes in relative humidity independent of δ18Ow, whereas the δ18Op of North 

American deer [115] were influenced by both relative humidity and δ18Ow. Low humidity 

increases the rate of evaporation of surface water and evapotranspiration of leaf- and grass-

water and thus leads to oxygen isotopic enrichment effects in plants [143,144]. Drought-

tolerant animals who obtain most of their water from plants thus reflect levels of 

environmental humidity, in particular their δ18Op increases with decreasing relative humidity. 

However, Kohn [107] hypothesized that the importance of relative humidity diminishes with 

increasing trophic level. Our data support Kohn’s hypothesis that predators are less 

controlled by relative humidity than herbivores. Bobcat δ18Oh compositions were weakly 

affected by relative humidity (R2 = 0.21, p = 0.002), most likely because they prey upon 

rabbits, whose δ18Op compositions are humidity dependent (R2 = 0.86; [121]). In contrast, 

puma δ18Oh compositions were not influenced by relative humidity (R2 = 0.00, p = 0.818), 

probably because they feed on white-tailed deer, whose δ18Op is affected by both relative 

humidity and δ18Ow [115]. Unlike oxygen isotopes, δDh values of both feline carnivores were 

not influenced by relative humidity (bobcat: R2 = 0.05, p = 0.15; puma: R2 = 0.07, p = 0.16). 
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Similar observations were made for δDbc (bone collagen) of white-tailed deer by Cormie et al. 

[145]. We conclude that relative humidity particularly affects δ18Ot of predators (e.g. bobcats) 

that feed on drought -tolerant herbivore species like rabbits. However, relative humidity did 

not explain the lack of a correlation between δDh - δ
18Oh observed in both felids we studied. 

 

3.4.2. Does an isotopic disequilibrium between food  and water affect δDh? 

It was documented previously [90,104], that δDh is not well correlated with δDw, if (i) 

ingested food or water sources (e.g. exotic foods, marine-based diet, high altitude food or 

snow melt drinking water) are not isotopically related to local meteoric water and/or (ii) 

migration between isotopically distinct habitats takes place. We tested whether the ingested 

food sources (i.e. key prey species) of bobcat and puma were in disequilibrium with δDw, and 

so caused the lack of a correlation between H/O isotopes in precipitation and those in felid 

hair. In North America, the preferred prey species of puma is the white-tailed deer 

(Odocoileus virginianus) [146], whose δ18O of bone phosphate (δ18Op) [115] and δD bone 

collagen values (δDbc) [133] strongly correlate with δ18Ow and δDw, respectively (Figure 2 and 

3). In contrast, bobcats mainly prey on lagomorphs [147], whose δ18Oh and δDh values we 

also found to show a direct relationship with δ18Ow and δDw (Figure 2 and 3). Thus the 

oxygen and hydrogen isotopic composition of prey are not reflected in the hair of their 

respective predators. Cats are not obligate drinkers [148] and hence isotopic content of 

drinking water does not explain the lack of a correlation between δDw and δDh in felines. 

Migration between isotopically distinct biomes during biosynthesis of hair might also 

affect the correlation of δDh with δDw. We would have expected this effect based on potential 

species- or sex-specific behavioural differences characterizing our study species. Puma and 

bobcat, for instance, have significantly different home range sizes [11,149], which are also 

known to vary between seasons and sex. Although carnivores exhibit typical mammalian 

dispersal behaviour, where males disperse and females are philopatric [150]; we did 

however not observe an effect of sex on the hair/water isotope correlation for both carnivore 

species (Table S2). We therefore concluded that the isotopic disequilibrium of food and water 

does not explain the lack of a relationship between δDh and δDw observed in puma and 

bobcats. 

 

3.4.3. Does a carnivorous diet affect δDh? 

Some studies have suggested a dietary trophic-level effect on H isotope systematics 

of animal tissues [90,119,122,151,152]. Possibly, high levels of animal protein consumption 

leads to a decoupling of δD in keratins from δDw and a deviation from the mean relationship 

between keratin δD and δ18O [122,153]. Diet may thus represent a confounding factor in the 

use of H and O isotopes for geographic tracking [90]. 
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We developed a simple model of hydrogen isotope incorporation in carnivores to illustrate 

possible trophic-level enrichment and isotopic decoupling of δDh in carnivores. Various 

fractionation factors and source pools contributing to non-exchangeable hydrogen in hair 

were considered (Figure 5). Controlled experiments on domestic cats have shown that, on 

average, only 1% of their total water input originates from drinking water [148]. So, drinking 

water likely has minor control on deuterium enrichment in felids, leaving the isotopic input of 

prey as a major determinant of the isotopic signature of carnivore body water. 

 
Figure 5. Hydrogen isotope model of herbivores and carnivores. Model of hydrogen isotope 
physiology and the contribution of food and water to non-exchangeable hydrogen in the hair of 
herbivores and carnivores. Letters represent processes where isotope fractionation occurs (see text 
for detailed discussion). Blue colouring represents water inputs and green food inputs. 
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In this aspect, strict carnivores differ significantly from herbivores and omnivores, whose 

body water is to a large extent (64 – 80%, see Table 1) obtained from drinking water (Figure 

5(i)). Isotope fractionation from drinking water to body water occurs [112,119,154] and may 

play an important role in δDh enrichment of carnivore proteins. Feline carnivores consume 

prey species whose δDbw and δ18Obw are expected to be higher than δDw and δ18Ow due to 

evaporative enrichment from insensible water loss through skin and breath vapour loss 

[111,155]. Consequently, carnivores mainly consuming deuterium-enriched prey should have 

higher δDbw values over those of their prey. A similar process has been documented in 

humans for the consumption of cow milk and the resulting enrichment in deuterium of 

consumer tissue [119,156]. Otherwise the consumption of D-depleted prey might decrease 

the carnivore δDbw values particularly during winter when prey species have built up their 

body fat reserves. Fat reserves are known to have significantly more negative δD values 

than proteinaceous tissues [101,153,157,158]. The temporary alternation of D-depleted and -

enriched carnivore diets relative to δDw, based on differential seasonal consumption of lipids 

and proteins, respectively, might change the δDbw [112] and is finally recorded in δDh during 

carnivore hair growth [159]. 

 
Table 1. Food and drinking water inputs of hydrogen in the body water of different organisms under 
laboratory conditions. 
 

Species Food (%) Drinking water (%) Reference 

Lab rats 37 64 [160] 

Woodrats 29 71 [94] 

Doves 15 85 [110] 

Humans 20 80 [111] 

European roe 
deer 24 76 [161] 

 

Hydrogen isotope fractionation can also occur during the oxidation of food to form body water 

(see Figure 5 (ii)). Carnivores have the ability to digest and utilize high levels of dietary fat 

and protein and so produce relatively higher levels of metabolic water [131,162,163]. 

Catabolism of macronutrients and production of metabolic water could cause hydrogen 

isotope fractionation processes leading to deuterium enrichment [112,118]. In addition, 

isotopic fractionation most likely happens during the incorporation of body water into tissue 

amino acids (see Figure 5 (iii)). Water from food, drinking water and metabolism are the 

three source pools which can be fixed into newly synthesized non-essential amino acids [90]. 
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However, the fraction of hydrogen fixed into amino acids may scale with the extent of non-

essential amino acid synthesis in the body. This, in turn, is related to the level and amino 

acid composition of dietary protein intake [164]. Carnivores exhibit low levels of non-essential 

amino acid synthesis because their natural meat-rich diet contains all required amino acids 

[165]. Consequently, low levels of hydrogen fixed into amino acids in vivo could maximize the 

transfer of hydrogen from diet to hair thereby enhancing the contribution of isotopically 

heavy, prey-derived hydrogen in carnivore hair [90]. Finally, it is also possible that isotope 

fractionation occurs during the transfer of food amino acids to tissue amino acids (Figure 5 

(iv)). δDh enrichment of carnivore proteins could also occur through selective catabolism of 

isotopically lighter amino acids [122]. We conclude that there are several possible isotopic 

fractionation steps during the metabolic incorporation of hydrogen into carnivore hair that 

could induce enrichment in deuterium and leading to higher δDh and a loss of correlation with 

δDw. 

 

3.4.4. Effects of carnivore physiology and metaboli sm on δDh and δ18Oh 

If diet rather than drinking water solely controls carnivore δD, we would have 

expected a variation of the hair/water regression in slope and intercept compared to 

herbivores and omnivores. Because there was no significant correlation between oxygen and 

hydrogen isotope compositions of hair and precipitation and δDh and δ18Oh, we therefore 

suspected the dietary trophic-level effect was potentially obscured by physiological and 

metabolic adaptations in carnivores [166]. Animals which display deviations from the normal 

covariance between δD and δ18O values in keratin are carnivorous fish, birds and mammals 

[122] and ancient human populations with a meat-rich diet [90,119,151], which all consume 

high levels of animal protein and fat. From a purely nutritional perspective, they are all strict 

carnivores. Through evolution, their adherence to a specialized meat-rich diet induced 

changes in their metabolic pathways and nutritional requirements [131]. These physiological 

and metabolic adaptations in strict carnivores could considerably affect the H and O isotope 

systematics of their keratins. 

The H and O isotope compositions of human hair strongly covary, and are closely related to 

meteoric (drinking) water at the place of residence [85] with the exception of mid 20th century 

Inuit people [90]. Bowen et al. [90] did not find strong support for ubiquitous effects on the 

H/O isotope systematics of human hair related to physiological adaptations. However, in pre-

globalization times, the typical diet of the Inuit contained high levels of dietary protein and fat 

from high trophic-level marine animals [167]. Mid 20th century Inuit people thus fed at the 

highest trophic level of all humans. Since marine food webs have typically longer chain 

lengths than terrestrial food webs [168], the consumption of marine predators may confer a 

trophic-level enrichment of Inuit δDh [90]. Historic Inuit are also classified as obligate 
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carnivores among omnivorous humans because they require nutrients that are present only 

in animal tissue of their diet [169] and so differ from other ancient humans who used a 

marine-dominated but omnivorous diet like the Ainu from Japan and Thai from Thailand [90].  

Measurements of δD in feathers have been successfully applied in many bird species 

to estimate the origins of migrating and wintering individuals [113]. However, in strictly 

carnivorous raptors like Amur Falcons (Falco amurensis; [170]) and Cooper’s Hawks 

(Accipiter cooperii; [171]) the linkage between feather δD and δDw was weaker [86,172]. 

However, this may be complicated due to the fact that several raptors grow feathers during 

periods of high work associated with breeding and so may produce more deuterium enriched 

feathers due to evaporative water loss.  

The natural diet of wild felids contains a high proportion of the energy as protein, a 

variable percentage as fat and a very low percentage as carbohydrate [132]. Metabolic 

adaptations mainly concern the loss of anabolic pathways required for the synthesis of 

nutrients universally present in their natural meat-based diet [173]. One of the most striking 

aspects here is that strict carnivores have lost the ability to produce metabolic compounds 

that are commonly synthesized by virtually all herbivores and omnivores. For example, cats 

lack the enzymatic machinery to synthesize some amino and fatty acids, thereby significantly 

increasing their basal requirement for proteins and essential amino acids. When ingesting 

prey, wild cats avoid consuming plant materials contained in the intestines [166] and hence 

the digestion of dietary starches and sugars has adapted to low carbohydrate intake [174].  

Currently we lack a testable explanation for our observed and confounding isotopic 

patterns, but considering the unique felid physiology, we hypothesized that the food 

metabolism of strict carnivores may exert a vital effect particularly on δDh. This may also 

affect the relative contributions of all sources to protein synthesis and hair formation. Recent 

findings from Pecquerie et al. [118] support our hypothesis. They propose two mechanisms 

involved in stable isotope fractionation during metabolic reactions: First, the selection of 

molecules for the anabolic or the catabolic pathway routes depends on their isotopic 

composition. Second, the concept of atom recombination recognizes that molecules are not 

completely disassembled into elements during chemical reactions [175]. A non-random 

allocation of atoms of a particular substrate (e.g. food amino acids) to a particular product 

(e.g. keratin amino acids) impacts isotopic composition of a given product (e.g. hair). While 

isotope fractionation takes place in metabolic reactions [118], these were particularly 

modified during the evolutionary history of carnivores. Knowing that approximately two thirds 

of the hydrogen in human hair is derived from food [104], we suspect that carnivores might 

be affected by alternate modes of isotopic routing of macronutrients into hair (Table 2).  
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Table 2. Food and drinking water inputs of hydrogen in hair and feathers of different organisms. 
 

Species Food (%) Drinking water (%) Reference 

Woodrats 75 25 [94] 

Japanese quail 74 – 69 26 – 32 [101] 

House sparrow 82 18 [98] 

Humans 69, 64a, 73b 31, 36a, 27b [104] 

 

a Data after [92]; b Data after [85] 
 

The water metabolism in feline carnivores also differs from herbivores and omnivores. 

Cats drink to a limited extent [132,162] and excrete concentrated urine [176-178]. In addition 

they produce relatively high levels of metabolic water, which contributes on average 10% to 

their total water intake [131,162]. Drinking water volume, however, exerts a significant 

physiological control on the isotopic composition of hydrogen and oxygen in human body 

water [103] (Table 1). Besides various water conservation adaptations, strict carnivores have 

higher basal metabolic rates than other mammals [179,180]. A high metabolic rate 

associated with a low rate of drinking, results in a weak correlation of δ18Op with δ18Ow [102]. 

We infer that this applies to strict carnivores and assumed that relatively smaller 

contributions of oxygen in carnivore hair originate from drinking water. In addition, cats lose 

water primarily through panting [181] vs. from sweat glands of foot pads [182]. Differences in 

the isotope compositions of liquid water during sweating vs. vapour during panting should 

affect their body isotopic compositions. Panting animals should thus have higher δ18Obw and 

δ
18Oh values than animals that sweat because water vapour lost in panting is more depleted 

in 18O [107,183]. The same should apply to δDbw and δDh.  

In contrast to the weak correlation between feline carnivore hairs δDh and δ18Oh and 

meteoric water δ18Ow and δDw (Figures 2 and 3), a good correlation between claw δDc and 

δDw was observed in a recently published study of migrating pumas in the USA [83]. The 

reason why the two keratinous tissues do not reflect meteoric water values in the same way 

remains unclear. However, a similar paradox is known for human fingernails and hair, with 

nails displaying a more variable H/O isotope composition and a comparatively weaker 

correlation between δDc and δDw (R2 = 0.6) compared to hair (R2 = 0.9) from the same 

individuals [91,130]. The reverse trend in feline carnivores may result from different formation 

rates of hairs [140] and nails [184], alternate modes of isotopic routing of macronutrients into 

hair and nail as well as different amino acid compositions of hair and nail [185].  
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3.4.5. Amino acid composition of cat hair  

The isotopic values of keratins are generally defined by the isotopic composition of 

their constituent amino acids [185]. For example, cysteine, serine and glutamate, all non-

essential, metabolically active amino acids are present at very high proportions in hair [186]. 

Their isotopic composition reflects both food and drinking water, with a slight bias towards 

food. Due to the high relative abundance of non-essential amino acids, their isotope 

composition can often dominate the bulk H and O isotope hair signature and mask the 

isotope composition from essential amino acids. The latter are present at lower proportions 

and routed directly from dietary sources [187]. The constancy of amino acid composition and 

hence isotopic values between tissues, even for related proteins like nail and hair, cannot be 

implied [185]. Large isotopic differences between amino acids of different components have 

been observed [188-190], reflecting their formation via different metabolic, synthetic and 

catabolic processes. However, the amino acid composition of cat hair protein is comparable 

with that of dog, horse, sheep and human hair [186]. Apparently only the proline content of 

cat hair protein appears to be lower and glycine appears to be higher than in the other 

species [186]. Variations in amino acid composition of cat hair might thus be responsible for 

some of the differences in isotopic patterns we have observed. 

 

3.4.6. Does tanning of museum skins have an effect on the H/O isotopic composition 

of hairs? 

To our knowledge this is the first H/O isotope study on mammal hair which benefits 

from large museum collections as a valuable source of sample material. However, it has not 

been assessed whether the tanning process used for preserving hides affects the H/O 

isotopic composition of taxidermy skins. Tanning chemicals are intended to stop deterioration 

processes of the skin. At a molecular level tanning chemicals act as solid spacers, which 

replace the H bonds linking the polypeptide chains of the collagen fiber and thus stabilize the 

collagen structure of museum skins [191]. Collagen and hair are both proteinaceous tissues 

and interpeptide H-bonding is  abundant and important for maintaining the alpha-helical 

structure of collagen and hair [192]. Thus, tanning chemicals could potentially alter the non-

exchangeable H isotope composition of hairs. However, we hypothesize that tanning 

chemicals did not affect the H/O isotopic composition of the analyzed felid hairs. First, the 

rabbit hairs which have most likely undergone the same tanning process as felid hides, 

showed good isotopic (δDh and δ18Oh) correlation between hair and meteoric waters (Figure 

2 and 3). Second, initial results from a small “before and after tanning experiment” using a 

common mineral tanning technique (aluminium salts [193]) on hairs from different mammal 

species indicated that there was no significant effect of the tanning process on the H isotopic 

values of these hair samples (data not shown). 
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3.5. CONCLUSIONS 

Stable isotope (H, O) data from bobcat and puma hairs from a range of locations 

across North America revealed that feline carnivores cannot be placed on δ18O and δD 

isoscapes for forensic investigation purposes. The effective application of water isoscapes 

for geographic source determination of feline carnivores is most likely compromised by major 

controls of their diet, physiology and metabolism on δ18Oh and δDh. However, we noted that 

the integration of H and O isotopes into animal proteins in general remains poorly 

understood. Isotope fractionation and routing during metabolic and tissue formation 

processes is complex and presumably varies between herbivores, omnivores and carnivores. 

Significant research thus remains to be performed to characterize the precise origin and 

sensitivities of the observed isotope signals. Controlled feeding experiments on strict 

carnivores like domestic cats are now needed to track isotope routing of macronutrients and 

their incorporation into different tissue types (e.g. [94,101]). With the objective to enhance the 

resolution of H and O isotope analysis of proteins, we suggest compound-specific single 

amino acid isotope analysis may give improved insights into isotope fractionation processes 

during protein, and by a comparative isotope analysis of essential versus non-essential 

amino acids. To date most studies have used bulk tissue protein isotopic values of hydrogen 

and oxygen [85,90,97] but little research has been conducted at the level of single amino 

acids in hair that was limited to C, N and S isotopes [194-196]. Unfortunately, there are no 

reported applications of hair δ18O and δD compound-specific isotope analysis of amino acids. 

This represents an important area of future research and will contribute to a better 

understanding of the observed variations in bulk protein H and O isotope ratios.   
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ABSTRACT 

Background 

Feline carnivores are threatened and particularly affected by illegal wildlife trade. Tracing 

unknown tissues to the origin via stable isotope analysis would hence constitute important 

information in wildlife crime investigations. The oxygen isotope composition of mammalian 

skeletal phosphate (δ18Op) can be used as a proxy for animal provenance and migratory 

patterns in paleontological, archaeological, ecological and wildlife forensics applications. 

Terrestrial mammals are generally characterized by a constant oxygen isotope fractionation 

between meteoric water (δ18Ow) and bone phosphate (δ18Op) but deviations have been 

documented for some species. Carnivore δ18Op values are considered to be potentially 

promising proxies for meteoric water (δ18Ow) but far little work has been done on carnivores 

and none on felids. 

Methodology/Findings 

We analysed the oxygen isotopic variation of North American puma (Puma concolor) and 

bobcat (Lynx rufus) bone phosphate (δ18Op) and their correlation with the pattern of oxygen 

isotopic variation in precipitation (δ18Ow) to test the performance of isotopic provenancing in 

Felidae. Bone samples of felid museum specimens originating from 107 locations across the 

United States, Canada and Mexico were analyzed. The feline carnivore δ18Op - δ18Ow 

regressions were determined and compared with those from their respective prey species 

(deer and rabbit), another carnivore (fox) and other placental mammals. The effects of 

species, sex and relative humidity on the feline δ18Op - δ
18Ow correlation were examined and 

additional intra-individual tissue comparisons were performed. Bobcats and pumas exhibit 

only a moderate δ18Op - δ
18Ow correlation, which differs statistically from canid carnivores and 

all other placental mammals. Feline δ18Op values, also, revealed a much better relation with 

δ
18Ow, than oxygen isotope ratios of hair (δ18Oh) from the same bobcat individuals. 

 

Conclusions/Significance 

The oxygen isotope compositions of bone phosphate and especially hair of feline carnivores 

do not reliably track meteoric water δ18Ow values. Hence modern and fossil felid tissues are 

neither well-suited for provenance determination with high spatial resolution in wildlife 

forensics nor for precise palaeoclimate-reconstructions. In this regard, feline carnivores differ 

considerably from most herbivores and omnivores, which better track δ18Ow values. Oxygen 

isotopic fingerprinting of bobcat and puma is most likely hampered by factors related to 

climate, diet, behaviour, physiology and metabolism. Controlled feeding experiments, where 

body water (i.e. blood) and different tissue types are isotopically monitored, are crucial to 

elucidate the mechanisms of oxygen isotopic routing and incorporation in feline carnivores.  
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4.1. INTRODUCTION 

Many carnivore species are threatened and focus of intense conservation concern [13]. 

Feline carnivores are of particular relevance for illegal wildlife trade. The ability to estimate 

the geographic provenance of tissue samples with unknown origin using stable isotope 

analysis would hence constitute important information in wildlife crime investigations [11]. 

Especially the phosphate oxygen isotope composition (δ18Op) of mammalian biogenic apatite 

is a proxy for the reconstruction of climate [108,109,114-116,197], topography and elevation 

[198-200], animal physiology [201,202], animal behaviour [203,204], animal ecology 

[205,206] which allow the reconstruction of habitat-use, provenance and migratory patterns 

[207-211] in wildlife forensics and ecology as well as in paleontological and archaeological 

applications. Carnivore δ18Op values are considered to be potentially promising proxies for 

meteoric water [212] but thus far little work has been done on carnivores (i.e. bear: [213], fox: 

[214]) and none on felids. However, to infer δ18Ow of ingested water for palaeoclimate 

reconstruction using δ18Op from fossil carnivores requires the testing of related modern 

species [108]. In this study we establish for the first time the relations between δ18Op and 

δ
18Ow for two modern felids from North America the bobcat and the puma. These were 

compared to those relations of their preferred prey species cottontail-rabbit and white-tailed 

deer, respectively. Controlling factors of carnivore δ18Op values and implications for the 

reconstruction of environmental water, respectively, provenance will be discussed. 

4.1.1. Oxygen isotope systematics in mammals  

Bioapatite δ18Op values of mammal bones and teeth record during their mineralization 

environmental water δ18Ow values. This enables to determine the climatic setting in which the 

animal or human lived and hence its provenance. The retention period of phosphate in bones 

of large mammals is in the range of several years [108], and hence δ18Op is affected by the 

long-term average factors controlling δ18Obw in the lifetime habitat of the animal. Mammalian 

bone mineralisation is catalyzed by the enzyme adenosine triphosphate (ATP) [215-217], 

which promotes the equilibrium oxygen isotopic fractionation between body water (δ18Obw) 

and skeletal phosphate (δ18Op) at a constant body temperature (~37°C for most ma mmals) 

[108,109,197]. Thus the oxygen isotopic composition of mammalian biogenic apatite (i.e., 

carbonate (δ18Oc) and phosphate (δ18Op)) is related to that of ingested meteoric water (δ18Ow) 

[108,109,115,116]. The basic principle of the mammal δ18Op - δ18Ow relation is: ingested 

meteoric water (δ18Ow) controls the δ18Obw, at least for those animals that obtain most of their 

body water from drinking water [105,212,218]. δ18Op of terrestrial mammals is controlled by: 

(a) oxygen input fluxes: atmospheric O2, liquid drinking water, oxygen bound in food (plant 

and animal tissue), and metabolic water [105,106,212,219], and (b) oxygen output fluxes: 

exhaled water vapour, sweat and urine [109] (see Figure 1). While the δ18O of atmospheric 
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oxygen is rather constant (δ18O = 23.5‰) [220], ingestion of drinking water, food, and food 

water are the main sources controlling the body water δ18Obw [108].  

 

Figure 1. Main oxygen fluxes controlling the oxygen  isotope composition of felid body water 
(δ18Obw). The 18O/16O of local environmental water is recorded in the consumer tissues via both diet 
and drinking water. Homoeothermic vertebrates have a constant body temperature of 37°C ± 2°C. The 
temperature dependent fractionation of the oxygen isotope composition during mineralization of 
apatite in skeletal elements (bone, teeth) from body fluids thus remains constant. The δ18Ow of the 
ingested water and hence the climate of the region where the animal lived during tissue formation can 
be inferred. 

δ
18Op of terrestrial mammals reflects a rather complex mixture of (i) climate, (ii) diet, (iii) 

animal behaviour and (iv) physiology [108,114,116,219,221-226]. Climatic factors causing 

variations in the δ18Ow values of meteoric water are differences in the amount of precipitation, 

relative humidity, evaporation, distance to the sea, altitude, latitude and temperature [88,227-

229]. The effect of diet on δ18Op values is particularly well documented for wild herbivores, 

whose δ18Op values are affected by the type of plant consumed, i.e. C4 versus C3 plants 

[219,226,230-233]. Behavioural and physiological factors contributing to a species-specific 

δ
18Op - δ

18Ow relation include water turnover [105], water conservation mechanisms 

[218,219,234], metabolic rate [102], body water loss via sweating or panting [212,219] and 

suckling [223,235].  

During the past three decades δ18Op - δ
18Ow relations have been determined empirically for 

several modern terrestrial mammal species (Table S1).  
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Table S1. Oxygen isotope equations calibrated on skeletal phosphate of different terrestrial mammal 
species. 

Diet type: 
Herbivore/ 
Omnivore/ 
Carnivore  

Sample 
material 
(Teeth, 
Bone, 

Urinary 
stones) 

Species Regression 
equations R² Reference  

Drinking 
water 

value (Tap 
or precip 

water) 

O B Human y = 1.53 x -34.30* 0.97 [108] precip 

O B Human y = 1.19 x -27.42* 0.95 [116] precip 

O T Human y = 1.93 x -38.51* 0.92 [123] precip 

O U Human y =1.84 - 41.39* 0.75 [123] precip 

O T Human y = 1.73 x -37.25* 0.87 [203] tap 

O T + B Human y = 1.54 x - 33.72* 0.87 [203] precip + tap 

O B Pig y = 0.86x + 22.71 0.98 [108] precip 

O T + B Foxes  y = 1.34x + 25.49 0.98 [214] precip 

O B Rats y = 0.45x + 17.86 0.99 [109] tap 

O B Wood & yellow-
necked mouse y = 0.79x + 21.61 0.98 [197] precip 

H B White-tailed deer y = 0.53x + 21.5 0.81 [115] precip 

H B Red deer  y = 1.13x + 25.55 0.99 [197] precip 

H B Cattle y = 1.01x + 24.90 0.99 [197] precip 

H B Sheep y = 1.48x + 27.21 0.96 [197] precip 

H T + B Asiatic & African 
elephant y = 1.06x + 24.30 0.86 [236] precip 

H T + B Equidae y = 0.72x + 22.29 0.9 [121] precip 

H T + B Equidae y = 0.73x + 22.04 0.94 [237] precip 

H T Equidae y = 0.69x + 22.90 0.69 [223] precip 

H T + B Equidae y = 0.71x + 22.60 0.77 [121] precip 

H B Goat and moufflon y = 0.91x + 24.39 0.99 [121] precip 

H B Goat, moufflon, 
roe-bucks y = 0.88x + 24.10 0.98 [121] precip 

H T + B Reindeer y = 0.39x + 15.96 0.79 [214] precip 

H T Bison y = 0.70x + 21.23 0.83 [209] precip 

H B Kangaroo Correlation of δ18Op 
with rel. humidity  [114] precip 

H B Rabbit y = 0.47x + 22.73 0.23 [121] precip 

O T Arvicolinae y = 0.617x + 21.356 0.86 [238] precip 

 
*X-Axis= δ18Op, Y-Axis = δ18Ow and otherwise vice versa 
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For all mammals the oxygen isotope fractionation between δ18Ow and δ18Op follows linear 

regressions, however, the slope and intercept show inter-specific variability. A general trend 

was identified for δ18Op - δ18Ow relations, i.e. large mammals with low metabolisms being 

obligate drinkers do track δ18Ow values of meteoric waters more closely [105,108,116]. 

However, deviations from a constant oxygen fractionation between δ18Op and δ18Ow have 

been documented for some species (e.g. Australian macropods [114] and rabbits [121]) and 

are primarily related to the rate of drinking and metabolism [109]. The previously-published 

fractionation equations for mammals focused primarily on herbivores and omnivores. So far 

δ
18Op - δ

18Ow calibrations have only been attempted for two carnivores, bear [213] and fox 

[214], which, however, do not represent strict carnivores but rather exhibit an omnivorous 

lifestyle [239]. While a good δ18Op - δ
18Ow regression was obtained for foxes [214], the study 

for bears was not successful [213]. The latter was related to the fact that investigated zoo 

animals might have had a different physiology than wild animals. 

Free-ranging carnivores, however, differ significantly in their nutritional, physiological and 

metabolic characteristics from herbivores and omnivores [131,132]. The house cat, Felis 

catus, is one of the best investigated mammalian carnivores [131]. Felids are strict 

carnivores that obtain much of their body water from the consumption of prey. On average 

only 1% of their total water input originates from drinking water [131,148]. Food water and 

drinking water in free-ranging cats are hence primarily ingested from the same source - the 

prey. In addition to a low rate of drinking, felids are known to have higher body temperatures 

and basal metabolic rates by general mammalian standards [180]. Thus it is not clear 

whether carnivore phosphate tracks the spatially predictable meteoric water compositions 

despite their low drinking intake and high metabolic rate. The few published carbonate 

oxygen isotope data (δ18OCO3) for carnivores yield ambiguous results regarding the 

importance of climate versus physiology and diet. For instance, Sponheimer and Lee-Thorp 

[226] report carnivore δ18OCO3 values similar to their consumed herbivore prey, while others 

demonstrate very low carnivore δ18OCO3 values due to an 18O-depleted protein- and lipid-rich 

meat diet [240]. In contrast, Feranec et al. [205] showed enriched carnivore δ18OCO3 values, 

caused by the consumption of prey whose δ18Obw was affected by evaporative 18O-

enrichment. However, Kohn [212] hypothesized, that “the importance of relative humidity 

becomes progressively diminished with increasing trophic level”, and consequently 

“carnivore bone phosphate should track the meteoric water signal more closely than do 

herbivores”. Therefore the concept of geographic source determination based on oxygen 

isotopes of carnivore bone phosphate as a potential investigative tool in wildlife forensics and 

palaeontology needs to be tested on extant species. 

Modern felids are a suitable group to test the strength of oxygen isotope fingerprinting for 

geographic provenancing of living and extinct carnivores. Felids evolved about 35 Ma ago 
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[241] and are now distributed over all continents except Antarctica, thus covering almost all 

environmental gradients [11,242]. Although the available fossil record of felids is sparse 

compared to other carnivoran families such as dogs (Canidae) and bears (Ursidae), the 

Felidae are the only representatives of strict carnivory within the order Carnivora. North 

American puma and bobcat are particularly appropriate for isotopic investigations due to the 

availability of provenanced skeletons from museum collections, high-resolution precipitation 

δ
18O isoscapes for North America and ecological differences between these two taxa (e.g. 

body size, home-range size, habitat use, geographic distribution and prey preferences). 

 

Our study was designed to determine, if bone phosphate δ18Op values of puma and bobcat 

vary predictably among isotopically distinct geographic locations and reflected the spatial 

pattern of δ18Ow variation in precipitation. We report the first large-scale survey of δ18Op data 

of bone phosphate samples of two feline carnivores, bobcat (Lynx rufus) and puma (Puma 

concolor) from across North America. Furthermore, we examined potential effects of species, 

sex, and relative humidity on the δ18Ow - δ18Op correlation, and whether these could be 

explained by differences in diet, behaviour, physiology and foraging ecology. The controlling 

factors and possibilities to quantify these will be discussed. 

 

 

4.2. MATERIALS AND METHODS 

4.2.1. Study species and sampling 

A total of 107 bone samples, representing the North American felid species bobcat (Lynx 

rufus; n = 63) and puma (Puma concolor; n = 43) were sampled at the Smithsonian National 

Museum of Natural History in Washington, D.C., the Utah Museum of Natural History in Salt 

Lake City, Utah and the Laboratory of Genomic Diversity in Frederick, Maryland. Powder 

samples from defined areas of the lower jaw bone were drilled using a hand-held Proxxon-

Minidrill to yield ~60mg of bone powder. For each felid sample, geographic location, sex, and 

elevation were recorded (Appendix 1). The specimens originate from 107 sites across the 

United States, Canada and Mexico (Figure 2). Sample locations range in latitude from 25.8 

to 64.8ºN and longitude from 162.3 to 74.5ºW and hence cover strong environmental 

gradients of altitude (1 to 2500m) and meteoric water oxygen isotope composition (δ18Ow = –

21.3‰ to –1.4‰). Published bone-phosphate oxygen isotope data (δ18Op) from other 

placental mammals (compiled in [243]), another carnivore, the fox [214] and major prey 

species like white tailed deer (Odocoileus virginianus; [115]) and eastern cottontail rabbit 

(Sylvilagus floridanus [121]) of puma and bobcat, respectively, were included for comparison. 

 
 
 



CHAPTER 4: TRACKING CATS WITH O ISOTOPES IN BONE PHOSPHATE 
 

58 
 

 
 
Figure 2. Map of sampling sites. Sample locations for both felines bobcat (n = 63) and puma (n = 
43) as well as the preferred prey species of pumas, the white-tailed deer (n = 46, [115]), plotted on the 
δ

18O precipitation map of North America [87]. 
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4.2.2. Sample preparation and oxygen isotope analys is of bone phosphate ( δ
18Op) 

Sample preparation was conducted in the chemical laboratory of the Geochemistry 

department at the Steinmann-Institute, University of Bonn. We followed the protocol for 

bioapatite preparation of Clementz et al. [244]. 20mg of the powdered samples were 

chemically pre-treated with 30% H2O2 to oxidize organic matter, followed by a treatment with 

1M calcium acetate/acetic acid buffer solution at 4°C to remove carbonate contaminants. 

Finally, the samples were rinsed five times in double distilled water and dried at 60°C. 5 mg 

of the pre-treated sample powder was dissolved in 2 M HF overnight and the HF solution 

was transferred to a new vessel, neutralized with 25% NH4OH, and the PO4
3- in solution was 

rapidly precipitated as Ag3PO4 by adding 2M AgNO3 according to the method described in 

Tütken et al. [245].  

The phosphate oxygen isotope composition (δ18Op) of the thoroughly rinsed silver phosphate 

of each sample was analyzed in triplicate (~500 µg aliquots) using a Finnigan TC-EA at 1450 

°C connected via a Finnigan Conflow III to a Thermo Finnigan Delta Plus XL CF-IRMS at the 

University of Tübingen. Oxygen isotope compositions are expressed in per mil (‰) in the δ-

notation relative to the Vienna Standard Mean Ocean Water (V-SMOW). The external 

analytical precision of δ18OP values for a synthetic hydroxyl apatite (HAP) from Merck used 

as internal standard was better than ±0.3‰. The international NBS 120c standard yielded 

δ
18OP value of 21.8±0.6‰ (n = 3).  

 

4.2.3. Estimation of δ
18Ow of ingested water 

Most wild mammals get their drinking water primarily from running (streams) and standing 

(lakes) water sources. The primary source of isotopic variability in surface, ground, and soil 

waters is variation in the δ18Ow values of precipitation supplying these reservoirs. For each 

sample location we used the unweigthed mean annual precipitation values (δ18Ow) based on 

climatic records from nearby IAEA–WMO meteorological stations [137]. We assume that 

δ
18Ow represents most likely the isotopic composition of the water ingested by the preferred 

prey species and hence their predators (bobcat and puma) sampled here.  

 

4.2.4. Data analysis 

First, we analysed the oxygen isotopic variation of puma and bobcat bone phosphate (δ18Op) 

among locations and their correlation with the pattern of oxygen isotopic variation in 

precipitation (δ18Ow). Linear regression models were used to determine the relation between 

δ
18Ow and δ18Op for bobcat and puma, their respective prey species, rabbit and white-tailed 

deer, a canid carnivore (fox) and other placental mammals (see Appendix 2 and Figures 3, 4, 

5, 6). The effects of species, sex and relative humidity on the δ18Op - δ
18Ow correlation were 

examined using a General Linear Model (GLM) (see Appendix 2, Figures 3 - 7). We tested 
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whether the δ18Op - δ18Ow fractionation equation of felids statistically differs from other 

terrestrial mammals. We thus compared the feline carnivore regression line with those from 

their respective major prey species (deer and rabbit), a canid carnivore (fox) and a group of 

placental mammals using a single classification Analysis of Covariance (ANCOVA: Tukey 

test; [246]) (see Appendix 3). Additionally, δ18O values of bone phosphate (δ18Op) and hair 

(δ18Oh) from the same individuals were compared for thirty bobcat specimens. We thus 

tested, if δ18O of multiple-both tissue types are correlated within individuals and if δ18Op and 

δ
18Oh of these specimens display similar correlations with δ18Ow (Figures 8 and 9, Appendix 

4). The δ18Oh data were taken from a previous study [247]. Statistical tests were conducted 

using XLSTAT (V 7.5.2). 

 

4.3. RESULTS 

4.3.1. Variation and range of δ
18Op and δ18Ow 

The oxygen isotope composition of the phosphate fraction (δ18Op) from feline carnivore 

bones ranged from 11.5 to 21.7‰ in puma and 9.1 to 21.9‰ in bobcat (Figures 4 and 5). 

These ranges were smaller than that of the corresponding average δ18Ow values (–21.3 to –

1.4‰ after [137]) estimated for the unweighted mean annual precipitation of the animal’s 

lifetime habitat.  

 

4.3.2. Effect of species on δ
18Op 

The δ18Op - δ18Ow relation is known to be species-specific (e.g. [105,212]) and we thus 

compared δ18Op values of puma and bobcat with those of their prey species, canid 

carnivores and other placental mammals. 

4.3.2.1. Among species within feline carnivores 

Feline carnivore bone δ18Op values exhibited a moderate linear relationship between δ18Op 

and δ18Ow following the equation: 

Feline carnivores: δ18Op = 0.40(±0.04) δ18Ow + 20.10(± 0.40) (R² = 0.46). 

The puma showed a slightly weaker δ18Op - δ
18Ow relation than the bobcat (Appendix 2, 

Figures 4 and 5) indicated by the following equations: 

Bobcat: δ18Op = 0.41(±0.05) δ18Ow + 20.15(± 0.49) (R² = 0.50), 

Puma: δ18Op = 0.38(±0.07) δ18Ow + 20.00(± 0.67) (R² = 0.39). 

However, the bobcat and puma δ18Op - δ
18Ow regressions are statistically identical (ANCOVA 

Tukey test: p = 0.722) (Appendix 3).  
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Figure 3. Oxygen isotope values of mammalian bone p hosphate relative to meteoric water. Plot 
of bone phosphate (δ18Op) from felids in comparison to published data from other placental mammals 
(Table S1, [243]) versus mean annual δ18O of precipitation water (δ18Ow).  

 

4.3.2.2. Between feline carnivores, fox and other placental mammals 

The δ18Op - δ18Ow relation of feline carnivores differed in their R² and slope from other 

placental mammals and canid carnivores (i.e. foxes).  

Placental mammals: δ18Op = 0.68(±0.02) δ18Ow + 21.70(± 0.17) (R² = 0.76), 

Fox: δ18Op = 1.38(±0.03) δ18Ow + 25.85(± 0.17) (R² = 0.98). 

The R2 of 0.46 and slope of 0.4 for both feline carnivores was lower than those usually 

measured for other placental mammals and canid carnivores, which are typically higher 

(placental mammals: R2 = 0.76, slope = 0.68; foxes: R2 = 0.98, slope = 1.38) (Figures 3 and 

6). Accordingly the feline carnivore δ18Op - δ
18Ow relation was statistically different compared 

to the global placental mammals (Tukey test: p = 0.001) and the fox relationship (Tukey test: 

p = 0.050) (Appendix 3).  
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Figure 4. Oxygen isotope values of bobcat and rabbi t bone phosphate relative to meteoric 
water. Plot of bone phosphate (δ18Op) from bobcat and rabbits [121] vs. mean annual δ18O of 
precipitation water (δ18Ow). The pie chart illustrates the typical prey spectrum of bobcats in North 
America (according to [147]). 

 

4.3.2.3. Between feline carnivores and their respective prey species 

The major prey species of bobcat and puma, the eastern cottontail rabbit and white-tailed 

deer, respectively, showed quite different δ18Op - δ
18Ow relationships, with the rabbit having a 

weak (R2 = 0.23, p = 0.001, n = 41) and the deer having a strong positive relation (R2 = 0.71, 

p < 0.0001, n = 41) (Figures 4 and 5). The key prey species yielded the following equations: 

White tailed deer: δ18Op = 0.54(±0.05) δ18Ow + 21.70(± 0.63) (R² = 0.70), 

Rabbits: δ18Op = 0.47(±0.14) δ18Ow + 22.73(± 0.86) (R² = 0.23). 

The δ18Op - δ18Ow relationship of rabbits was not reflected in the δ18Op of its respective 

predator (Tukey test: bobcat/rabbit, p < 0.0001). 
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Figure 5. Oxygen isotope values of puma and white-t ailed deer bone phosphate relative to 
meteoric water. Plot of bone phosphate (δ18Op) from puma and white-tailed deer [115] vs. mean 
annual δ18O of precipitation water (δ18Ow). The pie chart illustrates the typical prey spectrum of pumas 
in North America (according to [248,249]). 

 

A parallel upward shift in the δ18Op - δ
18Ow regression line of rabbits versus bobcats could be 

observed, which indicates on average an 18O enrichment of ~ +2‰ for rabbits relative to its 

predator (Figure 4). The puma and deer δ18Op - δ
18Ow equations however were statistically 

indistinguishable (Tukey test: p = 0.629) (Appendix 3, Figure 5).  

4.3.3. Effect of sex on δ
18Op 

Animal behaviour can vary with sex and is documented to be a major factor influencing the 

δ
18Op - δ18Ow relationship of mammals (e.g. [212,250]). However, no effect of sex on the 

isotopic relationship between δ18Op - δ18Ow was observed for both carnivore species 

(ANCOVA, Tukey HSD test: male/female bobcat: p = 0.789, n = 45; male/female puma: p = 

0.350, n = 24) (Appendix 3).  



CHAPTER 4: TRACKING CATS WITH O ISOTOPES IN BONE PHOSPHATE 
 

64 
 

Figure 6. Oxygen isotope values of puma, bobcat and  fox bone phosphate relative to meteoric 
water. Plot of bone phosphate (δ18Op) from two feline carnivores (bobcat and puma) and a canid 
carnivore (fox, [214]) vs. mean annual δ18O of precipitation water (δ18Ow). The pie chart illustrates the 
typical prey spectrum of omnivorous foxes (Vulpes vulpes) in North America (according to [239]). 

 

4.3.4. Effect of relative humidity on δ
18Op 

Relative humidity has been documented to control the δ18Op values of mammalian herbivore 

species with low drinking water requirements (e.g. [212]) and could thus also affect their 

predators. The δ18Op - δ
18Ow regression of both predators and prey was in fact improved by 

including relative humidity (h) in the regression: 

Bobcat: δ18Op = 26.75(± 1.29) + 0.45(±0.04) * δ18Ow – 0.10(±0.02) * h (R² = 0.664), 

Puma: δ18Op = 25.78(± 2.00) + 0.47(±0.07) * δ18Ow – 0.08(±0.03) * h (R² = 0.507), 

Rabbit: δ18Op = 30.65(± 1.88) + 0.41(±0.11) * δ18Ow – 0.13(±0.03) * h (R² = 0.502), 

Deer: δ18Op = 34.83(± 1.48) + 0.67(±0.03) * δ18Ow – 0.17(±0.02) * h (R² = 0.909). 



CHAPTER 4: TRACKING CATS WITH O ISOTOPES IN BONE PHOSPHATE 
 

65 
 

Compared to other humidity-dependent herbivore species like Australian macropods [251], 

relative humidity did show a moderate but significant effect on δ18Op of rabbits (R2 = 0.34, p < 

0.0001, n = 41) and a weak effect on δ18Op of bobcats (R2 = 0.08, p = 0.026, n = 63). There 

was no significant effect of relative humidity observed for puma (R2 = 0.002, p = 0.786, n = 

43) and deer (R2 = 0.01, p = 0.546, n = 44) (Figure 7, Appendix 2).  

 

Figure 7. Oxygen isotope values of kangaroo, feline  carnivore and herbivore bone phosphate 
(δ18Op) versus relative humidity (%). Plot of bone phosphate (δ18Op) from two feline carnivores 
(bobcat and puma), Australian macropods [251], white-tailed deer [115] and rabbits [121] vs. mean 
annual relative humidity (%). * Statistically significant, **statistically not significant. 
 

4.3.5. Intra-individual comparison of tissue δ
18O 

Different tissue types within individual specimens were demonstrated to exhibit similar 

δ
18Otissue - δ

18Ow relations [252]. We thus compared δ18O values of hair keratin and bone 

phosphate of the same individuals from thirty bobcat specimens. The δ18Op values revealed 

a much better relation with δ18Ow, than δ18Oh from the same bobcat individuals (Bone 

phosphate: R² = 0.46, p < 0.0001, n = 30; hair: R² = 0.00, p = 0.830, n = 30) (Figure 8, 

Appendix 4). There is no significant correlation between δ18Op and δ18Oh of the same bobcat 

individuals (δ18Op - δ
18Oh: R² = 0.057, p = 0.203, n = 30) (Figure 9, Appendix 4). 
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Figure 8. Oxygen isotope values of bobcat bone phos phate and hair relative to meteoric water. 
Plot of bone phosphate (δ18Op) and hair (δ18Oh) [247] from single bobcat specimens vs. mean annual 
δ

18O of precipitation water (δ18Ow). * Statistically significant, ** statistically not significant. 
 

 

 
Figure 9. Oxygen isotope values in hair relative to  bone phosphate of bobcat. Plot of bone 
phosphate (δ18Op) vs. hair (δ18Oh) [247] from single bobcat specimens. ** Statistically not significant.  
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4.4. DISCUSSION 

Our results demonstrate that bobcat and puma exhibit only a moderate linear relationship 

between δ18Ow and δ18Op. Moreover, this relation also differs statistically from their respective 

prey species, other placental mammals and other carnivores (Figures 3, 4, 5, 6). Compared 

to most previously published studies on δ
18O of biogenic apatite of omnivores and 

herbivores, feline carnivores have a weaker and statistically different δ
18Op - δ

18Ow 

relationship. Provenance determination of modern feline carnivores, such as puma and 

bobcat, solely based on δ18Op is thus far from precise. Potential explanations causing the 

deviations from a strong relation between δ18Op and δ18Ow in feline carnivores are discussed 

below and include climate, diet, animal behaviour as well as physiology and metabolism. 

 

4.4.1. How do climatic factors affect carnivore δ
18Op?  

One possibility to explain the significantly weaker feline carnivore δ18Op - δ
18Ow correlation 

compared to other mammals, is that relative humidity affects their δ18Op. So far it has only 

been documented that relative humidity controls the δ18Op values of mammalian herbivore 

species with low drinking water requirements (e.g. [212,219]). For example, δ18Op values of 

Australian macropods [114], rabbits and hares [121] have been shown to correlate strongly 

with changes in relative humidity independent of δ18Ow (Figure 7), whereas the δ18Op of North 

American deer [115] were reported to be primarily influenced by δ18Ow and only slightly by 

relative humidity. Low humidity increases the rate of evaporation of surface water and 

evapotranspiration of leaf- and grass-water and thus leads to oxygen isotopic enrichment 

effects in plants [143,253,254]. Drought-tolerant animals who obtain most of their water from 

plants thus reflect levels of environmental humidity and their δ18Op increases with decreasing 

relative humidity. However, Kohn [212] hypothesized that “the importance of relative humidity 

becomes progressively diminished with increasing trophic level”. Our data support Kohn’s 

hypothesis that predators are less controlled by relative humidity than herbivores. However, 

their δ18Op - δ
18Ow correlations were slightly improved by including relative humidity in the 

regression (Appendix 2). Puma and its respective prey, the white-tailed deer are both 

unaffected by relative humidity (puma: R2 = 0.002, p = 0.786; deer: R2 = 0.01, p = 0.546; 

Figure 7). In contrast, bobcat δ18Op compositions are weakly affected by humidity (bobcat: R2 

= 0.08, p = 0.026; Figure 7), most likely because they prey upon rabbits whose δ18Op values 

in turn are humidity dependent (R2 = 0.34, p < 0.0001; Figure 7).  

Furthermore, Kohn [212] concludes that carnivore δ18Op “should track the meteoric water 

signal more closely than do herbivores”, due to a reduced humidity effect on their δ18Obw. In 

this case our results, however, do not confirm the hypothesis. The R2 of 0.46 for both feline 

carnivores (p < 0.0001, Figure 3) was lower than those usually determined for placental 

mammals, which are typically higher (R2 = 0.73, p < 0.0001, Figure 3). The feline carnivore 
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δ
18Op - δ18Ow relation was also statistically different compared to the global placental 

mammals (Tukey test: p < 0.0001; Appendix 3). The simplest interpretation is that factors 

other than relative humidity are responsible for a weaker relation between δ18Op and δ18Ow in 

feline carnivores. 

 

4.4.2. Does diet have a significant impact on carni vore δ18Op? 

The oxygen isotope compositions of food macronutrients (protein, fat and carbohydrate), 

food water as well as metabolic water from catabolism of nutrients, influence δ18Obw and 

hence δ18Op values of herbivores and carnivores (e.g. [212,219]). The δ18Op values of 

herbivores are also affected by the type of plant consumed. The δ18O values of plants using 

the C4 photosynthetic pathway can be higher than those of C3 plants (up to 10‰ δ18OC4-C3 

difference, [255]), because they are adapted to arid conditions, which leads to extreme 18O 

enrichment effects in their leaf water and plant cellulose [256]. Differences in δ18Op between 

grazers (C4-feeders) and browsers (C3-feeders) have been assigned to a difference in the 

leaf water δ18O of the ingested C3 and C4 plants [219,226,231,233]. The key prey species of 

bobcat and puma, rabbits and white-tailed deer, respectively, differ in their dietary 

preferences and hence their δ18Op - δ
18Ow relations. While white-tailed deer are considered to 

be browsers [257], whose δ18Op compositions are almost unaffected by relative humidity 

[115] (Appendix 2, Figure 7); cottontail rabbits are referred to as grazers [258], whose δ18Op 

compositions are humidity-dependent [121] (Appendix 2, Figure 7). Based on the various 

prey preferences of bobcat and puma, we would have expected species-specific differences 

reflected in their δ18Op values. However, both feline carnivores exhibited a statistically 

indistinguishable linear relationship of δ18Op and δ18Ow (Figure 6, Appendix 3), with the puma 

showing a slightly weaker δ18Op - δ
18Ow relation (R2 = 0.39, p < 0.0001; Figure 5) than the 

bobcat (R2 = 0.50, p < 0.0001; Figure 4).  

 

A review of the few stable isotope studies on fossil carnivores revealed the existence of three 

contrary hypotheses concerning the impact of diet on carnivore δ18Op values (Figure 10):  

First, carnivores have δ18Op values similar to those of their consumed herbivore prey [226]. 

This explanation seems plausible especially for felids, which are strict carnivores that obtain 

much of their body water from the consumption of prey [131]. The δ18Op data from puma and 

deer of our study confirm this hypothesis, as their δ18Op - δ
18Ow relationship was statistically 

identical (Tukey test: p = 0.629; Appendix 3, Figures 5 and 10A). However this does not 

apply to bobcats, whose δ18Op - δ18Ow relationship was statistically different from rabbits 

(Appendix 3, Figures 4 and 10A). 
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Figure 10. Oxygen isotope model of herbivores and c arnivores. A model of oxygen isotopes in 
skeletal apatite of herbivorous prey versus carnivorous predators. Three contrary hypotheses 
concerning the impact of diet on carnivore δ18OCO3 values are schematically illustrated and compared 
with the results obtained for δ18Op in our study (on the right). The capital letters illustrate the three 
published hypotheses: A: Carnivore δ18OCO3 = Herbivore δ18OCO3 [226]; B: Carnivore δ18OCO3 < 
Herbivore δ18OCO3 [240,259]; C: Carnivore δ18OCO3 > Herbivore δ18OCO3 [205].  
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Second, carnivores have significantly lower δ18Op values in comparison to both browsing and 

grazing herbivores [240,259]. Carnivores consume animal tissues containing high 

proportions of protein and fat in contrast to herbivores, whose plant-dominated diet consists 

mainly of carbohydrates. Proteins are depleted in 18O compared to carbohydrates 

[143,255,256,260], thus carnivores should have lower δ18Op values than herbivores [240]. 

This can be observed for bobcats having about 2‰ lower δ18Op values than rabbits but not 

for pumas and deer, which both have similar δ18Op (Figures 4, 5, 10B).  

Third, carnivores are enriched over their herbivorous prey [205]. Isotope fractionation from 

drinking water to body water occurs [112,119,154] and may play an important role in 18O 

enrichment of carnivore δ18Op. Feline carnivores consume prey species, whose δ18Obw are 

expected to be higher than the local δ18Ow. This isotopic enrichment of prey body fluids (i.e., 

milk, urine, blood, plasma, etc.) in 18O can be explained by evaporative enrichment from 

insensible water loss through skin and breath vapour loss [105,111,197,212]. Consequently, 

carnivores mainly consuming 18O-enriched prey should have higher δ18Obw (and hence δ18Op) 

values compared to those of their prey. A similar process has been documented in humans 

for the consumption of milk and the resulting 18O enrichment in consumer tissues 

[204,235,261]. However, our data do not support the hypothesis of 18O enrichment in 

carnivores relative to their prey (Figures 4, 5, 10C). 

Based on this information it seems likely that animals with different diets (i.e. herbivores, 

omnivores and carnivores) track δ18Ow values of meteoric water differently. This becomes 

particularly clear, if we compare feline with canid carnivores, like foxes. Felids and foxes 

belong both to the same order Carnivora, but from a nutritional perspective canids (i.e. fox) 

are considered omnivores (Figure 6). Consequently, foxes exhibit a very good linear 

relationship of δ18Op and δ18Ow (R
2 = 0.98, p < 0.0001; Figure 6) and thus differ statistically 

from feline carnivores (Tukey test: p = 0.050; Appendix 3). Dietary effects on δ18Op are 

therefore assumed to be of particular importance in feline carnivores, as they predominantly 

obtain their food water and drinking water from their prey. Significant seasonal variations in 

carnivore isotope compositions can be expected, if their dietary patterns change throughout 

the year [212]. Although North American bobcats and pumas are generally specialized on 

one major prey (i.e. rabbits: [147] and white-tailed deer: [146], respectively), they are capable 

to catch and eat many different kinds of animals, if their key prey is limited in certain areas or 

seasons (puma: [248,249]; bobcat: [147]) (Figures 4 and 5). A carnivore prey spectrum that 

varies irregularly in space and time during bone mineralisation and isotopic incorporation, 

might thus contribute to the rather moderate δ18Op - δ
18Ow relation of feline carnivores (R2 = 

0.46, p < 0.0001) compared to the good all mammal correlation (R2 = 0.76, p < 0.0001; 

Figure 3). Currently we lack a testable explanation, why the observed δ18Op values of 

predator and prey differ in bobcat and puma (Figure 10 A, B). Considering the different prey 
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spectra of these felids, we hypothesized that the puma is more a specialist predator (i.e. 

large mammals, Figure 5), whereas the bobcat is rather a generalist predator (i.e. birds, 

reptiles, small mammals, Figure 4). This might explain why puma and white-tailed deer have 

similar δ18Op values in contrast to bobcats and rabbits (Figure 10). Nonetheless, we assume 

that diet explains only a part of the deviation from an all mammal oxygen isotope δ18Op - 

δ
18Ow relation.  

4.4.3. How does behaviour affect carnivore δ
18Op? 

Behavioural mechanisms like migration were demonstrated to also influence the oxygen 

isotope composition of biogenic apatite from fish and mammals [113,262,263] as well as 

humans [208,211,261,264]. Migration between isotopically distinct biomes during bone or 

tooth formation can affect the correlation between δ18Op and δ18Ow.  

Such effects would not be unexpected given the known species- or sex-specific behavioural 

differences characterizing our study species. Puma and bobcat, and their respective prey 

species, have significantly different home range sizes, which are also known to vary between 

seasons and sex [11,149,257,258]. Our data are in accordance with the hypothesis that 

migratory behaviour might affect feline carnivore δ18Op. It is a well-known phenomenon that 

changes in staple prey activity and distribution [265,266] may influence puma migratory 

behaviour both spatially and temporally [267]. This might explain why migratory puma display 

a weaker δ18Op - δ
18Ow relation (R2 = 0.39, p < 0.0001, Figure 5) than non-migratory bobcat 

(R2 = 0.50, p < 0.0001, Figure 4). However, although carnivores exhibit typical mammalian 

dispersal behaviour, where males disperse and females are philopatric [150], we did not 

observe an effect of sex on the δ18Op - δ
18Ow relation for both carnivore species (Appendix 2). 

Given that even bobcat display a much weaker δ18Op - δ18Ow relation than most other 

mammals, although they (and their key prey) are non-migratory, leads us to the assumption, 

that additional factors like physiology and metabolism might play an important role. 

4.4.4. How do physiological and metabolic adaptatio ns influence carnivore δ
18Op? 

Physiological factors contributing to a species-specific δ18Ow - δ
18Op relation include body 

water loss via sweating or panting [212,219], water turnover [105], water conservation 

mechanisms [212,218,219,234] and metabolic rate [102]. 

Terrestrial mammals usually use a large amount of water for evaporative cooling of their 

body, which contributes to evaporative water loss and thus affects their δ18Obw and hence 

δ
18Op. Differences in the isotope compositions of liquid water during sweating versus water 

vapor during panting should affect the animal’s body water δ18Obw. Cats lose water primarily 

through panting [181] and only secondarily from sweat glands of foot pads [182]. Panting 

cats should thus have higher δ18Obw and δ18Op values than animals that sweat because 

water vapour lost in panting is more depleted in 18O [107,183].  
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Moreover, drinking water volume exerts a significant positive physiological control on the 

oxygen isotopic composition of human body water [103] and presumably also on felid δ18Obw. 

Felids are strict carnivores that obtain much of their body water from the consumption of prey 

[131]. Food water and drinking water in free-ranging cats are hence primarily recruited from 

the same source - the prey. Controlled experiments on domestic cats have shown that felids 

are not obligate drinkers: on average, only 1% of their total water input originates from 

drinking water [148]. Reduced water turnover in cats thus appears to be a factor affecting the 

δ
18Op - δ

18Ow relation. 

In addition, Luz et al. [116] noticed that δ18Op values of water-conserving desert animals are 

not very sensitive to variations in δ18Ow. Cats have developed several water conservation 

mechanisms which facilitate their survival in extreme environments. For instance, felids are 

not only known to drink to a limited extent [132,162] but also excrete concentrated urine 

[176-178]. They have hence developed alternative sources to compensate the drinking water 

input. Cats have the ability to digest and utilize high levels of dietary fat and protein, and 

oxidation of these energy-containing substances leads to the production of relatively high 

levels of metabolic water [131,162,163]. Metabolic water contributes on average 10% to their 

total water intake [131,162]. However, catabolism of macronutrients and production of 

metabolic water are both metabolic reactions that potentially alter δ18Obw which then deviates 

from δ18Ow values of the ambient meteoric water [112,118]. 

Moreover, the animal’s basal metabolic rate seems to play a prominent role for a constant 

fractionation of δ18Op and δ18Ow. Large mammals, that are obligate drinkers and tend to have 

lower metabolisms, are more likely to track δ18Ow values of drinking waters [105,108,116]. 

On the contrary, a high basal metabolic rate associated with a low rate of drinking, results in 

a weak correlation of δ18Op with δ18Ow [102]. Felids are known to have high basal metabolic 

rates (BMR) by general mammalian standards [180,268]. A recent phylogenetic analysis 

suggests that BMR is correlated with diet among the order of Carnivora; species that eat 

meat have larger home ranges and higher mass-adjusted BMRs than herbivorous or 

omnivorous species [269]. This might explain why other closely related species like foxes, 

which are characterized by an omnivorous lifestyle [131], display a much better δ18Op - δ
18Ow 

regression (R2 = 0.98, p < 0.0001, Figure 6) than strict carnivores like bobcat (R2 = 0.50, p < 

0.0001, Figure 4) and puma (R2 = 0.39, p < 0.0001, Figure 5). 

 

4.4.5. Do different tissue-types display similar δ
18Otissue - δ

18Ow relations? 

A recent water isotope study on hair of feline carnivores by Pietsch et al. [247] demonstrates 

that both puma and bobcat completely lacked the expected correlation between water 

isotopes in local water and hair, and also exhibited a complete decoupling between oxygen 

and hydrogen isotopes in hair. In this study, we additionally conducted intra-individual tissue 
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comparisons of δ18O in bobcats and found that δ18Op shows a much better relation with δ18Ow 

than δ18Oh (Appendix 4, Figure 8). Moreover, there was no significant correlation between 

δ
18Op and δ18Oh of the same bobcat individuals (Appendix 4, Figure 9). This contrasts with 

observations made for macaque monkeys by O’Regan et al. [252], who found that hair and 

bone apatite δ18O are highly correlated within individuals.  

In consideration of these findings, different factors in feline carnivores happen to interfere 

with the oxygen isotopic routing and incorporation from meteoric water into body water and 

different body tissues like bone phosphate and hair. Given that mammal bone phosphate 

precipitates in oxygen isotopic equilibrium with body water [108,116], we assume that factors 

related to diet, physiology and metabolism alter δ18Obw and thus lead to an only moderate 

δ
18Op - δ

18Ow relation, deviating from those of other placental mammals and canid carnivores 

(Figure 3). Despite this fact, feline carnivore bone phosphate δ18Op still better tracks meteoric 

water δ18Ow values than hair (Figure 8). Factors causing the deviations of O and H isotopes 

from environmental δ18Ow in feline carnivore hair are most likely attributed to isotopic routing 

(from food and water) and isotopic incorporation during biosynthesis of hair keratin. 

 

4.5. CONCLUSIONS 

Our study on δ18Op of North American bobcat and puma bone phosphate yields a 

relationship with ambient meteoric water of δ18Op = 0.40(±0.04) * δ18Ow + 20.10(± 0.40) that 

is significantly different and less well defined than the δ18Op - δ
18Ow relation for placental 

herbivores and omnivores. This finding leads to the following principal conclusions: 

a. Climatic factors like relative humidity can indirectly affect the δ18Op values of feline 

carnivores via its prey. Carnivores like pumas consuming humidity-independent prey 

species (i.e. white-tailed deer) are generally little or not affected by relative humidity. 

However, δ18Op values of bobcats, specialized on humidity-dependent prey (i.e. 

rabbits), are partially controlled by relative humidity. 

b. Dietary effects on δ18Obw and hence δ18Op of feline carnivores are likely because strict 

carnivory implies specific adaptations of the digestion, physiology and metabolism. 

Thus a carnivorous diet may at least partly explain why bobcat and puma have a 

δ
18Op - δ18Ow relation deviating from that of other omnivorous and herbivorous 

mammals. 

c. Felidae exhibit several water conservation mechanisms, like low surface water 

drinking rate (<1%), water supply from the consumption of prey, excretion of 

concentrated urine, high-level production of metabolic water through the oxidation of 

a protein and fat rich diet, and panting. In particular, the low drinking rate combined 

with a high metabolic rate lead to a δ18Op - δ
18Ow deviation in feline carnivores. 
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d. Behavioural factors like migration between isotopically distinct biomes during bone 

mineralisation may be responsible for the observed small differences of δ18Op - δ
18Ow 

relations between non-migrating bobcats and migrating pumas. However, no 

differences could be detected between sexes. 

e. Physiological and metabolic adaptations of felids probably have the greatest impact 

on the observed deviation between δ18Op and δ18Ow in feline carnivores.  

f. One major implication of this study is that δ18Op of feline carnivores do not trace 

meteoric water δ18Ow values better than those of herbivores and omnivores. Thus 

palaeoclimate reconstructions using oxygen isotope analysis of fossil carnivore 

skeletal remains and the δ18Op - δ
18Ow transfer function of modern feline carnivores 

are less precise than using herbivores. Furthermore, δ18Op fingerprinting has a lower 

spatial resolution for provenance determination of carnivores than for herbivores. 

g. Controlled feeding experiments in combination with isotopic monitoring of body water 

(i.e. blood, urine) and different tissue types are now needed to elucidate the 

mechanisms of oxygen isotopic routing and incorporation in feline carnivores. 
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7. APPENDIX 

 

7.1. CHAPTER 1: GENERAL INTRODUCTION 

 

Appendix S1.  IUCN Red List categories and status for all mammal species.  
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Appendix S2.  IUCN Red List Status (2008) of all mammalian orders. 

No. ORDER TOTAL EX EW CR EN VU NT LC DD 
% 

Threatened 
or Extinct 

1 Afrosoricida 54 0 0 1 7 9 3 30 4 31.5 

2 Carnivora 285 5 0 8 24 39 27 163 19 26.7 

3 Cetartiodactyla 329 7 2 14 46 49 26 123 62 35.9 

4 Chiroptera 1,150 5 0 25 53 99 77 687 204 15.8 

5 Cingulata 21 0 0 0 0 4 5 9 3 19.9 

6 Dasyuromorphia 74 1 0 1 6 5 10 47 4 17.6 

7 Dermoptera 2 0 0 0 0 0 0 2 0 0 

8 Didelphimorphia 95 1 0 1 0 7 2 67 17 9.5 

9 Diprotodontia 146 7 0 14 15 16 16 76 2 35.6 

10 Eulipotyphla 450 7 0 12 41 31 13 269 77 20.2 

11 Hyracoidea 6 0 0 0 0 0 0 5 0 0 

12 Lagomorpha 93 1 0 2 10 5 6 61 8 19.4 

13 Macroscelidea 16 0 0 0 1 2 1 9 3 18.8 

14 Microbiotheria 1 0 0 0 0 0 1 0 0 0 

15 Monotremata 5 0 0 3 0 0 0 2 0 60 

16 Notoryctemorphia 2 0 0 0 0 0 0 0 2 0 

17 Paucituberculata 6 0 0 0 0 2 2 2 0 33.3 

18 Peramelemorphia 22 3 0 0 4 2 1 9 3 40.9 

19 Perissodactyla 16 0 0 5 5 3 1 2 0 81.3 

20 Pholidota 8 0 0 0 2 0 4 2 0 25 

21 Pilosa 10 0 0 1 1 0 1 7 0 20 

22 Primates 414 2 0 37 86 78 23 132 56 49 

23 Proboscidea 2 0 0 0 1 0 1 0 0 50 

24 Rodentia 2,255 36 0 64 144 150 103 1,389 369 17.5 

25 Scandentia 20 0 0 0 2 0 0 15 3 10 

26 Sirenia 5 1 0 0 0 4 0 0 0 100 

TOTAL 5,487 76 2 188 448 505 323 3,109 836   
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Appendix S3.  IUCN Red List Status (2008) of the 16 carnivoran families. 

FAMILIES OF THE 
ORDER CARNIVORA TOTAL EX EW CR EN VU NT LC DD 

% 
Threatened 
or Extinct 

1 Ailuridae 1 0 0 0 0 1 0 0 0 100 

2 Canidae 36 1 0 3 3 0 4 24 1 19.4 

3 Eupleridae 9 1 0 0 1 3 3 1 0 55.6 

4 Felidae 36 0 0 1 6 9 9 11 0 44.4 

5 Herpestidae 34 0 0 0 0 3 1 27 3 8.8 

6 Hyaenidae 4 0 0 0 0 0 2 2 0 0 

7 Mephitidae 12 0 0 0 0 1 0 11 0 8.3 

8 Mustelidae 59 1 0 0 7 5 4 36 6 22 

9 Nandiniidae 1 0 0 0 0 0 0 1 0 0 

10 Odobenidae 1 0 0 0 0 0 0 0 1 0 

11 Otariidae 16 1 0 0 4 2 2 7 0 43.8 

12 Phocidae 19 1 0 2 1 1 0 12 2 26.3 

13 Prionodontidae 2 0 0 0 0 0 0 2 0 0 

14 Procyonidae 14 0 0 1 0 0 0 10 3 7.1 

15 Ursidae 8 0 0 0 1 5 0 2 0 75 

16 Viverridae 33 0 0 1 1 9 2 17 3 33.3 
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Appendix S4.  Conservation status of felid species on the IUCN Red List 2008. 

Critically Endangered (Extremely high extinction ri sk ) 

Iberian lynx  Lynx pardinus 
  

Endangered (Very high extinction risk) 

Andean cat Leopardus jacobita 

Tiger  Panthera tigris 

Snow leopard  Panthera uncia 

Borneo bay cat  Pardofelis badia 

Flat-headed cat  Prionailurus planiceps 

Fishing cat Prionailurus viverrinus 
  

Vulnerable (High extinction risk) 

Cheetah Acinonyx jubatus  

Black-footed cat  Felis nigripes  

Guingna  Leopardus guigna  

Oncilla  Leopardus tigrinus  

Sunda clouded leopard  Neofelis diardi  

Clouded leopard  Neofelis nebulosa 

Lion  Panthera leo  

Marbled cat  Pardofelis marmorata  

Rusty-spotted cat  Prionailurus rubiginosus  
  

Near Threatened (Close to quantifying for higher th reat category) 

African golden cat  Caracal aurata  

Sand cat  Felis margarita 

Pampas cat  Leopardus colocolo 

Geoffroy's cat  Leopardus geoffroyi 

Margay  Leopardus wiedii 

Pallas's cat  Otocolobus manul  

Jaguar Panthera onca 

Leopard  Panthera pardus 

Asiatic golden cat  Pardofelis temminckii 
  

Least Concern (Relatively widespread and abundant) 

Caracal  Caracal caracal 

Jungle cat  Felis chaus 

Wildcat  Felis silvestris 

Ocelot  Leopardus pardalis 

Serval  Leptailurus serval 

Canada lynx  Lynx canadensis 

Eurasian lynx  Lynx lynx 

Bobcat  Lynx rufus 

Leopard cat  Prionailurus bengalensis 

Puma  Puma concolor 

Jaguarundi  Puma yagouaroundi 
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7.2. CHAPTER 2: Taming cat numts: DNA barcoding of Felidae using  mtDNA and numts 

Appendix 1.  Sampling list 

Barcode 
sequences 

generated for: No. Sample ID Common Name Genus Species 

Sample 
material 

(hair, b lood, 
muscle 
tissue, 
feces) 

Sex Source/Contact 

ATP6 COI 

1 1/A_Ac_jub Cheetah Acinonyx jubatus b f Dr. Christian Wenker 
Zoo Basel     

2 2/A_Ac_jub Cheetah Acinonyx jubatus b f Dr. Christian Wenker 
Zoo Basel     

3 3/A_Ac_jub Cheetah Acinonyx jubatus b m Dr. Christian Wenker 
Zoo Basel     

4 4/A_Pa_uni Snowleopard Panthera unica b f Dr. Christian Wenker 
Zoo Basel   

5 5/A_Pa_uni Snowleopard Panthera unica b m Dr. Christian Wenker 
Zoo Basel   

6 6/A_Pa_unc Snowleopard Panthera uncia b f Dr. Christian Wenker 
Zoo Basel   

7 7/A_Pa_leo Lion Panthera leo b f Dr. Christian Wenker 
Zoo Basel   

8 8/A_Pa_leo Lion Panthera leo b m Dr. Christian Wenker 
Zoo Basel   

9 9/A_Pa_leo Lion Panthera leo b m Dr. Christian Wenker 
Zoo Basel   

10 10/A_Pa_leo Lion Panthera leo b m Dr. Christian Wenker 
Zoo Basel   
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Barcode 
sequences 

generated for: No. Sample ID Common Name Genus Species 

Sample 
material 

(hair, b lood, 
muscle 
tissue, 
feces) 

Sex Source/Contact 

ATP6 COI 

11 11/A_Ac_jub Cheetah Acinonyx jubatus b f Herr Andreas Filz  
Bernburg Tiergarten     

12 12/A_Pa_tig_su Sumatratiger Panthera tigris b f 

Dr. Ulrike Rademacher (Kuratorin 
Säugetiere) 

Wilhelma - der zoologisch botanische 
Garten 

    

13 13/A_Pa_tig_su Sumatratiger Panthera tigris b m 

Dr. Ulrike Rademacher (Kuratorin 
Säugetiere) 

Wilhelma - der zoologisch botanische 
Garten 

    

14 14/A_Fe_mar Desertcat Felis margarita t m Dr. Susanne Klomburg 
Zootierärztin Zoo Osnabrück 

    

15 15/A_Pa_leo Lion Panthera leo t m Dr. Susanne KlomburgZootierärztin Zoo 
Osnabrück 

   

16 16/A_Pa_leo Lion Panthera leo t f Dr. Susanne Klomburg 
Zootierärztin Zoo Osnabrück 

   

17 17/A_Pa_leo Lion Panthera leo t f Dr. Susanne Klomburg 
Zootierärztin Zoo Osnabrück 

  

18 18/A_Ly_lyn_ly Eurasian lynx Lynx lynx b  Herr Andreas Filz 
Bernburg Tiergarten 

    

19 19/A_Ly_lyn_ly Eurasian lynx Lynx lynx b  Herr Andreas Filz 
Bernburg Tiergarten 

    

20 20/A_Fe_sil European wildcat Felis silvestris h  Dr. Martin Wehrle  
Natur- und Tierpark Goldau 
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Barcode 
sequences 

generated for: No. Sample ID Common Name Genus Species 

Sample 
material 

(hair, b lood, 
muscle 
tissue, 
feces) 

Sex Source/Contact 

ATP6 COI 

22 22/A_Ly_lyn Eurasian lynx Lynx lynx h  Mr. Leif Blomqvist (Curator)  
Helsinki Zoo    

23 25/A_Pa_leo_bl Lion Panthera leo h f Burgers' Zoo 
Kim van de Put; Arnhem/Netherlands 

  

24 26/A_Pa_leo_bl Lion Panthera leo h f Burgers' Zoo 
Kim van de Put; Arnhem/Netherlands 

   

25 27/A_Pa_leo_bl Lion Panthera leo h f Burgers' Zoo 
Kim van de Put; Arnhem/Netherlands 

   

26 28/A_Pa_leo_bl Lion Panthera leo h m Burgers' Zoo 
Kim van de Put; Arnhem/Netherlands 

   

27 29/A_Pa_par Sri Lankan 
Leopard 

Panthera pardus h m Burgers' Zoo 
Kim van de Put; Arnhem/Netherlands 

   

28 30/A_Pa_tig_su Sumatra Tiger Panthera tigris h f Burgers' Zoo 
Kim van de Put; Arnhem/Netherlands 

   

29 31/A_Ly_ruf Bobcat Lynx rufus h f Burgers' Zoo 
Kim van de Put; Arnhem/Netherlands 

   

30 32/A_Ac_jub Cheetah Acinonyx jubatus h f Burgers' ZooKim van de Put; 
Arnhem/Netherlands 

   

31 33/A_Ac_jub Cheetah Acinonyx jubatus h f Burgers' Zoo 
Kim van de Put; Arnhem/Netherlands 

   

32 34/A_Ac_jub Cheetah Acinonyx jubatus h f Burgers' Zoo 
Kim van de Put; Arnhem/Netherlands 
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Barcode 
sequences 

generated for: No. Sample ID Common Name Genus Species 

Sample 
material 

(hair, b lood, 
muscle 
tissue, 
feces) 

Sex Source/Contact 

ATP6 COI 

33 35/A_Ac_jub Cheetah Acinonyx jubatus h m Burgers' Zoo 
Kim van de Put; Arnhem/Netherlands    

34 36/A_Ac_jub Cheetah Acinonyx jubatus h m Burgers' Zoo 
Kim van de Put; Arnhem/Netherlands 

   

35 37/A_Ly_lyn_ly Eurasian lynx Lynx lynx t f Nationalpark Harz 
Frank Raimer/ Ole Anders 

    

36 38/A_Ly_lyn_ly Eurasian lynx Lynx lynx t m Nationalpark Harz 
Frank Raimer/ Ole Anders 

    

37 39/A_Ly_lyn_ly Eurasian lynx Lynx lynx h m Tierpark Görlitz 
Dr. A. Gebauer 

    

38 40/A_Ot_man Pallas cat Otocolobus manul h  Tierpark Görlitz 
Dr. A. Gebauer 

   

39 41/A_Fe_sil European wildcat Felis silvestris h  Nationalpark Harz 
Frank Raimer/ Ole Anders 

  

40 42/A_Fe_sil European wildcat Felis silvestris h  Nationalpark Harz 
Frank Raimer/ Ole Anders 

  

41 43/A_Fe_sil European wildcat Felis silvestris h  Nationalpark Harz 
Frank Raimer/ Ole Anders 

  

42 44/A_Pa_leo Lion Panthera leo h m Zoo Karlsruhe 
Frau Dr. Klett 

   

43 45/A_Pa_par_ja Leopard Panthera pardus h f Zoo Karlsruhe 
Frau Dr. Klett 
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Barcode 
sequences 

generated for: No. Sample ID Common Name Genus Species 

Sample 
material 

(hair, b lood, 
muscle 
tissue, 
feces) 

Sex Source/Contact 

ATP6 COI 

44 46/A_Pa_par_ja Leopard Panthera pardus b  Zoo Karlsruhe 
Frau Dr. Klett   

45 47/A_Pa_unc Snowleopard Panthera uncia h f Zoo KarlsruheFrau Dr. Klett    

46 48/A_Ly_lyn Eurasian lynx Lynx lynx h f Zoo Karlsruhe 
Frau Dr. Klett 

   

47 49/A_Pa_leo Lion Panthera leo t f Zoo Karlsruhe 
Frau Dr. Klett 

   

48 50/A_Pa_leo Lion Panthera leo h f Zoo Karlsruhe 
Frau Dr. Klett 

  

49 51/A_Pa_leo Lion Panthera leo b f Zoo Karlsruhe 
Frau Dr. Klett 

  

50 52/A_Pa_tig Tiger Panthera tigris h f Zoo Zürich 
Fr. Gabriele Hürlimann 

  

51 53/A_Pa_unc Snowleopard Panthera uncia h f Zoo Zürich 
Fr. Gabriele Hürlimann 

   

52 54/A_Pa_unc Snowleopard Panthera uncia h m Zoo Zürich 
Fr. Gabriele Hürlimann 

  

53 55/A_Pa_unc Snowleopard Panthera uncia h m Zoo Zürich 
Fr. Gabriele Hürlimann 

  

54 56/A_Ne_neb Clouded leopard Neofelis nebulosa h f Zoo Zürich 
Fr. Gabriele Hürlimann 
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Barcode 
sequences 

generated for: No. Sample ID Common Name Genus Species 

Sample 
material 

(hair, b lood, 
muscle 
tissue, 
feces) 

Sex Source/Contact 

ATP6 COI 

55 57/A_Ne_neb Clouded leopard Neofelis nebulosa h f Zoo Zürich 
Fr. Gabriele Hürlimann    

56 58/A_Ne_neb Clouded leopard Neofelis nebulosa h m Zoo Zürich 
Fr. Gabriele Hürlimann 

   

57 59/A_Ne_neb Clouded leopard Neofelis nebulosa h m Zoo Zürich 
Fr. Gabriele Hürlimann 

   

58 60/A_Ne_neb Clouded leopard Neofelis nebulosa h f Zoo Zürich 
Fr. Gabriele Hürlimann 

   

59 61/A_Fe_sil European wildcat Felis silvestris h f Tierpark Nordhorn 
Dr. Heike Weber 

  

60 62/A_Fe_sil European wildcat Felis silvestris h m Tierpark NordhornDr. Heike Weber    

61 63/A_Fe_sil European wildcat Felis silvestris s  Nationalpark Harz 
Frank Raimer/ Ole Anders 

  

62 64/A_Fe_sil European wildcat Felis silvestris s  Nationalpark Harz 
Frank Raimer/ Ole Anders 

  

63 65/A_Fe_cat Domestic cat Felis  catus s  Nationalpark Harz 
Frank Raimer/ Ole Anders 

  

64 66/A_Fe_sil European wildcat Felis  silvestris h m Alpenzoo Innsbruck Dipl. Biol. Dirk 
Ullrich 

   

65 67/A_Fe_sil European wildcat Felis  silvestris h f Alpenzoo Innsbruck Dipl. Biol. Dirk 
Ullrich 
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Barcode 
sequences 

generated for: No. Sample ID Common Name Genus Species 

Sample 
material 

(hair, b lood, 
muscle 
tissue, 
feces) 

Sex Source/Contact 

ATP6 COI 

66 68/A_Pa_tig Tiger Panthera tigris t  Prof. Dr. Martin Reifinger Institut für 
pathologische Veterinärmedizin     

67 69/A_Pa_unc Snowleopard Panthera uncia t f Dr. Robert Hoeveler, 
Veterinäruntersuchungsamt , Krefeld 

    

68 70/A_Le_geo Geoffroy`s cat Leopardus geoffroyi t f Dr. Robert Hoeveler, 
Veterinäruntersuchungsamt , Krefeld 

    

69 71/A_Le_tig Tigrina Leopardus tigrina t m Dr. Robert Hoeveler, 
Veterinäruntersuchungsamt , Krefeld 

    

70 72/A_Pu_yag Jaguarundi Puma yaguarundi t m Dr. Robert Hoeveler, 
Veterinäruntersuchungsamt , Krefeld 

    

71 73/A_Pa_par_ko Ceylon Leopard Panthera pardus t f Dr. Martin Peters 
SVUA Arnsberg 

    

72 74/A_Pa_par_ori Amurleopard Panthera pardus t m Dr. Martin Peters 
SVUA Arnsberg 

    

73 75/A_Le_tig Tigrina Leopardus tigrina t m Dr. Martin Peters 
SVUA Arnsberg 

    

74 76/A_Fe_sil European wildcat Felis silvestris t f Nationalpark Harz 
Frank Raimer/ Ole Anders 

    

75 77/A_Fe_sil European wildcat Felis silvestris t f Nationalpark HarzFrank Raimer/ Ole 
Anders 

    

76 78/A_Fe_sil European wildcat Felis silvestris t f Nationalpark Harz 
Frank Raimer/ Ole Anders 
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Barcode 
sequences 

generated for: No. Sample ID Common Name Genus Species 

Sample 
material 

(hair, b lood, 
muscle 
tissue, 
feces) 

Sex Source/Contact 

ATP6 COI 

77 79/A_Pa_par_ori Amur leopard Panthera pardus h f Mr. Leif Blomqvist (Curator)  
Helsinki Zoo     

78 80/A_Ot_man Pallas cat Otocolobus manul h m Mr. Leif Blomqvist (Curator)  
Helsinki Zoo 

   

79 81/A_Ac_jub Cheetah Acinonyx   jubatus t  IZW Tanja Noventa FG.1     

80 82/A_Ac_jub Cheetah Acinonyx  jubatus t  IZW Tanja Noventa FG.1     

81 83/A_Ac_jub_so Cheetah Acinonyx   jubatus t  IZW Tanja Noventa FG.1     

82 84/A_Pa_tem Asian golden cat Pardofelis temminckii t  IZW Tanja Noventa FG.1     

83 85/A_Pa_tem Asian golden cat Pardofelis temminckii t  IZW Tanja Noventa FG.1     

84 86/A_Pu_con Puma Puma concolor t  IZW Tanja Noventa FG.1     

85 87/A_Ot_man Palla`s cat Otocolobus  manul t  IZW Tanja Noventa FG.1     

86 88/A_Ot_man Palla`s cat Otocolobus  manul t  IZW Tanja Noventa FG.1    

87 89/A_Ot_man Palla`s cat Caracal  manul t  IZW Tanja Noventa FG.1    
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88 90/A_Ca_ser Serval Caracal serval t  IZW Tanja Noventa FG.1     

89 91/A_Fe_sil European Wildcat Felis  silvestris t  IZW Tanja Noventa FG.1     

90 92/A_Fe_sil_go Oman wildcat Felis silvestris t  IZW Tanja Noventa FG.1     

91 93/A_Fe_ly African wildcat Felis lybica t  IZW Tanja Noventa FG.1    

92 94/A_Fe_ly African wildcat Felis lybica t  IZW Tanja Noventa FG.1     

93 95/A_Le_geo Geoffroy`s cat Leopardus   geoffroyi t  IZW Tanja Noventa FG.1     

94 96/A_Ca_ser Serval Caracal serval b  IZW Tanja Noventa FG.1    

95 97/A_Ca_ser Serval Caracal serval b  IZW Tanja Noventa FG.1    

96 98/A_Ca_ser Serval Caracal serval t  IZW Tanja Noventa FG.1    

97 99/A_Ly_ruf Bobcat Lynx  rufus t  IZW Tanja Noventa FG.1     

98 100/A_Ly_ruf Bobcat Lynx  rufus t  IZW Tanja Noventa FG.1     
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99 101/A_Ot_man Palla`s cat Otocolobus  manul t  IZW Tanja Noventa FG.1    

100 102/A_Ot_man Palla`s cat Otocolobus  manul t  IZW Tanja Noventa FG.1     

101 103/A_Pa_leo Lion Panthera leo t  IZW Tanja Noventa FG.1   

102 104/A_Pa_leo_pe Lion Panthera  leo t  IZW Tanja Noventa FG.1    

103 105/A_Pa_leo_pe Lion Panthera leo b  IZW Tanja Noventa FG.1    

104 106/A_Pa_onc Jaguar Panthera onca b  IZW Tanja Noventa FG.1   

105 107/A_Pa_onc Jaguar Panthera onca t  IZW Tanja Noventa FG.1    

106 108/A_Pa_onc Jaguar Panthera  onca t  IZW Tanja Noventa FG.1    

107 109/A_Pa_onc Jaguar Panthera  onca t  IZW Tanja Noventa FG.1     

108 110/A_Pa_onc Jaguar Panthera  onca b  IZW Tanja Noventa FG.1   

109 111/A_Pa_onc Jaguar Panthera  onca b  IZW Tanja Noventa FG.1   
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110 112/A_Pa_par Leopard Panthera pardus t  IZW Tanja Noventa FG.1   

111 113/A_Pa_par_ja Leopard Panthera pardus b  IZW Tanja Noventa FG.1   

112 114/A_Pa_par_ja Leopard Panthera  pardus b  IZW Tanja Noventa FG.1    

113 115/A_Pa_par_ja Leopard Panthera  pardus b  IZW Tanja Noventa FG.1   

114 116/A_Pa_par_me Leopard Panthera  pardus t  IZW Tanja Noventa FG.1    

115 117/A_Pa_par_or Leopard Panthera  pardus b  IZW Tanja Noventa FG.1   

116 118/A_Pa_par_or Leopard Panthera pardus b  IZW Tanja Noventa FG.1   

117 119/A_Pa_par_or Leopard Panthera pardus b  IZW Tanja Noventa FG.1   

118 120/A_Pa_par_or Leopard Panthera pardus b  IZW Tanja Noventa FG.1   

119 121/A_Pa_par_or Leopard Panthera pardus t  IZW Tanja Noventa FG.1    

120 122/A_Pa_par_or Leopard Panthera pardus t  IZW Tanja Noventa FG.1    
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121 123/A_Pa_tig_al Tiger Panthera  tigris  t  IZW Tanja Noventa FG.1    

122 124/A_Pa_tig_al Tiger Panthera  tigris  t  IZW Tanja Noventa FG.1     

123 125/A_Pa_tig_co Tiger Panthera  tigris  t  IZW Tanja Noventa FG.1   

124 126/A_Pa_tig_su Tiger Panthera  tigris  t  IZW Tanja Noventa FG.1    

125 127/A_Pa_tig_su Tiger Panthera  tigris  t  IZW Tanja Noventa FG.1     

126 128/A_Pa_tig_ti Tiger Panthera  tigris  t  IZW Tanja Noventa FG.1     

127 129/A_Pa_tig_ti Tiger Panthera  tigris  t  IZW Tanja Noventa FG.1    

128 130/A_Pr_ben Asian leopard cat Prionailurus  bengalensis t  IZW Tanja Noventa FG.1    

129 131/A_Pr_ben Asian leopard cat Prionailurus  bengalensis t  IZW Tanja Noventa FG.1     

130 132/A_Pr_rub Rusty-spotted cat Prionailurus  rubiginosus t  IZW Tanja Noventa FG.1     

131 133/A_Pr_viv Fishing cat Prionailurus  viverrinus t  IZW Tanja Noventa FG.1     
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132 134/A_Pr_viv Fishing cat Prionailurus  viverrinus t  IZW Tanja Noventa FG.1     

133 135/A_Pr_viv Fishing cat Prionailurus  viverrinus t  IZW Tanja Noventa FG.1     

134 136/A_Pr_viv Fishing cat Prionailurus  viverrinus t  IZW Tanja Noventa FG.1     

135 137/A_Pu_con Puma Puma concolor b  IZW Tanja Noventa FG.1     

136 138/A_Pu_con Puma Puma concolor b  IZW Tanja Noventa FG.1    

137 139/A_Pu_con Puma Puma concolor b  IZW Tanja Noventa FG.1     

138 140/A_Pr_viv Fishing cat Prionailurus  viverrinus t m IZW Jennifer Ringleb FG 4    

139 141/A_Ot_man Palla`s cat Otocolobus  manul t m IZW Jennifer Ringleb FG 4    

140 142/A_Le_par Ocelot Leopardus  pardalis t m IZW Jennifer Ringleb FG 4   

141 143/A_Le_par Ocelot Leopardus  pardalis t m IZW Jennifer Ringleb FG 4   

142 144/A_Pu_con Puma Puma concolor t m IZW Jennifer Ringleb FG 4    



 

113 
 

Barcode 
sequences 

generated for: No. Sample ID Common Name Genus Species 

Sample 
material 

(hair, b lood, 
muscle 
tissue, 
feces) 

Sex Source/Contact 

ATP6 COI 

143 145/A_Fe_sil European Wildcat Felis  silvestris t m IZW Jennifer Ringleb FG 4     

144 146/A_Ly_lyn Eurasian lynx Lynx lynx t m IZW Jennifer Ringleb FG 4     

145 147/A_Pa_tig_al Tiger Panthera  tigris  t m IZW Jennifer Ringleb FG 4    

146 148/A_Pa_par_sa Leopard Panthera pardus t m IZW Jennifer Ringleb FG 4     

147 149/A_Pa_onc Jaguar Panthera onca t m IZW Jennifer Ringleb FG 4     

148 150/A_Pa_tig_al Tiger Panthera  tigris  t m IZW Jennifer Ringleb FG 4    

149 151/A_Pa_leo_pe Lion Panthera leo t m IZW Jennifer Ringleb FG 4    

150 152/A_Pa_tem Asian golden cat Pardofelis temminckii t m IZW Jennifer Ringleb FG 4     

151 153/A_Pa_tig_al Tiger Panthera  tigris  t m IZW Jennifer Ringleb FG 4    

152 154/A_Pr_rub Rusty-spotted cat Prionailurus  rubiginosus t m IZW Jennifer Ringleb FG 4     

153 155/A_Pa_tig_al Tiger Panthera  tigris  t m IZW Jennifer Ringleb FG 4     
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154 156/A_Pa_tig_al Tiger Panthera  tigris  t m IZW Jennifer Ringleb FG 4     

155 157/A_Pa_unc Snowleopard Panthera uncia t m IZW Jennifer Ringleb FG 4    

156 158/a_Pa_leo Lion Panthera leo t m IZW Jennifer Ringleb FG 4    

157 159/A_Pa_par_or Leopard Panthera pardus t m IZW Jennifer Ringleb FG 4     

158 160/A_Ac_jub Cheetah Acinonyx   jubatus t m IZW Jennifer Ringleb FG 4     

159 161/A_Pa_tig_su Tiger Panthera  tigris  t m IZW Jennifer Ringleb FG 4    

160 162/A_Pa_par_or Leopard Panthera pardus t m IZW Jennifer Ringleb FG 4     

161 163/A_Pa_par_me Leopard Panthera  pardus t m IZW Jennifer Ringleb FG 4    

162 164/A_Pa_leo_le Lion Panthera leo t m IZW Jennifer Ringleb FG 4    

163 165/A_Pa_tig_ti Tiger Panthera  tigris  t m IZW Jennifer Ringleb FG 4     

164 166/A_Pa_tig Tiger Panthera  tigris  t m IZW Jennifer Ringleb FG 4     
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165 167/A_Pa_leo Lion Panthera leo t m IZW Jennifer Ringleb FG 4   

166 168/A_Pa_par_ja Leopard Panthera  pardus t m IZW Jennifer Ringleb FG 4     

167 169/A_Pa_par_or Leopard Panthera pardus f f IZW Jennifer Ringleb FG 4    

168 170/A_Pa_par_or Leopard Panthera pardus f m IZW Jennifer Ringleb FG 4    

169 171/A_Pa_par_or Leopard Panthera pardus f f IZW Jennifer Ringleb FG 4   

170 172/A_Pa_tig_su Tiger Panthera  tigris  f f IZW Jennifer Ringleb FG 4   

171 173/A_Pa_tig_su Tiger Panthera  tigris  f f IZW Jennifer Ringleb FG 4   

172 174/A_Pa_tig_al Tiger Panthera  tigris  f f IZW Jennifer Ringleb FG 4   

173 175/A_Pa_tig_al Tiger Panthera  tigris  f m IZW Jennifer Ringleb FG 4   

174 176/A_Ly_ruf Bobcat Lynx  rufus f f IZW Jennifer Ringleb FG 4    

175 177/A_Ly_par Iberian lynx Lynx pardinus f m IZW Jennifer Ringleb FG 4    
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176 178/A_Ly_par Iberian lynx Lynx pardinus f m IZW Jennifer Ringleb FG 4    

177 179/A_Fe_mar Desert cat Felis margarita f f IZW Jennifer Ringleb FG 4    

178 180/A_Fe_mar Desert cat Felis margarita f f IZW Jennifer Ringleb FG 4    

179 181/A_Le_tig Tigrina Leopardus tigrinus f ? IZW Jennifer Ringleb FG 4   

180 182/A_Pr_rub Rusty-spotted cat Prionailurus  rubiginosus f f IZW Jennifer Ringleb FG 4    

181 183/A_Pr_rub Rusty-spotted cat Prionailurus  rubiginosus f f IZW Jennifer Ringleb FG 4    

182 184/A_Fe_nig Black-footed cat Felis nigripes f  IZW Jennifer Ringleb FG 4    

183 185/A_Fe_nig Black-footed cat Felis nigripes f  IZW Jennifer Ringleb FG 4   

184 186/A_Pa_par_ja Leopard Panthera  pardus f  IZW Jennifer Ringleb FG 4    

185 187/A_Pa_par_me Leopard Panthera  pardus f  IZW Jennifer Ringleb FG 4    

186 188/A_Pa_par_me Leopard Panthera  pardus f  IZW Jennifer Ringleb FG 4    
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187 189/A_Pa_tig_al Tiger Panthera  tigris  t  IZW Jennifer Ringleb FG 4     

188 190/A_Fe_cat Domestic cat Felis  catus t  IZW Jennifer Ringleb FG 4     

189 191/A_Fe_cat Domestic cat Felis  catus t  IZW Jennifer Ringleb FG 4     

190 192/A_Fe_cat Domestic cat Felis  catus t  IZW Jennifer Ringleb FG 4     

191 193/A_Ot_man Palla`s cat Otocolobus  manul t m Kathrin Witzensberger Trier Tierpark 
Berlin 

    

192 194/A_Ot_man Palla`s cat Otocolobus  manul h f Kathrin Witzensberger Trier Zoo 
Moscow 

   

193 195/A_Ot_man Palla`s cat Otocolobus  manul h m Kathrin Witzensberger Trier Zoo 
Moscow 

   

194 196/A_Fe_mar Desertcat Felis margarita t f Kathrin Witzensberger Trier Zoo 
Osnabrück 

   

195 197/A_Fe_mar Desertcat Felis margarita t m Kathrin Witzensberger Trier Zoo 
Wuppertal 

   

196 198/A_Fe_mar Desertcat Felis margarita t f Kathrin Witzensberger Trier Zoo 
Wuppertal 

    

197 199/A_Fe_sil_go Oman wildcat Felis silvestris h m Kathrin Witzensberger Trier    
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198 200/A_Fe_sil_go Oman wildcat Felis silvestris h f Kathrin Witzensberger Trier    

199 201/A_Fe_sil_go Oman wildcat Felis silvestris h m Kathrin Witzensberger Trier Parc des 
felins, France 

   

200 202/A_Fe_nig Black-footed cat Felis nigripes t f Kathrin Witzensberger Trier Zoo 
Wuppertal 

    

201 203/A_Fe_nig Black-footed cat Felis nigripes t m Kathrin Witzensberger Trier Zoo 
Wuppertal 

    

202 204/A_Fe_nig Black-footed cat Felis nigripes t m Kathrin Witzensberger Trier Zoo 
Wuppertal 

    

203 205/A_Pa_leo Lion Panthera leo b m Zoo Köln   

204 206/A_Pa_tig_al Tiger Panthera  tigris  h m Tierpark Hagenbeck   

205 207/A_Pa_leo_pe Lion Panthera  leo h m Mr. Leif Blomqvist (Curator)  
Helsinki Zoo 

   

206 208/A_Pa_leo_pe Lion Panthera  leo h m Mr. Leif Blomqvist (Curator)  
Helsinki Zoo 

   

207 209/A_Pa_leo_pe Lion Panthera  leo h f Mr. Leif Blomqvist (Curator)  
Helsinki Zoo 

   

208 210/A_Pa_leo_pe Lion Panthera  leo h f Mr. Leif Blomqvist (Curator)  
Helsinki Zoo 
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209 211/A_Pa_par_ori Amurleopard Panthera pardus h m Mr. Leif Blomqvist (Curator)  
Helsinki Zoo    

210 212/A_Fe_sil European wildcat Felis silvestris t f Veterinärpathologie Zürich Prof. Dr. 
Pospischil 

    

211 213/A_Fe_sil European wildcat Felis silvestris t  Nationalpark Harz 
Frank Raimer/ Ole Anders 

    

212 214/A_Fe_cat Domestic cat Felis catus t  Nationalpark Harz 
Frank Raimer/ Ole Anders 

    

213 215/A_Fe_sil European wildcat Felis silvestris t  Nationalpark Harz 
Frank Raimer/ Ole Anders 

    

214 216/A_Fe_sil European wildcat Felis silvestris t  Nationalpark Harz 
Frank Raimer/ Ole Anders 

    

215 217/A_Ly_lyn_ly Eurasian lynx Lynx lynx t f Nationalpark Harz 
Frank Raimer/ Ole Anders 

   

216 218_Pr_rub-phi Rusty-spotted cat Prionailurus rubiginosus h  Zoologischer Garten Frankfurt Frau Dr. 
Geiger 

   

217 219_Le_par Ocelot Leopardus  pardalis h f Zoo Stralsund Dr. Langner   

218 220_Le_par Ocelot Leopardus  pardalis h m Zoo Stralsund Dr. Langner   

219 221_Pr_ben Asian leopard cat Prionailurus  bengalensis h m/f Zoo Augsburg Dr. Jantschke   
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220 222_Pu_con Puma Puma concolor h f Zoo Bremerhaven Dr. Schöne    

221 223_Pr_rub Rusty-spotted cat Prionailurus  rubiginosus h f Zoo Frankfurt Dr. Schauerte    

222 224_Pa_unc Snowleopard Panthera unica h  Zoo Wuppertal Dr. A Stadler   

223 225_Ly_ly_wr Sibirian lynx Lynx lynx h  Zoo Wuppertal Dr. A Stadler    

224 226_Le_geo Geoffroy`s cat Leopardus geoffroyi h  Zoo Wuppertal Dr. A Stadler    

225 227_Pa_par_fu Indian Leopard Panthera pardus h  Zoo Wuppertal Dr. A Stadler    

226 228_Fe_ly_go Oman wildcat Felis lybica h  Zoo Wuppertal Dr. A Stadler   

227 229_Pa_leo Lion Panthera  leo h  Zoo Wuppertal Dr. A Stadler   

228 230_Pa_par_fu Leopard Panthera pardus h  Zoo Wuppertal Dr. A Stadler    

229 231_Pa_tem Asian golden cat Pardofelis temminckii h  Zoo Wuppertal Dr. A Stadler   

230 232_Ne_neb Clouded leopard Neofelis nebulosa h  Zoo Wuppertal Dr. A Stadler   
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231 233_Ac_jub Cheetah Acinonyx jubatus h  Zoo Wuppertal Dr. A Stadler   

232 234_Le_tig Tigrina Leopardus tigrina h  Zoo Wuppertal Dr. A Stadler    

233 235_Pa_tig_al Tiger Panthera tigris h  Zoo Wuppertal Dr. A Stadler   

234 236/A_Pa_onc Jaguar Panthera onca h m Zoo Landau Dr. C. Schubert    

235 237/A_Ac_jub_so Cheetah Acinonyx   jubatus h m Zoo Landau Dr. C. Schubert    

236 238/A_Ac_jub_so Cheetah Acinonyx   jubatus h f Zoo Landau Dr. C. Schubert    

237 239/A_Ac_jub_so Cheetah Acinonyx   jubatus h m Zoo Landau Dr. C. Schubert   

238 240/A_Le_geo Geoffroy`s cat Leopardus geoffroyi h  Bad Kösen Tierpark Herr Scherling    

239 241/A_Pr_ben Asian leopard cat Prionailurus  bengalensis h, b, t m Zoo Heidelberg Dr. Scharpegge    

240 242/A_Ca_ser Serval Caracal serval h m Zoo Hoyerswerda Fr. Dr. Häfner    

241 243_Pu_con Puma Puma concolor h ? Parkenzoo Sweden, Jennie Westander    
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242 244_Ot_man Pallas cat Otocolobus manul h ? Parkenzoo Sweden, Jennie Westander   

243 245_Fe_mar Desert cat Felis margarita h ? Parkenzoo Sweden, Jennie Westander   

244 246_Pa_par_sa Leopard Panthera pardus h ? Allwetterzoo Münster Dr. Wewers    

245 247_Ca_car Caracal Caracal caracal h m Grégory Breton, Curator at LE PARC 
DES FELINS, France 

   

246 248_Ca_car Caracal Caracal caracal h f Grégory Breton, Curator at LE PARC 
DES FELINS, France 

   

247 249_Ca_car Caracal Caracal caracal h f Grégory Breton, Curator at LE PARC 
DES FELINS, France 

   

248 250_Le_geo Geoffroy`s cat Leopardus  geoffroyi h m Grégory Breton, Curator at LE PARC 
DES FELINS, France 

   

249 251_Le_geo Geoffroy`s cat Leopardus  geoffroyi h m Grégory Breton, Curator at LE PARC 
DES FELINS, France 

  

250 252_Le_par Ocelot Leopardus pardalis h m Grégory Breton, Curator at LE PARC 
DES FELINS, France 

   

251 253_Le_tig Tigrina Leopardus tigrinus h m Grégory Breton, Curator at LE PARC 
DES FELINS, France 

   

252 254_Le_tig Tigrina Leopardus tigrinus h m Grégory Breton, Curator at LE PARC 
DES FELINS, France 
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253 255_Le_tig Tigrina Leopardus tigrinus h f Grégory Breton, Curator at LE PARC 
DES FELINS, France   

254 256_Le_tig Tigrina Leopardus tigrinus h f Grégory Breton, Curator at LE PARC 
DES FELINS, France 

  

255 257_Le_wie Margay Leopardus wiedii h m Grégory Breton, Curator at LE PARC 
DES FELINS, France 

  

256 258_Le_wie Margay Leopardus wiedii h m Grégory Breton, Curator at LE PARC 
DES FELINS, France 

   

257 259_Le_wie Margay Leopardus wiedii h f Grégory Breton, Curator at LE PARC 
DES FELINS, France 

   

258 260_Le_wie Margay Leopardus wiedii h f Grégory Breton, Curator at LE PARC 
DES FELINS, France 

  

259 261_Ly_lyn Eurasian lynx Lynx lynx h m Grégory Breton, Curator at LE PARC 
DES FELINS, France 

  

260 262_Pu_yag Jaguarundi Puma yaguarundi h m Grégory Breton, Curator at LE PARC 
DES FELINS, France 

   

261 263_Pu_yag Jaguarundi Puma yaguarundi h m Grégory Breton, Curator at LE PARC 
DES FELINS, France 

  

262 264_Pu_yag Jaguarundi Puma yaguarundi h f Grégory Breton, Curator at LE PARC 
DES FELINS, France 

  

263 265_Pu_yag Jaguarundi Puma yaguarundi h f Grégory Breton, Curator at LE PARC 
DES FELINS, France 
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264 266_Ot_man Palla´s cat Otocolobus manul h f Grégory Breton, Curator at LE PARC 
DES FELINS, France    

265 267_Fe_lyb African wildcat Felis lybica h f Grégory Breton, Curator at LE PARC 
DES FELINS, France 

   

266 268_Fe_mar Desert cat Felis margarita h m Grégory Breton, Curator at LE PARC 
DES FELINS, France 

   

267 269_Fe_mar Desert cat Felis margarita h m Grégory Breton, Curator at LE PARC 
DES FELINS, France 

   

268 270_Fe_mar Desert cat Felis margarita h m Grégory Breton, Curator at LE PARC 
DES FELINS, France 

   

269 271_Pa_par Leopard Panthera  pardus h ? Rebecca Ray, Zambia Luambe NP    

270 272_Pa_par Leopard Panthera  pardus h ? Rebecca Ray, Zambia Luambe NP    

271 273_Pa_par Leopard Panthera  pardus h ? Rebecca Ray, Zambia Luambe NP   

272 274_Pa_par Leopard Panthera  pardus t ? Rebecca Ray, Zambia Luambe NP   

273 275_Pa_par Leopard Panthera  pardus t ? Rebecca Ray, Zambia Luambe NP   

274 276_Pa_par Leopard Panthera  pardus t ? Rebecca Ray, Zambia Luambe NP   
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275 277_Pu_con Puma Puma concolor h w Zoo Bremerhaven Dr. Schöne   

276 278_Pu_con Puma Puma concolor h w Zoo Bremerhaven Dr. Schöne   

277 279_Pu_con Puma Puma concolor h m Zoo Bremerhaven Dr. Schöne     
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Table S1.  Characterization of the size, similarity, and nucleotide substitution patterns from pairwise comparison of COI cymt and putative numt 
sequences. 
 

Size (bp) Changes bewteen 
cymt and numt (bp)  

Genus Species Common 
name 

Number of 
analysed 

COI 
sequences  cymt numt Subst. Gaps 

Number of 
numt 

haplotypes  

Base pair 
insertions 

(bp) 

Number of 
stop 

codons 
Blast Hit 

Numt 
Genbank 

Accession 
number  

Reference  

Panthera  tigris Tiger 18 658 663 65 5 1 5 2 99% (Tiger-
numt) DQ151551 [35] 

Panthera  leo Lion 4 658 658 n.a. 0 1 0 0 97% (Tiger-
numt) 

DQ151552 [35] 

Felis catus Dometic 
cat 

4 658 658 47 0 3 0 1 99% (Cat-numt) U20754 [17] 

Felis silvestris European 
wild cat 

10 658 658 n.a. 0 3 0 1 100 & 99 % 
(Cat- numt) 

U20755 [17] 

Felis libyca African 
wild cat 

2 658 658 n.a. 0 2 0 1 100% (Cat- 
numt) 

U20756 [17] 

Otocolobus manul Pallas cat 4 658 658 n.a. 0 1 0 8 n.a. n.a. n.a. 
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Appendix 3 . Image sources 

1. Puma: 

(http://us.123rf.com/400wm/400/400/isselee/isselee0802/isselee080200241/2597975-

puma-17-years--puma-concolor-in-front-of-a-white-background.jpg) 

2. Asian Golden cat: (http://en.wikipedia.org/wiki/File:Asian_Golden_cat.jpg) 

3. Black-footed cat: (http://farm1.static.flickr.com/116/260095916_838a749a89.jpg) 

4. Clouded-leopard: (http://www.myfreewallpapers.net/nature/pages/clouded-

leopard.shtml) 

5. Lion: (http://wallpapers.free-review.net/wallpapers/15/Big_Lion.jpg) 

6. Black-footed cat: (http://farm1.static.flickr.com/116/260095916_838a749a89_b.jpg) 

7. Caracal: 

(http://www.visualphotos.com/photo/1x3740890/caracal_caracal_felis_caracal_augra

bies_falls_ba3063.jpg) 

8. Eurasian lynx: (http://pixdaus.com/pics/1236252856LLgiwSy.jpg) 

9. Domestic cat: 

(http://image.shutterstock.com/display_pic_with_logo/109102/109102,1196950581,2/

stock-photo-young-grey-maine-coon-cat-7584034.jpg) 

10. Cheetah: (http://images.picturesdepot.com/photo/f/female_cheetah_wallpaper-

29086.jpg) 

11. Geoffroy’s cat: 

(http://upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Geoffroy%27s_Cat.jpg/8

00px-Geoffroy%27s_Cat.jpg) 

12. Jaguarundi: 

(http://upload.wikimedia.org/wikipedia/commons/thumb/8/85/Herpailurus_yagouaroun

di_Jaguarundi_ZOO_D%C4%9B%C4%8D%C3%ADn.jpg/800px-

Herpailurus_yagouaroundi_Jaguarundi_ZOO_D%C4%9B%C4%8D%C3%ADn.jpg) 

13. Iberian lynx: (http://travel.latimes.com/daily-deal-blog/wp-

content/uploads/2008/10/iberian_lynx_by_antonio_riv.jpg) 

14. Asian leopard cat: 

(http://upload.wikimedia.org/wikipedia/commons/3/32/Tsushima_Cat_001.jpg) 

15. Leopard: (http://www.serengetiexpeditions.com/images/leopard1280x1024.jpg) 

16. Pallas cat: (http://upload.wikimedia.org/wikipedia/commons/d/d6/Manoel.jpg) 

17. Tigrina: (http://www.themagazine.ca/wp-content/uploads/2011/03/Oncilla.png) 

18. Fishing cat: 

(http://upload.wikimedia.org/wikipedia/commons/archive/5/5c/20070607175227!Prion

ailurus_viverrinus.jpg) 
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19. Snow leopard: (http://thundafunda.com/33/animals-pictures-nature/ready-to-pounce-

snow-leopard-pictures.jpg) 

20. Indian mongoose: 

(http://upload.wikimedia.org/wikipedia/commons/thumb/4/47/Ruddy_mongoose.jpg/79

9px-Ruddy_mongoose.jpg) 

21. Rusty-spotted cat: 

(http://www.zoochat.com/gallery/data/543/Rusty_Spotted_Cat_PL_16_10_06.JPG) 

22. Desert cat: 

(http://upload.wikimedia.org/wikipedia/commons/7/79/Sandcat1_CincinnatiZoo.jpg) 

23. Serval: (http://www.vectorsite.net/Ybser_2b.jpg) 

24. Tiger: (http://fc02.deviantart.net/fs70/f/2011/181/e/5/tiger_and_snow_3_by_jagu77-

d3kk8b7.jpg) 

25. Jaguar: 

(http://upload.wikimedia.org/wikipedia/commons/thumb/7/70/Panthera_onca.jpg/800p

x-Panthera_onca.jpg) 

26. European wildcat: (http://medienjagd.test.newsroom.de/wildkatze022010sb088.jpg) 

27. Bobcat: 

(http://images1.wikia.nocookie.net/__cb20071029161722/uncyclopedia/images/thum

b/6/61/Bobcat.jpg/765px-Bobcat.jpg) 

28. Putative numts: (http://www.wallpaperslibrary.com/Wallpapers/Funny/tiger-rabbit-

funny-wallpaper-13.jpg) 
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7.3. CHAPTER 3: Tracking cats: Problems with placing feline carnivo res on δ18O, δD isoscapes 

Table S1.  Sample list 

No. 
Museum 
catalog 
number 

Sampling 
part 

Common 
name Sex 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Elevation 
(m) 

δD 
 (‰ V-

SMOW) 
Mean 

annual 
precip 

δ18O 
 (‰ V-

SMOW) 
Mean 

annual 
precip 

 δ18O 
River-
water  

 δD 
River-
water 

δD 
Keratin  
 (‰ V-

SMOW) 

δ18O 
Keratin  
(‰ V-

SMOW)  

δD  
(‰ V-

SMOW) 
Mean 
Sum. 
precip 
(June, 
July, 

August) 

δ18O  
(‰ V-

SMOW) 
Mean 
Sum. 
precip 
(June, 
July, 

August) 

Mean 
annual 

rel. 
humidity 

(%) 

δD  
(‰ V-

SMOW) 
Mean 
spring 
precip 
(March, 
April, 
May) 

δ18O  
(‰ V-

SMOW) 
Mean 
spring 
precip 

(March, 
April, 
May) 

1 232789 hair bobcat u 25.826 -81.344 3 -21 -3.50 -0.10 0.55 -112.22 16.41 -22.33 -3.50 70 -13.00 -2.70 

2 157063 hair bobcat m 34.869 -83.814 1460 -53 -8.10 -7.40 -45.6 -87.37 19.20 -29.00 -4.70 70 -47.33 -7.33 

3 276020 hair bobcat u 38.902 -81.310 243 -48 -7.50 -7.30 -47.6 -87.37 19.40 -28.33 -4.60 70 -42.33 -6.80 

4 298442 hair bobcat u 43.998 -74.505 940 -80 -11.90 -9.90 -96.1 -106.85 16.89 -51.00 -8.03 65 -77.67 -11.40 

5 88448 hair bobcat m 44.628 -65.776 150 -68 -10.20 -8 -57 -94.57 21.70 -45.00 -7.03 80 -63.00 -9.47 

6 210545 hair bobcat f 30.270 -87.683 4 -26 -4.10 -3.90 -20.3 -97.57 19.62 -20.67 -3.10 80 -18.00 -3.10 

7 286410 hair bobcat m 36.365 -88.045 120 -39 -6.10 -5.70 -33.1 -87.19 13.60 -18.67 -3.03 70 -30.00 -5.00 

8 236419 hair bobcat f 35.777 -93.465 670 -49 -7.10 -5.80 -34.5 -85.82 16.96 -28.67 -4.27 65 -43.33 -6.37 

9 76459 hair bobcat u 42.571 -100.062 800 -77 -10.60 -10.10 -75.1 -65.90 19.36 -60.33 -8.27 60 -85.00 -11.80 

10 285332 hair bobcat m 44.159 -91.816 213 -64 -9.10 -9.80 -67.9 -100.21 14.70 -44.67 -6.33 70 -66.33 -9.53 

11 276360 hair bobcat m 44.372 -100.318 440 -79 -10.70 -14.20 -115.5 -107.99 16.43 -62.00 -8.40 60 -87.33 -12.03 

12 211368 hair bobcat f 46.336 -113.294 1600 -115 -15.20 -17.30 -131.6 -100.92 12.52 -88.33 -11.50 70 -114.67 -15.33 

13 214795 hair bobcat f 41.001 -107.246 2100 -106 -14.20 -16.40 -123.9 -89.26 13.88 -81.00 -10.57 60 -109.00 -14.70 

14 1709 hair bobcat f 32.483 -106.724 1200 -67 -9.30 -12.50 -94 -88.51 15.37 -57.67 -7.80 40 -66.67 -9.27 



 

150 
 

No. 
Museum 
catalog 
number 

Sampling 
part 

Common 
name Sex 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Elevation 
(m) 

δD 
 (‰ V-

SMOW) 
Mean 

annual 
precip 

δ18O 
 (‰ V-

SMOW) 
Mean 

annual 
precip 

 δ18O 
River-
water  

 δD 
River-
water 

δD 
Keratin  
 (‰ V-

SMOW) 

δ18O 
Keratin  
(‰ V-

SMOW)  

δD  
(‰ V-

SMOW) 
Mean 
Sum. 
precip 
(June, 
July, 

August) 

δ18O  
(‰ V-

SMOW) 
Mean 
Sum. 
precip 
(June, 
July, 

August) 

Mean 
annual 

rel. 
humidity 

(%) 

δD  
(‰ V-

SMOW) 
Mean 
spring 
precip 
(March, 
April, 
May) 

δ18O  
(‰ V-

SMOW) 
Mean 
spring 
precip 

(March, 
April, 
May) 

15 211376 hair bobcat m 45.774 -116.302 480 -98 -12.90 -17.50 -132.7 -81.09 11.16 -76.33 -9.50 60 -90.67 -12.10 

16 274903 hair bobcat f 47.956 -124.393 90 -86 -11.10 -12.60 -89.7 -86.76 16.75 -75.67 -8.93 85 -83.00 -10.73 

17 146256 hair bobcat m 40.491 -124.132 50 -80 -10.40 -7.40 -50.4 -95.60 11.58 -65.00 -7.30 70 -76.67 -9.83 

18 214967 hair bobcat f 31.197 -101.464 820 -50 -6.90 -4.10 -20.5 -57.76 10.37 -41.33 -5.47 55 -44.33 -6.13 

19 116282 hair bobcat m 27.826 -97.406 2 -27 -3.60 -2.80 -17.4 -70.52 12.35 -24.00 -2.77 80 -16.33 -2.20 

20 119799 hair bobcat u 30.587 -103.893 1500 -62 -8.60 -4.10 -20.5 -58.10 11.08 -53.67 -7.33 50 -59.33 -8.13 

21 211344 hair bobcat m 29.023 -99.310 180 -33 -4.50 -2.80 -17.4 -90.64 14.54 -27.67 -3.37 60 -24.00 -3.23 

22 188737 hair bobcat m 30.752 -99.235 470 -39 -5.50 -3.40 -20.5 -97.09 15.06 -31.67 -4.00 60 -33.00 -4.47 

23 135084 hair bobcat m 30.300 -94.535 15 -28 -3.90 -2.90 -16.3 -19.34 11.96 -22.33 -2.60 70 -19.67 -2.67 

24 188736 hair bobcat f 33.657 -97.345 240 -41 -5.80 -3.50 -21.5 -12.90 9.16 -32.00 -4.13 60 -35.00 -4.87 

25 014908 hair bobcat m 26.122 -98.257 31 -27 -3.70 -1.30 -11.6 -58.13 11.02 -26.00 -3.17 70 -14.00 -2.03 

26 4737 hair bobcat f 39.305 -111.299 2194 -105 -14.30 -13.30 -105.2 -102.61 13.67 -82.67 -10.60 50 -109.67 -14.87 

27 7108 hair bobcat f 40.200 -110.067 1550 -98 -13.30 -16.70 -124.4 -65.96 11.70 -76.67 -9.80 50 -99.67 -13.57 

28 7106 hair bobcat f 40.200 -110.067 1550 -98 -13.30 -16.70 -124.4 -61.10 10.57 -76.67 -9.80 50 -99.67 -13.57 

29 1767 hair bobcat f 38.334 -112.726 1767 -97 -13.00 -14.60 -107.5 -76.79 11.59 -76.00 -9.53 50 -100.33 -13.50 

30 2290 hair bobcat m 39.737 -110.871 1890 -102 -13.80 -13.30 -105.2 -67.48 12.49 -80.00 -10.20 50 -105.33 -14.23 

31 6531 hair bobcat m 38.228 -112.811 1706 -95 -12.90 -14.60 -107.5 -63.18 12.39 -25.00 -9.43 50 -99.33 -13.37 
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No. 
Museum 
catalog 
number 

Sampling 
part 

Common 
name Sex 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Elevation 
(m) 

δD 
 (‰ V-

SMOW) 
Mean 

annual 
precip 

δ18O 
 (‰ V-

SMOW) 
Mean 

annual 
precip 

 δ18O 
River-
water  

 δD 
River-
water 

δD 
Keratin  
 (‰ V-

SMOW) 

δ18O 
Keratin  
(‰ V-

SMOW)  

δD  
(‰ V-

SMOW) 
Mean 
Sum. 
precip 
(June, 
July, 

August) 

δ18O  
(‰ V-

SMOW) 
Mean 
Sum. 
precip 
(June, 
July, 

August) 

Mean 
annual 

rel. 
humidity 

(%) 

δD  
(‰ V-

SMOW) 
Mean 
spring 
precip 
(March, 
April, 
May) 

δ18O  
(‰ V-

SMOW) 
Mean 
spring 
precip 

(March, 
April, 
May) 

32 1885 hair bobcat m 41.708 -111.847 1388 -100 -13.50 -14.98 -117.7 -34.85  -76.67 -9.80 50 -100.00 -13.53 

33 6503 hair bobcat m 41.686 -111.064 2255 -113 -15.20 -14.98 -117.7 -102.24 14.63 -85.00 -11.07 50 -114.00 -15.43 

34 6513 hair bobcat f 41.561 -111.144 1932 -108 -14.50 -14.98 -117.7 -30.88 11.22 -82.33 -10.60 50 -109.00 -14.73 

35 2033 hair bobcat m 41.989 -111.413 1820 -107 -14.50 -14.98 -117.7 -69.46 15.17 -81.67 -10.57 50 -108.00 -14.63 

36 6506 hair bobcat f 38.150 -111.325 2620 -108 -14.60 -15 -114.8 -60.48 9.09 -84.00 -10.83 50 -113.67 -15.33 

37 6517 hair bobcat m 38.155 -111.487 3400 -119 -16.10 -15 -114.8 -94.56 11.30 -92.00 -12.00 50 -126.67 -17.07 

38 6519 hair bobcat u 37.425 -113.074 2590 -106 -14.20 -12.30 -92.1 -71.78 10.83 -81.00 -10.27 50 -110.33 -14.87 

39 4641 hair bobcat m 37.275 -112.638 1700 -92 -12.40 -12.30 -92.1 -63.12 11.17 -72.00 -9.00 50 -95.67 -12.90 

40 7107 hair bobcat m 37.580 -109.432 1670 -91 -12.50 -13.30 -97.3 -70.73 15.63 -72.67 -9.30 50 -95.00 -12.90 

41 6523 hair bobcat m 37.938 -112.371 2070 -100 -13.50 -14.60 -107.5 -107.25 15.93 -78.00 -9.87 50 -104.00 -14.03 

42 6499 hair bobcat f 38.718 -109.551 1463 -92 -12.50 -13.70 -101.00 -31.70 16.04 -72.33 -9.27 50 -93.67 -12.80 

43 6525 hair bobcat f 38.725 -109.525 1340 -90 -12.30 -13.70 -101.00 -108.39 11.38 -71.33 -9.07 50 -92.00 -12.53 

44 27141 hair bobcat m 40.181 -111.569 2500 -112 -15.20 -12.80 -103.2 -91.29 12.75 -86.67 -11.17 50 -116.67 -15.70 

45 132475 hair bobcat m 35.596 -106.125 1930 -85 -11.90 -10.20 -76.3  12.06 -71.00 -9.67 50 -90.67 -12.63 

46 146260 hair puma u 40.254 -124.133 98 -80 -10.40 -7.40 -50.4 -29.02 12.14 -65.00 -7.27 70 -77.00 -9.90 

47 274594 hair puma m 40.051 -107.910 1900 -101 -13.60 -16.4 -123.9 -86.76 9.45 -77.67 -10.03 60 -102.67 -13.93 

48 265596 hair puma u 26.417 -81.420 11 -21 -3.60 -0.1 0.6 -87.04 3.31 -23.00 -3.60 70 -14.33 -2.80 
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No. 
Museum 
catalog 
number 

Sampling 
part 

Common 
name Sex 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Elevation 
(m) 

δD 
 (‰ V-

SMOW) 
Mean 

annual 
precip 

δ18O 
 (‰ V-

SMOW) 
Mean 

annual 
precip 

 δ18O 
River-
water  

 δD 
River-
water 

δD 
Keratin  
 (‰ V-

SMOW) 

δ18O 
Keratin  
(‰ V-

SMOW)  

δD  
(‰ V-

SMOW) 
Mean 
Sum. 
precip 
(June, 
July, 

August) 

δ18O  
(‰ V-

SMOW) 
Mean 
Sum. 
precip 
(June, 
July, 

August) 

Mean 
annual 

rel. 
humidity 

(%) 

δD  
(‰ V-

SMOW) 
Mean 
spring 
precip 
(March, 
April, 
May) 

δ18O  
(‰ V-

SMOW) 
Mean 
spring 
precip 

(March, 
April, 
May) 

49 210433 hair puma f 46.135 -115.787 400 -97 -12.80 -17.5 -132.7 -85.31 7.89 -75.33 -9.40 60 -89.67 -12.03 

50 228587 hair puma f 33.373 -108.903 1500 -76 -10.40 -14.1 -102.8 -71.74 5.74 -64.00 -8.37 45 -80.00 -10.93 

51 274078 hair puma f 35.648 -105.295 2070 -86 -12.00 -10.2 -76.3 -89.66 13.88 -73.67 -10.00 50 -93.67 -12.97 

52 235091 hair puma f 35.190 -107.666 2438 -88 -12.20 -9.6 -93.9 -81.94 10.47 -76.00 -10.23 50 -99.67 -13.73 

53 261685 hair puma m 29.666 -103.362 1160 -54 -7.50 -4.1 -36.7 -60.01 7.86 -46.67 -6.37 50 -49.00 -6.77 

54 273040 hair puma m 26.971 -99.252 180 -31 -4.20 -1.3 -11.6 -56.36 4.43 -27.67 -3.40 70 -19.67 -2.63 

55 272334 hair puma m 31.150 -105.497 1600 -67 -9.30 -8.5 -71.1 -95.50 8.88 -58.00 -7.90 40 -65.33 -9.00 

56 228468 hair puma m 32.937 -94.254 80 -34 -5.00 -3.7 -22.8 -33.22 10.41 -25.00 -3.20 70 -26.67 -3.83 

57 261748 hair puma m 28.889 -99.097 193 -33 -4.50 -2.8 -17.4 -32.39 16.14 -27.33 -3.33 60 -24.00 -3.17 

58 250184 hair puma m 48.078 -123.577 600 -94 -12.20 -12.60 -89.7 -62.21 16.84 -81.33 -9.80 85 -92.33 -11.97 

59 6559 hair puma f 37.827 -112.435 2019 -99 -13.30 -14.60 -107.5 -29.96 6.37 -77.33 -9.77 50 -102.67 -13.87 

60 6539 hair puma u 37.684 -113.086 1782 -95 -12.80 -12.30 -92.1 -55.06 6.99 -74.00 -9.23 50 -98.67 -13.23 

61 6556 hair puma f 38.019 -112.237 2200 -102 -13.80 -14.60 -107.5 -55.68 11.11 -79.67 -10.10 50 -70.67 -9.60 

62 6561 hair puma f 38.416 -112.430 2800 -112 -15.10 -14.60 -107.5 -52.89 14.68 -86.67 -11.13 50 -117.67 -15.87 

63 6533 hair puma f 37.912 -112.457 2070 -100 -13.50 -14.60 -107.5 -81.91 12.92 -77.67 -9.87 50 -104.00 -14.03 

64 6542 hair puma m 39.957 -109.263 1600 -98 -13.20 -16.70 -124.4 -44.02 9.36 -75.33 -9.73 55 -99.00 -13.47 

65 6555 hair puma m 41.818 -113.310 1706 -106 -14.20 -14.98 -117.7 -13.62 15.29 -81.67 -10.37 50 -106.00 -14.33 
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No. 
Museum 
catalog 
number 

Sampling 
part 

Common 
name Sex 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Elevation 
(m) 

δD 
 (‰ V-

SMOW) 
Mean 

annual 
precip 

δ18O 
 (‰ V-

SMOW) 
Mean 

annual 
precip 

 δ18O 
River-
water  

 δD 
River-
water 

δD 
Keratin  
 (‰ V-

SMOW) 

δ18O 
Keratin  
(‰ V-

SMOW)  

δD  
(‰ V-

SMOW) 
Mean 
Sum. 
precip 
(June, 
July, 

August) 

δ18O  
(‰ V-

SMOW) 
Mean 
Sum. 
precip 
(June, 
July, 

August) 

Mean 
annual 

rel. 
humidity 

(%) 

δD  
(‰ V-

SMOW) 
Mean 
spring 
precip 
(March, 
April, 
May) 

δ18O  
(‰ V-

SMOW) 
Mean 
spring 
precip 

(March, 
April, 
May) 

66 4717 hair puma m 40.133 -111.018 2400 -110 -15.00 -12.80 -103.2 -52.77 10.40 -85.67 -11.03 50 -114.33 -15.47 

67 6543 hair puma f 41.818 -113.310 1706 -106 -14.20 -14.98 -117.7 -71.64 2.66 -81.67 -10.37 50 -106.00 -14.33 

68 6544 hair puma u 37.675 -113.104 1800 -95 -12.80 -12.30 -92.1 -82.17 7.90 -74.00 -9.23 50 -98.67 -13.27 

69 7136 hair puma f 37.714 -113.031 1900 -97 -13.00 -12.30 -92.1 -73.83 15.38 -75.00 -9.43 50 -100.00 -13.50 

70 6545 hair puma f 38.567 -112.431 1950 -100 -13.50 -14.60 -107.5 -66.96 20.16 -78.67 -9.93 50 -104.33 -14.07 

71 4738 hair puma f 38.945 -112.251 1800 -99 -13.40 -13.30 -105.2 -77.50 20.90 -78.00 -9.93 50 -102.67 -13.90 

72 6551 hair puma f 38.181 -112.306 1900 -98 -13.20 -14.60 -107.5 -66.85 10.51 -77.33 -9.77 50 -102.67 -13.80 

73 14970 hair puma u 38.973 -112.345 1560 -96 -12.90 -13.30 -105.2 -78.36 17.51 -76.00 -9.60 50 -99.00 -13.40 

74 6537 hair puma f 38.187 -112.331 2133 -101 -13.70 -14.60 -107.5 -108.98 15.23 -79.67 -10.10 50 -106.00 -14.33 

75 6546 hair puma m 38.629 -112.123 1640 -96 -12.90 -14.60 -107.5 -101.61 12.25 -76.00 -9.57 50 -99.33 -13.43 

76 104561 hair rabbit u 33.125 -94.159 79 -35 -5.10 -3.7 -22.8 -54.47 14.21      

77 249782 hair rabbit f 47.379 -94.604 406 -82 -11.20 -10.5 -73.8 -101.63 12.08      

78 213352 hair rabbit f 48.246 -109.865 1097 -112 -14.90 -16.7 -127.1 -136.66 10.46      

79 11349 hair rabbit u 43.024 -98.624 490 -71 -9.90 -10.13 -75.1 -81.41 17.39      

80 486790 hair rabbit f 31.193 -101.461 892 -49 -6.90 -4.10 -20.5 -45.74 15.67      

81 24573 hair rabbit f 28.341 -99.980 184 -33 -4.60 -4.5 -27.8 -15.98 19.91      

82 108611 hair rabbit f 29.684 -101.173 490 -41 -5.80 -4.5 -27.8 -44.76 18.63      
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No. 
Museum 
catalog 
number 

Sampling 
part 

Common 
name Sex 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Elevation 
(m) 

δD 
 (‰ V-

SMOW) 
Mean 

annual 
precip 

δ18O 
 (‰ V-

SMOW) 
Mean 

annual 
precip 

 δ18O 
River-
water  

 δD 
River-
water 

δD 
Keratin  
 (‰ V-

SMOW) 

δ18O 
Keratin  
(‰ V-

SMOW)  

δD  
(‰ V-

SMOW) 
Mean 
Sum. 
precip 
(June, 
July, 

August) 

δ18O  
(‰ V-

SMOW) 
Mean 
Sum. 
precip 
(June, 
July, 

August) 

Mean 
annual 

rel. 
humidity 

(%) 

δD  
(‰ V-

SMOW) 
Mean 
spring 
precip 
(March, 
April, 
May) 

δ18O  
(‰ V-

SMOW) 
Mean 
spring 
precip 

(March, 
April, 
May) 

83 31665 hair rabbit m 27.743 -97.402 2 -27 -3.60 -2.80 -17.4 -30.55 18.85      

84 189168 hair rabbit f 33.624 -97.145 230 -40 -5.70 -3.50 -21.5 -52.08 17.64      

85 189173 hair rabbit m 30.748 -99.232 470 -39 -5.50 -3.40 -20.5 -52.01 18.25      

86 029023 hair rabbit m 26.381 -98.818 53 -28 -3.80 -1.30 -11.6 -23.92 18.62      

87 136554 hair rabbit f 30.137 -94.408 15 -28 -3.90 -2.90 -16.3 -54.12 14.43      

88 157806 hair rabbit m 32.591 -108.433 1700 -77 -10.50 -14.1 -102.8 -87.74 18.50      

89 TX-2,3,5 Dc, d18Op White-tailed 
deer 

u 27.826 -97.406 2 -20 -3.3 -2.80 -17.4 13 21.50     

90 FL 1 Dc, d18Op White-tailed 
deer 

u 30.479 -84.299 47 -20 -3.3 -3.10 -15.7 2 19.00     

91 LA 2 Dc, d18Op White-tailed 
deer 

u 32.511 -93.753 55 -23 -5.2 -3.7 -22.8 -3 19.10      

92 OK 1,2 Dc, d18Op White-tailed 
deer 

u 36.183 -95.961 206 -29 -4.4 -4.13 -27.3 8 19.70      

93 TX 1 Dc, d18Op White-tailed 
deer 

u 31.429 -100.399 585 -29 -4.4 -4.10 -20.5 -6 22.80      

94 MO 4 Dc, d18Op White-tailed 
deer 

u 37.246 -93.389 386 -30 -5.8 -4.90 -31.2 -10 18.40      

95 OK 10 Dc, d18Op White-tailed 
deer 

u 36.183 -95.961 206 -36 -5.2 -4.13 -27.3 -1 19.60      

96 WV 1,3 Dc, d18Op White-tailed 
deer 

u 38.413 -82.434 252 -36 -7.3 -7.30 -47.6 -14 16.50      

97 OK 5 Dc, d18Op White-tailed 
deer 

u 36.183 -95.961 206 -37 -6.4 -4.13 -27.3 -1 19.30      

98 KS 1 Dc, d18Op White-tailed 
deer 

u 39.056 -95.689 269 -38 -7.1 -11 -85.5 -11 18.70      

99 OH 3,1 Dc, d18Op White-tailed 
deer 

u 39.998 -82.892 248 -40 -6.4 -7.30 -47.6 -7 18.30      
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precip 
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May) 

100 NS 1 Dc, d18Op White-tailed 
deer 

u 43.827 -66.088 43 -49 -7.7 -11.70 -82.4 -34 15.90      

101 NS 2 Dc, d18Op White-tailed 
deer 

u 46.135 -60.183 62 -53 -8.1 -11.70 -82.4 -31 15.90      

102 WI 1 Dc, d18Op White-tailed 
deer 

u 44.513 -88.016 212 -53 -10.2 -10.64 -75.3 -39 14.70      

103 ON 1 Dc, d18Op White-tailed 
deer 

u 44.1 -77.581 86 -55 -9.9 -8.60 -60.3 -31 15.00      

104 NB 1 Dc, d18Op White-tailed 
deer 

u 45.954 -66.646 21 -55 -8.7 -11.70 -82.4 -37 14.50      

105 AZ 1 Dc, d18Op White-tailed 
deer 

u 33.448 -112.073 335 -58 -8.2 -8.80 -65.4 -3 23.00      

106 ON3 Dc, d18Op White-tailed 
deer 

u 44.288 -78.330 200 -58 -9.3 -8.60 -60.3 -43 13.90      

107 ON 6 Dc, d18Op White-tailed 
deer 

u 46.491 -80.998 300 -61 -9.8 -8.80 -67.4 -43 13.60      

108 QC 1 Dc, d18Op White-tailed 
deer 

u 45.682 -74.005 82 -66 -12 -9.90 -96.1 -54 13.90      

109 NE 2 Dc, d18Op White-tailed 
deer 

u 41.866 -103.665 1200 -70 -12 -13.80 -110.8 -28 16.30      

110 BC 4 Dc, d18Op White-tailed 
deer 

u 53.243 -131.821 200 -77 -10.6   -50 13.90      

111 OR 1 Dc, d18Op White-tailed 
deer 

u 40.969 -117.731 400 -87 -14 -14.40 -104.8 -49 17.00      

112 WY 2 Dc, d18Op White-tailed 
deer 

u 44.769 -106.980 1225 -91 -14.9 -127.38 -16.34 -59 13.60      

113 MT1 Dc, d18Op White-tailed 
deer 

u 48.212 -106.615 700 -96 -15.5 -14.55 -121.7 -54 14.30      

114 AB 6 Dc, d18Op White-tailed 
deer 

u 50.042 -110.674 717 -107 -17.4   -81 13.30      

115 SA 1 Dc, d18Op White-tailed 
deer 

u 52.171 -106.7 500 -110 -16.6   -51 14.00      

116 AB 4,5 Dc, d18Op White-tailed 
deer 

u 49.631 -112.800 929 -112 -18   -71 10.90      
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117 AB 1,2 Dc, d18Op White-tailed 
deer 

u 53.541 -113.494 671 -112 -18   -81 10.60      

118 AB 7 Dc, d18Op White-tailed 
deer 

u 51.114 -114.020 1084 -116 -18.4   -73 11.30      

119 BC 2 Dc, d18Op White-tailed 
deer 

u 50.702 -120.444 345 -120 -17.7     -93 10.80           
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Table S2.  Statistical analysis 
 

Regression equations Species Slope SD (1s) Intercep t SD (1s) R² P-value N 

All cats 0.01 0.095 12.920 1.136 0.0002 0.914 74 

All bobcats 0.104 0.091 14.964 1.056 0.03 0.261 44 

All pumas -0.232 0.181 8.543 2.267 0.055 0.211 30 

All rabbits 0.298 0.156 18.394 1.228 0.248 0.083 13 

All deer 0.588 0.072 22.096 0.806 0.699 < 0.0001 31 

Female bobcats 0.007 0.121 14.018 1.349 0.0002 0.953 22 

Male bobcats 0.152 0.162 14.974 2.120 0.059 0.363 16 

Female pumas -0.186 0.204 9.190 2.321 0.085 0.385 11 

Male pumas 0.615 0.733 20.517 10.266 0.055 0.418 14 

Female rabbits 0.535 0.188 19.118 1.538 0.618 0.036 7 

δ
18Ohair  = f(δ18Oriver ) 

Male rabbits 0.009 0.03 18.606 0.219 0.046 0.785 4 

All cats 0.052 0.073 -68.699 6.633 0.007 0.479 74 

All bobcats 0.042 0.091 -74.343 8.015 0.005 0.65 44 

All pumas 0.129 0.119 -54.855 11.332 0.04 0.291 30 

All rabbits 0.797 0.116 -25.457 6.599 0.81 < 0.0001 13 

All deer 0.856 0.063 20.284 4.383 0.866 < 0.0001 31 

Female bobcats 0.074 0.12 -74.082 10.342 0.019 0.542 22 

Male bobcats 0.114 0.183 -62.123 17.944 0.027 0.544 16 

δDhair  = f(δDriver ) 

Female pumas 0.138 0.199 -47.662 17.226 0.051 0.505 11 
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Regression equations Species Slope SD (1s) Intercep t SD (1s) R² P-value N 

Male pumas -0.181 0.422 -91.547 44.707 0.015 0.675 14 

Female rabbits 0.909 0.176 -23.537 10.346 0.843 0.004 7 

Male rabbits 0.622 0.164 -24.871 8.745 0.878 0.063 4 

All cats -1.641 0.691 -52.438 9.285 0.074 0.02 73 

All bobcats -3.457 1.095 -30.451 15.607 0.195 0.003 43 

All pumas 0.072 0.936 -66.977 11.370 0.0002 0.939 30 

All rabbits 8.734 2.282 -204.308 38.210 0.571 0.003 13 

All deer 7.850 0.636 -159.827 10.459 0.84 < 0.0001 31 

Female bobcats -3.221 1.574 -36.655 22.494 0.181 0.055 21 

Male bobcats -4.003 2.218 -19.822 29.831 0.189 0.093 16 

Female pumas 2.238 2.309 -82.727 26.800 0.095 0.358 11 

Male pumas -0.886 0.993 -61.864 12.925 0.062 0.39 14 

Female rabbits 10.889 1.964 -233.724 31.183 0.86 0.003 7 

δDhair  = f(δ18Ohair ) 

Male rabbits 54.724 71.022 -1.064.063 1.318.024 0.229 0.522 4 

δ
18Ohair  = f(δ18Oprecip ) All cats 0.02 0.129 13.022 1.494 0 0.88 74 

δDhair  = f(δDprecip ) All cats 0.03 0.103 -70.553 8.761 0.001 0.773 74 

δDhair  = f(δDmean summer precip ) All pumas 0.216 0.231 -51.359 16.394 0.03 0.358 30 

δ
18Ohair  = f(δ18Omean summer precip ) All pumas -0.597 0.362 6.024 3.269 0.088 0.11 30 

δDhair = f(δDmean spring precip ) All pumas 0.143 0.147 -53.948 13.297 0.03 0.34 30 

δ
18Ohair  = f(δ18Omean spring precip ) All pumas -0.385 0.216 6.773 2.642 0.102 0.086 30 
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Regression equations Species Slope SD (1s) Intercep t SD (1s) R² P-value N 

δDhair  = f(δDannual  precip ) with rel. humidity (h) All pumas     0.068 0.387 30 

δ
18Ohair  = f(δ18Oannual  precip ) with rel. humidity (h) All pumas     0.115 0.193 30 

δDhair  = f(δDriver water ) with rel. humidity (h) All pumas     0.075 0.35 30 

δ
18Ohair  = f(δ18Oriver water ) with rel. humidity (h) All pumas     0.06 0.436 30 

δDhair  = f(rel. humidity (h)) All pumas 0.634 0.444 -100.719 24.549 0.068 0.164 30 

δ
18Ohair  = f(rel. humidity (h)) All pumas -0.022 0.093 12.410 5.131 0.002 0.818 30 

δDhair  = f(δDmean summer precip ) All bobcats 0.038 0.157 -75.381 9.918 0.001 0.812 44 

δ
18Ohair  = f(δ18Omean summer precip ) All bobcats 0.269 0.157 15.969 1.297 0.066 0.093 44 

δDhair  = f(δDmean spring precip ) All bobcats 0.035 0.11 -74.901 9.204 0.002 0.751 44 

δ
18Ohair  = f(δ18Omean spring precip ) All bobcats 0.141 0.103 15.358 1.168 0.043 0.176 44 

δDhair  = f(δDannual  precip ) with rel. humidity (h) All bobcats     0.09 0.143 44 

δ
18Ohair  = f(δ18Oannual  precip ) with rel. humidity (h) All bobcats     0.207 0.009 44 

δDhair  = f(δDriver water ) with rel. humidity (h) All bobcats     0.104 0.105 44 

δ
18Ohair  = f(δ18Oriver water ) with rel. humidity (h) All bobcats     0.213 0.007 44 

δDhair  = f(rel. humidity (h)) All bobcats -0.502 0.339 -47.898 20.370 0.05 0.146 44 

δ
18Ohair  = f(rel. humidity (h)) All bobcats 0.127 0.038 6.391 2.305 0.206 0.002 44 

δDriver  = f(δ18Oriver )   7.883 0.13 4.370 1.561 0.981 <0.0001 75 
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7.4. CHAPTER 4: Oxygen isotope composition of North American bobcat  and puma bone phosphate: 

Implications for provenance and climate reconstruct ion 

Appendix 1.  Sample list. 

No. Common 
name Sample ID Sex Sample 

material 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Elevation 
(m) 

δ
18O (‰ V-
SMOW) 

Mean annual 
OIPC  

Precip data 
δ18O 

(unweighted 
mean) 

MAT (°C)  

Average 
annual 

rel. 
humidity 

(%)  

δ
18O Bone 

phosphate 
(‰, V-

SMOW) 

δ18O 
Keratin (‰ 
V-SMOW)  

1 Puma 10_PU_US_fL_B u bone 26.417 -81.420 11 -3.60 -1.40 23.2 72.5 19.26  

2 Puma 102_PU_US_UT_B m bone 41.826 -113.329 1800 -14.40 -15.40 7.7 43.5 14.19  

3 Puma 105_PU_US_UT_B f bone 38.341 -111.546 2170 -13.40 -10.90 6.5 50.5 17.43  

4 Puma 107_PU_US_UT_B u bone 39.192 -109.391 1800 -13.40 -8.80 11.5 48.5 16.49  

5 Puma 109_PU_US_UT_B m bone 39.779 -110.443 2000 -14.00 -8.80 7.1 48.5 16.13  

6 Puma 12_PU_US_ID_B f bone 46.135 -115.787 400 -12.80 -12.40 8.2 61.0 11.74  

7 Puma 13_PU_US_KS_B u bone 39.859 -95.189 300 -7.80 -10.00 12.0 72.0 14.80  

8 Puma 14_PU_US_LA_B u bone 32.776 -91.794 30 -4.80 -5.00 18.4 74.5 17.82  

9 Puma 15_PU_US_MT_B m bone 46.216 -114.085 1000 -14.10 -18.70 7.7 67.0 12.97  

10 Puma 2_PU_US_CA_B u bone 34.873 -119.179 600 -9.10 -4.20 18.5 53.0 17.27  

11 Puma 21_PU_US_NM_B f bone 33.373 -108.903 1500 -10.40 -7.80 14.1 44.0 16.94  

12 Puma 23_PU_US_NM_B f bone 35.648 -105.295 2070 -12.00 -15.50 10.0 44.5 20.04  

13 Puma 25_PU_US_NM_B f bone 35.190 -107.666 2438 -12.20 -8.80 12.7 44.6 18.16  

14 Puma 26_PU_US_NY_B u bone 44.113 -73.924 940 -11.90 -12.30 4.5 69.0 12.33  
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No. Common 
name Sample ID Sex Sample 

material 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Elevation 
(m) 

δ
18O (‰ V-
SMOW) 

Mean annual 
OIPC  

Precip data 
δ18O 

(unweighted 
mean) 

MAT (°C)  

Average 
annual 

rel. 
humidity 

(%)  

δ
18O Bone 

phosphate 
(‰, V-

SMOW) 

δ18O 
Keratin (‰ 
V-SMOW)  

15 Puma 30_PU_US_PA_B u bone 41.324 -78.452 600 -9.60 -10.60 7.5 70.0 13.09  

16 Puma 38_PU_US_TX_B m bone 31.150 -105.497 1600 -9.30 -4.40 17.0 42.0 19.55  

17 Puma 39_PU_US_TX_B m bone 32.937 -94.254 80 -5.00 -5.00 17.6 65.0   

18 Puma 40_PU_US_TX_B m bone 28.889 -99.097 193 -4.50 -4.40 20.7 70.5 18.90  

19 Puma 47_PU_US_WA_B m bone 48.078 -123.577 600 -12.20 -9.30 9.8 83.5 12.21  

20 Puma 49_PU_US_WV_B u bone 37.925 -80.384 670 -8.10 -8.90 10.9 72.0 15.49  

21 Puma 5_PU_US_CA_B u bone 40.254 -124.133 100 -10.40 -6.50 13.2 59.0 15.02  

22 Puma 52_PU_CA_AB_B u bone 51.173 -115.571 1460 -16.60 -10.10 3.3 50.0 11.52  

23 Puma 54_PU_ME_BC_B u bone 30.819 -115.616 730 -8.20 -4.20 15.0 60.0 19.96  

24 Puma 56_PU_ME_JA_B f bone 21.843 -103.783 800 -5.50 -7.00 15.0 60.0 17.46  

25 Puma 58_PU_ME_TA_B u bone 25.860 -97.503 10 -3.60 -2.90 21.1 77.0 20.67  

26 Puma 59_PU_ME_VC_B u bone 18.424 -95.112 340 -4.60 -2.60 25.0 75.0 16.74  

27 Puma 7_PU_US_CO_B m bone 40.051 -107.910 1900 -13.60 -12.30 5.5 48.5 14.88  

28 Puma 81_PU_US_UT_B f bone 37.912 -112.457 2130 -13.60 -10.90 7.2 50.5 16.30  

29 Puma 112_PU_US_fL_B f bone 25.921 -81.479 1 -3.50 -1.40 22.7 72.5 18.63  

30 Puma 113_PU_US_fL_B m bone 26.007 -81.077 1 -3.50 -1.40 22.7 72.5 18.81  

31 Puma 120_PU_US_fL_B u bone 26.418 -81.336 4 -3.50 -1.40 22.7 72.5 18.55  
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No. Common 
name Sample ID Sex Sample 

material 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Elevation 
(m) 

δ
18O (‰ V-
SMOW) 

Mean annual 
OIPC  

Precip data 
δ18O 

(unweighted 
mean) 

MAT (°C)  

Average 
annual 

rel. 
humidity 

(%)  

δ
18O Bone 

phosphate 
(‰, V-

SMOW) 

δ18O 
Keratin (‰ 
V-SMOW)  

32 Puma 121_PU_US_fL_B u bone 26.271 -81.351 1 -3.50 -1.40 22.7 72.5 19.72  

33 Puma 19_PU_US_NM_B m bone 31.562 -108.811 1700 -10.10 -6.50 15.5 40.0 21.23  

34 Puma 22_PU_US_NM_B f bone 35.254 -107.984 2070 -12.20 -8.80 10.0 44.5 18.97  

35 Puma 3_PU_US_CA_B m bone 40.043 -120.754 1220 -12.70 -9.90 10.0 53.0 17.08  

36 Puma 37_PU_US_TX_B u bone 29.684 -101.173 490 -5.80 -4.40 20.0 65.0 21.67  

37 Puma 42_PU_US_TX_B m bone 28.521 -99.858 184 -4.60 -4.40 21.1 70.5 19.62  

38 Puma 43_PU_US_TX_B f bone 30.751 -104.082 1830 -9.30 -7.20 18.3 59.0 20.59  

39 Puma 44_PU_US_UT_B u bone 37.366 -113.415 2000 -13.10 -10.90 11.6 50.0 18.13  

40 Puma 45_PU_US_UT_B m bone 40.231 -111.664 1370 -13.00 -8.80 8.8 55.0 16.02  

41 Puma 50_PU_US_WY_B u bone 44.977 -110.698 2072 -15.70 -16.20 4.4 60.0 14.79  

42 Puma 51_PU_US_WY_B f bone 44.547 -110.258 1524 -13.80 -13.80 6.1 62.0 14.41  

43 Puma 8_PU_US_CO_B m bone 38.175 -108.418 1970 -13.20 -12.30 7.2 48.0 15.32  

44 Puma 9_PU_US_fL_B u bone 28.979 -80.925 2 -4.00 -2.80 22.7 74.5 18.66  

45 Bobcat 100_LY_US_TX_B f bone 33.657 -97.345 240 -5.8 -5.00 17.00 70.00 18.67 9.16 

46 Bobcat 11_LY_US_VA_B f bone 37.354 -80.535 1180 -8.8 -8.90 4.90 65.00 16.24  

47 Bobcat 132_LY_US_UT_B f bone 39.305 -111.299 2200 -14.3 -8.80 8.60 55.00 16.60 13.67 

48 Bobcat 137_LY_US_UT_B f bone 40.200 -110.067 1550 -13.3 -8.80 7.90 50.00 16.80 10.57 
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No. Common 
name Sample ID Sex Sample 

material 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Elevation 
(m) 

δ
18O (‰ V-
SMOW) 

Mean annual 
OIPC  

Precip data 
δ18O 

(unweighted 
mean) 

MAT (°C)  

Average 
annual 

rel. 
humidity 

(%)  

δ
18O Bone 

phosphate 
(‰, V-

SMOW) 

δ18O 
Keratin (‰ 
V-SMOW)  

49 Bobcat 14_LY_US_WV_B u bone 38.902 -81.310 243 -7.5 -7.80 11.50 70.50 15.26 19.40 

50 Bobcat 15_LY_US_PA_B f bone 40.934 -76.707 314 -9 -10.60 8.50 69.50 15.14  

51 Bobcat 150_LY_US_UT_B u bone 37.425 -113.074 2500 -14.1 -10.90 2.00 50.50 16.44 10.83 

52 Bobcat 155_LY_US_UT_B m bone 37.580 -109.432 1860 -12.9 -8.80 10.60 50.50 19.65 15.63 

53 Bobcat 16_LY_US_NY_B u bone 43.998 -74.505 940 -11.9 -12.30 4.50 70.50 13.61 16.89 

54 Bobcat 161_LY_US_UT_B f bone 38.725 -109.525 1340 -12.3 -8.80 12.10 50.50 18.07 11.38 

55 Bobcat 171_LY_US_UT_B u bone 61.531 -160.302 17 -12.8 -21.25 -1.20 77.50 11.05  

56 Bobcat 18_LY_US_ME_B f bone 45.592 -69.983 450 -11.5 -12.30 4.40 70.50 14.51  

57 Bobcat 2_LY_US_fL_B u bone 25.826 -81.344 3 -3.5 -1.40 23.70 72.50 19.49 16.41 

58 Bobcat 20_LY_US_AL_B f bone 30.270 -87.683 4 -4.1 -2.80 19.00 74.50 16.19 19.62 

59 Bobcat 22_LY_US_TN_B m bone 36.365 -88.045 120 -6.1 -7.20 13.90 72.00 16.28 13.60 

60 Bobcat 24_LY_US_IN_B u bone 39.028 -86.323 240 -7.2 -7.60 11.90 73.00 14.29  

61 Bobcat 29_LY_US_AR_B f bone 35.777 -93.465 670 -7.1 -6.90 12.40 72.50 16.26 16.96 

62 Bobcat 3_LY_US_fL_B f bone 30.438 -81.631 5 -4,1 -2.80 21.10 72.50 18.08  

63 Bobcat 30_LY_US_AR_B f bone 34.529 -90.592 60 -5.4 -4.60 16.40 71.50 16.47  

64 Bobcat 33_LY_US_NE_B u bone 42.571 -100.062 800 -10.6 -9.60 9.50 67.00 14.47 19.36 

65 Bobcat 35_LY_US_MN_B m bone 44.159 -91.816 213 -9.1 -8.30 6.50 75.50 13.91 14.70 
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No. Common 
name Sample ID Sex Sample 

material 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Elevation 
(m) 

δ
18O (‰ V-
SMOW) 

Mean annual 
OIPC  

Precip data 
δ18O 

(unweighted 
mean) 

MAT (°C)  

Average 
annual 

rel. 
humidity 

(%)  

δ
18O Bone 

phosphate 
(‰, V-

SMOW) 

δ18O 
Keratin (‰ 
V-SMOW)  

66 Bobcat 38_LY_US_SD_B m bone 44.372 -100.318 440 -10.7 -9.60 8.50 74.00 13.85 16.43 

67 Bobcat 40_LY_US_MT_B f bone 46.336 -113.294 1600 -15.2 -18.70 5.40 67.00 12.64 12.52 

68 Bobcat 42_LY_US_WY_B m bone 41.088 -106.519 2400 -14.7 -16.20 4.70 55.50 15.21  

69 Bobcat 46_LY_US_CO_B f bone 41.001 -107.246 2100 -14.2 -12.30 6.20 48.50 14.48 13.88 

70 Bobcat 50_LY_US_NM_B m bone 35.596 -106.125 1930 -11.9 -11.20 10.20 44.00 18.18 12.06 

71 Bobcat 51_LY_US_NM_B f bone 32.483 -106.724 1200 -9.3 -7.20 16.40 49.50 18.28 15.37 

72 Bobcat 6_LY_US_GA_B u bone 32.429 -81.729 60 -4.4 -2.80 18.50 70.50 15.66  

73 Bobcat 61_LY_US_ID_B m bone 45.774 -116.302 480 -12.9 -12.40 12.10 61.00 14.55 11.16 

74 Bobcat 63_LY_US_WA_B f bone 47.956 -124.393 90 -11.1 -9.30 10.20 83.50 14.08 16.75 

75 Bobcat 66_LY_US_OR_B f bone 42.746 -124.497 18 -10.7 -7.40 11.70 65.50 14.44  

76 Bobcat 68_LY_US_NV_B m bone 40.652 -119.355 1200 -12.9 -9.90 10.70 49.50 15.38  

77 Bobcat 70_LY_US_CA_B m bone 40.491 -124.132 50 -10.4 -6.50 12.30 59.00 15.63 11.58 

78 Bobcat 74_LY_ME_BCS_B f bone 22.892 -109.914 140 -5.1 -9.50 23.20 66.30 18.47  

79 Bobcat 75_LY_ME_CI_B f bone 29.973 -108.346 2200 -10.5 -6.50 15.00 35.00 16.77  

80 Bobcat 77_LY_ME_JA_B f bone 20.340 -102.768 1530 -6.8 -8.00 20.00 55.00 16.74  

81 Bobcat 80_LY_US_TX_B f bone 31.197 -101.464 820 -6.9 -4.40 17.30 65.00 18.57 10.37 

82 Bobcat 82_LY_US_TX_B m bone 27.826 -97.406 2 -3.6 -2.90 22.20 77.50 18.87 12.35 
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No. Common 
name Sample ID Sex Sample 

material 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Elevation 
(m) 

δ
18O (‰ V-
SMOW) 

Mean annual 
OIPC  

Precip data 
δ18O 

(unweighted 
mean) 

MAT (°C)  

Average 
annual 

rel. 
humidity 

(%)  

δ
18O Bone 

phosphate 
(‰, V-

SMOW) 

δ18O 
Keratin (‰ 
V-SMOW)  

83 Bobcat 85_LY_US_TX_B u bone 30.587 -103.893 1500 -8.6 -7.20 16.10 59.00 19.28 11.08 

84 Bobcat 86_LY_US_TX_B m bone 29.023 -99.310 180 -4.5 -4.40 20.70 70.50 19.17 14.54 

85 Bobcat 88_LY_US_TX_B m bone 26.122 -98.257 31 -3.7 -2.90 23.20 77.00 18.19 11.02 

86 Bobcat 9_LY_US_NC_B m bone 34.492 -77.742 20 -5.7 -4.60 17.10 70.50 16.72  

87 Bobcat 90_LY_US_TX_B m bone 30.752 -99.235 470 -5.5 -4.40 18.20 65.00 19.90 15.06 

88 Bobcat 97_LY_US_TX_B m bone 30.300 -94.535 15 -3.9 -2.90 20.10 79.50 17.55 11.96 

89 Bobcat 102_LY_US_TX_B u bone 29.289 -100.348 337 -5.1 -4.40 20.00 70.00 19.48  

90 Bobcat 167_LY_US_UT_B u bone 52.259 -113.786 855 -16.2 -17.70 2.20 75.00 9.06  

91 Bobcat 169_LY_US_UT_B f bone 64.838 -147.717 136 -19.4 -21.25 -3.80 75.00 9.46  

92 Bobcat 17_LY_US_NY_B f bone 41.391 -73.956 304 -9.3 -11.30 10.00 63.00 15.79  

93 Bobcat 34_LY_US_MN_B f bone 45.750 -94.217 324 -10.3 -10.90 6.10 73.00 14.67  

94 Bobcat 37_LY_US_SD_B m bone 43.732 -103.614 1620 -13.5 -13.80 7.70 62.00 16.34  

95 Bobcat 44_LY_US_CO_B u bone 38.101 -103.125 1180 -10.7 -9.80 10.00 52.00 17.02  

96 Bobcat 45_LY_US_CO_B u bone 38.975 -108.459 2136 -12.4 -12.30 7.20 47.50 17.35  

97 Bobcat 53_LY_US_NM_B f bone 33.284 -108.877 1400 -10.2 -7.80 11.60 39.00 19.09  

98 Bobcat 59_LY_US_UT_B f bone 38.304 -113.072 1500 -12.5 -10.90 11.60 50.00 20.56  

99 Bobcat 60_LY_US_UT_B f bone 40.643 -111.281 1970 -14.3 -8.80 6.10 55.00 18.96  
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No. Common 
name Sample ID Sex Sample 

material 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Elevation 
(m) 

δ
18O (‰ V-
SMOW) 

Mean annual 
OIPC  

Precip data 
δ18O 

(unweighted 
mean) 

MAT (°C)  

Average 
annual 

rel. 
humidity 

(%)  

δ
18O Bone 

phosphate 
(‰, V-

SMOW) 

δ18O 
Keratin (‰ 
V-SMOW)  

100 Bobcat 7_LY_US_GA_B m bone 34.869 -83.814 1460 -8.1 -6.70 13.80 71.00 18.66 19.20 

101 Bobcat 73_LY_US_CA_B u bone 34.421 -119.697 15 -7.8 -4.20 15.50 70.00 19.55  

102 Bobcat 78_LY_ME_SO_B m bone 26.904 -109.694 50 -5.6 -6.00 23.00 55.00 20.69  

103 Bobcat 79_LY_ME_TA_B f bone 26.430 -99.144 61 -3.9 -2.90 22.00 65.00 21.94  

104 Bobcat 81_LY_US_TX_B u bone 25.908 -97.489 10 -3.6 -2.90 21.00 77.00 17.70  

105 Bobcat 89_LY_US_TX_B u bone 29.809 -101.559 390 -5.7 -4.40 19.40 65.00 20.75  

106 Bobcat 91_LY_US_TX_B u bone 28.691 -95.969 4 -3.6 -2.90 20.00 77.00 17.86  

107 Bobcat 93_LY_US_TX_B u bone 29.990 -100.224 732 -6.1 -4.40 18.30 65.00 19.77  

108 Mule deer BC2  bone     -17.70  64 10.80  

109 Mule deer BC4  bone     -10.60  84 13.90  

110 White-tailed 
deer ABl  bone     -18.00  75 10.70  

111 White-tailed 
deer AB2  bone     -18.00  75 10.40  

112 White-tailed 
deer AB4  bone     -18.00  65 10.70  

113 White-tailed 
deer AB5  bone     -18.00  65 11.00  

114 White-tailed 
deer 

AB6  bone     -17.40  66 13.30  

115 White-tailed 
deer 

ABlO  bone     -17.40  66 13.10  

116 White-tailed 
deer 

AB7   bone     -18.40  62 11.60  
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No. Common 
name Sample ID Sex Sample 

material 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Elevation 
(m) 

δ
18O (‰ V-
SMOW) 

Mean annual 
OIPC  

Precip data 
δ18O 

(unweighted 
mean) 

MAT (°C)  

Average 
annual 

rel. 
humidity 

(%)  

δ
18O Bone 

phosphate 
(‰, V-

SMOW) 

δ18O 
Keratin (‰ 
V-SMOW)  

117 White-tailed 
deer 

AB8  bone     -18.40  62 11.80  

118 White-tailed 
deer AB9  bone     -17.40   14.60  

119 White-tailed 
deer 

AB12   bone     -17.40   14.70  

120 White-tailed 
deer 

ABll   bone     -18.40  62 12.60  

121 White-tailed 
deer 

SAl   bone     -16.60  71 14.00  

122 White-tailed 
deer 

ON1  bone     -9.90  81 14.00  

123 White-tailed 
deer 

ON3  bone     -9.30  81 13.90  

124 White-tailed 
deer 

ON6   bone     -9.80  79 13.60  

125 White-tailed 
deer 

ON9  bone     -8.20  81 13.30  

126 White-tailed 
deer 

QCl  bone     -12.00  79 13.90  

127 White-tailed 
deer NBl  bone     -8.70  77 14.40  

128 White-tailed 
deer NSl  bone     -7.70  83 16.00  

129 White-tailed 
deer NS2  bone     -8.10  84 15.90  

130 Mule deer OR1  bone     -14.00  49 17.00  

131 White-tailed 
deer 

MT1  bone     -15.50  63 14.30  

132 White-tailed 
deer 

WY2   bone     -14.90  60 13.60  

133 White-tailed 
deer 

WY6  bone     -16.60  52 15.20  
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No. Common 
name Sample ID Sex Sample 
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δ
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δ
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SMOW) 

δ18O 
Keratin (‰ 
V-SMOW)  

134 White-tailed 
deer 

WI1   bone     -10.20  73 14.70  

135 White-tailed 
deer OH1  bone     -6.40  70 18.40  

136 White-tailed 
deer 

OH3   bone     -6.40  70 18.00  

137 White-tailed 
deer 

WV2  bone     -7.30  74 16.30  

138 White-tailed 
deer 

WV3   bone     -7.30  74 16.70  

139 White-tailed 
deer 

NE2   bone     -12.00  60 16.30  

140 White-tailed 
deer 

KS1   bone     -7.10  71 18.60  

141 White-tailed 
deer 

MO4  bone     -5.80  70 18.40  

142 White-tailed 
deer 

OK1   bone     -4.40  69 19.90  

143 White-tailed 
deer 

OK2   bone     -4.40  69 19.60  

144 White-tailed 
deer OK5   bone     -6.40  69 19.30  

147 White-tailed 
deer OK10   bone     -5.20  69 19.60  

148 Mule deer CA2  bone     -5.80  73 17.60  

149 White-tailed 
deer FL1   bone     -3.30  74 19.00  

150 White-tailed 
deer 

AZ1   bone     -8.20  37 23.00  

151 White-tailed 
deer 

TX1   bone     -4.40  63 22.80  

152 White-tailed 
deer 

TX2   bone     -3.30  77 21.80  
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δ
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SMOW) 

δ18O 
Keratin (‰ 
V-SMOW)  

153 White-tailed 
deer 

TX3   bone     -3.30  77 21.10  

154 White-tailed 
deer TX5  bone     -3.80  77 21.70  

155 White-tailed 
deer 

LA2  bone     -5.20  73 19.10  

156 Cottontail 
rabbit 

1  bone     -10.50  85.00 19.30  

157 Cottontail 
rabbit 

2  bone     -10.50  85.00 18.90  

158 Cottontail 
rabbit 

3  bone     -10.50  85.00 18.30  

159 European 
rabbit 

4  bone     -8.00  60.00 20.10  

160 European 
rabbit 

5  bone     -8.00  75.00 19.00  

161 European 
rabbit 

6  bone     -8.00  55.00 20.40  

162 European 
rabbit 

7  bone     -7.00  50.00 23.40  

163 European 
rabbit 8  bone     -6.00  45.00 23.50  

164 European 
rabbit 9  bone     -7.50  50.00 21.60  

165 European 
rabbit 10  bone     -7.30  55.00 20.90  

166 European 
rabbit 11  bone     -7.50  50.00 20.40  

167 European 
rabbit 

12  bone     -7.50  75.00 17.70  

168 European 
rabbit 

13  bone     -7.50  75.00 17.40  

169 European 
rabbit 

14  bone     -6.70  75.00 16.60  
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SMOW) 

δ18O 
Keratin (‰ 
V-SMOW)  

170 European 
rabbit 

15  bone     -6.50  85.00 15.40  

171 European 
rabbit 16  bone     -6.50  85.00 14.40  

172 European 
rabbit 

17  bone     -5.50  65.00 16.00  

173 European 
rabbit 

18  bone     -5.50  75.00 16.50  

174 European 
rabbit 

19  bone     -5.50  75.00 16.70  

175 European 
rabbit 

20  bone     -5.50  75.00 17.40  

176 European 
rabbit 

21  bone     -6.00  70.00 17.50  

177 European 
rabbit 

22  bone     -6.30  55.00 19.60  

178 European 
rabbit 

23  bone     -6.30  50.00 21.20  

179 European 
rabbit 

24  bone     -6.30  40.00 24.50  

180 European 
rabbit 25  bone     -5.50  65.00 21.20  

181 European 
rabbit 26  bone     -5.00  50.00 21.70  

182 European 
rabbit 27  bone     -5.00  50.00 22.50  

183 
African 

Savanna 
hare 

28  bone     -1.00  65.00 18.50  

184 Abyssinian 
hare 29  bone     -1.50  65.00 19.50  

185 Abyssinian 
hare 

30  bone     -1.50  65.00 20.00  

186 African 
Savanna 

31  bone     -1.00  65.00 20.50  
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δ18O 
Keratin (‰ 
V-SMOW)  

hare 

187 
African 

Savanna 
hare 

32  bone     -1.00  65.00 20.80  

188 
African 

Savanna 
hare 

33  bone     -1.00  75.00 22.00  

189 
African 

Savanna 
hare 

34  bone     -1.00  65.00 23.00  

190 
African 

Savanna 
hare 

35  bone     -1.00  65.00 22.70  

191 Cape hare 36  bone     -1.00  75.00 24.50  

192 Abyssinian 
hare 

37  bone     -1.50  65.00 25.60  

193 Abyssinian 
hare 

38  bone     -1.00  75.00 25.30  

194 Abyssinian 
hare 

39  bone     -1.00  60.00 26.50  

195 European 
rabbit 

40  bone     -7.50  45.00 22.30  

196 European 
rabbit 

41  bone     -11.00  85.00 14.30  

197 Fox   bone     -5.80   18.00  

198 Fox   bone     -5.80   18.10  

199 Fox   bone     -5.80   17.90  

200 Fox   bone     -5.80   18.00  

201 Fox   bone     -5.80   18.20  
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V-SMOW)  

202 Fox   tooth     -5.80   18.00  

203 Fox   tooth     -5.80   17.90  

204 Fox   tooth     -5.80   18.00  

205 Fox   tooth     -5.80   18.20  

206 Fox   tooth     -5.80   18.10  

207 Fox   tooth     -5.80   18.20  

208 Fox   tooth     -5.80   17.80  

209 Fox   tooth     -5.80   18.10  

210 Fox   tooth     -5.80   18.00  

211 Fox   tooth     -5.80   18.00  

212 Fox   tooth     -5.80   18.10  

213 Fox   tooth     -5.80   18.10  

214 Fox   tooth     -5.80   17.90  

215 Fox   tooth     -5.80   18.10  

216 Fox   tooth     -5.80   17.90  

217 Fox   tooth     -5.80   18.00  

218 Fox   tooth     -5.80   18.00  
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V-SMOW)  

219 Fox   tooth     -5.80   17.90  

220 Fox   bone     -7.20   15.70  

221 Fox   bone     -7.20   15.60  

222 Fox   bone     -7.20   15.30  

223 Fox   bone     -7.20   15.20  

224 Fox   tooth     -7.20   15.00  

225 Fox   bone     -11.00   10.30  

226 Fox   bone     -11.00   10.80  

227 Fox   bone     -11.00   10.80  

228 Fox   bone     -11.00   10.90  

229 Fox   bone     -8.20   14.90  

230 Fox   bone     -8.20   15.10  

231 Fox   bone     -8.20   14.60  

232 Fox   bone     -8.20   15.00  

233 Fox   bone     -8.20   14.60  

234 Fox   bone     -8.20   14.60  

235 Fox   tooth     -5.50   18.50  
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236 Fox   tooth     -5.50   18.30  

237 Fox   tooth     -5.30   18.10  

238 Fox   tooth     -4.70   18.70  

239 Fox   tooth     -5.20   18.30  

240 Fox   tooth     -5.30   18.40  

241 Fox   tooth     -6.40   17.10  

242 Fox   tooth     -6.40   16.80  

243 Fox   tooth     -5.30   18.50  

244 Fox   tooth     -7.00   16.60  

245 Fox   tooth     -5.30   18.10  

246 Fox   tooth     -3.00   21.80  

247 Fox   tooth     -3.00   22.00  

248 Fox   tooth     -4.00   20.10  
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Appendix 2.  Statistical analysis 
 

  Species Regression equations R² P - value n 

All felids δ
18Op = 20.10(± 0.40) + 0.40(±0.04) * δ18Ow 0.456 < 0.0001 106 

Bobcats δ
18Op = 20.15(± 0.49) + 0.41(±0.05) * δ18Ow 0.503 < 0.0001 63 

Pumas δ
18Op = 20.00(± 0.67) + 0.38(±0.07) * δ18Ow 0.394 < 0.0001 43 

Foxes δ
18Op = 25.85(± 0.17) + 1.38(±0.03) * δ18Ow 0.983 < 0.0001 52 

Rabbits/Hares δ
18Op = 22.73(± 0.86) + 0.47(±0.14) * δ18Ow 0.23 0.001 41 

Deers δ
18Op = 21.70(± 0.63) + 0.54(±0.05) * δ18Ow 0.707 < 0.0001 46 

δ
18Ophosphate  = f(δ18Owater ) 

All mammals δ
18Op = 21.70(± 0.17) + 0.68(±0.02) * δ18Ow 0.76 < 0.0001 559 

Female bobcats δ
18Op = 20.32(± 0.82) + 0.42(±0.09) * δ18Ow 0.501 < 0.0001 27 

Male bobcats δ
18Op = 19.35(± 1.00) + 0.29(±0.12) * δ18Ow 0.276 0.025 18 

Female pumas δ
18Op = 19.47(± 2.10) + 0.23(±0.21) * δ18Ow 0.117 0.304 11 

Sex effects 

Male pumas δ
18Op = 20.70(± 1.09) + 0.45(±0.11) * δ18Ow 0.614 0.002 13 

All felids δ
18Op = 26.13(± 1.07) + 0.46(±0.04) * δ18Ow – 0.09(±0.02) * h 0.595 < 0.0001 106 

Bobcats δ
18Op = 26.75(± 1.29) + 0.45(±0.04) * δ18Ow – 0.10(±0.02) * h 0.664 < 0.0001 63 

Pumas δ
18Op = 25.78(± 2.00) + 0.47(±0.07) * δ18Ow – 0.08(±0.03) * h 0.507 < 0.0001 43 

Rabbits/Hares δ
18Op = 30.65(± 1.88) + 0.41(±0.11) * δ18Ow – 0.13(±0.03) * h 0.502 0.001 41 

δ
18Ophosphate  = f(δ18Owater ) with rel. humidity (h) 

Deers δ
18Op = 34.83(± 1.48) + 0.67(±0.03) * δ18Ow – 0.17(±0.02) * h 0.909 < 0.0001 44 

Bobcats δ
18Op = 21.06(± 1.92) - 0.07(±0.03) * h 0.079 0.026 63 

Pumas δ
18Op = 17.55(± 2.15) - 0.01(±0.04) * h 0.002 0.786 43 

Rabbits/Hares δ
18Op = 29.32(± 2.10) - 0.14(±0.03) * h 0.336 < 0.0001 41 

δ
18Ophosphate  = f(rel. humidity (h)) 

Deer δ
18Op = 18.36(± 4.03) - 0.04(±0.06) * h 0.009 0.546 44 

P-values < 0.05 were considered statistically significant.     
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Appendix 3:  Species / Tukey (HSD) / ANCOVA: Analysis of the differences between the categories with a confidence interval of 95% 
 

Contrast Difference Standardized 
Difference 

Critical 
Value Pr > Diff Significant Tukey's d 

critical value: 

Felines Other placental mammals 0.725 3.406 1.964 0.001 Yes 2.777 

Bobcat Puma 0.139 0.357 1.983 0.722 No 2.805 

Male bobcat Female Bobcat 0.153 0.27 2.018 0.789 No 2.854 

Male Puma Female Puma 0.844 0.955 2.080 0.35 No 2.941 

Puma Deer 0.218 0.485 1.988 0.629 No 2.811 

Bobcat Rabbit 2.206 4.653 1.984 < 0,0001 Yes 2.805 

Felines Fox 0.64 1.979 1.975 0.05 Yes 2.794 

P-values < 0.05 were considered statistically significant       
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Appendix 4.  Statistical analysis of the intra-individual tissue comparison (hair versus bone phosphate) 
 

  Species Regression equations r² p-value n 

δ
18Ohair  = f(δ18Ophosphate ) Bobcat δ

18Oh = 19.84(± 4.43) - 0.34(±0.26) * δ18Op 0.06 0.203 30 

δ
18Ophosphate  = f(δ18Owater ) Bobcat δ

18Op = 19.76(± 0.68) + 0.39(±0.08) * δ18Ow 0.46 < 0.0001 30 

δ
18Ohair  = f(δ18Owater ) Bobcat δ

18Oh = 14.38(± 1.32) + 0.03(±0.16) * δ18Ow 0.00 < 0.830 30 

P-values < 0.05 were considered statistically significant    
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ERKLÄRUNG  

 

 

Ich versichere, dass ich diese Arbeit selbständig verfasst, keine anderen Quellen und 

Hilfsmittel als die angegebenen benutzt und die Stellen der Arbeit, die anderen Werken dem 

Wortlaut oder Sinn nach entnommen sind, kenntlich gemacht habe. Diese Arbeit hat in 

dieser oder ähnlichen Form keiner anderen Prüfungsbehörde vorgelegen. 

 

 

 

 

 

 

 

Bonn, den 05.09.2011 
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