DNA BARCODING & MULTI-ISOTOPIC FINGERPRINTING: A NOVEL FORENSIC TOOLBOX FOR THE RAPID IDENTIFICATION OF ILLEGAL TRADE IN ENDANGERED WILDLIFE SPECIES

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Stephanie Juliane Pietsch

aus

Bonn

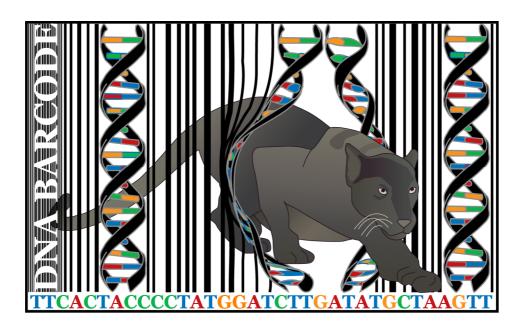
Bonn, September 2011

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn.

Die Arbeit wurde am Zoologischen Forschungsmuseum Alexander Koenig in Bonn durchgeführt.

Prof. Dr. J.W. Wägele
 Prof. Dr. K.A. Hobson
 Tag der Promotion: 28.10.2011
 Erscheinungsjahr: 2012

Der Panther


Im Jardin des Plantes, Paris

Sein Blick ist vom Vorübergehn der Stäbe so müd geworden, daß er nichts mehr hält. Ihm ist, als ob es tausend Stäbe gäbe und hinter tausend Stäben keine Welt.

Der weiche Gang geschmeidig starker Schritte, der sich im allerkleinsten Kreise dreht, ist wie ein Tanz von Kraft um eine Mitte, in der betäubt ein großer Wille steht.

Nur manchmal schiebt der Vorhang der Pupille sich lautlos auf –. Dann geht ein Bild hinein, geht durch der Glieder angespannte Stille – und hört im Herzen auf zu sein.

Rainer Maria Rilke, 1902, Paris

CONTENTS

Summary	1
Chapter 1	
1. General Introduction	
1.1. The magnitude of illegal wildlife trade	
1.2. The cat family Felidae	
1.3. Aims and scope of the present thesis	5
Chapter 2	
2. Taming cat numts: DNA barcoding of Felidae using mtDNA and numts	
Abstract	
2.1. Introduction	-
2.2. Materials and Methods	
2.2.1. Sampling	
2.2.2. DNA extraction, PCR amplification and DNA sequencing	
2.2.3. Data analysis	
2.2.3.1. Identification of numts and tissue-type comparison	
2.2.3.2. Tree building and genetic distance methods	
2.3. Results	
2.3.1. COI barcode marker	
2.3.1.1. Putative COI numts	
2.3.1.2. COI tissue-type comparison	
2.3.1.3. COI-barcode analysis	
2.3.2. ATP6 barcode marker	
2.3.2.1. Putative ATP6 numts	
2.3.2.2. ATP6 tissue-type comparison	
2.3.2.3. ATP6-barcode analysis	
2.3.3. Nuclear DNA barcode markers	
2.4. Discussion	
2.4.1. Characterization of numts	
2.4.2. Criteria for numt identification	
2.4.2.1. COI numts	
2.4.2.2. ATP6 numts	
2.4.3. Tissue-specific numt amplification	
2.4.4. DNA barcoding analysis with numts	
2.5. Conclusions	32
Chapter 3	
3. Tracking cats: Problems with placing feline carnivores on δ ¹⁸ O, δD isoscapes	22
Abstract	
3.1. Introduction	
3.2. Materials and Methods	
3.2.1. Study species and sampling	
3.2.2. Stable isotope analysis	
3.2.3. Estimates of drinking water isotope compositions	
3.2.4. Statistical analysis	
3.3. Results	
3.4. Discussion	
3.4.1. Humidity effect	
3.4.2. Isotopic disequilibrium between food and water	
3.4.3. Carnivore diet	
3.4.4. Carnivore physiology and metabolism	

3.4.5. Amino acid composition of cat	: hair49
0	

Chapter 4

4. Oxygen isotope composition of North American bobcat and puma bone phosphate	
Implications for provenance and climate reconstruction	
Abstract	52
4.1. Introduction	
4.1.1. Oxygen isotope systematics in mammals	53
4.2. Materials and Methods	
4.2.1. Study species and sampling	57
4.2.2. Sample preparation and oxygen isotope analysis (δ ¹⁸ O _p)	59
4.2.3. Estimation of $\delta^{18}O_w$ of ingested water	59
4.2.4. Data analysis	59
4.3. Results	60
4.3.1. Variation and range of $\delta^{18}O_p$ and $\delta^{18}O_w$	60
4.3.2. Effect of species on $\delta^{18}O_p$	60
4.3.2.1. Among species within feline carnivores	60
4.3.2.2. Between feline carnivores, fox and other placental mammals	
4.3.2.3. Between feline carnivores and their respective prey species	
4.3.3. Effect of sex on $\delta^{18}O_p$	
4.3.4. Effect of relative humidity on $\delta^{18}O_p$	
4.3.5. Intra-individual comparison of tissue $\delta^{18}O_t$	65
4.4. Discussion	
4.4.1. Climatic effects	
4.4.2. Effect of carnivore diet	
4.4.3. Effect of carnivore behaviour	
4.4.4. Carnivore physiology and metabolism	
4.4.5. $\delta^{18}O_t$ of different tissue-types	72
4.5. Conclusions	73
5. References	75
6. Acknowledgments	95
· · · · · · · · · · · · · · · · · · ·	•••
7. Appendix	96
7.1. Chapter 1	
7.2. Chapter 2	
7.3. Chapter 3	
7.4. Chapter 4	
· · · · • · · · · · · · · · · · · · · ·	
Curriculum vitae17	78
	-
Erklärung18	81

ABBREVIATIONS AND SYMBOLS

CITES	Convention on International Trade in Endangered Species of Wild Fauna and Flora
IUCN	International Union for Conservation of Nature
COI	Mitochondrial cytochrome c oxidase I gene
ATP6	Mitochondrial ATP synthase F0 subunit 6 gene
mtDNA	Mitochondrial deoxyribonucleic acid
numt	Nuclear mitochondrial DNA
cymt	Cytoplasmic mitochondrial DNA
PCR	Polymerase chain reaction
NCBI	The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information.
BOLD	The Barcode of Life Data Systems (BOLD) is an online workbench that aids collection, management, analysis, and use of DNA barcodes.
K2P distance	Kimura two-parameter distance
NJ	Neighbor joining is a bottom-up clustering method for the creation of phenograms
BLAST	Basic Local Alignment Search Tool
δD _h	Hydrogen isotope composition of hair
δD _{riv}	Hydrogen isotope composition of river water
δDt	Hydrogen isotope composition of animal tissues
δD _{bw}	Hydrogen isotope composition of body water
δD _w	Hydrogen isotope composition of precipitation
$\delta^{18}O_h$	Oxygen isotope composition of hair
$\delta^{18}O_{riv}$	Oxygen isotope composition of river water
$\delta^{18}O_t$	Oxygen isotope composition of animal tissues
$\delta^{18}O_{bw}$	Oxygen isotope composition of body water
$\delta^{18}O_w$	Oxygen isotope composition of precipitation
$\delta^{18}O_p$	Oxygen isotope composition of bone phosphate
$\delta^{18}O_{CO3}$	Oxygen isotope composition of bone carbonate
VSMOW	Vienna Standard Mean Ocean Water is a water standard defining the isotopic composition of water.
IAEA-WMO	International Atomic Energy Agency (IAEA), in cooperation with the World Meteorological Organization
OIPC	Online Isotopes in Precipitation Calculator on http://www.waterisotopes.org
BMR	Basal metabolic rate

SUMMARY

Over-exploitation through illegal wildlife trade is a major threat to a wide range of endangered mammal species around the world, particularly to the Felidae. Illegal trade in wild cats is often in the form of bones, meat, skulls, claws and skins. In many cases, this material lacks detailed morphological features for specific identification and constitutes a significant problem for law enforcement or border control to classify them as endangered, protected or illegal wildlife trade. Moreover, wild cat parts are often traded across multiple international borders and along numerous trade routes, making poaching hotspots and potential trade routes difficult to identify. Successful wildlife forensic casework is thus challenged by unresolved issues such as species identification from animal parts and derivatives and the tracking of their geographic origin.

The specific aims of this thesis are to test the feasibility of rapid, accurate and cost-effective methods for species identification and geographic provenancing of felid species in wildlife forensic investigations. The present study focuses on a comprehensive analysis of all thirty-eight species from the highly endangered Felidae, by applying independent lines of evidence: (a) DNA barcoding and (b) multi-isotopic fingerprinting. For species identification, DNA barcoding of mitochondrial markers was applied because of its effective use in various types of animal tissues (bone, hair, blood, faeces, teeth, skin). To reconstruct the geographic origin of an organism, stable isotope analysis via Isotope Ratio Mass Spectrometry (IRMS) was used as tool for wildlife forensics.

For DNA barcoding a total of 277 tissue samples from 28 felid species were genetically analysed using two different mitochondrial genes (COI and ATP6). Species analysis via barcoding can potentially be compromised by the inadvertent amplification of numts (i.e., nuclear copies of mitochondrial DNA). Thus, reliable identification of felid species via DNA barcoding requires careful examination of numt contaminations and their effect on the results of barcode analyses. Qualitative and quantitative analysis of numts in Felidae revealed that numt contamination does not constitute serious limitations for reliable identification of felid taxa can be reliably performed using species diagnostic authentic mtDNA and numt gene sequences.

Probabilistic provenance determination of felid species based on oxygen and hydrogen stable isotopes has strong potential to be applied to various body tissues as an investigative tool in wildlife forensic science. Both bone and hair tissue samples were isotopically analysed for their potential to record both long- and short-term information of their geographic origin. Understanding the incorporation of hydrogen and oxygen isotopes from the hydrosphere via

1

diet and drinking water into animal tissues is fundamental for geographic provenancing analysis. For this reason, the concept of geographic source determination based on H/O isotopes using feline carnivore hair and bone requires confirmation from animal tissues of known origin and a detailed understanding of the isotopic routing of dietary nutrients into felid body tissues.

We used coupled hydrogen and oxygen isotope measurements of hair (δD_h , $\delta^{18}O_h$) from the North American bobcat (*Lynx rufus*) and puma (*Puma concolor*) with precipitation-based assignment isoscapes to test the feasibility of isotopic geo-location of Felidae. This study reveals that puma and bobcat hairs do not trace the expected pattern of H and O isotopic variation predicted by precipitation isoscapes for North America. The effective forensic application of water isotopes to trace the provenance of feline carnivores is likely compromised by major controls of their diet, physiology and metabolism on hair $\delta^{18}O$ and δD related to body water budgets.

We further investigated, whether puma and bobcat bone phosphate varied predictably in their oxygen isotopic composition ($\delta^{18}O_p$) among isotopically distinct geographic locations and reflected the spatial pattern of isotopic variation in precipitation ($\delta^{18}O_w$). Previous studies on mammals demonstrated that fractionation between $\delta^{18}O_p$ and $\delta^{18}O_w$ appears to be linear and species-specific but deviations from a constant oxygen fractionation have been documented for some species. Our results show that bobcats and pumas exhibit only a moderate linear relationship of oxygen isotopes in precipitation water ($\delta^{18}O_w$) and bone phosphate ($\delta^{18}O_p$). This finding contrasts with previously published studies on $\delta^{18}O_p$ from omnivores and herbivores. Provenance determination of modern feline carnivores, that is solely based on $\delta^{18}O_p$ (such as for puma and bobcat), therefore lacks the required precision due to the rather weak $\delta^{18}O_p - \delta^{18}O_w$ relationship. Potential explanations causing the deviations from a constant oxygen fractionation between $\delta^{18}O_p$ and $\delta^{18}O_w$ in feline carnivores include climate, diet, animal behaviour, physiology and metabolism.

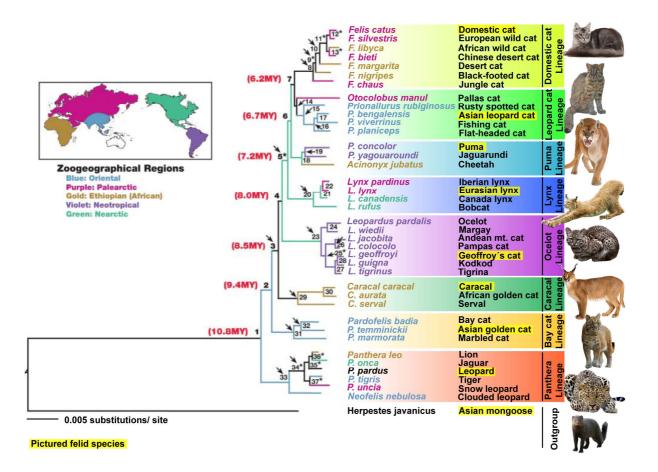
The results of this thesis demonstrate the species-diagnostic resolution power of DNA barcoding and potential pitfalls in using water isotopic fingerprinting for geographic provenancing of felids in wildlife forensic investigations. In light of evidence presented here, the combination of DNA barcoding and isotope research opens up new avenues of research with relevance and practical applications for wildlife forensics, border control, law enforcement and isotope- and biodiversity research studies.

CHAPTER 1

1. GENERAL INTRODUCTION

1.1. The magnitude of illegal wildlife trade

Over-exploitation through illegal wildlife trade is a major threat to a wide range of endangered mammal species around the world. International and national CITES treaties and laws aim to regulate the international trade in endangered species of wild fauna and flora. The illegal trade, however, continues to boom, worth a ~20 billion US\$ a year in protected live animals and animal products [1]. Illegal wildlife trade ranges at the second place right behind illegal drug and arms trade [2]. The European Union (EU) represents one of the three largest markets for wildlife and wildlife products in the world (along with the USA and Japan) [3]. The elimination of internal border controls in the EU has opened up new ways for cross-border wildlife trade crime. Interpol considers illegal wildlife trade as a global phenomenon that has serious implications for biodiversity, ecosystems and economies. Ecosystems worldwide are being disturbed by the removal of predators and other keystone species, causing a loss of biodiversity. Approximately 23% of all mammal species and 27% of all carnivores are at risk with extinction over the next few decades (Appendix S1 and S2).


Today the cat family Felidae are among the most threatened groups of mammals. The IUCN Red List of Threatened Animals 2008 includes almost half (44.4%) of the family Felidae in the top three categories of threat (see Appendix S3 and S4). Market surveys and seizures of poached animals indicate that trade in Felidae continues to impact wild populations. Costumers of felid trophies can still be found all over the world, and valuable material is sold openly, as in some countries, or as hidden merchandise on black markets [4,5]. Each year, millions of endangered animals are illegally killed or captured for private zoo collections, hunting trophies, animal furs and skins for the luxury market, ornamental objects (e.g. skulls, teeth and claws), traditional Asian medicine (e.g. tiger bones and penis), human consumption (e.g. tiger meat) and collectors. Existing laws protecting felids are often difficult to enforce, due to challenges encountered in identifying commercial products containing wild cat parts and derivatives, determining the legality of these products. Moreover, wild cat parts and derivatives (e.g. skull, bones, and skins) are often smuggled across continents and international borders, making poaching hotspots and potential trade routes difficult to identify. The present difficulties to implement CITES laws and regulations have direct consequences for endangered species in view of the enormous market for their products.

Wildlife forensic science is a multi-disciplinary field of research which facilitates the identification of illegal wildlife trade for law enforcement. Scientists in this field currently address two challenging issues: (i) Species identification from problematic biological sources (e.g.: bones, processed meat, faeces, blood, hair, tissue) and (ii) geographic provenancing to

track the origin of an unknown animal sample. These issues are crucial in wildlife crime investigations, food science and in ecological studies. Prior studies presented different techniques to address these topics but have turned out to be either impractical or too time-consuming for applications in mammal forensic case work [6-10]. The need for reliable, rapid and cost-effective tools for the identification of illegal wildlife trade has led to initiate the present study. Felids represent ideal study species to assess the application of (i) DNA barcoding for species identification and (ii) multi-isotopic fingerprinting for geographic provenancing.

1.2. The cat family Felidae

Felids evolved about 35 million years (Ma) ago and are now distributed over all continents, except Antarctica [11]. The cat family Felidae encompasses thirty-eight species [12]. Figure 1 shows the highly resolved molecular phylogeny of all living cat species that was derived from autosomal, X-linked, Y-linked and mitochondrial gene segments [12].

Figure 1. Phylogenetic relations among felids and outgroup taxa depicted in a maximum likelihood tree. Felid species are grouped into 8 major lineages (framed in coloured boxes). Scientific names and branches are colour-coded to depict zoogeographical distribution patterns. Estimated divergence dates of lineage-defining nodes are in red (Modified after [12]).

The taxonomic group of Felidae is ideally suited to test the feasibility of DNA barcoding and multi-isotopic fingerprinting as a novel forensic toolbox for the identification of illegal wildlife trade. The availability of comprehensive sample material from zoos and museums, a well-documented phylogenetic taxonomy (Figure 1) and numts's catalogue of Felidae, and high-resolution precipitation δ^{18} O and δ D isoscapes allowed us to assess the application and efficiency of this forensic toolbox for specific identification and source determination of feline carnivores.

1.3. Aims and scope of the present thesis

The purpose of the present thesis is to test the application and validity of (i) DNA barcoding for species identification and (ii) multi-isotopic fingerprinting for provenance determination of felid species in wildlife forensic investigations.

The thesis is subdivided in four chapters. Each chapter represents an independent study with introduction, materials and methods, results, discussion and conclusions. The chronological order of the chapters reflects the logical sequence of steps from diagnostic identification to provenance determination of felid species in wildlife crime investigations. The specific goals of the chapters are as follows:

Chapter 2 aims to test the validity of DNA barcoding as a forensic tool for the rapid, reliable and cost-effective identification of felid species. Prior studies demonstrate that DNA barcoding can potentially be compromised by the inadvertent amplification of numts (i.e., nuclear copies of mitochondrial DNA). A total of 277 tissue samples (blood, muscle, hair, faeces) was analysed from 28 zoo felid species using two different mtDNA genes (COI and ATP6) to examine the type and extent of numt contaminations and their effect on the barcode results.

Chapter 3 and *4* both focus on the application of stable water isotopes for provenance determination of Felidae using different tissues types, hair and bone, respectively.

Chapter 3 presents the forensic investigation of stable hydrogen and oxygen isotopes in hair $(\delta D_h \text{ and } \delta^{18}O_h)$ to trace the geographic origin of two endangered felid species. However, reliably predicting the spatial distribution of δD_h and $\delta^{18}O_h$ requires confirmation from animal tissues of known origin and a detailed understanding of the isotopic routing of dietary nutrients into felid hair. A total of 88 hair samples were examined from North American bobcat (*Lynx rufus*) and puma (*Puma concolor*) museum specimens originating from 75 known sites across the United States and Canada. Coupled δD_h and $\delta^{18}O_h$ measurements were compared with precipitation-based assignment isoscapes to assess the control factors of isotopic incorporation into hair and their implications for the feasibility of isotopic geolocation of Felidae.

Chapter 4 explores the oxygen isotope compositions of felid bone phosphate ($\delta^{18}O_p$) as a proxy for felid provenance and migratory patterns in paleontological, archaeological, ecological and wildlife forensics applications. However, previous studies demonstrated that a complex mixture of factors are controlling mammal $\delta^{18}O_p$ and deviations from a constant oxygen fractionation between $\delta^{18}O_p$ and $\delta^{18}O_w$ of ingested precipitation water have been documented for some species. 107 bone samples of puma and bobcat specimens of known origin were analysed to determine whether $\delta^{18}O_p$ varied predictably among isotopically distinct geographic locations and reflected the spatial pattern of $\delta^{18}O_w$. Different factors like diet, physiology, metabolism and climate were identified to potentially contribute to deviations in $\delta^{18}O_p$ of feline carnivores.

CHAPTER 2

2. Taming cat numts: DNA barcoding of Felidae using mtDNA and numts

Stephanie J. Pietsch

(1) Zoologisches Forschungsmuseum Alexander Koenig, Universität Bonn, Bonn, Germany

* Corresponding author: Stephanie J. Pietsch E-mail address: feliden.zfmk@googlemail.com

This is the author's version of a work prepared for submission to Biology Letters.

ABSTRACT

Background

Many feline carnivore species are endangered and severely threatened by illegal trade. Genetic species identification is thus essential in wildlife crime investigations to detect illegal trade of protected species and morphologically indistinguishable species` derivatives (e.g. hair, bone powder). As demonstrated for several other species, DNA barcoding has strong potential to be applied to animal tissues as an investigative, rapid, and cost-effective tool in wildlife forensic science. However, DNA barcoding can potentially be compromised by the inadvertent amplification of numts (i.e., nuclear copies of mitochondrial DNA). Thus, reliably identifying feline species via DNA barcoding requires careful examination of numt contaminations and their effect on the results of barcode analyses.

Methodology / Findings

We used two different mtDNA genes (COI and ATP6) to test their validity as barcode markers for the identification of felid species in wildlife forensic investigations. A total of 277 tissue samples (blood, muscle, hair, faeces) were genetically analyzed and originated from 28 felid species held in European zoos. Numt contamination was shown to be present in Felidae and varied among the selected mtDNA markers, tissue types, individuals and species. However, most individual felid taxa are characterized by unique mitochondrial and numt barcode sequences.

Conclusions / Significance

Felid DNA barcoding using the two mitochondrial markers ATP6 and COI is accompanied by numt contaminations. However, with some exceptions, authentic mtDNA as well as numt sequences of the COI and ATP6 gene can be used as species-diagnostic barcode markers applicable for felid forensic investigations. In a few cases numts can potentially impede the species-diagnostic performance of mtDNA barcoding in Felidae. The tissue-specific amplification of ATP6 numts in several felid species and a shared COI numt in domestic and wild cats thus require the analysis of additional tissue materials and nuclear markers.

2.1. INTRODUCTION

Many carnivore species are currently threatened and focus of intense conservation concerns [13]. Forensic species identification is essential in wildlife crime investigations to detect illegal poaching and trade of protected species and species` derivatives [14,15]. Feline carnivores in particular are often involved in the illegal wildlife trade [11,16]. In many cases, traded animal products like bones, meat, skulls, claws and skins lack detailed morphological features for species identification. Such cases require the application of molecular genetic tools based on DNA sequence similarity. BLAST search, the most commonly used tool, enables a researcher to compare an unknown query sequence with a database of authenticated reference DNA sequences (e.g. species barcodes, [17]). DNA barcoding, using the mitochondrial cytochrome c oxidase I (COI) marker [18,19], has strong potential to be applied to animal tissues as an investigative, rapid, and cost-effective tool in wildlife forensic science [17,20-23]. However, DNA barcoding can potentially be compromised by the presence of numts (nuclear mitochondrial DNA: [24,25]). Numts are copies of mitochondrial genes that were trans-located and incorporated into the nuclear genome [24-31]. The inadvertent (and often unnoticed) amplification of numts in addition to, or even instead of, the authentic target cytoplasmic mitochondrial DNA (cymt) sequence represents a substantial source of contamination and a major impediment to DNA barcoding [25]. Methods to detect and avoid numt contamination are often laborious, time-consuming and expensive, and most importantly none of these methods effectively eliminates the problem [24,25,32]. However, numts may not imperil DNA barcoding, if their sequence divergence coincides with species divergence.

Some researchers suppose that numts can be easily identified and removed from data analysis [33] using "anti-numt" quality control strategies as suggested by Song et al. [25]. However, some numts were reported to lack any molecular features for reliable identification and thereby perfectly camouflage the authentic mitochondrial sequences [25]. Failure to differentiate between numts and cymt can lead to an overestimation of the number of species [25], species misidentification [25,34,35], incorrect phylogenetic relationships [24], and thus has important implication for future species conservation strategies (e.g. gorilla: [32,36]).

Hakazani Covo et al. [37] considered numts as "molecular poltergeists" with many facets: they feature different size distributions (<1kb to >2000kb), various degrees of homology with their mitochondrial counterparts, diverse distribution patterns across the nuclear genome, and a positive correlation with genome size [24,37,38]. Richly and Leister et al. [38] documented the widespread occurrence of numts in a large number of eukaryotic clades including plants (e.g. [39]), birds (e.g. [29,40]), reptiles (e.g. [41]), mammals (e.g. [42,43]), and arthropods (e.g. [24,30,44,45]). For Felidae, two well documented cases of

9

independent numt integrations have been reported to date. The first consisted of the 1.8 MYA old and 7.9 kb long tandemly repeated numt located on the chromosome D2 of the nuclear genome of the domestic cat (*Felis catus*) [28]. The second case described an independent 3.5 MYA old and 12.5 kb long numt insertion located on the chromosome F2 of the tiger (*Panthera tigris* and other *Panthera* species) [46]. Given this widespread occurrence of numts, Moulton et al. [47] postulated that "the more we search for numts, the more common they appear to be [26,38] and their presence may be more of a rule than an exception". In the future, further whole genome sequencing initiatives will continue to elucidate the evolutionary dynamics of numts in other species [38,46].

Various factors were reported to affect numt amplification when using PCR and include: taxon [38], tissue-type [48-50], gene region [51,52], numt age [53], and universal primer use [25]. Hence, a complex molecular toolbox has been developed for the avoidance and detection of numts (for review see: [24,25,54-56]). Methods developed to avoid numt amplification include RT-PCR, long-range PCR, entire mtDNA genome-amplification, specific primer use, mtDNA enrichment, using mtDNA-rich tissue (e.g. muscle), and dilution of DNA extracts. Several post-PCR approaches should help to detect and identify numts like restriction digest, cloning, comparative sequence analysis and translation, checking for stop codons, insertions–deletions (indels), or frame-shift mutations within a coding mtDNA sequence, checking the secondary structure of RNA genes, ambiguity check of the electropherograms, gel-check for the existence of multiple bands.

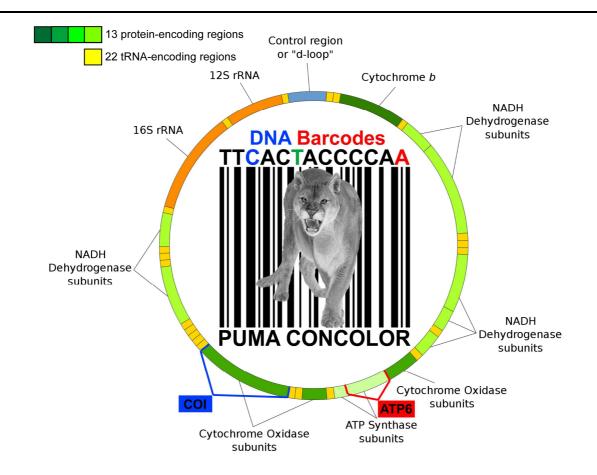
Here, we provided the first large-scale DNA barcoding analysis of the cat family Felidae using different tissue types (hair, faeces, blood, and muscle) commonly encountered in wildlife forensic investigations. Felids are ideally suited to test the strength of a barcode approach in determining species identity. The availability of comprehensive sample material from captive zoo-felids, a well-established phylogenetic taxonomy of Felidae, and the existence of two well-documented felid-specific numts allowed us to assess the application and efficiency of DNA barcoding for specific identification of feline carnivores in forensic investigations.

Our study was designed to test the effect of numts on DNA barcoding based on barcoding analyses of numt and mtDNA sequences in eight divergent lineages of Felidae. We used two different mtDNA markers: a 658 bp segment of the standard barcode marker COI located within the range of the two reported cat numts, and a 126bp fragment of the ATP6 gene, which was reported to be highly variable in carnivores and located outside the two felid numts. We then assessed the extent of numt contamination and their effect on the results of DNA barcoding analyses.

10

2.2. MATERIALS AND METHODS

2.2.1. Sampling


A total of 277 tissue samples (blood, muscle, hair, faeces) were genetically analyzed and originated from 28 felid species. Zoos, veterinary pathologies and zoological museums in Europe (see Appendix 1) supported us with sample materials from captive zoo felids. Samples were either non-invasively collected from the enclosure (faeces, hair), during veterinary checkups or from perished animals (muscle, blood, hair). Specimens were initially identified by the mammal curators in the zoos who followed the species nomenclature of Johnson et al. [12]. Each voucher specimen tissue was labelled with the complete scientific species name, sex and full collection record (collectors name, collection date and location). Vouchers will be deposited in the DNA- and tissue bank of the Museum Koenig and data will be accessible via online databases (BOLD in the project Barcoding cats [BACATS]) and NCBI (http://www.ncbi.nlm.nih.gov/)). Tissue samples like blood, muscle and faeces were stored frozen or preserved in 95–99% ethanol; hairs, however, were stored dry in an envelope at room temperature.

2.2.2. DNA extraction, PCR amplification and DNA sequencing

DNA extraction, PCR amplification and DNA sequencing of the COI and ATP6 gene was performed according to the standard laboratory protocols from BOLD and the quality control guidelines suggested by Song et al. [25]. The complete DNA barcode analyses were conducted at the DNA laboratory of the Zoological Museum Alexander Koenig in Bonn/Germany.

Voucher specimens were subsampled and subjected to DNA extraction using 'DNeasy Blood & Tissue Kit' (Qiagen) for muscle, blood and hair, and 'All-tissue DNA-Kit' (Gen-ial) for faeces. Hairs were decontaminated from external sources of contamination prior to DNA extraction using the protocol developed by Gilbert et al. [57]. The hair shafts were manually washed in 0.1x concentration commercial bleach solution (\approx 0.5% final NaClO concentration; 'DanKlorix') to remove any debris or contaminant DNA that was on the outside of the hair shaft, then rinsed several (2-6 times) in DNA-free H₂O until all traces of the bleach had been removed. Digestion of the hair shafts was performed with 1 M DTT (dithiothreitol) according to the protocol for the 'Isolation of total DNA from hair shafts' (QIAamp DNA Investigator Handbook 12/2007).

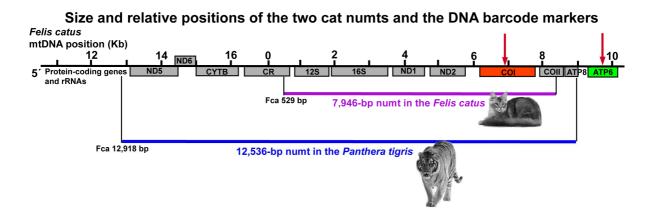

PCRs were performed using the QIAGEN Multiplex PCR Kit. The 20 μ I PCR reaction mixes included 3.3 μ I of ultra pure water, 10 μ I of Master Mix (HotStarTaq® DNA Polymerase, Multiplex PCR Buffer*, dNTP Mix), 2 μ I Q-Solution, 1.6 μ I of each primer (20pmol) and 1.5 μ I of extracted DNA. Two different mitochondrial protein coding markers were selected for amplification (Figure 1):

Figure 1. **Mitochondrial barcode markers.** Mitochondrial genome showing the location of the two felid DNA barcode markers, COI and ATP6.

The 658 bp long "Folmer region" at the 5' end of the mitochondrial cytochrome c oxidase subunit 1 (COI) is the standard barcode region for almost all groups of higher animals [18]. A 216 bp amplicon of the mitochondrial ATP synthase F0 subunit 6 (ATP6) gene was included for DNA barcoding analyses because of three reasons: (i) it was demonstrated to be quite variable in carnivores [58], (ii) it represents a short "mini-barcode" which enables PCR amplification of degraded DNA samples [59], (iii) and it lies outside of the two reported numts in the tiger [46] and the domestic cat [28] genomes (Figure 2). M13-tailed degenerate primers were designed to accommodate variation in mtDNA sequences among feline taxa and to reduce the potential for preferential amplification of nuclear pseudogenes [56]. The following PCR primers were used for this study: ATP6 F (5'-TGTAAAACGACGGCCAGTAACGAAAATCTATTCRCCTCT-3') and ATP6_R (5'-CAGG AAACAGCTATGACCCAGTATTTGTTTTRAYGTWAGTTG-3') originally reported by Trigo et al. [58]; and COI_F (5'-TGTAAAACGACGGCCAGTTCTCAACCAACCACAARGAY ATYGG-3') and COI R (5'-CAGGAAACAGCTATGACTAGACTTCTGGGTGGCCRAARAA YCA-3'), a standard primer pair for DNA barcoding of mammals developed by Ivanova et al. [60]. In addition, we also tested several primers targeting nuclear genes like the LSU rDNA D1-D2 marker [61] and another 28S marker [48].

PCR thermocycling was performed as a touchdown PCR under the following conditions: 15 min at 95°C; 5 cycles of 35 sec at 94°C, 1.30 min at 60°C, 1 min at 72°C; 35 cycles of 35 sec at 94°C, 1.30 min at 57°C, 1.30 min at 72°C; 10 min at 72°C; 15 min at 4°C and held at 12°C. Successful PCR amplification was examined using an agarose gel-check and the most intense products were selected for sequencing. PCR products were cleaned using QIAquick PCR Purification Kit (Qiagen) and submitted for sequencing by an external sequencing service (Macorgen, Korea). Contigs and sequence alignments were generated using Geneious Version 5.1.7 [62].

Figure 2. Reported cat numts. Schematic diagram of the relative positions of the *Panthera* and *Felis* numt and the targeted mtDNA barcode markers (ATP6 and COI). The scale bar in Kb corresponds to the domestic cat (*Felis catus*) mtDNA complete sequence [28] aligned with the *Panthera* (blue) [46] and *Felis* (purple) numt [28]. Protein-coding genes and rRNAs are indicated in grey boxes. The red box shows the relative position of the COI barcode marker within the tiger and cat numt region. The ATP6 gene highlighted with a green box is located outside the two reported cat numts. Modified after Kim et al. [46].

2.2.3. Data analysis

2.2.3.1. Identification of numts and tissue-type comparison

Pseudogenes (numts), i.e. mtDNA fragments incorporated in the nuclear genome [24], may represent a source of error since PCR-based analyses will often amplify both the authentic mitochondrial sequence and the pseudogene. We checked protein coding sequences for evidence of frame-shifts, stop codons and divergences in nucleotide composition between sequence types that might indicate that numts are present. We cross-checked clean sequences with COI and ATP6 sequences from published mitochondrial genomes of the most closely-related taxa of the investigated species. A tissue comparison experiment using hair, blood, muscle and faeces of the same individual was performed for several felid species to check, if (i) all tissues yield consistent sequences and (ii) if these match the cymt or numt sequence reported for this species.

2.2.3.2. Tree building and genetic distance methods

Pairwise nucleotide sequence divergences were calculated using the Kimura two-parameter (K2P) substitution model [63]. A neighbour-joining (NJ) tree of K2P sequence distances showing intra- and inter-specific variation was created using the 'Taxon ID tree' function of BOLD. K2P sequence divergences for all levels in the taxonomic hierarchy were determined using the 'distance Summary' tool on BOLD. We used the analytical tool 'Nearest Neighbour Summary' on BOLD to calculate nearest neighbour distances.

2.3. RESULTS

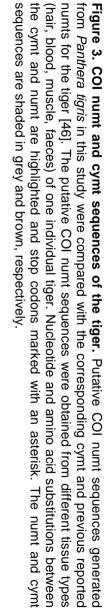
2.3.1. COI barcode marker

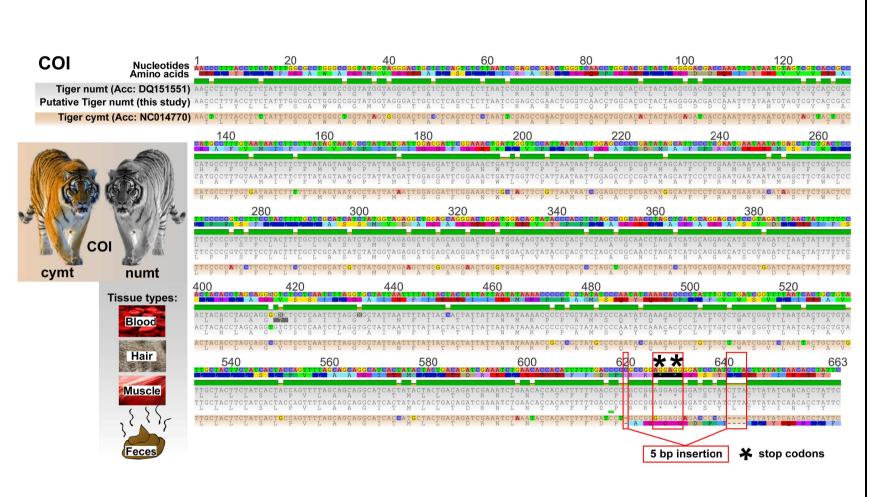
120 full-length COI sequences were recovered from 23 taxa (61%) of the 38 extant species of Felidae, distributed among 10 genera and 8 felid lineages (Appendix 1 and 2). Individual species were represented by multiple individuals (average = 5.3, range = 1–18) for a total of 106 sequences of a mean length of 658 bp. The original felid dataset consisted of 267 specimens from 28 species. However, we failed to obtain sequences from 30 specimens of 5 species. In addition, we excluded all sequences with >1% ambiguous nucleotides from the analyses (n = 20). Full-length COI barcodes were obtained for about 60% of the specimens. The reasons for our problems with obtaining COI sequences from a number of individuals are unknown, but may partly be due to primer mismatches for the standard COI primers in several felid taxa. Another reason might be the low DNA quality and quantity of some samples (e.g. hair and faeces), which might prevent the recovery of PCR fragments longer than 200 bp, thus impeding full length COI barcode (658 bp) recovery.

2.3.1.1. Putative COI numts

We detected presumptive pseudogenes in 6 (27%) of the 22 species sequenced for COI. Putative numts were recovered from the following felid species: *Panthera tigris, Panthera leo, Otocolobus manul, Felis catus, Felis silvestris,* and *Felis libyca.* The putative numts showed evidence of frame shifts, stop codons and nucleotide insertions between sequence types that might indicate that numts are present. The COI sequences obtained from the lion (*Panthera leo*) were classified as putative numts although they lacked any evidence of stop codons. But like others these presumptive numt sequences showed a higher sequence similarity with one of the two published felid numts (*Panthera tigris* numt: [46]; *Felis catus* numt: [28]) versus the authentic cymt sequence from the corresponding species or its sister species. Several different numt haplotypes were discovered for the three species of the *Felis* genus, while *Panthera tigris*, *Panthera leo, Otocolobus manul* each exhibited only one numt haplotype (see Table S1).

2.3.1.2. COI tissue-type comparison


COI sequences were derived from different tissue types (hair, blood, muscle, faeces) of a single *Panthera tigris* individual. All tissue types yielded a putative COI numt. The presumptive pseudogene sequence of the tiger showed 99% sequence similarity with the previous reported tiger numt [46]. Figure 3 shows the several nucleotide and amino acid substitutions between the tiger COI cymt and numt sequences.


2.3.1.3. COI-barcode analysis

The NJ tree of sequence divergences (K2P) at the COI region indicated that most genera formed cohesive units (Figure 4). Putative numts are highlighted in grey and cluster separately from the cymt sequences. All species possessed a distinctive set of COI cymt and numt sequences, which showed low intraspecific divergences. The mean K2P sequence distance within species was 0.2%, while the mean divergence between congeners was 28-fold higher at 5.6% (see Table 1, Figure 5). The minimum distances to the nearest neighbour is 0% and thus lower than the maximum intra-specific distance of 2.03% (see Figure 6). *Felis catus* shows a critically low distance of 0% to its nearest neighbour *Felis silvestris*, and *Panthera leo* only differs in 1.14% from its nearest neighbour *Panthera tigris*.

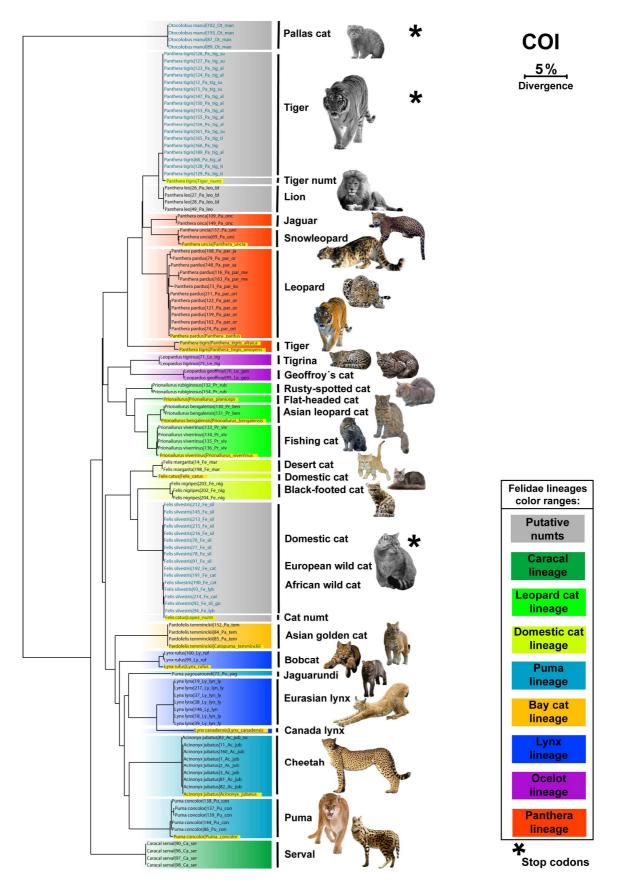
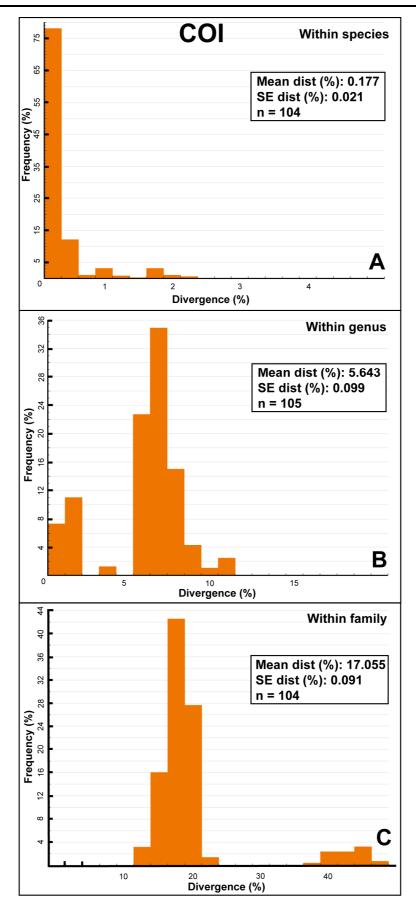
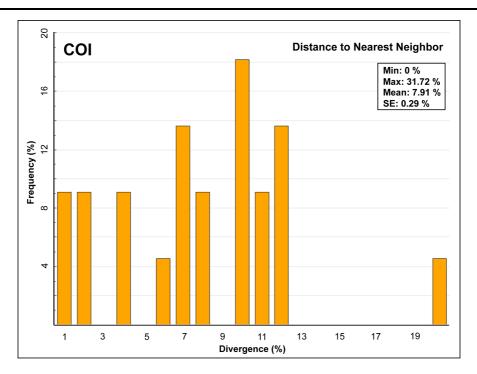

Level	n	Таха	Number of comparisons	Min. Dist (%)	Mean Dist (%)	Max. Dist (%)	SE Dist (%)
Within Species	104	21	388	0	0.177	2.032	0.021
Within Genus	105	10	653	0	5.643	10.312	0.099
Within Family	105	1	4419	10.306	17.055	39.928	0.091

Table 1. Pairwise COI barcode nucleotide divergences for the Felidae using K2P distances (%).




16

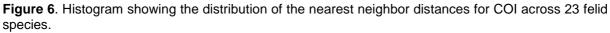
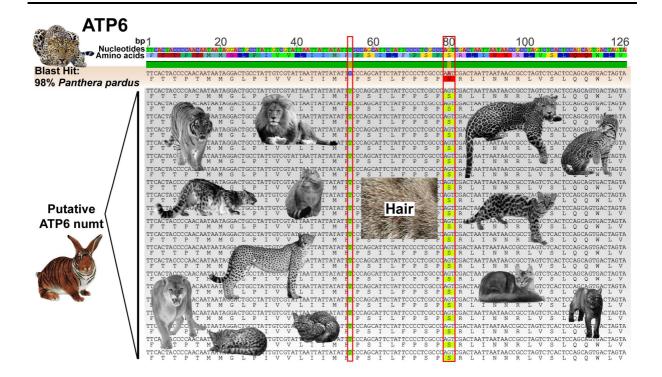


Figure 4: **COI NJ tree of Felidae.** NJ tree of COI sequences from 23 species in the family Felidae. Species affiliations with the respective felid lineages are highlighted with coloured boxes (according to Johnson et al. [12]). An asterisk indicates the presence of a stop codon. COI cymt and numt sequences derived from Genbank were included for comparison and are framed with a yellow box.

Figure 5. Pairwise comparisons of nucleotide sequence differences in COI among 23 species of Felidae at various levels of taxonomic hierarchy: (A) intraspecific; (B) intragenic; (C) intergenic differences between individuals.



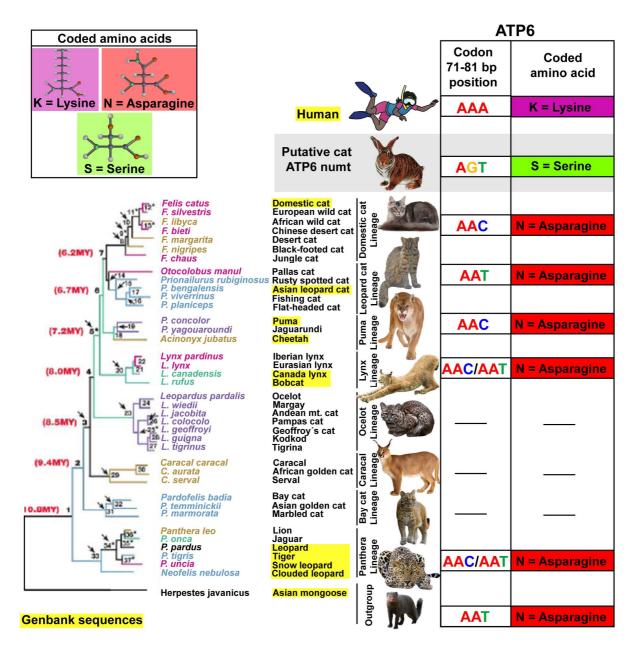
2.3.2. ATP6 barcode marker

198 full-length ATP6 sequences were recovered from 28 taxa (74%) of the 38 extant species of Felidae, distributed among 11 genera and 8 felid lineages (Appendix 1 and 2). Individual species were represented by multiple individuals (average = 6.5, range = 1–18) for a total of 198 sequences of a length of 126 bp. The original felid dataset consisted of 210 specimens from 30 species. However, we failed to obtain sequences from 12 specimens of 2 species. In addition, we excluded all sequences with >1% ambiguous nucleotides from the analyses (n = 20).

2.3.2.1. Putative ATP6 numts

We detected putative numts in 13 (46%) of the 28 species sequenced for ATP6. Putative pseudogenes were recovered from the following cat species: *Acinonyx jubatus, Felis silvestris, Panthera leo, Panthera onca, Panthera pardus, Panthera tigris, Panthera uncia, Puma yaguarundi, Puma concolor, Leopardus pardalis, Leopardus tigrinus, Leopardus wiedii, Leopardus geoffroyi.* The putative numt sequences showed no evidence of frame shifts, stop codons or base pair insertions. However all putative numt sequences derived from 13 different felid species were completely identical and a Blast search revealed 98% sequence similarity with *Panthera pardus* (see Figure 7). This putative ATP6 numt sequence differed from *Panthera pardus* in two bases located in bp-position 54 and 80 of the amplicon and in one amino acid. The coding triplet in bp-location 79-81 of the ATP6 numt codes for the amino acid serine, whereas the corresponding cymt sequences of all other felid species code for the amino acid asparagine (Figure 8).

Figure 7. ATP6 numt and cymt sequences of cat hair. Nucleotide and amino acid sequence alignment of the ATP6 gene from *Panthera pardus* (Genbank: NC010641) and the putative ATP6 numt sequences. One putative ATP6 numt haplotype was obtained from hair of 13 different felid species. The putative ATP6 numt shows highest sequence similarity (Blast hit: 98%) with the cymt ATP6 sequence of *Panthera pardus*. The cymt and numt sequences of the protein coding ATP6 gene differ (i) in two bases at positions 54 and 80 and (ii) in the coded amino acid at bp-position 79-81. Sequence differences are highlighted with red boxes.


2.3.2.2. ATP6 tissue-type comparison

The ATP6 sequence comparison of different tissues (hair, blood, muscle) from the same individuals was performed for five felid species (Felis *silvestris, Panthera tigris, Panthera leo, Panthera uncia, Puma yaguarundi*) and resulted in the detection of several nucleotide and amino acid substitutions between different tissue types (Figure 9). ATP6 sequences obtained from blood or muscle yielded the authentic cymt sequence, which was confirmed by correct blast results. Sequences derived from hair resulted in a putative numt sequence perfectly matching the above mentioned putative ATP6 numt haplotype.

2.3.2.3. ATP6-barcode analysis

The NJ tree of sequence divergences (K2P) at the ATP6 region indicated that most genera formed cohesive units (Figure 10). Putative numts are highlighted in grey and cluster separately from the respective cymt sequences. All species possessed a distinctive set of ATP6 sequences, which showed low intraspecific divergences. The mean K2P sequence distance within species was 0.15%, while the mean divergence between congeners was 57-fold higher at 8.55% (see Table 2, Figure 11). Regression analysis indicated that neither mean nor maximum divergence values were significantly correlated to sample size (mean dist.: $R^2 = 0.000$, P = 0.932; max dist.: $R^2 = 0.079$, P = 0.182) (Figure 12). The distance to

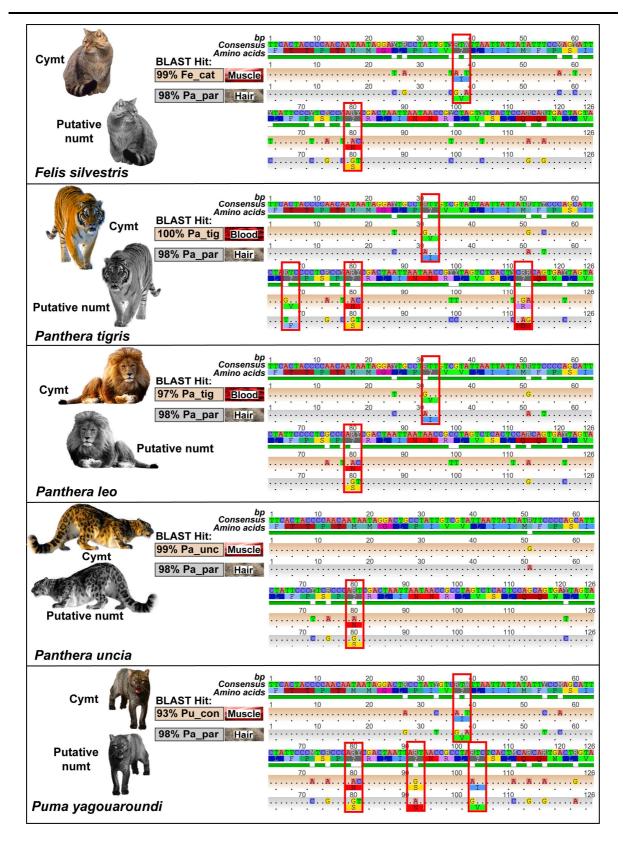
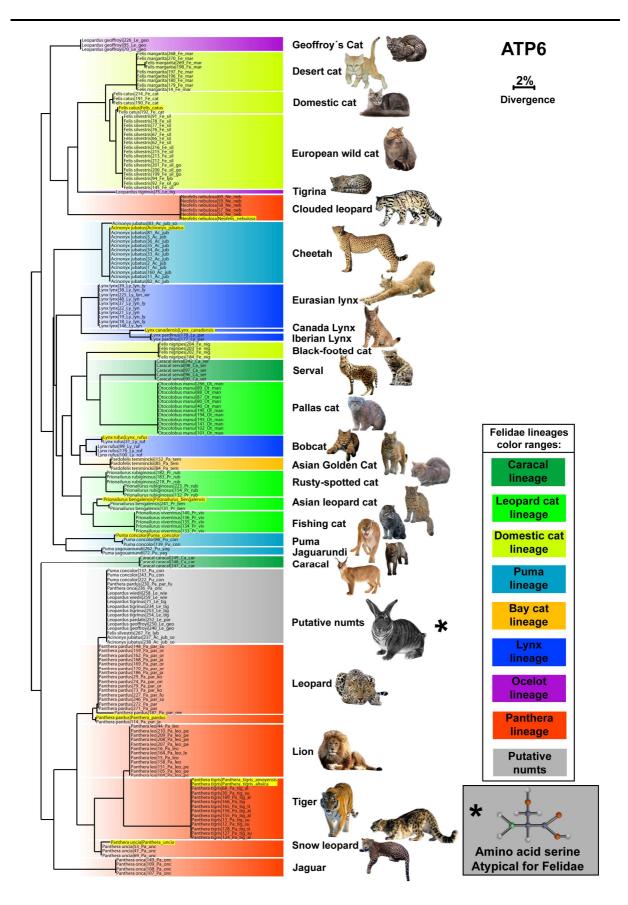

the nearest neighbour is more than 3.28% and thus higher than the maximum intra-specific distance of 0.16% (see Figure 13). The distance of one individual of *Felis catus* to its nearest neighbour *Felis silvestris* is 0.8% and thus less than the maximum intra-specific distance of 1.22%.

Figure 8. Schematic diagram of the coding triplets and the corresponding coded amino acids at the 79-81 bp-region in the ATP6 gene (126 bp segment) represented for cymt of almost all felid lineages, humans, and the putative ATP6 cat numt. The putative ATP6 cat numt differs in its codon (AGT) and the coded amino acid (S = Serine) from all other felids (codons: AAC, AAT; amino acid: N = Asparagine) and humans (codon: AAA; amino acid: K = Lysine).

*Cymt ATP6 reference sequences were obtained from the following complete mtDNA genome sequences in Genbank (framed with a yellow box): *Acinonyx jubatus*: NC_005212.1, AY463959.1, AF344830.1; *Panthera tigris altaica*: HM185182.1; *Prionailurus bengalensis*: HM185183.1; *Panthera tigris amoyensis*: NC_014770.1, HM589215.1, HM589214.1; *Puma concolor*. AH014071.1; *Lynx canadensis*: AH014070.1; *Lynx rufus*: NC_014456.1, GQ979707.3; *Panthera uncia*: EF551004.1, NC_010638.1; *Felis catus*: NC_001700.1; *Neofelis nebulosa*: NC_008450.1, DQ257669.1; *Panthera tigris*: NC_010642.1, EF551003.1; *Panthera pardus*: NC_010641.1, EF551002.1; *Homo sapiens*: GU392106.1; *Herpestes javanicus*: NC_006835.1.

CHAPTER 2: DNA BARCODING


Figure 9. Tissue-specific amplification of ATP6 numts. ATP6 sequences determined from hair, blood or muscle of five different felid species. Sequences obtained from blood or muscle resulted in the authentic cymt sequence verified by Blast sequence search. If no reference sequences were available in Genbank (i.e., *Felis silvestris, Panthera leo, Puma yagouaroundi*), the sequence matching the sister species was classified as the authentic cymt sequence. The putative ATP6 numts derived from hair of all five felids are identical and show 98% sequence similarity with *Panthera pardus* (NC_010641.1). Differences in nucleotides and amino acids between numt sequences obtained from hair, and cymt sequences from blood or muscle were colour-shaded and highlighted with a red box.

2.3.3. Nuclear DNA barcode markers

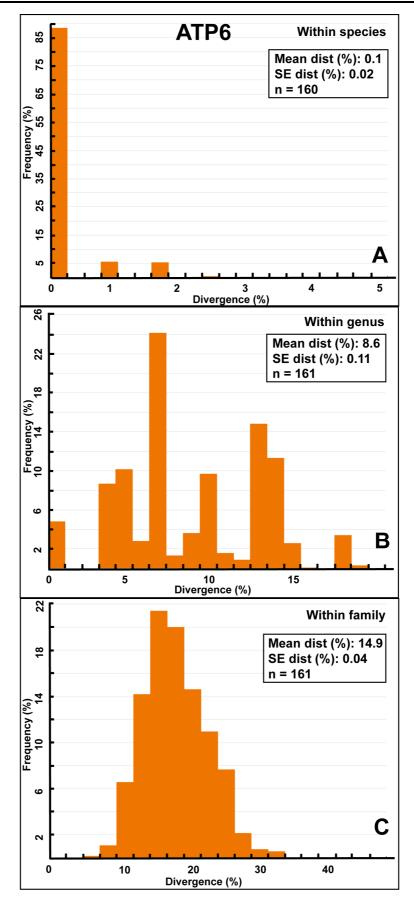
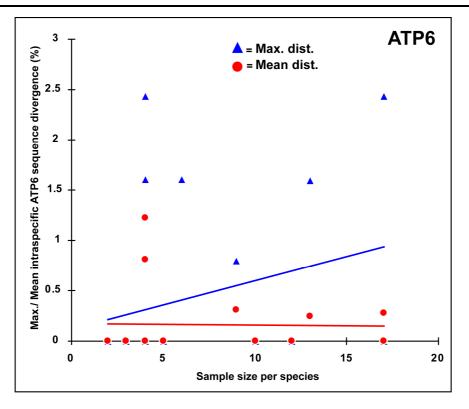

Initial tests using primers targeting the nuclear LSU D1-D2 region [61] and another region of the 28S [48] showed either no amplification success or no sequence variability between the closely related felid species (data not shown). It is known that compared to mtDNA, nuclear markers show less performance in species delineation of closely related taxa due to slower rates of evolution in the nucleus [64], and less amplification efficiency with vertebrate samples [61].

Table 2. Pairwise ATP6 barcode nucleotide divergences for the Felida	e using K2P distances (%).


Level	n	Таха	Comparisons	Min. Dist (%)	Mean Dist (%)	Max. Dist (%)	SE Dist (%)
Within Species	160	24	157	0	0.145	2	0.016
Within Genus	161	11	165	1	9	18.919	0.112
Within Family	161	1	1889	4.135	14.949	26.691	0.036

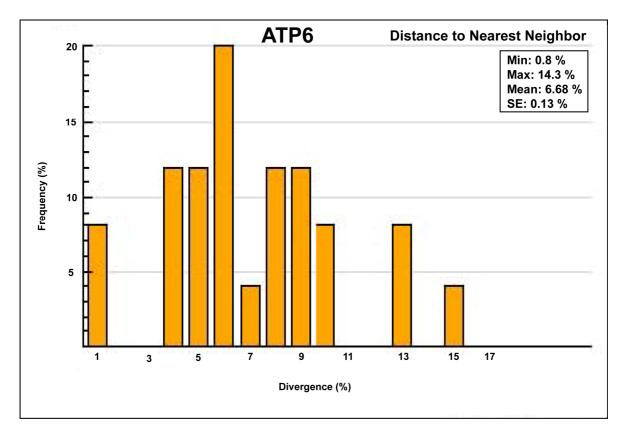

Figure 10. ATP6 NJ tree of Felidae. NJ tree of ATP6 sequences from 28 species in the family Felidae. Species affiliations with the respective felid lineages are highlighted with coloured boxes (according to Johsnon et al. [12]). COI cymt sequences derived from Genbank were included for comparison and are framed with a yellow box.

Figure 11: Pairwise comparisons of nucleotide sequence differences in ATP6 among 28 species of Felidae at various levels of taxonomic hierarchy: (A) intraspecific; (B) intragenic; (C) intergenic differences between individuals. *Putative ATP6 numts were excluded for this analysis.

Figure 12. The relationship between maximum and mean intraspecific sequence divergence (K2P) at ATP6 and the number of individuals analysed for each species (mean dist.: $R^2 = 0.000$, P = 0.932; max dist.: $R^2 = 0.079$, P = 0.182).

Figure 13. Histogram showing the distribution of the nearest neighbor distances for ATP6 across 23 felid species.

2.4. DISCUSSION

Amplification and sequencing of felid sample material provided 120 COI sequences and 198 ATP6 sequences. They originate from a total of 28 species for ATP6 and 23 species for COI (see Appendix 1). The sequences were generated to assess their validity as barcoding markers and to identify numt contaminations that could potentially constitute substantial challenges for reliable species identification. To date, numts in felids have been identified in two species- the tiger [46] and the domestic cat [28] (see Figure 2).

2.4.1. Characterization of numts

Among the 120 sequences generated for COI, 43 sequences of 6 species exhibited high sequence similarities with previously reported numts (see Figure 4). The amplification of numts was most likely caused by the interaction of two different factors: (i) the existence of very high numt copy numbers in the COI region of cats [51] and (ii) the use of universal Folmer primers preferentially targeting numt sequences. Numts are generally more conserved among taxa, due to slower rates of evolution in the nucleus, and can thus represent ideal binding sites for universal primers [25,32,65].

Among the 198 sequences generated for ATP6, 21 sequences of 13 species indicated putative numts (see Figure 10). Two factors most probably controlled numt amplification predominately from hair samples: (i) hair exhibit rather low mtDNA content and ATP6 primers thus most likely anneal to nuclear sequences of mitochondrial origin (numts), present in higher copy numbers [48] and (ii) the existence of high numt copy numbers in the ATP6 region of cats [51]. High copy numbers of numts homolog to the ATP6 gene region result from multiple independent numt insertions into the cat genome since the origin of Felidae approximately 10.8 MYA ago [12]. These numts are distributed across most cat chromosomes and include gene regions present (e.g. COI) and absent (e.g. ATP6) in the previous reported cat numt [28] and tiger numt [46].

2.4.2. Criteria for numt identification

For the identification of putative numts in the ATP6 and COI dataset, we applied the "antinumt" quality control strategies suggested by Song et al. [25]. The numt identification was based on the following criteria:

2.4.2.1. COI numts

In most species, COI numt sequences could be differentiated from cymt protein coding gene sequences due to the presence of extra stop codons, insertions–deletions (indels), or frame-shift mutations (see Table 1). The COI sequences generated from lions, however, lacked these typical molecular features. Similarly, Moulton et al. [47] detected a number of COI numts without stop codons or indels, making it difficult to distinguish them from mitochondrial

orthologues. However, we could identify this COI lion numt based on its high sequence similarity (97%) with the previous reported tiger numt. The observation of shared numts in two sister species (lion and tiger) can be explained by the age of the reported tiger numt. The tiger numt diverged from cymt around 3.45 MYA ago, exactly when the *Panthera* lineage began to diverge from the common felid ancestor [46]. This means that all *Panthera* species, and hence also the lion (*Panthera leo*), exhibit a similar numt haplotype belonging to the reported tiger-numt lineage.

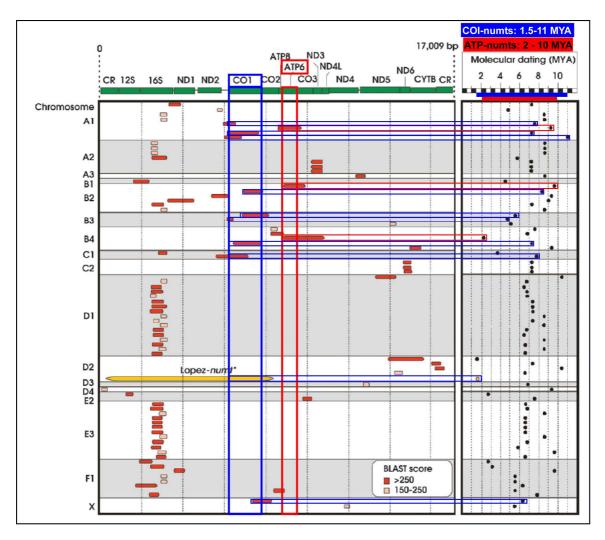
2.4.2.2. ATP6 numts

ATP6 numt sequences lack additional stop codons, insertions-deletions (indels), or frameshift mutations for reliable identification (see Figure 10). ATP6 numts were hence identified by unusual amino acid changes absent from the cymt of all other Felidae. Uncommon amino acid changes were previously used by Magnacca et al. [66] to differentiate numts and cymt sequences. The unusual amino acid Serine in position 79-81bp of the ATP6 numt not only differs from the amino acid Asparagine common in cymt of all other felids but also from the amino acid Lysine typical for humans (see Figure 8). Thereby we could not only corroborate the identity of a putative ATP6 numt but also exclude an inadvertent cross-contamination with human or felid DNA.

Despite the rigorous implementation of the above mentioned criteria for numt identification, we can not fully exclude that numts remained undetected in our dataset. Many studies document the failure of numt identification and inadvertent incorporation of numts in data analysis and this certainly poses a challenge for quality control measures typically suggested for standard DNA barcoding studies (e.g. [25,37]). For example, Anthony et al. [67] and others documented not only the exclusive amplification of either numts or authentic cymt sequences but also the presence of numt recombinants (co-amplifications), where cymt and numts combine during PCR (e.g. [32,53,67,68]).

2.4.3. Tissue-specific numt amplification

Several studies documented that DNA extracted from noninvasive samples may prove particularly likely to yield numts [32,42,48]. To test whether numts are preferentially amplified from specific tissue types, barcode sequences were generated from hair, blood muscle and faeces of a single specimen.


COI sequences were obtained from a single tiger individual using four different tissues types. All sequences obtained matched with 99% identity the previous reported tiger numt [46] (Figure 3). We conclude that at least for the tiger, numt amplification cannot be excluded by tissue-type selection. Similar observations of tissue-independent numt amplification were reported for muskox by Koloktronis et al. [49]. Explanations for this phenomenon include the high copy number of numts in the COI gene region [51,52], numt age [52,53], and universal primer use [25].

Tissue-specific numt amplification in the ATP6 gene was performed for 5 species using either blood or muscle and hair (see Figure 9). For all species tested, sequences generated from hair samples resulted in the amplification of one putative ATP6 numt haplotype. Sequences obtained from muscle and blood, however, provided the authentic cymt sequences. We conclude that for the ATP6 gene, numts are preferentially amplified from specific tissues like hair. This phenomenon has previously been reported by Greenwood et al. [48] for elephants. A possible explanation for this observation is that hair has a relatively low mtDNA content and hence numts may be preferentially retrieved over cymt by PCR [48]. Similarly, blood from birds has been observed to predominately yield numt sequences, which has been attributed to the fact that bird erythrocytes are nucleated and thus contain predominantly nuclear DNA as target for numt amplification [50]. The molecular genetic data reported here for ATP6 constitute the first report that tissue-specific numt amplification also exists in Felidae. For ATP6 the tissue specific amplification of authentic cymt DNA is considered to be dependent on the favourable ratio of mtDNA versus nuclear DNA copies [55]. Mitochondrial-rich tissues like muscle and mammalian blood, which contains anucleated red blood cells, represent a good source of mtDNA und thus enable organellar cymt DNA amplification [24,48]. However the numt age might also play an important role in tissuespecific numt amplification [52,53]. We conclude that the ATP6 numt sequence haplotype derived from hair of several felid species, must have diverged from cymt around 10 MYA ago, before the eight Felidae lineages began to diverge from the common felid ancestor. The estimated old numt age seems to be correlated with the tissue-specific numt amplification. Similar observations were made for gorillas by Chung et al. [52], who found that "phylogenetically more anciently transferred numts were amplified with a greater incidence from the gorilla faecal DNA sample than from the high-quality gorilla sample".

Unlike for ATP6, numt amplification in the COI region of the tiger was shown to be independent of the tissue type. This is probably primarily related to the relative copy number of numts homolog to the corresponding protein-coding genes (see Figure 14). The domestic cat genome harbours more copies of independent numt insertions homolog to the COI gene versus the ATP6 gene region [51], (Figure 14). We assume that a similar distribution of numt copies (homolog to the COI gene) exists in the tiger genome based on observations made by Patterson et al. [69] for chimpanzees and humans. They found that the proportion of shared numts (that are orthologous numts present in both sister species genomes at identical loci) can be quite high (80%) for species which diverged less than 6.3 million years ago [70]. Antunes et al. [51] therefore concluded that "the domestic cat numts's catalogue has potential utility for studies across the 38 species of the Felidae family, which originated less

29

than 10.8 million years ago [12]." Our observation of numt contaminations existing for both mtDNA gene regions and different felid taxa (other than domestic cat and tiger, for which numts where previously reported) confirm this hypothesis of shared numts.

Figure 14. Numt fragments (in red/pink) are mapped onto domestic cat chromosomes. Their molecular dating (MYA—million of years ago) is given on the right side. MtDNA genes are highlighted in green. The relative position of independent numt copies within the ATP6 and COI barcode marker region is marked with a red and blue box, respectively. The Lopez-numt copy is represented in yellow. Modified after Antunes et al. [51].

2.4.4. DNA barcoding analysis with numts

The ultimate goal of the COI and ATP6 barcoding study conducted here was the identification of felid species. The current threat to Felidae imposed by humans (i.e., illegal poaching and trade), require a reliable tool for rapid molecular identification in wildlife forensic investigations. As outlined above numts constitute a potential challenge for species identification in DNA barcoding analyses. Numt contamination was also found among our sequence data sets. Moreover, our results confirm that various factors contribute to the amplification of numts such as taxon [38], gene region [51,52], individuals [48], numt age [53], universal primer use [25] and tissue-type [48-50].

Despite strong numt contamination, our analyses revealed that most individual felid taxa are characterized by unique and species diagnostic barcode sequences. The barcode sequences obtained indicate that this holds true for both ATP6 and COI (see Figure 4 and 10). As such the unique features of individual felid sequences provide a molecular database that can be used for the identification of unknown felid material for forensic applications. The central concept in forensic species identification is to match an unknown sequence of a target item to a reference sequence through DNA similarity searches (Blast search: [71]). All sequences obtained in this study constitute the felid marker reference database and will be deposited in both BOLD and NCBI sequence databases. The intraspecific variability and authenticity of individual felid species was verified by analysing multiple voucher specimens (see Figure 12). Our findings thus indicate that both authentic cymt as well as numt sequences of the COI and ATP6 gene can be used as species-diagnostic barcode markers applicable for felid forensic investigations. The few exceptional cases, where the COI and ATP6 barcode markers show less performance at species level identification, are indicated below:

The COI sequences generated so far allow the rapid and reliable identification of 21 felid species. To date, however two felid taxa are challenging. *Felis catus* and *Felis silvestris* share the same COI numt haplotype (see Figure 4), which enables generic-level assignment but not the identification of individual species. Low levels of species resolution are not a specific problem of numts. The diagnosis of species using authentic mtDNA was previously reported to be particularly difficult when species are young [72], or affected by hybridisation and introgression (e.g. [73]). Indeed, precisely these factors apply to *F. catus* (Domestic cat) and *F. silvestris* (European wild cat). The two sister species diverged less than 1 MYA ago (e.g. [12,74]) and introgressive hybridization between wild species and their domesticated relatives is a widespread phenomenon also common in these taxa (e.g. [75-77]). We conclude, that it is impossible for any mitochondrial-based barcode system, no matter whether cymt or numts, to fully resolve species identity in *F. catus* and *F. silvestris* so that supplemental analyses of one or more nuclear genes will be required (e.g. [78]). A similar situation has been reported for the differentiation of wolf and dog [79].

The ATP6 sequences generated so far allow the rapid and reliable identification of 28 felid species. To date, however amplification of ATP6 numts from hair of several felid species remains problematic. In particular, phylogenetically more anciently transferred numts, like this ATP6 numt, can be preferentially amplified from tissues like hair (e.g. [48,52]) regardless of which felid species was investigated. In wildlife forensic applications, the tissue-specific amplification of this ATP6 numt does not allow any inference about the identity of the felid species under investigation. However, a solution to this problem is either the DNA analysis of other tissues or the additional amplification of another barcode marker like the COI gene.

31

We conclude that in general the presence of numts can potentially compromise DNA barcoding analyses but in certain cases does not necessarily affect reliable species diagnosis. Our study demonstrates that DNA barcoding of well-documented felid taxa can be reliably performed using species diagnostic cymts and numts of the ATP6 and COI gene. This holds true even, if we cannot fully exclude unidentified numt contamination in our dataset. The availability of an existing numts catalogue for the domestic cat [51] and detailed investigation of further felid numts in this study form the basis for effective cymt-numt barcode-based species identification of Felidae in future forensic investigations.

2.5. CONCLUSIONS

The analysis of two felid DNA barcode markers leads to the following principal conclusions:

- a. Felid DNA barcoding using the two mitochondrial markers ATP6 and COI is accompanied by numt contaminations. Except for a few cases, numt amplification does not constitute serious limitations for reliable identification of felids species.
- b. The full extent of numts present in felids was not a priori known and varied among the selected mtDNA markers, tissue types, individuals and species.
- c. In a few cases numts can potentially compromise the species-diagnostic performance of the felid mtDNA barcoding system in wildlife forensic investigations. The tissuespecific amplification of ATP6 numts in several felid species and a shared COI numt in domestic and wild cats require the analysis of additional tissue materials and nuclear markers.

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: SJP. Analyzed the data: SJP. Wrote the manuscript: SJP.

ACKNOWLEDGMENTS

I thank Bernard Misof for fruitful discussions and Claudia Etzbauer for technical assistance in the lab. I appreciate the efforts of all collaborators listed in Appendix 1, who provided biological specimens used in this study. All tissues were collected in full compliance with the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Sequences will be deposited in GenBank. The animal images used for figures are derived from the internet (Appendix 3).

CHAPTER 3

3. Tracking cats: Problems with placing feline carnivores on δ¹⁸O, δD isoscapes

Stephanie J. Pietsch¹*, Keith A. Hobson², Leonard I. Wassenaar² and Thomas Tütken³

 Zoologisches Forschungsmuseum Alexander Koenig, Universität Bonn, Bonn, Germany
 Environment Canada, Saskatoon, Saskatchewan, Canada
 Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Universität Bonn, Bonn, Germany.

> * Corresponding author: Stephanie J. Pietsch E-mail address: feliden.zfmk@googlemail.com

This is the author's version of a work already accepted for publication in Plos One.

ABSTRACT

Background

Several felids are endangered and threatened by the illegal wildlife trade. Establishing geographic origin of tissues of endangered species is thus crucial for wildlife crime investigations and effective conservation strategies. As shown in other species, stable isotope analysis of hydrogen and oxygen in hair (δD_h , $\delta^{18}O_h$) can be used as a tool for provenance determination. However, reliably predicting the spatial distribution of δD_h and $\delta^{18}O_h$ requires confirmation from animal tissues of known origin and a detailed understanding of the isotopic routing of dietary nutrients into felid hair.

Methodology/Findings

We used coupled δD_h and $\delta^{18}O_h$ measurements from the North American bobcat (*Lynx rufus*) and puma (*Puma concolor*) with precipitation-based assignment isoscapes to test the feasibility of isotopic geo-location of Felidae. Hairs of felid and rabbit museum specimens from 75 sites across the United States and Canada were analyzed. Bobcat and puma lacked a significant correlation between H/O isotopes in hair and local waters, and also exhibited an isotopic decoupling of $\delta^{18}O_h$ and δD_h . Conversely, strong δD and $\delta^{18}O$ coupling was found for key prey, eastern cottontail rabbit (*Sylvilagus floridanus*; hair) and white-tailed deer (*Odocoileus virginianus*; collagen, bone phosphate).

Conclusions/Significance

Puma and bobcat hairs do not adhere to expected pattern of H and O isotopic variation predicted by precipitation isoscapes for North America. Thus, using bulk hair, felids cannot be placed on δ^{18} O and δ D isoscapes for use in forensic investigations. The effective application of isotopes to trace the provenance of feline carnivores is likely compromised by major controls of their diet, physiology and metabolism on hair δ^{18} O and δ D related to body water budgets. Controlled feeding experiments, combined with single amino acid isotope analysis of diets and hair, are needed to reveal mechanisms and physiological traits explaining why felid hair does not follow isotopic patterns demonstrated in many other taxa.

3.1. INTRODUCTION

Many carnivore species are currently threatened and are the focus of intense conservation concern [13]. Feline carnivores are often subject to illegal wildlife trade, thus the ability to estimate the geographic provenance of illegal tissue samples would constitute important information in wildlife crime investigations [11]. Probabilistic provenance determination based on O and H isotopes has strong potential to be applied to animal tissues as an investigative tool in wildlife forensic science [80-83]. Validation of isotopic methods has relevance and practical application in various fields like wildlife forensics and conservation biology.

Measurements of the stable isotopes of hydrogen (δD) and oxygen ($\delta^{18}O$) of animal keratinous tissues have been used to track the geographic origin and migratory patterns in a wide variety of animals (e.g. [80,81,84-86]). To date, this approach is based on strong empirical correlations between δD values in animal tissues (δD_t) with the isotopic composition of the amount-weighted mean annual or mean-growing season precipitation (δD_w) . The latter correlates inversely with latitude and elevation across the continents, especially in North America [87-89]. Few studies have coupled δD and $\delta^{18}O$ measurements of the organic or inorganic fractions of animal tissues despite the strong covariance between these isotopes in environmental waters (hairs and nails: human [85,90-93]; CO₂, body water, hair and enamel: woodrat [94]; chitin: brine shrimp [95]; chitin: chironomids [96]; plasma, blood and feathers: birds [97,98]; fat, blood, muscle, hair and collagen: pig [99]; carbonate and phosphate tooth enamel, bone collagen, subcutaneous fat and hair: laboratory rat [100]). Strong correlations between δD_w and δD_t have been found for many species [81]. The hydrogen and oxygen isotopic composition of animal tissues (hair, feathers, teeth) is related to the isotopic composition of body water (e.g. [101-104]) and ultimately to that of ingested water. Influences on isotopic composition of body water (δD_{bw} , $\delta^{18}O_{bw}$) of animals include abiotic (climate, drinking water) and biotic (diet and physiology) factors [105-112]. The incorporation of H and O isotopes from the hydrosphere via diet and drinking water into animal tissues is a complex process and our understanding of how these mechanisms affect the nature and variability of the empirically observed relationships is still poor (e.g. [90]). However, to reliably track the geographic origin of an animal requires a detailed understanding of the metabolic routing of dietary nutrients and mechanisms of H and O isotopic incorporation into animal tissues [113].

Hydrogen and oxygen in animal tissues can be derived from two potential sources: dietary nutrients and body water, whereas oxygen is also derived from inhaled air. The body-water pool, in turn, is derived from ingested drinking-, food-, and metabolic-water produced during the catabolism of food macromolecules [105,107,109,112,114-116]. The relative

35

contributions of all these sources to protein synthesis (i.e. keratin and collagen) are likely to vary among animals [117-119]. Controlled experiments are key to understand and model the incorporation of H and O isotopes into proteinaceous tissues like keratins (hair and feathers), collagen, and chitin, and have so far been developed for only a small number of species like woodrat (Neotoma cinerea and Neotoma stephensi; [94]), rat (Rattus norvegicus; [100]), Japanese quail (Coturnix japonica; [101]), house sparrow (Passer domesticus; [98]), humans (Homo sapiens; [85,90-93,104]), pig (Sus scrofa domesticus; [99]), brine shrimp (Artemia franciscana; [95]) and chironomids (Chironomus dilutus; [96]). These studies revealed that keratin δD and $\delta^{18}O$ reflect both biological (diet, physiology) and environmental signals (water, geographic movement, climate; [90]). Deviations from a strong coupling between δD_t and δD_w , and $\delta^{18}O_t$ and $\delta^{18}O_w$ have been shown (e.g. [90,120]) and may be linked to: 1) climatic factors like relative humidity [114,121]; 2) isotopic disequilibrium of food and water contributions to δD_t [104]; 3) possible trophic-level effects on δD_t [122]; 4) impacts of metabolic rate and drinking water flux on δD_{bw} and $\delta^{18}O_{bw}$ [103,105,107,109] ($\delta^{18}O$ of phosphate ($\delta^{18}O_{p}$) in urinary stone [123], bone [102] and tooth [124]); and 5) dietary and physiological controls on $\delta^{18}O_h$ and δD_h of hair [90].

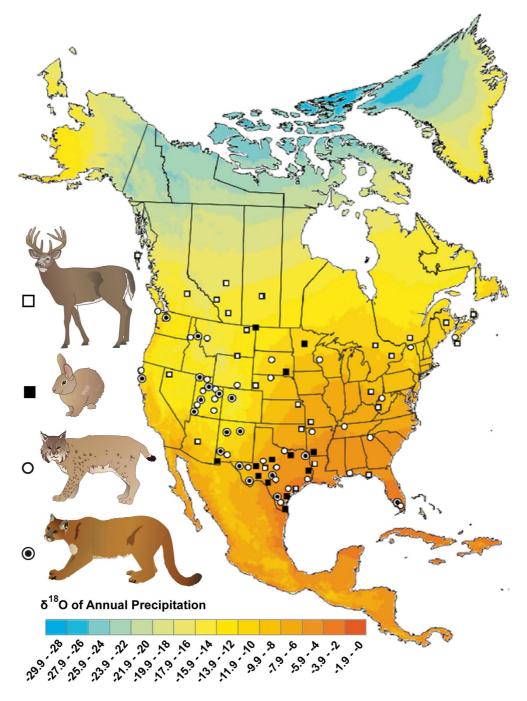
Previous studies that successfully applied combined δD_t and $\delta^{18}O_t$ analysis to track the geographic origin and migration of animals focused on herbivores and omnivores (e.g. [80,86,94,98,99,101]). The fact that this method performs particularly well in omnivorous modern humans [85,90-93,125] is not surprising, because humans are well-hydrated and typically consume a constant local water source (e.g. tap water: [126-128]) and consistent homogenous diet across regions (e.g. fast food: [129]). But even for humans, hydrogen isotopic incorporation during keratin synthesis likely varies between different keratinous tissues like nail and hair [130]. Free-ranging carnivores, however, differ significantly in their nutritional, physiological and metabolic characteristics from herbivores and omnivores [131,132]. The house cat, Felis catus, is the most thoroughly studied mammalian carnivore [131]. Felids are strict carnivores and thus obtain much of their body water from the consumption of prey [131]. Owing to the lack of empirical H/O isotope studies on strict carnivores (other than raptors) it is unclear whether carnivore hairs track the spatially predictable meteoric water signal (despite their integrative high trophic position). However, Kohn [107] hypothesized, that "carnivore bone phosphate should track the meteoric water signal more closely than do herbivores". For this reason, the concept of geographic source determination based on H/O isotopes using carnivore hairs as an investigative tool in wildlife forensic science needs to be tested.

Here, we provided the first large-scale δD and $\delta^{18}O$ analysis of hair samples from wild individuals of two North American feline carnivores, bobcat (*Lynx rufus*) and puma (*Puma concolor*). Both species were ideally suited to test the strength of the isotope approach in

assigning geographic origins of Felidae. The availability of skins from museum collections, high-resolution precipitation δ^{18} O and δ D isoscapes for North America and ecological differences between these study animals (e.g. body size, home-range size, habitat use, distribution and prey preferences) allowed us to assess the application and efficacy of H/O isotope fingerprinting for forensic spatial assignment in feline carnivores.

Our study was designed to determine whether puma and bobcat hairs varied predictably in their isotopic composition among isotopically distinct geographic locations and reflected the spatial pattern of isotopic variation in precipitation. Furthermore, we examined if species- or sex-specific effects existed, and whether these could be explained by differences in diet, body size and foraging ecology. Our results demonstrated that the application of water isotopes for provenance determination of feline carnivores was compromised by major controls of their diet, physiology and metabolism on $\delta^{18}O_h$ and δD_h . The controlling factors and possibilities to quantify these will be discussed.

3.2. MATERIALS AND METHODS


3.2.1. Study species and sampling

Eighty-eight hair samples from two North American felid species bobcat (*Lynx rufus*, n = 45) and puma (*Puma concolor*, n = 30), as well as the eastern cottontail rabbit (*Sylvilagus floridanus*, n = 13), the latter representing the preferred prey species of the bobcat, were obtained from the Smithsonian National Museum of Natural History in Washington D.C. and the Utah Museum of Natural History, Utah. Published isotope data of bone-phosphate ($\delta^{18}O_p$) and bone collagen ($\delta^{18}O_{bc}$) from white tailed deer (*Odocoileus virginianus*), constituting the major prey of the puma, were included for comparative analysis [133]. For each specimen, geographic location, sex and elevation was recorded (Table S1). All specimens studied originated from 75 different sites across the United States and Canada (Figure 1). Sample locations ranged in latitude from 25.8 to 48.2°N and longitude from 124.4 to 65.8°W, covering strong altitudinal (2 to 3400m) and isotopic gradients ($\delta^{18}O_{riv} = -17.5\%$ to -0.1%; $\delta D_{riv} = -132.7\%$ to 0.6‰).

3.2.2. Stable isotope analysis

Sample preparation and H/O isotope analysis were conducted at Environment Canada. All keratin samples were physically cleaned of adhering debris and washed twice in a 2:1 mixture of chloroform and methanol to remove lipids from the keratin surface. After cleaning, all samples were air-dried for 24h. Hair samples were then cut into 0.5cm increments (H: $350\pm20\mu$ g; O: $700\pm50\mu$ g) and weighed into pre-combusted silver foil capsules for H and O isotope ratio analysis. For δD , in order to account for exchangeable hydrogen in hair proteins, we used comparative equilibration with in-house keratin working standards,

BWB (-108‰), CFS (-147.7‰), CHS (-187‰), for which the δ D value of non-exchangeable H had been previously established [134]. For δ^{18} O, we used the IAEA benzoic acid standards IAEA 601 and 602, with assigned δ^{18} O values of +23.1‰ and +71.4‰, respectively. For H/O isotopic analyses, samples and reference materials were separately pyrolyzed on a Hekatech HTO elemental analyser at 1350°C to H₂ and CO for isotopic analysis on an IsoprimeTM dual-inlet isotope-ratio mass spectrometer. The reference standards were used to normalize unknown samples to the Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipitation (VSMOW-SLAP) standard scale [134].

Figure 1. Map of sampling sites. Sample locations for both felines bobcat (n = 45) and puma (n = 30) as well as their preferred prey species eastern cottontail rabbit (n = 13) and white-tailed deer (n = 31,[133]), respectively, plotted on the δ^{18} O precipitation map of North America [87].

3.2.3. Estimates of drinking water isotope compositions (δD , $\delta^{18}O$)

The H and O isotopic composition of water ingested by both felid species indirectly from their prey were inferred from modelled isoscape values [135] as well as measured river water values across North America [136,137]. It was assumed that the place of death of each puma and bobcat reflected their lifetime habitat. For each locality the average δD and $\delta^{18}O$ values for precipitation were determined using the Online Isotopes in Precipitation Calculator (OIPC) version 2.2 (http://www.waterisotopes.org). The OIPC provided a model estimation of long-term annually or monthly averaged precipitation isotope ratios at specified locations through spatial modelling of a large database of precipitation isotopic data covering the time period 1960–2004 [87,135]. The δD and $\delta^{18}O$ data of the OIPC model were compared to those measured for local river waters [136,137]. In general, there was a good correlation between δD_{riv} and $\delta^{18}O_{riv}$ and δD_w and $\delta^{18}O_w$ for relatively small- to medium-sized drainage catchments (<130,000km²) [86]. As puma and bobcats have smaller home-range sizes (female bobcat: 21.7km², [138,139]; female puma 175.8km², [138]) local river water should reflect the average δD and $\delta^{18}O_h$ data with the river water data.

Bobcat and puma hair isotope values were plotted against amount-weighted longterm annual, spring (three months mean of March, April, May) and summer (three months mean of June, July and August) precipitation δD_w and $\delta^{18}O_w$ values, because the formation and isotopic incorporation of cat hair is limited to a rather short time period. For instance hair growth in domestic cats is not continuous [140], but rather includes an anagen phase of active growth and a telogen phase of rest [141]. The hair-growth phase takes 6-8 weeks and 70% percent of the hair follicles are in the anagen phase during the summer [142]. Isotopic signals from drinking water and prey consumed during the anagen phase of growth are most likely integrated into the growing hairs. For this reason we related the isotope values of hair δD_h and $\delta^{18}O_h$ not only to annual average δD_w and $\delta^{18}O_w$ values but also to seasonal spring and summer precipitation to test if a better relation with water isotope values of the likely main hair growing season was obtained (Table S2).

3.2.4. Statistical analysis

First, we analysed the H and O isotopic variation of puma and bobcat hairs among locations and their correlation with the large-scale patterns of isotopic variation in precipitation. We tested whether the correlations significantly changed when using the annual and summer modelled precipitation or local river water data (Table S2). We compared hair H and O isotope data of predators and respective prey species and tried to establish a calibration equation between river water and hair for a feline carnivore. Relationships between mean annual $\delta^{18}O_{riv}$, δD_{riv} and $\delta^{18}O_h$, δD_h of puma, bobcat and rabbit

hairs were investigated using linear regressions (Figure 2 and 3). We also examined the relationship between $\delta^{18}O_h$ and δD_h (Figure 4). The effects of species, age, sex, seasonal precipitation and relative humidity on hair isotope values were examined using a General Linear Model (GLM) (Table S2). Statistical tests were conducted using XLSTAT (V 7.5.2).

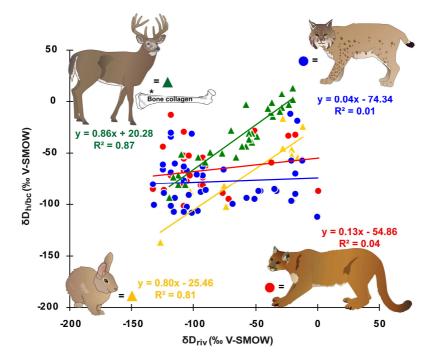


Figure 2. Hydrogen isotope values of keratin relative to river water. Plot of δD of hair (δD_h) from bobcat, puma and eastern cottontail rabbit as well as bone collagen (δD_{bc}) from white-tailed deer [133] vs. mean annual δD of river water (δD_{riv}).

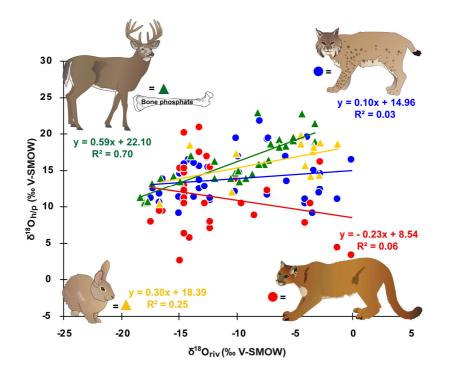


Figure 3. Oxygen isotope values of keratin relative to river water. Plot of $\delta^{18}O$ of hair ($\delta^{18}O_h$) from bobcat, puma and eastern cottontail rabbit and bone phosphate ($\delta^{18}O_p$) from white-tailed deer [133] vs. mean annual $\delta^{18}O$ of river water ($\delta^{18}O_{riv}$).

3.3. RESULTS

All hair δD_h and $\delta^{18}O_h$ values were plotted against mean annual δD_{riv} and $\delta^{18}O_{riv}$ values because using either amount-weighted mean annual, summer (June, July and August) or spring (March, April and May) OIPC modelled precipitation values did not significantly change the results (Table S2). The $\delta^{18}O_h$ - $\delta^{18}O_w$ correlation of bobcats was slightly improved by including relative humidity in the regression ($R^2 = 0.21$, p = 0.01, n = 44). Relative humidity did show a significant modest effect on $\delta^{18}O_{h}$ of bobcats (R² = 0.21, p = 0.002, n = 44) but no effect on $\delta^{18}O_{h}$ of puma (R² = 0.00, p = 0.818, n = 30). Relative humidity, however, did not affect δD_h of bobcats (R² = 0.05, p = 0.146, n = 44) and puma (R² = 0.068, p = 0.164, n = 30) (Table S2). The isotope composition of the analyzed hair samples spanned a range of 99.3 ‰ for δD_h and 12.6 ‰ for $\delta^{18}O_h$ in bobcat, and 95.4 ‰ for δD_h , and 18.2 ‰ for $\delta^{18}O_h$ in puma (Figures 2 and 3). No significant relationship was found between δD_{h} and δD_{riv} for both species (bobcat: R² = 0.005, p = 0.65, n = 44; puma: R² = 0.040, p = 0.291, n = 30) (Figure 2). Likewise $\delta^{18}O_h$ and $\delta^{18}O_{riv}$ were not significantly correlated (bobcat: $R^2 = 0.030$, p = 0.261, n = 44; puma: $R^2 = 0.055$, p = 0.211, n = 30) (Figure 3). No effect of sex on the isotopic relationship between hair and water was observed for both species (Table S2). There was a weak correlation between δD_h and $\delta^{18}O_h$ values of the same hair samples in bobcat ($R^2 = 0.195$, p = 0.003, n = 43) but not in puma ($R^2 = 0.0002$, p = 0.939, n = 30) (Figure 4).

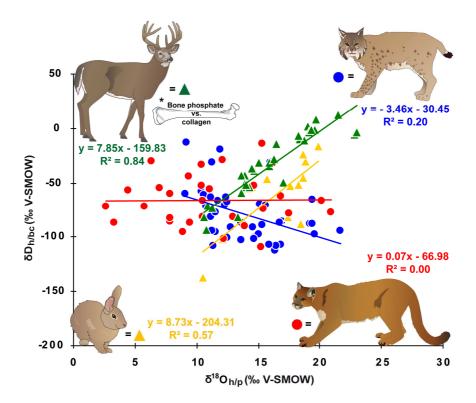


Figure 4. Hydrogen and oxygen isotope ratios of keratin. Hydrogen and oxygen isotope compositions are shown for hair samples (δD_h , $\delta^{18}O_h$) from puma, bobcat and eastern cottontail rabbit as well as collagen (δD_{bc}) and bone phosphate ($\delta^{18}O_p$) data from white-tailed deer [133].

Results for the hair isotope compositions of cottontail rabbits exhibited a strong $\delta D_h - \delta D_{riv}$ (δD_h : R² = 0.81, p < 0.0001, n = 13) and a moderate $\delta^{18}O_h - \delta^{18}O_{riv}$ ($\delta^{18}O_h$: R² = 0.25, p = 0.083, n = 13) positive relationship (Figures 2 and 3). The eastern cottontail rabbits also displayed a significant positive correlation between δD_h and $\delta^{18}O_h$ values of the same hair samples (R² = 0.571, p = 0.003, n = 13) (Figure 4).

3.4. DISCUSSION

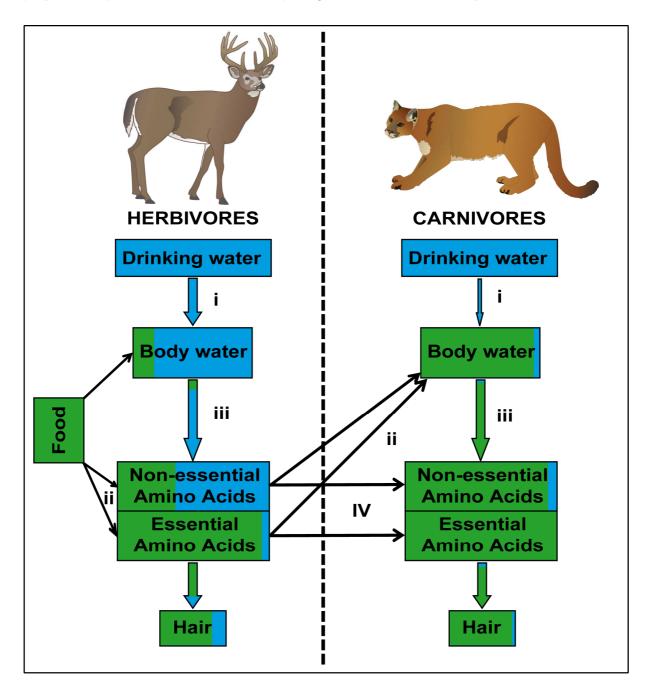
Both puma and bobcat lacked the expected correlation between water isotopes in local water and hair, and also exhibited a complete decoupling between $\delta^{18}O_h$ and δD_h . This finding contrasted strongly with results from numerous previously published studies on keratin tissues of omnivores and herbivores. Hence, tracing the provenance of feline carnivores such as puma and bobcat based on $\delta^{18}O_h$ and δD_h isoscapes does not appear to be possible, as individuals could not be reliably placed on $\delta^{18}O_w$ and δD_w maps. Potential explanations for this lack of correlation between hair and ambient water isotope compositions are discussed below.

3.4.1. Can relative humidity affect carnivore $\delta^{18}O_h$ and δD_h ?

In our study, relative humidity showed a significant modest effect on $\delta^{18}O_{\rm b}$ of bobcats $(R^2 = 0.21, p = 0.002)$ but not on puma $(R^2 = 0.00, p = 0.818)$ (Table S2). Previous studies on mammalian bone phosphate showed that relative humidity controls the $\delta^{18}O_p$ values of herbivore species with low drinking water requirements (e.g. [107]). For example, $\delta^{18}O_{0}$ values of Australian macropods [114], rabbits and hares [121] have been shown to correlate strongly with changes in relative humidity independent of $\delta^{18}O_w$, whereas the $\delta^{18}O_p$ of North American deer [115] were influenced by both relative humidity and $\delta^{18}O_w$. Low humidity increases the rate of evaporation of surface water and evapotranspiration of leaf- and grasswater and thus leads to oxygen isotopic enrichment effects in plants [143,144]. Droughttolerant animals who obtain most of their water from plants thus reflect levels of environmental humidity, in particular their $\delta^{18}O_{n}$ increases with decreasing relative humidity. However, Kohn [107] hypothesized that the importance of relative humidity diminishes with increasing trophic level. Our data support Kohn's hypothesis that predators are less controlled by relative humidity than herbivores. Bobcat $\delta^{18}O_h$ compositions were weakly affected by relative humidity ($R^2 = 0.21$, p = 0.002), most likely because they prey upon rabbits, whose $\delta^{18}O_{n}$ compositions are humidity dependent (R² = 0.86; [121]). In contrast, puma $\delta^{18}O_{\rm h}$ compositions were not influenced by relative humidity (R² = 0.00, p = 0.818), probably because they feed on white-tailed deer, whose $\delta^{18}O_{p}$ is affected by both relative humidity and $\delta^{18}O_w$ [115]. Unlike oxygen isotopes, δD_h values of both feline carnivores were not influenced by relative humidity (bobcat: $R^2 = 0.05$, p = 0.15; puma: $R^2 = 0.07$, p = 0.16).

Similar observations were made for δD_{bc} (bone collagen) of white-tailed deer by Cormie et al. [145]. We conclude that relative humidity particularly affects $\delta^{18}O_t$ of predators (e.g. bobcats) that feed on drought -tolerant herbivore species like rabbits. However, relative humidity did not explain the lack of a correlation between $\delta D_h - \delta^{18}O_h$ observed in both felids we studied.

3.4.2. Does an isotopic disequilibrium between food and water affect δD_h ?


It was documented previously [90,104], that δD_h is not well correlated with δD_w , if (i) ingested food or water sources (e.g. exotic foods, marine-based diet, high altitude food or snow melt drinking water) are not isotopically related to local meteoric water and/or (ii) migration between isotopically distinct habitats takes place. We tested whether the ingested food sources (i.e. key prey species) of bobcat and puma were in disequilibrium with δD_w , and so caused the lack of a correlation between H/O isotopes in precipitation and those in felid hair. In North America, the preferred prey species of puma is the white-tailed deer (*Odocoileus virginianus*) [146], whose δ^{18} O of bone phosphate ($\delta^{18}O_p$) [115] and δD bone collagen values (δD_{bc}) [133] strongly correlate with $\delta^{18}O_w$ and δD_w , respectively (Figure 2 and 3). In contrast, bobcats mainly prey on lagomorphs [147], whose $\delta^{18}O_h$ and δD_h values we also found to show a direct relationship with $\delta^{18}O_w$ and δD_w (Figure 2 and 3). Thus the oxygen and hydrogen isotopic composition of prey are not reflected in the hair of their respective predators. Cats are not obligate drinkers [148] and hence isotopic content of drinking water does not explain the lack of a correlation between δD_w and δD_h in felines.

Migration between isotopically distinct biomes during biosynthesis of hair might also affect the correlation of δD_h with δD_w . We would have expected this effect based on potential species- or sex-specific behavioural differences characterizing our study species. Puma and bobcat, for instance, have significantly different home range sizes [11,149], which are also known to vary between seasons and sex. Although carnivores exhibit typical mammalian dispersal behaviour, where males disperse and females are philopatric [150]; we did however not observe an effect of sex on the hair/water isotope correlation for both carnivore species (Table S2). We therefore concluded that the isotopic disequilibrium of food and water does not explain the lack of a relationship between δD_h and δD_w observed in puma and bobcats.

3.4.3. Does a carnivorous diet affect δD_h ?

Some studies have suggested a dietary trophic-level effect on H isotope systematics of animal tissues [90,119,122,151,152]. Possibly, high levels of animal protein consumption leads to a decoupling of δD in keratins from δD_w and a deviation from the mean relationship between keratin δD and $\delta^{18}O$ [122,153]. Diet may thus represent a confounding factor in the use of H and O isotopes for geographic tracking [90].

We developed a simple model of hydrogen isotope incorporation in carnivores to illustrate possible trophic-level enrichment and isotopic decoupling of δD_h in carnivores. Various fractionation factors and source pools contributing to non-exchangeable hydrogen in hair were considered (Figure 5). Controlled experiments on domestic cats have shown that, on average, only 1% of their total water input originates from drinking water [148]. So, drinking water likely has minor control on deuterium enrichment in felids, leaving the isotopic input of prey as a major determinant of the isotopic signature of carnivore body water.

Figure 5. Hydrogen isotope model of herbivores and carnivores. Model of hydrogen isotope physiology and the contribution of food and water to non-exchangeable hydrogen in the hair of herbivores and carnivores. Letters represent processes where isotope fractionation occurs (see text for detailed discussion). Blue colouring represents water inputs and green food inputs.

In this aspect, strict carnivores differ significantly from herbivores and omnivores, whose body water is to a large extent (64 - 80%, see Table 1) obtained from drinking water (Figure 5(i)). Isotope fractionation from drinking water to body water occurs [112,119,154] and may play an important role in δD_h enrichment of carnivore proteins. Feline carnivores consume prey species whose δD_{bw} and $\delta^{18}O_{bw}$ are expected to be higher than δD_{w} and $\delta^{18}O_{w}$ due to evaporative enrichment from insensible water loss through skin and breath vapour loss [111,155]. Consequently, carnivores mainly consuming deuterium-enriched prey should have higher δD_{bw} values over those of their prey. A similar process has been documented in humans for the consumption of cow milk and the resulting enrichment in deuterium of consumer tissue [119,156]. Otherwise the consumption of D-depleted prey might decrease the carnivore δD_{bw} values particularly during winter when prey species have built up their body fat reserves. Fat reserves are known to have significantly more negative δD values than proteinaceous tissues [101,153,157,158]. The temporary alternation of D-depleted and enriched carnivore diets relative to δD_w, based on differential seasonal consumption of lipids and proteins, respectively, might change the δD_{bw} [112] and is finally recorded in δD_h during carnivore hair growth [159].

Species	Food (%)	Drinking water (%)	Reference
Lab rats	37	64	[160]
Woodrats	29	71	[94]
Doves	15	85	[110]
Humans	20	80	[111]
European roe deer	24	76	[161]

Table 1. Food and drinking water inputs of hydrogen in the body water of different organisms under laboratory conditions.

Hydrogen isotope fractionation can also occur during the oxidation of food to form body water (see Figure 5 (ii)). Carnivores have the ability to digest and utilize high levels of dietary fat and protein and so produce relatively higher levels of metabolic water [131,162,163]. Catabolism of macronutrients and production of metabolic water could cause hydrogen isotope fractionation processes leading to deuterium enrichment [112,118]. In addition, isotopic fractionation most likely happens during the incorporation of body water into tissue amino acids (see Figure 5 (iii)). Water from food, drinking water and metabolism are the three source pools which can be fixed into newly synthesized non-essential amino acids [90].

45

However, the fraction of hydrogen fixed into amino acids may scale with the extent of nonessential amino acid synthesis in the body. This, in turn, is related to the level and amino acid composition of dietary protein intake [164]. Carnivores exhibit low levels of non-essential amino acid synthesis because their natural meat-rich diet contains all required amino acids [165]. Consequently, low levels of hydrogen fixed into amino acids in vivo could maximize the transfer of hydrogen from diet to hair thereby enhancing the contribution of isotopically heavy, prey-derived hydrogen in carnivore hair [90]. Finally, it is also possible that isotope fractionation occurs during the transfer of food amino acids to tissue amino acids (Figure 5 (iv)). δD_h enrichment of carnivore proteins could also occur through selective catabolism of isotopically lighter amino acids [122]. We conclude that there are several possible isotopic fractionation steps during the metabolic incorporation of hydrogen into carnivore hair that could induce enrichment in deuterium and leading to higher δD_h and a loss of correlation with δD_w .

3.4.4. Effects of carnivore physiology and metabolism on δD_h and $\delta^{18}O_h$

If diet rather than drinking water solely controls carnivore δD , we would have expected a variation of the hair/water regression in slope and intercept compared to herbivores and omnivores. Because there was no significant correlation between oxygen and hydrogen isotope compositions of hair and precipitation and δD_h and $\delta^{18}O_h$, we therefore suspected the dietary trophic-level effect was potentially obscured by physiological and metabolic adaptations in carnivores [166]. Animals which display deviations from the normal covariance between δD and $\delta^{18}O$ values in keratin are carnivorous fish, birds and mammals [122] and ancient human populations with a meat-rich diet [90,119,151], which all consume high levels of animal protein and fat. From a purely nutritional perspective, they are all strict carnivores. Through evolution, their adherence to a specialized meat-rich diet induced changes in their metabolic pathways and nutritional requirements [131]. These physiological and metabolic adaptations in strict carnivores could considerably affect the H and O isotope systematics of their keratins.

The H and O isotope compositions of human hair strongly covary, and are closely related to meteoric (drinking) water at the place of residence [85] with the exception of mid 20^{th} century Inuit people [90]. Bowen et al. [90] did not find strong support for ubiquitous effects on the H/O isotope systematics of human hair related to physiological adaptations. However, in pre-globalization times, the typical diet of the Inuit contained high levels of dietary protein and fat from high trophic-level marine animals [167]. Mid 20^{th} century Inuit people thus fed at the highest trophic level of all humans. Since marine food webs have typically longer chain lengths than terrestrial food webs [168], the consumption of marine predators may confer a trophic-level enrichment of Inuit δD_h [90]. Historic Inuit are also classified as obligate

carnivores among omnivorous humans because they require nutrients that are present only in animal tissue of their diet [169] and so differ from other ancient humans who used a marine-dominated but omnivorous diet like the Ainu from Japan and Thai from Thailand [90].

Measurements of δD in feathers have been successfully applied in many bird species to estimate the origins of migrating and wintering individuals [113]. However, in strictly carnivorous raptors like Amur Falcons (*Falco amurensis*; [170]) and Cooper's Hawks (*Accipiter cooperii*; [171]) the linkage between feather δD and δD_w was weaker [86,172]. However, this may be complicated due to the fact that several raptors grow feathers during periods of high work associated with breeding and so may produce more deuterium enriched feathers due to evaporative water loss.

The natural diet of wild felids contains a high proportion of the energy as protein, a variable percentage as fat and a very low percentage as carbohydrate [132]. Metabolic adaptations mainly concern the loss of anabolic pathways required for the synthesis of nutrients universally present in their natural meat-based diet [173]. One of the most striking aspects here is that strict carnivores have lost the ability to produce metabolic compounds that are commonly synthesized by virtually all herbivores and omnivores. For example, cats lack the enzymatic machinery to synthesize some amino and fatty acids, thereby significantly increasing their basal requirement for proteins and essential amino acids. When ingesting prey, wild cats avoid consuming plant materials contained in the intestines [166] and hence the digestion of dietary starches and sugars has adapted to low carbohydrate intake [174].

Currently we lack a testable explanation for our observed and confounding isotopic patterns, but considering the unique felid physiology, we hypothesized that the food metabolism of strict carnivores may exert a vital effect particularly on δD_h . This may also affect the relative contributions of all sources to protein synthesis and hair formation. Recent findings from Pecquerie et al. [118] support our hypothesis. They propose two mechanisms involved in stable isotope fractionation during metabolic reactions: First, the selection of molecules for the anabolic or the catabolic pathway routes depends on their isotopic composition. Second, the concept of atom recombination recognizes that molecules are not completely disassembled into elements during chemical reactions [175]. A non-random allocation of atoms of a particular substrate (e.g. food amino acids) to a particular product (e.g. keratin amino acids) impacts isotopic composition of a given product (e.g. hair). While isotope fractionation takes place in metabolic reactions [118], these were particularly modified during the evolutionary history of carnivores. Knowing that approximately two thirds of the hydrogen in human hair is derived from food [104], we suspect that carnivores might be affected by alternate modes of isotopic routing of macronutrients into hair (Table 2).

47

Species	Food (%)	Drinking water (%)	Reference
Woodrats	75	25	[94]
Japanese quail	74 – 69	26 – 32	[101]
House sparrow	82	18	[98]
Humans	69, 64 ^ª , 73 ^b	31, 36 ^a , 27 ^b	[104]

Table 2. Food and drinking water inputs of hydrogen in hair and feathers of different organisms.

^a Data after [92]; ^b Data after [85]

The water metabolism in feline carnivores also differs from herbivores and omnivores. Cats drink to a limited extent [132,162] and excrete concentrated urine [176-178]. In addition they produce relatively high levels of metabolic water, which contributes on average 10% to their total water intake [131,162]. Drinking water volume, however, exerts a significant physiological control on the isotopic composition of hydrogen and oxygen in human body water [103] (Table 1). Besides various water conservation adaptations, strict carnivores have higher basal metabolic rates than other mammals [179,180]. A high metabolic rate associated with a low rate of drinking, results in a weak correlation of $\delta^{18}O_p$ with $\delta^{18}O_w$ [102]. We infer that this applies to strict carnivores and assumed that relatively smaller contributions of oxygen in carnivore hair originate from drinking water. In addition, cats lose water primarily through panting [181] vs. from sweat glands of foot pads [182]. Differences in the isotopic compositions. Panting animals should thus have higher $\delta^{18}O_{bw}$ and $\delta^{18}O_h$ values than animals that sweat because water vapour lost in panting is more depleted in ¹⁸O [107,183]. The same should apply to δD_{bw} and δD_h .

In contrast to the weak correlation between feline carnivore hairs δD_h and $\delta^{18}O_h$ and meteoric water $\delta^{18}O_w$ and δD_w (Figures 2 and 3), a good correlation between claw δD_c and δD_w was observed in a recently published study of migrating pumas in the USA [83]. The reason why the two keratinous tissues do not reflect meteoric water values in the same way remains unclear. However, a similar paradox is known for human fingernails and hair, with nails displaying a more variable H/O isotope composition and a comparatively weaker correlation between δD_c and δD_w ($R^2 = 0.6$) compared to hair ($R^2 = 0.9$) from the same individuals [91,130]. The reverse trend in feline carnivores may result from different formation rates of hairs [140] and nails [184], alternate modes of isotopic routing of macronutrients into hair and nail as well as different amino acid compositions of hair and nail [185].

3.4.5. Amino acid composition of cat hair

The isotopic values of keratins are generally defined by the isotopic composition of their constituent amino acids [185]. For example, cysteine, serine and glutamate, all nonessential, metabolically active amino acids are present at very high proportions in hair [186]. Their isotopic composition reflects both food and drinking water, with a slight bias towards food. Due to the high relative abundance of non-essential amino acids, their isotope composition can often dominate the bulk H and O isotope hair signature and mask the isotope composition from essential amino acids. The latter are present at lower proportions and routed directly from dietary sources [187]. The constancy of amino acid composition and hence isotopic values between tissues, even for related proteins like nail and hair, cannot be implied [185]. Large isotopic differences between amino acids of different components have been observed [188-190], reflecting their formation via different metabolic, synthetic and catabolic processes. However, the amino acid composition of cat hair protein is comparable with that of dog, horse, sheep and human hair [186]. Apparently only the proline content of cat hair protein appears to be lower and glycine appears to be higher than in the other species [186]. Variations in amino acid composition of cat hair might thus be responsible for some of the differences in isotopic patterns we have observed.

3.4.6. Does tanning of museum skins have an effect on the H/O isotopic composition of hairs?

To our knowledge this is the first H/O isotope study on mammal hair which benefits from large museum collections as a valuable source of sample material. However, it has not been assessed whether the tanning process used for preserving hides affects the H/O isotopic composition of taxidermy skins. Tanning chemicals are intended to stop deterioration processes of the skin. At a molecular level tanning chemicals act as solid spacers, which replace the H bonds linking the polypeptide chains of the collagen fiber and thus stabilize the collagen structure of museum skins [191]. Collagen and hair are both proteinaceous tissues and interpeptide H-bonding is abundant and important for maintaining the alpha-helical structure of collagen and hair [192]. Thus, tanning chemicals could potentially alter the nonexchangeable H isotope composition of hairs. However, we hypothesize that tanning chemicals did not affect the H/O isotopic composition of the analyzed felid hairs. First, the rabbit hairs which have most likely undergone the same tanning process as felid hides, showed good isotopic (δD_h and $\delta^{18}O_h$) correlation between hair and meteoric waters (Figure 2 and 3). Second, initial results from a small "before and after tanning experiment" using a common mineral tanning technique (aluminium salts [193]) on hairs from different mammal species indicated that there was no significant effect of the tanning process on the H isotopic values of these hair samples (data not shown).

3.5. CONCLUSIONS

Stable isotope (H, O) data from bobcat and puma hairs from a range of locations across North America revealed that feline carnivores cannot be placed on $\delta^{18}O$ and δD isoscapes for forensic investigation purposes. The effective application of water isoscapes for geographic source determination of feline carnivores is most likely compromised by major controls of their diet, physiology and metabolism on $\delta^{18}O_h$ and δD_h . However, we noted that the integration of H and O isotopes into animal proteins in general remains poorly understood. Isotope fractionation and routing during metabolic and tissue formation processes is complex and presumably varies between herbivores, omnivores and carnivores. Significant research thus remains to be performed to characterize the precise origin and sensitivities of the observed isotope signals. Controlled feeding experiments on strict carnivores like domestic cats are now needed to track isotope routing of macronutrients and their incorporation into different tissue types (e.g. [94,101]). With the objective to enhance the resolution of H and O isotope analysis of proteins, we suggest compound-specific single amino acid isotope analysis may give improved insights into isotope fractionation processes during protein, and by a comparative isotope analysis of essential versus non-essential amino acids. To date most studies have used bulk tissue protein isotopic values of hydrogen and oxygen [85,90,97] but little research has been conducted at the level of single amino acids in hair that was limited to C, N and S isotopes [194-196]. Unfortunately, there are no reported applications of hair δ^{18} O and δ D compound-specific isotope analysis of amino acids. This represents an important area of future research and will contribute to a better understanding of the observed variations in bulk protein H and O isotope ratios.

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: SJP, TT. Analyzed the data: SJP. Wrote the paper: SJP, KAH, LIW, TT. Conducted stable isotope assays: LIW.

ACKNOWLEDGMENTS

We thank Robert Fischer and Suzanne C. Peurach from the mammal collection at the Smithsonian Natural History Museum in Washington D.C., Eric A. Rickart from the Utah Museum of Natural History, and Bryan T. Hamilton from the Great Basin National Park in Nevada for their assistance with the sample collection. We thank Aurélien Bernard and Jürgen Hummel for their constructive and helpful comments. We also thank David Soto for his assistance with the stable isotope assays. The animal symbols used for figures are courtesy of the Integration and Application Network (www.ian.umces.edu/symbols), University of Maryland Center for Environmental Science.

CHAPTER 4

4. Oxygen isotope composition of North American bobcat and puma bone phosphate: Implications for provenance and climate reconstruction

Stephanie J. Pietsch¹* and Thomas Tütken²

> * Corresponding author: Stephanie J. Pietsch E-mail address: feliden.zfmk@googlemail.com

This is the author's version of a work prepared for submission to the Journal of Applied Ecology.

ABSTRACT

Background

Feline carnivores are threatened and particularly affected by illegal wildlife trade. Tracing unknown tissues to the origin via stable isotope analysis would hence constitute important information in wildlife crime investigations. The oxygen isotope composition of mammalian skeletal phosphate ($\delta^{18}O_p$) can be used as a proxy for animal provenance and migratory patterns in paleontological, archaeological, ecological and wildlife forensics applications. Terrestrial mammals are generally characterized by a constant oxygen isotope fractionation between meteoric water ($\delta^{18}O_w$) and bone phosphate ($\delta^{18}O_p$) but deviations have been documented for some species. Carnivore $\delta^{18}O_p$ values are considered to be potentially promising proxies for meteoric water ($\delta^{18}O_w$) but far little work has been done on carnivores and none on felids.

Methodology/Findings

We analysed the oxygen isotopic variation of North American puma (*Puma concolor*) and bobcat (*Lynx rufus*) bone phosphate ($\delta^{18}O_p$) and their correlation with the pattern of oxygen isotopic variation in precipitation ($\delta^{18}O_w$) to test the performance of isotopic provenancing in Felidae. Bone samples of felid museum specimens originating from 107 locations across the United States, Canada and Mexico were analyzed. The feline carnivore $\delta^{18}O_p - \delta^{18}O_w$ regressions were determined and compared with those from their respective prey species (deer and rabbit), another carnivore (fox) and other placental mammals. The effects of species, sex and relative humidity on the feline $\delta^{18}O_p - \delta^{18}O_w$ correlation were examined and additional intra-individual tissue comparisons were performed. Bobcats and pumas exhibit only a moderate $\delta^{18}O_p - \delta^{18}O_w$ correlation, which differs statistically from canid carnivores and all other placental mammals. Feline $\delta^{18}O_p$ values, also, revealed a much better relation with $\delta^{18}O_w$, than oxygen isotope ratios of hair ($\delta^{18}O_h$) from the same bobcat individuals.

Conclusions/Significance

The oxygen isotope compositions of bone phosphate and especially hair of feline carnivores do not reliably track meteoric water $\delta^{18}O_w$ values. Hence modern and fossil felid tissues are neither well-suited for provenance determination with high spatial resolution in wildlife forensics nor for precise palaeoclimate-reconstructions. In this regard, feline carnivores differ considerably from most herbivores and omnivores, which better track $\delta^{18}O_w$ values. Oxygen isotopic fingerprinting of bobcat and puma is most likely hampered by factors related to climate, diet, behaviour, physiology and metabolism. Controlled feeding experiments, where body water (i.e. blood) and different tissue types are isotopically monitored, are crucial to elucidate the mechanisms of oxygen isotopic routing and incorporation in feline carnivores.

4.1. INTRODUCTION

Many carnivore species are threatened and focus of intense conservation concern [13]. Feline carnivores are of particular relevance for illegal wildlife trade. The ability to estimate the geographic provenance of tissue samples with unknown origin using stable isotope analysis would hence constitute important information in wildlife crime investigations [11]. Especially the phosphate oxygen isotope composition ($\delta^{18}O_n$) of mammalian biogenic apatite is a proxy for the reconstruction of climate [108,109,114-116,197], topography and elevation [198-200], animal physiology [201,202], animal behaviour [203,204], animal ecology [205,206] which allow the reconstruction of habitat-use, provenance and migratory patterns [207-211] in wildlife forensics and ecology as well as in paleontological and archaeological applications. Carnivore $\delta^{18}O_p$ values are considered to be potentially promising proxies for meteoric water [212] but thus far little work has been done on carnivores (i.e. bear: [213], fox: [214]) and none on felids. However, to infer $\delta^{18}O_w$ of ingested water for palaeoclimate reconstruction using $\delta^{18}O_p$ from fossil carnivores requires the testing of related modern species [108]. In this study we establish for the first time the relations between $\delta^{18}O_{p}$ and $\delta^{18}O_w$ for two modern felids from North America the bobcat and the puma. These were compared to those relations of their preferred prey species cottontail-rabbit and white-tailed deer, respectively. Controlling factors of carnivore $\delta^{18}O_{p}$ values and implications for the reconstruction of environmental water, respectively, provenance will be discussed.

4.1.1. Oxygen isotope systematics in mammals

Bioapatite $\delta^{18}O_p$ values of mammal bones and teeth record during their mineralization environmental water $\delta^{18}O_w$ values. This enables to determine the climatic setting in which the animal or human lived and hence its provenance. The retention period of phosphate in bones of large mammals is in the range of several years [108], and hence $\delta^{18}O_p$ is affected by the long-term average factors controlling $\delta^{18}O_{bw}$ in the lifetime habitat of the animal. Mammalian bone mineralisation is catalyzed by the enzyme adenosine triphosphate (ATP) [215-217], which promotes the equilibrium oxygen isotopic fractionation between body water ($\delta^{18}O_{bw}$) and skeletal phosphate ($\delta^{18}O_p$) at a constant body temperature (~37°C for most mammals) [108,109,197]. Thus the oxygen isotopic composition of mammalian biogenic apatite (i.e., carbonate ($\delta^{18}O_c$) and phosphate ($\delta^{18}O_c$)) is related to that of ingested meteoric water ($\delta^{18}O_w$) [108,109,115,116]. The basic principle of the mammal $\delta^{18}O_p$ - $\delta^{18}O_w$ relation is: ingested meteoric water ($\delta^{18}O_w$) controls the $\delta^{18}O_{bw}$, at least for those animals that obtain most of their body water from drinking water [105,212,218]. $\delta^{18}O_p$ of terrestrial mammals is controlled by: (a) oxygen input fluxes: atmospheric O₂, liquid drinking water, oxygen bound in food (plant and animal tissue), and metabolic water [105,106,212,219], and (b) oxygen output fluxes: exhaled water vapour, sweat and urine [109] (see Figure 1). While the δ^{18} O of atmospheric oxygen is rather constant ($\delta^{18}O = 23.5\%$) [220], ingestion of drinking water, food, and food water are the main sources controlling the body water $\delta^{18}O_{bw}$ [108].

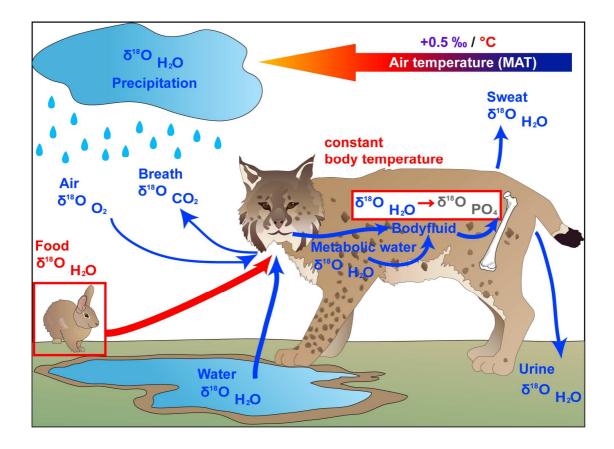


Figure 1. Main oxygen fluxes controlling the oxygen isotope composition of felid body water ($\delta^{18}O_{bw}$). The ${}^{18}O/{}^{16}O$ of local environmental water is recorded in the consumer tissues via both diet and drinking water. Homoeothermic vertebrates have a constant body temperature of $37C \pm 2C$. The temperature dependent fractionation of the oxygen isotope composition during mineralization of apatite in skeletal elements (bone, teeth) from body fluids thus remains constant. The $\delta^{18}O_w$ of the ingested water and hence the climate of the region where the animal lived during tissue formation can be inferred.

 $\delta^{18}O_p$ of terrestrial mammals reflects a rather complex mixture of (i) climate, (ii) diet, (iii) animal behaviour and (iv) physiology [108,114,116,219,221-226]. Climatic factors causing variations in the $\delta^{18}O_w$ values of meteoric water are differences in the amount of precipitation, relative humidity, evaporation, distance to the sea, altitude, latitude and temperature [88,227-229]. The effect of diet on $\delta^{18}O_p$ values is particularly well documented for wild herbivores, whose $\delta^{18}O_p$ values are affected by the type of plant consumed, i.e. C₄ versus C₃ plants [219,226,230-233]. Behavioural and physiological factors contributing to a species-specific $\delta^{18}O_p$ - $\delta^{18}O_w$ relation include water turnover [105], water conservation mechanisms [218,219,234], metabolic rate [102], body water loss via sweating or panting [212,219] and suckling [223,235].

During the past three decades $\delta^{18}O_p - \delta^{18}O_w$ relations have been determined empirically for several modern terrestrial mammal species (Table S1).

Diet type: <u>H</u> erbivore/ <u>O</u> mnivore/ <u>C</u> arnivore	Sample material (<u>T</u> eeth, <u>B</u> one, <u>U</u> rinary stones)	Species	Regression equations	R²	Reference	Drinking water value (Tap or precip water)
Ο	В	Human	y = 1.53 x -34.30*	0.97	[108]	precip
Ο	В	Human	y = 1.19 x -27.42*	0.95	[116]	precip
Ο	т	Human	y = 1.93 x -38.51*	0.92	[123]	precip
Ο	U	Human	y =1.84 - 41.39*	0.75	[123]	precip
Ο	т	Human	y = 1.73 x -37.25*	0.87	[203]	tap
0	T + B	Human	y = 1.54 x - 33.72*	0.87	[203]	precip + tap
0	В	Pig	y = 0.86x + 22.71	0.98	[108]	precip
0	T + B	Foxes	y = 1.34x + 25.49	0.98	[214]	precip
0	В	Rats	y = 0.45x + 17.86	0.99	[109]	tap
0	В	Wood & yellow- necked mouse	y = 0.79x + 21.61	0.98	[197]	precip
Н	В	White-tailed deer	y = 0.53x + 21.5	0.81	[115]	precip
н	В	Red deer	y = 1.13x + 25.55	0.99	[197]	precip
Н	В	Cattle	y = 1.01x + 24.90	0.99	[197]	precip
н	В	Sheep	y = 1.48x + 27.21	0.96	[197]	precip
н	T + B	Asiatic & African elephant	y = 1.06x + 24.30	0.86	[236]	precip
Н	T + B	Equidae	y = 0.72x + 22.29	0.9	[121]	precip
н	T + B	Equidae	y = 0.73x + 22.04	0.94	[237]	precip
Н	т	Equidae	y = 0.69x + 22.90	0.69	[223]	precip
Н	T + B	Equidae	y = 0.71x + 22.60	0.77	[121]	precip
Н	В	Goat and moufflon	y = 0.91x + 24.39	0.99	[121]	precip
н	В	Goat, moufflon, roe-bucks	y = 0.88x + 24.10	0.98	[121]	precip
н	T + B	Reindeer	y = 0.39x + 15.96	0.79	[214]	precip
Н	Т	Bison	y = 0.70x + 21.23	0.83	[209]	precip
н	В	Kangaroo	Correlation of $\delta^{18}O_p$ with rel. humidity		[114]	precip
н	В	Rabbit	y = 0.47x + 22.73	0.23	[121]	precip
Ο	т	Arvicolinae	y = 0.617x + 21.356	0.86	[238]	precip

Table S1. Oxygen isotope equations calibrated on skeletal phosphate of different terrestrial mammal species.

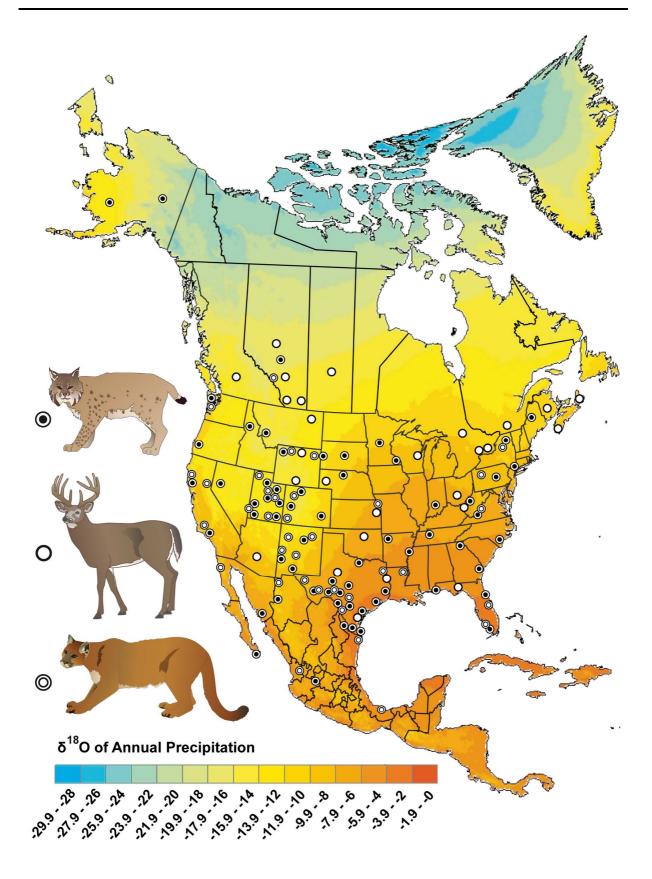
*X-Axis= $\delta^{18}O_{\text{p}},$ Y-Axis = $\delta^{18}O_{\text{w}}$ and otherwise vice versa

For all mammals the oxygen isotope fractionation between $\delta^{18}O_w$ and $\delta^{18}O_p$ follows linear regressions, however, the slope and intercept show inter-specific variability. A general trend was identified for $\delta^{18}O_p - \delta^{18}O_w$ relations, i.e. large mammals with low metabolisms being obligate drinkers do track $\delta^{18}O_w$ values of meteoric waters more closely [105,108,116]. However, deviations from a constant oxygen fractionation between $\delta^{18}O_p$ and $\delta^{18}O_w$ have been documented for some species (e.g. Australian macropods [114] and rabbits [121]) and are primarily related to the rate of drinking and metabolism [109]. The previously-published fractionation equations for mammals focused primarily on herbivores and omnivores. So far $\delta^{18}O_p - \delta^{18}O_w$ calibrations have only been attempted for two carnivores, bear [213] and fox [214], which, however, do not represent strict carnivores but rather exhibit an omnivorous lifestyle [239]. While a good $\delta^{18}O_p - \delta^{18}O_w$ regression was obtained for foxes [214], the study for bears was not successful [213]. The latter was related to the fact that investigated zoo animals might have had a different physiology than wild animals.

Free-ranging carnivores, however, differ significantly in their nutritional, physiological and metabolic characteristics from herbivores and omnivores [131,132]. The house cat, Felis catus, is one of the best investigated mammalian carnivores [131]. Felids are strict carnivores that obtain much of their body water from the consumption of prey. On average only 1% of their total water input originates from drinking water [131,148]. Food water and drinking water in free-ranging cats are hence primarily ingested from the same source - the prey. In addition to a low rate of drinking, felids are known to have higher body temperatures and basal metabolic rates by general mammalian standards [180]. Thus it is not clear whether carnivore phosphate tracks the spatially predictable meteoric water compositions despite their low drinking intake and high metabolic rate. The few published carbonate oxygen isotope data ($\delta^{18}O_{CO3}$) for carnivores yield ambiguous results regarding the importance of climate versus physiology and diet. For instance, Sponheimer and Lee-Thorp [226] report carnivore $\delta^{18}O_{CO3}$ values similar to their consumed herbivore prey, while others demonstrate very low carnivore $\delta^{18}O_{CO3}$ values due to an ¹⁸O-depleted protein- and lipid-rich meat diet [240]. In contrast, Feranec et al. [205] showed enriched carnivore $\delta^{18}O_{CO3}$ values, caused by the consumption of prey whose $\delta^{18}O_{bw}$ was affected by evaporative ¹⁸Oenrichment. However, Kohn [212] hypothesized, that "the importance of relative humidity becomes progressively diminished with increasing trophic level", and consequently "carnivore bone phosphate should track the meteoric water signal more closely than do herbivores". Therefore the concept of geographic source determination based on oxygen isotopes of carnivore bone phosphate as a potential investigative tool in wildlife forensics and palaeontology needs to be tested on extant species.

Modern felids are a suitable group to test the strength of oxygen isotope fingerprinting for geographic provenancing of living and extinct carnivores. Felids evolved about 35 Ma ago

56


[241] and are now distributed over all continents except Antarctica, thus covering almost all environmental gradients [11,242]. Although the available fossil record of felids is sparse compared to other carnivoran families such as dogs (Canidae) and bears (Ursidae), the Felidae are the only representatives of strict carnivory within the order Carnivora. North American puma and bobcat are particularly appropriate for isotopic investigations due to the availability of provenanced skeletons from museum collections, high-resolution precipitation δ^{18} O isoscapes for North America and ecological differences between these two taxa (e.g. body size, home-range size, habitat use, geographic distribution and prey preferences).

Our study was designed to determine, if bone phosphate $\delta^{18}O_p$ values of puma and bobcat vary predictably among isotopically distinct geographic locations and reflected the spatial pattern of $\delta^{18}O_w$ variation in precipitation. We report the first large-scale survey of $\delta^{18}O_p$ data of bone phosphate samples of two feline carnivores, bobcat (*Lynx rufus*) and puma (*Puma concolor*) from across North America. Furthermore, we examined potential effects of species, sex, and relative humidity on the $\delta^{18}O_w$ - $\delta^{18}O_p$ correlation, and whether these could be explained by differences in diet, behaviour, physiology and foraging ecology. The controlling factors and possibilities to quantify these will be discussed.

4.2. MATERIALS AND METHODS

4.2.1. Study species and sampling

A total of 107 bone samples, representing the North American felid species bobcat (*Lynx rufus*; n = 63) and puma (*Puma concolor*; n = 43) were sampled at the Smithsonian National Museum of Natural History in Washington, D.C., the Utah Museum of Natural History in Salt Lake City, Utah and the Laboratory of Genomic Diversity in Frederick, Maryland. Powder samples from defined areas of the lower jaw bone were drilled using a hand-held Proxxon-Minidrill to yield ~60mg of bone powder. For each felid sample, geographic location, sex, and elevation were recorded (Appendix 1). The specimens originate from 107 sites across the United States, Canada and Mexico (Figure 2). Sample locations range in latitude from 25.8 to 64.8°N and longitude from 162.3 to 74.5°W and hence cover strong environmental gradients of altitude (1 to 2500m) and meteoric water oxygen isotope composition ($\delta^{18}O_w = -21.3\%_0$ to $-1.4\%_0$). Published bone-phosphate oxygen isotope data ($\delta^{18}O_p$) from other placental mammals (compiled in [243]), another carnivore, the fox [214] and major prey species like white tailed deer (*Odocoileus virginianus*; [115]) and eastern cottontail rabbit (*Sylvilagus floridanus* [121]) of puma and bobcat, respectively, were included for comparison.

Figure 2. Map of sampling sites. Sample locations for both felines bobcat (n = 63) and puma (n = 43) as well as the preferred prey species of pumas, the white-tailed deer (n = 46, [115]), plotted on the δ^{18} O precipitation map of North America [87].

4.2.2. Sample preparation and oxygen isotope analysis of bone phosphate ($\delta^{18}O_p$)

Sample preparation was conducted in the chemical laboratory of the Geochemistry department at the Steinmann-Institute, University of Bonn. We followed the protocol for bioapatite preparation of Clementz et al. [244]. 20mg of the powdered samples were chemically pre-treated with 30% H_2O_2 to oxidize organic matter, followed by a treatment with 1M calcium acetate/acetic acid buffer solution at 4°C to remove carbonate contaminants. Finally, the samples were rinsed five times in double distilled water and dried at 60°C. 5 mg of the pre-treated sample powder was dissolved in 2 M HF overnight and the HF solution was transferred to a new vessel, neutralized with 25% NH₄OH, and the PO₄³⁻ in solution was rapidly precipitated as Ag₃PO₄ by adding 2M AgNO₃ according to the method described in Tütken et al. [245].

The phosphate oxygen isotope composition ($\delta^{18}O_p$) of the thoroughly rinsed silver phosphate of each sample was analyzed in triplicate (~500 µg aliquots) using a Finnigan TC-EA at 1450 °C connected via a Finnigan Conflow III to a Thermo Finnigan Delta Plus XL CF-IRMS at the University of Tübingen. Oxygen isotope compositions are expressed in per mil (‰) in the δ notation relative to the Vienna Standard Mean Ocean Water (V-SMOW). The external analytical precision of $\delta^{18}O_P$ values for a synthetic hydroxyl apatite (HAP) from Merck used as internal standard was better than ±0.3‰. The international NBS 120c standard yielded $\delta^{18}O_P$ value of 21.8±0.6‰ (n = 3).

4.2.3. Estimation of $\delta^{18}O_w$ of ingested water

Most wild mammals get their drinking water primarily from running (streams) and standing (lakes) water sources. The primary source of isotopic variability in surface, ground, and soil waters is variation in the $\delta^{18}O_w$ values of precipitation supplying these reservoirs. For each sample location we used the unweigthed mean annual precipitation values ($\delta^{18}O_w$) based on climatic records from nearby IAEA–WMO meteorological stations [137]. We assume that $\delta^{18}O_w$ represents most likely the isotopic composition of the water ingested by the preferred prey species and hence their predators (bobcat and puma) sampled here.

4.2.4. Data analysis

First, we analysed the oxygen isotopic variation of puma and bobcat bone phosphate ($\delta^{18}O_p$) among locations and their correlation with the pattern of oxygen isotopic variation in precipitation ($\delta^{18}O_w$). Linear regression models were used to determine the relation between $\delta^{18}O_w$ and $\delta^{18}O_p$ for bobcat and puma, their respective prey species, rabbit and white-tailed deer, a canid carnivore (fox) and other placental mammals (see Appendix 2 and Figures 3, 4, 5, 6). The effects of species, sex and relative humidity on the $\delta^{18}O_p$ - $\delta^{18}O_w$ correlation were examined using a General Linear Model (GLM) (see Appendix 2, Figures 3 - 7). We tested

whether the $\delta^{18}O_p - \delta^{18}O_w$ fractionation equation of felids statistically differs from other terrestrial mammals. We thus compared the feline carnivore regression line with those from their respective major prey species (deer and rabbit), a canid carnivore (fox) and a group of placental mammals using a single classification Analysis of Covariance (ANCOVA: Tukey test; [246]) (see Appendix 3). Additionally, $\delta^{18}O$ values of bone phosphate ($\delta^{18}O_p$) and hair ($\delta^{18}O_h$) from the same individuals were compared for thirty bobcat specimens. We thus tested, if $\delta^{18}O$ of multiple-both tissue types are correlated within individuals and if $\delta^{18}O_p$ and $\delta^{18}O_h$ of these specimens display similar correlations with $\delta^{18}O_w$ (Figures 8 and 9, Appendix 4). The $\delta^{18}O_h$ data were taken from a previous study [247]. Statistical tests were conducted using XLSTAT (V 7.5.2).

4.3. RESULTS

4.3.1. Variation and range of $\delta^{18}O_p$ and $\delta^{18}O_w$

The oxygen isotope composition of the phosphate fraction ($\delta^{18}O_p$) from feline carnivore bones ranged from 11.5 to 21.7‰ in puma and 9.1 to 21.9‰ in bobcat (Figures 4 and 5). These ranges were smaller than that of the corresponding average $\delta^{18}O_w$ values (–21.3 to – 1.4‰ after [137]) estimated for the unweighted mean annual precipitation of the animal's lifetime habitat.

4.3.2. Effect of species on $\delta^{18}O_p$

The $\delta^{18}O_p - \delta^{18}O_w$ relation is known to be species-specific (e.g. [105,212]) and we thus compared $\delta^{18}O_p$ values of puma and bobcat with those of their prey species, canid carnivores and other placental mammals.

4.3.2.1. Among species within feline carnivores

Feline carnivore bone $\delta^{18}O_p$ values exhibited a moderate linear relationship between $\delta^{18}O_p$ and $\delta^{18}O_w$ following the equation:

Feline carnivores: $\delta^{18}O_p = 0.40(\pm 0.04) \ \delta^{18}O_w + 20.10(\pm 0.40) \ (R^2 = 0.46).$

The puma showed a slightly weaker $\delta^{18}O_p - \delta^{18}O_w$ relation than the bobcat (Appendix 2, Figures 4 and 5) indicated by the following equations:

Bobcat:
$$\delta^{18}O_p = 0.41(\pm 0.05) \delta^{18}O_w + 20.15(\pm 0.49) (R^2 = 0.50),$$

Puma: $\delta^{18}O_p = 0.38(\pm 0.07) \ \delta^{18}O_w + 20.00(\pm 0.67) \ (R^2 = 0.39).$

However, the bobcat and puma $\delta^{18}O_p - \delta^{18}O_w$ regressions are statistically identical (ANCOVA Tukey test: p = 0.722) (Appendix 3).

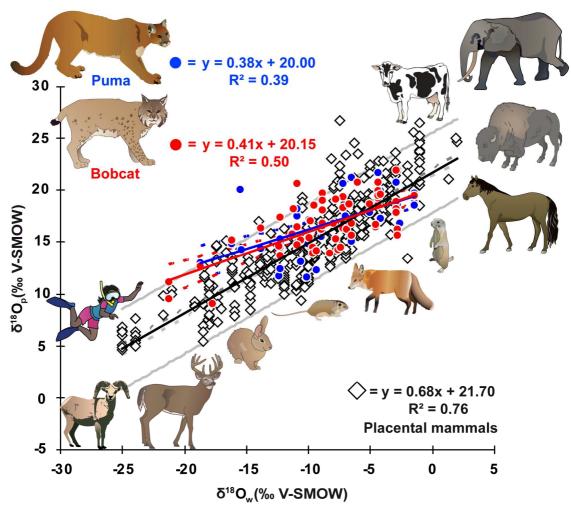


Figure 3. Oxygen isotope values of mammalian bone phosphate relative to meteoric water. Plot of bone phosphate ($\delta^{18}O_p$) from felids in comparison to published data from other placental mammals (Table S1, [243]) versus mean annual $\delta^{18}O$ of precipitation water ($\delta^{18}O_w$).

4.3.2.2. Between feline carnivores, fox and other placental mammals

The $\delta^{18}O_p - \delta^{18}O_w$ relation of feline carnivores differed in their R² and slope from other placental mammals and canid carnivores (i.e. foxes).

Placental mammals: $\delta^{18}O_p = 0.68(\pm 0.02) \delta^{18}O_w + 21.70(\pm 0.17) (R^2 = 0.76)$,

Fox:
$$\delta^{18}O_p = 1.38(\pm 0.03) \delta^{18}O_w + 25.85(\pm 0.17) (R^2 = 0.98).$$

The R² of 0.46 and slope of 0.4 for both feline carnivores was lower than those usually measured for other placental mammals and canid carnivores, which are typically higher (placental mammals: R² = 0.76, slope = 0.68; foxes: R² = 0.98, slope = 1.38) (Figures 3 and 6). Accordingly the feline carnivore $\delta^{18}O_p - \delta^{18}O_w$ relation was statistically different compared to the global placental mammals (Tukey test: p = 0.001) and the fox relationship (Tukey test: p = 0.050) (Appendix 3).

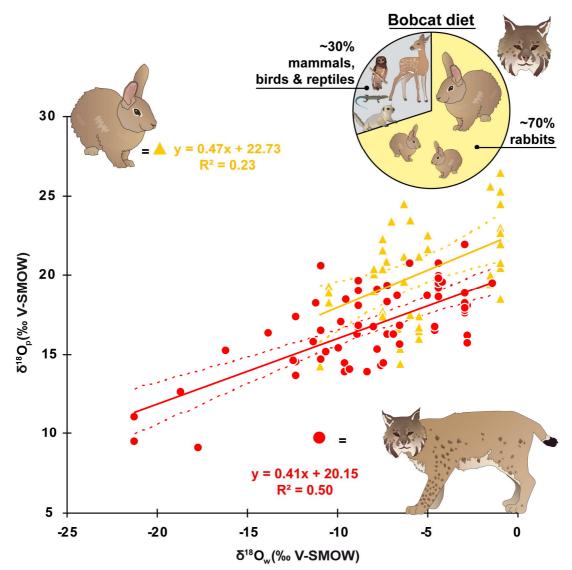


Figure 4. Oxygen isotope values of bobcat and rabbit bone phosphate relative to meteoric water. Plot of bone phosphate $(\delta^{18}O_p)$ from bobcat and rabbits [121] vs. mean annual $\delta^{18}O$ of precipitation water $(\delta^{18}O_w)$. The pie chart illustrates the typical prey spectrum of bobcats in North America (according to [147]).

4.3.2.3. Between feline carnivores and their respective prey species

The major prey species of bobcat and puma, the eastern cottontail rabbit and white-tailed deer, respectively, showed quite different $\delta^{18}O_p - \delta^{18}O_w$ relationships, with the rabbit having a weak (R² = 0.23, p = 0.001, n = 41) and the deer having a strong positive relation (R² = 0.71, p < 0.0001, n = 41) (Figures 4 and 5). The key prey species yielded the following equations:

White tailed deer:
$$\delta^{18}O_p = 0.54(\pm 0.05) \delta^{18}O_w + 21.70(\pm 0.63) (R^2 = 0.70)$$
,

Rabbits:
$$\delta^{18}O_p = 0.47(\pm 0.14) \delta^{18}O_w + 22.73(\pm 0.86) (R^2 = 0.23).$$

The $\delta^{18}O_p - \delta^{18}O_w$ relationship of rabbits was not reflected in the $\delta^{18}O_p$ of its respective predator (Tukey test: bobcat/rabbit, p < 0.0001).

CHAPTER 4: TRACKING CATS WITH O ISOTOPES IN BONE PHOSPHATE

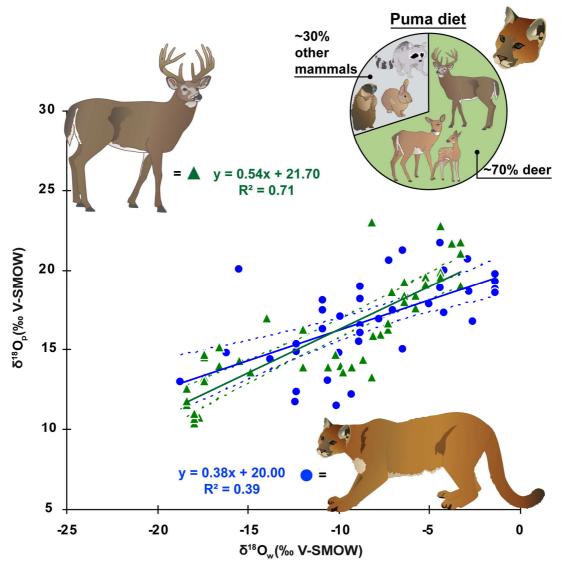


Figure 5. Oxygen isotope values of puma and white-tailed deer bone phosphate relative to meteoric water. Plot of bone phosphate ($\delta^{18}O_p$) from puma and white-tailed deer [115] vs. mean annual $\delta^{18}O$ of precipitation water ($\delta^{18}O_w$). The pie chart illustrates the typical prey spectrum of pumas in North America (according to [248,249]).

A parallel upward shift in the $\delta^{18}O_p - \delta^{18}O_w$ regression line of rabbits versus bobcats could be observed, which indicates on average an ¹⁸O enrichment of ~ +2‰ for rabbits relative to its predator (Figure 4). The puma and deer $\delta^{18}O_p - \delta^{18}O_w$ equations however were statistically indistinguishable (Tukey test: p = 0.629) (Appendix 3, Figure 5).

4.3.3. Effect of sex on $\delta^{18}O_p$

Animal behaviour can vary with sex and is documented to be a major factor influencing the $\delta^{18}O_p - \delta^{18}O_w$ relationship of mammals (e.g. [212,250]). However, no effect of sex on the isotopic relationship between $\delta^{18}O_p - \delta^{18}O_w$ was observed for both carnivore species (ANCOVA, Tukey HSD test: male/female bobcat: p = 0.789, n = 45; male/female puma: p = 0.350, n = 24) (Appendix 3).

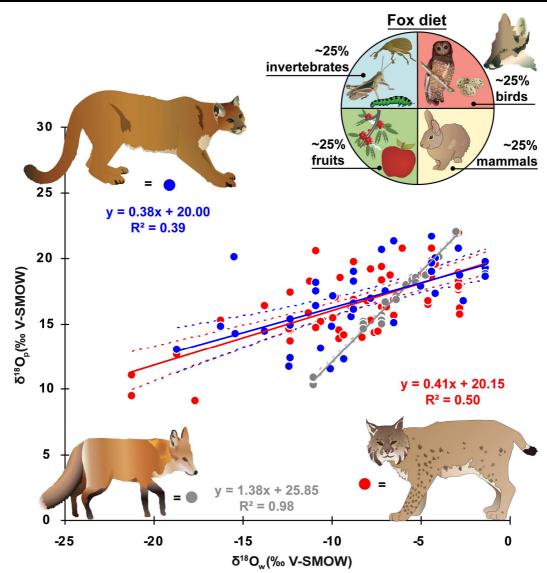
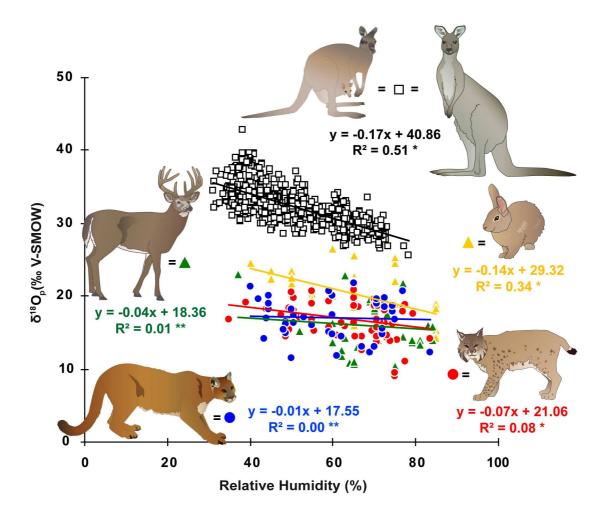
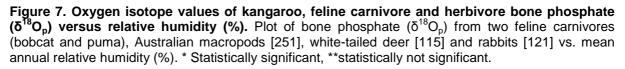


Figure 6. Oxygen isotope values of puma, bobcat and fox bone phosphate relative to meteoric water. Plot of bone phosphate ($\delta^{18}O_p$) from two feline carnivores (bobcat and puma) and a canid carnivore (fox, [214]) vs. mean annual $\delta^{18}O$ of precipitation water ($\delta^{18}O_w$). The pie chart illustrates the typical prey spectrum of omnivorous foxes (*Vulpes vulpes*) in North America (according to [239]).

4.3.4. Effect of relative humidity on $\delta^{18}O_p$


Relative humidity has been documented to control the $\delta^{18}O_p$ values of mammalian herbivore species with low drinking water requirements (e.g. [212]) and could thus also affect their predators. The $\delta^{18}O_p$ - $\delta^{18}O_w$ regression of both predators and prey was in fact improved by including relative humidity (h) in the regression:


Bobcat:
$$\delta^{18}O_p = 26.75(\pm 1.29) + 0.45(\pm 0.04) * \delta^{18}O_w - 0.10(\pm 0.02) * h (R^2 = 0.664),$$

Puma: $\delta^{18}O_p = 25.78(\pm 2.00) + 0.47(\pm 0.07) * \delta^{18}O_w - 0.08(\pm 0.03) * h (R^2 = 0.507),$
Rabbit: $\delta^{18}O_p = 30.65(\pm 1.88) + 0.41(\pm 0.11) * \delta^{18}O_w - 0.13(\pm 0.03) * h (R^2 = 0.502),$

-19-

Deer: $\delta^{18}O_p = 34.83(\pm 1.48) + 0.67(\pm 0.03) * \delta^{18}O_w - 0.17(\pm 0.02) * h (R^2 = 0.909).$

Compared to other humidity-dependent herbivore species like Australian macropods [251], relative humidity did show a moderate but significant effect on $\delta^{18}O_p$ of rabbits (R² = 0.34, p < 0.0001, n = 41) and a weak effect on $\delta^{18}O_p$ of bobcats (R² = 0.08, p = 0.026, n = 63). There was no significant effect of relative humidity observed for puma (R² = 0.002, p = 0.786, n = 43) and deer (R² = 0.01, p = 0.546, n = 44) (Figure 7, Appendix 2).

4.3.5. Intra-individual comparison of tissue δ^{18} O

Different tissue types within individual specimens were demonstrated to exhibit similar $\delta^{18}O_{tissue}$ - $\delta^{18}O_w$ relations [252]. We thus compared $\delta^{18}O$ values of hair keratin and bone phosphate of the same individuals from thirty bobcat specimens. The $\delta^{18}O_p$ values revealed a much better relation with $\delta^{18}O_w$, than $\delta^{18}O_h$ from the same bobcat individuals (Bone phosphate: R² = 0.46, p < 0.0001, n = 30; hair: R² = 0.00, p = 0.830, n = 30) (Figure 8, Appendix 4). There is no significant correlation between $\delta^{18}O_p$ and $\delta^{18}O_h$ of the same bobcat individuals ($\delta^{18}O_p - \delta^{18}O_h$: R² = 0.057, p = 0.203, n = 30) (Figure 9, Appendix 4).

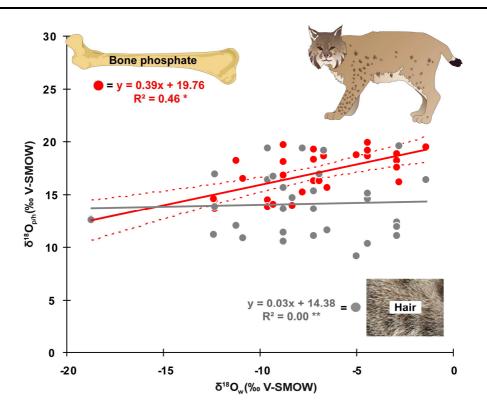


Figure 8. Oxygen isotope values of bobcat bone phosphate and hair relative to meteoric water. Plot of bone phosphate ($\delta^{18}O_p$) and hair ($\delta^{18}O_h$) [247] from single bobcat specimens vs. mean annual $\delta^{18}O$ of precipitation water ($\delta^{18}O_w$). * Statistically significant, ** statistically not significant.

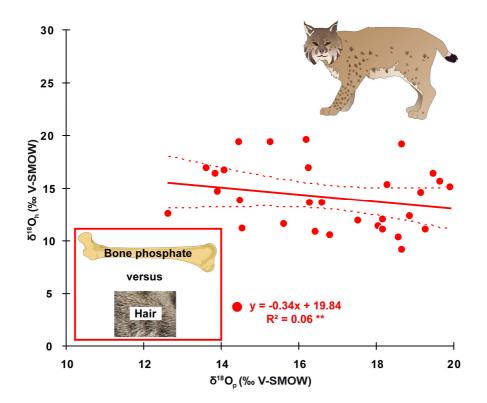


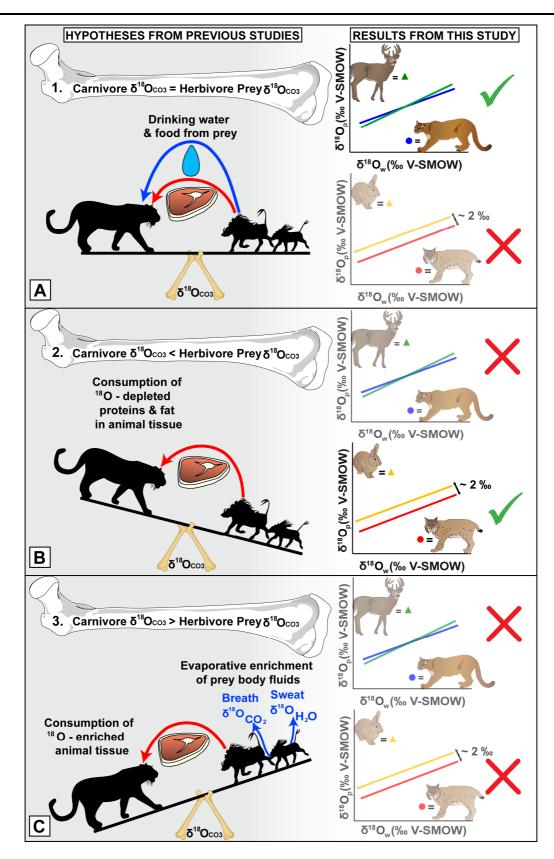
Figure 9. Oxygen isotope values in hair relative to bone phosphate of bobcat. Plot of bone phosphate ($\delta^{18}O_p$) vs. hair ($\delta^{18}O_h$) [247] from single bobcat specimens. ** Statistically not significant.

4.4. DISCUSSION

Our results demonstrate that bobcat and puma exhibit only a moderate linear relationship between $\delta^{18}O_w$ and $\delta^{18}O_p$. Moreover, this relation also differs statistically from their respective prey species, other placental mammals and other carnivores (Figures 3, 4, 5, 6). Compared to most previously published studies on $\delta^{18}O$ of biogenic apatite of omnivores and herbivores, feline carnivores have a weaker and statistically different $\delta^{18}O_p - \delta^{18}O_w$ relationship. Provenance determination of modern feline carnivores, such as puma and bobcat, solely based on $\delta^{18}O_p$ is thus far from precise. Potential explanations causing the deviations from a strong relation between $\delta^{18}O_p$ and $\delta^{18}O_w$ in feline carnivores are discussed below and include climate, diet, animal behaviour as well as physiology and metabolism.

4.4.1. How do climatic factors affect carnivore $\delta^{18}O_{p}$?

One possibility to explain the significantly weaker feline carnivore $\delta^{18}O_{p}$ - $\delta^{18}O_{w}$ correlation compared to other mammals, is that relative humidity affects their $\delta^{18}O_n$. So far it has only been documented that relative humidity controls the $\delta^{18}O_{p}$ values of mammalian herbivore species with low drinking water requirements (e.g. [212,219]). For example, $\delta^{18}O_{n}$ values of Australian macropods [114], rabbits and hares [121] have been shown to correlate strongly with changes in relative humidity independent of $\delta^{18}O_w$ (Figure 7), whereas the $\delta^{18}O_p$ of North American deer [115] were reported to be primarily influenced by $\delta^{18}O_w$ and only slightly by relative humidity. Low humidity increases the rate of evaporation of surface water and evapotranspiration of leaf- and grass-water and thus leads to oxygen isotopic enrichment effects in plants [143,253,254]. Drought-tolerant animals who obtain most of their water from plants thus reflect levels of environmental humidity and their $\delta^{18}O_{0}$ increases with decreasing relative humidity. However, Kohn [212] hypothesized that "the importance of relative humidity becomes progressively diminished with increasing trophic level". Our data support Kohn's hypothesis that predators are less controlled by relative humidity than herbivores. However, their $\delta^{18}O_{p}$ - $\delta^{18}O_{w}$ correlations were slightly improved by including relative humidity in the regression (Appendix 2). Puma and its respective prey, the white-tailed deer are both unaffected by relative humidity (puma: $R^2 = 0.002$, p = 0.786; deer: $R^2 = 0.01$, p = 0.546; Figure 7). In contrast, bobcat $\delta^{18}O_{n}$ compositions are weakly affected by humidity (bobcat: R^{2} = 0.08, p = 0.026; Figure 7), most likely because they prey upon rabbits whose $\delta^{18}O_{p}$ values in turn are humidity dependent ($R^2 = 0.34$, p < 0.0001; Figure 7).


Furthermore, Kohn [212] concludes that carnivore $\delta^{18}O_p$ "should track the meteoric water signal more closely than do herbivores", due to a reduced humidity effect on their $\delta^{18}O_{bw}$. In this case our results, however, do not confirm the hypothesis. The R² of 0.46 for both feline carnivores (p < 0.0001, Figure 3) was lower than those usually determined for placental mammals, which are typically higher (R² = 0.73, p < 0.0001, Figure 3). The feline carnivore

 $\delta^{18}O_p - \delta^{18}O_w$ relation was also statistically different compared to the global placental mammals (Tukey test: p < 0.0001; Appendix 3). The simplest interpretation is that factors other than relative humidity are responsible for a weaker relation between $\delta^{18}O_p$ and $\delta^{18}O_w$ in feline carnivores.

4.4.2. Does diet have a significant impact on carnivore $\delta^{18}O_p$?

The oxygen isotope compositions of food macronutrients (protein, fat and carbohydrate), food water as well as metabolic water from catabolism of nutrients, influence $\delta^{18}O_{bw}$ and hence $\delta^{18}O_p$ values of herbivores and carnivores (e.g. [212,219]). The $\delta^{18}O_p$ values of herbivores are also affected by the type of plant consumed. The δ^{18} O values of plants using the C₄ photosynthetic pathway can be higher than those of C₃ plants (up to 10% $\delta^{18}O_{C4-C3}$ difference, [255]), because they are adapted to arid conditions, which leads to extreme ¹⁸O enrichment effects in their leaf water and plant cellulose [256]. Differences in $\delta^{18}O_{p}$ between grazers (C_4 -feeders) and browsers (C_3 -feeders) have been assigned to a difference in the leaf water δ^{18} O of the ingested C₃ and C₄ plants [219,226,231,233]. The key prey species of bobcat and puma, rabbits and white-tailed deer, respectively, differ in their dietary preferences and hence their $\delta^{18}O_{p} - \delta^{18}O_{w}$ relations. While white-tailed deer are considered to be browsers [257], whose $\delta^{18}O_p$ compositions are almost unaffected by relative humidity [115] (Appendix 2, Figure 7); cottontail rabbits are referred to as grazers [258], whose $\delta^{18}O_n$ compositions are humidity-dependent [121] (Appendix 2, Figure 7). Based on the various prev preferences of bobcat and puma, we would have expected species-specific differences reflected in their $\delta^{18}O_p$ values. However, both feline carnivores exhibited a statistically indistinguishable linear relationship of $\delta^{18}O_p$ and $\delta^{18}O_w$ (Figure 6, Appendix 3), with the puma showing a slightly weaker $\delta^{18}O_p - \delta^{18}O_w$ relation (R² = 0.39, p < 0.0001; Figure 5) than the bobcat ($R^2 = 0.50$, p < 0.0001; Figure 4).

A review of the few stable isotope studies on fossil carnivores revealed the existence of three contrary hypotheses concerning the impact of diet on carnivore $\delta^{18}O_p$ values (Figure 10): First, carnivores have $\delta^{18}O_p$ values similar to those of their consumed herbivore prey [226]. This explanation seems plausible especially for felids, which are strict carnivores that obtain much of their body water from the consumption of prey [131]. The $\delta^{18}O_p$ data from puma and deer of our study confirm this hypothesis, as their $\delta^{18}O_p - \delta^{18}O_w$ relationship was statistically identical (Tukey test: p = 0.629; Appendix 3, Figures 5 and 10A). However this does not apply to bobcats, whose $\delta^{18}O_p - \delta^{18}O_w$ relationship was statistically different from rabbits (Appendix 3, Figures 4 and 10A).

Figure 10. Oxygen isotope model of herbivores and carnivores. A model of oxygen isotopes in skeletal apatite of herbivorous prey versus carnivorous predators. Three contrary hypotheses concerning the impact of diet on carnivore $\delta^{18}O_{CO3}$ values are schematically illustrated and compared with the results obtained for $\delta^{18}O_p$ in our study (on the right). The capital letters illustrate the three published hypotheses: A: Carnivore $\delta^{18}O_{CO3}$ = Herbivore $\delta^{18}O_{CO3}$ [226]; B: Carnivore $\delta^{18}O_{CO3}$
Herbivore $\delta^{18}O_{CO3}$ [240,259]; C: Carnivore $\delta^{18}O_{CO3}$ > Herbivore $\delta^{18}O_{CO3}$ [205].

Second, carnivores have significantly lower $\delta^{18}O_p$ values in comparison to both browsing and grazing herbivores [240,259]. Carnivores consume animal tissues containing high proportions of protein and fat in contrast to herbivores, whose plant-dominated diet consists mainly of carbohydrates. Proteins are depleted in ¹⁸O compared to carbohydrates [143,255,256,260], thus carnivores should have lower $\delta^{18}O_p$ values than herbivores [240]. This can be observed for bobcats having about 2‰ lower $\delta^{18}O_p$ values than rabbits but not for pumas and deer, which both have similar $\delta^{18}O_p$ (Figures 4, 5, 10B).

Third, carnivores are enriched over their herbivorous prey [205]. Isotope fractionation from drinking water to body water occurs [112,119,154] and may play an important role in ¹⁸O enrichment of carnivore $\delta^{18}O_p$. Feline carnivores consume prey species, whose $\delta^{18}O_{bw}$ are expected to be higher than the local $\delta^{18}O_w$. This isotopic enrichment of prey body fluids (i.e., milk, urine, blood, plasma, etc.) in ¹⁸O can be explained by evaporative enrichment from insensible water loss through skin and breath vapour loss [105,111,197,212]. Consequently, carnivores mainly consuming ¹⁸O-enriched prey should have higher $\delta^{18}O_{bw}$ (and hence $\delta^{18}O_p$) values compared to those of their prey. A similar process has been documented in humans for the consumption of milk and the resulting ¹⁸O enrichment in consumer tissues [204,235,261]. However, our data do not support the hypothesis of ¹⁸O enrichment in carnivores relative to their prey (Figures 4, 5, 10C).

Based on this information it seems likely that animals with different diets (i.e. herbivores, omnivores and carnivores) track $\delta^{18}O_w$ values of meteoric water differently. This becomes particularly clear, if we compare feline with canid carnivores, like foxes. Felids and foxes belong both to the same order Carnivora, but from a nutritional perspective canids (i.e. fox) are considered omnivores (Figure 6). Consequently, foxes exhibit a very good linear relationship of $\delta^{18}O_p$ and $\delta^{18}O_w$ (R² = 0.98, p < 0.0001; Figure 6) and thus differ statistically from feline carnivores (Tukey test: p = 0.050; Appendix 3). Dietary effects on $\delta^{18}O_0$ are therefore assumed to be of particular importance in feline carnivores, as they predominantly obtain their food water and drinking water from their prey. Significant seasonal variations in carnivore isotope compositions can be expected, if their dietary patterns change throughout the year [212]. Although North American bobcats and pumas are generally specialized on one major prey (i.e. rabbits: [147] and white-tailed deer: [146], respectively), they are capable to catch and eat many different kinds of animals, if their key prey is limited in certain areas or seasons (puma: [248,249]; bobcat: [147]) (Figures 4 and 5). A carnivore prey spectrum that varies irregularly in space and time during bone mineralisation and isotopic incorporation, might thus contribute to the rather moderate $\delta^{18}O_p - \delta^{18}O_w$ relation of feline carnivores (R² = 0.46, p < 0.0001) compared to the good all mammal correlation ($R^2 = 0.76$, p < 0.0001; Figure 3). Currently we lack a testable explanation, why the observed $\delta^{18}O_n$ values of predator and prey differ in bobcat and puma (Figure 10 A, B). Considering the different prey

spectra of these felids, we hypothesized that the puma is more a specialist predator (i.e. large mammals, Figure 5), whereas the bobcat is rather a generalist predator (i.e. birds, reptiles, small mammals, Figure 4). This might explain why puma and white-tailed deer have similar $\delta^{18}O_p$ values in contrast to bobcats and rabbits (Figure 10). Nonetheless, we assume that diet explains only a part of the deviation from an all mammal oxygen isotope $\delta^{18}O_p - \delta^{18}O_w$ relation.

4.4.3. How does behaviour affect carnivore $\delta^{18}O_p$?

Behavioural mechanisms like migration were demonstrated to also influence the oxygen isotope composition of biogenic apatite from fish and mammals [113,262,263] as well as humans [208,211,261,264]. Migration between isotopically distinct biomes during bone or tooth formation can affect the correlation between $\delta^{18}O_p$ and $\delta^{18}O_w$.

Such effects would not be unexpected given the known species- or sex-specific behavioural differences characterizing our study species. Puma and bobcat, and their respective prey species, have significantly different home range sizes, which are also known to vary between seasons and sex [11,149,257,258]. Our data are in accordance with the hypothesis that migratory behaviour might affect feline carnivore $\delta^{18}O_p$. It is a well-known phenomenon that changes in staple prey activity and distribution [265,266] may influence puma migratory behaviour both spatially and temporally [267]. This might explain why migratory puma display a weaker $\delta^{18}O_p - \delta^{18}O_w$ relation (R² = 0.39, p < 0.0001, Figure 5) than non-migratory bobcat (R² = 0.50, p < 0.0001, Figure 4). However, although carnivores exhibit typical mammalian dispersal behaviour, where males disperse and females are philopatric [150], we did not observe an effect of sex on the $\delta^{18}O_p - \delta^{18}O_w$ relation for both carnivore species (Appendix 2). Given that even bobcat display a much weaker $\delta^{18}O_p - \delta^{18}O_w$ relation than most other mammals, although they (and their key prey) are non-migratory, leads us to the assumption, that additional factors like physiology and metabolism might play an important role.

4.4.4. How do physiological and metabolic adaptations influence carnivore $\delta^{18}O_p$?

Physiological factors contributing to a species-specific $\delta^{18}O_w - \delta^{18}O_p$ relation include body water loss via sweating or panting [212,219], water turnover [105], water conservation mechanisms [212,218,219,234] and metabolic rate [102].

Terrestrial mammals usually use a large amount of water for evaporative cooling of their body, which contributes to evaporative water loss and thus affects their $\delta^{18}O_{bw}$ and hence $\delta^{18}O_p$. Differences in the isotope compositions of liquid water during sweating versus water vapor during panting should affect the animal's body water $\delta^{18}O_{bw}$. Cats lose water primarily through panting [181] and only secondarily from sweat glands of foot pads [182]. Panting cats should thus have higher $\delta^{18}O_{bw}$ and $\delta^{18}O_p$ values than animals that sweat because water vapour lost in panting is more depleted in ¹⁸O [107,183].

Moreover, drinking water volume exerts a significant positive physiological control on the oxygen isotopic composition of human body water [103] and presumably also on felid $\delta^{18}O_{bw}$. Felids are strict carnivores that obtain much of their body water from the consumption of prey [131]. Food water and drinking water in free-ranging cats are hence primarily recruited from the same source - the prey. Controlled experiments on domestic cats have shown that felids are not obligate drinkers: on average, only 1% of their total water input originates from drinking water [148]. Reduced water turnover in cats thus appears to be a factor affecting the $\delta^{18}O_p - \delta^{18}O_w$ relation.

In addition, Luz et al. [116] noticed that $\delta^{18}O_p$ values of water-conserving desert animals are not very sensitive to variations in $\delta^{18}O_w$. Cats have developed several water conservation mechanisms which facilitate their survival in extreme environments. For instance, felids are not only known to drink to a limited extent [132,162] but also excrete concentrated urine [176-178]. They have hence developed alternative sources to compensate the drinking water input. Cats have the ability to digest and utilize high levels of dietary fat and protein, and oxidation of these energy-containing substances leads to the production of relatively high levels of metabolic water [131,162,163]. Metabolic water contributes on average 10% to their total water intake [131,162]. However, catabolism of macronutrients and production of metabolic water are both metabolic reactions that potentially alter $\delta^{18}O_{bw}$ which then deviates from $\delta^{18}O_w$ values of the ambient meteoric water [112,118].

Moreover, the animal's basal metabolic rate seems to play a prominent role for a constant fractionation of $\delta^{18}O_p$ and $\delta^{18}O_w$. Large mammals, that are obligate drinkers and tend to have lower metabolisms, are more likely to track $\delta^{18}O_w$ values of drinking waters [105,108,116]. On the contrary, a high basal metabolic rate associated with a low rate of drinking, results in a weak correlation of $\delta^{18}O_p$ with $\delta^{18}O_w$ [102]. Felids are known to have high basal metabolic rates (BMR) by general mammalian standards [180,268]. A recent phylogenetic analysis suggests that BMR is correlated with diet among the order of Carnivora; species that eat meat have larger home ranges and higher mass-adjusted BMRs than herbivorous or omnivorous species [269]. This might explain why other closely related species like foxes, which are characterized by an omnivorous lifestyle [131], display a much better $\delta^{18}O_p - \delta^{18}O_w$ regression (R² = 0.98, p < 0.0001, Figure 6) than strict carnivores like bobcat (R² = 0.50, p < 0.0001, Figure 4) and puma (R² = 0.39, p < 0.0001, Figure 5).

4.4.5. Do different tissue-types display similar $\delta^{18}O_{tissue}$ - $\delta^{18}O_{w}$ relations?

A recent water isotope study on hair of feline carnivores by Pietsch et al. [247] demonstrates that both puma and bobcat completely lacked the expected correlation between water isotopes in local water and hair, and also exhibited a complete decoupling between oxygen and hydrogen isotopes in hair. In this study, we additionally conducted intra-individual tissue

comparisons of δ^{18} O in bobcats and found that $\delta^{18}O_p$ shows a much better relation with $\delta^{18}O_w$ than $\delta^{18}O_h$ (Appendix 4, Figure 8). Moreover, there was no significant correlation between $\delta^{18}O_p$ and $\delta^{18}O_h$ of the same bobcat individuals (Appendix 4, Figure 9). This contrasts with observations made for macaque monkeys by O'Regan et al. [252], who found that hair and bone apatite $\delta^{18}O$ are highly correlated within individuals.

In consideration of these findings, different factors in feline carnivores happen to interfere with the oxygen isotopic routing and incorporation from meteoric water into body water and different body tissues like bone phosphate and hair. Given that mammal bone phosphate precipitates in oxygen isotopic equilibrium with body water [108,116], we assume that factors related to diet, physiology and metabolism alter $\delta^{18}O_{bw}$ and thus lead to an only moderate $\delta^{18}O_p - \delta^{18}O_w$ relation, deviating from those of other placental mammals and canid carnivores (Figure 3). Despite this fact, feline carnivore bone phosphate $\delta^{18}O_p$ still better tracks meteoric water $\delta^{18}O_w$ values than hair (Figure 8). Factors causing the deviations of O and H isotopes from environmental $\delta^{18}O_w$ in feline carnivore hair are most likely attributed to isotopic routing (from food and water) and isotopic incorporation during biosynthesis of hair keratin.

4.5. CONCLUSIONS

Our study on $\delta^{18}O_p$ of North American bobcat and puma bone phosphate yields a relationship with ambient meteoric water of $\delta^{18}O_p = 0.40(\pm 0.04) * \delta^{18}O_w + 20.10(\pm 0.40)$ that is significantly different and less well defined than the $\delta^{18}O_p - \delta^{18}O_w$ relation for placental herbivores and omnivores. This finding leads to the following principal conclusions:

- a. Climatic factors like relative humidity can indirectly affect the $\delta^{18}O_p$ values of feline carnivores via its prey. Carnivores like pumas consuming humidity-independent prey species (i.e. white-tailed deer) are generally little or not affected by relative humidity. However, $\delta^{18}O_p$ values of bobcats, specialized on humidity-dependent prey (i.e. rabbits), are partially controlled by relative humidity.
- b. Dietary effects on $\delta^{18}O_{bw}$ and hence $\delta^{18}O_p$ of feline carnivores are likely because strict carnivory implies specific adaptations of the digestion, physiology and metabolism. Thus a carnivorous diet may at least partly explain why bobcat and puma have a $\delta^{18}O_p \delta^{18}O_w$ relation deviating from that of other omnivorous and herbivorous mammals.
- c. Felidae exhibit several water conservation mechanisms, like low surface water drinking rate (<1%), water supply from the consumption of prey, excretion of concentrated urine, high-level production of metabolic water through the oxidation of a protein and fat rich diet, and panting. In particular, the low drinking rate combined with a high metabolic rate lead to a $\delta^{18}O_p \delta^{18}O_w$ deviation in feline carnivores.

- d. Behavioural factors like migration between isotopically distinct biomes during bone mineralisation may be responsible for the observed small differences of $\delta^{18}O_p \delta^{18}O_w$ relations between non-migrating bobcats and migrating pumas. However, no differences could be detected between sexes.
- e. Physiological and metabolic adaptations of felids probably have the greatest impact on the observed deviation between $\delta^{18}O_p$ and $\delta^{18}O_w$ in feline carnivores.
- f. One major implication of this study is that $\delta^{18}O_p$ of feline carnivores do not trace meteoric water $\delta^{18}O_w$ values better than those of herbivores and omnivores. Thus palaeoclimate reconstructions using oxygen isotope analysis of fossil carnivore skeletal remains and the $\delta^{18}O_p - \delta^{18}O_w$ transfer function of modern feline carnivores are less precise than using herbivores. Furthermore, $\delta^{18}O_p$ fingerprinting has a lower spatial resolution for provenance determination of carnivores than for herbivores.
- g. Controlled feeding experiments in combination with isotopic monitoring of body water (i.e. blood, urine) and different tissue types are now needed to elucidate the mechanisms of oxygen isotopic routing and incorporation in feline carnivores.

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: SJP, TT. Analyzed the data: SJP. Wrote the manuscript: SJP, TT.

ACKNOWLEDGMENTS

We thank Robert Fischer and Suzanne C. Peurach from the mammal collection at the Smithsonian Natural History Museum in Washington D.C., Eric A. Rickart from the Utah Museum of Natural History, and Bryan T. Hamilton from the Great Basin National Park in Nevada for their assistance with the sample collection. We thank Aurélien Bernard for his constructive and helpful comments. We also thank Philipp Herrmann for his assistance with the stable isotope preparation. The animal symbols used for figures are courtesy of the Integration and Application Network (www.ian.umces.edu/symbols), University of Maryland Center for Environmental Science.

5. REFERENCES

- Broad S, Mulliken T, Roe D (2003) The nature and extent of legal and illegal trade in wildlife. The trade in wildlife: regulation for conservation. London: Earthscan Publications Ltd.
- 2. Vince K (2002) Organised gangs target wildlife trade. Available: http://www.newscientist.com/article/dn2413.
- Knapp A, Affre A (2007) A briefing paper on marking techniques used in the control of wildlife in the European Union. Brussels: A TRAFFIC Europe Report for the European Commission. 36 p.
- 4. Shepherd C, Njiman V (2008) The wild cat trade in Myanmar. Selangor, Malaysia: TRAFFIC Southeast Asia.
- 5. Oswell A (2010) The Big Cat Trade in Myanmar and Thailand. Selangor, Malaysia: TRAFFIC Southeast Asia.
- Meyer R, Höfelein C, Lüthy J, Candrian U (1995) Polymerase chain reaction-restriction fragment length polymorphism analysis: a simple method for species identification in food. Journal of AOAC international 78: 1542-1551.
- Schwenke PL, Rhydderch JG, Ford MJ, Marshall AR, Park LK (2006) Forensic identification of endangered Chinook Salmon (Oncorhynchus tshawytscha) using a multilocus SNP assay. Conservation Genetics 7: 983-989.
- Walker JA, Hughes DA, Hedges DJ, Anders BA, Laborde ME, et al. (2004) Quantitative PCR for DNA identification based on genome-specific interspersed repetitive elements. Genomics 83: 518-527.
- 9. Wan QH, Fang SG (2003) Application of species-specific polymerase chain reaction in the forensic identification of tiger species. Forensic science international 131: 75-78.
- Wasser SK, Mailand C, Booth R, Mutayoba B, Kisamo E, et al. (2007) Using DNA to track the origin of the largest ivory seizure since the 1989 trade ban. Proceedings of the National Academy of Sciences 104: 4228.
- Nowell K, Jackson P (1996) Wild cats: status survey and conservation action plan. Gland, Switzerland: International Union for Conservation of Nature and Natural Resources. 383 p.
- 12. Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, et al. (2006) The late Miocene radiation of modern Felidae: a genetic assessment. Science 311: 73-77.
- Baillie JEM, Hilton-Taylor C, Stuart SN (2004) IUCN Red List of Threatened Species. A Global Species Assessment. Gland, Switzerland and Cambridge, UK: IUCN.
- 14. Baker CS, Palumbi SR (1994) Which whales are hunted? A molecular genetic approach to monitoring whaling. Science(Washington) 265: 1538-1539.

- 15. Wetton JH, Tsang CSF, Roney CA, Spriggs AC (2002) An extremely sensitive speciesspecific ARMS PCR test for the presence of tiger bone DNA. Forensic science international 126: 137-144.
- Upadhyay SK, Ali S, Sharma K (2007) Tiger Poaching and Trade in Asia: An Overview. Biodiversity & Environment: 157.
- Dawnay N, Ogden R, McEwing R, Carvalho GR, Thorpe RS (2007) Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic science international 173: 1-6.
- Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
- Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B: Biological Sciences 270: 313-321.
- Eaton MJ, Meyers GL, Kolokotronis SO, Leslie MS, Martin AP, et al. (2010) Barcoding bushmeat: molecular identification of Central African and South American harvested vertebrates. Conservation Genetics 11: 1389-1404.
- 21. Naro Maciel E, Reid B, Fitzsimmons NN, Le M, DeSalle R, et al. (2010) DNA barcodes for globally threatened marine turtles: a registry approach to documenting biodiversity. Molecular Ecology Resources 10: 252-263.
- 22. Wong EHK, Hanner RH (2008) DNA barcoding detects market substitution in North American seafood. Food Research International 41: 828-837.
- 23. Wong EHK, Shivji MS, Hanner RH (2009) Identifying sharks with DNA barcodes: assessing the utility of a nucleotide diagnostic approach. Molecular Ecology Resources 9: 243-256.
- 24. Bensasson D, Zhang DX, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology & Evolution 16: 314-321.
- 25. Song H, Buhay JE, Whiting MF, Crandall KA (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences 105: 13486-13491.
- 26. Antunes A, Ramos MJ (2005) Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes. Genomics 86: 708-717.
- Benesh DP, Hasu T, Suomalainen LR, Valtonen ET, Tiirola M (2006) Reliability of mitochondrial DNA in an acanthocephalan: the problem of pseudogenes. International Journal for Parasitology 36: 247-254.

- 28. Lopez JV, Yuhki N, Masuda R, Modi W, O'Brien SJ (1994) Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. Journal of Molecular Evolution 39: 174-190.
- 29. Sorenson MD, Quinn TW (1998) Numts: a challenge for avian systematics and population biology. The Auk 115: 214-221.
- Williams ST, Knowlton N (2001) Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp genus Alpheus. Molecular Biology and Evolution 18: 1484-1493.
- 31. Zhang DX, Hewitt GM (1996) Nuclear integrations: challenges for mitochondrial DNA markers. Trends in Ecology & Evolution 11: 247-251.
- 32. Thalmann O, Hebler J, Poinar HN, Pääbo S, Vigilant L (2004) Unreliable mtDNA data due to nuclear insertions: a cautionary tale from analysis of humans and other great apes. Molecular Ecology 13: 321-335.
- 33. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101: 14812-14817.
- 34. Collura RV, Stewart CB (1995) Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids. Nature 378: 485-489.
- 35. Zischler H, Geisert H, von Haeseler A, Paabo S (1995) A nuclear 'fossil' of the mitochondrial D-loop and the origin of modern humans. Nature 378: 489-492.
- 36. Thalmann O, Serre D, Hofreiter M, Lukas D, Eriksson J, et al. (2005) Nuclear insertions help and hinder inference of the evolutionary history of gorilla mtDNA. Molecular Ecology 14: 179-188.
- 37. Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genetics 6. Available: http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000834
- 38. Richly E, Leister D (2004) NUMTs in sequenced eukaryotic genomes. Molecular Biology and Evolution 21: 1081-1084.
- 39. Richly E, Leister D (2004) NUPTs in sequenced eukaryotes and their genomic organization in relation to NUMTs. Molecular Biology and Evolution 21: 1972-1982.
- 40. Pereira S, Baker A (2004) Low number of mitochondrial pseudogenes in the chicken (Gallus gallus) nuclear genome: implications for molecular inference of population history and phylogenetics. BMC Evolutionary Biology 4. Available: http://www.biomedcentral.com/1471-2148/4/17.

- 41. Podnar M, Haring E, Pinsker W, Mayer W (2007) Unusual origin of a nuclear pseudogene in the Italian wall lizard: intergenomic and interspecific transfer of a large section of the mitochondrial genome in the genus Podarcis (Lacertidae). Journal of Molecular Evolution 64: 308-320.
- 42. Jensen Seaman MI, Sarmiento EE, Deinard AS, Kidd KK (2004) Nuclear integrations of mitochondrial DNA in gorillas. American journal of primatology 63: 139-147.
- 43. Mirol PM, Mascheretti S, Searle JB (2000) Multiple nuclear pseudogenes of mitochondrial cytochrome b in Ctenomys (Caviomorpha, Rodentia) with either great similarity to or high divergence from the true mitochondrial sequence. Heredity 84: 538-547.
- Martins Jr J, Solomon S, Mikheyev A, Mueller U, Ortiz A, et al. (2007) Nuclear mitochondrial like sequences in ants: evidence from Atta cephalotes (Formicidae: Attini). Insect Molecular Biology 16: 777-784.
- 45. Pamilo P, Viljakainen L, Vihavainen A (2007) Exceptionally high density of NUMTs in the honeybee genome. Molecular Biology and Evolution 24. Available: http://mbe.oxfordjournals.org/content/24/6/1340.short.
- 46. Kim JH, Antunes A, Luo SJ, Menninger J, Nash WG, et al. (2006) Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species. Gene 366: 292-302.
- Moulton MJ, Song H, Whiting MF (2010) Assessing the effects of primer specificity on eliminating numt coamplification in DNA barcoding: a case study from Orthoptera (Arthropoda: Insecta). Molecular Ecology Resources 10: 615-627.
- 48. Greenwood AD, Pääbo S (1999) Nuclear insertion sequences of mitochondrial DNA predominate in hair but not in blood of elephants. Molecular Ecology 8: 133-137.
- Kolokotronis SO, MacPhee R, Greenwood A (2007) Detection of mitochondrial insertions in the nucleus (NuMts) of Pleistocene and modern muskoxen. BMC Evolutionary Biology 7. Available: http://www.biomedcentral.com/1471-2148/7/67/abstract/.
- 50. Sorenson MD, Fleischer RC (1996) Multiple independent transpositions of mitochondrial DNA control region sequences to the nucleus. Proceedings of the National Academy of Sciences 93: 15239-15243.
- Antunes A, Pontius J, Ramos MJ, O'Brien SJ, Johnson WE (2007) Mitochondrial introgressions into the nuclear genome of the domestic cat. Journal of Heredity 98: 414-420.
- 52. Chung WK, Steiper ME (2008) Mitochondrial COII introgression into the nuclear genome of Gorilla gorilla. International journal of primatology 29: 1341-1353.
- 53. Triant DA, DeWoody JA (2008) Molecular analyses of mitochondrial pseudogenes within the nuclear genome of arvicoline rodents. Genetica 132: 21-33.

- 54. Arthofer W, Schüler S, Steiner FM, Schlick Steiner BC (2010) NEWS AND VIEWS: Chloroplast DNA based studies in molecular ecology may be compromised by nuclear encoded plastid sequence. Molecular Ecology 19: 3853–3856.
- Calvignac S, Konecny L, Malard F, Douady CJ (2011) Preventing the pollution of mitochondrial datasets with nuclear mitochondrial paralogs (numts). Mitochondrion 11: 246-254.
- 56. Ibarguchi GIG, Friesen VLFVL, Lougheed SCLSC (2006) Defeating numts: Semi-pure mitochondrial DNA from eggs and simple purification methods for field-collected wildlife tissues. Genome 49: 1438-1450.
- Gilbert MTP, Tomsho LP, Rendulic S, Packard M, Drautz DI, et al. (2007) Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science 317: 1927-1930.
- 58. Trigo T, Freitas T, Kunzler G, Cardoso L, Silva J, et al. (2008) Inter species hybridization among Neotropical cats of the genus *Leopardus*, and evidence for an introgressive hybrid zone between *L. geoffroyi* and *L. tigrinus* in southern Brazil. Molecular Ecology 17: 4317-4333.
- Meusnier I, Singer G, Landry JF, Hickey D, Hebert P, et al. (2008) A universal DNA minibarcode for biodiversity analysis. BMC Genomics 9. Available: http://www.biomedcentral.com/1471-2164/9/214.
- 60. Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes 7: 544-548.
- 61. Sonnenberg R, Nolte AW, Tautz D (2007) An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Frontiers in Zoology 4. Available: http://www.frontiersinzoology.com/content/4/1/6.
- Drummond A, Ashton B, Buxton S, Cheung M, Cooper A, et al. Geneious v5. 1. Biomatters Ltd, Auckland, New Zealand.
- 63. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.
- 64. Rubinoff D, Cameron S, Will K (2006) A genomic perspective on the shortcomings of mitochondrial DNA for "barcoding" identification. Journal of Heredity 97: 581-594.
- 65. Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Molecular Phylogenetics and Evolution 12: 105-114.
- Magnacca K, Brown M (2010) Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evolutionary Biology 10. Available: http://www.biomedcentral.com/1471-2148/10/174.

- 67. Anthony NM, Clifford SL, Bawe-Johnson M, Abernethy KA, Bruford MW, et al. (2007) Distinguishing gorilla mitochondrial sequences from nuclear integrations and PCR recombinants: Guidelines for their diagnosis in complex sequence databases. Molecular Phylogenetics and Evolution 43: 553-566.
- Dubey S, Michaux J, Brünner H, Hutterer R, Vogel P (2009) False phylogenies on wood mice due to cryptic cytochrome-b pseudogene. Molecular Phylogenetics and Evolution 50: 633-641.
- 69. Hazkani-Covo E, Graur D (2007) A comparative analysis of numt evolution in human and chimpanzee. Molecular Biology and Evolution 24: 13-18.
- 70. Patterson N, Richter DJ, Gnerre S, Lander ES, Reich D (2006) Genetic evidence for complex speciation of humans and chimpanzees. Nature 441: 1103-1108.
- 71. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389-3402.
- 72. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biology 2. Available: http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.0020312.
- 73. Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. PLoS Biology 2. Available:

http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.0020354.

- 74. Driscoll CA, Menotti-Raymond M, Roca AL, Hupe K, Johnson WE, et al. (2007) The Near Eastern origin of cat domestication. Science 317: 519-523.
- 75. Hertwig S, Schweizer M, Stepanow S, Jungnickel A, Böhle UR, et al. (2009) Regionally high rates of hybridization and introgression in German wildcat populations (*Felis silvestris*, Carnivora, Felidae). Journal of Zoological Systematics and Evolutionary Research 47: 283-297.
- 76. Oliveira R, Godinho R, Randi E, Ferrand N, Alves PC (2008) Molecular analysis of hybridisation between wild and domestic cats (*Felis silvestris*) in Portugal: implications for conservation. Conservation Genetics 9: 1-11.
- 77. Randi E (2008) Detecting hybridization between wild species and their domesticated relatives. Molecular Ecology 17: 285-293.
- 78. Frézal L, Leblois R (2008) Four years of DNA barcoding: current advances and prospects. Infection, Genetics and Evolution 8: 727-736.
- 79. Vila C, Walker C, Sundqvist A, Flagstad Ø, Andersone Z, et al. (2003) Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolf–dog hybrids. Heredity 90: 17-24.

- 80. Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143: 337–348.
- Hobson KA, Wassenaar LI (2008) Tracking animal migration with stable isotopes;
 Hobson KA, Wassenaar LI, editors. London, UK: Academic Press. 143 p.
- 82. West JB, Bowen GJ, Dawson TE, Tu KP (2009) Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping. New York: Springer Verlag. 487 p.
- Hénaux V, Powell LA, Hobson KA, Nielsen CK, LaRue MA (2011) Tracking large carnivore dispersal using isotopic clues in claws: an application to cougars across the Great Plains. Methods in Ecology and Evolution 2. Available: http://dx.doi.org/10.1111/j.2041-210X.2011.00107.x.
- 84. Cryan PM, Bogan MA, Rye RO, Landis GP, Kester CL (2004) Stable hydrogen isotope analysis of bat hair as evidence for seasonal molt and long-distance migration. Journal of Mammalogy 85: 995–1001.
- 85. Ehleringer JR, Bowen GJ, Chesson LA, West AG, Podlesak DW, et al. (2008) Hydrogen and oxygen isotope ratios in human hair are related to geography. Proceedings of the National Academy of Sciences of the United States of America 105: 2788–2793.
- 86. Hobson KA (2005) Stable isotopes and the determination of avian migratory connectivity and seasonal interactions. The Auk 122: 1037–1048.
- Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research 39. Available: http://wateriso.eas.purdue.edu/waterisotopes/media/PDFs/2003WR002086.pdf. Accessed 2011 March 8.
- 88. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16: 436-468.
- 89. Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Climate change in continental isotopic records 78: 1–36.
- 90. Bowen GJ, Ehleringer JR, Chesson LA, Thompson AH, Podlesak DW, et al. (2009) Dietary and Physiological Controls on the Hydrogen and Oxygen Isotope Ratios of Hair from Mid-20th Century Indigenous Populations. American Journal of Physical Anthropology 139: 494–504.
- 91. Fraser I, Meier-Augenstein W, Kalin R (2006) The role of stable isotopes in human identification: a longitudinal study into the variability of isotopic signals in human hair and nails. Rapid Communications in Mass Spectrometry 20: 1109–1116.
- 92. O'Brien DM, Wooller MJ (2007) Tracking human travel using stable oxygen and hydrogen isotope analyses of hair and urine. Rapid Communications in Mass Spectrometry 21: 2422–2430.

- 93. Thompson AH, Chesson LA, Podlesak DW, Bowen GJ, Cerling TE, et al. (2010) Stable Isotope Analysis of Modern Human Hair Collected From Asia (China, India, Mongolia, and Pakistan). American Journal of Physical Anthropology 141: 440–451.
- 94. Podlesak DW, Torregrossa AM, Ehleringer JR, Dearing MD, Passey BH, et al. (2008) Turnover of oxygen and hydrogen isotopes in the body water, CO₂, hair, and enamel of a small mammal. Geochimica et Cosmochimica Acta 72: 19–35.
- 95. Nielson KE, Bowen GJ (2010) Hydrogen and oxygen in brine shrimp chitin reflect environmental water and dietary isotopic composition. Geochimica et Cosmochimica Acta 74: 1812–1822.
- 96. Wang YV, O'Brien DM, Jenson J, Francis D, Wooller MJ (2009) The influence of diet and water on the stable oxygen and hydrogen isotope composition of Chironomidae (Diptera) with paleoecological implications. Oecologia 160: 225–233.
- 97. Hobson KA, Bowen GJ, Wassenaar LI, Ferrand Y, Lormee H (2004) Using stable hydrogen and oxygen isotope measurements of feathers to infer geographical origins of migrating European birds. Oecologia 141: 477–488.
- 98. Wolf N, Bowen GJ, del Rio CM (2011) The influence of drinking water on the δD and $\delta^{18}O$ values of house sparrow plasma, blood and feathers. The Journal of Experimental Biology 214: 98–103.
- 99. Tuross N, Warinner C, Kirsanow K, Kester C (2008) Organic oxygen and hydrogen isotopes in a porcine controlled dietary study. Rapid Communications in Mass Spectrometry 22: 1741–1745.
- 100. Kirsanow K, Tuross N (2011) Oxygen and hydrogen isotopes in rodent tissues: Impact of diet, water and ontogeny. Palaeogeography, Palaeoclimatology, Palaeoecology: in press.
- 101. Hobson KA, Atwell L, Wassenaar LI (1999) Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues. Proceedings of the National Academy of Sciences of the United States of America 96: 8003–8006.
- 102. Luz B, Kolodny Y (1989) Oxygen isotope variation in bone phosphate. Applied Geochemistry 4: 317-323.
- 103. O'Grady SP, Wende AR, Remien CH, Valenzuela LO, Enright LE, et al. (2010) Aberrant Water Homeostasis Detected by Stable Isotope Analysis. Plos One 5. Available: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0011699. Accessed 2011 Jan 11.
- 104. Sharp ZD, Atudorei V, Panarello HO, Fernandez J, Douthitt C (2003) Hydrogen isotope systematics of hair: archeological and forensic applications. Journal of Archaeological Science 30: 1709–1716.

- 105. Bryant JD, Froelich PN (1995) A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta 59: 4523-4537.
- 106. Bryant JD, Koch PL, Froelich PN, Showers WJ, Genna BJ (1996) Oxygen isotope partitioning between phosphate and carbonate in mammalian apatite. Geochimica et Cosmochimica Acta 60: 5145–5148.
- 107. Kohn MJ (1996) Predicting animal δ^{18} O: Accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60: 4811–4829.
- 108. Longinelli A (1984) Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 48: 385-390.
- 109. Luz B, Kolodny Y (1985) Oxygen isotope variations in phosphate of biogenic apatites,IV. Mammal teeth and bones. Earth and Planetary Science Letters 75: 29-36.
- 110. McKechnie AE, Wolf BO, Martínez del Rio C (2004) Deuterium stable isotope ratios as tracers of water resource use: an experimental test with rock doves. Oecologia 140: 191–200.
- 111. Schoeller DA, Leitch CA, Brown C (1986) Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology 251: 1137–1143.
- 112. Tatner P (1988) A model of the natural abundance of oxygen-18 and deuterium in the body water of animals. Journal of Theoretical Biology 133: 267–280.
- 113. Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120: 314-326.
- 114. Ayliffe LK, Chivas AR (1990) Oxygen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochimica et Cosmochimica Acta 54: 2603-2609.
- 115. Luz B, Cormie AB, Schwarcz HP (1990) Oxygen isotope variations in phosphate of deer bones. Geochimica et Cosmochimica Acta 54: 1723–1728.
- 116. Luz B, Kolodny Y, Horowitz M (1984) Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48: 1689-1693.
- 117. Karasov WH, del Rio CM (2007) Physiological ecology: how animals process energy, nutrients, and toxins. Princeton: University Press. 242 p.
- 118. Pecquerie L, Nisbet RM, Fablet R, Lorrain A, Kooijman SALM (2010) The impact of metabolism on stable isotope dynamics: a theoretical framework. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 3455–3468.

- 119. Reynard LM, Hedges REM (2008) Stable hydrogen isotopes of bone collagen in palaeodietary and palaeoenvironmental reconstruction. Journal of Archaeological Science 35: 1934–1942.
- 120. Lott CA, Meehan TD, Heath JA (2003) Estimating the latitudinal origins of migratory birds using hydrogen and sulfur stable isotopes in feathers: influence of marine prey base. Oecologia 134: 505–510.
- 121. Delgado Huertas A, Iacumin P, Stenni B, Sánchez Chillón B, Longinelli A (1995) Oxygen isotope variations of phosphate in mammalian bone and tooth enamel. Geochimica et Cosmochimica Acta 59: 4299-4305.
- 122. Birchall J, O'Connell TC, Heaton THE, Hedges REM (2005) Hydrogen isotope ratios in animal body protein reflect trophic level. Journal of Animal Ecology 74: 877–881.
- 123. Levinson AA, Luz B, Kolodny Y (1987) Variations in oxygen isotopic compositions of human teeth and urinary stones. Applied Geochemistry 2: 367-371.
- 124. Levin NE, Cerling TE, Passey BH, Harris JM, Ehleringer JR (2006) A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences 103: 11201–11205.
- 125. Daux V, Lécuyer C, Heran MA, Amiot R, Simon L, et al. (2008) Oxygen isotope fractionation between human phosphate and water revisited. Journal of Human Evolution 55: 1138-1147.
- 126. Bowen GJ, Ehleringer JR, Chesson LA, Stange E, Cerling TE (2007) Stable isotope ratios of tap water in the contiguous United States. Water Resources Research 43. Available:

http://wateriso.eas.purdue.edu/waterisotopes/media/PDFs/USATapMap.pdf.

- 127. Chesson LA, Valenzuela LO, O'Grady SP, Cerling TE, Ehleringer JR (2010) Links between Purchase Location and Stable Isotope Ratios of Bottled Water, Soda, and Beer in the United States. Journal of Agricultural and Food Chemistry 58: 7311–7316.
- 128. Kennedy CD, Bowen GJ, Ehleringer JR (2011) Temporal variation of oxygen isotope ratios δ^{18} O in drinking water: Implications for specifying location of origin with human scalp hair. Forensic science international: in press.
- 129. Chesson LA, Podlesak DW, Thompson AH, Cerling TE, Ehleringer JR (2008) Variation of hydrogen, carbon, nitrogen, and oxygen stable isotope ratios in an American diet: Fast food meals. Journal of Agricultural and Food Chemistry 56: 4084–4091.
- 130. Fraser I, Meier-Augenstein W (2007) Stable ²H isotope analysis of modern day human hair and nails can aid forensic human identification. Rapid Communications in Mass Spectrometry 21: 3279–3285.
- 131. MacDonald M, Rogers Q, Morris J (1984) Nutrition of the domestic cat, a mammalian carnivore. Annual Review of Nutrition 4: 521–562.

- 132. Zoran DL (2002) The carnivore connection to nutrition in cats. Journal of the American Veterinary Medical Association 221: 1559–1567.
- 133. Cormie AB, Luz B, Schwarcz HP (1994) Relationship between the Hydrogen and Oxygen Isotopes of Deer Bone and Their Use in the Estimation of Relative-Humidity. Geochimica et Cosmochimica Acta 58: 3439–3449.
- 134. Wassenaar L, Hobson K (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes in Environmental and Health Studies 39: 211–217.
- 135. Bowen GJ, Wilkinson B (2002) Spatial distribution of δ^{18} O in meteoric precipitation. Geology 30: 315–318.
- 136. Coplen TB, Kendall C, VA GSR (2000) Stable hydrogen and oxygen isotope ratios for selected sites of the US Geological Survey's NASQAN and benchmark surface-water networks. Available: http://pubs.usgs.gov/of/2000/ofr00-160/. Accessed 2011 March 8.
- 137. Dutton A, Wilkinson BH, Welker JM, Bowen GJ, Lohmann KC (2005) Spatial distribution and seasonal variation in ¹⁸O/¹⁶O of modern precipitation and river water across the conterminous USA. Hydrological Processes 19: 4121–4146.
- 138. Kitchener A (1991) The natural history of the wild cats. Ithaca: Comstock Publishing Associates. 288 p.
- 139. Sandell M (1989) The mating tactics and spacing patterns of solitary carnivores. Carnivore behavior, ecology, and evolution 1: 164–182.
- 140. Baker K (1974) Hair growth and replacement in the cat. The British Veterinary Journal 130: 327.
- 141. Galbraith H (1998) Nutritional and hormonal regulation of hair follicle growth and development. Proceedings of the Nutrition Society 57: 195–205.
- 142. Ryder ML (1976) Seasonal changes in the coat of the cat. Research in Veterinary Science 21: 280.
- 143. Epstein S, Thompson P, Yapp CJ (1977) Oxygen and hydrogen isotopic ratios in plant cellulose. Science 198: 1209-1215.
- 144. Farquhar GD, Lloyd J, Taylor JA, Flanagan LB, Syvertsen JP, et al. (1993) Vegetation effects on the isotope composition of oxygen in atmospheric CO 2. Nature 363: 439-443.
- 145. Cormie A, Luz B, Schwarcz H (1994) Relationship between the hydrogen and oxygen isotopes of deer bone and their use in the estimation of relative humidity. Geochimica et Cosmochimica Acta 58: 3439-3449.
- 146. Iriarte JA, Franklin WL, Johnson WE, Redford KH (1990) Biogeographic variation of food habits and body size of the America puma. Oecologia 85: 185–190.

- 147. Lariviere S, Walton LR (1997) Lynx rufus. Mammalian Species 563: 1–8.
- 148. Kane E, Rogers Q, Morris J (1981) Feeding behavior of the cat fed laboratory and commercial diets. Nutrition Research 1: 499–507.
- 149. Lindzey F (1987) Mountain lion. In: Wild furbearer management and conservation in North America Toronto, Canada: Ontario Ministry of Natural Resources. pp. 656–668.
- 150. Johnson C (1986) Sex-biased philopatry and dispersal in mammals. Oecologia 69: 626-627.
- 151. Arnay-De-La-Rosa M, Gonzalez-Reimers E, Yanes Y, Velasco-Vazquez J, Romanek CS, et al. (2010) Paleodietary analysis of the prehistoric population of the Canary Islands inferred from stable isotopes (carbon, nitrogen and hydrogen) in bone collagen. Journal of Archaeological Science 37: 1490–1501.
- 152. Schimmelmann A, Deniro MJ (1986) Stable Isotopic Studies on Chitin. III. The D/H and ¹⁸O/¹⁶O Ratios in Arthropod Chitin. Geochimica et Cosmochimica Acta 50: 1485–1496.
- 153. DeNiro MJ, Epstein S (1981) Hydrogen Isotope Ratios of Mouse-Tissues Are Influenced by a Variety of Factors Other Than Diet. Science 214: 1374–1375.
- 154. Gretebeck RJ, Schoeller DA, Socki RA, Davis-Street J, Gibson EK, et al. (1997) Adaptation of the doubly labeled water method for subjects consuming isotopically enriched water. Journal of Applied Physiology 82: 563–570.
- 155. d'Angela D, Longinelli A (1990) Oxygen isotopes in living mammal's bone phosphate: further results. Chemical Geology: Isotope Geoscience section 86: 75–82.
- 156. Masud Z, Vallet C, Martin GJ (1999) Stable isotope characterization of milk components and whey ethanol. Journal of Agricultural and Food Chemistry 47: 4693–4699.
- 157. Estep MF, Hoering TC (1980) Biogeochemistry of the stable hydrogen isotopes. Geochimica et Cosmochimica Acta 44: 1197–1206.
- 158. Smith B, Epstein S (1970) Biogeochemistry of the stable isotopes of carbon and hydrogen in salt marsh biota. Plant Physiology 46: 738–742.
- 159. Warinner C, Tuross N (2010) Brief communication: Tissue isotopic enrichment associated with growth depression in a pig: Implications for archaeology and ecology. American Journal of Physical Anthropology 141: 486–493.
- 160. Takeda H, Lu HM, Miyamoto K, Fuma S, Yanagisawa K, et al. (2001) Comparative biokinetics of tritium in rats during continuous ingestion of tritiated water and tritiumlabeled food. International Journal of Radiation Biology 77: 375–381.
- 161. Wallach ADWAD, Inbar MIM, Scantlebury MSM, Speakman JRSJR, Shanas USU (2007) Water requirements as a bottleneck in the reintroduction of European roe deer to the southern edge of its range. Canadian Journal of Zoology 85: 1182-1192.

- 162. Hendriks W, Wamberg S, Tarttelin M (1999) A metabolism cage for quantitative urine collection and accurate measurement of water balance in adult cats (*Felis catus*). Journal of Animal Physiology and Animal Nutrition 82: 94–105.
- 163. Mellanby K (1942) Metabolic water and desiccation. Nature 150: 21.
- 164. Kromhout D (2005) Fish consumption, n-3 fatty acids, and coronary heart disease. In:
 Coronary heart disease epidemiology. New York: Oxford University Press. pp. 264–275.
- 165. Morris JG (1985) Nutritional and metabolic responses to arginine deficiency in carnivores. Journal of Nutrition 115: 524–531.
- 166. Kirk CA, Debraekeleer J, Armstrong PJ (2000) Normal cats. In: Hand MS, Thatcher CD, Remillard RL, Roudebush P, editors. Small animal clinical nutrition 4th ed. Marceline, MO: Walsworth Publishing Co. pp. 291–351.
- 167. Buchardt B, Bunch V, Helin P (2007) Fingernails and diet: stable isotope signatures of a marine hunting community from modern Uummannaq, North Greenland. Chemical Geology 244: 316–329.
- 168. Cohen JE (1994) Marine and Continental Food Webs 3 Paradoxes. Philosophical Transactions of the Royal Society of London B 343: 57–69.
- 169. Gibson R, Sinclair A (1981) Are Eskimos obligate carnivores? Lancet 1: 1100.
- 170. Symes CT, Woodborne S (2010) Migratory connectivity and conservation of the Amur Falcon *Falco amurensis*: a stable isotope perspective. Bird Conservation International 20: 134–148.
- 171. Meehan TD, Rosenfield RN, Atudore VN, Bielefeldt J, Rosenfield LJ, et al. (2003) Variation in hydrogen stable-isotope ratios between adult and nestling Cooper's Hawks. Condor 105: 567–572.
- 172. Smith AD, Donohue K, Dufty Jr AM (2008) Intrafeather and intraindividual variation in the stable-hydrogen isotope δD content of raptor feathers. The Condor 110: 500–506.
- 173. Legrand-Defretin V (1994) Differences between cats and dogs: a nutritional view. Proceedings of the Nutrition Society 53: 15–24.
- 174. Kienzle E (1993) Carbohydrate metabolism of the cat 1. Activity of amylase in the gastrointestinal tract of the cat. Journal of Animal Physiology and Animal Nutrition 69: 92–101.
- 175. Martínez del Rio C, Wolf N, Carleton SA, Gannes LZ (2009) Isotopic ecology ten years after a call for more laboratory experiments. Biological Reviews 84: 91–111.
- 176. Anderson R (1982) Water balance in the dog and cat. Journal of Small Animal Practice 23: 588–598.
- 177. Chew RM (1965) Water metabolism of mammals. In: Mayer RV, Van Gelder RG, editors. Physiological mammalogy. New York Academic Press. pp. 43–178.

- Schmidt-Nielsen K, Schmidt-Nielsen B (1952) Water Metabolism of Desert Mammals.
 Physiological Reviews 32: 135–166.
- 179. McNab BK (1986) The influence of food habits on the energetics of eutherian mammals. Ecological Monographs 56: 1–19.
- 180. McNab BK (2000) The standard energetics of mammalian carnivores: Felidae and Hyaenidae. Canadian Journal of Zoology 78: 2227-2239.
- 181. Doris PA, Baker MA (1981) Effect of Dehydration on Thermoregulation in Cats Exposed to High Ambient-Temperatures. Journal of Applied Physiology 51: 46–54.
- 182. Adams T (1966) Characteristics of eccrine sweat gland activity in the footpad of the cat. Journal of Applied Physiology 21: 1004–1012.
- 183. Wong W, Cochran W, Klish W, Smith EO, Lee L, et al. (1988) In vivo isotopefractionation factors and the measurement of deuterium-and oxygen-18-dilution spaces from plasma, urine, saliva, respiratory water vapor, and carbon dioxide. American Journal of Clinical Nutrition 47: 1–6.
- 184. Homberger DG, Ham K, Ogunbakin T, Bonin JA, Hopkins BA, et al. (2009) The structure of the cornified claw sheath in the domesticated cat (*Felis catus*): implications for the claw shedding mechanism and the evolution of cornified digital end organs. Journal of Anatomy 214: 620–643.
- 185. O'Connell T, Hedges R, Healey M, Simpson A (2001) Isotopic comparison of hair, nail and bone: modern analyses. Journal of Archaeological Science 28: 1247–1255.
- 186. Hendriks W, Tarttelin M, Moughan P (1998) The amino acid composition of cat (*Felis catus*) hair. Animal Science 67: 165–170.
- 187. Commerford S, Carsten A, Cronkite E (1983) The distribution of tritium among the amino acids of proteins obtained from mice exposed to tritiated water. Radiation Research 94: 151–155.
- 188. Gaebler O, Vitti TG, Vukmirovich R (1966) Isotope effects in metabolism of ¹⁴ N and ¹⁵ N from unlabeled dietary proteins. Biochemistry and Cell Biology 44: 1249–1257.
- 189. Hare PE, Fogel ML, Stafford TW (1991) The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. Journal of Archaeological Science 18: 277–292.
- 190. Macko SA, Fogel ML, Hare P, Hoering T (1987) Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chemical Geology: Isotope Geoscience section 65: 79–92.
- 191. Péquignot A, Tumosa C, Endt DW (2006) The effects of tanning and fixing processes on the properties of taxidermy skins. Collection Forum 21. Available: http://www.crcc.cnrs.fr/IMG/pdf/Collection_Forum_2006-2.pdf.

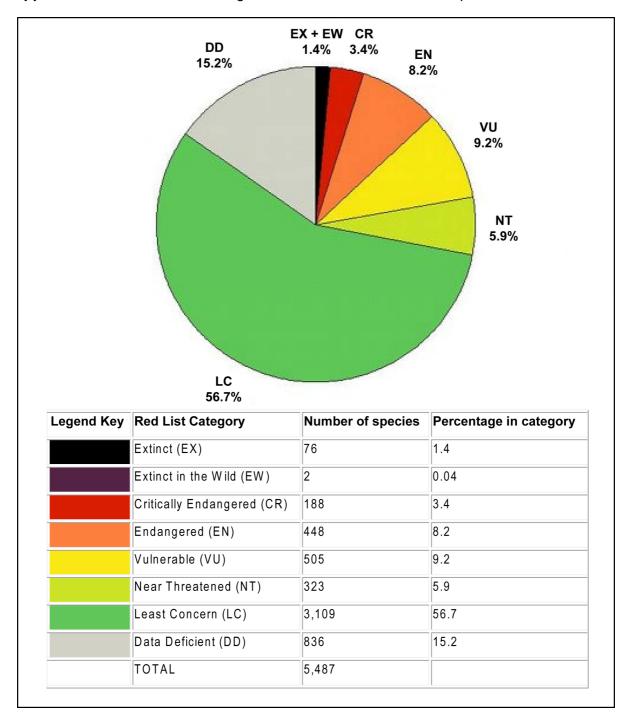
- 192. Lees S (1986) Water content in type I collagen tissues calculated from the generalized packing model. International Journal of Biological Macromolecules 8: 66–72.
- 193. Covington AD (1997) Modern tanning chemistry. Chemical Society Reviews 26: 111-126.
- 194. McCullagh JSO, Tripp JA, Hedges REM (2005) Carbon isotope analysis of bulk keratin and single amino acids from British and North American hair. Rapid Communications in Mass Spectrometry 19: 3227–3231.
- 195. Petzke KJ, Fuller BT, Metges CC (2010) Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status. Current Opinion in Clinical Nutrition and Metabolic Care 13: 532–540.
- 196. Raghavan M, McCullagh JSO, Lynnerup N, Hedges REM (2010) Amino acid δ¹³C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry: paleodietary implications from intra-individual comparisons. Rapid Communications in Mass Spectrometry 24: 541–548.
- 197. d'Angela D, Longinelli A (1990) Oxygen isotopes in living mammal's bone phosphate: further results. Chemical Geology 86: 75-82.
- 198. Bershaw J, Garzione CN, Higgins P, MacFadden BJ, Anaya F, et al. (2010) Spatialtemporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth and Planetary Science Letters 289: 530-538.
- 199. Kohn MJ, Dettman DL (2007) Paleoaltimetry from stable isotope compositions of fossils. Reviews in Mineralogy and Geochemistry 66: 119-154.
- 200. Morrill C, Koch PL (2002) Elevation or alteration? Evaluation of isotopic constraints on paleoaltitudes surrounding the Eocene Green River Basin. Geology 30: 151-154.
- 201. Amiot R, Lécuyer C, Buffetaut E, Escarguel G, Fluteau F, et al. (2006) Oxygen isotopes from biogenic apatites suggest widespread endothermy in Cretaceous dinosaurs. Earth and Planetary Science Letters 246: 41-54.
- 202. Eagle RA, Schauble EA, Tripati AK, Tütken T, Hulbert RC, et al. (2010) Body temperatures of modern and extinct vertebrates from ¹³C-¹⁸O bond abundances in bioapatite. Proceedings of the National Academy of Sciences 107: 10377.
- 203. Daux V, Lécuyer C, Héran MA, Amiot R, Simon L, et al. (2008) Oxygen isotope fractionation between human phosphate and water revisited. Journal of Human Evolution 55: 1138-1147.
- 204. Wright LE, Schwarcz HP (1999) Correspondence between stable carbon, oxygen and nitrogen isotopes in human tooth enamel and dentine: infant diets at Kaminaljuyú. Journal of Archaeological Science 26: 1159-1170.
- 205. Feranec R, García N, DÍez J, Arsuaga J (2010) Understanding the ecology of mammalian carnivorans and herbivores from Valdegoba cave (Burgos, northern

Spain) through stable isotope analysis. Palaeogeography, Palaeoclimatology, Palaeoecology: 263-272.

- 206. Kohn MJ, McKay MP, Knight JL (2005) Dining in the Pleistocene—Who's on the menu? Geology 33: 649-652.
- 207. Britton K, Grimes V, Dau J, Richards MP (2009) Reconstructing faunal migrations using intra-tooth sampling and strontium and oxygen isotope analyses: a case study of modern caribou (Rangifer tarandus granti). Journal of Archaeological Science 36: 1163-1172.
- 208. Dupras TL, Schwarcz HP (2001) Strangers in a strange land: stable isotope evidence for human migration in the Dakhleh Oasis, Egypt. Journal of Archaeological Science 28: 1199-1208.
- 209. Hoppe KA (2006) Correlation between the oxygen isotope ratio of North American bison teeth and local waters: Implication for paleoclimatic reconstructions. Earth and Planetary Science Letters 244: 408-417.
- 210. Pellegrini M, Donahue RE, Chenery C, Evans J, Lee Thorp J, et al. (2008) Faunal migration in late glacial central Italy: implications for human resource exploitation. Rapid Communications in Mass Spectrometry 22: 1714-1726.
- 211. White C, Longstaffe FJ, Law KR (2004) Exploring the effects of environment, physiology and diet on oxygen isotope ratios in ancient Nubian bones and teeth. Journal of Archaeological Science 31: 233-250.
- 212. Kohn MJ (1996) Predicting animal δ^{18} O: Accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60: 4811-4829.
- 213. Reinhard E, de Torres T, O'Neil J (1996) ¹⁸O/¹⁶O ratios of cave bear tooth enamel: a record of climate variability during the Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 126: 45-59.
- 214. Iacumin P, Longinelli A (2002) Relationship between δ^{18} O values for skeletal apatite from reindeer and foxes and yearly mean δ^{18} O values of environmental water. Earth and Planetary Science Letters 201: 213-219.
- 215. Dahms AS, Boyer PD (1973) Occurrence and characteristics of ¹⁸O exchange reactions catalyzed by sodium-and potassium-dependent adenosine triphosphatases. Journal of Biological Chemistry 248: 3155-3162.
- 216. Faller LD, Elgavish GA (1984) Catalysis of oxygen-18 exchange between inorganic phosphate and water by the gastric proton-potassium ATPase. Biochemistry 23: 6584-6590.
- 217. Leonard F, Scullin RI (1969) New mechanism for calcification of skeletal tissues. Nature 224: 1113-1115.

- 218. Levin NE, Cerling TE, Passey BH, Harris JM, Ehleringer JR (2006) A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences 103: 11201-11205.
- 219. Kohn MJ, Schoeninger MJ, Valley JW (1996) Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochimica et Cosmochimica Acta 60: 3889-3896.
- 220. Kroopnick P, Craig H (1972) Atmospheric oxygen: Isotopic composition and solubility fractionation. Science 175: 54-55.
- 221. Bocherens H, Koch PL, Mariotti A, Geraads D, Jaeger JJ (1996) Isotopic biogeochemistry (¹³C, ¹⁸O) of mammalian enamel from African Pleistocene hominid sites. Palaios: 306-318.
- 222. Bocherens H, Mashkour M, Billiou D, Pellé E, Mariotti A (2001) A new approach for studying prehistoric herd management in arid areas: intra-tooth isotopic analyses of archaeological caprine from Iran: Une nouvelle approche pour l'étude de la gestion préhistorique des troupeaux en zones arides: analyses isotopiques intra-dentaires de caprinés archéologiques d'Iran. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science 332: 67-74.
- 223. Bryant JD, Luz B, Froelich PN (1994) Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 107: 303-316.
- 224. Koch PL (1998) Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26: 573-613.
- 225. Kohn MJ, Cerling TE (2002) Stable isotope compositions of biological apatite. Reviews in Mineralogy and Geochemistry 48: 455.
- 226. Sponheimer M, Lee-Thorp JA (1999) Oxygen isotopes in enamel carbonate and their ecological significance. Journal of Archaeological Science 26: 723-728.
- 227. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. New York: CRC.
- 228. Fricke HC, O'Neil JR (1999) The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth and Planetary Science Letters 170: 181-196.
- 229. Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Climate Change in Continental Isotope Records 78: 1-36.
- 230. Grimes ST, Mattey DP, Hooker JJ, Collinson ME (2003) Paleogene paleoclimate reconstruction using oxygen isotopes from land and freshwater organisms: the use of multiple paleoproxies. Geochimica Et Cosmochimica Acta 67: 4033-4047.

- 231. Helliker BR, Ehleringer JR (2002) Grass blades as tree rings: environmentally induced changes in the oxygen isotope ratio of cellulose along the length of grass blades. New Phytologist 155: 417-424.
- 232. Lindars ES, Grimes ST, Mattey DP, Collinson ME, Hooker JJ, et al. (2001) Phosphate [delta] 18O determination of modern rodent teeth by direct laser fluorination: an appraisal of methodology and potential application to palaeoclimate reconstruction. Geochimica Et Cosmochimica Acta 65: 2535-2548.
- 233. Sternberg LO, Deniro MJ, Johnson HB (1984) Isotope ratios of cellulose from plants having different photosynthetic pathways. Plant Physiology 74: 557-561.
- 234. Kohn MJ, Schoeninger MJ, Valley JW (1998) Variability in oxygen isotope compositions of herbivore teeth: reflections of seasonality or developmental physiology? Chemical Geology 152: 97-112.
- 235. Wright LE, Schwarcz HP (1998) Stable carbon and oxygen isotopes in human tooth enamel: identifying breastfeeding and weaning in prehistory. American Journal of Physical Anthropology 106: 1-18.
- 236. Ayliffe L, Lister A, Chivas A (1992) The preservation of glacial-interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 99: 179-191.
- 237. Chillón BS, Alberdi MT, Leone G, Bonadonna FP, Stenni B, et al. (1994) Oxygen isotopic composition of fossil equid tooth and bone phosphate: an archive of difficult interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 107: 317-328.
- 238. Navarro N, Lécuyer C, Montuire S, Langlois C, Martineau F (2004) Oxygen isotope compositions of phosphate from arvicoline teeth and Quaternary climatic changes, Gigny, French Jura. Quaternary Research 62: 172-182.
- 239. Larivière S, Pasitschniak-Arts M (1996) Vulpes vulpes. Mammalian Species: 1-11.
- 240. Sponheimer M, Lee-Thorp JA (2001) The oxygen isotope composition of mammalian enamel carbonate from Morea Estate, South Africa. Oecologia 126: 153-157.
- 241. Rothwell T (2003) Phylogenetic Systematics of North American Pseudaelurus (Carnivora: Felidae). American Museum Novitates: 1-64.
- 242. Sunquist ME, Sunquist F (2002) Wild cats of the world: University of Chicago Press.
- 243. Amiot R, Lécuyer C, Buffetaut E, Fluteau F, Legendre S, et al. (2004) Latitudinal temperature gradient during the Cretaceous Upper Campanian-Middle Maastrichtian: δ¹⁸O record of continental vertebrates. Earth and Planetary Science Letters 226: 255-272.
- 244. Clementz MT, Sorbi S, Domning DP (2009) Evidence of Cenozoic environmental and ecological change from stable isotope analysis of sirenian remains from the Tethys-Mediterranean region. Geology 37: 307.


- 245. Tütken T, Vennemann T, Janz H, Heizmann E (2006) Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany: A reconstruction from C, O, and Sr isotopes of fossil remains. Palaeogeography, Palaeoclimatology, Palaeoecology 241: 457-491.
- 246. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research: WH Freeman.
- 247. Pietsch SJ, Hobson KA, Wassenaar LI, Tütken T (2011) Tracking cats: Problems with placing feline carnivores on δ^{18} O, δ D isoscapes. Plos One: In press.
- 248. Anderson AE (1983) A critical review of literature on puma (*Felis concolor*). Colorado Division of Wildlife. 54 54. 91 p.
- 249. Currier MJP (1983) Felis concolor. Mammalian Species: 1-7.
- 250. Fricke HC, O'Neil JR (1996) Inter-and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology 126: 91-99.
- 251. Murphy BP, Bowman DMJS, Gagan MK (2007) The interactive effect of temperature and humidity on the oxygen isotope composition of kangaroos. Functional Ecology 21: 757-766.
- 252. O'Regan HJ, Chenery C, Lamb AL, Stevens RE, Rook L, et al. (2008) Modern macaque dietary heterogeneity assessed using stable isotope analysis of hair and bone. Journal of Human Evolution 55: 617-626.
- 253. Farquhar G, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Ehleringer JE, editor. Stable isotopes and plant carbon-water relations: Academic press. pp. 47-70.
- 254. Yakir D, DeNiro MJ, Rundel PW (1989) Isotopic inhomogeneity of leaf water: evidence and implications for the use of isotopic signals transduced by plants. Geochimica et Cosmochimica Acta 53: 2769-2773.
- 255. Sternberg LSL, Mulkey SS, Wright SJ (1989) Oxygen isotope ratio stratification in a tropical moist forest. Oecologia: 51-56.
- 256. Yakir D (1992) Variations in the natural abundance of oxygen 18 and deuterium in plant carbohydrates. Plant, Cell & Environment 15: 1005-1020.
- 257. Smith WP (1991) Odocoileus virginianus. Mammalian Species: 1-13.
- 258. Chapman JA, Hockman JG (1980) Sylvilagus floridanus. Mammalian Species: 1-8.
- 259. Palmqvist P, Perez-Claros JA, Janis CM, Figueirido B, Torregrosa V, et al. (2008) Biogeochemical and ecomorphological inferences on prey selection and resource partitioning among mammalian carnivores in an early Pleistocene community. Palaios 23: 724-737.

- 260. Tredget EE, Forsyth N, Uji-Friedland A, Chambers M, Ghahary A, et al. (1993) Gas chromatography--mass spectrometry determination of ¹⁸O₂ in ¹⁸O-labelled 4hydroxyproline for measurement of collagen synthesis and intracellular degradation. Journal of Chromatography B: Biomedical Sciences and Applications 612: 7-19.
- 261. White CD, Spence MW, Longstaffe FJ, Law KR (2000) Testing the nature of Teotihuacan imperialism at Kaminaljuyu using phosphate oxygen-isotope ratios. Journal of Anthropological Research: 535-558.
- 262. Killingley J (1980) Migrations of California gray whales tracked by oxygen-18 variations in their epizoic barnacles. Science 207: 759-760.
- 263. Meyer-Rochow VB, Cook I, Hendy CH (1992) How to obtain clues from the otoliths of an adult fish about the aquatic environment it has been in as a larva. Comparative Biochemistry and Physiology Part A: Physiology 103: 333-335.
- 264. White CD, Spence MW, Le Q SW (1998) Oxygen isotopes and the identification of geographical origins: the Valley of Oaxaca versus the Valley of Mexico. Journal of Archaeological Science 25: 643-655.
- 265. Sabine DL, Morrison SF, Whitlaw HA, Ballard WB, Forbes GJ, et al. (2002) Migration behavior of white-tailed deer under varying winter climate regimes in New Brunswick. The Journal of wildlife management: 718-728.
- 266. Severinghaus C, Cheatum E (1956) Life and times of the white-tailed deer. In: Taylor
 WP, editor. The Deer of North America Harrisburg, Pa: Stackpole Books.
 Washington, D.C., USA: The Wildlife Management Institute. pp. 57–186.
- 267. Pierce BM, Bleich VC, Wehausen JD, Bowyer RT (1999) Migratory patterns of mountain lions: implications for social regulation and conservation. Journal of Mammalogy 80: 986–992.
- 268. McNab BK (2008) An analysis of the factors that influence the level and scaling of mammalian BMR. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology 151: 5-28.
- 269. Munoz-Garcia A, Williams JB (2005) Basal metabolic rate in carnivores is associated with diet after controlling for phylogeny. Physiological and Biochemical Zoology 78: 1039-1056.

6. ACKNOWLEDGMENTS

7. APPENDIX

7.1. CHAPTER 1: GENERAL INTRODUCTION

Appendix S1. IUCN Red List categories and status for all mammal species.

APPENDIX

No.	ORDER	TOTAL	EX	EW	CR	EN	VU	NT	LC	DD	% Threatened or Extinct
1	Afrosoricida	54	0	0	1	7	9	3	30	4	31.5
2	Carnivora	285	5	0	8	24	39	27	163	19	26.7
3	Cetartiodactyla	329	7	2	14	46	49	26	123	62	35.9
4	Chiroptera	1,150	5	0	25	53	99	77	687	204	15.8
5	Cingulata	21	0	0	0	0	4	5	9	3	19.9
6	Dasyuromorphia	74	1	0	1	6	5	10	47	4	17.6
7	Dermoptera	2	0	0	0	0	0	0	2	0	0
8	Didelphimorphia	95	1	0	1	0	7	2	67	17	9.5
9	Diprotodontia	146	7	0	14	15	16	16	76	2	35.6
10	Eulipotyphla	450	7	0	12	41	31	13	269	77	20.2
11	Hyracoidea	6	0	0	0	0	0	0	5	0	0
12	Lagomorpha	93	1	0	2	10	5	6	61	8	19.4
13	Macroscelidea	16	0	0	0	1	2	1	9	3	18.8
14	Microbiotheria	1	0	0	0	0	0	1	0	0	0
15	Monotremata	5	0	0	3	0	0	0	2	0	60
16	Notoryctemorphia	2	0	0	0	0	0	0	0	2	0
17	Paucituberculata	6	0	0	0	0	2	2	2	0	33.3
18	Peramelemorphia	22	3	0	0	4	2	1	9	3	40.9
19	Perissodactyla	16	0	0	5	5	3	1	2	0	81.3
20	Pholidota	8	0	0	0	2	0	4	2	0	25
21	Pilosa	10	0	0	1	1	0	1	7	0	20
22	Primates	414	2	0	37	86	78	23	132	56	49
23	Proboscidea	2	0	0	0	1	0	1	0	0	50
24	Rodentia	2,255	36	0	64	144	150	103	1,389	369	17.5
25	Scandentia	20	0	0	0	2	0	0	15	3	10
26	Sirenia	5	1	0	0	0	4	0	0	0	100
	TOTAL	5,487	76	2	188	448	505	323	3,109	836	

Appendix S2. IUCN Red List Status (2008) of all mammalian orders.

	FAMILIES OF THE ORDER CARNIVORA		EX	EW	CR	EN	VU	NT	LC	DD	% Threatened or Extinct
1	Ailuridae	1	0	0	0	0	1	0	0	0	100
2	Canidae	36	1	0	3	3	0	4	24	1	19.4
3	Eupleridae	9	1	0	0	1	3	3	1	0	55.6
4	Felidae	36	0	0	1	6	9	9	11	0	44.4
5	Herpestidae	34	0	0	0	0	3	1	27	3	8.8
6	Hyaenidae	4	0	0	0	0	0	2	2	0	0
7	Mephitidae	12	0	0	0	0	1	0	11	0	8.3
8	Mustelidae	59	1	0	0	7	5	4	36	6	22
9	Nandiniidae	1	0	0	0	0	0	0	1	0	0
10	Odobenidae	1	0	0	0	0	0	0	0	1	0
11	Otariidae	16	1	0	0	4	2	2	7	0	43.8
12	Phocidae	19	1	0	2	1	1	0	12	2	26.3
13	Prionodontidae	2	0	0	0	0	0	0	2	0	0
14	Procyonidae	14	0	0	1	0	0	0	10	3	7.1
15	Ursidae	8	0	0	0	1	5	0	2	0	75
16	Viverridae	33	0	0	1	1	9	2	17	3	33.3

Appendix S3. IUCN Red List Status (2008) of the 16 carnivoran families.

Appendix S4. Conservation status of felid species on the IUCN Red List 2008.

Critically Endangered (Extremely high extinction risk)

Iberian lynx

Lynx pardinus

Endangered (Very high extinction risk)

Andean cat Tiger Snow leopard Borneo bay cat Flat-headed cat Fishing cat Leopardus jacobita Panthera tigris Panthera uncia Pardofelis badia Prionailurus planiceps Prionailurus viverrinus

Vulnerable (High extinction risk)

Cheetah	Acinonyx jubatus
Black-footed cat	Felis nigripes
Guingna	Leopardus guigna
Oncilla	Leopardus tigrinus
Sunda clouded leopard	Neofelis diardi
Clouded leopard	Neofelis nebulosa
Lion	Panthera leo
Marbled cat	Pardofelis marmorata
Rusty-spotted cat	Prionailurus rubiginosus

Near Threatened (Close to quantifying for higher threat category)

African golden cat	Caracal aurata
Sand cat	Felis margarita
Pampas cat	Leopardus colocolo
Geoffroy's cat	Leopardus geoffroyi
Margay	Leopardus wiedii
Pallas's cat	Otocolobus manul
Jaguar	Panthera onca
Leopard	Panthera pardus
Asiatic golden cat	Pardofelis temminckii

Least Concern (Relatively widespread and abundant)

Caracal	Caracal caracal
Jungle cat	Felis chaus
Wildcat	Felis silvestris
Ocelot	Leopardus pardalis
Serval	Leptailurus serval
Canada lynx	Lynx canadensis
Eurasian lynx	Lynx lynx
Bobcat	Lynx rufus
Leopard cat	Prionailurus bengalensis
Puma	Puma concolor
Jaguarundi	Puma yagouaroundi

7.2. CHAPTER 2: Taming cat numts: DNA barcoding of Felidae using mtDNA and numts

Appendix 1. Sampling list

No.	Sample ID	Common Name	ne Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barcode sequences generated for:	
					<u>f</u> eces)			ATP6	СОІ
1	1/A_Ac_jub	Cheetah	Acinonyx	jubatus	b	f	Dr. Christian Wenker Zoo Basel		
2	2/A_Ac_jub	Cheetah	Acinonyx	jubatus	b	f	Dr. Christian Wenker Zoo Basel		
3	3/A_Ac_jub	Cheetah	Acinonyx	jubatus	b	m	Dr. Christian Wenker Zoo Basel		
4	4/A_Pa_uni	Snowleopard	Panthera	unica	b	f	Dr. Christian Wenker Zoo Basel		
5	5/A_Pa_uni	Snowleopard	Panthera	unica	b	m	Dr. Christian Wenker Zoo Basel		
6	6/A_Pa_unc	Snowleopard	Panthera	uncia	b	f	Dr. Christian Wenker Zoo Basel		
7	7/A_Pa_leo	Lion	Panthera	leo	b	f	Dr. Christian Wenker Zoo Basel		
8	8/A_Pa_leo	Lion	Panthera	leo	b	m	Dr. Christian Wenker Zoo Basel		
9	9/A_Pa_leo	Lion	Panthera	leo	b	m	Dr. Christian Wenker Zoo Basel		
10	10/A_Pa_leo	Lion	Panthera	leo	b	m	Dr. Christian Wenker Zoo Basel		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue, <u>f</u> eces)	Sex	Source/Contact	Barcode sequences generated for:	
								ATP6	СОІ
11	11/A_Ac_jub	Cheetah	Acinonyx	jubatus	b	f	Herr Andreas Filz Bernburg Tiergarten		
12	12/A_Pa_tig_su	Sumatratiger	Panthera	tigris	b	f	Dr. Ulrike Rademacher (Kuratorin Säugetiere) Wilhelma - der zoologisch botanische Garten		
13	13/A_Pa_tig_su	Sumatratiger	Panthera	tigris	b	m	Dr. Ulrike Rademacher (Kuratorin Säugetiere) Wilhelma - der zoologisch botanische Garten		
14	14/A_Fe_mar	Desertcat	Felis	margarita	t	m	Dr. Susanne Klomburg Zootierärztin Zoo Osnabrück		
15	15/A_Pa_leo	Lion	Panthera	leo	t	m	Dr. Susanne KlomburgZootierärztin Zoo Osnabrück		
16	16/A_Pa_leo	Lion	Panthera	leo	t	f	Dr. Susanne Klomburg Zootierärztin Zoo Osnabrück		
17	17/A_Pa_leo	Lion	Panthera	leo	t	f	Dr. Susanne Klomburg Zootierärztin Zoo Osnabrück		
18	18/A_Ly_lyn_ly	Eurasian lynx	Lynx	lynx	b		Herr Andreas Filz Bernburg Tiergarten		
19	19/A_Ly_lyn_ly	Eurasian lynx	Lynx	lynx	b		Herr Andreas Filz Bernburg Tiergarten		
20	20/A_Fe_sil	European wildcat	Felis	silvestris	h		Dr. Martin Wehrle Natur- und Tierpark Goldau		

No.	Sample ID	Common Name	Genus	Species	muscle <u>t</u> issue,		Source/Contact	Barcode sequences generated for:	
					<u>f</u> eces)			ATP6	COI
22	22/A_Ly_lyn	Eurasian lynx	Lynx	lynx	h		Mr. Leif Blomqvist (Curator) Helsinki Zoo		
23	25/A_Pa_leo_bl	Lion	Panthera	leo	h	f	Burgers' Zoo Kim van de Put; Arnhem/Netherlands		
24	26/A_Pa_leo_bl	Lion	Panthera	leo	h	f	Burgers' Zoo Kim van de Put; Arnhem/Netherlands		
25	27/A_Pa_leo_bl	Lion	Panthera	leo	h	f	Burgers' Zoo Kim van de Put; Arnhem/Netherlands		
26	28/A_Pa_leo_bl	Lion	Panthera	leo	h	m	Burgers' Zoo Kim van de Put; Arnhem/Netherlands		
27	29/A_Pa_par	Sri Lankan Leopard	Panthera	pardus	h	m	Burgers' Zoo Kim van de Put; Arnhem/Netherlands		
28	30/A_Pa_tig_su	Sumatra Tiger	Panthera	tigris	h	f	Burgers' Zoo Kim van de Put; Arnhem/Netherlands		
29	31/A_Ly_ruf	Bobcat	Lynx	rufus	h	f	Burgers' Zoo Kim van de Put; Arnhem/Netherlands		
30	32/A_Ac_jub	Cheetah	Acinonyx	jubatus	h	f	Burgers' ZooKim van de Put; Arnhem/Netherlands		
31	33/A_Ac_jub	Cheetah	Acinonyx	jubatus	h	f	Burgers' Zoo Kim van de Put; Arnhem/Netherlands		
32	34/A_Ac_jub	Cheetah	Acinonyx	jubatus	h	f	Burgers' Zoo Kim van de Put; Arnhem/Netherlands		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generate	nces
					<u>f</u> eces)			ATP6	COI
33	35/A_Ac_jub	Cheetah	Acinonyx	jubatus	h	m	Burgers' Zoo Kim van de Put; Arnhem/Netherlands		
34	36/A_Ac_jub	Cheetah	Acinonyx	jubatus	h	m	Burgers' Zoo Kim van de Put; Arnhem/Netherlands		
35	37/A_Ly_lyn_ly	Eurasian lynx	Lynx	lynx	t	f	Nationalpark Harz Frank Raimer/ Ole Anders		
36	38/A_Ly_lyn_ly	Eurasian lynx	Lynx	lynx	t	m	Nationalpark Harz Frank Raimer/ Ole Anders		
37	39/A_Ly_lyn_ly	Eurasian lynx	Lynx	lynx	h	m	Tierpark Görlitz Dr. A. Gebauer		
38	40/A_Ot_man	Pallas cat	Otocolobus	manul	h		Tierpark Görlitz Dr. A. Gebauer		
39	41/A_Fe_sil	European wildcat	Felis	silvestris	h		Nationalpark Harz Frank Raimer/ Ole Anders		
40	42/A_Fe_sil	European wildcat	Felis	silvestris	h		Nationalpark Harz Frank Raimer/ Ole Anders		
41	43/A_Fe_sil	European wildcat	Felis	silvestris	h		Nationalpark Harz Frank Raimer/ Ole Anders		
42	44/A_Pa_leo	Lion	Panthera	leo	h	m	Zoo Karlsruhe Frau Dr. Klett		
43	45/A_Pa_par_ja	Leopard	Panthera	pardus	h	f	Zoo Karlsruhe Frau Dr. Klett		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact		ode nces ed for:
					<u>f</u> eces)			ATP6	СОІ
44	46/A_Pa_par_ja	Leopard	Panthera	pardus	b		Zoo Karlsruhe Frau Dr. Klett		
45	47/A_Pa_unc	Snowleopard	Panthera	uncia	h	f	Zoo KarlsruheFrau Dr. Klett		
46	48/A_Ly_lyn	Eurasian lynx	Lynx	lynx	h	f	Zoo Karlsruhe Frau Dr. Klett		
47	49/A_Pa_leo	Lion	Panthera	leo	t	f	Zoo Karlsruhe Frau Dr. Klett		
48	50/A_Pa_leo	Lion	Panthera	leo	h	f	Zoo Karlsruhe Frau Dr. Klett		
49	51/A_Pa_leo	Lion	Panthera	leo	b	f	Zoo Karlsruhe Frau Dr. Klett		
50	52/A_Pa_tig	Tiger	Panthera	tigris	h	f	Zoo Zürich Fr. Gabriele Hürlimann		_
51	53/A_Pa_unc	Snowleopard	Panthera	uncia	h	f	Zoo Zürich Fr. Gabriele Hürlimann		
52	54/A_Pa_unc	Snowleopard	Panthera	uncia	h	m	Zoo Zürich Fr. Gabriele Hürlimann		
53	55/A_Pa_unc	Snowleopard	Panthera	uncia	h	m	Zoo Zürich Fr. Gabriele Hürlimann		
54	56/A_Ne_neb	Clouded leopard	Neofelis	nebulosa	h	f	Zoo Zürich Fr. Gabriele Hürlimann		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generate	nces
					<u>f</u> eces)			ATP6	СОІ
55	57/A_Ne_neb	Clouded leopard	Neofelis	nebulosa	h	f	Zoo Zürich Fr. Gabriele Hürlimann		
56	58/A_Ne_neb	Clouded leopard	Neofelis	nebulosa	h	m	Zoo Zürich Fr. Gabriele Hürlimann		
57	59/A_Ne_neb	Clouded leopard	Neofelis	nebulosa	h	m	Zoo Zürich Fr. Gabriele Hürlimann		
58	60/A_Ne_neb	Clouded leopard	Neofelis	nebulosa	h	f	Zoo Zürich Fr. Gabriele Hürlimann	_	
59	61/A_Fe_sil	European wildcat	Felis	silvestris	h	f	Tierpark Nordhorn Dr. Heike Weber		
60	62/A_Fe_sil	European wildcat	Felis	silvestris	h	m	Tierpark NordhornDr. Heike Weber		
61	63/A_Fe_sil	European wildcat	Felis	silvestris	S		Nationalpark Harz Frank Raimer/ Ole Anders		
62	64/A_Fe_sil	European wildcat	Felis	silvestris	S		Nationalpark Harz Frank Raimer/ Ole Anders		
63	65/A_Fe_cat	Domestic cat	Felis	catus	S		Nationalpark Harz Frank Raimer/ Ole Anders		
64	66/A_Fe_sil	European wildcat	Felis	silvestris	h	m	Alpenzoo Innsbruck Dipl. Biol. Dirk Ullrich		
65	67/A_Fe_sil	European wildcat	Felis	silvestris	h	f	Alpenzoo Innsbruck Dipl. Biol. Dirk Ullrich		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco sequen generate	nces
					<u>f</u> eces)			ATP6	COI
66	68/A_Pa_tig	Tiger	Panthera	tigris	t		Prof. Dr. Martin Reifinger Institut für pathologische Veterinärmedizin		
67	69/A_Pa_unc	Snowleopard	Panthera	uncia	t	f	Dr. Robert Hoeveler, Veterinäruntersuchungsamt , Krefeld	_	
68	70/A_Le_geo	Geoffroy`s cat	Leopardus	geoffroyi	t	f	Dr. Robert Hoeveler, Veterinäruntersuchungsamt , Krefeld	_	
69	71/A_Le_tig	Tigrina	Leopardus	tigrina	t	m	Dr. Robert Hoeveler, Veterinäruntersuchungsamt , Krefeld		
70	72/A_Pu_yag	Jaguarundi	Puma	yaguarundi	t	m	Dr. Robert Hoeveler, Veterinäruntersuchungsamt , Krefeld		
71	73/A_Pa_par_ko	Ceylon Leopard	Panthera	pardus	t	f	Dr. Martin Peters SVUA Arnsberg	_	
72	74/A_Pa_par_ori	Amurleopard	Panthera	pardus	t	m	Dr. Martin Peters SVUA Arnsberg		
73	75/A_Le_tig	Tigrina	Leopardus	tigrina	t	m	Dr. Martin Peters SVUA Arnsberg		
74	76/A_Fe_sil	European wildcat	Felis	silvestris	t	f	Nationalpark Harz Frank Raimer/ Ole Anders		
75	77/A_Fe_sil	European wildcat	Felis	silvestris	t	f	Nationalpark HarzFrank Raimer/ Ole Anders		
76	78/A_Fe_sil	European wildcat	Felis	silvestris	t	f	Nationalpark Harz Frank Raimer/ Ole Anders		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generat	nces
					<u>f</u> eces)			ATP6	СОІ
77	79/A_Pa_par_ori	Amur leopard	Panthera	pardus	h	f	Mr. Leif Blomqvist (Curator) Helsinki Zoo		
78	80/A_Ot_man	Pallas cat	Otocolobus	manul	h	m	Mr. Leif Blomqvist (Curator) Helsinki Zoo		
79	81/A_Ac_jub	Cheetah	Acinonyx	jubatus	t		IZW Tanja Noventa FG.1		
80	82/A_Ac_jub	Cheetah	Acinonyx	jubatus	t		IZW Tanja Noventa FG.1		
81	83/A_Ac_jub_so	Cheetah	Acinonyx	jubatus	t		IZW Tanja Noventa FG.1		
82	84/A_Pa_tem	Asian golden cat	Pardofelis	temminckii	t		IZW Tanja Noventa FG.1		
83	85/A_Pa_tem	Asian golden cat	Pardofelis	temminckii	t		IZW Tanja Noventa FG.1		
84	86/A_Pu_con	Puma	Puma	concolor	t		IZW Tanja Noventa FG.1		
85	87/A_Ot_man	Palla`s cat	Otocolobus	manul	t		IZW Tanja Noventa FG.1		
86	88/A_Ot_man	Palla`s cat	Otocolobus	manul	t		IZW Tanja Noventa FG.1		
87	89/A_Ot_man	Palla`s cat	Caracal	manul	t		IZW Tanja Noventa FG.1		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, Sex muscle <u>t</u> issue,	Source/Contact	Barcode sequences generated for:	
					<u>f</u> eces)		ATP6	СОІ
88	90/A_Ca_ser	Serval	Caracal	serval	t	IZW Tanja Noventa FG.1		
89	91/A_Fe_sil	European Wildcat	Felis	silvestris	t	IZW Tanja Noventa FG.1		
90	92/A_Fe_sil_go	Oman wildcat	Felis	silvestris	t	IZW Tanja Noventa FG.1		
91	93/A_Fe_ly	African wildcat	Felis	lybica	t	IZW Tanja Noventa FG.1		
92	94/A_Fe_ly	African wildcat	Felis	lybica	t	IZW Tanja Noventa FG.1		
93	95/A_Le_geo	Geoffroy`s cat	Leopardus	geoffroyi	t	IZW Tanja Noventa FG.1		
94	96/A_Ca_ser	Serval	Caracal	serval	b	IZW Tanja Noventa FG.1		
95	97/A_Ca_ser	Serval	Caracal	serval	b	IZW Tanja Noventa FG.1		
96	98/A_Ca_ser	Serval	Caracal	serval	t	IZW Tanja Noventa FG.1		
97	99/A_Ly_ruf	Bobcat	Lynx	rufus	t	IZW Tanja Noventa FG.1		
98	100/A_Ly_ruf	Bobcat	Lynx	rufus	t	IZW Tanja Noventa FG.1		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, Sex muscle <u>t</u> issue,	Source/Contact	Barco seque generate	nces
					<u>f</u> eces)		ATP6	СОІ
99	101/A_Ot_man	Palla`s cat	Otocolobus	manul	t	IZW Tanja Noventa FG.1		
100	102/A_Ot_man	Palla`s cat	Otocolobus	manul	t	IZW Tanja Noventa FG.1		
101	103/A_Pa_leo	Lion	Panthera	leo	t	IZW Tanja Noventa FG.1		
102	104/A_Pa_leo_pe	Lion	Panthera	leo	t	IZW Tanja Noventa FG.1		
103	105/A_Pa_leo_pe	Lion	Panthera	leo	b	IZW Tanja Noventa FG.1		
104	106/A_Pa_onc	Jaguar	Panthera	onca	b	IZW Tanja Noventa FG.1		
105	107/A_Pa_onc	Jaguar	Panthera	onca	t	IZW Tanja Noventa FG.1		
106	108/A_Pa_onc	Jaguar	Panthera	onca	t	IZW Tanja Noventa FG.1		
107	109/A_Pa_onc	Jaguar	Panthera	onca	t	IZW Tanja Noventa FG.1	_	
108	110/A_Pa_onc	Jaguar	Panthera	onca	b	IZW Tanja Noventa FG.1		
109	111/A_Pa_onc	Jaguar	Panthera	onca	b	IZW Tanja Noventa FG.1		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Source/Contact	Barco seque generate	nces
					<u>f</u> eces)		ATP6	СОІ
110	112/A_Pa_par	Leopard	Panthera	pardus	t	IZW Tanja Noventa FG.1		
111	113/A_Pa_par_ja	Leopard	Panthera	pardus	b	IZW Tanja Noventa FG.1		
112	114/A_Pa_par_ja	Leopard	Panthera	pardus	b	IZW Tanja Noventa FG.1		
113	115/A_Pa_par_ja	Leopard	Panthera	pardus	b	IZW Tanja Noventa FG.1		
114	116/A_Pa_par_me	Leopard	Panthera	pardus	t	IZW Tanja Noventa FG.1		
115	117/A_Pa_par_or	Leopard	Panthera	pardus	b	IZW Tanja Noventa FG.1		
116	118/A_Pa_par_or	Leopard	Panthera	pardus	b	IZW Tanja Noventa FG.1		
117	119/A_Pa_par_or	Leopard	Panthera	pardus	b	IZW Tanja Noventa FG.1		
118	120/A_Pa_par_or	Leopard	Panthera	pardus	b	IZW Tanja Noventa FG.1		
119	121/A_Pa_par_or	Leopard	Panthera	pardus	t	IZW Tanja Noventa FG.1		
120	122/A_Pa_par_or	Leopard	Panthera	pardus	t	IZW Tanja Noventa FG.1		

No.	Sample ID	Common Name	Genus	Species	muscie <u>t</u> issue,	ex Source/Contact	Barcode sequences generated for:	
					<u>f</u> eces)		ATP6	СОІ
121	123/A_Pa_tig_al	Tiger	Panthera	tigris	t	IZW Tanja Noventa FG.1		
122	124/A_Pa_tig_al	Tiger	Panthera	tigris	t	IZW Tanja Noventa FG.1		
123	125/A_Pa_tig_co	Tiger	Panthera	tigris	t	IZW Tanja Noventa FG.1		
124	126/A_Pa_tig_su	Tiger	Panthera	tigris	t	IZW Tanja Noventa FG.1		
125	127/A_Pa_tig_su	Tiger	Panthera	tigris	t	IZW Tanja Noventa FG.1		
126	128/A_Pa_tig_ti	Tiger	Panthera	tigris	t	IZW Tanja Noventa FG.1		
127	129/A_Pa_tig_ti	Tiger	Panthera	tigris	t	IZW Tanja Noventa FG.1		
128	130/A_Pr_ben	Asian leopard cat	Prionailurus	bengalensis	t	IZW Tanja Noventa FG.1		
129	131/A_Pr_ben	Asian leopard cat	Prionailurus	bengalensis	t	IZW Tanja Noventa FG.1		
130	132/A_Pr_rub	Rusty-spotted cat	Prionailurus	rubiginosus	t	IZW Tanja Noventa FG.1		
131	133/A_Pr_viv	Fishing cat	Prionailurus	viverrinus	t	IZW Tanja Noventa FG.1		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generate	nces
					<u>f</u> eces)			ATP6	COI
132	134/A_Pr_viv	Fishing cat	Prionailurus	viverrinus	t		IZW Tanja Noventa FG.1		
133	135/A_Pr_viv	Fishing cat	Prionailurus	viverrinus	t		IZW Tanja Noventa FG.1		
134	136/A_Pr_viv	Fishing cat	Prionailurus	viverrinus	t		IZW Tanja Noventa FG.1		
135	137/A_Pu_con	Puma	Puma	concolor	b		IZW Tanja Noventa FG.1		
136	138/A_Pu_con	Puma	Puma	concolor	b		IZW Tanja Noventa FG.1		
137	139/A_Pu_con	Puma	Puma	concolor	b		IZW Tanja Noventa FG.1		
138	140/A_Pr_viv	Fishing cat	Prionailurus	viverrinus	t	m	IZW Jennifer Ringleb FG 4		
139	141/A_Ot_man	Palla`s cat	Otocolobus	manul	t	m	IZW Jennifer Ringleb FG 4		
140	142/A_Le_par	Ocelot	Leopardus	pardalis	t	m	IZW Jennifer Ringleb FG 4		
141	143/A_Le_par	Ocelot	Leopardus	pardalis	t	m	IZW Jennifer Ringleb FG 4		
142	144/A_Pu_con	Puma	Puma	concolor	t	m	IZW Jennifer Ringleb FG 4		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generate	nces
					<u>f</u> eces)			ATP6	СОІ
143	145/A_Fe_sil	European Wildcat	Felis	silvestris	t	m	IZW Jennifer Ringleb FG 4		
144	146/A_Ly_lyn	Eurasian lynx	Lynx	lynx	t	m	IZW Jennifer Ringleb FG 4		
145	147/A_Pa_tig_al	Tiger	Panthera	tigris	t	m	IZW Jennifer Ringleb FG 4		
146	148/A_Pa_par_sa	Leopard	Panthera	pardus	t	m	IZW Jennifer Ringleb FG 4		
147	149/A_Pa_onc	Jaguar	Panthera	onca	t	m	IZW Jennifer Ringleb FG 4		
148	150/A_Pa_tig_al	Tiger	Panthera	tigris	t	m	IZW Jennifer Ringleb FG 4		
149	151/A_Pa_leo_pe	Lion	Panthera	leo	t	m	IZW Jennifer Ringleb FG 4		
150	152/A_Pa_tem	Asian golden cat	Pardofelis	temminckii	t	m	IZW Jennifer Ringleb FG 4		
151	153/A_Pa_tig_al	Tiger	Panthera	tigris	t	m	IZW Jennifer Ringleb FG 4		
152	154/A_Pr_rub	Rusty-spotted cat	Prionailurus	rubiginosus	t	m	IZW Jennifer Ringleb FG 4		
153	155/A_Pa_tig_al	Tiger	Panthera	tigris	t	m	IZW Jennifer Ringleb FG 4		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generate	nces
					<u>f</u> eces)			ATP6	COI
154	156/A_Pa_tig_al	Tiger	Panthera	tigris	t	m	IZW Jennifer Ringleb FG 4		
155	157/A_Pa_unc	Snowleopard	Panthera	uncia	t	m	IZW Jennifer Ringleb FG 4		
156	158/a_Pa_leo	Lion	Panthera	leo	t	m	IZW Jennifer Ringleb FG 4		
157	159/A_Pa_par_or	Leopard	Panthera	pardus	t	m	IZW Jennifer Ringleb FG 4		
158	160/A_Ac_jub	Cheetah	Acinonyx	jubatus	t	m	IZW Jennifer Ringleb FG 4		
159	161/A_Pa_tig_su	Tiger	Panthera	tigris	t	m	IZW Jennifer Ringleb FG 4		
160	162/A_Pa_par_or	Leopard	Panthera	pardus	t	m	IZW Jennifer Ringleb FG 4		
161	163/A_Pa_par_me	Leopard	Panthera	pardus	t	m	IZW Jennifer Ringleb FG 4		
162	164/A_Pa_leo_le	Lion	Panthera	leo	t	m	IZW Jennifer Ringleb FG 4		
163	165/A_Pa_tig_ti	Tiger	Panthera	tigris	t	m	IZW Jennifer Ringleb FG 4		
164	166/A_Pa_tig	Tiger	Panthera	tigris	t	m	IZW Jennifer Ringleb FG 4		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generato	nces
					<u>f</u> eces)			ATP6	соі
165	167/A_Pa_leo	Lion	Panthera	leo	t	m	IZW Jennifer Ringleb FG 4		
166	168/A_Pa_par_ja	Leopard	Panthera	pardus	t	m	IZW Jennifer Ringleb FG 4		
167	169/A_Pa_par_or	Leopard	Panthera	pardus	f	f	IZW Jennifer Ringleb FG 4		
168	170/A_Pa_par_or	Leopard	Panthera	pardus	f	m	IZW Jennifer Ringleb FG 4		
169	171/A_Pa_par_or	Leopard	Panthera	pardus	f	f	IZW Jennifer Ringleb FG 4		
170	172/A_Pa_tig_su	Tiger	Panthera	tigris	f	f	IZW Jennifer Ringleb FG 4		
171	173/A_Pa_tig_su	Tiger	Panthera	tigris	f	f	IZW Jennifer Ringleb FG 4		
172	174/A_Pa_tig_al	Tiger	Panthera	tigris	f	f	IZW Jennifer Ringleb FG 4		
173	175/A_Pa_tig_al	Tiger	Panthera	tigris	f	m	IZW Jennifer Ringleb FG 4		
174	176/A_Ly_ruf	Bobcat	Lynx	rufus	f	f	IZW Jennifer Ringleb FG 4		
175	177/A_Ly_par	Iberian lynx	Lynx	pardinus	f	m	IZW Jennifer Ringleb FG 4		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generate	nces
					<u>f</u> eces)			ATP6	СОІ
176	178/A_Ly_par	Iberian lynx	Lynx	pardinus	f	m	IZW Jennifer Ringleb FG 4		
177	179/A_Fe_mar	Desert cat	Felis	margarita	f	f	IZW Jennifer Ringleb FG 4		
178	180/A_Fe_mar	Desert cat	Felis	margarita	f	f	IZW Jennifer Ringleb FG 4		
179	181/A_Le_tig	Tigrina	Leopardus	tigrinus	f	?	IZW Jennifer Ringleb FG 4		
180	182/A_Pr_rub	Rusty-spotted cat	Prionailurus	rubiginosus	f	f	IZW Jennifer Ringleb FG 4		
181	183/A_Pr_rub	Rusty-spotted cat	Prionailurus	rubiginosus	f	f	IZW Jennifer Ringleb FG 4		
182	184/A_Fe_nig	Black-footed cat	Felis	nigripes	f		IZW Jennifer Ringleb FG 4		
183	185/A_Fe_nig	Black-footed cat	Felis	nigripes	f		IZW Jennifer Ringleb FG 4		
184	186/A_Pa_par_ja	Leopard	Panthera	pardus	f		IZW Jennifer Ringleb FG 4		
185	187/A_Pa_par_me	Leopard	Panthera	pardus	f		IZW Jennifer Ringleb FG 4		
186	188/A_Pa_par_me	Leopard	Panthera	pardus	f		IZW Jennifer Ringleb FG 4		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generat	nces
					<u>f</u> eces)			ATP6	СОІ
187	189/A_Pa_tig_al	Tiger	Panthera	tigris	t		IZW Jennifer Ringleb FG 4		
188	190/A_Fe_cat	Domestic cat	Felis	catus	t		IZW Jennifer Ringleb FG 4		
189	191/A_Fe_cat	Domestic cat	Felis	catus	t		IZW Jennifer Ringleb FG 4		
190	192/A_Fe_cat	Domestic cat	Felis	catus	t		IZW Jennifer Ringleb FG 4		
191	193/A_Ot_man	Palla`s cat	Otocolobus	manul	t	m	Kathrin Witzensberger Trier Tierpark Berlin		
192	194/A_Ot_man	Palla`s cat	Otocolobus	manul	h	f	Kathrin Witzensberger Trier Zoo Moscow		
193	195/A_Ot_man	Palla`s cat	Otocolobus	manul	h	m	Kathrin Witzensberger Trier Zoo Moscow		
194	196/A_Fe_mar	Desertcat	Felis	margarita	t	f	Kathrin Witzensberger Trier Zoo Osnabrück		
195	197/A_Fe_mar	Desertcat	Felis	margarita	t	m	Kathrin Witzensberger Trier Zoo Wuppertal		
196	198/A_Fe_mar	Desertcat	Felis	margarita	t	f	Kathrin Witzensberger Trier Zoo Wuppertal		
197	199/A_Fe_sil_go	Oman wildcat	Felis	silvestris	h	m	Kathrin Witzensberger Trier		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generato	nces
					<u>f</u> eces)			ATP6	СОІ
198	200/A_Fe_sil_go	Oman wildcat	Felis	silvestris	h	f	Kathrin Witzensberger Trier		
199	201/A_Fe_sil_go	Oman wildcat	Felis	silvestris	h	m	Kathrin Witzensberger Trier Parc des felins, France		
200	202/A_Fe_nig	Black-footed cat	Felis	nigripes	t	f	Kathrin Witzensberger Trier Zoo Wuppertal		
201	203/A_Fe_nig	Black-footed cat	Felis	nigripes	t	m	Kathrin Witzensberger Trier Zoo Wuppertal	_	
202	204/A_Fe_nig	Black-footed cat	Felis	nigripes	t	m	Kathrin Witzensberger Trier Zoo Wuppertal		
203	205/A_Pa_leo	Lion	Panthera	leo	b	m	Zoo Köln		
204	206/A_Pa_tig_al	Tiger	Panthera	tigris	h	m	Tierpark Hagenbeck		
205	207/A_Pa_leo_pe	Lion	Panthera	leo	h	m	Mr. Leif Blomqvist (Curator) Helsinki Zoo		
206	208/A_Pa_leo_pe	Lion	Panthera	leo	h	m	Mr. Leif Blomqvist (Curator) Helsinki Zoo		
207	209/A_Pa_leo_pe	Lion	Panthera	leo	h	f	Mr. Leif Blomqvist (Curator) Helsinki Zoo		
208	210/A_Pa_leo_pe	Lion	Panthera	leo	h	f	Mr. Leif Blomqvist (Curator) Helsinki Zoo		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generate	nces
					<u>f</u> eces)			ATP6	COI
209	211/A_Pa_par_ori	Amurleopard	Panthera	pardus	h	m	Mr. Leif Blomqvist (Curator) Helsinki Zoo		
210	212/A_Fe_sil	European wildcat	Felis	silvestris	t	f	Veterinärpathologie Zürich Prof. Dr. Pospischil		
211	213/A_Fe_sil	European wildcat	Felis	silvestris	t		Nationalpark Harz Frank Raimer/ Ole Anders		
212	214/A_Fe_cat	Domestic cat	Felis	catus	t		Nationalpark Harz Frank Raimer/ Ole Anders		
213	215/A_Fe_sil	European wildcat	Felis	silvestris	t		Nationalpark Harz Frank Raimer/ Ole Anders		
214	216/A_Fe_sil	European wildcat	Felis	silvestris	t		Nationalpark Harz Frank Raimer/ Ole Anders		
215	217/A_Ly_lyn_ly	Eurasian lynx	Lynx	lynx	t	f	Nationalpark Harz Frank Raimer/ Ole Anders		
216	218_Pr_rub-phi	Rusty-spotted cat	Prionailurus	rubiginosus	h		Zoologischer Garten Frankfurt Frau Dr. Geiger		
217	219_Le_par	Ocelot	Leopardus	pardalis	h	f	Zoo Stralsund Dr. Langner		
218	220_Le_par	Ocelot	Leopardus	pardalis	h	m	Zoo Stralsund Dr. Langner		
219	221_Pr_ben	Asian leopard cat	Prionailurus	bengalensis	h	m/f	Zoo Augsburg Dr. Jantschke		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generate	nces
					<u>f</u> eces)			ATP6	СОІ
220	222_Pu_con	Puma	Puma	concolor	h	f	Zoo Bremerhaven Dr. Schöne		
221	223_Pr_rub	Rusty-spotted cat	Prionailurus	rubiginosus	h	f	Zoo Frankfurt Dr. Schauerte		
222	224_Pa_unc	Snowleopard	Panthera	unica	h		Zoo Wuppertal Dr. A Stadler		
223	225_Ly_ly_wr	Sibirian lynx	Lynx	lynx	h		Zoo Wuppertal Dr. A Stadler		
224	226_Le_geo	Geoffroy`s cat	Leopardus	geoffroyi	h		Zoo Wuppertal Dr. A Stadler		
225	227_Pa_par_fu	Indian Leopard	Panthera	pardus	h		Zoo Wuppertal Dr. A Stadler		
226	228_Fe_ly_go	Oman wildcat	Felis	lybica	h		Zoo Wuppertal Dr. A Stadler		
227	229_Pa_leo	Lion	Panthera	leo	h		Zoo Wuppertal Dr. A Stadler		
228	230_Pa_par_fu	Leopard	Panthera	pardus	h		Zoo Wuppertal Dr. A Stadler		
229	231_Pa_tem	Asian golden cat	Pardofelis	temminckii	h		Zoo Wuppertal Dr. A Stadler		
230	232_Ne_neb	Clouded leopard	Neofelis	nebulosa	h		Zoo Wuppertal Dr. A Stadler		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generate	nces
					<u>f</u> eces)			ATP6	СОІ
231	233_Ac_jub	Cheetah	Acinonyx	jubatus	h		Zoo Wuppertal Dr. A Stadler		
232	234_Le_tig	Tigrina	Leopardus	tigrina	h		Zoo Wuppertal Dr. A Stadler		
233	235_Pa_tig_al	Tiger	Panthera	tigris	h		Zoo Wuppertal Dr. A Stadler		
234	236/A_Pa_onc	Jaguar	Panthera	onca	h	m	Zoo Landau Dr. C. Schubert		
235	237/A_Ac_jub_so	Cheetah	Acinonyx	jubatus	h	m	Zoo Landau Dr. C. Schubert	_	
236	238/A_Ac_jub_so	Cheetah	Acinonyx	jubatus	h	f	Zoo Landau Dr. C. Schubert	_	
237	239/A_Ac_jub_so	Cheetah	Acinonyx	jubatus	h	m	Zoo Landau Dr. C. Schubert		
238	240/A_Le_geo	Geoffroy`s cat	Leopardus	geoffroyi	h		Bad Kösen Tierpark Herr Scherling		
239	241/A_Pr_ben	Asian leopard cat	Prionailurus	bengalensis	h, b, t	m	Zoo Heidelberg Dr. Scharpegge		
240	242/A_Ca_ser	Serval	Caracal	serval	h	m	Zoo Hoyerswerda Fr. Dr. Häfner		
241	243_Pu_con	Puma	Puma	concolor	h	?	Parkenzoo Sweden, Jennie Westander		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue, <u>f</u> eces)	Sex	Source/Contact	Barco seque generate	nces
								ATP6	COI
242	244_Ot_man	Pallas cat	Otocolobus	manul	h	?	Parkenzoo Sweden, Jennie Westander		
243	245_Fe_mar	Desert cat	Felis	margarita	h	?	Parkenzoo Sweden, Jennie Westander		
244	246_Pa_par_sa	Leopard	Panthera	pardus	h	?	Allwetterzoo Münster Dr. Wewers		
245	247_Ca_car	Caracal	Caracal	caracal	h	m	Grégory Breton, Curator at LE PARC DES FELINS, France		
246	248_Ca_car	Caracal	Caracal	caracal	h	f	Grégory Breton, Curator at LE PARC DES FELINS, France		
247	249_Ca_car	Caracal	Caracal	caracal	h	f	Grégory Breton, Curator at LE PARC DES FELINS, France		
248	250_Le_geo	Geoffroy`s cat	Leopardus	geoffroyi	h	m	Grégory Breton, Curator at LE PARC DES FELINS, France		
249	251_Le_geo	Geoffroy`s cat	Leopardus	geoffroyi	h	m	Grégory Breton, Curator at LE PARC DES FELINS, France		
250	252_Le_par	Ocelot	Leopardus	pardalis	h	m	Grégory Breton, Curator at LE PARC DES FELINS, France		
251	253_Le_tig	Tigrina	Leopardus	tigrinus	h	m	Grégory Breton, Curator at LE PARC DES FELINS, France		
252	254_Le_tig	Tigrina	Leopardus	tigrinus	h	m	Grégory Breton, Curator at LE PARC DES FELINS, France		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generate	nces
					<u>f</u> eces)			ATP6	соі
253	255_Le_tig	Tigrina	Leopardus	tigrinus	h	f	Grégory Breton, Curator at LE PARC DES FELINS, France		
254	256_Le_tig	Tigrina	Leopardus	tigrinus	h	f	Grégory Breton, Curator at LE PARC DES FELINS, France		
255	257_Le_wie	Margay	Leopardus	wiedii	h	m	Grégory Breton, Curator at LE PARC DES FELINS, France		
256	258_Le_wie	Margay	Leopardus	wiedii	h	m	Grégory Breton, Curator at LE PARC DES FELINS, France		
257	259_Le_wie	Margay	Leopardus	wiedii	h	f	Grégory Breton, Curator at LE PARC DES FELINS, France		
258	260_Le_wie	Margay	Leopardus	wiedii	h	f	Grégory Breton, Curator at LE PARC DES FELINS, France		I
259	261_Ly_lyn	Eurasian lynx	Lynx	lynx	h	m	Grégory Breton, Curator at LE PARC DES FELINS, France		
260	262_Pu_yag	Jaguarundi	Puma	yaguarundi	h	m	Grégory Breton, Curator at LE PARC DES FELINS, France		
261	263_Pu_yag	Jaguarundi	Puma	yaguarundi	h	m	Grégory Breton, Curator at LE PARC DES FELINS, France		
262	264_Pu_yag	Jaguarundi	Puma	yaguarundi	h	f	Grégory Breton, Curator at LE PARC DES FELINS, France		
263	265_Pu_yag	Jaguarundi	Puma	yaguarundi	h	f	Grégory Breton, Curator at LE PARC DES FELINS, France		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue,	Sex	Source/Contact	Barco seque generato	nces
					<u>f</u> eces)			ATP6	COI
264	266_Ot_man	Palla's cat	Otocolobus	manul	h	f	Grégory Breton, Curator at LE PARC DES FELINS, France		
265	267_Fe_lyb	African wildcat	Felis	lybica	h	f	Grégory Breton, Curator at LE PARC DES FELINS, France	_	
266	268_Fe_mar	Desert cat	Felis	margarita	h	m	Grégory Breton, Curator at LE PARC DES FELINS, France		
267	269_Fe_mar	Desert cat	Felis	margarita	h	m	Grégory Breton, Curator at LE PARC DES FELINS, France		
268	270_Fe_mar	Desert cat	Felis	margarita	h	m	Grégory Breton, Curator at LE PARC DES FELINS, France		
269	271_Pa_par	Leopard	Panthera	pardus	h	?	Rebecca Ray, Zambia Luambe NP		
270	272_Pa_par	Leopard	Panthera	pardus	h	?	Rebecca Ray, Zambia Luambe NP		
271	273_Pa_par	Leopard	Panthera	pardus	h	?	Rebecca Ray, Zambia Luambe NP		
272	274_Pa_par	Leopard	Panthera	pardus	t	?	Rebecca Ray, Zambia Luambe NP		
273	275_Pa_par	Leopard	Panthera	pardus	t	?	Rebecca Ray, Zambia Luambe NP		
274	276_Pa_par	Leopard	Panthera	pardus	t	?	Rebecca Ray, Zambia Luambe NP		

No.	Sample ID	Common Name	Genus	Species	Sample material (<u>h</u> air, <u>b</u> lood, muscle <u>t</u> issue, <u>f</u> eces)	Sex	Source/Contact	Barco seque generate ATP6	nces
275	277_Pu_con	Puma	Puma	concolor	h	W	Zoo Bremerhaven Dr. Schöne		
276	278_Pu_con	Puma	Puma	concolor	h	w	Zoo Bremerhaven Dr. Schöne		
277	279_Pu_con	Puma	Puma	concolor	h	m	Zoo Bremerhaven Dr. Schöne		

Table S1. Characterization of the size, similarity, and nucleotide substitution patterns from pairwise comparison of COI cymt and putative numt sequences.

Genus	Species	Common		Size	(bp)	Changes bewteen cymt and numt (bp)		Number of	Base pair insertions	Number of stop	Blast Hit	Numt Genbank	Reference
Genus	Opecies	name	COI sequences	cymt	numt	Subst.	Gaps	haplotypes	(bp)	codons	Diast fiit	Accession number	Kelerence
Panthera	tigris	Tiger	18	658	663	65	5	1	5	2	99% (Tiger- numt)	DQ151551	[35]
Panthera	leo	Lion	4	658	658	n.a.	0	1	0	0	97% (Tiger- numt)	DQ151552	[35]
Felis	catus	Dometic cat	4	658	658	47	0	3	0	1	99% (Cat-numt)	U20754	[17]
Felis	silvestris	European wild cat	10	658	658	n.a.	0	3	0	1	100 & 99 % (Cat- numt)	U20755	[17]
Felis	libyca	African wild cat	2	658	658	n.a.	0	2	0	1	100% (Cat- numt)	U20756	[17]
Otocolobus	manul	Pallas cat	4	658	658	n.a.	0	1	0	8	n.a.	n.a.	n.a.

Appendix 2. ATP6 and COI sequence alignments

Consensus	1 10 20 TTCACTACCCCAACAATAATA	30 	40 	50 1 1 TT 1 TT C	60 1 10 10 10 10 10 10 10 10 10 10 10 10 10 1	70 אדדרכי כיידר:	80 A CC CAA CCG3	90	100	110	120 126
1. BCATS221-11/237 Ac jub solAcinonyx	TTCACTACCCCAACAATAAT	GG AC IG CCT AT IG	TOG TATTAAT TA	ATTATATT	CCAGCATTCT	ATTCCCCTC	G CC CAG TCG 7	A CTA AT TAA TA AC	OGCCTAGT	CTCACTCCAGCA	AGTGACTAGTA
2. BCATS222-11/238_Ac_jub_so/Acinonyx	T TCA CT AC CCC AA CA ATA AT A T TCA TT AC CCC AA CA ATA AT A										
4. BCATS005-10/32_Ac_jub/Acinonyx	T TCA TT AC CCC AA CA ATA AT A T TCA TT AC CCC AA CA ATA AT A										
 BCATS007-10134 - Ac_ublAcinonyx BCATS007-10134 - Ac_ublAcinonyx BCATS008-10135 - Ac_ublAcinonyx BCATS009-10136 - Ac_ublAcinonyx BCATS010-1013 - Ac_ublAcinonyx BCATS010-1011 - Ac_ublAcinonyx BCATS011-1011 - Ac_ublAcinonyx 	T TCA TT AC CCC AA CA ATA AT A T TCA TT AC CCC AA CA ATA AT A	GG AC TG CCT AT TG	TTATATTAATCA	ATTATATTCC	CCAAGTATTCT	ATTTCCATC	G CC CAA CCG /	A CTG AT TAA TA AC	OGCCTAAT	CT CA CTG CA AC A	AATGACTAGTA
8. BCATS009-10[36_Ac_jub]Acinonyx	T TCA TT AC CCC AA CA ATA ATA	GG AC IG CCT AT IG	TTATATTAATCA	ATTATATTCO	CCAAGTATTCT	ATT TC CAT α	G CC CAA CCG /	ACTG AT TAA TAAC	CCCTAAT	CT CACIG CAAC P	AATGACTAGTA
9. BCATS010-10 3_Ac_jub Acinonyx 10. BCATS001-10 T1_Ac_iub Acinonyx	T TCA TT AC CCC AA CA ATA AT A T TCA TT AC CCC AA CA ATA AT A										
11. BCATS011-1081_Ac_jub Acinonýx	T TCA TTAC CCC AA CAATAAT# T TCA TTAC CCC AA CAATAAT#										
13. BCATS012-10182_AC_jub_solAcinonyx	T TCA TT AC CCC TA CAATAATA	GG AC TG CCT AT TG	TTATATTAATCA	ATTATATTCO	CCAAGTATTCT	ATTCCCATC	G CC CAA CCG2	ACTG AT TAA TAAC	OGCCTAAT	CT CACIG CAAC A	AATGACTAGTA
15. BCATS002-10[160_Ac_jub]Acinonyx	T TCA TT AC CCC AA CA ATA AT A T TCA TT AC CCC AA CA ATA AT A	GG AC TG CCT AT TG	TTATATTAATCA	ATTATATTCO	CCAAGTATTCT	ATT TC CAT α	G CC CAA CCG /	ACTG AT TAA TAAC	CCCTAAT	CT CACTG CAAC A	AATGACTAGTA
10. BCATS001-10111_AC_JubJAcinonyx 11. BCATS011-1081_AC_JubJAcinonyx 12. BCATS012-1082_AC_JubJAcinonyx 13. BCATS013-1083_AC_Jub_solAcinonyx 14. BCATS002-10160_AC_jubJAcinonyx 15. BCATS003-1011_AC_jubJAcinonyx 16. BCATS218-11247_Ca_carlCaracal 17. BCATS218-11248_Ca_carlCaracal 18. BCATS220-11249_Ca_carlCaracal 19. BCATS210-11248_Ca_carlCaracal 19. BCATS210-11248_Ca_carlCaracal	T TCA CT AC CCCAA CAATAAT# T TCA CT AC CCC AA CAATAAT#										
18. BCATS220-11 249 Ca_car Caracal 19. BCATS217-11 242 Ca_ser Caracal	T TCA CT AC CCC AA CA ATA AT # T TCA CT AC CCC AA CA ATA AT #										
20. BCATS014-10 90 Ca_ser Caracal	TTCACTACCCCAACAATAATA	GG AC TA CCT AT TG	TTATTCTAATC	ATCATATTCC	CCAAGTATTAT	ATT TC CTT C	A CC CAA TCG /	ACTAATTAACAAC	CCCTAAT	CTCATTACAACA	AATGACTAGTA
21. BCATS015-1096 Ca_ser Caracal 22. BCATS016-1097 Ca_ser Caracal	T TCA CT AC CCC AA CA ATA AT A T TCA CT AC CCC AA CA ATA AT A	GG AC TA CCT AT IG	TTATTCTAATC	ATCATATTCO	CCAAGTATTAT	ATTTCCTTC	ACCCAATCG?	ACTAATTAACAAC	CCTAAT	CTCATTACAACA	AATGACTAGTA
23. BCATS017-10 98 Ca_ser Caracal 24. BCATS021-10 214 Fe_cat Felis	T TCA CT AC CCCAA CA ATA ATA T TCA CT AC CCC AA CA ATA ATA										
25. BCATS018-10 190 Fe_cat Felis 26. BCATS019-10 191 Fe_cat Felis	T TCA CT AC CCC AA CA ATA AT A T TCA CT AC CCC AA CA ATA AT A	GG AT TA CCT AT TG	TTATTTTATT	ATTATATT	CCAAGTATTCT	ATTCCCTTC	ACC TAACCG /	ACTAAT TAA TAAC	CGTCTAGT	FTCACTCCAACA	AATGACTAGTA
21. BCATS015-10/96 Ca_ser/Caracal 22. BCATS016-10/97 Ca_ser/Caracal 23. BCATS017-10/98 Ca_ser/Caracal 24. BCATS021-10/214 Fe_cat/Felis 25. BCATS018-10/190 Fe_cat/Felis 26. BCATS019-10/191 Fe_cat/Felis 27. BCATS020-10/192 Fe_cat/Felis 28. BCATS211-11/268 Fe_mar/Felis 29. BCATS211-11/268 Fe_mar/Felis 29. BCATS211-11/268 Fe_mar/Felis	TTCACTACCCCAACAATAAT	GG AT TA CCT AT TG	TTATTTTAATT	ATTATATT	CCAAGCATTTT	ATTCCCTTC	ACC TAACCG?	ACTAAT TAA TAAC	OGTCTAGT	IT CACTC CAAC P	AATGACTAGTA
28. BCATS211-11/268_Fe_mar Felis 29. BCATS213-11/269_Fe_mar Felis	T TCA CT AC CCC AA CA ATA AT A T TCA CT AC CCC AA CA ATA AT A	GG AC TA CCT AT TG	TTATTTTAATT	ATTATATT	CCAAGTATTTT	ATTTCCTTC	G CC TAA CCG2	ACTAATCAA TAAC	OGTTTAGT	FT CACTC CAAC P	AATGACTAGTA
29. BCATS213-11/209_Fe_Inal Felis 30. BCATS212-11/270_Fe_mar Felis 31. BCATS024-1014_Fe_mar Felis 32. BCATS025-10179_Fe_mar Felis 33. BCATS026-10180_Fe_mar Felis 34. BCATS027-10196_Fe_mar Felis 35. BCATS027-10196_Fe_mar Felis	T TCA CT AC CCC AA CA ATA AT # T TCA CT AC CCC AA CA ATA AT #										
32. BCATS025-10179_Fe_mar Felis	T TCA CT AC CCC AA CA ATA AT A T TCA CT AC CCC AA CA ATA AT A	GG AC TA CCT AT TG	TTATTTTAATT	ATTATATT	CC AAG TA TT TT	ATT TC CTT C	G CC TAA CCG /	ACTAATCAATAAC	OGTCTAGT	IT CACTC CAAC A	AATGACTAGTA
33. BCATS026-10 180_Fe_marFelis 34. BCATS027-10 196_Fe_marFelis	T TCA CT AC CCC AA CA ATA ATA	GG AC TA CCT AT TG	TTATTTTAATT	A TTA TA TT TC	CC AAG TA TT TT	ATT TC CTT C	G CC TAA CCG /	ACTAATCAATAAC	OGTCTAGT	PT CACTCCAAC A	AATGACTAGTA
35. BCATS028-10 197 ⁻ Fe ⁻ mar Felis 36. BCATS029-10 198 ⁻ Fe ⁻ mar Felis	T TCA CT AC CCC AA CAATAAT# T TCA CT AC CCC AA CAATAAT#										
	T TCA CT AC CCC AA CA ATA AT A T TCA CT AC CCC AA CA ATA AT A	GG AC TG CCT AT TG	TTATCTTAATC	ATTATG TT TO	CAAGTATTT	ATT TC CTT C	A CC CAG CCG 7	A CTA AT TAA CA AC	CGCCTAAT	TT CG CTA CA AC A	AATGA TT AGTG
39. BCATS033-10 204 Fe nig Felis	TTCACTACCCCAACAATAAT	GG AC TG CCT AT TG	TTATCTTAATC	ATTATG TT TO	CCAAGTATTTT	ATT TC CTT C	A CC CAG CCG2	ACTAATTAACAAC	CCCTAAT	IT OG CTACAAC <i>A</i>	AATGATTAGTG
40. BCATS030-10 184 ⁻ Fe ⁻ niğ Felis 41. BCATS037-10 201 ⁻ Fe ⁻ sil go Felis	T TCA CT AC CCC AA CA ATA AT# T TCA CT AC CCC AA CA ATA AT#										
42. BCATS038-10 212_Fe_sil Felis 43. BCATS039-10 213_Fe_sil Felis	T TCA CT AC CCC AA CA ATA ATA T TCA CT AC CCC AA CA ATA ATA										
44. BCATS040-10215_Fe_sil Felis 45. BCATS041-10216_Fe_sil Felis	T TCA CT AC CCC AA CA ATA AT A T TCA CT AC CCC AA CA ATA AT A	GG AT TA CCT AT TG	TTATTTTAATT	ATTATATT	CCAAGTATTTT	ATTCCCTTC	ACC TAACCG?	ACTAAT TAA TAAC	CGTCTAGT	PT CACTC CAAC P	AATGACTAGTA
46. BCATS216-11/267 Fe_sillFelis 47. BCATS216-11/267 Fe_sillFelis	TTCACTACCCCAACAATAAT	GG AC TG CCT AT TG	TOG TATTAAT TA	ATTATATT	CCCAGCATTCT	ATTCCCCTC	G CC CAG TCG2	A CTA AT TAA TA AC	CCCTAGT	CT CACTC CAGC P	AGTGACTAGTA
47. BCATS044-10 62_Fe_sil Felis 48. BCATS045-10 66_Fe_sil Felis	T TCA CT AC CCCAA CAATAAT# T TCA CT AC CCC AA CAATAAT#										
41. BCATS045-1066 Fe_sil Felis 49. BCATS045-1066 Fe_sil Felis 50. BCATS046-1067 Fe_sil Felis 51. BCATS047-1076 Fe_sil Felis 51. BCATS048-1077 Fe_sil Felis 52. BCATS049-1078 Fe_sil Felis 53. BCATS050-1091 Fe_sil Felis 54. BCATS050-1091 Fe_sil Felis	T TCA CT AC CCC AA CA ATA AT A T TCA CT AC CCC AA CA ATA AT A										
51. BCATS048-10 77 Fe_sil Felis	T TCA CT AC CCC AA CAATAATA T TCA CT AC CCC AA CAATAATA	GG AT TA CCT AT TG	TTATTTTAATT	ATTATATT	CCAAGTATTTT	ATTCCCTTC	ACC TAACCG?	ACTAAT TAA TAAC	CGTCTAGT	IT CACTC CAAC A	AATGACTAGTA
53. BCATS050-10/91_Fe_sil/Felis	TTCACTACCCCAACAATAATA	GG AT TA CCT AT TG	TTATTTTAATT	ATTATATT	CAAGTATTT	ATTCCCTTC	ACC TAACCG?	ACTAATTAATAAC	CGTCTAGT	FT CACTC CAAC P	AATGACTAGTA
	T TCA CT AC CCCAA CA ATA ATA T TCA CT AC CCCAA CA ATA ATA	GG AT TA CCT AT TG	TTATTTTAATT	ATTATATT	CCAAGTATTT	ATTCCCTTC	ACC TAACCG?	ACTAAT TAA TAAC	CGTCTAGT	IT CACTC CAAC A	AATGACTAGTA
54. BCATS031-1092_re_sil_g0[relis 55. BCATS034-10]44_re_jvb[relis 56. BCATS034-10]145_re_sil[Felis 57. BCATS035-10]199_re_sil_g0[relis 58. BCATS036-10]200_re_sil_g0[relis 59. BCATS210-11]226_Le_geo]Leopardus 60. BCATS209-11]240_Le_geo]Leopardus 61. BCATS209-11]240_Le_geo]Leopardus	T TCA CT AC CCC AA CA ATA AT A T TCA CT AC CCC AA CA ATA AT A										
58. BCATS036-10 200 Fe_sil_go Felis 59. BCATS210-11 226 Le_geolLeopardus	T TCA CT AC CCC AA CA ATA AT A T TCA CT AC CCC AA CA ATA AT A	GG AT TA CCT AT TG	TTATTTTAATT	ATTATATT	CAAGTATTT	ATTCCCTTC	ACC TAACCG?	ACTAAT TAA TAAC	CGTCTAGT	IT CACTC CAAC P	AATGACTAGTA
60. BCATS209-11 240_Le_geo Leopardus	T TCA CT AC CCC AA CA ATA ATA	GG AC TG CCT AT TG	TOG TATTAAT TA	ATTATATT	CCCAGCATTCT	ATTCCCCTC	G CC CAG TCG 2	A CTA AT TAA TA AC	OGCCTAGT	CTCACTCCAGCA	AGTGACTAGTA
of DCATO200-TT250_Le_geolLeopaidus	T TCA CT AC CCC AA CAATAAT# T TCA CT AC CCC AA CAATAAT#	GG AC TA CCT AT TG	TCATTTTAATT	ATTATATTCC	CCAAGCATTCT	GTTCCCTTC	A CC CAA CCG?	ACTAATTAATAAT	CCCTAGT	CTCACTACAACA	AATGACTAGTA
63. BCATS053-10 95 Le geo Leopardus	T TCA CT AC CCC AA CA ATA AT # T TCA CT AC CCC AA CA ATA AT #										
65. BCATS205-11 234 Le_tiglLeopardus	T TCA CT AC CCC AA CA ATA ATA T TCA CT AC CCC AA CA ATA ATA	GG AC TG CCT AT TG	TCG TATTAAT TA	ATTATATT	CCAGCATTCT	ATT CC CCT C	G CC CAG TCG I	A CTA AT TAA TA AC	OGCCTAGT	CTCACTCCAGC	AGTGACTAGTA
67. BCATS200-11/254_Le_tiglLeopardus	T TCA CT AC CCC AA CA ATA ATA	GG AC TG CCT AT TG	TOG TATTAAT TA	ATTATATT	CCCAGCATTCT	ATTCCCCTC	G CC CAG TCG A	ACTAATTAATAAC	OGCCTAGT	CTCACTCCAGCA	AGTGACTAGTA
 62. BCATS052-10170 Le geolLeopardus 63. BCATS053-1095 Le geolLeopardus 64. BCATS055-101252 Le parlLeopardus 65. BCATS205-111254 Le tiglLeopardus 66. BCATS206-111254 Le tiglLeopardus 67. BCATS207-111254 Le tiglLeopardus 68. BCATS056-1071 Le tiglLeopardus 69. BCATS057-10175 Le tiglLeopardus 60. BCATS203-111258 Le wielLeopardus 	T TCA CT AC CCC AA CAATAATA T TCA CT AC CCC AA CAATAATG	GG AC TA CCC AT TG	TCATTTTAATT	ATTATATT	CCAAGTATTTT	ATT CC CCT C	A CC TAG CCG <i>I</i>	ACTAAT TAA TAAC	CCCTAGT	FT CACTACAAC P	AATGACTAGTG
71 BCATS204-11/259 Le wiell eopardus	T TCA CT AC CCC AA CA ATA AT A T TCA CT AC CCC AA CA ATA AT A										
72. BCATS061-10 21_Ly_lynk	T TCA CT AC CCC AA CAATAATA T TCA CT AC CCC AA CAATAATA	GG AT IG CCCG T IG	TCATTCTAATT	ATTATATTCC	CAAGTATTCT	ATTCCCGTC	ACC CAACCG?	ACTAATTAATAAC	CCCTAGT	CT CACIG CAAC P	AATGACTAGTA
72. BCATS061-10[21_Ly_lynlLynx 73. BCATS020-11[225_Ly_lynlLynx 74. BCATS020-10[22_Ly_lynlLynx 75. BCATS063-10[37_Ly_lynlLynx	TTCACTACCCCAACAATAAT	GG AT TG CCCG T TG	TCATTCTAATTA	ATTATATTCO	CCAAGTATTCT	ATTCCCGTC	ACCCAACCG/	ACTAAT TAA TAAC	CCCTAGT	CT CACIG CAAC <i>A</i>	AATGACTAGTA
75. BCATS063-10/37 Ly lyn ly Lynx	T TCA CT AC CCCAA CAATAAT#	GG AT IG CCCG T IG	TCATTCTAATT	ATTATATTCC	CAAGTATTCT	ATTCC CGTC.	ACCCAACCG2	ACTAAT TAA TAAC	CCCTAGT	CT CACIG CAAC <i>A</i>	VATGACTAGTA

	1 10 TTCACTACCCCAACAA	20 30 TAATAGG AC TG CCT AT TG	40 TTATTTTTAATTATT	50 60 ATATTCCCAAGTAT	70 FCTATTCCCCTCACC	80 90 I I CAACCGACTAAT TAAT	100 A AC OGCCT AG TC	110 FCACTCCAAC	120 126 CAATGACTAGTA
-10 38_Ly_lyn_ly Lynx -10 39_Ly_lyn_ly Lynx		TA AT AGG AT TG CCCG T TG ' TA AT AGG AT TG CCCG T TG '						FCACTG CAAC FCACTG CAAC	CAATGACTAGTA
-10 48_Ly_lyn Lynx -10 146_Ly_lyn Lynx		TAATAGG AT IG CCCG T IG ' TAATAGG AT IG CCCG T IG '							CAATGACTAGTA CAATGACTAGTA
·10 18_Ey_Tyn_lylLynx ·10 19_Ly_lyn_lylLynx		TA AT AGG AT TG CCCG T TG ' TA AT AGG AT TG CCCG T TG '							
1019_Ly_lyn_lyLynx 1019_Ly_lyn_lyLynx 10177_Ly_parlLynx 10178_Ly_parlLynx 10100_Ly_ruflLynx 10121_Ly_ruflLynx		TAATAGG AT TACCCG T TG ' TAATAGG AT TACCCG T TG '							
10 100_Ly_ruf Lynx	TTCACTACCCCAACAA	TAATAGGACTGCCTATTG	TTATTCTAATCATT	A TA TT CCC AAG CA T	PCT ATT CC CAT CA CC	CAATCGACTAATTAAT	A AT OG C CT AA TC'	FCACTACAAC	CAATGACTAGTA
-10 99 v rufil vnx	TTCACTACCCCAACAA	TAATAGG AC IG CCTATIG	TTATTCTAATCATT	A TA TT CCC AAG CA T	CTATTCC CAT CACC	CAATCGACTAATTAAT	AAT CCCTAATC		
10 176 Ly_ruf Lynx 10 56 Ne_neb Neofelis		TA AT AGG AC TG CCT AT TG ' TA AT AGG AT TA CCC AT TG '						FCACTACAAC FCACTACAAC	JAATGACTAGTA DAGTGACTAGTA
10 57 Ne_neb Neofelis 10 58 Ne_neb Neofelis		TAATAGG AT TACCCATTG ' TAATAGG AT TACCCATTG '							
10 59 Ne neb Neofelis	TTCACTACCCCAACAA	TAATAGG AT TACCCATTG	TIG IG TTAAT TATT.	A TA TT CCC TAG TA T	r ctgtt tc cct cacc	TAACCGACTGGTCAAC	AAT OG C CTAG TT	FCACTACAAC	CAGTGACTAGTA
10 60_Ne_neb Neofelis 10 101_Ot_man Otocolobus 11 266_Ot_man Otocolobus		TA AT AGG AT TA CCC AT TG ' TA AT AGG AT TA CCT AT TG '						FCACTACAAC FCACTACAAC	JAGTGA CTAGTA DAATGA CTAATA
11 266 Ot man Otocolobus		TAATAGG AT TACCTATTG ' TAATAGG AT TACCTATTG '						FCACTACAAC FCACTACAAC	AATGACTAATA
10 102_Ot_man Otocolobus	TTCACTACCCCAACAA	TAATAGG AT TACCTATIG	TTATTCTAATTATT	A TA TT CCC AAG TA T	CCTATTTCCTTCACC	TAG CCGACTAAT TAAT	AAC OGC TTAA TC	FCACTACAAC	AATGACTAATA
10 80_Ot_man Otocolobus 10 87_Ot_man Otocolobus	TTCACTACCCCAACAA	TA AT AGG AT TA CCT AT TG	TTATTCTAATTATT	A TA TT CCC AAG TA TO	CCTATTTCCTTCACC	TAG CCG A CTA AT TAA T	AACOGCTTAATC	PCACTACAAC	CAATGACTAATA
-10 88_Ot_man Otocolobus 3-10 89_Ot_man Otocolobus	T TCA CT AC CCC AA CA A T TCA CT AC CCC AA CA A	TAATAGGAT TACCTATTG' TAATAGGAT TACCTATTG'	TTATTCTAATTATT TTATTCTAATTATT	A TA TT CCC AAG TA T(A TA TT CCC AAG TA T(CCTATTTCCTTCACC CCTATTTCCTTCACC	TAG CCG A CTA AT TAA T TAG CCG A CTA AT TAA T	A AC OG C TT AA TC' A AC OG C TT AA TC'	FCACTACAAC FCACTACAAC	JAATGACTAATA JAATGACTAATA
0-10 141_Ot_man Otocolobus	TTCACTACCCCAACAA	TAATAGGAT TACCTATTG' TAATAGGAT TACCTATTG'	TTATTCTAATTATT TTATTCTAATTATT	A TA TT CCC AAG TA TO	CCT ATT TC CTT CA CC	TAG CCG A CTA AT TAA T	A AC OGC TT AA TC'		AATGACTAATA
2-10 194_Ot_man Otocolobus	TTCACTACCCCAACAA	TAATAGG AT TACCTATIG	TTATTCTAATTATT	A TA TT CCC AAG TA T	CTATTTCCTTCACC	TAG CCG A CTA AT TAA T	AAC OGC TT AA TC	CACTACAAC	CAATGACTAATA
10183 Of man Otocolobus 3-10189 Of man Otocolobus 1-10193 Of man Otocolobus 1-10193 Of man Otocolobus 2-10194 Of man Otocolobus 3-10195 Of man Otocolobus 3-10195 Pa leo_pe Panthe 2-10208 Pa leo_pe Panthe 1-10209 Pa leo_pe Panthe 2-10210 Pa leo_pe Panthe	TTCACTACCCCAACAA TTCACTACCCCAACAA	TAATAGG AT TACCTATTIG ' TAATAGG AC TG CCTG T TG '	TIATTCIAATTATI TOG TATTAAT TATI	A TA TT CCC AAG TA TC A TG TT CCC CAG CA T'	CTATTCCCCTCACC	CAA CCG A CTA AT TAA T	A AC CGC TPAA TC A AC CGC CT AG TC'	PCACTACAAC PCACTCCAAC	CAATGACTAATA
0-10 208_Pa_leo_pe Panthe 1-10 209_Pa_leo_pe Panthe	TTCACTACCCCAACAA TTCACTACCCCAACAA	TAATAGGACTGCCTGTTG' TAATAGGACTGCCTGTTG'	TOG TATTAAT TATT. TOG TATTAAT TATT.	A TG TT CCC CAG CA T' A TG TT CCC CAG CA T'	PCTATTCCCCTCACC PCTATTCCCCTCACC	CAACCGACTAAT TAAT CAACCGACTAAT TAAT	A AC OG C CT AG TC' A AC OG C CT AG TC'	FCACTCCAAC FCACTCCAAC	CAATGA TTAGTA CAATGA TTAGTA
2-10 210 Pa leo pe Panthe	TTCACTACCCCAACAA	TAATAGG AC TG CCTG T TG '	TOG TATTAAT TATT TOG TATTA AT TATT	ATG TT CCC CAG CAT'	CTATTCCCCTCACC	CAACCGACTAAT TAAT	AACOGCCTAGTC	FCACTCCAAC	AATGA TTAGTA
)-10 104_Pa_leo_pe Panthe	TTCACTACCCCAACAA	TAATAGG AC IG CCTG T IG	TOG TATTAAT TATT	ATG TT CCC CAG CA T	CTATTCC CCT CACC	CAACCGACTAATTAAT	AACOGCCTAGTC	CACTCCAAC	CAATGATTAGTA
2-1014 Pa_leo_perfanthera -1014 Pa_leo_perfanthera -10105 Pa_leo_perfanthe -10151 Pa_leo_perfanthe -10151 Pa_leo_perfanthe -10158 Pa_leo[Panthera -10158 Pa_leo]Panthera	TTCACTACCCCAACAA TTCACTACCCCAACAA	TA AT AGG AC IG CCIG I'IG ' TA AT AGG AC IG CCIG I'IG '	TOG TATTAATTA'TT TOG TATTAATTA'TT	A 1G TT CCC CAG CA'I". A TG TT CCC CAG CA'T".	PCTATTCCCCTCACC PCTATTCCCCTCACC	CAA CCG A CTA AT TAA T CAA CCG A CTA AT TAA T	A AC OG C C'L'AG 'L'C' A AC OG C C'L'AG 'L'C'	FCACTCCAAC FCACTCCAAC	CAATGA TTAGTA CAATGA TTAGTA
3-10 158 Pa leo Panthera 4-10 15 Pa leo Panthera	TTCACTACCCCAACAA TTCACTACCCCAACAA	TA AT AGG AC TG CCTG T TG ' TA AT AGG AC TG CCTG T TG '	TOG TATTAAT TATT. TOG TATTAAT TATT.	A TG TT CCC CAG CA T' A TG TT CCC CAG CA T'	PCTATTCCCCTCACC PCTATTCCCCTCACC	CAACCGACTAAT TAAT CAACCGACTAAT TAAT	A AC OG C CT AG TC' A AC OG C CT AG TC'	FCACTCCAAC FCACTCCAAC	CAATGA TTAGTA
5-10 164 Pa leo le Panthera	E E E E E E E E E E E E E E E E E E E	TA AT AGG AC TG CCTG T TG ' TA AT AGG AC TG CCTG T TG '							
7-10 16_Pa_leo Panthera 4-11 236_Pa_onc Panthera	TTCACTACCCCAACAA	TAATAGG AC IG CCTATIG	TOG TATTAAT TATTA	A TA TT TCC CAG CA T	CTATTCC CCT OG CC	CAG TCG A CTA AT TAA T	AACCCCTAGTC	CACTCCAGO	CAGTGACTAGTA
7-10,16° Pa_eonc Panthera 5-10,149° Pa_onc Panthera 1-10,107° Pa_onc Panthera 1-10,107° Pa_onc Panthera 2-10,108° Pa_onc Panthera 3-10,109° Pa_onc Panthera 7-10,114° Pa_par_ip Panthera 7-11,227° Pa_par_in Panthera 5-11,220° Pa_par_in Panthera	TTCACTACCCCAACAA TTCACTACCCCAACAA	TAATAGG AC TACCCAT IG ' TAATAGG AC TACCCAT IG '							
2-10 108 Pa_onc Panthera	TTCACTACCCCAACAA TTCACTACCCCAACAA	TAATAGG AC TACCCAT'TG ' TAATAGG AC TACCCAT'TG '							
7-10 114_Pa_par_ja Panthera	T TCA CT AC CCC AA CAA	TAATAGG AC TG CCT AT TG	TG TATTAAT TATT	ATATTCCC CAG CAT	CTATTCC CCT CG CC	CAATCGACTAATTAAT	A A C C C C T AG T C'	r ca ctc cago	CAGTGACTAGTA
5-11 230 Pa_par_fu Panthera	TTCACTACCCCAACAA	TAATAGG AC TG CCT AT TG ' TAATAGG AC TG CCT AT TG '					3 3 C CC C CE 3 C EC		
5-11246 Papar salPanthera 5-11246 Papar salPanthera 5-11277 Papar Panthera 5-11272 Papar Panthera 5-1029 Papar kolPanthera 5-1073 Papar oriPanthera 5-1079 Papar oriPanthera 5-1079 Papar oriPanthera	T TCA CT AC CCC AA CA A T TCA CT AC CCC AA CA A	TAATAGG AC TG CCTAT TG ' TAATAGG AC TG CCTAT TG '	TOG TATTAAT TATT. TOG TATTAAT TATT.	A TA TT CCC CAG CA T'. A TA TT CCC CAG CA T'	FCTATTCCCCTCGCC FCTATTCCCCTCGCC	CAG TCGACTAAT TAAT CAG TCGACTAAT TAAT	A AC OG C CT AG TC' A AC OG C CT AG TC'	FCACTCCAGC FCACTCCAGC	CAGTGACTAGTA CAGTGACTAGTA
9-11 272 Pa par Panthera	T TCA CT AC CCC AA CA A T TCA CT AC CCC AA CA A	TAATAGGAC TG CCTAT TG ' TAATAGGAC TG CCTAT TG '	TOG TATTAAT TATT: TOG TATTAAT TATT:	A TA TT CCC CAG CA T' A TA TT CCC CAG CA T'	PCTATTCCCCTCGCC	CAG TCG A CTA AT TAA T CAG TCG A CTA AT TAA T	A AC OG C CT AG TC' A AC OG C CT AG TC'	I CA CTC CAGO	AGTGACTAGTA CAGTGACTAGTA
7-10/73_Pa_par_ko/Panthera		TAATAGGACTGCCTATTG	TOG TATTAAT TATT	A TA TT CCC CAG CA T'	PCTATTCCCCTCGCC	CAG TCGACTAAT TAAT	A AC OG C CT AG TC	CACTCCAGC	AGTGACTAGTA
								FCACTCCAGC	CAGTGACTAGTA
5-10 148 Pa par sa Panthe 5-10 159 Pa par or Panthera	TTCACTACCCCAACAA	TA AT AGG AC TG CCT AT TG ' TA AT AGG AC TG CCT AT TG '	TOG TATTAAT TATT	A TA TT CCC CAG CA T	PCTATTCC CCT OG CC	CAG TCGACTAAT TAAT	A A C OG C C T AG T C'	FCACTCCAGC FCACTCCAGC	JAGTGA CTAGTA DAGTGA CTAGTA
7 10 162 Do nor or Donthoro	THE CONTRACTOR AND A	TA AT AGG AC TG CCT AT TG ' TA AT AGG AC TG CCT AT TG '	TOG TATTAAT TATT	A TA TT CCC CAG CA T	ICTATTCC CCT CG CC	CAG TCGACTAAT TAAT	A AC OG C CT AG TC'	FCACTCCAGC	CAGTGACTAGTA
9-10 169 Pa_par_or Panthera	TTCACTACCCCAACAA	TAAT AGG AC TG CCT AT TG	TOG TATTAAT TATT	A TA TT CCC CAG CA T	CTATTCC CCT CG CC	CAG TCGACTAAT TAAT	AAC OGC CTAG TC'		CAGTGACTAGTA
5-10 162 Fa_par_ol Faintiera 3-10 168 Fa_par_jalPanthera 3-10 169 Pa_par_or Panthera 0-10 170 Pa_par_or Panthera 1-10 186 Pa_par_jalPanthera 2-10 187 Pa_par_melPanth 7 10 30 Pa_tin eulPanthera	TTCACTACCCCAACAA	TA AT AGG AC TG CCT AT TG ' TA AT AGG AC TG CCT AT TG '	TOG TATTAAT TATTA	A TA TT CCC CAG CA T	PCTATTCCCCTOGCC	CAG TCG A CTA AT TAA T	A AC OG C CT AG TC'	FCACTCCAGC FCACTCCAGC	CAGTGACTAGTA
	T TCA CT AC CCC AA CAA T TCA CT AC CCC AA CAA	TAATAGG AC IG CCCAT IG ' TAATAGG AT IG CCTG I IG '					A AC OG C CT AG TC' A AC OG T TT AG TC'	FCACTCCAGC FCACTTCGAC	CAGTGA CTAGTA CAGTGA TTAGTA
3-10 68 Pa_tig_al Panthera D-10 124 Pa_tig_al Panthera	TTCACTACCCCAACAA	TAATAGG AT TG CCTG T TG ' TAATAGG AT TG CCTG T TG '	TOG TATTAAT TATTA	A TG TT CCC CAG CA T'	CTAGTCCCCTCACC	TAACCGACTAATTAAT			
101107 Do tion of Double and	TTCACTACCCCAACAA	TA AT AGG AT TG CCTG T TG '	TOG TATTAAT TATT	A TG TT CCC CAG CA T	PCT AGT CC CCT CA CC				
-10 128_Pa_tig_ti Panthera		TA AT AGG AT TG CCTG T TG ' TA AT AGG AT TG CCTG T TG '				TAA COGA CTA AT TAA T TAA COGA CTA AT TAA T	A AC US TITTAG TC' A AC OG TITTAG TC'	I CACITOG AC I CACITOG AC	.agtgattagta Cagtgattagta
7-10 13_Pa_tig_su Panthera 1-10 155_Pa_tig_al Panthera		TAATAGG AT TG CCTG T TG ' TAATAGG AT TG CCTG T TG '						PCACTTOGAC PCACTTOGAC	CAGTGATTAGTA
5-10/15/ Pa_tig_tiPanthera 5-10/12_Pa_tig_tiPanthera 5-10/13_Pa_tig_suPanthera 1-10/155_Pa_tig_alPanthera 2-10/156_Pa_tig_alPanthera 5-10/166_Pa_tigPanthera 5-10/166_Pa_tigPanthera		TAATAGG AT TG CCTG T TG ' TAATAGG AT TG CCTG T TG '							
5-10 166_Pa_tig Panthera		TAATAGG AT IG CCTG T IG							

Consensus 76. BCATS064-10 77. BCATS065-10 78. BCATS066-10 79. BCATS058-1 80. BCATS059-1 81. BCATS060-1 82. BCATS067-10 83. BCATS068-10 84. BCATS069-10 85. BCATS072-10 86. BCATS071-1 86. BCATS071-1 87. BCATS070-1 88. BCATS073-1 89. BCATS074-1 90. BCATS074-10 90. BCATS075-10 91. BCATS076-10 92. BCATS077-10 93. BCATS078-10 94. BCATS201-11 95. BCATS084-10 96. BCATS079-10 97. BCATS085-10 S. BCATS086-10
S. BCATS086-10
S. BCATS086-10
B. BCATS088-10
S. BCATS088-11
B. BCATS088-11
B. BCATS088-11
B. BCATS088-11
B. BCATS082-11
B. BCATS082-11
B. BCATS102-11
B. BCATS102-11
B. BCATS102-11
B. BCATS090-11
B. BCATS112-11
B. BCATS133-11
B. BCATS133-11
B. BCATS122-11
<

Consensus	1 10 TTCACTACCCCAACA	20 ATAATAGG AC T	30 G CCT AT TG TTA	40 	50 TTA TA TT CCC.	60 AAGTATTCTA	70 ATTCCCCTCF	80 I.CC CAA CCG A C1	90 I TAATTAATAAC	100 CECCTAG TOTO	110 CACTOCAACAA	120 126
103. BCATS082-10 194 Ot man Otocolobus	TTCACTACCCCAACA											
104. BCATS083-10 195_Ot_man Otocolobus 105. BCATS099-10 207_Pa_leo_pe Panthe	TTCACTACCCCAACA TTCACTACCCCAACA	ATA AT AGG AC T	S CCTG T TG T CG	TATTAATTA	TTATG TT CCC	CAGCATTCT	ATT CC CCT CA	CCCAACCGACT	AATTAATAAC	GCCTAGTCT	CACTCCAACAA	TGATTAGTA
106. BCATS100-10/208 Pa_leo_pe Panthe 107. BCATS101-10/209 Pa_leo_pe Panthe	TTCACTACCCCAACA	ATA AT AGG AC TO	G CCTG T TG TCG	TATTAAT TA	TTATG TTCCC	CAGCATTCTA	ATT CC CCT CA	CC CAA CCG A C	AAT TAA TAAC	GCCTAGTCT	CACTOCAACAA	TGATTAGTA
108. BCAISIUZ-10/210 Pa leo pelPantne	TTCACTACCCCAACA	ATAAT AGG AC IO ATAAT AGG AC IO	G CCTG TTG TCG G CCTG TTG TCG	TATTAATTA	TTATG TTCCC TTATG TTCCC	CAGCATTCTA CAGCATTCTA	ATTCCCCTCA	CCCAACCGACI	AAT TAA TAAC AAT TAA TAAC	GCCTAGTCT(GCCTAGTCT(CACTUCAACAA	TGATTAGTA.
100 BCATS105 10/11 Do ToolDonthoro	TTCACTACCCAACA	ата атасс ас т	COT CT	מתידב בייד ביי	TTT TTT TTT ATTT	CACCATTCTZ	ATTCCCCTC2	CCCARCCGACT	יסב ביד בביד ידב בי	12 C CTP 2C TFCTF (
111. BCATS090-10/104_Pa_leo_pe/Pantne 111. BCATS091-10/105_Pa_leo_pe/Panthe	TTCACTACCCCAACA	ATA AT AGG AC TO ATA AT AGG AC TO	G CCTG T TG TCG G CCTG T TG TCG	TATTAATTA	TTATG TT CCC	CAGCATICIA	ATTCCCCTCA	CCCAACCGACI	AAT TAA TAAC	GCCTAGTCT(GCCTAGTCT(CACTECAACAA	TGATTAGTA
 100. BCATS090-10104 Paileo pelPanthe 110. BCATS090-10105 Paileo pelPanthe 111. BCATS091-10105 Paileo pelPanthe 112. BCATS092-10151 Paileo pelPanther 113. BCATS093-10158 PaileoPanthera 114. BCATS094-1015 PaileoPanthera 115. PaileoPanthera 	TTCACTACCCCAACA	ATA AT AGG AC T ATA AT AGG AC T	G CCTG T TG TOG	TATTAAT TA	TTATG TT CCC	CAGCATTCTA	ATT CC CCT CA	CCCAACCGACT	AATTAATAAC	CCTAGTCT		TGATTAGTA
114. BCATS093-10 136 Fa_leo Panthera	TTCACTACCCCAACA	ATA AT AGG AC T	G CCTG T TG TCG	TATTAATTA	TTATG TT CCC	CAGCATTCT? CAGCATTCT?	ATTCCCCTCP	CCCAACCGAC	AAT TAA TA AC	GCCTAGTCT(CACTCCAACAA	TGATTAGTA
115. BCATS095-10 164_Pa_leo_le Panthera 116. BCATS097-10 16_Pa_leo Panthera	TTCACTACCCCAACA TTCACTACCCCAACA	ATAAT MGG AC TO	3 CC 1G 1 1G 1 0G	TATTAATTA	TIMIG TICCC	CAGCAIICIA	ALLCCCCLCF	CCCAACCGACI	AAT TAA TAAC	JECCI ME ICI (LACICCAACAA	IGAILAGIA
117 BCATS224-11/236 Pa onclPanthera	TTCACTACCCCAACA	ATA AT AGG AC T	G CCT AT TG TCG	ΤΑΤΤΑΑΤΤΑ	TTA TA TT TCC	CAGCATTCTA	ATT CC CCT OG	CCCAG TCGACT	AATTAATAAC	CCTAG TCT C	CACTCCAGCAG	TGACTAGTA
118. BCATS115-10149 Pa_oncPanthera 119. BCATS115-10149 Pa_oncPanthera 120. BCATS112-10108 Pa_oncPanthera 121. BCATS113-10109 Pa_oncPanthera	TTCACTACCCCAACA TTCACTACCCCAACA											
120. BCATS112-10 108_Pa_onc Panthera	TTCACTACCCCAACA	ATA AT AGG AC T	A CCC AT TG TCA	ΤΑ CTA AT TA	TTATATTCCC	CAGTATTCTA	ATT CC CCT CG	CCCAGTCGACT	CAATTAACAAT	GTCTAATCT	CACTCCAACAG	TGATTAGTA
121. BCATS113-10 109_Pa_onc Panthera	TTCACTACCCCAACA TTCACTACCCCAACA											
121. BCATS117-10114 - Pa_par_jaPanthera 123. BCATS117-10114 - Pa_par_jaPanthera 124. BCATS197-11 227 - Pa_par_fu Panthera 124. BCATS196-11 230 - Pa_par_fu Panthera	TTCACTACCCCAACA	ATA AT AGG AC T	G CCT AT TG TCG	ΤΑΤΤΑΑΤΤΑ	TTATATTCCC	CAGCATTCTA	ATT CC CCT OG	CCCAG TCGACT	TAATTAATAAC	CCTAG TCT	CACTCCAGCAG	TGACTAGTA
	TTCACTACCCCAACA TTCACTACCCCAACA											
126. BCATS200-11 271 Pa_par Panthera	TTCACTACCCCAACA											
126. BCATS200-11271 Pa_par}salranthera 127. BCATS200-11271 Pa_parPanthera 128. BCATS130-11272 Pa_par Panthera 128. BCATS133-1029 Pa_par_ko Panthera 129. BCATS187-1073 Pa_par_ko Panthera	TTCACTACCCCAACA TTCACTACCCCAACA											
129. BCATS187-10 73 Pa par ko Panthera	TTCACTACCCCAACA TTCACTACCCCAACA											
130. BCATS134-10 74_Pa_par_ori Panthera 131. BCATS135-10 79_Pa_par_or Panthera												
131. BCATS135-10/79_Pa_bar_or Þanthera 132. BCATS125-10/148_Pa_par_sa Panthe 133. BCATS126-10/159_Pa_par_or Panthera	T TCA CT AC CCC AA CA T TCA CT AC CCC AA CA											
134 BCATS127-10/162 Pa par or/Panthera	TTCACTACCCAACA	ATA AT AGG AC T	G CCT AT TG TCG	TATTAATTA	TTATATTCCC	CAGCATTCTA	ATT CC CCT OG	CCCAG TCGAC	AATTAATAAC	GCCTAGTCT	CACTCCAGCAG	TGACTAGTA
135. BCATS128-10 168_Pa_par_ja Panthera	TTCACTACCCCAACA TTCACTACCCCAACA											
 BCATS128-10168 Pa_par_jalPanthera BCATS128-10168 Pa_par_jalPanthera BCATS129-10169 Pa_par_orlPanthera BCATS130-10170 Pa_par_orlPanthera BCATS131-10186 Pa_par_jalPanthera BCATS132-10187 Pa_par_melPanth BCATS132-10120 Part Part 	TTCACTACCCCAACA	ATA AT AGG AC TO	G CCT AT TG TOG	TATTAATTA	TTATATTCCC	CAGCATTCTA	ATT CC CCT CG	CCCAGTCGACT	AATTAATAAC	CCTAG TCT (CACTCCAGCAG	TGACTAGTA
138. BCATS131-10/186_Pa_par_ja/Panthera 139. BCATS132-10/187_Pa_par_me/Panth	T TCA CT AC CCC AA CA T TCA CT AC CCC AA CA											
	I ICACI ACCCCAACA											
141. BCATS158-10168_Pa_tig_allPanthera 142. BCATS140-10124_Pa_tig_allPanthera	TTCACTACCCCAACA TTCACTACCCCAACA											
142. BCATS143-10124 Pa_tig_su Panthera 143. BCATS143-10127 Pa_tig_su Panthera 144. BCATS144-10128 Pa_tig_ti Panthera 145. BCATS146-1012 Pa_tig_su Panthera 146. BCATS147-1013 Pa_tig_su Panthera 147. BCATS151-10155 Pa_tig_a Panthera 149. BCATS151-10155 Pa_tig_a Panthera	TTCACTACCCCAACA TTCACTACCCCAACA											
145. BCATS144-10128 Fa tig suPanthera	TTCACTACCCCAACA											
146. BCATS147-10 13 Pa_tig_su Panthera	TTCACTACCCCAACA TTCACTACCCCAACA											
	TTCACTACCCCAACA	ATA AT AGG AT T	G CCTG T TG TCG	TATTAATTA	TTA TG TT CCC	CAGCATTCTA	GTCCCCTCA	CCTAACCGACT	AATTAATAAC	GTTTAGTCT	CACTTOGACAG	TGATTAGTA
149. BCATS154-10/165_Pa_tig_ti/Panthera	TTCACTACCCCAACA TTCACTACCCCAACA											
151. BCATS156-10189 – Pa_tig all Panthera 152. BCATS156-10189 – Pa_tig all Panthera 153. BCATS162-1053 – a_unc Panthera 154. BCATS162-1059 – a_unc Panthera	TTCACTACCCCAACA	ATA AT AGG AT T	G CCTG T TG TCG	ΤΑ ΤΤΑ ΑΤ ΤΑ	TTA TG TT CCC	CAGCATTCTA	AG T C C C C T C A	CCTAACCGACT	AATTAATAAC	GTTTAGTCT	CACTTOGACAG	TGATTAGTA
152. BCATS160-10/47_Pa_unc Panthera	TTCACTACCCCAACA TTCACTACCCCAACA											
154. BCATS166-10 69 Pa_unc Panthera	TTCACTACCCCAACA											
155. BCATS136-10 84 ⁻ Pa ⁻ tem Pardofelis 156. BCATS137-10 85 ⁻ Pa ⁻ tem Pardofelis 157. BCATS138-10 152_Pa ⁻ tem Pardofelis	TTCACTACCCCAACA											
157. BCATS138-10 152_Pa_tem Pardofelis 158. BCATS195-11 241_Pr_ben Prionailurus	TTCACTACCCCAACA TTCACTACCCCAACA											
150 BCATS169 10121 Dr bon Drionoilurus	TTCACTACCCCAACA	ATA AT AGG AT T.	A CCT AT TG TTA	TCTTAATTA	TTATATTTCC	AAGTATTCTA	ATT TC CTT CA	CCCAATCGACT	AATTAATAAC	CCTAG TCT (CACTG CAACAA	TGACTGGTG
160. BCATS194-11/218_Pr_rub/Prionailurus	TTCACTACCCCAACA TTCACTACCCCAACA											
162. BCATS169-10 132_Pr_rub Prionailurus	TTCACTACCCCAACA	ATA AT AGG G C T.	A CCC AT TG TTA	TT TTG AT TA	TTATACTCCC	AAGTATTCTA	ATT TC CTT CA	CCCAATCGACT	CAATTAATAAC	CCTAGTCT	CA CTG CA AC AA	TGACTAGTA
163. BCATS170-10[154_Pr_rub]Prionailurus 164_BCATS171-10[182_Pr_rub]Prionailurus	T TCA CT AC CCC AA CA T TCA CT AC CCC AA CA											
 139. BCATS106-10131 PT_rub[Prionallurus 160. BCATS194-11218 Pr_rub[Prionallurus 161. BCATS193-11223 Pr_rub[Prionallurus 162. BCATS169-10132 Pr_rub[Prionallurus 163. BCATS170-10154 Pr_rub[Prionallurus 164. BCATS172-10183 Pr_rub[Prionallurus 165. BCATS172-10183 Pr_rub[Prionallurus 165. BCATS172-10183 Pr_rub[Prionallurus 166. BCATS172-10183 Pr_rub[Prionallurus 	TTCACTACCCCAACA											
166. BCATS173-10133_Pr_viv Prionailurus 167. BCATS174-10134_Pr_viv Prionailurus	TTCACTATCCCAACA TTCACTATCCCAACA											
168 BCATS175-10135 Pr_viv/Prionailurus	TTCACTATCCCAACA TTCACTATCCCAACA											
169. BCATS176-10136 Pr_viv Prionailurus 170. BCATS177-10140 Pr_viv Prionailurus 171. BCATS192-11222 Pu_con Puma 172. BCATS191-11243 Pu_con Puma	TTCACTATCCCAACA											
171. BCATS192-11 222 ⁻ Pu ⁻ con Puma	TTCACTACCCCAACA											
	TTOS CTACCCCAACA	ATA AT AGG AC T	G CCC AT 03 TTA	TCTTAATTG	TTATATTCCC	AAGCATTCTA	ATTCCCATCA	CCCAACCGACT	AATTAATAAC	GCCTGATCT	CACTG CAACAA	TGACTAGTA
174. BCATS178-10137 Pu_con Puma 175. BCATS180-10139 Pu_con Puma	T TCA CT AC CCC AA CA T TOG CT AC CCC AA CA											
175. BCATS180-10139_Pu_conPuma 176. BCATS190-11 262_Pu_yag Puma 177. BCATS190-11 262_Pu_yag Puma	TTCACTACCCCAACA	ATA AT AGG AC T	ACCTAT CG TCA	TTTTAATTA	TTATATTCCC	AAGCATTCTA	ATTCCCATCA	CCCAACCGACT	AAT TAG TAAC	GCCTAATCT	CACTACAACAA	TGACTGGTA
177. DCA15182-10/72_Pu_yagiPuma	T TCA CT AC CCC AA CA	ATAATAGG ACT.	AUCTATUS TCA	TI TTAATTA	TIATATTCCC.	AAGCATTCTA	ATT CU CAT CA	ICCCAACUGACI	AATTAS TAAC	JGC CTAATCT (LACTACAACAA	IGACIGGTA

	40	50	60	70	80	90	100	110	120	130	1,
	ACTC TTTAC	C TTCTA TT	TGGTGCCT	gggc tgg tatg	g tagggac to		- AGTC TCC TAA TC	cgagccgaa	CTGGGTCAAC	c tggcåcac tac	TAG
2_Ac_jub Acinonyx	ACTC TTTAC						- AGTC TTC TAA TC				TAG
[_Ac_jub Acinonyx 60_Ac_jub Acinonyx	ACTC TTTAC ACTC TTTAC						- AGTC TTC TAA TC - AGTC TTC TAA TC				
1 Ac jub Acinonyx	ACTC TTTAC	C TCCTG TT	TGGTGCTT	GAGC TGG TA TA	G TAGGGAC TO	GC TC T T	-AGTC TTC TAA TC	CGGGCCGAA	CTAGGTCAAC	C TGGCACAC TAC	TAG(
33_Ac_jub_so Acińonyx 32_Ac_jub Acinonyx							- AGTC TTC TAA TC - AGTC TTC TAA TC				
31_Ac_jub Acinonyx	ACTC TTTAC	C TCCTG TT	TGGTGCTT	GAGC TGG TATA	G TAGGGAC T	GC TC T T	- AGTC TTC TAA TC	CGGGCCGAA	CTAGGTCAAC	C TGGCACAC TAC	TAG
3 Ac_jūb Acinonyx 38 Ca_serlCaracal	ACTCTTTAC ACTCTTTAC	С ТССТБ ТТ' С Т ТСТА ТТ'	TGGTGCTT TGGTGCCT	GAGC TGG TATA GAGC TGG TATG	G TAGGGAC TO G TAGGAACCO	GC TC T T GC CC TC	- AGTC TTC TAA TC - AGCC TCC TAA TC	CGGGCCGAA CGAGCCGAA	C TAGG TCAAC C TAGGCCAAC	C TGG C AC AC TA C C TGG C AC AC TA T	TAG(TAG(
98 Ca_ser Caracal 97 Ca_ser Caracal 96_Ca_ser Caracal	ACTC TTTAC	C T TC TA TT	TGGTGCCT	GAGC TGG TATG	GTAGGAACCO	GCCCTC	-AGCCTCCTAATC	CGAGCCGAA	CTAGGCCAAC	CTGGCACACTAI	FTAG(
96_Ca_ser Caracal 90_Ca_ser Caracal							- AGCC TCC TAA TCC - AGCC TCC TAA TCC				
214 Fe cat Felis	ACTC TTTAC	C T TC TA TT	TGGTGCCT	GAGC TGGCATG	G TG G G G A C T	GC TC T T	-AGTC TCC TAAY C	CGGGCCGAA	CTGGGTCACC	CTGGCACACTGC	TAG
192 [–] Fe [–] cat Felis 191 [–] Fe [–] cat Felis							- AGTC TCC TAA TCC - AGTC TCC TAA TCC				
190 Fe cat Felis	ACTC TTTAC	C T TC TA TT	TGGTGCCT	GAGC TGGCATG	GTGGGGACT	GC TC T T	-AGTC TCC TAA TC	CGGGCCGAA	CTGGGTCACC	C TGGCACAC TGC	TAG(
198 Fe mar Felis							- AGTC TTC TAA TC - AGTC TTC TAA TC				
14_Fe_mar∣Felis 204_Fe_nig Felis		C TC TTA TTO	CGGTGCCT	GAGC TGGCATG	GTGGGGACT	GCCCTT	- AGTC TCC TAA TC	CGGGCCGAA	CTAGGCCAAC	C TGGCACAC TAC	TAG(
203 Fe nig Felis	ACTC TTTAC						- AGTC TCC TAA TCC - AGTC TCC TAA TCC				TAG(
202 Fe_nig Felis 92 Fe sil go Felis		C T TC TA TT	TGGTGCCT	GAGC TGGCATG	G TG G G G A C T	GC TC T T	-AGTC TCC TAACC	CGGGCCGAA	CTGGGTCACC	C TGGCACAC TGC	
91 Fe sil Felis							- AGTC TCC TAA TCC - AGTC TCC TAA TCC				
78 [–] Fe [–] sil Felis 77 [–] Fe [–] sil Felis							-AGTC TCC TAA TC				
76_Fe_sil Felis	ACTCTTTAC	C T T C T A T T	TGGTGCCT	GAGC TGGCATG	G TGGGGAC TO	GCTCTT	- AGTC TCC TAA TC	CGGGCCGAA	CTGGGTCACC	C TGGCACAC TGC	TAG
216_Fe_sil Felis 215_Fe_sil Felis	ACTC TTTAC ACTC TTTAC	C T TC TA TT' C T TC TA TT'	TGGTGCCT	GAGC TGGCATG GAGC TGGCATG	G TGGGGAC TO G TGGGGAC TO	GCTCTT GCTCTT	- AGTC TCC TAA TCC - AGTC TCC TAA TCC	CGGGCCGAA	C TGGG TCACCO	C TGGCACAC TGC C TGGCACAC TGC	TAGC
213 Fe_sil Felis 212 Fe_sil Felis 145 Fe_sil Felis	ACTC TTTAC	C T TC TA TT	TGGTGCCT	GAGC TGGCATG	GTGGGGACT	GC TC T T	- AGTC TCC TAA TC	CGGGCCGAA	CTGGGTCACC	CTGGCACACTGC	TAG(
212_Fe_sil Felis							- AGTC TCC TAA TCC - AGTC TCC TAA TCC				
193 Fe lyb Felis	ACTC TTTAC	C T TC TA TT	TGGTGCCT	GAGC TGGCATG	G TGGGGAC TO	GC TC T T	- AGTC TCC TAA TC	CGGGCCGAA	CTGGGTCACC	CTGGCACACTGC	TAG
95_Le_geo Leopardus 70_Le_geo Leopardus							- AGTC TC TTGATT - AGTC TC TTGATT				
75 Le_tig Leopardus	ACCC TC TAC	C T TC TA TT	TGGCGCTT	GGGC TGG TA TA	GTAGGGACCO	GC TC TC	-AGTC TC T TAA T T	CGGGCCGAA	CTAGGCCAAC	C TGG TAC AC TAC	TAG(
71_Le_tig Leopardus							- AGTC TC T TAA T T - AGCC TCC TGA TC				
75_Le_tigLeopardus 71_Le_tigLeopardus 217_Ly_lyn_lylLynx 39_Ly_lyn_lylLynx 38_Ly_lyn_lylLynx	ACCC TC TAC	C T T T TA TT	TGGTGCCT	GGGCCGGTATG	G TG G GA A C TY	GC TC TC	-AGCCTCCTGATC	CGAGCCGAA	CTAGGTCAAC	C TGGCACGC TAC	TAG
38_Lý_lýn_lýlLýnx							- AGCC TCC TGA TCC - AGCC TCC TGA TCC				TAG(
37_Lý_lýn_lý Lýnx 19_Ly_lýn_lý Lýnx	ACCCTCTAC	C T T T T A T T	TGGTGCCT	GGGCCGGTATG	GTGGGAACT	GC TC TC	- AGCC TCC TGA TC	CGAGCCGAA	CTAGGTCAAC	C TGGCACGC TAC	
18_Ly_lyn_ly Lynx 146_Ly_lyn Lynx							- AGCC TCC TGA TCC				
146_Ly_lyn Lynx 199 Ev ruflLynx							- AGCC TCC TGA TC - AGTC TCC TAA TC				
100_Ly_ruf Lynx			CGGTGCCT	GGGCCGGTATG	GTGGGGACT	GCCCTC	-AGTC TCC TAA TC	CGAGCCGAA	CTGGGTCAAC	C TGGCACAC TAC	TGG(
99 Ly ruflLynx 100 Ly_ruflLynx 89 Ot_man Otocolobus 87 Ot_man Otocolobus							CAACC TGG TACA T CAACC TGG TACA T				
193_Ot_man Otocolobus 102_Ot_man Otocolobus			GTAT	GGTAGGGACTG	CCC TC TG TC2	GC TTGGC	CAACC TGG TACA T	TATTAGGAG	ATGACCAGAT	IGATAATG TGG I	TGT(
28_Pa_leo_bl Panthera	ACTC TTTAC	C T T C T A T T					CAACC TGG TACA T - AGTC TC T TAA TC				
149 Pa leolPanthera	ACTC TTTAC	C T TC TA TT	TGGCGCCT	GGGCCGGTATG	GTAGGGACCO	GC TC TC	- AGTC TC T TAA TC	CGAGCCGAA	CTGGGTCAAC	C TGGCACGC TAC	TAG
27 [_] Pa [_] leo [_] blPanthera 26 [_] Pa_leo_blPanthera							- AGTC TC T TAA TC - AGTC TC T TAA TC				
149 Pa onc Panthera	ACTC TCTAC	C T TC TA TT	TGGCGCCT	GGGC TGG TATG	G TGGGGAC TO	GC TC TC	- AGTC TC T TAA TC	CGAGC TGAG	CTAGGTCAAC	C TGGCACAC TA I	[TAG(
109_Pa_onc Panthera 211_Pa_par_ori Panthera	ACTCTCTAC	C T T C T A T T '	TGGCGCCT	GGGC TGG TATG	GTGGGGACT		– AGTC TC T TAA TC CAGTC TC T TAA TC				
163 Pa_par_me Panthera 73 Pa_par_ko Panthera						GC TC TC	- AGTC TC TTAA TC	CGAGCCGAA	CTGGGTCAAC	CTGGCACACTGC	TAG(
73 Pa_par_ko Panthera							- AGTC TC T TAA TC - AGTC TC T TAA TC				TAG
122_Pa_par_or Panthera 79_Pa_par_or Panthera	ACTC TTTAC	C T TC TA TT	TGGTGCCT	GGGCTGGCATG	G TG G G G A C TO	SC TC TC	- AGTC TC T TAA TC	CGAGCCGAA	CTGGGTCAAC	C TGGCACAC TGC	
74 Pa par ori Panthera							- AGTC TC T TAA TC - AGTC TC T TAA TC				
168_Pa_par_ja Panthera 162_Pa_par_or Panthera							- AGTC TC T TAA TC				
159_Pa_par_or Panthera	ACTC TTTAC	C T T C T A T T	TGGTGCCT	GGGC TGGCATG	G TGGGGAC TO	CTCTC	- AGTC TC TTAA TC - AGTC TC TTAA TC	CGAGCCGAA	C TGGG TCAAC	C TGGCACAC TGC	TAG(
148 Pa par sa Panthera	ACTCITIAC	C T TC TA TT' C T TC TA TT'	TGGTGCCT	GGGC IGGCAIG GGGC TGGCAIG	G IGGGGAC IC	GCTCTC	-AGTC TC T TAA TC	CGAGCCGAA	C IGGG ICAAC	C TGGCACAC IGC	TAG
146 Pa_bar_salPanthera 121_Pa_par_or Panthera 116 Pa_par_me Panthera 68 Pa_tig_al Panthera 186 Pa_tig_al Panthera 166 Pa_tigBanthera	ACTC TTTAC	C T TC TA TTO	CGGTGCCT	GGGC TGGCATG	G TAGGGAC T	GC TC TC	- AGTC TC T TAA TC	CGAGCCGAA	CTGGGTCAAC	CTGGCACACTGC	CTAG(
טסן Pa_tig_al Panthera							- AGTC TC T TAA TC - AGTC TC T TAA TC				
	ACCCTTTAC	C T TC TA TT	TGGCGCCT	GGGCCGGTATG	G TAGGGAC TO	GC TC TC	-AGTC TC TTAA TC	CGAGCCGAA	CTGGGTCAAC	C TGGCACGC TAC	TAG(
165_Pa_tig_ti Panthera 161_Pa_tig_su Panthera							- AGTC TC T TAA TC - AGTC TC T TAA TC				
156 Pa_tig_allPanthera	ACCCTTTAC	C T TC TA TT	TGGCGCCT	GGGCCGGTATG	G TAGGGAC TO	GC TC TC	- AGTC TC T TAA TC				
1155 Da tia allDanthara	A CC C T TTT A C	‹›ጥጥጦጣአ ጥጥי	1110 C C C C C T	<i>с с с с с с с</i> та то	ייית ההה הייתי	ሳ ተ መረግ መረግ	ለ ር ዋር ዋር ዋ ዋእ እ ዋር።		····/·································	· ····································	103.01

1. BCATS004-1012-2. BCATS003-10117 3. BCATS002-10116 4. BCATS012-10182 7. BCATS012-10182 7. BCATS012-10182 7. BCATS011-10181 8. BCATS010-10137 9. BCATS011-10198 10. BCATS011-10198 10. BCATS014-10199 11. BCATS014-10199 12. BCATS014-10199 13. BCATS014-10199 13. BCATS014-10199 14. BCATS014-1019 15. BCATS014-1019 15. BCATS014-1019 16. BCATS014-1019 17. BCATS014-1019 18. BCATS014-1019 19. BCATS014-1019 10. BCATS014-1019 10. BCATS014-1019 11. BCATS014-1019 12. BCATS014-1019 13. BCATS014-1019 14. BCATS014-1019 24. BCATS034-1017 25. BCATS044-1017 26. BCATS044-1017 27. BCATS044-1017 28. BCATS044-1017 29. BCATS034-1017 20. BCATS034-1017 20. BCATS034-1017 20. BCATS034-1017 21. BCATS034-1017 23. BCATS034-1017 24. BCATS034-1017 25. BCATS044-1017 29. BCATS034-1017 20. BCATS034-1017 20. BCATS034-1017 20. BCATS034-1017 21. BCATS034-1017 23. BCATS034-1017 24. BCATS034-1017 25. BCATS046-1031 40. BCATS056-1017 31. BCATS056-1017 33. BCATS066-10131 41. BCATS066-10131 42. BCATS066-10131 43. BCATS066-10131 44. BCATS066-10131 45. BCATS066-10131 46. BCATS186-1022 57. BCATS186-1022 5

Consensus	140	150 - GAYCAAA TT	160 ГА ТА А ТСТА	170 A TCG TCACC	180 GCCCA 1960 TTT		200 TTCTTTATAC		220 TATGATTGGAG	230	240 C TGA 1
1. BCATS004-10/2 Ac jub/Acinonyx	; GAGA T	- GA TC AA A TT	TACAA TG TA	ATCG TTACA	GCCCA TGC T TT	TG TA A TG A T T	TTCTTCATAG	I TA TGCC TA I	TATAATTGGAG	GA T TC G G TA A	C TGA I
2. BCATS003-101_Ac_jub Acinonyx 3. BCATS002-10 160_Ac_jub Acinonyx									TA TAAT TGGAG TA TAAT TGGAG		
4. BCATS001-10/11 Ac jub/Acinonyx									TA TAAT TGGAG TA TAAT TGGAG		
5. BCATS013-10 83_Ac_jub so Acinonyx 6. BCATS012-10 82_Ac_jub Acinonyx	;GAGA T	GATCAAATT	TACAATGTA	ATCG TTACA	GCCCA TGC T TT	TG TAA TGA T T	TTCTTCATAG	F TA TG C C TA T	TATAATTGGAG	GATTCGGTAA	C TGA 1
7. BCATS011-10 81 Ac jub Acinonýx 8. BCATS010-10 3. Ac jub Acinonyx									TA TAAT TGGAG TA TAAT TGGAG		
9. BCATS017-10 98 Ca_ser Caracal	GAGA T	GA TC AA A TT	TA TAA TG TA	GTAG TCACC	GCCCATGCTT	TG TAA TAA TC	TTCTTTATAG	FAA TACC TA I	TATAATCGGAG	GATTCGGAAA	CTGG1
8. BCATS010-10[3 Ac_jub]Acinonyx 9. BCATS017-10[98 Ca_ser Caracal 10. BCATS016-10[97 Ca_ser Caracal 11. BCATS016-10[96 Ca_ser Caracal 12. BCATS014-10[90 Ca_ser Caracal	GAGA T	GATCAAATT	ΤΑ ΤΑ Α ΤG ΤΑ	G TAG TC ACC	GCCCATGCTT	TG TAA TAA TC	TTCTTTATAG	FAA TACC TA I	TA TAATCGGAG TA TAATCGGAG	GATTCGGAAA	C TGG 1
12. BCATS014-10 90 Ca_ser Caracal	GAGA T	GA TCAAA TT	ΤΑ ΤΑΑ ΤΟ ΤΑ ΤΑ ΤΑ Α ΤΟ ΤΟ	GTAGTCACC	GCCCA TGC T TT	TG TAA TAA TC	TTCTTTATAG'	FAA TACC TA T	TA TAATCGGAG TATGATCGGAG	GA T TC G G A A A	C TGG 1 C TGA 1
13. BCATS021-10/214 Fe_cat/Felis 14. BCATS020-10/192_Fe_cat/Felis	GAGAC	GATCAGATT	TA TA A TG TG	ATCGTCACC	GCTCATGCTT	TG TAA TGA TC	TTCTTTATGG	IGA TGCC TA I	TATGATCGGAG	GGTTCGGAAA	C TGA I
15. BCATS019-10 191 [—] Fe [—] cat Felis 16. BCATS018-10 190 [—] Fe [—] cat Felis									TA TGATCGGAG TA TGATCGGAG		
17. BCATS029-10 198 Fe mar Felis 18. BCATS024-10 14 Fe mar Felis									TA TAAT TGGAG TA TAAT TGGAG		
	;GGGAC	GATCAGATC	TA TA A TG TG	ATCGTCACT	GCTCATGCTT	TG TAA TGA TC	TTTTTTATGG	FAA TGCC TA T	TATAATCGGAG	GGTTCGGAAA	C TGA 1
20. BCATS032-10/203 Fe_nig Felis									TA TAATCGGAG TA TAATCGGAG		
22. BCATS051-10 92 Fe_sil_goJFelis	GAGAC	GATCAGATT	TA TA A TG TG	ATCGTCACC	GCTCATGCTT	TG TAA TGA TC	TTCTTTATGG	IGA TGCC TA T	TATGATCGGAG	GGTTCGGAAA	CTGAl
23. BCATS050-10/91_Fe_sil/Felis 24. BCATS049-10/78 Fe_sil/Felis									TA TGA TC GGA G TA TGA TC GGA G		
19. BCATS033-10/204 Fe_nig Felis 20. BCATS033-10/203 Fe_nig Felis 21. BCATS031-10/202 Fe_nig Felis 22. BCATS051-10/92 Fe_sil Felis 23. BCATS050-10/91 Fe_sil Felis 24. BCATS049-10/78 Fe_sil Felis 25. BCATS048-10/77 Fe_sil Felis 26. BCATS047-10/76 Fe_sil Felis 27. BCATS041/10/216 Fe_sil Felis									TA TGATCGGAG		
	;GAGAC	GATCAGATT	TA TAA TG TG	ATCGTCACC	GC TCA TGC T TT	TG TAA TGA TC	TTCTTTATGG	IGA TGCC TA I	TATGATCGGAG	GGTTCGGAAA	C TGA 1
28. BCATS040-10 215_Fe_sil Felis 29. BCATS039-10 213_Fe_sil Felis									TA TGATCGGAG TA TGATCGGAG		
30. BCATS038-10 212 Fe_sil Felis									TA TGATCGGAG		
32. BCATS022-10 93 Fe Tyb Felis	GAGAC	GATCAGATT	TA TA A TG TG	ATCGTCACC	GCTCATGCTT	TG TAA TGA TC	TTCTTTATGG	IGA TGCC TA I	TATGATCGGAG	GGTTCGGAAA	CTGA 1
33. BCATS053-10 95¯Le¯geo Leopardus 34. BCATS052-10 70_Le_geo Leopardus									TA TGATCGGAG TA TGATCGGAG		
35. BCATS057-10 75 Le_tig Leopardus	GAGA T	GACCAGATT	TA TA A TG TA	ATCGTCACT	GCTCATGCTT	TG TAA TAA T T	TTCTTTATAG	FAA TACC TA I	TATAATTGGAG	GATTTGGAAA	C TGA 1
34. BCATS052-10/70 Le geolLeopardus 35. BCATS057-10/75 Le tiglLeopardus 36. BCATS056-10/71 Le tiglLeopardus 37. BCATS056-10/37 Ly Jyn JylLynx 38. BCATS065-10/38 Ly Jyn JylLynx 40. BCATS063-10/37 Ly Jyn JylLynx 41. BCATS060-10/19 Ly Jyn JylLynx 42. BCATS059-10/18 Ly Jyn JylLynx 43. BCATS059-10/18 Ly Jyn JylLynx 44. BCATS058-10/146 Ly Jyn JylLynx 44. BCATS058-10/146 Ly Jyn JylLynx	GAGAC	GATCAGATT	TACAA TG TA	ATCGTCACT	GCCCATGCTT	TG TAA TAA T T	TTCTTTATAG	FAA TACCCA I	TA TAAT TGGAG TA TAAT TGGAG	GATTCGGGAA	C TGA 1
38. BCATS065-10 39_Ey_Tyn_Ty(Lynx 39. BCATS064-10 38_Ly_Uvn_Ty(Lynx									TA TAAT TGGAG TA TAAT TGGAG		
40. BCATS063-10 37_Ly_lyn_lyLynx	;GAGAC	GA TC AG A TT	TACAATGTA	ATCGTCACT	GCCCATGCTT	TG TAA TAA T T	TTCTTTATAG	ГААТАСССАТ	TATAATTGGAG	GATTCGGGAA	CTGA 1
41. BCATS060-10[19_Ly_lyn_ly Lynx 42. BCATS059-10[18_Lv_lyn_lv Lynx									TA TAAT TGGAG TA TAAT TGGAG		
43. BCATS058-10 146 Ly lyn Lynx									TA TAAT TGGAG TA TAAT TGGAG		
45 BCATS069-10 100 1 v rufil vnx	GAGA T	GATCAGATT	TACAA TG TA	ATCGTCACC	GCCCA TGC T TT	TG TAA TAA T T	TTCTTCATAG	FAA TGCCCA I	TATATTGGAG	GATTCGGGAA	CTGAC
46. BCATS088-10 89 Ot manOtocolobus 47. BCATS086-10 87 Ot manOtocolobus 48. BCATS08-10 193 Ot manOtocolobus 49. BCATS08-10 192 Ot manOtocolobus 49. BCATS079-10 102 Ot manOtocolobus	ICAC TG				CCCA TGCC T TT	G TAAA TAA T T	CTCTTTATGG	FGA TACCCA I	TA TGAT TGGAG TA TGAT TGGAG	GATACGGAAA	CTGAI
48. BCATS081-10193 Ot man Otocolobus 49. BCATS079-10102 Ot man Otocolobus	ICAC TG				CCCA TGCC TTT	'G TAAA TAA T T	CTCTTTATGG'	FGA TACCCA I	TA TGAT TGGAG TA TGAT TGGAG	GATACGGAAA	.C TGA I
50. BCA I S186-10/28 Pa leo bl/Panthera	;GGGAC	- GACCAAATT	TA TAA TG TA	GTCGTCACC	GCCCATGCCTI	'TG TAA TAA TC	TTCTTTATAG	FAA TGCC TA I	TATGATTGGAG	GATTCGGAAA	.C TGA I
51. BCATS106-10 49 ⁻ Pa ⁻ leo ⁻ Panthera 52. BCATS104-10 27 ⁻ Pa ⁻ leo ⁻ bl Panthera									TA TGAT TGGAG TA TGAT TGGAG		
53. BCATS103-10[26]Pa_leo_bl Panthera 54. BCATS115-10[149_Pa_onc Panthera									TA TGAT TGGAG CA TGAT TGGAG		
55. BCATS113-10/109 Pa onc/Panthera	GGGAC	GACCAGATT	TA TA A TG TA	GTCGTCACC	GCCCATGCTT	TG TAA TAA TC	TTCTTCATAG	IGA TGCC TA T	CATGATTGGAG	GGTTCGGAAA	C TGA I
56. BCATS189-10 211 ^{Pa} par_ori Panthera 57. BCATS188-10 163 ^{Pa} par_me Panthera									CATGATTGGAG CATGATTGGGG		
58. BCATS187-10 73 Pa par ko Panthera	;GGGAC	GACCAAATT	TA TA A TG TA	GTCGTTACC	GCCCA TGC T TT	TG TAA TAA TC	TTCTTTATAG	ГАА ТАСССА Т	CATGATTGGAG	GATTCGGAAA	CTGA1
59. BCATS183-10 122_Pa_par_or Panthera 60. BCATS135-10 79_Pa_par_or Panthera	;GGGAC	GACCAAATT	TA TA A TG TA	GTCG TTACC	GCCCATGCTT	TG TAA TAA TC	TTCTTTATAG	FAA TGCCCA T	CA TGA T TGGA G CA TGA T TGGA G	GATTCGGAAA	C TGA 1
61. BCATS134-10 74 Pa_par_ori Panthera 62. BCATS128-10 168 Pa_par_ja Panthera									CA TGAT TGGAG CA TGAT TGGAG		
63. BCATS127-10 162 Pa par or Panthera	;GGGAC	GACCAAATT	TA TA A TG TA	GTCG TTACC	GCCCATGCTT	TG TAA TAA TC	TTCTTTATAG	FAA TGCCCA 1	CATGATTGGAG	GATTCGGAAA	C TGA I
64. BCATS126-10 159 Pa par or Panthera 65. BCATS125-10 148 Pa par sa Panthera	;GGGAC	GACCAAATT	TA TA A TG TA	GTCG TTACC	GCCCATGCTT	TG TAA TAA TC	TTCTTTATAG	FAA TACCCA I	CA TGAT TGGAG CA TGAT TGGAG	GATTCGGAAA	CTGA]
65. BCATS125-10 148 Pa par sa Panthera 66. BCATS124-10 121 Pa par or Panthera 67. BCATS119-10 116 Pa par me Panthera									CATGATTGGAG CATGATTGGGG		
68. BCATS158-10 68 Pa tig all Panthera	GGGAC	GACCAAATT	TA TA A TG TA	GTCGTCACC	GCCCA TGCC TT	TG TAA TAA TC	TTCTTTATAG	FAA TGCC TA T	TATGATTGGAG	GATTCGGAAA	C TGA 1
69. BCATS156-10 189 Pā tig al Panthera 70. BCATS155-10 166_Pa_tig Panthera									TA TGAT TGGAG TA TGAT TGGAG		
71. BCATS154-10165-Pa-tig tilPanthera 72. BCATS153-10161-Pa-tig sulPanthera 73. BCATS153-10161-Pa-tig sulPanthera 73. BCATS152-10156-Pa-tig allPanthera									TA TGAT TGGAG		
73. BCATS152-10 156_Pa_tig_allPanthera	;GGGAC	GACCAAATT	ΤΑ ΤΑ Α ΤG ΤΑ	GTCGTCACC	GCCCA TGCC TT	TG TAA TAA TC	TTCTTTATAG	FAA TGCC TA T	TATGATTGGAG	GATTCGGAAA	C TGA 1
A BOATRIEI 101155 Da tia allDanthara	· C C C A C	፣ እ ግ ግ እ እ ጥ ጥ	ባለ መጽሕ መሮ መጽ	· · · P C C TP N C C		••••••••••••••••••••••••••••••••••••••	10000000000000000000000000000000000000	።ለአመግሮሮ መለባ	• •• •• •• •• •• •• •• •• •• •• •• •• ••	//////////////////////////////////////	ר הייחחיי

Consensus	240 250 TGA TTGG TCCCA T TAA TA	260 ATTGGAGCO	270 CCC TGA YA TA	280 GCA TTCCCCC	290 Cgaa tgaa ta	300 A TATGAGC T TO	310 CTGACTCCTTC	320 CCCCATCTTT	330 : IC TAC TTTTAC TC	34 2 (
1. BCATS004-10 2_Ac_jub Acinonyx 2. BCATS003-10 1_Ac_jub Acinonyx 3. BCATS002-10 160_Ac_jub Acinonyx 4. BCATS001-10 11_Ac_jub Acinonyx 5. BCATS013-10 83_Ac_jub Acinonyx 6. BCATS012-10 82_Ac_jub Acinonyx 7. BCATS011-10 81_Ac_jub Acinonyx 8. BCATS011-10 81_Ca_ser Caracal 10. BCATS016-10 97_Ca_ser Caracal 11_BCATS016-10 97_Ca_ser Caracal 11_BCATS016-10 97_Ca_ser Caracal	TGA TTGG TCCCA T TAA TG-									
2. BCATS003-10 1_Ac_jub Acinonyx 3. BCATS002-10 160_Ac_jub Acinonyx	TGA TTGG TCCCA T TAA TG- TGA TTGG TCCCA T TAA TG-									
4. BCATS001-10 11 Ac jub Acinonyx	TGA TTGG TCCCA T TAA TG-	ATTGGAGC	FC C TG A CA TA	GCATTCCCCC	CGAA TGAA TA	A TATAAGC T TO	TGGCTCCTTC	CTCCCTCTTT	CTTACTTCTACTC	20
6. BCATS013-10 83_AC_Jub_so Acinonyx	TGA TTGG TCCCA T TAA TG- TGA TTGG TCCCA T TAA TG-									
7. BCATS011-10 81 Ac jub Acinonyx	TGA TTGG TCCCA T TAA TG- TGA TTGG TCCCA T TAA TG-									
9. BCATS010-10/3_AC_Jub/Acinonyx 9. BCATS017-10/98 Ca ser/Caracal	TGG TTGG TCCCA T TAA TA-	ATTGGGGC	CCC TGA TA TA	GCATTCCCT	С ДАА ТАААСА	ACATGAGC TT	FTGAC T TC T TC	C TC CA TCC T T	TC TAC T TC TAC T	T(
10. BCATS016-10 97_Cā_ser Caracal 11. BCATS015-10 96_Ca_ser Caracal	TGG TTGG TCCCA T TAA TA- TGG TTGG TCCCA T TAA TA-									
12 BCATS014-1090 Ca_ser/Caracal	TGG TTGG TCCCA T TAA TA-	ATTGGGGC	CCC TGA TA TA	GCATTCCCT	CGAA TAAACA	ACATGAGC TT	FTGAC TTCTTC	C TC CA TCC T T	IC TAC T TC TAC T	T(
13. BCATS021-10 214_Fe_cat Felis	TGA TTGG TCCCA T TAC TA- TGA TTGG TCCCA T TAC TA-									
13. BCATS021-10/214 Fe_catFelis 14. BCATS020-10/192 Fe_catFelis 15. BCATS019-10/191 Fe_catFelis 16. BCATS019-10/190 Fe_catFelis 16. BCATS018-10/190 Fe_catFelis	TGA TTGG TCCCA T TAC TA-	ATTGGTGC	CCCTGACATA	GCGTTTCCCC	CGAA TAAACA	ACATGAGC TTC	TGGCTCCTTC	CCCCATCCTT	TC TAC TC TTAC TC	С(
16. BCATS018-10 190_Fe_cat Felis 17. BCATS029-10 198_Fe_marlFelis	TGA TTGG TCCCA T TAC TA- TGA TTGG TTCCA T TAA TA-									
17. BCATS029-10 198 Fe_mar Felis 18. BCATS024-10 14 Fe_mar Felis 28. BCATS024-10 14 Fe_mar Felis	TGA TTGG TTCCA T TAA TA-	ATTGGAGC	FC C TG A CA TA	GCATTTCCCC	сдаа таааса	ACATGAGC TTC	C TGAC TCCTCC	C TCCA TCC T T	IC TAC TC TTAC TC	С(
19. BCATS033-10 204 Fe nig Felis 20. BCATS032-10 203 Fe nig Felis 21. BCATS032-10 202 Fe nig Felis	TGA TTGG TTCCA T TAA TA- TGA TTGG TTCCA T TAA TA-	ATCGGAGC	CCCTGACATA	GCGTTTCCCC	CGAA TAAACA	ACATGAGC T TO	C TGAC TCCTTC	CCCCGTCCTT	TC T TC TC TTA C TC	C (
21. BCATS031-10 202 [—] Fe [—] nig Felis 22. BCATS051-10 92 Fe sil go Felis	TGA TTGG TTCCA T TAA TA- TGA TTGG TCCCA T TAC TA-	ATCGGAGC	CC TGACA TA	GCGTTTCCCC	CGAA TAAACA	ACATGAGC T TO	TGAC TCCTTC	CCCCGTCCTT	TC T TC TC TTAC TC	30
23. BCATS050-10 91 Fe_sil Felis	TGA TTGG TCCCA T TAC TA-	ATTGGTGC0	CCC TGACA TA	GCGTTTCCCC	CGAA TAAACA	ACATGAGC TTC	TGGCTCCTTC	CCCCA TCC TT	IC TAC TC TTAC TC	20
24 BCATS040 1079 EquilEdia	TGA TTGG TCCCA T TAC TA- TGA TTGG TCCCA T TAC TA-									
26. BCATS047-10 76_Fe_sil Felis	TGA TTGG TCCCA T TAC TA-	ATTGGTGC	CCCTGACATA	GCGTTTCCCC	CGAA TAAACA	ACATGAGC TTC	C TGGC TCCTTC	CCCCATCCTT	TC TAC TC TTAC TC	C(
25. BCATS049-10/77_Fe_sil Felis 26. BCATS049-10/77_Fe_sil Felis 26. BCATS047-10/76_Fe_sil Felis 27. BCATS041-10/216_Fe_sil Felis 28. BCATS040-10/215_Fe_sil Felis 29. BCATS039-10/213_Fe_sil Felis 30. BCATS038-10/212_Fe_sil Felis	TGA TTGG TCCCA T TAC TA- TGA TTGG TCCCA T TAC TA-									
29. BCATS039-10 213_Fe_sil Felis	TGA TTGG TCCCA T TAC TA-	ATTGGTGC0	CCC TGACA TA	GCGTTTCCCC	CGAA TAAACA	ACATGAGC TTC	TGGCTCCTTC	CCCCATCCTT	TC TAC TC TTAC TC	C (
30. BCATS038-10 212 Fe_sil Felis 31. BCATS034-10 145 Fe_sil Felis	TGA TTGG TCCCA T TAC TA- TGA TTGG TCCCA T TAC TA-									
32. BCATS022-1093 Fe TvblFelis	TGA TTGG TC CCA T TAC TA- TGA TTGG TC CCA T TAA TA-	ATTGGTGC	CCC TGACA TA	GCGTTTCCCC	сдаа таааса	ACATGAGC T TO	TGGCTCCTTC	CCCCATCCTT	TC TAC TC TTAC TC	C(
33. BCATS053-10 95 Le_geo Leopardus 34. BCATS052-10 70 Le_geo Leopardus	TGA TTGG TCCCA TTAA TA-									
35. BCATS057-1075 Le_tiglLeopardus 36. BCATS056-1071 Le_tiglLeopardus	TGA TTAG TCCCA T TAA TA- TGA TTAG TCCCA T TAA TA-									
34. BCATS052-10/70 Le geoleopardus 35. BCATS057-10/75 Le tigleopardus 36. BCATS056-10/71 Le tigleopardus 37. BCATS185-10/217 Ly lyn lylLynx 38. BCATS065-10/39 Ly lyn lylLynx 40. BCATS064-10/38 Ly lyn lylLynx 41. BCATS063-10/37 Ly lyn lylLynx 42. BCATS060-10/19 Ly lyn lylLynx	TGA TTGG TCCCA T TAA TA-	ATTGGAGCO	CCCTGACATA	GCATTTCCCC	CGAA TGAA TA	A TATAAGC T TO	C TGAC T TC T TC	C TC CA TCC T T	TC TAC T TC TAC T	Τ(
38. BCATS065-10 39_Ey_Jyn_Jy[Lynx 39. BCATS064-10 38_Ly_Jyn_Jy Lynx	TGA TTGG TCCCA T TAA TA- TGA TTGG TCCCA T TAA TA-									
40. BCATS063-10 37_Ly_lyn_ly Lynx	TGA TTGG TCCCA T TAA TA-	– – A T TG GA G C	CCC TGACA TA	GCATTTCCCC	CGAA TGAA TA	А ТАТААСС Т ТС	CTGACTTCTTC	C TC CA TCC T T	TC TAC T TC TAC TI	T(
41. BCATS060-10 19_Ly_lyn_ly Lynx 42. BCATS059-10 18_Ly_lyn_ly Lynx	TGA TTGG TCCCA T TAA TA- TGA TTGG TCCCA T TAA TA-									
43 BCATS058-10 146 V Ival vax	TGA TTGG TC C CA T TAA TA-	ATTGGAGCO	CCC TGACA TA	GCATTTCCCC	CGAA TGAA TA	A TATAAGC T TO	C TGAC TTCTTC	C TC CA TCC T T	IC TAC T TC TAC T	T
44. BCATS071-10/99 Ey ruf Lynx 45. BCATS069-10/100_Ly_ruf Lynx	TGACTGG TCCCATTAATA- TGACTGG TCCCATTAATA-									
46. BCATS088-10189 Ot manIOtocolobus	TGA TTGG TACCA T TAA TA- TGA TTGG TACCA T TAA TA-									
48 BCATS081-10 193 Of maniOtocolobus	TGA TTGG TACCA T TAA TA-	– – ATTGGGGCA	ACCCGACATG	GCATTCCCTC	CGGA TAAA TA	ATATGAATTTC	TGAC TTCTGC	C TC CA TCC T T	CC TAC T T T TA C TC	Cl
49. BCATS079-10 102 Ot man Otocolobus 50. BCATS186-10 28 Pa Teo bllPanthera	TGA TTGG TACCA T TAA TA- TGA TTGG TTCCAC TAA TA-									
49. BCATS079-10 102-01 man Otocolobus 50. BCATS186-10/28 Pa Teo bi Panthera 51. BCATS106-10/49 Pa Teo bi Panthera 52. BCATS104-10/27 Pa Teo bi Panthera	TGA TTGG TTCCAC TAA TA-	ATTGGAGCO	CCCCGA TA TA	GCATTCCCTC	CGAA TGAA TA	A TATGAGC T TO	C TGAC TCCTTC	CCCCGTCTTT	CC TAC T T T T G C T C	С(
5.3 BUALS103-10/26 Pa leo pilPaninera	TGA TTGG TTCCAC TAA TA- TGA TTGG TTCCAC TAA TA-									
54. BCATS115-10149 Pa_onc Panthera 55. BCATS113-10109_Pa_onc Panthera	TGA TTAG TCCCA T TAA TG- TGA TTAG TCCCA T TAA TG-									
56. BCATS189-10/211 Pa par orilPanthera	TGA TTGG TCCCA T TAA TA-	ATTGGAGCO	CCCCGA TA TA	GCATTCCCT	CGAA TGAA TA	A TATGAGC TT	FTGAC TCCTTC	CCCCATCTTT	CC TAC T T T T G C T C	C(
	TGA TTAG TCCCG T TAA TA- TGA TTGG TCCCA T TAA TA-									
59. BCATS183-10 122 Pa_par_or Panthera	TGA TTGG TCCCA T TAA TA-	– – A T TG GA G C	CCCCGA TA TA	GCATTCCCT	CGAA TGAA TA	A TATGAGC T T	I TGAC TCCT TC	CCCCATCTTT	CC TAC T T T T G C T C	C(
 BCATS188-10/163 Pa_par_melPantnera BCATS187-10/73 Pa_par_kolPanthera BCATS183-10/122 Pa_par_or Panthera BCATS135-10/79 Pa_par_or Panthera BCATS134-10/74 Pa_par_or Panthera BCATS128-10/168 Pa_par_or Panthera BCATS128-10/168 Pa_par_or Panthera BCATS128-10/168 Pa_par_or Panthera 	TGA TTGG TCCCA T TGA TA- TGA TTGG TCCCA T TAA TA-									
62. BCATS128-10 168 Pa par ja Panthera	TGA TTGG TCCCA TTGA TA-									
64 BCATS126-10159 Pa par or Panthera	TGA TTGG TC CCA T TAA TA- TGA TTGG TC CCA T TAA TA-	ATTGGAGCO	CCCCGA TA TA	GCATTCCCT	CGAA TGAA TA	A TATGAGC T T	FTGAC TCCTTC	CCCCATCTTT	CC TAC T T T T G C T C	C(
65. BCATS125-10 148 Pa par salPanthera 66. BCATS124-10 121 Pa par or Panthera 67. BCATS119-10 116 Pa par melPanthera	TGA TTGG TCCCA T TAA TA- TGA TTGG TCCCA T TAA TA-									
67. BCATS119-10 116 Pa_par_melPanthera	TGA TTAG TCCCG T TAA TA-	ATTGGAGC	CCCCGA TA TA	GCATTCCCTC	CGAA TGAA TA	A TATGAGC T T	TTGAC TCCTTC	CTCCATCTTT	CC TAC T T T T G C T C	C (
68. BCATS158-10/68 Pa tig allPanthera 69. BCATS156-10/189 Pa tig allPanthera	TGA TTGG TTCCA T TAA TA- TGA TTGG TTCCA T TAA TA-									
70 BCATS155-10166 Pa_tiolPanthera	TGA TTGG TTCCA T TAA TA-	ATTGGAGCO	CCCCGA TA TA	GCATTCCCT	CGAA TGAA TA	A TATGAGC T TO	TGAC TCCTTC	CCCCGTCTTT	CC TAC T T T T G C T C	C (
71. BCATS154-10165-Pa_tig_tilPanthera 72. BCATS153-10161-Pa_tig_sulPanthera 73. BCATS152-10156-Pa_tig_al Panthera 74. BCATS152-10156-Pa_tig_al Panthera	TGA TTGG TTCCA T TAA TA- TGA TTGG TTCCA T TAA TA-	ATTGGAGCO	CCCCGA TA TA	GCATTCCCT	CGAA TGAA TA	A TATGAGC T TO	C TGAC TCCTTC	CCCCGTCTTT	CC TAC T T T T G C T C	20
73. BCATS152-10 156 Pa_tig_al Panthera	TGA TTGG TTCCA TTAA TA-								CC TAC T T T T G C T C	20

Consensus	340 350 TCGCTTCATC TA TGGTAG	360 37 AGGCTGGAGCAGGGA	0 380 .C TGGA TGAACAG TAT	390 TACCCACCCC TA	400 GCCGGCAACC TG	410 420 getteatgeaggage	430 44 ATCCGTAGATCTAA
1. BCATS004-10 2_Ac_jub Acinonyx 2. BCATS003-10 1_Ac_jub Acinonyx 3. BCATS002-10 160_Ac_jub Acinonyx	ICGCTTCATC TA TAGTGO						
2. BCATS003-10 1 Ac jub Acinonyx	TCGCTTCATCTATAGTGG						
3. BCATS002-10/160 AC Jub/Acinonyx	TCGCTTCATCTATAGTGG TCGCTTCATCTATAGTGG						
4. BCATS001-10 11_Ac_jub Acinonyx 5. BCATS013-10 83_Ac_jub_so Acinonyx							ATCCGTAGACCTGA(
6. BCATS012-1082 Ac jub Acinonyx							ATCCGTAGACCTGAC
							ATCCGTAGACCTGAC
8. BCATS010-10 3_Ac_jub Acinonyx 9. BCATS017-10 98_Ca_serlCaracal							ATCCGTAGACCTGA(ATCCGTAGATCTAA(
8. BCATS011-10/81 AC_jub/Acinonyx 9. BCATS010-10/98 Ca_ser/Caracal 10. BCATS016-10/97 Ca_ser/Caracal 11. BCATS015-10/96 Ca_ser/Caracal 12. BCATS014-10/90 Ca_ser/Caracal							ATCCGTAGATCTAA(
11. BCATS015-10 96 Ca ser Caracal	TTGCTTCGTC TA TGGTAG						
12. BCATS014-10 90 Ca_ser Caracal							ATCCGTAGATCTAAC
12. BCATS014-1090_Ca_ser[Caracal 13. BCATS021-10/214_Fe_cat Felis 14. BCATS020-10/192_Fe_cat Felis							ATCCGTAGACCTAAC ATCCGTAGACCTAAC
15. BCATS019-10 191 Fe_cat Felis							ATCCGTAGACCTAA(
16. BCATS018-10 190 Fe cat Felis	ICGCC TCATC TA TGGTAG	GCAGCCGGAGCAGGAA	.CCGGATGGACAGTA	TACCCGCCCCTA	GCCGGGAACC TG	GC TCATGCGGGAGC	ATCCGTAGACCTAAC
17. BCATS029-10 198 Fe mar Felis							ATCCGTAGACCTAA(
18. BCATS024-10 14_Fe_mar Felis 19. BCATS033-10 204_Fe_nig Felis							ATCCGTAGACCTAA(ATCCGTAGACCTAA(
20 BCATE022 10/202 Ec pia Eclic	ICGCC TCATC TA TGGTAG						
21. BCATS031-10 202 Fe_nig Felis	ICGCC TCATC TA TGGTAG						
22. BCATS051-10 92_Fe_sil_go Felis							ATCCGTAGACCTAAC
23. BCATS050-10 91_Fe_sil Felis 24. BCATS049-10 78_Fe_sil Felis	ICGCC TCATC TA TGGTAG ICGCC TCATC TA TGGTAG						
25. BCATS048-10177 Fe sill Felis	ICGCC TCATC TA TGGTAG						
20. BCATS032-10/202_Fe_nig Felis 21. BCATS031-10/202_Fe_nig Felis 22. BCATS051-10/92_Fe_sil go Felis 23. BCATS050-10/91_Fe_silFelis 24. BCATS049-10/78_Fe_sil Felis 25. BCATS048-10/77_Fe_sil Felis 26. BCATS0447-10/26_Fe_sil Felis 27. BCATS0410/215_Fe_sil Felis	ICGCC TCATC TA TGGTAG						
27. DCA13041-10/210 Fe SII/Felis	TOGCO TOATO TA TOGTAG	SCAGCCGGAGCAGGAA SCAGCCGGAGCAGGAA					
28. BCATS040-10 215 [–] Fe [–] sil Felis 29. BCATS039-10 213 [–] Fe [–] sil Felis							ATCCGTAGACCTAA(
29. BCATS039-10[213_Fe_sil Felis 30. BCATS038-10[212_Fe_sil Felis	TCGCC TCATC TA TGGTAG	GCAGCCGGAGCAGGAA	.CCGGA TGGACAG TA	TACCCGCCCCTA	GCCGGGAACC TG	GC TCATGCGGGAGC	ATCCGTAGACCTAAC
31. BCATS034-10/145 Fe sil/Felis							ATCCGTAGACCTAA(
32. BCATS022-10 93_Fe_Tyb Felis 33. BCATS053-10 95_Le_geolLeopardus							ATCCGTAGACCTAAC ATCCGTAGATCTAAC
							ATCCGTAGATCTAA(
35. BCATS057-10 75 Le_tig Leopardus	TTGCTTCATC TA TGGTAG	AAGCCGGAGCAGGAA	C TGGA TGAACAG TA	TACCCACC TC TA	GCTGGTAACCTA	GCCCATGCAGGAGC	ATCCGTAGATCTGAC
36. BCATS056-10 71 Le tig Leopardus							ATCCGTAGATCTGAC
34. BCATS052-10170_Le_geolLeopardus 35. BCATS057-10175_Le_tiglLeopardus 36. BCATS056-10171_Le_tiglLeopardus 37. BCATS185-101217_Ly_lyn_ly Lynx 38. BCATS065-10139_Ly_lyn_ly Lynx 40. BCATS064-10138_Ly_lyn_lyLynx 41. BCATS063-10137_Ly_lyn_lyLynx 42. BCATS060-101182_LynnylLynx							ATCCGTGGATTTAA(ATCCGTGGATTTAA(
39. BCATS064-10 38 Ly lyn lyLynx	TTGCC TCGTCCA TGGTGG	AGGCCGGAGCAGGGA	C TGGG TGAACAG TA	TATCCGCCCCTA	GCCGGCAACC TG	GC TC A TG CA GG AG C	ATCCGTGGATTTAAC
40. BCATS063-10 37_Ly_lyn_ly Lynx	TTGCC TCGTCCA TGGTGG						
41. BCATS060-10/19_Ly_lyn_lylLynx 42. BCATS059 10/18_Ly_lyn_lylLynx	TTGCC TCGTCCA TGGTGG TTGCC TCGTCCA TGGTGG						
43 BCATS058-101146 LV Jvnl vnx	TTGCC TCGTCCA TGGTGG	AGGCCGGAGCAGGGA	C TGGG TGAACAG TA	TA TCCGCCCC TA	GCCGGCAACC TG	GCTCATGCAGGAGC	ATCCGTGGATTTAA(
44. BCAISU/ 1-10199 LV TUILVIIX							ATCCGTAGACCTAAC
45. BCATS069-10 100 Ly_ruf Lynx							ATCCGTAGACCTAA(ATCCGTAGATCTAA(
46. BCATS088-10 89 Ot man Otocolobus 47. BCATS086-10 87 Ot man Otocolobus							ATCCGTAGATCTAA(
48. BCATS081-10 193 Ot man Otocolobus							ATCCGTAGATCTAAC
49. BCATS079-10 102 Ot man Otocolobus	TCACTTCCTC TA TGGTAG						
40. BCATS086-10187_OT_man Otocolobus 47. BCATS086-10187_OT_man Otocolobus 48. BCATS081-10 193_OT_man Otocolobus 49. BCATS079-10102_OT_man Otocolobus 50. BCATS186-10128_Pa_leo_bl Panthera 51. BCATS106-10149_Pa_leo_bl Panthera 52. BCATS104-10127_Pa_leo_bl Panthera 52. BCATS104-10127_Pa_leo_bl Panthera	ICGCA TCATC TA TGGTAG ICGCA TCATC TA TGGTAG						
52. BCATS104-10 27 Pa leo bl/Panthera	TCGCA TCATC TA TGGTAG						
	ICGCA TCATC TA TGGTAG						
54. BCATS115-10 149_Pa_onc Panthera 55. BCATS113-10 109_Pa_onc Panthera	TCGCA TCATC TA TGGTAG TCGCA TCATC TA TGGTAG						
56. BCATS189-10 211_Pa_par_ori Panthera	ICGCA TCATC TG TGGTAG						
57. BCATS188-10/163 Pa par melPanthera	ICGCA TCATC TA TGGTAG	AGGCCGGGGCAGGGA	C TGGA TGAACAG TA	TACCCACCCCTA	GCCGGCAACC TA	GCCCATGCAGGGGC	ATCCGTAGATTTAAC
58. BCATS187-10 73 Pa par kolPanthera							ATCCGTAGATTTAAC ATCCGTAGATTTAAC
59. BCATS183-10 122 Pa par or Panthera 60. BCATS135-10 79 Pa par or Panthera							ATCCGTAGATTTAA(
61. BCATS134-10 74 Pa par ori Panthera							ATCCGTAGATTTAAC
62. BCATS128-10 168 Pa_par_ja Panthera							ATCCGTAGATTTAAC
 BCATS135-10/79 Pa_par_or/Panthera BCATS135-10/79 Pa_par_or/Panthera BCATS134-10/74 Pa_par_or/Panthera BCATS128-10/168 Pa_par_jalPanthera BCATS127-10/162 Pa_par_or/Panthera BCATS126-10/159 Pa_par_or/Panthera BCATS125-10/148 Pa_par_salPanthera BCATS125-10/142 Pa_par_or/Panthera 	TCGCA TCATC TG TGGTAG						ATCCGTAGATTTAA(ATCCGTAGATTTAA(
65. BCATS125-10 148 Pa par sa Panthera							ATCCGTAGATTTAA(
00. BCATS124-10[121 Fa par ofFanthera	ICGCA TCATC TG TGGTAG	AGGCTGGGGCAGGAA	C TGGA TGAACAG TA	TACCCACCCCTA	GCCGGCAACC TA	GCCCATGCAGGGGC	ATCCGTAGATTTAAC
67. BCATS119-10 116_Pa_par_me Panthera	ICGCA TCATC TA TGGTAG ICGCA TCATC TA TGGTAG						
68. BCATS158-10 68_Pa_tig_al Panthera 69. BCATS156-10 189_Pa_tig_al Panthera							ATCCGTAGATCTAAC
70. BCATS155-10 166 Pa tig Panthera	ICGCA TCATC TA TGGTAG	AGGCTGGAGCAGGGA	.C TGGA TGGA CAG TA	TACCCACC TC TA	GCCGGCAACC TA	GCTCATGCAGGAGC	ATCCGTAGATCTAAC
71 BCATS154-10 165 Pa_tig_tilPanthera							ATCCGTAGATCTAAC
72. BCATS153-10161_Pa_tig_sulPanthera 73. BCATS152-10156_Pa_tig_allPanthera 74. BCATS152-10156_Pa_tig_allPanthera	ICGCA TCATC TA TGGTAG ICGCA TCATC TA TGGTAG						ATCCGTAGATCTAAC
74 DOATE1E1 101165 Do the all Dopthore							

Concension	440 450 460 470 480 490 500 510 520 530 54 - A C TA T T T T C T C A C T A C C A G C T G C T C C T C A A T C T A G G T G C T A T T A T T A C T A C T A C A C C C C
Consensus	
1. BCATS004-10 2_Ac_jub Acinonyx 2. BCATS003-10 1_Ac_jub Acinonyx 3. BCATS002-10 160_Ac_jub Acinonyx	- AC TA TC TTC TCAC TTACACC TAGCAGE C TTTCT TCTCAATTTTAGG TGC TA TTAATTTTATTACAAC TATCA TTAATA TATCACCCCC TGCCA TA TC TCAATAC
2. BCATS003-1011_AC_JUDJACINONYX 3. BCATS002-101160_Ac_jubJAcinonyX	- A C TA TC TTC TCAC TTCACC TAGCAGGCGTT TCTTCAATTT TAGG TGC TA TTAAT TT TA TTACAAC TA TCA TTAA TA TAAAACCCCC TGCCA TA TC TCAA TA C - A C TA TC TTC TCAC TTCACC TAGCAGGCGTT TCTTCAATTT TAAGG TGC TA TTAATTT TTA TTACAAC TA TCA TTAA TA TAAAACCCCC TGCCA TA TC TCAA TA C
4 BCATSUUI-10111 AC IUDIACIDODVX	AC THAT CITE TRACT TRACE TABLES OF THE TRACT THAT AND THE ATTACT THAT THAT AND THE ATTACANCE CONCENTED OF THE TRACE ATTAC
5. BCATS013-10 83 Ac jub so Acinonyx	-AC TA TC TTC TCAC TTCACC TAGCAGGCGTT TCT TCAA TTT TAGG TGC TA TTAATTT TA TTACAAC TATCA TTAA TA TAAAACCCCCC TGCCA TA TC TCAA TAC
6. BCATS012-10 82 Ac jub Acinonyx	-AC TA TC TTC TCAC TTCACC TAGCAGGCG TT TC T TCAA T TT TAGG TGC TA TTAAT T T TA TACAAC TATCA TTAA TA TAAAACCCCCC TGCCA TA TC TCAA TAC
7. BCATS011-1081_Ac_jubAcinonyx	- A C TA TC TTC TCA C TTCACC TAGCA GG C G T TTC T TCAA T TT TAGG TGC TA TTAAT T TA TTA CAAC TA TCA TTAA TA TAAAACCC C C TGCCA TA TC TCAA TA C
8. BCATS010-10 3_Ac_jub Acinonyx	- A C TA TC TTC TCAC TTCACC TAGCAGGCG TT TC TTCAA TTT TAGG TGC TA TTAAT TT TA TTACAAC TA TCA TTAA TA TAAAA CCCCC TGCCA TA TC TCAA TA C - A C TA TT TTC TCAC TACAC TTAGCAGG TG TC TC TTCAA TC TTAGG TGC TA TTAAT TTAC TTAC
5. BCATS013-10/83 Ac_ub_SolAcinonyx 6. BCATS012-10/82 Ac_ubJAcinonyx 7. BCATS011-10/82 Ac_ubJAcinonyx 8. BCATS010-10/3 Ac_jubJAcinonyx 9. BCATS017-10/98 Ca_ser[Caracal 10. BCATS016-10/97 Ca_ser[Caracal 11. BCATS015-10/96 Ca_ser[Caracal 12. BCATS014-10/90 Ca_ser[Caracal 13. BCATS012-10/90 Ca_ser[Caracal 13. BCATS012-10/90 Ca_ser[Caracal 14. BCATS021-10/90 Ca_ser[Caracal 15. BCATS012-10/912 Te_cat[Felis 15. BCATS012-10/1912 Te_cat[Felis	AC TA TITTE TEAC TACAC TAGEA STOTE TEAT TEAT TAGE TAGE TACT TATA TA TA TA TA TA TA TA TA A TA TAA ACCECCE TACCA TA TE TAA TA
11. BCATS015-10/96 Ca ser Caracal	-AC TA T T TTC TC AC TAC AC T TAGC AGG TGTC TC T TCA A TC T TAGG TGC TA TTA ATT TCA T TAC TAC TAT TA TAA AACCCCCC TGCCA TA TC TC AA TA I
12. BCATS014-10 90 Ca ser Caracal	-AC TA T T TT TC TCAC TACAC T TAGCAGG TG TC T CT TCAA TC T TAGG TGC TA TTAAT T TCA TTAC TAC TAT TA TAAAACCCCCC TGCCA TA TC TCAA TA I
13. BCATS021-10 214_Fe_cat Felis	-AC TA T T TTC TCAC TACACC TGGCAGG TGTC TCC TCAA TC T TGGG TGC TA TTAAT T TA TTAC TAC TATGA TTA TAAAAACC TCC TGCCATG TC TCAA TA T
14. BCA S020-10 192_Fe_cat Felis	-A C TA T T TTC TCAC TACACC TGGCAGG TG TC TCC TCAA TCT TGGG TGC TA TTAAT T T TA T TA
15. BCATS019-10 191 Fe_cat Felis 16. BCATS018-10 190 Fe_cat Felis	AC TA T TTT TC CAC TACACC TEGCAEG FET TC TCCAATC TEGE TEGE TEGE TATATT TTA TTAC TAC TATA TA TAAAACC TCC T
	-AC TA TT TT TT TC AC TGC ACC TGG CAGE TG TC TCC TCA A TC T TGG G TGC TA TTAAT T TCA T TAC TAC TAT TA TAA TA
18. BCATS024-10 14 Fe mar Felis	-AC TA T T T T T T C AC TGC ACC TGG C AGG TG T C C T CC T C
19. BCATS033-10 204_Fe_nig Felis	-AC TA T T TT TC TCAC TACACC TGGCAGG TG TC TCC TCAA TC T TGGG TGCCA TTAAT T TCA TTAC TAC TAT TA TAA TA TAAAA CCCCCC TGCCA TA TC TCAA TA I
20. BCATS032-10 203_Fe_nig Felis	-AC TA TTTTC TCAC TACACC TGGCAGG TGTC TCC TCAATCT TGGG TGCCA TTAATTTCA TTAC TAC TATTA TTAATAATAACCCCC TGCCATATC TCAATA TA
22 BCATS051-10/202 Fe sil dolEelis	-AC TA T T TTC TCAC TACACC TGGCAGG TG TC TCC TCAA TCT TGGG TGCCA TTAAT T TCA T TAC TAC TAT TTAA TA TAAAACCCCC TGCCA TA TC TCAA TA 1 -AC TA T T TTC TCAC TACACC TGGCAGG TG TC TCC TCAA TC T TGGG TGC TA TTAAT T TA T TA
23. BCATS050-10/91 Fe_sillFelis	-AC TA TT TTC TO AC TACACC TGGCAGG TGTC TCC TCAA TC T TGGG TGC TA TTAATTT TA TTAC TAC TATGA TTAA TA TAAAACC TCC TGCCA TG TC TO AA TA 1
24. BCATS049-10 78 Fe_sil Felis	-AC TA TITTE TEAC TACACE TEGEA 3G TETE TEE TEAA TE TIGEE TEE TA TIAATITITAE TAE TAE TAA TAA AACE TEE TEECA TE TE AA TA I
17. BCATS029-10198 Fe_mar[Felis 18. BCATS024-1014 Fe_mar[Felis 19. BCATS033-10204 Fe_nig[Felis 20. BCATS032-10203 Fe_nig[Felis 21. BCATS031-10202 Fe_nig[Felis 22. BCATS051-1092 Fe_sil[Felis 23. BCATS050-1091 Fe_sil[Felis 24. BCATS049-1078 Fe_sil[Felis 25. BCATS048-1077 Fe_sil[Felis 26. BCATS048-1077 Fe_sil[Felis	-AC TATTTTC TCAC TACACC TGGCAGG TG TC TCC TCAATC T TGGG TGC TATTAATTT TATTAC TAC TATGATTAATA TATAAAACC TCC TGCCATG TC TCAATA T
	-A C TA T T TTC TCAC TACACC TGGCAGG TG TC TCC TCAA TCT TGGG TGC TA TTAAT T TAC TAC TAC TATGA TTAA TA TAAAACC TCC TGCCA TG TC TCAA TA 1 -A C TA T T TTC TCAC TACACC TGGCAGG TG TC TCC TCAA TC T TGGG TGC TA TTAAT T TAC TAC TATGA TTAA TA TAAAACC TCC TGCCA TG TC TCAA TA 1
27. BCATS041-10/216 Fe_sillFelis 28. BCATS040-10/215 Fe_sillFelis	AC TRATTICT TRACTACACC TGGCAGG TGTC TCCATCCATCT TGGG TGC TA THAATTIT TA THAC TAC TATGA THAAAACC TCC TGCCAG TG TC TCAA TA 1
27. BCATS040-10/215 Fe_silFelis 29. BCATS039-10/215 Fe_silFelis 30. BCATS039-10/213 Fe_silFelis 31. BCATS038-10/212 Fe_silFelis 32. BCATS032-10/93 Fe_jyb Felis 33. BCATS052-10/93 Fe_jyb Felis 33. BCATS053-10/95 Le_geo Leopardus 34. BCATS052 10/70 Leopardus	-AC TA TT TTC TCAC TAC ACC TGGC AGG TGTC TCC TCAA TC T TGGG TGC TA TTAATTT TA TTAC TAC TATGA TTAA TA TAAAACC TCC TGCCA TG TC TCAA TA 1
30. BCATS038-10 212 Fe_sil Felis	-AC TA T T TT TC TC AC TAC ACC TGG C AGG TG TC TCC TCA A TC T TGG G TGC TA TTA AT T TA TTAC TAC TATG A TTA A TA TAAA A CC TCC TG CC A TG TC TC AA TA I
31. BCATS034-10 145_Fe_sil Felis	-AC TATTTTCTCACTACACCTGGCAGGTGTCTCCTCAATCTTTGGGTGCTATTATTTTATTACTACTATGATTAATATAAAAAACCTCCTGCGAGTGTCTAATA
32. BCATS022-10/93_Fe_lyb/Felis	- A C TA T T TTC TCAC TACACC TGGCAGG TG TC TCC TCAA TCT TGGG TGC TA TTAAT T TTA T TAC TAC TA TGA TTAA TA TAAAACC TCC TGCCA TG TC TCAA TA J - A C TA T T T T T TCAC TACATC TAGCAGG TA T T TCC TCAA TC T TGGG TGC TA TTAAT T T TA TCACCAC TAT TA TCAACA TAAAACCCCC TGCCA TA TC TCAA TA J
34. BCATS052-10/70_Le_geo/Leopardus	AC TRATTITTERAC TRACATC TAGCAGE TRATTICC TCAR TO TAGGE GE TA TTRATTITA TCACCAC TATTA TCACACA TABAACCCCC TGCCA TA TO TCAA TA 1
35 BCATS057-10175 Le tigli eopardus	-AC TA T T T T T T T C AC TAC AC C TGG C AGG TG T T T CC T CAA T C T TGG G TGC TA T TAAT T T TA T TA
36. BCATS036-10/71_Le_tigLeopardus	-AC TA T T T T T T C AC TAC ACC T G C A G T G T T T CC T CAA T C T T G G G T GC T A T T A AT T T T T T T T T A T T A C T AT A A A C C C C
37. BCATS185-10 217_Ly_lyn_ly Lynx	- A C C A T C T T C A C T C A C C T A G C A G C G T T T C T T C A T C T T G G C G C T A T T A T T T T T A C C A C T A T T A T T A A A A
	- A CCA TC TTC TCAC TCCACC TAGCAGGCGTT TC TTCAA TC T TGGGCGC TA TTAAC TT TA TCACCAC TA TTA TTAA TA TAAAACCCCC TGC TA TA TC TCAA TA C - A CCA TC TTC TCAC TCCACC TAGCAGGCGTT TC TTCAA TC T TGGGCGC TA TTAAC TT TA TTACCAC TA TTA TTAA TA TAAAACCCCC TGC TA TA TC TCAA TA
40. BCATS063-10137 Lv Jvn JvLvnx	-A C C A T C T C C A C C T A C C A G C A G C G C T T C T T C A T C T T G G C G C T A TTA A C T T T A T T A C A C T A T A
39. BCATS064-1038_Ly_Iyn_IyLynx 40. BCATS063-1037_Ly_Iyn_IyLynx 41. BCATS060-1019_Ly_Iyn_IyLynx 42. BCATS059-1018_Ly_Iyn_IyLynx 43. BCATS059-10146_Ly_Iyn_Iynx 44. BCATS058-10146_Ly_Iyn_Lynx	-ACCA TO TTO TO AC TO CACC TAGCAGGOGTT TO TTO AA TO TGGGOGO TA TTAACT T TA TTACCAC TATTA TTAA TA TAAAACCCCC TGO TA TA TO TO AA TA C
42. BCATS059-10 18_Ly_lyn_ly Lynx	-A C C A T C TT T T C A C T C C A C C T A G C A G G C G T T T T C A A T C T T G G G C G C T A T T A A T A T C A C A C T A T T A T T A A A A
43. BCATS058-10 146_Ly_lyn Lynx	-A CCA TC TTC TCAC TCCACC TAGCAGGCGTT TC TTCAA TCT TGGGCGC TA TTAAC TT TA TCACCAC TA TTA TTAA TA TAAAACCCCC TGCTA TA TC TCAA TA C -A C TA TT TTC TCAC TCCACC TGGCAGG TG TT TCC TCAA TCC TAGG TGC TA TTAAT TTATTACCAC TA TTA TTAA TA TAAAACCCCC TGCCA TA TC TCAA TA 1
44. BCATS071-10/99 Ey ruf/Lynx 45. BCATS069-10/100_Ly_ruf/Lynx	AC TRATTICT CRACT CRACE TGGCAGG TGTTTCC TCAA TCC TAGG TGC TA TTAATTTTA TTA CCAC TATTA TTAA TA TAAAACCCCC TGCCA TA TO CCAA TA 1
46. BCATS088-10189 Ot manlOtocolobus	-AC TA TC TT TT TC CC TAC A TC T TG TAGG TG TC T TC T
46. BCATS088-10 89 Ot man Otocolobus 47. BCATS086-10 87 Ot man Otocolobus	- A C TA TC TT T TC C C TA C A TC T TG TA GG TG TC T CT TCA A TC T TGG G C GC C G TTA A T T CA TCA C AG TA T TA T
48. BCATS081-10 193_Ot_man Otocolobus	- A C TA TC TT TTC C C TA CATC TTG TA GG TG TC TC T TCA A TC T TGG GCGCCG TTA A TT TCA TCA CC A C TA TTA TTA A TA TAA AA CC TCC T
 BCATS081-10193_OT_man[Otocolobus BCATS081-10193_OT_man[Otocolobus BCATS079-10102_OT_man[Otocolobus BCATS186-1049_Pa_leo Panthera BCATS106-1049_Pa_leo_bilPanthera BCATS104-1027_Pa_leo_bilPanthera BCATS103-1026_Pa_leo_bilPanthera BCATS113-10149_Pa_onc Panthera BCATS113-10149_Pa_onc Panthera BCATS113-10120_Pa_onc Panthera BCATS13021021_Pa_onc Panthera 	- A C TA TC TT T TCCC TACATC T TG TAGG TG TC TC T TCA A TC T TGGGCGCCG TTA A T T TCA TCA CC AG TA TT A TAA A A CC TCC TGCCC TA TC TCA C TA J - A C TA TT TT T TCAC TACACC TAGCAGG TG TC TCC TCAA TC T TAGG TGC TA TT A A T TA C TAC TAT TA A TA TAA A A CC CC TGCTC TA TCCCAA TA J
51. BCATS106-10/49 Pa leo Panthera	-AC TA T T T T T T T C AC C T AGC AGG TG T C T C C T C A A T C T T AGG TGC T A T T A A T T T T T T T T A T T A T A T A
52. BCATS104-10 27 Pa leo bl Panthera	-AC TA T T T T T T T C AC TACAC C TAGCAGG T G T C T C C T CAA T C T TAGG T GC T A T T AA T T T A C T AC T A
53. BCATS103-1026 Paleo bl Panthera	- AC TA TT TT TT TC AC TA ACAC C TAGCAGG TG TC TC CT TAGG TG CT TA TT AT TT TA TT AC TAC TA TTA TT TA A TAA A A C C C C
54. BCATS115-10 149_Pa_onc Panthera 55. BCATS113-10 109_Pa_onc Panthera	- A C TA T T T T T T T C A C TGC A CC T GG C A GG TG T C T CC T C
56. BCATS189-10/211_Pa_par_ori/Panthera	AC TA T TTTTTCAC TACACC TEGCAEG FETCTC CCA TC TAGGCEC TA TTATTTA TAC TAC TA TA TA TA AAACCCCC TEGCAE TA TCCAA TA
58. BCATS187-10 73 Pa par ko Panthera	-AC TA T T T T T T T C AC TAC ACC TGG C A GG TG TC T CC TCA A TC T TAGG C GC TA TTAAC T T TA T TA
59. BCATS183-10 122 Pa par_or Panthera	- A C TA TT TT TT TCAC TACACC TGGC AGG TG TC TCC TCA TCT TAGGCGC TA TTA AT TT TA TTAC TAC TAT TTA A TA AAA ACCCCC TGC TA TA TCCCAA TAC - A C TA TT TT TT TCAC TACACC TGGC AGG TG TC TCC TCAA TC TTAGGCGC TA TTAATT TTAT TTA
60. BCATS135-10/79_Pa_par_or/Panthera 61. BCATS134-10/74_Pa_par_or/Panthera	AC TA TITITICA CIACACCIEGCAGE EFECTICE CAATE TAGEGE A THARTITA TACHACIACIAL TAATA TA AAACCCCCE EFECTA TA CCAATA
62. BCATS128-10 168 Pa par jalPanthera	-AC TA T T T T T T C AC TAC ACC TAG C AGG TG TC T CC T C
63. BCATS127-10 162 Pa_par_or Panthera	- A C TA T T T T T T C A C TA C A C C TGG C A GG T G T C T C C T CA A T C T TAG G C GC T A T T A A T T A C T A C T A C T A A A T A A A A
57. BCATS188-10163 Pa_par_melPanthera 58. BCATS187-1073 Pa_par_kolPanthera 59. BCATS183-10122 Pa_par_orlPanthera 60. BCATS135-10179 Pa_par_orlPanthera 61. BCATS134-1074 Pa_par_orlPanthera 62. BCATS128-10168 Pa_par_orlPanthera 63. BCATS128-10162 Pa_par_orlPanthera 64. BCATS125-10148 Pa_par_salPanthera 65. BCATS125-10121 Pa_par_orlPanthera 66. BCATS125-10121 Pa_par_orlPanthera	-ACTA TTTTTTCACTACACCTAGCAGGTGTCTCCTCAATCTTAAGGCGGTATTTAATTTAATTACTACTACTATTAATATAAAACCCCCTGCTACATCCCAATAC
65. BCATS125-10 148_Pa_par_sa Panthera 66. BCATS124-10 121_Pa_par_or Panthera	- A C TA T T T T T T T C A C TAC A C C TGG C A G T G T C T C C T A A T C T T A G G C G C TA T T A A T T A C T A C TA A T T T A A A A
67. BCATS124-10/121_Fa_par_or/Fanthera	
69 BCATS159 1069 Do Tig all Popthoro	-AC TA T T T T T T T C A C T A C A C C T A G C A G G T G T C T C C T C A A T C T T A G G T G C T A T T A A T T A T T A T T A T T A A T A T A
69. BCATS156-10 189 Pa_tig_al Panthera	- A C TA TT TT TTC A C TA C A A C C TA G C A G T G T C T C C T C A A C T T T A G T A C TA T T A TTA T T A T TA A TA TA A A C C C C
70. BCA [S155-10]166_Pa_tig Panthera	-ACTA TTTTTTCACTACACCTAGCAGGTGTCTCCTCAATCTTAAGTGGTATTTATT
72 BCATS153-10/161 Pa_tig_ulPanthera	- A C TA T T T T T T T C A C TA C A C C TAG C A G T G T C T C C T A A T C T T A G G T G C T A T T A A T T T T T T T T T T A T T A T T T A T T A A A A C C C C
69. BCATS156-10189 Pa_tig_al Panthera 70. BCATS156-10189 Pa_tig_al Panthera 71. BCATS155-10166 Pa_tig_Panthera 72. BCATS154-10165 Pa_tig_ti Panthera 73. BCATS152-10166 Pa_tig_al Panthera 74. BCATS152-10156 Pa_tig_al Panthera	-AC TA TTTTTTCAC TACACC TAGCAGG TGTC TCC TCAA TCT TAGG TGC TA THAATTTTTA TTAC TAC TAT TA TTAA TA TAAAACCCCC TGC TA TA TCCCAA TA 1
74 BOATS151 101155 Do tis all Donthors	<u>Α Ο ΜΑ ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ</u>

	540 550 560 570 580 590 600 6	10 620 630 64
Consensus	ia tea a a caecee ta t t tg t e tga tea g t t t ta tea e tge t get e tge ta e tre ta tea e tee e tge ta tea g t t t ta	GCAGCAGGAA TCAC TA TGC TACTAACAG
1. BCATS004-10 2_Ac_jub Acinonyx	faccaaacacctttgtttgtgtgtgtgtatcagttctaatcactgcagtcctgttacttctatcactcccagtttta	
1. BCATS004-10 2_Ac_jub Acinonyx 2. BCATS003-10 1_Ac_jub Acinonyx 3. BCATS002-10 160_Ac_jub Acinonyx 4. BCATS001-10 11_Ac_jub Acinonyx 5. BCATS012_10 22_Ac_jub Acinonyx	IACCAAACACCTTTGTTTGTGTGATCAGTTCTAATCACTGCAGTCCTGTTACTTCTATCACTCCCAGTTTTA IACCAAACACCTTTGTTTGTGTGTGATCAGTTCTAATCACTGCAGTCCTGTTACTTCTATCACTCCCAGTTTTA	
4. BCATS001-10/11_Ac_jub/Acinonyx	IA CCAAACACCTTTGTTTGTGTGTGATCAGTTCTAATCACTGCAGTCCTGTTACTTCTATCACTCCCAGTTTTA	GCAGCAGGAA TCACCA TGT TA TTAACAG
5. BCATS013-10 83_Ac_jub_so Acinonyx	IACCA A ACACC T T TG T TG TG TGA TCAG TTC TAA TCAC TGC AGTCC TG T TAC T TC TA TCACTCCCAG TT T TA IACCA AACACC T T TG T T TG TG TGA TCAG TTC TAA TCAC TGC AGTCC TG T TAC T TC TA TCACTCCCAG TT T TA	JCAGCA GGAA TCACCA TG TTA TTAACAG
7. BCATS011-10 81 Ac jub Acinonyx	IA C C A A C A C C T T T G T T TG TG TG A T C A G T TC T A T C A C T G C A G T C C TG T T A C T C T C T A T C A C T C C C A G T T T T A	GCAGCA GGAA TCACCA TGT TA TTAACAG
8. BCATS010-10 3 Ac_jub Acinonyx	EACCA A ACACC T T TG T T TG TG TGA TCAG TTC TAA TCAC TGC AGTCC TG T TAC T TC TA TCACTCCCAG TT T TA EA TCA A ACACC TC TAT TCG T T TGA TCAG TTC TAA T TAC TGC TG TCC TA T TAC T TC TA TCACTCCCAG TCC TA	
 BCATS017-10/11_Ac_ub/Acinonyx BCATS013-10/83_Ac_ub/Scinonyx BCATS012-10/83_Ac_ub/Scinonyx BCATS011-10/81_Ac_ub/Acinonyx BCATS010-10/3_Ac_ub/Acinonyx BCATS017-10/98_Ca_ser/Caracal BCATS015-10/96_Ca_ser/Caracal BCATS015-10/96_Ca_ser/Caracal BCATS015-10/96_Ca_ser/Caracal BCATS014-10/90_Ca_ser/Caracal BCATS014-10/20_Ca_ser/Caracal BCATS014-10/214_Fe_catFelis 	IA TCAAACACCTC TATTCG TTTGA TCAG TTC TAATTACTGC TGTCC TATTACTTC TA TCACTCCCAG TCC TA	GCAGCG GGAA TTACCA TATTA TTAACAG
11. BCATS015-10 96 Ca_ser Caracal	EA TCA A A CACCTC TA T TCG T T TGA TCAG T TC TAA T TAC TGC TG T CC TA T TAC T TC A T C A C TCCCAG TCC TA EA TCA A A CACCTC TA T TCG T T TGA TCA G T TC TAA T TAC T GC TG T CC TA T TAC T TC TA TCACTCCCAG TCC TA	
13. BCATS021-10 214_Fe_cat Felis	IA TCAAACACCCC TATTTG TTTGATCAG TC TGAA TCAC TGC TG TCCC TG TTAC TTC TA TCACTCCCAG TTTTA	GCAGCG GGAA TCAC TAGGC TAC TAACAG
14. BCA I S020-10[192_Fe_cat Felis	IA TCA A ACACCCC TAT T TG T TGA TCAG TC T TAA TCAC TGC TGTCC TG T TAC T TC TA TCACTCCCAG TT T TA IA TCA A ACACCCCC TAT T TG T TGA TCAG TC T TAA TCAC TGC TGTCC TG T TAC T TC TA TCACTCCCAG TT T TA	
16. BCATS018-10 190 Fe cat Felis	IA TCAAACACCCC TATTTG TTTGATCAG TC TKAA TCAC TGC TGTCC TG TTAC TTC TA TCACTCCCAG TTTTA	GCAGCGGGAA TCAC TAGGC TAC TAACAG
17. BCATS029-10 198 Fe mar Felis	EA TCA A A CA C C T T TA T T TG TA TGA TCA G TC T TAA TCA C TGC TG TC T TAC TAC T TC TA TCA C T TCCAG TC T TA EA TCA A A CA C C T T TA T T TG TA TGA TCA G TC T TAA TCA C TGC TG TC T TAC TAC T TC TA TCA C T TCCAG TC T TA	
19. BCATS024-10/14_Fe_mai/Felis	IA TCAAACCCCC TATTTG TTTGA TCGG TC TTAA TTAC TGCCGTCC TA TTAC TC TA TCACTTCCAG TC TTA	
20. BCATS032-10 203 Fe_nig Felis	IA TCAAACGCCCC TATTTG TTTGATCGGTCTTAATTACTGCCGTCCTATTACTTCTATCACTTCCAGTTTTA	GCAGCA GGGA TCAC TA TGT TACTAACAG
22. BCATS031-10/202_Fe_nig Felis 22. BCATS051-10/92 Fe sil golFelis	IA TCA A A CGCCCC TA T T TG T TGA TCGG TC T TAA T TA C TGC CGTCC TA T TAC T TC TA TCA CT TCCAG TT T TA IA TCA A A CA CCCC TA T T TG T TGA TCAG TC TGAA TCA C TGC TGTCC TG T TAC T TC TA TCA CT CCCAG TT T TA	
23. BCATS050-10 91 Fe_sil Felis	IA TCAAACACCCC TATT TG TT TGA TCAG TC TTAA TCAC TGC TG TCC TG TTAC TTC TA TCACTCCCAG TT TTA	GCAGCGGGAA TCAC TAGGC TAC TAACAG
24. BCATS049-10/78_Fe_sil[Felis 25. BCATS048-10/77_Fe_sil[Felis	IA TCA A ACACCCC TAT T TG T TGA TCAG TC T TAA TCAC TGC TG TCC TG T TAC T TC TA TCACTCCCAG TT T TA IA TCA A ACACCCCC TAT T TG T TGA TCAG TC T TAA TCAC TGC TG TC C TG T TAC T TC TA TCACTCCCAG TT T TA	
26. BCATS047-10 76 Fe_sil Felis	IA TCAAACACCCC TATTTG TTTGATCAGTC TTAATCACTGC TGTCC TGTTACTTC TA TCACTCCCAGTTTTA	GCAGCG GGAA TCAC TAGGC TAC TAACAG
17. BCATS029-10 198 Fe_marlFelis 18. BCATS024-10 14 Fe_marlFelis 19. BCATS033-10 204 Fe_nig Felis 20. BCATS032-10 203 Fe_nig Felis 21. BCATS031-10 202 Fe_nig Felis 22. BCATS051-1092 Fe_sil Felis 23. BCATS050-1091 Fe_sil Felis 24. BCATS049-10 78 Fe_sil Felis 25. BCATS044-10 76 Fe_sil Felis 26. BCATS047-10 76 Fe_sil Felis 27. BCATS041-10 215 Fe_sil Felis 28. BCATS039-10 213 Fe_sil Felis 29. BCATS039-10 213 Fe_sil Felis 30. BCATS034-10 145 Fe_sil Felis 31. BCATS034-10 145 Fe_sil Felis 32. BCATS047-10 95 Le_geo Leopardus 34. BCATS052-10 97 Le_geo Leopardus 34. BCATS052-10 77 Le_geo Leopardus 34. BCATS052-10 77 Le_geo Leopardus	EA TCA A A CA C C C C T A T T IG T T IG A TCA G TC T T AA TCA C T GC T G T C C IG T T AC T TC T A TCA C T C C C AG TT T TA EA TCA A A C A C C C C T A T T IG T T IG A TCA G TC T T AA TCA C T GC T G T C C IG T T AC T TC T A TCA C T C C C AG TT T TA	
29. BCATS039-10 213 Fe_sil Felis	IA TCAAACACCCC TAT T TG T T TGA TCAG TC T TAA TCAC TGC TG T TCC TG T TAC T TC TA TCAC TCCCAG TT T TA	GCAGCGGGAA TCAC TAGGC TACTAACAG
30. BCATS038-10 212_Fe_sil Felis 31_BCATS034-10 145_Fe_sil Felis	IA TCA A ACACCCCC TAT T TG T TGA TCAG TC T TAA TCAC TGC TGTCC TG T TAC T TC TA TCACTCCCAG TT T TA IA TCA A ACACCCCC TAT T TG T TGA TCAG TC T TAA TCAC TGC TGTCC TG T TAC T TC TA TCACTCCCAG TT T TA	
32. BCATS022-10 93_Fe_Tyb Felis	IA TCAAACACCCC TATTTG TTTGATCAG TC TGAA TCAC TGC TGTCC TG TTAC TTC TA TCACTCCCAG TTTTA	GCAGCG GGAA TCAC TAGGC TAC TAACAG
33. BCATS053-10 95_Le_geo Leopardus 34. BCATS052-10 70_Le_geo Leopardus	EA TCA A A CA C C T C T T T T C G T C TGA T C T G T C T T TAA T TA C TGC T G T T T T G T T GC T C C T A T C A C T T C C A G T T T T A EA TCA A A C A C C T C T C T T C G T C TGA T C T G T C T T TAA T TA C T GC T G	
35. BCATS057-10/75 Le tig/Leopardus	IA C C A A A C A C C T T T G T T C G T C T G A T C C G T T T T A A T T A C T G C C G T T C T A C T T C T G T C A C T T C C A G T T T T A I	GCAGCA GGAA TCACCA TAT TAC TAACAG
36. BCATS056-10/71_Le_tig Leopardus	IA CCA A A CA C C T T T G T T CG T C TGA T CC G T T T T AA T TA C TGC C G T T C TA C TA	
 BCATS052-10[70]Le_ğeo Leopardus BCATS050-10[75]Le_tig Leopardus BCATS056-10[71]Le_tig Leopardus BCATS056-10[71]Le_tig Leopardus BCATS056-10[39]Ly [yn]y[Lynx BCATS063-10[39]Ly [yn]y[Lynx BCATS063-10[37]Ly]yn]y[Lynx BCATS063-10[37]Ly]yn]y[Lynx BCATS063-10[37]Ly]yn]y[Lynx BCATS063-10[37]Ly]yn]y[Lynx BCATS063-10[37]Ly]yn]y[Lynx BCATS059-10[18]Ly]yn]y[Lynx BCATS058-10[146]Ly]yn]y[Lynx BCATS058-10[146]Ly]yn]y[Lynx BCATS058-10[146]Ly]yn]y[Lynx BCATS058-10[146]Ly]yn]y[Lynx BCATS058-10[146]Ly]yn]y[Lynx BCATS058-10[146]Ly]yn[Lynx BCATS058-10[146]Ly]yn[Lynx BCATS058-10[146]Ly]yn[Lynx BCATS058-10[146]Ly]yn[Lynx BCATS058-10[146]Ly]yn[Lynx 	IA CCAAACACCTTTATTG TA TGA TCAG TTC TAA TTAC TGCAGTCC TAC TAC TCTTA TCACTCCCAG TT TTA	GCAGCAGGAA TTACCA TGC TAC TAACAG
39. BCATS064-10 38_Ly_lyn_ly Lynx	IA CCA A A CA C C T T T A T T TG TA TGA T TCA G TTC TAA T TA C TGC A G T C T A C TAC T C T TA TC A C T C C C A G TT T TA IA CCA A A CA C C T T T A T T TG TA TGA TCA G TTC TAA T TA C TGC A G T C C TA C TA	JCAGCA GGAA TTACCA TGC TACTAACAG
40. BCATS003-10[37_Ly_lyII_ly[LyIIX 41. BCATS060-10[19_Ly_lyII_ly LyIIX	IA CCAAACACCTTTATTGTATGATCAGTTCTAATTACTGCAGTCCTACTCCTATCACTCCCCAGTTTTA	GCAGCA GGAA TTACCA TGC TACTAACAG
42. BCATS059-10 18 Lý lýn lý Lýnx	EACCAAACACCTTTATTG TA TGATCAG TTC TAATTACTGCAGTCCTACTACTCTTA TCACTCCCAGTTTTA EACCAAACACCTTTATTG TA TGATCAGTTCTAATTACTGCAGTCCTACTACTCTTA TCACTCCCAGTTTTA	
43. BCATS036-10/146_Ly_lyni 44. BCATS071-10/99_Ly_ruf/Lynx	IA TCAAACACCC T TAT T TG TA TGA TCAG TT T TAA T TAC TGCAG TC T TA T TA	GCAGCG GGAA TCACCA TGC TAC TAACAG
45. BCATS069-10 100 Ly_ruf Lynx	IA TCA A A CACCCC T TA T T IG TA TGA TCA G TT T TAA T TAC T GCA G TC T TA T TA	
46. BCATS088-10 89_Ot_man Otocolobus 47. BCATS086-10 87_Ot_man Otocolobus	IA TCAAACACCCC TA T T IG TC IGA TCAG TTC TAA T IAC IGC IGTCC IA	
 45. BCATS088-10100 Ly_rufiLynx 46. BCATS088-10189 Ot man Otocolobus 47. BCATS086-10187 Ot man Otocolobus 48. BCATS086-101027 Ot man Otocolobus 49. BCATS079-101027 Ot man Otocolobus 50. BCATS186-10128 Pa_leo b Panthera 51. BCATS106-1049 Pa_leo b Panthera 52. BCATS106-10127 Pa_leo b Panthera 53. BCATS103-1026 Pa_leo b Panthera 54. BCATS115-10149 Pa_onc Panthera 55. BCATS115-10149 Pa_onc Panthera 		
49. BCATS079-10 102_Ot_man Otocolobus 50. BCATS186-10 28_Pa Teo_bl Panthera	IA TCA A A CA C C C C T A T T TG TC TG A TCA G TTC TAA T TA C TGC TG TC C TA	GCAGCAGGCA TCAC TA TAC TGCTGACAG
51. BCATS106-10 49 Pa_leo Panthera	IA TCAAACACCCC TATTTG TC TGATCGG TTTTAA TCAC TGC TGTATTGC TAC TTC TA TCACTACCAG TTTTA	GCAGCA GGCA TCAC TA TAC TGCTGACAG
52. BCATS104-10 27 Pa leo bl Panthera 53. BCATS103-10 26 Pa leo bl Panthera	IA TCA A A CA C C C C T A T T IG T C IGA T C G G T T T T AA TCA C T GC T G T A T IG C T AC T T C T A TCA C C A G T T T T A IA TCA A A C A C C C C T A T T IG T C IGA T C G G T T T T AA TCA C T GC T G T A T IG C T AC T T C T A TCA C C A G T T T T A	
54. BCATS115-10 149 Pa_onc Panthera	IA TCAAACACCCC TGTTTG TC TGA TCGG TTTTAA TCAC TGC TGTA TTAC TAC TTC TA TCACTGCCAG TTTTAA	
	IA TCA A ACACCCC TGT T TG TC TGA TCGG TT T TAA TCAC TGC TGTA T TAC TAC T TC TA TCACTGCCAG TT T TA IACCA AACACCCTC TA T TCG TC TGA TCGG TC T TAA TCAC TGC TGTA T TGC TAC TCC TA TCACTGCCAG TT T TA	
57. BCATS188-10 163 Pa par melPanthera	IA C CA A A CA C T C T A T T CG T C TGA T CGG T C T T AA T CA C TGC T GTA T T GC T AC T CC T A T CA C T GC CA G T T T T AA	
58. BCATS187-10/73 Pa_par_ko Panthera	IAC CAAACACCCC TATTCG TC TGA TCGG TC T TAA TCAC TGC TGTA T TGC TAC TCC TA TCAC TGC CAG TTT TA IAC CAAACACCTC TATTCG TC TGA TCGG TC T TAA TCAC TGC TGTA T TGC TAC TCC TA TCAC TGC CAG TTT TA	
60. BCATS135-10 79 Pa_par_or Panthera	IA C C A A C A C C T C T A T T C G T C T G A T C G G T C T T A A T C A C T G C T G T A T T G C T A C T C C T A T C A C T G C C A G T T T T A	GCAGCAGGCA TCAC TA TGC TAC TAACAG
61. BCATS134-10/74 Pa_par_ori/Panthera	IACCAAACACCTC TAT TCG TC TGA TCGG TC TTAA TCAC TGC TGTA TTGC TAC TCC TA TCACTGCCAG TT TTAA IACCAAACACCTC TAT TCG TC TGA TCGG TC TTAA TCAC TGC TGTA TTGC TAC TCC TA TCACTGCCAG TT TTAA	
56. BCATS189-10/211 Pa_par_ori Panthera 57. BCATS188-10/163 Pa_par_me Panthera 58. BCATS187-10/73 Pa_par_ko Panthera 60. BCATS183-10/122 Pa_par_or Panthera 61. BCATS135-10/79 Pa_par_or Panthera 62. BCATS134-10/74 Pa_par_ori Panthera 63. BCATS128-10/168 Pa_par_or Panthera 64. BCATS126-10/159 Pa_par_or Panthera 65. BCATS126-10/159 Pa_par_or Panthera 65. BCATS126-10/148 Pa_par_ar_aPanthera	IA CCAAACACCTC TATTCG TC TGA TCGG TC TTAA TCAC TGC TGTA TTGC TAC TCC TA TCACTGCCAG TT TTA	GCAGCAGGCA TCAC TA TGC TAC TGA CAG
64. BCATS126-10 159_Pa_par_or Panthera 65. BCATS125-10 148_Pa_par_sa Panthera	EACCAAACACCCTC TAT TCG TC TGA TCGG TC TTAA TCAC TGC TGTA TTGC TAC TCC TA TCACTGCCAG TT TTA EACCAAACACCCTC TAT TCG TC TGA TCGG TC TTAA TCAC TGC TGTA TTGC TAC TCC TA TCACTGCCAG TT TTA	
	IA CCAAACACCTC TATTCG TC TGA TCGG TC T TAA TCAC TGC TGTA T TGC TAC TCC TA TCAC TGCCAG TT T TA	GCAGCAGGCA TCAC TA TGC TAC TGACAG
67. BCATS119-10 116 Pa par me Panthera	EACCAAACACCCTC TATTCG TC TGA TCGG TC T TAA TCAC TGC TGTA T TGC TAC TCC TA TCAC TGCCAG TTT TA EA TCAAACACCCCC TATTTG TC TGA TCGG TTT TAA TCAC TGC TGTA T TGC TAC TTC TA TCAC TACCAG TTT TA	
69. BCATS156-10 189_Pa_tig_al Panthera	IA TCAAACACCCC TATTTG TC TGATCGG TTT TAATCAC TGC TGTATTGC TAC TTC TATCACTACCAG TTTTA	GCAGCAGGCA TCAC TA TAC TAC TGACAG
66. BCATS124-10121 Pa_par_of Panthera 67. BCATS119-10116 Pa_par_me Panthera 68. BCATS158-1068 Pa_tig_al Panthera 69. BCATS156-10189 Pa_tig_al Panthera 70. BCATS155-10166 Pa_tigPanthera 71. BCATS154-10165 Pa_tig_uPanthera 72. BCATS153-10161 Pa_tig_su Panthera 73. BCATS152-10156 Pa_tig_al Panthera 74. BCATS152-10156 Pa_tig_al Panthera	EA TCA A A CA C C C C T A T T IG T C IGA T C G G T T T T AA TCA C T GC T G T A T IG C T AC T T C A C T A C C A G T T T T A EA TCA A A C A C C C C T A T T IG T C IGA T C G G T T T T AA TCA C T GC T G T A T IG C T AC T T C A C T A C C A G T T T T A	
72. BCATS153-10 161_Pa_tig_su Panthera	IA TCAAACACCCC TATTTG TC TGA TCGG TTTTAA TCAC TGC TGTA TTGC TAC TTC TA TCACTACCAG TTTTA	GCAGCA GGCA TCAC TA TAC TACTGACAG
73. BCATS152-10 156 Pa_tig_allPanthera	IA TCAAACACCCC TAT TTG TC TGA TCGG TTT TAA TCAC TGC TGTA TTGC TAC TTC TA TCACTACCAG TTT TA IA TCAAACACCCCCTATTTC TC TCATCGCTTTTAA TCACTGCTGTA TTGCCTACTACTACCAACTACCAACTACTACCAACTATTAA	GCAGCA GGCA TCAC TA TAC TAC TGACAG

Consensus	640 650 Agategaaa te taa	660 AACACCACA TTCT	670 TIGACCCCGC	680 Iggaggaggag <i>a</i>	690 A TCC TA TC T 1	700 TA TACCAACACT	710 FA	720	730	7
1. BCATS004-10 2 Ac jub Acinonyx 2. BCATS003-10 [⁻ Ac jub Acinonyx 3. BCATS002-10 [⁻ 60 Ac jub Acinonyx 4. BCATS001-10 [11 Ac jub Acinonyx 5. BCATS013-10 [83 Ac jub solAcinonyx 6. BCATS012-10 [82 Ac jub Acinonyx 7. BCATS011-10 [81 Ac jub Acinonyx 9. BCATS011-10 [81 Ac jub Acinonyx 9. BCATS010-10]3 Ac jub Acinonyx 9. BCATS017-10 [98 Ca ser[Caracal 10. BCATS015-10 [96 Ca ser[Caracal 11. BCATS015-10 [96 Ca ser[Caracal 12. BCATS012-10 [214 Fe cat Felis 13. BCATS012-10 [22 Fe cat Felis 14. BCATS020-10 [22 Fe cat Felis 15. BCATS019-10 [21 Fe cat Felis 15. BCATS019-10 [20 Fe cat Felis 15. BCATS019-1	AGATCGAAATTTA AGATCGAAATTTA AGATCGAAATTTA AGATCGAAATTTA AGATCGAAATTTA AGATCGAAATTTA AGATCGAAATTTA AGATCGAAATTTA AGATCGAAACTTA AGATCGAAACTTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA	AA TACCACA TTCT AA TACCACTTTCT AA TACCACTTTCT AA TACCACTTTCT AA TACCACTTTCT AA TACCACTTTCT AA CACTACA TTCT AACACTACA TTCT AACACTACA TTCT AACACTACA TTCT AACACCACA TTCT AACACCACA TTCT	TGA TCC TGC ' TGGA TCC TGC ' TGA TCC GC ' TGA CCC GC '	$\label{eq:starting} \begin{split} \mathbf{TG} \mathbf{GA} \mathbf{G} \mathbf{GA} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} G$	A TCC TATC TT A TCC CATC TT A CCC CATC TT A CCC CATC TT A TCC TATC TT	TA TACCAACA TC TA TATCAACAC TC TA TATCAACAC TT TA TATCAACAC TT TA CACCAACAC TT TA CACCAACAC TT TA CACCAACAC TT TA CACCAACAC TT TA CACCAACAC TT TA TACCAACAC TT TA TACCAACAC TT	ГА ГА ГА ГА ГА ГА ГА ГА ГА ГА ГА ГА ГА Г			
16. BCATS012-10 190 Fe_CallFells 17. BCATS022-10 198 Fe_marlFells 18. BCATS024-10 14 Fe_marlFells 19. BCATS033-10 204 Fe_niglFells 20. BCATS032-10 203 Fe_niglFells 21. BCATS031-10 202 Fe_niglFells 22. BCATS051-10 92 Fe_sil golFells 23. BCATS050-10 91 Fe_silFells 24. BCATS054-10 78 Fe_silFells 25. BCATS049-10 77 Fe_silFells	AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA	AACAC TACA TTCT AACAC TACA TTCT AACAC TACA TTCT AACAC TACA TTCT AACAC TACA TTCT AACAC TACA TTCT	T TGACCCCGC T TGACCCCGC T TGACCCCGC T TGACCCCGC T TGACCCCGC	IGGGGGAGGAG IGGGGGAGGAG IGGGGGAGGAG IGGGGGAGGAG IGGGGGAGGAG	A TCC TA T T T A TCC TA TC T T A TCC TA TC T G A TCC TA TC T G A TCC TA TC T G	IA TACCAACACT IACACCAACACT IACACCAACACT IACACCAACACT IACACCAACACT	ГА ГА ГА ГА			
24. BCATS049-10/78 Fe sillFelis 25. BCATS048-10/77 Fe_sillFelis 26. BCATS047-10/76 Fe_sillFelis 27. BCATS041-10/216 Fe_sillFelis 28. BCATS030-10/215 Fe_sillFelis 29. BCATS038-10/213 Fe_sillFelis 30. BCATS038-10/213 Fe_sillFelis 31. BCATS038-10/213 Fe_sillFelis 32. BCATS032-10/93 Fe_JvbIFelis 33. BCATS053-10/93 Fe_JvbIFelis 34. BCATS052-10/75 Le_geo Leopardus 35. BCATS052-10/75 Le_gle Deopardus 35. BCATS057-10/75 Le_gle Deopardus	AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA AGATCGAAACCTA	AACAC TACA TTCT AACAC TACA TTCT AACAC TACA TTCT AACAC TACA TTCT AACAC TACA TTCT AACAC TACA TTCT	T TGACCCCGC T TGACCCCGC T TGACCCCGC T TGACCCCGC T TGACCCCGC	IGGGGGAGGAGA IGGGGGAGGAGA IGGGGGAGGAGA IGGGGGAGGAGA IGGGGGAGGAGA	A TCC TATC TG A TCC TATC TG A TCC TATC TG A TCC TATC TK A TCC TATC TG	ACACCAACACT ACACCAACACT ACACCAACACT ACACCAACACT ACACCAACACT	ГА ГА ГА ГА ГА			
32. BCATS022-10/93 Fe_Jvb Felis 33. BCATS053-10/95_Le_geo Leopardus 34. BCATS052-10/70_Le_geo Leopardus 35. BCATS057-10/75_Le_tig Leopardus 36. BCATS056-10/71_Le_tig Leopardus 37. BCATS185-10/217_Ly_Jvn_JV Lvnx	AGATCGAAACCTA AGACCGAAACCTA AGACCGAAACCTA AGACCGAAACCTG AGACCGAAACCTG AGACCGAAACCTG AGATCGAAATTTA	AACAC TACA TTTT AACAC TACA TTTT AACAC TACA TTTT AACAC TACA TTTT AACAC TACA TTTT AACACCACA TTCT	T TGA TCCCGC ' T TGA TCCCGC ' TCGA TCCCGC ' TCGA TCCCGC ' T TGA TCC TGC '	IGGGGGAGGAGA IGGGGGAGGAGA IGGGGGAGGAGA IGGGGGAGGAGA IGGAGGAGGGA	ACCCCATC TI ACCCCATC TI A TCCCATC TI A TCCCATC TI A TCCCATC TI	TA TATCAGCA TC' TA TATCAGCA TC' TA TATCAACA TC' TA TATCAACA TC' TA TACCAGCACT'	FG FG FA FA FA			
34. BCATS052-10/70_Le_geo Leopardus 35. BCATS057-10/75_Le_tig Leopardus 36. BCATS057-10/75_Le_tig Leopardus 37. BCATS185-10/217_Ly_lyn lylLynx 38. BCATS065-10/39_Ly_lyn lylLynx 40. BCATS064-10/38_Ly_lyn_lylLynx 41. BCATS064-10/19_Ly_lyn_lylLynx 42. BCATS063-10/19_Ly_lyn_lylLynx 43. BCATS058-10/18_Ly_lyn_lylLynx 43. BCATS058-10/146_Ly_lyn_Lynx 44. BCATS058-10/146_Ly_lyn_Lynx 45. BCATS068-10/100_Ly_ruf Lynx 46. BCATS068-10/109_Uy_ruf Lynx 46. BCATS068-10/109_Uy_ruf Lynx	AGATCGAAATTTA AGATCGAAATTTA AGATCGAAATTTA AGATCGAAATTTA AGATCGAAATTTA AGATCGAAATTTA	AACACCACA TTCT AACACCACA TTCT AACACCACA TTCT AACACCACA TTCT AACACCACA TTCT AACACCACA TTCT	T TGA TCC TGC ' T TGA TCC TGC ' T TGA TCC TGC ' T TGA TCC TGC '	I G G A G G A G G G G A I G G A G G A G G G G A I G G A G G A G G G G A I G G A G G A G G G G A	A TCC TATTTI A TCC TATTTI A TCC TATTTI A TCC TATTTI	IA TACCAGCACT' IA TACCAGCACT' IA TACCAGCACT' IA TACCAGCACT'	ГА ГА ГА ГА			
44. BCATS071-10199 [y] Tuff Lynx 45. BCATS069-10100 Ly_ruf Lynx 46. BCATS088-10189 Ot man Otocolobus 47. BCATS086-10187 Ot man Otocolobus 48. BCATS081-10193 Ot man Otocolobus 49. BCATS079-10102 Ot man Otocolobus	AGATCGAAACTTA AGATCGAAACTTA 	AA C AC TA CA TTCT1								
 45. BCA15069-101100 Ly_ru1[Lynx 46. BCATS088-10189 Ot man Otocolobus 47. BCATS086-10189 Ot man Otocolobus 48. BCATS081-10193 Ot man Otocolobus 49. BCATS079-10102-Ot man Otocolobus 50. BCATS186-1028 Pa_leo_bl Panthera 51. BCATS104-1027 Pa_leo_bl Panthera 53. BCATS103-1026 Pa_leo_bl Panthera 54. BCATS113-10109 Pa_onc Panthera 55. BCATS138-10109 Pa_onc Panthera 56. BCATS189-10217 Pa_par_ori Panthera 57. BCATS189-10217 Pa_par_ori Panthera 58. BCATS188-10163 Pa_par_me Panthera 58. BCATS188-10163 Pa_par_melPanthera 	AGATCGAAATC TG, AGATCGAAATC TG, AGATCGAAATC TG, AGATCGAAATC TG, AGATCGAAATC TA, AGATCGAAATC TA, AGATCGAAATC TG, AGATCGAAATC TG, AGATCGGAATC TG,	AACACCACATTTT AACACCACATTTT AACACCACATTTT AACACCACATTTT AACACCACATTTT AACACCACATTTT AACACCACATTCT AACACCACATTCT	T TG A C C C G C G T TG A C C C C G C C T TG A C C C C G C C T TG A C C C C G C C T TG A C C C C G C C T TG A C C C TG C C T TG A C C C TG C C	2 G GA G GA G G GG A 2 G GA G GA G G GG A 2 G GA G GA	A TCC TATC TT A TCC TATC TT	IA TATCAACACC IA TATCAACACC IA TATCAACACC IA TATCAACACC IA TATCAACACC IA TATCAACACC IA TACCAGCACC IA TACCAGCACC	ГА ГА ГА ГА ГА ГА			
 55. BCA1S113-10109 Pa_onc Panthera 56. BCATS189-101211-Pa_par_ori Panthera 57. BCATS188-10163-Pa_par_me Panthera 58. BCATS187-1073 Pa_par_ko Panthera 59. BCATS183-10122 Pa_par_or Panthera 60. BCATS135-1079 Pa_par_or Panthera 61. BCATS134-1074 Pa_par_or Panthera 62. BCATS128-10168 Pa_par_ja Panthera 63. BCATS127-10162 Pa_par_or Panthera 64. BCATS126-10159 Pa_par_or Panthera 65. BCATS126-10148 Pa_par_sa Panthera 66. BCATS124-10121 Pa_par_or Panthera 	AGATCGAAATCTG AGATCGAAATCTG AGATCGAAATCTG AGATCGAAATCTG AGATCGAAATCTG AGATCGAAATCTG AGATCGAAATCTG AGATCGAAATCTG	AACACCACA TTCT AACACCACA TTCT AACACCACA TTCT AACACCACA TTCT AACACCACA TTCT AACACCACA TTCT AACACCACA TTCT	T TGACCC TGCC T TGACCC TGCC T TGACCC TGCC T TGACCC TGCC T TGACCC TGCC T TGACCC TGCC T TGACCC TGCC	2 G GA G GG G G G G G 2 G GA G GG G G G G G 2 G GA G GG G G G G G 2 G GA G GG G G G G G 2 G GA G GG G G G G G 2 G GA G GG G G G G G 2 G GA G GG G G G G G	A TCC TATC T A TCC TATC T	IA TACCARCACC IA TACCARCACC IA TACCAGCACC IA TATCAGCACC IA TACCAGCACC IA TACCAGCACC IA TACCAGCACC	ГА ГА ГА ГА ГА ГА			
66. BCA15124-10121 Pa_par_or Panthera 67. BCATS119-10116 Pa_par_melPanthera 68. BCATS158-1068 Pa_tig_al Panthera 69. BCATS156-10189 Pa_tig_al Panthera 70. BCATS155-10166 Pa_tig_Al Panthera 71. BCATS154-10165 Pa_tig_ti Panthera 72. BCATS153-10161 Pa_tig_al Panthera 73. BCATS152-10156 Pa_tig_al Panthera 74. BCATS152-10156 Pa_tig_al Panthera	AGATCGAAATCTG AGATCGAAATCTG AGATCGAAATCTG AGATCGAAATCTG AGATCGAAATCTG AGATCGAAATCTG AGATCGAAATCTG	AACACCACA TTCT AACACCACA TTTT AACACCACA TTTT AACACCACA TTTT AACACCACA TTTT AACACCACA TTTT AACACCACA TTTT	T TGACCC TGC T TGACCCCCG T TGACCCCCG T TGACCCCCG T TGACCCCCG T TGACCCCCG T TGACCCCCG T TGACCCCCG	CGGAGGGGGGGA C C C C C C C C C C C C						

	40	750	760	770	780	790	800	810	820	830	840
Consensus	<u></u>	'	'	A	. GCTCCTGTCACT	ACCAG TTCT.	AGCAG	I	1	I	1
 BCATS004-1012_Ac_jub Acinonyx BCATS003-101_Ac_jub Acinonyx BCATS002-10160_Ac_jub Acinonyx BCATS012-10111_Ac_jub Acinonyx BCATS012-1082_Ac_jub_solAcinonyx BCATS012-1082_Ac_jub_JAcinonyx BCATS011-1081_Ac_jub Acinonyx BCATS012-1082_Ac_jub_JAcinonyx BCATS011-1081_Ac_jub Acinonyx BCATS011-1081_Ac_jub Acinonyx BCATS011-1098_Ca_ser Caracal BCATS015-1096_Ca_ser Caracal BCATS015-1096_Ca_ser Caracal BCATS014-1090_Ca_ser Caracal BCATS014-1090_Ca_ser Caracal BCATS014-1090_Ca_ser Caracal BCATS018-10192_Fe_cat Felis BCATS018-10192_Fe_cat Felis BCATS029-10198_Fe_mar Felis BCATS029-10198_Fe_mar Felis BCATS032-10203_Fe_nig Felis BCATS032-10203_Fe_nig Felis BCATS032-10203_Fe_nig Felis BCATS050-1092_Fe_si Felis BCATS041-10127_Fe_si Felis BCATS041-10176_Fe_si Felis BCATS034-10177_Fe_si Felis BCATS034-101215_Fe_si Felis BCATS032-1023_Fe_nig Felis BCATS033-1024_Fe_si Felis BCATS032-1027_Fe_si Felis BCATS032-1027_Fe_si Felis BCATS032-1027_Fe_si Felis BCATS052-1077_Le_tig Leopardus BCATS052-1077_Le_tig Leopardus BCATS064-1038_L_V_N_N_V_N_N BCATS0											
46. BCATS088-10 89_Ot_man Otocolobus 47. BCATS086-10 87_Ot_man Otocolobus				A	.GCTCCTGTCACT .GCTCCTGTCACT	ACCAG TTCT.	AGCAG				
 41. BCATS081-10 [107] OT man[Otocolobus 48. BCATS079-10 [102] OT man[Otocolobus 50. BCATS186-10 [28] Pa Teo bl[Panthera 51. BCATS106-10 [24] Pa Teo bl[Panthera 52. BCATS104-10 [27] Pa Teo bl[Panthera 53. BCATS103-10 [26] Pa Teo bl[Panthera 54. BCATS113-10 [149] Pa onc[Panthera 55. BCATS113-10 [149] Pa onc[Panthera 56. BCATS189-10 [211] Pa onc[Panthera 57. BCATS189-10 [211] Pa onc[Panthera 58. BCATS189-10 [211] Pa onc[Panthera 58. BCATS189-10 [212] Pa par on[Panthera 59. BCATS183-10 [122] Pa par or[Panthera 59. BCATS183-10 [122] Pa par or[Panthera 60. BCATS133-10 [72] Pa par or[Panthera 61. BCATS134-10 [74] Pa par or[Panthera 63. BCATS128-10 [168] Pa par or[Panthera 64. BCATS128-10 [168] Pa par or[Panthera 65. BCATS125-10 [148] Pa par or[Panthera 66. BCATS125-10 [148] Pa par or[Panthera 67. BCATS125-10 [148] Pa par or[Panthera 67. BCATS125-10 [148] Pa par or[Panthera 68. BCATS125-10 [148] Pa par or[Panthera 69. BCATS156-10 [169] Pa tig al[Panthera 70. BCATS156-10 [166] Pa tig al[Panthera 71. BCATS156-10 [166] Pa tig al[Panthera 72. BCATS153-10 [165] Pa tig al[Panthera 73. BCATS153-10 [165] Pa tig al[Panthera 74. BCATS153-10 [165] Pa tig al[Panthera 75. BCATS153-10 [165] Pa tig al[Panthera 76. BCATS153-10 [165] Pa tig al[Panthera 77. BCATS153-10 [165] Pa tig al[Panthera 78. BCATS153-10 [165] Pa tig al[Panthera 74. BCATS153-10 [165] Pa tig al[Panthera 75. BCATS153-10 [165] Pa tig al[Panthera 76. BCATS153-10 [165] Pa tig al[Panthera 77. BCATS153-10 [165] Pa tig al[Panthera 78. BCATS153-10 [165] Pa tig al[Panthera 				A	GCTCCTG TCACT	ACCAG TTCT.	AGCAG				

40 100 a cto t ttaco t to ta t t teget good teget teget as geget teget tector to construct the total to cease deget cance tege a cance tege terms and the terms of term ACTC TTTACC TTC TA TTTGGTGCCTGAGC TGGCATGG TGGGGAC TGC TCT T---AGTC TCC TAA TCCGGGCCGAAC TGGG TCACCC TGGCACAC TGC TAGGA ACTC TCTACC TC TTA TT TGGTGC TTGAGC TGG TATAG TAGGAACCGC TCTC---AGTC TC TTGA TTCGGCCCGAAC TAGGCCAACC TGGCACAC TAC TAGGA ACCC TCTACC TTCTA TTTGGCGC TTGGCTGG TA TAG TAGGACCGC TCTC---AGTC TC TTAA TTCGGGCCGAAC TAGGCCAACC TGG TACAC TAC TAGGA ACCC TCTACC TTCTA TT TGGCGC TTGGGC TGG TA TAG TAGGGACCGC TCTC --- AGTC TC TAA TTCGGCCCGAAC TAGGCCAACC TGG TACAC TAC TAGGA ACCC TCTACC TT TTA TT TGGTGCCTGGGCCGG TA TGG TGGGAAC TGC TCC --- AGCC TCC TGA TCCGAGCCGAAC TAGG TCAACC TGGCACGC TAC TAGG ACCC TCTACC TT TTA TT TGGTGCCTGGCCCGG TA TGG TGGGAAC TGC TCC ---AGCC TCC TGA TCCGAGCCGAAC TA GG TCAACC TGGCACGC TA C TAGG A CCC TCTACC TT TTA TT TGGTGCCTGGGCCGG TA TGG TGGGAAC TGC TCC --- A GCC TCC TGA TCCGAGCCGAAC TA GG TCAACC TGGCACGC TA C TAGG ACCC TCTACC TTTTA TTTGGTGCCTGGCCGG TATGG TGGGAAC TGC TCC --- ACCC TCC TGA TCCGAGCCGAAC TAGG TCAACC TGGCACGC TAC TAGG ACCC TC TACC TT TTA TT TGGTGCCTGGGCCGG TA TGG TGGGAAC TGC TCC --- AGCC TCC TGA TCCGAGCCGAAC TA GG TC AACC TGGCACGC TA C TAGG / ACCC TCTACC TT TTA TT TGGTGCCTGGCCCGG TA TGG TGGGAAC TGC TCC --- AGCC TCC TGA TCCGAGCCGAAC TA GG TCAACC TGGCACCC TA C TAGG ACTC TTTA TC TTCTA TTCGGTGCCTGGGCCGG TATGG TGGGGAC TGCCCTC---AGTC TCC TAA TCCGAGCCGAAC TGGG TCAACC TGGCACAC TAC TGGGF ACTC TTTA TC TTCTA TTCGGTGCCTGGGCCGG TA TGG TGGGGAC TGCCCTC---AGTC TCC TAA TCCGAGCCGAAC TGGG TCAACC TGGCACAC TAC TGGGA G TA TG GTA G GG A C TG C C TC TG TCA G C TTG GC CAACC TG G TACA TTA T TA GG A G A TG A CCA G A T G A TA A TG TG G T TG TC / g tatggtagggac to ccc tctg tcagc ttggccaacc tgg taca tta t taggaga tgaccagat tgataatg tgg ttgtc *i* G TA TG G TA G G G A C TG C C C TG TG G C C A G C TG G TA C A TTA T TA G G A G A TG A C C A G A T TG A TA A TG TG G T TG TC / G TA TGG TA GGG A C TG C C C TG T C A G C T TG G C C A A C C TG G TA C A TTA T TA G G A G A TG A C A G A TA A TG TG G T TG TC A ACTC TTTACC TTCTA TTTGGCGCCCGGGCCGG TATGG TAGGGACCGC TCTC--AGTC TC TTAA TCCGAGCCGAAC TGGG TCAACC TGGCACGC TAC TAGGC ACTC T TTACC T TCTA TTTGGCGCCCTGGGCCGG TA TGG TAGGGACCGC TCTC - - AGTC TC T TAA TCCGAGCCGAAC TGGG TCAACC TGGCACGC TAC TAGG(A CTC TTTACC TTC TA TTTGGCGCCTGGCCGG TATG TAGGAGCGCCTCTC -- AGTC TC TTAA TCCGAGCCGAAC TGGC TCACC TGGCAGGC TG TA TAGG A CTC TCTA CC TTCTA TT TGGCGCCTGGGC TGG TA TGG TGGGGAC TGC TCTC --- A GTC TC TTAA TCCGAGC TGAGC TA GG TCAACC TGGCACAC TA TTAGG(A C T C T C T A C C T T C T A T T T G G C C C T G G C T T G G T A T G G G G A C T G C T C C T C C T C T T A A T C C G A G C T A G C C A A C C T G C A C C A C T A T T A G C CTCAGTC TC T TAA TCCGAGCCGAAC TGGG TCAACC TGGCACAC TGC TAGGC A CTC TTTACC TTCTA TTCGGTGCCTGGGC TGGCATGG TAGGGAC TGC TCC---AGTC TC TTAA TCCGAGCCGAAC TGGG TCAACC TGGCACAC TGC TAGGGAC A CTC T TTA CC T TC TA TT TGGTGCCTGGGC TGGCA TGG TA GGGA C TGC TCC --- A GTC TC T TAA TCCGA GCCGAA C TGGG TCAACC TGGCACA C TGC TAGGG ACTC TTTACC TTC TA TTTGGTGCCTGGGC TGGCATGG TGGGGAC TGC TCC --- AGTC TC TTAA TCCGAGCCGAAC TGGG TCAACC TGGCACAC TGC TAGGC ACTC TTTACC TTCTA TTTGGTGCCTGGGCTGGCATGG TGGGGAC TGC TCTC---AGTC TC TTAA TCCGAGCCGAAC TGG TCAACC TGG CACAC TGC TAGGC ACTC TTTACC TTC TA TTTGGTGCCTGGGC TGGCATGG TGGGGAC TGC TCC --- AGTC TC TTAA TCCGAGCCGAAC TGGG TCAACC TGGCACAC TGC TAGGC A CTC T TTA CC T TC TA TT TGGTGCCTGGGC TGGCA TGG TNGGGAC TGC TCTC --- A GTC TC T TAA TCCGA GCCGAA C TGGG TCAACC TGGCACA C TGC TAGG (ACTO TTTACC TTCTA TTTGGTGCCTGGGCTGGCATGG TGGGAC TGC TCC --- AGTO TO TTAA TCCGAGCCGAAC TGGG TCAACC TGGCACAC TGC TAGG(A C T C T T T T C C T T T T G G T G C C T G G C A T G C T G G G G A C T G C T C C C C T C T T T A T C C G A G C C G G C T A A C C T G G C A C A C C T G C A C C T G C T A C C T G C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C T A C C A C C A C C A C C T A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C a c t c t t t a c c t t c t a t t t g g g g c t g g c a t g g a c t g c t c t c t c - - a g c t c t t t a t c g a g c g a c t g g c a c t g g a c t g c a g g a c t g c a g c A CTC TTTACC TTCTA TTTGGTGCCTGGGC TGGCATGG TGGGGAC TGC TCC ---AGTC TC TTAA TCCGAGCCGAAC TGGG TCAACC TGGCACAC TGC TAGG ACTC TTTACC TTC TA TTC GGTGCCTGGCCTGGCATGG TAGGGAC TGC TCTC---AGTC TC TTAA TCC GAGCCGAAC TGGG TCAACC TGCCACAC TGC TAGGC ACCC TTTACC TTCTA TTTGGCGCCCGGCCGG TATGG TAGGGAC TGC TCC---AGTC TC TTAA TCCGAGCCGAAC TGGG TCAACC TGGCACGC TAC TAGGC ACCC TTTACC TTC TA TTTGGCGCCCGGGCCGG TATGG TAGGGAC TGC TCC--AGTC TC TTAA TCCGAGCCGAAC TGGG TCAACC TGGCACCC TAC TAGGC ACCC TTTACC TTCTA TTTGGCGCCCGGGCCGG TATGG TAGGGAC TGC TCC---AGTC TC TTAA TCCGAGCCGAAC TGGG TCAACC TGGCACGC TAC TAGGC ACCC TTTACC TTC TA TTTGGCGCCTGGGCCGG TATGG TAGGGAC TGC TC TC -- AGTC TC TTAA TCCGAGCCGAAC TGGG TCAACC TGGCACGC TAC TAGGC ACCC TTTACC TTCA TTTGGCGCCCGG TATGG TAGGGAC TGC TC TC -- AGTC TC TTAA TCCGAGCCGAAC TGGG TCAACC TGGCACGC TAC TAGGC ACCC T TTACC T TC TA TT TGGCGCCTGGGCCGG TA TGG TA GGGAC TGC TCT C - - A GTC TC T TAA TCC GAGCCGAAC TGGG TCAACC TGGCACGC TA C TAGGC ACTC TTTACC TTCTA TTTGGCGCCCTGAGC TGG TATGG TGGGGAC TGC TCC---AGTC TC TTAA TCCGAGCCGAGC TGGG TCAACC TGGCACAC TGC TAGGC ACTC TTTACC TTCTA TTTGGCGCCCTGAGC TGG TATGG TGGGGAC TGC TCTC--AGTC TC TTAA TCCGAGCCGAGC TGGG TCAACC TGGCACAC TGC TAGGC ACTC TTTACC TTCTA TTTGGTGCCTGAGCCGG TATGG TGGGGAC TGC TCCC--AGCC TCC TAA TCCGGGCCGAAC TGGG TCAACC TGGCACGC TGC TAGGA ACTC TTTACC TTC TA TT TGGTGCCTGAGCCGG TA TGG TGGGGAC TGC TCC --- AGCC TCC TAA TCCGGGCCGAAC TGGG TCAACC TGGCACGC TGC TAGGA A C T C T T T T A T T T G G T G C C G G G C C G T A G G A C G G A C T C C T C - - A G T C T C C T A T C C G G C C A A C T A C T A G C C A A C T A C T A G C C A A C T A C T A G C C A A C T A C T A G C C A A C T A ACTC TTTACC TTC TA TT TGGCGCCCTGAGCCGG TA TAG TAGGGAC TGC TCC---AGTC TCC TAA TTCGGGC TGAAC TGGGCCAACC TGG TACAC TA TTAGGC ACTC TTTACC TTCTA TTTGGTGCCTGGGCCGG TATGG TAGGGAC TGC TCTC---AGTC TCC TAA TCCGGGC TGAAC TAGGCCAACC TGGCACAC TA TTAGGC ACTC T TTACC T TCTA TT TGG TGCC TGGC C GG TA TGG TA GGA C TGC TCC C - - A GTC TCC TA A TCC GGC TGA C TA GGCC AACC TGGC ACCC TGGC ACCC TA T TAGGC ACTC TTTACC TTC TA TT TGGTGCCTGAGCCGG TATGG TAGGAAC TGC TCT T---AGTC TCC TAA TCCGGGCCGAAC TAGG TCAACC TGGCACAC TAC TAGG ACTC TTTACC TTCTA TTTGGTGCCTGAGCCGG TATGG TAGGAAC TGC TCTT---AGTC TCC TAA TCCGGGCCGAAC TAGG TCAACC TGGCACAC TAC TAGG ACTC TTTACC TTCTA TTTGGTGCCTGAGCCGG TATGG TAGGAAC TGC TCTT---AGTC TCC TAA TCCGGGCCGAAC TAGG TCAACC TGGCACAC TAC TAGGF ACTC TTTACC TTCTA TTTGGTGCCTGAGCCGG TATGG TAGGAAC TGC TCTT---AGTC TCC TAA TCCGGGCCGAAC TAGG TCAACC TGGCACAC TAC TAGGA A CTC TTTACC TTCTA TTTGGTGCCTGAGCCGCCATAG TAGGGACCGC TCTT---AGTC TCC TGA TCCGAGCCGAAC TAGGCCAACC TGGCACAC TAC TGGGA

Consensus

32. BCATS022-10|93_Fe_Jyb|Felis 33. BCATS053-10|95_Le_geo|Leopardus BCATS052-10/95 Le_geolLeopardus
 BCATS052-10/70 Le_geolLeopardus
 BCATS057-10/75 Le_tiglLeopardus
 BCATS056-10/71 Le_tiglLeopardus
 BCATS056-10/71 Le_tiglLeopardus
 BCATS066-10/91 Le_tiglLeopardus
 BCATS065-10/91 Le_tiglLeopardus
 BCATS065-10/91 Ly Jyn JylLynx
 BCATS063-10/98 Ly Jyn JylLynx
 BCATS063-10/97 Ly Jyn JylLynx
 BCATS063-10/97 Ly Jyn JylLynx
 BCATS063-10/97 Ly Jyn JylLynx
 BCATS063-10/17 Ly Jyn JylLynx
 BCATS059-10/18 Ly Jyn JylLynx
 BCATS059-10/18 Ly Jyn JylLynx
 BCATS058-10/146 Ly JynLynx
 BCATS058-10/100 Ly ruflLynx
 BCATS088-10/87 Ot man|Otocolobus
 BCATS086-10/87 Ot man|Otocolobus
 BCATS079-10/102 Ot man|Otocolobus
 BCATS106-10/28 Pa Teo bl|Panthera
 BCATS106-10/27 Pa Teo bl|Panthera
 BCATS103-10/26 Pa Teo obl|Panthera
 BCATS113-10/149 Pa onc|Panthera
 BCATS113-10/149 Pa onc|Panthera 34. BCATS052-10 70 Le geo Leopardus 54. BCATS113-10/149_ra_onc|Panthera 55. BCATS113-10/109_Pa_onc|Panthera 56. BCATS189-10/211_Pa_par_ori|Panthera 57. BCATS188-10/163_Pa_par_me|Panthera 58. BCATS186-10 103 Pa_par_ko|Panthera 59. BCATS187-10 73 Pa_par_ko|Panthera 59. BCATS183-10 122 Pa_par_or|Panthera 60. BCATS135-10 79_Pa_par_or|Panthera 60. BCATS135-10/79 Pa_par_orlPanthera 61. BCATS134-10/74_Pa_par_orlPanthera 62. BCATS128-10/168_Pa_par_jalPanthera 63. BCATS127-10/162_Pa_par_orlPanthera 64. BCATS126-10/159_Pa_par_orlPanthera 65. BCATS125-10/148_Pa_par_salPanthera 66. BCATS124-10/121_Pa_par_orlPanthera 67. BCATS19-10/16_Pa_par_melPanthera 68. BCATS158-10/166_Pa_tig_allPanthera 69. BCATS156-10/189_Pa_tig_allPanthera 70. BCATS155-10/166_Pa_tigPanthera 70. BCATS155-101166 Pa_tiglPanthera 71. BCATS155-101165 Pa_tiglPanthera 72. BCATS154-101165 Pa_tig_sulPanthera 72. BCATS153-101161 Pa_tig_sulPanthera 72. BCATS153.10161-Pa_tig_sulPanthera 73. BCATS152.10166-Pa_tig_sulPanthera 74. BCATS152.10156-Pa_tig_alPanthera 75. BCATS151-10155-Pa_tig_alPanthera 76. BCATS149.10150-Pa_tig_alPanthera 77. BCATS148.10147-Pa_tig_sulPanthera 79. BCATS148.10147-Pa_tig_sulPanthera 79. BCATS144.10129-Pa_tig_sulPanthera 80. BCATS145.10129-Pa_tig_tiPanthera 81. BCATS143.10127-Pa_tig_sulPanthera 82. BCATS142.10127-Pa_tig_sulPanthera 83. BCATS142.10126-Pa_tig_sulPanthera 84. BCATS142.10126-Pa_tig_sulPanthera 85. BCATS139.10123-Pa_tig_alPanthera 85. BCATS139.10123-Pa_tig_alPanthera 86. BCATS159-10 157 Pa unc Panthera 86. BCATS139-101137 Fa unc|Panthera 87. BCATS166-10[69 Pa_unc|Panthera 88. BCATS138-10152 Pa_tem|Pardofelis 89. BCATS137-10[85_Pa_tem|Pardofelis 90. BCATS136-10 84 Pa_tem Pardofelis 91. BCATS168-10 131 Pr_ben Prionailurus 92. BCATS167-10130 Pr ben Prionailurus 93. BCATS170-10 154 Pr_rub Prionailurus 94. BCATS169-10 132 Pr_rub Prionailurus 95. BCATS176-10136 Pr_viv Prionaliurus 96. BCATS175-10135 Pr_viv Prionaliurus 97. BCATS175-10134 Pr_viv Prionaliurus 98. BCATS174-10134 Pr_viv Prionaliurus 98. BCATS18-101133 PT_VIV|Prionalium 99. BCATS184-101144-Pu_con|Puma 100. BCATS181-10186-Pu_con|Puma 101. BCATS180-10139 Pu_con|Puma 102. BCATS179-101138-Pu_con|Puma 103. BCATS178-101137 Pu_con|Puma 104. BCATS182-10]72_Pu_yag|Puma

				170 ATCGTCACCGCC							
s s ppardus ppardus	;GAGAC ;GAGA T ;GAGA T	GA TCAGA " GACCAGA " GACCAGA "	FT TA TAA TG TO FT TA CAA TG TA FT TA CAA TG TA	GATEG TEACEGE : ATEG TEACTGE : ATEG TEACTGE :	ICA TGC T TT ' ICA TGCC TT(ICA TGCC TT(IG TAA TGA TC I CG TAA TAA T T I CG TAA TAA T T I	TCTTTATGG TCTTCATAG TCTTCATAG	FGA TGCC TA T I FGA TGCC TA T I FGA TGCC TA T I	A TGATCGGAG A TGATCGGAG A TGATCGGAG	GG T TC G G AA A C GA T TC G G AA A C GA T TC G G AA A C	CTGA1 CTGA1 CTGA1
bardus bardus Lynx ynx	GAGAT GAGAC	GACCAGA GATCAGA	FT TA TA A TG TA FT TA CA A TG TA	A TCG TCACTGC ! A TCG TCACTGC ! A TCG TCACTGC ! A TCG TCACTGC !	ICA TGC T TT ' CCA TGC T TT '	IG TAA TAA T TI IG TAA TAA T TI	TCTTTATAG TCTTTATAG	ГАА ТАСС ТА Т І ГАА ТАСССА Т І	A TAAT TGGAG A TAAT TGGAG	GA T T T G G AA A C GA T T C G G G A A C	CTGA1 CTGA1
ýnx ynx ynx	GAGAC GAGAC GAGAC	GA TCAGA " GA TCAGA " GA TCAGA "	FT TACAA TG TA FT TACAA TG TA FT TACAA TG TA	ATCG TCAC TGCC ATCG TCAC TGCC ATCG TCAC TGCC ATCG TCAC TGCC	CCA TGC T TT ' CCA TGC T TT ' CCA TGC T TT '	IG TAA TAA T T I IG TAA TAA T T I IG TAA TAA T T I	TCTTTATAG TCTTTATAG TCTTTATAG	ГАА ТАСССА Т 1 ГАА ТАСССА Т 1 ГАА ТАСССА Т 1	YA TAAT TGGAG YA TAAT TGGAG YA TAAT TGGAG	GA T TC G G G A A C GA T TC G G G A A C GA T TC G G G A A C	CTGA1 CTGA1 CTGA1
ynx ix ix	;GAGAC ;GAGA T ;GAGA T	GA TCAGA " GA TCAGA " GA TCAGA "	FT TACAA TG TA FT TACAA TG TA FT TACAA TG TA	ATCGTCACTGCC ATCGTCACCGCC ATCGTCACCGCC	CCA TGC T TT ' CCA TGC T TT ' CCA TGC T TT '	IG TAA TAA T TI IG TAA TAA T TI IG TAA TAA T TI	TCTTTATAG: TCTTCATAG: TCTTCATAG	FAA TACCCA T I FAA TGCCCA T I FAA TGCCCA T I	'A TAAT TGGAG 'A TAAT TGGAG 'A TAAT TGGAG	GA T TC G G G A A C G A T TC G G G A A C G A T TC G G G A A C	CTGA1 CTGAC CTGAC
tocolobus tocolobus	ICAC TG ICAC TG ICAC TG			ccc ccc	CA TGCC T TTO CA TGCC T TTO CA TGCC T TTO	G ТААА ТАА Т ТС G ТААА ТАА Т ТС G ТААА ТАА Т ТС	TCTTTATGG TCTTTATGG TCTTTATGG	FGA TACCCA T I FGA TACCCA T I FGA TACCCA T I	YATGATTGGAG YATGATTGGAG YATGATTGGAG	GA TACGGAAAC GA TACGGAAAC GA TACGGAAAC	CTGA1 CTGA1 CTGA1
Panthera thera Panthera Panthera	;GGGAC ;GGGAC ;GGGAC	GACCAAA GACCAAA GACCAAA	FT TA TAA TG T# FT TA TAA TG T# FT TA TAA TG T#	AGTEGTEACEGE AGTEGTEACEGE AGTEGTEACEGE AGTEGTEACEGE	CCA TGCC TT' CCA TGCC TT' CCA TGCC TT'	IG TAA TAA TC 1 IG TAA TAA TC 1 IG TAA TAA TC 1	TCTTTATAG TCTTTATAG TCTTTATAG	PAA TGCC TA T I PAA TGCC TA T I PAA TGCC TA T I	"A TGAT TGGAG "A TGAT TGGAG "A TGAT TGGAG	GA T TC G G AA A C GA T TC G G AA A C GA T TC G G AA A C	CTGA1 CTGA1 CTGA1
	;GGGAC ;GGGAC ;GGGAT	GACCAGA GACCAAA GACCAAA	FT TA TAA TG T# FT TA TAA TG T# FT TA TAA TG T#	AGTEG TEACEGE AGTEG TEACEGE AGTEG TTACEGE AGTEG TTACEGE	CCA TGC T TT ' CCA TGC T TT ' CCA TGC T TT '	IG TAA TAA TC I IG TAA TAA TC I IG TAA TAA TC I	TCTTCATAG TCTTTATAG TCTTTATAG	FGA TGCC TA TC FAA TGCCCA TC FAA TACCCA TC	A TGAT TGGAG A TGAT TGGAG A TGAT TGGGG	GG T TC G G AA A C GA T TC G G AA A C GA T TC G G AA A C	CTGA1 CTGA1 CTGA1
Panthera Panthera Panthera Panthera	;GGGAC ;GGGAC ;GGGAC	GACCAAA GACCAAA GACCAAA	FT TA TAA TG T# FT TA TAA TG T# FT TA TAA TG T#	AGTCG TTACCGCC AGTCG TTACCGCC AGTCG TTACCGCC AGTCG TTACCGCC	CCATGCTTT' CCATGCTTT' CCATGCTTT'	IG TAA TAA TC I IG TAA TAA TC I IG TAA TAA TC I	TCTTTATAG TCTTTATAG TCTTTATAG	FAA TGCCCA TC FAA TGCCCA TC FAA TGCCCA TC	A TGAT TGGAG A TGAT TGGAG A TGAT TGGAG	GA T TC G G AA A C GA T TC G G AA A C GA T TC G G AA A C	CTGA1 CTGA1 CTGA1
	;GGGAC ;GGGAC ;GGGAC	GACCAAA GACCAAA GACCAAA	FT TA TAA TG TA FT TA TAA TG TA FT TA TAA TG TA	AGTCG TTACCGCC AGTCG TTACCGCC AGTCG TTACCGCC AGTCG TTACCGCC	CCATGCTTT CCATGCTTT CCATGCTTT	IG TAA TAA TC I IG TAA TAA TC I IG TAA TAA TC I	TCTTTATAG TCTTTATAG TCTTTATAG	FAA TGCCCA TC FAA TGCCCA TC FAA TACCCA TC	A TGAT TGGAG A TGAT TGGAG A TGAT TGGAG	GA T TC G G AA A C GA T TC G G AA A C GA T TC G G AA A C	CTGA1 CTGA1 CTGA1
r Panthera e Panthera anthera Panthera	;GGGAT ;GGGAC ;GGGAC	GACCAAA GACCAAA GACCAAA	FT TA TAA TG T# FT TA TAA TG T# FT TA TAA TG T#	AGTCG TTACCGCO AGTCG TTACCGCO AGTCG TCACCGCO AGTCG TCACCGCO	CCA TGC T TT ' CCA TGCC TT ' CCA TGCC TT '	IG TAA TAA TC 1 IG TAA TAA TC 1 IG TAA TAA TC 1	TCTTTATAG TCTTTATAG TCTTTATAG	FAA TACCCA TC FAA TGCC TA T I FAA TGCC TA T I	A TGAT TGGGG A TGAT TGGAG A TGAT TGGAG	GA T TC G G A A A C G A T TC G G A A A C G A T TC G G A A A C	CTGA1 CTGA1 CTGA1
nthera Panthera Panthera Panthera	;GGGAC;GGGAC	GACCAAA GACCAAA	FT TA TA A TG TA FT TA TA A TG TA	AGTCGTCACCGC AGTCGTCACCGC AGTCGTCACCGC AGTCGTCACCGC	CCA TGCC TT CCA TGCC TT	ГС ТАА ТАА ТС 1 ГС ТАА ТАА ТС 1	TCTTTATAG TCTTTATAG	FAA TGCC TA T I FAA TGCC TA T I	A TGAT TGGAG	GA T TC G G AA A C GA T TC G G AA A C	CTGA1 CTGA1
Panthera Panthera Panthera Panthera	;GGGAC;GGGAC	GACCAAA GACCAAA	FT TA TA A TG TA FT TA TA A TG TA	AGTEGTEACEGE AGTEGTEACEGE AGTEGTEACEGE AGTEGTEACEGE	CCA TGCC TT CCA TGCC TT	ГС ТАА ТАА ТС 1 ГС ТАА ТАА ТС 1	TCTTTATAG TCTTTATAG	FAA TGCC TA T I FAA TGCC TA T I	A TGAT TGGAG A TGAT TGGAG	GA T TC G G AA A C GA T TC G G AA A C	CTGA1 CTGA1
Panthera Panthera Panthera Panthera	;GGGAC;GGGAC	GACCAAA GACCAAA	FT TA TA A TG TA FT TA TA A TG TA	AGTCGTCACCGC AGTCGTCACCGC AGTCGTCACCGC AGTCGTCACCGC	CCA TGCC TT CCA TGCC TT	IG TAA TAA TCI IG TAA TAA TCI	TCTTTATAG: TCTTTATAG	FAA TGCC TA T I FAA TGCC TA T I	A TGAT TGGAG A TGAT TGGAG	GA T TC G G AA A C GA T TC G G AA A C	CTGA1 CTGA1
Panthera Panthera Panthera Panthera	GGGAC GGGAC GGGAC	GACCAAA GACCAAA GACCAAA	FT TA TAA TG TA FT TA TAA TG TA FT TA TAA TG TA	AGTEGTEACEGE AGTEGTEACEGE AGTEGTEACEGE AGTEGTEACEGE	CCA TGCC TT CCA TGCC TT CCA TGCC TT	IG TAA TAA TC'I IG TAA TAA TC'I IG TAA TAA TC'I	TCTTTATAG TCTTTATAG TCTTTATAG	FAA TGCC TA T I FAA TGCC TA T I FAA TGCC TA T I	ATGATTGGAG ATGATTGGAG ATGATTGGAG	GA T TC G G AA A C GA T TC G G AA A C GA T TC G G AA A C	CTGA1 CTGA1 CTGA1
anthera nthera ardofelis rdofelis	;GGGA T ;GGGA T ;GAGAC	-GACCAGA ' GACCAGA ' GA TCAGA '	FT TA TAA TG TA FT TA TAA TG TA IC TA TAA TG TO	AGTEG TEACEGE AGTEG TEACEGE SATEG TTAETGE SATEG TTAETGE	CCA TGC T TT ' CCA TGC T TT ' ICA TGCC TT '	IG TAA TAA TC I IG TAA TAA TC I IG TAA TAA TC I	TCTTTATAG TCTTTATAG TCTTTATGG	FGA TGCC TA T I FGA TGCC TA T I FAA TGCCCA TC	A TAAT TGGAG A TAAT TGGAG A TGAT TGGAG	GG T TTGGAAAC GG T TTGGAAAC GA T TCGGAAAC	CTGA1 CTGA1 CTGAC
rdofelis ionailurus ionailurus onailurus	;GAGAC ;GGGAT ;GGGAT	GA TCAGA " GACCAAA " GACCAAA "	IC TA TAA TG TO IT TA TAACG TA IT TA TAACG TA	ATCG TTACTGC ' ATCG TTACTGC ' ATCG TTACTGC ' ATCG TCACTGC '	ICA TGCC TT ' ICA TGC T TT ' ICA TGC T TT '	IG TAA TAA TC 1 IG TAA TGA T T 1 IG TAA TGA T T 1	TCTTTATGG TCTTTATAG TCTTTATAG	FAA TGCCCA TC FGA TACCCA T I FGA TACCCA T I	A TGAT TGGAG A TAAT TGGAG A TAAT TGGAG	GA T TCGGAAAC GA T TCGGAAAC GA T TCGGAAAC	CTGAC CTGA1 CTGA1
onailurus onailurus onailurus	;GGGA T ;GGGA T ;GGGA T	GACCAAA GACCAAA GACCAAA	FT TA TAA TG T# FT TA TAA TG T# FT TA TAA TG T#	ATCG TCACTGC ATCG TTACTGC ATCG TTACTGC ATCG TTACTGC	ICA TGC T TT ' ICA TGC T TT ' ICA TGC T TT '	IG TAA TGA TC I IG TAA TAA T T I IG TAA TAA T T I	TCTTTATAG TCTTTATAG TCTTTATAG	FAA TGCC TA T I FGA TACCCA T I FGA TACCCA T I	'A TAAT TGGAG 'A TAAT TGGAG 'A TAAT TGGAG	GA T TC G G AA A C GA T TC G G AA A C GA T TC G G AA A C	CTGA1 CTGA1 CTGA1
onailurus onailurus uma uma	;GGGA T ;GAGA T ;GAGA T	GACCAAA GATCAAA GATCAAA	FT TA TAA TG TA FT TA TAA TG TO FT TA TAA TG TO	ATCG TTACTGC GTCG TTACTGC GTCG TTACTGC	ICA TGC T TT ' CCA TGC T TT ' CCA TGC T TT '	IG TAA TAA T T I IG TGA TGA T T I IG TGA TGA T T I	TCTTTATAG TCTTCATAG TCTTCATAG	FGA TACCCA T I FAA TACC TA T I FAA TACC TA T I	'A TAAT TGGAG 'A TGAT TGGAG 'A TGAT TGGAG	GA T TC G G AA A C GG T TT G G TA A C GG T TT G G TA A C	CTGA1 CTGA1 CTGA1
Puma Puma Puma uma	;GAGA T ;GAGA T	GA TC AA A GA TC AA A	FT TA TA A TG TO FT TA TA A C G TO	GTCG TTAC TGC0 GTCG TTAC TGC0 GTCG TTAC TGC0 GTCG TCAC TGC0	CCA TGC T TT ' CCA TGC T TT '	IG TGA TGA T TI IG TGA TGA T TI	TCTTCATAG: TCTTCATAG:	ГАА ТАСС ТА Т І ГАА ТАСС ТА Т І	A TGAT TGGAG A TGAT TGGAG	GG T TTGG TAAC GG T TTGG TAAC	C TGA 1 C TGA 1

Consensus 32. BCATS022-10 193 Fe_TyblFelis 33. BCATS053-10195 Le_geoleopa 34. BCATS052-10175 Le_geoleopa 35. BCATS057-10175 Le_tigleopan 36. BCATS056-10171 Le_tigleopan 37. BCATS056-10171 Le_tigleopan 39. BCATS066-10139 Ly1yn TylLyn 39. BCATS066-10139 Ly1yn TylLyn 40. BCATS063-10137 Ly1yn TylLyn 41. BCATS060-1019 Ly1yn TylLyn 42. BCATS058-10146 Ly1yn TylLyn 43. BCATS058-10146 Ly1yn TylLyn 44. BCATS058-10146 Ly1yn TylLyn 45. BCATS088-10146 Ly1yn TylLyn 46. BCATS088-10147 Ly1yn TylLyn 47. BCATS088-10147 Ly1yn TylLyn 48. BCATS088-10147 Ly1yn TylLyn 49. BCATS088-10147 Ly1yn TylLyn 40. BCATS088-10147 Ly1yn TylLyn 40. BCATS088-10147 D1400 Ly1yn 41. BCATS088-10147 D1400 Ly1yn 42. BCATS088-10147 D1400 Ly1yn 43. BCATS088-10193 Ct_man|Otoc 43. BCATS088-10129 Pa_leo DI|Par 51. BCATS186-10129 Pa_leo DI|Par 52. BCATS186-10129 Pa_leo DI|Par 53. BCATS113-10120 Pa_leo DI|Par 54. BCATS113-10120 Pa_leo DI|Par 55. BCATS188-10121 Pa_par or|Pa 65. BCATS183-10127 Pa_par or|Pa 60. BCATS135-10179 Pa_par or|Pa 61. BCATS134-10179 Pa_par or|Pa 62. BCATS134-10179 Pa_par or|Pa 63. BCATS134-10179 Pa_par or|Pa 64. BCATS125-10168 Pa par ar_0Pa 65. BCATS125-10179 Pa_par or|Pa 64. BCATS126-10159 Pa_par or|Pa 65. BCATS126-10159 P 62. BCATS128-10168 Pa_par_ja|P, 63. BCATS127-10162 Pa_par_or|P 64. BCATS125-10159 Pa_par_or|P 65. BCATS125-10148 Pa_par_or|P 66. BCATS125-10148 Pa_par_or|P 67. BCATS125-10148 Pa_tig_al|Pan 68. BCATS158-1068 Pa_tig_al|Pan 69. BCATS155-10166 Pa_tig_laPan 70. BCATS155-10166 Pa_tig_laPan 71. BCATS155-10166 Pa_tig_al|Pan 72. BCATS155-10166 Pa_tig_al|Pan 73. BCATS155-10166 Pa_tig_al|Pan 74. BCATS155-10155 Pa_tig_al|Pan 75. BCATS150-10155 Pa_tig_al|Pan 76. BCATS150-10153 Pa_tig_al|Pan 77. BCATS150-10153 Pa_tig_al|Pan 78. BCATS149-10150 Pa_tig_al|Pan 79. BCATS148-10147 Pa_tig_al|Pan 79. BCATS146-1012 Pa_tig_al|Pan 79. BCATS146-1012 Pa_tig_al|Pan 70. BCATS146-1012 Pa_tig_al|Pan 70. BCATS146-1012 Pa_tig_al|Pan 70. BCATS146-1012 Pa_tig_al|Pan 70. BCATS140-10128 Pa_tig_ti|Pan 81. BCATS140-10128 Pa_tig_ti|Pan 82. BCATS140-10128 Pa_tig_ti|Pan 82. BCATS140-10128 Pa_tig_ti|Pan 83. BCATS140-10128 Pa_tig_ti|Pan 84. BCATS140-10128 Pa_tig_tiPan 85. BCATS150-10152 Pa_tig_al|Pan 76. BCATS150-10152 Pa_tig_tiPan 85. BCATS150-10152 Pa_tig_ban 86. BCATS150-10152 Pa_tig_ban 86. BCATS150-10157 Pa_tig_ban 87. BCATS166-10069 Pa_unc|Panth 87. BCATS136-10185 Pa_tem|Pardc 90. BCATS136-10184 Pa_tem|Pardc 90. BCATS136-10184 Pa_tem|Pardc 90. BCATS136-10184 Pa_tem|Pardc 90. BCATS167-10130 Pr_ben|Prior 92. BCATS167-10130 Pr_ben|Prior 93. BCATS167-10130 Pr_tben|Prior 94. BCATS160-10132 Pr_tem|Prior 94. BCATS160-10132 Pr_tem| 92. BCATS167-10130 Pr ben|Prior 93. BCATS170-10154-Pr_rub|Prior 94. BCATS169-10132-Pr_rub|Prior 95. BCATS176-10136 Pr_viv|Prion 96. BCATS175-10135-Pr_viv|Prion 97. BCATS174-10134-Pr_viv|Prion 98. BCATS173-10133-Pr_viv|Prion 98. BCATS184-10144 - Pu_con|Puma 100. BCATS184-10144 - Pu_con|Puma 101. BCATS180-10139 - Pu_con|Puma 102. BCATS180-10139 - Pu_con|Puma 103. BCATS179-10137 - Pu_con|Puma 104. BCATS182-10|72_Pu_yag|Puma

Consensus

140

Consensus	240 2 TGA TTGG TCCCA	50 T TAA TA	260 -ATTGGAGCC	270 CC TGA YA TA	280 GCA TTCCCC	290 cgaa tgaa ta <i>i</i>	300 A TATGAGC TI	310 CTGACTCCTT	320 CCCCCATCTTT	330 3. TC TAC T T T T A C T C (
31. BCATS022-10 93_Fe_Jyb Felis 33. BCATS053-10 95_Le_geo Leopardus 34. BCATS052-10 70_Le_geo Leopardus	TGA TTGG TCCCA	T TAC TA	-ATTGGTGCC	CCTGACATA	GCGTTTCCC	CGAA TAAACA2	ACATGAGC TI	C TGGC TCCTT	CCCCCATCCTT	TC TAC TC TTAC TC(TT TAC TCC TAC TT(
33. BCATS053-10195_Le_geolLeopardus 34. BCATS052-10170_Le_geolLeopardus	TGA TTGG TC C CA	T TAA TA	-ATTGGAGCT	C C TG A CA TA	GCGTTCCCT	CGAA TGAACAA	A TATGAGC T I	TTGACTTCTT	CCCCCCTCCTT	TT TAC TCC TAC TTC
34. BCATS052-10 /70-Le_geolLeopardus 35. BCATS057-10 /75-Le_tiglLeopardus 36. BCATS056-10 /71-Le_tiglLeopardus 37. BCATS185-10 217-Ly_lyn_lyLynx 38. BCATS065-10 39-Ly_lyn_lyLynx 40. BCATS064-10 38-Ly_lyn_lyLynx 41. BCATS063-10 37_Ly_lyn_lyLynx 41. BCATS060-10 19-Ly_lyn_lyLynx 42. BCATS059-10 18-Ly_lyn_lyLynx 43. BCATS058-10 146-Ly_lyn_lLynx 44. BCATS058-10 146-Ly_lyn_lLynx 45. BCATS059-10 109-Ly_run_lLynx 46. BCATS089-10 109-Ly_run_lLynx 46. BCATS088-10 89_Ot_man[Otocolobus										TT TAC TC TTAC TT(TT TAC TC TTAC TT(
37. BCATS185-10/217_Ly_lyn_ly Lynx	TGA TTGG TCCCA	T TAA TA	- ATTGGAGCC	C C TG A CA TA	GCATTTCCC	CGAA TGAA TAA	A TA TA A GC T I	C TGAC TTCTT	CC TC CA TCC TT	TC TAC T TC TAC TT(
38. BCATS065-10 39_Ly_lyn_ly Lynx 39_BCATS064-10 38_Ly_lyn_lylLynx										TC TAC T TC TAC TTC TC TAC T TC TAC TTC
40. BCATS063-10 37_Ly_lyn_ly Lynx	TGA TTGG TC C CA	T TAA TA	-ATTGGAGCC	CCTGACATA	GCATTTCCC	CGAA TGAA TAA	A TATAAGC TI	C TGAC T TC T T	CC TC CA TCC TT	TC TAC T TC TAC TTC
41. BCA S060-10 19_Ly_lyn_ly Lynx 42_BCATS059-10 18_Ly_lyn_lylLynx										TC TAC TTC TAC TTC TC TAC TTC TAC TTC
43. BCATS058-10 146 Ly lyn Lynx	TGA TTGG TCCCA	T TAA TA	-ATTGGAGCC	CCTGACATA	GCATTTCCC	CGAA TGAA TAA	A TATAAGC T I	C TGAC T TC T T	CC TC CA TCC TT	TC TAC T TC TAC TTC
44. BCATS0/1-10/99_Ly_ruf/Lynx 45. BCATS069-10/100_Ly_ruf/Lynx										TC TAC T TC TAC TTC TC TAC T TC TAC TTC
46. BCATS088-10 89 Ot man Otocolobus										CC TAC TTTTAC TC) CC TAC TTTTAC TC)
47. BCATS086-10 87 ⁻ Ot ⁻ man Otocolobus 48. BCATS081-10 193 Ot man Otocolobus										CC TAC I I I I AC IC/
49. BCATS079-10 102 Ot man Otocolobus										CC TAC T T T T A C TC <i>i</i> CC TAC T T T T G C TC (
51. BCATS106-10/49 Pa leo Panthera	TGA TTGG TTCCA	C TAA TA	-ATTGGAGCC	CCCGATATA	GCATTCCCT	CGAA TGAA TAA	A TATGAGC T I	C TGAC TCCTT	CCCCCGTCTT	CC TAC T T T T G C TC (
52. BCATS104-10 27 Palleo bllPanthera										CC TAC T T T T G C T C (CC T AC T T T T G C T C (
54. BCATS115-10 149_Pa_onc Panthera	TGA TTAG TC C CA	T TAA TG	-ATTGGGGC1	CCCGACATA	GCATTCCCT	CGAA TGAA TAA	A TATGAGC T I	C TGAC TCCTC	CCTCCATCTT	CTTACTTTTGCTC(
55. BCATS113-10 109_Pa_onc Panthera	TGA TTAG TCCCA	ТТАА ТG ТТАА ТА	-ATTGGGGC1	CCCGACATA CCCGATATA	GCA TTCCCT(GCA TTCCCT)	CGAA TGAA TAA CGAA TGAA TAA	A TATGAGC TI A TATGAGC TI	C TGAC TCCTC TTGAC TCCTT	CC TCCA TCTTT CCCCCCA TCTTT	CTTACTTTTGCTC(CCTACTTTTGCTC(
 BCATS081-10193 Ot man Otocolobus BCATS079-10102⁻Ot_man Otocolobus BCATS186-10128 Pa Teo bl Panthera BCATS106-10149 Pa Teo bl Panthera BCATS104-10127⁻Pa Teo bl Panthera BCATS103-10126 Pa Teo bl Panthera BCATS113-10126 Pa Teo bl Panthera BCATS115-101149 Pa onc Panthera BCATS113-10109⁻Pa onc Panthera BCATS189-101211⁻Pa par ori Panthera BCATS188-10163 Pa par me Panthera BCATS187-1073 Pa par kolPanthera BCATS187-10173 Pa par kolPanthera BCATS187-10172 Pa par orilPanthera 	TGA TTAG TCCCG	T TAA TA	-ATTGGAGCC	CCCGATATA	GCATTCCCT	CGAA TGAA TAA	A TATGAGC T I	TTGAC TCCTT	CCTCCATCTT	CC TAC T T T T G C TC (
58. BCATS187-10 73_Pa_par_ko Panthera 59. BCATS183-10 122_Pa_par_or Panthera										CC TAC T T T T G C TC(CC TAC T T T T G C TC(
60 BCATS135-10 79 Da par or Panthera	TGA TTGG TCCCA	T TGA TA	-ATTGGAGCC	CCCGA TA TA	GCATTCCCT	CGAA TGAA TA	A TATGAGC T I	TTGAC TCCTT	CCCCCATCTT	CC TAC T T T T G C TC (
61. BCATS132-10 74_Pa_par_ori Panthera 62. BCATS128-10 74_Pa_par_ori Panthera 63. BCATS128-10 168_Pa_par_or Panthera 64. BCATS127-10 162_Pa_par_or Panthera										CC TAC T T T T G C TC(CC TAC T T T T G C TC(
63. BCATS127-10 162 Pa_par_or Panthera										CC TAC TTTTGC TC(
64. BCATS126-10 159 Pa_par_or Panthera 65. BCATS126-10 159 Pa_par_sa Panthera 66. BCATS125-10 148 Pa_par_sa Panthera 66. BCATS124-10 121 Pa_par_or Panthera										CC TAC T T T T G C TC(CC TAC T T T T G C TC(
66. BCATS124-10 121 Pa_par_or Panthera										CC TAC T T T T G C T C (CC T AC T T T T G C T C (
67. BCATS154-10 [12]_Pa_bar_01 Panthera 67. BCATS119-10116 Pa_par me Panthera 68. BCATS158-10[68 Pa_tig_al Panthera 69. BCATS156-10[189 Pa_tig_al Panthera 70. BCATS155 10[168 Pa_tig_anthera	TGA TTGG TTCCA	T TAA TA	-ATTGGAGCC	CCCGA TA TA	GCATTCCCT	CGAA TGAA TA	A TATGAGC TI	C TGAC TCCTT	CCCCCGTCTT	CC TAC T T T T G C TC (
69. BCATS156-10 189_Pa_tig_al Panthera 70. BCATS155-10 166_Pa_tig Panthera										CC TAC TTTTGC TC(CC TAC TTTTGC TC(
71. BCATS154-10 165 Pa tig ti Panthera	TGA TTGG TTCCA	T TAA TA	-ATTGGAGCC	CCCGATATA	GCATTCCCT	CGAA TGAA TAA	A TATGAGC T I	C TGAC TCCTT	CCCCCGTCTT	CC TAC T T T T G C TC (
72. BCATS153-10 161 Pa_tig_su Panthera										CC TAC T T T T G C TC(CC TAC T T T T G C TC(
 72. BCATS153-101161 Pa_tig_sulPanthera 73. BCATS152-10156 Pa_tig_alPanthera 74. BCATS151-101155 Pa_tig_alPanthera 75. BCATS150-10153 Pa_tig_alPanthera 76. BCATS149-10150 Pa_tig_alPanthera 77. BCATS148-10147 Pa_tig_alPanthera 78. BCATS147-1013 Pa_tig_suPanthera 78. BCATS146-1012 Pa_tig_suPanthera 80. BCATS146-1012 Pa_tig_tig_tiPanthera 80. BCATS146-1012 Pa_tig_tig_tiPanthera 81. BCATS146-10128 Pa_tig_tig_tiPanthera 	TGA TTGG TTCCA	T TAA TA	-ATTGGAGCC	CCCGA TA TA	GCATTCCCT	CGAA TGAA TAA	A TATGAGC T I	C TGAC TCCTT	CCCCCGTCTT	CC TAC T T T T G C TC (
75. BCATS150-10 153_Pa_tig_al Panthera 76. BCATS149-10 150_Pa_tig_al Panthera										CC TAC T T T T G C T C (CC T AC T T T T G C T C (
77. BCATS148-10147 Pa_tig_al Panthera	TGA TTGG TTCCA	T TAA TA	-ATTGGAGCC	CCCGATATA	GCATTCCCT	CGAA TGAA TAA	A TATGAGC T I	C TGAC TCCTT	CCCCCGTCTT	CC TAC T T T T G C TC (
78. BCATS147-1013_Pa_tig_sulPantnera 79. BCATS146-1012_Pa_tig_sulPanthera	TGA TTGG TTCCA	T TAA TA	-ATTGGAGCC	CCCGATATA	GCATTCCCT	CGAA TGAA TA	A TATGAGC TI	C TGAC TCCTT	CCCCCGTCTT	CC TAC T T T T G C TC(CC TAC T T T T G C TC(
80. BCATS145-10 129_Pa_tig_ti Panthera 81. BCATS144-10 128_Pa_tig_ti Panthera										CC TAC T T T T G C TC(CC TAC T T T T G C TC(
82. BCATS144-10 126 Pa_tig_ulPanthera 83. BCATS143-10 127 Pa_tig_sulPanthera 83. BCATS142-10 126 Pa_tig_sulPanthera	TGA TTGG TTCCA	T TAA TA	-ATTGGAGCO	CCCGATATA	GCATTCCCT	CGAA TGAA TAA	A TATGAGC TI	C TGAC TCCTT	CCCCCGTCTTT	CC TAC T T T T G C TC (
83. BCATS142-10 126_Pa_tig_su Panthera										CC TAC T T T T G C TC(CC TAC T T T T G C TC(
84. BCATS140-10 122 Pa_tig_sulPanthera 85. BCATS139-10 123 Pa_tig_alPanthera 86. BCATS139-10 123 Pa_tig_alPanthera 87. BCATS159-10 157 Pa_unc Panthera 87. BCATS166-10 69 Pa_unc Panthera 88. BCATS138-10 152 Pa_tem Pardofelis	TGA TTGG TTCCA	T TAA TA	-ATTGGAGCC	CCCGA TA TA	GCATTCCCT	CGAA TGAA TA/	A TATGAGC TI	C TGAC TCCTT	CCCCCGTCTTT	CC TAC T T T T G C TC (
86. BCATS159-10 157_Pa_unc Panthera										CC TGC TT TTGC TC(CC TGC TT TTGC TC(
88. BCATS138-10 152 Pa_tem Pardofelis	TGAC TAG TC C CA	T TAA TA	-ATTGGAGCC	CCAGACATA	GCATTTCCC	CGAA TGAA TAA	A TATGAGC T I	C TGGC TTCTT	CCCCCATCCTT	TC T TC T TC TAC TAC
90 BCATS137-1085_Pa_tem/Pardofelis										TC T TC T TC TAC TAC TC T TC T TC TAC TAC
91 BCATS168-10/131 Pr ben/Prionailurus	TGA TTGG TC C CA	T TAA TA	-ATTGGAGCA	CCCGA TA TG	GCGTTCCCC	CGAA TGAA TAA	A TATGAGC TI	C TGAC TCCTT	CC TC CA TCC T T	TT TAC TC C TAC TTC
92. BCATS167-10 130 Pr ben Prionailurus 93. BCATS170-10 154 Pr rub Prionailurus										TT TAC TCC TAC TTC TC TAC TTC TAC TTC
94. BCATS169-10 132 Pr rub Prionailurus										TC TAC TTC TAC TT(TT TAC TCC TAC TT(
95. BCATS176-10 136 [—] Pr [_] viv Prionailurus 96. BCATS175-10 135 [_] Pr [_] viv Prionailurus	TGA TTAG TCCCG	T TAA TA	- ATTGGAGCA	CCCGATATG	GCGTTCCCC	CGAA TGAA TAA	A TATGAGC TI	C TGAC TCCTT	CC TC CA TCC T T	TT TAC TC C TAC TTC
97. BCATS174-10 134 Pr_viv Prionailurus	TGA TTAG TCCCG	ТТАА ТА ТТАА ТА	-ATTGGAGCA	CCCGA TA TG	GCG TTCCCCC	СGАА ТGАА ТАЛ СGАА ТGАА ТАЗ	A TATGAGC TI A TATGAGC TI	C TGAC TCCTT C TGAC TCCTT	CC TCCA TCC TT CC TCCA TCC TT	TT TAC TCC TAC TT(TT TAC TCC TAC TT(
99. BCATS184-10 144_Pu_con Puma	TGA TTGG TCCCA	T TAA TA	-ATTGGAGCC	CCTGACATA	GCATTCCCC	CGAA TGAA TA/	ACATGAGC TI	C TGAC T TC T T	CCTCCATCTT	TT TAC T TC TAC TTC
100. BCATS181-10 86_Pu_con Puma 101. BCATS180-10 139_Pu_con Puma										TT TAC T TC TAC TTC TT TAC T TC TAC TTC
102. BCATS179-10 138_Pu_con Puma	TGA TTGG TCCCA	T TAA TA	-ATTGGAGCC	CCTGACATA	GCATTCCCC	CGAA TGAA TAA	ACATGAGC TI	C TGAC T TC T T	CCTCCATCTT	TT TAC T TC TAC TT(
95. BCATS175-10135 Pr_viv Prionaliurus 96. BCATS175-10135 Pr_viv Prionaliurus 97. BCATS174-10134 Pr_viv Prionaliurus 98. BCATS184-10144 Pu_con Puma 100. BCATS184-10144 Pu_con Puma 101. BCATS181-10 86 Pu_con Puma 102. BCATS180-10 139 Pu_con Puma 103. BCATS178-10 137 Pu_con Puma 104. BCATS182-10 72 Pu_yag Puma										TT TAC T TC TAC TT(TT TAC T TC TAC TT(

Consensus	340 350 TCGCTTCATCTATG	360 GTAGAGGCTGGAG	370 CAGGGAC TGGA	380 . TGAACAG TAT	390 ACCCACCCCT	400 AGCCGGCAAC	410 C TGGC TCATG	420 SCAGGAGCATO	430 	44 - A C
32. BCATS022-10 93_Fe_Jyb Felis	TCGCC TCATC TATG	GTAGCAGCCGGAG	CAGGAACCGGA	TGGACAGTAI	ACCCGCCCCT	AGCCGGGAAC	C TGGC TCATO	CGGGAGCATO	CGTAGACCTA	-AC
33. BCATS053-10 95_Le_geo Leopardus 34. BCATS052-10 70_Le_geo Leopardus	TTGCTTCATCTATG TTGCTTCATCTATG									
	TTGCTTCATCTATG									
36. BCATS056-1071_Le_tig Leopardus	TTGCTTCATCTATG									-AC
37. BCATS185-10/217_Ly_lyn_ly/Lynx 38. BCATS065-10/39_Ev_lyn_ly/Lynx	TTGCC TCGTCCA TG TTGCC TCGTCCA TG									-AC
39. BCATS064-10 38_Ly_lyn_ly Lynx	TTGCC TCGTCCA TG	GTGGAGGCCGGAG	CAGGGAC TGGG	TGAACAG TAI	ATCCGCCCCT	AGCCGGCAAC	C TGGC TCATO	CAGGAGCATO	CGTGGATTTA	-AC
40. BCATS063-10 37_Ly_lyn_ly Lynx	TTGCC TCGTCCA TG TTGCC TCGTCCA TG									-A(
35. BCATS056-10/75 Le_tigl_eopardus 36. BCATS056-10/71_e_tigl_eopardus 37. BCATS056-10/71_e_tigl_eopardus 38. BCATS065-10/39 Ly Tyn_Tyl_ynx 40. BCATS064-10/38_Ly Tyn_Tyl_ynx 40. BCATS063-10/37_Ly_Tyn_Tyl_ynx 41. BCATS060-10/19_Ly_Tyn_Tyl_ynx 42. BCATS059-10/18_Ly_Tyn_Tyl_ynx 43. BCATS058-10/146_Ly_Tyn_Lynx 44. BCATS071-10/99 Ly_Tufl_ynx 45. BCATS069-10/10/0_Ly_Tufl_ynx	TTGCC TCGTCCA TG	GTGGAGGCCGGAG	CAGGGAC TGGG	TGAACAG TAI	ATCCGCCCCT	AGCCGGCAAC	C TGGC TCATO	CAGGAGCATO	CGTGGATTTA	-AC
43. BCATS058-10 146 Ly lyn Lynx	TTGCC TCGTCCA TG TTGCTTCATCCA TA									-AC
44. BCATS071-10199_Ly_ru1 Lynx 45. BCATS069-10 100_Ly_ru1 Lynx	TTGCTTCATCCATA									-AC
46. BCATS088-10 89 Ot man Otocolobus	TCACTTCCTCTATG									
47. BCATS086-10 87 Ot man Otocolobus 48. BCATS081-10 193 Ot man Otocolobus	TCACTTCCTCTATG ICACTTCCTCTATG									
49. BCATS079-10 102_Ot_man Otocolobus	ICACTTCCTC TA TO	GTAGAAGCTGGGG	CGGGGGACTGGA	TGGACCGTAI	ACCCCCCTCT	AGCTGG TAA T	TTAGCCCATO	CGGGAGCATO	CGTAGATCTA	-AC
50. BCATS186-10/28 Pa_leo_bl/Panthera	TCGCA TCATC TA TG TCGCA TCATC TA TG									
52. BCATS104-10 27 Pa leo bl Panthera	ICGCA TCATC TA TG									
53. BCATS103-10 26 Pa leo bl Panthera	ICGCA TCATC TATG ICGCA TCATC TATG									
48. BCATS079-10102/OT-man[Otocolobus 49. BCATS079-10102/OT-man[Otocolobus 50. BCATS186-1028 Pa_leo bl Panthera 51. BCATS106-1049 Pa_leo bl Panthera 52. BCATS104-1027 Pa_leo bl Panthera 53. BCATS103-1026 Pa_leo_bl Panthera 54. BCATS115-10149 Pa_onc Panthera 55. BCATS115-10149 Pa_onc Panthera 56. BCATS1189-10211 Pa_par_ori Panthera 57. BCATS189-10211 Pa_par_me Panthera 58. BCATS189-10173 Pa_par_welPanthera	ICGCA TCATC TATG									-AC
56. BCATS189-10211_Pa_par_ori Panthera	TCGCA TCATC TG TG									-AC
57. BCATS188-10[163_Pa_par_melPanthera 58. BCATS187-10[73_Pa_par_ko Panthera	ICGCA TCATC TATG ICGCA TCATC TGTG									
59. BCATS183-10 122 Pa par or Panthera	TC G CA TC A TC TG TG	GTAGAGGCTGGGG	CAGGAAC TGGA	TGAACAG TAI	ACCCACCCC	AGCCGGCAAC	CTAGCCCATG	CAGGGGCATC	CGTAGATTTA	-AC
60. BCATS135-10 79_Pa_par_or Panthera 61. BCATS134-10 74_Pa_par_ori Panthera	ICGCA TCATC TATG ICGCA TCATC TGTG									
62 BCATS128-10168 Pa par jalPanthera	ICGCA TCATC TA TG	GTAGAGGCTGGGG	CAGGAAC TGGA	TGAACAG TAI	ACCCACCCC	AGCCGGCAAC	CTAGCCCATO	CAGGGGCATC	CGTAGATTTA	-AC
63. BCATS127-10 162 Pa_par_or Panthera	TCGCA TCATC TG TG TCGCA TCATC TG TG									-A(
63. BCATS127-10 162 Pa_par_or Panthera 64. BCATS126-10 159 Pa_par_or Panthera 65. BCATS126-10 149 Pa_par_salPanthera 66. BCATS125-10 148 Pa_par_salPanthera 66. BCATS124-10 121 Pa_par_or Panthera	ICGCA TCATC TA TG	GTAGAGGCTGGGG	CAGGAAC TGGA	TGAACAG TAI	ACCCACCCCT	AGCCGGCAAC	CTAGCCCATO	CAGGGGCATC	CGTAGATTTA	-AC
66. BCATS124-10 121_Pa_par_or Panthera 67. BCATS119-10 116_Pa_par_me Panthera	TCGCA TCATC TG TG TCGCA TCATC TA TG									-A(
68. BCATS158-10 68_Pa_tig_al Panthera	ICGCA TCATC TA TG	GTAGAGGCTGGAG	CAGGGAC TGGA	TGGACAG TAI	ACCCACCTCT	AGCCGGCAAC	C TAGC TCATG	CAGGAGCATO	CGTAGATCTA	-AC
69. BCATS156-10 189_Pa_tig_al Panthera 70. BCATS155-10 166_Pa_tig Panthera	TCGCA TCATC TATG TCGCA TCATC TATG									-A(
71. BCATS154-10/165 Pa tig tilPanthera	TCGCA TCATC TA TG	GTAGAGGCTGGAG	CAGGGAC TGGA	TGGACAGTAI	ACCCACCTCT	AGCCGGCAAC	C TAGC TCATO	CAGGAGCATO	CGTAGATCTA	
72. BCATS153-10161_Pa_tig_sulPanthera 73. BCATS152-10156_Pa_tig_allPanthera	TCGCATCATCTATG TCGCATCATCTATG									
74. BCATS151-10 155 Pa tig al Panthera	TC G C A TC A TC TA TG	GTAGAGGCTGGAG	CAGGGACTGGA	TGGACAGTAI	ACCCACC TC T	AGCCGGCAAC	C TAGC TCATG	CAGGAGCATO	CGTAGATCTA	-AC
75. BCATS150-10 153 Pa_tig_al Panthera 76. BCATS149-10 150 Pa_tig_al Panthera	TCGCA TCATC TATG TCGCA TCATC TATG									
77. BCATS148-10 147 Pa tig al Panthera	ICGCA TCATC TA TG	GTAGAGGCTGGAG	CAGGGAC TGGA	TGGACAG TAI	ACCCACCTCT	AGCCGGCAAC	C TAGC TCATO	CAGGAGCATO	CGTAGATCTA	-AC
77. BCATS148-10 147 - Pa_tig_al Panthera 78. BCATS147-10 13 Pa_tig_su Panthera 79. BCATS146-10 12 - Pa_tig_su Panthera 80. BCATS145-10 129 - Pa_tig_su Panthera 80. BCATS145-10 129 - Pa_tig_tiPanthera	TCGCATCATCTATG TCGCATCATCTATG									
80. BCATS145-10 12 Pa_tig_suprantinera	ICGCA TCATC TATG									
81. BCATS144-10 128 Pa_tig_tilPanthera 82. BCATS143-10 127 Pa_tig_tilPanthera 83. BCATS143-10 127 Pa_tig_su Panthera 84. BCATS142-10 126 Pa_tig_su Panthera 84. BCATS140-10 124 Pa_tig_a Panthera	ICGCA TCATC TATG ICGCA TCATC TATG									-AC
83. BCATS143-10/127_Pa_tig_su Panthera	ICGCA TCATC TATG									-AC
84. BCATS140-10 124 Pa_tig_al Panthera	TCGCATCATCTATG									
85. BCATS139-10 123 Pa_tig_al Panthera 86. BCATS159-10 157 Pa_unc Panthera	TCGCA TCATC TATG TCGCA TCATC TATG									
87. BCATS166-10 69 Pa_unc Panthera 88. BCATS138-10 152_Pa_tem Pardofelis	ICGCA TCATC TA TG	GTAGAGGCTGGAG	CGGGGACTGGG	TGGACAGTAI	ACCCGCCTCT	AGCCGGCAAC	C TAGC TCATO	CAGGAGCATO	CGTAGACCTA	-AC
88. BCAI S138-10 152 Pa_tem Pardofelis	TAGCTTCGTCTATG TAGCTTCGTCTATG									-AC -AC
90. BCATS136-10 84_Pa_tem Pardofelis	TAGCTTCGTCTATG	GTGGAAGCCGGAG	CAGGGACTGGG	TGAACAGTGI	A TCCACCCC T	AGCCGGCAAC	CTGGCCCACO	CAGGAGCATO	TG TA GA TC TA	-AC
89. BCATS137-10185 Pa_tem Pardofelis 90. BCATS136-10184 Pa_tem Pardofelis 91. BCATS168-10131 Pr ben Prionailurus 92. BCATS167-10130_Pr_ben Prionailurus	TTGCTTCATCTATG TTGCTTCATCTATG									-A(-A(
93. BCATS170-10[154_Pr_rub]Prionaliurus	TTGCTTCATC TATG	GTAGAAGCCGGAG	CAGGAAC TGGA	TGAACAG TAI	ATCCACCCCT	AGCCGG TAAC	CTGGCCCATO	CAGGAGCATO	CGTAGATTTA	-AC
94. BCATS169-10 132_Pr_rub Prionailurus 95. BCATS176-10 136_Pr_viv Prionailurus	TTGCTTCATCTATG TTGCTTCATCTATG									-A(-A(
96 BCATS175-101135 Pr viv/Prionailurus	TTGCTTCATC TATG	GTAGAAGCTGGAG	CAGGAAC TGGG	TGAACAG TAI	ACCCACCCCT	AGCCGGCAAC	CTGGCCCACO	CAGGAGCATO	CGTAGATTTA	-AC
97. BCATS174-10 134_Pr_viv Prionailurus 98. BCATS173-10 133_Pr_viv Prionailurus	TTGCTTCATCTATG TTGCTTCATCTATG									-AC -AC
99. BCATS184-10 144 Pu con Puma	TTGCTTCATC TATG	GTGGAGGCCGGAG	CAGGGAC TGGA	TGAACAG TAI	ATCCACCCTT	AGCCGG TAA T	C TGGC TCATO	CGGGAGCATC	CGTAGATCTA	
100. BCATS181-10 86_Pu_con Puma	TTGCTTCATCTATG TTGCTTCATCTATA									
101. BCATS180-10 139_Pu_con Puma 102. BCATS179-10 138_Pu_con Puma	TTGCTTCATC TATG	GTGGAGGCCGGAG	CAGGGAC TGGA	TGAACAG TAI	ATCCACCCTT	AGCCGG TAA D	C TGGC TCATO	CGGGAGCATO	CGTAGATCTA	-A(
102. BCATS179-10 138-Pu_con Puma 103. BCATS178-10 137-Pu_con Puma 104. BCATS178-10 72_Pu_yag Puma	TTGCTTCATC TATA TTGCTTCGTC TATG									
104. DOATSTOZ-TU/12_PU_yag/Putta	TIGCTICGICIAIG	CIGGNOGCIGGA6	COGGAAC IGGA	. ionnchu iAl	micesce II	NUCCOG IAAU	CIGGCCCAIG	CABBABCAIL	.coinon ic 16	лU

Consensus	440 450 - AC TA TT TTC TC AC TA	460 CACC TAGCAGG TG	470 TC TCC TCAA T	480 CTTAGGTGCT	490 A TTAATTT	500 A T TA C TAC TAC	510 TTA TTAA TA 1	520 TAAAACCCCC T	530 54 GCCA TA TC TCAA TA 1
32 BCATS022-10193 Fe Tubledis	-AC TA T T T T T C T C AC TA	CACC TGGCAGG TG	TC TCC TCAA T	CTTGGGTGCT	ATTAATTT	A TTAC TAC TA	IGA TTAA TA T	TAAAACC TCC T	GCCA TG TC TCAA TA 1
33. BCATS053-10/95_Le_geo/Leopardus 34. BCATS052-10/70_Le_geo/Leopardus	-ACTATTTTCACTA -ACTATTTTTCACTA	CATC TAGCAGG TA	TTTCC TCAAT	C T TGG G TGC T	ATTAATTT	A TCACCAC TA	TTA TCAACA ?	TAAAACCCCC T	GCCA TA TC TCAA TA 1
36 BCATS057-1075_Le_ligiLeopardus	-ACTATTTTTCACTA -ACTATTTTTTCACTA	CACCTGGCAGGTG	TTTCC TCAA T	C T TGG G TGC T	ATTAATTT	A T TAC TAC TA	TTA TTAACA ?	TAAAACCCCC T	GCCA TA TC TCAA TAC
37. BCATS185-10/217 Ly lyn lylLynx 38. BCATS065-10/39 Ly lyn lylLynx	-ACCATCTTCTCACTC -ACCATCTTCTCACTC	CACCTAGCAGGCG	TTTCTTCAAT	CTTGGGCGCT	A TTAAC T T	ATTACCACTA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GC TA TA TC TC AA TAC
38. BCAT S065-10/39_LY_Jyn_Jy[Lynx 39. BCAT S063-10/38_LY_Jyn_Jy[Lynx 40. BCAT S063-10/37_Ly_Jyn_Jy[Lynx 41. BCAT S060-10/19_LY_Jyn_Jy[Lynx 42. BCAT S059-10/18_LY_Jyn_Jy[Lynx 43. BCAT S058-10/146_LY_Jyn[Lynx 44. BCAT S058-10/100_LY_ruf[Lynx 45. BCAT S069-10/100_LY_ruf[Lynx 46. BCAT S088-10/89_Ot_man[Otocolobus 47. BCAT S088-10/89_Ot_man[Otocolobus 47. BCAT S088-10/87_Ot_man[Otocolobus 47. BCAT S088-10/87_Ot_man[Otocolobus 47. BCAT S088-10/87_Ot_man[Otocolobus	-ACCATC TTC TCACTC -ACCATC TTC TCACTC	CACCTAGCAGGCG	TTTCTTCAAT	CTTGGGCGCT	A TTAAC T T	ATTACCACTA	TTA TTAA TA ?	TAAAACCCCC T	GC TA TA TC TC AA TAC
41. BCATS060-10[19_Ly_lyn_ly Lynx 42. BCATS059-10[18_Ly_lyn_ly Lynx	-ACCATCTTCTCACTC -ACCATCTTCTCACTC	CACCTAGCAGGCG	TTTCTTCAAT	CTTGGGCGCT	A TTAAC T T	ATTACCACTA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GCTATATCTCAATAC
43. BCATS058-10 146_Ly_lyn Lynx 44. BCATS071-10 99_Ly_ruf Lynx	-ACCATCTTCTCACTC -ACTATTTTCTCACTC	CACCTGGCAGGTG	TTTCC TCAA T	CC TAGG TGC T	ATTAATTT	ATTACCACTA	TTA TTAA TA ?	TAAAACCCCC T	GCCA TA TC TCAA TA 1
45. BCATS069-10 100 Ĺy_ruf Ĺynx 46. BCATS088-10 89 Ot man Otocolobus	-ACTATTTCTCACTC -ACTATCTTTCCCTA	CATC TTG TAGG TG	TCTCTTCAAT	CTTGGGCGCC	GTTAATTTC	A TCACCAG TA	TTA TTAA TA ?	TAAAACC TCC T	GCCC TA TC TCAC TA 1
47. BCATS086-10 87 ⁻ Ot ⁻ man Otocolobus 48. BCATS081-10 193_Ot_man Otocolobus	-ACTATCTTTCCCTA -ACTATCTTTTCCCTA								
49. BCATS079-10 102 OT man Otocolobus 50. BCATS186-10 28 Pa Teo bi Panthera	-AC TA TC TT T TCCC TA -AC TA TT TT TT TCAC TA	CATC TTG TAGG TG	TC TC T TCAA T	CTTGGGCGCC	GTTAATTTC	ATCACCAGTA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACC TCC T	GCCC TA TC TC AC TA 1
		C AC C TAG C A GG TG	TC TCC TCAA T	C T TAG G TGC T	ATTAATTT	A T TAC TAC TA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GCTCTATCCCAATAI
53. BCATS103-10 26 Pa_leo_bl Panthera	-ACTATTTTTCACTA -ACTATTTTTCACTA	CACCTAGCAGGTG	TC TCC TCAA T	C T TAGG TGC T	ATTAATTT	A T TAC TAC TA'	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GCTCTATCCCAATA1
55. BCATS113-10 109 Pa_onc Panthera	-ACTATTTTTCACTG -ACTATTTTTCACTG	CACC TGGCAGG TG	TC TCC TCAA T	C T TAG G TGC T	ATTAATTT	A T TA C TAC TA	TTA TCAA TA ?	TAAAACCCCC T	GCTATATCCCAATAI
57. BCATS189-10/211 Pa_par_on[Panthera 57. BCATS188-10 163 Pa_par_me]Panthera	-ACTATITITICACTA	CACCTGGCAGGTG	TC TCC TCAA T	CTTAGGCGCT	ATTAATTT	A T TA C TAC TA'	TTA TTAA TA ?	TAAAACCCCC T	GCTATATCCCAATAC
58. BCATS187-10173 Pa_par_kolPanthera 59. BCATS183-10122 Pa_par_or[Panthera	-ACTATTTTTCACTA -ACTATTTTTCACTA	CACCTGGCAGGTG	TC TCC TCAA T	CTTAGGCGCT	ATTAATTT	A T TAC TAC TA'	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GC TA TA TCCCAA TAC
51. BCATS106-10/49 Palleo[Panthera 52. BCATS104-10[27 Palleo]bl Panthera 53. BCATS103-10[26 Palleo]bl Panthera 54. BCATS113-10[149 Pa]onc[Panthera 55. BCATS113-10[109 Pa]onc[Panthera 56. BCATS189-10[211 Pa]par_ori]Panthera 57. BCATS189-10[211 Pa]par_ori]Panthera 58. BCATS188-10[163 Pa]par_or[Panthera 59. BCATS187-10[73 Pa]par_or]Panthera 60. BCATS135-10[79 Pa]par_or]Panthera 61. BCATS134-10[74 Pa]par_ori]Panthera 62. BCATS124-10[168 Pa]par_alPanthera	-ACTATTTTTCACTA -ACTATTTTTCACTA	CACCTGGCAGGTG	TC TCC TCAA T	CTTAGGCGCT	ATTAATTT	A T TAC TAC TA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GC TA TA TCCCAA TAC
63. BCATS127-10 162 Pa par or Panthera	-AC TA T T T T T T C A C TA	CACC TGGCAGG TG	TC TCC TCAA T	CTTAGGCGCT	ATTAATTT	A T TA C TAC TA'	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GCTATATCCCAATAC
64. BCATS126-10 159 ⁻ Pa_bar_or Panthera 65. BCATS125-10 148_Pa_par_sa Panthera	-ACTATTTTTCACTA -ACTATTTTTTCACTA								
66. BCATS124-10 121 Pa par or Panthera	-ACTATTTTTCACTA -ACTATTTTTTCACTA								
66. BCATS124-10121 ⁻ Pa_par_orlPanthera 67. BCATS124-10121 ⁻ Pa_par_orlPanthera 67. BCATS119-10116 ⁻ Pa_par_melPanthera 68. BCATS158-10168 ⁻ Pa_tig_allPanthera 70. BCATS156-10189 ⁻ Pa_tig_allPanthera 71. BCATS154-10165 ⁻ Pa_tig_tilPanthera 71. BCATS154-10165 ⁻ Pa_tig_tilPanthera 72. BCATS154-10165 ⁻ Pa_tig_tilPanthera	-ACTATTTTTCACTA -ACTATTTTTCACTA	CACCTAGCAGGTG	TC TCC TCAA T	C T TAG G TGC T	ATTAATTT	A T TAC TAC TA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GC TA TA TCCCAA TA J
70. BCATS155-10 166_Pa_tig Panthera 71. BCATS154-10 166_Pa_tig Panthera	-ACTATTTTTCACTA -ACTATTTTTCACTA	CACC TAGCAGG TG	TC TCC TCAA T	C T TAGG TGC T	ATTAATTT	A T TA C TAC TA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GCTATATCCCAATAI
72 DOATS155-10 101 Fa_tig_sull antinera	-ACTATTTTTCACTA -ACTATTTTTCACTA	CACC TAGCAGG TG	TC TCC TCAA T	C T TAG G TGC T	ATTAATTT	A T TAC TAC TA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GCTATATCCCAATAI
74. DOATS IST-TUTISS_Pa_lig_alpaninera	-ACTATTTTTCACTA -ACTATTTTTCACTA	CACC TAGCAGG TG	TC TCC TCAA T	C T TAG G TGC T	ATTAATTT	A T TAC TAC TA	ΓΤΑ ΤΤΑΑ ΤΑ ?	ГААААССССС Т	GC TA TA TCCCAA TA 1
76. BCATS149-10 150_Pa_tig_al Panthera	-AC TA T T T T T T C AC TA	C ACC TAGC A GG TG	TC TCC TCAA T	C T TAG G TGC T	ATTAATTT	A T TAC TAC TA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GC TA TA TCCCAA TA I
 BCATS148-10 147 Pa_tig_al Panthera BCATS146-1012 Pa_tig_su Panthera BCATS146-1012 Pa_tig_su Panthera BCATS146-1012 Pa_tig_su Panthera BCATS145-10 128 Pa_tig_ti]Panthera BCATS143-10 127 Pa_tig_su Panthera BCATS142-10 126 Pa_tig_su Panthera BCATS142-10 BCATS142-10 Pa_tig_su Panthera BCATS142-10 Pa_tig_su Panthera BCATS142-10 Pa_tig_al Panthera BCATS142-10 Pa_tig_al Panthera BCATS139-10 Pa_tig_al Panthera BCATS159-10 Pa_unc Panthera BCATS159-10 Pa_unc Panthera 	-ACTATTTTCACTA -ACTATTTTTCACTA	CACC TAGCAGG TG	TC TCC TCAA T	C T TAG G TGC T	ATTAATTT	A T TAC TAC TA	TTA TTAA TA ?	TAAAACCCCCT	GC TA TA TCCCAA TA 1
79. BCATS146-1012_Pa_tig_su Panthera 80. BCATS145-10129_Pa_tig_ti Panthera	-ACTATTTTTCACTA -ACTATTTTTTCACTA	CACC TAGCAGG TG	TC TCC TCAA T	CTTAGGTGCT	ATTAATTT	A T TA C TAC TA'	ΤΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GCTATATCCCAATAI
81. BCATS144-10 128_Pa_tig_ti Panthera 82. BCATS143-10 127_Pa_tig_su Panthera	-ACTATTTTTCACTA -ACTATTTTTTCACTA	CACCTAGCAGGTG	TC TCC TCAA T	C T TAGG TGC T	ATTAATTT	A T TAC TAC TA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GC TA TA TCCCAA TA I
83. BCATS142-10 126_Pa_tig_su Panthera 84. BCATS140-10 124_Pa_tig_al Panthera	- A C TA T T T T T T C A C TA - A C TA T T T T T T C A C TA	C AC C TAG C A GG TG	TC TCC TCAA T	C T TAG G TGC T	ATTAATTT	A T TAC TAC TA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GC TA TA TC CC A A TA I
85. BCATS139-10 123 ⁻ Pa_tig_al Panthera 86. BCATS159-10 157 ⁻ Pa_unc Panthera	-ACTATTTTTCACTA -ACTATTTTCTCACTA	CACTTGGCAGGTG	TC TCC TCAA T	CTTAGGCGCT	ATTAATTT	A T TA C TAC TA'	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GCTATATCCCAGTAI
88. BCATS138-10 152 Pa tem Pardofelis	-AC TA T T T T C TC AC TA -AC TA T T T T T C TC AC T T	CACC TAGCAGG TG	TTTCTTCAAT	C T TAG G TGC T	ATTAATTTC	A TCAC TAC TA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GCCA TA TC TCAA TA 1
89. BCATS137-10 85 Pa_tem Pardofelis 90. BCATS136-10 84_Pa_tem Pardofelis	-AC TA T T T T C TC AC T T -AC TA T T T T T C TC AC T T								
01 PCATE169 10/121 Dr bon/Drionoilurus	-AC TA T T T T C TC AC T T -AC TA T T T T T C TC AC T T								
93. BCATS170-10154 Pr_rub Prionailurus	-AC TA T T T T T C T C AC TA -AC TA T T T T T C T C AC TA	CACCTGGCAGGTG	TTTCTTCAAT	CTTGGGCGCT	ATTAATTT	A TCACCAC TA	TTA TTAACA ?	TAAAACC TCC T	GCCATG TC TCAATAC
95. BCATS176-10 136_Pr_viv Prionailurus	-AC TA TT TTC TCAC TT -AC TA TT TTC TCAC TT	CATC TGGCAGG TG	TC TC T TCAA T	CTTAGGCGCT	ATTAATTT	ATTACCACTA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GCCATGTCTCAATAC
91. BCATS167-10 [30 Pr _ben]Prionailurus 93. BCATS167-10 [30 Pr _ben]Prionailurus 94. BCATS170-10 [54 Pr _rub]Prionailurus 95. BCATS176-10 [36 Pr _viv]Prionailurus 96. BCATS176-10 [36 Pr _viv]Prionailurus 97. BCATS175-10 [35 Pr _viv]Prionailurus 97. BCATS174-10 [34 Pr _viv]Prionailurus 98. BCATS174-10 [35 Pr _viv]Prionailurus	-AC TA TT TTC TCAC TT -AC TA TT TTC TCAC TT	CATC TGGCAGG TG	TC TC T TCAA T	CTTAGGCGCT	ATTAATTT	ATTACCACTA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACCCCC T	GCCATGTCTCAATAC
99. BCATS184-10/144 Pu con/Puma	-ACCATTTC TCACTC -ACCATTTC TCACTC -ACCATTTC TCACTC	CACC TAGCAGG TG	TC TC T TCGA T	C T TGG G TGC T	ATTAATTT	A TCACCAC TA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACC TCC T	GCCA TA TC TCAA TAC
100. BCATS181-10 86 ⁻ Pu ⁻ con Puma 101. BCATS180-10 139 Pu ⁻ con Puma 102. BCATS170-10 139 Pu ⁻ con Puma	-ACCATTTTCTCACTC	CACC TAGCAGG TG	TC TC T TCGA T	C T TGG G TGC T	ATTAATTT	A TCACCAC TA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACC TCC T	GCCA TA TC TCAA TAC
102. BCATS179-10138 Pu_con Puma 103. BCATS178-10137 Pu_con Puma 104. BCATS182-10 72_Pu_yag Puma	-ACCATTTTCTCACTC	CACC TAGCAGG TG	TC TC TTCGA T	C T TGG G TGC T	ATTAATTT	A TCACCAC TA	ΓΤΑ ΤΤΑΑ ΤΑ ?	TAAAACC TCC T	GCCA TA TC TCAA TAC
104. BCATS182-10 72_Pu_yag Puma	-AC TA T T T T C TC AC T T	CACC TAGCAGG TG	TCTCTTCAAT	'CC TGGG TGC T	ATTAATTT	ATTACCACTA!	l'TA TTAA TA '	TAAAACCCCCC	geta ta teccaa ta 1

Consensus	40 550 I TCAAACACCCC TATT	560 TG TC TG A TCA G	570 TTTTAA TO	580 CAC TGC TG TCC TGC	590 : TAC T TC TA TC	600 CACTCCCAGT	610 TTTAGCAGCA	620 GGAATCAO	630 C TA TGC TAC TA	640 ACAGA
32 BCATS022-10193 Fe TypEelis	TCAAACACCCC TATT		*******							*******
33. BCATS053-1095 e deoll eopardus	TCAAACACCTC TCTT TCAAACACCTC TCTT									
 BCATS052-10 70-Le-geolLeopardus BCATS050-10 75-Le tiglLeopardus BCATS050-10 77-Le tiglLeopardus BCATS050-10 77-Le tiglLeopardus BCATS050-10 77-Le tiglLeopardus BCATS050-10 77-Le tiglLeopardus BCATS060-10 77-Ly lyn lylLynx BCATS060-10 39 Ly lyn lylLynx BCATS060-10 19 Ly lyn lylLynx BCATS060-10 19 Ly lyn lylLynx BCATS060-10 19 Ly lyn lylLynx BCATS058-10 146 Ly lyn lylLynx BCATS058-10 146 Ly lyn lylLynx BCATS058-10 104 Ly lyn lylLynx BCATS058-10 104 Ly lyn lylLynx BCATS058-10 104 Ly lyn lylLynx BCATS058-10 100 Ly ruflLynx BCATS069-10 100 Ly ruflLynx BCATS089-10 109 Ly colobus 	CCAAACACCTTTGTT	CG TC TGA TCC G	TTTTAAT	TAC TGCCGTTC TAC	TAC T TC TG TC	CACTTCCAGT	TTTAGCAGCA-	GGAATCAC	CATATTACTA	ACAGA
36. BCATS056-10/71_Le_tig/Leopardus	CCAAACACCTTTGTT CCAAACACCTTTATT									
38. BCATS065-10[39_Ly_lyn_ly Lynx	CCAAACACCTTTATT	TG TA TGA TCAG	TTC TAA T	TAC TGCAG TCC TAC	TAC TCTTA TO	CACTCCCAGT	T T TAG C A GC A	GGAATTAC	CA TGC TAC TA	ACAGA
39. BCATS064-10 38_Ly_lyn_ly Lynx 40. BCATS063-10 37_Ly_lyn_lylLynx	CCAAACACCTTTATT CCAAACACCTTTATT									
41. BCATS060-10 19 Ly lyn ly Lynx	CCAAACACCTTTATT	TG TA TGA TCAG	TTC TAA T	TAC TGCAG TCC TAC	TAC TCTTA TO	CACTCCCAG T	T T TAG C A GC A	GGAATTAC	CA TGC TAC TA	ACAGA
42. BCATS059-10[18_Ly_lyn_ly Lynx 43. BCATS058-10[146_Ly_lynl ynx	CCAAACACCTTTATT CCAAACACCTTTATT									
44. BCATS071-10 99 Ey_ruf Lynx	TCAAACACCC TTATT TCAAACACCC TTATT	IG TA TGA TCAG	TTTTAAT	TAC TGCAG TC T TA 1	TAC TC T TG T	CACTCCCAGT	TC TAGCAGCG	GGAATCAC	CA TGC TAC TA	ACAGA
45. BCATS069-10/100_Ly_rut/Lynx 46. BCATS088-10/89 Ot man/Otocolobus	TCAAACACCCC TATT	TG TC TGA TCAG	TTC TAA T	TAC TGC TG TCC TA -						ACAGA
47. BCATS086-10187 Ot manIOtocolobus	TCAAACACCCC TATT	TG TC TGA TCAG	TTC TAA T	TAC TGC TG TCC TA -						
48. BCATS081-10193 OT man Otocolobus 49. BCATS079-10102 OT man Otocolobus	TCAAACACCCC TATT TCAAACACCCC TATT	IG IC IGA ICAG IG TC IGA TCAG	TTC TAA T	TAC TGC TG TCC TA -						
49. BCATS079-10 102 OL man Otocolobus 50. BCATS186-10/28 Pa leo b Panthera 51. BCATS106-10/49 Pa leo Panthera 52. BCATS104-10/27 Pa leo b Panthera 53. BCATS103-10/26 Pa leo b Panthera 54. BCATS104-10/27 Pa leo b Panthera	TCAAACACCCC TATT TCAAACACCCC TATT									
52. BCATS106-10/49_Fa_leo bl/Panthera	TCAAACACCCC TATT	TG TC TGA TCGG	TTTTAA TO	CAC TGC TG TA T TG C	TAC T TC TA TO	CACTACCAG T	T T TAG C A GC A	GGCATCAC	TA TAC TGC TG	ACAGA
	TCAAACACCCC TATT TCAAACACCCC TGTT									
55. BCATS113-10 109_Pa_onc Panthera	TCAAACACCCCCTGTT	TG TC TGA TCGG	ΤΤΤΤΑΑ ΤΟ	CAC TGC TG TA T TAC	TAC T TC TA TO	CACTGCCAGT	T T TAG C A GC A	GGCATCAC	TA TGC TAC TG	ACAGA
55. BCATS113-101199 Pa_onc[Patthera 56. BCATS113-101109 Pa_onc[Patthera 57. BCATS189-10]211_Pa_par_ori Patthera 57. BCATS188-10]163 Pa_par_ko Patthera 58. BCATS183-10]122 Pa_par_or Patthera 59. BCATS183-10]122 Pa_par_or Patthera	CCAAACACCTC TATT CCAAACACCTC TATT	CG TC TGA TCGG CG TC TGA TCGG	TC T TAA TO TC T TAA TO	CAC TGC TG TA T TGC CAC TGC TG TA T TGC	TAC TCC TA TO TAC TCC TA TO	CACTGCCAG T CACTGCCAG T	TTTAGCAGCA TTTAGCAGCA	GGCATCAC	TA TGC TAC TG TA TGC TAC TG	ACAGA
58. BCATS187-10 73 Pa_par_ko Panthera	CCAAACACCCC TATT	CG TC TGA TCGG	TC T TAA TO	CAC TGC TG TA T TG C	TAC TCC TA TO	CACTGCCAGT	TTTAGCAGCA-	GGCATCAC	TA TGC TAC TG	ACAGA
59. BCATS183-10 122_Pa_par_or Panthera 60. BCATS135-10 79_Pa_par_or Panthera	CCAAACACCTC TATT CCAAACACCTC TATT									
61 BCAIS134-10174 Pa par orilPanthera	CCAAACACCTC TATT	CG TC TGA TCGG	TC T TAA T	CAC TGC TG TA T TGC	TAC TCC TA TO	CACTGCCAGT	T T TAG C A GC A -		TA TGC TAC TG	ACAGA
62. BCATS128-10/168_Pa_par_ja Panthera 63. BCATS127-10/162_Pa_par_or/Panthera	CCAAACACCTC TATT CCAAACACCTC TATT									
64. BCATS126-10 159 Pa par or Panthera	CCAAACACCTC TATT	CG TC TGA TCGG	TC T TAA TO	CAC TGC TG TA T TGC	TAC TCC TA TO	CACTGCCAGT	TTTAGCAGCA-	GGCATCAC	TA TGC TAC TG	ACAGA
65. BCATS125-10 148_Pa_par_sa Panthera 66. BCATS124-10 121_Pa_par_or Panthera	CCAAACACCTC TATT CCAAACACCTC TATT									
67 BCATS119-10/116 Pa par melPanthera	CCAAACACCTC TATT	CG TC TGA TCGG	TC T TAA TO	CAC TGC TG TA T TGC	TAC TCC TA TO	CACTGCCAGT	TTTAGCAGCA-	GGCATCAG	TA TGC TAC TG	ACAGA
68. BCATS158-10 68 Pa tig allPanthera 69. BCATS156-10 189 Pa tig allPanthera 70. BCATS155-10 166 Pa tig Panthera	TCAAACACCCC TATT TCAAACACCCC TATT	TG TC TGA TCGG	TT T TAA TO	CAC TGC TG TA T TGC	TAC T TC TA TO	CACTACCAGT	T T TAG C A GC A	GGCATCAC	TA TAC TAC TG	ACAGA
70. BCATS155-10166 [—] Pa [_] tiğlPanthera 71. BCATS154-10165_Pa_tig_ti Panthera	TCAAACACCCC TATT TCAAACACCCC TATT									
72. BCATS153-10/161 Pa tig sulPanthera	TCAAACACCCC TATT	TG TC TG A TCG G	TT T TAA TO	CAC TGC TG TA T TGC	TAC T TC TA TO	CACTACCAG T	T T TAG C A GC A	GGCATCAC	TA TAC TAC TG	ACAGA
73. BCATS152-10 156 ⁻ Pa ⁻ tig ⁻ al ^þ anthera 74. BCATS151-10 155 ⁻ Pa ⁻ tig ⁻ al ^þ anthera	TCAAACACCCC TATT TCAAACACCCC TATT									
75. BCATS150-10 153 Pa_tig_al Panthera	TCAAACACCCC TATT	TG TC TGA TCGG	ΤΤΤΤΑΑ ΤΟ	CAC TGC TG TA T TGC	TAC T TC TA TO	CACTACCAG T	T T TAG C A GC A -	- G GC A TC A C	TA TAC TAC TG	ACAGA
76. BCATS149-10150 Pa_tig_al Panthera 77. BCATS148-10147 Pa_tig_al Panthera 78. BCATS147-1013 Pa_tig_su Panthera 80. BCATS146-1012 Pa_tig_su Panthera 80. BCATS146-10129 Pa_tig_ti Panthera 81. BCATS144-10128 Pa_tig_ti Panthera 82. BCATS143-10127 Pa_tig_su Panthera 83. BCATS142-10126 Pa_tig_su Panthera 84. BCATS140-10124 Pa_tig_al Panthera 85. BCATS139-10123 Pa_tig_al Panthera 86. BCATS139-10125 Pa_tug_al Panthera	TCAAACACCCC TATT TCAAACACCCC TATT									
78. BCATS147-10 13 Pa_tig_su Panthera	TCAAACACCCC TATT	TG TC TG A TCG G	TT T TAA TO	CAC TGC TG TA T TGC	TAC T TC TA TO	CACTACCAG T	T T TAG C A GC A	GGCATCAC	TA TAC TAC TG	ACAGA
80. BCATS145-10/12_Pa_tig_su Panthera	TCAAACACCCC TATT TCAAACACCCC TATT	IG TC IGA TCGG IG TC IGA TCGG	TTTTAA TO TTTTAA TO	CAC TGC TG TA T TGC CAC TGC TG TA T TGC	: TAC I TC TA TC TAC I TC TA TC	CACTACCAG T	TTTAGCAGCA TTTAGCAGCA	GGCATCAU GGCATCAU	: TA TAC TAC TG : TA TAC TAC TG	ACAGA
81. BCATS144-10 128 Pa_tig_ti Panthera	TCAAACACCCC TATT TCAAACACCCC TATT	IG TC TGA TCGG	TTTTAA TO	CAC TGC TG TA T TG C	TAC T TC TA TO	CACTACCAG T	T T TAG C A GC A	GGCATCAC	C TA TAC TAC TG	ACAGA
83. BCATS143-10 127_Pa_tig_su Panthera	TCAAACACCCC TATT	TG TC TGA TCGG	TTTTAA TO	CAC TGC TG TA T TG C	TAC T TC TA TO	CACTACCAGT	T T TAG C A GC A	GGCATCAC	TA TAC TAC TG	ACAGA
84. BCATS140-10 124 Pa_tig_allPanthera	TCAAACACCCC TATT TCAAACACCCC TATT									
86. BCATS159-10 123 Fa_tig_allFalthera	TCAAACACCTC TATT	TG TC TG A TCG G	TC T TAA T	CAC TGC TG TA T TAC	TAC TCC TA TO	CGCTGCCAGT	T T TAG C A GC A -		TA TGC TAC TG	ACAGA
87. BCATS166-10[69] Pa_unc Panthera 88. BCATS138-10[152_Pa_tem]Pardofelis	TCAAACACCTC TATT TCAAACGCCTC TATT									
89. BCATS137-10 85_Pa_tem Pardofelis	TCAAACGCCTC TAT T	CG TA TGA TCA G	TTTTAAT	TAC TGCAG TCC TA 1	TAC TTC TA TO	CGCTCCCAGT	A T TAG C A GC A	GGAATCAC	CAA TGC TA TTA	ACAGA
90. BCATS136-10 84 Pa_tem Pardofelis 91. BCATS168-10 131 Pr ben Prionailurus	TCAAACGCCTC TATT CCAAACACCCC TATT									
92. BCATS167-10 130 Pr ben Prionailurus	CCAAACACCCC TATT	TG T T TG G TCA G	TC C TAA T	TAC TGC TG T TC TAC	TAC T TC TA TO	CACTCCCAGT	T T TAG C A GC A		CA TGC TAC TA	ACAGA
93. BCATS170-10 154 [—] Pr [_] rub Prionailurus 94. BCATS169-10 132 [_] Pr [_] rub Prionailurus	CCAAACACCCC TATT CCAAACACCCC TATT									
95. BCATS176-10 136 Pr viv Prionailurus	CCAAACACCCC TATT CCAAACACCCC TATT									
96. BCATS175-10 135 ⁻ Pr ⁻ viv Prionailurus 97. BCATS174-10 134 ⁻ Pr ⁻ viv Prionailurus	CCAAACACCCC TATT	TG T T TG G T CA G	TTC TAA T	TAC TGC TG T TC TG C	TAC T TC TA TO	CACTCCCAGT	TTTAGCAGCA	GGAATTAG	CA TGC TAC TA	ACAGA
98. BCATS173-10133 Pr_vivlPrionailurus	CCAAACACCCC TATT CCAAACACCCC TTTT									
99. BCATS184-10 144 Pu_con Puma 100. BCATS181-10 86 Pu_con Puma	CCAAACACCCC TTTT	TG TA TGA TCAG	ΤΤΤΤΑΑ ΤΟ	CAC TGCAG TCC TA 1	TAC TCC TA TO	CGCTCCCAGT	CC TAGCAGCA-	GGAATTAC	TA TGC TA TTA	ACAGA
101 BCATS180-10139 Pu conlPuma	CCAAACACCCC TTTT CCAAACACCCC TTTT									
102. BCATS179-10 138_Pu_con Puma 103. BCATS178-10 137_Pu_con Puma 104. BCATS178-10 72_Pu_yag Puma	CCAAACACCCCTTTT	TG TA TGA TCAG	TT T TAA TO	CAC TGCAG TCC TA 1	TAC TCC TA TO	CGCTCCCAGT	CC TAGCAGCA-	GGAATTAC	TA TGC TA TTA	ACAGA
104. BCATS182-10/72_Pu_yag Puma	TCAAACACCCC TGTT	ig ta iga tCAG	TTTTAA T(LACCGUAGTCC TAC	. TAU TIU TA TO	LAUTUCCAG T	TITAGCAGCA-	ggaa ica(. ca tgu tac TA	ACAGA

Consensus	640 AGATCGAA	650 A TC TAAACAC	660 CACATTCTT	670 TGACCCCGC	680 TGGAGGAGGAG <i>A</i>	690 A TCC TATC TI	700 FA TACCAACAC	710 TTA	720	730	74
 32. BCATS023-T0175/LC_5011 clis 33. BCATS022-1093 Fe_IyblFelis 33. BCATS053-10195_Le_geo Leopardus 34. BCATS052-10175_Le_geo Leopardus 35. BCATS056-10171_Le_tig Leopardus 36. BCATS056-10171_Le_tig Leopardus 37. BCATS056-101217_Ly_lyn_ly Lynx 38. BCATS065-10138_Ly_lyn_lyLynx 39. BCATS064-10138_Ly_lyn_lyLynx 40. BCATS064-10137_Ly_lyn_lyLynx 41. BCATS064-10137_Ly_lyn_lyLynx 42. BCATS064-10137_Ly_lyn_lyLynx 43. BCATS064-1019_Ly_lyn_lyLynx 44. BCATS069-10118_Ly_lyn_lyLynx 45. BCATS058-10146_Ly_lyn_lyLynx 46. BCATS069-101100_Ly_ruf Lynx 47. BCATS086-10887_Ot_man Otocolobus 47. BCATS086-10187_Ot_man Otocolobus 48. BCATS081-10193_OT_man Otocolobus 	AGATCGAAA AGACCGAA AGACCGAA AGACCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA	A CC TAAA C AC A CC TAAA C AC A CC TGAA C AC A CC TGAA C AC A TTTAAA C AC A CTTAAAC	TACA TTCTT TACA TTTTT TACA TTTTT TACA TTTTT TACA TTTTT CACA TTCTT CACA TTCTT CACA TTCTT CACA TTCTT CACA TTCTT CACA TTCTT	TGACCCCGC TGATCCCGC CGATCCCGC CGATCCCGC TGATCCTGC TGATCCTGC TGATCCTGC TGATCCTGC TGATCCTGC TGATCCTGC TGATCCTGC TGATCCTGC	TGGGGGAGGAG TGGGGGAGGAG TGGGGGAGGAG TGGGGGAGGAG TGGAGGAGGGG TGGAGGAGGGG TGGAGGAGGGG TGGAGGAGGGG TGGAGGAGGGG TGGAGGAGGGG TGGAGGAGGGG	A TCC TATC TT ACCCCATC TT ACCCCATC TT A TCCCATC TT A TCCCATC TT A TCC TATTTT A TCC TATTTT A TCC TATTTTT A TCC TATTTTT A TCC TATTTTT A TCC TATTTTT	TACACCAACAC TA TATCAGCA T TA TA TCAGCA T TA TA TCAACA T TA TATCAACA T TA TATCAACA T TA TACCAGCAC TA TACCAGCAC TA TACCAGCAC TA TACCAGCAC TA TACCAGCAC TA TACCAGCAC	C TG C TG C TA C TA TTA TTA TTA TTA TTA TTA TTA			
 BCATS079-10 1102⁻Ot-man Otocolobus BCATS079-10 1102⁻Ot-man Otocolobus BCATS186-10 (28 Pa leo bl Panthera BCATS106-10 (49 Pa leo)Panthera BCATS104-10 (27 Pa leo bl Panthera BCATS103-10 (26 Pa leo-bl Panthera BCATS115-10 (149 Pa_onc)Panthera BCATS115-10 (149 Pa_onc)Panthera BCATS115-10 (149 Pa_onc)Panthera BCATS115-10 (149 Pa_onc)Panthera BCATS189-10 (21 Pa_oar_ori)Panthera BCATS188-10 (163 Pa_par_me)Panthera BCATS188-10 (163 Pa_par_me)Panthera BCATS183-10 (127 Pa_par_or)Panthera BCATS183-10 (127 Pa_par_or)Panthera BCATS133-10 (127 Pa_par_or)Panthera BCATS134-10 (74 Pa_par_or)Panthera BCATS134-10 (74 Pa_par_or)Panthera BCATS134-10 (74 Pa_par_or)Panthera 	AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA	A TC TGAACAC A TC TGAACAC A TC TGAACAC A TC TAAACAC A TC TAAACAC A TC TGAACAC A TC TGAACAC A TC TGAACAC A TC TGAACAC	CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT	TGACCCCGC TGACCCCGC TGACCCCGC TGACCCCGC TGACCCCGC TGACCCTGC TGACCCTGC TGACCCTGC		A TCC TA TC T 1 A TCC TA TC T 1	IA TATCAACAC IA TATCAACAC IA TATCAACAC IA TATCAACAC IA TATCAACAC IA TATCAACAC IA TACCAGCAC IA TACCAGCAC IA TACCAGCAC	C TA C TA C TA C TA C TA C TA C TA C TA			
63. BCATS127-10162 ^{Pa} par_or Panthera 64. BCATS126-10159 ^{Pa} par or Panthera 65. BCATS125-10148 ^{Pa} par_salPanthera 66. BCATS124-10121 ^{Pa} par_or Panthera 67. BCATS119-10116 ^{Pa} par_me Panthera 68. BCATS158-10168 ^{Pa} tig_al Panthera 60. DCATS156 ¹⁰ 1010 ^{Pa} tig_al Panthera	AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA	A TC TGAACAC A TC TGAACAC A TC TGAACAC A TC TGAACAC A TC TGAACAC A TC TGAACAC	CACATTCTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT CACATTTTT CACATTTTT CACATTTTT	TGACCC TGC TGACCC TGC TGACCC TGC TGACCC TGC TGACCC TGC TGACCC TGC TGACCC CG TGACCCCCG TGACCCCCG	c c	A TCC TATC T A TCC TATC T	IA TACCAGCAC IA TATCAGCAC IA TACCAGCAC IA TACCAGCAC IA TACCAGCAC IA TACCAGCAC	C TA C TA C TA C TA C TA C TA			
69. BCATS155-10 166 Pa tiglPanthera 70. BCATS155-10 166 Pa tiglPanthera 71. BCATS154-10 165 Pa tiglBanthera 72. BCATS153-10 161 Pa tig sulPanthera 73. BCATS152-10 166 Pa tig alPanthera 74. BCATS151-10 155 Pa tig alPanthera 75. BCATS150-10 153 Pa tig alPanthera 76. BCATS149-10 150 Pa tig alPanthera 77. BCATS148-10 147 Pa tig alPanthera 78. BCATS148-10 147 Pa tig sulPanthera 79. BCATS148-10 147 Pa tig sulPanthera 79. BCATS146-10 12 Pa tig tiPanthera 80. BCATS145-10 129 Pa tig tiPanthera 81. BCATS144-10 128 Pa tig tiPanthera 81. BCATS144-10 128 Pa tig tiPanthera 82. BCATS143-10 127 Pa tig sulPanthera	AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA	A TO TGAA CAC A TO TGAA CAC	CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT	TGACCCCCG TGACCCCCG TGACCCCCG TGACCCCCG TGACCCCCG TGACCCCCG TGACCCCCG TGACCCCCG TGACCCCCG	с с с с с с с с с с с с с с с с с с с						
77. BCATS148-10147 Pa tig_al Panthera 78. BCATS146-1012 Pa tig_su Panthera 79. BCATS146-1012 Pa tig_su Panthera 80. BCATS146-10128 Pa tig_ti Panthera 81. BCATS144-10128 Pa tig_ti Panthera 82. BCATS143-10127 Pa tig_su Panthera 83. BCATS142-10126 Pa tig_su Panthera 84. BCATS142-10126 Pa tig_al Panthera 85. BCATS140-10127 Pa tig_al Panthera 85. BCATS139-10123 Pa tig_al Panthera 86. BCATS159-10127 Pa tig_al Panthera 87. BCATS166-1069 Pa unc Panthera 88. BCATS138-10157 Pa_tem Pardofelis 89. BCATS137-1085 Pa_tem Pardofelis 90. BCATS136-10184 Pa tem Pardofelis 91. BCATS166-10130 Pr_bem Prionailurus 92. BCATS167-10130 Pr_bem Prionailurus	AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA	A TC TGAA CAC A TT TAAA CAC A TT TAAA CAC A TT TAAA CAC A CC TAAA TAC A CC TAAA TAC	CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT	TGACCCCCG TGACCCCCG TGACCCCCC TGACCCCCC TGACCCCCC TGACCCTGC TGACCCTGC TGACCCTGC TGATCCTGC TGATCCTGC	C C TGGAGGAGGGG TGGAGGAGGGG TGGAGGAGGAG TGGAGGAGGAG CGGAGGAGGAG CGGAGGAGGAG	A TCC TATC TI ACCCCATC TI ACCCCATC TI ACCCCATC TI A TCCCATC TI A TCCCATC TI	IA TATCAACAC IA TACCAACAC IA TACCAACAC IA TACCAACAC IG TACCAACAC IG TACCAACAC	C TA TTA TTA TTA TTA TTA			
93. BCATS170-10154 ⁻ Pr ⁻ rub Prionailurus 94. BCATS169-10132 ⁻ Pr ⁻ rub Prionailurus 95. BCATS176-10136 ⁻ Pr ⁻ viv Prionailurus 96. BCATS175-10135 ⁻ Pr ⁻ viv Prionailurus 97. BCATS174-10134 ⁻ Pr ⁻ viv Prionailurus 98. BCATS173-10133 ⁻ Pr ⁻ viv Prionailurus 99. BCATS184-10144 ⁻ Pu ⁻ con Puma 100. BCATS184-10186 ⁻ Pu ⁻ con Puma 101. BCATS180-10139 ⁻ Pu ⁻ con Puma 102. BCATS179-10138 ⁻ Pu ⁻ con Puma 103. BCATS178-10137 ⁻ Pu ⁻ con Puma 104. BCATS182-10 72 ⁻ Pu ⁻ yag Puma	AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA AGATCGAA	A TC TAAA CAC A TC TAAA TAC A TC TAAA TAC A TC TAAA TAC A TC TAAA TAC A CC TAAA TAC	CACATTCTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT CACATTCTT	TGACCCCGC TGATCCTGC TGATCCTGC TGATCCTGC TGATCCTGC TGATCCTGC TGATCCTGC TGATCCTGC TGATCCTGC TGATCCTGC	TGGAGGAGGAG TGGAGGAGGAG TGGAGGAGGAG TGGAGGAGGAG TGGAGGAGGAG CGGAGGAGGAG CGGAGGAGGAG CGGAGGAGGAG CGGAGGAGGAG CGGAGGAGGAG CGGAGGAGGAG CGGAGGAGGAG CGGAGGAGGAG	A TCC CATC T A TCC TATC T	IA TATCAACAC IG TATCAACAC IG TATCAACAC IG TATCAACAC IN TATCAACAC IA TACCAACAC IA TACCAACAC IA TACCAACAC IA TACCAACAC	TTA TTA TTA TTA TTA TTA TTA TTA TTA TTA			

	720 I	730	740	750	760	770	780 - agctcctgtca	790 C TACCAG T T C	800 TAGCAG
ardus ardus dus nx x x x x x x									
olobus olobus colobus colobus nthera era nthera nthera thera							- AGCTCCTGTCA	C TACCAG T TC C TACCAG T TC	TAGCAG TAGCAG

Consensus 32. BCATS022-10193 Fe_Tyb|Felis 33. BCATS053-10195 Le_geo|Leopard 34. BCATS052-10170 Le_geo|Leopard 35. BCATS057-10175 Le_tig|LeopardL 36. BCATS056-10171 Le_tig|LeopardL 37. BCATS056-10139 Ly_Iyn_Iy|Lynx 38. BCATS065-10139 Ly_Iyn_Iy|Lynx 40. BCATS064-10138 Ly_Iyn_Iy|Lynx 41. BCATS060-10197 Ly_Iyn_Iy|Lynx 42. BCATS059-1018 Ly_Iyn_Iy|Lynx 43. BCATS058-10146 Ly_Iyn_Iy|Lynx 44. BCATS071-10199 Ly_Tuf|Lynx 42. BCATS058-10/18 Ly Lyn Lynx 43. BCATS058-10/146 Ly LynLynx 44. BCATS058-10/100 Ly rufi|Lynx 45. BCATS088-10/89 Ot man|Otocolobus 47. BCATS088-10/89 Ot man|Otocolobus 48. BCATS088-10/89 Ot man|Otocolobus 49. BCATS07-10/102 Ot man|Otocolobus 50. BCATS186-10/28 Pa Teo bl|Panthera 51. BCATS106-10/49 Pa Teo]Panthera 52. BCATS106-10/49 Pa Teo]Panthera 53. BCATS107-10/102 Pa Teo]Panthera 54. BCATS115-10/149 Pa Teo]Panthera 55. BCATS113-10/109 Pa onc|Panthera 56. BCATS118-10/149 Pa Teo]Panthera 57. BCATS188-10/149 Pa Teo]Panthera 58. BCATS113-10/109 Pa onc|Panthera 59. BCATS189-10/127 Pa Teo]Panthera 59. BCATS183-10/129 Pa Teo]Panthera 59. BCATS183-10/129 Pa Teo]Panthera 59. BCATS183-10/129 Pa Teo]Panthera 60. BCATS135-10/79 Pa Teo]Panthera 61. BCATS135-10/79 Pa Teo]Panthera 62. BCATS128-10/127 Pa Teo]Panthera 63. BCATS125-10/148 Pa Teo]Panthera 64. BCATS125-10/168 Pa Teo]Panthera 65. BCATS125-10/168 Pa Teo]Panthera 66. BCATS125-10/168 Pa Teo]Panthera 67. BCATS125-10/168 Pa Teo]Panthera 68. BCATS125-10/168 Pa Teo]Panthera 69. BCATS125-10/168 Pa Teo]Panthera 60. BCATS125-10/168 Pa Teo]Panthera 61. BCATS125-10/168 Pa Teo]Panthera 62. BCATS125-10/168 Pa Teo]Panthera 63. BCATS125-10/168 Pa Teo]Panthera 64. BCATS125-10/168 Pa Teo]Panthera 77. BCATS155-10/168 Pa Teo]Panthera 78. BCATS155-10/168 Pa Teo]Panthera 79. BCATS155-10/168 Pa Teo]Panthera 70. BCATS155-10/168 Pa Teo]Panthera 71. BCATS155-10/168 Pa Teo]Panthera 72. BCATS155-10/168 Pa Teo]Panthera 73. BCATS155-10/168 Pa Teo]Panthera 74. BCATS155-10/168 Pa Teo]Panthera 75. BCATS155-10/168 Pa Teo]Panthera 76. BCATS155-10/168 Pa Teo]Panthera 77. BCATS155-10/168 Pa Teo]Panthera 78. BCATS155-10/169 Pa Teo]Panthera 79. BCATS155-10/169 Pa Teo]Panthera 80. BCATS145-10/129 Pa Teo]Panthera 80. B 86. BCATS159-10 157 Pa unc Panthera 86. BCATS159-10/15/ Pa_unc|Panthera 87. BCATS166-1069 Pa_unc|Panthera 88. BCATS138-10/152 Pa_tem|Pardofelis 90. BCATS137-10/85 Pa_tem|Pardofelis 90. BCATS166-10/84 Pa_tem|Pardofelis 91. BCATS168-10/131 Pr_ben|Prionailurus 92. BCATS167-10/130 Pr_ben|Prionailurus 93. BCATS170-10 154 Pr_rub Prionailurus 94. BCATS169-10 132 Pr_rub Prionailurus 95. BCATS176-10 136 Pr_viv|Prionalilurus 96. BCATS175-10 135 Pr_viv|Prionalilurus 97. BCATS175-10 134 Pr_viv|Prionalilurus 98. BCATS174-10 134 Pr_viv|Prionalilurus 98. BCATS173-10133 PT_VIV|Prionaliut 99. BCATS184-10144-Pu_con|Puma 100. BCATS181-10|86-Pu_con|Puma 101. BCATS180-10139 Pu_con|Puma 102. BCATS179-10138-Pu_con|Puma 103. BCATS178-10137 Pu_con|Puma 104. BCATS182-10|72_Pu_yag|Puma

Consensus

810

Appendix 3. Image sources

1. Puma:

(http://us.123rf.com/400wm/400/400/isselee/isselee0802/isselee080200241/2597975puma-17-years--puma-concolor-in-front-of-a-white-background.jpg)

- 2. Asian Golden cat: (http://en.wikipedia.org/wiki/File:Asian_Golden_cat.jpg)
- 3. Black-footed cat: (http://farm1.static.flickr.com/116/260095916_838a749a89.jpg)
- 4. Clouded-leopard: (http://www.myfreewallpapers.net/nature/pages/clouded-leopard.shtml)
- 5. Lion: (http://wallpapers.free-review.net/wallpapers/15/Big_Lion.jpg)
- 6. Black-footed cat: (http://farm1.static.flickr.com/116/260095916_838a749a89_b.jpg)
- 7. Caracal:

(http://www.visualphotos.com/photo/1x3740890/caracal_caracal_felis_caracal_augra bies_falls_ba3063.jpg)

- 8. Eurasian lynx: (http://pixdaus.com/pics/1236252856LLgiwSy.jpg)
- 9. Domestic cat:

(http://image.shutterstock.com/display_pic_with_logo/109102/109102,1196950581,2/ stock-photo-young-grey-maine-coon-cat-7584034.jpg)

- 10. Cheetah: (http://images.picturesdepot.com/photo/f/female_cheetah_wallpaper-29086.jpg)
- 11. Geoffroy's cat:

(http://upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Geoffroy%27s_Cat.jpg/8 00px-Geoffroy%27s_Cat.jpg)

12. Jaguarundi:

(http://upload.wikimedia.org/wikipedia/commons/thumb/8/85/Herpailurus_yagouaroun di_Jaguarundi_ZOO_D%C4%9B%C4%8D%C3%ADn.jpg/800px-

 $Herpailurus_yagouaroundi_Jaguarundi_ZOO_D\%C4\%9B\%C4\%8D\%C3\%ADn.jpg)$

- 13. Iberian lynx: (http://travel.latimes.com/daily-deal-blog/wpcontent/uploads/2008/10/iberian_lynx_by_antonio_riv.jpg)
- 14. Asian leopard cat:

(http://upload.wikimedia.org/wikipedia/commons/3/32/Tsushima_Cat_001.jpg)

- 15. Leopard: (http://www.serengetiexpeditions.com/images/leopard1280x1024.jpg)
- 16. Pallas cat: (http://upload.wikimedia.org/wikipedia/commons/d/d6/Manoel.jpg)
- 17. Tigrina: (http://www.themagazine.ca/wp-content/uploads/2011/03/Oncilla.png)
- 18. Fishing cat:

(http://upload.wikimedia.org/wikipedia/commons/archive/5/5c/20070607175227!Prion ailurus_viverrinus.jpg)

- 19. Snow leopard: (http://thundafunda.com/33/animals-pictures-nature/ready-to-pouncesnow-leopard-pictures.jpg)
- 20. Indian mongoose:

(http://upload.wikimedia.org/wikipedia/commons/thumb/4/47/Ruddy_mongoose.jpg/79 9px-Ruddy_mongoose.jpg)

- 21. Rusty-spotted cat:
 - (http://www.zoochat.com/gallery/data/543/Rusty_Spotted_Cat_PL_16_10_06.JPG)
- 22. Desert cat:

(http://upload.wikimedia.org/wikipedia/commons/7/79/Sandcat1_CincinnatiZoo.jpg)

- 23. Serval: (http://www.vectorsite.net/Ybser_2b.jpg)
- 24. Tiger: (http://fc02.deviantart.net/fs70/f/2011/181/e/5/tiger_and_snow_3_by_jagu77d3kk8b7.jpg)
- 25. Jaguar:

(http://upload.wikimedia.org/wikipedia/commons/thumb/7/70/Panthera_onca.jpg/800p x-Panthera_onca.jpg)

- 26. European wildcat: (http://medienjagd.test.newsroom.de/wildkatze022010sb088.jpg)
- 27. Bobcat:

(http://images1.wikia.nocookie.net/__cb20071029161722/uncyclopedia/images/thum b/6/61/Bobcat.jpg/765px-Bobcat.jpg)

28. Putative numts: (http://www.wallpaperslibrary.com/Wallpapers/Funny/tiger-rabbitfunny-wallpaper-13.jpg)

7.3. CHAPTER 3: Tracking cats: Problems with placing feline carnivores on δ^{18} O, δ D isoscapes

Table S1. Sample list

No.	Museum catalog number	Sampling part	Common name	Sex	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δD (‰ V- SMOW) Mean annual precip	δ18O (‰ V- SMOW) Mean annual precip	δ18O River- water	δD River- water	δD Keratin (‰ V- SMOW)	δ18Ο Keratin (‰ V- SMOW)	δD (‰ V- SMOW) Mean Sum. precip (June, July, August)	δ18Ο (‰ V- SMOW) Mean Sum. precip (June, July, August)	Mean annual rel. humidity (%)	δD (‰ V- SMOW) Mean spring precip (March, April, May)	δ18O (‰ V- SMOW) Mean spring precip (March, April, May)
1	232789	hair	bobcat	u	25.826	-81.344	3	-21	-3.50	-0.10	0.55	-112.22	16.41	-22.33	-3.50	70	-13.00	-2.70
2	157063	hair	bobcat	m	34.869	-83.814	1460	-53	-8.10	-7.40	-45.6	-87.37	19.20	-29.00	-4.70	70	-47.33	-7.33
3	276020	hair	bobcat	u	38.902	-81.310	243	-48	-7.50	-7.30	-47.6	-87.37	19.40	-28.33	-4.60	70	-42.33	-6.80
4	298442	hair	bobcat	u	43.998	-74.505	940	-80	-11.90	-9.90	-96.1	-106.85	16.89	-51.00	-8.03	65	-77.67	-11.40
5	88448	hair	bobcat	m	44.628	-65.776	150	-68	-10.20	-8	-57	-94.57	21.70	-45.00	-7.03	80	-63.00	-9.47
6	210545	hair	bobcat	f	30.270	-87.683	4	-26	-4.10	-3.90	-20.3	-97.57	19.62	-20.67	-3.10	80	-18.00	-3.10
7	286410	hair	bobcat	m	36.365	-88.045	120	-39	-6.10	-5.70	-33.1	-87.19	13.60	-18.67	-3.03	70	-30.00	-5.00
8	236419	hair	bobcat	f	35.777	-93.465	670	-49	-7.10	-5.80	-34.5	-85.82	16.96	-28.67	-4.27	65	-43.33	-6.37
9	76459	hair	bobcat	u	42.571	-100.062	800	-77	-10.60	-10.10	-75.1	-65.90	19.36	-60.33	-8.27	60	-85.00	-11.80
10	285332	hair	bobcat	m	44.159	-91.816	213	-64	-9.10	-9.80	-67.9	-100.21	14.70	-44.67	-6.33	70	-66.33	-9.53
11	276360	hair	bobcat	m	44.372	-100.318	440	-79	-10.70	-14.20	-115.5	-107.99	16.43	-62.00	-8.40	60	-87.33	-12.03
12	211368	hair	bobcat	f	46.336	-113.294	1600	-115	-15.20	-17.30	-131.6	-100.92	12.52	-88.33	-11.50	70	-114.67	-15.33
13	214795	hair	bobcat	f	41.001	-107.246	2100	-106	-14.20	-16.40	-123.9	-89.26	13.88	-81.00	-10.57	60	-109.00	-14.70
14	1709	hair	bobcat	f	32.483	-106.724	1200	-67	-9.30	-12.50	-94	-88.51	15.37	-57.67	-7.80	40	-66.67	-9.27

No.	Museum catalog number	Sampling part	Common name	Sex	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δD (‰ V- SMOW) Mean annual precip	δ18Ο (‰ V- SMOW) Mean annual precip	δ18O River- water	δD River- water	δD Keratin (‰ V- SMOW)	δ18Ο Keratin (‰ V- SMOW)	δD (‰ V- SMOW) Mean Sum. precip (June, July, August)	δ18O (‰ V- SMOW) Mean Sum. precip (June, July, August)	Mean annual rel. humidity (%)	δD (‰ V- SMOW) Mean spring precip (March, April, May)	δ18O (‰ V- SMOW) Mean spring precip (March, April, May)
15	211376	hair	bobcat	m	45.774	-116.302	480	-98	-12.90	-17.50	-132.7	-81.09	11.16	-76.33	-9.50	60	-90.67	-12.10
16	274903	hair	bobcat	f	47.956	-124.393	90	-86	-11.10	-12.60	-89.7	-86.76	16.75	-75.67	-8.93	85	-83.00	-10.73
17	146256	hair	bobcat	m	40.491	-124.132	50	-80	-10.40	-7.40	-50.4	-95.60	11.58	-65.00	-7.30	70	-76.67	-9.83
18	214967	hair	bobcat	f	31.197	-101.464	820	-50	-6.90	-4.10	-20.5	-57.76	10.37	-41.33	-5.47	55	-44.33	-6.13
19	116282	hair	bobcat	m	27.826	-97.406	2	-27	-3.60	-2.80	-17.4	-70.52	12.35	-24.00	-2.77	80	-16.33	-2.20
20	119799	hair	bobcat	u	30.587	-103.893	1500	-62	-8.60	-4.10	-20.5	-58.10	11.08	-53.67	-7.33	50	-59.33	-8.13
21	211344	hair	bobcat	m	29.023	-99.310	180	-33	-4.50	-2.80	-17.4	-90.64	14.54	-27.67	-3.37	60	-24.00	-3.23
22	188737	hair	bobcat	m	30.752	-99.235	470	-39	-5.50	-3.40	-20.5	-97.09	15.06	-31.67	-4.00	60	-33.00	-4.47
23	135084	hair	bobcat	m	30.300	-94.535	15	-28	-3.90	-2.90	-16.3	-19.34	11.96	-22.33	-2.60	70	-19.67	-2.67
24	188736	hair	bobcat	f	33.657	-97.345	240	-41	-5.80	-3.50	-21.5	-12.90	9.16	-32.00	-4.13	60	-35.00	-4.87
25	014908	hair	bobcat	m	26.122	-98.257	31	-27	-3.70	-1.30	-11.6	-58.13	11.02	-26.00	-3.17	70	-14.00	-2.03
26	4737	hair	bobcat	f	39.305	-111.299	2194	-105	-14.30	-13.30	-105.2	-102.61	13.67	-82.67	-10.60	50	-109.67	-14.87
27	7108	hair	bobcat	f	40.200	-110.067	1550	-98	-13.30	-16.70	-124.4	-65.96	11.70	-76.67	-9.80	50	-99.67	-13.57
28	7106	hair	bobcat	f	40.200	-110.067	1550	-98	-13.30	-16.70	-124.4	-61.10	10.57	-76.67	-9.80	50	-99.67	-13.57
29	1767	hair	bobcat	f	38.334	-112.726	1767	-97	-13.00	-14.60	-107.5	-76.79	11.59	-76.00	-9.53	50	-100.33	-13.50
30	2290	hair	bobcat	m	39.737	-110.871	1890	-102	-13.80	-13.30	-105.2	-67.48	12.49	-80.00	-10.20	50	-105.33	-14.23
31	6531	hair	bobcat	m	38.228	-112.811	1706	-95	-12.90	-14.60	-107.5	-63.18	12.39	-25.00	-9.43	50	-99.33	-13.37

No.	Museum catalog number	Sampling part	Common name	Sex	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δD (‰ V- SMOW) Mean annual precip	δ18Ο (‰ V- SMOW) Mean annual precip	δ18O River- water	δD River- water	δD Keratin (‰ V- SMOW)	δ18Ο Keratin (‰ V- SMOW)	δD (‰ V- SMOW) Mean Sum. precip (June, July, August)	δ18O (‰ V- SMOW) Mean Sum. precip (June, July, August)	Mean annual rel. humidity (%)	δD (‰ V- SMOW) Mean spring precip (March, April, May)	δ18O (‰ V- SMOW) Mean spring precip (March, April, May)
32	1885	hair	bobcat	m	41.708	-111.847	1388	-100	-13.50	-14.98	-117.7	-34.85		-76.67	-9.80	50	-100.00	-13.53
33	6503	hair	bobcat	m	41.686	-111.064	2255	-113	-15.20	-14.98	-117.7	-102.24	14.63	-85.00	-11.07	50	-114.00	-15.43
34	6513	hair	bobcat	f	41.561	-111.144	1932	-108	-14.50	-14.98	-117.7	-30.88	11.22	-82.33	-10.60	50	-109.00	-14.73
35	2033	hair	bobcat	m	41.989	-111.413	1820	-107	-14.50	-14.98	-117.7	-69.46	15.17	-81.67	-10.57	50	-108.00	-14.63
36	6506	hair	bobcat	f	38.150	-111.325	2620	-108	-14.60	-15	-114.8	-60.48	9.09	-84.00	-10.83	50	-113.67	-15.33
37	6517	hair	bobcat	m	38.155	-111.487	3400	-119	-16.10	-15	-114.8	-94.56	11.30	-92.00	-12.00	50	-126.67	-17.07
38	6519	hair	bobcat	u	37.425	-113.074	2590	-106	-14.20	-12.30	-92.1	-71.78	10.83	-81.00	-10.27	50	-110.33	-14.87
39	4641	hair	bobcat	m	37.275	-112.638	1700	-92	-12.40	-12.30	-92.1	-63.12	11.17	-72.00	-9.00	50	-95.67	-12.90
40	7107	hair	bobcat	m	37.580	-109.432	1670	-91	-12.50	-13.30	-97.3	-70.73	15.63	-72.67	-9.30	50	-95.00	-12.90
41	6523	hair	bobcat	m	37.938	-112.371	2070	-100	-13.50	-14.60	-107.5	-107.25	15.93	-78.00	-9.87	50	-104.00	-14.03
42	6499	hair	bobcat	f	38.718	-109.551	1463	-92	-12.50	-13.70	-101.00	-31.70	16.04	-72.33	-9.27	50	-93.67	-12.80
43	6525	hair	bobcat	f	38.725	-109.525	1340	-90	-12.30	-13.70	-101.00	-108.39	11.38	-71.33	-9.07	50	-92.00	-12.53
44	27141	hair	bobcat	m	40.181	-111.569	2500	-112	-15.20	-12.80	-103.2	-91.29	12.75	-86.67	-11.17	50	-116.67	-15.70
45	132475	hair	bobcat	m	35.596	-106.125	1930	-85	-11.90	-10.20	-76.3		12.06	-71.00	-9.67	50	-90.67	-12.63
46	146260	hair	puma	u	40.254	-124.133	98	-80	-10.40	-7.40	-50.4	-29.02	12.14	-65.00	-7.27	70	-77.00	-9.90
47	274594	hair	puma	m	40.051	-107.910	1900	-101	-13.60	-16.4	-123.9	-86.76	9.45	-77.67	-10.03	60	-102.67	-13.93
48	265596	hair	puma	u	26.417	-81.420	11	-21	-3.60	-0.1	0.6	-87.04	3.31	-23.00	-3.60	70	-14.33	-2.80

No.	Museum catalog number	Sampling part	Common name	Sex	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δD (‰ V- SMOW) Mean annual precip	δ18Ο (‰ V- SMOW) Mean annual precip	δ18O River- water	δD River- water	δD Keratin (‰ V- SMOW)	δ18Ο Keratin (‰ V- SMOW)	δD (‰ V- SMOW) Mean Sum. precip (June, July, August)	δ18O (‰ V- SMOW) Mean Sum. precip (June, July, August)	Mean annual rel. humidity (%)	δD (‰ V- SMOW) Mean spring precip (March, April, May)	δ18O (‰ V- SMOW) Mean spring precip (March, April, May)
49	210433	hair	puma	f	46.135	-115.787	400	-97	-12.80	-17.5	-132.7	-85.31	7.89	-75.33	-9.40	60	-89.67	-12.03
50	228587	hair	puma	f	33.373	-108.903	1500	-76	-10.40	-14.1	-102.8	-71.74	5.74	-64.00	-8.37	45	-80.00	-10.93
51	274078	hair	puma	f	35.648	-105.295	2070	-86	-12.00	-10.2	-76.3	-89.66	13.88	-73.67	-10.00	50	-93.67	-12.97
52	235091	hair	puma	f	35.190	-107.666	2438	-88	-12.20	-9.6	-93.9	-81.94	10.47	-76.00	-10.23	50	-99.67	-13.73
53	261685	hair	puma	m	29.666	-103.362	1160	-54	-7.50	-4.1	-36.7	-60.01	7.86	-46.67	-6.37	50	-49.00	-6.77
54	273040	hair	puma	m	26.971	-99.252	180	-31	-4.20	-1.3	-11.6	-56.36	4.43	-27.67	-3.40	70	-19.67	-2.63
55	272334	hair	puma	m	31.150	-105.497	1600	-67	-9.30	-8.5	-71.1	-95.50	8.88	-58.00	-7.90	40	-65.33	-9.00
56	228468	hair	puma	m	32.937	-94.254	80	-34	-5.00	-3.7	-22.8	-33.22	10.41	-25.00	-3.20	70	-26.67	-3.83
57	261748	hair	puma	m	28.889	-99.097	193	-33	-4.50	-2.8	-17.4	-32.39	16.14	-27.33	-3.33	60	-24.00	-3.17
58	250184	hair	puma	m	48.078	-123.577	600	-94	-12.20	-12.60	-89.7	-62.21	16.84	-81.33	-9.80	85	-92.33	-11.97
59	6559	hair	puma	f	37.827	-112.435	2019	-99	-13.30	-14.60	-107.5	-29.96	6.37	-77.33	-9.77	50	-102.67	-13.87
60	6539	hair	puma	u	37.684	-113.086	1782	-95	-12.80	-12.30	-92.1	-55.06	6.99	-74.00	-9.23	50	-98.67	-13.23
61	6556	hair	puma	f	38.019	-112.237	2200	-102	-13.80	-14.60	-107.5	-55.68	11.11	-79.67	-10.10	50	-70.67	-9.60
62	6561	hair	puma	f	38.416	-112.430	2800	-112	-15.10	-14.60	-107.5	-52.89	14.68	-86.67	-11.13	50	-117.67	-15.87
63	6533	hair	puma	f	37.912	-112.457	2070	-100	-13.50	-14.60	-107.5	-81.91	12.92	-77.67	-9.87	50	-104.00	-14.03
64	6542	hair	puma	m	39.957	-109.263	1600	-98	-13.20	-16.70	-124.4	-44.02	9.36	-75.33	-9.73	55	-99.00	-13.47
65	6555	hair	puma	m	41.818	-113.310	1706	-106	-14.20	-14.98	-117.7	-13.62	15.29	-81.67	-10.37	50	-106.00	-14.33

No.	Museum catalog number	Sampling part	Common name	Sex	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δD (‰ V- SMOW) Mean annual precip	δ18Ο (‰ V- SMOW) Mean annual precip	δ18O River- water	δD River- water	δD Keratin (‰ V- SMOW)	δ18Ο Keratin (‰ V- SMOW)	δD (‰ V- SMOW) Mean Sum. precip (June, July, August)	δ18O (‰ V- SMOW) Mean Sum. precip (June, July, August)	Mean annual rel. humidity (%)	δD (‰ V- SMOW) Mean spring precip (March, April, May)	δ18O (‰ V- SMOW) Mean spring precip (March, April, May)
66	4717	hair	puma	m	40.133	-111.018	2400	-110	-15.00	-12.80	-103.2	-52.77	10.40	-85.67	-11.03	50	-114.33	-15.47
67	6543	hair	puma	f	41.818	-113.310	1706	-106	-14.20	-14.98	-117.7	-71.64	2.66	-81.67	-10.37	50	-106.00	-14.33
68	6544	hair	puma	u	37.675	-113.104	1800	-95	-12.80	-12.30	-92.1	-82.17	7.90	-74.00	-9.23	50	-98.67	-13.27
69	7136	hair	puma	f	37.714	-113.031	1900	-97	-13.00	-12.30	-92.1	-73.83	15.38	-75.00	-9.43	50	-100.00	-13.50
70	6545	hair	puma	f	38.567	-112.431	1950	-100	-13.50	-14.60	-107.5	-66.96	20.16	-78.67	-9.93	50	-104.33	-14.07
71	4738	hair	puma	f	38.945	-112.251	1800	-99	-13.40	-13.30	-105.2	-77.50	20.90	-78.00	-9.93	50	-102.67	-13.90
72	6551	hair	puma	f	38.181	-112.306	1900	-98	-13.20	-14.60	-107.5	-66.85	10.51	-77.33	-9.77	50	-102.67	-13.80
73	14970	hair	puma	u	38.973	-112.345	1560	-96	-12.90	-13.30	-105.2	-78.36	17.51	-76.00	-9.60	50	-99.00	-13.40
74	6537	hair	puma	f	38.187	-112.331	2133	-101	-13.70	-14.60	-107.5	-108.98	15.23	-79.67	-10.10	50	-106.00	-14.33
75	6546	hair	puma	m	38.629	-112.123	1640	-96	-12.90	-14.60	-107.5	-101.61	12.25	-76.00	-9.57	50	-99.33	-13.43
76	104561	hair	rabbit	u	33.125	-94.159	79	-35	-5.10	-3.7	-22.8	-54.47	14.21					
77	249782	hair	rabbit	f	47.379	-94.604	406	-82	-11.20	-10.5	-73.8	-101.63	12.08					
78	213352	hair	rabbit	f	48.246	-109.865	1097	-112	-14.90	-16.7	-127.1	-136.66	10.46					
79	11349	hair	rabbit	u	43.024	-98.624	490	-71	-9.90	-10.13	-75.1	-81.41	17.39					
80	486790	hair	rabbit	f	31.193	-101.461	892	-49	-6.90	-4.10	-20.5	-45.74	15.67					
81	24573	hair	rabbit	f	28.341	-99.980	184	-33	-4.60	-4.5	-27.8	-15.98	19.91					
82	108611	hair	rabbit	f	29.684	-101.173	490	-41	-5.80	-4.5	-27.8	-44.76	18.63					

No.	Museum catalog number	Sampling part	Common name	Sex	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δD (% V- SMOW) Mean annual precip	δ18Ο (‰ V- SMOW) Mean annual precip	δ18O River- water	δD River- water	δD Keratin (‰ V- SMOW)	δ18Ο Keratin (‰ V- SMOW)	δD (‰ V- SMOW) Mean Sum. precip (June, July, August)	δ18O (‰ V- SMOW) Mean Sum. precip (June, July, August)	Mean annual rel. humidity (%)	δD (‰ V- SMOW) Mean spring precip (March, April, May)	δ18O (‰ V- SMOW) Mean spring precip (March, April, May)
83	31665	hair	rabbit	m	27.743	-97.402	2	-27	-3.60	-2.80	-17.4	-30.55	18.85					
84	189168	hair	rabbit	f	33.624	-97.145	230	-40	-5.70	-3.50	-21.5	-52.08	17.64					
85	189173	hair	rabbit	m	30.748	-99.232	470	-39	-5.50	-3.40	-20.5	-52.01	18.25					
86	029023	hair	rabbit	m	26.381	-98.818	53	-28	-3.80	-1.30	-11.6	-23.92	18.62					
87	136554	hair	rabbit	f	30.137	-94.408	15	-28	-3.90	-2.90	-16.3	-54.12	14.43					
88	157806	hair	rabbit	m	32.591	-108.433	1700	-77	-10.50	-14.1	-102.8	-87.74	18.50					
89	TX-2,3,5	Dc, d18Op	White-tailed deer	u	27.826	-97.406	2	-20	-3.3	-2.80	-17.4	13	21.50					
90	FL 1	Dc, d18Op	White-tailed deer	u	30.479	-84.299	47	-20	-3.3	-3.10	-15.7	2	19.00					
91	LA 2	Dc, d18Op	White-tailed deer	u	32.511	-93.753	55	-23	-5.2	-3.7	-22.8	-3	19.10					
92	OK 1,2	Dc, d18Op	White-tailed deer	u	36.183	-95.961	206	-29	-4.4	-4.13	-27.3	8	19.70					
93	TX 1	Dc, d18Op	White-tailed deer	u	31.429	-100.399	585	-29	-4.4	-4.10	-20.5	-6	22.80					
94	MO 4	Dc, d18Op	White-tailed deer	u	37.246	-93.389	386	-30	-5.8	-4.90	-31.2	-10	18.40					
95	OK 10	Dc, d18Op	White-tailed deer	u	36.183	-95.961	206	-36	-5.2	-4.13	-27.3	-1	19.60					
96	WV 1,3	Dc, d18Op	White-tailed deer	u	38.413	-82.434	252	-36	-7.3	-7.30	-47.6	-14	16.50					
97	OK 5	Dc, d18Op	White-tailed deer	u	36.183	-95.961	206	-37	-6.4	-4.13	-27.3	-1	19.30					
98	KS 1	Dc, d18Op	White-tailed deer	u	39.056	-95.689	269	-38	-7.1	-11	-85.5	-11	18.70					
99	OH 3,1	Dc, d18Op	White-tailed deer	u	39.998	-82.892	248	-40	-6.4	-7.30	-47.6	-7	18.30					

No.	Museum catalog number	Sampling part	Common name	Sex	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δD (‰ V- SMOW) Mean annual precip	δ18O (‰ V- SMOW) Mean annual precip	δ18O River- water	δD River- water	δD Keratin (‰ V- SMOW)	δ18Ο Keratin (‰ V- SMOW)	δD (‰ V- SMOW) Mean Sum. precip (June, July, August)	δ18O (‰ V- SMOW) Mean Sum. precip (June, July, August)	Mean annual rel. humidity (%)	δD (‰ V- SMOW) Mean spring precip (March, April, May)	δ18Ο (‰ V- SMOW) Mean spring precip (March, April, May)
100	NS 1	Dc, d18Op	White-tailed deer	u	43.827	-66.088	43	-49	-7.7	-11.70	-82.4	-34	15.90					
101	NS 2	Dc, d18Op	White-tailed deer	u	46.135	-60.183	62	-53	-8.1	-11.70	-82.4	-31	15.90					
102	WI 1	Dc, d18Op	White-tailed deer	u	44.513	-88.016	212	-53	-10.2	-10.64	-75.3	-39	14.70					
103	ON 1	Dc, d18Op	White-tailed deer	u	44.1	-77.581	86	-55	-9.9	-8.60	-60.3	-31	15.00					
104	NB 1	Dc, d18Op	White-tailed deer	u	45.954	-66.646	21	-55	-8.7	-11.70	-82.4	-37	14.50					
105	AZ 1	Dc, d18Op	White-tailed deer	u	33.448	-112.073	335	-58	-8.2	-8.80	-65.4	-3	23.00					
106	ON3	Dc, d18Op	White-tailed deer	u	44.288	-78.330	200	-58	-9.3	-8.60	-60.3	-43	13.90					
107	ON 6	Dc, d18Op	White-tailed deer	u	46.491	-80.998	300	-61	-9.8	-8.80	-67.4	-43	13.60					
108	QC 1	Dc, d18Op	White-tailed deer	u	45.682	-74.005	82	-66	-12	-9.90	-96.1	-54	13.90					
109	NE 2	Dc, d18Op	White-tailed deer	u	41.866	-103.665	1200	-70	-12	-13.80	-110.8	-28	16.30					
110	BC 4	Dc, d18Op	White-tailed deer	u	53.243	-131.821	200	-77	-10.6			-50	13.90					
111	OR 1	Dc, d18Op	White-tailed deer	u	40.969	-117.731	400	-87	-14	-14.40	-104.8	-49	17.00					
112	WY 2	Dc, d18Op	White-tailed deer	u	44.769	-106.980	1225	-91	-14.9	-127.38	-16.34	-59	13.60					
113	MT1	Dc, d18Op	White-tailed deer	u	48.212	-106.615	700	-96	-15.5	-14.55	-121.7	-54	14.30					
114	AB 6	Dc, d18Op	White-tailed deer	u	50.042	-110.674	717	-107	-17.4			-81	13.30					
115	SA 1	Dc, d18Op	White-tailed deer	u	52.171	-106.7	500	-110	-16.6			-51	14.00					
116	AB 4,5	Dc, d18Op	White-tailed deer	u	49.631	-112.800	929	-112	-18			-71	10.90					

No.	Museum catalog number	Sampling part	Common name	Sex	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δD (% V- SMOW) Mean annual precip	δ18Ο (‰ V- SMOW) Mean annual precip	δ18O River- water	δD River- water	δD Keratin (‰ V- SMOW)	δ18O Keratin (‰ V- SMOW)	δD (‰ V- SMOW) Mean Sum. precip (June, July, August)	δ18O (‰ V- SMOW) Mean Sum. precip (June, July, August)	Mean annual rel. humidity (%)	δD (‰ V- SMOW) Mean spring precip (March, April, May)	δ18O (‰ V- SMOW) Mean spring precip (March, April, May)
117	AB 1,2	Dc, d18Op	White-tailed deer	u	53.541	-113.494	671	-112	-18			-81	10.60					
118	AB 7	Dc, d18Op	White-tailed deer	u	51.114	-114.020	1084	-116	-18.4			-73	11.30					
119	BC 2	Dc, d18Op	White-tailed deer	u	50.702	-120.444	345	-120	-17.7			-93	10.80					

Table S2. Statistical analysis

Regression equations	Species	Slope	SD (1s)	Intercept	SD (1s)	R²	P-value	Ν
	All cats	0.01	0.095	12.920	1.136	0.0002	0.914	74
	All bobcats	0.104	0.091	14.964	1.056	0.03	0.261	44
	All pumas	-0.232	0.181	8.543	2.267	0.055	0.211	30
	All rabbits	0.298	0.156	18.394	1.228	0.248	0.083	13
	All deer	0.588	0.072	22.096	0.806	0.699	< 0.0001	31
$\delta^{18}O_{hair} = f(\delta^{18}O_{river})$	Female bobcats	0.007	0.121	14.018	1.349	0.0002	0.953	22
	Male bobcats	0.152	0.162	14.974	2.120	0.059	0.363	16
	Female pumas	-0.186	0.204	9.190	2.321	0.085	0.385	11
	Male pumas	0.615	0.733	20.517	10.266	0.055	0.418	14
	Female rabbits	0.535	0.188	19.118	1.538	0.618	0.036	7
	Male rabbits	0.009	0.03	18.606	0.219	0.046	0.785	4
$\delta D_{hair} = f(\delta D_{river})$	All cats	0.052	0.073	-68.699	6.633	0.007	0.479	74
	All bobcats	0.042	0.091	-74.343	8.015	0.005	0.65	44
	All pumas	0.129	0.119	-54.855	11.332	0.04	0.291	30
	All rabbits	0.797	0.116	-25.457	6.599	0.81	< 0.0001	13
	All deer	0.856	0.063	20.284	4.383	0.866	< 0.0001	31
	Female bobcats	0.074	0.12	-74.082	10.342	0.019	0.542	22
	Male bobcats	0.114	0.183	-62.123	17.944	0.027	0.544	16
	Female pumas	0.138	0.199	-47.662	17.226	0.051	0.505	11

Regression equations	Species	Slope	SD (1s)	Intercept	SD (1s)	R²	P-value	Ν
	Male pumas	-0.181	0.422	-91.547	44.707	0.015	0.675	14
	Female rabbits	0.909	0.176	-23.537	10.346	0.843	0.004	7
	Male rabbits	0.622	0.164	-24.871	8.745	0.878	0.063	4
	All cats	-1.641	0.691	-52.438	9.285	0.074	0.02	73
	All bobcats	-3.457	1.095	-30.451	15.607	0.195	0.003	43
	All pumas	0.072	0.936	-66.977	11.370	0.0002	0.939	30
	All rabbits	8.734	2.282	-204.308	38.210	0.571	0.003	13
	All deer	7.850	0.636	-159.827	10.459	0.84	< 0.0001	31
$\delta D_{hair} = f(\delta^{18}O_{hair})$	Female bobcats	-3.221	1.574	-36.655	22.494	0.181	0.055	21
	Male bobcats	-4.003	2.218	-19.822	29.831	0.189	0.093	16
	Female pumas	2.238	2.309	-82.727	26.800	0.095	0.358	11
	Male pumas	-0.886	0.993	-61.864	12.925	0.062	0.39	14
	Female rabbits	10.889	1.964	-233.724	31.183	0.86	0.003	7
	Male rabbits	54.724	71.022	-1.064.063	1.318.024	0.229	0.522	4
$\delta^{18}O_{hair} = f(\delta^{18}O_{precip})$	All cats	0.02	0.129	13.022	1.494	0	0.88	74
$\delta D_{hair} = f(\delta D_{precip})$	All cats	0.03	0.103	-70.553	8.761	0.001	0.773	74
$\delta D_{hair} = f(\delta D_{mean \ summer \ precip})$	All pumas	0.216	0.231	-51.359	16.394	0.03	0.358	30
$\delta^{18}O_{hair} = f(\delta^{18}O_{mean \ summer \ precip})$	All pumas	-0.597	0.362	6.024	3.269	0.088	0.11	30
$\delta D_{hair} = f(\delta D_{mean \ spring \ precip})$	All pumas	0.143	0.147	-53.948	13.297	0.03	0.34	30
$\delta^{18}O_{hair} = f(\delta^{18}O_{mean spring precip})$	All pumas	-0.385	0.216	6.773	2.642	0.102	0.086	30

Regression equations	Species	Slope	SD (1s)	Intercept	SD (1s)	R²	P-value	Ν
$\delta D_{hair} = f(\delta D_{annual \ precip})$ with rel. humidity (h)	All pumas					0.068	0.387	30
$\delta^{18}O_{hair} = f(\delta^{18}O_{annual\ precip})$ with rel. humidity (h)	All pumas					0.115	0.193	30
$\delta D_{hair} = f(\delta D_{river water})$ with rel. humidity (h)	All pumas					0.075	0.35	30
$\delta^{18}O_{hair}$ = f($\delta^{18}O_{river water}$) with rel. humidity (h)	All pumas					0.06	0.436	30
δD _{hair} = f(rel. humidity (h))	All pumas	0.634	0.444	-100.719	24.549	0.068	0.164	30
δ ¹⁸ O _{hair} = f(rel. humidity (h))	All pumas	-0.022	0.093	12.410	5.131	0.002	0.818	30
$\delta D_{hair} = f(\delta D_{mean \ summer \ precip})$	All bobcats	0.038	0.157	-75.381	9.918	0.001	0.812	44
$\delta^{18}O_{hair} = f(\delta^{18}O_{mean \ summer \ precip})$	All bobcats	0.269	0.157	15.969	1.297	0.066	0.093	44
$\delta D_{hair} = f(\delta D_{mean \ spring \ precip})$	All bobcats	0.035	0.11	-74.901	9.204	0.002	0.751	44
$\delta^{18}O_{hair} = f(\delta^{18}O_{mean spring precip})$	All bobcats	0.141	0.103	15.358	1.168	0.043	0.176	44
$\delta D_{hair} = f(\delta D_{annual precip})$ with rel. humidity (h)	All bobcats					0.09	0.143	44
$\delta^{18}O_{hair} = f(\delta^{18}O_{annual precip})$ with rel. humidity (h)	All bobcats					0.207	0.009	44
$\delta D_{hair} = f(\delta D_{river water})$ with rel. humidity (h)	All bobcats					0.104	0.105	44
$\delta^{18}O_{hair} = f(\delta^{18}O_{river water})$ with rel. humidity (h)	All bobcats					0.213	0.007	44
δD _{hair} = f(rel. humidity (h))	All bobcats	-0.502	0.339	-47.898	20.370	0.05	0.146	44
δ ¹⁸ O _{hair} = f(rel. humidity (h))	All bobcats	0.127	0.038	6.391	2.305	0.206	0.002	44
$\delta D_{river} = f(\delta^{18} O_{river})$		7.883	0.13	4.370	1.561	0.981	<0.0001	75

7.4. CHAPTER 4: Oxygen isotope composition of North American bobcat and puma bone phosphate:

Implications for provenance and climate reconstruction

Appendix 1. Sample list.

No.	Common name	Sample ID	Sex	Sample material	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ O (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (°C)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18Ο Keratin (‰ V-SMOW)
1	Puma	10_PU_US_fL_B	u	bone	26.417	-81.420	11	-3.60	-1.40	23.2	72.5	19.26	
2	Puma	102_PU_US_UT_B	m	bone	41.826	-113.329	1800	-14.40	-15.40	7.7	43.5	14.19	
3	Puma	105_PU_US_UT_B	f	bone	38.341	-111.546	2170	-13.40	-10.90	6.5	50.5	17.43	
4	Puma	107_PU_US_UT_B	u	bone	39.192	-109.391	1800	-13.40	-8.80	11.5	48.5	16.49	
5	Puma	109_PU_US_UT_B	m	bone	39.779	-110.443	2000	-14.00	-8.80	7.1	48.5	16.13	
6	Puma	12_PU_US_ID_B	f	bone	46.135	-115.787	400	-12.80	-12.40	8.2	61.0	11.74	
7	Puma	13_PU_US_KS_B	u	bone	39.859	-95.189	300	-7.80	-10.00	12.0	72.0	14.80	
8	Puma	14_PU_US_LA_B	u	bone	32.776	-91.794	30	-4.80	-5.00	18.4	74.5	17.82	
9	Puma	15_PU_US_MT_B	m	bone	46.216	-114.085	1000	-14.10	-18.70	7.7	67.0	12.97	
10	Puma	2_PU_US_CA_B	u	bone	34.873	-119.179	600	-9.10	-4.20	18.5	53.0	17.27	
11	Puma	21_PU_US_NM_B	f	bone	33.373	-108.903	1500	-10.40	-7.80	14.1	44.0	16.94	
12	Puma	23_PU_US_NM_B	f	bone	35.648	-105.295	2070	-12.00	-15.50	10.0	44.5	20.04	
13	Puma	25_PU_US_NM_B	f	bone	35.190	-107.666	2438	-12.20	-8.80	12.7	44.6	18.16	
14	Puma	26_PU_US_NY_B	u	bone	44.113	-73.924	940	-11.90	-12.30	4.5	69.0	12.33	

No.	Common name	Sample ID	Sex	Sample material	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ Ο (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (°C)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18Ο Keratin (‰ V-SMOW)
15	Puma	30_PU_US_PA_B	u	bone	41.324	-78.452	600	-9.60	-10.60	7.5	70.0	13.09	
16	Puma	38_PU_US_TX_B	m	bone	31.150	-105.497	1600	-9.30	-4.40	17.0	42.0	19.55	
17	Puma	39_PU_US_TX_B	m	bone	32.937	-94.254	80	-5.00	-5.00	17.6	65.0		
18	Puma	40_PU_US_TX_B	m	bone	28.889	-99.097	193	-4.50	-4.40	20.7	70.5	18.90	
19	Puma	47_PU_US_WA_B	m	bone	48.078	-123.577	600	-12.20	-9.30	9.8	83.5	12.21	
20	Puma	49_PU_US_WV_B	u	bone	37.925	-80.384	670	-8.10	-8.90	10.9	72.0	15.49	
21	Puma	5_PU_US_CA_B	u	bone	40.254	-124.133	100	-10.40	-6.50	13.2	59.0	15.02	
22	Puma	52_PU_CA_AB_B	u	bone	51.173	-115.571	1460	-16.60	-10.10	3.3	50.0	11.52	
23	Puma	54_PU_ME_BC_B	u	bone	30.819	-115.616	730	-8.20	-4.20	15.0	60.0	19.96	
24	Puma	56_PU_ME_JA_B	f	bone	21.843	-103.783	800	-5.50	-7.00	15.0	60.0	17.46	
25	Puma	58_PU_ME_TA_B	u	bone	25.860	-97.503	10	-3.60	-2.90	21.1	77.0	20.67	
26	Puma	59_PU_ME_VC_B	u	bone	18.424	-95.112	340	-4.60	-2.60	25.0	75.0	16.74	
27	Puma	7_PU_US_CO_B	m	bone	40.051	-107.910	1900	-13.60	-12.30	5.5	48.5	14.88	
28	Puma	81_PU_US_UT_B	f	bone	37.912	-112.457	2130	-13.60	-10.90	7.2	50.5	16.30	
29	Puma	112_PU_US_fL_B	f	bone	25.921	-81.479	1	-3.50	-1.40	22.7	72.5	18.63	
30	Puma	113_PU_US_fL_B	m	bone	26.007	-81.077	1	-3.50	-1.40	22.7	72.5	18.81	
31	Puma	120_PU_US_fL_B	u	bone	26.418	-81.336	4	-3.50	-1.40	22.7	72.5	18.55	

No.	Common name	Sample ID	Sex	Sample material	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ Ο (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (°C)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18Ο Keratin (‰ V-SMOW)
32	Puma	121_PU_US_fL_B	u	bone	26.271	-81.351	1	-3.50	-1.40	22.7	72.5	19.72	
33	Puma	19_PU_US_NM_B	m	bone	31.562	-108.811	1700	-10.10	-6.50	15.5	40.0	21.23	
34	Puma	22_PU_US_NM_B	f	bone	35.254	-107.984	2070	-12.20	-8.80	10.0	44.5	18.97	
35	Puma	3_PU_US_CA_B	m	bone	40.043	-120.754	1220	-12.70	-9.90	10.0	53.0	17.08	
36	Puma	37_PU_US_TX_B	u	bone	29.684	-101.173	490	-5.80	-4.40	20.0	65.0	21.67	
37	Puma	42_PU_US_TX_B	m	bone	28.521	-99.858	184	-4.60	-4.40	21.1	70.5	19.62	
38	Puma	43_PU_US_TX_B	f	bone	30.751	-104.082	1830	-9.30	-7.20	18.3	59.0	20.59	
39	Puma	44_PU_US_UT_B	u	bone	37.366	-113.415	2000	-13.10	-10.90	11.6	50.0	18.13	
40	Puma	45_PU_US_UT_B	m	bone	40.231	-111.664	1370	-13.00	-8.80	8.8	55.0	16.02	
41	Puma	50_PU_US_WY_B	u	bone	44.977	-110.698	2072	-15.70	-16.20	4.4	60.0	14.79	
42	Puma	51_PU_US_WY_B	f	bone	44.547	-110.258	1524	-13.80	-13.80	6.1	62.0	14.41	
43	Puma	8_PU_US_CO_B	m	bone	38.175	-108.418	1970	-13.20	-12.30	7.2	48.0	15.32	
44	Puma	9_PU_US_fL_B	u	bone	28.979	-80.925	2	-4.00	-2.80	22.7	74.5	18.66	
45	Bobcat	100_LY_US_TX_B	f	bone	33.657	-97.345	240	-5.8	-5.00	17.00	70.00	18.67	9.16
46	Bobcat	11_LY_US_VA_B	f	bone	37.354	-80.535	1180	-8.8	-8.90	4.90	65.00	16.24	
47	Bobcat	132_LY_US_UT_B	f	bone	39.305	-111.299	2200	-14.3	-8.80	8.60	55.00	16.60	13.67
48	Bobcat	137_LY_US_UT_B	f	bone	40.200	-110.067	1550	-13.3	-8.80	7.90	50.00	16.80	10.57

No.	Common name	Sample ID	Sex	Sample material	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ Ο (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (°C)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18Ο Keratin (‰ V-SMOW)
49	Bobcat	14_LY_US_WV_B	u	bone	38.902	-81.310	243	-7.5	-7.80	11.50	70.50	15.26	19.40
50	Bobcat	15_LY_US_PA_B	f	bone	40.934	-76.707	314	-9	-10.60	8.50	69.50	15.14	
51	Bobcat	150_LY_US_UT_B	u	bone	37.425	-113.074	2500	-14.1	-10.90	2.00	50.50	16.44	10.83
52	Bobcat	155_LY_US_UT_B	m	bone	37.580	-109.432	1860	-12.9	-8.80	10.60	50.50	19.65	15.63
53	Bobcat	16_LY_US_NY_B	u	bone	43.998	-74.505	940	-11.9	-12.30	4.50	70.50	13.61	16.89
54	Bobcat	161_LY_US_UT_B	f	bone	38.725	-109.525	1340	-12.3	-8.80	12.10	50.50	18.07	11.38
55	Bobcat	171_LY_US_UT_B	u	bone	61.531	-160.302	17	-12.8	-21.25	-1.20	77.50	11.05	
56	Bobcat	18_LY_US_ME_B	f	bone	45.592	-69.983	450	-11.5	-12.30	4.40	70.50	14.51	
57	Bobcat	2_LY_US_fL_B	u	bone	25.826	-81.344	3	-3.5	-1.40	23.70	72.50	19.49	16.41
58	Bobcat	20_LY_US_AL_B	f	bone	30.270	-87.683	4	-4.1	-2.80	19.00	74.50	16.19	19.62
59	Bobcat	22_LY_US_TN_B	m	bone	36.365	-88.045	120	-6.1	-7.20	13.90	72.00	16.28	13.60
60	Bobcat	24_LY_US_IN_B	u	bone	39.028	-86.323	240	-7.2	-7.60	11.90	73.00	14.29	
61	Bobcat	29_LY_US_AR_B	f	bone	35.777	-93.465	670	-7.1	-6.90	12.40	72.50	16.26	16.96
62	Bobcat	3_LY_US_fL_B	f	bone	30.438	-81.631	5	-4,1	-2.80	21.10	72.50	18.08	
63	Bobcat	30_LY_US_AR_B	f	bone	34.529	-90.592	60	-5.4	-4.60	16.40	71.50	16.47	
64	Bobcat	33_LY_US_NE_B	u	bone	42.571	-100.062	800	-10.6	-9.60	9.50	67.00	14.47	19.36
65	Bobcat	35_LY_US_MN_B	m	bone	44.159	-91.816	213	-9.1	-8.30	6.50	75.50	13.91	14.70

No.	Common name	Sample ID	Sex	Sample material	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ O (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (°C)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18Ο Keratin (‰ V-SMOW)
66	Bobcat	38_LY_US_SD_B	m	bone	44.372	-100.318	440	-10.7	-9.60	8.50	74.00	13.85	16.43
67	Bobcat	40_LY_US_MT_B	f	bone	46.336	-113.294	1600	-15.2	-18.70	5.40	67.00	12.64	12.52
68	Bobcat	42_LY_US_WY_B	m	bone	41.088	-106.519	2400	-14.7	-16.20	4.70	55.50	15.21	
69	Bobcat	46_LY_US_CO_B	f	bone	41.001	-107.246	2100	-14.2	-12.30	6.20	48.50	14.48	13.88
70	Bobcat	50_LY_US_NM_B	m	bone	35.596	-106.125	1930	-11.9	-11.20	10.20	44.00	18.18	12.06
71	Bobcat	51_LY_US_NM_B	f	bone	32.483	-106.724	1200	-9.3	-7.20	16.40	49.50	18.28	15.37
72	Bobcat	6_LY_US_GA_B	u	bone	32.429	-81.729	60	-4.4	-2.80	18.50	70.50	15.66	
73	Bobcat	61_LY_US_ID_B	m	bone	45.774	-116.302	480	-12.9	-12.40	12.10	61.00	14.55	11.16
74	Bobcat	63_LY_US_WA_B	f	bone	47.956	-124.393	90	-11.1	-9.30	10.20	83.50	14.08	16.75
75	Bobcat	66_LY_US_OR_B	f	bone	42.746	-124.497	18	-10.7	-7.40	11.70	65.50	14.44	
76	Bobcat	68_LY_US_NV_B	m	bone	40.652	-119.355	1200	-12.9	-9.90	10.70	49.50	15.38	
77	Bobcat	70_LY_US_CA_B	m	bone	40.491	-124.132	50	-10.4	-6.50	12.30	59.00	15.63	11.58
78	Bobcat	74_LY_ME_BCS_B	f	bone	22.892	-109.914	140	-5.1	-9.50	23.20	66.30	18.47	
79	Bobcat	75_LY_ME_CI_B	f	bone	29.973	-108.346	2200	-10.5	-6.50	15.00	35.00	16.77	
80	Bobcat	77_LY_ME_JA_B	f	bone	20.340	-102.768	1530	-6.8	-8.00	20.00	55.00	16.74	
81	Bobcat	80_LY_US_TX_B	f	bone	31.197	-101.464	820	-6.9	-4.40	17.30	65.00	18.57	10.37
82	Bobcat	82_LY_US_TX_B	m	bone	27.826	-97.406	2	-3.6	-2.90	22.20	77.50	18.87	12.35

No.	Common name	Sample ID	Sex	Sample material	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ Ο (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (°C)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18Ο Keratin (‰ V-SMOW)
83	Bobcat	85_LY_US_TX_B	u	bone	30.587	-103.893	1500	-8.6	-7.20	16.10	59.00	19.28	11.08
84	Bobcat	86_LY_US_TX_B	m	bone	29.023	-99.310	180	-4.5	-4.40	20.70	70.50	19.17	14.54
85	Bobcat	88_LY_US_TX_B	m	bone	26.122	-98.257	31	-3.7	-2.90	23.20	77.00	18.19	11.02
86	Bobcat	9_LY_US_NC_B	m	bone	34.492	-77.742	20	-5.7	-4.60	17.10	70.50	16.72	
87	Bobcat	90_LY_US_TX_B	m	bone	30.752	-99.235	470	-5.5	-4.40	18.20	65.00	19.90	15.06
88	Bobcat	97_LY_US_TX_B	m	bone	30.300	-94.535	15	-3.9	-2.90	20.10	79.50	17.55	11.96
89	Bobcat	102_LY_US_TX_B	u	bone	29.289	-100.348	337	-5.1	-4.40	20.00	70.00	19.48	
90	Bobcat	167_LY_US_UT_B	u	bone	52.259	-113.786	855	-16.2	-17.70	2.20	75.00	9.06	
91	Bobcat	169_LY_US_UT_B	f	bone	64.838	-147.717	136	-19.4	-21.25	-3.80	75.00	9.46	
92	Bobcat	17_LY_US_NY_B	f	bone	41.391	-73.956	304	-9.3	-11.30	10.00	63.00	15.79	
93	Bobcat	34_LY_US_MN_B	f	bone	45.750	-94.217	324	-10.3	-10.90	6.10	73.00	14.67	
94	Bobcat	37_LY_US_SD_B	m	bone	43.732	-103.614	1620	-13.5	-13.80	7.70	62.00	16.34	
95	Bobcat	44_LY_US_CO_B	u	bone	38.101	-103.125	1180	-10.7	-9.80	10.00	52.00	17.02	
96	Bobcat	45_LY_US_CO_B	u	bone	38.975	-108.459	2136	-12.4	-12.30	7.20	47.50	17.35	
97	Bobcat	53_LY_US_NM_B	f	bone	33.284	-108.877	1400	-10.2	-7.80	11.60	39.00	19.09	
98	Bobcat	59_LY_US_UT_B	f	bone	38.304	-113.072	1500	-12.5	-10.90	11.60	50.00	20.56	
99	Bobcat	60_LY_US_UT_B	f	bone	40.643	-111.281	1970	-14.3	-8.80	6.10	55.00	18.96	

No.	Common name	Sample ID	Sex	Sample material	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ Ο (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (℃)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18Ο Keratin (‰ V-SMOW)
100	Bobcat	7_LY_US_GA_B	m	bone	34.869	-83.814	1460	-8.1	-6.70	13.80	71.00	18.66	19.20
101	Bobcat	73_LY_US_CA_B	u	bone	34.421	-119.697	15	-7.8	-4.20	15.50	70.00	19.55	
102	Bobcat	78_LY_ME_SO_B	m	bone	26.904	-109.694	50	-5.6	-6.00	23.00	55.00	20.69	
103	Bobcat	79_LY_ME_TA_B	f	bone	26.430	-99.144	61	-3.9	-2.90	22.00	65.00	21.94	
104	Bobcat	81_LY_US_TX_B	u	bone	25.908	-97.489	10	-3.6	-2.90	21.00	77.00	17.70	
105	Bobcat	89_LY_US_TX_B	u	bone	29.809	-101.559	390	-5.7	-4.40	19.40	65.00	20.75	
106	Bobcat	91_LY_US_TX_B	u	bone	28.691	-95.969	4	-3.6	-2.90	20.00	77.00	17.86	
107	Bobcat	93_LY_US_TX_B	u	bone	29.990	-100.224	732	-6.1	-4.40	18.30	65.00	19.77	
108	Mule deer	BC2		bone					-17.70		64	10.80	
109	Mule deer	BC4		bone					-10.60		84	13.90	
110	White-tailed deer	ABI		bone					-18.00		75	10.70	
111	White-tailed deer	AB2		bone					-18.00		75	10.40	
112	White-tailed deer	AB4		bone					-18.00		65	10.70	
113	White-tailed deer	AB5		bone					-18.00		65	11.00	
114	White-tailed deer	AB6		bone					-17.40		66	13.30	
115	White-tailed deer	ABIO		bone					-17.40		66	13.10	
116	White-tailed deer	AB7		bone					-18.40		62	11.60	

No.	Common name	Sample ID	Sample material	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ O (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (°C)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18O Keratin (‰ V-SMOW)
117	White-tailed deer	AB8	bone					-18.40		62	11.80	
118	White-tailed deer	AB9	bone					-17.40			14.60	
119	White-tailed deer	AB12	bone					-17.40			14.70	
120	White-tailed deer	ABII	bone					-18.40		62	12.60	
121	White-tailed deer	SAI	bone					-16.60		71	14.00	
122	White-tailed deer	ON1	bone					-9.90		81	14.00	
123	White-tailed deer	ON3	bone					-9.30		81	13.90	
124	White-tailed deer	ON6	bone					-9.80		79	13.60	
125	White-tailed deer	ON9	bone					-8.20		81	13.30	
126	White-tailed deer	QCI	bone					-12.00		79	13.90	
127	White-tailed deer	NBI	bone					-8.70		77	14.40	
128	White-tailed deer	NSI	bone					-7.70		83	16.00	
129	White-tailed deer	NS2	bone					-8.10		84	15.90	
130	Mule deer	OR1	bone					-14.00		49	17.00	
131	White-tailed deer	MT1	bone					-15.50		63	14.30	
132	White-tailed deer	WY2	bone					-14.90		60	13.60	
133	White-tailed deer	WY6	bone					-16.60		52	15.20	

No.	Common name	Sample ID	Sample material	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ O (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (°C)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18O Keratin (‰ V-SMOW)
134	White-tailed deer	WI1	bone					-10.20		73	14.70	
135	White-tailed deer	OH1	bone					-6.40		70	18.40	
136	White-tailed deer	OH3	bone					-6.40		70	18.00	
137	White-tailed deer	WV2	bone					-7.30		74	16.30	
138	White-tailed deer	WV3	bone					-7.30		74	16.70	
139	White-tailed deer	NE2	bone					-12.00		60	16.30	
140	White-tailed deer	KS1	bone					-7.10		71	18.60	
141	White-tailed deer	MO4	bone					-5.80		70	18.40	
142	White-tailed deer	OK1	bone					-4.40		69	19.90	
143	White-tailed deer	OK2	bone					-4.40		69	19.60	
144	White-tailed deer	OK5	bone					-6.40		69	19.30	
147	White-tailed deer	OK10	bone					-5.20		69	19.60	
148	Mule deer	CA2	bone					-5.80		73	17.60	
149	White-tailed deer	FL1	bone					-3.30		74	19.00	
150	White-tailed deer	AZ1	bone					-8.20		37	23.00	
151	White-tailed deer	TX1	bone					-4.40		63	22.80	
152	White-tailed deer	TX2	bone					-3.30		77	21.80	

No.	Common name	Sample ID	Sample naterial	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ Ο (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (°C)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18O Keratin (‰ V-SMOW)
153	White-tailed deer	ТХЗ	bone					-3.30		77	21.10	
154	White-tailed deer	TX5	bone					-3.80		77	21.70	
155	White-tailed deer	LA2	bone					-5.20		73	19.10	
156	Cottontail rabbit	1	bone					-10.50		85.00	19.30	
157	Cottontail rabbit	2	bone					-10.50		85.00	18.90	
158	Cottontail rabbit	3	bone					-10.50		85.00	18.30	
159	European rabbit	4	bone					-8.00		60.00	20.10	
160	European rabbit	5	bone					-8.00		75.00	19.00	
161	European rabbit	6	bone					-8.00		55.00	20.40	
162	European rabbit	7	bone					-7.00		50.00	23.40	
163	European rabbit	8	bone					-6.00		45.00	23.50	
164	European rabbit	9	bone					-7.50		50.00	21.60	
165	European rabbit	10	bone					-7.30		55.00	20.90	
166	European rabbit	11	bone					-7.50		50.00	20.40	
167	European rabbit	12	bone					-7.50		75.00	17.70	
168	European rabbit	13	bone					-7.50		75.00	17.40	
169	European rabbit	14	bone					-6.70		75.00	16.60	

No.	Common name	Sample ID	Sex	Sample material	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ O (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (°C)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18O Keratin (‰ V-SMOW)
170	European rabbit	15		bone					-6.50		85.00	15.40	
171	European rabbit	16		bone					-6.50		85.00	14.40	
172	European rabbit	17		bone					-5.50		65.00	16.00	
173	European rabbit	18		bone					-5.50		75.00	16.50	
174	European rabbit	19		bone					-5.50		75.00	16.70	
175	European rabbit	20		bone					-5.50		75.00	17.40	
176	European rabbit	21		bone					-6.00		70.00	17.50	
177	European rabbit	22		bone					-6.30		55.00	19.60	
178	European rabbit	23		bone					-6.30		50.00	21.20	
179	European rabbit	24		bone					-6.30		40.00	24.50	
180	European rabbit	25		bone					-5.50		65.00	21.20	
181	European rabbit	26		bone					-5.00		50.00	21.70	
182	European rabbit	27		bone					-5.00		50.00	22.50	
183	African Savanna hare	28		bone					-1.00		65.00	18.50	
184	Abyssinian hare	29		bone					-1.50		65.00	19.50	
185	Abyssinian hare	30		bone					-1.50		65.00	20.00	
186	African Savanna	31		bone					-1.00		65.00	20.50	

No.	Common name	Sample ID	Sex	Sample material	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ O (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (℃)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18Ο Keratin (‰ V-SMOW)
	hare												_
187	African Savanna hare	32		bone					-1.00		65.00	20.80	
188	African Savanna hare	33		bone					-1.00		75.00	22.00	
189	African Savanna hare African	34		bone					-1.00		65.00	23.00	
190	Savanna hare	35		bone					-1.00		65.00	22.70	
191	Cape hare	36		bone					-1.00		75.00	24.50	
192	Abyssinian hare	37		bone					-1.50		65.00	25.60	
193	Abyssinian hare	38		bone					-1.00		75.00	25.30	
194	Abyssinian hare	39		bone					-1.00		60.00	26.50	
195	European rabbit	40		bone					-7.50		45.00	22.30	
196	European rabbit	41		bone					-11.00		85.00	14.30	
197	Fox			bone					-5.80			18.00	
198	Fox			bone					-5.80			18.10	
199	Fox			bone					-5.80			17.90	
200	Fox			bone					-5.80			18.00	
201	Fox			bone					-5.80			18.20	

No.	Common name	Sample ID	Sex	Sample material	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ O (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (℃)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18O Keratin (‰ V-SMOW)
202	Fox			tooth					-5.80			18.00	
203	Fox			tooth					-5.80			17.90	
204	Fox			tooth					-5.80			18.00	
205	Fox			tooth					-5.80			18.20	
206	Fox			tooth					-5.80			18.10	
207	Fox			tooth					-5.80			18.20	
208	Fox			tooth					-5.80			17.80	
209	Fox			tooth					-5.80			18.10	
210	Fox			tooth					-5.80			18.00	
211	Fox			tooth					-5.80			18.00	
212	Fox			tooth					-5.80			18.10	
213	Fox			tooth					-5.80			18.10	
214	Fox			tooth					-5.80			17.90	
215	Fox			tooth					-5.80			18.10	
216	Fox			tooth					-5.80			17.90	
217	Fox			tooth					-5.80			18.00	
218	Fox			tooth					-5.80			18.00	

No.	Common name	Sample ID	Sex	Sample material	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ O (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (°C)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18O Keratin (‰ V-SMOW)
219	Fox			tooth					-5.80			17.90	_
220	Fox			bone					-7.20			15.70	
221	Fox			bone					-7.20			15.60	
222	Fox			bone					-7.20			15.30	
223	Fox			bone					-7.20			15.20	
224	Fox			tooth					-7.20			15.00	
225	Fox			bone					-11.00			10.30	
226	Fox			bone					-11.00			10.80	
227	Fox			bone					-11.00			10.80	
228	Fox			bone					-11.00			10.90	
229	Fox			bone					-8.20			14.90	
230	Fox			bone					-8.20			15.10	
231	Fox			bone					-8.20			14.60	
232	Fox			bone					-8.20			15.00	
233	Fox			bone					-8.20			14.60	
234	Fox			bone					-8.20			14.60	
235	Fox			tooth					-5.50			18.50	

No.	Common name	Sample ID	Sex	Sample material	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (m)	δ ¹⁸ Ο (‰ V- SMOW) Mean annual OIPC	Precip data δ18Ο (unweighted mean)	MAT (℃)	Average annual rel. humidity (%)	δ ¹⁸ O Bone phosphate (‰, V- SMOW)	δ18Ο Keratin (‰ V-SMOW)
236	Fox			tooth					-5.50			18.30	
237	Fox			tooth					-5.30			18.10	
238	Fox			tooth					-4.70			18.70	
239	Fox			tooth					-5.20			18.30	
240	Fox			tooth					-5.30			18.40	
241	Fox			tooth					-6.40			17.10	
242	Fox			tooth					-6.40			16.80	
243	Fox			tooth					-5.30			18.50	
244	Fox			tooth					-7.00			16.60	
245	Fox			tooth					-5.30			18.10	
246	Fox			tooth					-3.00			21.80	
247	Fox			tooth					-3.00			22.00	
248	Fox			tooth					-4.00			20.10	

Appendix 2. Statistical analysis

	Species	Regression equations	R²	P - value	n
	All felids	$\delta^{18}O_p = 20.10(\pm 0.40) + 0.40(\pm 0.04) * \delta^{18}O_w$	0.456	< 0.0001	106
	Bobcats	$\delta^{18}O_p = 20.15(\pm 0.49) + 0.41(\pm 0.05) * \delta^{18}O_w$	0.503	< 0.0001	63
	Pumas	$\delta^{18}O_p = 20.00(\pm 0.67) + 0.38(\pm 0.07) * \delta^{18}O_w$	0.394	< 0.0001	43
$\delta^{18}O_{phosphate} = f(\delta^{18}O_{water})$	Foxes	$\delta^{18}O_p = 25.85(\pm 0.17) + 1.38(\pm 0.03) * \delta^{18}O_w$	0.983	< 0.0001	52
	Rabbits/Hares	$\delta^{18}O_p = 22.73(\pm 0.86) + 0.47(\pm 0.14) * \delta^{18}O_w$	0.23	0.001	4′
	Deers	$\delta^{18}O_p = 21.70(\pm 0.63) + 0.54(\pm 0.05) * \delta^{18}O_w$	0.707	< 0.0001	46
	All mammals	$\delta^{18}O_p = 21.70(\pm 0.17) + 0.68(\pm 0.02) * \delta^{18}O_w$	0.76	< 0.0001	55
	Female bobcats	$\delta^{18}O_p = 20.32(\pm 0.82) + 0.42(\pm 0.09) * \delta^{18}O_w$	0.501	< 0.0001	2
0	Male bobcats	$\delta^{18}O_p = 19.35(\pm 1.00) + 0.29(\pm 0.12) * \delta^{18}O_w$	0.276	0.025	18
Sex effects	Female pumas	$\delta^{18}O_p = 19.47(\pm 2.10) + 0.23(\pm 0.21) * \delta^{18}O_w$	0.117	0.304	1
	Male pumas	$\delta^{18}O_p = 20.70(\pm 1.09) + 0.45(\pm 0.11) * \delta^{18}O_w$	0.614	0.002	13
	All felids	$\delta^{18}O_p = 26.13(\pm 1.07) + 0.46(\pm 0.04) * \delta^{18}O_w - 0.09(\pm 0.02) * h$	0.595	< 0.0001	10
	Bobcats	$\delta^{18}O_p = 26.75(\pm 1.29) + 0.45(\pm 0.04) * \delta^{18}O_w - 0.10(\pm 0.02) * h$	0.664	< 0.0001	63
$\delta^{18}O_{phosphate} = f(\delta^{18}O_{water})$ with rel. humidity (h)	Pumas	$\delta^{18}O_p = 25.78(\pm 2.00) + 0.47(\pm 0.07) * \delta^{18}O_w - 0.08(\pm 0.03) * h$	0.507	< 0.0001	43
	Rabbits/Hares	$\delta^{18}O_p = 30.65(\pm 1.88) + 0.41(\pm 0.11) * \delta^{18}O_w - 0.13(\pm 0.03) * h$	0.502	0.001	4
	Deers	$\delta^{18}O_p = 34.83(\pm 1.48) + 0.67(\pm 0.03) * \delta^{18}O_w - 0.17(\pm 0.02) * h$	0.909	< 0.0001	44
	Bobcats	$\delta^{18}O_p = 21.06(\pm 1.92) - 0.07(\pm 0.03) * h$	0.079	0.026	63
-18	Pumas	$\delta^{18}O_p = 17.55(\pm 2.15) - 0.01(\pm 0.04) * h$	0.002	0.786	43
$\delta^{18}O_{phosphate} = f(rel. humidity (h))$	Rabbits/Hares	$\delta^{18}O_p = 29.32(\pm 2.10) - 0.14(\pm 0.03) * h$	0.336	< 0.0001	4
	Deer	δ ¹⁸ O _p = 18.36(± 4.03) - 0.04(±0.06) * h	0.009	0.546	44

P-values < 0.05 were considered statistically significant.

Appendix 3: Species / Tukey (HSD) / ANCOVA: Analysis of the differences between the categories with a confidence interval of 95%

с	ontrast	Difference	Standardized Difference	Critical Value	Pr > Diff	Significant	Tukey's d critical value:
Felines	Other placental mammals	0.725	3.406	1.964	0.001	Yes	2.777
Bobcat	Puma	0.139	0.357	1.983	0.722	No	2.805
Male bobcat	Female Bobcat	0.153	0.27	2.018	0.789	No	2.854
Male Puma	Female Puma	0.844	0.955	2.080	0.35	No	2.941
Puma	Deer	0.218	0.485	1.988	0.629	No	2.811
Bobcat	Rabbit	2.206	4.653	1.984	< 0,0001	Yes	2.805
Felines	Fox	0.64	1.979	1.975	0.05	Yes	2.794

P-values < 0.05 were considered statistically significant

Appendix 4. Statistical analysis of t	he intra-individual tissue compariso	n (hair versus bone phosphate)

	Species	Regression equations	r²	p-value	n
$\delta^{18}O_{hair} = f(\delta^{18}O_{phosphate})$	Bobcat	$\delta^{18}O_{h} = 19.84(\pm 4.43) - 0.34(\pm 0.26) * \delta^{18}O_{p}$	0.06	0.203	30
$\delta^{18}O_{phosphate} = f(\delta^{18}O_{water})$	Bobcat	$\delta^{18}O_p = 19.76(\pm 0.68) + 0.39(\pm 0.08) * \delta^{18}O_w$	0.46	< 0.0001	30
$\delta^{18}O_{hair} = f(\delta^{18}O_{water})$	Bobcat	$\delta^{18}O_{h} = 14.38(\pm 1.32) + 0.03(\pm 0.16) * \delta^{18}O_{w}$	0.00	< 0.830	30

P-values < 0.05 were considered statistically significant

Erklärung

Ich versichere, dass ich diese Arbeit selbständig verfasst, keine anderen Quellen und Hilfsmittel als die angegebenen benutzt und die Stellen der Arbeit, die anderen Werken dem Wortlaut oder Sinn nach entnommen sind, kenntlich gemacht habe. Diese Arbeit hat in dieser oder ähnlichen Form keiner anderen Prüfungsbehörde vorgelegen.

Bonn, den 05.09.2011