
Distributed Management of Grid!based

Scientific Workflows

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch!Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich!Wilhelms!Universität Bonn

vorgelegt von

Mahmoud El!Gayyar

aus

Kairo, Ägypten

Bonn, Mai 2012

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn.

Erstgutachter : Prof. Dr. Armin B. Cremers, Bonn (B-IT Research School)

Zweitgutachter: Prof. Dr. Thomas Rose, RWTH Aachen (B-IT Research School)

Tag der Promotion: 02.05.2012

Erscheinungsjahr: 2012

An Eides statt versichere ich, dass

die vorgelegte Arbeit - abgesehen von den ausdrücklich bezeichneten Hilfsmitteln -

persönlich, selbständig und ohne Benutzung anderer als der angegebenen Hilfsmittel

angefertigt wurde, die aus anderen Quellen direkt oder indirekt übernommenen

Daten und Konzepte unter Angabe der Quelle kenntlich gemacht sind,

die vorgelegte Arbeit oder ähnliche Arbeiten nicht bereits anderweitig als

Dissertation eingereicht worden ist bzw. sind, sowie eine Erklärung über frühere

Promotionsversuche und deren Resultate, für die inhaltlich-materielle Erstellung

der vorgelegten Arbeit keine fremde Hilfe, insbesondere keine entgeltliche Hilfe von

Vermittlungs- bzw. Beratungsdiensten (Promotionsberater oder andere Personen)

in Anspruch genommen wurde sowie keinerlei Dritte vom Doktoranden unmittelbar

oder mittelbar geldwerte Leistungen für Tätigkeiten erhalten haben, die im

Zusammenhang mit dem Inhalt der vorgelegten Arbeit stehen

(Mahmoud El-Gayyar)

Bonn, 17th Februar 2012

Acknowledgements

Conceiving a doctoral dissertation is a long and tough journey, and I am

indebted to many who have supported me along this journey. First of all, I would

like to express my sincere appreciation to Prof. Dr. Armin B. Cremers for his

continual help, insight and encouragement. I also would like to thank the ZEF

Institute and the B-IT research school for sponsoring my PhD.

I would like also to thank the members for my PhD committee for the time and

effort they spend on reviewing my work: Prof. Dr. Thomas Rose, PD. Dr. Volker

Steinhage, and Prof. Frank Bertoldi.

In addition, I am grateful to my colleagues Dr. Serge Shumilov, and Yan Leng

for their nice and important advices, that helped me to refine this work.

On a more the personal level, I would like to describe my gratefulness towards my

stars: my lovely wife Heba Khamis and my daughter Fatima. My great wife really

suffered a lot and has provided extreme support and help all over my journey. For

sure, I would like also to acknowledge my great parents and parents in law. Without

their love, inspiration and prayers, this research would have never been completed:

Mohamed-Hoda El-Gayyar, Nabil Khamis, & Aida Fawzy.

Throughout the journey, I have been fortunate to enjoy the compassion of several

great and wonderful friends: Basem Elsaka, Abd Elaziz Ali, Nader Boshta, Khaled

Abd Al-Ftah, Mohamed Etman, & many others. I am grateful to all of them.

Finally, I am very thankful for each person who has ever contributed to my

education, especially, Prof. Dr. Mohamed Mahran, Dr. Magdy El-Gably, Dr.

Mohamed Farouk, Dr. Ahmed Magdy & Dr. Hany El-Yamany. Those people have

a great influence not only on my educational level, but also on my life in general.

All Praise and Thanks be to Allah

Distributed Management of Grid-based Scientific Workflows

Abstract: Grids and service-oriented technologies are emerging as dominant

approaches for distributed systems. With the evolution of these technologies,

scientific workflows have been introduced as a tool for scientists to assemble highly

specialized applications, and to exchange large heterogeneous datasets in order to

automate and accelerate the accomplishment of complex scientific tasks. Several

Scientific Workflow Management Systems (SWfMS) have already been designed

to support the specification, execution, and monitoring of scientific workflows.

Meanwhile, they still face key challenges from two different perspectives: system

usability and system efficiency.

From the system usability perspective, current SWfMS are not designed to be

simple enough for scientists who have quite limited IT knowledge. What’s more,

there is no easy mechanism by which scientists can share and re-use scientific

experiments that have already been designed and proved by others.

From the perspective of system efficiency, existing SWfMS are coordinating and

executing workflows in a centralized fashion using a single scheduler and / or

a workflow enactor. This creates a single point of failure, forms a scalability

bottleneck, and enforces centralized fault handling. In addition, they don’t

consider load balancing while mapping abstract jobs onto several computational

nodes. Another important challenge exists due to the common nature of scientific

workflow applications, that need to exchange a huge amount of data during the

execution process. Some available SWfMS use a mediator-based approach for data

transfer where data must be transferred first to a centralized data manager, which

is completely inefficient. Other SWfMS apply a peer-to-peer approach via data

references. Even this approach is not sufficient for scientific workflows as a single

complex scientific activity can produce an extensive amount of data.

In this thesis, we introduce SWIMS (Scientific Workflow Integration and

Management System) framework. It employs the Web Services technology to

originate a distributed management system for data-intensive scientific workflows.

The purpose of SWIMS is to overcome the previously mentioned challenges through

a set of salient features: i) Support for distributed execution and management

of workflows, ii) diminution of communication traffic, iii) support for smart

re-run, iv) distributed fault handling and load balancing, v) ease of use, and vi)

extensive sharing of scientific workflows. We discuss the motivation, design, and

implementation of the SWIMS framework. Then, we evaluate it through the

Montage application from the astronomy domain.

Keywords: Scientific Workflows, Grid Computing, Web Services, Distributed

Computing , Distributed Execution, Load Balancing, Cyberinfrastructure

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Problem Statement . 2

1.3 Thesis Contributions . 3

1.4 Structure of the Thesis . 5

2 Scientific Workflow Management Systems 7

2.1 Grid Computing . 7

2.1.1 GRIA - Grid Middleware . 9

2.2 Grid Scientific Workflows Applications 10

2.2.1 The Montage Application . 11

2.3 Workflow Management Systems . 13

2.4 Challenges in Workflow Management Lifecycle 15

3 Related Work and Motivation for SWIMS 19

3.1 Scientific Workflows Management Systems 19

3.2 Scientific Workflows Workbenches . 24

3.3 Discussion and Motivation: The SWIMS Framework 30

4 SWIMS: General Design 34

4.1 SWIMS Architecture . 34

4.2 Mediator Catalog . 37

4.3 Workflow Catalog . 37

4.4 Service Catalog . 40

5 SWIMS Server Side 46

5.1 Language for Representation of the SWIMS’s WMS Components . . 47

5.2 Data Management WS-Resource . 49

5.3 Node Management WS-Resource . 51

5.4 Scheduler WS-Resource . 52

5.4.1 Workflow Partitioning . 53

5.4.2 Planning . 56

5.4.3 Workflow Steering . 59

5.5 Execution WS-Resource . 60

5.5.1 Provenance Information . 62

5.6 Optimization . 63

5.6.1 Code Movement - Node Management Resource 63

5.6.2 Tailoring the Service Behavior - Node Management Resource 66

5.6.3 Clustering - Scheduler Resource 66

5.6.4 Global Data Caching - Execution Resource 70

ii Contents

5.6.5 Distributed Fault Handling - Execution Resource 70

5.7 Fault Handling in SWIMS . 71

6 SWIMS Workbench 75

6.1 SWIMS Workbench Architecture . 75

6.2 SWIMS Abstract Workflow Language 77

6.3 SWIMS Workbench User Interface 79

6.3.1 The Editing / Composition Mode 80

6.3.2 Exploring the Workflow Catalog 83

6.3.3 The Monitoring Mode . 85

6.4 Workflow Validation . 86

6.5 SWIMS: The Overall Picture . 89

7 Experiment and Performance Evaluation 93

7.1 Montage Workflow Generator . 93

7.2 Experiment Design . 95

7.3 SWIMS’s Server-Side Evaluation . 96

7.4 SWIMS’s Workbench Evaluation . 102

8 Conclusion and Future Trends 106

8.1 Summary of the Thesis . 106

8.2 Accomplishments of the Thesis . 108

8.3 Future Work . 112

A GRIA Job Description File 114

B GRIA Job To Abstract Template XSL Transformation 116

List of Abbreviations 120

Bibliography 123

List of Figures

2.1 GRID Architecture . 8

2.2 GRIA Job Service Architecture [GRIA 2009] 9

2.3 Montage Workflow . 12

2.4 The Reference Architecture for SWfMSs [Lin 2009] 14

2.5 Workflow Management Lifecycle . 15

3.1 The Taverna Workbench . 24

3.2 Kepler Sample Workflow . 27

3.3 Unicore Rich Client . 28

3.4 Askalon’s Workbench . 29

3.5 Architecture of SWIMS Framework 33

4.1 SWIMS Architecture . 35

4.2 The Flow of the Workflow Management Process in SWIMS 36

4.3 The Service Catalog Architecture and the Database Model 41

4.4 Double-Layer Security in SWIMS . 43

4.5 Methods of Keeping Several Service Catalog Instances Consistent . . 44

5.1 SWIMS WMS Services. 48

5.2 Data Management WS-Resource Interface. 49

5.3 OGSA-DAI Workflow for Data Transfer and Transformation. 50

5.4 Node Management WS-Resource Interface. 51

5.5 Scheduler WS-Resource Interface. 52

5.6 Workflow Scheduling Lifecycle [UML 2011] 53

5.7 Workflow Partitioning . 54

5.8 Execution WS-Resource Interface. 60

5.9 Subworkflow Execution Lifecycle [UML 2011] 61

5.10 Grid (GRIA) Service Replication Workflow. 64

5.11 Level-based Clustered Montage Workflow with Cluster Size =2. . . . 67

5.12 Vertically Clustered Montage Workflow with Cluster Size =3. 68

5.13 Fault Tolerance in SWIMS. 72

6.1 SWIMS’s Workbench Architecture 76

6.2 SWIMS’s Language XML Schema Tree 78

6.3 SWIMS’s Workbench Login Screen. 80

6.4 SWIMS’s Workbench Editing Mode. 81

6.5 SWIMS’s Workbench Properties Views. 82

6.6 SWIMS’s Workbench Workflow Catalog View. 84

6.7 Tailoring the Service Behavior . 85

6.8 SWIMS’s Workbench Monitoring Mode. 86

iv List of Figures

6.9 Workflow Validation Sample. 87

6.10 SWIMS according to the Reference Architecture in [Lin 2009] 89

6.11 SWIMS’s Simplified Sequence Diagram [UML 2011]. 90

7.1 Montage Workflow Generator . 94

7.2 Average Completion Time (Montage’s Experiment) 96

7.3 Amount of Data Transfer (Montage’s Experiment) 97

7.4 Average Task’s Execution Speed-up 99

7.5 All Overhead in SWIMS . 99

7.6 Distribution of SWIMS Overhead . 100

7.7 Data-intensive Workflow . 100

7.8 Average Completion Time (Data Intensive Experiment) 101

7.9 Amount of Data Transfer (Data-Intensive Experiment) 102

List of Tables

3.1 Comparison of Workflow Management Systems (SERC) 25

3.2 Comparison of Workflow Management Systems (SUC) 31

6.1 SWIMS’s Workflow Validation Symbols. 88

7.1 SWIMS Testbed . 95

7.2 Number of tasks per level, and average output size of modules in ten

Montage workflows (from 0.1 until 1.0 sq. degree) 96

8.1 Comparison of Workflow Management Systems (SERC) - Recalled . 110

8.2 Comparison of Workflow Management Systems (SUC) - Recalled . . 111

Listings

3.1 SwiftScript Example . 30

4.1 Workflow Catalog XML DB Structure 38

4.2 Example of a Provenance Report . 39

4.3 Abstract Template for a GRIA Job Service 42

5.1 Sample Input Segment. 62

5.2 Low Level Error Logs. 71

6.1 Sample of an Activity Segment . 79

Chapter 1

Introduction

Contents

1.1 Introduction . 1

1.2 Problem Statement . 2

1.3 Thesis Contributions . 3

1.4 Structure of the Thesis . 5

1.1 Introduction

Nowadays, most of the existing scientific research applications require a lot of CPU

time, a lot of memory, and some of them even need to communicate in real time.

Another important characteristic of these applications is that they are no longer

designed as a bulky single executable module, but consolidate multiple dependent

computational modules. In scientific workflows, these modules need to be executed

in a predefined order, and may entail a transfer of a massive amount of heterogenous

data. Scientific workflows are a variant of business workflows with some different

features. We retain Ludäscher’s definition[Ludaescher 2006]: ”These are networks

of analytical steps that may involve, e.g., database access and querying steps,

data analysis and mining steps, and many other steps, including computationally

intensive jobs on high performance cluster computers”. The main goal of this type

of workflows is the automation of scientific experiments, and therefore, it should

meet their specific requirements. While business workflows are control-flow oriented,

scientific workflows are in contrast, data-flow oriented.

An example of a scientific workflow is the ”best source of irrigation water”

use case [Shumilov 2006] presented in the context of the GLOWA Volta project
1 that focuses on the development of decision support tools for sustainable

management of natural resources in the Volta Basin in West Africa [ZEF 2011].

Management of natural resources is a complex task raising questions touching many

different disciplines (biology, hydrology, etc.), that cannot be solved within a single

application. In the ”best source of irrigation water” use case, decision makers

try to choose the most efficient source of irrigation water from ground water and

surface water to get the optimal profit within a given catchment. In order to

1GLOWA Volta has been financed by the German Federal Ministry of Education and Research
(BMBF) as part of the GLOWA research initiative: Global Change in Hydrological Cycle.

2 Chapter 1. Introduction

achieve this, the use case integrates three simulation systems. The main system

is an economic optimization model coded in GAMS [Brooke 1992] that seeks to

maximize the profitable value of available water resources through choice of a crop,

size of irrigated cropping, choice of irrigation water source and irrigation schedule.

To be able to deal with complex hydrological systems the model is coupled with

a physical hydrology model made available in WaSiM-ETH [Schulla 1999]. The

input of this model is based on a climate model coded in MM5 [MM5 2003] used

to simulate climate for current and for near future (up to 2039), and land use data

collected, refined, and stored in one of the project’s available databases.

As we can see from the previous example, scientific workflows differ from the

normal business workflows. They have long lasting execution tasks with heavy

data flows and utilize heterogeneous applications from distinct domains whereas

business workflows involve more uniform short, transaction processing tasks with

small amounts of data.

Recently, computational Grids [Foster 2003], built using Grid Computing

technology, have become a dominating approach for resource sharing and system

integration, that are needed for sophisticated scientific workflows. A Grid-based

scientific workflow can be defined as the composition of Grid application services,

that execute on heterogeneous and distributed resources in a well defined order to

accomplish a specific task [Yu 2004].

A scientific workflow management system (SWfMS) is an environment that

consists of a set of software components to construct, execute, and monitor scientific

workflows over a Grid infrastructure. A SWfMS provides support in both build-time

and run-time. At build-time, it helps users to model the workflow by specifying

its tasks, initial input, and data / control flow between tasks. During run-time,

the SWfMS allows users to steer and monitor the execution process, navigate

intermediate results, and get notifications about execution failures.

1.2 Problem Statement

Several SWfMSs have already been designed to support the execution and

monitoring of scientific workflows [Yu 2005]. However, trying to employ some of

these systems in practice, we have found that some of the published claims are

hardly justified by the real implementations, and some limitations of the existing

approaches have been recognized. Issues such as reliability, scalability, ease of

use, and shareability of scientific experiments are still key challenges for existing

SWfMSs. We argue that these weaknesses mainly result from two main reasons:

1. Scientific workflows are in most cases constructed by scientists themselves.

While they are experts in their domains, they are not necessary experts in

information technology. The existing SWfMSs hardly consider this problem

in the design of their user interfaces. These should be conserved in a high

level of abstraction and should provide end-user robustness both during the

built-time and the run-time stages. Another important feature of an efficient

1.3. Thesis Contributions 3

user interface is allowing its users to share and re-use existing workflows

thus supporting the common desire of scientists from different domains who

tend to share and re-use their scientific experiments. Most of the existing

SWfMSs, however, do not provide support for storing workflows in a repository

accessible by all users.

2. Most of the current SWfMSs utilize a single scheduler and / or an execution

engine providing centralized coordination and control of the execution process.

This architecture has been preferred due to its benefits such as centralized

monitoring and auditing, simple synchronization mechanisms, and ease of

design and implementation. Meanwhile, a centralized architecture encounters

difficulties to satisfy non-functional aspects of the system, in particular:

(a) Scalability: In active scientific environments where many workflow

instances need to be managed in parallel, the centralized scheduler and

/ or execution engine may be overloaded with heavy computations and

communication, thereby becoming a potential bottleneck. Thus, system

performance can be intensely degraded in such environments.

(b) Reliability: A centralized scheduler and / or execution engine are

considered as single points of failure in the system. The malfunction

of any of them may bring the whole system down.

Based on the above discussion, we claim that the centralized architecture

encountered in most existing SWfMSs is not ideal for supporting computationally

intensive scientific workflows. In addition, the nature of scientific work and

procedure should be considered while designing their user interface.

1.3 Thesis Contributions

The main goal of this thesis is to develop a new SWfMS for Grid-based scientific

workflows, entitled SWIMS, that tries to close the gaps in the scientific workflow

management process discussed in the previous section. SWIMS introduces an

innovative scientific workflow execution paradigm. Briefly, the supposed paradigm

changes the workflow system design by employing several schedulers and execution

engines that cooperate with each other in order to provide a reliable, extendible,

and distributed management and execution of scientific workflows. SWIMS provides

new salient features compared to other SWfMSs, including:

1. Distribution: SWIMS provides support for distributed execution,

management, and fault handling of scientific workflows.

2. Diminution of communication traffic: SWIMS deploys data caching,

vertical clustering, and data-aware scheduling techniques to reduce the

amount of data transferred during the execution process.

4 Chapter 1. Introduction

3. Full control over long running remote services: Every service in

SWIMS is executed through SWIMS’s local execution engine that has access

to low-level error logs (OS-level). This helps service owners to identify and

recover service failures.

4. Automatic data transformation: SWIMS utilizes existing data

transformation mediators to solve the heterogeneity between the

communicating services in a transparent manner.

5. Ease of use: SWIMS isolates its users from any technical details through a

high level of abstraction.

6. Smart re-run: Smart re-run means that only the workflow’s updated

services are actually re-executed. SWIMS achieves this goal by providing

two capabilities, checkpointing and global data caching.

7. Extensive sharing: SWIMS enriches the scientists working environment by

allowing them to share and re-use their scientific experiments.

It is also quite important to study the performance impacts of these additional

features on the overall workflow performance in computational Grid environments.

We summarize the accomplishments for our work presented in this dissertation as

follows:

1. Exploration of shortcoming of existing SWfMSs: Practical evaluation

of some of the existing SWfMSs has been carried out in order to identify

existing challenges in the different stages of the workflow management

lifecycle.

2. SWIMS framework: A new scientific workflow execution paradigm has

been introduced through the real environment entitled SWIMS (Scientific

Workflow Integration and Management System) that has been designed,

implemented, deployed, and evaluated for proof-of-concept purposes.

3. Easy to use workbench: A graphical workbench with a high level

of abstraction is demonstrated that helps users (scientists) to design

their scientific experiments while being completely isolated from technical

complexities. It also supports the scientists’ work by allowing them to share

and re-use other scientists’ experiments.

4. Evaluation of SWIMS: Real world workflows have been built to evaluate

the feasibility, usability, capabilities, and the performance of the SWIMS

environment.

Along this work, some conference papers have been published [El-Gayyar 2010,

El-Gayyar 2009, Leng 2009, Shumilov 2008]. A website, with contents being

updated, has been setup to provide the latest technical documentation and software

update under the URL: http://www-student.informatik.uni-bonn.de/

˜elgayyar/swims

http://www-student.informatik.uni-bonn.de/~elgayyar/swims
http://www-student.informatik.uni-bonn.de/~elgayyar/swims

1.4. Structure of the Thesis 5

1.4 Structure of the Thesis

CHAPTER 2: provides some basic knowledge about Grid-based scientific

workflows and investigates the challenges of managing and executing them.

First, it introduces GRIA [GRIA 2009] as an example of a service-oriented

Grid infrastructure. Then, it discusses the Montage [Montage 2011] scientific

application, an astronomical image mosaic service, and the structure of its

scientific workflows. Thereafter, this Chapter provides an overview of SWfMSs

and their reference architecture. Last but not least, it identifies a set of

challenges and missing requirements in the different stages of the scientific

workflows management lifecycle.

CHAPTER 3: explains the related state of the art in the area of scientific

workflow management and execution and motivates our work. First, it

compares a selected set of currently available SWfMSs against the identified

challenges in the scientific workflow management lifecycle. Then, it motivates

our work to develop an advanced environment for scientific workflow

management and execution (entitled SWIMS) that helps to overcome these

challenges.

CHAPTER 4: introduces the overall architecture of our Scientific Workflow

Integration and Management (SWIMS) environment and highlights its main

components. SWIMS components fall into three categories: client-side

components, server-side components, and global components. This Chapter

also discusses SWIMS’s global components in more detail.

CHAPTER 5: focuses on the SWIMS’s server-side components: The Workflow

Management System (WMS) instances. In order to simplify the design

and the implementation of the WMS, we decided to break it into four

major subcomponents: Scheduler, Node Management, Data Management and

Execution. Each WMS’s subcomponent can be realized as a Web Service

Distributed Management (WSDM) based service, which controls a set of

manageable resources. The Chapter starts with an introduction to the WSDM

specification, and then it discusses the main functionalities of each WMS

subcomponent in detail.

CHAPTER 6: finalizes the discussion about the SWIMS environment by

considering the SWIMS’s client side component: the SWIMS workbench. The

main target of the SWIMS workbench is to provide a simple environment with

a high level of abstraction through which scientists can compose, execute,

monitor, steer, re-use, and re-run scientific workflows without considering the

complex underlying Cyberinfrastructure used to perform these tasks.

CHAPTER 7: explores the experimental results obtained from a ”test

deployment” of the SWIMS environment based on Montage workflows from

the astronomy domain. The main goal of this deployment was to evaluate the

6 Chapter 1. Introduction

feasibility, usability, capabilities, and the performance of the server and client

side components of SWIMS.

CHAPTER 8: concludes the thesis and suggests possible future work.

Chapter 2

Scientific Workflow

Management Systems

Contents

2.1 Grid Computing . 7

2.1.1 GRIA - Grid Middleware . 9

2.2 Grid Scientific Workflows Applications 10

2.2.1 The Montage Application . 11

2.3 Workflow Management Systems 13

2.4 Challenges in Workflow Management Lifecycle 15

In most cases, scientific workflows consist of complex tasks that need a large

amount of computing and storage resources. Accordingly, it will be very difficult

to execute all the tasks of a workflow on a single machine. At the same time, most

of the scientific resources are geographically distributed and belong to different

administrative domains. Due to these factors, Grid technology is emerging as a

dominant execution environment for scientific workflows. A scientific workflow can

be managed and executed over a Grid through a Workflow Management System

(WMS). In this chapter, we are going to dig into the details of the scientific workflow

management and execution process in order to identify the existing challenges in

each of its phases.

The chapter is organized as follows: The first section introduces the Grid

computing model. The second section gives an overview and some example about

scientific applications. The third section briefly discusses the Scientific Workflow

Management Systems (SWfMS) and their reference architecture. In the last section,

we investigate the scientific workflow management lifecycle, and highlight discovered

challenges in each of its phases. We defer the comparison of some of the existing

SWfMS to the next chapter.

2.1 Grid Computing

In the early 1990s, the term Grid was invented as a metaphor for technologies

that would allow consumers to obtain computing power on demand. The main

goal of Grid computing is to ”enable resource sharing and coordinated problem

solving in dynamic, multi-institutional virtual organizations (VO) ” [Foster 2001,

8 Chapter 2. Scientific Workflow Management Systems

Foster 2002]. Grid computing provides a viable supplement of super computers and

large dedicated clusters to address and solve large scale computation problems.

In order to achieve these functionalities, Grids provide a set of standard

protocols, middleware, toolkits, and services built on top of these protocols. Grids

provide their protocols and services at five different layers as shown in Figure 2.1

[Foster 2003, Sotomayor 2006]. The fabric layer provides the various types of

resources (e.g., computational resources, storage systems, network resources, etc.)

shared within the Grid. The connectivity layer defines core communication,

and authentication protocols required for Grid transactions. The resource layer

builds on the connectivity layer protocols to define protocols for secure publication,

discovery, negotiation, control, usage, and accounting of shared resources. The

collective layer contains protocols that captures interactions across collections of

resources (e.g., directory and scheduling services). Finally, the application layer

incorporates user applications build upon the protocols and services of the other

layers (e.g., Grid workflow systems and Grid portals).

������� ���	

������

� ���������

��		��������

������

Figure 2.1: GRID Architecture

By 2001, the Open Grid Services Architecture (OGSA)- an architecture for a

service-oriented Grid Computing [Foster 2006b], was developed by the Globus Grid

Forum (GGF)1 [OGF 2006] . OGSA is a computing architecture based on services,

assuring interoperability between heterogeneous systems so that different types of

resources can communicate and share information.

Grid Middleware are software stacks that implement Grid architecture to present

disparate compute and data resources in a uniform manner, such that these

resources can be shared by remote client software without knowing in advance the

systems’ configurations. Several Grid middleware have already been developed, e.g.,

Globus [Sotomayor 2006, Foster 2006a], Unicore (UNiform Interface to COmpute

REsources) [Streit 2010] , and GRIA [Surridge 2005, GRIA 2009]. In the next

subsection, we will focus on GRIA as we have selected it as our Grid infrastructure.

1Nowadays called Open Grid Forum (OGF) after being merged with the Enterprise Grid Alliance

2.1. Grid Computing 9

In 2007, the term Cloud computing came into popularity; we believe that

Cloud computing has evolved out of Grid computing. The vital difference between

both of them is the shift of their main goal from an infrastructure for sharing storage

and computational resources (Grids) to an economic environment for delivering

more abstract resources and services (Clouds). For comprehensive comparison

between Grid and Cloud computing, you can refer to [Foster 2008].

2.1.1 GRIA - Grid Middleware

GRIA [Surridge 2005, GRIA 2009] is an open-source service-oriented infrastructure

designed to support B2B collaborations. It provides a service provision across /

within organizational boundaries in a secure, interoperable and flexible manner.

The aim of the GRIA project has been to increase the usability of Grids for

businesses and industrial users. ��������	��

�
��������������� ��������������

������

��	
����

�������
������������������������������������� ������������� ���������� �
����������!!

�������������������������

�����������"��� ������������� ������
��	
������������	��� ������������������	���

��
�

Figure 2.2: GRIA Job Service Architecture [GRIA 2009]

GRIA uses Web service protocols based on key interoperability specifications.

The GRIA basic application services package allows service providers to deploy

easily legacy applications as managed Grid services. In general, a legacy application

is an application developed with outdated technologies. In terms of Grid services,

legacy applications refer to platform dependent applications providing a service

with its actual application logic. GRIA provides two basic services, as follows:

1. A Data Service: This service allows remote users to upload and download

data files to the service provider, and to transfer data between different Data

10 Chapter 2. Scientific Workflow Management Systems

Services. The Data Service also supports management of access rights granted

to other users or service providers.

2. A Job Service: This service allows remote users to start, monitor or kill

computational jobs, executed by the service provider. The Job Service fetches

input from and writes output to a local Data Service.

As shown in Figure 2.2, service providers integrate applications into the Job

Service using wrapper scripts. These provide a consistent abstraction between

GRIA and the underlying application. Application wrappers can be simple shell

scripts that unzip input files, invoke the legacy application and zip application

generated output files for writing to output data services. Application wrappers

become more complex when context mapping on input data is required; in

these cases other programs or script modules, e.g. Python’s modules, can be

invoked to provide the necessary functionality. GRIA allows service providers

to run applications on various execution platforms, including local execution and

computational clusters (e.g. Torque PBS [Staples 2006] and Condor [Thain 2005]),

using a wide range of different resource managers depending upon the business

need. A part from application wrappers, an application needs a description file.

This file contains metadata about the application which is essential for GRIA users

to discover and to use the application. An example and more information about

application description files are given in Appendix A.

Another advantage of GRIA is supporting connectivity of heterogeneous client

applications. It provides a client-side Java API that allows client applications

such as workflow tools and portals to access GRIA services. As an example for

workflow applications, GRIA provides a workflow plugin for Taverna [Taverna 2011]

and the Freefluo workflow enactment engine [Freefluo 2009]. It enables GRIA job

and data transfer operations to be composed and executed through Taverna. In

addition, GRIA provides the Workflow Application software which includes tools

for deploying and running Taverna workflows as GRIA applications.

As we are going to see later, SWIMS has selected GRIA as its underlying Grid

middleware due to its flexibility, interoperability, and integrability characteristics.

As a result, SWIMS exploits the Freefluo engine as its own workflow enactor seeing

that it is already supported by GRIA.

2.2 Grid Scientific Workflows Applications

In recent years, many scientific processes became distributed in nature due to the

evolvement of distributed Grid Computing; scientific data are generated and stored

across wide area networks, computing resources are distributed and heterogeneous,

and scientists tend to share their experiments and research goals while being

geographically distributed.

Scientific workflows are emerging as a dominant approach to deal with these

types of processes and to handle the complexities of their environments. They

2.2. Grid Scientific Workflows Applications 11

allow scientists to assemble highly specialized applications, and to exchange

large amount of heterogeneous datasets to automate the accomplishment of

complex scientific tasks [Tsalgatidou 2006]. Scientific workflows have already been

exploited to support different scientific applications from diverse scientific domains

[Bharathi 2008].

One example of the astronomy domain is the Montage application[Katz 2005]

which creates science-grade astronomical image mosaics using data collected from

telescopes. As we have selected the Montage workflow as our evaluation use case,

we are going to discuss it in more details in the following subsection.

Another candidate from the bio-informatics domain is the Epigenome

[USC 2011] which maps short DNA segments collected using high throughput gene

sequencing machines to a previously constructed reference genome. The workflow

splits several input files into small chunks, reformats, converts, and maps the chunks

to a reference genome, merges the mapped sequences into a single output map, and

computes the sequence density for each location of interest in the reference genome.

Many other scientific workflows have already been developed: e.g. CyberShake

[Graves 2011], The Laser Interferometer Gravitational Wave Observatory (LIGO)

[Brown 2007] , and SIPHT [Livny 2008].

2.2.1 The Montage Application

Montage [Montage 2011, Taylor 2006] is an astronomical image mosaic service for

the National Virtual Observatory. It delivers on demand, science-grade, mosaics

that satisfy user specified parameters of projection, coordinates, size, rotation and

spatial sampling. Montage uses input images in the Flexible Image Transport

System (FITS) format .

The Montage application has been represented as a workflow that can be

executed in Grid environments such as the TeraGrid [Berriman 2004, Jacob 2009].

Figure 2.3 shows the structure of a Montage workflow. The vertices represent

the processes, and the edges represent the data dependencies between them. The

number within the vertices represents the level of the task in the workflow. All

tasks that have no parent tasks are at level one. The level of any other task is the

maximum level of any of its parents plus one.

The Montage workflow accommodates all different basic structures of scientific

workflows: Process, pipeline, data distribution, data re-distribution and data

aggregation [Bharathi 2008]. In addition, the number of inputs processed by a

Montage workflow may increase over time as more images of a particular region

of the sky are available. As such, the structure of the workflow changes to

accommodate the increase in the number of inputs, which also translates to an

increase in the number of computational jobs. Due to these facts, Montage

workflows have been widely used to evaluate scientific workflow algorithms and

systems.

In Montage application workflows, the number of mProject jobs is equal to the

number of input FITS images to be processed. Each mProject job re-projects its

12 Chapter 2. Scientific Workflow Management Systems

���������	
�
�	��	��

�m P rjoec t �m P rjoec t�m P rjoec t

�m D iffF it �m D iffF it�m D iffF it �m D if fF it �m D if fF it�m D iffF it

�m P rjoec t

�����

�������	��
�

�m C onc atF it

�m B gM odel

�� ��	
����� �� ��	
������� ��	
����� �� ��	
�����
�m A dd

�m J peg

�����

������
�

�����

� �������

��	� �� �������������	 �
Figure 2.3: Montage Workflow

input image to a common spatial scale, coordinate system and World Coordinate

System (WCS) projection. The outputs of each mProject job are the re-projected

image and an ”area” image that consists of the fraction of the image that belongs

to the final mosaic. These are then processed together in subsequent steps. An

mDiffFit job runs an mDiff job immediately followed by an mFitplane job and

check the first to decide whether to run the second. An mDiff job analyzes an

image metadata table to determine a list of overlapping images. Each image is

compared with every other image to determine all overlapping image pairs. A pair

of images are deemed to overlap if any pixel around the perimeter of one image falls

within the boundary of the other image. In case that two images are overlapped,

the mDiff job calculate a simple difference between them and runs an mFitplane

job which uses a least squares algorithm to fit the difference images. The number

of mDiffFit jobs in the workflow is nC2 where n is the number of input images. The

mConcatFit job is a data aggregation job which merges multiple plane fit parameter

files (from mDiffFit) into one file. This module is only needed in a Grid environment

2.3. Workflow Management Systems 13

where the mDiffFit jobs may run in parallel on computers that do not share a file

system. In this case, the fit parameters have to be merged into one file before the

mBgModel job can be called. Next, the mBgModel is used to determine a correction

which should be applied to each image to obtain a good global fit that minimizes

the inter-image differences. The specified background correction is applied to each

re-projected image by the mBackground jobs. The mConcatFit and mBgModel

jobs together can be considered as a data redistribution point. The mAdd job

is another computationally intensive job, which is responsible for the co-addition

of re-projected, background-corrected images into a final mosaic in FITS format.

Finally, the generated FITS image is converted to a JPEG format through the

mJPEG job.

We have used the Montage application workflows to evaluate our system as we

are going to show later in detail in Chapter 7.

2.3 Workflow Management Systems

Complex scientific experiments can be held by scientists through putting together

data analysis and knowledge discovery ”pipelines”. These pipelines can be

constructed from shared data and computational services through the evolving Grid

technology. However, scientists should not bother themselves about the underling

infrastructure and focus only on the development and use of what are called scientific

workflows. These are networks of analytical steps that may involve database access,

data analysis, computationally intensive jobs (e.g., complex simulations), etc. In

other words, a scientific workflow provides a formal specification for automating a

scientific process [Tsalgatidou 2006].

The characteristics of scientific workflows are quite similar to those of business

workflows. The most important difference between the two models is that business

workflows focus more on control flow patterns while data flow has usually a

minor concern. On the other hand, scientific workflow execution models are much

data-flow oriented.

A scientific workflow management system (SWfMS) is an environment which

helps scientists to construct, execute, modify, manage and monitor scientific

workflows [Yu 2005]. The Workflow Management Coalition (WfMC) proposed a

reference architecture [Hollingsworth 2004] which has been adopted successfully in

the development of business workflow management systems. However, the proposed

architecture is not the best candidate for SWfMSs, that tend to be more data-flow

oriented, providing new challenges for system development (e.g., transfer of a huge

amount of data, data transformation between heterogeneous services, intensive user

interaction, etc.). As a deduction, a novel reference model has been introduced, that

affords a guidance for the architectural design of a particular SWfMS in various

scientific domains [Lin 2009].

The reference architecture for SWfMSs consists of four main layers as shown in

Figure 2.4. In the Operational Layer reside both local or remote data sources and

14 Chapter 2. Scientific Workflow Management Systems

������ ��	�
�����

���� �� �	���� �	 � �����

� ��� �
�� �� �	�����	 � �����

� ���	���� ��	 �����

�������� �	
 ��� ��
 �
 ��� � ��� �� �� ���� ���� � ���
� ������� �� ���
 � ������� �� ������ ��� ��
 � �� ������� �� ���
 �

� � ���� ���
�
�� ����
�� ��
 �� ���
�
��	� �� �� ���
�
��
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���� �
 ����
 � ��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

�
!�
 ����
 � � �
 �� ���� �	� �� !� �
 �
Figure 2.4: The Reference Architecture for SWfMSs [Lin 2009]

computational services. The Task Management Layer tries to abstract the services

and software tools obtained from the Operational Layer into workflow tasks. It is

also responsible for managing of data, workflow tasks, and provenance information.

The separation of the Task Management and the Operational Layers promotes the

extendibility of theOperational Layer with new service. TheWorkflow Management

Layer is responsible for executing and monitoring of scientific workflows. In

addition, this layer considers interoperability issues between the workflow engine

and other workflow engines. The final layer is the Presentation Layer, which

supports the workflow design and visualizations for all assets of the whole system.

The new architecture considers the main differences between scientific and

business workflows. First, it accommodates the provenance and data product

management components to support scientific data reproducibility and analysis.

That was a missing feature in the reference architecture proposed by the WfMC.

Second, disconnecting the Presentation Layer from the Workflow Management

Layer enables the support of user interaction and user interface customizability.

Third, separating the Workflow Management Layer from the Task Management

Layer disconnects the workflow management from the task management, therefore,

allowing the parallel advancement of them. Finally, the disengagement of the

Task Management Layer from the Operational Layer facilitates the separation

of management of uniform workflow tasks from the heterogeneous low-level task

implementation strategies and execution environments.

2.4. Challenges in Workflow Management Lifecycle 15

2.4 Challenges in Workflow Management Lifecycle

A SWfMS follows a four stages lifecycle to construct, execute, and monitor scientific

workflows Figure 2.5). The first stage of this lifecycle is the creation stage where

users should be able to create either abstract or concrete workflows and populate

them with the initial input data. Workflows can be created from scratch or through

editing an existing workflow template.

��������

	
����������������

���
����

� ��������	
��������������

� �����������������������

�
���������������

�������	�

� �������������

�
���������

� ��������������������

�����������������

��������������������

Figure 2.5: Workflow Management Lifecycle

An Abstract workflow is a non-executable workflow as it lacks the execution

information. Thus, it requires the second stage, the scheduling stage, which

converts it into a concrete executable workflow by mapping its abstract tasks onto

computational nodes. The mapping process is usually automated and entails the

detection of available resources.

The next step in the workflow management lifecycle is to execute the mapped

workflow. As a part of the execution process, data is generated and moved between

the workflow’s tasks, provenance information is collected, and fault handling

mechanisms are used to recover from execution faults. In general, users should

be able to monitor and steer the workflow’s execution.

Once a workflow has been created and successfully executed, it should be shared

in a global workspace to allow other users to re-run / re-use it. In addition, users

should be able to deploy their workflows as Grid services, that can be used later as

atomic tasks in newly created workflows. The re-run / reuse stage is very important

for scientific workflows as normally scientists tend to analyze, re-run or re-reuse

experiments designed by other scientists.

16 Chapter 2. Scientific Workflow Management Systems

Through a practical evaluation of some existing SWfMSs (see Chapter 3),

and a review of existing literature (e.g.: [Gil 2007, Deelman 2008, Deelman 2009,

Zhao 2008a, Bhagwanani 2005]), we found that there are still some weaknesses

and challenges need to be considered in every stage of the workflow management

lifecycle. As we have mentioned before, discovered challenges can be divided into

two groups: System Efficiency and Reliability Challenges (SERC) and System

Usability Challenges (SUC); the following sections explore existing challenges in

every stage.

Challenges in the Creation Stage

• Ease of use (SUC): Scientific workflows are usually constructed by

scientists themselves. While they are experts in their domains, they are

not necessarily experts in information technology. Consequently, they don’t

possess the necessary knowledge to deal with complex IT terminologies like

Web services, Grids, etc. An efficient SWfMS should provide an environment

with high level of abstraction and a simple workbench in order to isolate such

complicated concepts form its users.

• Data heterogeneity (SERC): Scientific workflows tend to exchange data

between heterogeneous tasks. In existing SWfMSs, users have to take care

of this type of heterogeneity by manually specifying data shims / mediators

necessary for data transformation. The main difficulty here is to determine

/ create the suitable shims / mediators between two heterogeneous services.

• Handling security credentials (SUC): For accessing secured Grid

services, users may need to follow a complicated process in order to obtain

required security certificates.

• Workflow validation (SUC): Scientific workflows tend to be time

consuming due to the data intensive and computationally expensive features

of their scientific processes. Thus, it is a very important feature of SWfMSs to

allow its users to inspect and validate workflows before execution to minimize

runtime errors, which can happen due to incorrect workflow specifications.

Challenges in the Scheduling Stage

• Reliability/Extendibility (SERC): Currently available SWfMSs

manipulate a single scheduler for the scheduling stage. This creates a

single point of failure, forms a scalability bottleneck, and often leads to too

much message traffic routed back to the coordinator. In other words, a

single scheduler reduces the overall system reliability and extendibility.

• Load Balancing (SERC): Another problem with most of the current

available schedulers is ignoring load balancing while mapping abstract tasks

onto computational nodes.

2.4. Challenges in Workflow Management Lifecycle 17

Challenges in the Execution Stage

• Reliability (SERC): As in the scheduling stage, we face the reliability

problem in the execution stage where only one execution engine is exploited

for executing submitted workflows. In addition, by utilizing a single engine,

the system will not have control over remotely running services and fault

handling is achieved in a centralized fashion through the available engine.

• Data movement (SERC): Normally, scientific workflows exchange a huge

amount of data during their execution. Some available SWfMSs uses a

mediator-based approach for data transfer where data must be transferred

first to a centralized storage and then to the target node, which is completely

inefficient. Accordingly, other SWfMSs used a peer-to-peer approach where

data can be transferred directly from the source node to the target node.

Even this approach is sometimes not sufficient for data intensive scientific

workflows, as a single scientific task can produce a huge amount of data.

• Data caching (SERC): Data caching is a very important feature which

has been ignored by available SWfMSs. Several scientific workflows are

computationally expensive and are based on long running processes. For

this type of workflows, the data caching capability helps to achieve smart

re-run since scientists generally tend to re-run scientific experiments while

changing only the inputs or configuration parameters of few tasks. In this

case, just those tasks with modified inputs or parameters will be actually

re-executed.

• Fault handling (SERC): To make workflows more resilient, faults during

the execution of a workflow must be detected and handled on different levels.

• Checkpointing (SERC): A checkpointing mechanism stores a snapshot of

the workflow execution state in fixed intervals. These snapshots can be used

to resume/restart the execution in case of failures. It can help also to achieve

smart rerun capability where tasks that were successfully completed before a

selected checkpoint may not have to be re-executed.

• Workflow Monitoring (SUC): Providing information about the execution

state of a running workflow and notifying about any fatal failures are very

important features for a reliable SWfMS. The main challenge here is to

afford the information at the right level of detail in a form that is easily

understandable by users.

• Workflow Steering (SUC): Scientific workflows require user decisions and

interactions at various steps. Thus, SWfMS should allow users to inspect and

modify intermediate results before feeding them to subsequent steps.

18 Chapter 2. Scientific Workflow Management Systems

Challenges in the Re-run/Re-use Stage

• Workflow Sharing (SUC): For composing a workflow, scientists often

incorporate portions of existing workflows, and just make changes where

necessary. Thus, workflows created by other scientists should be stored in

a global shared workspace from which they can be searched and retrieved.

• Smart-Rerun (SUC): Scientists tend to rerun scientific experiments after

changing some parameters. A ”smart” rerun would not execute the workflow

from scratch, but only those parts affected by the change. This can be easily

achieved if we can afford previously mentioned challenges: data caching and

checkpointing.

• Expose workflows as Grid services (SUC): To act as a scientific

collaboration platform, the SWfMS should allow its users to expose their

workflows as Grid services. This will lead to a better reuse where scientists

can utilize these services as atomic tasks in more complex workflows.

Summary

This chapter provides some basic knowledge about Grid-based scientific workflows

and investigates the challenges of managing and executing them. First, we

introduced GRIA as an example of a service-oriented Grid infrastructure. Then, we

discussed the Montage scientific application, an astronomical image mosaic service,

and the structure of its scientific workflows. Afterwards, we provided an overview

about SWfMSs and their reference architecture. Last but not least, we identified

a set of challenges and missing requirements in the different stages of the workflow

management lifecycle. We categorized these challenges into two groups: System

efficiency and reliability challenges that are related to the server-side of the SWfMS,

and system usability challenges that are relevant to the client-side component (User

Workbench) of the SWfMS. The list of challenges will form our main criterion for

comparing some of the existing SWfMSs in the next chapter.

Chapter 3

Related Work and Motivation

for SWIMS

Contents

3.1 Scientific Workflows Management Systems 19

3.2 Scientific Workflows Workbenches 24

3.3 Discussion and Motivation: The SWIMS Framework 30

This chapter focuses mainly on existing research in the area of scientific

workflow management and execution. There are many SWfMS currently available

in the market. In this chapter, we are going to compare a set of them selected

from different categories. We have selected systems dedicated to specific Grid

infrastructures (e.g., Unicore [UNICORE 2011]). Other systems were directed

to special domains, for example, Taverna [Taverna 2011] which is used for

Bio-Informatics and Kepler [Kepler 2011] that was dedicated in the beginning for

statistical analysis. Askalon [Fahringer 2011] has been considered as an example

of systems based on a service-oriented architecture. Swift [Swift 2011] is another

system, that offers a scripting language and provides a virtual data system. Another

interesting SWfMS which has been also inspected is Pegasus [Pegasus 2011].

The chapter is divided into three sections. In the first section, we investigate

the server-side components of the selected WfMSs against the system efficiency

and reliability challenges (see Section 2.4). Afterwards, we compare the SWfMSs’

client-side components according to the system usability challenges (see Section 2.4).

Last but not least and based on conducted comparisons, we motivate our work to

develop SWIMS, an advanced environment for scientific workflow management and

execution, that helps to overcome both challenges.

3.1 Scientific Workflows Management Systems

In this section, we compare the set of selected SWfMSs’ server-side components

against the system efficiency and reliability challenges discussed in Section 2.4.

The results of this comparison are summarized in Table 3.1.

20 Chapter 3. Related Work and Motivation for SWIMS

Taverna

Taverna [Oinn 2006, Hull 2006] is a tool for designing and executing scientific

workflows. In the first generation of Taverna (named T1.x), XScufl (Simple

Conceptual Unified Flow Language) was the XML-based workflow description

language used to construct concrete workflows that has to be executed through

the centralized Freefluo enactor [Freefluo 2009]. To meet the evolving requirements

of scientific applications, Taverna architecture has been radically re-designed (T2.x)

[Missier 2010] providing a new centralized enactor and a new description language.

In T1.x, data produced and consumed by services needs to be entirely loaded

into the enactor’s process space (centralized approach). On the contrary, the

T2.x data architecture is based on the principle that data is only loaded into the

execution process space on demand. This can be achieved through the Taverna’s

Data Manager (DM). The DM indexes data items produced by assigning to them

a unique URI and store them into a database, from where other tasks can retrieve

them using their references (mediated approach). Data transformations in Taverna

can be achieved by composing existing ”shim” services or by using ”Beanshell”

scripts to build specific transformation components.

Taverna supports fault handling through a configurable mechanism. On the task

level, users can specify a number of retries and alternate tasks. On the workflow

level, users can determine non-critical tasks where execution can be continued even

in case of a failure.

Kepler

Kepler [Ludaescher 2006] is a scientific workflow environment based on the

PtolemyII system [Ptolemy 2004], a platform supporting multiple models of

computation suited to distinct types of analysis. Kepler is based on an

actor-oriented paradigm where actors correspond to re-usable workflow components.

It uses the Modeling Markup Language (MoML) [Lee 2000] as a workflow

specification language. MoML does not provide any control flow constructs.

However, flow controls are supported by Kepler’s components (actors, directors).

To optimize data flows Kepler allows working with remote data in three ways:

GridFTP [GridFTP 2011], Storage Resource Broker (SRB) [SRB 2011] and the

scp, which is a shell command that helps users to copy files between systems. Two

mechanisms for data integration are applied in Kepler. One is a set of special actors

which work as ”shims” for data transformations; the other is to convert data into

a common data model, the Ecological Metadata Language (EML) [Fegraus 2005],

which is only used for the ecological domain.

Kepler provides a centralized workflow execution service through the Ptolemy

engine. It also provides an attempt for distributed execution on multiple

independent machines through its Master-Slave module [Wang 2008, Wang 2009].

In the illustrated distributed framework, Workflow execution is initiated by a Master

node that performs overall coordination of an arbitrary number of Slave nodes that

3.1. Scientific Workflows Management Systems 21

execute subworkflow tasks. Users have to determine the portions of their workflows,

which need to be distributed and model them using the DistributedCompositeActor.

For every DistributedCompositeActor, users have to specify which slaves will be used

for this particular actor.

Kepler has no generic capabilities for fault tolerance. It provides only the

workflow rescue mechanism which tries to continue the execution of the workflow in

case of a failure. In [Mouallem 2010], a fault tolerance framework for Kepler-based

workflows has been presented. Nevertheless, this framework has not been integrated

in the current version of Kepler.

Unicore

UNICORE 6 [Streit 2010] is a Grid Computing technology, based on the Open

Grid Services Architecture (OGSA) specifications , that provides seamless access

to distributed Grid resources. BPEL [Scherp 2010] and JSDL [Anjomshoaa 2005]

languages are used to describe Non-DAG abstract/concrete workflows in

UNICORE. JSDL is used to describe requirements of computational jobs for

submission to a specific resource. UNICORE has a resource broker which is capable

of distributing jobs to suitable target systems. In this process, specified resource

requirements of the job are compared to the target systems’ offerings for finding a

computing resource that fulfills the specified requirements.

The central component for job and data management inside UNICORE is

UNICORE/X. It consists of a Web service engine, and an execution management

system (XNJS) which handles the job execution and data management.

UNICORE/X offers data transfer using the OGSA random access ByteIO (a slower

but widely supported protocol) [Morgan 2005] and the baseline file transfer (a fast

HTTP based protocol). For data staging, GridFTP is supported [Rambadt 2008].

In Unicore, data can be integrated using user defined Gridbeans.

Fault tolerance in UNICORE is handled internally by the XNJS that can

recognize data movement, input availability, task failures and user defined

exceptions. To accomplish failure recovery, the XNJS is used to retry failed jobs on

the same resource.

Pegasus

Pegasus (Planning for Execution in Grids) [Deelman 2005, Lee 2008] is designed to

map abstract DAG workflows over a wide range of execution environment, including

a cluster, or a Grid. To avoid re-running of complex computations, Pegasus tries

to simplify the abstract workflow before mapping it into a concrete one. The

simplification process tries to reduce the abstract workflow by reusing a materialized

dataset which is produced by other users. However, the reduction process is not

based on data caching concepts. It is mainly based on logical file names defined in

the abstract workflow. In practical, this technique can be inefficient as users may

map their physical data to different logical representations.

22 Chapter 3. Related Work and Motivation for SWIMS

Pegasus proposes a just in-time planning based on its mapper component.

The planning process is based on several Grid information services: the Globus

Monitoring and Discovery Service (MDS) [Fitzgerald 2001] to discover available

compute resources, the Globus Replica Location Service (RLS) [Chervenak 2002]

to discover data locations, and the Transformation Catalog [Deelman 2001] to

determine where the application executables are installed. Pegasus includes four

basic scheduling algorithms based on information on the predicted execution

time of the tasks and data access as well as on information about the

resources: Heterogeneous Earliest Finish Time (HEFT) [Topcuouglu 2002],

min-min [Blythe 2005], round-robin, and random. Concrete workflows are

executed over the Grid through the centralized Condor’s DAGMan meta-scheduler

[Thain 2005] which submits jobs to Condor-G [Frey 2002] for execution. Pegasus

exploits a mediated approach for data transfer in which the intermediate data

generated at every step is registered in the RLS, so that input files of every task

can be obtained by querying the RLS. The remote data staging is based on the

GridFTP protocol [Rambadt 2008].

Fault handling in Pegasus is based on the capabilities of the Condor’s DAGMan.

In case of a job failure, DAGMan can retry it a given number of times or if that

fails, DAGMan generates a rescue DAG (based on checkpointing techniques) that

can be potentially modified and resubmitted at a later time. A rescue DAG simply

skips jobs that have completely finished.

Askalon

Askalon [Fahringer 2005a, Fahringer 2007] is a programming environment of Grid

Computing. Askalon’s workflows are translated into the Abstract Grid Workflow

Language (AGWL) [Fahringer 2005b], an XML-based language. The AGWL

representation is then sent to a WSRF-based runtime system for scheduling and

reliable execution on a Grid infrastructure.

The Askalon’s scheduler and the resource management system (GridARM)

components are responsible for mapping the abstract tasks specified in AGWL into

concrete one. The GridARM [Siddiqui 2005] is based on the Globus tools and serves

as a data repository which affords the scheduler with all information needed for the

scheduling process. The scheduler performs a full graph scheduling through one of

the implemented scheduling algorithms [Wieczorek 2005]: a genetic algorithm, the

HEFT algorithm, and a ”myopic” just-in-time algorithm.

The Askalon’s Enactment Service is responsible for the actual execution of a

concrete workflow. The Enactment Service is based on a distributed enactment

engine (DEE) [Duan 2005] that exploits a master-slave architecture model. The

master EE partitions the concrete workflow into several subworkflows which are

executed by the slave EEs. The master EE monitors the execution of the entire

workflow as well as the state of slave EEs. If a slave EE crashes, the master EE

reschedules its subworkflow. In the beginning of the execution process, the master

EE elects one of the salves as a backup engine. If the master crashes, the backup

3.1. Scientific Workflows Management Systems 23

becomes the master and continues the execution process. One clear drawback here

is that Askalon performs partitioning after the mapping step (i.e., on concrete

workflow). This means static mapping information is used within the created

subworkflows. Given the dynamic nature of Grid environments, this approach may

not be suitable. To solve this problem, Askalon attains optimizers to refine the

created partitions. However, the optimization process may introduce additional

overhead to the whole system.

The Enactment service provides fault tolerance on both task and workflow levels.

On the task level, retry and replication methods are used, while on the workflow

level checkpointing and workflow rescue techniques are used. Created checkpoints

are used only internally by the system to recover from failures. Therefore, Askalon’s

users will not be able to exploit them for smart re-run of their workflows.

Data in Askalon is transferred between different sites over the GridFTP protocol

[GridFTP 2011]. In addition, Askalon has introduced a domain oriented approach

[Qin 2008], for scientific workflow compositions, which tries to separate the concepts

of data meaning and data representation. In this way, data conversions between

different data representations are done automatically based on data semantics of

available data ports.

Swift

Swift [Zhao 2007] is a system, based on Globus services [Globus 2011], for the

specification, execution, and management of large scale scientific workflows. Swift

users can create abstract NON-DAG workflows, which can be scheduled for

execution by Cog Karjan [von Laszewski 2005] - a centralized execution engine.

Swift also integrates Falkon (Fast and Lightweight Task Execution) execution

framework [Raicu 2007], that provides support for efficient execution of large

numbers of small tasks in Grid environments.

Swift utilizes an adaptive scheduling strategy [Zhao 2008b] that assigns jobs to

Grid nodes that can potentially speed up computational analysis on Grids. Swift

uses a feedback system to determine the performance score of Grid sites while

scheduling. The adaptive scheduler uses a weighted random function to select

randomly a Grid site based on the site score. An optimization has been applied to

this strategy that incorporates data locality in Swift. Load balancing was mentioned

also as another optimization for the Swift system, nevertheless, it was not clear for

us how to enable this during our practical evaluation.

Data in Swift is transferred in a peer-to-peer fashion; however, Swift does not

provide any mechanism for automatic data transformation. To achieve reliability,

Swift provides a set of mechanisms to handle execution faults. If an application

execution fails, Swift will try to retry the failed job. Site selection will occur for

retried jobs in the same way that it happens for new jobs, which means that retried

jobs may run on the same site or on a different site. Swift’s users also can enable the

workflow rescue mechanism which will try to continue the execution of the workflow

after a task failure. If a complete run failed, Swift can resume the workflow from the

24 Chapter 3. Related Work and Motivation for SWIMS

point of failure through a restart log file, that will be created in case of a failure.

If the run completed successfully, the restart log file is deleted. Thus, we can’t

consider this feature as a complete checkpointing mechanism, which should allow

users to update the workflow and re-run it from any selected point even in case of

a successful execution of this workflow.

3.2 Scientific Workflows Workbenches

In this section, we focus on the client-side components (workbenches) of the selected

SWfMSs’. We study their abilities to support the system usability challenges

discussed in Section 2.4. The outcomes of this study are summarized in Table

3.2.

Taverna

Taverna provides a GUI-based desktop application (see Figure 3.1) that users can

use to construct concrete workflows. According to its concrete model, Taverna

relies on the user to make the choice of resources or services. Taverna in general

deals with DAG workflows while providing implicit iterations, which occur when a

process expects fewer inputs than it receives. However, T2.x has implemented a

limited form of a while loop construct to address a specific problem of interacting

with asynchronous services [Missier 2010], which accept a job request and expect

the client to check for result availability at some later time.

Figure 3.1: The Taverna Workbench

Security credentials in Taverna are handled through its Credential Manager that

manages user’s credentials and certificates required to access secured services.

3
.2
.

S
c
ie
n
tifi

c
W

o
rk

fl
o
w
s
W

o
rk

b
e
n
ch

e
s

2
5

Table 3.1: Comparison of Workflow Management Systems (SERC)

SERC Taverna 2.x Kepler Unicore Pegasus SWIFT ASKALON

Reliability
-Single engine
-No scheduling

-Single engine
-Distributed
execution
(User directed)
-No scheduling

-Single engine
-Single scheduler

-Single engine
-Single scheduler

-Single engine
-Single scheduler

-Distributed
execution
(Master-Slave)
-Single scheduler

Load
Balancing – – N/A N/A N/A N/A

Data
Movement mediated peer-to-peer peer-to-peer mediated peer-to-peer peer-to-peer

Automatic
Data
Conversion

N/A
-Common model
EML

N/A N/A N/A

based on
ontologies and
data semantics

Fault
Handling

-Task Level:
-retry
-alternate
resourc

-Wf Level:
-wf rescure

-Task Level:
N/A
-Wf Level:
-wf rescue

-Task Level:
-retry
-user defined
Exceptions

-Wf Level:
N/A

-Task Level:
-retry
-Wf Level:
-rescue
DAG

-Task Level:
-retry
(alternate
resource)

-Wf Level:
-wf rescure
-restart

-Task Level:
-retry
-alternate
resource

-Wf Level:
-wf rescure
-checkpointing

Checkpointing N/A N/A N/A
Fault
handling

Fault
handling

Fault
handling

Data
Caching

N/A N/A N/A N/A N/A N/A

26 Chapter 3. Related Work and Motivation for SWIMS

Taverna’s workbench keeps the user informed about the progress of their

workflows. Users also can interact with the running workflow in terms of stopping,

resuming, and canceling it, or inspecting / updating its intermediate results.

Taverna has also begun to share workflows through the myExperiment project

[myExperiment 2011] in order to make such workflows available to the community

as a whole. Meanwhile, through myExperiment, users can share only workflow

specifications; there is no available information for workflows’ execution history,

checkpoints, or error logs.

Taverna has no capability to expose workflows as Grid services. However, GRIA

infrastructure [GRIA 2009] provides tools for deploying and running T1.x workflows

as Grid services.

To avoid the execution of problematic workflows, Taverna can check the validity

of data types, input and output ports, and scripts involved in services. Taverna also

checks whether external Web services are online.

Kepler

Kepler provides a graphical user interface for composing and editing concrete

Non-DAG workflows. Users design the workflows using various workflow

components, known as actors. They have to determine the semantics of the

computation model through selecting a suitable Director which imposes an

execution order and communication mechanisms on the actors of the workflow; a

negative remark here is that selecting the correct Director can be a tedious process

for naive CS users. Kepler workflows can be nested, enabling workflow designers

to build re-usable, modular subworkflows that can be saved and used for many

different applications. Furthermore, Kepler workflows can be saved in an XML

representation (MoML) and later passed to Kepler for execution in the absence of

the GUI.

Figure 3.2 shows an example of a Kepler workflow that invokes an external Web

service and uses two composite actors as data transformation shims. As we can

see from the Figure; Kepler is based on a concrete model; users have to specify the

URL of the service’s WSDL file as well as the required method. Again, this is a

clear drawback from the system usability point of view.

Kepler’s Web and Grid service actors allow scientists to utilize computational

resources on the net in a distributed scientific workflow. Currently, Kepler supports

a variety of Grid-based systems, including GriddLeS [Abramson 2005], Globus

[Globus 2011], and other systems. As an example, to use Globus services, end

users need two X.509 certificates. The first one is the user certificate, which is

issued by a certification authority and is used to identify the user. The second

certificate is a proxy certificate, which is to support the temporary delegation of

the user’s privileges to use Grid services.

The ”Animate at Runtime” option in Kepler helps users to monitor the

execution of their workflows by highlighting the actor under processing. Meanwhile,

this command works only with the SDF Director. In principle, Kepler workflows

3.2. Scientific Workflows Workbenches 27

Figure 3.2: Kepler Sample Workflow

can be modified by users during execution, while in practical this can be applied just

on the top-level workflow’s defined parameters. In Kepler, users can not investigate

and modify intermediate results of a certain actor.

Kepler workflows can be exposed to an atomic actor using the Kepler

archive format (KAR). What is more; Kepler’s Component Repository provides a

centralized server where components and workflows can be uploaded, downloaded,

searched and shared with the community or designated users.

Unicore

On the top layer of UNICORE, a variety of clients is available, ranging from the

command-line interface named UCC, to the Eclipse-based UNICORE Rich Client.

The UCC is a command-line tool that allows users to access all features of the

UNICORE service layer in a shell or a scripting environment. It allows running

jobs, monitoring their status and retrieving generated output. Besides the UCC,

UNICORE provides a simple GUI (Rich Client) through which users can design

and execute their abstract/concrete workflows (See Figure 3.3).

Before accessing a UNICORE based Grid, each user needs to obtain a valid

X.509 certificate [OASIS 2005] which is issued by one of the certificate authorities

that the UNICORE servers trust. The client presents this certificate to the server

whenever he is asked for authentication.

During the workflow execution, the client displays the execution progress by

adding execution state icons to the nodes of the workflow graph. In addition, the

user may trace the workflow for finding out where his jobs were submitted.

28 Chapter 3. Related Work and Motivation for SWIMS

Figure 3.3: Unicore Rich Client

Pegasus

Pegasus’s abstract DAG workflows are represented in XML (DAX) format. The

DAX format lists the jobs that are to be executed, the inputs and outputs for

each of these jobs and the control and data flow dependencies between the jobs.

Pegasus’s users can generate DAX workflows either using a DAX generation API

(in Java, Perl, or Python) or by generating XML directly from their scripts.

Pegasus comes with a set of command-line tools that help users to submit and

monitor the progress of abstract workflows and to collect statistics and performance

profiles about these workflows.

Authentication in Pegasus is based on the Grid Security Infrastructure (GSI)

[Globus 2011]. Users are authenticated using their Grid security credentials. The

user first needs to save their proxy credential in the Globus MyProxy server.

My-Proxy is a middleware service which maintains user profiles, proxy credentials,

policies and preferences [Novotny 2001].

Askalon

In Askalon, users compose their abstract workflows graphically based on the Unified

Modeling Language (UML) standard [UML 2011] (see Figure 3.4). The created

graph is transformed to the AGWL representation which can express complex

workflow graphs containing loops and conditional branches.

Askalon’s workbench provides a comprehensive monitoring interface through

which the user can observe up-to-date various metrics, that characterize the

progress of the overall workflow execution.

3.2. Scientific Workflows Workbenches 29

Figure 3.4: Askalon’s Workbench

Authorization in Askalon is done via GSI [Globus 2011] and works in

coordination with the Globus My-Proxy [Novotny 2001]. The Grid sites are

registered by creating a local identity representing the community. This service

grants authorization to a user by verifying its access rights for a particular resource

ensemble and providing a restricted proxy credential to him.

Swift

Swfit’s users can create their abstract workflows’ specification through a C-like

scripting language (SwiftScript [Wilde 2011]). The SwiftScript language builds

on XDTM [Moreau 2005] to allow for the definition of typed data structures and

procedures that operate on such data structures. The SwiftScript implementation

uses mappers to access the corresponding physical data. It also supports arrays and

nested iterations. Listing 3.1 shows an example of a SwiftScript which illustrates

how SwiftScript utilizes a set of built-in mapping primitives that make a given

variable name refer to a file name. Although Swift is based on an abstract model to

hide its users from technical issues, we believe that it is a tedious process for naive

IT users to learn a new scripting language for modeling their scientific workflows.

For local execution of jobs, no Grid security configuration is necessary. However,

when submitting jobs to a remote machine using Globus Toolkit services, Swift

makes use of the GSI which requires a certificate/private key pair for authentication.

30 Chapter 3. Related Work and Motivation for SWIMS

Listing 3.1: SwiftScript Example

f i l e frames [] <f i l e s y s mappe r ; pattern=” ∗ . jpeg ”>;
f o r each f , i x in frames {
output [i x] = ro t a t e (f , 1 80) ;
}

During submitting a Swift workflow, the user can specify command-line

arguments to show either a graphical or text mode resource monitor which shows

the current state of the execution process.

3.3 Discussion and Motivation: The SWIMS

Framework

In the context of the comparison of the selected SWfMSs against the system

efficiency and reliability challenges which has been summarized in Table 3.1, we

can see the following:

1. The systems are based on a single scheduler and/or execution engine which

violates the reliability / scalability requirement. Kepler has provided an

attempt for distributed execution using the Master-Slave paradigm; however,

users have to initiate and manage this type of execution. Askalon provided a

more advanced distributed execution paradigm where its Enactment Service is

responsible for partitioning the concrete workflow into several subworkflows,

which can be executed by several enactment engines. However, it depends

on a single scheduler which is responsible for mapping the abstract workflow

created by the user into a concrete one before the execution process can be

started.

2. Some exiting systems still use the mediated approach for data transfer

(e.g. Taverna and Pegasus). Regarding data integration, automatic data

transformation between heterogeneous services has been introduced only in

Askalon while it has been partially supported in Kepler (limited to ecological

data) through exploiting a common data model (EML).

3. Fault handling techniques is still amateur in Kepler and Unicore.

Checkpointing has been applied as a fault handling technique in Pegasus,

Askalon, and Swift; on the other hand, users of these systems can’t make

benefit of the captured checkpoints to achieve ”smart re-run”.

4. Remaining requirements, including load balancing and data caching are not

supported by any of the compared SWfMSs.

3
.3
.

D
isc

u
ssio

n
a
n
d

M
o
tiv

a
tio

n
:
T
h
e
S
W

IM
S

F
ra

m
e
w
o
rk

3
1

Table 3.2: Comparison of Workflow Management Systems (SUC)

SUC Taverna 2.x Kepler Unicore Pegasus SWIFT ASKALON

Ease of
Use

-Structure:
DAG
-Model:
concrete
-Composition:
graph-based

-Structure:
Non-DAG
-Model:
concrete
-Composition:
graph-based

-Structure:
Non-DAG
-Model:
abstract/
concrete

-Composition:
graph-based

-Structure:
DAG
-Model:
abstract
-Composition:
language-based

-Structure:
Non-DAG
-Model:
abstract
-Composition:
language-based

-Structure:
Non-DAG
-Model:
abstract
-Composition:
graph-based
(UML)

Handling
Security
Credentials

X.509
certificates

X.509
certificates

X.509
certificates

Globus
My-Proxy

X.509
certificates

Globus
My-Proxy

Workflow
Monitoring

-Graphical Mode
-Graphical Mode
(SDF
Directory)

-Graphical Mode -Text Mode -Graphical Mode
-Text Mode

-Graphical Mode

Workflow
Steering supported

Workflow
parameters

N/A N/A N/A N/A

Workflow
Sharing

myExperiment
-Workflow
Source

Kepler
repository
-Workflow
Source

N/A N/A N/A N/A

Expose
Workflows as
Services

N/A KAR archives N/A N/A N/A N/A

Workflow
Validation

-Data types
-Scripts
-Services
availability

N/A N/A N/A N/A N/A

32 Chapter 3. Related Work and Motivation for SWIMS

Moving to the comparison of the selected SWfMSs against the system usability

challenges which has been summarized in Table 3.2, we can conclude the following:

1. Some of the evaluated SWfMSs are based on concrete workflow models

(Taverna, Kepler) which are too complex for scientists to construct and

manage even with the fact that such systems afford visual tools to construct

and manage their workflows. Other SWfMSs are more complex by not

providing a visual tool and requiring its users to learn a new scripting language

(SWIFT) / generation API (Pegasus). Askalon provides a visual tool for its

user in order to construct abstract workflows. This hides Askalon’s users from

unnecessary complexities. Nevertheless, Askalon has used UML to represent

their abstract workflows diagram, which is a computer terminology complex

to be understood and managed by non-IT experts.

2. For all evaluated SWfMSs, users have to manage X.509 certificates in order

to access secured Grid services. This can be a complicated process for naive

users with limited IT knowledge.

3. Workflow monitoring is a common feature for almost all available SWfMSs.

However, workflow steering was fully supported only in Taverna and partially

supported in Kepler (only for workflow parameters).

4. Sharing of workflows is possible in both Taverna (myExperiment) and Kepler

(Kepler repository); nevertheless, in both cases only workflow specifications

are shared between users without any execution information (output results,

error logs, etc.).

5. Exposing workflows as services and workflow validation features were limited

to Kepler (KAR archives) and Taverna respectively.

Based on the above discussion, we can argue that existing SWfMSs still lack

some key features, that are required to fulfill all mentioned challenges. In other

words, the evolving complexity of scientific applications needs to be reflected better

by introducing a SWfMS that is possible to provide a new decentralized execution

paradigm and other salient features, which can help to overcome these challenges.

In this sense, we have developed the SWIMS framework; a four layered

architecture (see Figure 3.5) for scientific workflows management and decentralized

execution [Shumilov 2008, El-Gayyar 2010, El-Gayyar 2009]. In the Workflow

Composition Layer, scientists should be able to create semantically annotated

abstract workflows. Annotations in the abstract workflow provide references to

a set of ontologies, which can be used in the next two layers to generate the

semi-concrete workflow which contains references to mediators required for data

transformations between heterogeneous services. The ”semi-concrete” here means

that workflows still lack execution information that will be obtained later during the

execution process. Mediators are created in the Mapping Layer, through semantic

matching and semantic mapping operations, and indexed in the Mediator Catalog

3.3. Discussion and Motivation: The SWIMS Framework 33

�� ����� ��	
	 �� �� � ��� � � 	
� �� � �
� �� ���� � �� �� �� � ��	� �� �� � �� �� ���� � 	���� ��� � �� �� �� �� � �� ��	 �� �� � �� ��� �� � �� � �� �� �� � � � ����
�� � � �
�����

�� �� �	
� �� ��
�	 �
�� ����� � � �� �� �� �
� � � �	
� ���	
	 ��

���� ��� ��� 	
 �� �� �� ��� ����� ���	
 �

�
� ��� ����
 �
 �� ��
 ��� ��	
 �
� �� �
 �� ���� ���	
 � �� �� ���� ����� ��� �� ���� ����� � �� �� ���� ����� ��	 �� � ��� �	 ��� � ��	�����

�� � ��
	� ��� � � �
� � � � ��� � � ����
� � ��
� ���� �
�	 �� ���� �	 ��� � ��	���� � � �� 	
� �� � �

���������	
	 ���������� �	
� � �	
�
�� � �� ��	 �� ��	� �� �

�	 �� � ��� �	 ��� � ��	���� �

Figure 3.5: Architecture of SWIMS Framework

[Leng 2009]. The semi-concrete workflow is then created in the third layer and

passed to the Workflow Execution Layer where it can be concretized and executed

in a decentralized fashion.

The mediators’ construction process is out of the scope of this thesis. In the

coming chapters, we are going to give more details about the features, design,

implementation and evaluation, of the workflow composition workbench (1st layer)

and the execution environment (4th layer). SWIMS provides a set of novel features

trying to overcome discussed challenges: i) support for distributed execution and

management of workflows, ii) full control over long running remote services, iii)

dynamic data transformation via generated mediators, iv) support for smart re-run

through data caching and checkpointing, v) distributed fault handling and load

balancing, vi) ease of use based on high level of abstraction, and vii) extensive

sharing of scientific workflows and capabilities for re-running and re-using them.

Chapter 4

SWIMS: General Design

Contents

4.1 SWIMS Architecture . 34

4.2 Mediator Catalog . 37

4.3 Workflow Catalog . 37

4.4 Service Catalog . 40

The SWIMS framework employs Web services technology to originate an

execution paradigm that ensures distributed management and execution of

data-intensive scientific workflows.

The goal of this Chapter is to introduce the overall architecture of SWIMS and

to highlight its main components. SWIMS components fall into three categories:

client-side components, server-side components, and global components accessible

by all servers and clients in the underlying Cyberinfrastructure. This Chapter also

discusses SWIMS’s global components in more detail. Server-side and client-side

components will be discussed in Chapter 5 and Chapter 6 respectively.

4.1 SWIMS Architecture

SWIMS is optimized to help scientists to efficiently construct, execute, monitor,

steer and re-use scientific workflows over the underlying Cyberinfrastructure.

Figure 4.1 presents the overall architecture of SWIMS. Mainly, it consists of a

client workbench [client-side components], several instances of WMS (Workflow

Management System) [server-side components], and three global Catalogs [global

components]. The SWIMS WMS component should be deployed on every

node wishing to participate in the workflow management and execution process.

Every WMS instance consists of four subcomponents: Scheduler, execution, node

management and data management.

To understand how all these components cooperate in order to provide a fully

distributed management and execution of scientific workflows, we present in Figure

4.2, the flow of the workflow management and execution process in SWIMS. In

general, SWIMS deals with services of two different levels of granularity: Concrete

services deployed on existing execution nodes and abstract services presented to

users in the SWIMS workbench. The SWIMS environment becomes aware of all

available concrete services through the WMS’s node management subcomponent

4.1. SWIMS Architecture 35

���������	
������� ����	���	����
����
������������

��������	
�
��	���

������������������
��������� ��� ��������������

�������������

�����	��
���

Figure 4.1: SWIMS Architecture

that monitors its underlying node and sends the information about available service

to the Service Catalog. This information is used by the SWIMS workbench to

construct the list of abstract services that can be used by users to build their

abstract workflow specifications. An abstract workflow specification is a set of

abstract services connected together through control and data flow dependencies.

Users can construct their abstract models either from scratch or starting from

a workflow template stored in the Workflow Catalog. SWIMS construct a new

workflow template for every execution of a new workflow model.

Whenever the user submits a workflow for execution, SWIMS elects a WMS

instance to act as the main scheduler of the submitted workflow (through its

scheduler subcomponent). The main scheduler is responsible for controlling the

order of the execution process in the way that ensures the data and control

dependencies defined in the workflow specifications. With the help of the Service

Catalog, it maps the abstract services to its corresponding concrete ones and selects

a certain node for the execution of every concrete service.

The execution of a submitted task is done by the WMS’s execution

subcomponent in an autonomic way. The execution subcomponent may need to

retrieve a data transformation mediator from the Mediator Catalog and apply it

on the input data before invoking the concrete service. In case of a failure, the

execution subcomponent makes use of its node local scheduler in order to find an

alternative node capable of executing the failed task; then, it transparently transfers

it to the selected node and sends an update information to the main scheduler ; it

also stores an error report about the failure in the Workflow Catalog.

36 Chapter 4. SWIMS: General Design

� � � � � � �� �� � 	
 � � � � �� � � ��� � 	
 � � � � � �� � �� � 	
 � � �

������������������
������������������
������������������

����

� �������
���
��� ���

���
� � ���	�
���
��������
� ����
� �� ����
����

��������� ��

� � �����������

��������������
���������������� ������������

���������������
���������������
���������������� ��������������

� �����������

���
�� � � ��	 �� ��	 �
�� � � ��	 �� ��� 	�
�� � � ��	 �� ��	 �

�������������
� ��������

�� ������ �� ������ ��

�� �������������

��

�� ��
�

�������� �
��

• ���������
�� ���
��

• �������
�

• !� ��� ���� �

• "��������������� �
��

• #��	� ���� ���

�� ����

�
�
��
��
�
�	

�
�
�

�
�
��
�
�
	

�
�
�

Figure 4.2: The Flow of the Workflow Management Process in SWIMS

After each successful execution of a task, the main scheduler stores a checkpoint

in the Workflow Catalog. This checkpoint holds a snapshot of the execution state,

and a provenance report generated during the execution of this task. Although

having a main coordinator for each workflow, SWIMS does not face the single point

of failure problem. As in SWIMS, in case that the workflow’s main coordinator

is down; the workbench transparently elects another WMS instance to continue

the coordination of the broken workflow starting from the last recorded execution

checkpoint.

SWIMS deals mainly with two types of concrete services: Web services and

Grid infrastructure (GRIA) services. The main reasons behind preferring GRIA

over other existing Grid middleware are the following:

• Flexibility: The GRIA architecture is flexible and can run jobs on a variety

of underlying computing platforms: single computers, clusters of workstations

or even supercomputers.

• Interoperability: GRIA software uses Web services interfaces and is, thus,

able to interoperate with other systems through these interfaces.

• Workflow support: GRIA provides JAVA API for clients that help

to integrate it into different workflow systems. As an example, GRIA

4.2. Mediator Catalog 37

has already provided a Workflow Plugin for XScufl workflows, that can

be executed using the Freefluo workflow enactment engine. Moreover,

GRIA provides a workflow deployer application that enables the automatic

conversion of a user supplied XScufl workflow into a GRIA application, which

is then automatically deployed onto a GRIA Job Service.

In the rest of this chapter, we will investigate the SWIMS’s three global Catalogs

in more depth.

4.2 Mediator Catalog

The Mediator Catalog stores a set of mediators required for data transformation

between heterogeneous services. A WMS’s execution subcomponent can make use

of these mediators during the execution process in order to transform the data to the

format required by the target concrete service. The retrieval of necessary mediators

and the data transformation processes run in the background without any form of

user interaction.

The mediators can be manually created or generated by a semi-automatic

system such as the Semantically Enriched Integration System (SEIS) . SEIS is

an ontology-based framework grounded from the work presented in [Radetzki 2004,

Radetzki 2006]. It tries to enhance the standard Web services technology with

semantics and annotations. SEIS generates the required data mediator through

a set of semantic matching and mapping operations over the WSDL files of the

two underlying heterogeneous services. It can ask for a user advice in case that it

can’t find an atomic transformation function which solves a certain heterogeneity

[Leng 2009]. SEIS also utilizes the Web services added annotations to provide a

semantic-enabled composition framework entitled SECPlanner [Leng 2010]. The

SECPlanner combines the AI Planning Graph technique with semantics enabled

matchmaking algorithm to find the optimal composition candidates of the available

services. What is important to be noticed here is that all mediators are created in

the composition phase; as a deduction, the construction of data transformation

mediators has no impact and doesn’t provide any overhead to the workflow’s

management and execution process.

Describing exactly how the mediators are generated and the details of the

SECPlanner are out of the scope of this thesis. However, we try here to emphasize

the main role of the Mediator Catalog in SWIMS, that acts as a central repository

for data transformation mediators that need to be created once and can be used

several times.

4.3 Workflow Catalog

SWIMS uses the Workflow Catalog to form a shared workspace between its users.

The Workflow Catalog uses an XML database to index execution snapshots of

38 Chapter 4. SWIMS: General Design

workflows executed over the underlying Cyberinfrastructure. Listing 4.1 shows the

Workflow Catalog’s database structure. It compromises a list of workflow entries.

Each workflow entry is identified by a workflow name and the name of the host that

has started the execution of this workflow.

Listing 4.1: Workflow Catalog XML DB Structure

Workflow Catalog = [Wf Entry] (e . g . ” gridexp7−mess i e r31 0 . 1 ”)
Wf Entry = [Execution Snapshot]
Execution Snapshot = [workflow xml , [Subworkflows] , data dependenc ies ,

cont ro l dependenc i e s , [Checkpoint]]
Checkpoint = [subworkflow xml , executed subworkf lows IDs ,

provenance report , e r r o r r e p o r t]

Every time a workflow is executed, a new execution snapshot is added into its

corresponding workflow entry. Hence, there is a high probability that the user

may change the workflow model from one execution to another, each execution

snapshot stores the workflow’s XML source. As we are going to see later, the

SWIMSWMS breaks a submitted workflow into a set of subworkflows, submits them

for execution over available nodes, and creates a checkpoint for every successfully

executed subworkflow. Accordingly, an execution snapshot stores a list of the

generated subworkflows, the data and control dependencies between them and a

list of the constructed checkpoints.

Each checkpoint holds three to four documents. The first document represents

the subworkflow XML. The second document lists the identifiers of the already

executed subworkflows until this checkpoint; this document helps the system to

re-start the execution of a workflow from a certain checkpoint. The third document

holds the provenance information collected during the execution of the checkpoint’s

subworkflow. Listing 4.2 provides an example of a provenance report. It consists

of three sections; the first section gives information about the execution host. The

second section provides details about the subworkflow itself, including a list of its

activities, its input references, and its output references. Last but not least, the

third section focuses on the execution runtime information. A fourth document

(error report) is added in case of an execution failure.

Due to limited disk space, each workflow entry can store only a limited number

of execution snapshots as specified in the Workflow Catalog configuration file.

Whenever we reach this limit, a new execution snapshot will replace an old one

according to the following rules:

• If there is more than one execution snapshot with the same workflow model:

• Replace the one with the least number of checkpoints

• Otherwise replace the oldest execution snapshot

4.3. Workflow Catalog 39

Listing 4.2: Example of a Provenance Report

<provenanceReport>
<host>

<ipAddress>131 . 220 . 149 . 73</ ipAddress>
<noOfCPU>4</noOfCPU>

<cpuSpeed>2 .40 GHz</cpuSpeed>
<memorySize> 2 .0 GB </memorySize>

<a r c h i t e c t u r e>x86</ a r c h i t e c t u r e>
<operat ingSystem>Windows XP</ operat ingSystem>

</ host>

<t a s kDe t a i l s>
<a c t i v i t i e s>

<a c t i v i t y>mBackground1</ a c t i v i t y>
</ a c t i v i t i e s>
<inputs>

<InputReference InputName=”mProjectPP1 outputProjectedImage ”>
h t tp s : //131 .220 .149 .169/ s e r v i c e s /DataService#035c1529 − . . .

</ InputReference>
<InputReference InputName=”mBgModel correctionsTbl ”>

h t tp s : //131 .220 .149 .167/ s e r v i c e s /DataService#035c1527 − . . .
</ InputReference>

</ inputs>
<outputs>

<OutputReference OutputName=”mBackground1 outputCorrectedImage”>
h t tp s : //131 .220 .149 .73/ s e r v i c e s /DataService#035c15c9 − . . .

</OutputReference>
</ outputs>

</ t a s kDe t a i l s>

<executionTime>
<executionStartTimeStamp>2011/02/23 12 : 1 9 : 0 7</ executionStartTimeStamp>
<cachingTime>0</cachingTime>
<executionTime>10734</ executionTime>
<totalTime>10734</ totalTime>

</ executionTime>
</provenanceReport>

Providing such a type of information in a global Catalog allows scientists to

re-use previously designed workflows as a template for creating new ones, or to

re-run an experiment from a certain checkpoint, or even to analyze the workflow’s

provenance information for better understanding of its final results. It also helps

us to avoid the single point of failure problem and to support the distributed

management of workflows, since when a WMS instance, responsible for coordinating

the execution of a workflow instance, fails, another WMS instance can use the

information stored in the Workflow Catalog to continue the coordination of the

broken workflow starting from the last captured checkpoint.

Along with the workflows’ execution snapshots, we have decided to employ the

Workflow Catalog as a global cache repository. Data caching entries are stored

40 Chapter 4. SWIMS: General Design

in the ”SWIMSCache” collection within the Workflow Catalog’s XML database.

Each document in this collection represents a cache entry for a successively running

subworkflow. The document size is rather small as we are not caching the

real subworkflow’s outputs, but we are just caching their references. For more

information about data caching, refer to Section 5.6.4.

4.4 Service Catalog

The Service Catalog [Markgraefe 2010] plays an important role in the workflow

management and execution processes in SWIMS. It provides four major

functionalities that help SWIMS to shield its users from the complications of the

underlying systems:

1. Indexing of concrete services

2. High level of abstraction

3. Double-layer security

4. Statistics gathering

Figure 4.3 shows the overall architecture of the Service Catalog and its database

relational model. The Service Catalog interface allows three different classes of

functionalities:

• Service Management: server addition/up, server deletion/down, service

addition, service deletion, and updating statistics.

• Service Search/Retrieval: retrieving of all available services, retrieving of all

available services for a certain user, and searching by keyword.

• User Management: add user, delete user, update user, and assign roles for

users.

The Service Catalog keeps track of all available concrete services (Web services

and GRIA services) in the underlying Cyberinfrastructure. The availability of

services is a major problem for all index services. The study presented in

[Al-Masri 2008] investigated the distribution and characteristics of the available

Web services on the Web. This study had used a Web Service Crawler Engine

(WSCE) , a crawler that is capable of capturing service information from UDDI

[UDDI 2004] registries and search engines (e.g. Google, Yahoo, etc.). An intriguing

result of this study was that only 63% of the available Web services on the

Web are considered to be active. SWIMS tries to avoid this problem and to

ensure up-to-dateness by utilizing the WMS instances deployed in every Grid

node. The WMS instance keeps monitoring the underlying node for services

deployment/undeployment or system shutdown/startup, sends notifications to the

Service Catalog in order to update its status.

4.4. Service Catalog 41

���������	��
�����	�

����	����

���������

�����	��

����������

�����

����������

����	��

����������

����	��

����������
����������

���������	��

������

��������
��������	��

���������

�����

�		� ���

������	����

���	����

���������	
	���	
	�	��
(a) Overall Architecture���������������������������	
�������
��������������������������������������
���������������	�
���
�����
���� ���	

�����	���������
�����������
�����������������������������������

��������������������������������������
����������������������� �������������� ����������������� ����������������� �����������������������������

������������
�����
����
������
���������� �
� � �� �

�
�

�
� � ��

�
(b) Database Relational Model

Figure 4.3: The Service Catalog Architecture and the Database Model

Upon receiving a server failure or a shutdown notification, the Service Catalog

assumes a temporary failure and does not delete the concrete services provided

by this server; it only switches their status to offline and sets their offline time.

The watchdog component in Figure 4.3(a) is responsible for handling these offline

42 Chapter 4. SWIMS: General Design

services. It is a background program responsible for cleaning up and maintaining

the Service Catalog. The watchdog runs in fixed periods (as stated in the Service

Catalog’s configuration file in days). In each run, it performs two tasks:

• Removal of services being offline for a certain period (configuration

parameter)

• Ensuring the availability of all other services and switching the status of

non-available services to offline.

In case of obtaining a deployment of a new concrete service notification, the

notification either holds the WSDL [WSDL 2001] file (for Web services) or the job

meta-data file for GRIA jobs. To achieve a high level of abstraction, The Service

Catalog is accountable for parsing the attached file to construct an abstract template

(e.g. Listing 4.3) for every GRIA job service or for every operation provided by a

Web service. The template provides an abstract description of the interface of its

task that isolates the workbench/user later from any technical details. The abstract

template is obtained by applying an XSL transformation [XSLT 1999] over the

obtained file. Appendix B shows the XSL transformation for the GRIA job service’s

meta-file as an example.

Listing 4.3: Abstract Template for a GRIA Job Service

<Act iv i ty name=”mConvert” type=” g r i a ” secured=” f a l s e ”>
<d e s c r i p t i o n>
reduce the s i z e o f a FITS f i l e

</ d e s c r i p t i o n>
<inputs>

<input name=” inputImage” type=” f i l e ”>
<de s c r i p t i o n> . . .</ d e s c r i p t i o n>
<MimeType>image</MimeType>

<input>
</ inputs>
<outputs>

. . .
</ outputs>
<parameters>
<parameter name=” l e v e l ” type=” s t r i n g ”>

<al lowed>1</ al lowed>
. .

</parameter>
</parameters>

</Act i v i ty>

Another annoying hassle for users of workflow management systems is handling

security credentials in order to be able to access secured Grid services. For example,

GRIA security is based on the WS-I 1.0 Basic Security Profile[WSI 2007]. Security

in GRIA is ensured using a PKI infrastructure based on the X.509 standard

[OASIS 2005]. A normal GRIA client will need to create a private key and a

4.4. Service Catalog 43

������� �������
	
�� �����

�������
���������
����������������

���������
����������������

����������	
������
��������������
� Security based on
X.509 certificates

Figure 4.4: Double-Layer Security in SWIMS

certificate for every GRIA server. The certificate needs to be signed by a Certificate

Authority trusted by the service providers. This seems to be a complicated process,

especially for naive users with limited IT knowledge. SWIMS tries to hurdle the

security issue by applying a double-layer security model as shown in Figure 4.4. The

first layer defines the security between a user and the SWIMS system that is based

on a simple user name and password that have to be defined only once. The second

layer represents the security between the SWIMS system and different Grid sites (in

our case GRIA servers) based on X.509 certificates automatically generated by the

WMS instances deployed on the corresponding servers. The security information is

stored and become accessible to all other nodes through the Service Catalog. The

administrator of every node should be able, through a simple web-based interface,

to classify the node’s available services to public and private services, and to assign

access roles from the list of available users to their private services. A SWIMS

user will be able to execute workflows that contain only public services and private

services that have been assigned as accessible to him. By using this approach, we

attempt to move the security complications from users to server administrators who

in most cases have enough IT knowledge to handle them.

Another important functionality of the Service Catalog is to collect static

information (OS, architecture, and number of CPUs) as well as a set of statistics

about every available server. For SWIMS, the most important statistics are the

number of successfully executed tasks (NSET) and number of failed tasks (NFT).

These statistics are collected through notifications received from the WMS server’s

44 Chapter 4. SWIMS: General Design

component and used to compute the server reliability factor (SRF) (see Equation

4.1); this factor can be used afterwards by a scheduler to select the best node for a

given task (see Section 5.4.2).

SRF =
NSET

NSET +NFT
(4.1)

��������

�	
	����

��������

�	
	������

��������

�	
	�����

������

� � �
�� �

��������

�	
	����

��������

�	
	������

��������

�	
	�����

��		
���

��������
(a) Rollback the Failed Update

��������

�	
	����

��������

�	
	������

��������

�	
	�����

������

� � �
�� �

��������

�	
	����

��������

�	
	������

��������

�	
	�����

������

��������
(b) Block the Inconsistent Instance

Figure 4.5: Methods of Keeping Several Service Catalog Instances Consistent

As far as we can see, the Service Catalog forms the heart of the SWIMS

environment as it provides awareness about all available servers and concrete

services within the underlying Cyberinfrastructure. Thus, it is highly recommended

to maintain more than one instance of the Service Catalog in order to avoid a single

point of failure and bottleneck problems. The system administrator can add a new

instance by simply adding its URL in the configuration file of one of the available

instances. This information and all other updates are forwarded to other instances

based on publish and subscribe notification events supported by the Web Services

Notification (WSN) framework [WSN 2006] . The administrator also has to specify,

in the configuration file, one method to handle errors in instances’ updates. This

helps to keep all working instances consistent. As shown in Figure 4.5, SWIMS

provides two different methods:

• Rollback: In this method, the master instance (the instance which has

obtained the update notification) sends a rollback notification to all other

instances in order to roll back the failed update.

• Blocking: In this method, the master instance sends a blocking notification

to all instances (including the blocked instance) to block the un-updated

4.4. Service Catalog 45

instance and avoid using it for further queries. Whenever a blocked instance

receives a query from a SWIMS client, it forwards it directly to a working

instance.

In both cases, the failure is logged and a notification is sent to the administrator

to maintain the inconsistent instance and to make it available again. A SWIMS

client needs to be aware of at least one Service Catalog instance before being able

to execute workflows over the underlying infrastructure. Afterwards, the client will

automatically receive information about other available instances.

Summary

In this Chapter, we have presented the overall architecture of SWIMS. SWIMS

has been designed to enhance the scientific workflow management and execution

processes and to shield its users from technical complexities of these processes.

SWIMS’s components can be classified into three classes: server-side, client-side,

and global components.

Furthermore, we have discussed the SWIMS’s three global components in detail.

First, the Mediator Catalog stores data transformation mediators necessary for data

transformations between heterogeneous services. Second, the Workflow Catalog is

used to index checkpoints and provenance information of workflows executed over

the underlying Cyberinfrastructure. Finally, the Service Catalog keeps track of

all available services in the underlying Cyberinfrastructure; moreover, it provides

additional functionalities that help to handle security, abstraction, and scheduling

issues in SWIMS.

Chapter 5

SWIMS Server Side

Contents

5.1 Language for Representation of the SWIMS’s WMS

Components . 47

5.2 Data Management WS-Resource 49

5.3 Node Management WS-Resource 51

5.4 Scheduler WS-Resource . 52

5.4.1 Workflow Partitioning . 53

5.4.2 Planning . 56

5.4.3 Workflow Steering . 59

5.5 Execution WS-Resource . 60

5.5.1 Provenance Information . 62

5.6 Optimization . 63

5.6.1 Code Movement - Node Management Resource 63

5.6.2 Tailoring the Service Behavior - Node Management Resource 66

5.6.3 Clustering - Scheduler Resource 66

5.6.4 Global Data Caching - Execution Resource 70

5.6.5 Distributed Fault Handling - Execution Resource 70

5.7 Fault Handling in SWIMS . 71

In the last Chapter, we presented the overall architecture of SWIMS and

discussed its global components. This Chapter focuses on SWIMS’s server-side

components: The WMS (Workflow Management System) instances. To simply the

design and the implementation of the WMS, we decided to break it into four major

subcomponents: Scheduler, Node Management, Data Management and Execution

as shown in Figure 5.1.

Each WMS’s subcomponent can be realized as a Web Service Distributed

Management (WSDM) [WSDM 2006] based service, which controls a set of

manageable resources. Every server node in the underlying Cyberinfrastructure

needs to deploy one or more of these subcomponents according to its planned role

in the workflow management and execution processes:

• Workflow coordinator: It has to deploy at least the Scheduler

subcomponent.

5.1. Language for Representation of the SWIMS’s WMS Components47

• Workflow executer: It has to deploy the Node Management, Data

Management, and Execution subcomponents. In this case, it is highly

recommended to deploy the Scheduler subcomponent as well that helps to

achieve distributed fault handling as shown later in Section 5.6.5.

• Workflow coordinator and executer: It has to deploy all subcomponents.

This Chapter starts with an introduction to the WSDM specification used to

implement the different components of the WMS, and then it discusses the main

functionalities of each WMS’s subcomponent in detail.

5.1 Language for Representation of the SWIMS’s

WMS Components

Before deciding which technology or standards we are going to use for implementing

the WMS’s four subcomponents, we have stated a set of requirements that ensure

the system flexibility and scalability:

1. Interoperability: The subcomponents should be cross platform.

2. Manageability: It should be easy to manage the subcomponents as well as

other resources used by them.

3. Communication: Easy and robust communication is required between

the subcomponents themselves and between the subcomponents and other

SWIMS’s components.

4. Low overhead: The WMS should not need massive hardware requirements.

In addition, it will be great if its subcomponents are created only when it is

needed and released after the completion of its task.

The WSDM specification seems to be a good candidate for achieving these

requirements. The WSDM specification is based on the Web services platform

and uses open standards to define the methods, structure, and specification of a

system for managing different type of resources (e.g. in our case, we are using it to

manage a scheduler, a workflow execution engine, a workbench, GRIA servers, and

databases). It provides also capabilities for managing Web services used to support

the functionality of these resources.

TheWSDM specification is made up of two different specifications. Management

Using Web Services (MUWS)[MUWS 2006a, MUWS 2006b] and Management Of

Web Services (MOWS)[MOWS 2006] . While the former specifications lists out

what it takes for a resource to be uniformly accessed and managed through a Web

service endpoint, the latter allows a Web service endpoint itself to be treated as

a WS-Resource. Once a resource is identified as an MUWS manageable resource,

it is accessible through a manageable endpoint, which is typically a Web service

endpoint [Kreger 2005]. WSDM relies directly on other standards:

48 Chapter 5. SWIMS Server Side

���������
	
���

��������

���

��������
�������
��������� �	

���������

��������	
��	 ��������	
��	 ��������	
��	 ��������	
��	��������	
���������������	�
������
��������	�
������

��������������	�������
����
	����

��������	
��	
���� ��
��	��

Figure 5.1: SWIMS WMS Services.

• WS-I Basic Profile [WSI 2006]

• WS-Resource Framework (WSRF) [WSRF 2006] for the properties and

description used to define the capabilities of the WS-Resource.

• WS-Notification (WSN) that defines a set of specifications that standardize

the way Web services interact using ”Notifications” or ”Events”.

• WS-Addressing [WS-Addressing 2006] for service references and to define the

endpoints for individual services.

For the implementation of the SWIMS WMS’s subcomponents, we are using

the Apache Muse Project [Apache 2007]. Muse is a Java-based implementation

of the WSRF, WSN, and WSDM specifications. It is a framework upon which

users can build Web service interfaces for manageable resources. Applications built

with Muse can be deployed in both Apache Axis2 and OSGi environments, and the

project includes a set of command line tools that can generate the proper artifacts

for your deployment scenario. In Muse, you can even create or release instances of

a WS-Resource programmatically.

Now coming back to our requirements, we can clearly see that WSDM

specifications accomplishes all of them. The interoperability requirement is

attained through the fact that the WSDM standard uses Web services as a

platform which means that you don’t have to worry about the technicalities of

5.2. Data Management WS-Resource 49

platform independence. The second and the fourth requirements are met by the

WSDM two specifications: The MUWS and the MOWS. The MUWS helps us to

manage available resources, while the MOWS facilitates to reduce the overhead

by allowing us to create and release instances of these WS-Resources at runtime.

Concerning the communication requirement, as we can see from Figure 5.1, WSDM

supports two communication strategies: Synchronous communication that can

be achieved through the WS-Resource’s manageable endpoint, and asynchronous

communication based on events supported by the WSN framework. These

two strategies afford seamless communication between all SWIMS’s components,

including the global Catalogs since they are implemented also as WS-Resources.

5.2 Data Management WS-Resource

� ����������� 	
� �������	
�

� ����	������
����� ������� 	
 �������	��������� �����	
������� ���

����������������� 	
�� 	
 ������ 	
� �� ������	
�������	
�

� ��������
���� 	�����	
 �	
��� �����
��� �����	
�������	
�

� �!�����
���� �� 	�

�������� ����	
	��

Figure 5.2: Data Management WS-Resource Interface.

The Data Management WS-Resource (DMR) is dedicated to reference-based

data movement, and automatic data transformation between heterogeneous

services. The DMR is based on the Open Grid Service Architecture-Data Access

and Integration (OGSA-DAI) , an open source middleware which allows data

resources (e.g. relational or XML databases, files) to be federated and accessed

via Web services on the Web or within Grids or Clouds. Via these Web

services, data can be queried, updated, transformed and combined in various ways

[OGSA-DAI 2010, Antonioletti 2007].

In SWIMS, output data is stored in a local eXist-db [Meier 2010], an open-source

database management system built using XML technology. The OGSA-DAI wraps

the XML database and provides external access to it as a Web service. Figure 5.2

presents the public interface for the DMR which reflects two basic functionalities:

1. Storage of output data: SWIMS tries to reduce the amount

of data transferred within the underling Cyberinfrastructure

through utilizing reference-based data movement. This can be

achieved by creating an OGSA-DAI reference for every output

stored in the XML database. The reference follows the format

”ogsadai service url@collection name:document id” that consists of three

parts; the first part is the URL of the OGSA-DAI service located on the

source node; the second part is the collection name in the XML database

50 Chapter 5. SWIMS Server Side

��������	
���������������������������� ������������������������
�����������������
��� �����������	
� ����
����

���	������ !����"�#	�������������������"�#����$���
�����������������
������	�������������������

�� ������
����#����$���������%���&�����
������������	

����' !���
���&��#�
���"��(�	������� ������������� �	�	 ��!�

Figure 5.3: OGSA-DAI Workflow for Data Transfer and Transformation.

where the output document is stored, and the third part is the id of the

required document. This reference is detected and used to retrieve the data

by the Execution WS-Resource (ER) instance (see Section 5.5).

2. Data transfer and transformation: The DMR runs an OGSA-DAI

workflow obtained from an ER instance (see Section 5.5) to retrieve the

requested data from the database, apply required transformation if it exists,

and transfer the transformed data to the target node. Figure 5.3 provides

a graphical representation for such an OGSA-DAI workflow. The first

OGSA-DAI activity in the workflow enacts an XPath expression [XPath 1999]

over the local eXist database to retrieve the specified output document.

The output from this activity is a series of character arrays known as a

ResourceSet, a container for a set of resources. Therefore, the next activity

applies a simple XSL transformation over the output to retrieve the original

document. Then, the mediator’s embedded data transformation activities are

applied over the data. Finally, the transformed data is written to a data sink

on the target node.

Besides these functionalities, the DMR’s interface allows SWIMS to create a

5.3. Node Management WS-Resource 51

new DMR instance only when it is needed. Such instance can be destroyed later

through the shutdown method. Furthermore, to help the data caching process and

to avoid unnecessary data movement (see Section 5.6.4), it provides the capability

to compute the SHA-2 digest [SHA-2 Standard 2002] of an input stored locally in

its underlying Grid node.

5.3 Node Management WS-Resource

���������	
������� ���

����
������������ ����

����������� ��	���

�������	���������	���

���������	
�	����

������������	���������	������ �����	���!��������������"����#�����	��������������

������$��	���������	�������%��&�	����� ����	��������������

������$'�	%&��(�)	����	��������(�	%&��(*+#�����	��������������

������������

����,	��-�%����������������

����,	���$+���	$�����������

���������	�������.�%����� ���

����	��������	�������.�%���������

�	����������	�������.�%���������

����������	
�	����

Figure 5.4: Node Management WS-Resource Interface.

The Node Management WS-Resource (NMR) helps SWIMS environment to be

aware of existing concrete services without any type of required user interactions.

It continuously runs in the background in order to monitor the underlying node

trying to keep track of concrete services deployment/undeployment or system

shutdown/startup. It notifies the Service Catalog about any detected changes

helping it to keep its state up-to-date.

Along with updating the Service Catalog functionality, the NMR’s public

interface, shown in Figure 5.4, provides other important functionalities for the

SWIMS environment:

1. Support scheduling: The NMR provides the capability to retrieve

information about Grid nodes involving both relatively static information

(such as system configuration) and more dynamic information (such as

instantaneous load). This information is used by the scheduler in order to

determine which Grid node is suitable for a given task according to the task

specific requirements. The task’s requirements can be annotated in the task’s

description or manually specified by the user during the workflow composition

phase. To be more flexible, the NMR allows the subscription for a dynamic

resource state (memory, disk space, etc.), whenever the state is met, the NMR

notifies all subscribers.

52 Chapter 5. SWIMS Server Side

2. Deploying workflows as Grid services: The NMR takes advantage of the

GRIA Workflow Deployer Application that enables the automatic conversion

of a user supplied XScufl workflow [XScufl 2004] into a GRIA application.

This tool is responsible for generating GRIA application wrapper scripts

and other requisite files from a given workflow which are then automatically

deployed onto a GRIA Job Service. The deployment process can be invoked

through the SWIMS workbench (see Section 6.3.3).

5.4 Scheduler WS-Resource

�����������	
������
�����������������	��������������

������������	
����������

����	
���������������������������������� �������������!���"��� ������������!��	

����	
��#���������������������$�%�� �������� �����&��
������������'��������� ���������(����$�%���������� �������������!���"��� ������������!��	

������
)������������
)������������������������������

���
������ !��	

���
%������!��	

�
�	������������!��*$�%�� �������� ����
�	���	+),���-*�������� ����
�	���	+),���$�%���������� �������.��
�� ������������)������

��
�	�������� !��	

/0�
)��������0�&��
����0������	0�!������1$�%�

/0�
)��������0�&��
����0#�%�����	0�!������1$�%�

/0�
)��������0�&��
����02����	0�!������1$�%�

/0��������0(�
�	0�!������1$�%�

/0��������0��
%�	0�!������1$�%�

������������	
��

Figure 5.5: Scheduler WS-Resource Interface.

The Scheduler WS-Resource (SR) helps to coordinate, monitor, and steer the

execution of an abstract workflow. These functionalities are provided through

its public interface shown in Figure 5.5. A new SR instance (workflow’s main

scheduler) should be created by a client wishing to submit a workflow for

execution. The submitted workflow can be represented by a directed acyclic

graph(DAG) G = (T,E). T = {ti, 1 6 i 6 |T |} is the set of workflow tasks

(abstract services) where |T | denotes the number of tasks. The workflow’s tasks are

connected to each other through a set of edges E = {ei,j =< ti, tj >, 1 6 i, j 6 |T |}.
An edge ei,j indicates that tj can’t start before ti is completed due to either data

or control dependency.

The SR instance follows the lifecycle presented in Figure 5.6 to coordinate

and monitor the execution of the submitted workflow. First, the SR breaks

the submitted workflow into a set of abstract subworkflows and constructs the

control and data dependencies tables that reflect the hierarchy of the constructed

subworkflows. After partitioning the workflow, the SR performs the initial

checkpointing phase by adding an ”execution snapshot” entry for the submitted

workflow in the Workflow Catalog (see Section 4.3). At the same time it maps ready

for execution subworkflows (according to dependencies tables) onto computational

Grid nodes. For each mapped subworkflow, the SR creates a new Execution

WS-Resource (ER - see Section 5.5) instance on the Grid node selected during the

5.4. Scheduler WS-Resource 53

Schedule
Abstract
workflow

Workflow
Partitioning����

�����������	�
�������
Checkpointing

I��	�������	����������	���	���������	����	���	�����	������������	��������	�	� ���������	�����	��	�
������	��������	�	���	����	���	�����	������������	������Planning
��������	�
��

Submit &
Monitoring

Checkpointing
II

Update
Dependencies

��������� �	
�������
��

���������� �
Fault Handling

�������� ����	�����

Figure 5.6: Workflow Scheduling Lifecycle [UML 2011]

planning phase and submits the subworkflow to it for execution. For monitoring

purposes, the SR subscribes itself to the execution status events produced by the

constructed ER instance. Once receiving an ”execution completed” event, the SR

executes the second checkpointing phase in which it inserts a ”checkpoint” entry

in the Workflow Catalog. Meantime, it updates the control and data dependencies

tables, then it returns to the planning phase for mapping subsequent subworkflows.

In case of a failure, the SR tries to recover from the error and then switches back to

the planning phase. This process is repeated until all subworkflows are successfully

executed or an unrecoverable error occurs.

In the following subsections, we are going to discuss the workflow partitioning,

and planning phases in more details. Likewise, we are going to introduce the

workflow steering capability provided by the SR.

5.4.1 Workflow Partitioning

To overcome the scalability as well as the single point of failure problems, SWIMS

utilizes several workflow enactors and schedulers to attain distributed management

and execution of scientific workflows. This can be achieved by partitioning a

submitted abstract workflow into a set of subworkflows. These subworkflows should

be distributed among several engines (ER instances) which can communicate with

each other in order to transfer data based on their provided references.

54 Chapter 5. SWIMS Server Side�������� ���������������	�������

�������� ��������

�������	 �������

������ ������ ������

��������������� ����������������	�������� ���������������� ��������
�������	

(a) Single Remote Service per Subworkflow

������� �������������	
�������

������

��������

������� ������

������� �������������	

������������� �������������� �������������
��������

�����������������������

�������� ��������
��������

�������	 �������

���������

�������� ��������
����������������

�������	 �������

(b) Consider Parallel Paths

Figure 5.7: Workflow Partitioning

5.4. Scheduler WS-Resource 55

Examples of workflow partitioning in SWIMS are presented in Figure 5.71. Our

main partitioning criterion is that every subworkflow should have only one remote

task (e.g. Web services or Grid services) as shown in Figure 5.7(a). This helps

SWIMS to submit each subworkflow to an ER instance located on the same Grid

node where the remote task is located. As a result, the ER will have full control

over the task’s execution. In all cases, the partitioning algorithm tries to identify

and make use of independent paths in the graph to form subworkflows that can run

concurrently on different ER instances (see Figure 5.7(b)).

Algorithm 5.4.1: partitionWorkflow(wf : workflow)

comment:Constructs a list of subworkflow from a given workflow

procedure partitionWorkflow(WF : workflow)
subworkflowsList← ∅
while ∃ unassigned tasks

do

for each t ∈WF
do if t is unassigned and parents(t) are assigned

then

S ← empty subworkflow
populateSubworkflow(S, t)
addInputsToSubworkflow(S,WF)
addOutputsToSubworkflow(S,WF)
subworkflowsList← subworkflowsList ∪ S

creatDataDepedenciesTable(WF)
createControlDependenciesTable(WF)

procedure populateSubworkflow(S : subworkflow, t : task)
if t is assigned
then return

if isRemote(t) and containsRemote(S)
then

{
return (i)

S ← S ∪ t
Mark t as assigned
if number(children(t)) > 1
then

{
return (ii)

c← child(t)
if parents(c) ⊂ S
then

{
populateSubworkflow(S, c) (iii)

1Local tasks are tasks, which can be executed by the execution engine itself, e.g. data encoding
tasks.

56 Chapter 5. SWIMS Server Side

The pseudo code of the partitioning algorithm is shown in Algorithm 5.4.1,

the algorithm goes through the tasks in the submitted workflow, creates a new

subworkflow starting from a superior task. A superior task is a task with no

parents or all its parents have already been assigned to other subworkflows. For

every created subworkflow, the algorithm adds a set of workflow inputs and

workflow outputs according to the data dependencies between its assigned tasks

and other tasks revealed from the original submitted workflow. After building all

subworkflows, the algorithm generates the data and control dependencies tables

which reflect the relationship between the generated subworkflows. The data

dependencies table is constructed from the relationship between the generated

inputs and outputs in each subworkflow while the control dependencies table is

built from the original control dependencies defined in the submitted workflow.

That is to say, the generated dependencies reflect the original dependencies in the

submitted workflow.

A subworkflow is populated starting from a given task, stretching downwards to

its children while preserving our partitioning criteria (single remote task) through

Statement (i). To identify parallel paths in the workflow, we try to detect two of

the scientific workflows’ basic structures: data distribution and data aggregation

structures [Bharathi 2008]. The output of a data distribution task is consumed

by multiple child tasks. Statement (ii) forces the algorithm to stop populating

a subworkflow whenever it discovers a distribution task. A Data aggregation task

aggregates and process the outputs of several parent tasks. An aggregation task will

be added only if all its parents have already been added to the current subworkflow
2 (Statement (iii)).

5.4.2 Planning

In general, the goal of the planning process is to translate abstract workflows

into concrete workflows by mapping the workflow’s abstract services into concrete

ones. Workflow planning has two different schemes: static scheme and dynamic

scheme [Yu 2005]. In a static scheme, tasks are mapped to resources before

starting the execution process according to current information about the execution

environment; while the dynamically changing state of the resources is not taken into

account. A static planning may produce a poor schedule, since Grids are dynamic

environments where utilization and availability of resources varies over time. In

contrast, a dynamic scheme postpones the mapping of each task until its execution

time. In this manner, the mapping process is more adjustable to the dynamic nature

of Grid environments. Thus, we have decided to utilize a dynamic (just-in-time)

planning schema in SWIMS.

First of all, the scheduler determines which subworkflows are ready for execution

according to the data and control dependencies tables. For each ready subworkflow,

the scheduler identifies its remote task (abstract service) and the task’s attached

resource requirements (OS, number of CPUs, etc.) if they exist. Then, the scheduler

2This can be achieved if clustering is enabled (see Section 5.6.3).

5.4. Scheduler WS-Resource 57

sends this information to the Service Catalog in order to retrieve a list of the task’s

available computational nodes that met the provided requirements.

Upon receiving an inquiry about computational nodes for a specific abstract

service, the Service Catalog figures out the list of nodes that deploys the concrete

service corresponds to the abstract service. Then, it compares specified service’s

static requirements against the resource’s stored information and discard nodes that

don’t match any of the specified requirements. If the Service Catalog ended up

with an empty list, it will notify the scheduler about a failure due to non-matching

requirements / unavailable resources. Otherwise, the Service Catalog contacts the

NMR of each node in the list to ensue any available dynamic requirements (e.g.

available memory, available disk space, etc.) and to retrieve the number of currently

running tasks (task load). The final list will contain only computational nodes met

both the dynamic and the static requirements. Finally, the Service Catalog attaches

with each node the value of its reliability factor (SRF) (See Section 4.4) and task

load, and return the final result to the scheduler. According to the result obtained

from the Service Catalog, the scheduler will continue the planning process as follows:

• Failure due to non-matching requirements / unavailable resources:

the scheduler marks the subworkflow as failed and notifies the client about

the error.

• Empty list: An empty list reflects that the Service Catalog has already found

some nodes but none of them fulfills the specified dynamic requirements. In

this case, the subworkflow will be added in a queue waiting for a notification

from the Service Catalog about available nodes.

• Non empty list: the scheduler runs the node selection algorithm over

the list to decide the best computational node for the underlying task.

There are two well known types of scientific workflows, thus we have decided

to provide two different node selection algorithms which in all cases try to put

into consideration load balancing between different computational resources. Users

can select between the two provided algorithms according to the nature of their

workflows:

• Computation-intensive workflows: A computationally-intensive

workflow consists of several long running tasks. In this case, the cost

of task executions dominates the cost of data transfers. Therefore, the node

selection process for this type of workflows should focus on nodes’ reliability

besides the load balancing criterion (Algorithm 5.4.2). The algorithm tries to

assign a given task to a reliable node with the least number of running tasks.

A reliable node can be determined through a THRESHOLD parameter

that is compared against the node’s reliability factor (Statement 1). A

58 Chapter 5. SWIMS Server Side

Algorithm 5.4.2: ReliabilityBasedNodeSelection(nodes :
ListOfComputionalNodes)

minTasksReliableNodes←∞
minTasksUnreliableNodes←∞
reliableNode← ∅
leastLoadedNode← ∅
for each n ∈ nodes

do

nTasks← n.noRunningTasks
if nTasks ≤ minTasksReliableNodes

then

comment: Find least loaded reliable node

if n.SRF ≥ THRESHOLD (1)

then

{
minTasksReliableNodes← nTasks
reliableNode← n

comment: Find least loaded unreliable node

else if nTasks ≤ minTasksUnreliableNodes

then

{
minTasksUnreliableNodes← nTasks
leastLoadedNodes← n

if reliableNode ̸= ∅
then return (reliableNode)
else return (leastLoadedNode) (2)

node’s reliability factor can have a value between 0 and 1. Thus, when

THRESHOLD > 1 or THRESHOLD = 0, the algorithm considers all

nodes and returns the least loaded one while ignoring the reliability criterion.

The THRESHOLD value should be determined according to the nature

of the users’ workflows and how sensitive their tasks are. If the reliability

factors of all resources are under the specified THRESHOLD, the algorithm

conveys the least loaded node (Statement 2) providing it with a chance to

improve its reliability factor.

• Data-intensive workflows: A data-intensive workflow stages huge amount

of data between its computational resources. In this case, the cost of data

transfer dominates the cost of task executions. Hence, a node selection process

based on data-awareness (Algorithm 5.4.3) will be more suitable for this type

of workflows. The main target of the algorithm is to reduce the data transfer

overhead. The computerDataOverlap(t, r) in the algorithm calculates the

number of bytes of input data of a task t that are available on a node r. Again

judging about a node with large data overlap depends on a THRESHOLD

parameter that determines the minimum number of bytes of input data must

5.4. Scheduler WS-Resource 59

reside on a node in order to be considered in the selection process. Note that

when THRESHOLD = 0, the algorithm selects the node with the maximum

overlap regardless of the size of this overlap. The value of the THRESHOLD

parameter in this algorithm should be determined by users according to their

network bandwidth. For a task with no inputs or with inputs dispersed in

small chunks smaller than the specified THRESHOLD, the algorithm simply

returns the least loaded node.

Algorithm 5.4.3: DataAwareNodeSelection(nodes :
ListOfComputionalNodes, t : Task)

minRunningTasks←∞
maxDataOverlap← THRESHOLD
overlapNode← ∅
leastLoadedNode← ∅
for each n ∈ nodes

do

dataOverlap← computedataoverlap(t, n)
nTasks← n.noRunningTasks
comment: Find least loaded node

if nTasks ≤ minRunningTasks

then

{
minRunningTasks← nTasks
leastLoadedNode← n

comment: Find node with maximum data overlap

if dataOverlap > maxDataOverlap

then

{
maxDataOverlap← dataOverlap
overlapNode← n

comment: if data overlap on some node is larger than the specified

comment: threshold, return the node with maximum overlap

comment: otherwise, return the least loaded node

if overlapNode ̸= ∅
then return (overlapNode)
else return (leastLoadedNode)

5.4.3 Workflow Steering

Some scientific projects are large scale and involve large teams of scientists and

technicians. They may engage in experimental methods or procedures that take

a long time to complete and require human intervention throughout the process.

60 Chapter 5. SWIMS Server Side

Thus, SWfMSs should become more dynamic and open to interventions by users.

This is also referred to as computational steering [Vetter 1996].

SWIMS meets this significant requirement through its SR. The SR’s public

interface allows a client to ”pause,” ”update,” and ”resume” a running workflow.

The SWIMS workbench makes use of all these methods in order to provide the

steering capability for its users as will be shown in Section 6.3.3.

5.5 Execution WS-Resource

The Execution WS-Resource (ER) is responsible for the actual execution of a

submitted subworkflow over the deployed execution engine; in our case, we are using

the Freefluo enactor [Freefluo 2009]. Thus, SWIMS concrete workflow specification

language is XScufl [XScufl 2004]. Figure 5.8 shows the public interface for the

ER. An SR instance can use the provided functionalities to create a new ER

instance, submit it a subworkflow for execution and subscribe itself to the events

published by the created ER instance. The ER publishes two types of events:

subworkflow execution completed and failed events. Upon receiving an event from

an ER instance, the SR sends an acknowledgement using the ackOutputRecieved

method; otherwise, the ER instance will try to re-publish the same event again

after a certain time period (configuration parameter). The SR can destroy an ER

instance if it is not needed any more through the shutdown method.�����������	�
�����	���������������� �����
������������������	
�������	�����	������	���
������������� �����
����
������������ ������
������!�
����	������	�
�������!�
�����	"�����	�
�������!�
������������	�
�������!�
��
�#�	��������$����������%	��	������������
������#��!�������������������
������������������� ���
������%	��	���
�!�������!�
���������	���������
����&	���������� !�
�
'(�	$��������(����	�
��()�"������(�!������*+�"�'(�	$��������(����	�
��(,�
���(�!������*+�"���������	
������

Figure 5.8: Execution WS-Resource Interface.

Figure 5.9 illustrates the subworkflow execution lifecycle by an ER instance in

SWIMS. It is started by the retrieval of a subworkflow for execution, and then it

follows five stages for the normal execution process:

1. Check global cache : The ER contacts the Workflow Catalog to check for

a cached output for the input of the submitted subworkflow. If an output

has been found, it jumps to the scheduler notification stage. Otherwise, it

continues to the next stage.

2. Input retrieval : For every subworkflow input (see Listing 5.1), the ER

follows the following steps to retrieve it:

5.5. Execution WS-Resource 61

Execute SubworkflowCheck Global Cahce
Notify Scheduler: Execution Completed

Notify Scheduler: Execution FailedInputs Retrieval Submit Subworklfow
Cache Output����������	��
�������	��

������
������������	
����� �����
 Fault Handling

Update Service Catalog

Figure 5.9: Subworkflow Execution Lifecycle [UML 2011]

(a) The ER uses its local DMR to create a data sink in which the data will

be retrieved.

(b) The ER submits the data reference, the data sink id, and a mediator

reference if specified to the DMR located on the input’s source node.

(c) The DMR contacts the Mediator Catalog and retrieves the indicated

mediator that is represented as a workflow of OGSA-DAI activities

[Leng 2009]. Then, it constructs an OGSA-DAI workflow (see Figure

5.3) in order to apply the required transformation and to send the

transformed data back to the ER instance. We have decided to apply the

transformation on the source node to ensure a distributed transformation

in case of a node which requires several heterogeneous inputs from

distinct remote nodes.

3. Workflow execution and output caching : After retrieving all input data,

the ER submits the subworkflow for the workflow enactor for execution. In

case of a successful execution, the ER exploits its local DMR to store the

subworkflow’s output and generate its corresponding OGSA-DAI references.

Next, the ER contacts the Workflow Catalog to store the subworkflow’s output

in the global cache repository.

4. Scheduler notification : The ER must notify the submitting scheduler

instance by sending either an ”execution completed” event containing the

output references, or an ”execution failed” event holding the failure cause.

62 Chapter 5. SWIMS Server Side

The ”execution failed” event may contain also information about subworkflow

re-scheduling as we are going to show in Section 5.6.5.

5. Update Service Catalog : Last but not least, the ER informs the Service

Catalog about the execution state in order to update the statistics of the

underlying server. At the same time, in case of a failed execution due to a

non-accessible concrete service, the ER sends the information of the failed

service to the Service Catalog that changes the service’s status to offline and

alerts the service’s owner about the failure.

Listing 5.1: Sample Input Segment.

<s : s o u r c e name=” base va lue ” >
<s : o g s ada iRe f>

drogo . i a i . uni−bonn . de@33947b92−116d :gbrowse base va lue
</ s : og sada iRe f>
<s :med iatorRe f>

med−337a5612 − . .
</ s :med iatorRe f>

</ s : s o u r c e>

In the following subsection, we are going to focus on provenance information

collected during the execution process in SWIMS.

5.5.1 Provenance Information

Provenance represents the ancestry of an object; for instance, the provenance of a

data product contains information about the process and datasets used to derive

the data product [Braun 2008]. This type of provenance is essential for scientific

workflows management system as it can help to reproduce as well as to interpret

and validate scientific results.

There are two main categories of data provenance [Cruz 2009]:

1. Prospective provenance: captures the specification of the workflow

procedure calls and data dependencies. It corresponds to the steps that need

to be followed to generate a data product or class of data products.

2. Retrospective provenance: such as the recordings of when and where each

procedure ran, and how each invocation behaved; it captures the steps that

were executed as well as information about the execution environment used

to derive a specific data product. In other words, it can be seen as a detailed

log of the execution of a computational task.

SWIMS captures both data provenance types and stores them globally in the

Workflow Catalog. Prospective provenance is stored for each workflow’s execution

snapshot while retrospective provenance is collected on the subworkflow-level

5.6. Optimization 63

and can be accessed through the provenance report saved in the subworkflow’s

checkpoint. As we have shown before in Listing 4.2, the provenance report

consists of three different sections. Since the subworkflow’s execution is done

locally by the ER instance located on the execution node, we are able to

collect OS-level provenance (e.g., number of CPUs, memory size, etc.), which

is provided in the report’s first section. The second section gives details about

the subworkflow’s activities, including their inputs, outputs and configuration

parameters whenever they exist. Finally, the third section records the execution

time related information. Considering we are using the XML-based approach to

store our provenance information, XPath/XQuery[XQuery 2010] technologies can

be used to build queries over the data.

5.6 Optimization

Due to the separation of functionalities and the autonomic nature of the WMS’s

components, we could optimize them in different directions. The main goals of our

optimizations are either to improve the performance of the WMS or to increase

the overall reliability of the SWIMS environment. Most of our optimizations can’t

be applied on a traditional WfMS that employs a single scheduler or an execution

engine. In the following subsections, we are going to discuss the optimizations we

have applied on the different components of the SWIMS’s WMS.

5.6.1 Code Movement - Node Management Resource

Normally, scientific workflows exchange a huge amount of data during their

execution. Some available SWfMS uses a mediator-based approach for data transfer

where data must be transferred first to a central repository and then to the target

node which is completely inefficient. Accordingly, other SWfMS including SWIMS

used a peer-to-peer approach where data can be transferred directly from the source

node to the target node. Even this approach is not sufficient for scientific workflows

as a single scientific service can produce a huge amount of data. Therefore, we have

thought about ”Code Movement” in which we try to move the ”concrete service”

rather than the data. This can be achieved for GRIA services in SWIMS as the

NMR has full access and control of the GRIA server installed on its underlying

Grid node. The main goal of this part of work3 was to figure out how to support

transparent migration of Grid (GRIA) concrete services among different hosts. This

yields to three abstract requirements:

• Transportability: A service needs to be able to relocate to different hosts.

• Adaptability: A service needs to be able to adapt to different hardware and

software settings.

• Transparency: The migration of a service needs to be transparent to clients.

3I would like to thank Stefan Gasten for supporting me in this part of my work.

64 Chapter 5. SWIMS Server Side

Our work in this part can be considered as a general idea which needs to be

refined through a further deep research in order to form stable and consistent

solutions of the existing problems. We can describe the problem scenario as follows:

Consider host A owning the required input and host B owning the service know-how.

In this case, B should act as a code server which prepares the service know-how

and sends it to A where it can be deployed. Then, A executes the newly deployed

service locally over the available input. This scenario adheres to the so called ”code

on demand paradigm” [Carzaniga 2007].

������

���	
����������������
��������	��

���
���������������	
����������
������

��	�

• ����������
���
• !��������"
�� • �����������
���
���

• #$�������"
���

Figure 5.10: Grid (GRIA) Service Replication Workflow.

Figure 5.10 shows the workflow which can be used to replicate a given GRIA

service on a target host. The workflow is initiated through the invocation of the

code server’s ”dubplicateService” method giving the URI of the service should

be duplicated and the URL of the target host. Then, the code server packs the

service know-how and all required resources for the service execution. For a GRIA

service, the service know-how is the service wrapper scripts and meta-data file (see

Section 2.1.1). The required resources refer to general host-specific dependencies

5.6. Optimization 65

such as files, or legacy applications4. These required resources can be determined

by analyzing the wrapper scripts to extract calls to legacy applications or accesses

to external files. Finally, both the service know-how and the collected resources are

zipped, and the target host’s ”deployService” method is invoked giving a data

reference to the zipped file. At the target host, first, the zipped file is downloaded

and unpacked. Then, the directory containing the legacy applications is added to

the system’s search path to allow the service’s wrapper scripts to call them. Finally,

the service know-how is deployed as a new GRIA job service.

Following the provided workflow, we conform to the transportability and

transparency requirements as all steps should be done through the NMR instances

on the code server and the target host. However, there is still a big question

mark over the adaptability requirement. The main problem here is moving a

host-dependent legacy application from one host to another, which is inapplicable

between hosts with different architecture or operating system. Even in case of

having the same architecture and operating system, an adaptable transfer of a legacy

application can’t be always achieved. For example, in Windows an application

can have a tight coupling with the operating system through libraries and registry

entries.

We have evaluated the capability of automatically creating a portable version

of a Windows-based legacy application. Our idea was to determine all application’s

system libraries and registry dependencies, and to build a wrapper which should be

able to run the application on the target host through the following steps: 1) install

the system libraries, 2) back up import affected registry keys for later restoration,

3) import all registry dependencies, 4) execute the application, 5) and restore the

registry. All of these tasks are typical for Windows installers. Thus, a wrapper can

be created using the Nullsoft Scriptable Install System (NSIS) [NSIS 2011] .

For determining application’s system libraries dependencies, we have used

a free-to-use software: Dependency Walker [Miller 2010]. Dependency Walker

analyzes a given executable file for implicit, forwarded and delay-load module

dependencies. In addition, Dependency Walker can detect run-time and system

hook module dependencies.

In contrast to a library dependency analysis, the analysis of an application’s

registry keys dependencies generally requires the execution of the application. One

reason for this is that an application might dynamically build registry calls at

runtime. An evaluation of available registry monitoring software showed that most

of them use registry snapshots to analyze registry keys modified by an application.

Actual monitoring of registry calls requires hooking the Windows API in order

to intercept calls to its registry functions [Microsoft 2011]. Among all evaluated

software; this was a unique feature of Process Monitor [Russinovich 2011].

The first problem with the analysis of registry dependencies process is that

we need to make an automatic run of the application either using a sample input

4In terms of Grid services; legacy applications refer to platform dependent applications providing
a service with its actual application logic

66 Chapter 5. SWIMS Server Side

if available or without any inputs. In fact, successful execution on a target host

can never be guaranteed with this approach if the application does not work on

the same input as the one used on the source host while monitoring. Another

non-trivial problem is determining the set of registry keys, which really belongs to

the monitored application. A registry call monitor application delivers a complete

set of registry values accessed by an application. Including all the retrieved keys in

the wrapper can lead to serious problems as the retrieved set may contain critical

keys with respect to the execution of other processes on the target host. A further

issue regarding the set of registry values a wrapper contains is the concurrent

execution of two different portable applications. If the intersection of the associated

sets is not empty and the portable applications origin from different source hosts,

concurrent execution will generally fail due to inconsistent registry values. A

positive result, however, is that the analog does not necessarily hold for module

dependencies. The reason is that an application’s module search path typically

begins in its working directory. Thus, the execution of such application does not

require a system-wide installation of its module dependencies.

To conclude, the evaluated approach can be guaranteed just for applications

with only system libraries dependencies. A daring approach to solve these issues

could be to try to run the application within a virtual box on the target host. This

virtual box should provide the minimal source host’s requirements for running the

application. However, we have to answer the question: How will the Grid service

be able to communicate with the application within its virtual environment?

5.6.2 Tailoring the Service Behavior - Node Management Resource

Based on our previous work on Tailorability of BPEL-based workflows

[El-Gayyar 2008, Alda 2007] that allow users to adapt BPEL-based workflow

compositions at runtime, we thought about adding the Tailorability capability to

SWIMS. As a matter of fact, through the Workflow Catalog, SWIMS users can

access all stored workflows, adapt their compositions or re-execute them. However,

as the NMR instances have control over their nodes’ Grid severs, we thought about

even going beyond that by allowing advanced SWIMS users to adapt the behavior of

the available Grid services. For example, this can be achieved for GRIA services by

simply adapting the service’s script (see Section 2.1.1). Users can use the SWIMS’s

workbench to retrieve a service’s script, adapt it and redeploy it as a new service

(see Section 6.3.2). The validation, and the deployment of the modified script is

done by the NMR instance of the original service’s nodes.

5.6.3 Clustering - Scheduler Resource

The main partitioning criterion of the SWIMS scheduler is that every subworkflow

should have only one remote task (Web/Grid services). This can lead to a

large number of subworkflows for workflows with a large number of tasks. For

instance, a typical Montage workflow (See Figure 2.3) accommodates hundreds of

5.6. Optimization 67

tasks. Initialization and scheduling of a large number of these subworkflows can

pose significant overhead. In order to reduce this overhead, several tasks can be

aggregated into a single subworkflow to form a cluster.

Pegasus has already offered a similar mechanism to aggregate the tasks in a

concrete workflow into clusters where every cluster is executed as a single job so that

the remote resources can be utilized more efficiently [Singh 2008]. This approach

reduces the number of subworkflows that reduces the load and accounting cost on

the machine handling remote job submission. In Pegasus, there are two different

clustering techniques: level- and label- based clustering.

In Pegasus’s level-based clustering, tasks at the same level can be clustered

together according to either the number of clusters to be created per level (cluster

factor) or the number of tasks to be grouped in a cluster (cluster size). SWIMS

can provide, according to users’ needs, a similar technique while partitioning

subworkflows to achieve a level-based (horizontal) clustering subject to a given

cluster size. Figure 5.11 shows the Montage workflow in Figure 2.3 horizontally

clustered with cluster size = 2.

�

� ��

�

�

�

��

�

�

Figure 5.11: Level-based Clustered Montage Workflow with Cluster Size =2.

In Pegasus’s label-based clustering, the user can label the tasks in the workflow

to be clustered together; the tasks in the workflow with the same label are grouped

into a single cluster. This type of clustering is not preferable in SWIMS as it requires

user interaction while SWIMS tries to hide its users from any technical issues.

However, we have implemented another type of clustering: vertical clustering, that

combines dependent tasks from different levels while holding two conditions:

1. It should maintain the provided cluster size.

68 Chapter 5. SWIMS Server Side

2. Each constructed cluster must satisfy the convexity requirement that states

that all paths between any two tasks in a cluster must be completely contained

within it to avoid co-scheduling between clusters.

� ��

� �� � ��

�

�

�

� �� �

�

�

Figure 5.12: Vertically Clustered Montage Workflow with Cluster Size =3.

Vertical clustering can lead to a workflow planning problem as the planner has

to assign each cluster to a computational node where all tasks within the cluster

have been deployed on it. Nevertheless, this condition can be prevailed in SWIMS

if we are sure that the remote services within our workflows can be duplicated

using the ”Code Movement” technique introduced in Section 5.6.1 as the case for

Montage workflows. In this case, a workflow planner can simply assign a cluster to

a node according to the subworkflow’s topmost task while any missing services will

be duplicated during the execution process.

Figure 5.12 illustrates the Montage workflow in Figure 2.3 vertically clustered

with cluster size = 3. This type of clustering can be achieved by replacing the

”populateSubworkflow” procedure in Algorithm 5.4.1 by the one provided in

Algorithm 5.6.1. For sure we have to omit the condition of having one remote

task by subworkflow and replace it by a condition that maintains the given cluster

size (Statement (1)). Moreover, we should consider parent nodes that can’t be

reached by simply following the path downwards from the starting node. This can

be achieved by checking the parents of each child and check, whether these parents

can be added to the current model. To keep the algorithm simple, we consider only

the child’s topmost parents (parents without parents). The child and its parents

will be added to the model if and only if:

5.6. Optimization 69

Algorithm 5.6.1: populateSubworkflowVClustering(S :
subworkflow, t : task)

if t is assigned
then return

if numberOfTasks(S) = ClusterSize
then

{
return (1)

S ← S ∪ t
Mark t as assigned
for each c ∈ children(t)

do

parentsList← ∅
addParentsF lag ← true
for each p ∈ parents(c)

do

if p = t
then continue

if p is not assigned and parents(p) = ∅
then

{
parentsList← parentsList ∪ p (2)

else

{
addParentsF lag ← false
break

if addParentsF lag
then if (size(parentsList) + 1) ≤ ClusterSize (3)

then

for each p ∈ parentsList

do

{
S ← S ∪ p
Mark p as assigned

populateSubworkflowVClustering(S, c)

• The child has no parents that have been assigned to another subworkflow (to

avoid co-scheduling) as stated in Statement (2).

• Adding the child and its parents to the current model will not violate the

cluster size condition (Statement (3)).

The remaining tasks at each level can be executed individually or further

clustered using level-based clustering. Vertical clustering can reduce the degree of

parallelism; however, it is very useful for workflows with short tasks that exchange

huge amount of data. In this type of workflows, avoiding data transfer between

tasks within subworkflows can be much more advantageous than preserving parallel

execution.

Deciding on the right size of clusters is still a challenging problem. If clusters are

too small, the benefits of clustering are limited as the number of jobs that need to

be managed is not significantly reduced. If clusters are too large, then the workflow

can be more vulnerable to failures. If a failure occurs within a cluster, then the

entire cluster needs to be re-computed.

70 Chapter 5. SWIMS Server Side

5.6.4 Global Data Caching - Execution Resource

Global data caching is a significant functionality of the ER. It is a very important

feature for scientific workflows that are based on long running processes. It

helps to achieve smart re-run since scientists generally tend to re-run scientific

experiments while changing only the inputs or configuration parameters of few tasks.

In this case, only those updated tasks will be actually re-executed. SWIMS users

are able to force the system to re-execute a service even if exists a cached output

for its given input.

Data caching in SWIMS is accomplished through creating an SHA-2 fingerprint

[SHA-2 Standard 2002] from the subworkflow’s inputs and configuration parameters

to work as a hash value to the produced output. A detailed description of how an

SHA-2 fingerprint is created for a subworkflow is given in Algorithm 5.6.2. To

avoid unnecessary movement of a large amount of data, SWIMS takes advantage

of the remote DMR instances located on each input’s node to compute locally the

input’s SHA-2 digest. The inputs’ computed digests are concatenated with the

configuration parameters of all subworkflow’s activities into a single string. The

SHA-2 digest of this string forms the final fingerprint used either to cache the

subworkflow’s output or to retrieve the cached output from the global cache. In

scientific workflows, the size of a single input can be very large. Therefore, we

decided to use only around a kilobyte snapshot of each large input to compute its

digest. This snapshot is constructed by taking three hundred fifty bytes from the

beginning, the middle, and the end of the input’s content.

After computing the hash value of the subworkflow’s inputs, the ER instance

submits the hash value and the subworkflow’s output references to the Workflow

Catalog where they can be stored globally and become accessible to all other ER

instances.

5.6.5 Distributed Fault Handling - Execution Resource

Each ER instance is responsible for handling exceptions occur during the execution

of submitted subworkflows on its underlying node. It is also responsible for killing or

rescheduling running/planned subworkflows if the node is heavily loaded. A heavily

loaded node can be determined according to a set of configuration parameters

specified by the node administrator. These configuration parameters identify the

upper limit of node resources (e.g., memory size, disk space, etc.), which can be

consumed by the SWIMS framework. In other words, the ER affords distributed

fault handling and load balancing mechanisms over the subworkflow level. The

ER uses two different techniques for handling faults:

1. The retry technique: This technique is the simplest failure recovery

method, as it simply tries to re-execute the failed task on the same node

after some delay. This technique is used only if the subworkflow’s required

concrete service is not broken (accessible).

5.7. Fault Handling in SWIMS 71

2. The re-scheduling technique: Here, the ER submits the failed task to

another computational node. If an SR is already deployed in the ER’s node,

the ER will use it to find the required node and transfer the information

about the new node to the main scheduler within its ”subworkflow failed

event”. Otherwise, the rescheduling process is propagated to the workflow’s

main scheduler

Often scientific workflow systems simply rely on the fault tolerance capabilities

provided by their third party invoked services. When failures occur during the

execution of these services, a workflow system typically sees them only as failed steps

in the process without additional details about the failure causes which can increase

the ability of the system to recover from those failures. However, in SWIMS, the

execution of the third party services is done by the local ER instance that has access

to low-level error logs produced by the invoked concrete service. This helps to

provide low-level error reports about occurred failures at the OS-level (e.g. missing

modules/libraries, incorrect input/outputs, failed authentication, out of disk space,

out of memory, etc.). As an example, Listing 5.2 shows snapshots of two error logs

collected from GRIA jobs. The first snapshot shows a missing application ”unzip”

while the second shows a failure in the underlying legacy application.

Listing 5.2: Low Level Error Logs.

[Snapshot 1]
−−−−−−−−−−−−
∗∗∗ Fai l ed to run comand ’ [’ unzip ’ , ’ inputs / inputFITsImage ’] ’ :
∗∗∗ The system cannot f i nd the command s p e c i f i e d
∗∗∗ Hint : check that unzip i s in your PATH

[Snapshot 2]
−−−−−−−−−−−−
Archive : inputs / inputCorrectedImages−0

i n f l a t i n g : unzip /c2mass−at l a s −971024n−j0080033 . f i t s
i n f l a t i n g : unzip /c2mass−at l a s −971024n−j 0080033 area . f i t s

Archive : inputs / inputCorrectedImages−1
i n f l a t i n g : unzip /c2mass−at l a s −981123n−j0720033 . f i t s
i n f l a t i n g : unzip /c2mass−at l a s −981123n−j 0720033 area . f i t s

∗∗∗ Exception : Command [’mImgTbl ’ , ’ unzip ’ , ’ cor rectedImages . t b l ’]
∗∗∗ [s t r u c t s t a t=”ERROR” , msg=”Can ’ t open tmp (in) t ab l e . ”]

5.7 Fault Handling in SWIMS

Before ending up this chapter, we would like to provide a global view of fault

handling in SWIMS. In our environment, workflows are executed in a distributed

manner through several execution engines. During the execution of a workflow,

execution failures may be caused by many reasons, such as failure/shutdown of

72 Chapter 5. SWIMS Server Side

nodes, network failures, Grid services failure, etc. To handle failures flexibly and

to support reliable execution, SWIMS provides fault handling techniques on three

different levels as presented in Figure 5.13.

Fault Tolerance
in SWIMS

Subworkflow Level

Execution WS-Resource
Level

Workflow Level

Retry individual task
(ER)

Re-scheduling
(ER/SR)

Re-scheduling
(SR)

Checkpointing
(SR)

Rescue workflow
(SR)

Figure 5.13: Fault Tolerance in SWIMS.

As discussed in Section 5.6.5, the ER employs either the retry or the rescheduling

technique to recover from errors on the subworkflow level.

The SR exploits the rescheduling technique to handle errors on the ER level.

To detect such a type of errors the SR runs a background watchdog program in fixed

periods. This program is responsible for checking the status of all currently running

subworkflows. Whenever a certain ER instance is unreachable, all its mapped

subworkflows are rescheduled to another available ER. Meanwhile, the SR notifies

the Service Catalog about the failed node in order to update its servers table.

On theworkflow level, SWIMS provides two fault handling techniques through

its SR: light-weight checkpointing5 and workflow rescue. The SR captures a

snapshot of the running workflow after the execution of each subworkflow and sends

it to the Workflow Catalog. This can help clients to backtrack (in the case of an

input/parameter change or even an execution failure) to a previously saved state

without starting over from scratch. Even more, having these checkpoints onto

a global Catalog supports the distributed management of workflows, since when a

workflow main scheduler itself fails; another SR instance can use this information

to continue the coordination of the broken workflow starting from the last captured

checkpoint. To achieve the most benefit from the checkpointing facility, SWIMS

utilizes the rescue workflow technique that ignores the failed tasks and continues to

execute the remainder of the workflow until no more forward progress can be made.

5Data items are represented through their references

5.7. Fault Handling in SWIMS 73

Summary

In this chapter, we have explained the different elements of the SWIMS server-side

components: The WMS instances deployed on Grid nodes wishing to participate in

the workflow management and execution process. SWIMS’s WMS can be realized as

a deployment of a bundle of WSDM-based services, which controls four manageable

resources: data management (DMR), node management (NMR), scheduler (SR),

and execution (ER).

The DMR is dedicated to reference-based data movement, and automatic data

transformation between heterogeneous services. The NMR helps the SWIMS

environment to transparently keep track of all available concrete services. As the

NMR has full control over the underling node and its Grid server, it can help also to

collect information about the node, move services from one node to another, deploy

workflows as services or to tailor the behavior of an installed service.

For every submitted workflow, an SR instance should be elected to act as the

main coordinator of the workflow’s execution. This instance breaks the submitted

workflow into a set of subworkflows, and submits each subworkflow for execution

over a remote Grid node through its deployed ER instance.

Every ER instance is completely responsible for the execution of submitted

subworkflows. In case of a failure, the ER instance can retry the task on its local

node or use its node’s local SR instance to find an alternative Grid node to which

it can move the failed subworkflow. Moreover, as the ER instance is located at

the concrete service’s node, it can generate low-level error reports that can include

errors occurred at the OS-level. This can help servers’ administrators to identify

and recover the failure causes.

The workflow’s main coordinator also ensures that all active ER instances

are working smoothly; otherwise, it re-submit the subworkflows of any failed ER

instance to another running one. Besides, it stores an execution checkpoint in the

Workflow Catalog after the execution of every subworkflow.

If workflow’s main scheduler has failed, another SR instance will be elected to

continue the execution of the workflow starting from the last captured checkpoint.

To sum up, several SR and ER instances cooperate to ensure reliable and extendible

workflow management and execution in the SWIMS environment.

74 Chapter 5. SWIMS Server Side

Algorithm 5.6.2: checkGloablCache(S : subworkflow)

comment:Check SWIMS global cache for an output of the given

comment: subworkflow input

procedure checkGlobalCache(S : subworkflow)
comment:Use remote DMR instances to compute the SHA-2 Digest

comment: of each individual input

cacheSupportList← ∅
for each inputRef ∈ S

do

inputDigest← DMR.computeInputSHA2Digest(inputRef)
cacheSupportList← cacheSupportList ∪mediatorRef
cacheSupportList← cacheSupportList ∪ inputDigest

comment: Besides the input, we consider also the configuration

comment: parameters for each task

for each task ∈ S

do

{
configParameters← getConfigurationParameters(task)
cacheSupportList← cacheSupportList ∪ configParameters

comment: Sort the list to avoid disorder

sort(cacheSupportList)
comment:Concatenate collected data in one string, the SHA-2 digest

comment: of this string represents the subworkflow’s input fingerprint

strBuffer ← ∅
for each s ∈ cacheSupportList
do append(strBuffer, s)

inputDigest← computeSHA2Digest(strBuffer)
cachedOutput←WfCatalog.getCachedOutput(inputDigest)
return (cachedOutput)

comment: SHA-2 digest computation: for big contents we consider

comment: only snapshots to avoid heavily computational process

procedure computeSHA2Digest(content)
SegmentLength← 350
MaximumInputForDigestLength← SegmentLength ⋆ 3
if length(content) ≤MaximumInputForDigestLength
then return (sha2Digest(content))

else

strBuffer ← ∅
append(strBuffer, initialSegement(content, SegmentLength)
append(strBuffer,middleSegement(content, SegmentLength)
append(strBuffer, endSegement(content, SegmentLength)
return (sha2Digest(stringBuffer))

Chapter 6

SWIMS Workbench

Contents

6.1 SWIMS Workbench Architecture 75

6.2 SWIMS Abstract Workflow Language 77

6.3 SWIMS Workbench User Interface 79

6.3.1 The Editing / Composition Mode 80

6.3.2 Exploring the Workflow Catalog 83

6.3.3 The Monitoring Mode . 85

6.4 Workflow Validation . 86

6.5 SWIMS: The Overall Picture 89

In the last chapter, we considered the SWIMS’s server-side components. Here,

we finalize our discussion about SWIMS by considering the SWIMS’s client-side

component: the SWIMS workbench.

The main target of the SWIMS workbench is to provide a simple environment

with a high level of abstraction through which scientists can compose, execute,

monitor, steer, re-use, and re-run scientific workflows without considering the

complex underlying Cyberinfrastructure used to perform these tasks.

We start with illustrating the overall architecture of the workbench. We will

then discuss the SWIMS’s abstract workflow language. Next, we will give a deeper

look at the SWIMS workbench’s user interface highlighting its main features, that

help users to easily edit, monitor, and validate workflows. Finally, we draw an

overall picture of SWIMS and show how all its different components cooperate with

each other in order to provide a reliable and distributed management and execution

of scientific workflows.

6.1 SWIMS Workbench Architecture

Figure 6.1 introduces the SWIMS workbench architecture; it is based on the

Eclipse Rich Client Platform (RCP) framework [RCP 2010, Mcaffer 2005] built

over the equinox OSGi runtime environment [Equinox 2011]. RCP is a well-suited

platform for most Java-based stand-alone applications. Compared with many other

corresponding platforms, RCP has a number of advantages: First of all, applications

developed on top of RCP are completely portable and will run equally well on

different available execution platforms (e.g., Windows, Mac or Linux). In addition,

76 Chapter 6. SWIMS Workbench

RCP provides a set of basic functionality that is needed by many client applications:

a sophisticated help system, a well thought-out look and feel, and an efficient service

oriented framework. Last but not least, RCP provides the concept of ”extension

points” that facilitates loosely-coupled extensions to functionality.

Besides the well known Eclipse’s extension points, SWIMS provides its own

extension points to help developers to add domain specific functionalities to the

workbench. One example is the extension points provided by the UI plug-in which

help to add new editor commands, palette entries, or palette categories. Another

example is the extension point provided by the serialization plug-in for adding

additional language converters. ��������	
����	�������	��������	������	
�����������	�������	������������� ��	�����	����������������������	������ �����!"�#$���"�%��&'�"�(���(�)��	�*�+�,����	������������	
��������	�������������	
���

Figure 6.1: SWIMS’s Workbench Architecture

As all SWIMS’s components communicate through exchanging WSN

notifications, we have implemented a Web service in the background of the

workbench capable of consuming and producing such notifications. The service is

built over the OSGi [OSGi 2011] http service provided by the Equinox framework.

SWIMS workbench consists mainly of two main modes, the editing and the

monitoring modes. The editing mode enables scientists to compose and edit a

scientific workflow in a graphical way from a set of abstract activities. Moreover,

within the editing mode, scientists can explore and utilize workflows stored in the

Workflow Catalog and their attached information. Whenever submitting a workflow

for execution, the monitoring mode is activated in order to allow users to monitor

and steer the submitted workflow. Sections 6.3.1 and 6.3.3 provide more detailed

information about the two modes.

6.2. SWIMS Abstract Workflow Language 77

6.2 SWIMS Abstract Workflow Language

SWIMS uses an XML-based language to represent abstract workflows constructed

through the SWIMS workbench. We try to keep our language as simple and generic

as possible to support human readability and to allow users (scientists) to describe

their scientific workflows at a high level of abstraction that shields them from the

complications of the underling system components. In this way, scientists can

focus on the design of their scientific experiments without being dispersed with

the complexity of any specific technology (e.g., Web or Grid services). Keeping the

language simple also strengthens the capability for automatic conversion between

SWIMS’s language and other abstract/concrete languages used by specific workflow

enactors. In our case, we are using the XSLT technology to convert SWIMS’s

language into XScufl, the language supported by Freefluo: the SWIMS’s workflow

enactor.

Figure 6.2 shows a simplified representation of the XML schema tree of the

SWIM’s language. SWIMS workflows consist of workflow inputs, workflow outputs,

activities, data transitions and control transitions.

The ”WorkflowInputs” and ”WorkflowOutputs” elements are used to declare

top level workflow inputs and outputs. In case of a workflow input/output of type

file or list of files, an optional ”MimeType” element can be used to classify the

file(s) type. The ”isZip” attribute is also valuable only in case of inputs/outputs

of type file. It is used internally by the SWIMS workbench to decide whether

the provided file(s) need to be automatically zipped before being submitted to the

execution environment. Some Grid services require/produce a zipped version of

their inputs/outputs either as a way of compression or to preserve the original

input/output files’ names (see Appendix A).

A SWIMS activity is represented by activity resource requirement and

description sections. The resource requirements section allows users to explicitly

define the set of minimal requirements of the task’s execution node, which is

composed of static information (e.g., OS type, architecture and number of CPUs),

and dynamic information (e.g., available memory and disk space). The activity

description section holds the service’s abstract template generated by the Service

Catalog (See Section 4.4). It consists of a set of inputs and outputs ports that

provide logical representations of the corresponding input and output data. It also

includes a set of parameters that helps to attune the behavior of the underlying

activity. The activity ”secured” attribute determines whether the activity is

accessible or not for the current user as we are going to show later in the next

Section. An example of an activity segment is shown in Listing 6.1.

SWIMS activities are connected by data and control transitions. Conceptually, a

data transition transfers data from an output of one activity to the input of another

activity. The absence of an output/input attribute value of the source/target

element infers that the link is referring to a top-level workflow input/output

respectively.

78 Chapter 6. SWIMS Workbench

����������	�

�����	�
�����

���������

���������������

�����	�
�����
������	�����������

�����	�
����

�����	�
����

����

����

����

�������������������

������������������

�������������������������������������� �������������������������������!�"������#�

�����������������
������������

��������������
������	����������

����
����

�����������

��������$�	�

����������	

����������	

����������	

����������	

����������	

%��������%����
����������	%�������������%��������������

%����%����%��&��
$�	�

���'�����
%��������%����

��������
%����%����%��&��
%����%�����'

Figure 6.2: SWIMS’s Language XML Schema Tree

Control transitions are used to prevent the transition from the source activity

to the target activity until some constraint condition has been satisfied. Currently,

conditions are limited to simple expression over the outputs of the source activity.

The default constraint condition is blocking the transition to the target activity

until the source activity has completed. To keep the language simple, we do not

support explicit subworkflow construct. Subworkflows is implicitly supported as

SWIMS provides the capability to deploy workflows as Grid services, that can be

then used as atomic activities in more complex workflows.

The drawback of the SWIMS’s language is being limited to DAG workflows as

it does not support iterations constructs (e.g., do while, for loops). It should be

6.3. SWIMS Workbench User Interface 79

Listing 6.1: Sample of an Activity Segment

<Act iv i ty name=”mJPEG1”>
<Act i v i t yDe s c r i p t i on name=”mJPEG” secured=” f a l s e ”>

<Desc r ip t i on>Generates a JPEG image from FITS f i l e s</Desc r ip t i on>
<Parameters>

<Parameter name=” i sC o l o r f u l ” type=”boolean ”>
<Desc r ip t i on>image in g r ay s c a l e or t rue c o l o r s</Desc r ip t i on>
<value>t rue</ value>

</Parameter>
</Parameters>
<Inputs>

<Input name=” inputMosaicImage” type=” l i s t ” z ip=” true ”>
<Desc r ip t i on>FITS images need to be convereted</Desc r ip t i on>
<MimeType>Image</MimeType>
<Value> . . .</Value>

</ Input>
</ Inputs>
<Outputs>

<Output name=”outputMosaicJpegImage” type=” f i l e ” z ip=” true ”>
<Desc r ip t i on>The output JPG image</Desc r ip t i on>
<MimeType>Image</MimeType>

</Output>
</Outputs>

</ Ac t i v i t yDe s c r i p t i on>
<ResourceRequirments>

<operat ingSystem>Linux</ operat ingSystem>
<a r c h i t e c t u r e>32 Bi t s</ a r c h i t e c t u r e>
<minMemory>0 .0</minMemory>
<minDiskSpace>100 .0</minDiskSpace>
<minNumberOfCPUs>0</minNumberOfCPUs>

</ResourceRequirments>
</Act i v i ty>

part of the future work to support such a type of constructs while trying to keep

the language as simple as possible.

6.3 SWIMS Workbench User Interface

The SWIMS workbench enables users to graphically create and edit descriptions of

abstract workflows to be executed over the Grid. A workflow is a set of activities

(abstract services), interconnected by transitions that define the order in which the

activities must be performed. Every activity corresponds to a computer program

which may be encapsulated by a Grid service(concrete service) and is located on

one of the available nodes in the Grid. Once a workflow has been created, the

workbench can be used to submit it for the execution over the available Grid. The

remote execution of a workflow can be monitored or steered, and output files can be

downloaded to the user’s computer. Apart from these basic features, the SWIMS

workbench offers a bunch of additional functions like browsing and utilizing the

80 Chapter 6. SWIMS Workbench

contents of the Workflow Catalog, workflow validation, deployment of workflows as

Grid services, tailoring of the service behavior and transferring files transparently

to Grid nodes.

� �

Figure 6.3: SWIMS’s Workbench Login Screen.

When the workbench is started, it displays its login screen (Figure 6.3) that

allows users either to login to the workbench using their user names and passwords,

create a new user 1 or login as an anonymous 2 . The provided user information

is sent to the Service Catalog in order to retrieve the list of available activities

and their accessibility status for the current user. The obtained list of activities’

abstract templates (see Section 4.4) is used to initialize the activities section in the

workbench palette (see Section 6.3.1) that can be used by the user to construct

abstract workflows. In case of an anonymous login, only templates of services

declared as public will be returned by the Service Catalog. SWIMS workbench

has two different modes, the editing and the monitoring modes. The features and

functionalities provided in each mode are discussed in the following sections.

6.3.1 The Editing / Composition Mode

The SWIMS workbench editing mode (see Figure 6.4) provides a graphical editing

tool for abstract workflows, offering features like undoing changes, performing

automatic graph layouts, zooming, and printing of diagrams. Each workflow is

created in its own project in the Workflows Workspace 1 which is a directory,

usually located on the local hard drive. When creating a new workflow project or

opening an existing workflow file, a new workflow editor instance 2 is opened for

building the workflow description.

Workflow descriptions are graphs consisting of nodes (workflow inputs, workflow

outputs, and activities) and edges (data and control transitions). New elements can

be added to the workflow through the provided palette 3 . Activities retrieved from

the Service Catalog are organized into two groups (public and secured) according

6.3. SWIMS Workbench User Interface 81

� ��

�

�

�

�

�

	

Figure 6.4: SWIMS’s Workbench Editing Mode.

to their accessibility status for the current user 4 . As shown in the Figure, the

workbench provides a uniform representation of activities regardless of their types

(local, web services, Grid services .etc). This helps to hide the underlying system

complications from SWIMS’s users. Users can use either the secured or the public

activities to construct an abstract workflow; however, they will not be able to submit

a workflow with secured activities for execution. In order to get access to a secured

activity, the user has to send a request through the workbench to the Service Catalog

which forwards this request to the owners of concrete services that match this

activity. Then, owners have to decide whether this user can access their services

or not. Whenever the user connects two activities with a data dependency, the

workbench contacts the Mediator Catalog to check for a mediator between these

two activities; if a mediator has been found, its reference will be added to the

workflow’s specifications. Breakpoints 5 can be added to the workflow to pause

the execution of the workflow before submitting the breakpoint’s activity. Users

can also validate 7 their workflows against different violations (see Section 6.4).

All identified problems will be listed in the problems view 6 . After handling all

discovered errors, the workflow can be submitted 8 for execution, which switches

the workbench’s mode to the monitoring mode. The workflow can also be exported

9 to the SWIMS’s language or any other supported languages (in or case XScufl).

82 Chapter 6. SWIMS Workbench

(a) Workflow Properties (b) Activity Properties

�

(c) Data Transition Properties (d) Control Transition Properties

Figure 6.5: SWIMS’s Workbench Properties Views.

6.3. SWIMS Workbench User Interface 83

Users can use the workbench’s different properties views (See Figure 6.5) to

adjust the properties of the workflow’s elements:

• The workflow properties view (Figure 6.5(a)): This view is divided into

three sections. In the general section, the user can add a detailed description

of the workflow’s functionality. Utilizing the security section, users can

specify a password to secure the access of the workflow’s information which

will be stored in the Workflow Catalog. In addition, through this view, users

can disable data caching and select a specific scheduling technique for the

next run. In this way, users can execute the same workflow with different

configurations to determine the best one of them.

• The activity properties view (Figure 6.5(b)): It enables users to adjust an

activity’s inputs, outputs, parameters and resource requirements. To avoid

ambiguity, we allow users to define resource requirements for all activities

while they are meaningless for local activities. Thus, resource requirements

for local activities are ignored by the SR while planning the workflow.

• The data transition properties view (Figure 6.5(c)): This view is used to

specify data transitions between two activities. To keep the diagram simple,

only one link is used to represent a data transition between any two activities,

while this link can hold many data transitions between outputs of the source

activity to the inputs of the target activity. These transitions are added to

and can be deleted from the available data transitions table 1 .

• The control transition properties view (Figure 6.5(d)): Users can use

this view to formalize the condition of a control transition.

6.3.2 Exploring the Workflow Catalog

Another important view that can be accessed in the editing mode is the Workflow

Catalog view (Figure 6.6) 1 . It is used to outline the Workflow Catalog’s contents

as a tree structure representing execution snapshots captured for different workflows

executed over the underlying Cyberinfrastructure.

Through this view, users can explore the details of checkpoints recorded during

the execution of different execution snapshots. By selecting a certain checkpoint,

the workbench updates its associated workflow to show which activities have already

been executed until the selected checkpoint 2 . Users also can check the provenance

report to get more insight information about the execution process (see Section

5.5.1). There are other important actions provided by this view:

• Workflow re-run: Users may be interested in a certain workflow model

and would like to retest the model after applying some changes to the inputs

or parameters of some activities. This can be achieved through the ”Submit

Checkpoint” command 3 . This command will execute the required workflow

84 Chapter 6. SWIMS Workbench

�

�

�

�

Figure 6.6: SWIMS’s Workbench Workflow Catalog View.

starting from the selected checkpoint while considering the changes that have

been applied over all non-executed activities.

• Workflow sharing: Users may be also concerned with doing some

modification over the model itself by adding or deleting different workflow

elements. This scenario is supported by the ”Use as a Template” command

4 that creates a new project within the user’s local workspace and copies

the required workflow into it making it ready for further modifications.

By providing these functionalities, the Workflow Catalog enriches SWIMS with

a tailoring capability that allows users to adapt and share existing workflow models.

This is similar to our previous work published in [El-Gayyar 2008, Alda 2007] about

tailorability of BPEL-based business workflows. However, as we have mentioned in

Section 5.6.2, we can go further with the help of the NMR instances that have

control over their nodes’ Grid servers. This helps us to allow users with granted

permissions from services’ owners to retrieve a GRIA service’s script (application

wrapper script, see Section 2.1.1) and adapt it in order to change the service’s

behavior (see Figure 6.7). To keep the original service and to avoid breaking down

any workflows that make use of this service, users are enforced to deploy any adapted

service only as a new one. They are allowed also to change the interface of the new

service by adapting the service’s description (meta-data, see Section 2.1.1) file.

Whenever the user asks for a deployment of an updated service, the workbench

contacts the Service Catalog to retrieve the list of nodes that hosts the original

service. Then, it submits a deployment request to their NMR instances.

6.3. SWIMS Workbench User Interface 85

Figure 6.7: Tailoring the Service Behavior

6.3.3 The Monitoring Mode

As soon as a workflow is submitted for execution, a new window is opened to

run the workflow in the monitoring mode (see Figure 6.8). In this mode, users

can pause the workflow’s execution and adapt its model 1 . The can change a

non-executed activity’s inputs or parameters, add new activities, or delete existing

ones. Later, the execution process can be simply resumed 2 while considering

the applied modifications. This enables users to achieve what is referred to as

”workflow steering”.

The progress of the workflow execution process can be identified either by events

shown in the logging view 3 or through small icons added to the workflow’s

activities that reveal the activities’ execution states 4 . An activity’s execution

state may be one of the six values: un-submitted, running, completed, rescheduling,

paused, and failed. During the execution process, the SWIMS WMS requests to

upload local input files to execution Grid nodes, this is done in the background

without any user interaction 5 .

The workflow outline view 6 provides a tree representation of a workflow’s

different elements. This view can be used by users in the monitoring mode to

download an executed activity’s final output through its provided reference 7 .

The downloaded file will be saved within the ”downloads” folder located in the

workflow’s project local folder.

After a successful run of a workflow, users can request the workbench to deploy

the workflow as a Grid service 8 ; accordingly, the workbench contacts the Service

Catalog to determine the Grid node with the least current load and tries to deploy

the workflow on it. Subject to a successful deployment, the deployed workflow’s

service will be shown as an atomic activity in the activities list of all users.

86 Chapter 6. SWIMS Workbench

�

�

�

�

�

�

�

�

Figure 6.8: SWIMS’s Workbench Monitoring Mode.

During the monitoring mode, the SWIMS workbench runs a timer in the

background. This timer is reset whenever a message is obtained from the workflow’s

main coordinator (SR instance). The main goal of this timer is to ensure that

the workflow’s main coordinator is still running in fixed periods (configuration

parameter). In case that the main coordinator is broken, the workbench contacts

the Service Catalog to find another scheduler through which it can continue the

execution of the current workflow. After getting the URL of the new SR instance,

the workbench retrieves the information about the last recorded checkpoint from

the Workflow Catalog and submits it to the new SR instance. This process is

completely transparent to the user. The user will be notified only if the workbench

can’t find any other schedulers to continue the execution process.

6.4 Workflow Validation

Scientific workflows tend to be time consuming due to the data intensive and

computationally expensive features of their scientific processes. Thus, it is very

important to inspect and validate workflows before execution to minimize runtime

errors that can happen due to incorrect workflow specifications.

In SWIMS, workflows are validated automatically whenever it is opened or

before submission for execution. Meanwhile, users can perform manual validation at

any time through the workbench’s toolbar or the editor’s context menu. A sample

6.4. Workflow Validation 87

Figure 6.9: Workflow Validation Sample.

88 Chapter 6. SWIMS Workbench

for SWIM’s workflow validation is shown in Figure 6.9. As shown in the Figure,

users are notified of any detected validation errors or warnings through the problems

view. Table 6.1 presents the meaning of different validation symbols provided by

SWIMS. Validation is done against missing inputs or parameters, accessibility of

activities, and correctness of data transitions. The system reports a data transition’s

type mismatch warning if it can’t find a suitable data transformation mediator in

the Mediator Catalog.

Table 6.1: SWIMS’s Workflow Validation Symbols.
Symbol Description Possible Causes

Faulty workflow input.
workflow input has not assigned
a value.

Faulty activity.

• Currently, no available
Grid nodes provide such
activity.

• Required parameter is
missing.

Activity with warnings.

• Activity is isolated from the
workflow (it has no data or
control dependencies)

• Some activity’s inputs have
no value and not bounded
with data dependencies.

Secured activity
The current user has no access to
this activity.

�
Undefined data
transition

The transition’s source and
target ports have not been
specified yet.

!! Faulty data transition
Source data must be
zipped/unzipped before being
sent to the target activity.

!! Data transition with
warnings

Type mismatch between the
transition’s source and target
ports.

6.5. SWIMS: The Overall Picture 89

6.5 SWIMS: The Overall Picture

Before we introduce the overall picture of SWIMS, we would like to discuss how

the SWIMS’s server-side and client-side components fit into the SWfMSs’ reference

architecture presented in Section 2.3. SWIMS components have been mapped to

the different layers of the reference architecture in Figure 6.10. As stated before, the

current version of SWIMS supports Web services and GRIA services; in addition

to the services, the NMR should also reside in the Operational Layer so that it can

have low level access and control over the GRIA server. Two components exist in

the Task Management Layer, the ER which is responsible for the execution of tasks

and provenance management and the DMR which is dedicated for data management

purposes. In the Workflow Management Layer lies the SR that coordinates and

monitors the overall execution of workflows. Finally, in the Presentation Layer, the

workbench allows users to design, modify, and share scientific workflows; in addition,

it provides visualization tools for data products and provenance meta-data.

������ ��	�
�����

���� �� �	���� �	 � �����

� ��� �
�� �� �	�����	 �

����

� ���	���� ��	 �����

��������	

�	��� � � �� � ������
� �� ��� ��� �� � �������� �� �� ��� ��� ���� � ������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�� �� �
� ����� � ��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

� ���
� ���� � � � ��� �� ��� ��� ��� �� � ������
Figure 6.10: SWIMS according to the Reference Architecture in [Lin 2009]

In order to make it clearer how all SWIMS’s components work together, we

present a simplified sequence diagram for SWIMS usage in Figure 6.11. As noted

from the figure, all our WMS resources’ instances except the NMR are constructed

only when they are needed and destroyed after the completion of their job to reduce

our system load over the underling Grid node.

In general, users must first login to the SWIMS workbench. The provided

login information is sent to the Service Catalog in order to retrieve the list of

available activities and their accessibility status for the current user. The obtained

list of activities’ abstract templates is used to initialize the activities section in the

9
0

C
h
a
p
te
r
6
.

S
W

IM
S

W
o
rk

b
e
n
ch

��������
������	

�
����
� �� ���� �������� ��� �� ����
�
�� ��� ����
����� ���������
����� ���������� �� ����
� �����������

���� ����
�	������ ����
� ������ �� �������������������
�
����!��� !�� � ��

" �������� ����" �����

#�
$����������
��

���

��

�������
�������

"��

%�
���&��� ����%�
� �������
 ����������
� �� !% ���'�� � �����(��
��� !'�� ���������#�)*�+#�)*�+�
����!��� !�� � ���� � ��
��
� �� ��� ������ �� �����
�,! --- ������� �
����

��� ����� ����
�.��� ��

����.���� ���#������ ����
�

�.��� � ������ �������$��.���� ������ � ������$�
Figure 6.11: SWIMS’s Simplified Sequence Diagram [UML 2011].

6.5. SWIMS: The Overall Picture 91

workbench palette which is used by the user to construct an abstract workflow and

submit it for execution.

For submitting a workflow for execution, the workbench needs to find a Grid

node where it can create a new SR instance and submit the workflow to it. This

can be achieved by contacting the Service Catalog to get the node’s URL. Upon

receiving the workbench request, the Service Catalog checks all nodes where SR

has already been deployed, and returns the URL of the node with the least number

of running SR instances. If the workbench fails to create an SR instance over the

returning node, it has to inform the Service Catalog about this failure to update

its status tables.

The SR instance follows the lifecycle introduced in Section 5.4 to coordinate the

execution of the submitted workflow. First, it divides the submitted workflow into a

set of subworkflows and adds its execution snapshot entry in the Workflow Catalog.

Then, it plans each subworkflow to an ER instance by contacting the Service Catalog

to get all nodes which meet the subworkflow’s tasks resource requirements and

selecting from them the best node according to one of the planning algorithms

presented in section 5.4.2. Finally, the SR creates a new ER instance over the

selected node and submits the subworkflow to it. After the completion of the

execution of each subworkflow, the SR instance stores a checkpoint entry in the

Workflow Catalog and notifies the workbench about the subworkflow’s final results.

Every created ER instance adheres to the lifecycle inferred in Section 5.5 to

execute the submitted subworkflow. First of all, it computes the SHA-2 fingerprint

of the subworkflow’s inputs which is sent to the Workflow Catalog to check whether

there exists a cached output for the given fingerprint. In the event of having

a negative response from the Workflow Catalog, the ER instance contacts the

Mediator Catalog to fetch any required mediators, then it contacts the remote DMR

instances to transform and download required inputs. The retrieved inputs are used

to execute the subworkflow over the underlying workflow enactor. A successful

execution is followed by a caching of the subworkflow’s output and a notification to

the SR instance holding the output references.

In the previous example, we have focused only on the SWIMS’s basic

functionalities. However, in a real environment, the workflow management and

execution processes can be quite different. For example, fault handling mechanism

may be involved to recover from execution failures or the user may decide to

interrupt the execution process to apply some modifications.

Summary

In this chapter, we have demonstrated the workbench provided by SWIMS enabling

scientists to construct, execute, monitor, steer and share scientific workflows. We

focused on showing how the workbench utilizes a high level of abstraction to shield

scientists from technical complexities: Users compose their workflows from a set of

abstract activities without considering the type of these activities or where they have

92 Chapter 6. SWIMS Workbench

been deployed. In addition, authentications between users and secured activities

are done through a simple user name and password approach.

The workbench also helps users to enrich their work by allowing them to

share and re-use other scientists’ experiments stored in the Workflow Catalog.

Furthermore, users can adapt the service’s behavior or/and interface. They can then

deploy the adapted service as a new one and use it in their workflows. Users can also

deploy any successfully running workflow as a standalone service that can be used

as an atomic activity within more complex workflows. Moreover, to minimize the

probability of runtime errors, the workbench allows its users to validate workflows

before submission.

In addition to exploring the features of the SWIMS workbench, the chapter

highlighted the architecture of the workbench and the structure of the SWIMS

abstract XML-based language used to represent constructed workflows. We closed

the chapter with a simple usage scenario of SWIMS in order to show how SWIMS’s

different components (global, server-side and client-side components) cooperate in

order to provide a reliable and distributed execution of scientific workflows.

Chapter 7

Experiment and Performance

Evaluation

Contents

7.1 Montage Workflow Generator 93

7.2 Experiment Design . 95

7.3 SWIMS’s Server-Side Evaluation 96

7.4 SWIMS’s Workbench Evaluation 102

The previous three chapters described the design and implementation of

SWIMS, a Grid-based scientific workflow management system. As a part of my

thesis work, I have conducted a ”test deployment” of SWIMS over a small Testbed

constructed based on the Bonn-Aachen International Center for Information

Technology (B-IT) resources. The main goal of this deployment was to evaluate

the feasibility, usability, capabilities, and the performance of the server and client

side components of SWIMS. The performance evaluation was based on Montage

workflows from the astronomy domain presented in Section 2.2.1. In order to

simplify the construction of the experiment’s needed workflows; we supplied the

SWIMS’s workbench with the capability to generate large scale Montage workflows.

The rest of this chapter is organized as follows. First of all, we discuss the

Montage workflow generator added to the SWIMS workbench. Second we explain

the structure of the Testbed and the different workflows used in the evaluation

process. Third we focus on the evaluation of the SWIMS’s WMS, and finally; we

end up with the evaluation of the SWIMS’s workbench.

7.1 Montage Workflow Generator

To facilitate the evaluation of SWIMS environment on a set of Montage workflows

with different sizes, we have added a Montage workflow generator to the SWIMS

workbench. As we can see in Figure 7.1, the user has to select a set of parameters

that describe the mosaic to be constructed, including an object name, a sky survey,

a mosaic region size, a size of a pixel (in arcsec) and a coordination system.

The first action of the workflow generator is trying to download the input files

required by the requested workflow. This can be achieved through two steps.

First, the generator uses the mArchiveList Montage module that contacts the

94 Chapter 7. Experiment and Performance Evaluation

Figure 7.1: Montage Workflow Generator

NASA/IPAC Infrared Science Archive (IRSA) [IRSA 2011] server to retrieve a list

of archive images given a location on the sky, and size in degrees.

mArchiveList survey band object|location width height region.tbl

Then, the table generated by the mArchiveList is passed to the mArchiveExec

module that calls the mArchiveGet module on each image in the list to retrieve all

required files.

mArchiveExec region.tbl

After retrieving the input images, the workflow generator uses the mHdr

Montage module that contacts the IRSA service HdrTemplate to create a header

template based on a coordination system, resolution, location, and size.

mHdr [-s system] [-p pixsize] object|location width template.hdr

Another set of headers are also required by the Montage workflow activities.

These headers can be obtained through the Montage Grid module mDAGTbls

which given an image table and a header template; it constructs the tables of

projected and background corrected images. The required image table itself can be

generated by applying the mImgtbl module over the downloaded input images.

mImgtbl directory-input-images images.tbl

mDAGTbls directory-input-images images.tbl template.hdr projectedImages.tbl

correctedImages.tbl

7.2. Experiment Design 95

Now and after downloading all required input files, the workflow generator is

ready to build the required workflow based on the information about the Montage

workflow structure described in Section 2.2.1. The workflow generator creates an

mProject job for each input image, and for each pair of input images, an mDiffFit

job is created to represent the calculation of the differences of the reprojected

images. Then an mConcatFit job is used to merge multiple plane fit parameter

files into one file, which is used by the next job, the mBgModel, to determine the

background correction required for each image. Afterwards, the workflow generator

adds an mBackground job for each re-projected image that applies the recommended

correction over the image. The final stages of the workflow, denoted by the pipeline

structure in Figure 2.3, represent the creation of the final mosaic. These stages are

common to all Montage workflows, and therefore, are also included by the workflow

generator.

7.2 Experiment Design

In order to evaluate the feasibility, usability, capabilities, and the performance of

SWIMS, we have deployed it on a small Testbed shown in Table 7.1. The Testbed

has been constructed over the BIT’s 100 Mbps Ethernet LAN. All computational

resources have small communication latency (≤ 1ms). The execution service

instances in the deployed SWIMS server bundles have been configured to run

maximum four subworkflows at a time.

Table 7.1: SWIMS Testbed

Node #CPU CPU, GHz Memory OS SWIMS
Bundle

1 1
Pentium 4,
3.6

2 GB
XP SP3
(32 bits)

Global
Catalogs1

2 4 Intel Core 2,
2.83

3 GB Ubuntu 10.04
(64 bits)

Server2

3 4 Intel Xeon,
2.66

3 GB Ubuntu 10.04
(32 bits)

Server

4 4 Intel Xeon,
2.66

3 GB
XP SP3
(32 bits)

Server

5 4 Intel Xeon,
2.66

3 GB
XP SP3
(32 bits)

Server

6 2 Intel Core 2,
2.4

2 GB
XP SP3
(32 bits)

Client

The evaluation has been conducted using a ten real world Montage workflows

that are used to create (0.1 to 1.0 square degrees) mosaics of the M31 region of the

1Service, workflow, and mediator Catalogs
2Scheduler, Task, Node Management, Data Management resources

96 Chapter 7. Experiment and Performance Evaluation

sky. Table 7.2 shows the name of the module and number of tasks at each level of

the Montage workflows and the average output size of each module. More details

about the functionality of each of these modules can be found at [Montage 2011].

Table 7.2: Number of tasks per level, and average output size of modules in
ten Montage workflows (from 0.1 until 1.0 sq. degree)

l Module #t
(0.1)

#t
(0.2)

#t
(0.3)

#t
(0.4)

#t
(0.5)

#t
(0.6)

#t
(0.7)

#t
(0.8)

#t
(0.9)

#t
(1.0)

Avg. out.
(KB)

1 mProject 2 6 8 12 16 24 28 32 36 45 1970

2 mDiffFit 1 15 28 66 120 276 378 496 630 990 0.4

3 mConcatFit 1 1 1 1 1 1 1 1 1 1 72

4 mBgModel 1 1 1 1 1 1 1 1 1 1 1.5

5 mBackground 2 6 8 12 16 24 28 32 36 45 1820

6 mAdd 1 1 1 1 1 1 1 1 1 1 38000

7 mJpeg 1 1 1 1 1 1 1 1 1 1 387

Total 9 31 48 94 156 328 438 564 706 1084

7.3 SWIMS’s Server-Side Evaluation

Figure 7.2: Average Completion Time (Montage’s Experiment)

In order to evaluate the SWIMS’s WMS performance, we have executed the

workflows represented in Table 7.2 over the SWIMS’s Testbed. Figure 7.2 shows

7.3. SWIMS’s Server-Side Evaluation 97

Figure 7.3: Amount of Data Transfer (Montage’s Experiment)

the workflows completion times on Taverna 1.73 and on SWIMS’s Testbed with

different conditions:

1. Naive run without applying any clustering techniques and using the

reliability-based scheduling presented in Section 5.4.2.

2. Planning based on data-aware scheduling.

3. Horizontal clustering with clustering sizes three, and seven.

4. Vertical clustering with clustering size three.

The completion time shown in the Figure is the average of three runs. According

to the obtained results, we can conclude the following:

1. For small and medium scale workflows, the execution time of the SWIMS’s

naive run is quite close to the execution time over Taverna, that employs a

single centralized execution engine. For large workflows (0.9 and 1.0 degrees),

Taverna produced an ”Out of Memory” exception. While Taverna’s engine

could execute medium workflows (0.6 - 0.8 degrees), its workbench hanged

due to the need of rendering a quite large number of tasks; in this case, we

had to collect the execution information from Taverna’s log files.

2. Data-aware scheduling decreases the execution time of large workflows (0.7 -

1.0 degrees) from 10% up to 16%. This improvement is due to the reduction

3Taverna 1.7 uses the same execution engine exploited in SWIMS’s WMS (Freefluo enactor)

98 Chapter 7. Experiment and Performance Evaluation

of the amount of data transferred as shown in Figure 7.3. As observed from

the Figure, the diminution of data is rather small and only observable in large

workflows as the transferred data between Montage’s workflows individual

tasks is quite small as perceived in Table 7.2 (Avg. out.).

3. Clustering techniques can also depreciate the execution time of large workflows

as they lead to less scheduling overhead as we will show later and less data

transfer as stated in Figure 7.3. The reduction percentage ranges from 7%

up to 11%, 9% up to 14%, and 14% up to 24% for vertical clustering (cluster

size 3), horizontal clustering (cluster size 3), and horizontal clustering (cluster

size 7) respectively. An important remark of this result is that increasing the

clustering size in case of horizontal clustering leads to improvement in the

overall performance, especially for workflows with large numbers of tasks in

one level as the case for Montage’s workflows (in levels one, two, and five).

4. A second run of a workflow while enabling global caching can be extremely

fast (up to 85% faster). In an execution fully based on cached outputs, only

initial inputs need to be actually transferred. Intermediate data is not needed

to be transferred because the DMR instances, locally located on the nodes

where the data resides, are responsible for computing the data’s SHA-2 digest

required by the caching algorithm (see Section 5.6.4).

We also plot the average speedup of tasks for all runs in Figure 7.4. The average

speedup of an execution of type x is defined as (avg runtimex/avg runtimenaive).

As we can see, clustering techniques can have a higher impact on tasks that run

simultaneously in a large number (e.g. mProject, mDiffFit and mBackground)

because in this case, the workflow enactor needs to create a single workflow instance

for all clustered tasks rather than creating a workflow instance for each task as the

case in the naive execution. Data-aware scheduling has more effect on tasks with a

large number of inputs (e.g. mConcatFit, and mAdd) or tasks with a quite large

input (e.g. mJpeg).

Figure 7.5 shows that the overall overhead in SWIMS does not exceed 7% of

the workflow’s execution time. Furthermore, the effective parallelism of tasks in

SWIMS almost neglects this overhead; the naive execution of Montage workflows

over SWIMS is very close to the execution of them over a centralized engine

(Taverna) as discussed before. The figure also emphasizes that clustering techniques

can help to reduce the overhead as it leads to fewer numbers of subworkflows.

The measured overhead includes workflow partitioning, checkpointing and other

scheduling tasks, including workflow planning, and data caching. Figure 7.6

emphasizes that the percentage of these tasks varies according to the type of the

execution. For example, in horizontal clustering, the workflow partitioning process

dominates the overhead time, whereas we need to compute the level of every task

in the workflow in order to partition it. The computation of a task’s level is a quite

expensive recursive process.

7.3. SWIMS’s Server-Side Evaluation 99

Figure 7.4: Average Task’s Execution Speed-up

Figure 7.5: All Overhead in SWIMS

The Montage workflows-based experiment ensures SWIMS’s capability to

manage large scale workflows from the number of tasks point of view. In order

to emphasize SWIMS’s ability to handle a large amount of data, we have carried

out another experiment using a simple workflow shown in Figure 7.7. The workflow

100 Chapter 7. Experiment and Performance Evaluation

(a) Naive (b) Vertical Clustering (3)

(c) Horizontal Clustering (3) (d) Horizontal Clustering (7)

Figure 7.6: Distribution of SWIMS Overhead� ��
� �

�
�

�
����	
�� �
�� � ��
��� ��� �� ��	� �� �
�
��������	 �

�

Figure 7.7: Data-intensive Workflow

consists of a set of ”concatenate binary files” used to concatenate a given set of

binary files into a single file. For this experiment, we used ten of this workflow

7.3. SWIMS’s Server-Side Evaluation 101

with different input data size. In each workflow, the tasks in level one have been

populated with two input files of varying size 200, 400,..,2000 MB. The maximum

output size of a task in this experiment was 16,000 MB while the maximum amount

of data transferred during a workflow execution was 80,000 MB.

Figure 7.8: Average Completion Time (Data Intensive Experiment)

Figure 7.8 represents the workflow completion times on SWIMS Testbed while

Figure 7.9 depicts the amount of data transferred during the execution of each of

these workflows. As indicated from the figures, we have only plotted the results of

data-aware scheduling, vertical clustering and data caching executions as they are

more valuable for data intensive workflows. They lead to 30% up to 38%, 12% up

to 18%, 90% up to 94% reduction in the workflow execution time respectively. We

believe that these techniques can lead to better performance improvement when the

underlying Cyberinfrastructure is distributed over a wide area network where data

transfer is more expensive. Horizontal clustering techniques make no sense for this

type of workflows that contains a limited number of tasks at each level.

During the experiment, we have also enforced a set of exception events to test

the SWIMS’s fault handling capabilities discussed in Section 5.7 and to evaluate

the overall system reliability. The encountered events include:

• Shutting down an ER instance while executing a subworkflow.

• Deploying faulty Gria services. In this case, checkpoints were used to resume

the workflow after correcting the faulty services.

102 Chapter 7. Experiment and Performance Evaluation

Figure 7.9: Amount of Data Transfer (Data-Intensive Experiment)

• Shutting down the workflow’s main scheduler during the execution.

• Shutting down a random Grid node.

To sum up, SWIMS can achieve scalable and reliable distributed execution of

scientific workflows through exploiting several WMS instances. The execution of

every concrete service is fully controlled by the ER instance deployed on the service’s

node. The ER instance is also capable of handling execution errors without the

need of the workflow’s main scheduler through its local SR instance. This leads to

a distributed fault handling paradigm over the services’ level. The main scheduler of

the workflow stores execution checkpoints in the Workflow Catalog that can be used

by users either to recover from failures or to achieve smart-rerun. In smart-rerun,

users can restart the workflow from any point after modifying it. All these features

have been achieved with negligible overhead (up to 7%) when it is compared to

their benefits.

7.4 SWIMS’s Workbench Evaluation

In this section, we evaluate SWIMS’s workbench against the system usability

challenges discussed in Section 2.4:

• Ease of use: SWIMS provides a visual workbench that allows scientists to

construct DAG scientific workflow from a set of abstract activities. These

7.4. SWIMS’s Workbench Evaluation 103

activities are constructed from abstract templates obtained from the Service

Catalog. The abstract templates contain the activities’ inputs, outputs and

parameters that help the system to guide and restrict users during the

construction process. The update of available services in the underlying

Cyberinfrastructure is done automatically via notifications sent from the NMR

instances on different available servers to the Service Catalog. In this way,

SWIMS shields scientists from the technical complexities of the underlying

Cyberinfrastructure. Even more, scientists don’t have to bother themselves

regarding fault handling or even data transformation between heterogeneous

services if mediators have already been constructed for these services.

• Handling security credentials: SWIMS tries to hurdle the security issue by

applying a double-layer security model as shown in Figure 4.4. The first layer

defines the security between a user and the SWIMS system that is based on

a simple user name and password mechanism that has to be defined only

once. The second layer represents the security between the SWIMS system

and different Grid sites (in our case GRIA servers) based on X.509 certificates

automatically generated by the WMS instances deployed on the corresponding

servers. The security information is stored and become accessible to all other

nodes through the Service Catalog. The administrator of every node should

be able, through a simple web-based interface, to classify the node’s available

services to public and private services, and to assign access roles from the

list of available users to their private services. A SWIMS user will be able to

execute workflows that contain only public services and private services that

have been assigned as accessible to him. By using this approach, we attempt

to move the security complications from users to server administrators who

in most cases have enough IT knowledge to handle them.

• Workflow monitoring : During the workflow execution, SWIMS workbench

switches to the Monitoring mode where users can follow the progress of the

workflow execution process either in text mode through events shown in the

logging view or in graphical mode by virtue of small icons added to the

workflow’s activities that reveals the activities’ execution states (see Section

6.3.3).

• Workflow steering : SWIMS users can pause the execution of a workflow in

two ways. First, by using breakpoints in the editing mode before submitting

the workflow for execution (the workflow stops before executing the task with

the breakpoint). The second way is to execute the pause command during

the execution in the monitoring mode; this will pause the workflow after the

completion of the currently running tasks. In addition, users can adapt the

paused workflow (see Section 6.3.3).

• Workflow Sharing : Workflows in SWIMS are shared among users through the

Workflow Catalog that forms a shared workspace. Through this workspace,

104 Chapter 7. Experiment and Performance Evaluation

users can access workflows already executed by other scientists, their execution

snapshots and provenance/error reports (see Section 4.3). Through the

”Workflow Catalog View” in the SWIMS workbench, users can explore the

contents of the Workflow Catalog in order to re-use previously designed

workflows as a template for creating new ones, or to re-run an experiment from

a certain checkpoint, or even to analyze the workflow’s provenance information

or error logs for better understanding of its final results (see Section 6.3.2).

• Expose workflows as services: After a successful run of a workflow, users can

request the workbench to deploy the workflow as a Grid service (see Section

6.3.3).

• Workflow validation: In SWIMS, workflows are validated automatically

whenever it is opened or before submission for execution. Meanwhile, users

can perform manual validation. The validation process ensures the following:

i) all required inputs and parameters are available, ii) all workflow’s activities

are online and accessible to the current user, iii) no errors or mismatches exist

in the workflow’s data transitions (see Section 6.4).

Summary

In order to evaluate the usability, and the performance of the SWIMS’s WMS,

we have conducted a ”test deployment” over a small Testbed of six nodes. The

evaluation has been done through two different experiments. The first experiment

involved ten Montage workflows to test the SWIMS’s capability of handling large

scale (up to 1084 tasks) workflows. The second experiment has been designed to

emphasize SWIMS’s ability to handle a large amount of data. It encounters ten

simple workflows that exchange a huge amount of data (up to 80,000 MB).

The experiments’ results showed that the SWIMS naive execution provides a

quite acceptable performance that is nearly equal to the execution of the same

workflows on a local engine (Taverna) with an overhead less than 7% of the total

execution time. Data-aware scheduling and vertical clustering can improve the

execution performance, especially for data intensive workflows (up to 38% and 18%

respectively). Horizontal clustering is more suitable for workflows with a large

number of tasks in the same level could achieve performance improvement up to 24%

for the large scale Montage workflows. Data caching can support an extremely fast

smart re-run. We could re-execute a non-modified workflow up to 94% faster than

the first run. Another important remark here is that vertical clustering, data-aware

scheduling and data caching can help to reduce the amount of data transferred

during the execution process. For example, in the second experiment, these features

were able to decrease the amount of transferred data up to 40%, 60%, and 80%

respectively.

In addition, the SWIMS workbench has been evaluated against the system

usability challenges discussed in Chapter 3.

7.4. SWIMS’s Workbench Evaluation 105

From the previous results, we can derive a set of scenarios where utilizing of

SWIMS can provide a great advantage. First, SWIMS can achieve a scalable and

reliable execution for complex workflows, with a large number of parallel tasks,

or for data intensive workflows. Second, smart-rerun capability in SWIMS is very

helpful for repetitive scientific experiments that need to be executed several times

with minor modifications of their tasks’ parameters. Last but not least, SWIMS

is a perfect choice for a set of organizations from the same domain which would

like to cooperate with each other. These organizations can deploy SWIMS with a

shared Global catalogs. This will allow the users of every organization to access the

services offered by other organizations; they can also explore and re-use scientific

experiments developed by others, including their provenance and error reports.

Chapter 8

Conclusion and Future Trends

Contents

8.1 Summary of the Thesis . 106

8.2 Accomplishments of the Thesis 108

8.3 Future Work . 112

8.1 Summary of the Thesis

In this thesis, I have proposed, designed, implemented, and evaluated a framework

(SWIMS) for scientific workflow management and execution. SWIMS provides

a new execution paradigm that utilizes several workflow management systems

(SWIMS’s WMS instances). These WfMSs cooperate with each other to coordinate

and execute scientific workflows in a distributed and reliable manner. In addition,

SWIMS offers a client workbench with a high level of abstraction and extensive

sharing capabilities in order to hide complex technical details from its users and to

enrich their work environment.

I started my work by a practical evaluation of a set of selected SWfMSs and

a review of literature on existing scientific workflow and management systems

and their challenges (see Chapter 2, and Chapter 3). My study established that

existing systems still face key challenges in the different stages of the workflow

management lifecycle (summarized in Tables 3.1 and 3.2). Accordingly, I have

proposed the SWIMS framework that employs Web services technology to provide

a new execution paradigm that utilizes several workflow management systems.

SWIMS introduces a complete scientific workflow management environment in the

sense that it fills in all the gaps discovered in the different phases of the workflow

management lifecycle.

The SWIMS architecture (see Chapter 4) consists of a client workbench, and

a set of Workflow Management System (WMS) deployed on nodes wishing to

participate in the workflow management and execution process. In addition, there

are three global catalogs: First, the Mediator Catalog stores mediators necessary

for data transformations between heterogeneous services. Second, the Workflow

Catalog acts as a shared workspace to hold all workflows-related information,

including specifications, execution checkpoints, provenance reports, error logs, and

cached outputs. Finally, the Service Catalog keeps track of all available concrete

services (Web services and GRIA services).

8.1. Summary of the Thesis 107

To simplify the implementation of the SWIMS’s WMS (see Chapter 5), I have

divided it into four main components: data management (DMR), node management

(NMR), scheduler (SR) and execution (ER) resources. With the help of these

components, I could provide solutions to the system efficiency and reliability

challenges discussed in Section 2.4 as shown in Table 8.1. First, the management

and execution of scientific workflows in SWIMS are done by several SR (in case

of failures) and ER instances that ensure the reliability and extendability of the

SWIMS system. Second, all planning algorithms, applied by the SR, consider the

load balancing between different execution nodes. Third, the DMR is responsible

for reference-based data movement, and automatic data transformation between

heterogeneous services based on the mediators stored in the Mediator Catalog.

Fourth, fault handling in SWIMS is completely transparent to its users. Every ER

instance is responsible for handling errors that occur during the execution of its

node’s concrete services. The ER instance can retry the service or use its node’s

local SR instance to find an alternative Grid node to execute the failed task. In

addition, as the ER instance is located at the concrete service’s node, it can generate

low-level error reports, including faults occurred at the OS-level. This helps service

owners to quickly recover the causes of failures. The workflow’s main scheduler (SR)

ensures that all active ER instances are working smoothly; otherwise, it re-schedules

the tasks of any failed ER instance. Even if the workflow’s main scheduler itself has

failed, another SR instance is elected transparently to continue the execution of the

workflow. Fifth, the workflow’s main scheduler submits an execution checkpoint

to the Workflow Catalog after the execution of every task. These checkpoints can

be used either to recover from errors or to re-run the workflow from any selected

point after modifying its specifications. Finally, the ER instance caches the output

of every successfully executed task globally in the Workflow Catalog; this helps the

SWIMS environment to avoid re-running of a time consuming service if it has been

already executed on the same given input.

The SWIMS workbench (see Chapter 6) enables scientists to construct, execute,

monitor, steer and share abstract scientific workflows. The SWIMS workbench tries

to overcome the system usability challenges highlighted in Section 2.4 as indicated

in Table 8.2. First, the workbench utilizes a high level of abstraction to shield

scientists from technical complexities; users compose their workflows from a set of

abstract activities without considering the type of these activities or where they

have been deployed. Second, authentication between users and SWIMS is done

through a simple user name and password approach, while X.509 certificates are

used for transparent authentication between SWIMS and different available Grid

servers. Third, SWIMS users can monitor the execution of their workflows in both

text and graphical mode. Fourth, users can steer workflows during execution by

pausing, and editing them. Fifth, the SWIMS workbench helps to enrich scientists’

work by allowing them to share and re-use other scientists’ experiments stored

in the Workflow Catalog; they can also explore the provenance and error reports

generated during the execution for better understanding of the final results. Even

more, they can tailor the behavior of an existing GRIA service and deploy it as

108 Chapter 8. Conclusion and Future Trends

a new service. Sixth, SWIMS’s workflows can be deployed as standalone services

that can be used as atomic activities within more complex workflows. Last but not

least, abstract workflows are validated before submission to ensure that workflows’

mandatory inputs and parameters are available, workflows’ activities are online and

accessible to the current user, and there are no errors or mismatches in workflows’

data dependencies. The only limitation of the SWIMS workbench is that it is

bounded to DAG workflows as it does not support iterative constructs.

At the end, I have evaluated the usability, and the performance of the SWIMS’s

WMS through conducting a ”test deployment” over a small Testbed of six nodes (see

Chapter 7). The evaluation has been done through two different experiments. The

first experiment involved ten Montage workflows to test the SWIMS’s capability

of handling large scale (up to 1084 tasks) workflows. The second experiment has

been designed to emphasize SWIMS’s ability to handle a large amount of data.

It encounters ten workflows that exchange huge amount of data (up to 80,000

MB). The experiments’ results showed that the SWIMS naive execution provides

a quite acceptable performance that is nearly equal to the execution of the same

workflows on a local engine (Taverna) with a total overhead less than 7% of the

overall execution time. Data-aware scheduling and vertical clustering can improve

the execution performance, especially for data intensive Workflows (up to 38% and

18% respectively). Horizontal clustering is more suitable for workflows with a large

number of tasks in the same level and could achieve performance improvement up to

24% for the large scale Montage workflows. Data caching can support an extremely

fast smart re-run. In my experiments, a workflow run based on cached outputs was

up to 94% faster than the first run.

8.2 Accomplishments of the Thesis

The significance of this research is that it tackles existing problems in the workflow

management lifecycle. This leads to a set of improvements in the process of scientific

workflows management and execution from two different points of views, system

efficiency and system usability. This research combines several existing technologies

to provide a real scientific workflow execution environment (SWIMS) that exploits

several workflow management systems to better reflect the distributed nature of

scientific workflows. Moreover, it considerers ease of use and extensive sharing

aspects to support users with limited IT knowledge.

The main outcomes of this research regarding system efficiency are as follows:

• Even though the new execution paradigm exploits several execution engines

and schedulers, the coordination of a workflow is done by a single scheduler for

better monitoring and tracking of execution information. However, SWIMS

is still highly reliable as it keeps the execution status of running workflows in

a global shared space (Workflow Catalog). In case of a failure of a workflow’s

coordinator, a new one is elected transparently to continue the workflow’s

execution.

8.2. Accomplishments of the Thesis 109

• Having a complete workflow management system on every node improves the

overall system openness. Workflow participants can easily join and leave the

execution process at their own initiative at any time without affecting the

current status of the whole system.

• SWIMS is highly scalable. Every new joining node provides a scheduler for

coordinating more workflows and an execution engine for running more tasks.

• Exploiting several execution engines helps SWIMS to provide distributed fault

handling on the service level. In addition, every execution engine has access

to low-level error reports generated during the execution process. This helps

to give a better insight of occurred faults.

• SWIMS offers a low cost global data caching based on an SHA-2 fingerprint

of workflows’ inputs and the workflows’ output references. This helps to avoid

the rerunning of time consuming scientific tasks.

• As shown in Figures 7.3 and 7.9, vertical clustering, data-aware scheduling,

and data caching features helps to reduce the amount of data transferred

during the execution process.

• Data transformation mediators, created by a user, are shared in a

global Catalog. SWIMS uses these mediators to achieve automatic data

transformation between heterogeneous tasks.

Moving to the system usability, our research contributes the following:

• Ease of use is one of the main goals of SWIMS’s client side. It isolates its users

from any technical details through high level of abstractions. It provides also a

simple authentication mechanism based on user names and passwords. Users

don’t have to take care of fault handling that is achieved transparently by

the environment itself. They don’t have also to consider data transformations

between heterogeneous services if data transformation mediators for these

services already exist in the Mediator Catalog.

• SWIMS provides a completely open and sharing environment that enriches the

working surroundings of scientists. Assume a scenario that several scientific

organizations from the same domain deployed SWIMS as their workflow

management and execution environment. The users of every organization

will be able easily to make use of the public services or to request access

permission to secured services offered by other organizations. Users can also

explore and re-use scientific experiments developed by others, including their

provenance and error reports.

• SWIMS offers adaptation and tailoring capabilities to its users. Users can

update their workflows while running, update others’ workflows and re-execute

them, or even tailor the behavior of an atomic service by modifying its script

/ interface and redeploying it as a new service.

110 Chapter 8. Conclusion and Future Trends
T
a
b
le

8
.1
:
C
o
m
p
a
ri
so
n
o
f
W

o
rk
fl
o
w

M
a
n
a
g
em

en
t
S
y
st
em

s
(S

E
R
C
)
-
R
ec
a
ll
ed

S
E
R
C

T
a
v
er
n
a
2
.x

K
ep

le
r

U
n
ic
o
re

P
eg

a
su

s
S
W

IF
T

A
S
K
A
L
O
N

S
W

IM
S

R
el
ia
b
il
it
y

-S
in
g
le

en
g
in
e

-N
o
sc
h
ed

u
li
n
g

-S
in
g
le

en
g
in
e

-D
is
tr
ib
u
te
d

ex
ec
u
ti
o
n

(U
se
r
d
ir
ec
te
d
)

-N
o
sc
h
ed

u
li
n
g

-S
in
g
le

en
g
in
e

-S
in
g
le

sc
h
ed

u
le
r

-S
in
g
le

en
g
in
e

-S
in
g
le

sc
h
ed

u
le
r

-S
in
g
le

en
g
in
e

-S
in
g
le

sc
h
ed

u
le
r

-D
is
tr
ib
u
te
d

ex
ec
u
ti
o
n

(M
a
st
er
-S
la
v
e)

-S
in
g
le

sc
h
ed

u
le
r

-M
u
lt
ip
le

en
a
ct
o
rs

-M
u
lt
ip
le

sc
h
ed

u
le
rs

L
o
a
d

B
a
la
n
ci
n
g

–
–

N
/
A

N
/
A

N
/
A

N
/
A

su
p
p
o
rt
ed

D
a
ta

M
o
v
em

en
t

m
ed

ia
te
d

p
ee
r-
to
-p
ee
r

p
ee
r-
to
-p
ee
r

m
ed

ia
te
d

p
ee
r-
to
-p
ee
r

p
ee
r-
to
-p
ee
r

p
ee
r-
to
-p
ee
r

A
u
to
m
a
ti
c

D
a
ta

C
o
n
v
er
si
o
n

N
/
A

-C
o
m
m
o
n
m
o
d
el

E
M
L

N
/
A

N
/
A

N
/
A

b
a
se
d
o
n

o
n
to
lo
g
ie
s
a
n
d

d
a
ta

se
m
a
n
ti
cs

b
a
se
d
o
n

o
n
to
lo
g
ie
s
a
n
d

d
a
ta

se
m
a
n
ti
cs

F
a
u
lt

H
a
n
d
li
n
g

-T
a
sk

L
e
v
e
l:

-r
et
ry

-a
lt
er
n
a
te

re
so
u
rc

-W
f
L
e
v
e
l:

-w
f
re
sc
u
re

-T
a
sk

L
e
v
e
l:

N
/
A

-W
f
L
e
v
e
l:

-w
f
re
sc
u
e

-T
a
sk

L
e
v
e
l:

-r
et
ry

-u
se
r
d
efi

n
ed

E
x
ce
p
ti
o
n
s

-W
f
L
e
v
e
l:

N
/
A

-T
a
sk

L
e
v
e
l:

-r
et
ry

-W
f
L
e
v
e
l:

-r
es
cu

e
D
A
G

-T
a
sk

L
e
v
e
l:

-r
et
ry

(a
lt
er
n
a
te

re
so
u
rc
e)

-W
f
L
e
v
e
l:

-w
f
re
sc
u
re

-r
es
ta
rt

-T
a
sk

L
e
v
e
l:

-r
et
ry

-a
lt
er
n
a
te

re
so
u
rc
e

-W
f
L
e
v
e
l:

-w
f
re
sc
u
re

-c
h
ec
k
p
o
in
ti
n
g

-t
ra
n
sp

a
re
n
t

-S
e
r
v
ic
e
L
e
v
e
l:

-d
is
tr
ib
u
te
d

-r
et
ry

-a
lt
er
n
a
te

re
so
u
rc
e

-W
f
L
e
v
e
l:

-w
f
re
sc
u
re

-c
h
ec
k
p
o
in
ti
n
g

C
h
ec
k
p
o
in
ti
n
g

N
/
A

N
/
A

N
/
A

F
a
u
lt

h
a
n
d
li
n
g

F
a
u
lt

h
a
n
d
li
n
g

F
a
u
lt

h
a
n
d
li
n
g

-F
a
u
lt

h
a
n
d
li
n
g

-S
m
a
rt

re
-r
u
n

D
a
ta

C
a
ch

in
g

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

G
lo
b
a
l
C
a
ch

in
g

8
.2
.

A
c
c
o
m
p
lish

m
e
n
ts

o
f
th

e
T
h
e
sis

1
1
1

Table 8.2: Comparison of Workflow Management Systems (SUC) - Recalled

SUC Taverna 2.x Kepler Unicore Pegasus SWIFT ASKALON SWIMS

Ease of
Use

-Structure:
DAG
-Model:
concrete
-Composition:
graph-based

-Structure:
Non-DAG
-Model:
concrete
-Composition:
graph-based

-Structure:
Non-DAG
-Model:
abstract/
concrete

-Composition:
graph-based

-Structure:
DAG
-Model:
abstract
-Composition:
language-based

-Structure:
Non-DAG
-Model:
abstract
-Composition:
language-based

-Structure:
Non-DAG
-Model:
abstract
-Composition:
graph-based
(UML)

-Structure:
DAG
-Model:
abstract
-Composition:
graph-based

Handling
Security
Credentials

X.509
certificates

X.509
certificates

X.509
certificates

Globus
My-Proxy

X.509
certificates

Globus
My-Proxy

Simple user
name and
password

Workflow
Monitoring

-Graphical Mode
-Graphical Mode
(SDF
Directory)

-Graphical Mode -Text Mode -Graphical Mode
-Text Mode

-Graphical Mode -Graphical Mode
-Text Mode

Workflow
Steering supported

Workflow
parameters

N/A N/A N/A N/A supported

Workflow
Sharing

myExperiment
-Workflow
Source

Kepler
repository
-Workflow
Source

N/A N/A N/A N/A

Workflow Catalog
-Workflow Source
-Checkpoints
-Provenance

Expose
Workflows as
Services

N/A KAR archives N/A N/A N/A N/A GRID service

Workflow
Validation

-Data types
-Scripts
-Services
availability

N/A N/A N/A N/A N/A

-Missing inputs,
parameters
-Services:
-availability
-accessibility
-Data transitions

112 Chapter 8. Conclusion and Future Trends

8.3 Future Work

This dissertation represents a step in ongoing research efforts to realize the vision

of distributed, reliable, extendible, and easy to use SWfMS for managing scientific

workflows over Grid environments. There are still several issues worthy of future

investigations. We have already started a large scale deployment of SWIMS

over a set of available clusters in the Astronomy department in Bonn University

for a better evaluation of the system performance. We are also planning to exploit

SWIMS for more use cases from other domains (e.g., Bioinformatics). Another

future plan is to investigate the capability and the cost of deploying SWIMS over

a Cloud environment (e.g., Amazon EC2).

Thanks to the separation of functionalities and the autonomic nature of the

SWIMS’s different components, each of them can be improved separately by adding

further functionalities to it. In the following subsections, we are going to explore

some of these possible extensions.

1. WMS’s Scheduler Resource

• Iteration support: The partitioning algorithm needs to be extended in order

to be able to interpret and handle iteration constructs. This is a mandatory

requirement for supporting non-DAG workflows in SWIMS.

• Other scheduling algorithms: Other scheduling algorithms such

as algorithms based on performance predictors (e.g., [Blythe 2005,

Wieczorek 2005]) can be applied and evaluated for the planning phase.

2. WMS’s Task Resource

• Support other services: Currently, SWIMS supports Web services and

GRIA services. It is possible to add support to new type of services (e.g.

Globus, Unicore services) by simply adding new plug-ins to the Freefluo engine

that allows the engine to manage and execute them. We will need also to

extend the NMR to allow the detection of the deployment / undeployment of

the new services and to generate abstract templates from their descriptions.

3. WMS’s Node Management Resource

• Code Movement: As indicated in Section 5.6.1, a single scientific application

can produce a huge amount of data. In this case, moving the service itself to

the data location will be more cost-effective than moving the data. We have

already run an attempt to move GRIA service from one node to another.

Nevertheless, we faced several obstacles (see Section 5.6.1). The proposed

idea needs to be refined through a further deep research to form stable and

consistent solutions for the existing problems.

8.3. Future Work 113

4. SWIMS Workbench

• Visualization Plug-ins: We are planning to add a set of visualization

plug-ins for better visualization and analysis of different data items. The

added plug-ins will depend on the use cases that will be involved by SWIMS

in the future.

Appendix A

GRIA Job Description File

An GRIA application description file is an XML file containing metadata about the

application. For example, the following XML describes the Swirl application:

<?xml version=” 1 .0 ” encoding=”UTF−8” ?>

<Gr iaApp l i ca t i onDesc r ip t i on

xmlns=” ht tp : //www. i t−innovat ion . soton . ac . uk/2007/ g r id / app l i c a t i o n ”>

<JobServiceMinVers ion>5 .2</ JobServiceMinVers ion>

<Appl i ca t ion>

<Desc r ip t i on>Appl i ca t ion to sw i r l an image</Desc r ip t i on>

<ApplicationName>

ht tp : // i t−innovat ion . soton . ac . uk/ g r id / imagemagick/ sw i r l

</ApplicationName>

<Appl i ca t ionVers ion>2.0−1</Appl i ca t ionVers ion>

<Group>graph i c s</Group>

</Appl i ca t ion>

<DataStagers>

<DataStager type=” input ” name=” inputImage”>

<Desc r ip t i on>Input image to be sw i r l ed</Desc r ip t i on>

<MimeType>image</MimeType>

</DataStager>

<DataStager type=”output” name=”outputImage”>

<Desc r ip t i on>Swir l ed image</Desc r ip t i on>

<MimeType>image</MimeType>

</DataStager>

</DataStagers>

</Gr iaApp l i ca t i onDesc r ip t i on>

Every application provided by the GRIA Job Service must be given a unique

ApplicationName . To ensure uniqueness, a URI is used. Inputs and outputs

are defined as DataStager elements, with the type attribute set to ”input” or

”output”, as appropriate. Note that you can add as many inputs/outputs as

necessary, according to your application. An application might require arrays

of inputs, whose exact sizes are specified by the user when creating the job.

This is supported by GRIA using the minOccurs, maxOccurs and defaultSize

attributes on DataStager elements. For example, if your application took between

two and eight images as input, you might use the following XML:

<DataStager type=” input ” name=” inputImage” minOccurs=”2” maxOccurs=”8”

d e f a u l t S i z e=”2”>

<Desc r ip t i on>Input image</Desc r ip t i on>

<MimeType>image</MimeType>

115

</DataStager>

Optional inputs are described much like arrays, except the minOccurs attribute

is zero and the maxOccurs attribute is one. If your application accepts a set of

command line configuration arguments, you can force the Job Service to validate

them, before being passed to the application wrappers, by providing a description

of them in the metadata file. For example:

<Parameters>

<Parameter name=” s t r i n g ” q u a l i f i e r=”−−s t r i n g ” type=” s t r i n g ”

minOccurs=”0” maxOccurs=”1”/>

<Parameter name=”bool ” q u a l i f i e r=”−−bool ” type=”boolean ”

minOccurs=”0” maxOccurs=”1”/>

<Parameter name=”data” q u a l i f i e r=”” type=” s t r i n g ”

minOccurs=”1” maxOccurs=”1”>

<al lowed>one</ al lowed>

<al lowed>two</ al lowed>

<al lowed>three</ al lowed>

</Parameter>

</Parameters>

This will allow the following command lines:

−−s t r i n g ”This i s a s t r i n g ” one

−−bool three

The mimeType sub-element in the DataStager element defines the type of

the presented input/output. SWIMS use a set of user-defined mime types in order

to provide a better understanding between the SWIMS client and the remote

application. The following table shows different categories of mime types used in

SWIMS.

Standard Mime Types

e.g. image, text

the well known mime types

which reflects a single file of

this type

”zip” + Standard Mime Types

e.g. zipImage, zipText

reflects a single file from

the specified type which

needs to be zipped before

used/produced by the

application

”archive”+ Standard Mime Types

e.g. archiveImage, archiveText

reflects a list of files from

the specified type which

needs to be zipped before

used/produced by the

application

Appendix B

GRIA Job To Abstract

Template XSL Transformation

<x s l : s t y l e s h e e t xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”

xmlns:b=” ht tp : //www. i t−innovat ion . soton . ac . uk/2007/ g r id / app l i c a t i o n ”

exclude−r e su l t−p r e f i x e s=”b”>

<x s l : ou tpu t method=”xml” indent=”yes ” omit−xml−de c l a r a t i on=”yes ” />

<x s l : t emp l a t e match=” b :Gr i aApp l i c a t i onDesc r ip t i on ”>

<Act i v i t yDe s c r i p t i on>

<x s l : a t t r i b u t e name=” type”>g r i a</ x s l : a t t r i b u t e>

<x s l : a t t r i b u t e name=”name”>

<x s l : v a l u e−o f

s e l e c t=” subst r ing−a f t e r (b :App l i c a t i on /b:ApplicationName , ’ / ’) ”/>

</ x s l : a t t r i b u t e>

<x s l : a t t r i b u t e name=” secured ”>t rue</ x s l : a t t r i b u t e>

<Desc r ip t i on>

<x s l : v a l u e−o f s e l e c t=” b :App l i ca t i on / b :De s c r i p t i on ” />

</Desc r ip t i on>

<xs l : app ly−templates />

</ Ac t i v i t yDe s c r i p t i on>

</ x s l : t emp l a t e>

<x s l : t emp l a t e match=”b:JobServ iceMinVers ion ”>

</ x s l : t emp l a t e>

<x s l : t emp l a t e match=” b :App l i ca t i on ”>

</ x s l : t emp l a t e>

<x s l : t emp l a t e match=”b:Parameters ”>

<x s l : e l emen t name=”{ l o c a l−name ()} ”>
<xs l : app ly−templates s e l e c t=”@∗ | node () ” />

</ x s l : e l emen t>

</ x s l : t emp l a t e>

<x s l : t emp l a t e match=” b :De s c r i p t i on ”>

<x s l : e l emen t name=”{ l o c a l−name ()} ”>
<xs l : app ly−templates s e l e c t=”@∗ | node () ” />

</ x s l : e l emen t>

</ x s l : t emp l a t e>

<x s l : t emp l a t e match=”b:Parameter ”>

<x s l : e l emen t name=”{ l o c a l−name ()} ”>
<xs l : app ly−templates s e l e c t=”@∗ | node () ” />

</ x s l : e l emen t>

117

</ x s l : t emp l a t e>

<x s l : t emp l a t e match=”b:Allowed”>

<x s l : e l emen t name=”{ l o c a l−name ()} ”>
<xs l : app ly−templates s e l e c t=”@∗ | node () ” />

</ x s l : e l emen t>

</ x s l : t emp l a t e>

<x s l : t emp l a t e match=”@ name | @qua l i f i e r |@type”>

<x s l : a t t r i b u t e name=”{ l o c a l−name ()} ”>
<x s l : v a l u e−o f s e l e c t=” . ” />

</ x s l : a t t r i b u t e>

</ x s l : t emp l a t e>

<x s l : t emp l a t e match=”@ minOccurs |@maxOccurs”>

</ x s l : t emp l a t e>

<x s l : t emp l a t e match=”b:ApplicationName”>

</ x s l : t emp l a t e>

<x s l : t emp l a t e match=”b:DataStagers ”>

<Inputs>

<xs l : app ly−templates

s e l e c t=”b:DataStager [@type=’ input ’] ” />

</ Inputs>

<Outputs>

<xs l : app ly−templates

s e l e c t=”b:DataStager [@type=’output ’] ” />

</Outputs>

</ x s l : t emp l a t e>

<x s l : t emp l a t e match=”b:DataStager [@type=’ input ’] ”>

<Input>

<x s l : a t t r i b u t e name=”name”>

<x s l : v a l u e−o f s e l e c t=”@name” />

</ x s l : a t t r i b u t e>

<x s l : a t t r i b u t e name=” type”>

<x s l : c h o o s e>

<xs l :when t e s t=” conta in s (b:MimeType , ’ arch ive ’) ”>

l i s t

</ xs l :when>

<x s l : o t h e rw i s e> f i l e</ x s l : o t h e rw i s e>

</ x s l : c h o o s e>

</ x s l : a t t r i b u t e>

<x s l : a t t r i b u t e name=” z ip ”>

<x s l : c h o o s e>

<xs l :when t e s t=” conta in s (b:MimeType , ’ arch ive ’)

or conta in s (b:MimeType , ’ z ip ’) ”>

t rue

</ xs l :when>

<x s l : o t h e rw i s e> f a l s e</ x s l : o t h e rw i s e>

</ x s l : c h o o s e>

</ x s l : a t t r i b u t e>

< x s l : i f t e s t=”@ minOccurs and @maxOccurs”>

118Appendix B. GRIA Job To Abstract Template XSL Transformation

<x s l : a t t r i b u t e name=” array ”>t rue</ x s l : a t t r i b u t e>

<x s l : a t t r i b u t e name=” index ”>0</ x s l : a t t r i b u t e>

</ x s l : i f>

<MimeType>

<x s l : c h o o s e>

<xs l :when t e s t=” conta in s (b:MimeType , ’ arch ive ’) ”>

<x s l : v a l u e−o f

s e l e c t=” subst r ing−a f t e r (b:MimeType , ’ arch ive ’) ” />

</ xs l :when>

<xs l :when t e s t=” conta in s (b:MimeType , ’ z ip ’) ”>

<x s l : v a l u e−o f

s e l e c t=” subst r ing−a f t e r (b:MimeType , ’ z ip ’) ” />

</ xs l :when>

<x s l : o t h e rw i s e>

<x s l : v a l u e−o f s e l e c t=”b:MimeType” />

</ x s l : o t h e rw i s e>

</ x s l : c h o o s e>

</MimeType>

<xs l : app ly−templates />

</ Input>

</ x s l : t emp l a t e>

<x s l : t emp l a t e match=”b:DataStager [@type=’output ’] ”>

<Output>

<x s l : a t t r i b u t e name=”name”>

<x s l : v a l u e−o f s e l e c t=”@name” />

</ x s l : a t t r i b u t e>

<x s l : a t t r i b u t e name=” type”>

<x s l : c h o o s e>

<xs l :when t e s t=” conta in s (b:MimeType , ’ arch ive ’) ”>

l i s t

</ xs l :when>

<x s l : o t h e rw i s e> f i l e</ x s l : o t h e rw i s e>

</ x s l : c h o o s e>

</ x s l : a t t r i b u t e>

<x s l : a t t r i b u t e name=” z ip ”>

<x s l : c h o o s e>

<xs l :when t e s t=” conta in s (b:MimeType , ’ arch ive ’)

or conta in s (b:MimeType , ’ z ip ’) ”>

t rue

</ xs l :when>

<x s l : o t h e rw i s e> f a l s e</ x s l : o t h e rw i s e>

</ x s l : c h o o s e>

</ x s l : a t t r i b u t e>

<MimeType>

<x s l : c h o o s e>

<xs l :when t e s t=” conta in s (b:MimeType , ’ arch ive ’) ”>

<x s l : v a l u e−o f

s e l e c t=” subst r ing−a f t e r (b:MimeType , ’ arch ive ’) ” />

</ xs l :when>

<xs l :when t e s t=” conta in s (b:MimeType , ’ z ip ’) ”>

<x s l : v a l u e−o f

s e l e c t=” subst r ing−a f t e r (b:MimeType , ’ z ip ’) ” />

</ xs l :when>

119

<x s l : o t h e rw i s e>

<x s l : v a l u e−o f s e l e c t=”b:MimeType” />

</ x s l : o t h e rw i s e>

</ x s l : c h o o s e>

</MimeType>

<xs l : app ly−templates />

</Output>

</ x s l : t emp l a t e>

<x s l : t emp l a t e match=”b:MimeType”>

</ x s l : t emp l a t e>

</ x s l : s t y l e s h e e t>

List of Abbreviations

AGWL Abstract Grid Workflow Language

B-IT Bonn-Aachen International Center for Information Technology

BPEL Business Process Execution Language

DAG Directed Acyclic Graph

DEE Distributed Enactment Engine

DMR Data Management WS-Resource

EBI European Bioinformatics Institute

EECS Electrical Engineering and Computer Sciences

EML Ecological Metadata Language

EPCC El Paso Community College

ER Execution WS-Resource

FITS Flexible Image Transport System

GGF Globus Grid Forum

GSI Grid Security Infrastructure

HEFT Heterogeneous Earliest Finish Time

IPAC Infrared Processing and Analysis Center

IRSA Infrared Science Archive

ISI Information Science Institute

JSC Jülich Supercomputing Centre

JSDL Job Submission Description Language

LIGO The Laser Interferometer Gravitational Wave Observatory

MDS Monitoring and Discovery Service

MoML Modeling Markup Language

MOWS Management Of Web Services

MUWS Management Using Web Services

List of Abbreviations 121

NFT Number of Failed Tasks

NMR Node Management WS-Resource

NSET Number of Successfully Executed Tasks

NSF National Science Foundation

NSIS Nullsoft Scriptable Install System

NVO National Virtual Observatory

OGF Open Grid Forum

OGSA Open Grid Services Architecture

OGSA-DAI Open Grid Service Architecture-Data Access and Integration

Pegasus Planning for Execution in Grids

RCP Rich Client Platform

RLS Replica Location Service

SCUFL Simple Conceptual Unified Flow Language

SEIS Semantically Enriched Integration System

SERC System Efficiency and Reliability Challenges

SR Scheduler WS-Resource

SRB Storage Resource Broker

SRF Server Reliability Factor

SUC System Usability Challenges

SWfMS Scientific Workflow Management System

SWIMS Scientific Workflow Integration and Management System

UCC UNICORE command line client

UDDI Universal Description Discovery and Integration

UML Unified Modeling Language

Unicore UNiform Interface to COmpute REsources

VO Virtual Organization

WCS World Coordinate System

122 List of Abbreviations

WfMC Workflow Management Coalition

WMS Workflow Management System

WSCE Web Service Crawler Engine

WSDL Web Services Description Language

WSDM Web Service Distributed Management

WSN Web Services Notification

WSRF WS-Resource Framework

Bibliography

[Abramson 2005] D. Abramson, J. Kommineni and I. Altintas. Flexible IO services

in the Kepler Grid Workflow system. In Proccedings of the International

Conference on eScience and Grid Technology, 2005. 26

[Al-Masri 2008] E. Al-Masri and Q. H. Mahmoud. Investigating web services on

the world wide web. In Proceeding of the 17th international conference on

World Wide Web, WWW ’08, pages 795–804, New York, NY, USA, 2008.

ACM. 40

[Alda 2007] S. Alda, J. Kuck and A. B. Cremers. Tailorability of personalized

BPEL-based Workflow Compositions. In Proceedings of the 2007 IEEE

Congress on Services, pages 245 –252, july 2007. 66, 84

[Anjomshoaa 2005] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,

S. Mcgough, D. Pulsipher and A. Savva. Job Submission Description

Language (JSDL) Specification, Version 1.0 - Technical Report, 2005. 21

[Antonioletti 2007] M. Antonioletti, N. P. Chue Hong, A. C. Hume, M. Jackson,

K. Karasavvas, A. Krause, J. M. Schopf, M. P. Atkinson, B. Dobrzelecki,

M. Illingworth, N. McDonnell, M. Parsons and E. Theocharopoulos.

OGSA-DAI 3.0 - The Whats and the Whys. In UK e-Science All Hands

Meeting, pages 158–165, 2007. 49

[Apache 2007] Apache. Muse 2.2.0. http://ws.apache.org/muse/, March

2007. 48

[Berriman 2004] G. B. Berriman, E. Deelman, J. C. Good, J. C. Jacob, D. S. Katz,

C. Kesselman, A. C. Laity, T. A. Prince, G. Singh and M. Su. Montage: a

grid-enabled engine for delivering custom science-grade mosaics on demand.

Proceedings of SPIE, vol. 5493, pages 221–232, 2004. 11

[Bhagwanani 2005] S. R. Bhagwanani. An evaluation of end-user interfaces of

scientific workflow management systems. Master’s thesis, North Carolina

State University, 2005. 16

[Bharathi 2008] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. Su and

K. Vahi. Characterization of scientific workflows. In Proceedings of the

3rd Workshop on Workflows in Support of Large-Scale Science, pages 1–10,

2008. 11, 56

[Blythe 2005] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal and

K. Kennedy. Task scheduling strategies for workflow-based applications

in grids. In Proceedings of the 5th IEEE International Symposium on

Cluster Computing and the Grid, volume 2 of CCGRID ’05, pages 759–767,

Washington, DC, USA, 2005. IEEE Computer Society. 22, 112

http://ws.apache.org/muse/

124 Bibliography

[Braun 2008] U. Braun, A. Shinnar and M. Seltzer. Securing Provenance. In

Proceedings of the 3rd USENIX Workshop on Hot Topics in Security,

USENIX HotSec, pages 1–5, Berkeley, CA, USA, July 2008. USENIX

Association. 62

[Brooke 1992] A. Brooke, D. Kendrick and A. Meeraus. GAMS: A User’s Guide.

Release 2.25. The Scientific Press, 1992. 2

[Brown 2007] D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson and

J. McNabb. A Case Study on the Use of Workflow Technologies for

Scientific Analysis: Gravitational Wave Data Analysis. In Ian J. Taylor,

Ewa Deelman, Dennis B. Gannon and Matthew Shields, editeurs, Workflows

for e-Science, pages 39–59. Springer London, 2007. 11

[Carzaniga 2007] A. Carzaniga, G. P. Picco and G. Vigna. Is Code Still Moving

Around? Looking Back at a Decade of Code Mobility. In Proceedings

of the 29th International Conference on Software Engineering, ICSE

COMPANION ’07, pages 9–20, Washington, DC, USA, 2007. IEEE

Computer Society. 64

[Chervenak 2002] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek,

A. Iamnitchi, C. Kesselman, P. Kunszt, M. Ripeanu, B. Schwartzkopf,

H. Stockinger, K. Stockinger and B. Tierney. Giggle: a framework for

constructing scalable replica location services. In Proceedings of the 2002

ACM/IEEE conference on Supercomputing, Supercomputing ’02, pages

1–17, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press. 22

[Cruz 2009] S. Cruz, M. Campos and M. Mattoso. Towards a Taxonomy of

Provenance in Scientific Workflow Management Systems. In Proceedings

of the 2009 Congress on Services - I, pages 259–266, Washington, DC, USA,

2009. IEEE Computer Society. 62

[Deelman 2001] E. Deelman and C. Kesselman. Transformation

Catalog Design for GriPhyN - Technical Report.

http://www.isi.edu/ deelman/griphyn 2001 17.pdf, 2001. 22

[Deelman 2005] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman,

G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob and

D. S. Katz. Pegasus: A framework for mapping complex scientific workflows

onto distributed systems. Sci. Program., vol. 13, pages 219–237, July 2005.

21

[Deelman 2008] E. Deelman and A. Chervenak. Data Management Challenges

of Data-Intensive Scientific Workflows. In Proceedings of the 2008 8th

IEEE International Symposium on Cluster Computing and the Grid, pages

687–692, Washington, DC, USA, 2008. IEEE Computer Society. 16

Bibliography 125

[Deelman 2009] E. Deelman, D. Gannon, M. Shields and I. Taylor. Workflows and

e-Science: An overview of workflow system features and capabilities. Future

Generation Computer Systems, vol. 25, no. 5, pages 528 – 540, 2009. 16

[Duan 2005] R. Duan, R. Prodan and T. Fahringer. DEE: A Distributed Fault

Tolerant Workflow Enactment Engine for Grid Computing. In Proceedings

of the 2005 International Conference on High Performance Computing and

Communications, HPCC-05, pages 704–716. Springer-Verlag, 2005. 22

[El-Gayyar 2008] M. El-Gayyar, S. Alda and A. B. Cremers. Towards a

user-oriented environment for web services composition. In Proceedings of

the 4th international workshop on End-user software engineering, WEUSE

’08, pages 81–85, New York, NY, USA, 2008. ACM. 66, 84

[El-Gayyar 2009] M. El-Gayyar, Y. Leng and A. B. Cremers. New Execution

Paradigm for Data-Intensive Scientific Workflows. In Proceedings on the

2009 World Conference on Services - I, pages 334 –339, 2009. 4, 32

[El-Gayyar 2010] M. El-Gayyar, Y. Leng and A. B. Cremers. Distributed

Management of Scientific Workflows in SWIMS. In Proceedings of the 2010

9th International Symposium on Distributed Computing and Applications

to Business Engineering and Science (DCABES), pages 327 –331, August

2010. 4, 32

[Equinox 2011] Equinox. The Eclipse Equinox Project. http://www.eclipse.
org/equinox/, 2011. 75

[Fahringer 2005a] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig,

J. Qin, M. Siddiqui, H. Truong, A. Villazon and M. Wieczorek. ASKALON:

a Grid application development and computing environment. In Proceedings

of the 6th IEEE/ACM International Workshop on Grid Computing, 2005.,

pages 676–685, 2005. 22

[Fahringer 2005b] T. Fahringer, J. Qin and S. Hainzer. Specification of Grid

Workflow Applications with AGWL: An Abstract Grid Workflow Language.

In Proceedings of the 2005 IEEE International Symposium on Cluster

Computing and the Grid, Cardiff, UK, 2005. IEEE Computer Society Press.

22

[Fahringer 2007] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem,

F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui, H. Truong, A. Villazon

and M. Wieczorek. ASKALON: A Development and Grid Computing

Environment for Scientific Workflows. In Workflows for e-Science, pages

450–471. Springer London, 2007. 22

[Fahringer 2011] T. Fahringer. ASKALON: Grid Application Development and

Computing Environment. http://www.dps.uibk.ac.at/projects/
askalon/, 2011. 19

http://www.eclipse.org/equinox/
http://www.eclipse.org/equinox/
http://www.dps.uibk.ac.at/projects/askalon/
http://www.dps.uibk.ac.at/projects/askalon/

126 Bibliography

[Fegraus 2005] E. Fegraus, S. J. Andelman, M. B. Jones and M. Schildhauer.

Maximizing the Value of Ecological Data with Structured Metadata: An

Introduction to Ecological Metadata Language (EML) and Principles for

Metadata Creation. Bulletin of the Ecological Society of America, vol. 86,

no. 3, pages 158–168, 2005. 20

[Fitzgerald 2001] S. Fitzgerald. Grid Information Services for Distributed Resource

Sharing. In Proceedings of the 10th IEEE International Symposium on High

Performance Distributed Computing, pages 181–, Washington, DC, USA,

2001. IEEE Computer Society. 22

[Foster 2001] I. Foster, C. Kesselman and S. Tuecke. The Anatomy of the Grid:

Enabling Scalable Virtual Organizations. High Perform. Comput. App.,

vol. 15, pages 200–222, 2001. 8

[Foster 2002] I. Foster, C. Kesselman, J. M. Nick and S. Tuecke. The Physiology

of the Grid An Open Grid Services Architecture for Distributed Systems

Integration. Globus Project, 2002. 8

[Foster 2003] I. Foster and C. Kesselman. The grid 2: Blueprint for a new

computing infrastructure. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2003. 2, 8

[Foster 2006a] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented

Systems. Journal of Computer Science and Technology, vol. 21, no. 4, pages

513–520, July 2006. 8

[Foster 2006b] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw,

B. Horn, H. F. Siebenlist and R. Subramaniam. The Open Grid Services

Architecture, Version 1.5. http://www.ogf.org/documents/GFD.80.
pdf, 2006. 8

[Foster 2008] I. Foster, Y. Zhao, I. Raicu and S. Lu. Cloud Computing and Grid

Computing 360-Degree Compared. In Proceedings of the Grid Computing

Environments Workshop, 2008. GCE ’08, pages 1–10, 2008. 9

[Freefluo 2009] Freefluo. Workflow Enactor. http://freefluo.sourceforge.
net/, July 2009. 10, 20, 60

[Frey 2002] J. Frey, T. Tannenbaum, M. Livny, I. Foster and S. Tuecke. Condor-G:

A Computation Management Agent for Multi-Institutional Grids. Cluster

Computing, vol. 5, pages 237–246, 2002. 22

[Gil 2007] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon,

C. Goble, M. Livny, L. Moreau and J. Myers. Examining the Challenges of

Scientific Workflows. Computer, vol. 40, no. 12, pages 24 –32, 2007. 16

[Globus 2011] Globus. The Globus Toolkit. http://www.globus.org/
toolkit/, 2011. 23, 26, 28, 29

http://www.ogf.org/documents/GFD.80.pdf
http://www.ogf.org/documents/GFD.80.pdf
http://freefluo.sourceforge.net/
http://freefluo.sourceforge.net/
http://www.globus.org/toolkit/
http://www.globus.org/toolkit/

Bibliography 127

[Graves 2011] R. Graves, T. H. Jordan, S. Callaghan, E. Deelman, E. Field,

G. Juve, C. Kesselman, P. Maechling, G. Mehta, K. Milner, D. Okaya,

P. Small and K. Vahi. CyberShake: A Physics-Based Seismic Hazard Model

for Southern California. Pure and Applied Geophysics, vol. 168, pages

367–381, 2011. 11

[GRIA 2009] GRIA. A Service-Oriented Grid Middleware. www.gria.org, 2009.
iii, 5, 8, 9, 26

[GridFTP 2011] GridFTP. Universal Data Transfer for the Grid. http://www.
globus.org/toolkit/data/gridftp/, 2011. 20, 23

[Hollingsworth 2004] D. Hollingsworth. The Workflow Reference Model: 10 Years

On. In Fujitsu Services, UK; Technical Committee Chair of WfMC, pages

295–312, 2004. 13

[Hull 2006] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li and

T. Oinn. Taverna: a tool for building and running workflows of services.

Nucleic Acids Research, vol. 34, pages 729–732, 2006. 20

[IRSA 2011] IRSA. NASA/IPAC Infrared Science Archive. http://irsa.ipac.
caltech.edu/, 2011. 94

[Jacob 2009] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. C. Laity,

E. Deelman, C. Kesselman, G. Singh, M. Su, T. A. Prince and R. Williams.

Montage: a grid portal and software toolkit for science-grade astronomical

image mosaicking. Comput. Sci. Eng., vol. 4, pages 73–87, July 2009. 11

[Katz 2005] D. S. Katz, J. C. Jacob, G. B. Berriman, J. Good, A. C. Laity,

E. Deelman, C. Kesselman and G. Singh. A Comparison of Two Methods

for Building Astronomical Image Mosaics on a Grid. In Proceedings of the

2005 International Conference on Parallel Processing - Workshops, ICPPW

’05, pages 85–94, Washington, DC, USA, 2005. IEEE Computer Society. 11

[Kepler 2011] Kepler. Workflow Management System. https://
kepler-project.org/, 2011. 19

[Kreger 2005] H. Kreger. A little wisdom about WSDM. http://www.ibm.com/
developerworks/webservices/library/ws-wisdom/, March 2005.

47

[Lee 2000] E. A. Lee and S. Neuendorffer. MOML - A Modeling Markup

Language in XML-Version 0.4. http://www.eecs.berkeley.edu/
Pubs/TechRpts/2000/3818.html, 2000. 20

[Lee 2008] K. Lee, N. W. Paton, R. Sakellariou, E. Deelman, A. Fernandes and

G. Mehta. Adaptive Workflow Processing and Execution in Pegasus. In

Proceedings of the 3rd International Conference on Grid and Pervasive

www.gria.org
http://www.globus.org/toolkit/data/gridftp/
http://www.globus.org/toolkit/data/gridftp/
http://irsa.ipac.caltech.edu/
http://irsa.ipac.caltech.edu/
https://kepler-project.org/
https://kepler-project.org/
http://www.ibm.com/developerworks/webservices/library/ws-wisdom/
http://www.ibm.com/developerworks/webservices/library/ws-wisdom/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2000/3818.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2000/3818.html

128 Bibliography

Computing - Workshops, pages 99–106, Washington, DC, USA, 2008. IEEE

Computer Society. 21

[Leng 2009] Y. Leng, M. El-Gayyar and S. Shumilov. Semantically Enriched

Integration System for Heterogeneous Web Services. In Proceedings of the

IADIS International Conference on WWW/Internet, 2009. 4, 33, 37, 61

[Leng 2010] Y. Leng, M. El-Gayyar and A. B. Cremers. Semantics Enhanced

Composition Planner for Distributed Resources. In Proceedings of the 2010

9th International Symposium on Distributed Computing and Applications

to Business Engineering and Science (DCABES), pages 61 –65, August 2010.

37

[Lin 2009] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi and J. Hua.

A Reference Architecture for Scientific Workflow Management Systems and

the VIEW SOA Solution. IEEE Trans. Serv. Comput., vol. 2, pages 79–92,

January 2009. iii, iv, 13, 14, 89

[Livny 2008] J. Livny, H. Teonadi, M. Livny and M. K. Waldor. High-Throughput,

Kingdom-Wide Prediction and Annotation of Bacterial Non-Coding RNAs.

PLoS ONE, vol. 3, no. 9, 2008. 11

[Ludaescher 2006] B. Ludaescher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,

M. Jones, E. A. Lee, J. Tao and Y. Zhao. Scientific workflow management

and the Kepler system: Research Articles. Concurr. Comput. : Pract.

Exper., vol. 18, pages 1039–1065, August 2006. 1, 20

[Markgraefe 2010] F. Markgraefe. Index webservice fuer ein grid. Master’s thesis,

Rheinische Friedrich Wilhelms Universitaet Bonn, 2010. 40

[Mcaffer 2005] J. Mcaffer and J. Lemieux. Eclipse rich client platform: Designing,

coding, and packaging java(tm) applications. Addison-Wesley Professional,

2005. 75

[Meier 2010] W. Meier. eXist-db: Open Source Native XML Database. http:
//exist.sourceforge.net/, 2010. 49

[Microsoft 2011] Microsoft. Registry Functions (Windows). http://msdn.
microsoft.com/en$-$us/library/, February 2011. 65

[Miller 2010] S. P. Miller. Dependency Walker Version 2.2. http://www.
dependencywalker.com/, August 2010. 65

[Missier 2010] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic,

I. Dunlop, A. Williams, T. Oinn and C. Goble. Taverna, Reloaded. In

Scientific and Statistical Database Management, volume 6187 of Lecture

Notes in Computer Science, chapitre 33, pages 471–481. Springer Berlin

Heidelberg, 2010. 20, 24

http://exist.sourceforge.net/
http://exist.sourceforge.net/
http://msdn.microsoft.com/en$-$us/library/
http://msdn.microsoft.com/en$-$us/library/
http://www.dependencywalker.com/
http://www.dependencywalker.com/

Bibliography 129

[MM5 2003] MM5. The 5th generation NCAR / Penn State Mesoscale Model.

http://www.mmm.ucar.edu/mm5/, January 2003. 2

[Montage 2011] Montage. An Astronomical Image Mosaic Engine. http://
montage.ipac.caltech.edu/applications.html, 2011. 5, 11, 96

[Moreau 2005] L. Moreau, Y. Zhao, I. Foster, J. Voeckler and M. Wilde. XDTM:

The XML Data Type and Mapping for Specifying Datasets. In Advances in

Grid Computing, volume 3470 of EGC 2005, pages 495–505. Springer Berlin

Heidelberg, 2005. 29

[Morgan 2005] M. Morgan. ByteIO Specification Version 1.0. http:
//www.gridforum.org/Public_Comment_Docs/Documents/
Feb-2006/draft-byteio-rec-doc-v1-1.pdf, 2005. 21

[Mouallem 2010] P. Mouallem, D. Crawl, I. Altintas, M. Vouk and U. Yildiz.

A Fault-Tolerance Architecture for Kepler-Based Distributed Scientific

Workflows. In Scientific and Statistical Database Management, volume

6187 of Lecture Notes in Computer Science, pages 452–460. Springer Berlin

Heidelberg, 2010. 21

[MOWS 2006] MOWS. Management Of Web Services Version 1.1.

http://www.oasis-open.org/committees/download.php/
20574/wsdm-mows-1.1-spec-os-01.pdf, August 2006. 47

[MUWS 2006a] MUWS. Management Using Web Services Version 1.1, Part

I. http://www.oasis-open.org/committees/download.php/
20576/wsdm-muws1-1.1-spec-os-01.pdf, August 2006. 47

[MUWS 2006b] MUWS. Management Using Web Services Version 1.1, Part

II. http://www.oasis-open.org/committees/download.php/
20575/wsdm-muws2-1.1-spec-os-01.pdf, August 2006. 47

[myExperiment 2011] myExperiment. The myExperiment Project. http://www.
myexperiment.org/, 2011. 26

[Novotny 2001] J. Novotny, S. Tuecke and V. Welch. An Online Credential

Repository for the Grid: MyProxy. In Proceedings of the 10th IEEE

International Symposium on High Performance Distributed Computing,

pages 104–, Washington, DC, USA, 2001. IEEE Computer Society. 28, 29

[NSIS 2011] NSIS. Nullsoft Scriptable Install System. http://nsis.
sourceforge.net/, February 2011. 65

[OASIS 2005] OASIS. X.509 Certificate Token Profile Version

1.1. http://docs.oasis-open.org/wss/v1.1/wss-v1.
1-spec-os-x509TokenProfile.pdf, June 2005. 27, 42

[OGF 2006] OGF. Open Grid Forum. http://www.ogf.org/, 2006. 8

http://www.mmm.ucar.edu/mm5/
http://montage.ipac.caltech.edu/applications.html
http://montage.ipac.caltech.edu/applications.html
http://www.gridforum.org/Public_Comment_Docs/Documents/Feb-2006/draft-byteio-rec-doc-v1-1.pdf
http://www.gridforum.org/Public_Comment_Docs/Documents/Feb-2006/draft-byteio-rec-doc-v1-1.pdf
http://www.gridforum.org/Public_Comment_Docs/Documents/Feb-2006/draft-byteio-rec-doc-v1-1.pdf
http://www.oasis-open.org/committees/download.php/20574/wsdm-mows-1.1-spec-os-01.pdf
http://www.oasis-open.org/committees/download.php/20574/wsdm-mows-1.1-spec-os-01.pdf
http://www.oasis-open.org/committees/download.php/20576/wsdm-muws1-1.1-spec-os-01.pdf
http://www.oasis-open.org/committees/download.php/20576/wsdm-muws1-1.1-spec-os-01.pdf
http://www.oasis-open.org/committees/download.php/20575/wsdm-muws2-1.1-spec-os-01.pdf
http://www.oasis-open.org/committees/download.php/20575/wsdm-muws2-1.1-spec-os-01.pdf
http://www.myexperiment.org/
http://www.myexperiment.org/
http://nsis.sourceforge.net/
http://nsis.sourceforge.net/
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-x509TokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.ogf.org/

130 Bibliography

[OGSA-DAI 2010] OGSA-DAI. An innovative solution for distributed data access

and management. http://www.ogsadai.org.uk/, 2010. 49

[Oinn 2006] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover,

C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock,

M. Senger, R. Stevens, A. Wipat and C. Wroe. Taverna: lessons in creating

a workflow environment for the life sciences. Concurr. Comput. : Pract.

Exper., vol. 18, no. 10, pages 1067–1100, August 2006. 20

[OSGi 2011] OSGi. The Dynamic Module System for Java. http://www.osgi.
org/, 2011. 76

[Pegasus 2011] Pegasus. Workflow Management System. http://pegasus.isi.
edu/, 2011. 19

[Ptolemy 2004] Ptolemy. PtolemyII: project and system. http://ptolemy.
eecs.berkeley.edu/ptolemyII/, 2004. 20

[Qin 2008] J. Qin and T. Fahringer. A novel domain oriented approach for

scientific grid workflow composition. In Proceedings of the 2008 ACM/IEEE

conference on Supercomputing, SC ’08, pages 1–12, Piscataway, NJ, USA,

2008. IEEE Press. 23

[Radetzki 2004] U. Radetzki and A. B. Cremers. IRIS: a framework for

mediator-based composition of service-oriented software. In Proceedings of

the 2004 IEEE International Conference on Web Services, pages 752 – 756,

July 2004. 37

[Radetzki 2006] U. Radetzki and A. B. Cremers. Automatic Discovery and

Composition of Services with IRIS. In Proceedings of the 22nd International

Conference on Data Engineering, page 39, 2006. 37

[Raicu 2007] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster and M. Wilde. Falkon:

a Fast and Light-weight tasK executiON framework. In Proceedings of the

2007 ACM/IEEE conference on Supercomputing, SC ’07, New York, NY,

USA, 2007. ACM. 23

[Rambadt 2008] M. Rambadt, A. Vanni and R. Niederberger. Integration of

GridFTP as an Alternative File Transfer in UNICORE for the DEISA

Infrastructure. In Proceedings of the 2008 4th IEEE International

Conference on eScience, pages 516–523, Washington, DC, USA, 2008. IEEE

Computer Society. 21, 22

[RCP 2010] RCP. Eclipse Rich Client Platform. http://wiki.eclipse.org/
index.php/Rich_Client_Platform, December 2010. 75

[Russinovich 2011] M. Russinovich and B. Cogswell. Process Monitor

v2.94. http://technet.microsoft.com/en-au/sysinternals/
bb896645, January 2011. 65

http://www.ogsadai.org.uk/
http://www.osgi.org/
http://www.osgi.org/
http://pegasus.isi.edu/
http://pegasus.isi.edu/
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://technet.microsoft.com/en-au/sysinternals/bb896645
http://technet.microsoft.com/en-au/sysinternals/bb896645

Bibliography 131

[Scherp 2010] G. Scherp, A. Hoeing, S. Gudenkauf, W. Hasselbring and O. Kao.

Using UNICORE and WS-BPEL for scientific workflow execution in grid

environments. In Proceedings of the 2009 international conference on

Parallel processing, Euro-Par’09, pages 335–344, Berlin, Heidelberg, 2010.

Springer-Verlag. 21

[Schulla 1999] J. Schulla and K. Jasper. Model description WaSiM-ETH. IAC ETH

Zuerich, page 166, 1999. 2

[SHA-2 Standard 2002] SHA-2 Standard. National Institute of Standards and

Technology (NSIT), Secured Hash Standard, FIPS PUB 180-2, 2002. 51,

70

[Shumilov 2006] S. Shumilov, T. Erdenberger, A. B. Cremers, L. Bharati,

M. Plotnikova and C. Rodger. First Steps Towards an Integrated

Decision Support System for Water Management. In Arno Scharl (Eds.)

Klaus Tochtermann, editeur, Shaker Verlag, pages 327–334. Shaker Verlag,

2006. ISBN 978-3-8322-5321-9. 1

[Shumilov 2008] S. Shumilov, Y. Leng, M. El-Gayyar and A. B. Cremers.

Distributed Scientific Workflow Management for Data-Intensive

Applications. In Proceedings of the 2008 12th IEEE International

Workshop on Future Trends of Distributed Computing Systems, pages

65–73, Washington, DC, USA, 2008. IEEE Computer Society. 4, 32

[Siddiqui 2005] M. Siddiqui and T. Fahringer. GridARM: Askalon’s Grid Resource

Management System. In Advances in Grid Computing - EGC 2005, pages

122–131, 2005. 22

[Singh 2008] G. Singh, M. Su, K. Vahi, E. Deelman, B. Berriman, J. Good, D. S.

Katz and G. Mehta. Workflow task clustering for best effort systems with

Pegasus. In Proceedings of the 15th ACM Mardi Gras conference, MG ’08,

pages 9:1–9:8, New York, NY, USA, 2008. ACM. 67

[Sotomayor 2006] B. Sotomayor and L. Childers. Globus toolkit 4: Programming

java services. The Elsevier Series in Grid Computing. Morgan Kaufmann,

2006. 8

[SRB 2011] SRB. The DICE Storage Resource Broker. http://www.sdsc.edu/
srb/index.php/Main_Page, 2011. 20

[Staples 2006] G. Staples. TORQUE resource manager. In Proceedings of the 2006

ACM/IEEE conference on Supercomputing, SC ’06, New York, NY, USA,

2006. ACM. 10

[Streit 2010] A. Streit, P. Bala, A. Beck-Ratzka, K. Benedyczak, S. Bergmann,

R. Breu, J. Daivandy, B. Demuth, A. Eifer, A. Giesler, B. Hagemeier,

S. Holl, V. Huber, N. Lamla, D. Mallmann, A. Memon, M. Memon,

http://www.sdsc.edu/srb/index.php/Main_Page
http://www.sdsc.edu/srb/index.php/Main_Page

132 Bibliography

M. Rambadt, M. Riedel, M. Romberg, B. Schuller, T. Schlauch, A. Schreiber,

T. Soddemann and W. Ziegler. UNICORE 6 - Recent and Future

Advancements. Annals of Telecommunications, vol. 65, pages 757–762, 2010.

8, 21

[Surridge 2005] M. Surridge, S. Taylor, D. De Roure and E. Zaluska. Experiences

with GRIA: Industrial Applications on a Web Services Grid. In Proceedings

of the 1st International Conference on e-Science and Grid Computing, pages

98–105, Washington, DC, USA, 2005. IEEE Computer Society. 8, 9

[Swift 2011] Swift. Workflow Management System. http://www.ci.uchicago.
edu/swift/main/, 2011. 19

[Taverna 2011] Taverna. Workflow Management System. http://www.
taverna.org.uk/, 2011. 10, 19

[Taylor 2006] I. J. Taylor, E. Deelman, D. B. Gannon and M. Shields. Workflows

for e-science: Scientific workflows for grids. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2006. 11

[Thain 2005] D. Thain, T. Tannenbaum and M. Livny. Distributed computing in

practice: the Condor experience. Concurr. Comput. : Pract. Exper., vol. 17,

pages 323–356, 2005. 10, 22

[Topcuouglu 2002] H. Topcuouglu, S. Hariri and M. Wu. Performance-Effective

and Low-Complexity Task Scheduling for Heterogeneous Computing. IEEE

Trans. Parallel Distrib. Syst., vol. 13, pages 260–274, March 2002. 22

[Tsalgatidou 2006] A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou,

C. Pautasso, T. Heinis, R. Groenmo, Hjoerdis Hoff, Arne-Joergen

Berre, M. Glittum and S. Topouzidou. Developing scientific workflows from

heterogeneous services. SIGMOD Rec., vol. 35, pages 22–28, June 2006. 11,

13

[UDDI 2004] UDDI. Universal Description Discovery and Integration Version

3.0.2. http://uddi.org/pubs/uddi_v3.htm, October 2004. 40

[UML 2011] UML. UML: Unified Modeling Language Version 2.0. http://www.
uml.org/, 2011. iii, iv, 28, 53, 61, 90

[UNICORE 2011] UNICORE. Uniform Interface to Computing Resources. http:
//www.unicore.eu/, 2011. 19

[USC 2011] USC. USC Epigenome Center. http://epigenome.usc.edu/,
2011. 11

[Vetter 1996] J. Vetter and K. Schwan. Models for Computational Steering. In

Proceedings of the 3rd International Conference on Configurable Distributed

Systems, Washington, DC, USA, 1996. IEEE Computer Society. 60

http://www.ci.uchicago.edu/swift/main/
http://www.ci.uchicago.edu/swift/main/
http://www.taverna.org.uk/
http://www.taverna.org.uk/
http://uddi.org/pubs/uddi_v3.htm
http://www.uml.org/
http://www.uml.org/
http://www.unicore.eu/
http://www.unicore.eu/
http://epigenome.usc.edu/

Bibliography 133

[von Laszewski 2005] G. von Laszewski and M. Hategan. Workflow Concepts of the

Java CoG Kit. Journal of Grid Computing, vol. 3, pages 239–258, 2005. 23

[Wang 2008] J. Wang, I. Altintas, C. Berkley, L. Gilbert and M. B. Jones. A

High-Level Distributed Execution Framework for Scientific Workflows. In

Proceedings of the 2008 4th IEEE International Conference on eScience,

pages 634–639, Washington, DC, USA, 2008. IEEE Computer Society. 20

[Wang 2009] J. Wang, I. Altintas, P. R. Hosseini, D. Barseghian, D. Crawl,

C. Berkley and M. B. Jones. Accelerating Parameter Sweep Workflows by

Utilizing Ad-hoc Network Computing Resources: An Ecological Example. In

Proceedigs of the 2009 World Conference on Services - I, pages 267–274,

2009. 20

[Wieczorek 2005] M. Wieczorek, R. Prodan and T. Fahringer. Scheduling of

scientific workflows in the ASKALON grid environment. SIGMOD Rec.,

vol. 34, pages 56–62, September 2005. 22, 112

[Wilde 2011] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz and

I. Foster. Swift: A language for distributed parallel scripting. Parallel

Computing, vol. 37, no. 9, pages 633–652, 2011. 29

[WS-Addressing 2006] WS-Addressing. Web Services Addressing Version 1.0.

http://www.w3.org/TR/ws-addr-core/, May 2006. 48

[WSDL 2001] WSDL. Web Services Description Language Version 1.1. http:
//www.w3.org/TR/wsdl, March 2001. 42

[WSDM 2006] WSDM. Web Services Distributed Management Version 1.1.

http://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=wsdm, August 2006. 46

[WSI 2006] WSI. Basic Profile Version 1.1. http://www.ws-i.org/
profiles/basicprofile-1.1.html, April 2006. 48

[WSI 2007] WSI. Basic Security Profile Version 1.0. http://www.ws-i.org/
profiles/basicsecurityprofile-1.0.html, March 2007. 42

[WSN 2006] WSN. Web Services Notification Version 1.3. http:
//docs.oasis-open.org/wsn/wsn-ws_base_notification-1.
3-spec-os.pdf, October 2006. 44

[WSRF 2006] WSRF. Web Services Resource Framework Version

1.2. http://docs.oasis-open.org/wsrf/wsrf-primer-1.
2-primer-cd-02.pdf, May 2006. 48

[XPath 1999] XPath. XML Path Language Version 1.0. http://www.w3.org/
TR/xpath/, November 1999. 50

http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.ws-i.org/profiles/basicprofile-1.1.html
http://www.ws-i.org/profiles/basicprofile-1.1.html
http://www.ws-i.org/profiles/basicsecurityprofile-1.0.html
http://www.ws-i.org/profiles/basicsecurityprofile-1.0.html
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/

134 Bibliography

[XQuery 2010] XQuery. An XML Query Language Version 1.0. http://www.
w3.org/TR/xquery/, December 2010. 63

[XScufl 2004] XScufl. Workflow Language Specifications. http://www.ebi.ac.
uk/˜tmo/mygrid/XScuflSpecification.html, April 2004. 52, 60

[XSLT 1999] XSLT. XSL Transformations Version 1.0. http://www.w3.org/
TR/xslt, November 1999. 42

[Yu 2004] J. Yu and R. Buyya. A Novel Architecture for Realizing Grid Workflow

using Tuple Spaces. In Proceedings of the 5th IEEE/ACM International

Workshop on Grid Computing, GRID ’04, pages 119–128, Washington, DC,

USA, 2004. IEEE Computer Society. 2

[Yu 2005] J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid

computing. SIGMOD Rec., vol. 34, pages 44–49, September 2005. 2, 13, 56

[ZEF 2011] ZEF. GLOWA Volta Project. http://www.Glowa-Volta.de, 2011.
1

[Zhao 2007] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski,

V. Nefedova, I. Raicu, T. Stef-Praun and M. Wilde. Swift: Fast, Reliable,

Loosely Coupled Parallel Computation. In Proceedings of the 2007 IEEE

Congress on Services, pages 199 –206, July 2007. 23

[Zhao 2008a] Y. Zhao, I. Raicu and I. Foster. Scientific Workflow Systems for

21st Century, New Bottle or New Wine? In Proceedings of the 2008 IEEE

Congress on Services - I, SERVICES ’08, pages 467–471, Washington, DC,

USA, 2008. IEEE Computer Society. 16

[Zhao 2008b] Y. Zhao, I. Raicu, I. Foster, M. Hategan, V. Nefedova and M. Wilde.

Realizing Fast, Scalable and Reliable Scientific Computations in Grid

Environments. CoRR, vol. abs/0808.3548, 2008. 23

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.ebi.ac.uk/~tmo/mygrid/XScuflSpecification.html
http://www.ebi.ac.uk/~tmo/mygrid/XScuflSpecification.html
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.Glowa-Volta.de

	Introduction
	Introduction
	Problem Statement
	Thesis Contributions
	Structure of the Thesis

	Scientific Workflow Management Systems
	Grid Computing
	GRIA - Grid Middleware

	Grid Scientific Workflows Applications
	The Montage Application

	Workflow Management Systems
	Challenges in Workflow Management Lifecycle

	Related Work and Motivation for SWIMS
	Scientific Workflows Management Systems
	Scientific Workflows Workbenches
	Discussion and Motivation: The SWIMS Framework

	SWIMS: General Design
	SWIMS Architecture
	Mediator Catalog
	Workflow Catalog
	Service Catalog

	SWIMS Server Side
	Language for Representation of the SWIMS's WMS Components
	Data Management WS-Resource
	Node Management WS-Resource
	Scheduler WS-Resource
	Workflow Partitioning
	Planning
	Workflow Steering

	Execution WS-Resource
	Provenance Information

	Optimization
	Code Movement - Node Management Resource
	Tailoring the Service Behavior - Node Management Resource
	Clustering - Scheduler Resource
	Global Data Caching - Execution Resource
	Distributed Fault Handling - Execution Resource

	Fault Handling in SWIMS

	SWIMS Workbench
	SWIMS Workbench Architecture
	SWIMS Abstract Workflow Language
	SWIMS Workbench User Interface
	The Editing / Composition Mode
	Exploring the Workflow Catalog
	The Monitoring Mode

	Workflow Validation
	SWIMS: The Overall Picture

	Experiment and Performance Evaluation
	Montage Workflow Generator
	Experiment Design
	SWIMS's Server-Side Evaluation
	SWIMS's Workbench Evaluation

	Conclusion and Future Trends
	Summary of the Thesis
	Accomplishments of the Thesis
	Future Work

	GRIA Job Description File
	GRIA Job To Abstract Template XSL Transformation
	List of Abbreviations
	Bibliography

