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Abstract

In this thesis we study static 180 degree domain walls in in�nite thin mag-
netic wires with either a rectangular or a centrally symmetric Lipschitz cross
section. We explore the magnetization energy minimization problem by �nd-
ing an approximation for the magnetostatic energy. Two di�erent pattern
formations of the magnetization have been observed. In dependence of the
thickness of the wire, di�erent pattern formations of the magnetization vector
are observed. We prove an existence of global minimizers(even for Lipschitz
cross sections). We prove a Γ-convergence result for both types of thin wires.
For rectangular cross sections we distinguish two di�erent regimes and estab-
lish the minimal energy scaling in terms of the cross section edge's lengths.
For a centrally symmetric cross section we establish as well the minimal en-
ergy scaling in terms of the diameter of the cross section and some geometric
parameters relating to it. We prove as well a rate of convergence for the min-
imal energies for all cases. For thick wires with a rectangular cross section we
prove an upper bound and give a reference for a lower bound on the minimal
energy. For thin wires a Néel wall occurs and for thick wires a vortex wall is
expected to occur.
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Chapter 1

Introduction

The aim of this thesis is to study static 180 degree domain walls in in�nite
thin magnetic wires. We explore the magnetization energy minimization
problem by �nding an approximation to the magnetostatic energy. Two
di�erent pattern formations of the magnetization have been observed. In
dependence of the the thickness of the wire di�erent pattern formations of
the magnetization vector are observed. We make a detailed study for thin
wires, where a Néel wall occurs, and give lower and upper bounds on the
minimal energy for thick wires, where a vortex wall is expected to occur.

1.1 Pattern formation and the reversal process

In the last years there has been signi�cant progress in production and in-
vestigation of thin magnetic wires, e.g. [30,32,34]. Such arrays of nanowires
are considered as future high density storage devices, e.g. [2]. It is known
that the magnetization pattern switching time is closely related to the writ-
ing and reading speed of such a device, thus it is crucial to understand the
magnetization switching process. The reversal of the magnetization typically
starts at one end of the wire creating a domain wall, which moves along the
wire. The domain wall separates the reversed and the not yet reversed parts
of the wire (Fig. 1.1). Because it is di�cult to do experiments with thin
wires, there are few results on the speed of the moving wall. It has been
observed experimentally and in numerical simulations, that there is a dis-
tinctive crossover between two di�erent modes of magnetization switching
at a critical diameter: in particular, for nickel the crossover occurs at the
diameter of about 50nm. For thin wires the transverse mode is observed: the
magnetization is constant on each cross section and it is rotating and moving
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along the wire (see Fig 1.2). For thick wires the vortex mode is observed:
the magnetization is almost tangential to the boundary and develops a vortex
which propagates along the wire (see Fig 1.2). The vortex mode appeared
to be much faster than the transverse mode.
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Figure 1.2 (Longitudinal section and cross section)
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It is well known that the pattern formation of the magnetization can
be understood from the behavior of the energy minimizing pro�les and it
has been suggested in [26,27] that the magnetization reversal process can be
understood by studying the Landau-Lifshitz-Gilbert equation of the micro-
magnetics. A justi�cation for a circular cross section has been done there by
K.Kühn using the results on the static domain walls obtained in [24,25] and
then studying the dynamics of the magnetization(Landau-Lifshits-Gilbert
equation). In this work we study the static domain walls in a more gen-
eral setting, namely when the cross section is either an arbitrary centrally
symmetric Lipschitz domain or a rectangle with various aspect ratios.

1.2 Brief introduction to micromagnetics

Micromagnetics is a theory that assigns a nonlocal energy to each magnetiza-
tionm from the domain Ω to R3, where the domain Ω represents a magnetized
body in R3. The vector �eld m represents the magnetization of the body and
has a unit length in Ω. It as extended as zero outside Ω. It is assumed that
the body Ω is ferromagnetic. The energy functional of micromagnetics is
given by the following expression:

E(m) = ϵ2
∫
Ω

|∇m|2 +Q

∫
Ω

φ(m) +

∫
R3

|∇u|2 − 2

∫
Ω

Hext ·m. (1.1)

The four summands in (1.1) are called exchange energy, anisotropy energy,
magnetostatic(or demagnetizing) energy and Zeeman(or external �eld) en-
ergy respectively. The numbers ϵ and Q are material parameters, the vector
Hext is an applied magnetic �eld, while ∇u is magnetic �eld generated by
the magnetized body Ω. Here u : R3 → R is a scalar function that is obtained
from m by solving the Maxwell's equation of micromagnetics:

div(∇u+m) = 0 in R3,

which is equivalent to
△u = div(m) in R3

in the distributional sense. It is known in physics that the ground states of
the magnetization correspond the minimizers of the micromagnetic energy
functional. The theory of micromagnetics is used for the analysis and design
of magnetic devices. It explains observations on di�erent length scales. For
a more detailed discussion we refer to [9,22].
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1.3 Overview of the thesis

In chapter 2 we study static 180 degree domain walls in in�nite cylinders with
a rectangular cross section . We distinguish three di�erent regimes. The �rst
regime corresponds to the case when both the hight d and the width l of
the cross section are su�ciently small and comparable to each other. The
second regime corresponds to the case when both d and l are small but d
is much smaller than l: so d << l. The third regime corresponds to the
case when both d and l are big and comparable to each other. In the �rst
two regimes the optimal scaling of the minimal energy can be realized by a
Néel wall(transverse wall) for which the magnetization is constant on each
cross section. We prove that as d, l → 0 and if in addition d

l
→ c, where

evidently c > 0 for the �rst regime and c = 0 for the second regime, the
rescaled energy minimizing problem min E(m)

µ
(where µ = d · l for the �rst

regime and µ = d
3
2 l

1
2 | ln d − ln l| 12 for the second regime) Γ−converges to a

one dimensional problem which attains its minimum and can be solved ex-
plicitly. Moreover, we �nd a rate of convergence for the minimal energies. In
the third regime we prove an upper bound on the minimal energy scaling by
constructing an example. We also make a reference for a lower bound.
In Chapter 3 we study static 180 degree domain walls in in�nite cylinders
with a centrally symmetric and Lipschitz cross section. Like in the rectangu-
lar cross section case we prove a Γ−convergence for the rescaled minimiza-
tion problem E(m)

d2
as d goes to zero, where d is the diameter of the cross

section. The optimal scaling turns out to be d2 and is realized by a Néel
wall(transverse wall). We prove as well an existence of the energy minimizer.
We also establish a rate of convergence for the minimal energies.

1.4 General notation

In this section we point out the notations and some conventions we are going
to use throughout this work. We will use the following conventions: The
letter ξ = (ξ1, ξ2, ξ3) denotes a point in R3. A map f with values in R3 will
have the components fx, fy, fz, i.e, f = (fx, fy, fz). For l, d > 0 numbers we
denote the rectangle [−l, l]× [−d, d] by R(l, d), the rectangle {x} × [−l, l]×
[−d, d] by Rx(l, d) and Ω(l, d) = R × R[l, d] ⊂ R3-an in�nite cylinder with
rectangular cross section (note that the cross section is the intersection of Ω
with any hyperplane orthogonal to the x axis). We denote as well

Eex(m) = ϵ2
∫
Ω

|∇m|2

6



and

Emag(m) =

∫
R3

|∇u|2
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Chapter 2

The static domain walls in

cylinders with a rectangular cross

section

2.1 Inrtroduction

In this chapter we study the static energy functional for the magnetizations
m : Ω(l, d) → S2. We consider three di�erent regimes. The �rst two of them
relate to thin wires and the third one relates to thick wires. We use many of
the methods used in [9] and [24]. In [9] many di�erent regimes corresponding
to magnetic �lms are studied.

2.2 The model problem

We consider the micromagnetic energy without an external �eld and anisotropy
energy:

E(m) = ϵ2
∫
Ω

|∇m|2 dξ +
∫
R3

|∇u|2 dξ

Let A(l, d) be the set of magnetizations with �nite energies:

A(l, d) = {m : Ω(l, d) → S2 | E(m) <∞}.

We are interested in the magnetisations with a 180 degree domain wall, so
we will consider a subset Ã(l, d) of A(l, d) containing the magnetisations of
A(l, d) satisfying the conditions limx→±∞m(x, ·) = ±e⃗x, where the limits are
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understood in the following sense: m− ē ∈ H1(Ω), and

ē =


−−→ex if x < −1
x · −→ex if − 1 ≤ x ≤ 1

−→ex if 1 < x

We will sometimes leave out l and d in Ω, A, and Ã, provided it is certain
which domain is being considered.

We study the minimization problem

inf
m∈Ã(l,d)

E(m) (2.1)

First of all we eliminate the material constant ϵ from the energy functional
expression and we also try to �nd out which kind of magnetizations are
favorable for thin and thick �lms respectively. To that end we consider the
magnetization mk(t) = m(kt) for k > 0. It is easy to see that

E(mk) = kEex(m) + k3Emag(m),

where the integration on the left hand side is done over the domain 1
k
· Ω.

This shows that if k is big then the major contribution to the energy comes
from the magnetostatic energy, therefore the energy of a thick wire favors
magnetizations with a vortex wall. If k is small then the major contribution
to the energy comes from the exchange energy, thus the energy of a thin wire
favors magnetizations that are almost constant on each cross section. We
rescale our spatial variable by a constant factor k = ϵ which will yield to a
situation when the coe�cients of∫

Ω

|∇m|2 dξ and

∫
R3

|∇u|2 dξ

are the same. We will hereafter assume that

E(m) =

∫
Ω

|∇m|2 dξ +
∫
R3

|∇u|2 dξ (2.2)

where u is the weak solution of △u = divm. We will consider an auxiliary
subset Ax of A which consists of all the magnetizations from A that are
constant on each cross section:

Ax = {m ∈ A | m is constant on each cross section},

and we de�ne as well the set

Ãx = {m ∈ Ã | m is constant on each cross section}.

Let Emin and Emin,x be the in�mums of E(m) respectively in Ã and Ax.

9



2.3 The main results

We study the existence of a minimizer for minimization problem (2.1). We
consider as well the pattern formation of the optimal wall pro�le, the minimal
energy scaling and we �nd a rate of convergence. We prove the following
results.

Theorem 2.3.1 (Existence of minimizers). For every 0 < d ≤ l there exist
minimizers of E in Ã and Ãx.

Theorem 2.3.2 (Energy scaling). The minimal energy scales like µ, where

µ = d · l in the �rst regime,

µ = d
3
2 · l

1
2 | ln d− ln l|

1
2 in the second regime.

Theorem 2.3.3 (Upper and lower bounds). Assume that δ ≤ d
l
. Then there

exist two positive numbers d0 and C, both depending on δ such that if d > d0
then

Cd2(ln d)
1
2 ≤ E(m) ≤ 150d

5
2 (ln d)

1
2 .

The magnetization that admits the scaling shown in the upper bound
is tangential to the boundary and forms a vortex. We expect it to be the
optimal scaling in the third regime.

Instead of energy minimizing problem (2.1) we consider the rescaled prob-
lem

inf
m∈Ã

E(m)

µ
. (2.3)

Theorem 2.3.4 (Γ-convergence). In the �rst two regimes the rescaled energy
minimizing problem Γ-converges to a one dimensional problem as d goes to
zero, provided

lim
d→0

d

l
= c

and
c > 0 in the �rst regime, c = 0 in the second regime.

Moreover, the limit problem can be solved explicitly.

Since Γ−convergence implies the convergence of the minimal energies as
well as the convergence of minimizers under good compactness properties we
obtain that

lim
d→0

Emin

µ
= E0

min (2.4)

10



where E0
min is the minimal value of the limit energy. For thin cylinders

any energy minimizer is almost constant on each cross section and forms a
Néel wall (the transverse wall). We �nd a rate of convergence for limit (2.4)
in the second regime. For the �rst regime we prove a rate of convergence
theorem in a more general setting in Chapter 3.

Theorem 2.3.5 (Rate of convergence). For su�ciently small d the following
bound holds: ∣∣∣Emin

µ
− E0

min

∣∣∣ ≤ 64√
| ln c|

+ 36l. (2.5)

2.4 The characterization theorem

Hereafter we will consider not only the magnetizations but also all the bounded
and measurable vector �elds m : Ω → R3 satisfying

m(x) = 0 in R3 \ Ω.

We denote byMΩ the set of such vector �elds and byMx
Ω the set of all vector

�elds in MΩ which are constant on each cross section. For any m ∈ MΩ the
divergence of m consists of two parts: the body charges v and the surface
charges s, i.e., the distributional divergence from the normal component of
the magnetisation on the surface.

v(ξ) =

{
−divm in Ω

0 in R3\Ω

s(ξ) =

{
m(ξ) · ν(ξ) on ∂Ω

0 in R3\∂Ω
where ν(ξ) is the outward normal to the boundary of Ω at point ξ. Recall
that the map u is the weak solution of

△u = divm in R3 (2.6)

if and only if

∇u ∈ 2(R3) and

∫
R3

∇u · ∇φ =

∫
R3

m · ∇φ for all φ ∈ C∞
0 (R3) (2.7)

which is itself equivalent to∫
R3

∇u · ∇φ =

∫
Ω

v · φ+

∫
∂Ω

s · φ for all φ ∈ C∞
0 (R3). (2.8)
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This de�nes u up to a constant, but we deal with the gradient of u so that
constant does not e�ect the energy functional. The next lemma gives in
particular a bound on ∥s∥L2(∂Ω).

Lemma 2.4.1. If the vector �eld m ∈Mx
Ω(l,d) satis�es

|m| ≤ 1 in Ω

and
E(m) <∞

then there exists a positive number M depending only on l, d and E(m) such
that

∥my∥2L2(R) + ∥mz∥2L2(R) ≤M.

Proof. We have∫
R3

∇u · ∇φ =

∫
Ω

v · φ+

∫
∂Ω

s · φ for all φ ∈ C∞
0 (R3). (2.9)

By the density argument one can show that this equality stays valid also
for such functions φ which have compact support and are weakly di�eren-
tiable with gradient in L2(R3). We prove the lemma by taking suitable test
functions φ in (2.9) and using the �niteness of the norms ∥∇u∥L2(R3) and
∥∇m∥L2(Ω). The idea is to choose the test functions φ close to s. Note that

s(ξ) =


my(ξ) on Γleft

−my(ξ) on Γright

mz(ξ) on Γup

−mz(ξ) on Γdown

where
Γright = R× {l} × [−d, d], Γleft = R× {−l} × [−d, d],

Γup = R× [−l, l]× {d}, Γlow = R× [−l, l]× {−d}

and it is clear that ∂Ω = Γright∪Γleft∪Γup∪Γlow. For convenience we choose
test functions having support close to each of the surfaces Γright,Γleft,Γup and Γlow.
For any r > 0 there exists a function ψr ∈ C∞(R3,R) such that

ψr = 1 in [−r, r]×
[
− l

2
,
l

2

]
× {d}, 0 ≤ ψr ≤ 1 in R3

suppψr ⊂
[
− r − d

2
, r +

d

2

]
×
[
− l + d

2
,
l + d

2

]
×
[d
2
,
3d

2

]
and |∇ψr| ≤

10

d
.
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Note that m is strongly di�erentiable a.e. in R since it depends only on x
and is weakly di�erentiable. We choose φr = mzψr. It is clear that

|∂xφr| = |∂xmzψr + ∂xψrmz| ≤ |∂xmz|+
10

d
|mz| in supp(φ),

|∂yφr| = |∂yψrmz| ≤
10

d
|mz| in supp(φ),

|∂zφr| = |∂yψrmz| ≤
10

d
|mz| in supp(φ),

thus

|∇φr|2 ≤
400

d2
|mz|2 + 2|∂xmz|2 in supp(φ). (2.10)

We denote Ir =
∫ r

−r
|mz(x)|2 dx. We have on one hand∫

∂Ω

s · φr dξ =

∫
∂Ω

m2
z · ψr dξ ≥ l ·

∫ r

−r

|mz(x)|2 dx (2.11)

and on the other hand∣∣∣ ∫
∂Ω

s · φr dξ
∣∣∣ ≤ ∫

R3

|∇u| · |∇φr| dξ +
∫
Ω

|v| · |φr| dξ

≤ ∥∇u∥L2(R3) · ∥∇φr∥L2(R3) + ∥v∥L2(Ω) · ∥φr∥L2(Ω) (2.12)

We have as well

∥φr∥2L2(Ω) =

∫
Ω

|φr|2 dξ =
∫
Ω∩supp(φr)

m2
z · ψ2

r dξ

≤ d(l + d)

∫ r+ d
2

−r− d
2

|mz(x)|2 dx ≤ d(l + d)(Ir + d),

∥∇φr∥2L2(R3) =

∫
R3

|∇φr|2 dξ ≤
∫
supp(φr)

(400
d2

|mz|2 + 2|∂xmz|2
)
dξ

≤ 400

d
(l+d)(Ir+d)+2d(l+d)

∫
R
|∂xmz|2 dx ≤ 400

d
(l+d)(Ir+d)+

∫
Ω

|∇m|2 dξ

≤ 400

d
(l + d)(Ir + d) + E(m),

∥∇u∥2L2(R3) ≤ E(m) and ∥v∥2L2(Ω) =

∫
Ω

|∂xm|2 dξ ≤ E(m).
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Using now (2.12) and the inequalities for ∥∇u∥L2(R3),∥∇φr∥L2(R3), ∥v∥L2(Ω),∥φr∥L2(Ω)

we obtain∣∣∣ ∫
∂Ω

s·φr dξ
∣∣∣2 ≤ 2E(m)

(400
d

(l+d)(Ir+d)+E(m)+d(l+d)(Ir+d)
)
. (2.13)

Inequalities (2.11) and (2.13) yield an inequality of the form

I2r ≤ c1Ir + c2

where c1 and c2 are constants depending only on l, d and E(m). This implies
that Ir ≤ x0 where x0 is the biggest root of the equation x

2 − c1x− c2 = 0.
In the same way one can show that Jr ≤ y0 where Jr =

∫ r

−r
|my|2 dx and

y0 depends only on l, d and E(m). This completes the proof since r was
arbitrary.

We investigate the average function m̄ which is the mean value of m over
the rectangle Rx(l, d) and thus depends only on the �rst variable x:

m̄(x, y, z) =

∫
Rx(l,d)

m dy dz, (x, y, z) ∈ Ω(l, d).

Like m we extend m̄ as 0 outside Ω. This function will play a crucial role
in the proofs of the foregoing theorems. Actually it is the key point to the
extensions of several lemmas that hold for the magnetizations constant on
each cross section to the general case. It is easy to see that if m is weakly
di�erentiable in x then so is m̄ and

∂xm̄(x, y, z) =
1

|R(l, d)|

∫
R(l,d)

∂xm(x, y1, z1) dy1 dz1, (x, y, z) ∈ Ω(l, d).

We also prove some auxiliary lemmas which allow us to prove some properties
of the energy functional provided we have proven them for the magnetiza-
tions constant on each cross section. The �rst lemma shows that if two
magnetizations are closed to each other in L2(Ω) then so are their magne-
tostatic energies. The second lemma allows us to estimate from above the
energy of the average magnetization as well as the sum ∥m̄y∥L2(Ω)+∥m̄z∥L2(Ω)

in terms of l, d and E(m) and hence it yields the �niteness of the sum
∥m̄y∥L2(Ω)+∥m̄z∥L2(Ω). The third lemma describes some properties of a mag-
netization with 180 degree domain wall and with a �nite energy. It shows
that the average function m̄ is almost ±1 at respectively ±∞ and also that
its �rst component can not have a lot of oscillations in a certain sense.

Lemma 2.4.2. For any vector �elds m1,m2 ∈ MΩ with �nite energies the
following statements hold:

• Emag(m1 +m2) ≤ 2(Emag(m1) + Emag(m2))
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• |Emag(m1)−Emag(m2)| ≤ Emag(m1−m2)+2
√
Emag(m1)Emag(m1 −m2)

• |Emag(m1)−Emag(m2)| ≤ ∥m1−m2∥2L2(Ω)+2∥m1−m2∥L2(Ω)

√
Emag(m1)

if m1 −m2 ∈ L2(Ω)

Proof. Assume that u1 and u2 are the weak solutions of △u = divm1 and
△u = divm2 respectively. It is clear that

Emag(m1+m2) =

∫
R3

|∇(u1+u2)|2 dξ =
∫
R3

(|∇u1|2+ |∇u2|2+2∇u1 ·∇u2) dξ

≤ 2

∫
R3

(|∇u1|2 + |∇u2|2) dξ = 2(Emag(m1) + Emag(m2)),

|Emag(m1)− Emag(m2)| =
∣∣∣ ∫

R3

(|∇u1|2 − |∇u2|2) dξ
∣∣∣

=
∣∣∣ ∫

R3

(|∇(u1 − u2)|2 + 2∇u1 · ∇u2 − 2|∇u1|2) dξ
∣∣∣

≤
∫
R3

|∇(u1 − u2)|2 dξ + 2

∫
R3

|∇u1(∇u2 −∇u1)| dξ

≤ Emag(m1 −m2) + 2

√∫
R3

|∇u1|2 dξ ·
∫
R3

|∇(u1 − u2)|2 dξ

= Emag(m1 −m2) + 2
√
Emag(m1)Emag(m1 −m2)

the last inequality is a consequence of Schwartz inequality. The third state-
ment is a consequence of the second one and Emag(m) ≤ ∥m∥L2(Ω).

Lemma 2.4.3. For anym ∈MΩ with a �nite energy the following statements
hold:

•
∫
Rx(l,d)

(|m|2−|m̄|2) dy dz =
∫
Rx(l,d)

|m−m̄|2 dy dz ≤ Ć(d2+l2)
∫
Rx(l,d)

|∇yzm| dy dz
for all x ∈ R, where Ć is an absolute constant(the Poincaré constant)

• Eex(m̄) + Eex(m− m̄) = Eex(m)

• There exists a constant C1 depending only on l and d such that

E(m̄) ≤ C1E(m) (2.14)
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• There exists a constant C2 depending only on l, d and E(m) such that

∥m̄y∥2L2(Ω(l,d)) + ∥m̄z∥2L2(Ω(l,d)) ≤ C2 (2.15)

Proof. We have for any x ∈ R∫
Rx(l,d)

(m− m̄) dy dz =

∫
Rx(l,d)

m dy dz − |Rx(l, d)| · m̄(x) = 0

thus ∫
Rx(l,d)

|m|2 dy dz =
∫
Rx(l,d)

|m̄|2 dy dz

+

∫
Rx(l,d)

|m− m̄|2 dy dz + 2m̄(x)

∫
Rx(l,d)

(m− m̄) dy dz

=

∫
Rx(l,d)

|m̄|2 dy dz +
∫
Rx(l,d)

|m− m̄|2 dy dz.

Taking into account now that the weak derivative of the average function
is the average of the original function's weak derivative we get the second
equality. We have according to Lemma 2.4.2

Emag(m̄) ≤ 2Emag(m̄−m) + 2Emag(m) ≤ 2Emag(m) + 2∥m− m̄∥2L2(Ω(l,d))

(2.16)
and the Poincaré inequality gives us the following∫

Rx(l,d)

|m− m̄|2 dy dz ≤ Ć(l2 + d2)

∫
Rx(l,d)

|∇yzm|2 dy dz for any x ∈ R

Integrating the last inequality over R we obtain

∥m−m̄∥2L2(Ω(l,d)) =

∫
Ω(l,d)

|m−m̄|2 dξ ≤ Ć(l2+d2)

∫
Ω(l,d)

|∇yzm|2 dξ ≤ ĆEex(m).

Applying (2.16) and the last inequality we get in conclusion

E(m̄) = Eex(m̄) + Emag(m̄) = Eex(m)− Eex(m− m̄) + Emag(m̄)

≤ Eex(m) + Emag(m̄) ≤ Eex(m) + 2Emag(m) + 2Ć(l2 + d2)Eex(m)

≤ (2 + 2Ć(l2 + d2))E(m).

The forth statement is a consequence of the third one and Lemma 2.4.1.
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Corollary 2.4.4. For any m ∈ A and x ∈ R∫
Rx(l,d)

|m̄|2 dy dz ≤
∫
Rx(l,d)

|m|2 dy dz

≤
∫
Rx(l,d)

|m̄|2 dy dz + Ć(l2 + d2)

∫
Rx(l,d)

|∇yzm|2 dy dz (2.17)

Lemma 2.4.5. • Let m ∈ A be a magnetization and α and β be real
numbers such that −1 < α < β < 1. Assume ℜ is family of disjoint
intervals (a, b) satisfying the conditions
{m̄x(a), m̄x(b)} = {α, β}, |m̄x(x)| ≤ max(|α|, |β|) in (a, b). Then

card(ℜ) ≤M2 and
∑

(a,b)∈ℜ

(b− a) ≤M2 (2.18)

where M is a constant depending on l, d, α, β and E(m).

• If m ∈ Ã then for any 0 < δ < 1 there exists a positive number Nδ

such that two of the following properties hold:
−1 ≤ m̄x ≤ −1 + δ in (−∞,−Nδ)
−1 ≤ m̄x ≤ −1 + δ in (Nδ,+∞)
1− δ ≤ m̄x ≤ 1 in (Nδ,+∞)
1− δ ≤ m̄x ≤ 1 in (−∞,−Nδ)
(note that only two of them can simultaneously hold.)

• For any m ∈ Ã the function m̄x has a constant sign at ±∞.

Proof. We �rst prove that the sum of the lengths of the intervals in ℜ is
bounded. We have that |m̄x(x)| ≤ max(|α|, |β|) = ρ with 0 < ρ < 1. As
we have mentioned m̄ is weakly di�erentiable in x and taking into account
that every weakly di�erentiable function of one variable is locally absolutely
continuous in R we get that so is m̄. Let (a, b) ∈ ℜ. It is clear that∫

(a,b)×R(l,d)

m̄2
x dξ ≤ 4ldρ2(b− a) (2.19)

Integrating (2.17) over (a, b) and taking into account (2.19) we get

4ld(b− a) =

∫
(a,b)×R(l,d)

|m|2 dξ

≤
∫
(a,b)×R(l,d)

|m̄|2 dξ + Ć(l2 + d2)

∫
(a,b)×R(l,d)

|∇yzm|2 dξ
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≤ 4ldρ2(b− a) +

∫
(a,b)×R(l,d)

(m̄2
y + m̄2

z) dξ + Ć(l2 + d2)

∫
(a,b)×R(l,d)

|∇yzm|2 dξ

We do this for all (a, b) ∈ ℜ and add the obtained inequalities. For conve-
nience we put

Σ =
∪

(a,b)∈ℜ

(a, b)×R(l, d).

Since ℜ is a family of disjoint intervals then Σ ⊂ Ω(l, d). In conclusion we
get:

4ld
∑

(a,b)∈ℜ

(b− a)

≤ 4ldρ2
∑

(a,b)∈ℜ

(b− a) +

∫
Σ

(m̄2
y + m̄2

z) dξ + Ć(l2 + d2)

∫
Σ

|∇yzm|2 dξ

≤ 4ldρ2
∑

(a,b)∈ℜ

(b− a) +

∫
Ω(l,d)

(m̄2
y + m̄2

z) dξ + Ć(l2 + d2)

∫
Ω(l,d)

|∇m|2 dξ

≤ 4ldρ2
∑

(a,b)∈ℜ

(b− a) + C2 + Ć(l2 + d2)E(m)

in the last step we used (2.15). Finally we get

∑
(a,b)∈ℜ

(b− a) ≤ C2 + Ć(l2 + d2)E(m)

4ld(1− ρ2)
. (2.20)

Now we prove that ℜ contains �nitely many intervals namely we get an upper
bound on the number of the entries of ℜ. For any point (y, z) ∈ R(l, d) and
any interval (a, b) ∈ ℜ we have∫ b

a

|∂xmx(x, y, z)|2 dx ≥ 1

b− a

(∫ b

a

|∂xmx(x, y, z)| dx
)2

(2.21)

Integrating (2.21) over R(l, d) we get∫
(a,b)×R(l,d)

|∂xmx(x, y, z)|2 dξ ≥
1

b− a

∫
R(l,d)

(∫ b

a

|∂xmx(x, y, z)| dx
)2

dy dz

≥ 1

b− a

∫
R(l,d)

|mx(a, y, z)−mx(b, y, z)|2 dy dz

≥ 1

4ld(b− a)

(∫
R(l,d)

|mx(a, y, z)−mx(b, y, z)| dy dz

)2
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≥ 1

4ld(b− a)

(∫
R(l,d)

(
mx(a, y, z)−mx(b, y, z)

)
dy dz

)2

=
1

4ld(b− a)

(
4ld
(
m̄x(a)− m̄x(b)

))2
=

4ld(α− β)2

b− a
,

thus ∫
(a,b)×A(l,d)

|∂xmx(x, y, z)|2 dξ ≥
4ld(α− β)2

b− a
.

We add the obtained inequalities for all (a, b) ∈ ℜ to get

4ld(α− β)2
∑

(a,b)∈ℜ

1

b− a
≤
∫
Σ

|∂xmx|2 dξ ≤
∫
Ω

|∂xmx|2 dξ ≤ E(m). (2.22)

Adding (2.20) and (2.22) we obtain

∑
(a,b)∈ℜ

( 1

b− a
+ b− a

)
≤ 1

4ld

( E(m)

(α− β)2
+
C2 + Ć(l2 + d2)E(m)

1− ρ2

)
:=M2

(2.23)
The fact that for any (a, b) ∈ ℜ the inequality 1

b−a
+ b − a ≥ 2 holds and

(2.23) show that M2 ≥ 2N where N is the number of the entries of ℜ and
M2 depends only on l, d, α, β and E(m),i.e., M2 satis�es (2.18). The �rst
statement is proven. Using now (2.15) and (2.17) we get∫

Ω

(1− m̄2
x) dξ ≤

∫
Ω

(m̄2
y + m̄2

z) dξ + Ć(l2 + d2)E(m) <∞ (2.24)

and it is as well clear that

|m̄x(x)| =
1

4ld

∣∣∣ ∫
R(l,d)

mx(x, y, z) dy dz
∣∣∣ ≤ 1

4ld

∫
A(l,d)

|mx(x, y, z)| dy dz ≤ 1

thus
0 ≤ 1− m̄2

x(x) ≤ 1 for all x ∈ R.

We know that
∫
R(1 − m̄2

x) dx < ∞ which is equivalent to the �niteness of

the two integrals:
∫ +∞
0

(1 − m̄2
x) dx and

∫ 0

−∞(1 − m̄2
x) dx. The integrand is

continuous and positive thus for any positive δ less than 1 and a natural
number N there exists x0 ∈ R greater than N such that |m̄x(x0)| > 1 − δ

2
.

Therefore there exists an increasing sequence of real numbers (xn)n∈N tending
to +∞ such that |m̄x(xn)| > 1− δ

2
. Hence for in�nitely many indices n one

of the following statements holds: m̄x(xn) > 1 − δ
2
or m̄x(xn) < −1 + δ

2
.

Assume that for a subsequence (not relabeled) we have m̄x(xn) > 1 − δ
2
.
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We will prove that m̄x(x) > 1 − δ for all x > Nδ for some Nδ. Assume
in the contrary that for an increasing sequence (x̃n)n∈N tending to +∞
m̄x(x̃n) ≤ 1−δ. We can choose an in�nite family of disjoint intervals (an, bn)
such that the value of m̄x at one of the ends of (an, bn) is less or equal than
1− δ and at the other end is big than 1− δ

2
for all n ∈ N. The construction

of such a family of intervals goes in the following way: In the �rst step
we take the smallest n such that x̃n > x1 and denote it by ñ1 and take
a1 = x1, b1 = x̃ñ1 . In the second step we take the smallest n such that
xn > b1 and denote it by n2 and then we take the smallest n such that
x̃n > xn2 and denote it by ñ2 and take a2 = xn2 and b2 = x̃ñ2 . We continue
this process as long as possible. Since (xn)n∈N and (x̃n)n∈N tend to +∞ this
sequence of steps is in�nite and thus we have constructed an in�nite sequence
of disjoint intervals (an, bn) with the property that m̄x(an) > 1 − δ

2
and

m̄x(bn) ≤ 1− δ for all n ∈ N. Since m̄x is continuous in R the new sequence
of intervals (án, b́n) where án = sup{x ∈ (an, bn) | m̄x(x) ≥ 1 − δ

2
} and

b́n = inf{x ∈ (án, bn) | m̄x(x) ≤ 1− δ} has the property m̄x(án) = 1− δ
2
and

m̄x(b́n) = 1 − δ and they are disjoint because (án, b́n) ⊂ (an, bn). Moreover,
the construction of án and b́n yields m̄x(x) ≤ 1− δ

2
for all x ∈ (án, b́n). But

this contradicts the �rst statement of the foregoing lemma which states that
the number of such intervals must be �nite. The same can be done for −∞.
The fourth statement is an obvious consequence of the third one taking for
instance δ = 1

2
.

Remark 2.4.6. In the proof of Lemma 2.4.5 we have actually shown that
for an arbitrary magnetization m the �niteness of the three norms

∥∇m∥L2(Ω), ∥m̄y∥L2(R), ∥m̄z∥L2(R)

yields that m̄x and |m̄x| have a constant sign and tend to 1 respectively at
both ±∞.

Corollary 2.4.7. Assume that a magnetization m ∈ Ax satis�es the condi-
tions

lim
x→±∞

mx(x) = c±

and
∥∇m∥L2(R), ∥my∥L2(R), ∥mz∥L2(R) <∞.

Denote

m∗(x) =

{
mx(x)− c− if x ∈ (−∞, 0]
mx(x)− c+ if x ∈ (0,+∞),

then m∗ ∈ L2(R).
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Proof. According to Remark 2.4.6 we have that c−, c+ ∈ {−1, 1}. We will
show for the case c+ = 1, the other cases are analogues. Utilizing once
again Remark 2.4.6 we have that there exists a positive number N such that
mx(x) > 0 in [N,+∞). We have that∫ +∞

0

(m∗(x))2 dx ≤ 4N +

∫ +∞

N

(1−m2
x(x)) dx =

= 4N +

∫ +∞

N

(m2
y(x) +m2

z(x)) dx <∞.

In the next step we describe the magnetizations which are constant on
each cross section and have �nite energy.

Theorem 2.4.8 (Characterization). For any l and d if m ∈ A(l, d) then one
of the four functions m±−→ex , m± ē belongs to H1(Ω(l, d)). (the function ē is
de�ned in Section 2.2).

Proof. For any m ∈ A we have

E(m) =

∫
Ω

|∇m|2 dξ + Emag <∞

thus ∇m ∈ L2(Ω). Note that the gradients of ±−→ex are zero and the gradients
of ±ē are zero outside the bounded set [−1, 1]×R(l, d) and are (±1, 0, 0) in
(−1, 1) × R(l, d) so they are all in L2(Ω). Using triangle inequality we get
that the gradients of all the four functions m ± −→ex ,m ± ē belong to L2(Ω).
It remains to prove that one of the four functions m±−→ex ,m± ē belongs to
L2(Ω). Denote

Ω− = (−∞, 0]×R(l, d) and Ω+ = [0,+∞)×R(l, d).

We have ∫
Ω−

|m−−→ex |2 dξ =
∫
Ω−

(
(mx − 1)2 +m2

y +m2
z

)
dξ =

= 2

∫
Ω−

(1−mx) dξ = 8ld

∫ 0

−∞
(1− m̄x) dx

and similarly ∫
Ω−

|m+−→ex |2 dξ = 8ld

∫ 0

−∞
(1 + m̄x) dx
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It is now clear that m ± −→ex ∈ L2(Ω−) if and only if 1 ± m̄x ∈ L1(−∞, 0).
Similarly we have that m±−→ex ∈ L2(Ω+) if and only if 1± m̄x ∈ L1(0,+∞).
According to Lemma 2.4.5 m̄x has a constant sign at ±∞. Suppose that
m̄x(x) ≥ 0 for x ≥ N ≥ 0. According to (2.24) we have that∫ +∞

0

(1− m̄2
x) dx <∞

thus∫ +∞

0

(1− m̄2
x) dx ≥

∫ +∞

N

(1− m̄2
x) dx =

∫ +∞

N

(1− m̄x)(1 + m̄x) dx ≥

≥
∫ +∞

N

(1− m̄x) dx

and thus ∫ +∞

0

(1− m̄x) dx ≤ 2N +

∫ +∞

N

(1− m̄x) dx <∞.

Similarly we could prove that if we had m̄x(x) < 0 for x ≥ N > 0 for
some N then 1 + m̄x ∈ L1(0,+∞). Obviously the same can be done for Ω−.
Therefore we have obtained that exactly two of the four statements hold:
1 + m̄x ∈ L1(Ω−), 1 + m̄x ∈ L1(Ω+), 1 − m̄x ∈ L1(Ω−), 1 − m̄x ∈ L1(Ω+)
which ends the proof.

2.5 The magnetostatic energy

2.5.1 A representation of u and the magnetostatic

energy

In this subsection we recall some theorems from [24] which give a represen-
tation of u and the magnetostatic anergy and also show that the inverse of
the characterization theorem holds. Since we work in an in�nite domain It
is not clear under which conditions a weak solution of the equation

△u = divm

exists and has a �nite L2-norm. A very well known case is the case m ∈ 2(Ω).
In this case the equation

△u = divm
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has a weak solution u with ∥∇u∥L2(R3) ≤ ∥m∥L2(Ω).

Consider for all c−, c+ ∈ R the function χc+

c− : R → R3 such that

χc+

c− = (csign(x)min(1, |x|), 0, 0)

and de�ne the set

X(l, d) = {m : Ω(l, d) → R3 | ∃ c−, c+ ∈ R such that m−χc+

c− ∈ H1(Ω(l, d))}.

Recall that the Green function for −△ in R3 is Γ(ξ) = 1
4π|ξ| .

Lemma 2.5.1. For m ∈ X de�ne the maps uv, us, u : R3 → R by

uv(ξ) =

∫
Ω

Γ(ξ − ξ1)v(ξ1) dξ1,

us(ξ) =

∫
∂Ω

Γ(ξ − ξ1)s(ξ1) dξ1,

u(ξ) = uv(ξ) + us(ξ).

Then the following statements hold:

• The maps uv and us satisfy the equalities

∇uv(ξ) =
∑

i∈{x,y,z}

∫
Ω

∂iΓ(ξ − ξ1)v(ξ1)
−→ei dξ for all ξ ∈ R3, (2.25)

∇us(ξ) =
∑

i∈{x,y,z}

∫
∂Ω

∂iΓ(ξ − ξ1)s(ξ1)
−→ei dξ for all ξ ∈ R3 \ ∂Ω,

(2.26)∫
R3

∇uv · ∇φ =

∫
Ω

vφ for all φ ∈ C∞
0 (R3), (2.27)∫

R3

∇us · ∇φ =

∫
∂Ω

sφ for all φ ∈ C∞
0 (R3). (2.28)

• u is a weak solution of △u = divm.

• ∇u is in L2(R3).

Proof. The validity of (2.25) and (2.26) is clear because the integrands are
absolutely continuous for any ξ ∈ R3 and ξ ∈ R3 \ ∂Ω respectively. For the
proof of (2.27) and (2.28) we refer to [24]. The second statement is now clear
if we take into account (2.27) and (2.28). For the proof of the third statement
we again refer to [24].
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For anym ∈ X we will hereafter consider the weak solution of△u = divm
which is de�ned in Lemma 2.5.1. As a corollary we get a necessary and
su�cient condition for a magnetization to have a �nite energy.

Theorem 2.5.2 (Characterization). A magnetization m : Ω → S2 is in A if
and only if one of the four functions m±−→ex ,m± ē belongs to H1(Ω).

Proof. The necessity is Theorem 2.4.8. To prove the su�ciency we note that
if one of the four functions m±−→ex ,m± ē belongs to H1(Ω) then m ∈ X thus
according to Lemma 2.5.1 m belongs to A.

Corollary 2.5.3. A magnetization m belongs to A if and only if

∇m,my,mz ∈ L2(Ω).

Proof. Assume that m ∈ A. First of all note that

∥∇m∥2L2(Ω) ≤ E(m) <∞

Theorem 2.4.8 states that one of the four functions m±−→ex ,m± ē belongs to
H1(Ω). Assume for instance that

m−−→ex ∈ H1(Ω).

We have then that

∥my∥2L2(Ω) + ∥mz∥2L2(Ω) ≤ ∥m−−→ex∥2H1(Ω) <∞.

Assume now that
∇m,my,mz ∈ L2(Ω).

Applying the Poincaré inequality to the functions my and mz we get

∥m̄y∥2L2(Ω)+∥m̄z∥2L2(Ω) ≤ ∥my∥2L2(Ω)+∥mz∥2L2(Ω)+∥m̄y−my∥2L2(Ω)+∥m̄z−mz∥2L2(Ω)

≤ ∥my∥2L2(Ω) + ∥mz∥2L2(Ω) + Ć(l2 + d2)∥∇yzm∥2L2(Ω) <∞.

According to Remark 2.4.6 we have that the function m̄x must have a limit 1
or −1 at ±∞. Recall that in the proof of Theorem 2.4.8 we actually showed
that once we know that m̄x has a limit 1 or −1 at ±∞ and the norms
∥m̄y∥2L2(Ω) and ∥m̄y∥2L2(Ω) are �nite then one of the four functionsm±−→ex ,m±ē
belongs toH1(Ω). Therefore applying now Theorem 2.5.2 we establishm ∈ A.
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We consider now the functional Emag for the magnetisations which are
constant on each cross section, i.e., for m ∈ Ax.

Lemma 2.5.4. For any m ∈ Ax the gradients ∇uv and ∇us are orthogonal
in L2(R3).

Proof. Since v is independent of y and s(x, y, z) = −s(x,−y,−z) then we
have the following for uv and us:

us(x, y, z) = −us(x,−y,−z) and uv(x, y, z) = uv(x,−y,−z),
∂xus(x, y, z) = −∂xus(x,−y,−z) , ∂yus(x, y, z) = ∂yus(x,−y,−z)
∂zus(x, y, z) = ∂zus(x,−y,−z) , ∂xuv(x, y, z) = ∂xuv(x,−y,−z)
∂yuv(x, y, z) = −∂yuv(x,−y,−z) , ∂zuv(x, y, z) = −∂zuv(x,−y,−z)

Evs(m) = 2

∫
R3

∇uv(x, y, z)∇us(x, y, z) dx dy dz =∫
R3

∇uv(x, y, z)∇us(x, y, z) dx dy dz +
∫
R3

∇uv(x, y, z)∇us(x, y, z) dx dy dz.

Making the change of variables y → −y, z → −z in the second summand and
using the identities for the partial derivatives of uv and us we get Evs = 0.

Thus for m ∈ Ax the energy functional has the form

E(m) = 4ld∥∂xm∥2L2(R) + Ev(m) + Es(m).

2.5.2 The representation of Es in Fourier space

In this section we �nd a representation of the magnetostatic energy in Fourier
space. We do this because the expression

∫
R3 |∇u|2 is hard to deal with but

its representation in Fourier space will make it more transparent. First of all
we would like to recall the Fourier transform in Rn and some of its properties.
The Fourier transform of a function f ∈ L1(Rn) is denoted by f̂ and equals
to

f̂(x) =
1√
(2π)n

∫
Rn

f(ξ)e−ix·ξ dξ for all x ∈ Rn.

The set of all functions φ ∈ C∞(Rn) such that

sup
x

|xβDαφ(x)| <∞ for all multi-indices α and β

is denoted by J and called the "Schwartz class." Fourier transform has in
particular the following properties:

1. (
∂̂f

∂ξj
) = iξj f̂ for all f ∈ J (2.29)
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2.(Parseval's equality)

∫
Rn

|f |2 dξ =
∫
Rn

|f̂ |2 dξ for all f ∈ J (2.30)

3.

∫
Rn

|∇f |2 dξ =
∫
Rn

|△̂f |2

|ξ|2
dξ for all f ∈ J and n ≥ 3. (2.31)

By the density argument the �rst equality is also valid for all f : Rn → R
such that ∂f

∂ξj
∈ L2(Rn). The third equality is valid if ∇f ∈ L2(Rn) and

△̂f
|ξ| ∈ L2(Rn) even if △f is a distribution. For a detailed discussion of

Fourier transform we refer to [21].
Let us get back to our problem. For a given surface Γ ⊂ R3 we denote the
distribution H2

Γ by δΓ. The next theorem gives the representation of Es in
Fourier space, which will play a crucial role in approximating the summand
Emag for magnetisations constant on each cross section.

Theorem 2.5.5. If m ∈ Ax then the following formula is valid:

Es(m) =
4

π2

∫
R3

sin2(ly) sin2(dz)

x2 + y2 + z2

( |m̂y(x)|2

z2
+

|m̂z(x)|2

y2

)
dx dy dz,

where m̂y and m̂z are the Fourier transforms of respectively my and mz in
the �rst coordinate.

Proof. Denote Γ = ∂Ω. Note that (2.28) and is equivalent to△us = −s ·δΓ in
the distributional sense. Let us now compute the Fourier transform of s · δΓ.
We have for any k ∈ R3

ŝ · δΓ(k) =
1

2π
√
2π

∫
R3

e−iξk(s · δΓ)(ξ) dξ.∫
R3

e−iξk(s · δΓ)(ξ) dξ =
∫
R×[−l,l]

mz(ξ1)e
−i(k1ξ1+k2ξ2)(e−ik3d − eik3d) dξ1 dξ2

+

∫
R×[−d,d]

my(ξ1)e
−i(k1ξ1+k3ξ3)(e−ik2l − eik2l) dξ1 dξ3.

We have that for any a ∈ R∫ a

−a

e−ixt dt =
eixa − e−ixa

ix
,

thus ∫
R×[−l,l]

mz(ξ1)e
−i(k1ξ1+k2ξ2)(e−ik3d − eik3d) dξ1 dξ2
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=
(eik2l − e−ik2l)(e−ik3d − eik3d)

ik2

∫
R
mz(ξ1)e

−ik1ξ1 dξ1

and ∫
R×[−d,d]

my(ξ1)e
−i(k1ξ1+k3ξ3)(e−ik2l − eik2l) dξ1 dξ3

=
(e−ik2l − eik2l)(eik3d − e−ik3d)

ik3

∫
R
my(ξ1)e

−ik1ξ1 dξ1,

hence

ŝ · δΓ(k) = − 1

2πi
(eik2l − e−ik2l)(eik3d − e−ik3d)

(m̂z(k1)

k2
+
m̂y(k1)

k3

)
.

Let us now compute
∫
R3

|ŝ·δΓ(k)|2
|k|2 dk. After some computation we obtain

|ŝ · δΓ(k)|2

|k|2
=

4 sin2(k2l) sin
2(k3d)

π2|k|2
( |m̂z|2

k22
+

|m̂y|2

k23
+

1

k2k3
(m̂ym̂z + m̂zm̂y)

)
.

It is easy to see that∫
R2

4 sin2(k2l) sin
2(k3d)

π2k2k3|k|2
dk2 dk3 = 0 for any k1 ∈ R

thus∫
R3

|ŝ · δΓ(k)|2

|k|2
dk =

4

π2

∫
R3

sin2(k2l) sin
2(k3d)

|k|2
( |m̂z|2

k22
+

|m̂y|2

k23

)
dk (2.32)

We will see later that the right hand side integral of (2.32) is convergent
therefore taking into account the facts

∫
R3 |∇us|2 < ∞, △us = −s · δΓ and

(2.31) we obtain∫
R3

|∇us(k)|2 dk =

∫
R3

|△us(k)|2

|k|2
dk =

∫
R3

|ŝ · δΓ(k)|2

|k|2
dk =

=
4

π2

∫
R3

sin2(k2l) sin
2(k3d)

|k|2
( |m̂z|2

k22
+

|m̂y|2

k23

)
dk.
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2.5.3 Lower and upper bounds on Es

To simplify the expressions for and Es we consider the integral:

I(l, d, x) =

∫
R2

sin2(ly) sin2(dz)

y2(x2 + y2 + z2)
dy dz,

It is clear that

Es(m) =
4

π2

∫
R

(
I(l, d, x)|m̂z(x)|2 + I(d, l, x)|m̂y(x)|2

)
dx.

The next lemma describes some properties of I. We prove upper and lower
bounds on I for certain values of x. Using this lemma we establish an ap-
proximation for the magnetostatic energy.

Lemma 2.5.6. Assume d and l are positive numbers with 0 < d ≤ l. The
following inequalities hold:

I(l, d, x), I(d, l, x) ≤ π2ld for all x ∈ R (2.33)

I(l, d, x), I(d, l, x) ≥ 4πd2

27
if |x| ≤ 1

3l
(2.34)

I(l, d, x) ≥ 2π
(
1−

√
c
)(π

2
− 3

√
c
)
ld if |x| ≤ 1

3
√
dl
. (2.35)

I(d, l, x) ≤ π(1 + π)ld
√
c for all x ∈ R (2.36)

If cn → c0 > 0 then for any ϵ > 0 there exists a natural number nϵ such
that if n > nϵ then

8

π
lndn

[
(ac0 − ϵ)

∫ 1√
ln

− 1√
ln

|m̂y(x)|2 dx+ (bc0 − ϵ)

∫ 1√
ln

− 1√
ln

|m̂z(x)|2 dx
]
≤ Es(m)

≤ 8

π
lndn

[
(ac0 + ϵ)

∫
R
|m̂y(x)|2 dx+ (bc0 + ϵ)

∫
R
|m̂z(x)|2 dx

]
(2.37)

and

Es(m̄
n) ≥ 4

π
(1−ϵ)2(1−3ϵ)lndncn| ln cn|

∫ 1
3ln

− 1
3ln

(| ̂̄mn
y (x)|2+| ln cn|·| ̂̄mn

z (x)|2) dx.

(2.38)
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Proof. First of all we would like to mention that we will use the following
well known facts:

1

2
≤ 1− t

2
≤ 1− e−t

t
≤ 1 ∀t ∈ [0, 1] and

1− e−t

t
≤ 1 ∀t > 0 (2.39)

the function f(t) =
1− e−t

t
is decreasing in (0,+∞) (2.40)

| sin t| ≥ 2

3
|t| if |t| ≤ 1 (2.41)∫ ∞

0

sin2 t

t2
dt =

π

2
and

∫ ∞

0

sin2(pt)

t2 + q2
dt =

π

4q
(1− e−2pq) if p, q > 0. (2.42)

Note that the integrand of I is an even function in both y and z thus

I(l, d, x) = 4

∫ ∞

0

∫ ∞

0

sin2(ly) sin2(dz)

y2(x2 + y2 + z2)
dy dz.

After making the change of variables y → |x|y, z → |x|z(we assume that
x ̸= 0) and denoting a = l|x|, b = d|x| we get

I(l, d, x) =
4

x2

∫ ∞

0

∫ ∞

0

sin2(ay) sin2(bz)

y2(1 + y2 + z2)
dy dz.

Using now the second identity of (2.42) and also making a change of variables
y = t

a
we obtain

I(l, d, x) =
π

x2

∫ ∞

0

sin2(ay)

y2
· 1− e−2b

√
y2+1√

y2 + 1
dy =

=
2πab

x2

∫ ∞

0

sin2 t

t2
· 1− e−

2b
a

√
t2+a2

2b
a

√
t2 + a2

dt.

Using the second inequality of (2.39) and the �rst identity of (2.42) we get

I(l, d, x) ≤ 2πab

x2

∫ ∞

0

sin2 t

t2
dt =

π2ab

x2
= π2ld.

Similarly we get I(d, l, x) ≤ π2ld.
Suppose now 0 ≤ t ≤ d

3l
and |x| ≤ 1

3l
. We have that d ≤ l so t ≤ l

3d
and

|x| ≤ 1
3d

as well. We have in this case

2b

a

√
t2 + a2 =

2d

l

√
t2 + l2x2 ≤ 2d

l

√
l2

9d2
+

l2

9d2
=

2
√
2

3
< 1
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and similarly 2a
b

√
t2 + b2 < 1. Thus utilizing the �rst part of (2.39) we obtain

1− e−
2b
a

√
t2+a2

2b
a

√
t2 + a2

≥ 1

2
and

1− e−
2a
b

√
t2+b2

2a
b

√
t2 + b2

≥ 1

2
.

Finally we get

I(l, d, x) ≥ πab

x2

∫ d
3l

0

sin2 t

t2
dt and I(d, l, x) ≥ πab

x2

∫ d
3l

0

sin2 t

t2
dt.

Now we utilize (2.41) to get

I(l, d, x) ≥ πld · 4
9
· d
3l

=
4πd2

27

The proof of the inequality

I(d, l, x) ≥ 4πd2

27

is analogues. Suppose now δ is a positive number less than 1, 0 ≤ t ≤ δl
3d

and
|x| ≤ δ

3d
.

We have that

2b

a

√
t2 + a2 =

2d

l

√
t2 + l2x2 ≤ 2d

l

√
l2δ2

9d2
+
l2δ2

9d2
=

2
√
2

3
δ < δ < 1

hence
1− e−

2b
a

√
t2+a2

2b
a

√
t2 + a2

≥ 1− δ

2
.

For the function I we get

I(l, d, x) = 2πld

∫ ∞

0

sin2 t

t2
· 1− e−

2b
a

√
t2+a2

2b
a

√
t2 + a2

dt ≥ 2π
(
1− δ

2

)
ld

∫ δl
3d

0

sin2 t

t2
dt.

Note that if p > 0 then∫ p

0

sin2 t

t2
dt =

∫ ∞

0

sin2 t

t2
dt−

∫ ∞

p

sin2 t

t2
dt ≥ π

2
−
∫ ∞

p

1

t2
dt =

π

2
− 1

p
,

thus we obtain

I(l, d, x) ≥ 2π
(
1− δ

2

)(π
2
− 3d

δl

)
ld.
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Taking now δ =
√
c we get

I(l, d, x) ≥ 2π
(
1−

√
c
)(π

2
− 3

√
c
)
ld.

Fix again a positive number δ less than 1. For t ≥ d
2lδ

we have

2a

b

√
t2 + b2 ≥ 2at

b
=

2lt

d
≥ 1

δ
> 1, thus

I(d, l, x) ≤ 2πld

∫ d
2lδ

0

sin2 t

t2
dt+ 2πld

∫ ∞

d
2lδ

sin2 t

t2
· δ dt

≤ 2πld · d

2lδ
+ 2πld

∫ ∞

0

sin2 t

t2
· δ dt = πld

(c
δ
+ πδ

)
.

Taking now δ =
√
c we obtain

I(d, l, x) ≤ π(1 + π)ld
√
c.

Assume now dn
ln

= cn → c0 > 0. For any n ∈ N we get lower and upper

bounds on I(ln, dn, x) for x ∈ [− 1√
ln
, 1√

ln
] and x ∈ R respectively. It is clear

that

2bn
an

√
t2 + a2n =

2dn
ln

√
t2 + l2nx

2 ≤ 2cn
√
t2 + ln if t > 0, x ∈

[
− 1√

ln
,

1√
ln

]
and

2bn
an

√
t2 + a2n =

2dn
ln

√
t2 + l2nx

2 ≥ 2cnt if t > 0, x ∈ R

thus taking into account (2.40) we get

2πlndn

∫ ∞

0

sin2 t

t2
·1− e−2cn

√
t2+ln

2cn
√
t2 + ln

dt ≤ I(ln, dn, x) for any x ∈
[
− 1√

ln
,

1√
ln

]
(2.43)

and

I(ln, dn, x) ≤ 2πlndn

∫ ∞

0

sin2 t

t2
· 1− e−2cnt

2cnt
dt for any x ∈ R. (2.44)

Note that for any t > 0 we have

2cn
√
t2 + ln → 2c0t and 2cnt→ 2c0t as n→ ∞.
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We utilize (2.39) to get∣∣∣∣∣sin2 t

t2
· 1− e−2cn

√
t2+ln

2cn
√
t2 + ln

∣∣∣∣∣ ≤ sin2 t

t2
,

∣∣∣∣∣sin2 t

t2
· 1− e−2cnt

2cnt

∣∣∣∣∣ ≤ sin2 t

t2
,

∣∣∣∣∣sin2 t

t2
· 1− e−2c0t

2c0t

∣∣∣∣∣ ≤ sin2 t

t2
for any t > 0

and the function sin2 t
t2

is integrable on (0,+∞), therefore by the dominated
convergence theorem we establish∫ ∞

0

sin2 t

t2
· 1− e−2cn

√
t2+ln

2cn
√
t2 + ln

dt→
∫ ∞

0

sin2 t

t2
· 1− e−2c0t

2c0t
dt = bc0

and ∫ ∞

0

sin2 t

t2
· 1− e−2cnt

2cnt
dt→

∫ ∞

0

sin2 t

t2
· 1− e−2c0t

2c0t
dt = bc0 .

The same argument can be done for I(dn, ln, x) with a lower bound for x ∈
[− 1√

dn
, 1√

dn
] and an upper bound for any x ∈ R. This yields that for any

ϵ > 0 there exists a natural number nϵ such that if n > nϵ then

8

π
lndn

[
(ac0 − ϵ)

∫ 1√
ln

− 1√
ln

|m̂y(x)|2 dx+ (bc0 − ϵ)

∫ 1√
ln

− 1√
ln

|m̂z(x)|2 dx
]
≤ Es(m)

≤ 8

π
lndn

[
(ac0 + ϵ)

∫
R
|m̂y(x)|2 dx+ (bc0 + ϵ)

∫
R
|m̂z(x)|2 dx

]
.

This inequality plays a crucial role in the proof of the �rst Γ-convergence
theorem. One of important properties of this inequality is the fact that the
number nϵ depends only on ϵ and the sequences (ln)n∈N,(dn)n∈N, namely if
we have a sequence of domain-magnetization pairs (Ω(ln, dn),m

n) with �nite
energy each and satisfying the properties ln, dn → 0, and cn → c > 0 then
(2.37) is ful�lled for any mn with n greater than the same number nϵ. In
the next step we obtain accurate lower and upper bounds for Es which will
be used in the third Γ-convergence theorem which corresponds to the case
d, l, d

l
→ 0. To obtain accurate bounds on Es we need accurate bounds on

I(dn, ln, x). It is clear that

2ln
dn

√
t2 + d2nx

2 ≥ 2ln
dn
t =

2t

cn
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hence

I(dn, ln, x) ≤ 2πlndn

∫ +∞

0

sin2 t

t2
· 1− e−

2t
cn

2t
cn

dt

= πlndncn

∫ cn

0

sin2 t

t2
· 1− e−

2t
cn

t
dt︸ ︷︷ ︸

I1

+ πlndncn

∫ 1

cn

sin2 t

t2
· 1− e−

2t
cn

t
dt︸ ︷︷ ︸

I2

+ πlndncn

∫ +∞

1

sin2 t

t2
· 1− e−

2t
cn

t
dt︸ ︷︷ ︸

I3

.

I1 = 2πlndn

∫ cn

0

sin2 t

t2
· 1− e−

2t
cn

2t
cn

dt ≤ 2πlndn

∫ cn

0

dt = 2πlndncn,

I2 ≤ πlndncn

∫ 1

cn

1

t
dt = −lndncn ln cn and

I3 ≤ πlndncn

∫ +∞

1

sin2 t

t2
dt ≤ πlndncn

∫ +∞

1

1

t2
dt = πlndncn.

Concluding we obtain

I(dn, ln, x) ≤ πlndncn(3− ln cn). (2.45)

Remark 2.5.7. We have as well shown

lim sup
c→0

ac
c| ln c|

≤ 1

2
. (2.46)

To get a lower bound on I(dn, ln, x) we note that the main contribution
to the integral comes from the interval [cn, 1]. We have replaced sin2 t

t2
and

1− e−
2t
cn by 1 in [cn, 1] to get an upper bound, but since near the endpoints

sin2 t
t2

as well as 1− e−
2t
cn can be much smaller than 1 we can not do the same

to get a lower bound. That is why we choose another interval with suitable
endpoints, namely we replace [cn, 1] by [c1−ϵ

n , cϵn] where ϵ is a small positive
number yet to be chosen. Assume ϵ is any positive number smaller than 1

3
.

We estimate I(dn, ln, x) for the values x ∈
[
− 1

ln
, 1
ln

]
. For any t ∈ [c1−ϵ

n , cϵn]
we have

2ln
dn

√
t2 + x2d2n ≥ 2t

cn
≥ 2c−ϵ

n

and √
t2 + x2d2n ≤ t+ |x|dn ≤ t+

dn
ln

= t+ cn
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hence

I(dn, ln, x) ≥ πlndncn

∫ cϵn

c1−ϵ
n

sin2 t

t2
· 1− e−2c−ϵ

n

t+ cn
dt. (2.47)

Since

lim
n→∞

cn = 0 and lim
t→0

sin2 t

t2
= 1

there exists nϵ ∈ N such that if n > nϵ then

cϵn < 1, 1− e−2c−ϵ
n > 1− ϵ, | ln cn| >

ln 2

ϵ

and
sin2 t

t2
> 1− ϵ for t ∈ [0, cϵn].

Thus we obtain for any n > nϵ

I(dn, ln, x) ≥ πlndncn(1− ϵ)2
∫ cϵn

c1−ϵ
n

1

t+ cn
dt

= π(1− ϵ)2lndncn
(
ln(cn + cϵn)− ln(cn + c1−ϵ

n )
)
.

It is clear that

ln(cn + c1−ϵ
n ) = ln cn + ln(1 + c−ϵ

n ) ≤ ln cn + ln(2c−ϵ
n ) = (1− ϵ) ln cn + ln 2

≤ (1− 2ϵ) ln cn

and
ln(cn + cϵn) ≥ ln cϵn = ϵ ln cn.

Concluding we obtain

I(dn, ln, x) ≥ π(1− ϵ)2(1− 3ϵ)lndncn| ln cn|. (2.48)

Remark 2.5.8. We have also got that

lim inf
c→0

ac
c| ln c|

≥ 1

2
(2.49)

Corollary 2.5.9. The function ac has the property

lim inf
c→0

ac
c| ln c|

=
1

2
(2.50)
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According to (2.35) we have for big n

I(ln, dn, x) ≥ πlndn if x ∈
[
− 1

3ln
,
1

3ln

]
.

Coupling the last inequality with (2.48) we obtain for su�ciently big n

Es(m̄
n) ≥ 4

π
(1−ϵ)2(1−3ϵ)lndncn| ln cn|

∫ 1
3ln

− 1
3ln

(| ̂̄mn
y (x)|2+

1

cn| ln cn|
·| ̂̄mn

z (x)|2) dx

≥ 4

π
(1− ϵ)2(1− 3ϵ)lndncn| ln cn|

∫ 1
3ln

− 1
3ln

(| ̂̄mn
y (x)|2 + | ln cn| · | ̂̄mn

z (x)|2) dx.

The next lemmas give an upper bound on Ev

Lemma 2.5.10. For any numbers 0 < d ≤ l and any point (y1, z1) ∈ R(l, d)
the following bound holds:

I =

∫
R(l,d)

dy dz√
(y − y1)2 + (z − z1)2

< 10d
(
1 + ln

l

d

)
.

Proof. It is clear that

I ≤
∫
R(2l,2d)

dy dz√
y2 + z2

=

∫
R(2d,2d)

dy dz√
y2 + z2

+

∫
R(2l,2d)\R(2d,2d)

dy dz√
y2 + z2

≤ 1

4

∫
D4

√
2d(0)

dy dz√
y2 + z2

+ 8d

∫ 2l

2d

dy

y
= 2

√
2πd+ 8d ln

l

d
< 10d

(
1 + ln

l

d

)
.

Lemma 2.5.11. For any 0 < d ≤ l and m ∈ Ax(l, d) the following bound
holds:

Ev(m) ≤Mm

(
l2d2 + ld2

(
1 + ln

l

d

))
, (2.51)

where Mm is a constant depending on the magnetization m.

Proof. According to (2.27) we have that∫
R3

∇uv · ∇ϕ =

∫
Ω

v · ϕ for all ϕ ∈ C∞
0 (R3).
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By the density argument we can transfer this equality to uv, because ∇uv ∈
L2(R3) and uv ∈ L6(R3), thus utilizing Lemma 2.5.1 we obtain

Ev(m) =

∫
R3

|∇uv|2 =
∫
Ω

v · uv =
∫
Ω

∫
Ω

Γ(ξ − ξ1)v(ξ)v(ξ1) dξ dξ1.

We have that m ∈ Ax so v(x, y, z) = ∂xmx(x) thus

Ev(m) =
1

4π

∫
Ω

∫
Ω

∂xmx(x)∂xmx1(x1)

|ξ − ξ1|
dξ dξ1

where ξ = (x, y, z) and ξ1 = (x1, y1, z1). It is clear that∫
R

∂xmx(x)

|ξ − ξ1|
dx =

∫ 0

−∞

dm∗(x)

|ξ − ξ1|
+

∫ +∞

0

dm∗(x)

|ξ − ξ1|

=
2√

x21 + (y − y1)2 + (z − z1)2
−
∫
R

(x− x1)m
∗(x)

|ξ − ξ1|3
dx,

hence for the energy we have

Ev(m) ≤ 1

2π

∫
R(l,d)

∫
Ω

|∂xmx(x1)|√
x21 + (y − y1)2 + (z − z1)2

dξ1 dy dz︸ ︷︷ ︸
I1

+

∫
Ω

∫
Ω

|∂xmx(x1)m
∗(x)|

|ξ − ξ1|2
dξ dξ1︸ ︷︷ ︸

I2

.

We have ∫
R

|∂xmx(x1)|√
x21 + (y − y1)2 + (z − z1)2

dx1

≤ 1

2

∫
R

(
|∂xmx(x1)|2 +

1

x21 + (y − y1)2 + (z − z1)2

)
dx1

=
1

2
∥∂xmx∥2L2(R) +

π

2
√

(y − y1)2 + (z − z1)2
.

Utilizing now Lemma 2.5.11 we get

I1 ≤
4

π
|∂xmx∥2L2(R)l

2d2 +
1

4

∫
R(l,d)

∫
R(l,d)

1√
(y − y1)2 + (z − z1)2

dy1 dz1 dy dz

≤ 4

π
|∂xmx∥2L2(R)l

2d2 + 10ld2
(
1 + ln

l

d

)
.

36



By making a change of variables ξ2 = ξ1 − ξ and utilizing Lemma 2.5.11 we
get

I2 =

∫
Ω

∫
R×[−l−y,l−y]×[−d−z,d−z]

|m⋆(x)| · |∂xmx(x2 + x)|
|ξ2|2

dξ2 dξ

≤ 1

2

∫
R(l,d)

∫
R×[−l−y,l−y]×[−d−z,d−z]

∫
R

|m∗(x)|2 + |∂xmx(x2 + x)|2

|ξ2|2
dx dξ2 dy dz

= 2ld(∥m∗∥2L2(R) + ∥∂xmx∥2L2(R))

∫
R×[−l−y,l−y]×[−d−z,d−z]

dξ2
|ξ2|2

= 2πld(∥m∗∥2L2(R) + ∥∂xmx∥2L2(R))

∫
R(l,d)

1√
(y1 − y)2 + (z1 − z)2

dy1 dz1

≤ 20πld2
(
1 + ln

l

d

)
(∥m∗∥2L2(R) + ∥∂xmx∥2L2(R)).

The summary of the estimates on I1 and I2 and Corollary 2.4.7 completes
the proof.

2.6 The existence of minimizers

In the next step we prove a lemma which will be used in both the existence
and the Γ-convergence theorems. It states a compactness for a sequence of
magnetizations with bounded energies.

Lemma 2.6.1. Suppose we are given a sequence of magnetizations (mn)n∈N
de�ned in the same domain Ω and with energies bounded by the same constant
C. Then there exists a magnetizationm0 : Ω → S2 such that for a subsequence
of (mn)n∈N (not relabeled) the following statements hold

• ∇mn ⇀ ∇m0 weakly in L2(Ω)

• mn → m0 strongly in L2
loc(Ω)

• E(m0) ≤ lim inf E(mn).

Proof. Let un be the weak solution of △u = divmn. We have that∫
Ω

|∇mn|2 dξ ≤ E(mn) ≤ C

thus (∇mn)n∈N contains a weakly convergent subsequence (not relabeled),i.e.,

∇mn ⇀ f weakly in L2(Ω)
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for some f ∈ L2(Ω). Similarly the new subsequence (∇un)n∈N contains a
weakly convergent subsequence (not relabeled),i.e.,

∇un ⇀ g weakly in L2(R3)

for some g ∈ L2(R3). Since |mn| = 1 in Ω we have that

mn ∈ W 1,2
(
[−N,N ]×R(l, d)

)
for any N ∈ N.

Taking into account the fact that the embedding

W 1,2
(
[−N,N ]×R(l, d)

)
↪→ L2

(
[−N,N ]×R(l, d)

)
is compact, one can extract a subsequence from the new subsequence (mn)n∈N
(not relabeled) converging to some m0 in L2

(
[−N,N ]×R(l, d)

)
. We do this

giving N all the natural values and then apply diagonal argument to the
extracted subsequences. Finally we obtain a subsequence of (mn)n∈N (not
relabeled) with the following properties:

• ∇mn ⇀ f weakly in L2(Ω)

• ∇un ⇀ g weakly in L2(R3)

• mn → m0 strongly in L2
loc(Ω).

Applying a standard argument we can deduce thatm0 is weakly di�erentiable
and ∇m0 = f . We extend m0 outside Ω as zero. For any φ ∈ C∞

0 (R3) we
have ∫

R3

∇un · ∇φ dξ =

∫
Ω

mn · ∇φ dξ,∫
R3

∇un · ∇φ dξ →
∫
R3

g · ∇φ dξ

and ∫
Ω

mn · ∇φ dξ →
∫
Ω

m0 · ∇φ dξ

as n goes to in�nity hence we establish∫
R3

m0 · ∇φ dξ =

∫
R3

g · ∇φ dξ.
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Since g ∈ L2(R3) we have that the equation △u = divg has a weak solution
u0 which is equivalent to∫

R3

g · ∇φ dξ =

∫
R3

∇u0 · ∇φ dξ for all φ ∈ C∞
0 (R3)

thus ∫
R3

m0 · ∇φ dξ =

∫
R3

∇u0 · ∇φ dξ for all φ ∈ C∞
0 (R3)

which means that u0 is a weak solution of

△u = divm0.

Since g ∈ L2(R3) we already know that

∥∇u0∥L2(R3) ≤ ∥g∥L2(R3)

and we have as well

∇un ⇀ g weakly in L2(R3),

∇mn ⇀ ∇m0 weakly in 2(Ω).

Taking into account the fact that any norm is lower semi-continuous under
the weak convergence we obtain

∥∇u0∥L2(R3) ≤ ∥g∥L2(R3) ≤ lim inf
n→∞

∥∇un∥L2(R3)

∥∇m0∥L2(R3) ≤ lim inf
n→∞

∥∇mn∥L2(R3)

which yields
E(m0) ≤ lim inf

n→∞
E(mn).

We proceed now to the existence theorem.

Theorem 2.6.2 (Existence). For every 0 < d ≤ l there exist minimizers of
E is Ã and Ãx.

Proof. We will �rst prove the existence of a minimizer in Ã. Let mn be a
minimizing sequence, i.e.,

lim
n→∞

E(mn) = Emin.

Since (E(mn))n∈N is bounded, applying the preceding lemma we extract a
subsequence from (mn)n∈N (denoted again by (mn)n∈N) such that for a mag-
netization m0 ∈ W 1,2

loc (Ω) we have:

• ∇mn ⇀ ∇m0 weakly in L2(Ω)
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• mn → m0 strongly in L2
loc(Ω)

• E(m0) ≤ lim inf E(mn)

If we could show that m0 ∈ Ã then m0 would be the desired minimizer
because of the fact that

E(m0) ≤ lim inf E(mn) = Emin

and Emin is the in�mum of the energy functional in Ã so E(m0) = Emin.
But m0 does not have to belong to Ã in general. For instance the boundary
conditions could fail, we could have ∥m − ē∥H1(Ω) = ∞. At the end of the
proof we will give an example of a sequence of minimizers for which the
limit function m0 does not satisfy the boundary conditions. To overcome
this di�culty we construct a minimizing sequence so that its limit belongs
to Ã. To that end we choose any minimizing sequence (mn)n∈N as above and
suppose that it has a limit m0 in the described sense. The key point is to
show that the desired minimizing sequence can be constructed by translating
every vector mn by a factor xn in the x coordinate direction. First of all
note that if m ∈ Ã then obviously mc(x, y, z) = m(x − c, y, z) ∈ Ã and
E(mc) = E(m) (the minimization problem is invariant under translations
in the �rst coordinate). Since E(mn) → Emin, the sequence (E(mn))n∈N is
bounded by some number M for all n ∈ N. For any n ∈ N we consider three
auxiliary sets An, Bn and Cn de�ned in the following way:

An = {x ∈ R | − 1 ≤ m̄n
x(x) ≤ −1

2
}

Bn = {x ∈ R | − 1

2
< m̄n

x(x) <
1

2
}

Cn = {x ∈ R | 1

2
≤ m̄n

x(x) ≤ 1}

Since m̄n
x is continuous in R for all n ∈ N, An and Cn are a �nite or countable

union of disjoint closed intervals and Bn is a �nite or countable union of
disjoint open intervals. According to Lemma 2.4.5 one of the intervals in An

has the form (−∞, an] and one of the intervals in Cn has the form [cn,+∞)
(note that m̄n

x is negative at −∞ and positive at +∞.) We distinguish two
types of intervals in Bn. The interval (a, b) ⊂ Bn is said to be of the �rst
type if |m̄n(a)− m̄n(b)| = 1, and of the second type otherwise. According to
Lemma 2.4.5 the sum of the lengths of all intervals, as well as the number
of the �rst type intervals in Bn is bounded by a number depending only on
M , l and d, i.e., a constant not depending on n. Suppose �rst that there are
no second type intervals in Bn for all n ∈ N. Let us paint all the point of
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An, Bn and Cn with respectively black, yellow and red color for all n ∈ N.
We call a sequence (nk)k∈N "good" if for any k ∈ N there exist two intervals
[ak1, a

k
2] ⊂ Ank

and [ck1, c
k
2] ⊂ Cnk

such that

ak2 − ak1 → +∞, ck2 − ck1 → +∞ and 0 < ck1 − ak2 ≤ C

for a constant C not depending on k. The endpoints ak1 and c
k
2 can also take

values −∞ and +∞ respectively. We prove that for any minimizing sequence
(mn)n∈N, with m

n ∈ Ã there exists a "good" subsequence (nk)k∈N. We �x a
natural number n and take the two intervals (−∞, an] and [cn,+∞). There
are some black, yellow and white intervals between this two. Note that if
the number of yellow intervals is less than s then the number of both black
and red intervals are less than s + 1 because there is obviously at least one
yellow interval between any two black and any two red intervals. Therefore
the number of all intervals is less than 3s + 2. Since n was arbitrary we get
that the number of all the intervals in the n-th family of the constructed
intervals is bounded by the same number S. Let us number both the red and
the black intervals in any family of intervals. We prove the existence of a
"good" subsequence by induction in S but we �rst reformulate the problem
as follows: Suppose we are given a sequence of natural numbers Sn and a
sequence of families of Sn disjoint intervals on the real line pained with black
and red color for all n ∈ N. Assume Sn ≤ S and the sum of the lengths of
Sn − 1 gaps between the intervals of the n-th family is bounded by the same
number M for all n ∈ N. Assume furthermore that for any n ∈ N the far
left placed interval is black and the far right placed interval is red and their
lengths tend to +∞ as n goes to in�nity. Then there exists a subsequence
(nk)k∈N and two intervals (ak1, a

k
2) and (ck1, c

k
2) in the nk-th family such that

(ak1, a
k
2) is black, (ck1, c

k
2) is red,

ak2 − ak1 → +∞, ck2 − ck1 → +∞ and 0 < ck1 − ak2 ≤M2 (2.52)

for a constant M2 and all k ∈ N. We prove this statement by induction in S.
The case S = 2 is evident. Assume it is true for S ≤ N and let us prove it for
S = N+1. Since S ≥ 3, in every family there are at least two intervals of the
same color. Assume that for in�nitely many indices n there are at least two
black intervals in the n-th family. We consider now the subsequence of the
families with such indices. We consider the far right placed black intervals
for all such families. There are two possible cases:
Case 1. For a subsequence their lengths tend to +∞
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In this case we can omit all the intervals placed on their left side which leads
to a situation with less intervals in every family (in such a subsequence)
ful�lling the requirements of the statement, so by induction the existence of
a "good" subsequence is proven.
Case 2. Their lengths are bounded by the same number M3

In this case we can omit this intervals and this will lead us to a situation
with less intervals in any family ful�lling the requirements of the statements
so by the induction the existence of a "good" subsequence is proven
Let us get now back to our situation. If we omit all the yellow intervals from
the real line for all n ∈ N then the families of the black and the red intervals
ful�ll the requirements of the statement proven above, thus the existence of a
"good" sequence is proven. We take the two intervals [ak1, a

k
2] and [ck1, c

k
2] for

all k ∈ N and denote the the "good" sequence of the magnetizations again
by (mk)k∈N which will also be a minimizing sequence. We transfer the origin
of the real line to the point ak2 for any m

k and denote

mk
good(x, y, z) = mk(x+ ak2, y, z).

As we already know (mk
good)k∈N is a minimizing sequence and furthermore if

we put ak3 = ak2 − ak1, c
k
3 = ck1 − ak2 and c

k
4 = ck2 − ak2 then

mk
good(x) ≤ −1

2
for x ∈ [−ak3, 0] and mk

good(x) ≥
1

2
for x ∈ [ck3, c

k
4]

where

ak3 → +∞, ck4 − ck3 → +∞ and 0 < ck3 < M for all k ∈ N.

By Lemma 2.6.1 one can extract a subsequence from (mk
good)k∈N (not rela-

beled) such that for some m0 ∈ A the three statements hold:

• ∇mk
good ⇀ ∇m0 weakly in L2(Ω)

• mk
good → m0 strongly in L2

loc(Ω)

• E(m0) ≤ lim inf E(mk
good).

We will prove that m0 ∈ Ã. Recall that for any magnetization m the inclu-
sions m ± −→ex ∈ L2(Ω+) are equivalent to 1 ± m̄x ∈ L1(0,+∞) respectively
and the inclusions m ± −→ex ∈ L2(Ω−) are equivalent to 1 ± m̄x ∈ L1(−∞, 0)
respectively. Since m0 ∈ A according to the characterization theorem two of
the four statements must hold: 1±m̄0

x ∈ L1(0,+∞) and 1±m̄0
x ∈ L1(−∞, 0).

We have for any �xed R > 0
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∫ R

−R

|m̄0
x − m̄k

good,x| dx =
1

4ld

∫ R

−R

∣∣∣ ∫
R(l,d)

(m0
x −mk

good,x) dy dz
∣∣∣ dx

≤ 1

4ld

∫ R

−R

∫
R(l,d)

|m0
x −mk

good,x| dy dz dx

≤ 1

4ld

(
8ldR ·

∫
[−R,R]×R(l,d)

|m0
x −mk

good,x|2 dξ

) 1
2

=

√
R

2ld
· ∥m0

x −mk
good,x∥L2([−R,R]×R(l,d)) → 0

as k → ∞ because of the strong convergence mk
good → m0 in L2

loc(Ω). This

means that a subsequence of (m̄k
x,good(x))k∈N converges pointwise to m̄0

x(x)
almost everywhere in [−R,R]. Giving R all natural values and applying di-
agonal argument we obtain that a subsequence of (m̄k

x,good(x))k∈N converges

pointwise to m̄0
x(x) almost everywhere in R, therefore m̄0

x(x) ≤ −1
2
a.e. in

(−∞, 0) and m̄0
x(x) ≥ 1

2
a.e. in [M,+∞) which itself yields 1 − m̄0

x and
1 + m̄0

x can not belong to L1(−∞, 0) and L1(0,+∞) respectively, therefore
1 + m̄0

x ∈ L1(−∞, 0) and 1 − m̄0
x ∈ L1(0,+∞) which implies m0 ∈ Ã. The

theorem is proven for the case when there is no second type yellow interval.
Assume now that there are such intervals. Throwing away all the second type
yellow intervals from the real line we can regard the rest of the real line as
a real line without gaps simply by shifting all the intervals to the left hand
side such that after that operation no overlap occurs and there is no gap
left. To be more precise, we shift each of the left intervals to the left hand
side by a factor equal to the sum of the lengths of the gaps between that
interval and −∞. During that operation we unify the black and red intervals
with the consecutive intervals of the same color but we regard the possible
consecutive �rst type yellow intervals as separate. We get a situation like
above and therefore we can prove the existence of a "good" subsequence. It
is easy to show that since that sum of the lengths of the second type yellow
intervals in each family is bounded by the same constant then the in Lemma
2.6.1 described limit of the obtained "good" subsequence will belong to Ã
and hence will be an energy minimizer.

2.7 The Γ-convergence in the �rst regime

In this section we consider sequences of domain-magnetization-energy triples
(Ω(ln, dn),m

n, E(mn)) such that dn, ln → 0 and cn = dn
ln

→ c > 0 as n goes
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to in�nity. we put

É(m) =
E(m)

lndn
.

For any n ∈ N we consider the minimization problem

inf
mÃ(ln,dn)

É(m)

instead of the original problem

inf
mÃ(ln,dn)

E(m),

where for the admissible sets we take the sets Ã(ln, dn) and call the new
problem "rescaled". We continue with the description of the full and the
reduced variational problems. As we have mentioned the full variational
problem will be the minimization of the rescaled energy. We will scale the
magnetizations in the y and z directions to keep the domain �xed in order
to pass to the Γ-limit. We de�ne the rescaled magnetization

ḿ(x, y, z) = m(x, ly, dz).

It is clear that ḿ : Ω(1, 1) → S2. The admissible set for the rescaled
variational problem is

Ã1 = Ã1(1, 1) = {ḿ | m ∈ Ã}.

It is apparent that if ḿ ∈ Ã1 then ḿ − ē ∈ H1(Ω(1, 1)). The rescaled
energy functional will have the form:

É(ḿ) = É(m) =

∫
Ω(1,1)

(
|∂xḿ(ξ)|2+ 1

l2
|∂yḿ(ξ)|2+ 1

d2
|∂zḿ(ξ)|2

)
dξ+

1

ld
Emag(m).

The limit variational problem energy functional is given by

E0(m) =

∫
R
|∂xm|2 dx+ 2ac

π

∫
R
|my|2 dx+

2bc
π

∫
R
|mz|2 dx,

where

ac =
c

2

∫ +∞

0

sin2 t

t2
· 1− e−

−2t
c

t
dt and bc = a 1

c
.
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The admissible set is

Ã0 = {m : R → S2 | m− ē ∈ H1(R) and E0(m) <∞}.

De�ne additionally the following sets:

A0 = {m : R → S2 | E0(m) <∞}

and
X0 = {m : R → S2 | ∂xm ∈ L2(R) and my,mz ∈ L2

loc(R)}.
The reduced variational problem is to minimize the reduced energy func-

tional E0 over the admissible set Ã0. Now we de�ne the notion of convergence
of the magnetizations we are going to use for the Γ-convergence of the ener-
gies.

De�nition 2.7.1. Letm0(x) ∈ X0. Consider a sequence of domain-magnetization
pairs (Ωn,m

n) where mn ∈ Ãn and de�ne ḿ
n(x, y, z) = mn(x, lny, dnz). Then

ḿn is said to converge to m0 when n goes to in�nity if the following state-
ments hold:

• ∂xḿ
n ⇀ ∂xm

0 weakly in L2(Ω(1, 1))

• ∇yzḿ
n → 0 strongly in L2(Ω(1, 1))

• ḿn → m0 strongly in L2
loc(Ω(1, 1))

We can now formulate the Γ-convergence result.

Theorem 2.7.2 (Γ-convergence 1). The reduced variational problem is the
Γ-limit of the full variational problem with respect to the convergence de�ned
above. This amounts to the following three statements:

• Lower semicontinuouty If a sequence of magnetizations (mn)n∈N
with entries in A(ln, dn) converges to some m0 ∈ X0 in the sense of
De�nition 2.7.1 then

E0(m
0) ≤ lim inf

n→∞
Én(ḿ

n)

• Construction For everym0 ∈ Ã0 and every sequence of pairs (ln, dn)n∈N
with ln, dn → 0, cn → c there exists a sequence (mn)n∈N with entries in
Ã(ln, dn) such that

ḿn → m0 in the cense of De�nition 2.7.1

E0(m
0) = lim

n→∞
Én(ḿ

n)
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• Compactness Let (ln, dn)n∈N be a sequence of pairs such that ln, dn →
0 and cn → c > 0. Let mn ∈ Ã(ln, dn) and let (Én(ḿ

n))n∈N be bounded.
Then there exists a subsequence of (mn)n∈N (not relabeled) such that
ḿn converges to some m0 ∈ Ã0 in the cense of De�nition 2.7.1.

Proof. Lower semicontinuouty The proof consists of two steps. In the
�rst step we will prove an equality which allows us to extend (2.37) to the
general case, once we know that the rescaled energies are bounded by the
same number C. Namely we prove the following: Suppose Én ≤ C for all
n ∈ N then

lim inf
n→∞

Emag(m
n)

lndn
= lim inf

n→∞

Emag(m̄
n)

lndn
.

According to Lemma 2.4.2 and the Poincaré inequality we have

|Emag(m
n)−Emag(m̄

n)| ≤ ∥mn−m̄n∥2L2(Ω(ln,dn))
+2∥mn−m̄n∥L2(Ω(ln,dn))

√
Emag(mn)

≤ CĆlndn(l
2
n + d2n) + 2Clndn

√
Ć(l2n + d2n)

thus putting R2
n = l2n + d2n we obtain∣∣∣∣∣Emag(m

n)

lndn
−Emag(m̄

n)

lndn

∣∣∣∣∣ ≤ C
√
ĆRn(

√
ĆRn+2) → 0 as n→ +∞. (2.53)

In the second step we prove that

lim inf
n→∞

Emag(m̄
n)

lndn
≥ 8

π

(
ac

∫
R
|m0

y|2 dx+ bc

∫
R
|m0

z|2 dx
)
.

We have that

Emag(m̄
n) ≥ Es(m̄

n) thus lim inf
n→∞

Emag(m̄
n)

lndn
≥ lim inf

n→∞

Es(m̄
n)

lndn
.

We estimate Es(m̄
n)− E⋆

s (m
n) for big n, where

E⋆
s (m

n) =
8

π
lndn

(
ac0

∫
R
|m̄n

y |2 dx+ bc0

∫
R
|m̄n

z |2 dx
)
.

We �x a positive number ϵ. According to Lemma 2.5.6 there exists a natural
number Nϵ such that when n > Nϵ then

Es(m̄
n) ≥ 8

π
lndn

(
(ac − ϵ)

∫ 1√
ln

− 1√
ln

| ̂̄mn
y (x)|2 dx+ (bc − ϵ)

∫ 1√
ln

− 1√
ln

| ̂̄mn
z (x)|2 dx

)
,
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thus

Es(m̄
n)− E⋆

s (m
n) ≥ − 8

π
lndn

(
ϵ

∫ 1√
ln

− 1√
ln

| ̂̄mn
y (x)|2 dx+

+ϵ

∫ 1√
ln

− 1√
ln

| ̂̄mn
z (x)|2 dx+

∫
R\[− 1√

ln
, 1√

ln
]

(| ̂̄mn
y (x)|2 + | ̂̄mn

z (x)|2) dx
)
=

= − 8

π
lndn(ϵ · Sn

1 + Sn
2 ), (2.54)

where

Sn
1 =

∫ 1√
ln

− 1√
ln

(| ̂̄mn
y (x)|2 + | ̂̄mn

z (x)|2) dx ≤
∫
R
(|m̄n

y (x)|2 + |m̄n
z (x)|2) dx

and

Sn
2 =

∫
R\[− 1√

ln
, 1√

ln
]

(| ̂̄mn
y (x)|2 + | ̂̄mn

z (x)|2) dx

≤ ln

∫
R\[− 1√

ln
, 1√

ln
]

(|x · ̂̄mn
y (x)|2 + |x · ̂̄mn

z (x)|2) dx

≤ ln

∫
R
(|x · ̂̄mn

y (x)|2 + |x · ̂̄mn
z (x)|2) dx = ln

∫
R
(|∂xm̄n

y (x)|2 + |∂xm̄n
z (x)|2) dx

=
1

dn

∫
Ω(ln,dn)

(|∂xm̄n
y (x)|2 + |∂xm̄n

z (x)|2) dξ (2.55)

We estimate now

1

dn

∫
Ω(ln,dn)

(|∂xm̄n
y (x)|2 + |∂xm̄n

z (x)|2) dξ.

Note that for any m ∈ A and x ∈ R

∂xm̄(x) =
1

4lndn

∫
R(ln,dn)

∂xm(x, y, z) dy dz

thus

|∂xm̄(x)|2 ≤ 1

4lndn

∫
R(ln,dn)

|∂xm(x, y, z)|2 dy dz.

Integrating the last inequality over R we get∫
Ω(ln,dn)

|∂xm̄|2 dξ ≤
∫
Ω(ln,dn)

|∂xm|2 dξ. (2.56)
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Utilizing (2.55) and (2.56) we get for Sn
2 the following

Sn
2 ≤ 1

dn

∫
Ω(ln,dn)

|∂xmn|2 dξ ≤ 1

dn
Eex(m

n) ≤ Cln → 0.

It remainins to show that the sequence(∫
R
(|m̄n

y |2 + |m̄n
z |2) dx

)
n∈N

is bounded. Recall again Lemma 2.5.6. If we take ϵ = min(ac
2
, bc

2
) then for

n > Nϵ we have

Emag(m̄
n) ≥ Es(m̄

n) ≥ 8

π
ϵlndn

∫ 1√
ln

− 1√
ln

(
| ̂̄mn

y (x)|2 + | ̂̄mn
z (x)|2 dx.

Now using (2.53) we obtain

Emag(m
n) ≥ 8

π
ϵlndn

∫ 1√
ln

− 1√
ln

(
| ̂̄mn

y (x)|2 + | ̂̄mn
z (x)|2

)
dx−C

√
ĆRn(

√
ĆRn + 2).

(2.57)
We also have

Eex(m
n) ≥

∫
Ω(ln,dn)

|∂xmn|2 dξ ≥
∫
Ω(ln,dn)

|∂xm̄n|2 dξ

≥ 4lndn

∫
R

(
|∂xm̄n

y |2 + |∂xm̄n
z |2
)
dx = 4lndn

∫
R

(
|x · ̂̄mn

y |2 + |x · ̂̄mn
z |2
)
dx

≥ 4lndn

∫
R\
[
− 1√

ln
, 1√

ln

] (|x· ̂̄mn
y |2+|x· ̂̄mn

z |2
)
dx ≥ 4dn

∫
R\
[
− 1√

ln
, 1√

ln

] (| ̂̄mn
y |2+| ̂̄mn

z |2
)
dx

(2.58)
Finally utilizing (2.57) and (2.58) we obtain∫

R
(|m̄n

y |2 + |m̄n
z |2) dx =

∫
R
(| ̂̄mn

y |2 + | ̂̄mn
z |2) dx

≤ Eex(m
n)

4dn
+
Emag(m

n) · π
8ϵlndn

+
πC
√
ĆRn(

√
ĆRn + 2)

8ϵ

≤ C
( ln
4
+
π

8ϵ

)
+
πC
√
ĆRn(

√
ĆRn + 2)

8ϵ
(2.59)
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we used the uniformly boundedness of the rescaled energies. Inequality (2.59)
shows that the sequence (Sn

1 )n∈N is bounded. Concluding we have that since
in (2.54) ϵ was arbitrary then the following inequality holds:

lim inf
n→∞

Es(m̄
n)

lndn
≥ lim inf

n→∞

E⋆
s (m̄

n)

lndn
.

We would like now to show that

lim inf
n→∞

E⋆
s (m̄

n)

lndn
≥ 8

π

(
ac

∫
R
|m0

y|2 dx+ bc

∫
R
|m0

z|2 dx
)
.

We �x a natural number N . Since (ḿn)n∈N tends to m0 in L1
loc(Ω(1, 1)) we

have ∫
[−N,N ]×R(1,1)

|ḿn
y (x, y, z)−m0

y(x)|2 dξ → 0

which is equivalent to

1

4lndn

∫
[−N,N ]×R(ln,dn)

|mn
y (x, y, z)−m0

y(x)|2 dξ → 0 so

∥mn
y −m0

y∥L2([−N,N ]×R(ln,dn)) = o(
√
lndn) as n tends to in�nity.

We have already seen as well

∥mn
y − m̄n

y∥L2([−N,N ]×R(ln,dn)) ≤ ∥mn
y − m̄n

y∥L2(Ω(ln,dn) = o(
√
lndn) thus

∥m̄n
y −m0

y∥L2([−N,N ]×R(ln,dn)) = o(
√
lndn) and this is equivalent to

∥m̄n
y −m0

y∥L2[−N,N ] = o(1) which itself yields

lim inf
n→∞

∫
R
|m̄n

y |2 dx ≥ lim inf
n→∞

∫
[−N,N ]

|m̄n
y |2 dx ≥

∫
[−N,N ]

|m0
y|2 dx.

Since N was arbitrary we obtain

lim inf
n→∞

∫
R
|m̄n

y |2 dx ≥
∫
R
|m0

y|2 dx.

Similarly we can get the same inequality for m̄n
z . We can estimate now

lim inf
n→∞

E⋆
s (m̄

n)

lndn
=

8

π
lim inf
n→∞

(
ac0

∫
R
|m̄n

y |2 dx+ bc0

∫
R
|m̄n

z |2 dx
)

≥ 8

π
lim inf
n→∞

ac0

∫
R
|m̄n

y |2 dx+
8

π
lim inf
n→∞

bc0

∫
R
|m̄n

z |2 dx
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≥ 8

π

(
ac0

∫
R
|m0

y|2 dx+ bc0

∫
R
|m0

z|2 dx
)

which completes the proof of the second step. In the third step we prove that

lim inf
n→∞

Eex(m
n)

lndn
≥ 4

∫
R

|∂xm0|2 dx.

The weak convergence ∂xḿ
n ⇀ ∂xm

0 in L2(Ω(1, 1)) yields the lower semi-
continuity of the norms, i.e.,

lim inf
n→∞

∫
Ω(1,1)

|∂xḿn|2 dξ ≥
∫
Ω(1,1)

|∂xm0|2 dξ

but the exchange energy can be represented as follows

Eex(m
n) = lndn

(∫
Ω(1,1)

|∂xḿn|2 dξ+ 1

l2n

∫
Ω(1,1)

|∂yḿn|2 dξ+ 1

d2n

∫
Ω(1,1)

|∂zḿn|2 dξ
)

≥ lndn

∫
Ω(1,1)

|∂xḿn|2 dξ

thus

lim inf
n→∞

Eex(m
n)

lndn
≥ lim inf

n→∞

∫
Ω(1,1)

|∂xḿn|2 dξ ≥
∫
Ω(1,1)

|∂xm0|2 dξ = 4

∫
R
|∂xm0|2 dx.

Construction We simply prove that the constant sequence

mn(ξ) = m0(x) if ξ ∈ Ω(ln, dn) and mn(ξ) = 0 if ξ ∈ R3 \ Ω(ln, dn)

satis�es the required condition. First of all note that by Corollary 2.5.3
mn ∈ A(ln, dn) and since mn − ē ∈ H1(Ω(ln, dn)) then mn ∈ Ã(ln, dn).
According to the "lower semi-continuity" part of the foregoing theorem we
have that

E0(m
0) ≤ lim inf

n→∞
Én(m

n),

thus it remains to only prove the opposite inequality. It is clear furthermore
that

E(mn) = Eex(m
n) + Emag(m

n) =

∫
Ω(ln,dn)

|∂xm0|2 dξ + Emag(m
n)

= 4lndn

∫
R
|∂xm0|2 dx+ Emag(m

n)
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so it remains to prove that

lim sup
n→∞

Emag(m
n)

lndn
≤ 8

π

(
ac

∫
R
|m0

y|2 dx+ bc

∫
R
|m0

z|2 dx
)
.

According to Lemma 2.5.6 for any ϵ > 0 there exists an Nϵ ∈ N such that
when n > Nϵ then

Es(m
n) ≤ 8

π
lndn

[
(ac + ϵ)

∫
R
|m̂n

y (x)|2 dx+ (bc + ϵ)

∫
R
|m̂n

z (x)|2 dx
]

=
8

π
lndn

[
(ac + ϵ)

∫
R
|mn

y (x)|2 dx+ (bc + ϵ)

∫
R
|mn

z (x)|2 dx
]

=
8

π
lndn

[
(ac + ϵ)

∫
R
|m0

y(x)|2 dx+ (bc + ϵ)

∫
R
|m0

z(x)|2 dx
]
.

Since ϵ was arbitrary we obtain

lim sup
n→∞

Es(m
n)

lndn
≤ 8

π

[
ac

∫
R
|m0

y(x)|2 dx+ bc

∫
R
|m0

z(x)|2 dx
]
.

We show as well that

lim sup
n→∞

Ev(m
n)

lndn
= 0.

To that end we invoke Lemma 2.5.11. It is now clear that

lim sup
n→∞

Ev(m
n)

lndn
≤Mm0 lim sup

n→∞
dn(ln + 1 + ln ln − ln dn) = 0

because ln → 0 and dn → 0. The proof of the construction part is complete.
We proceed now to the compactness part.
Compactness. Assume mn ∈ A(ln, dn), ln → 0, dn

ln
→ c > 0. Without loss

of generality one can assume that

lim inf
n→∞

E(mn)

lndn
= lim

n→∞

E(mn)

lndn
= C <∞. (2.60)

We are going to use now the relatively compactness of (mn)n∈N coupled with
the idea of constructing a "good" subsequence without changing the energies
to ensure that the limit function m0 would belong to Ã0. We have that

É(mn) =

∫
Ω(1,1)

|∂xḿn|2 dξ+ 1

l2n

∫
Ω(1,1)

|∂yḿn|2 dξ+ 1

d2n

∫
Ω(1,1)

|∂zḿn|2 dξ+Emag

lndn

hence for su�ciently big n we have

∥∂xḿn∥2L2(Ω(1,1)) ≤ C + 1,
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∥∂yḿn∥2L2(Ω(1,1)) ≤ (C + 1)l2n → 0 and ∥∂zḿn∥2L2(Ω(1,1)) ≤ (C + 1)d2n → 0.
(2.61)

Like in Lemma 2.6.1 one can prove that the sequence (ḿn)n∈N is relatively
compact with respect to the convergence de�ned in De�nition 2.7.1, thus it
remains to construct a subsequence which has the limit function in Ã0. If we
remember the proof of the existence lemma we will see that the key point to
the existence of a "good" subsequence is inequality (2.23). Moreover it does
not matter if the domain Ω is �xed or not, the point is that (2.23) is valid
with a constant M2 not depending on n. Therefore in order to be able to
prove the existence of a "good" subsequence we have to show that inequality
(2.23) holds for any ln, dn, m

n, E(mn) with M2 not depending on n. We
invoke (2.59) to have

∫
R
(|mn

y |2+ |mn
z |2) dx ≤ C1

( ln
4
+
π

8ϵ

)
+
πC
√
ĆRn(

√
ĆRn + 2)

8ϵ
≤ C2, n ∈ N

where C2 is a constant. With this new de�nition of the constant C2 inequality
(2.19) will have the form

∑
(a,b)∈ℜ

(b− a) ≤ C2lndn + ĆR2
nE(m

n)

4lndn(1− ρ2)
for all n ∈ N

and (2.23) will have the form

∑
(a,b)∈ℜ

( 1

b− a
+b−a

)
≤ 1

4lndn

( E(mn)

(α− β)2
+
C2lndn + ĆR2

nE(m
n)

1− ρ2

)
for all n ∈ N

(2.62)
Coupling now (2.60) and (2.62) we obtain for su�ciently big n∑

(a,b)∈ℜ

( 1

b− a
+ b− a

)
≤ 1

4

( C + 1

(α− β)2
+
C2 + 1

1− ρ2

)
(2.63)

which was supposed to be proven. Thus we can assume that the sequence
(ḿn)n∈N is "good". Using the relatively compactness of (ḿn)n∈N and (2.61)
we obtain that a subsequence (not relabeled) converges to some m0 ∈ X0

in the sense of De�nition 2.7.1, thus we can as well apply the "lower semi-
continuity" part of the foregoing theorem to discover

E0(m
0) = 4

∫
R
|∂xm0|2 dx+ 8

π
ac

∫
R
|m0

y|2 dx+
8

π
bc

∫
R
|m0

z|2 dx
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≤ lim inf
E(mn)

lndn
= C,

which this yields that m0 ∈ A0. Since (ḿ
n)n∈N is "good" m0 must belong to

Ã0.

2.8 The minimal energy scaling

2.8.1 The minima of the limit energy

In this section we recall how one can determine the minima of the energy
functional

Eα(m) =

∫
R
|∂xm(x)|2 dx+ α

∫
R
(|my(x)|2 + |mz(x)|2) dx

where α > 0 and the admissible set is

Ã0 = {m : R → R3 | |m| = 1,m− ē ∈ H1(R)}.

It is well known that the minimal value of Eα(m) is positive and attained
in Ã0. Remark 2.4.6 states that if m ∈ Ã0 and depends only on x then mx

should tend to −1 and +1 respectively at −∞ and +∞. Therefore we can
parameterize m in the following way:

mx(x) = sinφ(x)
my(x) = cosφ(x) cos θ(x)
mz(x) = cosφ(x) sin θ(x)

(2.64)

where φ ∈ [−π
2
, π
2
], θ ∈ [0, 2π) and φ(x) → ±π

2
as x → ±∞. It is clear

that

Eα(m) =

∫
R
φ′2(x) + θ′2(x) cos2 φ(x) dx+ α

∫
R
cos2 φ(x) dx

≥
∫
R
φ′2(x) dx+ α

∫
R
cos2 φ(x) dx

≥ 2
√
α

∫
R
|φ′(x)|| cosφ(x)| dx

≥ 2
√
α

∫
R
φ′(x) cosφ(x) dx
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= 2
√
α

∫ π
2

−π
2

cos t dt = 4
√
α

and the equality holds if and only if the following conditions hold:

φ′2(x) = α cos2 φ(x), φ′(x) cosφ(x) ≥ 0 and θ′(x) cos2 φ(x) = 0 for all x ∈ R.
(2.65)

Note that the �rst two conditions in (2.65) yield

φ′(x) =
√
α cosφ for all x ∈ R

which has the only solution

φα,β = arcsin
e2

√
αx · β − 1

e2
√
αx · β + 1

, where β > 0.

Note furthermore that cosφα,β does not vanish, thus the third condition in
(2.65) implies θ ≡ const. Is is clear that φα,β ∈ [−π

2
, π
2
] and φα,β(x) → ±π

2

as x → ±∞ for any α, β > 0. We denote φα = φα,1 and m
α = m(φα). The

minimal value of Eα in Ã0 will be 4
√
α.

Remark 2.8.1. Neither the minimal energy(the in�ma of the energy) nor
the second summand of the energy depend on the constant θ.

2.8.2 The minimal energy scaling

In this subsection we determine the minimal energy scaling when l and d
are small enough. We consider a sequence of domain-magnetization-energy
triples (Ω(ln, dn),m

n
min, E(mn

min))n∈N, where m
n
min is a minimizer of the en-

ergy functional in Ã(ln, dn).We would like to �nd the scaling of Emin(ln, dn) =
E(mn

min) in terms of ln and dn. We will show that the minimal energy scales
like ln · dn. We have for the limit energy functional

E0(m
0) = 4

∫
R
|∂xm0|2 dx+ 8

π

(
ac

∫
R
|m0

y|2 dx+ bc

∫
R
|m0

z|2 dx
)
,

where c = limn→∞
dn
ln

≤ 1 ≤ 1
c
. We will show later that ac is increasing on

(0,+∞) thus ac ≤ bc. As we saw in the preceding section the limit energy
can be estimated from below in the following way:

E0(m
0) ≥ 4

(∫
R
|∂xm0|2 dx+ 2ac

π

∫
R
(|m0

y|+ |m0
z|2) dx

)
≥ 16

√
2ac√
π

. (2.66)
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In is clear that we have equalities in (2.62) if and only if when

c = 1, m0 = mα with α =
2a1
π

and θ ≡ const

or

c < 1, m0 = mα with α =
2ac0
π

and θ ≡ 0.

Hence we establish that the in�mum of the limit energy E0 is attained and
equals 16

√
2ac√
π
.We already showed in the "construction" part of Γ-convergence

Theorem 2.7.2 that for the constant sequence

mn(ξ) = mα(x) in Ω(ln, dn) and mn(ξ) = 0 in R3 \ Ω(ln, dn)

the sequence of the corresponding energies satis�es the condition

lim sup
n→∞

E(mn)

lndn
≤ E0(m

α) =
16
√
2ac√
π

which implies the same bound for the minimal energies:

lim sup
n→∞

Emin(ln, dn)

lndn
≤ 16

√
2ac√
π

. (2.67)

Assume now (mn)n∈N is any sequence of magnetizations with mn ∈ Ã(ln, dn).
We will show that

lim inf
n→∞

E(mn)

lndn
≥ 16

√
2ac√
π

.

Without loss of generality one can assume that

lim inf
n→∞

E(mn)

lndn
= lim

n→∞

E(mn)

lndn
<∞.

According Theorem 2.7.2 we have the a subsequence of (ḿn)n∈N converges
to some m0 ∈ Ã0, therefore using once again Theorem 2.7.2 we establish

16
√
2ac√
π

≤ E0(m
0) ≤ lim sup

n→∞

E(mn)

lndn
= lim inf

n→∞

E(mn)

lndn

and this completes the proof. Summarizing the obtained inequalities we
obtain

16
√
2ac√
π

≤ lim inf
n→∞

Emin(ln, dn)

lndn
≤ lim sup

n→∞

Emin(ln, dn)

lndn
≤ 16

√
2ac√
π

hence

lim
n→∞

Emin(ln, dn)

lndn
=

16
√
2ac√
π

. (2.68)
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2.9 The Γ-convergence and the minimal energy

scaling in the second regime

2.9.1 An estimate on the energy scaling

In this subsection we study the case c = 0. Like in the previous case we con-
sider a sequence of domain-magnetization-energy triples (Ω(ln, dn),m

n, E(mn))
for which all of the parameters ln, dn and cn = dn

ln
tend to zero as n goes

to in�nity. In the �rst step we show that the minimal energies decay faster
than lndn as n goes to in�nity. To that end we �x a magnetization m0 such
that

∂xm
0,m0

y,m
0
z ∈ L2(R).

We show that the constant sequencemn ≡ m0 satis�es the following condition

lim sup
n→∞

E(mn)

lndn
≤ 4

∫
R
|∂xm0|2 dx+ 4

∫
R
|m0

z|2 dx.

It is clear that

Eex(m
n) = 4lndn

∫
R
|∂xm0|2 dx

thus it remains to prove that

lim sup
n→∞

Emag(m
n)

lndn
≤ 4

∫
R
|m0

z|2 dx.

We will prove it by showing that

lim sup
n→∞

Ev(m
n)

lndn
= 0 and lim sup

n→∞

Es(m
n)

lndn
≤ 4

∫
R
|m0

z|2 dx.

According to Lemma 2.5.6 we have that

I(ln, dn, x) ≤ π2lndn and I(dn, ln, x) ≤ π(1 + π)lndn
√
cn for all x ∈ R.

This implies the following bound

Es(m
n) ≤ lndn

(
4

∫
R
|̂̄m0

z|2 dx+
4(1 + π)

π

√
cn

∫
R
|̂̄m0

y|2 dx
)

= lndn

(
4

∫
R
|m0

z|2 dx+
4(1 + π)

π

√
cn

∫
R
|m0

y|2 dx
)
,

hence

lim sup
n→∞

Es(m
n)

lndn
≤ 4

∫
R
|m0

z|2 dx.
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We have furthermore by Lemma 2.5.11

lim sup
n→∞

Ev(m̄
n)

lndn
≤ lim sup

n→∞
(lndn + dn(1 + ln ln − ln dn))Mm0 = 0.

Consider now a sequence of domain-(minimal energy) pairs (Ω(ln, dn), Emin(ln, dn)).
Let ϵ be any positive number. We choose the angle θ formϵ such thatmϵ

z ≡ 0,
i.e., θ ≡ π

2
. We have that

Eϵ(m
ϵ) =

∫
R
|∂xmϵ|2 dx+ ϵ

∫
R
(|mϵ

y|2 + |mϵ
z|2) dx = 4

√
ϵ.

As we have proven for the constant sequence mn ≡ mϵ the following inequal-
ity holds:

lim sup
n→∞

E(mn)

lndn
≤ 4

∫
R
|∂xmϵ|2 dx+ 4

∫
R
|mϵ

z|2 dx

= 4

∫
R
|∂xmϵ|2 dx ≤ 4

(∫
R
|∂xmϵ|2 dx+ ϵ

∫
R
(|mϵ

y|2 + |mϵ
z|2) dx

)
= 16

√
ϵ,

thus

lim sup
n→∞

Emin(ln, dn)

lndn
≤ lim sup

n→∞

E(mn)

lndn
≤ 16

√
ϵ.

Since ϵ was arbitrary we obtain

lim
n→∞

Emin(ln, dn)

lndn
= 0. (2.69)

This equality motivates us to rescale the sequence of magnetizations not only
in the directions y and z but also in the x direction. Adopting that strategy
we �rst establish a Γ-convergence on the energies and then we determine the
minimal energy scaling. In the next section we observe some properties of
the function

ac =
c

2

∫ +∞

0

sin2 t

t2
· 1− e−

2t
c

t
dt.

2.9.2 An observation on the function ac

We consider c→ ac as a map from (0,+∞) to (0,+∞).

Lemma 2.9.1. The function ac has the following properties:

• ac increases in (0,+∞)

• limc→0
ac

c| ln c| =
1
2
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• limc→+∞ ac =
π
2
.

Let c1 and c2 be two positive numbers with c1 > c2. Since the function
f(t) = 1−e−t

t
decreases in (0,+∞) we have

ac1 =

∫ +∞

0

sin2 t

t2
· 1− e

− 2t
c1

2t
c1

dt ≥
∫ +∞

0

sin2 t

t2
· 1− e

− 2t
c2

2t
c2

dt = ac2 ,

which is the �rst property. The second property is Corollary 2.5.9. To prove
the third property we utilize (2.39). Assume now c ≥ 4. We have that

1− e−
2t
c

2t
c

≥ 1− t

c
if t ∈

[
0,
c

2

]
thus

1− e−
2t
c

2t
c

≥ 1− t

c
≥ 1− 1√

c
if t ∈ [0,

√
c] (note that

√
c ≤ c

2
).

Therefore for ac we have on one hand

lim inf
n→∞

ac ≥ lim inf
n→∞

(
1− 1√

c

)∫ √
c

0

sin2 t

t2
dt =

∫ +∞

0

sin2 t

t2
dt =

π

2
,

but on the other hand

ac ≤
∫ +∞

0

sin2 t

t2
dt =

π

2
for any c > 0.

The last two inequalities complete the proof.

2.9.3 The Γ-convergence

First of all we show how one can guess the scaling of the minimal energies
Emin(ln, dn) where ln, dn, cn → 0. As we have seen for su�ciently big n one
can formally write

Es(m
n) ≈ 8

π
lndnacn

∫
R
|mn

y (x)|2 dx+
8

π
lndnbcn

∫
R
|mn

z (x)|2 dx

We know that acn scales like cn ln cn and bcn → π
2
. Furthermore, for a

�xed mn = mn(x) the summand Ev(m
n) decays not slower than lnd

2
n ln

2 ln
dn.

We blow up mn by a factor λn in the x direction where λn → +∞ and denote
the blown up function by ḿn. We have

Eex(m
n) =

lndn
λn

∫
Ω(1,1)

(
|∂xḿn|2 + λ2n

l2n
|∂yḿn|2 + λ2n

d2n
|∂zḿn|2

)
dt,
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thus

Eex(m
n) ≈ 4lndn

λn

∫
R
|∂xmn|2 dx

and

Es(m
n) ≈ 4

π
lndncn| ln cn|λn

∫
R
(|mn

y (x)|2 +
π

cn| ln cn|
|mn

z (x)|2) dx.

It is now clear that the coe�cients lndn
λn

and lndncn| ln cn|λn should be taken

equal and they will both be the scaling of E(mn). This yields λn = 1√
cn| ln cn|

and we set µn = lndn
λn
. We proceed to do justi�cation on this reasoning.

Like in the previous cases we consider the full minimization problem

inf
m∈Ã(l,d)

É(ḿ) where É(ḿ) =
λ

ld
E(m)

and l and d are small enough. It is clear that the admissible set will be

Ã1(l, d) = {ḿ | m ∈ Ã(l, d)}.

We de�ne as well the reduced energy functional E0 and the admissible set
Ã0 for the reduced variational problem. We set

E0(m
0) =

{
4
∫
R |∂xm

0|2 dx+ 4
π

∫
R |m

0
y|2 dx, if m0

z ≡ 0
+∞, otherwise

and
Ã0 = {m0 : R → S2 | m0 − ē ∈ H1(R)}

We also de�ne the subset Ãz
0 of Ã0 in the following way:

Ãz
0 = {m0 ∈ Ã0 | m0

z ≡ 0}.

We introduce as well the following sets

X0 = {m0 : R → S2 | ∂xm0 ∈ L2(R) and m0
y,m

0
z ∈ L2

loc(R)}.

A0 = {m0 : R → S2 | E0(m
0) <∞}.

It is evident that

min
m0∈Ã0

E0(m
0) = min

m0∈Ãz
0

E0(m
0).
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This allows us to consider the minimization problem minm0∈Ãz
0
E0(m

0) in-

stead of minm0∈Ã0
E0(m

0). The notion of convergence that we use in the
Γ-convergence theorem is the same:

De�nition 2.9.2. Assume we are given a sequence of domain-magnetization
pairs (Ω(ln, dn),m

n)n∈N and a magnetization m0 ∈ X0. We de�ne
ḿn(x, y, z) = mn(λnx, lny, dnz) for any (x, y, z) ∈ Ω(1, 1). The sequence
(ḿn)n∈N is said to converge to m0 if the following statements hold:

• ∂xḿ
n ⇀ ∂xm

0 weakly in L2(Ω(1, 1))

• ∇yzḿ
n → 0 strongly in L2(Ω(1, 1))

• ḿn → m0 strongly in L2
loc(Ω(1, 1))

Like in the previous case a Γ-convergence holds:

Theorem 2.9.3 (Γ-convergence). The reduced variational problem is the Γ-
limit of the full variational problem with respect to the convergence stated in
De�nition 2.9.2. This amounts to the following three statements:

• Lower semicontinuity If a sequence of magnetizations (mn)n∈N with
entries in A(ln, dn) converges to some m0 ∈ X0 in the sense of De�ni-
tion 2.9.2 then

E0(m
0) ≤ lim inf

n→∞
Én(ḿ

n)

• Construction For everym0 ∈ Ã0 and every sequence of pairs (ln, dn)n∈N
with ln, dn → 0, cn → c, there exists a sequence (mn)n∈N with entries
in Ã(ln, dn) such that

ḿn → m0 in the cense of De�nition 2.9.2

E0(m
0) = lim

n→∞
Én(ḿ

n)

• Compactness Let (ln, dn)n∈N be a sequence of pairs such that ln, dn →
0 and cn → c > 0. Let mn ∈ Ã(ln, dn) and let (Én(m

n))n∈N be bounded.
Then there exists a subsequence of (mn)n∈N (not relabeled) such that
ḿn converges to some m0 ∈ Ãz

0 in the cense of De�nition 2.9.2.

Proof. Lower semicontinuity If lim infn→∞
E(mn)
µn

= +∞ then there is

nothing to prove, otherwise one can assume that E(mn) ≤ M · µn for some
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constant M and all n ∈ N. In this case everything is analogues to the previ-
ous case except the lower bound on Es with the right coe�cient. It is clear
that

lim inf
n→∞

E(mn)

µn

≥ lim inf
n→∞

Eex(m
n)

µn

+ lim inf
n→∞

Emag(m
n)

µn

= lim inf
n→∞

Eex(m
n)

µn

+ lim inf
n→∞

Emag(m̄
n)

µn

≥ lim inf
n→∞

Eex(m
n)

µn

+ lim inf
n→∞

Es(m̄
n)

µn

.

Assume (qn)n∈N is a sequence with entries between 0 and 1 yet to be
de�ned. We have that

qn
Eex(m

n)

µn

≥ qn
µn

∫
Ω(ln,dn)

|∂xmn(ξ)|2 dξ ≥ qn
µn

∫
Ω(ln,dn)

|∂xm̄n(ξ)|2 dξ

= 4
qnlndn
µn

∫
R
|∂xm̄n(x)|2 dx = 4

qnlndn
µn

∫
R
|∂̂xm̄n(x)|2 dx

= 4
qnlndn
µn

∫
R
|x · ̂̄mn(x)|2 dx ≥ 4qndn

9lnµn

∫
R\[− 1

3ln
, 1
3ln

]

(| ̂̄mn
y (x)|2 + | ̂̄mn

z (x)|2) dx

and according to (2.38) we have for big n as well

Es(m̄
n)

µn

≥ 4

πµn

(1−ϵ)2(1−3ϵ)lndncn| ln cn|2
∫ 1

3ln

− 1
3ln

( 1

| ln cn|
| ̂̄mn

y (x)|2+·| ̂̄mn
z (x)|2

)
dx.

Now the choice of qn is evident, we should make the coe�cients of the inte-
grals equal:

4lndncn| ln cn|2

πµn

=
4qndn
9lnµn

thus qn =
9lndn| ln cn|2

π
→ 0.

We split Eex into the sum of (1− qn)Eex and qnEex to obtain

lim inf
n→∞

E(mn)

µn

≥ lim inf
n→∞

(1− qn)

∫
Ω(1,1)

|∂xḿn|2 dξ

+ lim inf
n→∞

4

πµn

(1− ϵ)2(1− 3ϵ)lndncn| ln cn|
∫
R
(|m̄n

y (x)|2 + | ln cn| · |m̄n
z (x)|2) dx

≥ 4

∫
R
|∂xm0|2 dx+4

π
(1−ϵ)2(1−3ϵ) lim inf

n→∞

1

λn

∫
R
(|m̄n

y (x)|2+| ln cn|·|m̄n
z (x)|2) dx

(2.70)
According to Lemma 2.4.3 we have∫
R
(|m̄n

y (x)|2+ | ln cn| · |m̄n
z (x)|2) dx =

1

4lndn

∫
Ω(ln,dn)

(|m̄n
y |2+ | ln cn| · |m̄n

z |2) dξ
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≥ 1

4lndn

(∫
Ω(ln,dn)

(|mn
y |2 + | ln cn| · |mn

z |2) dξ −MĆR2
nµn| ln cn|

)
(2.71)

Like in the proof of Theorem 2.7.2 we can prove that for any �xed N ∈ N
the following inequalities hold:∫

[−N,N ]×R(1,1)

|m0
y(ξ)|2 dξ ≤ lim inf

n→∞

1

lndnλn

∫
Ω(ln,dn)

|mn
y (ξ)|2 dξ

and ∫
[−N,N ]×R(1,1)

|m0
z(ξ)|2 dξ ≤ lim inf

n→∞

1

lndnλn

∫
Ω(ln,dn)

|mn
z (ξ)|2 dξ.

We �x a number L > 0. Utilizing (2.71) we get

4

∫ N

−N

(|m0
y(x)|2 + L|m0

z(x)|2) dx =

∫
[−N,N ]×R(1,1)

(|m0
y(ξ)|2 + L|m0

z(ξ)|2) dξ

≤ lim inf
n→∞

1

lndnλn

∫
Ω(ln,dn)

(|mn
y (ξ)|2 + L|mn

z (ξ)|2) dξ

≤ lim inf
n→∞

4

λn

∫
R
(|m̄n

y (x)|2 + L|m̄n
z (x)|2) dx+ lim sup

n→∞

MĆR2
n

λ2n

= lim inf
n→∞

4

λn

∫
R
(|m̄n

y (x)|2 + L|m̄n
z (x)|2) dx

and since N was arbitrary we obtain∫
R
(|m0

y(x)|2 + L|m0
z(x)|2) dx ≤ lim inf

n→∞

1

λn

∫
R
(|m̄n

y (x)|2 + L|m̄n
z (x)|2) dx.

(2.72)
Utilizing now (2.70) and (2.72) and taking into account that for su�ciently
big n we have | ln cn| > L and that ϵ was arbitrary we establish

lim inf
n→∞

E(mn)

µn

≥ 4

∫
R
|∂xm0(x)|2 dx+ 4

π

∫
R
(|m0

y(x)|2+L|m0
z(x)|2) dx. (2.73)

Note that (2.73) holds for any L > 0, thus

lim inf
n→∞

E(mn)

µn

≥ E0(m
0)
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which was supposed to be proven.
Construction Like in Theorem 2.7.2 we prove that the sequencemn(x, y, z) =

m0( x
λn
) where m0

z ≡ 0 satis�es the condition

lim sup
n→∞

E(mn)

µn

≤ E0(m
0).

The only di�erence is the upper bound on I(dn, ln, x).Without loss of gener-
ality one can assume that E0(m

0) <∞, otherwise there is nothing to prove.
Therefore we have m0

z ≡ 0. Referring to (2.45) we recall that for any x ∈ R

I(dn, ln, x) ≤ πlndncn(3− ln cn),

thus

Es(m̄
n) ≤ 4

π
lndncn(3− ln cn)

∫
R
|m̄n

y |2 dx =
4

π
lndncn(3− ln cn)λn

∫
R
|m0

y|2 dx

hence

lim sup
n→∞

Es(m̄
n)

µn

≤ 4(ln cn − 3)

π ln cn

∫
R
|m0

y|2 dx =
4

π

∫
R
|m0

y|2 dx.

Compactness Assume now we are given a sequence of magnetization-
domain-energy triples (mn,Ω(ln, dn), E(mn))n∈N such that ln, cn → 0 and
E(mn) ≤ Mµn for all n ∈ N. Like in Theorem 2.7.2 one can prove the
existence of a "good" subsequence of magnetizations (not relabeled) and of
a magnetization m0 ∈ Ã0 such that (mn)n∈N converges to m0 in the sense of
De�nition 2.9.2. It remains to prove that in this case ḿn

z → 0 strongly in
Ω(1, 1) and thus m0

z ≡ 0. To that end we recall lemma 2.5.6, and the lower
semi-continuity part of proof of Theorem 2.7.2. Namely we have

I(ln, dn, x) ≥ 2πndn

(
1−

√
cn

)(π
2
− 3

√
cn

)
if x ∈

[
− 1

3
√
lndn

,
1

3
√
lndn

]
hance for big n we have

Es(m̄
n) ≥ 1

8
lndn

∫
[− 1

3
√

cn
, 1
3
√

cn
]

| ̂̄mn
y |2 dx

and

Eex(m
n) ≥ 4lndn

9cn

∫
R\[− 1

3
√

cn
, 1
3
√

cn
]

| ̂̄mn
y |2 dx
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therefore for big n we have∫
R
|m̄n

y |2 dx =

∫
R
| ̂̄mn

y |2 dx ≤Mµn

( 9cn
4lndn

+
8

lndn

)
≤ 9Mµn

lndn

which is equivalent to ∫
Ω(ln,dn)

|m̄n
y |2 dx ≤ 36Mµn.

We also have that∣∣∣ ∫
Ω(ln,dn)

|mn
y |2 dξ −

∫
Ω(ln,dn)

|m̄n
y |2 dξ

∣∣∣ ≤ C2
nµn

where Cn is the diameter of R(ln, dn) times a constant, therefore∫
Ω(ln,dn)

|mn
y |2 dx ≤ (C2

n + 36M)µn.

Finally we get∫
Ω(1,1)

|ḿn
y (ξ)|2 dξ =

1

lndnλn

∫
Ω(ln,dn)

|mn
y (ξ)|2 dξ ≤

C2
n + 36M

λ2n
→ 0

as n goes to in�nity. The proof is complete.

Now the minimal energy scaling for the case c = 0 can be found. It is
easy to see that like in the �rst regime the following equality holds:

lim
n→∞

Emin(ln, dn)

µn

=
16√
π
, (2.74)

therefore we can also state the the minimal energies scale like µn.

2.10 The rate of convergence

In this section we �nd a rate of convergence for limit (2.74). To that end
we need an accurate lower bound on Emag(m) for any m ∈ Ã(ln, dn) and
an accurate upper bound for a suitable m. We choose m(x, y, z) = m0( x

λn
),

where mz ≡ 0 and m0 is a minimizer of the energy functional

E0(m) =

∫
R
|∂xm|2 dx+ 1

π

∫
R
(|my(x)|2 + |mz(x)|2) dx.
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Utilizing estimate (2.45) and we obtain for big n

E(m) ≤ 4lndn
λn

∫
R
|∂xm0|2 dx+ 4lndncn(3− ln cn)

π

∫
R
|m0

y(x)|2 dx+ Ev(m).

According to Lemma 2.5.11 we get for big n

E(m)

µn

≤ 4E0(m) +
12

π| ln cn|

∫
R
|m0

z(x)|2 dx+ 2Mm0dnλn(1− ln cn)

≤ 16√
π
+

10

| ln cn|
+ 2
√
lndn| ln cn|,

thus the minimal energy satis�es the inequality

Emin(ln, dn)

µn

− 16√
π
≤ 10

| ln cn|
+ 2
√
lndn| ln cn|. (2.75)

To get a lower bound we use (2.48) but we now play a bit with ϵ. Assume
now ϵ is a positive number smaller than 1. We have

I(dn, ln, x) ≥ πlndncn

∫ cϵn

c1−ϵ
n

sin2 t

t2
· 1− e−2c−ϵ

n

t+ cn
dt x ∈

[
− 1

ln
,
1

ln

]
.

Using the inequalities

sin t ≥ t− t2

6
and et > t for t ∈ [0,+∞)

and the argument used when proving (2.48) we get

I(dn, ln, x) ≥ π(1− 3ϵ)(1− c2ϵn
6
)2(1− c2ϵn )lndncn| ln cn|. (2.76)

We now choose the a sequence (ϵn)n∈N such that we have ϵn → 0 and cϵnn → 0
simultaneously. An example of such a sequence is ϵn = 1√

| ln cn|
. It is easy to

see that

c2ϵnn <
1

2
√
| ln cn|

and (1− 3ϵn)(1−
c2ϵnn

6
)2(1− c2ϵnn ) > 1− 4√

| ln cn|
.

Now with this choice of ϵn (2.76) will have the form

I(dn, ln, x) ≥ πlndncn| ln cn|
(
1− 4√

| ln cn|

)
for x ∈

[
− 1

ln
,
1

ln

]
. (2.77)
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Assume now m is a minimizer of E(ln, dn). We have that

I(ln, dn, x) ≥ I(dn, ln, x)

thus

Emag(m̄) ≥ 4

π
lndncn| ln cn|

(
1− 4√

| ln cn|

)∫ 1
ln

− 1
ln

(|̂̄my|2 + |̂̄mz|2) dx.

According to (2.75) we have for big n

Emin(ln, dn)

µn

≤ 16√
π
+ 1 < 11. (2.78)

We have furthermore for big n that∫
R\[− 1

ln
, 1
ln

]

(|̂̄my|2 + |̂̄mz|2) dx ≤ l2n

∫
R
(|x · ̂̄my|2 + |x · ̂̄mz|2) dx

= l2n

∫
R
(|∂xm̄y|2 + |∂xm̄z|2) dx ≤ ln

4dn

∫
Ω(ln,dn)

(|∂xmy|2 + |∂xmz|2) dx

≤ lnEex(m)

4dn
≤ 11lnµn

4dn
,

thus

4

π
lndncn| ln cn|

∫
R\[− 1

ln
, 1
ln

]

(|̂̄my|2 + |̂̄mz|2) dx ≤ 11

π
l2ncn| ln cn|µn

and

Emag(m̄) ≥ 4

π
lndncn| ln cn|

(
1− 4√

| ln cn|

)∫
R
(|m̄y|2+|m̄z|2) dx−

11

π
l2ncn| ln cn|µn

We have by Lemma 2.4.3 that

4lndn

∫
R
(|m̄y|2 + |m̄z|2) dx ≥

∫
Ω(ln,dn)

(|my|2 + |mz|2) dx− ĆR2
nEex(m)

and we have for big n analogues to (2.53) that

Emag(m) ≥ Emag(m̄)− 33
√
ĆRnµn,
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thus combining the last three inequalities and remembering that
Eex(m) ≤ 11µn we discover

Emag(m)

≥ 1

π
cn| ln cn|

(
1− 4√

| ln cn|

)∫
Ω(ln,dn)

(|my|2 + |mz|2) dx

−11Ć + 1

π
cn| ln cn|R2

nµn − 33
√
ĆRnµn.

For the whole energy we obtain

E(m) ≥ µn

(
1− 4√

| ln cn|

)(∫
Ω(1,1)

(|∂xḿ|2 dξ+ 1

π

∫
Ω(1,1)

(|ḿy|2+ |ḿz|2) dξ
)
−

−11Ć + 1

π
cn| ln cn|R2

nµn − 33
√
ĆRnµn.

Finally taking into account Lemma 3.7.5 and the fact that cn| ln cn|R2
n decays

faster than Rn we establish for big n

E(m)

µn

− 16√
π
≥ − 64√

| ln cn|
− 34

√
ĆRn. (2.79)

Combining now (2.75) and (2.79) and taking into account the fact that the
right hand side of (2.79) decays faster than the right hand side of (2.75) we
establish for big n ∣∣∣E(m)

µn

− 16√
π

∣∣∣ ≤ 64√
| ln cn|

+ 34
√
ĆRn. (2.80)

2.11 Upper and lower bounds for thick wires

Throughout this section we assume that the parameters d and l are both big
and comparable to each other. For convenience we will assume that d = l.
We prove an upper bound on the minimal energy and refer to [24] for a lower
bound. However it is not clear if the upper bound we get has the optimal
scaling or not. We directly construct a magnetization m with the described
energy. We start with some notation: Assume L > 0 and denote by ΩL the
domain [−L,L] × [−d, d] × [−d, d]. We take the rectangular parallelepiped
ΩL and cut o� from it the two cones with the vertex at (0, 0, 0) and the
bases −L× [−d, d]× [−d, d] and L× [−d, d]× [−d, d] respectively and denote
the obtained domain by RL. The main diagonals of ΩL divide RL into four
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parts. Taking into account the orientation in the plane OY Z we denote
that parts by Rup

L , R
right
L , Rdown

L and Rleft
L respectively. First we construct

a magnetization m̃ which has in�nite exchange energy but a magnetostatic
energy easy to bound. We consider the following vector �eld:

m̃ =


(
sin πdx

2Lz
, cos πdx

2Lz
, 0
)

in Rup
L(

sin πdx
2Ly

, 0,− cos πdx
2Ly

)
in Rright

L(
− sin πdx

2Lz
,− cos πdx

2Lz
, 0
)

in Rdown
L(

− sin πdx
2Ly

, 0, cos πdx
2Ly

)
in Rleft

L

Note that the vector �eld (0, m̃y, m̃z) is divergence free ( see cross section
Figure 2.1).
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A cross section for m̃

Figure 2.1

Therefore

divm̃ =
∂m̃x

∂x
≥ 0 in Ω

and s ≡ 0, thus we have

Emag(m̃) =

∫
Ω

∫
Ω

Γ(ξ − ξ1)
∂m̃x(ξ)

∂x

∂m̃x(ξ1)

∂x
dξ dξ1.

The integrand is zero in the complement of RL, so we �rst estimate it if the
�rst integration is done over Rup

L . Note that in R
up
L we have

∂m̃x(ξ)

∂x
=

πd

2Lz
cos

πdx

2Lz
≤ πd

2Lz
,
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thus ∫
Rup

L

Γ(ξ − ξ1)
∂m̃x(ξ)

∂x
dξ ≤

∫ d

0

πd

2Lz
dz

∫ Lz
d

−Lz
d

∫ z

−z

Γ(ξ − ξ1) dy dx.

Recall Lemma 2.5.10. Apparently Lemma 2.5.10 is valid also when the
point (y1, z1) does not belong to R(l, d). Indeed, in that case we will replace
(y1, z1) by the closest point of R(l, d) to (y1, z1) which will not decrease the
integral. Hence we have that∫ Lz

d

−Lz
d

∫ z

−z

Γ(ξ − ξ1) dy dx ≤ 10z

4π

(
1 + ln

L

d

)
and ∫

Rup
L

Γ(ξ − ξ1)
∂m̃x(ξ)

∂x
dξ ≤ 5d2

4L

(
1 + ln

L

d

)
.

The integrals over the other parts of RL have the same upper bound, thus
we obtain

Emag(m̃) ≤ 20d4

L

(
1 + ln

L

d

)
. (2.81)

The reason for m̃ having an in�nite exchange energy is that it has singularities
on the part of the boundary of RL that belongs to ΩL.We ignore for a moment
this boundary charges and compute Eex(m̃) taking into account only the
volume charges. We have formally that

Eformal
ex (m̃) = 4

∫ d

0

π2d2

4L2z2

∫ Lz
d

−Lz
d

∫ z

z

(
1 +

x2

z2

)
dy dx dz ≤

≤ 4

∫ d

0

π2d2

4L2z2

∫ Lz
d

−Lz
d

∫ z

z

(
1 +

L2

d2

)
dy dx dz =

= 4π2
(d2
L

+ L
)
. (2.82)

In the next step we build a magnetization m with �nite exchange energy
by slightly modifying m̃ near the singularity points. It works in the following
way: We �rst take the planes {z = d

d−1
y} and {z = −d−1

d
y}. To get a

continuous m from m̃ we change m̃ in the following two regions: The �rst
one is the intersection of ΩL with the region between the planes {z = d

d−1
y}

and {z = y} and the second one is the intersection of ΩL with the region

between the planes {z = − (d−1)
d
y} and {z = −y}. For more transparency see

Figures 2.2 and 2.3
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Figure 2.3

We denote the upper part of the �rst region(where z ≥ 0) by Ωup
L,1 and the

lower part by Ωdown
L,1 . We make the same notation also for the second region.

Finally we de�ne the magnetization m in Ωup
L,1

m(x, y, z) = (sin
πdx

2Lz
, cos

πdx

2Lz
sin

πd(z − y)

2z
,− cos

πdx

2Lz
cos

πd(z − y)

2z
).
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The de�nition of m in the other three regions is analogues. Note that the
vector �eld m has now only one singularity which is the origin. We estimate
now the energy of m. Note �rst that by Lemma 2.4.2 we have

|Emag(m)− Emag(m̃)| ≤ ∥m− m̃∥2L2(ΩL)
+ 2∥m− m̃∥L2(ΩL)

√
Emag(m̃)

≤ 16dL+ 16
√
5d2

√
d lnL. (2.83)

Using the inequalities |y| ≤ z and |x| ≤ L
d
z in Ωup

L,1 one can by direct calcu-
lation discover

|∂ymy|2 + |∂zmy|2 + |∂ymz|2 + |∂ymz|2 ≤
π2

4
(2d2 + 1) · 1

z2
in Ωup

L,1.

We calculate now∫
Ωup

L,1

1

z2
dξ = 2

∫ L

0

∫ d

dx
L

∫ z

d−1
d

z

1

z2
dy dz dx =

1

d

∫ L

0

(lnL− lnx) dx =
L

d
.

We have furthermore

|Eformal
ex (m̃)−Eex(m)| ≤

∫
Ωup

L,1

(|∂ymy|2+|∂zmy|2+|∂ymz|2+|∂ymz|2) dξ ≤ π2dL+
π2L

2d
.

(2.84)

Employing now (2.81)-(2.84) and choosing L = d
3
2

√
ln d we obtain for big d

E(m) ≤ 150d
5
2

√
ln d.

For a lower bound we refer to [24]. It is shown in [24] that there exists a
number R0 > 0 such that if R ≥ R0 then the minimal energy is bigger than
a constant times R2

√
lnR, where the cross section of the domain Ω is a disc

with radius R. It is easily seen that the proof in works also for a rectangular
cross section, thus we obtain that there exist numbers d0, C > 0 such that if
l, d > d0 then

Cd2
√
ln d ≤ E(m) ≤ 150d

5
2

√
ln d.
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Chapter 3

The static domain walls in

cylinders with a centrally

symmetric cross section

3.1 Introduction

In this chapter we study the static domain walls in a more general setting,
namely we assume that the domain Ω has the form R × ω, where ω is a
centrally symmetric, bounded Lipschitz domain in R2.We consider sequences
of homothetic cylinders R×ωn. Denote by dn the diameter of ωn and assume
that the sequence (dn)n∈N converges to zero. We prove a Γ-convergence of
the rescaled minimization problems

inf
m∈Ãn

E(m)

d2n

and show that they converge to a one-dimensional problem which can be
solved explicitly. Moreover, we prove a convergence result on the sequences
of almost minimizers of the magnetization energy.

3.2 General Notation

We denote by d the length of the diameter of ω. We emphasize all the other
notations that will di�er from the ones in the previous chapter. We use the
following notation:

• A(Ω) and Ã(Ω) instead of A(l, d) and Ã(l, d) respectively

• Ax(Ω) instead of Ax(l, d),
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• ω and ωx instead of R(l, d) and Rx(l, d), respectively

• Ωn = dn · ω, where ω has diameter 1,

We keep all the other notation of the previous chapter.

3.3 The main results

Like in the rectangular cross section case we establish an existence and a
Γ-convergence result.

Theorem 3.3.1 (Existence). For any Lipschitz domain ω there exist mini-
mizers of the energy functional in both Ã and Ax.

We �x a centrally symmetric Lipschitz domain ω ⊂ R2 with a diameter 1.
For any positive number d denote Ωd = R× (d ·ω). We consider the rescaled
minimization problems

inf
m∈Ã(Ωd)

E(m)

d2
.

Theorem 3.3.2 (Γ-convergence). The rescaled minimization problems Γ-
converge to a one dimensional problem as d goes to zero. The limit problem
can be solved explicitly.

As a consequence we obtain that the minimal energy scaling is d2, more-
over we establish

lim
d→0

Emin

d2
= E0

min.

We prove as well a rate of convergence for the above limit.

Theorem 3.3.3 (Rate of convergence). The following rate of convergence
holds: ∣∣∣Emin

d2
− E0

min

∣∣∣ ≤ 120π2

√
2cω
aω

(per(ω))2d
1
6 .

(The numbers aω and cω are de�ned in Chapter 3.7).
We establish furthermore a strong H1 convergence for sequences of almost

minimizers. (See the de�nition of a sequence of almost minimizers in Section
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3.9) We consider a sequence (mn)n∈Ãn
with ωn = dn · ω and assume that

dn → 0.

Theorem 3.3.4. For any sequence of almost minimizers (mn)n∈Ãn
there

exist a sequence of translations Tn in the x direction and a sequence of rota-
tions Rn is the OY Z plane, such that for a magnetization m0 ∈ Ãω strong
H1 convergence holds:

lim
n→∞

1

dn
∥mn(Tn(Rn))−m0∥H1(Ωn) = 0.

3.4 The characterization theorem

First of all note that |ω| = cω · d2 where cω is a constant depending only on
the shape of ω. i.e., if another domain ω is homothetic to ω1 then cω1 = cω.
We claim that all the theorems and lemmas of the previous chapter hold
also for this case, but formulated in another way if needed. We point out
the theorems and lemmas that need to have another formulation and the
changes that should be made in their proofs. We prove as well some new
lemmas which will be used for the main Γ−convergence theorem.

Lemma 3.4.1. If the vector �eld m ∈ Ax
Ω satis�es

|m| ≤ 1 in Ω,

E(m) <∞
then there exists a positive number M depending on ω and E(m) such that

∥my∥2L2(R) + ∥mz∥2L2(R) ≤M.

Proof. The only idea that should be changed in the proof is choosing the suit-
able test functions φr.We choose a point (y0, z0) on ∂ω such that νy(y0, z0) ̸=
0 and νz(y0, z0) ̸= 0. If such a point does not exists then clearly there exist on
∂ω two points (y1, z1) and (y2, z2) such that νy(y1, z1) = 0 and νz(y2, z2) = 0.
Consider the �rst case. Since ∂ω is Lipschitz one can choose an ϵ > 0
such that for any (y, z) ∈ Bϵ(y0, z0) ∩ ∂ω we have νy(y, z) >

1
2
νy(y0, z0) and

νz(y, z) >
1
2
νz(y0, z0) and νy and νz keep their sign on Bϵ(y0, z0) ∩ ∂ω. The

function ϕ can be chosen as follofs:

ϕr = 1 in [−r, r]×
[
y0 −

ϵ

2
, y0 +

ϵ

2

]
×
[
z0 −

ϵ

2
, z0 +

ϵ

2

]
,

suppϕ ⊂
[
r − ϵ

2
, r +

ϵ

2

]
× [y0 − ϵ, y0 + ϵ]× [z0 − ϵ, z0 + ϵ] and
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0 ≤ ϕ ≤ 1, |∇ϕr| ≤
10

ϵ
.

The choise of the function φ and the rest of the proof is the same as in the
previous chapter, namely φr = ϕr ·s. The same can be done for the two-point
case.

Lemma 3.4.2. For any vector �elds m1,m2 ∈ MΩ with �nite energies the
following statements hold:

• Emag(m1 +m2) ≤ 2(Emag(m1) + Emag(m2))

• |Emag(m1)−Emag(m2)| ≤ Emag(m1−m2)+2
√
Emag(m1)Emag(m1 −m2)

• |Emag(m1)−Emag(m2)| ≤ ∥m1−m2∥2L2(Ω)+2∥m1−m2∥L2(Ω)

√
Emag(m1)

if m1 −m2 ∈ L2(Ω)

Lemma 3.4.3. For anym ∈MΩ with a �nite energy the following statements
hold:

•
∫
ωx
(|m|2 − |m̄|2) dy dz =

∫
ωx

|m− m̄|2 dy dz ≤ Ćd2
∫
ωx

|∇yzm| dy dz for

all x ∈ R, where Ć is an absolute constant (the Poincaree constant for
bounden Lipschitz domains in R2).

• Eex(m̄) + Eex(m− m̄) = Eex(m)

• There exists a constant C1 depending only on ω such that

E(m̄) ≤ C1E(m) (3.1)

• There exists a constant C2 depending only on ω and E(m) such that

∥m̄y∥2L2(Ω(l,d)) + ∥m̄z∥2L2(Ω(l,d)) ≤ C2 (3.2)

Lemma 3.4.4. • Let m ∈ A be a magnetization and α and β be real
numbers such that −1 < α < β < 1. Assume ℜ is a family of disjoint
intervals (a, b) satisfying the conditions {m̄x(a), m̄x(b)} = {α, β} and
|m̄x(x)| ≤ max(|α|, |β|) in (a, b). Then

card(ℜ) ≤M2 and
∑

(a,b)∈ℜ

(b− a) ≤M2 (3.3)

where M2 is a constant depending on α, β, ω and E(m).
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• If m ∈ Ã then for any 0 < δ < 1 there exists a positive number Nδ

such that two of the following properties hold:
−1 ≤ m̄x ≤ −1 + δ in (−∞,−Nδ)
−1 ≤ m̄x ≤ −1 + δ in (Nδ,+∞)
1− δ ≤ m̄x ≤ 1 in (Nδ,+∞)
1− δ ≤ m̄x ≤ 1 in (−∞,−Nδ)
(note that only two of them can simultaneously hold.)

• For any m ∈ Ã the function m̄x has a constant sign at ±∞.

Proof. In the proof the number 4ld must everywhere be replaced by |ω|.

Theorem 3.4.5. If m ∈ A(Ω) then one of the four functions m± e⃗x, m± ē
belongs to H1(Ω).

Proof. In the proof the number 4ld must everywhere be replaced by |ω|.

3.5 The magnetostatic energy

3.5.1 A representation of u and the magnetostatic en-

ergy

Recall �rst of all that Γ is the Green function for the Laplace operator in R3.

Lemma 3.5.1. For m ∈ X de�ne the maps uv, us, u : R3 → R by

uv(ξ) =

∫
Ω

Γ(ξ − ξ1)v(ξ1) dξ1,

us(ξ) =

∫
∂Ω

Γ(ξ − ξ1)s(ξ1) dξ1,

u(ξ) = uv(ξ) + us(ξ).

Then the following statements hold:

• The maps uv and us satisfy the equalities

∇uv(ξ) =
∑

i∈{x,y,z}

∫
Ω

∂iΓ(ξ − ξ1)v(ξ1)
−→ei dξ for all ξ ∈ R3, (3.4)

∇us(ξ) =
∑

i∈{x,y,z}

∫
∂Ω

∂iΓ(ξ−ξ1)s(ξ1)−→ei dξ for all ξ ∈ R3\∂Ω, (3.5)
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∫
R3

∇uv · ∇φ =

∫
Ω

vφ for all φ ∈ C∞
0 (R3), (3.6)∫

R3

∇us · ∇φ =

∫
∂Ω

sφ for all φ ∈ C∞
0 (R3). (3.7)

• u is a weak solution of △u = divm.

• ∇u is in L2(R3).

For any m ∈ X we will hereafter consider the solution of △u = divm
which is de�ned in the previous lemma. As a corollary we get a necessary
and su�cient condition for a magnetization to have a �nite energy.

Theorem 3.5.2 (Characterization). A magnetization m : Ω → S2 is in A(Ω)
if and only if one of the four functions m±−→ex ,m± ē belongs to H1(Ω).

Proof. The necessity is Theorem 3.4.5. To prove the su�ciency we note that
if one of the four functions m±−→ex ,m± ē belongs to H1(Ω) then m ∈ X thus
according to Lemma 3.5.1 m belongs to A.

Corollary 3.5.3. A magnetization m belongs to A if and only if
∇m,my,mz ∈ L2(Ω).

We consider now the functional Emag for the magnetizations which are
constant on each cross section, i.e., for m ∈ Ax.

Lemma 3.5.4. For any m ∈ Ax the gradients ∇uv and ∇us are orthogonal
in L2(R3).

Thus for m ∈ Ax the energy functional has the form

E(m) = cωd
2∥∂xm∥2L2(R) + Ev(m) + Es(m).

3.5.2 The representation of Es in Fourier space

In this section we �nd a representation of Es in Fourier space. Let the point
(0, 0) be the center of symmetry of ω and let the parametrization{

y = y(t), t ∈ [0, 2]
z = z(t), t ∈ [0, 2]

of ∂ω be chosen so that y(t+ 1) = −y(t), z(t+ 1) = −z(t) and

ν(t) = (νy(t), νz(t)) =
( z′(t)√

y′2(t) + z′2(t)
,− y′(t)√

y′2(t) + z′2(t)

)
,
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where ν(t) is the outward normal to ∂ω at (y(t), z(t)).

Theorem 3.5.5. For any m ∈ Ax the following formula is valid:

Es(m) =
1

4π2

∫
R3

1

|k|2
(|a|2|m̂y(k1)|2+|b|2|m̂z(k1)|2+āb(m̂y(k1)m̂z(k1)+m̂y(k1)m̂z(k1)) dk,

where

a(k2, k3, ω) = −2i

∫ 1

0

z′(t) sin(k2y(t) + k3z(t)) dt

and

b(k2, k3, ω) = 2i

∫ 1

0

y′(t) sin(k2y(t) + k3z(t)) dt.

Proof. In order to calculate
∫
R3 |∇us|2 we again use (2.30) and the distri-

butional identity △us = −s · δ∂ω. Denote x̄ = (x, y, z). We have for any
k ∈ R3

ŝ · δ∂ω(k) =
1

2π
√
2π

∫
R3

e−ix̄k(s · δ∂ω)(x̄) dx̄ (3.8)

It is clear that∫
R3

e−ix̄k(s · δ∂ω)(x̄) dx̄ =

∫
R

∫
∂ω

e−i(k2y+k3z)ν(y, z) dy dz · e−ik1xm(x) dx

=
√
2πm̂y(k1)

∫
∂ω

e−i(k2y+k3z)ν(y, z) dy dz+
√
2πm̂z(k1)

∫
∂ω

e−i(k2y+k3z)ν(y, z) dy dz

=
√
2πm̂y(k1)

∫ 2

0

z′(t)e−i(k2y(t)+k3z(t)) dt−
√
2πm̂z(k1)

∫ 2

0

y′(t)e−i(k2y(t)+k3z(t)) dt.

For convenience we investigate the two parameters a and b as follows:

a(k2, k3, ω) =

∫ 2

0

z′(t)e−i(k2y(t)+k3z(t)) dt,

b(k2, k3, ω) = −
∫ 2

0

y′(t)e−i(k2y(t)+k3z(t)) dt.

Note that since the curve ∂ω is closed

k3a− k2b =

∫ 2

0

(k3z
′(t) + k2y

′(t))e−i(k2y(t)+k3z(t)) dt = 0, (3.9)
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a(k2, k3, ω) =

∫ 1

0

z′(t)e−i(k2y(t)+k3z(t)) dt−
∫ 1

0

z′(t)ei(k2y(t)+k3z(t)) dt

−2i

∫ 1

0

z′(t) sin(k2y(t) + k3z(t)) dt.

Similarly we have

b(k2, k3, ω) = 2i

∫ 1

0

y′(t) sin(k2y(t) + k3z(t)) dt.

For the Fourier transform of △us we have

|△̂us(k)|2 =
1

4π2
|am̂y(k1) + bm̂z(k1)|2

=
1

4π2
(|a|2|m̂y(k1)|2 + |b|2|m̂z(k1)|2 + āb(m̂y(k1)m̂z(k1) + m̂y(k1)m̂z(k1)).

Finally we obtain for Es

Es(m) =

∫
R3

|∇us(k)|2 dk =

∫
R3

|△̂us(k)|2

|k|2
dk

=
1

4π2

∫
R3

1

|k|2
(|a|2|m̂y(k1)|2+|b|2|m̂z(k1)|2+āb(m̂y(k1)m̂z(k1)+m̂y(k1)m̂z(k1)) dk.

(3.10)

In the next step we recall some well-known facts and prove some auxialary
lemmas which will be utilized to get lower and upper bounds on Es. The
following equalities are well known:∫ +∞

0

cos px

x2 + q2
dx =

π

2q
e−pq, q > 0, p > 0 (3.11)

∫ +∞

0

e−p1x cos q1x− e−p2x cos q2x

x
dx =

1

2
ln
p21 + q21
p22 + q22

, p1, p2 > 0, q1, q2 ∈ R,

(3.12)

Lemma 3.5.6. For any p, q, l > 0 the following inequality holds:∣∣∣ ∫ +∞

l

sin qt

t
e−pt dt

∣∣∣ ≤ π.
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Proof. Making t = x
q
change of variables and denoting r = p

q
, L = ql we get∫ +∞

l

sin qt

t
e−pt dt =

∫ +∞

L

sinx

x
e−rx dx

Denote xn = πn for n = 0, 1, ... Assume L ∈ [xk, xk+1] for some k. We
have that∫ +∞

L

sinx

x
e−rx dx =

∫ xk+1

L

sin x

x
e−rx dx+

∫ ∞

xk+1

sin x

x
e−rx dx.

Since the function

ϕ(y) =

∫ xk+1

y

sinx

x
e−rx dx

is either increasing or decreasing on [xk, xk+1] then∣∣∣ ∫ +∞

L

sinx

x
e−rx dx

∣∣∣ ≤ max
(∣∣∣ ∫ ∞

xk

sin x

x
e−rx dx

∣∣∣, ∣∣∣ ∫ ∞

xk+1

sinx

x
e−rx dx

∣∣∣),
thus it su�ce to prove the lemma for L = xk for some k. We expand the
integral in the following way:∫ +∞

xk

sinx

x
e−rx dx =

∞∑
i=k

∫ xi+1

xi

sin x

x
e−rx dx =

∞∑
i=k

∫ π

0

(−1)i sin t

t+ πi
e−r(t+πi) dt

=

∫ π

0

sin t
∞∑
i=k

(−1)i

t+ πi
e−r(t+πi) dt.

For a �xed t we have a sign-changing series with decreasing terms with their
absolute value, therefore the absolute value of the sum of the series is not
bigger than absolute value of its �rst term, e.i,∣∣∣ ∫ +∞

xk

sin x

x
e−rx dx

∣∣∣ ≤ ∫ π

0

sin t

t+ πk
e−r(t+πk) dt ≤

∫ π

0

sin t

t
dt ≤ π.

Lemma 3.5.7. For any p ≥ 0 the function I(p, y) =
∫ +∞
0

sin pt
t2+y2

dt is non-

negative and decreasing in y in (0,+∞) and I(p, y) ≤ 7p
1
3

y
2
3
.

Proof. The case p = 0 is evident. Suppose now p > 0. We make a change of
variables t = x

p
to get

I(p, y) = p

∫ +∞

0

sinx dx

x2 + p2y2
= pI(1, py).

80



We consider now I(1, y) for y > 0. We have

I(1, y) =

∫ +∞

0

sin t

t2 + y2
dt =

∞∑
n=0

∫ 2π

0

sin t

(t+ 2πn)2 + y2
dt

=
∞∑
n=0

∫ π

0

sin t
( 1

(t+ 2πn)2 + y2
− 1

(t+ π(2n+ 1))2 + y2

)
dt

=
∞∑
n=0

∫ π

0

(2π(t+ 2πn) + π2) sin t

((t+ 2πn)2 + y2)((t+ π(2n+ 1))2 + y2)
dt

=

∫ π

0

sin t ·
∞∑
n=0

2π(t+ 2πn) + π2

((t+ 2πn)2 + y2)((t+ π(2n+ 1))2 + y2)
dt.

It is now evident that I(1, y) in nonnegative and decreasing in y in (0,+∞)
and therefore the same does I(p, y). Note that for any n ≥ 1 and t ∈ [0, π]
we have

2π(t+ 2πn) + π2

((t+ 2πn)2 + y2)((t+ π(2n+ 1))2 + y2)
<

π2(4n+ 3)

4π2n2(4π2n2 + y2)

<
2

n(2π2n2 + 2π2n2 + y2)
≤ 2

3n(4π4n4y2)
1
3

<
1

9n2y
2
3

,

hence

I(1, y) <

∫ π

0

sin t(π2 + 2πt)

(t2 + y2)((t+ π)2 + y2)
dt+

∞∑
n=1

1

9n2y
2
3

∫ π

0

sin t dt

<

∫ π

0

3π2t

3π2
(
t4y2

4

) 1
3

dt+
4

9y
2
3

<
7

y
2
3

.

Finally we have

I(p, y) = pI(1, py) <
7p

(py)
2
3

=
7p

1
3

y
2
3

Lemma 3.5.8. For any decreasing function f ∈ C((0,+∞),R+) and num-
bers p > 0, l ≥ 0 the following inequalities hold:∣∣∣ ∫ +∞

l

f(t) cos pt dt
∣∣∣ ≤ 4f(l)

p
,
∣∣∣ ∫ +∞

l

f(t) sin pt dt
∣∣∣ ≤ 4f(l)

p
.
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Proof. We determine the sequence tn = πn
p
, n ∈ N. In every interval [tn, tn+1]

the function sin pt has a constant sign, therefore∫ tn+1

tn

f(t) sin pt dt = (−1)nf(t′n)

∫ tn+1

tn

sin pt dt = 2 · (−1)nf(t′n)

for some point t′n ∈ [tn, tn+1]. We have∫ +∞

tn

f(t) sin pt dt =
2

p

∞∑
k=n

(−1)kf(t′k),

thus ∣∣∣ ∫ +∞

tn

f(t) sin pt dt
∣∣∣ ≤ 2|f(t′n)|

p
≤ 2|f(tn)|

p
.

Assume now that l ∈ [tm, tm+1]. It is clear that

∣∣∣ ∫ +∞

l

f(t) sin pt dt
∣∣∣ ≤ ∣∣∣ ∫ tm+1

l

f(t) sin pt dt
∣∣∣+ ∣∣∣ ∫ +∞

tm+1

f(t) sin pt dt
∣∣∣

≤ f(l)
∣∣∣ ∫ tm+1

tm

sin pt dt
∣∣∣+ 2f(tm+1)

p
≤ 4f(l)

p
.

The �rst integral can be estimated in the same way.

Lemma 3.5.9. The following inequalities hold:∣∣∣ ∫ +∞

l

∫ +∞

0

cos px cos qy

x2 + y2
dx dy

∣∣∣ ≤ 2π

ql
for any p, q, l > 0,

∣∣∣ ∫ +∞

l

∫ +∞

0

sin px sin qy

x2 + y2
dx dy

∣∣∣ ≤ 28p
1
3

ql
2
3

for any p, q, l > 0,

∣∣∣ ∫ +∞

l

∫ +∞

0

cos px sin qy

x2 + y2
dx dy

∣∣∣ ≤ π2

2
for any p, q, l > 0

∣∣∣ ∫ +∞

l

∫ +∞

0

sin px cos qy

x2 + y2
dx dy

∣∣∣ ≤ 28p
1
3

ql
2
3

for any p, q, l > 0.
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Proof. Using (3.11) and Lemma 3.5.8 we get∣∣∣ ∫ +∞

l

∫ +∞

0

cos px cos qy

x2 + y2
dx dy

∣∣∣ = π

2

∣∣∣ ∫ +∞

l

e−py cos qy

y
dy
∣∣∣ ≤ π

2
·4e

−pl

ql
<

2π

ql
.

To estimate the second and the forth integrals we use Lemma 3.5.7 and
Lemma 3.5.8. We have∣∣∣ ∫ +∞

l

∫ +∞

0

sin px sin qy

x2 + y2
dx dy

∣∣∣ = ∣∣∣ ∫ +∞

l

I(p, y) sin qy dy
∣∣∣ ≤ 4I(p, l)

q
≤ 28p

1
3

ql
2
3

.

Similarly ∣∣∣ ∫ +∞

l

∫ +∞

0

sin px cos qy

x2 + y2
dx dy

∣∣∣ ≤ 28p
1
3

ql
2
3

.

To estimate the third integral we utilize (3.11) and Lemma 3.5.6, namely∣∣∣ ∫ +∞

l

∫ +∞

0

cos px sin qy

x2 + y2
dx dy

∣∣∣ ≤ π

2

∣∣∣ ∫ +∞

l

e−py sin qy

y
dy
∣∣∣ ≤ π2

2
.

Theorem 3.5.10. Determine

I1ω(k1) =

∫ +∞

0

∫
R

|a|2

|k|2
dk2 dk3, I2ω(k1) =

∫ +∞

0

∫
R

|b|2

|k|2
dk2 dk3,

I3ω(k1) =

∫ +∞

0

∫
R

āb

|k|2
dk2 dk3.

Then the following formulae are valid:

I1ω(0) = π

∫
[0,1]2

ln
(y(t)− y(t1))

2 + (z(t)− z(t1))
2

(y(t) + y(t1))2 + (z(t) + z(t1))2
z′(t)z′(t1) dt dt1, (3.13)

I2ω(0) = π

∫
[0,1]2

ln
(y(t)− y(t1))

2 + (z(t)− z(t1))
2

(y(t) + y(t1))2 + (z(t) + z(t1))2
y′(t)y′(t1) dt dt1, (3.14)

I3ω(0) = π

∫
[0,1]2

ln
(y(t)− y(t1))

2 + (z(t)− z(t1))
2

(y(t) + y(t1))2 + (z(t) + z(t1))2
y′(t)z′(t1) dt dt1. (3.15)
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Proof. For convenience denote y(t) and y(t1) by y and y1 respectively and
we make the same notation also for z. We have that

|a|2 = 4
(∫ 1

0

z′(t) sin(k2y(t) + k3z(t)) dt
)2

= 4

∫ 1

0

∫ 1

0

z′(t)z′(t1) sin(k2y(t) + k3z(t)) sin(k2y(t1) + k3z(t1)) dt dt1

= 2

∫ 1

0

∫ 1

0

z′z′1(cos(k2(y−y1)+k3(z−z1))−cos(k2(y+y1)+k3(z+z1))) dt dt1.

(3.16)
We have as well

I1ω(0) =

∫ +∞

0

∫
R

|a|2

|k|2
dk2 dk3 = 2

∫ 1

0

∫ 1

0

z′z1I
⋆
1 dt dt1,

where

I⋆1 =

∫ +∞

0

∫
R

cos(k2(y − y1) + k3(z − z1))− cos(k2(y + y1) + k3(z + z1))

k22 + k23
dk2 dk3.

We make the following notation:

p = |y − y1|, q = (z − z1)sign(y − y1), r = |y + y1|, s = (z + z1)sign(y + y1).

Taking into account (3.11) and (3.12) we obtain

I⋆1 = π

∫ +∞

0

1

k3
(e−pk3 cos qk3 − e−rk3 cos sk3) dk3 =

π

2
ln
p2 + q2

r2 + s2
.

The same can be done also for I2ω(0) and I
3
ω(0).

The next theorem gives upper and lower bounds on I1, I2 and I3.

Theorem 3.5.11. Assume ω has a diameter d and l > 0. Then for any
k1 ∈ [−l, l] the following bounds hold:

|I1ω(0)− I1ω(k1)| ≤ 8π(π + 3)ld(per(∂ω))2, (3.17)

|I2ω(0)− I2ω(k1)| ≤ 8π(π + 3)ld(per(∂ω))2, (3.18)

|I3ω(0)− I3ω(k1)| ≤ 60(ld+ 4(ld)
4
3 + 3(ld)

1
3 )(per(∂ω))2. (3.19)
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Proof. We estimate the di�erence |I1ω(k1)− I1ω(0)|, the estimate for I2ω(k1) is
straightforward. The validity of the inequality I1ω(k1) ≤ I1ω(0) for any k1 ∈ R
is evident. Note that if k1 ∈ [−l, l] then

I1ω(k1) ≥
∫ +∞

0

∫
R

|a|2

k22 + (k3 + l)2
dk2 dk3

thus taking account (3.16) we obtain

I1ω(0)− I1ω(k1) ≤
∫ +∞

0

∫
R
|a|2
( 1

k22 + k23
− 1

k22 + (k3 + l)2

)
dk2 dk3

2

∫ 1

0

∫ 1

0

|z′z′1|(|J1
1 |+ |J1

2 |+ |J1
3 |) dt dt1,

where

J1
1 =

∫ l

0

∫
R

cos(pk2 + qk3)− cos(rk2 + sk3)

k22 + k23
dk2 dk3,

J1
2 =

∫ +∞

l

∫
R

cos(pk2 + qk3)− cos(pk2 + q(k3 − l))

k22 + k23
dk2 dk3,

J1
3 =

∫ +∞

l

∫
R

cos(rk2 + sk3)− cos(rk2 + s(k3 − l))

k22 + k23
dk2 dk3.

We have that

|J1
1 | =

∣∣∣2 ∫ l

0

∫ +∞

0

cos pk2 cos qk3 − cos rk2 cos sk3
k22 + k23

dk2 dk3

∣∣∣
= π

∣∣∣ ∫ l

0

e−pk3 cos qk3 − e−rk3 cos sk3
k3

dk3

∣∣∣
≤ π

∫ l

0

e−pk3 | cos qk3 − cos sk3|
k3

dk3 + π

∫ l

0

| cos sk3(e−pk3 − e−rk3)|
k3

dk3 ≤

≤ 2π

∫ l

0

∣∣ sin q+s
2
k3 sin

q−s
2
k3
∣∣

k3
dk3 + π

∫ l

0

1

k3

∣∣∣ ∫ r

p

d

dt
(e−k3t) dt

∣∣∣ dk3 ≤
≤ πl|q − s|+ π|p− r|

∫ l

0

max(e−pk3 , e−rk3) dk3 ≤ 4πdl.

According to Lemma 3.5.9 we have

|J1
2 | ≤ (1− cos ql)

∣∣∣ ∫ +∞

l

∫
R

cos(pk2 + qk3)

k22 + k23
dk2 dk3

∣∣∣
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+| sin ql|
∣∣∣ ∫ +∞

l

∫
R

sin(pk2 + qk3)

k22 + k23
dk2 dk3

∣∣∣
+4 sin2 ql

2

∣∣∣ ∫ +∞

l

∫ +∞

0

cos pk2 cos qk3
k22 + k23

dk2 dk3

∣∣∣
+2| sin ql|

∣∣∣ ∫ +∞

l

∫ +∞

0

cos pk2 sin qk3
k22 + k23

dk2 dk3

∣∣∣
≤ (ql)2 · 2π

ql
+
π2

2
2ql =

(
2π + π2

)
ql ≤ (4π + 2π2)dl.

Similarly |J1
3 | ≤ (4π + 2π2)dl. Concluding we obtain

|J1
1 |+ |J1

2 |+ |J1
3 | ≤ 4π(π + 3)dl,

thus

I1ω(0)− I1ω(k1) ≤ 8π(π + 3)dl
(∫ 1

0

|z′(t)| dt
)2

≤ 8π(π + 3)dl(per(ω))2.

Analogously we have

I2ω(0)− I2ω(k1) ≤ 8π(π + 3)dl(per(ω))2.

To estimate |I3ω(0)− I3ω(k1)| we recall that b = k3
k2
a, thus

I3ω(k1) =

∫ +∞

0

∫
R

k3|a|2

k2|k|2
dk2 dk3.

Note that the integrand is positive if k2 > 0 and negative if k2 < 0, therefore

|I3ω(0)− I3ω(k1)| ≤
∫ +∞

0

∫ +∞

0

k3|a|2

k2

( 1

k22 + k23
− 1

|k2|

)
dk2 dk3

+

∫ +∞

0

∫ 0

−∞

k3|a|2

k2

( 1

|k2|
− 1

k22 + k23

)
dk2 dk3

≤
∫ +∞

0

∫ +∞

0

āb
( 1

k22 + k23
− 1

k22 + (k3 + l)2

)
dk2 dk3

+

∫ +∞

0

∫ 0

−∞
āb
( 1

k22 + (k3 + l)2
− 1

k22 + k23

)
dk2 dk3.

We have ∫ +∞

0

∫ +∞

0

āb
( 1

k22 + k23
− 1

k22 + (k3 + l)2

)
dk2 dk3
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≤ 2

∫ 1

0

∫ 1

0

|z′y′1|(|J3
1 |+ |J3

2 |+ |J3
3 |) dt dt1,

where

J3
1 =

∫ l

0

∫ +∞

0

cos(pk2 + qk3)− cos(rk2 + sk3)

k22 + k23
dk2 dk3,

J3
2 =

∫ +∞

l

∫ +∞

0

cos(pk2 + qk3)− cos(pk2 + q(k3 − l))

k22 + k23
dk2 dk3,

J3
3 =

∫ +∞

l

∫ +∞

0

cos(rk2 + sk3)− cos(rk2 + s(k3 − l))

k22 + k23
dk2 dk3.

Using lemma 3.5.6 and the estimate for J1
1 we get

|J3
1 | ≤

|J1
1 |
2

+
∣∣∣ ∫ l

0

I(p, k3) sin qk3 dk3

∣∣∣+ ∣∣∣ ∫ l

0

I(r, k3) sin sk3 dk3

∣∣∣
≤ 2πld+ 7p

1
3

∫ l

0

qk3

k
2
3
3

dk3 + 7r
1
3

∫ l

0

sk3

k
2
3
3

dk3 < 2πld+ 30(ld)
4
3 .

According to Lemma 3.5.8 we have

|J3
2 | ≤ 2 sin2 ql

2

∣∣∣ ∫ +∞

l

∫ +∞

0

cos(pk2 + qk3)

k22 + k23
dk2 dk3

∣∣∣
+| sin ql|

∣∣∣ ∫ +∞

l

∫ +∞

0

sin(pk2 + qk3)

k22 + k23
dk2 dk3

≤ (ql)2

2

(2π
ql

+
28p

1
3

ql
2
3

)
+ ql

(28p 1
3

ql
2
3

+
π2

4

)
< 10(3ld+ 4(ld)

1
3 + 4(ld)

4
3 .

Similarly we have
|J3

3 | < 10(3ld+ 4(ld)
1
3 + 4(ld)

4
3 .

Concluding we obtain∫ +∞

0

∫ +∞

0

āb
( 1

k22 + k23
− 1

k22 + (k3 + l)2

)
dk2 dk3 < 20(7ld+8(ld)

1
3+11(ld)

4
3 )(per(∂ω))2.
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The validity of the same estimate for∫ +∞

0

∫ 0

−∞
āb
( 1

k22 + (k3 + l)2
− 1

k22 + k23

)
dk2 dk3

is evident. For I3ω we get

|I3ω(0)− I3ω(k1)| ≤ 40(7ld+8(ld)
1
3 +11(ld)

4
3 )(per(∂ω))2 for any k1 ∈ [−l, l].

Corollary 3.5.12. Denote u = d
1
6 (per(ω))2. Then for su�ciently small d

and for any k1 ∈ [− 1√
d
, 1√

d
] we have

|I1ω(0)− I1ω(k1)| ≤ u,

|I2ω(0)− I2ω(k1)| ≤ u,

|I3ω(0)− I3ω(k1)| ≤ 200u.

In the next step we �nd an approximation for the magnetostatic energy.
For convenience we denote Aω = I1ω(0), Bω = I2ω(0), Cω = I3ω(0). According
to Theorem 3.5.10 the parameters Aω, Bω and Cω depend homogeneously on
the diameter of ω with exponent 2, namely if ω = d · ω0 then Aω = d2Aω0 ,
Bω = d2Bω0 and Cω = d2Cω0 . For convenience we put A0 = Aω0 , B0 = Bω0 ,
C0 = Cω0 .

Theorem 3.5.13. Suppose m : R → R3 is measurable and my,mz ∈ L2(R).
De�ne

E⋆
s (m) =

1

2π2

(
Aω

∫
R
|my(x)|2 dx+Bω

∫
R
|mz(x)|2 dx+Cω

∫
R
(m̂y(x)m̂z(x)+m̂y(x)m̂z(x)) dx

)
.

For su�ciently small d the following inequality holds:

|Es(m)− E⋆
s (m)| ≤ 12u

∫
R
(|my(x)|2 + |mz(x)|2) dx+

(Aω +Bω)Eex(m)

π2cωd
.

Proof. We �x a positive l. We have that

Eex(m) = cωd
2

∫
R
|∂xm(x)|2 dx ≥ cωd

2

∫
R
(|∂xmy(x)|2 + |∂xmz(x)|2) dx
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= cωd
2

∫
R
(|∂̂xmy(x)|2 + |∂̂xmz(x)|2) dx = cωd

2

∫
R
|x|2(|m̂y(x)|2 + |m̂z(x)|2) dx

≥ cωd
2l2
∫
R\[−l,l]

(|m̂y(x)|2 + |m̂z(x)|2) dx,

which implies for l = 1√
d
the following∫

R\
[
− 1√

d
, 1√

d

](|m̂y(x)|2 + |m̂z(x)|2) dx ≤ Eex(m)

cωd
. (3.20)

It is clear that for any k1 ∈ R

|I3ω(k1)| ≤
∫ +∞

0

∫
R

|āb|
|k|2

dk2 dk3 ≤
(∫ +∞

0

∫
R

|a|2

|k|2
dk2 dk3·

∫ +∞

0

∫
R

|b|2

|k|2
dk2 dk3

) 1
2

= (I2ω(k1) · I2ω(k1))2 ≤ (AωBω)
1
2 ≤ Aω +Bω

2
. (3.21)

Utilizing Corollary 3.5.12 and inequalities (3.21), (3.22) we obtain

|Es(m)− E⋆
s (m)| ≤ 1

2π2

∫
R
|Aω − I1ω(x)||my(x)|2 dx

+
1

2π2

∫
R
|Bω−I2ω(x)|mz(x)|2 dx+

1

2π2

∫
R
|Cω−I3ω(x)||m̂y(x)m̂z(x)+m̂y(x)m̂z(x)| dx

)
≤ u

2π2

∫ 1√
d

− 1√
d

(|m̂y(x)|2 + |m̂z(x)|2) dx+
Aω

2π2

∫
R\[− 1√

d
, 1√

d
]

|m̂y(x)|2 dx

+
Bω

2π2

∫
R\[− 1√

d
, 1√

d
]

|m̂z(x)|2 dx+
200u

2π2

∫ 1√
d

− 1√
d

(|m̂y(x)|2 + |m̂z(x)|2) dx

+
Aω +Bω

2π2

∫
R\[− 1√

d
, 1√

d
]

(|m̂y(x)|2 + |m̂z(x)|2 dk1

≤ 12u

∫
R
(|my(x)|2 + |mz(x)|2) dx+

(Aω +Bω)Eex(m)

π2cωd
.
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3.6 The existence of minimizers

It is easy to check that Lemma 2.6.1 and Theorem 2.6.2 are valid also for the
domains Ω with a bounded Lipschitz cross section ω. In fact in their proofs
we did not use that the cross section is rectangular.

Lemma 3.6.1. Suppose we are given a sequence of magnetizations (mn)n∈N
de�ned in the same domain Ω and with energies bounded by the same constant
C. Then there exists a magnetizationm0 : Ω → S2 such that for a subsequence
of (mn)n∈N (not relabeled) the following statements hold

• ∇mn ⇀ ∇m0 weakly in L2(Ω)

• mn → m0 strongly in L2
loc(Ω)

• E(m0) ≤ lim inf E(mn).

Theorem 3.6.2 (Existence of minimixers). For any domain Ω = R × ω,
where ω is bounded and Lipschitz, there exist minimizers of E in Ã and Ãx.

3.7 The Γ-convergence

We start with the description of the full and the reduced variational problems.
As we have mentioned the full variational problem is the minimization of the
rescaled energy, which is E(m)

d2
in this case. We will scale the magnetizations

in the y and z directions to keep the domain �xed in order to pass to the
Γ-limit. We de�ne the rescaled magnetization ḿ(x, y, z) = m(x, dy, dz). It
is clear that ḿ : Ω0 → S2 and that the admissible set for the full variational
problem is

Ã1 = {ḿ : Ω0 → S2 | ḿ− ē ∈ H1(Ω0)}.

It is clear that m ∈ Ã if and only if ḿ ∈ Ã1 and

É(m) =

∫
Ω0

(
|∂xḿ(ξ)|2 + 1

d2
|∂yḿ(ξ)|2 + 1

d2
|∂zḿ(ξ)|2

)
dξ +

1

d2
Emag(m).

The reduced variational problem energy functional is

E0(m) = cω0

∫
R
|∂xm|2 dx+ a0

2π2

∫
R
(|my|2+|mz|2) dx+

C0

2π2t0

∫
R
|t0my+mz|2 dx,
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where the numbers a0 and t0 are de�ned as follows:

t0 =
A0 −B0 +

√
(A0 −B0)2 + 4C2

0

2C0

and
a0 = A0 − C0t0.

We will show later that a0, t0 > 0.
The admissible set is

Ã0 = {m : R → S2 | E0(m) <∞, m− ē ∈ H1(Ω0)}.

Like in the previous chapter we de�ne additionally the set X0 as follows:

X0 = {m : R → R3 | ∂xm ∈ L2(R) and my,mz ∈ L2
loc(R)}.

The reduced variational problem is to minimize the reduced energy func-
tional E0 over the admissible set Ã0. Now we de�ne the notion of convergence
of the magnetizations we are going to use for the Γ-convergence of the ener-
gies.

De�nition 3.7.1. Letm0(x) ∈ X0. Consider a sequence of domain-magnetization
pairs (Ωn,m

n) where mn ∈ Ãn. De�ne ḿ
n(x, y, z) = mn(x, dny, dnz). Then

the sequence (ḿn)n∈N is said to converge to m0 as n goes to in�nity if the
following statements hold:

• ∂xḿ
n ⇀ ∂xm

0 weakly in L2(Ω0)

• ∇yzḿ
n → 0 strongly in L2(Ω0)

• ḿn → m0 strongly in L2
loc(Ω0)

Before passing to the main theorem we formulate an auxialary lemma
which will allow us to switch from the one variable-dependent case to the
general case.

Lemma 3.7.2. For any Ω and m ∈ A(Ω) the following statements hold:

• There exists a constant C depending only on the geometry of ω such
that |Emag(m)− Emag(m̄)| ≤ d(Cd+ 2

√
C)E(m),

• If E(mn) ≤ Md2n for a constant M and (ḿn)n∈N converges to m0 in
the cense of De�nition 3.7.1 then

lim inf
n→∞

∫
R
|m̄n

y (x)|2 dx ≥
∫
R
|m̄0

y(x)|2 dx and lim inf
n→∞

∫
R
|m̄n

z (x)|2 dx ≥
∫
R
|m̄0

z(x)|2 dx,
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• There exists a constant Mm depending only on m such that

Ev(m) ≤Mmd
3(1 + d).

Proof. By Poincaré inequality there exists a constant C depending only on
the geometry of ω such that for any x ∈ R∫

ωx

(m− m̄)2 dy dz ≤ Cd2
∫
ωx

|∇yzm|2 dy dz

thus ∫
Ω

(m− m̄)2 dξ ≤ Cd2
∫
Ω

|∇yzm|2 dξ ≤ Cd2Eex(m).

Utilizing now Lemma 3.4.2 for m and m̄ we obtain

|Emag(m)− Emag(m̄)|
d2

≤ dE(m)(Cd+ 2
√
C).

The proof of the second statement can be found in the proof of the lower-semi-
continuity part of the �rst Γ−convergence theorem in Chapter 2. Recalling
the proof of Lemma 2.5.11 we note that the only di�erence between this case
and the rectangular-cross section case is the estimate on∫

ωx

dy dz√
(y − y1)2 + (z − z1)2

.

The domain ω can be put in a square with sides parallel to the y and z axis
and lengths d, thus∫

ωx

dy dz√
(y − y1)2 + (z − z1)2

≤
∫
[0,d]2

dy dz√
(y − y1)2 + (z − z1)2

≤ 10d.

Theorem 3.7.3 (Γ-convergence). The reduced variational problem is the Γ-
limit of the full variational problem with respect to the convergence de�ned
above. This amounts to the following three statements:

• Lower semicontinuity If a sequence of rescaled magnetizations (ḿn)n∈N
with mn ∈ A(Ωn) converges to some m

0 ∈ X0 in the sense of De�nition
3.7.1 then

E0(m
0) ≤ lim inf

n→∞
Én(ḿ

n)
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• Construction For every m0 ∈ Ã0 and every in�nitesimal sequence of
positive numbers (dn)n∈N, there exists a sequence (mn)n∈N with entries
in Ã(Ωn) such that

ḿn → m0 in the cense of De�nition 3.7.1

E0(m
0) = lim

n→∞
Én(ḿ

n)

• Compactness Let (dn)n∈N be an in�nitesimal sequence of positive num-

bers. Let mn ∈ Ã(Ωn) and let (Én(m
n))n∈N be bounded. Then there

exists a subsequence of (mn)n∈N(not relabeled again) such that (ḿn)n∈N
converges to some m0 ∈ Ã0 in the cense of De�nition 3.7.1.

Proof. Lower semicontinuouty
The majority of the proof is the same as in the proof of Theorem 2.7.2. The
idea is to represent the functional Estar

s as a sum of squares of L2 norms with
nonnegative coe�cients, which is the key point to the establishment

lim inf
n→∞

E⋆
s (m

n)

dnln
≥ ac

∫
R
|m0

y|2 dx+ bc

∫
R
|m0

z|2 dx

as soon as we have the convergence ḿn → m0 in L2
loc(Ω0). To that end we need

to �rst prove some inequalities on An, Bn, and Cn. First of all we claim that
the numbers A0 and B0 are positive (recall that An = d2nA0 and Bn = d2nB0.)
Indeed, suppose for instance that A0 = 0 for some ω0. Obviously the set
Ãx(Ω0) is not empty. We �x a magnetization m0 ∈ Ãx(Ω0). We have

A0 =

∫ +∞

0

∫
R

|a0|2

k22 + k23
dk2 dk3 = 0

thus a0(k2, k3, ω0) = 0 a.e. in R2.We have as well b0(k2, k3, ω0) =
k2
k3
a(k2, k3, ω0) =

0 a.e. in R2. This means that

Es(m
0) = 0 =

∫
R3

|∇us|2 dξ thus ∇us = 0 a.e. in R3.

According to (2.27) we have∫
R3

∇us · ∇φ dξ =

∫
∂Ω0

sφ dξ for any φ ∈ C∞
0 (R3)

thus s = 0 a.e. on ∂Ω0 which means m0
y = 0 and m0

z = 0 a.e. in Ω0. Taking
into account thatm0

x is a weakly di�erentiable function of one variable we get
that m0

x must be continuous in R, therefore it must be identically 1 or −1,
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which contradicts the boundary conditions m0
x(−∞) = −1, m0

x(+∞) = 1.
We distinguish now three di�erent cases.
1) C0 = 0.

If lim infn→∞ É(ḿn) + ∞ then there is nothing to prove. Assume now
that lim infn→∞ É(ḿn) <∞. Without loss of generality we can assume that

lim inf
n→∞

É(ḿn) = lim
n→∞

É(ḿn),

thus

E(mn) ≤Md2n

for some constant M. According to Lemma 3.7.2 we have

Emag(m)− Emag(m̄) = δn · d2n, where lim
n→∞

δn = 0.

We have for su�ciently big n

M ≥ E(mn)

d2n
≥ Emag(m

n)

d2n
=
Emag(m̄

n)

d2n
+ δn ≥ Es(m̄

n)

d2n
+ δn

≥ A0

2π2

∫
R
|m̄n

y (x)|2 dx+
B0

2π2

∫
R
|m̄n

z (x)|2 dx

−12u

∫
R
(|m̄n

y (x)|2 + |m̄n
z (x)|2) dx−

M(A0 +B0)

π2cω
dn − |δn|

≥
( 1

2π2
min(A0, B0)−12u

∫
R

)
(|m̄n

y (x)|2+|m̄n
z (x)|2) dx−

M(A0 +B0)

π2cω
dn−|δn|

(3.22)
thus ∫

R
(|m̄n

y (x)|2 + |m̄n
z (x)|2) dx ≤ 4π2M

min(A0, B0)
. (3.23)

Utilizing now (3.22) and (3.23) we obtain

lim inf
n→∞

Emag(m
n)

d2n
≥ lim inf

n→∞

( A0

2π2

∫
R
|m̄n

y (x)|2 dx+
B0

2π2

∫
R
|m̄n

z (x)|2 dx
)
.

By using Lemma 3.7.2 the rest of the proof is analogues to the proof of
Theorem 2.7.2.
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2) C0 > 0.
This case is a bit more tricky. First we prove that C2

0 < A0B0.We determine

C−
0 =

∫ +∞

0

∫ 0

−∞

k3|a0|2

k2(k22 + k23)
dk2 dk3 and C+

0 =

∫ +∞

0

∫ +∞

0

k3|a0|2

k2(k22 + k23)
dk2 dk3,

so that C−
0 ≤ 0, C+

0 ≥ 0 and C0 = C−
0 + C+

0 . We have by the Schwartz
inequality |C−

0 |2 ≤ A0B0, |C+
0 |2 ≤ A0B0, moreover in both cases the equality

is not possible because as we saw before neither the ratio a0
b0

is constant, nor
any of a0 and b0 is identically 0 in the integration regions. Taking into account
that |C0| ≤ max(|C−

0 |, |C+
0 |) we get C2

0 < A0B0.We have furthermore for any
positive tn,

m̂n
y · m̂n

z + m̂n
z · m̂n

y =
1

tn
((tnm̂

n
y ) · m̂n

z + m̂n
z · (tnm̂n

y ))

=
1

tn
(|tnm̂n

y + m̂n
z |2 − t2n|m̂n

y |2 − |m̂n
z |2),

thus

E⋆
s (m

n) =
An − tnCn

2π2

∫
R
|mn

y (x)|2 dx+
Bn − Cn

tn

2π2

∫
R
|mn

z (x)|2 dx

+
Cn

2π2tn

∫
R
|tnmn

y (x) +mn
z (x)|2 dx.

We choose tn such that

An − tnCn = Bn −
Cn

tn
> 0 i.e., tn =

An −Bn +
√

(An −Bn)2 + 4C2
n

2Cn

which is possible because C2
n < AnBn. Note that tn does not depend on n,

namely

tn =
A0 −B0 +

√
(A0 −B0)2 + 4C2

0

2C0

= t0. (3.24)

We determine an = An − tnCn = d2n(A0 − t0C0). With this notation we
have

E⋆
s (m) =

an
2π2

∫
R
(|my(x)|2 + |mz(x)|2) dx+

Cn

2π2t0

∫
R
|t0my(x) +mz(x)|2 dx.

Like in the case C0 = 0 we can prove that

lim inf
n→∞

Emag(m
n)

d2n
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≥ lim inf
n→∞

( a0
2π2

∫
R
(|m̄n

y (x)|2+ |m̄n
z (x)|2) dx+

C0

2π2t0

∫
R
|t0m̄n

y (x)+ m̄
n
z (x)|2 dx

)
provided

lim inf
n→∞

E(mn)

d2n
<∞.

The rest is analogous to the proof of Theorem 2.7.2.
3) C0 < 0.
Note that formula (3.24) de�nes a negative tn, thus

Cn

tn
> 0. Note furthermore

that a0 > 0. The rest is analogous to the case C0 > 0.
Construction

As a candidate for mn we take as usual the constant sequence mn ≡
m0. The only di�erence from the "construction" part of the proof of The-
orem 2.7.2 is the upper bounds on Es(m

n) and Ev(m
n). In the lower-semi-

continuity part we showed that for big n we have∫
R
(|m̄n

y (x)|2 + |m̄n
z (x)|2) dx ≤ 4π2M

a0

thus utilizing Theorem 3.5.13 we obtain

lim sup
n→∞

Es(m
n)

d2n
≤ lim sup

n→∞

E⋆
s (m

n)

d2n
= E0(m

0)− cω0

∫
R
|∂xm0(x)|2 dx.

We have as well according to Lemma 3.7.2

0 ≤ lim
n→∞

Ev(m
n)

d2n
≤ lim

n→∞
Mm0 · dn(1 + dn) = 0.

The last two inequalities complete the proof.
Compactness

The proof of this part is completely similar to the one of Theorem 2.7.2.

Corollary 3.7.4. If a sequence of magnetizations (mn)n∈N satis�es
E(mn) ≤ Cd2n for some constant C then

E(mn) ≥
∫
Ωn

|∇mn|2 + a0
2π2cω0

∫
Ωn

(|mn
y |2 + |mn

z |2) + αn · d2n,

where αn → 0 as n→ ∞
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3.7.1 The minimal energy scaling

For convenience we put aω0 = a0 and bω0 = C0

2π2t0
. We minimize the limit

energy

E0(m) = cω0

∫
R
|∂xm(x)|2 dx+ aω0

2π2

∫
R
(|my(x)|2+|mz(x)|2) dx+bω0

∫
R
|t0my(x)−mz(x)|2 dx.

As we saw in subsection 2.8.1 in Chapter 2 the only minimizer of this
functional is the vector

mω0 = (sinφω0(x), cosφω0(x) cos θω0 , cosφω0(x) sin θω0),

where

φω0(x) = arcsin
e2

√
αx − 1

e2
√
αx + 1

, α =
aω0

2π2cω0

and θω0 = arctan t0.

The minimum of the limit energy is then

Emin
0 =

2
√
2cω0aω0

π
.

In conclusion we mention that like in Chapter 2 we can state that

lim
n→∞

Emin
n

d2n
=

2
√
2cω0aω0

π
. (3.25)

3.8 The rate of convergence

In this section we �nd a rate of convergence for limit (3.25). Theorem 3.5.13
will be useful to bound the energy functional from below and above. We
�rst bound the minimal energy from above. Suppose we are given a centrally
symmetric, bounded Lipschitz domain ω ∈ R2. Consider any in�nitesimal
sequence of positive numbers (dn)n∈N and the sequence of domains Ωn = R×
(dn ·ω.) Consider furthermore the corresponding sequence of minimal energies
Emin(Ωn). We consider as usual the constant sequence of magnetizations
mn ≡ mω regarding mn as a magnetization de�ned in Ωn, where m

ω is a
minimizer of the limit energy. It is clear that

mn ∈ Ãn and Emin(Ωn) ≤ E(mn).

We estimate now E(mn) from above. We have that

Eex(m
n) = cωd

2
n

∫
R
|∂xmω|2 dx.
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According to Lemma 3.7.2 we have

Ev(m
n) ≤Mmωd3n(1 + dn).

mω0 is the minimizer of the limit energy E0, thus

Eex(m
n)

d2n
= cω

∫
R
|∂xmω|2 dx =

√
2cωaω
π

(3.26)

and

E⋆
s (m

n) =
d2naω
2π2

∫
R
(|mω

y |2 + |mω
z |2) dx =

d2nE0(m
ω)

2
=
d2n
√
2cωaω
π

,

hence ∫
R
(|mω

y |2 + |mω
z |2) dx = 2π

√
2cω
aω

. (3.27)

Taking into account (3.27) and Theorem 3.5.13 we get

Es(m
n) ≤ E⋆

s (m
n) + 24π

√
2cω
aω

· un +
d3n(Aω +Bω)

√
2aω

π3
√
cω

.

Recall that un = d
1
6
n (per(ωn))

2 = d
13
6
n (per(ω))2, therefore for big n we discover

E(mn)

d2n
− 2

√
2cωaω
π

≤ 25π

√
2cω
aω

(per(ω))2d
1
6
n . (3.28)

Suppose now m : R → R3 is bounded, measurable and ∂xm,my,mz ∈
L2(R). Assume furthermore that m regarded as a vector �eld from Ωn to R3

has the energy En(m) satisfying the condition

En(m) ≤M · d2n for any n ∈ N

for a constant M. Then we have according to Theorem 3.5.13 that

Es(m) ≥ E⋆
s (m)− 12un

∫
R
(|my|2 + |mz|2) dx−

(Aωn +Bωn)Eex(m)

π2cωd2n
. (3.29)

We have as well that

E⋆
s (m) ≥ d2naω

2π2

∫
R
(|my|2 + |mz|2) dx,

thus we obtain for big n
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∫
R
(|my|2 + |mz|2) dx ≤ 3π2M

aω
.

Coupling the last inequality with (3.29) we establish for big n

Es(m) ≥ E⋆
s (m)− 40π2M

aω
· un. (3.30)

Assume nowmn ∈ Ãn is a minimizer of the energy functional. We showed
in the proof of Theorem 3.5.1 that in this case ∂xm̄

n, m̄n
y , m̄

n
z ∈ L2(R). Uti-

lizing (3.25) and (3.30) we discover for big n

Es(m) ≥ E⋆
s (m)− 40π2M

aω
· un where M =

3
√
2aωcω
π

.

For the energy functional of m̄n we obtain

E(m̄n) ≥ Eex(m̄
n) + E⋆

s (m̄
n)− 119π2

√
2cω
aω

· un

Recall that
lim

x→±∞
m̄n(x) = ±1,

thus we get by Lemma 3.9.5

E(m̄n)

d2n
− 2

√
2aωcω
π

≥ −119π2

√
2cω
aω

· (per(ω))2d
1
6
n . (3.31)

Utilizing (2.49) we get for the energy of mn

E(mn) ≥ Eex(m̄
n) + Emag(m

n) ≥ E(m̄n)− 3M
√
Ćd3n.

The last inequality and (3.31) imply for big n the following

E(mn)

d2n
− 2

√
2aωcω
π

≥ −120π2

√
2cω
aω

· (per(ω))2d
1
6
n (3.32)

Finally we have by (3.28) and (3.32) that for big n the following bound
holds ∣∣∣E(mn)

d2n
− 2

√
2aωcω
π

∣∣∣ ≤ 120π2

√
2cω
aω

· (per(ω))2d
1
6
n (3.33)
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3.9 The convergence of almost minimizers

Throughout this section we will consider a sequence of domain-magnetization-
energy triples (Ωn,m

n, E(mn))n∈N such that Ωn = dn · Ω0, m
n ∈ Ãn, the

sequence (dn)n∈N converges to zero and

lim
n→∞

E(mn)

d2n
= Emin

0 . (3.34)

We will call such a sequence an almost minimizing sequence.

Lemma 3.9.1. If (ḿn)n∈N converges to some m0 ∈ Ã0 in the sense of De�-
nition 3.7.1 then

•
lim
n→∞

1

d2n

∫
Ωn

|∇mn(ξ)|2 dξ =
∫
Ω0

|∂xm0(ξ)|2 dξ

•
lim
n→∞

1

d2n

∫
Ωn

|m̄n
y (ξ)|2 dξ =

∫
Ω0

|m0
y(ξ)|2 dξ

•
lim
n→∞

1

d2n

∫
Ωn

|m̄n
z (ξ)|2 dξ =

∫
Ω0

|m0
z(ξ)|2 dξ.

Proof. We have already shown that the above limits with lim inf are big or
equal than the corresponding expected limits, thus it remains to only show
the opposite inequalities with lim sup . Since

lim
n→∞

E(mn)

d2n
= Emin

0

we have

lim
n→∞

Emag(m
n)

d2n
= lim

n→∞

Emag(m̄
n)

d2n
.

Assume in contradiction that one of the three inequalities fails. Therefore
we have for some δ > 0

lim sup
n→∞

E(mn)

d2n
≥ max

(
lim sup
n→∞

∫
Ω0

∥∂xḿn(ξ)|2 dξ + lim inf
n→∞

Emag(m̄
n)

d2n
,

lim inf
n→∞

∫
Ω0

|∂xḿn(ξ)|2 dξ + lim sup
n→∞

Emag(m̄
n)

d2n

)
100



≥
∫
Ω0

|∂xm0(ξ)|2 dξ + aω0

2π2

∫
R
(|m0

y(x)|2 + |m0
z(x)|2) dx+ δ ≥ 2

√
2cω0aω0

π
+ δ

which contradicts (3.27).

Corollary 3.9.2. Let (mn)n∈N and m0 be as in Lemma 3.9.1. Then

•
lim
n→∞

1

d2n

∫
Ωn

|mn
y (ξ)|2 dξ =

∫
Ω0

|m0
y(ξ)|2 dξ,

•
lim
n→∞

1

d2n

∫
Ωn

|mn
z (ξ)|2 dξ =

∫
Ω0

|m0
z(ξ)|2 dξ.

Proof. It follows from Lemmas 3.9.1 and 3.4.3

Lemma 3.9.3. Let (mn)n∈N and m0 be as in Lemma 3.9.1. Then

•
lim
n→∞

1

d2n

∫
Ωn

|∇mn(ξ)−∇m0(ξ)|2 dξ = 0

•

lim
n→∞

1

d2n

∫
Ωn

|mn
y (ξ)−m0

y(ξ)|2 dξ = 0, lim
n→∞

1

d2n

∫
Ωn

|mn
z (ξ)−m0

z(ξ)|2 dξ = 0.

Proof. We have that

1

d2n

∫
Ωn

|∇mn(ξ)−∇m0(ξ)|2 dξ = 1

d2n

∫
Ωn

|∇yzm
n(ξ)|2 dξ+ 1

d2n

∫
Ωn

|∂x(mn(ξ)−m0(ξ))|2 dξ

=
1

d2n

∫
Ωn

|∇yzm
n(ξ)|2 dξ +

( 1

d2n

∫
Ωn

|∂xmn(ξ)|2 dξ −
∫
Ω0

|∂xm0(ξ)|2 dξ
)

+2
1

d2n

∫
Ω0

∂xm0(ξ)(∂xm
0(ξ)− ∂xḿ

n(ξ)) dξ.

We have that each summand converges to zero and thus the same does the
sum. In the next step we �x l > 0. We have

lim sup
n→∞

1

d2n

∫
Ωn

|mn
y (ξ)−m0

y(ξ)|2 dξ ≤ lim sup
n→∞

∫
[−l,l]×ω0

|ḿn
y (ξ)−m0

y(ξ)|2 dξ
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+ lim sup
n→∞

∫
Ω0\[−l,l]×ω0

|ḿn
y (ξ)−m0

y(ξ)|2 dξ ≤ 2 lim sup
n→∞

∫
Ω0\[−l,l]×ω0

(|ḿn
y (ξ)|2+|m0

y(ξ)|2) dξ

≤ 2 lim sup
n→∞

( 1

d2n

∫
Ωn

|mn
y (ξ)|2 dξ+

∫
Ω0

|m0
y(ξ)|2 dξ

)
−2 lim inf

n→∞

∫
[−l,l]×ω0

(|ḿn
y (ξ)|2+|m0

y(ξ)|2) dξ

= 4|ω0|
∫
R\[−l,l]

|m0
y(x)|2 dx,

thus using the arbitrariness of l we get the validity of the second statement.
The same can be done also for the third components of mn and m0.

Lemma 3.9.4. Let (mn)n∈N and m0 be as in Lemma 3.9.1. Assume in
addition that for some N ∈ N and l > 0 we have for all n ≥ N

m̄n(x) ≤ 0, x ∈ (−∞,−l] and m̄n(x) ≥ 0, x ∈ [l,+∞).

Then

lim
n→∞

1

dn
∥mn −m0∥H1(Ωn) = 0.

Proof. According to Lemma 3.9.2 it su�ce to show that

lim
n→∞

1

d2n

∫
Ωn

|mn
x(ξ)−m0

x(ξ)|2 dξ = 0.

Since m0 ∈ Ã0 there exists l1 > 0 such that

m0
x(x) ≤ −1

2
x ∈ (−∞, l1] and m0

x(x) ≥
1

2
x ∈ [l1,+∞).

For any �xed l2 > max(l, l1) we have that

1

d2n

∫
Ωn

|mn
x(ξ)−m0

x(ξ)|2 dξ

=

∫
[−l2,l2]×ω0

|ḿn
x(ξ)−m0

x(ξ)|2 dξ +
1

d2n

∫
Ωn\[−l2,l2]×ωn

|mn
x(ξ)−m0

x(ξ)|2 dξ.

The �rst summand converges to zero as n goes to in�nity and we have fur-
thermore that

lim
n→∞

1

d2n

∫
Ωn

|mn
x(ξ)− m̄n

x(ξ)|2 dξ = 0,

thus it su�ce to show that

lim
n→∞

1

d2n

∫
Ωn\[−l2,l2]×ωn

|m̄n
x(ξ)−m0

x(ξ)|2 dξ = 0.
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For n ≥ N we have

1

d2n

∫
Ωn\[−l2,l2]×ωn

|m̄n
x(ξ)−m0

x(ξ)|2 dξ ≤
1

d2n

∫
Ωn\[−l2,l2]×ωn

||m̄n
x(ξ)|2−|m0

x(ξ)|2| dξ

≤ 1

d2n

∫
Ωn\[−l2,l2]×ωn

||m̄n
x(ξ)|2−|mn

x(ξ)|2| dξ+
1

d2n

∫
Ωn\[−l2,l2]×ωn

||mn
x(ξ)|2−|m0

x(ξ)|2| dξ.

The �rst summand converges to zero, for the second summand we have

1

d2n

∫
Ωn\[−l2,l2]×ωn

||mn
x(ξ)|2 − |m0

x(ξ)|2| dξ

≤ 1

d2n

∫
Ωn\[−l2,l2]×ωn

(|mn
y (ξ)|2 + |mn

z (ξ)|2 + |m0
y(ξ)|2 + |m0

z(ξ)|2) dξ,

thus utilizing Lemma 3.9.1 and Corollary 3.9.2 we obtain

lim sup
n→∞

1

d2n

∫
Ωn\[−l2,l2]×ωn

|m̄n
x(ξ)−m0

x(ξ)|2 dξ ≤ lim sup
n→∞

1

d2n

∫
Ωn

(|mn
y (ξ)|2+|mn

z (ξ)|2) dξ

+

∫
Ω0

(|m0
y(ξ)|2 + |m0

z(ξ)|2) dξ − lim inf
n→∞

1

d2n

∫
[−l2,l2]×ωn

(|mn
y (ξ)|2 + |mn

z (ξ)|2) dξ

−
∫
[−l2,l2]×ω0

(|m0
y(ξ)|2 + |m0

z(ξ)|2) dξ = 2

∫
R\[−l2,l2]×ω0

(|m0
y(ξ)|2 + |m0

z(ξ)|2) dξ

which converges to zero as l2 goes to in�nity.

Lemma 3.9.5. Assume that ω ⊂ R2 is a bounded Lipschitz domain. Then
for any interval (a, b) ⊂ R, positive α and a vector �eld f ∈ H1

(
(a, b)×ω,R3

)
the following inequality holds:∫
(a,b)×ω

|∂xf(ξ)|2 dξ+α2

∫
(a,b)×ω

(|fy(ξ)|2+ |fz(ξ)|2) dξ ≥ 2α|ω||f̄x(a)− f̄x(b)|.

(The endpoints a and b can take values −∞ and +∞ respectively).

Proof. We �x a point (y, z) ∈ ω and consider the vector �eld f on the segment
with endpoints (a, y, z) and (b, y, z). Being an H1 vector �eld, it must be
absolutely continuous on that segment as a function on one variable, thus
denoting

mx(x, y, z) = sinφ(x), my(x, y, z) = cosφ(x) cos θ(x), mz(x, y, z) = cosφ(x) sin θ(x)
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we obtain that φ and θ are di�erentiable in [a, b] a.e.. Thus we can calculate∫
(a,b)×(y,z)

|∂xf(ξ)|2 dx+ α2

∫
(a,b)×(y,z)

(|fy(ξ)|2 + |fz(ξ)|2) dx

=

∫ b

a

(φ′2(x) + θ′2(x) cos2 φ(x)) dx+ α2

∫ b

a

cos2 φ(x) dx

≥
∫ b

a

(φ′2(x) dx+ α2

∫ b

a

cos2 φ(x) dx ≥ 2α
∣∣∣ ∫ b

a

φ′(x) cosφ(x) dx
∣∣∣

= 2α|fx(a, y, z)− fx(b, y, z)|.

Integrating now the obtained inequality over ω we get∫
(a,b)×ω

|∂xf(ξ)|2 dξ + α2

∫
(a,b)×ω

(|fy(ξ)|2 + |fz(ξ)|2) dξ

≥ 2α

∫
ω

|fx(a, y, z)− fx(b, y, z)| dy dz

≥ 2α
∣∣∣ ∫

ω

(fx(a, y, z)− fx(b, y, z)) dy dz
∣∣∣ = 2α|ω||f̄x(a)− f̄x(b)|.

Lemma 3.9.6. Let the sequence of intervals
(
[b1n, b

2
n]
)
n∈N be such that

m̄n
x(b

1
n) = −1

2
, m̄n

x(b
2
n) =

1

2
and |m̄n

x(x)| ≤
1

2
, x ∈ [b1n, b

2
n].

Then for su�ciently big n we have

m̄n
x(x) < −1

3
, x ∈ (−∞, b1n] and m̄n

x(x) >
1

3
, x ∈ [b2n,+∞).

Proof. Assume in contradiction that for some subsequence (not relabeled)
there is a point b3n ∈ (−∞, b1n) such that m̄n

x(b
3
n) ≥ −1

3
. Since m̄n

x(−∞) = −1
and m̄n

x is continuous we can without loss of generality assume that m̄n
x(b

3
n) =

−1
3
. Utilizing Lemma 3.9.5 for the intervals (−∞, b3n], [b

3
n, b

1
n], [b

1
n,+∞) and

Corollary 3.7.4 we get

E(mn) ≥
∫
Ωn

|∇mn|2 + aω0

2π2cω0

∫
Ωn

(|mn
y |2 + |mn

z |2) + αn · d2n ≥

≥ 2

π

√
aω0

2cω0

|ωn|
(∣∣− 1 +

1

3

∣∣+ ∣∣− 1

3
+

1

2

∣∣+ ∣∣− 1

2
− 1
∣∣)+ αn · d2n =
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=
7
√
2aω0cω0

3π
d2n + αn · d2n,

thus

lim inf
n→∞

E(mn)

d2n
≥ 7

6
E0

min

which is a contradiction.

Theorem 3.9.7. Assume that the domain ω0 is so that C
2
0 +(A0−B0)

2 > 0.
Then for any sequence of magnetizations (mn)n∈N satisfying (3.34) there exist
a sequence (Tn)n∈N of translations in the variable x and a sequence (Rn)n∈N
of rotations in the OY Z plane, each of which is either the identity or the
rotation by 180 degree such that the sequence with the terms m̃n(x, y, z) =
mn(Tn(Rn(x, y, z))) converges to some m0 ∈ Ã0 in the sense of De�nition
3.7.1.

Proof. First of all note that the change of variables mentioned in the theorem
translate the domain Ω to itself and preserve the energy. Let the intervals
[b1n, b

2
n] be as in Lemma 3.9.6. We prove the theorem by constructing such

sequences. In the �rst step we prove that if a sequence of magnetizations
converges to some m0 ∈ Ã0 in the sense of De�nition 3.7.1 and satis�es the
conditions E(mn) ≤ Md2n and m̄n

y (x0) ≥ 0 for some x0 ∈ R,M > 0 and for
big n then m0

y(x0) ≥ 0. Assume in contradiction that m0
y(x0) = δ < 0. We

have for big n ∫
[x0−1,x0+1]×ω0

|ḿn
y (ξ)−m0

y(ξ)|2 dξ = βn → 0

and by the Poincaré inequality

∫
[x0−1,x0+1]×ωn

|mn
y (ξ)− m̄n

y (ξ)|2 dξ ≤ Cd2n

∫
Ωn

|∇yzm
n(ξ)|2 dξ ≤MCd2n

for some C > 0. Combining this two we get∫ x0+1

x0−1

|m̄n
y (x)−m0

y(x)|2 dx ≤ (
√
MC +

√
βn)

2

|ω0|
−→n→∞ 0. (3.35)

On the other hand we have∫
Ωn

|∂xm̄n(ξ)|2 dξ ≤
∫
Ωn

|∂xmn(ξ)|2 dξ ≤Md2n,
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thus ∫
R
|∂xm̄n(x)|2 dx ≤ M

|ω0|
=M1.

We have furthermore for any x1 < x2

|m̄n
y (x1)− m̄n

y (x2)| ≤
∫ x2

x1

|∂xm̄n
y (x)| dx ≤

(∫ x2

x1

dx

∫ x2

x1

|∂xm̄n
y (x)|2 dx

) 1
2

≤
√
M1(x2 − x1)

which gives

m̄n
y (x) ≥

δ

3
for all x ∈

[
x0 −

δ2

9M1

, x0 +
δ2

9M1

]
.

Since m0 is continuous there exists ϵ > 0 such that

m0
y(x) ≤

2δ

3
for all x ∈ [x0 − ϵ, x0 + ϵ].

Combining the last inequality with the inequality for m̄n
y we obtain∫ x0+1

x0−1

|m̄n
y (x)−m0

y(x)|2 dx ≥ 2
δ2

9
min(ϵ,

δ2

9M1

, 1)

which contradicts Lemma 3.9.1. The same sing preserving property can be
also proved for the �rst and the third component of m̄n and also for the
opposite sign. This means in particular that if m̄n

x(x0) = 0 for big n then
m0

x(x0) = 0. In the second step we construct the sequences (Tn)n∈N and
(Rn)n∈N. Let the intervals [b1n, b

2
n] be as in Lemma 3.9.6 and xn ∈ [b1n, b

2
n]

be such that m̄n
x(xn) = 0. By continuity such intervals and points exist for

any n ∈ N. For any n ∈ N we choose Tn to be the translation by xn and
the rotation Rn to be the identity if m̄n

y (xn) ≥ 0 and the rotation by 180
degree otherwise. We show now that the sequence (m̃n)n∈N converges to
some m0 ∈ Ã0 in the sense of De�nition 3.7.1. Utilizing the Γ-convergence
theorem we get that the sequence (m̃n)n∈N is relatively compact thus what we
have to actually show now is that every convergent subsequence (in the sense
of De�nition 3.7.1) of it has the same limit. Suppose (m̃nk)k∈N converges to
some m0 ∈ A0. We �rst show that m0 ∈ Ã0. Lemma 3.4.4 states that there
exists M2 > 0 such that b2nk

− b1nk
≤ M2 for any k ∈ N, therefore utilizing

Lemma 3.9.6 we obtain that ¯̃mnk
x is negative in (−∞,−M2] and is positive

in [M2,+∞) and hence using the fact that ¯̃mnk converges to m0 in L2
loc(R)

we get that m0 must be nonpositive in (−∞,−M2] and is nonnegative in
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[M2,+∞) and therefore belongs to Ã0. Now the above proved fact states
that m0

x(0) = 0 and m0
y(0) ≥ 0. Furthermore from the lower semi-continuity

part of the Γ-convergence theorem we have that

E0(m
0) ≤ lim inf

n→∞

E(m̃nk)

d2n
= lim inf

n→∞

E(mnk)

d2n
= E0

min

thus m0 is a minimizer of E0.We have seen in section 3.6 that any minimizer
of E0 must have the form

(sinφ(x), cosφ(x) cos θ(x), cosφ(x) sin θ(x))

where

φ(x) = arcsin
e2

√
αx+β − 1

e2
√
αx+β − 1

, α =
aω0

2π2cω0

, θ = arctan t0 and β ∈ R

and we take t0 = 0 if C0 = 0. It is easy to see now that the properties
mx(0) = 0 and my(0) ≥ 0 determine m0 in the unique way, namely we get
β = 0 and my(0) =

1√
1+t20

.

Theorem 3.9.8. Assume that the domain ω0 is so that C
2
0 +(A0−B0)

2 > 0.
Then for any sequence of magnetizations (mn)n∈N satisfying (3.34) there exist
a sequence (Tn)n∈N of translations in the variable x and a sequence (Rn)n∈N
of rotations in the OY Z plane, each of which is either the identity or the
rotation by 180 degree such that for the sequence with the terms m̃n(x, y, z) =
mn(Tn(Rn(x, y, z))) and some m0 ∈ Ã0 we have

lim
n→∞

1

dn
∥m̃n −m0∥H1(Ωn) = 0.

Proof. It is a consequence of Lemma 3.9.4, Lemma 3.9.6 and Theorem 3.9.7.

Corollary 3.9.9. Theorem 3.9.8 is valid for any sequence of minimizers
(m)n∈N.

In conclusion we mention that it is easy to see any rectangle that is not
a square and any ellipse that is not a circle satis�es the condition

C2
0 + (A0 −B0)

2 > 0.

It is also worth mentioning that one can prove a modi�ed version of
Theorem 3.9.8 in the case when ω0 is a disc, namely due to the symmetry
one can not state that the rotations Rn are either the identity or a rotation
by 180 degree, but one can prove their existence.
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