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Abstract

In this thesis we study static 180 degree domain walls in infinite thin mag-
netic wires with either a rectangular or a centrally symmetric Lipschitz cross
section. We explore the magnetization energy minimization problem by find-
ing an approximation for the magnetostatic energy. Two different pattern
formations of the magnetization have been observed. In dependence of the
thickness of the wire, different pattern formations of the magnetization vector
are observed. We prove an existence of global minimizers(even for Lipschitz
cross sections). We prove a ['-convergence result for both types of thin wires.
For rectangular cross sections we distinguish two different regimes and estab-
lish the minimal energy scaling in terms of the cross section edge’s lengths.
For a centrally symmetric cross section we establish as well the minimal en-
ergy scaling in terms of the diameter of the cross section and some geometric
parameters relating to it. We prove as well a rate of convergence for the min-
imal energies for all cases. For thick wires with a rectangular cross section we
prove an upper bound and give a reference for a lower bound on the minimal
energy. For thin wires a Néel wall occurs and for thick wires a vortex wall is
expected to occur.
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Chapter 1

Introduction

The aim of this thesis is to study static 180 degree domain walls in infinite
thin magnetic wires. We explore the magnetization energy minimization
problem by finding an approximation to the magnetostatic energy. Two
different pattern formations of the magnetization have been observed. In
dependence of the the thickness of the wire different pattern formations of
the magnetization vector are observed. We make a detailed study for thin
wires, where a Néel wall occurs, and give lower and upper bounds on the
minimal energy for thick wires, where a vortex wall is expected to occur.

1.1 Pattern formation and the reversal process

In the last years there has been significant progress in production and in-
vestigation of thin magnetic wires, e.g. [30,32,34]. Such arrays of nanowires
are considered as future high density storage devices, e.g. [2]. It is known
that the magnetization pattern switching time is closely related to the writ-
ing and reading speed of such a device, thus it is crucial to understand the
magnetization switching process. The reversal of the magnetization typically
starts at one end of the wire creating a domain wall, which moves along the
wire. The domain wall separates the reversed and the not yet reversed parts
of the wire (Fig. 1.1). Because it is difficult to do experiments with thin
wires, there are few results on the speed of the moving wall. It has been
observed experimentally and in numerical simulations, that there is a dis-
tinctive crossover between two different modes of magnetization switching
at a critical diameter: in particular, for nickel the crossover occurs at the
diameter of about 50nm. For thin wires the transverse mode is observed: the
magnetization is constant on each cross section and it is rotating and moving
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along the wire (see Fig 1.2). For thick wires the vortex mode is observed:
the magnetization is almost tangential to the boundary and develops a vortex
which propagates along the wire (see Fig 1.2). The vortex mode appeared
to be much faster than the transverse mode.

—
> — —> —>
—_ — —

> —
> —p
—
>~

—
—>

- < e - —p

- < o P —p —_— — - —P
.—b-

B JESEEE: i T '
SO T M)

i i -
i i

ettt P

PPitty RAR

The transverse wall The vortex wall

Figure 1.2 (Longitudinal section and cross section)



It is well known that the pattern formation of the magnetization can
be understood from the behavior of the energy minimizing profiles and it
has been suggested in [26,27| that the magnetization reversal process can be
understood by studying the Landau-Lifshitz-Gilbert equation of the micro-
magnetics. A justification for a circular cross section has been done there by
K.Kiihn using the results on the static domain walls obtained in [24,25] and
then studying the dynamics of the magnetization(Landau-Lifshits-Gilbert
equation). In this work we study the static domain walls in a more gen-
eral setting, namely when the cross section is either an arbitrary centrally
symmetric Lipschitz domain or a rectangle with various aspect ratios.

1.2 Brief introduction to micromagnetics

Micromagnetics is a theory that assigns a nonlocal energy to each magnetiza-
tion m from the domain 2 to R?, where the domain €2 represents a magnetized
body in R3. The vector field m represents the magnetization of the body and
has a unit length in Q. It as extended as zero outside 2. It is assumed that
the body €2 is ferromagnetic. The energy functional of micromagnetics is
given by the following expression:

Bm) =& [ [P +Q [ om)+ [ [Fup =2 [ Hoom )

The four summands in (1.1) are called exchange energy, anisotropy energy,
magnetostatic(or demagnetizing) energy and Zeeman(or external field) en-
ergy respectively. The numbers € and () are material parameters, the vector
H.,; is an applied magnetic field, while Vu is magnetic field generated by
the magnetized body . Here u: R?* — R is a scalar function that is obtained
from m by solving the Maxwell’s equation of micromagnetics:

div(Vu+m) =0 in R?

which is equivalent to
Au = div(m) in R?

in the distributional sense. It is known in physics that the ground states of
the magnetization correspond the minimizers of the micromagnetic energy
functional. The theory of micromagnetics is used for the analysis and design
of magnetic devices. It explains observations on different length scales. For
a more detailed discussion we refer to [9,22].



1.3 Overview of the thesis

In chapter 2 we study static 180 degree domain walls in infinite cylinders with
a rectangular cross section . We distinguish three different regimes. The first
regime corresponds to the case when both the hight d and the width [ of
the cross section are sufficiently small and comparable to each other. The
second regime corresponds to the case when both d and [ are small but d
is much smaller than [: so d << [. The third regime corresponds to the
case when both d and [ are big and comparable to each other. In the first
two regimes the optimal scaling of the minimal energy can be realized by a
Néel wall(transverse wall) for which the magnetization is constant on each
cross section. We prove that as d,l — 0 and if in addition % — ¢, where
evidently ¢ > 0 for the first regime and ¢ = 0 for the second regime, the
rescaled energy minimizing problem min@ (where p = d - for the first
regime and 1 = d2l2|Ind — Inl|2 for the second regime) I'—converges to a
one dimensional problem which attains its minimum and can be solved ex-
plicitly. Moreover, we find a rate of convergence for the minimal energies. In
the third regime we prove an upper bound on the minimal energy scaling by
constructing an example. We also make a reference for a lower bound.

In Chapter 3 we study static 180 degree domain walls in infinite cylinders
with a centrally symmetric and Lipschitz cross section. Like in the rectangu-
lar cross section case we prove a I'—convergence for the rescaled minimiza-
tion problem Egzn) as d goes to zero, where d is the diameter of the cross
section. The optimal scaling turns out to be d? and is realized by a Néel
wall(transverse wall). We prove as well an existence of the energy minimizer.

We also establish a rate of convergence for the minimal energies.

1.4 General notation

In this section we point out the notations and some conventions we are going
to use throughout this work. We will use the following conventions: The
letter & = (&1, &, &3) denotes a point in R3. A map f with values in R? will
have the components f, f,, f-, i.e, f = (fs, fy, f=). For [,d > 0 numbers we
denote the rectangle [—[,1] x [—d,d] by R(l,d), the rectangle {z} x [—,[] x
[—d,d] by R.(l,d) and Q(I,d) = R x R[l,d] C R3-an infinite cylinder with
rectangular cross section (note that the cross section is the intersection of €2
with any hyperplane orthogonal to the x axis). We denote as well

Eo(m) = 62/ Vml?
(9]



and

Emag<m) = |VU’2
R3



Chapter 2

The static domain walls 1n
cylinders with a rectangular cross
section

2.1 Inrtroduction

In this chapter we study the static energy functional for the magnetizations
m: Q(l,d) — S*. We consider three different regimes. The first two of them
relate to thin wires and the third one relates to thick wires. We use many of
the methods used in [9] and |24]. In |9] many different regimes corresponding
to magnetic films are studied.

2.2 The model problem

We consider the micromagnetic energy without an external field and anisotropy
energy:

E(m) 62/ Vm|? de +/ Vuf? de
Q R3
Let A(l,d) be the set of magnetizations with finite energies:
A(l,d) = {m: Q(l,d) — S* | E(m) < oo}.

We are interested in the magnetisations with a 180 degree domain wall, so
we will consider a subset A(l,d) of A(l,d) containing the magnetisations of
A(l, d) satisfying the conditions lim,_,1., m(x,-) = £¢é;, where the limits are



understood in the following sense: m —ée € H*(Q2), and
—

—e, if < -1
e={ z-e, if —1<z<1
_>

e, if 1<u

We will sometimes leave out [ and d in ©Q, A, and A, provided it is certain
which domain is being considered.
We study the minimization problem

inf E(m) (2.1)
meA(l,d)

First of all we eliminate the material constant e from the energy functional
expression and we also try to find out which kind of magnetizations are
favorable for thin and thick films respectively. To that end we consider the
magnetization my(t) = m(kt) for k > 0. It is easy to see that

E(my) = kE..(m) + k> Epag(m),

where the integration on the left hand side is done over the domain % - Q).
This shows that if k£ is big then the major contribution to the energy comes
from the magnetostatic energy, therefore the energy of a thick wire favors
magnetizations with a vortex wall. If £ is small then the major contribution
to the energy comes from the exchange energy, thus the energy of a thin wire
favors magnetizations that are almost constant on each cross section. We
rescale our spatial variable by a constant factor & = € which will yield to a
situation when the coefficients of

/|Vm|2d§ and / |Vul?d¢
Q R3

are the same. We will hereafter assume that

E(m) = /Q |Vm|? df—i—/}R3 |Vul® dé (2.2)

where u is the weak solution of Au = divm. We will consider an auxiliary
subset A, of A which consists of all the magnetizations from A that are
constant on each cross section:

A, ={m € A | m is constant on each cross section},
and we define as well the set
A, = {m e A | m is constant on each cross section}.

Let Epin and Eyp, . be the infimums of E(m) respectively in A and A,.

9



2.3 The main results

We study the existence of a minimizer for minimization problem (2.1). We
consider as well the pattern formation of the optimal wall profile, the minimal
energy scaling and we find a rate of convergence. We prove the following
results.

Theorem 2.3.1 (Existence of minimizers). For every 0 < d <1 there ewist
minimizers of B in A and A,.

Theorem 2.3.2 (Energy scaling). The minimal energy scales like i, where

w=d-lI in the first regime,
f=dz - l%\ Ind — lnl\% in the second regime.

Theorem 2.3.3 (Upper and lower bounds). Assume that § < 4. Then there
exist two positive numbers dy and C, both depending on ¢ such that if d > d
then

Cd*(Ind)z < E(m) < 150d? (Ind)=.

The magnetization that admits the scaling shown in the upper bound
is tangential to the boundary and forms a vortex. We expect it to be the
optimal scaling in the third regime.

Instead of energy minimizing problem (2.1) we consider the rescaled prob-
lem g

m
inf L (2.3)
mecA M
Theorem 2.3.4 (I'-convergence). In the first two regimes the rescaled enerqy
minimizing problem I'-converges to a one dimensional problem as d goes to

zero, provided

and
c >0 in the first regime, ¢ =0 1n the second regime.

Moreover, the limit problem can be solved explicitly.

Since I'—convergence implies the convergence of the minimal energies as
well as the convergence of minimizers under good compactness properties we
obtain that

lim % _ Y
d=0 [ man

(2.4)

10



where EC . is the minimal value of the limit energy. For thin cylinders
any energy minimizer is almost constant on each cross section and forms a
Néel wall (the transverse wall). We find a rate of convergence for limit (2.4)
in the second regime. For the first regime we prove a rate of convergence

theorem in a more general setting in Chapter 3.

Theorem 2.3.5 (Rate of convergence). For sufficiently small d the following
bound holds:

Ein 0 64
—E% | < ——— 4361 2.5
% V| Inc| (2:5)

2.4 The characterization theorem

Hereafter we will consider not only the magnetizations but also all the bounded
and measurable vector fields m: Q — R3 satisfying

m(r) =0 in R*\ Q.

We denote by M the set of such vector fields and by M§ the set of all vector
fields in Mq which are constant on each cross section. For any m € Mg the
divergence of m consists of two parts: the body charges v and the surface
charges s, i.e., the distributional divergence from the normal component of
the magnetisation on the surface.

—divm in
”@:{ 0 in R\Q

~f m(&)-v(€) on 00
5(5)_{ 0 in R¥\9Q

where (&) is the outward normal to the boundary of Q at point . Recall
that the map u is the weak solution of

Au=divm in R? (2.6)

if and only if
Vu € (R*) and Vu-Vo= [ m-Vy forall ¢eCPR?) (2.7)
R3 R3

which is itself equivalent to
/ Vu-Vgoz/v-ga+/ s-p forall @& CPRY). (2.8)
R3 Q o9

11



This defines u up to a constant, but we deal with the gradient of u so that
constant does not effect the energy functional. The next lemma gives in
particular a bound on |[|s||z2(sq)-

Lemma 2.4.1. If the vector field m € M;‘;(l’d) satisfies
Im| <1 in Q
and
E(m) < oo

then there exists a positive number M depending only on 1, d and E(m) such
that
HmyH%Q(R) + Hmz”%Q(R) < M.

Proof. We have

/ Vu-sz/v-go—I—/ S+ for all @ € C°(R?). (2.9)
R3 Q o9

By the density argument one can show that this equality stays valid also
for such functions ¢ which have compact support and are weakly differen-
tiable with gradient in L?(R3). We prove the lemma by taking suitable test
functions ¢ in (2.9) and using the finiteness of the norms ||Vul|/z2gs) and
V|| r2(q). The idea is to choose the test functions ¢ close to s. Note that

on Fleft

on I'y,
on Fdown

=
s(§) = my(f) riaht
m(§)

where
Lright = R x {1} x [=d,d], Tiepr =R x {=l} x [—d,d],
Ly =R x [=11] x{d}, Tipw =R x[=11] x {—d}
and it is clear that 0Q = I'yjgp UL UL, UL, For convenience we choose

test functions having support close to each of the surfaces I';igns, I'ie e, I'up and L'y,
For any r > 0 there exists a function 1, € C°°(R* R) such that

¥ =1 in [—r,r]x[—é,é}x{d}, 0<e¢,<1 in R
S e N RECTE T P

12



Note that m is strongly differentiable a.e. in R since it depends only on x
and is weakly differentiable. We choose ¢, = m,,. It is clear that

10 )
0207 | = |Oxmzthy + Opthym,| < |Opm| + E|mz’ in supp(yp),

10 .
|8y901“| = |ay¢rmz| < Elmz| in  supp(yp),

10 )
faz%\ = |ay¢rm2| < E|mZ| m supp(c,o),

thus 400
|v§0'r’2 S ?|mz|2 + 2|az"nZ|2 in Supp((p) (210)

We denote I, = [ |m.(x)|* dz. We have on one hand

. — 2, . ' 2
/ms o de /mmz Gy dé > 1 / ma()Fde (2.11)

-

and on the other hand

| [ seeede] < [ 9ul-1Verlde+ [ ol ol dg
o0 R3 Q

< |IVullzewsy - (IVerllzesy + lvllz2 - el (2.12)

We have as well

o200y = / o de = m? 2 de
Q QNsupp(er)

r+4

<d(l+ d)/ ma(@)*de < (1 + d) (I + ),

_7»_5

(400

- lmaf? +210.m.[?) dg

IVerlses = [ IVelass [

upp(pr)
< %(l+d)(lr+d)+2d(l+d)/R|8mmz|2dx < %O(l—kd)(lr—kd)—ir/(szPd{
@

d
IVullF2gsy < E(m) and  ||vl|72q) = /Q |0,m[* dE < E(m).

< —(+d)(I, +d)+ E(m),

13



Using now (2.12) and the inequalities for || Vul| r2rs), || Vor || 2®s), [|v]| L2l €rl 220
we obtain

‘/@Q&%dgr < 2E(m)<4%0(l+d)(IT+d)+E(m)+d(l+d)([T+d)>. (2.13)

Inequalities (2.11) and (2.13) yield an inequality of the form
]3 S Can + C

where ¢; and ¢, are constants depending only on I, d and E(m). This implies
that I, < xy where x is the biggest root of the equation z? — ciz — ¢y = 0.
In the same way one can show that J, < yo where J, = [7 |m,|*dz and
yo depends only on [, d and E(m). This completes the proof since r was

arbitrary.
O

We investigate the average function m which is the mean value of m over
the rectangle R, (l,d) and thus depends only on the first variable x:

o) = [ mdyds (5,02 € (Ld)
Ry (1,d)

Like m we extend m as 0 outside 2. This function will play a crucial role
in the proofs of the foregoing theorems. Actually it is the key point to the
extensions of several lemmas that hold for the magnetizations constant on
each cross section to the general case. It is easy to see that if m is weakly
differentiable in x then so is m and

1
O.m(x,y,2) = RO /R(z,d) Oem(x,y1, z1) dyr dz1,  (x,y,2) € Q(,d).

We also prove some auxiliary lemmas which allow us to prove some properties
of the energy functional provided we have proven them for the magnetiza-
tions constant on each cross section. The first lemma shows that if two
magnetizations are closed to each other in L?*(€2) then so are their magne-
tostatic energies. The second lemma allows us to estimate from above the
energy of the average magnetization as well as the sum ||, || 2(q) + 72| 2(0)
in terms of [, d and F(m) and hence it yields the finiteness of the sum
172y || L2(0) + |22 || L2 () - The third lemma describes some properties of a mag-
netization with 180 degree domain wall and with a finite energy. It shows
that the average function m is almost +1 at respectively o0 and also that
its first component can not have a lot of oscillations in a certain sense.

Lemma 2.4.2. For any vector fields mi,mo € Mq with finite energies the
following statements hold:

L4 Emag(ml + m?) S 2<Emag(m1) + Emag(mQ))

14



L4 |Emag(m1>_Emag(m2)| S Emag(ml_m2)+2\/Emag<m1)Emag(m1 - m2)

® [Erag(1) = Epag(ma)| < [lma—ma||72q)+2[lmu—ma| 12(0) v/ Einag (m1)
Zf mip — My € L2<Q)

Proof. Assume that u; and us are the weak solutions of Au = divm; and
Au = divmgy respectively. It is clear that

Emag(mﬁ—mg) = |V(U1+U2)|2df :/ (|VU1|2—|—|VUQ|2+QVU1'V’U2) d{
R3 R3
<2 [ (901l + V) 4 = 2By () + By (2)
Braglims) = B = | [ (191 = V)
= | [ (19w = wn) + 2V - Vs — 2V ) ]
R

g/ |V(u1—u2)|2d£—|—2/ IVuy(Vuy — Vuy)|dé
R3 R3

SEmag<m1—m2>+2\/ / V2 de - / V(s — )2 €
R3 R3

= Emag<m1 - m2) + 2\/Emag<m1)Emag(m1 - m2)

the last inequality is a consequence of Schwartz inequality. The third state-

ment is a consequence of the second one and  Epq5(m) < ||m| 120
[

Lemma 2.4.3. For any m € Mq with a finite energy the following statements
hold:

o Jra(mP=ImP)dydz = [, o Im—mPdydz < C(+2) [ 4 [Vyem|dydz

for all x € R, where C' is an absolute constant(the Poincaré constant)
o Fo(m)+ Eep(m —m) = Eep(m)
e There exists a constant Cy depending only on | and d such that

E(m) < CLE(m) (2.14)

15



o There exists a constant Cy depending only on I, d and E(m) such that
Iy 17200y + 17201 2200.0y) < Co (2.15)

Proof. We have for any x € R

/ (m—m)dydz:/ mdydz — |R.(I,d)| - m(z) =0
Ra(l,d) Ra(l,d)

thus
/ Im[*dydz = / |m|? dy dz
Ry (1,d) Ry (1,d)

—l—/ ]m—mIQdydz+2m(x)/ (m —m)dydz
Ra(1,d) Ra(l,d)

= / |m]2dydz+/ lm —m|? dy dz.
R (1,d) R (l,d)

Taking into account now that the weak derivative of the average function
is the average of the original function’s weak derivative we get the second
equality. We have according to Lemma 2.4.2

Ernag(1m) < 2Emaq(m —m) + 2Emag(m) < 2Ena4(m) + 2[m — 7200 )
(2.16)
and the Poincaré inequality gives us the following

/ Im —m|?dydz < C(I> + d2)/ V,.m|>dydz forany z€R
Ry (1,d) Ry (l,d)
Integrating the last inequality over R we obtain

Im=mliZ2(ag.0) = / [m—m|*d¢ < C(I*+d?) / [Vyzm|* d§ < CEea(m).
Q(l,d) Q(l,d)

Applying (2.16) and the last inequality we get in conclusion

E(m) = Eey(M) 4 Emag(n) = Eez(m) — Eez(m — M) + Eppag(1m)
1) < Eep(m) + 2B mag(m) + 20 (1% + d?) B, (m)
< (24 2C(12 + d*)E(m).

The forth statement is a consequence of the third one and Lemma 2.4.1.

S Eex(m) + Emag(

]

16



Corollary 2.4.4. For anym € A and x € R

/ |m|? dy dz < / Im|? dy dz
R (1,d) R.(1,d)

g/ im|? dy dz + C(1 +d2)/ V,-m|? dy dz (2.17)
Ry (1,d) R.(1,d)
Lemma 2.4.5. e Let m € A be a magnetization and o and [ be real

numbers such that —1 < a < f < 1. Assume R is family of disjoint
intervals (a,b) satisfying the conditions

{ma(a),m.(b)} = {a, B}, |m.(2)] < max(lal,|5]) in (a,b). Then

card(R) < My and Z (b—a) < M, (2.18)
(a,b)eR

where M is a constant depending on 1, d, o, B and E(m).

o Ifm e A then for any 0 < & < 1 there exists a positive number N
such that two of the following properties hold:
—1<m, <-146 in (—oo,—Ns)
—1<m,<—-14+4§ in (N5 +o0)
1-6<m; <1 in (N5, +00)
1-6<m, <1 in (—OO, —N(;)
(note that only two of them can simultaneously hold.)

e For any m € A the function m, has a constant sign at +oo.

Proof. We first prove that the sum of the lengths of the intervals in R is
bounded. We have that |m,(z)| < max(|al,|B]) = p with 0 < p < 1. As
we have mentioned m is weakly differentiable in z and taking into account
that every weakly differentiable function of one variable is locally absolutely
continuous in R we get that so is m. Let (a,b) € R. It is clear that

/ m2 dé < 4ldp*(b — a) (2.19)
(a,b)x R(l,d)

Integrating (2.17) over (a,b) and taking into account (2.19) we get

41d(b— a) :/ iml? d¢
(a.b)x R(1,d)

g/ |m|2d§+é(l2+d2)/ V,.m de
(a,b)x R(L,d) (a,b)x R(L,d)
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< 4ldp*(b—a) + /

(2 + ) dé + C( + ) / V,m de
(a,b)x R(L,d)

(a,b)xR(l,d)

We do this for all (a,b) € R and add the obtained inequalities. For conve-
nience we put

2= J (@) x R(,d).

(a,b)eR

Since R is a family of disjoint intervals then ¥ C Q(l,d). In conclusion we

get:
4ld Y (b—a)

(a,b)eR
<dldp* (b—a)+/

(a,b)ER =

< dldp* > (b—a)+/

(a,b)ER Q(l.d)

<dldp* > (b—a)+ Cy+ C(I* + d*)E(m)
(a,b)eR

(m2 +m?2) dé + C(1* + d?) / V,.m|? dé
>

(m?2 +m?) d¢ + C(12 + d?) / |Vm|? dé
Q(l,d)

in the last step we used (2.15). Finally we get

S (b—a) < Cy+ C(12 + d*)E(m) (2.20)

oen Ald(1 — p?)

Now we prove that R contains finitely many intervals namely we get an upper
bound on the number of the entries of R. For any point (y,z) € R(l,d) and
any interval (a,b) € R we have

b , 1 b 9
/a |0pmy(x,y, 2)|* de > m(/ﬂ |8xmx(m,y,z)|dx> (2.21)

Integrating (2.21) over R(l,d) we get

1 b 2
/ |0, (2, y, 2) 2 dE > / (/ |0ma(x,y, 2)| dx) dy dz
(a,b) x R(1,d) b—a Jrua \Ja

1
>
“b—a

2
=iy
2— mqyQ,yY,z) — My b7yaz dde
41d<b_a><m,,d)'< )~ ma(b.y, )

18

/ Im.(a,y, 2) — mg(b,y, 2)|*dydz
R(1,d)



1 2
2 4ld(b — a) </R(l’d) (mx<a7yaz) - mm(baya Z)) dy dZ)
2 ld(o — B)?
= _4ld(—bl— ) (atd(me(a) = me()) ) = 424

thus
4ld(o — )2

/ Oy, , )P dE >
(a,b)x A(l,d) b—a

We add the obtained inequalities for all (a,b) € R to get

2 1 2 2
dd(a — B) m§/2|8$mm| d§§/§2|6$m1,| de < E(m). (2.22)

(a,b)eR

Adding (2.20) and (2.22) we obtain

Z < 1 —l—b—a>< 1 ( E(m) +Cg+é(l2+d2)E(m)>::M2

v b—a = 4ld\(a — B)? 1—p?

(2.23)
The fact that for any (a,b) € R the inequality ; + b — a > 2 holds and
(2.23) show that M; > 2N where N is the number of the entries of R and
M, depends only on [, d, a, 8 and E(m),i.e., M, satisfies (2.18). The first

statement is proven. Using now (2.15) and (2.17) we get

/9(1 —m2)d¢ < /Q<mg +m2)dE + C(I? + d*)E(m) < 0o (2.24)

and it is as well clear that

1 1
4ld R(l,d) 4ld A(l,d)
thus
0<1-mi(x) <1 forall z€R.

We know that [,(1 —m2)dr < co which is equivalent to the finiteness of
the two integrals: [,"(1 — m?)dz and fi)oo(l — m2)dz. The integrand is
continuous and positive thus for any positive d less than 1 and a natural
number N there exists zo € R greater than N such that |m,(zo)] > 1 — 2.
Therefore there exists an increasing sequence of real numbers (x,,),en tending
to +oo such that |m,(z,)| > 1 — $. Hence for infinitely many indices n one
of the following statements holds: m,(z,) > 1 — 2 or my(z,) < —1 + 2

2 g

Assume that for a subsequence (not relabeled) we have m,(z,) > 1 — 3.
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We will prove that m,(z) > 1 — 9§ for all x > N; for some Ns. Assume
in the contrary that for an increasing sequence (Z,)neny tending to +oo
My (Z,) < 1—0. We can choose an infinite family of disjoint intervals (a,, b;,)
such that the value of m, at one of the ends of (a,,b,) is less or equal than
1 — ¢ and at the other end is big than 1 — % for all n € N. The construction
of such a family of intervals goes in the following way: In the first step
we take the smallest n such that z, > x; and denote it by n; and take
ay = 71, by = Zs,. In the second step we take the smallest n such that
T, > by and denote it by no and then we take the smallest n such that
Zn > T, and denote it by ne and take as = x,,, and by = Z5,. We continue
this process as long as possible. Since (z,,)nen and (Z,,),en tend to +oo this
sequence of steps is infinite and thus we have constructed an infinite sequence
of disjoint intervals (a,,b,) with the property that m.(a,) > 1 — % and
mz(by,) < 1—6 for all n € N. Since m, is continuous in R the new sequence
of intervals (dn,l;n) where 4, = sup{z € (an,b,) | m(x) > 1 — g} and
b, = inf{x € (4, b,) | Mmau(z) < 1 — 8} has the property my(d,) =1 — ¢ and
mg(by) = 1 — & and they are disjoint because (dn,by) C (an, by). Moreover,
the construction of @, and b, yields m,(z) < 1— g for all = € (a4, bn) But
this contradicts the first statement of the foregoing lemma which states that
the number of such intervals must be finite. The same can be done for —oo.
The fourth statement is an obvious consequence of the third one taking for
instance 0 = %

]

Remark 2.4.6. In the proof of Lemma 2.4.5 we have actually shown that
for an arbitrary magnetization m the finiteness of the three norms

IVmllLz@), mylleey,  [m:llcem)

yields that m, and |m,| have a constant sign and tend to 1 respectively at
both +oc.

Corollary 2.4.7. Assume that a magnetization m € A, satisfies the condi-

tions
S, ) = e
and
VM| 2wy, Iyl 2®)s (Ml 22 @) < oo
Denote

e mg(x) —co if  x € (—o00,0]
m(x) = { mg(x) —cy if  x € (0,400),

then m* € L*(R).
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Proof. According to Remark 2.4.6 we have that c¢_,cy € {—1,1}. We will
show for the case c; = 1, the other cases are analogues. Utilizing once
again Remark 2.4.6 we have that there exists a positive number /N such that
my(xz) > 0 in [NV, 4+00). We have that

[T merar<av e [T mie)dn =

N

=4N + /N Oo(mfj(a:) +m?(r))dr < oo,

O

In the next step we describe the magnetizations which are constant on
each cross section and have finite energy.

Theorem 2.4.8 (Characterization). For any ! and d if m € A(l,d) then one
of the four functions m=+e;, m+e belongs to H'(Q(1,d)). (the function & is
defined in Section 2.2).

Proof. For any m € A we have
B(m) = [ [9mf? ¢ + By < o0
Q

thus Vm € L*(Q). Note that the gradients of &¢, are zero and the gradients
of e are zero outside the bounded set [—1,1] x R(l,d) and are (£1,0,0) in
(—1,1) x R(l,d) so they are all in L?(Q2). Using triangle inequality we get
that the gradients of all the four functions m + e, m + & belong to L*(Q).

It remains to prove that one of the four functions m =+ e_x), m + € belongs to
L*(9). Denote

O = (00,0 x R(l,d) and Q4 = [0, +00) x R(l,d).

We have

| m=@Pae= [ (m =12 i+ m) d -

_ Q_

:2/ (1—m1)d§:81d/_0 (1—m,)de

— [ee)

and similarly

0
/\m+e—;|2d5:8zcz/ (14 my,) dz
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It is now clear that m + e, € L2(Q_) if and only if 1 + m, € L'(—o0,0).
Similarly we have that m & e, € L?(Q) if and only if 1+ m, € L*(0, +00).
According to Lemma 2.4.5 m, has a constant sign at £o0o0. Suppose that
mg(x) > 0 for x > N > 0. According to (2.24) we have that

+oo
/ (1—m2)dr < oo
0

thus
+o00 +oo Foo
/ (1—m§)dxz/ (1—m§)dx:/ (1= my)(1 +my) de >
0 N N
400
2/ (1= ) da
N
and thus

+oo 400
/ (1—mx)dx§2N+/ (1 —m,)dr < oco.

0 N
Similarly we could prove that if we had m,(z) < 0 for > N > 0 for
some N then 1+ m, € L'(0,+00). Obviously the same can be done for Q_.
Therefore we have obtained that exactly two of the four statements hold:
14+m, € LYQ), 1+m, € LY(Qy), 1 —m, € LYQ), 1 —m, € LY(Qy)
which ends the proof.

O

2.5 The magnetostatic energy

2.5.1 A representation of v and the magnetostatic
energy

In this subsection we recall some theorems from [24] which give a represen-

tation of v and the magnetostatic anergy and also show that the inverse of

the characterization theorem holds. Since we work in an infinite domain It
is not clear under which conditions a weak solution of the equation

Au = divm

exists and has a finite L?-norm. A very well known case is the case m € ?(12).
In this case the equation
Au = divm
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has a weak solution u with ||Vu|| r2ms) < ||m||r2(q)-
Consider for all ¢7,¢™ € R the function ng : R — R3 such that

XS = (9@ min(1, |z|),0,0)
and define the set
X(l,d) = {m: Q(l,d) - R*| 3¢, c¢" € R such that m—y*. € H'(Q(,d))}.
Recall that the Green function for —A in R3 is '(§) = #\ﬁl'

Lemma 2.5.1. For m € X define the maps u,, us,u: R> = R by

() = /Q P( — &)o(6)) ey,

us(€) = /a (€ - sl e

w(§) = u(8) + us(§)-
Then the following statements hold:

o The maps u, and us satisfy the equalities

Vu, (&) = Z /(‘ZT({ —&)v(&)elde  forall € eR3, (2.25)

ic{z,y,2} " ¢

Vu ()= ), | OL(E-¢&)s@)eide  forall &R\,

ie{x,y,z} N
(2.26)
Vu, -V = / v  forall € CF(R?), (2.27)
RS Q
Vus -V = / s forall @€ CPR?). (2.28)
RS o9

e u is a weak solution of Au = divm.
e Vu is in L*(R?).

Proof. The validity of (2.25) and (2.26) is clear because the integrands are
absolutely continuous for any £ € R and £ € R3\ 99 respectively. For the
proof of (2.27) and (2.28) we refer to [24|. The second statement is now clear
if we take into account (2.27) and (2.28). For the proof of the third statement
we again refer to [24].

[l
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For any m € X we will hereafter consider the weak solution of Au = divm
which is defined in Lemma 2.5.1. As a corollary we get a necessary and
sufficient condition for a magnetization to have a finite energy.

Theorem 2.5.2 (Characterization). A magnetization m: Q — S* is in A if
and only if one of the four functions m + eromte belongs to H ().

Proof. The necessity is Theorem 2.4.8. To prove the sufficiency we note that
if one of the four functions m = e;,m =+ & belongs to H'(Q) then m € X thus
according to Lemma 2.5.1 m belongs to A.

0

Corollary 2.5.3. A magnetization m belongs to A if and only if
Vm,m,,m, € L*(2).
Proof. Assume that m € A. First of all note that
”va%Q(Q) < E(m) < o0

Theorem 2.4.8 states that one of the four functions m =+ e_g, m =+ € belongs to
H'(Q). Assume for instance that

m — e, € H'(Q).
We have then that
%
HmyH%Q(Q) + ||mz||2L2(Q) < |[lm— 696”%{1(52) < 0.

Assume now that
Vm,m,,m, € L*(2).

Applying the Poincaré inequality to the functions m, and m, we get
HmyH%%Q)JFHmzH%%Q) < HmyH%z(mH!mzH%a(m+Hmy—myHi2<m+\|mz—mzHiz<m

< ||my||%2(sz) + ||mz||%2(§z) +CO(° + d2)|‘vyzm‘|i2(g) < 00.

According to Remark 2.4.6 we have that the function m, must have a limit 1
or —1 at +00. Recall that in the proof of Theorem 2.4.8 we actually showed
that once we know that m, has a limit 1 or —1 at oo and the norms
17y |72 and |77y ||72 ¢ are finite then one of the four functions mte,, mEe
belongs to H!(Q). Therefore applying now Theorem 2.5.2 we establish m € A.

O
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We consider now the functional E,,,, for the magnetisations which are
constant on each cross section, i.e., for m € A,.

Lemma 2.5.4. For any m € A, the gradients Vu, and Vug are orthogonal

in L*(R3).
Proof. Since v is independent of y and s(z,y,2) = —s(z, —y, —z) then we
have the following for u, and wus:

US(Z', Y, Z) = —Us(ilf, -Y, _Z) and u’v(xa Y, Z) = uv(xa -y, _2)7

Opus(x,y, 2) = —0yus(x, —y, —2) , Oyus(x,y, 2) = Oyus(z, —y, —2)
8Zus(ac, Y, Z) = azus(xa -Y, _Z) ) axuv(xu Y, Z) = 835“1}(1:, -Y, _Z)
ayuv(l‘y Y, Z) = _ayuv<x> -Y, _Z) ) azuv<x> Y, Z) = _azuv<x> -Y, _Z)

Eys(m) =2 | Vuy(2,y,2)Vus(z,y,2)dedydz =

R3
/Vuv(x,y,Z)Vus(x,y,Z)dwdydz+/ Vu,(z,y,2)Vus(z,y, z) de dy dz.
R3 R3

Making the change of variables y — —y, 2 — —z in the second summand and

using the identities for the partial derivatives of u, and us we get E,s = 0.
O

Thus for m € A, the energy functional has the form

E(m) = 4ld||0;m||72 @) + Es(m) + Es(m).

2.5.2 The representation of F, in Fourier space

In this section we find a representation of the magnetostatic energy in Fourier
space. We do this because the expression [g, [Vu|? is hard to deal with but
its representation in Fourier space will make it more transparent. First of all
we would like to recall the Fourier transform in R" and some of its properties.
The Fourier transform of a function f € L'(R") is denoted by f and equals
to

~

1
f(ff)—m Rnf

The set of all functions ¢ € C*°(R") such that

(E)e™™Ed¢ forall x€R™

sup |2° D*p(z)| < oo for all multi-indices o and £

is denoted by J and called the "Schwartz class." Fourier transform has in
particular the following properties:

1. (g—g):'gjf forall feJ (2.29)
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2.(Parseval’s equality) 1fI2de = | |f)Pde forall feJ (2.30)
R™ R™

2 g [ B2
3. |V f]7d¢ = HE d¢ forall feJ and n > 3. (2.31)
Rn Rn

By the density argument the first equality is also valid for all f: R® — R
such that % € L*(R"). The third equality is valid if Vf € L*(R") and
% € L*(R") even if Af is a distribution. For a detailed discussion of
Fourier transform we refer to [21].

Let us get back to our problem. For a given surface I' C R?® we denote the
distribution H2 by dr. The next theorem gives the representation of F, in
Fourier space, which will play a crucial role in approximating the summand

Epnqg for magnetisations constant on each cross section.

Theorem 2.5.5. If m € A, then the following formula is valid:

E,(m) = 4 [ sin®(ly) sin®(dz) ¢ |y (2)? N . (2)]?
w2 Jrs 2?2+ y? + 22 22 Y2

> drdydz,

where My, and M, are the Fourier transforms of respectively m, and m, in
the first coordinate.

Proof. Denote I' = 0€2. Note that (2.28) and is equivalent to Auy = —s-dp in
the distributional sense. Let us now compute the Fourier transform of s - dr.
We have for any k € R3

oy 1L itk .

S (5F<k) - 27_(_\/% /]R3e (S 6F)(€) df

/ efz‘gk(S . 51‘)(5) d¢ = mz<§1)€*i(k1£1+k252) (efikg,d . eikgd) dé¢; dg,
R3 Rx[-L,]

+/ my(gl)e—i(/ﬂfl-‘rkgfs)(e—ikgl . eikgl) dfl dgg
Rx[—d,d]

We have that for any a € R

a ixa —iza
. (& — €
/ e wt dt = _—,

—a 1

thus
/ mz(£1>€7i(k1£1+k2£2)(ef’ikg,d _ eikgd) dé—l d£2
Rx[—L,l]
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ikl _ g—ikal)(p—iksd _ pikad ‘
= X } [matee e ag
and
/ my (gl)e—i(kﬁl—i—ka&?,)(e—ikzl _ eile) d¢; d&;
Rx[—d,d]
e—ikgl _ eikgl eikgd _ e—ik3d )
= ( )]i )/my(§1)6—1k1§1 dé,
1IR3 R
hence
— 1 . » . i m, (k1) 1y (k)
Ou(k) = — = (ikal _ g=ikaly(giked _ ,—iksd < y )
s - or(k) 2m,(e e )(e e ) s + ks

Let us now compute [gq |S'5|2|(§ ® qk. After some computation we obtain

|5 -on(k)2  dsin®(kol) sin® (ksd) <|mz|2 21— A—>
CE—=T B TR ke )
It is easy to see that

/ 4 sin? (kyl) sin®(ksd)
R2

de dkg =0 for any kl eR

7T2]€2k3’]€|2
thus
s - or(k)[? 4/ sin?(kol) sin? (ksd) /. |? |, |?
Pl e = — D) dk (232
TR 72 Jo Tk ( 2R )ak (2:32)

We will see later that the right hand side integral of (2.32) is convergent
therefore taking into account the facts ng |Vu,|?* < 0o, Auy, = —s - op and
(2.31) we obtain

Vusb)Pak = [ 18Py [l oBF
R wo K2 wo KPP

_ 4 [ sin’(Rl) sin2(k:3d)<|m;!2 N |mgl2>dk.
2 R3 |k|2 k2 k3
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2.5.3 Lower and upper bounds on £,

To simplify the expressions for and E we consider the integral:

sin?(ly) sin?(dz)
I(l,d,z) = dyd

It is clear that

4
E.(m) = F/ (1. d,)linn () + I(d, 1) i (2)]?) dor
R
The next lemma describes some properties of I. We prove upper and lower
bounds on [ for certain values of z. Using this lemma we establish an ap-
proximation for the magnetostatic energy.

Lemma 2.5.6. Assume d and | are positive numbers with 0 < d < l. The
following inequalities hold:

I(l,d,),I(d,l,r) < 7%ld for all z € R (2.33)
I(1,d,z), 1(d,1 )>47Td2 F o] < (2.34)
, @, L), y 6, T) =2 o7 [/ HAERS 3] .
T 1
I(l,d,x) > 2n(1— - - ld i < 2.
(dw) 2 2m (1= ve) (5 -3ve)ld if ol < oo (2.35)
I(d,l,z) < 7(1+m)ldyc forall x€R (2.36)

If ¢, — co > 0 then for any € > 0 there exists a natural number n. such
that if n > n. then

8 v o )
#wﬁ%—t/ WAWM+cf-/ i ()P dz] < By (m)

r

< izndn [(acO—FE) /R i (2) |2 dz + (b, + €) /R |mz(x)|2dx] (2.37)

and

E (m") > %(1—5) (1—3€)l,,d cn|lncn]/ \m”( 24| In ¢, |- |mi(z) %) de.

3ln

(2.38)
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Proof. First of all we would like to mention that we will use the following
well known facts:

1 t 1—et 1—et

S<1-5< C <1 wte[0,1] and —S <1 Vt>0  (2.39)
‘ 1—et | .
the function f(t) = is decreasing in (0, +00) (2.40)
: 2.
|sint| > §|t\ if |t <1 (2.41)
00 102 0o .+ 2
sin® ¢ T sin®(pt) T Conan

dt = = and dt = —(1—e ") if > 0. (2.42

Note that the integrand of [ is an even function in both y and z thus

I(L.d.) _4/ / sin?(ly) sin?(dz) dy d-.

222 +y? + 22)

After making the change of variables y — |z|y, z — |z|z(we assume that
x # 0) and denoting a = l|z|, b = d|z| we get

10, d. ) 2/ / sin?(ay) sin?(bz) dydz.
x 2(1+y?+ 22)

Using now the second identity of (2.42) and also making a change of variables
y = L we obtain

I(l,d,x) = dy =

IQ

T /°° sin?(ay) 1 — e 20VyiHl
o ¥ V2 +1
_ 2mab /°° sint 1 — e VEta®
o 17 /2 4 a2

Using the second inequality of (2.39) and the first identity of (2.42) we get

dt.

xr2

2 oo 2 2b
(.d.z) < ﬂab/ sin td Ta

22 12 2

Similarly we get I(d, l,x) < 72ld.
Suppose now 0 < ¢ < £ and |z| < 4. We have that d < I sot < & and
2| < 55 as well. We have in this case

2b 2d 2d | 12 [2 2\/_
2 — 27 /42 202 < 20 2 <1
JVEHa =7VE+Pr s \omtoE = 3

29



and similarly 22v/¢2 4 b < 1. Thus utilizing the first part of (2.39) we obtain

1 — e~ 2VP+a

o

1 — e~ VD2
and >

1
9 2a
2 L

>

N | —

Finally we get

a4 . 9 4 ., 9
1(,d,z) > Mb/‘” LG and 1(d,]2) > ”—ab/ St g
0 0

2 12 22

Now we utilize (2.41) to get

4 d  And?
I(l,d,z) > 7ld- - - — =
(hda)zmld-5- 3= =
The proof of the inequality
4 2
1d,1,2) > ¢
27

is analogues. Suppose now 9 is a positive number less than 1,0 <t < g—é and
5

| < 55

We have that

2b 2d 2d [1262 1262 22
avt +a l t—l—l:v_l 9d2+9d2 3(5<(5<

hence

1 — e aVota

>1—

| Sa

For the function I we get

% gin2t 1 — e BVEF 5 50 sin? t
I(l,d,x):md/ L dt227r(1——)ld/3d ST gt
y P Bjpra g

Note that if p > 0 then

P gin? ¢ ® gin?t ® gin?t < q 1
o o , i 2 J, t 2 p

thus we obtain
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Taking now 0 = \/c we get

1(,d,z) > 27?(1 - ﬁ) (g . 3\/E> ld.

Fix again a positive number 0 less than 1. For ¢t > % we have
2 2at 20t 1
?a\/mz—=725>17 thus

U 00 12
t t
1(d,1,2) < 2rld / AL P S / S sar
0 t2 %; t2

2l 12 4]
Taking now § = \/c we obtain

d % sin?t
527rld-—+27rld/ s -5dt:7rzd<f+7r5>.
0

I(d,l,z) < (1 + m)ldy/c.

Assume now Cll—: = ¢, = ¢o > 0. For any n € N we get lower and upper

bounds on I(l,,d,,z) for x € [—Lﬁ, Lﬁ] and = € R respectively. It is clear
that

2b, 2d, .
— 2+ a2 = l—\/tQ—i—l,%mQ <2, V2 +1, if t>0,z€ [—
an n

and
2b, 2d, :
—/t?+ a2 = l—\/t2 + 0222 > 2c,t if t>0,2€R
a’n n

thus taking into account (2.40) we get

©gin2t 1 — e 20nVPHn 1 1
ol d, - At < I(l,.d,. z) f c [— —}
i /0 2 2e/E 1L, (b, dny 2) for any @ € | ==, 7=
(2.43)

and

o0 L1 2t 1 o —2cpt
(L, dn, 7) < 27lnd,, / PRU 2T At forany zeR. (2.44)

0 12 2¢,t

Note that for any ¢t > 0 we have

2e,\V/ 12+ 1,, = 2cot and 2c,t — 2cot as n — 00.
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We utilize (2.39) to get

sin?t 1 — e 2enVEitin < sin’t sin?t 1 — e 2ent sin®t
t2 2e,V/2+ 1, | T t?7 12 2c,t 2’
sin?t 1 — e 2ot sin? ¢ ; -
: or an
2 2ot | = 2 Y
sin? ¢

and the function ®5* is integrable on (0, +oc0), therefore by the dominated
convergence theorem we establish

/ sin? t 1 — e 2enVit? H” L ®gin?t 1 — e 2cot d—b
0 2 e/ 12 12 2cot e

and

00 1.2 —2cnt 00 102 —2cot
sin“t 1-— n sin“t 1-— 0
/ S T / St dt=b,.
o t? 2¢nt o 12 2cot

The same argument can be done for /(d,,l,,x) with a lower bound for = €
[_\/%7 J%] and an upper bound for any x € R. This yields that for any
€ > 0 there exists a natural number n. such that if n > n. then

%lndn [(aco — /m 17y (z YWPdz + (b, — /f 7 |2dx} < Ey(m)

< ;lndn[(aco—i—e)/R|my(x)|2dx+(bco—i—e)/R|mZ(:c)|2dx]

This inequality plays a crucial role in the proof of the first ['-convergence
theorem. One of important properties of this inequality is the fact that the
number n. depends only on € and the sequences (I,,)nen,(dn)nen, namely if
we have a sequence of domain-magnetization pairs (Q(l,,, d,), m") with finite
energy each and satisfying the properties [,,,d,, — 0, and ¢, — ¢ > 0 then
(2.37) is fulfilled for any m™ with n greater than the same number n.. In
the next step we obtain accurate lower and upper bounds for E, which will
be used in the third I'-convergence theorem which corresponds to the case
d,l,% — 0. To obtain accurate bounds on F, we need accurate bounds on
I(dy, 1y, x). Tt is clear that

21 21, 2t
- + d2x? > =
d, d, Cn

32



hence

+00 gin2t ] — e en
I(d,, 1., x) < 2nl,d, . dt
0 t2 2t
Cr 92 _ 2t 1 .. 92 _ 2t
m"sin“t 1—e e sin“t 1—e en
:ﬂlndncn/ T dt—|—7rlndncn/ o dt
. 0 t t . et t )
L I
+00 (142 -
sin“t 1—e en
+7rlndncn/ . d¢
1 12 t
};

2t

c 202 - @

nsin?t 1—e e n

I, = 2xl,d, / 51?2 C At < 2nld,, / dt = 2nl,d,c,,
0 o 0

Cn

1
1
I, < Wlndncn/ n dt = —l,d,c,Inc, and

o0 : 2t 400 1
Is < 7l d,c, / MUYt < lyd,e, / — dt = 7l d,c,.
12 12
1 1
Concluding we obtain
I(dy, ly, x) < wlpdpen,(3 —Incey,). (2.45)
Remark 2.5.7. We have as well shown
1
li < —. 2.46
H?j(}lp cllnel = 2 (2.46)

To get a lower bound on I(d,,[,, ) we note that the main contribution
to the integral comes from the interval [c,, 1]. We have replaced %;t and
1—¢n by 1 in [¢,, 1] to get an upper bound, but since near the endpoints
Si‘;—;t as well as 1 — e #n can be much smaller than 1 we can not do the same
to get a lower bound. That is why we choose another interval with suitable
endpoints, namely we replace [c,, 1] by [c}7¢ ¢¢] where € is a small positive
number yet to be chosen. Assume € is any positive number smaller than %
We estimate I(d,, l,,z) for the values z € [ — o i} For any ¢ € [cL ¢, ¢¢]
we have

2L, 2t
— VP a2d? > — >2c,¢
d, C,

dn
\/t2—|—:c2d,21§t+\x|dn§t+l—:t+cn
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hence

cS 2 —2c,, €
n sin“t 1 —e
I(dp, 1, ) > Wlndncn/ S dt.
C}L—G t t + Cn
Since )
sin“t
lim ¢, =0 and lim =1
n—00 t—0 t2
there exists n. € N such that if n > n. then
In2

<1, 1—e 2 >1—¢ |Inc,| >~

and
sin?t
t2
Thus we obtain for any n > n,

>1—¢ for te|0,c)]

€

Cn 1
I dnalna > lndn n 1- 2
(b 2) 2 Thiyen(1 = [ 7

dt

= (1~ €*Ludnca(In(e, +¢5) — In(en + ;7).

It is clear that

(2.47)

In(c, +cr ) =Ine, +In(1+¢,9) <Ine, +In(2¢,9) = (1 —€)Ine, +In2

< (1—=2¢)Ing,

and
In(¢, +¢,) > Inc;, = elnc,.

Concluding we obtain
I(dy, 1y, 2) > 7(1 — €)*(1 — 3¢)l,d,cn| Incy).

Remark 2.5.8. We have also got that

o Qe 1
lim inf > —
=0 c¢|lnc| T 2

Corollary 2.5.9. The function a. has the property

. ac 1
liminf —— = —
=0 ¢|lne| 2
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According to (2.35) we have for big n

11
> i pa—
I, dy, ) > Tlod,, if =€ [ 3ln’3ln]

Coupling the last inequality with (2.48) we obtain for sufficiently big n

1

CnlIne,|

4
B (m") > =
(") 2

(1—e)2(1-3€)l,d cnylncn|/ (I () + 170 (2)[2) da

4
> —(1—e)*(1 — 3e)l,,d cn|lncn|/ |m”( 2+ | Iney| - [mi(x)]?) da.
T
O
The next lemmas give an upper bound on E,

Lemma 2.5.10. For any numbers 0 < d <1 and any point (y1,21) € R(l,d)
the following bound holds:

/ dydz
I p—
rRd) V(Y —y1)2+ (2 — 21)?

Proof. 1t is clear that

< 10d<1+lné>.

< dydz dy dz dydz
~ JR@2d) VY + 22 R(2d,.2d) \/ Y? + z2 R(21,2d)\R(2d,2d) \/Y*> + 22
1 dyd ) l
<= / R L84 —2\/§7rd+8dln—<10d(1+ln—).
D, 540 VY2 + 22 2d d d

O

Lemma 2.5.11. For any 0 < d <[ and m € A.(l,d) the following bound
holds:

l
Ey(m) < My (P +1d2(1+ 1In 3)), (2.51)
where M,, is a constant depending on the magnetization m.

Proof. According to (2.27) we have that
Vu, - Vo = / v-¢ forall ¢ € CP(R?).
R3 Q
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By the density argument we can transfer this equality to w,, because Vu, €
L*(R3) and u, € L5(R3), thus utilizing Lemma 2.5.1 we obtain

Bum) = [ 1V = [ = [ [T€-gpm©nedsas

We have that m € A, so v(z,y, z) = d,m,(z) thus

Oy () Opmiy, (1)
E,( d¢d
47// ’f 51 §dé

where § = (z,y, z) and & = (z1,y1, 21). It is clear that

domg(z) . [° dm*(z) T dm*(z)
r 1€ — & dx_/oo € =&l +/o € — &l

2 (x — z1)m*(x)
- d
\/951 (y—y1)?+ (2 — 21)? /R 1§ — &3 -

hence for the energy we have

/ / (O ()] dé, dy dz
R(l,d) \/931 (y— yl )2+ (2 — 21)?

J/

I

[ [ et o) g,
\Q Q J/

€ =&l

Iz

We have

S E—
\/% (Y —vy1)? 4+ (2 — 21)?

1 1
< _ 2
=9 /R <|8£max(xl)| + {L‘% T (y — y1)2 T (Z — 21>2> dxl

™

2V/(y =)+ (2 —=)?

1
= §Haxm:v|’%2(R) +

Utilizing now Lemma 2.5.11 we get

4 1 1
I < =0,m,|3 leQ—i——/ / dy; dz; dy dz
™ L2®) 4 Jraa) Jraay /(Y —y1)2 + (2 — 21)2

4 l
< — |00 [} ey 2 d? + 1002 (1 +In 3).
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By making a change of variables & = & — £ and utilizing Lemma 2.5.11 we

get
Rx[—l—y,l—y]x[-d—z,d— |§2|

1 )7 s
= &/ /sz D el £ e
2 R(l,d) JRX[—l—y,l—y]X[-d—z,d—Z] ‘52‘

* d£2
=%ﬂMWé®+WMmﬁmﬂ/ 23
Rx[—l—y,l—y]x[-d—z,d—Z] |€2|

1
) /R(l,d) Vi —y)?+ (21 — 2)?

AV
< 20mld? (1 4+ In =) (I gy + 1000 e

= 2l [ ey + 102l 22ce dyr ey

The summary of the estimates on I; and I, and Corollary 2.4.7 completes
the proof.
O

2.6 The existence of minimizers

In the next step we prove a lemma which will be used in both the existence
and the I'-convergence theorems. It states a compactness for a sequence of
magnetizations with bounded energies.

Lemma 2.6.1. Suppose we are given a sequence of magnetizations (m"),en
defined in the same domain €2 and with energies bounded by the same constant
C'. Then there exists a magnetization m°®: Q — S? such that for a subsequence
of (M")nen (not relabeled) the following statements hold

o Vm" — Vm® weakly in L*(Q)
e m™ — m° strongly in L2 (Q)
e E(m°) <liminf E(m").

Proof. Let u, be the weak solution of Au = divm™. We have that
/ |Vm™?d¢ < E(m™) < C
Q

thus (Vm™),en contains a weakly convergent subsequence (not relabeled),i.e.,

Vm™ — f weakly in L*(Q)
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for some f € L?*(Q). Similarly the new subsequence (Vu,)ney contains a
weakly convergent subsequence (not relabeled),i.e.,

Vu, =g weakly in L*(R?)
for some g € L*(R?). Since |m"| =1 in Q we have that
m" € W' ([N, N] x R(l,d)) for any N €N.
Taking into account the fact that the embedding
W2 ([-N,N] x R(l,d)) = L*([-N, N] x R(l,d))

is compact, one can extract a subsequence from the new subsequence (m™),ey
(not relabeled) converging to some m® in L?([—N, N] x R(l,d)). We do this
giving N all the natural values and then apply diagonal argument to the
extracted subsequences. Finally we obtain a subsequence of (m™),en (not
relabeled) with the following properties:

e Vm" — f weakly in L*(Q)
e Vu, =g weakly in L*R3)

e m" — m® strongly in L2 (Q).

loc

Applying a standard argument we can deduce that m° is weakly differentiable
and Vm® = f. We extend m° outside 2 as zero. For any ¢ € C5°(R?) we
have

/ Vun-deﬁ—/m”-V@di,
R3 Q

Vu, - Vedé —>/ g-VpdE
R3 R3

and

/m"-Vg0d§—>/m0-V<pd§
Q Q

as n goes to infinity hence we establish

/mO‘Vgodfz/yV(pdg.
R3 R3
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Since g € L?(R3) we have that the equation Au = divg has a weak solution
ug which is equivalent to

/ g-Vpdf = Vug - Viod¢ for all ¢ € C3°(R?)
R3 RS

thus
/3 m® - Vedé = /]1{3 Vug - Vi d¢é for all ¢ € C°(R?)
which meanﬂj that ug is a weak solution of
Au = divm®.
Since g € L*(R?) we already know that
Vol r2ws) < llgllL2ces)
and we have as well
Vu, — g weakly in L*(R?),
Vm" — Vm® weakly in *(9).

Taking into account the fact that any norm is lower semi-continuous under
the weak convergence we obtain

Vol L2y < [lgllz2gs) < liminf |V | 22 @s)

||Vm0||L2(R3) S hgglogf ”anHL?(]R?’)

which yields
E(m®) < liminf E(m™).

n—o0

We proceed now to the existence theorem.

Theorem 2.6.2 (Existence). For every 0 < d <[ there exist minimizers of
E is Aand A,.

Proof. We will first prove the existence of a minimizer in A. Let m™ be a
minimizing sequence, i.e.,

lim E(m") = Enin.

n—oo
Since (E(m™))nen is bounded, applying the preceding lemma we extract a
subsequence from (m"),ey (denoted again by (m™),en) such that for a mag-

netization m® € W,>*(Q) we have:

o Vm" — Vm® weakly in L*(Q2)
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e m™ — m° strongly in L2 ()

loc
e E(m°) < liminf F(m™)

If we could show that m® € A then m° would be the desired minimizer
because of the fact that

E(m®) <liminf E(m™) = Epin

and F,,;, is the infimum of the energy functional in A so E(m®) = En.
But m" does not have to belong to Ain general. For instance the boundary
conditions could fail, we could have ||m — €||g1) = co. At the end of the
proof we will give an example of a sequence of minimizers for which the
limit function m° does not satisfy the boundary conditions. To overcome
this difficulty we construct a minimizing sequence so that its limit belongs
to A. To that end we choose any minimizing sequence (m”) ey as above and
suppose that it has a limit m° in the described sense. The key point is to
show that the desired minimizing sequence can be constructed by translating
every vector m"™ by a factor z, in the x coordinate direction. First of all
note that if m € A then obviously me(z,y,2) = m(z — ¢,y,2) € A and
E(m.) = E(m) (the minimization problem is invariant under translations
in the first coordinate). Since E(m™) — Epn, the sequence (E(m™))pen is
bounded by some number M for all n € N. For any n € N we consider three
auxiliary sets A,, B, and C,, defined in the following way:

1
A, ={x€eR | —1§m§($)§—§}

1 1
B,={zxeR | —§<m§(x)<§}

1

Ch,={zxeR | QSmZ(:E)Sl}

Since m} is continuous in R for all n € N, A, and C,, are a finite or countable
union of disjoint closed intervals and B, is a finite or countable union of
disjoint open intervals. According to Lemma 2.4.5 one of the intervals in A,
has the form (—o0, a,| and one of the intervals in C,, has the form [¢,, +00)
(note that m is negative at —oo and positive at +00.) We distinguish two
types of intervals in B,. The interval (a,b) C B, is said to be of the first
type if [m"(a) — m"(b)| = 1, and of the second type otherwise. According to
Lemma 2.4.5 the sum of the lengths of all intervals, as well as the number
of the first type intervals in B, is bounded by a number depending only on
M, [l and d, i.e., a constant not depending on n. Suppose first that there are
no second type intervals in B, for all n € N. Let us paint all the point of
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A,, B, and C, with respectively black, yellow and red color for all n € N.
We call a sequence (ng)gen "good" if for any k& € N there exist two intervals
[a¥,ak] C A, and [}, 5] C O, such that
ah —akf — 400, & —cf— +oo and 0 < —ak <O

for a constant C not depending on k. The endpoints a} and c§ can also take
values —oo and +o00 respectively. We prove that for any minimizing sequence
(m"™)pen, with m" € A there exists a "good" subsequence (ng)ken. We fix a
natural number n and take the two intervals (—oo, a,] and [¢,, +00). There
are some black, yellow and white intervals between this two. Note that if
the number of yellow intervals is less than s then the number of both black
and red intervals are less than s 4+ 1 because there is obviously at least one
yellow interval between any two black and any two red intervals. Therefore
the number of all intervals is less than 3s 4 2. Since n was arbitrary we get
that the number of all the intervals in the n-th family of the constructed
intervals is bounded by the same number S. Let us number both the red and
the black intervals in any family of intervals. We prove the existence of a
"good" subsequence by induction in S but we first reformulate the problem
as follows: Suppose we are given a sequence of natural numbers S, and a
sequence of families of S, disjoint intervals on the real line pained with black
and red color for all n € N. Assume S,, < S and the sum of the lengths of
S, — 1 gaps between the intervals of the n-th family is bounded by the same
number M for all n € N. Assume furthermore that for any n € N the far
left placed interval is black and the far right placed interval is red and their
lengths tend to 400 as n goes to infinity. Then there exists a subsequence
(nk)ren and two intervals (a¥,a}) and (cf, ck) in the ny-th family such that

(a¥,a%) is black, (c¥,c) is red,

as —a¥ — 400, & —cf — +oo and 0<cf—al < M, (2.52)
for a constant M, and all & € N. We prove this statement by induction in S.
The case S = 2 is evident. Assume it is true for S < N and let us prove it for
S = N+1. Since S > 3, in every family there are at least two intervals of the
same color. Assume that for infinitely many indices n there are at least two
black intervals in the n-th family. We consider now the subsequence of the
families with such indices. We consider the far right placed black intervals
for all such families. There are two possible cases:

Case 1. For a subsequence their lengths tend to +o00
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In this case we can omit all the intervals placed on their left side which leads
to a situation with less intervals in every family (in such a subsequence)
fulfilling the requirements of the statement, so by induction the existence of
a "good" subsequence is proven.

Case 2. Their lengths are bounded by the same number Ms

In this case we can omit this intervals and this will lead us to a situation
with less intervals in any family fulfilling the requirements of the statements
so by the induction the existence of a "good" subsequence is proven

Let us get now back to our situation. If we omit all the yellow intervals from
the real line for all n € N then the families of the black and the red intervals
fulfill the requirements of the statement proven above, thus the existence of a
"good" sequence is proven. We take the two intervals [a}, a¥] and [}, c&] for
all £ € N and denote the the "good" sequence of the magnetizations again
by (m*)gren which will also be a minimizing sequence. We transfer the origin
of the real line to the point a4 for any m* and denote

Mmooy, 2) = mF(x + db,y, 2).

As we already know (m},,q)ken is a minimizing sequence and furthermore if

we put af = af —af, & = & — ab and f = c§ — af then

for x € [, ch]

1
mbooa(@) < —3 for z € [—a§,0] and mk, 4(z) >

1
2
where

ak — 4o00,cf —ck — +ooand 0<ch < M forall keN.

By Lemma 2.6.1 one can extract a subsequence from (mf,;)ken (not rela-
beled) such that for some m° € A the three statements hold:
o VmF ., — Vm® weakly in L*(Q)

good

o m}, g — m’ strongly in L7, ()

loc

e E(m°) <liminf E(m}, ).

We will prove that m® € A. Recall that for any magnetization m the inclu-
sions m + &, € L*(),) are equivalent to 1 + /m, € L'(0,400) respectively
and the inclusions m + e, € L*(Q_) are equivalent to 14 7, € L'(—o0,0)
respectively. Since m® € A according to the characterization theorem two of
the four statements must hold: 1+m® € L*(0, +o0c) and 1+m? € L'(—o0,0).
We have for any fixed R > 0
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f 0 k 1 f 0
/_R’mz_mgood,x|d‘r: m —R’/R(ld)(mx_ good,x dydz‘dx

— 4ld/ /ld goodm|dyd2dx

1
Ald <8ldR / |m2 - good :c|2 d€>
[ R,R]x R(l,d)

R
od ng - m’gcood@HLz([—RvR]XR(lvd)) =0

N|=

as k — 0o because of the strong convergence my,,, — m® in L}, (Q). This
means that a subsequence of (7} ,,,,(7))ken converges pointwise to mj(x)
almost everywhere in [—R, R|. Giving R all natural values and applying di-
agonal argument we obtain that a subsequence of (7 ,,4(2))ken converges
pointwise to mJ(z) almost everywhere in R, therefore m(z) < —1 a.e. in
(—00,0) and m(z) > 1 ae. in [M,+oo) which itself yields 1 — m? and
1+ m2 can not belong to L'(—o00,0) and L'(0,+00) respectively, therefore
1+md € L'(—00,0) and 1 —m® € L'(0, +00) which implies m® € A. The
theorem is proven for the case when there is no second type yellow interval.
Assume now that there are such intervals. Throwing away all the second type
yellow intervals from the real line we can regard the rest of the real line as
a real line without gaps simply by shifting all the intervals to the left hand
side such that after that operation no overlap occurs and there is no gap
left. To be more precise, we shift each of the left intervals to the left hand
side by a factor equal to the sum of the lengths of the gaps between that
interval and —oo. During that operation we unify the black and red intervals
with the consecutive intervals of the same color but we regard the possible
consecutive first type yellow intervals as separate. We get a situation like
above and therefore we can prove the existence of a "good" subsequence. It
is easy to show that since that sum of the lengths of the second type yellow
intervals in each family is bounded by the same constant then the in Lemma
2.6.1 described limit of the obtained "good" subsequence will belong to A
and hence will be an energy minimizer. O]

2.7 The I'-convergence in the first regime

In this section we consider sequences of domain-magnetization-energy triples
(Qln, dy), m", E(m™)) such that d,,l, — 0 and ¢, = Cll—: — ¢ > 0 as n goes
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to infinity. we put

For any n € N we consider the minimization problem
inf  E(m)
mA(ln,dn)
instead of the original problem
inf  E(m),
mA(ln,dn)

where for the admissible sets we take the sets A(l,,d,) and call the new
problem "rescaled". We continue with the description of the full and the
reduced variational problems. As we have mentioned the full variational
problem will be the minimization of the rescaled energy. We will scale the
magnetizations in the y and z directions to keep the domain fixed in order
to pass to the I'-limit. We define the rescaled magnetization

m(z,y,z) = m(x,ly,dz).

It is clear that 772: (1,1) — S% The admissible set for the rescaled
variational problem is

Al :1211(1,1) = {m | mefl}

It is apparent that if 72 € A, then 1h — & € H'(Q(1, 1)). The rescaled
energy functional will have the form:

. , ) 1, 1 ) 1
E(h) = B(m) = / (1017() P+ 510 77(€) P+ 107 (€) ) AE-+ - By ().
Q(1,1) l d ld
The limit variational problem energy functional is given by

2 2
Eo(m):/|8zm|2dx+ ac/|my|2dx+ bc/|mz|2dx,
R T Jr R

™

where

—2t

+00 (in2 —==
t 1-— c
e = E/ st ¢ dt and b.=a:.

2), t :
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The admissible set is
Ag={m: R =8| m—-ec H(R) and FEy(m) < oo}.
Define additionally the following sets:
Ag={m: R — $? | Ey(m) < oo}

and
Xo={m:R—§*|9,m e L*(R) and m,,m, € L} .(R)}.

loc

The reduced variational problem is to minimize the reduced energy func-
tional Ey over the admissible set Ag. Now we define the notion of convergence
of the magnetizations we are going to use for the I'-convergence of the ener-
gies.
Definition 2.7.1. Let m°(z) € Xo. Consider a sequence of domain-magnetization
pairs (Q,, m") where m™ € A, and define ™ (z,y, z) = m™(z, Ly, dnz). Then
m" is said to converge to m® when n goes to infinity if the following state-
ments hold:

o 0,0" — 9,m° weakly in L*(Q(1,1))

o V,.1h" — 0 strongly in L*((1,1))

O strongly in Li ((1,1))

e " —m e

We can now formulate the I'-convergence result.

Theorem 2.7.2 (I'-convergence 1). The reduced variational problem is the
['-lemit of the full variational problem with respect to the convergence defined
above. This amounts to the following three statements:

e Lower semicontinuouty If a sequence of magnetizations (m"),en
with entries in A(l,,d,) converges to some m® € Xy in the sense of
Definition 2.7.1 then

Eo(m®) < liminf E, (r2™)

n—oo

e Construction For every m® € Ay and every sequence of pairs (I, dp)nen
with l,,d, — 0, ¢, — ¢ there exists a sequence (m"),en with entries in

A(ly, dy,) such that
m" — m® in the cense of Definition 2.7.1

Eo(m®) = lim E, (A"

n—oo
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e Compactness Let (I,,,d,)nen be a sequence of pairs such that 1, d, —

0 and ¢, — ¢ > 0. Let m™ € A(l,,dy,) and let (E,(1h"™))nen be bounded.
Then there erists a subsequence of (m™)nen (not relabeled) such that
m" converges to some m® € Ay in the cense of Definition 2.7.1.

Proof. Lower semicontinuouty The proof consists of two steps. In the
first step we will prove an equality which allows us to extend (2.37) to the
general case, once we know that the rescaled energies are bounded by the
same number C. Namely we prove the following: Suppose E, < C for all

n € N then 5 . 5 .
lim inf M = lim inf M.

n—00 l,d,, n—00 l,d,,

According to Lemma 2.4.2 and the Poincaré inequality we have

| Ermag (m") = Epnag(m")] < |‘mn_mn”%2(§2(ln,dn))+2Hmn_mnHLz(Q(ln,dn)) Eingg(m™)

< CClydy (12 + d2) + 2C1,d,\/C(I2 + d2)
thus putting R? = [2 + d2 we obtain

Epag(m™) _ Epag(m™)

e T < CVCOR,(VCR, +2) = 0 as n — +oo. (2.53)

In the second step we prove that

Ema
lim inf —*—~ il > /|m0 2da + b /\m de
We have that
Ernag(m™) > Ey(m™) thus tim inf Zmea) o i g o)
mag = Iug P ln ) < 1l 11 d .

We estimate Ei(m™) — EX(m") for big n, where
8
Ef(m™) = 21, (a/ i de + bCO/ |mg|2dx).
T R R

We fix a positive number e. According to Lemma 2.5.6 there exists a natural
number N, such that when n > N, then

B > Siod, (a0 — € / i ()| dz + (be — € / |mg(x)|2dx>,
m _
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thus )
8 Vin |~
Bum) = (") = = 2d (e [ (o) do
T 1
Vin

1
Vin — e e
v [T @R [ (WP @ ) =

Vin T Vin ' Vin
8
— —luda(e - ST+ S5), (2.54)
where
%
n  —~ _ —n ~ T
Sy = / " () + ) ) da < / (@) + w2 (2)P) da
v, R
and
Sy = / (A ()2 + |72 (@) ?) de
R\[- o= =]
<1, / (- () + |z - 7 () ?) dz
R\[- b= 7=

<1, / (- 7 (@) [ + |z - A (2)[2) e = 1, / (22 (@) + 0o (2)[?) e

1 —n —n
_?/’ (102 ()] + 0,2 (2)?) dg (2.55)
n JQln,dn)

We estimate now
1 —n —n
T Qo) + lomt)P)de.
n JQ(ln,dn)

Note that for any m € A and x € R

1

1T = T ) dyd
Op,m(x) 0d /R(lmdn)ﬁ m(z,y, z)dydz

thus
1

() < o [ (o) dyds,
n%n J R(ln,dn)

Integrating the last inequality over R we get

/ |@m%mg/) 0,m|? de. (2.56)
Qln,dn)

Qln,dn)

47



Utilizing (2.55) and (2.56) we get for S% the following

1 1
Sy < — 10,m"?dé < —E.,(m") < Cl, — 0.
dn J oty dn) d

It remainins to show that the sequence

( / (il + mzf?) )

is bounded. Recall again Lemma 2.5.6. If we take e = min(%, %) then for
n > N, we have

1
8 7” _ —_
Epag(m") > Ey(m™) > —elndn/W (172 (2)]? + i (z) 2 d.
7r o
Now using (2.53) we obtain

Eag(m™) > %dndn /F (|7 (@) + [ (2)]?) dz — CV R, (VCR, +2).

Vin
(2.57)

We also have

Eoa(m) > / 0" dé > / O,m P de
Qln,dn) Qln,dn)

24lndn/ (|8xm;‘|2+|8mm2|2) dx:4lndn/ (|x.@|2+|x.@|2) dz
R R

> 4l,d, /
R |:7 11

(o P72 ) do > 4, /
an’an}

(|g+21?) da
)

(2.58)
Finally utilizing (2.57) and (2.58) we obtain

/R (2 + [m?) de = / (AT + |7 2) da

< Eep(m™) N Ernag(m™) - m N WC\/ERn(\/ERn +2)
- 4d, 8el,,d, 8¢
(zn 7\ 7CVCR,(VCR, +2)
NS —) +
4  8e 8¢

(2.59)
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we used the uniformly boundedness of the rescaled energies. Inequality (2.59)
shows that the sequence (S7)nen is bounded. Concluding we have that since
in (2.54) € was arbitrary then the following inequality holds:

Es 1 . ) E* —~ N
—(m ) > lim inf —(m )

nUn n—o0 ndn

lim inf
n—o0

We would like now to show that

lim inf El /\mo 1 dz + b, /]mO de

n—o0

We fix a natural number N. Since (17"),ey tends to m® in L} (Q(1,1)) we
have

/ (a9, 2) — ml(@)]? d€ = 0
[—N,N]xR(1,1)
which is equivalent to

1

Alndy J1ZN NIx R )

n 0 2
|my(x,y,z) o my(x)’ dg — 0 so

[my — mSHLz([,N’N}XR(Zmdn)) = o(+/l,d,) as n tends to infinity.

We have already seen as well

||m —-m ||L2 ([=N,N]x R(ln,dn)) < ||m —-m ||L2 Qln,dn) = O( lndn) thus

[|my — m2||L2([_N’N]XR(ln,dn)) = o(4/l,d,) and this is equivalent to

| — m|| 2w v = o(1) which itself yields

n—0o0

liminf/ |m”|2dx>11m1nf/ |m;‘|2dx2/ Imj)|* da.
[-N,N] [-N,N]

Since N was arbitrary we obtain

liminf/|mg|2dx2/|mg|2dx.

Similarly we can get the same inequality for m7. We can estimate now

B (m")

nvn

liminf —2~—-=
n—oo

f—hmmf aco/\m”\2dx+bco/’mn’2dx

T n—0o0

8 8
> —liminfaco/|mZ|2d:B—|——liminbeO/|m2|2dx
R T n—oo R

T n—oo
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> §<aco/|m2]2d:z:+bco/|m2|2dx)
n R R

which completes the proof of the second step. In the third step we prove that

n—00 ndn

Eer "
hminfﬂ > 4/ 10,m°|* d.
R

The weak convergence 9,70 — 9,m" in L?((1,1)) yields the lower semi-
continuity of the norms, i.e.,

n—oo

liminf/ |8xm"|2d§2/ 0,02 de
Q(1,1) Q(1,1)

but the exchange energy can be represented as follows

i 1 n 1 ‘n
B (m™) :lndn</ 0,11 |2d§+l—2/ 0,1 |2d§+d—2/ |01 |2d§>
Q(1,1) n JQ(1,1) n JQ(1,1)

> 1o, / A" 2 de
Q(1,1)
thus

E n
lim inf EBer(m") > liminf/ |0, 10" d€ > / 10,m° > d¢ = 4/ 10,m°|* d.
n—oo lnd n=oo Ja,1) Q(1,1) R

n>n

Construction We simply prove that the constant sequence

m™(€) =m®(z) if €€ Ql,,d,) and m"(&) =0 if £ € R*\ Q(l,,,d,)

satisfies the required condition. First of all note that by Corollary 2.5.3
m" € A(ln,d,) and since m" —é € H'(Q(l,,d,)) then m® € A(l,,d,).
According to the "lower semi-continuity" part of the foregoing theorem we
have that

Eo(m®) < liminf E,(m"),

n—0o0

thus it remains to only prove the opposite inequality. It is clear furthermore
that

E(m™) = Eoa(m™) + Eynag(m") = /Q » 10,02 € + By (™)

= 4l,d, / 10,m")? dz + Eppag(m™)
R

20



so it remains to prove that

E,
lim sup —+—= mag < ac/|m02dx+b /|m02dx

nooo  ln d

According to Lemma 2.5.6 for any € > 0 there exists an N, € N such that
when n > N, then

B < S [(ec o) [ @)oo+ Gt [ i dil
= ;lndn [(ac +€) /]R |m (2)]* dz + (be + €) /R Im?(z)|? dx}

— ilndn [(a,C +€) /R im}) (x)* dz + (be + ¢) /]R |m? ()2 dx} :

Since € was arbitrary we obtain

Ey(m
lim sup < ac/ jm}) (x)|* dz 4 b, /|m |2dx
nooo  lndy
We show as well that
I Euo(m™) _
imsu =0.
n—>oop lndn

To that end we invoke Lemma 2.5.11. It is now clear that

n
lim sup M < My, limsupd,(l, + 1+ 1Inl, —Ind,) =0
n—oo n“n n—oo
because [,, — 0 and d,, — 0. The proof of the construction part is complete.
We proceed now to the compactness part.
Compactness. Assume m"™ € A(l,,d,), I, — 0, ‘li—: — ¢ > 0. Without loss
of generality one can assume that

L Bmt) L E(m")
liminf == = lim =

=(C < 0. (2.60)

We are going to use now the relatively compactness of (m"),en coupled with
the idea of constructing a "good" subsequence without changing the energies
to ensure that the limit function m® would belong to Ag. We have that

E(m" :/ 8m"2d§—|—/ Oy dé4— / 9, ”2d£+
(m") Q(M)\ | 2 | I 7 11)\ | ld

hence for sufficiently big n we have

1070 7200117y < C + 1,

o1



18,72 221y < (C+ 1) =0 and (|07 |[7201,1)) < (C + 1)dy — 0.

(2.61)
Like in Lemma 2.6.1 one can prove that the sequence (1"),cy is relatively
compact with respect to the convergence defined in Definition 2.7.1, thus it
remains to construct a subsequence which has the limit function in A. If we
remember the proof of the existence lemma we will see that the key point to
the existence of a "good" subsequence is inequality (2.23). Moreover it does
not matter if the domain € is fixed or not, the point is that (2.23) is valid
with a constant M, not depending on n. Therefore in order to be able to
prove the existence of a "good" subsequence we have to show that inequality
(2.23) holds for any I,, d,, m™, E(m™) with My not depending on n. We
invoke (2.59) to have

L CVCR,(VCR, +2
/(‘mn‘2+|mg|2)dm§01<_+£>+7T VOR{VOR, + )<y nen
R Y 4 Re 8€

where (Y is a constant. With this new definition of the constant C'5 inequality
(2.19) will have the form

S (b-a) < Cylnd, + CR2E(m™)

forall neN
_ 2
Do Al,d, (1 — p?)
and (2.23) will have the form
1 1 / E(m")  Cylnd, + CR2E(m™)
b-a) < —( n ) forall n €N
Z (b_a—l— a S ud (04—5)2+ 1= or all n €

(a,b)eR
(2.62)
Coupling now (2.60) and (2.62) we obtain for sufficiently big n

1 1, C+1 Gyt
3 (b—a+b_“)§1((a—ﬂ)2+12—p2> (2.63)
(a,b)eR

which was supposed to be proven. Thus we can assume that the sequence
(™ )nen is "good". Using the relatively compactness of (17"),ey and (2.61)
we obtain that a subsequence (not relabeled) converges to some m’ € X,
in the sense of Definition 2.7.1, thus we can as well apply the "lower semi-
continuity" part of the foregoing theorem to discover

8 8
Eo(m?) :4/ |8$m0|2dx—|——ac/|m2|2dx+—bc/ |m?|* da
R ™ JRr ™ Jr
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< lim inf E(m”) =C,

n¥n

which this yields that m® € Ag. Since (17"),en is "good" m” must belong to
Ap.
]

2.8 The minimal energy scaling

2.8.1 The minima of the limit energy

In this section we recall how one can determine the minima of the energy
functional

Ea(m) = / D ()] de + a / (Imy (@) + e (2)?) da
R R
where o > 0 and the admissible set is
Ag={m:R=R®||m|=1,m—¢ec H(R)}.

It is well known that the minimal value of E,(m) is positive and attained
in flo. Remark 2.4.6 states that if m € [10 and depends only on = then m,
should tend to —1 and +1 respectively at —oo and +oo. Therefore we can
parameterize m in the following way:

ma(z) = sin p(z)
my () = cos () cos f(x) (2.64)
m,(x) = cos p(x)sinf(x)

where o € [-7,7], 0 € [0,27) and ¢(x) = £5 as x — Foo. It is clear
that

Eq(m) = /R<p’2($) + 07%(z) cos® p(z) dz + /R cos® p(r) dx

> /Rgo'Q(a:) dz + a/}Rcos2 o(r) de
> 2ya [ 1¢/(@)l|cospla)| do
>9va / ¢ (x) cos p(z) da

23



= 2\/5/2 costdt = 4/a
-3

and the equality holds if and only if the following conditions hold:

©?(r) = acos® p(x), ¢ (z)cosp(x) >0 and 0 (z)cos? p(z) =0 for all z € R.
(2.65)
Note that the first two conditions in (2.65) yield

ol(x) = /acosp forall z€R

which has the only solution

e2vVor . g1

m, where B > 0.

Pa,3 = arcsin

Note furthermore that cos ¢, 3 does not vanish, thus the third condition in
(2.65) implies 6§ = const. Is is clear that v, 3 € [-5,5] and pqg(x) = £5
as x — oo for any o, 8 > 0. We denote ¢, = @1 and m* = m(p,). The
minimal value of E, in Ay will be 4./a.

Remark 2.8.1. Neither the minimal energy(the infima of the energy) nor
the second summand of the energy depend on the constant 6.

2.8.2 The minimal energy scaling

In this subsection we determine the minimal energy scaling when [ and d
are small enough. We consider a sequence of domain-magnetization-energy
triples (Q(ly,, dy,), m"..  E(m”. ))nen, where m?. is a minimizer of the en-
ergy functional in fl(ln, d,). We would like to find the scaling of E,;, (1, d,) =
E(m?.) in terms of [,, and d,,. We will show that the minimal energy scales

like [,, - d,,. We have for the limit energy functional

Eo(m®) :4/ |8$m0|2dx+§(ac/|m2|2dx—|—b6/ |m2|2dx),
R m R R

where ¢ = lim,,_, Cll—“ <1< % We will show later that a. is increasing on
(0, +00) thus a. < b.. As we saw in the preceding section the limit energy
can be estimated from below in the following way:

16+/2a,

7 (2.66)

2,
Bufo) = 4( [ (o e+ 22 [ (e + ) o) >
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In is clear that we have equalities in (2.62) if and only if when

2a
c=1, m®=m" with a=""and 6 = const
s

or
ey
T
Hence we establish that the infimum of the limit energy Ej is attained and
equals %?Tc. We already showed in the "construction" part of I'-convergence
Theorem 2.7.2 that for the constant sequence

c<1l, m>=m" with a=

and 0 =0.

m"(€) =m*(x) in Q,,d,) and m"(&) =0 in R*\ Q(l,,d,)
the sequence of the corresponding energies satisfies the condition

_ 164/2a,
=
which implies the same bound for the minimal energies:
) Enin(ln,dy)  164/2a.
lim sup < )
n—o0 lnd, VT

Assume now (m"),ecy is any sequence of magnetizations with m™ € fl(ln, dy,).
We will show that 5
n 164/2a,
lim inf (m") > ¢ )
Without loss of generality one can assume that

E(m™ Elm™
limimfM = lim M

n—oo  l,d, n—oo I,d,

E
lim sup (o)

n—oo l’l’b n

< Ey(m?)

(2.67)

< 00

According Theorem 2.7.2 we have the a subsequence of (11"),en converges
to some m® € Ay, therefore using once again Theorem 2.7.2 we establish
16+/2a.. . E(m" .. E(m”
S ) S S it 5
and this completes the proof. Summarizing the obtained inequalities we
obtain

16+/2a,

Emzn(lny dn) Emm(lna dn) < 16 V 2a'c

< liminf < lim sup

hence oL
; 164/2
fim Zminln ) _ 16v20c (2.68)
n—00 Ind, ﬁ
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2.9 The ['-convergence and the minimal energy
scaling in the second regime

2.9.1 An estimate on the energy scaling

In this subsection we study the case ¢ = 0. Like in the previous case we con-
sider a sequence of domain-magnetization-energy triples (2(l,,, d,,), m™, E(m™))
for which all of the parameters [,, d,, and ¢, = ‘ll—: tend to zero as m goes
to infinity. In the first step we show that the minimal energies decay faster
than [,,d,, as n goes to infinity. To that end we fix a magnetization m° such
that

8xm0,m2,m2 € L*(R).

We show that the constant sequence m™ = m? satisfies the following condition

E n
lim sup (m") < 4/ |8xm0|2dx+4/ |m?|? d.
R R

n—oo lTLdTL

It is clear that
Eon(m™) = 4l,d, / 10,m0 |2 da
R

thus it remains to prove that

Emll "
limsupM < 4/ |m?|? d.
R

n—oo l?’L n

We will prove it by showing that

EU n ) ES n
lim sup (m") =0 and limsup (ZL ) < 4/ Im?|? dx.
n R

n—oo lndn n—oo ln

According to Lemma 2.5.6 we have that
I(ly, dp, ) < 72lhd, and  I(dy,ln,7) < 7(1+7)l,dyy/c, forall zeR.

This implies the following bound

Ey(m") < lndn<4/ ymg|2dx+ﬂ,/—cn/ |m8|2dx>
R m R

4(1
:lndn<4/|m2|2dx+ﬂ\/cn/|m2|2dx>,
R n R
hence

n—o0

E,(m"
limsup% < 4/ |m?|? d.
ntn R
6
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We have furthermore by Lemma 2.5.11

E,(m")

lim sup < limsup(l,d,, + d,(1 + Inl, —Ind,)) M0 = 0.

n—oo n*n n—oo

Consider now a sequence of domain-(minimal energy) pairs (Q2(l,,, d,), Emin(ln, dp)).
Let € be any positive number. We choose the angle 6 for m¢ such that m{ = 0,
i.e., § = 7. We have that

E.(mf) = / laxme\zdx—l—e/(]m;F Fmef?) dr = 4ve.
R R
As we have proven for the constant sequence m™ = m* the following inequal-

ity holds:
E n
lim sup (m") §4/ |amm€|2d$+4/ Img|? da
n—o00 lndn R R

:4/ 19,me[? dz §4</ |3mm€|2dx+€/(|m2|2+|m§|2) dx) — 16V/e,
R R R

thus

lim sup # < lim sup M < 16+/c.

n—o0 lndn n—oo ndn

Since € was arbitrary we obtain

E .
lim min (lna dn)

n—o00 l.d,

= 0. (2.69)

This equality motivates us to rescale the sequence of magnetizations not only
in the directions y and z but also in the x direction. Adopting that strategy
we first establish a I'-convergence on the energies and then we determine the
minimal energy scaling. In the next section we observe some properties of

the function N

¢ [T®sin?t 1—e %
o = — . dt.
2 ), t

2.9.2 An observation on the function a,
We consider ¢ — a, as a map from (0, +00) to (0, +00).
Lemma 2.9.1. The function a. has the following properties:

e a. increases in (0, +00)

1

. ac 1
° hmc_>0 cllne| — 2

o7



o lim., a.=7.
Let ¢; and ¢y be two positive numbers with ¢; > c¢o. Since the function

f(t) = %ﬁ decreases in (0, +00) we have

2t 2t

TOGn?t 1—e o TGNt 1—e o
e = 2 2 dt = 2 T 2 dt = a,,
0 o 0

c2

which is the first property. The second property is Corollary 2.5.9. To prove
the third property we utilize (2.39). Assume now ¢ > 4. We have that

——2>1—-->1—-— if te€]0,v/(] (note that \/Egg)

Therefore for a. we have on one hand

1 \/E 2 t “+oo .2 t
liminf a, > lim inf (1 — —> / ot dt = / i dt = Z,
N—00 N—00 \/E 0 t2 0 t2 2

but on the other hand

+oo :..2

sin“t ™

acg/ 5 dt = = forany c¢>0.
0 t 2

The last two inequalities complete the proof.

2.9.3 The I'-convergence

First of all we show how one can guess the scaling of the minimal energies
Erin(ly, dy,) where 1,,d,, ¢, — 0. As we have seen for sufficiently big n one
can formally write

B(m") ~ %zndna% /R ]mZ(az)\de—k%lndnbcn /R i (2)[2 dz

We know that a,, scales like ¢,Inc, and b., — 7. Furthermore, for a
fixed m" = m”(z) the summand E,(m") decays not slower than [,,d? In* ;—:_
We blow up m” by a factor A, in the x direction where \,, — 400 and denote
the blown up function by ™. We have

_ lndy
= I

2 )\2 2 )\2 2
Bunlm) = 52 [ (|4 T2 jo P + o) .
Q(1,1) n n
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thus

Al,d,,
Eep(m") =~ )\ /R|5)$m”|2dm

and
S ~ nYntn n|/\n & Y Cn“ Cn‘ V4 :

It is now clear that the coefficients % and [,d,c,|Inc,|\, should be taken
equal and they will both be the scaling of E(m™). This yields A, = L

v enllnen|

and we set u, = d” . We proceed to do justification on this reasoning.
Like in the prev10us cases we consider the full minimization problem

ln

. . A
inf E(m) where FE(m)= —E(m)
meA(l,d) ld

and [ and d are small enough. It is clear that the admissible set will be
A(l,d) = {mh | m € A(l,d)}.

We define as well the reduced energy functional FEy and the admissible set
Ap for the reduced variational problem. We set

4 [ 10,mPPde + 2 [ |ml2dx, if md=
0y _ R 0z = Jr My dT, z
Eo(m”) { 400, otherwise

and .
Ag={m": R —S*|m’ —eec H'(R)}

We also define the subset flg of Ay in the following way:
Az ={m° € A, | m® = 0}.
We introduce as well the following sets
Xo={m’: R =8| 9,m" € L*(R) and m;,m? € L, (R)}.

Ag={m": R = §* | Ey(m°) < oo}.
It is evident that

min Ey(m®) = min Ey(m?).

0 0c A
mY€Ag mO€Af
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This allows us to consider the minimization problem min, o . Eo(m®) in-

stead of min, oz Eo(m”). The notion of convergence that we use in the
['-convergence theorem is the same:

Definition 2.9.2. Assume we are given a sequence of domain-magnetization
pairs (1, d,), m™)nen and a magnetization m® € Xo. We define
mh(x,y,z) = m"( Az, by, dnz) for any (x,y,z) € Q1,1). The sequence
(™) nen is said to converge to m® if the following statements hold:

o 0™ — 9,m° weakly in L*(Q(1,1))
o V,.1h" — 0 strongly in L*(Q(1,1))
o ™ — m° strongly in L7, .(Q(1,1))

Like in the previous case a I'-convergence holds:

Theorem 2.9.3 (I'-convergence). The reduced variational problem is the I'-
limat of the full variational problem with respect to the convergence stated in
Definition 2.9.2. This amounts to the following three statements:

e Lower semicontinuity If a sequence of magnetizations (m™),en with
entries in A(l,,d,) converges to some m® € Xq in the sense of Defini-
tion 2.9.2 then

Eo(m®) < liminf E, (r2™)
n—o0

e Construction For every m® € 1210 and every sequence of pairs (1, dp ) nen
with 1,,d, — 0, ¢, — ¢, there ezists a sequence (M"),en with entries

n fl(ln, d,) such that

m™ — m° in the cense of Definition 2.9.2

Eo(m®) = lim E, (")
n—oo

e Compactness Let (1, d,)nen be a sequence of pairs such that 1, d, —

0 and ¢, — ¢ > 0. Let m™ € A(l,,d,) and let (E,(m™))nen be bounded.
Then there erists a subsequence of (m"),en (not relabeled) such that
h™ converges to some m® € AZ in the cense of Definition 2.9.2.

n

= 400 then there is
nothing to prove, otherwise one can assume that E(m") < M - p, for some

Proof. Lower semicontinuity If liminf, .
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constant M and all n € N. In this case everything is analogues to the previ-
ous case except the lower bound on F; with the right coefficient. It is clear
that

E " Ee:): " . . Ema n
lim inf (m") > lim inf M + lim inf M
E@.’ﬂ " . . Ema n" . . ECI " . . ES n"
= lim inf (m") + lim inf M > lim inf M + lim inf M

Assume (¢,)nen is a sequence with entries between 0 and 1 yet to be
defined. We have that

Eex m" dn n 4n 7y T
W= s B g ngPagz L[ joare)ae
Fn, Fon Sl dn) Hn JQ(ln,d)

Aod, - nlndn —
=4l [ o ar = 4220 [ ) s
n R

innd / 2 4Qn n / e~ 2 e 2
m" dx > me(z)|” + |mi(z dx
o de 2 g | (T )

and according to (2.38) we have for big n as well

1

(1—€)*(1—3€)l,,d cn|lncn|2/dln (

3ln

Es(m™) S 4

in i [ () [P+ | (o )|>dx.

| Inc,|

Now the choice of g, is evident, we should make the coefficients of the inte-
grals equal:

Al d,cnllne, > 4q,d, 9,,d,|Inc,|?
c|nc|:q thus g, — \nc|_>0'

T n 9lnun ™

We split E,, into the sum of (1 — ¢,)E., and ¢, E, to obtain

E n
timinf 20 > i inf(1 —qn)/ |9,172" |2 dé

4
+ lim inf (1—€)*(1 —3e)l,d cn|1ncn|/ |7y (@) + [Incy| - [m2 (2)]?) da
n—o0 7T[j,n
4
> 4/ 10,m° 2 dz+—(1—€)*(1—3¢) hmlnf—/ >4 In ¢, |- [ (2)]?) dz
R T n—00

(2.70)
According to Lemma 2.4.3 we have

—n —n 1 n n
[+ el 2@ Pyde = o [ (e ) de
R n%n JQ(ln,dn)
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1
>
— 4l,d,

([ P+t m2P)dg = MCR [ we) (271
Q(ln,dn)

Like in the proof of Theorem 2.7.2 we can prove that for any fixed N € N
the following inequalities hold:

1
m2(€))? d¢ < liminf / m"(&)]* d¢
/[—N,N]xR(l,n' (8] oo lndp Ay Q(zmdml a

and

1
/‘ mO(€)? dé < lim int / m () de.
[ N,N]x R(1,1) n=oe ndnAn S, d,)

We fix a number L > 0. Utilizing (2.71) we get

4[NWﬁ@W+Lm&@PMx:/' (mO(E)? + Lm2(€)[?) de

[~ N,N]xR(L,1)

< lim inf / (Jm™ ()2 + Lm™(€)[?) dé
n—oo [,dy A, Q(lp,dn)
MCR2

4
< liminf i (Imy (x)? + L|m? (x)|*) dz 4 lim sup

n—oo
4
=liminf — [ (jm(z)]* + Lim}(z)[*) dz

and since N was arbitrary we obtain

/R(|m2(x)|2 T Lm(@)P) de < liminf - [ (a2 (@) + Lim?(@)P) d.

(2.72)
Utilizing now (2.70) and (2.72) and taking into account that for sufficiently
big n we have |Inc,| > L and that € was arbitrary we establish

E n
lim inf (m")

n—oo Mn

4
> 4/ 10,m"(x)]|? da:+;/(|m2($)|2+L|mg(x)|2)dx. (2.73)
R R
Note that (2.73) holds for any L > 0, thus

E' n
lim inf (m")

n—oo /"Ln

> Eo(m°)
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which was supposed to be proven.

Construction Like in Theorem 2.7.2 we prove that the sequence m"(z,y, z) =

m®(5&) where m? = 0 satisfies the condition

n

lim sup
n—00 HUn

< Ey(mP).

The only difference is the upper bound on 1(d,, l,,, ). Without loss of gener-
ality one can assume that Ey(m°) < oo, otherwise there is nothing to prove.
Therefore we have m? = 0. Referring to (2.45) we recall that for any z € R

I(dy, 1y, x) < wlpdpe,(3 —Ine,),
thus

4 4
E,(m") < =lpdpc,(3 — In cn)/ |mZ|2 dz = —l,d,c,(3 —1In cn))\n/ \m2]2 dz
™ R ™ R

hence

E,(m" 4(1 —
lim sup S(m) (nc, /|m02daz— /|m02dx

n—soo  Hn mlne,

Compactness Assume now we are given a sequence of magnetization-
domain-energy triples (m™, Q(l,, d,), E(m")),en such that [,,, ¢, — 0 and
E(m™) < Muy, for all n € N. Like in Theorem 2.7.2 one can prove the
existence of a "good" subsequence of magnetizations (not relabeled) and of
a magnetization m® € Ay such that (m™)nen converges to m® in the sense of
Definition 2.9.2. It remains to prove that in this case m] — 0 strongly in
Q(1,1) and thus m? = 0. To that end we recall lemma 2.5.6, and the lower
semi-continuity part of proof of Theorem 2.7.2. Namely we have

1 1
3Vd, 3v/1,d,

[(y,dy, ) > 27 0dy (1 - \/a) (g - 3\@) it ze [—

hance for big n we have

1 —
B > 21, / R [? da
8 [_3\/1%73%}
and Al,d
n ntn —512
E..(m") > 9 /R |my|* d

\[_ 3\/1a’3\/1m]
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therefore for big n we have

_ = 9c 8 9Mu
n|2 — nl2 <M ( n < n
/R'my' dr /R‘my‘ Ao s Myt 4zndn+zndn> = nd,

which is equivalent to
/ |y | daz < 36 M p,.
Qln,dn)
We also have that
[ e [ mppad < cn,
Qln,dn) Qln,dn)
where C,, is the diameter of R(l,,d,) times a constant, therefore
/ m?? de < (C2 + 360M) 1.
Qln,dn)

Finally we get

1 C? + 36 M
™ (€)2 dE = / mr(€)2de < TR
/Q L rmerde= e | e .

as n goes to infinity. The proof is complete.

]

Now the minimal energy scaling for the case ¢ = 0 can be found. It is
easy to see that like in the first regime the following equality holds:

lim ————~ = y—=
n—00 Un, ﬁ

therefore we can also state the the minimal energies scale like fi,.

(2.74)

2.10 The rate of convergence

In this section we find a rate of convergence for limit (2.74). To that end
we need an accurate lower bound on E,,.,(m) for any m € fl(ln,dn) and
an accurate upper bound for a suitable m. We choose m(z,y, z) = mo(ﬁ),
where m, = 0 and m" is a minimizer of the energy functional

Bufm) = [ 10 do -+ [ () + . @) )
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Utilizing estimate (2.45) and we obtain for big n

4z d, Ot dp 4 Andncn(3 =

.cu) /R|m2(x)|2dx—|—Ev(m).

According to Lemma 2.5.11 we get for big n

E(m)
1

12
< 4Ey(m) + Py /]R im2(x)|? do 4 2M,0d, A\ (1 — Inc,)

16 10
< —=+ 7 +2Vhdy|Inc|,
_ﬁ+\lncnl+ [l

thus the minimal energy satisfies the inequality

E . 1
ney

fin

To get a lower bound we use (2.48) but we now play a bit with e. Assume
now € is a positive number smaller than 1. We have

ch 2 —2cy €
n t 1—en 11
I(dy, 1, 7) > Wlndncn/ MNP 2T T gt se [— ) —].
e 12 t+c, I, 1,
Using the inequalities
2
sint >t — 5 and e' >t for t € [0,+00)
and the argument used when proving (2.48) we get
025
I(dy, 1y, ) > 7(1 —3e)(1 — %)2(1 — ) pdncn| Incy). (2.76)

We now choose the a sequence (€,)nen such that we have ¢, — 0 and ¢;* — 0

simultaneously. An example of such a sequence is ¢, = ———. It is easy to
v | Inecn|

see that

2€
e 4

21— >1— ——.
)21 — ) —

1
2n < ——— and (1-3¢,)(1—

" 2¢/|Inc,|

Now with this choice of €, (2.76) will have the form

n

11
I(dy, 1, x) > wlhdac, lncn|(1 - for = € [— R l—] (2.77)

iy
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Assume now m is a minimizer of E(l,,d,). We have that
I(ly, dpy ) > 1(dn, 1y, )

thus

1

—

4 4 In —~
Epnag(7) = ~ldne |l (1 = ———) / (7, | + |72 ) d.
@ |Ine,|/ J-L

According to (2.75) we have for big n

Bl dn) 16y (2.78)
v

fin VT

We have furthermore for big n that

Lo O e <t [ (o o) d
Tlnln

L,
_ z§/<|axmy|2 10m.?) da < (19ummy 2 + [0 |?) do
R ddn Joa, dn)
< lnEer(m) < 111, i,
- 4d,, — 4d, ’

thus

—lndncy| Inc,| / (Jmy)? + |m.?) dz < —ep| Ine, |,
T R\[_i7 1] T

In

and

4
|Inc,|

We have by Lemma 2.4.3 that

4 11
Ernag(m) > —lndncn|lncn\<1— )/(]myIQHmZ]Q) do——0c,|Inc,|pn
™ R m

4l,d, /(\myﬁ + |m.|?) dx > / (|my)? + |m.|?) dz — CR2E,,(m)
R

(ln 7dn)

and we have for big n analogues to (2.53) that
Ernag(m) = Eyag (1) — 33V C Ry,
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thus combining the last three inequalities and remembering that
E..(m) < 11p, we discover

Ernag(m)
4

) [yl ) da
Vilne|” Jag.dn

1
> —cp|Ine,| (1 -
7r

11C + 1

ol In ey | R2 1y, — 33\/_Rn,un

For the whole energy we obtain

4 1
E(m) > py(1— ——— / axm2d§+—/ 1y |* + |1h.]?) d€ ) —
(m) = jia m)( o (02 [ (i i) de)

11C +1 ;
i ol In ey | R2 1, — 33\/5Rnlun.

Finally taking into account Lemma 3.7.5 and the fact that c,| Inc,|R? decays
faster than R,, we establish for big n

E(m) _ 16 > _ — 34VCR,. (2.79)

Nn \/_ V | ncn

Combining now (2.75) and (2.79) and taking into account the fact that the
right hand side of (2.79) decays faster than the right hand side of (2.75) we
establish for big n

Em) _ 16 +34VCR,. (2.80)

T \/m
2.11 Upper and lower bounds for thick wires

Throughout this section we assume that the parameters d and [ are both big
and comparable to each other. For convenience we will assume that d = [.
We prove an upper bound on the minimal energy and refer to [24] for a lower
bound. However it is not clear if the upper bound we get has the optimal
scaling or not. We directly construct a magnetization m with the described
energy. We start with some notation: Assume L > 0 and denote by €2 the
domain [—L, L] x [—=d,d] x [—d,d]. We take the rectangular parallelepiped
Q0 and cut off from it the two cones with the vertex at (0,0,0) and the
bases —L X [—d, d] x [—d,d] and L x [—d, d] x [—d, d] respectively and denote
the obtained domain by R;. The main diagonals of €1y divide R, into four
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parts. Taking into account the orientation in the plane OY Z we denote
that parts by Ry, R}9" Rdown and RY'* respectively. First we construct
a magnetization m which has infinite exchange energy but a magnetostatic
energy easy to bound. We consider the following vector field:

mdx wdx : up
(SIIZQL , COS 2Lz,dO) in R, y
. 71
N (sin 520, —cos’”c) in R}Y
m = .
( — sin %, — COS %, O) in Rdown
_ wdx wdx : left
( sin 2Ly,O CoS 2Ly) in R

Note that the vector field (0, m,,m.) is divergence free ( see cross section
Figure 2.1).

A cross section for m

Figure 2.1
Therefore

divin=2" 50 i
X

and s = 0, thus we have

B (17) = /Q /Q r(e - &) el MG g g,

The integrand is zero in the complement of R, so we first estimate it if the
first integration is done over R}”. Note that in R;” we have
om.(§)  wd wdx < wd

= COS

or 2Lz 2Lz — 2Lz’
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thus

/R“p (S 51) /—dz/z/_ir(ﬁ—&)dydx.

Recall Lemma 2.5.10. Apparently Lemma 2.5.10 is valid also when the
point (y1, z1) does not belong to R(l,d). Indeed, in that case we will replace
(y1,21) by the closest point of R(I,d) to (y1,21) which will not decrease the
integral. Hence we have that

Lz

I 10z L
T — &) dyder < —=(141n =

![%[Z@ &) dydr < 22 (141 )

and

8mm(§) 5d? L

d 1+1In—

[ - T ag < (14w )
L

The integrals over the other parts of Ry have the same upper bound, thus

we obtain 504t I

Emag( ) < T(l -+ lng)
The reason for m having an infinite exchange energy is that it has singularities
on the part of the boundary of R, that belongs to €2;,. We ignore for a moment
this boundary charges and compute E..(m) taking into account only the

volume charges. We have formally that

2d2
formal
E! (m) = /0 122 / / 1 —|— dy drdz <

/4L222/ / 1—|—d2 dydzdz =

—47T(

(2.81)

7+ L). (2.82)

In the next step we build a magnetization m with finite exchange energy
by slightly modifying m near the singularity points. It works in the following
way: We first take the planes {z = -4y} and {z = —=ly}. To get a
continuous m from m we change m in the following two regions: The first
one is the intersection of (2, with the region between the planes {z = -4y}
and {z = y} and the second one is the intersection of Qp with the region

(d-1)

between the planes {z = —*=~y} and {z = —y}. For more transparency see

Figures 2.2 and 2.3
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P N7 72,
my, =—1 ~—., L, my =1
i —_—
-~ —
-~ —_—
- -~ -« - > — —
(—L,—d,c) (L,—d,c)

A longitudinal section {z = ¢ > 0}

Figure 2.2

A cross section for m.

Figure 2.3

We denote the upper part of the first region(where z > 0) by ©”, and the
lower part by QdLoj"”. We make the same notation also for the second region.
Finally we define the magnetization m in Q7"

wdx wdr . wd(z —y) mdx  wd(z —y)
, COS sin , — COS cos ).
2Lz 2Lz 2z 2Lz 2z

m(z,y, z) = (sin
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The definition of m in the other three regions is analogues. Note that the
vector field m has now only one singularity which is the origin. We estimate
now the energy of m. Note first that by Lemma 2.4.2 we have

| Einag (M) = Erag ()| < [[m — 1|2,y + 2llm — | r2(,)\/ Einag (1)

< 16dL + 16v/5d*VdIn L. (2.83)

Using the inequalities |y| < z and |z| < £z in Q") one can by direct calcu-
lation discover

2 1 . w
[Dymy[* + |02my [* + |0ym.|* + 8,m.|* < Z(2d2 +1)- 2 ! Q-

We calculate now

1 L d z 1 1 L L
/ —d§:2/ / / —dydzda::—/ (InL —Inx)der =
que, 22 o Jaz Ja-1, 22 d Jo
L,1 L d

We have furthermore

=

2

L
|Eformal( ) B x(m)| < /up (|aymy|2+|azmy|2+|8ymz|2+|8ymz| )df < 7T2dL+ﬁ'
L1

(2.84)
Employing now (2.81)-(2.84) and choosing L = d2+/Ind we obtain for big d

E(m) < 150d2vIn d.

For a lower bound we refer to [24]. It is shown in [24] that there exists a
number Ry > 0 such that if R > Ry then the minimal energy is bigger than
a constant times R?v/In R, where the cross section of the domain § is a disc
with radius R. It is easily seen that the proof in works also for a rectangular
cross section, thus we obtain that there exist numbers dy, C' > 0 such that if
l,d > dy then

Cd®>VInd < E(m) < 150d%v/In d.
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Chapter 3

The static domain walls in
cylinders with a centrally
symimetric cross section

3.1 Introduction

In this chapter we study the static domain walls in a more general setting,
namely we assume that the domain €2 has the form R X w, where w is a
centrally symmetric, bounded Lipschitz domain in R%. We consider sequences
of homothetic cylinders R x w,,. Denote by d,, the diameter of w,, and assume
that the sequence (d,),en converges to zero. We prove a ['-convergence of
the rescaled minimization problems

.. E(m)
Jnf =

and show that they converge to a one-dimensional problem which can be
solved explicitly. Moreover, we prove a convergence result on the sequences
of almost minimizers of the magnetization energy.

3.2 General Notation

We denote by d the length of the diameter of w. We emphasize all the other
notations that will differ from the ones in the previous chapter. We use the
following notation:

o A(Q) and A(Q) instead of A(l,d) and A(l, d) respectively
o A,(Q) instead of A,(l,d),
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e w and w, instead of R(l,d) and R,(l,d), respectively
e (), =d, - w, where w has diameter 1,

We keep all the other notation of the previous chapter.

3.3 The main results

Like in the rectangular cross section case we establish an existence and a
['-convergence result.

Theorem 3.3.1 (Existence). For any Lipschitz domain w there exist mini-
mizers of the enerqy functional in both A and A,.

We fix a centrally symmetric Lipschitz domain w C R? with a diameter 1.
For any positive number d denote 2; = R x (d-w). We consider the rescaled
minimization problems

inf E(m) )

meA(Qy) d?

Theorem 3.3.2 (I'-convergence). The rescaled minimization problems I'-
converge to a one dimensional problem as d goes to zero. The limit problem
can be solved explicitly.

As a consequence we obtain that the minimal energy scaling is d?, more-
over we establish

Emin _ E()

min*®

lim
d—0 d2

We prove as well a rate of convergence for the above limit.

Theorem 3.3.3 (Rate of convergence). The following rate of convergence

holds:
2 [2Cu 2 51
< 120w a—(per(w)) ds.

(The numbers a,, and ¢, are defined in Chapter 3.7).
We establish furthermore a strong H' convergence for sequences of almost
minimizers. (See the definition of a sequence of almost minimizers in Section

Emin N Eo

d2 min
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3.9) We consider a sequence (my),c; Wwith w, = d, - w and assume that
d, — 0.

Theorem 3.3.4. For any sequence of almost minimizers (mn)neAn there
exist a sequence of translations T,, in the x direction and a sequence of rota-
tions R, is the OY Z plane, such that for a magnetization m® € A, strong
H?' convergence holds:

o1

lim — [m™(Tn(Ry)) — m°|| (o, = 0.

n—oo n

3.4 The characterization theorem

First of all note that |w| = ¢, - d* where ¢, is a constant depending only on
the shape of w. i.e., if another domain w is homothetic to w; then c,, = c,.
We claim that all the theorems and lemmas of the previous chapter hold
also for this case, but formulated in another way if needed. We point out
the theorems and lemmas that need to have another formulation and the
changes that should be made in their proofs. We prove as well some new
lemmas which will be used for the main I'—convergence theorem.

Lemma 3.4.1. If the vector field m € A§, satisfies
m| <1 in Q,

E(m) < oo

then there exists a positive number M depending on w and E(m) such that
lmy |72y + M=l 72@) < M.

Proof. The only idea that should be changed in the proof is choosing the suit-
able test functions ¢,. We choose a point (yo, 29) on Ow such that v, (yo, 20) #
0 and v, (o, 20) # 0. If such a point does not exists then clearly there exist on
Ow two points (y1,21) and (ya, 22) such that v, (y1,21) = 0 and v, (ys, 22) = 0.
Consider the first case. Since Ow is Lipschitz one can choose an € > 0
such that for any (y,z) € Be(yo, z0) N 0w we have v, (y, z) > 21, (yo, 20) and
v,(y,z) > %Vz(yo, 2p) and v, and v, keep their sign on B.(yo, 29) N Ow. The
function ¢ can be chosen as follofs:

€ € € €
7':1. ) |: ) _] [ ) P
¢ in [—rr] x |yo 290‘1‘2 X |20 220+2

€ €
supp¢ C [T_é’r_'—i] X [yo — €, Yo + €] X [20 — €, 20 + €] and
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10
0<¢<1 [Vo|<—.
€
The choise of the function ¢ and the rest of the proof is the same as in the

previous chapter, namely ¢, = ¢,.-s. The same can be done for the two-point
case.

]

Lemma 3.4.2. For any vector fields mi,mo € Mq with finite energies the
following statements hold:

b Emag(ml + m2) S 2(E’mag(Tnl) + Emag(mQ))

o |Emag(m1>_Emag(m2)| S Emag(ml_m2>+2\/Emag<m1)Emag(ml - m2)

® [Enag(m1) = Epag(ma)| < [lma—ma||72q)+2[lmu—ma| 12(0) v/ Einag (m1)
if my—my € L*(Q)

Lemma 3.4.3. For any m € Mq with a finite energy the following statements
hold:

L (mP=|mP)dydz = [ |jm—m|*dyds < Cd? [ |V,.m|dydz for
all x € R, where C' is an absolute constant (the Poincaree constant for
bounden Lipschitz domains in R?).

Eey (m) + Eeac(m - m) = Ee$<m)

o There exists a constant Cy depending only on w such that
E(m) < CLE(m) (3.1)
o There exists a constant Cy depending only on w and E(m) such that
My 172000y + 1772000y < Co (3.2)
Lemma 3.4.4. e Let m € A be a magnetization and o and [ be real

numbers such that —1 < a < f < 1. Assume R is a family of disjoint
intervals (a,b) satisfying the conditions {m.(a), m.(b)} = {«, B} and
|z (x)| < mazx(|al,|B]) in (a,b). Then

card(R) < My and Z (b—a) < M, (3.3)
(a,b)eR

where My is a constant depending on «, 5, w and E(m).
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o Ifm € A then for any 0 < & < 1 there exists a positive number N
such that two of the following properties hold:
—1<m,<—-14+4d in (—o0,—Nj)
—1<m, <—-1+46 in (Ns,+00)
1-6<m; <1 in (N5, +00)
1—-6<m, <1 in (—OO, —N(;)
(note that only two of them can simultaneously hold.)

o For any m € A the function m, has a constant sign at 4oo.

Proof. In the proof the number 4/d must everywhere be replaced by |w].
O]

Theorem 3.4.5. If m € A(QY) then one of the four functions m+é;, m+te
belongs to H ().

Proof. In the proof the number 4ld must everywhere be replaced by |w|. O

3.5 The magnetostatic energy

3.5.1 A representation of v and the magnetostatic en-
ergy
Recall first of all that I" is the Green function for the Laplace operator in R3.

Lemma 3.5.1. For m € X define the maps u,,us,u: R> = R by

w(€) = /Q P(E — &)ulér) déy,

ual6) = / (- €)s(e) a6

u(§) = uy(§) + us(§).
Then the following statements hold:

o The maps u, and us satisfy the equalities

Va() = 3 [oT€-au@Td foral B (34

i{zy,2}

Vus(§) = > T (E—€))s(€) el dE for all € € RP\OQ, (3.5)

i€{zy,2} 7 O
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Vu, - Vo = / v for all € CF(RY), (3.6)
R? Q

/ Vus -V = / sp  forall ¢ € C&P(R?). (3.7)
R3 )

e u is a weak solution of Au = divm.
e Vu is in L*(R?).

For any m € X we will hereafter consider the solution of Au = divm
which is defined in the previous lemma. As a corollary we get a necessary
and sufficient condition for a magnetization to have a finite energy.

Theorem 3.5.2 (Characterization). A magnetization m: Q — S* is in A(Q)
if and only if one of the four functions m + e, m + & belongs to H'().

Proof. The necessity is Theorem 3.4.5. To prove the sufficiency we note that
if one of the four functions m=+e,, m=+e belongs to H'(2) then m € X thus
according to Lemma 3.5.1 m belongs to A.

m

Corollary 3.5.3. A magnetization m belongs to A if and only if
Vm,my,m, € L*(Q).

We consider now the functional E,,., for the magnetizations which are
constant on each cross section, i.e., for m € A,.

Lemma 3.5.4. For any m € A, the gradients Vu, and Vug are orthogonal
in L*(R3).

Thus for m € A, the energy functional has the form

E(m) = de2||aﬂcm”%2(R) + E,(m) + Es(m).

3.5.2 The representation of E; in Fourier space

In this section we find a representation of F; in Fourier space. Let the point
(0,0) be the center of symmetry of w and let the parametrization

Y= y(t)a te [07 2]
z=2z(t), te]0,2]
of Ow be chosen so that y(t + 1) = —y(¢), z2(t +1) = —=z(t) and

) M. ()
v(t) = (v (1), va(t) = <\/y’2(t) —I—Z’Q(t), \/y’2(t) —|—z’2(t)>7
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where v(t) is the outward normal to dw at (y(t), z(t)).

Theorem 3.5.5. For any m € A, the following formula is valid:

1 1 R R o _ _ .
Ey(m) = 12 /11@ W(|a\2|my(k’1)|2+|b|2’mz(k'1)|2+@b(my(k’1)mz(k1)+my(k1)mz(k1))dk’a
where .
a(ke, k3, w) = —Qi/ 2 (t) sin(koy(t) + k32 (t)) dt
0
and

b(ks, ks, w) = 22'/0 y'(t) sin(koy (t) + ksz(t)) dt.

Proof. In order to calculate [s|Vu,|* we again use (2.30) and the distri-

butional identity Aus = —s - dg,. Denote T = (z,y,z). We have for any
k€ R3 .

s/-a,k‘: e (5. 6p,)(T) d7T 3.8

) = 5= [ s 00)(@ 35)

It is clear that

/ efi:fk(s . 5aw)(f) dr = / / e*i(k2y+ksz)l/(y, Z) dy dz - e*ikwm(aj‘) dx
R3 R JOow

— V2, () /

e~ ilk2vtks2) (g o) dy da+/ 27rmz(k1)/ e~ ikaytkaz) y(y 2) dy dz
Ow

Ow

2 2
= Vo (k) [ 20 O dr B (k) [ e )
0 0

For convenience we investigate the two parameters a and b as follows:

2
a(k27 k37w) = / Z/(t>e_i(k2y(t)+k32(t)) dt’
0

2
b(k, ks, w) = —/  (t)e~ kv +haz(®) qp
0

Note that since the curve dw is closed

2
ksa — kob = / (k32! (t) + kot (t))eh2v®+ka=(t) g — (), (3.9)
0
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1 1
a(ka, k3, w) :/ Z/(t)e—i(kzy(t)-i-ksz(t)) dt—/ Z/<t>ei(k2y(t)+k3z(t)) at
0 0

—22'/0 2'(t) sin(koy(t) + ksz(t)) dt.

Similarly we have

b(ka, k3, w) = 2i /01 ' (t) sin(kay(t) + k3z(t)) dt.

For the Fourier transform of Au, we have

1 .
|ary (ky) + briv (ky)|?

~ 2
|Aug(k)|* = )

1
= g
Finally we obtain for Fj

|l (k1) * + 1B |1 (ko ) |* + @by (k)i (k) + 1y, (k)1 (K1)

| Ay (k)|

2
Eym) = [ |Vus(k)Pdk = dk
RS r |K[?

1 1 ) ) o . . .
=12 /Rg W(IGIQIW(/@)|2+!b|2|mz(k1)|2+ab(my(/€1)mz(/ﬁ)+my(/€1)mz(/ﬁ))dk-

(3.10)
0

In the next step we recall some well-known facts and prove some auxialary
lemmas which will be utilized to get lower and upper bounds on E,. The
following equalities are well known:

+00
COS px T _

de = —e pq’ >0’ > () 3.11
/0 z? + ¢ 2q oy .

+o00 ,—pix — e h27 i 2

e CoOSq1x — € COS (o 1. pi+q
/ dr=-1n ; é, p17p2>07(]1>(J2€R>

0 €T 2 P + q;5

(3.12)
Lemma 3.5.6. For any p,q,l > 0 the following inequality holds:

+00 3
t
‘/’ %gwwmtgm
l
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Proof. Making t = % change of variables and denoting r = §, L = ql we get

+ . + .
/ * gin qteipt g — / 00 slnxefm da
! 13 L x

Denote x,, = mn for n = 0,1, ... Assume L € [z}, xx4 1] for some k. We
have that

400 .+ Thtl of 00 .
sinx _ sinx _ sinx

/ e ngdx:/ e mdx+/ —e "dux.

I x L x o1 T

Since the function Chit o
sinz _,,
y

T

is either increasing or decreasing on [z, 51 1] then
+OO . o0 .
sinz _ sinz _
)/ emdx‘gmaXQ/ e " dxl|,
L z T x

thus it suffice to prove the lemma for L. = z; for some k. We expand the
integral in the following way:

+oo Ti41
sin :r; sin 91; i sin t .
T e — E T e = E —r(t+mi) dt
/‘,,3,c / / it —i— i
= [ sint r{tm) dg.
/ n Z t —|— m

For a fixed ¢ we have a 81gn—chang1ng series with decreasing terms with their
absolute value, therefore the absolute value of the sum of the series is not
bigger than absolute value of its first term, e.i,

400 : s
t t
‘/ Smxe‘” dx‘ < / sin e TtHTR) qp < / &dt <.
- x o t+ t 1k

o
sinx _
e mdx‘),

T+1

O]
Lemma 3.5.7. For any p > 0 the function I(p,y) = f0+°° gi—’;;dt is mon-
1
negative and decreasing in y in (0,+00) and I(p,y) < 71’—%3.
y

Proof. The case p = 0 is evident. Suppose now p > 0. We make a change of
variables t = % to get

T gin gz dx
[ , = —_— = ] 1, .
(p,y)=p /O i (1, py)
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We consider now I(1,y) for y > 0. We have
T sint 2 sin ¢
I(l,y) = dt = dt
(L.y) /0 2+ 2 Z/ (t +2mn)? + y?

:i/ﬂsint( 1 — L )dt
“— Jo (t+2m)?2+y> (t+72n+1))%2+y?
_Z/ (27(t + 27n) + w2) sint &t
(t+2m)? +y?)((t+7(2n+1))? 4+ y?)

™ 2 (t 4+ 2 2
:/ sint-z m(t + 2mn) + 7 dt.
0 n=0

((t+2m)2 + 2)((t + 7(2n + 1))2 + y?)

It is now evident that I(1,y) in nonnegative and decreasing in y in (0, +00)
and therefore the same does I(p,y). Note that for any n > 1 and ¢ € [0, 7]
we have

2m(t + 2mn) + w2 - 7 (4n + 3)
(t+2mn)2+y?)((t+7(2n+1))2 +y?)  4n?n2(4m3n? + y?)
2 < 2 1
n(2m2n? + 21°n? +y?) T 3n(4rinty?)s 9n2y§7
hence
T int(7? + 2t
I(l,y)</ 5 SmQ (n” + 7;) v dt + 2/ sint dt
o +y)(E+7)*+y?) 9ny§
T 3t 4 7
< N dt + P < -
ey ol
Finally we have
p 7p%

I(p,y) = pI(1,py) < ( —

=
<
N—
wln
<
wln

]

Lemma 3.5.8. For any decreasing function f € C((0,+00),R") and num-
bers p > 0,1 > 0 the following inequalities hold:

‘/ZJFOO f(t)cosptdt‘ < %}l), ’/lJroo f(t)sinptdt| < %fl)
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Proof. We determine the sequence t, = %, n € N. In every interval [t,, 1]

the function sinpt has a constant sign, therefore

/ F() sinptdt — (-1)%@;)/“1 sinptdt = 2- (—1)" f(¢)

for some point t/, € [t,, t,11]. We have

" () sinptdt - %i(—l)’“f@;),
tn k=n

thus

’/mf(t) sinptdt( < 2|f(tiz)| < 2|f](9tn)|.

Assume now that [ € [t,,, tye1]. It is clear that

o0 tm+1 +00
‘/ f(t)sinptdt‘ < ‘/ f(t)sinptdt’—i—‘/ f(t)sinptdt
l l tm41

mt 4f(1
< f(l) ‘/ smptdt‘ mH) < I/ )
p

The first integral can be estimated in the same way.

Lemma 3.5.9. The following inequalities hold:

400 400
[ S ] < T foran pat >0,
2?2 + y? ql

)/*“’/W x? + 32

too  ptoo ’
‘/ / COSZ”?SHW?/d dy‘ < T for any p,q,l >0
x? +y? 2

“+oo “+oo
I

ol

for any p,q,l >0,

,_.

q,l > 0.
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Proof. Using (3.11) and Lemma 3.5.8 we get

‘/‘FOO/-FOO cospxcosqyd dy‘ _‘/Jroo e PY cos qy dy‘ SE 4eP! g 2_7r
2+ y? Y 2 ql ql

To estimate the second and the forth integrals we use Lemma 3.5.7 and
Lemma 3.5.8. We have

oo oo +oo 41(p,1) _ 28p3
‘/ / Sm];xsmqyd dy‘ = ‘/ f(p,y)sinqydy’ < ».1) <=0
T +y 1 q ql3

Similarly

+oo  ptoo 1
sin pz cos qy D3
‘/ / 2242 ded ‘<

To estimate the third integral we utilize (3.11) and Lemma 3.5.6, namely

‘/+OO/+oo cospxsmqyd dy‘<ﬁ‘/+w epysinqydy‘<7r_2
2?4+ y? 20, y T2

Theorem 3.5.10. Determine

L +o00 |CL‘2 ) +o00 ’b‘Q
IL(ky) = AT dky dks, I2(ky) = R dky ks,
0

+oo
3
I3(ky) = / |k|2 D Ay dis.

Then the following formulae are valid:

(2 (1) dtdty,  (3.13)

'ty (1) dtdt,  (3.14)

‘(1) (4) dt dty. (3.15)

83



Proof. For convenience denote y(t) and y(t;) by y and y; respectively and
we make the same notation also for z. We have that

= 4( /O ) sinlhay () + Faz(1)) dt>2

_ 4 / / (81 sin(kay() + ka2 (1)) sin(kay(t1) + ks=(t1)) dt dty

:2/0 /0 2 21 (cos(ka(y—y1)+kz(z—21)) —cos(ka(y+y1)+ks(z+21))) dt dt;.

(3.16)
We have as well

) +o00 |a|2
0) == |k|2 dedl{Zg =2 221[ dtdtl,
0
where

[*:/+°°/COS(kz(y—y1)+k3(2—zl))—COS(kg(y+y1)+k3(z+zl)) ks dk
! k3 + k3 2o

We make the following notation:

p=1y—wlq=(z—z)sign(y —w),r =y +wl,s = (2 + 21)sign(y + y1).

Taking into account (3.11) and (3.12) we obtain

+o00 1 2 2
Iy = 7r/0 k—g(e_pk3 cos qks — e cos sky) dkg = gln pT—Q 1 22.

The same can be done also for 12(0) and I3(0).

The next theorem gives upper and lower bounds on I', I? and I3.

Theorem 3.5.11. Assume w has a diameter d and | > 0. Then for any
k1 € [=1,1] the following bounds hold:

115(0) — I (k)| < 87(m + 3)ld(per(0w))?, (3.17)
112(0) — 12(ky)| < 8n(m + 3)ld(per(Ow))?, (3.18)
113(0) — I3 (ky)| < 60(Id + 4(1d)5 + 3(1d)3 ) (per(dw))?. (3.19)
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Proof. We estimate the difference |I! (k1) — I1(0)|, the estimate for I2(k;) is
straightforward. The validity of the inequality I (k;) < I1(0) for any k; € R
is evident. Note that if k; € [—[,[] then

I (k) /+Oo/ ol Ak, dk
) K2+ (ks 402 200

thus taking account (3.16) we obtain

oo 1 1
IL0) — IN(k g/ /a2 - dks dk
0) - Lk < | R||(k§+k§ k§+(k3+l>2)  dks

1 1
2/ / (T + [T+ 12 de dty,
0 0

where
Ji = / / cos(pks + qk:]i2 ——i_ Z(;s(rkg + sks) by dis,
o /+<>0/ cos(pks + qks) ];%C:L)sk(:gkg +q(ks — 1)) by dis,
oo /+oo/ cos(rky + sks) ];%cis]igkg + s(ks — 1)) by dhs.

We have that

= ‘2/1 /+oo cos pko cos qk; — cc2)s rksy cos sks ks d]{]g‘
0 Jo k3 + k3

_ w‘ /l e PF3 cos quk— e ks cos sks dk’g‘
3
L ,—pks _ ! —pks _ ,—rks3
< 7T/ e | cos gks — cos sks| dk3+7r/ | cos sks(e e )| dks <
0 k3 k3
) 27T/l ‘sian“k;g sin ?l{:g} iy +7r/li /r d< bty dt‘ by <

I
<mllg—s|+n|p—r| / max(e % e dks < 4rdl.
0

According to Lemma 3.5.9 we have

+oo (pks + gks)
7Y < (1 = cosgl) (/ /COSp 2 4s) g1 g




teo (pk k3)
+ysmqZ|)/ /Smp 2+ k) Ak sy
+oo +0o0
A sin? ’/ / cospkz cos qu ks dk?g‘

400 +oo k k
+2\smql|‘/ / cosp Zqu 3 dks dk’g‘

2

< (ql)?- —7; + %qu = (27 + 7T2)ql < (47 + 272)dl.
q

Similarly |J1| < (47 + 272)dl. Concluding we obtain

| JE|+ [T | + [ T3] < dm(m + 3)dl,
thus
1 2
IL(0) — 1L (ky) < 8m(m + 3)dl</ 12/ (1) dt) < 87(m + 3)dl(per(w))>.
0

Analogously we have
I2(0) — I2(ky) < 87(m + 3)dl(per(w))?.

To estimate [13(0) — I3(ky)| we recall that b = 2a, thus

+oo k? |a|2
I3k :/ / 22U dky dk
(k) 0 Falk2 2

Note that the integrand is positive if ks > 0 and negative if ky < 0, therefore

+o0 +ook, a2 1
10) = L k1|</ / 3‘2’ k2+k2_|k2|>dk2dk3

+oo /C ‘a|2 1
dky dk
/ / ko |k;2 k§+k§> 2508
—+00 “+00 1 1
< ab — dky dk
—A é a<@+% @+%MWQ 20

“+o0 0 1 1
T ab _ dley dkis.
/0 /_ooa (k;g+(k;3+z)2 k§+k§> 240

“+o00 “+o00 1 1
ab — dk, dk
/0 / a<k5+k§ k5+<k3+z>2> 2O
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<2//|z (| T3]+ | 5] + | J3]) dt dty,

where

= /l /+°° cos(pka + qks) — cos(rkq + sks) by dhs.

k3 + k3
oo (120 cos(pky + qks) — cos(pks + q(ks — 1
J23 _ / / (p 2 q 3) k% - lig 2 q( 3 )) dkg dkg,
oo 190 cos(rky + skz) — cos(rky + s(ks — 1))
J3 = / / s dksy dks.

Using lemma 3.5.6 and the estimate for J} we get

|J3|<—+‘/ (p, ks) Slnqk3d/€3‘—|—‘/ (r, ks) sin sks A

l
k
< 2nld + Tp3 / D Gy + 75 | 252 dky < 271d + 30(1d)5.

O]gg

According to Lemma 3.5.8 we have

o0 +o0 k k
|J§|§2$1n ‘/ / COSp 2+q S)dk‘Qdk‘

400 400 k) k
—Hsmql|‘/ / sin(pks +aks) 41,

Kk
1 1 2
< (ql)? (2_7r+28€3>+ql<28])23 +7r_>
gl qls gs 4

< 10(3ld + 4(1d)? + 4(ld)3.

Similarly we have ) \
| J3] < 10(3ld + 4(1d)s + 4(1d)5.

Concluding we obtain

o0 f+oo 1 1 1
/ / ab( e ) dky dky < 20(7ld-+8(1d)3 +11
0 0

24+ k3 K3+ (ks +1)?

87

(ld)

ol

) (per(0w))*.



The validity of the same estimate for

—+o0 0 1 1
ab — dk- dk
/o /oo“<k%+<k3+l>2 k§+k§> 2O

is evident. For I3 we get

4
3

113(0) — I3 (k1) | < 40(7ld+8(Id) +11(1d)? ) (per(dw))? for any ki € [—1,1].

]

Corollary 3.5.12. Denote u = ds(per(w))2. Then for sufficiently small d
and for any ky € [—\/La, \/ig] we have

115(0) = Ly(k1)| < w,
115(0) = L5(k1)| < w,

|13(0) — I3(k1)| < 200u,

In the next step we find an approximation for the magnetostatic energy.
For convenience we denote A, = I'(0), B, = 12(0), C, = I3(0). According
to Theorem 3.5.10 the parameters A, B, and C,, depend homogeneously on
the diameter of w with exponent 2, namely if w = d - wy then A, = d*A,,,
B, = d*B,, and C,, = d*C,,,. For convenience we put Ay = A,,, By = Bu,,
Co = Cy-

Theorem 3.5.13. Suppose m: R — R? is measurable and my, m, € L*(R).
Define

Bim) = 55 (As [ i) dot B, [ (o) dos, [ (o m @i (0) do).

For sufficiently small d the following inequality holds:

|Bu(m) — E(m)| < 1QU/(|my(x)|2 (o)) da 4 e T Do) Berm)

R chwd

Proof. We fix a positive [. We have that

E..(m) = c,d? /R |0,m(2) > dz > c,d? /}R(|83577”Ly(55)|2 + |0pm(2)*) dz
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oy / (8o ()2 + |G (2)[2) da = cod? / (2 (g () + |1 (0)]?) d

> cudl? / (I (@) + s (2)?) da,
R\[—l,l}

which implies for [ = \/Lé the following

Eez
[ U@+ @< 220 o
R\ [~ 5 71] Cud
It is clear that for any k; € R

+o00 ab +oo a 2 +oo b|2
113 (k)| < ’ 19B] 4y iy < ( | ‘2 dky des- 1of _ dks dk3>
0 o Jr |kl w [k[?

(k) P2(k))? < (AuBL)} < A%B

Utilizing Corollary 3.5.12 and inequalities (3.21), (3.22) we obtain

(3.21)

* 1 1 2
1Bum) = B5(m)| < 55 [ 14 = IL(a) (o)

+$ /R le—Ji(x)lmz(g;)de% /R |C’w—ff,(:1c)||my(x)mz(:v)—|—m—y(x)mz(;p)|dx>

1
u Vi A, .
<55 [ @ + (o >\>dx+—22 ity (2 do
m )2 ™ IR\ g ]
200u
g [y e G [ G o
™ IR 3l
Aw+Bw/ 2
v ()2 + v )k
2m Jmga 1
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3.6 The existence of minimizers

It is easy to check that Lemma 2.6.1 and Theorem 2.6.2 are valid also for the
domains 2 with a bounded Lipschitz cross section w. In fact in their proofs
we did not use that the cross section is rectangular.

Lemma 3.6.1. Suppose we are given a sequence of magnetizations (m™)pen
defined in the same domain €2 and with energies bounded by the same constant
C'. Then there exists a magnetization m®: Q — S? such that for a subsequence
of (M")nen (not relabeled) the following statements hold

o Vm" — Vm® weakly in L*(9)

o m™ — m° strongly in L2 (Q)

loc
o E(m°) <liminf E(m™).

Theorem 3.6.2 (Existence of minimixers). For any domain @ = R x w,
where w is bounded and Lipschitz, there exist minimizers of E in A and A,.

3.7 The I'-convergence

We start with the description of the full and the reduced variational problems.
As we have mentioned the full variational problem is the minimization of the
rescaled energy, which is Ef;;) in this case. We will scale the magnetizations
in the y and z directions to keep the domain fixed in order to pass to the
[-limit. We define the rescaled magnetization m(z,y, z) = m(z,dy,dz). It
is clear that m: Q¢ — S? and that the admissible set for the full variational

problem is

Ay ={m: Qo —S? | h—ee HY(Q)}.
It is clear that m € A if and only if m € Ay and

, 1 1 1
Em) = [ (1000 + FI(EF + HIAER) dE + 5 By m).

The reduced variational problem energy functional is

ao CYO
Bufm) = cuy [ 100 dot % [ (o tlm. Py ot 2 [ ftom e da,

90



where the numbers a¢ and tg are defined as follows:

Ao — Bo+ /(Ao — By)? + 4CE
B 2C)

lo

and
ag = AO - O()to.

We will show later that ag,ty > 0.
The admissible set is

Ag={m:R = S* | Ey(m) < 0o, m—éec H'(Q)}.

Like in the previous chapter we define additionally the set Xy as follows:

Xo={m:R—=R*|9,m € L*(R) and m,,m, € L} (R)}.

loc

The reduced variational problem is to minimize the reduced energy func-
tional Ey over the admissible set Ag. Now we define the notion of convergence
of the magnetizations we are going to use for the I'-convergence of the ener-
gies.

Definition 3.7.1. Let m®(z) € X,. Consider a sequence of domain-magnetization
pairs (Q,, m") where m™ € A,. Define 10" (x,y,2) = m™(z,dyy, d,z). Then

the sequence (1™),en is said to converge to m® as n goes to infinity if the
following statements hold:

o O™ — 0,m°  weakly in L*(Q)
o V17" — 0 strongly in L*(Qp)

o 17" — m° strongly in L7 ()

loc

Before passing to the main theorem we formulate an auxialary lemma
which will allow us to switch from the one variable-dependent case to the
general case.

Lemma 3.7.2. For any Q) and m € A(2) the following statements hold:
e There exists a constant C' depending only on the geometry of w such
that | Emag(m) — Epmag(m)| < d(Cd + 2v/C)E(m),
0

o If E(m™) < Md? for a constant M and (1h"),en converges to m° in
the cense of Definition 3.7.1 then

n—oo n—o0
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o There exists a constant M, depending only on m such that

E,(m) < M,,d*(1+ d).

Proof. By Poincaré inequality there exists a constant C' depending only on
the geometry of w such that for any x € R

/ (m —m)*dydz < C’d2/ |V,.m|*dy dz
thus
/(m —m)?d¢ < 0d2/ IV,.m|* d¢é < Cd*E.(m).
Q Q
Utilizing now Lemma 3.4.2 for m and m we obtain

| Ermag(m) = Einag ()]

- < dE(m)(Cd + 2V/C).

The proof of the second statement can be found in the proof of the lower-semi-
continuity part of the first I'—convergence theorem in Chapter 2. Recalling
the proof of Lemma 2.5.11 we note that the only difference between this case
and the rectangular-cross section case is the estimate on

dydz
we V=92 + (=)

The domain w can be put in a square with sides parallel to the y and z axis
and lengths d, thus

dydz < / dydz
we VU —n)?2+(z—21)% " Joaz Vy—u)2+ (2 — )2

< 10d.

]

Theorem 3.7.3 (I-convergence). The reduced variational problem is the I'-
limit of the full variational problem with respect to the convergence defined
above. This amounts to the following three statements:

e Lower semicontinuity If a sequence of rescaled magnetizations (") en
with m™ € A(Q,) converges to some m® € Xy in the sense of Definition
3.7.1 then

Eo(m®) < liminf E, (12"

n—oo
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e Construction For every m® € Ay and every infinitesimal sequence of
positive numbers (dp)nen, there exists a sequence (m™)pen with entries
in A(Qy,) such that

m" — m® in the cense of Definition 3.7.1

Eo(m®) = lim E, (")
n—oo

e Compactness Let (d,)nen be an infinitesimal sequence of positive num-

bers. Let m™ € A(Q,) and let (E,(m™))nen be bounded. Then there
exists a subsequence of (m")nen (not relabeled again) such that (1" )nen
converges to some m® € Aqy in the cense of Definition 3.7.1.

Proof. Lower semicontinuouty

The majority of the proof is the same as in the proof of Theorem 2.7.2. The
idea is to represent the functional E5"" as a sum of squares of L? norms with
nonnegative coefficients, which is the key point to the establishment

E‘k n
lim inf S(Tln ) Zac/ |m2|2d:p+bc/ im?2|* da
nin R R

n—o0 d

as soon as we have the convergence ™ — m®in L2 (). To that end we need
to first prove some inequalities on A,,, B,, and C,. First of all we claim that
the numbers Ay and By are positive (recall that A, = d*> Ay and B,, = d?By.)
Indeed, suppose for instance that Ay = 0 for some wy. Obviously the set

A,(Qp) is not empty. We fix a magnetization m® € A,(€). We have

400 |CL0|2
Ay = dky, dks =
‘ /0 /Rk3+k§ 2 s =0

thus ag(ka, k3, wo) = 0 a.e. in R% We have as well by(ks, k3, wo) = Z—ga(kg, k3, wo) =
0 a.e. in R% This means that

E,(m°) =0 —/ |Vug|?dé thus Vu, =0 ae. in R
R3
According to (2.27) we have

/ Vus - Vpdé = spd¢ for any ¢ € C5°(R?)
R3 890

thus s = 0 a.e. on 9€ which means m{ = 0 and m? =0 a.e. in Q. Taking
into account that m? is a weakly differentiable function of one variable we get
that m? must be continuous in R, therefore it must be identically 1 or —1,
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which contradicts the boundary conditions m2(—oc) = —1, m2(+o00) = 1.
We distinguish now three different cases.

If liminf, E(m”) + oo then there is nothing to prove. Assume now
that liminf,_ E (M) < co. Without loss of generality we can assume that

lim inf E(m") = lim E(mn)7

n—oo n—oo
thus
Em™) <M di

for some constant M. According to Lemma 3.7.2 we have

Erag(m) — Epag(m) =6, - d?, where lim 4, = 0.

n—o0
We have for sufficiently big n
E(m") _ Enag(m™)  Euag(m") E,(m")
M > S S o SR b 2 g 4,
_27r2/| |2dx+—/|_" )|? da
M(A+ B
—12 [ (@) + o)) do - HE I g
R m2C,
I o . M(Ay+ B
> (5 mln(AO,BO)—12U/R)(|my(x)|2+|mz(x)|2) dx—(;;—%”)dn—m
(3.22)
thus ey
(@) + [ (@)?) de < ————— 2
L@+ @R ar < s (3.23)

Utilizing now (3.22) and (3.23) we obtain

.. Ema (mn) A —n 2 B ~n 2
hmlnf;—%>hmmf (27T2/R]m ()] dx—l—2 5 | "(x)] dx).

n—oo n—oo

By using Lemma 3.7.2 the rest of the proof is analogues to the proof of
Theorem 2.7.2.
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2) Cy > 0.
This case is a bit more tricky. First we prove that C’g < AgBy. We determine

B +o0 k3|a0| +00 +oo k3|a0|
CO —/ / k2 /{;2 dkg dkg and C+ —/ / mdkg dk}g,

so that Cy < 0, C’ar > 0 and Cyp = Cy + CF. We have by the Schwartz
inequality |Cy | < AgBo, |Cy|? < AgBy, moreover in both cases the equality
is not, possible because as we saw before neither the ratio % is constant, nor
any of ag and by is identically O in the integration regions. Taking into account
that |Co| < max(|Cy |, |Cy|) we get C2 < AgBy. We have furthermore for any
positive £,

1 An\N 2o An (T 2o
— = ((tari) - T+ 0 (G

n
1 n|2 2 n|2 n
= ([t il 2 | ?),

thus

A,
EX(m") :—tc/|m |2d:B—|— /|m (z)*dz

/ |tym () +m2 ()] da.
R

2m2t,
We choose t,, such that

A, — B, A, — B,)?+4C?
An—tnCn:Bn—%>0 ie., t,= +\/<20 ) +4C3

which is possible because CfL < A, B,. Note that t, does not depend on n,
namely

Ag — By + /(Ag — By)? +4C2
2Cy

We determine a,, = A, — t,C, = d%(Ag — t,Cp). With this notation we
have

ty =

— . (3.24)

Qn,

Ei(m) = 9.2

L)+ @) o+ 52 [ famy )+ m (o) d

Like in the case Cy = 0 we can prove that

o Ergg(m)
i nf == 5
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> lim inf (% /R(|m;(a:)|2+|m§(:c)12)dx+%4\tom§(x)+m2(x)|2dx>

provided

o m'")
hgg g}f 2 < 00
The rest is analogous to the proof of Theorem 2.7.2.

) C[) < 0.
Note that formula (3.24) defines a negative t,, thus <= > 0. Note furthermore
that ag > 0. The rest is analogous to the case Cy > O
Construction

As a candidate for m"™ we take as usual the constant sequence m" =
mP. The only difference from the "construction" part of the proof of The-
orem 2.7.2 is the upper bounds on Es(m") and E,(m™). In the lower-semi-
continuity part we showed that for big n we have

Am* M
Qo

/R (@) + m ()?) d <

thus utilizing Theorem 3.5.13 we obtain

ES n . E* n
lim sup (m”) < lim sup (m") = Ey(m°) — cwo/ |0,m° ()| dz.

We have as well according to Lemma 3.7.2

E n
0 < lim @ < lim M0 -d,(1+d,) =0.

n—oo n n—oo

The last two inequalities complete the proof.
Compactness
The proof of this part is completely similar to the one of Theorem 2.7.2.

Corollary 3.7.4. If a sequence of magnetizations (m™)nen Satisfies
E(m™) < Cd? for some constant C' then

Qo
2m2¢c,,

E(m") > / VP + / (i + ) + - 2.
n Q’n

0

where a,, — 0 as n — oo

96



3.7.1 The minimal energy scaling

Co

52~ We minimize the limit
m=to

For convenience we put a,, = ao and b,, =
energy

Bufm) = oy [ 10cm(a) da+525 [ (my @)+l (2)F) daby [ ftam, @) =m. o) da.

As we saw in subsection 2.8.1 in Chapter 2 the only minimizer of this
functional is the vector

My = (S0 Yy (), €08 @, () €08 B, COS Py, () sin b)),

where
e2vVer _ ey

w () = arcsin ————— ,a = ———
Pen () e2vor 4 1 2m2¢,,

and 6,, = arctant,.

The minimum of the limit energy is then

Emin _ 2 V 2CWO Qg
0 —_— .

™

In conclusion we mention that like in Chapter 2 we can state that

im E;”m _ 2\/2%0(1%‘

n—00 d% T

(3.25)

3.8 The rate of convergence

In this section we find a rate of convergence for limit (3.25). Theorem 3.5.13
will be useful to bound the energy functional from below and above. We
first bound the minimal energy from above. Suppose we are given a centrally
symmetric, bounded Lipschitz domain w € R2. Consider any infinitesimal
sequence of positive numbers (d,),en and the sequence of domains €2,, = R
(d,,-w.) Consider furthermore the corresponding sequence of minimal energies
E™"(Q,). We consider as usual the constant sequence of magnetizations
m"™ = m® regarding m" as a magnetization defined in 2,,, where m* is a
minimizer of the limit energy. It is clear that

m" e A, and E™"(Q,) < E(m").

We estimate now E(m™) from above. We have that

E..(m") = cwdi/ |0,m*|* du.
R
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According to Lemma 3.7.2 we have
Ey,(m") < Mped? (1 +d,).

m®° is the minimizer of the limit energy FEj, thus

Eem " \/ 2 w W
—(m ) = ¢, ‘armw|2 dr = Cwd (326)
d% R T
and
d%a d>Ey(m¥)  d*\/2c,a
E* ny _ “ntw w2 w2 _n 0 _n w “w
) = 55 [ ) do = 2 el
hence
w|2 w2 200-’
([my |+ [mZ %) dz = 27 — (3.27)
R )

Taking into account (3.27) and Theorem 3.5.13 we get
2¢, d3 (A, + B,)V2ay,
Eu(m") < Bx(m") + 24my [ 252 -y, 4 Bl - )24,
g, T /Co
1 13
Recall that u,, = dS (per(w,))? = d,{ (per(w))?, therefore for big n we discover

E(m")  22c,a, 2., 1
(dT ) W2 _oe | ai(per(w))mg. (3.28)
n ™ W

Suppose now m: R — R? is bounded, measurable and 9,m,m,, m, €
L*(R). Assume furthermore that m regarded as a vector field from Q, to R?
has the energy F, (m) satisfying the condition

E,(m) <M -d> for any n €N
for a constant M. Then we have according to Theorem 3.5.13 that

(Aw, + B, )Eea(m)

w2c,d?

E¢(m) > EX(m) — 12u, /(\my]2 + \mZIQ) dr — . (3.29)
R
We have as well that

d’a,
E* > n-w

/ (Imy P + [m.P) da.
R

thus we obtain for big n
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3 M
/ (ImyP? + maf?) de < 27
R

Qg

Coupling the last inequality with (3.29) we establish for big n

40> M

Qg

Ey(m) > EX(m) U (3.30)

Assume now m" € A, is a minimizer of the energy functional. We showed
in the proof of Theorem 3.5.1 that in this case d,m",my, m? € L*(R). Uti-
lizing (3.25) and (3.30) we discover for big n

407 M 3v2a,,c,,
Es(m) > EX(m) — T -, where M = A
Ay T

For the energy functional of m"™ we obtain

2¢,,

E(m") > E.(m") + EX(m") — 11973 [ = - u,,

Qg

Recall that

thus we get by Lemma 3.9.5

E(m) 22 2 .
(") _ 2v20.6, —1197% /=2 (per(w))?ds. (3.31)
Ay,

d? T
Utilizing (2.49) we get for the energy of m”
E(m™) > Bup(™) + Eyag(m™) > E(m") — 3MVCdP.

The last inequality and (3.31) imply for big n the following

E(m™ 24/2 2 1
(m?) _ 220,00 ~1207% [ =2 - (per(w))?di (3.32)
Gy

2
d? ™

Finally we have by (3.28) and (3.32) that for big n the following bound

holds
E(m®)  2y2ayc, 2, !
Z’; ) W2t o 2 )2 (3.33)
2 T g
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3.9 The convergence of almost minimizers

Throughout this section we will consider a sequence of domain-magnetization-
energy triples (Q,, m", E(m")),en such that Q, = d, - Qp, m™ € A,, the
sequence (d,)nen converges to zero and

71113010 o Em". (3.34)
We will call such a sequence an almost minimizing sequence.

Lemma 3.9.1. If (1h"),en converges to some m°® € Ag in the sense of Defi-
nition 3.7.1 then

i — [ ©)Pde= [ (0m0 )P d¢
n—00 dn Q. Q%
[ ] . 1 »
i e [ mpeRas= [ mycor ag

1 —n

i [ Imi©Pde = [ o de
n—o0 dn . %

Proof. We have already shown that the above limits with liminf are big or

equal than the corresponding expected limits, thus it remains to only show

the opposite inequalities with lim sup. Since

lim
n—oo d%

- 0

we have 5 . 5 .
m m
lim % = lim %.
n—00 dz n—00 dz
Assume in contradiction that one of the three inequalities fails. Therefore
we have for some 0 > 0

E(m™ E, o™
lim sup (m") > max <lim sup |0,17™(€)|* d€ + lim inf M7
n—00 d% n—oo  JQ n—00 d%

liminf [ |90 (€)[* d¢ + lim sup Emag(m ))
Qo
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™

2+/2
0m ) dé + 3 / (JmC (@) + [m(z)[?) da + § > V"ol 4 5
R

Qo
which contradicts (3.27).

[
Corollary 3.9.2. Let (m"),en and m® be as in Lemma 3.9.1. Then
* 1
tim [ R~ [ mieRae
n Qo
[ ]
)2 2
i o [ mrrag= [ mloPac
Proof. 1t follows from Lemmas 3.9.1 and 3.4.3
[
Lemma 3.9.3. Let (m"),en and m® be as in Lemma 8.9.1. Then
* 1
lim — [ [Vm"(§) = Vm®(§)*d¢ =0
n—00 d2 Q,
hm—/ [y (€ )|2d£—0 hm—/ |m2 (& 0(6)1?de = 0.
n—oo (2

Proof. We have that

1 1 1
= /Q m©)-ImPE)de = /Q G /Q 10.m(€)-m ()

=2 | P (g [ oer@Pac- [ pmtera)

+2di2 D, mol€)(0,mO(€) — D, (€)) de.

We have that each summand converges to zero and thus the same does the
sum. In the next step we fix [ > 0. We have

n—oo n—oo

lim sup 2/ m, (€ 2(§)\2d§§limsup/[lllxw |mg(§)—m2(£)|2d§
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—|—limsup/ iy, (§)—m ( )Fde < 2limsup/ (|77’1;L(£)]2+|m2(§)|2) d¢
Q()\[ ll Xw() Qo\[ ll}xwo

n—00 n—00
< 2limsup / Imy (€ |2d§+/ |my (& |2d§ 2lin_1>inf ([ (&) [P+mg (&)[?) dg
n—o00 n—oo [—l,l]Xwo
= 4wl [y (2)[* da,
R\[-L]

thus using the arbitrariness of [ we get the validity of the second statement.

The same can be done also for the third components of m™ and m?°.
O

Lemma 3.9.4. Let (m")neny and m° be as in Lemma 3.9.1. Assume in
addition that for some N € N and [ > 0 we have for alln > N

m"(x) <0, x € (—oo,—l] and m"(xz) >0, x € [l,400).

Then

1
lim —Hm" - mOHHI(Qn) = 0.

Proof. According to Lemma 3.9.2 it suffice to show that

lim 5 [ fm3(€) - m2(€) P dg = .

n—00 d2

Since m € 1210 there exists {; > 0 such that

€ [l1,+00).

N | =

1
md(x) < —5 T€ (—o0,ly] and mi(z) >

For any fixed Iy > max(l,l;) we have that

n

1
= [ m2©) = mi(©)F ag

1
= am(€) —ml (€2 d — nie\ _ 000 2 4€.
[ e-mderac g [ i -mieras

The first summand converges to zero as n goes to infinity and we have fur-
thermore that 1
lim — [ Jm (&) —my (&) d€ =0,

n—00 d2 Q

thus it suffice to show that
i [ 7 (€) — mO(©)| € = 0.
Q \[ lQ l2]><wn
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For n > N we have

1 . 1 .

= ) -mi(P e < o ()~ ImlAe) | de
n Q”l\[fbvl?} XWn n Qn\[*lg,lg]Xwn

1

S @
dn Qn\[—lg,lz]an

1
||mﬁ(§)l2—!m2(£)lzldﬁ+d—2/ [l (€)= [miz (€) | de.

Qn\[—lg ,lz} XWwn

The first summand converges to zero, for the second summand we have

1

72
dn Qn\[—lg,lz] XWn,

1
< —2/ (Imy () + [mZ(E)1* + Imy () + [m2(E)[) d,
n Qn\[—b,lz}an

I () — [ma ()] dg

thus utilizing Lemma 3.9.1 and Corollary 3.9.2 we obtain

1
fim s 2 M€ -mY(P dé < limsup ;[ (e €)P+m2(OP) de
n—00 dn Qn\[=l2,l2] Xwn, n—00 dn n
1

+ [ (O + md(€)?) ¢ ~ limint (@) + Im2(E) ) de

Qo n—o0 n J [—l2,l2]Xwn
[ P P =2 [ (Y@ + 2O de

[—lz,lg]xwo R\[—lz,lQ]Xwo

which converges to zero as [y goes to infinity.
O

Lemma 3.9.5. Assume that w C R? is a bounded Lipschitz domain. Then
for any interval (a,b) C R, positive a and a vector field f € Hl((a, b) X w, ]R?’)
the following inequality holds:

L, r@rds® [ (O + IO d 2 20kl ole) ~ F0)

(a,b)xw

(The endpoints a and b can take values —oo and +o00 respectively).

Proof. We fix a point (y, z) € w and consider the vector field f on the segment
with endpoints (a,y,z) and (b,y,z). Being an H' vector field, it must be
absolutely continuous on that segment as a function on one variable, thus
denoting

my(x,y, 2) = sinp(x), my(x,y,z) = cosp(z)cosb(z), m,(z,y,z) = cosp(x)sinb(z)

103



we obtain that ¢ and @ are differentiable in [a, b] a.e.. Thus we can calculate

/ 0, 1(6) do + a2 / (U5, )R + 1 £(©)) do
(a,b)x (y,2)

(a,0)x(y,2)
b 2 2 2 [0
:/ (pr*(x) + 01" () cos” p(z))dr + « / cos” p(z)dz

b b b
2/(@/2(:5) dx+a2/ cos® p(x) deQa‘/ ol (x) cos p(x) dx
= 2O‘|fx(aayv Z) - f:c(bayaz”'

Integrating now the obtained inequality over w we get

/ 0, F(©)? A + o / UF©F + 116 de
(a,b)xw

(a,b)xw

> % / oy, ) — fulboy, )| dy de

> 2

= 2a|w||fu(a) — fo(b)].

/(fz(aayaz) - fm(b7yv Z))dydz

Lemma 3.9.6. Let the sequence of intervals ([b} bz])neN be such that

1 1 1
my(by) = —5, mpp) =5 and |my(x)| < 5 L € [by, byl
2 2 2
Then for sufficiently big n we have

1 1
"z) < -3 T€ (—00,bt] and m!(z) > 3 € b2, +00).

S

Proof. Assume in contradiction that for some subsequence (not relabeled)
there is a point b2 € (—oo, b}) such that m?(b?) > —3. Since m?(—o0) = —1
and m" is continuous we can without loss of generality assume that m”(b3) =
—<. Utilizing Lemma 3.9.5 for the intervals (—oo, b3], [b3,b;], [b},+00) and
Corollary 3.7.4 we get

E(m")Z/ |vm"|2+ﬂ/ (m2 P+ 2 P) + o - &2 >
Qn Qp

272¢y,

1 11 1
\wn|<\—1+§}+\—§+§}+\—§—1D+an-di:

2 [ay,

o\ 2cy,
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v/ 2040 Co,

— —d2 - d2
3r n T Qn O,
thus E(mr .
lim inf (m") > _F0.
M 00 % G min

which is a contradiction.
O]

Theorem 3.9.7. Assume that the domain wy is so that C¢ + (Ag— By)? > 0.
Then for any sequence of magnetizations (m™)nen satisfying (3.34) there exist
a sequence (T,)nen of translations in the variable x and a sequence (R, )nen
of rotations in the OY Z plane, each of which is either the identity or the
rotation by 180 degree such that the sequence with the terms m"(x,y,z) =
m™(Tn(Rn(z,y,2))) converges to some m® € Ay in the sense of Definition
3.7.1.

Proof. First of all note that the change of variables mentioned in the theorem
translate the domain €2 to itself and preserve the energy. Let the intervals
[bL,02] be as in Lemma 3.9.6. We prove the theorem by constructing such
sequences. In the first step we prove that if a sequence of magnetizations
converges to some m € Ay in the sense of Definition 3.7.1 and satisfies the
conditions E(m™) < Md;, and mj(xo) > 0 for some zg € R, M > 0 and for
big n then my(zo) > 0. Assume in contradiction that m(zo) = d < 0. We
have for big n

/ i3 €) = mi(O) e = . = 0
[xo—1,x0+1]Xwo

and by the Poincaré inequality

/[ e (e ae < / IV, m(€)[2 de < MCd?
zo—1,z0+1] Xwn

Qn

for some C' > 0. Combining this two we get

/"”““ 0 (VMC +VB.)® |

() — m()|? da <

0o—1

On the other hand we have

/ B,m () d < / B,m () dé < M2,
Qp

Qn
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thus I
/ O (@) de < L = M.
R

= wo|

We have furthermore for any z; < x5

|mZ(x1) —mZ(a:Q)\ g/ lé?me(x)\dx < (/ dx/ fame(x)de)?
</ Mi(zy — 1)

which gives

52 52
forall z e [930—9—]\/[1,350+9M1].

Wl >

my (z) >

0

Since m” is continuous there exists € > 0 such that

my(z) < 5 for all x € [zg — €, 70 + €.

Combining the last inequality with the inequality for m, we obtain
zo+1 0 ) 52 52
e (x) — dx > 2— mi — 1
) - w2 2 minte, g

which contradicts Lemma 3.9.1. The same sing preserving property can be
also proved for the first and the third component of m” and also for the
opposite sign. This means in particular that if m?(zo) = 0 for big n then

m%(zy) = 0. In the second step we construct the sequences (7},),en and
(Rp)nen- Let the intervals [bl,b2] be as in Lemma 3.9.6 and =, € [b},0?]

be such that m}(z,) = 0. By continuity such intervals and points exist for
any n € N. For any n € N we choose 7T;, to be the translation by z, and
the rotation R, to be the identity if mj(z,) > 0 and the rotation by 180
degree otherwise. We show now that the sequence (m"),en converges to
some m® € Ay in the sense of Definition 3.7.1. Utilizing the I'-convergence
theorem we get that the sequence (™),cy is relatively compact thus what we
have to actually show now is that every convergent subsequence (in the sense
of Definition 3.7.1) of it has the same limit. Suppose (m"*)ien converges to
some m® € Ay. We first show that m® € A,. Lemma 3.4.4 states that there
exists My > 0 such that b — b, < M, for any k € N, therefore utilizing
Lemma 3.9.6 we obtain that m* is negative in (—oo, —M,| and is positive
in [Ms,+00) and hence using the fact that m™ converges to mg in L2 (R)

loc
we get that mg must be nonpositive in (—oo, —M,] and is nonnegative in
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[M,, +00) and therefore belongs to Ay. Now the above proved fact states
that mJ(0) = 0 and my(0) > 0. Furthermore from the lower semi-continuity
part of the I'-convergence theorem we have that

E SN E Nk
Ey(m®) < liminf E(m™) = lim inf Em™) = E°.
n—00 d?L n—00 d721 mn

thus mP is a minimizer of Fy. We have seen in section 3.6 that any minimizer

of Ey must have the form
(sin (), cos p(x) cos B(x), cos p(x) sin §(z))

where

e2Vorth .

¢(x) = arcsin iarh 1’ o= 5r2e f = arctanty and € R
wo

and we take to = 0 if Cy = 0. It is easy to see now that the properties
m,(0) = 0 and m,(0) > 0 determine m" in the unique way, namely we get

B =0 and m,(0) = \/11+_t§

]

Theorem 3.9.8. Assume that the domain wy is so that Ci + (Ag— By)? > 0.
Then for any sequence of magnetizations (m™)nen satisfying (3.34) there exist
a sequence (T,)nen of translations in the variable x and a sequence (R, )nen
of rotations in the OY Z plane, each of which is either the identity or the
rotation by 180 degree such that for the sequence with the terms m™(z,y, z) =
m™(T,(Ry(x,y, 2))) and some m® € Ay we have

1
lim — |l — m°|| g (q,) = 0.
n—oo n

Proof. 1t is a consequence of Lemma 3.9.4, Lemma 3.9.6 and Theorem 3.9.7.
m

Corollary 3.9.9. Theorem 3.9.8 is valid for any sequence of minimizers
(m)nEN~

In conclusion we mention that it is easy to see any rectangle that is not
a square and any ellipse that is not a circle satisfies the condition

C2 + (Ag — By)? > 0.

It is also worth mentioning that one can prove a modified version of
Theorem 3.9.8 in the case when wy is a disc, namely due to the symmetry
one can not state that the rotations R, are either the identity or a rotation
by 180 degree, but one can prove their existence.
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