
 

 

Development of Selective Nitrile Inhibitors and ‘Activity-Based’ 

Probes For Human Cathepsins K and S 

 

 

 

 

 

 

Dissertation 

zur  

Erlangung des Doktorgrades (Dr. rer. nat.)  

der  

Mathematisch-Naturwissenschaftlichen Fakultät  

der  

Rheinischen Friedrich-Wilhelms-Universität Bonn 

 

 

 

 

 

vorgelegt von  

Maxim Frizler 

aus  

Kamyschnoje, Kasachstan 
 

 

Bonn 2012 

 



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen 

Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Referent: Herr Professor Dr. Michael Gütschow 

2. Referent: Frau Professor Dr. Christa E. Müller 

 

Tag der Promotion: 14.05.2012 

Erscheinungsjahr: 2012 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Meiner Familie und Friederike  

in Dankbarkeit 

 



TABLE OF CONTENTS 

 

1.  INTRODUCTION ……………....……....…………...…………..……………………. 1 

     1.1.  GENERAL REMARKS……………...……..……………………………………... 2 

     1.2.  FUNCTIONS OF CATHEPSINS B, K, S, L, AND C……………..…..………… 6 

     1.3.  INVOLVEMENT OF CATHEPSINS IN DISEASES…...……..………………... 8 

     1.4.  BONE REMODELING AND OSTEOPOROSIS……………….……..………… 11 

     1.5.  ANTIGEN PRESENTATION AND AUTOIMMUNE DISE ASES……………. 13 

     1.6.  NITRILE-BASED INHIBITORS OF CYSTEINE CAT HEPSINS…….…...….. 15 

          1.6.1.    EARLY STUDIES…………………………………………….….……...……... 15 

          1.6.2.    CONVERSIONS OF THIOIMIDATE ADDUCTS………………….………….. 18 

          1.6.3     SELECTIVE NITRILE-BASED INHIBIT ORS OF CATHEPSINS K AND S….. 20 

          1.6.4.    AZADIPEPTIDE NITRILES AS INHIBI TORS OF CYSTEINE PROTEASES... 22 

     1.7.  ACTIVITY-BASED PROBES…….……….……………………………………... 24 

     1.8.  AIM………......……………………………………..………………………..……... 26 

2.  RESULTS AND DISCUSSION………..…..…..………………...…..........………... 27 

     2.1.  AZADIPEPTIDE NITRILES AS CATHEPSIN K INH IBITORS…................... 28 

          2.1.1.    SYSTEMATIC SCAN FOR P2 SUBSTITUENTS………………....…...………. 28 

          2.1.2.    KINETIC PLOTS (SLOW-BINDING INHIBITION) AND EQUATIONS ….….. 30 

          2.1.3.    STRUCTURE-ACTIVITY RELATIONSHIP S OF 33–38, 42, 45 AND 46…........ 36 

          2.1.4.    L-LEUCINE-DERIVED AZADIPEPTIDE NITRILES ………………….…....... 39 

          2.1.5.    KINETIC PLOTS (FAST-BINDING INHIBITION) …...…………………......... 44 

          2.1.6.    STRUCTURE-ACTIVITY RELATIONSHIP S OF 50, 51 62–66, 67, 68, 79, 80…. 45 

          2.1.7.    CONCLUSIONS I………...……………………………………………....……. 51 

          2.1.8.    HOMOCYCLCOLEUCINE-BASED AZADIPEPTIDE NITRILES …....…..…... 52 

          2.1.9.    KINETIC CHARACTERISATION OF 43, 111 AND 92………...………..…….. 62 

          2.1.10.  FLUORESCENT AZADIPEPTIDE NITRILES……………………………..…. 65 

          2.1.11.  KINETIC CHARACTERISATION OF 119, 120 AND 122…………………...… 67 



          2.1.12.  SPECTRAL PROPERTIES OF 122…..…………...…………………………… 69 

          2.1.13.  CONCLUSIONS II……...………....……...……………………………………. 70 

     2.2.  CATHEPSIN S-SELECTIVE NITRILE INHIBITORS …….…….…....…......... 71 

          2.2.1.    KINETIC CHARACTERISATION OF 129–138 AND 144, 148….…..………..... 76 

          2.2.2.    CONCLUSIONS III………...…......…………………………………………… 79 

     2.3.  DEVELOPMENT OF ‘ACITIVITY-BASED’ PROBES… …………………….. 80 

          2.3.1.    KINETIC CHARACTERISATION OF 158 AND 160, 161……....………….….. 83 

          2.3.2.    SPECTRAL PROPERTIES OF 158 AND IMAGING EXPERIMENT ................. 86 

          2.3.3.    CONCLSUSIONS IV……….……………...…………..……………………….. 88 

3.  EXPERIMENTAL SECTION …………..…………..……………………………… 89 

     3.1.  INHIBITION ASSAYS AND EQUATIONS………...…………………...………. 90 

          3.1.1.    CATHEPSIN L INHIBITION ASSAY (I)………….…………………………… 90 

          3.1.2.    CATHEPSIN L INHIBITION ASSAY (II)…………………….……..………… 91 

          3.1.3.    CATHEPSIN S INHIBITION ASSAY (I)………………………….…………… 92 

          3.1.4.    CATHEPSIN S INHIBITION ASSAY (II)……………………...…….………… 93 

          3.1.5.    CATHEPSIN K INHIBITION ASSAY (I)…………..…………………….……. 94 

          3.1.6.    CATHEPSIN K INHIBITION ASSAY (II)…………..………………….……… 95 

          3.1.7.    CATHEPSIN B INHIBITION ASSAY….……………………………………… 96 

          3.1.8.    EQUATIONS…………………………………………………………….…….. 97 

     3.2.  SPECTRAL PROPERTIES AND IMAGING EXPERIME NT………………… 98 

     3.3.  PREPARATION OF COMPOUNDS…………………….………………………. 99 

     3.4.  NMR SPECTRA…………………..……………………………………………...... 189 

4.  REFERENCES…….………...………………………………………………............... 221 

     ZUSAMMENFASSUNG……………………………………………………….......... 242 

 



ABBREVIATIONS 

 

ABP  ‘activity-based’ probe 

Ac  acetyl 

AMC  7-amino-4-methylcoumarin 

APP  amyloid precursor protein 

BACE1 β-site APP-cleaving enzyme 

Bn  benzyl 

Boc  tert-butyloxycarbonyl 

BODIPY boron dipyrromethene (difluoride) 

Cath  cathepsin 

Cbz (Z) carboxybenzyl 

CD  cluster of differentiation 

CDI  1,1’-carbonyldiimidazole 

CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate 

CHMP  committee for medicinal products for human use  

CLIP  class II-associated invariant chain peptide 

cmpd  compound 

d  doublet 

DAD  diode array detector 

dd  double doublet 

DIPEA  N,N-diisopropylethylamine 

DMAP  dimethylaminopyridine 

DMF  dimethylformamide 

DMSO  dimethyl sulfoxide 

DPP-IV dipeptidyl peptidase IV 

dt  double triplet 

DTT  dithiothreitol 

EDC  1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

EDTA  ethylenediaminetetraacetic acid 

EI  electron ionization (electron impact) 

ESI  electrospray ionization  

Et  ethyl 

GFP  green fluorescent protein



GLP  glucagon-like peptide 

HBTU  2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate 

HOBt  1-hydroxybenzotriazole 

HPLC  high performance liquid chromatography 

HSAB  hard and soft acids and bases 

i-Bu  isobutyl 

IFN  interferon 

IL  interleukin 

i-Pr  isopropyl 

IR  infrared spectroscopy 

m  multiplet 

MCPBA meta-chloroperoxybenzoic acid 

Me  methyl 

MHC  major histocompatibility complex 

MS  mass spectrometry 

NMM  N-methylmorpholine 

NMR  nuclear magnetic resonance 

pNA  para-nitroaniline/para-nitroanilide 

RANK  receptor activator of nuclear factor-κB 

rt  room temperature 

s  singlet 

SARs  structure-activity relationships  

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

sept  septet 

SERM  selective oestrogen receptor modulator 

t  triplet 

t-Bu  tert-butyl 

TEA  triethylamine 

TFA  trifluoroacetic acid 

THF  tetrahydrofuran 

TNF  tumor necrosis factor 

tert  tertiary 

UV  ultraviolet 

VIS  visible 



 



  1 
 

 

 

 

1. INTRODUCTION 
 

 

 



2  1. INTRODUCTION 
 

 

1.1. GENERAL REMARKS 

 

The human genome encodes more than 500 proteases (for a review, see [1]). Among them, a 

heterogeneous group is referred to as cathepsins, regardless of the catalytic mechanism. 

Cathepsins were described initially as lysosomal proteolytic enzymes due to their localization 

in the lysosomes. Whereas cathepsins A and G are serine proteases, and cathepsins D and E 

are aspartic proteases, cathepsins B, C, F, H, K, L, O, S, V, W and X are cysteine proteases of 

the papain-like subfamily C1A and represent the largest and best characterized group of 

cathepsins. Cysteine proteases of the C1A subfamily are ubiquitous among living organisms 

including bacteria, viruses, plants, lower and higher animals. Most of the cysteine cathepsins 

are endopeptidases, with the exception of the true exopeptidases cathepsins C and X. The 

main function of the eleven papain-like lysosomal cysteine proteases listed above is the 

degradation of proteins that have entered the lysosomal system. The cleavage of the peptide 

bond, catalyzed by cysteine cathepsins, is initiated by the nucleophilic attack of the active site 

cysteine to form an acyl enzyme and to release the first product. In the second step of the acyl 

transfer, the hydrolysis of the thiol ester bond leads to the release of the second product and to 

the formation of the free enzyme. The proteolytic activity is mediated by a catalytic triad 

composed of the cysteine residue located at the centre of the catalytic site, a histidine residue, 

and an asparagine residue for keeping the imidazole ring of histidine in a favourable 

orientation to the thiol group of the catalytic cysteine [2].  

Cysteine cathepsins are synthesized as inactive preproenzymes and processed to active 

enzymes during maturation. Synthesis of cathepsins starts on membrane ribosomes with an 

amino-terminal signal peptide mediating the nascent polypeptide chain into the rough 

endoplasmic reticulum (for a review, see [3]). Following cotranslational cleavage of the 

presequence, the proenzymes are then transported to the Golgi complex for modification of 

the oligosaccharides to high-mannose carbohydrates and phosphorylation of the mannose 

residues. This modification allows the binding of procathepsins to membrane-bound 

mannose-6-phosphate receptors directing them into transport vesicles targeted to late 

endosomes (for reviews, see [4] and [5]). Within the acidic environment of late endosomes, 

the prodomain is cleaved converting the inactive zymogens into the mature active enzymes 

[6], [7]. Activation can occur either autocatalytically [8], [9], as exemplified, or through 

cleavage catalyzed by cathepsin D [6], [10], L or S [11] or other typical lysosomal proteases 

(for a review, see [5]). 
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Cathepsins are monomeric enzymes with molecular weights between 22 and 28 kDa with one 

exception; cathepsin C forms a tetrameric complex, which has a molecular weight of 200 kDa 

[12], [13]. They all have a papain-like fold revealed in the early days of crystallography [14]. 

However, structural characterization of cathepsins began in the early 1990s with the structure 

of cathepsin B [15]. Crystal structures of all human lysosomal cysteine cathepsins or their 

mammalian orthologs with the exception of cathepsins O and W are now available. In 

contrast to the structure of the processed form of cathepsins, only a few zymogen structures 

are available ([15–28]; for a review, see [29]). The papain-like fold consists of two domains, 

L and R, folded together displaying a V-shaped configuration. The active site lies at the 

interface between these two domains. The L-domain is mainly composed of three α-helices 

whereas the R-domain is based on a β-barrel motif. The crystal structure of the zymogen 

already revealed the configuration of the activated mature enzyme. The prodomain forms an 

α-helical domain and is folded in such a way that it blocks access to the active site cleft  

[30–33]. Propeptides are in fact inhibitors of their cognate enzymes, as shown for cathepsin 

K, L and S by kinetic analyses [34]. 

Substrates bind along the active site cleft of the mature enzyme in an extend conformation 

[35]. According to the Schechter and Berger [36] nomenclature, the subsites on the protease 

are called S (for subsites), and the substrate amino acid residues are called P (for peptide). 

The amino acid residues of the amino-terminal side of the scissile bond are named P1, P2, P3, 

P…, and those residues of the carboxy-terminal side are numbered P1’, P2’, P3’ P…’. By 

definition, the scissile bond is located between P1 and P1’ residues (Fig. 1). 
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Figure 1. Schematic depiction to illustrate the Schechter and Berger nomenclature. 

 

Predominantly three substrate binding sites of cysteine cathepsins, S2, S1 and S1’, mediate 

main as well as side chain contacts between substrates and enzymes (for a review, see [37]). 

Whereas the S2 binding site is a deep pocket, e.g. in the case of cathepsins K, S, and L, the S1 

and S1’ sites provide a binding surface [23], [25], [26], [31]. The S1’ pocket of cathepsins X 

and B is relatively deep and well-defined [28], [38] compared to the endopeptidases cathepsin 

K, S, and L. In addition, cathepsin B possesses a shallow S2’ subsite. The carboxydipeptidase 
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activity is attributed to the presence of an occluding loop, an extra peptide segment, which 

provides an appropriately spaced acceptor (His-110 and His-111) for the negatively charged 

C-terminal carboxylate of the substrate at the P2’ position [15]. Generally, interactions 

between the endopeptidases and the P3 and P2' residues of the substrate are solely based on 

side chains. Thus, the papain-like cysteine proteases represent a special group of peptidases 

with a small number of substrate-binding sites compared to serine proteases and aspartic 

proteases. 

Most of the enzymes are endopeptidases (cathepsins F, K, L, O, S, V, and W) in which the 

active-site cleft extends along the whole length of the two-domain interface. However, the 

papain-like cysteine peptidase subfamily also comprises exopeptidases (cathepsins B, C, H 

and X) (for reviews, see [29], [39]). Cathepsin B is a carboxydipeptidase, cathepsin C an 

aminodipeptidase, cathepsin H an aminomonopeptidase, and cathepsin X primarily possesses 

a carboxymonopeptidase activity. Among these exopeptidases, access to the substrate binding 

sites is restricted by additional features preventing the binding of longer peptidyl substrates 

and providing interaction with charged N or C chain termini of substrates; loops in the case of 

cathepsin B [15] and X [40–42], or propeptide parts in the case of cathepsin H [19] and C 

[17]. Beside their exopeptidase activity, cathepsins B and H also exhibit endopeptidase 

activity by conformational flexibility (for reviews, see [4], [39]). 

Apart from determinants of gene expression, activity of papain-like cysteine cathepsins is 

regulated by a number of factors, with pH being the most important. The majority of cysteine 

proteases are unstable and weakly active at neutral pH and thus are optimized to function in 

acidic intracellular vesicles. Cathepsin precursors are inactive until they reach their 

appropriate localization, where activation generally requires an acidic environment, thus 

preventing indiscriminate activation following mislocalization (for reviews, see [33], [43]). 

Furthermore, the active site cysteine is readily oxidized preventing thiol-dependent 

proteolysis, therefore these enzymes need a reducing environment that is provided in the 

lysosomal compartments by a cysteine-specific lysosomal transport system [44]. Activity is 

also dependent on the balance between the amount of active enzyme and the amount of 

endogenous inhibitors. Numerous inhibitors of papain-like cysteine cathepsins have been 

described. The most abundant is the superfamily of cystatins, which bind tightly and 

essentially irreversibly to the corresponding cysteine proteases [45]. 

As soluble enzymes with a clear preference for slightly acidic pH conditions and reducing 

environments, cysteine cathepsin activity is mainly localized within the compartments of the 

endosomal-lysosomal system and traditionally believed to be responsible for bulk protein
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turnover. By the use of cathepsin gene knockouts, functional redundancy of cathepsins 

regarding unspecific protein degradation was shown ([46–51]; for a review, see [52]). 

However, beside their role in non-selective protein turnover, gene knockouts also revealed 

specific and individual functions which are very important for normal cell processes (for a 

review, see [3]). These specific functions are often associated with restricted tissue 

localization of the cathepsins, as demonstrated for cathepsin S being predominantly expressed 

in spleen [53], the thymus and testis-specific cathepsin V [54] also known as cathepsin L2, 

and cathepsin K which is highly expressed in ovaries and osteoclasts [55]. Although 

cathepsins B, C, F, H, L, O, and X are ubiquitously or widely expressed (for a review, see 

[3]), this does not preclude them from being involved in more specialized processes because 

subcellular localization of cathepsins in different organelles and even at the cell surface under 

specific physiological circumstances must be considered ([56]; for a review, see [57]. An 

enormous amount of data describing the function of cathepsins has been achieved through the 

generation of gene-targeted knockout animal models (for a review, see [58]). A few remarks 

about the more specific functions of the five most extensively characterized cathepsins B, K, 

S, L and C are given in the following paragraphs. 
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1.2. FUNCTIONS OF CATHEPSINS B, K, S, L, AND C 

 

Cathepsin B is involved in physiological processes, such as remodeling of the extracellular 

matrix, promoting cell migration during wound healing ([59]; for a review, see [60]), and 

apoptosis ([61], [62]; for reviews, see [63], [64]). In addition, cathepsin B-deficient mice 

show alterations in pancreas and thyroid physiology [65], [66], but do not display any severe 

phenotype suggesting that cathepsin B is not essential in normal development [65]. This is 

probably due to a functional redundancy of cathepsins B and L because combined deficiency 

in mice is lethal [67], which was not observed for single-deficient mice [51].  

Cathepsin K was shown to be crucial for bone matrix degradation (for a review, see [43]). 

This enzyme was initially detected in osteoclasts, multinucleated cells mediating normal bone 

remodeling [55], [68], [69]. Later, cathepsin K mRNA was detected in a variety of tissues 

[70–72]. Cathepsin K is secreted by osteoclasts and degrades several components of the bone 

matrix including type I collagen, the main constituent of the organic matrix of bones, as well 

as osteopontin and osteonectin. The degradation of collagen mediated by cathepsin K occurs 

not only outside osteoclasts but also in lysosomes within the osteoclasts [73] because 

inhibition of cathepsin K by specific inhibitors or by cathepsin K antisense oligonucleotides 

results in the accumulation of undigested collagen fibrils in lysosomes within the osteoclasts 

(for a review, see [74]). Recently, beside its collagen degrading activity, a regulatory function 

in bone resorption was identified for cathepsin K [75]. 

Cathepsin S has been demonstrated to play an essential role in the MHC class II antigen 

presentation pathway. It is the major processing enzyme of the MHC class II invariant chain 

necessary for subsequent peptide loading ([49], [76–78]; for reviews, see [79], [80]), which 

was investigated by the use of a specific cathepsin S inhibitor [81]. Cathepsin S activity was 

quantified mainly in endosomes of antigen presenting cells using a novel specific substrate 

[82]. In addition, the repertoire of antigenic peptides in cathepsin S-deficient mice was 

changed providing an involvement of cathepsin S in the generation of antigenic peptides [78]. 

Also, cathepsin L (and F) seems to participate in processing of the MHC class II invariant 

chain, primarily in cells or tissues not expressing cathepsin S [47], [83]. Furthermore, 

cathepsin L is involved in epidermal homeostasis and regular hair-follicle morphogenesis and 

recycling; cathepsin L-deficient mice developed periodic hair loss and epidermal hyperplasia 

[51] similar to the phenotype of the furless mouse mutant [84]. Within secretory vesicles, 

cathepsin L is responsible for the generation of several peptide neurotransmitters and
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hormones (for a review, see [85]). Recently, it was shown that cathepsin L participates in the 

turnover of the extracellular matrix by conversion of proheparanase into its active form which 

is able to degrade heparan sulfate in the extracellular matrix and on the cell  

surface [86].  

Cathepsin C (also referred to as dipeptidyl peptidase I) appears to be important for the 

processing and activation of serine proteases in immune cells. For instance, cathepsin C is 

involved in the conversion of pro-granzymes into proteolytically active enzymes. It was 

reported that granzymes A and B from cytotoxic T-lympocytes of cathepsin C-deficient mice 

are mostly inactive ([50]; for a review, see [87]). Granzymes are serine proteases which are 

required for cytotoxic lymphocyte granule-mediated apoptosis of target cells. Cathepsin C 

also activates pro-inflammatory serine proteases, e.g. cathepsin G, neutrophil elastase and 

proteinase-3, expressed in mature neutrophils involved in inflammation [88], [89]. 
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1.3. INVOLVEMENT OF CATHEPSINS IN DISEASES 

 

Imbalance of normal cathepsin activity is associated with a number of pathological events, 

including rheumatoid arthritis and osteoarthritis, inflammation, cancer, neurological disorders, 

multiple sclerosis, pancreatitis, diabetes, osteoporosis and lysosomal storage diseases. 

Cysteine cathepsins are important processing enzymes participating in proteolytic cascades, 

their altered expression and/or activity is involved in a high number of diseases (for reviews, 

see [43], [74], [90–99]). Furthermore, many of the diseases mentioned above correlate with 

subcellular mislocalization of these enzymes, for example outside lysosomes in the cytosol or 

in the extracellular environment (for a review, see [3]). 

As mentioned before, cathepsin K is the major enzyme responsible for the degradation of 

the protein matrix of bone. The important role of cathepsin K for the function of osteoclasts 

was first suggested by the finding that cathepsin K activity deficiency induces 

pycnodysostosis, a disorder with an increase in bone mineral density (for reviews, see [29], 

[33], [43], [74]). This emerging evidence has made cathepsin K an important pharmacological 

target for the treatment of osteoporosis (for reviews, see [97], [98], [100]). 

Cathepsin S has been discussed to be involved in autoimmune diseases such as rheumatoid 

arthritis because it mediates the degradation of the MHC class II invariant chain Ii, which is 

afterwards competent for binding antigenic peptides. Additionally, cathepsin S has been 

implicated in the degradation of endosomal/lysosomal proteins to generate the peptide 

fragments that are loaded into the MHC class II peptide-binding groove in human antigen-

presenting cells ([49]; for reviews, see [43], [76–80]). Therefore, selective inhibition of 

cathepsin S is a potential mechanism for modulating the immune response. It has been shown 

that inhibition of cathepsin S alters autoantigen presentation and the development of organ 

specific autoimmunity in a murine model exhibiting an autoimmune disorder [101]. 

Cytosolic forms of cathepsin B, one of the most stable proteases at neutral pH, and 

cathepsins D and L, leaking out of the lysosomes, were shown to participate in apoptosis 

([61], [62], [102]; for reviews, see [63], [64]). For instance, it was published recently that 

granulysin, a lipid-binding protein exhibiting antimicrobial activity, can target lysosomes of 

tumor cells and induce partial release of lysosomal contents into the cytosol, triggering 

programmed cell death [103]. Because a variety of different models confirm the biological 

importance of cathepsins in the regulation of apoptosis under physiological conditions, it is 

hence not surprising that altered activity or subcellular localization of cathepsins leads to
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defects in the apoptotic mechanism closely related to the development of various diseases, in 

which the life span of cells is reduced (for a review, see [64]). 

Several cysteine cathepsins were identified to be involved in cancer progression on the basis 

of their increased expression and/or activity in various human and mouse tumors ([104]; for 

reviews, see [91–96]). During cancer progression, cathepsins are often translocated to the cell 

surface or secreted into the extracellular milieu. They can still function outside tumor cells 

because the extracellular microenvironment of tumors is generally acidic (for a review, see 

[105]). In the extracellular milieu, cysteine cathepsins can promote tumor invasion either 

through uncontrolled cleavage of components of the extracellular matrix and basement 

membrane, through activation of growth factors or other proteases such as matrix 

metalloproteinases and urokinase plasminogen activator, which in turn promote invasion, or 

through cleavage of cell adhesion proteins (for a review, see [93]). 

Several genetic disorders have been attributed to mutations in genes of cysteine cathepsins. 

For example, pycnodysostosis, characterized by severe bone abnormalities, is a rare, 

autosomal recessive skeletal disease caused by a mutation located within the cathepsin K gene 

[106]. On the other hand, loss-of-function mutation in the gene encoding cathepsin C leads do 

Papillon-Lefèvre syndrome, an autosomal recessive disorder, characterized by palmoplantar 

keratosis and severe early-onset periodontitis [107]. Similarly, disorders can also based on 

down-regulation of the endogenous inhibitors of cysteine cathepsins which is the case for the 

hereditary form of monoclonal epilepsy caused by a mutation in the gene encoding stefin B 

(cystatin B) ([108]; for reviews, see [17], [29]). 

In addition, cathepsins were reported to be implicated in neurodegenerative diseases, such 

as Morbus Alzheimer. The formation of the amyloid β peptide (Aβ), deposited in the brain as 

amyloid plaques playing the major role in the pathogenesis of Alzheimer’s disease, is initiated 

by processing the amyloid precursor protein (APP) through cleavage by the two proteases  

β-secretase and γ-secretase. It is widely accepted that the major neuronal β-secretase is a 

transmembrane aspartyl protease termed BACE1 (β-site APP-cleaving enzyme 1) (for 

reviews, see [109], [110]). It has been proposed that cathepsin B may function as β-secretase 

[111]. However, an Aβ42 reducing activity of cathepsin B was demonstrated in a study with 

transgenic cathepsin B deficient mice, expressing human APP containing the Swedish and 

Indiana mutations at the β-secretase and γ-secretase sites. The authors proposed 

antiamyloidogenic and neuroprotective functions of cathepsin B [112]. On the other hand, it 

was reported that cysteine protease inhibitors reduced levels of brain Aβ40 and Aβ42 in a 

guinea pig model of human Aβ production [113]. Moreover, the β-secretase activity to cleave
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the wild-type APP in regulated secretory vesicles, represented by cathepsin B, was suppressed 

by cysteine protease inhibitors. In vivo treatment of London APP mice with the inhibitors 

resulted in an improvement in memory deficit, a reduced amyloid plaque load and decreased 

Aβ40 and Aβ42 [114]. A recently published article showed that lowering Aβ levels in brain 

of cathepsin B-deficient mice depends on the type of APP expressed in these transgenic 

knockout mice. Whereas cathepsin B knockout in mice expressing human APP containing the 

rare Swedish and Indiana mutations had no effect on Aβ, the use of cathepsin B-deficient 

mice expressing human wild-type APP resulted in substantial decreases in brain Aβ. It was 

therefore concluded that cathepsin B is a target for inhibitors to lower Aβ in Alzheimer’s 

disease [115]. An epoxide inhibitor of cathepsin B as well as small interfering RNA produced 

decreases in Aβ42 release. It was discussed by the authors that cathepsin B acts as a 

secondary neuronal β-secretase, or indirectly modulates β-secretase activity [116]. Another 

cysteine cathepsin, cathepsin L, might also be involved in APP processing, even though this 

enzyme is responsible for the opposing effect, the reduction of Aβ42 levels [116]. 

It is now becoming clear that cysteine cathepsins should be seriously considered as potential 

drug targets in several diseases, most notably in a wide range of cancers, osteoporosis and 

autoimmune diseases. Small-molecule inhibitors directed against cathepsin K or cathepsin S 

are currently under clinical trials for the treatment of osteoporosis and bone metastasis, or for 

the treatment of autoimmune diseases ([137]; for reviews, see [74], [90], [92], [96], [100]). 
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1.4. BONE REMODELING AND OSTEOPOROSIS 

 

The human skeleton is metabolically active organ that undergoes continuous remodeling 

processes throughout the lifespan. Approximately 10% of human bone is replaced each year 

whereas the full renewal is completed every 10 years. The bone remodeling cycle involves a 

complex series of sequential steps with three main phases: (1) resorption of mineralized bone 

by osteoclasts; (2) appearance of mononuclear cells on the bone surface; and (3) formation of 

bone matrix by osteoblasts that subsequently become mineralized (Fig. 2) (for reviews, see 

[117], [118]). 

 

Figure 2. Bone remodeling cycle [119]. 

(1) Resting bone surface; (2) Preosteoclasts; (3) Active osteoclasts; (4) Mononuclear cells;  

(5) Preosteoblasts; (6) Osteoblasts; (7) Osteocytes. 

 

In turn, the osteoclastic bone resorption requires two processes: (1) demineralization of the 

inorganic bone components; and (2) degradation of the organic bone matrix. The first phase 

involves acid secretion by the osteoclast into the resorption lacunae, and the second phase is 

the proteolytic degradation of the organic bone matrix. The major proteolytic activity in 

osteoclasts is represented by cathepsin K with 98% of the total cysteine protease activity in 

these cells. Osteoclast-expressed cathepsin K is able to degrade several organic bone 

components including type I collagen, which constitutes approximately 90% of the organic 

bone matrix, as well as osteopontin and osteonectin (for reviews, see [97], [119]). 

An imbalance between bone resorption and bone formation (also known as abnormal bone 

remodeling) can result in different diseases such as pycnodysostosis and osteoporosis. 

Osteoporosis is a skeletal disorder characterized by reduced bone density and micro-

architectural deterioration leading to enhanced bone fragility and high risk for spontaneous 

fractures. Osteoporosis can be classified as primary type I (posmenopausal osteoporosis),
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primary type II (senile osteoporosis) and secondary (with traceable aetiology) (for a review, 

see [120]). Aside from its human cost, osteoporosis is a considerable public health problem 

with enormous economic impact. For example, 3.79 million osteoporotic fractures were 

estimated in Europe in the year 2000 causing the total direct costs of 31.7 billion € [121]. 

Current treatment options of osteoporosis are mainly four classes of drugs: (1) calcitonins; 

(2) bone calcium regulators; (3) selective oestrogen receptor modulators (SERMs); and (4) 

parathyroid hormones (PTHs). Bisphosphonates, belonging to the bone calcium regulators, 

dominate the osteoporosis market as a gold standard for osteoporosis treatment. The most 

promising innovative antiosteoporotic drug is denosumab. Denosumab is a humanized 

monoclonal antibody that inhibits RANK-L (the ligand of receptor activator of nuclear factor-

κB) preventing differentiation of osteoclast precursors into bone resorbing osteoclasts (for a 

review, see [122]). The Committee for Medicinal Products for Human Use (CHMP) adopted a 

positive opinion for denosumab on December 17, 2009. The approved indication for this drug 

is: (1) treatment of osteoporosis in postmenopausal women at increased risk of fractures; and 

(2) treatment of bone loss associated with hormone ablation in men with prostate cancer at 

increased risk of fractures [123]. A further interesting new drug candidate for osteoporosis 

treatment is odanacatib (13, Fig. 10). Odanacatib is a potent and selective nitrile-containing 

cathepsin K inhibitor which is currently in the clinical development. Two studies have been 

carried out to evaluate the efficacy and safety of odanacatib. In a randomized, placebo 

controlled, double-blind phase I study in post-menopausal women, the optimal dose of 

odanacatib was determined. Reductions in resorption markers were greatest for doses 

> 50 mg weekly and doses ≥ 2.5 mg daily. In a further double-blind, randomized, placebo-

controlled trial including 399 post-menopausal women, the efficacy and safety of odanacatib 

was evaluated. In this phase II study, statistically significant reductions of resorption markers 

were observed in patients receiving 50 mg odanacatib weekly. Furthermore, bone biopsies 

were carried out in 28 patients and showed no adverse histologic effects. To clarify the 

efficacy of odanacatib in term of fracture reductions, a phase III study is ongoing, with results 

expected in 2012. This is a clinical, randomized, double-blind trial with 16,000 patients [124]. 
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1.5. ANTIGEN PRESENTATION AND AUTOIMMUNE DESEASES  

 

Major histocompatibility complex class II molecules (MHC-II) are expressed by only few 

specialized antigen-presenting cell types including macrophages as well as dendritic and B 

cells. MHC-II molecules are involved in the presentation of antigenic fragments required in 

the endocytic pathway for the activation of CD4 positive T cells. MHC class II molecules are 

αβ heterodimers that are synthesized and assembled in the endoplasmic reticulum. The 

heterodimerisation is assisted by the invariant chain (Ii) chaperon molecule that additionally 

blocks the MHC-II peptide-binding groove preventing premature peptide loading. 

Furthermore, the invariant chain is important for the transport of assembled MHC class II 

molecules through the Golgi apparatus ([125]; for a review, see [126]). In generally, two main 

proteolytic events occur during MHC-II-mediated antigen presentation: (1) cleavage of the 

antigens to small antigenic peptides for the binding in the binding grove of MHC-II 

molecules; and (2) degradation of the invariant chain (Fig. 3). 

 

Figure 3. MHC-II-mediated antigen presentation and the role of cathepsin S [119]. 

(1) MHC class II molecule (MHC-II); (2) Invariant chain (Ii); (3) CLIP; (4) Antigenic peptide;  

(5) Antigen. 

 

Antigen processing seems to be a multienzyme-catalyzed process involving several cysteine 

and aspartic proteases. It was not possible until now to identify single proteases playing a 

crucial role in the cellular antigen degradation. In contrast, cathepsin S was described as the 

major processing enzyme of the invariant chain in the MHC-II-mediated antigen presentation 

confirmed by the delayed Ii processing in the cells isolated from cathepsin S deficient mice. 

Cathepsin S is capable to cleave the invariant chain leaving an approximately 15 amino acid 
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long class II associated invariant chain peptide (CLIP), which can be replaced by antigenic 

peptides (Fig. 3). It was further reported that the role of cathepsin S in the Ii degradation 

process in the cells from cathepsin S-deficient mice can be adopted by cathepsin F, which is 

expressed at high levels in macrophages, but not in dendritic and B cells. The proteolytic 

synergism of cathepsins S and F in the Ii degradation process could be used for the 

modulation of the immune response using selective inhibitors of these enzymes ([83]; for 

reviews, see [119], [126]). 

Autoimmunity is understood as a failure of self tolerance. Because it is not possible to 

explain all autoimmune diseases by a single theory, it was suggested to consider the ‘mosaic’ 

of autoimmunity [127] involving genetic, hormonal, immunological, and environmental 

factors. Autoimmune diseases can be divided in systemic (e.g. systemic lupus erythematosus) 

and organ-specific (e.g. type I diabetes mellitus). It is further distinguished between diseases, 

in which the selection and regulation of T and B cells is generally altered, and diseases 

responsible for a particular antigen (for reviews, see [128], [129], [130]). The most important 

drugs currently used for the treatment of autoimmune diseases are immunosuppressive agents 

such as corticosteroids, cytotoxic compounds (azathioprine and 6-mercaptopurine), 

antimetabolits (methotrexate), and calcineurin inhibitors (cyclosporin A) (for a review, see 

[131]). The innovative therapeutic strategies for the treatment of autoimmune disorders 

includes follow therapeutic possibilities: (1) anti-CD4, anti-CD3 and anti-CD28 antibody 

treatment that could potentially be used to regulate T cell population; (2) lytic anti-CD20 

therapy to regulate B cell population (rituximab for the treatment of rheumatoid arthritis and 

systemic lupus erythematosus [132]); and (3) therapies directed against cytocins important for 

the T cell growth (Il-2, Il-4, Il-7, Il-15, Il-21) and inflammation (TNF, Il-1, Il-6, IFN-γ). TNF 

monoclonal antibodies (infliximab [133]) and the TNF-receptor (TNFR) fusion protein 

(etanercept [134]) are already in clinical use (for a review, see [135]). Furthermore, cathepsin 

S is currently considered to be an interesting new target for the therapy of autoimmune 

disorders, since it was found that cathepsin S inhibitors prevents autoimmunity in murine 

models of Sjörgen syndrome and myasthenia gravis [136], [137]. 
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1.6. NITRILE-BASED INHIBITORS OF CYSTEINE CATHEPSIN S 

 

1.6.1. EARLY STUDIES 

 

Inhibitors of cysteine cathepsins are mainly peptidic or peptidomimetic structures containing 

electrophilic groups prone to covalent interactions with the active-site cysteine. Among them, 

nitrile inhibitors receive the most attention in current drug discovery (for a review, see [178]).  

The first nitrile compounds, for which inhibition of a cysteine protease has been described, 

were acetamidoacetonitrile 1 and benzamidoacetonitrile 2 shown in Figure 4. These acylated 

glycine nitriles inhibited the plant protease papain at pH 7 with Ki values of 31 mM and 

390 µM, respectively [138]. Compound 4, N-acetyl-L-phenylalanyl-glycine-nitrile, represents 

a dipeptide nitrile with a decreased Ki value (0.73 µM) towards papain [139], [140]. 
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Figure 4. Nitrile-based inhibitors of papain. 

 

The reaction of nitrile-based inhibitors with cysteine proteases involves the reversible 

formation of thioimidate adducts (Fig. 5) as it has been initially discovered for papain. This 

process can be considered as Pinner-type reaction. The Pinner reaction is an organic reaction 

of a nitrile with an alcohol under acid catalysis. The conversion results in an imidate which 

can be transformed to either an ester or an amidine. NMR experiments provided the first 

evidence for the formation of a covalent thioimidate link between nitrile inhibitors and 

papain, and also for the regeneration of the nitrile function when the adduct dissociates. It was 

reported in 1986 that the 13C-labeled dipeptide nitrile 5, upon interaction with papain, yielded 

a 13C NMR signal of the thioimidate at 182 ppm, which disappeared, when the
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inhibitor was displaced from the active site cysteine [141]. In a similar study, a model 

thioimidate was prepared from 4 and N-acetyl-L-cysteine and used to assign the signal for the 

protein-bound thioimidate [142]. Complementary NMR results have also been reported with 

the 13C-labeled benzamidoacetonitrile 3 [143]. Compound 6, a dipeptide nitrile with L-Phe in 

P2 and DL-Leu in P1 position inhibited papain with Ki = 5.8 µM [142]. 
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Figure 5. Interaction of cysteine proteases with nitrile-based inhibitors. 

 

A linear free energy correlation for binding of pairs of peptide aldehydes and peptide nitriles 

was found, indicating an overall similarity in the way in which these two groups of ligands 

bind to papain, regardless of the difference in geometry at the reacting carbon, i.e. sp2 versus 

sp for aldehyde versus nitrile ligands; sp3 versus sp2 for their adducts [144]. The carbon atom 

of the thioimidate adopts a trigonal geometry, different from that of tetrahedral 

hemithioacetals formed between cysteine proteases and aldehydes. Thus, the thioimidate 

structure resembles more closely the acyl-enzyme than the tetrahedral intermediate of the 

enzyme-catalyzed substrate hydrolysis (Fig. 6).  
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Figure 6. The overall mechanism of cysteine protease-catalyzed substrate hydrolysis is considered to 

consist of a number of steps involving a covalent acyl-enzyme and transient anionic tetrahedral 

intermediates and transition states. The formation of the acyl-enzyme complex via the tetrahedral 

intermediate is shown (top). The oxyanion is stabilized by interaction with hydrogen bond donors. 

Comparison of the geometries of hemithioacetal (left) and thioimidate (right) adducts with 

intermediates in the reaction pathway for substrate hydrolysis. Aldehyde inhibitors form 

hemithioacetals with the active site cysteine, nitrile inhibitors form thioimidates. 

 

The oxyanion hole of cysteine proteases contributes to catalysis by stabilizing inherently 

unstable transition states. This region in papain is defined by two hydrogen bond donors on
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the backbone amide nitrogen of Cys25 and the side chain amide nitrogen of Gln19. Mutants 

of papain (Gln19Ala, Gln19Glu) have been used to determine the kinetic parameters for 

inhibition by Phe-Gly-derived aldehyde and nitrile inhibitors. Mutation of Gln19 caused an 

important loss of inhibition by the peptide nitrile inhibitor, and thioimidate adducts with the 

papain mutants were less stable. However, despite the structural similarity of the 

hemithioacetals to the tetrahedral intermediate, the affinity of the peptide aldehyde inhibitor 

was almost unaffected by Gln19 mutations [145]. 

As a further notable result of these early studies, it was found that amino acid or peptide-

derived nitriles did show some selectivity for cysteine over serine proteases [140], [142], and 

the cyano group was not considered a typical ‘warhead’ for serine protease [146]. For nitrile 

inhibitors, the addition of the soft sulfur nucleophile of the cysteine proteases or the hard 

oxygen nucleophile of the serine proteases can be considered according to the principle of 

hard and soft acids and bases (HSAB), but has not been investigated so far [147], [148]. 

Noteworthy, the inhibition of the serine protease dipeptidyl peptidase IV (DPP-IV) by nitrile 

compounds has received much attention during the last years. Glucagon-like peptide 1  

(GLP-1) receptor agonism has emerged as a validated approach for the treatment of type 2 

diabetes [149]. Cyanopyrrolidines such as vildagliptin (7) and saxagliptin (8) are dipeptide 

nitriles with a basic amino group (Fig. 7). Vildagliptin and saxagliptin were characterized as 

reversible, slow-binding inhibitors of DPP-IV [146], [150]. The X-ray crystal structure of the 

DPP-IV: saxagliptin complex revealed the covalent attachment between the active site serine 

and the inhibitor nitrile carbon [151]. Thus, the so formed imidate corresponds to the 

thioimidate adduct of cysteine protease inhibition by nitriles. 
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Figure 7. Inhibitors of the serine protease DPP-IV for the treatment of type 2 diabetes. 
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1.6.2. CONVERSIONS OF THIOIMIDATE ADDUCTS 

 

Chemical transformations of nitriles require strong acid/base conditions or the use of 

peroxides. Nitrile-hydrolyzing enzymes from microorganisms are known and the question 

raised whether cysteine proteases exhibit such an activity. In the case of papain [141], [142], 

[152], the thioimidate adduct was found to revert to nitrile, instead of hydrolyzing to form an 

amide (Fig. 8). However, a peptide nitrile hydratase activity was engineered by a single 

selected mutation Gln19Glu at the active site of papain. A kcat value, increased by a factor of 

at least 4 × 105, was observed at pH 5 for this papain variant compared to the wild type 

enzyme. The role of the glutamic acid residue is to participate in the acid-catalyzed hydrolysis 

of the thioimidate to the carboxamide by the provision of a proton. The more reactive 

protonated thioimidate readily undergoes nucleophilic attack by water [153]. Because of the 

well-known amidase activity of papain, the carboxamide is then transformed to the 

corresponding carboxylic acid (Fig. 8). The enzymatic hydrolysis of nitriles by papain mutant 

Gln19Glu was also studied in aqueous-organic media [154]. The proposed mechanism of 

nitrile hydratase activity of the papain mutant was supported by molecular dynamic studies 

[155]. 
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Figure 8. Mechanism for the nitrile hydratase (top) and amidase (bottom) activities of papain. The 

wild type enzyme displays very weak nitrile hydratase activity. The resulting carboxamide is 

hydrolyzed to the acid by the natural amidase activity of the enzyme. 

 

However, the papain-catalyzed conversion of benzamidoacetonitrile 2 or N-acetyl-L-

phenylalanyl-glycine-nitrile 4 to carboxylic acids via corresponding amides could be 

accomplished with high enzyme concentration in the presence of an external thiol as 

monitored with NMR and HPLC. An attack of β-mercaptoethanol or N-acetylcysteamine at
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the thioimidate adduct produces a non-enzyme bound thioimidate, which is readily 

hydrolyzable. Once the amide is formed, papain catalyzes its conversion to the acid [156]. 

This pathway was later considered in an investigation with 9, a biaryl inhibitor of cathepsin K 

(Fig. 9). However, no detectable amounts of the corresponding amide 10 or acid 11 were 

observed in the HPLC profiles of the incubation mixture of 9, cathepsin K, and external thiols 

[157]. 
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Figure 9. Structure of 9, a non-peptidic biaryl inhibitor of human cathepsin K, and its amide and acid 

analogues 10 and 11. Compound 9 (500 nM, i.e. 100-fold Ki) was a poor substrate for nitrilase activity 

of cathepsin K (enzyme concentration 1 µM, β-mercaptoethanol 1 mM, DTT 2.5 mM, pH 5.5, room 

temperature, 30 min). The amide 10 was readily converted to 11 by cathepsin K, and this amidase 

activity was blocked by the irreversible cysteine protease inhibitor E64. 
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1.6.3. SELECTIVE NITRILE-BASED INHIBITORS OF CATHEP SINS K AND S 

 

Considerable scientific attempts have been made to develop highly potent and selective 

cathepsin K inhibitors, as it became obvious from a number of recent publications (for a 

review, see [178]). These efforts resulted in the discovery of balicatib (12) and odanacatib 

(13) for which several clinical trials have already been conducted (Fig. 10) [97], [124], [158]. 

The 1-amino-1-cyclohexanecarboxylic acid (homocycloleucine), contributing to the cathepsin 

K selectivity in balicatib (12), was discovered by the introduction of various substituents into 

the P2 position of Cbz-protected dipeptide nitriles. The following optimization of the P3 

substituent led to the identification of balicatib as highly potent and selective cathepsin K 

inhibitor [159]. Unfortunately, a small number of patients during a phase II study in women 

with postmenopausal osteoporosis developed morphea-like skin changes under treatment with 

balicatib [160]. The lysosomal accumulation of balicatib due to its basic piperazine moiety 

was reported as a possible reason for the observed skin pathology [161]. Regarding this 

potential toxic effect, further clinical development of balicatib is on hold. In contrast, 

odanacatib is a non-basic selective cathepsin K inhibitor obtained by the combination of a 

relatively large biaryl substituent at the P3 position and a fluorinated P2 leucine moiety [162]. 

As it is shown in Figure 10, odanacatib (13) has a peptidomimetic structure in which the P3-

P2 amide linker is replaced by a trifluoroethylamine group for the enhancement of the binding 

affinity [163]. Moreover, the unnatural cyclopropane moiety was introduced into the P1 

position to stabilize the inhibitor molecule toward proteolytic degradation ([162]; for a 

review, see [164]). Odanacatib is currently in the phase III clinical development [124]. 
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Figure 10. Structures of the cathepsin K inhibitors balicatib (12) [159] and odanacatib (13) [162]. 

 

Selective cathepsin S inhibitors were obtained by the combination of a sulfone moiety, 

attached to a large group at the P2 position, and a small aromatic P3 substituent (e.g. 14 and 

15, Fig. 11). While cathepsin S accommodates the isobutylcysteinesulfone moiety of 14,
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unfavorable interactions with the S2 pocket of cathepsin K provided a rational for the 

selectivity of this inhibitor: IC50 values of 0.4 nM (cathepsin S), 3058 nM (cathepsin K), 

337 nM (cathepsin B), and 132 nM (cathepsin L) were reported for compound 14. 

Furthermore, the 2,6-dichlorobenzyl analogue 15 (IC50 = 0.7 nM) was completely inactive 

against cathepsins K and B, while being 350-fold selective for cathepsin S over cathepsin L 

([165]; for a review, see [178]). Furthermore, it was recently reported on the development of 

highly potent and selective cathepsin S inhibitors, containing electrophilic α-ketoamide 

moiety (e.g. 16, Fig. 11) as a ‘warhead’, for which a patent application was carried out (for a 

patent evaluation, see [166]). These compounds bear gem-dialkyl substituted cycloaliphatic 

rings at the P2 position in combination with small aromatic or saturated 

heterocyclic/cycloaliphatic P3 substituents. 
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Figure 11. Structures of selective cathepsin S inhibitors 14–16. 

 

Cathepsin S-selective inhibitors RWJ-445380 and CRA-028129 are already in the clinical 

development for rheumatoid arthritis and psoriasis, respectively. Unfortunately, neither the 

results of clinical trials nor the structures of compounds RWJ-445380 and CRA-028129 are 

available until now (for reviews, see [96], [167]). 
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1.6.4. AZADIPEPTIDE NITRILES AS INHIBITORS OF CYSTE INE PROTEASES 

 

The isoelectronic replacement of the CαH group by a nitrogen atom to give azapeptides is a 

common structural modification in the chemistry of peptides. Azapeptides have attracted 

much interest due to their unique properties and applications as peptidomimetics in a variety 

of biological systems. Recently, it was reported on proteolytically stable azadipeptide nitriles 

as a novel class of cysteine protease inhibitors with picomolar Ki values towards 

therapeutically relevant cathepsins K, S and L. These azadipeptide nitriles were composed of 

a Cbz-protected P2 amino acid and a P1 aza-amino nitrile whose nitrogens are essentially 

alkylated for reasons of the synthetic access (Fig. 12) [168]. Furthermore, the azadipeptide 

nitriles proved to be strong inhibitors of falcipains 1 and 2 from Plasmodium falciparum 

parasite and showed further antimalarial activity [169]. 
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Figure 12. Cα/N-exchange leading to an azadipeptide nitrile. 

 

Azadipeptide nitriles exhibited dramatically improved activities toward tested cysteine 

proteases in contrast to the corresponding carba-analogues. The improved potency of 

azadipeptide nitriles can be explained by the formation of a resonance-stabilized 

isothiosemicarbazide adducts with the active-site cysteine of target enzymes (Fig. 13). 

Furthermore, it has been shown that the covalent isothiosemicarbazide adduct has a reversible 

nature ([168]; for a review, see [178]). 
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Figure 13. Reversible formation of an isothiosemicarbazide adduct. 
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In a recent publication, Yao and coworkers reported on the development of organelle-specific 

drug delivery systems to selectively transport azadipeptide nitriles into the lysosomes [170]. 

The reported delivery system consists of a Tat peptide derived from the human 

immunodeficiency virus transactivator protein covalently attached to a non-selective 

azadipeptide nitrile [168] using the ‘click’ chemistry (compound 17, Fig. 14). Biological 

testing showed that the Tat peptide was capable to promote delivery of the attached 

azadipeptide nitrile to the lysosomes of HepG2 cells. 
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Figure 14. Inhibitor-Tag conjugate L1-Tat. 

 

Despite their excellent inhibitory activity, the reported azadipeptide nitriles were nonselective 

and it remained unclear whether the selectivity for a single target cathepsin can be achieved at 

all with this class of inhibitors.  
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1.7. ‘ACTIVITY-BASED’ PROBES 

 

Chemical probes that bind into the catalytic site and allow for direct detection of the active 

enzyme form are termed ‘activity-based’ probes (ABPs), or ‘mechanism-based’ probes. ABPs 

consist mainly of three parts: (1) specific inhibitor; (2) linker; and (3) fluorescent or 

radioactive reporter. In contrast to chromogenic/fluorogenic substrates and reversible 

inhibitors, ABPs bind covalently to the active site in an irreversible manner. The applications 

for ABPs include de novo enzyme discovery, high-throughput screening, in vivo imaging, and 

diagnostic of certain diseases (for a review, see [171]).  

Recently, it was reported on the development of specific fluorescent ABPs (e.g. 18, Fig. 15) 

that covalently label active caspases in vivo [172]. Caspases are proteolytic enzymes which 

belong to the C14D subfamily of cysteine proteases. Among them, caspase-3 has been 

identified as a key mediator of apoptosis in mammalian cells [173]. The monitoring of 

caspase-3 using specific ABPs allow therefore direct quantification of apoptosis to assess, 

e.g., chemotherapeutic response in cancer patients. 
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Figure 15. Structure of the caspase probe AB50-Cy5 (18) [172]. 

 

Furthermore, a cell-permeable, radioiodinated, ‘activity-based’ probe [125I]BIL-DMK  

(Fig. 16) was developed for the determination of cysteine cathepsin activity in whole-cell 

enzyme occupancy assays [174]. Non-selective activity-based probe [125I]BIL-DMK contains 

a diazomethylketone moiety that covalently interacts as a ‘warhead’ with the active-site of 

cysteine cathepsins in an irreversible manner. [125I]BIL-DMK is highly reactive toward the 

pharmaceutically important cathepsins L, S, K and B. Recently, it was reported that [125I]BIL-
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DMK was used to probe cathepsin S activity in the leukocyte fraction of the whole blood to 

study distribution and diurnal modulation of this enzyme [175]. 
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Figure 16. Structure of the radioiodinated cathepsin probe [125I]BIL-DMK ( 19) [175]. 

 

A further interesting activity based probe was developed for ultrasensitive in situ visualization 

of active glucocerebrosidase molecules. Deficiency of glucocerebrosidase causes a lysosomal 

storage disorder called Gaucher disease. For the diagnostic and treatment of Gaucher disease, 

it is very important to know the amounts of the active form of glucocerebrosidase in affected 

cells. The activity-based probe MDW941 (compound 20, Fig. 17) consist of an epoxide-

containing cyclophellitol derivative covalently attached to a BODIPY fluorophore. Using 

MDW941, it was possible to determine the glucocerebrosidase activity by SDS-PAGE in cell 

lysates of normal individuals and in Gaucher material [176]. 
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Figure 17. Structure of the glucocerebrosidase probe MDW941 (20) [176]. 

 

Although the development of fluorescent ‘activity-based’ probes for cathepsin X was recently 

published [177], no such ABPs are known for selective probing of cathepsins K and S until 

now. Therefore, the development of potent ‘activity-based’ probes for these enzymes, e.g. for 

diagnostic and monitoring of osteoporosis and autoimmune disorders, represents an 

interesting new topic in the field of Medicinal Chemistry.  

Parts of the ‘Introduction’ of this work are congruent with the recently published review on 

nitrile inhibitors of cysteine cathepsins by Frizler et al. [178]. 
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1.8. AIM 

 

The aim of this work was the development of potent and selective nitrile-based 

peptidomimetic inhibitors for human cathepsins K and S, containing a proteolytically stable 

azadipeptide scaffold, as well as the preparation and characterization of ‘activity-based’ 

probes for these enzymes. 

To obtain highly potent and selective cathepsin K inhibitors, the stepwise optimization of 

the inhibitor structure was planned (Fig. 18). In the phase I  of the development process, 

various substituents had to be introduced into the P2 position of the Cbz-protected 

azadipeptide nitrile scaffold to obtain a lead structure for further optimization. In the phase II , 

the modification of the P3 moiety as well as of the P3-P2 linker was to be performed. 
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Figure 18. An overview of the planned diversity points for the stepwise optimization of inhibitor 

molecules to achieve the selectivity for cathepsin K. R1, R2, R3 = various substituents; *R1, 

R2* = optimized substituents; R4 = Me or H; X = N, O or 0; Y = NMe or CH2, n = 0 or 1. 

 

In a second project of this work, the systematic scan for P3 substituents of the dipeptide nitrile 

scaffold, containing isobutylcysteinesulfone moiety [165] at the P2 position, had to be 

performed to explore the S3 binding pocket of cathepsin S (Fig. 19, left). 

Finally, irreversible, fluorescent ‘activity-based’ probes for cathepsins K and S, bearing a 

vinyl sulfone ‘warhead’, were to be prepared and evaluated in vitro (Fig. 19, right). 
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Figure 19. Systematic scan for P3 substituents (left) and fluorescent ‘activity-based’ probes (right). 

R = various substituents; Y = NMe or CH2; FG = fluorescent group. 
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2.1. AZADIPEPTIDE NITRILES AS CATHEPSIN K INHIBITOR S 

 

2.1.1. SYSTEMATIC SCAN FOR P2 SUBSTITUENTS 

 

To develop potent and selective nitrile inhibitors of cathepsin K, a systematic scan for P2 

substituents of the azadipeptide nitrile scaffold was performed. For this purpose, various Cbz-

protected L-amino acids 21–26 were converted into the corresponding mixed anhydrides 

[179–181] by the reaction with isobutyl chloroformate in the presence of N-methyl-

morpholine. The following addition of an aqueous solution of 1,2-dimethylhydrazine, which 

was previously displaced with sodium hydroxide from its dihydrochloride salt, provided the 

formation of 1,2-dimethylhydrazides 27–32. The crude products 27–32 were purified on silica 

gel by column chromatography and subjected to the final reaction with cyanogen bromide 

leading to the target compounds 33–38 (Scheme 1). 

O N
H

N
N

O

O

CN
O N

H

N
N
H

O

O
O N

H

OH
O

O

a b

33−3821−26

R R R

27−32  

Scheme 1. Synthesis of carbamate-based azadipeptide nitriles 33–38. 

a) 1. ClCO2i-Bu, NMM, THF, -25 °C; 2. (MeNH)2 × 2HCl, NaOH, H2O, THF, -25 °C to rt; b) BrCN, 

NaOAc, MeOH, rt; 21, 27, 33, R = H; 22, 28, 34, R = Me; 23, 29, 35, R = i-Pr; 24, 30, 36,  

R = (S)-1-methylpropyl; 25, 31, 37, R = cyclohexylmethyl; 26, 32, 38, R = 4-hydroxybenzyl. 

 

While 1,2-dimethylhydrazides 27–32, containing α-monosubstituted amino acids, were easily 

obtained in moderate yields, the reaction of Cbz-protected 1-amino-1-cyclohexanecarboxylic 

acid (homocycloleucine) 39 with 1,2-dimethylhydrazine was more complicated, although the 

same reaction conditions were used as in the case of 27–32. The 1,2-dimethylhydrazide 40 

was formed in a very low yield, and it was further not possible to isolate the desired product 

from the obtained reaction mixture in a pure form. Therefore, the synthetic route to 

azadipeptide nitrile 42 had to be optimized. Different from the procedure noted in Scheme 1, 

compound 39 was activated via a mixed anhydride and reacted with 1,2-dimethylhydrazine 

dihydrochloride in the presence of triethylamine under water-free conditions. The new 

synthetic route was associated with a slight improved yield of compound 40 and allowed for 

isolation of this product in a pure form. Finally, the 1,2-dimethylhydrazide 40 was converted 

into the corresponding azadipeptide nitrile 42 by the reaction with cyanogen bromide.
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The carbazate 41 was isolated as the major byproduct resulting from the nucleophilic attack of 

1,2-dimethylhydrazine at the carbonate carbon of the mixed anhydride (Scheme 2). 
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Scheme 2. Synthesis of the homocycloleucine-derived azadipeptide nitrile 42. 

a) 1. ClCO2i-Bu, TEA, THF, -25 °C; 2. (MeNH)2 × 2HCl, THF, -25 °C to rt; b) BrCN, NaOAc, 

MeOH, rt. 

 

For comparative investigations, the homocycloleucine-derived dipeptide nitrile 43 [159] was 

synthesized (Scheme 3). When compound 39 was reacted with aminoacetonitrile monosulfate 

in the presence of triethylamine, the dipeptide nitrile 43 was formed in a moderate yield of 

53%. The carbamate 44 was identified as a main byproduct of the reaction. 
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Scheme 3. Synthesis of the homocyloleucine-derived dipeptide ntirile 43. 

a) 1. ClCO2i-Bu, TEA, THF, -25 °C; 2. H2NCH2CN × H2SO4, THF, -25 °C to rt. 

 

Obviously, the presence of the gem-disubstituted carbon in the Cbz-protected 

homocycloleucine-derived mixed anhydride was responsible for low yields of the desired 

coupling products. This effect was particularly strong when 1,2-dimethylhydrazine, a rather 

weak, but steric demanding nucleophile was used. For comparison, the mixed anhydride 

coupling of protected Cα-monosubstituted amino acids with aminoacetonitrile or  

1,2-dimethylhydrazine occurred with less pronounced formation of carbamate or carbazate 

byproducts, respectively [168], [182]. Compounds 33–38 were synthesized by Friederike 

Lohr in the course of her diploma thesis under my supervision. 
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2.1.2. KINETIC PLOTS (SLOW-BINDING INHIBITION) AND EQUATIONS 

 

The inhibitory activity of compounds, interacting with their target enzymes in a competitive 

manner, is mainly characterized by the Ki values. In contrast to IC50 values, the true inhibition 

constant Ki is independent from the substrate concentration and assay conditions and is 

therefore advantageous to evaluate competitive inhibitors. For example, Ki values obtained 

under different assay conditions are directly comparable. The calculation of the Ki value 

requires the knowledge of the Michaelis constant (Km) defined as the substrate concentration 

for which the velocity of an enzyme reaction is half of its maximal value.  

For the following kinetic investigations, the Michaelis constants were therefore determined. 

The target cathepsins L, S and B were assayed photospectrometrically in the presence of 

increasing concentrations of the chromogenic substrates Z-Phe-Arg-pNa, Z-Phe-Val-Arg-pNa 

and Z-Arg-Arg-pNa, respectively. The formation of p-nitroaniline was measured at 405 nm. 

Cathepsin K was assayed fluorometrically in the presence of the fluorogenic substrate Z-Leu-

Arg-AMC. In the cathepsin K assay, the excitation wavelength was 360 nm and the 

corresponding wavelength for emission was 440 nm. The enzymes were assayed with at least 

seven different concentrations of the particular chromogenic or fluorogenic substrate in 

duplicate experiments. The steady-state reaction rates (vs) were calculated as slops of the 

progression lines by linear regression (Fig. 21a). To obtain the Km values, the steady-state 

velocities were further plotted against increasing substrate concentrations and analyzed by 

non-linear regression (Fig. 21b) using the Michaelis-Menten equation (Fig. 20a). The 

Lineweaver-Burk (Fig. 22a) and Hanes-Woolf (Fig. 22b) plots were performed to review 

possible systematic errors. The corresponding equations for Lineweaver-Burk and Hanes-

Woolf plots are shown in Figure 20b and 20c, respectively. 
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Figure 20. Michaelis-Menten (a), Lineweaver-Burk (b) and Hanes-Woolf (c) equations.  

vs – steady-state velocity (M s-1); Vmax – maximum reaction rate (M s-1); [S] – substrate concentration 

(M); Km – Michaelis constant (M). In Figures 21 and 22, dimensionless units instead of concentrations 

are used at the ordinates. 
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(a)       (b) 
 

 

Figure 21. (a) Cathepsin K-catalyzed hydrolysis of Z-Leu-Arg-AMC (100 mM sodium citrate pH 5.0, 

100 mM NaCl, 1 mM EDTA, 0.01% CHAPS, 2% DMSO, 50 µM DTT, 25 °C) (•) [S] = 30 µM;  

(•) [S] = 20 µM; (•) [S] = 10 µM; (•) [S] = 5 µM; (•) [S] = 3 µM; (•) [S] = 2 µM; (•) [S] = 1 µM;  

(•) [S] = 0.9 µM. (b) Plot of steady-state reaction rates (vs) versus increasing concentration of Z-Leu-

Arg-AMC. The non-linear regression of the data pairs (vs, [S]) gave a Km value of 2.6 ± 0.3 µM. 

 

(a)       (b) 
 

 

Figure 22. (a) Lineweaver-Burk plot of 1/vs versus 1/[S]. Km = 3.0 ± 0.1 µM. (b) Hanes-Woolf of 

[S]/vs versus [S]. Linear regression gave a Km value of 2.7 ± 0.1 µM. 

 

The Km values and the corresponding standard errors, obtained by non-linear regression using 

the Michaelis-Menten equation (Fig 20a), are listed in Table 1. The final substrate 

concentrations in the inhibition assays were follows: (1) cathepsin L assay (human 

recombinant cathepsin L from Calbiochem) – 100 µM (= 10.0 Km) Z-Phe-Arg-pNa; (2) 

cathepsin L assay (human isolated cathepsin L from Enzo Life Sciences) – 100 µM
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(= 5.88 Km) Z-Phe-Arg-pNa; (3) cathepsin S assay (human recombinant cathepsin S from 

Calbiochem) – 100 µM (= 1.49 Km) Z-Phe-Val-Arg-pNa or 100 µM (= 0.85 Km) Z-Phe-Arg-

pNa; (4) cathepsin K assay (human recombinant procathepsin K from Calbiochem) – 40 µM 

(= 15.4 Km) Z-Leu-Arg-AMC; (5) cathepsin K assay (recombinant cathepsin K from Enzo 

Life Sciences) – 40 µM (= 13.3 Km) Z-Leu-Arg-AMC; (6) cathepsin B assay (human isolated 

cathepsin B from Calbiochem) – 500 µM (= 0.45 Km) Z-Arg-Arg-pNa. 

 

Table 1. Km values (µM). 

 Z-Phe-Arg-pNaa Z-Phe-Val-Arg-pNaa Z-Leu-Arg-AMCb Z-Arg-Arg-pNaa 

cathepsin L 
10 ± 1c 
17 ± 2d 

n.d.e n.d. n.d. 

cathepsin S 117 ± 9 67 ± 5 n.d. n.d. 

cathepsin K n.d. n.d. 
2.6 ± 0.3f 

3.0 ± 0.6g 
n.d. 

cathepsin B n.d. n.d. n.d. 1100 ± 100 

aAssays were carried out with a total DMSO amount of 2% and at 37 °C. bAssay was performed with a total 

DMSO amount of 2% and at 25 °C. cHuman recombinant cathepsin L from Calbiochem. dHuman isolated 

cathepsin L from Enzo. eNot determined. fHuman recombinant procathepsin K from Calbiochem (measurements 

were performed after activation of the enzyme). dHuman recombinant cathepsin K from Enzo. 

 

The inhibitory activities of the target compounds 33–38 and 42, together with already known 

inhibitors 45 and 46 [168] (Table 2), were evaluated on therapeutically relevant human 

cathepsins L, S, K and B as described in ‘Experimental Section’. The tested azadipeptide 

nitriles all showed slow-binding kinetic behavior resulting in hyperbolic progress curves of 

enzymatic reactions in the presence of inhibitor (Fig. 24a). For calculation of the steady-state 

reaction rates (vs) and the first-order rate constants (kobs), the slow-binding equation was used 

(Fig. 23a). To obtain the IC50 values (apparent inhibition constants Ki’), the steady-state 

velocities (vs) were plotted versus increasing inhibitor concentrations (Fig. 24b), and the 

resulting data pairs (vs, [I]) were analyzed by non-linear regression using the IC50 equation 

(Fig. 23b). Because azadipeptide nitriles were described as reversible inhibitors with a 

competitive inhibition mode [168], the IC50 values were further corrected using the Cheng-

Prusoff equation (Fig. 23c) to obtain the corresponding true inhibition constants (Ki). The 

structure-activity relationships (SARs) of all inhibitors in this study were analyzed on the 

bases of their Ki values because the true inhibition constants are independent on substrate 

concentrations and used assay conditions, and allow therefore for a direct comparison. 
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Figure 23. Slow-binding (a), IC50 (b) and Cheng-Prusoff (c) equations. 

(a) E – extinction; I – fluorescence intensity; vs – steady-state reaction rate (M s-1); vi – initial reaction 

rate (M s-1); kobs – first-order rate constant (s-1); t – time (s); d – offset; (b) IC50 – half maximal 

inhibitory concentration (M); v0 – steady-state reaction rate in the absence of inhibitor (Ms-1); vs –

 steady-state reaction rate in the presence of inhibitor (M s-1); [I] – inhibitor concentration (M); (c) Ki –

 true inhibition constant (M); IC50 – half maximal inhibitory concentration (M); [S] – substrate 

concentration (M); Km – Michaelis constant (M). In Figure 24, dimensionless units instead of 

concentrations are used at the ordinates. 

 

(a)       (b) 
 

 

Figure 24. (a) Monitoring of the human cathepsin L-catalyzed hydrolysis of Z-Phe-Arg-pNa (100 µM) 

in the presence of increasing concentrations of compound 35 (•, 0; •, 20 nM; •, 40 nM; •, 60 nM; 

•, 80 nM; •, 100 nM). The reaction (100 mM sodium phosphate buffer pH 6.0, 100 mM NaCl, 5 mM 

EDTA, 0.01% Brij 35, 2% DMSO, 100 µM DTT, 37 °C) was initiated by addition of the enzyme. The 

formation of p-nitroaniline was measured at 405 nm. (b) Plot of the rates of hydrolysis of Z-Phe-Arg-

pNa versus increasing concentrations of 35. Non-linear regression gave an apparent inhibition constant 

Ki’ = (1+[S]/Km)Ki = 17 ± 1 nM. The inset is a plot of the first-order rate constants kobs versus 

increasing concentrations of 35. Linear regression gave a second-order rate constant 

kon’ = kon/(1+([S]/Km) = (19 ± 1) × 103 M-1s-1.
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The slow-binding behavior of azadipeptide nitriles, which inhibited the target cathepsins in a 

time-dependent manner, approves for the determination of the association rate constants (kon) 

as a second kinetic parameter to evaluate their biological activity. Slow-binding inhibitors 

display a slow onset of the inhibition on a time scale of seconds to minutes because the 

equilibrium between enzyme, inhibitor, and enzyme-inhibitor (EI) complex is established 

slowly. Two basic mechanisms have been proposed to explain slow enzyme inhibition in the 

case of reversible, covalent inhibitors. Mechanism A assumes the formation of the covalent 

complex EI* as a single, slow step whereby the magnitudes of k+3[I] and k-3 are small relative 

to k+1[S], k-1 and k+2 (Fig. 25a). However, mechanism B assumes rapid formation of a non-

covalent EI complex that undergoes a slow isomerization to a covalent EI* complex. In this 

case, the magnitudes of k+4 and k-4 are small relative to k+1[S], k-1 and k+2, and in particular to 

k+3[I] and k-3 (Fig. 25b) [183], [184]. 
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Figure 25. Mechanism A (a) and mechanism B (b) of the slow-binding inhibition. 

 

For the differentiation between two mechanisms, the kobs values (first-order rate constant for 

the development of the steady-state between free enzyme, inhibitor, and EI* complex), 

obtained from hyperbolic progress curves, were plotted against increasing inhibitor 

concentrations. As it exemplarily depicted for compound 35 (Fig. 24b), the kobs values of 

azadipeptide nitriles 33–38, 42, 45 and 46 showed a linear dependence on the increasing 

inhibitor concentrations. The linear dependence of kobs on [I], which is mathematically 

described by equation shown in Figure 26a, indicated the one-step mechanism A (Fig. 25a) as 

the inhibition mode of compounds 33–38, 42, 45 and 46 on cathepsins L, S, K and B. The 

apparent k+3/(1+[S]/Km) = kon’ values were therefore easily obtained by linear regression of 

the data pairs (kobs, [I]) using the equation depicted in Figure 26c. In the case of mechanism B, 

the kobs values exhibit non-linear dependency on [I] described by the equation for two step 

inhibition (Fig. 26b). 
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Figure 26. Relationships between kobs and [I] for mechanism A (a) and mechanism B (b); equation for 

the determination of the apparent second-order association rate constants (c). 

kobs – first-order rate constant of the approach to steady-state (s-1); k-3 – dissociation first-order rate 

constant (s-1); k+3 – association second-order rate constant (M-1s-1); k-3/k+3 – dissociation constant (M); 

k-4 – first-order rate constant of the EI* decay (s-1); k+4 – first-order rate constant of the EI* formation 

(s-1); [I] – inhibitor concentration (M); [S] – substrate concentration (M);  Km – Michaelis constant 

(M); kon’ – apparent second-order association rate constant (M-1s-1); koff – first-order dissociation rate 

constant (s-1). 

 

The calculated apparent second-order association rate constants (kon’) were further corrected 

by multiplication with a factor (1+[S]/Km) to obtain the corresponding true second-order 

association rate constants (kon). The first-order dissociation rate constants (koff) of compounds 

33–38, 42, 45 and 46 were calculated as a multiplication product of Ki and kon using the 

equation in Figure 27a. The standard errors for koff were obtained by multiplication of koff 

values with their relative overall errors (Fig. 27b) [185–187]. 
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Figure 27. Equations for calculation of koff values (a) and their relative overall errors (b). 

(a) kobs – first-order rate constant of the steady-state development (s-1); kon – true second-order 

association rate constant (M-1s-1); koff – first-order dissociation rate constant (s-1); (b) Frel – relative 

overall standard error; frel – relative standard errors for Ki and kon values. 
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2.1.3. STRUCTURE-ACTIVITY RELATIONSHIPS OF 33 –38, 42, 45 AND 46 

 

Regardless of the substitution pattern, compounds 33–38, 42, 45 and 46 displayed all the 

time-depended, slow-binding behavior. Analysis of the progress curves over 80 min then 

allows for the determination of the second-order association rate constants (kon) and the first-

order dissociation rate constants (koff). The estimated Ki values of compounds 33–38, 42, 45 

and 46 as well as the corresponding standard errors are shown in Table 2.  

 

Table 2. Ki values of carbamate-based compounds 33–38, 42, 45 and 46. 
 

O N
H

N
N

O

O

CN
R'R

 
 

cmpd R R’ 
Ki (nM) 

cath L cath S cath K cath B 

33 H H 860 ± 60a 800 ± 30 260 ± 30 840 ± 70 

34 Me H 480 ± 50 9.1 ± 1 33 ± 2 55 ± 7 

35 i-Pr H 1.5 ± 0.1 1.5 ± 0.2 0.87 ± 0.14 4.3 ± 0.2 

36 (S)-1-methylpropyl H 2.6 ± 0.3 0.83 ± 0.1 0.46 ± 0.06 0.88 ± 0.08 

37 cyclohexylmethyl H 0.40 ± 0.04 0.20 ± 0.03 0.071 ± 0.010 0.48 ± 0.07 

38 4-hydroxybenzyl H 0.36 ± 0.03 0.86 ± 0.02 0.16 ± 0.01 0.38 ± 0.03 

42 -(CH2)5- 400 ± 60 130 ± 5 1.8 ± 0.3 170 ± 10 

45 i-Bu H 0.90 ± 0.04 0.33 ± 0.02 0.064 ± 0.003 0.43 ± 0.01 

46 Bn H 0.16 ± 0.01a 0.51 ± 0.03a 0.14 ± 0.01 0.68 ± 0.04 

a The progress curves were followed over 20 min and analyzed by non-linear regression. 

 

The glycine derivative 33 with unsubstituted P2 position exhibited the weakest inhibitory 

activity on the studied cathepsins. Furthermore, the simple methylation of the P2 position, 

resulting in compound 34, led to a ca. 2–88-fold improvement in the potency towards 

cathepsins L, S, K and B. The activity improvement was much stronger when larger aliphatic 

and cycloaliphatic groups such as isopropyl (35), (S)-1-methylpropyl (36), isobutyl (45), and 

cyclohexylmethyl (37) substituents were introduced in the P2 position of the azadipeptide 

nitrile scaffold. Particularly for cathepsin K, the L-leucine-based azadipeptide nitrile 45 was 
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ca. 4100-fold more active, comparing with the corresponding glycine derivative 33, and 

showed also a slight preference for this enzyme The introduction of aromatic benzyl (46) and 

4-hydroxybenzyl (38) substituents into P2 position did not result in further advantages 

regarding potency improvement or selective inhibition of cathepsin K. In contrast, the 

homocycloleucine-based compound 42, although less potent on cathepsin K compared with 

the potent inhibitors 45 and 37, showed already considerable selectivity for this enzyme over 

cathepsin L, S and B (220-fold, 72-fold and 100-fold, respectively). Azadipeptide nitriles 42 

and 45 were selected for further optimization of the P3 substituent, while their P2 residues, 

interacting with the S2 subsite of cysteine cathepsins, were maintained in all further 

compounds of this study. 

The kon values of compounds 33–38, 42, 45 and 46 varied considerably depending on the 

substitution at the P2 position, while the corresponding koff values were in the same range 

(Tables 3 and 4). For example, the 17000-fold higher kon value of 45 for cathepsin K, 

compared to that of the glycine derivative 33, is reflected by the improved potency of 45  

(64 pM versus 260 nM, Table 2). 

 

Table 3. kon values of carbamate-based compounds 33–38, 42, 45 and 46. 
 

O N
H

N
N

O

O

CN
R'R

 
 

cmpd R R’ 
kon (103 M-1 s-1) 

cath L cath S cath K cath B 

33 H H 0.51 ± 0.01a 1.7 ± 0.1 0.10 ± 0.01 0.11 ± 0.02 

34 Me H 1.3 ± 0.1 67 ± 3 1.4 ± 0.2 0.81 ± 0.31 

35 i-Pr H 210 ± 10 400 ± 100 81 ± 10 7.6 ± 0.7 

36 (S)-1-methylpropyl H 81 ± 3 250 ± 20 160 ± 30 28 ± 4 

37 cyclohexylmethyl H 2900 ± 100 9600 ± 800 410 ± 50 58 ± 11 

38 4-hydroxybenzyl H 4200 ± 100 500 ± 30 320 ± 20 79 ± 22 

42 -(CH2)5- 1.3 ± 0.1 7.8 ± 1 60 ± 10 1.0 ± 0.1 

45 i-Bu H 620 ± 50 2000 ± 100 1700 ± 200 130 ± 10 

46 Bn H 4500 ± 700a 3000 ± 600a 320 ± 60 150 ± 10 

a The progress curves were followed over 20 min and analyzed by non-linear regression. 
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The koff values of tested compounds 33–38, 42, 45 and 46 were approximately in the same range 

and seemed to be independent from the substituent at the P2 position of the azadipeptide 

nitrile scaffold (Table 4). Therefore, it could be assumed that azadipeptide nitriles depart from 

the catalytic site of cysteine cathepsins without significant interactions with the corresponding 

binding pockets when the dissociation of the isothiosemicarbazide (Fig. 13) adducts occurs. 

This finding reflects the difficulty in delivering significant binding energy from non-covalent 

interactions, as discussed for cysteine cathepsins and concluded from the large and relatively 

shallow active site of these target enzymes [164]. The cathepsin L measurements of 

compounds 33–38 were performed by Friederike Lohr in the course of her diploma thesis 

under my supervision. 

 

Table 4. koff values of carbamate-based compounds 33–38, 42, 45 and 46. 
 

O N
H

N
N

O

O

CN
R'R

 
 

cmpd R R’ 
koff (10-3s-1) 

cath L cath S cath K cath B 

33 H H 0.44 ± 0.03a 1.4 ± 0.1 0.026 ± 0.004 0.092 ± 0.018 

34 Me H 0.62 ± 0.08 0.61 ± 0.07 0.046 ± 0.007 0.045 ± 0.018  

35 i-Pr H 0.32 ± 0.03 0.60 ± 0.17 0.070 ± 0.014 0.033 ± 0.003 

36 (S)-1-methylpropyl H 0.21 ± 0.03 0.21 ± 0.03 0.074 ± 0.017 0.025 ± 0.004 

37 cyclohexylmethyl H 1.2 ± 0.1 1.9 ± 0.3 0.029 ± 0.005 0.028 ± 0.007 

38 4-hydroxybenzyl H 1.5 ± 0.1 0.43 ± 0.03 0.051 ± 0.005 0.030 ± 0.009 

42 -(CH2)5- 0.52 ± 0.09 1.0 ± 0.1 0.11 ± 0.03 0.17 ± 0.02 

45 i-Bu H 0.56 ± 0.05 0.66 ± 0.05 0.11 ± 0.01 0.056 ± 0.005 

46 Bn H 0.72 ± 0.12a 1.5 ± 0.3a 0.045 ± 0.009 0.10 ± 0.01 

a The progress curves were followed over 20 min and analyzed by non-linear regression. 
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2.1.4. L-LEUCINE-DERIVED AZADIPEPTIDE NITRILES 

 

THE L-leucine-based azadipeptide nitrile 45 was selected for the stepwise structure 

optimization to develop potent and selective cathepsin K inhibitors. For this purpose, the 

isobutyl substituent at the P2 position of the azadipeptide nitrile scaffold was maintained, and 

the P3 moieties as well as the P3-P2 linker were varied.  

At first, the carbamate group of 45 was replaced by a urea moiety to permit additional 

hydrogen bond formation. The corresponding azadipeptide nitriles 50 and 51 (Scheme 4) 

differ in the length of the P3-P2 linker. The route to the urea-based inhibitors 50 and 51 rests 

upon the finding that the carbamoyl-protected L-leucine can be converted via mixed 

anhydride method without racemisation [188]. L-Leucine tert-butyl ester 47 was reacted with 

CDI and benzylamine or aniline, respectively. The resulting derivatives 48 and 49 were 

treated with TFA to cleave the tert-butyl ester, transformed into the corresponding  

1,2-dimethylhydrazides, and reacted with cyanogen bromide to obtain 50 and 51. 

N
H

Ot-Bu

O
N
H

O

n
a b, c, d

N
H

N

O
N
H

O

n N
CN

H2N
Ot-Bu

O

47 48, 49 50, 51  

Scheme 4. Synthesis of the urea-based compounds 50 and 51. 

a) (n = 1) 1. CDI, THF, ∆; 2. benzylamine, THF, ∆; (n = 0) 1. CDI, THF, ∆; 2. aniline, DIPEA, 

MeCN, ∆; b) TFA, CH2Cl2, rt; c) 1. ClCO2i-Bu, NMM, THF, -25 °C; 2. (MeNH)2 × 2HCl, NaOH, 

H2O, THF, -25 °C to rt; d) BrCN, NaOAc, MeOH, rt; 48, 50, n = 1; 49, 51, n = 0. 

 

On the basis of recent results on cathepsin K-selective dipeptide nitriles with large biaryl P3 

substituents [164], the P3 moiety of compounds 50 and 51 was next extended to improve the 

potency and selectivity for cathepsin K over cathepsins L, S and B. A 1,2,4-oxadiazole 

heterocycle as a common bioisoster of amide and ester groups [189] was chosen for the 

extension. Two benzylurea derivatives bearing a methyl group (62) and a 2-thienyl substituent 

(63) in position 5 of the 1,2,4-oxadiazole ring, as well as their phenylurea counterparts 64 and 

65 were synthesized (Scheme 5). The synthetic route includes the conversion of aromatic 

nitriles 52 and 53 to acyloxyamidines 54–57, and the oxadiazole ring closure carried out in 

acetic acid at 80 °C [190], followed by deprotection with TFA to obtain compounds 58–61. 

The free acids 58–61 were activated via a mixed anhydride and reacted with 1,2-dimethyl-
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hydrazine to obtain the corresponding 1,2-dimethylhydrazides, which were finally converted 

to azadipeptide nitriles 62–65 with cyanogen bromide. 
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54−−−−57

58−−−−61 62−65  

Schemes 5. Synthesis of the urea-based compounds 62–65. 

a) (n = 1) 1. CDI, THF, ∆, 2. 4-(aminomethyl)benzonitrile × HCl, DIPEA, THF, ∆; (n = 0)  

4-cyanophenyl isocyanate, THF, rt; b) NH2OH × HCl, DIPEA, EtOH, ∆; c) (R = Me) Ac2O, MeCN, rt; 

(R = 2-thienyl) 2-thenoyl chloride, DIPEA, MeCN, rt; d) AcOH, 80 °C; e) TFA, CH2Cl2, rt;  

f) 1. ClCO2i-Bu, NMM, THF, -25 °C, 2. (MeNH)2 × 2HCl, NaOH, H2O, THF, -25 °C to rt; g) BrCN, 

NaOAc, MeOH, rt; 52, n = 1; 53, n = 0; 54, 58, 62, n = 1, R = Me; 55, 59, 63, n = 1, R = 2-thienyl; 56, 

60, 64, n = 0, R = Me; 57, 61, 65, n = 0, R = 2-thienyl. 

 

For a direct comparison of kinetic properties, compound 66 was further synthesized as a 

carba-analogue of the azadipeptide nitrile 65. The synthetic route to 66 includes the activation 

of the free acid 61 via a mixed anhydride and the following reaction with aminoacetonitrile 

monosulfate (Scheme 6). 
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6661  

Scheme 6. Synthesis of the urea-based dipeptide nitrile 66. 

a) 1. ClCO2i-Bu, NMM, THF, -25 °C, 2. H2NCH2CN × H2SO4, NaOH, H2O, THF, -25 °C to rt. 

 

As it became obvious with inhibitor 65, the combination of the extended P3 triaryl motif with 

a short P3-P2 linker was advantageous, it was decided to further reduce the linker leading to 

the design of amide-based azadipeptide nitriles 67 and 68 (Scheme 11). Because of the 

racemisation of N-acylamino acids known to occur during the activation of their 
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carboxylic groups, a convergent synthesis for the amide-based compounds was developed. To 

realize the planned synthetic route, the desired compounds 67 and 68 were retrosynthetically 

divided into the synthetic equivalents 69, 70, 71 and cyanogens bromide (Fig. 28) which 

should be assembled to target molecules. While cyanogen bromide was commercially 

available, the building blocks 69 and 70, 71 had to be prepared. 
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Figure 28. The planned synthetic route to compounds 67 and 68. 

67, 70, R = H; 68, 71, R = Me. 

 

The convergent synthetic route was first employed in a modified form for the carba-analogues 

79 and 80 (Scheme 8). At first, the P3 building block 69 was prepared in five steps with an 

overall yield of 49% (Scheme 7). The crucial step to compound 69 was the formation of the 

acyloxyamidine 74, followed by the formation of 1,3,4-oxadiazole ring and the ester cleavage. 

a b, c

d, e
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Scheme 7. Synthesis of compound 69 as the P3 building block. 

a) 1. (COCl)2, CH2Cl2, DMF, rt; 2. tert-butanol, pyridine, rt; b) NH2OH × HCl, DIPEA, EtOH, ∆;  

c) 2-thenoyl chloride, DIPEA, MeCN, rt; d) AcOH, 80 °C; e) TFA, CH2Cl2, rt. 
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Next, Boc-protected L-leucine 75 and N-methyl-L-leucine 76 were reacted with 

aminoacetonitrile, followed by removal of the protecting group using methanesulfonic acid 

and basic extraction to produce 77 and 78. In the final step, the building block 69 was 

activated and coupled with 77 and 78 to obtain dipeptide nitriles 79 and 80 (Scheme 8). 

t-BuO N
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Scheme 8. Synthesis of amide-based dipeptide nitriles 79 and 80. 

a) 1. ClCO2i-Bu, NMM, THF, -25 °C, 2. H2NCH2CN × H2SO4, NaOH, H2O, THF, -25 °C to rt;  

b) MeSO3H, THF, rt, basic extraction; c) (R = H) 69, ClCO2i-Bu, NMM, THF, -25 °C to rt; (R = Me) 

69, EDC, DMAP, CH2Cl2, rt; 75, 77, 79, R = H; 76, 78, 80, R = Me. 

 

To produce the synthetic equivalents 70 and 71 (Fig. 28) for the synthesis of the desired 

amide-based azadipeptide nitriles 67 and 68, it was intended to first protect the terminal 

hydrazide nitrogen of 82, followed by the deprotection of the α-amino group. However, after 

treatment of 82 with (Boc)2O in acetonitrile and in the presence of DMAP, the 1,2,4-

triazinane-3,6-dione 84 was obtained, instead of the orthogonal protected azadipeptide ester 

83 (Scheme 9). The attack of the NH nitrogen at the carbazate carbon operates in this ring 

closure. Although the sodium hydride-promoted formation of the 1,2,4-triazinane-3,6-dione 

scaffold has been described [191], the reaction to compound 84 represents the first example of 

a direct 1,2,4-triazinane-3,6-dione cyclization of a Cbz-protected azadipeptide tert-butyl ester. 
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Scheme 9. Formation of 1,2,4-triazinane-3,6-dione derivative 84. 

a) 1. ClCO2i-Bu, NMM, THF, -25 °C, 2. (MeNH)2 × 2HCl, NaOH, H2O, THF, -25 °C to rt;  

b) (Boc)2O, DMAP, MeCN, rt. 
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The cyclisation reaction of Cbz-protected 1,2-dimethylhydrazides to 1,2,4-triazinane-3,6-

diones by the reaction with (Boc)2O in the presence of DMAP, as described in this work, 

represents an easy synthetic access to new potential peptidomimetic structures with at least 

four diversity points (Scheme 10). 
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Scheme 10. Synthetic access to potential peptidomimetic 1,2,4-triazinane-3,6-diones. 

(Boc)2O, DMAP, MeCN, rt. 

 

The finally successful synthesis of amide-based dipeptide nitriles 67 and 68, the  

aza-analogues of 79 and 80, is outlined in Scheme 11. The Cbz protecting group of the  

1,2-dimethylhydrazides 82 and 86 was hydrogenolytically removed to obtain derivatives 87 

and 88. The synthetic equivalent 69 (Fig. 28) was activated with EDC in the presence of 

DMAP and reacted with 87 and 88 leading to the formation of compounds 89 and 90. In the 

final reaction step with cyanogen bromide, the amide-based azadipeptide nitriles 67 and 68, 

bearing a large P3 substituent, were obtained. 
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Scheme 11. Synthesis of amide-based azadipeptide nitriles 67 and 68.  

a) 1. ClCO2i-Bu, NMM, THF, -25 °C, 2. (MeNH)2 × 2HCl, NaOH, H2O, THF, -25 °C to rt; b) H2, 

Pd/C, 2 bar, MeOH, rt; c) 69, EDC, DMAP, CH2Cl2, rt; d) BrCN, NaOAc, MeOH, rt; 81, 82, 87, 89, 

67, R = H; 85, 86, 88, 90, 68, R = Me. 
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2.1.5. KINETIC PLOTS II (FAST-BINDING INHIBITION) 

 

Urea-based and amide-based azadipeptide nitriles were tested on human cathepsins L, S, K 

and B as described in ‘Experimental Section’. Azadipeptide nitriles 50, 51, 62–65, 67 and 68 

showed a time-depended slow-binding inhibition type similar to their carbamate-derived 

counterparts, while the carba-analogues 66, 79 and 80 appeared as fast-binding inhibitors. 

The kinetic parameters Ki, kon, and koff of slow-binding inhibitors 50, 51, 62–65, 67 and 68 

were calculated as described in chapter 2.1.2. Before the IC50 and kon’ were corrected to zero-

substrate concentration, the reversibility of the isothiosemicarbazide formation (Fig. 13) was 

shown in a reactivation experiment with compound 68 [192]. 

In the case of fast-binding inhibitors 66, 79 and 80, the progress lines were analyzed by 

linear regression (Fig. 29a), and the resulting steady-state rates (vs) were plotted against [I]. 

The corresponding IC50 values were obtained by non-linear regression of the data pairs (vs, 

[I]) as shown in Figure 29b. The IC50 values were corrected using the Cheng-Prusoff equation 

(Fig. 23c) to obtain the true inhibition constants (Ki). 

 

(a)       (b) 
 

 

 

Figure 29. Fast-binding behavior of dipeptide nitrile 80. (a) Monitoring of the human cathepsin K-

catalyzed hydrolysis of Z-Leu-Arg-AMC (40 µM) in the presence of increasing concentrations of 

compound 80 (•, 0; •, 1 µM; •, 3 µM; •, 5 µM; •, 7 µM; •, 9 µM; •, 11 µM). The reaction (100 mM 

citrate buffer pH 5.0, 100 mM NaCl, 5 mM EDTA, 0.01% CHAPS, 100 µM DTT, 2% DMSO, 25 °C) 

was initiated by addition of the enzyme. Fluorescence emission at 440 nm was measured after 

excitation at 360 nm. Fluorescence units (FU) were corrected for background fluorescence. (b) Plot of 

the rates of hydrolysis of Z-Leu-Arg-AMC versus concentrations of 80. Non-linear regression gave an 

apparent inhibition constant Ki’ = (1+[S]/Km)Ki = 3.8 ± 0.3 µM. The inset is a Dixon plot of the data. 
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2.1.6. STRUCTURE-ACTIVITY RELATIONSHIPS OF 50, 51 62–66, 67, 68, 79, 80 

 

In general, the replacement of the carbamate P3-P2 linker by a urea moiety resulted in an 

improved inhibitory activity of urea-based azadipeptide nitriles toward cathepsins L, S, K and 

B. With Ki values of 11 and 17 pM, respectively, compounds 50 and 51 were even more 

potent for cathepsin K than the corresponding carbamate-based derivative 45 (Tables 2 and 

5). This finding could be explained by the fact that urea-derived inhibitors, e.g. 50 and 51, can 

potentially form an additional hydrogen bond to the target cathepsins, in contrast to the 

corresponding compounds with a carbamate P3-P2 linker, e.g. 45.  

 

Table 5. Ki values of urea-based compounds 50, 51 and 62–66 on human cathepsins L, S, K and B. 
 

N
H

N

O
X

CN
O

n N
H

R1

R2

 
 

cmpd R1 n R2 X 
Ki (nM) 

cath L cath S cath K cath B 

50 H 1 Me NMe 0.39 ± 0.01 0.20 ± 0.01 0.011 ± 0.001 0.65 ± 0.09 

51 H 0 Me NMe 0.045 ± 0.002 0.16 ± 0.01 0.017 ± 0.001 1.3 ± 0.1 

62 
N

O N  
1 Me NMe 1.4 ± 0.1 0.17 ± 0.01 0.11 ± 0.01 2.8 ± 0.3 

63 N

O N

S

 
1 Me NMe 1.1 ± 0.1 0.16 ± 0.01 0.072 ± 0.002 1.3 ± 0.1 

64 
N

O N  
0 Me NMe 2.0 ± 0.2 0.19 ± 0.03 0.045 ± 0.007 2.4 ± 0.3 

65 N

O N

S

 
0 Me NMe 4.4 ± 0.2 0.32 ± 0.02 0.022 ± 0.001 2.4 ± 0.1 

66 N

O N

S

 
0 H CH2 4700 ± 400 180 ± 10 34 ± 1 > 22000 

 

The inhibitors 62–65 containing extended P3 moieties exhibited similar binding affinities on 

cathepsin K with picomolar Ki values. Triaryl derivatives 63 and 65 were slightly more potent 

than the methyl substituted biaryl compounds 62 and 64. Among the six urea-based 

azadipeptide nitriles, 65 displayed the most promising selectivity profile for cathepsin K over
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cathepsins L, S, and B (Table 5). The corresponding carba-analogue 66 showed the same 

trend to selectively inhibit cathepsin K, but with approximately three orders of magnitude 

higher Ki value. A fast-binding inhibition behavior was observed for the carba-analogue 66, in 

contrast to the azadipeptide nitriles 50, 51 and 62–65. 

A further shortening of P3-P2 linker of 65 and 66 led to the amide-based dipeptide nitrile 79 

and azadipeptide nitrile 67. While the carba-analogue 79 with a fast-binding behavior 

exhibited a 300–7600-fold selectivity for cathepsin K over cathepsins L and B and a moderate 

selectivity over cathepsin S, the corresponding azadipeptide nitrile 67, a slow-binding 

inhibitor, was more potent, but much less selective (Table 6). Interestingly, the methylated 

counterparts of 79 and 67, compounds 80 and 68, showed a remarkable selectivity for 

cathepsin K over cathepsins L, S and B. Moreover, compound 68 represents the first 

cathespin K-selective azadipeptide nitrile at all. Azadipeptide nitrile 68 still exhibited a 

picomolar inhibition constant for cathepsin K in combination with a 200–4300-fold selectivity 

over antitargets, cathepsins L, B, and S. Probably, the hydrogen-bond donating CONH linker 

of 67 contributes to the binding to the four cathepsins studied whereas the P2 and P3 moieties 

are already optimized for cathepsin K. Therefore, the disruption of hydrogen bond formation 

by the methylation a CONH linker is better tolerated by cathepsin K than by the other 

cathepsins. This suggestion is confirmed by the experimental data. 

 

Table 6. Ki values of amide-based compounds 79, 80, 67 and 68 on human cathepsins L, S, K and B. 
 

N
N

O
X

CN
O R2

N

O N

S
R1

 
 

cmpd R1 R2 X 
Ki (nM) 

cath L cath S cath K cath B 

79 H H CH2 940 ± 40 140 ± 10 2.9 ± 0.4 > 22000 

80 Me H CH2 > 22000 > 22000 270 ± 20 > 22000 

67 H Me NMe 0.22 ± 0.03 0.15 ± 0.01 0.032 ± 0.005 0.36 ± 0.06 

68 Me Me NMe 2700 ± 300a 140 ± 10a 0.63 ± 0.03 510 ± 40b 

aThe progress curves were analyzed by linear regression in a time interval between 20 and 30 min. 
bThe progress cuves were followed over 20 min and analyzed by non-linear regression. 
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While compounds 50, 51 and 62–65 clearly showed slow-binding inhibition type, a fast-

binding inhibition behavior was observed for the carba-analogue 66. The kon values of the 

latter compounds for the four cathepsins reflect the different Ki values (for kon values of 50, 51 

and 62–65, see Table 7). Except compound 51, the highest second-order rate constants (kon) 

were calculated for association processes between urea-based azadipeptide nitriles and 

cathepsins S and K. These high kon values correlate with the corresponding low Ki values 

which were obtained for compounds 50 and 62–65 and outline the difficulty to achieve the 

inhibitor selectivity for cathepsin K over cathepsin S. As a general trend, it was further 

observed that the introduction of biaryl or triaryl P3 substituents results in decreased kon 

values (50 and 51 versus 62–65). This effect was particularly strong in the case of triaryl 

derivatives 63 and 65 and cathepsin L. Moreover, the phenylurea-derived inhibitors 51, 64 

and 65 showed slightly higher second-order association rate constants than the corresponding 

benzylureas 50, 62 and 63. 

 

Table 7. kon values of urea-based compounds 50, 51 and 62–65. 
 

N
H

N

O
X

O

n N
H

R1

R2

CN

 
 

cmpd R1 n R2 X 
kon (103 M-1s-1) 

cath L cath S cath K cath B 

50 H 1 Me NMe 710 ± 40 1900 ± 100 3500 ± 100 60 ± 9 

51 H 0 Me NMe 3400 ± 100 2000 ± 200 4000 ± 200 250 ± 10  

62 
N

O N  
1 Me NMe 310 ± 20 1300 ± 100 540 ± 90 17 ± 4 

63 N

O N

S

 
1 Me NMe 82 ± 4 1500 ± 200 650 ± 150 55 ± 3 

64 
N

O N  
0 Me NMe 250 ± 10 1000 ± 100 1300 ± 200 54 ± 6  

65 N

O N

S

 
0 Me NMe 44 ± 5 1200 ± 100 2400 ± 200 78 ± 2 

66 N

O N

S

 
0 H CH2 n.d.a n.d. n.d. n.d. 

a Not determined 
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In the case of the amide-based azadipeptide ntirile 67, as expected, the highest kon value was 

calculated for cathepsin K. However, the differences in the second-order rate constants of 67 

on cathepsins L, S and B were less pronounced than, e.g., in the case of the urea-derived 

azadipeptide nitrile 65 containing the same triaryl moiety at the P3 position. Furthermore, the 

methylation of the P3-P2 linker strongly affected the enzyme-inhibitor association rate (67 

versus 68, Table 8). The N-methyl compound 68 showed clearly decreased kon values, 

reflecting a delayed approach to steady-state. This effect was less pronounced at cathepsin K, 

for which the optimized substructures, common in 67 und 68, attenuate the lack of a hydrogen 

bond formation to the backbone amide of Gly66 [164] in the case of 68. The methylation of 

the P2-P3 amide linker in compound 67, which was applied for the development of cathepsin 

K inhibitor 68, represents an important new approach to achieve the selectivity of 

azadipeptide nitriles toward particular cysteine proteases. This approach was first used in the 

presented work and requires a two step modification of the azadipeptide nitrile scaffold. In the 

first step, the substitution pattern of the inhibitor molecule had to be optimized for a target 

cysteine protease. In the second step, the hydrogen bond to the P3-P2 linker was to be 

disrupted, e.g., by N-alkylation to achieve the selectivity. 

 

Table 8. kon values of amide-based compounds 67 and 68. 
 

N
N

O
X

CN
O R2

N

O N

S
R1

 
 

cmpd R1 R2 X 
kon (103 M-1s-1) 

cath L cath S cath K cath B 

79 H H CH2 n.d.a n.d. n.d. n.d. 

80 Me H CH2 n.d. n.d. n.d. n.d. 

67 H Me NMe 800 ± 80 800 ± 70 3300 ± 400 1600 ± 200  

68 Me Me NMe n.d.a,b n.d.a,c 63 ± 6 0.62 ± 0.01d 

aNot determined 
bFor [68] = 20 µM, a kobs value could not be obtained by non-linear regression of the progress curves. A limit 

kobs(1+[S]/Km)/[I] < 1.0 ×103 M-1s-1 was therefore estimated. 
cFor [68] = 350 nM, a kobs value could not be obtained by non-linear regression. A limit 

kobs(1+[S]/Km)/[I] < 20 × 103 M-1s-1 was therefore estimated. 
dThe progress cuves were followed over 20 min and analyzed by non-linear regression.
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In contrast to kon values, the corresponding koff values of the urea- and amide-based 

azadipeptide nitriles were independent from the substitution pattern and the nature of the  

P3-P2 linker. As shown in Table 9, the first-order rate constants of compounds 50, 51 and  

62–65 were approximately in the same range for each enzyme. Furthermore, it could not be 

observed that the koff values of azadipeptide nitriles 50, 51 and 62–65 significantly differed 

between cathepsins L, S, K and B. However, the first-order dissociation rate constants of 

urea-based azadipeptide nitriles and cathepsin K were slightly lower than the corresponding 

koff values on cathepsins L and S.  

 

Table 9. koff values of urea-based compounds 50, 51 and 62–65. 
 

N
H

N

O
X

CN
O

n N
H

R1

R2

 
 

cmpd R1 n R2 X 
koff (10-3 s-1) 

cath L cath S cath K cath B 

50 H 1 Me NMe 0.28 ± 0.02 0.38 ± 0.03 0.039 ± 0.004 0.039 ± 0.008 

51 H 0 Me NMe 0.15 ± 0.01 0.32 ± 0.04 0.068 ± 0.005 0.33 ± 0.03 

62 
N

O N  
1 Me NMe 0.43 ± 0.04 0.22 ± 0.02  0.059 ± 0.011 0.048 ± 0.012 

63 N

O N

S

 
1 Me NMe 0.090 ± 0.009 0.24 ± 0.04 0.047 ± 0.011 0.072 ± 0.007 

64 
N

O N  
0 Me NMe 0.50 ± 0.05 0.19 ± 0.04  0.059 ± 0.013 0.13 ± 0.02  

65 N

O N

S

 
0 Me NMe 0.19 ± 0.02 0.38 ± 0.04 0.053 ± 0.005 0.19 ± 0.01 

66 N

O N

S

 
0 H CH2 n.d.a n.d. n.d. n.d. 

aNot determined 

 

While the first-order rate constants of the amide-derived compound 67 were obtained for the 

four tested cathepsins and showed no significant differences to those of amide-based 

azadipeptide nitriles, the koff values of N-methyl derivative 68 could be calculated only for 

cathepsins K and B (Table 10). Because the association of compound 68 with cathepsins
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L and S was very slow, it was not possible to determine the second-order rate constants from 

the hyperbolic progress curves for these two enzymes. For this reason, the first-order rate 

constants of 68 for cathepsins L and S could not be calculated because of koff = Ki × kon. 

 

Table 10. koff values of amide-based compounds 67 and 68. 
 

N
N

O
X

CN
O R2

N

O N

S
R1

 
 

cmpd R1 R2 X 
koff (10-3 s-1) 

cath L cath S cath K cath B 

79 H H CH2 n.d.a n.d. n.d. n.d. 

80 Me H CH2 n.d. n.d. n.d. n.d. 

67 H Me NMe 0.18 ± 0.03 0.12 ± 0.01 0.11 ± 0.02 0.58 ± 0.12 

68 Me Me NMe n.d. n.d. 0.040 ± 0.004 0.32 ± 0.03b 

aNot determined 
bThe progress cuves were analyzed by non-linear regression in a time interval of 20 min. 
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2.1.7. CONCLUSIONS I 

 

In this study, using the example of cathepsin K, an approach to design of highly potent and 

selective azadipeptide nitrile inhibitors was demonstrated. Whereas the carba-analogous 

dipeptide nitriles typically show fast-binding kinetics, a different, slow-binding behavior was 

observed for azadipeptide nitriles. Thus, it was possible to determine the influence of 

structural features on association and dissociation rate constants for the presented series of 

peptidomimetic nitrile inhibitors. A strong impact of structural variations in azadipeptide 

nitriles on the enzyme-inhibitor association rate was demonstrated. Although reversibly [192] 

forming isothiosemicarbazide adducts, these compounds gain their inhibitory activity not only 

from the covalent attraction, but also from specific non-covalent interactions to the active site. 

The dissociation rate, however, was not affected by the compounds’ structure. This finding 

reflects the difficulty in delivering significant binding energy from non-covalent interactions, 

as concluded from the large and relatively shallow active site of cysteine cathepsins. 

Furthermore, synthetic routes to urea- and amide-based azadipeptide nitriles were 

established in the presented study. Compound 68 was identified as the first cathepsin K-

selective azadipeptide nitrile with a picomolar Ki value. The selectivity for cathepsin K was 

achieved by the stepwise optimization of the inhibitor scaffold combined with the methylation 

of the P3-P2 amide linker. To explain the remarkable selectivity profile of 68 (200–4300-fold) 

toward cathepsin K, it was suggested that the P3 and P2 substituents in compound 68, which 

were optimized for cathespsin K, can compensate the negative effect of the hydrogen bound 

disruption by N-methylation. Therefore, the CONMe linker was better tolerated by cathepsin 

K than by the other cathepsins. The described approach represents a new method to develop 

selective azadipeptide nitriles and can eventually be applied for the other cysteine cathepsins.  

Moreover, the first example for direct cyclization of a Cbz-protected azadipeptide tert-butyl 

ester to the corresponding 1,2,4-triazinane-3,6-dione was described. This cyclization reaction 

represents an easy synthetic access to 1,2,4-triazinane-3,6-dione scaffolds for the preparation 

of new potential peptidomimetic structure with at least four possible diversity points.  

Parts of this study are described in a recently published manuscript by Frizler et al. [192]. 
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2.1.8. HOMOCYCLCOLEUCINE-BASED AZADIPEPTIDE NITRILE S 

 

As described in chapter 2.1.1, the homocycloleucine-derived azadipeptide nitrile 42 with a 

P3-P2 carbamate linker was identified as potent cathepsin K inhibitor (Ki = 1.8 nM). 

Furthermore, this compound was already 72–220-fold selective for cathepsin K over 

cathepsins L, S and B (Table 2). To improve the potency and selectivity of the azadipeptide 

nitrile 42 toward cathepsin K, it was decided to combine its P2 substituent with the already 

for cathepsin K optimized triaryl P3 substituent and the P3-P2 linkers of 65 and 67 (Fig. 30). 
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91, 92  

Figure 30. Combination of the P2 residue of compound 42 with the P3 substituents of 65 and 67. 

65, 91, X = NH; 67, 92, X = 0. 

 

In the first attempt to prepare compound 91 (Fig. 30), the following synthetic route was 

applied. Commercially available homocycloleucine 93 was first converted into the 

corresponding benzyl ester 94 by the reaction with benzyl alcohol in toluene under Dean-

Stark conditions and in the presence of p-toluenesulfonic acid (Scheme 12). 

a
H2N

OH

O

H3N
O

OS
O

OO

93 94
 

Scheme 12. Synthesis of compound 94.  

a) benzyl alcohol, p-toluenesulfonic acid, toluene, ∆. 
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Next, compound 94 was reacted with 4-cyanophenyl isocyanate in dry THF to obtain the urea 

derivative 95 in high yield and purity. To transform the nitrile compound 95 to the 

corresponding N-(thiophene-2-carbonyloxy)benzimidamide 96, it was heated with 

hydroxylamine hydrochloride in the presence of DIPEA, followed by the reaction with  

2-thiophenecarbonyl chloride in the presence of DIPEA. Surprisingly, the desired compound 

96 was not formed. The isolated product was characterized as the hydantoin derivative 97 

(Scheme 13). 
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Scheme 13. Unexpected formation of the hydantoin derivative 97 under basic conditions. 

a) 4-cyanophenyl isocyanate, TEA, THF, rt; b) NH2OH × HCl, DIPEA, EtOH, ∆;  

c) 2-thiophenecarbonyl chloride, DIPEA, MeCN, rt. 

 

It was supposed that the polarization of the N-H-bond of the aryl-substituted urea nitrogen by 

a strong organic base (DIPEA) caused the nucleophilic attack on the carbonyl carbon of the 

benzyl ester moiety. The hydantoin ring was formed by the following elimination of the 

benzyl alcohol. The supposed mechanism was confirmed by the reaction of compound 98 

with 1,2-dimethylhydrazine dihydrochloride in the presence of DIPEA (Scheme 14), where 

the formation of the desired 1,2-dimethylhydrazide 99 could not be annotated. Instead, the 

hydantoin derivative 100 was isolated as a main product. Interestingly, the formation of a 

hydantoin was not observed for the transformation of 53 into the corresponding L-leucine-

derived N-(thiophene-2-carbonyloxy)benzimidamide 57 (Scheme 5). The high cyclisation 

tendency of homocyloleucine-derived compounds could be explained by the gem-dialkyl 

effect which was first described in 1915 by Beesley, Thorpe and Ingold as part of a study on 

the formation and stability of spiro compounds [193]. These authors showed that the
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increasing size of two substituents on a tetrahedral center leads to enhanced reactivity 

between parts of the other two residues for intramolecular reactions. The first explanation for 

the gem-dialkyl effect was the internal angle reduction and is commonly referred to as the 

‘Thorpe-Ingold effect’ or the ’theory of valency deviation’. Because the theory of valency 

deviation is not generally valid, it was later extended by further theories. For example, the 

‘reactive-rotamer hypothesis’ expects the gem-disubstitution to promote the formation of 

reactive gauche conformers, in which the functionalities are located syn-periplanar to each 

other, as a possible reason for the enhanced cyclisation tendency (for reviews, see [194], 

[195]). 
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Scheme 14. Reaction of 98 with (NHMe)2 × 2HCl in the presence of DIPEA. 

a) 4-cyanophenyl isocyanate, DIPEA, THF, rt; b) (NHMe)2 × 2HCl, DIPEA, THF, rt; 

 

In contrast to the L-leucine-based compounds, the linear synthesis of the homocycloleucine-

derived azadipeptide ntrile 91 (Fig. 30) was not successful due to the cyclisation reaction 

described in Scheme 13. Therefore, a convergent synthetic route was developed. As shown in 

Figure 31, compound 91 was retrosynthetically divided into the synthetic equivalents 101, 94 

and 102. The synthetic equivalents 101 and 102 had to be synthesized, while the P2 building 

block 94 was already prepared (Scheme 12). In the first step of the envisaged synthetic route, 

the P3 building block 101 was to be coupled with the P2 building block 94 using the Lossen 

rearrangement leading to the corresponding urea-derived intermediate. In the second step, the 

benzyl ester of the obtained intermediate was to be cleaved via a catalytic hydrogenation on 

Pd/C, followed by the coupling of the resulting acid with 102 using the mixed anhydride
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procedure. The mixed anhydride protocol allows gentile coupling in the absence of strong 

bases, which is important to avoid the possible intramolecular cyclisation. 
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Figure 31. Retrosynthetic route to compound 91. 

 

The hydroxamic acid 101 was synthesized as the P3 building block as shown in Scheme 15. 

The carboxylic group of the triaryl derivative 69 (Scheme 7) was activated with isobutyl 

chloroformate to a mixed anhydride and reacted with hydroxylamine [196] to obtain 

compound 101. The crude product could be easily purified by a simple recrystallization from 

ethanol/ethyl acetate. Next, the hydroxamic acid 101 was converted into the corresponding 

isocyanate by the reaction with EDC in the presence of DMAP via Lossen rearrangement 

[197] and reacted in situ with the P2 building block 94 to obtain the urea-based intermediate 

103 in high yield and purity. 
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Scheme 15. Synthesis of compound 101 as the P3 building block and its coupling to intermediate 103. 

a) 1. ClCO2i-Bu, NMM, THF, -25 °C, 2. NH2OH × HCl, NaOH, MeOH, THF, -25 °C to rt;  

b) 1. EDC, DMAP, THF, rt; 2. 94 after basic extraction, THF, rt. 



56  2. RESULTS AND DISCUSSION 
 

In the next step, it was tried to cleave the benzyl ester of 103 via catalytic hydrogenation on 

Pd/C to obtain the free acid 104 for the further coupling with 1,2-dimethyl-

hydrazinecarbonitrile 102. Unfortunately, the hydrogenolytic cleavage of the benzyl ester of 

103 was not successful. The isolated product, which was purified by column chromatography, 

showed a mass-to-charge ratio value (m/z) of 505.3 ([M + H]+) in the recorded MS(ESI) 

spectrum. In combination with NMR spectra, this finding indicated the catalytic 

hydrogenation of the 1,2,4-oxadiazole ring to the corresponding dihydro-1,2,4-oxadiazole 

derivative 105 instead of deprotection of the carboxylic group (Scheme 16). However, the 

location of the double bond within the formed dihydro-1,2,4-oxadiazole heterocycle was not 

clearly resolved and has to be clarified by further experiments. 
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Scheme 16. Formation of the hydrogenated product 105. 

a) H2, Pd/C, MeOH, rt, atmospheric pressure; X = dihydro-1,2,4-oxadiazole ring. 

 

To realize a new synthetic strategy, the desired compound 91 was again retrosynthetically 

divided into three synthetic equivalents (compounds 101, 106, and BrCN, Fig. 32). 
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Figure 32. New retrosynthetic route to compound 91. 
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This synthetic route was first applied in a modified form to the carba-analogues 110 and 111 

(Scheme 18). Boc-protected homocycloleucine 107 was activated with isobutyl chloroformate 

to a mixed anhydride followed by the reaction with aminoacetonitrile monosulfate in the 

presence of TEA. The obtained dipeptide nitrile 108 was treated with methanesulfonic acid to 

cleave the Boc protecting group. The basic extraction of the resulting methanesulfonate salt 

led to compound 109 as the P2 building block (Scheme 17). 
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Scheme 17. Synthesis of the P2 building block 109. 

a) (Boc)2O, NaOH, dioxane, rt; b) 1. ClCO2i-Bu, NMM, THF, -25 °C, 2. H2NCH2CN × H2SO4, TEA, 

THF, -25 °C to rt; c) MeSO3H, THF, rt, basic extraction. 

 

Next, the obtained P2 building block 109 was reacted via Lossen rearrangement with the P3 

building block 101. Unfortunately, this reaction was not successful, and the formation of the 

desired compound 110 could not be observed. However, the reaction of compound 109 with 

the P3 building block 69 led to the formation of the corresponding dipeptide nitrile 111 

containing a P3-P2 amide linker (Scheme 18).  

N

O N

S N
H

O

101

N
H

N
H

O

110

H
N

O

CN

OH
a

NO

N

S

N

O N

S OH

O

69

N
H

O

111

H
N

O

CN

a

N

O N

S

 

Scheme 18. Planned synthetic route to compound 110 (above) and synthesis of dipeptide nitrile 111. 

a) EDC, DMAP, 109, THF, rt. 

 

Due to the comparable kinetic profiles of urea- and amide-derived azadipeptide nitriles (65 

versus 67), it was decided not to further attempt preparing urea-based cathepsin inhibitors 

containing homocycloleucine at the P2 position. For reasons of synthetic access, the P3-P2
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amide linker was maintained in all compounds of this study. In Figure 33, the final 

retrosynthetic route to the amide-based azadipeptide nitrile 92 is shown. While cyanogen 

bromide was commercially available and compound 69 was already obtained (Scheme 7), the 

P2 building block 106, containing a gem-disubstituted amino acid (homocycloleucine), had to 

be synthesized. 
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Figure 33. Retrosynthetic route to the amide-based azadipeptide nitrile 92. 

 

To prepare the P2 building block 106, it was first tried to improve the coupling of  

Cbz-protected homocycloleucine 39 (Scheme 2) with 1,2-dimethylhydrazine. When 

compound 39 was reacted with oxalyl chloride for activation, the N-carboxyanhydride (NCA) 

113 was obtained in a yield of 83% (Scheme 19). Its formation was envisaged to occur via 

nucleophilic attack of the carbamate oxygen at the activated carboxylic group to produce the 

5(4H)-oxazolone 112. Under the used conditions in the absence of a base [198], a chloride-

promoted displacement of the benzyl group was operative [199]. 
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Scheme 19. Synthesis of the homocycloleucine-NCA 113. 

a) (COCl)2, CH2Cl2, DMF, rt. 

 

The obtained Leuchs anhydride 113 was reacted with 1,2-dimethylhydrazinecarbonitrile 102 

(Fig. 31) in order to obtain the azadipeptide nitrile 114 as a building block (Scheme 20) which 

could have been directly coupled with compound 69 leading to the desired product 92 in only 

one further step. However, the transformation of 113 into 114 was not observed under
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different conditions, ranging from a reaction in THF at room temperature to a reaction in 

DMF at 130 °C in a sealed tube. In contrast, the transformation of 113 with aminoacetonitrile 

in THF carried out in an autoclave at 100°C, provided homocycloleucyl-glycine-nitrile 109 in 

72%. Thus, two alternative routes from homocycloleucine 93 to the P2 building block 109 

(via 107 and 108, or via 39 and 113) were employed. 
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Scheme 20. Reaction of 113 with different nucleophiles. Box. Synthesis of 102. 

a) BrCN, H2O, NaOH, rt; b) 102, THF, rt; c) 102, DMF, 130 °C; d) N2NCH2CN × H2SO4, THF,  

DIPEA, 100 °C.  

 

The unexpectedly [200] low reactivity of the homocycloleucine-derived NCA 113 was 

considered to result from the gem-dialkyl effect. It has been well established that this effect 

promotes cyclisation reactions due to an increased number of gauche interactions in the open 

chain substrates and/or a relief of steric strain in the cyclic products (for reviews, see [194], 

[195]). However, the gem-dialkyl effect also leads to an enhanced stability of the 

corresponding cyclic compounds, and it was therefore assumed that it accounts for the 

protection of 113 against hydrazinolytic cleavage. As noted above, the mixed anhydride 

coupling of Cbz-protected homocycloleucine 39 took place with low yields for reasons of 

steric interference (Scheme 2). Additionally, these reactions might be impaired by the gem-

dialkyl effect leading to the formation of heterocyclized compound(s). 

In further attempts to improve the yield of the dimethylhydrazide 40, the EDC/DMAP and 

HBTU/HOBt coupling protocols were used (see also the ‘Experimental Section’). In the first 

experiment, the Cbz-protected homocycloleucine 39 was activated with EDC in the presence 

of DMAP, treated with triethylamine and 1,2-dimethylhydrazine dihydrochloride and stirred 

at room temperature for 24 h to obtain 40 in yield of 36% (18% in the case of the mixed
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anhydride method, see also Scheme 2). When the reaction mixture was alternative heated to 

reflux for 24 h, the yield of 40 was slightly improved to 39%. The HBTU/HOBt protocol 

offered no further synthetic advantages. Compound 40 was isolated only in a yield of 29% 

when 39 was activated with HBTU in the presence of HOBt, treated with triethylamine and  

1,2-dimethylhydrazine dihydrochloride, and stirred for 3 d at room temperature. In general, it 

was not possible to significantly improve the yield of 1,2-dimethylhydrazide derivative 40 

due to the already discussed gem-dialkyl effect. The EDC/DMAP protocol in combination 

with the heating of the reaction mixture represents the best coupling procedure to prepare the 

1,2-dimethylhydrazide 40 (Scheme 21). 
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Scheme 21. Synthesis of 40 using different coupling procedures.  

a) 1. EDC, DMAP, THF, rt; 2. (NHMe)2 × 2HCl, TEA, rt, 24 h; 36%; b) 1. EDC, DMAP, THF, rt;  

2. (NHMe)2 × 2HCl, TEA, ∆, 24 h; 39%, c) 1. HBTU, HOBt, THF, rt; 2. (NHMe)2 × 2HCl, TEA,  

rt, 3 d; 29%. 

 

Before starting the final synthetic sequence to the desired amide-based azadipeptide nitrile 92, 

compound 40 was reacted with (Boc)2O in the presence of DMAP for the confirmation of the 

supposed mechanism of the 1,2,4-triazinane-3,6-dione formation described in chapter 2.1.4, 

Scheme 9. The resulting product 115 was characterized as an unique spiro compound with 

1,3,4-triazaspiro[5.5]undecan-2,5-dione scaffold (Scheme 22). 
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Scheme 22. Formation of 115 by the reaction with (Boc)2O in the presence of DMAP. 

a) (Boc)2O, DMAP, MeCN, rt. 

 

The finally successful synthesis of compound 92, the aza-analogue of 111, is outlined in 

Scheme 23. The Cbz protecting group of the dimethylhydrazide 40 was hydrogenolytically 

removed to obtain the building block 106. The synthetic equivalent 69 (Fig. 33) was activated 

with EDC in the presence of DMAP and reacted with 106 leading to the formation of 
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compound 116. In the final reaction step with cyanogen bromide, the homocycloleucine-

based azadipeptide nitrile 92, bearing a large P3 substituent, was obtained. 
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Scheme 23. Synthesis of the amide-based azadipeptide nitrile 92. 

a) Pd/C, H2, MeOH, rt; b) 69, EDC, DMAP, CH2Cl2, rt; c) BrCN, NaOAc, MeOH, rt. 
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2.1.9. KINETIC CHARACTERISATION OF 43, 111 AND 92 

 

The product 92, as well as its carba-analogue 111, were tested on the human cathepsins L, S, 

K and B (Table 11). Again, the azadipeptide nitrile 92 showed a slow-binding behavior and a 

lower Ki value than the carba-analogue 111, a fast-binding inhibitor. A comparison of the two 

aza derivatives 92 and 42 revealed that the introduction of a large substituent in the P3 

position as well as the replacement of the P3-P2-linker was advantageous and led to an 

improved potency and selectivity for cathepsin K. The same trend was also observed for the 

corresponding dipeptide nitriles 43 and 111. The improved inhibitory activity of the triaryl 

derivatives 111 and 92, compared with their monoaryl counterparts 42 and 43, could be 

explained by enhanced hydrophobic interactions between 111 and 92 and the tested 

cathepsins (particularly cathepsin K) due to the increased molecular weight and lipophilicity. 

Interestingly, the homocycloleucine moiety at the P3 position alone seems to be a sufficient 

structural feature to develop cathepsin K-selective azadipeptide nitriles, while the L-leucine-

derived azadipeptide nitriles requires the methylation of the P3-P2 amide linker to achieve the 

selectivity for cathepsin K over cathepsins L, S and B (68 versus 92). Furthermore, compound 

92 was slightly more potent on cathepsin K (Ki = 0.35 nM) than the corresponding  

N-methylated counterpart 68 (Ki = 0.63 nM) and less potent but much more selective than the 

non-methylated L-leucine-derived azadipeptide nitrile 67 (Ki = 0.032 nM). 

 

Table 11. Ki values of compounds 42, 43, 111 and 92 on human cathepsins L, S, K and B. 
 

N
H

N

O

Y
CN

O

X

R2R1

 
 

cmpd R1 X R2 Y 
Ki (nM) 

cath L cath S cath K cath B 

42a H CH2O Me NMe 400 ± 50 130 ± 5 1.8 ± 0.3 170 ± 10 

43 H CH2O H CH2 > 5000 > 5000 55 ± 6 > 5000 

111 N

O N

S

 
0 H CH2 > 5000 > 5000 13 ± 1 > 5000 

92 N

O N

S

 
0 Me NMe 280 ± 50b 78 ± 3 0.35 ± 0.04 150 ± 10 

aThe kinetic data of compound 42 are shown here for reasons of better illustration and are also depicted in  

Table 2. bThe enzymatic reaction was started by addition of chromogenic substrate after the enzyme was 

preincubated with inhibitor for 30 min. The reaction lines were analyzed by linear regression. 
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Additionally, the analysis of the progress curves in the case of slow-binding inhibitors 42 (see 

also Table 3) and 92 allowed for the determination of the second-order association rate 

constants (kon) and the corresponding first-order dissociation rate constants (koff). The results 

are shown in Tables 12 and 13. Because it was not possible to obtain the first-order rate 

constant (kobs) for the development of the steady-state equilibrium between compound 92 and 

cathepsin L by non-linear regression, a limit kobs(1+[S]/Km)/[I] < 10 × 103 M-1s-1 was 

estimated for [92] = 5 µM. In general, the obtained kon values of compounds 42 and 92 

correlate with the corresponding Ki values (Tables 11 and 12). Furthermore, the estimated kon 

values were clearly influenced by homocycloleucine/L-leucine replacement. Except of the  

N-methylated derivative 68, the L-leucine-containing inhibitors 45, 50, 51, 62–65 and 67 

exhibited greater kon values than 42 and 92 on the four tested cathepsins (Tables 3, 7, 8 

and 12). The second-order association rate constants of 42 and 92 on cathepsin K were less 

affected than those on cathepsins L, S and B by the introduction of the homocycloleucine 

moiety into the azadipeptide nitrile scaffold. These results reflect the selectivity of 

homocycloleucine-derived azadipeptide nitriles for cathepsin K over the antitargets, 

cathepsins L, S and B.  

 

Table 12. kon values of compounds 42 and 92 on human cathepsins L, S, K and B. 

 

N
H

N

O

Y
CN

O

X

R2R1

 
 

cmpd R1 X R2 Y 
kon (× 103 M-1s-1) 

cath L cath S cath K cath B 

42a H CH2O Me NMe 1.3 ± 0.1 7.8 ± 1 60 ± 10 1.0 ± 0.1 

43 H CH2O H CH2 n.d.b n.d. n.d. n.d. 

111 N

O N

S

 
0 H CH2 n.d. n.d. n.d. n.d. 

92 N

O N

S

 
0 Me NMe n.d.b,c 4.8 ± 0.3 180 ± 20 0.70 ± 0.01 

aThe kinetic data of compound 42 are shown herein for reasons of better illustration and also depicted in Table 3. 
bNot determined. 
cFor [92] = 5 µM, a kobs value could not be obtained by non-linear regression. Therefore, a limit 

kobs(1+[S]/Km)/[I] < 10 × 103 M-1 s-1 was estimated. 

 

As shown in Table 13, the calculated first-order dissociation rate constants (koff) of 42 and 92 

were in the same range, and showed to be independent from the structural modification 
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of the P3 substituent and the P3-P2 linker. Furthermore, the koff values were not affected by 

homocycloleucine/L-leucine replacement (e.g. 92 versus 67). 

 

Table 13. koff values of compounds 42 and 92 on human cathepsins L, S, K and B 
 

N
H

N

O

Y
CN

O

X

R2R1

 
 

cmpd R1 X R2 Y 
koff (× 10-3 s-1) 

cath L cath S cath K cath B 

42a H CH2O Me NMe 0.52 ± 0.08 1.0 ± 0.1 0.11 ± 0.03 0.17 ± 0.02 

43 H CH2O H CH2 n.d.b n.d. n.d. n.d. 

111 N

O N

S

 
0 H CH2 n.d. n.d. n.d. n.d. 

92 N

O N

S

 
0 Me NMe n.d. 0.37 ± 0.03 0.063 ± 0.01 0.11 ± 0.01 

aThe kinetic data of compound 42 are shown here for reasons of better illustration and are also depicted in  

Table 4.  
bNot determined. 
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2.1.10. FLUORESCENT AZADIPEPTIDE NITRILES 

 

To study the ability of azadipeptide nitriles to penetrate the cell membrane as well as to 

investigate their cell distribution and accumulation, it is important to have pharmacological 

tools which allow for visualization of these compounds. Therefore, it was decided to 

introduce a fluorescent reporter in the homocycloleucyl-methylazaalanine nitrile scaffold of 

the cathepsin K-selective inhibitor 92 to obtain a VIS-detectable homocycloleucine-based 

azadipeptide nitrile. 

At first, the fluorescent dipeptide nitriles 119 and 120 were synthesized, as shown in 

Scheme 24, to study their kinetic profiles on cathepsins L, S, K and B. For the labeling of the 

P3 position, two different fluorophores, compounds 117 und 118 (Fig. 34), were used. While 

dansyl chloride 117 was commercially available, the coumarin derivative 118 was synthesized 

by Matthias Mertens as previously described [202]. 

117N
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O ON
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Figure 34. Compounds 117 and 118 as P3 fluorophores.  

 

The Cbz-protected homocycloleucine 39 was reacted with oxalyl chloride in the presence of a 

catalytic amount of DMF to obtain homocycloleucine-NCA 113 in high yield and purity. 

Compound 113 was further converted with aminoacetonitrile leading to the dipeptide nitrile 

109. Finally, the free amino group of 109 was reacted with dansyl chloride 117 and the 

coumarin derivative 118 to obtain the fluorescent labeled dipeptide nitriles 119 and 120, 

respectively. As expected, the reactivity of the amino group of 109 was decreased due to the 

gem-disubstitution of the α-carbon of the homocycloleucine at the P2 position (see also 

chapter 2.1.8). Therefore, the target compounds 119 and 120 were isolated by 

chromatographic separation only in low yields of 36% and 20%, respectively.  

Due to the better kinetic properties of the dipeptide nitrile 120 compared with the 

corresponding dansyl derivative 119, it was decided to introduce the coumarin fluorophore 

118 into the azadipeptide nitrile scaffold of compound 92. The synthetic route to the first 

fluorescent homocycloleucine-based azadipeptide nitrile 122 is shown in Scheme 25.
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Scheme 24. Synthesis of the fluorescent labeled dipeptide nitriles 119 and 120. 

a) (COCl)2, CH2Cl2, DMF, rt; b) N2NCH2CN × H2SO4, THF, DIPEA, 100 °C; c) 117, TEA, THF, rt 

then ∆; d) 118, EDC, DIPEA, THF, rt. 

 

Cbz-protected compound 40 was hydrogenated on Pd/C to obtain 106. The carboxylic group 

of the P3 fluorophor 118 was activated with EDC and reacted with the P2 building block 106 

leading to the 1,2-dimethylhydrazide derivative 121. Finally, compound 121 was converted 

into the corresponding azadipeptide nitrile 122 by the reaction with cyanogen bromide. 
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Scheme 25. Synthesis of the fluorescent labeled azadipeptide nitrile 122. 

a) Pd/C, H2, MeOH, rt; b) 118, EDC, DMAP, THF, rt; c) BrCN, NaOAc, MeOH, rt. 



2. RESULTS AND DISCUSSION  67 
 

 

2.1.11. KINETIC CHARACTERISATION OF 119, 120 AND 122 

 

The obtained fluorescent compounds 119, 120 and 122 were tested on cathepsins L, S, K and 

B. While the dipeptide nitriles 119 and 120 showed a fast-binding behavior, the aza-

analogous counterpart 122 was, as expected, a slow-binding inhibitor. The fluorescent probe 

120 with the N-(7-diethylamino)-2-oxo-2H-chromene-3-carbonyl moiety at the P3 position 

was a better cathepsin K inhibitor than the corresponding dansyl derivative 119 (Table 14). 

Furthermore, the replacement of the α-carbon in compound 120 by a nitrogen atom, leading 

to the azadipeptide nitrile 122, resulted in an improvement of the inhibitory activity. 

However, compared with compound 92, the introduction of the P3 building block 118 into the 

homocycloleucyl-methylazaalanine nitrile scaffold led to an approximately 50-fold weaker 

cathepsin K inhibitor 122 (0.35 nM versus 19 nM). The fluorescent probe 122 showed a 

moderate selectivity for cathepsin K over cathepsins L and S (approximately 40-fold), and 

was only 7-fold selective for cathepsin K over cathepsin B. 

 

Table 14. Ki values of compounds 119, 120, and 122 on human cathepsins L, S, K and B. 
 

N
H

N

O

Y
CN

R2

R1

 
 

cmpd R1 R2 Y 
Ki (µM) 

cath L cath S cath K cath B 

119 S
OO

N

 
H CH2 > 40 6.6 ± 1 0.88 ± 0.18 > 40 

120 

O

O ON

 

H CH2 > 40 8.4 ± 1.5 0.23 ± 0.02 > 40 

122 

O

O ON

 

Me NMe 0.76 ± 0.08a 0.75 ± 0.03 0.019 ± 0.002 0.14 ± 0.01 

aThe enzymatic reaction was started by addition of chromogenic substrate after the enzyme was preincubated 

with inhibitor for 30 min. The reaction lines were plotted by linear regression. 

 

The kon values of compound 122 were different reflecting the corresponding Ki values (Table 

15). The highest second-order association rate constant of 122 was calculated for cathepsin K. 
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Table 15. kon values of compound 122 on human cathepsins L, S, K and B. 
 

N
H

N

O

Y
CN

R2

R1

 
 

cmpd R1 R2 Y 
kon (× 103 M-1s-1) 

cath L cath S cath K cath B 

119 S
OO

N

 
H CH2 n.d.a n.d. n.d. n.d. 

120 

O

O ON

 

H CH2 n.d. n.d. n.d. n.d. 

122 

O

O ON

 

Me NMe n.d.a,b 0.49 ± 0.09 9.3 ± 1.7 0.32 ± 0.03 

aNot determined. 
bFor [122] = 30 µM, a kobs value could not be obtained by non-linear regression. Therefore, a limit 

kobs(1+[S]/Km)/[I] < 1.0 × 103 M-1 s-1 was estimated. 

 

In contrast to kon values, the first-order rate constants (koff) of 122 were, as expected, 

approximately in the same range (Table 16). 

 

Table 16. koff values of compound 122 on human cathepsins L, S, K and B. 
 

N
H

N

O

Y
CN

R2

R1

 
 

cmpd R1 R2 Y 
koff (× 10-3 s-1) 

cath L cath S cath K cath B 

119 S
OO

N

 
H CH2 n.d.a n.d. n.d. n.d. 

120 

O

O ON

 

H CH2 n.d. n.d. n.d. n.d. 

122 

O

O ON

 

Me NMe n.d. 0.37 ± 0.07 0.18 ± 0.04 0.045 ± 0.005 

aNot determined. 
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2.1.12.  SPECTRAL PROPERTIES OF 122 

 

The absorption and emission spectra of the fluorescence-labeled azadipeptide nitrile 122 were 

recorded in different solvents to study its spectral properties. The absorption maxima of 122 

in dichloromethane, methanol, and water were 422, 424, and 434 nm, respectively. The 

corresponding emission spectra were 460 nm (dichloromethane), 472 nm (methanol), and 486 

nm (water). In general, a slight bathochromic shift of absorption and emission maxima was 

observed in polar media such as methanol and water. The Stokes shift of 122 in 

dichloromethane was 38 nm (Fig. 35a). Furthermore, the fluorescence of compound 122 was 

clearly quenched by methanol and water (Fig. 35b). 

 

(a)       (b) 
 

 

Figure 35. Spectral properties of the azadipeptide nitrile 122 in different solvents. (a) Excitation (•) 

and emission (•) spectrum of 122 in CH2Cl2; (b) Emission spectra of 122 in CH2Cl2 (•), MeOH (•), and 

H2O (•). 

 

Table 17. Absorption and emission maxima of compound 122. 

 CH2Cl2 EtOH H2O 

λex (nm) 422 424 434 

λem (nm) 460 472 486 
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2.1.13. CONCLUSIONS II 

 

In this study, a synthetic route to homocycloleucine-derived azadipeptide nitriles was 

described for the first time. In contrast to azadipeptide nitriles containing a P2 leucine residue, 

the synthesis of the corresponding homocycloleucine-based inhibitors was considerably more 

complicated. Herein, the gem-dialkyl effect was discussed as a possible reason for the 

decreased reactivity of homocycloleucine derivatives for the intramolecular reaction as well 

as their improved tendency for cyclisation reactions. This effect was particularly strong when 

1,2-dimethylhydrazine, a rather weak, but steric demanding nucleophile was used to obtain 

the desired aza-analogous nitrile inhibitors. 

Furthermore, homocycloleucine was confirmed to be a particularly suitable building block 

for the design of cathepsin K inhibitors. The incorporation of this amino acid into the 

azadipeptide nitrile scaffold afforded remarkable selectivity and, when combined with the 

triaryl motif at the P3 position, excellent inhibitory potency. In contrast to the amide-based  

L-leucine-derived azadipeptide nitriles, the methylation of the P3-P2 amide linker was not 

necessary to achieve cathepsin K selectivity.  

The possible determination of association and dissociation rate constants in the azadipeptide 

nitrile series enabled us to estimate the influence of a homocycloleucine/L-leucine 

replacement on these parameters. Whereas koff values were not affected, the L-leucine-

containing inhibitors exhibited greater kon values than their homocycloleucine-derived 

counterparts. Moreover, the second-order association rate constants for cathepsin K were less 

affected by the homocycloleucine/L-leucine replacement than those for cathepsins L, S and B 

reflecting the cathepsin K-selectivity of homocycloleucine-derived azadipeptide nitriles. 

Moreover, a fluorescence-labeled cathepsin K inhibitor with an azadipeptide scaffold was 

synthesized, and its kinetic and spectral properties were studied. A coumarin fluorophore was 

introduced in the homocycloleucine-methylazaalanine-nitrile scaffold, and the fluorescent 

azadipeptide nitrile 122 was obtained. 

Parts of this study are described in a recently published manuscript by Frizler et al. [201]. 
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2.2. CATHEPSIN S-SELECTIVE NITRILE INHIBITORS 

In previous studies, it was described that the combination of a large group at the P2 position 

with a small P3 substituent is advantageous for the selective inhibition of cathepsin S (for a 

review, see [178]). Furthermore, a sulfone within the P2 substituent was proved to be a 

suitable moiety [165] (Fig. 11). However, it remained unclear, whether cathepsin S can accept 

larger biaryl und fused aromatic substituents at the P3 position. To clarify this question, it was 

decided to synthesize a small library of dipeptide nitriles, in which the isobutylsulfone moiety 

was to be maintained at the P2 position, and various aromatic substituents had to be 

introduced in the P3 position. It was further envisaged to evaluate the synthesized compounds 

on cysteine cathepsins L, S, K and B. Moreover, a dipeptide nitrile, exhibiting the best 

activity/selectivity profiles for cathepsin S, had to be transformed into the corresponding 

azadipeptide nitrile by Cα/N replacement (Fig. 36).  

S3

S2

Rx N
H

O
H
N

O

CN

S
O

O
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O
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O

N
CN

S
O

O

 

Figure 36. Optimization of the P3 substituent and the transformation into an azadipeptide nitrile. 

Rx = various aryl, biaryl and fused aromatic P3 substituents; Rbest = a P3 substituent, whose 

introduction into the dipeptide nitrile scaffold improves the activity against cathepsin S and enhances 

the selectivity for this enzyme over antitargets, cathepsins L, K and B. 

 

To obtain dipeptide nitriles with different P3 substituents, the P2 building block 128 was 

synthesized as shown in Scheme 26. The thiol group of the commercially available Boc-

protected cysteine methyl ester 123 was alkylated with isobutyl bromide in the presence of 

sodium methanolate to obtain the thioether derivative 124. The thioether group of 124 was 

further oxidized with MCPBA leading to the corresponding sulfone 125. The methyl ester 

was cleaved under basic conditions, and compound 126 was obtained as a free acid. In the 

next step, the carboxylic group of 126 was coupled with aminoacetonitrile via a mixed 

anhydride leading to the Boc-protected dipeptide nitrile 127. Finally, the Boc protecting group 

of 127 was cleaved with methanesulfonic acid to obtain compound 128 as the 
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P2 building block. The amino group of 128 was further coupled with various P3 substituents 

to obtain target dipeptide nitriles 129–138 (Scheme 27). The compounds 129–138 were 

synthesized by Janina Schmitz in the course of her master thesis under my supervision. 
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Scheme 26. Synthesis of compound 128 as the P2 building block. 

(a) isobutyl bromide, NaOMe, MeOH, ∆; (b) MCPBA, CH2Cl2, rt; (c) LiOH, THF/H2O, rt; (d) 1. TEA, 

ClCO2i-Bu, THF, -25 °C; 2. H2NCH2CN × H2SO4, THF, rt; (e) MeSO3H, THF, rt. 

 

Compounds 129 and 130 were obtained by the reaction of the P2 building block 128 in the 

presence of TEA with benzoyl chloride and thiophene-2-carbonyl chloride, respectively. In 

contrast, dipeptide nitriles 131–138 were synthesized by the coupling of 128 with the 

corresponding P3 building blocks using EDC/DMAP protocol (Scheme 27). While the P3 

building blocks in compounds 129–134 were commercially available, those of 135–138 were 

synthesized by Janina Schmitz under my supervision. 
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Scheme 27 Synthesis of dipeptide nitriles 129–138. 

a) RCOCl, TEA, THF, rt, 129, R = phenyl, 130, R = 2-thienyl; b) RCOOH, EDC, DMAP, TEA, THF, 

rt; 131, R = 4-(2-thienyl)phenyl; 132, R = 5-(2-thienyl)-2-thienyl; 133, R = benzo[b]thiophen-2-yl; 

134, thieno[2,3-b]thiophen-2-yl; 135, R = 5-(phenyl)-2-thienyl; 136, R = 4-(phenyl)-2-thienyl, 137, 

R = 5-(3-thienyl)-2-thienyl, 138, R = 5-(1H-tetrazole-5-yl)-2-thienyl.  
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Generaly, the presented synthetic route to the P2 building block 128 (Scheme 26)

two steps with a high risk for racemisation: (1) alkylation of the thiol group of 

in the presence of sodium methanolate, and (2) the cleavage 

with lithium hydroxide.  

n, a changed synthetic route was applied (Scheme 28) [

L-cysteine 139 was alkylated in the presence of a weaker 

followed by the protection of the amino group using (Boc)

To avoid the complicated purification, the thioether derivative 

instead of MCPBA (Scheme 26) leading to the corresponding 

in high yield and purity. The sulfone derivative 141 was further 

a mixed anhydride to form the Boc-protected dipeptide nitrile 

Finally, the Boc protecting group of 142 was cleaved with methanesulfonic acid, and the P2 

was obtained. Because the racemic benzoyl derivative 

otency and selectivity profiles for cathepsin S, it was decided to introduce 

the benzoyl substituent into the synthesized P2 building block 143 to o

as R-enantiomer. The enantiopurity of 144 wa

250-4 ChiraDex® (5 µm) column using the isocratic
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cysteine in the presence of 

were obtained in a 

HPLC (Fig. 37). 

 

O/5% MeOH, run time –

Enantiomeric ratio = 53:47. 

(Scheme 26) contains 

alkylation of the thiol group of the cysteine 

the cleavage of the methyl ester 

(Scheme 28) [207]. In 

was alkylated in the presence of a weaker base, 

using (Boc)2O to obtain 

derivative 140 was 

corresponding sulfone 

further coupled with 

protected dipeptide nitrile 142. 

was cleaved with methanesulfonic acid, and the P2 

. Because the racemic benzoyl derivative 129 (Scheme 27) 

, it was decided to introduce 

to obtain the dipeptide 

was shown by chiral 

using the isocratic elution with
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H2O/MeOH (95:5) and a flow of 1

MeCN was injected into the HPLC. The resulting chromatogram showed 

(10.7 min) indicating the full enantiomeric purity of 
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Scheme 28. Synthesis of compound 

(a) 1. isobutyl bromide, NaOH, 

(c) 1. TEA, ClCO2i-Bu, THF, -

benzoyl chloride, DIPEA, THF, rt.
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Figure 38. The chiral chromatogram of compound 

Column: LiChroCART® 250-4 ChiraDex

 20 min, flow – 1 mL/min, UV detector
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O/MeOH (95:5) and a flow of 1 mL/min (Fig. 38). A 1 mM solution of 

was injected into the HPLC. The resulting chromatogram showed 

indicating the full enantiomeric purity of 144. 
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KMnO4, AcOH, H2O, rt; 

) MeSO3H, THF, rt; (e) 

corresponds to the first peak 

under used chromatographic 

enantiomers in both chiral chromatograms. 

 

O/5% MeOH, run time –

Enantiomeric ratio = 100. 
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chromatogram of 129 (Fig. 37),

R-enantiomer peak (10.7 min).

decreases for the same amount of 25%.
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 20 min, flow – 1 mL/min, UV detector
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azadipeptide nitrile 148 (Scheme 29), compound 141 was converted in the 

which was further deprotected to obtain 146. Compound 

reacted with benzoyl chloride and cyanogen bromide leading to the azadipeptide nitrile 
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Synthesis of azadipeptide nitrile 148. 

Bu, THF, -25 °C; 2. (NHMe)2 × 2HCl, NaOH, H2O, to rt; (b) AcCl, EtOH,

; (c) benzoyl chloride, DIPEA, THF, rt; (d) BrCN, NaOAc, MeOH, rt.

75 
 

in MeCN were mixed 

Compared with the chiral 

a 25% increase of the AUC was observed for the  

enantiomer (12.2 min) 

 
. 

O/5% MeOH, run time –

Enantiomeric ratio = 78:22. 

was converted in the 

. Compound 146 was 

azadipeptide nitrile 148. 

c
N

N
H

O

O

 

O, to rt; (b) AcCl, EtOH, 

enzoyl chloride, DIPEA, THF, rt; (d) BrCN, NaOAc, MeOH, rt. 
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2.2.1. KINETIC CHARACTERISATION OF 129–138 AND 144, 148 

 

The racemic dipeptide nitriles 129–138 and the enantiopure benzoyl derivative 144 as well as 

the azadipeptide nitrile 148 were tested on human cathepsins L, S, K and B (Table 18 and 19). 

The kinetic investigations of compounds 129–138 were partially carried out by Janina 

Schmitz in her master thesis under my supervision. 

 

Table 18. Ki values of target compounds 129–138. 
 

N
H

H
N

O

CN
R

O
S

O
O

 
 

cmpd R 
Ki (µM)a 

cath L cath S cath K cath B 

129 
 

> 40b 0.040 ± 0.004 > 40 40 ± 2 

130 
 

> 40 0.045 ± 0.002 > 40 24 ± 2 

131 
S

 

> 4c 0.20 ± 0.01 > 4 3.9 ± 0.7 

132 
 

> 4 0.094 ± 0.010 1.1 ± 0.1 3.4 ± 0.1 

133 
 

> 4 0.089 ± 0.012 > 4 6.8 ± 0.1 

134 
 

> 4 0.10 ± 0.01 > 4 7.2 ± 0.2 

135 S

 
> 4 0.061 ± 0.005 > 4 5.1 ± 0.2 

136 
 

> 4 0.060 ± 0.008 > 4 6.4 ± 0.1 

137 
 

> 4 0.061 ± 0.005 > 4 5.4 ± 0.2 

138 
 

> 40 0.076 ± 0.009 > 4 34 ± 2 

aData were calculated from duplicate experiments by using at least five different inhibitor concentrations. 
bFor cathepsins L and K, all limits > 40 µM relate to IC50 values > 45 µM. 
cFor cathepsins L and K, all limits > 4 µM relate to IC50 values > 5 µM.
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In general, the racemic dipeptide nitriles 129–138 showed all fast-binding kinetic behavior 

and remarkable inhibitory activities toward cathepsin S (40–200 nM). Among them, 

compounds 129 and 130, containing short aromatic P3 substituents (phenyl and 2-thienyl, 

respectively), were the most potent cathepsin S inhibitors. The Ki value of the benzoyl 

substituted dipeptide nitrile 129 on cathepsin S was 40 nM, the corresponding 2-thienyl 

counterpart exhibited a Ki value of 45 nM. The inhibitory activities of the biaryl derivatives 

132 and 135–138 were approximately in the same range (Ki = 60–94 nM). However, the Ki 

value of the 4-(phenyl)-2-thienyl substituted dipeptide nitrile 131 was slightly higher than the 

Ki values of the biaryl counterparts 132 and 135–138. The fused benzo[b]thiophene-2-yl (133) 

and thieno[2,3-b]thiophene-2-yl (134) derivatives showed inhibitory activities toward 

cathepsin S with Ki values of 89 and 100 nM, respectively. 

Furthermore, compounds 129 and 130 exhibited an excellent selectivity for cathepsin S over 

the antitargets, cathepsins L, K and B. The introduction of larger biaryl or fused aromatic P3 

substituents impaired the selectivity of the resulting dipeptide nitriles 131–137. The 

selectivity of the 5-(1H-tetrazole-5-yl)-2-thienyl substituted derivative 138 for cathepsin S 

over cathepsins L and B was comparable with the selectivities of 129 and 130. 

 

Table 19.a Kinetic parameters of compounds 144b and 148c. 

cmpd 
cathepsin L  cathepsin S 

kon (103M-1s-1) koff (10-3s-1) Ki (nM)  kon (103M-1s-1) koff (10-3s-1) Ki (nM) 

144 n.d.d n.d. 37000 ± 1000 n.d. n.d. 33 ± 5 

148 n.d.d,e n.d. 15 ± 1f 2600 ± 400 1.4 ± 0.2 0.55 ± 0.03g 

 

cmpd 
cathepsin K  cathepsin B 

kon (103M-1s-1) koff (10-3s-1) Ki (nM)  kon (103M-1s-1) koff (10-3s-1) Ki (nM) 

144 n.d. n.d. > 40000h n.d. n.d. 24000 ± 1000 

148 59 ± 2 0.039 ± 0.004 0.66 ± 0.06 130 ± 20 0.75 ± 0.12 5.8 ± 0.2g 

aData were calculated from duplicate experiments by using at least five different inhibitor concentrations. bLinear 

regression over 20 min. cNon-linear regression over 80 min. dNot determined. eFor [148] = 700 nM, a kobs value 

could not be obtained by non-linear regression. Therefore, a limit kobs(1+[S]/Km)/[I] < 30 × 103 M-1s-1 was 

estimated. fThe progress curves were analyzed by linear regression in a time interval between 8 and 16 min. gThe 

progress cuves were analyzed by non-linear regression in a time interval of 20 min. hThe limit > 40 µM relates to 

the IC50 value > 45 µM. 
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The enantiopure dipeptide nitrile 144 showed approximately the same selectivity profile as 

the corresponding racemic compound 129. Hence, it was slightly more potent on cathepsin S 

(33 versus 44 nM). The azadipeptide nitrile 148 was 60-fold more active on cathepsin S than 

its carba counterpart 144 (0.55 versus 33 nM), but less selective for cathepsin S over 

antitargets, cathepsins L, K abnd B.  

While compound 144 was a fast-binding inhibitor, azadipeptide nitrile 148 showed a slow-

binding inhibition behavior. Therefore, it was possible to determine kon and koff values for the 

azadipeptide nitrile 148 and cathepsins S, K and B. For cathepsin L, a limit 

kobs(1+[S]/Km)/[I] < 30 × 103 M-1s-1 was estimated. The highest second-order rate constant 

(kon) was obtained for compound 148 and cathepsin S.  

 



2. RESULTS AND DISCUSSION  79 
 

 

2.2.2. CONCLUSIONS III 

 

The aim of the study was the exploration of the S3 binding pocket of cathepsin S and the 

development of selective nitrile inhibitors for this enzyme. A series of dipeptide nitriles was 

synthesized, in which a large isobutylsulfone moiety was maintained at the P2 position, and a 

systematic scan for P3 substituents was performed.  

For the preparation of inhibitors, a convergent synthetic route was applied in which the P2 

building block was separately prepared. Small aromatic, biaryl and annulated aromatic P3 

substituents were introduced, and the kinetic properties of the obtained racemic dipeptide 

nitriles were studied on human cathepsins L, S, K and B. Besides the activity of all tested 

compounds against cathepsin S, dipeptide nitriles with small aromatic substituents (such as 

phenyl or 2-thienyl) at the P3 position showed a remarkable selectivity for cathepsin S over 

cathepsins L, K and B. 

Furthermore, the synthetic route to the P2 building block was changed to prevent the 

racemisation, and the enantiopure benzoyl substituted dipeptide nitrile 144 was obtained as 

potent and selective cathepsin S inhibitor. The enantiopurity of 144 was shown by chiral 

HPLC. The aza-analogous counterpart of 144, compound 148, was 60-fold more active on 

cathepsin S, but less selective for this enzyme over cathepsins L, K and B. 

To summarize, the S3 binding pocket of cathepsin S can be addressed with small aromatic 

as well as with larger biaryl and fused aromatic P3 substituents without significant activity 

lost of the corresponding inhibitors. However, the introduction of larger biaryl or fused 

aromatic substituents into the P3 position negatively affected the selectivity of the obtained 

dipeptide nitriles for cathepsin S. Therefore, the best selectivity profiles were observed for 

compounds with small aromatic P3 moieties. The enantiopure benzoyl substituted dipeptide 

nitrile was slightly more active on cathepsin S than its racemic counterpart. The Cα/N 

replacement resulted in a clearly more potent, but less selective cathepsin S inhibitor. 

 



80  2. RESULTS AND DISCUSSION 
 

 

2.3. DEVELOPMENT OF ‘ACITIVITY-BASED’ PROBES 

 

The knowledge of the cellular and/or plasma activites of cathepsins K and S may be important 

for the diagnostic of enhanced bone turnover and immune response and could be used for 

monitoring of the therapeutic success during the treatment of osteoporosis and autoimmune 

disorders [136], [137], [208], [209]. Furthermore, several cysteine cathepsins, particularly 

cathepsins L and B, are involved in the tumor pathogenesis and represent possible prognostic 

marker [210], [211]. In the presented study, it was decided to develop an irreversible, 

fluorescent ‘activity-based’ probe (ABP) for imaging and quantification particularly of 

cathepsins K and S, but also cathepsins L and B, by in gel scanning using SDS-PAGE 

technique. Furthermore, in collaboration with Dr. Reik Löser from the Institute of 

Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, the tyrosine-derived nitrile 

inhibitors of cysteine cathepsins were to be fluoroalkylated to prepare ‘cold’ reference 

compounds of fluorine-18 radiolabeled ‘activity-based’ probes whose kinetic properties had 

to be studied on cathepsins L, S, K and B. 

A convergent synthetic route was chosen for the preparation of the fluorescent ‘activity-

based’ probe. First, the vinyl sulfone ‘warhead’ 153 was synthesized as shown in Scheme 30 

[212]. Commercially available chloromethyl phenyl sulfide 149 was transformed to the alkyl 

phosphonate 150 via Arbuzov reaction by heating with triethyl phosphite at 130 °C in a sealed 

tube. The thioether group of 150 was oxidized with KMnO4 to obtain the sulfone 151. For 

preparation of the (E)-vinyl sulfone group, Horner-Wadsworth-Emmons reaction was used. In 

this reaction, compound 151 was coupled with Boc-Gly-H in the presence of NaH to obtain 

152. Finally, the Boc protecting group was removed leading to the vinyl sulfone 153. 

149

S CH2Cl S CH2PO(OEt)2

150

BocHN S
O

O

H3N S
O

O
152

Cl

153

a b
S CH2PO(OEt)2

151

O

O

c

d

 

Scheme 30. Synthesis of the vinyl sulfone 153 as an irreversible, covalent ‘warhead’.  

(a) 1. P(OEt)3, 130 °C, sealed tube; (b) KMnO4, AcOH, H2O, rt; (c) Boc-Gly-H, NaH, THF, rt;  

(d) AcCl, EtOH, AcOEt, rt. 
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With compound 153 in hands, the building block 156 was synthesized as shown in Scheme 

31. Boc-protected phenylalanine 154 was coupled via a mixed anhydride with 153 to obtain 

the vinyl sulfone derivative 155. The Boc protecting group of 155 was cleaved under acidic 

conditions leading to the building block 156. 
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Scheme 31. Synthesis of the building block 156. 

(a) 1. ClCO2i-Bu, NMM, THF, -25 °C, 2. 153, NaOH, H2O, -25 °C to rt; (b) AcCl, EtOH, AcCO2Et, 

rt, basic extraction. 

 

The pH-dependent GFP-like [213], [214] fluorophore 157 was provided by Ilia V. Yampolsky 

from the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow. It was 

coupled with the building block 156 via a mixed anhydride to obtain the desired ‘activity-

based’ probe 168 as shown in Scheme 32.  

N
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a

157 158  

Scheme 32. Synthesis of the activity-based probe 158. 

(a) 1. ClCO2i-Bu, NMM, THF, -25 °C, 2. 156, -25 °C to rt. 

 

The fluoroethylated azadipeptide nitrile 159 was synthesized as depicted in Scheme 33. 
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Scheme 33. Synthesis of the fluorine-containing dipeptide nitrile 160. 

(a) 1. ClCO2i-Bu, NMM, THF, -25 °C, 2. NH2CH2CN × H2SO4, NaOH, H2O, -25 °C to rt; (b) NaH,  

1-bromo-2-fluoroethane, DMF, rt 
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Cbz-protected tyrosine 26 was reacted via a mixed anhydride with aminoacetonitrile to obtain 

the dipeptide nitrile 159. The hydroxyl group of 159 was alkylated with 1-bromo-1-

fluoroethane in the presence of sodium hydride leading to compound 160. Additionally, the 

azadipeptide nitrile 38 was fluoroethylated using the same synthetic procedure to obtain the 

azadipeptide derivative 161 (Scheme 33). 

b
O N

H

O
N

O
N

CN

O

161

F

38

 

Scheme 33. Synthesis of the fluorine-containing dipeptide nitrile 161. 

(a) NaH, 1-bromo-2-fluoroethane, DMF, rt. 
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2.3.1. KINETIC CHARACTERISATION OF 158 AND 160, 161 

 

The fluorescent ‘activity-based’ probe 158 was tested on human cathepsins L, S, K and B and 

showed the time-dependent inhibition behavior. In contrast to azadipeptide nitriles, vinyl/allyl 

sulfones/ketones were described as irreversible, covalent inhibitors of cysteine cathepsins 

[212], [215], [216]. To determine first-order rate constants (kobs) for the irreversible time-

dependent inhibition of cathepsins by 158, the progress curves were analyzed by non-linear 

regression using the equation shown in Figure 41a [216], [217], which is derived from the 

slow-binding equation (Fig. 23a) for the case, if vs tends to zero. Furthermore, the plots of the 

calculated kobs values versus increasing concentrations of 158 showed to be hyperbolic (Fig. 

40b) suggesting the enzyme-inhibitor interaction according to the mechanism B (Fig. 25b). 

Therefore, kinac and Ki’ constants could be obtained by non-linear regression of the data pairs 

(kobs, [I]) using the equation in Figure 41b. The true inhibition constants (Ki) were calculated 

as described before (Cheng-Prusoff equation, Fig. 23c). The second order rate constants (k2nd) 

were calculated as quotient of kinac divided by Ki (Fig. 41c). Compounds 160 and 161 were 

kinetically characterized as described in 2.1.2. 

 

(a)       (b) 
 

 

Figure 40. (a) Monitoring of the human cathepsin L-catalyzed hydrolysis of Z-Phe-Arg-pNa (100 µM) 

in the presence of increasing concentrations of 158 (•, 0 µM; •, 2 µM; •, 4 µM; •, 6 µM; •, 8 µM;  

•, 10 µM) in duplicate experiments. The reaction (100 mM sodium phosphate buffer pH 6.0, 100 mM 

NaCl, 5 mM EDTA, 0.01% Brij 35, 100 µM DTT, 2% DMSO, 37 °C) was initiated by addition of the 

enzyme. The formation of 4-nitroaniline was detected at 405 nm. (b) Plot of the kobs values versus [I]. 

Non-linear regression of the resulting data pares (kobs, [I]) using equation kobs = kinac[I]/( Ki’+[I]) gave 

an apparent inhibition constant Ki’ = (1+[S]/Km)Ki = 9.6 ± 0.7 µM. The corresponding kinac value was 

calculated to 0.18 ± 0.01 min-1. 
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(a) ( ) de1AE/I tobs +−×= −k
  (b) ])I['/(]I[ iinacobs += Kkk  

 

(c) iinac2nd / Kkk =  

 

Figure 41. Slow-binding equation for irreversible inhibition type (a), equation for calculation of kinac 

and Ki’ values (b), and the second-order rate constant equation (c). 

(a) E – extinction; I – fluorescence intensity; A = vi/kobs where vi – initial reaction rate (M s-1); kobs –

 first-order rate constant (s-1); t – time (s); d – offset; (b) kobs – first-order rate constant (s-1); kinac = k+4 –

 first-order inactivation rate constant (s-1); Ki’ = k-3/k+3(1+[S]/Km) – apparent inhibition constant (M); 

[I] – inhibitor concentration (M); (c) Ki – true inhibition constant (M); k2nd – second-order rate 

constant (M-1s-1).  

 

The calculated kinetic parameters are depicted in Table 20. In general, the APBs 158 was 

active against all tested cathepsins, but it showed a slight preference for cathepsin S 

(k2nd = 18000 M-1s-1) and for cathepsin K (k2nd = 4600 M-1s-1). The Ki values, describing the 

dissoziation of the non-covalent enzyme-inhibitor complex in the case of the irreversible, 

covalent inhibition type, were particularly low for cathepsins S (0.11 µM) and K (0.24 µM). 

The first-order inactivation rate constants were approximately in the same range for the four 

tested cathepsins (0.0011–0.0031 s-1). 

 

Table 20. Kinetic parameters of compound 158.a 

cmpd 
cathepsin L  cathepsin S 

k2nd (M
-1s-1) kinac (s

-1) Ki (µM)  k2nd (M
-1s-1) kinac (s

-1) Ki (µM) 

158 2200 ± 180 0.0031 ± 0.0001 1.4 ± 0.7 18000 ± 2000 0.0020 ± 0.0001 0.11 ± 0.01 

 

cmpd 
cathepsin K  cathepsin B 

k2nd (M
-1s-1) kinac (s

-1) Ki (µM)  k2nd (M
-1s-1) kinac (s

-1) Ki (µM) 

158 4600 ± 900 0.0011 ± 0.0001 0.24 ± 0.04 290 ± 70 0.0029 ± 0.0003 10 ± 2 

aThe progress cuves were analyzed by non-linear regression in a time interval of 30 min. 

 

The fluoroethylated dipeptide nitrile 160 (Table 21), a fast-binding inhibitor, showed only 

moderate inhibitory activity on cathepsins L, S and K (Ki = 390, 1200, and 2100 nM, 

respectively). The Ki value of 160 on the carboxydipeptidase, cathepsin B, was 23 µM. In
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contrast to 160, the corresponding azadipeptide nitrile 161 exhibited a very strong inhibitory 

activity toward cathepsins L, S, K and B with Ki values in picomolar range (excepted 

cathepsin B). In general, the calculated second-order rate constants (kon) reflected the low Ki 

values of 161 on tested cathepsins. The koff values were, as expected, in the same range. 

 

Table 21. Kinetic parameters of compound 160a and 161b. 

cmpd 
cathepsin L  cathepsin S 

kon (103M-1s-1) koff (10-3s-1) Ki (nM)  kon (103M-1s-1) koff (10-3s-1) Ki (nM) 

160 n.d.c n.d. 390 ± 30 n.d. n.d. 1200 ± 80 

161 930 ± 100d 0.68 ± 0.09 0.73 ± 0.06 560 ± 100d 0.44 ± 0.09 0.79 ± 0.06b 

 

cmpd 
cathepsin K  cathepsin B 

kon (103M-1s-1) koff (10-3s-1) Ki (nM)  kon (103M-1s-1) koff (10-3s-1) Ki (nM) 

160 n.d. n.d. 2100 ± 200 n.d. n.d. 23000 ± 3000 

161 210 ± 50 0.036 ± 0.009 0.17 ± 0.01 190 ± 10 0.46 ± 0.03 2.4 ± 0.1 

aLinear regression over 20 min. bNon-linear regression over 80 min. cNot determined. dNon-linear regression 

over 20 min. 
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2.3.2. SPECTRAL PROPERTIES OF 158 AND IMAGING EXPERIMENT 

 

The absorption and emission spectra of the fluorescent ‘activity-based’ probe 158 were 

recorded in different solvents to study the spectral properties of this fluorescent compound. 

The absorption maxima of 158 were approximately in the same range in methanol, water and 

different aqueous buffer systems, but a slight bathochromic shift was observed in the apolar 

dichloromethane medium. In contrast to the emission spectra of 158 in the organic solvents 

such as methanol and dichloromethane, the corresponding emission spectra in water and 

aqueous buffer systems showed two emission maxima (Fig. 42, Table 22). 

 

(a)       (b) 
 

 

Figure 42. Spectral properties of 158 in different solvents. 

(a) Normalized absorption and emission spectra of compound 158 in different solvents. The compound 

158 was used in a concentration of 10 µM. (•) CH2Cl2; (•) EtOH; (•) H2O. (b) Normalized absorption 

and emission spectra of compound 158 at different pH. (•) H2O; (•) 50 mM sodium phosphate buffer 

pH 6.5; (•) 100 mM sodium phosphate buffer pH 6.0; (•) 50 mM sodium acetate buffer pH 5.0. 

 

Table 22. Absorption and emission maxima of compound 158. 

 
CH2Cl2 EtOH H2O 

buffer  
pH 6.5a 

buffer  
pH 6.0 

buffer  
pH 5.0 

λex (nm) 423 415 410 411 411 410 

λem (nm) 480 480 486/528 484/526 484/528 486/528 

aFor exact buffer composition, see the ‘Experimental Section’. 
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To prove the concept, compound 158 was incubated with activated cathepsin K. The final 

concentrations in the incubation medium were 10 µM 158 and 9.2 µg/mL cathepsin K (for 

details, see the ‘Experimental Section’). The different volumes of the incubation medium as 

well as two control samples were separated by SDS-PAGE, and the resulting protein bands 

were analyzed using fluorescence imaging and Coomassie staining (Fig. 43). 

The fluorescence analysis showed fluorescent bands of the labeled cathepsin K in the lines 

III–VI. The fluorescence intensity was dependent on the loaded amounts of the labeled 

protein and decreased from III to VI. In control experiments (lines I and II) no fluorescence 

was measured. The fluorescence was excited at 312 nm and imaged with a super sensitive 

‘scientific grade’ CCD-camera (equipped with an ethidium bromide filter) from Intas. 

Although the excitation was not performed in the absorption maximum of 158, it was possible 

to detect 23 ng of the labeled cathepsin K (VI, Fig 43a). Probably, it will be feasible to image 

smaller amounts of cysteine cathepsins, if a transilluminator with an excitation wavelength of 

~ 400 nm will be used.  

For comparative investigations, the same SDS-PAGE was stained with Coomassie brilliant 

blue. The cathepsin K bands were detected in the lines II–V, but, as expected, not in the 

control line I. Due to the small amount of cathepsin K, no stained band could be observed in 

the line VI (Fig. 43b). 

 

(a)       (b) 
 

 

Figure 43. SDS-PAGE images. (a) Fluorescence analysis of the with compound 158 labeled cathepsin 

K (λex = 312 nm, ethidium bromide filter, invert image: white to black); (b) Analysis of cathepsin K 

bands using Coomassie staining. (I) 130 ng of 158; (II) 184 ng cathepsin K; (III) 184 ng labeled 

cathepsin K; (IV) 92 ng labelled cathepsin K; (V) 46 ng labelled cathepsin K; (VI) 23 ng labelled 

cathepsin K; PS – protein standard. The unbound amounts of 158 are not shown. 
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2.3.3. CONCLUSIONS IV 

 

In the presented study, the fluorescent ‘activity-based’ probe 158, containing a new GFP-like 

reporter, was synthesized, and its spectral and kinetic properties were studied.  

The vinyl sulfone derivative 158 exhibited the time-dependent irreversible kinetic type on 

cathepsins L, S, K and B according to the two step mechanism of inhibition. In the main, the 

irreversible, covalent inhibitor 158 was active on all tested cathepsins, but it showed a slight 

preference for cathepsins S and K.  

The absorption maxima of 158 were approximately in the same VIS range in organic 

solvents and aqueous media. Only a slight bathochromic shift was observed in 

dichloromethane. In contrast, the emission spectra of 158 were different depending on the 

solvent, and showed in water and aqueous buffers two emission maxima. 

Furthermore, the possibility to image the cysteine cathepsins on SDS-PAGE by compound 

158 was proved on example of cathepsin K. The fluorescence analysis of the resulting gel 

allowed the imaging of fluorescence-labeled cathepsin K. No fluorescence was measured in 

the control experiments. 

In the second project of this study, the fluoroethylated tyrosine-derived dipeptide nitrile 160 

as well as its aza-analogue 161 were synthesized as ‘cold’ reference compounds of fluorine-

18 radiolabeled ‘activity-based’ probes to study their kinetic properties on cathepsins L, S, K 

and B. While the fluoroethylated dipeptide nitrile 160, a fast-binding inhibitor, was moderate 

active toward tested cathepsins, the corresponding azadipeptide nitrile 161 with the slow-

binding kinetic behavior was clearly more active. 

The preliminary results of the described projects could be used to develop fluorescent and 

radioactive imaging instruments for cysteine cathepsins in the areas of the Cell and Molecular 

Biology. Furthermore, the fluorescent ‘activity-based’ probe 158 represents a potential tool 

for quantification of cathepsins S and K in human (e.g. in blood plasma) to diagnose and 

monitor osteoporosis and autoimmune disorders. 
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3.1. INHIBITION ASSAYS AND EQUATIONS 

 

3.1.1. CATHEPSIN L INHIBITION ASSAY (I) 

 

Human recombinant cathepsin L (Calbiochem, Darmstadt, Germany) was assayed 

spectrophotometrically (Cary 50 Bio, Varian) at 405 nm and at 37 °C. The reactions were 

followed over 10 min for fast-binding inhibitors and over 80 min for compounds displaying 

slow-binding behavior, respectively. Assay buffer was 100 mM sodium phosphate buffer  

pH 6.0, 100 mM NaCl, 5 mM EDTA, and 0.01% Brij 35. An enzyme stock solution of  

50 µg/mL in 20 mM sodium acetate buffer pH 5.0, 100 mM NaCl, 10 mM trehalose, 1 mM 

EDTA, and 50% glycerol was diluted 1:100 with assay buffer containing 5 mM DTT and 

incubated for 30 min at 37 °C. This enzyme solution was diluted 1:5 with assay buffer 

containing 5 mM DTT. Inhibitor stock solutions were prepared in DMSO. A 10 mM stock 

solution of the chromogenic substrate Z-Phe-Arg-pNa was prepared with DMSO. The final 

concentration of DMSO was 2%, and the final concentration of the substrate was 100 µM 

(= 10.0 Km). Assays were performed with a final concentration of 4 ng/mL of cathepsin L. 

Into a cuvette containing 940 µL assay buffer, inhibitor solution and DMSO in a total volume 

of 10 µL, and 10 µL of the substrate solution were added and thoroughly mixed. The reaction 

was initiated by adding 40 µL of the cathepsin L solution. Experiments were performed in 

duplicate with at least five different inhibitor concentrations. 
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3.1.2. CATHEPSIN L INHIBITION ASSAY (II) 

 

Human isolated cathepsin L (Enzo Life Sciences, Lörrach, Germany) was assayed 

spectrophotometrically (Cary 50 Bio, Varian) at 405 nm and at 37 °C. The reactions were 

followed over 10 min for fast-binding inhibitors and over 80 min for compounds displaying 

slow-binding behavior, respectively. Assay buffer was 100 mM sodium phosphate buffer  

pH 6.0, 100 mM NaCl, 5 mM EDTA, and 0.01% Brij 35. An enzyme stock solution of 

135 µg/mL in 20 mM malonate buffer pH 5.5, 400 mM NaCl, and 1 mM EDTA was diluted 

1:100 with assay buffer containing 5 mM DTT and incubated for 30 min at 37 °C. Inhibitor 

stock solutions were prepared in DMSO. A 10 mM stock solution of the chromogenic 

substrate Z-Phe-Arg-pNA was prepared with DMSO. The final concentration of DMSO was 

2%, and the final concentration of the substrate was 100 µM (= 5.88 Km). Assays were 

performed with a final concentration of 54 ng/mL of cathepsin L. Into a cuvette containing 

940 µL assay buffer, inhibitor solution and DMSO in a total volume of 10 µL, and 10 µL of 

the substrate solution were added and thoroughly mixed. The reaction was initiated by adding 

40 µL of the cathepsin L solution. Experiments were performed in duplicate with at least five 

different inhibitor concentrations. 
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3.1.3. CATHEPSIN S INHIBITION ASSAY (I) 

 

Cathepsin S (Calbiochem, Darmstadt, Germany) was assayed spectrophotometrically (Cary 

50 Bio, Varian) at 405 nm and at 37 °C. The reactions were followed over 10 min for fast-

binding inhibitors and over 80 min for compounds displaying slow-binding behavior, 

respectively. Assay buffer was 50 mM sodium phosphate buffer pH 6.5, 50 mM NaCl, 2 mM 

EDTA, and 0.01% Triton X-100. An enzyme stock solution of 375 µg/mL in 35 mM 

potassium phosphate, 35 mM sodium acetate pH 6.5, 2 mM DTT, 2 mM EDTA, and  

50% ethylene glycol was diluted 1:100 with assay buffer containing 5 mM DTT and 

incubated for 30 min at 37 °C. Inhibitor stock solutions were prepared in DMSO. A 10 mM 

stock solution of the chromogenic substrate Z-Phe-Val-Arg-pNA was prepared with DMSO. 

The final concentration of DMSO was 2%, and the final concentration of the substrate was 

100 µM (= 1.49 Km). Assays were performed with a final concentration of 75 ng/mL of 

cathepsin S. Into a cuvette containing 960 µL assay buffer, inhibitor solution and DMSO in a 

total volume of 10 µL, and 10 µL of the substrate solution were added and thoroughly mixed. 

The reaction was initiated by adding 20 µL of the cathepsin S solution. Experiments were 

performed in duplicate with at least five different inhibitor concentrations. 
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3.1.4. CATHEPSIN S INHIBITION ASSAY (II) 

 

Cathepsin S (Calbiochem, Darmstadt, Germany) was assayed spectrophotometrically (Cary 

50 Bio, Varian) at 405 nm and at 37 °C. The reactions were followed over 10 min for fast-

binding inhibitors and over 80 min for compounds displaying slow-binding behavior, 

respectively. Assay buffer was 50 mM sodium phosphate buffer pH 6.5, 50 mM NaCl, 2 mM 

EDTA, and 0.01% Triton X-100. An enzyme stock solution of 375 µg/mL in 35 mM 

potassium phosphate, 35 mM sodium acetate pH 6.5, 2 mM DTT, 2 mM EDTA, and  

50% ethylene glycol was diluted 1:100 with assay buffer containing 5 mM DTT and 

incubated for 30 min at 37 °C. Inhibitor stock solutions were prepared in DMSO. A 10 mM 

stock solution of the chromogenic substrate Z-Phe-Arg-pNa was used in a final concentration 

of 100 µM (= 0.85 Km). Assays were performed with a final concentration of 75 ng/mL of 

cathepsin S. Into a cuvette containing 960 µL assay buffer, inhibitor solution and DMSO in a 

total volume of 10 µL, and 10 µL of the substrate solution were added and thoroughly mixed. 

The reaction was initiated by adding 20 µL of the cathepsin S solution. Experiments were 

performed in duplicate with at least five different inhibitor concentrations. 

 



94  3. EXPERIMENTAL SECTION 
 

 

3.1.5. CATHEPSIN K INHIBITION ASSAY (I) 

 

Cathepsin K was assayed fluorimetrically on Monaco Safas spectrofluorometer flx. The 

wavelenght for excitation was 360 nm and for emission 440 nm. The reactions were followed 

at 25 °C over 10 min for fast-binding inhibitors and over 80 min for compounds displaying 

slow-binding behavior, respectively. A human recombinant procathepsin K (Calbiochem, 

Darmstadt, Germany) stock solution of 150 µg/mL in 25 mM Tris buffer pH 8.0, 500 mM 

NaCl was diluted 1:3.7 with 32.5 mM sodium acetate buffer pH 3.5 and incubated for 3 h at 

25 °C to activate procathepsin K to cathepsin K. After incubation, the solution was aliquoted, 

frozen in liquid nitrogen, and kept at -70 °C. Assay buffer was 100 mM sodium citrate  

pH 5.0, 100 mM NaCl, 1 mM EDTA, and 0.01% CHAPS. The enzyme solution was diluted 

1:100 with assay buffer containing 5 mM DTT and incubated for 30 min at 37 °C. Inhibitor 

stock solutions were prepared in DMSO. A 10 mM stock solution of the fluorogenic substrate 

Z-Leu-Arg-AMC was prepared with DMSO. The final concentration of DMSO was 2%, and 

the final concentration of the substrate was 40 µM (= 15.4 Km). Assays were performed with a 

final concentration of 4 ng/mL of cathepsin K. Into a cuvette containing 970 µL assay buffer, 

inhibitor solution and DMSO in a total volume of 16 µL, and 4 µL of the substrate solution 

were added and thoroughly mixed. The reaction was initiated by adding 10 µL of the 

cathepsin K solution. Experiments were performed in duplicate with at least five different 

inhibitor concentrations. 
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3.1.6. CATHEPSIN K INHIBITION ASSAY (II) 

 

Cathepsin K was assayed fluorimetrically on Monaco Safas spektrofluorometer flx. The 

wavelenght for excitation was 360 nm and for emission 440 nm. The reactions were followed 

at 25 °C over 10 min for fast-binding inhibitors and over 80 min for compounds displaying 

slow-binding behavior, respectively. A human recombinant cathepsin K (Enzo Life Sciences, 

Lörrach, Germany) stock solution of 23 µg/mL in 50 mM sodium acetate pH 5.5, 50 mM 

NaCl, 0.5 mM EDTA, 5 mM DTT was diluted 1:100 with assay buffer (100 mM sodium 

citrate pH 5.0, 100 mM NaCl, 1 mM EDTA, 0.01% CHAPS) containing 5 mM DTT and 

incubated for 30 min at 37 °C. Inhibitor stock solutions were prepared in DMSO. A 10 mM 

stock solution of the fluorogenic substrate Z-Leu-Arg-AMC was prepared with DMSO. The 

final concentration of DMSO was 2%, and the final concentration of the substrate was 40 µM 

(= 13.3 Km). Assays were performed with a final concentration of 2 ng/mL or 5 ng/mL of 

cathepsin K. Into a cuvette containing 970 µL or 960 µL assay buffer, inhibitor solution and 

DMSO in a total volume of 16 µL, and 4 µL of the substrate solution were added and 

thoroughly mixed. The reaction was initiated by adding 10 µL or 20 µL of the cathepsin K 

solution. Experiments were performed in duplicate with at least five different inhibitor 

concentrations.
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3.1.7. CATHEPSIN B INHIBITION ASSAY 

 

Human isolated cathepsin B (Calbiochem, Darmstadt, Germany) was assayed 

spectrophotometrically (Cary 50 Bio, Varian) at 405 nm and at 37 °C. The reactions were 

followed over 10 min for fast-binding inhibitors and over 80 min for compounds displaying 

slow-binding behavior, respectively. Assay buffer was 100 mM sodium phosphate buffer  

pH 6.0, 100 mM NaCl, 5 mM EDTA, 0.01% Brij 35. An enzyme stock solution of 

1.81 mg/mL in 20 mM sodium acetate buffer pH 5.0, 1 mM EDTA was diluted 1:500 with 

assay buffer containing 5 mM DTT and incubated for 30 min at 37 °C. Inhibitor stock 

solutions were prepared in DMSO. A 100 mM stock solution of the chromogenic substrate  

Z-Arg-ArgpNA was prepared with DMSO. The final concentration of DMSO was 2%, and 

the final concentration of the substrate was 500 µM (0.45 Km). Assays were performed with a 

final concentration of 72 ng/mL of cathepsin B. Into a cuvette containing 960 µL assay buffer, 

inhibitor solution and DMSO in a total volume of 15 µL, and 5 µL of the substrate solution 

were added and thoroughly mixed. The reaction was initiated by adding 20 µL of the 

cathepsin B solution. Experiments were performed in duplicate with at least five different 

inhibitor concentrations. 



3. EXPERIMENTAL SECTION  97 
 

 

3.1.8. EQUATIONS 

 

Dipeptide nitriles 43, 66, 79, 80, 111, 119, 120, 129–138, 144 and 160 showed a fast-binding 

inhibition behavior on cathepsins L, S, K and B as reflected by linear progress curves. The 

apparent inhibition constant Ki’ was determined by non-linear regression using equation 

vs = v0/(1+[I]/Ki’), where vs is the steady-state rate, v0 is the rate in the absence of inhibitor, 

and [I] is the inhibitor concentration. The true inhibition constant Ki was calculated by 

correction of Ki’ according to Ki = Ki’/(1+[S]/Km), where [S] is the substrate concentration 

and Km is the Michaelis constant. 

Progress curves of the reactions of cysteine proteases in the presence of azadipeptide nitriles 

33–38, 42, 45, 46, 50, 51, 62–65, 67, 68, 92, 122, 148, 161 were analyzed by nonlinear 

regression using slow-binding equation E/I = vst+(vi-vs)(1-exp(-kobst))/kobs+d, where E/I is the 

extinction/fluorescene intensity, vs is the steady-state rate, vi is the initial rate, kobs is the 

observed first-order rate constant, and d is the offset. To obtain Ki’, vs values as well as the v0 

value were plotted versus the inibitor concentration [I], according to vs = v0/(1+[I]/Ki’), and Ki 

was calculated from equation Ki = Ki’/(1+[S]/Km). The apparent second-order rate constant 

kon’ was obtained by linear regression according to equation kobs = kon’[I]+ koff. The true rate 

constant kon was calculated by correction of kon’ according to equation kon = kon’(1+[S]/Km). 

The first-order rate constant koff for the dissociation of the enzyme-inhibitor complex was 

calculated according to equation koff = konKi. 

Progress curves of the reactions of cysteine proteases in the presence of the irreversible 

‘activity-based’ probe 158 were analyzed by non-linear regression using the slow-binding 

equation for the irreversible inhibition type E/I = A(1-exp(-kobst))+d, where E/I is the 

extinction/fluorescence intensity, A = vi/kobs, vi is the initial rate, kobs is the observed first-

order rate constant, and d is the offset. The apparent inhibition constant Ki’ and the 

inactivation first-order rate constant kinac were determined by non-linear regression using the 

equation kobs = kinac[I]/( Ki’+[I]), where kobs is the observed first-order rate constant, and [I] is 

the inhibitor concentration. The true second-order rate constant k2nd was calculated according 

to k2nd = kinac/Ki. 
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3.2. SPECTRAL PROPERTIES AND IMAGING EXPERIMENT 

 

The absorption spectra were pervormed on Cary 50 Bio device from Varian. Into a cuvette 

containing 990 µL solvent (dichloromethane, methanol, water), 10 µL of 122 in DMSO 

(10 mM) were added, and it was thoroughly mixed. In the case of 158, 10 µL of the 

compound stock solution in DMSO (1 mM) were added to 990 µL solvent (dichloromethane, 

methanol, water, cath S buffer pH 6.5, cath L/B buffer pH 6.0, and cath K buffer pH 5.0). The 

absorption spectra were recorded in a range between 800 and 200 nm after baseline 

correction. The emission spectra were prevormed on Monaco Safas spektrofluorometer flx in 

a range between 800 and 200 nm after baseline correction with the same solutions and in the 

same concentrations of 152 and 158 as in the case of the absorption measurements. 

For the imaging experiment, 20 µL of the human recombinant cathepsin K from Enzo 

23 µg/mL in 50 mM sodium acetate pH 5.5, 50 mM NaCl, 0.5 mM EDTA, 5 mM DTT was 

added to 29 µL of 100 mM sodium citrate buffer pH 5.0, 100 mM NaCl, 1 mM EDTA, 0.01% 

CHAPS, 5 mM DTT, and it was activated for 40 min at 37 C. 0.5 µL of DMSO and 0.5 µL of 

158 in DMSO (1 mM) were added to the activated cathepsin K, and the resulting solution 

(9.2 µg/mL cathepsin K, 10 µM ABP 158) was incubated for 40 min at 37 C. 20 µL, 10 µL, 

5 µL, and 2.5 µL of the incubation medium were tretated with the reducing (supplemented 

with 2% (v/v) 2-mercaptoethanol) SDS-loading buffer, heated at 90 °C for 5 min, and 

separated by SDS/PAGE on the 14% (w/v) polyacrylamide gel. In the control experiment, 

20 µL of the activated cathepsin K (9.2 µg/mL) in the absence of 158, and 20 µL of 158 

(10 µM in 100 mM sodium citrate buffer pH 5.0, 100 mM NaCl, 1 mM EDTA, 0.01% 

CHAPS, 5 mM DTT, 1% DMSO) were used. The fluorescence analysis of the resulting gel 

was pervormed with the Gel iX Imager from Intas, equipped with UV-transilluminator 

(312 nm), super sensitive ‘scientific grade’ CCD-camera, and an ethidium bromide filter. The 

Coomassie staining was carried out with Page Blue protein staining solution from Fermentas. 
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3.3. PREPARATION OF COMPOUNDS 

 

3.3.1. GENERAL METHODS AND MATERIALS 

 

Melting points were determined on a Büchi 510 oil bath apparatus, and are uncorrected. Thin 

layer chromatography was performed on Merck aluminium sheets. Preparative column 

chromatography was performed on silica gel 60, 0.060–0.200 mm. 13C NMR (125 MHz) and 
1H NMR (500 MHz) spectra were recorded on a Bruker Avance DRX 500 spectrometer. 

Elemental analyses were performed with a Vario EL apparatus. LC-DAD chromatograms and 

ESI-MS spectra were recorded on an Agilent 1100 HPLC system with Applied Biosystems 

API-2000 mass spectrometer. The (EI) mass spectra were obtained on A.E.I. MS-50 

spectrometer. For compound 158, the MS (ESI) spectra were performed with Bruker 

Daltonics micrOTOF-Q spectrometer. The chiral analytical HPLC was performed on a Jasco 

200 device using LiChroCART® 250-4 ChiraDex® (5 µm) column. Optical rotation was 

determined on a Perkin-Elmer 241 polarimeter. IR spectra were recorded on a Bruker Tensor 

27 FT-IR spectrometer. Amino acid derivatives were obtained from Bachem (Bubendorf, 

Switzerland), Acros (Geel, Belgium) and Aldrich (Steinheim, Germany). 
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3.3.2. PREPARATION OF 33 
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N-(Benzyloxycarbonyl)glycyl-methylazaalanine-nitrile. Compound 21 (1.40 g, 6.69 mmol) 

was dissolved in dry THF (15 mL) and cooled to -25 °C. To the stirred solution,  

N-methylmorpholine (0.74 mL, 6.73 mmol) and isobutyl chloroformate (0.88 mL, 6.75 mmol) 

were added consecutively. 1,2-Dimethylhydrazine dihydrochloride (4.44 g, 33.4 mmol) was 

suspended in H2O (1 mL), and 5 N NaOH (13.4 mL) was added under ice-cooling. This 

solution was given to the reaction mixture when the precipitation of N-methylmorpholine 

hydrochloride occurred. It was allowed to warm to room temperature within 30 min, and 

stirred overnight at rt. After evaporation of the solvent, the resulting aqueous residue was 

extracted with ethyl acetate (1 × 40, 3 × 10 mL). The combined organic layers were washed 

with H2O (15 mL), sat. NaHCO3 (2 × 15 mL), H2O (15 mL), and brine (15 mL). The solvent 

was dried (Na2SO4) and evaporated. The crude product was recrystallized from ethyl 

acetate/petroleum ether to obtain 27 as a white solid (0.39 g, 23%). Sodium acetate (0.28 g, 

3.41 mmol) and cyanogen bromide (0.25 g, 2.36 mmol) were added to a solution of 27 

(0.30 g, 1.19 mmol) in MeOH (10 mL). The mixture was stirred at room temperature for 18 h, 

and the solvent was removed under reduced pressure. The residue was suspended in H2O 

(10 mL), a pH of 1–2 was adjusted (10% KHSO4), and it was extracted with ethyl acetate 

(3 × 20 mL). The combined organic layers were washed with H2O (10 mL), sat. NaHCO3 

(2 × 10 mL), H2O (10 mL), and brine (10 mL). The solvent was dried (Na2SO4) and removed 

in vacuo. The oily residue was purified by column chromatography on silica gel using ethyl 

acetate/petroleum ether (1:1) as eluent to obtain 33 as a white solid (0.22 g, 67% from 27). mp 

82–86 °C; 1H NMR (500 MHz, CDCl3) δ 3.13, 3.20 (2 × s, 2 × 3H, N(CH3)CN, CONCH3), 

4.12 (dd, 2J = 17.8 Hz, 3J = 3.3 Hz, 1H, NHCHHCO), 4.23 (dd, 2J = 18.0 Hz, 3J = 5.7 Hz, 1H, 

NHCHHCO), 5.11 (s, 2H, CH2O), 5.46 (bs, 1H, NHCH2CO), 7.28–7.35 (m, 5H, Harom); 
13C NMR (125 MHz, CDCl3) δ 30.39 (N(CH3)CN), 40.85 (CONCH3), 42.51 (NHCH2CO), 

67.09 (CH2O), 112.94 (CN), 128.04 (C-2’, C-6’), 128.17 (C-4’), 128.50 (C-3’, C-5’), 136.14 

(C-1’), 156.24 (OCON), 169.98 (NHCH2CO); FTIR (KBr, cm-1) 2223 (C≡N); Anal. 

C13H16N4O3 (276.29 g/mol) calcd C 56.51, H 5.84, N 20.28; found C 56.41, H 5.81, N 19.03. 
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3.3.3. PREPARATION OF 34 
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N-(Benzyloxycarbonyl)alanyl-methylazaalanine-nitrile. Compound 22 (1.50 g, 6.72 mmol) 

was dissolved in dry THF (15 mL) and cooled to -25 °C. To the stirred solution,  

N-methylmorpholine (0.74 mL, 6.73 mmol) and isobutyl chloroformate (0.88 mL, 6.75 mmol) 

were added consecutively. 1,2-Dimethylhydrazine dihydrochloride (4.44 g, 33.4 mmol) was 

suspended in H2O (1 mL), and 5 N NaOH (13.4 mL) was added under ice-cooling. This 

solution was given to the reaction mixture when the precipitation of N-methylmorpholine 

hydrochloride occurred. It was allowed to warm to room temperature within 30 min, and 

stirred overnight at rt. After evaporation of the solvent, the resulting aqueous residue was 

extracted with ethyl acetate (1 × 40, 3 × 10 mL). The combined organic layers were washed 

with H2O (15 mL), sat. NaHCO3 (2 × 15 mL), H2O (15 mL), and brine (15 mL). The solvent 

was dried (Na2SO4) and evaporated. The crude product was purified using ethyl 

acetate/petroleum ether (2:1) to obtain 28 as a colourless oil (1.18 g, 66%). Sodium acetate 

(1.20 g, 14.6 mmol) and cyanogen bromide (0.65 g, 6.14 mmol) were added to a solution of 

28 (1.10 g, 4.15 mmol) in MeOH (15 mL). The mixture was stirred at room temperature for 

20 h, and the solvent was removed under reduced pressure. The residue was suspended in 

H2O (10 mL), a pH of 1–2 was adjusted (10% KHSO4), and it was extracted with ethyl 

acetate (3 × 20 mL). The combined organic layers were washed with H2O (10 mL), sat. 

NaHCO3 (2 × 10 mL), H2O (10 mL), and brine (10 mL). The solvent was dried (Na2SO4) and 

removed in vacuo. The semisolid residue was purified by column chromatography on silica 

gel using ethyl acetate/petroleum ether (1:2) as eluent to obtain 34 as a white solid (0.62 g, 

51% from 28). mp 155–158 °C; [α]20
D = +8.0 (c = 0.75, CHCl3); 

1H NMR (500 MHz, CDCl3) 

mixture rotamers (only the data of the major rotational isomer are noted) δ 1.40 (d, 3J = 

7.3 Hz, 3H, CHCH3), 3.19, 3.22 (2 × s, 2 × 3H, N(CH3)CN, CONCH3), 4.78–4.83 (m, 1H, 

NHCHCO), 5.02 (d, 2J = 12.6 Hz, 1H, CHHO), 5.10 (d, 2J = 12.3 Hz, 1H, CHHO), 5.37 (d, 
3J = 7.3 Hz, 1H, NHCHCO), 7.28–7.36 (m, 5H, Harom); 13C NMR (125 MHz, CDCl3) δ 18.24 

(CHCH3), 30.50 (N(CH3)CN), 40.97 (CONCH3), 46.99 (NHCHCO), 66.97 (CH2O), 113.55 

(CN), 127.97 (C-2’, C-6’), 128.20 (C-4’), 128.53 (C-3’, C-5’), 136.06 (C-1’), 155.89 

(OCON), 174.54 (NHCHCO); FTIR (KBr, cm-1) 2226 (C≡N); Anal. C14H18N4O3 

(290.32 g/mol) calcd C 57.92, H 6.25, N 19.30; found C 57.51, H 6.24, N 18.97. 
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3.3.4. PREPARATION OF 35 
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N-(Benzyloxycarbonyl)valyl-methylazaalanine-nitrile. Compound 23 (1.68 g, 6.69 mmol) 

was dissolved in dry THF (15 mL) and cooled to -25 °C. To the stirred solution,  

N-methylmorpholine (0.74 mL, 6.73 mmol) and isobutyl chloroformate (0.88 mL, 6.75 mmol) 

were added consecutively. 1,2-Dimethylhydrazine dihydrochloride (4.44 g, 33.4 mmol) was 

suspended in H2O (1 mL), and 5 N NaOH (13.4 mL) was added under ice-cooling. This 

solution was given to the reaction mixture when the precipitation of N-methylmorpholine 

hydrochloride occurred. It was allowed to warm to room temperature within 30 min, and 

stirred overnight at rt. After evaporation of the solvent, the resulting aqueous residue was 

extracted with ethyl acetate (1 × 40, 3 × 10 mL). The combined organic layers were washed 

with H2O (15 mL), sat. NaHCO3 (2 × 15 mL), H2O (15 mL), and brine (15 mL). The solvent 

was dried (Na2SO4) and evaporated. The crude product was purified by column 

chromatography using ethyl acetate/petroleum ether (2:1) to obtain 29 as a colourless oil 

(1.10 g, 56%). Sodium acetate (0.78 g, 9.51 mmol) and cyanogen bromide (0.54 g, 

5.10 mmol) were added to a solution of 29 (1.00 g, 3.41 mmol) in MeOH (20 mL). The 

mixture was stirred at room temperature for 12 h, and the solvent was removed under reduced 

pressure. The residue was suspended in H2O (10 mL), a pH of 1–2 was adjusted (10% 

KHSO4), and it was extracted with ethyl acetate (3 × 20 mL). The combined organic layers 

were washed with H2O (10 mL), sat. NaHCO3 (2 × 10 mL), H2O (10 mL), and brine (10 mL). 

The solvent was dried (Na2SO4) and removed in vacuo. The oily residue was purified by 

column chromatography on silica gel using ethyl acetate/petroleum ether (2:1) as eluent to 

obtain 35 as a white solid (0.42 g, 39% from 29). mp 64–66 °C; [α]20
D = +20.0 

(c = 1.10, CHCl3); 
1H NMR (500 MHz, CDCl3) δ 0.94 (d, 3J = 6.9 Hz, 1H, CH3CHCH3), 1.02 

(d, 3J = 7.0 Hz, 3H, CH3CHCH3), 1.97–2.04 (m, 1H, CH3CHCH3), 3.20, 3.23 (2 × s, 2 × 3H, 

N(CH3)CN, CONCH3), 4.65–4.68 (m, 1H, NHCHCO), 5.02 (d, 2J = 12.3 Hz, 1H, CHHO), 

5.09 (d, 2J = 12.3 Hz, 1H, CHHO), 5.26 (d, 3J = 9.2 Hz, 1H, NHCHCO), 7.30–7.36 (m, 5H, 

Harom); 13C NMR (125 MHz, CDCl3) δ 17.59, 19.56, (CH3CHCH3, CH3CHCH3), 30.26, 31.12, 

41.21 (CH3CHCH3, N(CH3)CN, CONCH3), 55.60 (NHCHCO), 67.09 (CH2O), 113.75 (CN), 

128.01 (C-2’, C-6’), 128.23 (C-4’), 128.55 (C-3’, C-5’), 136.03 (C-1’), 156.49 (OCON), 

173.89 (NHCHCO); FTIR (KBr, cm-1) 2224 (C≡N); Anal. C16H22N4O3 (318.37 g/mol) calcd 

C 60.36, H 6.97, N 17.60; found C 60.63, H 7.00, N 16.97. 
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N-(Benzyloxycarbonyl)isoleucyl-methylazaalanine-nitrile. Compound 24 (1.20 g, 

4.52 mmol) was dissolved in dry THF (15 mL) and cooled to -25 °C. To the stirred solution, 

N-methylmorpholine (0.50 mL, 4.55 mmol) and isobutyl chloroformate (0.59 mL, 4.53 mmol) 

were added consecutively. 1,2-Dimethylhydrazine dihydrochloride (2.70 g, 20.3 mmol) was 

suspended in H2O (1 mL), and 5 N NaOH (8.20 mL) was added under ice-cooling. This 

solution was given to the reaction mixture when the precipitation of N-methylmorpholine 

hydrochloride occurred. It was allowed to warm to room temperature within 30 min, and 

stirred overnight at rt. After evaporation of the solvent, the resulting aqueous residue was 

extracted with ethyl acetate (1 × 40, 3 × 10 mL). The combined organic layers were washed 

with H2O (15 mL), sat. NaHCO3 (2 × 15 mL), H2O (15 mL), and brine (15 mL). The solvent 

was dried (Na2SO4) and evaporated. The crude product was purified using ethyl 

acetate/petroleum ether (2:1) to obtain 30 as a semisolid product. Sodium acetate (0.48 g, 

5.85 mmol) and cyanogen bromide (0.34 g, 3.21 mmol) were added to a solution of 30 

(0.65 g, 2.11 mmol) in MeOH (15 mL). The mixture was stirred at room temperature for 20 h, 

and the solvent was removed. The residue was suspended in H2O (10 mL), a pH of 1–2 was 

adjusted (10% KHSO4), and it was extracted with ethyl acetate (3 × 20 mL). The combined 

organic layers were washed with H2O (10 mL), sat. NaHCO3 (2 × 10 mL), H2O (10 mL), and 

brine (10 mL). The solvent was dried (Na2SO4) and removed in vacuo. The semisolid residue 

was purified by column chromatography on silica gel using ethyl acetate/petroleum ether 

(1:2) as eluent to obtain 36 as a colorless oil (0.34 g, 23% from 30). [α]20
D = +12.7 (c = 1.10, 

CHCl3); 
1H NMR (500 MHz, CDCl3) mixture of rotamers (only the data of the major 

rotational isomer are noted) δ 0.89 (t, 3J = 7.4 Hz, 3H, CH2CH3), 0.98 (d, 3J = 7.0 Hz, 3H, 

CHCH3), 1.10–1.25 (m, 1H, CHCH3), 1.52–1.77 (m, 2H, CH2CH3), 3.20, 3.23 (2 × s, 2 × 3H, 

N(CH3)CN, CONCH3), 4.70 (app. t, 3J = 8.4 Hz, 1H, NHCHCO), 5.01 (d, 2J = 12.0 Hz, 1H, 

CHHO), 5.08 (d, 2J = 12.0 Hz, 1H, CHHO), 5.24 (d, 3J = 9.5 Hz, 1H, NHCHCO), 7.28–7.35 

(m, 5H, Harom); 13C NMR (125 MHz, CDCl3) δ 11.11 (CH2CH3), 15.73 (CHCH3), 24.38 

(CH2CH3), 30.25, 37.61, 41.22 (N(CH3)CN, CHCH3, CONCH3), 54.77 (NHCHCO) 67.07 

(CH2O), 113.77 (CN), 127.99 (C-2’, C-6’), 128.22 (C-4’), 128.53 (C-3’, C-5’), 136.02 (C-1’), 

156.41 (OCON), 174.08 (NHCHCO); FTIR (KBr, cm-1) 2223 (C≡N); Anal. C17H24N4O3 

(332.40 g/mol) calcd C 61.43, H 7.28, N 16.86; found C 61.18, H 7.62, N 16.46. 
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N-(Benzyloxycarbonyl)cyclohexylalanyl-methylazaalanine-nitrile.  Compound 25 (1.00 g, 

3.27 mmol) was dissolved in dry THF (15 mL) and cooled to -25 °C. To the stirred solution,  

N-methylmorpholine (0.36 mL, 3.27 mmol) and isobutyl chloroformate (0.43 mL, 3.30 mmol) 

were added consecutively. 1,2-Dimethylhydrazine dihydrochloride (2.20 g, 16.5 mmol) was 

suspended in H2O (1 mL), and 5 N NaOH (6.50 mL) was added under ice-cooling. This 

solution was given to the reaction mixture when the precipitation of N-methylmorpholine 

hydrochloride occurred. It was allowed to warm to room temperature within 30 min, and 

stirred overnight at rt. After evaporation of the solvent, the resulting aqueous residue was 

extracted with ethyl acetate (1 × 40, 3 × 10 mL). The combined organic layers were washed 

with H2O (15 mL), sat. NaHCO3 (2 × 15 mL), H2O (15 mL), and brine (15 mL). The solvent 

was dried (Na2SO4) and evaporated. The crude product was purified using ethyl 

acetate/petroleum ether (2:1) to obtain 31 as a colourless oil (0.70 g, 62%). Sodium acetate 

(0.44 g, 5.36 mmol) and cyanogen bromide (0.30 g, 2.83 mmol) were added to a solution of 

31 (0.63 g, 1.81 mmol) in MeOH (50 mL). The mixture was stirred at room temperature for 

12 h, and the solvent was removed under reduced pressure. The residue was suspended in 

H2O (10 mL), a pH of 1–2 was adjusted (10% KHSO4), and it was extracted with ethyl 

acetate (3 × 20 mL). The combined organic layers were washed with H2O (10 mL), sat. 

NaHCO3 (2 × 10 mL), H2O (10 mL), and brine (10 mL). The solvent was dried (Na2SO4) and 

removed in vacuo. The oily residue was purified by column chromatography on silica gel 

using ethyl acetate/petroleum ether (1:2) as eluent to obtain 37 as a colorless oil (0.21 g, 31% 

from 31). [α]20
D = +17.0 (c = 1.00, CHCl3); 

1H NMR (500 MHz, DMSO-d6) mixture of 

rotamers (only the data of the major rotational isomer are noted) δ 0.90–1.79 (m, 13H, 

Hcyclohexane, CHCH2), 3.08, 3.20 (2 × s, 2 × 3H, N(CH3)CN, CONCH3), 4.61 (bs, 1H, 

NHCHCO), 4.98–5.04 (m, 2H, CH2O), 7.26–7.37 (m, 5H, Harom), 7.71 (d, 3J = 7.6 Hz, 1H, 

NHCHCO); 13C NMR (125 MHz, DMSO-d6) δ 25.62, 25.85, 26.13 (Ccyclohexane), 30.49, 31.58, 

33.51 (N(CH3)CN, Ccyclohexane), 33.65, 38.18 (CONCH3, CHCH2,), 48.92 (NHCHCO) 65.66 

(CH2O), 114.24 (CN), 127.84 (C-2’’, C-6’’), 127.96 (C-4’’), 128.47 (C-3’’, C-5’’), 137.03 

(C-1’’), 156.43 (OCON), 174.44 (NHCHCO); FTIR (KBr, cm-1) 2222 (C≡N); Anal. 

C20H28N4O3 (372.46 g/mol) calcd C 64.49, H 7.58, N 15.04; found C 64.81, H 8.14, N 13.94. 
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N-(Benzyloxycarbonyl)tyrosyl-methylazaalanine-nitrile. Compound 26 (10.0 g, 

31.7 mmol) was dissolved in dry THF (60 mL) and cooled to -25 °C. To the stirred solution,  

N-methylmorpholine (3.84 mL, 34.9 mmol) and isobutyl chloroformate (4.54 mL, 34.8 mmol) 

were added consecutively. 1,2-Dimethylhydrazine dihydrochloride (8.43 g, 63.4 mmol) was 

suspended in H2O (15 mL), and 10 N NaOH (13.0 mL) was added under ice-cooling. This 

solution was given to the reaction mixture when the precipitation of N-methylmorpholine 

hydrochloride occurred. It was allowed to warm to room temperature within 30 min, and 

stirred overnight at rt. After evaporation of the solvent, the resulting aqueous residue was 

extracted with ethyl acetate (3 × 60 mL). The combined organic layers were washed with H2O 

(30 mL), sat. NaHCO3 (2 × 30 mL), H2O (30 mL), and brine (30 mL). The solvent was dried 

(Na2SO4) and evaporated to obtain 32 as a white solid. Sodium acetate (4.22 g, 51.4 mmol) 

and cyanogen bromide (4.09 g, 38.6 mmol) were added to a solution of 32 (9.20 g, 

25.7 mmol) in MeOH (40 mL). The mixture was stirred at room temperature for 24 h, and the 

solvent was removed. The residue was suspended in H2O (30 mL), a pH of ~2 was adjusted 

(10% KHSO4), and it was extracted with ethyl acetate (3 × 60 mL). The combined organic 

layers were washed with H2O (30 mL), sat. NaHCO3 (30 mL), H2O (30 mL), and brine 

(30 mL). The solvent was dried (Na2SO4) and removed in vacuo. The oily residue was 

purified by column chromatography on silica gel using ethyl acetate/petroleum ether (1:1) as 

eluent to obtain 38 as a white solid (2.82 g, 23% from 26). mp 158 °C; [α]20
D = +30.0 

(c = 1.00, CHCl3); 
1H NMR (500 MHz, DMSO-d6) mixture of rotamers (only the data of the 

major rotational isomer are noted) δ 2.67–2.80 (m, 2H, CHCH2), 3.11, 3.22 (2 × s, 2 × 3H, 

N(CH3)CN, CONCH3), 4.65 (bs, 1H, NHCHCO), 4.95 (s, 2H, CH2O), 6.67–7.35 (m, 9H, 

Harom), 7.82 (d, 3J = 7.6 Hz, 1H, NHCHCO), 9.21 (s, 1H, OH); 13C NMR (125 MHz, DMSO-

d6) mixture of rotamers, w = weak (minor rotational isomer), i = intensive (major rotational 

isomer) δ 30.17 (w), 30.55 (i), 35.69 (i), 36.23 (w) (N(CH3)CN, CONCH3), 40.26 (w), 40.45 

(i) (CHCH2), 52.93 (w), 53.46 (i) (NHCHCO), 65.58 (CH2O), 114.21 (CN), 115.21, 127.69, 

127.88, 128.41, 130.11 (i), 130.33, 136.92 (i), 137.04 (w) (C-3’, C-5’, C-2’’, C-6’’, C-4’’,  

C-3’’, C-5’’, C-2’, C-6’, C-1’, C-1’’), 156.20 (OCON, C-4’), 173.60 (NHCHCO); Anal. 

C20H22N4O4 (382.41 g/mol) calcd C 62.82, H 5.80, N 14.65; found C 63.11, H 5.86, N 14.20. 
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3.3.8. PREPARATION OF 40 
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N-(Benzyloxycarbonyl)homocycloleucine 1,2-dimethylhydrazide. Method A, mixed 

anhydride coupling protocol: Compound 39 (2.00 g, 7.21 mmol) was dissolved in THF 

(20 mL) and cooled to -25 °C. Triethylamine (4.38 g, 43.3 mmol) and isobutyl chloroformate 

(1.08 g, 7.91 mmol) were added, and it was stirred for 3 min at -25 °C. 1,2-dimethylhydrazine 

dihydrochloride (2.40 g, 18.0 mmol) was added. The resulting reaction mixture was stirred for 

19 h at room temperature. THF was evaporated under reduced pressure. The residue was 

extracted with ethyl acetate (3 × 30 mL), washed with sat. NaHCO3 (30 mL), H2O (30 mL), 

and brine (30 mL). The solvent was dried over Na2SO4 and removed under reduced pressure. 

The oily reaction mixture was separated by column chromatography using ethyl 

acetate/petroleum ether 9:1 as eluent to obtain 40 as a colorless oil (0.41 g, 18%). 

 

N-(Benzyloxycarbonyl)homocycloleucine 1,2-dimethylhydrazide. Method B, EDC/DMAP 

coupling protocol, rt: Compound 39 (1.00 g, 3.61 mmol) was dissolved in dry THF (10 mL). 

DMAP (0.02 g, 0.16 mmol) and EDC (0.62 g, 3.99 mmol) were added, and the solution was 

stirred for 10 min at room temperature. 1,2-Dimethylhydrazine dihydrochloride (0.96 g, 

7.22 mmol) was suspended in dry THF (10 mL) and treated with triethylamine (1.46 g, 

14.4 mmol). The resulting reaction mixtures were combined and stirred for 24 h at rt. The 

solvent was evaporated under reduced pressure. The residue was treated with H2O and 

extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with sat. 

NaHCO3 (2 × 30 mL), H2O (30 mL), and brine (30 mL). The solvent was dried over Na2SO4 

and removed under reduced pressure. The crude oily product was purified by column 

chromatography using CH2Cl2/MeOH (19:1) as eluent to obtain 40 as a colorless oil  

(0.41 g, 36%). 

 

N-(Benzyloxycarbonyl)homocycloleucine 1,2-dimethylhydrazide. Method C, EDC/DMAP 

coupling protocol, ∆: Compound 39 (1.00 g, 3.61 mmol) was dissolved in dry THF (10 mL). 

DMAP (0.02 g, 0.16 mmol) and EDC (0.62 g, 3.99 mmol) were added, and the solution was 

stirred for 10 min at room temperature. 1,2-Dimethylhydrazine dihydrochloride (0.96 g, 

7.22 mmol) was suspended in dry THF (10 mL) and treated with triethylamine (1.46 g, 

14.4 mmol). The resulting reaction mixtures were combined and heated to reflux for 24 h.
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The solvent was evaporated under reduced pressure. The residue was treated with H2O and 

extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with sat. 

NaHCO3 (2 × 30 mL), H2O (30 mL), and brine (30 mL). The solvent was dried over Na2SO4 

and removed under reduced pressure. The crude oily product was purified by column 

chromatography using CH2Cl2/MeOH (19:1) as eluent to obtain 40 as a colorless oil  

(0.45 g, 39%). 

 

N-(Benzyloxycarbonyl)homocycloleucine 1,2-dimethylhydrazide. Method D, HBTU 

coupling protocol (in the presence of HOBt): Compound 39 (1.00 g, 3.61 mmol) was 

dissolved in dry THF (10 mL). HOBt × H2O (0.24 g, 1.78 mmol) and HBTU (1.51 g, 

3.98 mmol) were added, and the solution was stirred for 10 min at room temperature. 1,2-

Dimethylhydrazine dihydrochloride (0.96 g, 7.22 mmol) was suspended in dry THF (10 mL) 

and treated with triethylamine (1.46 g, 14.4 mmol). The resulting reaction mixtures were 

combined and stirred for 3 d at rt. The solvent was evaporated under reduced pressure. The 

residue was treated with H2O and extracted with ethyl acetate (3 × 30 mL). The combined 

organic layers were washed with sat. NaHCO3 (2 × 30 mL), H2O (30 mL), and brine (30 mL). 

The solvent was dried over Na2SO4 and removed under reduced pressure. The crude oily 

product was purified by column chromatography using CH2Cl2/MeOH (19:1) and additionally 

ethyl acetate/petroleum ether (2:1) as eluents to obtain 40 as a colorless oil (0.31 g, 27%). 

 
1H NMR (500 MHz, DMSO-d6) δ 1.13–1.20 (m, 1H, Hcyclohexane), 1.41–1.51 (m, 5H, 

Hcyclohexane), 1.66–1.72 (m, 2H, Hcyclohexane), 2.11 (bs, 2H, Hcyclohexane), 2.30 (d, 3J = 5.7 Hz, 3H, 

NHCH3), 2.90 (s, 3H, CONCH3), 4.97 (s, 2H, CH2O), 7.27–7.37 (m, 5H, Harom);  
13C NMR (125 MHz, DMSO-d6) δ 21.28 (C-3’, C-5’), 25.21 (C-4’), 31.92 (C-2’, C-6’), 34.97 

(NHCH3), 58.63 (C-1’), 65.03 (CH2O), 127.80 (C-2’’, C-6’’), 127.86 (C-4’’), 128.36  

(C-3’’, C-5’’), 137.36 (C-1’), 154.64 (OCO); MS(ESI) m/z = 320.2 ([M + H]+). 
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3.3.9. PREPARATION OF 41 

O N

O
H
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Isobutyl 1,2-dimethylhydrazinecarboxylate. The oily reaction mixture (for reaction 

conditions, see 3.3.8., method A) was separated by column chromatography using ethyl 

acetate/petroleum ether (9:1) as eluent to obtain a colorless oil (0.50 g) containing compound 

41 contaminated with N-(Benzyloxycarbonyl)homocycloleucine (compound 40, see 3.3.8.). 

Using 1H NMR spectrum, the yield of compound 41 was calculated to 0.32 g (28%). 1H NMR 

(500 MHz, DMSO-d6) δ 0.89 (app. d, 3J = 6.6 Hz, 6H, CH(CH3)2), 1.86 (sept, 3J = 6.7 Hz, 

1H, CH(CH3)2), 2.43 (s, 3H, NHCH3), 2.93 (s, 3H, CONCH3), 3.78 (d, 3J = 6.6 Hz, 2H, 

CHCH2); 
13C NMR (125 MHz, DMSO-d6) δ 18.98 (CH(CH3)2), 27.68 (CH(CH3)2), 35.49, 

35.59 (NCH3), 70.93 (CH2O), 156.16 (OCO); MS(EI) m/z = 160.1 (M●+). 
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3.3.10. PREPARATION OF 42 
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N-(Benzyloxycarbonyl)homocycloleucyl-methylazaalanine-nitrile.  Compound 40 (0.44 g, 

1.38 mmol) was dissolved in MeOH (10 mL) and treated with NaOAc (0.31 g, 3.78 mmol) 

and BrCN (0.30 g, 2.83 mmol). The resulting reaction mixture was stirred for 18 h at room 

temperature. The solvent was evaporated under reduced pressure. The residue was suspended 

in H2O (10 mL), a pH of 1–2 was adjusted (10% KHSO4), and it was extracted with ethyl 

acetate (3 × 20 mL). The combined organic layers were washed with H2O (10 mL), sat. 

NaHCO3 (2 × 10 mL), H2O (10 mL), and brine (10 mL). The solvent was dried (Na2SO4) and 

removed in vacuo. The oily residue was purified by column chromatography on silica gel 

using ethyl acetate/petroleum ether (1:1) as eluent to obtain 42 as a colorless oil (0.24 g, 

50%). 1H NMR (500 MHz, DMSO-d6) δ 1.16–1.25 (m, 1H, Hcyclohexane), 1.47 (bs, 5H, 

Hcyclohexane), 1.63–1.69 (m, 2H, Hcyclohexane), 1.98–2.01 (m, 2H, Hcyclohexane), 2.92 (s, 3H, 

N(CH3)CN), 3.07 (s, 3H, CONCH3), 4.97 (CH2O), 7.29–7.36 (m, 5H, Harom); 13C NMR 

(125 MHz, DMSO-d6) δ 21.12 (C-3’, C-5’), 24.92 (C-4’), 31.64 (C-2’, C-6’), 40.41 

(CONCH3), 58.45 (C-1’), 65.69 (CH2O), 115.02 (CN), 128.08 (C-2’’, C-6’’), 128.28 (C-4’’), 

128.48 (C-3’’, C-5’’), 137.00 (C-1’’), 154.68 (OCO), 173.58 (NHCCO); Anal. C18H24N4O3 

(344.41 g/mol) calcd C 62.77, H 7.02, N 16.27; found C 62.70, H 7.17, N 15.49. 
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3.3.11.  PREPARATION OF 43 
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N-(Benzyloxycarbonyl)homocycloleucyl-glycine-nitrile. Compound 39 (1.00 g, 3.61 mmol) 

was dissolved in dry THF (20 mL) and cooled to -25 °C. To the stirred solution, triethylamine 

(1.09 g, 10.8 mmol) and isobutyl chloroformate (0.54 g, 3.95 mmol) were added 

consecutively. Aminoacetonitrile monosulfate (1.64 g, 10.6 mmol) was added to the reaction 

mixture when the precipitation of triethylamine hydrochloride occurred (ca. 5 min). It was 

allowed to warm to room temperature within 30 min, and stirred for additional overnight. 

After evaporation of the solvent, the resulting aqueous residue was extracted with ethyl 

acetate (3 × 60 mL). The combined organic layers were washed with 10% KHSO4 (30 mL), 

H2O (30 mL), sat. NaHCO3 (30 mL), H2O (30 mL), and brine (30 mL). The solvent was dried 

(Na2SO4) and evaporated. The product mixture was separated by column chromatography 

using ethyl acetate/petroleum ether (1:1) as eluent to obtain 43 as a white solid (0.60 g, 53%). 

mp 110–112 °C; 1H NMR (500 MHz, DMSO-d6) δ 1.15–1.25 (m, 1H, Hcyclohexane), 1.45–1.51 

(m, 5H, Hcyclohexane), 1.63–1.69 (m, 2H, Hcyclohexane), 1.89–1.92 (m, 2H, Hcyclohexane), 4.03 (d, 
3J = 5.1 Hz, 2H, NHCH2CN), 5.00 (s, 2H, CH2O), 7.27–7.36 (m, 6H, OCONH/Harom), 8.20 

(bs, 1H, NHCH2CN); 13C NMR (125 MHz, DMSO-d6) δ 21.03 (C-3’, C-5’), 25.03 (C-4’), 

27.76 (NHCH2CN), 31.81 (C-2’, C-6’), 58.90 (C-1’), 65.28 (CH2O), 117.82 (CN), 127.74  

(C-2’’, C-6’’), 127.84 (C-4’’), 128.43 (C-3’’, C-5’’), 137.20 (C-1’’), 154.86 (OCO), 175.20 

(NHCCO); Anal. C17H21N3O3 (315.37 g/mol) calcd C 64.74, H 6.71, N 13.32; found C 64.76, 

H 6.72, N 12.81. 
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3.3.12. PREPARATION OF 44 
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N-(Isobutyloxycarbonyl)aminoacetonitrile. The product mixture (for reaction conditions, 

see 3.3.11.) was separated by column chromatography using ethyl acetate/petroleum ether 

(1:1) as eluent to obtain 44 as a colorless oil (0.20 g, 35%). 1H NMR (500 MHz, DMSO-d6) δ 

0.87 (app. d, 3J =6.6 Hz, 6H, CH(CH3)2), 1.80–1.88 (m, 1H, CH(CH3)2), 3.79 (d, 3J =6.7 Hz, 

2H, CH2O), 4.05 (d, 3J =6.0 Hz, 2H, NHCH2CN), 7.84 (bs, NHCH2CN); 13C NMR (125 MHz, 

DMSO-d6) δ 19.64 (CH(CH3)2), 28.40 (CH(CH3)2), 29.90 (NHCH2CN), 71.43 (CH2O), 

118.76 (CN), 157.16 (OCO); MS(ESI) m/z (neg.) = 155.1 ([M - H]-). 
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3.3.13. PREPARATION OF 48 
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N-(Benzylcarbamoyl)leucine tert-butyl ester. The hydrochloride salt of 47 (2.50 g, 

11.2 mmol) was dissolved in H2O (10 mL) and treated with 1 N NaOH solution (13.0 mL). 

The precipitated free base was extracted with ethyl acetate (3 × 20 mL). The combined 

organic layers were washed with H2O (10 mL) and brine (10 mL), and dried over Na2SO4. 

The solvent was removed in vacuo to obtain leucine tert-butyl ester 47 as a colorless oily 

residue. This residue was dissolved in dry THF (40 mL) and treated with CDI (2.00 g, 

12.3 mmol). The resulting solution was heated to reflux for 2 h. The reaction mixture was 

further treated with benzylamine (2.01 mL, 18.4 mmol) and heated to reflux for 18 h. After 

evaporation of the solvent, the residue was suspended in H2O. The resulting aqueous 

suspension was adjusted with 10% KHSO4 to pH ~2 and extracted with ethyl acetate (3 × 20 

mL). The combined organic layers were washed with H2O (20 mL), 10% KHSO4 (20 mL), 

H2O (20 mL), and brine (20 mL). The solvent was dried (Na2SO4) and removed in vacuo. The 

solid product was purified by column chromatography using ethyl acetate/petroleum ether 

(1:1) as eluent to obtain 48 as a white solid (3.25 g, 91%). mp 69 °C; 1H NMR (500 MHz, 

DMSO-d6) δ 0.86 (d, 3J = 6.3 Hz, 3H, CH3CHCH3), 0.89 (d, 3J = 7.0 Hz, 3H, CH3CHCH3), 

1.39 (s, 9H, C(CH3)3), 1.41–1.44 (m, 2H, CHCH2), 1.59–1.68 (m, 1H, CH3CHCH3), 4.05–

4.09 (m, 1H, NHCHCO), 4.16–4.24 (m, 2H, CH2NH), 6.15 (d, 3J = 8.5 Hz, 1H, NHCHCO), 

6.40 (t, 3J = 6.0 Hz, 1H, CH2NH), 7.19-7.31 (m, 5H, Harom); 13C NMR (125 MHz, DMSO-d6) 

δ 21.85, 22.81, 24.49 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 27.78 (C(CH3)3), 41.26, 42.94 

(CHCH2, CH2NH), 51.86 (NHCHCO), 80.27 (C(CH3)3), 126.69 (C-4’), 127.06 (C-2’, C-6’), 

128.29 (C-3’, C-5’), 140.83 (C-1’), 157.77 (NHCONH), 173.07 (NHCHCO); Anal. 

C18H28N2O3 (320.43 g/mol) calcd C 67.47, H 8.81, N 8.74; found C 67.59, H 9.12, N 8.54. 
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N-(Phenylcarbamoyl)leucine tert-butyl ester. The hydrochloride salt of 47 (2.50 g, 

11.2 mmol) was dissolved in H2O (10 mL) and treated with 1 N NaOH solution (13.0 mL). 

The precipitated free base was extracted with ethyl acetate (3 × 20 mL). The combined 

organic layers were washed with H2O (10 mL) and brine (10 mL), and dried over Na2SO4. 

The solvent was removed in vacuo to obtain leucine tert-butyl ester 47 as a colorless oily 

residue. This residue was dissolved in dry THF (40 mL) and treated with CDI (2.00 g, 

12.3 mmol). The resulting solution was heated to reflux for 2 h. The solvent was removed 

in vacuo, and the obtained residue was treated with dry MeCN (40 mL) and DIPEA (3.05 mL, 

17.8 mmol). Aniline (1.67 mL, 18.3 mmol) was further added, and the reaction mixture was 

heated to reflux for 39 h. After evaporation of the solvent, the residue was suspended in H2O. 

The resulting aqueous suspension was adjusted to pH ~2 with 10% KHSO4 and extracted with 

ethyl acetate (3 × 20 mL). The combined organic layers were washed with H2O (20 mL), 10% 

KHSO4 (20 mL), H2O (20 mL), and brine (20 mL). The solvent was dried (Na2SO4) and 

removed in vacuo. The oily product was purified by column chromatography using ethyl 

acetate/petroleum ether (1:2) as eluent to obtain 49 as a white solid (1.29 g, 38%). mp 106–

108 °C; 1H NMR (500 MHz, DMSO-d6) δ 0.89 (d, 3J = 6.6 Hz, 3H, CH3CHCH3), 0.92 (d, 
3J = 6.6 Hz, 3H, CH3CHCH3), 1.41 (s, 9H, C(CH3)3), 1.44–1.50 (m, 2H, CHCH2), 1.61–1.71 

(m, 1H, CH3CHCH3), 4.10–4.15 (m, 1H, NHCHCO), 6.35 (d, 3J = 8.2 Hz, 1H, NHCHCO), 

6.87–7.37 (m, 5H, Harom), 8.51 (s, 1H, C-1’NH); 13C NMR (125 MHz, DMSO-d6) δ 21.84, 

22.77, 24.53 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 27.77 (C(CH3)3), 41.13 (CHCH2), 

51.50 (NHCHCO), 80.62 (C(CH3)3), 117.72 (C-2’, C-6’), 121.35 (C-4’), 128.78 (C-3’, C-5’), 

140.25 (C-1’), 154.87 (NHCONH), 172.69 (NHCHCO); Anal. C17H26N2O3 (306.40 g/mol) 

calcd C 66.64, H 8.55, N 9.14; found C 66.23, H 8.91, N 8.78. 
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N-(Benzylcarbamoyl)leucyl-methylazaalanine-nitrile. Compound 48 (2.00 g, 6.24 mmol) 

was dissolved in CH2Cl2 (40 mL) and treated with TFA (20 mL). The resulting solution was 

stirred for 3 h at room temperature. After evaporation of the solvent, the oily residue was 

suspended in H2O. The resulting aqueous suspension was extracted with ethyl acetate 

(3 × 20 mL). The combined organic layers were washed with H2O (2 × 30 mL) and brine 

(30 mL). The solvent was dried (Na2SO4) and removed under reduced pressure. The crude 

solid product was recrystallized from ethyl acetate/n-hexane to obtain N-(benzylcarbamoyl)-

leucine (0.52 g, 32%). N-(Benzylcarbamoyl)leucine (0.48 g, 1.82 mmol) was dissolved in dry 

THF (20 mL) and cooled to -25 °C. To the stirred solution, N-methylmorpholine (0.22 mL, 

2.00 mmol) and isobutyl chloroformate (0.26 mL, 1.99 mmol) were added consecutively.  

1,2-Dimethylhydrazine dihydrochloride (1.21 g, 9.10 mmol) was suspended in H2O (1 mL), 

and 5 N NaOH (4.36 mL) was added under ice-cooling. This solution was given to the 

reaction mixture when the precipitation of N-methylmorpholine hydrochloride occurred. It 

was allowed to warm to room temperature within 30 min, and stirred for additional 90 min. 

After evaporation of the solvent, the resulting aqueous residue was extracted with ethyl 

acetate (3 × 20 mL). The combined organic layers were washed with sat. NaHCO3 (20 mL), 

H2O (20 mL), and brine (20 mL). The solvent was dried (Na2SO4) and evaporated. The 

obtained oily residue was purified by column chromatography on silica gel using ethyl acetate 

as eluent to obtain N-(benzylcarbamoyl)leucine 1,2-dimethylhydrazide. Sodium acetate 

(0.11 g, 1.34 mmol) and cyanogen bromide (0.07 g, 0.66 mmol) were added to a solution of  

N-(benzylcarbamoyl)leucine 1,2-dimethylhydrazide (0.18 g, 0.59 mmol) in MeOH (30 mL). 

The mixture was stirred at room temperature for 48 h, and the solvent was removed under 

reduced pressure. The residue was suspended in H2O (10 mL), a pH of ~2 was adjusted (10% 

KHSO4), and it was extracted with ethyl acetate (3 × 20 mL). The combined organic layers 

were washed with H2O (20 mL), sat. NaHCO3 (2 × 20 mL), H2O (20 mL), and brine (20 mL). 

The solvent was dried (Na2SO4) and removed in vacuo. The oily residue was purified by 

column chromatography on silica gel using ethyl acetate/petroleum ether (1:1) as eluent to 

obtain 50 as a white solid (0.15 g, 25% from N-(benzylcarbamoyl)leucine). mp 116–118 °C; 

[α]20
D = +2.8 (c = 0.58, CHCl3); 

1H NMR (500 MHz, DMSO-d6) mixture of rotamers (only 

the data of the major rotational isomer are noted) δ 0.90–0.93 (m, 6H, CH(CH3)2), 1.28–1.43
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(m, 2H, CHCH2), 1.68 (bs, 1H, CH(CH3)2), 3.08, 3.22 (2 × s, 2 × 3H, N(CH3)CN, CONCH3), 

4.19 (d, 2H, 3J = 5.7 Hz, 2H, CH2NH), 4.74–4.77 (m, 1H, NHCHCO), 6.30 (d, 3J = 8.6 Hz, 

1H, NHCHCO), 6.42 (t, 3J = 5.7 Hz, 1H, CH2NH), 7.19–7.31 (m, 5H, Harom); 13C NMR 

(125 MHz, DMSO-d6) δ 21.44, 23.31, 24.50 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 30.48 

(N(CH3)CN), CONCH3 obscured by the DMSO signal, 41.00, 42.97 (CHCH2, CH2NH), 

47.98 (NHCHCO), 114.30 (CN), 126.73 (C-4’), 127.08 (C-2’, C-6’), 128.35 (C-3’, C-5’), 

140.68 (C-1’), 158.01 (NHCONH), 175.32 (NHCHCO); FTIR (KBr, cm-1) 2220 (C≡N); Anal. 

C17H25N5O2 (331.41 g/mol) calcd C 61.61, H 7.60, N 21.13; found C 61.44, H 7.57, N 20.40; 

LC-MS(ESI) (90% H2O to 100% MeOH in 20 min, then 100% MeOH to 30 min, DAD 

200.0–300.0 nm) tr = 15.64, 98% purity, m/z = 332.2 ([M + H]+). 
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N-(Phenylcarbamoyl)leucyl-methylazaalanine-nitrile. Compound 49 (1.23 g, 4.01 mmol) 

was dissolved in CH2Cl2 (40 mL) and treated with TFA (20 mL). The resulting solution was 

stirred for 3 h at room temperature. After evaporation of the solvent, the oily residue was 

suspended in H2O. The aqueous suspension was extracted with ethyl acetate (3 × 20 mL). The 

combined organic layers were washed with H2O (20 mL), 10% KHSO4 (20 mL), H2O 

(20 mL), and brine (20 mL). The solvent was dried (Na2SO4) and removed under reduced 

pressure. The solid product was recrystallized from ethyl acetate/n-hexane to obtain  

N-(phenylcarbamoyl)leucine (0.50 g, 50%). N-(Phenylcarbamoyl)leucine (0.50 g, 2.00 mmol) 

was dissolved in dry THF (20 mL) and cooled to -25 °C. To the stirred solution,  

N-methylmorpholine (0.24 mL, 2.18 mmol) and isobutyl chloroformate (0.29 mL, 2.22 mmol) 

were added consecutively. 1,2-Dimethylhydrazine dihydrochloride (1.47 g, 11.1 mmol) was 

suspended in H2O (1 mL), and 5 N NaOH (5.33 mL) was added under ice-cooling. This 

solution was given to the reaction mixture when the precipitation of N-methylmorpholine 

hydrochloride occurred. It was allowed to warm to room temperature within 30 min, and 

stirred for additional 90 min. After evaporation of the solvent, the resulting aqueous residue 

was extracted with ethyl acetate (3 × 20 mL). The combined organic layers were washed with 

H2O (20 mL), sat. NaHCO3 (20 mL), H2O (20 mL), and brine (20 mL). The solvent was dried 

(Na2SO4) and evaporated. The obtained oily residue was purified by column chromatography 

on silica gel using ethyl acetate as eluent to obtain N-(phenylcarbamoyl)leucine 1,2-di-

methylhydrazide. Sodium acetate (0.07 g, 0.85 mmol) and cyanogen bromide (0.04 g, 

0.38 mmol) were added to a solution of N-(phenylcarbamoyl)leucine 1,2-dimethylhydrazide 

(0.11 g, 0.38 mmol) in MeOH (30 mL). The mixture was stirred at room temperature for 48 h, 

and the solvent was removed under reduced pressure. The oily residue was purified by 

column chromatography on silica gel using ethyl acetate/petroleum ether (1:1) as eluent to 

obtain 51 as a white solid (0.18 g, 28% from N-(phenylcarbamoyl)leucine). mp 103–105 °C; 

[α]20
D = +29.5 (c = 1.23, CHCl3); 

1H NMR (500 MHz, DMSO-d6) mixture of rotamers (only 

the data of the major rotational isomer are noted) δ 0.93–0.97 (m, 6H, CH(CH3)2), 1.35–1.51 

(m, 2H, CHCH2), 1.72 (bs, 1H, CH(CH3)2), 3.10, 3.26 (2 × s, 2 × 3H, N(CH3)CN, CONCH3), 

4.79–4.82 (m, 1H, NHCHCO), 6.48 (d, 3J = 7.9 Hz, 1H, NHCHCO), 6.88–7.36 (m, 5H, 

Harom), 8.53 (s, 1H, C-1’NH); 13C NMR (125 MHz, DMSO-d6) δ 21.43, 23.30, 24.55
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(CH3CHCH3, CH3CHCH3, CH3CHCH3), 30.53 (N(CH3)CN), CONCH3 obscured by the 

DMSO signal, 41.02 (CHCH2), 47.78 (NHCHCO), 114.24 (CN), 117.80 (C-2’, C-6’), 121.49 

(C-4’), 128.81 (C-3’, C-5’), 140.09 (C-1’), 155.20 (NHCONH), 174.88 (NHCHCO); FTIR 

(KBr, cm-1) 2224 (C≡N); Anal. C16H23N5O2 (317.39 g/mol) calcd C 60.55, H 7.30, N 22.07; 

found C 60.11, H 7.36, N 21.15; LC-MS(ESI) (90% H2O to 100% MeOH in 20 min, then 

100% MeOH to 30 min, DAD 220.0–400.0 nm) tr = 16.24, 94% purity, m/z = 318.3 

([M + H]+). 
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N-(4-Cyanobenzylcarbamoyl)leucine tert-butyl ester. The hydrochloride salt of 47 (5.00 g, 

22.3 mmol) was dissolved in H2O (10 mL) and treated with 1 N NaOH solution (24.0 mL). 

The precipitated free base was extracted with ethyl acetate (3 × 20 mL). The combined 

organic layers were washed with H2O (10 mL) and brine (20 mL), and dried over Na2SO4. 

The solvent was removed in vacuo to obtain leucine tert-butyl ester 47 as a colorless oily 

residue. This residue was dissolved in dry THF (40 mL) and treated with CDI (3.62 g, 

22.3 mmol). The resulting solution was heated to reflux for 2 h. The reaction mixture was 

further treated with DIPEA (5.73 mL, 33.5 mmol) and 4-(aminomethyl)benzonitrile 

hydrochloride (5.65 g, 33.5 mmol) and heated to reflux for 18 h. The solvent was evaporated, 

and the residue was suspended in H2O. The aqueous suspension was adjusted to pH ~2 with 

10% KHSO4 and extracted with ethyl acetate (3 × 30 mL). The combined organic layers were 

washed with H2O (30 mL), 10% KHSO4 (30 mL), H2O (30 mL), and brine (30 mL). The 

solvent was dried (Na2SO4) and removed under reduced pressure. The crude product was 

recrystallized from ethyl acetate to obtain 52 as a white solid (5.72 g, 74%). mp 157 °C;  
1H NMR (500 MHz, DMSO-d6) δ 0.85 (d, 3J = 6.6 Hz, 3H, CH3CHCH3), 0.89 (d, 3J = 6.6 Hz, 

3H, CH3CHCH3), 1.38 (s, 9H, C(CH3)3), 1.41–1.44 (m, 2H, CHCH2), 1.59–1.67 (m, 1H, 

CH3CHCH3), 4.03–4.07 (m, 1H, NHCHCO), 4.24–4.32 (m, 2H, CH2NH), 6.28 (d, 3J = 

8.5 Hz, 1H, NHCHCO), 6.54 (t, 3J = 6.2 Hz, 1H, CH2NH), 7.41 (d, 3J = 8.5 Hz, 2H,  

H-2’, H-6’), 7.76 (d, 3J = 8.5 Hz, 2H, H-3’, H-5’); 13C NMR (125 MHz, DMSO-d6) δ 21.82, 

22.80, 24.50 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 27.78 (C(CH3)3), 41.13, 42.72 

(CHCH2, CH2NH), 51.92 (NHCHCO), 80.31 (C(CH3)3), 109.43 (C-4’), 119.04 (CN), 127.83 

(C-2’, C-6’), 132.24 (C-3’, C-5’), 147.08 (C-1’), 157.79 (NHCONH), 173.00 (NHCHCO); 

Anal. C19H27N3O3 (345.44 g/mol) calcd C 66.06, H 7.88, N 12.16; found C 66.46, H 7.90, 

N 12.30. 



3. EXPERIMENTAL SECTION  119 
 

3.3.18. PREPARATION OF 53 

1'

2'

3'

4'

5'

6'

N
H

N
H

O

O

NC

Ot-Bu

 

N-(4-Cyanophenylcarbamoyl)leucine tert-butyl ester. The hydrochloride salt of 47 (5.00 g, 

22.3 mmol) was dissolved in dry THF (50 mL) and treated with DIPEA (5.70 mL, 

33.3 mmol). The resulting reaction mixture was treated with 4-cyanophenyl isocyanate 

(3.55 g, 24.6 mmol) and stirred for 4 h at room temperature. After evaporation of the solvent, 

the residue was suspended in H2O. The aqueous suspension was adjusted with 10% KHSO4 to 

pH ~2 and extracted with ethyl acetate (3 × 30 mL). The combined organic layers were 

washed with H2O (20 mL), 10% KHSO4 (20 mL), H2O (20 mL), and brine (20 mL). The 

solvent was dried (Na2SO4) and evaporated under reduced pressure. The crude product was 

recrystallized from ethyl acetate/petroleum ether to obtain 53 as a white solid (6.70 g, 91%). 

mp 113 °C; 1H NMR (500 MHz, DMSO-d6) δ 0.88 (d, 3J = 6.6 Hz, 3H, CH3CHCH3), 0.91 (d, 
3J = 6.7 Hz, 3H, CH3CHCH3), 1.40 (s, 9H, C(CH3)3), 1.46–1.54 (m, 2H, CHCH2), 1.62–1.70 

(m, 1H, CH3CHCH3), 4.10–4.14 (m, 1H, NHCHCO), 6.61 (d, 3J = 8.2 Hz, 1H, NHCHCO), 

7.54 (d, 3J = 8.9 Hz, 2H, H-3’, H-5’), 7.65 (d, 3J = 8.8 Hz, 2H, H-2’, H-6’), 9.07 (s, 1H,  

C-1’NH); 13C NMR (125 MHz, DMSO-d6) δ 21.82, 22.77, 24.56 (CH3CHCH3, CH3CHCH3, 

CH3CHCH3), 27.78 (C(CH3)3), 40.91 (CHCH2), 51.64 (NHCHCO), 80.85 (C(CH3)3), 102.88 

(C-4’), 117.68 (C-2’, C-6’), 119.48 (CN), 133.36 (C-3’, C-5’), 144.69 (C-1’), 154.40 

(NHCONH), 172.36 (NHCHCO); Anal. C18H25N3O3 (331.41 g/mol) calcd C 65.23, H 7.60, 

N 12.68; found C 65.21, H 7.20, N 12.25. 
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N-[(4-Acetoxyamidino)benzylcarbamoyl]leucine tert-butyl ester. Compound 52 (2.00 g, 

5.79 mmol) was dissolved in EtOH (50 mL) and treated with DIPEA (1.97 mL, 11.5 mmol) 

and hydroxylamine hydrochloride (0.81 g, 11.7 mmol). The resulting solution was heated to 

reflux overnight. EtOH was evaporated, the oily residue was dissolved in dry MeCN (50 mL) 

and treated with acetic anhydride (1.64 mL, 17.5 mmol). The resulting solution was stirred at 

room temperature for 5 h. The solvent was removed in vacuo, and the oily residue was 

suspended in H2O. The aqueous suspension was adjusted to pH ~2 with 10% KHSO4 and 

extracted with ethyl acetate (3 × 20 mL). The combined organic layers were washed with 5% 

KHSO4 (2 × 20 mL), H2O (20 mL), sat. NaHCO3 (2 × 20 mL), H2O (20 mL), and brine 

(20 mL). The solvent was dried (Na2SO4) and removed under reduced pressure. The solid 

product was recrystallized from ethyl acetate/n-hexane to obtain 54 as a white solid (1.86 g, 

76% from 52). mp 148 °C; 1H NMR (500 MHz, DMSO-d6) δ 0.86 (d, 3J = 6.6 Hz, 3H, 

CH3CHCH3), 0.89 (d, 3J = 6.6 Hz, 3H, CH3CHCH3), 1.39 (s, 9H, C(CH3)3), 1.42–1.44 (m, 

2H, CHCH2), 1.60–1.68 (m, 1H, CH3CHCH3), 2.12 (s, 3H, CH3CO), 4.04–4.09 (m, 1H, 

NHCHCO), 4.20–4.28 (m, 2H, CH2NH), 6.21 (d, 3J = 8.2 Hz, 1H, NHCHCO), 6.46 (t, 
3J = 6.2 Hz, 1H, CH2NH), 6.72 (s, 2H, NH2), 7.28, 7.64 (d, 3J = 8.5 Hz, 2H, d, 3J = 8.2 Hz, 

2H, H-2’, H-6’, H-3’, H-5’); 13C NMR (125 MHz, DMSO-d6) δ 20.00 (CH3CO), 21.87, 22.85, 

24.54 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 27.83 (C(CH3)3), 41.23, 42.68 (CHCH2, 

CH2NH), 51.91 (NHCHCO), 80.34 (C(CH3)3), 126.70, 126.88 (C-3’, C-5’, C-2’, C-6’), 

130.08 (C-4’), 143.49 (C-1’), 156.41 (C=N), 157.83 (NHCONH), 168.64 (CH3CO), 173.10 

(NHCHCO); Anal. C21H32N4O5 (420.50 g/mol) calcd C 59.98, H 7.67, N 13.32; found 

C 59.64, H 7.48, N 13.05. 
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N-{4-[(2-Thiophenecarbonyl)oxyamidino]benzylcarbamoyl}leucine tert-butyl ester. 

Compound 52 (3.00 g, 8.68 mmol) was dissolved in EtOH (50 mL), and treated with DIPEA 

(2.98 mL, 17.4 mmol) and hydroxylamine hydrochloride (1.21 g, 17.4 mmol). The resulting 

solution was heated to reflux overnight. After evaporation of the solvent, the oily residue was 

suspended in H2O. The aqueous suspension was adjusted with 10% KHSO4 to pH ~2 and 

extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with 10% 

KHSO4 (20 mL), H2O (20 mL), sat. NaHCO3 (2 × 20 mL), H2O (20 mL), and brine (20 mL). 

The solvent was dried (Na2SO4) and removed under reduced pressure. The resulting oily 

residue (2.48 g, 6.55 mmol) was dissolved in dry MeCN (30 mL) and treated with DIPEA 

(2.24 mL, 13.1 mmol) and 2-thiophenecarbonyl chloride (1.40 mL, 13.1 mmol). The solution 

was stirred at room temperature for 5 h. The precipitated product was filtrated and washed 

with 10% KHSO4 (3 × 20 mL), H2O (20 mL), sat. NaHCO3 (3 × 20 mL), H2O (20 mL), and 

n-hexane (20 mL). The dry product was recrystallised from ethyl acetate/EtOH (10:3) to 

obtain 55 as a white solid (2.22 g, 52% from 52). mp 193 °C; 1H NMR (500 MHz, DMSO-d6) 

δ 0.87 (d, 3J = 6.6 Hz, 3H, CH3CHCH3), 0.90 (d, 3J = 6.7 Hz, 3H, CH3CHCH3), 1.40 (s, 9H, 

C(CH3)3), 1.42–1.45 (m, 2H, CHCH2), 1.61–1.69 (m, 1H, CH3CHCH3), 4.05–4.10 (m, 1H, 

NHCHCO), 4.22–4.30 (m, 2H, CH2NH), 6.21 (d, 3J = 8.5 Hz, 1H, NHCHCO), 6.48 (t, 
3J = 6.2 Hz, 1H, CH2NH), 6.87 (s, 2H, NH2), 7.24 (dd, 3J = 4.9 Hz, 3J = 3.6 Hz, 1H, H-4’’), 

7.32, 7.69 (d, 3J = 8.5 Hz, 2H, d, 3J = 8.6 Hz, 2H, H-2’, H-6’, H-3’, H-5’), 7.96 (dd, 
3J = 4.7 Hz, 4J = 1.3 Hz, 1H, H-5’’), 8.12 (dd, 3J = 3.8 Hz, 4J = 1.3 Hz, 1H, H-3’’); 13C NMR 

(125 MHz, DMSO-d6) δ 21.85, 22.82, 24.51 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 27.81 

(C(CH3)3), 41.21, 42.67 (CHCH2, CH2NH), 51.88 (NHCHCO), 80.30 (C(CH3)3), 126.87, 

126.90, 128.35, 129.94, 132.86, 133.76, 133.88, 143.65 (C-3’, C-5’, C-4’, C-2’, C-6’, C-4’’, 

C-5’’, C-3’’, C-2’’, C-1’), 156.98 (N=C), 157.79 (NHCONH), 159.79 (C-2’’CO), 173.07 

(NHCHCO); Anal. C24H32N4O5S (488.60 g/mol) calcd C 59.00, H 6.60, N 11.47; found 

C 59.04, H 6.51, N 11.44. 
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N-[(4-Acetoxyamidino)phenylcarbamoyl]leucine tert-butyl ester. Compound 53 (6.30 g, 

19.0 mmol) was dissolved in EtOH (50 mL), and treated with DIPEA (6.46 mL, 37.7 mmol) 

and hydroxylamine hydrochloride (2.64 g, 38.0 mmol). The resulting solution was heated to 

reflux overnight. After evaporation of the solvent, the oily residue was dissolved in dry 

MeCN (50 mL) and treated with acetic anhydride (5.39 mL, 57.4 mmol). The solution was 

stirred at room temperature for 5 h. The solvent was removed in vacuo, and the oily residue 

was suspended in H2O. The aqueous suspension was adjusted with 10% KHSO4 to pH ~2 and 

extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with 5% 

KHSO4 (2 × 30 mL), H2O (30 mL), sat. NaHCO3 (3 × 30 mL), H2O (30 mL), and brine 

(30 mL). The solvent was dried (Na2SO4) and removed under reduced pressure. The crude 

product was recrystallized from ethyl acetate to obtain 56 as a white solid (5.40 g, 70% from 

53). mp 95 °C; 1H NMR (500 MHz, DMSO-d6) δ 0.89 (d, 3J = 6.6 Hz, 3H, CH3CHCH3), 0.92 

(d, 3J = 6.6 Hz, 3H, CH3CHCH3), 1.41 (s, 9H, C(CH3)3), 1.44–1.54 (m, 2H, CHCH2), 1.63–

1.71 (m, 1H, CH3CHCH3), 2.11 (s, 3H, CH3CO), 4.11–4.15 (m, 1H, NHCHCO), 6.45 (d, 
3J = 8.2 Hz, 1H, NHCHCO), 6.62 (s, 2H, NH2), 7.42, 7.59 (d, 3J = 8.9 Hz, 2H, d, 3J = 8.9 Hz, 

2H, H-3’, H-5’, H-2’, H-6’), 8.74 (s, 1H, C-1’NH); 13C NMR (125 MHz, DMSO-d6) δ 20.00 

(CH3CO), 21.85, 22.77, 24.55 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 27.78 (C(CH3)3), 

41.07 (CHCH2), 51.56 (NHCHCO), 80.73 (C(CH3)3), 116.98 (C-2’, C-6’), 124.26 (C-4’), 

127.42 (C-3’, C-5’), 142.28 (C-1’), 154.66, 156.24 (N=C, NHCONH), 168.65, 172.56 

(CH3CO, NHCHCO); Anal. C20H30N4O5 (406.48 g/mol) calcd C 59.10, H 7.44, N 13.78; 

found C 58.96, H 7.41, N 13.41. 
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N-{4-[(2-Thiophenecarbonyl)oxyamidino]phenylcarbamoyl}leucine tert-butyl ester. 

Compound 53 (6.10 g, 18.4 mmol) was dissolved in EtOH (50 mL) and treated with DIPEA 

(6.30 mL, 36.8 mmol) and hydroxylamine hydrochloride (2.56 g, 36.8 mmol). The resulting 

solution was heated to reflux overnight. After evaporation of the solvent, the oily residue was 

suspended in H2O. The aqueous suspension was adjusted to pH ~2 with 10% KHSO4 and 

extracted with ethyl acetate (3 × 50 mL). The combined organic layers were washed with 10% 

KHSO4 (30 mL), H2O (30 mL), sat. NaHCO3 (2 × 30 mL), H2O (30 mL), and brine (30 mL). 

The solvent was dried (Na2SO4) and removed under reduced pressure. The resulting oily 

residue (3.96 g, 10.9 mmol) was dissolved in dry MeCN (50 mL), and treated with DIPEA 

(3.70 mL, 21.6 mmol) and 2-thiophenecarbonyl chloride (1.75 mL, 16.4 mmol). The solution 

was stirred at room temperature for 5 h. The precipitated product was filtrated and washed 

with 10% KHSO4 (3 × 20 mL), H2O (20 mL), sat. NaHCO3 (3 × 20 mL), H2O (20 mL) and  

n-hexane (20 mL). The dry product was recrystallised from ethyl acetate/EtOH (10:3) to 

obtain 57 as a white solid (3.58 g, 41% from 53). mp 195–196°C; 1H NMR (500 Hz, DMSO-

d6) δ 0.90 (d, 3J = 6.6 Hz, 3H, CH3CHCH3), 0.92 (d, 3J = 6.7 Hz, 3H, CH3CHCH3), 1.41 (s, 

9H, C(CH3)3), 1.48–1.52 (m, 2H, CHCH2), 1.64–1.72 (m, 1H, CH3CHCH3), 4.12–4.16 (m, 

1H, NHCHCO), 6.47 (d, 3J = 8.2 Hz, 1H, NHCHCO), 6.77 (s, 2H, NH2), 7.23 (dd, 
3J = 4.9 Hz, 3J = 3.7 Hz, 1H, H-4’’), 7.45, 7.64 (d, 3J = 8.8 Hz, 2H, d, 3J = 8.8 Hz, 2H, H-3’, 

H-5’, H-2’, H-6’), 7.95 (dd, 3J = 5.1 Hz, 4J = 1.3 Hz, 1H, H-5’’), 8.11 (dd, 3J = 3.6 Hz, 
4J = 1.4 Hz, 1H, H-3’’), 8.78 (s, 1H, C-1’NH); 13C NMR (125 MHz, DMSO-d6) δ 21.87, 

22.78, 24.57 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 27.80 (C(CH3)3), 41.09 (CHCH2), 

51.58 (NHCHCO), 80.75 (C(CH3)3), 117.03 (C-2’, C-6’), 124.12 (C-4’), 127.64 (C-3’, C-5’), 

128.34, 132.97, 133.67, 133.80 (C-4’’, C-5’’, C-3’’, C-2’’), 142.45 (C-1’), 154.68 (N=C), 

156.86 (NHCONH), 159.83 (C-2’’CO), 172.58 (NHCHCO); Anal. C23H30N4O5S (474.57 

g/mol) calcd C 58.21, H 6.37, N 11.81; found C 58.12, H 6.28, N 11.40. 
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N-[4-(5-Methyl-1,2,4-oxadiazol-3-yl)benzylcarbamoyl]leucine. Compound 54 (1.80 g, 

4.28 mmol) was dissolved in concentrated acetic acid (40 mL) and stirred at 80 °C for 5 h. 

After evaporation of the acetic acid, the oily product was dissolved in CH2Cl2 (40 mL) and 

treated with TFA (20 mL). The resulting solution was stirred for 5 h at room temperature. The 

solvent was evaporated, and the oily residue was suspended in H2O. The aqueous suspension 

was extracted with ethyl acetate (3 × 20 mL). The combined organic layers were washed with 

H2O (2 × 30 mL) and brine (30 mL). The solvent was dried (Na2SO4) and removed under 

reduced pressure. The solid product was recrystallized from ethyl acetate/n-hexane to obtain 

58 as a white solid (0.43 g, 29% from 54). mp 171 °C; 1H NMR (500 MHz, DMSO-d6) δ 0.86 

(d, 3J = 6.6 Hz, 3H, CH3CHCH3), 0.89 (d, 3J = 6.7 Hz, 3H, CH3CHCH3), 1.41–1.51 (m, 2H, 

CHCH2), 1.61–1.69 (m, 1H, CH3CHCH3), 2.64 (s, 3H, CH3C-5’’), 4.11–4.15 (m, 1H, 

NHCHCO), 4.23–4.32 (m, 2H, CH2NH), 6.24 (d, 3J = 8.5 Hz, 1H, NHCHCO), 6.51 (t, 
3J = 6.1 Hz, 1H, CH2NH), 7.40 (d, 3J = 8.5 Hz, 2H, H-2’, H-6’), 7.92 (d, 3J = 8.5 Hz, 2H, H-

3’, H-5’), 12.40 (s, 1H, COOH); 13C NMR (125 MHz, DMSO-d6) δ 12.13 (CH3C-5’’), 21.75, 

22.96, 24.50 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 41.18, 42.76 (CHCH2, CH2NH), 51.18 

(NHCHCO), 124.76 (C-4’), 127.00, 127.74 (C-3’, C-5’, C-2’, C-6’), 144.67 (C-1’), 157.94 

(NHCONH), 167.64, 175.30, 177.46 (C-3’’, NHCHCO, C-5’’); Anal. C17H22N4O4 (346.38 

g/mol) calcd C 58.95, H 6.40, N 16.17; found C 59.05, H 6.26, N 16.01. 
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N-[4-(5-Methyl-1,2,4-oxadiazol-3-yl)phenylcarbamoyl]leucine. Compound 56 (5.20 g, 

12.8 mmol) was dissolved in concentrated acetic acid (40 mL) and stirred at 80 °C for 5 h. 

After evaporation of the acetic acid, the oily product was dissolved in CH2Cl2 (40 mL) and 

treated with TFA (20 mL). The resulted solution was stirred for 5 h at room temperature. The 

solvent was evaporated, and the oily residue was suspended in H2O. The resulting aqueous 

suspension was extracted with ethyl acetate (3 × 20 mL). The combined organic layers were 

washed with H2O (2 × 30 mL) and brine (30 mL). The solvent was dried (Na2SO4) and 

removed under reduced pressure. The solid product was recrystallized from ethyl acetate/n-

hexane to obtain 60 as a white solid (2.80 g, 66% from 56). mp 156–158 °C; 1H NMR 

(500 MHz, DMSO-d6) δ 0.89–0.92 (m, 6H, CH(CH3)2), 1.48–1.58 (m, 2H, CHCH2), 1.65–

1.73 (m, 1H, CH(CH3)2), 2.61 (CH3C-5’’), 4.17–4.23 (m, 1H, NHCHCO), 6.52 (d, 
3J = 8.2 Hz, 1H, NHCHCO), 7.54 (d, 3J = 8.8 Hz, 2H, H-2’, H-6’), 7.85 (d, 3J = 8.8 Hz, 2H, 

H-3’, H-5’), 8.89 (s, 1H, C-1’NH), 12.62 (bs, 1H, COOH); 13C NMR (125 MHz, DMSO-d6)  

δ 12.09 (CH3C-5’’), 21.76, 22.94, 24.55 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 41.05 

(CHCH2), 50.90 (NHCHCO), 117.70 (C-2’, C-6’), 119.00 (C-4’), 127.92 (C-3’, C-5’), 143.23 

(C-1’), 154.70 (NHCONH), 167.53, 174.80, 177.05, (C-3’’, NHCHCO, C-5’’); Anal. 

C16H20N4O4 (332.35 g/mol) calcd C 57.82, H 6.07, N 16.86; found C 57.75, H 6.38, N 15.75. 
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N-{4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]phenylcarbamoyl}leucine. Compound 57 (3.00 g, 

6.32 mmol) was dissolved in concentrated acetic acid (40 mL) and stirred at 80 °C for 5 h. 

After evaporation of the acetic acid, the oily product was dissolved in CH2Cl2 (40 mL) and 

treated with TFA (20 mL). The resulting solution was stirred for 3 h at room temperature. 

After evaporation of the solvent, the oily residue was suspended in H2O. The aqueous 

suspension was extracted with ethyl acetate (3 × 30 mL). The combined organic layers were 

washed with H2O (2 × 30 mL) and brine (30 mL). The solvent was dried (Na2SO4) and 

removed under reduced pressure. The solid product was recrystallized from ethyl acetate/n-

hexane to obtain 61 as a white solid (1.29 g, 51% from 57). mp 146–148 °C; 1H NMR 

(500 MHz, DMSO-d6) δ 0.90–0.93 (m, 6H, CH(CH3)2), 1.49–1.59 (m, 2H, CHCH2), 1.65–

1.74 (m, 1H, CH(CH3)2), 4.19–4.23 (m, 1H, NHCHCO), 6.53 (d, 3J = 8.2 Hz, 1H, NHCHCO), 

7.35 (dd, 3J = 5.1 Hz, 3J = 3.8 Hz, 1H, H-4’’’), 7.58 (d, 3J = 8.8 Hz, 2H, H-2’, H-6’), 7.92 (d, 
3J = 8.5 Hz, 2H, H-3’, H-5’), 8.05, 8.09 (dd, 3J = 3.8 Hz, 4J = 1.3 Hz, 1H, dd, 3J = 5.1 Hz,  
4J = 1.0 Hz, 1H, H-5’’’, H-3’’’), 8.94 (C-1’NH), 12.63 (s, 1H, COOH); 13C NMR (125 MHz, 

DMSO-d6) δ 21.76, 22.94, 24.56 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 41.02 (CHCH2), 

50.90 (NHCHCO), 117.72 (C-2’, C-6’), 118.49 (C-5’’’), 124.82 (C-4’), 128.17 (C-3’, C-5’), 

129.35, 132.77, 134.01, (C-3’’’, C-4’’’, C-2’’’), 143.52 (C-1’), 154.67 (NHCONH), 168.06, 

170.89, 174.78 (C-3’’, NHCHCO, C-5’’); Anal. C19H20N4O4S (400.45 g/mol) calcd C 56.99, 

H 5.03, N 13.99; found C 56.24, H 5.15, N 13.45. 
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N-[4-(5-Methyl-1,2,4-oxadiazol-3-yl)benzylcarbamoyl]leucyl-methylazaalanine-nitrile. 

Compound 58 (0.25 g, 0.72 mmol) was dissolved in dry THF (30 mL) and cooled to -25 °C. 

To the stirred solution, N-methylmorpholine (0.09 mL, 0.82 mmol) and isobutyl 

chloroformate (0.11 mL, 0.84 mmol) were added consecutively. 1,2-Dimethylhydrazine 

dihydrochloride (0.48 g, 3.61 mmol) was dissolved in H2O (1 mL), and 5 N NaOH (2.00 mL) 

was added under ice-cooling. This solution was given to the reaction mixture when the 

precipitation of N-methylmorpholine hydrochloride occurred. It was allowed to warm to room 

temperature within 30 min, and stirred for additional 90 min. After evaporation of the solvent, 

the resulting aqueous residue was extracted with ethyl acetate (3 × 20 mL). The combined 

organic layers were washed with H2O (20 mL), sat. NaHCO3 (20 mL), H2O (20 mL), and 

brine (20 mL). The solvent was dried (Na2SO4) and evaporated. The crude product was 

purified by column chromatography on silica gel using MeOH/CH2Cl2 (1:40) to obtain  

N-[4-(5-methyl-1,2,4-oxadiazol-3-yl)benzylcarbamoyl]leucine 1,2-dimethylhydrazide as a 

colorless oil. Sodium acetate (0.14 g, 1.71 mmol) and cyanogen bromide (0.07 g, 0.66 mmol) 

were added to a solution of N-[4-(5-methyl-1,2,4-oxadiazol-3-yl)benzylcarbamoyl]leucine 

1,2-dimethylhydrazide (0.26 g, 0.67 mmol) in MeOH (30 mL). The mixture was stirred at 

room temperature for 24 h, and the solvent was removed under reduced pressure. The residue 

was suspended in H2O (10 mL), a pH of ~2 was adjusted (10% KHSO4), and it was extracted 

with ethyl acetate (3 × 20 mL). The combined organic layers were washed with H2O (20 mL), 

sat. NaHCO3 (2 × 20 mL), H2O (20 mL), and brine (20 mL). The solvent was dried (Na2SO4) 

and removed in vacuo. The oily residue was purified by column chromatography on silica gel 

using MeOH/CH2Cl2 (1:10) as eluent to obtain 62 as a white solid (0.16 g, 54% from 58).  

mp 68 °C; [α]20
D = +11.8 (c = 0.68, CHCl3); 

1H NMR (500 MHz, CDCl3) δ 0.95  

(d, 3J = 6.7 Hz, 3H, CH3CHCH3), 0.99 (d, 3J = 6.3 Hz, 3H, CH3CHCH3), 1.45–1.48 (m, 2H, 

CHCH2), 1.73–1.79 (m, 1H, CH3CHCH3), 2.62 (s, 3H, CH3C-5’’), 3.00, 3.27 (2 × s, 2 × 3H, 

N(CH3)CN, CONCH3), 4.29 (dd, 2J = 15.1 Hz, 3J = 5.4 Hz, 1H, CHHNH), 4.44 (dd, 
2J = 15.5 Hz, 3J = 6.0 Hz, 1H, CHHNH) 4.94–4.99 (m, 1H, NHCHCO), 5.58 (t, 3J = 5.5 Hz, 

1H, CH2NH), 5.74 (d, 3J = 8.8 Hz, 1H, NHCHCO), 7.33 (d, 3J = 8.2 Hz, 2H, H-2’, H-6’), 7.96 

(d, 3J = 8.2 Hz, 2H, H-3’, H-5’); 13C NMR (125 MHz, CDCl3) δ 12.36 (CH3C-5’’), 21.36,
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23.29, 24.86 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 30.49 (N(CH3)CN, 40.86 (CONCH3), 

41.39, 44.00 (CHCH2, CH2NH), 48.72 (NHCHCO), 114.47 (CN), 125.73 (C-4’), 127.55, 

127.78 (C-3’, C-5’, C-2’, C-6’), 142.37 (C-1’), 158.14 (NHCONH), 168.07, 176.55, 177.05 

(C-3’’, NHCHCO, C-5’’); FTIR (KBr, cm-1) 2223 (C≡N); Anal. C20H27N7O3 (413.47 g/mol) 

calcd C 58.10, H 6.58, N 23.71; found C 57.62, H 6.47, N 22.97; LC-MS(ESI) (90% H2O to 

100% MeOH in 20 min, then 100% MeOH to 30 min, DAD 220.3–319.9 nm) tr = 21.02, 99% 

purity, m/z = 414.1 ([M + H]+). 
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N-{4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]benzylcarbamoyl}leucyl-methylazaalanine-

nitrile.  Compound 55 (2.00 g, 4.09 mmol) was dissolved in concentrated acetic acid (40 mL) 

and stirred at 80 °C for 5 h. After evaporation of the acetic acid, the oily product was 

dissolved in CH2Cl2 (40 mL) and treated with TFA (20 mL). The resulting solution was 

stirred for 3 h at room temperature. The solvent was evaporated, and the oily residue was 

suspended in H2O. The aqueous suspension was extracted with ethyl acetate (3 × 20 mL). The 

combined organic layers were washed with H2O (2 × 30 mL) and brine (30 mL). The solvent 

was dried (Na2SO4) and removed under reduced pressure. The solid product was 

recrystallized from ethyl acetate/n-hexane to obtain 59 as a white solid (0.59 g, 35% from 55). 

Compound 59 (0.23 g, 0.55 mmol) was dissolved in dry THF (30 mL) and cooled to -25 °C. 

To the stirred solution, N-methylmorpholine (0.07 mL, 0.64 mmol) and isobutyl 

chloroformate (0.08 mL, 0.61 mmol) were added consecutively. 1,2-Dimethylhydrazine 

dihydrochloride (0.37 g, 2.78 mmol) was dissolved in H2O (1 mL), and 5 N NaOH (2.00 mL) 

was added under ice-cooling. This solution was given to the reaction mixture when the 

precipitation of N-methylmorpholine hydrochloride occurred. It was allowed to warm to room 

temperature within 30 min, and stirred for additional 90 min. After evaporation of the solvent, 

the resulting aqueous residue was extracted with ethyl acetate (3 × 20 mL). The combined 

organic layers were washed with H2O (20 mL), sat. NaHCO3 (20 mL), H2O (20 mL), and 

brine (20 mL). The solvent was dried (Na2SO4) and evaporated under reduced pressure. The 

crude product was purified on silica gel using ethyl acetate as eluent to obtain N-{4-[5-(2-

thienyl)-1,2,4-oxadiazol-3-yl]benzylcarbamoyl}leucine 1,2-dimethylhydrazide as a colorless 

oil. Sodium acetate (0.09 g, 1.10 mmol) and cyanogen bromide (0.04 g, 0.38 mmol) were 

added to a suspension of N-{4-[5-(2-thienyl)-1,2,4-oxadiazol-3-yl]benzylcarbamoyl}leucine 

1,2-dimethylhydrazide (0.17 g, 0.37 mmol) in MeOH (30 mL). The mixture was stirred at 

room temperature for 48 h, and the solvent was removed under reduced pressure. The residue 

was suspended in H2O (10 mL), a pH of ~2 was adjusted (10% KHSO4), and it was extracted 

with ethyl acetate (3 × 20 mL). The combined organic layers were washed with H2O (20 mL), 

sat. NaHCO3 (2 × 20 mL), H2O (20 mL), and brine (20 mL). The solvent was dried (Na2SO4) 

and removed in vacuo. The oily residue was purified by column chromatography on silica gel
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using ethyl acetate/petroleum ether (1:1) as eluent to obtain 63 as a white solid (0.12 g, 45% 

from 59). mp 96–98 °C. [α]20
D = +12.8 (c = 0.86, CHCl3); 

1H NMR (500 MHz, DMSO-d6) 

mixture of rotamers (only the data of the major rotational isomer are noted) δ 0.91–0.94 (m, 

6H, CH(CH3)2), 1.29–1.47 (m, 2H, CHCH2), 1.70 (bs, 1H, CH(CH3)2), 3.09, 3.22 (2 × s, 

2 × 3H, N(CH3)CN, CONCH3), 4.30 (d, 3J = 5.7 Hz, 2H, CH2NH), 4.74–4.77 (m, 1H, 

NHCHCO), 6.41 (d, 3J = 8.2 Hz 1H, NHCHCO), 6.55 (t, 3J = 5.5 Hz, 1H, CH2NH), 7.36 (dd, 
3J = 5.1 Hz, 3J = 3.8 Hz, 1H, H-4’’’), 7.43 (d, 3J = 8.2 Hz, 2H, H-2’, H-6’), 7.99 (d, 
3J = 8.6 Hz, 2H, H-3’, H-5’), 8.07, 8.10 (dd, 3J = 3.8 Hz, 4J = 1.3 Hz, 1H, dd, 3J = 5.1 Hz, 
4J = 1.3 Hz, 1H, H-5’’’; H-3’’’); 13C NMR (125 MHz, DMSO-d6) δ 21.45, 23.31, 24.52 

(CH3CHCH3, CH3CHCH3, CH3CHCH3), 30.50 (N(CH3)CN), CONCH3 obscured by the 

DMSO signal, 40.96 (CHCH2), 42.79 (CH2NH), 48.08 (NHCHCO), 114.30 (CN), 124.36, 

124.67, 127.24, 127.79, 129.39, 132.93, 134.18, 144.85 (C-5’’’, C-3’’’, C-3’, C-5’, C-2’, C-

6’, C-4’’’, C-4’, C-2’’’, C-1’), 158.07 (NHCONH), 168.16, 171.19, 175.29 (C-3’’, NHCHCO, 

C-5’’); FTIR (KBr, cm-1) 2222 (C≡N); Anal. C23H27N7O3S (481.57 g/mol) calcd C 57.36, 

H 5.65, N 20.36; found C 56.63, H 5.80, N 19.43. LC-MS(ESI) (90% H2O to 100% MeOH in 

20 min, then 100% MeOH to 30 min, DAD 199.6–300.0 nm) tr = 23.00, 95% purity, 

m/z = 482.1 ([M + H]+). 
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N-[4-(5-Methyl-1,2,4-oxadiazol-3-yl)phenylcarbamoyl]leucyl-methylazaalanine-nitrile. 

Compound 60 (1.50 g, 4.51 mmol) was dissolved in dry THF (40 mL) and cooled to -25 °C. 

To the stirred solution, N-methylmorpholine (0.54 mL, 4.91 mmol) and isobutyl 

chloroformate (0.65 mL, 4.99 mmol) were added consecutively. 1,2-Dimethylhydrazine 

dihydrochloride (3.00 g, 22.6 mmol) was suspended in H2O (3 mL), and 10 N NaOH 

(5.00 mL) was added under ice-cooling. This solution was given to the reaction mixture when 

the precipitation of N-methylmorpholine hydrochloride occurred. It was allowed to warm to 

room temperature within 30 min, and stirred for additional 90 min. After evaporation of the 

solvent, the resulting aqueous residue was extracted with ethyl acetate (3 × 30 mL). The 

combined organic layers were washed with H2O (30 mL), sat. NaHCO3 (30 mL), H2O 

(30 mL), and brine (30 mL). The solvent was dried (Na2SO4) and evaporated. The crude 

product was purified by column chromatography on silica gel using ethyl acetate to obtain  

N-[4-(5-methyl-1,2,4-oxadiazol-3-yl)phenylcarbamoyl]leucine 1,2-dimethylhydrazide as a 

colorless oil. Sodium acetate (0.48 g, 5.85 mmol) and cyanogen bromide (0.47 g, 4.44 mmol) 

were added to a solution of N-[4-(5-methyl-1,2,4-oxadiazol-3-yl)phenylcarbamoyl]leucine 

1,2-dimethylhydrazide (1.10 g, 2.94 mmol) in MeOH (30 mL). The mixture was stirred at 

room temperature for 48 h, and the solvent was removed under reduced pressure. The residue 

was suspended in H2O (10 mL), a pH of ~2 was adjusted (10% KHSO4), and it was extracted 

with ethyl acetate (3 × 30 mL). The combined organic layers were washed with H2O (20 mL), 

sat. NaHCO3 (2 × 30 mL), H2O (30 mL), and brine (30 mL). The solvent was dried (Na2SO4) 

and removed in vacuo. The oily residue was purified by column chromatography on silica gel 

using MeOH/CH2Cl2 (40:1) as eluent. Additionally, the product was recrystallized from ethyl 

acetate/petroleum ether to obtain 64 as a white solid (0.66 g, 37% from 60). mp 185 °C; 

[α]20
D = +65.6 (c = 0.32, CHCl3); 

1H NMR (500 MHz, DMSO-d6) mixture of rotamers (only 

the data of the major rotational isomer are noted) δ 0.93–0.97 (m, 6H, CH(CH3)2), 1.36–1.53 

(m, 2H, CHCH2), 1.73 (bs, 1H, CH(CH3)2), 2.62 (s, 3H, CH3C-5’’), 3.11, 3.27 (2 × s, 2 × 3H, 

N(CH3)CN, CONCH3), 4.80–4.83 (m, 1H, NHCHCO), 6.64 (d, 3J = 8.2 Hz, 1H, NHCHCO), 

7.53 (d, 3J = 8.5 Hz, 2H, H-2’, H-6’), 7.85 (d, 3J = 8.8 Hz, 2H, H-3’, H-5’), 8.89 (s, 1H,  

C-1’NH); 13C NMR (125 MHz, DMSO-d6) δ 12.09 (CH3C-5’’), 21.40, 23.29, 24.57 

(CH3CHCH3, CH3CHCH3, CH3CHCH3,), 30.56 (N(CH3)CN), 40.46, 40.94 (CONCH3,
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CHCH2), 47.91 (NHCHCO), 114.22 (CN), 117.79 (C-2’, C-6’), 119.15 (C-4’), 127.92 (C-3’, 

C-5’), 142.98 (C-1’), 154.93 (NHCONH), 167.50, 174.67, 177.07 (C-3’’, NHCHCO, C-5’’); 

FTIR (KBr, cm-1) 2219 (C≡N); Anal. C19H25N7O3 (399.45 g/mol) calcd C 57.13, H 6.31, 

N 24.55; found C 57.05, H 6.72, N 24.06; LC-MS(ESI) (90% H2O to 100% MeOH in 20 min, 

then 100% MeOH to 30 min, DAD 239.8–340.8 nm) tr = 21.83, 98% purity, 

m/z = 400.3 ([M + H]+). 
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N-{4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]phenylcarbamoyl}leucyl-methylazaalanine-

nitrile.  Compound 61 (0.65 g, 1.62 mmol) was dissolved in dry THF (30 mL) and cooled to 

-25 °C. To the stirred solution, N-methylmorpholine (0.20 mL, 1.82 mmol) and isobutyl 

chloroformate (0.24 mL, 1.84 mmol) were added consecutively. 1,2-Dimethylhydrazine 

dihydrochloride (1.07 g, 8.04 mmol) was suspended in H2O (1 mL), and 5 N NaOH 

(3.40 mL) was added under ice-cooling. This solution was given to the reaction mixture when 

the precipitation of N-methylmorpholine hydrochloride occurred. It was allowed to warm to 

room temperature within 30 min, and stirred for additional 90 min. After evaporation of the 

solvent, the resulting aqueous residue was extracted with ethyl acetate (3 × 20 mL). The 

combined organic layers were washed with H2O (20 mL), sat. NaHCO3 (20 mL), H2O 

(20 mL), and brine (20 mL). The solvent was dried (Na2SO4) and evaporated under reduced 

pressure. The crude product was purified by column chromatography on silica gel using ethyl 

acetate as eluent to obtain N-{4-[5-(2-thienyl)-1,2,4-oxadiazol-3-yl]phenylcarbamoyl}leucine 

1,2-dimethylhydrazide as a colourless oil . Sodium acetate (0.28 g, 3.41 mmol) and cyanogen 

bromide (0.16 g, 1.51 mmol) were added to a solution of N-{4-[5-(2-thienyl)-1,2,4-oxadiazol-

3-yl]phenylcarbamoyl}leucine 1,2-dimethylhydrazide (0.61 g, 1.38 mmol) in MeOH (30 mL). 

The mixture was stirred at room temperature for 48 h, and the solvent was removed under 

reduced pressure. The residue was suspended in H2O (10 mL), a pH of ~2 was adjusted (10% 

KHSO4) and it was extracted with ethyl acetate (3 × 20 mL). The combined organic layers 

were washed with H2O (20 mL), sat. NaHCO3 (2 × 20 mL), H2O (20 mL), and brine (20 mL). 

The solvent was dried (Na2SO4) and removed in vacuo. The oily residue was purified by 

column chromatography on silica gel using ethyl acetate as eluent to obtain 65 as a white 

solid (0.51 g, 67% from 61). mp 92 °C; [α]20
D = +53.0 (c = 1.05, CHCl3); 

1H NMR 

(500 MHz, DMSO-d6) mixture of rotamers (only the data of the major rotational isomer are 

noted) δ 0.94 (d, 3J = 6.7 Hz, 3H, CH3CHCH3), 0.97 (d, 3J = 6.0 Hz, 3H, CH3CHCH3), 1.37–

1.55 (m, 2H, CHCH2), 1.74 (bs, 1H, CH3CHCH3), 3.12, 3.27 (2 × s, 2 × 3H, N(CH3)CN, 

CONCH3), 4.81–4.84 (m, 1H, NHCHCO), 6.65 (d, 3J = 7.9 Hz, 1H, NHCHCO), 7.35 (dd, 
3J = 5.0 Hz, 3J = 3.8 Hz, 1H, H-4’’’), 7.57 (d, 3J = 8.8 Hz, 2H, H-2’, H-6’), 7.92 (d, 
3J = 8.9 Hz, 2H, H-3’, H-5’), 8.05, 8.09 (dd, 3J = 3.8 Hz, 4J = 1.0 Hz, 1H, dd, 3J = 4.9 Hz,
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4J = 1.1 Hz, 1H, H-5’’’, H-3’’’), 8.95 (s, 1H, C-1’NH); 13C NMR (125 MHz, DMSO-d6)  

δ 21.39, 23.29, 24.58 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 30.57 (N(CH3)CN), 40.48 

(CONCH3), 40.94 (CHCH2), 47.93 (NHCHCO), 114.21 (CN), 117.79 (C-2’, C-6’), 118.64 

(C-5’), 124.79 (C-4’), 128.17 (C-3’, C-5’), 129.34, 132.77, 134.00 (C-3’’’, C-4’’’, C-2’’’), 

143.27 (C-1’), 154.89 (NHCONH), 168.03, 170.90, 174.65 (C-3’’, NHCHCO, C-5’’); FTIR 

(KBr, cm-1) 2224 (C≡N). Anal. C22H25N7O3S (467.54 g/mol) calcd C 56.52, H 5.39, N 20.97; 

found C 56.41, H 5.77, N 19.94; LC-MS(ESI) (90% H2O to 100% MeOH in 20 min, then 

100% MeOH to 30 min, DAD 220.0–400.0 nm) tr = 21.70, 99% purity, m/z = 

468.5 ([M + H]+). 
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N-{4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]phenylcarbamoyl}leucyl-glycine-nitrile. 

Compound 61 (1.00 g, 2.50 mmol) was dissolved in dry THF (30 mL) and cooled to -25 °C. 

To the stirred solution, N-methylmorpholine (0.30 mL, 2.73 mmol) and isobutyl 

chloroformate (0.36 mL, 2.76 mmol) were added consecutively. Aminoacetonitrile 

monosulfate (1.31 g, 8.50 mmol) was dissolved in H2O (2 mL), and 5 N NaOH (3.00 mL) was 

added under ice-cooling. This solution was given to the reaction mixture when the 

precipitation of N-methylmorpholine hydrochloride occurred. It was allowed to warm to room 

temperature within 30 min, and stirred for additional 90 min. After evaporation of the solvent, 

the resulting aqueous residue was extracted with ethyl acetate (3 × 20 mL). The combined 

organic layers were washed with H2O (20 mL), sat. NaHCO3 (20 mL), H2O (20 mL), and 

brine (20 mL). The solvent was dried (Na2SO4) and evaporated under reduced pressure. The 

oily crude product was purified by column chromatography on silica gel using ethyl 

acetate/petroleum ether as eluent to obtain 66 as a white solid (0.29 g, 26%). mp 237 °C;  
1H NMR (500 MHz, DMSO-d6) δ 0.89–0.92 (m, 6H, CH(CH3)2), 1.42–1.52 (m, 2H, CHCH2), 

1.59–1.67 (m, 1H, CH(CH3)2), 4.15 (d, 3J = 6.3 Hz, 2H, NHCH2CN), 4.24–4.29 (m, 1H, 

NHCHCO), 6.52 (d, 3J = 8.2 Hz, 1H, NHCHCO), 7.35 (dd, 3J = 5.1 Hz, 3J = 3.8 Hz, 1H,  

H-4’’’), 7.58 (d, 3J = 8.9 Hz, 2H, H-2’, H-6’), 7.92 (d, 3J = 8.9 Hz, 2H, H-3’, H-5’), 8.05, 8.09 

(dd, 3J = 3.6 Hz, 4J = 1.1 Hz, 1H, dd, 3J = 5.1 Hz, 4J = 1.3 Hz, 1H, H-5’’’, H-3’’’), 8.83  

(t, 3J = 5.7 Hz, 1H, NHCH2CN), 8.93 (s, 1H, C-1’NH); 13C NMR (125 MHz, DMSO-d6)  

δ 21.91, 23.06, 24.43 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 27.21 (NHCH2CN), 41.79 

(CHCH2), 51.29 (NHCHCO), 117.65 (CN), 117.70 (C-2’, C-6’), 118.51 (C-5’’’), 124.81  

(C-4’), 128.19 (C-3’, C-5’), 129.36, 132.77, 134.01 (C-3’’’, C-4’’’, C-2’’’), 143.49 (C-1’), 

154.48 (NHCONH), 168.05, 170.90, 173.44 (C-3’’, NHCHCO, C-5’’); FTIR (KBr, cm-1) 

2253 (C≡N); Anal. C21H22N6O3S (438.50 g/mol) calcd C 57.52, H 5.06, N 19.17; found 

C 57.50, H 5.15, N 19.02; LC-MS(ESI) (90% H2O to 100% MeOH in 20 min, then 100% 

MeOH to 30 min, DAD 220.0–400.0 nm) tr = 20.08, 100% purity, m/z = 439.3 ([M + H]+). 
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N-{4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]benzoyl}-leucyl-methylazaalanine-nitrile. 

Sodium acetate (0.19  g, 2.32 mmol) and cyanogen bromide (0.19 g, 1.79 mmol) were added 

to a solution of 89 (0.50 g, 1.17 mmol) in MeOH (20 mL). The mixture was stirred at room 

temperature for 48 h, and the solvent was removed under reduced pressure. The oily residue 

was purified by column chromatography on silica gel using ethyl acetate/petroleum (1:1) as 

eluent to obtain 67 (0.28 g, 53%). mp 92–94 °C; [α]20
D = +47.7 (c = 1.24, CHCl3); 

1H NMR 

(500 MHz, DMSO-d6) mixture rotamers (only the data of the major rotational isomer are 

noted) δ 0.96 (d, 3J = 6.4 Hz, 6H, CH(CH3)2), 1.37–1.44 (m, 1H, CH(CH3)2), 1.72–1.89 (m, 

2H, CHCH2), 3.13, 3.32 (2 × s, 2 × 3H, N(CH3)CN, CONCH3), 5.04 (bs, 1H, NHCHCO), 

7.37 (dd, 3J = 5.1 Hz, 3J = 3.8 Hz, 1H, H-4’’’), 8.08–8.10, 8.12 (m, 3H, dd, 3J = 5.1 Hz, 
4J = 1.3 Hz, 1H, H-3’’’, H-3’, H-5’, H-5’’’), 8.15 (d, 3J = 8.2 Hz, 2H, H-2’, H-6’), 8.95 (d, 
3J = 7.0 Hz, NHCHCO); 13C NMR (125 MHz, DMSO-d6) δ 21.14, 23.24, 24.73 (CH3CHCH3, 

CH3CHCH3, CH3CHCH3), 30.55 (N(CH3)CN), CONCH3 obscured by the DMSO, 40.89 

(CHCH2), 48.74 (NHCHCO), 114.29 (CN), 124.52 (C-5’’’), 127.19, 128.63, 129.43, 133.13, 

134.40, 136.41 (C-3’, C-5’, C-2’, C-6’, C-3’’’, C-4’’’, C-2’’’, C-4’, C-1’), 166.27, 167.77, 

171.50, 174.03 (C-3’’, C-1’CO, NHCHCO, C-5’’); FTIR (KBr, cm-1) 2223 (C≡N); Anal. 

C22H24N6O3S (452.53 g/mol) calcd C 58.39, H 5.35, N 18.57; found C 58.41, H 5.84, 

N 17.55; LC-MS(ESI) (90% H2O to 100% MeOH in 20 min, then 100% MeOH to 30 min, 

DAD 220.0–400.0 nm) tr = 18.99, 95% purity, m/z = 453.3 ([M + H]+). 
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N-{4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]benzoyl}-N-methylleucyl-methylazaalanine-

nitrile.  Sodium acetate (0.26 g, 3.17 mmol) and cyanogen bromide (0.25 g, 2.36 mmol) were 

added to a solution of 90 (0.70 g, 1.59 mmol) in MeOH (30 mL). The mixture was stirred at 

room temperature for 31 h, and the solvent was removed under reduced pressure. The oily 

residue was purified by column chromatography on silica gel using ethyl acetate/petroleum 

ether (1:2) as eluent to obtain 68 as a white solid (0.46 g, 62%). mp 92–94 °C; [α]20
D = + 3.8 

(c = 1.20, CHCl3); 
1H NMR (500 MHz, CDCl3) mixture of s-cis and s-trans isomers δ 0.86a, 

1.00b, 1.06c, 1.09d (bsa, db, 
3J = 6.0 Hz, dc, 

3J = 6.6 Hz, dd, 
3J = 6.3 Hz 6H, CH(CH3)2) 1.54–

1.60a, 1.67–1.77b (2 × m, 2H, CHCH2), 1.95–2.01 (bs, 1H, CH(CH3)2), 2.49, 2.81, 3.11, 3.20, 

3.23, 3.36 (6 × s, 9H, CH3NCHCO, N(CH3)CN, CONCH3), 5.64–5.67a, 5.78b (ma, bsb, 1H, 

CH3NCHCO), 7.21 (dd, 3J = 4.8 Hz, 3J = 3.8 Hz, 1H, H-4’’’), 7.52a, 7.65–7.68b, 7.95c, 8.18d 

(da, 
3J = 8.2 Hz, mb, 3H, ddc, 

3J = 3.7 Hz, 4J = 0.80 Hz, 1H, dd, 
3J = 8.2 Hz, 2H, H-3’, H-5’, 

H-5’’’, H-3’’’, H-2’, H-6’); 13C NMR (125 MHz, DMSO-d6) mixture of s-cis and s-trans 

isomers (only the data of the major rotational isomer are noted) δ 21.19, 23.23, 25.71 

(CH3CHCH3, CH3CHCH3, CH3CHCH3), 30.28, 33.97 (N(CH3)CN, CH3NCHCO), 37.42 

(CONCH3), 40.73 (CHCH2), 51.52 (CH3NCHCO), 113.80 (CN), 125.63, 127.65, 127.70, 

128.20, 128.56, 132.05, 132.19, 138.61 (C-4’, C-3’, C-5’, C-4’’’, C-5’’’, C-2’, C-6’, C-3’’’, 

C-2’’’, C-1’), 168.15, 171.61. 172.57, 174.34 (C-3’’, C-1’CO, CH3NCHCO, C-5’’); FTIR 

(KBr, cm-1) 2219 (C≡N); Anal. C23H26N6O3S (466.56 g/mol) calcd C 59.21, H 5.62, N 18.01; 

found C 59.27, H 5.61, N 17.19; LC-MS(ESI) (90% H2O to 100% MeOH in 20 min, then 

100% MeOH to 30 min, DAD 220.0–400.0 nm) tr = 19.66, 96% purity, 

m/z = 467.6 ([M + H]+). 
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4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]-benzoic acid. Compound 74 (2.00 g, 5.77 mmol) was 

suspended in concentrated acetic acid (70 mL). The resulting reaction mixture was stirred at 

80 °C overnight. Acetic acid was removed. The residue was disolved in CH2Cl2 (40 mL) and 

treated with TFA (5 mL). The reaction mixture was stirred at room temperature for 6 h. The 

solvent was evaporated under reduced pressure. The crude product was recrystallized from 

ethyl acetate/petroleum ether to obtain 69 (1.31 g, 83% from 74). mp 232 °C; 1H NMR 

(500 MHz, DMSO-d6) 7.36 (dd, 3J = 5.1 Hz, 3J = 3.8 Hz, 1H, H-4’’’), 8.09, 8.11–8.13 (dd, 
3J = 3.8 Hz, 4J = 1.3 Hz, 1H, m, 3H, H-5’’’, H-3’, H-5’, H-3’’’), 8.16 (d, 3J = 8.9 Hz, 2H,  

H-2’, H-6’), 13.23 (s, 1H, COOH); 13C NMR (125 MHz, DMSO-d6) δ 124.50 (C-5’’’), 127.51 

(C-3’, C-5’), 129.46, 129.82 (C-3’’’, C-4’’’), 130.29 (C-2’, C-6’), 133.17, 133.63, 134.46  

(C-1’, C-2’’’, C-4’), 166.75, 167.72, 171.57 (C-3’’, COOH, C-5’’); Anal. C13H8N2O3S 

(272.28 g/mol) calcd C 57.35, H 2.96, N 10.29; found C 57.37, H 2.88, N 10.18.  
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4-Cyanobenzoic acid tert-butyl ester. 4-Cyanobenzoic acid 72 (4.50 g, 30.6 mmol) was 

dissolved in dry CH2Cl2 (100 mL). Oxalyl chloride (4.00 mL, 47.3 mmol) and DMF (1 mL) 

were added. The resulting reaction mixture was stirred at room temperature for 1 h until the 

gas evolution was ceased. The solvent was removed. The resulting residue was treated with 

60 mL of a pyridine/tert-butanol mixture (1:1) and stirred for 6 h at room temperature. The 

solvent was evaporated under reduced pressure, and the green residue was suspended in H2O. 

The aqueous suspension was extracted with ethyl acetate (3 × 50 mL). The combined organic 

layers were washed with 10% KHSO4 (2 × 50 mL), H2O (50 mL), sat. NaHCO3 (2 × 50 mL), 

H2O (50 mL), and brine (2 × 50 mL). The solvent was dried (Na2SO4) and evaporated. The 

crude product was purified by column chromatography using ethyl acetate/petroleum ether 

(1:4) to obtain 73 as a white solid (4.81 g, 77%). mp 78 °C; 1H NMR (500 Hz, DMSO-d6)  

δ 1.54 (s, 3H, C(CH3)3), 7.96 (d, 3J = 8.9 Hz, 2H, H-3’, H-5’), 8.03 (d, 3J = 8.8 Hz, 2H, H-2’, 

H-6’); 13C NMR (125 MHz, DMSO-d6) δ 28.52 (C(CH3)3), 82.81 (C(CH3)3), 115.99 (C-4’), 

118.98 (CN), 130.52 (C-2’, C-6’), 133.54 (C-3’, C-5’), 136.06 (C-1’), 164.47 (COO); Anal. 

C12H13NO2 (203.24 g/mol) calcd C 70.92, H 6.45, N 6.89; found C 70.72, H 6.43, N 6.91. 
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4-[(2-Thiophenecarbonyl)oxyamidino]-benzoic acid tert-butyl ester. Compound 73 

(2.00 g, 9.84 mmol) was dissolved in EtOH (70 mL). Triethylamine (2.54 mL, 18.2 mmol) 

and hydroxylamine hydrochloride (1.27 g, 18.3 mmol) were added. The resulting reaction 

mixture was heated to reflux for 3 h. EtOH was removed, the oily residue was suspended in 

H2O and extracted with ethyl acetate (3 × 50 mL). The combined organic layers were washed 

with 10% KHSO4 (50 mL), H2O (50 mL), brine (50 mL), and dried over Na2SO4. After 

evaporation of the solvent, the white solid residue was dissolved in dry MeCN (40 mL). The 

resulting reaction mixture was treated under ice-cooling with triethylamine (2.54 mL, 

18.2 mmol) and 2-thiophenecarbonyl chloride (1.96 mL, 18.3 mmol), and stirred for 5 h at 

room temperature. The solvent was evaporated under reduced pressure, and the white residue 

was suspended in H2O. The aqueous suspension was extracted with ethyl acetate (3 × 50 mL). 

The combined organic layers were washed with 10% KHSO4 (2 × 50 mL), H2O (50 mL), sat. 

NaHCO3 (2 × 50 mL), H2O (50 mL), and brine (2 × 50 mL). The solvent was dried (Na2SO4) 

and removed in vacuo. The crude product was recrystallized from ethyl acetate/petroleum 

ether to obtain 74 as a white solid (2.60 g, 76% from 73). mp 170 °C; 1H NMR (500 MHz, 

DMSO-d6) δ 1.56 (s, 9H, C(CH3)3), 7.05 (s, 2H, NH2), 7.25 (dd, 3J = 5.1 Hz, 3J = 3.8 Hz, 1H, 

H-4’’), 7.87, 7.96–7.98 (d, 3J = 8.8 Hz, 2H, m, 3H, H-3’, H-5’,H-2’, H-6’, H-5’’), 8.15 (dd, 
3J = 3.8 Hz, 4J = 1.3 Hz, 1H, H-3’’); 13C NMR (125 MHz, DMSO-d6) δ 27.90 (C(CH3)3), 

81.30 (C(CH3)3), 127.26 (C-3’, C-5’), 128.40 (C-4’’), 129.13 (C-2’, C-6’), 132.64, 133.19, 

133.96, 134.06 135.73 (C-1’, C-4’,C-5’’, C-3’’, C-2’’), 156.39, 159.70, 164.57 (C-2’’CO, 

N=C, C-1’CO); Anal. C17H18N2O4S (346.40 g/mol) calcd C 58.94, H 5.24, N 8.09; found 

C 59.04, H 5.30, N 8.07. 
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Leucyl-glycine-nitrile.  Compound 75 (5.00 g, 21.6 mmol) was dissolved in dry THF (30 mL) 

and cooled to -25 °C. To the stirred solution, N-methylmorpholine (2.61 mL, 23.7 mmol) and 

isobutyl chloroformate (3.10 mL, 23.8 mmol) were added consecutively. Aminoacetonitrile 

monosulfate (6.65 g, 43.1 mmol) was suspended in H2O (3 mL). The resulting suspension was 

treated with 5 N NaOH (17.0 mL) under ice-cooling and added to the reaction mixture when 

the precipitation of N-methylmorpholine hydrochloride occurred. It was allowed to warm to 

room temperature within 30 min, and stirred for additional 90 min. After evaporation of the 

solvent, the resulting aqueous residue was extracted with ethyl acetate (3 × 30 mL). The 

combined organic layers were washed with 10% KHSO4 (30 mL), H2O (30 mL), sat. 

NaHCO3 (30 mL), H2O (30 mL), and brine (30 mL). The solvent was dried (Na2SO4) and 

removed in vacuo to obtain N-(tert-butyloxycarbonyl)leucyl-glycine-nitrile as a white solid 

(5.78 g, 99%). N-(tert-Butyloxycarbonyl)leucyl-glycine-nitrile (5.78 g, 21.5 mmol) was 

dissolved in dry THF (20 mL) and treated with methanesulfonic acid (8.40 mL, 0.13 mol). 

The reaction mixture was stirred at room temperature for 30 min. THF was removed under 

reduced pressure, and the oily residue was dissolved in H2O (10 mL). The obtained solution 

was adjusted at pH ~12 with 2 N NaOH and extracted with ethyl acetate (3 × 30 mL). The 

combined organic layers were washed with sat. NaHCO3 (30 mL), H2O (30 mL), and brine 

(30 mL) and dried over Na2SO4. The solvent was evaporated, and the oily residue was 

purified by column chromatography using MeOH/CH2Cl2 (1:20) to obtain 77 as an oily 

product (1.20 g, 33% from N-(tert-butyloxycarbonyl)leucyl-glycine-nitrile). 1H NMR (500 

MHz, DMSO-d6) δ 0.84 (d, 3J = 6.6 Hz, 3H, CH3CHCH3), 0.87 (d, 3J = 6.6 Hz, 3H, 

CH3CHCH3), 1.20–1.42 (m, 2H, CHCH2), 1.66–1.74 (CH3CHCH3), 3.17–3.20 (NH2CHCO), 

4.09 (s, 2H, NHCH2CN); 13C NMR (125 MHz, DMSO-d6) δ 21.87, 23.27, 24.17 

(CH3CHCH3, CH3CHCH3, CH3CHCH3), 27.09 (NHCH2CN), 44.26 (CHCH2), 53.11 

(NH2CHCO), 117.83 (CN), 176.65 (NH2CHCO). 
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N-{4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]benzoyl}-leucyl-glycine-nitrile.  Compound 69 

(1.32 g, 4.85 mmol) was dissolved in dry THF (20 mL) and cooled to -25 °C. To the stirred 

solution, N-methylmorpholine (0.59 mL, 5.37 mmol) and isobutyl chloroformate (0.70 mL, 

5.37 mmol) were added consecutively. Compound 77 (1.10 g, 6.50 mmol) in dry THF 

(10 mL) was given to the reaction mixture when the precipitation of N-methylmorpholine 

hydrochloride occurred. It was allowed to warm to room temperature within 30 min, and 

stirred for additional 90 min. After evaporation of the solvent, the resulting aqueous residue 

was extracted with ethyl acetate (3 × 20 mL). The combined organic layers were washed with 

H2O (20 mL), sat. NaHCO3 (20 mL), H2O (20 mL), and brine (20 mL). The solvent was dried 

(Na2SO4) and removed in vacuo. The crude product was purified by column chromatography 

on silica gel using ethyl acetate/petroleum ether (1:2) as eluent to obtain 79 as a white solid 

(1.01 g, 49% from 69). mp 195 °C; [α]20
D = -23.9 (c = 1.34, CHCl3); 

1H NMR (500 MHz, 

DMSO-d6) δ 0.88 (d, 3J = 6.3 Hz, 3H, CH3CHCH3), 0.92 (d, 3J = 6.6 Hz, 3H, CH3CHCH3), 

1.54–1.60 (m, 1H, CH3CHCH3), 1.63–1.77 (m, 2H, CHCH2), 4.14 (d, 3J = 5.7 Hz, 2H, 

NHCH2CN), 4.52–4.57 (m, 1H, NHCHCO), 7.37 (dd, 3J = 5.1 Hz, 3J = 3.8 Hz, 1H, H-4’’’), 

8.09–8.13 (m, 4H, H-3’, H-5’, H-3’’’, H-5’’’), 8.15 (d, 3J = 8.5 Hz, 2H, H-2’, H-6’), 8.73 (t, 
3J = 5.5 Hz, 1H, NHCH2CN), 8.76 (d, 3J = 8.2 Hz, 1H, NHCHCO); 13C NMR (125 MHz, 

DMSO-d6) δ 21.41, 23.13, 24.56 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 27.30 

(NHCH2CN), CHCH2 obscured by the DMSO signal), 51.81 (NHCHCO), 117.71 (CN), 

124.53 (C-5’’’), 127.12 (C-3’, C-5’), 128.53 (C-3’’’), 128.69 (C-2’, C-6’), 129.44, 133.14, 

134.41, 136.79 (C-4’’’, C-2’’’, C-4’, C-1’), 165.83, 167.80, 171.51, 172.94 (C-3’’, C-1’CO, 

NHCHCO, C-5’’); FTIR (KBr, cm-1) 2258 (C≡N); Anal. C21H21N5O3S (423.49 g/mol) calcd 

C 59.56, H 5.00, N 16.54; found C 59.45, H 4.99, N 16.08. LC-MS(ESI) (90% H2O to 100% 

MeOH in 20 min, then 100% MeOH to 30 min, DAD 220.0–400.0 nm) tr = 18.92, 98% 

purity, m/z = 424.3 ([M + H]+). 
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N-{4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]benzoyl}-N-methylleucyl-glycine-nitrile. 

Compound 76 (1.00 g, 4.08 mmol) was dissolved in dry THF (20 mL) and cooled to -25 °C. 

To the stirred solution, N-methylmorpholine (0.49 mL, 4.46 mmol) and isobutyl 

chloroformate (0.61 mL, 4.68 mmol) were added consecutively. Aminoacetonitrile 

monosulfate (1.57 g, 10.2 mmol) was dissolved in H2O (2 mL) and treated with 10 N NaOH 

(2 mL). This solution was given to the reaction mixture when the precipitation of  

N-methylmorpholine hydrochloride occurred. It was allowed to warm to room temperature 

within 30 min, and stirred for additional 90 min. After evaporation of the solvent, the 

resulting aqueous residue was extracted with ethyl acetate (3 × 20 mL). The combined 

organic layers were washed with H2O (20 mL), 10% KHSO4 (20 mL), H2O (20 mL), sat. 

NaHCO3 (20 mL), H2O (20 mL), and brine (20 mL). The solvent was dried (Na2SO4) and 

evaporated in vacuo to obtain N-(tert-butyloxycarbonyl)-N-methylleucyl-glycine-nitrile as a 

yellow oil. N-(tert-Butyloxycarbonyl)-N-methylleucyl-glycine-nitrile (1.17 g, 3.93 mmol) was 

dissolved in dry THF (20 mL) and treated with methanesulfonic acid (0.79 mL, 12.2 mmol). 

The resulting solution was stirred for 5 h at room temperature. The solvent was removed 

under reduced pressure. The oily residue was dissolved in H2O (10 mL). The aqueous solution 

was adjusted at pH ~12 with 2 N NaOH and extracted with ethyl acetate (3 × 30 mL). The 

combined organic layers were washed with H2O (20 mL), sat. NaHCO3 (20 mL), H2O 

(20 mL), and brine (20 mL). The solvent was dried (Na2SO4) and evaporated in vacuo to 

obtain 78 as a yellow oil. Compound 69 (0.87 g, 3.20 mmol) was dissolved in dry THF 

(20 mL). To the stirred solution, DMAP (0.026 g, 0.21 mmol) and EDC (0.83 mL, 

4.69 mmol) were added consecutively. The resulting reaction mixture was stirred for 15 min 

at room temperature. Compound 78 (0.86 g, 4.69 mmol) was added. It was stirred for 18 h at 

rt. The solvent was removed, and the oily residue was suspended in H2O. The aqueous 

susspension was extracted with ethyl acetate (3 × 20 mL). The combined organic layers were 

washed with H2O (20 mL), 10% KHSO4 (20 mL), H2O (20 mL), sat. NaHCO3 (20 mL), H2O 

(20 mL), and brine (20 mL). The solvent was dried (Na2SO4) and evaporated. The crude 

product was purified by column chromatography on silica gel using ethyl acetate/petroleum 

ether (1:1) as eluent to obtain 80 as a yellow solid (0.60 g, 43% from 69). mp 68–72 °C;
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[α]20
D = -72.1 (c = 1.04, CHCl3); 

1H NMR (500 MHz, DMSO-d6) mixture of s-cis and s-trans 

isomers δ 0.60a, 0.82b, 0.94c, 0.98d (da, 
3J = 4.8 Hz, bsb, dc,

 3J = 6.3 Hz, dd, 
3J = 6.4 Hz, 6H 

CH3CHCH3, CH3CHCH3), 1.21a, 1.39b, 1.58c, 1.70–1.76d (bsa, bsb, bsc, md, 3H, CH3CHCH3, 

CHCH2), 2.83a, 2.94b (2 × s, 3H, NCH3), 4.09a, 4.16b (da, 
3J = 4.8 Hz, db, 

3J = 5.4 Hz, 2H, 

NHCH2CN), 5.12–5.15 (m, 1H, CH3NCHCO), 7.37 (dd, 3J = 5.0 Hz, 3J = 3.8 Hz, 1H, H-4’’’), 

7.51a, 7.63b (da, 
3J = 6.9 Hz, db, 

3J = 7.9 Hz, 2H, H-3’, H-5’), 8.09–8.14 (m, 4H, H-2’, H-6’, 

H-3’’’, H-5’’’), 8.72 a, 8.78b (2 × bs, 1H, NHCH2CN); 13C NMR (125 MHz, DMSO-d6) 

mixture of s-cis and s-trans isomers δ 21.15, 21.57, 22.99, 23.28, 24.40, 24.71 (CH3CHCH3, 

CH3CHCH3, CH3CHCH3), 27.42, 29.35 (NHCH2CN), 33.46, 36.78 (NCH3), 37.72, 40.90 

(CHCH2), 54.30, 59.96 (CH3NCHCO), 117.54, 117.67 (CN), 124.54, 126.98, 127.37, 127.46, 

127.98, 129.43, 133.10, 134.37, 139.33 (C-5’’’, C-3’, C-5’, C-3’’’, C-2’, C-6’, C-4’’’, C-4’, 

C-2’’’, C-1’), 167.79, 170.51, 170.71, 171.19, 171.46 (C-3’’, C-1’CO, CH3NCHCO, C-5’’); 

FTIR (KBr, cm-1) 2254 (C≡N); Anal. C22H23N5O3S (437.51 g/mol) calcd C 60.39, H 5.30, 

N 16.01; found C 60.76, H 6.09, N 14.64. LC-MS(ESI) (90% H2O to 100% MeOH in 20 min, 

then 100% MeOH to 30 min, DAD 220.0–400.0 nm) tr = 19.77, 100% purity, m/z = 438.4 

([M + H]+). 
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4-Benzyloxycarbonyl-5-isobutyl-1,2-dimethyl-3,6-dioxo-1,2,4-triazinane. Compound 81 

(5.00 g, 11.2 mmol) was cooled to -25 °C. N-methylmorpholine (1.24 g, 12.3 mmol) and 

isobutyl chloroformate (1.68 g, 12.3 mmol) were added consecutively. 1,2-Dimethylhydrazine 

dihydrochloride (7.45 g, 56.0 mmol) was suspended in H2O (15 mL), and 10 N NaOH 

(12.0 mL) was added under ice-cooling. This solution was given to the reaction mixture when 

the precipitation of N-methylmorpholine hydrochloride occurred. It was allowed to warm to 

room temperature within 30 min and stirred overnight at room temperature. After evaporation 

of the solvent, the resulting aqueous residue was extracted with ethyl acetate (3 × 60 mL). The 

combined organic layers were washed with H2O (30 mL), sat. NaHCO3 (2 × 30 mL), H2O 

(30 mL), and brine (30 mL). The solvent was dried (Na2SO4) and evaporated to obtain 82 as a 

colourless oil without further purification (3.43 g, 100%). Compound 82 (3.43 g, 11.2 mmol) 

was dissolved in MeCN (20 mL). The resulting solution was treated with DMAP (0.07 g, 

0.57 mmol), and (Boc)2O (3.67 g, 16.8 mmol). It was stirred for 38 h at room temperature. 

The solvent was removed under reduced pressure. The oily residue was suspended in H2O 

(30 mL), a pH of ~ 2 was adjusted (10% KHSO4), and it was extracted with ethyl acetate 

(3 × 60 mL). The combined organic layers were washed with 10% KHSO4 (30 mL), H2O 

(30 mL), sat. NaHCO3 (30 mL), H2O (30 mL), and brine (30 mL). The solvent was dried 

(Na2SO4) and removed in vacuo. The oily residue was purified by column chromatography on 

silica gel using ethyl acetate/petroleum ether (1:1) as eluent to obtain 84 as a white solid 

(2.43 g, 65% from 82). mp 81–82 °C; [α]20
D = -8.29 (c = 2.17, CHCl3); 

1H NMR (500 MHz, 

DMSO-d6) δ 0.88–0.90 (m, 6H, CH(CH3)2), 1.34–1.49 (m, 2H, CHCH2), 1.54–1.62 (m, 1H, 

CH(CH3)2), 3.13 (s, 3H, NCH3), 3.21 (s, 3H, NCH3), 4.59 (dd, 3J = 8.8 Hz, 3J = 6.9 Hz, 1H, 

NCHCO), 5.18 (d, 1H, 2J = 12.6 Hz, OCHH), 5.25 (d, 1H, 2J = 12.6 Hz, OCHH), 7.31–7.42 

(m, 5H, Harom); 13C NMR (125 MHz, DMSO-d6) δ 22.06, 22.34, 24.27 (CH3CHCH3, 

CH3CHCH3, CH3CHCH3,), 32.13, 33.76, 38.85 (CHCH2, 2 × NCH3), 55.96 (NCHCO), 68.14 

(CH2O), 127.83 (C’-2, C’-6), 128.25 (C’-4), 128.52 (C’-3, C’-5), 135.63 (C’-1), 149.15, 

152.22(OCON, NCON), 165.67 (NCHCO); Anal. C17H23N3O4 (333.38  g/mol) calcd C 61.25, 

H 6.95, N 12.60; found C 61.30, H 6.63, N 11.87. MS (ESI) m/z 334.3 ([M + H]+). 
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N-(Benzyloxycarbonyl)-N-methylleucine 1,2-dimethylhydrazide. Compound 85 (5.00 g, 

17.9 mmol) was dissolved in dry THF (40 mL) and cooled to -25 °C. To the stirred solution, 

N-methylmorpholine (2.17 mL, 19.7 mmol) and isobutyl chloroformate (2.57 mL, 19.7 mmol) 

were added consecutively. 1,2-Dimethylhydrazine dihydrochloride (11.9 g, 89.5 mmol) was 

suspended in H2O (5 mL), and 10 N NaOH (18.0 mL) was added under ice-cooling. This 

solution was given to the reaction mixture when the precipitation of N-methylmorpholine 

hydrochloride occurred. It was allowed to warm to room temperature within 30 min, and 

stirred overnight at rt. After evaporation of the solvent, the resulting aqueous residue was 

extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with H2O 

(20 mL), sat. NaHCO3 (2 × 20 mL), H2O (20 mL), and brine (20 mL). The solvent was dried 

(Na2SO4) and evaporated. The crude product was purified by column chromatography using 

ethyl acetate/petroleum ether (1:1) to obtain 86 as an oily product (3.10 g, 54%). 1H NMR 

(500 MHz, DMSO-d6) mixture of s-cis and s-trans isomers δ 0.82a, 0.86b, 0.89c (da, 
3J = 6.0 Hz, db,

 3J = 6.0 Hz, dc, 
3J = 6.0 Hz, 6H, CH3CHCH3, CH3CHCH3), 1.39–1.47 (m, 2H, 

CHCH2), 1.53–1.59 (m, 1H, CH3CHCH3), 2.26a, 2.43b (da, 
3J = 5.4 Hz, db 

3J = 5.7 Hz, 3H, 

NHCH3), 2.82a, 2.86b (2 × s, 3H, OCONCH3), 2.89a, 2.90b (2 × s, 3H, CONCH3), 4.74–4.82 

(m, 1H, NHCH3), 5.02–5.11 (m, 2H, CH2O), 5.43a, 5.52b (dda, 
3J = 10.3 Hz, 3J = 4.0 Hz, ddb, 

3J = 10.6 Hz, 3J = 3.9 Hz, 1H, CH3NCHCO), 7.28–7.37 (m, 5H, Harom); 13C NMR (125 MHz, 

DMSO-d6) mixture of s-cis and s-trans isomers δ 21.28, 21.36, 23.15, 23.21, 24.72, 24.85 

(CH3CHCH3, CH3CHCH3, CH3CHCH3), 29.95, 30.19, 30.87 (OCONCH3, NHCH3), 34.90, 

35.03, 37.38, 37.62 (CONCH3, CHCH2), 52.22, 52.32 (CH3NCHCO), 66.24, 66.44 (CH2O), 

127.47, 127.60 (C-2’, C-6’), 127.84 (C-4’), 128.38, 128.47 (C-3’, C-5’), 137.00, 137.21  

(C-1’), 155.83, 156.08 (OCON), 173.09, 173.52 (CH3NCHCO). 
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N-{4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]benzoyl}-leucine 1,2-dimethylhydrazide. 

Compound 81 (10.0 g, 37.7 mmol) was dissolved in dry THF (60 mL). The resulting solution 

was cooled to -25 °C. N-methylmorpholine (4.55 mL, 41.4 mmol) and isobutyl chloroformate 

(5.40 mL, 41.4 mmol) were added consecutively. 1,2-Dimethylhydrazine dihydrochloride 

(10.0 g, 75.2 mmol) was suspended in H2O (15 mL), and 10 N NaOH (15.0 mL) was added 

under ice-cooling. This solution was given to the reaction mixture when the precipitation of  

N-methylmorpholine hydrochloride occurred. It was allowed to warm to room temperature 

within 30 min, and stirred overnight at rt. After evaporation of the solvent, the resulting 

aqueous residue was extracted with ethyl acetate (3 × 60 mL). The combined organic layers 

were washed with H2O (30 mL), sat. NaHCO3 (2 × 30 mL), H2O (30 mL), and brine (30 mL). 

The solvent was dried (Na2SO4) and evaporated. The crude product was purified on silica gel 

using ethyl acetate/petroleum ether (1:1) to obtain 82 as a colourless oil (8.30 g, 72%). 

Compound 82 (2.00 g, 6.51 mmol) was dissolved in MeOH (10 mL). The resulting solution 

was treated with Pd/C (0.20 g) and hydrogenated in a hydrogen flow for 2 h (2 bar, room 

temperature). Pd/C was filtered off, and MeOH was removed under reduced pressure to 

obtain 87 without purification (1.30 g). Compound 69 (1.11 g, 4.08 mmol) was suspended in 

dry CH2Cl2 (50 mL) and treated with DMAP (0.04 g, 0.33 mmol). EDC (1.27 mL, 

7.17 mmol) was added (the reaction mixture became clear), and the resulting solution was 

stirred for 15 min at room temperature. Compound 87 (1.30 g) in dry CH2Cl2 (10 mL) was 

added to the reaction mixture. It was stirred for 18 h at room temperature. CH2CH2 was 

removed. The resulting oily residue was suspended in H2O and extracted with ethyl acetate 

(3 × 50 mL). The combined organic layers were washed with sat. NaHCO3 (2 × 50 mL), H2O 

(50 mL), and brine (50 mL). The solvent was dried (Na2SO4) and evaporated. The oily residue 

was purified by column chromatography on silica gel using MeOH/CH2Cl2 (1:40) as eluent to 

obtain 89 as a white solid (0.77 g, 44% from 69). mp 68–70 °C; 1H NMR (500 MHz, DMSO-

d6) δ 0.90 (d, 3J = 1.9 Hz, 3H, CH3CHCH3), 0.92 (d, 3J = 1.9 Hz, 3H, CH3CHCH3), 1.41–1.47 

(m, 1H, CH3CHCH3), 1.65–1.76 (m, 2H, CHCH2), 2.55 (d, 3J = 5.4 Hz, 3H, NHCH3), 2.96 (s, 

3H, CONCH3), 4.89 (q, 3J = 5.6 Hz, NHCH3), 5.42–5.46 (m, 1H, NHCHCO), 7.37 (dd, 
3J = 5.0 Hz, 3J = 3.8 Hz, 1H, H-4’’’), 8.07 (d, 3J = 8.5 Hz, 2H, H-3’, H-5’), 8.10, 8.12–8.13
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(dd, 3J = 3.8 Hz, 4J = 1.3 Hz, 1H, m, 3H, C-3’’’, C-2’, C-6’, C-5’’’), 8.48 (d, 3J = 8.5 Hz, 1H, 

NHCHCO); 13C NMR (125 MHz, DMSO-d6) δ 21.30, 23.46, 24.86 (CH3CHCH3, 

CH3CHCH3, CH3CHCH3), 31.06 (NHCH3), 35.05 (CONCH3), 48.28 (NHCHCO), 124.54 (C-

5’’’), 127.10 (C-3’, C-5’), 128.28 (C-3’’’), 128.52 (C-2’, C-6’), 129.43, 133.11, 134.38, 

137.29 (C-4’’’, C-2’’’, C-4’, C-1’), 165.49, 167.83, 171.47, 174.15 (C-3’’, C-1’CO, 

NHCHCO, C-5’’); Anal. C21H25N5O3S (427.52 g/mol) calcd C 59.00, H 5.89, N 16.38; found 

C 58.12, H 5.90, N 16.01. 
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N-{4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]benzoyl}-N-methylleucine 1,2-dimethylhydra-

zide. Compound 86 (2.50 g, 7.78 mmol) was dissolved in MeOH (10 mL). The resulting 

solution was treated with Pd/C (0.25 g) and hydrogenated in a hydrogen flow for 3 h (2 bar, 

room temperature). Pd/C was filtered off, and MeOH was removed under reduced pressure to 

obtain 88 without purification (1.61 g). Compound 69 (1.58 g, 5.80 mmol) was suspended in 

dry CH2Cl2 (50 mL) and treated with DMAP (0.05 g, 0.41 mmol). EDC (1.52 mL, 

8.59 mmol) was added while the reaction mixture became clear, and it was stirred for 15 min 

at room temperature. Compound 88 (1.61 g) was dissolved in dry CH2Cl2 (10 mL) and added 

to the reaction mixture. It was stirred for 42 h at room temperature. CH2CH2 was removed, 

and the oily residue was extracted with ethyl acetate (3 × 50 mL). The combined organic 

layers were washed with sat. NaHCO3 (2 × 50 mL), H2O (50 mL), and brine (50 mL). The 

solvent was dried (Na2SO4) and evaporated. The oily residue was purified by column 

chromatography on silica gel using ethyl acetate/petroleum ether (5:1) as eluent to obtain 90 

as a white solid (0.81 g, 32% from 69). mp 58–60 °C; 1H NMR (500 MHz, DMSO-d6) 

mixture of s-cis and s-trans isomers δ 0.72a, 0.75b, (da, 
3J = 6.6 Hz, db, 

3J = 6.6 Hz, 3H, 

CH3CHCH3), 0.96 (app. t, 3J = 5.8 Hz, 3H, CH3CHCH3), 1.28–1.39 (m, 1H, CH3CHCH3), 

1.50–1.76 (m, 2H, CHCH2), 2.11a, 2.54b (da, 
3J = 5.7 Hz, db, 

3J = 5.7 Hz, 3H, NHCH3), 2.90a, 

2.92b (2 × s, 3H, CH3NCHCO), 2.96a, 2.97b (2 × s, 3H, CONCH3), 4.68 (q, 3J = 5.6 Hz, 1H, 

NHCH3), 4.85–4.91 (m, 1H, CH3NCHCO), 7.37 (dd, 3J = 4.7 Hz, 3J = 3.8 Hz, 1H, H-4’’’), 

7.48a, 7.55b (da, 
3J = 8.2 Hz, db, 

3J = 8.2 Hz, 2H, H-3’, H-5’), 8.08–8.12 (m, 4H, H-2’, H-6’, 

H-3’’’, H-5’’’); 13C NMR (125 MHz, DMSO-d6) mixture of s-cis and s-trans isomers 

δ 21.60, 21.88, 22.34, 23.28, 24.85, 25.14 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 29.32, 

30.92, 31.05, 33.64 (CH3NCHCO, NHCH3), 34.75, 35.17, 37.12, 38.09 (CONCH3, CHCH2), 

50.75, 56.03 (CH3NCHCO), 124.55, 126.56, 126.70, 127.19, 127.42, 127.52, 127.72, 129.42, 

133.08, 134.35 (C-5’’’, C-3’, C-5’, C-3’’’, C-2’, C-6’, C-4’’’, C-4’, C-2’’’), 140.09, 140.18 

(C-1’), 167.80, 170.13, 170.65, 171.43, 171.86, 173.11 (C-3’’, C-1’CO, CH3NCHCO, C-5’’); 

Anal. C22H27N5O3S (441.55 g/mol) calcd C 59.84, H 6.16, N 15.86; found C 59.59, H 6.55,  

N 14.72.  
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N-{4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]benzoyl}homocycloleucyl-methylazaalanine-

nitrile.  Compound 116 (0.30 g, 0.68 mmol) was suspended in MeOH (30 mL) and treated 

with NaOAc (0.17 g, 2.07 mmol) and BrCN (0.15 g, 1.42 mmol). The resulting mixture was 

stirred at room temperature for 22 h. The solvent was evaporated under reduced pressure. The 

residue was suspended in H2O and extracted with ethyl acetate (3 ×30 mL), washed with 10% 

KHSO4 (30 mL), H2O (30 mL), sat. NaHCO3 (30 mL), H2O (30 mL), and brine (30 mL). The 

solvent was dried over Na2SO4 and removed under reduced pressure. The crude solid product 

was purified by column chromatography using ethyl acetate/petroleum ether 1:1 as eluent to 

obtain 92 as a white solid (0.12 g, 38%). mp 206 °C; 1H NMR (500 MHz, CDCl3) δ 1.35–1.40 

(m, 1H, Hcyclohexane), 1.49–1.53 (m, 2H, Hcyclohexane), 1.68–1.79 (m, 3H, Hcyclohexane), 1.97–2.02 

(m, 2H, Hcyclohexane), 2.94 (s, 3H, N(CH3)CN), 3.22 (s, 3H, CONCH3), 6.52 (s, 1H,  

C-1’’CONH), 7.22 (dd, 3J = 5.1 Hz, 3J = 3.8 Hz, 1H, H-4’’’’), 7.67 (dd, 3J = 5.1 Hz, 
4J = 1.3 Hz, 1H, H-3’’’’), 7.91 (d, 3J = 8.5 Hz, 2H, H-3’’, H-5’’); 7.96 (dd, 3J = 3.8 Hz, 
4J = 1.3 Hz, 1H, H-5’’’’), 8.23 (d, 3J = 8.6 Hz, 2H, H-2’’, H-6’’); 13C NMR (125 MHz, 

CDCl3) δ 21.75 (C-3’, C-5’), 25.02 (C-4’), 31.94 (C-2’, C-6’), 33.11 (NH(CH3)CN), 41.07 

(CONCH3), 59.50 (C-1’), 114.51 (CN), 125.53 (C-5’’’’), 127.53 (C-3’’, C-5’’), 128.04 (C-

2’’, C-6’’), 128.60, 130.13 (C-3’’’’, C-4’’’’), 132.15, 132.31 (C-2’’’’, C-4’’), 136.13 (C-1’’), 

165.28, 167.96, 171.73, 173.10 (C-1’’CONH, C-3’’’, NHCCO, C-5’’’); LC-MS(ESI) (90% 

H2O to 100% MeOH in 20 min, then 100% MeOH to 30 min, DAD 220.0–400.0 nm) 

tr = 15.37, 97% purity, m/z = 465.2 ([M + H]+).  
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Homocycloleucine benzyl ester p-toluenesulfonate. 1-Amino-1-cyclohexanecarboxylic acid 

93 (4.00 g, 27.9 mmol) and p-toluenesulfonic acid (6.37 g, 37.0 mmol) were suspended in a 

mixture of toluene and benzyl alcohol 4:1 (100 mL) and heated to reflux under Dean-Stark 

conditions for 8 h. Toluene was removed, and the white residue was suspended in the -25 °C 

cold ethyl acetate/petroleum ether (1:1) mixture. The suspension was filtered off, washed with 

ethyl acetate and petroleum ether, and dried to obtain 94 as a white solid (11.0 g, 97%). mp 

165–167 °C; 1H NMR (500 MHz, DMSO-d6) δ 1.38–1.41 (m, 2H, Hcyclohexane), 1.52–1.59 (m, 

4H, Hcyclohexane), 1.69–1.74 (m, 2H, Hcyclohexane), 1.94–2.00 (m, 2H, Hcyclohexane), 2.28 (s, 3H,  

C-4’’’CH 3), 5.25 (s, 2H, OCH2), 7.10–7.12 (m, 2H, H-3’’’, H-5’’’), 7.34–7.42 (m, 5H, 

Harom’’), 7.48 (d, 2H, 3J = 7.9 Hz, H-2’’’, H-6’’’), 8.43 (s, 3H, NH3
+); 13C NMR (125 MHz, 

DMSO-d6) δ 20.32 (C-3’, C-5’), 20.92 (C-4’’’CH3), 23.92 (C-4’), 31.39 (C-2’, C-6’), 58.86 

(C-1’), 67.53 (OCH2), 125.65 (C-2’’, C-6’’), 128.20 (C-2’’’, C-6’’’, C-3’’, C-5’’,), 128.54  

(C-4’’), 128.69 (C-3’’’, C-5’’’), 135.35 (C-1’’), 137.80 (C-1’’’), 145.81 (C-4’’’), 170.87 

(COO); Anal. C21H27NO5S (405.51 g/mol) calcd C 62.20, H 6.71, N 3.45; found C 62.10, 

H 6.65, N 3.39. 
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N-(4-Cyanophenylcarbamoyl)homocycloleucine benzyl ester. Compound 94 (3.00 g, 

7.40 mmol) and triethylamine (2.25 g, 22.2 mmol) were dissolved in a dry THF (40 mL) and 

treated with 4-cyanophenyl isocyanate (1.07 g, 7.42 mmol). The resulting reaction mixture 

was stirred at room temperature for 1 h. THF was removed, and the residue was suspended in 

H2O. The aqueous suspension was extracted with ethyl acetate (3 × 30 mL). The combined 

organic layers were washed with saturated NaHCO3 (2 × 30 mL), water (30 mL), 10% 

KHSO4 (30 mL), H2O (30 mL), and brine (30 mL), dried and evaporated under reduced 

pressure. The crude product was recrystallized from ethyl acetate to obtain 95 as a white solid 

(2.60 g, 93%). mp 188–190 °C; 1H NMR (500 MHz, DMSO-d6) δ 1.21–1.28 (m, 1H, 

Hcyclohexane), 1.41–1.48 (m, 2H, Hcyclohexane), 1.55–1.57 (m, 3H, Hcyclohexane), 1.70–1.76 (m, 2H, 

Hcyclohexane), 5.07 (s, 2H, OCH2), 6.77 (s, 1H, NHC-1’), 7.22–7.31 (m, 5H, Harom’’), 7.52 (d, 

2H, 3J = 9.2 Hz, H-3’’’, H-5’’’), 7.66 (d, 2H, 3J = 8.9 Hz, H-2’’’, H-6’’’), 8.95 (s, 1H,  

C-1’’’NH); 13C NMR (125 MHz, DMSO-d6) δ 21.04 (C-3’, C-5’), 24.90 (C-4’), 32.38 (C-2’, 

C-6’), 57.95 (C-1’), 65.84 (OCH2), 102.81 (C-4’’’), 117.63 (C-2’’’, C-6’’’), 119.50 (CN), 

127.74 (C-2’’, C-6’’), 127.94 (C-4’’), 128.36 (C-3’’, C-5’’), 133.34 (C-3’’’, C-5’’’), 136.45 

(C-1’’’), 144.64 (C-1’’), 154.00 (NHCONH), 174.21 (COO); Anal. C22H23N3O3 

(377.44 g/mol) calcd C 70.01, H 6.14, N 11.13; found C 70.04, H 6.17, N 11.12. 
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2-{4-[(2-Thiophenecarbonyl)oxyamidino]phenyl}-2,4-diazaspiro[4.5]decan-1,3-

dione. Compound 95 (2.40 g, 6.36 mmol) was dissolved in EtOH (50 mL) and treated with 

DIPEA (1.64 g, 12.7 mmol) and hydroxylamine hydrochloride (0.88 g, 12.7 mmol). The 

resulting solution was refluxed for 3 h. EtOH was evaporated, the oily residue was dissolved 

in MeCN (30 mL) and treated with triethylamine (1.30 g, 12.8 mmol) and 2-thiophencarbonyl 

chloride (1.86 g, 12.7 mmol). The solution was stirred at room temperature for 1 h. The 

precipitated product was filtrated off and washed with 10% KHSO4 (3 × 20 mL), H2O 

(20 mL), sat. NaHCO3 (3 × 20 mL), H2O (20 mL), and n-hexane (20 mL). The dry product 

was recrystallised from EtOH/H2O (10:1) to obtain 97 as a white solid (2.30 g, 88%). mp 

> 230 °C; 1H NMR (500 Hz, DMSO-d6) δ 1.29–1.36 (m, 1H, Hcyclohexane), 1.54–1.61 (m, 3H, 

Hcyclohexane), 1.68–1.78 (m, 6H, Hcyclohexane), 6.99 (s, 2H, NH2), 7.25 (dd, 3J = 4.8 Hz, 
3J = 3.8 Hz, 1H, H’’’-4), 7.49a, 7.84b (da, 2H, 3J = 8.8 Hz, db, 2H, 3J = 8.9 Hz, H’’-3, H’’-5, 

H’’-2, H’’-6), 7.97a, 8.14b (dda, 
3J = 4.9 Hz, 4J = 1.1 Hz, 1H, ddb, 1H, 3J = 3.8 Hz, 

4J = 1.3 Hz, H’’’-3, H’’’-4), 8.99 (s, 1H, CONH); 13C NMR (125 MHz, DMSO-d6) δ 20.93 

(C-7’, C-9’), 24.54 (C-8’), 33.49 (C-6’, C-10’), 61.08 (C-5’), 126.58 (C’’-2, C’’-6), 127.39 

(C-3’’, C-5’’), 128.39 (C-4’’), 130.81 (C-4’’’), 132.78, 133.87, 133.98 (C-3’’’, C-5’’’, C-

2’’’), 134.26 (C-1’’), 154.44 (NCONH), 156.62 (COON), 159.76 (N=C), 175.75 (NHCCO); 

Anal. C20H20N4O4S (412.46 g/mol) calcd C 58.24, H 4.89, N 13.58; found C 58.25, H 4.89,  

N 13.36. MS(ESI) m/z = 413.3 ([M + H]+). 
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N-(Phenylcarbamoyl)-homocycloleucine benzyl ester. Compound 94 (2.00 g, 4.93 mmol) 

was dissolved in dry THF (50 mL) and treated with DIPEA (3.19 g, 24.7 mmol). The 

resulting solution was treated with phenyl isocyanate (0.59 g, 4.95 mmol) and stirred for 1 h 

at rt. After evaporation of the solvent, the resulting residue was suspended in H2O and 

extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with sat. 

NaHCO3 (60 mL), H2O (60 mL), 10% KHSO4 (60 mL), H2O (60 mL), and brine (60 mL). 

The solvent was dried (Na2SO4) and evaporated to obtain 98 as a white solid (1.36 g, 78%). 

mp 181–182 °C; 1H NMR (500 MHz, DMSO-d6) δ 1.20–1.28 (m, 1H, Hcyclohexane), 1.42–1.49 

(m, 2H, Hcyclohexane), 1.54–1.57 (m, 3H, Hcyclohexane), 1.69–1.75 (m, 2H, Hcyclohexane), 1.95–1.98 

(m, 2H, Hcyclohexane), 5.06 (s, 2H, OCH2), 6.52 (s, 1H, NHCCO), 6.89–6.92 (m, 1H, Harom), 

7.20–7.25 (m, 5H, Harom), 7.30–7.32 (m, 2H, Harom), 7.34–7.36 (m, 2H, Harom), 8.41 (s, 1H,  

C-1’’’NH); 13C NMR (125 MHz, DMSO-d6) δ 21.07 (C-3’, C-5’), 24.97 (C-4’), 32.57 (C-2’, 

C-6’), 57.71 (C-1’), 65.72 (OCH2), 117.68 (C-2’’’, C-6’’’), 121.33 (C-4’’’), 127.68 (C-2’’,  

C-6’’), 127.85 (C-4’’), 128.33, 128.79 (C-3’’’, C-5’’’, C-3’’, C-5’’), 136.55 (C-1’’’), 140.26 

(C-1’’), 154.55 (NHCONH), 174.53 (COO); Anal. C21H24N2O3 (352.43 g/mol) calcd C 71.57, 

H 6.86, N 7.95; found C 71.55, H 7.01, N 7.99. 
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2-(Phenyl)-2,4-diazaspiro[4.5]decan-1,3-dione. Compound 98 (0.60 g, 1.70 mmol) was 

dissolved in MeOH (60 mL) and treated with DIPEA (0.44 g, 3.40 mmol). The resulting 

reaction solution was treated with 1,2-dimethylhydrazine dihydrochloride (0.45 g, 3.38 mmol) 

and stirred for 2 d at rt. After evaporation of the solvent, the residue was suspended in H2O 

and extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with 

H2O (60 mL) and brine (60 mL). The solvent was dried (Na2SO4) and evaporated. The crude 

product was purified by column chromatography using ethyl acetate/petroleum ether (1:2) as 

eluent to obtain 100 as a white solid (0.30 g, 72%). mp 215–217 °C; 1H NMR (500 MHz, 

DMSO-d6) δ 1.30–1.35 (m, 1H, Hcyclohexane), 1.53–1.61 (m, 3H, Hcyclohexane), 1.65–1.76 (m, 6H, 

Hcyclohexane), 7.33–7.47 (m, 5H, Harom), 8.91 (s, 1H, NHCCO); 13C NMR (125 MHz, DMSO-

d6) δ 20.92 (C-7’, C-9’), 24.53 (C-8’), 33.49 (C-6’, C-10’), 60.99 (C-5’), 126.90 (C-2’’,  

C-6’’), 127.81 (C-4’’), 128.76 (C-3’’, C-5’’), 132.31 (C-1’’), 154.73 (NHCONH), 175.90 

(COO); Anal. C14H16N2O2 (244.29 g/mol) calcd C 68.83, H 6.60, N 11.47; found C 11.60,  

H 6.67, N 68.72. 
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4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]-N-hydroxybenzamide. Compound 69 (1.20 g, 

4.41 mmol) was dissolved in dry THF (40 mL). The resulting reaction mixture was cooled to  

-25 °C, treated with N-methylmorpholine (0.49 g, 4.84 mmol) and isobutyl chloroformate 

(0.66 g, 4.83 mmol), and stirred for 10 min at -25 °C. Hydroxylamine hydrochloride (1.39 g, 

20.0 mmol) and sodium hydroxide (0.88 g, 22.0 mmol) were treated with MeOH (30 mL). 

The precipitated NaCl was filtered off, and the filtrate was added to the solution of the mixed 

anhydride. The resulting mixture was slowly warm to the room temperature and stirred at 

room temperature for 4 h. The solvent was removed under reduced pressure, and the residue 

was suspended in H2O. The aqueous suspension was extracted with ethyl acetate (3 × 80 mL). 

The combined organic layers were washed with 10% KHSO4 (50 mL), H2O (50 mL), brine 

(50 mL), and dried over Na2SO4. The crude product was recrystallized from ethanol/ethyl 

acetate (1:8) to obtain 101 as a white solid (1.01 g, 80%). mp 190 °C; 1H NMR (500 MHz, 

DMSO-d6) 7.36 (dd, 3J = 5.1 Hz, 3J = 3.8 Hz, 1H, H-4’’’), 7.94 (d, 3J = 8.9 Hz, H-3’, H-5’), 

8.09a 8.11–8.13b (dda, 
3J = 3.8 Hz, 4J = 1.3 Hz, 1H, mb, 3H, H-2’, H-6’, H-3’’’ H-5’’’), 9.14 

(s, 1H, NHOH), 11.39 (s, 1H, NHOH),; 13C NMR (125 MHz, DMSO-d6) δ 124.53 (C-5’’’), 

127.34, 127.98, 128.35, 129.45, 133.13, 134.41, 135.73 (C-3’, C-5’, C-3’’’, C-4’’’, C-2’,  

C-6’, C-2’’’, C-4’, C-1’), 163.50, 167.78, 171.49 (CONHOH, C-3’’, C-5’’); Anal. 

C13H9N3O3S (287.29 g/mol) calcd C 54.35, H 3.16, N 14.63; found C 54.35, H 3.15, N 14.47. 
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1,2-Dimethylhydrazine-carbonitrile. 1,2-Dimethylhydrazine dihydrochloride (6.70 g, 

50.4 mmol) was dissolved in H2O (20 mL). 5 N NaOH (20.0 mL, 0.10 mol) was added under 

ice-cooling. Sodium acetate (8.20 g, 0.10 mol) and cyanogen bromide (3.56 g, 33.6 mmol) 

were added. The resulting reaction mixture was stirred for 20 h at room temperature. It was 

extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with 

brine (50 mL) and dried over Na2SO4. The solvent was evaporated under reduced pressure. 

The product was purified by distillation to obtain 102 as a colourless fluid (0.95 g, 33%). bp 

90 °C at 24 mbar. 1H NMR (500 MHz, CDCl3) δ 2.67 (s, 3H, NHCH3), 2.96 (s, 3H, 

N(CH3)CN), 3.78 (bs, 1H, NHCH3); 
13C NMR (125 MHz, CDCl3) δ 35.38 (NHCH3), 40.83 

(N(CH3)CN), 116.53 (CN); MS(EI) m/z = 85.1 (M●+). 
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N-{4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]phenylcarbamoyl}homocycloleucine benzyl 

ester. Compound 94 (1.69 g, 4.17 mmol) was dissolved in H2O and treated with 8 mL of 5 N 

NaOH solution. The aqueous layer was extracted with ethyl acetate (3 × 30 mL), and the 

combined organic layers were washed with sat. NaHCO3 (30 mL), H2O (30 mL), brine 

(30 mL), and dried over Na2SO4 to obtain homocycloleucine benzyl ester without further 

purification. DMAP (0.034 g, 0.28 mmol) and EDC (0.44 g, 2.83 mmol) were dissolved in 

dry THF (30 mL) and slowly treated with compound 101 (0.80 g, 2.78 mmol) in dry THF 

(50 mL). The resulting reaction mixture was stirred at room temperature for 1 h. 

Homocylcloleucine benzyl ester in dry THF (20 mL) was added, and it was stirred at room 

temperature for 18 h. The solvent was removed under reduced pressure, and the residue was 

suspended in H2O. The aqueous suspension was extracted with ethyl acetate (3 × 50 mL). The 

combined organic layers were washed with 10% KHSO4 (2 × 50 mL), H2O (50 mL), sat. 

NaHCO3 (2 × 50 mL), H2O (50 mL), brine (50 mL) and dried over Na2SO4. The crude 

product was recrystallized from EtOH/ethyl acetate (1:1) to obtain 103 as a white solid 

(0.90 g, 64%). mp 216 °C; 1H NMR (500 MHz, DMSO-d6) δ 1.22–1.29 (m, 1H, Hcyclohexane), 

1.43–1.50 (m, 2H, Hcyclohexane), 1.56–1.58 (m, 3H, Hcyclohexane), 1.71–1.77 (m, 2H, Hcyclohexane), 

1.98–2.00 (m, 2H, Hcyclohexane), 5.08 (s, 2H, OCH2), 6.68 (s, 1H, NHCCO), 7.23–7.26, 7.31–

7.33 (m, 5H, Harom’’), 7.35 (dd, 3J = 4.9 Hz, 3J = 3.6 Hz, 1H, H-4’’’’’), 7.57 (d, 3J = 8.8 Hz, 

2H, H-2’’’, H-6’’’), 7.93 (d, 3J = 8.9 Hz, 2H, H-3’’’, H-5’’’), 8.05a, 8.09b (dda, 
3J = 3.8 Hz, 

4J = 1.3 Hz, 1H, ddb, 
3J = 4.9 Hz, 4J = 1.1 Hz, 2H, H-3’’’’’, H-5’’’’’), 8.83 (s, 1H, C-1’’’NH); 

13C NMR (125 MHz, DMSO-d6) δ 21.08 (C-3’, C-5’), 24.95 (C-4’), 32.49 (C-2’, C-6’), 57.88 

(C-1’), 65.82 (OCH2), 117.70, 118.49, 124.82, 127.73, 127.92, 128.16, 128.37, 129.36, 

132.78, 134.01, 136.51, 143.43, (C-2’’’, C-6’’’, C-5’’’’’, C-4’’’, C-3’’’’’, C-2’’, C-6’’, C-4’’, 

C-3’’’, C-5’’’, C-4’’’’’, C-3’’, C-5’’, C-2’’’’’, C -1’’’, C-1’’), 154.22 (NHCONH), 168.07, 

170.90, 174.35 (C-3’’’’, C-5’’’’, NHCCO); Anal. C27H26N4O4S (502.59 g/mol) calcd C 64.52, 

H 5.21, N 11.15; found C 63.85, H 5.26, N 10.61. MS (ESI) m/z = 503.3 ([M + H]+). 
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N-(tert-Butyloxycarbonyl)homocycloleucine. Compound 93 (2.00 g, 14.0 mmol) was 

dissolved in 2 N NaOH (10 mL). (Boc)2O (6.11 g, 28.0 mmol) in dioxane (10 mL) was added. 

The resulting reaction mixture was stirred for 40 h at room temperature. Ethyl acetate (30 mL) 

was added and the layers were separated. The aqueous layer was acidified with concentrated 

HCl and extracted with ethyl acetate (3 × 30 mL).The combined organic layers were washed 

with H2O (30 mL) and brine (30 mL), and dried over Na2SO4. The solvent was removed 

under reduced pressure to obtain 107 as a white solid (1.65 g, 48%). mp 172 °C; 1H NMR 

(500 MHz, DMSO-d6) δ 1.15–1.23 (m, 1H, Hcyclohexane), 1.36 (s, 9H, C(CH3)3), 1.43–1.49 (m, 

5H, Hcyclohexane), 1.58–1.63 (m, 2H, Hcyclohexane), 1.88 (bs, 2H, Hcyclohexane), 6.82 (s, 1H, 

OCONH) 12.03 (s, 1H, COOH); 13C NMR (125 MHz, DMSO-d6) δ 21.16 (C-3’, C-5’), 25.16 

(C-4’), 28.39 (C(CH3)3), 32.05 (C-2’, C-6’), 58.00 (C-1’), 77.81 (C(CH3)3), 154.94 (OCO), 

176.35 (COOH); Anal. C12H21NO4 (243.30 g/mol) calcd C 59.24, H 8.70, N 5.76; found  

C 59.11, H 8.49, N 5.79. 
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N-(tert-Butyloxycarbonyl)homocycloleucyl-glycine-nitrile. Compound 107 (1.00 g, 

4.11 mmol) was dissolved in dry THF (20 mL) and cooled to -25 °C. To the stirred solution, 

triethylamine (1.24 g, 12.3 mmol) and isobutyl chloroformate (0.62 g, 4.54 mmol) were added 

consecutively. Aminoacetonitrile monosulfate (1.74 g, 11.3 mmol) was added to the reaction 

mixture when the precipitation of triethylamine hydrochloride occurred (ca. 5 min). It was 

allowed to warm to room temperature within 30 min and stirred for additional 3 h. After 

evaporation of the solvent, the resulting aqueous residue was extracted with ethyl acetate 

(3 × 60 mL). The combined organic layers were washed with 10% KHSO4 (30 mL), H2O 

(30 mL), sat. NaHCO3 (30 mL), H2O (30 mL), and brine (30 mL). The solvent was dried 

(Na2SO4) and evaporated. The crude product was purified by column chromatography using 

ethyl acetate as eluent to obtain 108 (0.78 g, 67%). mp 164 °C; 1H NMR (500 MHz, DMSO-

d6) δ 1.18–1.23 (m, 1H, Hcyclohexane), 1.36 (s, 9H, C(CH3)3), 1.45 (bs, 5H, Hcyclohexane), 1.60–

1.65 (m, 2H, Hcyclohexane), 1.84 (bs, 2H, Hcyclohexane), 4.03 (d, 3J = 5.7 Hz, 2H, NHCH2CN), 6.69 

(bs, 1H, OCONH), 8.08 (bs, 1H, CONH); 13C NMR (125 MHz, DMSO-d6) δ 20.31 (C-3’,  

C-5’), 24.35 (C-4’), 26.87 (NHCH2CN), 27.53 (C(CH3)3), 31.12 (C-2’, C-6’), 57.76 (C-1’), 

77.42 (C(CH3)3), 117.02 (CN), 153.58 (OCO), 174.69 (CONH); Anal. C14H23N3O3 

(281.35 g/mol) calcd C 59.77, H 8.24, N 14.94; found C 59.75, H 8.63, N 14.78. 
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Homocycloleucyl-glycine-nitrile. Compound 113 (0.52 g, 3.07 mmol) was dissolved in 

CH2Cl2 (20 mL) and treated with DIPEA (2.78 g, 21.5 mmol). Aminoacetonitrile monosulfate 

(0.57 g, 3.70 mmol) was added, and the resulting reaction mixture was refluxed for 1 h. The 

solvent was removed under reduced pressure. The oily residue was suspended in H2O and 

extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with H2O 

(30 mL), sat. NaHCO3 (30 mL), and brine (30 mL). The solvent was dried over Na2SO4 and 

removed under reduced pressure. The crude oily product was purified by column 

chromatography using CH2Cl2/MeOH (9:1) as eluent to obtain 109 as a colorless oil (0.40 g, 

72%). 1H NMR (500 MHz, CDCl3) δ 1.26–1.31 (m, 1H, Hcyclohexane), 1.35–1.40 (m, 4H, 

Hcyclohexane), 1.46 (s, 2H, NH2), 1.64–1.66 (m, 3H, Hcyclohexane), 1.90–1.97 (m, 2H, Hcyclohexane), 

4.14 (d, 3J = 6.0 Hz, 2H, NHCH2CN), 8.34 (bs, 1H, NHCH2CN); 13C NMR (125 MHz, 

CDCl3) δ 20.96 (C-3’, C-5’), 25.03 (C-4’), 27.26 (NHCH2CN), 34.35 (C-2’, C-6’), 57.46  

(C-1’), 116.36 (NHCH2CN), 178.24 (CONH). 
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N-{4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]benzoyl}homocycloleucyl-glycine-nitrile. 

Compound 108 (0.30 g, 1.07 mmol) was dissolved in dry THF (10 mL). Dry methanesulfonic 

acid (0.72 g, 7.49 mmol) was added. The resulting reaction mixture was stirred for 24 h at 

room temperature. THF was evaporated under reduced pressure. The residue was dissolved in 

a small amount of H2O. The resulting solution was adjusted with 2 N NaOH to a pH of 

~12–13, extracted with ethyl acetate (3 × 30 mL), washed with brine (30 mL), and dried over 

Na2SO4. The solvent was removed under reduced pressure to obtain homocycloleucyl-

glycine-nitrile (109, 0.20 g) as a colorless oil without purification. Compound 69 (0.29 g, 

1.07 mmol) was dissolved in dry CH2Cl2 (20 mL) and treated with oxalyl chloride (0.19 g, 

1.50 mmol) and DMF (0.5 mL). The reaction mixture was stirred at room temperature for 1 h. 

The solvent was removed under reduced pressure. The resulting residue was dissolved in dry 

THF (10 mL) and added to a mixture of homocycloleucyl-glycine-nitrile (109, 0.20 g) and 

DIPEA (0.19 g, 1.47 mmol) in dry THF (10 mL) under ice-cooling. The resulting reaction 

mixture was stirred for 20 h at room temperature. After evaporation of the solvent, the residue 

was extracted with ethyl acetate (3 × 60 mL). The combined organic layers were washed with 

10% KHSO4 (30 mL), H2O (30 mL), sat. NaHCO3 (30 mL), H2O (30 mL), and brine (30 mL). 

The solvent was dried (Na2SO4) and evaporated. The crude product was purified by 

recrystallisation from ethyl acetate to obtain 111 (0.09 g, 19% from 108). mp 189 °C; 
1H NMR (500 MHz, DMSO-d6) δ 1.26–1.30 (m, 1H, Hcyclohexane), 1.55 (bs, 5H, Hcyclohexane), 

1.75–1.81 (m, 2H, Hcyclohexane), 2.13–2.15 (m, 2H, Hcyclohexane), 4.06 (d, 3J = 5.7 Hz, 2H, 

NHCH2CN), 7.37 (dd, 3J = 5.1 Hz, 3J = 3.8 Hz, 1H, H-4’’’’), 8.08 (d, 3J = 8.9 Hz, 2H, H-3’’, 

H-5’’), 8.10 (dd, 3J = 3.8 Hz, 4J = 1.3 Hz, 1H, H-3’’’’), 8.12–8.15 (m, 3H, H-5’’’’, H-2’’, H-

6’’), 8.19 (s, 1H, C-1’’CONH), 8.23 (t, 3J = 5.7 Hz, 1H, NHCH2CN); 13C NMR (125 MHz, 

DMSO-d6) δ 21.38 (C-3’, C-5’), 25.19 (C-4’), 27.76 (NHCH2CN), 31.81 (C-2’, C-6’), 59.68 

(C-1’), 117.87 (CN), 124.52 (C-5’’’’), 126.95 (C-3’’, C-5’’), 128.34 (C-4’’’’), 128.90 (C-2’’, 

C-6’’), 129.45 (C-3’’’’), 133.16, 134.42 (C-2’’’’, C-4’’), 137.66 (C-1’’), 165.80, 167.84, 

171.52, 174.87 (C-1’’CONH, C-3’’’, NHCCO, C-5’’’); LC-ESI/MS (90% H2O to 100% 

MeOH in 20 min, then 100% MeOH to 30 min, DAD 220.5–400.2 nm) tr = 18.93, 97% 

purity, m/z = 436.4 ([M + H]+). 
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Homocycloleucine-NCA. Compound 39 (4.20 g, 15.1 mmol) was dissolved in dry CH2Cl2 

(100 mL). Oxalyl chloride (2.88 g, 22.7 mmol) and DMF (0.5 mL) were added. The resulting 

reaction mixture was stirred for 3 h at room temperature. CH2Cl2 was removed under reduced 

pressure. The crude product was purified by column chromatography using ethyl 

acetate/petroleum ether (1:1) on silica gel to obtain 113 as a white solid (2.11 g, 83%). mp 

114 °C; 1H NMR (500 MHz, DMSO-d6) δ 1.29–1.37 (m, 1H, Hcyclohexane), 1.44–1.54 (m, 3H, 

Hcyclohexane), 1.62–1.68 (m, 2H, Hcyclohexane), 1.71–1.74 (m, 4H, Hcyclohexane), 9.43 (s, 1H, NH); 
13C NMR (125 MHz, DMSO-d6) δ 20.81 (C-3’, C-5’), 24.21 (C-4’), 33.42 (C-2’, C-6’), 62.42 

(C-1’), 150.96 (NHCOO), 173.82 (C-1’COO); MS (ESI) m/z = 187.2 ([M + NH4]
+). Anal. 

C8H11NO3 (169.18 g/mol) calcd C 56.80, H 6.55, N 8.28; found C 57.13, H 6.68, N 8.21.  
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1-(Benzyloxycarbonyl)-3,4-dimethyl-1,3,4-triazaspiro[5.5]undecan-2,5-dione. Compound 

40 (0.44 g, 1.38 mmol) was dissolved in MeCN (10 mL). The resulting solution was treated 

with DMAP (8.4 mg, 0.069 mmol) and (Boc)2O (0.45 g, 2.06 mmol). It was stirred for 24 h at 

room temperature. The solvent was removed under reduced pressure. The oily residue was 

purified by column chromatography on silica gel using ethyl acetate/petroleum ether (1:1) as 

eluent to obtain 115 (0.34 g, 71%) as a colorless oil. 1H NMR (500 MHz, DMSO-d6) δ 1.27–

1.34 (m, 1H, Hcyclohexane), 1.46–1.51 (m, 1H, Hcyclohexane), 1.59–1.64 (m, 4H, Hcyclohexane), 1.71–

1.76 (m, 2H, Hcyclohexane), 1.99–2.05 (m, 2H, Hcyclohexane), 3.12 (s, 3H, NCH3), 3.20 (s, 3H, 

NCH3), 5.16 (s, 2H, CH2O), 7.31–7.38 (m, 5H, Harom); 13C NMR (125 MHz, DMSO-d6)  

δ 22.27 (C-8’, C-10’), 24.52 (C-9’), 30.58 (C-7’, C-11’), 32.75, 33.93 (2 × NCH3), 61.51  

(C-6’), 68.18 (CH2O), 127.95 (C-2’’, C-6’’), 128.29 (C-4’’), 128.53 (C-3’’, C-5’’), 135.51  

(C-1’’), 151.93, 152.75 (OCON, NCON), 167.42 (NCCO); MS (ESI) m/z = 346.4 ([M + H]+). 
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N-{4-[5-(2-Thienyl)-1,2,4-oxadiazol-3-yl]benzoyl}homocycloleucine 1,2-dimethylhydra-

zide. Compound 40 (0.75 g, 2.35 mmol) was dissolved in MeOH (30 mL) and treated with 

Pd/C (0.075 g). The resulting mixture was hydrogenated in a hydrogen flow at 2 bar and room 

temperature for 4 h. Pd/C was filtered off, and the solvent was removed under reduced 

pressure to obtain homocycloleucine 1,2-dimethylhydrazide (106, 0.48 g) as a colorless oil 

which was used without further purification. Compound 69 (0.64 g, 2.35 mmol) was 

suspended in dry CH2Cl2 (20 mL), treated with DMAP (0.015 g, 0.12 mmol) and EDC 

(0.36 g, 2.32 mmol), and stirred at room temperature for 10 min. Homocycloleucine  

1,2-dimethylhydrazide (106, 0.48 g) in dry CH2Cl2 (10 mL) was added, and the resulting 

solution was stirred for 18 h at room temperature. The solvent was evaporated under reduced 

pressure. The residue was suspended in H2O, extracted with ethyl acetate (3 × 30 mL), and 

washed with sat. NaHCO3 (30 mL), H2O (30 mL), and brine (30 mL). The solvent was dried 

over Na2SO4 and removed under reduced pressure. The crude oily product was purified by 

column chromatography using CH2Cl2/MeOH 20:1 as eluent to obtain 116 as a white solid 

(0.38 g, 37% from 40). mp 189 °C; 1H NMR (500 MHz, CDCl3) δ 1.29–1.36 (m, 1H, 

Hcyclohexane), 1.49–1.57 (m, 2H, Hcyclohexane), 1.64–1.72 (m, 5H, Hcyclohexane), 1.93–1.98 (m, 2H, 

Hcyclohexane), 2.44 (s, 3H, NHCH3), 3.10 (s, 3H, CONCH3), 6.42 (s, 1H, C-1’’CONH), 7.22 

(dd, 3J = 5.1 Hz, 3J = 3.8 Hz, 1H, H-4’’’’), 7.66 (dd, 3J = 5.1 Hz, 4J = 1.3 Hz, 1H, H-3’’’’), 

7.91 (d, 3J = 8.5 Hz, 2H, H-3’’, H-5’’), 7.96 (dd, 3J = 3.6 Hz, 4J = 1.1 Hz, 1H, H-5’’’’), 8.20 

(d, 3J = 8.5Hz, 2H, H-2’’, H-6’’); 13C NMR (125 MHz, CDCl3) δ 21.84 (C-3’, C-5’), 25.35 

(C-4’), 32.23 (C-2’’, C-6’’), 33.54, 35.67 (NHCH3, CONCH3), 59.63 (C-1’), 125.59 (C-5’’’’), 

127.46 (C-3’’, C-5’’), 127.87 (C-2’’, C-6’’), 128.59, 129.56 (C-3’’’’, C-4’’’’), 132.10, 132.25 

(C-2’’’’, C-4’’), 137.29 (C-1’’), 164.98, 168.11, 171.67 (C-1’’CONH, C-3’’’, C-5’’’). Anal. 

C22H25N5O3S (439.53 g/mol) calcd C 60.12, H 5.73, N 15.93; found C 59.46, H 5.85,  

N 15.58. 
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N-[5-(Dimethylamino)naphthalene-1-sulfonyl]homocycloleucyl-glycine-nitrile. 

Compound 109 (0.38 g, 2.10 mmol) was dissolved in dry THF (30 mL). Triethylamine 

(0.32 g, 3.16 mmol) and 5-(Dimethylamino)naphthalene-1-sulfonyl chloride 117 (0.62 g, 

2.30 mmol) were added. The resulting reaction solution was stirred for 24 h at room 

temperature, and heated to reflux for additionally 24 h. The solvent was removed, and the 

residue was suspended in H2O. The aqueous suspension was extracted with ethyl acetate 

(3 × 30 mL). The combined organic layers were washed with brine (30 mL), and dried over 

(Na2SO4). The crude product was purified by column chromatography using ethyl acetate to 

obtain 119 as a green solid (0.31 g, 36%). mp 79–81 °C; 1H NMR (500 MHz, DMSO-d6)  

δ 0.80–0.87 (m, 2H, Hcyclohexane), 0.97–1.07 (m, 4H, Hcyclohexane), 1.57–1.63 (m, 2H, 

Hcyclohexane), 1.74–1.77 (m, 2H, Hcyclohexane), 2.82 (s, 6H, 2 × CH3), 3.97 (d, 3J = 5.7 Hz, 2H, 

NHCH2CN), 7.24 (d, 3J = 7.3 Hz, 1H, H-6’’), 7.55–7.60 (m, 2H, H-7’’, H-3’’), 7.97 (s, 1H, 

SO2NH), 8.04 (t, 3J = 5.5 Hz, 1H, NHCH2CN), 8.08 (dd, 3J = 7.3 Hz, 2J = 1.3 Hz, 1H, H-4’’), 

8.36a, 8.43b (da, 
3J = 8.8 Hz, db, 

3J = 8.5 Hz, 2H, H-8’’, H-2’’); 13C NMR (125 MHz, DMSO-

d6) δ 20.87 (C-3’, C-5’), 24.59 (C-4’), 27.78 (NHCH2CN), 32.51 (C-2’, C-6’), 45.18 

(N(CH3)2), 61.58 (C-1’), 115.05 (C-6’’), 117.55 (CN), 119.35, 123.54, 127.82, 128.04, 

128.95, 129.19, 129.50 (C-8’’, C-2’’, C-3’’, C-7’’, C-4’’, C-8a’’, C-4a’’), 138.55, 151.38 (C-

1’’, C-5’’), 174.54 (NHCCO); LC-MS(ESI) (90% H2O to 100% MeOH in 20 min, then 100% 

MeOH to 30 min, DAD 219.7–300.7 nm) tr = 17.67, 97% purity, m/z = 415.3 ([M + H]+). 
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N-[(7-Diethylamino)-2-oxo-2H-chromene-3-carbonyl]homocycloleucyl-glycine-

nitrile. 7-(Diethylamino)-2-oxo-2H-chromene-3-carboxylic acid 118 (0.22 g, 0.84 mmol) 

was fine suspended in dry THF (15 mL). DIPEA (0.54 g, 4.18 mmol), DMAP (0.01 g, 

0.08 mmol), and EDC × HCl (0.17 g, 0.89 mmol) were added, and the resulting reaction 

mixture was stirred for 20 min at room temperature. Compound 109 (0.15 g, 0.83 mmol) in 

dry THF (10 mL) was added. It was stirred for 22 h at room temperature, and heated 

additionally to reflux for 11 h. The solvent was removed under reduced pressure, and the 

resulting brown residue was suspended in H2O. The aqueous suspension was further extracted 

with ethyl acetate (3 × 30 mL). The combined organic layers were washed with sat. NaHCO3 

(30 mL) and brine (30 mL), and dried over (Na2SO4). The crude product was purified by 

column chromatography using ethyl acetate/petroleum ether (2:1) to obtain 120 as a green 

solid (70 mg, 20%). mp 248 °C; 1H NMR (500 MHz, DMSO-d6) δ 1.14 (t, 3J = 7.0 Hz, 6H, 

N(CH2CH3)2), 1.21–1.26 (m, 1H, Hcyclohexane), 1.32–1.40 (m, 2H, Hcyclohexane), 1.58–1.60 (m, 

3H, Hcyclohexane), 1.70–1.74 (m, 2H, Hcyclohexane), 2.02–2.05 (m, 2H, Hcyclohexane), 3.48 (q, 
3J = 6.9 Hz, 4H, N(CH2CH3)2), 4.01 (d, 3J = 5.7 Hz, 2H, NHCH2CN), 6.64 (d, 4J = 2.2 Hz, 

1H, H-8’’), 6.81 (dd, 3J = 9.1 Hz, 4J = 2.5 Hz, 1H, H-6’’), 7.67 (d, 1H, 3J = 9.2 Hz, H-5’’), 

8.38 (t, 1H, 3J = 5.5 Hz, NHCH2CN), 8.62 (s, 1H, H-4’’), 8.96 (s, 1H, NHCCO); 13C NMR 

(125 MHz, DMSO-d6) δ 12.45 (N(CH2CH3)2), 21.07 (C-3’, C-5’), 24.92 (C-4’), 27.62 

(NHCH2CN), 31.69 (C-2’, C-6’), 44.45 (N(CH2CH3)2), 58.75 (C-1’), 95.99 (C-8’’), 107.78, 

109.59, 110.45 (C-6’’, C-4a’’, C-3’’), 117.76 (CN), 131.80 (C-5’’), 147.71 (C-4’’), 152.74 

(C-7’’), 157.44 (C-8a’’), 161.38, 162.51 (C-3’’CO, C-2’’), 174.70 (NHCCO); LC-MS(ESI) 

(90% H2O to 100% MeOH in 20 min, then 100% MeOH to 30 min, DAD 220.0–480.0 nm) 

tr = 15.56, 100% purity, m/z = 425.3 ([M + H]+). 
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N-[(7-Diethylamino)-2-oxo-2H-chromene-3-carbonyl]homocycloleucyl-azaalanine-

nitrile. Compound 40 (0.30 g, 0.94 mmol) was dissolved in MeOH (30 mL) and treated with 

Pd/C (0.030 g). The resulting mixture was hydrogenated in a hydrogen flow at 2 bar and room 

temperature for 4 h. Pd/C was filtered off, and the solvent was removed under reduced 

pressure to obtain compound 106 (0.11 g) as a colorless oil without further purification.  

7-(Diethylamino)-2-oxo-2H-chromene-3-carboxylic acid 118 (0.15 g, 0.57 mmol) was fine 

suspended in dry THF (15 mL). DMAP (7.0 mg, 0.06 mmol), and EDC (0.10 g, 0.64 mmol) 

were added, and the resulting reaction mixture was stirred for 10 min at room temperature. 

Compound 106 (0.11 g) was added. It was stirred for 2 d at room temperature. The solvent 

was removed under reduced pressure, and the resulting brown residue was suspended in H2O. 

The aqueous suspension was extracted with ethyl acetate (3 × 30 mL). The combined organic 

layers were washed with sat. NaHCO3 (30 mL) and brine (30 mL), and dried over (Na2SO4). 

The crude product was purified by column chromatography using CH2Cl2/MeOH (9:1) to 

obtain compound 121 as a colourless oil (0.10 mg, 25% from 40). Compound 121 (0.10 g, 

0.23 mmol) was dissolved in MeOH (20 mL) and treated with NaOAc (0.059 g, 0.72 mmol) 

and BrCN (0.051 g, 0.48 mmol). The resulting reaction mixture was stirred for 2 d at room 

temperature. The solvent was evaporated, and the residue was suspended in H2O. The 

aqueous suspension was extracted with ethyl acetate (3 × 30 mL). The combined organic 

layers were washed with sat. NaHCO3 (30 mL) and brine (30 mL), and dried over (Na2SO4). 

The crude product was purified by column chromatography using ethyl acetate to obtain 122 

as a green solid (20 mg, 19% from 121). 1H NMR (500 MHz, DMSO-d6) δ 1.13 (t, 
3J = 7.1 Hz, 6H, N(CH2CH3)2), 1.22 (bs, 1H, Hcyclohexane), 1.39–1.46 (m, 2H, Hcyclohexane), 1.58–

1.63 (m, 3H, Hcyclohexane), 1.69–1.75 (m, 2H, Hcyclohexane), 2.15–2.18 (m, 2H, Hcyclohexane), 2.97 

(s, 3H, NCH3), 3.08 (s, 3H, NCH3), 3.48 (q, 3J = 7.0 Hz, 4H, N(CH2CH3)2), 6.63 (d, 
4J = 2.2 Hz, 1H, H-8’’), 6.81 (dd, 3J = 9.1 Hz, 4J = 2.5 Hz, 1H, H-6’’), 7.66 (d, 1H, 

3J = 9.2 Hz, H-5’’), 8.60 (s, 1H, H-4’’), 9.14 (s, 1H, NHCCO); 13C NMR (125 MHz, DMSO-

d6) δ 12.44 (N(CH2CH3)2), 21.16 (C-3’, C-5’), 24.76 (C-4’), 31.46 (C-2’, C-6’), 40.61 

(CONCH3), 44.50 (N(CH2CH3)2), 58.22 (C-1’), 96.07 (C-8’’), 107.86, 109.34, 110.45 (C-6’’, 

C-4a’’, C-3’’), 114.79 (CN), 131.79 (C-5’’), 147.81 (C-4’’), 152.75 (C-7’’), 157.44 (C-8a’’),
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161.17, 162.54 (C-3’’CO, C-2’’), 172.98 (NHCCO); LC-MS(ESI) (90% H2O to 100% MeOH 

in 20 min, then 100% MeOH to 30 min, DAD 220.0–450.0 nm) tr = 15.47, 95% purity, 

m/z = 454.3 ([M + H]+). 
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N-(tert-Butyloxycarbonyl)-S-(isobutyl)cysteine methyl ester. Sodium (0.87 g, 37.8 mmol) 

was dissolved under ice-cooling in MeOH (30 mL) and given to N-(tert-butyloxycarbonyl)-L-

cysteine methyl ester (123, 5.72 g, 24.3 mmol) in MeOH (30 mL). The resulting solution was 

treated with isobutyl bromide (4.01 g, 29.3 mmol), and heated to reflux for 5 h. MeOH was 

removed under reduced pressure, and the resulting yellow oily residue was suspended in H2O. 

The aqueous suspension was extracted with ethyl acetate (3 × 30 mL). The combined organic 

layers were washed with 10% KHSO4 (30 mL), H2O (30 mL) and brine (30 mL). The solvent 

was dried over Na2SO4 and evaporated. The oily yellow crude product was purified by 

column chromatography using ethyl acetate/petroleum ether (1:4) to obtain 124 as a colorless 

oil (3.88 g, 55%); 1H NMR (500 MHz, DMSO-d6) δ 0.92 (d, 3J = 6.6 Hz, 6H, CH(CH3)2), 

1.37 (s, 9H, C(CH3)3) 1.71 (sept, 3J = 6.7 Hz, 1H, CH(CH3)2), 2.40 (d, 3J = 7.0 Hz, 2H, 

(CH3)2CHCH2S), 2.71 (dd, 2J = 13.6 Hz, 3J = 8.9 Hz, 1H, NHCHCHH), 2.82 (dd, 
2J = 13.7 Hz, 3J = 5.2 Hz, 1H, NHCHCHH), 3.63 (s, 3H, OCH3), 4.10–4.15 (m, 1H, 

NHCHCO), 7.22 (d, 3J = 8.2 Hz, 1H, NHCHCO); 13C NMR (125 MHz, DMSO-d6) δ 21.76, 

21.83, 28.10 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 28.25 (C(CH3)3), 33.33 (NHCHCH2), 

40.76 ((CH3)2CHCH2S), 52.03, 53.89 (OCH3, NHCHCO), 78.49 (C(CH3)3), 155.38 

(OCONH), 171.71 (NHCHCO); Analytical HPLC (90% H2O to 100% MeOH in 15 min, then 

100% MeOH to 30 min) tr = 13.94, purity 96%. 
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N-(tert-Butyloxycarbonyl)-S-(isobutyl)cysteinesulfone methyl ester. Compound 124 

(3.70 g, 12.7 mmol) was dissolved in dry CH2Cl2 (20 mL). MCPBA (7.84 g (70%), 

31.8 mmol) in CH2Cl2 (20 mL) was slowly added. The resulting reaction mixture was stirred 

for 18 h at room temperature. The solvent was removed under reduced pressure, and the oily 

residue was suspended in H2O. The aqueous suspension was extracted with ethyl acetate 

(3 × 30 mL). The combined organic layers were washed with sat. NaHCO3 (30 mL), H2O 

(30 mL) and brine (30 mL). The solvent was dried over Na2SO4 and evaporated. The oily 

crude product was purified by column chromatography using ethyl acetate/petroleum ether 

(1:1) to obtain 125 as a white solid (3.60 g, 88%). mp 86 °C; 1H NMR (500 MHz, DMSO-d6) 

δ 1.01 (d, 3J = 2.5 Hz, 3H, CH3CHCH3), 1.02 (d, 3J = 2.6 Hz, 3H, CH3CHCH3), 1.38 (s, 9H, 

CH(CH3)3), 2.18 (sept, 3J = 6.7 Hz, 1H, CH3CHCH3), 2.98–3.07 (m, 2H, (CH3)2CHCH2S), 

3.47–3.48 (m, 2H, NHCHCH2S), 3.66 (s, 3H, OCH3), 4.47–4.51 (m, 1H, NHCHCO), 7.49 (d, 
3J = 8.5 Hz, 1H, NHCHCO); 13C NMR (125 MHz, DMSO-d6) δ 22.41, 22.56, 23.06 

(CH3CHCH3, CH3CHCH3, CH3CHCH3), 28.21 (C(CH3)3), 48.84, 52.68, 54.08, 60.24 

(NHCHCO, OCH3, (CH3)2CHCH2S, NHCHCH2S), 79.06 (C(CH3)3), 155.18 (OCONH), 

170.53 (NHCHCO); Anal. C13H25NO6S (323.41 g/mol) calcd C 48.28, H 7.79, N 4.43; found 

C 48.14, H 7.56, N 4.14. MS (ESI) m/z = 324.4 ([M + H]+). 
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N-(tert-Butyloxycarbonyl)-S-(isobutyl)cysteinylsulfone-glycine-nitrile. Compound 

125 (3.50 g, 10.8 mmol) was dissolved in a THF/H2O mixture (120 mL). Under ice-cooling, 

LiOH (0.65 g, 27.1 mmol) was added. When LiOH was dissolved, the reaction solution was 

stirred for 9 h at room temperature. The reaction solution was acidified with concentrated HCl 

to a pH of ~2 and extracted with ethyl acetate (3 × 80 mL). The combined organic layers were 

washed with H2O (30 mL) and brine (30 mL). The solvent was dried over Na2SO4 and 

evaporated to obtain 126 as an oily product without further purification. The oily crude 

product was dissolved in dry THF (50 mL) and cooled to -25 °C. To the stirred solution,  

N-methylmorpholine (1.20 g, 11.9 mmol) and isobutyl chloroformate (1.63 g, 11.9 mmol) 

were added consecutively. Aminoacetonitrile monosulfate (4.59 g, 29.8 mmol) was dissolved 

in H2O (5 mL), and 10 N NaOH (6.0 mL) was added under ice-cooling. This solution was 

given to the reaction mixture when the precipitation of N-methylmorpholine hydrochloride 

occurred. It was allowed to warm to room temperature within 30 min, and stirred overnight at 

room temperature. After evaporation of the solvent, the resulting aqueous residue was 

extracted with ethyl acetate (3 × 120 mL). The combined organic layers were washed with 

10% KHSO4 (30 mL), H2O (30 mL), sat. NaHCO3 (2 × 30 mL), H2O (30 mL), and brine 

(30 mL). The solvent was dried (Na2SO4) and evaporated. The crude product was 

recrystallized from ethyl acetate to obtain 127 as a white solid (1.60 g, 43% from 125). mp 

151 °C; 1H NMR (500 MHz, DMSO-d6) δ 1.02 (d, 3J = 6.7 Hz, 6H, CH(CH3)2), 1.39 (s, 9H, 

C(CH3)3), 2.19 (sept, 3J = 6.7 Hz, 1H, CH(CH3)2), 2.97–3.07 (m, 2H, (CH3)2CHCH2S), 3.38 

(dd, 2J = 14.8 Hz, 3J = 9.2 Hz, 1H, NHCHCHHS), 3.48 (dd, 2J = 14.8 Hz, 3J = 3.5 Hz, 1H, 

NHCHCHHS), 4.06–4.16 (m, 1H, NHCH2CN), 4.45–4.49 (m, 1H, NHCHCO), 7.33 (d, 
3J = 8.6 Hz, 1H, NHCHCO), 8.72 (t, 3J = 4.4 Hz, NHCH2CN); 13C NMR (125 MHz, DMSO-

d6) δ 22.51, 22.60, 23.01 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 27.69 (NHCH2CN), 28.27 

(C(CH3)3), 49.46 (NHCHCO), 54.52 (NHCHCH2S), 60.11 ((CH3)2CHCH2S), 79.06 

(C(CH3)3), 117.40 (CN), 155.07 (OCONH), 170.22 (NHCHCO); Anal. C14H25N3O5S 

(347.43 g/mol) calcd C 48.40, H 7.25, N 12.09; found C 48.19, H 7.14, N 11.88. 
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S-(Isobutyl)cysteinylsulfone-glycine-nitrile methanesulfonate. Compound 127 (1.30 g, 

3.74 mmol) was dissolved in dry THF (20 mL). Dry methanesulfonic acid (1.46 mL, 

22.5 mmol) was added, and the resulting reaction mixture was stirred for 24 h at room 

temperature. The precipitated product was filtered out, washed with cold ethyl acetate and 

petroleum ether, and dried to obtain 128 as a white solid (1.20 g, 93%). mp 109–111 °C;  
1H NMR (500 MHz, DMSO-d6) δ 1.04 (d, 3J = 6.7 Hz, 6H, CH(CH3)2), 2.22 (sept, 
3J = 6.6 Hz, 1H, CH(CH3)2), 2.40 (s, 3H, CH3SO3

-), 3.14–3.22 (m, 2H, (CH3)2CHCH2S), 3.52 

(dd, 2J = 14.7 Hz, 3J = 7.1 Hz, 1H, NHCHCHHS), 3.69 (dd, 2J = 14.8 Hz, 3J = 5.7 Hz, 1H, 

NHCHCHHS), 4.24–4.25 (m, 2H, NHCH2CN), 4.31–4.34 (m, 1H, NHCHCO), 8.49 (s, 3H, 

NH3
+), 9.37 (t, 3J = 5.5 Hz, 1H, NHCH2CN); 13C NMR (125 MHz, DMSO-d6) δ 22.46, 23.05 

(CH(CH3)2, CH(CH3)2), 27.66 (NHCH2CN), 47.28 (NHCHCO), 53.19 (NHCHCH2S), 59.97 

((CH3)2CHCH2S), 116.93 (CN), 166.86 (NH3
+CHCO). 
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N-(tert-Butyloxycarbonyl)-S-(isobutyl)cysteine. Compound 139 (5.00 g, 41.3 mmol) was 

dissolved in a 1:1 EtOH/2 N NaOH mixture (82 mL). 1-Bromo-2-methylpropane (6.22 g, 

45.4 mmol) and tetrabutylammonium iodide (0.46 g, 1.25 mmol) were added. The resulting 

reaction mixture was stirred for 3 d at room temperature. (Boc)2O (9.91 g, 45.4 mmol) was 

added, and it was additionally stirred for 1 d at room temperature. EtOH was evaporated 

under reduced pressure, the aqueous residue was acidified with conc. HCl (pH ~ 1) and 

extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with 10% 

KHSO4 (30 mL) and sat. NaCl (30 mL). The solvent was dried over Na2SO4 and evaporated 

to obtain 140 as an oily yellow product (10.9 g, 95%). 1H NMR (500 MHz, DMSO-d6) δ 0.92 

(d, 3J = 6.7 Hz, 6H, CH(CH3)2), 1.37 (s, 9H, C(CH3)3), 1.72 (sept, 3J = 6.7 Hz, 1H, 

CH(CH3)2), 2.39–2.41 (m, 2H, (CH3)2CHCH2S), 2.69 (dd, 2J = 13.6 Hz, 3J = 9.1 Hz, 1H, 

NHCHCHH), 2.83 (dd, 2J = 13.6 Hz, 3J = 4.8 Hz, 1H, NHCHCHH), 4.01–4.06 (m, 1H, 

NHCHCO), 7.01 (d, 3J = 8.2 Hz, 1H, NHCHCO), 12.65 (COOH); 13C NMR (125 MHz, 

DMSO-d6) δ 21.81, 21.90, 28.14 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 28.31 (C(CH3)3), 

33.56 (NHCHCH2), 40.79 ((CH3)2CHCH2S), 53.89 (NHCHCO), 78.31 (C(CH3)3), 155.44 

(OCONH), 172.68 (NHCHCO). 
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(R)-N-(tert-Butyloxycarbonyl)-S-(isobutyl)cysteinylsulfone-glycine-nitrile. Compound 140 

(10.8 g, 38.9 mmol) was dissolved in AcOH (80 mL). KMnO4 (12.3 g, 77.8 mmol) was 

dissolved in H2O (130 mL) and slowly added to the reaction mixture. It was stirred for 2.5 h, 

followed by the addition of sat. KHSO3 solution until the reaction mixture becomes colorless. 

It was concentrated under reduced pressure, and the aqueous suspension was extracted with 

ethyl acetate (3 × 100 mL). The combined organic layers were washed with H2O (30 mL), 

brine (30 mL) and dried over Na2SO4. The solvent was evaporated to obtain 141 as a 

colourless oily product (11.1 g, 92%). Compound 141 (2.00 g, 6.46 mmol) was dissolved in 

dry THF (40 mL), and it was cooled to -25 °C. N-Methylmorpholine (0.72 g, 7.12 mmol) and 

isobutyl chloroformate (0.97 g, 7.10 mmol) were added consecutively. Aminoacetonitrile 

monosulfate (1.47 g, 9.54 mmol) was dissolved in H2O (2 mL), treated with 2 N NaOH 

(5 mL) and added to the reaction mixture when the precipitation of N-methylmorpholinium 

chloride occurred. It was allowed to warm to room temperature within 30 min, and stirred for 

additional 90 min. THF was evaporated, and the resulting aqueous suspension was extracted 

with ethyl acetate (3 × 30 mL). The combined organic layers were washed with 10 % KHSO4 

(30 mL), sat. NaHCO3 (30 mL), H2O (30 mL) and sat. NaCl (30 mL). The solvent was dried 

(Na2SO4) and evaporated. The product was recrystallized from ethyl acetate to obtain 142 as a 

white solid (0.94 g, 42% from 141). mp 162–166 °C; 1H NMR (500 MHz, DMSO-d6) δ 1.02 

(d, 3J = 6.7 Hz, 6H, CH(CH3)2), 1.39 (s, 9H, C(CH3)3), 2.56 (sept, 3J = 6.7 Hz, 1H, 

CH(CH3)2), 2.97–3.07 (m, 2H, (CH3)2CHCH2S), 3.37 (dd, 2J =14.7 Hz, 3J =9.3 Hz, 1H, 

NHCHCHHS), 3.48 (dd, 2J = 14.9 Hz, 3J = 3.5 Hz, 1H, NHCHCHHS), 3.46–4.16 (m, 1H, 

NHCH2CN), 4.45–4.49 (m, 1H, NHCHCO), 7.33 (d, 3J = 8.5 Hz, 1H, NHCHCO), 8.71 (bs, 

NHCH2CN); 13NMR (125 MHz, DMSO-d6) δ 22.50, 22.59, 23.01 (CH3CHCH3, CH3CHCH3, 

CH3CHCH3), 27.69 (NHCH2CN), 28.27 (C(CH3)3), 49.44 (NHCHCO), 54.50 (CHCH2), 

60.10 (CH2S), 79.05 (C(CH3)3), 117.40 (CN), 155.07 (OCONH), 170.21 (NHCHCO). Anal. 

C14H25N3O5S (347.43 g/mol) calcd C 48.40, H 7.25, N 12.09; found C 48.32, H 7.18, 

N 11.83. 
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(R)-N-(Benzoyl)-S-(isobutyl)cysteinylsulfone-glycine-nitrile. Compound 142 (0.68 g, 

1.96 mmol) was dissolved in dry THF (10 mL). Under ice-cooling, dry methanesulfonic acid 

(1.14 g, 11.9 mmol) was added, and the resulting reaction mixture was stirred for 14 h at 

room temperature. The precipitated product was filtered off, washed with petroleum ether, 

and dried to obtain compound 143 as a white solid without further purification (0.33 g). 

Compound 143 (0.33 g, 0.96 mmol) was dissolved in dry THF (30 mL). DIPEA (0.35 g, 

2.71 mmol) and benzoyl chloride (0.19 g, 1.35 mmol) were added consecutively. The reaction 

solution was stirred for 24 h at room temperature. The solvent was evaporated, and the 

resulting white solid was extracted with ethyl aceate (3 × 30 mL). The combined organic 

layers were washed with 10% KHSO4 (30 mL) and brine (30 mL). The solvent was dried 

(Na2SO4) and evaporated. The crude product was recrystallized from ethyl acetate to obtain 

compound 144 as a white solid (0.28 g, 83%). mp 188–192 °C; [α]20
D = -54.0 (c = 0.82, 

THF); 1H NMR (500 MHz, DMSO-d6) δ 0.97 (d, 3J = 6.7 Hz, 3H, CH3CHCH3), 0.99 (d, 
3J = 6.6 Hz, 3H, CH3CHCH3), 2.18 (sept, 3J = 6.7 Hz, 1H, CH3CHCH3), 3.02–3.10 (m, 2H, 

(CH3)2CHCH2S), 3.61 (dd, 2J = 14.7 Hz, 3J = 9.3 Hz, 1H, NHCHCHHS), 3.67 (dd, 
2J = 14.5 Hz, 3J = 3.5 Hz, 1H, NHCHCHHS), 4.08–4.17 (m, 2H, NHCH2CN), 4.97–5.01 (m, 

1H, NHCHCO), 7.48–7.90 (m, 5H, Harom), 8.79 (t, 3J = 5.7 Hz, 1H, NHCH2CN), 8.94 (d, 
3J = 8.2 Hz, 1H, NHCHCO); 13C NMR (125 MHz, DMSO-d6) δ 22.44, 22.50, 23.08 

(CH3CHCH3, CH3CHCH3, CH3CHCH3), 27.76 (NHCH2CN), 48.33 (NHCHCO), 53.99 

(NHCHCH2S), 60.13 ((CH3)2CHCH2S), 117.41 (CN), 127.75 (C-2’, C-6’), 128.38 (C-3’, C-

5’), 131.80 (C-4’), 133.71 (C-1’), 166.45 (C-1’CONH), 169.92 (NHCHCO). LC-MS(ESI) 

(90% H2O to 100% MeOH in 20 min, then 100% MeOH to 30 min, DAD 220.0–400.0 nm) 

tr = 10.94, 99% purity, m/z = 352.1 ([M + H]+). 
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N-(tert-Butyloxycarbonyl)-S-(isobutyl)cysteinesulfone 1,2-dimethylhydrazide. Compound 

141 (2.00 g, 6.46 mmol) was dissolved in dry THF (30 mL) and cooled to -25 °C.  

N-methylmorpholine (0.72 g, 7.12 mmol) and isobutyl chloroformate (0.97 g, 7.10 mmol) 

were added consecutively. 1,2-Dimethylhydrazine dihydrochloride (1.72 g, 12.9 mmol) was 

dissolved in H2O (2 mL), treated with 2 N NaOH (13 mL) and added to the reaction mixture 

when the precipitation of N-methylmorpholinium chloride occurred. It was allowed to warm 

to room temperature within 30 min, and stirred for additional 90 min. The solvent was 

evaporated, and the resulting white solid was extracted with ethyl aceate (3 × 30 mL). The 

combined organic layers were washed with 10 % KHSO4 (30 mL) and brine (30 mL). The 

solvent was dried (Na2SO4) and evaporated. The oily product was purified by column 

chromatography on silica gel using ethyl acetate/petroleum ether (5:1) as eluent to obtain 145 

as a white solid (0.77 g, 34%). 1H NMR (500 MHz, DMSO-d6) δ 1.02 (d, 3J = 6.6 Hz, 6H, 

CH(CH3)2), 1.36 (s, 9H, C(CH3)3), 2.21 (sept, 3J = 6.7 Hz, 1H, CH(CH3)2), 2.48 (d, 
3J = 5.7 Hz, 3H, NHCH3), 2.92–2.97 (m, 4H, CONCH3, NHCHCHHS), 3.01 (dd, 
2J =14.0 Hz, 3J =6.5 Hz, 1H, NHCHCHHS), 4.85 (q, 3J = 5.6 Hz, 1H, NHCH3), 5.21–5.25 (m, 

1H, NHCHCO), 6.98 (d, 3J = 8.6 Hz, 1H, NHCHCO), 13C NMR (125 MHz, DMSO-d6)  

δ 22.56, 22.67, 22.94 (CH3CHCH3, CH3CHCH3, CH3CHCH3), 28.30 (C(CH3)3), 31.29, 34.90 

(2 × NCH3), 46.69 (NHCHCO), 54.97 (CHCH2), 60.36 (CH2S), 78.38 (C(CH3)3), 155.02 

(OCONH), 170.88 (NHCHCO). 
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N-(Benzoyl)-S-(isobutyl)cysteinesulfone 1,2-dimethylhydrazide. Under ice-cooling, acetyl 

chloride (5 mL) was given to dry ethanol (10 mL) and stirred for 10 min at room temperature. 

Compound 145 (0.70 g, 1.99 mmol) was dissolved in ethyl acetate (10 mL), and the solutions 

were combined under ice-cooling. It was stirred for 30 min, and the solvent was evaporated. 

The residue was dissolved in H2O, treated with 2 N NaOH to adjust a pH of ~12, and 

extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with 

brine (30 mL) and dried over Na2SO4. The solvent was evaporated to obtain compound 146 

(0.20 g, 40%). Compound 146 (0.20 g, 0.80 mmol) was dissolved in dry THF (10 mL). 

DIPEA (0.21 g, 1.62 mmol) and benzoyl chloride (0.12 g, 0.85 mmol) were added 

consecutively, and it was stirred for 18 h at room temperature. The solution was evaporated, 

and it was extracted with ethyl acetate (3 × 30mL). The combined organic layers were washed 

with 10% NaHCO3 (30 mL) and brine (30 mL), and dried over Na2SO4. The solvent was 

removed under reduced pressure, and the resulting crude product was purified by column 

chromatography on silica gel using ethyl acetate/petroleum ether (10:1) as eluent to obtain 

compound 147 as a colourless oil (0.05 g, 18% from 146). 1H NMR (500 MHz, DMSO-d6)  

δ 1.00 (d, 3J = 6.6 Hz, 6H, CH(CH3)2), 2.23 (sept, 3J = 6.7 Hz, 1H, CH(CH3)2), 2.53 (d, 
3J = 5.7 Hz, 3H, NHCH3), 2.96 (s, 3H, CONCH3), 3.01 (dd, 2J =14.2 Hz, 3J =6.6 Hz, 1H, 

NHCHCHHS), 3.08 (dd, 2J =14.1 Hz, 3J =6.5 Hz, 1H, NHCHCHHS), 3.46 (dd, 2J =14.5 Hz, 
3J =3.5 Hz, 1H, (CH3)2CHCHHS), 3.52 (dd, 2J =14.5 Hz, 3J =9.2 Hz, 1H, (CH3)2CHCHHS), 

4.93 (q, 3J = 5.6 Hz, 1H, NHCH3), 5.72–5.76 (m, 1H, NHCHCO), 7.46–7.87 (m, 5H, Harom), 

8.64 (d, 3J = 8.5 Hz, 1H, NHCHCO), 13C NMR (125 MHz, DMSO-d6) δ 22.53, 22.56, 23.00 

(CH3CHCH3, CH3CHCH3, CH3CHCH3), 31.35, 34.91 (2 × NCH3), 45.76 (NHCHCO), 54.37 

(NHCHCH2S), 60.26 ((CH3)2CHCH2S), 127.51 (C-2’, C-6’), 128.38 (C-3’, C-5’), 131.55  

(C-4’), 134.03 (C-1’), 166.14 (C-1’CONH), 170.55 (NHCHCO). 
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(R)-N-(Benzoyl)-S-(isobutyl)cysteinylsulfone-methylazaalanine-nitrile. Compound 147 

(0.04 g, 0.11 mmol) was dissolved in MeOH (20 mL) and treated with NaOAc (0.03 g, 

0.37 mmol) and BrCN (0.02 g, 0.19 mmol). The reaction mixture was stirred at room 

temperature for 24 h. The solvent was evaporated, and the resulting residue was extracted 

with ethyl acetate (3 × 30mL). The combined organic layers were washed with brine (30 mL) 

and dried over Na2SO4. The solvent was removed under reduced pressure, and the resulting 

crude product was purified by column chromatography on silica gel using ethyl 

acetate/petroleum ether (2:1) as eluent to obtain 148 as a colourless oil (0.02 g, 48%). [α]20
D = 

-31.0 (c = 0.51, THF); 1H NMR (500 MHz, CDCl3) mixture of s-cis and s-trans isomers  

δ 1.09–1.14 (m, 6H, CH(CH3)2), 2.30–2.43 (m, 1H, CH(CH3)2), 2.97–3.04 (m, 2H, 

NHCHCH2S), 3.24, 3.31 (2 × s, 6H, 2 × NCH3), 3.41–3.47 (m, 2H, (CH3)2CHCH2S), 5.63–

5.75 (m, 1H, NHCHCO), 7.40–7.80 (m, 6H, Harom’, NHCHCO); 13C NMR (125 MHz, CDCl3) 

mixture of s-cis and s-trans isomers δ 22.70, 22.73, 23.69, 23.75, 23.81 (CH3CHCH3, 

CH3CHCH3, CH3CHCH3), 30.77, 30.95, 40.92, 41.07, 45.43, 45.61 (2 × NCH3, NHCHCO), 

53.18, 55.02 (NHCHCH2S), 61.92, 62.18 ((CH3)2CHCH2S), 113.49 (CN), 127.25 (C-2’,  

C-6’), 128.73 (C-3’, C-5’), 132.31 (C-4’), 132.58 (C-1’), 166.91, 167.31 (C-1’CONH), 

170.26, 170.34 (NHCHCO); LC-MS(ESI) (90% H2O to 100% MeOH in 20 min, then 100% 

MeOH to 30 min, DAD 220.0–400.0 nm) tr = 11.71, 97% purity, m/z = 381.2 ([M + H]+). 
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Diethyl phenylsulfonylmethylphosphonate. Method A: A mixture of chloromethyl phenyl 

sulfide (5.00 g, 31.5 mmol) and triethyl phosphite (5.23 g, 31.5 mmol) was heated at 140°C in 

a sealed tube for 5 h. The resulting solution was distilled under reduced pressure to remove 

the starting materials. The oily residue was diethyl phenylthiomethylphosphonate 150 (6.78 g, 

83%). Diethyl phenylthiomethylphosphonate 150 (3.25 g, 12.5 mmol) was dissolved in dry 

CH2Cl2 and treated with MCPBA (5.39 g, 31.2 mmol). The resulting reaction mixture was 

stirred at room temperature for 2 d. The precipitated solid was filtrated off, and the filtrate 

was evaporated under reduced pressure. The resulting residue was purified by column 

chromatography using ethyl acetate as eluent to obtain 151 as an oily product (1.4 g, 38%).  
1H NMR (500 MHz, DMSO-d6) δ 1.13–1.16 (m, 6H, 2 × CH2CH3), 3.92–4.03 (m, 4H, 

2 × CH2CH3), 4.41 (d, 2JPH = 17 Hz, 2H, SO2CH2), 7.62–7.95 (m, 5H, Harom); 13C NMR 

(125 MHz, DMSO-d6) δ 16.06, 16.11 (2 × CH2CH3), 51.67 (d, 1JPC = 131.3 Hz), 62.44, 62.49 

(2 × CH2CH3), 127.94 (C-2’, C-6’), 129.15 (C-3’, C-5’), 133.92 (C-4’), 140.65 (C-1’). 

 

Diethyl phenylsulfonylmethylphosphonate. Method B: A mixture of chloromethyl phenyl 

sulfide (5.00 g, 31.5 mmol) and triethyl phosphite (5.23 g, 31.5 mmol) was heated at 130°C in 

a sealed tube for 16 h. The resulting solution was distilled under reduced pressure to remove 

the starting materials. The oily residue was diethyl phenylthiomethylphosphonate 150 (7.69 g, 

94%). Diethyl phenylthiomethylphosphonate 150 (7.68 g, 29.5 mmol) was dissolved in ice 

acetic acid (20 mL). KMnO4 (9.34 g, 59.1 mmol) was dissolved in H2O (50 mL) and dropped 

slowly to the reaction mixture. It was stirred for 1.5 h at room temperature, followed by the 

addition of sat. KHSO3 solution until the reaction mixture becomes colorless. The colorless 

aqueous suspension was extracted with ethyl acetate (3 × 30 mL), washed with brine (30 mL), 

and evaporated in vacuo to obtain 151 as an oily colorless product (6.80 g, 79%). 1H NMR 

(500 MHz, DMSO-d6) δ 1.14 (t, 3J = 7.1 Hz, 6H, 2 × CH2CH3), 3.93–4.02 (m, 4H, 

2 × CH2CH3), 4.41 (d, 2JPH = 17 Hz, 2H, SO2CH2), 7.62–7.95 (m, 5H, Harom); 13C NMR 

(125 MHz, DMSO-d6) δ 16.07, 16.11 (2 × CH2CH3), 51.68 (d, 1JPC = 131.3 Hz), 62.45, 62.50 

(2 × CH2CH3), 127.95 (C-2’, C-6’), 129.16 (C-3’, C-5’), 133.92 (C-4’), 140.65 (C-1’). 
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(E)-1-[(tert-Butyloxycarbonyl)amino]-3-(phenylsulfonyl)prop-2-en. Compound 151 

(3.20 g, 10.9 mmol) was dissolved in dry THF (20 mL), treated with 60% NaH in mineral oil 

(0.52 g, 13.1 mmol), and stirred for 30 min at room temperature. N-Boc-glycinal (1.74 g, 

10.9 mmol) was added, and the resulting reaction mixture was stirred for 2 h at rt. THF was 

evaporated under reduced pressure, and the oily residue was suspended in H2O. The aqueous 

suspension was extracted with ethyl acetate (3 × 30 mL), washed with brine (30 mL), dried 

over Na2SO4 and evaporated in vacuo. The crude product was purified by column 

chromatography using ethyl acetate/petroleum ether (1:1) to obtain 152 as a white solid 

(1.68 g, 52%). 1H NMR (500 MHz, DMSO-d6) δ 1.35 (s, 9H, C(CH3)3), 3.78 (bs, 2H, 

CH2NH), 6.65 (d, 3J = 15.4 Hz, 1H, CH=CHSO2), 6.82 (dt, 3J = 15.1 Hz, 3J = 4.6 Hz, 1H, 

CH=CHSO2), 7.15 (bs, 1H, NHCO), 7.62–7.85 (m, 5H, Harom); 13C NMR (125 MHz, DMSO-

d6) δ 28.24 (C(CH3)3), 78.36 (C(CH3)3), 127.25 (C-2’, C-6’), 129.71 (C-3’, C-5’), 130.00 

(CH=CHSO2), 133.76 (C-4’), 140.47 (C-1’), 144.80 (CH=CHSO2), 155.57 (OCONH); 

MS(ESI) m/z = 315.3 ([M + NH4]
+); Anal. C14H19NO4S (297.37 g/mol) calcd C 56.55, H 6.44, 

N 4.71; found C 56.47, H 6.38, N 4.75. 
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(E)-1-amino-3-(phenylsulfonyl)prop-2-en hydrochloride. Compound 152 (0.90 g, 

3.03 mmol) was dissolved in ethyl acetate (10 mL). AcCl (11.0 g, 0.14 mol) was slowly 

dropped to MeOH (10 mL) under ice-cooling, and stirred for 10 min. The solutions were 

combined, and stirred for 10 min at rt. The precipitated white solid was filtered off, and the 

filtrate was stirred additionally for 30 min at room temperature. The precipitated white solid 

was again filtered off. The precipitates were combined, washed with n-hexane and dried in 

vacuo to obtain 153 as a white solid (0.55 g, 78%). 1H NMR (500 MHz, DMSO-d6) δ 3.71 

(dd, 3J = 5.4 Hz, 4J = 1.6 Hz, 2H, CH2CH=CHSO2), 6.90 (dt, 3J = 15.4 Hz, 3J = 5.4 Hz, 1H, 

CH2CH=CHSO2), 7.10 (dt, 3J = 15.4 Hz, 4J = 1.6 Hz, 1H, CH2CH=CHSO2), 7.65–7.88 (m, 

5H, Harom), 8.50 (s, 3H, NH3
+); 13C NMR (125 MHz, DMSO-d6) δ 38.61 (CH2CH=CHSO2), 

127.42 (C-2’, C-6’), 129.84 (C-3’; C-5’), 133.15, 134.08 (C-4’, CH2CH=CHSO2), 138.88, 

139.86 (C-1’, CH2CH=CHSO2). 
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N-(tert-Butyloxycarbonyl)-phenylalanine (E)-3-(phenylsulfonyl)prop-2-en-1-ylamide. 

Compound 154 (1.21 g, 4.56 mmol) was dissolved in dry THF (20 mL) and cooled to -25 °C. 

N-methylmorpholine (0.51 g, 5.04 mmol) and isobutyl chloroformate (0.69 g, 5.05 mmol) 

were added consecutively. Compound 153 (1.07 g, 4.58 mmol) was dissolved in H2O (2 mL), 

treated with 2 N NaOH (3 mL) and added to the reaction mixture when the precipitation of  

N-methylmorpholinium chloride occurred. It was allowed to warm to room temperature 

within 30 min, and stirred for additional 90 min. The solvent was evaporated, and the 

resulting white solid was extracted with ethyl aceate (3 × 30 mL). The combined organic 

layers were washed with 10 % KHSO4 (30 mL) and brine (30 mL). The solvent was dried 

(Na2SO4) and evaporated. The oily product was purified by column chromatography on silica 

gel using ethyl acetate/petroleum ether (1:1) as eluent to obtain 155 as a white solid (1.05 g, 

52% from 154). 1H NMR (500 MHz, DMSO-d6) δ 1.28 (s, 9H, C(CH3)3), 2.74 (dd, 
2J = 13.6 Hz, 3J = 9.5 Hz, 2H, NHCHCHH), 2.90 (dd, 2J = 13.7 Hz, 3J = 5.2 Hz, 2H, 

NHCHCHH) 3.82–4.02 (m, 2H, CH2CH=CHS), 4.06–411 (m, 1H, NHCHCO), 6.59 (d, 
3J = 15.1 Hz, 1H, CH2CH=CHS), 6.85 (dt, 3J = 15.1 Hz, 3J = 4.1 Hz, 1H, CH2CH=CHS), 6.99 

(d, 3J = 7.9 Hz, 1H, NHCHCO), 7.14–7.24 (m, 5H, Harom’), 7.62–7.83 (m, 5H, Harom’’), 8.22 

(t, 3J = 5.7 Hz, 1H, NHCH2CH); 13C NMR (125 MHz, DMSO-d6) δ 28.27 (C(CH3)3), 37.24 

(NHCH2CH), 56.15 (NHCHCO), 78.26 (C(CH3)3), 126.36, 127.19, 128.16, 129.25, 129.69, 

129.72, 133.70, 138.15, 140.56, 144.65 (C-4’, C-2’, C-6’, C-2’’, C-6’’, C-3’, C-5’, C-3’’,  

C-5’’, C-4’’, C-1’, C-1’’, CH2CH=CHS, CH2CH=CHS), 155.48 (OCONH), 171.97 

(NHCHCO). 
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N-[4-(5,5-difluoro-7-hydroxy-3-methyl-1-oxo-(1H,2H)-imidazo-[1,5-b]-1-boraisoquino-

lin-2-yl)butanoyl]phenylalanine (E)-3-(phenylsulfonyl)prop-2-en-1-ylamide. Compound 

155 (1.00 g, 2.25 mmol) was dissolved in ethyl acetate (20 mL). Acetyl chloride (10 mL) was 

slowly added to MeOH (9 mL) under ice-cooling. The solutions were combined and stirred 

for 30 min at room temperature. The solvent was evaporated under reduced pressure, the 

resulting residue was dissolved in H2O and adjusted to a pH of ~9 with sat. NaHCO3. It was 

extracted with ethyl aceate (3 × 30 mL). The combined organic layers were washed with brine 

(30 mL). The solvent was dried (Na2SO4) and evaporated to obtain compound 156 as a 

colourless oil (0.63 g, 81% from 155). Compound 157 (0.10 g, 0.30 mmol) was dissolved in 

dry THF (20 mL) and cooled to -25 °C. N-methylmorpholine (30.0 mg, 0.30 mmol) and 

isobutyl chloroformate (41.0 mg, 0.29 mmol) were added consecutively. Compound 156 

(0.19 g, 0.55 mmol) in dry THF (10 mL) was added to the reaction mixture when the 

precipitation of N-methylmorpholinium chloride occurred. It was allowed to warm to room 

temperature within 30 min, and stirred for additional 3.5 h. The solvent was evaporated, and 

the resulting white solid was extracted with ethyl aceate (3 × 30 mL). The combined organic 

layers were washed with 10% KHSO4 (30 mL), sat. NaHCO3 (fast with 30 mL), and brine 

(30 mL). The solvent was dried (Na2SO4) and evaporated. The brown solid was purified by 

column chromatography on silica gel using ethyl acetate (twelve 100 mL fractions), then ethyl 

acetate/MeOH (5:1) as eluent to obtain 158 as a yellow green solid (0.10 g, 52% from 157). 
1H NMR (500 MHz, DMSO-d6) δ 1.67–1.77 (m, 2H, NCH2CH2CH2CO), 2.08–2.15 (m, 2H, 

NCH2CH2CH2CO), 2.67 (s, 3H, CH3), 2.74 (dd, 2J = 13.7 Hz, 3J = 9.3 Hz, 2H, NHCHCHH), 

2.94 (dd, 2J = 13.9 Hz, 3J = 5.7 Hz, 2H, NHCHCHH), 3.55–3.67 (m, 2H, NCH2CH2CH2CO), 

3.84–3.95 (m, 2H, CH2CH=CHS), 4.40–4.44 (m, 1H, NHCHCO), 6.53 (dt, 3J = 15.1 Hz, 
4J = 1.9 H, 1H, CH2CH=CHS), 6.73 (dd, 3J = 8.2 Hz, 4J = 2.5 Hz, 1H, H-8’’’), 6.82 (dt, 
3J = 15.3 Hz, 3J = 4.2 Hz, 1H, CH2CH=CHS), 7.00 (d, 4J = 2.3 Hz, 1H, H-6’’’), 7.12–7.22 (m, 

5H, Harom’), 7.48 (d, 3J = 8.5 Hz, 1H, H-9’’’), 7.55 (s, 1H, H-10’’’), 7.61–7.82 (m, 5H, 

Harom’’), 8.27 (t, 3J = 7.9 Hz, 1H, NHCHCO), (t, 3J = 5.7 Hz, 1H, NHCH2CH); 13C NMR 

(125 MHz, DMSO-d6) δ 12.76 (CH3), 14.21 (NCH2CH2CH2CO), 23.87 (NCH2CH2CH2CO),
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31.97, 37.47, 39.00 (NHCHCH2, NHCH2CH, NCH2CH2CH2CO), 54.42 (NHCHCO), 115.34, 

118.68 (C-3’’’’, C-5’’’’), 124.00, 125.02, 126.43, 127.19, 128.19, 129.17, 129.67, 129.79, 

133.70, 134.56, 137.89, 140.50, 144.37 (C-4’, C-9a’’’, C-5a’’’, C-9’’’, C-2’, C-6’, C-2’’,  

C-6’’, C-3’, C-5’, C-3’’, C-5’’, C-4’’, C-10’’’, C- 10a’’’, C-1’, C-1’’, C-7’’’), 161.71, 162.93, 

164.18, 171.45 (C-3’’’, C-1’’’, NCH2CH2CH2CO, NHCHCO). LC-DAD (90% H2O to 100% 

MeOH in 20 min, then 100% MeOH to 30 min, DAD 220.0–500.0 nm) tr = 8.59, 94% purity. 

MS(ESI) (pos.) m/z = 685.2 ([M + Na]+); MS(ESI) (neg.) 661.2 ([M - H]-); MS(EI) 

m/z = 662.4 (M●+). 
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3.3.77. PREPARATION OF 159 
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N-(Benzyloxycarbonyl)turosyl-glycine-nitrile. Compound 26 (0.91 g, 2.89 mmol) was 

dissolved in dry THF (30 mL) and cooled to -25 °C. To the stirred solution,  

N-methylmorpholine (0.32 g, 3.16 mmol) and isobutyl chloroformate (0.43 g, 3.15 mmol) 

were added consecutively. Aminoacetonitrile monosulfate (1.11 g, 7.20 mmol) was dissolved 

in 3 mL H2O, treated with 3 mL of 5 N NaOH and added to the reaction mixture when the 

precipitation of N-methylmorpholinium chloride occurred. It was allowed to warm to room 

temperature within 30 min, and stirred for additional 2 h. The solvent was evaporated under 

reduced pressure, and the resulting aqueous residue was extracted with ethyl acetate 

(3 × 60 mL). The combined organic layers were washed with 10% KHSO4 (30 mL), H2O 

(30 mL), sat. NaHCO3 (30 mL), H2O (30 mL), and brine (30 mL). The solvent was dried 

(Na2SO4) and evaporated. The crude product was recrystallized from ethyl acetate/petroleum 

to obtain 159 as a white solid (0.80 g, 78%). mp 182 °C; H NMR (500 MHz, DMSO-d6)  

δ 2.65 (dd, 2J = 13.9 Hz, 3J = 10.1 Hz, 1H, CHCHH), 2.87 (dd, 2J = 13.7 Hz, 3J = 4.6 Hz, 1H, 

CHCHH), 4.11–4.16 (m, 3H, NHCH2CN, NHCHCO), 4.92 (d, 2J = 12.6 Hz, 1H, CHHO), 

4.98 (d, 2J = 13.0 Hz, 1H, CHHO), 6.64 (d, 3J = 8.5 Hz, 2H, H’-3, H’-5), 7.03 (d, 3J = 8.6 Hz, 

2H, H’-2, H’-6), 7.23–7.34 (m, 5H, H’’arom), 7.51 (d, 3J = 8.5 Hz, 1H, NHCHCO), 8.68 (t, 
3J = 5.5 Hz, 1H NHCH2CN), 9.16 (s, 1H, OH); 13C NMR (125 MHz, DMSO-d6) δ 27.24 

(NHCH2CN), 36.60 (CHCH2), 56.50 (NHCHCO), 65.41 (CH2O), 115.07 (C-3’, C-5’), 117.59 

(CN), 127.55, 127.80, 127.87, 128.41, 130.20, 137.12 (C-2’, C-6’, C-2’’, C-6’’, C-4’’, C-3’’, 

C-5’’, C-1’, C-1’’), 156.00 (OCONH), 172.42 (CONH); FTIR (KBr, cm-1) 2260 (C≡N); Anal. 

C19H19N3O4 (353.37 g/mol) calcd C 64.58, H 5.42, N 11.89; found C 64.79, H 5.69, N 11.26. 

LC-MS(ESI) (90% H2O to 100% MeOH in 20 min, then 100% MeOH to 30 min, DAD 

220.0–300.0 nm) tr = 14.65, 97% purity, m/z = 354.4 ([M + H]+). 
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3.3.78. PREPARATION OF 160 
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N-(Benzyloxycarbonyl)-O-(2-fluoroethyl)tyrosyl-glycine-nitrile . Compound 159 (0.50 g, 

1.41 mmol) was dissolved in dry DMF (20 mL) and cooled to -10 °C. The resulting solution 

was treated with sodium hydride (0.06 g (60 % in mineral oil), 1.50 mmol) and stirred at  

-10 °C for 30 min. 1-Bromo-2-fluoroethane (0.27 g, 2.13 mmol), which was provided by Reik 

Löser, was added. The reaction solution was slowly warmed to room temperature and stirred 

for 19 h. The solvent was evaporated under reduced pressure, the resulting residue was 

suspended in H2O and extracted with ethyl acetate (3 × 30 mL). The combined organic layers 

were washed with H2O (30 mL) and brine (30 mL). The solvent was dried (Na2SO4) and 

evaporated. The crude product was purified by column chromatography on silica gel using 

ethyl acetate/petroleum ether (1:1) to obtain 160 as a white solid (0.29 g, 51%). mp 150 °C; 
1H NMR (500 MHz, DMSO-d6) δ 2.70 (dd, 2J = 13.9 Hz, 3J = 10.4 Hz, 1H, CHCHH), 2.92 

(dd, 2J = 13.9 Hz, 3J = 4.4 Hz, 1H, CHCHH), 4.13–4.22 (m, 5H, NHCH2CN, NHCHCO, 

OCH2CH2F), 4.71 (dt, 1JH,F = 47.7 Hz, 3J = 3.9 Hz, 2H, OCH2CH2F), 4.92 (d, 2J = 12.6 Hz, 

1H, CHHO), 4.97 (d, 2J = 12.6 Hz, 1H, CHHO) 6.85 (d, 3J = 8.9 Hz, 2H, H-3’, H-5’), 7.17 (d, 
3J = 8.5 Hz, 2H, H-2’, H-6’), 7.17–7.34 (m, 5H, Harom), 7.56 (d, 3J = 8.5 Hz, 1H, NHCHCO), 

8.71 (t, 3J = 5.4 Hz, 1H, NHCH2CN); 13C NMR (125 MHz, DMSO-d6) δ 27.23 (NHCH2CN), 

36.48 (CHCH2), 56.38 (NHCHCO), 65.43 (CH2O), 67.10 (d, 3JC,F = 18.8 Hz, OCH2CH2F), 

82.31 (d, 1J = 165.6 Hz, OCH2CH2F), 114.31 (C-3’, C-5’), 117.59 (CN), 127.58, 127.81, 

128.40, 130.19, 130.37, 137.08 (C-2’, C-6’, C-2’’, C-6’’, C-4’’, C-3’’, C-5’’, C-1’, C-1’’), 

156.01, 156.90 (C-4’, OCON), 172.32 (NHCHCO); FTIR (KBr, cm-1) 2247 (C≡N); Anal. 

C21H22FN3O4 (399.42 g/mol) calcd C 63.15, H 5.55, N 10.52; found C 62.60, H 5.41, 

N 10.77. LC-MS(ESI) (90% H2O to 100% MeOH in 20 min, then 100% MeOH to 30 min, 

DAD 220.1–320.7 nm) tr = 16.48, 96% purity, m/z = 404.4 ([M + H]+). 
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3.3.79. PREPARATION OF 161 
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N-(Benzyloxycarbonyl)-O-(2-fluoroethyl)tyrosyl-methylazaalanine-nitrile. Compound 38 

(1.28 g, 3.35 mmol) was dissolved in dry DMF (20 mL) and cooled to -10 °C. The resulting 

solution was treated with sodium hydride (0.14 g (60% in mineral oil), 3.50 mmol) and stirred 

at -10 °C for 30 min. 1-Bromo-2-fluoroethane (0.83 g, (77% purity), 5.03 mmol), which was 

provided by Reik Löser, was added. The reaction solution was slowly warmed to room 

temperature, and stirred for 19 h. The solvent was removed under reduced pressure, the 

resulting residue was suspended in H2O, and extracted with ethyl acetate (3 × 30 mL). The 

combined organic layers were washed with H2O (30 mL) and brine (30 mL), and dried over 

Na2SO4. The crude product was purified by column chromatography using ethyl 

acetate/petroleum ether (1:1) as eluent to obtain 161 as a colourless oil (0.53 g, 37%). [α]20
D = 

+22.4 (c = 0.77, CHCl3); 
1H NMR (500 MHz, DMSO-d6) mixture of rotamers δ 2.73–2.86 

(m, 2H, CHCH2), 2.98a, 3.08b, 3.12c, 3.22d (4 × s, 6H, 2 × NCH3), 4.19 (dt, 3JH,F = 30 Hz, 
3J = 3.5 Hz, 2H, OCH2CH2F), 4.66–4.77 (m, 3H, OCH2CH2F, NHCHCO), 4.95 (s, 2H, 

CH2O), 6.88–7.34 (m, 9H, Harom), 7.78a, 7.87b (bsa, db, 
3J = 7.9 Hz, 1H, NHCHCO); 13C NMR 

(125 MHz, DMSO-d6) mixture of rotamers δ 30.28, 30.59, 35.65, 36.04, 40.48, 40.88 

(2 × NCH3, CHCH2), 52.89, 53.34 (NHCHCO), 65.62 (CH2O), 67.13 (d, 2JC,F = 18.8 Hz, 

OCH2CH2F), 82.28 (d, 1JC,F = 165.6 Hz, OCH2CH2F), 114.21, 114.57, 127.74, 127.91, 

128.42, 129.85, 130.28, 130.50, 136.91 (CN, Carom), 156.28 (OCON), 157.12 (CaromO), 173.50 

(NHCHCO); FTIR (KBr, cm-1) 2222 (C≡N); LC-MS(ESI) (90% H2O to 100% MeOH in 

20 min, then 100% MeOH to 30 min, DAD 219.7–300.7 nm) tr = 17.23, 96% purity, 

m/z = 429.5 ([M + H]+). 
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3.4. NMR SPECTRA 

 

Only NMR spectra of not published compounds are shown. For NMR spectra of published 

compounds, see ‘Supporting Information’ of [192] and [201]. 
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3.4.1. NMR SPECTRA OF 84 
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3.4.2. NMR SPECTRA OF 94 
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3.4.3. NMR SPECTRA OF 95 
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3. EXPERIMENTAL SECTION  193 
 

3.4.4. NMR SPECTRA OF 97 
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194  3. EXPERIMENTAL SECTION 
 

3.4.5. NMR SPECTRA OF 98 
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3. EXPERIMENTAL SECTION  195 
 

3.4.6. NMR SPECTRA OF 100 
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196  3. EXPERIMENTAL SECTION 
 

3.4.7. NMR SPECTRA OF 101 
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3. EXPERIMENTAL SECTION  197 
 

3.4.8. NMR SPECTRA OF 103 
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198  3. EXPERIMENTAL SECTION 
 

3.4.9. NMR SPECTRA OF 119 
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3. EXPERIMENTAL SECTION  199 
 

3.4.10. NMR SPECTRA OF 120 
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200  3. EXPERIMENTAL SECTION 
 

3.4.11. NMR SPECTRA OF 122 
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3. EXPERIMENTAL SECTION  201 
 

3.4.12. NMR SPECTRA OF 124 
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202  3. EXPERIMENTAL SECTION 
 

3.4.13. NMR SPECTRA OF 125 
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3. EXPERIMENTAL SECTION  203 
 

3.4.14. NMR SPECTRA OF 127 
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204  3. EXPERIMENTAL SECTION 
 

3.4.15. NMR SPECTRA OF 128 
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3. EXPERIMENTAL SECTION  205 
 

3.4.16. NMR SPECTRA OF 140 
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206  3. EXPERIMENTAL SECTION 
 

3.4.17. NMR SPECTRA OF 142 
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3. EXPERIMENTAL SECTION  207 
 

3.4.18. NMR SPECTRA OF 144 
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208  3. EXPERIMENTAL SECTION 
 

3.4.19. NMR SPECTRA OF 145 
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3. EXPERIMENTAL SECTION  209 
 

3.4.20. NMR SPECTRA OF 147 
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210  3. EXPERIMENTAL SECTION 
 

3.4.21. NMR SPECTRA OF 148 
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3. EXPERIMENTAL SECTION  211 
 

3.4.22. NMR SPECTRA OF 151 (method A) 

 

 

 

1.
98

01

1.
00

19

2.
03

71

2.
07

55

4.
21

80

6.
00

00

In
te

gr
al

7.
74

56
7.

74
37

7.
73

48
7.

73
11

7.
72

73
7.

71
85

7.
71

59
7.

71
34

7.
65

42
7.

65
16

7.
64

72
7.

63
71

7.
63

59
7.

63
46

7.
63

21
7.

63
08

7.
62

33
7.

62
01

7.
61

89
7.

61
63

4.
42

67
4.

39
27

4.
02

96
4.

01
51

4.
01

38
4.

00
88

4.
00

12
3.

99
99

3.
99

49
3.

98
54

3.
98

10
3.

97
91

3.
97

47
3.

97
16

3.
96

72
3.

96
53

3.
96

40
3.

96
09

3.
95

77
3.

95
33

3.
95

01
3.

94
64

3.
94

32
3.

93
56

3.
93

25
3.

92
93

3.
91

55
1.

16
01

1.
15

89
1.

14
50

1.
13

18
1.

13
05

(ppm)

0.01.02.03.04.05.06.07.08.09.010.0

6.
00

00

1.
16

01
1.

15
89

1.
14

50

1.
13

18
1.

13
05

(ppm)

1.14

4.
21

80

4.
02

96
4.

01
51

4.
01

38
4.

00
88

4.
00

12
3.

99
99

3.
99

49
3.

98
54

3.
98

10
3.

97
91

3.
97

47
3.

97
16

3.
96

72
3.

96
53

3.
96

40
3.

96
09

3.
95

77
3.

95
33

3.
95

01
3.

94
64

3.
94

32
3.

93
56

3.
93

25
3.

92
93

3.
91

55

(ppm)

3.923.943.963.984.004.02

2.
07

55

4.
42

67

4.
39

27

(ppm)

4.40

2.
03

71

In
te

gr
al

7.
65

42
7.

65
16

7.
64

72
7.

63
71

7.
63

59
7.

63
46

7.
63

21
7.

63
08

7.
62

33
7.

62
01

7.
61

89
7.

61
63

(ppm)

7.627.647.66

1.
00

19

In
te

gr
al

7.
74

81
7.

74
56

7.
74

37
7.

73
48

7.
73

11
7.

72
73

7.
71

85
7.

71
59

7.
71

34

(ppm)

7.72

1.
98

01

In
te

gr
al

7.
95

04
7.

94
85

7.
94

66
7.

94
48

7.
93

78
7.

93
40

7.
93

15

(ppm)

7.907.95

14
0.

64
87

13
3.

91
58

12
9.

15
16

12
7.

94
22

62
.4

90
9

62
.4

41
3

52
.1

99
2

51
.1

48
5

16
.1

14
1

16
.0

64
5

(ppm)

020406080100120140160180200

16
.1

14
1

16
.0

64
5

(ppm)

16.0

62
.4

90
9

62
.4

41
3

(ppm)

62.4



212  3. EXPERIMENTAL SECTION 
 

3.4.23. NMR SPECTRA OF 151 (method B) 
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3. EXPERIMENTAL SECTION  213 
 

3.4.24. NMR SPECTRA OF 152 
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214  3. EXPERIMENTAL SECTION 
 

3.4.25. NMR SPECTRA OF 153 
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3. EXPERIMENTAL SECTION  215 
 

3.4.26. NMR SPECTRA OF 155 

 

 

0.
91

84
3.

86
14

3.
82

43

(ppm)

1.
02

82

2.
76

71
2.

74
82

2.
74

00
2.

72
11

(ppm)

1.
06

84

4.
01

53
4.

00
96

4.
00

08
3.

99
51

3.
98

18
3.

97
24

3.
96

86

(ppm)

4.00

0.
91

76

4.
10

73

4.
08

90
4.

07
89

4.
06

19

(ppm)

4.10

1.
04

22

2.
91

78
2.

90
71

2.
89

01

2.
88

00

(ppm)

2.90

0.
95

15

2.
00

00

1.
01

45

2.
09

18

4.
09

97

1.
07

33

0.
88

44

1.
04

45

1.
00

48

0.
91

76

1.
06

84

0.
91

84

1.
04

22

1.
02

82

9.
11

55

In
te

gr
al

7.
80

82
7.

72
81

7.
71

36
7.

69
85

7.
64

93
7.

63
35

7.
61

84
7.

24
21

7.
22

70
7.

21
37

7.
20

99
7.

19
73

7.
17

34
7.

16
90

7.
16

39
7.

15
57

7.
15

01
7.

14
25

7.
00

19
6.

98
62

6.
87

71
6.

86
89

6.
86

07
6.

84
69

6.
83

87
6.

83
05

6.
60

35
6.

57
33

4.
10

73
4.

08
90

4.
07

89
4.

06
19

4.
01

53
4.

00
96

4.
00

08
3.

99
51

3.
98

18
3.

97
24

3.
96

86
3.

86
14

3.
82

43
2.

91
78

2.
90

71
2.

89
01

2.
88

00
2.

76
71

2.
74

82
2.

74
00

2.
72

11
1.

27
63

(ppm)

0.01.02.03.04.05.06.07.08.09.010.0

1.
00

48
6.

60
35

6.
57

33

(ppm)

6.6
1.

04
45

6.
87

71
6.

86
89

6.
86

07
6.

84
69

6.
83

87
6.

83
05

(ppm)

6.85

0.
88

44
7.

00
19

6.
98

62

(ppm)

7.00

4.
09

97

1.
07

33

7.
24

21
7.

22
70

7.
21

37
7.

20
99

7.
19

73
7.

17
34

7.
16

90
7.

16
39

7.
15

57
7.

15
01

7.
14

25

(ppm)

7.20

2.
09

18

7.
64

93

7.
63

35

7.
61

84

(ppm)

7.65

1.
01

45

7.
72

81

7.
71

36

7.
69

85

(ppm)

7.70

2.
00

00
7.

82
58

7.
81

13
7.

80
82

(ppm)

7.80

0.
95

15
8.

23
11

8.
21

98
8.

20
84

(ppm)

8.20

17
1.

97
43

15
5.

47
91

14
4.

65
02

14
0.

56
41

13
8.

14
93

13
3.

70
43

12
9.

72
33

12
9.

68
56

12
9.

25
14

12
8.

15
70

12
7.

18
56

12
6.

36
08

78
.2

55
2

56
.1

51
2

37
.2

35
3

28
.2

66
1

(ppm)

020406080100120140160180200

12
9.

72
33

12
9.

68
56

12
9.

25
14

12
8.

15
70

12
7.

18
56

12
6.

36
08

(ppm)

127128129130



216  3. EXPERIMENTAL SECTION 
 

3.4.27. NMR SPECTRA OF 158 
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3.4.28. NMR SPECTRA OF 159 

 

 

0.
99

89

In
te

gr
al

2.
67

43
2.

65
42

2.
64

66

2.
62

64

(ppm)

2.70

1.
00

50

1.
00

89

0.
86

70

5.
03

71

2.
03

11

2.
00

00

2.
15

98

3.
09

53

0.
98

44

0.
99

89

In
te

gr
al

9.
16

02
8.

69
31

8.
68

23
8.

67
10

7.
52

18
7.

50
48

7.
34

41
7.

33
02

7.
31

57
7.

29
49

7.
28

10
7.

26
59

7.
24

01
7.

22
62

7.
03

84
7.

02
13

6.
64

88
6.

63
18

4.
99

41
4.

96
82

4.
93

73
4.

91
21

4.
16

39
4.

15
44

4.
14

43
4.

13
74

4.
12

42
4.

11
35

2.
88

36
2.

87
42

2.
85

59
2.

84
71

2.
67

43
2.

65
42

2.
64

66
2.

62
64

(ppm)

0.01.02.03.04.05.06.07.08.09.010.011.0

0.
98

44

2.
88

36
2.

87
42

2.
85

59
2.

84
71

(ppm)

2.85

3.
09

53

4.
16

39
4.

15
44

4.
14

43
4.

13
74

4.
12

42
4.

11
35

(ppm)

2.
15

98

4.
99

41

4.
96

82

4.
93

73

4.
91

21

(ppm)

4.95

2.
00

00
6.

64
88

6.
63

18

(ppm)

6.60

2.
03

11

In
te

gr
al

7.
03

84

7.
02

13

(ppm)

7.007.05

5.
03

71

7.
34

41
7.

33
02

7.
31

57
7.

29
49

7.
28

10
7.

26
59

7.
24

01
7.

22
62

(ppm)

7.30

1.
00

89

In
te

gr
al

8.
69

31
8.

68
23

8.
67

10

(ppm)

8.68.7

0.
86

70

In
te

gr
al

7.
52

18
7.

50
48

(ppm)

7.50

17
2.

41
26

15
6.

00
06

13
7.

11
64

13
0.

20
12

12
8.

41
48

12
7.

87
36

12
7.

80
02

12
7.

54
65

11
7.

59
19

11
5.

06
80

65
.4

14
0

56
.5

04
2

36
.5

97
0

27
.2

37
2

(ppm)

020406080100120140160180200

13
0.

20
12

12
8.

41
48

12
7.

87
36

12
7.

80
02

12
7.

54
65

(ppm)

127128129130



3. EXPERIMENTAL SECTION  219 
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ZUSAMMENFASSUNG 

 

Die Papain-ähnlichen Cysteinproteasen der Unterfamilie C1A sind in vielen lebenden 

Organismen einschließlich der Bakterien, Viren, Pflanzen sowie der niederen und höheren 

Tiere verbreitet. Bis zum heutigen Tag sind beim Menschen elf verschiedene lysosomale 

Papain-ähnliche Cysteinproteasen bekannt, die Cathepsine B, C, H, F, K, L, O, S, V, W und 

X, die untereinander eine hohe Homologie aufweisen. Die meisten Cathepsine sind 

Endopeptidasen mit Ausnahme von Cathepsinen C und X, die als „wahre“ Exopeptidasen 

fungieren. Neben ihrer katabolischen Funktion im lysosomalen Proteinabbau üben die 

thiolabhängigen Cathepsine auch spezifische Aufgaben in einer Vielzahl von physiologischen 

Prozessen einschließlich der Homöostase des Knochengewebes, Immunantwort, Apoptose 

und des Umbaus der extrazellulären Matrix. Weiterhin wurde für einige Cathepsine die 

Beteiligung an pathologischen Zuständen wie Osteoporose, Autoimmunität und maligne 

Entartungen beschrieben. Aus diesem Grund repräsentieren die menschlichen Cathepsine 

wichtige Zielstrukturen für die Entwicklung neuer Arzneistoffe und Diagnostika. 

Cathepsin K wird in Osteoklasten exprimiert, deren proteolytische Aktivität hauptsächlich 

durch diese Cysteinprotease vermittelt wird. Es wurde gezeigt, dass Cathepsin K in der Lage 

ist, verschiedene Komponenten der Knochenmatrix, unter anderem auch Kollagen des Typs I, 

zu spalten. Diesem Enzym wird deswegen eine entscheidende Rolle im Prozess der 

homöostatischen Knochenerneuerung zugeschrieben. Cathepsin K steht aktuell im Fokus des 

wissenschaftlichen Interesses als eine mögliche Zeilstruktur zur Behandlung der Osteoporose.  

Cathepsin S wird hauptsächlich im lymphatischen Gewebe wie Lymphknoten, Milz und 

Makrophagen exprimiert. Diese Cysteinprotease ist durch die Prozessierung der invarianten 

Kette an der MHC-II-vermittelten Antigenpräsentation beteiligt. Es wurde gezeigt, dass die 

Hemmung von Cathepsin S mit einer verringerten Präsentation von Autoantigenen in einem 

murinen Modell verbunden ist. Basierend auf dieser Tatsache wird Cathepsin S als ein 

mögliches Target für die Behandlung der Autoimmunität betrachtet. 

Das primäre Ziel dieser Arbeit war die systematische Entwicklung von Dipeptidnitrilen und 

Azadipeptidnitrilen als hochpotente und selektive Inhibitoren für die therapeutisch 

interessanten Cathepsine K und S. Im Rahmen dieser Arbeit wurde außerdem eine 

fluoreszierende molekulare Sonde für die Detektion und Quantifizierung von Cathepsinen 

mittels SDS-PAGE etabliert. 

Nitril-abgeleitete Dipeptide und Azadipeptide inhibieren Cysteinproteasen durch eine 

kovalente Interaktion mit dem aktiven Cysteinrest unter reversibler Ausbildung eines



 

enzymgebundenen Thioimidats bzw. eines enzymgebundenen Isothiosemicarbazids 

(Abbildung. 1). 
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Abbildung 1. Reversible Ausbildung von kovalenten Addukten. 

X = CH (im Fall von Dipeptidnitrilen); X = N (im Fall von Azadipeptidnitrilen). 

 

Durch die stufenweise Optimierung der peptidischen Grundgerüste wurden hochpotente 

Cathepsin K-Inhibitoren entwickelt, die zusätzlich eine beträchtliche Selektivität für dieses 

Enzym zeigten. Um die Selektivität für Cathepsin K zu erreichen musste ein großer 

aromatischer P3-Substituent mit L-Leucin oder Homocycloleucin in der P2-Position 

kombiniert werden. Im Fall des L-Leucin-abgeleiteten Azadipeptidnitrils war außerdem die 

Methylierung des P3-P2-Linkers nötig. Generell war die inhibitorische Aktivität der 

Azadipeptidnitrile höher als die der entsprechenden Kohlenstoff-Analoga (Tabelle 1). 

 

Tabelle 1. Ki-Werte von Cathepsin K-selektiven Dipeptidnitrilen und Azadipeptidnitrilen. 
 

S3

S2

N

O
N

O
X

R4

CN
R3R2

N

O N

S
R1

 
 

R1 R2 R3 R4 X 
Ki (nM) 

Cath L Cath S Cath K Cath B 

H iso-Butyl H H CH2 940 140 2,9 > 22000 

Me iso-Butyl H Me NMe 2700 140 0.63 510 

H -(CH2)5- H CH2 > 5000 > 5000 13 > 5000 

H -(CH2)5- Me NMe 280 78 0,35 150 

S3, S2 – Bindungstaschen von Cathepsin K 

 

Im zweiten Projekt dieser Arbeit wurde die Bindungstasche S3 von Cathepsin S systematisch 

untersucht. Dafür wurde ein großer P2-Rest mit unterschiedlichen aromatischen P3-

Substituenten kombiniert. Die synthetisierten Substanzen wurden an den menschlichen 

Cathepsinen L, S, K und B evaluiert und zeigten alle inhibitorische Aktivitäten im 



 

nanomolaren Bereich gegenüber Cathepsin S. Obwohl die Bindungstasche S3 von Cathepsin 

S auch größere aromatische P3-Substituenten akzeptierte, erreichte das Dipeptidnitril mit 

einem kleinen Benzoylrest in der P3-Position die höchste Hemmaktivität. Weiterhin zeigte 

dieser Inhibitor auch eine beachtliche Selektivität für Cathepsin S über die Antitargets, 

Cathepsine L, K und B. Das entsprechende Azadipeptidnitril war weniger selektiv, während 

seine inhibitorische Aktivität deutlich höher lag (Tabelle 2). 

 

Tabelle 2. Ki-Werte eines Cathepsin S-selektiven Dipeptidnitrils und seines Stickstoff-Analogons 
 

S3

S2

N
H

O
H
N

O

X
CN

S
O

O

 
 

X 
Ki (nM) 

Cath L Cath S Cath K Cath B 

CH2 37000 33 > 40000 24000 

NMe 15 0,55 0,66 5,8 

S3, S2 – Bindungstaschen von Cathepsin S 

 

In einem weiteren Projekt wurde eine fluoreszierende molekulare Sonde für die 

Visualisierung von thiolabhängigen Cathepsinen entwickelt. Diese Sonde besteht aus vier 

Teilen: (1) einem Vinylsulfon für eine irreversible Interaktion mit dem aktiven Cysteinrest im 

Sinne einer Michael Addition; (2) L-Phenylalanin in der P2-Position; (3) einem Linker und 

(4) einem fluoreszierenden Reporter. Die Hemmaktivität der synthetisierten Sonde wurde an 

Cathepsinen L, S, K and B evaluiert und die grundsätzliche Möglichkeit zur Visualisierung 

von Cathepsinen wurde am Beispiel von Cathepsin K gezeigt (Abbildung 2). 
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Abbildung 2. Eine fluoreszierende molekulare Sonde. 

FG – fluoreszierende Gruppe. 
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