High Accuracy Design Pattern Detection

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultét
der

Rheinischen Friedrich-Wilhelms-Universitat Bonn

vorgelegt von
Alexander Binun
aus Kharkiv (die Ukraine)

Bonn, 2012



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultét der Rheinischen Friedrich-Wilhelms-Universitdt Bonn.
ERSTGUTACHTER: Prof.Armin B.Cremers, Bonn.

ZWEITGUTACHTER: Prof. Alexander Chatzigeorgiou, Thessaloniki, Griechen-
land.

TAG DER PROMOTION: 15.06.2012.

ERSCHEINUNGSJAHR: 2012.



Abstract

Occurrences of design patterns in existing code conveys important in-
formation to software developers about the intent of the original author.
Therefore, automated design pattern detection is highly desirable when it
comes to understanding unknown code. However, existing design pattern
detection tools often deliver different results on the same code. Their preci-
sion and recall has so far been insufficient to make design pattern detection
part of modern integrated development environments and development prac-
tices. In this context, this thesis provides several contributions to the state
of art.

First, it points out that the widely disparate results are rooted in the
fact that various authors model design pattern structure and behavior using
different, hard to compare concepts. A realistic comparison is additionally
inhibited by the lack of common test sets that could serve as a reference for
the evaluation of design pattern detection tools.

Accordingly, the first contribution of my thesis is a common benchmark
for design pattern detection. It consists of software repositories of varying
size and complexity that include deviations from straightforward applica-
tions of design patterns, thus preventing overfitting to a particular scenario.
The benchmark is the practical basis for meaningful and practice-oriented
comparisons.

The conceptual basis for a comparison is provided by a formalism that
allows expressing structure and behavior of pattern implementation whereas
covering the concepts supported by the reviewed tools. In this formalism, de-
sign pattern implementations are viewed as sets of roles played by software
entities. The specific structure and behavior of pattern implementations
is captured by a set of constraints specified in a first-order-logic language.
These constraints express program analyses at a generic level that can be
implemented by static or dynamic analysis techniques, or any combination
thereof. The current thesis explores two different instantiations of the con-
ceptual approach:

e Dala fusion combines the outputs of several pattern detection tools
that partly use complementary techniques. The manual validation
of this approach yielded better precision and recall than each of the
evaluated tools |28, 42]. The first step towards the automation of
this approach was the development of a common metamodel of the
core concepts and results of design pattern detection tools and the
specification of a common exchange format, DPDX|[43, 44|. How-
ever, the data fusion approach was not implemented since it would
have required implementation of DPDX in tools developed by other
research groups, making the progress of my thesis dependent on
their schedules. In addition, data fusion would have also combined
the weaknesses of the used tools (e.g. bugs or bad run-time perfor-
mance).



e Technique fusion combines the core ideas of various pattern detec-
tion techniques within one tool. The resulting pattern detection
tool, DPJF (an acronym for Design Pattern detection by Joining
Forces), achieves for all analyzed design patterns on all bench-
mark projects 100% precision and significant (partly many-fold)
improvements of recall compared to each of the four other eval-
uated tools. Notably, these improvements are not bought at the
expense of speed: Together with SSA [68] and PINOT [58] DPJF
is the third-fast tool. The high detection quality is achieved by
a well-balanced combination of existing structural and behavioural
analysis techniques whereas the good performance is achieved by
empirically validated simplifications of the pattern detection tech-
niques that were combined.

By its improvement of all relevant parameters, my approach makes design
pattern detection for program comprehension suitable for routine application
by professional developers.

Zusammenfassung

Vorkommnisse von Entwurfsmustern in bestehendem Code vermitteln
Entwicklern wichtige Informationen iiber die Absichten des urspriinglichen
Autors. Daher ist die automatisierte Entdeckung von Entwurfsmustern ein
wichtiges Hilfsmittel zum Verstdndnis unbekannten Codes. FExistierende
Verfahren und Systeme zur Erkennung von Entwurfsmustern liefern jedoch
oft unterschiedliche Ergebnisse. Thr Genauigkeit (“precision”) und Entdeck-
ungsrate (“recall”) sind zu gering, um Entwufsmustererkennung zum festen
Bestandteil aktueller Entwicklungsumgebungen und Entwicklungspraktiken
zu machen. In diesem Zusammenhang bietet diese Arbeit mehrere Beitrige
zum Stand der Technik.

Zunéchst zeigt sie, dass die voneinander stark abweichenden Ergebnisse
bestehender Werkzeuge auf ihrer unterschiedlichen Modelierung von En-
twurfsmustern beruhen. Ein fundierter Vergleich wird zusétzlich dadurch
erschwert, dass es keine Referenzprojekte zur Evaluation solcher Werkzeuge
gibt.

Dementsprechend ist der erste Beitrag meiner Arbeit eine Menge von
Referenzprojekten, deren sehr unterschiedliche Komplexitdt und Grofie der
Uberspezialisierung von Werkzeugen auf bestimmte Szenarien entgegenwirken.
Sie bietet die Grundlage fiir aussagekriftige und praxisrelevante Vergleiche
verschiedener Ansitze und Werkzeuge.

Die formale Grundlage fiir fundierte Vergleiche ist ein einheitlicher For-
malismus zur Spezifikation der strukturellen und dynamischen Eigenschaften
von Entwurfsmuster-Implementierungen, der die Bandbreite der in den un-
tersuchten Werkzeugen eingesetzten Techniken abdeckt. In diesem For-
malismus werden Entwurfsmuster als Mengen von Rollen betrachtet die
von Software-Elementen gespielt werden kénnen. Die spezifische Struktur



und das charakteristische Verhalten von Muster-Implementierungen werden
durch eine Menge von Pradikaten (“constraints”) in einer auf Logik erster
Ordnung basierenden Sprache dargestellt. Diese Pradikate stellen generische
Programm-Analysen dar, die sich gleichermassen durch statische, dynamis-
che oder kombinierte Analyserfahren umsetzen lassen.

Die Arbeit untersucht zwei unterschiedliche Ausprigungen diese Ansatzes:

e Daten-Fusion ist die Verkniipfung der Ergebnisse verschiedener beste-
hender Werkzeuge, die teilweise komplementiire Verfahren verwen-
den. Die manuelle Validierung dieses Ansatz auf den verwende-
ten Referenzprojekten ergab eine bessere Genauigkeit und Abdeck-
ungsrate als die der einzelnen verwendeten Werkzeuge [28, 42].
Als wesentlicher Schritt zur Automatisierung des Fusions- Ansatzes
wurde ein gemeinsames Meta-Modell zur Beschreibung der Kernkonzepte
und Ergebnisse von Werkzeugen zur Entwurfsmustererkennung und
ein entsprechendes einheitliches Austauschformat, DPDX, entwick-
elt [43, 44]. Der Ansatz wurde jedoch nicht implementiert, da
die praktische Umsetzung des DPDX-Formates in Werkzeugen ver-
schiedener anderer Forschungsgruppen den Fortschritt meiner Ar-
beit von externen Prioritdten und Zeitpldnen abhingig gemacht
hétten. Ferner hétte die Daten-Fusion auch die Schwichen (z.B.
Implementierungsfehler, teilweise schlechte Laufzeit) der verwende-
ten Werkzeuge kombiniert.

o Technik-Fusion ist die Verknipfung der Kern-Ideen bekannter Ver-
fahren innerhalb eines Werkzeug. Das resultierende Mustererken-
nungswerkzeug, DPJF (ein Akronym fiir Design Pattern detection
by Joining Forces), erreicht fiir alle untersuchten Entwurfsmuster
auf allen Referenzprojekten 100%-ige Genauigkeit und eine deut-
lich (teilweise um ein vielfaches) bessere Abdeckungsrate als jedes
der vier Vergleichssysteme. Bemerkenswerterweise werden diese
Verbesserungen nicht durch Laufzeiteinbufken erkauft: Hinsichtlich
Laufzeit erzielt DPJF (zusammen mit SSA[68] und PINOT [58])
einen beachtlichen dritten Platz. Die hohe Erkennungsqualitdt wird
durch eine ausgewogene Kombination aus bestehenden Struktur-
und Verhaltensanalysetechniken erreicht. Die sehr gute Laufzeit
wird durch empirisch validierte Vereinfachungen der kombinierten
Techniken erreicht.

Dank der Verbesserung aller relevanten Parameter ermdglicht mein Ansatz
den bisher fehlenden routineméfigen Einsatz von Entwurfsmustererkennung
fiir Programm-Verstehen.



Acknowledgements

First and above all, I praise G-d for providing me this opportunity and
granting me the capability to proceed successfully.

I would like to express my deep and sincere gratitude to my supervi-
sor, Professor Armin B. Cremers from the Institute of Computer Science,
Friedrich-Wilhelm-University of Bonn. His wide knowledge and the inter-
disciplinary way of thinking have been of great value for me. His support
and understanding have provided a good basis for the present thesis.

I am deeply grateful to Dr. Giinter Kniesel from the Institute of Com-
puter Science, Friedrich-Wilhelm-University of Bonn. Giinter collaborated
with me throughout my thesis with his patience and knowledge, at the same
time allowing me the room to work in my own way. I attribute my current
scientific level to his encouragement and effort. A lot of personal support
from Giinter was also valuable when I relocated to Germany. So now I can
say that Germany became my “scientific homeland”.

I wish to express my sincere thanks to Alexander Chatzigeorgiou, Yann-
Gaél Guéhéneuc, Nikolaos Tsantalis, Péter Hegediis, Lajos Jend Fiilép and
Rudolf Ferenc for long discussions on the details of their tools and ap-
proaches. From them I have learned a lot about design patterns and also
how to organize personal collaborations. The approach presented in my the-
sis was developed and polished thanks to their feedback. This collaboration
can be described by citing Isaac Newton, “If T have seen further it is by
standing on the shoulders of giants”.

The main point of my thesis is joining experiences of different researchers,
so feedback and discussions lie at its core. Krzysztof Stencel and Patrycja
Wegrzynowicz kindly consented to share valuable information relevant to
several design patterns. Andrea Caracciolo and Francesca Arcelli provided
me with an XML dump of the DPB database. Useful feedback and discus-
sions were also provided by Clement Izurieta, Jim Bieman, Daniel Speicher,
Holger Miigge and Joérg Westheide.

I am indebted to the JTransformer team, especially to Tobias Rho,
Fabian Noth and Andreas Becker who supported me when I was imple-
menting my pattern detection tool. Daniel Speicher and Jan Nonnen helped
me use their Cultivate library in my tool.

My sincere appreciation is to DAAD (German Academic Exchange Ser-
vice) for the financial support during my stay in Germany. In particular, my
sincere thanks to Margret Leopold from the DAAD office in Bonn for her
advice and kind support.

Last but not least, I would like to thank my family for all their love and
encouragement. My beloved wife and my three children stayed in Germany
with me and were always a powerful source of inspiration and energy.



Part 1.

Contents

State of Art

Chapter 1. Introduction

1.1.
1.2.
1.3.
1.4.

Limitations of current approaches
Goals of the thesis

Contributions

Structure of the thesis

Chapter 2. Background

2.1
2.2.
2.3.
2.4.
2.5.

General Notions

Design Pattern Basics
Discussed Design Patterns
Pattern classification
Pattern relevant interactions

Chapter 3. State of Art and Problems

3.1
3.2.
3.3.
3.4.
3.5.

Part 2.

Benchmarks

Evaluated Tools
Evaluation Methodology
Main Problems
Conclusions

Approach 1: Data Fusion

Chapter 4. Data Fusion Approach

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.

Brief Overview over the Approach
Smaller patterns witness bigger patterns
Agreement and Joint Recognition
Disagreement and Reconstruction
Wrongly Identified Superpatterns
Additional Sources of Information
Evaluation of the Data Fusion Approach
Conclusions

Chapter 5. A Common Exchange Format for Design Pattern Detection

o.1.
5.2.

Tools
Motivation
Requirements to an exchange format

= =W N

10
11
15
16

18
18
19
20
21
37

39

40
40
41
42
43
45
45
46
47

20
o0
o1



CONTENTS

5.3. DPDX Concepts
5.4. The architecture of a pattern candidate

Part 3. Approach 2: Fusion of Techniques

Chapter 6. An Object Level View of Design Patterns
6.1. Pattern occurrences at the object level
6.2. The Core Constraints
6.3. The object level vs. the program element level
6.4. Conclusion

Chapter 7. Specifying Pattern-Specific Interactions
7.1.  The Software System Abstraction
7.2. Roles and Relationships
7.3. The Constraints
7.4. Behavioral Pattern Specifications
7.5. Summary

Chapter 8. Implementation Issues
8.1. Implementing the Pattern Interaction Framework
8.2. Improving Recall
8.3. Improving Response Time

8.4. Combining of static and dynamic analyses in constraint

implementations
8.5.  The organization of DPJF

Chapter 9. Evaluation of DPJF
9.1. Computing precision and recall
9.2. Discussion of Results for Precision and Recall

Part 4. Related Work and Conclusions

Chapter 10. Related Work
10.1. Efficient Implementations of Behavioral Analyses
10.2.  Design Pattern Detection Approaches
10.3. Specifying interactions between pattern participants
10.4. Benchmarking and Tool Comparison
10.5. Compiling Test Sets
10.6. Data Fusion

Chapter 11. Conclusions and Future Work
Bibliography
Appendix A. Structurally similar patterns

Appendix B. Response Time Statistics

ol
93

o4

5%
o6
o6
60
63

64
64
71
74
86
91

94
95
98
99

104
105

111
111
114

124

125
125
125
128
128
130
131

132
135
140
143



Part 1

State of Art



CHAPTER 1

Introduction

Design patterns [27] (referred to in the thesis as patterns) are domain-
independent descriptions of groups of communicating classes that present
solutions to recurring object-oriented design problems. Uncovering patterns
from source code is therefore important for program comprehension. A pat-
tern detection tool returns a list of candidates. In order to evaluate the
accuracy of the tool, the returned candidates are compared against known
pattern occurrences in the analyzed program.

1.1. Limitations of current approaches

Pattern detection is complicated by the high number of structurally and
behaviorally diverse implementation variants that emerge when a program-
mer adapts informal descriptions of the collaborating entities to a concrete
context. The structure and behavior of pattern implementation variants are
represented differently in various approaches (see [8, 12, 15, 20, 71, 33, 34,
70, 36, 67, 72, 17, 26| for theoretical approaches and [2, 16, 52, 68, 58] for
implemented tools). Analyzing these approaches, the following limitations
that motivated my research were identified:

Inconsistency of pattern detection results: Existing pattern de-
tection tools often render different, contradictory results on the
same code.

Low precision: Precision is the ratio of pattern candidates detected
by a tool to the number of correct pattern occurrences among the
suggested candidates [17]. Tdeal precision (100%) would correspond
to a tool that is fully trustworthy in that each suggested candidate is
a real pattern occurrence. Existing tools often yield a low precision,
with the values for individual benchmarks ranging, according to the
measurements provided in Chapter 9, from 9% for PINOT [58] to
66% for Similarity Scoring [68|.

Low recall: Recall is the ratio of pattern candidates detected by a
tool to the number of correct pattern instances within the test set
[17]. Ideal recall (100%) would correspond to a tool that detects all
possible implementation variants of each supported pattern. Exist-
ing tools often yield a low recall, with the values for certain bench-

marks ranging , according to the measurements provided in Chapter
9, from 18% for Ptidej [29] to 44% for SSA [68].

2



1.2. GOALS OF THE THESIS 3

Partly low speed: Some existing tools respond very slowly to user
queries and run fast on some programs whereas being slow on others.
According to the measurements provided in Section 9.2, Ptidej [29]
detects Observer and Composite patterns in JHotDraw 6.0 in 69.9
sec. (40 times faster than the fastest tool). In JavalO, Ptidej detects
Observer and Composite patterns in only 2.3 seconds (7 times faster
than the fastest tool).

The net effect of all these problems is that existing approaches are interest-
ing research contributions but none has a significant community of regular
professional users. Obviously, all known tools and approaches are still far
from being perceived as useful by professional developers. Therefore, the aim
of this thesis is the development of a methodologically, empirically and for-
mally well-founded approach that provides the basis for a pattern detection
tool that is ready for professional use.

1.2. Goals of the thesis

The goal of my pattern detection approach is to ensure the following
quality characteristics:

Ideal precision: Precision close to 100% is the key prerequisite for
letting developers trust any analysis tool.

High speed: Analyses must be perceived as “fast” by their users.
This is clearly a subjective measure that depends on the concrete
use case. When a pattern detection tool is used as a helper in a one-
time program comprehension task, developers might be willing to
wait tenths of seconds (or even minutes on very large programs) be-
cause the tool’s result will still appear much faster than any manual

opment aid that hints to possible problems in the application of
design patterns, its output must be as soon as possible available
after saving changes to some file. This corresponds to delays of at
most a few tenths of a second. The aim is to push speed to the limit
where such novel applications of pattern detection as permanently
active development aids become possible.

Good recall: To be ready for everyday use, recall of automated pat-
tern detection must be significantly improved compared to the one
of existing tools. A tool must be able to guarantee detection of
all commonly used implementation variants of a pattern. However,
it may fail on exotic variations whose automated treatment would
seldom be needed but would adversely impact precision or run-time
or both.

Design pattern detection, like any information retrieval task, suffers from
false negatives (missing correct occurrences) and false positives (incorrect
classification of pattern candidates) - see [17]. These are conflicting issues.



1.3. CONTRIBUTIONS 4

Pattern detection tools that apply liberal detection criteria accept more can-
didates. On the flip side, the number of false candidates might also grow.
In contrast, tools that apply too restrictive detection criteria filter out many
false positives, but correct occurrences may be filtered out as well. In ad-
dition, the need for speed adversely affects the number of false negatives
and positives. The different techniques to achieve precision, recall or speed
negatively influence each other. By the start of this thesis it was commonly
accepted in the design pattern community that it would be impossible to im-
prove in one discipline without degrading in another. This thesis contradicts
this “old wisdom”, showing that it is even possible to significantly improve
in two disciplines without degrading in the third.

1.3. Contributions

Evaluation of pattern detection tools on a common benchmark.
After examining various pattern detection approaches, it was figured out that
the test sets used by various experts to develop and evaluate their tools are
very diverse. Test sets usually represent the most frequently encountered
implementations (or simply those found manually by an expert). These
are mostly straightforward ones. The more non-trivial implementations are
taken, the more disagreement between various experts emerge and the more
diverse test sets are. This problem is referred to in this thesis as the biased
test set problem since a test set reflects the experience of an individual expert,
i.e. biased towards her or his perception. The biased test set problem is
aggravated by the lack of documentation, which leaves room for speculation
about the intent of the author of a particular piece of code, inviting divergent
interpretations by others (as noted by Pettersson et al. [53| and Dong et al.
[17]).

To overcome the biased test set problem, an extensive practical evalu-
ation of different pattern detection tools that employ different static and
dynamic analysis techniqueswas performed. The evaluation results were
summarized in Chapter 3. The reviewed pattern detection tools were evalu-
ated on various code repositories of various sizes and complexities that are
described in Sec. 3.1. The test sets were prepared by screening these repos-
itories manually and by running the tools evaluated in Chapter 3. These
activities were done in collaboration with the authors of these tools. Fach
potential true and false positive was thoroughly discussed, thus combining
the expertise of several research groups in this thesis.

A formal framework for specifying design patterns. While evalu-
ating tools and communicating with their authors, it was concluded that the
research community needs a common formal basis that allows researchers to
decide why a particular candidate is indeed a true occurrence.



1.3. CONTRIBUTIONS 5

For the patterns addressed in this thesis, different implementation vari-
ants of each individual pattern were reviewed and a formal framework (fur-
ther referred to as the Pattern Interactions Framework) to express interac-
tions in pattern occurrences was compiled. This framework is introduced in
Chapter 7. Pattern interactions is formally presented as a set of roles played
by software elements and relationships between roles that reflect collabora-
tions (structural and behavioral) between role players. The constraints re-
strict the possible role players, making them collaborate in a pattern-specific
way. The constraints are expressed using first-order-logic. By using different
ways to connect roles with relationships and constraints one can capture a
(possibly) infinite set of pattern implementation variants.

The key point in which my approach differs from prior work on pattern
detection is that it captures the structural and behavioral characteristics of
design patterns in the most generic terms adopted from [27], i.e. in terms of
collaborations between objects. It was decided to depart from the commonly
adopted specification of patterns at the program element level since descrip-
tions at object level are believed to be better suited to capture the behavioral
aspects (e.g. control- and data flow) that are essential for the interactions
between pattern entities. In contrast, premature focus on a description at
program element level bears the risk of obscuring that different program
structures essentially implement the same object interaction. Object-level
specifications make it easy to identify common characteristics obscured oth-
erwise by mere implementation choices. Object-level characteristics are later
translated into their program-level counterparts, making it explicit that one
core object interaction can be implemented in several ways.

A second but equally important benefit of starting from object interac-
tions is that the formal basis also applies to approaches based on dynamic
analysis. At run-time, objects and sequences of object actions / events are
the only observable concepts, whereas program structures do not exist any-
more. Thus a common formal framework for static and dynamic analyses is
built. The explicit mapping of object-level to program element level descrip-
tions allows to compare dynamic and static approaches that are otherwise
described independently at the two different levels.

In summary, design pattern experts can focus first on the concepts that
are essential for a particular pattern and then, in the implementation phase,
to find the most suitable combination of static and—or dynamic detection
techniques for the specified concepts.

Fusion of outputs. Inspired by the idea that various detection tech-
niques (for example, static vs. dynamic behavioral analyses) can be benefi-
cially combined (as suggested by Poshyvanyk et al. [56]), it was shown that
such a combination provides advantages already at a very coarse-grained
level, where the outputs of existing pattern detection tools are combined.
The related data fusion approach for design pattern detection is introduced



1.3. CONTRIBUTIONS 6

in Chapter 4. It is motivated by the consideration that static and dynamic
program analyses can be combined. On the one hand, static analyses make
every property true of the model mapped to a true property of the program;
on the other hand, they are imprecise. Static analyses are compensated by
precise dynamic analyses that, however, do not guarantee that every prop-
erty true of the program is true of the model (program traces). Each tool,
analyzing certain aspects of a pattern, contributes its estimates, without
requiring any expensive reimplementation of already available techniques.

The fusion-based pattern detection approach was manually evaluated,
showing that it improves precision and recall in comparison to individual
pattern detection tools whose outputs were fused.

A common metamodel and exchange format for pattern de-
tection tools. An obstacle to the implementation of automatic result data
fusion was the diversity of the output formats of the existing tools. This is
at a first glance a purely syntactical issue. However, it hides a much more
fundamental semantic issue: The different, often incompatible definitions of
some very basic concepts on which the various tools were built - for example,
how to group program elements into pattern detection candidates. Address-
ing this limitation, a common exchange format for DPD tools, DPDX, was
developed and described in Chapter 5. DPDX is based on a well-defined
and extensible metamodel resolving a number of limitations of current tools.
The employed XML-based metamodel can be easily adopted by existing and
future tools providing the ground for improving precision and recall when
combining their findings. In the process of building DPDX, some central
notions of design patterns that lacked common, generally accepted defini-
tions were clarified. Thus a sound common foundation and terminology for
pattern detection issues were provided.

A pattern detection tool. The observations reported in Chapter 3
showed that some pattern detection tools implement time-consuming pro-
gram analyses that do not always contribute to the accuracy - for example,
transitive closures of the object flow relation (Stencel et al. [64]). More
importantly, when building on existing tools, certain combinations of tech-
niques cannot be achieved at all or only at the price of including also some
unwanted techniques.

Motivated by these observations, it was decided to depart from realizing
the Pattern Interactions Framework (mentioned in Section 1.3) through the
data fusion. Instead, several pattern detection techniques were combined
by implementing them in one tool via static analyses.! More precisely, only
certain variants of these techniques are combined because of efficiency con-
siderations. For example, the transitive closure of the data flow relation is
not implemented.

'According to the information combination taxonomy of Croft et al. [14] I fused
algorithms instead of fusing outputs.



1.4. STRUCTURE OF THE THESIS 7

A pattern detection tool (named DPJF, ‘Detect Patterns by Joining
Forces’) was implemented. DPJF yields a drastic improvement over exist-
ing tools regarding the achieved precision and recall. The response time of
DPJF competes with the response time of the fastest existing pattern detec-
tion tools reviewed in this thesis. The corresponding evaluation results are
presented in Chapter 9.

In summary, a pattern detection tool presented in this thesis removes sev-
eral key obstacles that up to now prevented professional developers from us-
ing pattern detection tools: bad precision, recall and speed. The availability
of the DPJF prototype (see http://sewiki.iai.uni-bonn.de/research/
dpd/dpjf/start) enables empirical validations of the motivation behind pat-
tern detection. Other factors that might also prevent adoption of pattern
detection (e.g. questioning of patterns in general) can be also be separately
investigated.

1.4. Structure of the thesis

Chapter 2 introduces the terminology used throughout the thesis. Chap-
ter 3 presents state of art, by evaluating five existing pattern detection tools
and stating the problem tackled in the thesis. Chapter 4 presents an in-
stantiation of the Pattern Interactions Framework by fusing the outputs of
different pattern detection tools. Chapter 5 presents a common exchange
format for pattern detection tools. Chapter 6 informally discusses how the
structure and the behavior of some pattern implementation variants can be
expressed in the terms of collaborating objects. Chapter 7 presents the Pat-
tern Interactions Framework formally. Chapter 8 presents DPJF, the novel
pattern detection tool that instantiates the Pattern Interactions Framework
by combining several static program analyses. Chapter 9 evaluates DPJF
and compares the results of DPJF and of several other tools. Chapter 10
surveys related work. Finally, Chapter 11 concludes and outlines future
work.



CHAPTER 2

Background

2.1. General Notions

Analyzed languages. This thesis addresses design patterns for class-
based, statically typed languages (for example, Java , C+-+, C#) since they
possess features like inheritance and static typing exploited in many pat-
tern implementations|27|. Due to the focus of the thesis, the term “object-
oriented” is used as an equivalent to “class-based, statically typed”.

Information retrieval. Assume that an information retrieval tool T
detects some concept in a data set (e.g. a design pattern in the source
code). T reports manifestations of this concept referred to in the thesis as
candidates. Candidates are compared against occurrences, i.e. actual mani-
festations of the sought concept in a data set confirmed by the author and or
by an expert. For example, a design pattern detection tool searches for the
implementations of a certain pattern in the source code, retrieving pattern
candidates. These are compared against the occurrences in the correspond-
ing test set.

Denote the set of candidates that are occurrences (true positives) by TP,
the set of candidates that are no occurrences (false positives) by F P, the
set of occurrences that are no candidates (false negatives) by F'N and the
set of remaining entities that are neither occurrences nor candidates as true
negatives (T'N). The accuracy of retrieved information denotes the fraction
of true results among all pattern entities. Formally,

Accuracy =| TP |+ |TN | /(| TP |+ |FP|+|FN|+|TN|).

Two main metrics are commonly used to reason about the accuracy (see
e.g. [14]):

e Precision is the fraction of true positives among all candidates.
Formally, Precision =| TP | /(| TP |+ | FP]) .
e Recall is the fraction of true positives among all occurrences. For-

mally, Recall =| TP | /(| TP |+ | FN|) .

It is also common practice in information retrieval to use integrations of
these two metrics, for example, the harmonic mean of precision and recall
(F-Score) : FScore =2/(1/Precision + 1/ Recall) .

Fmentioned by Croft et al. [14].

Note that some information retrieval tools rank their results, expressing
their confidence that a particular candidate is actually a correct occurrence

8



2.1. GENERAL NOTIONS 9

What to Analyze

Structure Behaviour
i types
Stat!c ] y ] call graph
Analysis fields and method signatures
data flow
(program) associations, inheritance
Dynamic )
) execution traces
Analysis object relationships . i
(traces) object creation

FiGure 2.1.1. Program analyses

by a score. Scores are typically expressed by a percentage, with 100% indi-
cating total confidence. Scores might be taken into account when computing
precision and recall of pattern detection tools as Pettersson et al. |54] re-
ports. This thesis presents a novel approach to compute precision and recall
of a pattern detection tool that reports scores; see Chapter 9 for more details.

Program Analyses. Most pattern detection algorithms match descrip-
tions of the expected structure and the behaviour of sought patterns against
the information about the structure and behaviour of program elements.
Relevant program analyses can be categorized in two orthogonal dimensions,
with two subcategories each:

e What to analyze. Structural analyses deal with the structure
of program entities (for example: subclassing, method signatures,
variables types). Behavioral analyses deal with program behaviour
(control/data flow).

e How to analyze. Static analyses analyse a program without exe-
cuting it. Dynamic analyses are based on performing several trial
program runs and collecting information from the execution traces.

Figure 2.1.1 illustrates this classification.

Since behavioral aspects constitute the most essential part of pattern
specifications, insufficient behavioral analyses yield extra false positives (An-
toniol et al. [3], Fulop et al. [25]).

Dynamic behavioral analyses (advocated by Gueheneuc et al. [29], Det-
ten et al. [71] and De Lucia et al. [47]) can be effective, in particular when
applied in addition to structural criteria because they are more precise. But
dynamic analyses do not guarantee that every property true of the program
is true of the abstraction (i.e. program trace(s)) because of hardly achievable
test coverage. In contrast, static analyses are applied because they guarantee
that every property true of the abstraction mapped to a true property of the
program. However, static analyses are imprecise. In this thesis, static and



2.2. DESIGN PATTERN BASICS 10

dynamic analyses are referred to as complementary techniques and can be
combined (Chapter 4).

Increasing the number of execution traces might lead to a loss of efficiency
and covering all traces is practically impossible on large programs since it
is equivalent to the problem of path coverage (Nielson et al. [51]|) which
is well-known to be exponential. But full-scaled static behavioral analyses
might be also inefficient (Nielson et al. [51]). Tackling this issue, Sridharan
et al. [63] propose an efficient demand-driven points-to analysis algorithm.

2.2. Design Pattern Basics

The following is an informal summary of basic concepts of design pattens
and design pattern detection extracted from literature |2, 3, 23, 6, 7, 8, 9,
10, 11, 12, 47, 16, 64, 20, 21, 27, 34, 37, 39, 40, 28, 43, 46, 19, 52,
54, 57, 58, 36, 73|. They are treated formally in Chapter 7.

Definition. According to Gamma et al. [27], “design patterns are de-
scriptions of communicating entities that are customized to solve a general
design problem in a particular context”. A pattern description is divided
into four parts:

e Name - identifies the pattern so that it can be discussed.

e Problem - when to apply the pattern . It can be divided into intent,
motivation, and applicability.

e The description of interactions between entities that form a pattern
occurrence (also referred to as a solution in |27]).

— At the program element level, implementation variant(s) in-
corporate this description and result from adapting (informal)
pattern descriptions to specific situations. Several implemen-
tation variants might be abstracted into a more high-level de-
scription referred to as a motif in [30, 2, 31, 29, 33, 1|. Each
pattern description in [27] is followed by examples of imple-
mentation variants for this pattern.

— At the object level, interaction descriptions are expressed in
the terms of memory location references and objects sending
messages each to other.

o Consequences: description of the software after applying the pat-
tern.

Roles, Relationships. Assume that P is a currently addressed pat-
tern. It can be viewed as a set of roles played by software entities (objects,
their types, methods, fields, method calls). Roles are connected by rela-
tionships (e.g. containment, control flow) representing interactions between
their players.

An occurrence of P can be seen as a set of software entities {ej...e,}
that play some roles of P and exhibit the relations that are expected to hold
between the players of these roles. A pattern detection tool basically tries



2.3. DISCUSSED DESIGN PATTERNS 11

Component

parent
forwarder()

- Leaf Decorator

forwarder( | forwarder(__|————

parent.forwarder() J

ConcreteDecorator
forwarder()

F1GURE 2.2.1. The Decorator pattern structure. Mandatory
(respectively, optional) roles are drawn using solid (respec-
tively, dashed) lines.

to identify entities that fulfill these conditions. To express its supposition
it assigns entities to roles. A pattern candidate is a set of role assignments
reported by a pattern detection tool.

Roles can be mandatory or optional. Each of the mandatory roles of P
must be played by at least one program element in an occurrence of P. Roles
whose players may be missing in some occurrence are called optional. The
role assignments are complete for P if they cover all the mandatory roles of
P.

The UML diagram in Fig. 2.2.1 illustrates the structure of the Decorator
pattern, displaying each of the roles named and spelled exactly as they are
in the text.

e Mandatory roles: The mandatory roles cover the concepts of object
chaining and request forwarding. The class playing the DECORA-
TOR role owns the method(s) playing the FORWARDER role that
forward(s) decorating requests. Forwarding calls are described by
statements parent. forwarder(). The field parent plays the PAR-
ENT role and references the object to which decorating requests are
addressed.

e Optional roles: Forwarding continues unless an object playing the
LEAF role is reached. Also, forwarder methods can be overriden in
the classes playing the CONCRETE DECORATOR role.

Throughout the thesis, small capital letters highlights role names through-
out the thesis. This convention enables concisely saying "The DECORATOR
field parent “ or “parent is the PARENT FIELD” instead of "The field parent
that plays the DECORATOR role".

2.3. Discussed Design Patterns

This section summarizes the intentions behind certain collaborational
patterns and the main ideas behind the interactions in the occurrences of



2.3. DISCUSSED DESIGN PATTERNS 12

Component
parent
forwarder()
Leaf

Decorator
| forwarder() forwarder ()

| parent.forwarder() A

(A) Decorator

next l/ﬁ
Handler
forwarder() ]

if(...)

next.forwarder();

else return;
(B) CoR
Subject
forwarder()
1 |
RealSubject - Proxy
subject
request() forwarder() ]

‘ subject.request() A

(¢) Proxy

Ficure 2.3.1. Decorator, CoR and Proxy

these patterns. Patterns are grouped according to structural similarity. Pat-
tern descriptions in this section are based on

e The discussions provided in the relevant literature, e.g. in [27, 18,
57].

e Empirically validated heuristics following thorough examination of
tens of occurrences taken from the analyzed benchmarks and dis-
cussed with the authors of the reviewed tools. Benchmarks and
tools are provided in Chapter 3.

Decorator, Chain of Responsibility, Proxy. All three patterns deal
with “chains” of objects, describing how an action is passed along the chain.
The calling and called methods have the same signature in order for an action
to be defined and processed uniformly. The patterns are illustrated on the
UML diagrams in Fig. 2.3.1.



2.3. DISCUSSED DESIGN PATTERNS 13

Component
forwarder()
Leaf Composite
b:
CRSENEES Observer forwarder() forwarder()
notifier() _update() """"""""""
P - foreach child in children
foreach o in observers .
o.update() p child.forwarder()
(a) Observer (B) Composite

FiGurE 2.3.2. Observer and Composite

Decorator. The Decorator pattern attaches any number of additional
responsibilities (encapsulated in DECORATOR objects) to LEAF objects at
runtime. DECORATOR objects are linked together into “forwarding chains”
using a PARENT field that can store either a DECORATOR or a LEAF object.
Therefore chains of any length can exist.

The FORWARDER method of a decorator object calls the FORWARDER
method of the (single) “parent” object at least once in any execution. This
is done by issuing a FORWARD call(s).

Chain of Responsibility (CoR). The CoR pattern arranges the collabo-
ration between HANDLER. objects such that each one performs some part of
a common task. Handlers are linked in ‘forwarding chains’ through a NEXT
field that keeps the HANDLER object execution to be passed to. Like in
Decorator, chains of any lengths can exist.

The FORWARDER method of a HANDLER object does not call the FOR-
WARDER method of the (single) next handler object in each program execu-
tion; in some execution it just returns a result when a task is completed or
performs some local actions (without forwarding to the next object).

Prozy. The Proxy pattern links a PROXY object to another (REAL SUB-
JECT) object so that the proxy identity can be used instead of the one of
REAL SuBJECT. To facilitate forwarding, a proxy object keeps the Real Sub-
ject in a SUBJECT field. Therefore “proxy chain” lengths are usually limited
(at most 2 proxy objects are allowed).

The FORWARDER method of a proxy calls the REQUEST method of a
REAI SUBJECT object when appropriate (no constraints are imposed). This
is done by issuing a FORWARD call(s). Usually the REQUEST method and
the corresponding FORWARDER method have the same signatures.

Observer, Composite. Both patterns involve an object structure con-
sisting of the “main object” and a set of objects related to the main object.
An action, being initiated at the main object, is propagated to every related
object. These patterns are illustrated by the UML diagrams in Fig. 2.3.2.



2.3. DISCUSSED DESIGN PATTERNS 14

Observer. The Observer pattern keeps the system state consistent by
propagating state changes occurring at a SUBJECT object to several OB-
SERVER objects whose states conceptually depend on the subject’s state. A
SUBJECT object is responsible for managing the fields(s) storing OBSERVERS.
The values of these fields should be modified after a SUBJECT is constructed,
so that individual OBSERVERS objects can be added or deleted at any time.
To propagate state changes, a NOTIFIER method of a SUBJECT object trig-
gers reactions to state changes in its observers by calling the related UPDATE
method on each OBSERVER object in each own execution. This is done by
issuing a UPDATE call(s).

In order to preserve a consistent system state all subject state changes
must be completed before notifying the dependent observers.

Composite. The aim of the Composite pattern is to perform operations
defined on tree-like, recursive object structures. Some nodes serve as the en-
tries, LEAF objects represent primitive objects and other nodes represent
CONTAINER objects. A CONTAINER object owns the CHILDREN fields(s)
storing child objects. The values of these fields might be modified after
a CONTAINER object is constructed, so that children objects can be added
to/deleted at any moment.'

Different FORWARDER methods are defined for each tree node but all
have the same signature. A FORWARDER method issues FORWARDING calls.
Thus, a call of the same operation is forwarded to each subnode of the
container object.

Visitor. The intent of the Visitor pattern is to implement an OPERA-
TION method outside of the OBJECT STRUCTURE on which it operates and
without tightly coupling the OBJECT STRUCTURE to the OPERATION that
is applied on ELEMENTS of this structure. This operation is represented by
the method(s) of a visitor object. An ELEMENT object owns ACCEPT meth-
ods that facilitate traversals by calling ACCEPT methods on conceptually
related elements or calling visIT method(s) of a VISITOR object passed as a
parameter, or both. In vISIT METHOD CALLS the reference to the current
structure element is passed as a parameter so the proper VISIT METHOD is
finally executed.? The double-dispatch technique is crucial in implementing
these interactions.

TPost-construction update of observers / contained objects is not a strict requirement
since there are rare Observer / Composite occurrences where the set of observers / con-
tained objects remains unchanged after construction. For example, the class QuadTree
in JHotDraw 6.0 represents a composite object that owns its parts (north, south, east
and west). These parts are initialized in the QuadTree constructor and henceforth remain
unchanged.

2A visit method might, in turn, invoke accept method(s) on related elements, thus
continuing a traversal.



2.4. PATTERN CLASSIFICATION 15

2.4. Pattern classification

The pattern classification in this thesis slightly differs from the classifi-
cation of Gamma et al. [27]. The reason behind the regrouping done in this
thesis is that the classification of Gamma et al. [27] deals with the purpose
and is useful for programmers, but is not accurate in the reverse-engineering
sense. For example, the structural part of the Composite pattern (a struc-
tural pattern) requires a container C' to keep a collection of the “children”
object and a forwarder method F' owned by C' to invoke the method M with
the same signature on the children. In the Composite pattern, there is a
behavioral requirement that was established by me by analyzing tens of true
and false Composite candidates: F' must invoke M on each child object in
every own execution. The presence of behavioral aspects in the Singleton
pattern and the need to regroup patterns for reverse-engineering activities
was also mentioned in |58|.

This thesis groups patterns “in the reverse-engineering sense” by the kind
of interactions between the software entities. The patterns are divided into
collaborational patterns (Sec. 2.4) and creational patterns (Sec. 2.4). The
interactions in the collaborational patterns are driven solely by structural
and—or behavioral collaborations. The interactions in the creational patterns
are driven, in addition, by object creations.

Collaborational patterns. Most of the patterns addressed in this the-
sis (e.g. Decorator, Proxy, Chain of Responsibility, Observer, Composite,
Visitor, Adapter, Command, State, Strategy) focus solely on inter-object
collaborations and belong therefore to the collaborational group. In a col-
laborational pattern, an object O referred to as the master object owns the
caller methods Mi...M;, that invoke the callee methods mq...m. on the ob-
ject(s) o1...om, conceptually dependent on O. These objects are pointed to
by the dependent object field(s) Fi...Fy owned by the master objects. For
example, in the Observer pattern the master object is a subject that owns
the notifier methods (that stand for the caller methods). Update method(s)
stand for the callee methods and are invoked on the observers (which stand
for the dependent objects).

If the signatures of a caller method M and a callee method m are iden-
tical, it is said that M forwards to m. For example, in the Proxy pattern
the request method owned by a proxy forwards to the concrete operation
method owned by the real subject.

Decoupling. Certain collaborational design patterns (e.g. Observer,
Composite, State, Strategy, Bridge) facilitate decoupling of master objects
from their dependent objects. Such patterns are referred to in this thesis as
decouplers. For example, in the Observer pattern the contents of the set of
observer objects associated with a given subject S might change after S is
constructed. In the Strategy pattern, the context object C' might initiate a
change in the contents of the field pointing to the strategy object after C' is
constructed.



2.5. PATTERN RELEVANT INTERACTIONS 16

Creational patterns. The interactions in Abstract Factory, Factory
Method, Singleton, Prototype and Builder involve object creations. These
patterns comprise the creational group. In a creational pattern, a creator
method owned by the corresponding creator object creates product object(s).
For example, in the Abstract Factory pattern the creator methods are owned
by the “concrete factory” objects and create object of the “concrete product”

type.

2.5. Pattern relevant interactions

This section provides the terminology to discuss pattern-relevant inter-
actions. The names of the entities of the object-oriented paradigm (fields,
variables, methods, types) are consistent with the terminology of Craig [13].

Structural Interactions.

e Ownership:

— An object O owns instance variables (or fields) and methods. A
type T owns static (or shared) fields. The standard denotation
O.f,0.M for a field f (or an instance method M) of O is used.
A shared variable v of a type T is denoted by T.v

— A method M might have local variables vy...v,; these are de-
noted as M.v1...M.v,.

— Pattern-relevant fields: For fields O.f;...0.f,, there is a subset
{fi---fx} C {f1.--fn} of fields called the relevant fields in the
context of some design pattern(s). A relevant field O.f points
to some objects 01...0,, conceptually related to O. It might
happen that m > k since some fields might point to more than
one object at a time.

e Entity types:

— The subtyping relation is denoted in this thesis as < . Writing
Ty < T5 means that T is a subtype of T5. Writing 11 < Tb
means that 77 is a strict subtype of 1.

— The static type of a variable v (at the program element level)
is denoted by type(v); the type of an object o (determined by
its class) is denoted by type(o).

— The types t; and t9 are sibling types if and only if they are not
involved in the subtyping relation and have a strict common
supertype, L.e. t1 L ta Ata Lt ATt 1ty <t Aty <t.

Behavioral Interactions.

Control flow. A certain method M launches a method call me directly
when the statement corresponding to mc resides within the body of M;
otherwise it does this indirectly. In case of an indirect call intermediate
method calls are launched before mec is reached. Intermediate method calls
refer to intermediate methods which are finished after mc is executed. In
Figure 2.5.1 intermediate methods are I ... I,,.



2.5. PATTERN RELEVANT INTERACTIONS

17

SN N N
M(.){ / i(...) € Y Y
receiver,.l,(...) receiver,.ly(...) receiver,.l,(...) mc
) ) ) )

FiGUuRrE 2.5.1. Indirect invocation

If M invokes mc directly or indirectly, mc is said to be control flow
reachable from M. Alternatively, mc is said to be in the control flow of M.

Discard control flow paths that do not reflect pattern logic. Certain pro-
gram executions do not represent application logic typically reflected by pat-
terns. They are therefore excluded from analysis when control flow reachabil-
ity is checked or individual executions (in Partial / Full Coverage constraints,
Sec. 7.3) are examined.

According to the author’s observations, the following paths in the control
flow graph do not reflect pattern logic:

e A path taken when an exception is processed. Such a path usu-
ally contains cleanup actions done in an abnormal scenario. These
actions usually reside in “catch” or “finally” blocks and represent
closing file handles, network connections etc.

e A path through a loop that consists only of the continuation test and
its failure branch. Such a path does not carry useful information.
Only paths that actually enter the loop might contain conceptually
relevant method calls are therefore are of interest.

e A path corresponds to two or more cycles in a loop. Only individual
cycles are examined in order to ensure that certain invocations are
performed on certain object(s) o in each possible control flow path
through the loop.

The control flow paths that do not fall into the above mentioned categories
are said to be pattern-relevant.

Data flow. If objects are copied from a variable u to a variable v due
to certain actions corresponding to variable assignments, method parameter
passing or returning of method results, the dataflow from u to v occurs; v is
said to be dataflow reachable from u. If the actions causing this dataflow are
in the control flow of a method M , M is the scope of this dataflow. When
a variable v points to objects 0;...0,, it is written pointsTo(v) = {o1...0n}.

In user-defined libraries the object that marks the start of a dataflow
chain might be absent, instead residing in a client program that initiates
dataflow. It is assumed that such “incomplete dataflow” starts at an anony-
mous object of the corresponding type.



CHAPTER 3

State of Art and Problems

This chapter describes a practical evaluation of five state-of-the-art pat-
tern detection tools on the benchmarks from Section 3.1 and outlines the
main problems that are tackled in this thesis. Section 3.2 describes the eval-
uated tools. Section 3.3 presents the evaluation methodology. The evaluation
findings discussed in Section 3.4 constitute the problems to be addressed in
this thesis. Finally, Section 3.5 provides the main conclusions.

In all source code examples throughout this section, data flow is depicted
by thick pointed lines; control flow is depicted by thick dashed lines. Source
code is accompanied with role assignment information. A role is illustrated
by an oval box with the role name written within. The thin solid arrow(s)
from a box representing a role R lead(s) to the program element(s) playing
R. A Decorator occurrence in Figure 3.4.2a illustrates these denotations. In
false candidates, role names are followed by question signs; see an example
of a false Decorator candidate in Figure 3.4.2b.

3.1. Benchmarks

Reviewing the relevant literature and running publicly available pattern
detection tools, it was observed that these might perform well on the well-
known projects commonly used as reference but poorly otherwise.

Therefore in order to perform a trustworthy evaluation it was decided to
take code repositories of various sizes and complexities. See Fig. 3.1.1 for
the repository sizes. The tool evaluation was carried out on six projects that
cover a wide range of pattern-relevant scenarios:

e Known samples: JHotDraw 5.1 and JHotDraw 6.0 are small li-
braries designed for teaching purposes, which contain many straight-
forward to detect pattern occurrences that closely follow the de-
scriptions by Gamma et al. [27]. These are included because their
actual pattern occurrences are well-known.

e Standard libraries: Java IO 1.4 and Java AWT 1.3 are example of
widely-used, industrially developed libraries that are indispensable
in any non-trivial application. Their particular challenge to pat-
tern detection tools are apparently incomplete pattern occurrences,
where some role players are completed by the applications using the
libraries.

e Large applications: ArgoUML 0.18.0 is a large application im-
plementing an open source CASE tool. Being self-contained it does

18



3.2. EVALUATED TOOLS 19

not impose the incompleteness problem of libraries. However, its
size is a challenge for many tools.
e Applications with a lot of implementation variants: Team-
Core is a component of the Eclipse 3.6 rich client platform, a large,
quickly evolving industrial application containing very unusual DP
implementation variants.
Figure 3.1.1 presents these repositories. Note that this benchmark can only
make an evaluation more trustworthy without claiming that it is optimal or
even that an optimal set of benchmarks exists.

2 3 = uwg
g . C Qq_ E S o 38
) =
27835737 BB &t
T T = ° | S e
- - w =
packages 64 84 30 76 200 41

classes| 1.002 1.732 517 1.653| 3.776 702
fields| 3.188) 4.518 1.062| 6.123| 8.518 1.210
methods| 8.793| 14.975| 4.471| 14.618| 31.577| 5.514

FiGUrE 3.1.1. Size of analysed projects including their
source code and all the referenced bytecode.

3.2. Evaluated Tools

The tools were selected so as to support as many basic pattern detection
approaches as possible. From the 14 pattern detection approaches for Java
listed in the state of the art overview of Dong et.al. [17], only 8 were found
to be available for practical experimentation'. In addition, the tools that
detect as many pattern implementation variants as possible were favoured.
Based on this criteria five tools listed in Table 1 were selected. They are:

e SSA (Similarity Scoring) [68] performs static analyses of inter-class
relationships and method signatures. Call graphs are built using
the coarse-grained algorithm CHA (Tip et al. [66]). Limited tran-
sitivity of the inheritance relation is supported.

e DP-Miner [16] performs thorough static behavioral analyses. No
dynamic analyses are performed.

e PINOT [58] performs thorough static behavioral analyses when de-
tecting certain patterns, which can sometimes be even a bhit too
restrictive. No dynamic analyses are performed.

IThree had ounly small, unavailable prototypes, two were licenced, one was imple-
mented just for Linux.



3.3. EVALUATION METHODOLOGY 20

Static Static Dynamic Dynamic
structural behavioral structural | behavioral

Associations,
SSA | inheritance, No No No
signatures
Airslﬁo‘r’i'tatr']ons’ Control flow
DP-Miner [ M"S™MaNCe. | 5hd data No No
signatures,
flow
names

Associations, | Control flow

PINOT | inheritance, and data No No
signatures flow
Associations, | | Association ffon"oé
PTIDEJ | inheritance, jec versus owan
. creation agaregation data flow
signatures ggreg (partial)
Associations, Association State
FUJABA | inheritance, No versus versus
signatures aggregation Strategy

TABLE 1. Analysed tools and the basic techniques that they apply.

e Ptidej [31] treats pattern recognition as a constraint satisfaction
problem. Implementation variants are modeled as constraint relax-
ation. For example, associations are accepted instead of aggrega-
tions but with lower score. Static behavioral analyses are limited
to the identification of object creation and the coarse-grained call
graph building algorithm (identical to CHA, see Tip et al. [66]).
Dynamic control and data-flow analyses are supported to a certain
extent.

e Fujaba [52] decomposes patterns into elemental design patterns (see
[61, 36, 60]), which enables recognition of rather non-standard

pattern occurrences.

3.3. Evaluation Methodology

Selected Patterns. In this evaluation precision, recall and speed were
measured manually for the tools detecting the implementations of the fol-
lowing patterns:

e Collaborational: Decorator, Chain of Responsibility, Proxy, Ob-
server, Composite, Visitor, State, Strategy, Bridge.
e Creational: Abstract Factory, Factory Method, Builder, Singleton,
Prototype.
The reasons behind the selection of these patterns are:

e Covering a broad set of patterns presented in [27].



3.4. MAIN PROBLEMS 21

e Patterns are sufficiently complex for demonstrating the value of
behavioural techniques.

e Many interesting implementation variants - for example, in the Ob-
server pattern a subject might store observers in a collection field
or in a finite number of scalar-typed fields.

e Challenge of discriminating the patterns that have identical struc-
ture but differ in behavior (e.g. Decorator vs. Chain of Responsi-
bility).

e Challenge of using of additional information (e.g. program element
names) to discriminate the patterns that have identical structure
and behavior (e.g. Bridge vs. Strategy).

Several tens of design pattern occurrences were taken from the code reposito-
ries listed in Section 3.1 and from the repository of occurrences P-Mart http:
//www.ptidej.net/download/pmart/. All occurrences were thoroughly dis-
cussed with the authors of the reviewed tools.

Measuring of arruracy and speed. Speed measurements were carried
out manually on a Dell Precision 370 desktop computer equipped with a 3,6
GHz quadcore CPU and 2 GB of RAM running Windows XP SP 3 and
Eclipse Classic 3.5.2.

For each reviewed tool T, precision and recall were computed by com-
paring the mandatory role players in each candidate against the mandatory
role players in the corresponding occurrence(s). Only roles reported by T are
taken into account. For example, Ptidej [29] reports only class role players;
therefore only class names were compared.

In order to compute the accuracy for each individual tool, candidates
and occurrences were computed in the same way a given tool does. Take,
for example, a Decorator candidate returned by SSA [68] that consists of
a decorator class D, a component class C' and two forwarding methods M;
and Mjy. Pinot [58] reports two candidates: one for each forwarding method.
Accuracy is computed by searching for one (for SSA) and respectively, for
two (for Pinot) identical occurrence(s) in the test set.

The results for each tool were compared and discussed with the authors
of the corresponding tools.

3.4. Main Problems

This section discusses several major problems related to pattern detec-
tion that are tackled in this thesis. These problems were mentioned in the
theoretical review of Dong et.al. [17] and in the evaluation done by Fiilop
et al. [26] . The problems are confirmed by the practical evaluation of the
pattern detection tools mentioned in Section 3.2 and are provided in the
subsections of this section:

(1) Diversity of pattern detection results.
(2) Reasons behind false positives - insufficiently strong behavioral anal-
yses.



3.4. MAIN PROBLEMS 22

- e [E— -~
s~ L= =~ - ~
CommandButton — Command ‘State Interface H Context ‘
wrappedCommand
actionPerformed() execute()
! : C teStat
abstract AbstractCommand UndoableCommand oncretestate
execute() execute()
[ ]
CopyCommand DeleteCommand
execute() execute()

FIGURE 3.4.1. A Decorator candidate classified as State
by PTIDEJ and FUJABA. Arrows illustrate the mapping
of roles in a Decorator candidate into the roles of a State
pattern.

(3) Reasons behind false negatives - too restrictive structural analyses.

Throughout this chapter, the abbreviation “CoR” is used when the Chain of
Responsibility pattern is addressed.

Diversity of pattern detection results . It was observed that dif-
ferent pattern detection tools render different results on the same code by
classifying pattern candidates as candidates of more general patterns. For
example, Ptidej and Fujaba often classify Decorator candidates as State
candidates. Figure 3.4.1 illustrates such a case. This common error of the
two tools that use dynamic behaviour analysis results from the fact that
Decorator resembles State not only structurally, but also (at some points)
behaviorally: Decorator mimicks State behavior since control traverses sev-
eral “concrete decorator” objects and finally reaches a “concrete component”.
This resembles the control flow in the State pattern when different states are
switched. The two tools apparently do not distinguish nested actions (the
forwarding along a chain of decorators) from a sequence of actions (different
invocations addressed in turn to different objects).

In the Decorator candidate presented in Figure 3.4.1 the LEAF class is
abstract. Therefore PINOT (which requires LEAF classes to be concrete)
does not report Decorator. Additional experiments yielded more misclassi-
fications of the same type that occur for certain implementation variants.
During the analysis of the algorithms implemented in the reviewed pattern
detection tools, it was observed that such misclassifications are caused by
the fact that only a subset of the constraints defining a pattern holds for
these variants.

It was observed that

e the number of true positives among simpler patterns (Adapter,
Command, State, Strategy, Iterator, etc.) is much higher than



3.4. MAIN PROBLEMS 23

among more complex ones (Decorator, Chain of Responsibility, Ob-
server etc.).

e the analysed tools give simpler patterns higher scores than they
assign to more complex ones, usually 70-75% or higher;

e occurrences of simpler patterns are often classified identically by
more than one tool (in around 80% cases).

Obviously, detection of simpler patterns is more reliable and the tools ex-
press their higher confidence in simpler patterns by the higher score. The
main reason is that a smaller number of constraints must be satisfied. Fur-
thermore, simpler design patterns give rise to less implementation variants.
Elemental design patterns (EDPs, [35]) usually have only one variant since
they are just very small patterns that contain less behavioral aspects so they
are recognized with very high reliability and very high scores. In contrast,
occurrences of big behavioral patterns are rarely classified identically by sev-
eral pattern detection tools.? This happens mainly in the code that follows
pedantically the implementation rules of the pattern descriptions of Gamma
et al. [27].

Chapter 4 explains how to combine judgements of different tools in order
to deduce correct results.

Reasons behind false positives. False positives occur in the pattern
detection tools that do not support sufficiently strong behavioral analyses.
Except for rare exotic implementations, most practical scenarios can be di-
vided into several categories that are discussed in the following subsections.
Each scenario is illustrated by example(s).

Forward to a single object. In the Decorator (respectively, the Proxy and
the CoR) patterns the forwarding method of a decorator (respectively, proxy
or handler) object invokes the forwarding method only on the single “parent”
object (this invocation can be repeated more than once).

Figure 3.4.2a presents a Decorator occurrence from JHotDraw 6.0. The
DECORATOR class is Decorator Figure. The field myDecoratedFligure is
the PARENT FIELD and the RECEIVER VARIABLE. It points to the object
that serves as the receiver of a forwarding call.

Figure 3.4.2b provides a false Decorator candidate taken from JHotDraw
6.0. The DECORATOR class is FigureAndEnumerator. lts fields myF E1
and myF E2 are PARENT FIsLDS and RECEIVER VARS. Forwarding might
be addressed at two receiver objects (stored in myF E1 and myFE2), i.e. in
a “tree-like” way. Therefore such an implementation variant is referred to in
the thesis as the Tree Forwarder.

All tools that report method role players and recognize the Decorator
pattern (PINOT and SSA) deliver two (false) Decorator candidates where
myF E1 is at the same time the PARENT FIELD and the RECEIVER VAR
and myF El.nextFigure() is the FORWARDING CALL.

2For instance, only 15% of the detected Visitor and 10% of the detected Bridge are
classified identically.



3.4. MAIN PROBLEMS 24

class DecoratorFigure implements Figure

{ —
~ Figure myDecoratedFigure; " arentField |
Forwarder - void draxv 0 & ~ Forwarding Call |

getDecora?edIEllguré().draw();
}

. Figure getDecoratedFigure() {
return myDecoratedFigure;

}
}

(A) Single object is addressed (JHotDRaw 6.0)

class FigureAndEnumerator implements FigureEnumeration {

FigureEnumeration myFE1; ~ ParentField?
FigureEnumerationimyFE2; "= parentField? |

"~
.,
.
o ‘™
.
.....

public booleari hasNextFigure () {

Forwarder

¥
Method? return myFE1.hasNextFigure()—
‘ } Il @LE:,hasNextFlgure(): ;:ﬁ Forwarding Call? \

of
.

0 .

................

f Forwarding Call? ‘

(B) Multiple Objects Addressed (JHotDraw 6.0)

F1GURE 3.4.2. Examples for forwarding to a single object

Keep all Singleton objects in shared variables. According to Stencel et
al. |64], all newly created Singleton objects must eventually get into a finite
number of shared variables. Figure 3.4.3a provides a Singleton pattern oc-
currence from JHotDraw 5.1. The class Clipboard is the SINGLETON TYPE
and the shared field fgClipboard into which the singleton objects flow is the
SINGLETON VARIABLE.

Figure 3.4.3b describes a false Singleton candidate from the Eclipse
source code (the Runtime Core). The class Per formanceStats is the SIN-
GLETON TYPE, the variables EM PTY STATS and newStats are SINGLE-
TON VARIABLES and the objects created by new Per formanceStats(””,” ")
and new Per formanceStats(event, source) are the SINGLETON OBJECTS.
This Singleton candidate is false since the variable newStats is not a shared
variable and therefore any number of Singleton objects might be created.

Note that among the tools analyzed in this thesis, only D-Cubed (Stencel
et al. [64]) checks whether all Singleton objects are kept in shared variables
and thus correctly identifies the scenario in Figure 3.4.3b as a false Singleton
candidate.



3.4. MAIN PROBLEMS 25

class Clipboard _ Singleton Field |

static Clipboard fgCIipboar/d = new Clipboard();
public static Clipboard getClipboard() 5

return fgClipboardiGs-====+====*"" e \
} gtlip <  Singleton Creatlon

(a) All Singleton Objects in one shared
variable (Lexi 0.1.1.alpha)

class PerformanceStats
{ | Singleton Field? | .
private static PerformanceStats EMPTY STATS new PerformanceStats()
public static PerformanceStats getStats() y

i (...) return EMPTY_STATS; | Singleton Field? | Singleton Grostion?
PerformanceStats newStafs = new PerformanceStats( D);
if ITRACE_SUCCESS) ¥ -
return newStats; </
} | Slngleton Creation’?

}

0
.
......

(B) Singleton candidates are not in shared variables
(Eclipse Runtime)

Ficure 3.4.3. Examples demonstrating Singleton objects in
shared variables

Updating relevant fields. Figure 3.4.4a provides a Strategy pattern occur-
rence from JHotDraw 6.0. The class StandardDrawingView is the strategy
context. Its field fUpdateStrategy is the CURRENT STRATEGY and points
to an object of the type Painter. Painter is the STRATECQY. The method
StandardDrawingView.set DisplayUpdateStrategy causes updating of the
field fUpdateStrategy after its owner is created.

In contrast, Figure 3.4.4b provides a false Strategy candidate from AW'T
1.14 accepted by SSA [68], Fujaba [71] and Ptidej [50]|. The class
RenderableImageOp is the context. The field myCRIF is the CURRENT
STRATEGY. It points to an object of the type
Contextual RenderedImageF actory. This is the STRATEGY. The field
myC RIF is updated only when its owner is created.

Propagating state changes. In the Observer pattern, subject state changes
are propagated when a notification method causes the dataflow from the
field(s) sstate;...sstates containing the subject state to the field(s) ostate;...ostate,
containing the observer state.

All practical scenarios where state change information is relevant are
illustrated in the subsequent paragraphs:



3.4. MAIN PROBLEMS 26

class StandardDrawingView { CurrentStrategy
: ClientVar

private Pamter ngdateStrategy

=
public void: setDlspIayUpdateStrategy(Palnter QdateStrategy){

Setter fUpdateStrategy = updateStrategyA

.....
......
............

}
protected void paintComponent(Graphics g) {
if (getDisplayUpdate() != null) {
getDisplayUpdate().draw(g, this);
}
}

(A) Relevant field is updated after construction
of its owner(JHotDRaw 6.0)

public class RenderablelImageOp implements Renderablelmage {
ContextualRenderedimageFactory myCRI - o CurrentStrategy?

R4
...............

publld RenderablelmageOp(ContextuaIRenderedlmage_l_:_qgt_g_rx CRIF) {
thls myCRIF CR”: < ..........................................
L Rt
ClientVar )
public float getHeight() { o
if (...) boundingBox = myCRIF.getBounds2D(paramBlock);
return (float)boundingBox.getHeight();

(B) Relevant field is updated only during con-
struction of its owner(AWT 1.14)

FI1GURE 3.4.4. Updates of relevant fields

Scenario 1 - Propagating state changes in an Observer oc-
currence. Figure 3.4.5a describes an Observer occurrence from JHotDraw
5.1. The SuBJECT is the class StandardDrawing. Its field fListeners
is the OBSERVERS VARIABLE. It points to the drawing change listeners,
i.e. objects of the type StandardDrawingView. This interface is the
OBSERVER and represents drawing views that depict some parts of draw-
ing containers and must be notified if a drawing container is invalidated.
The method StandardDrawing.figurelnvalidated is the NOTIFIER. The
field(s) invalidated Rectangle is the SUBJECT STATE and represent rectan-
gular areas wrapping changed areas (“invalidated areas”).

When a drawing container is changed, its “invalidated area” is updated;
the updates must be propagated to each field(s) o.f Damage where o is the
related drawing view (i.e. an object pointed to by fListeners). The field
fDamage is the OBSERVER STATE and represents the rectangular area(s)
in drawing views that were affected by changes in drawings.



3.4. MAIN PROBLEMS 27

class StandardDrawing { Subject Observer

class StandardDrawingView
Subject State implements DrawingChangeListener {

protected Vector fListeners; protected Rectangle fDamage; <.,

protected Rectangle invalidatedRectangle;
Notifier Method : Update Method Observer State

. L . public void drawinglnvalidated
ublic void figurelnvalidated(... )
P for (I - fListgners)( ()4 (DrawingChangeEvent e) {
DrawingChangeListener listener = i

(DrawingChangelListener) [; }

listener.drawinglnvalidated ( v }
new DrawingChangeEvent (this, invalidatedRectangle))

fDama'g"é = e.getInvalidatedRectangle();
A A

}
(A) Data Flow in the Observer pattern (JHotDRaw 5.1)
class ComplexTransform {  Subject? abstract class TransformAST {
private ArrayList transforms; public void update(...);
private UndoAction undo;
| Notifier Method?
public void apply(...) { - Observer?

for (int ndx = 0; ndx < last; ndx++) {
TransformAST next =
(TransformAST) transforms.get(ndx); ~
next.update(root); class AddIimportTransform
} A, extends TransformAST {
UNAO.AdA(...); DA T ettt s r st .
} : public void update(Y.){ ...}
} No pa!'t of any ComplexTransform }
object's state flows to ,root’
= There is no state propagation!

Concrete Observer?

(B) A service loop (JRefactory 2.6)

FIGURE 3.4.5. Propagating state changes

The changes in the state of the subject are propagated to each of its ob-
server via the dataflow from StandardDrawingView.invalidated Rectangle
into o.f Damage. This dataflow is caused by the actions of N .

Scenario 2 - No data flow in a false candidate. The second sce-
nario, provided in Figure 3.4.5b describes a false Observer candidate from
JRefactory 2.6 accepted by SSA [68], Fujaba [71]| and Ptidej [50]. The Sub-
ject is ComplexTransform that represents complex transformations. The
field transforms is the OBSERVERS VARIABLE. It points to basic trans-
formations (i.e. instances of TransformAST) that comprise a complex
transformation. TransformAST is the OBSERVER. Basic transformations
are executed sequentially via the NOTIFICATION METHOD apply. This, in
turn, calls the method b.update of each basic transformation b. There is no
concept of "subject state” or “ observer state” and no relevant dataflow.

In general, in a false Observer candidate a master object can own some
method that iterates over a collection of dependent objects in order to per-
form some job. Such candidates (like the one provided in Figure 3.4.5b) are
referred to as service loops.

Control and Data Flow Order. Assume that an Observer occurrence in-
cludes a subject S and a notifier method S.IN. Denote the SUBJECT STATE



3.4. MAIN PROBLEMS 28

fields by S.f1...S.fr. According to [27] the dataflow into S.f;...S.f caused
by the actions of S.IN must not occur after at least one update call is issued
by S.N, i.e. occurs in the sequential order.

The order of control and data flow is restricted also in other design
patterns. Take, for example, the State pattern whose behavior is investigated
by Wendehals [75]. Denote the "state machine” method by Mg, the related
state action method by A and the method(s) causing the update of the
current state variable by Mpy. Within the control flow of Mg, A and My
must be invoked in turn, and in addition some M must precede A in order
to show that the current state must be initialized, then some actions should
be executed (i.e. the interleaving order).

It should be noted that expressing control / data flow order by means
of regular expressions is not a mere occassion. Poch et al. |55] argue that
sequences of relevant actions in legacy applications can be specified by finite
automata.

The interleaving order is demonstrated on a State pattern candidate from
JHotDraw 6.0 that is provided in Figure 3.4.6a. The CONTEXT is the class
StandardDrawingView. The CURRENT STATE field is fTool that points
to the objects (concrete states) belonging to the type Tool.

The LAUNCHER method is StandardDrawingView.mouse Pressed that
is invoked when a user selects a tool (connection, fill color etc). The initial
state is assigned to the selected tool and its AcTION method mouseDowny(...)
is called. Then several “mouse drag” events (corresponding to the action
methods mouseDrag) are handled. Finally, when the mouse is released, the
action method mouseUp is called, followed by the resetting the current state
(i.e. the current tool) to the default one. Thus, several action methods reside
between two updates of the current state.

Figure 3.4.6b provides a Strategy occurrence from AWT 1.14 where the
interleaving order does not occur. The class CheckBox is the CONTEXT.
The field listener points to instances of the class ItemListener that is
STATE. The STATE ACTION method ItemListener.itemChanged(Event e)
accesses the field listener. The method CheckBox.addListener() that mod-
ifies the field listener after an instance of CheckBox is constructed (since
State and Strategy are decoupler patterns, see Par. 2.4) might be called at
any time (independently of any call to itemChanged(Event e)).

This candidate was erroneously marked as State by PINOT [58] and
Fujaba [71] since these tools do not take the order between state actions and
state variable updates into account. Ptidej [50] supports the interleaving
order by examining execution traces and recognizes this candidate properly,
as a Strategy candidate.

Detecting various Proxy implementations. In a Proxy occurrence, a real
subject must have the type that is a sibling of the proxy type. In the "clas-
sical” implementation variant (Statically Typed Proxy) this requirement is
enforced by defining the static type of the Subject field as a sibling of the
proxy. In the Dynamically Typed Prozy the static type of the Subject field



3.4. MAIN PROBLEMS

Context

__Class StandardDrawingView {
i "ﬁprivate Tool fTool;
i public void mousePressed (MouseEvent e) {

_Context Action ‘

State

interface Tool {
public void mouseDown(MouseEvent e);
public void mouseDrag(MouseEvent e);
public void mouseUp(MouseEvent e);

} Concrete
State

29

getTool().mouseDown(e); public class ConnectionTool implements Tool {
} S _1.1 ______ > public State. mouseDown(MouseEvent e) {
< if (next event is Drag)\hio\useDrag(...);
2" 1.2 ~else mo,l,'lse\Up(...); " State
1T .3 Action
public State/mouseUp(MouseEvent e){
1.4
_§gtTooI(g§tDefaultTool); State
......... Action

(A) The interleaving order (JHotDRaw 6.0)

" Context? ~ State? |

interface ItemListener {
public void itemChanged(...) {

class CheckBox {
private ItemListener Iistent;[;

public void update(...) { ... p
State
Action?

Context Action? |Public void addListener(ltemListener I) { ...
itemListener = AWTEventMulticaster.add(itemListener, 1);
}
}

(B) No interleaving order in Strategy (AWT 1.14)

F1GURE 3.4.6. Ordered Control and Data flow

is a supertype of the proxy type. In this case, the subject field is assigned
at runtime to a real subject object(s) whose type is a sibling of the Proxy
object type.

Figure 3.4.7a provides a Dynamically Typed Proxy occurrence from JHot-
Draw 5.1. The ProOXY is SelectionTool. The field fChild is the SUBJECT.
A forwarding method SelectionT ool.mouseDown(...) initializes the points-
to set of fChild to the set
{newHandleTracker(...),newAreaTracker(...),newDragTracker(...)}. These
objects are Real Subjects and the type of each one is a sibling of SelectionT ool.
Other forwarding methods (mouseDrag(...) and mouseUp(...)) invoke the
corresponding methods of real subjects.

Figure 3.4.7b provides a Decorator occurrence from JHotDraw 5.1. Here
forwarding can be done to any object belonging to a subclass of Decorator.

No pattern detection tool mentioned in Section 3.2 detects Dynamically
Typed Proxy candidates.

Object Coverage by Calls. Certain collaboration patterns (Observer, Com-
posite, CoR, Decorator) restrict the set of objects pointed to by a set of
relevant fields fi..f, on which some callee method m is invoked.



3.4. MAIN PROBLEMS 30

class SelectionTool implements Tool {
1 Proxy \
private Tool fChild; —-' Subjectfield |
public void mouseDown (MouseEvent e, int x, int y) {
if (fChild==null) return; " - qer ‘
if (getHandle(e,x,y)) fChild = new HandleTracker(...);
else if (getFigure(e,x,y)) fChild = new DragTracker(...);
else if (shiftDown(e)) fChild = new AreaTracker(...);

fChild.mouseDown(e, X, y);

}
}

(A) Dynamically Typed Proxy

class Wrappedlterator implements lterator {
private lterator iter; <— pointsTo(iter)={anonymous}
void next () {  Parent Field?
if (iter!'=null) iter.next();
}

}

(B) Decorator

F1GURE 3.4.7. Various ways of forwarding

All practical scenarios where object coverage is relevant can be divided
into several categories provided in the following paragraphs. In the figures
provided in these paragraphs, the relevant method calls are underlined and
the end point of a method is depicted by the black colored ball. Note that
only PINOT restricts (in a limited way and only in certain patterns) the set
of objects on which a callee method(s) are invoked.

Scenario 1 - PINOT reports a correct diagnosis. Figure 3.4.8 il-
lustrates a CoR occurrence from Java 10 accepted by PINOT [58|. The
class Buf feredWriter is the CONCRETE HANDLER. The field out is the
NEXT FIELD and the method write is the FORWARDER. This is a CoR oc-
currence since write forwards conditionally, i.e. only when the write request
causes moving beyond the buffer boundaries.®> The corresponding execution
is shown by the thick dotted-dashed line.

3In contrast, in a Decorator occurrence forwarding is done unconditionally, i.e. in
each execution



3.4. MAIN PROBLEMS 31

class BufferedWriter extends Writer {
private Writer out;
public void write(\char[] buffer, int offset, int length) {

L= Sm——- ~ N~ .
7if (fileNotOpened()) return; ~ ~  Forwarder
if (length==0) return; N Method
,' if (offset + length > size(buffer)) {
flushBuffer(); , ‘
| out.write(buffer,offset length); €= Forv(\_/;alﬁiing
. \ a

N 1

else write_into_buffer(); ,

l _
y I @

FiGURE 3.4.8. Partial Coverage is satisfied in a CoR occur-
rence(Java 10 1.4)

It should be noted that PINOT uses only a limited information about
the control flow and might deliver false positives when applying its simplified
variant of the Object Coverage concept. The next scenario illustrates such
a case.

Scenario 2 - PINOT reports an incorrect diagnosis because of
the limitation of its “conditional forwarding” concept. Figure 3.4.9
provides a Decorator occurrence from JHotDRaw 6.0. The class ScalingGraphics
is the DECORATOR. The field real is the NEXT FIELD and the method
drawImage(...) is the FORWARDER. The forwarding is done in both branches
of the corresponding if-statement, and, consequently, in each execution of
drawImage(...).

PINOT [58] erroneously reports a CoR candidate where the field real is
the NEXT FIELD and the method drawlImage is the FORWARDER. This is
because PINOT finds the forwarding call in some branch of the if-statement
and therefore (erroneously, without examining another branch) decides that
forwarding is done conditionally.

Note that PINOT uses the conditional invocation not in all relevant
patterns. The next paragraph illustrates a false Observer candidate accepted
by PINOT because the conditional invocation is not checked at all.

Scenario 3 - PINOT reports an incorrect diagnosis because the
set of objects on which a callee method(s) are invoked is not re-
stricted in a given patterns. Figure 3.4.10 illustrates a service loop from
Java 10. A master ObjectOutputStream iterates over only those dependent
objects (stored in its field O.slots) that belong to the type ObjectStreamClass.
That is, the data is actually written only into the memory slots which sup-
port the writing action. The method writeSerialData(...) performs this
iteration, invoking the method invokeWriteObject on each appropriate ob-
ject.

PINOT erroneously reports an Observer candidate where the method
writeSerial Data is the NOTIFIER METHOD and the method invokeW riteObject



3.4. MAIN PROBLEMS 32

class ScalingGraphics extends Graphics { — == ~ Forwarder
private Graphics real; _ Method
public void,drawlmaqe\(lmaqe image, Coordinates coord) {
S e Te—-— s < Fomvarding
7 if (image instanceof DoubleBufferimage) D Call
\ real.drawlmage((DoubleBufferimage)image).getReallmage,coord);
Aelse ,' = m—
. orwarding
real.?rawlmaqe(lmaqe,coord); S ;( Call

4

FiGure 3.4.9. Total Coverage is satisfied in Decorator
(JHotDRaw 6.0)

class ObjectOutputStream {

private ObjectStreamClass slots = ...; Notifier
—~_Method? )

public void writeSIeriaIData(Obfect obj) {

for (inti = 0; i <'Slots.length; i++) {
______ "7__, e oo

! | ObjectStreamClass slotDesc=slots[i].desc; \
Uoqif(...) !
\ slotDesc.invokeWriteObject(obj, this); /
- -alSe (...) N 1%
} ~ Update Call? @
}

FiGURE 3.4.10. Partial Coverage is violated in a false ob-
server candidate (Java 10 1.4)

is the UPDATE METHOD. This is a false candidate since it might happen
that the method invokeWriteObject is not invoked on each dependent ob-

ject wit
Typ

hin a loop.
es of Created Objects. Following Gamma et al. [27], the creation of

a distinct “product family” can be implemented in the creational patterns in
two following ways:

(1)

Override a creator method. An “abstract creator” class is defined.
“Creator method(s)” are overridden in its subclasses. Creator meth-
ods with the same signatures belonging to the different concrete
factories create products of different types. This implementation
variant was mentioned by Eden et al. [19].

Parameterize a creator method. The values of parameters passed
to creator method calls determine the type of a created product.
This implementation variant was mentioned by Gamma et al. |27,
page 126].



3.4. MAIN PROBLEMS 33

An Abstract Factory occurrence from JRefactory 2.6 (accepted by PINOT
and Ptidej) is provided in Figure 3.4.11a. The ABSTRACT FACTORIES are
Buf fer Parser Factory and FileParserFactory. Their methods getInputStream()
and getInputStream() are CREATOR METHODS. These methods create
products of the (different) types FileInputStream and Buf ferInputStream
respectively. These are the CONCRETE PrRoDUCTs. The creator methods
with the same signature that belong to different concrete factories create
products of different types.

A false Factory Method candidate from JHotDRaw 6.0 (erroneously ac-
cepted by PINOT and Ptidej) is provided in Figure 3.4.11b. The FACTORies
are AbstractFigure (ComponentFigure and Rectangle Figure). The meth-
ods ComponentFigure.handles() and RectangleFigure.handles() are the
FAacTORY METHODS, creating products of the same type Handle Enumerator
which is the CONCRETE PRODUCT.

This is a false candidate since, according to the logic of “factory” patterns,
two different creator methods with the same signature must be responsible
for creating products of different types (which is not the case here).

No pattern detection tool mentioned in Chapter 3 supports concepts
similar to the one presented by the uniquely created product type.

The reasons behind false negatives. The reasons behind false neg-
atives observed in this thesis are provided in the subsections of this section:

(1) Insufficient treatment of the transitivity of certain relations

(2) Too strong restrictions on the access qualifiers of relevant role play-
ers.

(3) Some relevant role players that reside in other repositories.

Insufficient treatment of transitivity. These false negatives occur because
pattern tools do not sufficiently handle the transitivity of the following rela-
tions:

(1) Subtyping (intermediate classes in the subclassing relation)
(2) Method invocation (the presence of intermediate methods)

PINOT and DP-Miner do not support transitivity at all, thus supporting
only small subsets of implementation variants provided in Gamma et al. [27].
SSA, Ptidej and Fujaba tolerate a limited case of the subtype transitivity
(up to one intermediate class is supported). That is, scenarios like the one
provided in Figure 3.4.14 are accepted since there is only one intermediate
class (AbstractFigure). However, scenarios like the one provided in Figure
3.4.15 are already missed since more than one intermediate class exists.

No tool reviewed in this thesis supports method invocation transitivity.
That is, scenarios like the one provided in Figure 3.4.12a are not accepted.

The following paragraph describes the practical scenarios where the method
invocation transitivity is involved.

Control Flow Scope. When a caller method M invokes other method(s),
the corresponding control flow might go through some intermediate method(s)



3.4. MAIN PROBLEMS 34

" Abstract | APk:g‘tjragtt ‘
Factory ~—| ParserFactory ¢ LN InputStream
| getinputStream() |
[ Concrete | " Concrete |
| Product . Product |
BufferParserFactory|| FileParserFactory FilelnputStream BufferInputStream
| getlnputStream() || getinputStream() |
) R T
|\ !
___B
( Factory ' '
Creation
| Method return new BufferlnputStream(); return new BufferlnputStream();
= 7 I
(A) Product types are different (JRefactory 2.6)
( Factory
_Class? | Abstract
_ | AbstractFigure | Product? [ HandleEnumeration
Factory
. Method'? ~ = handles()
;gncrew; Z% Concrete Factory? \ _Concrete Product? | Concrete Product?
ComponentFigure RectangleFigure HandleEnumerator| |HandleAndEnumerator
handles() handles() | |
return new HandleEnumerator(); | return new HandleEnumerator();

(B) Product types are the same (JHotDraw 6.0)

FIGURE 3.4.11. Creation of product objects

(Section 2.5). Following transitive control flow in an unbounded way can lead
to large control flow relations, especially when analyzing real industrial code.
Different patterns place certain restrictions on the set of objects owning in-
termediate methods.

Denote the object owning M by O. In all patterns (except Visitor) the
receiver variables of intermediate method calls point to O; in this case the
intra-object control flow scope takes place. In the Visitor pattern, a visit
method call is control flow reachable from some accept method owned by
an element object E. The receiver variables of intermediate method invoca-
tions might point not only to E but also to some other objects belonging to
“element” type. In this case the inter-object control flow scope takes place.



3.4. MAIN PROBLEMS 35

class BlockDatalnputStream extends InputStream {
private final PeeklnputStream in;
public int re’ad (byte [] buffer, int offset, int length) {

v o\ Caller
return read1 (buffer, offset, length, false)
’ - —
} I Intermediate Call |
———=a_V

/ private inf'read1(byte[] b, int off, int len, boolean copy) {
/I Omitted: Recompute offset and length according
‘\ /I to the number of available characters
in.read (buffer, new_offset, new_len); ——_ Call
}
}

]
\

(a) Intra-Object Control Flow Scope
(Java Io 1.4)

class SimpleNode implements Node {
protected Node [] children; ' Caller )
public Object childrenAccept(JavaParserVisitor visitor, Object data) {
if (children I=null){ ~~~ . _ o= \
for (inti = 0; i < children.length; ++i) {
" Intermediate ~—=children([i].jjtAccept(visitor, data); !
Call |y I = ‘

-
-
S —"—

return data; "

return visitor.visit(this, data);
} LN call | .-

e L L -

(B) Inter-Object Control Flow Scope (JRefactory 2.6)

Ficure 3.4.12. Control Flow Scope

Figure 3.4.12a illustrates a Change Of Responsibility occurrence from
Java 10 with the intra-object control flow scope. The forwarder method
public int read(bytel], int, int) invokes the forwarding call
in.read(buf fer,new of fset,new len) through the private intermediate
method
read(bytel], int, int, boolean).

Figure 3.4.12b illustrates a Visitor occurrence from JRefactory 2.6 with
the inter-object control flow scope. The objects of the type Node are the EL-
EMENTS. The ACCEPT METHODS are childrenAccept(...) which invoke visit
calls v.visit(this, data) indirectly. The intermediate method is jjtAccept(...).
The receiver variables of the intermediate method invocations
children|i].accept(visit, param) point to the ELEMENT objects.

Too strong restrictions on access qualifiers. Access qualifier relaxation is
supported by SSA, Ptidej and Fujaba. The roles that are supposed to be



3.4. MAIN PROBLEMS 36

public class Iconkit {
private static Iconkit fglconkit = null;
public Iconkit(Component component) { ... }
/** Gets the single instance */
public static Iconkit instance() {return fglconkit; }

F1GURE 3.4.13. Need to relax static constraints: A Singleton
with a public constructor (JHotDraw 6.0)

 Component | Figure
draw()

myDecoratedFigure

(intermediaten> AbstractFigure

Class draw()

\f DecoratorJ
I I |
AbstractFigure ,,::: Leaf } DecoratorFigure
draw() draw(...) —

‘ getDecFigure().draw(...)

AttribFigure LineFigure
draw(...) draw(...)

FIGURE 3.4.14. One intermediate class in subtyping (JHot-
DRaw 6.0)

played by abstract classes / methods can be played by concrete classes or
methods. For example, the Singleton occurrence scenario provided in Figure
3.4.13 is not accepted by PINOT because the constructor is public (PINOT
requires a Singleton constructor to be private or protected) but is accepted
by SSA, Ptidej and Fujaba.

Relevant role players belong to other repositories. In some pattern occur-
rences the relevant role players belong to the external repositories (usually to
the external libraries like Java core). For example, in the Proxy occurrence
from JHotDraw 6.0 illustrated in Figure 3.4.16 the the REAT, SUBJECT and
the SUBJECT (List and Vector respectively) belong to the Java core library.
SSA, DP-Miner do not accept candidates whose role players belong to ex-
ternal repositories unless these are compiled and their byte-code is loaded
into the tool. PINOT and Ptidej, in contrast, accept such a candidate by
examining the references to the List and Vector classes and assuming that

the missing parts “exist somewhere”.*

4These are so-called “ghost elements” in Ptidej



3.5. CONCLUSIONS 37

fFrameFigure

' Component

containsPoint(...)

AbstractFigure
containsPoint(...)

" Intermediate — | AttributeFigure
Classes ‘ containsPointy...)

TextAreaFigure
containsPoint(...)

HTMLTextAreaFigure —

containsPoint(...) j

fFrameFigure. containsPoint(...) J

| Decorator |

FIGURE 3.4.15. More than one intermediate class (JHotDraw 6.0)

-———
- ~

- 3\ m Delegee
”
IR List —
// | _containsAll() | |
4 [Subject/ Z} /!
)/ | / |
’ Vector ,/| ListWrapper —
l’ containsAll() ,7 | containsAll(...)
v I ,/,/7/ _
\ Real Subject _-~ = Proxy
~ -

~

—— -

‘myDeIegee.containsAII(...)J
Belongs to JRE

FIGURE 3.4.16. Some role players reside in external libraries

3.5. Conclusions

Pattern detection tools use various formalisms and concepts to describe
their approaches and use different repositories to validate their results. There-
fore different, contradictory results on the same code are returned.

Most differences occur because many behavioural aspects of design pat-
terns that are originally expressed by Gamma et al. [27] in the terms of
interactions between objects, are approximated by pattern tools differently
at the program element level.

The research community needs a commonly agreed, domain-independent
platform to reason about design patterns. This platform must provide a



3.5. CONCLUSIONS 38

common basis so that researchers can express formally why a particular
candidate is indeed an occurrence of a certain pattern. As a first step in
this direction, it is decided to reason about the interactions within pattern
occurrences in the terms of interactions between objects. The next chapter
advocates this approach.

Having several pattern detection tools that report diverse results, another
way to improve the overall accuracy is combining the outputs of these tools.
Fach tool, analyzing certain aspects of a pattern, contributes its estimates of
which program elements are likely to form a particular pattern occurrence.
This is the data fusion approach to pattern detection which is presented in
Chapter 4.



Part 2

Approach 1: Data Fusion



CHAPTER 4

Data Fusion Approach

Diversity of results obtained from pattern detection tools (Section 3.4)
inspired the following suggestion: Instead of striving for the ideal pattern
detection tool by adding new techniques and or upgrading incomplete ones,
it is more promising to fuse the outputs of existing tools. Each tool, analyzing
certain aspects of a pattern, contributes its estimates about which patterns
are likely to be relevant. The data fusion approach builds thus on the synergy
of proven techniques without requiring any expensive reimplementation of
what is already available. Poshyvanyk et. al. [56] observed the advantages of
fusing of outputs of several program comprehension tools that employ static
and dynamic program analyses. Conservative but potentially imprecise static
analyses can be compensated by precise dynamic analyses that do not cover
all program executions.

Section 4.1 provides a brief overview of the data fusion approach for
design pattern detection. Section 4.2 explains how structurally simpler pat-
terns indicate the presence of more complex ones. Section 4.3 and Section
4.4 present the steps of the data fusion approach. Section 4.5 discusses the
case when even simple patterns are misrecognized. Section 4.6 suggests addi-
tional ways to improve the accuracy of the data fusion approach. Section 4.7
presents the evaluation results. Finally, Section 4.8 presents the conclusions
of the chapter.

4.1. Brief Overview over the Approach

It was noted in Section 3.4 that candidates for complicated patterns (e.g.
Observer, Visitor) are rarely classified identically by several tools; when this
occurs, a candidate is very likely to be a true positive.

More often, different pattern detection tools report simpler patterns that
resemble more complicated ones structurally and-or behaviorally (e.g. Com-
mand instead of Visitor) , “agreeing” on smaller patterns. Smaller patterns
are classified with high scores, high precision and identical role assignments
for mandatory roles. Put another way, occurrences of smaller patterns wit-
ness occurrences of bigger patterns by virtue of being their substructures
(see Section 4.2 for more details).

If different tools “agree” a true positive is more likely than when relying
on the judgement of only one tool. This is the essence of joint recognition
introduced in Section 4.3.

40



4.2. SMALLER PATTERNS WITNESS BIGGER PATTERNS 41

If several tools do not classify a pattern candidate C' identically, the next
stage starts - checking whether different tools identically classify “witnesses”
of C' and combining the corresponding judgements, as it is explained in
Section 4.4.

4.2. Smaller patterns witness bigger patterns

In general a pattern, B is a subpattern of another pattern A if all oc-
currences of A are occurrences of B - that is, all of the roles of B can be
mapped to roles of A. In this case A is said to be a superpattern of B and B
is a subpattern of A. Superpatterns are characterized by smaller number of
constraints than their subpatterns and therefore are often detected instead
of their subpatterns. Note that the subpattern relation is purely technical
and does not imply that the patterns have the same intent.

A witness W of another pattern P is a pattern of which it is known that
some or all of its roles also play some role in P. Thus an occurrence of a
witness hints that there might exist an occurrence of the witnessed pattern.
This is a rather general definition. In this thesis a specific form of witnesses is
taken: superpatterns. They are taken by leveraging on the good recognition
of simpler patterns.

For example, Command and State are witnesses for Decorator because:

e Command. The DECORATOR class holds an instance of the CoM-
PONENT class and invokes it (when the control is passed to the
superclass of DECORATOR). This process is initiated by the in-
voker of a Decorator occurrence. Such behavior corresponds to the
behavior of the Command pattern. A client of DECORATOR is the
COMMAND INVOKER , the COMPONENT class corresponds to the
COMMAND INTERFACE (and at the same time to the RECEIVER),
the DECORATOR class corresponds to the CONCRETE COMMAND
role. See Figure 4.2.1b.

e State. When a Decorator occurrence runs, the control is passed (in
turn) to several instances of CONCRETE DECORATOR (according
to the order they were put into a “decorator chain”). Finally, a
LEAF class gets the control. This resembles the behavior of State
which also lets control pass through different classes. The class
playing the COMPONENT role stands for the STATE INTERFACE
role, the invoker of DECORATOR plays the STATE CONTEXT role,
CONCRETE DECORATOR and LEAF classes play the CONCRETE
STATE role. See 4.2.1a.

Figures 4.2.1b and 4.2.1a illustrate that, because superpatterns are taken
as witnesses for subpatterns, the witness role mappings result from reversing
the edge directions in the corresponding subpattern role mappings. This has
the implication that a particular design pattern recognition tool might report
non-unique witness role mappings. For example, the CONCRETE STATE role
is mapped to several DECORATOR roles.



4.3. AGREEMENT AND JOINT RECOGNITION 42

-— —-————
- -

~

y 2 ~
! Client >{ Component ‘State Interface }<—{ Context

Leaf ‘ Decorator ConcreteState
w = -

-~
e, _——_—_——-—-—

e
- -
- -
- -~

——— = -

¥ " r N
! Client >{ Component h Receiver ‘ ‘Comrpand H Invoker‘

-—

Leaf | Decorator }J
N~

-—— -

(B) Command is a witness of Decorator. Role
mappings are illustrated by arrows

FIGURE 4.2.1. Witnesses of Decorator

The problem of non-unique witness role mappings disappears only if
several design pattern recognition tools correctly recognize a pattern occur-
rence, delivering identical role assignments (Section 4.3). Otherwise, in order
to distinguish non-unique role mappings diagnostics of different witnesses are
obtained from are combined (Section 4.4).

4.3. Agreement and Joint Recognition

If two design pattern recognition tools A and B believe that the same set
of program elements is an occurrence C' of the same pattern with sufficiently
high scores (more than 50%) and their role assignments for the mandatory
roles are the same, A and B are said to agree on C.

Figure 4.3.1 presents a Decorator occurrence from the java.io package
on which PTIDEJ, SSA and PINOT agree with 50% score from Ptidej, 60%
from SSA and 100% from PINOT!. Note that the agreement is not disturbed
by the fact that only PINOT identifies the optional roles.

If at least two tools agree on an occurrence of a pattern P and other
tools do not disagree on P’s witnesses, it is said that this pattern occurrence
is jointly recognized. The Decorator occurrence from java.io (Figure 4.3.1)
was jointly recognized by SSA, PINOT and PTIDEJ.

If tools do not agree on a candidate of a complex pattern P, one searches
for the agreement on the witnesses of P. Then it is possible to reconstruct
the pattern from witnesses, as described in Section 4.4.

IFUJABA and DP-Miner do not recognize decorators at all.



4.4. DISAGREEMENT AND RECONSTRUCTION 43

InputStream
read()

FilterinputStream
read()

— ‘ T MA

FiGure 4.3.1. Three tools agree on this Decorator occurrence

4.4. Disagreement and Reconstruction

Unfortunately, different tools agree on occurrences of complex patterns
like Decorator quite rarely - mostly this occurs in straightforwardly imple-
mented occurrences from well-designed repositories like JUnit. However, it
was observed that in most cases tools disagree on big pattern occurrences
but agree on most of their witnesses. For example, in JHotDraw 6.0 the
evaluated tools disagree on more than 70% of all Decorator occurrences but
agree on around 85% of Decorator witnesses.

Let different tools agree with at least 66% score on occurrences of pat-
terns that witness a pattern P. If the related role assignments and witness
role mapping@ for all the witnoqging occurrences are complete for P and con-

of role asmgnments and role mappings are conszstent 1f they map the same
program element to the same role. A role mapping is complete for P, if all
the mandatory roles of P are assigned to some elements.

Figure 4.4.1 presents a Decorator occurrence from JHotDraw 6.0 on
which the tools disagree. However, this Decorator occurrence can be re-
constructed from witnesses because three tools agree on the existence of
witnesses among the program elements in Figure 4.4.1.

Fujaba and DP-Miner do not support Decorator at all. PINOT rejects
this occurrence since the implementation variant in which the LEAF role is
played by an abstract class (AbstractCommand) instead of a concrete class is
not accepted. Fujaba rejects this occurrence since the Decorator-Component



4.4. DISAGREEMENT AND RECONSTRUCTION 44

CommandButton Command wrappedCommand
actionPerformed() execute()
| abstract AbstractCommand | UndoableCommand
I. execute() : execute()
__________________________ | getWrappedCommand().execute() ‘J
CopyCommand  {DeleteCommand
execute() | execute()

____________________________________________

FI1GURE 4.4.1. Tools disagree on this Decorator occurrence

delegation is required to be done directly through a field; Ptidej lacks be-
havioral analyses to recognize the getter method getWrappedCommand().
Only SSA identifies the pattern thanks to the appropriate liberal criteria
and yields a consistent role mapping. So, each tool rejects this Decorator
occurrence due to its individual reason - unwillingness to accept a pattern,
certain implementation variants or lacking behavioral analyses.

Although the tools disagree on this Decorator occurrence, it can be re-
constructed because three tools agree on the existence of the witnesses among
the program elements in Figure 3.4.1:

e Fujaba and Ptidej agree on an occurrence of State with 80% score
from FUJABA and 100% score from Ptidej. Both agree that the
COMMAND role maps to the STATE INTERFACE role whereas
UndoableCommand, CopyCommand, DeleteCommand are the CON-
CRETE STATES role. CommandButton is the CONTEXT.

e SSA and Ptidej agree on an occurrence of the Command pattern
with 25% score from Ptidej and 100% score from SSA. Both agree
that Command is the COMMAND INTERFACE and the RECEIVER
whereas UndoableCommand, CopyCommand, DeleteCommand
are the CONCRETE COMMANDS and CommandButton is the IN-
VOKER.

e PINOT and Fujaba agree on an occurrence of Strategy with 100%
score from PINOT and 80% score from Fujaba. The role mappings
are analogous to the ones for State.

e The five role assignments and mappings are complete and consis-
tent.

Command and State are both witnesses of Decorator (see Figures 4.2.1a,
4.2.1b). The scores assigned to the recognized subpatterns are high.

It was observed that for correctly identified pattern occurrences Ptidej
might return low scores (the Command witness got just 25%). Discussions
with authors of the analyzed tools revealed that different tools have different



4.6. ADDITIONAL SOURCES OF INFORMATION 45

ways to weigh relationships. So scores from different tools may not be com-
parable. That is, the scores of individual tools must be adjusted in order
to compensate their different degree of optimism and pessimism. This is-
sue is addressed by the common exchange format for pattern detection tools
presented in Chapter 5.

4.5. Wrongly Identified Superpatterns

Sometimes pattern detection tools fail to correctly identify a superpat-
tern and may even agree on wrong diagnoses. For example, for the Decorator
occurrence from Figure 3.4.1, PINOT and SSA classify its State subpattern
as a Strategy occurrence, since their criterion for distinguishing State and
Strategy fails in this case. Resilience against such wrong diagnostics is a
particular strength of the witness-based approach. Since both, State and
Strategy are witnesses for Decorator, it does not matter whether they are
distinguished correctly. In general, if the used tools fail to identify one wit-
ness, the chance that they will instead identify another small pattern that is
a witness too is quite good.

In the extreme case the used tools might just identify a tiny “Elemen-
tal Design Pattern”, EDP (see the definition in [61]). EDPs can serve as
witnesses too, since superpatterns are witnesses and EDPs are just very fine
grained superpatterns. The witness-based approach covers the entire spec-
trum of granularity. For instance, reconstruction of Observer or Composite
needs an occurrence of the Iterator pattern as a witness?. Because the tools
evaluated in this thesis do not support Iterator, it is approximated by the
“ArrayMultiReference” EDP supported by Fujaba.

In general, Strategy, Adapter, Command, State, Template Method and
Iterator patterns were preferred since they are more reliable witnesses than
EDPs. The reason is that EDPs are smaller and sometimes do not include
behavioral aspects. When the tools agree on such witnesses then a much
stronger evidence is obtained (in contrast to the case when tools agree on
two small EDPs). Thus the returned candidate gets a much higher score.

4.6. Additional Sources of Information

So far only the information provided by the evaluated pattern detection
tools was used. However, there are other sources of evidence about design
patterns, whose input can be fused too. This information can be used for
the following purposes:

e Highlight relevant pattern occurrences when the information about
the program structure got from witnesses is not sufficient,

e Distinguish between structurally similar patterns after the witnesses
have already been collected.

’In Observer, a Subject class uses Iterator to broadcast state changes to observer
objects. Composite uses Iterator to run the action on its children.



4.7. EVALUATION OF THE DATA FUSION APPROACH 46

This section demonstrated the usefulness of class names and program be-
havior analysis as additional information sources.

Program element names. In the experiments, JTransformer http://
sewiki.iai.uni-bonn.de/research/jtransformer/start, a versatile in-
frastructure for analysis and transformation of Java programs, was used to
extract information from variable names and comments. Variable names
were intensively used in the experiments to find pattern candidates manu-
ally. The names of OBSERVER classes often contain “Listener” or “Observer”.
The notification method name often starts with the word “fire” - for exam-
ple, “fireViewChanged”. The class names in the Facade and in the Mediator
patterns typically contains “Service”, “Repository” etc. In the Visitor pat-
tern, the VISITOR classes are typically named as “...Visitor” - for example,
JavaParserVisitor from JRefactory 2.6. The information got from class
names was especially valuable in spotting implementation variants when the
information got from witnesses alone was vague. This approach was espe-
cially effective in spotting so-called 1:1 Observers (an Observer implemen-
tation variant where a subject is linked only to one observer that is pointed
to by the scalar field owned by a subject). 1:1 Observers were distinguished
from structurally and behaviorally similar Strategy or Bridge occurrences by
using program element names.

Program behavior. Data flow and control flow information can be
used to distinguish between the patterns having the same set of witnesses.
For example, the Decorator, Chain of Responsibility (CoR) and Dynamically
Typed Proxy patterns have the same set of witnesses: Command and State.
In contrast to Decorator/CoR, in Dynamically Typed Proxy the points-to
set of the parent field consists solely of objects whose types are sibling types
for the proxy object. To distinguish CoR from Decorator the control flow of
the relevant forwarding method(s) is examined to check whether forwarding
is done conditionally or not.

4.7. Evaluation of the Data Fusion Approach

The data fusion hypothesis was evaluated manually. Several tens of
examples were taken from the repositories listed in Table 3.1.1. Occurrences
of the Observer, Visitor, Decorator, Chain of Responsibility, Proxy, Bridge,
Mediator and Facade patterns were detected. The data fusion approach
delivers better accuracy than each individual tool. Precision was increased
as well as recall, since each reconstructed pattern removes a false negative
and several false positives (its witnesses) from the output set of the basic
pattern detection tools.

The remaining false positives occur because tools may agree on wrong
witnesses. It obviously does not count how many tools agree but how com-
plementary the techniques used by the agreeing tools are. If they use the
same techniques, they often fail on the same cases.



4.8. CONCLUSIONS 47

Precision

FUJABA | PTIDEJ PINOT ss'::";"‘:”";y Fusion

(P?::y‘:”fgf) 32% 60% 24% 7%

o visitor | 30% 25% 50% 26% 73%
g Observer (Composite) | 29% 25% 43% 24% 75%
c Bridge |  12% 14% 14%
= - 20% - 20%

(A) Precisions
Recall

FUJABA | PTIDEJ PINOT SS'L";:;ZV Fusion

(P[r’:fy":g;’) 70% 60% 80% 100%

2 visitor | 50% 50% 30% 60% 80%
g Observer (Composite) | 50% 40% 30% 50% 60%
g Bridge 40% - 40% - 40%
M(i‘:;z"e’) 0 100% 100%

(B) Recalls

F1GURE 4.7.1. The accuracy of the data fusion approach

Full evaluation details are provided in [42, 28|. Fig. 4.7.1 provides
the accuracies delivered by several individual tools and by the data fusion
approach. The numbers are averaged over the repositories listed in Table
3.1.1.

4.8. Conclusions

Data fusion can benefit from future advances in the detection quality of
any of the basic tools, no matter by which techniques they are achieved. In
addition, data fusion allows to experimentally evaluate combinations of tech-
niques that any single tool cannot incorporate (or could only after significant
upgrading efforts). If the insights obtained by data fusion with relatively
small implementation overhead prove valuable they can be included later in
any individual tool. The following sections discuss the ways to advance the
data fusion approach.

Improve underlying tools. Obviously, data fusion does not replace
work on further improvement of existing tools. The main areas to be ad-
dressed are dataflow analyses, support for transitivity and implementation
of additional pattern detectors, such as the missing detector for Iterator
discussed above. Analyzing of program element names (mentioned also in
Tonella et al. [67]) also seem to be promising. Data fusion will be able to



4.8. CONCLUSIONS 48

take advantage of any improvements of the analysed tools or the availability
of new tools.

Support various implementation variants of witness patterns.
Witnesses themselves are implemented in a variety of ways. Therefore, it
is important that the pattern detection tools that detect witnesses accept
the corresponding implementation variants. If they do not, the number of
tools that agree on a certain witness might be too low to provide sufficient
evidence. In addition, there is the risk that the remaining tools that agree
incorporate similar techniques and therefore yield the same false positives
or false negatives. For example, both analysed pattern detection tools that
apply static behavioural analyses, PINOT and DP-Miner, support only a
few straighforward implementation variants. Therefore, they often do not
participate in agreements. Among the remaining tools Ptidej and Fujaba
incorporate similar (fine-grained static structural) techniques. Therefore,
their agreement is less trustworthy.

Need for uniform exchange format. The biggest problems for fusion
turned out to be that most tools report just a fraction of the information
that they derived internally. In particular, reconstruction requires witnesses
to completely cover the mandatory roles of of the reconstructed pattern
(including methods and fields, if necessary). This is not possible if tools only
report roles at class level, as done by SSA, DP-Miner and Ptidej. Fujaba and
SSA additionally reports roles at method level. PINOT reports the entire
range of roles, down to the granularity fields, methods, individual method
calls and field accesses, but not for all supported patterns (Table 1). Also,
different tools do not assign qualitative labels (High, Low) to their scores,
making them incomparable. For example, SSA rejects the candidates scored
lower than 50%. On the other hand, Decorator candidates scored with 44%
should be accepted (the numbers are based on the conversations with the
authors).

These observations motivate the need for a commonly agreed meta-model
and an uniform exchange format for pattern detection tools to enhance the
power of data fusion and to do it automatically. These issues are addressed
in Chapter 5.



4.8. CONCLUSIONS

Class Inheri- Field |Method Method | Field

tance call access
SsA| vV = - v - -
DP-Miner| Vv~ = - - - -

PINOT| Vv v' | partially | partially | partially | partially
PTIDEJ| Vv = - - - -
FUJABA| Vv = - v - -

TABLE 1. Roles reported by the different tools.

49



CHAPTER 5

A Common Exchange Format for Design Pattern
Detection Tools

The previous chapter demonstrated how data fusion improves the overall
accuracy. However, automatic data fusion was hindered by diverse output
formats of pattern detection tools. This chapter addresses this limitation by
developing a common exchange format for pattern detection tools referred
to in this thesis as DPDX. DPDX is based on a well-defined and extensible
metamodel and facilitates comparison, fusion, visualisation, and validation
of the outputs of different DPD tools.

Section 5.1 motivates the need for a common exchange format. Section
5.2 presents the requirements to an exchange format that were distilled from
practical evaluations of existing tools and from thorough literature review.
Section 5.3 presents the concepts on which the proposed exchange format is
built. Section 5.4 describes the metamodel of DPDX. More details of DPDX
can be found in |43, 44].

5.1. Motivation

A common exchange format for pattern detection tools would be benefi-
cial to achieve a synergy of many different tools that participate in a feder-
ation and interact to produce new value. This federation and the common
format is also an invitation to the program comprehension, maintenance,
and reengineering research communities to contribute individual tools.!

For example, visualisations of tool outputs could be implemented in a
separate component that gets relevant information from other components
using a the common exchange format. It would be possible to automate
the process of collecting, comparing, and evaluating the outputs of different
tools, which is currently a manual, error-prone, and time-consuming task.
Moreover, public repositories of pattern occurrences® would benefit greatly
from a common exchange format. These repositories are important in design
pattern detection research as a reference for assessing the accuracy of tools
[53]. In addition, a common exchange format would also help in achieving
an automated round-trip in pattern detection tools (see Albin-Amiot et al.

IFor an introduction to the used DPD terminology please refer to [42]
2See, for instance, PMART (http://www.ptidej.net/downloads/pmart/) and DEE-
BEE [25].

50



5.3. DPDX CONCEPTS 51

[1]), including pattern detection, collection, fusion, visualisation, validation,
storage, and generation.

5.2. Requirements to an exchange format

The common exchange format encourages reporting of internal informa-
tion that is available in most tools. It acts as a contract to which tools should
conform in order to be a part of the aforementioned federation. A suitable
exchange format must fulfill the following requirements:*

e Language independence. The exchange format must be specified
without using language-specific concepts.

e Completeness. The format must be able to represent program
constituents at every level of role granularity

e Standard compliance. The exchange format must conform to
some text exchange formats like CSV or XML.

e Identification of role players. Each program constituent playing
a role must be identified unambiguously.

e Identification of candidates. Each candidate must be identified
unambiguously and reported only once.

e Justification. To ease result assessment, the format must include
explanations of results and scores expressing the confidence of a tool
in its diagnostics.

e Comparability. The format must enable reporting of the motif
definitions assumed by a tool and the applied analysis methods to
allow other tools to compare results.

e Reproducibility. For reproducing the results, the tool and the
analysed program must be explicitly reported.

e Specification. The exchange format must be specified formally
to allow DPD tool developers to implement appropriate generators,
parsers, and or converters.

The output formats of several pattern detection tools and repositories are
reviewed in [43, 44]|. No individual output format fulfills all the above
mentioned requirements.

5.3. DPDX Concepts

This section develops the concepts on which DPDX is based. It is ex-
plained how DPDX addresses each of the requirements stated in Section 5.2,
overcoming the limitations of existing output formats.

Completeness. For completeness, the output format supports at least
reporting each program element that can possibly play a mandatory role.
DPDX allows reporting nested and top-level types (interfaces, concrete and
abstract classes), fields, methods and individual statements (including field
accesses and method invocations). Reporting role mappings at all possible

3These requirements have been formed during intensive practical evaluations of ex-
isting tools and thorough literature review.



5.3. DPDX CONCEPTS 52

granularity levels improves the presentation of the results and eases their
verification by experts and use by other tools.

Standard Compliance. The implementation of DPDX is based on the
XML format.

Identification of role players. In DPDX, every program element is
identified unambiguously by a path in an abstract syntax tree (AST) repre-
sentation of the respective program. The identification schema is therefore
stable, i.e. not affected by changes in the source code that are mere format-
ting issues (e.g. inserting a blank line) or reordering of elements whose order
has no semantic meaning.*

Identification of candidates. The set of all role assigments identified
by a pattern detection tool defines a projection graph (the formal treatment
see in Section 7.2) whose nodes are the program elements playing roles and
arcs being the relations between these elements (subtyping, method invoca-
tion etc). A candidate is the set of nodes in a connected component of the
projection graph where edge directions are disregarded.

Justification.Justification of diagnostics consists of confidence scores,
reported as real numbers between 0 and 1, and textual explanations. Justi-
fication can be added at every level of granularity: for an entire candidate,
individual role assignments and individual relation assignments.

Comparability. DPDX supports comparability by specifying a precise
metamodel of schemata, enabling tools to report their schemata.

Reproducibility. A result file contains the diagnostics of a particular
tool for a particular program. To enable reproducing the results, it must
include the name and version of the producing tool and the name, version,
and the URI of the analysed program. Names and versions may be arbitrary
strings. The URI(s) must reference the root directory(ies) of the analysed
program. The URI field is optional, since the analysed program might not
be publicly accessible. The other fields are mandatory.

Specification.The common exchange format is specified by a set of ex-
tensible metamodels that capture the structural properties of the relevant
concepts, e.g., candidates, roles and their relations (Section 5.4). Unlike in
the PADL metamodel of Albin-Amiot et al. [2], the possible kinds of program
constituents are no first-class elements of the metamodel but are captured
by a set of predefined values for certain attributes in the metamodel. This
ensures easy extensibility since only the set of values must be extended to
capture new relations or language constructs whereas the metamodel and
the related exchange format remain stable.

4This is necessary to compare DPD results across different program versions, when
analysing the evolution of pattern implementations over time.



5.4. THE ARCHITECTURE OF A PATTERN CANDIDATE 53

5.4. The architecture of a pattern candidate

A design pattern schema is a set of named roles and named relationships
between these roles. A role has a name, a string indicating of the kind of
program element that may legally play that role (e.g. a class, method, etc.),
a set of associated properties (e.g. whether role players are abstract) and
a specification of the role cardinality, which determines how many elements
that play the role may occur within the enclosing entity. Mandatory roles
have cardinality greater than zero.

A relationship abstracts collaborations between the players of involved
roles. It has a name that indicates the meaning (e.g. Inheritance, Control
Flow), the mandatory sign (indicating whether can be dropped without re-
garding a given candidate as false), the transitivity sign (indicating whether
it abstracts a transitive relation) and cardinalities specifying how many ele-
ments that play a particular role can be related on either relationship end.

A role mapping maps roles and relations of the schema to elements of
a program so that the target program elements are of the required kind,
have the required properties and relationships and fulfill the cardinality con-
straints stated in the schema.

A detection result contains a set of diagnostics produced by a tool for a
given program. Each diagnostic containg a set of role and relation mappings
and a reference to the pattern schema whose roles and relations are mapped.
Fach role mapping references a mapped role and the program element that
plays the role. A relation mapping references the mapped relation, a program
element that serves as relation source and an element that serves as relation
target.

Note that this metamodel can accomodate arbitrary languages and the
evolution of existing languages without any change in the metamodel be-
cause language level concepts are not first class entities of the metamodel
but just values assigned to role kinds and relationship names. In order to
make different tools understand each other, it is sufficient to agree on a com-
mon vocabulary, that is, a set of “kind” values with a fixed meaning. For
instance, the “kind” class generally represents an object type and the distinc-
tion between interfaces, abstract classes and concrete classes is represented
by the property, “abstractness”, with predefined values inter face, abstract
and concrete.

Kniesel et al. [43, 44| define the above mentioned metamodels formally
and outline its implementation in XML. The implementation is also provided
in the Ph.D.thesis of Fulop [24].



Part 3

Approach 2: Fusion of Techniques



CHAPTER 6

An Object Level View of Design Patterns

The research community needs a commonly agreed, domain-independent
platform to reason about design patterns. This platform must provide a
common basis so that researchers can express formally why a particular
candidate is indeed an occurrence of a certain pattern.

The approach taken in this thesis is to reason about the interactions
within pattern occurrences at the object level, in contrast to the approaches
presented in prior pattern-relevant work, which focuses on the structural
description of designs rather than on the conceptual object interaction ex-
pressed by these designs. It is worth noting that description of object level
interactions has been part of design pattern descriptions from the very be-
ginning [27], which emphasizes its relevance for expressing the essence of a
pattern.

This section elaborates this idea, arriving at pattern descriptions that
are abstracted from concrete program structure. Thus, many design vari-
ants that implement the same conceptual collaboration can be easily cap-
tured. This is the key to achieving a high accuracy since the behavioral
characteristics of design patterns can be stated more clearly at the object
level.

To identify, define, and organise the object interaction characteristics
of the design patterns addressed in this thesis, the following activities were
performed:

e Descriptions provided by Gamma et al. [27] and in other related
literature were studied.

e Experimental work, such as the one of Wegrzynowicz et al. [73] (ad-
dressing creational patterns) and of Riehle [57, 18| was reviewed.

e Own experimental studies of the occurrence of collaborational pat-
terns in existing software and of their detection by available tools
were carried out (see [42]).

All activities were performed in close collaboration with researchers that are
active in the design pattern detection field (see Acknowledgement section).
This chapter

e describes pattern-relevant concepts at the object level (Section 6.1),
e discusses pattern-relevant collaborations between entities at the ob-
ject level - Section 6.2,

55



6.2. THE CORE CONSTRAINTS 56

e and finally, compares the program level and the object-level view-
points (Section 6.3).

6.1. Pattern occurrences at the object level

The following entities available at runtime are needed to reason about a
a pattern occurrence:

e Memory locations: objects and their fields, local variables and
shared variables.
e Events: method invocations on receiver objects.

The type of object is identified by its class with the help of Run-Time Type
Identification system (RTTI). For a method, it is known whether it is a
construction method for a certain object.

Method invocations play a central role in all patterns. They can be
derived from method call sequences. In some situations , one needs to know
whether a certain method invokes some methods either directly or indirectly
so intermediate methods are taken into account. The order of intermediate
method calls and the number of invocations of a certain method on a given
object o are irrelevant.

Dataflow and points-to sets are computed by examining the contents of
the corresponding memory locations. Dataflow is used, for example, in a
Dynamically Typed Proxy occurrence (Section 3.4) to verify whether the
parent field points to an object whose type is a sibling of the proxy type.

A pattern occurrence is seen as a set of assignments of certain roles to
the runtime entities. For example, in an Observer pattern occurrence, each
of the roles SUBJECT STATE and OBSERVER STATE is played by at least one
variable.

The core constraints for a pattern P restrict interactions between the role
players in an occurrence of P, selecting only the role players that interact in a
certain “pattern-specific” way. A core constraint for a pattern P serves as the
necessary condition fulfilled by participants of the occurrences of P (except
for rare exotic occurrences). Section 6.2 discusses the core constraints. The
scenarios from the section “Reasons behind false positives” in Section 3.4 are
examples of using of these constraints.

6.2. The Core Constraints

Exclusive Data Flow Source / Target. In the design patterns like
CoR, Decorator, Proxy, Bridge, State and Strategy caller method(s) must
be invoked on a single dependent object. In the Tree Forwarder pattern
the forwarding call(s) must be addressed to more than one parent object.
In general, the set of dependent objects participating in pattern-relevant
interactions is restricted. Section 3.4 provides the examples of forwarding
to a single object in the Decorator pattern and of forwarding to multiple
objects in the Tree Forwarder pattern.



6.2. THE CORE CONSTRAINTS 57

Denote the relevant callee method invocations by mcy...mc,. The Exclu-
sive Data Flow Source constraint captures technically the above mentioned
idea, requiring all dataflow into the receiver variables of mc;...mc,, originate
at a certain object(s) 01...0m,.

In the Singleton pattern, the maximal number of Singleton objects must
be known in advance. The Exclusive Data Flow Target constraint enforces

this condition, requiring all singleton objects flow into certain shared vari-
able(s).

Same Operation. The crucial point of forwarding-based design pat-
terns (Decorator, Proxy, Chain of Responsibility, Composite) is that the
caller method implementing a particular operation in a master object in-
vokes the conceptually same operation on a dependent object. In Observer,
State, Strategy, Bridge a caller method and the invoked callee method(s)
must represent different operations. So the question arises, how to capture
technically the idea of “conceptually same” operations.

Fortunately, all object-oriented languages, which are the focus of this
thesis, answer this question in the same way. They typically distinguish a
conceptual operation from the methods that are its various implementations.
The bottom line is that at run-time methods for the same operation have
the same position in the virtual function table (vtable) of objects of different
concrete types that are specializations of a common supertype (see [65, 69|
for more details). This principle is the same in prototype and class based
languages, the only difference being that each prototype is its own concrete
type and thus has its own vtable, whereas all instances of a class share the
vtable of the class.

Thus the requirement that the implementation of a particular operation
in an object invokes the conceptually same operation on another object can
be rephrased to: “A method with index 4 in type T3 calls a method with
index 7 in an object of type T and the two types, T1 and 15, have a common
supertype Tog that also has index 7 in its vtable.” This condition implies that
the methods with index ¢ in 77, Tb and Tog implement the same operation.
The condition can be checked statically and at run-time since the index of
invoked operations is determined statically by the compiler and is part of
the executing code.

For example, in a Decorator occurrence let D be a decorator object by
and D,;+ be an object pointed to by the parent field of D. The forwarder
methods D.M and D,e.¢. M7 respectively represent the same operation. In
contrast, in an Observer occurrence a notifier method N owned by a subject
S and an update method U owned by an observer object O that is related
to S must represent different operations.

1Unless agressive optimization techniques are applied.



6.2. THE CORE CONSTRAINTS 58

Update Field. In an occurrence of a decoupler pattern (e.g. Observer,
Composite, Mediator, State, Strategy and Bridge, see also Sec. 2.4) the field
F owned by a master object O can be modified after O is created.

The “Update Field” constraint captures technically the just mentioned
idea, requiring that some non-construction method M owned by O forms
the scope of the dataflow into F? and M is called by some external client
method that is not owned by O.

Note that the Update Field constraint in the context of the Observer /
Composite patterns (when the fields observers or children stand for F'), if
violated, does not lead to the rejection of the corresponding pat-
tern candidates. Nevertheless, their scores are decreased. This conclusion
was made after observing several (rare) Observer / Composite occurrences
where the Update Field constraint is violated since pattern-relevant fields
were modified only within the construction methods of their owners. No
State/Strategy /Bridge occurrences with violated Update Field constraint
were found. The Update Field constraint is said to be mandatory in the
Observer / Composite patterns and optional in the State/Strategy/Bridge
patterns.

State Propagation. Assume that in an Observer occurrence the field
Source (respectively, Target) holds the state of a subject S (respectively, of
an observer O). The State Propagation constraint guarantees state change
propagation by requiring that a dataflow from Source to Target exists.

Note that Source is not necessarily owned by S and Target is not nec-
essarily owned by O. For example, sstate;...sstater, might be fields of an
object pointed to by a field F' owned by S. In this case Source is said to be
transitively referenced from S and T'arget is said to be transitively referenced
from O.

The State Propagation constraint is optional. Assume that a notifier
method invokes an update method O.U(...). According to the program logic
O can consider an invocation of U as a certain “state change signal” without
checking the dataflow between corresponding state variables. More details
are provided in Section 7.3.

Control & Data Flow Order. In several collaborational patterns
(Memento, State, Observer) the accesses and updates of a certain pattern-
relevant field occur in a certain order. Assume that in a such an occurrence
a method M accesses a field f and a method U updates f. All invocations
of M and U are within the control flow of a method N. Ordering can be
done in two ways:

Sequential Order: All invocations of M (if any exist) are performed
before the invocations of U. In terms of regular expressions, an

°No matter whether F is collection-typed (Observer, Composite) or scalar-typed
(Bridge, State, Strategy) - both implementations are captured.



6.2. THE CORE CONSTRAINTS 59

execution of N must satisfy the condition M*U™T.? For example, in
an Observer occurrence a method N stands for a notifier method,
M stands for a method accessing a subject state field f and U
stands for a method updating f.

Interleaving Order: A non-empty set of invocations of M and an
invocation of U interleave; in addition, an invocation of U precedes
the whole execution. In the terms of the regular expressions, an
execution of N must satisfy the condition (UM™)*. For example,
in a State occurrence a method N stands for an Action method, M
stands for a method that accesses a current state field f in order to
execute a state-related action and U stands for a method updating

I

6.2.1. Sibling Creation. In Dynamically Typed Proxy (see Section
3.4) occurrences the type of a master object (in this case, proxy object) O
and of the dependent object o (i.e. real subject) to which O forwards are
siblings types. In contrast, in Decorator and CoR occurrences O and P may
belong to any type.

The Sibling Creation constraint captures the just mentioned idea techni-
cally by restricting the points-to set of the dependent object field F' owned
by a master object O. That is, pointsTo(O.F) consists only of objects whose
types are siblings of type(O).

Restrictions on Object Coverage. Assume that a caller method M
invokes a callee method m on objects pointed to by a set of relevant fields
f1.-fn. The corresponding method calls are denoted by mc;...mcg. In certain
patterns, the following restrictions on invocations of m occur:

o Full Coverage - m is invoked on each object o pointed to by fi....fn
i each execution of M.

— This rule applies to occurrences of Decorator (a decorator ob-
ject always forwards to its parent object), Observer (a subject
always propagates state changes to all its observers) and Com-
posite (a container always propagates an operation to all its
children).

e Partial Coverage - m is not invoked on some object o pointed to by
f1--fn in some execution of M (this execution is called a diverting
ezecution) but is invoked on o in other execution(s). In other words,
a) in some execution of M no call of m is executed on some object
0 € pointsTo(fjc(1.n)) and b) at least one execution of M contains
for each o € ;< <, pointsTo( f;) a method call me; executed on o.

— This rule applies to occurrences of the Chain of Responsibility
pattern (a handler object forwards to its next object only in

3The usual notation for regular expressions is used. That is, * denotes a non-negative
b
number of occurrences and 4+ denotes a positive number of occurrences.



6.3. THE OBJECT LEVEL VS. THE PROGRAM ELEMENT LEVEL 60

some execution) and to false Observer / Composite candidates
where not all dependent objects are addressed - for example,
due to loop breaks.

Note that diverting executions in the Partial Coverage constraint must be
formed by tests that reflect application logic. For example, if a method call
f.callee() resides within a branch of an if-statement i f(f! = null) then the
path corresponding to the else-branch does not lead to a diverting execution.
This is else-branches of such null checks contain “cleanup” actions that are
done by attempt to perform an invocation of the null pointer.

Unique Created Product Type. In any occurrence of a creational
pattern, any two creator method invocations that refer to different creator
methods, or carry different parameters, or both, must yield product objects
of different types. This idea is summarized into the the Uniquely Created
Product Type constraint.

6.3. The object level vs. the program element level

This section discusses how the object-level pattern concepts from Section
6.1 are reflected in the reviewed design-level pattern detection approaches.
If some concept is used in a limited way, reasons behind false positives /
negatives are discussed.

Most tools addressed in this thesis (SSA [68], SPQR [36], D-Cubed
[73], PINOT [58|, DP-Miner [16], Columbus [20]) employ static analyses.
Ptidej [50, 29|, Fujaba [71] and DPRE [47] additionally analyze selected
execution traces to improve the precision. Columbus [20] applies machine
learning techniques in addition to static analyses.

Object-Related Issues.

Specifying objects and their parts. Pattern specifications used in the tools
based on static analyses prescribe certain distribution of functionalily be-
tween the class(es) that form the types of pattern-relevant objects. For
example, in the Observer pattern the observers variable and the notifier
method(s) should be owned by the Subject class; the state variables should
be declared in the Concrete Subject class(es).

SSA 68|, Ptidej [50], SPQR [36], Fujaba |71] and D-Cubed [73] support
the limited case of the subtype transitivity where the number of intermedi-
ate classes is limited. They declare a class C's as a mandatory role player
and its subclass C' as a player of an optional role. Thus it is possible to
accept candidates in which certain fields / methods are owned by Cs and
the remaining ones are owned by C. Still, certain variables / methods are
required to coexist in the same class, which might not actually be true. For
example, the observer variable and the notification method are still required
to be owned by the (same) Subject class.



6.3. THE OBJECT LEVEL VS. THE PROGRAM ELEMENT LEVEL 61

PINOT [58] and DP-Miner [16] impose additional constraints for im-
proving precision; for example, a certain class (Subject) must be abstract.
However, this decreases recall.

The conclusion is that a solution that accepts all possible distributions
of functionality among the classes that contribute to the implementation of
a particular object is needed.

Object sets. The Total / Partial Coverage constraints (Section 6.2.1)
involve the notion of object set (a method must be executed on all or on some
objects belonging to a certain set). The tools based on static analyses model
the “object set” concept via a collection- or array-typed variable. Iterations
are expressed as loops.

Such specifications cover only a subset of valid occurrences. If the max-
imal number of referenced objects is known in advance, more efficient im-
plementations are possible. For example, there exist implementations of
Observer, Composite and Visitor that use a fixed number of scalar-typed
variables that point to dependent objects. An iteration over a set of depen-
dent objects is implemented via a sequential operator.

The tools based on dynamic analyses (Ptidej and Fujaba) do not fall into
this trap since they focus on sequences of run-time events, independent of
the structure of the program that produces them.

For a better static approach object sets must be abstracted in the speci-
fication of a pattern, which must not depend on implementation details such
as arrays, collections or other ways to implement sets.

Method-Related Issues.

Same Operation. All tools reviewed in Chapter 3 support the “same op-
eration” concept by checking whether My overrides M; or not. To detect
Observer candidates they apply a more liberal check: whether a notification
method and update methods reside in different subtype hierarchies. Such a
check misses some Observer occurrences mentioned by Riehle [18, 57| where
a notification and update methods reside in the same subtype hierarchy but
have different signatures.

Specifying method invocations. Certain tools based on static analyses
(PINOT [58] and DP-Miner [16]) represent a method invocation by a method
call statement. SSA [68] and D-Cubed |64] support the method invocation
relation, i.e. method pairs (F,G) when a method F calls a method G. In all
these approaches the information about the receiver object is not represented,
making it impossible to express several patterns, for example, Dynamically
Typed Proxy.

Ptidej [29], SPQR [36] and Fujaba 71| overcome this limitation by
supporting the “method delegation” entity. A method delegation is created
for each triple <Cualler,Callee,V >where a method Caller might invoke a
method Callee and V stores the receiver object.

Method invocation transitivity. The method invocation relation supported
by PINOT [58], Ptidej [29], Fujaba [71], DP-Miner [16], D-Cubed [64] and



6.3. THE OBJECT LEVEL VS. THE PROGRAM ELEMENT LEVEL 62

SSA [68] is not transitive, i.e. intermediate methods are not allowed. The
partially transitive method invocation relation (the number of intermediate
methods is limited) is supported by SPQR [36].

Conditional method invocations. Except for PINOT [58|, the method
invocation relations mentioned in the previous sections do not include the
information whether a caller method runs a callee method in every program
execution. Thus some CoR occurrences might be misrecognized as Deco-
rators. PINOT [58] builds an extended variant of the method invocation
relation, enabling to figure out whether method invocations are performed
within a branch of a conditional operator.

Variables and data flow.

Variables. The tools based on static analyses represent variables as field
declarations owned by classes and local variable declarations owned by meth-
ods.

SSA [68], Columbus [20], Ptidej [29], D-Cubed [73], SPQR [36] and
DPRE [47| do not specify method-related variables, arguing that pattern
specifications at the granularity level of local variables and parameters are
too restrictive. Stencel et al. [64] justify this decision by showing that some
Factory Method implementation variants that require a factory method to
have no parameters do not cover all possible Factory Method implementa-
tions.

Data Flow. SSA [68], Ptidej [29], DP-Miner [16], SPQR [36] and Fujaba
[71]) do not support dataflow analyses. As a result, they do not distinguish
between Statically Typed and Dynamically Typed Proxy implementations
(Section 3.4).

Limited dataflow analyses are implemented in D-Cubed [73] and PINOT
[58]. These are intended to ensure that all Singleton objects are stored in a
finite number of static variables. But these approaches are limited in their
capabilities. They require callee methods to be invoked directly on some

which objects flow from F'.

In all tools reviewed in this thesis method invocations that trigger ac-
cesses to and updates of a certain field are not ordered; that is, restrictions
discussed in Section 3.4 cannot be verified.

Grouping of elements in pattern candidates. Except for SSA [68],
all tools reviewed in this thesis represent a pattern candidate as a set of
program entities fulfilling certain roles. If more than one program element
plays a role, multiple candidates are reported. That is, all role cardinalities
are [1..1] be default. For example, if a Subject class contains two notification
methods, PINOT reports two Observer candidates, one for each notification
method. SSA [68] groups several method role players around the owning
classes, thus supporting the cardinality [1..00] for method role players.

In the approach of Kim et al. [41] cardinalities are specified and enforced
for roles of each kind.



6.4. CONCLUSION 63

6.4. Conclusion

In the static-analysis-based tools design patterns are originally specified
in terms of program elements which is either too restrictive, covering only a
subset of possible implementation variants and producing false negatives or
too liberal, creating false positives.

The object-level specifications are used by the pattern detection tools
employing dynamic analyses and are checked against selected program ex-
ecution traces. This is done in order to filter out false positives emerging
because of too liberal static behavioral checks. Dynamic analysis has proven
to improve detection quality if sufficiently good test coverage can be achieved.
This is, however, a time and space-consuming-task. See [51] for more details.

As an alternative, Columbus uses machine learning. It learns the typical
range of metric values for program elements participating in valid pattern
occurrences, thus discarding some false positives. However, keeping training
sets up-to-date might be unfeasible, especially for quickly changing software
systems that contain new pattern implementations.

This chapter shows that the object-level descriptions are better suited for
pattern specifications, unifying cases that appear to be different implemen-
tations in specifications that commit prematurely to the program element
level. This thesis advocates the following approach:

(1) First specify patterns in generic terms that are independent of a
concrete program analyses (static or dynamic). See Chapter 7 for
the details.

(2) Then map the obtained generic specifications into the concrete level.
Chapter 8 maps the obtained generic specifications into the program
element level, taking care to create sufficiently general abstractions
for different implementation variants of the same object-level con-
cept.

Such an approach avoids the discussed pitfalls and makes it easier to compare
static and dynamic approaches since it starts from generic descriptions.



CHAPTER 7

Specifying Pattern-Specific Interactions

Following the informal discussions in Chapter 6, this section specifies for-
mally the interactions characteristic for the patterns treated in this thesis.
Each pattern P is associated with its interaction specification. An interac-
tion specification consists of a set of roles that are played by elements of a
software system. This is formally specified in Section 7.1. Interactions be-
tween players of two different roles are abstracted into a relationship between
the roles (Section 7.2). Core constraints, motivated in Section 6.2, restrict
the collaborations between role players in a certain “pattern-specific” way.
Section 7.3 describes the core constraints formally as predicates written in
a first-order-logic language. Section 7.4 specifies the patterns that are im-
plemented in the tool of the Decorator pattern. Section 7.5 summarizes this
chapter.

Roles, relationships, constraints and the software system abstraction
form the framework for building interaction specifications. This framework
is referred to throughout the thesis as Pattern Interaction Framework. It
is used in Section 7.4 to specify the characteristics of collaborational design
patterns (Sec.2.4).

7.1. The Software System Abstraction

The term “software system” is used as a common abstraction for pro-
grams and execution traces. Thus interaction specifications based on the
software system abstraction, can be easily mapped to dynamic analyses (ob-
ject level) and to static analyses (program element level). At the object
level, the interaction specification for a pattern P covers the trace(s) of a
program implementing P. At the program element level, the interaction
specification for P covers all implementation variants of P that express the
same behaviour.

Software System Metamodel. The model of a software system is rep-
resented in Fig. 7.1.1. The classes represent categories of software system
elements; the associations represent relations and functions specified in Sec-
tion 7.1. A software system consists of elements from the following sets:

e Types are denoted by the set T'ypes and represented by the class
Type in Fig. 7.1.1b.

64



7.1. THE SOFTWARE SYSTEM ABSTRACTION 65

e Memory locations, denoted by the set MemoryLocs, are a com-
mon abstraction for objects and variables, i.e. MemoryLocs =
Objects U Variables.

— Objects are denoted by the set Objects and represented by
the class Object in Fig. 7.1.1b.

— Variables are denoted by the set Variables and represented
by the class Var in Fig. 7.1.1b. They serve as a common ab-
straction for fields, shared variables, local variables or method
parameters:

x Fields are denoted by the set Fields and represented by
the class Field in Fig. 7.1.1b.

* Shared variables are denoted by the set SharedV ars and
represented by the class SharedVar in Fig. 7.1.1b.

x Local variables and parameters are denoted by the set
LocalV ars, represented by the class LocalVar in Fig.
7.1.1b.

e Methods are represented by the class Method in Fig. 7.1.1b.
Methods have a constructor attribute with default value FALSE.
Construction method are indicated by the attribute value TRUE.

e Execution items are denoted by the set Fxecutionltems and
represented by the classes in Fig. 7.1.1c). An execution item is
represented by the abstract class Fxecutionltem, which abstracts
elements that participate in pattern-relevant control flow:

— method calls are denoted by the set MethodCalls, represented
by the class MethodCall,

— method start / method exit points are elements of the sets
Starts and Ewits respectively. They are represented by the
class F'Point whose attribute kind can take on the values entry
or exit. The start and the exit point for a method M is denoted
by Starty and Endys respectively. They wrap the execution
of M.

— null checks are elements of the set NullChecks, represented
by the class NullCheck. Null checks represent checks whether
a variable has the special value null. They are associated with
the variable whose content is examined.

The set SoftwareSystemFElements is the union of the above sets. It is
represented in the model by the abstract class SoftwareSystemElement.

Relations and functions. The collaborations between software sys-
tem elements are expressed using relations and functions on the software
system elements (Section 7.1). In the software system model (Fig. 7.1.1) re-
lations are modeled as associations. Functions are modeled as attributes or
many-to-one associations. The relations and functions do not involve details
that are specific for the object level or for the program element level. Thus



7.1. THE SOFTWARE SYSTEM ABSTRACTION

o P oot st

(A) The top level elements.

fields

*
DFG_Edge methods

source

returnVar

- ! Iocalvar
sharedVarg * *

{ordered}arguments

Type

type

method

(B) Types and memory locations

- oo ”

calledMethod
+ [ MethodCall |

receiverVar {ordered}
params

checkedVar

(c¢) Execution items

+ fPoints

* -

Fiqure 7.1.1. The model of a software system

66



7.1. THE SOFTWARE SYSTEM ABSTRACTION 67

they serve as an abstraction layer, shielding the generic design pattern spec-
ifications from the concrete program analyses employed by a design pattern
detection tool.

Structural Relations and Functions. The structural relations and func-
tions are presented on the software system metamodel excerpt in Fig. 7.1.1b.
The relations and functions standing for ownership, type information, con-
struction methods and method call decompositions are basic. The remaining
relationships and functions are derived from the basic ones; the derivation
steps are outlined.

Ownership. The relation field C Objects x Flields (resp. method C
Objectsx Methods associates objects with their fields (respectively, methods)
and is modeled using the fields association between the UML classes Object
and Field in Fig. 7.1.1b. For example, the expression field(O, F') means
that the object O owns the field F'.

Local and method argument variables are defined by the relationship
localVar C Methodsx LocalV ars and by the function argument : Methods x
Integers — LocalVars. In the latter case, an integer number specifies the
parameter position within the method’s signature. Each method M that
returns a value owns a pseudo-variable returnjy; that points to the value
returned by M. When a method returns a value via a statement v = M|()
a data flow from returny; into v is triggered. Local and method argument
variables are modeled using the associations localVars and arguments in
Fig. 7.1.1b.

If an instance method / variable M and another instance method / vari-
able N are owned by the same object then M and N are said to be siblings.

The relation sharedVar C Types x SharedVars is defined as well to
describe shared variables (also known as “class variables” in Smalltalk or
“static variables” in Java and C++). Writing shared(T, Var) means that an
object type T is a type that owns the variable Var whose value is shared by
all the instances of T'. Shared variables are modeled using the associations
localVars and arguments in Fig. 7.1.1b.

Type Information. The function type : Objects — Types returns the
type of an object. It is modeled using the association type in Fig. 7.1.1b.

Construction method. The function isConstructor : Methods —
Boolean returns TRUE if a given method is a construction one; otherwise
it returns FALSE. It is modeled using the attribute Method.constructor
in Fig. 7.1.1b.

Method Call Parts. The functions receiver : MethodCalls — Variables,param :
MethodCalls x Integers — Variables and the relation calledMethod C
MethodCallsx Methods provide access to the three relevant parts of method
calls. For the method call mc,

e receiver(mce) = v means that v is the receiver variable of me (mod-
eled by the association receiverVar in Fig. 7.1.1c).



7.1. THE SOFTWARE SYSTEM ABSTRACTION 68

e param(mec,n) = v means that the variable v is the n-th parameter
passed to mc (modeled by the association params in Fig. 7.1.1¢).

e calledMethod(me, M) means that mc invokes the method M (mod-
eled by the association calledMethod in Fig. 7.1.1c).

Note that calledMethod is a relation: The same call can invoke different
methods, depending on the type of its receiver objects.

Sibling Fields and Methods. The relation siblings C (Methods U
Fields) x (Methods U Fields) describes sibling fields or methods, i.e. the
fields and methods belonging to the same object.

Let the relation instanceMember(O, Member) describe instance mem-
bers of the object O, i.e.

instanceMember (O, M) = field(O, M) V method(O, M).

Writing siblings(S1, S2) means that the method / field S; and the method
/ field Sy belong to the same object O.

siblings(Sy, S2) = JO-
(instanceM ember (O, S1) V instance M ember(O, S1))
A\

(instanceM ember (O, Sq) V instance M ember (O, Ss))

External calls. The central requirement in the decoupler patterns (Par.
2.4) is that a relevant field F' is updated in the control flow of an external
client (i.e. that a method that is not a sibling of F') after the owner of F is
created. The relation ExternallyCalled(M) checks whether the method M
can be called by a method that is not a sibling of M.

At the object level, it is checked that there exists a method F that is not
a sibling of M and invokes M.

The situation at the program element level is slightly different. In an
incomplete program (e.g. a library) E might be contained in a potentially
absent client code. Therefore M is required to be public. That is, M can be
potentially called by some external client.

Behavioural Relations. The relations and functions standing for control
flow and data flow graphs are the basic ones. The remaining relationships and
functions are derived from the basic ones; the derivation steps are outlined.

Control Flow Graph. The control flow of the method M is defined as
follows: cflowy C Ezecutionltems x Executionltems. It can be seen as
a graph (referred to in the thesis as abstracted control flow graph of M) and
denoted by CFGapsr (M) Tts nodes are the elements of ExecutionItems.
An edge (s,t) € FExecutionltems x Executionltems means that ¢ imme-
diately follows s in CFGgpst-(M). Note that in the “immediately follows”
relation only the elements belonging to Executionltems are considered, i.e.
t is assumed to immediately follow s even if certain events are not relevant for
pattern logic (for example, individual variable assignments) occur between s
and .

LAt runtime, this graph is a total order.



7.1. THE SOFTWARE SYSTEM ABSTRACTION 69

A control flow graph edge is described on the software system model ex-
cerpt in Fig. 7.1.1c using the association CF'G _edge on the class Executionltem.
Data Flow Graph. The dataflow within the method M is modeled by
the relation dflowys C Objects U Variables X Variables. Writing
dflowps(Source, TargetVar) means that the dataflow from the object or
variable Source to the variable T'argetV ar occurs in the scope of the method
M (See the basics chapter , Ch. 2). The dataflow relation of M can be seen
as a graph DFG)y;.

A data flow edge is described on the software system model excerpt in
Fig. 7.1.1b using the ternary association DF' G _edge.

Control Flow Reachability. The method calls reachability relation
cfreach(mey, meg, M) means that there is a path from the method call mc;
to the method call mey in CFG gpst-(M). The control flow reachability rela-
tion cfreach(M, mc) means that the method call mc is control flow reachable
from Starty;. Both relations are computed by traversing CFGgpst (M) .

Enumerating paths in the control flow graphs. First some auxiliary
definitions are presented. Given the method M and the path Path from
Startyr to Endyr in CFGgps(M). Such a path is said to be through the
control flow of M. Let S be the set of all execution items belonging to Path
except Starty; and Endyr. Put another way, S makes the order of execution
items irrelevant. It is said that S abstracts Path.

Given the method M, the relation ¢fpath : Methods x P(MethodCalls)
collects paths without cycles through CFGpse- (M) . Tt is written cfpath(M, P)
meaning that the set P abstracts a path through the control flow of M. Con-
ceptually, this relation is computed by traversing each individual pattern
relevant path in CFGgps (M) that start at Startp; and ends at Ewityy.
Pattern-relevant paths represent application logic but not exception flow.
More on this topic see in Section 2.5.

Data Flow reachability. The dataflow reachability relation
dfreach(Source, Target, M) is computed by finding a path from the variable
or object Source to the variable Target in DFG);. The short notation
Source —p; Target is also used. If the method forming the dataflow scope
is irrelevant, the global dataflow reachability relation is defined:

dfreach(Source, Target) = IM - dfreach(Source, Target, M)
The notation Source — Target is equivalent to dfreach(Source, Target).

Points-to sets. To describe points-to sets, the function pointsTo : Methodsx
Variables — P(Objects) is defined. Writing pointsTo(M,Var) = {Obj;...0bj, }
means that the variable Var may point to the objects Obj;...0bj, and the
dataflow is in the scope of method M. . If the dataflow scope is irrelevant,
pointsTo(Var) = 3M - pointsTo(M,Var).



7.1. THE SOFTWARE SYSTEM ABSTRACTION 70

At the object level, the points-to set of the variable Var is computed
by monitoring the contents of the memory location corresponding to Var.
At the program element level, pointsTo(M,Var) consists of all objects Obj
such that Obj = Var .

Transitive reference. This section formalizes the transitive reference
concept from Section 6.2. The object O, the variable V and the method M
are given as the output. Writing transRef (O, Var, M) means that Var is
transitively referenced from O. That is, Var satisfies one of the following
conditions:

e Var is a field owned by O
e Var is a field of an object pointed to by some field O.f.

The dataflow is in the scope of M .
Formally,

transRef(O,Var, M) =
field(O,Var)v
af - field(O, f) A Jo € pointsTo(f) - field(o, Var)

Enumerating individual paths in data flow graphs. The relation
dfpath : MethodsxVariablesUV alues x Variables x P(V ariablesUV alues)
presents individual paths in dataflow graphs. Writing
df path(M, Source, Target, P) means that the following conditions are met:

e There is a dataflow in the scope of the method M that starts at the
variable / object Source and ends at the variable T'arget

e A set P contains all intermediate variables that do not belong to
cycles.

The short notation Source — s p Target is also equivalent to
df path(M, Source, Target, P).
Individual paths in DF Gy are computed in two stages:

(1) Build the strongly connected components (SCCs) for DFGjy; and
collapse these into single nodes, getting the acyclic graph (denoted
by ADFG); ). The nodes of ADFG ) that do not represent col-
lapsed SCCs describe pattern-relevant variables?.

(2) Compute all paths from Source to Target, traversing each path
from Source to Target in ADFG); and collecting all intermediate
nodes that do not represent cycles.

2A(:cording to the empirical observations, variables that reside on dataflow graph cy-
cles are not pattern-relevant because the relevant variables in the pattern implementation
reviewed by the author do not participate in cyclic assignments.



7.2. ROLES AND RELATIONSHIPS 71

7.2. Roles and Relationships

The schema for a design pattern P is a set of roles and relationships
between these roles that reflect interactions in an occurrence of P. The
core constraints restrict the role players in the pattern-specific way. The
subsections of this section specify roles and relationships, assignments of
roles to software system elements and provide example schemas.

Roles and Relationships. A role is characterized by the name, the
cardinality and the role kind. For example, in the Observer pattern the
NoTIFICATION METHOD role is played by at least one method that notifies
observers of subject state changes.

The role cardinality notation is adopted from the UML. The specified
cardinality determines how many elements may or must play the role. Roles
with cardinality greater than zero are called mandatory. Roles with cardi-
nality including zero are called optional. The role kind indicates the kind
of software system element(s) that may legally play that role (e.g. a class,
method, etc.) and is represented by the corresponding subclass of the ab-
stract class Role from the metamodel in Figure 7.2.1b. The following role
kinds are distinguished, according to the kind of their players:

ObjectRole (objects),

TypeRole (types),

VariableRole (variables),
MethodRole (methods) and
MethodCallRole (method calls).

The class MemoryLocRole represents the roles that are played by objects
or variables.

Relationships between roles abstract the interactions between the players
of these roles that are described by basic relations from the previous section.
A relationship is characterized by its name and cardinalities for each related
role. The relationship name determines the relationship meaning (e.g. data
flow). The cardinality specifies the number of players of the target role associ-
ated to the number of players of the source role. In the schemata metamodel
(Figure 7.2.1a) relationships are represented by the corresponding subclasses
of the Relationship class:

e Owns(Owner, Part) abstracts the ownership relation. It relates a
type, an object or a method role in the first argument to a variable
or a method role in the second argument. For instance, an object
owns fields and methods, a method owns local variables, a type
owns shared variables. The cardinality is one-to-many (e.g. an
object owns several fields, a field is owned only by one object).

o Receiver(MethodCallRole,VarRole) abstracts the receiver vari-
able relation. It relates a method call role in the first argument to
a variable role in the second argument. The cardinality is many-to-
one (several method calls can have the same receiver variable).



7.2. ROLES AND RELATIONSHIPS 72

e CalledMethod(MethodCall Role, MethodRole) abstracts the called
method relation. It relates a method call role in the first argument
to a method role in the second argument. The cardinality is one-
to-many (a given method call refers to at least one method).

o CFReach(MethodRole, MethodCall Role) abstracts the control flow
reachability relation. It relates a method role in the first argument
to a method call role in the second argument. The cardinality is
many-to-many (a given method can invoke more than one method
calls; a given method call can be invoked by more than one method).

e DF Reach(MemoryLocRole, M emoryLocRole) abstracts the data
flow reachability relation dfreach(Source,Target). It relates a
memory location role (object or variable) in the first argument to a
variable role in the second argument. The cardinality is many-to-
many (a given variable can be reachable from more than one object
or variable; more than one variable can be dataflow reachable from
a given object or variable).

Role assignments and candidates. A role assignment maps roles
and relations of the schema to software system elements so that the software
system elements are of the required role kind, participate in the required rela-
tions and fulfill the cardinality constraints and the core constraints specified
for a given pattern.

For example, the method calls that play the target role in the C'F Reach
relationship are control flow reachable from the corresponding methods play-
ing the source role. In the Observer pattern, the Total Coverage constraint
is applied as follows: the update method call that is invoked by a given no-
tifier method N must be executed in every execution of N on each observer
object related to the subject owning N. More information on application of
the core constraints on the appropriate software entities see in Section 7.4.

Role assignments are represented by the relation
plays C Roles x SoftwareAbstractionElements. Here plays(r,e) means
that the role r is played by the software system element e.

The essential task of design pattern detection tools is to suggest role
assignments. The set of all role assignments identified by a pattern detection
tool for a particular schema S and analysed software system P defines a graph
with nodes being the entities of P that play roles in S and arcs being the
relations between these entities. This graph is referred to as the projection
graph of S on P, since it “projects” S on the analysed software system P.
The undirected projection graph is the graph obtained by disregarding the
directions of all edges in the projection graph. That is, it is sufficient to
capture which entities interact.

A candidate C of a pattern with the schema S is the set of nodes in a
connected component of the undirected projection graph of S. That is, a
candidate is viewed as an “ensemble” of entities that collaborate to reach the
goal represented by the pattern intention.



7.2. ROLES AND RELATIONSHIPS 73

Src

Relation Role

A e
srcCard: string targ
DPSchema relations targetCard:string

\ [ | |
‘CalledMethod Receiver |  Owns CFReach

(A) Relationships

l

DFReach

part Owns owner
{redefines targ} {redefines src}

1. Role

roles name:String
cardinality:String

DPSchema

source
[ {redefines src}

|

! |
TypeRole MemoryLocRole |
i }ryi DFReach

/ N

target
{redefines targ}
methodcall
{redefil Src] ]

MethodCallRole | methodcall receiver Vari | ObjectRol
src} [ o N {redefines targ}
|
target {redefines targ} .
MethodRole
CFReach
source {redefines src}
Tcallee
CalledMethod {r i targ}
(B) Roles

F1GURE 7.2.1. The schema metamodel

The metamodel of interaction specifications is provided in Figure 7.2.2.
The instances of the type formed by the abstract class SoftwareSystemElement
are software system elements defined in the metamodel from Fig. 7.1.1. Im-
plementations of software system elements at the object level and at the
program element level are discussed in Chapter 8.

An Example Schema. As an example, consider the schema that covers
the occurrences of collaborational patterns (Section 2.2).

e The role MASTER is played by a non-empty number of objects and
represents master objects. A master object owns a non-empty num-
ber of field(s) that play the DEPOBJFIELD role and point to the
dependent objects, i.e. objects playing the DEPENDENT OBJECT
role. A dependent object owns at least one method playing the
CALLEE role.

e The role CALLER is played by a non-empty number of methods that
are owned by MASTER role players and invoke the methods playing



7.3. THE CONSTRAINTS 74

—_—— DPResult R =

patternName : String

schema mapping

DPSchema

abstractionElements | 4 »

roleAssignments

1 - player
Role ‘ ole RoleAssignment ‘1% SoftwareSystemElement

roles

relations "
Relation ‘

F1GURE 7.2.2. The metamodel of interaction specifications

the CALLEE role players by launching the method calls playing the
CALL role.

e The receiver variables of the CALL role players play the RECEIVER
role and are dataflow reachable from the corresponding field(s) play-
ing the DEPENDENT FIELD role.

The diagram presented in Figure 7.2.3 describes the collaborational pattern
schema. Note that the schemas of other collaborational patterns can be seen
as graphs that contain the collaborational pattern schema as a subgraph
(with possible changes in role names). For example, in the Observer pattern
the role MASTER corresponds to SUBJECT, CALLER corresponds to NOTI-
FIER, CALLEE corresponds to UPDATE METHOD and so on. Fig. 7.2.4b
and Fig. 7.2.4a present the schemas of the Decorator and of the Observer
patterns.

An excerpt of the role assignment for an Observer occurrence from JHot-
Draw 5.1 is presented in Figure 7.2.5.

7.3. The Constraints

This section specifies the core constraints in a FOPL-based language.
Each core constraint is represented by a predicate whose parameters are
software system elements that play some relevant role(s) in a pattern.

The FOPL language is based on the many-sorted logic (see Meinke and
Tuker [49]). The sorts are induced by the kinds of the software system
elements and boolean values. In addition to the standard logic symbols
-, V, A\, =, =,V,d the language includes the set of extralogical symbols that
specify the set operations C, U, N, €, ¢ and equality operations #, =. A basis
for the language is a pair (F, P) where F is the set of function symbols and
P is a set of predicate symbols that correspond to the basic functions /
relations.

The domain of discourse consists of the software abstraction elements
and Boolean values (true, false). The predicate and function symbols are



7.3. THE CONSTRAINTS 75
: ObjectRole
owner M t
aster
+
owner
\ :Owns \ Owns
lpart source
ov: VarRole :DFReach
DepObjField
+ ¢ : ObjectRole
arget
Dependent Object
:VarRole o
Receiver owner
+
:MethodRole . :Owns
receiver
Caller
part + :Receiver part
T““”e : MethodRole
1 target +
— > : MethodCallRole callee
hCall
cal methCa CalledMethod

FicUrE 7.2.3. The unified schema of all collaborational pat-
terns. For brevity, each field value is shown at the same po-
sition as the respective field name from the schemata meta-
model of schemata in Fig. 7.2.1.

mapped to the basic predicates / functions. These are computed from the
underlying software system.

Each constraint is illustrated using a simple code excerpt observed in
the benchmarks from Sec. 3.1. In all figures dataflow is depicted by thick
pointed lines; control flow is depicted by thick dashed lines. The source code
is accompanied with role assignment information. A role is illustrated by an
oval box with the role name written within. The thin solid arrow(s) from a
box representing a role R lead(s) to the program element(s) playing R. Role
players are passed as parameters to the predicates describing the constraints.
Fach constraint is specified following the informal discussion in Sec. 6.2.

Same Operation. Two different methods M7, M> comprise the input.
SameOperation(Mi, Ms) determines whether My, My represent conceptu-
ally the same operation, following the ideas discussed in Section 6.2.

At the object level the implementation is based on the fact that the
methods M;, My representing the same operation have the same position



:Owns

7.3. THE CONSTRAINTS

part

subject_state

owner
: ObjectRole k—‘ :0Owns |
subject
+
]\ owner
‘ :Owns
part
source
ov: VarRole :DFReach
observers
==
target
:VarRole |
Receiver
:MethodRole *
W receiver
part + :Receiver
source
:CFReach lmethCa"
| target
—219%%, . MethodCallRole
UpdateCall
+

:VarRole

methCall

source

<—— :DFReach ‘

target
: VarRole
observ_state

*

T part
| :Owns

owner

: ObjectRole
Observer
at

owner

:Owns

part
: MethodRole

Update
+

callee

:CalledMethod

(A) The Observer pattern schema is a specialization of the generic
collaboration patterns schema. Subject and observer state roles do
not have their counterparts in the collaborational pattern schema.

: ObjectRole
Decorator
+
owner
:Owns Owns
l Part ource
ov: VarRole :DFReach
Parent
+
target
:VarRole
Receiver
+
:MethodRole .
receiver
Forwarder
part + :Receiver
source
'CFReach methCall
= target
: MethodCallRole
Forward Call

+

methCall

: ObjectRole

Component
+

owner

:Owns

part
: MethodRole

Operation
+

calleeT

:CalledMethod

(B) The Decorator pattern schema is a specialization of the generic
collaboration patterns schema.

Ficure 7.2.4. Pattern schemata for collaborational pat-
terns: Two specialisations.



7.3. THE CONSTRAINTS e

:ObjectRole } :RoleAssi it :Object ——
Subject role player StandarcPrawing

player # \1/
:MethodRole
N

figurelnvalidated( > figureRequestUpdate
(it role i player 9 q P
\{ :RoleA .-’ 't
player

-RoleAssi + “MethodC. layer
role 5 o , all ‘ py_)

:MethodCallRole - /
UpdateCall role |.drawingUpdate() J

:MethodCall

l.drawinglInvalidate p

role player
| VarRole < :RoleAssignment Var

observers li s

F1GURE 7.2.5. An example role assignment for an Observer
occurrence. Instances of the ownership relationship are de-
picted by thick arrows with black rombs at the source end.
Black circles at the source end depict instances of C'F Reach.

in the virtual function tables of the owning classes that have a common
superclass.

The static implementation of SameOperation(My, Ms) is expressed in
terms of method signatures (operation name, parameter types). Two meth-
ods M7 and M, possessing a signature s represent the same operation if M;
belongs to a type 17 and calls My on an expression of static type 75 and the
two types, 11 and 75, have a common supertype Tog that also contains the
signature s.

Exclusive Data Flow Source. In the Decorator, Proxy or CoR occur-
rences, a forwarding method invokes the corresponding method on a single
“parent” object. Static approximation of forwarding to a single parent can
be reduced to ensuring that forwarding is done to objects pointed to by a
single field. Put another way, if forwarding is done to objects o1, 02 pointed
to by different fields fi, fo then a given candidate is not a Decorator (resp.
CoR, Proxy).

The set of variables targets and the set of variables or objects sources
comprise the input. The Ezclusive Data Flow Source constraint is satisfied
if all dataflow from every variable or object V into every variable t € targets
goes through some memory location(s) belonging to sources. The interme-
diate variables are denoted by P.



7.3. THE CONSTRAINTS 78

Exclusive DF Source(targets, sources) =
JM -Vt € targets -VV - VP - 35 € sources-
dfpaths(M,V,t,P) = S € P

To illustrate the constraint, a proper Decorator occurrence (Figure 3.4.2a)
and a false Decorator candidate (Figure 3.4.2b) are used. The set of RE-
CEIVER VARIABLEs is passed as the parameter to targets and the set of
PARENT FIELDs is passed as the parameter to sources.

Recall that in Decorator, Proxy or CoR occurrences, a forwarding method
invokes the corresponding method on a single “parent” object. Static ap-
proximation of “forwarding to a single parent” is reduced to ensuring that
forwarding is done to objects pointed to by a single field. This approxima-
tion works as follows: if forwarding is done to objects o1, 02 pointed to by
different fields fy, fo then a given candidate is not a Decorator (CoR, Proxy).
That is, the Exclusive Data Flow constraint is satisfied and the set sources
consists of exactly one field F.3

For example, in Figure 3.4.2a F = myDecoratedFigure. In the false
Decorator candidate from Figure 3.4.2b (which is a Tree Forwarder occur-
rence, see Section 3.4 for more details) the set sources consists of two differ-
ent fields myF E1 and myF E2. Forwarding might be done to two different
objects pointed to by these fields.

Exclusive Data Flow Target. The set of variables or objects sources
and the set of variables targets comprise the input. The Ezclusive Data Flow
Target constraint is satisfied if all dataflow from every object or variable
s € sources into each variable V' goes through some variable(s) T' € targets.

Exclusive DFTarget(sources, targets) =
dM -Vs € sources -VV -VP - 3T € targets-
dfpaths(M,V,t,P) = S € P

The intermediate variables are denoted by P.

To illustrate the constraint, a Singleton occurrence (Figure 3.4.3a) and
a false Singleton candidate (Figure 3.4.3b) are used. The set of SINGLETON
VARIABLES is passed as the parameter to targets and the set of SINGLETON
OBJECTSs is passed as the parameter to sources.

In order to limit the maximal number of Singleton objects, the Exclusive
Data Flow Target requires all dataflow from newly created Singleton objects
to go into a finite number of shared variables (e.g. into the single variable
instance in Figure 3.4.3a).

3In incomplete programs, O might be anonymous.



7.3. THE CONSTRAINTS 79

In the false Singleton candidate from Figure 3.4.3b the constraint fails.
The dataflow from newly created objects goes into the non-static variable
newStats , therefore the maximal number of singleton objects is potentially
unlimited.

Field Update. Given a field V owned by the object O, the Update Field
states that if there exists a method Setter owned by O and a variable or an
object source such that source — geprer V then Setter is not a construction
method and can be called (directly of transitively) by a method that does
not belong to O:

UpdateField(V) = Jsource - ISetter-
dfreach(source,V, Setter) =
—isConstructor(Setter) N ExternallyCalled(Setter)

To illustrate the constraint, a proper occurrence of the Strategy pattern
is contrasted to a false candidate. Note that in every Strategy occurrence
the Update Field constraint is satisfied ensuring that the STRATEGY object
can be replaced after a CONTEXT object is constructed. In this case, V is a
player of the CURRENT STRATEGY role.

In the Strategy occurrence from Figure 3.4.4a the CURRENT STRATEGY
field fUpdateStrategy is updated in the public non-construction method
setDisplayUpdateStrategy.

In the false Strategy candidate from Figure 3.4.4b the CURRENT STRAT-
EGY field myCRIF is updated only during the construction of an instance of
the owning class RenderableImageOp so that the Update Field constraint
is violated.

State Propagation. The variable sets Sources and Targets whose
variables keep the state of some objects and the method M comprise the
input. The State Propagation constraint is satisfied if there exists a dataflow
(in the scope of M) from each variable belonging to Sources into some vari-
able belonging to Targets :

State Propagation(M, Sources, Targets) =
YU € Sources - AV € Targets-
dfreach(U,V, M)

The constraint is satisfied in some Observer occurrences where subjects
propagate state changes to their observers via dataflow. The set of subject
state variables is passed as the parameter to Sources , the set of observer
state variables is passed as the parameter to Targets and a notification
method is passed as the parameter to M.

A proper Observer occurrence where StatePropagation is satisfied is
provided in Figure 3.4.5a. The SUBJECT role is played by objects of the



7.3. THE CONSTRAINTS 80

type StandardDrawing. Denote a Subject role player by S. The No-
TIFIER method is S.figurelnvalidated(...). The SUBJECT STATE field is
S.invalidated Rectangle represents rectangular areas wrapping changed ar-
eas (“invalidated areas”).

Denote by o any observer object representing a related drawing view
(i.e. an object pointed to byS.fListeners). When a drawing is changed,
its “invalidated area” is updated; the updates must be propagated to each
OBSERVER STATE field o.fDamage. This field represents the rectangular
area(s) within o that were affected by changes in S. figurelnvalidated.

The changes in the state of S are propagated to each observer via the
dataflow from S.invalidatedRectangle into o.fDamage. This dataflow is
caused by the actions of the notifier method S.figurelnvalidated(...). The
changes of a subject S are propagated by means of the dataflow
S.invalidatedRectangle — e.rectangle and e.rectangle — o.f Damage.

The State Propagation constraint fails in a false Observer candidate in
Figure 3.4.5b (which is a service loop that iterates over a set of objects, per-
forming some job). Here subjects are instances of the type ComplexTrans form.
Denote a SUBJECT role player by S. The OBSERVERS VARIABLE field
S.transformations points to instances of TransformAST (basic transfor-
mations) that play the OBSERVER role. Basic transformations related to S
are executed sequentially via the NOTIFIER method S.apply(...) that applies
the method update of each basic transformation. "Subject state” | “observer
state” as well as the relevant dataflow do not exist.

Note that propagating state changes via dataflow is too restrictive and
recall might be damaged. Therefore the following subsections relax the State
Propagation constraint to the Contents Flow constraint and further to the
Identity Flow and to the Null Flow constraints.

Contents Flow. First, the necessary terminology is introduced. The ob-
ject og representing the state of the object o might be stored not only in a
fields o.f1.; but also in some field owned by objects pointed to o.f; ;. In
this case o accesses the information about the own state through a sequence
of field accesses. In this case it is said that og is transitively referenced by o.

It is said that contents flow from the subject S to the observer O if
there are fields sstate; ,,, in an object transitively referenced by S and fields
ostatey  in an object transitively referenced by O and there is a dataflow
from sstatey ,, to ostate; j in the scope of a notification method S.N. In
this case sstate; ., are accepted as the OBSERVER STATE role players and
ostatey  are accepted as as the SUBJECT STATE role players. The State
Propagation constraint is relaxed by letting these roles be played by fields
that are not necessarily directly owned in O or S.

Identity Flow and Null Flow. According to |27|, the Observer pattern
guarantees that “all Observer objects are notified whenever the correspond-
ing subject undergoes state change”. However, state changes are not neces-
sarily propagated by means of data or contents flow. It is sufficient that
an observer object is somehow made aware of the changes in the state



7.3. THE CONSTRAINTS 81

class SelectionTool { —= Subject interface ToolListener { CHEERNED |
protected Vector listeners; public void toolStarted(Tool tool); )
private Figure [ figures; — Subject State | }
_ Notifier Method | public class ToolPalette implements ToolListener {
public void fireToolStarted(...) { private boolean buttonClicked;
for (int i=0; | < listeners.size(); i++) { public void toolStarted (Tool t) {
ToolListener | = (ToolListener)listeners.get(i); if (t!= currentTool) B .
if (1 != 0) listener.toolStarted(this); buttonClicked=TRUE; | Update Method
} }
} }

FIGURE 7.3.1. Observer with identity flow (Quick UML 2001)

of its subject. Figure 7.3.1 illustrates such a scenario from Quick UML
2001. Subjects are instances of SelectionT ool that notify associated in-
stances of Tool Palette (i.e. observers). When a tool is started, the method
fireToolStarted notifies the observers by invoking the method toolStarted(T ool)
on each associated ToolPalette instance, passing itself as a parameter. A
palette thus becomes aware of the start event and of its sender and updates
appropriately its “clicked” flag. This process is referred to as the Identity
Flow.

Moreover, some proper Observer occurrences were observed in which a
subject notifies its observers without passing any parameters to the update
method (i.e. the Null Flow).

Note that the Identity Flow and the Null Flow are still optional con-
straints; that is, there are correct Observer occurrences where these con-
straints are not fulfilled. In the future, using of additional sources of infor-
mation (e.g. program element names) is suggested in order to increase the
confidence scores of such candidates. More details are provided in Section
4.6.

Ordering of Control - and Data Flow. For the sake of simplicity,
some auxiliary concepts are first introduced.

Setter Call. The method M forming the scope of the dataflow into the
variable V is referred to as V -setter. The relation setter call C MethodCallsx
Variables is defined. It is written setter call(me,v), meaning that the
method call mc refers to the v-setter. This relation is defined as follows:

setter _call(me,v) =

IM - 3u - calledM ethod(me, M) A df reach(u, v, M)



7.3. THE CONSTRAINTS 82

The method M, the variable V' and the set of method invocations issued
by M comprise the input. The Interleaving Order constraint® is satisfied if
CFG gpstr (M) satisfies the following conditions:

(1) For each invocation vc of a V-setter, at least one method call mc €
Invocations follows ve.

(2) There exists some V-setter call vegyqr+ such that no method invoca-
tion mc € Invocations precedes vc.

InterleaveOrder(M,V, Invocations) =
Yve - Ime € Invocations - setter call(ve, V') = cfreach(M,ve, mc)
A
Fvegtart € INvocations - Vme € Invocations-

setter _call(ve, V') A =efreach(M,ve, mcsiart)

To illustrate the constraint, a State occurrence and a false State can-
didate are used. An ACTION method is passed as the parameter to M | a
CURRENT STATE field is passed as the parameter to V' and the set of ACTION
CALL invocations invoked by M is passed as the parameters to Invocations.
The Interleaving Order constraint is satisfied in State occurrences and means
that 1) every update of the current state is followed by several action method
invocations and 2) the “state machine” is started by setting the initial state.

In a State occurrence from Fig. 3.4.6a the setter method is setTool.
The LAUNCHER method mousePressed(...) sets the current state by calling
setTool(getSelectedT ool(...) and then invokes the next ACTION method by
calling (getTool.mouseDown(). Several ACTION methods (mouseDown,
mouseDrag and mouseUp) are called until the current state is again updated
by setting back the default tool setTool(getDe faultTool()).

In the false State candidate (which is a Strategy occurrence) from Figure
3.4.6b, the Interleaving Order constraint fails since the ACTION method
itemChanged(Event e) and any current state updates within addListener()
might be called in any order.

Uniquely Created Product Type. The set of methods Creator M ethods
yield product objects that belong to the types ProductTypes. The sets
Creator Methods and ProductTypes comprise the input. Denote by C M7, C M,
any two different creator methods. Denote by ProductVary, ProductVarsg
the variables into which product objects flow provided the dataflow is in the
scope of C'M; (respectively, of C'Ms). The points-to sets of ProductVary

41 do not address Sequential Order in this thesis since no examples of its applicability
were found in the examined benchmarks.



7.3. THE CONSTRAINTS 83

and ProductVary are said to be type-disjoint if
VP, € pointsTo(C My, ProductVary)-
VP € pointsTo(C Ms, ProductVars)-

type(P1) # type(P2)

The Uniquely Created Product Type (UCPT) constraint is satisfied if the
points-to sets of ProductV ary and ProductV are are said to be type-disjoint.

First several auxiliary predicates are introduced. The predicate
inducedDF C Types x Vars x Methods describes the flow of objects of a
given type(s) in the scope of a given method.

It is written induced DF(ProductTypes, ProductV ar, Method) if all ob-
jects of the types ProductTypes flow into ProductV ar and the dataflow is
formed by Method. Formally,

induced DF(ProductTypes, ProductV ar, Method) =
VProd : type(Prod) € ProductTypes-
dfreach(Prod, ProductV ar, M ethod)

The predicate type disjointPT C Vars x Vars describes type-disjoint
points-to sets.

type disjoint(Vary,Varg) =
VP, € pointsTo(ProductVary) - VP € pointsTo( ProductV ars)-
type(P1) # type(P)
The UCPT constraint is specified as follows:

UCPT (Creator Methods, ProductTypes) =
YCM,,CMsy € CreatorMethods-
VProductVary - VProductV ary-
induced DF(ProductTypes, ProductVary, C Mi)A
induced DF (ProductTypes, ProductV arq, C M)
=
type _disjoint(ProductVary, ProductVars)

To illustrate the constraint, an Abstract Factory occurrence and a false
Factory Method candidate are used. The set of FACTORY METHODSS is
passed as the parameter to CreatorMethods, the set of CONCRETE PROD-
UCT types is passed as the parameter to ProductTypes.



7.3. THE CONSTRAINTS 84

In the Abstract Factory occurrence from Fig. 3.4.11a the constraint is
satisfied since different creator methods (i.e. the creator methods with the
same signature that belong to different concrete factories

(Buf fer ParserFactory.getInputStream,(),
FileParserFactory.getInputStream()) create products of different types
(Buf feredInputStream and FileInputStream respectively).

In the false Factory Method candidate from Fig. 3.4.11b the constraint is
failed since different creator methods (i.e. the creator methods with the same
signature that belong to different concrete factories Component Figure.handles()
and RectangleFigure.handles()) create products of the same type, namely
Handle Enumerator.

The single-creator scenarios provided in Stencel et al. [64] and in Gamma
et al. |27, Page 125] represent very rare scenarios where the single creator
method Creator creates products of different types by passing different pa-
rameters to the same (single) creator method in different executions. The
UCPT constraint provided in this section can be seen as a particular case of
the concept discussed in Section 6.2.1 where any two invocations to the same
creator method that carry different parameters must yield product objects
of different types. In order to deal with the single-creator scenarios, the
context-sensitive dataflow analysis (see Nielson et al. [51]) must be used.
However, the single-creator scenarios were not found in the examined repos-
itories and therefore are not supported in the UCPT specification in this
section. The dataflow analysis supported in the implementation of the Pat-
tern Interaction Framework is context-insensitive. See Section 8.1 for more
details.

Sibling Creation. The field V' and the caller method Caller that in-
vokes callee method(s) on the receiver objects pointed to by V' comprise the
input. Denote by O the object owning Caller. Let the function owner(P)
return the owner object of a field/method P.

The Sibling Creation constraint is satisfied if each non-anonymous object
pointed to by V belongs to a type that are siblings to type(O) . Formally,

SiblingCreation(Caller,V) =
Yoy € pointsTo(V) \ {anonymous} - 3T
subtype(type(oy),T) A subtype(type(Owner(Caller),T"))

To illustrate the Sibling Creation constraint, an occurrence of Dynami-
cally Typed Proxy and an occurrence of Decorator are used. A FORWARDER
method is passed as the parameter to C'aller and a PARENT field is passed
as the parameter to V. The Sibling Creation constraint is satisfied in Dy-
namically Typed Proxy occurrences, indicating that forwarding can be done
only to the objects whose type is a sibling of the proxy type.

In the occurrence of Dynamically Typed Proxy from Figure 3.4.7a, the
Sibling Creation constraint is satisfied since the types of all objects pointed to



7.3. THE CONSTRAINTS 85

by the REAL SUBJECT object (HandleTracker, DragTracker, AreaTracker)
are siblings of SelectionT ool.

In the occurrence of Decorator from Figure 3.4.7b, the Sibling Creation
constraint fails since the points-to set of the PARENT field includes only the
anonymous object.

Partial Coverage / Full Coverage. The variable V' and the caller
method Caller that invokes the method(s) Callees on the objects pointed
to by V' comprise the input. The Full Coverage constraint is satisfied if for
each set P abstracting some path through the control flow of Caller® and for
each object o pointed to by V there is an invocation mc of a callee method
whose receiver variable points to o.

Formally,

FullCoverage(Caller,Callees, V') =
VP : cfpath(Caller, P) - Yo € pointsTo(V)-
dme € PN {mi | 3cl € Callees - calledM ethod(mi, cl)}-

o € pointsTo(receiver(mc))

The Partial Coverage constraint is satisfied if:

e There is a set P, abstracting some path through the control flow of
Caller that contains an invocation mc of some Callee € Callees
on each object o € pointsTo(V).

e There is a set P, abstracting a path corresponding to a diverting
execution, i.e. some path through the control flow of Caller that
contains no invocation of any Callee € Callees on some object
o € pointsTo(V).

Formally,

PartialCoverage(Caller, Callees, V') =

3P, : cfpath(Caller, P;) - Vo € pointsTo(V)-

Ime € PN {mi | 3cl € Callees - calledMethod(mi, cl) }-
o € pointsTo(receiver(mc))
A

3P, : cfpath(Caller, P,) - Jo € pointsTo(V)-

Vme € P, N {mi | 3cl € Callees - calledM ethod(mi, cl)}-
o ¢ pointsTo(receiver(mc))
To illustrate the Full Coverage constraint, a Decorator occurrence from

Fig. 3.4.7b and an Observer occurrence from Fig. 3.4.5a are used. A caller

5See the corresponding definition in Section 7.1.



7.4. BEHAVIORAL PATTERN SPECIFICATIONS 86

method (a FORWARDER method, respectively a NOTIFIER method) is passed
as the parameter to Caller. The set of callee method(s) invoked by Caller
(the OPERATION methods; respectively the UPDATE methods) is passed as
the parameters to Callees and a variable(s) pointing to the dependent ob-
jects (the PARENT fields, respectively the OBSERVERS fields) is passed as
the parameter to V. In both cases, in each execution of Caller some callee
method Callee € Callees is invoked on each dependent object.

To illustrate the Partial Coverage constraint, a CoR occurrence from
Fig. 3.4.8 and a false Observer candidate from Fig. 3.4.9 are used. In
both cases, the Partial Coverage constraint is satisfied. A caller method
(a FORWARDER method, respectively a NOTIFIER method) is passed as the
parameter to Caller; the set of callee method(s) invoked by Caller (the
OPERATION methods, respectively the UPDATE methods) is passed as the
parameters to Clallees and a field(s) pointing to the dependent objects (the
PARENT field, respectively the OBSERVERS field) is passed as the parameter
to V. In both cases, Caller does not invoke some callee method on each
dependent object in some its execution. In the CoR pattern this happens
since forwarding is not done at all in some execution. In a false Observer
candidate this happens because a callee method is not invoked on some
dependent object in some loop iteration.

In the static implementation of the Pattern Specification Framework pro-
vided in this thesis (Section 8.3) the Partial and Full Coverage constraints are
implemented by enumerating individual paths in the control flow of Caller.
This approach does not require computing of points-to sets and is therefore
more efficient.

7.4. Behavioral Pattern Specifications

This section specifies several collaborational patterns (Decorator, Proxy,
CoR, Tree Forwarder, Observer, Composite) formally by restricting the role
players of the collaborational schema (Fig. 7.2.3). This is done by applying
the appropriate constraints from Section 7.3.

The subsections of this section provide several auxiliary predicates, sev-
eral specification examples and show the applicability of this approach for
the remaining patterns.

Auxiliary predicates. The auxiliary predicates represent queries on
the role assignments built for the collaborational schema.

The caller methods associated with a given master object. The function
callersO f(Caller Role, m) returns the set of caller methods owned by a mas-
ter object m and playing the role Caller Role:

callersO f(Caller Role,m) = {caller | plays(CallerRole, caller)\

method(m, caller)

}



7.4. BEHAVIORAL PATTERN SPECIFICATIONS 87

Consider the Observer pattern as an example. For a subject s the invo-
cation
callersO f(Notifier, s) returns the set of notifier objects fields owned by s.

Dependent objects and the fields pointing to dependent objects. The func-
tion depObjFieldsO f(FieldRole, m) returns the set of fields owned by a
master object m and playing the role FieldRole:

depFields(FieldRole,m) = {pf | field(m,pf) A plays(FieldRole,pf)}

Consider the Observer pattern as an example. For a subject s the invo-
cation
depObj Fields(observers, s) returns the set of observer fields owned by s.
The function depObjectsO f(FieldRole, m) returns the set of objects
dependent on a master object m , i.e. objects pointed to by the fields playing
the role FieldRole that are owned by m :

depObjects(FieldRole,m) =
U pointsTo(df)

df edepFields(FieldRoleName,m)

The receiver vartables of the method calls issued by a given method. The
function recVarsO f(CallRole, caller) returns the set of variables that play
the RECEIVER role and serve as the receiver variable for any method call
that plays the role C'all Role and issued by a given caller method caller.

recVarsO f(CallRole, caller) = {rv | 3c :cfreach(caller, c)\
plays(CallRole, c)\
rv = receiver(c)A

plays(Receiver, rv)

Consider the Composite pattern as an example. For a composite object
comp the invocation recVarsO f(ForwardingCall, forwarder) returns the
set of receiver variables of all forwarding calls issued by a given forwarder
method forwarder.

Callee methods . The function calleesO f(Callee Role, caller)
returns the set of methods playing the role CalleeRole that are invoked by
a method caller:



7.4. BEHAVIORAL PATTERN SPECIFICATIONS 88

calleesO f(CalleeRole, caller) ={m | Jeall - cfreach(caller, call)\
calledM ethod(call, m)N\
plays(CalleeRole, m)

}

Consider the Observer pattern as an example. For a notifier method n
the invocation
calleesO f(UpdateMethod, n) returns the set of update methods invoked
by n.

Specifications of several patterns. The core constraints specified in
Section 7.3 were defined on software abstraction elements. This section spec-
ifies them at role level by linking the roles to the elements that play them.

The specifications for the Observer, Composite, CoR, Decorator and
Proxy patterns are provided. Each subsection within this section specifies
only one pattern in the corresponding group of structurally similar patterns.
Other patterns can be specified by renaming role names in the corresponding
schemas and by following the explanations in the sections.

Throughout this section, the following denotations are used:

m is a master object,

c is a caller method owned by m

df is a field pointing to the dependent objects

u is a callee method invoked by ¢

do is a dependent object dependent from m

ms (resp. dos) are the variable(s) storing the state of m (resp. of
do)

Observer, Composite. In the specification of the Observer pattern, the
core constraints restrict the players of the roles in the Observer schema (Fig.
7.2.4a). The constraints are applied as follows:

e A notifier method ¢ and each updated method invoked by ¢ must
represent different operations

e Fach field pointing to observers must be updated after its owner is
constructed

e A notification method must call an update method on each depen-
dent observer in each own execution

e Subject state changes are propagated to all dependent observers.

Formally,



7.4. BEHAVIORAL PATTERN SPECIFICATIONS 89

Vm Ve - plays(Subject,m) A ¢ € callersO f(Notifier,m)

A
Vu - u € calleesO f(UpdateM ethod, c) \=SameOperation(c, u))
A
Vdf - plays(Observers, df AU pdate Field(df)
A
FullCoverage(c, calleesO f(Update M ethod, ¢),depFields(Observers, m)

A

Vdo - do € depObjectsO f(Observers, m)A
StatePropagation(c,

{ms | plays(SubjectState, ms) A transRef(m,ms,c)},
{dos | plays(ObserverState, dos) A transRef(do,dos,c)})

The application of the core constraints in the specification of the Com-
posite pattern differs in the following points:

(1) The application of SameOperation is positive since the action method
owned by a container object and the operation method owned by
the corresponding part object represent the same operation.

(2) The constraint StatePropagation is not applied.

Decorator, CoR, Proxy. In the specification of the Decorator pattern,
the core constraints restrict the players of the roles in the Decorator schema
(Fig. 7.2.4b). The constraints are applied as follows:

e A forwarder method ¢ and each operation method invoked by ¢
must represent the same operation

e Each parent field must not be updated after its owner is constructed

e A forwarder method must call an operation method on the parent
object in each execution

e Forwarding can be done to any object and not only to those whose
type is a sibling of the decorator type.

Formally,



7.4. BEHAVIORAL PATTERN SPECIFICATIONS 90

Vm Ve - plays(Decorator,m) A ¢ € callersO f(Forwarder,m)
A

Vu - u € calleesO f(Operation, c) ANSameOperation(c, u))
A
Vdf - plays(ParentField, df )\

—SiblingCreation(c, df )AN-Update Field(df)

A
FullCoverage(c, calleesO f(Operation, c),
depFields(ParentField, m)

The CoR specification differs from the Decorator specification only in one
point: the constraint PartialCoverage is enforced instead of FullCoverage.

The Proxy specification differs from the Decorator specification in two
points:
(1) Apply SiblingCreation positively instead of negating it.
(2) Drop FullCoverage.

Specifying the remaining patterns - An overview. For the sake
of simplicity, the previous section does not specify all patterns mentioned in
[27]. However, all collaborational (vs. creational) patterns can be specified
also by using the constraints from Section 7.3 and restricting the players of
the roles in the collaborational (vs.creational) schema. For example, Figure
7.4.1 summarizes the interaction specifications for the collaborational pat-
terns. Individual patterns (in the rows) are associated to the constraints used
in specifications of these patterns (in the columns). The cells may contain
one of the following symbols:

e / (resp. X) - positive vs. negative application, like Same or Dif-
ferent Operations
e total or partial - for Total vs. Partial Coverage.

The activity diagram in Figure 7.4.2 shows the order of constraint application
when specifying the colalboration patterns. An activity corresponds to a
pattern detection module. A branch corresponds to a constraint application.

When the boxes standing for certain activities are wrapped by thick
double line, this means that additional information (e.g. program element
names) is needed to further distinguish between the patterns mentioned in
the box corresponding to this activity. For example, Adapter and Command
can be distinguished by analyzing comments to reveal additional clues re-
garding the intention. 1:1 Observer can be distinguished from Bridge and
Strategy by analyzing program element names. For example, the names



7.5. SUMMARY 91

Same Op |Unique DF Source |Field Update |Coverage [Sibling Creation [StatePropagation |CF-DF Order |Un.Cr.Prod.Type |[Excl.DF Target
IAbstract Factory X v
Bridge X v v
Composite v v total
CoR v v X partial
Decorator v v X total
Factory Method X v
Mediator X v
Memento X v
Observer X v total v
Proxy v v X v
Prototype X v
Singleton X
State X v v v
IStrategy X v v
Tree Forwarder v X total

FiGURE 7.4.1. Constraints and patterns

of Observer classes usually contain the word “listener” and “observer”. The
names of notifier methods usually contain the words “fire” or “notify”.® Bridge
can be distinguished from Strategy by observing whether new subclasses were
massively added/deleted in Master classes.

7.5. Summary

The basic relations and functions presented in Section 7.1 shield solution
descriptions from the program analyses employed by a particular pattern
detection tool. Figure 7.5.1 illustrates “shielding” visually.

The thick solid vertical arrow illustrates the abstraction level. Inter-
action specifications occupy the top level. Roles, relationships and the core
constraints occupy the next level. The relations/functions serve as the build-
ing bricks for the constraints and obtained the next level. The relations and
functions separate the generic-level software system descriptions from the
program analysis specific descriptions: implementation variants (at the pro-
gram element level) and program trace descriptions (at the object level).
The separation of the generic level from the program-analysis-specific level
is illustrated by the thick dashed line.

6In essence, name conventions used in 1:1 Observers are stronger than in usual Ob-
servers because designers want to emphasize their intent, distinguishing 1:1 Observers
from a lot of structurally similar constructs (Adapter, Command, Strategy etc).



7.5. SUMMARY

yes Same no
Operation l
Adapter, Command, Bridge,
Fagade, Mediator, Memento,
Observer, State, Strategy

Composite, Decorator,
CoR, Proxy,
Tree Forwarder

(a) Discrimination of collaborational patterns by the
“Forwarding” constraint

f Composite, Decorator,

CoR, Proxy,
Tree Forwarder
¥
>1 EDFS
1
total Composite,
Coverage Decorator,
partial CoR,iProxy
Tree Service yes Siblir)g
Forwarder Creation
Proxy
L no
es no
y Coverage
Composite,
Decorator yes Iter
Service Loop CoR

Iter
Composite g Decorator i ’

(B) Caller and Callee are same operations

Adapter, Command, Bridge,
Fagade, Mediator, Memento,
Observer, State, Strategy

es Update no
Field
Bridge, Mediator, Adapter, Command,
Observer, State, Strategy Fagade, Memento
v
= >1 i
1 EDFS Mediator, Scalar
r Observer
Bridge, %F'dDF' yes
Observer, S
Observer State, Strategy ‘
1:1 Observer,
no ’
Iter —————> Bridge, State, Adapt’e:ra, Cazr:mand, Memento
yes ves) Straﬁegy gade,
State total
q — Coverage CF-DF.
P i
ropagation . Order
no partial yes

Service Loop O State

(c) Caller and Callee are different patterns

F1GURE 7.4.2. Detection of collaborational patterns



7.5. SUMMARY 93

Interaction Specifications

Roles and relationships

The core constraints

Generic
Level
Structure Behavior eve
Object prer Construction Method Control flow  Data flow
types ship method Calls
EEEEEEEEEEE NN EEEEEEEEEEEEEEEEEEEEEENEEEEEEEEEEEEER EEEEEEEEEEEENRD
Program
Static level Dynamic level Analysis
Motifs, implementation variants Trace descriptions Dependent
Level

FIGURE 7.5.1. Formal DP specifications - Summary

Eventually, program-analysis-specific descriptions capture a number of
corresponding software artifacts: implementations (at the static level) or
program traces (at the dynamic level).

Thus the Pattern Interaction Framework provides a common basis to
allow researchers from various DP communities to meet, to discuss (and to
resolve) conceptual disagreements and then focus on the best way to mix and
match detection techniques for the specified concepts. Chapter 4 describes
the experiments on mixing of detection techniques. The outputs of pat-
tern detection tools implementing different techniques were fused, obtaining
improvements in accuracy.



CHAPTER 8

Implementation Issues

It was decided to implement the Pattern Interactions Framework (Chap-
ter 7) using a static program approximation because a dynamic approx-
imation does not cover all relevant behavior (Section 2.1) and might be
extremely inefficient in the case of big benchmarks. However, full-scaled
static behavioral analyses tend to be inefficient, especially in object-oriented
languages with polymorphism and dynamic method binding (Nielson et al.
[51]). Therefore the Pattern Interactions Framework is implemented using
the limited version of the behavioral analysis that covers only neces-
sary pattern-relevant features and delivers very high precision and high recall.
Rare and exotic pattern implementation variants might be still missed. Con-
ceptually, the powers of several pattern detection techniques are combined
in a single pattern detection tool.

The data fusion approach presented in Chapter 4 combines the powers
of several pattern detection techniques - by fusing the outputs of the pattern
detection tools employing these techniques. However, it was decided to de-
part from the data fusion approach. The following observations (confirmed
by the talks with the authors of the tools reviewed in Chapter 3) led to this
decision:

e Making the authors reimplement their tools so as to comply with
a common exchange format seems to be unfeasible in this moment
and is beyond the time frame allocated for my Ph.D. track.

e The accuracy of the combined result might suffer from the bugs in
the involved tools.

e The overall response time is at least the response time of the slowest
tool (if the tools are executed in parallel). The situation is aggra-
vated when some pattern tools employ unnecessary or too inefficient
program analyses (like the transitive closure of the data flow graph
built in [64]).

Section 8.1 explains how to implement the Pattern Interaction Framework
using dynamic- and static program analyses. The main principles of the
program-level implementation are provided below:

(1) To achieve high precision, the core constraints are used.

(2) To achive high recall, overly restrictive constraints imposed by other
tools for precision are relaxed. These relaxations are discussed in
Section 8.2.

94



8.1. IMPLEMENTING THE PATTERN INTERACTION FRAMEWORK 95

(3) To achieve high response time, fast structural analyses (e.g. owner-
ship) are executed first. In addition, behavioral analysis scopes are
limited. See Section 8.3 for more details.

Section 8.4 discusses several aspects of combining static- and dynamic
analyses when implementing the core constraints.

Section 8.5 presents the architecture of a static pattern detection tool
DPJF that represents the implementation of the Pattern Interaction Frame-
work.

It should be noted that the current version of DPJF supports only 5
patterns (Decorator, CoR, Proxy, Observer and Composite). So certain
constraints (Exclusive Data Flow Target, Control/Data Flow Ordering and
Uniquely Created Product Type) that are not used in the specifications of
these patterns are not implemented. See Section 8.5 for further details and
Section 7.4 for the specifications of the implemented patterns.

8.1. Implementing the Pattern Interaction Framework

This section demonstrates how to map the software abstraction and the
generic relations of the Pattern Interaction Framework from Chapter 7 onto
the object level and onto the program element level.

Mapping the domain of discourse. At the object level, software
abstraction elements are mapped into the program trace elements whereas
at the static level they are mapped into the program abstraction elements
that describe their object-level counterparts.

Types, variables and methods are mapped straightforwardly. At the ob-
ject level types are modeled by RTTI structures that represent groups of
objects; at the program element level types are represented by type descrip-
tions.!

At the object level methods are modeled by structures keeping the infor-
mation about relevant events and properties. At the program element level,
methods are modeled by their descriptions written in a program language.

At the object level, variables are modeled by memory locations. At the
program element level, variables are represented by corresponding variable
declarations. In addition, at the program element level a method M that
returns a result is associated with the pseudo-variable return,; that keeps
this result. In addition, returny; serves as a node in the data flow graph of
M (see also Section 8.1).

At the object level, an object is a memory location belonging to some
group (i.e. type). At the program element level, an object is represented by
the corresponding object abstraction: a creation statement (e.g. new(...) or
an anonymous object.

1Only class-based languages are used so a type is formed by a class and its superclasses



8.1. IMPLEMENTING THE PATTERN INTERACTION FRAMEWORK 96

Abstract element Object level Program element level

Object Object Object abstraction (anonymous
object, new statement)

Variable Memory slot Variable description (field, local
variable, parameter description)

Type Runtime type information Type description by subclassing

Method Method structure Method description

Method call Method call event Method call statement

Method start/exit points ~ Start / exit events Start/exit pseudonode in CFG

Null check Null check event Null check expression

Loop entry statement

Ficure 8.1.1. Mapping of the domain of discourse

At the object level, method calls are modeled by corresponding events.
At the program element level, method calls are modeled by method call state-
ments. Several calls might be represented by one statement (for example, in
a loop).

At the object level the start/exit points of a method M correspond to
Start/Finish Method events. At the program element level these are repre-
sented by the corresponding pseudo-nodes in the control flow graph of M.

Finally, at the program element level yet one pattern-relevant statement
is introduced: loop entry statements. These are needed to distinguish only
those paths which actually enter loops and thus can contain conceptually
relevant method calls.

Figure 8.1.1 summarizes the mapping of the domain of discourse into the
object level and into the program element level.

Implementing Generic Relations. Section 8.1 describes the imple-
mentations of the generic structural relations at the object level and at the
program element level. The remaining sections describe the implementations
of the generic behavioral relations: control flow (Section 8.1) and data flow
(Section 8.1).

Structural relations. Variable / method ownership and “constructor method”
function are modeled straightforwardly by the retrieval operations on the
underlying abstraction. Note also a subtlety in the implementations of the
relation calledMethod(Call, Method). At the object level, a given method
call refers to a single method. At the program element level, a non-empty set
of called methods is computed according to the type(s) of object(s) pointed
to by receiver(mc). Tip et al. [66] reviews the corresponding techniques.

At the program element level the transitive subtyping relation is sup-
ported. In practice, only a limited number of intermediate classes in the
subtyping relation is supported; see Section 8.3 for more details.

Control Flow. At the object level, the abstracted control flow relation is
a total order of pattern-relevant events (method calls, null checks, method



8.1. IMPLEMENTING THE PATTERN INTERACTION FRAMEWORK 97

start /exit points). It is built by recording all trace events and selecting only
pattern-relevant ones.

At the program element level, the control flow relation of M is a graph.
Its nodes are the static level counterparts of the members of Executionltems
(Sec. 7.1). An edge between two nodes s, t occurs if ¢ follows s in the control
flow graph of M (even if certain pattern-irrelevant events occur between s
and t). The net effect of dataflow-related events (e.g. assignments) that
are not present in the abstracted control flow relation is compensated in the
dataflow relation.

The control flow graph of M consists of:

e Nodes: statements / expressions in the body of M.

e Kdges. Intraprocedural edges cover control structures in the body
of M and the edges from the return statement(s) of M to the exit
point of M. For each method invocation mi in the body of M, there
is an interprocedural edge from mi to Start qyeanethod(ms) and from

ExitcqiiedMethod(mi) t0 M.
e The CFGs of method(s) invoked from M.

Data Flow.

Dataflow graph. At the object level, the dataflow relation is a total
order and is computed by tracking the dataflow-related events in the control
flow, i.e. assignments of objects to variables, method parameter passing and
returning of results.

At the program element level, the dataflow relation of a method M is
a partial order. Its nodes are variables and objects. Edges are formed by
assignments statements, method parameter passing and method returning
statements.

The static dataflow analysis is performed in the subset-based way (i.e.
a statement z := y yields the constraint pointsTo(y) C pointsTo(zx)) and is
categorized as follows:

o Flow-insensitive - the order of individual statements is not relevant.

o Context-insensitive - individual calling contexts of the same method
are not distniguished.

e Field-sensitive - only in the Dynamically Typed Proxy (Section 3.4)
context. Different objects in the points-to set of the parent field
(and the invocations of callee methods addressed to these objects)
are distinguished. This is done in order to distinguish Dynamically
Typed Proxy implementations from structurally similar CoR / Dec-
orator implementations. In the remaining cases, the relevant master
object (e.g. Decorator, Handler) is modeled as a global anonymous
object, thus treating the dataflow in the field-based way.

o Array-element-insensitive - accesses to different array/collection el-
ements are not distinguished.



8.2. IMPROVING RECALL 98

Such implementation is build on the basis of empirical observations, follow-
ing thorough examination of tens of occurrences taken from the repositories
mentioned in Sec. 3.1 and experimenting with a tool prototype that delivered
a good accuracy and response time. Experiments with the first versions of
DPJF showed that more powerful points-to analyses (for example, context-
sensitive or flow-sensitive analyses) incur significant additional response time
without contributing to the accuracy.

Points-to sets. At the object level, the points-to set of a variable V' is
computed by monitoring the corresponding memory location. At the pro-
gram element level, all paths leading into V' are examined in the correspond-
ing dataflow graph.

For a variable Var, pointsTo(Var) = {Object;...Object, } such that Var
is dataflow reachable from any Object;...Object,}. If there is no Obj such
that Obj — Var, it is assumed that some anonymous object of the type T'
is pointed to by Var.

8.2. Improving Recall

The recall-improving techniques provided in the subsections of this sec-
tion accept the false negatives mentioned in the State of Art chapter, Sec.
3.4.

Relevant role players reside in missing code. DPJF treats missing
code as follows:

(1) Automatically includes all available external dependencies (other
projects, widely used bytecode libraries like Java Runtime library)
into the analysis. Thus the candidate from Fig. 3.4.16 is accepted.

e This approach might not be appropriate if repositories which
represent frequently used libraries by themselves - (e.g. Java
IO which is a part of the Java runtime library) are analyzed.
An entity in the analyzed code and in the attached bytecode
can possess the same name, leading to conflicts. This issue is
being investigated currently.

(2) Role players that are not found even in external bytecode are treated
by distinguishing optional roles from mandatory roles. DPJF toler-
ates missing players for optional roles but requires mandatory ones
to be played by at least one program element.

Too strong constraints on attribute values. No restrictions are
placed on visibility qualifiers (private, protected, public) in DPJF.

Insufficient treatment of transitivity. DPJF supports the transitiv-
ity of the following relations: subtyping, control flow reachability and data
flow reachability. For the sake of efficiency, the number of intermediate en-
tities (e.g. intermediate methods in indirect method invocations) is limited;
see Section 8.3 for more details.



8.3. IMPROVING RESPONSE TIME 99

8.3. Improving Response Time

DPJF uses the following efficiency-improving techniques (described in
the subsections of this section):

(1) Improve the efficiency of structural analyses by divide structural
analyses into smaller subqueries and apply various optimization
techniques. For example, the fastest queries (e.g. dealing with
ownership or subtyping) are executed first and put into the cache
for further reuse.

(2) Improve the efficiency of behavioral analyses. These are performed
only on demand. Dataflow scopes are limited on the basis of em-
pirically validated heuristics.

(3) Compute some core constraints efficienty.

Improving the efficiency of structural analyses. In early DPJF
versions all possible combinations of program elements that play manda-
tory roles in sought patterns were enumerated. This approach appears to
be extremely inefficient; enforcing of transitivity aggravated further the sit-
uation. The following empirical observations motivated the development of
efficiency-improving techniques: 2

(1) Limited transitivity.

(a) The number of intermediate classes in the transitive sub-
typing relation does not exceed 2. In addition, certain top
elements of subclassing chains such as Java core classes (like
java.Object) do not play relevant roles in design patterns and
are therefore discarded.

(b) The method invocation relation has at most one private
intermediate method I.

(2) Direct and indirect calls do not coexist. A method invokes pattern-
relevant method calls either directly or indirectly, but not in both
ways. For example, if a forwarder method Forwarder invokes a for-
warding call directly, it is unlikely that Forwarder invokes another
forwarding call indirectly.

(3) Repeating queries. For example, subtyping and variable / method
ownership appear as subqueries in many queries so their results can
be reused.

(4) Structurally similar patterns. Occurrences of some structurally sim-
ilar patterns are characterized by simple and fast structural queries
that are not satisfied on occurrences of other patterns.

e As an example, a class Handler owns a field ParentField
of the type Component (which is a superclass of Handler).
In addition, some method Handler.M(...) overrides a method

2These techniques might not be applied when data - and control flow graphs are takes
from third-party libraries.



8.3. IMPROVING RESPONSE TIME 100

parentField
Head

method(...)

Sul e — reflexive & transitive
Forwarder EDP Tt & renet

ForwardingClass

overridingMethod(...) [~ ParentField.method(...);
Decorator I Chain of Responsibility | Dynamically Typed Proxy
=] | ] |
Component I Handler < I Subj €
forward(...) | forward(...) | forward(...)
| | T
Leaf Decorator Concrete Handler Real Subject Proxy
forward(...) forward(...) I forward(...) I forward...) forward(...)
N o il
parent.forward(...) | if (cond) | subject.forward(...); J
g I next.forward(...); I

FiGure 8.3.1. The forward-to-parent similarity group.
Thick lines describe the substructures within pattern occur-
rences that match the EDP.

Component.Mi(...). It is very likely that these program el-
ements play the corresponding roles in a Decorator, CoR or
Dynamically Typed Proxy occurrence. These elements form
the Forwarder elemental design pattern (EDP)? illustrated in
Figure 8.3.1. Throughout this thesis, such EDPs are referred
to as similarity group EDPs. Additional structural and be-
havioral checks are needed to discriminate patterns within the
same similarity group. For example, the Forwarder EDP char-
acterizes the patterns belonging to the forward-to-parent simi-
larity group. More details about similarity groups are provided
in Appendix A.

Given all of the above factors, the following efficiency-improving tech-
niques are suggested:

(1) Restricted transitivity. Compute the “nearby-transitive” subtyping
relation (with at most 2 intermediate classes) omitting the top-level
system classes like java.Object. The "nearby-transitive” method
invocation relationship has at most 1 intermediate method.

(2) Prioritized transitivity. First, one checks whether a method M in-
vokes some pattern-relevant method call directly. If no such call ex-
ists, one searches whether M invokes pattern-relevant calls through
an intermediate method.

3 The terminology of Smith and Stotts [35] is used



8.3. IMPROVING RESPONSE TIME 101

(3) Caching. Subtyping and variable / method ownership are precom-
puted and put into the cache after the tool is loaded. The occur-
rences of EDPs for a group of structurally similar patterns G are
pre-computed and cached before the tool detects patterns in G.

(4) Detection order. Assume that occurrences of a certain EDP are
generated before detecting patterns in a similarity group G. If these
occurrences are used when detecting patterns in other similarity
group H, patterns in G must be detected before detecting patterns
in H.

Improving the efficiency of behavioral analyses.

Control flow.

Simplified interprocedural control flow. The set of called methods
for a method invocation mc consists of the method M statically referred to
by me and of the methods that override M (Class Hierarchy Analysis, see
Tip and Palsberg [66]). This algorithm delivers a satisfactory precision. If in
the future the precision will not satisfy a user, a call graph could be further
refined using points-to information.

Simplified exploration of transitivity. DPJF uses the observation of
[64, 73| that in a collaborational pattern (except for Visitor) the receiver
variables of all relevant method invocations point to the master object. Addi-
tional experiments conducted by Binun et al. [11] confirmed this observation
and stated that in these patterns intermediate methods (if exist) are private
and are invoked on the implicit this receiver. An example is an intermediate
method private int readl(...) from a CoR occurrence in Figure 3.4.12a.

This observation allows to avoid a complex (possibly transitive) com-
putation of the points-to set of the receiver variable. One needs to check
whether an intermediate method is private and the relevant invocation is
sent to this (explicitly or implicitly).

Data flow.

Limited scope. A caller method M invokes a relevant callee method
m on the object stored in a field F. The scope of the dataflow F —
receiver(mec) might be formed not only by M but also by the method(s)
M ...My, directly invoking M.

Therefore, first the dataflow F' - receiver(mc) is verified. If this
check fails, one checks whether F' — s, ar, receiver(me).

Replace dataflow by structural approximations. In certain sce-
narios the dataflow analyses can be replaced by empirically validated ap-
proximations based on structural analyses. According to the observations
of the author of this thesis, these scenarios are quite typical and cover ap-
proximately 85-90% of the dataflow-relevant situations, thus improving the
response time of DPJF. The scenarios and the corresponding simplifications
are provided below:

e Receiver expressions of relevant method calls refer to pattern-
relevant fields and therefore the dataflow from the relevant field(s)



8.3. IMPROVING RESPONSE TIME 102

to the receiver variables of the relevant method calls should not be
actually computed. If the receiver expression is a getter method
invocation then this case can be processed in a similar way.

— For example, in the scenario in Figure 3.4.2b the relevant method
calls are done directly on the fields myF E1, myF E2 that serve
as the receiver variables.

e Dataflow from a collection field to a scalar variable: Dataflow
from collection-typed fields into scalar-typed variables ( f Listeners —
listener in Figure 3.4.5a) is easily processed using structural simpli-
fications. Assignment statements (e.g. listener := [) and element
retrievals (e.g. [ := fListeners.get()) are collected within the body
of the corresponding caller method.

Efficient implementations of some core constraints.

Update Field. The goal is to check the existence of a (public and non-
construction) method M that forms the scope of the dataflow into a pattern-
relevant field F' in a decoupler pattern. Instead of applying full-scaled
dataflow analyses, DPJF enforces simple structural checks that approximate
dataflow analyses, yielding a high precision.

The implementation is divided into two cases:

F'is scalar-typed. DPJF checks whether some public and non-construction
method M contains the assignment statement F':= expr.

F'is collection-typed. The contents of F' are usually modified by adding
or deleting elements from a collection. The situation is complicated by the
fact that the source code of the runtime libraries implementing collection
logic are not usually attached to the analyzed project. Denote by O the ob-
ject owning I and by DepObjType is the type of dependent objects pointed
to by F.

DPJF performs two checks:

(1) There exists a method O.U(..., DepObjType v, ...) that contains a
statement of the form F.add(v)
(2) There exists a caller method C' that
(a) forms the scope of the dataflow from F' to a var. DepObjType |
(b) C invokes a callee method callee in a loop in a statement of
the form [.callee()

For example, in Figure 3.4.5a U stands for
addDrawingChangeListener(DrawingChangeListener listener) that up-
dates the relevant field fListeners in the statement
listeners.addElement(listener). The caller method figurelnvalidated...)
invokes the callee method in a statement listener.drawinglnvalidated(...)
where fListeners — listener.

Partial / Full Coverage. The Partial / Full Coverage constraints (Sec-
tion 7.3) are checked by traversing control flow relations of caller methods,
without computing points-to sets. This is done because analyzing control
flow graphs takes less time that building points-to sets. The goal is to find a



8.3. IMPROVING RESPONSE TIME 103

5
r g

:

next.forward() action() o.update()

(A) Scalar (B) Break- (¢) Omit-
method in- ing an iter- ting an it-
vocation ation eration

Ficure 8.3.2. Applying the Full / Partial coverage con-
straints. Pattern-relevant paths that represent diverting ex-
ecutions are drawn using the bold line and there is dataflow
from relevant field(s) to the receiver variable(s) of the relevant
method call(s).

pattern-relevant (Sec. 2.5) path that represents a diverting execution (Sec.
6.2.1) and reflects the application logic typically implemented by a pattern.

The relevant scenarios fall into several categories illustrated by the ex-
amples provided below:

e Figure 8.3.2a illustrates the case when the relevant field (here, next)
is scalar-typed. The relevant method call is next. forward(...). This
scenario is typical when distinguishing between CoR. and Decorator
implementations. A diverting execution is represented by a simple
path that does not contain relevant method call statement(s) (e.g.
next. forward(...) ).

e Figure 8.3.2b and Figure 8.3.2c illustrate the cases when the rel-
evant field V is collection-typed. This scenario is typical for false
Observer and Composite candidates since the relevant method (e.g.
update(...) ) is not invoked on some object pointed to by a relevant
field.

— Figure 8.3.2b illustrates the case when an iteration over depen-
dent objects is broken. A diverting execution is represented by
a simple path that does not contain the statement standing for
a relevant method call o.update(...) ).

— Figure 8.3.2¢ illustrates the case when a certain iteration over
dependent objects is omitted*. A diverting execution is repre-
sented by a path that goes through a simple cycle that does
not contain relevant method call(s) (e.g. o.update(...)).

4Usually this is done using the contnue operator.



8.4. COMBINING OF STATIC AND DYNAMIC ANALYSES IN CONSTRAINT IMPLEMENTATIONS

Note that there yet one category of pattern-relevant paths that does not
form proper diverting executions. Namely, if a pattern-relevant method call
f.callee() resides within a branch of an if-statement i f(f! = null) then the
path corresponding to the else-branch does not represent application logic
(and cannot form a diverting path) since it contains “cleanup” actions that
are done by an attempt to perform an invocation of the null pointer.

8.4. Combining of static and dynamic analyses in constraint
implementations

Section 8.1 shows how to implement the basic relations and functions
using static and dynamic analyses. Therefore it is possible to implement
each core constraint using dynamic analyses in addition to static analyses,
aiming at improving the precision. The constraints can be divided into two
groups:

(1) The whole behavior is relevant. This group includes the follow-
ing constraints: Exclusive Dataflow Source&Target, Same Opera-
tion, Sibling Creation, State Propagation, Uniquely Created Prod-
uct Type and Total Coverage.

e For example, in the Total Coverage constraint each execution
must be examined so the whole control- and data flow is im-
portant.

(2) A part of the whole behavior is relevant. This group includes the
following constraints: Field Update, Partial Coverage and Con-
trol/Data Flow Order. These constraints can be verified by finding
some execution that possesses certain properties.

e In the Field Update constraint the relevant field is required to
be updated in some execution. In the Partial Coverage con-
straint relevant method calls must not be launched in some
execution. In the Control / Data Flow order interleaved up-
dates of a certain field and invocations of a certain method are
caused by some execution.

The constraints from first group are more suitable for static level implemen-
tations since static analyses provide conservative approximation of the whole
program behavior.

This thesis suggests static-level implementations also for the constraints
from the second group. These constraints are: Field Update and Partial
Coverage. The Field Update constraint is implemented by building data
flow for relevant construction methods. The Partial Coverage constraint is
implemented by examining the control flow graphs for relevant methods.
The evaluation shows that these implementations are efficient and accurate;
therefore Field Update and Partial Coverage are more suitable for static-level
implementations.

The only constraint that is more suitable for dynamic-level implemen-
tation is the Control/Data Flow Order constraint. Its current specification



8.5. THE ORGANIZATION OF DPJF 105

EDFS Field Same Sibling  State CF-DF  Uniq.Created Total Partial
&EDFT Update Operation Creation Propagation Order Prod.Type Coverage Coverage
Relevant whole part whole whole whole part whole whole part
Behavior
Suitable For static static static static static dynamic static static static

FiGURE 8.4.1. Implementing constraints

relies on the existence of a setter method that updates the relevant field.
However, the recent observations revealed implementation variants where
the relevant field is modified by update statements that are not within seet-
ter methods. Implementing such variants at the static level requires the
(potentially expensive) flow-sensitive dataflow analysis. On the other hand,
at the dynamic level just finding an execution that causes interleaving up-
dates of a certain field and invocations of a certain method suffices. Practical
observations show that such executions are not usually formed by conditional
statements and therefore cover all relevant behavior.

Figure 8.4.1 describes how the core constraints can be implemented at
both levels. Constraints are provided in columns. For each constraint, the
values in the first row shows the group a given constraint belongs for (whole /
part of behavior is relevant). The value in the second row shows the analysis
suitable for implementing a given constraint (static/dynamic).

Implementing constraints at the dynamic level remains a part of the
future work.

8.5. The organization of DPJF

Implementation of DPJF in a very short time frame was enabled by the
availability of JTransformer [45], an easy to use development environment for
analyses and transformations of Java source code. JTransformer deals with
the parsing of source and byte-code, resolution of project dependencies and
creation of an internal representation of the entire code in Prolog. Analyses
can be expressed at a very high level of abstraction as Prolog clauses. DPJF
is implemented as a set of SWI-Prolog detection modules, each dedicated to
the detection of candidates for a group of structurally similar implementa-
tions. Figure 8.5.1 associates the detection modules with patterns recognized
by them.

Some features are still not implemented. Note that Figure 8.5.1
reflects the conceptual level of DPJF, not the modules that are actually im-
plemented. Currently, DPJF supports detecting only 5 patterns: Decorator,
CoR, Proxy, Observer and Composite so only the modules DetectForwarders,
DetectSiblings and Detect With UpdatedCollectionField are implemented. The
ovals standing for the actually implemented modules in Fig.8.5.1 are wrapped
by thick lines.



8.5. THE ORGANIZATION OF DPJF 106

Abstract Factory, :

- Factory Method 7//'
DetectCreation = .
) i Decorator,
7 o DetectPrototype ¢ Chain of Responsibility,
~ Prototype ~~_ Dynamically Typed Proxy
1 DetectSingleton o
— é?rlglet;)n - l DetectForwarders I ¢ " Statically Typed /
—_— Proxy
[ DetectSiblings l -
- State, Strategy,
DetectWithUpdatedScalarField N 1:1 Observer, Bridge,
- Mediator
S | DetectwithUpdatedColiectionField |
o Adapter, e —_—
“Command VSO ™ pgtoctDelegationToScalar ( Obsemver, Interpreter, ‘
o : - Composite, Mediator
~ Builder, N .

< Flyweight, Visitor = DetectDelegationToCollection

F1GURE 8.5.1. Detection modules supported by DPJF

Also, only the constraints that are required in the specifications of the
supported patterns are implemented. That is, Exclusive Data Flow Tar-
get, Control/Data Flow Ordering and Uniquely Created Product Type con-
straints are still not implemented. Implementing of remaining modules and
constraints is considered as a part of the future work.

The execution order of detection modules (i.e. workflow) is described
using the activity diagram from Figure 8.5.2. It is based on the observa-
tion that if a detection module DM, generates and caches similarity group
EDPs that are reused in another detection module DMs, then DM, is exe-
cuted before DM,. For example, the EDP "Create” consists of the method
Creator that creates object(s) of the type Product. This EDP is used first
in the module DetectCreation that recognizes Abstract Factory and Fac-
tory Method. It is later reused in the module Detect Forwarders to model
possible creations of Real Subject objects in Dynamically Typed Proxy.

Each detection module performs the following steps (described in the
subsections):

(1) Find all program elements that play the roles in the pattern imple-
mentations within a given similarity group

(2) Aggregate role assignments to candidates.

(3) Apply the core constraints to filter out false positives and properly
classify the candidates.

The second step is generic, the others have specific implementations in each
detection module. All steps are illustrated on the example of the mod-
ule Detect Forwarders that recognizes candidates in the forwarder-to-parent

group.



8.5. THE ORGANIZATION OF DPJF 107

>
DetectAllPatterns Cache Nearby Transitive
Subtypes
J
Cache Inherited Instance
Variables
' DetectCreation DetectSiblings DetectWithUpdatedCollectionField DetectSingleton DetectPrototype
DetectForwarders
DetectWithUpdatedScalarField
I

F1GURE 8.5.2. The main DPJF module

parentField
Head parentField
forward(...) Head

% forward(...)

ForwardingClass

ForwardingClass
/{ parentFieId.forward(...);A

forward(...)

helper(...)

‘ parentField.forward(...); J forward(...) helper(...);

(A) Direct invocation (B) Indirect invocation

F1GuRrE 8.5.3. Transitivity check

Find role assignments. The analysis starts by computing the sub-
type and containment relation. Then candidates for the similarity group
EDP (Forwarder, Fig. 8.3.1) are computed. They are stored as tuples
of the form <ForwardingClass, Head, OwerridingMethod, Method, Parent-
Field>. FEach tuple element represents the assumed player of one role in
the EDP. Next, program elements that play additional roles are identified.
This is done by checking for each candidate how the OwerridingM ethod
player invokes the Method player. If the invocation is direct (as depicted
in Figure 8.5.3a) the tuple is kept unmodified. Otherwise, the element
playing the role of IntermediateMethod that invokes Method (see Figure
8.5.3b) is identified and the candidate is extended by the role assignment for
Intermediate M ethod.



8.5. THE ORGANIZATION OF DPJF 108

InputStream
read() In
close()

if (full_buffer)
in.read(...);
‘ ‘ else read_from_buffer;

FileInputStream || PeekInputStream

read() read()— |
i

(A) An application excerpt from Java 10 1.4

Schema Candidate

O
|Dep0bjFieId|(£{ Master | | close() l—qin4close()F—| close() ‘

Data i Flow

Receiver — ----- ‘ il.'l '—' PeekInputStream ‘

Receiver |\Variable Owns

Called T:o;t;)I_ — | read() Hinxead() ‘— - I- read() ‘

Method Flow

(B) The corresponding candidate

FIGURE 8.5.4. Creating candidates

Aggregate role assignments to candidates. Given many players of
the same role one needs to distinguish players that belong to different can-
didates and combine players that belong to the same. Formally, a candidate
is a connected component from the projection graph induced by the design
pattern schema and the role assignments (Sec.7.2). All players that are re-
lated belong to the same candidate. An excerpt from Java 1O 1.4 provide in
Fig. 8.5.4a gives rise to the candidate provided in Fig. 8.5.4b.

Apply Behavioral Constraints. In the final step, false candidates are
eliminated and correct ones are categorized as Tree Forwarder, Decorator,
Dynamically Typed Proxy or Chain of Responsibility.

The main problem is that a candidate can include caller methods that
represent functionalities of different patterns. For example, in Fig. 8.5.4a the
method PeekInputStream.read() is a part of a CoR occurrence (forwarding
only in some execution) whereas the method PeekInputStream.close() is a
part of a Decorator forwarder (forwarding in each execution).

First of all, a candidate graph is divided into collaboration subcandidates
(CSs). Each CS consists of:

e a caller method Caller,
e the call statement(s) call;...call,, called by Caller,
e the callee methods Clallee;...Callee,, referred to by cally...call,



8.5. THE ORGANIZATION OF DPJF 109

| close() Hin.close() |——| close() | 1

‘ - ..... | in H PeeklnputStream\|\‘;r‘i

(A) Collaborational subcandidates

2 — Total Coverage

close() H in.close() }— —‘ close()

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Same Operation,

fffff ’—lln—’— PeekinputStream |}/ 7 Unique Source Field,

————————————————————————————— §oo-eooneno oo [ ————————— NOT (Sibling Creation)

‘ read() H in.read() ‘— —‘ read() ‘

1 - Partial Coverage

(B) Collaborational subcandidates and the constraints
satisfied on them

FI1GURE 8.5.5. Collaborational subcandidates and constraint
application

e the fields(s) Fi...F) that point to the dependent object(s) on which
cally...call,, are invoked

e the type Master that represents master objects owning Caller

e the type Dependent that represents objects owning Callee;...Callee,,

Note that a CS contains players for each role of the collaborational schema.
Fig. 8.5.5a illustrates the CSs belonging to the candidate provided in Fig.
8.5.4b.

The idea behind CSs is motivated by the observation that in collabo-
rational patterns each caller method represents represent a self-contained
pieces of functionality. Different constraints can be satisfied on each CS.
Therefore CSs on which the same set of constraints are grouped into one
candidate.

Now I present the process of constraint application on each CS. First,
the CSs on which the Unique Source Field constraint is satisfied are filtered
out since they form a Tree Forwarder candidate.



8.5. THE ORGANIZATION OF DPJF 110

algorithm DetectForwarders
input: Candidate candidate;

tuples = decomposelntoCSs(candidate);

let USFTuples={tuple € tuples: UniqueSourceField(tuple)}
MSFTuples=tuples / USFTuples;

report formCandidate (MSFTuples) as TreeForwarder;

if 3 tuple € USFTuples: SiblingCreation(tuple)
then report formCandidate(USFTuples) as Dynamically Typed Proxy;
else
let TCTuples = {tuple € tuples: TotalCoverage(tuple)}
PCTuples = {tuple € tuples: PartialCoverage(tuple)}

report formCandidate (TCTuples) as Decorator;
report formCandidate (PCTuples) as Chain of Responsibility;

Fiaure 8.5.6. Applying Constraint to detect Forwarder patterns

If the Sibling Creation constraint is satisfied on at least one remaining
CS, then all remaining CSs are said to form a Dynamically Typed Proxy
candidate. Finally, a Decorator (resp. a CoR) candidate is formed by the
CSs on which the Partial (resp. Total) Coverage constraint is satisfied.

The whole constraint application process is illustrated by the pseudocode
from Fig. 8.5.6.



CHAPTER 9

Evaluation of DPJF

This section explains the evaluation methodology, compares DPJF to
four other pattern detection tools and presents the comparison results.

All tools were evaluated on the Decorator, Chain of Responsibility (CoR),
Proxy, Observer and Composite patterns. DPJF was compared to four of
the five tools evaluated in |28, 42]: Fujaba [71], PINOT [58|, Ptidej [29],
and SSA [68]. DP-Miner [16] was not considered because it detects only one
pattern (Composite) of the five sought patterns.

Section 9.1 presents the main challenges and approaches when the accu-
racies of different pattern detection tools are computed. Section 9.2 discusses
the evaluation results.

9.1. Computing precision and recall

When the precision and the recall are computed, the reported candidates
are compared against the test set occurrences. The following challenges
emerge when comparing pattern detection tools:

e Grouping of program elements into candidates / occurrences
e Which program elements participate in the accuracy computation.

The subsections discusses the challenges and shows how these challenges are
solved in DPJF.

Accuracy Computation Challenges.

Grouping of program elements into candidates. A candidate/ occurrence
is a set of assigments of program elements to roles (Section 7.2). Almost all
pattern detection tools mentioned in the thesis (|2, 16, 58, 12, 47, 20, 71,
34, 73]) do not support role cardinalities; i.e. at most one program element
can be assigned to any role in a given candidate. The sole exception from
this rule is SSA [68] which groups pattern-relevant methods around their
owning classes, thus allowing method roles to be played by more than one
method. DPJF supports cardinality specifications in pattern schemas. In
particular, more than one program element is assigned to a role that has the
non-negative cardinality.

The main problem is that when DPJF and any other pattern detection
tool support the same roles and assign the same program element to these
roles, the number of candidates might differ, hindering result comparison.

111



9.1. COMPUTING PRECISION AND RECALL 112

InputStream
read() in
close()
available() if (full_buffer)
in.read(...);
| else read_from_buffer;
FilelInputStream | | ObjlinputStream.PeekinputStream
read() read()
close() close() in.close();
available() available()

in.available();

FIGURE 9.1.1. A “mixed” Decorator and CoR candidate

Program elements that participate in the accuracy computation. Accord-
ing to the review of Pettersson et al. [54]| that is confirmed by the tool
evaluation from Chapter 3, all reviewed pattern detection tools compute
precision and recall based on the number of found candidates. If in a given
candidate C some classes playing mandatory roles are properly recognized,
C' is accepted. This approach is referred to in this thesis as the candidate-
based accuracy computation. This is sometimes a too coarse grained metric,
since every candidate and occurrence of a given implementation variant con-
sists of role players on different granularity levels (classes, fields, methods,
individual statements). Some role players might

e be wrongly identified, leading to role-level false positives. For ex-
ample, within a Decorator candidate certain methods forward con-
ditionally, thus being Chain of Responsibility forwarder methods.
However, pattern detection tools that do not employ sufficient be-
havioral analyses wrongly identify these methods as DECORATOR
FORWARDING METHODS. The method PeekInputStream.ready...)
from Figure 9.1.1 is a role-level false positive generated by SSA. It
is misclassified as a Decorator forwarder, though it forwards condi-
tionally.

e not be identified at all (although the tools search for players of that
role), leading to role-level false negatives. For example, method
role players that invoke relevant method calls indirectly are not
recognized by some of the reviewed pattern detection tools. The
method
BlockDatalnputStream.read(bytel],int,int) from Figure 3.4.12a
is a method-level false negative since no tool mentioned in this thesis
supports transitive method invocations.

That is, in the presence of role-level false positives (or false negatives) a
pattern detection tool might accept a candidate that has some “false parts”
within or miss some unusually implemented (but proper) parts.

Precision / Recall Computation in DPJF.



9.1. COMPUTING PRECISION AND RECALL 113

Grouping program elements into candidates. For each evaluated pattern
detection tool the candidates are recomputed in the same way as DPJF does.
That is, for each evaluated tool T there is the module that parses the output
of T'. Building of the projection graph and computing of pattern candidates
is done exactly like in DPJF.

Program elements participating in accuracy computation. In addition to
the candidate-based accuracy computation approach this section presents
the accuracy computation approach that fakes into account role-level false
positives and false negatives. This approach is a result of elaborating the
suggestion of Pettersson et al. [54|. The individual precision and recall are
assigned for each candidate ', taking into account role-level false negatives
and false positives. This approach is referred to as the role-based accuracy
computation.

The individual precision for C is the number of correctly recognized
role players in C divided by the number of role players reported for C. The
individual recall for C is the number of correctly retrieved role players in C
divided by the total number of actual role players in C. When computing
scores in this way, only class ane method role players are processed since
these are reported by almost all compared pattern detection tools'. The
precision of a pattern detection tool on a particular program is computed by
dividing the sum of individual precisions of all correctly identified candidates
by the number of reported candidates. The recall is obtained by dividing
the sum of individual recalls of all reported candidates by the number of
occurrences in the test set.

Let C7 be a (possibly incomplete and partly wrong) candidate retrieved
by tool T and O be the corresponding complete and correct occurrence that
an ideal tool would report (if Cp is a false positive then O will be empty).
Formally,

e reported(Cr) is the number of role assignments in C' reported by
T

e detected(Cr) is the number of correct role assignments in C' re-
ported by T

e correct(Cr) is the maximum number of correct role assignments
in O for the role types supported by T (e.g. if T is not able to
report statement-level roles, then only the correct assignment to
class, method and field level roles in O are counted).

e prec(C) = detected(C) /reported(C') is the individual precision for
Cr

e rec(C) = detected(C')/correct(C) is the individual recall for Cp

IThe only exception is Ptidej. It reports only class roles which are compared. Thus
Ptidej is slightly favoured, since it is not penalized for not identifying players of method
and field roles, whereas tools that support these roles are penalized when they misrecognize
players.



9.2. DISCUSSION OF RESULTS FOR PRECISION AND RECALL 114

If T reports N candidates C’%...C]TV for a program that contains M proper
occurrences of some pattern P then:
e precisiony = (Y.,_; , prec(Ch)) /N is the average precision of T
for P.
e recally = (3, , rec(Ch)) /M is the average recall of T for P.

The evaluation results are discussed in Section 9.2.

9.2. Discussion of Results for Precision and Recall

This section presents the precision and the recall computed delivered by
the role-based computational approach and compares them to the accuracies
delivered by the candidate-based approach. Eventually, the response times
are presented.

Results for the Role-Based Computation Approach. For each
pattern, the results are shown in one of the tables of Fig.9.2.1. Column head-
ings indicate the analysed project and (in brackets) the number of known
occurrences for that project. The “Total” column indicates the performance
when all projects are taken as a single big one. Precision and recall are
computed as described in Sec.9.1. A bomb indicates that the tool crashed
on that project. A precision (resp. recall) value that cannot be computed
because there are zero occurrences (resp. candidates) is indicated by “—.

The values for different projects are aggregated into an average per pat-
tern and tool, computed as if all tested projects were a single big one. The
average values are shown in the “Total” Column of each table of Fig. 9.2.1.
For easier reference and comparison they are summarized (together with
their median) in Fig. 9.2.2a, Fig. 9.2.2b and are depicted graphically in Fig.
9.2.2¢ and Fig. 9.2.2d.

Achieved Precision. Fig. 9.2.2a and 9.2.2c show that the average pre-
cision of the previously existing tools is highly dependent on the pattern
and benchmark, with medians ranging from 10% for Pinot to 66% for SSA.
In contrast, DPJF achieves 100% precision for each evaluated pattern and
benchmark.

Obviously, the constraints supported only by DPJF effectively discard
all false positives produced in other reviewed tools.

Achieved Recall. Fig. 9.2.2d and Fig. 9.2.1 show that DPJF has the
best recall among all evaluated tools. The median of DPJF’s recall is 89%,
which is 2 to 4.5 times better than medians of 18% for Ptidej to at most
44% for SSA. The differences are even more pronounced when comparing
individual recalls. That is, the recall-improving techniques implemented in
DPJF are very effective too. The main influencing factor for the recall is the
exploration depth of transitive relations.

The Role-Based vs. the Candidate-Based Accuracy Computa-
tion. This section compares the metrics computed in the candidate-based
way deviate to the metrics computed in the role-based way (Fig. 9.2.1) and



115

9.2. DISCUSSION OF RESULTS FOR PRECISION AND RECALL

Total (31)

% ueaw-4

[E=EN

uoisidRld

pauoday

1712412 | 16

21|70 | 44 | 54

TeamCore (2)

% ueaw-4

% 11839y

0
0

9% UOISI93.d

payoday

ArgoUML (3)

% ueaw-4

% 11833y

9% UOISIaId

pauoday

AWT (9)

% ueaw-4

% 11833y

9% UOISIIaIg

pawoday

JavalO (4)

% ueaw-4

%  11e33y

9 UOISI23.d

pauoday

JHD 6 (10)

% ueaw-4

% 11833y

9% UOISIaIg

pauoday

5(59|26(36)| 4 |78|68|72| 3 |96(33|49| 1 (100|33|50| 1 |100/22[35]|14 |78 | 31|45

JHD 5.1 (3)

% ueaw-4

% 1123y

0

9 UOISI93.d

pauoday

3 67|67 (67| 8 |60|50[54] 2 |83[23|35]|7 |76|53|63| 1 |100|33|50| 0

3 |100/100{100] 9 |100/90 (95| 4 |100{93 |96 | 8 [100| 89 |94 | 3 |100/100({100| 1 |100| 50 | 67 | 28 |100| 89 | 94

Jojel0daq

PINOT | O

PTIDEJ| 6 |17 33|22 8 |[25[20|22| 3 [33|17|22(& |é |é& |6 [é6 |6 |6 |6 |0

SSA

DPJF

(A) Results for Decorator (Fujaba is not shown since it does not detect the pattern)

% ueaw-4 (X Q| K
S| ey |88
© =)
2| voiswaid |F13]5
g

pauoday ||| o
= % uedw-4| | 1|Q
m % ey |o|o|l
< =
E|% uoispaid| || {|S
% —
| pauodey |o|o|«~

% ueaw-4| ||| |
g
2|% 1Ry | ||| !
2
m. % Uolspaid| o | g | |
< =

payoday |« |0

—To

% ueaw-d (g |S
</, < ||
% e | |e|S
-

o

9% uoIs1aId [ R |
3% uoiseid[13)@ | §

payioday [« (4| <

% ueaw-4 [ m
n oo
~19 229! o)

° % 1189y 5| S m
|9 uoispaud |

2 % UOISIRId | J| 5 S
8

payoday |~|m| e

% ueaw-4 ! m
m 9 229! «l8
< % ey |o|@| S
25 vorspasa| o[ 2[ S
= —

payoday || <|

% ueaw-4 | | 1]}
e % edam | 1] ¢ ¢
—|% e ||
0 o, ' '
o|% uoisaid| | (ol i
z

pauoday |o|~|o
Aunqisuodsay | 6 ||

=| &
puey  |ZE|5

(B) Results for Chain of Respounsibility (Fujaba and SSA are shown since

they do not detect the pattern)

Total (26)

% ueaw-4

lesay

uolsiald

pauoday

36|14 (18|16

10| 80 [ 24 |37
25 (100| 96 | 98

% ueaw-4

TeamCore (0)

% 11839y

9% UOISIDaId

pauoday

ArgoUML (9)

% ueaw-4

% 11ea9y

9% UOISIAId

pauoday

AWT (6)

% ueaw-4

% 11839y

9 UOISIIAId

payoday

& |6 |6 6|6 |6 6|60

JavalO (7)

% ueaw-4

%  11e23y

0

9% UOISI23.d

pauoday

0

6 |67 33|44 2 [100/33 |50 2 |100]22[36]| O

JHD 6 (2)

% ueaw-4

% 1833y

0

9% UOISI23.d

pauoday

11| 9 [50]15( 3 |67|23|34|10[10|17|13|10|10|11[11] O

0

JHD 5.1(2)

% ueaw-4

% 11829y

0
0
0

9% UOISIId

0
0

pauoday

1

2 [100/100{100| 2 [100|100{100| 7 [100|100{100| 6 [100{100(100| 8 |100{ 89 |94 ] O

Axoud

PINOT | 2
PTIDEJ

DPJF

(c¢) Results for Proxy (Fujaba is not shown since it does not detect the pattern)

Total (17)

% ueaw-4

l1e23y

uolsidald

payoday

77|10 [47|17
24| 9 [13|11
20|15[18|16
13|63 |52|57

11 |100| 65 | 79

TeamCore (2)

% ueaw-4

% B39y

0

0
0

0
0

9% uoIs|RId

pauoday

0

ArgoUML (5)

% ueaw-4

% 11823y

9% uoIsIdR.d

pauoday

1]100{20[33| 0

AWT (2)

% ueaw-{ |7

% 11BI3Y ¢

9 UOISID31d |7

payoday

& |& & 6|6 |6 |6 6|0

2 404040

1 |100| 50 | 67| 3 100/ 60| 75| O

JavalO (0)

% ueaw-{ |7

% 11eI3Y |¢

% UO0ISI234d |

0

pauoday

JHD 6 (6)

% ueaw-4

% 11823y

9% uoIs|IR.d

pauoday

2 |100{33|50| 6

JHD 5.1 (2)

% ueaw-4

% 11eady

0

9% uoIS|IR.d

0

payoday

3 33|50(40] 7 |76(100|87) O
1 100/ 50| 67| 6 [100|100|{100f O

FEVNERLTo)

Fujaba[19]11(100{19]21|14|50|22|é |é |6 |& |& |& |& |é |23|13]|60|21|14]| 0

PINOT | 1

PTIDEJ |17 |12 |100| 21| 3 |33 |17 |22| O

SSA

DPJF

(D) Results for Observer

% vesw-s[38]0[5]8
e ey |RB|R(N( LS
= )
o0
.m:o_m_um:n_ 91mﬂm
payoday [QN(S| |«
% veawea | gl ] ]
s
glo% nedyd ]|
o
E|%uoispaid|of ||of i i
U
" | pavoday |~|o|~|o|o
| % veows |22 60| B5] 5
o
= =)
2|% 12| 3|S|e| 3]
2 oo
olol;
m.xco_m_um:._SZONM
< -
pavoday || S (|| —
% ueow-d || 2l 1|5
% ey (| R|e|2| ]
S =)
5o | en | '
Awnﬁco_m_uwifo P8
pawoday f3f01
% ueaw- (i i [ i ||
Slu ey || ] ] 1]
=]
[ b5
S| % uoispaid [dg|of 1| i
5
pauoday [4g|~|o|o|o
ﬁkc,mmc._.u_““aJSm
o Hli|min| g
- o|lo|lo
=l 229
G\c Il zoommm
Ql, o|ln|8
uo|s|oal
I|%UolsRMd|o|o|]IN|S
payioday (D] |
S S
% ueaw- I
)\o n_m“_brom
) =) =) =)
2, 229 o
M\o ey 5105|189
=) =)
o | % uolsidal Pl (=]
mx, ISt n_m036m
pavoday || |||
©=|=
o w w
ausodwoy |5(2(2|F|Z
S =V A
i|&|a

(E) Results for Composite

FiGure 9.2.1. Evaluation results per pattern.



9.2. DISCUSSION OF RESULTS FOR PRECISION AND RECALL

116

< P ) S c 2 o S c
2 |8|z|&|l«| x| 3|8z B|«<| &=
S oa| | 5| o] o] D o e|l | 5| ol o=
8 |E| 8| 8|C|&|g| & |e|z|g|C|&|g
a | 8|o|& S|lo|&
Fujaba| 9 | 10| X | X | X | 10 Fujaba| 33 | 47| X | X | X | 40
PINOT | 18 | 9 | 78 [ 34 | 14 | 18 PINOT | 50 | 13 | 31 | 24 | 18 | 24
PTIDEJ| 20 | 15|24 |33 | 0 | 20 PTIDEJ| 33 | 18 | 12 | 18 | 0 | 18
SSA | 51 (63|70 | X | 80 | 66 SSA | 43 [ 52 |44 | X | 24| 44
DPJF | 100|100 100 | 100 | 100 | 100 DPJF | 67 | 65 | 89 | 92 | 96 | 89
(A) Precision (B) Recall
100 % X = Sk e
90
80
70 K ~
60 )ﬁ/ \\ —o—Fujaba
50
/ \ ——PINOT
40
I / Y PTIDE)
20 L4 / N\ _ ==SSA
10 *>‘l L ;— ~¥=—DPJF
0 : : : ‘
(,7{@ & O S SN &
(.;o@qo 0‘0&6 0&5‘0@ < Q@ @zb'b

FIGURE 9.2.2. Precision and recall on all benchmark
projects. The inability of a tool to detect a pattern is in-

100

90

80

70

== Fujaba

60

50 —?—&ﬁ —=—PINOT
40 $Zad 4

30
20

—¥=DPJF

10

P M PTIDEJ
| B B —<SSA
)

& & & & & &
o) & Q€ S
o & @

@Q o &

(D) Recall (graph for Fig. 9.2.2b)

dicated by X in the table and a hole in the graph



9.2. DISCUSSION OF RESULTS FOR PRECISION AND RECALL 117

discuss the results. The comparison results are displayed as bar diagrams
and are presented in Figure 9.2.3.

The confidence scores computed according to the role-based (respectively,
candidate-based) approaches are compared using bar diagrams and are pre-
sented in Figures 9.2.3 and Fig. If these approaches deliver different confi-
dence scores for a pattern P and for a benchmark B, two bar diagrams are
provided. They compare the precision (respectively, the recall) delivered by
each tool that is executed on B to detect P and are placed into a separate
subfigure that is contained in Figures 9.2.3, 9.2.4 and 9.2.5.

In each such subfigure the blue bars stand for the accuracies delivered
by the role-based approach (denoted by Precision(R) and Recall(R) respec-
tively). The red bars stand for the accuracies delivered by the candidate-
based approach (denoted by Precision(C) and Recall(C) , respectively).

The differences are highly dependent on the pattern and benchmark; for
some patterns and benchmarks there are no differences at all. Therefore
it was decided not to compare the average results over all benchmarks per
pattern but to present the (existing) differences for individual patterns and
benchmarks.

The scores computed in the role-based way are slightly smaller. The
differences vary from 4% when comparing the precision for the Decorator
pattern in JHotDraw 6.0 up to 40% for the Composite pattern in JHotDraw
5.1. This is because method-level false positives within a given candidate
decrease the scores of this candidate when the role-based computation is
applied. In contrast, the candidate-based computation approach does not
penalize the tools for misrecognizing some method role players.

Achieved Speed. All speed measurements were carried out on a Dell
Precision 370 desktop computer equiped with a 3,6 GHz quadcore CPU and
2 GB of RAM running Windows XP SP 3, Eclipse 3.7, SWI-Prolog 5.11.29
and JTransformer 2.9.3. The response times were measured automatically
for the tools downloaded with the source code (DPJF, Ptidej and SSA) and
manually for PINOT and Fujaba. Each tool was executed ten times on each
benchmark and the medians are reported.

Total run-time. Fig. 9.2.6a and 9.2.6d show the total time that a
tool needs for one complete run. This includes initialization (parsing of the
project, creating of the internal representation) and query time (searching
for pattern candidates). The figures show that PINOT and SSA are the two
fastest tools. However, PINOT detected 17 patterns? while SSA and all the
other tools where selectively run on just 5 patterns. Thus, when running for
the exactly same set of patterns, PINOT is presumably the fastest tool on
all the benchmarks.

DPJF comes third, clearly outperforming Fujaba and Ptidej. This is
remarkable, given its significantly better precision and recall. This might be

2PINOT cannot be run selectively just for certain patterns.



9.2. DISCUSSION OF RESULTS FOR PRECISION AND RECALL 118

100 1 100

90 - 90

80 80

70 4 70

60 - 60 -

50 50

40 - 40

30 4 30 +

20 4 20 +

10 10 +

0 - [

Fujaba PINOT PTIDEJ SSA DPJF Fujaba PINOT PTIDEJ SSA DPJF
M Precisions(R) M Precisions(C) M Recalls(R) ™ Recalls(C)

(A) The Composite Pattern (JHotDraw 5.1)

100 100

90 90

80 80

70 70

60 60

50 50

40 40

30 + 30

20 20

10 10

0+ 0

Fujaba PINOT PTIDEJ SSA DPJF Fujaba PINOT PTIDEJ SSA DPJF
m Precision(R) ™ Precision(C) m Recall(R) mRecall(C)

(B) The Observer pattern (JHotDraw 6.0)

100 100
90 90
80 80
70 70
60 60
50
40 E
30 i
20 1
10 - 1

0 - . 4

PINOT SSA DPJF PINOT SSA DPJF

M Precision(R) M Precision(C) B Recall(R) ™ Recall(C)

(¢) The Observer pattern (AWT 1.14)

Ficure 9.2.3. Candidate-Based vs. Role-Based Accuracy
Computation (Excerpt 1).

an indication of the immaturity of the base technologies employed in the re-
viewed tools: Fujaba uses graph transformation and Ptidej uses explanation-
based constraint solving. Both technologies are much younger than Prolog
and are apparently still lacking compilers and run-time systems that could
compete with top Prolog compilers. If Fujaba and Ptidej are disregarded, the
third position of DPJF after Pinot and SSA appears to confirm the common
wisdom that improving precision and recall adversely affects speed.



100
90
80
70
60
50
40
30
20
10

100
90
80
70
60

50 -+
40 -
30 +
20
10

100
90
80
70
60
50
40
30
20
10

9.2. DISCUSSION OF RESULTS FOR PRECISION AND RECALL 119

100 +
90 -
80 -
70 +
60
50 -+
40 -+
30 +
4 20
4 10 -
4 ; ; 0 -

PINOT PTIDEJ DPJF

m Precision(R) M Precision(C)

PINOT PTIDEJ DPJF

mRecall(R) ® Recall(C)

(A) The CoR pattern (JavalO 1.4)

PINOT DPJF

M Precision(R) M Precision(C)

PINOT DPJF

m Recall(R) mRecall(C)

(B) The CoR pattern (AWT 1.14)

100
90
80
70
60

PINOT SSA DPJF

® Precision(R) ™ Precision(C)

PINOT SSA DPJF

m Recall(R) ® Recall(C)

(c¢) The Proxy pattern (AWT 1.14)

FiGURrRE 9.2.4. Candidate-Based
Computation (Excerpt 2).

vs. Role-Based Accuracy

Startup time. The goal was to investigate whether the above result also
holds when differentiating the speed of initialisation and of the real analysis.
Fig. 9.2.6b shows the initialization time of DPJF, SSA and Ptidej®. Com-
parison with Fig. 9.2.6a reveals that most of SSA’s and DPJF’s run-time is
spent on initialization. This observation does not hold for Ptidej. Comparing

assistance.

3Great thanks to the authors of SSA for providing the source code and the necessary



9.2. DISCUSSION OF RESULTS FOR PRECISION AND RECALL 120

100

PINOT PTIDEJ SSA DPJF PINOT PTIDEJ SSA DPJF

m Precision(R) M Precision(C) mRecall(R) ® Recall(C)

(A) The Decorator pattern (JHotDraw 6.0)

100
90
80
70 +
60
50 -+
40 -
30 +
20
10

PINOT PTIDEJ SSA DPJF PINOT PTIDEJ SSA DPJF

M Precision(R) M Precision(C) m Recall(R) mRecall(C)

(B) The Decorator pattern (Java 10 1.4)

100 100
90 - 90
80 80
70 70
60 - 60
50 - 50 -
40 - 40
30 4 30 4
20 + 20
10 10
0 - T T 0 -

PINOT SSA DPJF PINOT SSA DPJF

 Precision(R) M Precision(C) mRecalls(R) B Recalls(C)

(c) The Decorator pattern (AWT 1.14)

Ficure 9.2.5. Candidate-Based vs. Role-Based Accuracy
Computation (Excerpt 3).

SSA and DPJF, the startup time of DPJF is clearly slower since DPJF gen-
erates the full representation of the underlying program. This is a problem
that DPJF inherits from the current JTransformer version. However, when
DPJF is shut down, the representation is cached on disk so that every future
restart only reloads the representation and is thus significantly faster (com-
pare the rows “DPJF Reload” and “DPJF Generate”). Still, the restart time
of DPJF is slower by a factor of 3 to 20 than the startup time of SSA. This
is because SSA is a specialized tool that only creates an internal model for
the program elements that it needs, whereas JTransformer always creates



9.2. DISCUSSION OF RESULTS FOR PRECISION AND RECALL

Load and query all evaluated patterns

Argo | Team

JHD5 | JHD6 |JavalO| AWT UI\EIL Core

Fujaba 60,5 | 1799 | & 6 |600,2| 502
Pinot (all) 1,0 6,1 2,1 17,3 | 55,1 4,0
Ptidej 40,0 | 99,0 9,1 & & 16,0
SSA 1,5 8,3 3,0 15,7 | 35,2 0,9
DPJF 5,6 19,7 6,3 54,1 | 76,1 6,9

(A) Time for initialisation and analysis

P

=

eprocessing (seconds)

JHDS | JHD6 |Javalo| awt | ArEC | Team

UML | Core
Ptidej Load 2,235 4,201 (2,649 | & 6 |5984
SSA Load 0,795 | 4,201 | 0,951 | 2,126 | 9,94 | 0,73

DPJF Reload 4,002 | 14,05 | 5,069 | 39,96 | 55,06 | 5,984
DPJF Generate 35 150 49 390 550 60

(B) Initialization time

Query all evaluated patterns

Argo | Team

JHD5 | JHD6 |JavalO | AWT UML | Core

Ptidej 37,7 | 94,8 6,4 & & 10,0
SSA 0,7 4,1 2,0 13,6 | 25,3 0,2
DPJF 1,6 &7 1,2 14,2 | 21,0 0,9

(¢) Pure analysis time

—&— Pinot (all)
Ptidej

—&— SSA

== DPJF

JHD5 JHD6 JavalO AWT Argo Team
UML  Core

() Time for initialisation and analysis

100
90
80 3
70 —
60
50 +— Ptidej
40 —&— SSA

30

¢ DPJF
20+——
0 +————— —
0 - —

JHD5 JHD6 JavalO AWT Argo Team
UML Core

(E) Pure analysis time

F1GURE 9.2.6. Response times of each tool for detecting all
evaluated patterns. In the tables, the fastest time per project
is red and a bomb indicates that the tool crashed on that
project. In the graphs, Fujaba is not shown since it is an order
of magnitude slower than most other tools, which would have
distorted the graphs. Pure analysis time is indicated only for
the tools for which it can be measured separately.

121



9.2. DISCUSSION OF RESULTS FOR PRECISION AND RECALL 122

CoR + Decorator + Proxy Observer + Composite
Argo | Team Argo | Team
JHD5 | JHD6 |JavalOo | AWT UML | Core JHD5 | JHD6 |JavalO | AWT UML | Core
Ptidej 5,9 24,9 4,1 & & 2,7 31,8 | 69,9 2,3 & & 7,3
SSA 0,2 1,1 1,0 3,6 51 0,1 0,5 3,0 1,0 10,0 | 20,1 0,1
DPJF 1,1 3,9 1,0 7,0 9,0 0,5 0,5 1,7 0,3 71 12,1 0,4

FiqurE 9.2.7. Query times by pattern group. Shortest time is red.

a full representation of the entire program (including even comments and
referenced byte code) since it cannot know real needs of a client application.

Query time. Fig. 9.2.6c and 9.2.6e show the pure query times for DPJF,
SSA and Ptidej. The results clearly refute the conjecture that better quality
implies lower speed: Obviously, DPJF is competing with SSA for the top
position.

Query time per pattern group. Further refining the findings provided
in the previous sections, Fig. 9.2.7 compares the query-time of Ptidej, SSA
and DPJF when run selectively for individual pattern groups. The numbers
indicate the time for detecting all candidates of all patterns in the respective
group on a given project. Again, there is no clear winner. For Observer and
Composite, DPJF is the fastest almost everywhere except for Eclipse Team
Core. When detecting Decorator, CoR and Proxy candidates, SSA is the
fastest almost everywhere except for JavalO (where DPJF is equally fast).

It should be noted that when tools are executed on the same benchmark,
the response time of DPJF on the second and subsequent runs is at least
10% lower than the response time on the first run (which is the maximal
one among all ten runs, see Appendix B for more details). This might be
explained by at least one of the following reasons:

(1) DPJF precomputes and caches the subtyping and ownership re-
lations (and possibly control - and data flow relations) which are
reused later.

(2) SWI-Prolog maintains its internal cache where some computation
results are stored.

This issue is currently under investigation.

Incremental update. DPJF (thanks to the JTransformer infrastruc-
ture) supports incremental update: If a file is changed at run-time, only the
related part of the factbase is updated, with no noticeable delays. In all but
its very first run during an Eclipse session DPJF will therefore incur only
the pure query time from Fig. 9.2.6c. To the best of the author’s knowl-
edge, none of the other tools supports incremental update. They all need to
re-parse the entire project for each new analysis, incurring on each run the
total run-time from Fig. 9.2.6a.

DPJF vs. the Data fusion approach. In the data fusion approach
presented in Chapter 4 handling of common witnesses, joint recognition and



9.2. DISCUSSION OF RESULTS FOR PRECISION AND RECALL 123

disagreement appears to be extremely dependent on the particular pattern
under study, prohibiting a unified approach that could be automated. DPJF,
in contrast, treats all collaborational patterns automatically and uniformly.
Treating creational patterns differs only slightly; necessary adaptation can
be quickly done.

The accuracy delivered by DPJF is more precise than the one delivered
by data fusion (see Fig. 4.7.1 ). This happens because in DPJF more mature
control sets were used. In addition, DPJF does not rely on (possibly wrong)
judgements of other tools.

Threats to Validity. The strive for avoiding overfitting by including
non-standard projects into the evaluation bears the risk that there are no
reference evaluations of these projects yet. So other researchers might dis-
agree with the judgements presented in the thesis. To tackle this threat the
results to the public DPB repository of Arcelli, Zanoni and Caracciolo [5]
will be made available so that other researchers can assess them.

Crashes also pose a threat to validity. Fujaba crashed when processing
AWT 1.3 and Ptidej crashed when processing AWT 1.3 and Argo UML 0.18.
It is believed that in both cases the crashes occur due to bugs in the tools.
Fujaba delivers the error message "Cannot parse the files” without providing
any details. Ptidej crashes because the Java exceptions
padl.kernel.exception.Model Declaration Exception and
java.lang.reflection. InvocationT arget Exception are unhandled. This in-
formation might assist the authors of these tools in bug fixing.



Part 4

Related Work and Conclusions



CHAPTER 10

Related Work

10.1. Efficient Implementations of Behavioral Analyses

Sridharan [62] mentions the following points that characterize behavioral
analyses in real program comprehension tasks:

(1) Demand-driven - behavioral analyses are performed only when struc-
tural analyses yield a low precision.

(2) Limited analysis scope - the set of relevant methods whose actions
consitute the relevant behavior is usually limited.

Given all of the above factors, the following optimizations are suggested to
tackle the above mentioned points:

(1) Behavioral analyses are performed only when needed. First try to
solve a situation using a fast structural analysis. If the result is
imprecise, feed it into a behavioral analysis module.

(2) Refinement-based algorithms. Efficiency can further be increased
by starting with a cheap field-based analysis and refining it incre-
mentally towards more and more detailed one until sufficient preci-
sion for answering a particular question is achieved. Then the anal-
ysis can be stopped, without having to explore all possible paths in
a call or flow graph.

(3) On-the fly algorithms. The mutual dependency of points-to analysis
precision on call graph precision can be addressed efficiently by on-
the-fly construction of the call graph during points-to analysis.

10.2. Design Pattern Detection Approaches

Pattern detection, like any information retrieval task, suffers from false
negatives and false positives. These are conflicting issues. Pattern detection
tools that apply liberal detection criteria increase recall. On the other side,
they decrease precision. In contrast, tools that apply too restrictive detection
criteria filter out many false positives, but correct occurrences may be filtered
out as well. In addition, the need for speed adversely affects precision as well
as recall. Pattern detection tools use the following techniques to improve
accuracy:

10.2.1. Improving Precision. Antoniol, Fiutem and Cristoforetti [3]
noted that false positives were delivered by pattern detection tools because
of insufficient behavioral analyses. Compared to early approaches, which

125



10.2. DESIGN PATTERN DETECTION APPROACHES 126

mainly applied static structure analyses, precision is improved in modern
approaches by additionally applying at least one of the following techniques.

e Static behavioral analyses (|58, 16]) help to approximate pro-
gram behavior more reliably thus eliminating false positives. This
is an effective but potentially expensive approach.

e Dynamic analyses (|75, 74, 47, 31]) improve precision by match-
ing selected execution traces against sequence diagrams of design
patterns. This is also effective, in particular when applied in addi-
tion to structural criteria. Its limitation lies in the impossibility to
cover all execution traces, possibly missing relvant behaviour.

e Metrics-based fingerprinting (|33, 3, 20]|) is based on the obser-
vation that certain software metrics (e.g. cohesion, coupling) reflect
the specifics of collaborations between entities in patterns. Metric-
based fingerprinting is confirmed by empirical studies that in the
presence of certain pattern occurrences the values of these metrics
reside within certain ranges. These ranges can be found manually
(|33, 3|) or using machine learning (|20]). This approach, how-
ever, works only for small programs where pattern occurrences do
not overlap. During maintenance, many unordered entities and re-
lationships are added. This leads to a lot of overlapping pattern
occurrences [48] so that metrics-based fingerprinting becomes inef-
fective.

All the techniques for improving precision essentially strengthen the con-
straints that must be fullfilled for accepting a particular candidate as an
occurrence. But some implementation variants might be missed, reducing
recall as a consequence.

10.2.2. Improving Recall. Current recall-improving techniques include:

e Decomposition of patterns into elemental design patterns (EDPs)
[36]. EDPs are so small that there are hardly any opportunities for
implementation variants. Therefore they are easily and unambigu-
ously recognized by the basic pattern detection techniques. EDPs
are used in the following tools: SPQR [36], Fujaba [71] and ED-
PDetector4Java [4].

e Using similarity between the expected and the found structure
and behaviour as a criterion (instead of precise matching). For in-
stance, the Similarity Scoring Approach (SSA, [68]) measures simi-
larity between the graph representations of the sought pattern and
of the analysed program. Columbus [20] applies machine learning
and measures similarity between the metric values of the classes got
from training and the real values. Ptidej [31] models the similarity
by letting some minor pattern-specifying constraints fail. Fujaba
[71] models the similarity by letting some subpatterns that com-
prise a given pattern to be matched not ideally.



10.2. DESIGN PATTERN DETECTION APPROACHES 127

e Supporting transitivity. SPQR [36]|, SSA [68] and Ptidej [31]
supports the transitive subtyping relation; SPQR supports the tran-
sitive method invocation relation. D-Cubed [64] supports the tran-
sitive dataflow reachability relation.

e Allowing missing players for optional roles - the players of
some roles might be missed. For example, SSA [68] detects sev-
eral Decorator candidates in Java AW'T although these do not in-
clude program elements playing the roles CONCRETE DECORATOR
or CONCRETE COMPONENT.

e Relaxed delegation. Some tools (e.g. Pinot [58]) are restrictive
when they require relevant method calls to be executed directly on
relevant fields. The occurrences when the pointer to the delegatee is
returned by a getter method are missed. To accept such misses, DP-
Miner [16]| does not check the contents of receiver variables. SSA
[68] reduces the delegation check to the association check between
the caller and callee classes. Both simplifications increase recall
at the expense of many false alarms. These can be excluded by
checking whether the receiver variable is dataflow reachable from
the relevant field.

e Constraint relaxation is based on formulating pattern recogni-
tion as a constraint satisfaction problem, with the possibility to
relax some constraints, i.e. replacing them by weaker ones (Ptidej,
[31]). Ptidej, for example, allows LEAF role players in the Compos-
ite pattern to be interfaces instead of concrete classes.

10.2.3. Improving Speed. Antoniol, Fiutem and Cristoforetti [3] note
that checking all possible pattern candidates to detect a structural pattern
of the cardinality £ in the program consisting of n classes requires in the
worst case O(nk) steps. The authors argue that the set of possible pattern
candidates should be reduced by prior metrics-based filtering in order to de-
crease the detection complexity. The metrics-based fingerprinting approach
of Gueheneuc et al. [33] also has the effect of speeding up the detection
process by reducing the search space. Dong and Peng [16] and also Tonella
et.al. [67] use variable and class names in conjunction with concept analysis
in order to select the candidates which are more likely to be true positives.
This is a good example that reducing the pattern candidate set can lead to
better precision. If the reduction can be achieved by simple, efficient checks,
it can also improve detection speed. However this is not always the case.

Wendehals [74] notes that polymorphism and dynamic binding aggra-
vate the detection complexity and additionally lead to many false positives
if static analyses are applied only. Wendehals suggests to use run-time anal-
ysis to reduce the number of pattern candidates and discard false positives
stemming from polymorphism. However, correct pattern occurrences can be
missed since dynamic analyses cannot cover all execution traces.



10.4. BENCHMARKING AND TOOL COMPARISON 128

10.3. Specifying interactions between pattern participants

When discussing pattern specification approaches, this thesis distinguishes
the external approaches (specifications are written in some high-level lan-
guage and are accepted as the input by a pattern detection tool) and the
internal approaches (specifications are “hardwired”, i.e. constitute a part
of the design pattern tool implementation). The internal approach is used
in all pattern detection tools evaluated in Chapter 3. Among the external
approaches, the following ones are mentioned:

e Visual languages. UML http://www.omg.org/spec/UML/2.4/ is
the most frequently used visual formalism to specify pattern imple-
mentations. It was used in the specifications of Lauder et al.[46],
Wenzel et al. [76] and Kim et al. [41]. In Fujaba (Detten et al.[71])
the decomposition of patterns into simpler patterns is described
using a visual language; pattern implementations are modeled as
graphs. In the visual language developed by De Lucia et al.[47, 15]
pattern participants are modeled by entities (classes, methods) and
pattern-relevant collaborations between them are modeled as arcs
between entities.

e First-order logic languages are used in Blewitt et al. [12], Zhu et al.
[8] and Stencel et al. [64]. De Lucia et al. [15] uses first-order logic
enriched with temporal facilities when specifying pattern-relevant
collaborations.

e Other ways to model the entities playing roles in pattern-relevant
collaborations are: bit vectors (Kaczor et al. [37]) and entity-
relationship descriptions (Antoniol et al. [3]).

Note that the above approaches specify only interactions in pattern occur-
rences. Other pattern-relevant aspects such as intent or consequences are ad-
dressed more rarely. For example, Kampffmeyer et al. [38] specifies pattern
intentions using an ontology that relates design patterns with one another
and with associated design problem categories (decoupling, object creations).

10.4. Benchmarking and Tool Comparison

Sim et al. [59] stressed the positive impact of benchmarking on software
engineering research by reviewing the most important aspects and challenges
of benchmarking. They define a benchmark as "a test or set of tests used
to compare the performance of alternative tools or techniques”. A successful
benchmark must meet certain preconditions: a minimum level of maturity of
the given research area and the existence of diverse approaches in the field.

Guéhéneuc et al. [32] presented a comparative framework for pattern
detection tools. This framework compares certain qualitative aspects such
as tool user category (for example, experienced or novice users) or underlying
input (for example: is documentation required ? does an input metamodel



10.4. BENCHMARKING AND TOOL COMPARISON 129

exist?). Such framework is definitely needed because comparing pattern de-
tection tools is very difficult given that they differ in representations, output
formats and implementation techniques.

The benchmark DEEBEE (DEsign pattern Evaluation BEnchmark En-
vironment) developed by Filop et al. |25, 26] is used to provide a common
platform for reasoning about pattern occurrences and for comparing pattern
detection tools based on their results. This benchmark supports several pro-
gramming languages (Java and C++) and contains results obtained from
several pattern detection tools. This benchmark is open to the community
and freely available. The benchmark database contains the results of the fol-
lowing pattern detection tools: Columbus (C++), Maisa (C++), and SSA
(Java). The tools were evaluated on several ad-hoc examples, on implemen-
tation variants taken from the relevant literature and on open source soft-
ware (Mozilla, NotePad-++, JHotDraw, JRefactory and JUnit). Occurrences
manually recovered by individual researchers as well as candidates obtained
from pattern detection tools can be added to the database and verified by
experienced developers. The graphical user-friendly interface provides nec-
essary assistance.

Like DEEBEE, the benchmark DPB http://essere.disco.unimib.it:
8080/DPBUWeb/ is also used to evaluate pattern occurrences and to compare
pattern detection tools based on their results. This benchmark contains
evaluated pattern occurrences and candidates obtained from two pattern
detection tools written by the developers of this benchmark that employ only
structural program analyses. These tools were evaluated on a wide variety of
Java projects (simple ones like JHotDraw as well as real-life applications like
JRefactory 2.6 and PMD 1.8). Occurrences recovered by individual experts
and candidates obtained from pattern detection tools can be added to the
database and evaluated using a user-friendly interface.

The benchmark P-Mart http://www.ptidej.net/downloads/pmart/ is
a repository that keeps pattern occurrences found in several Java reposito-
ries. The identification was done by manually verifying the results of Ptide;j.
Ptidej was executed on the repositories of various sizes and complexities:
simple repositories that contain mostly straightforwardly implemented oc-
currences (such as JHotDraw 5.1 and 6.0, JUnit 3.7) as well as repositories
that represent real big scientific applications and contain quite unusual pat-
tern occurrences (such as PMD 1.8, Nutch 0.4). P-Mart stores results in the
XML format.

Petterson et al. [54] summarized problems and challenges occurring dur-
ing pattern detection tool evaluation and performed an extensive survey of
pattern detection approaches. As an example the pattern detection tool
CrocoPat http://wuw.sosy-1lab.org/ dbeyer/CrocoPat/index.html was
evaluated on the Java libraries SWT and Swing, detecting Singleton and
Observer patterns. The results were saved in the benchmark DPDES. The
main goal of this review was to make accuracy measurements more compa-
rable. The survey of Pettersson clearly shows that the preconditions for a



10.5. COMPILING TEST SETS 130

successful pattern detection benchmark - namely, a minimum level of matu-
rity of the given research area and the existence of diverse approaches in the
field - are met. A commonly agreed benchmark was suggested as a possible
way to target all the above mentioned problems.

Dong et al. [17] compiled a thorough review of design pattern mining
techniques. This review was built by analyzing of relevant articles, with-
out running pattern detection tools. Different aspects of pattern detection
approaches were compared: underlying program analysis (structural vs. be-
havioral, static vs.dynamic), supported programming languages (C+-+, Java,
etc.), system representation (AST, matrix, etc.) and so on. The authors ob-
served that different pattern detection approaches render different results.
These observations were experimentally confirmed in Chapter 3 and served
as the motivation for the data fusion approach (Chapter 4).

Note that all the benchmarks mentioned above (DEEBEE, P-Mart and
DPDES) were formed by evaluating of pattern detection tools that use sim-
ilar pattern detection techniques (for example, static structural analyses
in DEEBEE) or using one tool at all (Ptidej in P-Mart and Crocopat in
DPDES). This thesis contains an extensive evaluation of pattern detection
tools that employ complementary pattern detection techniques (static vs.
dynamic analysis; structural vs. behavioral analyses) and discusses the re-
sults with the authors of reviewed pattern detection tools and related articles.

10.5. Compiling Test Sets

Establishing a complete test set is a complicated, often unrealistic task.
Ideally, to understand the intent of a particular occurrence, one needs to
communicate directly to the author of this occurrence or to get a detailed
documentation. These sources of information are usually unavailable. Pet-
tersson et al. [53| and Dong et al. [17]| observe that many repositories
usually lack documentation. The situation is aggravated in big benchmarks
that come with dependent libraries; finding all pattern occurrences is a too
heavy task for a single human team.! Evaluating five different pattern de-
tection tools experimentally, Kniesel et al. |17, 42| confirm experimentally
the above mentioned observations.

Pattern detection experts typically develop individual test sets as follows:

e Pick straightforwardly implemented pattern occurrences with clear
intent from well-discussed repositories (like JHotDraw http://www.
jhotdraw.org/, discussions can be found in [18, 57|. This ap-
proach is taken, for example, in SSA [68] and PINOT [58].

e Use ad-hoc examples (for example, example code written by stu-
dents or taken from book (Wang et al. [72]).

11 have found quite non-trivial occurrences even in widely known and well-discussed
code repositories such as Java 1O http://oreilly.com/catalog/javawt/book/index.
html and JHotDraw http://www.jhotdraw.org/.



10.6. DATA FUSION 131

e Use occurrence sets from well-documented in-house projects (e.g.
the authors of SPQR [36] collaborated with the authors of the Killer
Widget library that was used for testing).

10.6. Data Fusion

To the best of the author’s knowledge, the data fusion approach provided
in Chapter 4 is the first one that investigated an approach to design pattern
detection based on data fusion. However, the idea of applying data fusion in
software engineering is not entirely new. For instance, Poshyvanyk et.al [56]
suggest using data fusion to detect features in big programs (for example,
for bug finding). They suggest to combine the outputs of the static-analysis-
based and the dynamic-analysis-based concept detection tools. That paper
partly inspired the approach from Chapter 4 that went one step further by
combining the output of tools that already combine different techniques.



CHAPTER 11

Conclusions and Future Work

Main Conclusions. Behavioral aspects form the most crucial part of
design pattern interactions and are more complicated than the structural
ones. Joint efforts and discussions among several scholars were needed to col-
lect a representative set of pattern occurrences and to capture their behavior
using a generic specification framework (the Pattern Interaction Framework).
This can be used as a basis for reasoning and comparing pattern occurrences
and detection techniques.

The thesis presents a pattern detection tool DPJF that implements the
concepts of the Pattern Interaction Framework. DPJF yields very high ac-
curacy. False positives are discarded by the constraints that represent the
behavioral characteristics. False negatives are largely avoided by relaxations
of other constraints and, in particular, deeper exploration of transitive rela-
tionships.

DPJF demonstrated that a pattern detection algorithm based on a static
behavioral analyses can be efficiently implemented while at the same time
delivering very high accuracy. Practical observations show that scopes of be-
havioral analyses and of transitive relation depths are subject to empirically
motivated limits. Together with a fine grained caching strategy, it makes the
query time of DPJF faster than several of the existing ones, in spite of ideal
precision and significantly enhanced recall. So DPJF has achieved a substan-
tial advance in the state of the art of design pattern detection by improving
precision and recall while keeping up with the fastest existing tools.

In such a way, DPJF removes several key obstacles that prevented pro-
fessional developers from using pattern detection tools: bad precision, recall
and speed. It is possible now to conduct empirical validations of the motiva-
tion behind pattern detection whereas at the same time investigating other
factors that might also prevent adoption of pattern detection (e.g. belief that
detection of patterns is of limited value, questioning of patterns in general).

Beyond the techniques for improving precision, recall and speed, the
state of the art was also advanced by a methodological contribution: A more
precise computation for precision and recall that assigns individual precisions
and recall values to each reported candidate by counting its (reported and
correct) role assignments.

Limitations of the current approach. At the theoretical level, only
five collaborational patterns were specified using the framework provided in

132



11. CONCLUSIONS AND FUTURE WORK 133

Chapter 7. In addition, the framework only collaborational pattern specifi-
cations.

Some constraints should be refined taking into account the recent ob-
servations. For example, in the Control / Data Flow ordering constraint
(Sec. 7.3) the data flow leading to the update of “Current State” field can
be triggered not only within “setter methods”.

At the practical level, DPJF supports only a few pattern specifications
and a linuted number of implementation variants.

Ongoing work. The ongoing work is focused on interfacing DPJF to
the public DPB design pattern benchmark repository [22]|. To guarantee that
the recall values computed by DPJF are based on validated test sets there
is ongoing work on comparison the results obtained from DPJF’s results to
the results from DBP. In addition, the DPJF output is to be converted to
the DBP format, so that other researchers can easily explore, verify and
annotate DPJF results even without using DPJF.

Mid- and long-term continuations of the research outlined in the thesis
include:

e Improving and developing DP.JF:

— Extending the set of supported design patterns and various
implementation variants. In particular, creational patterns are
to be specified.

— Exploring further trade-offs between precision, recall and speed.

— Experimenting with the underlying infrastructure - for exam-
ple, the newest updates of JTransformer and SWI-Prolog.

— Making DPJF collaborate with other software comprehension
modules supported by JTransformer. For example, pattern
candidates produced by DPJF can be fed into bad smell detec-
tors which use the correlation between design patterns and bad
smells in order to make more accurate judgements. This issue
is being investigated in the ROOTS group http://roots.iai.
uni-bonn.de/research/.

— Supporting a user-friendly graphical interface that not only re-
ports judgements but also advises a programmer how to trans-
form false candidates into proper occurrences. JTransformer
already includes the implementation of a permanently active
development assistant that accepts judgments about wrong,
incomplete or not recommended software artifacts and high-
lights them in a user-friendly graphical viewer. This advisory
approach is a completely novel approach in software compre-
hension, pioneering the step from automated software compre-
hension to automated design improvement.

e Investigating the usage of auxiliary information (e.g. program ele-
ment names, bad smells) witnessing the existence of design patterns.
This is actual when detecting patterns whose solutions do not have



11. CONCLUSIONS AND FUTURE WORK 134

unique structural or behavioral characteristics (such as Adapter,
Command, Builder, Flyweight) Additional information helps to un-
derstand the intention of a programmer thereby increasing the like-
lihood that a given candidate is a proper occurrence.



(1]

(2]

(3]

[4]
[5]

[6]

(7]

(8]
[9]
[10]

[11]

[12]
[13]
[14]

[15]

[16]

Bibliography

Hervé Albin-Amiot and Yann-Gaél Guéhéneuc. Design patterns: A round-trip. In
Proceedings of 11th ECOOP Workshop for PHD students in Object- Oriented Systems,
June 2001.

Hervé Albin-Amiot and Yann-Gaél Guéhéneuc. Meta-modeling design patterns: ap-
plication to pattern detection and code synthesis. In Proceedings of First ECOOP
Workshop on Automating Object-Oriented Software Development Methods, 2001.

G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern recovery in object-
oriented software. In TWP(C’98, page 153, Washington, USA, 1998. IEEE Computer
Society.

Francesca Arcelli, Stefano Masiero, and Claudia Raibulet. Elemental design patterns
recognition in java. STEP’05, 0:196-205, 2005.

Francesca Arcelli, Marco Zanoni, and Andrea Caracciolo. A benchmark platform for
design pattern detection. In 2nd International Conference on Pervasive Patterns and
Applications (PATTERNS’10), 2010. Lisbon, Portugal, November 21-26.

Lerina Aversano, Gerardo Canfora, Luigi Cerulo, Concettina Del Grosso, and Massi-
miliano Di Penta. An empirical study on the evolution of design patterns. In ESEC-
FSE’07, pages 385-394, New York, USA, 2007. ACM.

Zsolt Balanyi and Rudolf Ferenc. Mining Design Patterns from C+—+ Source Code.
In Proceedings of the 19th International Conference on Software Maintenance (ICSM
2003), pages 305-314. IEEE Computer Society, September 2003.

Tan Bayley and Hong Zhu. Formal specification of the variants and behavioural fea-
tures of design patterns. J. Syst. Softw., 83(2):209-221, 2010.

Kent Beck and Ward Cunningham. Using Pattern Languages for Object-Oriented
Programs. Technical report, September 1987.

Kent Beck and Erich Gamma. Contributing to Eclipse: Principles, Patterns, and
Plug-Ins. Addison-Wesley, Inc., Secaucus, NJ, USA, 1st edition, 2003.

Alexander Binun and Giinter Kniesel. Joining forces for higher precision and recall of
design pattern detection. In Proceedings of the 16th Conference on Software Mainte-
nance and Reengineering (CSMR 2012), March 27-30, Washington, DC, USA, 2012.
IEEE Computer Society.

Alex Blewitt, Alan Bundy, and Ian Stark. Automatic verification of java design pat-
terns. In ASE’01, page 324, Washington, DC, USA, 2001. IEEE Computer Society.
lain Craig. The Interpretation of Object- Oriented Programming Languages. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2nd edition, 2001.

Bruce Croft, Donald Metzler, and Trevor Strohman. Search Engines: Information
Retrieval in Practice. Addison Wesley, 2009.

Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and Michele Risi. A two
phase approach to design pattern recovery. In CSMR 07, pages 297-306, Washington,
DC, USA, 2007. IEEE Computer Society.

Jing Dong, Dushyant S. Lad, and Yajing Zhao. DP-Miner: Design pattern discovery
using matrix. In ECBS’07, pages 371-380, Washington, USA, 2007. IEEE Computer
Society.

135



[17]
[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

29]

[30]

[31]

32]

[33]

[34]

[35]

BIBLIOGRAPHY 136

Jing Dong, Yajing Zhao, and Tu Peng. A review of design pattern mining techniques.
IJSEKE, 2008.

D.Riehle. Composite design patterns. In OOPSLA’97, pages 218-228. ACM Press,
1997.

Amnon H. Eden and Rick Kazman. Architecture, design, implementation. In ICSE
"03: Proceedings of the 25th International Conference on Software Engineering, pages
149-159, Washington, DC, USA, 2003. IEEE Computer Society.

Rudolf Ferenc, Arpad Beszedes, Lajos Fiilop, and Janos Lele. Design pattern mining
enhanced by machine learning. In TCSM’05, pages 295 304, Washington, USA, 2005.
IEEE Computer Society.

Rudolf Ferenc, Juha Gustafsson, Laszl6 Miiller, and Jukka Paakki. Recognizing De-
sign Patterns in C++ programs with the integration of Columbus and Maisa. Acta
Cybernetica, 15:669-682, 2002.

Francesca Arcelli Fontana, Andrea Caraciolo, and Marco Zanoni. DPB: A benchmark
for design pattern detection tools. In Proceedings of the 16th Conference on Software
Maintenance and Reengineering (CSMR 2012), March 27-80, Washington, DC, USA,
2012. IEEE Computer Society.

Francesca Arcelli Fontana, Stefano Maggioni, and Claudia Raibulet. Design patterns:
a survey on their micro-structures. Journal of Software Maintenance and Evolution:
Research and Practice, 2011.

Lajos Jeno Fiilop. Evaluating and Improving Reverse Engineering Tools. Phd thesis,
University of Szeged, Institute of Informatics, May 2011.

Lajos Jeno Fiilop, Rudolf Ferenc, and Tibor Gyimothy. Towards a benchmark for
evaluating design pattern miner tools. In CSMR ’08: Proceedings of the 2008 12th
European Conference on Software Maintenance and Reengineering, pages 143-152,
Washington, DC, USA, 2008. IEEE Computer Society.

Lajos Jen6 Fiilop, Arpad Ilia, Adam Zoltan Vegh, and Rudolf Ferenc. Comparing
and evaluating design pattern mining tools. In Proceedings of SPLST ’07, 14th June
2007.

FErich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison Wesley, 1994.

G.Kniesel and A.Binun. Standing on the shoulders of giants - a data fusion approach
to design pattern detection. In Andrian Marcus and Rainer Koschke, editors, ICPC
2009. IEEE, 2009.

Yann-Gaél Guéhéneuc. A reverse engineering tool for precise class diagrams. In CAS-
CON’04, pages 28 41. IBM Press, 2004.

Yann-Gaél Guéhéneuc, Herve Albin-Amiot, Remi Douence, and Pierre Cointe. Bridg-
ing the gap between modeling and programming languages. Technical report, Ecole
des Mines de Nantes, 2002.

Yann-Gaél Guéhéneuc and Narendra Jussien. Using explanations for design-patterns
identification. In IJCAI’'01, pages 57-64, Seattle, USA, August 2001. AAAT Press.
Yann-Gaél Guéhéneuc, Kim Mens, and Roel Wuyts. A comparative framework for
design recovery tools. In Proceedings of the Conference on Software Maintenance and
Reengineering, pages 123-134, Washington, DC, USA, 2006. TEEE Computer Society.
Yann-Gaél Guéhéneuc, Houari Sahraoui, and Farouk Zaidi. Fingerprinting design
patterns. WCRE, 0:172-181, 2004.

Dirk Heuzeroth, Thomas Holl, Gustav Hogstrom, and Welf Lowe. Automatic de-
sign pattern detection. In IWPC ’03: Proceedings of the 11th IEEE International
Workshop on Program Comprehension, page 94, Washington, DC, USA, 2003. IEEE
Computer Society.

J. Smith and D. Stotts. An elemental design pattern catalog. Technical Report tr02-
040, The University of North Carolina, CS Department, December 2003.



[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

BIBLIOGRAPHY 137

J.Smith and D.Stotts. SPQR:flexible automated design pattern extraction from source
code. In ASE’03. IEEE, 2003.

Olivier Kaczor, Yann-Gaél Guéhéneuc, and Sylvie Hamel. Efficient identification of
design patterns with bit-vector algorithm. In CSMR’06, pages 175-184, Washington,
USA, 2006. IEEE Computer Society.

Holger Kampffmeyer and Steffen Zschaler. Finding the pattern you need: The design
pattern intent ontology. In Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and
Frank Weil, editors, MoDELS, volume 4735 of Lecture Notes in Computer Science,
pages 211 225. Springer, 2007.

Joshua Kerievsky. Refactoring to Patterns. Pearson Higher Education, 2004.
Dae-Kyoo Kim, Robert France, Sudipto Ghosh, and Eunjee Song. A role-based meta-
modeling approach to specifying design patterns. In COMPSAC ’03: Proceedings of
the 27th Annual International Conference on Computer Software and Applications,
page 452, Washington, DC, USA, 2003. IEEE Computer Society.

Dae-Kyoo Kim and Lunjin Lu. Inference of design pattern instances in uml models
via logic programming. In ICECCS ’06: Proceedings of the 11th IEEE International
Conference on Engineering of Compler Computer Systems, pages 47-56, Washington,
DC, USA, 2006. IEEE Computer Society.

Giinter Kniesel and Alexander Binun. A data fusion approach to design pattern
detection. Technical report TAT-TR-2009-02, ISSN 0944-8535, CS Department III,
Uni.Bonn, Germany, January 2009.

Giinter Kniesel, Alexander Binun, Péter Hegedus, Lajos Jeno Fiilop, Alexander
Chatzigeorgiou, Yann-Gagl Guéhéneuc, and Nikolaos Tsantalis. DPDX-towards a
common result exchange format for design pattern detection tools. In Rafael Capilla,
Rudolf Ferenc, and Juan C. Dueias, editors, CSMR, pages 232-235. IEEE, 2010.
Giinter Kniesel, Alexander Binun, Péter Hegedus, Lajos Jeno Fiilop, Nikolaos Tsan-
talis, Alexander Chatzigeorgiou, and Yann-Gaél Guéhéneuc. A common exchange
format for design pattern detection tools. Technical report TAI-TR-2009-03, ISSN
0944-8535, CS Department III, Uni.Bonn, Germany, October 2009.

Giinter Kniesel, Jan Hannemann, and Tobias Rho. A comparison of logic-based in-
frastructures for concern detection and extraction. In Proceedings of LATE ’07, New
York, USA, 12th March 2007. ACM.

Anthony Lauder and Stuart Kent. Precise visual specification of design patterns.
In ECCOP °98: Proceedings of the 12th European Conference on Object-Oriented
Programming, pages 114-134, London, UK, 1998. Springer-Verlag.

Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and Michele Risi. Design
pattern recovery through visual language parsing and source code analysis. Journal
of Systems and Software, 82(7):1177-1193, 2009.

William B. McNatt and James M. Bieman. Coupling of design patterns: Common
practices and their benefits. In COMPSAC, pages 574-579, 2001.

K. Meinke and J. V. Tucker, editors. Many-sorted logic and its applications. John
Wiley & Sons, Inc., New York, NY, USA, 1993.

Janice Ka-Yee Ng, Yann-Gaél Guéhéneuc, and Giuliano Antoniol. Identification of
behavioral and creational design patterns through dynamic analysis. JSME, 22(8),
2010. submitted.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Anal-
ysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

Jorg Niere, Jorg P. Wadsack, and Lothar Wendehals. Handling large search space in
pattern-based reverse engineering. In IWPC’03, page 274, Washington, USA, 2003.
IEEE Computer Society.

Niklas Pettersson, Welf Lowe, and Joakim Nivre. On evaluation of accuracy in pattern
detection. In First International Workshop on Design Pattern Detection for Reverse
Engineering (DPD/RE’06), October 2006.



[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]
[71]

[72]

BIBLIOGRAPHY 138

Niklas Pettersson, Welf Lowe, and Joakim Nivre. Evaluation of accuracy in design
pattern occurrence detection. IEEE Trans. Softw. Eng., 36:575-590, July 2010.
Tom&s Poch and Frantigek Plagil. Extracting behavior specification of components
in legacy applications. In Proceedings of the 12th International Symposium on
Component-Based Software Engineering, CBSE ’09, pages 87-103, Berlin, Heidel-
berg, 2009. Springer-Verlag.

Denys Poshyvanyk, Yann-Gaél Guéhéneuc, Andrian Marcus, Giuliano Antoniol, and
Vaclav Rajlich. Feature location using probabilistic ranking of methods based on
execution scenarios and information retrieval. IEFE TSE, 33(6):420 432, 2007.

Dirk Riehle. Describing and composing patterns using role diagrams. In Proceedings of
the Ubilab Conference, 1996, page 452, Zuerich, Switzerland, 1996. Universitaetsver-
lag Konstanz. Pages 137-152.

Nija Shi and Ronald A. Olsson. Reverse engineering of design patterns from java
source code. In ASE’06, pages 123-134, Washington, USA, 2006. IEEE Computer
Society.

Susan Elliott Sim, Steve Easterbrook, and Richard C. Holt. Using benchmarking to
advance research: a challenge to software engineering. In Proceedings of the 25th In-
ternational Conference on Software Engineering, ICSE 03, pages 74 83, Washington,
DC, USA, 2003. IEEE Computer Society.

J. Smith and D. Stotts. SPQR: Flexible automated design pattern extraction from
source code. Technical report TR03-016, The University of North Carolina, CS De-
partment, May 2003.

Jason Smith and David Stotts. Elemental design patterns and the rho-calculus: Foun-
dations for automated design pattern detection in SPQR. Technical report TR03-032,
The University of North Carolina, CS Department, September 2003.

Manu Sridharan. Refinement-Based Program Analysis Tools. PhD thesis, EECS De-
partment, University of California, Berkeley, Oct 2007.

Manu Sridharan and Rastislav Bodik. Refinement-based context-sensitive points-to
analysis for java. SIGPLAN Not., 41(6):387-400, 2006.

Krzysztof Stencel and Patrycja Wegrzynowicz. Detection of diverse design pattern
variants. In APSEC ’08: Proceedings of the 2008 15th Asia-Pacific Software En-
gineering Conference, pages 25-32, Washington, DC, USA, 2008. IEEE Computer
Society.

Bjarne Stroustrup. The C++ Programming Language (Third Edition). Addison Wes-
ley, 2004.

Frank Tip and Jens Palsberg. Scalable propagation-based call graph construction
algorithms. In OOPSLA °00: Proceedings of the 15th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 281-293,
New York, NY, USA, 2000. ACM.

Paolo Tonella and Giuliano Antoniol. Object oriented design pattern inference. In
ICSM’99, page 230, Washington, USA, 1999. IEEE Computer Society.

Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spyros T.
Halkidis. Design pattern detection using similarity scoring. IEEE TSE, 32(11):896—
909, 2006.

David Ungar, Randall B. Smith, Craig Chambers, and Urs Hélzle. Object, message,
and performance: How they coexist in self. Computer, 25:53-64, 1992.

Marek Vokac. An efficient tool for recovering design patterns from c++ code. Journal
of Object Technology, 5(1):139 157, January 2006.

M. von Detten and M. Platenius. Improving dynamic design pattern detection in
reclipse with set objects. In Proceedings of the 7th International Fujaba Days, 2009.
Wei Wang and Vassilios Tzerpos. Design pattern detection in eiffel systems. In Pro-
ceedings of the 12th Working Conference on Reverse Engineering, pages 165—174,
Washington, DC, USA, 2005. IEEE Computer Society.



BIBLIOGRAPHY 139

[73] Patrycja Wegrzynowicz and Krzysztof Stencel. Towards a comprehensive test suite
for detectors of design patterns. In Proceedings of the ASE 2009, Auckland, New
Zealand, Nov 2009.

[74] Lothar Wendehals. Improving design pattern instance recognition by dynamic anal-
ysis. In WODA 03, Portland, USA, 2003. TEEE Computer Society.

[75] Lothar Wendehals and Alessandro Orso. Recognizing behavioral patterns at runtime
using finite automata. In WODA 06, pages 33—40, New York, USA, 2006. ACM.

[76] Sven Wenzel and Udo Kelter. Model-driven design pattern detection using difference
calculation. In Proc. of the 1st International Workshop on Pattern Detection For
Reverse Engineering (DPDJRE), co-located with 18th Working Conference on Reverse
Engineering (WCRE’06), Benevento, Italy, October 2006.



APPENDIX A

Structurally similar patterns

In addition to the forward-to-parent group, the following similarity groups
were observed:

The group consisting of the Statically Typed Proxy pattern (Section
3.4). Tt is referred to as the forward-to-sibling group.

The group consisting of the Singleton pattern. It is referred to as
the Singleton group and is characterized by the following properties:
a) the Singleton type owns a static field of the type Singleton; b) a
static method owned by the Singleton type creates objects of the
type Singleton

The group consisting of the Prototype pattern. It is referred to as
the Prototype group and is characterized by the following properties:
a) a prototype class Prototype owns a field of the type Prototype;
b) a method owned by the Prototype type creates objects of the
type Prototype.

The group consisting of Observer, Interpreter, Composite and Me-
diator patterns in which dependent objects (observers, children,
colleagues) are kept in collection-typed variables. These patterns
shared the following properties: a) callee methods are invoked on
dependent objects in a loop and b) the field(s) pointing to the
dependent objects can be updated in a non-construction method.
Such a group is referred to as the update-collection-field group.
The group consisting of State, Strategy, Bridge, Mediator and 1:1
Observer patterns. Dependent objects are kept in scalar-typed vari-
ables. These patterns shared the following properties: a) callee
methods are invoked on dependent objects in a loop and b) the
field pointing to the dependent objects can be updated in a non-
construction method. Such a group is referred to as the wpdate-
scalar-field group.

The group consisting of the Abstract Factory and Factory Method
patterns referred to as the creation group. The following properties
are shared: a) factory methods owned by some "factory class” F'C
create objects of the type(s) different from FC.

The following list of similarity group EDPs was compiled:

Modify Static Field (for the Singleton group) stands for updating
of the static variable that point to the singleton object(s)

140



A. STRUCTURALLY SIMILAR PATTERNS 141

Forward(Head, Field, ForwardClass) Redirect(Head, F_|e!d, UpdateF/eIdl(Mamtamer, Field,
ForwardClass, Sibling) UpdatingMethod, ItemType)
P ead | Head UpdateField
method(...) method(...) field: ltemType
4 4 public UpdatingMethod(ltemType I)
Subtype - reflexive & | Subtype - transitive
transitive | s ;
: I |
ForwardClass ForwardClass et m field:=..., field.add(l)
method(...) method(;,) method(...)
/ next.metﬁod()

parent.method()

Create(CreatingType, CreatedType, Clone(CloningType, PrototypeField, ModifyStaticField(Owner, Field,
CreatingMethod, CreatingExpr) ClonedType, CloningMethod,CloningExpr) FieldType)
‘ CreatingType CreatedType ‘ CloningPoint j ClonedType Owner ‘ o FieldType
‘ CreatingNethod() Field:FieldTypef§---
| CloningMethod() | prototype ;
new Created(...); - prototype.clone() .. update ;:ield

F1GURE A.0.1. Similarity group EDPs

e Clone (for the Prototype group) stands for cloning of the "proto-
type” object.

e Create (in the creation group) stands for product object creations.
In addition, it is actual in in the Proxy pattern, reflecting creations
of real subject objects

e Forward (in the forward-to-parent group) stands for forwarding to
the method belonging to the supertype

e Redirect (in the forward-to-sibling group) stands for forwarding
to the method belonging to a sibling type

e Update Field is used in the update-scalar-field group and in the
update-collection-field group. It denotes possible modifications of
a field /' within a public non-construction method. If F'is scalar-
typed, the variation of the Update Field referred to as the Update
Scalar Field matches possible updates of the field pointing to the de-
pendent objects in the State, Strategy, Bridge and 1:1 Observer pat-
terns. If F'is collection-typed, the Update Collection Field matches
possible updates of the field pointing to the dependent objects.

The structure of each such EDP is presented in Figure A.0.1. Figure A.0.2.
associates similarity group EDPs with the corresponding patterns.

Note that there design patterns mentioned in [27] that do not belong to
similarity groups described in this thesis - for example, Adapter, Command,
Builder, Visitor, Flyweight. In this case mining of EDPs is omitted when
detecting these patterns.




A. STRUCTURALLY SIMILAR PATTERNS 142

 Abstract Factory, \/
Factory Method -

Create

7 Prototype

Clone
;/7 Singleton ;)

ModifyStaticField
P

"~ Decorator, Chain of
Responsibility, Dynamically.
~ TypedProxy

Forward

~ Statically Typed
Proxy -

;\\‘

4

Redirect
 Sute,Staegy,

P

/\ 1:1 Observer, Bridge, D

Update Field

////Observer, Interpreter; ) ‘,
- Composite, Mediator

FiGUure A.0.2. Using EDPs in pattern detection



APPENDIX B

Response Time Statistics

This section provides the relevant statistics (maximal and minimal value,
up and low quartile and median) computed on the query times of Ptidej, SSA
and DPJF. For these tools, query and intialization times can be computed
separately (see Section 9.2). The statistics are computed on ten runs of each
tool that are done on each benchmark from Sec. 3.1.

Figure B.0.1 (respectively, Figure B.0.2) contains six subtables that de-
scribe the query times of tools detecting the Decorator, the CoR and the
Proxy patterns (respectively, the Observer and the Composite pattern). In
each figure there is one subfigure for each benchmark. Each such subfigure
contains the statistics for each tool that is capable of detecting the patterns
from the corresponding similarity group. Columns stand for tools, rows stand
for metrics (e.g. median, quartiles).

Note that in all cases DPJF yields the maximal query time on each
benchmark and on each pattern on the first run. On subsequent runs the
query time is smaller and corresponds to the median value.

Metric Ptidej SSA DPJF Metric Ptidej SSA DPJF Metric Ptidej SSA DPJF
Maximum | 599 | 021 | 1,19 Maximum | 25,202 | 1,193 | 55 Maximum | 4,406 | 1,065 | 1,15
Median | 5,8965 | 0,2035 | 1,067 Median  |24,8945| 1,0525 | 3,9295 Median | 4,081 | 1,009 | 0,99
UpQuartile [5,94675| 0,208 |1,13575 UpQuartile | 24,916 | 1,0905 |3,95525 UpQuartile |4,10525| 1,05 | 0,994
LowQuartile |5,80475| 0,197 | 1,032 LowQuartile [24,7128|1,02275| 3,8735 LowQuartile |3,93925| 0,988 |0,97775
Minimum | 575 | 0,191 | 0,995 Minimum | 24,652 | 1,003 | 3,82 Minimum | 3,438 | 0,972 | 0,97
(A) JHotDraw 5.1 (B) JHotDraw 6.0 (c) JavalO
Metric SSA DPJF Metric SSA DPJF
Maximum 3,593 9 Maximum 5,194 10,1 Metric Ptidej SSA DPJF
Median 3,552 | 7,046 Median 5,1355 | 8,978 Maximum | 2,781 | 0,11 | 065
UpQuartile [3,56025|7,06525 UpQuartile [5,16625| 9,0305 Median | 2,705 | 0,1025 | 0,525
- - UpQuartile | 2,75 |0,10625|0,54925
LowQuartile |3,50975|7,00625 LowQuartile | 5,1105 | 8,9505 LowQuartile | 2,66975] 0.0935 | 0,539
Minimum | 3,404 | 6,926 Minimum | 5,067 | 8,919 Minimum | 2,65 | 0,09 | 0537
(p) AWT 1.14 (E) Ar- (r) Eclipse
goUML Team Core
0.18.0

F1GURE B.0.1. Response times for Decorator, Proxy and CoR

143



B. RESPONSE TIME STATISTICS 144
Metric Ptidej | SSA | DPIF Metric Ptidej | SSA | DPJF Metric | Ptidej | SSA | DPJF
Maximum | 32,109 | 0,518 0,72 Maximum | 70,113 | 3,089 | 2,997 Maximum 2,438 | 1,087 | 0,994
UpQuartile |31,9185| 0,515 | 0,527 UpQuartile [69,9943| 3,031 | 1,78 UpQuartile | 2,4115 [1,02875| 0,255
Median  [31,8235| 0,51 | 0,508 Median | 69,894 | 3,005 | 1,7465 Median | 2,345 | 1,006 | 0,2515
LowQuartile [31,6788| 0,497 | 0,492 LowQuartile | 69,773 |2,97675|1,68725 LowQuartile | 2,2855 |0,98125|0,24475
Minimum | 31,641 | 0,481 | 0,485 Minimum | 69,652 | 2,92 | 1,651 Minimum | 2,157 | 0,912 | 0,242
(A) JHotDraw 5.1 (B) JHotDraw 6.0 (¢) JavaIO
Metric SSA DPJF Metric SSA DPJF
Maximum | 10,99 | 8813 Maximum [205,143| 13,2 Metic | Pridej | SSA | oPIF
UpQuartile [10,0823| 7,1685 UpQuartile |20,8655| 12,088 Maximum | 7,359 | 0,112 1
Median  |10,0385| 7,1375 Median  |20,1235|12,0705 UpQuartile |7,30925/0,10375| 0,4098
- - Median | 7,2795 | 0,1025 | 0,3995
LowQuartile [9,93875|7,09175 LowQuartile [20,0318| 12,056 LowQuartile |7,26525|0,09675|0,39525
Minimum | 9,028 | 7,014 Minimum | 19,824 | 12,046 Minimum | 7,187 | 009 | 0381
(D) AWT 1.14 (B) Ar- (r) Eclipse
goUML Team Core
0.18.0

F1GURE B.0.2. Response times for Observer and Composite



