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Abstract

For decades drug design has primarily focused on small molecules that bind to well-formed tight

binding pockets, such as the catalytic centers of enzymes. Recently, there is increasing interest to

design compounds that disrupt or stabilize biomacromolecular interfaces (e.g. protein–protein,

protein–DNA, protein–RNA, protein–lipid interfaces). These non-traditional drug targets hold great

therapeutic potential as they govern cellular pathways. In contrast to traditional drug targets, where

computational methods are now routinely and productively used to complement experiments, the

use of computer-based approaches for the study and design of interfacial modulators is still in its

infancy.

The current thesis is a first detailed study into understanding the effects of modulators of a protein–

RNA interface and developing computer-based approaches for their design. This work focuses

on the 23S·L11 subunit of the ribosomal GTPase-associated region (GAR), a prototypic protein–

RNA interface of high relevance in the development of novel antibacterials. The GAR is the target

of naturally occuring thiopeptide antibiotics. These unique molecules are effective inhibitors of

bacterial protein synthesis, but are currently unused in human antibacterial therapy due to their low

aqueous solubility. Their mechanism of action is explored in the current thesis, enabling the design

and proposition of new chemical scaffolds targeting their binding site.

The specific challenges associated with the 23S·L11·thiopeptide system, such as the inherent

flexibility of the protein–RNA composite environment and the size and structural complexity of the

thiopeptide ligands, are addressed by a combination of computational chemistry approaches at dif-

ferent levels of granularity and a steady feedback with experimental data to validate and improve the

computational techniques. These approaches range from quantum mechanics for deriving optimized

intramolecular parameters and partial atomic charges for the thiopeptide compounds, to molecular

dynamics simulations accounting for the binding site’s flexibility, to molecular docking studies for

predicting the binding modes of different thiopeptides and derivatives. All-atom molecular dynamics

simulations were conducted, providing a detailed understanding of the effect of thiopeptide binding

at a previously unmet resolution. The findings of this work, coupled with previous experimental

knowledge, strongly support the hypothesis that restricting the binding site’s conformational flexibil-

ity is an important component of the thiopeptide antibiotics’ mode of action. With the help of an

MD-docking-MD workflow and an energy decomposition analysis crucial residues of the binding

site and pharmacologically relevant moieties within the ligand structures could be identified. A
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Abstract

4D-pharmacophore model is presented that was derived from a refined 23S·L11·thiopeptide complex

and additionally accounts for the dynamic stability of molecular interactions formed between the

antibiotic and the ribosomal binding site as the fourth dimension.

The results of this thesis revealed, for the first time, a plausable description of the thiopeptide

antibiotics’ mode of action, down to the details of their pharmacologically relevant parts and provide

a computational framework for the design of new ligands.
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1. Introduction

1.1. The Antibacterial Challenge

Today, after more than 50 years of success, too few new antibiotics are produced to replace the

ones that have become ineffective due to resistance [1]. To overcome resistance, new antibiotics

have to be introduced that are effective against the resistant mutants. In the majority of cases,

these “new” antibiotics are derivatives of a small set of well-known scaffolds [2]. However, the

modifications which can be made to an old scaffold are finite, and most of the low-hanging fruits

have been already picked [3]. Since the “Golden Age” of antibiotics discovery in the early 1960s, only

three new classes of antibiotics entered the market (see Fig. 1.1): the oxazolidinones (linezolid), the

lipopeptides (daptomycin) and the mutilins (retapamulin) [2]. Scientific challenges associated with

the discovery of novel antibiotics, and a poor return on monetary investment, have led to the exit of

many pharmaceutical companies from the field [3–6].

Resistance times become shorter. Typically, resistance occurs within just four years of approval of

new drugs [7]; in the case of the recent antibiotic linezolid it occured already in its clinical trials [8].

The inappropriate and irrational use of antimicrobial medicines provides favourable conditions

for resistant microorganisms to emerge, and spread, for example, when patients do not take the

full course of a prescribed antimicrobial or when poor quality antimicrobials are used [9]. This

high selective pressure bacteria are exposed to has led to an explosion of multidrug resistance, in

both the community and hospital settings. One of the most dangerous strains, Methicillin-resistant

Staphylococcus aureus (MRSA), is estimated to cause more than 100,000 infections each year [10]

and ∼19,000 deaths per year in the United States only (status 2007) [11]. Multidrug-resistant and

extensively drug-resistant Mycobacterium tuberculosis (MDR-TB and XDR-TB) strains are another

health threat, especially in the developing world [12]. According to recent statistics of the World Health

Organization (WHO), one third of the world’s total population is infected, of which approximately 1.7

million people die from tuberculosis each year [13]. As resistance is on the rise, the discovery of novel

antibiotics is urgent.

Antibiotic candidates that act at new targets or via distinct mechanisms/biological pathways have

the greatest potential to overcome resistance [14]. A rich source for new antibiotics are naturally

occuring antimicrobials that have evolved over many years among competing microorganisms [8].

There are few marketed synthetic antibacterial agents not descended from natural products [15, 16].

1



1. Introduction

Figure 1.1.: Innovation gap of new antibiotics introductions. Taken from Ref. 2.

Containing ’priviledged structural scaffolds’, they provide evolutionary tailored pharmacophores.

One promising class of natural products are the thiopeptide antibiotics (see Section 1.4), that possess

a remarkable activity against many severe bacterial pathogens but are currently unused in human

antibacterial therapy due to their low aqueous solubility [17]. Their mechanism of action is exploited

in the current thesis. In the following, we will take a closer look at one of the major targets for naturally

occuring antibiotics, including the thiopeptides [18]: the bacterial ribosome.

1.2. The Bacterial Ribosome as a Major Target for Antibiotics

Bacterial ribosomes are supramolecular machines which consist of almost two thirds ribosomal RNA

(rRNA) and 55 different proteins. They are composed of a large and small subunit (Fig. 1.2), called

50S and 30S, distinguished by their sedimentation constants. Each step during the bacterial protein

synthesis – initiation, elongation and termination – is targeted by different classes of antibiotics, with

the majority of them inhibiting a step associated with the elongation phase [19].

During the elongation phase, transfer RNAs (tRNAs) are moved through three different tRNA

binding sites (A, P, E) in a cyclic fashion (see Fig. 1.2). First, a complex of aminoacyl-tRNA (aa-

tRNA), elongation factor Tu (EF-Tu) and GTP is delivered to the aminoacyl (A) site. GTP on EF-Tu is

hydrolyzed to GDP + Pi . This causes EF-Tu to undergo a large conformational change and leads to its

dissociation from the complex, allowing for aa-tRNA accommodation. The ribosome is now in the

PRE-state. A peptide-bond is formed between the amino acid attached to the tRNA at the A site and

the one attached to the already present tRNA at the peptidyl (P) site. The peptide chain is thereby

transferred to the tRNA at the A site, leaving the tRNA at the P site uncharged. The translocation

reaction, shifting the peptidyl-tRNA from the A to the P site and the deacylated tRNA from the P to

2



1.2. The Bacterial Ribosome as a Major Target for Antibiotics

the exit (E) site1, is catalyzed by a second elongation factor, EF-G. Interestingly, EF-G is structurally

very similar to the tRNA of the EF-Tu·GTP·tRNA complex [21]. Binding EF-G·GTP and the hydrolysis

of GTP to GDP leads to a ratchet-like rotation of the 30S subunit relative to the 50S subunit [22, 23].

The ribosome is now in the POST-state, while the EF-G·GDP and deacylated tRNA dissociate and a

new charged tRNA can be accommodated at the A site – thus completing the cycle.

Figure 1.2.: Elongation cycle on the bacterial ribosome. Color coding: 50S subunit cyan, 30S subunit
pale yellow, elongation factors EF-Tu red, EF-G blue, tRNAs are colored according to their state: free or
complexed with EF-Tu gray, at A site magenta, at P site green, at E site yellow, exiting brown. Picture
modified after Ref. 24.

Antibiotics, such as edeines, or pactamycin, disrupt the beginning of protein biosynthesis by

inhibiting the formation of the initiation complex [19, 25]. Several other antibacterial classes disrupt

the elongation cycle at different stages by preventing tRNA accomodation (tetracyclines), peptide

bond formation (oxazolidinones), or elongation of the nascent polypeptide chain (macrolides). The

thiopeptide antibiotics thiostrepton and micrococcin (see Section 1.4) disturb the elongation process

by interferring with elongation factors, such as EF-G or EF-Tu.

Antibiotics are not only important for treating bacterial infections but also contributed a lot to

today’s understanding of ribosomal function. Structures of the ribosome or ribosomal subunits with

1This is a oversimplified description. Actually, there exist hybrid A/P and P/E states [20].

3



1. Introduction

and without bound antibiotics – as determined by X-ray crystallography, nuclear magnetic resonance

(NMR) and cryo-electron microscopy (cryo-EM) – provided a deep understanding of its structure

and function. This pioneering work was recently honored with the 2009 Nobel prize in Chemistry,

awarded to Venky Ramakrishnan, Tom Steitz und Ada Yonath.

As a result of these efforts, three functionally important sites at the ribosome could be identified: 1)

The decoding site at the 30S subunit, deciphering the anti-codon of the incoming aminoacyl-tRNA,

2) the peptidyltransferase center at the 50S subunit, the active center of the ribosome, catalyzing the

peptide bond formation, and 3) the GTPase-associated region (GAR), which binds translation factors

and stimulates their GTPase activity. The latter is the target site of thiopeptide antibiotics and subject

of the current thesis.

1.3. The GTPase-associated Region as an Unused Target in
Human Antibacterial Therapy

The GTPase-associated region (GAR) on the 70S ribosome plays a central role in peptide elongation

by providing a docking site for elongation factors and by coordinating GTP hydrolysis during protein

synthesis [26–28]. Structurally, the GAR consists of three components: 1) the sarcin-ricin loop located

in helix 95 of the 23S rRNA, 2) the ribosomal stalk, composed of the ribosomal proteins L10 and

L7/L12, and 3) the stalk base, comprising L11 and the helices H43/H44 on the 23S rRNA [29]. Unlike

other ribosomal active sites, the GAR is equally rich in rRNA and proteins. The ribosomal protein L11

is a highly conserved two-domain protein, whose C-terminal domain (L11-CTD) binds the compactly

folded RNA tightly, whereas its N-terminal domain (L11-NTD) makes only limited contacts with

RNA [30]. The detection of different orientations for L11-NTD strongly suggests that the dynamical

behavior of L11-NTD is important for its function during the ribosomal cycle by allowing interaction

with elongation and initiation factors [28, 31].

The thiopeptide antibiotics (see Section 1.4), such as thiostrepton (TS), nosiheptide (NS) and

micrococcin (MC), bind to the SB where they make contacts with the 23S rRNA and the N-terminal

domain of L11 [32]. Figure 1.3 depicts thiostrepton bound to the L11·23S rRNA subunit and its

location on the 50S ribosome.

Based on their X-ray studies of the 50S subunit [32] combined with a cryo-EM reconstruction of the

70S·EF-G·GDPNP2 complex [33], Harms et al. proposed the inhibitory mechanisms of thiostrepton

and micrococcin as schematically depicted in Figure 1.4: Binding of EF-G to the stalk base results

in a widening of the cleft formed by the 23S rRNA and the N-terminal domain of L11 (SB “in” state,

Fig. 1.4B), allowing EF-G’s domain V to protrude into the cleft. Secondly, L11-NTD interacts with the

C-terminal domain of L7 and positions it ideally to contact the G’-subdomain of EF-G, leading to

Pi release (Fig. 1.4D). Binding of TS to the SB interfers with both “switches” (Fig. 1.4E) by restricting

2GDPNP is a non-hydrolyzable GTP analog that was used to stabilize the state for visualization.

4



1.4. Thiopeptide Antibiotics

Figure 1.3.: Depiction of the 50S subunit with bound thiostrepton (sticks representation), based on PDB
entry 3CF5 [32]. RNA is colored in gray, proteins in orange. The stalk base (SB), consisting of L11 and
H43/H44 23S rRNA is highlighted in wheat and pale green, respectively.

the conformational flexibility of L11-NTD that is necessary for widening the cleft and subsequent

binding of EF-G. Harms et al. conclude further that TS binding additionally precludes interaction

with L7-CTD and thus reduces Pi release. The same is true for nosiheptide. In contrast, micrococcin

seems to stabilize the L11–L7 interaction, leading to a constant stimulation of Pi release (Fig. 1.4F).

It should be kept in mind that the schema proposed in Figure 1.4 is a hypothesis that fits well to

experimental observations. An exact understanding of the dynamics of this mechanism at atomic

resolution, however, is still missing.

The thiopeptides, which are unused as antibacterial agents in human therapy due to their low

aqueous solubility, are the only class of antibiotics targeting the GTPase-associated region. This

makes the GAR an attractive target for drug design as cross-reactions with existing antibiotics are not

expected. Additionally, eukaryotic ribosomes possess natural resistance to thiostrepton, because of

their different residue composition at their active site [29].

1.4. Thiopeptide Antibiotics

1.4.1. Structure and Biological Activity

The thiopeptide antibiotics are a large class of macrocyclic, sulfur-containing peptides, produced

as secondary metabolites by Gram-positive bacteria, which largely belong to the genus Strepto-

myces [17]. The more than 80 members share common structural characteristics: they all possess
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Figure 1.4.: Schematic for EF-G action during elongation, its inhibition through thiostrepton and its
stimulation through micrococcin. Details are described in the text. Picture taken from Ref. 32.

a central nitrogen heterocycle that connects one to two macrocycles and an acyclic tail. The best

studied thiopeptide is thiostrepton (Fig. 1.5 1) which was discovered more than 50 years ago [34, 35].

It consists of a thiazole-rich macrocycle A, a second macrocycle B containing a quinaldic acid and a

dehydroalanine-tail. The lesser known nosiheptide (Fig. 1.5 2) [36–38] also consists of two macro-

cycles, but ring B is much smaller than in TS and is not connected to the N-heterocycle. Although

micrococcin (Fig. 1.5 3) was the first thiopeptide discovered [39], its absolute stereochemical assign-

ment was described only recently [40, 41]. It possesses only one macrocycle which is structurally

similar to TS’s macrocycle A.

Interesting is their high activity (pico- to nanomolar range) against clinically relevant Gram-

positive bacteria, for example MRSA and Mycobacterium tuberculosis which are resistant to most

convential antibiotic treatments [17]. Because of their low aqueous solubility and poor bioavailability,

thiopeptide antibiotics are only used in animal therapy as a topical food ingredient and not prescribed

to humans.

1.4.2. Drug Design Attempts

Although the thiopeptides are known for several decades now, the discovery of a biologically active TS

fragment [42], and a complete description of its total synthesis [43] combined with the urgent pressure

to find new antibiotics due to increasing resistance, has renewed interest in these compounds.

Previous attempts to design new ligands that bind to the ribosomal stalk base have had moderate

success so far. Bower et al. [44] identified TS fragments that bind selectively to the L11 binding domain

of 23S rRNA but these compounds failed to show any antibacterial activity in vivo. This study, however,
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Thiostrepton (1)

Nosiheptide (2)

Micrococcin (3)

Figure 1.5.: Chemical structures of important thiopeptide antibiotics.

7



1. Introduction

only focussed on RNA binding, neglecting the interactions that thiostrepton makes to L11. Although

TS can bind isolated 23S rRNA [45], the cooperative nature of the binding has been found in several

studies [45–47], underlining the importance of taking both species at the binding site into account. A

different route was recently pursued by Starosta et al. [48], who identified active thiopeptide precursor

lead compounds, although with much reduced potency, using different high-throughput translation

machinery assays.

Recent crystal structures of thiostrepton and nosiheptide bound to the GAR [32] now allow the

precise location of these two compounds at the 23S rRNA–L11 interface, thus making the system

accessible to structure-based ligand design. The work described in the current thesis represents the

first computational structure-based drug design approach making use of these crystal structure data

to complement experimental studies.

1.5. Modern Drug Discovery is ’Rationalized’

Computational methods are well established in modern drug discovery as a cost- and time-effective

alternative or complement to experimental procedures [49, 50]. This kind of activities is usually

summarized under the term Computer-Aided Drug Design (CADD). The methods used range from

bioinformatics sequence analysis tools in the target identification and validation process to chemoin-

formatics procedures in the thorough selection of screening candidates. Besides that, an ever increas-

ing amount of data is stored in databases all over the world, providing valuable sources of information

for scientists. The drug discovery process is a complex, cost-extensive and time-consuming procedure

that usually includes the steps: target identification and validation - lead discovery and optimization -

medical safety and evaluation - drug development - clinical trials - drug approval. For bringing a new

drug to the market, timelines of 7–12 years and a cost of approximately 1.2 billion dollar are often

cited [51]. In silico methods are primarily used in the early stages of the drug discovery process to

significantly reduce the time and resource requirements for chemical synthesis and biological testing.

An extended workflow diagram, showing the application of computational methods at different steps

during the drug discovery pipeline, is depicted in Figure 1.6. The fast expansion of computational

methods in this area has been made possible by advances in software and hardware computational

power, sophistication in the identification of molecular targets, and an increasing database of publicly

available target protein structures [51].

In the process of lead discovery, large databases of chemical compounds are screened. For vir-

tual screenings two types of methods are used: ligand-based and structure-based methods [52].

Ligand-based methods take properties of known binders into account to find similar molecules.

The underlying assumption is that structural similarity of compounds implies similar biological

activity. Several ligand-based virtual screening techniques have been reviewed elsewhere [53, 54].

Structure-based methods make use of the 3D structure of the macromolecular target molecule. A

wide range of different docking algorithms and scoring functions is used to predict the binding
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Figure 1.6.: Computational methods in the drug discovery pipeline.

geometry and affinity of a ligand with respect to a given target. An overview of different approaches

and algorithms is given in the next section.

Especially structure-based methods are appealing because of their ability to identify new chemo-

types and to give mechanistic insight into the binding mode between a compound and a target

structure. The success of the method is evident from the drugs currently reaching the market, and

it is clear that in many companies structure-guided approaches have become central to develop

promising drug candidates [55]. An extensive overview of successful rational drug design examples is

given in Chapter 5 of Klebe’s book “Wirkstoffdesign” [56].

1.5.1. Targeting Macromolecular Complexes

Traditionally, drug targets are key proteins in a metabolic or signalling pathway associated with a cer-

tain disease or pathogen. Predominantly, these proteins are enzymes or receptors with well-defined

binding pockets to which drugs bind in a “lock-and-key” manner, competing with an endogenous

small molecule [57].

A completely different drug target paradigm was recently introduced by Pommier and Cherfils as

the “interfacial inhibitor concept” [58]. The common mechanistic principle underlying interfacial in-

hibitors is characterized by a highly specific, reversible binding to interfaces between macromolecules

(protein–protein, protein–nucleic acid or protein–lipid interfaces), often found in molecular ma-

chines [59]. Molecular machines, such as the ribosome, have a large number of fast-moving parts

that are often synchronized with other molecular components – making them particularly vulnerable

to small molecules [59]. The bound ligands transiently arrest the targeted molecular machines, and

thus interfere with their function. As many identified interfacial inhibitors are natural products

(among them thiostrepton), it was proposed that they are “one of nature’s paradigms for generating

inhibitors and toxins” [58]. In the meantime, also synthetic interfacial inhibitors have been designed,
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for example inhibitors of HIV-1 integrase–DNA [60–62] and topoisomerase–DNA [63, 64] complexes,

demonstrating that interfacial inhibitor design is a valid drug design concept.

It has been hypothesized [58] that interfacial inhibitors are very specific since they target both

partners of a complex, and only in the context of their dynamic cellular pathways, like a molecular

finger-print. This could reduce the risk of side-effects. Difficulties in molecular modelling are the huge

size of the complexes (at least ternary complexes of up to three molecular species have to be modelled)

and the dynamic nature of the biological interface [59]. Above all, taking into account the flexibility

and plasticity of the interface is mandatory to successfully discover interfacial modulators [65].

1.5.2. RNA as Drug Target

Recently, there has been growing interest in RNA as a drug target due to the increased number of

high-resolution RNA structures [66] and the rising awareness that RNA has more complex roles than

just being a passive intermediate storage device for genetic information [67, 68]. Especially in the

development of novel anti-infectives RNA plays a major role [69]. The wealth of high resolution

crystal structures of complexes between antibiotics and their ribosomal binding sites provide the

basis for structure-based approaches to be used in the design of appropriate modifications to existing

antibiotics as well as in the discovery of completely new drug classes [70, 71]. Recent structure-based

drug design successes at the bacterial ribosome include the oxazolidone class of compounds and the

aminoglycosides [72]. A broad overview of structure-based design studies targeting the ribosome was

recently given by Sherer [73].

Due to its specific physicochemical properties, however, further advances in understanding the

chemistry and structure of RNA recognition are needed in order to design promising new drug

candidates [74, 75]. Addressing protein–RNA interfaces by computational means poses, thus, even

more challenges than protein–protein interfaces.

1.6. Aims and Challenges of this Thesis

This thesis represents a first step towards developing an understanding and computational strategies

to investigate interactions of small molecules with “loose” biomacromolecular interfaces. These in-

terfaces are of particular therapeutic interest as their functions help govern cellular biology. However,

these non-traditional drug targets pose several challenges:

1. They usually have large, shallow, and solvent-exposed binding sites that possess inherent

flexibility.

2. Their ligands often violate the classical concept of drug-likeness, established by Lipinsky more

than 10 years ago [76]. For example the molecular weight of the thiopeptides is twice as much

as that of drug-like compounds that are contained in classical virtual screening compound
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libraries. Moreover, they contain macrocycles, making their use in docking even more difficult

as these are not treated flexible during the docking process.

3. A third challenge is specifically associated with protein–RNA interfaces (in contrast to protein–

protein interfaces): Classical scoring functions of docking programs are trained on protein–

ligand complexes and it is unclear if they can be used in a straightforward way to score

protein·RNA–ligand interactions.

This work focusses on a functionally important protein–RNA interface, the 23S·L11 subunit of

the ribosomal GTPase-associated region. This system has been selected as a prototype due to its

relevance in the development of novel antibacterials and the availability of experimental data through

a collaroration with the Max Planck Institute for Molecular Physiology. The specific objective of this

research project is to provide a detailed understanding of the influence that ligand binding has on the

dynamics of the 23S·L11 interface and to elucidate the structural characteristics of this interaction,

enabling the design and proposition of new chemical scaffolds targeting this binding site. The

aforementioned difficulties do not allow for traditional application of state-of-the-art structure-

based drug development techniques as in the case of “classical” targets (e.g. enzymes) [65]. Therefore,

a substantional part of this thesis is to develop and validate new strategies to address these issues.

Aspects of this are the integration of molecular dynamics techniques to account for the binding site’s

inherent flexibility, and to address thiopeptide–protein/RNA interactions by sophisticated scoring

and free energy of binding calculation approaches. An MD–docking–MD workflow shall be created

that can, in principal, be transferred to other protein–RNA interface target systems. The overall

key aspect, however, is the steady feedback with experimental data to validate and improve the

computational techniques.

After an introduction into state-of-the-art methods for computer-aided drug design in Chapter 2,

the influence of thiostrepton binding on the dynamics of the GTPase-associated region is investi-

gated by molecular dynamics simulations in Chapter 3. It is shown that thiostrepton restricts the

conformational flexibility of the target system and that its mechanism of action is likely different from

classical competitive inhibitors. The implications of these investigations for future drug design are

derived. Chapter 4’s focus is on the thiopeptide ligands. Several state-of-the-art docking and scoring

functions are evaluated with respect to their performance at RNA·protein composite environments.

The previously unknown binding modes of selected thiostrepton derivatives at the GAR are presented

and the experimentally observed structure-activity relationships are rationalized. Key molecular mo-

tives at the binding site and within the ligand structures are identified. Finally, the gained knowledge

is incorporated to develop the first pharmacophoric description of the 23S·L11·thiopeptide complex.

In Chapter 5 a 4D-pharmacophore model is presented that additionally accounts for the dynamic

stability of molecular interactions formed between TS and the ribosomal binding site as the fourth

dimension. In Chapter 6, the results of this thesis are summarized and an outlook for future drug

design at biomacromolecular interfaces is presented.
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2. State-of-the-Art Methods for
Computer-Aided Drug Design

2.1. Molecular Dynamics Simulations

2.1.1. Background and Theory

The following section gives a basic introduction into the theory underlying molecular dynamics

simulations; it is mainly comprised from the textbooks by Frenkel and Smit [77] and by Andrew

Leach [78].

Molecular dynamics (MD) simulations are used to obtain information about a system’s time-

dependent properties and/or to study the dynamic behavior of biological macromolecules at different

timescales. Their execution is very similar to “real” experiments: at first, a sample has to be prepared,

i. e. a model system with a certain number of particles has to be selected. Then, the simulation is run

until the system is equilibrated, meaning the properties that we are interested in no longer change

with time and are converged. Only then, the property of interest can be measured by computing a

statistical ensemble average of a certain quantity.

Computational resources limit the complexity achievable in simulations. Therefore, trade-offs

have to be made – either in the system’s size or in the duration of the simulation. In practice, the

time average is easier to obtain and usually the time average is computed instead of the ensemble

average. Why can we calculate a time average if we are actually interested in a statistical ensemble

average? This is based on one of the most fundamental theorems of statistical mechanics, the ergodic

hypothesis [79], stating that, in infinity, the statistical ensemble average is equal to the time average

of the system. If we simply wait long enough we can observe all possible microscopic states (i.e.

the atomic positions and momenta) of the system in a certain macroscopic state, defined by, for

example, its temperature T, pressure P and the number of particles N. An ensemble is a collection of

all possible configurations which have different microscopic states but have an identical macroscopic

or thermodynamic state. Three common types of statistical thermodynamics ensembles are usually

distinguished in MD simulations: the microcanonical ensemble which is equivalent to a thermally

isolated system (NVE; constant number of particles, volume and energy), the canonical ensemble, a

system in contact with a heat bath (NVT, constant number of particles, volume and temperature), and
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the isothermal-isobaric ensemble (NPT, constant number of particles, pressure and temperature).

The basic algorithms have hardly changed since the first MD study was done on hard spheres by

Alder and Wainwright in the late 1950s [80, 81]. What has changed tremendously is the methodology of

computer simulations. The adaptation to the fast evolving computer facilities, e.g. the parallelisation

of codes to be able to run simulations on multiple cores and the most recent implementations of

CUDA versions that can be run on graphics processing units (GPUs), have made MD simulations

accessible to scientists without a supercomputer who use MD as an everyday tool to solve their

research questions.

The many different MD programs available today (e.g. AMBER [82], CHARMM [83], Gromacs [84],

NAMD [85]) are based on the same physical principle: The motions of a particle are simulated by

numerically solving the differential equations embodied in Newton’s second equation of motion:

Mr̈ = F (2.1)

where F is the force exerted on a particle, M is the mass of that particle and r̈ is the acceleration of

the particle (second derivative of its position r with respect to time). The force F can be calculated as

the negative gradient of the potential energy:

F =−∇V (r ) (2.2)

Different integration schemes are used to solve Newton’s equation of motion, such as the Verlet

algorithm or a popular adaption of this algorithm, the Leap-Frog scheme. What is still needed to

calculate the forces F of the particles, is the potential V (r ) which is described by a force field.

2.1.2. Force Fields

The potential V (r ) has most often the following functional form:

V (r ) = ∑
bond s

kb

2

(
li − li ,0

)2 + ∑
ang l es

kθ
2

(
θi −θi ,0

)2 + ∑
tor si ons
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2

(
1+cos

(
nω−γ))
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i , j

(
4εi j

[(
σi j

ri j

)12

−
(
σi j

ri j

)6]
+ qi q j

4πε0ri j

) (2.3)

The first three terms are intramolecular or bonded terms, meaning that they are calculated for

atoms in the same molecule involved in a bond (two atoms), angle (three atoms) or torsion (four

atoms). The bond stretching and angle bending are modelled by a harmonic potential where the

energy increases as the bond length l (the angle θ) deviates from its reference value l0 (θ0). The

torsional potential models how the energy changes while rotating about a bond. The last term

describes intermolecular, or non-bonded interactions, which are calculated between all pairs of
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atoms residing in different molecules or between atoms within the same molecule but separated by

at least three bonds. The van der Waals interactions are modelled by a 6-12 Lennard-Jones potential,

and the electrostatic interactions are calculated using Coulomb’s law.

The functional form, the parameters kb ,kθ,Vn ,εi j ,σi j and the partial atomic charges (q) make

up a force field. The parameters are specific for the atom types that are defined within the force

field. An atom type is determined by the atomic number of the atom, its hybridisation state and its

local environment. For example, most force fields differentiate sp3-hybridised, sp2-hybridised, and

sp-hybridised carbon.

Force-Field Parametrization

Obtaining force-field parameters is a complicated and often time-consuming task. If available,

experimental data can be used for the parametrisation, like it was done in the OPLS force field [86].

Jorgensen and Tirado-Reeves used computer simulations to derive non-bonded parameters that

reproduced specific thermodynamic properties. Another way is to use data derived from quantum

mechanics and validate them using experimental data, as done in deriving the GLYCAM06 force

field [87]. A typical modern force-field parametrization workflow might be envisioned in the following

way: First, a molecular fragment that represents the parameters of interest is chosen, often together

with its local chemical environment. Several conformations of this fragment are produced and their

potential energy calculated by quantum mechanics. Then, parameters are gradually refined in a ’trial

and error’ manner until they provide the best fit to the potential energy curve. Often, this process

is heavily influenced by the experience, or chemical intuition, of the computational chemist. As

it is almost impossible to simultaneously modify all parameters at once, the parameterisation is

done in stages, for example first non-bonded parameters, then bonds, then angles, and finally the

torsional parameters. It is usually necessary to modify the parameters in an iterative procedure

because some degrees of freedom are coupled. Clearly, a force field obtained this way should be

properly validated using experimental data. A key attribute of a generic force field is transferability,

meaning that parameters should be transferable between different molecules and can be applied to a

wider range of problems (e.g. different states and properties) than they were originally derived from.

Calculation of Partial Atomic Charges

Once the force field’s functional form has been chosen and the parameters have been derived,

one part of the force field is still missing: the partial atomic charges. Force fields either use a fixed

charge for each atom type (e.g. OPLS) or assign charges dependent on the atom’s local electrostatic

environment. As the electrostatic properties of a molecule are the consequence of the distribution

of the electrons and the nuclei, it is straightforward to use quantum mechanics to calculate partial

atomic charges. Unfortunately, partial atomic charges are not an experimentally observable quantity.

That is why there is no naturally ’best’ method to calculate it but a variety of different approaches.
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Table 2.1.: Examples of all-atom force fields and their applicability domain.

Name Applicability domain Reference

ff99 Proteins, nucleic acids Wang et al. (2000) [88]
ff99SB Improved backbone torsion pa-

rameters of ff99
Hornak et al. (2006) [89]

parmbsc0 Changes to ff99 for nucleic acids Pérez et al. (2007) [90]
GLYCAM06 Carbohydrates Kirschner et. al.(2008) [87]
GAFF “General AMBER force field” for

small organic molecules
Wang et al. (2004) [91]

OPLS Protein, DNA, organics Jorgensen et al. (1988) [86]
MMFF94 Organics Halgren (1996) [92]

Fitting atomic charges to the molecular electrostatic potential (MEP) has proven to reliably reproduce

condensed-phase properties, and to handle inter-molecular properties well [93]. The MEP at a given

point p in the vicinity of a molecule is the force acting on a positive test charge (a proton) located

at p through the electrical charge cloud generated through the molecules electrons and nuclei (see

Fig. 2.1).

Figure 2.1.: Molecular electrostatic potential (MEP) mapped on the surface of the dehydroalanine (DHA)
residue. Colored from red: negative to blue: positive.

The objective is to derive the set of partial charges that best reproduces the quantum mechanical

electrostatic potential at a series of points surrounding the molecule. Different algorithms have

been developed for this purpose. The CHELP method by Chirlian and Francl [94] uses spherical

shells, centered on each atom with points symmetrically distributed on the surface, and a Lagrange

multiplier method to determine the atomic charges. In the CHELPG algorithm of Breneman and

Wiberg [95] the regular grid approach, introduced in 1981 by Cox and Williams [96], is combined with

the Lagrange multiplier method by Chirlian and Francl. The algorithm of Singh and Kollman [97]
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uses points on a series of molecular surfaces, constructed using gradually increasing van der Waals

radii for the atoms. A modified version, the restrained electrostatic potential fit (RESP) [98], uses

hyperbolic restraints on non-hydrogen atoms to hold down the electrostatic potential derived (ESP)

charges with a minor impact on the fit. The RESP algorithm was used to generate partial charges for

the 1994 AMBER force field [99].

A rapid method for calculating partial atomic charges is the Gasteiger-Marsili method [100] which

uses information about the atoms in a molecule and their connections. In an iterative procedure

less and less charge is transferred between bonded atoms at each step. The great advantage of

this method is that it is much faster than the quantum mechanical approaches discussed before

and is independent on the conformation or molecular orientation of the molecule. Therefore, it is

preferentially used for docking applications, where charges have to be assigned to a large number of

different molecules.

2.1.3. Modelling Solvent

In their natural environment proteins are surrounded by water. In general, there are two different

ways to model solvent effects in an MD simulation: explicitly or implicitly. Explicit modeling means

the solute (i.e. the protein or other molecule(s)) is solvated in a box (or octahedron) of water molecules.

Modelling explicit water molecules allows specific interactions between the solute and solvent to be

formed but also enormously increases the number of atoms of the simulation. To limit this number

to a manageable value, usually periodic boundary conditions are applied, where the box is mirrored

in each direction (see Fig. 2.2). This allows molecules to leave the box. If they leave the box at one side

they “enter” it again at the opposite site. When determing the central box dimensions, it is important

to choose a size preventing the solute molecules to “see” each other to prevent artifacts arising from

their intermolecular interactions.

Despite its small size, water is one of the most challenging systems to model accurately. Conse-

quently, many different water models have been proposed [101]. These models can be divided into

three types. In the simple interaction-site water models a rigid water geometry and either three

(TIP3P [102], SPC [103], SPC/E [104]), four (BF [105], TIP4P [102]), five (ST2 [106], TIP5P [107]) or

six [108] interaction sites are used. Flexible models allow internal changes in conformation of the

water molecule. An example is the model developed by Ferguson [109]. Finally, models have been

proposed that include polarization effects, solution and interfacial properties of aqueous systems are

particularly sensitive to [110].

If explicit modeling of solvent is too costly, or simply not necessary, a common technique is to

represent it implicitly by an approximation of the mean-force potential for the solvation interactions.

The solvent is modeled as a bulk with a specific dielectric constant. The electrostatic contribution

of solvation is calculated by continuum methods like solving of the Poisson-Boltzmann (PB) equa-

tion [111, 112] or the simpler Generalized Born (GB) model [113]. The non-polar part of solvation is
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Figure 2.2.: Two-dimensional representation of periodic boundary conditions. The solute (big, dark-gray
circle) and solvent (small, white circles) molecules in the central original cell (gray background) are
replicated together with their velocities (arrows) in all dimensions.

most often approximated by an empirical term proportional to the solvent-accessible surface area

(SASA). These combined approaches are then referred to as PBSA and GBSA, respectively.

2.1.4. Replica Exchange Molecular Dynamics

In a replica exchange molecular dynamics (REMD) simulation [114] multiple non-interacting copies

(replicas) are simulated simultaneously. Each of the replicas samples a different thermodynamic

state (cmp. Section 2.1.1), usually the temperature. In defined time intervals attempts are made

to swap (neighboring) configurations (see Fig. 2.3). The transition probablities W (X , X ′) between

configuration X and X ′ are implemented by the Metropolis criterion to ensure detailed balance [115]:

W (X , X ′) = min(1,exp−∆) (2.4)

where ∆ = (1/kB T j − 1/kB Ti )(Vi −V j ). kB is the Boltzmann constant, Vi and Ti are the potential

energy and temperature of replica i . If the exchange is allowed between a pair of replicas, the target

temperatures for the two replicas are swapped (i.e. system i changes to temperature T j and system j

changes to temperature Ti ) and the velocities of each replica involved are adjusted by a scaling factor

related to the previous and new target temperatures [116].

Metaphorically speaking, the high temperature simulations represent a configurational “card

shuffling” to overcome high-energy barriers, the low temperature simulations serve to find local

energy minima. The particular advantage of the replica-exchange method is that a replica trapped in

a local energy minimum can escape via exchange to a different value of the independent variable

18



2.1. Molecular Dynamics Simulations

Figure 2.3.: Schematic for for the replica exchange molecular dynamics method (REMD). MD calculations
are performed in parallel for individual replicas at different temperatures, which are exchanged during
the calculations. Adapted from Ref. 117.

(temperature) [114]. Thus, a larger configurational space can be sampled.

2.1.5. Analysing Molecular Dynamics Trajectories

The output of a molecular dynamics run is a trajectory, typically containing a subset of the coordinates

the investigated system passed through. It is up to the investigator how to analyse this trajectory to

answer his or her research questions. There exist, however, several generic analysis techniques that

can be applied, most of them are not exclusive to MD trajectories. The ones used throughout this

thesis will be briefly explained in the following.

Root-Mean-Square Deviation

The Root-Mean-Square Deviation (RMSD) gives the average distance d between two position vectors

p and q of N equivalent atoms in 3D space:

RMSD =
√

1

N

∑
i

d 2
i =

√
1

N
‖pi −qi‖2 (2.5)

It is a standard measure of structural distance between coordinate sets.

Root-Mean-Square Fluctuation

The Root-Mean-Square Fluctuation (RMSF) describes the atomic positional fluctuations within a

considered time period. It is calculated by averaging over atom (or residue) i ’s deviations to its

time-averaged position:

RMSF(i ) =
√

〈(ri −〈ri 〉)2〉 =
√

〈r 2
i 〉−〈ri 〉2 (2.6)

The angle brackets 〈〉 denote a time average. This measure is similar to the RMSD, except that

the averaging is over time instead of atoms. To remove system-wide translational and rotational
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movements, the coordinates should be aligned on a common structure previously.

Radius of Gyration

The radius of gyration Rgyr is the distribution of the cross section about a central axis. In simple terms,

it describes how much the molecule spreads out from its center. It is defined as the root-mean-square

distance of the collection N of atoms i from their common center of gravity rc :

Rgyr =
√

1

N

∑
i

(ri − rc )2 (2.7)

Dynamic Cross-Correlations

In some cases two residues move in concert with each other, either in the same direction (correlated)

or in opposite directions (anti-correlated). The extent of the correlation (positive or negative) can

be quantified by calculating the covariance between the fluctuations of two residues (equation

2.8). Elements of the cross-correlation matrix (Ci j ) are calculated by their position vector r where

i and j may correspond to any two atoms, residues or domains. The value of Ci j can vary from −1

(completely anti-correlated) to +1 (completely correlated).

Ci j =
〈(ri −〈ri 〉)(r j −〈r j 〉)〉√
〈(ri −〈ri 〉)2〉〈(r j −〈r j 〉)2〉

(2.8)

The cross-correlation matrix can be visualized in form of a Dynamic Cross-Correlation Map

(DCCM), a symmetric contour plot (see for example Fig. 3.23 in Chapter 3). Typical characteristics of

DCCMs include a line of strong cross-correlation along the diagonal, cross-correlations emanating

from the diagonal, and off-diagonal cross-correlations. The high diagonal values occur where i = j,

where Ci j is always equal to 1.00. In the case of proteins, positive correlations emanating from the

diagonal indicate correlations between contiguous residues, typically within a secondary structure

element or other tightly packed unit of structure. Typical secondary structure patterns include a

triangular pattern for helices and a plume for strands. Off-diagonal positive and negative correlations

may indicate potentially interesting correlations between domains of non-contiguous residues [118].

This information conveys aspects originating uniquely in the dynamical motions of the molecule

and is not visual by inspecting the average structure [119].

Ransom-Wright and McCammon were among the firsts that used this type of cross-correlation

maps from MD simulations to probe the spatial extent of the collective motions in cytochrome

c [120].
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Principal Component Analysis

Principal component analysis (PCA) is a statistical technique used for finding patterns in data of high

dimension. It is often used as a tool in exploratory data analysis to reveal the internal data structure

in a way that best explains its variance. Mathematically, this is achieved by diagonalization of the

data covariance matrix C .

C = TΛT T (2.9)

This results in the diagonal matrixΛ containing the eigenvaluesλ as diagonal entries and the matrix T

containing the corresponding eigenvectors. If the eigenvectors are sorted such that their eigenvalues

are in decreasing order, the eigenvector with the largest eigenvalue (i.e. the first principal component)

accounts for the highest proportion of variance within the data, the second component is orthogonal

to the first one and accounts for the second highest proportion of variance, and so on. The last

principal components can usually be neglected without loss of much information. Therefore, PCA is

often used for data dimension reduction.

It is, however, important to note that PCA assumes linearity, which means PCA is limited to

re-expressing the data as a linear combination of its basis vectors. Another assumption is a high

signal-to-noise ratio, meaning that the largest variances contain the most important information.

When performed on a set of experimental structures or snapshots from a MD trajectory, the eigen-

vectors describe concerted atomic displacements and can highlight major conformational changes

between the structures. Because it was shown that these motions are often essential for protein

function [121] dynamics in this low-dimensional subspace – spanned by the first few eigenvectors –

was termed “essential dynamics”[122].

Clustering

Clustering is an unsupervised learning/classification technique that groups similar objects into

subgroups, called cluster. It is an optimization problem of minimizing intra-cluster and maximizing

inter-cluster differences. Therefore, most clustering algorithms require a measure of similarity, or

“distance”, of objects. When clustering is used on MD trajectory data, the RMSD between the MD

snapshots can provide such a distance measure. Another possibility is to perform a PCA prior to

clustering as this implicitly provides a native distance function for clustering: the Euclidean distance

of the points in the PC (sub)space. In Section 3.2.2, the effects of different clustering algorithms on

varying principle component subspaces and their influence on cluster quality are investigated.

There exists a series of different algorithms which can be divided into partitional and hierarchi-

cal clustering [123]. While partitional clustering is a division of the objects from the data set into

non-overlapping subsets (clusters), hierarchical clustering allows nested clusters and results in a

hierarchical tree (dendrogram). They are either agglomerative (“bottom-up” approach) or divisive

(“top-down” approach). A partitional clustering can then be obtained by cutting the dendrogram at a
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particular level. In the following, the two classes of clustering algorithms will be introduced.

Partitional Clustering Partitional techniques optimize a locally or globally defined criterion function

to determine a pre-specified number of clusters, most often the squared error criterion [124]. Of

these, the K-means algorithm is one of the oldest, fastest, and most widely used partitional clustering

algorithms. The K-means algorithm attempts to find a pre-defined number (K ) of clusters represented

by their centroids (i.e. cluster centers). The user has to specify a number of desired clusters in the

beginning. The algorithm places K initial centroids randomly. Repeatedly, K clusters are formed by

assigning each point to its closest centroid. Then, the new centroid of each cluster is recomputed.

These steps are repeated until the centroids do not change anymore.

K-means is simple and fast and can be applied to large data sets. The result depends, however,

on the initially chosen centroids (i.e. not deterministic). It is also known that K-means fails when

the “natural” clusters have non-spherical shapes or widely different sizes or densities, or when the

data contains outliers [123]. When applied to MD trajectory data, K-means tends to produce “blocky”

clusters of similar sizes [125].

Agglomerative Hierarchical Clustering Agglomerative hierarchical clustering is a collection of closely

related clustering techniques that start with singleton clusters and then iteratively join the nearest

clusters until all objects are grouped into one all-encompassing cluster. The different styles of this

algorithm class differ by their definition of cluster proximity. Single-linkage defines cluster proximity

as the proximity between the closest two points that are in different clusters, complete-linkage uses

the farthest two points and average-linkage the average pairwise proximities of all pairs of points

from different clusters. Centroid methods use the distance between the centroids of clusters. For

Ward’s method, the proximity between two clusters is defined as the increase in the squared error

that results when two clusters are merged.

The single-linkage method adopts a “friends of friends” clustering strategy. It is good at handling

non-elliptical shapes, but is sensitive to noise and outliers. The complete-linkage method finds

similar clusters. It is less susceptible to noise and outliers, but it can break large clusters and it favors

globular shapes. The average-linkage and centroid methods can be regarded as aiming for clusters

with characteristics somewhere between the single and complete link methods. Ward’s method aims

at finding compact, spherical clusters. Centroid-linkage and average-linkage were found to be the

most useful methods for use with MD trajectories [125]. They can produce clusters of varying sizes

and possibly concave shapes.

Agglomerative hierarchical clustering algorithms are deterministic and produce a dendrogram

displaying the cluster-subcluster relationships and the order in which the clusters were merged.

However, their high computational and storage requirements limit their use to smaller data sets.
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Metrics for Cluster Validation Unsupervised methods are difficult to assess as they do not provide a

native evaluation criterion. Although important, cluster evaluation is not commonly used in cluster

analysis [123]. There exist several different metrics that at least give some general quantitative

indication on cluster quality [123, 126, 127]. Each of them has their specific drawbacks and there is

no consensus on which method should preferentially be used. In this thesis two metrics are used

which have been shown useful in the context of MD simulations before [125].

A simple measure to determine the optimal number of clusters is to calculate the SSR/SST ratio,

the quotient of the sum of squares regression (SSR or between sum of squares) and the total sum

of squares (SST). The SSR is usually calculated via the sum of squares error (SSE or within sum of

squares) that is the sum of the squared distances of all points x belonging to cluster Ci to its centroid

ci , summed together for all clusters K . The total sum of squares is the sum of squared distances for

all N data points x j to the overall mean c and is equivalent to the SSE if K is 1.

SSE = SST −SSR =
K∑

i=1

∑
x∈Ci

(x − ci )2 (2.10)

SST =
N∑

j=1
(x j − c)2 (2.11)

The SSR/SST ratio value lies between 0 and 1 and gives the percentage of explained variance by

the data, equivalent to the R2 value in regression analysis. As the ratio inherently rises with cluster

count, one looks for an “elbow” in the curve where adding another cluster does not add much new

information, as done in a scree test for principal component analysis [128].

A second metric is the pseudo F-statistic (equation 2.12, introduced by Caliński and Harabasz [129]).

This metric is a measure for the “tightness” of clusters; high values usually indicate a better clustering.

pF S = SSR/K −1

SSE/(N −K )
(2.12)

2.2. Molecular Docking

Molecular docking is used to predict the conformation and the binding affinity of a complex formed

of two molecules. In the majority of applications a small molecule (ligand) is docked into a binding

pocket of a protein (also often referred to as a receptor or target). Because of its pharmaceutical

relevance to drug design, this overview is restricted to protein-ligand docking.

The docking challenge is two-fold: the first challenge is the conformational sampling of the ligand

(and to some degree of the receptor), the second one is the prediction of the ligand’s affinity to

its target. The latter is solved by using a scoring function. Since the pioneering work of Kuntz and

colleagues in the 1980s [130] more than 60 different docking programs and 30 scoring functions

have been developed [131]. The most widely used docking programs for protein-ligand docking
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are AutoDock [132] and AutoDock Vina [133], DOCK [134–136], FlexX [137–141], FRED [142, 143],

Glide [144–146], GOLD [147], and ICM [148]. An exhaustive overview of current docking and scoring

methods can be found in the review of Moitessier and coworkers [131].

The conformational sampling is accomplished by different search methods which can be broadly

classified into a) systematic search methods, b) stochastic/random methods and c) simulation

methods (see Table 2.2). To address the second challenge associated with molecular docking, the

appropriate evaluation of the final complex, three different types of scoring functions have been

developed. These are either a) force-field based, b) empirical or c) knowledge-based scoring functions.

As each of these types has its short-comings (see Table 2.3), consensus scoring functions like X-

Score [149] which combine several single functions have become very popular.

Table 2.2.: Overview of search methods used in docking. A short description and examples of docking
tools implementing the methods are given.

Search method Description Examples

Systematic search
Multiconformer dock-
ing

Rigid-body docking of multiconformer libraries, often with shape
complementarity or interaction site matching algorithms

FRED, DOCK

Incremental construc-
tion

Ligand is built up on-the-fly in the active site, ligand is split into frag-
ments, one anchor fragment is docked rigidly first with matching
algorithm, others subsequently

FlexX, DOCK,
Hammer-
head [150]

Stochastic/random search
Genetic algorithms Ligand pose = chromosome; translation, rotation, torsion encoded

in genes; evolved by genetic operators like mutation and crossover;
selection by survival of the fittest

AutoDock,
GOLD

Monte Carlo Ligand pose modified through bond rotation, translation, new
conformation with lower score is kept, a higher score is kept or
rejected by e.g. Metropolis criterion

ICM, Glide,
Glam-
Dock [151]

Tabu search Search is prevented from revisiting already explored areas of confor-
mational space

PRO_-
LEADS [152]

Simulation methods
Molecular dynamics, simulated annealing, energy minimization
(frequently in combination with other search methods)

ICM, DOCK,
GlamDock

Over the years, many comparative studies investigating the performance of docking programs,

with respect to docking accuracy and enrichment in virtual screening experiments, have been pub-

lished [158–165]. Although the outcome of these studies varies, it is clear that the docking accuracy

highly depends on the protein considered; none of the tools clearly outperforms all others. It is

therefore highly advisable to test several programs on the system being investigated.

After an evaluation of different docking programs (see Section 4.2), AutoDock was selected for

the docking studies throughout this thesis. Therefore, its search algorithm and scoring function will

be described in more detail in the next section. Afterwards, the knowledge-based scoring function
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Table 2.3.: Overview of scoring functions used in docking.

Force-field based Empirical Knowledge-based

Description Non-bonded terms (van der
Waals and electrostatics) of
established force fields like
AMBER or Tripos FF

Decomposition into simpler,
chemically intuitive inter-
action terms, weighted by
scaling factors defined by re-
gression to fit experimentally
determined protein-ligand
affinities and/or crystal struc-
tures

Statistical analysis of protein-
ligand crystal structures to
determine preferred binding
geometries

Strengths Already available Many parameters; good pre-
dictions within the model; can
be extended easily

Independent of experimental
measurements; includes also
entropic parts; computational
simplicity

Weaknesses Slow; only enthalpic contri-
butions; arbitrarily chosen
cut-off distances

Dependent on experimental
data and training set

Dependent on data; some
interactions (e.g. with metals)
underrepresented in available
crystal structures

Examples AutoDock SF
(FF/empirical) [153],
DockScore, GoldScore, ICM
SF

FlexX SF, ChemScore [154],
GlideScore, PLP [155]

PMF [156], DrugScore [157]

Abbreviations: FF, force field; SF, scoring function.

DrugScore and its derivatives will be introduced because of their application in this thesis.

2.2.1. AutoDock

Search Algorithm

The AutoDock suite uses stochastic search algorithms to sample the conformational ligand space.

The Lamarckian Genetic Algorithm (LGA), used by AutoDock, combines a genetic algorithm with

a local search to achieve faster convergence [132]. Genetic algorithms adopt Darwin’s theory of

evolution [166] to optimization problems in other fields. In docking applications, the genome is

made up by the translation, orientation and all torsional angles of the ligand. The genes are altered

by genetic operators like crossover and mutation to create a new generation of ligand conformations.

Afterwards, the fitness of the population’s individuals is evaluated (by a scoring function) and only

the fittest individuals are selected. The specialty of the LGA is that in regular intervals a local search

is performed in coordinate space (phenotype) to find a local minimum that is used to update the

genotype.
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Scoring Function

The free energy of binding ∆G is estimated to be equal to the difference between (1) the energy of

the ligand L and the protein P in a separated unbound state and (2) the energy of the ligand–protein

complex [153]:

∆G = (V L
bound −V L

unbound )+ (V P
bound −V P

unbound )+ (V P−L
bound −V P−L

unbound +∆Scon f ) (2.13)

It is assumed that the two molecules are sufficiently distant from one another in the unbound

state that V P−L
unbound is zero. As the protein is considered rigid, the bound state of the protein is

identical to the protein unbound state, and the difference in their intramolecular energy is zero. Thus,

Equation 2.13 further reduces to:

∆G = (V L
bound −V L

unbound )+V P−L
bound +∆Scon f (2.14)

∆Scon f is an estimate of the conformational entropy lost upon binding that is proportional to the

number of rotatable bonds in the ligand (Ntor s):

∆Scon f =Wcon f Ntor s (2.15)

The pair-wise potentials V are evaluated for all intermolecular protein–ligand atom pairs; in-

tramolecular energies are calculated for all pairs of atoms within the ligand, excluding 1–2, 1–3 and

1–4 interactions. AutoDock uses a semi-empirical scoring function based on the non-bonded terms

from the 1984 AMBER force field by Weiner et al. [167]. The scoring function includes terms for

repulsion/dispersion, hydrogen bonding, electrostatics and desolvation:

V (r ) =WvdW

∑
i , j

(
Ai j

r 12
i j

− Bi j

r 6
i j

)

+Whbond

∑
i , j

E(t )

(
Ci j

r 12
i j

− Di j

r 10
i j

)

+Wel ec

∑
i , j

qi q j

ε
(
ri j

)
ri j

+Wsol

∑
i , j

(
Soli V ol j +Sol j V oli

)
exp

(
−r 2

i j /2σ2
)

(2.16)

The weighting constants W are optimized with respect to experimentally determined free energy

values of 188 complexes [153]. Parameters A and B are taken from the 1984 AMBER force field [167].

Hydrogen bonds are accounted for with a special 12-10 potential and a directional term E(t) that

is dependent on the angle t between hydrogen-bond donor, hydrogen atom and hydrogen-bond

acceptor [168]. The solvation potential is based on the volume (V ol ) of the atoms surrounding a
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given atom, weighted by an atom-type-dependent solvation parameter (Sol ) and an exponential

term based on the distance [169]. The distance weighting factor σ is set to 3.5 Å [153].

2.2.2. DrugScore

As already seen in the assembly in Table 2.3 DrugScore belongs to the knowledge-based scoring

functions. The knowledge base is a set of experimentally determined protein-ligand complexes from

the Protein Data Bank. In short, by a statistical analysis of structural data atom-pair potentials are

derived, which are then used to score new complexes.

Theory

DrugScore was developed by Gohlke et al. in 2000 [157], but the formalism that it is based on

was established earlier by Sippl [170–172]. The approach makes use of the inverse Boltzmann law.

Interatomic contacts that occur more frequently than a mean distribution are considered energetically

favorable. Rare contacts are considered energetically unfavorable.

The net statistical preferences ∆Wi j for ligand and protein atoms of type1 i and j are obtained by

comparing the mean statistical preferences of the subsystems i , j (Wi j ) to the reference system (W ).

This difference is equivalent to the negative logarithm of the observed distribution for atoms i , j (gi j )

devided by the expected distribution (g ):

∆Wi j (r ) =Wi j (r )−W (r ) =− ln
gi j (r )

g (r )
(2.17)

g (r ) =
∑

i
∑

j gi j (r )

i ∗ j
(2.18)

gi j (r ) is the normalized radial pair distribution function for atoms of types i and j , separated by a

distance in the interval of r and r +dr . The g (r ) term is the normalized mean radial distribution for

any two atoms, corresponding to the reference state.

Solvent effects are modelled by incorporating the solvent-accessible surface area (SASA) of the

protein and the ligand that becomes buried upon complex formation:

∆Wi (S AS A,S AS A0) =Wi (S AS A)−Wi (S AS A0) =− ln
gi (S AS A)

gi (S AS A0)
(2.19)

gi is the normalized distribution function of the surface area of an atom i in the buried state (S AS A)

(considering ligand and protein individually) compared to the solvated state (S AS A0). ∆Wi reflects

the contribution that arises from differences in the solvent-accessible surface between the bound

and fully solvated state.

1Sybyl atom types are used. For a full list, see Ref. 157.
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The total preference ∆W for a particular binding geometry is then approximated by summing all

individual contributions of ki ligand atoms of type i and l j protein atoms of type j :

∆W = γ∑
ki

∑
l j

∆Wi j (r )+ (1−γ)

[∑
ki

∆Wi (S AS A,S AS A0)+∑
l j

∆W j (S AS A,S AS A0)

]
(2.20)

γ is an adjustable parameter, optimized empirically to 0.5.

Compilation of potentials

For all atom types i and j present in the database, the radial pair distributions are calculated by

counting the occurences of i and j at a distance between r and r +dr (Ni j (r )). They are normalized

by dividing by the sum over all distances:

gi j (r ) = Ni j (r )/4πr 2∑
r (Ni j (r )/4πr 2)

(2.21)

Scaling to 4πr 2 accounts for the volume of the spherical shell of radius r and thickness dr .

The solvent-accessible surface-dependent singlet potentials2 are calculated by:

gi (S AS A) = Ni (S AS A)∑
S AS A(Ni (S AS A))

(2.22)

gi (S AS A) is the probability to find an atom of type i with an exposed solvent-accessible surface

S AS A in a complexed state, while gi (S AS A0) is the probability to find the same atom with the same

S AS A in a state totally separated from the complex.

DrugScoreCSD

The variant DrugScoreCSD [173] is based on the assumption that the physical nature of non-bonded

interactions of protein-ligand complexes and small molecule crystal packings is identical. Therefore,

the potentials are compiled from 28 642 entries of the Cambridge Structural Database (CSD) [174]

providing relevant contact data in a more balanced distribution of atom types and higher resolution

than the Protein Data Bank (PDB) [175]. It could be shown that DrugScoreCSD outperforms DrugScore

with respect to the native pose identification [173].

DrugScoreRNA

In order to score ligand–RNA complexes Pfeffer and Gohlke developed DrugScoreRNA in 2007 [176]. It

is again based on the same formalism like the other DrugScore functions, but derives the potentials

from 670 nucleic acid–ligand and –protein complexes from the PDB. As RNA–ligand complexes alone

2in contrast to pair potentials

28



2.3. Combining Docking and Molecular Dynamics Simulations

did not provide statistically significant potentials, DNA–ligand and nucleic acid–protein complexes

were also included.

DSX

Very recently, a complete re-implementation of the DrugScore function, DSX (DrugScore eXtended),

was introduced by Neudert and Klebe [177]. Beside from being parameterized on a larger and newer

set of PDB and CSD complexes, the scoring function was extended by a much more specialized set of

atom types.

2.3. Combining Docking and Molecular Dynamics Simulations

Docking and molecular dynamics simulations are highly complementary techniques concerning

their specific strengths and weaknesses. The biggest advantage of docking is certainly its speed,

allowing the screening of large compound libraries, on a scale of several hundred thousands, at

reasonable costs. Conversely, its handling of receptor flexibility, solvent effects and binding entropy

is rather poor due to the approximations made [131]. These weaknesses happen to be the particular

strengths of MD simulations which simulate both ligand and receptor as flexible molecules in an

explicit (or implicit, see Section 2.1.3) solvent environment. The drawbacks of MD simulations are

that it is computationally expensive and that the conformational sampling of molecules is limited,

i.e. molecular configurations can get trapped in local energy minima. It is thus not astonishing that

approaches combining the two techniques in drug design gained much popularity over the last years.

A comprehensive review of existing approaches is given by Alonso et al. [178].

Due to the high computational costs, the use of MD simulations is restricted to certain steps

during the drug-design process. Usually, MD is used to complement docking 1) before docking, to

optimize the target structure and account for its flexibility and/or 2) after docking, for the refinement

of docked complexes, and to calculate binding free energies (see below). A third option is to dock

via MD simulations but this approach is still very restricted and has only been applied to a limited

number of case studies [178].

2.3.1. Using MD Simulations before Docking

If it is known that a receptor undergoes large conformational changes upon ligand binding, docking

to a single receptor structures might be problematic because modern docking tools allow only very

restricted receptor flexibility (usually limited to a few selected amino acid side chains within the bind-

ing pocket). Ideally, several high-resolution X-ray structures of the receptor, in complex with different

ligands, would be used for an ensemble docking to include different conformational snapshots of

the target [179]. If other experimental structures are not available, different conformations of the

receptor can be generated computationally by taking representative structures from an MD trajectory.
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As each additional conformation increases the chances of producing false positive solutions during

the docking, it is better to use a few carefully selected conformations rather than every structure

available [180].

2.3.2. Using MD Simulations after Docking

Applying MD to a docked complex is used to refine the complex by allowing the ligand and receptor to

relax their conformations, to test its stability and to incorporate explicit solvent molecules. The most

popular application, however, is to use MD-based calculations of binding free energies. The routine

application of new approaches like the Molecular Mechanics Poisson-Boltzmann (or Generalized

Born) Surface Area (MM-PBSA and MM-GBSA) method (cmp. Section 2.1.3), is becoming possible

because of enhanced computational hardware [181].

MM-PBSA

solvbindG ,Δ

vacbindG ,Δ

ligandsolvG ,Δ recsolvG ,Δ complexsolvG ,Δ

+

+

Figure 2.4.: Schematic representation of the solvation cycle. Adapted from [182].

The free energy of binding ∆Gbi nd is the energy difference between the bound state Gcompl ex and

the unbound state, i.e. the energy of the receptor Gr ec and the ligand Gl i g and :

∆Gbi nd =Gcompl ex −
(
Gr ec +Gl i g and

)
(2.23)

By calculating ∆Gbi nd directly with equation 2.23 the fluctuations in total energy would be an order
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of magnitude larger than the binding energy itself [182].

The MM-PBSA approach divides up the calculation according to the thermodynamic cycle (see

Fig. 2.4) and takes advantage of multiple structures from a MD trajectory to get energy averages.

According to the thermodynamic cycle, the binding free energy can be calculated as:

∆Gbi nd ,sol v =∆Gbi nd ,vac +∆Gsol v,compl ex −
(
∆Gsol v,l i g and +∆Gsol v,r ec

)
(2.24)

The solvation free energies are calculated as described in Section 2.1.3, separately for the complex,

ligand and receptor. Usually, the approximation is employed that the configurational space explored

by the systems are very similar between the bound and unbound states; so every snapshot for each

species is extracted from the same trajectory (single trajectory approach). For an efficient calcula-

tion, explicit water molecules and ions are stripped from the MD trajectory and implicit-solvent

calculations are performed on the snapshots, either by numerically solving the Poisson-Boltzmann

equation or by using the generalized Born approach. Electrostatic salt effects are incorporated by

using Debye-Hückel theory [183].

∆Gbi nd ,vac is obtained by calculating the average interaction energy between receptor and ligand

∆EM M via molecular mechanics and taking the entropy change ∆S upon binding into account (for

example by a normal mode analysis):

∆Gbi nd ,vac =∆EM M −T∆S (2.25)

The entropy is often neglected when ligands of equal size are compared as it is a time intensive

calculation for very little added information.

2.4. Pharmacophores

A pharmacophore is the spatial arrangement of functional groups, shared by a number of biologically

active molecules, forming the basis of their biological effect [184]. According to the official IUPAC-

definition established by Wermuth in 1998 [185], a pharmacophore is:

• not a real molecule but an abstract concept accounting for the common interaction capacities

of a group of compounds toward their target structure,

• the largest common denominator shared by a set of active molecules,

• defined by pharmacophoric descriptors, such as hydrogen bonds, hydrophobic and electro-

static interaction sites, which can be defined by atoms, ring centers or virtual sites.

An example of a pharmacophore is shown in Figure 2.5.

Deriving a pharmacophore can be approached in a ligand- or protein/structure-based man-

ner [186]. A ligand-based pharmacophore is derived by flexibly overlaying a set of active analog
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A B

Figure 2.5.: 2D structure of histamine (A) and its derived pharmacophore (B) containing the features F1:
Cation, F2: H-bond acceptor, F3: H-bond donor. Adapted from Ref. 184.

ligands; a protein-based pharmacophore can be defined by “hot spots”, which are energetically favor-

able binding sites determined by the residue composition of the protein surface, as realized in the

program GRID by Peter Goodford [168]. Recently, a third strategy has been developed by Wolber and

Langer [187]. Their program LigandScout derives pharmacophores from protein–ligand complexes.

A pharmacophore model can be used to screen compound libraries in order to find molecules

that share the pharmacophoric features, but have a different molecular scaffold or residues. This

approach is used to find different compounds that are biologically active against the considered

target, but either are not yet patented or exhibit superior physicochemical properties.
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3. The Influence of Thiostrepton Binding on
the Dynamics of the Ribosomal L11·23S
Subunit

3.1. Introduction

The thiopeptide antibiotic thiostrepton [34, 35] inhibits bacterial protein biosynthesis by tightly

binding to the cleft formed by the GTPase-associated region’s L11 protein and H43/H44 of the 23S

rRNA [46, 188–190] (see Section 1.3 for an introduction into the structure and biological role of the

GAR). This ternary binding event was shown to be highly cooperative and necessitates the presence

of both rRNA and protein components [45–47, 191]. Furthermore, recent data suggest that TS binding

impedes stable binding of EF-G and EF-4 [192]. Interpretations of ribosomal crystal structures in

the 3.2–4.2 Å resolution range have strengthened the hypothesis that TS restricts the protein’s N-

terminal domain movement, and thereby prevents proper binding and processing of translation

factors [28, 32]. However, the resistance data for thiopeptide antibiotics cannot easily be aligned

with a static lock-and-key model for inhibitor binding [191]. Obtaining atomic resolution data of the

L11·23S binding site dynamics and the effects of inhibitor binding would improve the understanding

of the multifaceted interaction between ligand, protein and RNA – and should guide further drug

discovery.

One possible mean for acquiring such data are molecular dynamics simulations. Thereby insights

into the structure and dynamics of large biomolecular complexes can be provided in silico at the

atomic level that cannot yet be generated by other methods. When implemented and results inter-

preted carefully, MD simulations provide valuable qualitative and semi-quantitative information

about the structure and dynamics of folded RNA molecules and protein-RNA complexes [193–195],

especially when calibrated by experimental observation. For example, simulations have revealed func-

tionally significant stochastic fluctuations of RNA building blocks, where ribosomal kink-turns can

act as flexible molecular elbows during translocation [196, 197]. The intrinsic flexibility of H38 [198]

and the H42–H44 segment of the 23S rRNA have been described by simulations [199]. More re-

cent simulations on three ribosomal RNA three-way junctions demonstrated significant anisotropic

hinge-like flexibility between stacked stems [200].
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In the last decade, MD simulations of protein–RNA complexes have been enriched by the growing

number of high-resolution crystal structures [194]. These works include coarse-grained [201] and

all-atom [202, 203] simulations of the entire ribosome, as well as simulations of diverse rRNA–protein

interactions [204–207], including the ligand-free GAR [206]. By using an MD simulation, Frank and

coworkers identified two L11 conformations that matched cryo-EM maps and were interpreted as

bound and unbound states to the aa-tRNA·EF-Tu·GTP ternary complex [206]. Thus, despite the

ribosome’s challenging size and molecular complexity, MD studies have contributed valuable insights

into its functional properties.

In this chapter, results from all-atom MD simulations of the binary L11·23S complex and the

ternary L11·23S·TS complex are compared to investigate the ligand’s binding and its influence on

the dynamics of the ribosomal protein-RNA complex. It is demonstrated that TS binding restricts

the conformational flexibility of the nearby NTD, inluences the stability of its specific secondary

elements, and exerts weak but detectable dynamic coupling to the distant CTD. Furthermore, distinct

conformations of the far more flexible “apo” form of the N-terminal domain are identified that may

reflect distinct interaction states with translation factors.

3.2. Materials & Methods

3.2.1. Molecular Dynamics Simulations

To construct the computational models, the crystal coordinates (PDB code 3CF5) [32] of the TS-

bound 50S subunit from Deinococcus radiodurans were used. Only the atoms associated with the

ribosomal protein L11, with H43–H44 of the 23S rRNA, and TS were extracted. For the simulation

without ligand, the resulting vacancy was filled with water. All simulations were performed using

AMBER9 and 11 [82]. The Parmbsc0 [90] and Parm99SB [89] force fields were used for the RNA and

protein residues, respectively.

The TS model preparation (Dr. Karl N. Kirschner) required special consideration due to its consti-

tution and large size. TS was separated into its constituent residues as defined by Bond et al. [208].

Parameters for the standard amino acid residues were taken from the Parm99SB force field [89].

For the non-standard residues, intramolecular and Lennard-Jones parameters were taken from the

General Amber Force Field (GAFF) [91]. Each non-standard residue was capped using the nearest

functional group present in the structure, and terminated using a methyl group – as exemplified

in Figure 3.1. This was done to include any local electron delocalization present in the macrocy-

cle during the determination of a residue’s partial atomic charges. These residue analogues where

optimized at the HF/6-31G(d) level of theory, and verified as minima using frequency analysis. Molec-

ular electrostatic potentials were subsequently constructed using the CHELPG methodology [95].

A restrained electrostatic potential fit (i.e. RESP) was performed using a 0.01 weighting factor to

obtain partial atomic charges that are compatible with Parm99SB [88]. The capping groups were
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Figure 3.1.: Substructure extraction from thiostrepton (TS) and illustration of capping non-natural amino
acid residues for partial charge determination. In the case shown, the thiazoline-4-carboxyl residue
(brackets) is capped using the nearest functional groups of TS (dehydrobutyrine and thiostreptine).

subsequently removed from each residue, and the remaining residual charge was neutralized. All

quantum mechanics calculations were performed using Gaussian03 [209].

The RNA–protein complex was neutralized using 50 sodium ions and solvated in a truncated

octahedron of TIP3P [102] waters with a 15 Å padding in all directions. A series of minimizations

were performed on the model to an energy gradient convergence of 0.6 kcal·mol−1. Afterwards, three

sequential MD simulations were performed where the portion of allowed motion included a) just the

water molecules and sodium ions, b) water, sodium ions, added hydrogens, and capping residues,

and finally c) the entire system. Each simulation was heated from 5 to 310 K in 100 ps and cooled back

to 5 K in another 100 ps; for temperatures below 155 K the simulations were performed at a constant

volume (NVT), while over 155 K the simulations were at a constant pressure of 1 bar (NPT). Finally,

a constant pressure production run was conducted at 310 K without restraints. A chart describing

this simulation protocol can be seen in Figure 3.2. Density, volume, and energy were monitored,

as appropriate for each stage, to ensure simulation stability. A non-bonded cutoff of 9 Å was used,

while the Particle Mesh Ewald method [210] was employed to capture the non-bonded interactions at

longer distances. Electrostatic and vdW interactions between atoms separated by three bonds were

reduced by factors of 1.2 and 2.0. Temperature regulation was controlled using Langevin dynamics

with a collision frequency of 1 ps−1 and a unique random-prime-number seed was used at each

restart point [82]. The SHAKE algorithm [211] was used to constrain bonds involving hydrogen atoms,

and subsequently these bonds were excluded from the force evaluation. A time step of 1 fs was used

during equilibration and increased to 2 fs during the production run. Coordinates were recorded

every 1 ps. To verify observations, each of the two simulations were repeated for another 40 ns using

the same protocol, but starting with a different random number seed.
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Figure 3.2.: The molecular dynamics method used for all models studied here. Blue segments correspond
to constant volume, orange segments to constant pressure simulations.

3.2.2. Analysis of MD Trajectories

All analyses were performed on the trajectory data generated from the production simulation runs

for both models. The underlying theory and equations of the used analysis methods can be found

in Section 2.1.5. Prior to each analysis, the structures within each trajectory were aligned using

the backbone atoms (i.e. Cα, C, N for the protein and P, C3’, C4’, C5’, O3’, O5’ for the RNA) to the

X-ray structure, except were stated otherwise. Such pre-analysis alignment removes system-wide

translational and rotational movements.

RMSD and RMSF

The root-mean-square deviation (RMSD) and fluctuations (RMSF) were calculated for the protein

and RNA backbone atoms using the PTRAJ module of AMBER [82]. The RMSF profile was generated

residue-wise by averaging over the backbone atoms of each residue.

Cross-Correlation Analysis

To identify potentially interesting dynamic correlations between or within the RNA and protein

structure, a dynamic cross-correlation analysis was performed. The necessary covariance matrices

were computed using PTRAJ. The corresponding dynamic cross-correlation maps (DCCMs) were

plotted using the statistics package R (V2.10) [212].

As usually only internal fluctuations are of interest, it is necessary to remove translational and

rotational rigid-body motions from the simulation. As mentioned above, this is usually done by

aligning the snapshots of the trajectory onto specific atoms of the first coordinate set or an average

structure. However, the procedure for selecting these atoms is not unique and has even been a

topic of debate [213, 214]. The heterogeneity of the investigated system (protein·RNA·ligand) further
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complicates this decision. Consequently, several alignment strategies were tested for their influence

on the resulting DCCMs for the simulation with TS (see Fig. 3.3). The alignment was done using the

Cα atoms of the protein (Fig. 3.3A), the phosporus atoms of the RNA (Fig. 3.3B), a combination of

them (Fig. 3.3C), and using the backbone atoms of the protein and RNA (Fig. 3.3D).

Figure 3.3 shows how misleading an alignment on either the protein or RNA part alone can be.

When the trajectory is aligned on the Cα atoms only (Fig. 3.3A), the secondary structure of the protein

is captured nicely but almost all of the RNA seems to be highly correlated. In Figure 3.3B, showing

the alignment on phosphorus atoms, however, correlations are only visible within the C- and N-

terminal domain of the protein, while the rest shows no correlation at all. Regions of correlation and

anti-correlation became more differentiated, when both the RNA and protein part were included in

the alignment procedure. No significant differences were observed when either Cα and phosphorus

atoms, backbone atoms, or all heavy atoms of the residues were used, except that with increasing

number of atoms included in the alignment the cross-correlations became less clear. Therefore, it

was decided to align the trajectory on the RNA and protein backbone atoms.

Accordingly, different scenarios with an increasing number of atoms used for calculating the cross-

correlations for the protein and RNA residues were tested while keeping the RMSD criterium constant

(backbone atoms). Using either Cα+P, backbone, or all heavy atoms showed negliable effects in the

resulting DCCMs (data not shown). Very local fluctuations, as from the side chains, seem to make

relatively minor contributions, as was already noted by Ichiye et al. [215]. Therefore, a mass-weighted

average over the backbone atoms was used for calculating the cross-correlations between residues.

Another aspect of analysing dynamic cross-correlations is the start and length of the simulation

time window to be included in the calculation. In previous studies usually the complete simulation

time was considered [119, 120, 213, 215–218]. Occasionally, maps of the first and second half of

the simulation were compared to verify equilibration. To analyze the effect of considering different

simulation time windows in more detail, dynamic cross-correlations averaged over a 10 ns-window

shifted by 1 ns over the simulation with TS were calculated. Figure 3.4 shows selected DCCMs for a

time-span of 10 ns shifted over the simulation from 0.5 to 30.5 ns. At the beginning of the simulation,

large areas of (anti)correlations are visible, decreasing with simulation progression. For the last time

windows (starting at 6.5 ns) the overall (anti)correlations are significantly reduced and stay more

or less constant. The DCCMs up to this simulation time likely contain equilibration artifacts and

thus show in general higher and broader areas of (anti)correlation. Analyzing DCCMs for different

time-spans of the simulation can thus be used as an additional convergence criterion. Moreover, they

can also reveal conformational transitions (see for example Fig. 3.23).

Principal Component Analysis and Clustering

Principal component analysis [121, 122] was done using R and the bio3D package [219], which was

developed specifically for analyzing biomolecular data. Since initially the large-scale motion of the
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Figure 3.3.: Dynamic cross-correlation maps (DCCMs) of the L11·23S subunit using different alignment
criteria. The last 33 ns of the simulation with TS were considered. RNA and protein residues are divided
within the plots using solid black lines, the two protein domains are further divided by dashed gray lines.
Cyan colors represent positive correlations, magenta anti-correlations (see color bar at the bottom). A)
Alignment on Cα atoms of protein. B) Alignment on phosporus atoms of RNA. C) Alignment on Cα and
phosphorus atoms. D) Alignment on RNA and protein backbone atoms.
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Figure 3.4.: Dynamic cross-correlation maps (DCCMs) for different time-spans of the simulation with TS.
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L11·23S subdomain are of interest, side-chain local motion was excluded; this was achieved by using

only the coordinates of the protein’s Cα and RNA’s phosphorus atoms. This approach does two things:

1) reduces the raw data analyzed into an amount that is more computationally tractable, and 2) is an

initial filter that removes the higher frequency side-chain motion from the analysis. As done above,

the trajectory snapshots were aligned to the X-ray structure using these atoms.

While PCA reveals the main motions contained in the MD trajectory it does not provide a partition

of the snapshots into distinct conformational classes. This can be achieved by clustering the data. It

will be investigated in the following if clustering PCA data improves cluster quality versus clustering

the “raw” data set and how two different clustering algorithms perform. Two widely used clustering

methods, each representing a different clustering approach: K-means (partitional) and average-

linkage (hierarchical) were compared (see Section 2.1.5 for an introduction into clustering). For this

investigation, the data from the simulation without TS after equilibration is used (2.5 to 40 ns, see

Section 3.3.1 for how convergence of the simulation was determined).

K-means (algorithm of Hartigan and Wong [220]) and average-linkage were used, as implemented

in R. Due to the high storage demand of the average-linkage algorithm not all 37,500 snapshots could

be included into the clustering. Therefore, every 5th snapshot was considered when clustering with

both algorithms (7,500 snapshots). A test with K-means on the complete snapshot set showed that

this did not influence the clustering outcome (cmp. Figs. 3.9C and 3.17A).

Beside removing high-frequency side-chain motion from the cluster analysis by considering only

backbone or the Cα+P trace, clustering can also be perfomed on a further reduced subset, such as

the data contained within the first few PCs, where the high-frequency motion and “noise” has been

removed. Then the clustering is performed on the data projected into the PC space. The assumption

present in this combined technique is that the clustering focuses on data that is more relevant

to large-scale motion within the interested molecular species. Consequently the question arises,

“How many components should be included into the cluster analysis?” Common subsets of PCs,

typically analysed in PCA, are the first two or three PCs since most of the overall variance is often

captured within the first two or three components (e.g. 51.7 % and 60 %, respectively, as seen in

Fig. 3.16). Moreover, these subspaces can be visually interpreted by humans and often also in a

biologically meaningful way. Additionally, the fifth-dimensional PC subspace was included based on

the scree test [128]; the fifth PC data point is where the percentage of variance becomes relatively

horizontal as shown in Fig. 3.16, a criterion known as the “elbow-criterion.” In summary, clustering

was performed on two-dimensional (2D: PC one to two), three-dimensional (3D: PC one to three),

and five-dimensional (5D: PC one to five) subspace, and the complete data set.

Another important question is, “How many significant clusters are there?” Determining the number

of clusters in the data is a frequent problem in cluster analysis, especially for algorithms such as

K-means which requires this value as an input parameter. The SSR/SST ratio (see Eqs. 2.10 and 2.11

on page 23) was calculated as a statistical measure to determine the optimal number of clusters for

both algorithms (Fig. 3.5). Both algorithms show a SSR/SST ratio of ∼0.5 at a cluster count of two
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which means that the data’s variance is already halved by chosing two subsets. Thus, the data clearly

supports at least two clusters. Another increase is found at a cluster count of 4 although a clear “kink”

cannot be identified, leaving a choice of 4 somehow arbitrary. However, the same conclusions can be

drawn from a visual inspection of the average-linkage’s cluster dendrogram (Fig. 3.6). Overall, both

SSR/SST curves indicate a cluster count of 4 is reasonable since the steepness decreases thereafter.

A B

Figure 3.5.: SSR/SST ratio over cluster count for the entire MD trajectory data. A) Average-linkage; B)
K-means algorithm.

In addition to analyzing the cluster dendrogram of the average-linkage algorithm (Fig. 3.6), the

separation of data points along the axes of the first three PCs was considered as a second visual

criterion (see Supplementary Animation 2 of Ref. 221). This visualization confirmed the choice of four

clusters, showing that cluster 1 and 3 are clearly separated by the first PC. The second PC additionally

separates cluster 2 and 3 from 1 and 4. From the SSR/SST ratio, and the visual analysis it is concluded

that the trajectory contains a maximum of four distinct conformational classes and therefore a cluster

count of 4 is fixed for further analysis.

In a similar fashion, by combining an objective statistical measure with different visual analytics,

the clustering in the different PC subspaces was evaluated. Figure 3.7 shows the pseudo F-statistic

(see Eq. 2.12 on page 23) for the two clustering algorithms. To compare the absolute pFS values, the

number of clusters was fixed (i.e. 4) and the pFS was calculated on the complete data set, defining

the clusters as obtained from clustering in the different subspaces. For K-means the values are very

similar. For the 2D and 5D subspace and the complete data the pFS value is essentially the same.

Only for the 3-dimensional subspace a small rise in the pFS value (i.e. a better clustering) can be

seen. For clustering with the average-linkage algorithm, the pseudo F-statistic is consistently lower

than for K-means and shows higher variation. Only in the 2D case the pFS is slightly higher than for

the K-means algorithm but still lower than K-means clustering in the 3D subspace. In summary, the

K-means clustering in the subspace defined by the first three PCs achieves a better separation of data

points than in any other subspace and also the complete data set. These statistical results become

clearer in Figures 3.8 and 3.9, which visualize the trajectory data points (i.e. structural snapshots) in

the PC1–PC2 plane, colored according to their cluster membership.

Substantial differences in data-point assignments to different clusters are seen in using the average-
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Figure 3.6.: Clustering dendrogram produced by the agglomerative average-linkage algorithm using the
entire MD trajectory data. The blue rectangles denote the cut to obtain two different clusters, the red
rectangles denote four different clusters.

Figure 3.7.: Pseudo F-statistic for clustering in different subspaces. A fixed number of 4 clusters was used.
Black squares: average-linkage, gray circles: K-means algorithm.

linkage algorithm when performed on different dimensions of PC subspaces (Fig. 3.8). Especially the

size of cluster 2 (lighblue) changes. It is very small in favour of a large cluster 1 (blue) when clustering

the complete data (Fig. 3.8A), medium-sized for 5D (Fig. 3.8B) and 3D (Fig. 3.8C) which differ in their

boundary assignments between cluster 1 (blue) and 3 (red), and largest in the 2D case (Fig. 3.8D). In

contrast, the K-means results are considerably more consistent in cluster size and shape, regardless if

clustering was done using the complete data set or any number of PCs studied (Fig. 3.9A–D). Only a

few data points are affected, corresponding to data within cluster boundary regions.

For both algorithms one can observe the largest difference going from two-dimensional (Figs. 3.8D

and 3.9D) to three-dimensional subspace (Figs. 3.8C and 3.9C). Both clustering algorithms identified

similiar core regions within the PC plane that belong to unique clusters. However, the algorithms

differ in the assignment of data points within the boundry regions between clusters. For the average-
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A B

C D

Figure 3.8.: Clustering results of average-linkage algorithm on different subspace dimensions projected
on the 2D plane formed by the first two PCs. Clustering was performed on the entire MD trajectory data
(A), and on the data from the first five (B), three (C), and two (D) principal components. Key: cluster 1 is
blue, cluster 2 is lightblue, cluster 3 is red, and cluster 4 is darkred.
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A B

C D

Figure 3.9.: Clustering results of K-means algorithm on different subspace dimensions projected on the
2D plane formed by the first two PCs. Four clusters were requested in the computation. A) Complete data;
B) first five PCs; C) first three PCs; D) first two PCs.
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linkage algorithm (Fig. 3.8) it is the region shapes and cluster size that changes significantly when

varying the PC subspace. Such a dramatic change is not seen when using the K-means algorithm.

Thus, the data-point membership to a specific cluster depend more on the selected subspace when

using average-linkage clustering than for K-means. K-means appears to be more robust in this regard.

Interestingly, selecting a subspace defined by the first two PCs (Figs. 3.8C and 3.9C) yield comparable

clustering results for both algorithms and is the only clustering condition that leads to a slightly

better clustering result for average-linkage. Whether or not this is a fortuitous agreement is currently

unclear.

A B

C D

Figure 3.10.: Root-mean-square deviation (RMSD) over simulation time and color-coded by clusters
obtained from average-linkage algorithm for the different PC subspaces and the complete data. The colors
correspond to the cluster as defined in Fig. 3.8. A) Complete data; B) first five PCs; C) first three PCs; D)
first two PCs.

Two-dimensional plots are particularly useful for deciding if a clustering result is reasonable and

does somehow reflect the data. A projection into the PC1–PC2 plane is a good representation for

seeing if a set of clusters “looks sensible” [222], as shown in Figures 3.8 and 3.9. As an additional way

to verify and interpret the clustering results the RMSD over simulation time was plotted, and the

data points color-coded by cluster membership as determined using the average-linkage (Fig. 3.10)

and K-means (Fig. 3.11) algorithms on the different subspaces. Therefore, the resulting clusters

were mapped back onto the RMSD versus time plot to provide trajectory time-frames for cluster

existence. In contrast to Figures 3.8 and 3.9 these plots visualize the clustered snapshots over time

along with their distance to a defined reference structure, which is the 3CF5 X-ray structure. If a

dynamic event occurs during the simulation, which changes the structure’s conformation, then
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the clustering algorithms should be able to distinguish these conformations. At a minimum, if this

conformational change is clearly seen in the RMSD vs. time plot, a change in the cluster membership

should be seen as well.

A B

C D

Figure 3.11.: Root-mean-square deviation (RMSD) over simulation time and color-coded by clusters
obtained from K-means algorithm for the different PC subspaces and the complete data. The colors
correspond to the cluster as defined in Fig. 3.8. A) Complete data; B) first five PCs; C) first three PCs; D)
first two PCs.

As expected from Figures 3.7 and 3.9, hardly any differences in snapshot assignment to a cluster

are observable for the different subspaces for K-means (Fig. 3.11). For average-linkage, however, the

distribution of clusters over simulation is divisive (Fig. 3.10). Clearly separated in all four cases are

cluster 1 (blue) at the beginning of the simulation (after equilibration), cluster 3 (red) in the middle,

and cluster 4 (darkred) at its end. Disagreement occurs in the their lifetime and in the conformational

snapshots assigned to cluster 2 (lightblue). Depending on the data clustered, cluster 2’s membership

can be fragmented across a dynamic event (Fig. 3.10A and B). Thus, average-linkage clustering

of different PC dimensions require careful analysis since the snapshots cannot be unambigiously

assigned. In this study, the clustering in the subspace defined by the first two PCs (Fig. 3.10C) provides

the most coherent picture. Moreover, this clustering is supported by a good pseudo F-statistic and an

almost identical K-means result.

In this study, K-means slightly outperformed average-linkage. K-means results gave better cluster-

ing statistics and provided more consistent clustering results (i.e. data-point membership to specific

clusters, cluster shape and size) using the different dimensions of PC subspace. Drawbacks to its

use include its need for a predetermined cluster count and its tendency to form blocky, spherical
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clusters [123]. If the underlying data do not support this cluster structure, K-means will not provide

good results.

The clusters found by average-linkage can be of varying size and shape, and the cluster dendrogram

that hierarchical algorithms naturally provide proved valuable for determining the optimal cluster

count. It was found that the outcome of the average-linkage algorithm was strongly dependent on the

selected PC subspace. In the L11·23S model, the choice of the 3D subspace defined by the first three

PCs combined with the K-means algorithm provided the best clustering results, even in comparison

to using the original data.

In conclusion, using both clustering algorithms to analyze different PC subspaces allowed to form

a coherent conclusion concerning the number of clusters present in the L11·23S MD trajectory data.

Mapping these clusters onto 2D and 3D plots of the first two and three PCs, and onto an RMSD versus

time plot, allowed to understand the clusters’ time and conformational space relationship better.

Based on these results, the snapshots for the two simulation were clustered along the PC subspace

spanned by the first three PCs using the K-means method. Subsequently, the conformational repre-

sentatives of each cluster were obtained by selecting the conformational snapshot with the lowest

RMSD value to the cluster centroid (i.e. the average conformation).

Solvent Accessible Surface Areas

Solvent-accessible surface areas (SASA) were computed with AMBER’s CPPTRAJ module using the

LCPO algorithm [223]. For the simulation containing TS, the ligand was removed from the trajectory

data prior to this analysis. For computing the crystal structure’s SASA, capping groups and hydrogens

were added to the crystal prior to the calculation.

Secondary Structure

The protein secondary structure was computed throughout each simulation using the DSSP method [224],

as implemented in PTRAJ.

RNA Conformations

Theχ-angle and sugar pucker of all nucleic acids were monitored throughout both simulations. Theχ-

angle was defined by the O4’-C1’-N9-C4 torsion, while the sugar puckering was characterized via the

pseudorotational phase angle P as defined by Altona and Sundaralingam [225] (for an explanation of

the pseudorotation concept see Section B of the appendix). Two additional water solvated simulations

were performed on the adenosine monomer (A) and the adenosine trimer (AAA), whose results were

used to help validate the finding in the ribosome simulations.
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Water and Ion Occupancy

Water and ion occupancies were monitored for the equilibrated simulations. Therefore, water and

ion densities were calculated by counting the number of sodium ions and water oxygen atoms in a

three-dimensional grid centered on the simulated system using PTRAJ. The grid dimensions were

chosen to be 80x80x80 with a 1 Å spacing. Since periodic boundary conditions were used during the

simulations, the ions and water molecules were ’re-imaged’ into their original truncated octahedron

prior to the analysis. The resulting contour files were visualized at different isovalues along with an

average structure of the macromolecule with PyMOL [226].

3.3. Results

3.3.1. MD Model, Simulation, and Convergence

Simulation equilibration, general stability, and occurrence of dynamic events were monitored by

computing the coordinates’ relative deviations from the X-ray input structure as a function of simula-

tion time. Figure 3.12 shows the RMSD of the protein and RNA’s backbone atoms for both trajectories.

Both simulations (with and without TS) displayed a prompt, characteristic deviation up to ∼3 Å

from the input coordinates after removing the restraints. Such RMSD profiles are not unexpected

when using a medium-resolution crystal structure as input (3CF5: 3.3 Å) [32], and also represent the

structure’s local reorganization from the packed solid to solution phase. After this initial relaxation,

the simulation with TS maintains a stable trajectory with an RMSD value of 3.2±0.18 Å, and a reduced

fluctuation after 7 ns (sd 0.16 Å) which increases again at the end of the simulation. The simulation

without TS equilibrates at a lower RMSD value (2.8±0.18 Å) after 2.5 ns, but a dynamic event takes

place at 14.5 ns that introduces a sudden RMSD increase to 3.4±0.13 Å. As seen in Figure 3.12, the

RMSD remains stable at this higher value for the remainder of the simulation.

The second set of simuations show similiar RMSD behavior in their trajectores. A comparison

of the backbone RMSDs between the first and second simulation runs can be seen in Figure C.1 of

the appendix. Whereas, the RMSD distributions stay comparably stable for the simulations with TS

(Fig. C.1B), the RMSD increase was even more pronounced in the second simulation without TS (up to

5 Å, Fig. C.1A). For clarity, from hereon the observations gained from the first set of simulation runs will

be discussed in detail. In general, similiar results and conclusions from the second set of simulations

were found – however, when notable differences do occur they are mentioned appropriately.

Considering the RNA’s and protein domains’ backbone atoms separately (Fig. 3.13) reveals that

in both simulations the rise of the RMSD is dominated by the protein, especially by its N-terminal

domain. However, the RMSD of the NTD stays relatively stable in the simulation with TS (Fig. 3.13B),

whereas in the simulation without TS the RMSD of the NTD displays a rise of almost 2 Å (Fig. 3.13A) –

still visible, although alleviated by averaging over all backbone atoms, in Figure 3.12A.

As another convergence criterion the radius of gyration (Rgyr, see section 2.1.5 for its definition)
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Figure 3.12.: Root-mean-square deviation (RMSD) from the X-ray structure over simulation time. Red
dashed line: simulation without TS; black solid line: simulation with TS. Data points smoothed using
Bezier curves.

of the protein·RNA complex was considered. At the beginning of both simulations, a large decrease

of the radius of gyration can be seen (Fig. 3.14). In the simulation without TS, Rgyr reaches a first

plateau after 2.5 ns before it drops again after ∼14.5 ns. Rgyr of the simulation with TS equilibrates

later, approximately after 7 ns. Interestingly, the complex exhibits a similar Rgyr of 19.8 Å in the first

half of both simulations after equilibration (7–14.5 ns), during the last 25 ns the radius of gyration

is consistently lower in the simulation without ligand. Overall, the radius span sampled during the

simulation without TS is larger (19.16–20.22 Å) compared to the simulation with TS (19.44–20.16 Å).

Faster convergence can be seen in the protein’s secondary structure, another indicator of the

simulation’s convergence. Figure 3.15 shows the percentages of L11’s secondary structure elements

over simulation time. Larger, short-time fluctuations are only visible within the very first nanoseconds.

Afterwards, especially the percentage of sheets and turns becomes very stable. The percentages of

helices and irregular structures (including loops) display the highest fluctuations and are also the

largest differences between the simulations. In the simulation without TS (Fig. 3.15A), the helices’

percentage fluctuates around the value observed in the X-ray structure (35.4 %). In the simulation

with TS (Fig. 3.15B), the percentage of helices is approximately 5 % higher (38.9 % on average).

Based upon the investigations of the RMSD and the radius of gyration over simulation time

(Fig. 3.12) it was decided that the production-run data begins at 2.5 and 7 ns for the simulations

without and with TS.
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Figure 3.13.: Root-mean-square deviation (RMSD) from the X-ray structure over simulation time, sepa-
rated for backbone atoms of RNA, L11 NTD, and CTD. A) Simulation without TS. B) Simulation with TS.
Data points smoothed using Bezier curves.

50



3.3. Results

 19

 19.2

 19.4

 19.6

 19.8

 20

 20.2

 20.4

 0  5  10  15  20  25  30  35  40

R
a
d

iu
s 

o
f 

g
y
ra

ti
o
n
 (

Å
)

Time (ns)

Figure 3.14.: Radius of gyration over simulation time. Red dashed line: simulation without TS; black solid
line: simulation with TS. Data points smoothed using Bezier curves.

3.3.2. Essential Dynamics

In an attempt to rationalize the essential conformational changes due to the dynamic event seen in

the simulation without TS, a principle component analysis on both trajectories was performed after

their equilibration, whose results are presented in Figures 3.17 and 3.18. As outlined in Section 2.1.5,

PCA explores the data’s variance. In an MD trajectory, the data is the atomic coordinates over time

and its variance their dynamic changes. Thus, a PCA can be used to explore the most prominent

conformational changes present in an MD trajectory.

For the simulation without TS, the first principle component (PC1) explains more than one third of

the overall variance (36.9 %, see Fig. 3.16A); the first three components explain more than 60 % of the

complete variance. The residue-wise loadings for PC1 (see Fig. 3.17D for a graphical and Fig. 3.19A

for a structural depiction) resemble the overall residue fluctuations (Fig. 3.21A), suggesting that the

N-terminal domain contribution dominates this component. Within the N-terminal domain, the

largest contributions map onto the terminus, theα1-helix (residues 14 to 27) and the loop connecting

α2-β2 elements (residues 43 to 51). Apart from the terminal residues, the C-terminal domain and the

RNA contribute little to the motion described by PC1.

The trajectory snapshots are clearly separated into two subunits along the first principal compo-

nent (colored blue and red in Fig. 3.17A). These two subunits are further divided by the second PC,

but these separations are less visually distinct. Therefore, the sampled conformations in the subspace

spanned by the first three PCs were clustered into four clusters (Fig. 3.17A and B). The representative

of the first cluster has a conformation that is similar to the crystal structure. The second cluster

is best described as a conformational transition from cluster one to another stable conformation
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Figure 3.15.: Secondary structure of L11 over simulation time. The secondary structure percentages of
the 3CF5 X-ray structure is shown in dashed lines. Data points smoothed using Bezier curves.

sampled by cluster three. Cluster three remains stable for ∼15 ns before a closely related conformation

(cluster four) is sampled, which lasts for the remainder of the simulation. Figure 3.17C displays the

structural representatives of the four clusters, whose differences can be described as a rotational

movement of the NTD with respect to the CTD (as indicated by the arrows). Their main differences

are in the position of the N-terminus, the nearby loop connecting the β2-β3 strands, and the two

loops connecting the helices with the β-strands on the far end (i.e. away from the binding site) of the

N-terminal domain.

The PC analysis of the second run without TS created a similar picture (Fig. C.2, appendix). The

first principal component, explaining 42.8 % of the overall variance (Fig. C.2C), clearly separates the

snapshots into two distinct K-means determined clusters (Fig. C.2A,B). The representative structures

of the two clusters identified in the second simulation aligned very well with cluster one and three

identified in the first simulation (Fig. C.3, appendix). In both sets of clusters, one can clearly see a

difference in the NTD orientation relative to the RNA, validating the observed conformational states.

However, a significant difference is seen in the residue-wise loading for PC1. Apart from similar NTD

contributions that were already seen in Figure 3.17D, the second simulation show that the artificially

truncated RNA endings have a large contribution to the first PC (Fig. C.2D). As this is likely an artifact

of the model creation, it was decided to focus the remaining analysis and conclusions concerning

L11·23S behavior in the absence of TS on the first simulation since its RNA termini are dynamically

more stable.

The first principal component for the trajectory containing TS explains a little less overall variance

(29.8 %, see Fig. 3.16B). The residue contributions are distributed in a broader manner throughout

the L11·23S complex (Figs. 3.18D and 3.19B). Notable are the missing large contributions from the

first three N-terminal residues and those around residue 50 observed in Figure 3.17D when TS is not

present. Instead, sharper peaks are seen around residues 20 and 62 of the N-terminal domain, which

52



3.3. Results

A

1 3 5 7 20

0.
0

5.
1

14
.8

36
.9 36.9

51.7

60

65.1
74.8

85.5

Eigenvalue Rank

P
ro

po
rt

on
 o

f V
ar

ia
nc

e 
(%

)

B

1 3 5 7 20
0.

0
6.

2
12

.9
29

.8 29.8

42.7

48.9
52.8 64.3

79.1

Eigenvalue Rank

P
ro

po
rt

on
 o

f V
ar

ia
nc

e 
(%

)

Figure 3.16.: Proportion of variance declared by the principal components (scree plot). A) Simulation
with TS. B) Simulation without TS.

help form the loops connecting β1 to α1 and connecting β2 to β3. Clustering the conformations

in the PC1 to PC3 subspace revealed that the cluster representatives were conformationally similar

(Fig. 3.18C), more so than those observed in the simulation without TS. Furthermore, each cluster

has similar RMSDs to the conformation described by cluster three found in the simulation without

TS – using cluster three as a reference (i.e. the red structure in Figure 3.17C) backbone RMSDs of 2.0

to 2.16 Å (or 2.48 to 2.99 Å considering only the N-terminal domain) were found.

The differences between the N-terminal domain conformations described by PC1 are further

underlined through an RMSD comparison of this domain to the X-ray structure for the different

cluster representatives, whose values are seen in Table 3.1. Whereas the RMSD is nearly the same for

all cluster representatives of the simulation with TS (∆RMSD of 0.5 Å), the RMSD of the first three

cluster representatives without TS each differ by ∼1 Å (∆RMSD of 2.0 Å).

Table 3.1.: Root-mean-square deviation (RMSD) in Å of the N-terminal domain’s backbone atoms for the
PC analysis cluster representatives, using the X-ray [32] conformation as a reference.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Simulation without TS 3.11 4.00 5.10 5.05
Simulation with TS 4.15 4.18 4.62 -

Global conformational changes of the L11·23S macromolecule were further explored by determin-

ing its solvent-accessible surface area, shown in Figure 3.20. For both simulations, there is a steep

decrease in the SASA during the first part of the simulation, deviating from the value determined for

53



3. The Influence of Thiostrepton Binding on the Dynamics of the Ribosomal L11·23S Subunit

Figure 3.17.: Principal component analysis for the simulation without TS. A) Clustering in supspace
spanned by first three PCs. Clusters one, two, three and four are colored as blue, light-blue, red and dark-
red. B) RMSD plot color-coded according to clusters. C) Cluster representatives of the N-terminal domain,
color-coded according to clusters. RNA and C-terminal domain are the ones from cluster representative
three. The motion observed along the first PC is indicated by the arrows. D) Residue-wise loadings
(contributions) in Å to the first principal component.

the crystal conformation (16,516 Å2). The large SASA difference of almost 1,000 Å2 between the crystal

structure and its energy-minimized conformation (start of the simulations) can be likely attributed

to 1) the medium resolution of the 3CF5 X-ray structure, 2) the structure’s truncation to obtain only

the L11·23S subunit model, and 3) the change of the hydrogen atoms’ positions added to the crystal

coordinates during minimization.

Considering an equal time frame for both trajectories (7–40 ns), the SASA for the simulation with

TS stays relatively constant at 14,269±283 Å2. The conformations without TS have a similar average

SASA (14,083±426 Å2), but sample a wider range as indicated by the higher standard deviation.

Further inspection of the SASA computed for the simulation without TS reveals that the surface area

corresponds well to the PC analysis clustering. The largest area (15,445 Å2, L11 rendered in blue) is
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Figure 3.18.: Principal component analysis for the simulation with TS. A) Clustering in supspace spanned
by first three PCs. Clusters one, two and three are colored as blue, light-blue and red. B) RMSD plot color-
coded according to clusters. C) Cluster representatives of the N-terminal domain, color-coded according
to clusters. RNA and C-terminal domain are the ones from cluster representative two. D) Residue-wise
loadings (contributions) in Å to the first principal component.

seen in cluster one, the smallest (12,775 Å2, L11 rendered in red) occurs in cluster three. The area

difference is mainly caused by the conformational changes of the N-terminal domain. The SASA of

the representative average structure1 of the simulation with TS lies between the other two (14,290 Å2,

L11 rendered in gray).

3.3.3. Residue Fluctuations

The dynamic influence that TS has on the L11·23S complex can be investigated by computing each

residue’s Root-mean-square fluctuation. Due to the observations in the PC analysis, the obtained

clusters were analyzed separately. Hereafter, four equal-length time frames for the simulation without

1The representative average structure of the simulation with TS was determined by selecting the structural snapshot most
similar to the average structure of the last 33 ns of the simulation.

55



3. The Influence of Thiostrepton Binding on the Dynamics of the Ribosomal L11·23S Subunit

A B

Figure 3.19.: Residue contributions to the first PC is shown by thickness amount as mapped onto the
3CF5 coordinates. The RNA is colored green, the L11 protein is colored wheat. A) Simulation without TS.
B) Simulation with TS.

TS (2.5–10 ns, 10–17.5 ns, 17.5–25 ns, and 32.5–40 ns) and three time frames for the simulation with

TS (7–16.5 ns, 16.5–25.5 ns, and 25.5–35 ns) will be considered.

When comparing the RMSF per residue between the two simulations (Fig. 3.21), the overall pattern

is similar but differences are visible at specific and important positions. The fluctuations within

the RNA and C-terminal domain are nearly identical between both simulations with one exception.

Within the C-terminal domain, the loop (residues 112–122) connecting the α4-α5 helices shows a

consistently high fluctuation when TS is present (Fig. 3.21B), whereas in the simulation without TS

this loop’s fluctuation progressively decreases with time (Fig. 3.21A). However, the high fluctuation

of this loop could not be reproduced in the second simulation with TS (Fig. C.4B, appendix). The

most notable difference in fluctuations between the two simulations occurs in the N-terminal do-

main, where TS’s presence stabilizes its dynamics. Particularly noteworthy differences include the

N-terminus (residues 1-6), α1, α2, and the turn connecting these two helices (residues 14–48). These

differences are most pronounced early in the simulations (blue curves), but are still visible towards

the end (red curves) when the fluctuations are drastically reduced in the simulation without TS.

Exceptions to the general lower fluctuations observed in the simulation with TS are the consistently

high fluctuations around residue 62 in the N-terminal domain and a fluctuation increase of the A1067

base, plus the already mentioned loop of the C-terminal domain. Interestingly, the RMSF for the

loop (residues 39–49) connecting α2-β2 elements is ∼2.0 Å at the beginning of the simulation without

TS, then peaks at ∼3.8 Å during the middle part, and reduces again to ∼2.0 Å during the end of the

trajectory.
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Figure 3.20.: Solvent-accessible surface area (SASA) over simulation time. Black line: simulation with TS;
red dotted line: simulation without TS; gray line: SASA of X-ray structure. Data points smoothed using
Bezier curves. The snapshots with the largest (blue) and the smallest SASA (red) are displayed for the
simulation without TS. For the simulation with TS, the representative snapshot from 7 to 40 ns is shown
(lower left corner and TS has been removed for graphical clarity, gray).

3.3.4. RNA Conformation

Overall, the RNA conformation remained fairly compact and immobile throughout both simulations,

indicating a stable fold. With the exception of a few nucleic acids, all maintained an anti base

conformation and a C3’-endo puckering was the preferred puckering sampled. The exceptions are

listed in Table 3.2 and Table C.1 in the appendix, along with the percentage of base conformation and

sugar puckering adopted during both simulations. Of these, the χ-angle of A1086 and A1088 both

maintain their crystal conformation of syn, while their linking residue G1087 quickly switches from

an anti to a stable high-anti conformation.

There are three loop apexes within the RNA that displayed different χ-angle conformations and

dynamic motion that depend upon if TS is present or not. One apex is near the C-terminal domain

and the loop connectingα4 andα5 elements. The residues U1082 and C1083 both maintain their crys-

tallographic anti conformation throughout the simulation without TS, but sample a small percentage

(12 % and 38 %) of high-anti conformation throughout the simulation when TS is present. Even larger

changes are seen for the neighboring A1084 and A1085 residues, both of which are unpaired and

have an anti conformation present in the crystal structure. In the simulation without TS, A1084

dynamically samples high-anti (34 %) and syn (62 %) conformations, while A1085 maintains the

crystallographic anti conformation. However, in the simulation with TS, A1084 dynamically samples

more high-anti (75 %) conformation at the expense of the syn (21 %) conformation. Likewise, A1085

adopts a stable high-anti conformation after 5 ns. Interestingly, the sugar puckering of A1085 also be-
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Figure 3.21.: Root-mean-square fluctuations (RMSF) of residue backbone atoms. A) Simulation without
TS, evaluated at time frames 2.5–10 ns (blue), 10–17.5 ns (light-blue dashed), 17.5–25 ns (red dotted),
and 32.5–40 ns (dark-red). B) Simulation with TS, evaluated at time frames 7–16.5 ns (blue), 16.5–25.5 ns
(light-blue dashed), and 25.5–35 ns (red dotted).
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Table 3.2.: The population percentage of χ-angle sampled during the simulations with and without
thiostrepton bound. The residues listed are either involved in the binding of TS or showed interesting
conformational sampling.

Simulations (without TS | with TS) X-ray
anti high-anti syn

A1067 4 | 70 3 | 2 93 | 28 anti
G1068 84 | 99 16 | 1 0 | 0 anti

U1082 100 | 88 0 | 12 0 | 0 anti
C1083 100 | 62 0 | 38 0 | 0 anti
A1084 4 | 4 34 | 75 62 | 21 anti
A1085 98 | 28 2 | 54 0 | 18 anti
A1086 2 | 0 0 | 0 98 | 100 syn
G1087 35 | 34 64 | 66 1 | 0 anti
A1088 2 | 0 0 | 0 98 | 100 syn

A1095 36 | 100 27 | 0 37 | 0 anti
A1096 67 | 100 33 | 0 0 | 0 anti
U1097 79 | 100 21 | 0 0 | 0 anti

comes more dynamic in the simulation with TS, sampling O4’-endo (44 %), C4’-exo (25 %), C3’-endo

(16 %), and C1’-exo (12 %). This is the opposite behavior of A1084, which dynamically samples all

ranges from C3’-endo to C2’-endo puckering in the simulation without TS, but preferentially adopts

the C3’-endo puckering in the presence of TS.

Significant conformational changes were also observed at the apexes of the two helices that

participate in TS binding, namely at bases A1067, G1068, A1095, and A1096. Both G1068 and A1096

predominately maintain an anti conformation during the simulation with TS, but adopt a small

percentage of high-anti (16 % and 33 %) conformation during the simulation without TS. The largest

changes are seen in A1067 and A1095, which are the two residues that interact directly with TS.

The χ-angle of these two residues sampled during both simulations is shown in Figure 3.22. In the

simulation with TS, A1067 maintains the crystallographic anti conformation for ∼28 ns, and then

samples the syn conformation for the remaining time, which corresponds to the higher fluctuation of

this nucleotide at the simulation’s end (cmp. Fig. 3.21). Likewise, A1095 maintains the crystallographic

anti conformation throughout the simulation with TS. However, both residues behave differently

in the simulation without TS. A1067 quickly adopts a dynamically stable syn conformation, while

A1095 adopts both anti and high-anti conformation for ∼24 ns and then adopts a syn conformation

for the remaining ∼16 ns. Note that in the second simulation without TS both nucleotides sample

the same χ-angle conformations but with different lifetimes, with the exception that A1095 does not

significantly sample any anti or high-anti conformation (Fig. C.5, appendix). For both residues a

range of sugar puckers are sampled in the simulation without TS, while C3’-endo and C2’-exo are the

predominate puckerings in the simulation with TS (Table C.1, appendix).
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A B

Figure 3.22.:χ-angle (O4’-C1’-N9-C4) for nucleic acids (A) A1067 and (B) A1095 as a function of simulation
time. Black data points are from the simulation with TS, and purple data points are from the simulation
without TS.

3.3.5. Dynamic Cross-Correlations and Protein Secondary Structure

Dynamic coupling between residues within the L11·23S complex was investigated in both simulations

by computing covariance matrices [215] and visualized as dynamic cross-correlation maps (DCCMs).

As done in the RMSF analysis, separate DCCMs were computed for each cluster, resulting in the maps

shown in Figures 3.23 and 3.24. Each DCCM can be separated into three distinct areas, corresponding

to RNA-RNA, RNA-protein, and protein-protein cross-correlation.

The percentages of the protein’s secondary elements, as computed for each residue, are shown

alongside each DCCM. In the simulation without TS, the protein’s secondary structure appears to be

very stable, with the exception of the N-terminal domain’s α1 and α2-helices. These two secondary

elements become more stable in the simulation with TS.

Protein·Protein coupling: In nearly all DCCMs shown, the secondary elements within the C-terminal

domain are positively correlated (Figs. 3.23 and 3.24). Three minor exceptions are the negative

correlation between the loops connecting α4-α5, α3-β4, and α4-β5 elements in Figures 3.23A

and 3.24A. Another exception is the anti-correlation of the C-terminus with the domain’s secondary

structure elements in the last half of the simulation without TS (Figure 3.23C and D). Due to their

infrequent appearance and small sizes, it is difficult to say if these are significant or an artifact of the

sampling.

The motion within the N-terminal domain displays both positive and negative correlation when

TS is not present, and almost exclusively positive-correlated motion when TS is present. Another

general observation is that a coupled movement between the two protein domains exists almost

exclusively as anti-correlated motion. The few small exception occur in the simulation when TS is

not present (Figure 3.23A and B).
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Figure 3.23.: Dynamic cross-correlation maps (DCCMs) for the simulation without TS. RNA and protein
residues are divided within the plots using solid black lines, the two protein domains are further divided
by dashed gray lines Cyan colors represent positive correlations, magenta anti-correlations (see color
bar at the bottom). The percentage of protein secondary structure occupation during the simulation are
displayed by light gray bars (strands) and in dark gray (helices). A) Analysis performed from 2.5 to 10 ns.
B) Analysis performed from 10 to 17.5 ns. C) Analysis performed from 17.5 to 25 ns. D) Analysis performed
from 32.5 to 40 ns.
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Figure 3.24.: Dynamic cross-correlation maps (DCCMs) for the simulation with TS. A) Analysis performed
from 7 to 16.5 ns. B) Analysis performed from 16.5 to 25.5 ns. C) Analysis performed from 25.5 to 35 ns. D)
Dynamic correlations of TS with 23S/L11 residues for the time frames analyzed in A, B and C, respectively.
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Protein·RNA coupling: The largest correlations between the protein and RNA are found in the

C-terminal loop connecting α3-β4 elements (residues 86–96) with the RNA residues that form the

A1067 apex. This loop makes a significant number of salt bridges and hydrogen bonds to the RNA [30],

and was shown to undergo an induced fit conformational change upon RNA binding as revealed by

NMR studies [31]. Furthermore, this loop shows very little fluctuations (Figure 3.21) and its dynamics

and conformation are unaffected by TS binding. In general, the C-terminal and RNA residues that

interact through close-range non-bonded interactions are positively correlated, apart from a few anti-

correlated residues associated with the protein and RNA termini. These negatively correlated residues

associated with the RNA termini could be artifacts due to the truncation of the RNA during model

building. Conversely, the N-terminal and RNA residues predominately have negative correlation,

with the notable reoccurring exception of the positive correlation occurring between A1095 and the

β1 structural element.

RNA·RNA coupling: Considering only the nucleic acid structure, positive correlation exists between

RNA residues, with minor exceptions at the terminal residues where the RNA had been artificially

truncated for model creation. Consistently occurring in both simulations are two small peaks arising

from the interaction of residues near A1067 and A1095. These residues (A1070 and A1096) are part of

the RNA helices that present A1067 and A1095 at their apexes.

L11·23S·thiostrepton coupling: Figure 3.24D contains the correlated motions of TS with the L11·23S

biomacromolecule for the considered time frames. The correlation coefficients between L11·23S’s

residues and TS (Figure 3.24D) range between -0.2 and +0.4, and are thus significantly lower than

those observed within the L11·23S biomacromolecule. The positive correlation of the N-terminal

α1-helix (residues 25–35) is present in all time frames at varying magnitudes, and is probably due to

its close spatial proximity to TS. The C-terminal domain is largely uncorrelated during the first and

middle part of the simulation, but becomes anti-correlated during the last part of the simulation. The

correlation between TS and the RNA fluctuates between the time frames, and shows little consistency.

However, what is notable is that both A1067 and A1095 become positively correlated with TS at the

end of the simulation, while the rest of the RNA becomes anti-correlated (apart from the termini).

3.3.6. Water and Ion Occupancy

Previous experimental studies clearly demonstrated the importance of a minimal ion concentration

for the 23S rRNA fragment to fold correctly, leading to the hypothesis that the presence of ions is

crucial for the stability of the RNA [31, 227, 228]. To determine if preferred regions of water and ion

occurence existed – especially at the TS binding interface, their densities over simulation time were

computed. Although the sodium ions moved throughout the periodic model during the simulations,

strongly preferred occupancies were found within the RNA’s interior. The same is true for the water
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molecules whose densities were also highest within the RNA. Figure 3.25 shows the L11·23S·TS

complex’ average structure along with the sodium ion density at different isovalues and the most

probable water oxgygen positions. No significant differences were found between the simulations

with or without TS.

  
front back

Figure 3.25.: Front and back view of average structure of last 33 ns simulation with TS. Sodium ion density
grid is shown at isovalues representing 5 % (purple, solid) and 2.5 % (blue, mesh) of maximum density.
The most probable (80 % of maximum density) water oxygen positions are represented as red spheres.

3.4. Discussion

MD simulations were initiated to provide atomic resolution information on how thiostrepton in-

fluences the L11·23S biomacromolecule. The ligand-bound state extracted from the X-ray crystal

structure of the TS-bound 50S subunit of D. radiodurans [32] was chosen as the starting point. Other

experimental data of the L11·S23 complex without a bound ligand [30], of the EF-G bound ribo-

some [28] or from NMR studies [31] have been reported, but were considered too remote from the

ligand-bound state and/or to potentially display alternative conformations.

An all-atom MD study of the ribosomal L11·23S subunit, based on a crystal structure of the

isolated T. maritima complex (PDB code 1MMS [30]), but without a ligand bound, has been reported

before [206]. While the 1MMS and 3CF5 crystal structures originate from different organisms and were

determined in different settings (RNA·protein complex vs. 50S subunit) and the 3CF5 crystal structure

resolved ten additional amino acids in the protein termini, both similarities and characteristic

differences are found between these data and the simulation with TS bound. Foremost, the overall

RMSF patterns are comparable, with low and high fluctuations occurring within the C- and N-

terminal domains. Especially good RMSF agreement is seen within the RNA, where five characteristic
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peaks centered at nucleotides A1067, A1074, A1084, A1095, and C1110 were observed with nearly

identical intensities. The L11·23S RMSD without TS shows similar trajectory values (2.5–3.1 Å) to

the previous simulation (2-3 Å) for the initial ∼15 ns, which is the extent the previous simulation

was conducted. However, this agreement ended after the simulation underwent a dynamic event

at 14.5 ns (see Figure 3.17B). Although starting from a different crystal structure and organism, the

simulated conformations observed here show greater similarity to the 1MMS structure than to 3CF5

(see Table 3.3), both when TS is present (2.0–2.3 Å RMSD) and when it is absent (1.8–2.1 Å RMSD).

This observation could be accounted for by the absence of the fully assembled 50S subunit in the

1MMS crystal structure and in the simulations here. Interestingly, both in the present and in Frank

and coworker’s simulation without TS [206], the A1067 residue predominately populated the syn

conformation instead of the crystallographic anti conformation.

In the simulation without TS, two distinct and dynamically stable biomacromolecular conforma-

tions of the L11·23S complex were observed. These are represented by cluster one (dark blue) and

clusters three and four (light and dark red), and separated by the first PC shown in Figure 3.17A. The

conformation sampled by cluster one is structurally closest to the 3CF5 crystal structure, but is also

relatively short lived. During the simulation this particular conformation reproducibly undergoes a

dynamic change where it adopts another conformation (cluster three). This transition was verified

in the second 40 ns simulation on the model without TS, which resulted in a very similar trajectory.

Unexpectedly, the conformations sampled in cluster three are very similar to the conformations seen

in the simulation with TS. This resemblance was surprising, since the TS-bound crystal structure

with the ligand removed was used as the simulation’s input. Of course, computational simulation

and experimental structure determination feature distinctive differences. The 3CF5 X-ray structure

itself was determined using preformed crystals of the complete 50S subunit soaked with a solution

of thiopeptide ligand [32]. Given the apparent adaptability of the GAR, effects resulting from the

crystallization of the apo form first, crystal packing, or from cryocooling could potentially lead to

different conformations of the NTD relative to the CTD and RNA. On the other hand, the MD simu-

lation is based on the crystal structure data, but cannot properly account for the low temperature

of the electron density determination (100 K) and – most importantly – for the presence of the fully

assembled 50S subunit.

Table 3.3.: Root-mean-square deviation (RMSD, in Å) between simulation cluster representatives
and available crystal structures 3CF5 and 1MMSa . Backbone RMSD | NTD RMSD (with fitting to
complete backbone).

Simulation without TS Simulation with TS
1MMS 1 2 3 4 1 2 3

3CF5 2.0 | 2.3 2.3 | 2.7 2.5 | 3.3 2.9 | 4.2 3.0 | 4.5 2.7 | 3.2 2.7 | 3.3 3.0 | 4.0
1MMS - 1.8 | 2.4 2.0 | 3.1 2.1 | 3.0 2.1 | 3.1 2.0 | 2.2 2.0 | 2.2 2.3 | 2.9

a Only residues common to all structures were considered, i.e. nucleotides 1051 to 1108 for 23S rRNA, and
residues 7 to 139 for L11.
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A

C

B

D

Figure 3.26.: Cα and phosphorus atoms trace of first principal component’s interpolated trajectory. A)
Simulation without TS and 1MMS (gray). B) Simulation without TS and 3CF5 (gray). C) Simulation with
TS and 1MMS (gray). TS of the representative average structure is shown in cyan. D) Simulation with TS
and 3CF5 (gray).

An overlay of the macromolecular conformations described by the first principal component

with the available crystal structures can be seen in Figure 3.26, showing that the changes primarily

occur within the protein’s N-terminal domain and that the divergence of the structures in the apo

form is higher than when TS is bound. The overall flexibility of the L11·23S complex, minus the

ligand, can also be seen in the solvent accessible surface shown in Figure 3.20. Similar protein

flexibility within L11·23S macromolecule has been previously found in simulations and structural

studies, accompanied by the suggestion that the L11 protein can adopt “bound” and “unbound”

conformations [31, 32, 206, 229]. The results suggest that a “TS-bound”-type conformation of the L11
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protein inherently exists and does not require the ligand to induce its conformation into existence.

Indicated by the simulations, but not fully proven due to inherently insufficient sampling, TS likely

stabilizes this bound conformation thermodynamically, and might channel a partitioning of states

into one distinct, “locked” conformation. These data are in line with the CD-spectroscopy results,

which indicate the formation of a state with slightly less α-helical/A-form character in the presence

of TS.

In the simulation with TS, the distribution of conformational snapshots in the PC subspace sup-

ported three clusters. However, these clusters are very similar to one another, as shown in the

color-coded RMSD plot and the overlay of their representatives structures (Figure 3.18B and C). Most

of the differences reside in the loop structure connecting α1 to α2. With regard to the binding cleft

characterization, one macromolecular conformation is essentially sampled throughout the simu-

lation. This conformation is structurally similar to but does not exactly match the “TS-bound”-like

conformations sampled in the simulation without the ligand present, as suggested by the RMSD

analysis.

Considering both simulations, three possible macromolecular conformational states can be seen

within the 40 ns time-frame – a metastable “TS-bound”-like conformation, a TS-bound conformation,

and a ligand-unbound conformation. It is very likely that additional conformations exist given the

documented adaptability of the GAR, but to achieve statistically significant sampling of such large

systems using all-atom MD simulations remains prohibited by current methods and computational

means. Nevertheless, taking together the results from the PC analysis, clustering, SASA, and RMSD

data, it is fair to conclude that the N-terminal domain is conformationally dynamic and is structurally

sensitive to the presence of a bound ligand.

The dynamic effect that TS binding exerts on the system’s separate subdomains (i.e. RNA, C-

terminal, and N-terminal domains) was investigated by computing residue-wise RMSF and dynamic

cross-correlation maps (DCCMs). In both simulations, the RNA residues had overall low fluctua-

tions, with a few small prominent peaks (Figure 3.21). Likewise, the C-terminal domain displays

low fluctuation apart from a prominent peak occurring in the loop (residues 112–122) connecting

the α4-α5 helices, which decreases as the simulation progresses. For the simulation without TS, the

N-terminal domain shows the greatest fluctuations of all the subdomains. Not unexpectedly, the

highest fluctuations were observed during the dynamic event that takes place around 14.5 ns, which

was also captured in clustering the PC space (light blue cluster 2 in Figure 3.17).

The binding of thiostrepton has a significant impact on the dynamics of the protein domains. The

overall RMSF within the N-terminal domain is reduced, while leaving three loop structures with

high fluctuations relative to the other amino acids. Surprisingly, there is an increase in fluctuations

around the loop (residues 112–122) connecting the C-terminal’s α4-α5 helices. This loop makes

direct contacts to the RNA, and to the N-terminal domain of the ribosomal protein L10 within the

assembled 50S subunit [27, 28]. Hence, in the presence of L10 this conformational transmission may

become more pronounced and might productively contribute to a hinge-like motion of the GAR,
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potentially coupling EF-G and TS binding to the L7/L12 stalk. Based on the observation that this

loop’s fluctuation decreases as the macromolecular conformation moves away from its “TS-bound”

structure during the simulation without TS, it is likely that TS stabilizes a macromolecular protein

conformation that results in the increased dynamic motion within this loop. Regarding the rRNA

domain, TS causes an increase in the fluctuations in the A1067 residue, while showing overall little

influence on the rest of the structure.

Determining the cross-correlation coefficients between the residue motions provided understand-

ing into the collective motion within the L11·23S complex, revealing the dynamic relationships

between residues, secondary structure elements, and domains. Without a bound ligand, the motions

between the C- and N-terminal domains are predominately anti-correlated. Within the C-terminal

domain, positive correlation dominates the motion, and the same is true within the RNA structure.

The motion between the RNA and C-terminal domain are predominately positively correlated, while

between the RNA and N-terminal domain the motion is nearly all anti-correlated. However, a repro-

ducible complex coupling of both negatively and positively correlated motions characterizes the

N-terminal domain when TS is absent.

In the presence of TS, the overall correlated motion of the L11·23S macromolecule is reduced

(Figure 3.24). The concerted motion between the N- and C-terminal domains loose their weak

positive correlation, and become entirely anti-correlated. There is also little effect on the correlated

motion within the RNA. However, the most significant change occurs in the correlated motion

within each protein domain where they become entirely positively correlated, which is especially

pronounced within the N-terminal domain. The correlated motion between each of the protein

domains with the RNA is also noticeably reduced. Furthermore, the motion between TS and A1067

and A1095 are slightly positively correlated (Figure 3.24D). Consistently throughout the simulation,

TS’s motion is positively correlated with the α1-helix, which itself shows correlation with various

other secondary elements in both the C- and N-terminal domains.

On the local level TS does clearly effect the conformations of nearby residues, especially prominent

is an altered A1067 and A1095 χ-angle preference and an increased α1-helix stability. The exposed

nucleobase A1067 has been assigned multifunctional roles in tRNA and elongation factor recogni-

tion [28, 192, 206]. Both syn and anti conformations of its χ-angle were sampled during a simulation

by Frank and coworkers in the absence of a ligand. The simulation without TS present conducted

within this thesis confirms this property, but a stronger syn preference is found. In contrast to their

finding, A1067’s χ-angle fluctuations were observed throughout the trajectory (see Figure 3.22A), and

no correlation between the χ-angle conformation and the N-terminal loop movements that connects

the β2-β3 strands was found. Interestingly, in the simulation containing TS this χ-angle is strongly

positioned in an anti conformation (187°±10°) for ∼27 ns, and aligns well with the value observed by

X-ray crystallography (174°). TS clearly stabilizes A1067’s anti conformation, but does not entirely

inhibit its nucleobase from adopting a syn conformation. This base-flipping event is preceded by a

loss of the hydrogen bond formed between an amide group of TS’s macrocycle A and N3 of A1067,
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A B

Figure 3.27.: Hydrogen bonds formed between TS and A1067’s base. A) cluster representative 1, H-bond
is formed with A1067:N3, A1067 is in anti conformation. B) cluster representative 3, H-bond is formed
with A1067:N7, A1067 is in syn conformation.

whose presence probably fixed the base in the anti conformation (see Figure 3.27A). Instead, the

formation of a hydrogen bond to N7 at the opposite side of the base is seen, stabilizing the syn

conformation later in the simulation (Figure 3.27B). Furthermore, A1095 samples anti, high-anti,

and syn conformations when TS is not present, but only the anti conformation when TS is bound.

Due to the implicated importance of these residues to TS binding, two additional simulations were

performed in the course of this work for validation – one on an adenosine monomer and the other on

a trimer. In the adenosine monomer simulation, the syn preference was reproduced (see Fig. 3.28).

However, the preference shifted to the high-anti conformation when flanked by two additional

adenosines. This suggests that A1067’s base is sterically unhindered by its surrounding environment

in the absence of TS. To a lesser extent, TS appears to also influence the base orientations of U1082,

C1083, A1084, and A1085, which are located near the protein’s C-terminal domain. As a caveat, it

cannot be completely ruled out that the preference for high-anti over anti conformations that was

seen for some nucleobases is due to parameterization error within the Parm99SB and Parmbsc0 force

fields [230, 231].

A computational study of allowed conformations in nucleic acid monomers indicated that the

adenosine χ-angle preferentially adopts a syn conformation with a C2’-endo sugar pucker, and to a

lesser extent when the sugar puckering is C3’-endo [232]. The anti conformation is populated when

the sugar puckering is either C2’- or C3’-endo [233]. Consistent with this notion, the C2’-endo (50 %)

and closely related C1’-exo (20 %) were found to be the predominant conformations for A1067’s

ribose in the simulation without ligand (Table C.1), and its base had a strong syn χ-angle preference

(Table 3.2). However, when TS is bound, A1067’s ribose preferentially adopts the C3’-endo (42 %) and

69



3. The Influence of Thiostrepton Binding on the Dynamics of the Ribosomal L11·23S Subunit

Figure 3.28.: χ-angle (O4’-C1’-N9-C4) for adenosine monomer (A, gray dots) and adonosine trimer (AAA,
magenta crosses) as a function of simulation time. Structural representatives from the last simulation
snapshot (5000th ps) are shown. Hydrogens are omitted for clarity.

C2’-exo (29 %) conformations, along with a high anti population of the χ-angle. The A1095 sugar

populates several puckerings – C2’-exo (38 %), C1’-endo (17 %), C2’-endo (14 %), C1’-exo (12 %), and

C3’-endo (8 %) – when TS is not present, coinciding with diverse sampling of its χ-angle. When TS is

bound, the puckering predominately becomes C2’-exo (66 %) and C3’-endo (31 %), along with its

anti χ-angle.

Within the ribosome a strong propensity for antibiotic binding sites to locate at non-paired bases,

at syn-configured RNA bases, and at C2’-endo and C4’-exo sugar pucker sites was found [234]. A1067’s

conformational parameters conform to these general properties of ribosomal ligand binding sites.

However, the binding site reorganizes when TS is bound. Since the actual binding event cannot

be simulated for such a large system without inappropriate simplification, it remains unclear if

this reorganization takes place during or after the ligand binding. This switch-like conformational

reprogramming of A1067 and its surroundings might be an important part of the molecular activity

of the thiopeptides. This property might also relate to the observed resistance pattern and specific

mutations, which allow protein biosynthesis to proceed while TS is bound [191]. Furthermore, the

natural mechanism of self-resistance features a crucial methylation of the 2’OH group at A1067.

Beyond the breaking of apparent H-bond networks within the binding site [235], this modification

could drive the conformational preferences of A1067 toward a state unreceptive for thiostrepton

binding, potentially by indirectly modulating the sugar pucker and/or the syn/anti preference of the

projected nucleobases [236, 237].

Preferred sodium ion and water molecule positions were identified within the rRNA, likely stabiliz-
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ing its tertiary structure. This confirms the importance of ions and water molecules for the RNA fold,

as indicated in previous experimental studies [31, 227, 228]. Importantly, no persistent ion or water

molecules could be found within the TS binding site, making mediated contacts between TS and

the 23S·L11 unlikely. This observation is crucial for the binding site’s preparation in the subsequent

docking studies (Chapter 4).

3.5. Conclusion and Implications for Drug Design

By embedding all components of the ternary L11·23 rRNA·TS complex in a fully solvated MD simu-

lation, a computational model of the binding environment and the local dynamics of the GAR was

created. Starting from an X-ray crystal structure of the ligand-bound state [32] an advanced and highly

integrated target model was realized. It was found, that TS binding likely selects for a conformation of

the GAR, which is also sampled in the ligand-free form. TS binding locally rigidifies the thiopeptide

binding area on the L11 protein and characteristically reprograms the conformation of the apical

nucleotide A1067, which mediates contacts to tRNA and incoming ribosomal factors. Otherwise,

rRNA conformation is not detectably affected by TS binding. Removing TS from the L11·23S complex,

immersing the ligand-free L11·23S complex in solvent, and heating it to room temperature resulted

in a short-lived metastable conformation. A conformational transition during the simulation resulted

in a state that was similar, but not identical, to the conformation adopted when TS is present. In

the presence of TS, the overall dynamic motions and correlations thereof of the L11·23S complex

became more stable. Principal component and dynamic cross correlation analyses of TS bound and

unbound states located regions of fold change and of coupled motions. According to these data,

conformational coupling to the RNA and the L10 protein could be mediated by the loop region

connecting the α4 and α5 helices of L11.

These results align with CD spectroscopy data, which clearly showed a two-state transition of

the RNA-protein complex upon ligand binding [238]. However, the ligand-free CD-spectrum of the

L11·23S rRNA complex likely includes additional conformational states that have not been sampled

by the MD trajectories. In the ribosomal X-ray crystallography work a shift in the distal portion of L11

(i.e. N-terminus and Glu62 turn) was noted when comparing the unbound and TS-bound form [32].

The unrestrained simulation performed in the context of this thesis suggests that this cleft can close

in the absence of the ligand. In the average conformation of the simulation with and without TS

(i.e. cluster three), the N-terminal’s distal end is closer to the RNA than in the input crystal structure.

Future research must clarify if these partially divergent aspects result from experimental conditions

during crystal structure determination or from the absence of the full size ribosome in the NMR and

MD simulation studies. In the simulation without TS, a small breathing motion is seen where the

cleft closes and opens slightly.

Considering the energetics of ligand binding, a balance must exist between the binding enthalpy of

the ligand and the entropy increase or decrease that occurs across the entire target and in the solvation

71



3. The Influence of Thiostrepton Binding on the Dynamics of the Ribosomal L11·23S Subunit

shell. On the one hand, the N-terminal domain gains an entropy decrease due to stabilization in the

residue fluctuations, while on the other hand it has an entropy increase due to a reduction of overall

correlated motions. The design and optimization of new inhibitors of the GAR will likely need to

take both the binding enthalpy and the resulting entropy effects on the L11·23S macromolecule into

account. The data presented herein should aid this process, by having identified crucial properties of

the complex target, and by providing a validated model basis for ligand discovery strategies in silico.
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4. Structure-Activity Relationships of
Thiostrepton Derivatives

4.1. Introduction

In Chapter 3 the focus was on the target side, investigating the influence of thiostrepton binding on

the dynamics of the 23S·L11 subunit. In the following chapters it will be investigated how molecular

changes to the ligand structures influence binding to facilitate the optimization of future compounds.

Although structure-based drug design techniques, such as molecular docking, are now routinely

used for protein targets, RNA has been recognized as a valuable drug target only recently [239].

Therefore, regarding RNA and DNA as a target, the development of docking and scoring tools has just

begun. Most docking packages rely on scoring functions derived solely from protein data and it is

unclear how this bias affects scoring involving RNA [75].

There are a number of studies indicating that protein-based tools with incorporated adaptations

regarding the scoring function and receptor flexibilty can indeed be useful for structure-based drug

design aimed at RNA [136, 240–246]. Moitessier et al. used a modified AutoDock protocol to dock

aminoglycosides into conformational ensembles of the 16S ribosomal A-site [242]. Addressing the

same target site, Barbault et al. used an RNA-adapted AutoDock 3 scoring function [247] followed

by molecular dynamics simulations to establish structure-activity relationships of 16 newly derived

aminoclycosides [243]. Baranger and colleages sequentially used DOCK and AutoDock for the identi-

fication of ligands binding to RNA tetraloops [244, 245]. Moreover, novel scoring functions have been

developed that specifically address RNA, such as the empirical scoring function implemented within

RiboDock [248] and the knowledge-based scoring function DrugScoreRNA [176]. However, these rare

examples were derived from a limited data set.

In contrast to the ribosomal A-site mentioned above, which consist entirely of rRNA, the binding

site of thiostrepton involves both rRNA and a protein [32, 249]. Protein–RNA interfaces have even been

less well studied than binding sites consisting of only one species – protein or RNA. When targeting

this kind of composite environments in a computational drug design project one is confronted

with evaluating interactions of a ligand with two distinct molecular species. Moreover, the interface

character makes this binding site also geometrically different from “classical” enzyme binding pockets

as it has a larger surface and is much more solvent-exposed. It is, thus, completely uncertain how
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reliable established protein scoring functions and the newer RNA scoring functions can predict

molecular interactions between ligands and the L11·23S binding site.

Another challenge is posed by the nature of the considered thiopeptide ligands. Thiopeptides

possess a considerable molecular weight (TS: 1664.83 g/mol) and their complex three-dimensional

structures resemble protein folds [208]. Until now, ribosomal binding modes have only been deter-

mined for thiostrepton and nosiheptide [32]. Although in vitro and in vivo activities of semi-synthetic

thiostrepton derivatives [250, 251] and synthetic fragments [42, 48] have been reported, their three-

dimensional structures and exact binding modes at the GAR remain elusive.

Before reliable predictions of new thiopeptide compounds’ binding modes can be made, a careful

assessment of currently available docking programs and potentially necessary adjustments is needed.

In the following section, it is presented how different existing docking and scoring packages, primarily

developed for protein-ligand docking, performed in estimating the binding mode and affinity of

different thiopeptides. Packages were included into the survey that have been shown to be able to

successfully predict small molecule-protein and/or small molecule-RNA complexes and that were

either free to academic institutions or were licensened by SCAI (FlexX). In particular, the docking tools

FlexX (V3.1) [137], AutoDock (V4.2) [132], AutoDock Vina (V1.01) [133] and GlamDock (V0.4.9) [151]

were tested. To address the scoring problem at a binding site composed of two molecular species, a

combination of the existing scoring functions DrugScore [157] and DrugScoreRNA [176] was developed

and tested as a re-scoring engine. Moreover, different approaches to predict three-dimensional

structures of thiopeptide ligands were evaluated.

4.2. Evaluation of State-of-the-Art Scoring Functions at
RNA-Protein Composite Environments

4.2.1. Materials & Methods

Molecule preparation The crystal structures from the nosiheptide-bound (PDB code 2ZJP [32]) and

thiostrepton-bound (PDB code 3CF5 [32]) form of the 50S ribosomal subunit of D. radiodurans were

downloaded from the Protein Data Bank [175]. Only relevant parts of the subunit were preserved, i.e.

residues 1051–1108 (helices 43/44) of 23S rRNA and protein L11. The ligands’ coordinates were saved

as separate files. Hydrogens and Gasteiger partial atomic charges were added to the receptor by using

MOE’s [252] algorithm protonate3d. To prepare the ligands, hydogens were added, and correct atom

types, bond types, and Gasteiger partial charges assigned in MOE. The same Gasteiger atomic charges

were used in all docking programs, except for FlexX, which requires formal charges. Two different

conformations of thiostrepton and nosiheptide with an increasing level of difficulty for the docking

programs were created, i.e. 1) the crystal conformation but with translated (centered) coordinates

and 2) an energy-minimized conformation (using the MMFF94x force field [92] to a gradient of 0.001

within MOE). All files were saved in mol2 format, which is recognized by all docking programs used.
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FlexX FlexX uses an incremental construction algorithm that matches interaction types defined

for the ligand and the receptor surface [137]. It uses an empirical scoring function based on the one

defined by Böhm [253]. The receptor was prepared inside the FlexX GUI starting from the truncated

PDB models. Hydrogens and formal charges were assigned using the FlexX built-in routines. The

active site was defined by using a 9.5 Å cut-off radius around the reference ligand (TS and NS,

respectively). The radius was chosen slightly larger than the default (6.5 Å) to accommodate the larger

ligands used in this study. For the ligands, FlexX did not recognize the atom types correctly. Therefore,

the automatic assignment was switched off and atom, bond types and hydrogens were used as found

in the prepared mol2 files. A formal charge of zero was assigned for all ligands.

AutoDock A detailed description of AutoDock’s docking algorithm and scoring function can be

found in Section 2.2.1. Minor adjustments were made to the default parameters of AutoDock: The

RMSD tolerance for clustering the resulting ligand conformations was set to 1.5 Å and 15 Lamarckian

genetic algorithm (LGA) runs with 2.5∗106 energy evaluations were performed for each ligand. The

grid box was centered on the bound TS conformation in the 3CF5 crystal structure with 70x70x70

grid points using the default grid spacing of 0.375 Å. The molecule input files (pdbqt) were prepared

using the AutoDockTools scripts prepare_receptor4.py and prepare_ligand4.py, preserving the

Gasteiger charges in the mol2 files calculated by MOE.

AutoDock Vina AutoDock Vina was recently released by the Scripps Research Institute. The develop-

ers claim a significant accuracy improvement of the binding mode predictions for small molecule–

protein complexes, and an approximately two orders of magnitude speed-up in comparison with

AutoDock 4 [133]. Vina uses an Iterated Local Search global optimizer similar to the one implemented

in the docking program ICM [148] and an empirical scoring function inspired mainly by X-Score [149].

AutoDock’s input pdbqt and grid files were used for docking with AutoDock Vina. The exhaustive-

ness parameter of the global search was increased from 8 (default) to 16, otherwise default parameters

were used.

GlamDock GlamDock is based on a simple Monte Carlo sampling with subsequent minimization

procedure and an empirical potential for scoring. Although GlamDock is not as well known as the

other docking programs investigated, it was included in this evaluation as its new high quality scoring

function has been reported to be very successful in reproducing protein–ligand and RNA–ligand

complexes [254]. It was calibrated on a test set including partly RNA–small molecule complexes and

contains an additional stacking term and an improved definition of lipophilic atoms to account for

specific small molecule–nucleic acid interactions [254]. Two different GlamDock scoring scenarios

were investigated: high quality (HQ) and new high quality (nHQ).
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DrugScore DrugScoreRNA is the first knowledge-based scoring function to predict RNA–ligand inter-

actions, available in the public domain. Based on the DrugScore formalism [157] (see Section 2.2.2),

distance-dependent pair potentials were derived from 670 crystallographically determined nucleic

acid–ligand and nucleic acid–protein complexes [176]. DrugScoreRNA showed superior predictive

power when compared to DrugScore, DrugScoreCSD, and an RNA-adapted AutoDock 3 scoring func-

tion [241] on a test set of 15 RNA–ligand complexes [176].

To account for the specific thiopeptide–RNA and thiopeptide–protein interactions at the binding

site, a combination of the scoring functions DrugScore and DrugScoreRNA was developed in the

course of this study (referred to as DrugScoreProt/RNA) and was used to re-score the docking poses

produced by AutoDock and GlamDock. For comparison, DrugScore, and DrugScoreRNA alone, and a

precurser1 of the newest DrugScore version DrugScoreX (DSX) [177] were also used to re-score the

complexes.

Evaluation measures To structurally evaluate the docking accuracy the RMSD (see Eq. 2.5 on page 19

for its definition) between the docking pose’s atom coordinates and the ones in the “native” pose (i.e.

the crystal or MD conformation) was determined. As the RMSD implementations slightly differ in the

docking programs used, the external tool fconv (V0.98) [255] was used to calculate all RMSD values.

Hydrogens were not included in the RMSD calculations.

For evaluating affinity predictions the predictive index (PI), introduced by Pearlman and Charif-

son [256], was used as an evaluation criterion. The PI measures how reliably a function can correctly

choose the better binder for any pair of molecules. It is normalized to values from -1 (always wrong),

0 (random), to +1 (always correct). For a set of ligands i with experimentally determined binding

energies Ei and corresponding predicted binding energies Pi , it is calculated as:

PI =
∑

j>i
∑

i |E j −Ei |Ci j∑
j>i

∑
i |E j −Ei |

(4.1)

with

Ci j =


1 if

[
E j −Ei

]
/
[
P j −Pi

]< 0

−1 if
[
E j −Ei

]
/
[
P j −Pi

]> 0

0 if
[
P j −Pi

]= 0

(4.2)

4.2.2. Results

Re-docking accuracy

As an initial performance test, TS and NS were re-docked into their corressponding crystal structures

(PDB codes 3CF5 and 2ZJP) using the docking tools FlexX, AutoDock, Vina, and GlamDock to evaluate

how accurate the experimentally determined binding modes could be reproduced by the docking

1The DrugScoreX potentials were provided for testing by Gerd Neudert previous to the official release.
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programs. These crystal structures have only a medium resolution (3.3–3.7 Å) and were obtained from

soaking experiments [32] which implies uncertainty concerning the exact atomic positions of the

protein’s side chains, the nucleobases, and the ligands themselves. This low resolution renders these

crystals imperfect target structures for docking experiments. Commonly, a re-docking RMSD below

2 Å is considered as a good result (see for example Ref. 161). Consequently, this value is often the

upper limit of an X-ray structure’s resolution to be included into test sets used in docking evaluation

studies. During the MD simulation of the 23S·L11·TS complex based on 3CF5 a deviation up to

∼3 Å from the input coordinates was observed after removing the restraints (see Chapter 3). The

coordinates stayed approximately at this distance level for the rest of the simulation. Therefore, a

representative average equilibrated 23S·L11 structure from the MD simulation, representing a refined

complex structure in solution phase at 310 K, was used as an additional target for the docking studies

(referred to as MD-refined structure hereafter). All ions and water molecules were removed from

this structure as no preferred occupancy was detected at the TS binding interface (cmp. Chapter 3),

rendering mediated contacts unlikely.

Table 4.1 contains the top-ranked (and minimal) RMSD values to the reference ligand structures

found by the docking tools tested. As seen in Table 4.1, AutoDock and GlamDock clearly outperformed

Table 4.1.: Root-mean-square deviationsa (RMSD, Å) of re-docking experiments for nosiheptide
(NS, 2ZJP) and thiostrepton (TS, 3CF5).

Ligand Input
conf.b

FlexX AutoDock GlamDock Vina

NS c 4.30 4.87 (3.18) 1.48 (0.95) 27.90 ( 1.22)
NS min 2.25 ( 1.92) 4.26 (3.09) 1.32 (0.87) 28.00 ( 2.11)
TS c 13.27 ( 9.77) 2.42 3.78 (2.94) 31.97 (10.17)
TS min 10.75 (10.55) 6.15 (4.06) 12.45 (6.18) 27.44 (14.00)
TS MD-refined c 12.21 ( 7.46) 1.96 (1.64) 4.02 (1.00) 1.84 ( 1.84)
TS MD-refined min 13.27 ( 9.26) 2.71 (1.89) 2.16 (1.56) 32.27 ( 2.63)

a Minimal RMSD found among the docking solutions is shown in brackets.
b Input conformation was either centered (c), or energy-minimized coordinates (min).

FlexX. FlexX was not able to place TS correctly into the binding pocket, as illustrated by the high

RMSD values. The largest discrepancy between finding the correct pose (as expressed by the minimal

RMSD in brackets) and ranking it correctly was seen for Vina. Vina is able to find a docking pose of

NS close to the one observed in the crystal structure, but ranked a pose completely out of the binding

pocket highest. For TS, however, its re-docking accuracy is similarly poor like FlexX’s performance.

GlamDock performed very well for NS (RMSD below 2 Å) and intermediate for TS in the crystal

conformation but is sensitive to small conformational changes as sampled by the minimized TS

conformation. Overall, AutoDock achieved the most stable results and the lowest RMSD for TS (2.42 Å).

Thiostrepton’s binding mode in the MD-refinded structure was consistently better reproduced than
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in the crystal structure.

For nosiheptide, AutoDock’s re-docking RMSD was higher than for the other tools, caused by a

different binding mode where NS’s tail was oriented towards L11’sα1 helix instead of the protein-RNA

cleft (Fig. 4.1). When the number of LGA runs was increased to 100, a solution was found at the top

rank which was very close (RMSD 1.34 Å) to the crystal conformation (Fig. 4.1). Interestingly, the

top solution found within the initial 15 runs was almost identical to the second-ranked cluster of

AutoDock poses produced by the docking with 100 runs. This indicates that a second binding mode

of NS might exist in addition to the one resolved in the crystal structure, a view also supported by

biochemical studies that located NS’s tail in this region of L11 [190].

Figure 4.1.: AutoDock re-docking poses of nosiheptide to 2ZJP crystal structure. The L11 protein surface
is colored wheat, the rRNA is colored green. NS binding mode as found in the crystal structural (gray) and
top-ranked pose predicted by AutoDock when using 15 GA runs (orange) and when using 100 GA runs
(red).

Due to FlexX’s poor re-docking accuracy for TS and Vina’s inapproriate ranking of docking poses,

these tools were excluded from further evaluation at this step. Only AutoDock and GlamDock were

tested for their affinity prediction of a larger set of thiopeptides.
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4:

5: 6: R = 7: R =

8: 9: 10:

Figure 4.2.: Thiostrepton derivatives with modified tail.
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11: n = 0
12: n = 1

13: n = 2

14: n = 1

15: n = 2

16: n = 2

Figure 4.3.: Thiostrepton derivatives with modified rings and tail truncations.

Affinity prediction

The purpose of docking tools is twofold: they should 1) predict the correct binding modes of ligands,

and 2) correctly predict their binding affinities (or at least rank different ligands correctly with respect

to this property). Therefore, the docking tools that showed favorable re-docking accuracy in the initial

test – AutoDock and GlamDock – were subsequently tested for their ranking ability. Experimentally

available binding constants of TS, NS and 16 TS derivatives (Figs. 4.2–4.4, synthesis and testing by

group of Dr. Hans-Dieter Arndt, particularly Dr. Sebastian Schoof and Dr. Sascha Baumann, Max

Planck Institute for Molecular Physiology, Dortmund) were used as reference data. It was tested

how well the scoring functions reproduced the experimentally determined binding constants by

calculating their predictive indices (PIs). This test set was challenging since the ligands are structurally

very similar and the affinities do not cover a large range (15 compounds 0.1–6.76 nM, 18: 24.7 nM, 19:

670 nM).

All docking tools investigated perform, in general, a flexible ligand docking. The ligand’s transla-

tional and rotational degrees of freedom are searched for placing it in the binding site. Additionally, its

torsional internal coordinates are searched to determine the ligand’s bound conformation. However,

this does not include macrocycles, as present in the TS scaffold. Thus, a macrocycle’s backbone con-

formation is unchanged during docking; only side chains, if present, are modelled as being flexible.

Therefore, a correct conformation of the two macrocycles in the input structure is critical for docking.

An initial test to predict thiostrepton’s three-dimensional structure was performed by using the 3D

structure generation program CORINA [257], a common approach to predict 3D input conformations

of small molecules in virtual screening applications. However, the resulting conformation deviated

by almost 6 Å from the 3CF5 crystal conformation. Thus, a different route had to be found to generate

reliable input conformations of the 16 TS derivatives.
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17 18

19

Figure 4.4.: Thiostrepton derivatives with modifications of side chains at macrocycle A or B.

To obtain three-dimensional structures of the TS derivatives, the 3D structure of TS was used

as template, the respective changes to the molecules were made in MOE and the structures were

subsequently minimized. All dockings were performed against the 3CF5 crystal structure and its

MD-refined variant. Depending on the docking target, the TS’s crystal or MD conformation was

used as template for the derivatives in order to prevent a conformational bias. For GlamDock, two

different scoring variants were investigated, HQ and nHQ (see Methods section). Additionally, the

docking poses produced by AutoDock and GlamDock were re-evaluated (re-scored) with DrugScore,

DrugScoreRNA, DSX, and the combined function DrugScoreProt/RNA. As both AutoDock and GlamDock

showed better performance when the MD-refined receptor structure was used, the DrugScore re-

scoring was only performed for this target.

The predictive indices of AutoDock’s and GlamDock’s native scoring functions and a re-scoring

with different DrugScore variants and the combined function DrugScoreProt/RNA for the MD-refined

target are shown in Table 4.2. Except for the AutoDock score that ranked approximately half of the

data set correctly with the MD-refined target structure (PI of 0.51), neither the GlamDock scoring

functions nor any of the DrugScore re-scorings showed any predictive capabilities. Conversely, even

negative PI values were often found, meaning that weaker binders were ranked higher than stronger

ones. The new version of GlamDock’s scoring function (nHQ) indeed improved the predictions but
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Table 4.2.: Predictive indices (PIs) of docking scores and re-scoring of docking poses with different
DrugScore variants.

X-ray MD-refined
Native Score DrugScore DrugScoreRNA DSX DrugScoreProt/RNA

AutoDock -0.29 0.51 -0.06 -0.19 -0.05 -0.22
GlamDock_HQ -0.30 -0.28 -0.27 -0.52 n.d. -0.50
GlamDock_nHQ -0.46 0.07 -0.31 -0.36 -0.28 -0.43

only for the MD-refined target and in the way that it turned an incorrect prediction into a random

one (i.e. -0.28 to 0.07, Table 4.2). An illustration of the improved fit can be seen in Fig. 4.5. However,

the low PI values were often dominated by a few prominent outliers, for example removing only one

compound (19) from the data set of 18 compounds increased the PI of the AutoDock+DSX scoring

from -0.05 to 0.14.

A B

Figure 4.5.: GlamDock score versus experimentally determined binding affinity for 18 thiopeptides. A)
old high quality (HQ) scoring function, and B) new high quality (nHQ) scoring function was used.

Since AutoDock was the only tool that displayed both, a convincing re-docking and reasonable

affinity prediction accuracy, it was selected as the docking engine for all further docking studies

throughout this thesis. Moreover, the fact that the AutoDock scoring function is based on the 1984

AMBER force field [167] (cmp. Section 2.2.1) was considered another advantage regarding the planned

coupling with the AMBER MD package. In the following, adjustments are presented that were tested

for a further improvement of AutoDock’s performance.
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AutoDock adjustments

An obvious parameter to tune when using stochastic algorithms is the number of runs (trials) that

are performed. The AutoDock default number of genetic algorithm runs is 10 but it has been recom-

mended to use a higher number (at least 100) to increase the exhaustiveness of the search, especially

when docking very flexible ligands like peptides [258]. Docking the thiopeptides again with 100 runs

instead of 15 improved the predictive index from 0.51 to 0.61 when using the MD-refined target

structure. Like before, the PI for the crystal structure was considerably lower (0.28, see Fig. 4.6).

A B

Figure 4.6.: AutoDock score versus experimentally determined binding affinity for 18 thiopeptides docked
to A) the crystal structure and B) the MD-refinded structure. 100 docking runs.

Another setting investigated was the molecules’ partial atomic charges. As described in Sec-

tion 2.2.1, AutoDock uses Coulomb’s law to describe electrostatic interactions between charged

atoms. There exist several charge calculation methods (for an overview see Section 2.1.2) which

lead to significant differences in the partial charges assigned to the different atoms [259]. Therefore,

the method to calculate the partial atomic charges can largely influence the overall electrostatic

contribution. There has been evidence [259–261] that more accurate charge calculation methods

(quantum or semi-empirical) are inferiour to empirical charge calculation methods like the Gasteiger-

Marsili method [100] in terms of docking accuracy as they can provide a more accurate modelling of

electrostatic interactions.

For the MD simulation of the TS·23S·L11 complex (Chapter 3) RESP charges [98] compatible with

the AMBER force fields [99] had already been calculated for the ligand, protein and RNA atoms. It

was, therefore, straighforward to test if the RESP charge model would improve docking accuracy

when docking TS back into its binding site. However, using RESP charges on the molecules’ atoms
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worsened the docking result. The previous docking energy of -13.37 kcal/mol changed to a positive

value (3.12 kcal/mol) and the re-docking RMSD increased from 1.96 (1.64) Å to 13.58 (7.16) Å. Thus,

Gasteiger charges were used in all further dockings with AutoDock. It was also found that the Gasteiger

partial charges obtained with MOE and AutoDockTools (ADT) differed slightly2. These slight charge

differences had a significant effect on the docking outcomes; the charges calculated by ADT produced

consistently lower AutoDock scores. To obtain comparable results for different molecules, it was

decided to use only ADT for charge calculations.

A second charge aspect was the negatively charged RNA backbone. In MD simulations of RNA this

is accounted for by adding counterions to neutralize the simulated system. Docking simulations,

however, are executed in vacuo, usually without considering any ions or water molecules. To solve

the problem of the highly negatively charged RNA without the necessity to add explicit ions during

the docking, Moitessier et al. [242] increased the partial atomic charge of the phosphorus atoms by

+1. Analogously, this approach was tested with the 23S·L11 system, but did not lead to any observable

changes in the docking outcome. One has to keep in mind, though, that all thiopeptides investigated

are neutral. When dealing with positively charged molecules, such as the aminoglycosides inves-

tigated in the study by Moitessier et al., the proposed modification of the RNA charges might be

worthwhile.

4.2.3. Discussion

As, until now, no assessment of available docking programs with respect to protein–RNA targets

has been published, the performance of several protein-ligand programs when docking selected

thiopeptides to the 23S·L11 subunit of the GTPase associated region was investigated. As noted

earlier on other target systems [165, 262, 263], the performance among the different tools in terms of

reproducing known binding modes and correctly ranking different ligands was quite diverse. FlexX

and AutoDock Vina performed poorly and placed thiostrepton out of the binding pocket. Although

in principal, these alternative binding modes cannot be ruled out, crystal and biochemical data

in addition to inconsistent results between the two tools render them unlikely. FlexX’s weakness

at shallow binding pockets and very flexible ligands has already been observed, although with an

older version [162, 264]. Moreover, its strategy to optimize for hydrogen bonds first might not be

optimal for docking a compound possessing 18 hydrogen bond donors and 37 acceptors of which

only a minority is actually involved in hydrogen bonds with the binding site. The complete lacking of

modelling electrostatic interactions might be an explanation for Vina’s poor performance.

The stochastic search algorithms implemented in GlamDock and AutoDock were obviously better

suited to search the conformational space of the large and flexible ligands. As a drawback, using the

latter tools accounts for a longer run time (approx. 75 min and 120 min per compound, respectively)

2The reason for this is currently unclear. A likely explanation is that the implementation of the Gasteiger-Marsili algorithm
differs in the tools.
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compared to FlexX and Vina (approx. 4 min and 13 min per compound, respectively). Using AutoDock

with extensive search parameters (100 LGA runs) increases the runtime further to approximately

780 min and is therefore unsuited in a high-throughput context. Whereas GlamDock was slightly

better than AutoDock with respect to re-docking accuracy, the AutoDock scoring function was

the only one able to produce an acceptable ranking of the 18 investigated thiopeptides. Neither

a re-scoring of the docking poses with a combination of the knowledge-based scoring functions

DrugScore and DrugScoreRNA nor using a more accurate charge model could improve the results

further. The failure of the DrugScore combination was astonishing as it was expected that specifically

addressing ligand–protein and ligand–RNA interactions would be superior to AutoDock’s scoring

function that was solely trained on protein–ligand complexes. There are, however, two problems

with the combined DrugScoreProt/RNA approach used here: 1) the data set that was used to derive the

DrugScoreRNA potentials, and 2) the way the DrugScore and DrugScoreRNA potentials were combined.

Redarding 1) The number of small molecule–RNA complexes in the PDB is much smaller than that of

small molecule–protein complexes. This led to the necessity to include additionally small molecule–

DNA complexes to obtain statistically significant potentials for DrugScoreRNA [176]. In contrast to

DNA, which occurs almost always as double-stranded helices in the cell, RNA can form intricate

three-dimensional folds, comparable in their complexity to protein structures [265]. Thus, although

common motives exist, the interactions between small molecules/proteins and RNA are different to

the ones observed for small molecule/protein–DNA complexes [266–268]. It is therefore questionable

if a scoring function derived from both sets can model the interactions of small molecule-RNA

complexes accurate enough. Regarding 2) DrugScore and DrugScoreRNA were derived from two

independent data sets. Thus, their potentials might not be comparable and it might not be the correct

way to simply add them for the protein and RNA part. Certainly, a reparameterization would be

necessary to obtain statistically meaningful combined potentials. Since the results (also of the single

DrugScore functions) were so discouraging, this route was not continued. Alternatively, it will be

investigated in the following sections to what extend free energy computations (i.e. the MM-PB(GB)SA

approach) can improve the affinity predictions.

An alternative explanation for the failure of the DrugScoreRNA and DrugScoreProt/RNA scoring is

that the nature of the binding between thiopeptides and rRNA is much more “protein-like” than

expected. The data suggest that despite the binding environment being dominated by the RNA [191],

the binding site characteristics are more similar to a typical non-polar protein receptor than to

isolated RNA. In fact, only surface-oriented base–ligand contacts and no charge–charge interactions

are present in comparison to interactions of other ligands (for example aminoglycosides) with RNA.

The superiority of the simpler Gasteiger charge model compared to the RESP charges could be

explained by the way the AutoDock scoring function was parameterized. The coefficients of the

scoring terms (see Section 2.2.1) were determined by a regression analysis on a set of complexes

with Gasteiger charges assigned [153]. Using a different charge set from the one used to derive the

scoring function might lead to an imbalance between the electrostatics term and the other terms of
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the scoring function.

Chosing a structural model representing the average equilibrated complex of an MD simulation of

the TS·23S·L11 complex as target for the docking studies improved the docking results for all programs

investigated. This demonstrates how important a high resolution structure is for structure-based

investigations. If such a structure is not available, a structural refinement via MD might be a promising

strategy. This will be further explored in Section 4.5. Further improvement of AutoDock’s docking

accuracy could be achieved by increasing the number of docking runs and thus the exhaustiveness

of the conformational search. In summary, AutoDock showed acceptable re-docking and affinity

prediction accuracy with the challenging system investigated in this thesis and will be used as docking

engine in the following investigations.

4.3. Docking NMR Structures of Thiostrepton Derivatives for
Characterization of the Ribosomal Binding Site

Through a collaboration with Dr. Henry Jonker (MPI Frankfurt/Main) it was possible to determine

solution-phase structures of 1 and three derivatives (see Fig. 4.7) by NMR spectroscopy. This allowed

to study the influence of selected molecular changes on the conformational space of TS. The deter-

mined solution structures were docked to the 23S·L11 subunit to determine their binding mode and

correlate their molecular interactions at the ribosomal GAR with their bioactivity.

1: n = 2

14: n = 1

16: n = 2

20: n = 1

Figure 4.7.: Chemical structures of TS (1), its oxidized (14), reduced (16), and epimer (20) variant.
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4.3.1. Materials & Methods

NMR Spectroscopy

As 1, 14, 16, and 20 are barely soluble in biological buffer (low µM range) [250] and the binding site is

largely hydrophobic, the moderately polar and adaptive [269] solvent mixture CDCl3/[D5]EtOH (5:1)

was selected for NMR studies in solution. NMR spectra for TS and its derivatives (5–10 mM) were

recorded at 298 K and 600 MHz. Further details are described in Ref. 235.

Biochemistry

Experimental ligand affinities to the target were determined by using a fluorescence-polarization-

based assay, as described previously [191, 250].

Docking Studies

All docking studies were performed using AutoDock 4.2 with the optimal parameter settings deter-

mined previously (Section 4.2). The pose with the lowest score was chosen as representative of each

cluster. Before docking, the L11 protein and 23S RNA portion of the ribosomal crystal structure (PDB

3CF5) were protonated and minimized using the Sander algorithm in AMBER 9. Two different docking

scenarios were performed: 1) a rigid docking where all ligand torsions were inactivated in the input

files, and thus inflexible during the docking, and the complete NMR bundle of 20 structures was

docked in 15 independent GA runs. 2) For the semi-flexible docking, the target and the conformation

of the macrocycles were kept rigid, the conformation closest to the average of the NMR bundle was

selected as representative input conformation and 100 independent GA runs were performed.

4.3.2. Results

The solution structure of thiostrepton (1) that was determined by NMR spectroscopy compares

very well with the X-ray crystal structure (PDB 1E9W) [208]. The structure of the quinaldic acid

macrocyle (ring B) and the dehydrolanine tail are nearly identical for all derivatives. The main

structural differences occur in the conformation of the A ring, specifically in residues 2–4 (Fig. 4.7).

Their orientation significantly deviates in the oxidized compound 14 and, in particular, the epimer

derivative 20 (Fig. 4.8). The X ring and the dihydroxyisoleucine side chain (TSI-4, cmp. Fig. 4.7)

become displaced by 2.5–2.9 Å. Oxidation of the X ring flattens this subunit, but causes only a slight

displacement of the adjacent dihydroxyisoleucine residue. The alteration in stereochemistry in

epimer 20 leads to a much larger change in the structure, with a significant dislocation of ring X.

Moreover, the adjacent thiazole ring (TZO-5) becomes tilted by 22°. The core structure of compound

16 is not strongly affected, but the orientation of the dehydroalanine tail is altered.

NMR structure ensembles generally cover a significant area of the energetically accessible con-

formational space, even though they may underestimate the truly accessible fluctuations [270].
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Figure 4.8.: Bundle of 20 minimum-energy NMR solution structures of compounds 1 (green, PDB code
2L2W), 14 (red, 2L2X), 20 (blue, 2L2Y), and 16 (orange, 2L2Z) superimposed on the previously known
X-ray crystal structure of thiostrepton (black, 1E9W).

Therefore, all the individual members from the NMR-derived structure ensembles for 1, its oxidized

(14), reduced (16), and its epimer variant (20) were docked onto the crystal-structure coordinates

(3CF5) of the L11 protein and 23S RNA binding site. By using these data for the completely rigid

docking of 1, consistently poses were found where the dehydroalanine (DHA) tail was inserted deeply

into the cleft formed by L11 and 23S. Neither the recent structural data nor studies which localized

the DHA tail biochemically support such a binding geometry [31, 32, 190, 191, 250].

Table 4.3.: Biological activities and docking scores.

Compound KD (L11/RNA) [nM]a Scoreb Scorec

1 0.20±0.05 -8.41 (4) -8.35 (14)
14 0.23±0.14 -8.54 (23) -8.54 (23)
16 0.10±0.05 -9.15 (2) -8.71 (20)
20 5.60±1.10 -8.30 (6) -7.92 (34)

a Apparent affinity to the reconstituted minimal L11·rRNA target complex
from T. thermophilus.

b Best AutoDock score (number of conformations).
c Largest cluster docking score (number of conformations).

In a more refined semi-relaxed docking approach, the side chains of the ligand and the tail residues

were treated as flexible3. For all four structures, poses with the best docking scores that resemble the

overall binding mode in the crystal structure could be identified (Fig. 4.9A). These findings indicate

that the flexibility of the side chains and the tail residues is important for proper binding to the target

3For a related technique, see for example Ref. 271
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structure. A statistical evaluation of the binding conformations (Fig. 4.9B) consistently identified

the crystal-like binding mode for 1, 14, and 164, which exhibited comparable interactions with the

binding site (see Fig. 4.10). In this analysis, the side-chain OH groups of THR-2 and TSI-4 form three

hydrogen bonds to A1067, and TZO-1 displays a stacking interaction with A1095. The tail of 14 and 16

forms an additional hydrogen bond to the protein backbone. In contrast, most of these characteristic

binding features were absent for epimer 20 (Fig. 4.10). Furthermore, the unlikely tail-in-cleft binding

mode was frequently found. Taken together, these data and the lower score of the biochemically

supported “best” solution strongly suggest that the epimer 20 is less well suited for binding to the

target structure.

A B

Figure 4.9.: Docking of 1 (green), 14 (red), 20 (blue), and 16 (light orange) to the L11 protein (wheat,
only a backbone trace is shown) and 23S rRNA (pale green). The binding site’s van der Waals surface is
shaded gray, the crucial nucleobase A1067 is highlighted (red). A) Poses with the best docking scores. B)
Representative poses from the largest clusters. Note the reverted binding pose being highly populated for
20.

The docking studies ranked the reduced form 16 as the tightest binder, and placed thiostrepton (1)

and the oxidized form 14 with nearly equal affinity in between 16 and 20 (Table 4.3). This computa-

tional trend was confirmed by biochemical measurements in which ligand affinities to the target were

determined by using a fluorescence-polarization-based assay [191, 250]. The experimental conditions

are slightly different because of the paucity of structural data (D. radiodurans) and reliable binding

(T. thermophilus) and translation inhibition assays (E. coli). However, a high degree of conservation

of the GAR structure and function among species [29] justifies the comparison. Thiostrepton (1), and

the oxidized form 14 show very similar activity (Table 4.3). A significantly reduced affinity to the target

(20–25 fold) was found for epimer 20. As predicted by the docking studies, 16 had a significantly

increased affinity to the isolated target – comparable to the highly active nosiheptide [17, 250, 273].

4The protonation state of the piperidine had no effect on the results.
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1

14

16

Figure 4.10.
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20

Figure 4.10.: Interactions of 1, 14, 16, and 20 with the L11·23S binding site. Interactions are shown as
a 3D (left) and 2D structural depiction (right) of the largest cluster docking solutions. For simplicity,
only the RNA is displayed in the 3d depictions. The hydrogen bond’s quality is expressed as percentage
probability [272]. Note that the numbering of interacting residues is as found in the truncated model used
for docking, for RNA residues (chain A) 1050 has to be added, for protein residues (chain B) 58 has to be
subtracted.

4.3.3. Discussion

The epimer 20 showed a narrowing of the cleft between the A and B rings, which leads to a shape

mismatch with the target structure. The insertion of the dehydrobutyrine residue (TZB-3) between

the RNA and the L11 protein as well as the placement of TSI-4 at the A1067 residue then suffers. It

is remarkable how well the experimental data was qualitatively captured by the integrated NMR-

docking procedure, particularly given the moderate resolution of the target X-ray structure (3–4 Å).

This trend strongly suggests that the inhibitor structures do not undergo major conformational

reorganization on binding to the target. Thiopeptide inhibitors may have evolved to mimic this

recognition motif, for example, to mimic domain V of the elongation factor EF-G in one of the states

during the PRE to POST transition of the ribosome [28, 274, 275].

In summary, integrated semisynthesis, NMR spectroscopic solution-structure determination,

computation, and biological evaluation studies have identified key conformational and structural

parameters involved in thiostrepton targeting the ribosome’s GAR. This ternary ligand·RNA·protein

interaction seems to be driven by ligand shape and RNA recognition [191], but is moderately tolerant

of structure variation. The NMR analysis of the structures of thiostrepton (1) and its derivatives

revealed that the molecular scaffold of 1 may not be perfect for addressing the pharmacophore

region of this highly complex RNA–protein target. The minor mismatch seems to be healed in part

by the dihydroxyisoleucine side chain. Overall, these data define structural boundaries, wherein
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an improvement of the overall pharmacological profile of these compounds or their analogues will

be possible. These structural boundaries can be summarized as follows: 1) The truncation of the

DHA tail by one unit had no detectable effect on the affinity, demonstrated by the almost identical

KD values determined for TS (1), and TS-1 [235] (data not shown). The limited number of contacts

that were found by the docking studies between TS’s tail and L11’s N-terminal domain, and the

considerable size of that protein region’s surface, easily explain this observation. 2) Reduction of

the dihydropiperidine imine function (Ring Y) led to a slight reorientation of the tail, allowing it

to approach the protein surface more easily, and thus causing an increase of affinity. 3) The most

pronounced effects were found for changes within macrocyle A, specifically ring X. The oxidation

of ring X changes its conformation only slightly and still allows a similarly tight binding like TS. In

contrast, the conformational change caused by ring X’s epimerisation led to a shape incompatibility

with the rRNA·protein cleft, illustrating the compounds’ sensitivity to modifications of that molecular

substructure.

4.4. Using Quantum Mechanics and Molecular Dynamics to
Refine 3D Structures of Thiopeptides

In the previous section it was shown how the prediction of three-dimensional 23S·L11·thiopeptide

complexes can aid the interpretation of structure-activity relationships and define boundaries for

the modifications of the TS scaffold. The excellent agreement between predicted and biologically

determined binding affinities for the compound set suggest that reliable predictions for newly

designed compounds can be expected. However, only TS and three derivatives were investigated. It

would be desirable to extend the SAR investigations to more diverse derivatives. The largest hurdle

to overcome for achieving this goal is to obtain accurate 3D structures of the ligands for docking

input. As the solution structure determination of thiopeptides by NMR involves significant effort and

ressources, an in silico strategy would be a cost-effective alternative. The approach of using the TS

structure as template, introduced in Section 4.2, turned out as a promising starting point, but it is

questionable if a short minimization with a general force field can result in large structural changes.

In the current section an alternative approach is presented that makes use of quantum mechanics

and molecular dynamics simulation to refine 3D structures of thiopeptides.

Force-field optimization remains an important endeavor for modelling chemically diverse systems

at atomistic resolution. Most MD simulations are on “traditional” systems involving standard amino

and nucleic acids, where the force fields are well established. Modelling thiopeptides, however, is

challenging using force field based methods. Like many natural products they have chemical func-

tionalities and bonding that are not present in protein, DNA, and RNA macromolecules. Thus, an

additional force field is needed whose parameters cover the unique functionalities within thiopep-

tides, and that is balanced with the protein/RNA force fields used. In this section the development
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of a force field for thiopeptides is presented. The performance of this force field when used in a

molecular dynamics simulation of thiostrepton (1) immersed in an organic solvent mixture is tested

for exploratory and methodological development.

4.4.1. Materials & Methods

Force-field Parameter Optimization

TS was separated into its constituent residues as defined by Bond et al. [208] (Fig. 4.11). Each non-
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Figure 4.11.: Thiostrepton separated into its 15 constituent residues.

amino acid residue’s initial conformation was taken as found in the TS crystal structure (3CF5 [32]),

capped using the nearest functional group, and terminated using a methyl group (see Fig. 4.12). The

standard residues ALA, ILE and THR were built in LEaP with ACE (CH3CO) and NME (NHCH3) capping

groups. All residues were optimized using HF/6-31G(d) theory level, and electrostatic potentials were

subsequently computed using CHELPG [95]. A RESP fit was performed via R.E.D. [276] using a 0.01

weighting factor to obtain charges compatible with Parm99SB [88]. The determined partial atomic

charges can be found in Tables C.2 and C.3 in the appendix. Initial parameters for the standard amino

acid residues were taken from Parm99SB [89], while the non-standard residues parameters were
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taken from GAFF [91] (cmp. Chapter 3). A second intramolecular parameter set was optimized for

modelling TS, chloroform, and methanol (Dr. Karl N. Kirschner). Since TS will be modelled bound

to the ribosome, existing Parm99SB intermolecular Lennard-Jones parameters are used instead of

optimizing them. Further methodological details are descibed in Ref. 277.
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Figure 4.12.: Molecules used for deriving intramolecular parameters and RESP charges for non-standard
thiostrepton residues. Molecular fragments are surrounded by dashed lines.

Molecular Dynamics Simulation for Parameter Validation

Both parameter sets were used in separate 20 ns isothermal-isobaric MD simulation performed at

300.15 K. 1-4 electrostatic and nonbonded scaling factors were set to one during the parametrization

and the MD simulation using the novel force field, otherwise the default parameters were used (1.2

and 2.0, respectively). All MM-based and QM calculations were performed using AMBER [82] and

GAMESS [278].
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Replica-exchange Molecular Dynamics Simulation

In an attempt to predict TS’s 3D structure from 2D input, replica-exchange molecular dynamics

(REMD) simulations with AMBER 11 were set up. Since the current AMBER 11 REMD implementation

does not allow explicit solvent simulations [116], TS was simulated in generalized Born (GB) implicit

solvent. An initial three-dimensional TS model was generated with CORINA [257], and subsequently

minmized using 500 steps steepest descent, followed by 500 steps conjugate gradient minmization.

The OBC generalized Born model I [279]) with a nonbonded pairs truncation cutoff of 99.0 Å and a

salt concentration of 0.0 M was used. To determine the number of replicas and their temperatures the

“Temperature generator for REMD-simulations” [280] was used, requesting an initial temperature

range from 300 to 600 K and an exchange acceptance ratio of 0.2. Each of the eight replicas was equili-

brated individually to its target temperature using a Langevin thermostat in a 200 ps unrestrained

simulation. A different random number seed was used for each replica. The REMD simulation was

run for 40 ns with an exchange attempt frequency of once every 500 steps. All MD simulations were

conducted using the SHAKE algorithm [211] to constrain hydrogen bonds and a step size of 2 fs.

Coordinates were recorded every 2 ps. To overcome rotational barriers, a second REMD run was

performed with ten replicas, covering a temperature range from 300 to 770 K.

4.4.2. Results & Discussion

Validation of the Optimized Parameters for Thiostrepton

An initial MD investigation of TS bound to the ribosome’s GAR was done using the Parm99SB/GAFF

parameter combination (Chapter 3). Using such a combined parameter set is a plausable route when

confronted with an incomplete force field. However due to the developmental differences between

force fields, such a “Frankenstein” approach can lead to untrustworthy results. Ultimately a force

field is needed that is more reliable and whose errors can be tracked down and corrected more easily.

Thus, TS’s intramolecular degrees of freedom were optimized; in total, 35 bonds, 89 angles, and 153

torsions, using 18 atom types.

To partially validate the parameters, a model was created to reproduce the condition of the NMR

experiment ([235] and Section 4.3) by immersing TS in a 5:1 chloroform:methanol mixture. As no

such solvent mixture is readily available in AMBER, the desired mixture was created by 1) solvating

TS in a chloroform box (CHCL3BOX with a padding of 28 Å in all directions), and 2) replacing every

6th chloroform residue by a methanol molecule. Two MD simulations were performed using the

Parm99SB/GAFF combination and the novel optimized force field.

While the Parm99SB/GAFF parameter set performs adequately, as seen in Figure 4.13A, the opti-

mized force field (Fig. 4.13B) reproduces the NMR structure better. However, a close examination of

the torsion values and dynamics within TS’s tail residues revealed some questionable behavior by the

optimized force field. A re-examination of the critical torsion parameters showed that an alternative
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solution could be found for the coupled parameters describing the rotation about C2-CP and C2-N

bonds. After reoptimizing these parameters (Dr. Karl N. Kirschner), a third MD simulation was per-

formed and provided improved structural agreement to the NMR data (Fig. 4.13C and Fig. 4.14). This

led also to a better agreement in the quinaldic acid macrocycle (Ring 2) structure, which contains a

residue that is dependent upon these parameters (Fig. 4.11).

Analysing Thiostrepton’s Flexibility

After the optimized force field parameters had been finalized and validated, the data obtained from

the MD simulation of TS in organic solvent allowed conclusions about the flexibility of the molecule by

analysing the torsion angle distributions. Assessing molecular flexibility by MD approaches provides

an advantage over experiments here since the structure of the dehydroalanine tail region could not

be well defined by NMR spectroscopy [235]. Figure 4.15 depicts the distribution and location of the

torsion angles exhibiting the highest varation during the simulation. Expectedly, and also visible

from Figure 4.13, TS’s tail is the most flexible part of the molecule. The standard deviation (sd) of the

two C2-C2-N-CP torsion angles contained in the tail is ∼48°. Beside from these two torsions, only

the torsion angle in the isoleucin side chain (ILE-8) of Ring 2 showed comparable flexibility (sd of

46.7°). The rest of the torsions sample a very restricted angle range. Among those, several torsions

contained in Ring 1 show at least a moderate flexibility (sd of 16.7–23.6°, Fig. 4.15B). Interestingly,

they are located near the position where TS enters the cleft formed by the protein–RNA interface.

In summary, the MD simulation of thiostrepton in solution revealed that its two macrocycles

possess a remarkable rigidity allowing only the tail and a few side chains to move. Thus, it is likely that

only these portions can adjust to the 23S·L11 subunit upon binding. The inherent drawback of most

docking algorithms to keep macrocycles rigid during docking is therefore not the worst approach

for modelling the thiopeptide compounds. However, it again underlines the importance of a correct

conformation of the macrocyclic core in the docking input structure. Otherwise, a correct placement

at the binding site will not be found.

Predicting Thiostrepton’s 3D structure from 2D input

Starting from an experimental input structure (3CF5 X-ray), the MD simulation using the TS optimized

parameters gave an excellent geometric agreement with the NMR structure. However, the ultimate

goal – valuable in a drug design project – would be to predict thiostrepton’s three-dimensional struc-

ture ab initio. To test if starting from a 2D structure would lead to a similar agreement, an initial

input conformation was generated with CORINA [257]. The resulting 3D conformation, deviating

by 5.68 Å from TS’s crystal structure, was subjected to a 20 ns MD simulation using the same pro-

tocol as before. However, a stable conformation hardly differing from the input conformation was

obtained. Obviously, a conventional MD simulation was not able to sample the conformational space

sufficiently.
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A

B

C

Figure 4.13.: Root-mean-square deviation (RMSD) to NMR reference structure for Parm99SB/GAFF force
field simulation (A), simulations with initial optimized parameters (B), and reoptimized parameters (C).
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Figure 4.14.: Box plots of RMSD distribution for the overall RMSD to the NMR structure, and separated for
the tail (yellow), macrocycle A (green), and macrocycle B (red). The darker colors represent the simulation
results for the optimized force field, the lighter colors the results of the (old) Parm99SB/GAFF combination.
Evaluated for the simulation time frame 8–20 ns.

To increase the sampling efficiency, a replica-exchange molecular dynamics simulation (REMD, see

Section 2.1.4) [114] was set up (see Methods section for details of the REMD simulation conditions).

Based on the number of atoms (199, excluding hydrogen atoms that were under SHAKE constraints),

a temperature range from 300 to 600 K, and a requested exchange acceptance ratio of 0.2, an optimal

number of eight replicas was determined by the “Temperature generator for REMD-simulations” [280].

Table 4.4 contains the temperatures for the replicas, along with their exchange acceptance ratios

(EAR) for the first 1000 exchange attempts of the REMD simulation, validating that the required

exchange ratio was reached.

Table 4.4.: Initial temperatures of replicas and exchange acceptance ratios (EAR) for 1000 exchange
attempts.

Replica 1 2 3 4 5 6 7 8

Temp. (K) 300.00 336.27 375.67 418.61 465.28 516.07 571.35 631.59
EAR 0.16 0.19 0.18 0.22 0.20 0.19 0.19 0.24

When analysing the results of this simulation, it was found that TS’s RMSD to the average NMR

structure was still fluctuating around 5.5 Å. A conformation close to the NMR structure was not found

– in any of the replicas, most likely because of unsufficient sampling due to too low temperatures and

not enough replicas. A distribution analysis of selected torsion angles at the highest temperature

(631.59 K) revealed that the temperature was not high enough to overcome barriers in peptide and
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A

Ring 1

Ring 2

Tail

B

Ring 1

Ring 2

Tail

Figure 4.15.: Thiostrepton torsions showing high (A) and moderate (B) flexibility. High flexibility was
determined based on sampling different conformational states, while moderate flexibility was determined
based on a large standard deviation. The remaining torsion angles displayed very stable trajectories with
low standard deviations.
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double bond rotations. Therefore, a second REMD simulation with ten replicas up to a temperature

of 768.68 K was performed. Figure 4.16 shows a section for the first 50 exchange attempts from this

second simulation, ensuring that a good exchange between the ten replicas was reached during the

simulation.
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Figure 4.16.: Section from the replica exchange molecular dynamics (REMD) simulation process.

Even with these ten replicas, providing a temperature range from 300 to 768.68 K, it was not possible

to sample a conformation below ∼4 Å deviation from the NMR structure (Fig. 4.17). Assigning the

RMSD to the tail, macroring 1, and macroring 2, separately (Fig. 4.17B), revealed that this arose

from conformational restrictions in the two macrocyles. Although an initial RMSD decrease of ∼1.5 Å

can be seen and close conformations of the flexible tail part are found (closest distance 0.65 Å),

the conformations of the two ring systems do not reach a deviation below 3.7 Å (Ring 1) and 3.4 Å

(Ring 2). These results demonstrate that TS’s structural complexity does not allow to predict its

three-dimensional structure starting from 2D topology information. To obtain reliable 3D structures

of this compound class’ members, a knowledge-based strategy seems to be more promising. This

approach will be explored in the next section.

4.5. Binding Mode Predictions and SAR Interpretations of
Thiostrepton Derivatives

In Section 4.3 the binding mode prediction of TS and three derivatives, via docking their NMR deter-

mined structures to an X-ray structure of the GAR, was reported. Their molecular interactions were
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A

B

Figure 4.17.: Root-mean-square deviation (RMSD) to NMR reference structure for 300 K REMD trajectory.
A) Overall RMSD. B) RMSD assigned separately for TS’s tail (yellow), macrocycle A (green), and macrocycle
B (red) components.
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correlated with their biological activity to facilitate the optimization of future compounds. However,

the structural differences between the investigated compounds were limited. In the following, this

study is extended to five further derivatives whose activity was determined (group of Dr. H.-D. Arndt,

MPI-DO), but whose three-dimensional structure is unknown. Figure 4.18 contains the structures

of the investigated compounds, representing a subset of the TS derivates shown in Figures 4.2 and

4.4. These compounds feature diverse modifications at different positions of the TS scaffold and a

four orders difference of magnitude measured affinities (see Table 4.5). Therefore, these molecules

were selected for a closer analysis. Furthermore, a purely virtual fragment of 1 lacking the second

macrocycle is investigated (compound 21 in Fig. 4.18).

To predict reliable ternary complexes of the thiopeptides with the 23S·L11 subunit, an integrated

MD–Docking–MD workflow is established (Fig. 4.19). In the proposed workflow, 1) initial MD simula-

tions are used to generate refined input structures of a) the receptor, and b) the ligands, 2) complexes

are generated via docking by AutoDock [132], and 3) these complexes are relaxed and re-scored via a

second MD step to account for flexibility and solvation effects which are not addressed by AutoDock.

Steps 1 and 2 of this workflow were already addressed partly in the previous sections. In Chapter 3

a refined structure of the medium-resolution 23S·L11·TS complex was obtained from a molecular

dynamics simulation. The primary docking results of Section 4.2 indicated that this MD-refined

structure might be a better suited target structure for docking of thiopeptides. In Section 4.4 a tailored

thiopeptide force field was developed and used in an MD simulation to refine TS’s three-dimensional

structure. This approach is extended to the TS derivatives investigated here. Finally, a third workflow

step is introduced, making use of MD simulations to relax the docked complexes. Moreover, these

MD simulations are used to calculate free energies of binding using the MM-PB(GB)SA approach

(see Section 4.5). A residue-wise decomposition of these energies is used to identify key structural

elements for binding within the receptor binding site and within the ligand structures. These findings

contribute to the pharmacophoric description of the 23S·L11·TS complex which is presented in

Chapter 5.

4.5.1. Materials & Methods

Step 1: Generation of Input Structures

Receptor The crystal structure of TS bound to the 50S ribosomal subunit has a resolution of 3.3 Å [32],

implying some uncertainty concerning the exact position of the side chains and TS. It is thus not an

ideal target structure for molecular docking studies. Therefore, all docking studies were performed

using 1) the (minimized) 3CF5 23S·L11 crystal structure (cmp. Section 4.3) and 2) the MD-refined

structure obtained in Chapter 3 as target.

Ligands A pre-requisite for docking is the presence of three-dimensional structures for the receptor

and the ligands. As a 3D structure is only available for TS [208], the input structure of the derivatives
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Thiostrepton 1 17

5 S/R
18

19
21

Figure 4.18.: Investigated TS derivatives.
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1. MD

Generation of:
a. relaxed receptor

conformation
b. ligand 3d input

structure

2. Docking

Docking
Refinement of docked
complexes:
• Receptor flexibility
• Solvation
• Free energy of binding

3. MD

Figure 4.19.: Schematic representation of the proposed MD–Docking–MD Workflow.

had to be generated first. Due to the size and the complex structure of the investigated compounds, 3D

generators conventionally used in docking, such as CORINA [257], reach their limits, as demonstrated

in the previous sections. Therefore, the TS crystal structure (PDB code 1E9W [208]) was used as a

template and the respective groups were modified using MOE, as done previously in Section 4.2.

In contrast to the previous approach, the structures were subjected to 10 ns MD simulations in an

organic solvent to relax them, using a thiopeptide-tailored force field with optimized bond, angle and

torsion parameters. Most of the derivatives contained several parameters which were not contained

in the force field derived for TS. Therefore, these additional parameters were optimized (Dr. Karl

N. Kirschner) and the partial atomic charges for nine new residues (Fig. 4.20) were determined,

as described in Section 4.4. The simulation procedure was similar to the one used to validate the

optimized force-field parameters (see Section 4.4). The modified compounds were immersed in a 5:1

chloroform:methanol box with 28 Å padding in all directions. This moderately polar organic solvent

was used to account for the thiopeptides’ low solubility in water and the largely hydrophobic binding

site at the 23S·L11 ribosomal subunit. After minimization, the system was heated to 310 K in a 100 ps

constant volume simulation, followed by a 10 ns production run under constant pressure conditions.

1-4 electrostatic and vdW interactions were scaled by 1.0 each according to the parameterization of

the force field.

Subsequently, the ligand MD trajectory was clustered based on the macrocycles’ heavy atoms’

RMSD between the snapshots, using the average-linkage algorithm as implemented in PTRAJ [125]

with a cutoff distance of 0.8 Å and an initial trajectory sieve of 10. Representative structures of the

dominating clusters were used as docking input. With exception of fragment 21, for which two clusters

were observed, one cluster dominated the other simulations, and thus only one conformation for the

compounds was docked in each case. Towards the end of the simulation of compound 19 a rise of

the second macrocycle’s RMSD was noticed (Fig. 4.21). Therefore, the simulation of 19 was extended

to 20 ns and the representative structure of the last 5 ns – after the RMSD had stabilized – was chosen

as docking input.

104



4.5. Binding Mode Predictions and SAR Interpretations of Thiostrepton Derivatives

TSA

ALH

PYS

TZH

TZM

XAI XAH

XB0
C3 C2

N1
C4

C5 C6

N1

C2

S3

C4

C5

C6

O7

O8C9

N1

C2

S3
C4

C5

C6

O7

CA

CB

N1

C2

S3

C4C5

C6N7

C8
C9

O10

N1

C2

S3

C4C5

C6N7

C8

C9

O10

O4

N1C2

C4

C5

C6

O7

C8

C9

O10

C11

NT

CA

CB

C1
C2

C3
C4

C5
C6

C7 C8

CA

CB

C1

C2

C3

C4

C5
C6

C7

C8

DHS

Figure 4.20.: Molecules used for deriving intramolecular parameters and RESP charges for additional
non-standard residues contained in TS derivatives. Molecular fragments as found in the TS derivatives are
surrounded by dashed lines.

Step 2: Docking

The docking studies were performed using AutoDock 4.2 [132] with docking parameters as described

previously (Section 4.2). In short, the grid box was centered on the bound TS conformation with

70x70x70 grid points and the default spacing of 0.375 Å. The molecule input files (pdbqt) were

prepared using AutoDockTools V1.5.4. 100 independent Lamarckian genetic algorithm runs, with 2.5∗
106 energy evaluations, were performed for each ligand. Subsequently, the docking conformations

were clustered using an RMSD threshold of 1.5 Å. The conformation with the lowest docking energy

and the lowest energy conformation from the largest cluster (if different from the first) were subjected

to MD simulations.
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Figure 4.21.: Root-mean-square deviation (RMSD) from the input structure, assigned separately for
compound 19’s tail (yellow), macrocycle A (green), and macrocycle B (red) components, as a function of
simulation time.

Step 3: Refinement of Docked Complexes and Free Energy Calculations

MD Simulations of Docked Complexes Each docked complex was neutralized using 50 sodium

ions and solvated in a truncated octahedron of TIP3P waters with 15 Å padding in all directions. As

the complexes consist of a relaxed receptor conformation and relaxed ligand structures form the

previous simulations, the simulations were kept short. The system was first minimized with strong

restraints on the solute followed by a second minimization without restraints. For heating the system

to 300 K5, a 20 ps constant volume simulation with weak restraints on the solute was performed,

followed by a 50 ps constant pressure relaxation simulation without restraints. Finally, two 2100 ps

production runs were conducted at constant pressure with different random number seeds. During

the simulations mixed scaling factors for 1-4 interactions were used; 1.0 (vdW and electrostatic) for

the ligand parameters from the thiopeptide force field and 1.2 (vdW)/2.0 (electrostatic) according to

the Parm99SB [89] and the Parmbsc0 [90] force field, used for the protein and RNA, respectively.

MM-GB(PB)SA Calculations Molecular Mechanics Generalized Born (Poisson Boltzmann) Surface

Area (MM-GB(PB)SA) computations were performed using the MMPBSA.py script of AmberTools 1.5.

Explicit solvent and ions were stripped from the trajectory previous to the calculations, and equidis-

tant snapshots were extracted for the ligand, the receptor and the complex from one trajectory. The

electrostatic portion of the solvation free energy was calculated using the Poisson Boltzmann (PB)

5A temperature of 300 K instead of 310 K was chosen to have consistent conditions with the experimental affinity determi-
nations for the MM-PB(GB)SA free energy calculations.
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equation and by the generalized Born (GB) method. For the GB calculations, the method of Onufriev

et al. [279] was used. Accordingly, the modified PBradii set 2 was used in LEaP when building the

topolgy files. The PB equation was solved using the pbsa program of AmberTools. Internal and exter-

nal dielectric constants were set to 1.0 and 80.0, respectively. The ionic strength was set according

to experimental conditions (0.04 M). Non-polar solvation contributions were approximated by the

LCPO method [223]. For the energy decomposition, 1-4 terms were added to internal potential terms.

Entropic contributions were computed by a normal mode analysis in Generalized Born solvent, using

every 200th snapshot of the first 2100 ps trajectory.

Evaluation Measures

In addition to the predictive index (PI), introduced in Section 4.2 (Eq. 4.1), the coefficient of determi-

nation R2 was used to evaluate the performance of the native AutoDock score and the MM-PB(GB)SA

calculations. For a set of ligands i with experimentally determined binding energies Ei and corre-

sponding predicted binding energies Pi , R2 is defined as:

R2 = 1−
∑

i (Pi −Ei )2∑
i (Ei −Ei )2

(4.3)

4.5.2. Results

Choice of Receptor Conformation for Docking

Docking to the MD-refined conformation gave an overall good convergence of docking poses: Out

of the 100 docking poses generated for each ligand, a significant number was contained in the

first (i.e. the lowest energy) cluster (see Table 4.5). In the majority of cases the first cluster was the

largest cluster (i.e. containing the most poses) at the same time. The only exception is compound 5R

where the second cluster contains the largest number of poses (32). However, the observed binding

mode and docking score (-8.42) are very similar to those of cluster 1. When the crystal coordinates

of the 23S·L11 binding site were used as target structure, the best ranked docking solution for all

compounds, except for TS, contained a reverted binding mode, where the molecule tail is inserted

into the cleft formed by the ribosomal RNA and the protein. This binding mode was already observed

when docking the NMR-determined structure of the epimer 20 (see Section 4.3), and is likely the

result of a shape mismatch between the receptor and the ligand structure. When considering the

largest cluster of docked conformations a TS-like binding mode is found for 17, 18 and 5S but not for

5R (cluster 2: 9 solutions) and 19 (cluster 5: 1 solution).

Moreover, the experimental binding constants are better reproduced with the MD-refined receptor

conformation (see Table 4.5). This holds not only for the coefficient of determination (R2) and the

predictive index (PI), but also for the absolute binding energies which are consistently lower and thus

nearer to the experimental values. Using the MD-refined structure as docking target instead of the
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Table 4.5.: Measured dissociation constants (KD ) and docking results of investigated TS deriva-
tives, along with the predictive index (PI) and the coefficient of determination (R2) of the
AutoDock score for the two targets.

X-ray MD-refined
Compounda KD [nM] Score [kcal/mol] #Poses Score [kcal/mol] #Poses

1 0.20 ± 0.05 -8.55 35 -10.36 68
17 1.80 ± 0.21 -6.87 1 -8.16 26
5Rb 3.59 ± 1.20 -6.85 1 -8.46 23
5Sb 5.41 ± 2.03 -5.58 1 -6.91 25
18 24.70 ± 2.86 -7.12 5 -7.60 82
19 670.00 ± 46.00 -6.00 1 -6.95 1
21 n.d. -9.96 2 -11.00 28

PI 0.55 0.71
R2 0.43 0.63

a See Figure 4.18.
b Different KD values could be determined for the two diastereomers; however they

could not be unamibiuosly assigned to the R or S stereoisomer. Therefore, the KD

constants were assigned according to the AutoDock ranking.

medium-resolution crystal structure led to a better convergence of native docking poses and a better

reproduction of experimental binding affinities, thus validating the refinement approach.

Prediction of Binding Affinities by the MM-PB(GB)SA Method

The molecular mechanics Poisson-Boltzmann (or Generalized Born) surface area (MM-PBSA and

MM-GBSA) method (cmp. Section 2.3.2) has become a popular method for calculating binding

affinities of biomolecular complexes in recent years [181, 281, 282]. There is, however, no agreement

on one protocol to perform this kind of computation. Studies on various systems have favored either

the faster and more approximate generalized Born (GB) method [283], or the more rigorous Poisson-

Boltzmann (PB) approach [284]. Approaches mainly differ in the number of MD snapshots used for

the calculations. Using a single minimized complex [281, 284, 285] is as common as the use of several

hundreds snapshots from nanoseconds MD simulations [182, 286, 287]. Divergent results were also

observed when using different GB models and dielectric constants [283, 288].

Consequently, different protocols were tested for free energy computations with the PB and GB

solvation model. Since for many dockings an obviously wrong binding mode was found when using

the crystal structure target, these tests were performed using the MD-refined structure. Initially, two

generalized Born parameter sets were tested: parameterization “I” and “II” of the model developed by

Onufriev, Bashford and Case (GBOBC ) [279]. Overall, a slightly better performance was achieved using

parameter set “II”, evidenced by an increase of the predictive index (PI) from -0.04 to 0.19 by changing

the model from “I” to “II” (using the 2.1 ns trajectory for each complex). Therefore, this GB model was
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Figure 4.22.: Docking poses of 1 (gray), 18 (blue), 17 (yellow), and 19 (magenta).

selected for all further calculations. Secondly, computations were done using an increasing number

of snapshots to test if this would level out inaccuracies: 1) one structure of the docked complex which

was minimized in explicit solvent, 2) 100 snapshots taken from a short 200 ps MD simulation, 3) 105

snapshots taken from a 2.1 ns MD simulation, and 4) 210 snapshots from two separate 2.1 ns MD

simulations. Table 4.6 lists the performance measures (PI and R2) for different simulation lengths

and number of snapshots for the GB and PB solvation model.

Table 4.6.: Predictive index and R2 of MM-PB(GB)SA computations for different simulation lengths.

Simulation length
(number of snapshots) min (1) 0.2 ns (100) 2.1 ns (105) 2x 2.1 ns (210)

GB PI -0.42 0.13 0.19 0.29
GB R2 0.23 0.01 0.00 0.02

PB PI 0.57 0.66 0.67 0.56
PB R2 0.34 0.21 0.26 0.42

Interestingly, the best values for the predictive index PI and the coefficient of determination R2

do not always fall together, emphasizing the importance of not solely relying on one performance

measure. Whereas the PI constantly rises with an increasing number of sapshots, the best correlation

is found when using only the minimized complex. However, given the overall poor prediction accuracy

of the GB implicit solvation model and the small number of ligands investigated, these numbers
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should not be over-interpreted. The MM-PBSA protocol clearly outperformed MM-GBSA in all

settings investigated. However, its best prediction accuracy (PI = 0.56 and R2 = 0.42) is still below the

performance of the AutoDock score (PI = 0.71 and R2 = 0.63). Both implicit solvation methods showed

the best balance between PI and R2 for the largest number of snapshots (4th column in Table 4.6).

However, given the only minor deviations to the performance when minimized complexes are used

(first column in Table 4.6), it is questionable if the much longer computation time for running the

MD simulations is worthwile.

Two additional MM-PB(GB)SA computation scenarios were tested. 1) Inclusion of entropy, calcu-

lated by a normal mode analysis using 11 snapshots of the first 2.1 ns MD trajectory, and 2) setting

the solute’s dielectric constant to 4 instead of 1 which was shown to be a better choice for ligand–

nucleic acid complexes [289]. However, both scenarios rather worsened than improved the prediction

accuracy (data not shown).

Stability and Decomposition Analysis

To gain a better understanding of the individual residue’s contributions to the binding enthalpy,

residue- and pairwise energy decompositions [290] were performed with the MM-GBSA approach.

This protocol was chosen since a complete decomposition is currently only available with the GB

model in AMBER. In the following the observations for each ligand are discussed.

Thiostrepton: When 1 was docked to the MD-refined structure, the binding mode found for TS in the

3CF5 crystal structure was consistently reproduced (see Fig. 4.22). 86% of all poses were contained in

the first two clusters, exhibiting a similar docking score of -10.36 and -10.30 kcal/mol, respectively.

When docked to the crystal structure target, the convergence of docking poses was worse but still

acceptable: 44% of all poses were contained in the first two clusters, showing the X-ray binding mode.

During the following 2.1 ns MD simulations of the complex, the position of 1 showed only slight

deviations relative to its docked conformation (Fig. 4.23A, 2.14 and 1.00 Å final RMSD for the ligand),

underlining the complex’s stability.

When decomposing the binding enthalpy on a per-residue basis, only a few residues contributed

significantly (Figs. 4.23B and 4.24). These are A1067 and A1095 on the RNA side, and Pro21, Pro25,

and Gln29 of the α1 helix of L11. The importance of the two nucleobases for binding of 1 is well-

known [47, 188]. Interestingly, the energetic contributions of the flanking nucleobases, except for

the direct neighbours G1068 and A1096, are slightly positive. Although the vdW and especially the

elecrostatic contributions of A1067 are higher than those of the other residues they are heavily

decreased by the unvafourable polar solvation (Table 4.7). In contrast to A1067, the contributions of

A1095 are dominated by vdW interactions, mediated by a stacking interaction with the TS residue

TZO-1. Hydrophobic interactions occur between TZB-3 and Pro21 and the residues around the central

dehydro-piperidine-core (XBB-12) with Pro25 (Fig. 4.23C). From the residue-wise decomposition of
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TS (Figs. 4.23D and 4.24) the pivotal role of the TZB unit of macrocycle A is obvious. This part of 1 is

deeply inserted into the cleft formed by the RNA and the protein and mediates contacts to both sides,

A1067 and A1068 of the RNA as well as Pro21 and Pro22 of L11 (Fig. 4.24).

Table 4.7.: Enthalpic MM-GBSA contributions of key residues to binding of TS, separated as van der
Waals (vdW), electrostatic (Elec.), polar solvation (Polar solv.) and non-polar solvation (Non-polar solv.)
contributions in kcal/mol.

Residue vdW Elec. Polar solv. Non-polar solv. Total

A1067 -7.60 -8.48 11.41 -0.99 -5.67
A1095 -6.07 -0.31 2.24 -0.50 -4.64
Pro21 -4.40 0.01 1.62 -0.71 -3.48
Pro25 -2.36 -0.11 0.55 -0.22 -2.14
Gln29 -3.69 -1.00 2.31 -0.32 -2.70

Compound 5: Compound 5 was obtained by a thiol-Michael addition at the dehydro-alanine unit in

the truncated tail. The stereochemistry of this group had a minor effect on the dissociation constant

but a 10-fold difference in activity was found in vivo [250]. Consequently, both diastereomers were

created. As can be seen in Figure 4.25, their binding modes are slightly divergent, especially regarding

the tail. For both, the octyl unit is oriented towards the most hydrophobic area of the protein surface

around Ile34. These hydrophobic interactions are visible in the increased energetic contribution

of this residue in the decomposition analysis (-2.58 and -1.95 compared to -0.29 kcal/mol for 1,

Table 4.8). On the other hand, the contribution of the polar Gln29 plays a minor role. Due to steric

restrictions, the hydrohobic interactions with Ile34 seem to be harder to accomplish for the S isomer

whose interaction with A1095 is almost halved compared to TS. The MM-PBSA and MM-GBSA

re-scorings both preferred the largest cluster solution of 5R and assigned it a very similar binding

energy like for the S stereomer (Table 4.8), consistent with the almost identical KD values for the

diastereomers (Table 4.5).

Table 4.8.: Enthalpic MM-GBSA contributions of key residues to binding, and overall binding enthalpy
obtained by MM-GBSA and MM-PBSA computations for TS and its derivatives. All values are in kcal/mol.

Cmd. A1067 G1068 A1095 Pro21 Pro25 Gln29 Ile34 GB PB

1 -5.67 -1.34 -4.64 -3.48 -2.14 -2.70 -0.29 -60.41 -48.72

5R -6.17 -0.68 -6.03 -3.39 -2.32 -1.17 -1.95 -68.22 -45.19
5S -5.17 -1.06 -2.47 -4.58 -1.95 -1.63 -2.58 -62.77 -46.98
18 -3.99 -1.23 -6.60 -1.71 -1.75 -2.05 -0.06 -47.33 -36.34
17 -1.37 -0.02 -2.88 -3.71 -1.42 -2.09 -0.60 -39.92 -35.21
19 -2.78 -3.14 -5.24 -4.07 -1.73 -1.43 -0.60 -53.62 -35.41
21 -2.34 -1.59 -3.60 -4.43 -1.85 -1.45 -1.28 -48.49 -34.56
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Figure 4.23.: MM-GBSA decomposition results for binding of TS. A) RMSD of TS (without hydrogens) to
the docked structure in the two re-scoring MD simulations. B) Residue-wise decomposition 23S·L11. RNA
and protein residues are separated by a black solid line, the two protein domains are further divided by a
dashed line. C) Pair-wise decomposition energies in kcal/mol. D) Residue-wise decomposition ligand.
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Figure 4.24.: MM-GBSA decomposition results mapped onto residues of the 23S·L11·TS docked complex.
Significant binding site residues are shown in sticks representation. Color-coding according to enthalpies
in kcal/mol (see color bar).

Compound 18: To obtain compound 18, the octyl unit was added to the dehydro-alanine contained

in macrocycle B. Additionally, the tail was truncated by two units. These modifications led to a reduc-

tion of the tail’s flexibility and to a flexibility increase of the residue containing the octyl unit (residue

10, Fig. 4.26). Consequently, this residue was excluded from the first MD trajectory’s clustering, result-

ing in one large cluster whose representative structure was used as input conformation for docking.

After clustering of docking poses, the first cluster contained 82 docking poses, even more than TS,

but obtained a slightly worse docking score (-7.60 kcal/mol). The binding mode was very close to the

one found for 1, the octyl group sticking out into the solvent (Fig. 4.22). As suggested earlier [292], the

unfavourable solvation of the hydrophobic octyl group is most likely the major reason for the worse

binding affinity in comparison to TS. In the decomposition analysis (Table 4.8), the interactions

with the key residues (A1067, A1095, Pro21, Pro25, and Gln29) are still present but, except for A1095,

considerably reduced, explaining the lower predicted enthalpy for this compound.

Compound 17: Compound 17 features a modification of macrocycle A’s dihydroxyisoleucine side

chain, obtained through an acetylation of the secondary OH group. Starting from a TS-like binding

mode (Fig. 4.22) for 17, a consistent shift of the docked position was noticed (RMSD ∼4 Å) in both

MD runs. The RNA’s energetic contributions are considerably reduced compared to TS. For A1067 the

lowest contribution among all derivatives was found. Particularly, the electrostatic contribution is

reduced (-1.29 kcal/mol) compared to TS (-8.48 kcal/mol). The added acetyl group leads to a steric
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Figure 4.25.: Docking poses of stereoisomers of 5. grey: 5S, wheat: 5R. RNA grey. Protein surface colored
according to hydrophobicity [291] (blue: lowest hydrophobicity, red: highest hydrophobicity). Figure
created using PyMOL with rTools plugin.

clash and a loss of polar interactions with this nucleobase. Most likely, this is the cause for the drift

from the docking pose that was observed during the simulations.

Compound 19: A hydrolysis of the macroring B lacton split the macrocycle between the residues

XAA and QUA and led to derivative 19. This modification represents the most extensive change of

the TS scaffold. Not surprisingly, this was reflected by a significant RMSD increase of macrocycle B’s

atoms to their position in the TS template (Fig. 4.21), and led to increased fluctuations of macrocycle

B’s residues (Fig. 4.27). After ∼15 ns the RMSD became stable and the average conformation of the last

5 ns was selected as docking input. The docking of 19 did not converge, i.e. 100 clusters containing

one pose each were obtained. The molecule’s many degrees of freedom (23 active torsions) are in

the upper limit of AutoDock’s search capabilities. Nevertheless, a binding mode similar to TS was

found for the best scored pose (Fig. 4.22). Macroring A’s position is similar to its position as found in

TS, but a slight shift in residues THR-2 and TZB-3 is seen. The split macrocycle B’s residues make

additional contacts to the RNA. This slight shift of the binding pose led to a binding energy decrease

(-2.78 kcal/mol) of A1067’s contribution for the benefit of G1068’s binding energy (-3.14 kcal/mol).

TS fragment 21: The decomposition analysis of TS and its derivatives revealed that the second

macrocycle hardly contributed to the binding enthalpy or even had a slight positive energy (see

Fig. 4.23D, residues 7–11). It was, thus, investigated how a TS fragment, completely lacking the

second macrocycle, would bind. To obtain the virtual fragment, macrocycle B was removed from the
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Figure 4.26.: Compound 18’s residue-wise root-mean-square fluctuations as obtained from a 10 ns MD
simulation in organic solvent.
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Figure 4.27.: Compound 19’s residue-wise root-mean-square fluctuations as obtained from a 10 ns MD
simulation in organic solvent.

TS structure and the resulting atomic vacancies were saturated with hydrogens (compound 21 in

Fig. 4.18).

Although the simulation of 21 in organic solvent showed an increased flexibility of macrocycle A

compared to TS, its overall conformation stayed similar to the TS crystal structure (∼1 Å RMSD). Also

in the docking experiments and subsequent MD simulations the binding mode was very similar to

TS (Fig. 4.28). AutoDock even assigned a better score than for TS (Table 4.5), arising from a similar

intermolecular energy but less penalty due to the lower number of rotatable bonds. The MM-PBSA

re-scoring, missing such a penalty term, sets the binding enthalpy more in the region of the weaker

binder 19. Also on the enthalpic decomposition level, the contributions of the binding site’s key

residues were most similar to the ones found for compound 19 (Table 4.8).
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Figure 4.28.: Binding mode of TS (1, gray) and TS fragment (21, brown) after MD.

4.5.3. Discussion

A combined molecular dynamics and docking approach was used to describe the binding mode

and molecular interactions of a number of thiostrepton derivatives with the 23S·L11 subunit of the

bacterial ribosome. To generate input structures for docking, an approach was used that sequentially

1) uses the TS crystal structure as template, 2) refines the modified structures by an MD simulation

using a thiopeptide-tailored force field, and 3) clusters the MD trajectory to obtain one (or several)

representative conformation(s). Using the TS structure as a template is a valid approach as all

investigated ligands are semi-synthetic derivatives from the same parent compound (TS). Therefore,

it can be assumed that their 3D structures are similar. Considering the ligand structure refinement,

the superiority of using an explicit-solvent MD simulation with a tailored force field compared to a

short minimization in vacuo with a general force field (as done in Section 4.2) is shown by a lower

prediction accuracy of the latter approach (PI = 0.65, R2 = 0.23 compared to PI = 0.71, R2 = 0.63

achieved here) under otherwise identical docking conditions (same target structure and docking

parameters).

In contrast to previous studies [288, 293], a MM-PB(GB)SA re-scoring could not improve the native

AutoDock score further. Almost no correlation was found between experimentally determined bind-

ing affinties and the binding energies calculated with the MM-GBSA approach. The more rigorous

PBSA variant performed better (PI 0.67), coming close to AutoDock’s prediction accuracy (PI 0.71).

An explanation for AutoDock’s better performance can be found in the high anti-correlation between

the number of rotatable bonds and the binding affinity in the data set. This value directly contributes

to the overall docking score as a rough measure for the loss of torsional entropy upon binding [153].
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If only AutoDock’s intermolecular energy (excluding the rotational term) is considered – which is

a fairer comparison to the enthalpies computed by MM-PB(GB)SA – the predictive index becomes

negative (-0.36). This indicates that entropic contributions are essential to the overall binding energy

of the TS derivatives investigated. However, adding the entropic part of ligand binding – calculated by

a normal mode analysis – led to a worse prediction (PI of 0.2 for MM-PBSA). It has been shown before

that an inclusion of entropy does not always improve the prediction accuracy of the MM-PB(GB)SA

approach [283]. Large fluctuations of the vibrational entropies are often observed with normal mode

analysis [288, 293]. It can, thus, not be ruled out that the low number of snapshots used in the entropy

calculations has led to inaccuracies.

Although the MM-PB(GB)SA re-scoring did not lead to a better overall affinity prediction, its

energetic decomposition gave a clearer picture of the residues contributing to binding, both on the

ligand and the receptor side. Among all derivatives, A1067, A1095 and Pro21 are the dominating

residues of the rRNA·protein binding interface. For all ligands, by far the largest contribution to the

overall binding enthalpy was seen for the TZB unit of macrocycle A which has contacts to the purines

A1067 and G1068 on one side of the cleft and to prolines 21 and 22 on the protein side. In contrast,

most of the second macrocycle’s residues do not contribute or even show a positive contribution to

the overall binding energy.

4.6. Conclusion

The thiopeptides represent a challenging compound class for docking programs, such as AutoDock,

due to their molecular complexity, particularly the high number of rotatable bonds (14–31) and

the contained macrocycles. Although the ligands are treated flexible in general, the conformations

of large ring systems are not changed during the docking. A correct input structure is, therefore,

crucial for obtaining correct placements. However, the three-dimensional structures of the derivates

investigated here were largely unknown. It was shown that when either experimentally determined

structures of thiopeptides are used or they are predicted by MD simulations with a tailored force field,

binding mode and affinity predictions by the protein–ligand docking program AutoDock are possible

with an acceptable reliability.

The conditions under which the 3CF5 X-ray structure was determined (preformed crystals of

the complete 50S subunit soaked with a cryo-solution containing high concentrations of TS [32])

together with its medium resolution of 3.3 Å make it a non-ideal target structure for drug design

purposes. Nevertheless, it is the only available crystal structure of TS bound to the GAR and provides

valuable insights into the location and binding mode of the ligand. In this section, it was shown that

docking TS-like ligands to a MD-refined receptor structure instead of the medium-resolution crystal

leads to a better convergence of native docking poses and a better reproduction of experimental

binding affinities. Similar observations were already made previously in this work (Section 4.2).

However, all investigated ligands are structurally very similar to TS. Given the high adaptability of
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the binding site, the suitability of a representative structure from an MD simulation with bound TS

for docking structurally distant ligands remains currently unclear. Using an ensemble of different

target conformations, for example the cluster representatives from the “apo” simulation, might be a

promising alternative approach here.

A virtual TS fragment (21), lacking the second macrocycle, was found to exhibit a similar binding

mode like TS’s macrocycle A, although being structurally more similar to the one-cyclic antibiotic

micrococccin (3) for which a different binding mode was proposed [32]. Although apparently unim-

portant for binding, macrocycle B could be important for steric hindrance of incoming elongation

factors, such as EF-G, and prevent them from proper binding to the GAR. Further experimental

studies are necessary to verify this hypothesis. Nevertheless, fragment 21 could be a starting point

of further structural exploitation for the design of novel, smaller antibiotics adressing the 23S·L11

ribosomal binding site.
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5. A Pharmacophore Model for the
23S·L11·Thiostrepton Complex

5.1. Introduction

As already outlined in Chapter 1 thiopeptide antibiotics possess high potency but unwanted pharma-

cokinetic properties, such as their low solubility and bioavailability. For the design of new chemical

scaffolds a pharmacophore model of TS, containing the essential features that determine the drug’s

biological activity, is therefore highly desired. The aforementioned low solubility of TS and the large

size of the bacterial ribosome have long hampered obtaining high-resolution crystal structures of the

complex and thus a precise understanding of TS’s molecular interactions with the ribosome. Only

recently in 2008, a crystal structure of the 50S ribosomal subunit with bound TS was published [32],

but only in a medium-resolution range of 3–4 Å. Along with results from numerous biochemical

studies [42, 45–47, 188, 189, 191, 208, 227, 229, 294–302], this structure enabled, for the first time,

a clear positioning of TS into the ribosome’s 23S·L11 subunit. Due to the limited electron density

resolution, this structure still does not allow the study of atomic-resolution molecular interactions of

the ternary complex. Therefore, a pharmacophore model is still missing.

In this chapter, the knowledge gained in the previous chapters is incorporated to design the first

pharmacophore for thiostrepton’s molecular interactions with the ribosomal GAR. The docking

results from Chapter 4 have clearly shown the superiority of using an MD-refined complex instead of

the medium-resolved crystal structure for drug design purposes. There is strong evidence that this

will also hold for deriving a pharmacophore.

In its natural aquous environment, a macromolecular complex is characterized by an ensemble

of thermodynamically accessible conformations. Therefore, crystal structure coordinates can give

misleading static views of interactions [303]. One of the first approaches for generating a dynamic

pharmacophore model was introduced by Carlson et al. for HIV-1 integrase [304]. In their work,

Carlson at al. overlaid protein conformations from an MD simulation, and identified conserved

binding regions for probe molecules to build a receptor-based pharmacophore for the integrase. In

comparison with a static pharmacophore model and a pharmacophore derived from a set of active

ligands, the dynamic pharmacophore model showed better performance in fitting known inhibitors,

and was able to identify new inhibitors for HIV-1 integrase in a screening experiment.
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Here, the idea of a dynamic pharmacophore is adopted, but implemented in a different manner.

Similarly to Carlson et al., classical pharmacophore-development techniques are combined with

molecular dynamics simulations. However, instead of using MD to generate an ensemble of binding

pocket structures, an initial static 3D-pharmacophore model is built based on the MD-refined

representative 23S·L11·TS complex. The stabilities of the suggested pharmacophoric features over a

given MD simulation are then investigated to refine the initial pharmacophore model. Features that

show high dynamic stability are more likely essential for binding, and are thus prioritized over features

that are only visible in a limited number of snapshots. At the same time, new important interactions

may appear that were not contained in the initial complex to build the pharmacophore. The complex-

based (3D) pharmacophore approach is combined with observations from MD simulations for

obtaining a time-resolved pharmacophore, termed “4D-pharmacophore”.

5.2. Materials & Methods

Based on the unbound TS ligand, the MOE pharmacophore generator assigns 47 potential phar-

macophoric features (PCH scheme, Fig. 5.1), far too many for a useful pharmacophore query. Most

of these features are shared by the TS derivatives investigated in Chapter 4, so that the number of

features can hardly be reduced by including them. Therefore, it was decided to derive a complex-based

pharmacophore using LigandScout [187] that is currently the only available program for such an

approach. Two initial complex-based pharmacophore models were built: 1) based on the energy-

minmized 3CF5 crystal structure, and 2) based on the MD-refined structure. LigandScout supports

the following pharmacophoric elements: hydrogen bond donor/acceptor, positive/negative ionizable

area, hydrophobic interactions, aromatic ring, metal binding feature, and (optionally) excluded

volume to define areas where ligand groups are sterically unfavorable.

LigandScout provided pharmacophoric observable features whose stability could subsequently

be analyzed in the MD trajectory. The live time of the defined pharmacophoric features was analyzed

using the 40 ns MD trajectory data of the 23S·L11·TS complex from Chapter 3. The dynamic stability of

hydrogen bonds was investigated with the AMBER module PTRAJ, setting the heavy atoms distance

cut-off to 3.5 Å and the angle cut-off between the acceptor, hydrogen, and donor atoms to 120°.

The presence of stacking interactions was determined by monitoring the distance between the

ring centers (centroids) and the angle between the axes perpendicular to the ring plane (surface

normal vectors) over simulation time (see Fig. 5.2 for a geometrical description). A parallel displaced

stacking interaction is characterized by a surface normal vectors angle of ∼0/180°, and an interplanar

separation of 3.4–3.6 Å [303, 305]. LigandScout defines a tolerance range of 2.8–4.5 Å for this distance.
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Figure 5.1.: Pharmacophoric features of unbound thiostrepton. Created using the MOE software with the
PCH pharmacophore scheme.

5.3. Initial Pharmacophore based on the 23S·L11·Thiostrepton
Complex

Figure 5.3 depicts the initially derived pharmacophore model for the 3CF5 crystal structure in a two-

(A) and three-dimensional (B) representation. LigandScout assigned six pharmacophoric features

to the TS structure: two hydrogen bond donors, and four hydrophobic centers. One hydrogen bond

donor is assigned to the hydroxyl group of the quinaldic acid moiety in macrocycle B, interacting with

nucleotide A1067’s base (N3). The second H-bond donor is located in the tail, contacting L11’s Ala32.

Given the high number of possible hydrogen bond donors and acceptors (cmp. Fig. 5.1), the small

number of actual hydrogen bonds formed with the 23S·L11 subunit is astonishing and cannot explain

the strong binding. However, as a static view of the complex is considered, some hydrogen bonds

might be missed. Two of the hydrophobic centers are located at macrocycle A’s thiazoles (residues 5

and 6) that are in proximity of Pro21 and Pro25. The two remaining hydrophobic feature were found

in TS’s tail, at the thiazole and the second dehydroalanine unit.
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Figure 5.2.: Essential geometrical features used to describe stacking interactions between aromatic ring
systems. d : distance between ring centroids c1 and c2; γ: angle between ring normals n1 and n2.

When the pharmacophore was built based on the MD-refined structure, eight features were

assigned (Fig. 5.4). The four hydophobic features found in the first model are preserved, except for the

thiazole unit in the tail. Instead, a fourth hydrophobic center is located at TS tail’s first dehydroalanine.

Considerable disagreement is seen in the assignment of hydrogen bonds. Two hydrogen bond donors

are assigned to TZB-3’s amide and to one hydroxyl group of the neighboring TSI-4. The hydroxyl

group is marked as a double-feature by LigandScout, meaning that the oxygen can alternatively

function as a hydrogen bond acceptor (green/red arrow in Fig. 5.4). Both features are found in TS’s

macrocycle A, interacting with nucleotide A1067’s sugar moiety. Similarly to the first pharmacophore,

another hydrogen bond donor is located in the tail, but here it is found between the first amide

and L11’s Gly28. Especially prominent is the stacking interaction between the thiazole of TZO-1 and

base A1095 that was missed in the crystal structure pharmacophore. All other thiazoles present in

macrocycle A are assigned hydrophobic centers, mediating interactions to the nucleotides G1068

and A1095 and the protein residues Pro21, Pro25 and Gly28.

In contrast to the crystal structure pharmacophore, macrocycle B completely lacks any pharma-

cophoric features. A considerable reorientation towards the solvent was observed early in the MD

simulation, bringing the quinaldic acid moiety out of reach for an interaction with A1067’s base.

This reorientation of macrocylce B could be a result of the imperfect Parm99SB/GAFF force field

that was used to model TS (cmp. Chapter 3). To test this hypothesis, the MD simulation with the

optimized thiopeptide parameters of the docked TS·MD-refined complex (cmp. Section 4.5) was

extended from 2.1 ns to 10 ns. No such reorientation was found during this simulation; the second

macrocycle remained fairly stable in its initial position. The rest of the TS structure and also the

binding region were almost exactly as found in the MD-refined representative structure.
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A

B

Figure 5.3.: Initial pharmacophore of the 23S·L11·TS complex based on the energy-minimized 3CF5 crystal
structure built with LigandScout in a 2-dimensional (A) and 3-dimensional (B) depiction. Hydrophobic
interactions are displayed as yellow circles/balls, and hydrogen bonds donors as green arrows.
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A

B

Figure 5.4.: Initial pharmacophore of the 23S·L11·TS complex based on the MD-refined structure built
with LigandScout. A) 2D depiction; B) 3D depiction. Stacking interactions are displayed as grey circles,
hydrophobic interactions as yellow circles/balls, hydrogen bonds donors and acceptors as green and red
arrows, respectively.

124



5.4. Inclusion of Time – Development of a 4D-Pharmacophore

5.4. Inclusion of Time – Development of a 4D-Pharmacophore

In a second step, the pharmacophoric features defined by LigandScout in both initial static pharma-

cophore models (3CF5 crystal coordinates and MD-refined complex) were investigated with respect

to their live time in the MD simulation of the 23S·L11·TS complex (Chapter 3). Since only hydrogen

bonds and stacking interactions possess clear geometrical constraints, analysis was focussed on

these two interaction types.

Hydrogen Bonds

Seven hydrogen bonds showed occupancies of at least 5 % during the MD simulation (see the PTRAJ

output on page 153 in the appendix and Fig. 5.5 for a structural visualization of the five most occupied

H-bonds). Six of these H-bonds involve A1067, and are formed either with its ribose (2’O) or its base

(N3 and to a lesser extend N7). Predominantly, these groups within A1067 are found to be H-bond

acceptors. For A1067’s base, the corresponding donor within TS switches during the simulation:

in the beginning it is the NH-group of TZB-3 (14.3 % occupancy), after approximately 13 ns the

NH-group of TSI-4 (20.4 % occupancy). After A1067’s base adopts a syn conformation late in the

simulation (after ∼27 ns) this H-bond is formed with N7 at the opposite side of the base instead of N3

(cmp. Fig. 3.27 on page 69). Hydrogen bonding involving the ribose is more pronounced early in the

simulation – as an acceptor for TSI-4’s NH- and OH-groups (21 % and 6.6 % occupancy). The close

distance to TS’s thiazoline also supports a hydrogen bond between the ribose’s hydroxyl group and

the thiazoline’s nitrogen (TZB-3@N4, 12.7 % occupancy). The H-bond showing the highest stability is

formed between the NH-group of TZO-13 in TS’s tail and GLY28 in the proline-rich helix of L11-NTD.

It is present over the entire simulation and seems to fix the position of the tail.

The hydrogen bonding features found by LigandScout for the MD-refined structure are represented

by occupancies of 14.7 % (tail NH – Gly28), 6.6 % (TSI-4’s OH – A1067 2’O), 3.4 % (A1067 2’OH – TSI-4’s

O), and 2.8 % (TZB-3’s NH – A1067 2’O). The two hydrogen bonds observed in the cystal structure

pharmacophore model (Fig. 5.3) did not emerge in the analysis of the 40 ns MD trajectory. During the

MD simulation of the docked complex with the optimized parameters the hydrogen bond between

QUA’s C8-hydroxyl group and A1067’s N3 was occasionally formed (17.7 % occupancy). A stronger

H-bond partner was, however, found in the threonin’s hydroxyl group (83.9 % occupancy). Therefore,

an enthalpic contribution of ring B’s quinaldic acid moiety to binding cannot be ruled out. Still, the

presence of hydrogen bonds between A1067 and macrocyle A is much higher.
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Figure 5.5.: Hydrogen bonds and possible stacking interactions between thiostrepton and the 23S·L11
binding site. Only hydrogens involved in H-bonds are shown. Important thiazole units and residues are
shown in sticks representation.

Stacking Interactions

Harms et al. [32] defined “stacking” in a very generic sense and describe stacking interactions

between 1) TZO-1 and the base of A1095, 2) TZO-5 and Pro21, and 3) TZO-13 and Pro251 (see Fig. 5.5).

Therefore, these three potential stacking interactions were investigated in the MD simulation.

From the distance and angle distributions (Fig. 5.6) it becomes clear that a tight stacking interaction

only occurred for TZO-1 – A1095(Fig. 5.6A). This stacking was also identified by LigandScout for the

MD-refined structure (Fig. 5.4) but missed for the crystal coordinates. During the complete simulation

the centroid distance was stable at approximately 3.8 Å, very close to the optimal distance (3.4–3.6 Å).

Although this distance increased slightly to approximately 4 Å during the last half of the simulation, it

did not loose its stability. The angle between the ring normals is between 0 and 20° in more than 80%

of the simulation, meaning that the ring planes are always nearly parallel. This was not the case for

TS’s other thiazole interactions with the proline residues. Although the distance and angle between

TZO-13 and Pro25 was also very stable through the whole simulation, the angle between the plane

normals is too high (∼50°) to stack upon each other. Moreover, the rings are moving apart shortly after

1Note that in the original publication [32] the proline residues are referred to as Pro22 and Pro26 as the E. coli sequence
numbering is used.
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the start of the simulation. The centroid distance equilibrates at a value of 5.6 Å, almost 2 Å further

apart than in the crystal structure ( see Fig. 5.6B). Considering Pro21, a large distance increase to

TZO-5’s ring cenroid can be seen (Figs. 5.6C). This distance increase was caused by a shift of helix α1’s

C-terminal end away from TS after ∼16 ns simulation. This large distance between the rings definitely

excludes a stacking interaction with this proline residue.

A B

C

Figure 5.6.: Centroid–centroid distances (black, left axis) and angles between the ring normals (magenta,
right axis) over simulation time for possible stacking interactions. A) TZO-1 – A1095. B) TZO-13 – Pro25. C)
TZO-5 – Pro21.

5.5. Discussion

Complex-based pharmacophore models of the 23S·L11·TS complex were built whose features were

investigated with respect to their dynamic stability in a molecular dynamics simulation. Three

pharmacophoric features are especially noteworthy due to their dynamic stability: the extraordinarily

stable stacking interaction between the TZO-1 thiazole and A1095’s base, a hydrogen bond formed

between TS tail’s first DHA unit and L11’ α1 helix backbone, and a complex hydrogen bond network

between TS macrocycle A’s residues 3/4 and A1067. These features were not found in the static view

of the crystal structure, and their impact became only clear when their dynamics were analysed.

The stacking interaction with A1095 was consistently reproduced in the second MD simulation
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(Fig. C.6, appendix) and the docking experiments, not only for thiostrepton but for most of its

derivatives (cmp. Fig. 4.10 in Section 4.3). This fact, together with its enormous stability during the

MD simulation and A1095’s large energetic (particularly vdW) contribution to the overall binding

affinity (see Section 4.5), render this interaction a crucial feature of TS’s binding to the ribosome.

The importance of this interaction is further underlined by the ∼10-fold reduction of TS’s binding

affinity upon mutation of this nucleotide [191]. All other thiazole units are involved in hydrophobic

interactions with the binding site (particularly Pro21 and Pro25) but their overall contribution is

minor compared to TZO-1. Likely, they contribute as a summation of small hydrophobic effects.

The second crucial nucleotide is A1067 which is involved in several hydrogen bonds with TS’s

macrocycle A. TS has several functional groups that could form hydrogen bonds with A1067, located

in the side chains and the amide backbone. Interestingly, the majority of them were observed to

function as hydrogen bond donors. Hydrogen bonds were detected between the hydroxyl groups of

THR-2 and TSI-4’s side chains and A1067’s sugar moiety (cmp. Fig. 4.10) in the docked complex of the

NMR TS structure and the 23S·L11 crystal’s coordinates. In the representative MD-refined structure

hydrogen bonds were found between TZB-3’s amide nitrogen and TSI-4’s hydroxyl group and A1067’s

2’OH. During the MD simulation, the nucleotide’s 2’OH group and N3 are constantly involved in

hydrogen bonds but with varying partners in the TS structure, mainly the amide nitrogens of TZB-3

and TSI-4, and TSI-4’s first hydroxyl group. An acetylation of TSI-4 hydroxyl moiety (compound

17) caused a large decrease of A1067’s binding enthaply contribution in the MM-GBSA energetic

decomposition, most likely as a consequence from the loss of one hydrogen bond donor plus steric

hindrance of the larger side chain. This led to an overall reduction of the binding affinity and a loss of

stability of the docking pose during the subsequent MD simulation (Section 4.5). The importance of

TS’s hydrogen bonding network with A1067 as a pharmacophoric featue is an explanation for the

very effective natural resistance mechanism of its producer organim. Streptomyces azureus possesses

a resistence gene, coding for a methyltransferase that catalyzes a selective 2’OH-methylation of

A1067’s ribose [306–308]. This resistence mechanism renders S. azureus highly insensitive to TS.

Recently a ∼3000-fold affinity decrease was reported [191]. Figure 5.7 depicts a structural model of

A1067 2’O-methylation based on the MD-refined 23S·L11·TS complex. From this simple model it

becomes obvious that the sugar methylation leads to 1) a steric clash with TS’s binding position

and 2) a disruption of the H-bonding network involving 2’OH. The high occupancy of A1067 N3’s

hydrogen bond is in compliance with the detected ∼1000-fold affinity decreases for the transverse

mutants A1067C and A1067U [191]. This high affinity loss was not seen for a transition within the

purine family (A1067G), still featuring a nitrogen at this position. In summary, the hydrogen bonding

network formed with A1067’s base and sugar is an essential pharmacophoric feature but changing

partners were observed during the MD simulation. As outlined in Chapter 3, the hydrogen bonds

formed with A1067 might not only be necessary to fix TS in the binding site but might also be an

important part of TS’s mode of action by stabilizing A1067’s base conformation and thus impede its

interaction with EF-G.
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5.5. Discussion

Figure 5.7.: Model of A1067 2’O-methylation based on the MD-refined 23S·L11·TS complex. L11 is colored
in wheat, 23S rRNA is colored in palegreen. TS and A1067 are shown in sticks representation, the methyl
group (Me) being labeled.

Another hydrogen bond donor was assigned to the first dehydroalanine unit in TS’s tail, interacting

with Gly28’s backbone. This hydrogen bond showed enormous stability, being present throughout

the whole 40 ns MD simulation. A hydrogen bond facility might therefore be another essential

pharmacophoric feature in that region of the TS structure. Given the high flexibility and adaptability

of the tail (see Section 4.4) and no significant enthalpic contributions from L11 residues in this area

(see Section 4.5), it is not astonishing that TS was tolerant against truncation of its tail, and modestly

tolerant against its modifications [250]. In the docking studies of the TS derivatives, a variety of

different tail orientations along L11’s proline-rich helix was found (cmp. Sections 4.3 and 4.5). All

hydrogen bonds of the tail occured exclusively with L11’s backbone. This could explain why different

point mutations in this area hardly affect TS binding [191]. Interestingly, all TS derivatives still

possessed the hydrogen bond donor in question. It seems likely that this hydrogen bond contributes

to the stabilizing effect of TS on L11’s N-terminal domain. An experimental test of a derivative lacking

any hydrogen bonding feature in its tail could clarify if a hydrogen bond between TS’s tail and L11 is

essential.

The exact role of TS’s macrocyle B for the antibiotic’s inhibitory mechanism is still unclear. Except

for the residue containing the quinaldic acid moiety (QUA-7), little enthalpic contributions of its
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residues were computed (Section 4.5). A virtual TS fragment lacking macrocycle B (compound 21) was

found to have similar interactions like the complete TS molecule. Although the second macrocycle

obviously has little contribution to binding, it can not be ruled out that it is necessary to sterically

block incoming translation factors. In a study published 1999, Rodnina et al. concluded that TS does

not interfere with factor binding, but rather inhibits the function of EF-G in subsequent steps [274]. A

more recent study by Walter at al. contradicts these results [192]. They found that TS abrogates stable

binding of EF-G and EF-4 to the ribosome, supported by the finding that an EF-G truncation variant

lacking domains IV and V was insensitive to the presence of TS. The experimental testing of fragment

21 could help to clarify this issue. If it is found to have a similar binding affinity like TS but shows no

effect on ribosomal translation, the steric blocking of translation factors by TS’s macrocycle B will be

confirmed as an important mechanimsm of TS’s mode of action and has to be taken into account

when new inhibitors are designed.

5.6. Conclusion and Outlook

In this chapter, the first pharmacophore model for TS binding to the ribosomal GAR was presented.

Two initial three-dimensional static models were derived from the 3CF5 crystal structure and a refined

23S·L11·TS complex. The concept of a four-dimensional pharmacophore model was introduced that,

in addition to a three-dimensional model based on a static complex, additionally accounts for the

dynamic stability of molecular interactions as the fourth dimension. Three key pharmacophoric

features within the TS structure were identified: 1) an aromatic ring to form a stacking interaction

with A1095’s base, 2) a hydrogen bond donor interacting with L11’s α1 helix backbone, and 3) several

functional groups to form hydrogen bonds with A1067. The significance of these features was revealed

by monitoring their dynamic stability in an MD simulation and by discussing them in the light of

recent mutation data.

The presented pharmacophore model provides a mean to screen for chemical fragments that

fulfill the pharmacophoric restraints and thus potentially exhibit a similar mechanism like TS. Future

synthesis and experimental testing of compounds will have to prove the usefulness of this model and

will help to further refine it.
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6.1. Summary and Conclusion

The current work was initiated to obtain an atomistic understanding of the interactions of small

molecules with biomacromolecular interfaces and for developing computer-based approaches to

address these interfaces as non-traditional drug targets. Focussing on a protein–RNA interface of

therapeutic importance, the specific aim of this thesis was to provide a detailed understanding of the

influence that binding of thiopeptide antibiotics has on the dynamics of the 23S·L11 subunit and to

elucidate the structural characteristics of this interaction to derive implications for the rational design

of new compounds. The specific challenges associated with the L11·23S binding site, a protein–RNA

interface at the bacterial ribosome, and the size and structural complexity of the thiopeptide ligands,

did not allow for a straightforward application of established computer-aided drug design methods.

These challenges were addressed by combining different computational chemistry approaches at

different levels of granularity, ranging from quantum mechanics for deriving optimized intramolecu-

lar parameters and partial atomic charges for the thiopeptide compounds, to molecular dynamics

simulations accounting for the binding site’s flexibility, to molecular docking studies for predicting

the binding modes of thiostrepton derivatives. Additionally, all computational results within this

thesis are compared, validated and discussed with experimental studies.

In Chapter 3 the influence of thiostrepton, the best-studied thiopeptide representative, on the

dynamics of the GAR was presented. Therefore, the results of two all-atom molecular dynamics

simulations – one performed with the bound ligand and one without it – were compared. By creating

an advanced and highly integrated target model, it could be shown that thiostrepton has a direct

impact on the protein–RNA interface dynamics. Specifically, it restricts the conformational flexibility

of the nearby N-terminal domain, and has a weak dynamic coupling to the distant C-terminal domain

of the ribosomal protein L11. On the structural level, thiostrepton binding stabilizes the secondary

structure elements of its binding area on the L11 protein (α1) and characteristically reprograms the

conformation (χ-angle and sugar puckering) of nearby nucleotides, particularly the apical nucleotide

A1067, which mediates contacts to tRNA and incoming ribosomal factors. A combined principal

component and cluster analysis identified distinct conformations of the far more flexible “apo” form

of the N-terminal domain that primarily differ in its orientation with respect to the 23S rRNA and

the size of the cleft formed between the two. The different cluster identified may reflect distinct
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interaction states with translation factors. The results of this study revealed a detailed understanding

of the effect of thiostrepton binding at a previously unmet resolution, and provided a validated

model basis for the structure-activity relationship and pharmacophore investigations addressed in

Chapters 4 and 5. The observations made here, coupled with previous experimental knowledge [32],

strongly support the hypothesis that restricting the binding site’s conformational flexibility is an

important component of thiostrepton’s inhibitory mechanism. The observed extraordinary rigidity

of thiostrepton’s macrocyclic scaffold might be a structural asset to achieve this conformational

restriction.

This thesis represents the first computational structure-based drug design attempt at a protein–

RNA interface. It was, thus, not known beforehand if state-of-the-art structure-based design programs,

developed for traditional targets, could be used for such an approach. Therefore, Chapter 4 starts

with an evaluation of several established docking programs and an RNA scoring function with

respect to their performance at protein–RNA composite environments. It could be shown that the

protein–ligand docking program AutoDock achieved both, a convincing redocking and reasonable

affinity prediction accuracy that could neither be outperformed by a combined RNA/protein scoring

approach nor by molecular-mechanics-based free energy calculations. Around the docking engine

AutoDock a MD-docking-MD workflow was established that allows a precise prediction of thiopeptide

ligands’ binding modes and affinities. Initial MD simulations are used to refine the coordinates of

the binding site and to generate accurate input conformations of the ligands. Across all docking

programs and ligands considered in this work, an MD-refined structural model of the binding site as

target strongly improved the docking results. This implies that using molecular dynamics simulations

is a promising strategy to overcome the inadequacies or limitations of experimentally determined

threedimensional structures as drug targets.

Subsequent MD simulations of the docked complexes were used to test the stability of the ligands’

binding poses and to decompose the enthalpic contributions of single residues to the overall binding

affinity. With the help of this decomposition analysis crucial residues of the binding site and impor-

tant moieties within the ligand structures could be identified that are in agreement with mutation

studies. This knowledge was incorporated into a pharmacophore model, developed in Chapter 5.

By investigating the dynamic stability of characteristic thiostrepton–GAR interactions, the complex

thiostrepton scaffold could be reduced to a low number of significant pharmacophoric features.

The results of this thesis revealed, for the first time, the mode of action of thiopeptide antibiotics

down to the details of their pharmacologically relevant parts and provide a framework for the in silico

design of new ligands.

6.2. Future Work

The current thesis can be understood as a first detailed study into understanding and developing

computer-based approaches for non-traditional drug targets, like the protein–RNA interface of the
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bacterial GAR. Of course, open questions remain or came up in the course of the work on this thesis.

As outlined in Chapter 5, the exact role of thiostrepton’s second macrocycle is still unclear. Evidently,

it has little enthalpic contribution to binding. Its opening or absence also did not lead to a significant

destabilization of macrocycle A (compounds 19 and 21). Based on the current state of knowledge,

its most probable role is the steric blocking of translation factors as an enhancement of protein

translation inhibition. The testing of this hypothesis is out of scope of the methods applied within

this thesis. The chemical synthesis and experimental testing of the TS fragment 21 could enlighten

this question.

With respect to the design of new chemical scaffolds targeting the L11·23S, the next step would

be to use the derived pharmacophore model to screen for new chemical scaffolds. Due to the large

spatial distance of the pharmacophoric features a fragment-based strategy seems promising. Here,

different fragments that fulfill parts of the pharmacophore can be connected by linker fragments to

design a larger compound matching the complete pharmacophore. By using the established MD-

docking-MD workflow it can be subsequently tested if this compound meets the required properties,

binding with high affinity and restricting the binding site’s conformational flexibility.

This work can also be considered in a wider context: as a contribution to the design of modulators

of biomacromolecular interfaces. For decades drug design has primarily focused on small molecules

that bind to well-formed tight binding pockets, such as the catalytic centers of enzymes. Recently,

there is increasing interest to design active compounds that disrupt or stabilize biomacromolecular

interfaces (e.g. protein–protein, protein–DNA, protein–RNA, protein–lipid interfaces) to interfere with

cellular pathways [59, 309]. However, investigating these systems using computational chemistry is

still in its infancy. It is ancipitated that a more automated and streamlined use of molecular dynamics

simulations in combination with established drug design approaches, and thinking beyond “drug-like”

molecules will help to successfully address this research area.

6.3. Publications

1. Wolf, A., and Kirschner, K. N. (2012) Principal Component and Clustering Analysis on Molecular

Dynamics Data of the Ribosomal L11·23S Subdomain. J. Mol. Mod. submitted. (Chapter 3)

Content: This study investigates how clustering different principal component subspaces from

molecular dynamics trajectory data effects the resulting clusters. The results demonstrate that

by combining principal component analysis with subsequent data clustering researchers can

obtain valuable dynamic and conformational information concerning their system.

Significance: This is the first study that systematically explores the combination of principal

component analysis with different clustering techniques for revealing conformational metas-

tates in molecular dynamics simulation data. In times of improved hardware and software

that allows simulations in the ns to µs time scale producing an enormous amount of data

133



6. Summary and Outlook

such validations of quantitave analysis techniques become increasingly important. Moreover,

the described methodology is established as a major analysis technique for investigating new

modulators of the L11·23S subunit.

2. Wolf, A., Baumann, S., Arndt, H.-D., and Kirschner, K. N. (2012) The influence of thiostrepton

binding on the dynamics of the ribosomal L11·23S subunit as revealed by molecular dynamics

simulations. PLoS ONE submitted. (Chapter 3)

Content: In this study it is explored how thiostrepton affects the dynamics of their ribosomal

binding region at a previously unmet resolution. The findings of this work, coupled with

previous experimental knowledge, strongly support the hypothesis that restricting the binding

site’s conformational flexibility is an important component of thiostrepton’s mode of action

which has to be taken into account when new inhibitors are designed.

Significance: This is the foundation paper for the future work at designing new ligands for

the L11·23S subunit. The data and analysis done within this work will serve as a guide and

benchmark for comparison of future designed ligands.

3. Wolf, A., Reith, D., and Kirschner, K. N. (2011) Thiopeptide Antibiotics and the Ribosomal

23S·L11 Subunit – a Challenging Use Case for Semi-automatic Force-field Development. From

Computational Biophysics to Systems Biology, 20–22 July, Jülich, Germany. (Chapter 4)

Content: This paper describes the development of unique force-field parameters for thiopep-

tide antibiotics using quantum mechanical data. These parameters are validated by a molecular

dynamics simulation in an organic solvent mixture against NMR structural data.

Significance: The limited accuracy of force fields is seen as one of the major drawbacks in

molecular mechanics applications. Although considered important, force-field parameteri-

zation is often not addressed as rigorously as in this work because of the huge effort that is

necessary to obtain accurate parameters. The customized thiopeptide force field obtained

from this work is compatible with existing protein/nucleic acid force fields and forms the basis

to model future derivatives and their interactions with the L11·23S subunit.

4. Jonker, H. R. A., Baumann, S., Wolf, A., Schoof, S., Hiller, F., Schulte, K. W., Kirschner, K. N.,

Schwalbe, H., and Arndt, H.-D. (2011) NMR structures of thiostrepton derivatives for characteri-

zation of the ribosomal binding site. Angew. Chem. Int. Ed. Engl. 50(14), 3308–3312. (Chapter 4)

Content: The activity of thiostrepton and derivatives with targeted shape changes was deter-

mined at their ribosomal binding site by using semisynthesis, NMR structure determination,

docking, and biological evaluation in an integrated fashion. These data define structural bound-

aries, wherein an improvement of the overall pharmacological profile of these compounds or

their analogues will be possible.
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Significance: This paper demonstrates the sucessfull coupling of theory and experimental

structure data, and validates the theoretical model.
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B. Structure and Dynamics of RNA

Nucleic acids are long, thread-like polymers, made up of a linear array of monomers called nu-

cleotides. All nucleotides are constructed from three components: a nitrogen heterocyclic base, a

pentose sugar, and a phosphate residue. The major bases are monocyclic pyrimidines (adenine (A)

and guanine (G)) or bicyclic purines (cytosine (C), thymine (T, DNA only) and uracil (U, RNA only)).

In ribonucleic acid (RNA), the pentose is D-ribose (in contrast to desoxyribonucleic acid (DNA) which

is composed of 2-desoxy-D-ribose).

Sugar Pucker
The out of plane twisting of the sugar furanose ring is called ’puckering’. In the C2’-endo conformation

the endo displacement of C2’ is greater than the exo displacement of C3’. Of a C3’-endo conformation

of the sugar pucker is spoken in the other case.

A common way to describe the sugar pucker is the concept of pseudorotation, that was first

introduced by Kirkpatrick et al. for cyclopentane [310], and further developed by Altona and Sundar-

alingam for nucleotides [225]. The pseudorotational phase angle P is calculated by the five torsion

angles of the furanose ring θ0 −θ4
1 (see Fig. B.1):

tanP = (θ4 +θ1)− (θ3 +θ0)

2θ2(sin36+ sin72)
(B.1)

Values for P between 0 and 36◦ correspond to the C3’-endo, 144 to 180◦ to the C2’-endo conformation

(Fig. B.2).

Conformation of the Nucleobase
There exist two distinct conformations of the bases with respect to the sugar, described by the torsion

angle χ of the glycosylic bond. Nucleotides have a general preference for the anti-conformers of the

glycosylic bond. Pyrimidines occupy a narrow range of anti conformations while purines are found

in a wider range of anti conformations which can even extend into the high-anti range (see Fig. B.3).

RNA has greater structural diversity than DNA which is reflected in the functional diversity of

RNA species. The structural elements that make up folded RNA are hairpin loops, interior loops,

bulges, junctions, and other motifs [312]. The secondary structure elements of the 23S rRNA segment

1Note that the formula used here differs from the original one described by Altona and Sundaralingam due to their
different numbering of the furanose torsion angles. [225, 311]
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B. Structure and Dynamics of RNA

Figure B.1.: Definition of selected torsion angles found in nucleotides.

considered in this thesis is shown as a two-dimensional depiction in Figure B.4.
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Figure B.2.: Pseudorotational cycle. The furanose ring with corresponding signs of the ring torsion angles
is shown at the outer margin. Bold arrows indicate preferred pseudorotational regions for nucleotides.
Taken from Ref. 225.
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B. Structure and Dynamics of RNA

Figure B.3.: Anti and syn conformational ranges for glycosylic bonds in pyrimidines (left) and purines
(right), taken from [233].

Figure B.4.: 2D representation of the H43/H44 23S rRNA segment’s secondary structure (from D. radiodu-
rans, PDB 3CF5 [32]). The crucial nucleotides A1067 and A1095 are assigned, otherwise the numbering
corresponds to the nucleotides’ positions in the PDB file (i.e. 1050 has to be added). Secondary structure
generated with RNAView [313].
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A

B

Figure C.1.: Backbone root-mean-squared deviations (RMSD) for simulations without TS (A) and with
bound TS (B). Black line: run I; red line: run II.
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Figure C.2.: Principal component analysis (PCA) for the second simulation without TS. A) Clustering in
supspace spanned by first three PCs projected onto 2D plane defined by PC1–2. Clusters 1, and 2 are
colored as blue, and red. B) RMSD plot color-coded according to clusters. C) Scree plot. D) Residue-wise
loadings (contributions) in Å to the first principal component.
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A B

Figure C.3.: Cluster representatives for the two simulation runs without TS. A) Cluster one from the first
run is displayed in marine, cluster one from the second run is displayed in darkblue. B) Cluster three from
first run (red), cluster two from second run (light red).
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Figure C.4.: Root-mean-square fluctuations (RMSF) for simulations without TS (A) and with bound TS
(B). Black line: run I; red line: run II. Evaluated at time frame 7–40 ns.
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A

C

B

D

Figure C.5.: χ-angle (O4’-C1’-N9-C4) for nucleic acids (A, C) A1067 and (B, D) A1095 as a function of
simulation time without TS (A, B) and with TS (C, D). Black data points are from the first simulation run,
and red data points are from the second simulation run.
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Table C.1.: The population percentage of different conformations of the selected riboses sampled during the simulations with and without TS. The
residues listed are either involved in the binding of thiostrepton or showed interesting conformational sampling.

Simulations (without TS | with TS) X-ray
C3’-endo C4’-exo O4’-endo C1’-exo C2’-endo C3’-exo C4’-endo O4’-exo C1’-endo C2’-exo

C1053 84| 79 12| 17 5| 4 C2’-exo
G1055 73| 87 1| 3 25| 11 C4’-exo
A1057 33| 40 64| 57 C2’-exo
G1059 79| 71 2| 14 19| 16 C2’-exo
U1060 39| 72 61| 28 C4’-exo
U1061 27| 48 72| 51 1| 1 C4’-exo
G1062 8| 8 2| 2 90| 90 C2’-exo
A1067 2| 42 3| 11 5| 2 29| 5 50| 7 8| 1 1| 0 1| 2 2| 29 C3’-endo
A1070 7| 4 85| 72 8| 24 C3’-endo
C1075 87| 87 1| 3 11| 10 C2’-exo
C1076 89| 62 3| 0 7| 38 C2’-exo
A1084 8| 69 9| 6 49| 5 19| 2 11| 0 2| 0 0| 1 1| 17 C3’-endo
A1085 82| 16 11| 25 0| 44 0| 12 0| 1 6| 2 C2’-exo
G1087 1| 0 2| 5 4| 6 18| 15 59| 60 17| 16 C3’-endo
A1088 0| 1 0| 32 1| 60 26| 4 66| 3 C3’-endo
G1089 0| 7 34| 24 64| 56 1| 1 0| 11 C3’-endo
A1095 8| 31 2| 0 4| 0 12| 0 14| 0 2| 0 1| 0 1| 0 17| 3 38| 66 C3’-endo
G1107 77| 74 2| 2 21| 24 C2’-exo
U1108 60| 43 9| 6 1| 1 4| 5 2| 31 2| 1 5| 4 C2’-exo
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Table C.2.: RESP charges for non-standard thiostrepton residues and statistics of the fit.

QUA TSI TZB XAA XBB PYT DHA TZO

N1 -0.8100 N1 -0.4373 N -0.2290 N1 -0.4430 N1 -0.6059 N -0.2519 N -0.2415 N1 -0.4841
C2 0.4835 H1 0.2651 H 0.1707 C2 0.2079 C2 0.3539 H 0.2191 H 0.2014 C2 0.4649
C3 -0.3358 C2 0.0158 N1 -0.4312 S3 -0.0692 C3 0.0006 CA -0.0241 CA -0.0115 S3 -0.0969
H3 0.1730 H2 0.1186 C2 0.3807 C4 -0.2901 H31 0.0060 C 0.7403 C 0.6365 C4 -0.1256
C4 -0.0294 C3 0.2731 S3 -0.3002 H4 0.2083 H32 0.0060 O -0.5687 O -0.5441 H4 0.2169
C5 -0.0059 O4 -0.6748 C4 0.1858 C5 0.3044 C4 0.0844 CB -0.3563 CB -0.3732 C5 -0.0523
H5 0.0744 H4 0.4327 H41 0.0481 C6 -0.0135 H41 -0.0108 HB1 0.1682 HB1 0.1662 C6 0.7028
C6 -0.2120 C5 -0.1825 H42 0.0481 H6 0.1423 H42 -0.0108 HB2 0.1682 HB2 0.1662 O7 -0.6256
H6 0.1699 H51 0.0605 C5 -0.0314 N7 -0.1824 C5 0.1312 NT -0.8813
C7 -0.4365 H52 0.0605 H5 0.0707 H7 0.0731 C6 0.0981 HT1 0.3884
H7 0.2665 H53 0.0605 C6 0.6333 C8 0.1799 H6 0.1065 HT2 0.3884
C8 0.1996 C6 0.3282 O7 -0.6232 H8 0.0255 N7 -0.4443
H8 0.1019 H6 -0.0041 C8 -0.0554 C9 -0.0769 H7 0.2853
C9 0.5638 O7 -0.7302 C9 -0.0826 H91 0.0232
C10 -0.0678 H7 0.4431 H9 0.1267 H92 0.0232
C11 0.5060 C8 -0.0803 C10 -0.0182 H93 0.0232
O12 -0.5566 H81 0.0170 H101 0.0357 O10 -0.1361
C13 0.4916 H82 0.0170 H102 0.0357
H13 -0.0486 H83 0.0170 H103 0.0357
C14 -0.0103
H141 -0.0006
H142 -0.0006
H143 -0.0006
O15 -0.7039
H15 0.4088
O16 -0.6176
H16 0.3972

RRMSa 0.21015 0.11422 0.22590 0.21973 0.15595 0.19047 0.22848 0.19686
RRMSb 0.17667 0.13408 0.21501 0.19863 0.17331 0.17948 0.19320 0.19564

a Relative root mean square (RRMS) for the molecular fragment.
b RRMS for the molecule (incl. capping groups).
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Table C.3.: RESP charges for standard thiostrepton residues and statis-
tics of the fit.

ILE THR ALA

Atom
names
and
charges

N -0.4292 N -0.3882 N -0.3958
H 0.2737 H 0.2657 H 0.2311
CA -0.0230 CA 0.0683 CA 0.0447
HA 0.0638 HA 0.0614 HA 0.0491
CB 0.0839 CB 0.1670 CB -0.0392
HB 0.0516 HB 0.0001 HB1 0.0221
CG2 -0.1469 CG2 -0.0696 HB2 0.0221
HG21 0.0340 HG21 0.0289 HB3 0.0221
HG22 0.0340 HG22 0.0289 C 0.5858
HG23 0.0340 HG23 0.0289 O -0.5420
CG1 0.0185 OG1 -0.6662
HG12 -0.0030 HG1 0.4420
HG13 -0.0030 C 0.5785
CD1 -0.0779 O -0.5458
HD11 0.0188
HD12 0.0188
HD13 0.0188
C 0.5982
O -0.5649

RRMSa 0.12926 0.11236 0.15923
RRMSb 0.12234 0.10933 0.14356

a RRMS for the molecular fragment.
b RRMS for the molecule (incl. capping groups).

152



Hbond PTRAJ output for simulation with TS, run I:

HBOND SUMMARY:
Data was saved to series hbt, output to file hbonds_lig_don_dist35.txt,
data was sorted, intra-residue interactions are NOT included,
Distance cutoff is 3.50 angstroms, angle cutoff is 120.00 degrees
Hydrogen bond information dumped for occupancies > 0.00

Dumping schematic of time series after each h-bond, key follows:
| . - o x * @ |

0-5% 5-20% 20-40% 40-60% 60-80% 80-95% 95-100% occupancy

DONOR ACCEPTORH ACCEPTOR
atom# :res@atom atom# :res@atom atom# :res@atom %occupied distance angle lifetime maxocc

| 4067 :203@N4 | 547 :17@HO’2 546 :17@O2’ | 12.68 2.906 ( 0.16) 32.54 ( 8.76) 2.2 ( 2.0) 21 | -oooooxooxo---. |
| 4051 :203@O5 | 547 :17@HO’2 546 :17@O2’ | 3.38 2.871 ( 0.21) 27.15 (10.59) 3.7 ( 5.2) 40 | -o- - |

DONOR ACCEPTORH ACCEPTOR
atom# :res@atom atom# :res@atom atom# :res@atom %occupied distance angle lifetime maxocc

| 546 :17@O2’ | 4063 :203@H74 4062 :203@N5 | 20.99 3.299 ( 0.23) 25.84 ( 9.93) 4.2 ( 5.2) 41 |.-xxxx*xxx-oxx*o . . . |
| 540 :17@N3 | 4063 :203@H74 4062 :203@N5 | 20.42 3.289 ( 0.20) 26.42 (10.17) 5.6 ( 6.4) 56 | .*xxx***oo*x -xx |
| 2263 :86@O | 3999 :203@H79 3998 :203@N17 | 14.71 3.221 ( 0.26) 32.88 ( 9.21) 1.6 ( 1.3) 17 |..-o-...-.....----.. .-. ..--.-................ .|
| 540 :17@N3 | 4082 :203@H75 4081 :203@N3 | 14.34 3.398 ( 0.21) 22.65 (10.06) 4.4 ( 5.8) 72 |.oxxxxx*xx .o. |
| 546 :17@O2’ | 4052 :203@H38 4051 :203@O5 | 6.57 2.982 ( 0.22) 19.83 (10.54) 4.6 ( 6.5) 64 | .-...--.o-.... . . |
| 531 :17@N7 | 4082 :203@H75 4081 :203@N3 | 5.90 3.188 ( 0.20) 26.98 (10.11) 6.3 ( 7.4) 47 | .*o xx|
| 546 :17@O2’ | 4082 :203@H75 4081 :203@N3 | 2.76 3.378 ( 0.25) 33.75 ( 8.55) 1.5 ( 1.2) 14 | ..... ..-.- |

Hbond PTRAJ output for docked TS to MD-refined structure, optimized TS parameters, 10 ns simulation:

DONOR ACCEPTORH ACCEPTOR
atom# :res@atom atom# :res@atom atom# :res@atom %occupied distance angle lifetime maxocc

| 3999 :204@OG1 | 547 :17@HO’2 546 :17@O2’ | 29.05 2.869 ( 0.16) 30.09 (14.08) 2.5 ( 2.6) 29 |x. . o-- .oooooooo. -ooo-oooxo--ooooo-.|
| 4002 :204@O | 1438 :45@H61 1437 :45@N6 | 26.09 3.122 ( 0.19) 36.75 (12.10) 3.6 ( 4.1) 31 | -*--oxoxxxxxxxx**o..o.-.-- |
| 4021 :205@N1 | 547 :17@HO’2 546 :17@O2’ | 19.82 3.258 ( 0.16) 48.07 ( 9.03) 1.5 ( 0.9) 9 |. - .... .--- .o---------....---.-.------o-. |
| 4165 :216@O | 2278 :87@HE22 2276 :87@NE2 | 8.55 3.021 ( 0.19) 23.43 (11.01) 8.2 ( 13.8) 119 | -o .x.---. o- -- |
| 4165 :216@O | 2794 :121@HH12 2792 :121@NH1 | 5.72 2.998 ( 0.21) 33.96 (13.34) 6.3 ( 9.3) 59 | -xxx- |

DONOR ACCEPTORH ACCEPTOR
atom# :res@atom atom# :res@atom atom# :res@atom %occupied distance angle lifetime maxocc

| 540 :17@N3 | 4000 :204@HG1 3999 :204@OG1 | 83.91 2.882 ( 0.16) 24.32 (14.06) 8.4 ( 15.2) 266 |@oox@@@*x***@@*@*@*@*******xxxxx****x****xx*****xo|
| 2318 :90@O | 4178 :217@HT1 4177 :217@NT | 31.50 2.919 ( 0.15) 21.19 (11.26) 41.9 ( 50.6) 220 |@@@@@@*@@*@@@@@*. |
| 2263 :86@O | 4179 :217@HT2 4177 :217@NT | 29.97 3.002 ( 0.17) 25.44 (11.94) 17.7 ( 25.8) 216 |x@@@@@*@**@***@*. |
| 546 :17@O2’ | 4025 :206@H1 4024 :206@N1 | 23.27 3.261 ( 0.15) 45.95 (10.27) 1.8 ( 1.4) 13 |- .- ... . .o-- .ooo----o...--------o--.oo--o. |
| 2263 :86@O | 4162 :216@H 4161 :216@N | 21.16 3.021 ( 0.16) 31.61 (13.65) 8.5 ( 13.3) 117 |oox-o*@****o-xx . .|
| 540 :17@N3 | 4078 :209@H16 4077 :209@O16 | 17.69 2.992 ( 0.18) 25.10 (11.67) 14.9 ( 29.4) 177 | o. .. *x*x - -@@@o .x |
| 546 :17@O2’ | 4000 :204@HG1 3999 :204@OG1 | 9.81 2.970 ( 0.19) 45.15 (12.37) 1.6 ( 1.6) 18 | ox- -... . . .. .. ..--....... .. |
| 558 :18@O4’ | 4011 :205@H 4010 :205@N | 7.22 3.353 ( 0.12) 42.56 (11.31) 1.3 ( 0.7) 6 |- . . .-...... . .. ...-..-..- |
| 546 :17@O2’ | 4032 :206@H4 4031 :206@O4 | 4.34 3.059 ( 0.22) 20.17 (10.65) 4.7 ( 8.6) 49 |-xx- . |
| 2263 :86@O | 4170 :217@H 4169 :217@N | 4.22 3.208 ( 0.17) 41.50 (14.97) 1.5 ( 1.1) 8 | ...-.. ...-...-. |
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Figure C.6.: Centroid–centroid distances (black, left axis) and angles between the ring normals (magenta,
right axis) over simulation time for TZO-1 – A1095 during the second MD simulation with TS.

154



Bibliography

[1] Coates, A. R. M. and Hu, Y. (2007) Novel approaches to developing new antibiotics for bacterial
infections. Br. J. Pharmacol. 152(8), 1147–1154.

[2] Fischbach, M. A. and Walsh, C. T. (2009) Antibiotics for emerging pathogens. Science 325(5944),
1089–1093.

[3] Ray, A. and Rice, L. B. (2004) Wildcatters welcome: the need for new antimicrobial agents.
Therapy 1(1), 1–5.

[4] Payne, D. J., Gwynn, M. N., Holmes, D. J., and Pompliano, D. L. (2007) Drugs for bad bugs:
confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6(1), 29–40.

[5] Jones, D. (2010) The antibacterial lead discovery challenge. Nat. Rev. Drug Discov. 9(10), 751–
752.

[6] Braine, T. (2011) Race against time to develop new antibiotics. Bull. World Health Organ. 89(2),
88–89.

[7] Bush, K. (2004) Why is it important to continue antibacterial drug discovery? ASM News 70,
282–287.

[8] Overbye, K. M. and Barrett, J. F. (2005) Antibiotics: where did we go wrong? Drug Discov. Today
10(1), 45–52.

[9] Organization., W. H. Antimicrobial resistance. Fact sheet N°194 (2011) http://www.who.int/
mediacentre/factsheets/fs194/en (accessed 23 Jan 2012).

[10] Hancock, R. E. W. (2007) The end of an era? Nat. Rev. Drug Discov. 6(1), 28–28.

[11] Klevens, R. M. e. a. (2007) Invasive methicillin-resistant Staphylococcus aureus infections in
the United States. JAMA 298(15), 1763–1771.

[12] Dorman, S. E. and Chaisson, R. E. (2007) From magic bullets back to the magic mountain: the
rise of extensively drug-resistant tuberculosis. Nat. Med. 13(3), 295–298.

[13] Organization., W. H. 10 facts about tuberculosis. (2010) http://www.who.int/features/
factfiles/tuberculosis/en (accessed 23 Jan 2012).

[14] Gwynn, M. N., Portnoy, A., Rittenhouse, S. F., and Payne, D. J. (2010) Challenges of antibacterial
discovery revisited. Ann. N. Y. Acad. Sci. 1213, 5–19.

155

http://www.who.int/mediacentre/factsheets/fs194/en
http://www.who.int/mediacentre/factsheets/fs194/en
http://www.who.int/features/factfiles/tuberculosis/en
http://www.who.int/features/factfiles/tuberculosis/en


Bibliography

[15] vonNussbaum, F., Brands, M., Hinzen, B., Weigand, S., and Häbich, D. (2006) Antibacterial
natural products in medicinal chemistry–exodus or revival? Angew. Chem. Int. Ed. Engl. 45(31),
5072–5129.

[16] Silver, L. L. (2008) Are natural products still the best source for antibacterial discovery? The
bacterial entry factor. Expert Opin. Drug Discov. 3(5), 487–500.

[17] Bagley, M. C., Dale, J. W., Merritt, E. A., and Xiong, X. (2005) Thiopeptide antibiotics. Chem. Rev.
105(2), 685–714.

[18] Wilson, D. N. and Nierhaus, K. H. (2004) Antibiotics and the inhibition of ribosome function.
In Knud H. Nierhaus and Daniel N. Wilson, (ed.), Protein Synthesis and Ribosome Structure,
pp. 449–527 Wiley-VHC Weinheim.

[19] Sohmen, D., Harms, J. M., Schlünzen, F., and Wilson, D. N. (2009) Enhanced SnapShot: Antibi-
otic inhibition of protein synthesis II. Cell 139(1), 212–212.e1.

[20] Munro, J. B., Altman, R. B., O’Connor, N., and Blanchard, S. C. (2007) Identification of two
distinct hybrid state intermediates on the ribosome. Mol. Cell 25(4), 505–517.

[21] Wilson, D. N. and Nierhaus, K. H. (2003) The ribosome through the looking glass. Angew. Chem.
Int. Ed. Engl. 42(30), 3464–3486.

[22] Frank, J. and Agrawal, R. K. (2000) A ratchet-like inter-subunit reorganization of the ribosome
during translocation. Nature 406(6793), 318–322.

[23] Valle, M., Zavialov, A., Sengupta, J., Rawat, U., Ehrenberg, M., and Frank, J. (2003) Locking and
unlocking of ribosomal motions. Cell 114(1), 123–134.

[24] Frank, J. The positions of EF-Tu, EF-G, and tRNAs relative to the ribosome during
the elongation cycle. (2008) http://rpi.edu/dept/bcbp/molbiochem/MBWeb/mb2/part1/
translate.htm (accessed 7th August 2011).

[25] Sohmen, D., Harms, J. M., Schlünzen, F., and Wilson, D. N. (2009) SnapShot: Antibiotic inhibi-
tion of protein synthesis I. Cell 138(6), 1248.e1.

[26] Mohr, D., Wintermeyer, W., and Rodnina, M. V. (2002) GTPase activation of elongation factors
Tu and G on the ribosome. Biochemistry 41(41), 12520–12528.

[27] Diaconu, M., Kothe, U., Schlünzen, F., Fischer, N., Harms, J. M., Tonevitsky, A. G., Stark, H.,
Rodnina, M. V., and Wahl, M. C. (2005) Structural basis for the function of the ribosomal L7/12
stalk in factor binding and GTPase activation. Cell 121(7), 991–1004.

[28] Gao, Y.-G., Selmer, M., Dunham, C. M., Weixlbaumer, A., Kelley, A. C., and Ramakrishnan, V.
(2009) The structure of the ribosome with elongation factor G trapped in the posttranslocational
state. Science 326(5953), 694–699.

[29] Wilson, D. N. and Nierhaus, K. H. (2005) Ribosomal proteins in the spotlight. Crit. Rev. Biochem.
Mol. Biol. 40(5), 243–267.

156

http://rpi.edu/dept/bcbp/molbiochem/MBWeb/mb2/part1/translate.htm
http://rpi.edu/dept/bcbp/molbiochem/MBWeb/mb2/part1/translate.htm


Bibliography

[30] Wimberly, B. T., Guymon, R., McCutcheon, J. P., White, S. W., and Ramakrishnan, V. (1999)
A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell 97(4),
491–502.

[31] Jonker, H. R. A., Ilin, S., Grimm, S. K., Wöhnert, J., and Schwalbe, H. (2007) L11 domain rear-
rangement upon binding to RNA and thiostrepton studied by NMR spectroscopy. Nucleic Acids
Res. 35(2), 441–454.

[32] Harms, J. M., Wilson, D. N., Schlünzen, F., Connell, S. R., Stachelhaus, T., Zaborowska, Z., Spahn,
C. M. T., and Fucini, P. (2008) Translational regulation via L11: molecular switches on the
ribosome turned on and off by thiostrepton and micrococcin. Mol. Cell 30(1), 26–38.

[33] Connell, S. R., Takemoto, C., Wilson, D. N., Wang, H., Murayama, K., Terada, T., Shirouzu, M.,
Rost, M., Schüler, M., Giesebrecht, J., Dabrowski, M., Mielke, T., Fucini, P., Yokoyama, S., and
Spahn, C. M. T. (2007) Structural basis for interaction of the ribosome with the switch regions
of GTP-bound elongation factors. Mol. Cell 25(5), 751–764.

[34] Donovick, R., Pagano, J. F., Stout, H. A., and Weinstein, M. J. (1955) Thiostrepton, a new antibi-
otic. I. In vitro studies. Antibiot. Annu. 3, 554–559.

[35] Dutcher, J. D. and Vandeputte, J. (1955) Thiostrepton, a new antibiotic. II. Isolation and chemi-
cal characterization. Antibiot. Annu. 3, 560–561.

[36] Prange, T., Ducruix, A., Pascard, C., and Lunel, J. (1977) Structure of nosipeptide, a polythiazole-
containing antibiotic. Nature 265(5590), 189–190.

[37] Pascard, C., Ducruix, A., Lunel, J., and Prangé, T. (1977) Highly modified cysteine-containing
antibiotics. Chemical structure and configuration of nosiheptide. J. Am. Chem. Soc. 99(19),
6418–6423.

[38] Benazet, F., Cartier, M., Florent, J., Godard, C., Jung, G., Lunel, J., Mancy, D., Pascal, C., Renaut,
J., Tarridec, P., Theilleux, J., Tissier, R., Dubost, M., and Ninet, L. (1980) Nosiheptide, a sulfur-
containing peptide antibiotic isolated from Streptomyces actuosus 40037. Experientia 36(4),
414–416.

[39] Su, T. L. (1948) Micrococcin, an antibacterial substance formed by a strain of Micrococcus. Br. J.
Exp. Pathol. 29(5), 473–481.

[40] Lefranc, D. and Ciufolini, M. A. (2009) Total synthesis and stereochemical assignment of
micrococcin P1. Angew. Chem. Int. Ed. Engl. 48(23), 4198–4201.

[41] Ciufolini, M. A. and Lefranc, D. (2010) Micrococcin P1: structure, biology and synthesis. Nat.
Prod. Rep. 27(3), 330–342.

[42] Nicolaou, K. C., Zak, M., Rahimipour, S., Estrada, A. A., Lee, S. H., O’Brate, A., Giannakakou, P.,
and Ghadiri, M. R. (2005) Discovery of a biologically active thiostrepton fragment. J. Am. Chem.
Soc. 127(43), 15042–15044.

[43] Nicolaou, K. C., Zak, M., Safina, B. S., Estrada, A. A., Lee, S. H., and Nevalainen, M. (2005) Total
synthesis of thiostrepton. Assembly of key building blocks and completion of the synthesis. J.
Am. Chem. Soc. 127(31), 11176–11183.

157



Bibliography

[44] Bower, J., Drysdale, M., Hebdon, R., Jordan, A., Lentzen, G., Matassova, N., Murchie, A., Powles,
J., and Roughley, S. (2003) Structure-based design of agents targeting the bacterial ribosome.
Bioorg. Med. Chem. Lett. 13(15), 2455–2458.

[45] Bausch, S. L., Poliakova, E., and Draper, D. E. (2005) Interactions of the N-terminal domain of
ribosomal protein L11 with thiostrepton and rRNA. J. Biol. Chem. 280(33), 29956–29963.

[46] Porse, B. T., Leviev, I., Mankin, A. S., and Garrett, R. A. (1998) The antibiotic thiostrepton inhibits
a functional transition within protein L11 at the ribosomal GTPase centre. J. Mol. Biol. 276(2),
391–404.

[47] Cameron, D. M., Thompson, J., Gregory, S. T., March, P. E., and Dahlberg, A. E. (2004)
Thiostrepton-resistant mutants of Thermus thermophilus. Nucleic Acids Res. 32(10), 3220–
3227.

[48] Starosta, A. L., Qin, H., Mikolajka, A., Leung, G. Y. C., Schwinghammer, K., Nicolaou, K. C.,
Chen, D. Y.-K., Cooperman, B. S., and Wilson, D. N. (2009) Identification of distinct thiopeptide-
antibiotic precursor lead compounds using translation machinery assays. Chem. Biol. 16(10),
1087–1096.

[49] Jorgensen, W. L. (2004) The many roles of computation in drug discovery. Science 303(5665),
1813–1818.

[50] Taft, C. A., Da Silva, V. B., and Da Silva, C. H. (2008) Current topics in computer-aided drug
design. J. Pharm. Sci. 97(3), 1089–1098.

[51] Kapetanovic, I. M. (2008) Computer-aided drug discovery and development (CADDD): In
silico-chemico-biological approach. Chem. Biol. Interact. 171(2), 165–176.

[52] Rester, U. (2008) From virtuality to reality - Virtual screening in lead discovery and lead opti-
mization: a medicinal chemistry perspective. Curr. Opin. Drug Discov. Devel. 11(4), 559–568.

[53] Reddy, A. S., Pati, S. P., Kumar, P. P., Pradeep, H. N., and Sastry, G. N. (2007) Virtual screening in
drug discovery – a computational perspective. Curr. Protein Pept. Sci. 8(4), 329–351.

[54] Eckert, H. and Bajorath, J. (2007) Molecular similarity analysis in virtual screening: foundations,
limitations and novel approaches. Drug Discov. Today 12(5-6), 225–233.

[55] Congreve, M., Murray, C. W., and Blundell, T. L. (2005) Keynote review: Structural biology and
drug discovery. Drug Discov. Today 10(13), 895–907.

[56] Klebe, G. Wirkstoffdesign: Entwurf und Wirkung von Arzneistoffen chapter Erfolge beim ratio-
nalen Design von Wirkstoffen., pp. 333–605 Spektrum Akademischer Verlag (2009).

[57] Hopkins, A. L. and Groom, C. R. (2002) The druggable genome. Nat. Rev. Drug Discov. 1(9),
727–730.

[58] Pommier, Y. and Cherfils, J. (2005) Interfacial inhibition of macromolecular interactions: na-
ture’s paradigm for drug discovery. Trends Pharmacol. Sci. 26(3), 138–145.

[59] Pommier, Y. and Marchand, C. (2012) Interfacial inhibitors: targeting macromolecular com-
plexes. Nat. Rev. Drug Discov. 11, 25–36.

158



Bibliography

[60] Hare, S., Vos, A. M., Clayton, R. F., Thuring, J. W., Cummings, M. D., and Cherepanov, P. (2010)
Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance.
Proc. Natl. Acad. Sci. USA 107(46), 20057–20062.

[61] Hare, S., Gupta, S. S., Valkov, E., Engelman, A., and Cherepanov, P. (2010) Retroviral intasome
assembly and inhibition of DNA strand transfer. Nature 464(7286), 232–236.

[62] Hare, S., Smith, S. J., Métifiot, M., Jaxa-Chamiec, A., Pommier, Y., Hughes, S. H., and Cherepanov,
P. (2011) Structural and functional analyses of the second-generation integrase strand transfer
inhibitor dolutegravir (S/GSK1349572). Mol. Pharmacol. 80(4), 565–572.

[63] Ioanoviciu, A., Antony, S., Pommier, Y., Staker, B. L., Stewart, L., and Cushman, M. (2005)
Synthesis and mechanism of action studies of a series of norindenoisoquinoline topoisomerase
I poisons reveal an inhibitor with a flipped orientation in the ternary DNA-enzyme-inhibitor
complex as determined by X-ray crystallographic analysis. J. Med. Chem. 48(15), 4803–4814.

[64] Marchand, C., Antony, S., Kohn, K. W., Cushman, M., Ioanoviciu, A., Staker, B. L., Burgin,
A. B., Stewart, L., and Pommier, Y. (2006) A novel norindenoisoquinoline structure reveals
a common interfacial inhibitor paradigm for ternary trapping of the topoisomerase I-DNA
covalent complex. Mol. Cancer Ther. 5(2), 287–295.

[65] González-Ruiz, D. and Gohlke, H. (2006) Targeting protein-protein interactions with small
molecules: challenges and perspectives for computational binding epitope detection and
ligand finding. Curr. Med. Chem. 13(22), 2607–2625.

[66] Drysdale, M. J., Lentzen, G., Matassova, N., Murchie, A. I. H., Aboul-Ela, F., and Afshar, M. (2002)
RNA as a drug target. Prog. Med. Chem. 39, 73–119.

[67] Sucheck, S. J. and Wong, C. H. (2000) RNA as a target for small molecules. Curr. Opin. Chem.
Biol. 4(6), 678–686.

[68] Thomas, J. R. and Hergenrother, P. J. (2008) Targeting RNA with small molecules. Chem. Rev.
108(4), 1171–1224.

[69] Hermann, T. and Tor, Y. (2005) RNA as a target for small-molecule therapeutics. Expert Opin.
Ther. Pat. 15(1), 49–62.

[70] Knowles, D. J. C., Foloppe, N., Matassova, N. B., and Murchie, A. I. H. (2002) The bacterial
ribosome, a promising focus for structure-based drug design. Curr. Opin. Pharmacol. 2(5),
501–506.

[71] Franceschi, F. and Duffy, E. M. (2006) Structure-based drug design meets the ribosome. Biochem.
Pharmacol. 71(7), 1016–1025.

[72] Wimberly, B. T. (2009) The use of ribosomal crystal structures in antibiotic drug design. Curr.
Opin. Investig. Drugs 10(8), 750–765.

[73] Sherer, E. C. (2010) Chapter 9 - Antibiotics Targeting the Ribosome: Structure-Based Design
and the Nobel Prize. In Ralph A. Wheeler, (ed.), Annual Reports in Computational Chemistry,
pp. 139–166 Elsevier.

159



Bibliography

[74] Gallego, J. and Varani, G. (2001) Targeting RNA with small-molecule drugs: therapeutic promise
and chemical challenges. Acc. Chem. Res. 34(10), 836–843.

[75] Foloppe, N., Matassova, N., and Aboul-Ela, F. (2006) Towards the discovery of drug-like RNA
ligands? Drug Discov. Today 11(21-22), 1019–1027.

[76] Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (2001) Experimental and computa-
tional approaches to estimate solubility and permeability in drug discovery and development
settings. Adv. Drug Deliv. Rev. 46(1-3), 3–26.

[77] Frenkel, D. and Smit, B. (2001) Understanding Molecular Simulation: From Algorithms to
Applications, Academic Press, 2nd edition.

[78] Leach, A. R. (2001) Molecular Modelling: Principles and Applications, Prentice Hall, 2nd edition.

[79] Ford, J. (1973) The Transition from Analytic Dynamics to Statistical Mechanics. Adv. Chem.
Phys. 24, 155–185.

[80] Alder, B. J. and Wainwright, T. E. (1957) Phase Transition for a Hard Sphere System. J. Chem.
Phys. 27, 1208–1209.

[81] Alder, B. J. and Wainwright, T. E. (1959) Studies in Molecular Dynamics. I. General Method. J.
Chem. Phys. 31, 459–466.

[82] Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmer-
ling, C., Wang, B., and Woods, R. J. (2005) The Amber biomolecular simulation programs. J.
Comput. Chem. 26(16), 1668–1688.

[83] Brooks, B. R. et al. (2009) CHARMM: The Biomolecular Simulation Program. J. Comput. Chem.
30(10, Sp. Iss. SI), 1545–1614.

[84] Hess, B., Kutzner, C., van derSpoel, D., and Lindahl, E. (2008) GROMACS 4: Algorithms for
Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput.
4(3), 435–447.

[85] Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D.,
Kalé, L., and Schulten, K. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem.
26(16), 1781–1802.

[86] Jorgensen, W. L. and Tirado-Rives, J. (1988) The OPLS Potential Functions for Proteins. Energy
Minimization for Crystals of Cyclic Peptides and Crambin. J. Am. Chem. Soc. 110, 1657–1666.

[87] Kirschner, K. N., Yongye, A. B., Tschampel, S. M., González-Outeiriño, J., Daniels, C. R., Foley,
B. L., and Woods, R. J. (2008) GLYCAM06: a generalizable biomolecular force field. Carbohy-
drates. J. Comput. Chem. 29(4), 622–655.

[88] Wang, J., Cieplak, P., and Kollman, P. A. (2000) How well does a restrained electrostatic poten-
tial (RESP) model perform in calculating conformational energies of organic and biological
molecules? J. Comput. Chem. 21(12), 1049–1074.

160



Bibliography

[89] Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling, C. (2006) Comparison
of multiple Amber force fields and development of improved protein backbone parameters.
Proteins 65(3), 712–725.

[90] Pérez, A., Marchán, I., Svozil, D., Sponer, J., Cheatham, T. E., Laughton, C. A., and Orozco, M.
(2007) Refinement of the AMBER force field for nucleic acids: improving the description of
alpha/gamma conformers. Biophys. J. 92(11), 3817–3829.

[91] Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004) Development and
testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174.

[92] Halgren, T. A. (1996) Merck molecular force field. J. Comput. Chem. 17(5-6), 490–641.

[93] Francl, M. M. and Chirlian, L. E. (2000) The Pluses and Minuses of Mapping Atomic Charges to
Electrostatic Potentials. In Kenny B. Lipkowitz and Donald B. Boyd, (ed.), Reviews in Computa-
tional Chemistry, volume 14, pp. 1–31 Wiley-VCH New York.

[94] Chirlian, L. E. and Francl, M. M. (1987) Atomic Charges Derived from Electrostatic Potentials: A
Detailed Study. J. Comput. Chem. 8, 894–905.

[95] Breneman, C. M. and Wiberg, K. B. (1990) Determining atom-centered monopoles from molec-
ular electrostatic potentials. The need for high sampling density in formamide conformational
analysis. J. Comput. Chem. 11(3), 361–373.

[96] Cox, R. S. and Williams, D. E. (1981) Representation of the Molecular Electrostatic Potential by
a New Atomic Charge Model. J. Comput. Chem. 2, 304–323.

[97] Singh, U. C. and Kollman, P. A. (1984) An approach to computing electrostatic charges for
molecules J. Comput. Chem. 5(2), 129–145.

[98] Bayly, C. I., Cieplak, P., Cornell, W., and Kollman, P. A. (1993) A well-behaved electrostatic
potential based method using charge restraints for deriving atomic charges: the RESP model J.
Phys. Chem. 97(40), 10269–10280.

[99] Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer,
D. C., Fox, T., Caldwell, J. W., and Kollman, P. A. (1995) A Second Generation Force Field for
the Simulation of Proteins, Nucleic Acids, and Organic Molecules J. Am. Chem. Soc. 117(19),
5179–5197.

[100] Gasteiger, J. and Marsili, M. (1980) Iterative Partial Equalization of Orbital Electronegativity –
Rapid Access to Atomic Charges. Tetrahedron 36, 3219–3288.

[101] Guillot, B. (2002) A reappraisal of what we have learnt during three decades of computer
simulations on water. J. Mol. Liq. 101, 219–260.

[102] Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983) Compar-
ison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935.

[103] Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., and Hermans, J. (1981) Interaction
models for Water in Relation to Protein Hydration. In B Pullman, (ed.), Intermolecular Forces,
pp. 331–342 Reidel Dordrecht, The Netherlands.

161



Bibliography

[104] Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P. (1987) The missing term in effective pair
potentials. J. Phys. Chem. 91(24), 6269–6271.

[105] Bernal, J. D. and Fowler, R. H. (1933) A Theory of Water and Ionic Solution, with Particular
Reference to Hydrogen and Hydroxyl Ions. J. Chem. Phys. 1(8), 515–548.

[106] Stillinger, F. H. and Rahman, A. (1974) Improved simulation of liquid water by molecular
dynamics. J. Chem. Phys. 60(4), 1545–1557.

[107] Mahoney, M. W. and Jorgensen, W. L. (2000) A five-site model liquid water and the reproduction
of the density anomaly by rigid, non-polarizable models. J. Chem. Phys. 112, 8910–8922.

[108] Nada, H. and van derEerden, J. (2003) An intermolecular potential model for the simulation
of ice and water near the melting point: A six-site model of H2O. J. Chem. Phys. 118(16),
7401–7413.

[109] Ferguson, D. M. (1995) Parameterization and evaluation of a flexible water model. J. Comput.
Chem. 16(4), 501–511.

[110] Barnes, P., Finney, J. L., Nicholas, J. D., and Quinn, J. E. (1979) Cooperative effects in simulated
water. Nature 282, 459–464.

[111] Sitkoff, D., Sharp, K. A., and Honig, B. (1994) Accurate Calculation of Hydration Free Energies
Using Macroscopic Solvent Models. J. Phys. Chem. 98(7), 1978–1988.

[112] Honig, B. and Nicholls, A. (1995) Classical electrostatics in biology and chemistry. Science
268(5214), 1144–1149.

[113] Still, W. C., Tempczyk, A., Hawley, R. C., and Hendrickson, T. (1990) Semianalytical treatment of
solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112(16), 6127–6129.

[114] Sugita, Y. and Okamoto, Y. (1999) Replica-exchange molecular dynamics method for protein
folding Chem. Phys. Lett. 314(1-2), 141–151.

[115] Garcia, A. E. (2008) Molecular dynamics simulations of protein folding. Methods Mol. Biol. 413,
315–330.

[116] Case, D. A. e. a. Amber 11. Users’ Manual. University of California, San Francisco (2010).

[117] Sugita, Y. Simulating the dynamics of proteins to understand protein functions. (2010)
http://www.rikenresearch.riken.jp/eng/frontline/6290 (accessed 31 Jan 2012).

[118] Grant, B. The bio3d Package. Users’ Manual. University of California, San Diego (2011).

[119] Swaminathan, S., Harte, W. E., and Beveridge, D. L. (1991) Investigation of domain structure in
proteins via molecular dynamics simulation: application to HIV-1 protease dimer. J. Am. Chem.
Soc. 113(7), 2717–2721.

[120] McCammon, J. A. (1984) Protein dynamics. Rep. Prog. Phys. 47(1), 1–46.

[121] Hayward, S. and deGroot, B. L. (2008) Normal modes and essential dynamics. Methods Mol.
Biol. 443, 89–106.

162

http://www.rikenresearch.riken.jp/eng/frontline/6290


Bibliography

[122] Amadei, A., Linssen, A. B., and Berendsen, H. J. (1993) Essential dynamics of proteins. Proteins
17(4), 412–425.

[123] Tan, P.-N., Steinbach, M., and Kumar, V. Introduction to Data Mining chapter Cluster Analysis:
Basic Concepts and Algorithms, pp. 487–568 Addison-Wesley (2006).

[124] Jain, A. K., Murty, M. N., and Flynn, P. J. (1999) Data clustering: a review. ACM Comput. Surv. 31,
264–323.

[125] Shao, J., Tanner, S. W., Thompson, N., and Cheatham, T. E. (2007) Clustering Molecular Dynam-
ics Trajectories: 1. Characterizing the Performance of Different Clustering Algorithms. J. Chem.
Theory Comput. 3(6), 2312–2334.

[126] Milligan, G. and Cooper, M. (1985) An examination of procedures of determining the number
of cluster in a data set. Psychometrika 50(2), 159–179.

[127] Halkidi, M., Batistakis, Y., and Vazirgiannis, M. (2001) On Clustering Validation Techniques. J.
Intell. Inf. Syst. 17, 107–145 10.1023/A:1012801612483.

[128] Cattell, R. B. (1966) The scree test for the number of factors. Multivar. Behav. Res. 1, 245–276.
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