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Abstract

We study couplings q• of two equivariant random measures λ• and µ• on some Rie-
mannian manifold (M,d,m), i.e. measure valued random variables ω 7→ qω such that
for almost every ω the measure qω on M ×M is a coupling between the measures λω

and µω. We assume that M admits a group G of isometries acting properly discontin-
uously, cocompactly and freely. We ask for a minimizer of the mean transportation
cost defined by

C(q•) := sup
B∈Adm(M)

1

m(B)
E
[∫

M×B
ϑ(d(x, y)) q•(dx, dy)

]
,

for some continuous increasing function ϑ : R+ → R+ such that limr→∞ ϑ(r) = ∞
and a collection of sets Adm(M) that can be written as finite unions of fundamental
regions.

If the mean transportation cost are finite and λω � m for a.e. ω, there is a unique
equivariant minimizer. This minimizer is called optimal coupling. Moreover, it is
induced by a transportation map, q• = (id, T )∗λ

•. If the group G satisfies some
strong form of amenability, we can approximate the optimal coupling by solutions
to a transportation problem on bounded regions. In particular, in the case of M =
Rd, λ• ≡ L the Lebesgue measure and µ• a simple point process, the optimal coupling
induces a fair factor allocation. If we consider the cost function ϑ(r) = r2, the
optimal coupling constitutes a Laguerre tessellation, a random tiling of Rd by convex
polytopes of volume one.

If we transport the Lebesgue measure into a Poisson point process we have rather
sharp estimates on the mean transportation cost. Considering cost functions ϑ(r) =
rp the optimal mean transportation cost are finite iff p < d/2 in dimensions d = 1 or
d = 2 and for all p in dimensions d ≥ 3.

Furthermore, we get similar results in the more general case of optimal semicouplings.
A semicoupling q• between two equivariant random measures λ• and µ• of intensity
one and β ∈ (0, 1] is a measure valued random variable ω 7→ qω such that qω is a
coupling between ρλω and µ• for some density ρ : Ω×M → R. Analogously, we can
define semicouplings with β ≥ 1 as couplings between λ• and ρµ•.

To show how these ideas can be extended to a more general setting we consider the
regular k-tree. We show that there is an unique optimal coupling, too. Moreover,
we construct an equivariant coupling with finite mean transportation cost.

Finally, we study stability properties of optimal couplings under vague convergence
on M ×M × Ω.
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Chapter 1

Introduction

Nowadays, allocation and matching problems appear in various fields of everyday life, e.g. as-
signing students to schools or universities, young doctors to hospitals or resources to companies.
We think of allocations and matchings as transportation problems where a distribution of a
certain good is transported to a distribution of agents. In this thesis, we study transportation
problems between random measures under some minimization condition.

For an illustration of a typical transportation problem consider the following example:
The government has to divide a certain area of land between farmers. Each farmer is to receive
a prespecified share of the land under the constraint that the typical squared distance between
a farmer’s house and a randomly chosen point of his land is minimized. A reason for this con-
straint might be a minimization of fuel expenses or carbon dioxide emission. Moreover, to be
able to work efficiently, the land of each farmer should be connected and its shape should not
be too irregular to make the use of their machines easier.

To put this into mathematical terms consider two distributions λ and µ, representing land and
farmers respectively. Finding an allocation means, we are looking for a coupling between λ and
µ. We interpret this coupling as a rule to partition λ and transport the different pieces to their
respective targets. Transporting a piece of mass from x to y produce cost of an amount c(x, y).
Hence, we search for minimizers of the transportation cost∫

c(x, y) q(dx, dy)

among all couplings q of λ and µ. The case of finite measures λ and µ is extensively covered by
the theory of optimal transportation. In this work, we are interested in the case that λ and µ
have infinite mass. This will typically result in infinite transportation cost. A more reasonable
quantity to consider is therefore the mean transportation cost, the transportation cost per unit
volume. Moreover, we will work with random measures λ• and µ• on some Riemannian manifold
M that are equivariant, that is they satisfy some invariance properties under a flow of the
probability space. In particular, this implies the invariance of their joint distribution under the
diagonal action of some group of isometries of M . We will show the following

• If the mean transportation cost is finite, there always is at least one equivariant minimizer
of the mean transportation cost.

• If λω � m, the Riemannian volume measure, for P−a.a. ω there is at most one equivariant
minimizer of the mean transportation cost. This minimizer is induced by a transportation
map, i.e. q• = (id, T •)∗λ

•.

• The unique equivariant minimizer can be approximated by solutions to the minimization
problem between λ• and µ• restricted to bounded sets.

1



2 CHAPTER 1. INTRODUCTION

The/an equivariant minimizer will be called optimal coupling of λ• and µ•.

Before we describe our results in more detail, we would like to put them into the context of the
existing mathematical literature. First, we give a short expository on allocations and matchings
and their connection to the theory of point processes. Then, we recall the definition of Voronoi
and some related tessellations. Thirdly, we briefly explain the basic ideas of optimal trans-
portation between probability measures. Finally, we come back to the transportation problem
between equivariant random measures and explain our results in detail. Lastly, we will give a
short overview of the different chapters.

1.1 Survey of relevant mathematical literature

Allocations and matchings

Allocations and matchings are a very wide field of current research. In allocation problems one
is asked to divide some continuous quantity between a set of “agents”, e.g. land to farmers or
resources to companies. In matching problems one has to match discrete sets with discrete sets,
e.g. children to schools or kidneys to patients. A very important example of an early work on
matchings is the nice article [GS62] by Gale and Shapley on the stability of marriage. They
consider two sets of equal size, men and women. Every man ranks the women according to his
preferences and every woman ranks the men according to her preferences. Gale and Shapley ask
whether it is possible to match these sets in such a way that there are no two pairs, say (Anna
and Albert) and (Berta and Balduin), such that Anna prefers Balduin over Albert and Balduin
prefers Anna over Berta. The existence of such a pair would result in an unstable marriage.
They found two algorithms solving this problem, the first one is the best possible for the men
and the second one the best possible for the women.
This triggered an enormous amount of research in different directions. In economics, there
is an extensive literature on related algorithms, e.g. for the kidney problem [RSUU05]. In
Boston, there is even an algorithm how children are matched with their schools of choice (or
not) [APRS05]. For an extensive bibliography we refer to [Rot], a web page maintained by Alvin
Roth.

On the other hand Alexander Holroyd and Yuval Peres [HHP06] used a generalization of the
stable marriage algorithm to construct an allocation between Lebesgue measure and a Poisson
point process µ• in which for almost every realization µω of the process every Poisson point gets
an equal amount of mass, namely a set of Lebesgue measure one (we will be more precise later).
The construction of this allocation was a key step in establishing a very deep link between the
theory of point processes on the one side and allocations on the other side. To explain this link,
we first need to introduce the concept of Palm measures.

Let µ• denote a random measure on Rd defined on a probability space (Ω,A,P) (see section 2.3
for the definition of random measures). Its first moment measure M1 is defined by M1(A) =
E[µ•(A)] for Borel sets A. A finer picture of the behavior of µ• provides the Campbell measure.
It is a measure on Rd × Ω given by

C•µ(A×B) =

∫
B
µω(A)P(dω),

for measurable sets A ⊂ Rd, B ∈ A. Clearly, C•µ � M1. Therefore, we can conclude by the
Radon-Nikodym Theorem the existence of measurable functions Px(B) such that

C•µ(A×B) =

∫
A
Px(B)M1(dx).

By the theory of regular conditional probability measures, we can choose the family {Px(B)}
such that
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i) for each fixed B ∈ A Px(B) is a measurable function of x which is M1 integrable on
bounded subsets of Rd.

ii) for each fixed x ∈ Rd Px(·) is a probability measure on B ∈ A.

Each such measure is called a local Palm measure of µ• and the whole family {Px} is called Palm

kernel associated with µ•. If µ• happens to be translation invariant, i.e. µ•(U)
d
= µ•(U + y) for

any U ∈ B(Rd), y ∈ Rd, the different Palm measures become translated versions of each others

Px(U + x) = P0(U) =: P′(U) L a.s..

In other words, we factor out the translation invariance and look at the random measure from
the point x. If µ• has unit intensity, P′ can be chosen to be a probability measure on (Ω,A).
In the case of a simple point process the Palm measure Px can be viewed as µ• conditioned to
have a point at x. Therefore, Palm measures are an extremely useful tool if one is interested in
the “typical behavior” of a function of the process. It is used in numerous works in stochastic
geometry, e.g. if one studies the behavior of the typical cell of a Voronoi tessellation. For more
details and applications as well as references on Palm measures we refer to chapter 13 of [DVJ07].

Given a translation invariant simple point process µ• of unit intensity on Rd, that is µω(x) ∈
{0, 1} and M1 = L, the Lebesgue measure, put Ξ(ω) = supp(µω). A fair allocation for µ• is a
measurable map Ψ• : Rd → Rd such that for P almost every ω

i) L(Rd \Ψ−1
ω (Ξ(ω))) = 0.

ii) For all ξ ∈ Ξ(ω) we have L(Ψ−1
ω (ξ)) = 1.

If the second property does not hold, we simply speak of allocations for µ•. Each ξ ∈ Ξ(ω) is
called center and Ψ−1

ω (ξ) is called the cell with center ξ. Translations on Rd induce an action
on Ω by translating the support of µ•. For z ∈ Rd set µθzω(A) = µω(A− z). If Ψ• satisfies

Ψω(x) = y ⇒ Ψθzω(x+ z) = y + z ∀z ∈ Rd

we say that Ψ• is an invariant allocation. An extra head rule for µ• is a shift coupling of µ• and
its Palm version. More precisely, it is a Rd valued random variable X such that τ−Xµ

• has law
P′, where τzµ

ω(A) = µω(A+ z). Holroyd and Peres proved the following remarkable result

Theorem 1.1 (Theorem 13 in [HP05]). Let Ψ be an invariant allocation for µ•, an ergodic
translation invariant simple point process of unit intensity. Then, the random variable Y = Ψ(0)
is an extra head scheme if and only if Ψ is fair.

Moreover, a converse of this statement holds as well. Given an extra head rule one can cook up
a fair allocation for µ•. This is technically more difficult and we refer for the full statement to
Theorem 16 of [HP05].

A very natural question is to ask how good can this shift coupling or the (fair) allocation be?
What means good? Thinking about the land partition problem of the farmers again, a couple
of natural measures of goodness arise:

i) Are the cells connected? What is the tail behavior of |Y | = |Ψ(0)|, i.e. how fast does
P[|Y | ≥ R] decay?

ii) Is the allocation a factor of µ•? Is there a rule how to allocate the land to the farmers if
we just know the position of their houses?

iii) Does the allocation have the same invariance properties as µ•?
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Figure 1.1: A realization of the stable marriage between the Lebesgue measure and a Poisson
point process on the torus. Simulation and picture by Alexander Holroyd.

Figure 1.2: A cell of the gravitational allocation. Picture from [CPPRa]
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In [HP05, HHP06], Holroyd and Peres respectively Hoffman, Holroyd and Peres constructed a
fair allocation of the Lebesgue measure L to an ergodic simple point process using a variant of
the stable marriage algorithm. This algorithm has the nice feature of being “stable”(in the sense
of Gale and Shapley) and being a factor of the point process. However, it has the disadvantage
of producing disconnected cells. Moreover, in the case of µ• being a Poisson point process, Y
does not have good integrability properties. Indeed, it holds that E[|Y |d] = ∞ for dimension
d ≥ 3 and E[|Y |d/2] = ∞ for d = 1, 2, see Theorem 7 in [HHP06]. Also in [HP05], Holroyd
and Peres showed the existence of a randomized allocation of Lebesgue to Poisson in dimension
d ≥ 3 satisfying E[exp(c|Y |d)] < ∞ for some positive constant c. The construction is based on
an early transportation cost estimate by Talagrand [Tal94]. They naturally asked whether it is
possible to also construct factor allocations with this integrability properties and / or connected
cells.

In [CPPRa], Chaterjee, Peled, Peres and Romik constructed a wonderful allocation for a Poisson
point process in dimensions d ≥ 3, the gravitational allocation. The idea is the following.
Consider the gravitational force field exerted on a point x by the points of the Poisson process

Fω(x) =
∑

ξ∈supp(µω),|x−ξ|↑

ξ − x
|ξ − x|

.

Let Y be the integral curve of F, that is Y solves Ẏ (t) = F (Y (t)). For every z ∈ Rd let Yz be
the integral curve starting at Yz(0) = z. This curve exists up to some maximal time Sz. For
ξ ∈ supp(µω) we define its basin of attraction B(ξ) = {z : limt→Sz Yz(t) = ξ}. This allows to
define the allocation rule by

ΨGrav
ω (z) =

{
ξ z ∈ B(ξ)
ð z /∈

⋃
ξ∈supp(µω)B(ξ)

for some cemetery state ð. The astonishing result is, that this is indeed a fair allocation.
Almost surely every cell has volume one. Moreover, by construction all the cells are connected
and contain their centers. In [CPPRb], the same authors show that P[|Y0| ≥ R] ≤ exp(−cRgd)
with g3 = 1 and gd = 1 + 1/(d − 1) for d ≥ 4. They get similar estimates for the diameter
of the cells. However, the tail behavior is still not as good as in the randomized allocation.
In [HS10], Huesmann and Sturm managed to close this gap and constructed a non-randomized
factor allocation with P[|Y | ≥ R] ≤ exp(−cRd) in dimensions d ≥ 3 (see Theorems 1.5 and 1.7).
In a very recent work Markó and Timar [MT11] constructed an allocation with optimal tail
behavior of the diameter of the cells in dimensions d ≥ 3. We will explain this construction in
section 7.4. Other interesting examples of allocations are [Kri07, NSV07].

A very related concept is the question of matching two invariant simple point processes with unit
intensity µ•1 and µ•2. The goal is to find an invariant bijective map Φω : supp(µω1 ) → supp(µω2 ).
Again, one can ask the question of best possible integrability or geometric properties of a given
matching. Most of these questions are answered in [Hol09, HPPS09]. However, there are still a
couple of tantalizing open questions (see [Hol09]).

Tessellations

Every allocation for a simple point process induces a partition of the euclidean space. Depending
on the allocation the cells that are associated to a given point might be connected, contractible or
even very irregular. In stochastic geometry there are many people who study special partitions,
called tessellations. A tessellation of Rd is a partition into convex sets which is generated by a
collection of hyperplanes. Each convex set, each cell, is defined by an intersection of halfspaces.
Tessellations are used to model for example polycrystalline materials, foams or biological tissues.
The probably most famous tessellations is the Voronoi tessellation. Given a discrete set of points
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P = {pi : i ∈ I} for some at most countable index set I, we associate to every pi ∈ P a cell Ci
by

Ci = {x ∈ Rd : |x− pi| ≤ |x− pj | ∀j ∈ I}.

This defines a partition of Rd into convex sets, the Voronoi tessellation. There are a couple of
straightforward generalizations. Assume that each point is assigned a weight wi. We can then
define the cell associated to pi by

Ci = {x ∈ Rd : |x− pi|q + wi ≤ |x− pj |q + wj ∀j ∈ I},

for any positive q. Two cases are particularly nice. If we take q = 2 all the cells will be convex
polytopes, in the case q = 1 the cells will be starlike wrt to their center. The former partition
is called Laguerre tessellation the latter Johnson Mehl diagram. In fact, we will come back to
this in section 4.1. For more details on Voronoi tessellations and their generalizations we refer
to [Aur91], for a detailed study and applications of Laguerre tessellations we refer to [LZ08] and
references therein.

Optimal transportation

By now we saw different methods of partitioning space and allocating it to targets. However, so
far we have not explicitly worked with the minimization constraint. This leads us to the theory
of optimal transportation.

As early as in 1781 Gaspard Monge considered in [Mon81] a slightly different transportation
problem than transporting children to schools. He wanted to transport a certain amount of
rubble to different locations in order to build up a fortification. He was interested in minimizing
the total transportation distance. To put it into mathematical terms, given two probability
measures λ and µ Monge wanted to minimize∫

R3

|x− T (x)| λ(dx)

over all maps T : R3 → R3 such that the image measure of λ under the map T equals µ, that
is T∗λ = µ. This problem turns out to be rather difficult to solve. For example if λ happens
to be a single Dirac measure and µ is absolutely continuous there is no map with the desired
property. Hence, for a general solution we need to impose additional assumptions on λ and µ.

In [Kan06], Kantorovich studied a relaxation of this problem. He was not looking for minimal
maps but for minimal couplings of λ and µ, i.e. measures on the product space, which have
marginals λ and µ. This has the huge advantage that there is always at least one candidate,
the product measure λ⊗ µ. If we consider two probability measures λ and µ on a Polish space
X together with a lower semicontinuous cost function c : X ×X → R the Monge-Kantorovich
problem is to minimize the transportation cost

C(q) =

∫
c(x, y) q(dx, dy)

over all couplings q of λ and µ. As the set of all these couplings Π(λ, µ) is compact, there is
always a minimizer of this quantity (if the optimal(=infimal) transportation cost is infinite we
can take any coupling). Minimizers are called optimal couplings and we denote the minimal
transportation cost by C(λ, µ).

Kantorovich’s result already produced lots of research and there are many applications of his
result in mathematics and economics. However, it took another 50 years until the starting ques-
tion of Monge could be answered. Independently of each other, Brenier [Bre91] and Rüschendorf
[RR90] proved the following theorem
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Theorem 1.2 ([Bre91]). Let λ and µ be two compactly supported probability measures on Rd
such that λ is absolutely continuous wrt to the Lebesgue measure, λ � L. Consider the Monge
problem with cost function c(x, y) = |x−y|2/2. Then, there exists a unique optimal transportation
map T that solves the Monge-Kantorovich problem. Moreover, T = ∇φ for some convex function
φ : Rd → R.

This theorem was later generalized to other cost functions by several authors. McCann managed
to prove this result for compact Riemannian manifolds [McC01]. A key step in establishing
these results were the dual formulation of the problem. The dual formulation of the Monge-
Kantorovich problem is to look for maximizer of∫

φ(x) λ(dx) +

∫
ψ(y) µ(dy)

among all pairs of bounded and continuous functions (φ, ψ) satisfying φ(x) + ψ(y) ≤ c(x, y) for
all x, y ∈ X. Given one such pair, it is always possible to improve it by considering φ together
with its c-transform

φc(y) = inf
x∈X
{c(x, y)− φ(x)}.

Hence, looking for maximizers in the dual problem we can restrict ourselves to pairs of c-concave
functions, that is functions satisfying (φc)c = φ. If q is a minimizer of the primal (original)
problem and (φ, φc) is a maximizer of the dual problem, assuming that∫

c(x, y) q(dx, dy) =

∫
φ(x) λ(dx) +

∫
φc(y) µ(dy) =

∫
(φ(x) + φc(y)) q(dx, dy)

we must have

φ(x) + φc(y) = c(x, y) q almost everywhere. (1.1)

Therefore, q is concentrated on the c−superdifferential of φ, ∂cφ(x) = {y ∈ X : φ(x) + φc(y) =
c(x, y)}.
In the case of X = Rd and c(x, y) = −x ·y the c-transform of a function φ becomes the Legendre
transform of (−φ). φ is known to be convex iff its double Legendre transform φcc equals φ. Thus,
considering the cost function c(x, y) = |x − y|2/2 a function φ is c-concave iff φ(x) − |x|2/2 is
concave. A concave function is locally Lipschitz and therefore differentiable almost everywhere.
In this case the c-superdifferential coincides with the usual gradient, ∂cφ(x) = ∇φ(x), where
∇φ(x) is single valued for all but countably many x. Take λ� L. The optimal coupling q and
the optimal pair (φ, φc) of Kantorovich potentials satisfies (1.1). In particular, the set where
∇φ(x) is not single valued is a λ null set. Therefore, we must have q = (id, x + ∇φ)∗λ. This
shows, that q is given by a transportation map. But then it must also be unique. Indeed, given
two optimal couplings q1 and q2. Then, q3 = 1

2(q1 + q2) is optimal as well. Hence, all of them
are concentrated on the graph of a convex function. This is only possible if all of them coincide
almost everywhere.

Considering more general cost functions and measures, the dual formulation still gives us an
important insight. Any optimal coupling must be concentrated on a cyclically monotone set. A
subset A ⊂ X ×X is called cyclically monotone if for all N ∈ N and (x1, y1), . . . , (xN , yN ) ∈ A
we have

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1),

with yN+1 = y1. Moreover, it can be shown that if the cost function is sufficiently nice, e.g.
continuous, cyclical monotonicity is already sufficient for optimality. This allows to deduce a
stability result for optimal couplings.
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Proposition 1.3. Let (λn)n∈N, (µn)n∈N be two sequences of probability measures on some Polish
space X converging to probability measures λ and µ respectively. Let c(x, y) be some continuous
cost function. Assume that there is a constant κ such that for all n ∈ N the optimal transporta-
tion cost satisfies C(λ, µ) ≤ κ. Let qn be an optimal coupling between λn and µn. Then, there is
a subsequence (qnk)k∈N converging to an optimal coupling q of λ and µ.

For more details we refer to [RR98, Vil03]. In the last decade the theory of optimal transportation
had a major revival. Especially the uniqueness and representation result by Brenier attracted
a lot of interest and has produced an enormous amount of deep results, striking applications
and stimulating new developments, among others in PDEs (e.g. [Ott01], [AGS08]), evolution
semigroups (e.g. [OV00], [ASZ09], [OS09]) and geometry (e.g. [Stu06a, Stu06b], [LV09], [Vil09],
[Oht09]).

Several authors studied allocation and matching problems of independently distributed points
in the unit cube in terms of transportation cost. The algorithm by Ajtai, Komlós and Tusnády
[AKT84] invented for the two dimensional problem was recently used in [MT11] to produce
an allocation of optimal tail behavior as remarked earlier. The very remarkable cost estimates
by Talagrand [Tal94] in dimensions d ≥ 3 allowed Holroyd and Peres to produce the random-
ized allocation for Poisson points mentioned above. Decreusefond studied in [Dec08] the usual
Wasserstein distance between point processes. His results mostly apply to the case of finite
intensity measure, that is E[µ•(Rd)] < ∞. In the case of point processes with infinite intensity
measure he only considers transportation problems between µ• and an L2 perturbed version of
µ• which has by construction finite transportation distance. Last and Thorisson [LT08] stud-
ied invariant transport kernels between random measures on locally compact Abelian groups
without additional constraints.

1.2 Main results

In this thesis, we extend the theory of optimal transportation to the case of measures with infinite
mass, namely equivariant random measures (λ•, µ•). Let (M,d.m) be a connected smooth non-
compact Riemannian manifold with Riemannian distance d, and Riemannian volume m. Assume
that there is a group G of isometries of M acting properly discontinuous, cocompactly and freely
on M. A random measure λ• on M is a measure valued random variable modeled on some
probability space (Ω,A,P). We assume that the probability space admits a measurable flow
(θg)g∈G which we interpret as “shifts” of the support of λω. A random measure λ• is called
equivariant if

λθgω(g ·) = λω(·) for all ω ∈ Ω.

We will assume that P is stationary, that is P is invariant under the flow θ. In particular, this

implies that λ•(B)
d
= λ•(gB) for any g ∈ G and Borel set B.

Given two equivariant random measures (λ•, µ•) of equal intensity on M, we are interested in
couplings q• of λ• and µ•, i.e. measure valued random variables ω 7→ qω such that for any ω ∈ Ω
the measure qω on M ×M is a coupling of λω and µω. We look for minimizers of the mean
transportation cost

C(q•) := sup
B∈Adm(M)

1

m(B)
E
[∫

M×B
c(x, y) q•(dx, dy)

]
,

where the supremum is over all bounded Borel sets that can be written as the union of translates
of fundamental regions (see section 2.7). For example for M = Rd, G = Zd acting by translation,
a typical set would be a cube of integer side length. We always consider cost functions of the
form c(x, y) = ϑ(d(x, y)) for some continuous strictly increasing function ϑ : R+ → R+ with
ϑ(0) = 0 and limr→∞ ϑ(r) =∞. Additionally, we assume that the Monge problem between two
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compactly supported probability measures λ and µ with λ� m has a unique solution.

A coupling q• of λ• and µ• is called optimal if it minimizes the mean transportation cost and
if it is equivariant. We will show that there always is at least one optimal coupling as soon
as the optimal mean transportation cost is finite. A natural question is in which cases we
can say more about the optimal coupling. When is it unique? Is it possible to construct it?
Can we say something about its geometry? From the discussion above, there are basically
three interesting cases, transporting absolutely continuous measures to absolutely continuous
measures, transporting absolutely continuous measures to discrete measures and transporting
discrete measures to discrete measures. We will study the first two cases in detail and get
positive answers to all of the three questions, uniqueness, construction and the geometry. The
first main result states

Theorem 1.4. Let (λ•, µ•) be two equivariant random measures on M. If the optimal mean
transportation cost is finite

c∞ = inf
q•∈Π(λ•,µ•)

C(q•) < ∞

and λω is absolutely continuous to the volume measure m for almost all ω, then there is a unique
optimal coupling between λ• and µ•.

The unique optimal coupling q• can be represented as qω = (id, Tω)∗λ
ω for some measurable

map Tω : supp(λω) → supp(µω) measurably only dependent on the σ−algebra generated by
(λ•, µ•). In particular, considering M = Rd, λ• = L being the Lebesgue measure and µ• a
point process on Rd the optimal transportation map Tω defines a fair factor allocation for µ•.
The inverse map of Tω assigns to each point (“center”) ξ of µω a set (“cell”) of volume µω(ξ).
If the point process is simple, all the cells will have mass one. In the case of quadratic cost
c(x, y) = |x − y|2 all cells will be convex polytopes of volume one, they constitute a Laguerre
tessellation. In the case of linear cost c(x, y) = |x − y| all cells will be starlike with respect to
their center, the allocation becomes a Johnson-Mehl diagram. In the light of these results one
might interpret the optimal coupling as a generalized tessellation. If µ• is even invariant under
the action of Rd the optimal cost between L and µ• is given by

c∞ = E[ϑ(|T (0)|)],

recovering the quantity studied by Peres et alii in the context of allocations.

Moreover, we prove that the optimal coupling Q∞, if it is unique, can be obtained as the limit
of optimal couplings of λ• and µ• restricted to bounded sets. For the construction we need to
impose an additional assumption on the group G. The assumptions on the group action imply
that G is finitely generated. Let S be a generating set und consider the Cayley graph of G with
respect to S, ∆(G,S). Let Λr denote the closed 2r neighbourhood of the identity of ∆(G,S).
We will assume that G satisfies some strong kind of amenability, namely

lim
r→∞

|Λr4gΛr|
|Λr|

= 0,

for all g ∈ G, where | · | denotes the cardinality and 4 the symmetric difference. Let B0 be a
fundamental region and Br = ΛrB0. Let QBr be the unique optimal semicoupling between λ•

and 1Brµ
•, that is the unique optimal coupling between ρ ·λ• and 1Brµ

• for some optimal choice
of density ρ. Put

Q̃rg :=
1

|Λr|
∑
h∈gΛr

QhBr .
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Figure 1.3: Coupling of Lebesgue and 100 points in the cube with c(x, y) = |x− y|2.

Figure 1.4: Coupling of volume measure and 49 points on a torus with cost function c(x, y) =
d(x, y).
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Theorem 1.5. Let (λ•, µ•) be two equivariant random measures on M, such that the optimal
mean transportation cost are finite, c∞ < ∞. Assume, that λω is absolutely continuous to the
volume measure m for almost all ω. Then, for every g ∈ G

Q̃rg → Q∞ vaguely

in M(M ×M × Ω).

For the proof of this theorem the assumption of absolute continuity is only needed to ensure
uniqueness of QgBr and Q∞. If we do not have absolute continuity but uniqueness of QgBr and
Q∞ the same theorem with the same proof holds.

In the case of absolute continuity we can even say a bit more and get rid of the mixing. The
unique optimal coupling is given by a map, that is

Q∞ = (id, T )∗λ
•.

Moreover, the optimal semicoupling QgBr is given by

QgBr = (id, Tg,r)∗(ρg,rλ
•),

for some measurable map Tg,r and some density ρg,r. Then, we have

Theorem 1.6. For every g ∈ G

Tg,r → T in λ• ⊗ P measure .

Analogous results will be obtained in the more general case of optimal semicouplings between
λ• and µ• where λ• has intensity one and µ• has intensity β ∈ (0,∞). In the case β ≤ 1,
λ• is allowed to not transport all of its mass. There will be some areas from which nothing is
transported and the µ• mass can choose its favorite λ• mass. In the case β ≥ 1 the situation is
the opposite. There is too much µ• mass. Hence, λ• can choose its favorite µ• mass and some
part of the µ• mass will not be satisfied, that is they will not get enough or even any of the λ•

mass.

If we do not assume this strong form of amenability the methods of our proof break down.
In order to show, how non-amenable spaces and spaces beyond the Riemannian setting can be
treated we consider the problem on the regular k-tree. There, we show uniqueness and construct
an invariant coupling between the “Lebesgue” measure and a Poisson point process with finite
mean transportation cost. However, it is not clear if this coupling is optimal or not.

If M = Rd, λ• = L the Lebesgue measure and µ• is a Poisson point process of intensity β we
have rather sharp estimates for the mean transportation cost to be finite.

Theorem 1.7. (i) Assume d ≥ 3 (and β ∈ (0,∞)) or β 6= 1 (and d ≥ 1). Then there exists a
constant 0 < κ <∞ s.t.

lim sup
r→∞

log ϑ(r)

rd
< κ =⇒ c∞ <∞ =⇒ lim inf

r→∞

log ϑ(r)

rd
≤ κ.

(ii) Assume d ≤ 2 and β = 1. Then for any concave ϑ̂ : [1,∞)→ R dominating ϑ∫ ∞
1

ϑ̂(r)

r1+d/2
dr <∞ =⇒ c∞ <∞ =⇒ lim inf

r→∞

ϑ(r)

rd/2
= 0.

The first implication in assertion (ii) is new. Assertion (i) in the case β = 1 is due to Holroyd
and Peres [HP05], based on a fundamental result of Talagrand [Tal94]. The first implication in
assertion (i) in the case β 6= 1 was proven by Hoffman, Holroyd and Peres [HHP06]. The second
implication in assertion (ii) is due to [HL01].
Now let us consider the particular case of Lp transportation cost, i.e. ϑ(r) = rp.
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Corollary 1.8. (i) For all d ∈ N, all β ∈ (0,∞) and p ∈ (0,∞) the mean Lp-transportation
cost c∞ is finite if and only if

p < p :=

{
∞, for d ≥ 3 or β 6= 1;
d
2 , for d ≤ 2 and β = 1.

(ii) If β = 1 then for all p ∈ (0,∞) there exist constants 0 < k ≤ k′ <∞ s.t. for all d > 2(p∧1)

k · dp/2 ≤ c∞ ≤ k′ · dp/2.

The radical shift in the behavior of the mean transportation cost between dimensions two and
three might seem strange at first. It is due to the following observation. By the central limit
theorem, there are Nd ± Nd/2 Poisson points in a cube of side length N. To get finite trans-
portation cost the Lebesgue measure close to the cube needs to compensate these fluctuations.
In a one-neighbourhood of the cube there is Nd−1 Lebesgue mass. Therefore, the “condition”
for finite mean transportation cost is

Nd/2 ≤ Nd−1.

In dimension one this condition is violated, dimension two is borderline and for dimension d ≥ 3
everything is fine.

Stability is not as easy to get as in the classical theory because cyclical monotonicity is not
sufficient for uniqueness. For example, the transport z 7→ z + 42 transporting

∑
z∈Z δz to itself

is cyclically monotone for quadratic cost but certainly not optimal. However, we get at least
close to it.

Proposition 1.9. Let (λ•n)n∈N and (µ•n)n∈N be two sequences of equivariant random measures.
Let q•n be the unique optimal coupling between λ•n and µ•n. Assume that λ•nP → λ•P vaguely,
µ•nP → µ•P vaguely and supn C(q•n) ≤ c < ∞. Then, there is an equivariant coupling q• of λ•

and µ• and a subsequence (q•nk)k∈N such that q•nkP→ q•P vaguely, the support of q• is cyclically
monotone and

C(q•) ≤ lim inf
n→∞

C(q•n).

A consequence of this statement is the continuity of the Wiener mosaic. Start with a Poisson
point process of unit intensity in Rd with d ≥ 3. Let each of the Poisson points evolve according
to independent Brownian motions. For any t let q•t be the unique optimal coupling between L
and µ•t wrt to the cost function c(x, y) = |x− y|2. For any t this is a Laguerre tessellation. The
stability result tells us that q•t is continuous in t. Hence, we get a continuously moving mosaic.

We would very much like to be able to say more about the optimal transport problem between
two discrete random measures. It is clear that for example the question of uniqueness is in general
false. If you consider the deterministic measures λ =

∑
z∈Z δz and µ =

∑
z∈Z δz+1/2, there is no

uniqueness. This is no surprise and exactly what one would expect from the classical theory.
However, if you throw n iid uniformly distributed red points in the unit cube and n iid uniformly
distributed blue points in the same cube, almost surely there is a unique optimal coupling which
then must be a matching (for our choice of cost function). Therefore, it is reasonable to study
optimal couplings of two independent Poisson point processes and ask whether they are unique.
If they are unique they must automatically be a matching because matchings are the extreme
points in the convex set of couplings of these point processes. Unfortunately, we are not yet able
to prove anything in this direction.

In the case of M = Rd, λ• = L and µ• being a point process of intensity β ≤ 1 Theorems 1.4,
1.5, 1.6 and also Theorem 1.7 and Corollary 1.8 were obtained jointly with Karl-Theodor Sturm
in [HS10].
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1.3 Overview

In chapter 2 we explain the setting and introduce the objects we will work with. At the end of
that chapter we derive the general existence result of optimal semicouplings by a compactness
argument. The important existence and uniqueness result for semicouplings on bounded sets
will be shown in chapter 3. This enables us to prove Theorem 1.4, the uniqueness statement, in
chapter 4. Moreover, the representation of the optimal semicoupling will allow us to draw some
conclusions on the geometry of the induced allocations. In chapter 5 we will prove Theorems 1.5
and 1.6. In chapter 4 and 5 we only deal with the case of the second marginal having intensity
β ≤ 1. In chapter 6 we show which parts in the arguments have to be changed in order to get the
results also for β ≥ 1. The missing parts of Theorem 1.7 will be derived in chapter 7. Moreover,
we will show similar estimates for the case of a compound Poisson process. In chapter 8 we
show how one could deal with non-amenable spaces by considering the regular k-tree. Finally in
chapter 9 we show some metric properties for the case of Lp cost and prove the stability result.
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Chapter 2

Set-Up and Basic Concepts

In this chapter we will explain the general set-up, some basic concepts and derive the first result,
a general existence result by a compactness argument.

2.1 The setting

From now on we will always assume to work in the following setting. (M,d,m) will denote a
complete connected smooth non-compact Riemannian manifold with Riemannian distance d and
Riemannian volume measure m. The Borel sets on M will be denoted by B(M). Given a map
S and a measure ρ we denote the push forward of ρ under S by S∗ρ, i.e. S∗ρ(A) = ρ(S−1(A))
for any Borel set A. Given any product X = Πn

i=1Xi of measurable spaces, the projection onto
the i–th space will be denoted by πi. Given a set A ⊂M its complement will be denoted by {A
and the indicator function of A by 1A.

Moreover, we will assume that there is a group G of isometries acting on M. For a set A ⊂ M
we write τgA := gA = {ga : a ∈ A}. For a point x ∈ M its orbit under the group action of
G is defined as Gx = {gx : g ∈ G}. Its stabilizer is defined as Gx = {g ∈ G : gx = x} the
elements of G that fix x.

Definition 2.1 (Group action). Let G act on M. We say that the action is

• properly discontinuous if for any x ∈M and any compact K ⊂M gx ∈ K for only finitely
many g ∈ G.

• cocompact if M/G is compact in the quotient topology.

• free if gx = x for one x ∈M implies g = id, that is the stabilizer for every point is trivial.

We will assume that the group action is properly discontinuous, cocompact and free. By Theorem
3.5 in [Bow06] this already implies that G is finitely generated and therefore countable.

Definition 2.2 (Fundamental region). A measurable subset B0 ⊂ M is defined to be a funda-
mental region for G if

i)
⋃
g∈G gB0 = M

ii) B0 ∩ gB0 = ∅ for all id 6= g ∈ G.

The family {gB0 : g ∈ G} is called tessellation of M.

There are many different choices of fundamental regions. We will choose a special one, namely
a certain subset of the Dirichlet region with respect to some fixed point p. However, each
fundamental region has the same volume and therefore defines a tiling of M in pieces of equal
volume. Indeed, we have the following Lemma.

15
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Lemma 2.3. Let F1 and F2 be two fundamental regions for G. Assume m(F1) < ∞. Then
m(F1) = m(F2).

Proof. As F1 ∩ gF2 and F1 ∩ hF2 are disjoint for g 6= h by the defining property of fundamental
regions we have

m(F1) =
∑
g∈G

m(F1 ∩ gF2) =
∑
g∈G

m(g−1F1 ∩ F2) = m(F2).

By scaling of the volume measure m we can assume that m(B0) = 1. This assumption is just
made to simplify some notations.

As G is finitely generated, there are finitely many elements a1, . . . , ak ∈ G such that every g ∈ G
can be written as a word in these letters and their inverses. The set S = {a1, . . . , ak} is called a
generating set. The generating set is not unique, e.g. Z is generated by {1} but also by {2, 3}.
We will fix one finite generating set for G. It does not matter which one as the results will be
independent from the specific choice.
Given the generating set S. We can construct a graph ∆ = ∆(G,S) as follows. Put V (∆) = G
as the vertices. For each g ∈ G and a ∈ S we connect g and ag by a directed edge labeled with a.
The same edge with opposite orientation is labeled by a−1. This gives a regular graph of degree
2|S|. We endow ∆ with the word metric d∆ which coincides with the usual graph distance.

Definition 2.4 (Cayley graph). If S is a generating set of G, then ∆(G,S) is called Cayley
graph of G with respect to S.

We denote the closed 2r neighbourhood of the identity element in ∆ by Λr, that is Λr = {g ∈
G : d∆(1, g) ≤ 2r}. The boundary of Λr is defined as ∂Λr = {h /∈ Λr : ∃g ∈ Λr s.t. d∆(h, g) =
1}. By Br we denote the range of the action of Λr on the fundamental domain B0, that is
Br =

⋃
g∈Λr

gB0.

We will need to control the mass that is close to the boundary of Br, that is the growth of Br.
To this end we introduce the notion of amenability. A linear functional on L∞(G) is called a
mean if it maps the constant function 1 to 1 and nonnegative functions to nonnegative numbers.
G acts on L∞(G) from the left by Lgf(h) = f(gh) for f ∈ L∞(G) and g, h ∈ G. A mean ρ is
called invariant if ρ(Lgf) = ρ(f) for all f ∈ L∞(G) and g ∈ G.

Definition 2.5 (Amenability). G is called amenable iff it admits an invariant mean.

A more geometric characterization which we will use is due to Følner. It can be found for
example in Theorem 4.13 of [Pat00].

Theorem 2.6. The following statements are equivalent:

i) G is amenable.

ii) For any nonempty and compact C,L ⊂ G and ε > 0 we can find a nonempty K ⊂ G with
L ⊂ K such that

h(CK4K)/h(K) < ε,

where h denotes the Haar measure on G and 4 the symmetric difference. The sets K are
called Følner sets.

Several times we will use a rather simple but very powerful tool, the mass transport principle.
It already appeared in the proof of Lemma 2.3. It is a kind of conservation of mass formula for
invariant transports.
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Figure 2.1: Concept of semicoupling with finite mass: Choose a density f ∈ [0, 1] (green) such
that fλ and µ (red) have the same mass. Then, choose a coupling between them.

Lemma 2.7 (mass transport principle). Let f : G×G → R+ be a function which is invariant
under the diagonal action of G, that is f(u, v) = f(gu, gv) for all g, u, v ∈ G. Then we have∑

v∈G
f(u, v) =

∑
v∈G

f(v, u).

Proof. ∑
v∈G

f(u, v) =
∑
g∈G

f(u, gu) =
∑
g∈G

f(g−1u, u) =
∑
v∈G

f(v, u).

For a more general version we refer to [BLPS99] and [LT08]. The first reference is also a nice
example for a probabilistic equivalence to amenability.

2.2 Couplings and Semicouplings

For each Polish space X (i.e. complete separable metric space) the set of Radon measures on X
– equipped with its Borel σ-field – will be denoted by M(X). Given any ordered pair of Polish
spaces X,Y and measures λ ∈ M(X), µ ∈ M(Y ) we say that a measure q ∈ M(X × Y ) is a
semicoupling of λ and µ, briefly q ∈ Πs(λ, µ), iff the (first and second, resp.) marginals satisfy

(π1)∗q ≤ λ, (π2)∗q = µ,

that is, iff q(A × Y ) ≤ λ(A) and q(X × B) = µ(B) for all Borel sets A ⊂ X,B ⊂ Y . The
semicoupling q is called coupling, briefly q ∈ Π(λ, µ), iff in addition

(π1)∗q = λ.

Existence of a coupling requires that the measures λ and µ have the same total mass. If the total
masses of λ and µ are finite and equal then the ’renormalized’ product measure q = 1

λ(X)λ⊗ µ
is always a coupling of λ and µ.
If λ and µ are Σ-finite, i.e. λ =

∑∞
n=1 λn, µ =

∑∞
n=1 µn with finite measures λn ∈ M(X)

mutually singular, µn ∈ M(Y ) mutually singular – which is the case for all Radon measures –
and if both of them have infinite total mass then there always exists a Σ-finite coupling of them.
(Indeed, then the λn and µn can be chosen to have unit mass and q =

∑
n(λn ⊗ µn) does the

job.)
See also [Fig10] for the related concept of partial coupling.
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2.3 Random measures on M

The set of all Radon measures on M will be denoted by M(M) which we will endow with the
vague topology. The vague topology is defined by duality with continuous functions f with
compact support (f ∈ Cc(M)), this means that a sequence of measures (λn)n∈N in M(M)
converges to some measure λ ∈M(M) iff

∫
fdλn →

∫
fdλ for all f ∈ Cc(M). The next Lemma

summarizes some basic facts about vague topology (e.g. see [Kal97] or [Bau01])

Lemma 2.8 (vague topology). Let X be a locally compact second countable Haussdorff space.
Then,

i) M(X) is a Polish space in the vague topology.

ii) A ⊂M(X) is vaguely relatively compact iff supµ∈A µ(f) <∞ for all f ∈ Cc(X).

iii) If µn
v→ µ and B ⊂ X relatively compact with µ(∂B) = 0 then µn(B)→ µ(B).

The action of G on M induces an action of G on M(M × . . . ×M) by push forward with the
map τg:

(τg)∗λ(A1, . . . , Ak) = λ((g−1(A1), . . . , g−1(Ak)) ∀A1, . . . Ak ∈ B(M), k ∈ N.

Recall the disintegration theorem for finite measures (e.g. see Theorem 5.1.3 in [AGS08] or
III-70 in [DM78]).

Theorem 2.9 (Disintegration of measures). Let X, Y be Polish spaces, and let γ be a finite
Borel measure on X × Y . Denote by µ and ν the marginals of γ on the first and second factor
respectively. Then, there exist two measurable families of probability measures (γx)x∈X and
(γy)y∈Y such that

γ(dx, dy) = γx(dy)µ(dx) = γy(dx)ν(dy).

A random measure on M is a random variable λ• (the notation with the “•” is intended to make
it easier to distinguish random and non-random measures) modeled on some probability space
(Ω,A,P) taking values inM(M). It can also be regarded as a kernel from Ω to M. Therefore, we
write either λω(A) or λ(ω,A) depending on which property we want to stress. For convenience,
we will assume that Ω is a compact metric space and A its completed Borel field. These technical
assumptions are only made to simplify the presentation.

A point process is a random measure µ• taking values in the (vaguely closed) subset of all locally
finite counting measures on M. It is called simple iff µω({x}) ∈ {0, 1} for every x ∈M and a.e.
ω ∈ Ω. We call a random measure λ• absolutely continuous iff it is absolutely continuous to the
volume measure m on M for a.e. ω ∈ Ω. It is called diffusive iff it has no atoms almost surely.
The intensity measure of a random measure λ• is a measure on M defined by A 7→ E[λ•(A)].
The class of all relatively compact sets in B(M) will be denoted by B̂. For a random measure
λ• its class of stochastic continuity sets is defined by B̂λ• = {A ∈ B̂ : λ•(∂A) = 0 a.s.}.
Convergence in distribution and tightness in M(M) can be characterized by

Lemma 2.10 (tightness of random measures). Let λ•1, λ
•
2, . . . be random measures on M. Then

the sequence (λ•n)n∈N is relatively compact in distribution iff (λ•n(A))n∈N is tight in R+ for every
A ∈ B̂.

Theorem 2.11 (convergence of random measures). Let λ•, λ•1, λ
•
2, . . . be random measures on

M. Then, these conditions are equivalent:

i) λ•n
d→ λ•
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ii) λ•n(f)
d→ λ•(f) for all f ∈ Cc(M)

iii) (λ•n(A1), . . . , λ•n(Ak))
d→ (λ•(A1), . . . , λ•(Ak)) for all A1, . . . , Ak ∈ B̂λ• , k ∈ N.

If λ• is a simple point process or a diffusive random measure, it is also equivalent that

iv) λ•n(A)
d→ λ•(A) for all A ∈ B̂λ• .

For the proof of these statements we refer to Lemma 14.15 and Theorem 14.16 of [Kal97].
Just as in Lemma 11.1.II of [DVJ07] we can derive the following result on continuity sets of a
random measure λ•:

Lemma 2.12. Let λ• be a random measure on M, A ∈ B(M) be bounded and (A)r be the
r-neighbourhood of A in M. Then for all but a countable set of r ∈ R+ we have (A)r ∈ B̂λ•.

A random measure λ• : Ω→M(M) is called G-invariant or just invariant if the distribution of
λ• is invariant under the action of G, that is, iff

(τg)∗λ
• (d)

= λ•

for all g ∈ G. A random measure q• : Ω →M(M ×M) is called invariant if its distribution is
invariant under the diagonal action of G.
If (Ω,A) admits a measurable flow θg : Ω→ Ω, g ∈ G, that is a measurable mapping (ω, g) 7→ θgω
with θ0 the identity on Ω and

θg ◦ θh = θgh, g, h ∈ G,

then a random measure λ• : Ω→M(M) is called G-equivariant or just equivariant iff

λ(θgω, gA) = λ(ω,A),

for all g ∈ G,ω ∈ Ω, A ∈ B(M). We can think of λ(θgω, ·) as λ(ω, ·) shifted by g. Indeed, let M be
the cylindrical σ−algebra generated by the evaluation functionals A 7→ µ(A), A ∈ B(M), µ ∈M.
As in example 2.1 of [LT08], consider the measurable space (M,M) and define for µ ∈M, g ∈ G
the measure θgµ(A) = µ(g−1A). Then, {θg, g ∈ G} is a measurable flow and the identity is an
equivariant measure. A random measure q• : Ω→M(M ×M) is called equivariant iff

qθgω(gA, gB) = qω(A,B),

for all g ∈ G,ω ∈ Ω, A,B ∈ B(M).

Example 2.13. Let q• be an equivariant random measure on M×M given by qω = (id, Tω)∗λ
ω

for some measurable map T • and some equivariant random measure λ•. The equivariance con-
dition∫

A
1B(y)δT θgω(gx)(d(gy))λθgω(dx) = qθgω(gA, gB) = qω(A,B) =

∫
A

1B(y)δTω(x)(dy)λω(dx),

translates into an equivariance condition for the transport maps:

T θgω(gx) = gTω(x).

A probability measure P is called stationary iff

P ◦ θg = P

for all g ∈ G. Given a measure space (Ω,A) with a measurable flow (θg)g∈G and a stationary
probability measure P any equivariant measure in automatically invariant. The advantage of this
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definition is that the sum of equivariant measures is again equivariant, and therefore also invari-
ant. The sum of two invariant random measures does not have to be invariant (see Remark 2.22).

We say that a random measure λ• has subunit intensity iff E[λ•(A)] ≤ m(A) for all A ∈ B(M).
If equality holds in the last statement we say that the random measure has unit intensity. An
invariant random measure has subunit (or unit) intensity iff its intensity

β = E[λ•(B0)]

is ≤ 1 (or = 1 resp.). Given a random measure, the measure (λ•P)(dy, dω) := λω(dy)P(dω) on
M × Ω is called Campbell measure of the random measure λ•.

Example 2.14. i) The Poisson point process with intensity measure m. It is characterized
by

– for each Borel set A ⊂M of finite volume the random variable ω 7→ µω(A) is Poisson
distributed with parameter m(A) and

– for disjoint sets A1, . . . Ak ⊂ M the random variables µω(A1), . . . , µω(Ak) are inde-
pendent.

It can be written as

µω =
∑

ξ∈Ξ(ω)

δξ

with some countable set Ξ(ω) ⊂M without accumulation points.

ii) The compound Poisson process is a Poisson process with random weights instead of unit
weights. It is compounded with another distribution giving the weights of the different
atoms. It can be written as

µω =
∑

ξ∈Ξ(ω)

Xξδξ

for some iid sequence (Xξ)ξ∈Ξ(ω) independent of the Poisson point process. For example
one could take Xξ to be a Poisson random variable or an exponentially distributed random
variable. If Xξ has distribution γ we say µ• is a γ−compound Poisson process.

iii) The volume measure m is a constant random measure which is equivariant.

iv) An example of a non-equivariant random measure is a Poisson point process on Rd with
intensity measure a standard normal distribution.

From now on we will always assume that we are given two equivariant random measures λ• and
µ• modeled on some probability space (Ω,A,P) admitting a measurable flow (θg)g∈G such that
P is stationary. We will assume that Ω is a compact metric space. Moreover, we will assume
that λ• is absolutely continuous and λ• and µ• are almost surely not the zero measure. Note
that the invariance implies that µω(M) = λω(M) =∞ for almost every ω (e.g. see Proposition
12.1.VI in [DVJ07]).

2.4 Semicouplings of λ• and µ•

A semicoupling of the random measures λ• and µ• is a measurable map q• : Ω→M(M ×M)
s.t. for P-a.e. ω ∈ Ω

qω is a semicoupling of λω and µω.
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Its Campbell measure is given by Q = q•P ∈M(M ×M ×Ω). Q is a semicoupling between the
Campbell measures λ•P and µ•P in the sense that

Q(M × · × ·) = µ•P and Q(· ×M × ·) ≤ λ•P.

Q could also be regarded as semicoupling between λ•P and µ•P on M × Ω ×M × Ω which is
concentrated on the diagonal of Ω×Ω. It could be interesting to relax this last condition on Q
and allow different couplings of the randomness. However, we will not do so and only consider
semicouplings of λ•P and µ•P that are concentrated on the diagonal of Ω × Ω. We will always
identify these semicouplings with measures on M ×M × Ω.

Given such a semicoupling Q ∈M(M ×M ×Ω) we can disintegrate (see Theorem 2.9) Q to get
a measurable map q• : Ω→M(M ×M) which is a semicoupling of λ• and µ•.

According to this one-to-one correspondence between q• — semicoupling of λ• and µ• — and
Q = q•P — semicoupling of λ•P and µ•P — we will freely switch between them. And quite
often, we will simply speak of semicouplings of λ• and µ•.

We denote the set of all semicouplings between λ• and µ• by Πs(λ
•, µ•). The set of all equivariant

semicouplings between λ• and µ• will be denoted by Πis(λ
•, µ•).

A factor of some random variable X is a random variable Y which is measurable with respect
to σ(X). This is equivalent to the existence of a deterministic function f with Y = f(X). In
other words, a factor is a rule such that given X we can construct Y. A factor semicoupling is
a semicoupling of λ• and µ• which is a factor of λ• and µ•.

2.5 Cost functionals

Throughout this thesis, ϑ will be a strictly increasing, continuous function from R+ to R+ with
ϑ(0) = 0 and lim

r→∞
ϑ(r) =∞. Given a scale function ϑ as above we define the cost function

c(x, y) = ϑ (d(x, y))

on M ×M , the cost functional

Cost(q) =

∫
M×M

c(x, y) q(dx, dy)

on M(M ×M) and the mean cost functional

Cost(Q) =

∫
M×M×Ω

c(x, y) Q(dx, dy, dω)

on M(M ×M × Ω). Moreover, we will always assume that the cost function is such that the
optimal transportation problem between ρ ·m and µ, with a compactly supported probability
density ρ and a compactly supported arbitrary probability measure µ has a unique solution
which is induced by a map. To be more precise, the optimal transportation problem between
ρ ·m and µ for the cost function c is to minimize∫

M×M
c(x, y)q(dx, dy)

over all couplings q of ρ · m and µ. We will assume, that the cost function is such that the
solution of this problem, the unique optimal coupling, is given as q = (id, T )∗(ρ ·m) for some
measurable map T . For conditions on ϑ such that this assumption is satisfied we refer to chapter
3.
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We have the following basic result on existence and uniqueness of optimal semicouplings the
proof of which is deferred to chapter 3. The first part of the theorem, the existence and unique-
ness of an optimal semicoupling, is very much in the spirit of an analogous result by Figalli
[Fig10] on existence and (if enough mass is transported) uniqueness of an optimal partial cou-
pling. However, in our case the second marginal is arbitrary whereas in [Fig10] it is absolutely
continuous.

Theorem 2.15. (i) For each bounded Borel set A ⊂M there exists a unique semicoupling QA
of λ•P and (1Aµ

•)P which minimizes the mean cost functional Cost(.).
(ii) The measure QA can be disintegrated as QA(dx, dy, dω) := qωA(dx, dy)P(dω) where for P-a.e.
ω the measure qωA is the unique minimizer of the cost functional Cost(.) among the semicouplings
of λω and 1Aµ

ω.
(iii) Cost(QA) =

∫
Ω Cost(qωA)P(dω).

For a bounded Borel set A ⊂M , the transportation cost on A is given by the random variable
CA : Ω→ [0,∞] as

CA(ω) := Cost(qωA) = inf{Cost(qω) : qω semicoupling of λω and 1A µ
ω}.

Lemma 2.16. (i) If A1, . . . , An are disjoint then ∀ω ∈ Ω

C n⋃
i=1

Ai
(ω) ≥

n∑
i=1

CAi(ω)

(ii) If A1 = gA2 for some g ∈ G, then CA1 and CA2 are identically distributed.

Proof. Property (ii) follows directly from the joint invariance of λ• and µ•. The intuitive argu-
ment for (i) is, that minimizing the cost on

⋃
iAi is more restrictive than doing it separately

on each of the Ai. The more detailed argument is the following. Given any semicoupling qω of
λω and 1⋃

i Ai
µω then for each i the measure qωi := 1M×Aiq

ω is a semicoupling of λω and 1Aiµ
ω.

Choosing qω as the minimizer of C n⋃
i=1

Ai
(ω) yields

C⋃
i Ai

(ω) = Cost(qω) =
∑
i

Cost(qωi ) ≥
∑
i

CAi(ω).

2.6 Standard tessellations

In this section, we construct the fundamental region B0 and thereby a tessellation or a tiling
of M . We will call this tessellation a standard tessellation. The specific choice of fundamental
domain is not really important for us. However, we will choose one to fix ideas.
We now define the Dirichlet region. To this end let p ∈M be arbitrary. Due to the assumption
of freeness, the stabilizer of p is trivial. Construct the Voronoi tessellation with respect to Gp,
the orbit of p. The cell containing p is the Dirichlet region.

Definition 2.17 (Dirichlet region). Let p ∈M be arbitrary. The Dirichlet region of G centered
at p is defined by

Dp(G) = {x ∈M : d(x, p) ≤ d(x, gp) ∀g ∈ G}.

From now on we will fix p and write for simplicity of notation D = Dp(G). We want to construct

a fundamental domain from D. For every x ∈
◦
D we have d(x, p) < d(gx, p) for every id 6= g ∈ G,

that is |Gx ∩ D| = 1, where |H| denotes the cardinality of H. However, if x ∈ ∂D we have
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x ∈ D ∩ gD 6= ∅ for some g ∈ G. This implies that |Gx ∩ D| ≥ 2. Yet, for the fundamental
region, B0, we need exactly one representative from every orbit. Hence, we need to chose from
any orbit Gx intersecting the boundary of D exactly one representative z ∈ Gx∩∂D. Let V be a

measurable selection of these and finally define B0 =
◦
D∪V. By definition, B0 is a fundamental

region. There exists indeed a measurable selection by the following theorem (Theorem 17 and
the following Corollary in [Del75]):

Theorem 2.18 (Dellacherie). A surjective Borel map f between Polish spaces such that the fibers
f−1(y) are all compact, admits a Borel right inverse.

By assumption on the group action, D is compact and the orbit of any x ∈ M,Gx, is discrete.
Consider the map f : D → M/G, x 7→ [x]. The inverse of [x] ∈ M/G under f is f−1([x]) =
Gx∩D. Hence, it is a closed subset of a compact set and therefore compact. Apply the theorem
to construct a Borel right inverse and therefore the desired selection V.

Example 2.19. Considering Rd with group action translations by Zd a choice for the funda-
mental region would be B0 = [0, 1)d. If we consider M = H2 the two dimensional hyperbolic
space we can take for G a Fuchsian group acting cocompactly and freely, that is, with no elliptic
elements. The Dirichlet region then becomes a hyperbolic polygon (see [Kat92]).

2.7 Optimality

The standard notion of optimality – minimizers of Cost or Cost – is not well adapted to our
setting. For example for any semicoupling q• between the Lebesgue measure and a Poisson
point process of intensity β ≤ 1 we have Cost(q•) =∞. Hence, we need to introduce a different
notion which we explain in this section.
The collection of admissible sets is defined as Adm(M) = {B ∈ B(M) : ∃I ⊂ G, 1 ≤ |I| <
∞, F fundamental region : B =

⋃
g∈I gF}

For a semicoupling q• between λ• and µ• the mean transportation cost of q• is defined by

C(q•) := sup
B∈Adm(M)

1

m(B)
E
[∫

M×B
c(x, y) q•(dx, dy)

]
.

Definition 2.20. A semicoupling q• between λ• and µ• is called

i) asymptotically optimal iff

C(q•) = inf
q̃•∈Πs(λ•,µ•)

C(q̃•) =: c∞.

ii) optimal iff q• is equivariant and asymptotically optimal.

Note that the set of optimal semicouplings is convex. This will be useful for the proof of
uniqueness.

Remark 2.21. Equivariant semicouplings q• are invariant. Hence, they are asymptotically
optimal iff

C(q•) = E
[∫

M×B0

c(x, y)q•(dx, dy)

]
= c∞.

Because of the invariance, the supremum does not play any role. Moreover, for two different
fundamental regions B0 and B̃0 define

f(g, h) = E[Cost(1M×(gB0∩hB̃0)q
•)].
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Then, for k ∈ G and equivariant q• we have f(g, h) = f(kg, kh). Hence, we can apply the mass
transport principle to get

E
[∫

M×B0

c(x, y)q•(dx, dy)

]
=
∑
h∈G

f(id, h) =
∑
g∈G

f(g, id) = E
[∫

M×B̃0

c(x, y)q•(dx, dy)

]
.

Thus, the specific choice of fundamental region is not important for the cost functional C(·) if
we restrict to equivariant semicouplings.

Remark 2.22. The notion of optimality explains why we restrict to stationary probability
measures and equivariant random measures. If λ• and µ• are just invariant, there does not have
to be any invariant semicoupling between them. Indeed, take λ• a Poisson point process of unit
intensity in Rd. It can be written as µω =

∑
ξ∈Ξ(ω) δξ. Define λω :=

∑
ξ∈Ξ(ω) δ−ξ to be the

Poisson process that we get if we reflect the first one at the origin. Then λ• and µ• are invariant
but not jointly invariant, e.g. consider the set [0, 1)d × [−1, 0)d, and not both of them can be
equivariant.

Assume there is an invariant coupling q• of λ• and µ•. Then, for any measurable f : Rd×Rd → R
we have for any z ∈ Rd

∫
f(x, y)q•(dx, dy)

d
=
∫
f(x+z, y+z)q•(dx, dy) if one of the two random

variables is finite. Now take any measurable bounded g : Rd → R+ with supp(g) ⊂ [0, 1)d and
define h(x) = g(−x) such that supp(h) ⊂ [−1, 0)d. Take f(x, y) = g(x) + h(y). Then, we have

E

[(∫
f(x, y)q•(dx, dy)

)2
]

= E

[(
2

∫
g(x)µ•(dx)

)2
]

=: 4E[X2]

for X =
∫
g(x)µ•(dx). On the other hand, writing 1 = (1, . . . , 1) this has to equal (by invariance)

E

[(∫
f(x+ 1, y + 1)q•(dx, dy)

)2
]

=: E[(X + Y )2],

with Y
d
= X but independent of X as the shifted functions g(· + 1) and h(· + 1) have support

in A1 = [−1, 0)d and A2 = [−2,−1)d respectively and µ•(A1) and λ•(A2) are independent and
identically distributed by definition of the Poisson point process. But this leads to a contradiction
by e.g. choosing g(x) = 1[0,1)d(x).

2.8 An abstract existence result

In this section we want to show that the existence of an optimal coupling given that the mean
transportation cost is finite can be shown by an abstract compactness result. A similar reasoning
is used to prove Corollary 11 in [Hol09].

Proposition 2.23. Let λ• and µ• be two equivariant random measures on M with intensities 1
and β ≤ 1 respectively. Assume that infq•∈Πis(λ•,µ•) C(q•) = ci,∞ < ∞, then there exists some
equivariant semicoupling q• between λ• and µ• with C(q•) = ci,∞.

Proof. As ci,∞ <∞ there is a sequence q•n ∈ Πis(λ
•, µ•) such that C(q•n) = cn ↘ ci,∞. Moreover,

we can assume that the transportation cost is uniformly bounded by cn ≤ 2ci,∞ =: c for all n.
We claim that there is a subsequence (q•nk)k∈N of (q•n)n∈N converging to some q• ∈ Πis(λ

•, µ•)
with C(q•) = ci,∞. We prove this in four steps:

i) The functional C(·) is lower semicontinuous:
It is sufficient to prove that the functional Cost(·) is lower semicontinuous. Let (ρn)n∈N be
any sequence of couplings between finite measures converging to some measure ρ in the vague
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topology. If Cost(ρn) = ∞ for almost all n we are done. Hence, we can assume, that the
transportation cost are bounded. Let (B0)r denote the r-neighbourhood of B0. For k ∈ R let
φk : M×M → [0, 1] be nice cut off functions with φk(x, y) = 1 on (B0)k×(B0)k and φk(x, y) = 0
if x ∈ {((B0)k+1) or y ∈ {((B0)k+1). Then, we have using continuity of the cost function c(x,y)
and by the definition of vague convergence

lim inf
n→∞

Cost(ρn) = lim inf
n→∞

∫
M×M

c(x, y)ρn(dx, dy)

= lim inf
n→∞

sup
k∈N

∫
M×M

φk(x, y) c(x, y)ρn(dx, dy)

≥ sup
k

lim inf
n→∞

∫
M×M

φk(x, y) c(x, y)ρn(dx, dy)

= sup
k

∫
M×M

φk(x, y) c(x, y)ρ(dx, dy) = Cost(ρ).

Applying this to 1M×B0q
•
n shows the lower semicontinuity of C(·).

ii) The sequence (q•n)n∈N is tight in M(M ×M × Ω):
Put f ∈ Cc(M ×M ×Ω). According to Lemma 2.8 we have to show supn∈N q

•
nP(f) ≤Mf <∞

for some constant Mf . To this end let A ⊂M compact be such that supp(f) ⊂ A×M ×Ω. We
estimate ∫

M×M×Ω
f(x, y, ω)qωn (dx, dy)P(dω) ≤ ‖f‖∞ λ•P(A× Ω)

≤ ‖f‖∞ m(A) =: Mf .

Hence, there is some measure q• and a subsequence q•nk with q•nk → q• in vague topology on
M(M ×M × Ω). By lower semicontinuity, we have C(q•) ≤ lim inf C(q•nk) = ci,∞. Now we have
a candidate. We still need to show that it is admissible.

iii) q• is equivariant:
Take any continuous compactly supported f ∈ Cc(M ×M ×Ω). By definition of vague conver-
gence ∫

f(x, y, ω)qωnk(dx, dy)P(dω)→
∫
f(x, y, ω)qω(dx, dy)P(dω).

As all the q•nk are equivariant, we have for any g ∈ G∫
f(x, y, ω)qωnk(dx, dy)P(ω) =

∫
f(g−1x, g−1y, θgω)q

θgω
nk (dx, dy)P(dω)

→
∫
f(g−1x, g−1y, θgω)qθgω(dx, dy)P(dω).

Putting this together, we have for any g ∈ G∫
f(x, y, ω)qω(dx, dy)P(dω) =

∫
f(g−1x, g−1y, θgω)qθgω(dx, dy)P(dω).

Hence, q• is equivariant.

iv) q• is a semicoupling of λ• and µ•:
Fix h ∈ Cc(M ×Ω). Put A ⊂M compact such that supp(h) ⊂ A×Ω and A ∈ Adm(M). Denote
the R−neighbourhood of A by AR. By the uniform bound on transportation cost we have

q•nP({(AR), A,Ω) ≤ m(A)
c

ϑ(R)
, (2.1)



26 CHAPTER 2. SET-UP AND BASIC CONCEPTS

uniformly in n. Let fR : M → [0, 1] be a continuous compactly supported function such that
fR(x) = 1 for x ∈ AR and fR(x) = 0 for x ∈ {AR+1. As q•nP is a semicoupling of λ• and µ• we
have due to monotone convergence∫

M×Ω
h(y, ω)µω(dy)P(dω) =

∫
M×M×Ω

h(y, ω)qωn (dx, dy)P(dω)

= lim
R→∞

∫
M×M×Ω

fR(x)h(y, ω)qωn (dx, dy)P(dω).

Because of the uniform bound (2.1) we have∣∣∣∣∫
M×Ω

h(x, ω)µω(dx)P(dω)−
∫
M×M×Ω

fR(x)h(y, ω)qωnk(dx, dy)P(dω)

∣∣∣∣ ≤ m(A)
c · ‖h‖∞
ϑ(R)

.

Taking first the limit of nk → ∞ and then the limit of R → ∞ we conclude using vague
convergence and monotone convergence that

0 = lim
R→∞

lim
k→∞

∣∣∣∣∫
M×Ω

h(y, ω)µω(dy)P(dω)−
∫
M×M×Ω

fR(x)h(y, ω)qωnk(dx, dy)P(dω)

∣∣∣∣
= lim

R→∞

∣∣∣∣∫
M×Ω

h(y, ω)µω(dy)P(dω)−
∫
M×M×Ω

fR(x)h(y, ω)qω(dx, dy)P(dω)

∣∣∣∣
=

∣∣∣∣∫
M×Ω

h(y, ω)µω(dy)P(dω)−
∫
M×M×Ω

h(y, ω)qω(dx, dy)P(dω)

∣∣∣∣
This shows that the second marginal equals µ•. For the first marginal we have for any k ∈
Cc(M × Ω) ∫

M×Ω
k(x, ω)qωnk(dx, dy)P(dω) ≤

∫
M×Ω

k(x, ω)λω(dx)P(dω).

In particular, using the function fR from above we have,∫
M×Ω

fR(y) k(x, ω)qωnk(dx, dy)P(dω) ≤
∫
M×Ω

k(x, ω)λω(dx)P(dω).

Taking the limit nk →∞ yields by vague convergence∫
M×Ω

fR(y) k(x, ω)qω(dx, dy)P(dω) ≤
∫
M×Ω

k(x, ω)λω(dx)P(dω).

Finally taking the supremum over R shows that q• is indeed a semicoupling of λ• and µ•.

Remark 2.24. i) This coupling need not be a factor coupling. We do not know if it is
in general true or not that c∞ = ci,∞, that is, if minimizing the functional C(·) over all
semicouplings is the same as minimizing over all equivariant semicouplings. However, in
the case that the balls Λr ⊂ G are Følner sets, we can show equality (see Corollary 5.5
and Remark 5.6).

ii) The same proof shows the existence of optimal semicouplings between λ• and µ• with
intensities 1 and β ≥ 1 respectively. In this case the “semi” is on the side of µ• (see also
chapter 6).

Lemma 2.25. Let q• be an invariant semicoupling of two random measures λ• and µ• with
intensities 1 and β ≤ 1 respectively. Then, q• is a coupling iff β = 1.
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Proof. This is another application of the mass transport principle. Let B0 be a fundamental
region and define f(g, h) = E[q•(gB0, hB0)]. By invariance of q•, we have f(g, h) = f(kg, kh)
for any k ∈ G. Hence, we get

1 = E[λ•(B0)] ≥ E[q•(B0,M)] =
∑
g∈G

f(id, g) =
∑
h∈G

f(h, id) = E[q•(M,B0)] = β.

We have equality iff β = 1. By definition of semicoupling, we also have qω(A,M) ≤ λω(A) for
any A ⊂ M . Hence, in the case of equality we must have qω(A,M) = λω(A) for P−almost all
ω.

Remark 2.26. The above remark applies again. Considering the case of intensity β ≥ 1 gives
that q• is a coupling iff β = 1.

2.9 Assumptions

Let us summarize the setting and assumptions we work with in the rest of the thesis.

• M will be a smooth connected non-compact Riemannian manifold with Riemannian volume
measure m, such that there is a group G of isometries acting properly discontinuous,
cocompactly and freely on M.

• B0 will denote the chosen fundamental region.

• c(x, y) = ϑ(d(x, y)) with ϑ : R+ → R+ such that ϑ(0) = 0 and limr→∞ ϑ(r) = ∞.
Given two compactly supported probability measures on M, λ � m and µ arbitrary, we
will assume that the optimal transportation problem admits a unique solution which is
induced by a measurable map T, i.e. q = (id, T )∗λ.

• (Ω,A,P) will be a probability space admitting a measurable flow (θg)g∈G. P is assumed to
be stationary and Ω is assumed to be a compact metric space.

• λ• and µ• will be equivariant measure of intensities one respectively β ∈ (0,∞). Moreover,
we assume that λ• is absolutely continuous.
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Chapter 3

Semicouplings on bounded sets

The goal of this chapter is to prove Theorem 2.15, the crucial existence and uniqueness result for
optimal semicouplings between λ• and µ• restricted to a bounded set. The strategy will be to
first prove existence and uniqueness of optimal semicouplings q = qω for deterministic measures
λ = λω and µ = µω. Secondly, we will show that the map ω 7→ qω is measurable, which will
allow us to deduce Theorem 2.15.

The theory of optimal semicouplings is a concept of independent interest. Optimal semicouplings
are solutions of a twofold optimization problem: the optimal choice of a density ρ ≤ 1 of the first
marginal λ and subsequently the optimal choice of a coupling between ρλ and µ. This twofold
optimization problem can also be interpreted as a transport problem with free boundary values.

Throughout this chapter, we fix the cost function c(x, y) = ϑ(d(x, y)) with ϑ – as before – being
a strictly increasing, continuous function from R+ to R+ with ϑ(0) = 0 and lim

r→∞
ϑ(r) =∞. As

already mentioned, we additionally assume that the optimal transportation problem between
two compactly supported probability measures λ and µ such that λ� m has a unique solution
given by a transportation map, e.g. the optimal coupling is given by q = (id, T )∗λ. There are
very general results on the uniqueness of the solution to the Monge problem for which we refer
to chapters 9 and 10 of [Vil09]. To be more concrete we state a uniqueness result for compact
manifolds due to McCann [McC01] and will prove an uniqueness result in the simple but for us
very interesting case that the measure µ is discrete.

Theorem 3.1 (McCann). Let N be a compact manifold, λ� m and µ be probability measures

and c(x, y) =
∫ d(x,y)

0 τ(s)ds with τ : R+ → R continuously increasing and τ(0) = 0. Then, there
is a measurable map T : M → M ∪ {ð} such that the unique optimal coupling between λ and µ
is given by q = (id, T )∗λ.

The “cemetery” ð in the statement is not really important. This is the place where all points
outside of the support of λ are sent. We just include it to make some notations easier.

If we assume µ to be discrete, we can actually take ϑ to be any continuous strictly increasing
function.

Lemma 3.2. Given a finite set Ξ = {ξ1, . . . , ξk} ⊂ M , positive numbers (ai)1≤i≤k summing to
one and a probability density ρ ∈ L1(M,m). Consider the cost function c(x, y) = ϑ(d(x, y)) for
some continuous strictly increasing function ϑ : R+ → R+ such that ϑ(0) = 0 and limr→∞ ϑ(r) =
∞. If dim(M) = 1 we exclude the case ϑ(r) = r.

i) There exists a unique coupling q of ρ · m and σ =
∑k

i=1 aiδξi which minimizes the cost
functional Cost(·).
ii) There exists a (m-a.e. unique) map T : {ρ > 0} → Ξ with T∗(ρ ·m) = σ which minimizes∫
c(x, T (x))ρ(x)m(dx).

iii) There exists a (m-a.e. unique) map T : {ρ > 0} → Ξ with T∗(ρ ·m) = σ which is c-monotone
(in the sense that the closure of {(x, T (x)) : ρ(x) > 0} is a c-cyclically monotone set).

29
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iv) The minimizers in (i), (ii) and (iii) are related by q = (Id, T )∗(ρ ·m) or, in other words,

q(dx, dy) = δT (x)(dy) ρ(x)m(dx).

Proof. We prove the lemma in three steps.
a) By compactness of Π(ρ · m,σ) w.r.t. weak convergence and continuity of c(·, ·) there is a
coupling q minimizing the cost function Cost(·) (see also [Vil09], Theorem 4.1).
b) Write ρ ·m =: λ =

∑k
i=1 λi where λi(.) := q(. × {ξi}) for each i = 1, . . . , k. We claim that

the measures (λi)i are mutually singular. Assuming that there is a Borel set N such that for
some i 6= j we have λi(N) = α > 0 and λj(N) = β > 0 we will redistribute the mass on N being
transported to ξi and ξj in a cheaper way. This will show that the measures (λi)i are mutually
singular. In particular, the proof implies the existence of a measurable c-monotone map T such
that q = (Id, T )∗(ρ ·m).

W.l.o.g. we may assume that (ρ ·m)(N) = α+ β. Otherwise write ρ = ρ1 + ρ2 such that on N
λi(dx) + λj(dx) = (ρ1m)(dx) and just work with the density ρ1.

Put f(x) := c(x, ξi) − c(x, ξj). As c(·, ·) is continuous, f is continuous. The function c(x, y)
is a strictly increasing function of the distance d(x, y). Thus, the level sets {f ≡ b} define
(locally) (d − 1) dimensional submanifolds (e.g. use implicit function theorem for non smooth
functions, see Corollary 10.52 in [Vil09]) changing continuously with b. Choose b0 such that
ρ ·m({f < b0} ∩N) = α (which implies ρ ·m({f > b0} ∩N) = β) and set Ni := {f < b0} ∩N
and Nj := {f ≥ b0} ∩N .

For l = i, j

λ̃l(dx) := λl(dx)− 1N (x)λl(dx) + 1Nl(x)(ρ ·m)(dx).

For l 6= i, j set λ̃l = λl. By construction, q̃ =
∑k

l=1 λ̃l⊗δξl is a coupling of ρ ·m and σ. Moreover,
q̃ is c-cyclically monotone on N , that is ∀xi ∈ Ni, xj ∈ Nj we have

c(xi, ξi) + c(xj , ξj) ≤ c(xj , ξi) + c(xi, ξj).

Furthermore, the set where equality holds is a null set because c(x, y) is a strictly increasing
function of the distance. Then, we have

Cost(q)− Cost(q̃)

=

∫
N
c(x, ξi)λi(dx) + c(x, ξj)λj(dx)−

∫
Ni

c(x, ξi)λ̃i(dx)−
∫
Nj

c(x, ξj)λ̃j(dx) > 0,

by cyclical monotonicity. This proves that λi and λj are singular to each other.

Hence, the family (λi)i=1,...,k is mutually singular which in turn implies that there exist Borel

sets Si ⊂ M with
⋃̇
iSi = M and λi(Sj) = 0 for all i 6= j. Define the map T : M → Ξ by

T (x) := ξi for all x ∈ Si. Then q = (Id, T )∗(ρ ·m).
c) Assume there are two minimizers of the cost function Cost, say q1 and q2. Then q3 := 1

2(q1+q2)
is a minimizer as well. By step (b) we have qi = (Id, Ti)∗ρ ·m for i = 1, 2, 3. This implies

δT3(x)(dy) ρ ·m(dx) = q3(dx, dy) =

(
1

2
q1(dx, dy) +

1

2
q2(dx, dy)

)
=

(
1

2
δT1(x)(dy) +

1

2
δT2(x)(dy)

)
ρ ·m(dx)

This, however, implies T1(x) = T2(x) for ρ ·m a.e. x ∈M and thus q1 = q2.

Remark 3.3. In the case that dim(M) = 1 and cost function c(x, y) = d(x, y) the optimal
coupling between an absolutely continuous measure and a discrete measure need not be unique.
In higher dimensions this is the case, as we get strict inequalities in the triangle inequalities. A



31

counterexample for one dimension is the following. Take λ to be the Lebesgue measure on [0, 1]
and put µ = 1

3δ0 + 2
3δ1/16. Then, for any a ∈ [1/16, 1/3]

qa(dx, dy) = 1[0,a)(x)δ0(dy)λ(dx) + 1[a,2/3+a)(x)δ1/16(dy)λ(dx) + 1[a+2/3,1](x)δ0(dy)λ(dx)

is an optimal coupling of λ and µ with Cost(qa) = 11/24.

Remark 3.4. In the case of cost function c(x, y) = 1
pd

p(x, y) the optimal transportation map
is given by

T (x) = exp

(
d(x, ξj)

∇Φj(x)

|∇Φj(x)|

)
for functions Φi(z) = −1

pd
p(z, ξi) + bi with constants bi and j such that Φj(x) = max1≤i≤k Φi(x)

(e.g. see [McC01]).

Given two deterministic measures λ = f ·m for some compactly supported density f (in particular
λ� m) and an arbitrary finite measure µ with supp(µ) ⊂ A for some compact set A such that
µ(M) ≤ λ(M) <∞. We are looking for minimizers of

Cost(q) =

∫
c(x, y)q(dx, dy)

under all semicouplings q of λ and µ. The key step is a nice observation by Figalli, namely
Proposition 2.4 in [Fig10]. The version we state here is adapted to our setting.

Proposition 3.5 (Figalli). Let q be a Cost minimizing semicoupling between λ and µ. Write
fq ·m = (π1)∗q. Consider the Monge-Kantorovich problem:

minimize C(γ) =

∫
M×M

c(x, y)γ(dx, dy)

among all γ which have λ and µ+ (f − fq) ·m as first and second marginals, respectively. Then,
the unique minimizer is given by

q + (id× id)∗(f − fq) ·m.

This allows us to show that all minimizers of Cost are concentrated on the same graph which
also gives us uniqueness:

Proposition 3.6. There is a unique Cost minimizing semicoupling between λ and µ. It is given
as q = (id, T )∗(ρ · λ) for some measurable map T : M →M ∪ {ð} and density ρ.

Proof. (i) The functional Cost(·) is lower semicontinuous on M(M ×M) wrt weak convergence
of measures. Indeed, take a sequence of measures (qn)n∈N converging weakly to some q. Then
we have by continuity of the cost function c(·, ·):∫

c(x, y) q(dx, dy) = sup
k∈N

∫
c(x, y) ∧ k q(dx, dy)

= sup
k∈N

lim
n→∞

∫
c(x, y) ∧ k qn(dx, dy)

≤ lim inf
n→∞

∫
c(x, y) qn(dx, dy).

(ii) LetO denote the set of all semicouplings of λ and µ andO1 denote the set of all semicouplings
q satisfying Cost(q) ≤ 2 infq∈O Cost(q) =: 2c. Then O1 is relatively compact wrt weak topology.
Indeed, q(M × {A) = 0 for all q ∈ O1 and

q({(Ar)×A) ≤ 1

ϑ (r)
· Cost(q) ≤ 2

ϑ (r)
c
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for each r > 0 where Ar denotes the closed r-neighborhood of A in M . Thus, for any ε > 0
there exists a compact set K = Ar ×A in M ×M such that q({K) ≤ ε uniformly in q ∈ O1.
(iii) The set O is closed wrt weak topology. Indeed, if qn → q then (π1)∗qn → (π1)∗q and
(π2)∗qn → (π2)∗q. Hence O1 is compact and Cost attains its minimum on O. Let q denote
one such minimizer. Its first marginal is absolutely continuous to m. By Theorem 3.1 and
Lemma 3.2, there is a measurable map T : M → M ∪ {ð} and densities f̃q, fq such that
q = (id, T )∗(f̃q · λ) = (id, T )∗(fq ·m).
(iv) Given a minimizer of Cost, say q. By Proposition 3.5, q̃ := q + (id, id)∗(f − fq) ·m solves

minC(γ) =

∫
c(x, y)γ(dx, dy)

under all γ which have λ and µ + (f − fq)m as first respectively second marginals, where
fq ·m = (π1)∗q as above. By Theorem 3.1 and Lemma 3.2, there is a measurable map S such
that q̃ = (id, S)∗λ. That is, q̃ and in particular q are concentrated on the graph of S. By
definition q̃ = q + (id, id)∗(f − fq) ·m and, therefore, we must have S(x) = x on {f > fq}.
(v) This finally allows us to deduce uniqueness. By the previous step, we know that any convex
combination of optimal semicouplings is concentrated on a graph. This implies that all optimal
semicouplings are concentrated on the same graph. Moreover, Proposition 3.5 implies that if
we do not transport all the λ mass in one point we leave it where it is. Hence, all optimal
semicouplings choose the same density ρ of λ and therefore coincide.
Assume there are two optimal semicouplings q1 and q2. Then q3 := 1

2(q1 + q2) is optimal as well.
By the previous step for any i ∈ {1, 2, 3}, we get maps Si such that qi is concentrated on the
graph of Si. Moreover, we have S3(x) = x on the set {f > fq3} = {f > fq1} ∪ {f > fq2}, where
again fqi ·m = (π1)∗qi. As q3 is concentrated on the graph of S3, q1 and q2 must be concentrated
on the same graph. Hence, we have S3 = Si on {fqi > 0} for i = 1, 2. We also know from the
previous step that Si(x) = x on {f > fqi} ⊂ {f > fq3}. This gives, that S3 = S1 = S2 on
{f > 0}.
We still need to show that {fq1 > 0} = {fq2 > 0}. Put A1 := {fq1 > fq2} and A2 := {fq2 > fq1}
and assume m(A1) > 0. As A1 ⊂ {f > fq2} we know that S3(x) = x on A1 and similarly
S3(x) = x on A2. Now consider

A := S−1
3 (A1) = (A ∩ {fq1 = fq2}) ∪ (A ∩A1) ∪ (A ∩A2).

As S3(A2) ⊂ A2 and A1 ∩A2 = ∅ we have A ∩A2 = ∅. Therefore, we can conclude

µ(A1) = (S3)∗fq1m(A1) = fq1m(A1) + fq1m(A ∩ {fq1 = fq2})
> fq2m(A1) + fq2m(A ∩ {fq1 = fq2})
= (S3)∗fq2m(A1) = µ(A1),

which is a contradiction, proving q1 = q2.

Remark 3.7. Let q = (id, T )∗(ρλ) be the optimal semicoupling of λ and µ. If µ happens to be
discrete, we have ρ(x) ∈ {0, 1} m almost everywhere. Indeed, assume the contrary. Then, there
is ξ ∈ supp(µ) such that on U := T−1(ξ) we have ρ ∈ (0, 1) on some set of positive λ measure.
Let R be such that λ(U ∩B(ξ,R)) = µ({ξ}), where B(ξ,R) denotes the ball of radius R around
ξ. Put V = U ∩B(ξ,R) and

q̃(dx, dy) = q(dx, dy)− 1U (x)ρ(x)δξ(dy)λ(dx) + 1V (x)δξ(dy)λ(dx).

This means, we take the same transportation map, but use the λ mass more efficiently. q̃ leaves
some λ mass far out and instead uses the same amount of λ mass which is closer to the target
ξ. By construction, we have Cost(q) > Cost(q̃) contradicting optimality of q.
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Figure 3.1: Optimal semicoupling of Lebesgue and 25 points in the cube with c(x, y) = |x− y|
where each point gets mass 1/9, 1/3, 1 respectively.

We showed the existence and uniqueness of optimal semicouplings between deterministic mea-
sures. The next step in the proof of Theorem 2.15 is to show the measurability of the mapping
ω 7→ Φ(λω, 1Aµ

ω) = qωA the unique optimal semicoupling between λω and 1Aµ
ω. The map-

ping ω 7→ (λω, 1Aµ
ω) is measurable by definition. Hence, we have to show that (λω, 1Aµ

ω) 7→
Φ(λω, 1Aµ

ω) is measurable. We will show a bit more, namely that this mapping is actually
continuous. We start with a simple but important observation about optimal semicouplings.

Denote the one-point compactification of M by M ∪ {ð} and let ϑ̃(r) be such that it is equal
to ϑ(r) on a very large box, say [0,K] and then tends continuously to zero such that c̃(x,ð) =
ϑ̃(d(x,ð)) = limr→∞ ϑ̃(r) = 0 for any x ∈ M . By a slight abuse of notation, we also write
ð : M → {ð} for the map x 7→ ð.

Lemma 3.8. Let two measures λ and µ on M be given such that ∞ > λ(M) = N ≥ µ(M) = α
and assume there is a ball B(x,K/2) such that supp(λ), supp(µ) ⊂ B(x,K/2). Then, q is an
optimal semicoupling between λ and µ wrt to the cost function c(·, ·) iff q̃ = q+(id,ð)∗(1−fq) ·λ
is an optimal coupling between λ and µ̃ = µ + (N − α)δð wrt the cost function c̃(·, ·), where
(π1)∗q = fqλ.

Proof. Let q be any semicoupling between λ and µ. Then q̃ = q + (id,ð)∗(1 − fq) · λ defines
a coupling between λ and µ̃. Moreover, the transportation cost of the semicoupling and the
one of the coupling are exactly the same, that is Cost(q) = Cost(q̃). Hence, q is optimal iff q̃ is
optimal.

This allows to deduce the continuity of Φ from the classical theory of optimal transportation.

Lemma 3.9. Given a sequence of measures (λn)n∈N converging vaguely to some λ, all absolutely
continuous to m with λn(M) = λ(M) = ∞. Moreover, let (µn)n∈N be a sequence of finite
measures converging weakly to some finite measure µ, all concentrated on some bounded set
A ⊂M . Let qn be the optimal semicoupling between λn and µn and q be the optimal semicoupling
between λ and µ. Then, qn converges weakly to q. In particular, the map (λ, µ) 7→ Φ(λ, µ) = q
is continuous.

Proof. i) As (µn)n∈N converge to µ and µ is finite, we can assume that supn µn(M), µ(M) ≤
α <∞. As λn and λ have infinite mass for any x ∈M and k ∈ R there is a radius R(x, k) <∞
such that λ(B(x,R(x, k))) ≥ k, where B(x,R) denotes the closed ball around x of radius R. Fix
an arbitrary x ∈ A and set R1 = R(x, α) + diam(A) and R2 = R(x, 2α) + diam(A). Because
(λn)n∈N converge to λ we can assume that for any n λn(B(x,R2)) ≥ λ(B(x,R1) = N > α.

ii) Optimality of qn and q implies that supp(qn) ⊂ B(x,R2) × A and supp(q) ⊂ B(x,R1) × A.
Because otherwise there is still some mass lying closer to the target than the mass which is
transported into the target. For any n let rn ≤ R2 be such that λn(B(x, rn)) = N . Such
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choices exist as λn � m for all n. Then, we even know that supp(qn) ⊂ B(x, rn) × A. Set
λ̃n = 1B(x,rn)λn and λ̃ = 1B(x,R1)λ. Then the optimal semicoupling between λn and µn is the

same as the optimal semicoupling between λ̃n and µn and similarly the optimal semicoupling
between λ and µ is the same as the optimal semicoupling between λ̃ and µ. Moreover, because
for any n λ̃n is compactly supported with total mass N the vague convergence λn → λ implies
weak convergence of λ̃n → λ̃.

iii) Now we are in a setting where we can apply the previous Lemma. Set K = 2R2 and
define ϑ̃, µ̃n, µ̃ as above. Then q̃n and q̃ are optimal couplings between λ̃n and µ̃n and λ̃ and
µ̃ respectively wrt to the cost function c̃(·, ·). The cost function c̃ is continuous and M and
M ∪ {ð} are Polish spaces. Hence, we can apply the stability result of the classical optimal
transportation theory (e.g. Theorem 5.20 in [Vil09] or Proposition 1.3) to conclude that q̃n → q̃
weakly and therefore qn → q weakly.

Take a pair of equivariant random measure (λ•, µ•) with λω � m as usual. For a given ω ∈ Ω
we want to apply the results of the previous Lemma to a fixed realization (λω, µω). Then, for
any bounded Borel set A ⊂M , there is a unique optimal semicoupling qωA between λω and 1Aµ

ω,
that is, a unique minimizer of the cost function Cost among all semicouplings of λω and 1Aµ

ω.

Lemma 3.10. For each bounded Borel set A ⊂M the map ω 7→ qωA is measurable.

Proof. We saw that the map Φ : (λω, 1Aµ
ω) = qωA is continuous. By definition of random

measures the map ω 7→ (λω, 1Aµ
ω) is measurable. Hence, the map

ω 7→ Φ(λω, 1Aµ
ω) = qωA

is measurable.

The uniqueness and measurably of qωA allows us to finally deduce

Theorem 3.11. (i) For each bounded Borel set A ⊂M there exists a unique semicoupling QA
of λ•P and (1Aµ

•)P which minimizes the mean cost functional Cost(.).
(ii) The measure QA can be disintegrated as QA(dx, dy, dω) := qωA(dx, dy)P(dω) where for P-a.e.
ω the measure qωA is the unique minimizer of the cost functional Cost(.) among the semicouplings
of λω and 1Aµ

ω.
(iii) Cost(QA) =

∫
Ω Cost(qωA)P(dω).

Proof. The existence of a minimizer is proven along the same lines as in the previous proposition:
We choose an approximating sequences Qn in M(M ×M × Ω) – instead of a sequence qn in
M(M × M) – minimizing the lower semicontinuous functional Cost(·). Existence of a limit
follows as before from tightness of the set of all semicouplings Q with Cost(Q) ≤ 2 infQ̃ Cost(Q̃).
For each semicoupling Q of λ• and 1Aµ

• with disintegration as q•P we obviously have

Cost(Q) =

∫
Ω
Cost(qω) dP(ω).

Hence, Q is a minimizer of the functional Cost(·) (among all semicouplings of λ• and 1Aµ
•) if

and only if for P-a.e. ω ∈ Ω the measure qω is a minimizer of the functional Cost(.) (among all
semicouplings of λω and 1Aµ

ω).
Uniqueness of the minimizer of Cost(·) therefore implies uniqueness of the minimizer of Cost(·).

Corollary 3.12. The optimal semicouplings QA = q•AP are equivariant in the sense that

QgA(gC, gD, θgω) = QA(C,D, ω),

for any g ∈ G and C,D ∈ B(M).

Proof. This is a consequence of the equivariance of λ• and µ• and the fact that qωA is a deter-
ministic function of λω and 1Aµ

ω.



Chapter 4

Uniqueness

The aim of this chapter is to prove Theorem 1.4, the uniqueness of optimal semicouplings. More-
over, the representation of optimal semicouplings, that we get as a byproduct of the uniqueness
statement, allows to draw several conclusions about the geometry of the cells of the induced
allocations.
Throughout this chapter we fix two equivariant random measures λ• and µ• of unit resp. subunit
intensities on M with finite mean transportation cost c∞. Moreover, we assume that λ• is
absolutely continuous. The whole chapter follows closely the respective section in [HS10].

Proposition 4.1. Given a semicoupling qω of λω and µω for fixed ω ∈ Ω, then the following
properties are equivalent.

(i) For each bounded Borel set A ⊂ M , the measure 1M×Aq
ω is the unique optimal coupling

of the measures λωA(·) := qω(·, A) and 1Aµ
ω.

(ii) The support of qω is c-cyclically monotone, more precisely,

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1)

for any N ∈ N and any choice of points (x1, y1), . . . , (xN , yN ) in supp(qω) with the con-
vention yN+1 = y1.

(iii) There exists a nonnegative density ρω and a c-cyclically monotone map Tω : {ρω > 0} →
M such that

qω = (Id, Tω)∗ (ρω λω). (4.1)

Recall that, by definition, a map T is c-cyclically monotone iff the closure of its graph
{(x, T (x)) : x ∈ {ρω > 0}} is a c-cyclically monotone set.

Proof. (iii)⇒ (ii)⇒ (i) follows from Theorem 3.1 and Lemma 3.2.

(i) ⇒ (iii) : Take a nested sequence of convex sets (Kn)n such that Kn ↗ M . By assumption
1M×Knq

ω is the unique optimal coupling between λωKn � m and 1Knµ
ω. By Proposition 3.6 or

Theorem 3.1, there exists a density ρωn and a map Tωn : {ρωn > 0} → M such that 1M×Knq
ω =

(id, Tωn )∗(ρ
ω
nλ

ω
Kn

). Set Aωn = {ρωn > 0}. As Kn ⊂ Kn+1 we have Aωn ⊂ Aωn+1. Subtransports of
optimal transports are optimal again. Therefore, we have

Tωn+1 = Tωn on Aωn

implying ρωn+1 = ρωn on Aωn . Hence, the limits

Tω = lim
n
Tωn , A

ω = lim
n
Aωn and ρω = lim

n
ρωn

35
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Figure 4.1: The left picture is a semicoupling of Lebesgue and 36 points with cost function
c(x, y) = |x − y|4. In the right picture, the five points within the small cube can choose new
partners from the mass that was transported to them in the left picture (corresponding to the
measure λωA). If the semicoupling on the left hand side is locally optimal, then the points in the
small cube on the right hand side will choose exactly the partners they have in the left picture.

exist and define a c-cyclically monotone map Tω : Aω →M such that on Aω ×M :

qω = (id, Tω)∗(ρ
ωλω).

Remark 4.2. In the sequel, any transport map Tω : Aω → M as above will be extended to a
map Tω : M →M ∪ {ð} by putting Tω(x) := ð for all x ∈M \Aω where ð denotes an isolated
point added to M (’point at infinity’, ’cemetery’). Then (4.1) reads

qω = (Id, Tω)∗ ρ
ωλω on M ×M. (4.2)

Moreover, we put c(x, Tω(x)) = c(x, ð) := 0 for x ∈ M \ Aω. If we know a priori that
ρω(x) ∈ {0, 1} almost surely (4.2) simplifies to

qω = (Id, Tω)∗ λ
ω on M ×M. (4.3)

Definition 4.3. A semicoupling Q = q•P of λ• and µ• is called locally optimal iff some (hence
every) property of the previous proposition is satisfied for P-a.e. ω ∈ Ω.

Remark 4.4. (i) Asymptotic optimality is not sufficient for uniqueness and it does not imply
local optimality: Consider the Lebesgue measure λ• = L = λ and a Poisson point process µ• of
unit intensity on Rd. Let us fix the cost function c(x, y) = |x−y|2. Lemma 2.16 shows that c0 the
optimal mean transportation cost on the unit cube, that is the cost of the optimal semicoupling
of λ and 1[0,1)dµ

•, is strictly less than the optimal mean transportation cost on a big cube, say

[0, 1010)d. Moreover, for any semicoupling q• between λ and µ• Lemma 2.16 implies that

C(q•) = lim inf
n→∞

1

λ(Bn)
E
[
Cost(1Rd×Bnq

•)
]
,

for Bn = [−2n−1, 2n−1)d. In other words, it is more costly to transport in one big cube than
in many small cubes separately. For all n ∈ N, let ρn : Ω × Rd → [0, 1] be the unique optimal
density for the transport problem between λ and 1Bnµ

•, that is the optimal semicoupling is
given by q•n = (id, T •n)∗(ρ

•
nλ). Let κ•n be the following semicoupling between λ and 1Bnµ

•

κω(dx, dy) = qω0 (dx, dy) + σωn (dx, dy),



37

where σωn is the unique optimal coupling between (ρωn − ρω0 ) ·λ and 1Bn\B0
µω. Let fn : Ω×Rd →

[0, 1] be such that 1Rd×(Bn\B0)q
ω
n = (id, Tωn )∗(f

ω
n λ). Denote by W2 the expectation of the usual

L2− Wasserstein distance. Then, we can estimate using the triangle inequality

Cost(κ•n) = Cost(q•0)+W2((ρn−ρ0)·λ, 1(Bn\B0)µ
•) ≤ Cost(q•0)+Cost(q•n)+W2((ρn−ρ0)·λ, fn·λ).

Set Zl = µ•(Bl). Note that (ρωn − ρω0 ) and fωn coincide on a set of Lebesgue measure of mass at
least Zωn − Zω0 . This allows to estimate W2((ρn − ρ0) · λ, fn · λ) very roughly from above (for
similar less rough and much more detailed estimates we refer to chapter 7). We have to transport

mass of amount at most Z0 at most a distance R1 = 2h ·Z1/d
n + 2

√
d2n for some constant h, e.g.

h = (Γ(d2 + 1))1/d would do. Indeed, ρωn must be supported in a h · Z1/d neighbourhood of Bn
because we could otherwise produce a cheaper semicoupling (see Lemma 3.9). This gives using
the estimates on Poisson moments of Lemma 7.12

W2((ρn − ρ0) · λ, fn · λ) ≤ E
[
R2

1 · Z0

]
≤ C1

(
E[Z2

0 ]1/2E[Z4/d
n ]1/2 + λ(Bn)2/d + 2 · E[Z2

0 ]1/2λ(Bn)1/dE[Z2/d
n ]1/2

)
≤ C2 λ(Bn)2/d,

for some constants C1 and C2. In particular, if we take d ≥ 3 this shows that

lim inf
n→∞

1

λ(Bn)
Cost(κ•n) = lim inf

n→∞

1

λ(Bn)
Cost(q•n).

Hence, as in Proposition 2.23 we can show that κ•n converges along a subsequence to some
semicoupling κ• between λ and µ• which is asymptotically optimal but not locally optimal.

(ii) Local optimality does not imply asymptotic optimality and it is not sufficient for unique-
ness: For instance in the case M = Rd, c(x, y) = |x − y|2, given any coupling q• of L and a
Poisson point process µ• and z ∈ Rd \ {0} then

q̃ω(dx, dy) := qω(d(x+ z), dy)

defines another locally optimal coupling of L and µ•. Not all of them can be asymptotically
optimal.

(iii) The name local optimality might be misleading in the context of semicouplings. Consider
a Poisson process µ• of intensity 1/2 and let q• be an optimal coupling between 1/2L and µ•.
Then, it is locally optimal (see Theorem 4.6) according to this definition. However, as we left
half of the Lebesgue measure laying around we can everywhere locally produce a coupling with
less cost. In short, the optimality does not refer to the choice of density only to the use of the
chosen density.

(iv) Note that local optimality — in contrast to asymptotic optimality and equivariance —
is not preserved under convex combinations. It is an open question if local optimality and
asymptotic optimality imply uniqueness.

Given two random measures γ•, η• : Ω →M(M) with γω(M) = ηω(M) < ∞ for all ω ∈ Ω we
define the optimal mean transportation cost by

Cost(γ•, η•) := inf {Cost(q•) : qω ∈ Π(γω, ηω) for a.e. ω ∈ Ω} .

Given a semicoupling q• of λ• and µ• and a bounded Borel set A ⊂ M recall the definition of
λ•A from Prop. 4.1. We define the efficiency of the semicoupling q• on the set A by

eA(q•) :=
Cost(λ•A , 1Aµ

•)

Cost(1M×Aq•)
.

It is a number in (0, 1]. The semicoupling q• is said to be efficient on A iff eA(q•) = 1. Otherwise,
it is inefficient on A. As noted in the remark above in the case of true semicouplings this notion
might mislead the intuition.
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Lemma 4.5. (i) q• is locally optimal if and only if eA(q•) = 1 for all bounded Borel sets A ⊂M .
(ii) eA(q•) = 1 for some A ⊂M implies eA′(q

•) = 1 for all A′ ⊂ A, where we set 0/0 = 1.

Proof. (i) Let A be given and ω ∈ Ω be fixed. Then 1M×Aq
ω is the optimal semicoupling of the

measures λωA and 1Aµ
ω if and only if

Cost(1M×Aq
ω) = Cost (λωA , 1Aµ

ω) . (4.4)

On the other hand, eA(q•) = 1 is equivalent to

E [Cost(1M×Aq
•)] = E [Cost (λ•A , 1Aµ

•)] .

The latter, in turn, is equivalent to (4.4) for P-a.e. ω ∈ Ω.
(ii) If the transport q• restricted to M ×A is optimal then also each of its sub-transports.

Remember that due to the stationarity of P equivariance of q• translates into invariance of its
distribution. The next Theorem is a key step in establishing uniqueness because it shows that
every optimal semicoupling is induced by a map.

Theorem 4.6. Every optimal semicoupling between λ• and µ• is locally optimal.

Proof. Assume we are given a semicoupling q• of λ• and µ• that is equivariant but not locally
optimal. According to the previous lemma, the latter implies that there is g ∈ G and r ∈ N
such that q• is not efficient on gBr, i.e.

η = egBr(q
•) < 1.

By invariance, this implies that η = ehBr(q
•) < 1 for all h ∈ G. Hence, for any h ∈ G there is

a coupling q̃•hBr of λ•hBr and 1hBrµ
•, the unique optimal coupling, which is more efficient than

1M×hBrq
•, i.e. such that

E[Cost(q̃•hBr)] ≤ η · E[Cost(1M×hBrq
•)].

Moreover, because of the equivariance of q• we have q̃ωhBr(dx, dy) = q̃
θgω
ghBr

(d(gx), d(gy)) (see
also Corollary 3.12). Hence, all convex combinations of the measures q̃ωhBr will have similar
equivariance properties.
We would like to have the estimate above also for the restriction of q̃•hBr to M ×hB0 in order to
produce a semicoupling with less transportation cost than q•. This is not directly possible as we
cannot control the contribution of hB0 to the cost of q̃•hBr . However, we can use a trick which
we will also use for the construction in the next chapter that will give us the desired result.
Remember that Λr denotes the 2r neighbourhood of the identity in the Cayley graph of G. Set

q̄•hB0
=

1

|Λr|
∑
g∈hΛr

1M×hB0 q̃
•
gBr .

Then we have

Cost(q̄•hB0
) =

1

|Λr|
∑
g∈hΛr

E
[∫

M×hB0

c(x, y)q̃•gBr(dx, dy)

]

=
1

|Λr|
· E
[∫

M×hBr
c(x, y)q̃•hBr(dx, dy)

]
=

1

|Λr|
· E
[
Cost(q̃•hBr)

]
.

The second equality holds because fixing hB0 and summing over all gBr containing hB0 is,
due to the invariance of q̃•gBr , the same as fixing hBr and summing over all gB0 contained in
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hBr. Put q̄• =
∑

h∈G q̄
•
hB0

. By construction, q̄• is an equivariant semicoupling of λ• and µ•.
Furthermore, for any g ∈ G we have

E[Cost(q̄•gB0
)] ≤ η · E[1M×gB0q

•].

This means, that q• is not asymptotically optimal.

Remark 4.7. We really need to consider r > 1 in the above proof as it can happen that q• is
efficient on every fundamental region but not locally optimal. Indeed, consider µ =

∑
z∈Z2 δz

and let q• denote the coupling transporting one quarter of the Lebesgue measure of the square
of edge length 2 centered at z to z. This is efficient on every fundamental region, which contains
exactly one z ∈ Z2, but not efficient on say [0, 5)2.

Theorem 4.8. Assume that µ• has intensity one, then there is a unique optimal coupling between
λ• and µ•.

Proof. Assume we are given two optimal couplings q•1 and q•2. Then also q• := 1
2q
•
1 + 1

2q
•
2 is

an optimal coupling because asymptotic optimality and equivariance are stable under convex
combination. Hence, by the previous theorem all three couplings – q•1, q•2 and q• – are locally
optimal. Thus, for a.e. ω by the results of Proposition 4.1 there exist maps Tω1 , T

ω
2 , T

ω such
that

δTω(x)(dy) λω(dx) = qω(dx, dy)

=

(
1

2
δTω1 (x)(dy) +

1

2
δTω2 (x)(dy)

)
λω(dx)

This, however, implies Tω1 (x) = Tω2 (x) for a.e. x ∈ M . Thus qω1 = qω2 . (By Lemma 2.25 we
know that every invariant semicoupling between λ• and µ• has to be a coupling.)

Before we can prove the uniqueness of optimal semicouplings we have to translate Proposition
3.5 to this setting.

Proposition 4.9. Assume µ• has intensity β ≤ 1 and let q• be an optimal semicoupling between
λ• and µ•. Let (π1)∗q

• = ρ · λ• for some density ρ : Ω×M → [0, 1]. Then,

q̃• = q• + (id× id)∗((1− ρ) · λ•)

is the unique optimal coupling between λ• and µ̂• := µ• + (1− ρ) · λ•.

Proof. Because q• is equivariant by assumption also ρλ•(·) = q•(·,M) is equivariant. But then
µ̂• = µ• + (1− ρ) · λ• is equivariant. Moreover, by assumption we have C(q̃) = C(q) <∞ which
implies

inf
κ•∈Π(λ•,µ̂•)

C(κ•) <∞.

By the previous theorem, there is a unique optimal coupling κ• between λ• and µ̂• given by
κ• = (id, S)∗λ

•. Moreover,
C(κ•) ≤ C(q̃•) = C(q•).

Because S∗λ
• = µ̂• there is a density f such that S∗(f · λ•) = (1− ρ) · λ•. Indeed, for any g ∈ G

we can disintegrate

1M×gB0κ
ω(dx, dy) = κω,gy (dx)(µω(dy) + (1− ρω(y))λω(dy)).

The measure
∑

g∈G κ
ω,g
y (dx)((1− ρω(y))λω(dy)) does the job. In particular this implies that

κ̃• = (id× S)∗((1− f) · λ•)
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is a semicoupling between λ• and µ•. The mean transportation cost of κ̃• are bounded above
by the mean transportation cost of κ• as we just transport less mass. Hence, we have

C(κ̃•) ≤ C(κ•) ≤ C(q̃•) = C(q•).

As q• was assumed to be optimal, hence asymptotically optimal, we must have equality every-
where. By uniqueness of optimal couplings this implies that q̃• = κ• almost surely.

Lemma 4.10. Assume µ• has intensity β ≤ 1 and let q• = (id, T )∗(ρ · λ•) be an optimal
semicoupling between λ• and µ•. Then, on the set {0 < ρω < 1} we have Tω(x) = x.

Proof. Just as in the previous proposition consider q̃• = (id, S)∗λ
• the optimal coupling between

λ• and µ̂•. q̃• is concentrated on the graph of S and therefore also q• has to be concentrated
on the graph of S. In particular, this shows that S = T almost everywhere almost surely (we
can safely extend T by S on {ρ = 0}). But on {ρ < 1} we have S(x) = x. Hence, we also have
T (x) = x on {0 < ρ < 1}.

This finally enables us to prove uniqueness of optimal semicouplings.

Theorem 4.11. There exists at most one optimal semicoupling of λ• and µ•.

Proof. Assume we are given two optimal semicouplings q•1 and q•2. Then also q• := 1
2q
•
1 + 1

2q
•
2

is an optimal semicoupling. Hence, by Theorem 4.6 all three couplings – q•1, q•2 and q• – are
locally optimal. Thus, for a.e. ω by the results of Proposition 4.1 there exist maps Tω1 , T

ω
2 , T

ω

and densities ρω1 , ρ
ω
2 , ρ

ω such that

δTω(x)(dy) ρω(x)λω(dx) = qω(dx, dy)

=

(
1

2
δTω1 (x)(dy)ρω1 (x) +

1

2
δTω2 (x)(dy)ρω2 (x)

)
λω(dx)

This, however, implies Tω1 (x) = Tω2 (x) for a.e. x ∈ {ρω1 > 0} ∩ {ρω2 > 0}. In particular, all
optimal semicouplings are concentrated on the same graph. To show uniqueness, we have to
show that ρω1 = ρω2 almost everywhere almost surely. To this end, put Aω1 = {ρω1 > ρω2 }. Assume
λω(Aω1 ) > 0. On Aω1 we have ρω < 1. Hence, by the previous Lemma we have Tω(x) = Tω1 (x) =
Tω2 (x) = x. Similarly, on Aω2 = {ρω2 > ρω1 } we have Tω(x) = x. Hence, we have

(Tω)−1(Aω1 ) ∩Aω2 = ∅,

because Ai ⊂ (Tω)−1(Ai) for i = 1, 2. As qω1 and qω2 are semicouplings, we must have µω(A) =
ρωi · λω((Tω)−1(A)) for i = 1, 2 and any Borel set A. Putting this together gives

µω(Aω1 ) = ρω1 · λω((Tω)−1(Aω1 ))

= ρω1 · λω((Tω)−1(Aω1 ) ∩Aω1 ) + ρω1 · λω((Tω)−1(Aω1 ) ∩ {ρω1 = ρω2 })
> ρω2 · λω((Tω)−1(Aω1 ) ∩Aω1 ) + ρω2 · λω((Tω)−1(Aω1 ) ∩ {ρω1 = ρω2 })
= µω(Aω1 ).

This is a contradiction and therefore proving λω(Aω1 ) = 0. Thus, ρω1 = ρω2 almost everywhere
almost surely and q•1 = q•2.

4.1 Geometry of tessellations induced by fair allocations

The fact that any optimal semicoupling is locally optimal allows us to say something about the
geometries of the cells of fair allocations to point processes. The following result was already
shown for probability measures in section 4 of [Stu09] and also in [AHA92]. We will use the
representation of optimal transportation maps recalled in Remark 3.4.
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Corollary 4.12. In the case ϑ(r) = r2, given an optimal coupling q• of Lebesgue measure L
and a point process µ• of unit intensity in M = Rd (for a Poisson point process this implies
d ≥ 3 as otherwise the mean transportation cost will be infinite, see Theorem 1.7) then for a.e.
ω ∈ Ω there exists a convex function ϕω : Rd → R (unique up to additive constants) such that

qω = (Id,∇ϕω)∗ L.

In particular, a ’fair allocation rule’ is given by the monotone map Tω = ∇ϕω.
Moreover, for a.e. ω and any center ξ ∈ Ξ(ω) := supp(µω), the associated cell

Sω(ξ) = (Tω)−1({ξ})

is a convex polytope of volume µω(ξ) ∈ N. If the point process is simple then all these cells have
volume 1.

Proof. By Proposition 4.1 we know that Tω = limn→∞ T
ω
n , where Tωn is an optimal transporta-

tion map from some set Aωn to Kn. From the classical theory (see [Bre91, GM96]) we know that,
Tωn = ∇ϕωn for some convex function ϕωn . More precisely,

ϕωn(x) = max
ξ∈Ξ(ω)∩Kn

(x2 − |x− ξ|2 /2 + bξ)

for some constants bξ. Moreover, we know that Tωn+k = Tωn on Aωn for all k ∈ N. Fix any
ξ0 ∈ Ξ(ω). Then, there is n ∈ N such that ξ0 ∈ Kn. Then, (Tωn+k)

−1(ξ0) = (Tωn )−1(ξ0) for any
k ∈ N. Furthermore,

Tωn (x) = ξ0 ⇔ −|x− ξ0|2 /2 + bξ0 > − |x− ξ|
2 /2 + bξ ∀ξ ∈ Ξ(ω) ∩Kn, ξ 6= ξ0.

For fixed ξ 6= ξ0 this equation describes two halfspaces separated by a hyperplane (defined by
equality in the equation above). The set Sω(ξ0) is then given as the intersection of all these
halfspaces defined by ξ0 and ξ ∈ Ξ(ω) ∩Kn. Hence, it is a convex polytope.

Corollary 4.13. In the case ϑ(r) = r, given an optimal coupling q• of m and a point process µ•

of unit intensity on M with dim(M) ≥ 2, there exists an allocation rule T such that the optimal
coupling is given by

qω = (Id, Tω)∗m.

Moreover, for a.e. ω and any center ξ ∈ Ξ(ω) := supp(µω), the associated cell

Sω(ξ) = (Tω)−1({ξ})

is starlike with respect to ξ.

Proof. We argue as in the last proof. However, the defining equation for the cells now becomes

Tωn (x) = ξ0 ⇔ −d(x, ξ0) + bξ0 > −d(x, ξ) + bξ ∀ξ ∈ Ξ(ω) ∩Kn, ξ 6= ξ0.

Hence, the cell can again be written as the intersection of “halfspaces” H0
j := {x : −d(x, ξ0) +

bξ0 > −d(x, ξj) + bξj}. Therefore, it is sufficient to show that for any z ∈ H0
j the whole geodesic

from z to ξ0 lies inside H0
j . For convenience we write Φ0(x) = −d(x, ξ0) + bξ0 and Φj(x) =

−d(x, ξj) + bξj .
Assume ξ0 ∈ ∂H0

j and w.l.o.g. bξ0 = 0. Then, we have

Φ0(ξ0) = 0 = Φj(ξ0)⇒ bξj = d(ξj , ξ0).

The set N = {z ∈M : d(ξj , z) = d(ξj , ξ0) + d(ξ0, z)} is a m-null set. For all z /∈ N we have

Φj(z) = −d(ξj , z) + bξj > −d(ξj , ξ0) + bξj − d(ξ0, z) = Φ0(z)
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Figure 4.2: Optimal semicoupling of Lebesgue and 25 points in the cube with cost function
c(x, y) = |x− y|p and (from left to right) p=1, 2, 4 respectively.

This implies that m(T−1
n (ξi)) = 0 contradicting the assumption of T being an allocation. Thus,

ξ0 /∈ ∂H0
j and in particular T (ξ0) ∈ Ξ = supp(µ).

Assume T (ξ0) 6= ξ0. Then, there is a ξj 6= ξ0 such that T (ξ0) = ξj , i.e. Φj(ξ0) = −d(ξ0, ξj)+bξj >
bξ0 = Φ0(ξ0). Then, we have for any p ∈M,p 6= ξ0

−d(p, ξj) + bξj ≥ −d(p, ξ0)− d(ξ0, ξj) + bξj > −d(p, ξ0) + bξ0 .

This implies, that m(T−1(ξ0)) = 0 contradicting the assumption of T being an allocation. Thus,
T (ξ0) = Tn(ξ0) = ξ0.
Take any w ∈ T−1

n (ξ0) (hence, Φ0(w) > Φj(w) for all j 6= 0) and p ∈ M such that d(ξ0, w) =
d(ξ0, p) + d(p, w), i.e. p lies on the minimizing geodesic from ξ0 to w. Then, we have for any
j 6= 0 by using the triangle inequality once more

−d(p, ξ0) + bξ0 = −d(ξ0, w) + d(p, w) + bξ0

≥ −d(ξ0, w) + bξ0 + d(w, ξj)− d(p, ξj)

> −d(p, ξj) + bξj ,

which means that Φ0(p) > Φj(p) for all j 6= 0. Hence, p ∈ H0
j proving the claim.

Remark 4.14. i) Questions on the geometry of the cells of fair allocations are highly connected
to the very difficult problem of the regularity of optimal transportation maps (see [MTW05,
Loe09, KM07]). The link is of course the cyclical monotonicity. The geometry of the cells of
the “optimal fair allocation” is dictated by the cyclical monotonicity and the optimal choice of
cyclical monotone map to get an asymptotic optimal coupling.
Consider the classical transport problem between two probability measures one being absolutely
continuous to the volume measure on M with full support on a convex set and the other one
being a convex combination of N Dirac masses. Assume that the cell being transported to one
of the N points is not connected. Then, it is not difficult to imagine that it is possible to smear
out the Dirac masses slightly to get two absolutely continuous probability measures (even with
very nice densities) but a discontinuous transportation map.

ii) Considering Lp cost on Rd with p /∈ {1, 2}, the cell structure is much more irregular than
in the two cases considered above. The cells do not even have to be connected. Indeed, just
as in the proof of the two Corollaries above it holds also for general p that Tω(x) = ξ0 iff
Φ0(x) > Φi(x) for all i 6= 0 where Φi(x) = −|x−ξi|p+bi for some constants bi (see also Example
1.6 in [GM96]). By considering the sets Φi ≡ Φ0 it is not difficult to cook up examples of
probability measures such that the cells do not have to be connected.
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In the case that p ∈ (0, 1) similar to the case that p = 1 we always have that the center of the
cells lies in the cell, that is T (ξi) = ξi for all ξi ∈ supp(µ•) because the cost function defines a
metric (see [GM96]).

iii) As was shown by Loeper in section 8.1 of [Loe09] the cells induced by the optimal transporta-
tion problem in the hyperbolic space between an absolutely continuous measure and a discrete
measure with respect to the cost function c(x, y) = d2(x, y) do not have to be connected. In the
same article he shows that for the same problem on the sphere the cells have to be connected.
In [vN09] von Nessi studies more general cost functions on the sphere, including the Lp cost
function c(x, y) = dp(x, y). He shows that in general for p 6= 2 the cells do not have to connected.
This suggests that on a general manifold the cell structure will probably be rather irregular.
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Chapter 5

Construction of optimal
semicouplings

We fix again a pair of equivariant random measures λ• and µ• of unit resp. subunit intensity
with finite mean transportation cost c∞ such that λ• is absolutely continuous. Additionally, we
assume that G satisfies some strong form of amenability. Recall that the 2r neighbourhood of
the identity element in the Cayley graph ∆(G,S) of G is denoted by Λr and the range of its
action on the fundamental region by Br, i.e. Br =

⋃
g∈Λr

gB0. Then, we assume that for any
g ∈ G

|Λr4gΛr|
|Λr|

→ 0 as r →∞, (5.1)

where |A| denotes the cardinality of A. In other words, we assume that the “balls” Λr are Følner
sets. This of course implies for any g ∈ G

m(Br4gBr)
m(Br)

→ 0 as r →∞.

The aim of this chapter is to construct the optimal semicoupling and thereby proving Theorem
1.5. The construction is based on approximation by semicouplings on bounded sets. We will
also show a nice convergence result of these approximations, proving Theorem 1.6.
This chapter follows closely the respective section in [HS10].

5.1 Symmetrization and Annealed Limits

The crucial step in our construction of optimal semicouplings between λ• and µ• is the in-
troduction of a symmetrization or second randomization. We want to construct the optimal
semicoupling by approximation of optimal semicouplings on bounded sets. The difficulty in this
approximation lies in the estimation of the contribution of the fundamental regions gB0 to the
transportation cost, i.e. what does it cost to transport mass into gB0? How can the cost be
bounded in order for us to be able to conclude that the limiting measure still transports the right
amount of mass into gB0? The solution is to mix several optimal semicouplings and thereby get
a symmetry which will be very useful (see proof of Lemma 5.1 (i)). One can also think of the
mixing as an expectation of the random choice of increasing sequences of sets hBr exhausting
M .
For each g ∈ G and r ∈ N, recall that QgBr denotes the minimizer of Cost among the semicou-
plings of λ• and 1gBrµ

• as constructed in Theorem 2.15. It inherits the equivariance from λ•

and µ•, namely QgA(g·, g·, θgω) = QA(·, ·, ω) (see Corollary 3.12). In particular, the stationarity

of P implies (τh)∗QgBr
d
= QhgBr . Put

Qrg(dx, dy, dω) := 1gB0(y)
1

|Λr|
∑
h∈gΛr

QhBr(dx, dy, dω).

45
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gB0

h1Br

h2Br

h3Br

Figure 5.1: Schematic picture of the mixing procedure.

The measure Qrg defines a semicoupling between λ• and 1gB0µ
•. It is a deterministic, fractional

allocation in the following sense:

• for any ω it is a deterministic function of λω and µω and does not depend on any additional
randomness,

• for any ω the first marginal is absolutely continuous with respect to λω with density ≤ 1.

The last fact implies that the semicoupling Qrg is not optimal in general, e.g. if one transports
the Lebesgue measure to a point process. The first fact implies that all the objects derived
from Qrg in the sequel – like Q∞g and Q∞ – are also deterministic. Moreover, Qrg shares the
equivariance properties of the measures QhBr .

Lemma 5.1. (i) For each r ∈ N and g ∈ G

∫
M×gB0×Ω

c(x, y)Qrg(dx, dy, dω) ≤ c∞.

(ii) The family (Qrg)r∈N of probability measures on M ×M × Ω is relatively compact in the
weak topology.

(iii) There exist probability measures Q∞g and a subsequence (rl)l∈N such that for all g ∈ G:

Qrlg −→ Q∞g weakly as l→∞.

Proof. (i) Let us fix g ∈ G and start with the important observation: For given r ∈ N and g ∈ G
averaging over all hΛr with h ∈ gΛr has the effect that “g attains each possible position inside
Λr with equal probability” (see also the proof of Theorem 4.6).
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Hence, together with the invariance of QkBr we obtain∫
M×gB0×Ω

c(x, y)Qrg(dx, dy, dω)

=
1

|Λr|
∑
h∈gΛr

∫
M×gB0×Ω

c(x, y)QhBr(dx, dy, dω)

=
1

|Λr|

∫
M×gBr×Ω

c(x, y)QgBr(dx, dy, dω)

=
1

|Λr|
CgBr =: cr ≤ c∞,

by definition of c∞.

(ii) In order to prove tightness of (Qrg)r∈N, let (gB0)l denote the closed l–neighborhood of gB0

in M. Then,

Qrg({(gB0)l, gB0,Ω) ≤ 1

ϑ(l)

∫
M×gB0×Ω

c(x, y)Qrg(dx, dy, dω)

≤ 1

ϑ(l)
c∞.

Since ϑ(l) → ∞ as l → ∞ this proves tightness of the family (Qrg)r∈N on M ×M × Ω. (Recall
that Ω was assumed to be compact from the very beginning.)

(iii) Tightness yields the existence of Q∞g and of a converging subsequence for each g ∈ G. A
standard argument (’diagonal sequence’) then gives convergence for all g ∈ G along a common
subsequence (G is countable as it is finitely generated).

Note that the measures Q∞g inherit as weak limits the property Q∞hg(h·, h·, θh·) = Q∞g (·, ·, ·) from
the measures Qrg (see also the proof of the equivariance property in Proposition 2.23). The next
Lemma allows to control the difference in the first marginals of Q∞g and Q∞h for g 6= h. This is
the first point where we use amenability.

Lemma 5.2. i) For all l > 0 there exists numbers εr(l) with εr(l)→ 0 as r →∞ s.t. for all
g, g

′ ∈ G and all r ∈ N

1

|Λr|
∑

h∈g′Λr

QhBr(A) ≤ 1

|Λr|
∑
h∈gΛr

QhBr(A) + εr(d∆(g, g
′
)) · sup

h∈g′Λr
QhBr(A)

for any Borel set A ⊂M ×M × Ω.

ii) For all g1, . . . , gn ∈ G, all r ∈ N and all Borel sets A ⊂M,D ⊂ Ω

n∑
i=1

Qrgi(A,M,D) ≤

(
1 +

n∑
i=1

εr(d∆(g1, gi))

)
· λ(D,A),

where λ(D,A) :=
∫
D

∫
A λ

ω(dx)P(dω).

Proof. (i) First note that for all g, g
′ ∈ G and r ∈ N we have

g
′ ∈ gΛr ⇔ g ∈ g′Λr.

In this case, for h ∈ gΛr with g
′ ∈ hΛr we also have h ∈ g′Λr and g ∈ hΛr. Moreover,

|{h ∈ gΛr : g
′
/∈ hΛr}|

|Λr|
≤ εr(d∆(g, g

′
)),



48 CHAPTER 5. CONSTRUCTION OF OPTIMAL SEMICOUPLINGS

for some εr(l) with εr(l)→ 0 as r →∞. One possible choice for εr is

εr(d∆(id, g)) =
|Λr4gΛr|
|Λr|

,

which tends to zero as r tends to infinity for any g 6= id by assumption. This implies that for
each pair g, g

′ ∈ G and each r ∈ N

|{h ∈ gΛr : g
′ ∈ hΛr}|

|Λr|
≥ 1− εr(d∆(g, g

′
)).

Therefore, for each Borel set A ⊂M ×M × Ω

1

|Λr|
∑

h∈g′Λr

QhBr(A) ≤ 1

|Λr|
∑
h∈gΛr

QhBr(A) + εr(d∆(g, g
′
)) · sup

h∈g′Λr
QhBr(A).

(ii) According to the previous part (i), for each Borel sets A ⊂M,D ⊂ Ω

n∑
i=1

Qrgi(A,M,D)

=
n∑
i=1

1

|Λr|
∑

h∈giΛr

QhBr(A, giB0, D)

≤
n∑
i=1

 1

|Λr|
∑

h∈g1Λr

QhBr(A, giB0, D) + εr(d∆(g1, gi)) · sup
h∈giΛr

QhBr(A, giB0, D)


≤

(
1 +

n∑
i=1

εr(d∆(g1, gi))

)
λ(D,A)

Theorem 5.3. The measure Q∞ :=
∑

g∈GQ
∞
g is an optimal semicoupling of λ• and µ•.

Proof. (i) Second/third marginal: This is a direct consequence of the construction. For any

f ∈ C+
b (M × Ω) we have due to Lemma 5.1∫

M×Ω
f(y, ω)Q∞(dx, dy, dω)

=
∑
g∈G

∫
M×Ω

f(y, ω)Q∞g (dx, dy, dω)

=
∑
g∈G

lim
l→∞

∫
M×Ω

f(y, ω)Qklg (dx, dy, dω)

=
∑
g∈G

∫
M×Ω

f(y, ω)1gB0(y)(µ•P)(dy, dω)

=

∫
M×Ω

f(y, ω)(µ•P)(dy, dω).

(ii) First/third marginal: Let an arbitrary bounded open set A ⊂M and an arbitrary Borel set
D ⊂ Ω be given and let (gi)i∈N be an enumeration of G. According to the previous Lemma 5.2,
for any n ∈ N and any r ∈ N

n∑
i=1

Qrgi(A×M ×D) ≤

(
1 +

n∑
i=1

εr(d∆(g1, gi))

)
· λ(D,A).
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Letting first r tend to ∞ yields

n∑
i=1

Q∞gi (A×M ×D) ≤ λ(D,A).

Then with n→∞ we obtain

Q∞(A×M ×D) ≤ λ(D,A)

which proves that (π1,3)∗Q
∞ ≤ λ•P.

(iii) Optimality: By construction, Q∞ is equivariant. Due to the resulting invariance, the asymp-
totic cost is given by∫

M×B0×Ω
c(x, y)Q∞(dx, dy, dω) =

∑
g∈G

∫
M×B0×Ω

c(x, y)Q∞g (dx, dy, dω)

=

∫
M×B0×Ω

c(x, y)Q∞id (dx, dy, dω) ≤ c∞.

Here the final inequality is due to Lemma 5.1, property (i) (which remains true in the limit
r =∞), and the last equality comes from the fact that∫

M×gB0×Ω
c(x, y)Qrh(dx, dy, dω) = 0

for all g 6= h and for all r ∈ N (which also remains true in the limit r =∞).

Corollary 5.4. (i) For r → ∞, the sequence of measures Qr :=
∑
g∈G

Qrg, r ∈ N, converges

vaguely to the unique optimal semicoupling Q∞.
(ii) For each g ∈ G and r ∈ N put

Q̃rg(dx, dy, dω) :=
1

|Λr|
∑
h∈gΛr

QhBr(dx, dy, dω).

The sequence (Q̃rg)r∈N converges vaguely to the unique optimal semicoupling Q∞.

Proof. (i) A slight extension of the previous Lemma 5.1(iii) + Theorem 5.3 yields that each
subsequence (Qrn)n of the above sequence (Qr)r will have a sub-subsequence converging vaguely
to an optimal coupling of λ• and µ•. Since the optimal coupling is unique, all these limit points
coincide. Hence, the whole sequence (Qr)r converges to this limit point (see e.g. [Dud02], Prop.
9.3.1).
(ii) Lemma 5.2 (i) implies that for g, g

′
, h ∈ G and every measurable A ⊂M ×M × Ω

|Q̃rg(A ∩ (M × hB0 × Ω))− Q̃rg′(A ∩ (M × hB0 × Ω))|
≤ εr(d∆(g, g′)) · sup

k∈G
Q̃kBr(A ∩ (M × hB0 × Ω))

≤ εr(d∆(g, g′))→ 0

as r →∞. Hence, for each f ∈ Cc(M ×M × Ω) and each g′ ∈M∣∣∣∣∣∣
∑
g∈G

∫
f(x, y, ω) 1gB0(y) dQ̃rg −

∫
f(x, y, ω) dQ̃rg′

∣∣∣∣∣∣→ 0.

That is, |
∫
f dQr −

∫
f dQ̃rg′ | → 0 as r →∞.
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Corollary 5.5. Denote the set of all semicoupling of λ• and µ• by Πs. Then it holds

inf
q•∈Πs

lim inf
r→∞

1

m(Br)
E
[∫

M×Br
c(x, y)q•(dx, dy)

]
= lim inf

r→∞
inf

q•∈Πs

1

m(Br)
E
[∫

M×Br
c(x, y)q•(dx, dy)

]
.

In particular, we have

c∞ = inf
q•∈Πs

C(q•) = inf
q•∈Πis

C(q•) = ci,∞.

Proof. For any semicoupling q• we have due to the supremum in the definition of C(·) that

lim inf
r→∞

1

m(Br)
E
[∫

M×Br
c(x, y)q•(dx, dy)

]
≤ C(q•).

Hence, the left hand side is bounded from above by infq•∈Πs C(q•). However, we just constructed
a semicoupling, the unique optimal semicoupling Q∞ which attains equality, i.e. with Q∞ = q•P

lim inf
r→∞

1

m(Br)
E
[∫

M×Br
c(x, y)q•(dx, dy)

]
= C(Q∞).

Hence, the left hand side equals infq•∈Πs C(q•).
The right hand side equals lim infr→∞ cr which is bounded by c∞ = infq•∈Πs C(q•) by Lemma
2.16. By our construction, the asymptotic transportation cost of Q∞ are bounded by the right
hand side, i.e.

C(Q∞) ≤ lim inf
r→∞

cr

by Lemma 5.1. Hence, also the right hand side equals infq•∈Πs C(q•). Thus, we have equality.

Remark 5.6. i) Because of the uniqueness of the optimal semicoupling the limit of the sequence
Qr does not depend on the choice of fundamental region. The approximating sequence (Qr)r∈N
does of course depend on B0 and also the choice of generating set S that defines the Cayley
graph.

ii) In the construction of the semicoupling Q∞ we only used finite transportation cost, invariance

of QA in sense that (τh)∗QA
d
= QhA and the amenability assumption on G. The only specific

property of λ• and µ• that we used is the uniqueness of the semicoupling on bounded sets which
makes is easy to choose a good optimal semicouplingQgBr . Hence, we can use the same algorithm
to construct an optimal coupling between two arbitrary random measures. In particular this
shows, that c∞ = ci,∞ (see also Proposition 2.23).
Indeed, given two arbitrary equivariant measures ν• and µ• of unit respectively subunit intensity.
For any r ∈ N let QBr = q•BrP be an optimal semicoupling between ν• and 1Aµ

•. In particular,
we made some measurable choice of optimal semicoupling for each ω (they do not have to be

unique), e.g. like in Corollary 5.22 of [Vil09]. Define QgBr via q
θgω
gBr

(d(gx), d(gy)) := qωBr(dx, dy).
Due to equivariance, this is again a measurable choice of optimal semicouplings. Stationarity of

P implies (τh)∗QBr
d
= QhBr . Hence, by the same construction there is some optimal semicoupling

Q∞ of ν• and µ• with cost bounded by c∞.

5.2 Quenched Limits

According to chapter 4, the unique optimal semicoupling between λ• and µ• can be represented
on M ×M × Ω as

Q∞(dx, dy, dω) = δT (x,ω)(dy) ρω(x)λω(dx)P(dω)
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Figure 5.2: This little comic is to capture the iterative idea of the proof of Lemma 5.8. Note
that the support of f+ need not be disjoint of the support of h nor does any density have to be
0–1 valued.
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by means of a measurable map

T : M × Ω→M ∪ {ð},

defined uniquely almost everywhere and a density ρω. Similarly, for each g ∈ G and r ∈ N there
exists a measurable map

Tg,r : M × Ω→M ∪ {ð}

and a density ρωg,r such that the measure

QgBr(dx, dy, dω) = δTg,r(x,ω)(dy) ρωg,rλ
ω(dx)P(dω)

on M ×M × Ω is the unique optimal semicoupling of λ• and 1gBr µ
•.

Proposition 5.7. For every g ∈ G

Tg,r(x, ω) → T (x, ω) as r →∞ in λ• ⊗ P-measure.

The claim relies on the following two Lemmas. For the first one we use our amenability as-
sumption once more. The second one is a slight modification (and extension) of a result in
[Amb03].

Lemma 5.8. i) Fix ω ∈ Ω and take two disjoint bounded Borel sets A,B ⊂ M . Let qωA =
(id, TωA)∗(ρ

ω
Aλ

ω) be the optimal semicoupling between λω and 1Aµ
ω. Similarly, let qωB and

qωA∪B be the unique optimal semicouplings between λω and 1Bµ
ω respectively 1A∪Bµ

ω with
transport maps TωB and TωA∪B and densities ρωB and ρωA∪B. Then, it holds that

ρωA∪B(x) ≥ max{ρωA(x), ρωB(x)} λωa.s..

ii) For any g ∈ G and r ∈ N we have ρωg,r(x) ≤ ρω(x) (λ• ⊗ P) a.s..

iii) For any g ∈ G we have limr→∞ ρ
ω
g,r(x)↗ ρω(x) (λ• ⊗ P) a.s..

Proof. i) Firstly, note that if {ρωA > 0} ∩ {ρωB > 0} = ∅ we have ρωA∪B = ρωA + ρωB. Because of
the symmetry in A and B it is sufficient to prove that ρωA∪B ≥ ρωB. The proof is rather technical
and involves an iterative choice of possibly different densities. The idea behind this iteration is
sketched in figure 5.2.
For simplicity of notation we will suppress ω and write f = ρB and h = ρA∪B and T = TB, S =
TA∪B. We will show the claim by contradiction. Assume there is a set D of positive λ measure
such that f(x) > h(x) on D. Put f+ := (f − h)+ and µ1 := T∗(f+λ). Let h1 ≤ h be such that
S∗(h1λ) = µ1, that is h1 is a subdensity of h such that T∗(f+λ) = S∗(h1λ) (for finding this
density we can use disintegration as in the proof of Proposition 4.9).
If 1{h1>0}h > f on some set D1 of positive λ measure, we are done. Indeed, as f is the unique
Cost minimizing choice for the semicoupling between λ and 1Bµ the transport S∗(1D1h1λ) =: µ̃1

must be more expensive than the respective transport T∗(1D̃1
f+λ) = µ̃1 for some suitable set

D̃1. Hence, qA∪B cannot be minimizing and therefore not optimal, a contradiction.
If 1{h1>0}h ≤ f we can assume wlog that T∗(h1λ) = µ2 and µ1 are singular to each other.
Indeed, if they are not singular we can choose a different h1 because 1Bµ has to get its mass from
somewhere. To be more precise, if h̃ ≤ h1 is such that T∗(h̃λ) ≤ µ1 we have T∗((f+ + h̃)λ) > µ1.
Therefore, there must be some density h′ such that h′+h1 ≤ h and S∗((h

′+h1)λ) = T∗((f++h̃)λ).
Because, f+ > 0 on some set of positive measure and T∗(fλ) ≤ S∗(hλ), there must be such an
h1 as claimed.
Take a density h2 ≤ h such that S∗(h2λ) = µ2. If 1{h2>0}h > f on some set D2 of positive
λ measure, we are done. Indeed, the optimality of qB implies that the choice of f+ and h1 is
cheaper than the choice of h1 and h2 for the transport into µ1 + µ2 (or maybe subdensities of
these).
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If 1{h2>0}h ≤ f and {h2 > 0} ∩ {f+ > 0} has positive λ measure, we get a contradiction of
optimality of qA∪B by cyclical monotonicity. Otherwise, we can again assume that T∗(h2λ) =: µ3

and µ2 are singular to each other. Hence, we can take a density h3 ≤ h such that S∗(h3λ) = µ3.

Proceeding in this manner, because f+λ(M) = hiλ(M) > 0 for all i and the finiteness of
qB(M,M) one of the following two alternatives must happen

• there is j such that 1{hj>0}h > f on some set of positive λ measure.

• there are j 6= i such that {hj > 0} ∩ {hi > 0} on some set of positive λ measure with
f+ = h0.

Both cases lead to a contradiction by using the optimality of qB, either by producing a cheaper
semicoupling (in the first case) or by arguing via cyclical monotonicity (in the second case).

ii) Fix ω, g and r. Denote the density of the first marginal of Q̃lf by ζωf,l. It is a convex combination
of ρωh,l with h ∈ fΛl. For h ∈ G with d(g, h) ≤ n we have gΛr ⊂ hΛr+n. Hence, we have
ρωg,r ≤ ρωh,r+n by the first part of the Lemma. Therefore, the contribution of ρωg,r(x) to ζωg,r+n(x)
is at least the number of h ∈ G such that d(g, h) ≤ n divided by |Λr+n|. Hence,

|Λn|
|Λr+n|

ρωg,r(x) ≤ ζωg,r+n(x).

By the assumption (5.1) we have

lim
r→∞

|KΛr4Λr|
|Λr|

= 0,

for any finite K ⊂ G. If we take K = {h : d(h, id) = r} we can conclude

|Λn+r|
|Λn|

≤ 1 +
|KΛn4Λn|
|Λn|

→ 1 as n→∞.

Fix ε > 0. If ρωg,r > ε+ ρω on some positive (λ•⊗P)− set, we have that ζωg,r+n(x) > ρω(x) + ε/2

on some positive (λ• ⊗ P)− set for all n such that |Λn|
|Λn+r| ≥ 1 − ε/2, because ρωg,r ≤ 1 and thus

ρω ≤ 1−ε. Denote this set by A, so A ⊂M×Ω. Then, we have Q̃r+ng (A×M) > Q∞(A×M)+ε/2

for all n big enough. However, this is a contradiction to the vague convergence of Q̃rg to Q∞

which was shown in the last section.

iii) The last part allows to interpret ρωg,r as a density of (ρωλω) instead of as a density of λω. We
will adopt this point of view and show that ρωg,r converges to 1 (λ• ⊗ P) a.s..

Assume that ρωg,r(x) ≤ γ < 1 for all r ∈ N. Moreover, assume that there is k ∈ G and s ∈ N
such that ρωk,s(x) > γ. Then there is a t ∈ N such that gΛt ⊃ kΛs. The first part of the Lemma
then implies that ρωg,t(x) ≥ ρωk,s(x) > γ which contradicts the assumption of ρωg,r(x) ≤ γ. Hence,
if we have ρωg,r(x) ≤ γ < 1 for all r ∈ N on a set of positive (λ• ⊗ P) measure we must have
ρωk,s(x) ≤ γ for all k ∈ G ans s ∈ N on this set. Denote this set again by A, A ⊂M ×Ω. As ζωg,r
is a convex combination of the densities ρωh,r it must also be bounded away from 1 by γ on the

set A. However, this is again a contradiction to the vague convergence of Q̃rg to Q∞.

Lemma 5.9. Let X,Y be locally compact separable spaces, θ a Radon measure on X and ρ a
metric on Y compatible with the topology.

(i) For all n ∈ N let Tn, T : X → Y be Borel measurable maps. Put Qn(dx, dy) := δTn(x)(dy)θ(dx)
and Q(dx, dy) := δT (x)(dy)θ(dx). Then,

Tn → T in measure on X ⇐⇒ Qn → Q vaguely in M(X × Y ).
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(ii) More generally, let T and Q be as before whereas

Qn(dx, dy) :=

∫
X′
δTn(x,x′)(dy) θ′(dx′) θ(dx)

for some probability space (X ′,A′, θ′) and suitable measurable maps Tn : X ×X ′ → Y . Then

Qn → Q vaguely in M(X × Y ) =⇒ Tn(x, x′)→ T (x) in measure on X ×X ′.

Proof. (i) Assume Tn → T in θ-measure. Then also f ◦ (Id, Tn) → f ◦ (Id, T ) in θ-measure for
any f ∈ Cc(X × Y ). Then, every subsequence of (f ◦ (Id, Tn))n∈N has a further subsequence
converging to f ◦ (Id, T ) θ a.e.. As f has compact support and in particular is bounded this
implies by the dominated convergence theorem∫

f(x, y)dQn =

∫
f(x, Tn(x))dθ →

∫
f(x, T (x))dθ =

∫
f(x, y)dQ.

This proves the vague convergence of Qn towards Q.

For the opposite direction, fix K̃ ⊂ X compact and ε > 0 and δ > 0. By Lusin’s theorem there
is a compact set K ⊂ K̃ such that T |K is continuous and θ(K̃\K) < δ. Put η : R+ → R+, t 7→
1 ∧ |t| /ε. The function

φ(x, y) = 1K(x)η(ρ(y, T (x)))

is upper semicontinuous, nonnegative and compactly supported. Hence, there exist φl ∈ Cc(X×
Y ) with φl ↘ φ. By assumption, we have for each l∫

φ(x, y)Qn(dx, dy) ≤
∫
φl(x, y)Qn(dx, dy)

n→∞→
∫
φl(x, y)Q(dx, dy).

Moreover, ∫
φl(x, y)Q(dx, dy)

l→∞→
∫
φ(x, y)Q(dx, dy) = 0.

Therefore, limn→∞
∫
φ(x, y)Qn(dx, dy) = 0. In other words,

lim
n→∞

∫
1K(x)η(ρ(Tn(x), T (x)))θ(dx) = 0.

This implies limn→∞ θ({x ∈ K : ρ(Tn(x), T (x)) ≥ ε}) = 0 and then in turn

lim
n→∞

θ({x ∈ K̃ : ρ(Tn(x), T (x)) ≥ ε}) ≤ δ.

As δ > 0 was arbitrary, we can conclude

lim
n→∞

θ({x ∈ K̃ : ρ(Tn(x), T (x)) ≥ ε}) = 0.

(ii) Given any compact K̃ ⊂ X and any ε > 0, choose φ as before. Then vague convergence
again implies limn→∞

∫
φ(x, y)Qn(dx, dy) = 0. This, in other words, now reads as

lim
n→∞

∫
X

∫
X′

1K(x)η(ρ(Tn(x, x′), T (x))) θ′(dx′) θ(dx) = 0.

Therefore,

lim
n→∞

(θ ⊗ θ′)
({

(x, x′) ∈ K̃ ×X ′ : ρ(Tn(x, x′), T (x)) ≥ ε
})

= 0.

This is the claim.
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Proof of the Proposition. Firstly, we will show that the Proposition holds for ’sufficiently many’
g ∈ G. We want to apply the previous Lemma. Recall that

Q̃rg → Q∞ vaguely on M ×M × Ω,

where

Q∞(dx, dy, dω) = δT (x,ω)(dy)ρω(x)λω(dx)P(dω)

and

Q̃rg(dx, dy, dω) =
1

|Λr|
∑
h∈gBr

QhBr(dx, dy, dω) =
1

|Λr|
∑
h∈gBr

δTh,r(x)(dy)ρωh,r(x)λω(dx)P(dω),

with transport maps T, Th,r : M × Ω → M ∪ {ð} and densities ρ, ρh,r : M × Ω → R+. The
Lemma above allows to interpret ρh,r as density of the measure ρλ•. Fix k ∈ G and let θ′r be
the uniform measure on kΛr. Take θ = ρλ•⊗P, X = M ×Ω and Y = M ∪{ð}. Apply the same
reasoning as in the proof of the second assertion in the last lemma, however, now with changing
θ′, to get

lim
r→∞

(θ ⊗ θ′r)
({

(x, ω, h) ∈ K̃ ×G : ρωh,r(x) · d(Th,r(x, ω), T (x, ω)) ≥ ε
})

= 0. (5.2)

Let H ⊂ G be those h for which

lim
r→∞

θ
({

(x, ω) ∈ K̃ : ρωh,r(x)d(Th,r(x, ω), T (x, ω)) ≥ ε
})

> 0.

Because we know that (5.2) holds, we must have limr→∞ θ
′
r(H) = 0. Hence, there are countably

many g ∈ G such that

lim
r→∞

θ
({

(x, ω) ∈ K̃ : d(Tg,r(x, ω), T (x, ω)) ≥ ε
})

= 0,

where we used that ρωg,r ↗ 1 for (λ•⊗P) a.e. (x, ω), according to the Lemma above. This shows
that the Proposition holds for those g.

Pick one such g ∈ G. Then the first part of the previous lemma implies

QgBr → Q∞ vaguely on M ×M × Ω.

This in turn implies that for any h ∈ G (τh)∗QgBr → (τh)∗Q
∞ (d)

= Q∞ by invariance of Q∞.

Moreover, by Corollary 3.12 we have (τh)∗QgBr
(d)
= QhgBr . This means, that for any h ∈ G we

have

QhgBr → Q∞ vaguely on M ×M × Ω.

Applying once more the first part of the previous Lemma proves the Proposition.

Corollary 5.10. There is a measurable map Ψ : M(M) ×M(M) → M(M ×M) s.t. qω :=
Ψ(λω, µω) denotes the unique optimal semicoupling between λω and µω. In particular the optimal
semicoupling is a factor.

Proof. We showed that the optimal semicoupling Q∞ can be constructed as the unique limit
point of a sequence of deterministic functions of λ• and µ•. Hence, the map ω 7→ qω is measurable
with respect to the sigma algebra generated by λ• and µ•. Thus, there is a measurable map Ψ
such that q• = Ψ(λ•, µ•).
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5.2.1 Semicouplings of λ• and a point process.

If µ• is known to be a point process the above convergence result can be significantly improved.

Theorem 5.11. For any g ∈ G and every bounded Borel set A ⊂M

lim
r→∞

(λ• ⊗ P) ({(x, ω) ∈ A× Ω : Tg,r(x, ω) 6= T (x, ω)}) = 0.

Proof. Let A be as above and ε > 0 be given. Finiteness of the asymptotic mean transportation
cost implies that there exists a bounded set A′ ⊂M such that

(λ• ⊗ P)
({

(x, ω) ∈ A× Ω : T (x, ω) 6∈ A′
})
≤ ε.

Given the bounded set A′ there exists δ > 0 such that the probability to find two distinct
particles of the point process at distance < δ, at least one of them within A′, is less than ε, i.e.

P
({
ω : ∃(y, y′) ∈ A′ ×M : 0 < d(y, y′) < δ, µω({y}) > 0, µω({y′}) > 0

})
≤ ε.

On the other hand, Proposition 5.7 states that with high probability the maps T and Tg,r have
distance less than δ. More precisely, for each δ > 0 there exists r0 such that for all r ≥ r0

(λ• ⊗ P) ({(x, ω) ∈M × Ω : d(Tg,r(x, ω), T (x, ω)) ≥ δ}) ≤ ε.

Since all the maps T and Tg,r take values in the support of the point process (plus the point ð)
it follows that

(λ• ⊗ P) ({(x, ω) ∈M × Ω : Tg,r(x, ω) 6= T (x, ω)}) ≤ 3ε

for all r ≥ r0.

Corollary 5.12. There exists a subsequence (rl)l such that

Tg,rl(x, ω) → T (x, ω) as l→∞

for almost every x ∈ M , ω ∈ Ω and every g ∈ G. Indeed, the sequence (Tg,rl)l is finally
stationary. That is, there exists a random variable lg : M × Ω→ N such that almost surely

Tg,rl(x, ω) = T (x, ω) for all l ≥ lg(x, ω).



Chapter 6

The other semicouplings

In the previous chapters we studied semicouplings between two equivariant random measures
λ• and µ• with intensities 1 and β ≤ 1 respectively. In this chapter we want to study the case
that µ• has intensity β > 1. Then, q• is a semicoupling between λ• and µ• iff for all ω ∈ Ω

(π1)∗q
ω = λω and (π2)∗q

ω ≤ µω.

This will complete the picture of semicouplings with one marginal being absolutely continuous.
In the terminology of section 2.2 we should better talk about semicouplings between µ• and λ•.
However, we prefer to keep λ• as first marginal as it better suits our intuition of transporting a
continuous quantity somewhere. We will not repeat all proofs but mostly just stress the parts
where something changes. In general, it will get easier because we do not have to worry about
densities.

6.1 Semicouplings on bounded sets

Lemma 6.1. Let ρ ∈ L1(M,m) be a nonnegative density. Let µ be an arbitrary measure on
M with µ(M) ≥ (ρ · m)(M). Then, there is a unique semicoupling q between (ρ · m) and µ
minimizing Cost(·). Moreover, q = (id, T )∗(ρ ·m) for some measurable cyclically monotone map
T .

Proof. The existence of one Cost minimizing semicoupling q goes along the same lines as for
example in Lemma 3.2. Let q1 be one such minimizer. As q1 is minimizing it has to be an optimal
coupling between its marginals. Therefore, it is induced by a map, that is q1 = (id, T1)∗(ρ ·m).
Let q2 = (id, T2)∗(ρ · m) be another minimizer. Then, q3 = 1

2(q1 + q2) is minimizing as well.
Hence, q3 = (id, T3)∗(ρ ·m). However, just as in the proof of Lemma 3.2 this implies T1 = T2

(ρm) almost everywhere and therefore q1 = q2.

Given a pair of random measures (λ•, µ•). We can apply this result to a fixed realization (λω, µω).
For any bounded Borel set A ⊂ M , there is a unique semicoupling qωA between 1Aλ

ω and µω

minimizing Cost(·). We can argue as in Lemma 3.10 to conclude

Lemma 6.2. For each bounded Borel set A ⊂M , the map ω 7→ qωA is measurable.

This allows to deduce, just as before:

Theorem 6.3. (i) For each bounded Borel set A ⊂ M there exists a unique semicoupling QA
of (1Aλ

•)P and µ•P which minimizes the mean cost functional Cost(.).
(ii) The measure QA can be disintegrated as QA(dx, dy, dω) := qωA(dx, dy)P(dω) where for P-a.e.
ω the measure qωA is the unique minimizer of the cost functional Cost(.) among the semicouplings
of 1Aλ

ω and µω.
(iii) Cost(QA) =

∫
Ω Cost(qωA)P(dω).
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6.2 Uniqueness

We will again prove uniqueness by showing that every optimal semicoupling is induced by a
transport map.

Lemma 6.4. Given a semicoupling qω of λω and µω for fixed ω ∈ Ω, then the following properties
are equivalent.

(i) For each bounded Borel set A ⊂ M , the measure 1A×Mq
ω is the unique optimal coupling

of the measures 1Aλ
ω and µωA(·) := qω(A, ·).

(ii) The support of qω is c-cyclically monotone.

(iii) There exists a c-cyclically monotone map Tω : M →M such that

qω = (Id, Tω)∗ λ
ω.

Proof. The proof goes along the same lines as the proof of Proposition 4.1. The part (i) im-
plies (iii) will even get easier as only indicator functions appear and not general densities, e.g.
1Kn×Mq

ω is the unique optimal coupling between 1Knλ
ω � m and µωKn . We omit the details.

Definition 6.5. A semicoupling q•P between λ• and µ• is called

i) locally optimal iff some (hence every) property of the previous proposition is satisfied for
P-a.e. ω ∈ Ω.

ii) efficient on A ⊂M bounded Borel iff

eA(q•) :=
Cost(1Aλ

• , µ•A)

Cost(1A×Mq•)
= 1.

iii) optimal iff it is asymptotically optimal and equivariant.

Copying the proofs basically line to line we get

Proposition 6.6. i) q• is locally optimal iff it is efficient on all bounded Borel sets A ⊂M .

ii) Every optimal semicoupling between λ• and µ• is locally optimal.

iii) There exists at most one optimal semicoupling between λ• and µ•.

Proof of part (iii). Take two optimal semicouplings q•1 and q•2. Then, q• = 1
2q
•
1 + 1

2q
•
2 is optimal

as well. Hence, by part (ii) all three semicouplings – q•1, q•2 and q• – are locally optimal. Thus,
for a.e. ω by the results of the Lemma above there exist maps Tω1 , T

ω
2 , T

ω such that

δTω(x)(dy) λω(dx) = qω(dx, dy)

=

(
1

2
δTω1 (x)(dy) +

1

2
δTω2 (x)(dy)

)
λω(dx)

This, however, implies Tω1 (x) = Tω2 (x) for a.e. x ∈M . Thus qω1 = qω2 .

Remark 6.7 (Geometry of tessellation induced by semicouplings). The results about the cells
remain true, as the transport maps are still c-cyclically monotone. In particular, considering
the cost function |x− y|2 on Rd an optimal semicoupling between the Lebesgue measure L and
a Poisson point process of intensity 42 will induce a tessellation of Rd into convex polytopes.
However, the different cells will have mass at most one.
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6.3 Construction

Just as in chapter 5 we will assume that the balls Λr are Følner sets. The construction is very
similar. We only have to switch the roles of λ• and µ•. Apart from this the proofs remain
unchanged as we did not use any specific properties of λ• or µ•.
Put

Qrg(dx, dy, dω) = 1gB0(x)
1

|Λr|
∑
h∈gΛr

QhBr(dx, dy, dω).

The very same proof as before (Lemma 5.1) yields

Lemma 6.8. (i) For each r ∈ N and g ∈ G∫
gB0×M×Ω

c(x, y)Qrg(dx, dy, dω) ≤ c∞.

(ii) The family (Qrg)r∈N of probability measures on M ×M × Ω is relatively compact in the
weak topology.

(iii) There exist probability measures Q∞g and a subsequence (rl)l∈N such that for all g ∈ G:

Qrlg −→ Q∞g weakly as l→∞.

Arguing as in the proof for Theorem 5.3 yields (interchanging the roles of λ• and µ•)

Theorem 6.9. The measure Q∞ :=
∑

g∈GQ
∞
g is an optimal semicoupling of λ• and µ•.

As before we can lift the restriction in the definition of Qrg to get

Corollary 6.10. (i) For r → ∞, the sequence of measures Qr :=
∑
g∈G

Qrg, r ∈ N, converges

vaguely to the unique optimal semicoupling Q∞.
(ii) For each g ∈ G and r ∈ N put

Q̃rg :=
1

|Λr|
∑
h∈gΛr

QhBr(dx, dy, dω).

The sequence (Q̃rg)r∈N converges vaguely to the unique optimal semicoupling Q∞.

The proof for the quenched results is even slightly easier than in the β ≤ 1 case, as we know
that all the mass of λω will be transported. Hence, we can directly apply Lemma 5.9:
The unique optimal semicoupling between λ• and µ• can be represented on M ×M × Ω as

Q∞(dx, dy, dω) = δT (x,ω)(dy)λω(dx)P(dω)

by means of a measurable map
T : M × Ω→M,

defined uniquely almost everywhere. Similarly, for each g ∈ G and r ∈ N there exists a measur-
able map

Tg,r : M × Ω→M

such that the measure

QgBr(dx, dy, dω) = δTg,r(x,ω)(dy) 1gBrλ
ω(dx)P(dω)

on M ×M × Ω is the unique optimal semicoupling of 1gBrλ
• and µ•.
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Proposition 6.11. For every g ∈ G

Tg,r(x, ω) → T (x, ω) as r →∞ in λ• ⊗ P-measure.

Proof. We want to use the second part of Lemma 5.9 with X = M ×Ω, Y = M, θ = λ• ⊗ P and
θ′r the uniform measure on kΛr for some fixed k ∈ G. By the same reasoning as in the proof of
Proposition 5.7 or as in the proof of the second assertion of Lemma 5.9 we can deduce for any
compact K ⊂M × Ω :

lim
r→∞

θ ({(x, ω) ∈ K : d(Tg,r(x, ω), T (x, ω)) ≥ ε}) = 0.

In particular this implies the following Corollaries, whose proofs can be copied line to line from
respective results in chapter 5.

Corollary 6.12. The optimal semicoupling between λ• and µ• is a factor.

Corollary 6.13. If µ• is a point process,

i) for any g ∈ G and every bounded Borel set A ⊂M

lim
r→∞

(λ• ⊗ P) ({(x, ω) ∈ A× Ω : Tg,r(x, ω) 6= T (x, ω)}) = 0.

ii) there exists a subsequence (rl)l such that

Tg,rl(x, ω) → T (x, ω) as l→∞

for almost every x ∈ M , ω ∈ Ω and every g ∈ G. Indeed, the sequence (Tg,rl)l is finally
stationary. That is, there exists a random variable lg : M ×Ω→ N such that almost surely

Tg,rl(x, ω) = T (x, ω) for all l ≥ lg(x, ω).

Remark 6.14. Given a pair of equivariant random measure (λ•, µ•) such that λ• is absolutely
continuous as usual and µ• is a simple point process of intensity β > 1. One could define a
semicoupling q• between λ• and µ• also by requiring that for P a.e. ω ∈ Ω

qω(·,M) = λω(·) and qω(M, ·) =
∑

ξ∈supp(µω)

ρω(ξ)δξ,

with some “density” ρ : supp(µω)→ {0, 1}. This means, we are looking for the cheapest way to
build a sub-point process of intensity one from µ•. If β is very large this thinning should (if it
exists) give something which is close to a lattice. One can interpret this semicoupling as a way
to distribute resources to consumers or production sites with the constraint that the resource is
just useful for the recipient if she/he gets it in a complete unit, e.g. if you want to produce a
car you need a certain amount of steel. If you only get half of what you need, you cannot build
the car.



Chapter 7

Cost estimate

In this chapter we show the estimates of the transportation cost between the Lebesgue measure
λ = L on Rd and an equivariant Poisson point process µ• of intensity β ∈ (0,∞), i.e. we prove
the missing parts of Theorem 1.7 and Corollary 1.8. Furthermore, we will show transportation
cost estimates between L and a compound Poisson process. Hence, we take M = Rd, G = Zd
acting on Rd by translation and as a fundamental region we can choose B0 = [0, 1)d. We will
often call invariant measures translation invariant. The presentation of the Poisson estimates
follows closely the respective section in [HS10].

The asymptotic mean transportation cost for µ• will be denoted by

c∞ = c∞(ϑ, d, β)

or, if ϑ(r) = rp, by c∞(p, d, β). We will present sufficient as well as necessary conditions for
finiteness of c∞. These criteria will be quite sharp. Moreover, in the case of Lp-cost, we also
present explicit sharp estimates for c∞. Note that, because of Lemma 2.16 (see also Corollary
5.5) we have

c∞ = lim inf
r→∞

inf
q∈Πs

1

2dr
E

[∫
Rd×[0,2r)d

c(x, y)q•(dx, dy)

]
.

To begin with, let us summarize some elementary monotonicity properties of c∞(ϑ, d, β).

Lemma 7.1. i) ϑ ≤ ϑ implies c∞(ϑ, d, β) ≤ c∞(ϑ, d, β).

More generally, lim supr→∞
ϑ(r)
ϑ(r) <∞ and c∞(ϑ, d, β) <∞ imply c∞(ϑ, d, β) <∞.

ii) If ϑ = ϕ ◦ ϑ for some convex increasing ϕ : R+ → R+ then ϕ
(
β−1c∞(ϑ, d, β)

)
≤

β−1c∞(ϑ, d, β).

iii) β ≤ β ≤ 1 implies c∞(ϑ, d, β) ≤ c∞(ϑ, d, β).

iv) β ≥ β ≥ 1 implies c∞(ϑ, d, β) ≤ c∞(ϑ, d, β).

Proof. i) is obvious. ii) If q denotes the optimal semicoupling for ϑ then Jensen’s inequality
implies

β−1c∞(ϑ, d, β) = β−1E
∫
Rd×[0,1)d

ϕ (ϑ(|x− y|)) q(dx, dy)

≥ ϕ

(
β−1E

∫
Rd×[0,1)d

ϑ(|x− y|) q(dx, dy)

)
≥ ϕ(β−1c∞(ϑ, d, β)).

iii) Given a realization µω of a Poisson point process with intensity β. Delete each point ξ ∈
supp[µω] with probability 1 − β/β, independently of each other. Then the remaining point

61



62 CHAPTER 7. COST ESTIMATE

process µω is a Poisson point process with intensity β (easy computation or see chapter 11.3 in
[DVJ07]). Hence, each semicoupling qω between L and µω leads to a semicoupling qω between
L and µω with less or equal transportation cost: the centers which survive are coupled with the
same cells as before.)
iv) Given a Poisson point process µ• with intensity β. Let q• be the optimal semicoupling
between L and µ•. Take another Poisson point process µ̃• of intensity (β − β) independent of
µ•. Then, q• is also a semicoupling between L and µ• := µ•+µ̃• which is a Poisson point process
of intensity β. However, q• need not be optimal.

Remark 7.2. The same results hold for compound Poisson processes.

7.1 Lower Estimates

Theorem 7.3 ([HL01]). Assume β = 1 and d ≤ 2. Then for all equivariant couplings of
Lebesgue and Poisson

E

[∫
Rd×[0,1)d

|x− y|d/2 q•(dx, dy)

]
=∞.

Theorem 7.4. For all β ∈ (0,∞) and d ≥ 1 there exists a constant κ′ = κ′(d, β) such that for
all translation invariant semicouplings of Lebesgue and Poisson

E

[∫
Rd×[0,1)d

exp
(
κ′|x− y|d

)
q•(dx, dy)

]
=∞.

The result is well-known in the case β = 1. In this case, it is based on a lower bound for the event
”no Poisson particle in the cube [−r, r)d” and on a lower estimate for the cost of transporting
the Lebesgue measure in [−r/2, r/2)d to some distribution on Rd \ [−r, r)d:

c∞ ≥ exp
(
−(2r)d

)
· ϑ
(r

2

)
· 2−d.

Hence, c∞ →∞ as r →∞ if ϑ(r) = exp(κ′ rd) with κ′ > 22d.
However, this argument breaks down in the case β < 1 because some of the Lebesgue mass will
not be used. We will present a different argument which works for all β ∈ (0,∞).

Proof. β ≤ 1 Consider the event ”more than (3r)d Poisson particles in the box [−r/2, r/2)d” or,
formally,

Ω(r) =
{
µ•
(

[−r/2, r/2)d
)
≥ (3r)d

}
.

Note that Eµ•
(
[−r/2, r/2)d

)
= βrd with β ≤ 1. For ω ∈ Ω(r), the cost of a semicoupling

between L and 1[−r/2,r/2)dµ
ω is bounded from below by

ϑ(r/2) · rd

(since rd Poisson points – or more – must be transported at least a distance r/2). The large
deviation result formulated in the next lemma allows to estimate

P(Ω(rn)) ≥ e−k·rnd

for any k > Iβ(3d) and suitable rn →∞. Hence, if ϑ(r) ≥ exp(κ′ rd) with κ′ > 2d · Iβ(3d) then
(normalizing with rd) for suitable k

c∞ ≥ P(Ω(r)) · ϑ(r/2) ≥ exp((κ′2−d − k)rd)→∞

as r →∞.
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β > 1 : We argue similarly as in the case β ≤ 1 (Now we could also use the already known argu-
ment as all the Lebesgue mass will be transported). Consider the event “less than rd/3 Poisson
points in Ar := [−r/2, r/2)d and less than rd/3 Poisson points in A′r := [−21/dr/2, 21/dr/2)d \
[−r/2, r/2)d”, formally

Φ(r) = {µ•(Ar) ≤
rd

3
, µ•(A′r) ≤

rd

3
}.

As L(Ar) = L(A′r) and Ar ∩ A′r = ∅, the independence of the Poisson point process on Ar and

A′r implies that P[Φ(r)] = P[{µ•(Ar) ≤ rd

3 }]
2. For ω ∈ Φ(r) the cost of a semicoupling between

L and µ• is bounded from below by

ϑ

(
21/d − 1

2
r

)
· r

d

3
,

because Lebesgue measure of mass at least rd/3 has to be transported at least a distance 21/d−1
2 r.

The large deviation result formulated in the next Lemma allows to estimate

P(Φ(rn)) ≥ e−k·rnd

for any k > 2 ·Iβ(1/3) and suitable rn →∞. Hence, if ϑ(r) ≥ exp(κ′rd) with κ′ > (2d+1)/(21/d−
1)d · Iβ(1/3) then (normalizing with rd) for suitable k

c∞ ≥ P(Φ(r)) · ϑ

(
21/d − 1

2
r

)
≥ exp((κ′

(21/d − 1)d

2d
− k)rd)→∞

as r →∞.

Lemma 7.5. Given any nested sequence of boxes Bn ⊂ Rd of the form Bn = Bn(zn) = zn +
[0, 2n)d with zn ∈ Zd. Put Iβ(t) = t log(t/β)− t+ β.

i) if t ≥ β we have

lim
n→∞

−1

L(Bn)
logP

[
1

L(Bn)
µ•(Bn) ≥ t

]
= Iβ(t).

ii) if t ≤ β we have

lim
n→∞

−1

L(Bn)
logP

[
1

L(Bn)
µ•(Bn) ≤ t

]
= Iβ(t).

Proof. For a fixed sequence Bn, n ∈ N, consider the sequence of random variables Zn(.) =
µ•(Bn). For each n ∈ N

Zn =
∑

i∈Bn∩Zd
Xi

with Xi = µ•(B0(i)). The Xi are iid Poisson random variables with mean β. Hence, Cramér’s
Theorem states that for all t ≥ β

lim inf
n→∞

−1

L(Bn)
logP

[
1

L(Bn)
Zn ≥ t

]
≥ Iβ(t)

with
Iβ(t) = sup

x
[tx− log µ̂(x)] = t log(t/β)− t+ β.

The second part is similar.
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7.2 Upper Estimates for Concave Cost

In this section we treat the case of a concave scale function ϑ. In particular this implies that
the cost function c(x, y) = ϑ(|x− y|) defines a metric on Rd. The results of this section will be
mainly of interest in the case d ≤ 2; in particular, they will prove assertion (ii) of Theorem 1.7.
It suffices to consider the case β = 1. Similar to the early work of Ajtai, Komlós and Tusnády
[AKT84], our approach will be based on iterated transports between cuboids of doubled edge
length.
We put

Θ(r) :=

∫ r

0
ϑ(s)ds and ε(r) := sup

s≥r

ϑ(s)

sd/2
.

7.2.1 Modified Cost

In order to prove the finiteness of the asymptotic mean transportation cost, we will estimate the
cost of a semicoupling between L and 1Aµ

• from above in terms of the cost of another, related
coupling.
Given two measure valued random variables ν•1 , ν

•
2 : Ω→M(Rd) with νω1 (Rd) = νω2 (Rd) for a.e.

ω ∈ Ω we define their transportation distance by

Wϑ(ν•1 , ν
•
2) :=

∫
Ω
Wϑ(νω1 , ν

ω
2 )P(dω)

where

Wϑ(η1, η2) = inf

{∫
Rd×Rd

ϑ(|x− y|) q(dx, dy) : q is a coupling of η1, η2

}
denotes the usual L1-Wasserstein distance – w.r.t. the distance ϑ(|x − y|) – between (not
necessarily normalized) measures η1, η2 ∈M(Rd) of equal total mass.

Lemma 7.6. (i) For any triple of measure-valued random variables ν•1 , ν
•
2 , ν
•
3 : Ω → M(Rd)

with νω1 (Rd) = νω2 (Rd) = νω3 (Rd) for a.e. ω ∈ Ω we have the triangle inequality

Wϑ(ν•1 , ν
•
3) ≤Wϑ(ν•1 , ν

•
2) + Wϑ(ν•2 , ν

•
3).

(ii) For each countable families of pairs of measure-valued random variables ν•1,k, ν
•
2,k : Ω →

M(Rd) with νω1,k(Rd) = νω2,k(Rd) for a.e. ω ∈ Ω and all k we have

Wϑ

(∑
k

ν•1,k ,
∑
k

ν•2,k

)
≤
∑
k

Wϑ

(
ν•1,k , ν

•
2,k

)
.

Proof. Gluing lemma (cf. [Dud02] or [Vil09], chapter 1) plus Minkowski inequality yield (i); (ii)
is obvious.

For each bounded measurable A ⊂ Rd let us now define a random measure ν•A : Ω→M(Rd) by

νωA :=
µω(A)

L(A)
· 1A L.

Note that – by construction – the measures νωA and 1A µ
ω have the same total mass. The modified

transportation cost is defined as

ĈA(ω) = inf

{∫
c(x, y)q̂(dx, dy) : q̂ is a coupling of νωA and 1A µ

ω

}
= Wϑ(νωA, 1Aµ

ω).

Put
ĉn = 2−nd · E

[
ĈBn

]
with Bn = [0, 2n)d.

The general idea for estimating the transportation cost is sketched in figure 7.1.
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First transport:

λ•Bn ν•Bn

T1

Do this 2d times!

Second transport:

∑2d

i=1 ν
•
Bin

T2

ν•Bn+1

And once more the first transport:

ν•Bn+1
λ•Bn+1

T̃1

Figure 7.1: Sketch of transportation cost estimate.
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7.2.2 Semi-Subadditivity of Modified Cost

The crucial advantage of this modified cost function ĈA is that it is semi-subadditive (i.e. sub-
additive up to correction terms) on suitable classes of cuboids which we are going to introduce
now. For n ∈ N0, k ∈ {1, . . . , d} and i ∈ {0, 1}k put

Bi
n+1 := [0, 2n)k × [0, 2n+1)d−k + 2n · (i1, . . . , ik, 0, . . . , 0)

These cuboids can be constructed by iterated subdivision of the standard cube Bn+1 as follows:
We start with Bn+1 = [0, 2n+1)d and subdivide it (along the first coordinate) into two disjoint

congruent pieces B
(0)
n+1 = [0, 2n)× [0, 2n+1)d−1 and B

(1)
n+1 = B

(0)
n+1 + 2n · (1, 0, . . . , 0). In the k-th

step, we subdivide each of the Bi
n+1 = B

(i1,...,ik−1)
n+1 for i ∈ {0, 1}k−1 along the k-th coordinate

into two disjoint congruent pieces B
(i1,...,ik−1,0)
n+1 and B

(i1,...,ik−1,1)
n+1 . After d steps we are done.

Each of the Bi
n+1 for i ∈ {0, 1}d is a copy of the standard cube Bn = [0, 2n)d, more precisely,

Bi
n+1 = Bn + 2n · i.

Lemma 7.7. Given n ∈ N0, k ∈ {1, . . . , d} and i ∈ {0, 1}k put D0 = B
(i1,...,ik−1,0)
n+1 , D1 =

B
(i1,...,ik−1,1)
n+1 and D = D0 ∪D1 = B

(i1,...,ik−1)
n+1 . Then

Wϑ

(
ν•D0

+ ν•D1
, ν•D

)
≤ 2−(n+1)Θ(2n+1)2d/2(n+1)−k/2.

Proof. Put Zj(ω) := µω(Dj) for j ∈ {0, 1}. Then Z0, Z1 are independent Poisson random
variables with parameter α0 = α1 = L(Dj) = 2d(n+1)−k and Z := µ•(D) = Z0 + Z1 is a Poisson
random variable with parameter α = 2d(n+1)−k+1.

The measure ν•D has density Z
α on D whereas the measure ν̃•D := ν•D0

+ ν•D1
has density 2Z0

α on

the part D0 ⊂ D and it has density 2Z1
α on the remaining part D1 ⊂ D. If Z = 0 nothing has to

be transported since ν̃•D already coincides with ν•D. Hence, for the sequel we may assume Z > 0.

Assume that Z0 > Z1. Then a total amount of mass Z0−Z1
2 , uniformly distributed over D0, will

be transported with the map

T : (x1, . . . , xk−1, xk, xk+1, . . . , xd) 7→ (x1, . . . , xk−1, 2
n+1 − xk, xk+1, . . . , xd)

from D0 to D1. The rest of the mass remains where it is. Hence, the cost of this transport is

|Z0 − Z1|
2

· 2−n
∫ 2n

0
ϑ(2n+1 − 2xk) dxk = 2−(n+2)Θ(2n+1) · |Z0 − Z1|.

Hence, we get

Wϑ (ν̃•D, ν
•
D) = 2−(n+2)Θ(2n+1) · E [|Z0 − Z1|]

≤ 2−(n+1)Θ(2n+1) · E [|Z0 − α0|]
≤ 2−(n+1)Θ(2n+1) · α1/2

0 = 2−(n+1)Θ(2n+1)2d/2(n+1)−k/2.

Proposition 7.8. For all n ∈ N and arbitrary dimension d it holds that

ĉn+1 ≤ ĉn + 2d/2+1 · 2−(n+1)(d/2+1)Θ(2n+1).

Proof. Let us begin with the trivial observations

Wϑ

(
1Bn+1µ

• , ν•Bn+1

)
= 2d(n+1) · ĉn+1
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and

Wϑ

1Bn+1µ
• ,

∑
i∈{0,1}d

ν•Bin

 ≤ ∑
i∈{0,1}d

Wϑ

(
1Binµ

•, ν•Bin

)
= 2d ·Wϑ

(
1Bnµ

•, ν•Bn
)

= 2d(n+1) · ĉn.

Hence, by the triangle inequality for Wϑ an upper estimate for ĉn+1 − ĉn will follow from an

upper bound for Wϑ

(∑
i∈{0,1}d ν

•
Bin
, ν•Bn+1

)
.

In order to estimate the cost of transportation from ν•(d) :=
∑

i∈{0,1}d ν
•
Bin

to ν•(0) := ν•Bn+1
for

fixed n ∈ N0, we introduce (d− 1) further (’intermediate’) measures

ν•(k) =
∑

i∈{0,1}k
ν•Bin+1

and estimate the cost of transportation from ν•(k) to ν•(k−1) for k ∈ {1, . . . , d}. For each k, these

cost arise from merging 2k−1 pairs of cuboids into 2k−1 cuboids of twice the size. More precisely,
from moving mass within pairs of adjacent cuboids in order to obtain equilibrium in the unified
cuboid of twice the size. These cost – for each of the 2k−1 pairs involved – have been estimated
in the previous lemma:

Wϑ

(
ν•(k), ν

•
(k−1)

)
≤ 2k−1 ·Wϑ

(
ν•
Bi,0n+1

+ ν•
Bi,1n+1

, ν•Bin+1

)
≤ 2k−1 · 2−(n+1)Θ(2n+1)2d/2(n+1)−k/2

for k ∈ {1, . . . , d} (and arbitrary i ∈ {0, 1}k−1). Thus

2d(n+1) · [̂cn+1 − ĉn] ≤ Wϑ

(
1Bn+1µ

• , ν•(0)

)
−Wϑ

(
1Bn+1µ

• , ν•(d)

)
≤

d∑
k=1

Wϑ

(
ν•(k−1) , ν

•
(k)

)
≤

d∑
k=1

2k/2 · 2−(n+2)Θ(2n+1)2d/2(n+1)

≤ 4 · 2(n+2)(d/2−1) ·Θ(2n+1)

which yields the claim.

Corollary 7.9. If
∑
n≥1

2−(n+1)(d/2+1)Θ(2n+1) <∞, we have

ĉ∞ := lim
n→∞

ĉn

exists and is finite.

Proof. According to the previous theorem

lim
n→∞

ĉn ≤ ĉN +
∑
m≥N

2−(m+1)(d/2+1)Θ(2m+1), (7.1)

for each N ∈ N. As the sum was assumed to converge the claim follows.

7.2.3 Comparison of Costs

Proposition 7.10. For all d ∈ N and for all n ∈ N0

cn ≤ ĉn +
√

2d · ε(2n).
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Proof. Let a box B = Bn = [0, 2n)d for some fixed n ∈ N0 be given. We define a measure-valued
random variable λ•B : Ω→M(Rd) by

λωB = 1
B̂(ω)

· L

with a randomly scaled box B̂(ω) = [0, Z(ω)1/d)d ⊂ Rd and Z(ω) = µω(B). Recall that Z is a
Poisson random variable with parameter α = 2nd. Moreover, note that

λωB(Rd) = µω(B) = νωB(Rd)

and that λωB ≤ L for each ω ∈ Ω. Each coupling of λωB and 1Bµ
ω, therefore, is also a semicoupling

of L and 1Bµ
ω. Hence,

2nd · cn ≤Wϑ(λ•B, 1Bµ
•).

On the other hand, obviously,

2nd · ĉn = Wϑ(ν•B, 1Bµ
•)

and thus

2nd · (cn − ĉn) ≤Wϑ(ν•B, λ
•
B).

If Z > α a transport T∗νB = λB can be constructed as follows: at each point of B the portion α
Z

of νB remains where it is; the rest is transported from B into B̂\B. The maximal transportation
distance is

√
d · Z1/d. Hence, the cost can be estimated by

ϑ
(√

d · Z1/d
)
· (Z − α).

On the other hand, if Z < α in a similar manner a transport T ′∗λB = νB can be constructed
with cost bounded from above by

ϑ
(√

d · α1/d
)
· (α− Z).

Therefore, by definition of the function ε(.)

Wϑ(ν•B, λ
•
B) ≤ E

[
ϑ
(√

d(Z ∨ α)1/d
)
· |Z − α|

]
≤ ε

(
α1/d

)
·
√
d · E

[
(Z ∨ α)1/2 · |Z − α|

]
≤ ε

(
α1/d

)
·
√
d · E [Z + α]1/2 · E

[
|Z − α|2

]1/2

= ε (2n) ·
√
d ·
[
2 · 2nd · 2nd

]1/2
.

This finally yields

cn − ĉn ≤ 2−nd ·Wϑ(ν•B, λ
•
B) ≤ ε(2n) ·

√
2d.

Theorem 7.11. Assume that ∫ ∞
1

ϑ(r)

r1+d/2
dr <∞ (7.2)

then

c∞ ≤ ĉ∞ < ∞.
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Proof. Since ∫ ∞
1

ϑ(r)

r1+d/2
dr <∞ ⇐⇒

∞∑
n=1

Θ(2n)

2n(1+d/2)
<∞,

Corollary 7.9 applies and yields ĉ∞ < ∞. Moreover, since ϑ is increasing, the integrability
condition (7.2) implies that

ε(r) = sup
s≥r

ϑ(s)

sd/2
→ 0

as r →∞. Hence, c∞ ≤ ĉ∞ by Proposition 7.10.

The previous Theorem essentially says that c∞ <∞ if ϑ grows ’slightly’ slower than rd/2. This
criterion is quite sharp in dimensions 1 and 2. Indeed, according to Theorem 7.3 in these two
cases we also know that c∞ =∞ if ϑ grows like rd/2 or faster.

7.3 Estimates for Lp-Cost

The results of the previous section in particular apply to Lp-cost for p < d/2 in d ≤ 2 and to
Lp-cost for p ≤ 1 in d ≥ 3. A slight modification of these arguments will allow us to deduce cost
estimates for Lp cost for arbitrary p ≥ 1 in the case d ≥ 3.

In this case, the finiteness of c∞ will also be covered by the more general results of [HP05] and
[MT11], see Theorem 1.7 (i). However, using the idea of modified cost we get reasonably well
quantitative estimates on c∞. Throughout this section we assume β = 1.

7.3.1 Some Moment Estimates for Poisson Random Variables

For p ∈ R let us denote by dpe the smallest integer ≥ p.

Lemma 7.12. For each p ∈ (0,∞) there exist constants C1(p), C2(p), C3(p) such that for every
Poisson random variable Z with parameter α ≥ 1:

(i) E [Zp] ≤ C1(p) · αp, e.g. C1(1) = 1, C1(2) = 4.
For general p one may choose C1(p) = dpep or C1(p) = 2p−1 · (dpe − 1)!.

(ii) E
[
Z−p · 1{Z>0}

]
≤ C2(p) · α−p.

For general p one may choose C2(p) = (dpe+ 1)!.

(iii) E [(Z − α)p] ≤ C3(p) · αp/2, e.g. C3(2) = 1, C1(4) = 2.
For general p one may choose C3 = 2p−1 · (2dp2e − 1)!.

Proof. In all cases, by Hölder’s inequality it suffices to prove the claim for integer p ∈ N.

(i) The moment generating function of Z is M(t) := E[etZ ] = exp
(
α(et − 1)

)
. For integer p, the

p-th moment of Z is given by the p-th derivative of M at the point t = 0, i.e. E [Zp] = M (p)(0).
As a function of α, the p-th derivative ofM is a polynomial of order p (with coefficients depending
on t). As α ≥ 1 we are done.

To get quantitative estimates for C1, observe that differentiating M(t) p times yields at most
2p−1 terms, each of them having a coefficient ≤ (p− 1)! (if we do not merge terms of the same
order). Thus, we can take C1 = 2p−1 · (p− 1)!.

Alternatively, we may use the recursive formula

Tn+1(α) = α

n∑
k=0

(
n

k

)
Tk(α)



70 CHAPTER 7. COST ESTIMATE

for the Touchard polynomials Tn(α) := E[Zn], see e.g. [Tou56]. Assuming that Tk(α) ≤ (kα)k

for all k = 1, . . . , n leads to the corresponding estimate for k = n+ 1.

(iii) Put p = 2k with integer k. The moment generating function of (Z − α) is

N(t) := exp
(
α(et − 1− t)

)
= exp

(α
2
t2h(t)

)
= 1 +

α

2
t2h(t) +

1

2

(α
2

)2
t4h2(t) +

1

6

(α
2

)3
t6h3(t) + . . .

with h(t) = 2
t2

(et − 1− t). Hence, the 2k-th derivative of N at the point t = 0 is a polynomial

of order k in α. Since α ≥ 1 by assumption, E[(Z − α)2k] = N (2k)(0) ≤ C3 · αk for some C3.
To estimate C3, again observe that differentiating N(t) (2k) times yields at most 22k−1 terms.
Each of these terms has a coefficient ≤ (2k− 1)! (if we do not merge terms). Hence we can take
C3(2k) = 22k−1 · (2k − 1)!.

(ii) The result follows from the inequality

1

xk
≤ (k + 1)!x!

(k + x)!

for positive integers k and x. The inequality is equivalent to(
x+ k

x− 1

)
≤ xk+1.

For fixed k the latter inequality holds for x = 1. If x increases from x to x+1 the right hand side

grows by a factor of
(
x+1
x

)k+1
and the l.h.s. by a factor of x+k+1

x . As (x+k+1)xk ≤ (x+1)k+1,
the inequality holds. Then, we can estimate

E
[

1

Zk
· 1Z>0

]
≤ E

[
(k + 1)!

(Z + 1) · · · (Z + k)
· 1Z>0

]
= e−α ·

∞∑
j=1

αj

j!
· (k + 1)!

(j + 1) · · · (j + k)
=

(k + 1)!

αk
· e−α ·

∞∑
j=1

αj+k

(j + k)!
≤ (k + 1)!

αk
.

If we choose k = dpe this yields the claim.

7.3.2 Lp-Cost for p ≥ 1 in d ≥ 3

Given two measure valued random variables ν•1 , ν
•
2 : Ω→M(Rd) with νω1 (Rd) = νω2 (Rd) for a.e.

ω ∈ Ω we define their Lp-transportation distance by

Wp(ν
•
1 , ν
•
2) :=

[∫
Ω
W p
p (νω1 , ν

ω
2 )P(dω)

]1/p

where

Wp(η1, η2) = inf

{[∫
Rd×Rd

|x− y|p θ(dx, dy)

]1/p

: θ is a coupling of η1, η2

}
denotes the usual Lp-Wasserstein distance between measures η1, η2 ∈M(Rd) of equal total mass
(they do not have to be normalized). Similar to the concave case the triangle inequality holds
and we define the modified transportation cost as

ĈA(ω) = inf

{∫
|x− y|pq̂ω(dx, dy) : q̂ω is a coupling of νωA and 1A µ

ω

}
= W p

p (νωA, 1Aµ
ω).

Put
ĉn = 2−nd · E

[
ĈBn

]
= Wp

p(ν
•
Bn , 1Bnµ

•)

with Bn = [0, 2n)d as usual.
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Lemma 7.13. Given n ∈ N0, k ∈ {1, . . . , d} and i ∈ {0, 1}k put D0 = B
(i1,...,ik−1,0)
n+1 , D1 =

B
(i1,...,ik−1,1)
n+1 and D = D0 ∪D1 = B

(i1,...,ik−1)
n+1 . Then for some constant κ1 depending only on p:

Wp
p

(
ν•D0

+ ν•D1
, ν•D

)
≤ κ1 · 2(n+1)(p+d−pd/2) · 2k(p/2−1)+1.

One may choose κ1(p) = 1
p+12−p · C3(2p) · C2(2(p− 1)).

Proof. The proof will be a modification of the proof of Lemma 7.7. An optimal transport map
T : D → D with T∗ν̃

•
D = ν•D is now given by

T : (x1, . . . , xk−1, xk, xk+1, . . . , xd) 7→ (x1, . . . , xk−1,
2Z0

Z
· xk, xk+1, . . . , xd)

on D0 and

T : (x1, . . . , xk−1, xk, xk+1, . . . , xd) 7→ (x1, . . . , xk−1, 2
n+1 − (2n+1 − xk) ·

2Z1

Z
, xk+1, . . . , xd)

on D1. (If p > 1 this is indeed the only optimal transport map.) The cost of this transport can
easily be calculated:∫

D0

|T (x)− x|p dν̃•(x) = Z0 · 2−n
∫ 2n

0

∣∣∣∣2Z0

Z
· xk − xk

∣∣∣∣p dxk =
2np

p+ 1
· Z0 ·

∣∣∣∣Z0 − Z1

Z

∣∣∣∣p
and analogously ∫

D1

|T (x)− x|p dν̃•(x) =
2np

p+ 1
· Z1 ·

∣∣∣∣Z0 − Z1

Z

∣∣∣∣p .
Hence, together with the estimates from Lemma 7.12 this yields

Wp
p (ν̃•D, ν

•
D) =

2np

p+ 1
· E
[
|Z0 − Z1|p

Zp−1
· 1{Z>0}

]
≤ 2np

p+ 1
· E
[
|Z0 − Z1|2p

]1/2 · E [Z−2(p−1) · 1{Z>0}

]1/2

≤ 2(n+1)p

p+ 1
· E
[
|Z0 − α0|2p

]1/2 · E [Z−2(p−1) · 1{Z>0}

]1/2

≤ 2(n+1)p

p+ 1
· C3 · αp/20 · C2 · α1−p

≤ κ1 · 2(n+1)(p+d−pd/2) · 2k(p/2−1)+1

which is the claim.

With the very same proof as before (Proposition 7.8), just insert different results, we get

Proposition 7.14. For all d ≥ 3 and all p ≥ 1 there is a constant κ2 = κ2(p, d) such that for
all n ∈ N0

ĉ
1/p
n+1 ≤ ĉ1/pn + κ2 · 2(n+1)(1−d/2).

In particular,

ĉ1/p∞ ≤ ĉ1/pn + κ2 ·
2−(n+1)(d/2−1)

1− 2−(d/2−1)
.

One may choose κ2(p, d) = κ1(p)1/p ·
∑d

k=1 2k/2 ≤ κ1(p)1/p · 2d/2+2.
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Corollary 7.15. For all d ≥ 3 and all p ≥ 1

ĉ∞ := lim
n→∞

ĉn < ∞.

More precisely,

ĉ1/p∞ ≤ ĉ
1/p
0 +

8κ1(p)1/p

1− 2−(d/2−1)
.

Comparison of cost ĉn and cn now yields

Proposition 7.16. For all d ≥ 3 and all p ≥ 1 there is a constant κ3 such that for all n ∈ N0

c1/pn ≤ ĉ1/pn + κ3 · 2n(1−d/2).

Proof. It is a modification of the proof of Proposition 7.10. This time, the map T : B 7→ B̂

T : x 7→
(
Z

α

)1/d

· x

defines an optimal transport T∗ν
•
B = λ•B. Put τ ′ = τ ′(d, p) =

∫
[0,1)d |x|

p dx. (This can easily be

estimated, e.g. by τ ′ ≤ 1
p+1d

p/2 if p ≥ 2.) The cost of the transport T is

∫
B
|T (x)− x|p dν•B(x) = τ ′ · 2np · Z ·

∣∣∣∣∣
(
Z

α

)1/d

− 1

∣∣∣∣∣
p

≤ τ ′ · 2np · Z ·
∣∣∣∣Zα − 1

∣∣∣∣p
The inequality in the above estimation follows from the fact that |t−1| ≤ |t−1| · (td−1 + . . .+ t+
1) = |td − 1| for each real t > 0. The previous cost estimates hold true for each fixed ω (which
for simplicity we had suppressed in the notation). Integrating w.r.t. P(dω) yields

Wp
p(ν
•
B, λ

•
B) ≤ τ ′ · 2np · E

[
Z ·
∣∣∣∣Zα − 1

∣∣∣∣p]
≤ τ ′ · 2np · α−p · E

[
Z2
]1/2 · E [|Z − α|2p]1/2

≤ τ ′ · 2np · α−p · α · C3 · αp/2 = κp3 · 2
n(d+p−dp/2)

and thus
c1/pn − ĉ1/pn ≤ κ3 · 2n(1−d/2).

Corollary 7.17. For all d ≥ 3 and all p ≥ 1

c∞ ≤ ĉ∞ < ∞.

Remark 7.18. It is not clear if the two quantities c∞ and ĉ∞ are really different or might
actually coincide (see also Remark 8.16).

7.3.3 Quantitative Estimates

Throughout this section, we assume that ϑ(r) = rp with p < p(d) where

p < p(d) :=


∞, for d ≥ 3
1, for d = 2
1
2 , for d = 1.
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Proposition 7.19. Put τ(p, d) = d
d+p ·

(
Γ(d2 + 1)1/d · π−1/2

)p
. Then

c∞ ≥ c0 ≥ τ(p, d).

Proof. The number τ as defined above is the minimal cost of a semicoupling between L and a
single Dirac mass, say δ0. Indeed, this Dirac mass will be transported onto the d-dimensional
ball Kr = {x ∈ Rd : |x| < r} of unit volume, i.e. with radius r chosen s.t. L(Kr) = 1. The cost
of this transport is

∫
Kr
|x|p dx = d

d+pr
p = τ .

For each integer Z ≥ 2, the minimal cost of a semicoupling between L and a sum of Z Dirac
masses will be ≥ Z · τ . Hence, if Z is Poisson distributed with parameter 1

c0 ≥ E[Z] · τ = τ.

Remark 7.20. Explicit calculations yield

τ(p, 1) =
1

1 + p
· 2−p, τ(p, 2) =

2

2 + p
· π−p/2, τ(p, 3) =

3

3 + p
·
(

3

4π

)p/3
whereas Stirling’s formula yields a uniform lower bound, valid for all d ∈ N (which indeed is a
quite good approximation for large d)

τ(p, d) ≥ d

d+ p
·
(

d

2πe

)p/2
.

Proposition 7.21. Put τ̂ = τ̂(d, p) =
∫

[0,1)d

∫
[0,1)d |x− y|

p dydx. Then

e−1 · τ̂ ≤ ĉ0 ≤ τ̂ .

Moreover, τ̂ ≤ 1
(1+p)(1+p/2) · d

p/2 for all p ≥ 2 and τ̂ ≤
(
d
6

)p/2
for all 0 < p ≤ 2

Proof. If there is exactly one Poisson particle in the cube B0 = [0, 1)d – which then is uniformly
distributed– the transportation cost are exactly τ̂(d, p). In general, τ̂ still is an upper bound
for the cost per particle. The number of particles will be Poisson distributed with parameter 1.
The lower estimate for the cost follows from the fact that with probability e−1 there is exactly
one Poisson particle in B0 = [0, 1)d.

Using the inequality (x2
1 + . . .+ x2

d)
p/2 ≤ dp/2−1 · (xp1 + . . .+ xpd) – valid for all p ≥ 2 – the upper

estimate for τ̂ can be derived as follows∫
[0,1)d

∫
[0,1)d

|x− y|p dydx ≤ dp/2−1
d∑
i=1

∫
[0,1]d

∫
[0,1]d

|xi − yi|p dydx

= dp/2
∫ 1

0

∫ 1

0
|s− t|p dsdt

=
1

(1 + p)(1 + p/2)
· dp/2.

Applying Hölder’s inequality to the inequality for p = 2 yields the claim for all p ≤ 2.

Theorem 7.22. For all p ≤ 1 and d > 2p

d

d+ p
·
(

d

2πe

)p/2
≤ c∞ ≤

(
d

6

)p/2
+

1

(p+ 1)(2d/2−p − 1)

whereas for all p ≥ 1 and d ≥ 3(
d

d+ p

)1/p

·
(

d

2πe

)1/2

≤ c1/p∞ ≤ d1/2

61/2 ∧ [(1 + p)(1 + p/2)]1/p
+ 28 · κ1/p

1 .
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Proof. Proposition 7.19 and the subsequent remark yield the lower bound

d

d+ p
·
(

d

2πe

)p/2
≤ τ ≤ c∞,

valid for all d and p. In the case p ≥ 1 the upper bound follows from Proposition 7.21 and
Corollary 7.15 by

c1/p∞ ≤ τ̂1/p +
4κ

1/p
1

1− 2−(d/2−1)
≤ d1/2

61/2 ∧ [(1 + p)(1 + p/2)]1/p
+ 28 · κ1/p

1 .

In the case p ≤ 1, estimate (7.1) with Θ(r) = 1
p+1r

p+1 yields

ĉ∞ ≤ ĉ0 +
∞∑
m=0

2−(m+1)(d/2+1) · 1

p+ 1
2(m+1)(p+1) = ĉ0 +

1

(p+ 1)(2d/2−p − 1)
.

provided p < d/2. Together with Proposition 7.10 this yields the claim.

Corollary 7.23. (i) For all p ∈ (0,∞)

1√
2πe

≤ lim inf
d→∞

c
1/p
∞

d1/2
≤ lim sup

d→∞

c
1/p
∞

d1/2
≤ 1√

6 ∧ [(1 + p)(1 + p/2)]1/p
.

Note that the ratio of right and left hand sides is less than 5, – and for p ≤ 2 even less than 2.
(ii) For all p ∈ (0,∞) there exist constants k, k′ such that for all d > 2(p ∧ 1)

k · dp/2 ≤ c∞ ≤ k′ · dp/2.

7.4 An allocation of optimal tail

In this section we want to sketch a construction of Marko and Timar [MT11] giving an equivariant
allocation with finite mean transportation cost for ϑ(r) = exp(κrd) for some positive κ ∈ R+.
It is based on the algorithm of Ajtai, Komlós and Tusnády. This will prove the missing part
of Theorem 1.7 (i). Moreover, we will adapt this argument to prove a similar result for the
case of a compound Poisson process with exponential weights in the following section. We will
call realizations ω or µω of the Poisson process configurations. An atom of µω will be called
configuration point.

The idea is to use an infinite version of the already mentioned Ajtai, Komlós and Tusnády
(AKT) scheme. A very short version of the Markó Timar construction goes as follows:
Fix a configuration ω such that 0 is a configuration point, consider the lattice v + 2nZd and
partition each of the cubes v + u + [0, 2n)d, u ∈ 2nZd into dyadic subcubes such that in each
of the subcubes there is at most one point of the configuration. Then run the infinite AKT
scheme up to stage n, that is until you reach the cube of side length 2n. Let fv,n be the indicator
function of the cell associated to the point at zero. If n tends to∞ the volume of the cell tends to
one. This gives an allocation. However, this allocation will depend on v. To get an equivariant
allocation, we mix over all such allocations, that is, consider fn =

∫
v∈[0,2n)d fv,ndv, a function

from Rd to [0, 1], and take limits. As the transportation scheme is very explicit it is possible to
follow the movements of the different cells and control this limit. This will result in a fractional
allocation, that is an allocation in which one Lebesgue point might be divided between different
Poisson points. However, because of the good control, one can modify this fractional allocation
rule into a real allocation rule.
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Let us start the more detailed description by recalling the classical AKT scheme. We start with
a cube [0, 2n)d and a couple of points inside this cube. Then, we take an horizontal hyper-
plane orthogonal to the first coordinate axis and shift this axis such that the volume ratio of
the two halves equals the ratio of the number of points in the respective halves. In the next
step, consider in each of the two cuboids the hyperplane orthogonal to the second coordinate
axis dividing the cuboid in two halves and shift this hyperplane as in the first step. Proceed
until in every cube there is just one point left (see also the the picture in the middle of figure 7.1).

For the infinite version of the AKT scheme we do the very same just the other way around as we
cannot divide the whole space in two halves and move the hyperplane to adjust the volume ratio
to the ratio of the configuration in the two halves. Fix a realization and start again with a cube
[0, 2n)d. Divide the cube in subcubes of the form z+[0, 1)d with z ∈ Zd. Assume that there is at
most one point in each such cube. Otherwise subdivide each cube dyadically further until you
reach a level, in which any point has his own cube. In the first step consider all the cuboids of the
form {(k1, . . . , kd) + [0, 1)d−1 × [0, 2) : 0 ≤ ki ≤ 2n − 1 for 1 ≤ i ≤ d− 1 and 0 ≤ kd ≤ 2n−1 − 1}
and take the bisector hyperplane orthogonal to the d-th coordinate axis of each of these cuboids.
Move them along the d-th axis until the volume ratio of the two halves gets equal to the ratio
of the number of configuration points in them. Transform the interior of the cell affinely.

In the second step consider the cuboids {(k1, . . . , kd)+[0, 1)d−2× [0, 2)2 : 0 ≤ ki ≤ 2n−1 for 1 ≤
i ≤ d−2 and 0 ≤ kd−1, kd ≤ 2n−1−1}, take their bisector orthogonal to the (d-1)-th coordinate
axis and move it as before. Continue this procedure until the starting cube [0, 2n)d is reached. We
end up with a partition of [0, 2n)d into µω([0, 2n)d) cuboids of equal volume. Each transformation
is called a step. The d-tuple of the first d steps, the d-tuple of the second d steps and so on are
called stages.
For any v ∈ Rd we can run this algorithm for any 2n × 2n × . . . × 2n cube of the partition
v+ 2nZd of Rd. We call this the AKT(v) scheme up to stage n. In each stage there is exactly on
step in every coordinate direction. The movements in the different directions are independent.
Hence, if we want to get an upper bound on the total transformation of the box, we can treat
the different directions separately.
We want to condition on 0 ∈ ω, that is on 0 being a configuration point. Hence, we consider the
Palm version (see Introduction) of the Poisson point process. Taking expectation and computing
probabilities wrt to the Palm measure will be indicated by a ′, e.g. P′. Let Cv,n be the cell
assigned to 0 by AKT(v) run up to stage n. Denote the indicator function of Cv,n by fv,n. The
task will be to control diam(Cv,n ∪ {0}). We can think of Cv,n as the transformed initial cube
containing 0 after nd steps (or (n+k)d steps if 0 was in the cube with more than one point in
the beginning and we further subdivided this cube k-times.). For bounding the diameter it is
therefore sufficient to bound the shift of 0 after n stages together with the length of the edges of
Cv,n. The key part in proving the theorem are the following two lemmas. The first is a standard
property of Poisson random variables.

Lemma 7.24. Let X be a random variable with Poisson distribution of mean α. If 0 ≤ ρ ≤ 2
then

P[|X − α| ≥ αρ] < 2 exp

(
−αρ

2

4

)
.

Lemma 7.25. There exist c, C > 0 such that for any R > 0 there exist an event ER, such that

i) 1− P′[ER] < C exp(−cRd).

ii) On ER, for every n, the total movement of 0 in the AKT(v) run up to stage n is at most
R, for all v ∈ Rd.

iii) On ER, the total length of the shifts of 0 in the i-th stage is at most c′i = c′i(R), and (c′i)i∈N
is absolutely summable.
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Figure 7.2: The AKT(v) scheme on a 4x4 box with 19 points. Picture from [MT11].
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Sketch of the proof: As we do not want to get optimal constants we will just prove this Lemma
for R > R0. Fix an arbitrary v ∈ Rd. As already mentioned the movements in the different
directions in one stage of the AKT(v) scheme are independent and the sizes are comparable.
Hence, it is sufficient to consider first just the movement in one direction, treat the other
directions similarly and conclude by using the triangle inequality.
The idea is to use the fact that the number of Poisson points in a very big box is very close
to the volume of this box. Therefore, in the AKT(v) scheme after sufficiently many stages, the
movements will become very small. The exponential bound in the previous Lemma allows to
control this “smallness” and show that it is actually summable. Therefore, after N stages the
different cells do merely move any more and we get the desired bounds.
Let r0 ∈ N be such that R/4 ≤ 2r0 < R/2 and put ρn = 2−5n/4R5/410−2. Note that ρn < 1 if
n > r0. We want to consider an event giving bounds on the number of configuration points in all
cubes of side length 2n containing the origin. To this end, we define an event AR = AR,1 giving
bounds on the number of configuration points in the two halves of the finitely many cubes for
each n > r0 with the properties that the cube has corners in Gn(v) = v + 2−nZd, side length
2n ± 2−n and contains the origin.
For n = r0 + 1, . . . ,m1 = 1, . . . , (22n − 1)d and m2 = 1, . . . , (22d + 1)d let Bn,m1 denote the

m1− th cube with vertices in Gn(v) of side length 2n− 2−n containing the origin (the cubes are
numbered in some arbitrary way), Un,m1 its “left” side and Vn,m1 its “right” side. Moreover, let

Bn,m2 denote the m2 − th cube of side length 2n + 2−n with vertices in Gn(v) containing the
origin, Un,m2 and Vn,m2 its left and right side.
Let AR be the event such that all the following holds:

An,m1

R :

∣∣∣∣µ(Un,m1 \ {0})−
(2n − 2−n)d

2

∣∣∣∣ < (2n − 2−n)d

2
ρn, and∣∣∣∣µ(Vn,m1 \ {0})−

(2n − 2−n)d

2

∣∣∣∣ < (2n − 2−n)d

2
ρn,

and

An,m2

R :

∣∣∣∣µ(Un,m2 \ {0})−
(2n + 2−n)d

2

∣∣∣∣ < (2n + 2−n)d

2
ρn, and∣∣∣∣µ(Vn,m2 \ {0})−

(2n + 2−n)d

2

∣∣∣∣ < (2n + 2−n)d

2
ρn,

for all n = r0 + 1, . . . ,m1 = 1, . . . , (22n − 1)d and m2 = 1, . . . , (22d + 1)d.

Using the previous lemma we can estimate

1− P′[AR] ≤
∞∑

n=r0+1

(22n − 1)d · (1− P′[An,1R ]) +
∞∑

n=r0+1

(22n + 1)d · (1− P′[An,1R ])

≤
∞∑

n=r0+1

22(n+1)d8 · exp

(
−ρ

2
n2(n−1)d

4

)

≤
∞∑

n=r0+1

22(n+1)d+3 · exp

(
−2(n+1)(d−5/2)R

5/210−4

23d

)
.

By the definition of r0 the first term in this series is at most R2d22d+3 exp(−Rd10−4/23d). Hence,
taking R > R0(d) large enough this series can be dominated by a converging geometric series.
This implies the estimate

1− P′[AR] < C ′ exp(−c′Rd).
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Now we want to remove the condition that the cubes have to have vertices in the set Gn(v).
Let B be an arbitrary cube of side length 2n containing the origin and U and V its left and
right half. Then, we can find a cube Bn,m1 of side length 2n − 2−n with vertices in Gn(v) such

that V ⊂ Vn,m1 and a cube Bn,m2 of side length 2n + 2−n with vertices in Gn(v) such that

U ⊂ Un,m2 . This allows to conclude after some computation that conditioned on AR and 0
being a configuration point ∣∣∣∣µ(U)− µ(V )

µ(U) + µ(V )

∣∣∣∣ < 8ρn.

Hence, we can estimate the shift of the cell containing 0.
Let v′ ∈ Rd be arbitrary and consider the v′−partition sequence (v′ + Zd, v′ + 2Zd, . . . , v′ +
2iZd, . . .). Let u be an arbitrary point inside the initial cube containing 0. Denote its signed
shift along the first axis in the n-th stage of AKT(v′) by Dn = Dn(u, v′). Until the n− th stage
every displacement takes place inside a cube of side length 2n. Hence, we have (by the choice of
r0): ∣∣∣∣∣

r0∑
n=−k

Dn

∣∣∣∣∣ ≤ 2r0 <
R

2
,

if we start the algorithm from the level of cubes of side length 2−k. As in the previous sections
(cf Lemma 7.7 and Lemma 7.13) we can compute the shift of u by

Dn = (1− Cn(u))2n−1µ(Un)− µ(Vn)

µ(Un) + µ(Vn)
,

where Un and Vn are the left and right half of the cuboid Bn in the v′ + 2nZd partition grid
containing 0 and Cn(u) is the relative distance of u to the bisector of Bn orthogonal to the
first axis before the n-th stage. Conditioning on AR and 0 being a configuration point we can
estimate:

∣∣∣∣∣
∞∑

n=r0+1

Dn

∣∣∣∣∣ ≤
∞∑

n=r0+1

∣∣∣∣(1− Cn(u))2n−1µ(Un)− µ(Vn)

µ(Un) + µ(Vn)

∣∣∣∣
≤

∞∑
n=r0+1

22−n/4R5/410−2 <
R

2
.

This shows, that conditioned on AR and 0 being a configuration point, for any v′ and any
u in the initial cube containing 0 in the v′-partition sequence, the total shift of u along the
first axis is at most R. Moreover, the shift along the first axis in the n-th stage is at most
c′n(R) := 22−n/4R5/410−2 for any n > r0(R). Defining c′n(R) = 2n−1 for n ≤ r0, which is the
maximal possible shift in the n-th stage, defines a summable sequence.

For 1 < i ≤ d one can define the events AR,i similarly and get with the same ρn sequence the
respective bounds on the probability and shifts along the i-th axis. Hence, we can define the
event

ER :=
d⋂
i=1

AR/d,i,

satisfying all the assertions in the Lemma and thereby proving the claim.

The Lemma and especially its proof allow to draw a couple of conclusions. Firstly, as the number
of points in a big box concentrate around the volume of that box we have that

lim
n→∞

Vol(Cv,n) = lim
n→∞

L(Cv,n) = lim
n→∞

∫
Rd
fv,n(x)L(dx) = 1,
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uniformly in v. The uniformity is not directly clear but can be achieved in the same way as in
the last proof by using some approximating cubes belonging to a countable family.

Let l(Cv,n) ∈ Rd denote the d-dimensional vector whose i-th component denotes the length of
the i-th side of Cv,n. Let | · |max denote the maximum norm on Rd. In the proof of the last
Lemma we saw that each side length can change in one stage at most by the factor (1 + 8ρn).
Hence, we get

|l(Cv,n+1)|max ≤ |l(Cv,n)|max(1 + 8ρn+1).

Proposition 7.26. Conditioned on ER and 0 being a configuration point, there is a constant
K > 0 such that |l(Cv,n)|max ≤ KR uniformly in v. Moreover,

|l(Cv,n+1)− l(Cv,n)|max ≤ en(R)

for n > r0, where (en(R))n∈N is an absolutely summable sequence with sum at most cR.

Putting all of this together gives

Lemma 7.27. There exist c, C > 0 such that for all R > 0 there exists an event ER such that

i) 1− P′[ER] < C exp(−cRd).

ii) Conditioned on ER, the diameter of the cell Cv,n of 0 in the AKT(v) ran up to stage n is
at most c′R, for all v ∈ Rd.

iii) On ER we have ‖fv,n − fv,n+1‖1 = L(Cv,n4Cv,n+1) < cn(R), for n > r0(R), where the
series cn(R) is absolutely summable. The constants do not depend on v.

We could try to consider the limit of the AKT(v) algorithm. However, this would not yield an
equivariant allocation as it depends on the v-partition sequence. The idea is to average over all
AKT(v) transport schemes and then take the limit. Because of the uniformity and summability
of the bounds this will give the desired estimate. Put

fn = fωn :=
1

2nd

∫
[0,2n]d

fv,ndv.

As for P′ almost every ω fv,n is L1−continuous in v except for possibly the union of finitely
many hyperplanes, fn is well defined and is a function from Rd to [0, 1]. The difficult part is to
establish the following

Proposition 7.28. With probability one, the L1 limit f of fn exists. It is a function with values
in [0, 1], integral one and with

P′[diam(({0} ∪ supp(f)) > r] ≤ C exp(−crd).

As ER is an increasing sequence of events exhausting a set of measure one, it is sufficient to
prove the Proposition for ω ∈ ER and show that the diameter of supp(fω) is bounded by cR,
where c is independent of R. This follows by some computation using the last Lemma, especially
part iii).

With the function f we can define a fractional allocation using equivariance. Let ξ ∈ ω be
a configuration point. Then we allocate to ξ the cell defined by the nonnegative L1 function
Ψ(ξ) = fω−ξ +ξ. In other words we think of ξ as being the origin and do the whole construction
for ξ. By the construction it is clear that each Poisson point gets mass exactly one, that the
allocation is measurable, equivariant and satisfies the desired bound on the diameter of the
cells. Moreover, from the construction it is also clear that this allocation distributes exactly the
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Lebesgue measure, that is we have for L a.e. x :
∑

ξ∈ω Ψ(ξ)(x) = 1. This is the case as this is

already true for Ψn(ξ) = fω−ξn + ξ. Indeed,

∑
ξ∈ω

Ψn(ξ)(x) =
∑
ξ∈ω

2−nd

(∫
[0,2n)d

(fω−ξv,n + ξ) dv

)
(x)

= 2−nd
∫

[0,2n)d

∑
ξ∈ω

(fω−ξv,n + ξ)(x)dv

= 2−nd
∫

[0,2n)d
1 dv = 1.

Therefore, Ψ(ξ) is a fractional allocation. The last and remaining step is to construct out of
the fractional allocation a real allocation, so that almost every Lebesgue point is allocated to
exactly one Poisson or configuration point. The observation which allows to do this is that for
x ∈ Rd, P almost surely there is an ε > 0 such that the epsilon ball around x is contained in just
finitely many cells, that is B(x, ε) ⊂ ∩ki=1supp(fω−ξ + ξ) and B(x, ε)∩ supp(fω−ξj + ξj) = ∅ for
any ξj /∈ {ξ1, . . . , ξk}. In other words, every x has P a.s. a neighbourhood which belongs to only
finitely many cells. The reason for this are the good diameter and probability bounds, which
allow to use the Borel Cantelli Lemma.

The final step is easy. Take a set belonging to k different cells and redistribute it in an equivariant
way, respecting the different volume ratios of the cells in this set. This can be done e.g. by
optimal transport or the stable marriage algorithm (see [HHP06]). Note, that this will at most
decrease the diameter as the center of the cell is by definition included in the cell.

7.5 Estimates on compound Poisson processes

In this section we turn to γ−compound Poisson processes. Using the results of the previous
sections we show how one can get good estimates on the transportation cost for γ−compound
Poisson processes. We still assume M = Rd and λ = L being the Lebesgue measure. Let
µ• be an equivariant γ−compound Poisson process of intensity β ∈ (0,∞) with compound
measure γ having nonnegative support and mean 1. In other words, we consider a “standard”
Poisson process where each atom gets the random weight Xi (instead of the constant 1). The
different weights (Xi)i∈N are assumed to be nonnegative iid random variables with mean 1 and
distribution γ. The transportation cost estimates will depend on the integrability of the weight
X1. If X1 does not have all moments, the transportation cost will be infinite for Lp cost with
high p. If X1 has exponential moments, the transportation cost behave as in the Poisson case.

7.5.1 Lower estimates

Let us first consider the case that X1 does not have finite moments of order p. In that case we
have

Proposition 7.29. Let β ≤ 1 and p > 1 be such that E[Xp
1 ] = ∞. Let ϑ(r) ≥ r(p−1)d, then

c∞ =∞.

Proof. c∞ can easily be bounded from below by the cost of transporting mass X1 optimally into
a single point. This transportation cost behaves for fixed X1 = X1(ω) like

∫ cX
1/d
1

0
ϑ(r)rd−1dr & Xp

1 .

Taking expectation wrt X1 yields the desired result.
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Remark 7.30. We do not expect this result to hold for β > 1 because the higher Poisson
density should have the effect of cutting off the high Xi values resulting in effectively bounded
weights. However, we do not know how to prove this.

If we assume that X1 does not have all exponential moments, that is E[exp(κX1)] = ∞ for
some positive κ, we get by the same reasoning c∞ = ∞ for ϑ(r) ≥ exp(κ′rd) with κ′ = κ/c1/d.
However, this is already (up to constants) the most expensive cost function producing finite
transportation cost. Indeed, one direction is the following Theorem, the other one Theorem
7.36.

Theorem 7.31. For all β ∈ (0,∞) and d ≥ 1 there exists a constant κ = κ(d, β,X1) such that
for any invariant semicoupling q• of L and µ•

E

[∫
Rd×[0,1)d

exp
(
κ|x− y|d

)
q•(dx, dy)

]
=∞.

Proof. The proof is the very same as before. Just use the large deviation principle for the iid
sequence Zi = µ•(i + [0, 1)d) =

∑N
j=1Xj with i ∈ Zd and N a Poisson random variable with

mean β.

7.5.2 Upper estimates

Lp estimates

In this section we want to apply the techniques and estimates on Lp cost for the Poisson process
to the case of the γ−compound Poisson process with iid weights (Xi)i∈N. To this end, we
need to find good estimates on the p − th (central) moments and p − th inverse moments of a
γ−compound Poisson process. However, a general estimate of the p− th inverse moment is not
so easy and even the existence is in general not given, if X1 is not bounded away from zero. In
fact, if X1 has a density f(x) with respect to the Lebesgue measure, the existence of the p− th
inverse moment of X1 is equivalent to the existence of

lim
x↘0

f(x)

xq

for some q > p − 1 (see [DHT09]). In order to avoid these technicalities at this stage, we will
assume for simplicity that X1 > χ almost surely for some 1 > χ > 0. This trivially implies the
existence of all inverse moments.

Let N be a Poisson random variable with mean α independent of (Xi)i∈N. Put Z =
∑N

i=1Xi.

Proposition 7.32. Let p = 2q > 0 be given and assume that E[Xp
1 ] <∞.

i) There is a finite constant C1 = C1(p,X1) such that E[Zp] ≤ C1α
p.

ii) There is a finite constant C2 = C2(p,X1) such that E[(Z − α)2bqc] ≤ C2α
bqc.

iii) Assume that p ≥ 2. If α is sufficiently large, there is a finite constant C3 = C3(p,X1) such
that E[Z−p · 1{Z>0}] ≤ C3α

−p.

Proof. In all cases, by Hölder’s inequality, it suffices to prove the inequalities for integer p ∈ N.
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i) For p ≥ 1 this is a direct consequence of Hölder’s inequality and Lemma 7.12.

E[Zp] =
∞∑
n=1

P[N = n]E

[(
n∑
i=1

Xi

)p]

≤
∞∑
n=1

P[N = n]np−1E

[
n∑
i=1

Xp
i

]

=
∞∑
n=1

P[N = n]npE[Xp
1 ]

= E[Np]E[Xp
1 ] ≤ C1α

p

ii) The argument is very similar to the one in the third part of Lemma 7.12. However, in this
case, the moment generating function need not exist as the moment generating function of X1

might not exist. Instead of the moment generating function, we can work with the characteristic
function of Y = Z − α. It is given by φY (t) = E [exp(it(Z − α))] = exp(α(φX1(t)− 1− it)). Let

q be an integer such that 2q ≤ p. Then, the 2q-th moment of (Z − α) is given by i2qφ
(2q)
Y (0).

However, the (2q)− th derivative of φY at the point t = 0 is a polynomial of order q in α because
φ′X1

(0) = iE[X1] = i.

iii) The existence of the inverse moment is clear as for any k > 0 we have 0 ≤ E[Z−k · 1{Z>0}] ≤
χ−k. The estimate above follows from the following Theorem.

Theorem 7.33 ([GP01]). Let (Vn)n∈N be a sequence of nonnegative random variables with
Vn > γ > 0 a.s.. Let ηn and σn be such that

i) Vn−ηn
σn

d→ N(0, 1), as n→∞

ii) limn→∞ ηn =∞

iii) there is ε < 1 such that ηεn/σn > 1, for n sufficiently large.

Then

E
[

1
(Vn)k

]
1

E[Vn]k

→ 1

as n→∞ for any k > 0.

To conclude, we can take Vn =
∑Nn

i=1Xi with Nn a Poisson random variable with mean αn such
that αn →∞. Then E[Vn] = αn = ηn and V ar(Vn) = (V ar(X1) + 1)αn = σ2

n.

Looking back at the estimates for the transportation cost between the Lebesgue measure and a
Poisson point process the estimates above give us directly the following result.

Theorem 7.34. i) Assume d ≤ 2 and E[X2
1 ] < ∞. Then for any concave ϑ̂ : [1,∞) → R

dominating ϑ ∫ ∞
1

ϑ̂(r)

r1+d/2
dr <∞ =⇒ c∞ <∞.

ii) Assume d ≥ 3 and p < p0−1 with 2 < p0 = sup{q : E[Xq
1 ] <∞} <∞. Then for ϑ(r) = rp

we have c∞ <∞.

iii) Assume d ≥ 3 and E[Xp
1 ] <∞ for all p > 0. Then for ϑ(r) = rp we have c∞ <∞ for any

p > 0.
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Proof. Thanks to the estimates in the Proposition above, we can use the very same estimates
as in the Poisson case. Only in the second case, we need to change the variables for the Hölder
inequality in two estimates because X1 does not have arbitrary moments. We do not repeat the
whole argument. We only show the very little pieces that change, namely the moment estimates
in the calculation of the transportation cost.
Let ε > 0 be such that 1/(p0 − 1) < ε < (p0 − p)/p. This condition ensures that (1 + ε)/ε < p0

and p(1 + ε) < p0. The condition p < p0 − 1 ensures that 1/(p0 − 1) < (p0 − p)/p. The first
estimate which is needed for the convergence of ĉn becomes

E
[
|Z0 − Z1|p

Zp−1
· 1{Z>0}

]
≤ E

[
|Z0 − Z1|(1+ε)p

]1/(1+ε)
· E
[
Z−(p−1)(1+ε)/ε

]ε/(1+ε)

≤ C · αp/2α−(p−1).

This already gives the finiteness of ĉ∞. To be able to use this estimate to show that c∞ < ∞
we need to compute

E
[
Z ·
∣∣∣∣Zα − 1

∣∣∣∣p]

≤ E
[
Z(1+ε)/ε

]ε/(1+ε)
E

[∣∣∣∣Zα − 1

∣∣∣∣p(1+ε)
]1/(1+ε)

≤ Cα · α−p · αp/2,

which is exactly what we need.

Remark 7.35. i) In the first part of the theorem we require X1 to have finite second moment,
as otherwise our methods do not apply.

ii) In the second part of the last theorem, the requirement that p < p0 − 1 instead of the more
natural requirement p < p0 fits well with the lower estimate in dimension 1.

iii) We do not know which estimate is responsible for the gap between the lower and upper
estimate for the case that E[Xp

1 ] =∞ for some finite p in dimensions d ≥ 2.

Compounding with optimal tail

We want to show using the construction of Markó and Timar (see [MT11] and section 7.4) that
choosing X1 according to an exponential law with mean 1 has optimal tail behavior in the sense
that there is a constant κ such that the mean transportation cost c∞ <∞ for ϑ(r) ≤ exp(κrd).
The aim of this choice is twofold. Firstly, we want to present a non-trivial example (trivial
would be X1 = 1 a.s.) of a γ−compound Poisson process having finite transportation cost
for ϑ(r) = exp(κrd). Secondly, this covers an example to which not only the last section is
not applicable (X1 can have values arbitrary close to zero) but also an example to which the
machinery developed in the Poisson case is not directly applicable asX1 does not have any inverse
moment (see [DHT09] and the beginning of the last section). Hence, let µ• be a γ−compound
Poisson process of unit intensity with compounding measure γ an exponential law with mean 1.

Theorem 7.36. There is κ > 0 such that mean transportation cost between L and µ• for the
cost function c(x, y) = ϑ(|x− y|) with ϑ(r) = exp(κrd) are finite, that is c∞ <∞.

Before we prove this theorem we need the following concentration estimate for γ−compound
Poisson random variables. Let Z =

∑N
i=1Xi with N a Poisson random variable with mean α and

(Xi)i∈N a sequence of iid exponentially distributed random variables with mean 1 independent
of N .
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Lemma 7.37. For any 0 < ρ < 1 it holds that

P[|Z − α| > αρ] ≤ 2 · exp(−α(2 + ρ− 2
√

1 + ρ)) ≤ 2 · exp

(
−α

(
ρ2

4
− ρ3

8

))
.

Proof. The moment generating function for X1 is MX(t) = 1
1−t defined for t < 1 and the

moment generating function for Z is MZ(t) = exp(α(MX(t)− 1)). Then, we can estimate using
the Markov inequality with t < 1

P[Z − α > αρ] ≤ exp(−tα(ρ+ 1))E[exp(tZ)] = exp

(
α

(
t

1− t
− t(ρ+ 1)

))
.

This expression is minimized by t = 1−
√

1
1+ρ yielding

P[Z − α > αρ] ≤ exp(−α(2 + ρ− 2
√
ρ+ 1)).

Similarly, we can estimate for t > −1

P[α− Z > αρ] ≤ exp(−αt(ρ− 1))MZ(−t) = exp

(
α

(
−t

1 + t
+ t(1− ρ)

))
.

This expression is minimized by t =
√

1
1−ρ − 1 > 0 yielding

P[α− Z > αρ] ≤ exp(−α(2− ρ− 2
√

1− ρ)).

Because
−ρ− 2

√
1− ρ > ρ− 2

√
1 + ρ

we can conclude
P[|Z − α| > αρ] ≤ 2 · exp(−α(2 + ρ− 2

√
1 + ρ)).

Using the Taylor expansion of
√

1 + x for |x| < 1 we can estimate

√
1 + ρ ≤ 1 +

ρ

2
− ρ2

8
+
ρ3

16
.

This finally gives

P[|Z − α| > αρ] ≤ 2 · exp

(
−α

(
ρ2

4
− ρ3

8

))
.

Proof of the Theorem: The proof goes by explicitly constructing an allocation using the ap-
proach of Markó and Timar. The key point is to note that the properties of the Poisson point
process entering their proof are independence in disjoint sets and exponential concentration
around the mean in big boxes. The compound Poisson process inherits the independence be-
tween disjoint sets from the Poisson point process. The concentration follows from the Lemma
above. Hence, we only need to choose an appropriate sequence (ρn)n∈N to define events AR and
ER analogously to the Poisson case. Having established this we can also copy the rest of their
proof line to line (which we will not do explicitly). Hence it remains to show

There exist c, C > 0 such that for any R > 0 there exist an event ER, such that

i) 1− P′[ER] < C exp(−cRd).

ii) On ER, for every n, the total movement of 0 in the AKT(v) run up to stage n is at most
R, for all v ∈ Rd.
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iii) On ER, the total length of the shifts of 0 in the i-th stage is at most c′i = c′i(R), and (c′i)i∈N
is absolutely summable.

Here P′ denotes the Palm measure of the γ−compound Poisson process. Define the event AR
as disjoint union of the events An,m1

R and An,m2

R and r0, R0 and ρn as in section 7.4, that is

R/4 ≤ 2r0 < R/2 and ρn = 2−5n/4R5/410−2. In particular, we have 2r0 = κR with 1/4 ≤ κ < 2.
Hence, we can estimate (as above or as in [MT11])

1− P′[AR] ≤
∞∑

n=r0+1

(22n − 1)d · (1− P′[An,1R ]) +
∞∑

n=r0+1

(22n + 1)d · (1− P′[An,1R ])

≤
∞∑

n=r0+1

22(n+1)d8 · exp

(
−2(n−1)d

(
ρ2
n

4
− ρ3

n

8

))

≤
∞∑

n=r0+1

22(n+1)d+3 · exp
(
−2(n−1)d · bn

)
.

with

bn =
1

4

(
2−5n/2R5/210−4 − 1

2
2−15n/4R15/410−6

)
=

1

4

(
2−5j/2(κR)−5/2R5/210−4 − 1

2
2−15j/4(κR)−15/4R15/410−6

)
=

1

4

(
2−5j/2κ−5/210−4 − 1

2
2−15j/4κ−15/410−6

)
,

where we wrote n = r0 + j. This gives as exponent in exp

−2(n−1)d · bn = −(κ ·R)d2(j−1)d · 1

4

(
2−5j/2κ−5/210−4 − 1

2
2−15j/4κ−15/410−6

)
= −(κ ·R)d

(
C12j(d−5/2) − C22j(d−15/4)

)
.

As (d − 5/2) > (d − 15/4) the whole sum can be dominated by a geometric series. Hence, we
can bound the sum by a constant times its first summand. The first summand is bounded by

k2dR2d24d+3 exp

(
−κdRd 1

4

(
2−5/2κ−5/210−4 − 1

2
2−15/4κ−15/410−6

))
.

Putting this together yields
1− P′[AR] < C ′ exp(−c′Rd).

As we defined the sequence of ρn in the same way as Markó and Timar we also get the same
bounds on the total shifts of points in the initial cube of 0 conditioned on AR and 0 being a
configuration point. Hence, we can define the event ER in the same way by

ER =

d⋂
i=1

AR,i,

proving the claim and thereby the theorem.

Remark 7.38. We could also have taken a different law for X1. The important feature we need
is the exponential concentration around the mean.
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Chapter 8

Couplings on the regular k-tree

The aim of this chapter is twofold. Firstly, we want to show how it is possible to change the
presented construction of an optimal coupling to be able to construct an equivariant coupling
with finite cost on a non-amenable space. It is not clear, if the constructed coupling is actually
optimal (see Remark 8.16). Secondly, we want to give an example of a non-smooth space
to which this toolbox can be applied in order to produce equivariant couplings of equivariant
random measures.

To keep things as easy as possible we chose the regular k-tree Υk = Υ, that is the tree in which
every vertex has degree k. It has the advantage, that it can be well controlled because of its
symmetry and simple geometry. Each edge will be identified with the unit interval and given
an arbitrary orientation. λ• = λ will be the Lebesgue measure on the edges and µ• will denote
a Poisson point process of intensity 1. We write V (Υ) for the vertices of Υ and E(Υ) for the
edges of Υ. A point p ∈ Υ will be written as p = (e, x) with e ∈ E(Υ) and x ∈ [0, 1], where the
orientation of e is from 0 to 1. This representation is unique iff x ∈ (0, 1).

G will be the group of all automorphisms of Υ, that is of all bijections α : V (Υ) → V (Υ) such
that α(v1) and α(v2) are joint by an edge iff v1 and v2 are joined by an edge. This action is not
free but this does not cause any harm in this case because we do not explicitly use the group in
the construction. Clearly, λ is G-equivariant. As usual we assume that µ• is equivariant as well
and modeled on a probability space (Ω,A,P) admitting a measurable flow. P is assumed to be
stationary. As Υ2 can be identified with R we will assume from now on k ≥ 3. Let d denote the
natural distance on Υ. We will consider the Lp cost functions c(x, y) = d(x, y)p for p ≥ 1. As
it will turn out in section 8.3 this will imply that the mean asymptotic transportation cost are
finite. Moreover, just as in Lemma 3.2 we exclude the case of p = 1 due to non-uniqueness of
the solution to the optimal transportation problem.

We restrict ourselves to this rather special situation due to two reasons. Firstly, the general
transport problem on Υk is very difficult to solve and estimates on the transportation cost are
difficult to obtain. Secondly, Υk resembles many features of hyperbolic space H. Hence, one
might be able to use this ansatz to construct (maybe optimal) couplings with finite cost on H.

8.1 Basic Results

We want to adapt the results of the preceding sections to this setting. We say that a finite subset
Ξ = {ξ1, . . . , ξk} ∈ Υ has the non-equidistance property (NE) iff for all 1 ≤ i ≤ k ξi = (ei, xi)
we have xi ∈ (0, 1) and 1 − xj 6= xi 6= xj for j 6= i. The second requirement says that the sets
Eij = {z ∈ Υ : d(z, xi) = d(z, xj)} should have zero λ measure.

Lemma 8.1. Given a finite set Ξ = {ξ1, . . . , ξk} with property (NE), a probability density
ρ ∈ L1(Υ, λ) and positive numbers a1, . . . , ak summing to one.

87
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(i) There exists a unique coupling q of ρλ and σ =
∑k

j=1 ajδξj which minimizes the cost func-
tional Cost(·).
(ii) There exists a (λ-a.e. unique) map T : {ρ > 0} → Ξ with T∗(ρλ) = σ which minimizes∫
c(x, T (x))ρ(x)λ(dx).

(iii) There exists a (λ-a.e. unique) map T : {ρ > 0} → Ξ with T∗(ρλ) = σ which is c-monotone
(in the sense that the closure of {(x, T (x)) : ρ(x) > 0} is a c-cyclically monotone set).

(iv) The minimizers in (i), (ii) and (iii) are related by q = (Id, T )∗(ρλ) or, in other words,

q(dx, dy) = δT (x)(dy) ρ(x)λ(dx).

Proof. The proof goes along the same lines as the proof of Lemma 3.2. Write again ρλ =
∑k

i=1 λi
with λi := q(·, {ξi}). To show that the measures λi are mutually singular it is sufficient to prove
this for every edge e. However, looking at the transport from a fixed edge to two points this is
just a usual transport on R. Because of property (NE) we get a unique solution which is given
by a transport map.

Remark 8.2. Identifying each edge with an higher dimensional set, say [0, 1]2, instead of the
unit interval allows to avoid the (NE) assumption as the sets Eij are λ null sets.

Lemma 8.3. The support of almost every realization µω of the Poisson point process has the
(NE) property.

Proof. By the definition of a Poisson point process the random variables µ•(e) and µ•(f) are
independent for different edges e and f. Moreover, given that µω(e) = n the positions of the
n points in e are independent and uniformly distributed. Hence, it is sufficient to prove that
countably many independent uniformly distributed points on e, say (Xi)i∈N, do not meet almost
surely.

Consider the event Ai,j = {Xi = Xj} ∪ {Xi = 1 −Xj}, an event which occurs if particle i and
particle j meet. However, due to the diffusiveness of λ this event has zero probability. Taking
the union over all such events yields the probability that two particles meet. This is a countable
union of a null set and therefore a null set.

In this setting the mean transportation cost of a semicoupling q• between λ and µ• is defined
to be

C(q•) = sup
B∈Adm(Υ)

1

λ(B)
E
[∫

Υ×B
c(x, y) q•(dx, dy)

]
,

where the collection of admissible sets is defined by Adm(M) = {B ∈ B(M) : ∃I ⊂ E(Υ), 1 ≤
|I| <∞, B =

⋃
e∈I e}, that is B is admissible iff it is a finite union of edges. For an equivariant

semicoupling q• the mean transportation cost reduce to

C(q•) = E
[∫

Υ×e
c(x, y) q•(dx, dy)

]
,

for some arbitrary edge e. The optimal transport cost are again defined by

ci,∞ = inf
q•∈Πis(λ,µ•)

C(q•).

Definition 8.4. A semicoupling q• between λ and µ• is called

i) asymptotically optimal iff

C(q•) ≤ ci,∞.

ii) optimal iff q• is equivariant and asymptotically optimal.
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Remark 8.5. It is clear that ci,∞ ≥ c∞. We do not know if they are actually equal or not.
Because we are only interested in equivariant semicouplings we define asymptotic optimality via
ci,∞.

We can copy the proof of Proposition 4.1 more or less line to line to get

Proposition 8.6. Given a coupling qω of λ and µω for fixed ω ∈ Ω, then the following properties
are equivalent:

(i) For each bounded Borel set A ⊂ Υ, the measure 1A×Υq
ω is the unique optimal coupling of

the measures 1Aλ and µωA := qω(A, ·).

(ii) The support of qω is c-cyclically monotone.

(iii) There exists a c-cyclically monotone map Tω : Υ→ Υ such that

qω = (Id, Tω)∗ λ. (8.1)

Following the argumentation in chapter 4 or chapter 6 we get

Theorem 8.7. There exists at most one optimal semicoupling of λ and µ•.

Remark 8.8. These results also hold for the case of µ• having intensity β 6= 1. However, the
semicoupling we will construct will just have the chance of being optimal for β = 1.

For an edge e denote the r neighbourhood of e, the set of points with distance at most r to e,
by Be(r). Similarly for a vertex x denote its r neighbourhood by Bx(r). For two edges e and f
define their distance by

d(e, f) := inf{m ∈ N : e ∈ Bm(f)},

which is nothing but the Hausdorff distance between e and f. We hope that no confusion is
caused by using the same notation for the distance on Υ and the Hausdorff distance on Υ. The
setting should be clear from the context. For the construction we need to count some edges.

Lemma 8.9. Fix an edge e. Then the following holds.

(i) The number of edges of distance j to e is 2 · (k − 1)j.

(ii) λ(Be(n)) = 1 +
∑n

j=1 2 · (k − 1)j = 2(k−1)n+1−k
k−2 .

(iii) The number of edges f such that we have e ∈ Bf (n) is λ(Be(n)).

Proof. (i) is a consequence of the tree structure of Υ. (ii) follows from (i). For (iii) note that
we have e ∈ Bf (n) iff d(e, f) ≤ n iff f ∈ Be(n) and each edge has volume one.

We will use the mass transport principle again. However, this time we will use a slightly different
version than before.

Lemma 8.10 (mass transport principle). Let γ : E(Υ) × E(Υ) → R+ be invariant under the
diagonal action of G, i.e. γ(e, f) = γ(ge, gf) for all e, f ∈ E(Υ) and g ∈ G. Then,∑

f∈E(Υ)

γ(e, f) =
∑

e∈E(Υ)

γ(e, f).

Proof. Fix two edges e0 and f0. Then, we have∑
f∈E(Υ)

γ(e0, f) =
∞∑
n=0

∑
f :d(e0,f)=n

γ(e0, f) =
∞∑
n=0

∑
f :d(e,f0)=n

γ(e, f0) =
∑

e∈E(Υ)

γ(e, f0).
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Just as before this allows us to resolve the asymmetry in the definition of transportation cost
for equivariant semicouplings.

Lemma 8.11. Let q• be an equivariant semicoupling between λ and µ•. Then,

E
[∫

e×Υ
c(x, y) q•(dx, dy)

]
= E

[∫
Υ×e

c(x, y) q•(dx, dy)

]
.

Proof. Use the mass transport principle with γ(e, f) = E
[∫
e×f c(x, y) q•(dx, dy)

]
.

We will use the following version of the law of large numbers due to Pruitt [Pru66]:

Theorem 8.12. Let (Zj)j∈N be a sequence of iid L1 random variables with mean α. Let
(ank)n,k∈N be an array of numbers such that

lim
n→∞

ank = 0 for any k, lim
n→∞

∞∑
k=1

ank = 1 and
∞∑
k=1

|ank| ≤ A <∞ for all n.

If maxk∈N |ank| = O(n−1) then E[Z2
1 ] <∞ implies that

Yn =
∞∑
k=1

ankZk → α almost surely.

8.2 Construction

We want to construct a coupling by approximation very similar to the case of amenable spaces.
However, instead of semicouplings between λ and 1Bµ for some bounded set B, we consider the
“classical” optimal transportation problem between the two random measures ν•B := µ•(B)

λ(B) 1Bλ

and 1Bµ
•. ν•B inherits some equivariance properties from µ•, i.e. ν

θgω
gB (gC) = νωB(C) for all Borel

sets C and ω ∈ Ω. To get a uniform cost bound we mix as in the amenable case. The advantage
of this transportation problem is that it is easier to control the amount of the first marginal being
transported somewhere by a careful analysis (or counting) in the mixing procedure because we
do not allow mass being transported over the boundary of B. It is not clear if this just gives a
coupling with finite cost or even the optimal coupling (see Remark 8.16).

For an edge e let q•Be(m) be the unique optimal coupling between ν•Be(m) and 1Be(m)µ
•. By

uniqueness, it inherits the same equivariance properties as ν•Be(m). Put

Qne (dx, dy, dω) :=
1

λ(Be(2n))

∑
f∈Be(2n)

q•Bf (2n)(dx, dy)P(dω),

where the sum is over all edges f ∈ Be(n). We do not restrict the second marginal of Qne to e, as
we do not know from where e gets its mass. In the amenable case this missing information was
not necessary, because we could use amenability. However, we do not have amenability here,
therefore we do not restrict to e. Put

Qn :=
1

αn

∑
e∈E(Υ)

Qne ,

where αn is chosen such that (π2,3)∗Q
n = µ•P, that is

αn =
∑

f∈E(Υ)

λ(Be(2
n) ∩Bf (2n))

λ(Be(2n))
.
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Indeed, fix an edge e. Mass will be transported to 1eµ
• under Qnf iff there is an edge h such that

e, f ∈ Bh(2n) that is iff h ∈ Be(2n) ∩ Bf (2n). If there is such an edge h, q•Bh(2n) transports the

mass µ•(e) to the edge e. Thus, Qnf transports the mass
λ(Be(2n)∩Bf (2n))

λ(Be(2n)) · µ•(e) to e. Summing
over all edges yields this αn.

Qn is equivariant by construction. The first marginal of Qn restricted to one edge, say e, can
be written as

λne = 1e · (π1)∗Q
n =

∑
f∈E(Υ)

anfZf ,

where Zf = µ•(f) are iid Poisson random variables with mean 1. The anf count the contribution
of the Poisson points Zf on the edge f to the first marginal in the mixing procedure. To be more
precise, let f ∈ E(Υ) be such that e ∈ Bf (2n). The first marginal of q•Bf (2n) is by definition∑

h∈Bf (2n) Zh/λ(Bf (2n)). Hence, every time the 2n−ball around f comes up in the mixing of

Qn each edge h ∈ Bf (2n) ∩ Be(2n) contributes to λne with Zh/λ(Bf (2n)). Considering all these
contributions together with the normalization yields the numbers anf . Without having to work
too much we can say quite a bit about these numbers.

Lemma 8.13. i) 0 ≤ anf ≤ 1
λ(Be(2n))

ii)
∑

f∈E(Υ) anf = 1.

Proof. Just as λne =
∑

f∈E(Υ) anfZf we also have λge = 1e ·(π1)∗Q
n
g =

∑
f∈E(Υ) bnfZf . To get an

expression for bnf we can argue similarly as above. For Zf to contribute to λge we need to find an
h ∈ Bg(2n) such that e, f ∈ Bh(2n) that is e, f, g ∈ Bh(2n). There are |Be(2n)∩Bg(2n)∩Bf (2n)|
such h each contributing with Zf/λ(Be(2

n)). This gives

bnf =
1

(λ(Be(2n)))2λ(Be(2
n) ∩Bg(2n) ∩Bf (2n)).

This yields directly an expression for anf . We just need to add up all the contributions from
the different edges.

anf =
1

(λ(Be(2n)))2

1

αn

∑
g∈E(Υ)

λ(Be(2
n) ∩Bg(2n) ∩Bf (2n)).

Clearly anf is nonnegative for any f and maximal if f = e. In that case

ane =
1

λ(Be(2n))
,

proving the first part of the Lemma. For the second part put F (e, f) = E[Qn(e, f)] for two edges
e and f. By invariance of Qn we have F (e, f) = F (ge, gf) for any g ∈ G (F (e, f) actually just
depends on the distance between e and f). Therefore we can use the mass transport principle∑

f∈E(Υ)

F (e, f) = E[Qn(e,Υ)] = E[λne (e)] =
∑

f∈E(Υ)

anfE[Zf ] =
∑

f∈E(Υ)

anf .

On the other hand this equals∑
e∈E(Υ)

F (e, f) = E[Qn(Υ, f)] = E[Zf ] = 1.

Setting ĉn := 1
λ(Bf (2n))Cost(q

•
Bf (2n)) for some arbitrary edge f we have
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Proposition 8.14. (i) lim supn→∞ ĉn =: ĉ∞ <∞.

(ii) For all edges e and n ∈ N ∫
Υ×e×Ω

c(x, y)Qn(dx, dy, dω) ≤ ĉ∞.

(iii) The sequence (Qn)n is tight and there is a subsequence converging to some Q∞ which has
cost bounded by ĉ∞.

Proof. We postpone the proof of (i) to subsection 8.3. For (ii) note that only those q•Bf (2n)

contribute to the integral for which we have e ∈ Bf (2n). Secondly, each of the balls Bf (2n)
that do contribute to the integral appear in the mixing procedure exactly the same number of
times because all balls appear in the mixing the same number of times. Hence, we can think of
the balls contributing to the integral as appearing just once. Thirdly, just as in the amenable
case, summing over all balls Bf (2n) containing e has the effect that e appears at each possible
position within the ball of radius 2n with equal probability. Together with invariance this leads
to the following estimate.

∫
Υ×e×Ω

c(x, y)Qn(dx, dy, dω)

=
1

λ(Be(2n))

∑
f∈Be(2n)

∫
Υ×e×Ω

c(x, y) · q•Bf (2n)(dx, dy)P(dω)

=
1

λ(Be(2n))

∫
Υ×Be(2n)×Ω

c(x, y) · q•Be(2n)(dx, dy)P(dω)

= ĉn ≤ ĉ∞,

uniformly in n as lim supn→∞ ĉn = ĉ∞. Because of the invariance this is independent of the
specific edge e.
For (iii) note that the uniform cost bound directly gives tightness of the measure Qne = 1Υ×eQ

n

and therefore the convergence of a subsequence to some limit Q∞e exactly as in Lemma 5.1. Put
Q∞ =

∑
e∈E(Υ)Q

∞
e . By invariance we have C(Qn) ≤ ĉn. Hence, we have C(Q∞) ≤ ĉ∞.

Theorem 8.15. Q∞ is an equivariant coupling between λ and µ•.

Proof. (i) Second/third marginal: For any n the second and third marginal of Qn is (π2,3)∗Q
n =

µ•P, by construction. Therefore, we can argue as in the proof of Theorem 5.3. Take a function
φ ∈ C+

b (Υ× Ω). Then, we have due to the previous Lemma∫
Υ×Ω

φ(y, ω)Q∞(dx, dy, dω)

=
∑

e∈E(Υ)

∫
Υ×Ω

φ(y, ω)Q∞e (dx, dy, dω)

=
∑

e∈E(Υ)

lim
l→∞

∫
Υ×Ω

φ(y, ω)Qkle (dx, dy, dω)

=
∑

e∈E(Υ)

∫
Υ×Ω

φ(y, ω)1e(y)(µ•P)(dy, dω)

=

∫
Υ×Ω

φ(y, ω)(µ•P)(dy, dω).
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(ii) First marginal: We saw that the first marginal of Qn restricted to an edge e has density∑
f∈E(Υ) anfZf . Moreover, due to Lemma 8.13 the array (anf )n∈N,f∈E(Υ) satisfies all the con-

ditions of Theorem 8.12. Hence, the density converges to 1. Thus, λn converges to λ.

(iii) Equivariance: Q∞ inherits the equivariance from Qn as in the previous chapters, e.g. see
proof of Proposition 2.23.

Remark 8.16. In order to show that this coupling is actually the unique optimal coupling
one would have to show that c∞ = ĉ∞. To this end, one needs to be able to control the mass
being transported over the boundary by the optimal semicoupling between λ and 1Be(n)µ

•, i.e.
the transportation cost between νB and the optimal choice of density ρB for the semicoupling
between λ and 1Bµ

•. However, this is a rather difficult problem which is not solved (see Remark
2 in [DSS11], comments after Theorem 2 in [BB11] and also Remark 7.18).

8.3 Cost estimates

In this section we want to prove part (i) and (ii) of Proposition 8.14. To this end let rΥ be the
rooted k-tree, that is a tree with a distinguished vertex r, the root, whose degree is (k − 1) and
all other vertices having degree k. Moreover, denote the j-neighborhood of r by rBj . Recall the
Lp−transportation distance between two measure valued random variables η•1, η

•
2 from section

7.3.2

Wp(η
•
1, η
•
2) = inf

{[
E
[∫

Υ×Υ
d(x, y)p θ•(dx, dy)

]]1/p

: θ• is a coupling of η•1, η
•
2

}
.

We will use the triangle inequality for Wp several times. First, we establish an transportation
cost estimate on rΥ. This will allow us to deduce the claimed bound. Put

c̃n =
1

λ(rBn)
Wp
p (νrBn , 1rBnµ

•) .

Lemma 8.17. For n ∈ N it holds that

c̃
1/p
2n ≤ c̃1/p

n + 8n · λ(rBn)−1/2p.

Proof. rB2n can be decomposed into v = ((k− 1)n + 1) disjoint copies of rBn. This gives, using
the triangle inequality

Wp

(
ν•rB2n

, 1rB2nµ
•) ≤ Wp

(
v∑
i=1

ν•
rB

(i)
n
, 1rB2nµ

•

)
+ Wp

(
v∑
i=1

ν•
rB

(i)
n
, ν•rB2n

)

≤ v1/pWp

(
ν•rBn , 1rBnµ

•)+ Wp

(
v∑
i=1

ν•
rB

(i)
n
, ν•rB2n

)
.

We need to get a bound on the second term. Put Zi = µ•(rB
(i)
n ). We estimate rather roughly.

For each i we have to transport at most mass
∣∣∣Zi − ∑v

j=1 Zj
v

∣∣∣ at most distance 4n. Put α =

λ(rBn).

Wp
p

(
ν•rB2n

,
v∑
i=1

ν•
rB

(i)
n

)
≤ v · (4n)p · E

[∣∣∣∣∣Zi −
∑q

j=1 Zj

v

∣∣∣∣∣
]

≤ v · (4n)p · E

[
|Zi − α|+

∣∣∣∣∣α−
∑v

j=1 Zj

v

∣∣∣∣∣
]

≤ v · (4n)p ·
(√

α+

√
α

v

)
.



94 CHAPTER 8. COUPLINGS ON THE REGULAR K-TREE

Dividing by (v · α)1/p yields the result.

The error term 8n · λ(rBn)−1/2p is clearly summable in n. Hence, we have

Corollary 8.18. There is a finite constant c̃∞ such that

lim
n→∞

c̃n = c̃∞.

The next step is to show that lim supn→∞ ĉn =: ĉ∞ is bounded. The key is to decompose
Be(2

n) into two rooted trees and one edge, rB1
2n , rB

2
2n and e. Note that λ(Be(n)) · ĉn =

Wp
p

(
ν•Be(n), 1Be(n)µ

•
)
.

Lemma 8.19. ĉ
1/p
n ≤ c̃

1/p
n + Wp(ν

•
e , 1eµ

•) · λ(Be(n))−1/p + (2n+ 1) · 51/p · λ(Be(n))−1/2p.

Proof. We need to estimate the transportation cost between ν•Be(n) and ν•rB1
n

+ν•rB2
n

+ν•e . Indeed,
by the triangle inequality we have

Wp

(
ν•Be(n), 1Be(n)µ

•
)

≤ Wp

(
ν•Be(n), ν

•
rB1

n
+ ν•rB2

n
+ ν•e

)
+ 21/pWp (νrBn , 1rBnµ

•) + Wp (νe, 1eµ
•) .

As before we estimate very roughly. Put Ze = µ•(e) and Zi = µ•(rBi
n) for i = 1, 2. The

transportation distance is at most (2n+ 1) and we need to transport at most mass∣∣∣∣Ze − Z1 + Z2 + Ze
λ(Be(n))

∣∣∣∣+

∣∣∣∣Z1 −
(Z1 + Z2 + Ze) · λ(rBn)

λ(Be(n))

∣∣∣∣+

∣∣∣∣Z2 −
(Z1 + Z2 + Ze) · λ(rBn)

λ(Be(n))

∣∣∣∣ .
The expectation can be bounded as before, e.g. for the middle term we get

E
[∣∣∣∣Z1 −

(Z1 + Z2 + Ze) · λ(rBn)

λ(Be(n))

∣∣∣∣]
≤ E [|Z1 − λ(rBn)|] + E

[∣∣∣∣λ(rBn)− (Z1 + Z2 + Ze) · λ(rBn)

λ(Be(n))

∣∣∣∣]
≤

√
λ(rBn) +

λ(rBn)√
λ(Be(n))

.

The other terms are similar. Therefore, we get

Wp
p

(
ν•Be(n), ν

•
rB1

n
+ ν•rB2

n
+ ν•e

)
≤ (2n+ 1)p · 5 ·

√
λ(rBn).

Taking p-th root and normalizing everything with λ(Be(n))1/p yields the claim.

Corollary 8.20.
lim sup
n→∞

ĉn ≤ ∞.

Proof. The last Lemma together with the previous Corollary implies

lim sup
n

ĉn ≤ lim sup
n

c̃n = c̃∞ <∞.

In the previous section we constructed an equivariant coupling between λ and µ• with cost
bounded by ĉ∞ <∞. Therefore, we can conclude.

Corollary 8.21. ci,∞ <∞.



Chapter 9

Stability

As an application of the previous results, especially the existence and uniqueness results, we want
to study stability properties of the optimal coupling between two random measures. Moreover,
we will show some metric properties of the mean transportation cost.

Given sequences of random measures (λ•n)n∈N, (µ
•
n)n∈N and their optimal couplings (q•n)n∈N we

want to understand which kind of convergence λ•n → λ•, µ•n → µ• implies the convergence
q•n → q•, where q• denotes the/an optimal coupling between λ• and µ•. If for all n λn, λ, µn, µ
are probability measures qn the optimal coupling between λn and µn (all transportation cost
involved bounded by some constant) and λn → λ, µn → µ weakly, then, by the classical theory
(see Theorem 5.20 in [Vil09] or Proposition 1.3), also along a subsequence qn → q weakly, where
q is an optimal coupling between λ and µ.

A naive approach to our problem would be to ask for λ•n
d→ λ• and µ•n

d→ µ•. However, in
this case let λ• and µ• be two independent Poisson point process and set λ•n ≡ µ•n ≡ λ•.

Then, we indeed have λ•n
d→ λ• and µ•n

d→ µ•. Yet, the optimal couplings (q•n)n∈N, which are
just qωn (dx, dy) = δx(dy)λωn(dx), do not converge to any coupling between λ• and µ• in any
reasonable sense. Moreover, the couplings (q•n)n∈N do ’converge’ (they are all the same) to some
coupling q̃• with marginals being λ• and λ• having the same distribution as λ• and µ•.

The next best guess, instead of vague convergence in distribution is vague convergence on M ×
M × Ω. Together with some integrability condition this will be the answer if the cost of the
couplings converge.

For two random measure λ•, µ• with intensity one and c(x, y) = dp(x, y) with p ∈ [1,∞) write

Wp
p(λ
•, µ•) = inf

q•∈Πis(λ•,µ•)
C(q•) = inf

q•∈Πis(λ•,µ•)
E
[∫

M×B0

dp(x, y) q•(dx, dy)

]
.

We want to establish a triangle inequality for Wp and therefore restrict to Lp cost functions. We
could also extend this to more general cost functions by using Orlicz type norms as developed
in [Stu11]. However, to keep notations simple we stick to this case.

In this chapter, we will assume that all pairs of random measures considered will be equivariant
and modeled on the same probability space (Ω,A,P). As usual P is assumed to be stationary.
Moreover, we will always assume without explicitly mentioning it that the mean transportation
cost is finite.

Recall the disintegration Theorem 2.9. This will allow us to use the gluing lemma.

Proposition 9.1. Let µ•, λ•, ξ• be three equivariant random measures of unit intensity.

i) Wp(λ
•, µ•) = 0 ⇔ λω = µω P− a.s..

ii) Wp(λ
•, µ•) = Wp(µ

•, λ•).

95
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iii) Wp(λ
•, µ•) ≤Wp(λ

•, ξ•) + Wp(ξ
•, µ•).

Proof. i) Wp(λ
•, µ•) = 0 iff there is a coupling of λ• and µ• which is entirely concentrated on

the diagonal almost surely, that is iff λω = µω P− almost surely.

ii) Let q• be an optimal coupling between λ• and µ•. By definition

Wp
p(λ
•, µ•) = E

[∫
M×B0

dp(x, y)q•(dx, dy)

]
.

For g, h ∈ G put

f(g, h) = E
[∫

gB0×hB0

dp(x, y)q•(dx, dy)

]
.

By equivariance and stationarity, we have f(g, h) = f(kg, kh) for all k ∈ G. Hence, we can
apply the mass transport principle.∑
h∈G

f(g, h) = E
[∫

gB0×M
dp(x, y)q•(dx, dy)

]
=
∑
g∈G

f(g, h) = E
[∫

M×hB0

dp(x, y)q•(dx, dy)

]
.

This proves the symmetry.

iii) The random measures are random variables on some Polish space. Therefore, we can use the
gluing Lemma (cf. [Dud02] or [Vil09], chapter 1) to construct an equivariant random measure
q• on M ×M ×M such that

(π1,2)∗q
• ∈ Πopt(λ

•, µ•) and (π2,3)∗q
• ∈ Πopt(µ

•, ξ•),

where Πopt(λ
•, µ•) denotes the set of all optimal couplings between λ• and µ•. q• is equivariant

as the optimal couplings are equivariant and q• is glued together along the common marginal of
these two couplings.
We can indeed use the gluing lemma. Let q•1 ∈ Πopt(λ

•, µ•) and q•2 ∈ Πopt(µ
•, ξ•). Then,

consider 1M×gB0×Ωq
•
1 and 1gB0×M×Ωq

•
2 to produce with the usual gluing Lemma a measure q•g

on M×M×M×Ω with the desired marginals on M×gB0×M×Ω. As all these sets are disjoint
we can add up the different q•g yielding q• =

∑
g∈G q

•
g a measure with the desired properties.

For g, h ∈ G put

e(g, h) = E
[∫

M×gB0×hB0

dp(x, z)q•(dx, dy, dz)

]
.

By equivariance of q•, we have e(kg, kh) = e(g, h) for all k ∈ G. By the mass transport principle
this implies

E
[∫

M×B0×M
dp(x, z)q•(dx, dy, dz)

]
= E

[∫
M×M×B0

dp(x, z)q•(dx, dy, dz)

]
.

Then we can conclude, using the Minkowski inequality

Wp(λ
•, ξ•)

≤ E
[∫

M×M×B0

dp(x, z)q•(dx, dy, dz)

]1/p

= E
[∫

M×B0×M
dp(x, z)q•(dx, dy, dz)

]1/p

≤ E
[∫

M×B0×M
dp(x, y)q•(dx, dy, dz)

]1/p

+ E
[∫

M×B0×M
dp(y, z)q•(dx, dy, dz)

]1/p

= Wp(λ
•, µ•) + Wp(µ

•, ξ•).

In the last step we used the symmetry shown in part ii).
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Remark 9.2. Note that the first two properties also hold for general cost functions and general
semicouplings. The assumption of equal intensity is not needed for these statements.

Let Pp = {equivariant random measures µ• : Wp(m,µ
•) <∞}.

Proposition 9.3. Let (µ•n)n∈N, µ
• ∈ Pp be random measures of intensity one. Let q•n denote the

optimal coupling between m and µ•n and q• the optimal coupling between m and µ•. Consider
the following statements.

i) Wp(µ
•
n, µ

•)→ 0 as n→∞.

ii) µ•nP→ µ•P vaguely and Wp(µ
•
n,m)→Wp(µ

•,m) as n→∞.

iii) q•nP→ q•P vaguely and Wp(µ
•
n,m)→Wp(µ

•,m) as n→∞.

iv) q•nP→ q•P vaguely and

lim
R→∞

lim sup
n→∞

E

[∫
({(B0)R)×B0

dp(x, y)q•n(dx, dy)

]
= 0,

where (B0)R denotes the R−neighbourhood of B0.

Then i) implies ii). iii) and iv) are equivalent and either of them implies i).

Proof. i) ⇒ ii) : For any f ∈ Cc(M × Ω) we have to show that limn→∞ E[µn(f) − µ(f)] = 0.
To this end, fix f ∈ Cc(M × Ω) such that supp(f) ⊂ K × Ω for some compact set K. f is
uniformly continuous. Let η > 0 be arbitrary and set ε = η/(2m(K)). Then, there is δ such
that d(x, y) ≤ δ implies d(f(x, ω), f(y, ω)) ≤ ε. Put A = {(x, y) : d(x, y) ≥ δ} and denote by q•n
an optimal coupling between µ•n and µ•. By assumption, there is N ∈ N such that for all n > N
we have Wp

p(µ•n, µ
•) ≤ ηδp

4‖f‖∞ . Then, we can estimate for n > N

|E[µωn(f)− µω(f)]| ≤
∣∣∣∣E [∫

M×M
(f(x, ω)− f(y, ω))qωn (dx, dy)

]∣∣∣∣
≤ ε ·m(K) +

∣∣∣∣E [∫
A

(f(x, ω)− f(y, ω))qωn (dx, dy)

]∣∣∣∣
≤ η

2
+ 2‖f‖∞E [q•n(A)]

≤ η

2
+ 2‖f‖∞

1

δp
Wp
p(µ
•
n, µ

•)

≤ η

2
+
η

2
= η,

The second assertion in ii) is a direct consequence of the triangle inequality:

Wp(µ
•
n,m) ≤Wp(µ

•
n, µ

•) + Wp(µ
•,m)

and

Wp(µ
•,m) ≤Wp(µ

•
n, µ

•) + Wp(µ
•
n,m).

Taking limits yields the claim.

iii)⇔ iv) : By the existence and uniqueness result we know that qωn (dx, dy) = δTωn (x)(dy)m(dx)
and qω(dx, dy) = δTω(x)(dy)m(dx). In particular, we have µωn(dx)P(dω) = (Tωn )∗m(dx)P(dω). By
Lemma 5.9 we know that the vague convergence of q•nP → q•P implies that Tn → T in m ⊗ P
measure. This in turn implies the convergence of f ◦ (id, Tn)→ f ◦ (id, T ) in m⊗ P measure for
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any continuous and compactly supported function f : M ×M → R. Then, it follows as in the
proof of Lemma 5.9 that

E
∫
f(x, Tn(x))m(dx)→ E

∫
f(x, T (x))m(dx).

Let ck(x, y) be a continuous compactly supported function such that for any (x, y) ∈ (B0)k−1×B0

we have dp(x, y) = ck(x, y), for any x ∈ {(B0)k we have ck(x, y) = 0 and ck(x, y) ≤ dp(x, y) for
all (x, y) ∈M ×M . Then, we have

lim sup
n→∞

E

[∫
{((B0)R)×B0

dp(x, y)q•n(dx, dy)

]

≤ lim sup
n→∞

(
E
[∫

M×B0

dp(x, y)q•n(dx, dy)

]
− E

[∫
M×B0

cR(x, y)q•n(dx, dy)

])
= E

[∫
M×B0

dp(x, y)q•(dx, dy)

]
− E

[∫
M×B0

cR(x, y)q•(dx, dy)

]
≤ E

[∫
{((B0)R−1×B0

dp(x, y)q•(dx, dy)

]
.

Taking the limit of R→∞ proves the implication iii)⇒ iv). The other direction is similar.

iv) ⇒ i) : We will show that Wp(µ
•
n, µ

•) → 0 by constructing a not optimal coupling between
µ•n and µ• whose transportation cost converges to zero. Let Tn, T be the transportation maps
from the previous steps. Put Qn(dx, dy) := (Tn, T )∗m. This is an equivariant coupling of µ•n
and µ• because the maps Tn, T are equivariant in the sense that (see also Example 2.13)

T θgω(x) = gTω(g−1x).

The transportation cost are given by

C(Qn) = E
[∫

B0×M
dp(x, y)Qn(dx, dy)

]
= E

[∫
B0

dp(Tn(x), T (x))m(dx)

]
.

We want to divide the integral into four parts. Put AR = {x : d(T (x), x) ≥ R} and similarly
ARn = {x : d(Tn(x), x) ≥ R}. The four parts will be the integrals over B0 ∩ {aARn ∩ {bAR with
a, b ∈ {0, 1} and {0A = A. We estimate the different integrals separately.

E

[∫
B0∩{ARn∩{AR

dp(Tn(x), T (x))m(dx)

]
→ 0,

by a similar argument as in the previous step due to the convergence of Tn → T in m ⊗ P
measure and the boundedness of the integrand.

E

[∫
B0∩ARn∩AR

dp(Tn(x), T (x))m(dx)

]

≤ 2p E
[∫

B0∩AR
dp(x, T (x))m(dx)

]
+ 2p E

[∫
B0∩ARn

dp(x, Tn(x))m(dx)

]
.

If d(x, y) ≤ R, d(x, z) ≥ R and d(y, z) ≤ d(x, z) +R+ a for some constant a(= diam(B0)), there
is a constant C1, e.g. C1 = 2+diam(B0), such that d(y, z) ≤ C1d(x, z) (because d(x, z)+R+a ≤
(2 + a)d(x, z)). This allows to estimate with (x = x, T (x) = z, Tn(x) = y)

E

[∫
B0∩{ARn∩AR

dp(Tn(x), T (x))m(dx)

]
≤ Cp1 E

[∫
B0∩AR

dp(x, T (x))m(dx)

]
.
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Similarly

E

[∫
B0∩ARn∩{AR

dp(Tn(x), T (x))m(dx)

]
≤ Cp1 E

[∫
B0∩ARn

dp(x, Tn(x))m(dx)

]
.

This finally gives

lim sup
n→∞

E
[∫

B0×M
dp(x, y)Qn(dx, dy)

]
≤ lim

R→∞
lim sup
n→∞

(
2p E

[∫
B0∩AR

dp(x, T (x))m(dx)

]
+ 2p E

[∫
B0∩ARn

dp(x, Tn(x))m(dx)

]

+ Cp1 E
[∫

B0∩AR
dp(x, T (x))m(dx)

]
+ Cp1 E

[∫
B0∩ARn

dp(x, Tn(x))m(dx)

])
= 0,

by assumption.

Remark 9.4. For an equivalence of all statements we would need that ii) implies iii). In
the classical theory this is precisely the stability result (Theorem 5.20 in [Vil09]). This result
is proven by using the characterization of optimal transports by cyclical monotone supports.
However, as mentioned in the discussion on local optimality (see Remark 4.4) a cyclical monotone
support is not sufficient for optimality in our case.

We do not have real stability in general but we get at least close to it.

Proposition 9.5. Let (λ•n)n∈N and (µ•n)n∈N be two sequences of equivariant random measures.
Let q•n be the unique optimal coupling between λ•n and µ•n. Assume that λ•nP → λ•P vaguely,
µ•nP → µ•P vaguely and supn C(q•n) ≤ c < ∞. Then, there is an equivariant coupling q• of λ•

and µ• and a subsequence (q•nk)k∈N such that q•nkP→ q•P vaguely, the support of q• is cyclically
monotone and

C(q•) ≤ lim inf
n→∞

C(q•n).

In particular, if
lim
n→∞

C(q•n) = inf
q̃•∈Πis(λ•,µ•)

C(q̃•)

q• is the/an optimal coupling between λ• and µ• and q•nP→ q•P vaguely.

Proof. The proof is basically the same as for Proposition 2.23:
i) (q•nP)n∈N is relatively compact in the vague topology on M(M ×M × Ω) :
Fix f ∈ Cc(M ×M ×Ω) and set h(x, ω) = supy f(x, y, ω). Then, due to the uniform continuity
of f we have h ∈ Cc(M × Ω). This yields∫

M×M×Ω
f(x, y, ω)qωn (dx, dy)P(dω) ≤

∫
M×Ω

h(x, ω)λωnP(dω) ≤ κ <∞,

uniformly in n because λ•nP → λ•P vaguely. Hence, (q•nP)n∈N is relatively compact in the
vague topology on M(M ×M ×Ω) and there is a subsequence (q•nkP)k∈N and a measure q•P ∈
M(M ×M × Ω) such that q•nkP→ q•P vaguely.

ii) q•P is a coupling of λ• and µ• :
Fix g ∈ Cc(M ×Ω). Put A ⊂M compact such that supp(g) ⊂ A×Ω and A ∈ Adm(M). Denote
the R−neighbourhood of A by AR. By the uniform bound on transportation cost we have

q•nP(A, {(AR),Ω) ≤ m(A)
c

ϑ(R)
, (9.1)
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uniformly in n. Let fR : M → [0, 1] be a continuous compactly supported function such that
fR(y) = 1 for y ∈ AR and fR(y) = 0 for y ∈ {AR+1. As q•nP is a coupling of λ•n and µ•n we have
due to monotone convergence∫

M×Ω
g(x, ω)λωn(dx)P(dω) =

∫
M×M×Ω

g(x, ω)qωn (dx, dy)P(dω)

= lim
R→∞

∫
M×M×Ω

g(x, ω)fR(y)qωn (dx, dy)P(dω).

Because of the uniform bound (9.1) we have∣∣∣∣∫
M×Ω

g(x, ω)λωnk(dx)P(dω)−
∫
M×M×Ω

g(x, ω)fR(y)qωnk(dx, dy)P(dω)

∣∣∣∣ ≤ m(A)
c · ‖g‖∞
ϑ(R)

.

Taking first the limit of nk → ∞ and then the limit of R → ∞ we conclude using vague
convergence and monotone convergence that

0 = lim
R→∞

lim
k→∞

∣∣∣∣∫
M×Ω

g(x, ω)λωnk(dx)P(dω)−
∫
M×M×Ω

g(x, ω)fR(y)qωnk(dx, dy)P(dω)

∣∣∣∣
= lim

R→∞

∣∣∣∣∫
M×Ω

g(x, ω)λω(dx)P(dω)−
∫
M×M×Ω

g(x, ω)fR(y)qω(dx, dy)P(dω)

∣∣∣∣
=

∣∣∣∣∫
M×Ω

g(x, ω)λω(dx)P(dω)−
∫
M×M×Ω

g(x, ω)qω(dx, dy)P(dω)

∣∣∣∣ .
This shows that the first marginal is λ•. Similarly, we can show that the second marginal is
µ•. The equivariance is inherited from the equivariance of q•n. Just consider f(x, y, ω) and
f̃(x, y, ω) = f(g−1x, g−1y, θgω) as in the proof of Proposition 2.23.

iii) The support of q•P is cyclically monotone and C(q•) ≤ lim inf C(q•nk):
The second assertion is a consequence of the lower semicontinuity of Cost(·) with respect to
vague convergence. For the first assertion note that due to local optimality for any n (q•n)⊗N is
concentrated on the set of ((x1, y1), . . . , (xN , yN )) such that

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1),

with yN+1 = y1. As the cost function c is continuous this is a closed set. If we restrict to points
(xi, yi) ∈ K for some compact set K ⊂M×M , such that q•P(∂K) = 0, then, for all n, (1Kq

•
n)⊗N

is concentrated on this compact set. By vague convergence, this implies that (1Kq
•)⊗N is also

concentrated on this set. Thus, the support of q• is cyclically monotone.

Remark 9.6. The last proposition also holds if we consider semicouplings instead of couplings.
In that case we have to show one inequality and one equality for the marginals of q•. This is
again the same as in the proof of Proposition 2.23.

Example 9.7 (Wiener mosaic). Let µ•0 be a Poisson point process of intensity one on R3.
Let each atom of µ0 evolve according to independent Brownian motions for some time t. The
resulting discrete random measure is again a Poisson point process, denoted by µ•t (e.g. see page
404 of [Doo53]). Consider the transport problem between the Lebesgue measure L and µ•t with
cost function c(x, y) = |x−y|2. Let q•t be the unique optimal coupling between L and µ•t . Then,
C(q•t ) = W2(L, µ•t ) = W2(L, µ•s) for any s ∈ R as µ•s and µ•t are both Poisson point processes of
intensity one. Moreover, we clearly have µ•sP→ µ•tP vaguely as s→ t and therefore q•sP→ q•t P
vaguely. By Lemma 5.9, this implies the convergence of the transport maps Ts → Tt in L ⊗ P
measure. In particular, we get a continuously moving mosaic.
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Figure 9.1: This is a schematic picture of the cubes used in the definition of Ωa(β′) and Ω(a, ρ).
The cube in the center is [−a/2, a/2)d.

Example 9.8 (Voronoi tessellation). Let µ• be a simple point process of unit intensity. Put
µ•β = β · µ•. We want to consider semicouplings between the Lebesgue measure L and µ•β for
β > 1. By the results of chapter 6, there is a unique optimal semicoupling q•β between L and

µ•β. Moreover, qωβ = (id, Tωβ )∗L for some measurable map Tβ : Rd × Ω → Rd. It is clear that
qω∞ induces the Voronoi tessellation with respect to the support of µω1 no matter which cost
function ϑ we consider. We want to show that q•β → q•γ vaguely as β → γ for large γ. For this
it is sufficient to show that C : β 7→ C(q•β) is continuous. For γ > β > 1 note that q•β is also a
semicoupling of L and µ•γ . Hence, C(β) is monotonously decreasing in β. Moreover, from the
previous Lemma we know that

C(q•γ) ≤ lim inf
β→γ

C(q•β).

Therefore, C(β) is a monotonously decreasing lower semicontinuous function. This implies that
it is right continuous. Hence, we need to show that C(·) is left continuous.

We show the left continuity of C(·) in the case that µ• is a Poisson point process for large
β < ∞. For the case β = ∞ we show the vague convergence of q•β → q•∞ directly. By scaling

τ : x 7→ β1/d · x this is the same as showing left continuity of C̃ : β 7→ C(q̃•β), with q̃•β the
optimal semicoupling between L and η•β, where η•β is a Poisson point process of intensity β > 1.
Indeed, τ∗η

•
β is a Poisson process of intensity one. If q̃•β is a semicoupling between L and η•β,

then q•β := β · (τ, τ)∗q̃
•
β is a semicoupling between L and µ•β. Moreover, we have

C(q•β) = E

[∫
Rd×[0,1)d

|x− y|p q•β(dx, dy)

]

= β · E

[∫
Rd×[0,β−1/d)d

βp/d|x− y|p q̃•β(dx, dy)

]
= βp/d · C(q̃•β).
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Hence, q•β is optimal iff q̃•β is optimal and C(·) is continuous iff C̃(·) is continuous.

For 0 < ρ < 2 and a, β > 1 let Ωa(β) be the event such that∣∣∣ηωβ (z + [−a/2, a/2)d
)
− βad

∣∣∣ ≤ ρ · βad

∀ z ∈ a ·
[
Zd ∩ [−2, 2]d

]
and∣∣∣ηωβ (z + [−5k · a/2, 5k · a/2)d

)
− β5kdad

∣∣∣ ≤ ρ · β · 5kdad

∀ z ∈ 5ka ·
[
Zd ∩ [−2, 2]d \ {0}

]
, ∀k ∈ N. Using Lemma 7.24 we can estimate

P[{Ωa(β)] ≤
∞∑
k=0

2 · 5d exp

(
−βad5kd · ρ

2

4

)

≤ 2 · 5d
( ∞∑
k=1

exp

(
−k · βad5d · ρ

2

4

)
+ exp

(
−βad · ρ

2

4

))

≤ 6 · 5d · exp

(
−βad · ρ

2

4

)
=: C · exp

(
−βad · ρ

2

4

)
,

for β large enough such that the geometric series becomes bounded by 2, e.g. β > 42 would do.
Fix a large β and a slightly smaller β′. We can write η•β = η•β′ + η•β−β′ with independent η•β′ and
η•β−β′ . Put Aωβ′ = supp(ηωβ′) and

q̃ωβ|β′(dx, dy) := 1Rd×Aω
β′
q̃ωβ (dx, dy).

This is equivariant as A
θgω
β′ = supp(η

θgω
β′ ). Then, also the measures

λωβ′(dx) := q̃ωβ (dx, {Aωβ′)

and
ξωβ′(dy) := ηωβ′(dy)− q̃ωβ|β′(R

d, dy)

are equivariant. λωβ′ is the part of the Lebesgue measure that becomes free if we restrict to

Rd × Aωβ′ . ξωβ′ is all the Poisson mass from ηωβ′ which is not completely satisfied under q̃ωβ , i.e.
which is still looking for some Lebesgue points.

The strategy is to find a good semicoupling κ•β′ between λ•β′ and ξ•β′ whose cost can be controlled
nicely. Then, q̂•β′ := q̃•β|β′+κ•β′ is a semicoupling between L and η•β′ with C(q̂•β′) ≥ C(q̃•β′). Hence,

showing that C(κ•β′) converges to zero as β′ → β proves the desired left continuity because
C(q̃•β|β′)→ C(q̃•β) as β′ → β by monotone convergence.

Put Θa(β′) = Ωa(β) ∩ Ωa(β′). Then, it holds that P[Θa(β′)] ≥ 1 − 2 · C exp
(
−β′ad · ρ

2

4

)
. For

ω ∈ Ωa(β) we have for any Bz = z + [−5ka/2, 5ka/2)d with z as above that

ηωβ (Bz) > (1− ρ) · β · L(Bz).

β and β′ are assumed to be large such that (1 − ρ) · β′ is still very large, say bigger than 42.
We claim that ξωβ′(Bz) is still much larger than L(Bz). Indeed, if this was not the case on a set
of positive measure D ⊂ Ωa(β′), q̃ωβ|β′ would need to transport Lebesgue measure from far away
into Bz. However, as there is much more Poisson mass than Lebesgue mass in each of the boxes
Bz′ it is easy to construct locally a semicoupling with less cost on the set D. Due to invariance
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we can do this on every translate of Bz and therefore produce globally a semicoupling with less
cost contradicting optimality of q̃•β. Hence, by possibly choosing β, β′ even bigger we can assume
that for ω ∈ Θa(β′)

ξωβ′(Bz) >
1

2
· (1− ρ) · β · L(Bz).

Therefore, even if λωβ′ was equal to the Lebesgue measure L in any cube Bz = z+[−5ka/2, 5ka/2]
there is still much more ξωβ′ measure than Lebesgue measure. Thus, we can find for any x ∈
Bz ∩ supp(λ•β′) a Poisson partner at most distance

√
d · 5k+1 · a apart, that is a partner in

the same box or one of the surrounding boxes. In particular, we can find a partner for x ∈
[−a/2, a/2)d at distance at most

√
d · 5 · a. Put ã = a

5
√
d
. Then, we can find (e.g. by a variant

of the stable marriage algorithm [HHP06]) an equivariant semicoupling κ•β′ = (id, S)∗λ
•
β′ with

P[|x − S(x)| > a] ≤ P[{Θã(β′)] ≤ C exp(−cad) for x ∈ [−ã/2, ã/2)d. In particular, C(κ•β′) =

1
ãd
E
[∫

[−ã/2,ã/2)d×Rd |x− S(x)|p λ•β′(dx)
]
<∞. To estimate the mean transportation cost of κ•β′

we split the integral into two parts. First,

E

[
1Θã(β′)

1

ãd

∫
[−ã/2,ã/2)d×Rd

|x− S(x)|p λ•β′(dx)

]
≤ ap(β − β′) · (5 ·

√
d)d

The term ap comes from the upper bound on the transportation distance as argued earlier.
1[−ã/2,ã/2]λ

ω
β′ – the mass that becomes free if we restrict qωβ to ηωβ′ – can be bounded from above

by 1 · (ηωβ ([−a/2, a/2)d) − ηωβ′([−a/2, a/2)d)) on Θã(β′). The reason is same as for the lower
bound of ξωβ′ . There are so many Poisson points close by that the Lebesgue mass will not be
transported far. Using the bound |x− y|p ≤ ap and taking expectations yields the claim (Note
that ηωβ − ηωβ′ = ηωβ−β′ ≥ 0. Hence, enlarging the domain of integration can just increase the
integral.).

The second part we have to estimate is E
[
1{Θã(β′)

1
ãd

∫
[−ã/2,ã/2)d×Rd |x− S(x)|p λ•β′(dx)

]
. Fixing

δ > 0, we can make a so large that this expectation can be bounded by δ/2 because C(κ•β′) <∞
and P[{Θã(β′)] ≤ 2 · C exp

(
−cad

)
. Hence, we have

C(κ•β′) ≤ ap · (β − β′) · (5 ·
√
d)d + δ/2.

For any β′ < γ < β we put Aωγ = supp(ηωγ ) with η•β = η•β′ + η•γ−β′ + η•β−γ and η•γ = η•β′ + η•γ−β′
for independent Poisson processes as above. Set

λωγ (dx) := q̃ωβ (dx, {Aωγ )

and
κωγ := (id, S)∗λ

ω
γ .

That is we take the same semicoupling as before but transport less mass because some of the λ•β′
mass is again used by q̃•β|γ . Note that the Poisson points which get mass from κ•β′ do not get mass
from any of the q̃•γ transports by construction. Hence, we can estimate the mean transportation

cost as above using the same set Θã(β′) yielding

C(κ•γ) ≤ ad · (β − γ) + δ/2.

Taking β − δ/2ap(5 ·
√
d)d < γ < β yields

C(κ•γ) < δ.

As δ was chosen arbitrary, this proves the claim. Therefore, the map C : β 7→ C(q•β) is continuous
for large β <∞.
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To show that q•β → q•∞ vaguely for β →∞ we need to twist the last argument slightly. We will
not argue using the mean transportation cost but we will show that for any compact set K we
have

lim
β→∞

L ⊗ P[(x, ω) ∈ K × Ω : Tβ(x, ω) 6= T∞(x, ω)] = 0.

Applying Lemma 5.9 proves the claim. To show this claim let Ω(a, ρ) with a > 1, 0 < ρ < 2 be
the event such that ∣∣∣µω (z + [−a/2, a/2)d

)
− ad

∣∣∣ ≤ ρ · ad

∀ z ∈ a ·
[
Zd ∩ [−2, 2]d

]
and∣∣∣µω (z + [−5k · a/2, 5k · a/2)d

)
− 5kdad

∣∣∣ ≤ ρ · ·5kdad

∀ z ∈ 5ka ·
[
Zd ∩ [−2, 2]d \ {0}

]
, ∀k ∈ N. Just as above we can estimate

P[{Ω(a, ρ)] ≤ C · exp(−adρ2/4).

Let any compact setK be given. By equivariance, we can assume w.l.o.g. that K ⊂ [−a/2, a/2)d.
For β > ad(5d · 3d)/(1 − ρ) and ω ∈ Ω(a, ρ) we claim that Tβ(x, ω) = T∞(x, ω) for all x ∈
[−a/2, a/2)d. First of all note that for any Bz = z + [−Rka/2, Rka/2)d with z as above we have
for ω ∈ Ω(a, ρ)

µωβ (Bz) > β · (1− ρ)L(Bz) > (5d · 3d)L(Bz).

The last quantity is a bound on the volume of the union of the boxes surrounding Bz. This
implies that any Lebesgue point will be transported to a Poisson point which is at most one box
away, i.e. if x ∈ Bz than Tβ(x, ω) lies in Bz or a box surrounding Bz. In particular, any Poisson
point in B0 = [−a/2, a/2)d wants to have much more mass than there is available in B0 and its
surrounding boxes. Hence, any Lebesgue point chooses the Poisson point which is closest. This
yields (locally) the Voronoi diagram. Therefore,

L ⊗ P[(x, ω) ∈ K × Ω : Tβ(x, ω) 6= T∞(x, ω)] ≤ L(K) · P[{Ω(a, ρ)] ≤ ad · C exp(−adρ2/4),

which can be made arbitrarily small by making a – therefore also β – big. Hence, the claim
follows.
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[AKT84] M. Ajtai, J. Komlós, and G. Tusnády. On optimal matchings. Combinatorica,
4(4):259–264, 1984.

[Amb03] L. Ambrosio. Lecture notes on optimal transport problems. In Mathematical aspects
of evolving interfaces (Funchal, 2000), volume 1812 of Lecture Notes in Math., pages
1–52. Springer, Berlin, 2003.
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