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Abstract

During the past decade observations of the Cosmic MicrowaveBackground (CMB), the growth
rate of linear density perturbations or the mass function ofgalaxy clusters among others have
independently suggested that our Universe is composed of∼ 4% baryons,∼ 23% dark matter and
∼ 73% dark energy. By combining those methods, the values of cosmological parameters can be
constrained and the dynamics and geometrics of the Universecan be determined. In particular, the
cluster mass function is sensitive to the matter densityΩm which comprises both dark and baryonic
matter, the amplitude of mass fluctuations on cluster scalesσ8, and the dark energy densityΩde

and equation-of-state parameterw.
As non-linear tracers of the Cosmic Web, galaxy clusters represent the top of hierarchical

structure formation with the largest dark matter halos. Therefore, cosmological studies based on
galaxy clusters allow important consistency checks to e.g CMB results. Since the most extensive
studies of galaxy clusters so far have been carried out in X-rays and in the optical, it is of particular
interest to cross-calibrate cluster masses with both methods. Furthermore, the combination of both
approaches allows to calibrate scaling relations between X-ray observables and mass. To perform
cluster cosmology we require large, well defined cluster samples and precise cluster masses. This
thesis focuses on the latter – the precise calibration of cluster masses on a sample of five galaxy
clusters at high and intermediate redshifts (0.3 < z < 0.55) spanning a wide range in mass and
morphology. For all clusters high-quality space-based data from ACS@HST are available for ac-
curate weak lensing shape measurements. Independent and complementary mass estimates arise
from high-quality X-ray data fromXMM-NewtonandChandra. The combination of weak gravi-
tational lensing and X-rays allows us to investigate cluster properties, such as mass, concentration
and velocity dispersion and to discuss our results with respect to dynamical state, morphology and
projected 2d-morphology. Using weak lensing masses, we canfurther cross-calibrate the scaling
relations between X-ray masses and observables which may evolve with redshift (e.g. Voit 2005).
For the redshifts of our sample we might observe such an evolution compared to samples at lower
redshifts.

The weak lensing analysis of this project was carried out as follows: With the aperture mass
statistics (Map–statistics, e.g. Schneider 1996) the weak lensing signal of the clusters was mea-
sured and position and amplitude of its peak were confirmed using simulations. Using magnitude-
redshift relations (Schrabback et al. 2007, 2010), the meandistance ratios and effective mean
source redshifts of the lensed background galaxies were estimated to optimise the lensing sig-
nal. We showed that the peak of the lensing signal can be used as alternative definition for the
cluster centre and used its position to calculate the tangential shear profiles to which we fitted
commonly used mass models to obtain the cluster masses. We found that our cluster masses are
widely consistent with previous studies, such as X-rays, the Sunyaev-Zeldovich Effect or dynami-
cal estimates, which we used as cross-check because no uniformly obtained cluster masses for our
sample were available. As an example study, we used archivalmulti-colour data from the ground-
based facilities MegaPrime@CFHT and Suprime-Cam@SUBARU to estimate the photometric
redshifts of the lensed background galaxies and calibratedthem against spectroscopic redshifts



from DEIMOS@Keck-II (Moran et al. 2007). With the inclusionof such photometric redshifts,
we can improve our weak lensing analysis in two regards: Firstly, the strength of a lensing system
depends on the distance between lens and background sourcesamong others. Secondly, we can
remove unlensed foreground galaxies using photometric redshifts. Since only 5% of our sources
of MS0451.6−0305 have photometric redshifts, this effect is only marginal.

In the second step of this project, the X-ray analysis was performed for three clusters which
were observed withXMM-Newtonand one cluster which was observed withChandra. Using the
flux-weighted X-ray centroid as cluster centre, temperature and gas density profiles were obtained
which we used to determine the X-ray hydrostatic masses at anoverdensity of∆ = 500 compared
to the mean density of the Universe at the redshift of the cluster. Using the corresponding radius
r500, the global observables temperature, luminosity and metallicity were obtained. Especially, for
our disturbed clusters, we found offsets between the flux-weighted X-ray centroid and the weak
lensing peak which can also be observed for e.g. the Bullet Cluster 1E0657-56 (e.g. Clowe et al.
2007). Furthermore, the X-ray hydrostatic masses are∼ 20% lower than the weak lensing masses
because most of our clusters are not in hydrostatic equilibrium which is the main assumption in
X-rays. A comparison with previous X-ray studies shows thatour cluster masses are∼ 20− 35%
lower which is due to the fact that our masses were obtained from temperature profiles instead of
using isothermality (e.g. Zhang et al. 2005) and the oldChandra-calibration (e.g. Snowden et al.
2008).

The scaling relations were calibrated with slopes from self-similar predictions and well-
established samples (Zhang et al. 2006, 2008, 2010), and thenormalisations were determined.
We found that our normalisations are widely consistent withprevious studies as far as cosmol-
ogy, method and slope are comparable to ours. We could not prove whether there is an evolution
with redshift for our scaling relations because either there is no evolution or the uncertainty is too
high. To investigate whether there is an evolution with redshift, a larger sample would be required.
Furthermore, we would need lensing data covering larger field-of-views which would reduce the
errors on lensing mass as well as deep photometric redshiftsfor all clusters.
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Even if there is only one possible unified theory, it is just a set of rules and
equations. What is it that breathes fire into the equations and makes a

universe for them to describe? The usual approach of scienceof
constructing a mathematical model cannot answer the questions of why

there should be a universe for the model to describe. Why doesthe
universe go to all the bother of existing?

Stephen W. Hawking
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Chapter 0

Introduction

Galaxy clusters are of special interest for modern cosmology because they represent the most
gravitationally bound structures of the cosmic matter distribution embedded into the largest dark
matter halos. In hierarchical structure formation theories, galaxy clusters emerged via gravita-
tional collapse from fluctuations in the primordial densityfield. Probing the large-scale-structure
(LSS), they provide constraints on cosmological parameters via the cluster mass function which
comprises the number density and the redshift evolution of galaxy clusters as well as their large-
scale distribution. Thus, the cluster mass function is verysensitive to e.g. the matter densityΩm,
the amplitude of mass fluctuations on cluster scalesσ8, and to the dark energy densityΩde and
equation-of-state parameterw (e.g. Eke et al. 1996; Bahcall & Fan 1998; Borgani et al. 1999;
Reiprich & Böhringer 2002; Schuecker et al. 2003a,b; Mantzet al. 2008; Vikhlinin et al. 2009a,b).
As cosmological probes, galaxy clusters provide an independent and complementary tool com-
pared to other approaches such as the distance-redshift test using standard candles (e.g. SNIa,
Perlmutter et al. 1999; Riess et al. 2004; Kowalski et al. 2008), Baryonic-Acoustic-Oscillations
(e.g. Eisenstein et al. 2005; Percival et al. 2007), the growth rate of linear density perturbations
(e.g. Huterer & Turner 2001) or measurements of the temperature fluctuations of the Cosmic Mi-
crowave Background (CMB, e.g. Dunkley et al. 2009; Larson etal. 2011).

The theoretical expectation for the cluster abundance can be obtained either from analytical
models (Press & Schechter 1974; Sheth & Tormen 1999) or from N-body simulations (e.g. Jenk-
ins et al. 2001; Warren et al. 2006; Tinker et al. 2008) which precisely predict the abundance of
dark matter halos as a function of mass and redshift. Since the cluster mass is not directly measur-
able, it has to be inferred from observations in various wavelength ranges of the electromagnetic
spectrum. For instance, the cluster masses can be derived inthe optical from measuring the ve-
locity dispersion of the cluster galaxies (e.g. Girardi & Mezzetti 2001) or gravitational lensing
(e.g. Schneider 1996; Dahle et al. 2003; Clowe et al. 2006b; Gavazzi & Soucail 2007; Schirmer
et al. 2007; Holhjem et al. 2009; Israel et al. 2011). In X-rays, cluster masses can be inferred from
the temperature and density distributions of the hot intra-cluster medium (ICM, e.g. Zhang et al.
2005, 2006, 2008). At sub-millimetre wavelenghts, we can obtain cluster masses via the energy
CMB-photons gain when they encounter the ICM (Sunyaev-Zeldovich Effect, e.g. Kravtsov et al.
2006). Since galaxy clusters are richly labelled objects, many of their properties correlate well
with mass. To understand the relation between direct observables, such as X-ray luminosityLX or
temperatureTX , and the total cluster mass, is crucial for precision cluster cosmology. Compared
to N-body simulations, theoretical predictions about directly observational quantities can become
difficult because baryonic physics may be more complicated as canbe modelled with simulations.
In addition, mass uncertainties are often quoted as the mainsource of uncertainty in cluster-based
cosmology (e.g. Vikhlinin et al. 2009b; Mantz et al. 2010b).Independent cluster mass estimates
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are essential to understand the systematic uncertainties of cluster masses. For these reasons, mass
proxies based on scaling relations between observables andcluster mass must be carefully tested
and cross-checked with observations (e.g. Zhang et al. 2008, 2010).

The most extensive studies of galaxy clusters so far have been carried out in X-rays (e.g.
Böhringer et al. 2000, 2004; Reiprich & Böhringer 2002; Allen et al. 2003; Mantz et al. 2008;
Vikhlinin et al. 2009a,b) and in the optical (e.g. Gladders &Yee 2000; Goto et al. 2002; Bahcall
et al. 2003; Gladders et al. 2007; Koester et al. 2007), wherefore it is of particular interest to corre-
late and cross-check samples observed in both wavelength ranges and to investigate the strengths
and weaknesses of both methods. The combination of lensing and X-ray allows us to calibrate
scaling relations between X-ray observables and mass (e.g.Okabe & Umetsu 2008; Kawaharada
et al. 2010; Okabe et al. 2010; Zhang et al. 2010).

In X-ray studies, cluster masses can be inferred from the temperature and density distribu-
tions of the hot intra-cluster medium which emits X-ray because it is compressed and shock-heated
by the gravitational potential of the cluster. The accuracywith which cluster masses are obtained
depends on the validity of hydrostatic equilibrium betweenthe ICM and the gravitational poten-
tial which can be disturbed due to merging. But the accuracy is also a function of the photon
statistics, the spatial resolution of the telescope and theradius up to which the X-ray emission can
be measured. With the current instruments, good photon statistics for reliable hydrostatic mass
estimates are available only out tor500. A detailed temperature profile can only be obtained for the
brightest and nearby clusters. For distant clusters, oftenonly a global temperature or luminosity
can be determined wherefore we have to rely on scaling relations between temperature and X-ray
luminosity with mass.

In the optical, the masses of galaxy clusters can be inferredfrom gravitational lensing (e.g.
Mellier 1999; Bartelmann & Schneider 2001). In this theory,one considers the distortion and
magnification of light from background galaxies which is deflected by a foreground cluster. To
first order, the gravitational field of a foreground mass provides a coherent, tangential alignment of
background sources around the centre of the mass concentration. For very massive lens systems
and appropriate geometrical alignment between observer, lens and source,strong gravitational
lensingmanifests in strongly elongated sources (giant arcs) and in some cases multiple images of
a source can be observed. This allows one to directly model the mass distribution in the central
cluster region. In the cluster outskirts, the image distortions are so weak that their distortions
have to determined by statistical means. By assuming that the galaxies are intrinsically randomly
oriented,weak gravitational lensingleads in the presence of a mass to a significant, non-zero
mean ellipticity of galaxy images which allows us to infer the total projected cluster mass and
to reconstruct the two-dimensional mass distribution of galaxy clusters. Since the background
sources are completely independent of the cluster, we do nothave to rely on relations between
light and matter to infer the cluster properties. However, gravitational lensing has the drawback
that it is prone to projection effects such as halo triaxiality and matter distributed along the line-of-
sight. For this reason, it is important to cross-check weak lensing cluster masses with hydrostatic
mass estimates from X-ray studies which are free of such projection effects.

The accuracy of lensing masses is further limited by the available data quality. Deep obser-
vations and high-resolution imaging are required to achieve high number densities of the back-
ground source population and to obtain accurate shape measurements. In addition, multi-colour
data allow us to determine the photometric redshifts of the sources and to separate foreground and
background galaxies but it also improves the estimates on the spatial geometry between observer,
lens and sources. Especially for high-redshift clusters, such as studied in this work, these criteria
are important because they are more sensitive to contaminations of the background sample than
low-redshift clusters. To trace the gravitational lens effect beyond the cluster outskirts, wide-field
images from ground-based facilities or mosaic observations from space are crucial to constrain the
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cluster mass and to reduce its errors. Anyhow, space-based data provides the best quality of shape
measurements since shorter exposure times are required to achieve the desired depth and it is free
of the blurring due to atmospheric turbulences.

Recent studies suggest that X-ray scaling relations are self-similar and show no strong evo-
lution for massive galaxy clusters up toz ∼ 0.3 compared to samples at higher redshifts (e.g.
Maughan et al. 2006, 2008) which are primarily homogeneous and consist mostly of relaxed clus-
ters (Zhang et al. 2007). Cluster masses based on X-ray and weak lensing analyses are in good
agreement for clusters in this redshift range (e.g. Zhang etal. 2008 and references therein). For
clusters at higher redshifts, where evolution effects become more pronounced than in the local Uni-
verse, extensive studies on large statistical samples still need to be performed. To make progress in
this area, this thesis is devoted to the detailed weak gravitational lensing and X-ray analysis of five
galaxy clusters at high and intermediate redshifts (0.3 . z. 0.55) spanning a wide range in mass
and morphology. The analysis presented in this work is performed with deep space-based data
from the Hubble Space Telescope (HST) which allow accurate shape measurements and provide a
coverage up to the cluster outskirts by the mosaic-pattern of the observations. In addition, multi-
colour ground-based data from MegaPrime@CFHT and Suprime-Cam@SUBARU are available
to estimate photometric redshifts for the cluster MS0451.6−0305. These optical data are comple-
mented by high-resolution X-ray data fromXMM-NewtonandChandra.

This work will be organised as follows: In Chapter 1, the cosmological background knowl-
edge for the scope of this thesis will be provided. Chapter 2 and Chapter 3 introduce gravitational
lensing theory and X-ray physics, respectively. The cluster sample and the data used for this anal-
ysis will be described in Chapter 4. Since photometric redshifts are available for one cluster, their
accuracy and their effect on a weak lensing analysis will be estimated and discussed in Chapter 5.
The results from the weak lensing analysis will be presentedin Chapter 6 followed by the results
from the X-ray analysis in Chapter 7. Scaling relations including X-ray observables as well as X-
ray hydrostatic and weak lensing masses will be discussed inChapter 8. A concluding summary
will be provided in Chapter 9. Throughout this work we assumea flatΛCDM-cosmology with
Ωm = 0.27,ΩΛ = 0.73 andh = 0.72.



6 Chapter 0. Introduction



7

Chapter 1

Cosmology

Cosmology is a scientific discipline that deals not only withthe origin and the evolution of the
Universe as a whole but also with its fundamental structure.Thereby this science connects particle
physics, observational astronomy and philosophy. Sprouting from a mythical and religious world
picture, such as e.g. in the ancient China or Babylonia, cosmology has grown to a fundamental
research which has the goal to explain the past, present and future of our Universe using the four
known fundamental interactions gravity, electromagnetism and strong and weak interactions. The
latter two act only on atomic scales and it is believed that electromagnetism does not play a role
in cosmology as well, because the Universe is supposed to be charge neutral. For this reason,
gravity is the only fundamental force that acts on large distances and thus it dominates the cosmic
evolution. In this chapter, we will learn that not only gravity drives cosmic evolution. There is
another, mysterious force which is responsible for the expansion of space via the negative pressure
of the vacuum, not only very recently, but also in the beginning. This force is calleddark energy
and its nature is still unknown.

Since we can only observe our own Universe and do not have knowledge about other uni-
verses, we have to distinguish carefully between serendipitous incidents and actual laws of Nature.
Provided that the nature of space-time is mathematically describable, we can only observe events
on our backward light cone which limits the observable part of the Universe. Yet, this allows us
to study our Universe at earlier times back to when it was only380,000 years old and the CMB
was formed. In addition, we can infer the evolution of objects in our cosmic neighbourhood, such
as objects in the Milky Way or galaxies of the Local Group fromobservations of their distant past
progenitors.

In this chapter, I will describe the theory upon which the cosmological standard model
ΛCDM is based and how galaxy clusters – the subjects of this dissertation – are embedded in
this model. I will describe how these massive objects consisting of hundreds of galaxies have
evolved from quantum fluctuations to the most significant peaks in the matter distribution of the
Universe. In Sect. 1.1, I will briefly outline the cosmic history from very beginning of time and
space, the Big Bang to the time at which the CMB was created. Some of the processes which
happened during that period are supposed to be responsible for the large-scale structures we ob-
serve today. In Sect. 1.2, I will introduce kinematics and energy components of the Universe.
Section 1.3 describes the formation of primordial small-scale overdensities which develop to the
locally highly inhomogeneous structures we observe today in forms of galaxy clusters, filaments
and voids. Section 1.4 will be dedicated to galaxy clusters and their importance for modern cos-
mology. Detailed reviews on the physics discussed in this chapter are given by e.g. Peacock 1999,
Dodelson 2003 and Schneider 2006a.
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1.1 Big Bang and nucleosynthesis

From our present knowledge drawn from various observations, the genesis of time, space and
matter was an infinitesimal small and infinite hot, dense singularity from which space and time
decoupled due to expansion. This event is known as the Big Bang.

Proposed by Lemaı̂tre (1927), the Big Bang theory has becomepopular because it gives
the most complete and accurate explanation for various astronomical observations. Evidence that
such an event had happened was found in: (1) The recession velocities of distant galaxies (Hubble
1929), (2) the radiation of the Cosmic Microwave Background(e.g. Penzias & Wilson 1965),
(3) the abundances of primordial elements (Steigman 2006),(4) the large-scale distribution of
galaxies (e.g. Bertschinger 1998; Tegmark et al. 2006) and (5) primordial gas clouds (Fumagalli
et al. 2011).

There is no information on thet ≪ 1 seconds of our Universe since the physics of the corre-
sponding energy scales of interest are not well understood.Yet, physicists prefer among others the
idea of inflation in which the Universe expanded rapidly due to the negative-pressure of the vac-
uum energy density which dominated the expansion. During inflation, any gravitationally-caused
space curvature was smoothed to an almost flat space and the seeds for matter inhomogeneities
that appear homogeneous on large scales today were sowed. The picture of inflation was first
postulated by Guth (1981) and Sato (1981) to explain the vasthomogeneity and flatness of the
Universe. Although its complete particle physics mechanism is still unknown, it became the most
popular theory to describe the birth of our Universe becauseit explains why the CMB fluctuates
only by ∼ 10−5 over the whole sky when the angular separation of causally-connected regions
at its creation subtends only∼ 1◦ (Horizon problem) and why our Universe is so flat (Flatness
problem).

After inflation, the Universe was reheated to the temperature it had before the onset of in-
flation due to the phase transition of vacuum energy back intoStandard Model particles after.
Thus, 1 s after the Big Bang, the temperature was still high enough for nucleosynthesis of the first
stable primordial nuclei. Big Bang nucleosynthesis was first postulated by Alpher et al. (1948)
who predicted the correct abundances of primordial elements. A detailed review is on this sub-
ject is given by Pospelov & Pradler (2010). The nucleosynthesis lasted∼ 3 min because due
to expansion, the temperature and the number densities of the particles dropped. As a conse-
quence, the conditions for thermal equilibrium between theparticles changed permanently until
thermal equilibrium could not be maintained anymore. Thus,neutrinos decoupled from electrons
(νν̄ ↔ e+e−) at ∼ 1.5 MeV. At T . 0.5 MeV the photon energy dropped below the rest mass of
elections wherefore pair creation (γγ → e+e−) was not longer possible. Hence, the annihilation of
electron/positron pairs was initiated until a small fraction of electrons remained. When the tem-
perature dropped below∼ 0.3 MeV, 4He could theoretically form from protons and neutrons, but
the deuterium and3He abundances required for fusion were still too low becausethese nuclei were
destroyed immediately by high-energetic photons after their formation. Only at a temperature of
∼ 0.1 MeV which is∼ 109 K, the Universe had cooled enough to form4He efficiently. Small frac-
tions of heavier elements were also created before the conditions for nuclear fusion became too
poor. Afterwards, the Universe was composed of 75%1H, 25%4He and fractions of2D, 3He,7Li
and7Be. The more massive elements we know from the periodic tablewere generated lateron in
stars by nuclear burning and during the violent death of massive stars - the supernovae.

The abundances of H and He are supported by observations of e.g. low-metallicity Hii re-
gions (e.g. Izotov et al. 2007) or blue compact dwarf galaxies (e.g. Thuan 2008), where only
little nuclear synthesis by stars has taken place. The baryon-photon ratio on which the time scale
of the primordial nucleosynthesis depends is confirmed by CMB-observations. Besides, the Big
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Figure 1.1: This figure illustrates how the Universe has evolved from a singularity to the large-scale distribution of
galaxies we observe today. During inflation the Universe expanded rapidly because dark energy dominated the expan-
sion. Compared to this enormous expansion, it has expanded slower since then, although dark energy recently has taken
over the expansion again. 380,000 years after the Big Bang, the Universe had cooled down sufficiently to form neutral
hydrogen. At that time, the photons which were released in the Big Bang interacted with matter for the last time and
we now observe them as the Cosmic Microwave Background (CMB). After a dark period the Universe was illuminated
again by the first stars and in the time since, more stars formed as well as all other structures we observe today. From
http://imagine.gsfc.nasa.gov/docs/ .

Bang nucleosynthesis predicts the same number of neutrino familiesNν = 3 as it was empirically
determined by the decay of the Z-boson.

Before nuclei could combine with free electrons to atoms, the Universe had to cool down to
∼ 0.3 eV. This process known asrecombinationhappened at a redshift ofz ≈ 1100, i. e. 380,000
years after the Big Bang and lasted over a longer period (∆z ≈ 80). In fact, neutral hydrogen
could have been created at 13.6 eV, but since there are∼ 10−8 baryons than photons which exhibit
a Planck distribution, there were still enough high energetic photons which could easily reionise
the newly formed atoms. In addition, the photons that were emitted when protons and electrons
combined to neutral H could reionise other hydrogen atoms. Thus, recombination could only ef-
ficiently take place via the quantum-mechanically forbidden two-photon decay of the first excited
state of H (1S-state) with a lifetime of 0.1 s because those photons were too low-energetic to excite
other hydrogen atoms.

After recombination, the energy of the existing photons wastoo low to excite any atoms
again. Their Planck distribution was conserved and redshifted to a microwave radiation, the CMB.
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The current temperature of the CMB was measured with observations of theCOBE-satellite to
T = 2.735± 0.060 K (Boggess et al. 1992) or more recentlyT = 2.725± 0.002 K with seven-
year data of theWMAP-satellite (Noterdaeme et al. 2011), which surveys the CMB (Fig. 1.2).
Since the CMB-photons had too low energies to excite atoms, the Universe went dark until the
first stars illuminated the Universe again. Thisreionisationtook place between 20& z & 6. How
single atoms could form massive structures in forms of stars, galaxies and galaxy clusters will be
discussed in Sect. 1.3. An illustrative overview of the history of our Universe is shown in Fig. 1.1.

1.2 The expanding Universe

Since the Big Bang, our Universe has been expanding. To understand the formation of struc-
ture in more detail, I will introduce the formalism that describes the expansion behaviour in the
framework of General Relativity which is related to the dynamics of the Universe. Although the
Universe appears highly inhomogeneous by observing our cosmic neighbourhood, it is homoge-
neous and isotropic on large scales, wherefore homogeneousand isotropic world models can be
considered to describe its large-scale expansion history.

1.2.1 Hubble’s constant and definition of redshift

In 1929, Edwin Hubble empirically confirmed a law which was firstly derived two years ear-
lier by Lemaı̂tre (1927). This law states that the Doppler-shift which is observed in the spectra
of galaxies corresponds to a relative velocity between those galaxies and to Earth and that this
recession velocityv increases proportional with distanceD

v = H0D . (1.1)

Here, the constant of proportionality,H0, is Hubble’s constant which is parametrised asH0 =

100hkm s−1 Mpc−1 (Hubble 1929). The current value forh is conveniently fixed to 0.72± 0.08
(Freedman et al. 2001), based on HST-observations of Cepheid variable stars. More recent results
were published by e.g. Suyu et al. (2010) who determinedh = 0.726± 0.031 via gravitational
lensing observations with the HST. One year later, Larson etal. (2011), obtainedh = 0.71± 0.025
from seven-yearWMAP-data.

Hubble’s observation was the first empirical evidence that our Universe is expanding. Nowa-
days, we know that the relation between redshiftz = ∆λ/λ, which is the shift of the spectrum
an astronomical object emits, and recession velocity is notdue to the Doppler effect, but to the
expansion of space. In the 1920’s, however, it was an acceptable explanation in the context of
special relativity. Since then, this approach was replacedby a cosmological model, that relatesv
with the cosmic expansion.

An expanding universe implies that the physical distancesD between galaxies were smaller in
the past. For convenience, acomovingcoordinate system is used, in which the distanceχ between
two objects remains fixed,

D (t) = a (t)χ . (1.2)

Here, thescale factor a(t) relates physical to comoving coordinates. For an expanding universe
a(t) is a monotonically increasing function of time, but it describes any expansion or contraction
the Universe could encounter. For the current epoch we seta(t0) = 1. Theredshiftcan be expressed
via the scale factor as follows: Light that is emitted from a galaxy at timete and arrives the observer
at t0, is redshifted due do the cosmic expansion by a factor ofz= a(t0)

a(te) −1. With a(t0) = 1 it follows

thata(t) = 1
1+z.
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Figure 1.2: Left: The CMB-temperature map from the first-yearWMAP-results in the W-band. The red string that
divides the upper and lower part of the map is microwave emission from the galactic plane. Temperature fluctuations
are distributed istropically over the CMB. From Bennett et al. (2003).Right: The angular power spectrum of the CMB-
fluctuations for the best fitΛCDM-model. The grey dots denote the unbinned data and the black dots are the binned
data with 1σ errors composed of noise and cosmic variance. From from Dunkley et al. (2009).

1.2.2 Einstein’s field equations and Friedmann expansion

About ten years before Hubble detected evidence of a cosmic expansion, a consistent theory that
relates space and time was established by Albert Einstein using the field equations of General Rel-
ativity which he formulated in 1915. Since the predominant world picture at that time supported
a static universe, the dynamic solution provided by this theory disagreed with the notion of most
scientists.

Einstein’s field equations,

Gµν + Λgµν = −
8πG

c2
Tµν , (1.3)

relate the geometry of space-time described by the EinsteintensorGµν to the energy-momentum
tensorTµν, which grasps the energy and matter content of the Universe as a source of gravity.G is
the gravitational constant,c is the speed of light andgµν is the metric tensor which is symmetric.
Thecosmological constantΛ, which was believed to be zero after the discovery that the Universe
is expanding, is today interpreted as energy density of the vacuum.

By applying thecosmological principle, which states that our Universe is homogeneous and
isotropic on large scales for any comoving observer, togµν we can solve Eq. (1.3) and consider
homogeneous and isotropic world models in the framework of General Relativity that describe
the complete expansion history of the Universe. The geometry which satisfies the cosmologi-
cal principle is given by the Friedmann-Lemaı̂tre-Robertson-Walker metric (FLRW-metric) which
was independently defined by Friedmann (1922, 1924), Lemaı̂tre (1933), Robertson (1935) and
Walker (1937)

ds2 =

3
∑

µ,ν=0

gµνdxµdxν = c2dt2 − a2 (t)
[

d2χ2 + fK (χ)
(

dθ2 + sin2 (θ) dϕ2
)]

, (1.4)

where the comoving vectorχ = (χ, θ, ϕ) is expressed in spherical coordinates. The spatial part
dχ2 refers to a three-dimensional space with constant curvature K, wherebyfK (χ) is a function of
the curvature parameterK

fK (χ) =































1√
K

sin
(√

Kχ
)

K > 0 closed & spherical

χ K = 0 flat
1√
−K

sinh
(√
−Kχ

)

K < 0 open & hyperbolic.

(1.5)
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Solving Einstein’s field equations by inserting the FLRW-metric (Eq. 1.4) provides us with
two equations that describe the evolution of the scale factor and thus the expansion history, i.e. the
Friedmann equations(Friedmann 1922)1

(

ȧ (t)
a (t)

)2

=
8πG

3

∑

i

ρi (a (t)) − Kc2

a2 (t)
+
Λ

3
c2 (1.6)

ä (t)
a (t)

= −4πG
3

∑

i

[

ρi (a (t)) +
3pi (a (t))

c2

]

+
Λ

3
c2 . (1.7)

Equation (1.6) is the expansion equation with the Hubble parameterH(a) = ȧ(t)/a(t), with which
the Hubble law (Eq. 1.1) can be derived alternatively by calculating the time derivative of Eq. (1.2),
i. e. v = dD(t)/dt = D(t)ȧ(t)/a(t) = H(a)D(t). Equation (1.7) states that pressure acts like a source
of gravity. The sum accounts for different fluids with different densities.

To obtain a more concrete picture of the cosmic expansion, wehave to consider individual
energy components and how they evolve with time. As matter – or rather energy because the two
are related viaE = mc2 – can be treated as a perfect fluid, we apply thefirst law of thermodynamics
to obtain theadiabatic equation

d
[

a3 (t) ρ (a (t)) c2
]

da (t)
= −p (a (t))

da3 (t)
da

, (1.8)

which can easily be solved for a time-independent equation-of-state parameterw = pi/ρic2 with

ρi (t) = ρi,0a (t)−3(1+wi ) . (1.9)

We will now evaluate the different components of the energy densityρi (t) by inserting
Eq. (1.9) into Eq. (1.8) for differentwi.

If the kinetic energy of particles is much smaller than theirrest mass (v ≪ c), we refer to
them as non-relativistic matter because their pressure canbe neglected. In this case, the matter
density evolves with

ρm (t) = ρm,0a (t)−3 , (1.10)

becausepm ≪ ρmc2 and wm ≪ 1. Hence, the number of particles in a comoving volume is
constant and decreases witha−3 in a proper volume due to the three-dimensional expansion of
space. The definition “matter” comprises both baryonic and dark matter. Since the former is∼ 1/6
of all non-relativistic matter, “matter” is often equalised with dark matter. More about the nature
of dark matter is provided in Sect. 1.4.

Relativistic particles have random velocities ofv ≈ c, wherefore we cannot neglect their
pressure. They exert radiation pressurepr = ρrc2/3, and hencewr = 1/3. Inserting this in Eq. (1.9)
yields

ρr (t) = ρr,0a (t)−4 . (1.11)

Compared to the matter density (Eq. 1.10), the radiation density drops with an additional factor
a−1 because the photons lose energy as they become redshifted due to cosmic expansion. Thus,
this energy component does not play a role in the current Universe.

1Actually, Alexander Friedmann derived Eqs. (1.6) and (1.7)in 1922 from Einstein’s field equations to show that
the Universe might expand at a rate which can be calculated with these equations. Georges Lemaı̂tre independently
found a similar solution in 1927 (Lemaı̂tre 1927). Their idea of an expanding spacetime would eventually lead to the
Big Bang and Steady State theories of cosmology.
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Provided the energy density of the vacuum is finite, it can be considered as the cosmological
constant. From Eq. (1.6) this yields

ρΛ =
Λc2

8πG
(1.12)

and thus the vacuum energy density is independent of time. Inserting the time derivative in Eq. (1.8)
further giveswΛ = pΛ/ρΛc2 = −1 which suggests that the negative pressure of the vacuum drives
the expansion of space.

For reasons of completeness we also give the time-dependentdark energy density, withwde<

0 but not necessarily= −1,

ρde (t) = ρde,0 exp























−3

a(t)
∫

0

da′

a′
[

1+ w(a′)
]























. (1.13)

For constantw = 1/3, 0,−1, this equation also yields Eqs. (1.10)-(1.12). Here,wde ≤ −1 due to
p < 0.

It is convenient to define acritical density, ρcr(t) = 3H2(t)/8πG which is ρcr = 1.88 ×
10−29 h2 g/cm3 for t0, and to normalise the energy densities with that scale

Ωr (t) =
ρr,0

ρcr (t)
, Ωm (t) =

ρm,0

ρcr (t)
, ΩΛ (t) =

Λc2

3H2 (t)
or Ωde(t) =

ρde,0

ρcr (t)
. (1.14)

The total density parameter is the sum over these three energy components, i.e.Ωtot = Ωr + Ωm +

ΩΛ, and accordinglyΩtot = Ωr + Ωm + Ωde for a time-dependent component of dark energy.
Current values for the density parameters arise from amplitude and position of the peaks in the
CMB power spectrum (Fig. 1.2right) inferred from seven-yearWMAP-data because these peaks
are sensitive to the cosmological parameters. From these data, Larson et al. (2011) determined
the density parameters of dark matter, baryons and dark energy toΩdm = 0.2269± 0.0262,Ωb =

0.0449± 0.0028 andΩΛ = 0.734± 0.029, whereby the total matter density isΩm = Ωdm + Ωb.
These values indicate that our Universe is flat and dominatedby dark energy, while dark matter
and baryons contribute smaller fractions to the total energy density of the Universe. A universe
with such a constellation of the different energy species is usually referred to asΛCDM-Universe
where “CDM” stands for cold dark matter. This means that darkmatter is non-relativistic and thus
able to build the structures we observe today.

Independent measurements of the cosmological parameters with SNIa (e.g. Riess et al. 2004;
Kowalski et al. 2008) or Baryonic Acoustic Oscillations (BAO, e.g. Eisenstein et al. 2005; Percival
et al. 2007) can help to constrainΩm andΩΛ (Fig. 1.3). A combination of these measurements
yieldsΩm = 0.274+0.016+0.013

−0.016−0.012 andΩΛ = 0.713+0.024+0.036
−0.029−0.039 (Kowalski et al. 2008) whereby the first

errors denote the statistical and the second the systematicerrors on both parameters.
With the density parameters defined in Eq. (1.14) anda(t) = (1+ z)−1 we can rewrite the first

Friedmann equation (Eq. 1.6) to

H2 (z) = H2
0E2 (z)

= H2
0

[

Ωr (1+ z)4 + Ωm (1+ z)3 + ΩΛ + (Ωtot − 1) (1+ z)2
]

, (1.15)

for constant vacuum energy density.E2 (z) is the so-called redshift evolution factor which ac-
counts for the fact that the density parameters depend on thecritical density and thus on redshift.
Neglecting radiation and curvature, this function is defined as

E2 (z) = Ωm (1+ z)3 + ΩΛ . (1.16)



14 Chapter 1. Cosmology

0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

F
la
tBAO

CMB

SNe

No Big Bang

Figure 1.3: Parameter space ofΩm andΩΛ. Cos-
mologies without Big Bang and withΩm + ΩΛ < 1
are ruled out by observations. The contours show the
68.3%, 95.4% and 99.7% confidence levels onΩΛ and
Ωm as obtained from CMB, BAO and SNIa as well
as their combination assumingw = −1. Their in-
tersection (grey ellipse) strongly supports aΛCDM-
universe, giving the confidence limits forΩm andΩΛ.
From Kowalski et al. (2008).

We will use Eq. (1.16) in Chapter 8 to scale our cluster massessuch that they are independent of
the critical density at their redshift. From the definition of E2(z) in Eq. (1.15) we can derive how
the expansion behaviour of the Universe changes with respect to the density parameters. In very
early times, the expansion was dominated by radiation, atzeq = Ωm/Ωr − 1 = 3196+134

−133 (Larson
et al. 2011) matter took over and in the current era the expansion is governed byΩΛ.

Applying H = 1
a

da
dt , the age of the Universe (Hubble time) can be calculated from Eq. (1.15)

tH (z) =

a′(z)
∫

0

da′(z)
a′(z)H (a′(z))

=
1

H0

∞
∫

z

dz′
(1+ z′)

√

Ωr (1+ z′)4 + Ωm (1+ z′)3 + (1−Ωtot) (1+ z′)2 + ΩΛ

. (1.17)

The most recent value for the age of the Universe istH(z = 0) = 13.75± 0.13 Gyr obtained from
seven-yearWMAP-data (Larson et al. 2011).

1.2.3 Cosmological distance measures

Since the geometry of space-time is non-Euclidean, there isno unique definition of the distance
between objects at cosmological scales, wherefore the notion of distance depends on the method of
measurement. Furthermore, distance measurements are inevitably inertwined with time because
they are measured along our backward light cone and because the speed of light is finite.
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The most prevalently used measures are theangular diameter distance DA and theluminosity
distance DL . The former is obtained by the angular diameter dθ an object subtends at the sky,
provided its physical diameterd is known, such thatDA(z) = d/θ = fK(χ)/(1 + z). The angular
diameter distance is non-additive because of its prefactora = 1/(1+z). Thus, the angular diameter
distance between two objects at redshiftsz1 andz2 is

DA (z1, z2) =
1

1+ z2
fK (χ (z2) − χ (z1)) , DA (z2) − DA (z1) . (1.18)

Here,χ(z) is thecomoving distance

χ (z) =

z
∫

0

dz′

H (z′)
(1.19)

=
1

H0

z
∫

0

dz′
[

Ωr
(

1+ z′
)4
+ Ωm

(

1+ z′
)3
+ ΩΛ + (Ωtot − 1)

(

1+ z′
)2
]−1/2

.

To obtain the luminosity distance, the measured fluxf (z) is related to the intrinsic luminosity
L of a source,DL =

√

L/4π f (z) = (1+ z) fK(χ).
Both angular diameter distance and luminosity distance arelinked via the scale parameter

because the light a source emits is redshifted while it propagates to the observer

DL (z) = (1+ z)2 DA (z) = (1+ z) fK (χ) (1.20)

as shown by Etherington (1933).

1.3 From quantum fluctuations to galaxy clusters

The Universe consists of small matter inhomogeneities in form of quantum-mechanically fluctu-
ations since the very beginning (Sect. 1.1). During inflation, these tiny fluctuations were ampli-
fied to macroscopic scales and we can observe them in the temperature fluctuations of the CMB
(Fig. 1.2).

After the Universe had cooled down sufficiently for so that structures could form, these pri-
mordial fluctuations grew due to gravitational instabilityand accumulated larger and larger over-
densities. While their evolution is linear in first place andeasy to treat mathematically, they have
to be investigated by numerical simulations when they become non-linear.

Nowadays, the largest inhomogeneities formed by thousandsof galaxies such as the “Great
Walls” that show up in the Sloan Digital Sky Survey (SDSS, Fig. 1.4) extend over 200h−1 Mpc.
Only on much larger scales the Universe can still be considered as homogeneous and isotropic
with its web of voids enclosed by filaments, at whose intersections galaxy clusters reside.

In the following, I will describe structure formation in more detail by including also the
underlying physics, because this is the basis to understandhow galaxy clusters have formed. A
detailed description is given by e.g. Schneider (2006a).

1.3.1 Linear structure formation

To describe structure formation using a simple mathematical treatment, we have to consider per-
turbations that are well inside the linear regime and neglect the pressure of photons, because after
recombination, the remaining photons do not interact with matter anymore. Furthermore, by ne-
glecting General Relativity we can assume a flat space-time.This allows us to study overdensities
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whose extent is smaller than the horizon, which is defined as the distance up to which light could
propagate since the Big Bang.

With these assumptions, structure growth can be treated using linear perturbation theory and
matter can be considered as a fluid. For the beginning of structure growth, we can use linear per-
turbation theory because the small temperature fluctuations of the CMB measured by theCOBE-
satellite to∆T/T ≈ 10−5 indicate small matter perturbations over large spatial scales and for a
long temporal interval.

We can now describe matter with a set of differential equations assuming a fluid with random
density fieldρ (x, t) and negligible pressure

0 =
∂δ (x, t)
∂t

+
1

a (t)
∇x · [(δ (x, t) + 1) v (x, t)] Continuity equation (1.21)

− 1
a (t)
∇xΦ =

∂v (x, t)
∂t

+
ȧ (t)
a (t)

v (x, t) +
1

a (t)
[v (x, t) · ∇x] v (x, t) Euler equation (1.22)

∇2
xΦ =

3H2
0Ωm

2a (t)
δ (x, t) Poisson equation (1.23)

Figure 1.4: The large-scale distribution of local galaxiesobserved by the Sloan Digital Sky Survey which surveyed
more than 25% of the sky over eight years and observed more than 930,000 galaxies. This image shows a slice plane of
the total survey and the black wedges are regions where no observations could be performed due to dust in the Milky
Way. The survey shows that galaxies build filamentary structures and galaxy clusters are located at the intersections of
those filaments. The empty regions between the filaments are so-called “voids”. From http://www.sdss.org/ .
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Here,δ (x, t) is the relative overdensity ofρ (x, t) with respect to the mean density ¯ρ (t) of the
Universe,v (x, t) is the peculiar velocity andΦ is the gravitational potential.

For smallδ (x, t) and v (x, t), Eqs. (1.21) and (1.22) can be linearised such that their time
derivatives combined with Eq. (1.23) provides a differential equation for matter growth which
only depends on the scale factor and two cosmological parameters,H0 andΩm,

∂2δ

∂t2
+

2ȧ
a
∂δ

∂t
−

3H2
0Ωm

2a3
δ = 0 . (1.24)

This equation is independent of the gravitational potential and the peculiar velocity. Since Eq. (1.24)
does not explicitly depend onx, it can be solved via the separation approachδ = D+ (t)∆+ (x) +
D− (t)∆− (x), which is a factorised solution with a temporal and spatial component. WhileD− (t)
decays with time, only the growing solutionD+ (t) of the two linearly independent solutions re-
mains

D+ (t) ∝ H (t) H2
0

t
∫

0

dt′

a2 (t′) H2 (t′)

=
H (a)
H0

a
∫

0

da′
[

Ωm/a′ + ΩΛa′2 − (Ωm + ΩΛ − 1)
]3/2
, (1.25)

which is normalised toD+ (t0) = 1. Here, we have already neglected the radiation density parame-
terΩr. Depending on whether the expansion is dominated byΩr, Ωm orΩΛ and in which of these
epochs a perturbation enters the horizon,D+ (t) has a different growth behaviour.

Apart from this simplified picture, structure formation happens in each cosmic epoch and at
all scales. The growth of these perturbations, however, depends on their length scale compared
to the horizon. For perturbations which extend over scales that are larger the horizon, relativistic
effects have to be considered. Such perturbationsenterthe horizon when the horizon exceeds the
length of the perturbation scale ataentervia cosmic expansion.

The growth behaviour of radiation, baryons and dark matter can be derived similarly to the
derivation above, but one has to consider additional effects, such as relativity or effects of pressure.
Equation (1.24) has then to be adapted to the additional physics. If we consider the primordial
density fluctuations as a homogeneous, isotropic Gaussian density fieldδ (x, t), we can account
for the different growth behaviour of these energy species as follows. This Gaussian density
field is completely defined by its power spectrumP (k) = 〈|δ̃ (t, k) |2〉, whereδ̃ (t, k) is the Fourier
transform of the density contrast andk is the comoving wave vector of the perturbation. The power
spectrum can be expressed in terms of the growth factorP (k, a) = D2

+ (a) P0 (k) with P0 (k) =
P (a = 1, k = |k|). Usually, the power spectrum is assumed to be a power lawP(k) ∝ kns with
indexns which describes the power spectrum of density fluctuations.There is evidence thatns is
slightly smaller than unity2. However,ns = 1 (Harrison-Zeldovich spectrum) implies that density
fluctuations which enter the horizon always have the same amplitude, regardless at which epoch.

Now, we introduce thetransfer function T(k) which accounts for the growth of all differ-
ent types of density fluctuations. This function considers how a perturbation deviates from any
perturbation in the matter-dominated era on sub-horizon scales. Thereby, small perturbations are

suppressed by a factor of
(

aenter(λ) /aeq

)2
compared to those that enter the horizon later.T (k)

evolves the density contrast from some initial timeti to the present epochδ0 (k) = δ(k,ti )D+(ti )
Tk. Just

after inflation all perturbations were larger than the horizon and entered the horizon in different

2Tegmark et al. (2004) have measuredns = 0.995± 0.049 and recently, Larson et al. (2011) have measuredns =

0.963± 0.014.
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epochs depending on their sizeλ and their growth behaviour. At the present timet0 we assume
that all perturbations are inside the horizon.

The transfer function has to be calculated by numerical means, but in the limiting cases of
very small and very large fluctuations it can be solved analytically for aΛCDM-model

Tk ≈



















1 λ≫ dH,com

(

aeq

)

(

λ
dH,com(aeq)

)2
λ≪ dH,com

(

aeq

)

,
(1.26)

wheredH,com

(

aeq

)

is the comoving horizon at matter-radiation equality. The power spectrum then
is

P (k, a) =
D2
+ (a)

D2
+ (ai)

T2 (k) Akns . (1.27)

Applying Eq. (1.26) andk = 2π/λ, the power spectrum is linear ink for larger perturbations and
non-linear withk−3 for small perturbations forns = 1. Here,A is the normalisation of the power
spectrum which is usually denoted asσ8 because it describes the dispersion of density fluctuations
on cluster scales inside a sphere of 8h−1 Mpc which is of the order of unity. Details on the relation
of this cosmological parameter to galaxy clusters will be provided in Sect. 1.4.3.

1.3.2 Non-linear structure formation

When density fluctuations become non-linear (δ 3 1), linear perturbation theory is no longer
valid and higher orders have to be considered. However, higher-order perturbation theory fails
for δ . 1. Numerical simulations, e.g. theMillennium Simulation, are a more convenient tool to
describe perturbations of astronomical interest, such as galaxy clusters which are on the top of
non-linear structure formation.

We will now briefly introduce theSpherical collapse modelwhich is a simple model to de-
scribe the formation of dark matter halos. It considers the evolution of a spherical overdensity and
as a special case of non-linear structure formation it can besolved analytically.

A sphere of homogeneously distributed matter with an overdensity that is slightly higher than
the mean density of the Universe has linear density contrast(δ ≪ 1). Due the self-gravitatiion
of its particles, the sphere would expand slower than the Hubble rate. Thusδ increases, which
decelerates the expansion further. Eventually, the density contrast reaches a critical valueδcr at
which the expansion comes to a halt before the sphere re-collapses.

The recollapse takes as much time as the expansion, but the sphere does not recollapse back
to a point, because the matter particles have peculiar velocities. Instead, the sphere reaches virial
equilibrium radiusrvir = rmax/2 = GM/2Ekin. This process is calledviolent relaxation. Here,Ekin

is the kinetic energy of the sphere. The virial overdensity∆vir = ρvir/ρcrit can be approximated as
e.g. by Bryan & Norman (1998) for a flat Universe

∆vir = 18π2 + 82(Ωm − 1) − 39(Ωm − 1)2 , (1.28)

which givesρvir ≈ 97 forΩm = 0.27. For an Einstein-de Sitter universe3 the overdensity is∆vir ≈
178. The parametrisation from Navarro et al. (1997) givesρvir ≃ 178Ω−0.6

m ρ̄ (z) ≈ 200ρcrit (z),
whereρ̄ (z) is the mean comoving density at the redshift of collapse. A galaxy cluster is often de-
fined as a dark matter halo with an overdensity of∆ = 200 although strictly speaking the virialised
region of a cluster is not exactly the region inside which galaxy clusters have an overdensity of
200 times the critical density.

3This is a model with vanishing curvature,Ωm = 1 andΩΛ = 0 that is often used for mathematical simplifications.
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Since∆vir depends onρcrit and thus on the redshift, the halos that collapse earlier aredenser
than those that collapse later in cosmic time. Low-mass halos also collapse earlier and they are
more abundant than massive halos due to the scenario of hierarchical structure formation in which
small structures form first and build more massive structures by accretion and merging.

A useful application of the spherical collapse model is to study the number densityn of
collapsed dark matter halos as a function of mass and cosmic time. For this issue, one basically
counts regions withδcr > 1.69 and from these number counts the abundance of collapsed halos is
predicted by theclusteror halo mass function(Press & Schechter 1974). This function has been
prevalently calculated and tested against numerical simulations and parametrisations with initial
Gaussian conditions. Pillepich et al. (2010) provide a goodoverview. In their notation, the halo
mass function reads

dn
dM

(M, z) = f (σ)
ρ̄m

M

d ln
[

σ−1 (M, z)
]

dM
, (1.29)

with the mean background matter density ¯ρm of the current epoch and the variance of the linear
density field, which is defined as

σ2 (M, z) =
1

2π2

∞
∫

0

dk kPlin (k, z) W2 (k,M) . (1.30)

Here, a filter functionW enters, which is a top-hat function in real space that smooths out mass
peaks which are smaller than the considered massM andPlin (k, z) is the linear power spectrum
that corresponds to the density field of interest.

The function f (σ) in Eq. (1.29) accounts for the different calculations. The first parametri-
sation is from Press & Schechter (1974)

fPS(σ) =

√

2
π

δc

σ
exp

(

− δ
2
c

2σ2

)

, (1.31)

with δc = 1.686. Other parametrisations arise from Sheth & Tormen (1999) or, more recently,
from Warren et al. (2006)

fW (σ) = A
(

σ−a + b
)

exp
(

− c

σ2

)

, (1.32)

with A = 0.7234,a = 1.625,b = 0.2538 andc = 1.1982.
Since the halo mass function has an uncertainty of 5-20% thatdepends on the redshift of

the halo, the underlying cosmology and the exact definition of the halo mass, Tinker et al. (2008)
defined a slightly different equation

fT (σ) = A
[(

σ

b

)−a
+ 1

]

exp
(

− c

σ2

)

, (1.33)

where the parameters vary with halo overdensity. This expression allows redshift-dependent cor-
rections which pushes the uncertainty down to 5% in simulations of the halo mass function.

1.4 Galaxy Clusters

1.4.1 Properties of galaxy clusters

Being the most massive collapsed structures in the Universewith the deepest potential wells,
galaxy clusters represent the end stage of the hierarchicalstructure formation scenario. Formed
by the merging of smaller structures like galaxies and galaxy groups along large-scale filaments
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(e.g. Springel et al. 2001), most galaxies (except for a small number of field galaxies) in the Uni-
verse have gathered together to these impressing structures due to self-gravitation. With dynamical
timescales of∼ 109 yrs, galaxy clusters are rather young structures that oftenreveal irregular mor-
phologies, especially if they are in the process of merging.Schuecker et al. (2001) thus found that
at least in the local Universe the geometry of∼ 50% of galaxy clusters deviates from spherical
symmetry. Especially at high redshifts, only few clusters show spherical symmetry and are not
relaxed because they are still in the process of forming and not virialised yet. A classification of
galaxy clusters due to morphology is given by e.g. Rood & Sastry (1971) who classified galaxy
clusters depending how many very luminous galaxies are located in the cluster centre, or how the
cluster galaxies are distributed. Another classification using X-ray observations of∼ 200 clusters
with theEinstein-satellite is given by Forman & Jones (1991) who defined cluster morphologies
as e.g. “single”, “double”, “complex” or “off-center”.

Although galaxy clusters show various morphologies, theirmatter content is approximately
similar. They are composed of∼ 3% of luminous matter from galaxies and stars that are not bound
to the galaxies,∼ 15% of hot X-ray emitting gas with low densities (n . 0.1 particles cm−3) and
high temperatures (107 − 108 K) and a small fraction of relativistic particles. But the dominating
component is dark matter which contributes∼ 82% to the total gravitating cluster mass and thus
is responsible for the deep gravitational potential well.

The assumption that galaxy clusters are composed of such a high fraction of dark matter dates
back to the 1930’s when Fritz Zwicky (1933) measured the velocity dispersion of galaxies in the
Coma cluster which were much higher than the mass of the visible matter suggested (“missing
mass” problem). The existence of such collisionless matterthat interacts only via gravitation is
supported by observations of galaxy clusters with weak gravitational lensing and X-rays (e.g.
Clowe et al. 2007; Bradač et al. 2008a,b). But dark matter also explains why the rotation curves
of spiral galaxies do not drop out to large radii from the centre (e.g. de Blok & McGaugh 1997;
Bekenstein 2004). Observations of the CMB also indicate theexistence of dark matter because its
temperature power spectrum is sensitive to dark matter among others.

The masses of galaxy clusters range between∼ 1014− 1015M⊙, galaxy groups rather occupy
a lower mass range (∼ 1013M⊙) and are less bound. In addition, there are fossil groups which
are surrounded by an extended X-ray halo. These galaxy groups have an elliptical galaxy in the
centre which is at least two magnitudes brighter than the other group members which indicates that
this central galaxy has accreted the smaller galaxies (e.g.Mendes de Oliveira & Carrasco 2007).
Typically, galaxy clusters have several hundreds to thousand galaxies with a velocity dispersion
of σv ∼ 1000 km s−1 inside the virial radiusrvir & 1.5h−1 Mpc. In the centre of most massive
clusters, thecD-galaxywhich is a very massive and luminous4 galaxy that accretes smaller cluster
members is resided. The other cluster galaxies, however, are predominantly composed of early-
type galaxies with low gas content such as ellipticals or S0-galaxies, while spiral galaxies are
more abundant in the field. The cluster galaxies have lost most of their gas due to ram-pressure
stripping (e.g. Schindler 2004) wherefore they are on average redder than galaxies in the field.
Galaxy formation theories also predict that elliptical galaxies evolve from the merging of spiral
galaxies which happens more frequently in galaxy clusters than in the field. The gas of the cluster
galaxies, however, falls into the potential well of the cluster where it is heated and compressed and
thus it is no longer available for star formation. For these reasons, galaxy clusters consist of the
reddest galaxies at a given redshift, called thecluster red sequence, which can be used to identify
clusters and give a rough estimation of their redshift (e.g.Bower et al. 1992, Gladders & Yee
2005). Apart from that, the hot cluster gas provides information about processes such as feedback

4according to its size, because the actual surface brightness is low
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Figure 1.5:Left: Colour image of the Bullet cluster composed from observations with the Magellan telescope. The
white bar corresponds to 200 kpc at the redshift of the cluster and the blue crosses denote the X-ray emission peaks of the
ICM. Right: Chandra-image showing the same field-of-view for the ICM emission. The green contours in both images
are from weak lensing mass reconstruction and the white contours show the 68.3%, 95.5%, and 99.7% confidence
levels of the corresponding mass peak. Due to merging, the peaks of the ICM and the weak lensing mass reconstruction
contours show an offset. From Clowe et al. (2006a).

heating, radiative cooling or the chemical enrichment history from supernovae and AGN in the
cluster galaxies (for detailed reviews see e.g. Rosati et al. 2002, Arnaud et al. 2005 or Voit 2005).

Due to the scenario of hierarchical structure formation, galaxy clusters evolved from the
merging of smaller systems with a rate that increases towards higher redshifts (e.g. Burkey et al.
1994; Lin et al. 2004; Fakhouri & Ma 2008). Merger events disturb the geometry and the ICM
of galaxy clusters which has an impact on the cluster mass we can infer from observations. In
lensing-based mass estimates, usually spherically-symmetric mass models are used which provide
unreliable cluster masses for merging clusters. In X-rays,mass estimates are based on hydrostatic
equilibrium between the ICM and the gravitational potential of the cluster. Merging can violate the
assumption of hydrostatic equilibrium due to shock-heating of the ICM which boosts temperature
and luminosity before a new equilibrium is achieved as shownin simulations of Ricker & Sarazin
(2001). Thus, merging can provide artificially high X-ray masses. A demonstrative example for
a merging cluster is theBullet Cluster1E0657-56 atz = 0.296 (e.g. Clowe et al. 2007) which is
shown in Fig. 1.5. During collision, the hot ICM was decelerated but the collisionless dark matter
did not interact during the process. The observation of the Bullet Cluster has confirmed that the
ICM is not the most massive component in clusters, as it is proposed by alternative theories of
gravity and that dark matter is required to explain the missing mass in galaxy clusters.

Galaxy clusters themselves tend to accumulate together in filamentary structures with extents
of ∼ 100 Mpc calledsuperclusters(e.g. Tanaka et al. 2001). Those structures have masses of more
than 1016 M⊙ and are not collapsed yet. They enclose large underdense regions known asvoids
which are observed e.g. with the Two Degree Redshift Survey (Peacock et al. 2001) or the SDSS
(e.g. Tegmark et al. 2004; Gott et al. 2005). Our home galaxy,the Milky Way, however, is resided
in galaxy group, theLocal Groupwith ∼ 30 galaxies. The brightest members of the Local Group
are the Milky Way, the Andromeda Galaxy, M33 and the Small andLarge Magellanic Clouds.
The other galaxies are small and faint satellite galaxies that are gravitationally bound to the more
massive group members. The most nearby clusters are the Virgo Cluster and the Coma Cluster at
∼ 16 and∼ 90 Mpc distance, respectively.

To compare galaxy clusters, their masses are usually given within a radiusr∆ which is defined
by the overdensity∆ with respect to the critical density (Sect. 1.3.2). In weak lensing, this is often
r200 from the NFW-model (Sect. 6.2.1). In X-rays, usually∆ = 500 is used because good photon
statistics for reliable hydrostatic mass estimates are available only out tor500 with the current
instruments.
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In the next two chapters, I will introduce the two methods with which the galaxy clusters in
this work are studied. These are weak gravitational lensingin the optical (Chapter 2) and X-rays
(Chapter 3). Other methods to infer cluster masses, such as dynamical estimates or the Sunyaev-
Zeldovich effect, will be briefly introduced here because the results in this thesis will also be
compared to such studies.

1.4.2 Galaxy clusters in multiple wavelenghts

Galaxy clusters can be observed in multiple wavelengths ranging from radio- up toγ-rays. In this
section, I will describe their properties in the different wavelength bands.

Galaxy clusters in radio

Radio emission from galaxy clusters is primarily caused by non-thermal relativistic electrons
which gyrate long the magnetic field lines whereby they emit synchrotron radiation. The radio
emission of galaxy clusters is diffuse and extends over& 1 Mpc asradio halowith a regular mor-
phology which is similar to the X-ray morphology of the cluster. The Coma cluster is the first
cluster for which a radio halo was found (Willson 1970). So far, the most luminous radio halo was
detected for the Abell cluster A2163 atz = 0.203 (Feretti et al. 2001). At the centre of cool-core
clusters (Sect. 3.1.3) also smaller halos with. 500 kpc can be found surrounding a very radio-
luminous galaxy. Apart from that, galaxy clusters can also show radio relics which are supposed
to be caused by merger events because they cannot be associated with any of the galaxies (e.g.
Giovannini et al. 1999).

Radio observations of galaxy clusters provide informationon their magnetic fields and on
interactions of active galactic nuclei (AGN) with the intracluster gas. For merging clusters, the
radio emission is correlated with the X-ray emission (Feretti & Giovannini 2008) while X-ray
luminous relaxed cool-core clusters do not show a radio halo. Furthermore, the radio emission of
individual cluster galaxies can extend out to several 100 kpc beyond their optical confines which
indicates interaction with the ICM. Where those radio lobesare observed, the X-ray emission
shows cavities (e.g. Fabian et al. 2000). It is assumed that these radio lobes are caused by an AGN
in the cluster centre which emits rather symmetric jets of relativistic plasma that pushes away the
thermal X-ray emitting gas (Böhringer et al. 1993). A detailed review of the radio properties of
galaxy clusters is provided by Feretti & Giovannini (2008).

Galaxy clusters at millimetre wavelenghts

At millimetre wavelenghts galaxy clusters can be studied via the Sunyaev-Zeldovich Effect (SZE,
Sunyaev & Zeldovich 1970) which was first observed by Gull & Northover (1976), but it took
more than a decade until it could be studied in more detail. Detailed reviews are given by e.g.
Birkinshaw (1999) and Carlstrom et al. (2002). The SZE is caused by CMB-photons with initial
frequencyν0 which interact with the hot ICM-electrons via Compton-scattering. Thereby those
photons gain energy corresponding to a frequency shift∆ν which disturbs the Planck spectrum of
the CMB at the low-energy end (λ & 1 mm).

The optical depth of the Sunyaev-Zeldovich Effectτ =
∫

ne(r)σTdl is low because the elec-
tron number densityne is low. With thecross-section

σT =
8π
3

(

e2

m2
ec2

)2

, (1.34)
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wheree is the electron charge andme the electron mass, theCompton y-parameteris an integral
along the line-of-sight dl

y = −∆ν/2ν0 =
∫

dl
kBTgas

mec2
σTne , (1.35)

with Boltzmann’s constantkB and the temperature of the cluster gasTgas. Thus, the intensity of
the SZE is proportional to the gas pressureP = nkBTgas integrated along the line-of-sight. The
y-parameter is of the order 10−4−10−5. To obtain the mass of galaxy clusters via SZE, hydrostatic
equilibrium (Sect. 3.1.5) has to be assumed for which temperature and gas density have to be
entangled. This can be either done by assuming isothermality, which is not very accurate, or by
using X-rays to obtainTgasand its gradient. Compared to X-ray techniques, the SZE is less prone
to small-scale inhomogeneities in the ICM since the electron number densityne contributes only
linearly instead of quadratically as we will learn in Sect. 3.1.

Since the SZE-intensity is independent of redshift, it can be used to detect high-redshift
clusters because those clusters often are too faint to be detected in the optical or X-rays. For
instance, the Atacama Cosmology Telescope (ACT, e.g. Menanteau et al. 2010), the South Pole
Telescope (SPT, e.g. Brodwin et al. 2010; Foley et al. 2011; Story et al. 2011) or thePlanck-
mission (e.g. Planck Collaboration et al. 2011) detected galaxy clusters which were previously
unknown. The Bullet Cluster 1E0657-56 was also studied withthe Sunyaev-Zeldovich effect using
the APEX-SZ Telescope in Chile (Halverson et al. 2009).

Galaxy clusters in the optical

In the optical, galaxy clusters can be identified as local overdensities of bright galaxies. The prob-
ably most famous galaxy catalogue was established by GeorgeO. Abell in 1958 (Abell catalogue)
which consists of∼ 2700 low-redshift clusters (z . 0.2). Abell defined a galaxy cluster as a ac-
cumulation of at least 50 galaxies with magnitudes ofm > m3 + 2, wherebym3 is the magnitude
of the third-brightest galaxy in that accumulation, withintheAbell radiusθA = 1′.7/z. The cata-
logue was later extended to more than 4000 galaxies (Abell etal. 1989). Only a few years later, the
Zwicky-catalogue was established from 1961-1968 by Fritz Zwicky consisting of∼ 10, 000 galaxy
clusters. More recent catalogues are e.g. the Red-SequenceCluster Survey with∼ 1, 000 clusters
at 0.35 < z < 0.94 (Gladders & Yee 2005) or the The Two Micron All Sky Survey (2MASS,
Skrutskie et al. 2006).

To ensure that overdensities of galaxies are not due to projection effects along the line-of-
sight, the redshifts of those galaxies have to be compared which can be done with spectroscopy
of photometry (e.g. Miller et al. 2005; Koester et al. 2007; Milkeraitis et al. 2010). Alternatively,
information on the radial distribution of the galaxies within a cluster and the galaxy luminosity
function (e.g. Postman et al. 1996) can be used.

The optical spectra of galaxies allow us to study galaxy evolution with respect to their envi-
ronment. Thus, cluster galaxies are on average redder than field galaxies and their morphology
and gas content differ from their counterparts in the field (e.g. Dressler 1980; Whitmore et al.
1993). Apart from that, the spectra of cluster galaxies can be used to study their dynamics, as e.g.
in dynamical estimates, in which galaxy clusters are assumed to be in virial equilibrium. With the
virial theorem2Ekin + Epot = 0 andEkin = M〈v2〉/2, Epot = −GM2/R and 〈v2〉 = 3σ2

v for an
isotropic velocity distribution, the virial mass can be estimated with

Mvir =
3σ2

v

G
rvir . (1.36)

Here,σv is the velocity dispersion of the cluster galaxies which canbe inferred from their spectra.
For non-relaxed clusters, Eq. (1.36) may provide unreliable cluster mass estimates because the
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Figure 1.6:Left: The sensitivity of the cluster mass function on the underlying cosmology for clusters withM > 5 ×
1014h−1M⊙ normalised to unity at the current epoch. The behaviour ofn(M, z) is shown for three different cosmologies:
For an Einstein-de Sitter universe (red solid line) the evolution is strongest, because of the high matter density (Ωm = 1).
The evolution in aΛCDM-universe (green long-dashed line) is slower but not as slow as in an open low-density universe
without dark energy (blue, short-dashed line). For EdS,σ8 = 0.5 was chosen due to its high matter density andσ8 = 0.8
for the low-density models. From Rosati et al. (2002).Right: The cluster mass function for clusters at low redshifts
(black) and for cluster at high redshifts (red) assumingΩm = 0.25,ΩΛ = 0.75 andh = 0.72. The solid line shows the
fitted mass function, whereσ8 was left free. For the red sample, the evolution withz becomes visible. From Vikhlinin
et al. (2009b).

assumption of virial equilibrium is violated and the velocity distribution of the cluster galaxies
may deviate from isotropy.

Another important feature of galaxy clusters in the opticalis gravitational lensing (Chapter 2).

Galaxy clusters in X-rays

A detailed treatment of this topic will be provided in Chapter 3.

Galaxy clusters inγ-rays

Gamma-ray emission from galaxy clusters has been predictedin hydrodynamical simulations of
structure growth (e.g. Pinzke & Pfrommer 2010). Theπ0-decay,π0→ 2γ, is supposed to dominate
the emission spectrum of clusters at mostγ-ray energies. Up to now, no gamma-ray emission
from galaxy clusters has been detected yet. TheFermi-telescope which was launched in 2008 is
expected to shed light on this topic.

1.4.3 Galaxy clusters as cosmological probes

Since galaxy clusters are the largest collapsed structuresin our Universe, they provide an impor-
tant contribution to constrain cosmological parameters and thus to confirm ourΛCDM-model (e.g.
Zhang & Wu 2003; Balogh et al. 2006; Henry et al. 2009; Vikhlinin et al. 2009a,b). The cluster
mass function (Eq. 1.29) is sensitive to the evolution of collapsed structures and to the cosmic ex-
pansion (e.g. Rosati et al. 2002; Schuecker et al. 2003a), wherefore cosmological parameters such
asΩm,ΩΛ, σ8 and the dark energy equation-of-state parameterw can be inferred from the cluster
mass functions of representative cluster samples. The dependence of the cluster mass function on
redshift provides further information on dark energy, especially for high-redshift cluster samples.
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Figure 1.7: Simulated evolution of galaxy clusters for two cosmologies showing that structure formation strongly
depends on the densities of dark matter and dark energy. . Thethree upper panels illustrate the structure formation for
aΛCDM-model (Ωm = 0.3,ΩΛ = 0.7) compared to an Einstein-de Sitter universe (Ωm = 1,ΩΛ = 0) in the three lower
panels at three different redshifts (z= 1.4, z= 0.6 andz= 0 from left to right) for a region with 250h−1 Mpc edge length
and a thickness of 75h−1 Mpc. For both simulations the amplitude of the power spectrum is consistent with the number
density of nearby galaxy clusters and with the large-scale CMB anisotropies. The yellow circles denote positions where
galaxy cluster would show up that can be observed in X-rays with T > 3 keV. From Borgani & Guzzo (2001).

The dark matter and dark energy densities,Ωm andΩΛ, significantly influence structure for-
mation and thus the cluster mass function (Figs. 1.7 and 1.6). Structures develop faster in a uni-
verse with high matter density, such as in an Einstein-de Sitter universe (EdS,Ωm = 1,ΩΛ = 0),
than in a low-matter universe than ours. Therefore, we wouldobserve only few clusters at high
redshifts in an EdS universe compared to a low-matter universe as simulations show (e.g. Borgani
& Guzzo 2001). We can exclude high matter density models because we observe massive galaxy
clusters at high redshifts (e.g. Rosati et al. 2009; Brodwinet al. 2010). BesidesΩm, dark energy
also drives the evolution of the mass function (Fig. 1.6) such that it counteracts structure forma-
tion with increasingΩΛ or more negativew because the influence of dark energy becomes more
significant towards higher redshifts. For this reason, structures had to grow faster in the past to be
observed as we do today.

Constraints onσ8 arise from e.g. the amplitude of the cluster mass function which predicts
the number densityn(M, z) of clusters as a function of mass and redshift (e.g. Vikhlinin et al.
2009b; Mantz et al. 2009). According to Reiprich & Böhringer (2002), the halo mass function
predictsσ8 = 0.43Ω−0.36

m , while Vikhlinin et al. (2009b) obtainedσ8 = 0.813± 0.013 from
ChandraX-ray data. With a combination of CMB-measurements and cosmic shear, Schrabback
et al. (2010) derivedσ8 = 0.802+0.028

−0.027.

However, cosmology with galaxy clusters demands an accurate determination of total cluster
masses. Since the definition of total mass is inertwined withthe critical density and thus with the
redshift at which the cluster has formed, all correlations between cluster mass and observables
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such as temperature, gas mass or luminosity (scaling relations) may evolve with redshift (Voit
2005). We will learn more about these scaling relations in Sect. 3.2. Especially for low-mass
systems like small galaxy clusters or groups, the definitionof mass is a significant source of
uncertainty (Pierpaoli et al. 2001).

Another important quantity for cluster cosmology is the gas-mass fractionfgas = Mgas/Mtot

which is an increasing function of cluster radius. Here,Mgas is the total gas mass which can
be inferred by integrating the electron number density (ne) distribution of the ICM which can
be obtained from the surface brightness (SX) distribution, becauseSX ∝

∫

n2
edl. According to

simulations it is a good mass proxy due to its small scatter (Fabjan et al. 2011). Typical values
of the gas-mass fraction for clusters arefgas∼ 0.1, for galaxy groupsfgas is lower. The gas-mass
fraction is supposed to reflect the baryon to dark matter massratioΩb/Ωm, since most baryons in
clusters reside in the ICM, while only∼ 15% of the total baryons in clusters are stars as indicated
in simulations (e.g. Kravtsov et al. 2006). Indeed,fgas< Ωb/Ωm (“missing baryon” problem). To
constrainΩm with the baryon fraction in clusters derived from the gas mass, one has to include the
stellar mass from the stars in the cluster galaxies because besides the ICM, stars are assumed to
provide the main contribution to the baryon content in clusters (Zhang et al. 2011b and references
therein). The inclusion of stellar masses was supposed to solve the “missing baryon” problem but
the baryon fraction in clusters is still significantly lowerthan the cosmic averageΩb/Ωm probed
by the CMB (LaRoque et al. 2006). Zhang et al. (2011b) concluded from their work and recent
observations (e.g. Krick & Bernstein 2007; Gonzalez et al. 2007; Zibetti et al. 2005) that still some
baryon mass is missing. Sincefgas may be a function of cluster mass it included in constraining
cosmological parameters with the gas fraction (Vikhlinin et al. 2009a).

Using weak lensing masses,Mwl, the gas-mass fraction,fgas= Mgas/Mwl, does not depend on
the dynamical state as predicted in numerical simulations (Zhang et al. 2010). Yet,fgasis below the
cosmic baryon to dark matter ratioΩb/Ωm (e.g. Vikhlinin et al. 2009a; Fabjan et al. 2010; Zhang
et al. 2011a). At∆ = 2500, gas-mass fractions using weak lensing and X-ray masses are consistent,
which strengthens the prospect to usefgasat∆ = 2500 to probe the dark energy equation-of-state
parameterw (Zhang et al. 2006).
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Gravitational Lensing

One prediction of General Relativity states that light raysare deflected in the presence of masses,
because they propagate along the null geodesics of space-time which are curved under the influ-
ence of gravitation. This effect is known asGravitational Lensing. Owing to its independence of
nature and state of the deflecting matter, gravitational lensing is one of the most interesting meth-
ods to investigate the mass distribution in the Universe. Hence, it is ideally suited to study the
distribution of dark matter, of which we still know very little.

In general, the gravitational lens effect is subdivided intostrong gravitational lensingand
weak gravitational lensing. While the former is the more demonstrative effect by producing highly
distorted and magnified (and sometimes even multiple) images of a background source, the latter
considers the statistics of a large distribution of background sources with distortions at the edge
of perception. Figure 2.1 demonstrates the effects of strong lensing for the galaxy cluster Abell
2218. Both strong and weak lensing are convenient tools to study galaxy clusters. In this thesis,
I will use the weak gravitational lens effect because it probes the total mass distribution of a lens
out to the outskirts, while strong lensing can only provide the total mass distribution inside the
so-calledEinstein radius(e.g. Richard et al. 2010; Donnarumma et al. 2011). Further applications
of gravitational lensing aregalaxy-galaxy lensing(e.g. Parker et al. 2007; van Uitert et al. 2011),
where the distortion between single galaxies is investigated, the continuous deflection of light from
large-scale structure (cosmic shear, e.g. Hilbert et al. 2009; Schrabback et al. 2010), or the search
for MACHOS1 in our host galaxy (e.g. Zhao 2000).

Gravitational lensing was first postulated about 200 years ago by Laplace, Cavendish and
Soldner, but Albert Einstein gave the first precise description of gravitational light deflection in
1915 when he published his theory of General Relativity. Gravitational lensing by galaxies was
first predicted by Fritz Zwicky in 1937, but its first discovery lasted until 1979 when identical
quasar sources were observed by Walsh, Carswell & Weymann2 with the Kitt Peak National Ob-
servatory 2 m telescope. These sources were identified as a multiple image pair lensed by a galaxy
in 1980 by Stockton (1980) and Young et al. (1980). The development of CCD detectors in 1979
which replaced the previously used photographic plates andthe improvement of computer tech-
nologies pushed optical astronomy forward. With the launchof the Hubble Space Telescope (HST)
in 1990, high-resolution imaging enabled precision cosmology by deep observations of space.

Weak lensing of galaxy clusters was first detected by Tyson etal. (1990) in the galaxy clusters
A1689 and CL1409+52 followed by many observations of other galaxy clusters. Soon methods
not only for the scientific analysis but also for data handling had to be established, such as the
aperture mass statistics (Schneider 1996) on which the weaklensing analysis in this work is based

1MAssive Compact Halo ObjectS
2For a detailed history of this discovery see Walsh (1989).
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and which was successfully applied in various publications(e.g. Schirmer et al. 2007; Maturi et al.
2007 and references therein). One of the commonly used reduction packages for the optical data
is the publicly availableGaBoDS/THELI image processing pipeline (Erben et al. 2005) which was
also used for some of the data in this work.

In this chapter, I will give an overview of the gravitationallens theory. In Sect. 2.1, I will
introduce the principle and describe the general properties of the lens mapping. The theoretical
background of weak lensing will be provided in Sect. 2.2. In Sect. 2.3, I will introduce the weak
lensing aperture mass statistics as a tool to investigate the weak lensing properties of galaxy clus-
ters and describe how these can be optimised by the choosing asuitable filter function and by
including individual source redshifts. I will also briefly summarise the main aspects of mass re-
construction. A detailed description of gravitational lensing theory is given by e.g. Schneider et al.
(1992), Bartelmann & Schneider (2001) and Schneider (2006a).

2.1 The principle

2.1.1 Refraction index and deflection angle

In all cases of astrophysical interest, the following assumptions in lens theory are valid: Firstly, the
spatial extent of a lens is small compared to the distances between source and lens as well as be-
tween lens and observer (thin lens approximation). Thus, one can assume that the light deflection
only happens in a plane perpendicular to the line-of-sight at the position of the lens (lens plane).
Secondly, the angular extent of the source has to be small compared to the scale, where the gravi-
tational potentialΦ changes. This allows us to measure the lens properties such that the distortion
can be easily determined. Thirdly, the gravitational field of the lens is weak, i.e.|Φ| ≪ c2.

With these preliminary considerations, the light propagation close to a lens can be described
in a locally Minkowskian space-time to first post-Newtonianorder. Similar to an optical lens, the
effect of a curved space-time can be expressed in terms of a refraction indexn = 1+ 2|Φ|/c2, with
which the deflection of light can be expressed as

~̂α = −
∫

~∇⊥ndl =
2

c2

∫

~∇⊥Φdl . (2.1)

Here dl is the light path and~∇⊥n denotes the gradient ofn perpendicular to dl. This expression
can be simplified, if one assumes that the light is not deflected along its path dl, but only at the
lens position. Then thedeflection angleof a point massM at a distanceξ is

α̂ =
2

c2

∫

~∇⊥Φdz=
4GM

c2ξ
=

2Rs

ξ
, (2.2)

with the gravitational potentialΦ (ξ, z) = −GM/
√

ξ2 + z2, the Schwarzschild RadiusRs = 2GM/c2

and the distance along the unperturbed light ray from the point of closest approachz. Equa-
tion (2.2) was predicted by Einstein’s General Relativity and observationally confirmed during
a solar eclipse in 1919.

In a more realistic scenario, gravitational lenses, such asgalaxy clusters, have extended mass
distributions. Thus, the light deflection does not happen assimple as Eq. (2.2) suggests. Yet, the
thin lens approximation is valid because the extent of a galaxy cluster is much smaller than the
distances between observer, lens and source. This allows usto project the three-dimensional mass
distributionρ

(

~r
)

of the lens onto amass sheetin the lens plane. The integration ofρ
(

~r
)

along the
line-of-sight provides us with thesurface mass density

Σ (ξ) =
∫

dzρ (ξ, z) , (2.3)
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Figure 2.1: The very rich strong lensing cluster Abell 2218 at z = 0.18 is beautiful example for the distortion and
magnification of background sources due gravitational lensing. The image is a composition of optical and near-infrared
observations with ACS and an infrared observation with NICMOS, both mounted at the HST. The cluster galaxies are
not distributed symmetric which suggests that the underlying dark matter distribution may not be spherically-symmetric
as it is presumed at first order. The image shows several giantarcs from strong lensing, but also multiple images can be
observed. The orange arc right below the bright cD-galaxy isa lensed elliptical galaxy atz = 0.7 and the blue arcs are
lensed star-forming galaxies at 1< z< 2.5. Some arcs are so thin that they cannot be resolved even withthe HST which
indicates very high magnifications. The field-of-view is∼ 7.′5×7.′5. From http://sci.esa.int/ , copyright by NASA, ESA,
and Johan Richard (Caltech, USA), acknowledgement: Davidede Martin & James Long (ESA/Hubble) .
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Figure 2.2: Schematic sketch of a typical gravitational
lens system in the thin lens approximation consisting
of source, lens and observer, which are connected by
the optical axis. The lens plane is defined such that
it is perpendicular to the optical axis and the intersec-
tion of optical axis and lens plane defines the origin of
its coordinate system with the lens at positionξ. The
source plane is defined similar, with the source atη.
Due to lensing, the source is observed under an an-
gle θ, while it would be observed under an angle ofβ
without lensing. Note that we can only see the pro-
jected angular positions ofη andξ. From Schneider
(2006a).

whereby~r is decomposed into the line-of-sight componentzand two coordinates for the lens plane,
ξ = (ξ1, ξ2). By subdividing the lens into mass elements dmi = d2 ξΣ

(

ξ′
)

with spatial density
ρ (ξ, z) and volume dV, the deflection angle becomes the vectorial sum of deflectionelements
caused by each mass element

α̂ (ξ) =
∑

i

α̂i =
4G

c2

∑

i

dmi ρ
(

ξ′1, ξ
′
2, z
′) ξ − ξ′
|ξ − ξ′|2 =

4G

c2

∫

d2ξ′ Σ
(

ξ′
) ξ − ξ′
|ξ − ξ′|2 . (2.4)

For galaxy clusters, the mass distribution is assumed to be spherically-symmetric at first
order. If one assumes that the dark matter which dominates the gravitational potential of the cluster
is spherically-symmetric, the galaxies should follow thisdistribution. As Fig. 2.1 shows, this is
not always the case and then the total mass of a galaxy clustermay be over- or underpredicted
by assuming spherical symmetry. However, if the mass distribution is spherically-symmetric, the
surface mass density is only a function ofξ, i.e.Σ (|ξ|) = Σ (ξ) and the deflection angle becomes a
scalar due to axial symmetry similar to Eq. (2.2).

2.1.2 The lens equation

The gravitational potential causes a lensed source atβ = η/Ds to be observed atθ = ξ/Dd

with the angular diameter distancesDs andDd between lens and source and observer and source,
respectively, whereby the subscript “d” means “deflector” (Fig. 2.2). The analogue writing ofβ
andθ suggests thatη is a two-dimensional vector in the source plane asξ is in the lens plane and
thatβ andθ are angular positions of source and image with respect to theline of sight. These true
and projected positions are correlated via thelens equationwhich can be derived by geometrical
considerations and the intercept theorems (Fig. 2.2),

β = θ − Dds

Ds
α̂ (Ddθ) = θ − α (θ) . (2.5)
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Here,α (θ) = α̂ (Ddθ) Dds/Ds is thescaled deflection angleandDs is the angular diameter distance
between observer and source. Equation (2.5) is only valid for small deflection angles ( ˆα ≪ 1′)
because then sin(α) ≈ α as it is the case for gravitational lenses3.

The lens equation predicts the source position as a functionof its image for any mass distri-
butionΣ(ξ). But the number of imagesθ for a given source at positionβ is a priori unknown. For
a fixedβ, Eq. (2.5) can have several solutions in forms of multiple images ifΣ (θDd) exceeds the
critical surface mass density

Σcr =
c2

4πG
Ds

DdDds
, (2.6)

with the angular diameter distanceDd between observer and lens. Normalising the surface mass
density by this value yields thedimensionless surface mass densityor convergence

κ (θ) =
Σ (θDd)
Σcr

, (2.7)

which allows us to distinguish between strong lenses (κ (θ) & 1) capable of producing multiple
images and weak lenses for which Eq. (2.5) always has only onesolution (κ (θ) ≪ 1).

2.1.3 The Jacobian matrix and gravitational shear

Provided the angular extent of a source is smaller than the scale where the gravitational potential
Φ, and hence ˆα, changes significantly, the lens equation (Eq. 2.5) can be linearised by calculating
it’s first Taylor expansion

β − β0 = A (θ0) (θ − θ0) , (2.8)

with an arbitrary reference pointβ0 within the source and the corresponding position at which it
is observed,θ0. Here, we introduced theJacobian matrixA which is defined as

A (θ) =
∂β

∂θ
=

(

δi j −
∂αi (θ)
∂θ j

)

= (1− κ) 12 − |γ|
(

cos(2ϕ) sin(2ϕ)
sin(2ϕ) − cos(2ϕ)

)

, (2.9)

with Ai j = ∂βi/∂θ j and eigenvalues(1− κ ± |γ|). In the last step of Eq. (2.9), we decomposed
A into the two essential properties of the lens mapping: The first term describes the focus and
magnification of the image, whereby the magnification|µ| = det(A)−1 can let the image appear
fainter or brighter, depending onθ. This is because the surface brightness at frequencyν, Iν, is
conserved in lensing as Liouville’s theorem states4. The traceless part ofA is a measure for the
image distortion with respect to its amplitude|γ| and its orientationϕ via theshear

γ = γ1 + iγ2 = |γ|e2iϕ , (2.10)

with componentsγ1 andγ2. Thus, intrinsically round sources are distorted into elliptical images
with semi-axes(1− κ ± |γ|)−1. Owing to its definition as the traceless part of the Jacobianmatrix,
the shear is a polar since an ellipse transforms into itself after a rotation of 180◦ and thus twice
after a full rotation, which is also indicated by the factor 2in the exponent of Eq. (2.10). By

3For galaxy clusters ˆα is ≈ 30′′ and for individual galaxies it is with ˆα ≈ 1′′ even less.
4In Lensing, the surface brightnessIν of an image is conserved at each frequency while the fluxSν changes according

to the solid angles of unlensed source and lensed imageν: S(s)
ν = Iνdω(s) = Iνdω = Sν, whereby the index ’s’ denotes

the source.
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Figure 2.3: A circular source with angular coordinatesβ1 andβ2 is transformed by the inverse of the Jacobian matrix
A−1 from the source plane into the lens plane withθ1 andθ2. According to the definition ofA in Eq. (2.9), the image
remains a circle in the absence of shear, but with a different radius depending onκ, since only magnification effects
occur. If the image suffers an additional distortion, its shape is transformed intoan ellipse. From Schneider 2006b.

introducing thereduced shear

g (θ) =
γ (θ)

1− κ (θ)
, g = g1 + ig2 = |g|e2iϕ , (2.11)

we can rewrite Eq. (2.9) as

A (θ) = [1 − κ (θ)]

(

1− g1 (θ) −g2 (θ)
−g2 (θ) 1+ g1 (θ)

)

. (2.12)

Figure 2.3 illustrates the mapping of a circular image with unit radius from the source to the lens
plane by changing its size withκ and its shape withγ by the inverse of the Jacobian matrixA−1.
After the transformation, the circle has become an ellipse with semi-axes

[

(1− κ) (1± |g|)]−1 and
angleϕ between theθ1-axis of the lens plane and the major axis of the ellipse.

We will show later thatg is the only observable in weak lensing that depends on shape mea-
surements (Sect. 2.2.2). Its components define how the source shapes change from their intrinsic
to their observed shape under lensing. As the shear,g has polar properties.

2.2 Weak gravitational lensing

In weak gravitational lensing, the Jacobi matrixA is very close to the unit matrix because of
|κ| ≪ 1 and |γ| ≪ 1, which implies weak distortions and small magnifications.Intrinsically,
galaxies are not round but have typical mean ellipticities with 〈ǫ〉 = 0.3. Their shapes are affected
only marginally by the shear in weak gravitational lensing,wherefore this effect is not measurable
at individual galaxies. Instead, it has to be investigated by statistical means, such as the aperture
mass statistics which will be introduced in Sect. 2.3.1. To obtain high accuracies in weak lensing
studies, the number density of background sources has to be large which reduces the statistical
errors. This can be achieved by observations with large field-of-views and long exposure times.
Distant galaxies observed in the optical or near-infrared are perfectly suited for this issue because
they reveal the densest population of distant objects in thesky. But projected onto the sky, these
galaxy images are also faint and small, and hence their observed shapes are strongly affected
by telescope optics and for ground-based observations alsoby atmospheric turbulences. These
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effects can be accounted for via the Point Spread Function (PSF)which can be approximated with
a Gaussian at first order. Its full width at half maximum (FWHM) is calledseeingand it is given
in arcseconds. The observed brightness profile of a source isthus a convolution of its intrinsic
brightness profile and the PSF. Figure 2.4 compares the quality of ground- and space-based data
to demonstrate how seeing affects the image ellipticities.

A detailed description of the first weak lensing results is given by Mellier (1999) and the the-
oretical basis for weak lensing is described by Kaiser & Squires (1993). Furthermore, Bartelmann
& Schneider (2001) and Schneider (2006a) provide a comprehensive theory of weak gravitational
lensing.

2.2.1 Distortion of faint galaxy images

Usually, a background source is neither circular nor does ithave circular isophotes. Most galaxies
reveal an intrinsic ellipticity because they are either spiral galaxies with an inclination towards
the line-of-sight or intrinsically elliptic. Thus, the intrinsic shape of a source galaxy has to be
disentangled from its shear, which we now quantify in more detail.

Light is distorted differentially when it propagates through a tidal gravitational field. But
in weak lensing, the image extent is small compared to the scale, where differential distortion
becomes notable. Thus, the surface brightness profile of a lensed image can be expressed in terms
of the linearised lens equation (Eq. 2.8)

I (θ) = I (s) [β (θ)
]

= I (s) [β0 +A (θ0) (θ − θ0)
]

, (2.13)

which is valid due to the conservation of surface brightnessin lensing. From Eq. (2.13), lensed
properties like the shear can be inferred by calculating thefirst and second moments of the surface
brightness profile

I1 (θ) = θ0 =

∫

d2θ qI [I (θ)] θ
∫

d2θ qI [I (θ)]
(2.14)

I2 (θ) = Qi j =

∫

d2θ I (θ) qI [I (θ)]
(

θi − θi,c
)

(

θ j − θ j,c

)

∫

d2θ I (θ) qI [I (θ)]
. (2.15)

The first moment defines the centre of each image and the secondis a convenient expression to
measure image ellipticities. Similar to the definition ofA, the trace ofQ contains information
about the image size and the traceless part ofQ describes the image ellipticity. For an image with
circular isophotes the components ofQ areQ11 = Q22 andQ12 = Q21 = 0. With the second
moment of surface brightness (Eq. 2.15), the complex ellipticities ǫ = ǫ1 + iǫ2 andχ = χ1 + iχ2

are defined as

ǫ =
Q11− Q22+ 2iQ12

tr (Q) + 2
√

det(Q)
=










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


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
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







ǫ(s) + g

1+ g∗ǫ(s)
|g| ≤ 1

1+ gǫ(s)∗

ǫ(s)∗ + g∗
|g| > 1

(2.16)

χ =
Q11− Q22+ 2iQ12

tr (Q)
=
χ(s) + 2g+ g2χ(s)∗

1+ |g|2 + 2Re
(

gχ(s)∗) , (2.17)

where in each last step the transformation of second-order brightness momentsQ(s) = AQA was
applied which provides a connecting prescription between source and image. The asterisk forǫ
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Figure 2.4: Comparison of ground- (lower) and space-based data (upper panel). The images show the centre of the
galaxy cluster MS0451.6−0305 observed with ACS@HST in F606W (Table 4.1) and Suprime-Cam@SUBARU in the
I -band (Table 4.2). In the space-based image, the galaxy shapes can be well distinguished. Also some strong lensing
arcs can be identified. In the ground-based image, the shapesare blurred due to atmospheric turbulences. Elliptical
galaxies appear more round and the strong lensing arcs cannot be identified anymore. Furthermore, neighbouring
sources are merged together which also affects shape measurements. For these reasons, space-based data is the better
choice for weak lensing studies. The field-of-view is∼ 1.′5× 1.′0.
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andg denotes complex conjugation. For an image with elliptical isophotes of minor-to-major axis
ratio 0≤ r ≤ 1, the ellipticity definitions have these absolute values

|ǫ| = 1− r
1+ r

|χ| = 1− r2

1+ r2
, (2.18)

which are independent of the image size.
From Eq. (2.16), we cannot distinguish between weak and strong lensing by considering only

one single galaxy or a small solid angle of the sky. This effect is calledlocal degeneracyand it
can be broken by observing large fields around galaxy clusters so that strong lensing occupies
only a very small area in the cluster centre. But|g| > 1 only occurs inside a small, central region
compared to the total extent of the cluster and thus only for few sources. By applyingκ ≪ 1,
|γ| ≪ 1 and|g| < 1, Eqs. (2.16) and (2.17) can be reduced toǫ ≈ ǫ(s) + g andχ ≈ χ(s) + 2g.

2.2.2 Estimating the reduced shear

By decomposing the observed image ellipticityǫ into an intrinsic componentǫ(s) and the reduced
shear, it is possible to reduce the noise caused byǫ(s) by averaging over many galaxy images.
One main assumption in weak lensing is that the intrinsic galaxy shapes are oriented randomly
because the distant galaxies used for weak lensing studies are distributed over a large spatial range
enclosed by their broad redshift distribution. Thus, the expectation value for the complex elliptic-
ities vanishes

〈χ(s)〉 = 0 = 〈ǫ(s)〉 , (2.19)

which implies that expectation value of Eq. (2.16) after rearranging forǫ reads

E (ǫ) =
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1
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(2.20)

This equation shows that the reduced shear is the only quantity in weak lensing that can be mea-
sured from the image ellipticities, which is not possible for shear and convergence. Eq. (2.20) also
implies that each image ellipticity yields an unbiased estimator of the local reduced shear which
is very noisy. This noise can be expressed by theintrinsic ellipticity dispersion

σǫ =

√

√

√

1
2N

N
∑

i=1

(

ǫ21,i + ǫ
2
2,i

)

, (2.21)

with ellipticity componentsǫ1 and ǫ2. For individual sources, the shear signal is indeed very
noisy, which is the reason why statistical methods for a large sample of galaxies with high number
densities are required to measure precisely the shear. Another reason is that the two cases of
Eq. (2.20) are locally indistinguishable, and hence wide source planes and high number densities
are required to decide whether the measured ellipticity is due to strong or weak lensing.

2.2.3 Tangential and cross component of shear

A convenient measure to study the mass distribution of galaxy clusters and their effect on source
galaxies is thetangential shearγt and itscross componentγ×. These quantities describe the ori-
entation of image shapes in a rotated reference frame, in which they are measured with respect to
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Figure 2.5: Tangential ellipticityǫt and its cross-
componentǫ× for different position angles with re-
spect to a reference point. The absolute value of the
ellipticity is always|ǫ| = 0.3 because ofǫ2 = ǫ2t + ǫ

2
×.

The orientation of the tangential vector for a source
with angleφ w.r.t. the reference point isα = π − φ.
From Schneider 2006b.

a specified directionφ, which is the cluster centre (Fig. 2.5). The tangential and cross component
of γ are defined as

γt = −Re
[

γe−2iφ
]

, γ× = −Im
[

γe−2iφ
]

. (2.22)

The negative sign is chosen such that a negative tangential ellipticity corresponds to a radial ori-
ented image. If the alignment of the image is truly tangential5, γt will always be positive in this
notation. At first order, the dark matter distribution of galaxy clusters is assumed to be spherically
symmetric, wherefore the images are supposed to be tangentially aligned around the cluster cen-
tre. In this idealised case, the absolute value of the shear would directly yield the tangential shear,
|γ| = γt. Furthermore, the cross component vanishes but in reality we would haveγ× , 0 even for
a spherically-symmetric mass distribution due to the noisefrom the intrinsic source ellipticities.
Yet, we can cross-check systematics in the weak lensing analysis withγ× because it is supposed
to vanish on average.

2.3 Mass reconstruction

2.3.1 The Aperture Mass statistics (̂Map-statistics)

Theaperture massis a convenient tool to detect galaxy clusters and to quantify their weak lensing
properties. It is defined as an integrated function of the surface mass density multiplied by a
compensated filterU(|~θ|)

Map(θ0) =

θap
∫

0

d2θ κ (θ) U (|θ − θ0|) , with

θap
∫

0

dθ θU (θ) = 0 . (2.23)

Here,θap is the radius of the aperture inside whichκ is calculated. The centre of the aperture is
denoted asθ0 andθ is the position of a point within the aperture. To make sure that Map is not
affected by themass-sheet degeneracywhich comprises transformations of (1− κ) → λ(1 − κ), a
compensated filter is required. IfU(|θ|) has the shape of a Mexican hat,Map will have a maximum,
provided it is placed on the centre of a mass concentration. AlthoughU(|θ|) compensates the mass-
sheet degeneracy, it does not follow the mass profile of a cluster, because it gives negative weight
to some regions of the aperture.

5Radial orientation occurs in the strong lensing regime, buthas to be accounted for in the analysis, by e.g. cutting
off the inner regions of a galaxy cluster.
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The aperture mass can be directly written as a filtered integral in terms of the tangential shear
γt (Schneider 1996),

Map(θ0) =
∫

d2θQ (|θ|) γt (θ, θ0) , (2.24)

wherebyQ (|θ|) is a radially symmetric filter function that replaces the compensated filter, i.e.

Q(θ) =
2

θ2

θ
∫

0

dθ′ θ′U(θ′) − U(θ) . (2.25)

Q resembles the tangential shear profile of a cluster which maximises the lensing signal when the
aperture is centred on a mass concentration. In this work, the Q-filter from Schirmer et al. (2007)
is used. It is defined as

QTANH (x) = E (x)
tanh(x/xc)

x/xc
, (2.26)

with a box-shaped functionE (x) having exponentially smoothed edges:

E (x) =
[

1+ exp(6− 150x) + exp(−47+ 50x)
]−1 . (2.27)

The distance to the aperture centre in units of the aperture radiusθap is x = θ/θap and xc is a
dimensionless parameter changing the sharpness of the filter such that smallxc gives more weight
at small radii (Fig. 2.6). The lensing signal is weighted over a large area inside the aperture. A
too largexc can assign too little weight to the objects at the outer partsof the aperture where the
lensing signal is weak. Therefore, the measured galaxy shapes can be affected by noise if the
aperture radius is too large. Empirically,xc = 0.5 is a good compromise.

• QTANH(x) approximates an NFW-profile (Navarro et al. 1996) and is thus suitable for cluster
detections. Forx≫ xc, it drops likex−1.

• The hyperbolic function tanh(x) absorbs the singularity atx = 0 since it is∝ x at smallx.
Thus objects at the inner radii of a cluster are excluded.

• E(x) ensuresQTANH(x) to decrease to zero in the inner and outer 10% of the aperture. It
suppresses strong lensing effects and forfeits contributions from cosmic shear and large-
scale structures.

• E(x) also avoids fluctuations in the weak lensing signal-to-noise ratio when the aperture
mass is calculated on grids becauseE(x) gives less weight to galaxies near the aperture
centre.

To apply the aperture mass to real data, Eq. (2.24) is discretised by replacing the integral with
the sum of galaxies within the introduced grids. Furthermore, the tangential shearγt is replaced
by the tangential ellipticityǫt which is an unbiased estimate of the shear. With these changes, the
estimator ofMap is

M̂ap(θ0) =
1
n

N
∑

i=1

ǫti (θ0) Q (|θi − θ0|) , (2.28)

wheren = N/θ2apπ is the number density of objects within the aperture. The tangential ellipticity
of the ith image at positionθi is defined asǫti = −Re

[

ǫiexp(−2iφi)
]

with φi which is the position
angle of theith galaxy with respect to the aperture centreθ0.
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Figure 2.6: The filter functionQTANH (x) for different values ofxc. Especially forxc = 0.1 this function strongly filters
the lensing signal.

Since the aperture mass provides us only with the amplitude of the filteredκ, but not of the
cluster mass, it is more meaningful to use the weak lensing signal-to-noise ratio S/N of the aperture
mass to obtain a measure of the significance of a mass concentration.

Assuming that the background galaxies are randomly distributed, we define the noise as the
dispersion ofM̂ap measured at the grid pointθ0 in the absence of lensing

σ2 (θ0) =
σ2
ǫ

n2

N
∑

i=1

Q2 (|θi − θ0|) , (2.29)

with the intrinsic ellipticity dispersion (Eq. 2.21). Thus, the weak lensing Signal-to-Noise ratio is

S/N (θ0) =

√
2
σǫ

N
∑

i=1
ǫti (θ0) Q (|θi − θ0|)

√

N
∑

i=1
Q2 (|θi − θ0|)

, (2.30)

with σǫ as defined in Eq. (2.21).

2.3.2 Including individual galaxy redshifts for MS0451.6−0305

For one of the galaxy clusters studied in this work, MS0451.6−0305, individual source redshifts
from photometry are available (Sect. 4.3.3). Here, I will describe how they can be included into
the M̂ap-statistics. For a detailed description, the reader is referred to Bartelmann & Schneider
(2001).

The strength of a gravitational lensing system scales withDds/Ds, so that the lensing effect
is stronger for sources withzs≫ zd and less efficient for sources withzs & zd. Often, only a mean
source redshift taken from redshift probability distributions is the only information available. To
assume a mean source redshift for all sources is a good solution for low-redshift clusters, but
for clusters at high redshifts the influence of individual sources is more pronounced. Thus, it is
appropriate to consider each source redshift individually, as far as they are known. But if individual
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Figure 2.7: The functionZ(z) for three cosmologi-
cal models, i.e. Einstein-de Sitter (solid), low mat-
ter universe without dark energy (dotted) and a low
matter universe with dark energy (dashed). For each
cosmology,Z(z) is plotted for the lens redshiftzd =

0.2, 0.5, 0.8. While Z(z) varies strongly for sources
close to the lens, its dependence on the underlying
cosmology becomes only significant for high source
redshifts. Forzr → ∞, Z(z)→ 1. From Bartelmann &
Schneider (2001).

source redshifts are available, the ellipticity components for those galaxies must be projected to a
reference redshiftzr to obtain comparable shear values. This is done with

Z (zs) =
DdsDr

DsDdr
H (zs − zd) , (2.31)

whereby the Heaviside step function H(z) enters because foreground sources are not lensed. The
functionZ (zs) describes the relative lens strength in terms of the true source redshiftzs normalised
to zr as shown in Fig. 2.7. Forzr →∞, this equation approaches a maximum valueZ (zs)→ 1.

According to Seitz & Schneider (1997) the ellipticity componentsǫ1,2 can be normalised to
zr by rescaling,

ǫ1,2 = ǫ
0
1,2Z (zs) . (2.32)

Provided, the redshifts of all source galaxies have errors that are smaller than the range over
which Eq. (2.31) changes significantly (∆z. 0.1), we can define theshear estimator(Bartelmann
& Schneider 2001)

ǫ̂t =

N
∑

i=1
ǫti Z

(

zs,i
)

N
∑

i=1
Z2 (

zs,i
)

(2.33)

which is the shear at of a source scaled tozr. This estimator maximises the weak lensing signal-
to-noise ratio S/N and gives each galaxy an optimal weight according to its redshift whereby the
intrinsic noise is reduced. The tangential shearǫti in Eqs. (2.28) and (2.30) subsequently needs to
be replaced by ˆǫ.

Figure 2.8 illustrates how the noise in shear measurements is reduced if individual source
redshifts are known. It also shows that redshift information becomes more important for larger lens
strengths and at low mean source redshifts, e.g. to distinguish between foreground and background
galaxies. From this figure we further can predict that the noise in shear measurements and thus
of the aperture mass is reduced by 20% for a cluster at the redshift of MS0451.6−0305. Hence,
the signal-to-noise ratio will be increased by this fraction if individual photometric redshifts for
all galaxies are included. We will learn in Chapter 6 that theexpected improvement in S/N for
MS0451.6−0305 is only marginal, because we have only photometric redshifts for a small fraction
of our background galaxies (Sect. 4.3.3).

2.3.3 Theκ-mass distribution

In weak lensing, the masses of galaxy clusters can be obtained with two different methods: Firstly,
by fitting a suitable model (e.g. the NFW-profile, Navarro et al. 1997) to the tangential shear
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Figure 2.8: The fractional improvement of the shear
estimate if individual source redshifts are known.
More precisely, the ratio of the noise for sources with
individual source redshifts and a mean source redshift
〈zs〉 is plotted the mean source redshifts〈zs〉 = 0.9 and
〈zs〉 = 1.5 and with lensing (L,κ = |γ| = 0.3) and with-
out lensing (NL,κ = γ = 0). This figure implies that
the improvement due to redshift information is higher
for higher lens redshifts, sinceZ(z) is nearly constant
for low z. From Bartelmann & Schneider (2001).

measured from the source ellipticities. Secondly, the masscan be reconstructed from the reduced
shearg via the surface mass densityκ as defined in Eq. (2.7). Thus, it is possible to derive the
projected mass density by measuring the local reduced shear, which is an unbiased estimate from
weak lensing observations. By using the former method, the masses of the clusters studied in this
thesis will be inferred. The latter will be used to study the mass distribution and to compare it with
the aperture mass signal-to-noise ratio (Sect. 2.3.1) because the error estimation usingκ is hardly
feasible. In our analysis (Chapter 6) this is carried out by apublicly available code which is an
application of the Seitz & Schneider (2001) finite-field method. This algorithm is based on the
Kaiser& Squires inversionand it will be introduced in this section.

Weak lensing provides a parameter-free mass reconstruction of the projected mass distribu-
tion κ which enables to map the dark matter distribution of galaxy clusters (Kaiser & Squires
1993). Shear and surface mass density are related via a convolution of κ with a kernelD =
−(θ1 − iθ2)−2 that describes a shear field as generated by a point mass

γ (θ) =
1
π

∫R2

d2θ′D (

θ − θ′) κ (θ′) . (2.34)

Since a convolution becomes a multiplication in Fourier space, i.e. γ̂ (l) = π−1D̂ (l) κ̂ (l), we can
invert this expression and after transformation back to real space the mass distribution can be
expressed as

κ (θ) =
1
π

∫R2

d2θ′ Re
[D∗ (θ − θ′) γ (θ′)] + κ0 . (2.35)

Here, the additional constantκ0 enters, because a uniform surface mass density yields no shear.
This implies that the observed reduced shear is invariant under the mass-sheet degeneracy, i.e.

g =
λγ

λ(1− κ) =
γ

1− κ . (2.36)

The mass sheet degeneracy can be broken if individual sourceredshifts are known (Schneider
2006b), or using magnifications (Sonnenfeld et al. 2011), orby combining strong and weak lens-
ing (Merten et al. 2009).

In this work, the finite-field method from Seitz & Schneider (2001) was used. This method
is an improved version of the Kaiser & Squires method to perform mass-reconstruction on a finite
data fieldU. The reduced shear can be locally related to the surface massdensity due to

∇Kg (θ) = − 1

1− g2
1 − g2

2

(

1− g1 −g2

−g2 1+ g1

) (

g1,1 + g2,2

g2,1 − g1,2

)

= ug (θ) , (2.37)
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with K (θ) = ln (1− κ (θ)) which is a non-linear function ofκ. The derivative of Eq. (2.37) yields
(Seitz & Schneider 2001)

∇2K = ∇ · ug with n · ∇K = n · ug , (2.38)

with n · ∇K = n ·ug on dU andn is the normal vector ofU (von Neumann boundary problem). In
this derivation, the mass sheet degeneracy is not broken, which is sufficient for qualitative studies
of the projected mass distribution as in this work.
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Chapter 3

Galaxy clusters in X-rays

As discussed in Sect. 1.4, galaxy clusters are composed of∼ 3% stars and galaxies,∼ 15%
intra-cluster medium and roughly∼ 82% dark matter whose nature is unknown except for its
gravitational interaction. The gravitational potential wells of galaxy clusters are dominated by
dark matter, and the ICM subsequently is trapped in the deep potential wells and shock-heated up
to temperatures of∼ 107 − 108 K (or ∼ 1 − 15 keV). Hence, the ICM is sufficiently hot to emit
X-rays via thermal bremsstrahlung and line emission. Temperature and luminosity of the X-ray
emission are directly related to the total gravitating cluster mass because the ICM traces the dark
matter distribution.

Since the atmosphere of the Earth absorbs X-ray emission from space, it was not until the
beginning of the space age and the invention of space rocketsthat X-ray astronomy became possi-
ble. The first astronomical X-ray source that was discoveredwas the Sun in the late 1940’s using
German V-2 rockets which were captured by the USA after WorldWar II, followed by a binary
star system Sco X-1 in 1962 (Giacconi et al. 1962) which was detected with Geiger counters on an
Aerobee rocket. X-ray emission from galaxy clusters was first observed in the Perseus Cluster by
Mitchell et al. (1976), who concluded from the observed Fe lines that X-rays are emitted from hot
plasma which is caught in the cluster potential well. Since the spectrum could be well described
with thermal bremsstrahlung, Mitchell et al. (1976) concluded further that the gas is in hydrostatic
equilibrium. This was later confirmed by Mushotzky et al. (1978) who also found correlations
between X-ray observables and other cluster parameters. For instance, the X-ray temperature is
approximately proportional to the square of the velocity dispersion of the cluster galaxies.

CCDs replaced the Geiger and proportional counters in 1993 at the launch ofASCAwhich
allowed to perform spatially resolved spectroscopy and imaging up to 10 keV. The first X-ray all-
sky survey was performed withROSAT(1990-1999), detecting more than 105 X-ray sources. Its
observations of galaxy clusters were then used to investigate the relation between temperature and
luminosity (e.g. Arnaud & Evrard 1999) and to constrain the dark matter power spectrum and
cosmological parameters such asΩm andσ8 (e.g. Ikebe et al. 2002; Reiprich & Böhringer 2002).
With the launch of theXMM-NewtonandChandraobservatories high resolution and sensitivity
observations became available which lead to improvements in determining the X-ray properties of
galaxy clusters and the relations between their X-ray observables (e.g. Ettori et al. 2004; Pratt &
Arnaud 2005; Zhang et al. 2006, 2008, 2010; Vikhlinin et al. 2009a,b).

In this chapter, I will give an introduction in the X-ray physics in galaxy clusters. In Sect. 3.1,
I will describe emission processes and observational parameters, such as temperature and surface
brightness which are crucial to calculate the total clustermass. For a comprehensive description
of the basic knowledge of the X-ray physics in galaxy clusters, I refer to e.g. Rybicki & Lightman
(1979), Sarazin (1988) and Reiprich (2011). In Sect. 3.2, I will introduce scaling relations between
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X-ray observables and cluster mass as cosmological application. Thereby, I will focus on the most
important scaling relations which will also be investigated in this thesis.

3.1 X-ray observables and cluster properties

3.1.1 Definition of observational parameters

TheX-ray flux, fX , is the amount of energy dE that is emitted through an area element dA per unit
time dt

fX =
dE

dAdt
. (3.1)

It is usually expressed in cgs unit, thus [fX ] = erg s−1 cm−2. By integrating over a spherical sur-
face with radiusDL , which refers to the luminosity distance (Sect. 1.2.3), we obtain theX-ray
luminosity

LX =
dE
dt
= 4π fXD2

L , (3.2)

which is the energy that is emitted isotropically in dt. Here, we directly used the luminosity
distance because the galaxy clusters studied in this work are at cosmological distances. The wave-
length interval we observe is redshifted since it was emitted from the source at redshiftz, wherefore
we have to apply aK-correction (e.g. Oke & Sandage 1968; Kim et al. 1996).

Since galaxy clusters are extended X-ray sources, we introduce thesurface brightness, SX ,
which is given by the flux measured under a solid angleΩ,

SX = fX/Ω =
1

4π (1+ z)4

∞
∫

−∞

ǫ dl . (3.3)

The surface brightness is proportional toD2
A/D

2
L = (1 + z)−4 because at cosmological distances

the cosmological surface brightness dimmingsets in. The angular diameter distance enters via
Ω = AD−2

A . In Eq. (3.3), we introduced theemissivitywhich is defined as the energy that is
emitted unit time from a given volume dV,

ǫ =
dLX

dV
. (3.4)

If the emissivity is considered as a function of frequencyν, this equation becomesǫν =
dLX/dV/dν which is defined by the emission processes that will be introduced next. Hence, the
emissivity determines the spectrum of an X-ray emitting source. Thus, from the X-ray spectrum
of a cluster we gain information on the emission processes that take place in the plasma, such as
thermal bremsstrahlung or line emission from elements. Fitting a suitable emission model to the
spectrum allows us to derive the plasma temperatureTX , which is given in keV, and density. More
details on spectra and temperatures will be provided in the following sections and Chapter 7.

3.1.2 Emission mechanisms

At temperatures ofkBT & 2 keV and ICM metallicities of∼ 0.1 − 1Z⊙, thermal bremsstrahlung
emission (free-free emission) is the dominant process. Thenotation “metals” includes all elements
that are heavier than He and for reasons of convenience theirabundances relative to hydrogen are
given in units of the solar abundanceZ⊙. Bremsstrahlung is emitted because the charged particles
are accelerated during close encounters. In an electron-ion plasma, electrons are the prime emitters
because the relative acceleration is inversely proportional to the mass that is accelerated.
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Figure 3.1: X-ray spectra emitted by plasma with temperatures of 1 keV (black), 3 keV (red) and 9 keV (green) including
free-free, free-bound and bound-bound emission. At∼ 1 keV and∼ 6 keV line emission, especially from the iron L and
K shell, becomes more pronounced than at higher temperatures. From http://www.astro.uni-bonn.de/∼reiprich/act/gcs/ .

Assuming that all electrons have the same velocityv, the emissivityǫff is proportional tov−1

and to the number densities of electrons and ions,ne andni , respectively. Thus, for a thermal
plasma in which the electrons have a Maxwellian velocity distribution, the emissivity with respect
to the electron frequencyν is given as (e.g. Sarazin 1988)

ǫffν ∝ neniT
−1/2
e exp

(

− hν
kBTe

)

, (3.5)

wherebyv̄ ∝ T1/2
e . The kinetic energy of the electron has to be at least equal tothe energy of

the emitted photon, i.e. 1/2mev2 ≥ hν. The non-relativistic,total emissivityof the plasma can be
obtained by integrating over all frequencies,

ǫff =

∞
∫

0

ǫffν dν =
25πe6

3hmec3

√

2πkB

3me
Z2nenigB (Z,Te) T1/2

e , (3.6)

wherebyZ is the ion charge andgB ≈ 1.2. This value is obtained from averaging the Gaunt
factor gff over all frequencies. The Gaunt factor is of the order of unity and its dependence on
temperature and frequency is weak.

Further emission mechanisms are synchrotron radiation where charged particles withv ≈ c
emit synchrotron radiation while gyrating along the magnetic field lines of the plasma, and the
inverse Compton effect, in which low energy photons gain energy by penetrating amedium of
energetic particles. But compared to bremsstrahlung, theyonly play a minor role in the X-ray
emission of galaxy clusters in the∼ 0.5 − 10 keV energy band which almost covers the energy
range that is used in this work.

Besides bremsstrahlung, recombination and line emission can become important. Line emis-
sion (bound-bound) can occur especially atTe . 2 keV, where the emission is approximately
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ǫ ∝ T−0.6
e n2

e. At these temperatures, hydrogen is ionised and some heavier elements are ionised as
well depending on their energy levels and the plasma temperature. The free electrons can collide
with such partly ionised elements and excite them. The decayback to the previous state follows
immediately. Observations of line emission in an X-ray spectrum provide information on the metal
abundance and their ionisation states. Thus, hot gas is mainly composed of H and He but polluted
by non-primordial elements generated in star formation andsupernovae explosions. Among these,
iron (Fe) is the element that preferentially contributes toline emission with its emission from the
L- and K-shells, others are e.g. Si, O and N. The metallicity in galaxy clusters is peaked towards
the centre which indicates that the metals are generated in the central cluster galaxies or sink down
to the potential well centre (Qin & Wu 2001).

3.1.3 Universal temperature distribution for galaxy clusters

From the X-ray spectrum of a galaxy cluster, its temperature, metallicity and gas density can be
derived using a combination of models for bremsstrahlung emission of hot, diffuse gas with line
emission from typical elements and the absorption from Galactic hydrogen. Besides the absorption
by gas, i.e. mostly hydrogen, along the line-of-sight, one has to account for instrumental effects
that can distort the measurement, such as the effective area of the telescope-detector system as
a function of energy and detector position, and the smearingof spectral features due to finite
energy resolution. Such corrections are usually incorporated in the model by response-files for
XMM-Newton. Yet, the best fit ofTX depends on the detector. Especially, if the plasma has two
temperature components, the measured temperature will depend on the energy range in which the
detector is most sensitive and in which it has the largest effective area. But if the plasma has only
oneTe, as one assumes for small, deprojected annuli, all detectors should measure the sameTX

within statistical errors.
As long as a cluster is not merging and unless the temperatureis not measured in the cluster

outskirts where the gas density is low, it can be assumed thatTe = Tgas, because the mean free
paths of electrons and ions are of the scale of galaxies (Sarazin 1988),

λe = λi ≈ 23 kpc

(

Tgas

108 K

)2 ( ne

10−3 cm−3

)−1
. (3.7)

Thus, the ICM is non-collisional on smaller scales.
For all galaxy clusters, the temperature drops with radius because the potential well becomes

shallower and the gas is less compressed. According to the measurements at small radii, the tem-
perature profiles can be used to broadly divide the clusters into cool-core (CC) and non-cool-core
(NCC) clusters (e.g. Fabian 1993; Böhringer et al. 1995). Cool-core clusters, have a temperature
drop towards the centre and a low central entropy while NCCs have high entropies and high central
temperatures. Since merging disturbs the X-ray emission ofthe ICM, it is more likely that regular
clusters have cool cores than mergers as also indicated in simulations (e.g. Burns et al. 2008). Out-
side of the core region, the temperature profile of galaxy clusters has a universal shape as studies
of the temperature distributions indicate (e.g. Markevitch et al. 1998). For example, Zhang et al.
(2006) found that the temperature profiles of the REFLEX-DXLsample are nearly self-similar us-
ing high-qualityXMM-Newtondata with an almost constant temperature up to 0.3r500 (Fig. 3.2).
The conclusion of the universal temperature profile is consistent among recent studies in observa-
tions (e.g. Markevitch et al. 1998; Vikhlinin et al. 2005; Zhang et al. 2006) and simulations (e.g.
Borgani et al. 2004). The universal behaviour of the temperature profile in the cluster outskirts
was intensively investigated and confirmed by Leccardi & Molendi (2008) using a sample of 50
clusters at low to intermediate redshifts (0.1 < z< 0.3). In addition, George et al. (2009), Reiprich
et al. (2009) and Simionescu et al. (2011) studied the temperature profiles out to the virial radius
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Figure 3.2: Left: Averaged temperature profile of the REFLEX-DXL clusters up to r500 (Zhang et al. 2006) which
is compared to the universal temperature profiles from Markevitch et al. (1998) and Vikhlinin et al. (2005) shown as
the grey hatched and the grey filled areas, respectively. From Zhang et al. (2006).Right: Weighted average of all
temperature profiles of the sample from Leccardi & Molendi (2008). The profiles were rescaled byR180 andkTM . The
dotted lines show the one-sigma scatter of the values aroundthe average. Beyond 0.2R180, the averaged temperature
profile declines and towards small radii the temperature drops due to the presence of cool core clusters. From Leccardi
& Molendi (2008).

for individual clusters withSUZAKU. All these authors found that the temperature profile drops
beyond 0.2r180 with a slope that is similar to those from hydrodynamical simulations.

3.1.4 ICM density and surface brightness

The intracluster gas contributes≈ 15% to the total gravitating cluster mass, which is much more
than the combined mass of all cluster galaxies. The ICM is compressed and heated by shock waves.
Typical central densities are 10−3 − 10−1 atoms cm−3 which is still less than the best vacuum that
can be achieved in laboratories on Earth.

Simulations have shown that galaxy clusters can be considered as one-dimensional objects
(spherical cow approximation) which is a good approximation to determine the bulk properties of
most clusters (Kaiser 1986). One assumes that the density ofcluster galaxies can be described by
a King profile (King 1962) and that their velocity distribution is isotropic. The gas density profile
is then described by aβ-model,

ρ (R) = ρ (0)


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


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)2












− 3
2β

, (3.8)

whereRc is thecore radiuswhich is introduced to avoid that the density attains infinitely high
values in the centre andρ(0) is the density withinRc which is assumed to be constant. The slope
β = µmpσ

2
v/kBT is the ratio between the kinetic energies of the gas and the galaxies. Theβ-model

fits the gas density profile of galaxy clusters well (e.g. Cavaliere & Fusco-Femiano 1976; Sarazin
& Bahcall 1977) and it is widely used becauseβ is correlated with the gas temperature. For hot
clusters, typically slopes are 0.7 . β . 0.8.
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In the energy range of 0.7 − 2 keV, the emissivity is independent of the cluster temperature
(e.g. Zhang et al. 2007) and further∝ n2

e ∝ ρ2
gas. Integrating Eq. (3.3) along the line-of-sight dl

gives the projected surface brightness at the projected distancer from the cluster centre,

SX (r) ∝
∞

∫

r

n2
e dl = S0
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−3β+ 1
2

, (3.9)

whererc is the projected core radius.
Fitting Eq. (3.9) to the observed surface brightness profiles yieldsβ, rc, and the normalisation

S0. Inserting these parameters into Eq. (3.8) provides the gasdensity profile, with which the gas
massMgas can be obtained by integratingρgas(r) over a spherical volume. Here, one assumes
spherical symmetry and that the ICM is isothermal with constant metallicity.

3.1.5 Hydrostatic mass estimates

Since the ICM is gravitationally bound to the cluster potential it traces the dark matter which
contributes the main fraction to the cluster mass. By assuming spherical symmetry and hydrostatic
equilibrium, the cluster mass can be inferred from the gradients of gas density and temperature
distribution. Theequation of hydrostatic equilibriumfor a gas of densityρ and pressureP in a
gravitational potentialΦ can be written as

1
ρ

dP
dr
= −dΦ

dr
. (3.10)

To derive an expression for the total cluster mass, we use theideal gas equation of thermodynam-
ics, PV = NkBTgas, in which N is the number of particles,V the volume andρgas= µmpN/V the
gas density withµ = 0.62 as the mean molecular weight per hydrogen atom which yields

1
ρ

dP
dr
=

kBTgas(r)

µmpr
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, (3.11)

where we used dx = xd lnx. The right-hand side of Eq. (3.10) relates the gravitational potential
to the total mass densityρtot via the Poisson equation∇2Φ = 4πGρtot and the Gauss divergence
theorem. Integrating over a spherical volume yields

dΦ
dr
=

GMtot(< r)

r2
. (3.12)

By combining Eq. (3.11) and Eq. (3.12) we obtain thehydrostatic mass equation

Mtot (< r) = −
kBTgas(r)r

Gµmp
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To the ICM temperatureTgas we henceforth refer to as the X-ray temperatureTX , which can be
obtained from the spectra, and toMtot as the X-ray hydrostatic massMX . With the gas density
profile (Eq. 3.8) and the temperature as a function of radius,the total hydrostatic X-ray mass can
be re-expressed as

MX(< r) =
r2

Gµmp

[

3βr

r2
c + r2

+
dkBT(r)

dr

]

, (3.14)

whereT(r) is the function that models the temperature profile (Sect. 7.2.1). Thus, the mass depends
primarily on the gas density and temperature gradients, andthe gas temperature.
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The hydrostatic mass equation still provides unbiased massestimates if clusters are not ex-
actly spherical. It was shown in N-body plus hydrodynamicalsimulations (e.g. Schindler 1996;
Evrard et al. 1996) and via gravitational lensing (Oguri et al. 2010) that the unbiased mass esti-
mates have a scatter of less than 30% between measured and true mass of non-merging clusters.
For mergers, however, the assumption of hydrostatic equilibrium is violated but still within 30%
scatter (Rasia et al. 2012).

With Eq. (3.14), the mass inside any given radius can be calculated. In X-rays, hydrostatic
masses are usually calculated withinr2500, r1000 andr500 which correspond to the cluster overden-
sities∆ = 2500, 1000 and 500. Assuming spherical symmetry, the overdensitycan be expressed
as

∆(< r) =
3M(< r)

4πr3ρcr(z)
, (3.15)

where
ρcr(z) = ρcr,0E2 (z) (3.16)

is the critical density at the cluster redshiftz for a flat universe.

3.1.6 X-ray background components

For accurate photon statistics one has to account for the radiation that does not come from the
galaxy cluster itself but also from the cosmic background orthe instrument by reactions with
high-energy cosmic particles. Following Snowden et al. (2008) and Zhang et al. (2009) I will
briefly discuss the most important background components.

1. Quiescent and fluorescent particle background (QPB & FXB)

The quiescent particle background is a continuum emission that is produced by the interaction of
high energy particles that penetrate the detectors. This also includes the fluorescent X-ray back-
ground (FXB) which is produced by the flux from particles thatwith the metals the detector is
made of. For the MOS-detectors ofXMM-Newton(Sect. 4.4.1), the fluorescent X-rays are dom-
inated by lines, such as Al Kα at E ∼ 1.49 keV and Si Kα at E ∼ 1.75 keV, additional to higher
energy lines from elements, such as Au, Cr, Mn, Fe, Ni, Zn. Thecontinuum QPB dominates at
energies&2 keV and.1.2 keV.

According to De Luca & Molendi (2004), a simple renormalisation of the QPB using only
the high energy band (8− 12 keV) may produce systematic errors in both the continuum and the
line contribution of the spectrum. Zhang et al. (2009) foundthat this problem can be solved by
including lower energies, i.e. 3− 10 keV.

2. Soft proton background (SPB)

Protons with energies less than a few 100 keV travel down the telescope light path and deposit
their energy directly in the detectors producing undesiredevents. This effect is highly variable
and significant peaks in the lightcurve are calledsoft proton flares. The spectrum of these protons
varies in magnitude and slope of the light curve and be described by a power law. By inspecting
the light curve of the data, these flares can be excised (Sect.4.4.2).

3. Cosmic X-ray background (CXB)

The cosmic X-ray background is a superposition of Galactic emission from multiple sources, the
Galactic halo and probably from even more distant sources. Its diffuse thermal spectrum governs
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the energy range below∼ 1 keV and is dominated by emission lines. This emission is highly
variable over the whole sky and it becomes dominant with increasing radial distance from the
cluster centre where the cluster emission becomes low. For these reasons, the CXB should be
estimated by statistical means from the cluster outskirts if there is sufficient area for good photon
statistics.

The unresolved emission of the CXB is from the superpositionof cosmological objects like
e.g. AGN (Hickox & Markevitch 2007), which dominates at higher energies, and Galactic stars
with only small contribution at lower energies (e.g. Kuntz &Snowden 2001). The average spec-
trum of the cosmological emission is predominantly a power-law continuum with a typical index
∼ 1.4 and possible change in slope at lower energies. A true cosmic variation of magnitude on
the sky is further assumed but there is also the obvious variation caused by the excision of point
sources to various levels.

Zhang et al. (2009) showed that the CXB can be well described by a combined model
“mekal+wabs*(mekal+powerlaw)” where the power-law accounts for unresolved point sources,
“wabs” models the absorption by Galactic hydrogen while “mekal” models the CXB thermal emis-
sion. A description of these models will be provided in Sect.7.2.1 where we will discuss the
spectral analysis.

4. Solar wind charge exchange emission (SWCX)

This type of emission is produced by solar wind flows in which highly ionised atoms interact with
neutral material in the solar system coming from the Local Cloud (Lallement 2004) or exospheric
material at the magnetosheath of the Earth (Robertson & Cravens 2003). The SWCX causes line
emission at energies less than∼1.3 keV from Cvi, Ovii, Oviii, Neix and Mgxi in the MOS energy
band. Magnitude and line strengths of the SWCX are strongly variable.

3.2 Scaling relations

Since the X-ray emission of galaxy clusters is tightly correlated with their total mass, they can be
used for cosmological studies in which cosmological parameters are constrained via the cluster
mass function or to study the large-scale structure. For this purpose, scaling relations between the
X-ray observables related to the total gravitating mass have to be calibrated. Since the correlations
between X-ray observables and mass can only be as precise as these observables can be estimated,
the errors of the scaling relations affect the accuracy of cosmological parameters. Hence, an accu-
rate calibration of scaling relations is crucial for cluster cosmology.

All clusters share self-similar structure. In other words,they appear the same after normalised
to their characteristic scales (e.g.r500) and masses (Kaiser 1986). Such scaled profiles of X-ray
properties probe the regularity in galaxy clusters becausethey allow us to study the cluster struc-
ture, its morphology and thermodynamics as well as the evolution of the ICM-properties. If the
scaling relations deviate from the self-similar predictions, non-gravitational mechanisms, merging
or substructures may be responsible for that. The structureformation on various scales is corre-
lated due to the large-scale environment dependence of galaxy formation and evolution. In turn,
galaxy feedback affects the evolution of the large-scale environment which canbe well investi-
gated with galaxy clusters. This also allows us to study the structure formation history via scaling
relations (e.g. Haines et al. 2009; Smith et al. 2010; De Lucia et al. 2011).

In general, scaling relations are parametrised by a power law, Y = Y0Xγ, and some may
evolve as a function of redshift (e.g. Voit 2005). Accordingto the hierarchical structure formation
scenario, halos form via gravitational collapse when a matter overdensity exceeds the critical den-
sity at that redshift. Due to cosmic expansion, the criticaldensity is high towards high redshift. As
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a consequence, gravitational collapses at higher redshifts happen at higher densities. The redshift
evolution correction (Eq. 1.16) accounts for the redshift dependence of scaling relations.

Scaling relations were mostly studied for clusters at low redshifts (e.g. Arnaud et al. 2007;
Vikhlinin et al. 2006; Zhang et al. 2007, 2008). For studies at higher redshifts mostly relaxed,
homogeneous samples were used (e.g. Maughan et al. 2006, 2008). Scaling relations likely deviate
for clusters with irregular morphology. In this thesis, thescaling relations for an inhomogeneous
sample of non-regular clusters at higher redshifts will be investigated and any differences from the
well-known behaviour will be discussed.

3.2.1 Mass-temperature (Mtot − TX) relation

The Mtot − TX relation scales asMtot ∝ T3/2
X , because of the correlation of mass and radius from

the spherical collapse model,Mtot ∝ r3, and the correlation between mass and temperature from
the virial theorem,TX ∝ Mtot/r. This behaviour was confirmed observationally for nearby clusters
by e.g. Arnaud et al. (2005). TheMtot − TX relation is sensitive to merging clusters, while it has
low scatter for relaxed ones (e.g. Zhang et al. 2008). For precision cosmology, mass-observable
relations with low scatter are preferred. For example, the error onσ8 is dominated by the scatter
of theMtot − TX relation (Pierpaoli et al. 2001). The calibration of mass-observable relations with
reliable mass measurements is crucial for constructing thecluster mass function (e.g. Stanek et al.
2010).

Zhang et al. (2007) found no evident evolution in theMtot−TX relation for the pilot LoCuSS
sample compared to the higher redshift samples (e.g. Ettoriet al. 2004) or low-redshift samples
(e.g. Arnaud et al. 2005) within the scatter.

3.2.2 Luminosity-temperature (LX − TX) and luminosity-mass (LX − Mtot) relation

Only if a sufficiently large number of X-ray photons are detected (∼ 103 − 104), cluster masses
can be inferred with Eq. (3.14), because good statistics arerequired to calculate temperature and
gas density profiles. Yet, with∼ 101 − 102 photons, the X-ray luminosity can be measured with
satisfying accuracy. Since the surface brightness scales with (1 + z)−4, long exposure times are
required for clusters atz> 0.5 with the currently available detectors.

Using scaling relations, the observableLX (but alsoTX), can give an estimate of cluster
masses that are not accessible from shallower exposures. Due to Mgas,500 ∝ T3/2

X andM500 ∝ r3
500,

the relation between luminosity and temperature is expected to scale asLX ∝ M2
gasT

1/2
X r−3

500 ∝ T2
X .

Since the gas-mass fraction of the ICM depends on the clustertemperature, this relation becomes
steeper (LX ∝ T2.6

X ) as found in observations (e.g. Neumann & Arnaud 2001). Empirically, the
mass scales rather withMgas ∝ T1.8

X . For nearby clusters, theLX − TX relation has already been
intensively studied (e.g. Markevitch et al. 1998; Reiprich& Böhringer 2002; Ikebe et al. 2002;
Chen et al. 2007). With deepXMM-Newtonimaging spectroscopic data Zhang et al. (2007) found
that theLX − TX relation shows no strong evolution compared to those samples, despite their
deviation from the self-similar predictionLX ∝ T2

X .

The luminosity-mass relation scales asLX ∝ M1.33 because ofMtot ∝ T3/2
X andLX ∝ T2

X .
Using the observed scaling relations from Reiprich & Böhringer (2002),L0.1−2.4keV ∝ T2.6 and
Lbol ∝ T2.98

X , this givesL0.1−2.4keV ∝ M1.73
tot and Lbol ∝ M1.99

tot , respectively (Zhang et al. 2007).
Here, the bolometric luminosityLbol is the luminosity which is emitted by a source in the 0.1 −
100 keV energy band. TheLX −Mtot relation of the LoCuSS sample atz∼ 0.2 sample agrees with
those of the nearby HIFLUGCS sample atz< 0.15 (Reiprich & Böhringer 2002; Chen et al. 2007),
the REXCESS sample (Pratt et al. 2009) and the more distant REFLEX-DXL sample (Zhang et al.
2006). Thus, this relation shows no strong evolution at redshifts belowz∼ 0.3 (Zhang et al. 2007).
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Since these samples are too close with respect to their redshifts and the smallness of their
redshift bins, an evolution of the scaling relations can hardly be observed. For this reason, samples
at higher redshifts and with a broader redshift range such asthe sample that is analysed in this work
are expected to reveal evolution effects in the mass-observable scaling relations. Calibrating the
LX − Mtot relation can help to understand scatter and sources of systematic errors that should be
included in the cluster luminosity function (Stanek et al. 2010). This would allow to use the global
luminosity as cluster mass indicator (e.g. Reiprich & Böhringer 2002).

3.2.3 Weak lensing and X-ray masses

Since some X-ray observables, e.g. the temperature, are probably auto-correlated with the X-
ray hydrostatic massMX , the calibration of the scaling relations using the X-ray data alone can
be biased. With mass estimates from approaches that are independent from X-ray, such as e.g.
weak lensing massesMwl, this bias can be cross-checked. Those independent mass estimates fur-
ther allow us to check other systematics in cluster mass estimates and the normalisation of the
mass-observable relations (Wu et al. 1998; Mahdavi et al. 2008; Zhang et al. 2008, 2010). The
comparison between X-ray and weak lensing mass estimates can be affected by the assumptions
made in both approaches. Investigations of small cluster samples atz ∼ 0.2 with TX > 3.5 keV
(e.g. Smith et al. 2005; Bardeau et al. 2007; Hoekstra 2007; Zhang et al. 2007, 2008) indicate that
the scaling relations with weak lensing and X-ray masses agree within their scatter and that the
morphology dependence is stronger using lensing masses than using X-ray masses. Furthermore,
the scatter of those scaling relations is∼ 2 times larger if weak lensing masses are used instead of
X-ray hydrostatic masses.

Since the X-ray emission can only be measured up tor500 with the current instruments,
masses are better compared only out to this radius. At largerradii, the X-ray hydrostatic mass
estimate is derived by extrapolation. Recent studies indicate an offset betweenMX andMwl. For
instance, Zhang et al. (2008) foundMwl/MX = 1.09± 0.08 for r500 and the agreement between
both mass estimates improves towards higher overdensities(Zhang et al. 2010). Considering indi-
vidual clusters, the scatter betweenMX andMwl can be large because lensing masses are sensitive
to projection effects (Pratt et al. 2005; Zhang et al. 2005).
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Chapter 4

Sample and data preparation

In this chapter, I will discuss known characteristics of thegalaxy clusters which are analysed in
this thesis and describe the used data. The cluster sample isintroduced in Sect. 4.1. Section 4.2
describes the high-resolution space-based data that was used to measure source ellipticities. I will
briefly outline telescope properties, data reduction and how the effective mean source redshifts
were obtained from these data. Section 4.3 follows the same scheme for the multi-colour data
from ground facilities that were used to estimate the photometric redshifts for MS0451.6−0305.
TheXMM-Newtondata for three clusters of the sample are described in Sect. 4.4.

4.1 Cluster sample

The cluster sample consists of three high- and two intermediate-redshift clusters. They were orig-
inally selected to study the kinematics of cluster galaxiesand their evolution with respect to the
ICM (Ziegler et al. 2003; Jäger et al. 2004). For this reason, these clusters exhibits striking and
interesting properties (Table 4.1) which makes the sample attractive for a thorough comparison
between weak lensing and X-ray masses. Here, I describe whatis known from previous observa-
tions.

4.1.1 CL0015.9+1609

CL0015.9+1609 atzd = 0.541 is one of the most studied galaxy clusters. It was observed in
different wavelength ranges, such as in the optical (Tanaka et al. 2005), radio (Giovannini & Fer-
etti 2000), and in X-rays withROSAT(Neumann & Böhringer 1997) andXMM-Newton(Kotov
& Vikhlinin 2005; Worrall & Birkinshaw 2003) among others. Further studies were performed
by Bonamente et al. (2008) using the Sunyaev-Zeldovich effect and by Clowe et al. (2000) using
weak lensing measurements from ground-based data.

The HST-image in Fig. 4.1 shows that the cluster can be identified by three bright galaxies
aligned from northeast to southwest. Because of these galaxies, the light in the central part of
CL0015.9+1609 has elliptical isophotes such that the major axis of this ellipse coincides with the
connection line of these galaxies (Clowe et al. 2000). In a circular area around the BCG, which is
the luminous galaxy in the middle of this bar-like structure, a large number of fainter galaxies are
distributed with a slight overdensity to the West of the BCG.

Optical observations revealed that CL0015.9+1609 is embedded in a large filamentary struc-
ture extending over 20 Mpc from North to South and another filament in east-west direction
(Tanaka et al. 2005). A strong radio halo indicates that CL0015.9+1609 is in the process of merg-
ing (Giovannini & Feretti 2000). Evidence for merging was also found by Solovyeva et al. (2007)
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Figure 4.1: HST-mosaic of CL0015.9+1609 showing a∼ 3.′5× 3.′0 zoom into the cluster centre which can be identified
as the diagonal bar-like structure in the middle of the image.

who detected temperature perturbations of the cluster gas and a luminosity ofLX = (51± 1) ×
1044 erg s−1 in the 0.3–4.5 keV band withXMM-Newton. This luminosity is two times brighter
than predicted from theLX − TX relation but consistent withLX = 14.6 × 1044 erg s−1 in the
0.3–3.5 keV band usingEinstein-data (Luppino et al. 1999) andLX = (19.6 ± 0.3) × 1044 erg s−1

in the 0.1–2.4 keV band usingChandra-data (Ebeling et al. 2007).Chandra-studies show that
CL0015.9+1609 is among the hot clusters because ofTX = 9.3+0.5

−0.3 keV (Balestra et al. 2007),
TX = (9.4± 0.3) keV (Ebeling et al. 2007), and more recentlyTX = (10.5± 0.6) keV (Bonamente
et al. 2008).

4.1.2 CL0413−6559

While CL0015.9+1609 is the most studied cluster in the sample, CL0413−6559 located atzd =

0.51 is the least studied one. In the literature it is also knownas FT1557.19TC. It has a high
fraction of spiral galaxies and no red sequence (Ziegler et al. 2003). This is untypical for galaxy
clusters because according to prevalent theories of galaxyformation, cluster galaxies lose their gas
due to encounters with other cluster members and merge to elliptical galaxies (Sect. 1.4.1). The
low X-ray luminosityLX = 0.11× 1044 erg s−1 in the 0.3–3.5 keV band measured fromROSTA-
data (Smail et al. 1997) also indicates a shallow gravitational potential and less rich intra-cluster
gas which provides evidence that this cluster is still in theprocess of forming.

Cl0413−6559 is the only cluster in our sample that does not exhibit strong lensing features.
Figure 4.2 shows an HST-image of the cluster in which the cluster centre is between the two bright
stars and the luminous spiral galaxy in the foreground.

4.1.3 MS0451.6−0305

The galaxy cluster MS0451.6−0305 is the most X-ray luminous cluster of the Einstein Medium
Sensitivity Survey (EMSS) residing atzd = 0.55. As an X-ray source, this cluster is known since
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Figure 4.2: HST-mosaic of CL0413−6559 showing a∼ 3.′0× 2.′5 zoom into the cluster centre. The cluster is between
the two bright stars and the luminous spiral galaxy in the centre of the image.

Table 4.1: HST data properties: Coordinates are in the J2000-system. The number densityn is given in sources/arcmin2.
FOV is the field-of-view, and〈Dds/Ds〉 and〈zs〉 are the mean distance ratios and effective mean source redshifts, respec-
tively. The values for the effective mean source redshift do not depend only onn but also on the cluster coordinates.
References for coordinates and redshifts: (1) Stocke et al.(1991), (2) Ellis et al. (1997), (3) Gioia & Luppino (1994).

Cluster αJ2000 δJ2000 zd Exptime [s] n FOV 〈Dds/Ds〉 〈zs〉
CL0015.9+1609 00:18:33.3 16:26:36 0.541(1) 2240 43 8.05′ × 6.95′ 0.398 1.725
CL0413−6559 04:12:54.7 −65:50:58 0.51(2) 2596 73 7.05′ × 7.05′ 0.463 1.880
MS0451.6−0305 04:54:10.9 −03:01:07 0.55(3) 2036 82 22′ × 22′ 0.383 1.645
MS1008.1−1224 10:10:34.1 −12:39:48 0.301(1) 2232 55 7.55′ × 7.05′ 0.603 1.644
MS2137.3−2353 21:40:12.8 −23:39:27 0.313(1) 2240 59 7.05′ × 7.05′ 0.598 1.665

1989, which is why its name is based on the coordinate system of 1950. Thus, its current right
ascension deviates from the former value as given in its nameby three minutes due to precession.
It was during the mission of theEinsteinsatellite that MS0451.6−0305 was identified as a galaxy
cluster (Stocke et al. 1991).

The luminosity was measured to beLX = 19.98× 1044 erg s−1 in the 0.3− 3.5 keV band with
Einstein-data (Luppino et al. 1999). UsingChandra-data, more recent results for luminosity and
temperature areLX = 8.87× 1044 erg s−1 in the 0.1 − 2.4 keV band andTX = 10.6+1.6

−1.3 keV using
“wabs+mekal”1 (Donahue et al. 2003),TX = 8.2+0.4

−0.3 keV (Balestra et al. 2007),LX = (16.8 ±
0.6) × 1044 erg s−1 andTX = (7.5 ± 1.0) keV in the 0.1 − 2.4 keV band (Ebeling et al. 2007) and
TX = 9.9+0.8

−0.7 keV (Bonamente et al. 2008).
The cluster centre is indicated by a large bar of galaxies extending from northwest to south-

east (Fig. 4.3). In the middle of it is the BCG. Due to a luminous spiral galaxy in the foreground,
it is not the brightest object in this region. Clowe et al. (2000) observed that the X-ray emission
traces the bar-like structure of galaxies, but less extended. Most galaxies either are located near
the southeast or the northwest of the BCG.

1The spectral model “wabs+mekal” will be explained in Sect. 7.2.1.
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Figure 4.3: HST-mosaic of MS0451.6−0305 showing a∼ 7.′0× 6.′0 zoom into the cluster centre. The cluster centre is
indicated by a large bar of galaxies extending from northwest to southeast.

4.1.4 MS1008.1−1224

With 112 cluster galaxies, the EMSS galaxy cluster MS1008.1−1224 is a rich strong-lensing clus-
ter at zd = 0.301 with a low X-ray luminosity ofLX = 4.49 × 1044 erg s−1 as measured from
Einstein-data in the 0.3−3.5 keV band (Luppino et al. 1999). Lensed arclets were found north and
east near the cluster centre which is defined by the central cD-galaxy, but no giant arcs have been
detected so far (Le Fevre et al. 1994). The galaxies are distributed approximately circular around
the cluster centre but with an elongation in the north-southdirection (Fig. 4.4, Mayen & Soucail
2000). To the North of the cluster centre, a further clump of galaxies is located (Gioia & Luppino
1994).

Observations in X-ray and optical light as well as the weak lensing mass distribution reveal
substructures that indicate merger processes (Athreya et al. 2002). Thus, the ICM may not be
in hydrostatic equilibrium with the cluster potential. With TX = 7.3+1.2

−0.8 keV determined from
ROSAT-observations (Lewis et al. 1999), or more recentlyTX = 5.8+0.3

−0.2 keV (Balestra et al. 2007),
MS1008.1−1224 is moderately hot.

MS1008.1−1224 is an excellent example for cluster-cluster lensing. Athreya et al. (2002)
detected a lensed background cluster at redshiftz = 0.9 with an image position of 30′′ southwest
from the central cD-galaxy. Since this background cluster is magnified due to gravitational lensing,
MS1008.1−1224 allows to study this high-redshift cluster in more detail.

4.1.5 MS2137.3−2353

The strong lensing cluster MS2137.3−2353 atzd = 0.313 was detected withEinstein(Stocke et al.
1991). Exhibiting several arclets, a radial and a giant arc embedded in the halo of the bright cD-
galaxy (Fort et al. 1992), it has the most impressive strong lensing features in the cluster sample.
Further strong lensing observations of this cluster were performed by Gioia et al. (1996), Hammer
et al. (1997) and Gavazzi et al. (2003) among others. Merten et al. (2009) analysed the cluster
combining strong and weak lensing.
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Figure 4.4: HST-mosaic of MS1008.1−1224 showing a∼ 3.′0× 3.′0 zoom into the cluster centre. The bright peak in the
centre of the image is the cD-galaxy which is surrounded elliptically distributed cluster galaxies. The major axis of this
galaxy distribution is aligned in North-South direction.

The luminous cD-galaxy dominates the cluster centre (Fig. 4.5) and contributes much to
the high X-ray luminosity ofLX = 15.62× 1044 erg s−1 in the 0.3− 3.5 keV band measured from
Einstein-data (Luppino et al. 1999). WithChandra, the cluster was observed by Allen et al. (2001)
who measuredTX = 5.56+0.46

−0.39 keV and more recently by Balestra et al. (2007) and Ebeling etal.
(2010) who measuredTX = (4.96± 0.11) keV andTX = (4.67± 0.43) keV, respectively. Despite
its high luminosity (LX = (11.1±0.4)×1044 erg s−1 in the 0.1−2.4 keV band, Ebeling et al. 2010),
the cluster is not moderately hot.

The mass distribution is elliptical and matches the elliptical distribution of both optical light
and X-rays wherefore MS2137.3−2353 is likely relaxed (Hammer et al. 1997). Furthermore, the
dark matter density profile is much flatter than those of the visible matter which implies large
magnification effects (Hammer et al. 1997).

4.2 HST-data

4.2.1 The instrument

To investigate the lensing properties of the cluster sample, we used high-quality from the ACS/WFC
detector of the Hubble Space Telescope. The HST is a 2.4m f/24 Ritchey-Chrétien Cassegrain
telescope named after the famous US astronomer Edwin Hubble. It is jointly operated by NASA
and ESA at an altitude of 590 km from the ground taking 96 minutes per orbit. Although it was
launched in April 24 in 1990, it still provides splendid images from deep space.

The Advanced Camera for Surveys (ACS) was installed during the 3rd Servicing Mission in
March 2002. It consists of three detectors that cover a spectral range of 1200−11000 Å in total. Its
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Figure 4.5: HST-mosaic of MS2137.3−2353 showing a∼ 3.′5× 3.′0 zoom into the cluster centre. The bright peak in the
centre of the image is the luminous cD-galaxy.

purpose is to study the formation of planetary systems, galactic nuclei and to perform deep imaging
surveys of galaxy clusters. The cluster data was taken with the Wide Field Channel detector (WFC)
which has a resolution of 0.05 arcsec/pixel2. With 202′′ × 202′′ it has the largest field-of-view
(FOV) and the highest sensitivity of all HST-detectors. Theinfalling light is collected by two
thinned and backside-illuminated CCD-chips with 2048× 4096 pixel (6.88×3.46 cm2) which are
sensitive in the spectral range 3500− 11000 Å (Fig. 4.6). To make sure that the CCDs remain flat,
both are mounted on a thick ceramic holder2.

Except for MS0451.6−0305, all clusters were observed as 4-pointing mosaics in the fil-
ter F606W as part of the GO-program #10635 (PI: Bodo Ziegler). Archival data from pro-
gram #9836 (PI: Richard Ellis) forming a 41-pointing mosaicobserved in F814W was used for
MS0451.6−0305. The filter curves and the total throughput are shown in Fig. 4.6.

4.2.2 Data reduction and galaxy selection

The ACS data reduction and weak lensing catalogue creation was done by Tim Schrabback (Schrab-
back et al. 2007, 2010). Thus, we only summarise details relevant for our analysis.

The data reduction pipeline employs a customised version ofMultiDrizzle (Koekemoer
et al. 2002) for cosmic ray removal, distortion correction and stacking. It also features optimised
bad pixel masking and weighting, as well as a careful refinement of shifts and rotations. The
shape measurements are based on the Erben et al. (2001) implementation of the KSB+ formalism
(Kaiser 1995; Luppino & Kaiser 1997; Hoekstra et al. 1998). The F606W-data was reduced with
the Schrabback et al. (2007) pipeline, which employs a largelibrary of stellar-field PSF templates
to model the temporally and spatial varying ACS Point SpreadFunction (Sect. 2.2). Schrabback
et al. (2010) implemented a revised version of this interpolating scheme for F814W based on
a principal component analysis, which was utilised for the MS0451.6−0305 data. For all clus-
ters parametric corrections for spurious ellipticities caused by charge-transfer-inefficiency were

2The details of the telescope and the ACS-camarea are taken from http://acs.pha.jhu.edu
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Figure 4.6: The broad-band filter set of the ACS camera.Left: Filter transmittance.Right: Total system throughput.
The shear catalogues are taken in the filters F606W and F814W,operating in the red and IR, respectively. From
http://acs.pha.jhu.edu/instrument/filters .

used (Schrabback et al. 2010). Also, the shear estimation based on image simulations from the
STEP-project (Heymans et al. 2006; Massey et al. 2007) was recalibrated. Following Hartlap et al.
(2009), a mean calibration correction (7%) combined with conservative galaxy selection criteria
(S/NKSB > 2.3) was used, whereby S/NKSB includes the KSB weight function (Erben et al. 2001),
for the F606W-data. An updated signal-to-noise-ratio dependent correction has been derived by
Schrabback et al. (2010), which was employed in the analysisof MS0451.6−0305. This allows to
include noisier galaxies (S/NKSB > 2.0).

The S/N-cuts were done differently, because for F606W the sky background is higher in many
of the exposures than for F814W. Since the brightness of the sky background is a function of the
ecliptic latitude and longitude of the observations due to zodiacal light, the number densityn of
background sources and their effective mean source redshift〈zs〉 vary among the clusters. For
instance, CL0413−6559 has a highern and a larger〈zs〉 than CL0015.9+1609 (Table 4.1), which
is not only due to the longer exposure time but also to the higher ecliptic latitude. Furthermore, the
simplistic 2-position dither pattern that was used for the F606W observations leads to the presence
of some uncorrected hot pixels in the stacked image, which increases the noise.

Both pipeline incarnations have been successfully appliedto cosmic shear data (GEMS and
COSMOS), with substantially stricter correction requirements for weak lensing shape systematics
than the weak lensing cluster analysis in this thesis.

4.2.3 Mean distance ratios

As a geometric measure, the strength of the weak lensing signal depends on the angular diameter
distances between observer, lens and sources. Therefore, the redshift distribution of the source
galaxies must be accurately determined. If no photometric redshifts are available for the studied
cluster fields, the redshift distribution must be derived from external fields.

To estimate the redshift distribution from the magnitude distribution of our sources, we used
the magnitude-dependent parametrisation by Schrabback etal. (2007) from the GOODS-MUSIC
photometric redshift catalogue (Grazian et al. 2006) for the clusters observed in F606W. For
F814W, we used the Schrabback et al. (2010) parametrisationwhich is based on the COSMOS-30
photometric redshift catalogue by Ilbert et al. (2009).

It is convenient to parametrise the redshift distribution as (e.g. Brainerd et al. 1996)
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For this thesis, the extended versions of this equation given by Schrabback et al. (2007) for F606W
and those given by Schrabback et al. (2010) for F814W were used. The parametersα andβ were
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fitted with a linear relation between the magnitude and redshift of a galaxy. The source magni-
tude distribution of an observed field has a characteristic shape. Hence, one can easily derive the
corresponding redshift distribution.

For F606W, the redshift distribution is (Schrabback et al. 2007)
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with (α , β , a , b) = (0.563, 1.716, 0.299, 0.310). The linear relation between the magnitudem606

measured in F606W and the median redshiftzm of a background source is given as

zm = rz0 = a (i606− 22) + b . (4.3)

Here, r(α, β) was calculated from numerical integration of Eq. (4.2), which gives the redshift
probability distribution for a galaxy with magnitudei606.

For MS0451.6−0305 which was observed in F814W, we used a modified version ofEq. (4.2)
which reproduces the galaxy redshift distribution for the Cosmos-field better than Eq. (4.2),
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with (α , β , c, d, γ) = (0.678 ,5.606 ,0.581 ,1.851 ,1.464) andu = max[0, (i814 − 23)] (Schrabback
et al. 2010). To account for the correlation between redshift and i814, the magnitude-redshift dis-
tribution is subdivided into two magnitude bins:
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7
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a j [(i814− 23)/4] j 23< i814 < 27,

(4.5)

with (a0, . . . , a7) = (1.237, 1.691, −12.167, 43.591, −76.076, 72.567, −35.959, 7.289).
With the parametrisations in Eqs. (4.2) and (4.4), the mean distance ratio for a lens redshift

zd can then be calculated from the magnitude distributions with

D (zd, 〈zs〉)
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≡
〈

Dds

Ds

〉

=

∞
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p(z)
Dds(zd, z)

Ds(z)
dzH (z− zd) . (4.6)

Here,Dds(zd, z) is the angular diameter distance between the lens and a galaxy at redshiftz and
Ds(z) is the angular diameter distance between the observer and this galaxy. The Heaviside step
function indicates that sources withz> zd are lensed. To reduce the contamination by foreground
galaxies, we select faint (and preferentially background)galaxies with magnitude cuts. These cuts
have been chosen at the F606W (F814W) magnitudes from Schrabback et al. (2007) (Schrabback
et al. 2010),i606 (i814), where the median (medium) redshift equals 0.4 for the intermediate redshift
clusters and 0.6 for the high-redshift clusters, respectively. From Eq. (4.6) we determined the
effective source redshift〈zs〉 which is indicated by puttingzs in angular brackets on the left-hand
side. Mean distance ratios〈Dds/Ds〉 and effective mean source redshifts〈zs〉 are listed in Table 4.1.
The redshift distributions normalised to

∫ ∞
0 p(z)dz = 1 are plotted in Fig. 4.7.

Our magnitude cuts exclude bright galaxies disregarding whether they are foreground galax-
ies or not. Furthermore, small and faint cluster and foreground galaxies may possibly be inter-
preted as background galaxies by the pipeline. For these reasons, our HST-catalogues will not
exclusively be composed of background galaxies.
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Figure 4.7: Estimated redshift distributions for the cluster sample normalised to
∫ ∞

0
p(z)dz = 1. While the redshift

distributions of the four clusters observed in F606W only differ with respect to their amplitude, the shape of the redshift
distribution for MS0451.6−0305 differs notably.

For MS0451.6−0305, we create two catalogues which will be analysed in parallel. For both
the magnitude selection has been applied: (1) In MS0451ACS we used the effective mean source
redshift〈zs〉 = 1.645 as inferred from Eq. (4.6) for all sources. We used this catalogue to directly
compare this cluster to the other clusters. (2) In MS0451zphoto we included photometric redshifts
for those galaxies to which we could assign them and calculate 〈zs〉 for galaxies without photo-
z. We used this catalogue to study the effect of using individual source redshifts compared to
an effective mean source redshift for all sources. The photometric redshift estimation will be
discussed in Sect. 4.3.3.

4.3 Multi-colour data

For MS0451.6−0305, multi-colour data from two ground-facilities were used to estimate the
photometric redshifts of the HST-data, to remove foreground and background galaxies and to
demonstrate the effect of using photometric redshifts in the weak lensing analysis compared to
using a mean redshift for all sources. In particular, data from MegaPrime@CFHT and Suprime-
Cam@SUBARU both seated on Mauna Kea, Hawaii at an altitude of4200 metres above sea level
(Fig. 4.8) were used for this study3. In this section both data sets will be briefly introduced. Ta-
ble 4.2 gives a technical overview.

4.3.1 MegaPrime@CFHT

The Canadian-France-Hawaii Telescope (CFHT) is a 3.6m-telescope consisting of several op-
tical and infrared instruments for wide-field imaging or spectroscopic purposes among others.
MegaPrime is a wide-field optical imaging facility which wasbuilt by CEA4 in France. Since

3The details of the telescopes and instruments are taken fromhttp://www.cfht.hawaii.edu and
http://www.www.naoj.org for CFHT and SUBARU, respectively.

4Consumer Electronics Association
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Figure 4.8: The CFHT telescope (upper panel) and the SUBARU telescope (lower panel) both on top of Mauna Kea,
Hawaii in 4200 m above sea level. From http://www.cfht.hawaii.edu and http://www.www.naoj.org .
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its field-of-view is 1◦ × 1◦, MegaPrime is able to observe a large number of faint objectssimul-
taneously. It has a resolution of 0.187 arcsec/pixel which allows to sample properly the seeing
at Mauna Kea which has a median value of 0.′′7. The instrument has a 9× 4 CCD-array with
2048× 4162 pixels/CCD. At the time when it was launched in January 2003, it was the largest
astronomical CCD-mosaic ever built. Since then and for manyyears that followed, MegaPrime
represented a major upgrade of the telescope upper-end.

In a period of 15 to 18 days centred on the New Moon, MegaPrime operates at a temperature
of −120◦C in five broad-band filters u∗, g′, r′, i′ and z′. Except for u∗, all filters were designed to
match the SDSS-filters of the Apache Point telescope. Since the UV-extinction on Mauna Kea is
smaller than on the Apache Point, the u∗-filter was designed in addition and is therefore denoted
with an asterisk.

Gain and quantum efficiency vary among the CCDs with a dispersion of 0.2 e−/ADU. The
zero point magnitudes arise from photometric frames which were processed by the data reduction
pipeline Elixir (Magnier & Cuillandre 2004) including corrections for scattered light on the
order of 0.1 mag. Furthermore, the zero point magnitudes arenormalised during flat-fielding such
that the exposure is uniformly shaped, but this has the disadvantage that the detection limit varies
over the CCDs due to differences in quantum efficiency and read-out noise. The transmission
curves and the mean quantum CCD efficiency are shown in Fig. 4.9.

The data were calibrated and processed by Thomas Erben with the GaBoDS/THELI image
processing pipeline (Erben et al. 2005). The quality of the images was thoroughly checked against
the Sloan-Digital-Sky Survey (SDSS) and already public high-end CFHTLS data products. More
details of the data reduction can be found in Erben et al. (2009).

Figure 4.9: Transmission of the MegaCam-filters and the average CCD quantum efficiency [%] (dashed line). From
http://www.cfht.hawaii.edu .

4.3.2 Suprime-Cam@SUBARU

Suprime-Cam is mounted on the 8.2m SUBARU telescope on MaunaKea at an altitude of 4139 m
near the CFHT. It is an optical instrument consisting of 5× 2 CCDs that cover an area of 34′ × 27′
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comparable to the size of the full Moon. It has a resolution of0.202 arcsec/pixel. The large pixel
size of the instrument and light gathering power of the primary mirror produce high count rates
per pixel. Since even at high Galactic latitudes a number of bright stars is always present in the
large field-of-view, a saturation of pixels is inevitable.

SUBARU is the only 8m-class telescope in the world on which aninstrument can be mounted
at the prime focus. This allows to perform deep imaging of a large area of the sky because the
shorter focal length of the prime focus provides a field-of-view which is five times wider than
the Cassegrain focus. Apart from the wide-field imaging of galaxy clusters, the instrument is
an effective tool to detect small objects at the outskirts of the solar system, study the birth and
evolution of galaxies, and probe large-scale structures ofour Universe.

Observations of MS0451.6−0305 were carried out in the broad-band filters B, V, Rc, Ic and
z′. The data reduction was done by Mischa Schirmer using theGaBoDS/THELI image processing
pipeline (Erben et al. 2005), but with some deviations whichare given by Schirmer et al. (2010)
in more detail. Here, we only list the most important: When the observation was performed in
2001, Suprime-Cam had one broken CCD and individual gain settings. Lateron, the broken CCD
and three others were replaced and the gains were homogenised. For our data, all chips had to
be adjusted to the same gain. Area lost due to blooming could be recovered because the images
were taken with two different sky position angles. Without extensive dithering of photometric
standard fields, a correction of scattered light in the flat-field images was not possible for this data.
Furthermore, only parts of the data were taken in photometric conditions with relative zeropoint
variations up to 0.1 mag. Fig. 4.10 shows the SUBARU I-band image overlaid with the HST
mosaic pattern.

Table 4.2: The multi-colour data used to estimate the photometric redshifts of MS0451.6−0305: We show observational
properties such as limiting magnitudeMlim derived from apertures of 3′′, seeing and the total exposure time (Exptime)
as well as the central wavelengthλ of each passband.Mlim are the limiting AB magnitudes (50% completeness level)
for 10σ point sources and are∼ 0.8 mag brighter for extended objects. For more details, see Schirmer et al. (2010).

Filter Instrument Exptime [s] seeing Mlim λ [nm]
u∗ MegaPrime 5215 0.′′87 25.7 374
g′ MegaPrime 3400 0.′′85 26.0 487
r′ MegaPrime 14852 0.′′71 26.2 625
i′ MegaPrime 1280 0.′′71 23.7 770
z′ MegaPrime 1440 0.′′70 22.4 882
WJB (B) Suprime-Cam 12240 0.′′82 26.7 446
WJV (V) Suprime-Cam 5040 0.′′94 26.0 548
WCRC (Rc) Suprime-Cam 11400 0.′′84 26.6 653
WCIC (Ic) Suprime-Cam 4920 0.′′92 25.9 795
WCZ (z′) Suprime-Cam 4380 0.′′76 25.1 904

4.3.3 Photometric redshifts

The photometric redshifts for MS0451.6−0305 were determined with the public codeBayesian
Photometric Redshifts (BPZ, Benı́tez 2000). The code is based on an SED-template fitting
with a prior, which carries information about the spectral energy distributions of six types of
galaxies in redshift. Thus,BPZ estimates the most likely redshift of a galaxy using the magnitudes
measured in a set of passbands according to the prior information.

Comparing to the analysis using externally calibrated redshift distributions (Sect. 4.2.3), the
one using individual redshift estimates has two advantagesin deriving weak lensing masses: First,
it enables the selection of individual background galaxies, whose shear estimates can be weighted
according to their geometric lensing efficiencies to boost the signal-to-noise (Sect. 2.3.2). Second,
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Figure 4.10: Optical image of MS0451.6−0305 in the I-filter of Suprime-Cam (WCIC) overlaid with the contours of the
HST-mosaic (solid magenta lines) to demonstrate the coverage of both data sets. The black circle indicates the central
cluster region inside which the diagonal bar of galaxies canbe identified with the cluster centre. The field-of-view is
≈ 39′ × 34′.
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it allows for a robust removal of foreground and cluster galaxies which have otherwise to be ex-
cluded by a magnitude cut, but this is less accurate since it may also remove luminous background
galaxies and keep faint foreground galaxies. If there is contamination from foreground galaxies,
the shear signal is diluted and those galaxies can be removedstatistically. Imaging data of similar
depth using this filter set yield excellent photometric redshifts for bright galaxies withz . 1.3
(Hildebrandt et al. 2012).

We used the photo-z catalogue from by Schirmer et al. (2010) based on the methodsfrom
Hildebrandt et al. (2009, 2012) in which photometric redshifts were selected according to:

• if zphoto< 0.4, only CFHT-redshifts,

• if zphoto> 0.7, only SUBARU-redshifts,

• if 0.4 < zphoto< 0.7, the average of CFHT- and SUBARU-redshifts weighted by theestima-
tion confidence (ODDS-parameter inBPZ),

• zphoto from CFHT or SUBARU, whichever has the higher ODDS,

• all photometric redshifts are limited to those with more than 80% confidence (ODDS≥ 0.8).

Schirmer et al. (2010) found that these criteria well serve the multi-colour data of MS0451.6
−0305 because: (1) The PSFs in the CFHT- and the SUBARU-data give varying fluxes for a galaxy
observed in similar passbands, e.g. r′ and Rc. (2) The CFHT-data are shallower than the SUBARU-
data. They show 2-3 times as much scatter forz & 0.6 as SUBARU and fail for fainter galaxies,
because of marginal depth in the i′- and z′-band, but provide better constraints for galaxies at lower
redshifts. In contrast, the SUBARU-data yield more accurate redshifts for distant galaxies, but are
highly unreliable forz . 0.3 due to the lack of u-band data. Without the u-band,BPZ assigns a
significant fraction of lensed galaxies to the foreground. (3) The SUBARU-data show scattered
light in the flat-field images and thus the photometric zero-point is not continuous over the image
with a variation of 0.1 mag. Schirmer et al. (2010) left this effect uncorrected, because it was not
possible to model it. For details see Schirmer et al. (2010).

Figure 4.11: Left panel: Photometric redshifts of MS0451.6−0305 plotted versus the spectroscopic redshifts from
DEIMOS@Keck-II from Moran et al. (2007).Right panel:Histogram of the estimated photometric redshifts(dashed)
and of the spectroscopic redshifts(solid) in bins of dz = 0.05. The vertical line atz = 0.6 distinguishes between
foreground and background galaxies.
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The photometric redshifts were calibrated against 1561 spectroscopic redshifts taken with
DEIMOS@Keck-II (Fig. 4.11,left). These spectroscopic redshifts were originally used in a wide-
field survey by Moran et al. (2007).

We defined outliers with a cut of
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and the outlier rateη is the fraction of galaxies with∆z> 0.15. The standard deviation of Eq. (4.7),
σz, is a mean error of the estimated photometric redshifts. Applying ODDS≥ 0.8 and∆z < 0.15
gaveσz = 0.035 andη = 1.57%.

The histograms of photometric and spectroscopic redshiftsare plotted in the right panel of
Fig. 4.11. The number of spectroscopic redshifts is smallerthan the number of available photo-z,
because the spectroscopic redshifts are limited toi < 23.0. We used the spectroscopic redshifts
to calibrate the zero-points and templates in the photo-z estimations (Schirmer et al. 2010). The
consistency between spectroscopic and photometric redshifts suggests reliable photo-z estimates
for the nearby and bright galaxies (z ≤ 1.2) with less thanσz = 0.035 scatter. We used the
photometric redshifts for distant galaxies (1.2 ≤ z ≤ 2.2) only if we could estimate them with
more than 80% confidence.

We defined background galaxies as those withzphoto ≥ 0.6. This cut is more conservative
than the redshift of MS0451.6−0305,zd = 0.55, plus the scatter,σz = 0.035, becauseσz arises
from the comparison of photo-zs with the spectroscopic redshifts for bright galaxies (i < 23.0).

The HST-data is deeper than the ground-data. Only∼ 5% of the sheared sources located at
the bright end of the HST-magnitude distribution have photometric redshifts, after applying the
magnitude cut atz = 0.6. Figure 4.12 shows histograms of the HST-magnitudes measured in
F814Wi814 of all sheared sources (left) and of those 5% of sources which have also photometric
redshifts (right). The distribution of the latter has its peak ati814 = 28 which is two magnitudes
brighter than the magnitude distribution of all HST-sources. For the remaining galaxies we as-
signed an effective mean source redshift (Sect. 4.2.3) and their treatment will be further discussed
in Sect. 6.2.3.

For a larger coverage of photometric redshifts for the data,deeper observations would be
required.

Figure 4.12:Left panel:HST magnitude distribution of all our lensed background sources.Right panel:HST magnitude
distribution those 5% sources which have photometric redshifts. In both histograms, “magnitude” is the magnitude
measured in the F814W-filteri814.
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4.4 X-ray data

4.4.1 XMM-Newton

The X-ray Multi-Mirror Mission (XMM-Newton) from ESA was launched by an Ariane 504 on
December 10th 1999. The satellite carries three high-throughput X-ray telescopes with the largest
effective area up to date.XMM-Newtoncan take imaging spectroscopy and grating spectroscopy
simultaneously.

The European Photon Imaging Camera (EPIC) was designed to perform extremely sensitive
observations over a whole field of view of∼ 30′ in diameter in the energy range 0.15− 15 keV.
EPIC has a spectral resolution ofE/∆E ∼ 20−50 and an angular resolution which is of the size of
the Point Spread Function (30′′) with a full width at half maximum of 6′′. EPIC consists of three
X-ray CCD cameras. Two of these cameras are Metal Oxide Semi-conductor CCD-arrays (MOS1
and MOS2). Since they are installed behind the X-ray telescopes such that the light has to pass
the gratings of the Reflection Grating Spectrometers (RGS) first, only 50% of the incident flux
reaches the MOS cameras5. Each MOS camera consists of seven front-illuminated CCDs,which
are mounted in the focal plane of the cameras. The central CCDis at the focal point on the
optical axis of the telescope while the outer six are steppedtowards the mirror by 4.5 mm to
follow approximately the focal plane curvature, which improves the focus for off-axis sources.
The physical imaging area of one CCD is∼ 2.5× 2.5 cm2 which corresponds to a 28.4′ coverage
of the total focal plane. The readout register is split into two sections with readout nodes, such that
the full CCD image can be read out using either one readout node or both nodes simultaneously,
which halves the readout time. The quantum efficiency of the MOS-cameras is reasonably good
from 0.2−10 keV (Fig. 4.13) for observations. Below 700 eV, the energyresponse is low, because
of absorption in the electrode structure. To provide a detector region with a high transmission for
very soft X-rays that would otherwise be absorbed by the electrodes, one of the three electrodes
has been enlarged to occupy a greater fraction of each pixel,and holes have been etched through
this enlarged electrode to the gate oxide.

The third EPIC instrument is composed of twelve 3× 1 cm pn-CCDs (pn) with a physical
area of 6×6 cm2 which cover∼ 97% of the field-of-view on a single wafer and has an undisturbed
beam. The CCDs are arranged for reasons of redundancy in fourquadrants. The three pn-CCDs
in each quadrant can be operated in parallel. Since 6 cm2 of the sensitive area are outside the FOV,
they are used for background studies. X-rays hit the detector from the rear side and interact with
the silicon atoms such that the generated electron and hole numbers are proportional to the energy
of the incident photon. The average energy required to create an electron-hole pair is 3.7 eV at
−90◦C. To provide a recombination of electrons and holes, pn consists of strong electric fields that
draw charges to the electrodes. Due to its larger effective area, the number of counts in pn is two
times larger than for one of the MOS detectors for the same exposure time.

All EPIC CCDs operate in photon counting mode with a fixed, mode-dependent frame read-
out frequency. The data is read-out into event lists, which are tables with one entry-line per re-
ceived event that lists their energy, time and position at which they were registered.6

4.4.2 Data reduction

The galaxy clusters CL0015.9+1609, MS0451.6−0305 and MS2137.3−2353 were observed with
XMM-Newton. We usedChandra-data for MS1008.1−1224 because noXMM-Newtondata was
available. This data was reduced by Helen Eckmiller and I therefore refer to Eckmiller et al. (2011)

5After taking structural obscuration into account, actually only∼ 40% of the incident flux reaches the MOS cameras.
6The details ofXMM-Newtonand the instruments are taken from http://xmm.esac.esa.int .
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Table 4.3: Overwiev of the archival X-ray data we used for theanalysis of our cluster sample. We list the instrument
with which the data was taken, exposure times, observational ID, who was Principal Investigator PI and the date at
which the clusters were observed.

Cluster Instrument Exptime [s] OBSID PI obs. date
CL0015.9+1609 XMM-Newton 28372 0111000101 M. Watson 2000− 12− 29
CL0413−6559
MS0451.6−0305 XMM-Newton 22253 0205670101 D. Worrall 2004− 09− 16
MS1008.1−1224 Chandra 44740 926 E. Ellingson 2000− 06− 11
MS2137.3−2353 XMM-Newton 11311 0008830101 S. Allen 2001− 04− 29

Figure 4.13:Upper left: One of the MOS cameras inside the cryostat. The camera consists of seven CCDs covering
a field of view of∼ 30′ in diameter in the energy range 0.15− 15 keV. From http://xmm.esac.esa.int .Lower left: The
quantum efficiency of MOS. From Turner et al. (2001).Upper right: The pn camera consisting of twelve CCDs. Since
its effective area is larger than that of MOS, the number of counts inpn is∼ 2 times larger than for one of the MOS
detectors for the same exposure time. From http://xmm.esac.esa.int .Lower right: The quantum efficiency of pn. From
Strüder et al. (2001).
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for details of the reduction. For CL0413−6559 currently no archival X-ray data are available,
except for a 20 ksROSATPSPC-observation with∼ 70 source counts which are not sufficient for
our purpose. Details of the data are summarised in Table 4.3.

The observations were carried out with the European Photon Imaging Camera (EPIC) in full
frame (FF) mode for MOS and extended full frame (EFF) for pn. This gives a fraction of 2.32% of
out-of-time (OOT) events for pn. For all three detectors, the thin filter was used. We performed the
data reduction using theXMM-NewtonScience Analysis System (SAS 8.0.0). We used
FLAG = 0 andPATTERN< 12 for MOS andPATTERN< 4 for pn, because larger thickness
of pixels leads to higher sensitivity to the particle flux.

The data reduction of this work follows that of CL0024+17 (Zhang et al. 2005). For pn we
created an OOT event file to statistically remove the OOT effect. Since the effective area is low at
photon energies above 10 keV and 12 keV for MOS and pn respectively, the particle background
dominates at that energies. Therefore, we used these high energy bands to excise periods with
high flux from high energy protons as follows. We binned the light curve in the 10− 12 keV
(12− 14 keV) energy range for MOS (pn) with a 100 s interval. Since there are also protons at
lower energies, we further used the 0.3 − 10 keV energy range to exclude such soft proton flares
(e.g. De Luca & Molendi 2004). Here, we binned the light curvewith a 10 s interval to provide a
similarly photon statistic as that of the hard band (10− 12 keV for MOS and 12− 14 keV for pn,
respectively).

From each light curve, we determined the average and varianceσ by fitting a gaussian to the
count rate histogram. We defined Good Time Intervals (GTIs) as those intervals, where the count
rate is below 3.3σ above the quiet average and then created GTI events files. We used those GTI
files to clean the data from proton flares both in the hard and the soft band, respectively.

The vignetting correction to effective area for off-axis observations and the bad-pixel correc-
tion were performed with theSAS-command “eviweight”.
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Simulations for MS0451.6−0305

To estimate the quality of scientific results, simulations can be used. Since MS0451.6−0305 is spe-
cial in this thesis due to its photometric redshifts, issuesthat are not of interest for the other clusters
have to be considered. In this chapter, two simulations willbe performed to estimate the gain of
using photometric redshifts in a weak lensing analysis. In Sect. 5.1, the accuracy with which
photometric redshifts can be obtained from the multi-colour data (Table 4.2) will be estimated.
This simulation will serve as an independent cross-check ofcalibrating the photometric redshifts
against the spectroscopic redshifts from DEIMOS@Keck-II (Moran et al. 2007, Sect. 4.3.3). In
Sect. 5.2, we will simulate the effect 5% photometric redshifts have on the errors on the parameters
of our mass models which will be introduced in Sect. 6.2.

5.1 Simulations for photometric redshifts

To cross-check the photometric redshifts estimated withBPZ (Sect. 4.3.3), simulations withStuff
1.19 – throughout this paper denoted asSTUFF – andSkyMaker both developed by E. Bertin were
performed and are discussed in this section.STUFF generates galaxy catalogues with a realistic
galaxy population in redshift, without errors in magnitudeand redshift, andSkyMaker produces
the corresponding fits-images from which magnitudes and their errors can be measured. The sim-
ulations were done for both idealised data, for which the magnitudes are measured without errors,
and mock data generated with the properties of our multi-colour data (Tab. 4.2).

5.1.1 Photometric redshifts for idealised conditions

Under idealised conditions the photometric redshifts thatare estimated from theSTUFF-simulation
are expected to be very accurate, i.e.zphoto ≈ zstuff . To estimate photometric redshifts from gener-
ated data without magnitude errors cross-checks whether the spectral templates for galaxy types,
filter curves and extinction inSTUFF andBPZ are equal. This test further allows us to study the
effect that filters of the CFHT- and SUBARU-data have on the photometric redshift estimation. We
combined the filter sets of both instruments beforeBPZ is run, because we do not have to account
for varying fluxes due to different PSFs or scattered light in the flat-field images as we have for the
real data (Schirmer et al. 2010).

We created catalogues for the CFHT- and SUBARU-filters for a field of 2048×2048 pixel us-
ing STUFF and fed both intoBPZ separately. In addition, a third catalogue comprising all ten filters
was generated from which the photometric redshifts were estimated. The same spectral templates,
filter curves and extinction coefficients were used for bothSTUFF andBPZ. An illustration of the
spectral templates of the galaxy types used inBPZ is shown Fig. 5.2.
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Figure 5.1: Photometric redshiftszphoto versusSTUFF-redshiftszstuff for different filter combinations and ODDS≥ 0.8.
We show the results for the CFHT-filters u∗, g′, r′, i′and z′(upper left panel), the SUBARU-filters B, V, R, I, Z (upper
right panel) and for both filter sets (lower panel). The UV-filter improves the agreement betweenzphoto andzstuff .

According to Sect. 4.3.3, only photometric redshifts with more than 80% estimation confi-
dence (ODDS≥ 0.8) were used for the further analysis. We did not calculate outlier fractionη and
scatterσz for this simulation because this simulation only qualitatively checks the combination of
the CFHT- and SUBARU-filters.

The results of these simulations are plotted in Fig. 5.1. This figure shows that we have
zphoto ≈ zstuff at 0. zstuff . 2 for the CFHT data and at 0.2 . zstuff . 1.4 for the SUBARU data,
respectively. The redshift range for whichzphoto≈ zstuff is smaller for the SUBARU filters because
it has no UV-filter. Without this filter, elliptical galaxiesat low redshifts will be assigned to higher
redshifts because the 4000 Å-break of elliptical galaxies at low redshifts would be misinterpreted
as Lyα-break of spiral galaxies at high redshifts.

Since there is no useful IR-data available,zphoto0 zstuff at 2. zstuff . 3.5 because the 4000 Å-
break moves from the optical into the IR. Combining both filter-sets provides a smooth distribution
of redshifts from 0. zstuff . 2.2, which corresponds to the redshift range of the multi-colour data
for MS0451.6−0305. Thus, we can ignore the broad scatter atz & 2.2 due to the lack of the
IR-filter.
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Figure 5.2: Templates for different spectral galaxy types in the local Universe that are used inBPZ. Early-type galaxies
are faint at short wavelengths, since they consist of old stellar populations and a small gas content. In contrast, starburst
galaxies have a dense sequence of strong emission and absorption lines in their spectrum because of their high gas
content, and a large amount of young and massive stars (Mobasher et al. 2007).

This simulation qualitatively shows that the given set of CFHT and SUBARU filters can
produce accurate redshifts within the range 0. zstuff . 2.2 which is the redshift range for which
we have photometric redshifts for MS0451.6−0305. In the next simulation, we will investigate
how accurate the photometric redshifts are with respect to the properties of the multi-colour data
which are given in Table 4.2.

5.1.2 Photometric redshifts for realistic conditions

In this simulation, mock data with the properties of the multi-colour data such as exposure time,
seeing, limiting magnitudes etc. (Table 4.2) were generated from aSTUFF-catalogue comprising
all ten filters usingSkyMaker. To make the images comparable and to account for seeing that
affects the magnitudes, the images in all bands were corrected with respect to the image from the
V-band which has the worst seeing as follows. Seeing changesthe brightness distribution of an
object and it is assumed to be Gaussian with widthσ. For worse seeing, the width is larger. If the
seeing has the widthσ1 for the observation with smaller seeing andσ2 for the observation with

the worse seeing, i.e.σ2 > σ1, the convolution of both Gaussians givesσ3 =

√

σ2
1 + σ

2
2 which is

then the seeing to which we correct our images.
The source magnitudes were determined inSExtractor (Bertin & Arnouts 1996) with re-

spect to the r′-band. This filter is a good compromise between the drop-out of objects in filters
operating at shorter wavelengths and a high sky background at longer wavelenghts which prohibits
the detection of faint objects. We defined objects as neighbouring pixels with DETECTMINAREA
≥ 3 and DETECTTHRESH≥ 2. To account for individual objects shapes, we extracted the
isophotal magnitudes MAGISO which were determined bySExtractor and fed them intoBPZ.
The parameter MAGISO defines objects as a set of pixels with isophotal magnitudes which fulfil
DETECT MINAREA and DETECTTHRESH. Alternative magnitude definitions are the aper-
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Table 5.1: Outlier fractionη and scatterσz for ODDS ≥ 0.8 and∆z < 0.15 for CFHT, SUBARU, CS and their
combination, CSselectaccording to the criteria for the real data (Sect. 4.3.3).

CFHT SUBARU CS CSselect

all η 4.92 3.16 2.99 3.42
σ 0.0438 0.0374 0.0363 0.0376

z≤ 0.6 η 2.46 1.93 1.76 2.10
σ 0.0390 0.0319 0.0320 0.0372

z≥ 0.6 η 1.76 0.53 0.53 0.57
σ 0.0480 0.0395 0.0391 0.0386

ture magnitudes MAGAPER which defines objects fulfilling the criteria DETECTMINAREA
and DETECTTHRESH within fixed apertures and MAGAUTO which uses flexible elliptical
apertures.

Similar to Sect. 5.1.1, we runBPZ over the CFHT- and SUBARU-filters separately and over
both filter sets together. To these samples, we refer as CFHT,SUBARU and CS, henceforth. In
addition, the photometric redshifts of CFHT and SUBARU thatwere estimated separately were
combined according to the criteria in Sect. 4.3.3. We refer to this sample as CSselect, henceforth.
We do not expect a significant difference between CS and CSselectbecause compared to the multi-
colour data the simulations are free of the problems discussed in Sect. 4.3.2 and Schirmer et al.
(2010). For this reason we used CSselectto cross-check systematics in the selection of photometric
redshifts for the real data. The results are plotted in Fig. 5.3 for ∆z < 0.15 and ODDS≥ 0.8
and listed in Table 5.1. Figure 5.4 shows the histograms of the photometric redshifts for CFHT,
SUBARU and CS. The redshift distributions for those three cases show only marginal difference.

We qualitatively analysed the simulated objects with respect to galaxy type, magnitude and
zstuff for ∆z < 0.15 and ODDS≥ 0.8 whereby we discriminated between foreground and back-
ground galaxies byz≤ 0.6 andz≥ 0.6, respectively. This redshift cut conforms to the magnitude
cut for MS0451.6−0305 (Sect. 4.2.3). We have∼ 3% fewer outliers and 4−20% higher scatter for
background than for foreground objects. With the availablefilters,∼ 68% of all outliers are late-
type galaxies such as spirals and starburst galaxies because compared to elliptical galaxies they do
not have a well-defined colour-magnitude sequence which is very pronounced for elliptical galax-
ies due to their old stellar population. In late-type galaxies, in contrast, there is still star formation
which causes more absorption and emission features in theirspectra (Fig. 5.2). Yet, spiral galaxies
have a smaller spread inzphoto than elliptical galaxies, because their Lyα-line is more significant
than the 4000Å-break of the elliptical galaxies.

We list outlier fraction and scatter for the photometric redshifts estimated from CFHT, SUB-
ARU, CS and CSselect in Table 5.1 and plotzphoto versuszstuff in Fig. 5.3. Due to its higher depth
compared to the CFHT data, the SUBARU data provide∼ 2% fewer outliers and∼ 15% less
scatter. Photometric redshifts for CS and CSselectproduces 3− 17% less scatter and 0.17− 1.93%
outliers 0. zspec. 2.5 (Table 5.1) compared to using only either the CFHT or the SUBARU fil-
ters. CS has 0.43% fewer outliers and 3% less scatter than CSselect. Thus, our simulation confirms
that the CFHT and SUBARU data are better for foreground and background objects, respectively.

From the simulation, we expect 2% and 1% outliers in the foreground and background galaxy
population, respectively, with a scatter ofσz ≈ 0.037 andσz ≈ 0.039 for each.

5.1.3 Comparison with the multi-colour data

We compared the simulations with the multi-colour data, in which the estimated photometric red-
shifts were calibrated against 1561 spectroscopic redshifts from DEIMOS@Keck-II (Moran et al.
2007). With ODDS> 0.8 and∆z < 0.15 we obtainedσz = 0.035 andη = 1.57% (Sect. 4.3.3).
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Figure 5.3: Photometric redshiftszphoto estimated withBPZ versusSTUFF-redshiftszstuff for ODDS≥ 0.8 and∆z< 0.15.
We show the results for the CFHT-filters (upper left), the SUBARU-filters (upper right), CS (lower left) and CSselect

(lower right). The black, red and green data points for CSselect denote photometric redshifts from CFHT, SUBARU
and CS due to the selection criteria in Sect. 4.3.3 accordingto which CFHT-galaxies and SUBARU-galaxies are also at
zphoto> 0.4 andzphoto< 0.7 depending on their ODDS.
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Figure 5.4: Histogram of photometric redshifts from the simulations. The solid black, dashed red and dashed-dotted
blue lines show thezphoto-distribution for CFHT, SUBARU and CS, respectively.

The outlier fractions for foreground and background galaxies are both∼ 1.60%. For the real data
η is ∼ 0.5% lower for the foreground galaxies and∼ 1% higher for background galaxies than
in the simulation. Most outliers of the real data are assigned to zphoto . 1.6. Compared to the
simulation, there are only few objects in 0. z. 0.2. At the redshift of the cluster, there is further
a cumulation of objects in the real data.

We findη andσz consistent with the simulations. The scatter is only 6% and 10% higher for
foreground and background galaxies, respectively andη is only∼ 0.6% lower for the foreground
and∼ 0.4% higher for the background. Thus, our simulations predictquite precisely the outlier
fraction and scatter of the photometric redshifts which were estimated for MS0451.6−0305.

5.2 Simulations for Weak Lensing

To estimate how individual source redshifts affect a weak lensing analysis, we generated a shear
field with the properties of MS0451.6−0305. We conducted aχ2-minimisation and determined the
1σ-errors of the fit parameters (Sect. 6.2.2) with respect to both an effective mean source redshift
and the inclusion of 5% of photometric redshifts.

5.2.1 Shear field generation

We created a shear field of 22′ × 22′ with a random galaxy distribution and a number density of
n = 82 galaxies/arcmin2 (Table 4.1). The galaxies have random intrinsic ellipticities χ(2) drawn
from a Gaussian distribution centred at zero and an intrinsic ellipticity dispersion ofσǫ = 0.3.
We used Eq. (2.17) to define the complex ellipticities, because this definition accounts for strong
lensing effects. We sheared the galaxies with an NFW-lens (Sect. 6.2.1)at zd = 0.55 with r200 =
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2239 kpc andc200 = 3.5 from the best fit NFW-model for MS0451ACS (Table A.3). We did not
apply a boost-correction as for the real data (Sect. 6.2.3),because we simulated only background
galaxies.

Unlike for real data where the superposition of intrinsic ellipticities χ(s) and the distortionχ is
directly obtained from measuring the shear, the reduced tangential shearχt has to be decomposed
into both quantities by inverting Eq. (2.17),

χ =
χ(s) + 2g+ g2χ(s)∗

1+ |g|2 + 2Re
(

gχ(s)∗) . (5.1)

Here, the measured complex ellipticities can be expressed as

χ1 = Re(χ) =
χ(s)

1
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The components of the reduced tangential shear were calculated with Eq. (2.11). The reduced
tangential shearχt and its cross componentχ× were calculated viaχ1 andχ2 by decomposing
Eq. (2.22) into its components.

We created three catalogues: Cat1 hasn = 82 galaxies/arcmin2 and all galaxies at〈zs〉 =
1.645 (Table 4.1) similar to MS0451ACS. Cat2 hasn = 77 galaxies/arcmin2, 5% individual source
redshifts drawn from the redshift distribution of MS0451.6−0305 and 95% of galaxies at〈zs〉 =
1.647 similar to MS0451zphoto (Table 4.1). Cat3 hasn = 77 galaxies/arcmin2 and〈zs〉 = 1.645 to
investigate the effect of a smaller number density on the errors.

The analysis of the three catalogues was carried out as for MS0451ACS and MS0451.6zphoto

in Sect. 6.2. For Cat2, we scaled all redshifts tozr = 1.647 with Eq. (2.31) and calibrated the
sources with an effective mean source redshift on the sources with individual redshifts according.
This process will be described in Sect. 6.2.3. As for the realdata, we fitted NFW- and SIS-models
to the catalogues and studied how the errors on the free parametersr200, c200 andσv change
with respect to number density, photometric redshifts and different numbers of fit parameters. We
expected the largest errors for Cat3 because it has no photometric redshifts and a smallern than
Cat1 and Cat2.

5.2.2 Results

The tangential shear profiles of the three simulated catalogues are plotted in Fig. 5.5 and the fit
parameters are listed in Table 5.2, wherebyMSIS is truncated atr200 from the NFW-model. We
plot the likelihood contours of the fit-parameters and the tangential shear profiles for the three
catalogues in the upper and lower panel of Fig. 5.5, respectively.

Cat1 predicts∆r200/r200 ≈ 5%, ∆c200/c200 ≈ 12% and∆σv/σv ≈ 3% for MS0451ACS.
This is consistent with our weak lensing analysis although the errors onc200 are≈ 15% for the
NFW-profile (Table A.3). For MS0451zphoto the predictions from Cat2 are∆r200/r200 ≈ 8%,
∆c200/c200 ≈ 20% and∆σv/σv ≈ 5% which is consistent with Table A.3. The errors onσv are
∼ 4 times larger for Cat2 than for MS0451zphoto because we did not simulate an SIS-lens. Cat3
predicts∆r200/r200 ≈ 5%,∆c200/c200 ≈ 13% and∆σv/σv ≈ 3% if only the number density would
drop.

The model parameters and their errors are consistent with the results for MS0451ACS and
MS0451zphoto(Sect. 4.1.3 and Table A.3). Thus, the simulation confirms our results for MS0451ACS
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Table 5.2: Results of the weak lensing simulation.

Cat1 Cat2 Cat3
NFW:
r200 [kpc] 2206+100

−101 2216+174
−170 2195+106

−103
c200 4.6+0.6

−0.5 3.2+0.7
−0.6 4.6+0.6

−0.6
M200 [1014M⊙] 22.45+3.05

−3.08 22.76+5.36
−5.24 22.12+3.20

−3.11
SIS:
σv [km/s] 1295+38

−40 1182+49
−58 1287+39

−42
MSIS [1014M⊙] 17.20+1.01

−1.06 14.39+1.19
−1.41 16.90+1.02

−1.10

and MS0451zphoto. The errors on the fit parameter of Cat3 and Cat1 are consistent. We find only
marginal difference in the expected errors if photometric redshifts are included because the smaller
number density compensates the effect of the 5% of photometric redshifts. To make a meaningful
statement about the effect of photometric redshifts on mass uncertainty in a weak lensing analysis,
photometric redshifts for a larger fraction of sources would be required.
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Figure 5.5:Upper panel:Likelihood contours for the NFW-models of cat1, cat2 and cat3 for the best-fit parameters
r200 andc200. We show the 1-,2-,3- and 4σ confidence regions.Lower panel:Tangential shear profiles of cat1, cat2
and cat3 for the NFW- and the SIS-model assuming an NFW-lens.For reasons of visualisation the tangential shear was
binned which is shown as the black data points with the errorsbars which are the standard deviation ofgt in each bin.
The crosses with the thin, dotted error bars display the cross componentg×. Due to the high number density of sources,
the error bars are small. As for MS0451.6−0305, we cut out the innermost 17′′.
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Chapter 6

Weak lensing analysis

In this chapter, I will present the weak lensing analysis forthe cluster sample studied in this work
and discuss the results with respect to the cluster properties such as dynamical state, morphology,
projected 2d-morphology and merger processes as well as to results from previous studies. Sec-
tion 6.1 describes how the aperture mass statistics (Sect. 2.3.1) are applied to the cluster centre. I
will define the cluster centre as the position at which the weak lensing signal-to-noise ratio reaches
a maximum, (S/N)max, and confirm its position and amplitude with simulations. I will also show
that this centre is consistent with the BCG position and optical and X-ray centres from previous
studies. In Sect. 6.2, the mass models used in this study and their error analysis will be introduced
(Sects. 6.2.1 and 6.2.2, respectively) and I will discuss possible issues such as the contamination of
cluster galaxies and the influence of large-scale-structure (Sect. 6.2.3). In Sect. 6.3, I will present
and discuss the results.

6.1 Signal-to-Noise and surface mass density

6.1.1 Detection significance

The aperture mass signal-to-noise ratio S/N (Eq. 2.30) depends on the position of the apertureθ0
and the number of objects inside the aperture radiusθap. Its amplitude depends also on the cluster
redshiftzd and mass as we will see in the following. For a cluster with given mass, redshift and
number density of lensed sources, however, S/N varies only with respect to the grid position and
θap. At the position of the cluster centre, it reaches a maximum,(S/N)max, because ideally the
shapes of the source galaxies are tangentially aligned around a mass concentration.

To determine the significance of a mass concentration, the aperture must be optimised. We
calculated S/N on a finite grid as a function ofθap. For the grid constant we chose∆ = 18′′ which
is a good compromise between coarse grids and long computation times. The aperture radius
has to be chosen carefully: Smallθap reduce the measured S/N due to ignoring galaxies at larger
projected distances from the centre of the aperture which still carry a significant lensing signal. On
the other hand, largeθap may include regions where the lensing signal is depleted by noise or even
influenced by cosmic shear from the LSS. Thus, S/N as a function ofθap increases with aperture
radius and drops after attaining its maximum value (S/N)max. To find (S/N)max, we increasedθap

by 30′′ and around a maximum by 3′′ to determine (S/N)max more precisely. We refer to the grid
position of (S/N)max as the S/N-peak or the weak lensing cluster centre.

Significances, aperture radii and coordinates of the peaks are listed in Table 6.1. Figure 6.1
shows S/N as a function ofθap for the cluster sample. We determined (S/N)max for both MS0451ACS

and MS0451zphoto (Sect. 4.2.3) to investigate how the inclusion of photometric redshifts affects
the signal-to-noise ratio. For MS0451zphoto, (S/N)max is 4% higher than for MS0451ACS which



82 Chapter 6. Weak lensing analysis

 2

 4

 6

 8

 10

 12

 14

 16

 0  1  2  3  4  5  6

S
/N

aperture radius [Mpc]

CL0015.9+1609
CL0413-6559

MS0451ACS
MS0451zphoto

MS1008.1-1224
MS2137.3-2353

Figure 6.1: Weak lensing signal-to-noise ratio as a function of aperture radiusθap.

is much smaller than predicted by Bartelmann & Schneider (2001) due to the small fraction of
sources with photometric redshifts. (S/N)max is correlated with cluster mass and redshift as well
as with the number densityn of the background galaxy population. Thus, (S/N)max decreases
towards higher redshifts and increases with mass.

A more detailed discussion will follow for each of the clusters.

6.1.2 S/N- and Surface Mass Maps

Having S/N calculated for each grid position, S/N-contour maps can be constructed. With weak
lensing mass reconstructions the projected mass distribution κ could be constructed (Sect. 2.3.3).
The morphology of the surface mass distribution can distinguish relaxed clusters from merging
systems. The mass reconstruction was provided by Holger Israel, who applied a freely available
code1 based on the Seitz & Schneider (2001) finite-field method for the HST-data. The dimension-
less surface massκ = Σ/Σcrit was calculated on a regular grid with∼ 15′′ mesh size2. A Gaussian
smoothing filter with a full-width at half-maximum of 0.555Rs accounting for all sources within
the scale radiusRs= 1′ was used for the shear field. We leftκ unnormalised because we are only
interested in the comparison with the S/N-contours.

The resultingκ-contours and the S/N-contours are plotted for each cluster in Figs. 6.2– 6.6.
Both S/N andκ agree for each cluster. Starting at S/N= 1, we plot the S/N-contours in steps of
∆(S/N) = 2 for MS0451.6−0305 and∆(S/N) = 1 for the other clusters as the thin, orange curves.
The S/N-peak is denoted as the orange cross. Starting atκ = 0.02, we plot surface mass contours
in steps of∆κ = 0.02 as the thick, green curves. We show the contours for both MS0451ACS

and MS0451zphoto to investigate whether the mass distribution and the signal-to-noise ratio are
sensitive to the inclusion of individual source redshifts.The morphology in theκ-maps agrees
with the S/N-contours with respect to the peak positions.

The S/N- and κ-contours will be interpreted using former studies of theseclusters in the
following.

1www.astro.uni-bonn.de/∼mischa/download/massrec.tar
2The actual mesh constants vary between 14.′′73 and 14.′′95, because the code demands an integer number of grid

cells.
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Figure 6.2: Weak lensing Signal-to-Noise andκ-contours of CL0015.9+1609. We plot the S/N-contours from S/N= 1
in steps of∆(S/N) = 1 as the thin, orange curves and surface mass contours fromκ = 0.02 in steps of∆κ = 0.02 as the
thick, green curves. The S/N-peak (orange cross) has a significance of 7.59σ (Table 6.1).

CL0015.9+1609

The S/N andκ-contours are plotted in Fig. 6.2. The orange cross which denotes the S/N-peak is
close to the diagonal bar of galaxies which defines the optical cluster centre (Sect. 4.1.1).

The radio study by Giovannini & Feretti (2000) and the X-ray analysis by Solovyeva et al.
(2007) indicate that CL0015.9+1609 is a merger. The double-peak structure in theκ-map in the
North-East may thus be interpreted as infalling galaxies from a filament. This structure is also
close to the edge of the field-of-view where the S/N is affected by noise. To find out whether
this structure, shown in the S/N-map as elongated contours, belongs to a true mass concentration,
one requires data that cover a larger field-of-view than the existing data. In the Northwest, theκ-
contours indicate another filament which is not visible in the S/N-contours. According to Tanaka
et al. (2005), the cluster is embedded in a filament extendingfrom East to West and in another
extending from North to South. Our observation gives evidence for the filament in East-West
direction.

CL0413−6559

CL0413−0305 is a low-mass cluster (Girardi & Mezzetti 2001; Smail etal. 1997), wherefore the
S/N- andκ- peaks are less distinct than for the other clusters. For thesame reason, our detection
significance 4.34σ is low for space-data which would be typical for ground-based data.

In the Southeast and Southwest of the CL0413−6559, we detected two 2σ-peaks, which can
be associated to the cluster according to theκ-map (Fig. 6.3). Since the high fraction of spiral
galaxies indicates that the cluster is still in the process of forming (Sect. 4.1.2), theκ- and S/N-
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Figure 6.3: Weak lensing Signal-to-Noise andκ-contours of CL0413−6559. We plot the S/N-contours from S/N= 1 in
steps of∆(S/N) = 1 as the thin, orange curves and surface mass contours fromκ = 0.02 in steps of∆κ = 0.02 as the
thick, green curves. The S/N-peak (orange cross) has a significance of 4.34σ (Table 6.1).

contours may give evidence that these peaks are low-mass systems which are merging with the
cluster.

MS0451.6−0305

The contours of MS0451.6−0305 are nearly circular around the S/N-peak but are elongated in the
Southeast towards larger projected distances to the cluster centre. Since this cluster is supposed
to be massive (Sect. 4.1.3) and due to its high number density(Table 6.1) we measure a high
detection significance of 14.60σ and 15.24σ for MS0451ACS and MS0451zphoto, respectively. In
the central region, theκ-contours are approximately circular as well.

Since only 5% of the background sources have photometric redshifts, the S/N-peak (S/N)max

of MS0451zphoto is only 4% higher than the one of MS0451ACS. Furthermore, the inclusion of
photometric redshifts does not affect much the S/N- andκ-contours (Fig. 6.4).

Apart from that, the S/N- andκ-contours do not indicate that this cluster is associated toother
structures such as filaments or small groups of galaxies. A higher fraction of photometric redshifts
would reveal if and how strongly the contours are affected by individual source redshifts.

MS1008.1−1224

The galaxy distribution of MS1008.1−1224 is elongated from North to South (Mayen & Soucail
2000) which is also reflected in the S/N- and κ-contours, because the cluster galaxies trace the
dark matter distribution and thus they roughly reflect the total mass distribution. The significance
of 12.00σ is high because the cluster is massive and at an intermediateredshift (zd = 0.301).
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Figure 6.4: Weak lensing Signal-to-Noise andκ-contours of MS0451ACS (upper panel) and MS0451zphoto(lower panel).
We plot the S/N-contours from S/N= 1 in steps of∆(S/N) = 2 as the thin, orange curves and surface mass contours
from κ = 0.02 in steps of∆κ = 0.02 as the thick, green curves. The S/N-peak (orange cross) has a significance of
14.60σ for MS0451ACS and 15.24σ for MS0451zphoto (Table 6.1).
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Figure 6.5: Weak lensing Signal-to-Noise andκ-contours of MS1008.1−1224. We plot the S/N-contours from S/N= 1
in steps of∆(S/N) = 1 as the thin, orange curves and surface mass contours fromκ = 0.02 in steps of∆κ = 0.02 as the
thick, green curves. The S/N-peak (orange cross) has a significance of 12.00σ (Table 6.1).

Theκ-contours indicate an associated filament in the East which does not appear in the S/N-
contours. Since this structure is extended over a large areait is likely not caused by noise.

MS2137.3−2353

Previous observations (e.g. Hammer et al. 1997) indicate that MS2137.3−2353 has spherical sym-
metry and is relaxed. This agrees with the nearly circularκ- and S/N-contours (Fig. 6.6). Only
in the outskirts, the S/N- andκ-contours deviate from circularity. Theκ-map indicate filamentary
structures in the North and in the Southeast which would explain why both the S/N- andκ-contours
show distortions in the cluster outskirts.

Although this cluster is less massive than MS0451.6−0305 and the mergers, (S/N)max is high
because of the geometry and the dynamical state of the cluster as well as because of the cluster
redshiftzd = 0.313.

6.1.3 Monte-Carlo simulation of the amplitude of the S/N-peak

In lensing, the image shapes of background galaxies are tangentially aligned, but they attain a
random orientation if they are not distorted by a mass concentration and thus the estimator of the
aperture mass vanishes,〈M̂ap〉 = 0.
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Figure 6.6: Weak lensing Signal-to-Noise andκ-contours of MS2137.3−2353. We plot the S/N-contours from S/N= 1
in steps of∆(S/N) = 1 as the thin, orange curves and surface mass contours fromκ = 0.02 in steps of∆κ = 0.02 as the
thick, green curves. The S/N-peak (orange cross) has a significance of 9.22σ (Table 6.1).

The amplitudes of our (S/N)max were cross-checked using a Monte-Carlo simulation. The
absence of lensing was modelled by assigning random anglesϕrand to the ellipticity components
ǫ1,2

ǫ1 → ǫ1,rand =

√

ǫ21 + ǫ
2
2 cos(2ϕrand)

ǫ2 → ǫ2,rand =

√

ǫ21 + ǫ
2
2 sin(2ϕrand) , (6.1)

of each source.
We calculated the aperture mass at the grid positions of (S/N)max for n = 106 randomisations.

The randomised ellipticities provide a Gaussian distribution of the aperture masŝMap,rand around
zero, with a standard deviationσMap,rand. This yields an independent estimate for the signal-to-noise
ratio

(S/N)MC =
Map(S/Nmax)

σMap,rand

. (6.2)

Here,Map(S/Nmax) is the aperture mass calculated on the grid coordinates of (S/N)max (Sect. 6.1.1).
The deviation|∆S/N| between (S/N)MC and (S/N)max is given in Table 6.1. Ideally,|∆S/N| = 0, in
practice|∆S/N| ≈ 1% because our measurements of (S/N)max included theQ-filter which weights
the galaxies depending on their projected distance from thecluster centre (Sect. 2.3.1). The ori-
entation of those galaxies is randomised which, however, affects the S/N. The results from the
Monte-Carlo simulation agree with our measurements from Sect. 6.1.1.

|∆S/N| is 0.3% smaller for MS0451zphoto than for MS0451ACS, because the shear estimates of
the galaxies with photometric redshifts were weighted according to the geometric lensing efficien-
cies. Except for MS2137.3−2353, we obtained the smallest|∆S/N| for MS0451.6−0305 because
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Table 6.1: Results from the weak lensing analysis. The coordinatesαJ2000andδJ2000are given in world coordinates.θap

is the aperture for which we measure the S/N-peak (S/N)max in kpc. The number densityn is given in sources/arcmin2.
For MS0451zphoto, n is smaller than for MS0451ACS because we removed faint and small foreground galaxies using
photometric redshifts.|∆S/N| is difference between (S/N)max and (S/N)MC from the Monte-Carlo simulation in [%].σpos

is the radial uncertainty of the S/N-peak from bootstrapping. We also list the projected distances to the BCG,∆BCG, and
to the optical and X-ray centres from previous analyses,∆opt and∆X−ray, respectively. The small numbers in brackets
refer to the following references: Gioia & Luppino (1994) (1), Lewis et al. (1999) (2), Smail et al. (1997) (3), Allen
et al. (2008) (4).

Cluster θap [kpc] n (S/N)max |∆S/N| αJ2000 δJ2000 σpos ∆BCG ∆opt, ∆X−ray

Cl0015.9+1609 1708 43 7.59 1.45 00:18:32.9 16:26:11 10.′′5 9.′′4 5.′′4(1), 7.′′9(2)

Cl0413−6559 855 73 4.34 0.70 04:12:49.9−65:50:25 21.′′3 20.′′6 12.′′7(3)

MS0451ACS 2347 82 14.60 0.81 04:54:11.2−03:00:55 8.′′3 8.′′6 5.′′4(1), 12.′′2(2)

MS0451zphoto 223 77 15.24 0.50 04:54:11.2 −03:00:55 8.′′9 8.′′6 5.′′4(1), 12.′′2(2)

MS1008.1−1224 1049 55 12.00 1.03 10:10:32.5−12:39:36 9.′′2 17.′′5 19.′′9(1), 5.′′3(2)

MS2137.3−2353 1011 59 9.22 0.40 21:40:15.2−23:39:35 9.′′2 5.′′0 4.′′4(1), 5.′′0(4)

this cluster has the highest number density of background sources3. |∆S/N| of MS2137.3−2353 is
only the lowest because this cluster is spherically and relaxed which is in contrast with the highest
uncertainties for the merging clusters CL0015.9+1609 and MS1008.1−1224.

6.1.4 Bootstrapping to confirm the cluster centre

Since S/N (Eq. 2.30) is also a function of position and number density, the cluster centre varies
between neighbouring grid positions for differentθap. Though this effect is small using large aper-
tures, the position of (S/N)max can only be located up to an uncertainty which is of the order of the
grid constant, i.e. a few arcseconds.

This uncertainty was estimated with a bootstrap-simulation in which the source catalogues
with a total number ofN galaxies were randomised by choosingN galaxies with replacement.
We simulated 106 mock catalogues and we determined the position of (S/N)max, which varies due
to the different constellation of galaxies for each. The significancesof the simulated S/N-peaks
have mean values that deviate∼ 0.5σ from our measured (S/N)max with a standard deviation of
∼ 1σ. For each simulated S/N-peak we calculated the distance to the “true” peak position at which
(S/N)max was measured. The discrete distribution of all simulated peaks around the “true” peak
has a standard deviationσpos which we interpreted as the uncertainty with which the position of
(S/N)max can be located.

In the last two columns of Table 6.1, we compare the position of (S/N)max with the BCG
position, optical centres (Gioia & Luppino 1994; Smail et al. 1997) and X-ray centres (Lewis
et al. 1999; Allen et al. 2008). Except for MS1008.1−1224, which is a merger, the projected
distance between BCG and S/N-peak is equal or smaller thanσpos. The same holds for at least
one published X-ray or opitcal centre for each cluster. Those with deviations of more thanσpos

can be explained as follows: The X-ray centre of MS1008.1−1224 (Lewis et al. 1999) is∼ 15′′

from the optical centre (Gioia & Luppino 1994) because of a clump of galaxies north to the centre.
Our centre is closer to the X-ray centre than to optical centre. For MS0451.6−0305, the X-ray
centre (Lewis et al. 1999) differs from the optical centre (Gioia & Luppino 1994). This is due
to multiple peaks and elongations in NS- and EW-directions of the X-ray emission (Lewis et al.
1999). For this cluster, our centre agrees better with the optical one than with the X-ray centre. For
MS2137.3−2353, the offset to the centres from Gioia & Luppino (1994) and Allen et al.(2008) is
smallest because the cluster is relaxed.

3The number density of MS0451.6−0305 is larger because of different selection criteria for F814W and F606W and
the different sky background (Sect. 4.2.2).
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From the above, we concluded that the S/N-peak can define the cluster centre well. This is
also expected since the tangential alignment is maximised around the centre of a mass concen-
tration. We found that large (S/N)max values have smallσpos values and thatσpos increases with
cluster redshift.

The systematic uncertainty in the cluster centre will be included in the mass error by centering
our tangential shear profiles at the X-ray and optical centres as well as the BCG positions. We will
show later that all those mass estimates at different centres are consistent.

6.2 Mass modelling

6.2.1 Models for gravitational lenses

By assuming a spherically-symmetric mass distribution, simple models for describing the lens-
ing properties of a galaxy cluster can be considered. In the case of spherical symmetry, the lens
equation reduces to one dimension, because the projected mass distribution is axially symmet-
ric. Therefore, the following mass models provide immediately the tangential component of the
reduced sheargt, while its cross component vanishes (g× = 0).

The Singular Isothermal Sphere (SIS)

The Singular Isothermal Sphere (SIS) is a zero-order model for describing the lensing properties
of galaxy clusters. It is motivated by the flat rotation curves of spiral galaxies, which are embedded
in a dark matter halo with a density profile of

ρ (r) =
σ2

v

2πGr2
. (6.3)

For an SIS-lens, the only free parameter is the velocity dispersionσv of the cluster galaxies.
Equation (6.3) is a special solution of the equation-of-state P = ρkBT/m for a set of self-gravitating
particles of massmthat behave like an ideal gas with temperatureT. To solve the equation-of-state,
the equation of hydrostatic equilibrium and the mass continuity equation have to be employed.

With the Einstein angleθE = 4π
(

σ2
v/c

2
)

Dds/Ds, the reduced tangential sheargt for a galaxy
at radial distanceθ can be expressed in terms ofσv,

gSIS(θ) =
γ (θ)

1− κ (θ)
=

(

2|θ|
θE
− 1

)−1

=

(

θc2

2πσ2
vDds/Ds

− 1

)−1

. (6.4)

We calculated the cluster mass by integrating Eq. (6.3) in spherical polar coordinates

MSIS(r) =
2σ2

v

G
r . (6.5)

The Navarro-Frenk-White profile (NFW)

Since dark matter halos are the result of a generic dissipationless collapse of spherical overden-
sities, they are assumed to be virialised with an overdensity which is 200 times above the critical
density (Sect. 1.3.2). In N-body simulations, Navarro et al. (1996) found that the density profile
of such halos has a universal shape, given as theNFW-density profile

ρ (r) =
δcfρcr (zd)

(r/rs) (1+ r/rs)2
. (6.6)
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Here,ρcr (zd) = 3H2(zd)/8πG is the critical overdensity at the halo redshiftzd (Sect. 1.2.2) andδcr

is thecharacteristic overdensityof the halo defined. It is related to theconcentration parameter
c200 = r200/rs by

δcr =
200
3

c3
200

ln (1+ c200) − c200/ (1+ c200)
. (6.7)

The concentration parameter is a dimensionless measure forthe amount of mass concentrated
towards the centre andr200 is the radius inside which the mean density of the halo is about 200ρcr.
Both r200 andc200 can be treated as free parameters or an externally calibrated relation can be used
to reduce the NFW model to an effective one-parameter model (Sect. 6.2.1). At the scale radiusrs

the NFW-profile changes its slope according to

ρ (r) ∝














r−1 r ≪ rs

r−3 r ≫ rs .
(6.8)

Thus, the NFW-profile is on large scales steeper than the SIS and shallower on small scales.
Assuming an NFW-model, the total cluster mass is defined as

M200 =
4π
3

r3
200200ρcr (zd) . (6.9)

The lensing properties of NFW-mass distributions are described by Wright & Brainerd (2000)
in the thin lens approximation via convergenceκ and tangential shearγ. By integrating Eq. (6.6)
along the line-of-sight, the surface mass densityΣNFW can be inferred. DividingΣNFW by the
critical surface mass densityΣcr provides the convergence for an NFW-lens

κNFW (x) = A


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




















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

2
x2−1
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1− 2√
1−x2

arctanh
√
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1+x

]

x < 1
2
3 x = 1

2
x2−1

[

1− 2√
x2−1

arctan
√

x−1
1+x

]

x > 1 .

(6.10)

Here, we definedA = rsδcrρcr/Σcr andx is the projected distance to the cluster centre in units of
the scale radius,x = R/rs. Due to spherical symmetry, the tangential shear is

γNFW (x) = A
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(6.11)

and thusgNFW = γNFW/(1− κNFW) can be calculated.

Truncated NFW

The NFW-profile well describes the mass distribution of galaxy clusters withinr200 while its use-
fulness beyond that scale is debated (Takada & Jain 2003a,b;Binney & Tremaine 2008; Oguri &
Hamana 2011). Sources with projected distances ofr > r200 from the cluster centre might distort
the result when they are fitted by an NFW-profile.

Since ther200 of CL0413−6559 and MS0451.6−0305 are inside the field-of-view, we tested
with both clusters how well the NFW-model can be applied beyond this radius by comparing the
results of the NFW-profile to a simplified truncated NFW-profile (NFW&PS, henceforth). The
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Figure 6.7: Observed cluster concentrations and virial
masses of the 62 galaxy clusters from Comerford & Natara-
jan (2007). The middle black solid line denotes the best-
fitting power law for which Eq. (6.13) was employed
and the outer two solid black lines denote the 1σ scatter
∆(logcvir) ∼ 0.15. Comerford & Natarajan (2007) com-
pare their results with the simulations from Bullock et al.
(2001) (dashed red line) and Hennawi et al. (2007) (dotted
blue line) but they point out that a direct comparison is not
possible because of differing systematics. From Comerford
& Natarajan (2007).

latter is defined such that forr < r200 the NFW-model applies and forr > r200 the reduced
tangential shear behaves as for a point mass lens,

gPS(θ) = gNFW (θ200)
( r200

r

)2
, (6.12)

with all mass insider200.
NFW&PS serves only as cross-check because it is not a physical model. Israel et al. (2010)

found only marginal difference between NFW and NFW&PS for the galaxy cluster CL0030+2618.
If there is a significant discrepancy between the two models,we expect to find it at least for
MS0451.6−0305 because this cluster has the largest field-of-view coverage.

Mass-concentration relation

The concentration parameterc200 is poorly constrained by the NFW-model for merging clusters.
For two such clusters, CL0015.9+1609 and MS1008.1−1224, we obtainedc200 = 1.2+1.0

−1.1 (Ta-
ble A.1) andc200 = 2.2+0.8

−0.7 (Table A.4), respectively. To check any systematic caused by poorly
determined concentrations, we also applied an NFW-profile with fixed concentrationcNFW (Mc-
model, henceforth) to the tangential shear profiles. In thismodel,r200 is the only free parameter.

The fixedcNFW were calculated according to Bullock et al. (2001) who foundan empirical
relation between mass and concentration using numerical simulations for dark matter halos,

cNFW =
cNFW,0

1+ zd

(

M200

M∗

)α

. (6.13)

with M∗ = 1.3× 1013h−1M⊙. Comerford & Natarajan (2007) fitted a sample of 62 galaxy clusters
with given masses and concentrations and obtainedcNFW,0 = 14.5 ± 6.4 andα = −0.15± 0.13
(Fig. 6.7). We calculatecNFW with Eq. (6.13) using Eq. (6.9).

Since this relation is based on the scenario of hierarchicalclustering, low-mass halos are
expected to be more compact than high-mass halos, because they have collapsed at earlier times
when the Universe was denser. Thus, the concentration depends on the assembly history of a
cluster as well as on the redshift and onρcrit (zd), wherefore it provides an important probe of the
mean density of the Universe at the time the cluster has formed.
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This relation is, of course, a mean relation for a large sample of galaxy clusters. Individual
clusters may deviate significantly from Eq. (6.13) due to effects of halo triaxiality, substructures
along the line-of-sight or merging. In Sect. 6.3, we will test this effect for our merging clusters, for
which Eq. (6.13) provides too high concentrations (cNFW ∼ 7) and consequently too low masses.
On the other hand, the mass-concentration relation provides us with reasonable concentrations for
relaxed clusters, e.g. MS2137.3−2353.

6.2.2 Likelihood parameter estimation

The free parametersr200, c200 andσv and their uncertainties were estimated by minimising the
merit function

χ2
model=

N
∑

i=1

[

gmodel(θ) − ǫt,i (θ)
]2

σ2
ǫ

(

1− |gmodel(θ) |2
)2
. (6.14)

Here,σǫ is the intrinsic ellipticity dispersion (Eq. 2.21) andgmodel is the assumed mass model
(Sect. 6.2.1). The second order term (1−|gmodel(θ) |2) takes into account how the noise depends on
the shear itself and it thus improves the estimate of the error in individual shear estimates (Schnei-
der et al. 2000).

We used Eq. (6.14) to fitr200andc200 for NFW and NFW&PS (Fig. 6.8). For CL0015.9+1609
and MS1008.1−1224, the best fit values for NFW and NFW&PS are the same because r200 is fitted
outside the field-of-view. For MS1008.1−1224, also the likelihood contours of both models agree
with each other which may be due to thatr200 exceeds the field-of-view by almost 1 Mpc, while it
is only 200 kpc for CL0015.9+1609. The contours of MS2137.3−2353 are likely the same for both
models because this cluster is spherical and relaxed. The differences between both NFW-models
show the strongest deviation for MS0451ACS and MS0451zphoto, respectively, but only with respect
to the position and not to the shape of the contours.

For the case of using the SIS-model or theMc-model, we only fittedσv or r200. The best
fit parameters are the maximum likelihood values for which Eq. (6.14) reaches a minimum. The
reducedχ2

model, χ
2
dof, for the best fit parameters, will beχ2

dof . 1, because in the mass-less case
(gmodel= 0) we have

χ2
dof =

1
N

N
∑

i=1

[

ǫt,i (θ)
]2

σ2
ǫ

= 1 (6.15)

due toσ2
ǫt
= (σ2

ǫ1
+ σ2

ǫ2
)/2. Any model that minimises Eq. (6.15) will provide a better fit to the

data withχ2
dof < 1.

The errors on the model parameters were estimated at the 1σ-level which is∆χ2 = 1.0 for
the one-parameter models SIS andMc, and at∆χ2 = 2.3 for the two-parameter models NFW and
NFW&PS. Sincer200 andc200 are correlated with each other, we had to determine the errors of
each parameter with respect to the other. Thus, we calculated the upper and lower errors onr200

(c200) by fixing c200 (r200) and integrated over the corresponding area for which∆χ2 = 2.3.
This method allows us to estimate the errors of our fit parameters and their interdependence

in arbitraryσ-intervals simultaneously. This has the advantage over fitting tools which require
start values and approach the minimum iteratively, like e.g. the Levenberg-Marquardt method.
Especially for the NFW-model this is important because the interdependence betweenr200 and
c200 provides poor constraints onc200 if estimated with the iterative approach of conventional
fitting tools.
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Figure 6.8: Likelihood contours for the NFW-model and the truncated NFW (NFW&PS) for the best-fit parametersr200

andc200. We show the 1-,2-,3- and 4σ confidence regions. For MS1008.1−1224 and MS2137.3−2353, the contours of
both models are the same.
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Figure 6.9: Radial profiles of the number density of galaxies. The dashed horizontal line denotes the mean number
densityn (Table 6.1). For CL0413−6559 and MS2137.3−2353,n is constant within the statistical errors, except the
inner bin and in the case of CL0413−6559 also the outmost bin. The drop ofn in the inner two bins of both is caused by
bright objects in their central regions and the drop ofn in the outer bin of CL0413-6559 results from few objects in that
area. The excess inn caused by cluster galaxies is modelled with a linear relation for CL0015.9+1609, MS0451.6−0305
and MS1008.1−1224.

6.2.3 Issues for mass modelling

Contamination by cluster galaxies

Due to lack of redshift information, we cannot reliably distinguish lensed sources from cluster
galaxies for distant clusters. Our weak lensing pipeline isdesigned for small and faint galaxy
images, while it excludes bright and very extended ones. Forthis reason, the low-mass and low-
luminosity end of cluster members may contaminate the background galaxy catalogue and dilute
the lensing signal.

To account for this, we used a statistical approach, which boosts the observed tangential
shear by a factor of 1+ fcg(θ). Here, fcg is the estimated fraction of cluster galaxies at projected
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angular distanceθ from the cluster centre (boost-correction, Hoekstra 2007). We calculated the
radial profile of the source number densityn in 10 radial bins for the clusters with 4-pointing
mosaics and in 30 bins for the 41-pointing mosaic of MS0451.6−0305. Here, we accounted for
both the masked areas and border effects. If the lensing catalogue is not contaminated by cluster
galaxies, the number density in each radial bin is consistent with n from Table 6.1. If the catalogue
is contaminated by cluster galaxies,n increases towards the cluster centre. The radial profilesn(r)
are plotted in Fig. 6.9 with their statistical errors. We only corrected for cluster galaxies ifn(r)
shows an excess towards the centre.

We fit fcg(θ) = a + bθ to CL0015.9+1609, MS0451.6−0305 and MS1008.1−1224 because
the excess is approximately linear. For MS0451zphoto the excess is significantly smaller compared
to that for MS0451ACS, because we excluded cluster galaxies using the photometric redshifts.
Since for MS0451.6−0305 we are already in the cluster outskirts atr = 6′ (∼ r200), we apply the
boost-correction only up to that scale which leaves us 11 of the 30 bins from the full field-of-view.

We did not apply a boost-correction to CL0413−6559 and MS2137.3−2353, because at
small radiin is significantly affected by two bright stars and a luminous foreground galaxy for
CL0413−6559 and by the bright cD-galaxy of MS2137.3−2353. For both clusters there are only
a few background sources in the central regions. The drop ofn in the outer bin of CL0413−6559
is also due to too few objects in that area.

Modified mass models for MS0451zphoto

Only 5% of the source galaxies from the HST-data of MS0451.6−0305 have photometric red-
shifts (Sect. 4.3.3). We took those 5% of galaxies with photometric redshifts as the sub-sample
henceforth and the other galaxies as the main-sample and calibrate the main-sample on the pho-
tometric redshifts of the sub-sample. Thereby, we rescaledthe ellipticities of the sub-sample with
Eq. (2.32). For the main-sample we introduced an additionalparameterα which substitutesZ(zs,i)
in theχ2-minimisation for MS0451zphoto

χ2 =

Nzphoto
∑

i=1

[

Z(zs,i)gmodel(θ) − ǫt,i (θ)
]2

σ2
ǫ

(

1− Z(zs,i)2|gmodel(θ)|2
)2

(6.16)

+

Nzmean
∑

j=1

[

αgmodel(θ) − ǫt,j (θ)
]2

σ2
ǫ

(

1− α2|gmodel(θ)|2
)2
.

Here, Nzphoto refers to the number of galaxies in the sub-sample andNzmean to the number of
galaxies in the main-sample.

This approach was applied because the sub-sample consists of bright source galaxies. Thus,
we could not extrapolate their magnitude distribution to those of the main-sample. Instead we
used an approach which is motivated as follows: The mean distance ratio of the main-sample
〈Dds/Ds〉 = 0.3844 provides us with a mass profileκ(r) that is defined except for its amplitude.
Since the amplitude depends onDds/Ds, we can better determine the surface mass densityΣ(r) =
κ(r)Σcr using photo-zs than an effective mean source redshift.

Since the main-sample consists of 95% of all sources we expect α close toZ(〈zs〉) = 0.658
with 〈zs〉 = 1.647 which is the effective mean source redshift of the main-sample. This value is
slightly higher than〈zs〉 = 1.645 for MS0451ACS because we removed foreground galaxies from
the data.

4〈Dds/Ds〉 for the main-sample of MS0451zphoto is slightly higher than that of MS0451ACS (〈Dds/Ds〉 = 0.383)
because it does not include the bright galaxies to which photometric redshifts could be assigned.
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Table 6.2: Large-scale-structure error for MS0451.6−0305. The first column gives the error onM for an NFW-profile
with fixed concentration and second and third column give theerrors onM andc200 for a two-parameter NFW-model.
The errors onM are given in units of 1014M⊙.

σM (c200 fixed) σM σc200

LSS only 0.20 0.27 0.70
total 0.34 0.43 1.59

We foundα = 0.698± 0.054 which is consistent withZ(〈zs〉) = 0.658. Thus, we can also
directly useZ(〈zs〉) for the main-sample.

Large-scale structure influence

At r > 10′ from the cluster centre, the large-scale structure (LSS) starts to dominate over the
lensing signal and reduces the accuracy of weak lensing masses by inducing noise (e.g. Hoekstra
2003). Furthermore, the weak lensing signal is sensitive toany matter along the line-of-sight.
Hoekstra (2003) showed that uncertainties inM200 andc200 are∼ 2 times larger, depending on
cluster mass, when distant large-scale structure is not taken into account in the error budget of
weak lensing masses. MS0451.6−0305 is the only cluster for which we can measure the tangential
shear profile out to∼ 16′. We thus consider LSS-errors for this cluster. We did not account for
LSS-influence for the other clusters because with our data their shear signal is only measurable
out to∼ 5′.

We estimated the error from large-scale-structureσLSS for MS0451.6−0305 from Hoekstra
et al. (2011) who determined the LSS-error on mass and concentration for a simulated cluster with
virial massMvir = 1015M⊙ at 0.05 < z < 0.6 inside annuli of 10′ and 25′. Hoekstra et al. (2011)
assumed a two-parameter NFW-model and an NFW-model with a fixed concentration. Because
our field-of-view is∼ 16′ we used the mean of the errors for 10′ and 25′ as crude approximation.

Since Hoekstra et al. (2011) used a default mass, we adapted these errors for a cluster as
massive as MS0451.6−0305. In our analysis, MS0451.6−0305 has 15× 1014M⊙ . M . 35×
1014M⊙ (Table A.3) depending on the mass model and whether we included photometric redshifts.
For an optimistic estimate for MS0451.6−0305 we assumed that the error only depends on LSS,
while for a conservative estimate the total error limits theLSS-errors reasonably. Thus, we use the
total errors in Table 6.2 as second upper and lower errors forM200 andc200 in Table A.3. We used
σM from the one-parameter NFW-model also for the cases using the SIS-model andMc.

6.3 Results

The weak lensing cluster masses centred on the S/N-peak are consistent with those for the optical
centres (Gioia & Luppino 1994; Smail et al. 1997), X-ray centres (Stocke et al. 1991; Lewis et al.
1999) and the BCG position which is shown in Fig. 6.10 (lower left). We show the tangential shear
profiles centred on the S/N-peak in Figs. 6.11–6.15, where we also plot the cross-componentg×.
We fitted the mass models to all sources and calculated the mean tangential shear with the same
binning as in Sect. 6.2.3. For each cluster we excluded the innermost arcseconds individually. In
the following, we only focus on our results centred on the S/N-peak, but we summarise all results
in Tables A.1-A.5 in the appendix. We refer to the best fit model as the mass model centred on the
S/N-peak which gives the smallerχ2

dof compared to the other mass models.
We compared our mass estimates with those from previous studies which have a large overlap

with our sample and are most recent (Fig. 6.10,lower right) to check for possible systematics in
our method because our mass estimates centred on different cluster centres are obtained with the
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same method. The consistency between the mass estimates fordifferent cluster centres confirms
that the S/N-peak can be used as an alternative definition of the clustercentre. Yet, this does not
give rise to systematics. Our cluster masses are also consistent for different mass models except
the SIS-model for MS0451.6−0305 (Fig. 6.10,upper panels).

Most clusters have already been analysed with several methods, e.g. X-ray observations
(XRAY), dynamical estimates (DYN), where the line-of-sight velocity dispersion of the cluster
galaxies is measured, or Sunyaev-Zeldovich effect (SZE) observations, which consider the energy
gain of CMB-photons due to scattering with the ICM. Some clusters were already studied with
weak (WL) or strong (SL) lensing approaches. If the cosmologies used in previous analyses differ
from ourΛCDM (Ωm = 0.27, ΩΛ = 0.73 andh = 0.72), we transformed their results to our
cosmology and listed them in Table 6.4. We compared the results from other studies at our best fit
r200, except for XRAY and SZE where we compared the masses atr500 andr2500 instead because it
is too unreliable to extrapolate them tor200 (Table 6.3). Compared to these previous studies done
with different methods, our results using the same method are more suitable for mass calibration
studies. For a detailed comparison with hydrostatic mass estimates, X-ray masses obtained with
the same method for all clusters would also be more suitable for the same reason.

Figure 6.10: Mass ratios for CL0015.9+1609 (1), CL0413−6559 (2), MS0451ACS (3), MS0451zphoto (4),
MS1008.1−1224 (5) and MS2137.3−2353 (6).Upper left: Cluster masses for different mass models versus the best fit
model centred on the S/N-peak.Upper right: The same as in the upper left panel but the masses are normalised to the
cluster radius of the best fit model.Lower left: Best fit cluster mass centred on the S/N-peak versus cluster masses of
the same mass model at other cluster centres.Lower right: Best fit cluster masses centred on the SN-peak versus cluster
masses from the literature. Our mass is calculated atr500 andr2500 for those studies who give masses at those radii.

6.3.1 CL0015.9+1609

The tangential shear profile centred on the S/N-peak is plotted in Fig. 6.11 and the masses and pa-
rameters are summarised in Table A.1 in the appendix. The tangential shear profile is disturbed due
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Table 6.3: Masses for CL0015.9+1609, MS0451.6−0305 and MS2137.3−2353 compared at the radii of those previous
studies which used higher overdensities, i.e. Allen et al. 2001 (A01), Donahue et al. 2003 (D03), Bonamente et al. 2008
(B08) and Mantz et al. 2010a (M10). The masses from the NFW-profile and the truncated NFW,MNFW andMNFW&PS,
respectively, are the same for CL0015.9+1609 becauser200 exceeds the field-of-view. For MS0451.6−0305, we neglect
the contribution from large-scale-structure for reasons of simplicity.

r [kpc] MNFW [1014M⊙] MNFW&PS [1014M⊙] MMc [1014M⊙] MSIS [1014M⊙]
CL0015.9+1609 507(B08) 2.19+2.83

−2.17 2.19+2.83
−2.17 1.06+0.28

−0.25 1.37+0.18
−0.20

1470(M10) 11.09+14.31
−10.95 11.09+14.31

−10.95 4.59+0.43
−0.46 3.97+0.52

−0.58
MS0451ACS 1319(D03) 14.40+2.61

−2.89 16.26+3.05
−3.09 13.19+1.40

−1.47 9.11+0.28
−0.32

526(B08) 4.81+1.04
−1.15 4.94+0.93

−0.94 4.96+0.52
−0.55 3.63+0.11

−0.13
1310(M10) 14.30+2.59

−2.87 16.13+3.02
−3.06 13.11+1.39

−1.46 9.05+0.55
−0.64

MS0451zphoto 1319(D03) 15.91+2.67
−3.13 17.61+2.66

−3.14 14.26+1.30
−1.38 8.03+0.22

−0.25
526(B08) 5.16+0.87

−1.02 5.27+0.80
−0.94 5.29+0.48

−0.51 3.20+0.09
−0.19

1310(M10) 15.791.39
−3.11 17.472.64

−3.12 14.17+1.29
−1.37 7.98+0.43

−0.49
MS2137.3−2353 460(A01) 1.43+0.42

−0.93 1.44+0.42
−0.94 1.18+0.19

−0.20 1.44+0.14
−0.14

1060(M10) 2.57+0.75
−1.66 2.59+0.75

−1.70 2.21+0.31
−0.37 3.31+0.31

−0.32

Table 6.4: Literature masses for the cluster sample. Allen et al. (2001) and Bonamente et al. (2008) calculated their
masses atr2500, Donahue et al. (2003) and Mantz et al. (2010a) atr500. We compared our results to the radii of these
studies and transformed the masses from the other studies tothe radius of our best fit model.

Cluster Method r [kpc] M [1014M⊙] c200 σv [km s−1] Reference
CL0015.9+1609 DYN 1208 5.28+1.92

−1.67 984+130
−95 Girardi & Mezzetti (2001)

WL 2083 37.5+12.6
−11.8 1164+151

−173 Hoekstra (2007)
XRAY&SZE 507 3.3± 0.4 Bonamente et al. (2008)
XRAY 1470 16.5± 2.5 Mantz et al. (2010a)

CL0413−6559 XRAY 0.40± 0.69 Smail et al. (1997)
DYN 861 3.36+2.67

−2.01 681+256
−185 Girardi & Mezzetti (2001)

MS0451.6−0305 DYN 1625 12.58+3.92
−3.71 1317+122

−103 Girardi & Mezzetti (2001)
XRAY 1319 12.15 Donahue et al. (2003)
XRAY&SZE 526 3.8± 0.5 Bonamente et al. (2008)
XRAY 1310 11.5± 1.5 Mantz et al. (2010a)

MS1008.1−1224 DYN 1639 11.92+3.99
−3.83 1033+115

−105 Girardi & Mezzetti (2001)
WL 500 3.19± 0.69 900 Athreya et al. (2002)

MS2137.3−2353 XRAY&SL 460 1.89+0.25
−0.31 Allen et al. (2001)

SL&WL 1890 7.72+0.47
−0.24 11.73+0.55

−0.55 Gavazzi (2005)
XRAY&SL 1410 4.4± 0.3 8.7+0.7

−0.9 Donnarumma et al. (2009)
XRAY 1060 4.7± 0.6 Mantz et al. (2010a)

to merging, and infalling galaxies from filaments may be responsible for it. Because of merging,
CL0015.9+1609 is not highly concentrated towards the centre. Correspondingly, we measured a
low concentrationc200 = 1.2+0.9

−1.1.

The SIS, which is steeper on scalesr < r200/c200 than the NFW-profile, and the one-parameter
NFW-model with fixed concentration,Mc, which overpredicts the concentration withcNFW = 6.8,
do not provide good fits to the shear profile. For a relaxed cluster with the same mass and redshift,
cNFW can be appropriate, but it provides a too smallr200. With σv = 762+50

−55km s−1 and MSIS =

5.38+0.71
−0.78 × 1014M⊙ inside r200, the SIS underpredicts the cluster mass. The velocity dispersion

from DYN is measured from galaxy spectra but infalling galaxies can show large line-of-sight
velocities. On the other hand,σv is a poor estimate of the tangential shear fitted to an SIS.

The NFW-model fits best withr200 = 1993+857
−656 kpc,c200 = 1.2+0.9

−1.1 andM200 = 16.39+21.14
−16.18 ×

1014M⊙. Large errors onr200 and subsequently onM200 are due to: (1) the cluster is a merger and
(2) r200 is outside the field-of-view. Because of the latter, our results for NFW and NFW&PS are
identical.
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Figure 6.11: Tangential shear profile for CL0015.9+1609 centred on the S/N peak. We fitted the two parameter models
NFW and the truncated NFW (NFW&PS) and the one parameter models SIS and theMc-model to the tangential shear
of all sources. We cut out the innermost 14′′. Note that the shear profile is not very steep and disturbed due to effects of
merging.

Our best fit model is consistent with previous studies (Fig. 6.10 lower right, Tables 6.4
and 6.3).

6.3.2 CL0413−6559

The tangential shear profile is plotted in Fig. 6.12 and the masses and model parameters are sum-
marised in Table A.2 in the appendix.

Our detection significance 4.34σ is low for space-based data. Since S/N is correlated with
mass we inferred a small total mass that is not highly concentrated towards the centre. TheMc-
model does not fit the cluster profile well althoughcNFW = 10.5 is reasonable for an average cluster
with this mass and redshift. The SIS-profile also does not fit the cluster profile well because it is
steeper on small scales compared to the NFW-profile.

The truncated NFW (NFW&PS) models the tangential shear profile with r200 = 839+191
−186kpc,

c200 = 2.5+1.6
−1.8 and M200 = 1.18+0.81

−0.79 × 1014M⊙ better than our other models although the NFW-
parameters do not differ much from NFW&PS. The lowc200 values we obtained with both our
NFW-models and the disturbed shear profile suggest that thisobject is still in the process of form-
ing. This is also supported by the high fraction of spiral galaxies and low X-ray luminosity which
indicates a shallow gravitational potential and less rich intra-cluster gas (Sect. 4.1.2).

Our NFW&PS (Table A.2) is not consistent with the literature(Fig. 6.10, Table 6.4). We
cannot say whether our results agree with Smail et al. (1997), because their mass is from the mass-
luminosity scaling relation without quoting a value for an overdensity radius. The mass inferred
by Girardi & Mezzetti (2001) from DYN is three times larger than ours which may be a result of
the forming process of this cluster because some galaxies associated to the cluster may not be in
dynamical equilibrium which can cause high velocity dispersions.
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Figure 6.12: Tangential shear profile for CL0413−6559 centred on the S/N peak. We fitted the two parameter models
NFW and the truncated NFW (NFW&PS) and the one parameter models SIS and theMc-model to the tangential
shear of all sources. Note the flatness of the shear profile andthat disturbances appear pronounced, which is because
CL0413−6559 is a low mass cluster.

6.3.3 MS0451.6−0305

The tangential shear profiles are plotted in Fig. 6.13 and themasses and model parameters are
in Table A.3 in the appendix, where the second lower and uppererrors of M200 and c200 are
from Table 6.2. The shear profile of MS0451zphoto is smoother than that of MS0451ACS due to
the photometric redshifts. Givenr200 well within the field-of-view, we observed a significant
difference between NFW and NFW&PS. From theirχ2

dof, NFW&PS with r200 = 2432+152
−154kpc,

c200 = 2.9+0.4+1.6
−0.4−1.6 and M200 = 30.08+5.64+0.43

−5.71−0.43 × 1014M⊙ for MS0451ACS is the better fit. A
truncation of the NFW-profile seems reasonable if the data cover a large area around the cluster.
More observations are required to further test this. Our SIS-model withσv = 1220+37

−43km s−1

provides a lower mass than the best-fit model atr200. With cNFW = 4.6, theMc-model agrees with
the NFW-model fit.

The masses for MS0451ACS and MS0451zphotoshow a spread among the different mass mod-
els, but are consistent with each other after normalising tor200 = 2432 kpc except for the SIS-
model. The masses are also consistent withChandra-observations by Donahue et al. (2003) and
Bonamente et al. (2008) (Fig. 6.10, Tables 6.3 and 6.4). We found higher masses for MS0451zphoto

than for MS0451ACS, yet both are consistent with each other.

χ2
dof is higher for MS0451zphoto than for MS0451ACS due to the inclusion of individual source

redshifts. Yet, the results for both data sets are consistent although the masses for MS0451zphoto

are higher and the concentrations are lower compared to MS0451ACS. The errors on our results do
not decrease for MS0451zphotofor two-parameter models, but for the one-parameter models, which
may be because of the interdependence betweenr200 andc200. To quantify this effect further, more
photometric redshifts would be required.
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Figure 6.13: Tangential shear profile for MS0451ACS (upper) and MS0451zphoto (lower) centred on the S/N peak. We
fitted the two parameter models NFW and the truncated NFW (NFW&PS) and the one parameter models SIS and the
Mc-model to the tangential shear of all sources. The crosses with the thin, dotted error bars display the cross component
g×. Due to the high number density of sources, the error bars aresmall. We cut out the innermost 17′′. Note that for
MS0451zphoto the first data point ofg× has a high negative value, wherefore it is not plotted which is because both plots
have the same axes limits for reasons of comparison.
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Figure 6.14: Tangential shear profile for MS1008.1−1224 centred on the S/N peak. We fitted the two parameter models
NFW and the truncated NFW (NFW&PS) and the one parameter models SIS and theMc-model to the tangential
shear of all sources. We cut out the innermost 21′′. The shear profile does not approach zero in the outskirts of the
field-of-view, becauser200 is 1 Mpc beyond the field-of-view.

6.3.4 MS1008.1−1224

The tangential shear profile is plotted in Fig. 6.14 and the masses and model parameters are in
Table A.4 in the appendix. Sincer200 lies beyond the field-of-view, NFW and NFW&PS yield
the same results. For the same reason, the tangential shear does not drop to zero at the edge of
the data field. The NFW-fit to the tangential shear is the best fit model withr200 = 2415+546

−478kpc,
c200 = 2.2+0.8

−0.8 andM200 = 22.48+15.25
−13.35 × 1014M⊙. The errors onr200 are large because it is 1 Mpc

beyond the field-of-view.

As MS1008.1−1224 is a merger, the tangential shear profile is disturbed and the concentration
is low. TheMc-model provides a too high concentration (cNFW = 6.8) and fits the shear profile
worse than the two-parameter NFW-models. Our SIS-model underpredicts the cluster mass with
σv = 850+35

−38km s−1 andMSIS = 8.81+0.67
−0.73 × 1014M⊙, because the profile is too steep towards the

centre for such a merging cluster. The best fit model agrees with Athreya et al. (2002) who fitted
an SIS-lens to the cluster and to dynamical estimates (Girardi & Mezzetti 2001, Fig. 6.10lower
right, Table 6.4).

6.3.5 MS2137.3−2353

The tangential shear profile is plotted in Fig. 6.15 and the masses and model parameters are in
Table A.5 in the appendix. All four models trace the tangential shear profile. The shape of the
tangential shear profile suggests that this cluster is relaxed. The results for all mass models are
consistent (Fig. 6.10lower left, Tables 6.3 and 6.4).

Sincer200 is close to the border of the field-of-view, NFW and NFW&PS provide similar
results, with high concentrations. TheMc-model fits the shear profile slightly better towards the
centre givingcNFW = 7.5, r200 = 1123+60

−63 kpc andM200 = 2.55+0.81
−1.78 × 1014M⊙ and agrees with
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Gavazzi (2005) and Donnarumma et al. (2009) but not with Allen et al. (2001) (Fig. 6.10lower
right, Table 6.3, Table 6.4).

Figure 6.15: Tangential shear profile for MS2137.3−2353 centred on the S/N peak. We fitted the two parameter models
NFW and the truncated NFW (NFW&PS) and the one parameter models SIS and theMc-model to the tangential shear
of all sources. We cut out the innermost 37′′. Not the textbook-like behaviour of the tangential shear since this cluster
is spherically relaxed.
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Chapter 7

X-ray analysis

This chapter describes the methods and results of the X-ray analysis for those three clusters which
are based onXMM-Newtondata and for one which is based onChandradata.

In Sect. 7.1, I will describe the data preparation such as point source detection, determination
of the flux-weighted X-ray centroid and background subtraction. In Sect. 7.2, I will discuss the
data analysis on how the surface brightness and temperatureprofiles were derived. From these
profiles, the mass profiles will be calculated. The masses will be compared to previous studies at
r500 andr2500. Global properties such as temperature, metallicity and luminosity will be presented
and discussed in Sect. 7.3.

7.1 Data preparation

7.1.1 Point source detection

While the ICM emission is predominantly composed of thermalbremsstrahlung, the X-ray emis-
sion from point sources, such as from AGN in the central cluster galaxies, is non-thermal. Point
sources are hard to identify when their emission is superposed with the X-ray emission peak of
the clusters. Especially for cool-core clusters, peaks dueto cooling cores and central point sources
such as AGN are difficult to distinguish (e.g. Zhang et al. 2006). Since they contaminate the spec-
tra, point sources have to be removed from the data.

We used theSAS command “edetectchain” to detect point sources following Zhang et al.
(2006). This command generates a list of bright point sources in the field-of-view and carries out
the point source detection simultaneously for all three detectors in the energy bands 0.3–0.5 keV,
0.5–2 keV, 2–4.5 keV, 4.5–7.5 keV and 7.5–12 keV. Thereby it corrects for the out-of-time events
for pn. We used cut-off radii of 25′′ for most point sources and 40′′ for the bright point sources
which is comparable to theXMM-NewtonPoint Spread Function cut-off radius of∼ 45′′. These
radii were chosen such that they enclose∼ 90% flux of the point sources. In total, we detected 65
point sources in the field of CL0015.9−1609, 81 for MS0451.6−0305 and 27 for MS2137.3−2353.
The point sources were subtracted from the events lists before we proceeded the analysis further.

The point source subtraction for MS1008.1−1224 was done by Helen Eckmiller with the
Ciao1-tool “wavdetect” which searches for “Mexican hat”-shapedwavelets following Hudson
et al. (2006). This tool detects point sources and defines ellipses around them. The major and
minor axes of those ellipses are 3 times the standard deviation of the Gaussian of the wavelet. The
point source list was manually checked for bad detections and too small cut-off areas. Thus, 59

1http://cxc.harvard.edu/ciao4.2/threads/index.html
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point sources were detected and removed from the event lists. The holes in the images were filled
with the averaged emission from a surrounding area that is 2 times larger than the ellipses.

7.1.2 Determination of the X-ray centroid

For relaxed clusters the peak of the X-ray emission can be used as approximation of the cluster
centre. The determination of the X-ray centre becomes more complicated for clusters which are
disturbed by e.g. merging or AGN heating.

We used the method of Zhang et al. (2010) to determine the flux-weighted centroid iteratively
from the flat-fielded X-ray images in the 0.7–2 keV band. This energy range is chosen because
the cluster emission in this band is almost independent of the gas temperature. The algorithm is
initialised by centering an aperture of radius 1′ on the X-ray emission peak. Within this aperture the
initial flux-weighted centre is determined. Then, the flux-weighted centre is iteratively re-derived
in an aperture which is 1′ larger than the previous one and which is centred on the previously
determined flux-weighted centre. We continued this procedure until the coordinates of the flux-
weighted centre do not vary anymore which usually takes lessthan 10 iterations (Zhang et al.
2010)2. Thereby, the flux-weighted X-ray centroid was defined as thecoordinates of the final flux-
weighted centre. As error for the position of the flux-weighted X-ray centroid the position angle
error ofXMM-Newtonwhich is 6′′ was used. For theChandra-cluster, the PSF which is negligible
with 0.′′5 was used as uncertainty.

The flux-weighted X-ray centroids and the X-ray emission peaks are listed in Table 7.1. We
compared both positions to the X-ray centres of Lewis et al. (1999) and Allen et al. (2008) in the
last column of Table 7.1. Except for the relaxed cluster MS2137.3−2353, our flux-weighted X-ray
centroids are not consistent with the X-ray centres of thesestudies because they used the X-ray
emission peak as centre. Comparing our X-ray emission peak with Lewis et al. (1999) and Allen
et al. (2008), we found consistency for CL0015.9+1609, MS0451.6−0305 and MS2137.3−2353.
For MS1008.1−1224, we observed an offset which might be due that the X-ray emission is slightly
asymmetric (Lewis et al. 1999).

Figure 7.1 shows the X-ray and weak lensing signal-to-noisecontours and the respective
centres. The projected distances between the S/N-peak (Table 6.1) and the flux-weighted X-ray
centroid are denoted as∆fw−wl and the projected distances between the S/N-peak and the X-ray
emission peak are denoted as∆em−wl . The S/N-peak and the flux-weighted X-ray centroid agree
for the relaxed cluster MS2137.3−2353, but the other clusters have offsets that are larger than the
uncertaintyσpos from bootstrapping (Sect. 6.1.4) plus the instrumental uncertainties. This can be
due to that CL0015.9+1609 and MS1008.1−1224 are mergers. For MS0451.6−0305, the X-ray
emission is slightly elliptical in the centre while the weaklensing signal-to-noise contours are not
which might explain the offset for this cluster. The X-ray emission peak and the S/N-peak show
better agreement, i.e.∆em−wl < σpos. For MS1008.1−1224, the offset∆em−wl = 17.′′1 smaller than
∆fw−wl = 20.′′4 but still larger thanσpos+ 0.′′5.

7.1.3 Background subtraction

While for low-redshift clusters the cosmic X-ray background (CXB, Sect. 3.1.6) has to be esti-
mated from external fields, we can use the cluster outskirts for our clusters to statistically estimate
the local CXB. We used an annulus of 1.2r200−1.5r200 wherebyr200 is from the best weak lensing
fits (Sect. 6.3). This annulus was chosen because it is not contaminated by the cluster emission
and not too close to the borders of the field-of-view, where instrument effects can bias our mea-
surements.

2For high-redshift clusters, the algorithm converges even faster.
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Figure 7.1: X-ray (blue) and weak lensing signal-to-noise ratio contours (orange). The orange box denotes the weak
lensing centre and the yellow star is the flux-weighted X-raycentroid. Except for MS2137.3−2353, the flux-weighted
X-ray centroid is not in the centre of the contours because they show the X-ray emission which has its maximum at the
X-ray emission peak.

Table 7.1: Comparison of different cluster centres. RAfw
X and DecfwX are the coordinates of the flux-weighted X-ray cen-

troid and RAem
X Decem

X are the coordinates of the X-ray emission peak. Both coordinates are given in world coordinates.
∆fw−wl and∆em−wl are the offsets between the flux-weighted X-ray centroid/ X-ray emission peak and the S/N-peak
from weak lensing,σpos is the uncertainty of the S/N-peak from bootstrapping (Sect. 6.1.4). The last column lists the
offsets to the X-ray centres of Lewis et al. (1999) (2) and Allen et al. (2008) (4), whereby the first value is the offset
using the flux-weighted X-ray centroid and the second one is from using the X-ray emission peak.

Cluster RAfw
X Decfw

X RAem
X Decem

X ∆fw−wl ∆em−wl σpos other
CL0015.9+1609 00:18:33.4 16:26:32 00:18:33.7 16:26:09 22.′′2 10.′′0 10.′′5 20.′′1, 6.′′9 (2)

MS0451.6−0305 04:54:12.1 −03:00:49 04:54:11.5 −03:00:56 15.′′2 5.′′6 8.′′3 10.′′5, 10.′′3 (2)

MS1008.1−1224 10:10:31.9 −12:39:17 10:10:32.4 −12:39:53 20.′′4 17.′′1 9.′′2 15.′′0, 21.′′4 (2)

MS2137.3−2353 21:40:14.9 −23:39:39 21:40:14.9 −23:39:39 4.′′2 5.′′3 9.′′2 1.′′7, 1.′′7 (4)



108 Chapter 7. X-ray analysis

The background areas were scaled to the areas of the annuli which were used to measure the
surface brightness and temperature distributions. For pn,we corrected for the out-of time events
(OOT) by a fraction of 2.32% (Sect. 4.4.2). The particle background was removed fromthe data
as a step of the reduction (Sect. 4.4.2).

7.2 Results

7.2.1 Spectral analysis

The temperature profiles of galaxy clusters are useful toolsto study the thermodynamical his-
tory of clusters. For temperature measurements with∼ 15% uncertainty, we determined suitable
annuli centred on the flux-weighted X-ray centroid for the spectral fitting following the method
of Zhang et al. (2008). We used the 2− 7 keV band to obtain at least 500 counts per annulus in
MOS23 after background subtraction, which gives∼ 2000 counts per annulus in total (Sect. 4.4.1).
The 2− 7 keV energy range is sensitive to temperature measurementsof massive clusters with
TX & 3 keV (Zhang et al. 2007). To avoid that the bins were affected by the instrument PSF, the
bins had to be at least 0.′5 each. We obtained 4 temperature bins for CL0015.9+1609 and 3 for
MS0451.6−0305 and MS2137.3−2353, respectively, because these clusters are less extended in
X-rays. For MS1008.1−1224, spectra for the following annuli were created by HelenEckmiller
following Eckmiller et al. (2011): 0− 0.′5, 0.′5− 1.′0 and 1.′0− 1.′5. There annuli were chosen such
that we can compare the temperature profile of this cluster with theXMM-Newtonclusters.

We regrouped the data with the “grppha”-command such that each channel consists of at
least 100 counts. This provides good photon statistics in each channel. The spectral fitting was
performed with the publicly availableHEASOFT software packageXSPEC 12.6.0 (henceforth de-
noted asXSPEC). We used the 0.7−10 keV band for the spectral fitting because this guarantees that
the hot clusters (TX ∼ 9−11 keV) have significant counts at higher energies. We accounted for the
background by givingXSPEC the respective background files and for the detector response with the
files generated with the tasks “rmfgen” and “arfgen”. The spectra were fitted with “wabs+mekal”
and are given in the appendix for theXMM-Newtonclusters (Figs. B.1-B.3). The former is a one-
parameter model that models the absorption from neutral gasvia the Galactic hydrogen column
number densitynH which we fixed to the values from the Leiden/Argentine/Bonn Galactic Hi-
Survey (LAB-Survey, Kalberla et al. 2005). The “mekal” model describes the emission spectrum
of hot, diffuse gas based on Mewe et al. (1985, 1986) and Kaastra (1992) with Fe-L line emission
(Liedahl et al. 1995) and line emission from other elements as observed for the ICM of galaxy
clusters4. The “mekal” model has six parameters: (1) plasma temperature, (2) hydrogen density
of the ICM, (3) metal abundance in solar units (Anders & Grevesse 1989), (4) cluster redshift, (5)
a switch parameter to decide whether the model spectrum for each temperature will be fitted with
“mekal” or determined from a pre-calculated table and (6) the normalisation which depends on
the electron and hydrogen number densities of the ICM and theangular diameter distance of the
cluster. For each temperature bin, we determined temperature, metallicity and normalisation of
the “mekal”-model.

The spectra were fitted simultaneously for all three detectors. For each annulus, temperatures
and metallicities of the different detectors are consistent. The MOS data provide slightly higher
temperatures than pn because it is more sensitive at low energies. Thus, pn measurements are
affected by the soft band.

3We did not use MOS1 because this detector has broken CCD-chip.
4The mekal model includes line emission from He, C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Fe and Ni merged into

one parameter.
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To parametrise the temperature profiles which are plotted inFig. 7.2, we chose the model of
Zhang et al. (2006), a combination of a King model, a Gaussianand a constant (“Gaus+King+cons”)

T(r) = T1
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Here, rC andβ′ are core radius and slope of the King-profile, respectively,and rgc is the
centre of the Gaussian with widthσ. T1−3 are the normalisations of each model. Equation (7.1)
is not a physical model but follows the empirical shape of theuniversal temperature profiles of
galaxy clusters well due to its flexibility (Zhang et al. 2007, 2008). The temperature profiles were
approximated by Eq. (7.1) such that all data points in Fig. 7.2 are reasonably crossed. We list the
model parameters in Table 7.2. The temperature uncertainties (dashed curves in Fig. 7.2) were
approximated by (A+ rB) · T(r) following Zhang et al. (2006).

The third bin of the temperature profile of CL0015.9+1609 is affected by a hot region along
the southeast to northwest direction which was also reported by Solovyeva et al. (2007). The
cluster emission is elongated along this direction. We did not exclude the hotter region in this
annulus because we are interested in the total temperature distribution.

Figure 7.2: Temperature profiles: The horizontal bars denote the bin size and the vertical errors are the 1σ-errors
from the spectral fitting withXSPEC. The dashed curves are the 1σ uncertainties onT(r) which we approximated with
(A+ rB) · T(r).
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Figure 7.3 shows the metallicity profiles. Except for MS0451.6−0305, they are similar. Met-
als are most abundant in the cluster centre because of feedback from AGN and supernovae in the
central galaxies. Thus, the iron abundance drops from 0.3Z⊙ < Z < 0.4Z⊙ in the central bin
to 0.2Z⊙ < Z < 0.3Z⊙ in the cluster outskirts. For MS0451.6−0305, the metallicity is low in
the centre (Z ∼ 0.2Z⊙), increases to∼ 0.35Z⊙ and shows a slightly decreasing trend towards the
outskirts which may be due to that the this cluster is not in hydrostatic equilibrium which is also
indicated by the high temperature in that annulus (Fig. 7.2)and by Donahue et al. (2003). But the
low metallicity in the centre of MS0451.6−0305 may also come from instrumental artifacts due to
high signal-to-noise. For CL0015.9+1609 and MS2137.3−2353, the photon statistics do not allow
for metallicity measurements in the outer bins because the spectra become biased with noise from
the background which artificially amplifies the iron peak. For those bins, the metallicity is fixed
to 0.3Z⊙ in the spectral fit.
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Figure 7.3: Metallicity profiles: The horizontal bars denote the bin size and the vertical errors are the 1σ-errors from
the spectral fitting withXSPEC.

7.2.2 Surface brightness profiles

Since the X-ray emission is almost independent of temperature in the 0.7 − 2 keV energy range,
this range is ideal to determine the electron number densitydistribution of galaxy clusters. We
chose the surface brightness bins such that the signal-to-noise ratio in MOS2 for each bin is 3σ
higher than the background,
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Here,Nbin is the number of photons per annulus,Nback is the number of photons in the background
and A is the normalisation of the background area with respect to the area of the annulus. The
noise is either given by the statistical error of photons perannulus,

√
Nbin, or by the number

of background photons normalised to the area of the annulus,Nback · A
√

1+ 0.12, depending on
which provides the higher noise. The factor

√
1+ 0.12, thereby accounts for the particle-induced

background which varies by. 10% compared to the target observations for most clusters (e.g.
Zhang et al. 2007). This provides us with a conservative estimate of background fluctuations 10%.

We applied the annuli obtained with this method to MOS1 and pn. For each detector, the flux
in each bin was measured and the surface brightnessSX was calculated and fitted with Eq. (3.9)
to obtainS0, rc andβ. Then, we normalised the surface brightness of MOS1 and MOS2to pn
by multiplying Spn

0 /S
MOS1,2
0 and fitted Eq. (3.9) for all three detectors simultaneously.Thereby,

the parametersrc and β change only marginally compared to fitting Eq. (3.9) individually for
each detector. Since 3σ gave too narrow bins with high noise for our clusters, the data was re-
binned by merging 5 adjacent bins for CL0015.9+1609, 4 bins for MS0451.6−0304 and 3 bins for
MS2137.3−2353. The surface brightness profiles are plotted in Fig. 7.4andβ andrc are given in
Table 7.2. For MS1008.1−1224,rc andβ were obtained from fitting Eq. (3.9) to the flux measured
in the ACIS-I detector which was determined by Helen Eckmiller using theChandra-analysis
softwareCiao following Hudson et al. (2006).

Figure 7.4: Surface brightness profiles after rescaling theMOS fluxes to the normalisation of the surface brightness
in pn, Spn

0 . The horizontal bars denote the bin size and the vertical errors are the 1σ-errors of the surface brightness
density.
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Table 7.2: Parameters for calculating the hydrostatic masses. The parameters of the temperature profile (Eq. 7.1) do
not have errors because we have more degrees of freedom than data points. In the last two rows the parameters for the
surface brightness profile (Eq. 3.9) are listed.

CL0015.9+1609 MS0451.6−0305 MS1008.1−1224 MS2137.3−2353
T1 [keV] 3.69 0 0 0
rK [kpc] 1966 – – –
β′ 2.31 – – –
T2 [keV] 1.00 5.24 3.17 1.05
rgc [kpc] 375 0 −119 271
σ [kpc] 375 303 680 415
T3 [keV] 4.52 5.44 3.24 4.00
β 0.73± 0.12 1.04± 0.19 0.94± 0.05 0.62± 0.02
rc [kpc] 318± 35 361± 33 170± 15 52± 3

7.2.3 Mass profiles

The mass profiles were calculated out to 3 Mpc in steps of 1 kpc with Eq. (3.14) using the param-
eters in Table 7.2. Figure 7.5 shows the mass profiles for the four clusters whereby the data points
show the X-ray hydrostatic masses and their errors at the radii for which the temperature profiles
were plotted (Fig. 7.2). The horizontal bars denote the sizeof the temperature bins and the vertical
errors are the 1σ-errors onMX(< r) from Monte-Carlo simulation in which we generated mass
profiles from simulated surface brightness and temperatureprofiles using

Trand(r, x1) = T(r) + ∆T · x1 (7.3)

SX,rand(r, x2) = SX(r) + ∆SX · x2 .

Here,x1,2 are a functions that create Gaussian random values in the interval [−1, 1] andr is the
projected radius. The 1σ-errors which were measured for each temperature and surface brightness
bin in Sects. 7.2.1 and 7.2.2, are denoted as∆T and∆SX , respectively. Hence, the simulated sur-
face brightness and temperature profiles vary within the errors of the measured surface brightness
and temperature profiles. We simulated 100 temperature and surface brightness profiles for each
cluster and fitted them with Eqs. (7.1) and (3.9), respectively. The corresponding mass profiles
were calculated with Eq. (3.14). The standard deviation of the randomised mass profiles at radius
r are the errors on the true mass profile atr.

Table 7.3 lists X-ray hydrostatic masses atr500,X andr2500,X calculated from the hydrostatic
equation (Eq. 3.14) and our best fit weak lensing masses (Sect. 6.3) atr500,X . We also list X-ray
hydrostatic and best fit weak lensing masses atr500,wl derived from the mass profiles of the best fit
weak lensing mass models, which are NFW for CL0015.9+1609 and MS1008.1−1224, NFW&PS
for MS0451.6−0305 and theMc-model for MS2137.3−2353. For reasons of consistency, we used
the best fit weak lensing mass of MS0451ACS because we do not have photometric redshifts for
the other clusters. The X-ray hydrostatic massesMX at r500,X and r2500,X were compared to the
previous X-ray and X-ray&SZE analyses we also used for the weak lensing mass comparison
(Table 6.4):

For CL0015.9+1609, we haveMX = (2.66± 0.62)× 1014 M⊙ at rB08
2500= 507 kpc from Bona-

mente et al. (2008) which is 21% lower than theirMB08
2500 = (3.37± 0.4) × 1014M⊙. Our mass is

37% lower than that of Bonamente et al. (2008) at the same overdensity. AtrM10
500 = 1470 kpc from

Mantz et al. (2010a), we haveMX = (5.77± 0.67)× 1014 M⊙ which is not consistent with their
M500 = (16.5± 2.5)× 1014 M⊙. The same holds if we compare our mass with that of Mantz et al.
(2010a) at the same overdensity.
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Table 7.3: X-ray hydrostatic and best fit weak lensing massesat r500,X from X-ray andr500,wl from the weak lensing
mass profiles and X-ray hydrostatic masses atr2500,X . The radii are given in kpc and arcmin, respectively.

CL0015.9+1609 MS0451.6−0305 MS1008.1−1224 MS2137.3−2353
r500,X [kpc] 971 1026 1231 906
r500,X [′] 2.′59 2.′71 4.′40 3.′36
MX [1014M⊙] 4.74± 0.46 5.65± 0.45 7.44± 0.56 3.01± 0.38
Mwl [1014M⊙] 6.17+7.95

−6.09 12.12+2.27
−2.30 10.56+7.16

−6.27 1.99+0.32
−0.34

r500,wl [kpc] 1152 1488 1497 758
r500,wl [′] 3.′07 3.′93 5.′71 2.′81
MX [1014M⊙] 5.12± 0.51 8.56± 0.94 8.21± 0.43 2.63± 0.39
Mwl [1014M⊙] 7.91+10.21

−7.81 19.33+3.62
−3.67 13.39+9.08

−7.95 1.76+0.28
−0.30

r2500,X [kpc] 435 491 620 414
r2500,X [′] 1.′16 1.′30 2.′37 1.′54
M2500,X [1014M⊙] 2.13± 0.44 3.10± 0.24 4.75± 0.25 1.43± 0.09

Figure 7.5: Mass profiles assuming hydrostatic equilibrium. The data points are taken from the temperature profiles
(Fig. 7.2) whereby the horizontal bars denote the bin size and the vertical errors are calculated from the Monte-Carlo
simulation.
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For MS0451.6−0305, we obtainedMX = (7.48± 0.60)× 1014 M⊙ at rD03
500 = 1319 kpc from

Donahue et al. (2003) which is 37% lower than their mass. Comparing both studies at∆ = 500,
our mass is 52% lower than that of Donahue et al. (2003). Comparing the masses atrB08

2500 =

526 kpc, ours is withMX = (3.30± 0.69)× 1014 M⊙ ∼ 13% lower than that of Bonamente et al.
(2008). At∆ = 2500, our mass is only 6% lower. Our results for MS0451.6−0305 show better
agreement with Bonamente et al. (2008) than our results for CL0015.9+1609 which may be due
to that the latter is a merger. Our mass atrM10

500 = 1310 kpc from Mantz et al. (2010a) is with
MX = (7.42±0.60)×1014 M⊙ 35% lower than their mass. If we compare both masses at∆ = 500,
our mass is 51% lower.

For MS2137.3−2353, we obtainedMX = (3.31± 0.61)× 1014 M⊙ at rM10
500 = 1060 kpc from

Mantz et al. (2010a) which is 30% lower than their mass. At thesame overdensity,∆ = 500, our
mass is 36% lower.

That our masses are lower than those of Donahue et al. (2003),Bonamente et al. (2008) and
Mantz et al. (2010a) may be due to: (1) Those studies used an isothermal temperature to derive
the hydrostatic mass which is considered to give 20− 25% higher masses than those using a tem-
perature profile (e.g. Zhang et al. 2005). (2) To determine the temperature, Donahue et al. (2003)
did not exclude the core region where the temperature is high(Fig. 7.2). (3) The oldChandra-
calibration with which the observations used by Donahue et al. (2003) were performed biased
the temperature to high values (e.g. Snowden et al. 2008 and references therein). (4) Mantz et al.
(2010a) derived their mass from the gas mass profile by assuming a model for the gas mass fraction
(Nagai et al. 2007; Allen et al. 2008).

The shapes of the mass profiles give evidence for cluster concentration (Fig. 7.5). For in-
stance, CL0015.9+1609 is likely not in hydrostatic equilibrium and has a low concentration.
The latter was also confirmed by our weak lensing analysis (Sect. 6.3.1), where we measured
a concentration ofc200 = 1.2+0.9

−1.1. Furthermore, CL0015.9+1609 has a weird temperature profile
(Fig. 7.2,upper left) which subsequently affects the mass profile even if the Gaussian in Eq. (7.1)
is smoothed. Also, the mass profile of MS0451.6−0305 indicates non-hydrostatic equilibrium
which was also concluded by Donahue et al. (2003). For the other two clusters, MS1008.1−1224
and MS2137.3−2352, we obtained smoother mass profiles and we conclude thatthose clusters are
in hydrostatic equilibrium although MS1008.1−1224 is a merger.

7.3 Global properties

7.3.1 Global temperature and metallicity

We determined the global temperaturesTX and metallicitiesZ inside an annulus of 0.2 − 0.5r500

centred at the X-ray centroid following Zhang et al. (2007).In this annulus, the temperature fol-
lows the universal distribution (e.g. Zhang et al. 2004; Vikhlinin et al. 2005; Pratt et al. 2007 and
Sect. 3.1.3) for most clusters. At smaller radii, the scatter is larger among non-cool-core and cool-
core clusters and peculiarities due to the dynamical history such as boosted temperatures in the
case of merging clusters (e.g. Smith et al. 2005). For this reason, the scatter in those X-ray scaling
relations that involveTX is minimised when using the temperatures in the 0.2 − 0.5r500 annulus.
Furthermore, the difference between the normalisations of scaling relations forcool-core and non-
cool-core clusters is. 10% if this annulus is used to determine the global temperature (Zhang
et al. 2007).

UsingXSPEC, we fitted “wabs+mekal” to the global spectra to obtain temperature and metal-
licity Z with both nH fixed and as free parameter. The results are given in Table 7.4where the
global temperatures and metallicities using 0.2 − 0.5r500,wl are listed as well. All global spectra
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are shown in the appendix (Figs. B.4-B.11). For MS1008.1−1224, the global spectra were created
by Helen Eckmiller following Eckmiller et al. (2011).

We found that global temperatures and metallicities are consistent whether we fixednH to
the LAB-survey or determine its value by fitting. Since the errors onTX are smaller for fixednH,
we used them for the further analysis because this will provide us with tighter scaling relations.
Furthermore, the global temperatures based onr500,wl are lower than those based onr500,X because
r500 wl > r500,X such that regions of lower temperatures are included.

We compared our global temperaturesTX within 0.2 − 0.5r500,X and fixednH to those in
previous studies (Table 7.6) but those results can only serve as consistency check because they are
obtained with different instruments and within different annuli ranges. Figure 7.6 shows the ratios
between our temperature and the literature values. Except for MS1008.1−1224, our temperatures
are consistent with Balestra et al. (2007). Furthermore, our temperatures are also consistent with
those of Lewis et al. (1999) and Ebeling et al. (2010).

Figure 7.6: Comparison of global temperatures within 0.2− 0.5r500,X and fixednH with the literature. The clusters are
labelled: (1) CL0015.9+1609, (2) MS0451.6−0305, (3) MS1008.1−1224, (4) MS2137.3−2353.

Table 7.4: Global temperaturesTX and metallicitiesZ within 0.2− 0.5r500,X and 0.2− 0.5r500,wl for both fitted and fixed
hydrogen column number densitynH. The results for the fittednH are denoted with the subscriptnH,free.

CL0015.9+1609 MS0451.6−0305 MS1008.1−1224 MS2137.3−2353
0.2− 0.5r500,X :
TX [keV] 9.25± 0.36 8.11± 0.37 7.46± 0.52 4.99± 0.36
ZX [Z⊙] 0.19± 0.06 0.20± 0.05 0.29± 0.10 0.19± 0.11
TnH,free [keV] 10.25± 1.05 8.89± 0.83 9.84± 2.67 5.78± 1.50
ZnH,free [Z⊙] 0.20± 0.07 0.21± 0.07 0.35± 0.15 0.06± 0.16
0.2− 0.5r500,wl :
TX [keV] 9.24± 0.36 6.88± 0.28 7.89± 0.79 4.82± 0.28
ZX [Z⊙] 0.11± 0.05 0.28± 0.07 0.41± 0.13 0.27± 0.11
TnH,free [keV] 9.74± 1.03 6.86± 0.75 10.44± 2.63 5.27± 1.05
ZnH,free [Z⊙] 0.11± 0.05 0.28± 0.07 0.54± 0.21 0.19± 0.14
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We summarise the studies to which we compared our results as follows: Lewis et al. (1999)
obtainedTX usingASCA-observations from Mushotzky & Scharf (1997). Their measurement is
consistent with ours although there is no explicit information of the area for which theirTX was
measured. Donahue et al. (2003) measuredTX within 83′′ = 523 kpc with “wabs+mekal” using
the 0.7 − 7.0 keV energy band. The deviation to our temperature was discussed in Sect. 7.2.3.
Balestra et al. (2007) measuredTX within 0.15− 0.3rvir with rvir from Evrard et al. (1996) using a
mekal model. Ebeling et al. (2007) measuredTX within r1000 excluding the innermost 70 kpc but
they do not give the value forr1000. Allen et al. (2008) measured the deprojected temperatureTX

within r2500= 479 kpc which is∼ 0.5r500,X and consistent with ours although they did not exclude
the core region. Their overdensity was obtained from assuming that the gas density follows an
NFW-profile. Bonamente et al. (2008) determinedTX within r2500 = 507± 19 kpc which is
∼ 0.5r500,X . Their temperature is 14% higher than ours because we excluded ther < 0.2r500-
region. Mantz et al. (2010a) determinedTX within 0.15− 1r500 wherebyr500 was determined
as described in Sect. 7.2.3. Ebeling et al. (2010) obtainedTX = 4.7 ± 0.4 keV using theXSPEC
“mekal” model withinr500 = 1060± 40 kpc which is∼ 2 times larger than 0.5r500,X . Yet, their
result is consistent with ours.

We compared our global metallicities obtained within 0.2−0.5r500,X for fixednH to Donahue
et al. (2003) and Balestra et al. (2007). For MS0451.6−0305, Donahue et al. (2003) obtained a
metallicity which is∼ 2 times larger than ours which may be due to the oldChandra-calibration.
The global metallicities from Balestra et al. (2007) are 41− 46% higher than our metallicities for
CL0015.9−1609, MS0451.6−0305 and MS2137.3−2353. Only for MS1008.1−1224 our metal-
licity is consistent with theirs. This may be due to that Balestra et al. (2007) used the emission-
weighted metallicity which is∼ 0.4Z⊙ for clusters at 0.3 < z< 0.5.

Table 7.5: Global luminosities in the energy bands 0.5–2.0 keV, 0.01–100 keV and 0.1–2.4 keV within 0.2− 1r500.

Cluster L0.5−2.0keV [1044 erg s−1] Lbol [1044 erg s−1] L0.1−2.4keV [1044 erg s−1]
CL0015.9+1609 5.13± 0.23 27.13± 1.45 6.90± 0.30
MS0451.6−0305 4.37± 0.44 20.36± 2.05 5.67± 0.57
MS1008.1−1224 1.37± 0.14 6.05± 1.71 1.76± 0.08
MS2137.3−2353 1.51± 0.30 4.78± 0.95 1.94± 0.39

7.3.2 Global luminosities

We used theXSPEC-command “lumin” to determine the global luminosities within 0.2 − 1r500,X

following Zhang et al. (2011a). The cool-core region was excluded because the luminosity can
be strongly affected by cooling cores. With a “mekal”-model, we fixed all parameters except the
normalisation, whereby we usedTX andZ and their errors for fixednH (Table 7.4). The corre-
sponding spectra are presented in Figs. B.12-B.13 in the appendix. We did not user500,wl be-
cause for MS1008.1−1224, this radius exceeds theChandrafield-of-view. The global spectra for
MS1008.1−1224 were created by Helen Eckmiller following Eckmiller etal. (2011).

The global luminosities are given in Table 7.5 for the following energy bands: the soft band
(0.5− 2.0 keV), the bolometric band (0.01− 100 keV) and theROSAT-band (0.1− 2.4 keV). Here,
the luminosities for theXMM-Newtonclusters are the mean of the luminosities obtained for MOS
and pn and their error is the scatter of the luminosities measured in the three detectors with respect
to the mean value. For MS1008.1−1224, we estimated the error onLX from the errors onTX and
Z.

The global luminosities are not a good mass indicator for galaxy clusters. The luminosity can
be boosted at different levels due to merging. Thus, CL0015.9+1609 has a high luminosity, but
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the luminosity of MS1008.1−1224 is∼ 3 times lower although both are massive mergers. This is
also indicated in the literature (Sect. 4.1).

The luminosities in theROSAT-band are not consistent with the literature (Table 7.6) which
is due to that these luminosities were calculated at radiir > r500, i.e. r200 (Ebeling et al. 2007) and
1h−1 Mpc (Donahue et al. 2003). Mantz et al. (2010a) calculatedL0.1−2.4 keV within r500 = (1060±
40) kpc and without excluding the cool-core region. We assume that our luminosity is∼ 6 times
lower than theirs because the X-ray emission in the centre ofMS2137.3−2353 is contaminated by
the bright cD-galaxy in the centre (Luppino et al. 1999).

We did not compare our luminosities to the other analyses (Sect. 4.1) because they were
either measured in the 0.3–3.5 or 0.3–4.5 keV band, and within different annuli. Yet, we observed
a similar trend in our luminosities than those in the 0.3− 3.5 keV band (Luppino et al. 1999).

Table 7.6: Global temperaturesTX , metallicitiesZ and luminositiesLX from the literature. Column 5 lists the energy
bands in which the luminosities were measured. The last column lists the references, i.e. Le99 Lewis et al. 1999, Lu99
Luppino et al. 1999, D03 Donahue et al. 2003, B07 Balestra et al. 2007, E07 Ebeling et al. 2007, A08 Allen et al. 2008,
B08 Bonamente et al. 2008 and M10 Mantz et al. 2010a.

Cluster TX [keV] Z [Z⊙] LX [1044 erg s−1] energy band [keV] instrument ref
CL0015.9+1609 14.6 0.3− 3.5 Einstein Lu99

9.3+0.5
−0.3 0.33+0.05

−0.05 Chandra B07
9.4± 0.3 19.6± 0.3 0.1− 2.4 Chandra E07
10.5± 0.6 Chandra B08

11.84± 0.67 bolometric Chandra M10
MS0451.6−0305 19.98 0.3− 3.5 Einstein Lu99

10.6+1.6
−1.3 0.40± 0.14 8.87 0.1− 2.4 Chandra D03

8.2+0.4
−0.3 0.34± 0.06 Chandra Ba07

7.5± 1.0 16.8± 0.6 0.1− 2.4 Chandra E07
9.9+0.8
−0.7 Chandra B08

9.50± 0.41 bolometric Chandra M10
MS1008.1−1224 7.3+1.2

−0.8 Chandra Le99
4.49 0.3− 3.5 Einstein Lu99

5.8+0.3
−0.2 0.30+0.07

−0.06 Chandra B07
MS2137.3−2353 15.62 0.3− 3.5 Einstein Lu99

4.96± 0.11 0.35± 0.03 Chandra B07
5.65± 0.3 Chandra A08
4.67± 0.43 11.1± 0.4 0.1− 2.4 Chandra M10
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Chapter 8

Weak lensing versus X-ray mass
calibrations

In this chapter, mass-observable scaling relations using X-ray hydrostatic massesMX and weak
lensing massesMwl from the best fit models (Sect. 6.3, Table 7.3) will be studied. I will also
discuss scaling relations using weak lensing massesMMc from our one-parameter NFW-model
with fixed concentration (Mc-model, Sect. 6.2.1) to cross-check how the systematic uncertainty
of Mwl due to different concentration parametersc200 affects the normalisation of the scaling
relations. I will compare weak lensing and X-ray hydrostatic masses in Sect. 8.1 and discuss
the mass-temperature relations with the global temperatures from Sect. 7.3.1 determined within
0.2− 0.5r500,X with fixed nH (T0.2−0.5r500) in Sect. 8.2. In Sect. 8.3, I will discuss mass-luminosity
relations using the luminosities determined within 0.2− 1r500,X from Table 7.5 and the three dif-
ferent mass estimatesMX , Mwl and MMc. Scaling relations not involving total cluster masses
will be discussed in Sects. 8.4 and 8.5, i.e. temperature-luminosity relations and the temperature-
metallicity relation, respectively. In Sect. 8.6, the scaling relations from this work will be com-
pared to simulations.

The scaling relations were fitted by a power lawY = Y0Xγ with the Orthogonal Distance
Regression method (ODR, e.g. Feigelson & Babu 1992; Akritas& Bershady 1996) using the
software packageOdrpack 2.01 (Boggs et al. 1987) following Zhang et al. (2008). This method
uses linear regression and accounts for the errors on both variables which can be different for
each observation and each data point. The slopeγ was fixed with well-established values from
large samples (Zhang et al. 2006, 2008, 2010) because it is too unreliable to fit the slope with four
clusters only. We used the four clusters to determine the normalisationY0.

To check the dependence of scaling relations on the evolution of cosmological parameters
due to LSS growth, the redshift evolution correction (Eq. 1.16) following Zhang et al. (2008) was
applied as follows:M · E(z) andL · E(z)−1. With this correction, the clusters are assumed to be
self-similar.

Slopes and normalisations of the scaling relations including MX, Mwl andMMc are listed and
compared to the literature in Table 8.1. Scaling relations between the observables temperature,
metallicity and luminosity are presented in Table 8.2. Selected scaling relations are plotted in the
figures in the subsequent sections. The scaling relations will be compared to previous analyses
and to simulations as far as they assumed aΛCDM-cosmology. For our cluster redshifts,E(z)
using the redshifts of our sample differs by less than 2% between our cosmology andΩm = 0.3
andΩΛ = 0.7 (Markevitch et al. 1998; Ettori et al. 2004; Kotov & Vikhlinin 2005; Maughan et al.
2006; Balestra et al. 2007; Borgani et al. 2004; Vikhlinin etal. 2009a; Zhang et al. 2006, 2008,
2010; Fabjan et al. 2011) and by less than 6% assumingΩm = 0.2 andΩΛ = 0.8 (Evrard et al.
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1996; Ikebe et al. 2002). The scaling relations from this work will also be compared to each other
with respect toMX , Mwl andMMc.

8.1 X-ray hydrostatic versus weak lensing masses

8.1.1 Mwl from the best fit model

The comparison of weak lensing and X-ray hydrostatic massesprovides an important test of
the systematics in both methods. The mass ratios are plottedin Fig. 8.1. To be consistent with
the mass-observable scaling relations, the redshift evolution correction was also applied for the
comparison of weak lensing and X-ray hydrostatic masses. WecomparedMwl and MX at r500,X

from Table 7.3. We did not compare X-ray hydrostatic and weaklensing masses atr500,wl for
the following reasons: (1) Extrapolating the X-ray mass profile to r500,wl may cause uncertainties
in mass because X-ray hydrostatic masses are only reliable out to r500,X . (2) Only one cluster,
MS0451.6−0305, hasr200 within the field-of-view of the HST-mosaic data. For MS2137.3−2353,
r200 was fitted to the border of the field-of-view and for the two mergers CL0015.9+1609 and
MS1008.1−1224, r200 was fitted well beyond the field-of-view. In addition,c200 cannot be well
determined in weak lensing.

With the slope fixed atγ = 1.0, the X-ray masses are∼ 18% lower than the weak lensing
masses. The huge error bars on the weak lensing masses of two clusters have two reasons which
were also discussed in Sect. 6.3: First, these clusters are merging clusters (CL0015.9+1609 and
MS1008.1−1224) and as a consequence their tangential shear profile is disturbed. Second, these
clusters haver200 well outside the field-of-view.
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Figure 8.1: Hydrostatic massesMX versus weak lensing massesMwl at r500,X for our sample and the samples from
Zhang et al. (2008) and Zhang et al. (2010). To be consistent with the mass-observable scaling relations,E(z) was also
applied for the comparison of weak lensing and X-ray hydrostatic masses.
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Table 8.1: Parameters of the X-ray scaling relations for fitting the power lawY = Y0Xγ including total cluster masses
MX , Mwl and MMc. To compare our results to the literature, we transformed our scaling relations to the notation of
Zhang et al. (2006, 2008, 2010). The results of ourMwl − MX relation are compared to the total sample of Zhang et al.
(2010) and to their sub-samples consisting only of relaxed and disturbed clusters. (∆c,z/∆c,0)±0.5 is the density contrast
of a virialised halo with respect to the critical density with the analytical approximation∆c,z derived from the spherical
collapse model for a flat universe (Bryan & Norman 1998). The abbreviations for the literature are: E04 for Ettori et al.
(2004), Z06 for Zhang et al. (2006), B07 for Balestra et al. (2007), Z08 for Zhang et al. (2008), V09a for Vikhlinin
et al. (2009a) and Z10 for Zhang et al. (2010).

X Y Y0 γ Sample
Mwl
M⊙

E(z) MX
M⊙

E(z) 0.819± 0.065 1.0 this work
MMc
M⊙

E(z) MX
M⊙

E(z) 1.119± 0.155 1.0 this work
0.781± 0.096 1.0 Z08
0.91± 0.06 1.0 Z10, relaxed
1.06± 0.12 1.0 Z10, disturbed
0.990± 0.070 1.0 Z10, all

T0.2−0.5r500
keV

MX
M⊙

E(z) 1013.47±0.06 1.5 this work
T0.2−0.5r500

keV
MX
M⊙

E(z) 1013.48±0.06 1.59 this work
TX
keV

MX
M⊙

E(z) 1013.57±0.02 1.5 E04
T0.1−0.5r500

keV
MX
M⊙

(∆c,z/∆c,0)0.5 E(z) 1013.80±0.04 1.5 Z06
T0.2−0.5r500

keV
MX
M⊙

E(z) 1013.55±0.02 1.499 Z08
T0.2−0.5r500

keV
MX
M⊙

E(z) 1013.42±0.22 1.654± 0.256 Z08,γ fitted
T0.15−0.5r500

5 keV
MX
M⊙

E(z) 1013.39±0.02 1.5 V09a
T0.2−0.5r500

keV
Mwl
M⊙

E(z) 1013.37±0.15 1.5 this work
T0.2−0.5r500

keV
Mwl
M⊙

E(z) 1013.37±0.14 1.59 this work
T0.2−0.5r500

keV
MMc
M⊙

E(z) 1013.47±0.17 1.5 this work
T0.2−0.5r500

keV
MMc
M⊙

E(z) 1013.49±0.18 1.59 this work
T0.2−0.5r500

keV
Mwl
M⊙

E(z) 1013.57±0.05 1.59 Z08
T0.2−0.5r500

keV
Mwl
M⊙

E(z) 1013.53±0.04 1.59 Z08,rYX ,X
500

MX
M⊙

E(z) L0.1−2.4 keV(0.2−1r500)
erg/s E(z)−1 1025.11±0.18 1.3 this work

MX
M⊙

(∆c,z/∆c,0)0.5 E(z) L0.1−2.4 keV(0.1r500−20′)
erg/s (∆c,z/∆c,0)−0.5 E(z)−1 1025.00±0.06 1.3 Z06

MX
M⊙

E(z) Lbol(0.2−1r500)
erg/s E(z)−1 1025.88±0.13 1.3 this work

MX
M⊙

E(z) Lbol(0.2−1r500)
erg/s E(z)−1 1018.23±0.16 1.814 this work

MX
M⊙

E(z) Lbol(r500)
erg/s E(z)−1 1025.38±0.02 1.33 E04

MX
M⊙

E(z) Lbol(r500)
erg/s E(z)−1 1017.05±0.63 1.88± 0.42 E04,γ fitted

MX
1014M⊙

(∆c,z/∆c,0)0.5 E(z) Lbol(0.1r500−20′)
erg/s (∆c,z/∆c,0)−0.5 E(z)−1 1025.35±0.06 1.3 Z06

MX
M⊙

E(z) Lbol(0.2−2.5r500)
erg/s E(z)−1 1018.03±0.05 1.814 Z08

MX
M⊙

E(z) Lbol(0.2−2.5r500)
erg/s E(z)−1 1010.46±10.39 2.325± 0.701 Z08,γ fitted

MX
1014M⊙

E(z) L0.5−2.0 keV(0.2−1r500)
1044 erg/s

E(z)−1 1025.09±0.17 1.3 this work
Mwl
M⊙

E(z) L0.1−2.4 keV(0.2−1r500)
erg/s E(z)−1 1025.14±0.21 1.3 this work

MMc
M⊙

E(z) L0.1−2.4 keV(0.2−1r500)
erg/s E(z)−1 1025.24±0.23 1.3 this work

Mwl
M⊙

E(z) Lbol(0.2−1r500)
erg/s E(z)−1 1025.63±0.16 1.3 this work

Mwl
M⊙

E(z) Lbol(0.2−1r500)
erg/s E(z)−1 1021.61±0.22 1.572 this work

Mwl
M⊙

E(z) Lbol(0.2−1r500)
erg/s E(z)−1 1018.04±0.28 1.814 this work

MMc
M⊙

E(z) Lbol(0.2−1r500)
erg/s E(z)−1 1025.81±0.25 1.3 this work

MMc
M⊙

E(z) Lbol(0.2−1r500)
erg/s E(z)−1 1021.77±0.29 1.572 this work

MMc
M⊙

E(z) Lbol(0.2−1r500)
erg/s E(z)−1 1018.18±0.32 1.814 this work

Mwl
M⊙

E(z) Lbol(0.2−2.5r500)
erg/s E(z)−1 1021.59±0.05 1.572 Z08,rYX ,X

500
Mwl
M⊙

E(z) L0.5−2.0 keV(0.2−1r500)
erg/s E(z)−1 1025.03±0.21 1.3 this work

MMc
M⊙

E(z) L0.5−2.0 keV(0.2−1r500)
erg/s E(z)−1 1025.13±0.23 1.3 this work
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We compared our results to Zhang et al. (2008) and Zhang et al.(2010). Zhang et al. (2008)
obtained theirMwl − MX relation from 19 galaxy clusters of the LoCuSS-sample. Thissample
consists of more than 100 low-redshift clusters (0.14< z< 0.3) selected from theROSATAll Sky
Survey withL0.1−2.4 keV & 2 × 1044 erg s−1. The X-ray masses were obtained fromXMM-Newton
data and the weak lensing masses were derived from CFHT-databy Bardeau et al. (2005, 2007).
For γ = 1, Zhang et al. (2008) found that the weak lensing masses are systematically higher by
28± 14% than the X-ray masses. They concluded that the ratio of both mass estimates is biased
by the huge errors onMwl for some clusters because the mass errors for each cluster are weighted
individually. Our normalisation is 5% higher than, but consistent with theirs.

Zhang et al. (2010) calibrated theMwl − MX relation for 12 LoCuSS clusters observed with
XMM-Newtonand SUBARU. For a more detailed mass comparison, the sample was divided into
sub-samples with seven disturbed and five undisturbed clusters. Zhang et al. (2010) assumed that
the X-ray masses for their disturbed sub-sample are 6% higher than their weak lensing masses
because of adiabatic compression and shock-heating that may overestimate X-ray hydrostatic
masses. Our normalisation is 10% lower, but consistent withthe normalisation of their relaxed
sub-sample. It is not consistent with the normalisation of their disturbed sub-sample and their
total sample which are 23% and 17% higher than ours.

8.1.2 Mwl from Mc

The huge errors on the weak lensing masses of the merging clusters may bias the derived weak
lensing to X-ray mass ratio because our fitting method accounts for the errors on both mass esti-
mates individually for each cluster. This bias can be checked with either simulations or using weak
lensing masses with smaller errors. The mass estimatesMMc from the one-parameter NFW-model
with fixed concentration, for instance, provide a good cross-check because for a fixed concentra-
tion the weak lensing mass-profile is more accurate and the errors on weak lensing masses are
significantly smaller (Tables A.1-A.5). However, our weak lensing masses from theMc-model
can only serve to check the bias induced by huge error bars because for disturbed clusters this
model underpredicts the cluster mass and does not provide good fits to the tangential shear profile
of such clusters (Sects. 6.2.1 and 6.3).

TheMMc−MX relation is plotted in Fig. 8.2. The normalisation is∼ 37% higher than that of
theMwl −MX relation. Our results agree best with the disturbed sub-sample of Zhang et al. (2010)
which has∼ 6% lower normalisation than ours. Due to the large error of our normalisation, the
MMc − MX relation is also consistent with their total sample, but notconsistent with their relaxed
sub-sample and Zhang et al. (2008).

The significant difference to theMwl-MX relation may be due to: TheMc-model poorly fits
our mergers CL0015.9+1609 and MS1008.1−1224. Furthermore, MS0451.6−0305 is not fitted
well by that mass model as well. Only for MS2137.3−2353, theMc-model fits the tangential
shear profile best. Thus,MX is ∼ 12% higher thanMMc at r500,X . That theMc-model poorly fits
three of our clusters is also reflected in the error on normalisation which is∼ 2 times larger than
that of theMwl − MX relation.

8.2 X-ray hydrostatic and weak lensing masses versus temperature

The slope for theM−TX relations was fixed atγ = 1.5 according to Sect. 3.2.2 which is convenient
to compare to the REFLEX-DXL sample atz ∼ 0.3 (Zhang et al. 2006). For theMwl − TX and
MMc − TX relations we also fixed the slope atγ = 1.59 to compare our results with Zhang et al.
(2008).
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Figure 8.2: Hydrostatic massesMX versus weak lensing massesMMc at r500,X for our sample and the samples from
Zhang et al. (2008) and Zhang et al. (2010). To be consistent with the mass-observable scaling relations,E(z) was also
applied for the comparison of weak lensing and X-ray hydrostatic masses.

8.2.1 MX versusTX

We compared our results to Ettori et al. (2004), Zhang et al. (2006), Zhang et al. (2008) and
Vikhlinin et al. (2009a). TheMX − TX relation is plotted in the upper panel of Fig. 8.3.

Ettori et al. (2004) used a sample of 28 clusters at 0.4 < z < 1.3 with luminosities between
1044 erg/s < LX < 1.2 × 1046 erg s−1. The sample was observed withChandrato study the evo-
lution of scaling relations. The emission-weighted temperatures (3− 11 keV) were determined
from spectra in the 0.6 − 8.0 keV energy band assuming a “mekal”-model. The radius within
which the temperatures were determined was chosen individually for each cluster to optimise
the signal-to-noise ratio in the 0.5 − 5.0 keV energy band because this energy band consists of
most of the effective area ofChandra. The masses withinr500 were derived from the hydrostatic
equation (Eq. 3.14) assuming an isothermal temperature. For the redshift evolution correction
E(z) and∆c,z = 18π2 + 82(Ωm,z − 1) − 39(Ωm,z − 1)2 were applied toMX. The latter is the an-
alytic approximation derived from the spherical collapse model (Sect. 1.3.2) for a flat universe
andΩm,z is the matter density at redshiftz. This factor accounts for the fact that their masses and
observables were obtained for an overdensity∆z which is 500 times the critical density at the
cluster redshiftz. Ettori et al. (2004) obtainedMX/M⊙ = 1013.21±0.03(TX/keV)1.98±0.03 with free
slope andMX/M⊙ = 1013.57±0.02(TX/keV)1.5 with fixed slope. The temperatures were originally
normalised to 6 keV but we transformed the scaling relationsto our notation in Table 8.1. Our
mass-temperature relation forγ = 1.5 is 21% lower than theirs.

The REFLEX-DXL was constructed by Zhang et al. (2006). It is an unbiased, flux-limited
and almost volume-complete sample consisting of 13 X-ray luminous clusters (L0.1−2.4 keV &

5.9 × 1044 erg s−1) observed withXMM-Newton. The clusters are atz ∼ 0.3 which is at the
lower redshift-end of our sample. Zhang et al. (2006) determined the global temperatures within
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0.1 − 0.5r500 because the temperature profiles of their clusters show self-similarity in this range.
BesidesE(z), these authors used (∆c,z/∆c,0)0.5 for the redshift evolution correction ofMX to com-
pare their results with Ettori et al. (2004). We assume that our normalisation is not consistent with
theirs because they excluded a smaller core region and because of (∆c,z/∆c,0)0.5.

Zhang et al. (2008) determined global temperatures within 0.2−0.5r500 and accounted for the
redshift evolution ofMX only with E(z) which we adopted. Thus, our normalisation for the fixed
slopeγ = 1.5 agrees better with theirs forγ = 1.499 than with the normalisation of their previous
work (Zhang et al. 2006). The normalisation for ourMX −TX relation with slope fixed atγ = 1.59
is 13% higher than their normalisation of theMX −TX relation with fitted slopeγ = 1.654±0.256.

We also compared ourMX − TX relation to that of the low-redshift sub-sample of relaxed
Chandra-clusters from Vikhlinin et al. (2009a). This sub-sample consists of 49 flux-limited clus-
ters (f0.5−2.0 keV > 1.3 × 10−11 erg s−1 cm−2) from the 400 Square Degree ROSAT PSPC Galaxy
Cluster Survey (Burenin et al. 2007) with a mean redshift ofz ∼ 0.15. For theMX − TX relation,
only 19 clusters from this survey were used because those arerelaxed. The global temperatures
were determined within 0.15− 0.5r500 because their temperature profiles appear self-similar in
that range. The temperatures were normalised to 5 keV since this is approximately the median
temperature of the sample. A redshift evolution correctionE(z) was applied toMX . With the slope
fixed atγ = 1.5, our normalisation is 17% higher than, but consistent withtheirs. Vikhlinin et al.
(2009a) extrapolated theMX − TX relation of their low-redshift sample to clusters at higherred-
shifts using simulations of Nagai et al. (2007). Thereby, they accounted for an increasing fraction
of merging clusters towards higher redshifts. These simulations indicated a systematic offset in
the normalisations ofMX − TX for relaxed and disturbed clusters because merging clusters have
lower temperatures than relaxed clusters of the same mass. Vikhlinin et al. (2009a) concluded that
the normalisations ofMX − TX relations differs by 7% for clusters atz = 0 andz ∼ 0.6. Our
normalisation is 17% higher but consistent with theirs.

8.2.2 Mwl from the best fit model versusTX

To compare theMX − TX relation to theMwl − TX relation, the slope for the latter was fixed at
γ = 1.5. We show the scaling relation in the middle panel of Fig. 8.3. Our normalisation of the
Mwl − TX relation is 21% lower, but consistent with that of theMX − TX relation. The errors on
the normalisation are∼ 2 times larger compared to usingMX.

To compare our results to Zhang et al. (2008) the slope was also fixed toγ = 1.59. Zhang
et al. (2008) used fixed slopes forr500 and forrYX ,X

500 , where the superscript “YX ,X” states that this
overdensity radius was derived from theM − YX relation becauseYX = MgasTX provides a good
mass proxy as found in simulations (Nagai et al. 2007). Zhanget al. (2008) used this alternative
radial scale because some merging clusters in their sample consisting of 37 LoCuSS clusters in
total show significant offset from the best fit scaling relations. Our normalisation is37% higher
than that of Zhang et al. (2008) forr500 and 31% lower than their normalisation forrYX ,X

500 .

8.2.3 MMc versusTX

The MMc − TX relation is plotted in the lower panel of Fig. 8.3. The normalisation is consistent
with that of theMX − TX relation and with that of theMwl − TX relation although it is 21% higher
than the latter. The errors on the normalisation are slightly larger than that of theMwl−TX relation
which may be because theMc-model provides a poor fit to most of our clusters.

Our normalisation is consistent with those of Zhang et al. (2008) forr500 andrYX ,X
500 which are

17% and 9% lower than our normalisation, respectively.
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Figure 8.3: X-ray hydrostatic massesMX (upper) and weak lensing masses from the best fit modelMwl (middle) and
from theMc-model,MMc (lower) versus the global temperatureTX . All three scaling relations are compared to Zhang
et al. (2008) and theMX − TX relation is also compared to Ettori et al. (2004) and Vikhlinin et al. (2009a).
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8.3 X-ray hydrostatic and weak lensing masses versus luminosity

We calibratedMX − LX-relations for the luminosities in the soft band,L0.5−2.0 keV, the ROSAT-
bandL0.1−2.4 keV and the bolometric luminosity,Lbol with X-ray hydrostatic masses,MX , weak
lensing masses from the best-fit model and from theMc-model,Mwl andMMc, respectively. For
all relations, the slope was fixed atγ = 1.3 which is convenient to compare to Zhang et al. (2006)
and close to the self-similar predictionγ = 1.33 (Sect. 3.2.2). To compare our results to Zhang
et al. (2008), the slope for theMX − Lbol relation was also fixed atγ = 1.814 and the slopes of
the Mwl − Lbol and theMMc − Lbol relations were fixed atγ = 1.572. Zhang et al. (2008) used
γ = 1.814 to check the self-consistency of theirMX − Lbol relation (Lbol ∝ T2.719, MX ∝ T1.499

X ⇒
Lbol ∝ M1.814

X ) andγ = 1.572 was used to compare their results to Borgani et al. (2004).
All mass-luminosity relations can have large scatter because the luminosity is not necessarily

correlated with mass or dynamical state.LX can easily be affected by merging but also by cooling
cores wherefore it can be used to probe the evolution of cool cores. Thus, to calculate global
luminosities, the core region is often excluded in the literature.

8.3.1 MX versus luminosity

We compared ourMX − L0.1−2.4 keV relation to Zhang et al. (2006). TheMX − Lbol relation was
compared to Ettori et al. (2004), Zhang et al. (2006) and Zhang et al. (2008). OurMX − Lbol

relations forγ = 1.3 andγ = 1.814 are plotted and compared to the literature Fig. 8.4.
Ettori et al. (2004) measured the luminosities of their sample within r500. For a fitted slope,

they obtainedLbol(erg−1 s) = 1017.05±0.63(MX/M⊙)1.88±0.42 and for a fixed slope they obtained
Lbol(erg−1 s) = 1025.38±0.03(MX/M⊙)1.33. The results are already rescaled to our notation. Our
normalisations withγ = 1.814 andγ = 1.3 are not consistent with theirs forγ = 1.88± 0.42 and
γ = 1.3, respectively which may be due to that they normalised their scaling relation using∆z, i.e.
LbolE(z)−1 ∝ ∆7/6

z [MXE(z)]4/3.
Zhang et al. (2006) applied (∆c,z/∆c,0)0.5 E(z) to MX and (∆c,z/∆c,0)−0.5 E(z)−1 to L0.1−2.4 keV

and Lbol. L0.1−2.4 keV and Lbol were calculated withinr = 20′ and to account for cool core the
r < 0.1r500-region was excluded. Our normalisation of theMX − L0.1−2.4 keV relation withγ = 1.3
is 22% higher than, but consistent with theirs and our normalisation of theMX − Lbol relation with
γ = 1.3 is not consistent with theirs. We assume that this is due to:(1) Our luminosities were
determined within 0.2− 1r500 instead of 0.1r500− 20′ which gives lower luminosities. (2) Zhang
et al. (2006) used (∆c,z/∆c,0)±0.5 in addition to account for evolution effects.

To calculate the bolometric luminosity, Zhang et al. (2008)used the 0.2 − 2.5r500 range to
account for cool cores. Luminosities and masses were redshift corrected withE(z)−1 andE(z), re-
spectively. With our slope fixed atγ = 1.814, our normalisation is 37% higher than, but consistent
with theirs. We do not compare our normalisation forγ = 1.814 to the normalisation of their fitted
slopeγ = 2.325± 0.701 because the slopes are too different.

8.3.2 Mwl from the best fit model versus luminosity

The normalisations of theMwl−LX relations withγ = 1.3 are consistent with those of theMX−LX

relations, except forLbol. Figure 8.4 shows that our scaling relation with slopeγ = 1.814 fits the
data better than that with slopeγ = 1.3 which is close to the self-similar predictionγ = 1.33.
Comparing ourMwl − Lbol relation to ourMX − Lbol relation withγ = 1.814, the former is 35%
higher than, but consistent with the latter.

Our normalisation of theMwl − Lbol relation is 37% higher than, but consistent with Zhang
et al. (2008) forrYX ,X

500 andγ = 1.814.
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Figure 8.4:MX − Lbol relations forγ = 1.3 andγ = 1.814 compared to Zhang et al. (2006) and Zhang et al. (2008).

8.3.3 MMc versus luminosity

We compared our normalisations of theMMc − LX relations to the mass-luminosity relations with
MX andMwl to check the effect of the errors on mass. TheMMc − Lbol relation is also compared
to Zhang et al. (2008).

The normalisations of theMMc − LX relations agree with those of theMX − LX relations.
The errors on normalisation do not change much between usingMwl andMMc, although they are
slightly larger for the latter which may be due to thatMMc poorly fits the tangential shear profiles
three out of four clusters.

With the slope fixed atγ = 1.572, our normalisation is 5% higher than, but consistent with
that of Zhang et al. (2008) forrYX ,X

500 .

8.4 Luminosity versus temperature

The luminosity-temperature relationLX − TX has been extensively studied for cluster samples at
low and intermediate redshifts (e.g. Markevitch et al. 1998; Arnaud & Evrard 1999; Ikebe et al.
2002; Zhang et al. 2006; Chen et al. 2007; Zhang et al. 2008).

At higher redshifts (0.4 < z < 1.3), this relation was investigated by e.g. Ettori et al. (2004),
Kotov & Vikhlinin (2005) and Maughan et al. (2006). Kotov & Vikhlinin (2005) found an evolu-
tion in the bolometric luminosityLbol as∝ (1 + z)1.8±0.3 with XMM-Newtondata. Although this
result is consistent with previous observations usingChandra-data (e.g. Vikhlinin et al. 2002) and
formerXMM-Newtonstudies (e.g. Lumb et al. 2004) it disagrees with Ettori et al. (2004).

In the literature, cool cores are often excluded (e.g. Markevitch 1998; Kotov & Vikhlinin
2005; Zhang 2001; Zhang et al. 2006, 2008) because the luminosity is sensitive to cool cores.
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Thus, the scatter of theLX − TX can be reduced by excluding cool cores which also reduces its
normalisation.

The Lbol − TX relation is plotted and compared with the literature in Fig.8.5. Slopes and
normalisations of allLX − TX relations are listed and compared in Table 8.2.

Table 8.2: Parameters of the X-ray scaling relations not including total cluster masses for fitting the power lawY =
Y0Xγ. To compare our results to the literature, we transformed our scaling relations to the notation of Zhang et al.
(2006, 2008, 2010). (∆c,z/∆c,0)±0.5 is the density contrast of a virialised halo with respect to the critical density with the
analytical approximation∆c,z derived from the spherical collapse model for a flat universe(Bryan & Norman 1998).
The abbreviations for the literature are: M98 for Markevitch et al. (1998), AE99 for Arnaud & Evrard (1999), I02 for
Ikebe et al. (2002), M06 for Maughan et al. (2006), Z06 for Zhang et al. (2006), B07 for Balestra et al. (2007), Z08 for
Zhang et al. (2008), V09a for Vikhlinin et al. (2009a), Z10 for Zhang et al. (2010) and Z11 for Zhang et al. (2011a).

X Y Y0 γ Sample
T0.2−0.5r500

keV
L0.1−2.4 keV(0.2−1r500)

erg/s E(z)−1 1042.17±0.08 2.6 this work
T0.2−0.5r500

keV
L0.1−2.4 keV(0.2−1r500)

erg/s E(z)−1 1042.36±0.08 2.219 this work
T0.6−1.0h−1 Mpc

keV
L0.1−2.4 keV(0.05−1.0h−1 Mpc)

erg/s 1042.52±0.12 2.10± 0.12 M98,γ fitted
TX
keV

L0.1−2.4 keV
erg/s 1042.14 2.5 I02

T0.1−0.5r500
keV

L0.1−2.4 keV(0.1r500−20′)
erg/s (∆c,z/∆c,0)−0.5 E(z)−1 1042.37±0.06 2.6 Z06

T0.2−0.5r500
keV

L0.1−2.4 keV(0.2−2.5r500)
erg/s E(z)−1 1042.67±0.03 2.219 Z08

T0.2−0.5r500
keV

L0.1−2.4 keV(0.2−2.5r500)
erg/s E(z)−1 1042.75±0.28 2.127± 0.323 Z08,γ fitted

T0.2−0.5r500
keV

Lbol(0.2−1r500)
erg/s E(z)−1 1042.44±0.05 2.98 this work

T0.2−0.5r500
keV

Lbol(0.2−1r500)
erg/s E(z)−1 1042.68±0.05 2.719 this work

T0.6−1.0h−1 Mpc

keV
Lbol(0.05−1.0h−1 Mpc)

erg/s 1042.44±0.27 2.64± 0.27 M98,γ fitted
TX
keV

Lbol
erg/s 1042.82±0.14 2.88± 0.05 AE99,γ fitted

Tr200
keV

Lbol(r200)
erg/s 1042.55±0.12 2.78± 0.55 M06,γ fitted

T0.1−0.5r500
keV

Lbol(0.1r500−20′)
erg/s (∆c,z/∆c,0)−0.5 E(z)−1 1042.38±0.06 2.98 Z06

T0.2−0.5r500
keV

Lbol(0.2−2.5r500)
erg/s E(z)−1 1042.65±0.03 2.719 Z08

T0.2−0.5r500
keV

Lbol(0.2−2.5r500)
erg/s E(z)−1 1042.74±0.27 2.614± 0.319 Z08,γ fitted

T0.2−0.5r500
keV

L0.5−2.0 keV(0.2−1r500)
erg/s E(z)−1 1042.08±0.07 2.6 this work

T0.2−0.5r500
keV

Z0.2−0.5r500
Z⊙

10−0.202±0.043 −0.324 this work
T0.2−0.5r500

keV

Z0.2−0.5r500
Z⊙

10−0.323±0.061 −0.324± 0.098 Z11,γ fitted
T0.15−0.3r500

keV
Z

Z⊙
10−0.056 −0.47 B07

8.4.1 LX − TX relations for ROSAT and ASCA

Early LX −TX relations were investigated withROSAT- andASCA-observations. SinceASCAhad
low spatial resolution (∼ 3′), it was used for temperature measurements in the studies described
below. The luminosity, however, was determined fromROSAT-data.

Markevitch (1998) calibratedLX − TX relations forL0.1−2.4 keV andLbol for a sample of 32
Abell clusters selected from theROSATAll Sky Survey (RASS) Abell cluster list (Ebeling et al.
1996) plus three non-Abell clusters. The sample is located at 0.04 < z < 0.09 and has fluxes of
f0.1−2.4 keV > 2 × 1011 erg s−1 cm−2. The flux was measured within 1h−1 Mpc whereby the inner-
most 50h−1 kpc were excluded to account for cooling flows which reduces the scatter in theLX−TX

relations. For this reason, flux and luminosity were multiplied by a factor of 1.06 to account for
the flux inside that region. The emission-weighted cooling-flow excludingASCA-temperatures
were determined in apertures of (0.6− 1)h−1 Mpc depending on the observational details because
the cluster emission is dominated by bright central regions. After transforming the luminosities
to our notation, Markevitch (1998) obtainedL0.1−2.4 keV(erg−1 s) = 1042.52±0.12(TX/keV)2.10±0.24
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andLbol(erg−1 s)= 1042.44±0.26(TX/keV)2.64±0.27. Our normalisation of theLbol − TX relation with
γ = 2.719 is 42% higher, but consistent with theirs and our normalisation for theL0.1−2.4 keV − TX

relation forγ = 2.219 is 34% lower, but also consistent with theirs.
Arnaud & Evrard (1999) calibrated aLbol − TX relation for 24 clusters selected for sta-

tistically accurate temperature measurements with weak cooling flows (Ṁ . 100M⊙ yr−1) and
temperatures above& 2 keV. The clusters are at 0.01 < z < 0.37. Temperature and lumi-
nosity of 18 of the clusters were measured with theGinga-satellite. The temperatures for the
other clusters were obtained withACSA, EinsteinandEXOSATand the luminosities arise from
ROSAT. Arnaud & Evrard (1999) found that the bolometric luminosities measured withGinga
andROSATagree well. The scaling relation between both observables is tight withLbol(erg−1 s)=
1042.82±0.14 · (TX/keV)2.88±0.15 whereby we have transformed their scaling relation to our nota-
tion. Our normalisation usingγ = 2.98 is not consistent with theirs and our normalisation using
γ = 2.719 is 28% lower than, but consistent with theirs.

Ikebe et al. (2002) calibrated theL0.1−2.4 keV − TX relation for a flux-limited sample (f &
2.0 × 10−11 erg s−1 cm−2) of 88 low-redshift clusters (z . 0.2) usingASCA- andROSAT- obser-
vations covering a temperature range of 1.4− 11 keV. Luminosities were determined withROSAT
PSPC observations (Reiprich & Böhringer 2002). The temperatures were determined using a
two-temperature model which assumes an isothermal plasma in the cluster region with a cooler
isothermal gas component in the central region. For a flat universe withΩm = 0.2 andΩΛ = 0.8,
Ikebe et al. (2002) obtainedL0.1−2.4 keV(erg−1 s) = 1042.14(TX/keV)2.5 after correcting the relation
with respect to less luminous clusters. Our normalisation for this relation with the slope fixed at
γ = 2.6 is not consistent with theirs. SinceE(z) differs by less than 6% between their cosmol-
ogy and ourΛCDM-model, we assume that this disagreement is due to the different temperature
models.

Chen et al. (2007) investigated theL0.1−2.4 keV − TX relation for the flux-limited HIFLUGCS
sample (f0.1−2.4 keV > 2×1011 erg s−1 cm−2) consisting of 106 clustersz< 0.1 observed withASCA
andROSAT. The luminosities in theROSAT-band were derived from Ikebe et al. (2002). For the
temperature, Chen et al. (2007) used two definitions: (1) theemission weighted temperatureTm

from a single temperature fit to the global spectrum (Markevitch et al. 1998; Reiprich 2001); (2)
the hotter bulk componentTh of a two temperature model (Ikebe et al. 2002).Tm was only used
without cooling flow correction because for some clustersTm was measured including the cooling
flow region. The slopes for theL0.1−2.4 keV − TX relation withTm andTh are with 2.23± 0.15 and
2.73± 0.13 higher than the self-similar prediction 1.5 which is, however, consistent with Reiprich
& Böhringer (2002). Chen et al. (2007) assumed that the slope of theL0.1−2.4 keV − Tm relation is
smaller than that of theL0.1−2.4 keV−Th relation becauseTm has an offset towards low temperatures
and because fewer low-luminosity clusters were included intheL0.1−2.4 keV − Tm relation. We did
not compare our results with their study because they assumed an Einstein-de Sitter cosmology
which is too different from our cosmology. Comparing both cosmologies for our high-redshift
clusters, theE(z) differs by∼ 32%.

8.4.2 LX − TX relations for XMM-Newton and Chandra

Temperature-luminosity relations based on high-resolution instruments were performed with data
from XMM-NewtonandChandra. Those studies also include the higher redshift range 0.3 < z <
1.3.

Ettori et al. (2004) obtainedLbol(erg−1 s)= 1041.90±0.11(TX/keV)3.72±0.47 for a free slope and
Lbol(erg−1 s) = 1043.44±0.02(TX/keV)2.00 for a fixed slope using the linear regression algorithm
BCES (Akritas & Bershady 1996). Both scaling relations are already transformed to our notation.
We did not compare their results with ours because the slopesare too different from our sample.
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Lumb et al. (2004) calibrated theLbol − TX relation for a sample of eight clusters selected
from the SHARC and 160 Square Degree (160SD)ROSATsurveys at 0.45 < z < 0.62 (Romer
et al. 2000; Burke et al. 2003) withXMM-Newton. The temperatures were obtained within a ra-
dius that varies between 90′′ and 145′′ among the clusters using a “mekal”-model plus a model
for interstellar absorption. Following Markevitch et al. (1998), cool cores were excised by ex-
cluding the innermost 50h−1

50 kpc. Bolometric luminosities were obtained withXSPEC within the
virial radiusrvir using theTX − rvir relation from Evrard et al. (1996). The best fit “mekal”-model
was used to determine the bolometric luminosity which is here defined as the luminosity in the
0 − 20 keV band. After rescaling to our notation, Lumb et al. (2004) obtainedLbol(erg−1 s) =
1043.10±0.03+0.89

−0.74(TX/keV)2.7±0.4 assuming an Einstein-de Sitter cosmology withh = 0.5 and using
the bisector method for linear regression (Akritas & Bershady 1996). Lumb et al. (2004) compared
their scaling relation to that of Markevitch et al. (1998) and found an evolutionary effect such that
clusters having the same temperature were more luminous in the past. We did not compare our
results to their study because their cosmology is too different from ours.

Kotov & Vikhlinin (2005) investigated theLbol − TX relation from a sample of 10XMM-
Newtonclusters at 0.4 < z< 0.7 with temperatures of 2.5− 9 keV. Temperatures were fitted in the
0.5 − 10 keV energy band within 70 kpc< r < r500 using a “mekal”-model and renormalised by
+8% to account for the cross-calibration ofChandraandXMM-Newton. Luminosities were calcu-
lated within 70− 1400 kpc using the emission weighted temperatureTX,ew. The innermost 70 kpc
were excluded to reduce the scatter from cool cores. To calibrate theLbol−TX relation, the best fit
temperature from the spectral fitting was used for clusters with irregular morphology andTX,ew was
used for the others. Kotov & Vikhlinin (2005) foundLbol(erg−1 s) ∝ (1+ z)1.8±0.3(TX,ew/keV)2.64

using the bisector method of Akritas & Bershady (1996) modified such that it accounts for mea-
surement errors and intrinsic scatter. Compared to the low-redshift sample of Markevitch et al.
(1998), Kotov & Vikhlinin (2005) found an evolution with redshift.

Maughan et al. (2006) used 11 high-redshift clusters (0.6 < z < 1.0) from the Wide Angle
ROSATPointed Survey (WARPS, e.g Scharf et al. 1997; Perlman et al.2002) to investigate the
evolution of scaling relations with redshift. The clusterswere observed withXMM-Newtonand
Chandra. Originally, the sample was flux limited (f0.5−2.0 keV > 6.4 × 10−13 erg s−1 cm2). but two
XMM-Newtonclusters were excised because of high background. The spectra which were used
to determine the temperature were drawn from within a radiusrd, inside which cluster emission
could be detected at least at the 3σ-level, and fitted to a “mekal”-model in the 0.4− 7.0 keV band.
To calibrate the scaling relations, the bolometric luminosities measured withinrd were rescaled to
r200 and redshift weighted withLbolE(z)−1(∆c,z/∆c,0)−0.5. In our notation, Maughan et al. (2006)
obtainedLbol(erg−1 s) = 1042.55±0.12(TX/keV)2.78±0.55. Thus, our normalisation forγ = 2.98 is
22% lower, but consistent with theirs. Our normalisation for γ = 2.719 is 26% higher than,
but consistent with theirs. Maughan et al. (2006) found the evolution in the scaling relation is
consistent with self-similar predictions.

Zhang et al. (2006) calibratedL0.1−2.4 keV−TX andLbol−TX relations for the REFLEX-DXL
sample (see Sects. 8.2.1 and 8.3.1 for sample characteristics and details of their analysis). Using
a fixed slope, they obtainedL0.1−2.4 keV(erg−1 s) = 1042.37±0.06(TX/keV)2.6 and Lbol(erg−1 s) =
1042.38±0.06(TX/keV)2.98. Our normalisation for theL0.1−2.4 keV−TX relation is not consistent with
theirs and our normalisation for theLbol − TX relation is 13% higher, but consistent with theirs
using the same slopes. Zhang et al. (2006) reduced the scatter in the LX − TX relations by 10%
excluding cool cores. TheirLbol − TX relation also agrees with Markevitch et al. (1998), Arnaud
& Evrard (1999), Reiprich & Böhringer (2002) and Kotov & Vikhlinin (2005) after applying their
alternative redshift evolution (1+ z)1.8, i.e. Lbol(erg−1 s)∝ (1+ z)1.8(TX/keV)2.98.

Zhang et al. (2008) calibratedL0.1−2.4 keV−TX andLbol−TX relations for the LoCuSS-sample
(see Sects. 8.2.1 and 8.3.1 for sample characteristics and details of their analysis). The fixed slope
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Figure 8.5:Lbol versus global temperaturesTX . Our luminosities and temperatures are determined within 0.2 − 1r500

and 0.2− 0.5r500, respectively. The results from this work are compared to Maughan et al. (2006), Zhang et al. (2006)
and Zhang et al. (2008).

of their Lbol − TX relation is with 2.614± 0.319 higher than the self-similar predictionLX ∝ T2
X

(Sect. 3.2.2). Their normalisation agrees with Markevitchet al. (1998), Arnaud & Evrard (1999)
and Chen et al. (2007). The normalisation of theL0.1−2.4 keV−TX relation further agrees with Ikebe
et al. (2002). Zhang et al. (2008) found that the evolution intheir scaling relation is consistent with
LSS growth predictions and that the difference between the normalisation of theLX −TX relations
usingROSAT/ASCAandXMM-Newton/Chandrais marginal. With our slope fixed atγ = 2.219,
our normalisation of theL0.1−2.4 keV − TX relation is not consistent with theirs forγ = 2.219 and
γ = 2.127± 0.323. Our normalisation of theLbol − TX relation forγ = 2.719 is 7% higher than,
but consistent with theirs for the same slope and 13% lower than, but also consistent with their
normalisation forγ = 2.614± 0.319.

8.5 Temperature versus metallicity

TheTX − Z relation checks if line emission boosts the X-ray luminosity of flux-limited samples
because low-mass systems with high metallicity might be included in such samples since their
luminosity is boosted due to the high metallicity. Our slopewas fixed toγ = 0.324 which is
convenient to compare to Zhang et al. (2011a) who fitted this value. We compared our results to
Balestra et al. (2007) and Zhang et al. (2011a) in the lower part of Table 8.2 and in Fig. 8.6.

Balestra et al. (2007) used a sample of 56Chandra-clusters at 0.3 < z< 1.3 with temperatures
in the 3− 15 keV range. Their emission-weighted metallicities and temperatures were determined
within 0.15− 0.3rvir with rvir from Evrard et al. (1996) assuming a “mekal”-model. Balestra et al.
(2007) found that the metallicity decreases towards higherredshifts with∝ (1 + z)−1.25 and that
low-temperature clusters have higher metallicities than hot clusters at all redshifts. OurTX − Z
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relation is not consistent with this study which may be due tothat Balestra et al. (2007) used the
emission weighted metallicities.

Zhang et al. (2011a) calibrated theTX −Z relation for 62 HIFLUGCS-clusters observed with
XMM-Newton. They found that for their flux-limited HIFLUGCS-sample, low-mass clusters are
included because their high metallicity increases the luminosity by line emission. Subsequently,
this affects the scaling relations at the low-mass end with respect to the mass dependence of the
slope. We found a similar trend although the massive clusterMS1008.1−1224 disturbs the relation
because of its high metallicity. Our normalisation is 24% lower than, but consistent with Zhang
et al. (2011a) who obtainedY0 = 10−0.323±0.061 using the bisector method (Akritas & Bershady
1996).
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Figure 8.6: Global temperaturesTX versus metallicitiesZ in solar units for our sample and the samples of Balestra et al.
(2007) and Zhang et al. (2011a).

8.6 Comparison with simulations

Hydrodynamic simulations have been used to investigate X-ray hydrostatic mass estimates and
their results can be compared to observations to calibrate the cluster mass measurements.

Early simulations were performed by Evrard et al. (1996) whosimulated the formation of
galaxy clusters in different cosmologies, i.e. the Einstein-de Sitter model withσ8 = 0.59, an
open universe withσ8 = 1.0, Ωm = 0.2 andΩΛ = 0 and a flat, low-density universe with
σ8 = 1.0, Ωm = 0.2 andΩΛ = 0.8. Evrard et al. (1996) found that hydrostatic masses as-
suming an isothermalβ-model are very accurate when they are obtained for overdensities be-
tween 500ρcr and 2500ρcr. Their MX − TX relation with mass and temperature withinr500 for the
Einstein-de Sitter model reads in our notation:MX/M⊙ = 1013.85(TX/keV)1.5. Thereby, the tem-
perature withinr500 was obtained from fitting a power law toTX ∝ M(< r500)/r500 ∝ r2

500, i.e.
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r500(TX) = (2.48± 0.17)(TX/10 keV)0.5 Mpc. The masses therein were obtained from the hydro-
static equation assuming aβ-model for the electron number density and an isothermal temperature.
Our normalisation is not consistent with their simulation which may be due to the different cos-
mologies.

Borgani et al. (2004) performed a large hydrodynamical simulation to simulate a cube of
192h−1 Mpc with 4803 dark matter and gas particles having masses of 6.6×109M⊙ and 9.9×108M⊙,
respectively. The underlying cosmology is aΛCDM-cosmology withσ8 = 0.8,Ωm = 0.3,ΩΛ =
0.7 andΩb = 0.04. The simulation is initialised at a redshift ofz= 46, whereby energy and entropy
were conserved. Luminosities and emission weighted temperatures within 0.5 − 10 keV were
calculated within the virial radiusrvir . Borgani et al. (2004) obtained a mass-temperature relation
which reads in our notation asMX/M⊙ = 1013.40±0.01(TX/keV)1.59±0.05. Thus, our normalisation
is 20% higher than theirs for the same slope. Their luminosity-temperature relation reads in our
notation as:Lbol(erg−1 s)= 1043.00±0.10(TX/keV)2.5±0.1. We did not compare theLbol−TX relation
to ours because the slopes are too different.

Fabjan et al. (2011) performed high-resolution hydrodynamical simulations to study the scal-
ing relations between mass, temperature, gas mass and theYX-parameter,YX = MgasTX . In their
simulations, 140 clusters withM > 5× 1013h−1M⊙ were generated with (1) non-radiative physics
and (2) cooling, star formation, chemical enrichment and feedback from supernovae. AΛCDM-
model consistent with the results fromWMAP-7 data was assumed withΩm = Ωdm + Ωb =

0.24+ 0.04, wherebyΩdm is dark matter density parameter,h = 0.72,σ8 = 0.8 andns = 0.96 for
the primordial spectral index (Komatsu et al. 2011). The simulations did not account for observa-
tional effects that affect temperature measurements from X-ray spectra and X-ray surface bright-
ness profiles. Fabjan et al. (2011) investigated the scalingrelations for both non-radiative clusters
and clusters with radiative cooling, star formation etc at redshifts ofz = 0, 0.25, 0.50, 0.80, 1.0.
For the clusters with non-radiative physics, the scaling relations are close to self-similarity, i.e.
γ = 1.5. Including radiative cooling physics leads to higher ICM temperatures for less mas-
sive clusters and subsequently steeper temperature profiles. For the mass-temperature relation,
Fabjan et al. (2011) obtained atz = 0: MX/M⊙ = 1013.67±0.02(TX/keV)1.64±0.02 and MX/M⊙ =
1013.69±0.01(TX/keV)1.5 assuming radiative physics for best fitting parameters and fixing the slope
at the self-similar predictionγ = 1.5, respectively. Our normalisation is 29% lower than that of
their relation withγ = 1.5 and not consistent. For non-radiative physics, Fabjan et al. (2011) ob-
tainedMX/M⊙ = 1013.80±0.02(TX/keV)1.53±0.02 for a fitted slope andMX/M⊙ = 1013.81(TX/keV)1.5

when the slope is fixed toγ = 1.5, respectively. Their temperature is the mass-weighted temper-
ature determined withinr500, which may account for why our normalisations are not consistent
with theirs. Fabjan et al. (2011) found that ICM physics affect theMX − YX relation less than the
other scaling relations and that the slope and redshift evolution of MX−YX relation are close to the
self-similar predictionγ = 0.6. TheMX − TX relation has the largest scatter among all the scaling
relations in their simulation. This scatter increases withredshift from 5− 6% at low redshifts to
∼ 8% atz = 1. This indicates a positive evolution of theMX − TX relation toward higher red-
shift because the temperature is sensitive to ICM substructures which are more abundant at higher
redshifts as mergers become more frequent.
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Chapter 9

Summary & Discussion

In this thesis, a detailed mass-calibration study of a sample of five galaxy clusters at intermediate
to high redshifts (0.3 . z. 0.55) was performed using weak gravitational lensing and X-rays.

For the weak lensing analysis, we used deep mosaics observedwith ACS@HST which en-
abled us to precisely measure the shapes of the source galaxies and to determine their effective
mean distance ratios〈Dds/Ds〉 with magnitude-redshift relations and redshift probability distribu-
tions (Schrabback et al. 2007, 2010). We used theM̂ap–statistics (e.g. Schneider 1996; Schirmer
et al. 2007) to quantify the weak lensing properties of our sample. We used the position where the
weak lensing signal-to-noise ratio S/N reaches a maximum, (S/N)max, as alternative definition for
and demonstrated that it is consistent with other definitions for the cluster centre such as the BCG
position as well as X-ray centres (Lewis et al. 1999; Allen etal. 2008) and optical centres (Gioia &
Luppino 1994; Smail et al. 1997) from previous studies. We found that (S/N)max is correlated with
the total cluster mass after accounting for cluster redshift and number density of the background
galaxies. Amplitude and position of (S/N)max were confirmed in simulations and we thus conclude
that the S/N-peak can be associated with the cluster centre besides theBCG and the X-ray centre.
Using weak lensing mass reconstructions (Seitz & Schneider2001), we constructed the projected
mass distributionκ which we compared to the S/N-contours. Bothκ- and S/N-contours allowed to
find evidence for e.g. relaxation state and projected 2d-morphology, but also for merger processes.

We calculated the tangential shear profiles using the S/N-peak, the BCG position and op-
tical and X-ray centres. The influence of centering on other cluster centres is within the mass
uncertainty. We fitted the mass profiles SIS, NFW, a truncatedNFW-profile (NFW&PS) and a
one-parameter NFW-model assuming a fixed concentration (Mc-model) to the tangential shear
profiles. We found that the tangential shear profiles can be used to characterise the cluster proper-
ties such as relaxation state and projected 2d-morphology,but also merger processes. Comparing
the NFW-profile to the truncated NFW-profile one can check whether the NFW-profile can be
applied atr > r200 and theMc-model can probe the influence of the choice of the concentra-
tion. Sincer200 is well inside the field-of-view for CL0413−6559 and MS0451.6−0305, we could
compare NFW and NFW&PS for these clusters. For MS0451.6−0305, we found a larger differ-
ence between the two models because the field-of-view is larger than that of CL0413−6559. For
both clusters, NFW&PS fitted better than the NFW-model. We found that theMc-model produces
reasonable results for clusters with regular morphology, such as MS2137.3−2353, while it com-
pletely fails for mergers (e.g. CL0015.9+1609 and MS1008.1−1224). Furthermore, we observed
that merging clusters are poorly fitted by an SIS-model and that NFW and NFW&PS better fit
the tangential shear profiles. Our weak lensing masses are consistent with mass estimates from
previous studies using X-rays, the Sunyaev-Zeldovich effect, dynamical estimates, strong lensing
or combinations of these approaches. Those mass estimates,however, are not uniformly obtained
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for all clusters. For the clusters CL0015.9+1609 and MS1008.1−1224, r200 is well outside and
for MS2137.3−2353 at the border of the field-of-view wherefore the errors on mass are large for
these clusters. Thus, large field-coverages that ensurer200 within the field-of-view, are required to
obtain accurate weak lensing masses.

As an example study for MS0451.6−0305, we used archival multi-colour data from the
ground-based facilities MegaPrime@CFHT and Suprime-Cam@SUBARU to study the effect of
individual source redshifts in a weak lensing analysis. Thephotometric redshifts were estimated
with a scatter ofσz = 0.035 and an outlier fraction of less than 2% which was determined by cal-
ibrating the photometric redshifts against 1561 spectroscopic redshifts from DEIMOS@Keck-II
(Moran et al. 2007). We cross-checked the accuracy of the estimated photometric redshifts using
simulations. Since the ground-based data are shallower than the HST-data, only 5% of photomet-
ric redshifts could be assigned to the background galaxies.We included these in our weak lensing
analysis as individual source redshifts according to Seitz& Schneider (1997) and Bartelmann &
Schneider (2001) and calibrated the other sources against them. The errors of the model param-
eters are only marginally smaller if photometric redshiftsare included because the lower number
density due to removing unlensed foreground galaxies compensate their effect. We confirmed this
counteracting influence of including photometric redshifts and having a smaller number density in
simulations. To improve weak lensing analyses with photometric redshifts, deep multi-colour ob-
servations that provide enough sheared sources to which thephotometric redshifts can be assigned,
are required.

The X-ray analysis was performed to obtain independent cluster masses which are uniformly
inferred. We used high-qualityXMM-NewtonandChandradata to calculate X-ray hydrostatic
massesMX for all clusters except for CL0413−6559, where only a shortROSATPSPC obser-
vation was available. We quantified X-ray properties, such as X-ray centre, temperatureTX and
luminosity LX , as well as the distributions of temperature and gas densityfollowing the methods
of Zhang et al. (2005, 2006, 2007, 2008). The X-ray hydrostatic masses were used to calibrate
the weak lensing masses. Our X-ray emission peak is more consistent with the S/N-peak and the
X-rays centres of Lewis et al. (1999) and Allen et al. (2008) than the flux-weighted X-ray centroid
because the latter defines the X-ray centre with respect to the total cluster emission instead of
determining only the position where the X-ray emission attains a maximum. Thus, for merging
clusters the X-ray centres determined with both methods differ strongly. We constructed tempera-
ture and surface brightness profiles and used them to calculate the X-ray hydrostatic masses within
r500. The global temperaturesTX and metallicitiesZ were determined within 0.2−0.5r500, and the
global luminosities in the soft band (L0.5−2.0 keV), the bolometric band (Lbol) and theROSATband
(L0.1−2.4 keV) were determined within 0.2 − 1r500, whereby radii atr < 0.2r500 were excluded to
account for cool cores. We comparedMX andTX to previous analyses. We found that our X-ray
hydrostatic masses are not consistent with those studies because their masses were calculated us-
ing isothermal temperature which gives∼ 20−25% higher masses (Zhang et al. 2005). Our global
temperatures are widely consistent with previous studies.

We constructed scaling relations using weak lensing and X-ray hydrostatic masses,Mwl and
MX , as well as the X-ray observablesTX , Z, L0.5−2.0 keV, Lbol and L0.1−2.4 keV. We found that
our weak lensing masses are 18% higher than the X-ray hydrostatic masses which is consistent
with e.g. Zhang et al. (2008) and Zhang et al. (2010) and expected for samples with non-relaxed
clusters. To check whether the huge errors onMwl of the merging clusters CL0015.9+1609 and
MS1008.1−1224 influence the normalisation of our scaling relations, we used the masses from
the Mc-model,MMc. We found that the error of the normalisation is∼ 2 times larger because the
Mc-model poorly fits the disturbed clusters. Thus, investigating scaling relations involvingMMc

is not meaningful. We found that the normalisation for ourLX −M relations cannot be well deter-
mined, especially for small samples, because the luminosity is not a good mass proxy. Our scaling
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relations were compared to previous studies and to simulations. We found that our normalisations
are widely consistent with those as far as cosmology, methodand slope are comparable to ours.
We found no evidence for an evolution with redshift for our scaling relations. Either there is no
evolution or the uncertainty of the normalisation is too high to detect it. In the latter case, a larger
sample would be required and for scaling relations including weak lensing masses we would also
need deep observations with larger field-of-views.
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Appendix A

Weak lensing cluster masses

Table A.1: Cluster masses for CL0015.9+1609 using the S/N-peak as cluster centre as well as the BCG and the optical
centre of Gioia & Luppino (1994), Opt (1), and the X-ray centre of Lewis et al. (1999), X-ray (1). The results for NFW
and NFW&PS are identical becauser200 is outside the field-of-view.

S/N-Peak Opt (1) X-ray (1) BCG
NFW:
r200 [kpc] 1993+857

−656 1941+859
−629 2032+802

−670 2234+834
−740

c200 1.2+0.9
−1.1 1.2+0.9

−1.1 1.1+1.0
−1.0 0.8+0.9

−0.7
M200 [1014M⊙] 16.39+21.14

−16.18 15.14+20.10
−14.72 17.37+20.57

−17.18 23.08+25.85
−22.94

χ2
dof 0.929021 0.929399 0.930108 0.929052

NFW&PS:
r200 [kpc] 1993+857

−656 1941+859
−629 2032+802

−670 2234+834
−740

c200 1.2+0.9
−1.1 1.2+0.9

−1.1 1.1+1.0
−1.0 0.8+0.9

−0.7
M200 [1014M⊙] 16.39+21.14

−16.18 15.14+20.10
−14.72 17.37+20.57

−17.18 23.08+25.85
−22.94

χ2
dof 0.929021 0.929399 0.930108 0.929052

Mc
cNFW 6.8+0.3

−0.2 6.8+2.2
−2.1 6.8+0.3

−0.2 6.8+2.0
−2.0

r200 [kpc] 927+68
−73 912+70

−77 918+69
−74 905+83

−99
M200 [1014M⊙] 1.65+0.36

−0.39 1.57+0.36
−0.40 1.60+0.26

−0.39 1.53+0.36
−0.39

χ2
dof 0.933824 0.934841 0.935240 0.935190

SIS:
σv [km s−1] 762+50

−55 745+53
−60 747+50

−57 747+50
−57

MSIS [1014M⊙] 5.38+0.71
−0.78 5.01+0.71

−0.81 5.27+0.71
−0.80 5.66+0.80

−0.92
χ2

dof 0.933857 0.935164 0.935632 0.932000
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Table A.2: Cluster masses for CL0413−6559 using the S/N-peak as cluster centre as well as the BCG and the optical
centre of Smail et al. (1997), Opt (2).

S/N-Peak Opt (2) BCG
NFW
r200 [kpc] 863+173

−230 852+169
−254 872+186

−257
c200 2.4+1.8

−1.7 2.0+2.0
−1.6 1.9+2.1

−1.8
M200 [1014M⊙] 1.29+0.77+0.38

−1.03−0.38 1.24+0.74+0.36
−1.11−0.36 1.33+0.85+0.39

−1.17−0.39
χ2

dof 0.970599 0.975272 0.973202
NFW&PS
r200 [kpc] 839+191

−186 838+145
−208 871+170

−196
c200 2.5+1.6

−1.8 2.1+1.9
−1.4 1.9+1.6

−1.3
M200 [1014M⊙] 1.18+0.81+0.35

−0.79−0.35 1.18+0.61+0.35
−0.88−0.35 1.32+0.77+0.39

−0.89−0.39
χ2

dof 0.970492 0.975036 0.973029
Mc
cNFW 10.5+1.8

−0.8 8.8+1.0
−0.6 9.4+1.4

−0.7
r200 [kpc] 370+67

−112 538+91
−112 475+92

−123
M200 [1014M⊙] 0.10+0.06

−0.09 0.31+0.16
−0.19 0.21+0.12

−0.17
χ2

dof 0.973134 0.976450 0.975117
SIS
σv [km s−1] 202+47

−83 425+72
−90 341+63

−87
MSIS [1014M⊙] 0.16+0.08

−0.13 0.72+0.24
−0.30 0.47+0.17

−0.24
χ2

dof 0.973304 0.976124 0.974863
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Table A.3: Cluster masses for MS0451ACS (upper table) and MS0451zphoto (lower table) using the S/N-peak as cluster
centre as well as the BCG and the optical centre of Gioia & Luppino (1994), Opt (1), and the X-ray centre of Lewis
et al. (1999), X-ray (1). The second upper and lower errors onthe masses are the large-scale structure errors calculated
with Eq. (6.2.3). Note thatχ2

dof does not vary significantly among the models because of the larger number of free
parameters for this cluster.

S/N-Peak Opt (1) X-ray (1) BCG
NFW
r200 [kpc] 2239+141

−156 2260+115
−136 2253+110

−138 2240+128
−136

c200 3.5+0.5+1.6
−0.5−1.6 2.9+0.5+1.6

−0.4−1.6 3.2+0.5+1.6
−0.4−1.6 3.3+0.3+1.6

−0.5−1.6
M200 [1014M⊙] 23.47+4.43+0.43

−4.91−0.43 24.14+3.68+0.43
−4.36−0.43 23.92+3.50+0.43

−4.39−0.43 23.50+4.03+0.43
−4.28−0.43

χ2
dof 0.948834 0.948496 0.949237 0.949525

NFW&PS
r200 [kpc] 2432+152

−154 2468+123
−139 2443+118

−140 2440+116
−133

c200 2.9+0.4+1.6
−0.4−1.6 2.4+0.4+1.6

−0.4−1.6 2.7+0.4+1.6
−0.4−1.6 2.7+0.4+1.6

−0.3−1.6
M200 [1014M⊙] 30.08+5.64+0.43

−5.71−0.43 31.44+4.70+0.43
−5.31−0.43 30.49+4.42+0.43

−5.24−0.43 30.38+4.33+0.43
−4.97−0.43

χ2
dof 0.948593 0.948244 0.949000 0.949285

Mc
cNFW 4.6+0.1

−0.1 4.7+0.1
−0.1 4.7+0.1

−0.1 4.7+0.1
−0.1

r200 [kpc] 2098+74
−78 2014+75

−79 2056+73
−77 2051+71

−76
M200 [1014M⊙] 19.31+2.04+0.34

−2.15−0.34 17.08+1.99+0.34
−2.01−0.34 18.17+1.94+0.34

−2.04−0.34 18.04+1.87+0.34
−2.01−0.34

χ2
dof 0.948911 0.948755 0.929389 0.949681

SIS
σv [km s−1] 1220+37

−43 1140+39
−46 1171+38

−43 1157+37
−43

MSIS [1014M⊙] 15.47+0.94+0.34
−1.09−0.34 13.65+0.93+0.34

−1.10−0.34 14.36+0.93+0.34
−1.05−0.34 13.94+0.89+0.34

−1.04−0.34
χ2

dof 0.949701 0.949684 0.950362 0.950702

S/N-Peak Opt (1) X-ray (1) BCG
NFW
r200 [kpc] 2362+132

−155 2379+133
−156 2359+127

−142 2353+129
−130

c200 3.4+0.4+1.6
−0.4−1.6 3.0+0.4+1.6

−0.4−1.6 3.2+0.4+1.6
−0.4−1.6 3.2+0.3+1.6

−0.4−1.6
M200 [1014M⊙] 27.56+4.62+0.43

−5.43−0.43 28.16+4.72+0.43
−5.54−0.43 27.45+4.43+0.43

−4.96−0.43 27.24+4.48+0.43
−4.52−0.43

χ2
dof 0.988139 0.988415 0.988953 0.988971

NFW&PS
r200 [kpc] 2538+128

−151 2584+115
−169 2522+125

−113 2540+104
−129

c200 2.9+0.4+1.6
−0.3−1.6 2.5+0.4+1.6

−0.3−1.6 2.8+0.3+1.6
−0.4−1.6 2.7+0.3+1.6

−0.3−1.6
M200 [1014M⊙] 34.19+5.17+0.43

−6.10−0.43 36.08+4.82+0.43
−7.08−0.43 33.54+4.99+0.43

−4.51−0.43 34.27+4.21+0.43
−5.22−0.43

χ2
dof 0.987933 0.988210 0.989055 0.988780

Mc
cNFW 4.6+0.1

−0.1 4.6+0.1
−0.1 4.6+0.1

−0.1 4.6+0.1
−0.1

r200 [kpc] 2177+66
−70 2123+66

−72 2132+64
−68 2125+63

−68
M200 [1014M⊙] 21.57+1.96+0.34

−2.08−0.34 20.01+1.87+0.34
−2.03−0.34 20.27+1.22+0.34

−1.29−0.34 20.07+1.78+0.34
−1.93−0.34

χ2
dof 0.988263 0.988596 0.989055 0.989080

SIS
σv [km s−1] 1210+33

−37 1159+33
−40 1157+33

−38 1144+32
−38

MSIS [1014M⊙] 14.38+0.78+0.34
−0.88−0.34 16.14+0.92+0.34

−1.11−0.34 14.68+0.84+0.34
−0.94−0.34 14.32+0.80+0.34

−0.95−0.34
χ2

dof 0.989593 0.990016 0.990646 0.990742
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Table A.4: Cluster masses for MS1008.1−1224 using the S/N-peak as cluster centre as well as the BCG and the optical
centre of Gioia & Luppino (1994), Opt (1), and the X-ray centre of Lewis et al. (1999), X-ray (1). The results for NFW
and NFW&PS are identical becauser200 is outside the field-of-view.

S/N-Peak Opt (1) X-ray (1) BCG
NFW:
r200 [kpc] 2415+546

−478 2431+690
−481 2406+757

−542 2422+755
−514

c200 2.2+0.8
−0.8 2.1+0.7

−1.0 1.9+0.7
−0.9 1.9+0.7

−0.9
M200 [1014M⊙] 22.48+15.25

−13.35 22.93+19.52
−13.61 22.23+20.98

−15.02 22.68+21.21
−15.20

χ2
dof 0.922594 0.924114 0.928339 0.927994

NFW&PS:
r200 [kpc] 2415+546

−478 2431+690
−481 2406+757

−542 2422+755
−514

c200 2.2+0.8
−0.8 2.1+0.7

−1.0 1.9+0.7
−0.9 1.9+0.7

−0.9
M200 [1014M⊙] 22.48+15.25

−13.35 22.93+19.52
−13.61 22.23+20.98

−15.02 22.68+21.21
−15.20

χ2
dof 0.922594 0.924114 0.928339 0.927994

Mc
cNFW 6.8+0.2

−0.1 6.8+0.2
−0.1 7.0+0.2

−0.2 7.0+0.2
−0.2

r200 [kpc] 1465+66
−71 1451+68

−73 1369+73
−77 1548+74

−80
M200 [1014M⊙] 5.02+0.68

−0.73 4.88+0.69
−0.74 4.10+0.66

−0.69 4.14+0.64
−0.70

χ2
dof 0.931006 0.935466 0.935684 0.935684

SIS:
σv [km s−1] 850+35

−38 846+37
−39 798+39

−42 798+39
−43

MSIS [1014M⊙] 8.81+0.67
−0.73 8.09+0.71

−0.75 7.12+0.70
−0.75 7.17+0.70

−0.77
χ2

dof 0.935058 0.936179 0.939657 0.940300

Table A.5: Cluster masses for MS2137−2353 using the S/N-peak as cluster centre as well as the BCG and the optical
centre of Gioia & Luppino (1994), Opt (1), and the X-ray centre of Allen et al. (2008), X-ray (2). The results for NFW
and NFW&PS are almost identical becauser200 is close to the border of the field-of-view.

S/N-Peak Opt (1) X-ray (2) BCG
NFW:
r200 [kpc] 1194+117

−257 1186+112
−264 1185+107

−183 1204+119
−252

c200 9.5+9.9
−4.4 9.8+10.9

−4.7 9.8+7.5
−4.2 8.7+7.7

−4.1
M200 [1014M⊙] 2.75+0.81

−1.78 2.70+0.76
−1.86 2.69+0.73

−1.25 2.82+0.85
−1.77

χ2
dof 0.961206 0.949545 0.919767 0.948735

NFW&PS:
r200 [kpc] 1199+116

−262 1191+110
−258 1194+102

−195 1207+120
−233

c200 9.3+9.8
−4.2 9.6+10.9

−4.7 9.5+7.7
−4.0 8.6+7.7

−3.9
M200 [1014M⊙] 2.79+0.81

−1.83 2.73+0.76
−1.77 2.75+0.70

−1.35 2.84+0.85
−1.65

χ2
dof 0.961214 0.949539 0.919767 0.948727

Mc
cNFW 7.5+0.2

−0.2 7.6+0.2
−0.2 7.6+0.2

−0.2 7.6+0.2
−0.2

r200 [kpc] 1123+60
−63 1251+64

−68 1120+56
−58 1113+62

−65
M200 [1014M⊙] 2.29+0.37

−0.39 2.27+0.37
−0.40 2.27+0.34

−0.35 2.23+0.37
−0.39

χ2
dof 0.960896 0.949250 0.921743 0.948404

SIS:
σv [km s−1] 820+38

−41 818+40
−42 818+37

−38 812+40
−43

MSIS [1014M⊙] 3.73+0.35
−0.37 3.69+0.36

−0.38 3.69+0.33
−0.34 3.69+0.36

−0.39
χ2

dof 0.960831 0.949248 0.921325 0.948480
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Appendix B

X-ray spectra

Figure B.1: Spectra of the bins of the temperature profile forCL0015.9+1609, i.e. bin 1 0− 0.5′ (upper left), bin 2
0.5− 1′ (upper right), bin 3 1− 1.5′ (lower left) and bin 4 1.5− 3.25′ (lower right).
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Figure B.2: Spectra of the bins of the temperature profile forMS0451.6−0305, i.e. bin 1 0− 0.5′ (upper), bin 2 0.5− 1′

(middle) and bin 3 1− 2.4′ (lower).
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Figure B.3: Spectra of the bins of the temperature profile forMS2137.3−2353, i.e. bin 1 0− 0.5′ (upper), bin 2 0.5− 1′

(middle) and bin 3 1− 2.1′ (lower).
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Figure B.4: Global spectra from which global temperatures and metallicities were determined for fixednH for
CL0015.9+1609 (upper) and MS0451.6−0305 (lower) using an annulus of 0.2− 0.5r500,X .
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Figure B.5: Global spectra from which global temperatures and metallicities were determined for fixednH for
MS1008.1−1224 (upper) and MS2137.3−2353 (lower) using an annulus of 0.2− 0.5r500,X .
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Figure B.6: Global spectra from which global temperatures and metallicities were determined by fittingnH for
CL0015.9+1609 (upper) and MS0451.6−0305 (lower) using an annulus of 0.2− 0.5r500,X .



149

Figure B.7: Global spectra from which global temperatures and metallicities were determined by fittingnH for
MS1008.1−1224 (upper) and MS2137.3−2353 (lower) using an annulus of 0.2− 0.5r500,X .
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Figure B.8: Global spectra from which global temperatures and metallicities were determined for fixednH for
CL0015.9+1609 (upper) and MS0451.6−0305 (lower) using an annulus of 0.2− 0.5r500,wl .
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Figure B.9: Global spectra from which global temperatures and metallicities were determined for fixednH for
MS1008.1−1224 (upper) and MS2137.3−2353 (lower) using an annulus of 0.2− 0.5r500,wl .
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Figure B.10: Global spectra from which global temperaturesand metallicities were determined by fittingnH for
CL0015.9+1609 (upper) and MS0451.6−0305 (lower) using an annulus of 0.2− 0.5r500,wl .
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Figure B.11: Global spectra from which global temperaturesand metallicities were determined by fittingnH for
MS1008.1−1224 (upper) and MS2137.3−2353 (lower) using an annulus of 0.2− 0.5r500,wl .
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Figure B.12: Global spectra from which global luminositieswere determined for CL0015.9+1609 (upper) and
MS0451.6−0305 (lower) using an annulus of 0.2− 1r500,X and the global temperatures and metallicities for fixednH.
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Figure B.13: Global spectra from which global luminositieswere determined for MS1008.1−1224 (upper) and
MS2137.3−2353 (lower) using an annulus of 0.2− 1r500,X and the global temperatures and metallicities for fixednH.
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