
Analysis of Trajectories by Preserving
Structural Information

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt
von

Ahmed Jawad
aus

Chishtian, Bahawalnagar, Pakistan

Bonn, 2012

ii

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Stefan Wrobel

2. Gutachter: Prof. Dr. Christian Bauckhage

Tag der Promotion: 10.07.2012

Erscheinungsjahr: 2012

Ahmed Jawad

University of Bonn

Department of Computer Science III

and

Fraunhofer Institute for Intelligent Analysis

and Information Systems IAIS

Schloss Birlinghoven

53754 Sankt Augustin

Germany

ahmed.jawad@iais.fraunhofer.de

iv

Contents

1. Introduction: Analysing Trajectories 1
1.1. Goals and Contributions . 4
1.2. Focused Tasks in the Area of Trajectory Analysis 5

1.2.1. Alignment of Raw Trajectories to Streets (Map Matching) . . 5
1.2.2. Trajectory Clustering . 7
1.2.3. Traffic Event Detection . 8

2. Preserving Structural Information 13
2.1. Trajectories and Structure . 14
2.2. Preserving Structure Through Embeddings 18

2.2.1. Preserving Spatial Distances 19
2.2.2. Multidimensional Scaling (MDS) 21
2.2.3. Geodesic Distances . 22

2.3. Kernels for Structured Data . 25
2.4. Our Approach to Preserving Structure in Trajectories 28

2.4.1. Raw Trajectories . 28
2.4.2. Geodesic Distance based RBF Kernel 29
2.4.3. Symbolic Trajectories . 31
2.4.4. Geodesic Distance based Alignment Kernel 34

3. Preserving Structure in Raw Trajectories 39
3.1. Euclidean Graph Matching . 42
3.2. Kernelized Map Matching (KMM) 45
3.3. Experimental Evaluation . 47

3.3.1. Traffic Data Generation . 50
3.3.2. Comparison of KMM vs. Base Line 50
3.3.3. Real World Dataset . 51
3.3.4. Synthetic Datasets . 53
3.3.5. Parameter Selection . 55

4. Preserving Structure in Symbolic Trajectories 67
4.1. Sequence Analysis for Trajectories 71
4.2. Trajectory Clustering (for User Activity Analysis) 76

4.2.1. Stay Points Discretization . 76
4.2.2. Visualization of Clustered Activity Sequences 77
4.2.3. Map Matching Discretization 82
4.2.4. Experimental Evaluation . 82

v

4.3. Traffic event Detection . 84
4.3.1. Experimental Evaluation . 88

5. Conclusions 93
5.1. Lessons Learned . 95
5.2. Future Work . 96

Bibliography 99

A. Discrete Variant of Kernelized Map Matching 107
A.0.1. The Discrete Part . 107
A.0.2. The Continuous Part . 108
A.0.3. KMM-Discrete Limitation: 109

vi

Abstract

The analysis of trajectories from traffic data is an established and yet fast growing

area of research in the related fields of Geo-analytics and Geographic Information

Systems (GIS). It has a broad range of applications that impact lives of millions of

people, e.g., in urban planning, transportation and navigation systems and localized

search methods. Most of these applications share some underlying basic tasks which

are related to matching, clustering and classification of trajectories. And, these tasks

in turn share some underlying problems, i.e., dealing with the noisy and variable-

length spatio-temporal sequences in the wild.

In our view, these problems can be handled in a better manner by exploiting

the spatio-temporal relationships (or structural information) in sampled trajectory

points that remain considerably unharmed during the measurement process. Al-

though, the usage of such structural information has allowed breakthroughs in other

fields related to the analysis of complex data sets [18], surprisingly, there is no ex-

isting approach in trajectory analysis that looks at this structural information in a

unified way across multiple tasks. In this thesis, we build upon these observations

and give a unified treatment of structural information in order to improve trajectory

analysis tasks. This treatment explores for the first time that sequences, graphs, and

kernels are common to machine learning and geo-analytics. This common language

allows to pool the corresponding methods and knowledge to help solving the chal-

lenges raised by the ever growing amount of movement data by developing new

analysis models and methods.

This is illustrated in several ways. For example, we introduce new problem set-

tings, distance functions and a visualization scheme in the area of trajectory analysis.

We also connect the broad field of kernel methods to the analysis of trajectories, and,

we strengthen and revisit the link between biological sequence methods and analysis

of trajectories. Finally, the results of our experiments show that — by incorporat-

ing the structural information — our methods improve over state-of-the-art in the

focused tasks, i.e., map matching, clustering and traffic event detection.

vii

Acknowledgements

Some things are just hard to explain through words. For example, the tremendous

amount of courage, trust and optimism that Prof. Stefan Wrobel showed when he

replied positively to an email containing my PhD application from Pakistan. Four

years down the road, I admire his act even more, when I can guess better about the

number of PhD applications that he receives. I am really happy that the opportunity

he provided has culminated into a written thesis. He has continued to show this trust

and support throughout my PhD and has contributed with invaluable suggestions

in order to improve this thesis. I hope that the final product will be able to fulfil

his expectations.

Dr. Kristian Kersting (or simply Kristian) has shaped and guided the development

of this thesis more than any other person. He has been with me through the most

difficult times of my PhD. He has shown trust and spent time over the gritty details

when things were not working, and he has looked at the notation and taught me how

to write a technical paper when some of them did. I must say that as a passionate

and productive researcher in the field of machine learning, he has done a great job in

balancing his time for the continual guidance to students in his group STREAM and

in particular supervising my thesis, which is mainly aimed at bringing geo-analytics

and machine learning closer. I cannot again describe in words the happiness that I

feel when I think about his contributions and what we have accomplished together.

I also thank Gennady and Natalia Andrienko for their active support in the de-

velopment of this thesis. They have been really nice and have continually shown

me the path ahead through their discussions, suggestions and provided me with the

data sets pivotal to my research.

During this PhD, I have been fortunate to be a part of a very young and en-

ergetic research group named STREAM (STatistical Relational Mining). All the

members including Marion Neuman, Babak Ahmadi, Fabian Hadiji, Mirwaes Wa-

habzada, Zhao Xu, Martin Mladenov, Youssef El Massoudi and Novi Quadrianto

(our honorary member) have contributed immensely by providing really valuable

and technical feedback.

ix

There have been many colleagues at Fraunhofer Institute who have helped me a

lot; to name a few: Hans Voss, Michael May, Thomas Gärtner, Mario Boley, Katerina

Vorotsu, Anja Pilz, Thomas Liebig, Christine Körner, Eike Stuckert, Ahmet Ocakli,

Myriam Jourdan, Daniela Börner and Renate Henkeler.

Some of the teachers who have an taught me a lot about computer science and

machine learning and therefore have a direct impact on this thesis include: Asim

Karim, Sohaib Khan, Ashraf Iqbal, Arif Zaman, Amjad Luna, Umar Saif, Nabil

Msutafa and Sarmad Abbasi.

No strenuous task can be accomplished without friends who lend an unconditional

support under the most demanding circumstances. These are the people who have

contributed the most to being who and where I am — including Aamer Zaheer,

Munawar bin Abad, Saqib Ashfaq, Peer Ali Kirmani, Murtaza, Asim Sharif, Mazhar

Karam Shah, Hammad Thandoo, Arman Sarwar, Zeeshan Chawala, Mamoon-ur-

Rashid, Usman Bhai, Syed Sajjad Hassan, Shamoon, Abdullah Butt, Awais Karim

Bajwa, Rizwan Fazal, Khizar Hayat, Wasim Kaka, Sajid, Mian Jamshed, Bilal,

Junaid Naeem, Dilware khan, Shehzad Cheema, Rashid, Tariq and Shaami Rehmani

and Azam Javed (Chaand). I would specially like to mention two of the dear friends

who passed away, i.e., Mohammed Ahmed and Saeed Taggar.

During my whole life, I have felt blessed that I had the support of a wonderful

and encouraging family. No words can describe their contribution to this thesis.

Above all, the two ladies: my mother for being the one who dreamt and worked

continuously for my future in a purely altruistic manner, and my wife who has

patiently endured the other side of a PhD student. Hina! I love you so much. And

more so for giving me the most wonderful gift of my life, our son, Aadil. I also hope

that my father — the sweetest person in my life — and my other family members,

especially my very supportive brother Hammad, my sisters, Shazia and Maria, uncle

Maqbool and aunt Nasreen feel proud of me at finishing this thesis.

In fact, it is very hard if I had to choose one person to dedicate this thesis to.

Especially, the closest people in my life; Abbu ji (my father) — who has supported

me, loved me, taught me, and I can forget the hardships in the rest of the world

when I talk to him, or Hammad (my brother) — who supported my studies and

paved the way for this PhD, or Hina (my wife) — who has had the patience to go

through the PhD studentship with me when I was —at best— remote, or Aadil (my

son) — who stands as a symbol of love, happiness and hope in our lives. However, I

dedicate this thesis to Ammi Ji (my mother) for her steadfastness, her belief in me

and her acceptance of nothing but the best from me.

x

1. Introduction: Analysing Trajectories

... the unpublished maps that we make ourselves, of our city, our place,

our daily world, our life; those maps of our private world we use every

day; here I was happy, in that place I left my coat behind after a party,

that is where I met my love; I cried there once, I was heart-sore; but

felt better round the corner once I saw the hills of Fife across the Forth,

things of that sort ...” — Alexander McCall Smith, Love Over Scotland

The analysis of trajectories is an important area of research in geographical data

analysis (or geo-analytics). Two of the main problems in this area are: (1) — cop-

ing with the measurement error (e.g., spatio-temporal distortion, heterogeneity, and

missing values) during the sampling of trajectories, and (2) — the comparison of

large and invariable length spatio-temporal sequences. In our view, these problems

can be handled in a better manner by exploiting the structural information present

in the sampled trajectory data. Surprisingly, this perspective has not been pro-

vided by the existing approaches. Inspired by the usage of structural information

in the analysis of complex data sets [27] for machine learning, computer vision and

related fields, where it has provided breakthroughs, we step ahead with this idea,

and in this introduction, lay the motivations for providing a unified treatment of

structural information in the analysis of trajectories. Then, we discuss the basic

trajectory analysis tasks, namely, map matching, trajectory clustering and traffic

event detection. During the rest of the thesis, these tasks will serve as a test bed for

the usage of structural information in order to improve the analysis of trajectories.

However, before starting off, lets’ briefly describe the underlying motivations and

contributions of this thesis.

Analysis of complex trajectory data in order to provide intelligent location base

services has brought forth a change in our usage of computers to mine data. As

Mitchell pointed out [41], we are beginning to analyse our reality — data record-

ing personal activities, conversations, and movements — in space and time ‘in an

attempt to improve human health, guide traffic, and advance the scientific under-

standing of human behaviour’ in general. Consider, for example, an intelligent traffic

1

1. Introduction: Analysing Trajectories

monitoring system that re-distributes the traffic flow in anticipation of a congestion

by recognising the early patterns of a traffic jam [34]. Obviously, such an intelligent

system can potentially overcome the long standing temporal and spatial boundaries

to our perception of movement [53]. Consequently, it comes as no surprise that

analysing trajectories (in particular, spatio-temporal data from movement sensors)

is currently receiving a lot of attention.

Successful approaches in this area, however, cannot be easily designed/developed

as the datasets contain noisy and variable-length spatio-temporal sequences in the

wild. In our opinion, one step towards achieving this goal is to improve some un-

derlying basic tasks that are shared across multiple applications in the analysis

of trajectories. To illustrate, map matching (i.e., the process of aligning raw tra-

jectories to street network) is one of such basic tasks that is used in navigation,

planning and transportation systems. Another important task is the comparison of

trajectories (or similarity computation), which is necessary for extraction of move-

ment patterns, clustering, and prediction based solutions. Finally, the probabilistic

modelling of samples from a set of trajectories is important in order to execute mem-

bership queries for this noisy data set. For example, traffic event detection is such

an application, where we build a model of trajectories relating to traffic events, e.g.,

jams and congestions, so that a new event can be identified.

In general, although, these basic tasks in trajectory analysis have different settings,

yet a common problem in solving them is coping up with the measurement error [28].

This error makes it difficult to know the exact ground truth , and is caused, e.g.,by

measuring devices, namely, GPS devices, sensors, and RFIDs that generate samples

of original trajectories (curves tracked by the moving objects) recorded at different

time and space intervals. It spans a combination of factors, e.g., spatial and/or

temporal noise, low and non-uniform sampling rate, heterogeneity of data (noisy

label information), and missing values.

To a large degree, however, the success of an algorithm in the area of trajectory

analysis depends upon the capacity of this algorithm to handle the error in the data.

To illustrate, a map matching algorithm that does not deal robustly with the spatio-

temporal distortion will assign wrong streets to GPS points, and hence, it will result

in a greater error over larger values of noise. Similarly, the performance of an event

detection solution is affected by its’ capacity to deal with heterogeneous data (noisy

labels information about training and test events), and missing values. Finally, the

alignment and comparison algorithms need to consider the spatio-temporal distor-

tion and the non-uniform sampling rates while calculating the distances between

2

data points.

On the other hand, many —if not most— of the existing solutions for trajectory

analysis take one of the following paths:

1. Either, they assume that the sampled data points belong to original trajectory,

hence ignoring the performance compromise made in the process.

2. Or, focusing on the task at hand, they model the error using distributions and

probabilistic methods that empirically deal with it in the best manner.

Surprisingly, both of these existing approaches, to a certain extent, ignore the

domain invariants (i.e., the structural relationships between points) that are not

disturbed a lot by different forms of noise, and remain considerably unharmed during

the measurement process. Motivated to solve the real-world traffic problems in

trajectory analysis, we argue that the approaches, which take the factor of structural

information into consideration can produce better results. We also argue that such

approaches can prove to be the next step towards improving the core analysis tasks,

i.e., classification, clustering, and matching in trajectories.

In this thesis, we present these arguments, and provide a novel and unified way

of using structural information in order to improve trajectory analysis tasks. In

particular, we manage this by taking trajectories as walks over labelled graphs with

nodes (or labels) in continuous/ discrete spaces, and edges representing differences

between the adjacent labels in spatial, temporal or any other domain of interest.

And, then by embedding the Geodesic distances among these labels into Euclidean

space, we get Euclidean distances between all pairs of nodes that preserve structural

information inside the data. Once we have these distances, we can make a connection

to other Euclidean distance based approaches. For example, kernel methods, which

have never been used in the area of trajectory analysis. Or, we can use these

distances to apply out-of-the-box biological sequence methods that also work upon

such labelled graphs. This results in novel similarity functions and visualization

schemes for trajectory analysis. In the end, we apply these connections to solve three

of the core tasks in trajectory analysis, i.e., map matching, clustering, and traffic

event detection for trajectory data. The results of our experiments show that —by

incorporating the structural information— these embeddings improve over state-

of-the-art in map matching, clustering, and traffic event detection from trajectory

data.

3

1. Introduction: Analysing Trajectories

1.1. Goals and Contributions

As mentioned, an improvement in the solutions of real world trajectory analysis

problems is the seed that grew into our usage of structural information into this

thesis. In this thesis, we look at the structural information in trajectory data sets,

and provide a method to use it in order to reach our stated objective. For appli-

cations, we focus our attention on three of the basic tasks in trajectory analysis;

namely,

1. map matching [49] (a fundamental step in analysing the street network based

trajectories),

2. the clustering of trajectories (for the street network based trajectories and

stay-point sequences). We do this with a motivated setting of understanding

the individual human mobility patterns [23],

3. and traffic event detection [29].

In order to solve these tasks, we take a generic definition of trajectories as walks

over labelled graphs that can address the analysis problems in these tasks. This

definition applies to most of the trajectory analysis area. Then, by embedding the

Geodesic distances between labels in these trajectories into Euclidean space, we get

new distances that preserve structural information inside the data and are used in

combination with analytical methods to solve these tasks. The analytical methods

that we use are based upon machine learning (in particular, kernel methods) and

biological sequence analysis. More specifically, our contributions1 are:

1. We improve upon state-of-the art for three above mentioned tasks (on real-

world data sets).

2. We introduce novel distance functions (based upon the geo-desics of trajec-

tories) for map matching and alignment tasks. These functions include the

so-called ’spatio-temporal kernel over Euclidean distances’ for map matching

and ’Local similarity based alignment kernel’ for clustering and classification

tasks. While doing so, we connect the broad field of kernel methods and the

analysis of trajectories. Moreover, by virtue of being kernelized, our work is

extensible, i.e., our distance functions give an opportunity to integrate existing

kernels in the field or new kernels in the future.

1The work in this thesis appears in the following papers [30, 34, 31, 33, 32]

4

1.2. Focused Tasks in the Area of Trajectory Analysis

x
x

x
x

x
x

xxxx

Figure 1.1.: Illustration of map matching problem. Given a graph G = (V,E) de-
noted by gray edges and a trajectory T = {p1, p2, ..., pn} denoted by red
squares, find the corresponding ground truth points for each pi on the
graph denoted as crosses.

3. In this thesis, we show that biological sequence methods with our distance

functions can produce state-of-the-art results for the tasks of clustering and

event detection in the trajectory datasets2.

4. Further investigation into biological sequence methods yields ’Traffic Logos’,

which is a novel visualization in the traffic domain giving a compact and de-

scriptive representation of the patterns in the data.

5. We introduce new settings and algorithms for the trajectory analysis tasks,

e.g., for map matching when we take it as a multi-regression problem and then

solve it through a combination of embedding and rounding approach. We also

show that the profile HMMs can be used to capture the dynamics of the events

in the traffic event detection which is not previously considered.

1.2. Focused Tasks in the Area of Trajectory Analysis

Having listed our contributions, we introduce the basic tasks in the area of analysis

of trajectories that will serve as a test bed for the usage of structural information

in the rest of this thesis.

1.2.1. Alignment of Raw Trajectories to Streets (Map Matching)

Map matching — the process of assigning the raw trajectories to street network — is

a fundamental operation in many applications such as traffic analysis and location-

2Biological sequence methods also work on the label sequence graphs with unit weight edges and
the distances similar to the ones learned by us.

5

1. Introduction: Analysing Trajectories

(a) KMM: over a round-
about

(b) KMM: over grid struc-
ture

(c) KMM: Robustness to
noise

Figure 1.2.: KMM’s performance on challenging real-world situations. The red
points show the input trajectory and the blue points the output path by
KMM. In all three cases, KMM recovers the exact ground-truth paths.
(coloured)

aware services, and, it is becoming increasingly important due to pervasiveness of

measuring devices (e.g., Wifi, Mobiles, sensors inside building and vehicle navigation

systems). The sampled trajectories from these devices contain noise ranging from 10

to 100 meters due to different capacity and environment issues during measurement

process. Consequently, we have multiple choices of street for a sample trajectory.

The process of disambiguation between these multiple paths (or alignment of sample

trajectories to street network) is the core difficulty problem that we solve through

the usage of structural information in raw trajectories. Fig. 1.1 describes the map

matching problem with example input points and the output path on street network.

Triggered by the observation that matching a trajectory of coordinates would be

easy if the observed coordinates were noise-free — the coordinates would simply

constitute the solution — one may propose to treat the map matching problem

as a regression problem. The task is now: estimate the noise-free function from

the noisy observations. In order to solve the problem, we reduce the noise from the

input trajectory by maximizing the structural similarity between the input graph and

relevant part of the street map. The resulting relaxed assignment is then ”rounded”

into a hard assignment fulfilling the map constraints.

On synthetic and real-world trajectories, we show that our method can be used for

map matching and performs well compared to probabilistic methods such as HMMs.

Especially, our method performs significantly better for higher values of noise, which

shows the robustness of the structural information when dealing with noise.

Fig. 1.2 shows the results of KMM performance in three challenging real life

situations.

6

1.2. Focused Tasks in the Area of Trajectory Analysis

1.2.2. Trajectory Clustering

Clustering of trajectories is an important task in order to identify the groups of

moving objects that exhibit similar movement behaviour. Many applications in

trajectory analysis come under this scenario. For example, consider ‘finding flocks

of birds by identifying the clusters in their trajectories’ or ‘ clustering trajectories

of an individual human to identify her routes (user activity analysis)’. Roughly,

these clusters represent frequent spatio-temporal paths that the moving objects have

chosen in the data. For example, during user activity analysis, different clusters

identify user’s typical spatio-temporal routes from ’work to home’, ’home to work’

or ’work to shopping’.

However, we can do better. For example, we can cluster a user’s trajectories at

different abstraction levels. To illustrate, instead of clustering raw trajectories, we

can do a map matching over user’s trajectories and then the clustering of these

map-matched trajectories will give us the street-network paths of high frequency

that a user follows. Another higher level of detail can be found by identifying the

stay points (or places with longer stays in trajectories) and then the trajectories

can be defined in terms of daily sequences of these stay points. The cluster of such

trajectories will now specify different groups of daily activities that a user follows,

e.g., on work days and weekends.

In this thesis, we encode both of the abstraction scenarios for a user’s trajectories

into label sequence graphs. To illustrate, for the street network based trajectories,

the labels (or nodes) denote corners of the streets in the street network and differ-

ences between connected labels is given by the distance between the nodes. For stay

point sequences, the labels denote stay points and edges denote average temporal

differences between the connected stay points of the user from data. Then we embed

geodesic distances in these graphs to come up with Euclidean distances between the

labels. These distances can be used in conjunction sequence similarity measures to

compare and align multiple sequences. Following this, we use out-of-the-box bio-

logical sequence methods to align and cluster trajectories. Tab. 1.1 represents the

results of the clustering for street network based trajectories as compared to a state-

of-the-art clustering method and shows that we produce more clusters and hence

reveal more patterns in the users’ data. Furthermore, on the similar number of

clusters found, we produce less error. Our techniques are also superior in the sense

that they can be applied to a broader range of trajectory definitions as shown in the

thesis.

7

1. Introduction: Analysing Trajectories

Similarity method Clusters µRMS σRMS #objs(µ±σ)

Route Search 7 271.5 NA 261

Pairwise
Traffic
Sequence
Alignment

7 249.24 36.4 255.6± 7
5 211.78 112.43 221.2± 21
6 236.58 75.74 243.6± 14
≥ 8 313.98 20.13 275.1± 6

Table 1.1.: Comparison of clustering results between our method and a state-of-the-
art algorithm with Hausdorff distance as the error measure. The error is
depicted in columns 3, and 4 as the the average and standard deviation
of root means squared Hausdorff distance, i.e, µRMS , and σRMS for the
corresponding rows. Similairly, the mean and standard deviations for
number of objects found per row are given by the last column. The first
row shows the result for the state-of-the-art baseline. All other rows
shows the results for our alignment-based method. As we can see both
capture a similar number of trajectories and similarly good clusters. Row
5 shows that the alignment-based method can capture more patterns than
the original method.

1.2.3. Traffic Event Detection

Probabilistic modelling of samples from a set of trajectories is an important analyti-

cal task in order to execute membership queries for this set. This scenario builds up

during different trajectory classification schemes. For example, during traffic event

detection, where we build a model of trajectories relating to traffic events3, e.g.,

jams and congestions, so that a new event can be identified.

For this purpose, consider the time-series based movement data, where a sensor

records movements of entities over a short window of time. For example, an optical

sensor placed over a door of an office building reports an estimate of people count

entered on a 30-minute basis. Or, an inductive loop sensor on a highway reports an

estimate of vehicles passed on a 5 minute basis [29]. This recorded data captures pe-

riodical patterns of human activity, e.g., highways are usually busy during morning

and early evening time because of traffic ‘towards and from’ work place. Weekdays

and weekends can show periodic patterns of their own. Typically, these periodi-

cal activity patterns are mixed in sensor data with bursts of unusual traffic called

‘events’; outliers but not noise. Example events include: traffic congestion/jams on

a high way, a large meeting in an office or a concert/football game near a highway

sensor. Thus, we have to separate the normal traffic activities from the traffic events.

3http://archive.ics.uci.edu/ml/machine-learning-databases/event-detection/

8

1.2. Focused Tasks in the Area of Trajectory Analysis

Algorithm Training Events True Positives False Positives

Dodger’s Base ball Game Prediction - Total events= 76

Baseline 15 76 65

Poisson Proc. 76 75 23

HMM profile 15 74 18

Caltech Auditorium event prediction - Total events= 29

Baseline 10 29 43

Poisson Proc. 29 24 24

HMM profile 10 25 12

Table 1.2.: Comparison of event prediction on real world data sets. In both cases,
HMM profiles were able to predict almost the same number of events
with a better recall (lower number of false positives) and a low training
percentage of data. On average, 90 percent of original events are cap-
tured by all algorithms. However, out-of-the-box profile HMMs provide
a better recall (filtering of false alarms) by capturing event persistence.

Unfortunately, there are no labels, which leads us to a problem, i.e., the separa-

tion of normal traffic from event. Furthermore, an event is not a single unusually

high value, instead it is a chain of sensor reading having its own dynamics. For

example, a traffic jam or congestion usually has a normal like curve for traffic fre-

quencies i.e, a plot of traffic frequencies in a jam over increasing time will show that

the traffic frequencies build up over time and then slowly disperse. On the other

hand, a conference event in a building is identified by having bursts of traffic at

two separate occasions, i.e., start and finish of the conference with a small amount

of people leaving the area during the conference. In order to capture these depen-

dencies, we need to employ a probabilistic model, which decides that the random

unusual measurements of traffic frequency does not identify traffic events; instead,

a traffic event is specified by a row of unusual frequencies with structural depen-

dencies between temporal elements. In this thesis, we learn a profile hidden Markov

model (a biological sequence method) from a training set of events that captures

the event dynamics by encoding the structural dependencies between frequency bins

from sensor readings (or, in other words, nodes of our label sequence graph). We

compare our results to a state-of-the-art event detection method. Tab. 1.2 shows the

results of our method on two real world data sets (for base ball game prediction at

Dodger’s baseball stadium and Caltech auditorium event prediction) revealing that

we improve upon state-of-the-art (by giving same true positive rate and lower false

positive rate) just by applying out-of-the-box profile HMMs.

9

1. Introduction: Analysing Trajectories

Summary

In this chapter, we have briefly described the underlying motivations and contribu-

tions of this thesis. Furthermore, we have also introduced some of the fundamental

tasks in the area of trajectory analysis, i.e., map matching, the clustering of tra-

jectories and traffic event detection. We will resolve these tasks through the usage

of structural information in the rest of the thesis, and they will also serve as a test

bed for the usage of the structural information in order to solve analytical problems

related to trajectories.

10

Related Publications

[1] A. Jawad and K. Kersting. Kernelized map matching. In Proceedings of ACM SIGSPA-

TIAL International Conference on Advances in Geographic Information Systems (ACM

GIS), pages 454–457, Seattle, Washington, USA, 2010.

[2] A. Jawad and K. Kersting. Kernelized map matching for noisy trajectories. In Working

Notes of Knowledge Discovery and Machine Learning (KDML) at LWA2010 - Learning,

Knowledge & Adaptation, pages 1–10, Kassel, Germany, 2010.

[3] A. Jawad, K. Kersting, and N. Andrienko. Biological sequence analysis meets mobility

mining. In Working Notes of Knowledge Discovery and Machine Learning (KDML)

at LWA2011 - Learning, Knowledge & Adaptation, pages 73–80, Magdeburg, Germany,

2011.

[4] A. Jawad, K. Kersting, and N. Andrienko. Building bridges between traffic and biological

sequence analysis. In International Workshop on Finding Patterns of Human Behaviors

in NEtwork and MObility Data – NEMO at ECML PKDD (Europen Conference on

Machine Learning and Principles and Practices of Knowledge Discovery in Databases),

pages 13–27, Athens, Greece, 2011.

[5] A. Jawad, K. Kersting, and N. Andrienko. Where traffic meets dna: Mobility mining

using biological sequence analysis revisited. In Proceedings of ACM SIGSPATIAL Inter-

national Conference on Advances in Geographic Information Systems (ACM GIS), pages

357–360, Chicago, Illinois, USA, 2011. Best Poster Award.

11

12

2. Preserving Structural Information

Many a trip continues long after movement in time and space have ceased

— John Steinbeck

In this chapter, we provide a generic mechanism to convert two fundamentally

different types of trajectories, i.e., raw and symbolic trajectories into walks over un-

derlying labelled graphs. Then, we define similarity measures over these trajectories

that will preserve the structural information for analytical purposes. These simi-

larity measures will be used to improve the analytical tasks for trajectories in later

chapters. In short, this is a very important chapter that lays down the theoretical

foundations of this thesis and remains a binding force throughout. However, before

starting off, we briefly describe our motivation to use graphs in order to capture the

notion of structure in trajectories.

The analysis of structured datasets lies at the heart of many computing endeav-

ours, aiming to improve the averages and quality of our lives, e.g., in bio-informatics,

chemi-informatics, network based traffic analysis, social networks and world wide

web. Arguably, graphs present the most natural and powerful model to capture the

properties of objects and their relationships for these data sets [65, 46]. Some of the

manifestations of graphs in the above mentioned fields include street networks, phy-

logenetic trees, RNA structures, molecular structure, XML files, database schemas

and web ontologies. Furthermore, their almost universally accepted usage in the

above mentioned fields gives them a unique ability to serve as an analytical connec-

tion for many research fields related to structures data.

As discussed, we are motivated to improve trajectory analysis tasks by preserving

the structural information. We have also discussed that trajectories can be viewed as

graphs with some additional constraints (in particular, labelled graphs). However,

we have not discussed yet the concrete approach that we will chose to represent

trajectories as labelled graphs and the consequences of this approach. We have

also not discussed that how our modelling of trajectories will helps us in reaching

the end goal of our research, i.e., improvement in the focussed tasks of trajectory

analysis. As we will see later, our task will become easier by building on top of the

13

2. Preserving Structural Information

great research work done in the fields of machine learning and data mining. In this

chapter, we provide the theoretical foundations to answer these questions for the

reader. We start off by connecting trajectories with structure.

2.1. Trajectories and Structure

Next to the traditional definitions of trajectory data, our approaches build upon the

natural representation of structured data used in machine learning and many other

fields, i.e., graphs [46, 17].

Definition 1 (Graph) A graph G is a pair of sets, V (G) and E(G), corresponding

to vertices and edges of the graph, i.e., G = (V,E). An edge in E(G) defines a

relationship between the vertices of the graph, i.e., ei,j = (vi, vj) where ei,j ∈ E(G)

and vi, vj ∈ V (G).

A graph G is said to be a directed graph,if an edge between two vertices vi and vj

is not a symmetric relationship between the nodes, i.e. (vi, vj) 6= (vj , vi). Essentially,

this means that we are adding a direction to an edge.

An undirected graph has no directions added to its edges. Furthermore, if the

edges of a graph are assigned weights then we call such a graph a weighted graph.

Now, we come to the definition of neighbourhood and adjacency in a graph.

Definition 2 (Adjacency in a Graph) Two vertices vi and vj are said to be ad-

jacent (neighbours) in a graph if there is an edge between the vertices, i.e., (vi, vj) ∈
E(G).

The adjacency information of a graph is represented by the so-called adjacency

matrix A. This is an n × n matrix where Ai,j = 1, if, there is an edge from vi to

vj otherwise it is 0. The degree of a node v in a graph G is denoted by d(v) and is

equal to the number of adjacent nodes of v.

It is often very interesting, in a graph, to look at the information in the sequence

of connected nodes, which is useful for the both analytical and application purposes.

These sequences can be essentially represented by paths, walks or cycles.

Definition 3 (Walk, Path) A walk w in a graph G is a sequence of connected

nodes from V (G), i.e., w = (vi, vi+1, ..., vj). A walk w is called a path p, if all

the nodes in w are distinct. However, if their is a walk where vi = vj, then w is

considered a cycle.

14

2.1. Trajectories and Structure

The length of a walk is: either, the number of edges that join the successive nodes

in w (in an un-weighted graph), or, it is the sum of weights for those edges (for a

weighted graph).

Graphs have many variants to capture the different flavours of structured data.

For example, we can label the nodes and edges of a graph (known as labelled graphs)

in order to deal with the attribute information presented in structured data. Labelled

graphs are a very flexible and generic data structure having profound applications

and analytical methods. In our case, we can take the help of labelled graphs to

connect trajectory analysis with the existing ideas in machine learning, i.e., repre-

senting trajectories as (walks over) labelled graphs and then apply the analytical

methods in machine learning over these graphs. In order to carry out these tasks,

we define labelled graphs as following

Definition 4 (Labelled Graphs) A labelled graph G(V,E, L) is a graph, where

the nodes and edges are assigned labels , i.e., Ω : V ∪E → L, the set of nodes V and

edges E are mapped to the set of node and edge labels L. Additionally, l(v) denotes

the node of a label while l(ei,j) denotes a label associated with an edge e between node

i and j [52].

Sometimes, we define constraints on the nodes and edges of a graph to model

the task at hand and improve the overall complexity/ performance of the solution.

One of the examples of such graphs is a Euclidean graph, which is a labelled graph

G(V,E) with v ∈ V :7→ Rd meaning that the vertices are embedded in Euclidean

plane (vertex labels belonging to R2). An Euclidean graph is defined as follows:

Definition 5 (Euclidean Graph) An Euclidean graph is a labelled graph in which

the vertex labels represent points in the Euclidean plane, i.e., v ∈ V :7→ Rd, and,

the edges are assigned lengths equal to the Euclidean distance between those points,

i.e., a straight line between corresponding vertices.

Street network is another example of the datasets in trajectory analysis that

have an Euclidean Graph representation through their poly-line structure and their

vertices embedded in R2. To make it explicit, we can add additional vertices to

every corner of the lines constituting a road segment. We define the street network

graph as following:

Definition 6 (Street Network Graph) A street network graphG(V,E) (illustrated

in Fig. 2.1) is a Euclidean graph where V is the collection of terminal points and

15

2. Preserving Structural Information

Figure 2.1.: Street Network of Oldenburg, Germany

E is the collection of edges for street network. The vertex labels belong to Euclidean

plane, i.e., V ∈ R2 and the edge labels denote the length of the straight line between

those vertices.

The edges in a street network 1 can be directed (denoting a one way street) or

undirected (denoting a two way street). Furthermore, the speed limits and other in-

formation can be appended to the labels of the edges, and then, a sampled trajectory

from a vehicle can be considered as a walk over such graph.

However, trajectory is a more generalized notion than a sequence of vertices em-

bedded in Euclidean plane; For example, consider a time and space tagged photo

sequence describing the movement of a tourist in a city. Thinking along the same

lines, a better definition of a trajectory is given by Giannotti. et. al. [21]), which

views trajectory as a temporally taggged sequence of symbols. Technically speaking,

every element in this sequence has a time stamp and the symbols of the sequence can

belong to R2, or discrete alphabet representing a location category of the underlying

space. In our view, even this notion restricts the relationship between vertices of a

trajectory to a temporal relationship and it does not consider the graph informa-

tion related to almost all trajectory scenarios. Consequently, in this thesis, we take

a definition of trajectories that helps us in understanding the nature of structural

1For the rest of the thesis, we will use the term ‘street network’ instead of street network graph.

16

2.1. Trajectories and Structure

information in this data. In particular, we take the trajectory as a walk over an

underlying labelled graph, where the node labels can belong to Euclidean plane or a

discrete alphabet, and the edges between these labels can represent any function of

the corresponding nodes mainly learned from the data, for example: average speed

between two locations, average time spent or simple Euclidean distance between the

nodes. Formally, we define a trajectory (for the rest of the thesis) as following:

Definition 7 (Trajectory) A trajectory T is a specific type of a label sequence

graph, i.e., walk over an underlying labelled Graph G(V,U, L), where, l(v) ∈ (Rd or

Σ), i.e., a continuous plane or a discrete alphabet, and l(ei,j) = f(vi, vj).

Essentially, what we are saying on top of the temporally tagged sequence definition

is that the edges can represent any function of the corresponding nodes (the edge

weights can learned or approximated from the data as well). In the coming sections,

you will see that —not only— our view of seeing trajectories as labelled graphs helps

us in preserving structural information —but also— it paves the way for further

connections to the exciting fields of kernel methods and sequence analysis.

For a start, recall that one of the motivations of this thesis is to deal with the

complex spatio-temporal nature of the data in trajectories by reducing the problems

of noise and missing labels in our trajectories. If we are able to achieve this target,

we can have better idea of our label positions and we can define the distances upon

these labels. Intuitively, we assume that although the local positions of the labels are

perturbed, however, the structural relationships (or graph distances) between these

labels are considerably close to the true values. Thus, in order to learn the true

distances between our labels, we can embed these geodesic distances in a Euclidean

plane. By doing so, we will get metric-based distances between the labels of the

trajectories, which can prove our connection to a strong machinery of kernel methods

and sequence analysis (used to improve trajectory analysis tasks).

In short, our approach to preservation of structural information mainly comprises

the following steps:

1. Embedding the geodesic distances in the labelled graphs (defining trajectories)

into Euclidean space

2. Exploiting the output distances in the previous step to form new kernels for

raw and symbolic trajectories.

3. These kernels provide us a connection the to kernel based machinery and other

exciting fields like biological sequence analysis to solve the task at hand.

17

2. Preserving Structural Information

In the coming sections, we provide brief introductions to Embeddings, and kernel

methods in order to define our approach for raw as well as symbolic trajectories.

2.2. Preserving Structure Through Embeddings

The work in this thesis builds heavily upon the idea of structural embeddings (or

non-linear dimensionality reduction) [48, 24]. Although, embeddings are mostly used

for the visualization of high dimensional spaces on a 2-D plane, however, they give

a general framework to transform data between spaces of different dimensionality or

orientations. In principle, the relationship between the two spaces can vary from a

very simple to complex one, e.g., we can try to embed the points on a sphere or a

manifold to a plane and vice versa, where our goal is to come up with the points in the

output space having similar properties and relationships to the points in input space.

Another idea, similar to that of embedding is graph matching, where we try to come

up with nodes in the output graph having similar properties and relationships like

the input graph nodes. Graph matching therefore is a specific version of embedding,

where the input and output spaces are structured and discrete with some functional

constraints on mappings. In many real world applications, we have data sets, where

we have to find a match between the topology of two networks ranging from shapes,

geometric information extracted from images, tertiary proteins, and street networks.

Also, in many of these problems we are required to find a partial or approximate

match between these two curves because of the uncertainty and corruption that

exists in problems relating to the most real world data. Examples of this include:

• Map Matching where we are required to find a small curve (trajectory) inside a

larger collection of curves (street network) having some spatial and structural

similarity to the matched part [6] .

• Partial shape matching based on skeleton graphs where we find an object of

interest inside a 3D scene or we try to find sub parts of shapes (skeletons),

which are similar [13, 59, 57, 4]

In the following section, we give a short overview of the structural embedding tech-

niques using the distance preservation as the main criterion to be preserved. We

refer the interested reader to one of the elegant text books in this area, i.e., ‘Non

linear dimensionality reduction’ by Lee. et. al. [38]. In the following, we have taken

their text [38] as a basis and adapted it to our needs.

18

2.2. Preserving Structure Through Embeddings

The distances in graphs cannot be perfectly preserved, however, it has been shown

that structural embedding techniques preserve the local geometry and neighbour-

hood information in the output space. The intuition behind the distance preservation

schemes is that any data set can be completely described by pairwise distances and

hence, if a low dimensional representation is produced in a way that these pairwise

distances are preserved then the dimensionality reduction is successful. Furthermore,

the idea that a high-dimensional space, containing the data set of interest, is usu-

ally sparse with few dense regions (or clusters of data) gives rise to the practicality

of preserving local geometry and neighbourhood during the process of embedding.

In practise, there are a lot of distance preserving approaches for embedding. The

most notable of these approaches are: principal component analysis (PCA), multi-

dimensional scaling (MDS) and Iso-MAP [38]. The main difference between these

approaches is based upon the type of distances preserved and the objective function

used. In the next section, we provide a short overview of distance preservation in

Rd (and, hence the name ‘spatial distance preservation’) and then go on to describe

the geodesic distance preservation.

2.2.1. Preserving Spatial Distances

The term spatial distances refers to the fact that only the actual co-ordinates of

the data points are used for distance calculation in embedding and the underlying

structure of the data is ignored, for example, the Euclidean graph representation of

trajectories. In the following subsection, we first introduce some basic definitions

related to distances and metrics and then describe the Multidimensional Scaling

(MDS), along with its variants, which is the most popular and classic spatial distance

preservation method.

Metric Spaces, Distances and Norms

A metric spaceM is a couple (Y, d), where Y is a point set such that the notion of a

distance between any two points a, b ∈ Y is defined. The distance function, denoted

by d(a, b) must satisfy the following properties for any points a, b, c ∈ Y.

1. Non-degeneracy. d(a, b) = 0⇔ a = b

2. Non-negativity. d(a, b) ≥ 0

3. Symmetry. d(a, b) = d(b, a)

4. Triangle Inequality. d(a, b) ≤ d(c, a) + d(c, b)

19

2. Preserving Structural Information

The so-called dot or scalar product2 is the most basic idea to define the notion of

similarity between two vectors in metric spaces. And, for the usual Cartesian vector

space RD, the distance functions can be derived by measuring the Lp norm of any

order for the difference between two points. The Lp norm, denoted by ||x||p for a

point x = [x1, ..., xD]T is defined as

||x||p =
(
xp1 + xp2 + ...+ xpD

) 1
p (2.1)

Some of the most commonly distance functions based on Lp norm are city-block

distance and Euclidean distances. To illustrate, for any two points a, b ∈ Y

1. City block distance. The city block distance or the L1 norm is given by the

equation:

||a− b||1 =
D∑
i=1

|a− b| (2.2)

Intuitively speaking, it is the sum of straight lines along the axes required to

go from a to b.

2. Euclidean distance. The Euclidean distance or the L2 norm is given by the

equation:

||a− b||2 = 2

√√√√ D∑
i=1

||ai − bi||2 (2.3)

Euclidean distance is the most commonly used distance measure. The idea of

Euclidean distance is based upon the Pythagorean theorem in 2-D geometry,

i.e., it gives the length of the straight line starting from a and ending at b.

Sometimes, for analytical purposes, the squared Euclidean distance is used and

described as the Euclidean distance (we will do the same for the rest of the thesis).

For most of the embedding purposes, we use a simple embedding technique called

Multidimensional Scaling (MDS) [10], based upon the idea of preserving spatial

distances. In the following, we briefly describe MDS and the related invariants used

in this thesis and refer to [38] for the interested reader.

2The dot product of two equal length n-dimensional vectors x and y is the sum of multiplications

for corresponding entries and is denoted by 〈x.y〉 i.e., 〈x.y〉 =
n∑
i

xi.yi

20

2.2. Preserving Structure Through Embeddings

2.2.2. Multidimensional Scaling (MDS)

Multidimsional Scaling (MDS) refers to a family of embedding methods starting

in 1930s [38]. The classical metric MDS preserves pairwise scalar products (closely

related to pairwise distances) and achieves the dimensionality reduction a linear way

(rather than a non-linear one).

In order to formally introduce the Multi-dimensional Scaling, we start with some

notation. The observed variables are denoted by y and latent variables are denoted

by x. Furthermore, P refers to the dimension of latent space while D refers to the

dimension of data space and our objective is to find a mapping between points lying

in a Cartesian metric spaces RD to another RP . More precisely, we want to find a

D-by-P matrix W (with W TW = IP) that transforms the observed variables y into

x by preserving the pairwise scalar products. i.e.

y = W Tx

For this purpose, we take a matrix S, called Gram matrix, that represents the

pairwise scalar products of elements of y. i.e.

S = Y TY = (WX)T (WX) = XTX

It has been shown that the latent variables can be found by computing the eigenvalue

decomposition of the Gram matrix S. i.e.,

S = UΛUT

where the matrix U represents the matrix of orthogonal eigenvectors of S and Λ

refers to the diagonal matrix of eigenvalues in a sorted order. The P-dimensional

latent variables can now be computed by the following equation.

X = IP×NΛ
1
2UT (2.4)

The eigenvector decomposition of the Gram matrix S ensures that the difference

between the corresponding scalar products in the two spaces is minimized [14]. In

other words, Eq. 2.4 finds the optimum of the following objective function.

Fo = argmin
X

∑
i,j

(〈yi, .yj〉 − 〈xi, .xj〉)2 (2.5)

21

2. Preserving Structural Information

Eq. 2.5, also known as the classical metric MDS, has been generalized to the metric

MDS in which pairwise similarities are preserved. Lets say Kx and Ky denote the

similarity matrices for output X and input Y . Then the objective function Fo using

metric MDS can be described as follows:

Fo = argmin
X

∑
i,j

(Kx(i, j)−Ky(i, j))
2 (2.6)

Although spatial distance based approaches,e.g., classical MDS. work well on simple

data sets however one has to be careful when the observed data has an underlying

structure, e.g., trajectories on a street network because the data points are con-

strained to live on the underlying network and the Euclidean distances between

data points do not represent this information. In such cases, Fig. 2.2 describes

how to embed a trajectory in a one dimensional space by preserving Euclidean or

geodesic distances.

2.2.3. Geodesic Distances

The fundamental idea behind embedding is that the data lies over a manifold (a

curved and sparse subspace) in a high dimensional space. The term geodesic dis-

tances is used for the distances that respect this manifold during similarity calcu-

lation. Formally, the geodesic distance, denoted by ∆(pi, pj) between two points pi

and pj for a manifold X, in a metric space (X , d) space, is defined as following:

Definition 8 (Geo-Desic Distances) It is the shortest distance between pi and pj

realized through a sequence of points in X, i.e., (pi, pk1 , ..., pkl , ..., pkn) ∈ X such that

for any two consecutive points in this sequence the manifold distance ∆(pkl , pkl+1
)

equals the metric distance d(pi, pj).

In order to explain the concept,we give some relevant examples: To illustrate, con-

sider a single trajectory T = {p1, p2, ..., pn} ∈ R2 and the latent variable X =

{x1, x2, ..., xn} ∈ R.

R → T ∈ R2 : x 7→m(x) = [m1(x),m2(x)] (2.7)

The the arc length g from point pi to pj is computed through the integral

g =

pj∫
pi

dg =

xj∫
xi

||Jxm(x)||dx (2.8)

22

2.2. Preserving Structure Through Embeddings

where Jx denotes the Jacobian matrix (or first order partial derivatives) of the

manifold points w.r.t. x. In simple words, the geodesic distance can be calculated

by summing the lengths of straight lines lying on the trajectory between two points.

A raw trajectory is essentially a one dimensional manifold (a very easy prey to

distance preserving embedding). In the case of graphs (a manifold where local

neighbourhood is defined by multiple points) the situations gets more complex. In

this case, several different paths go from one point to the other and one particular

path is considered a sub-manifold of the observed data and the integral in Eq.2.8

has to be minimized over all such paths. Note that under the assumption of dense

graph, the geodesic distance in a graph is approximated well by the shortest path

distance3 [38], and is defined as the shortest distance between two nodes, i.e., vi, vj ∈
V (G), required to reach from vi to vj by considering the distances of all paths from

vi to vj . This distance is usually known as the rail-road distance as well, as rails

are constrained to live on the underlying network. Furthermore, the great circle

distance is a geodesic distance as well, as, it is computed upon the curves drawn

on the surface of the earth instead of the three dimensional spatial plane of our

existence. Fig. 2.2 describes the consequences of preserving structural information in

trajectories through Euclidean distances versus geodesic distance based embeddings.

Although, one may propose that the structural information between the trajectory

points can be preserved by computing the Euclidean distances in R2, however, these

distances (e.g., red line between p2 and pn) do not respect the underlying manifold

(or street network over which T exists). Consequently, such distances cannot be used

for trajectory analytical tasks in a structure preserving way. The idea is further

illustrated through the help of triangular distances (red triangle) between p2, p4

and pn. The individual aspects of the triangle give the Euclidean distance between

corresponding points. Roughly speaking, the street network distance between p2 is

approximately thrice the length of the aspect between p2 and p4. This miscalculation

can produce error for the analytical tasks built upon this information. However,

there is a solution to this problem, i.e., to use the graph distances between the

trajectory points. Intuitively speaking, as there is only one path between two point of

the trajectory, therefore, if we want to embed a raw trajectory onto a one dimensional

plane then the trajectory will be unrolled. This issue can possibly be addressed by

going along the trajectory curve instead of computing the distance in R2. The results

3Following the well-known Iso-Map [38], we use the term geodesic distance instead of the shortest
path distance when we assume that our graph is a curved sub-space (manifold) lying in a larger
space, and our aim is to estimate the pair-wise Euclidean distances between the nodes of this
graph by unfolding it through embeddings. We refer to [38] for more details.

23

2. Preserving Structural Information

Street Network
Trajectory
Data Points

Euclidean Distances

2D

1D

Distances after
Embedding

Figure 2.2.: The simplest case for geodesic distance based embedding for a sampled
trajectory over the street network (gray edges). The trajectory T (blue
dashed line) is a continuous curve in R2 and it is sampled through the
noisy points T = {p1, p2, ..., pn} (in black circles). The purpose of the
graph is to show that the structural distances between input points can-
not be represented by the Euclidean distances in R2, because, they do
not respect the underlying street network. The idea is further illustrated
through the help of triangular distances (red triangle) between p2, p4 and
pn in Fig.2.2, where the individual edges of the triangle give the Eu-
clidean distance between the corresponding points. Roughly speaking,
the street network distance between p2 and pn is approximately thrice
the length of the edges between p2 and p4. This issue can possibly be
addressed by going along the trajectory curve instead of computing the
distance in R2. The results of distance preservation based embedding
in a 1-D plane with geodesic distances are shown.

of distance preservation based embedding in a 1-D plane with geodesic distances is

shown. Notice that the pairwise Euclidean distances cannot be easily obtained for

a non chain like graph (i.e., a manifold, where there are multiple paths between

two nodes). One way to resolve this situation is given by the Iso-Map [38], that

embeds the shortest paths in such graphs using MDS in order to come up with

pairwise Euclidean Distances. The same technique will be used later in this chapter

to compute distances between more complex trajectories than the above one.

Embedding approaches, i.e., MDS and other, are called ‘kernelized embedding’ [24]

when they use kernel matrices as the similarity criteria, i.e., Kx and Ky. We proceed

by explaining kernel matrices and kernel methods, in general, in next section.

24

2.3. Kernels for Structured Data

Figure 2.3.: Illustration of the main idea underlying kernel methods. The function
ϕ embeds the data into a feature space F where the complex pattern
now appears linear. The kernel computes dot products in F .

2.3. Kernels for Structured Data

Kernel based distance functions and learning methods are among the most popular

machine learning techniques. The reasons for their popularity are their tendency

towards easier geometric interpretation, solid mathematical background and strong

empirical performance in a vast majority of machine learning tasks. The basic idea

behind a kernel is to improvise a mapping for the data points such that the distance

between two data points can be calculated as an inner product in the mapped space.

Thinking along these lines, a large volume of work is devoted to graph kernels and

kernels for structured data that make it possible to apply the vector based learning

schemes to structured data. In the remaining part of this section, we give a brief

introduction to kernels and refer to one of the many introductory text books on

kernel methods [60] (used as a reference text in this section) for interested readers.

The word ‘kernel’ or ‘kernel function’ (denoted by k) is used in machine learning as

a similarity criteria more suitable to the non-vectorial data sets (text, images, protein

sequences, graphs, and trajectories). The function k maps each pair of points in the

dataset to a dot product in a high dimensional feature space, cf. Fig. 2.3. The matrix

constructed from applying kernel function to the all pairs of data points is called

‘kernel matrix’ of Gram matrix. Through the help of these dot products (kernels),

we search for linear relationships in this high dimensional space, which correspond

to some complex relationships in the input space. In this way, we can find complex

relationships among the data points easily. The following scenario illustrates this

concept in a gentle manner:

Consider a two-dimensional input X ⊆ R2 together with a mapping ϕ, which

25

2. Preserving Structural Information

maps an input x = (x1, x2) to a three-dimensional feature space F ⊆ R3:

ϕ : x = (x1, x2) 7→ ϕ(x) = (x2
1, x

2
2,
√

2x1x2)

Consider x, z ∈ X. Once we have mapped them to F (a high dimenisonal feature

space), we can carry out the kernel k(x, z) as the dot product in F as follows:

k(x, z) = < (x2
1, x

2
2,
√

2x1x2), (z2
1 , z

2
2 ,
√

2z1z2) >

= (x2
1z

2
1 , x

2
2z

2
2 , x1x2z1z2)

= (x1z1 + x2z2)2 = < x, z >2 (2.9)

Notice that a straight line in F is translated to a polynomials in R2, hence the

linear relationships in F are not linear in R2. We summarize the key aspects of

kernel methods below:

1. Data items are embedded into a high dimensional space F where the kernel

k(x, z) is computed as a dot product between mappings.

2. Linear relations are searched among the mappings of data items in feature

space through these dot products (kernels).

3. These relationships are translated back to input space as complex relationships

and kernels in this way help finding the complex relationships easier.

4. Kernels provide great flexibility due to this property of inner product rep-

resentation. We can apply kernel methods to any data set (irrespective of

type, e.g graphs, trajectories, strings, and images), which can be mapped to a

high-dimensional space where dot products can be computed.

5. A kernel is a valid kernel if there exists a feature space F where it can

be computed as a dot product between the mappings of input vectors, i.e.,

k(x, y) = 〈ϕ(x), ϕ(x)〉. In terms of proving the validity of the kernel, this

means one of the two choices:

(i) To manually construct a mapping ϕ for the input elements, give a formula-

tion of the kernel k(x, y) and show that k(x, y) is computable as a dot product

between ϕ(x) and ϕ(y).

(ii) Infact, one does not need to construct an explicit feature map ϕ at all.

One only needs to show that k(x, y) corresponds to 〈ϕ(x), ϕ(y)〉 for some

26

2.3. Kernels for Structured Data

ϕ. This raises a very interesting question, i.e., Is it possible to show that

k(x, y) = 〈ϕ(x), ϕ(x)〉 without knowing the feature map? The answer to this

situation is provided by Mercer’s theorem saying that one only needs to show

that the Gram Matrix (the matrix computing the kernel values for input ele-

ments) is semi-positive definite. This technique is knows as the kernel trick and

illustrated in more detail in many of the text books related to kernel methods,

for example, [60].

6. Kernel Construction Properties. Kernels are extendible and can be com-

bined through linear transformations, i.e multiplication, addition and a linear

combination of them. Here, we provide a few properties to construct a valid

kernel k(x, y) from two valid kernels k1(x, y)and k2(x, y).

a) k(x, y) = c.k1(x, y) where c > 0

b) k(x, y) = k1(x, y) + k2(x, y)

c) k(x, y) = k1(x, y) · k2(x, y)

d) k(x, y) = f(x)k1(x, y)f(y) where f(.) is any function

e) k(x, y) = ek1(x,y)

f) k(x, y) = k1(ϕ(x), ϕ(y)) where ϕ maps input to RM and k1 is a valid

kernel in RM .

As mentioned above, kernel methods can be applied to any data set including

graphs [25, 54]. Because we are more interested in continuous and discrete tra-

jectories, which can be considered as label sequences over graphs therefore we are

naturally interested in the 2nd category. The study for Kernel methods in struc-

tured and graph data started in 2002. Graph kernels can be used to measure the

similarity between graphs for different matching problems, e.g., isomorphism, and

auto morphism and can be broadly divided into kernels between two graphs and

constructing kernels (kernels between the nodes of a graph) [65, 17, 19]. On similar

lines, kernels for labelled graphs are of two types, i.e., kernels between two labelled

graphs [64] or kernels between two label sequences (see [58] and Chap. 7 of [52]) of a

particular graph. Having defined the basics of structure preservation, we provide our

approach to preserving structure in trajectories by defining kernels for trajectories.

These kernels are based upon the labelled graph definition of trajectories and they

emphasize upon the notion of preserving the structural relationships in trajectory

points.

27

2. Preserving Structural Information

2.4. Our Approach to Preserving Structure in Trajectories

Similarity criteria lie at the heart of most analytical tasks, and, therefore — our

approach to preserving structure in raw trajectories is based upon defining the sim-

ilarity criteria for trajectories as walks over labelled graphs. Building upon that,

we capture the structural information in the two types of common trajectories, i.e.,

raw and symbolic trajectories with the help of a simple idea, i.e., take the geodesic

distances among points in this label sequence graph and then embed them in Eu-

clidean space to come up with the distances that respect the properties of a distance

measure. These distances can then be used in conjunction with the existing kernel

machinery to solve trajectory analysis tasks. Although the idea is simple enough,

yet, the technical details of the two kernels are different because of the nature and

applications considered. In the following sections, we give motivations and a de-

scription of our approach to preserving structure in raw and symbolic trajectories

along with the kernels mentioned above.

2.4.1. Raw Trajectories

Our approach to the problem of structure preservation in raw trajectories is to view

them as Euclidean graphs (with possibly additional labels for vertices and edges).

This helps us in capturing the spatial and temporal aspects of the trajectory and

also connecting it to the analytical methods developed in graph theory and machine

learning. Actually, it is easy to see how trajectories can be represented by Euclidean

graphs, because, the spatial aspects of a trajectory are already captured through

R2 co-ordinates of the graph’s vertices. Furthermore, the temporal aspects of a

trajectory can be captured by assigning weights to edges according to the time

spent upon them or time stamping the vertices of the graph in the order of the

trajectory.

Recall from the previous chapters, that we have chosen map matching, i.e., as-

signment of raw trajectories to street network as an example problem for structure

preservation in raw trajectories. In the start of this chapter, we have defined street

network as an Euclidean graph. Therefore, map matching, can be viewed as a prob-

lem of

“matching, i.e., finding similarity between two Euclidean graphs”.

Indeed, Euclidean graphs can actually be found in many learning problems related to

Geo-analytics such as map matching [6], shape analysis [13, 26, 57], protein struc-

ture analysis, and time series similarity analysis. However, —to the best of our

28

2.4. Our Approach to Preserving Structure in Trajectories

knowledge—, the problem of matching Euclidean graphs, i.e., “finding the similarity

between two Euclidean graphs” has not been considered yet. Instead, the problem

has been approximated by casting it into a traditional “embedding” respectively

“graph matching” problem and in turn dropping important information. Further-

more, many of the graph matching problems are modelled as a quadratic assignment

problem, which is NP-Complete [45], and most of the emphasis in solving graph

matching problem is put upon finding the approximate solution to the quadratic

assignment problem. However, due to the inherent problems in solving quadratic

assignment problem, machine learning has started to look at kernel methods and

other approaches to graph matching. Specifically, graph matching is typically for-

mulated as a problem where we only seek a node-to-node matching between the

input and output graphs. Euclidean graph matching is different as the nodes of

the input graph (trajectory) can be mapped to any point lying on the edges of

the output graph (street network graph). Embedding [38], on the other hand, is a

generic problem: find a set of points in a (typically) low-dimensional space having

similar properties and relationships as the points in the original input space. So far,

however, it has only been considered for matching graphs in the traditional sense

discussed above, see e.g. [38, 24, 47]. Hence, this approach suffers from the same

issues as the standard graph matching approach. Nevertheless, they employ kernel

methods. In the next section, we will show a kernel, which preserves the structure

for raw trajectories and can be used with the help of above mentioned approaches

to solve the problem of structure preservation in raw trajectories.

2.4.2. Geodesic Distance based RBF Kernel

In order to define a valid kernel over trajectories, taken as label sequences over

Euclidean graphs, we first need to define a mapping of the individual elements to

a feature space where the inner product between the elements gives us the kernel

between the trajectories. However, as our intended application to kernel definition is

the reduction of noise during map matching, therefore, we define a hyper parameter

for the kernel, σ, which tells that how much a trajectory deviates from the original

path. This hyper parameter is analogous to standard deviation between spatial

points, however, our space of reference is the length of path between sampled points.

Such a mapping would also require a notion of total distance travelled between two

points. Obviously, this distance can be computed by taking the sum of distances

between all successive points needed to reach from one input point to the other. In

order to do that, we define an explicit feature map for the trajectory points xi to

29

2. Preserving Structural Information

R+.

φ : x = (x1, x2) 7→ R+ =
i−1∑
k=1

(xk − xk+1)2

In other words, our mapping function maps a point in a trajectory on positive real

line such that the first point of the trajectory represents 0 and all other points of the

trajectory are assigned numbers equal to their shortest paths from the starting point

in trajectory in its Euclidean graph representation. Notice that this representation

maps each of the trajectory points on a straight line where we can compute the ker-

nel. An intuitive distance measure between these mappings can be the Mahalanobis

distance, (denoted by g), between the mappings of the corresponding points with

the given sigma I.e.,

g(φ(xi), φ(xj);σ) = (φ(xi)− φ(xj))
2/2σ2) =

∑
i≤k<j

(xk − xk + 1)2/σ2 (2.10)

Notice that this distance is slightly different than the Euclidean distance between

the corresponding points in the sense that it chooses to go through the points al-

ready travelled by summing up the distances between the successive points lying in

between the inputs. By taking this approach, this distance measure incorporates

the path length and sigma incorporates the distortion occurred during the travel of

the trajectory. Additionally, the Mahalanobis distance between the mappings is a

discrete version of the geodesic distance equation provided in Eq. 2.8 from Sec. 2.2.3

with a constant factor 1/σ2, i.e.,

g(φ(xi), φ(xj);σ) = 1/σ2 ·
xj∫
xi

||Jxφ(x)||dx (2.11)

Notice that because of our mapping the common distances in the two mapping will

be cancelled out. Now, we take this geodesic distance as the core distance of the

RBF kernel to give the final equation of geodesic distance kernel.

K(xi, xj) = e−g(φ(xi),φ(xj);σ) = e
−

∑
i≤k<j

(xk−xk+1)2/2σ2

(2.12)

The purpose of making this kernel function is to connect map matching with the

broad kernel machinery. As shown in next chapter, the geodesic distance kernel can

be successfully applied to give competitive results for map matching.

30

2.4. Our Approach to Preserving Structure in Trajectories

Validity of ‘Kernel for Raw Trajectories’

Recall that in the standard “kernel trick”, one does not need to construct an ex-

plicit feature map ϕ at all. One only needs to show that k(x, y) corresponds to

〈ϕ(x), ϕ(x)〉 for some ϕ. An equivalent to this statement is to show that the Gram

Matrix (the matrix computing the kernel values for input elements) is semi-positive

definite, i.e., it fulfils the Mercer’s conditions in [60]. Thinking along the same lines,

many of the kernels for structured data do not provide a feature map for the in-

put elements, instead, they show that a function of the input elements satisfies the

Mercer’s conditions as outlined above.

Our technique of giving a valid kernel, however, is different as we are lucky enough

to find an feature map that maps the input points to R+. What remains to show is

that this kernel is the calculation of a dot product in the mapped feature space. Here,

because we are using an RBF kernel over the feature maps, therefore we only have to

show that RBF kernel is a valid kernel over R+. This has been done earlier by taking

the Taylor’s expansion of exp function over the two inputs and then computing the

dot product between these expansions in the infinite dimensional space. Knowing

this, we can prove it through kernel construction property f in Sec.2.3 [60]. Or,

alternatively, we can prove it in a simple way as following:

e−((φ(x)−φ(y))2/2σ2) = e(−φ(y)2/2σ2) · e(φ(x)φ(y)/σ2) · e(−φ(y)2/2σ2)

where, the kernel construction properties, c and e from Sec.2.3 are used.

2.4.3. Symbolic Trajectories

In many traffic applications, our goal is to carry out a high-level analysis of raw

trajectories. In order to reach this goal, we discretize the raw trajectories into

the so-called symbolic trajectories. These symbolic trajectories can then be fed to

graph and sequential approaches for further analysis. In this section, we first define

a method to discretize raw traffic into sequences of traffic symbols (from a chosen

alphabet) to proceed towards symbolic trajectory analysis. Furthermore, in order

to use out-of-the-box methods for sequence analysis, we need a (symbol) similarity

score ∆ in order to compute the similarity score between traffic sequences and align

them. And, then in the end, we give a geodesic distance based embedding that

can be used with alignment kernel to compute the similarity between two symbolic

trajectories.

We start by defining a so called ‘translation method’, that bundles together the

31

2. Preserving Structural Information

ingredients required to perform a symbolic (or high level) analysis of raw trajectories

with sequence analysis approaches. Essentially, it is composed of three basic steps,

i.e., choosing an alphabet, discretization and defining a symbol similarity score for

alignment. More formally, let X be some raw traffic data. We now convert X into a

set S of traffic sequences using a translation methodM i.eM = (AM,∆M,F) where

AM = {a1, a2, ..., al} is an alphabet (set of symbols the sequences are composed

of) and, a traffic sequence TM for M is a walk over a labelled graph where the

nodes of the graph are symbols in our alphabet and the edges are a function of

two connected nodes, e.g., time spent, speed, and spatial distance. that is TM =

{at1 , f(at1 , at2), at2 , ..., f(atn−1 , atn), atn , }. Furthermore, F denotes a discretization

function, which maps raw traffic data X to the set of traffic sequences S according

toM, that is F(X)← SM. Finally, ∆M is an l-by-l matrix of pair-wise similarities

between symbols in AM. The similarities in ∆M will be learned from the labelled

graph representation of trajectories in Sec.2.4.4. Here, we start by describing the

details of discretization function F and the alphabet (the set of nodes for our labelled

graph).

Discretization Function

The discretization function F is a function, which maps the raw traffic data to trajec-

tories, and — in general, F is application dependent. Examples include map match-

ing, i.e., the process of assigning raw trajectories to street segments, see e.g. [30],

region based division of Euclidean space in T-Pattern mining [22], frequency bins

from sensor readings, and stay point extraction from user trajectories [68], among

others, as illustrated in Fig. 2.4. Let us now touch upon the alphabet and similarity

score used in more detail.

The Alphabet

The alphabet AM is a set of symbols i.e AM = {a1, a2, ..., al} with |AM| = l.

Every symbol a ∈ A corresponds to a set of traffic objects. Therefore, it is natural

to assume that for any two symbols ai, aj ∈ AM, ai ∩ aj = ∅, that is ai and aj

correspond to disjoint/non-overlapping sets of traffic objects. Note that the symbols

usually represent spatial and unary objects like regions of a city or streets in a

street network, however they can also represent non-spatial entities of interest like

frequency bins for sensor readings or categories of streets, e.g., highway, and link

road. The condition that symbols in AM represent disjoint sets is sufficient for

32

2.4. Our Approach to Preserving Structure in Trajectories

x
x

x
x

x
x

xxxx

a

b

c

d e

f

g

h

i

j
kl

m
n

(a) Map Matching

A

B C
D

J

K

G

H

I L

M

N O

P
Q

R

(b) Regional alphabet

Home

Super-Market

Work

Tennis Ground

(c) Stay points based alpha-
bet

Figure 2.4.: Discretization function F and traffic sequence extraction from raw data.
x-denotes a traffic sequence extracted after discretization. (a) Map
matching, i.e., assignment of raw trajectory points to street network.
‘Gray lines’ denote street network; ’Red squares’– raw trajectory points;
’black crosses’ – corresponding ground truth and alphabetical symbols
denote street names. The output of map matching is a sequence of street
segments, i.e., X = abdefg. (b) Region based division of underlying
space for T-Pattern mining. ’labelled Polygonal regions’ denote regions
and directional blue line denotes raw trajectory. The output of the dis-
cretization function F is a sequence of regions, i.e., X = HGJLOP . (c)
Raw GPS trajectory is shown in black and blue circles denote the stay
points of the users. F produces a sequence of stay points (or activities),
i.e., X = ‘Home, Shopping, Work, Sports’ after discretization.

sequence comparison methods and yet intuitive and powerful enough to capture a

very broad range of traffic applications. Indeed, we loose information but gain a

more condensed and often more easy-to-grasp view on the data. Specifically, the

benefits of using the symbols are:

1. Symbols lists are user friendly like street names or regions of a city.

2. Raw traffic data is huge and cumbersome to query and analyse; ‘symbol lists’

summarize the data for faster computation.

3. (Disjoint) symbols force the user to define a suitable abstraction level and

perform analysis according to her interests; e.g. Fig. 4.6 shows ’Traffic Logos’

for stay point based alphabet after a 99% compression and still describes al-

most all semantic information present in Fig. 4.10 i.e an analysis carried over

a 100k GPS readings. Tab. 2.1 describes the examples for translation of traffic

problems into sequential problems.

33

2. Preserving Structural Information

Once, we have described the alphabet, we describe how to learn the similarity matrix

from the labelled graph representation of trajectories.

2.4.4. Geodesic Distance based Alignment Kernel

The similarity matrix ∆M describes the similarity between symbols in AM. In

the context of computational biology, ∆M is driven by the following insight: two

molecules have higher similarity if they can be converted through chemical reactions

readily and vice versa. Therefore, standard matrices have been developed. For traffic

applications, the situation is different. There is a multitude of traffic data sets, all

with their own characteristics and invariants. Hence, it is unlikely that there is a

single good similarity matrix. Instead, it depends upon the application at hand.

Hence, we now propose a ‘data driven’ approach to devise a similarity matrix

∆. Recall that we are representing our trajectory as a walk over the underlying

labelled graph, i.e., TM = {at1 , f(at1 , at2), at2 , ..., f(atn−1 , atn), atn , }, and we want

to embed the geodesic distances in these graphs in order to come up with valid

distances that can be used with kernels. In some cases, the geodesic distances of our

interest in the underlying labelled graph can be given, for example, we can chose

shortest path distances for the model where the input alphabet consists of streets

from a street network and the application of interest is ’trajectory clustering’. For

cases, where we do not have such domain knowledge available, we estimate these

distances by fixing a function of interest for the pairwise nodes and then compute

geodesic distances from it. Consider, for example, the case of temporally tagged

sequences [21]. In this case, we can take the average temporal difference between

the corresponding nodes as the weight of the edge between them. To illustrate,

we turn a sequence into a graph in the following way. Each unique symbol in the

sequence is a node. Then if two symbols are consecutive in the sequence, there is an

edge between the corresponding nodes in the graph, which is weighted by a function

of the two corresponding nodes (in case of multiple edges, we can take the average

weight). Finally, if there are multiple sequences, we simply average all resulting

distance matrices. Now, we calculate the shortest path distances between all nodes

in the graph. Unfortunately, it may very well happen (in particular for rather small

data sets) that there are pairs of symbols, which never co-occur in a traffic sequence.

In turn, the average temporal difference distance cannot be computed. For example,

in the dataset we used for the analysis of user activities, the user never does sports

and shopping in a sequence together. In this case, we assign an infinity value. In

other words, we just ensure that the two symbols are maximally dissimilar. We

34

2.4. Our Approach to Preserving Structure in Trajectories

Application Alphabet Edge Labels for IsoMap
User Activity Extraction Stay points Median Distances
’Popular’ route finding Streets in street network Street Length
Analysis of Highway Usage Street Category for trajectories Average Temporal Difference
Traffic Event Detection bins from sensor readings Distance between bins

Table 2.1.: Alphabets along with edge labels for IsoMap.

Algorithm 1: Embedding Geodesic Distance for Symbol Similarity ∆

Input : AM, D = {T 1
M, T

2
M,, T

m
M} - Set of Traffic Sequences

Output: ∆M - Symbol Similarity Matrix

1. Define two Matrices, Frequency and Cumulative temporal difference
2.foreach T iM ∈ D do

foreach consecutive pair (a, b) ∈ T iM do
Get The Function of pair e.g., temporal difference
Add temporal difference and frequency calculations

3. Get Average of temporal differences by dividing it with Frequency
4. Set missing differences to infinity
5. Compute Shortest Paths from Difference Matrix
6. Embed in R2 using IsoMap [38], and output differences

note that now we are in a very similar situation as the well-known IsoMap approach

for computing low-dimensional Euclidean embedding [61]. Simply following it, i.e.,

we embed the weighted graph into Euclidean space R2 resulting in distances dij

using multi-dimensional scaling [10]. This new distance respects well the intrinsic

geometry of the data manifold described by the weighted graph. Tab. 2.1 gives the

example edge labels for the underlying labelled graph used to compute the geodesic

distances. This scheme has a nice probabilistic interpretation. In essence, every

trajectory lies on the same labelled graph but we do not know the weight on the

edges of these labelled graph. Therefore, we assume that the observed weight (e.g.,

time, or speed) is actually a sample of the original weight. Considering that these

sampled weights on the edges of our graph are i.i.d under a normal distribution,

we take the Maximum likelihood estimation for these weights, which is the average.

Kindly, note that our goal is to compute the geodesic distance between these nodes,

which is well approximated by the observed weights in the nodes and shortest paths

in the overall graph. Similarly one may be tempted to compute the shortest path

in every trajectory between two nodes and take this as a sample for the combined

geodesic distance. In our view, this will not yield good results because in a shortest

path (for one trajectory) there are multiple edges (each of which is i.i.d.), therefore

35

2. Preserving Structural Information

REAL(Shop2)

Home

Work

Tennis

ALDI(Shop1)

City Center

Bank

(a) The original map in real world with
labelled stay points at their spatial co-
ordiantes

−20−15−10−505101520
−20

−15

−10

−5

0

5

10

15

20

H

W
A

R

T O
B

(b) Stay points after geodesic distance
based embedding with temporal differ-
ences

Figure 2.5.: (a). Spatial map in the true world. Convex hulls of labelled stay points
(polygons over gray-edged street network). The main stay points are
Home, Office, Bank, Tennis, Shopping-1(ALDI), Shopping-2(REAL)
and City Center. (b). Temporal space projection for the similarities
learned from labelled graph representation. Notice that the original
map is very close to a rotation of the embedding. This makes sense as
the time spent in reaching from one place to the other in real world is
roughly proportional to the spatial distances.

if we keep out concatenating these independent probabilities, our confidence about

the overall geodesic distance will get lower. Therefore, we calculate the geodesic

distance only between the connected nodes as the average of the observed weights

for connected nodes (which is really frequent and can be calculated according to

a high confidence) and in the end, the shortest path (an approximation for the

geodesic distance) for the graph observed by such distances. In order to come up

with the Euclidean space based distances, we unfold all these geodesic distances by

embedding them.

One of the example of these weights can be temporal difference between two nodes,

(i.e. average of shortest temporal differences between the symbols in sequences).

This is essentially triggered by Buchin et al.’s temporal differences between trajec-

tory points’ [8]. An embedding based upon such distances will be like oprojecting

the original trajectories into a temporal space. We show the results in Fig. 2.5. No-

tice that after rotation of the axis, our embedding scheme yields a temporal space

based map, which quite closed to spatial space map. This makes sense as the time

spent in reaching from one place to the other in real world is roughly proportional

to the spatial distances. Finally, we turn the Euclidean distances into similarities

by using RBF kernels [30], i.e., ∆ij = exp(−dij).

36

2.4. Our Approach to Preserving Structure in Trajectories

The similarity criteria defined above along with the discretization methods intro-

duced provides a mechanism to run black box sequence analysis methods over raw

traffic data. For instance, we can align a set of sequences. However, we can do even

better. For instance, standard alignment assumes that the time lapsed between two

consecutive symbols is constant. This is not true for most traffic data. To accom-

modate for variable-size steps in time, that means to balance between duration of

a time step and the Euclidean distance between the two corresponding symbols,

we add a penalty term to the Euclidean distance between them. Specifically, let

π∗ denote the alignment between two traffic sequences s and s′ of length m and n

respectively. Furthermore, let d(si, s
′
j) denote the distance after embedding between

symbols in s and s′ at position i and j respectively. Now, we define a similarity

based on d:

d′(si, s
′
j) = d(si, s

′
j) + λ · (ti − t′j)2 (2.13)

where λ ∈ [0, 1] denotes the regularizer for variable-size time steps. Its value is

application dependent. In case of a gap, we simply fix the gap penalty as a constant,

i.e., d′(si,−) = d′(−, s′j) = c

Now, we simply use an alignment algorithm on the fashion [11] of to compute π∗

and θ(π∗) using the similarity ∆′ = exp(−d′). Moreover, we can naturally turn the

score of the alignment into a similarity score among pairs of whole sequences by

normalizing it in the following way.

Ks,s′ =
θ(π?s,s′)

sqrt(θ(π?s,s), θ(π
?
s′,s′))

(2.14)

Now, we finally have everything together to employ the out-of-the-box sequence

analysis tools for the analysis of symbolic trajectories.

Validity of ‘Kernel for Symbolic Trajectories’

Note that our approach to define kernels for trajectories is not based upon giving

formulations for new kernels, instead, we provide mappings for the inputs and use

them with existing kernels in the machine learning. One has be careful in such a

construction that whether the existing kernel is valid upon the feature space provided

by these mappings. In the case of global alignment kernel, this means that we need

to be sure that global alignment kernel is valid over a Euclidean symbol space and

a constant gap penalty. The discussion on the validity of such kernels is provided

by many authors, e.g., [11, 12].

37

2. Preserving Structural Information

Summary

In this chapter, we have outlined a detailed method in order to preserve structural

information in trajectories. Specifically, it comprises techniques to convert two dif-

ferent types of trajectories, i.e., raw and symbolic trajectories into walks over labelled

graphs. And, then we have described distance measures that preserve the geodesic

distances (over spatial, temporal, or any other domain of interest) in these graphs

(or trajectories). These distances are then connected to the well known kernel func-

tions, i.e., RBF kernels and alignment kernels, which will be used to improve the

analytical tasks for trajectories in later chapters.

38

3. Preserving Structure in Raw

Trajectories

‘Enlightening! I really started looking at birds in a different way, [for

example, considering] the issue of space from the perspective of a bird —

a projectile, a trajectory.— David Rubin

The distance function capturing the structural information in raw trajectories is

presented in Chap 2. In this chapter, we show how to use this distance function to

solve real world trajectory problems; in particular, our application of interest, i.e.,

map matching. In the next section, we will start by reviewing map matching and

how structure preservation can help us in solving this problem.

Our approach to the problem of structure preservation in raw trajectories is to

view them as Euclidean graphs (with possibly additional labels for vertices and

edges). This helps us in capturing the spatial and temporal aspects of the trajectory

and also connecting it to the analytical methods developed in graph theory and

machine learning. Actually, it is easy to see how trajectories can be represented by

Euclidean graphs, because, the spatial aspects of a trajectory are already captured

through R2 co-ordinates of the graph’s vertices. Furthermore, the temporal aspects

of a trajectory can be captured by assigning weights to edges according to the time

spent upon them or time stamping the vertices of the graph in the order of the

trajectory.

Recall from the previous chapters, that we have chosen map matching, i.e., as-

signment of raw trajectories to street network as an example problem for structure

preservation in raw trajectories. In the start of this chapter, we have defined street

network as an Euclidean graph. Therefore, map matching, can be viewed as a prob-

lem of

“matching, i.e., finding similarity between two Euclidean graphs”.

Map matching is a fundamental step for analysis of traffic behaviour based upon

some network and is becoming increasingly important due to pervasiveness of mea-

suring devices (e.g., Wifi, Mobiles, sensors inside building and vehicle navigation

39

3. Preserving Structure in Raw Trajectories

systems). The sample trajectories from these devices contain noise ranging from 10

to 100 meters due to different capacity and environment issues during measurement

process. Consequently, we have multiple choices of street for a sample trajectory.

The process of disambiguation between these multiple paths (or alignment of sample

trajectories to street network) is the core difficulty problem that we solve through

structure preservation in raw trajectories.

Triggered by the observation that matching a trajectory of co-ordinates would be

easy if the observed co-ordinates were noise-free — the co-ordinates would simply

constitute the solution — one may propose to treat the map matching problem as a

regression problem. That is, we treat a trajectory as a function t for which we ob-

serve a sequence of noisy values, the co-ordinates t(i) + ε at inputs i = 1, 2, 3, . . . , k,

the temporal order of co-ordinates. The task is now: estimate the noise-free func-

tion t from the noise observations. In contrast to most traditional regression tasks,

however, outputs are structured due to the physical constraints in the world and in

turn there are non-linear dependencies among co-ordinates. Although kernel meth-

ods are powerful tools for modelling non-linear dependencies, and hence seems to

be relevant for map matching, most kernel (regression) models focus on the predic-

tion of a single output. Although generalizations to multiple outputs can often be

achieved by training independent models for each one or tying parameters across

dimensions, this fails to account for output correlations [67]. Consequently, we pro-

pose a different approach, namely to “embed” the output of f , i.e., the co-ordinates

of trajectory into the same space as the trajectory and the network and in turn

reducing the noise while still capturing the multi-output, non-linear dependencies

present in trajectories. Specifically, ignoring the map constraints, we first embed

the trajectory and hence reducing noise.

Next to regression, our approach to map matching problem is built upon the

ideas of graph matching and embedding described in Chapter 2. While many of the

traditional problems related to matching are solved by preprocessing data to find

nodes of the query object curve and then applying graph matching solutions to find

a match between the query object and the data set, we assume a different setting

where the nodes of query object can be matched to any of the points lying on the

lines of polygonal curves in the dataset. Many of these approaches employ kernel

methods which have a demonstrated ability to deal with sparseness and noise in data.

Surprisingly, kernel methods and embeddings have not been used for map matching

before. In order to capture the structural dependencies in the input data, we view

map matching as a problem of Embedding one Euclidean graph in to the other such

40

that the similarity between nodes in the input graph is preserved in the output graph.

Although, Euclidean graphs can be found in many machine learning problems such

as map matching [6], shape matching, i.e., analysis and retrieval [13, 57, 59], protein

structure analysis, time series similarity analysis, among others. However, —to the

best of our knowledge—, the problem of matching Euclidean graphs, i.e., ”finding

similarity between two Euclidean graphs” has not been considered yet. Instead,

the problem has been approximated by casting it into a traditional “embedding”

respectively ”graph matching” problem and in turn dropping important information.

Specifically, graph matching is typically formulated as a problem where we only

seek a node-to-node matching between the input and output graphs. Euclidean

graph matching is different as the nodes of the input graph (trajectory) can be

mapped to any point lying on the edges of the output graph (street network graph).

Embedding [38], on the other hand, is a generic problem: find a set of points in a

(typically) low-dimensional space having similar properties and relationships as the

points in the original input space. So far, however, it has only been considered for

matching graphs in the traditional sense discussed above, see e.g. [38, 24, 48, 9].

Hence, this approach suffers from the same issues as the standard graph matching

approach.

Our approach to the problem constitutes two parts, a discrete part similar to

graph matching where we have to find a walk on the output graph similar to in-

put graph and a continuous part similar to embedding, where we want to find a

correspondence between the nodes of the input graph and the points lying on the

edges of output graph. In short, we want to embed a Euclidean graph structure into

another euclidean graph. This approach is best suited to partial matching problems

or scenarios where noise exists in query data, which is the case for most real world

problems. The advantages of our approach are illustrated through results on map

matching which is a partial matching problem, because, we are required to find the

match of a GPS trace to a sub graph of street network and the nodes of trace are ac-

tually points on the edges of this street network. Moreover our approach is based on

kernels, which provide a lot more flexibility and robustness in solving the problems

at hand.

In this chapter, we provide an algorithm for map matching based upon the idea

of structural preservation in raw trajectories. Clearly, the idea of aligning sampled

trajectories in Euclidean plane to a Euclidean graph requires some transformation

from an unconstrained space to a constrained one. On top of that, this transforma-

tion shall be such that the original noise is reduced. Thinking along these lines, we

41

3. Preserving Structure in Raw Trajectories

devise an intuitive optimization scheme named KMM-Discrete which carries out the

noise reduction and alignment alternatively in an EM manner until the algorithm is

converged (for details see Appendix). Intuitively, KMM-discrete is a nice optimiza-

tion scheme but its results are not satisfactory. Here, we make the observation that

the limitations of KMM-Discrete lie in the simultaneous resolution of two funda-

mental problems in map matching, i.e., noise reduction and alignment. To validate

our conjecture, we provide a second algorithm, KMM which separates out the noise

reduction and alignment in two separate steps. KMM produces better results by

dealing with the shortcomings of KMM-Discrete. The details of our experiments are

provided in the results section. Consequently, we show the benefits and flexibility

of structural preservation for alignment of raw trajectories to street networks. Fur-

thermore,we make a comment that the success of a kernel based scheme depends

upon the strength of the optimization solutions that encapsulates it. At the end of

the chapter, we show the effect of parameter selection on our optimization scheme

and also show that our scheme produces compatible results to the state-of-the-art.

However, lets’ first start by a formal description of the problem.

3.1. Euclidean Graph Matching

We proceed with some notation and problem description. G(V,E) denotes a trajec-

tory (input graph) where vertices are indexed by time t, i.e., V = {vt}|V |t=1, vt ∈
R2, while G

′
(V
′
, E
′
) denotes street network graph (output graph) where V

′
=

{v′i}
|V ′ |
i=1 , vi′ ∈ R2 are the set of nodes for street segments and E

′
= {e′i,j}

|V ′ |
i,j=1, e

′
i,j ∈

{θvi + (1 − θ)vj , θ ∈ [0, 1]}, if e
′
i,j corresponds to a street segment otherwise it is

empty. Notice that e
′
i,j is defined as a convex combination of vertices, i.e., a straight

line between the nodes. In general, a street segment is defined as a poly-line however

we can always divide it into a set of straight lines considering each corner of lines

as a vertex to match our representation. Φ denotes the vector of mappings between

a trajectory G and street network G
′
. Unlike traditional graph matching, where

the nodes of one graph are only matched to the nodes of another graph, we need a

mapping Φ which matches the nodes of our input graph (trajectory) to any location

over street segments in E
′
: i.e., Φt = Φ : vt 7→ e

′ × [0, 1] where the interval [0, 1]

specifies a value of θ pointing the exact location of mapping over a street segment

in E′.

The truth value of vertex assignments to street segments can be stored in a binary

matrix ∆, i.e., ∆ ∈ {0, 1}|V |×|E
′ | subject to ∆>1 = 1. Here 1 denotes a column

42

3.1. Euclidean Graph Matching

vector of all ones. The last constraint enforces that each trajectory point can only

be mapped to one street edge at a time. The Euclidean graph matching problem

can now be defined as follows:

“Find a correspondence Φ between vertices of trajectory G and locations on street

network G′ such that the two matched sets, V and Φ, look most similar according

to an objective criteria Fo.”

The problem is solved through finding an assignment of V to points lying on the

edge set E′ that minimizes the criteria Fo. The function Fo is of special interest

and should have a form which preserves the relationships among input points while

translating them to output space. We further assume that Fo is a decomposable

function of a summation of basis functions, denoted by fΦi,Φj . Thus to minimize

Fo, we need to minimize the individual entries of summation. We also introduce

the assignment matrix ∆ in Fo. The assignment matrix ∆, enforces the Euclidean

graph (or street network) constraints on the output, i.e.,

Fo = argmin
Φ

|E′ |∑
l

|V |∑
i,j

∆i,l · fΦi,Φj

s.t. ∆ ∈ {0, 1}|V |×|E
′ |,∆>1 = 1

(3.1)

Eq. (3.1) describes the map matching problem as a so-called integer linear program

(ILP) which are generally known to be NP-hard except for a few classes of them.

Such mathematical programs have a discrete and a continuous part. In our case,

the discrete part chooses the correct combination of trajectory point (v ∈ V) versus

street segment (e′ ∈ E′). The total number of combinations is V E′ , which easily

gets intractable even for a modest number of trajectory points and street network

segments. Eq. (3.1) describes Fo as a summation of entries fΦi,Φj . Now we come to

details of an individual entry fΦi,Φj . For this purpose, we define two Kernel matrices

KG and KG′ , where KGi,j is the kernel function between trajectory vertices vi and

vj : i.e., KGi,j = kG(vi, vj) and K
G
′
i,j

is the kernel function between the mappings

Φi,Φj of the vertices vi and vj , i.e., K
G
′
i,j

= kG′ (Φi,Φj). The widths of the Kernels

KG and KG′ are denoted by σG and σG′ . Now we define fΦi,Φj as the ’difference of

kernels’ function.

fΦi,Φj = (kG(vi, vj)− kG′ (Φi,Φj))
2 (3.2)

43

3. Preserving Structure in Raw Trajectories

Now we can substitute the value of fΦi,Φj in Eq. (3.1).

Fo = argmin
Φ

|V |∑
i,j

(kG(vi, vj)− kG′ (Φi,Φj))
2

s.t. ∆ ∈ {0, 1}|V |×|E
′ |,∆>1 = 1

(3.3)

Eq. (3.3) comes from an embedding technique known as Multidimensional scaling

described in Eq. (2.6). We further note that Eq. (3.3) is like a regression equa-

tion with multiple outputs where we want to preserve the correlation among inputs

during our structured prediction process and it can be used for embeddings across

different spaces and structures, however our case is a special case where the input

and output spaces are the same. To encode our prior knowledge that the solution

of the embedding lies in the spatial neighbourhood perturbed by Gaussian noise, we

add a regularization term which fuses the input and output space into one. We pro-

pose a kernel function kGG′ between the respective points of our input and output

graphs and define it as

kGG′ (λ, σN , i) = e−((vi−Φi)
2−λσ2

N)2/2σ2
N (3.4)

where λ is a stiffness parameter of the kernel function while σN , the kernel width,

is the estimated standard deviation of noise in trajectory. We finalize our objective

function Fo as following:

Fo = argmin
Φ

∑
ij

(KGi,j −KG
′
i,j

)2 −
∑
i

kGG′ (λ, σN , i)

s.t. ∆ ∈ {0, 1}|V |×|E
′ |,∆>1 = 1

(3.5)

Eq. (3.5) is the objective function which we are using in kernelized map matching.

However alternative embedding approaches can also be used in principal.

Geodesic distance Kernels — KGi,j and K
G
′
i,j

The kernels KGi,j and K
G
′
i,j

, that we have used are described in Chapter 2 in detail.

To summarize: for two points pi and pj in a trajectory where j > i, the sum of

successive euclidean distances is denoted by δi,j , and is defined as:

δi,j =
∑

i6m<j

|pm, pm+1|2

44

3.2. Kernelized Map Matching (KMM)

The kernel Ki,j is simply an RBF kernel with δi,j as the core part instead of the

direct euclidean distance between i and j.

KG(i, j) = e−δi,j/σk (3.6)

The only difference with an RBF kernel is that we use ’the sum of euclidean dis-

tances for all successive pairs of points between i and j’ instead of using ’euclidean

distance between i and j’ directly. This allows us to capture the spatial and temporal

correlation among trajectory points in our kernel matrices.

3.2. Kernelized Map Matching (KMM)

Recall from the introduction that map matching would be easy if the observed

co-ordinates were noise-free. In this case the observed co-ordinates would simply

constitute the solution. In general, we cannot expect to reduce the noise completely.

Consequently, we propose a two steps approach:

(1) To reduce the noise, embed the trajectory from R2 into R2 using kernel methods

to capture the multi-output, non-linear dependencies present in trajectories.

(2) To account for remaining noise, ”round” the embedding into an hard matching.

We will now explain each of the steps in turn.

Relaxation is a standard technique to reduce the complexity of ILP problems.

In relaxation, we drop the discrete part of the problem to make it a standard lin-

ear programming problem where the optimization can be carried out in polynomial

time. The result of the optimization is then rounded into a hard assignment fulfilling

the discrete constraints to get an approximate solution. In our case, discrete con-

straints amount to street network constraints and relaxation means ignoring these

constraints. Hence, we provide a two step framework for the solution of Eq. (3.1)

• Optimize the relaxed objective function to approximate the trajectory path.

• Provide a rounding scheme for assignment of step a output to street network.

We proceed by describing the details of these two steps in turn.

45

3. Preserving Structure in Raw Trajectories

Optimization Step

Eq. (3.7) describes the unconstrained Fo

Fo = argmin
Ψ

|V |∑
i,j

fΨi,Ψj (3.7)

Notice that we have changed the output vector Φ to intermediate output Ψ. The

mapping Ψ is different from Φ as it maps a a vertex vt to R2: i.e., Ψt = Ψ : vt 7→ R2.

Finally, we change the value of fΨi,Ψj to the summation of basis functions in MDS

and add the regularization term to it.

Fo = argmin
Ψ

∑
ij

(KGi,j −KG
′
i,j

)2 −
∑
i

kGG′ (λ, σN , i) (3.8)

The solution of the optimization will be an approximation of the path used by

trajectory instead of the original path. Afterwards we can convert this approximate

path into the street network path through a rounding step. We can take the deriva-

tive of Fo in Eq. (3.5) w.r.t. Ψ and can find the answer. We use ’scaled conjugate

gradient’ algorithm for optimization [55]. We implement the optimization step in

sliding window style of width kw, because we think that the global structure does

not affect the local position of output points, furthermore it makes the solution real

time and efficient.

Rounding Step

After the noise is reduced by the optimization, we have to assign the points to street

network. For assignment purposes, we apply a rounding scheme on the result of

continuous optimization. The simplest rounding scheme can be a nearest neighbour

based one. However, we provide a more sensible scheme, which is based upon the

following assumptions:

1. Assumption 1: For nearby points, the Euclidean distance between points

resembles shortest street network graph distance;

2. Assumption 2: Most of the map matching algorithms use a radius ε to

restrict the assignment possibilities.

For assigning a point Ψi to the street network, we pick all edges inside ε-neighbourhood

and find nearest neighbours of Ψi on these edges. The resulting points are our can-

didates for the solution Φi. We denote the set of candidate solutions for Φi as CΦi .

46

3.3. Experimental Evaluation

According to our assumption 1, Ψi should be assigned to a point c ∈ CΦi which min-

imizes the difference between euclidean distance and shortest path distance between

the solution Φi and Φi−1. For this purpose, we take an RBF kernel KΩ between

graph distance (denoted by Ω(x, y)) and Euclidean distance (denoted by d(a, b)) as

following:

KΩi = e−(d(Ψi,Ψi−1)−Ω(c∈CΦi
,Φi−1))2

(3.9)

KΩ stipulates the assumption 1 for two consecutive points. However to avoid KΩ

output going away from input point, we add a regularizer term which is also an RBF

kernel between a Ψi and the candidate in question. Now for all elements c ∈ CΦi we

calculate the following term

−e−(c∈CΦi
−Ψi)

2

·KΩi (3.10)

The candidate point which gives the minimum value for this term is chosen as

solution Φi. In most of the cases, the comparison term between candidates, i.e.,

regularized KΩi produces the right result however it is possible that after assignment

the graph distance between Φi and Φi−1 is far greater than the Euclidean distance

between them, which introduces a conflict and violates our observation 1. To check

these we take a constant α and multiply euclidean distance by it. After assignment,

if the graph distance Ω(Φi,Φi−1) is greater than α × d(Ψi,Ψi−1) (α-condition); we

employ a resolution scheme, inspired by [44]. We discard Φi and Φi−1 and consider

Φi−2 as our previous point instead of Φi. After the assignment Φi+1, we again see

whether the condition 1 is violated or not, if it happens again, we discard Φi+1 and

Φi−2 and go ahead in the same fashion. We continue doing so until α-condition is

not violated any more after an assignment of a point denoted by Φî. Once we find

such a point Φî, we can again resume the standard comparison. However, before

resuming the comparison, we assign all the discarded points on the shortest path

between Φî and the corresponding previous point.

A conceptual work-flow of KMM steps together with explanations for each step

are provided in Fig. 3.1.

3.3. Experimental Evaluation

In this section we report the results from a series of experiments which we conducted

in order to empirically investigate the following questions:

(Q1) Can kernel methods be used for map matching?

47

3. Preserving Structure in Raw Trajectories

x
x

x
x

x
x

xxxx

(a) Input vs. Ground truth (b) Step 1: Kernelized Em-
bedding

(c) ε-ball radius

(d) Step 2: Rounding

?
?

(e) Conflict Resolution (f) KMM Output

Figure 3.1.: Step-by-step illustration of Kernelized Map Matching. (a) Map match-
ing input with ground truth values. Red squares denote the input Tra-
jectory; Gray edges, the street network graph; dashed lines, the ground
truth path and crosses the ground truth points. (b) Approximation of
ground-truth path by kernelized embedding in a relaxed setting. Blue
circles denote the optimization output Ψ. (c) Imposition of ε−ball radius
to reduce the number of candidate matches for rounding. Dashed-circles
denote ε−balls. (d) Hard assignment of Ψ to street network graph in
the rounding step on the basis of RBF kernels Blue squares denote the
assignment. (e) A conflict and its resolution. The graph distance is
greater than α× Euclidean distance, both points are discarded to get a
vote from neighbours. (f) The final output points and path computed
by KMM. (Best viewed in color)

(Q2) If so, how do they perform compared to state-of-the-art methods?

(Q3) Is kernelized embedding indeed reducing the noise?

(Q4) Does the rounding step in KMM contribute to the error reduction?

To this aim, we implemented KMM in scientific Python running on a standard

Intel-Quadcore 2GHz computer.

Overall, we decided for two experimental setups. Our first experimental setup

evaluates and compares KMM’s accuracy performance on a real-world dataset re-

48

3.3. Experimental Evaluation

Algorithm 2: KMM

Input : G,G′, KG,KG′ ,KGG′ ,KΩ,λ,kw, α,σN
Output: Φ(V) - The Output Path P

// G,G′- Euclidean Graphs

// KG,KG′ ,KGG
′ ,KΩ -Graph Kernels

// λ -Regularizer

// kw- sliding window width

// α- constant for Euclidean versus Graph distance validation

for i← 1 : |V | − kw do
foreach sliding window do

compute KG,KG′

Ψ← Optimize Fo w.r.t. Ψ
i← 1, iprev ← 1, prevdist ← 0
while i < |V | do

i← i+ 1
iprev ← max(1, iprev)
minobj ←∞
if iprev = i− 1 then

prevdist ← 0
condist ← d(Ψi,Ψi−1)

else
condist ← d(Ψi,Ψi−1) + prevdist + d(Ψiprev ,Ψiprev+1)

for c ∈ CΦi do

objval ← −e−(c−Ψi)
2

.KΩi

if objval < minobj then
minobj ← objval
Φi ← c

if Ω(Φi,Φiprev) > α× d(Ψi,Ψiprev) then
iprev ← iprev − 1
prevdist ← condist

else
Assign all points between i and iprev to shortest path between Φi and
Φiprev

Output path P by connecting consecutive Φ

cently used in [44] to evaluate an hidden Markov model based map matching ap-

proach and hence addresses Q1, Q2. To address Q4 we compare the performance of

our rounding step with a randomized rounding step. The second set-up investigates

Q3 by comparing the result of KMM’s embedding step to baseline ”closest point on

edge” using synthetically generated dataset.

49

3. Preserving Structure in Raw Trajectories

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

x 104

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

(a) Ground Truth 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

x 104

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

(b) Map Matching input

Figure 3.2.: Synthetic Data Generation. (Left)- Ground truth data. Trajectory are
shown in blue, where the direction of ’¿’ sign gives the travel direction.
(Right). Same data after addition of Gaussian noise is given to map
matching as input.

3.3.1. Traffic Data Generation

There are some very nice data generators available for trajectory data generation.

IBM’s data generator and Thomas Brinkhoff’s data generator are very good in

the sense that they can generate trajectories with changing speeds and sampling

time variation according to some underlying road network. There is still very few

real data available without licensing constraints. It has been empirically shown that

Noise in data generated from navigation systems is normally distributed and average

of noise (σN) ranges from 10-100 meters. [44] has discussed the different types and

amount of noise in movement data and has shown a nice Gaussian curve of noise

from real world data. Keeping in mind that the noise in the real world trajectories

is normally distributed, we generated the ground truth data from the generators

and added noise to it. We have compared our results to a simple baseline algorithm

which assigns a data point to the nearest neighbour in the road network. We used

Thomas Brinkhoff’s traffic data generator for generating 100 trajectories of average

length 50. We got 10,00 trajectories as we added σN from 10-100 meters by a 10

meters step size.

3.3.2. Comparison of KMM vs. Base Line

Fig. 3.3 shows the scatter plots of the root mean squared (RMS) error of KMM and

of the baseline, closest point on edge, for different window sizes (K) on the Oldenburg

dataset for different noise levels (20, 30, 40, . . . , 100). For better comparison with the

50

3.3. Experimental Evaluation

equilibrium, we also show the linear regression line of the values. As one can see

KMM performs much better with increasing noise levels. The regression lines have

consistently a smaller slope than the ”equilibrium” line. The turning point is around

noise level 25. Fig. 3.4 shows the importance of K-neighbourhood with respect to

σN and it also shows a graph of error for different K and values of noise Vs. baseline.

3.3.3. Real World Dataset

In our first experiment, we compared KMM’s performance to the performance of

Krumm and Newson’s recent hidden Markov model based approach [44]. To mea-

sure performance, we used the Route Mismatch Fraction measure already used by

Newson and Krumm. Route Mismatch Fraction (RMF) is the total length of false

positive and false negative route divided by length of original route 1:

d+ = length of erroneously added route

d− = length of erroneously subtracted route

do = length of original route

RMF =
(d+ + d−)

do

We used Krumm and Newson’s dataset, which is described by them as following:

“It consists of a 50-mile route in Seattle sampled at 1 Hz, giving one trajectory of

7531 time stamped latitude/longitude pairs along with manually matched ground-

truth path. The street network comprises around 150, 000 road segments” [44].

presented results for different sampling intervals and noise degradations of this data.

We take six base cases where HMM model performance is good, i.e., 5,10 seconds

sampling intervals vs. 30,40,50 meters noise. Because we want to have a statistical

comparison with HMM, we perform 25 experiments for comparison with each base

value in the following way. For one sampling interval, say 10, we choose 5 different

starting points from the initial 5 points of the trajectory and then sampled at the

given rate. Following this procedure, we prepared experimental datasets for each

sample by adding 5 instances of noise for one standard deviation (e.g 30), i.e.,

25 datasets/combination = 5 samples ×5 noise instances.

Fig. 3.3 summarizes the experimental results showing the RMF errors. As one can

see, in 5 out of 6 cases KMM estimated a lower route mismatch fraction. The statis-

tical significances of the results are shown in Table 3.1. In 4 out of 5 cases where we

1definition as provided by [44]

51

3. Preserving Structure in Raw Trajectories

0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14

Mismatch

P
D

F
 V

al
ue

s

PDF
Runs
Mean
Baseline

(a) NL 30, SR 5

0.2 0.3 0.4 0.5
0

2

4

6

8

10

Mismatch

P
D

F
 V

al
ue

s

PDF
Runs
Mean
Baseline

(b) NL 40, SR 5

0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

Mismatch

P
D

F
 V

al
ue

s

PDF
Runs
Mean
Baseline

(c) NL 50, SR 5

0.1 0.15 0.2
0

5

10

15

Mismatch

P
D

F
 V

al
ue

s

PDF
Runs
Mean
Baseline

(d) NL 30, SR 10

0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

Mismatch

P
D

F
 V

al
ue

s

PDF
Runs
Mean
Baseline

(e) NL 40, SR 10

0.2 0.3 0.4 0.5
0

2

4

6

8

Mismatch

P
D

F
 V

al
ue

s

PDF
Runs
Mean
Baseline

(f) NL 50, SR 10

Figure 3.3.: Route Mismatch Fraction of KMM vs. HMM for different noise level
(NL, in meters) and sampling rates (SR, in seconds). We ran 150 exper-
iments, i.e., 25 experiments/per NL-SR setting. One blue dot denotes
the route mismatch fraction for an experiment, blue graphs the esti-
mated normal distributions, red lines the means, and dashed green lines
the route mismatch fraction for an HMM as reported by Newson and
Krumm. As one can see, in 5 out of 6 cases KMM estimates a lower
route mismatch fraction. In 4 out of 5 cases, the differences in mean
values are significant (t-test, p = 0.05). Averaged over all experiments,
a Wilcoxon test identifies KMM to be significantly better. (Best viewed
in color)

are better, the differences in mean values are significant (t-test, p = 0.05). Averaged

over all experiments, a Wilcoxon test identifies KMM to be significantly better.

To address Q4, we compared the performance of our rounding step with a ran-

domized rounding step, i.e., random assignment of embedding output Ψ to a street

network point in ε-ball, over the real-world dataset described above. Table 3.2 sum-

marizes the results. As one can see our rounding step always performs better, and in

most cases outperforms the randomized rounding step by a margin of 4-10 percent

in error.

In the next section, we analyse the results of KMM by comparing it with a naive

baseline, i.e., nearest neighbour approach, a state-of-the-art HMM and also study

52

3.3. Experimental Evaluation

20 40 60 80 100

20

40

60

80

100

RMS Baseline

R
M

S
 K

M
M

20

30
40

50

60
70

80

90

100

Regression Line
Equilibrium

(a) K=3

20 40 60 80 100

20

40

60

80

100

RMS Baseline

R
M

S
 K

M
M

20

30
40

50
60

70
80

90

100

Regression Line
Equilibrium

(b) K=4

20 40 60 80 100

20

40

60

80

100

RMS Baseline

R
M

S
 K

M
M

20

30
40

50
60

70
80

90
100

Regression Line
Equilibrium

(c) K=5

20 40 60 80 100

20

40

60

80

100

RMS Baseline

R
M

S
 K

M
M

20

30
40

50
60

70
80

90
100

Regression Line
Equilibrium

(d) K=6

Figure 3.4.: Scatter plots of the root mean squared(RMS) error of KMM and of the
baseline, closest point on edge, for different window sizes (K) on the
Oldenburg dataset for different noise levels (20, 30, 40, . . . , 100) as de-
noted by the numbers associated with the dots. For better comparison
with the equilibrium (solid straight line), we also show the linear regres-
sion line of the values. As one can see KMM performs much better with
increasing noise levels. The regression lines have consistently a smaller
slope than the ”equilibrium” line. The turning point is around noise
level 25. (Best viewed in color)

the effect of parameter selection over the solution. To summarize, the results clearly

answer questions Q1, Q2 and Q4 affirmatively.

3.3.4. Synthetic Datasets

In order to investigate how well the embedding step reduces noise, we generate

ground truth points with the help of synthetic data. To generate the data, we used

Thomas Brinkhoff’s data generator [7]. It allows to generate trajectories according

to some underlying road network for different speed and sampling time variation

setting. Additionally, we assumed normal noise on the generated observations. it

53

3. Preserving Structure in Raw Trajectories

Statistics for sampling rate=5

Noise σerror student t Wilcoxon signed rank

30 0.029 1 0.00012

40 0.03992 1 0.0027

50 0.036 1 0.00122

Statistics for sampling rate=10

Noise σerror student t Wilcoxon signed rank

30 0.027 1 0.0004

40 0.034 0 0.047

50 0.054 1 0.00941

Table 3.1.: Statistics table for comparison with HMM

Noise Ratio KMM Error ERR SR=5 ERR SR=10

30 0.1463 0.1783 0.1480

40 0.3022 0.3221 0.2350

50 0.3739 0.4671 0.3979

Table 3.2.: Comparison of average KMM error with average Randomized Rounding
(ERR) error over different Noise Ratio and Sampling Rates (SR)

is well known navigation systems produce noise that is normally distributed with

average of noise (σN) ranging from 10-100 meters. For instance, Krumm and New-

son [44] discussed the different types and amount of noise in real-world movement

data and have shown that they can be described well by a Gaussian shape.

Specifically, we generated 100 trajectories of average length 50 from the street

network of Oldenburg, Germany. Then, we added noise σN for σN = 20, 30, . . . , 100.

This resulted in an overall set of 900 trajectories. As baseline for comparison we

used a ”project to the closed point in the street network” approach. To get a fair

comparison, we also used the “project to the closed point in the street network” as

”rounding” method for KMM. We report on the root means squared difference in

meters achieved by the two methods.

The results are summarized in Fig. 3.4. As one can see, in all cases the embed-

ding indeed reduced noise considerably. Moreover, it performs better with increasing

noise levels as the regression lines have consistently a smaller slope than the ”equilib-

rium” line. The turning point is around noise level 25. This clearly answers question

Q3 affirmatively.

To summarize, the results of our experiments indicate that kernel methods can in-

deed be used for map matching and achieve results comparable to state-of-the-art

54

3.3. Experimental Evaluation

techniques.

3.3.5. Parameter Selection

KMM has following input parameters, namely, σn, standard deviation of noise; σG

and σ
′
G, i.e., kernel widths for input and output graphs; λ, stiffness parameter for

regularization term of Fo; α, the rounding step parameter and kw, width of sliding

window for objective function Fo. We discuss selection process for these parameter

as following:

σN is required as an input to Fo in the regularization term. For the experimen-

tal results, our method for estimating σN is carried out on a holdout sample of 20

ground truth points and the approach is same as [44]. Alternative strategies include

estimators from other map matching solutions or empirical standards for given ap-

plication. λ is the stiffness parameter of regularization term. A reasonable range

for choice of λ is between 0.5 and 1. Clearly, λ > 1 make the standard deviation

of Ψ more than the trajectory while λ < 0.5 is too restrictive on output. In our

experiments, have chosen λ=0.6. kw is the sliding window width for execution of

optimization step. Fig. 3.4 shows the results for kw = {3, 4, .., 6} over a synthetic

data set. We have chosen kw = {4, 5}] for most of our experiments. According to our

observation, kw > 6 proves a bit time consuming during optimization while kw < 3

is not sufficient to capture the local geometry. α- is the parameter ’governing rela-

tionship between Graph and Euclidean distance’. We set it to 1.5 which means that

Graph distance should not be greater than 1.5×Euclidean distance. A reasonable

range is 1 ≤ α ≤ 2. In the following text, we provide a visual analysis of parameter

selection for the optimization function Fo to guide the user in the right direction.

Analysis of Optimization Parameters

The optimization function Fo has five parameters: kw, σG′ , σG, σN , and λ. These

parameters can be learned from the equation along with the G
′
. However from

an analytical perspective it is very important to study them so that the user has

a fair idea about their initialization for learning purposes or if he wants to give

them as a direct input. Please note that in all of the following figures, the G
′

or

output trajectory is represented by a series of red lines connected by dots which are

individual G
′
i, while Gi or input trajectory is represented by a series of blue lines

with input points blue + signs. The street network is shown in gray edges.

1. Regularization

55

3. Preserving Structure in Raw Trajectories

λ is the regularizee on the width σGG′ . It is quite clear that a large value of λ

results in rather flat surface for the derivative of KGG′ over the solution surface.

This allows the first term of the objective function to dictate the solution more

and optimize very quickly. On the other hand a smaller value of λ keeps the

resulting points so close to G that the first term is unable to optimize in a

good way. Therefore we want to have a value of λ which keeps the solution

in a reasonable radius near G and is able to optimize in conjunction with first

term. We clarify our point of view in Fig. 3.5 on page 58, we also show that

keeping λ with in the above mentioned constraints is not so difficult. Notice

that we keep the values of σG′ , σG, and σN constant to study the impact of λ

only. We show through visual analysis that the change in objective function

optimization w.r.t. λ is smooth and the range of λ for good results in not very

small. In our experiments the limit for λ value is between 0.5 and 1.5.

2. Undesirable Results

The absolute value and relative ratio of kernel widths σG′ and σG is very

important for producing the right results. Primarily, the undesirable results

fall into two categories

a) (Over Fitting) Over fitting in this context happens when we get a copy

of the input trajectory as output or an amplification of the noise. Fig. 3.7

illustrates this phenomena over real world trajectories along with selected

parameters. Essentially, If σG′ > σG, the it means that smaller distances

in the input trajectory will counted as larger distances for output, and,

this will amplify the noise in input trajectory. Another important consid-

eration is the absolute values of kernel widths. Choosing a small absolute

value for kernel width, e.g., 100 meters will ignore the over all structure

of the trajectory and produce a copy of the input trajectory.

b) (Under Fitting) Under-fitting happens when we get a smooth curve like

version of the input trajectory that does not respect the underlying street

network structure. Fig.3.6 illustrates this phenomena over real world

trajectories along with selected parameters. If σG � σG′ then it means

that any large distance in the input trajectory will be mapped to too

smaller a distance in the output trajectory. Effectively, this will results

into a curve like output trajectory, i.e., more contracted and straightened

version of the input trajectory than we want. On the similar lines, a large

absolute value for kernel widths, e.g.,1000 meters will ignore the local

56

3.3. Experimental Evaluation

influence of the street network graph structure on the output trajectory.

3. The Right Direction for Parameter Selection

We have shown through experiments that σG′ and σG are correlated. This

restricts our degree of freedom from choosing σG independently to choosing

a proportionality constant. We tried to fit a curve in our experiments to the

values of c and it comes out that 1 < c < 1 + σ−kw
G′

/10, this happens due to

repetitive addition of noise in shortest path kernel of G. The main concern then

remains choosing σG′ which depends on the user’s choice about how quickly

he wants his kernels to diminish. For vehicle navigation system we guessed

that [200..500] meters is a good range for choosing σG′ which roughly means

that a driver’s current location on road network is learned from his location

on the road network within previous 300-400 meters or so. In a way, we are

determining how far we should look when seeking structural information,as,

the kernels diminishes quickly once the difference in points is greater than one

standard deviation. We only observe that the constant c increases as the value

of σG′ increase.

Fig. 3.8 describes the right direction for parameter selection according to tehse

observations. In all the figures, the ratio
σ
G
′

σG
. 1 which is in the right direction

and produces good optimization results in first two rows. For bottom row, the

kernel width σG′ = 1000 is too large and can produce undesirable results.

We have already described that σG′ and σG are correlated which restricts our

degree of freedom for choosing σG independently of σG′ . The main concern

that remains is the value of σG′ which determines how quickly the kernel will

diminish in optimization. Consequently, a large value for σG′ will result in

ignorance of local trajectory structure. Similarly, small value will result in a

narrow focus of local structure ignoring the graph constraints in street network.

4. Sliding Window Width for KMM We have already stated that kw > 6

proves a bit time consuming during optimization while kw < 3 is not sufficient

to capture the local geometry. In this section, we provide experimental results

to show the effect of k-neighbourhood over the optimization step. Actually,

the value of kw is most related to σN , i.e., the local noise in the regularization

term, where a smaller k is better for smaller values of noise and a large k is good

for higher values of noise. Figs. 3.9, 3.10, 3.11 show the effect of kw = {4, 5, 6}
w.r.t. noise and kernel widths. It is clear from visual analysis as well that

for lower values of noise, a smaller k is better and large k is good for higher

57

3. Preserving Structure in Raw Trajectories

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(a) Trajectory 1 , (λ = 0.1)
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(b) Trajectory 2 , (λ = 0.1)

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(c) Trajectory 1 , (λ = 1)
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(d) Trajectory 2 , (λ = 1)

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(e) Trajectory 1 , (λ = 2)
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(f) Trajectory 2 , (λ = 2)

Figure 3.5.: Regularization:. The effect of λ on the optimization solution is il-
lustrated, where G

′
or output trajectory is represented by a series of

red lines connected by dots which are individual G
′
i, and, Gi or input

trajectory is represented by a series of blue lines with input points blue
+ signs. The underlying street network is shown in gray edges. (Top)
λ = 0.1, a small value restricting the solution in a close neighbourhood.
(Middle) λ = 1, allowing the embedding term to dictate the solution.
(Below) λ = 2, same as λ = 1, however, larger values can decrease the
effect of regularization.

58

3.3. Experimental Evaluation

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(a) Trajectory 1 , σG
′ = 250 , σG = 200

6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(b) Trajectory 2 , σG
′ = 250 , σG = 200

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(c) Trajectory 1 , σG
′ = 50 , σG = 55

6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(d) Trajectory 2 , σG
′ = 50 , σG = 55

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(e) Trajectory 1 , σG
′ = 100 , σG = 110

6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(f) Trajectory 2 , σG
′ = 100 , σG = 110

Figure 3.6.: Over Fitting: The phenomena of over fitting is illustrated where G
′

or output trajectory is represented by a series of red lines connected by
dots which are individual G

′
i, and, Gi or input trajectory is represented

by a series of blue lines with input points blue + signs. The underlying
street network is shown in gray edges. (a—b) The ratio of kernel widths,
i.e.,

σ
G
′

σG
is > 1, which results in larger distances in the output trajectory

as equivalent to smaller distances in the input trajectory (by the MDS
formula). Thus, X amplifies the noise of Y . (c—h) The ratio of kernel
widths, i.e.,

σ
G
′

σG
is < 1, however, the absolute value of kernel widths is

too small to reduce the noise and hence overt-fits the original trajectory.

59

3. Preserving Structure in Raw Trajectories

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(a) Trajectory 1, σG
′ = 100 , σG = 200)

6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(b) Trajectory 1, σG
′ = 100 , σG = 200)

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(c) Trajectory 1, σG
′ = 250 , σG = 500)

6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(d) Trajectory 2, σG
′ = 250 , σG = 500)

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(e) Trajectory 1, σG
′ = 500 , σG = 103

6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(f) Trajectory 2, σG
′ = 500 , σG = 103

Figure 3.7.: Under Fitting: with σG � σG′ . In all the figures, σG
σ
G
′

= 2, there-

fore the resulting trajectories have smaller distances between individual
points, resulting in a under fitting, i.e., smoothing of out trajectory
with a disregard to street network structure. Additionally, a large abso-
lute value of kernel widths (or neighbourhood of influence) can cause
under-fitting as well. (Top)- small neighbourhood of influence, i.e.,
σG′ = 100 meters with σG � σG′ , resulting in a non -smooth con-
traction. (Middle)- Under fitting: because σG � σG′ though absolute
kernel widths are chosen in a better manner, i.e., σG′ = 250 meters.
(Below). Increasing the absolute kernel width with σG � σG′ produce
further undesirable results.

60

3.3. Experimental Evaluation

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(a) Trajectory 1, σG
′ = 250, σG = 275

6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(b) Trajectory 2, σG
′ = 250, σG = 275

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(c) Trajectory 1, σG
′ = 500, σG = 550

6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(d) Trajectory 2, σG
′ = 500, σG = 550

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(e) Trajectory 1, σG
′ = 103, σG = 1250

6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(f) Trajectory 2, σG
′ = 103, σG = 1250

Figure 3.8.: In The Right Direction: (Top and Middle) The relative ratio and ab-
solute values of kernel widths are balanced. (Bottom) The ratio

σ
G
′

σG
. 1

which is in the right direction but the kernel width σG′ = 1000 which
is too large and can produce undesirable results. Explanation: σG′ and
σG are correlated which restricts our degree of freedom for choosing σG
independently of σG′ . The main concern that remains is the value of
σG′ which determines how quickly the kernel will diminish in optimiza-
tion. Consequently, a large value for σG′ will result in ignorance of local
trajectory structure. Similarly, small value will result in a narrow focus
of local structure ignoring the graph constraints in street network. In
our view, 250 -500 meters is the right choice for σG′ w.r.t. how far we
should look when seeking structural information.

61

3. Preserving Structure in Raw Trajectories

values of noise. In our experiments, we found that k=3 is a good value for

10≤ σN ≤40 meters. Like wise k=4 is a good value for 40≤ σN ≤ 70 meters

while k=5,6 are better values for higher values of noise.

Summary

In this chapter, we have demonstrated that structural information can be used to

improve a fundamental task related to the analysis of raw trajectories, i.e., map

matching. In a nutshell, we view map matching as a regression problem where the

noisy observations constitute the sampled trajectory and the noise free result is the

ground truth path over a street network. Then, we have provided an embedding

scheme that preserves the structural relationships and reduces the noise during the

embedding step. At the core of the embedding step lies the ‘geodesic distance based

RBF kernel’ (outlined in Chap.3), which is used to capture the structural information

during embedding step. After the embedding step, a rounding step is provided in

order to assign the resulting points to the underlying street network. The results

of our method show that Kernelized Map Matching (KMM) is significantly better

than state-of-the-art.

62

3.3. Experimental Evaluation

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(a) Trajectory1 , σN = 20
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(b) Trajectory1 , σN = 20

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(c) Trajectory1 , σN = 40
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(d) Trajectory1 , σN = 40

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(e) Trajectory1 , σN = 70
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(f) Trajectory1 , σN = 70

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(g) Trajectory1 , σN = 100
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(h) Trajectory1 , σN = 100

Figure 3.9.: Sliding Window Width=4. (c–g) kw = 4 is a better choice for
medium–high range of noise. However, there is one result where we can
do better, i.e.,(h) where σN = 100 and kw = 4 seems to be unable to
contract the trajectory in the right way.

63

3. Preserving Structure in Raw Trajectories

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(a) Trajectory1 , σN = 20
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(b) Trajectory1 , σN = 20

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(c) Trajectory1 , σN = 40
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(d) Trajectory1 , σN = 40

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(e) Trajectory1 , σN = 70
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(f) Trajectory1 , σN = 70

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(g) Trajectory1 , σN = 100
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(h) Trajectory1 , σN = 100

Figure 3.10.: Sliding Window Width=5. (a–f) kw = 5 tends to under fit for
low-medium ranges of noise as compared to kw = 4. (g–h) kw = 5 is a
better choice for higher values of noise as compared to kw = 4.

64

3.3. Experimental Evaluation

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(a) Trajectory1 , σN = 20
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(b) Trajectory 2 , σN = 20

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(c) Trajectory1 , σN = 40
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(d) Trajectory2 , σN = 40

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(e) Trajectory1 , σN = 70
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(f) Trajectory2 , σN = 70

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

x 104

2.07

2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 104

(g) Trajectory1 , σN = 100
6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 104

(h) Trajectory2 , σN = 100

Figure 3.11.: Sliding Window Width=6. (a–g) kw = 6 tends to under fit for
low-high ranges of noise as compared to kw = 4, 5. (h) kw = 6 is a
better choice as compared to kw = 4, 5.

65

66

4. Preserving Structure in Symbolic

Trajectories

“In silence and movement you can show the reflection of people.” —

Marcel Marceau

The distance function capturing the structural information in symbolic trajectories

is presented in Chap. 2, i.e., geodesic distance based embeddings with alignment.

In this chapter, we show how to use this distance function in combination with out-

of-the-box (biological) sequence analysis to solve real world problems for symbolic

trajectories; in particular, our focused tasks,i.e., Trajectory clustering and Traffic

event detection. let’s start off by motivating the analysis of symbolic trajectories

along with the two tasks mentioned above.

In many geo-analytics and traffic applications, our goal is to carry out a high-

level analysis of raw trajectories. In order to reach this goal, we discretize the raw

trajectories into the so-called symbolic trajectories. These symbolic trajectories can

then be fed to graph and sequential approaches for further analysis. Recall that,

we have given a general mechanism to convert raw trajectories into symbolic tra-

jectories and an alignment based structure preserving kernel over these trajectories

in Chap.3. In this chapter, we take two important tasks for symbolic trajectory

analysis, i.e., trajectory clustering, and traffic event detection and apply biological

sequence analysis in combination with our alignment kernel to solve them. In the

following text, we will motivate and introduce the above mentioned tasks for sym-

bolic trajectory analysis. Then, we will also describe the reasons which led to the

choice of biological sequence analysis in order to solve these real world problems in

symbolic trajectories. Afterwards, we will illustrate the usage of biological sequence

analysis over a small real world running example before continuing with the descrip-

tion and experimental evaluation of our methods. Lets’ start by introducing one of

the focused, i.e., trajectory clustering under the motivated settings of user activity

analysis.

67

4. Preserving Structure in Symbolic Trajectories

Clustering of trajectories is an important task in order to identify the groups

of moving objects that exhibit similar movement behaviour. Many applications in

trajectory analysis come under this scenario. For example, consider ‘finding flocks

of birds by identifying the clusters in their trajectories’ or ‘ clustering trajectories

of an individual human to identify her routes (user activity analysis)’. User activity

analysis essentially abstracts a person’s movement from raw GPS data to places of

interest and then mines relationships among these places [39, 68]. Imagine we want

to extract a person’s activities and mine her daily routines based on these activities,

i.e., we ask the following questions: What are interesting and/or frequent stops (stay

points) in a person’s travel routines like Banks, Restaurants, Supermarkets, Gyms,

Home, Office place? What route does she usually choose for travelling between two

stay points? What time does she usually choose to travel from home-to-office and

back? What are the shopping routines and weekend routines? And, what time does

she usually choose to do sports? Going one step further, one is actually interested

in combinations of primitive routines that a user does such as Home- Office- Sports-

Home, Home- Office- Shopping- Home, or Home- Bank- Shopping- City centre-

Home. Such clusters of activities in a user’s movement over the day are clearly

interesting in order to identify the user’s most likely activity sequences and profiling

of multiple users on the basis of their activities.

The other important analytical task we investigate in the present chapter is that

of event detection1. Consider, e.g., ‘time-series based movement data where a sen-

sor records movements of entities over a short window of time. For example, an

optical sensor placed over a door of an office building reports the number of people

entered after every 30-minute intervals. Or, an inductive loop sensor on a high-

way reports the numbers of vehicle passed on a 5 minute basis [29]. This recorded

data captures periodical patterns of human activity, e.g., highways are usually busy

during morning and early evening time because of traffic ’towards and from’ work

place. Weekdays and weekends can show periodic patterns of their own. Typically,

these periodical activity patterns are mixed in sensor data with bursts of unusual

traffic called ’events’; outliers but not noise. Example events include: traffic conges-

tion/jams on a high way, a large meeting in an office or a concert/football game near

a highway sensor. Thus, we have to separate the normal traffic activities from traffic

events. Unfortunately, there are no labels which leads us to a problem i.e., separation

of normal traffic from event. Furthermore, an event is not a single unusually high

value, instead it is a chain of sensor reading having its own dynamics. As Smyth et

1http://archive.ics.uci.edu/ml/machine-learning-databases/event-detection/

68

al. [29] nicely described it: in order to separate normal traffic from events, “we need

to define a model of uncertainty (how unusual is the measurement?), and addition-

ally incorporate a notion of event persistence, i.e., the idea that a single, somewhat

unusual measurement may not signify anything but several in a row could indicate

the presence of an event.” In this chapter, we will employ a hidden Markov model

to capture event persistence, i.e., encoding the dependencies between consecutive

readings.

Dozens of approaches have been developed for interesting tasks such as trajectory

clustering — extraction of routines from trajectory data — and ‘traffic event detec-

tion’ — identify unusual bursts of traffic frequencies to detect traffic jams, accidents

or gathering at meeting places. We have selected these tasks as they illustrate well

the two specific issues we have to deal with when working with traffic data:

1. Trajectory data contains noise and missing label information.

2. Trajectory data is composed of sequences in time and space of different lengths

To address both issues, the biological sequence view helps a lot. Actually, we argue

that because we abstract the raw data into sufficiently small alphabets using stan-

dard discretization techniques, we can instantly solve (a) and in turn (b). Why?

sequence analysis will do the rest for us. It was designed to deal with large numbers

of variable length sequences. Actually, there is a rich toolbox of Biological Sequence

Analysis for all sorts of data analysis tasks including clustering, classification, visu-

alization, and probabilistic modelling of data, among others. In a sense, biological

sequence analysis is a field which has a commonality to traffic data. Because, biology

was (and is still) facing the problem of sequence analysis in the wild in order to un-

derstand the immense amount of data produced by for instance the Human Genome

Project. On this quest, many powerful methods have been developed, often based on

principles of probabilistic models. Consider for instance the classical task of aligning

to sequences, say HAL and HL. Intuitively, two sequences in an alignment are of

same length and similar symbols are matched per position. Getting the sequences

to the same length is realized by introducing gaps between consecutive symbols. In

our example this could result in H-H,A-gap,L-L; for a more complicated example

please see Fig. 4.1. Indeed, many more correspondences between biological sequence

methods and analysis of trajectories tasks exists, and a biologist would typically use

multiple tools and views to solve a task at hand. Examples include conserved regions

(consecutive areas of high support), consensus sequences (most probable sequence

after alignment) and ‘sequence logo’ i.e., entropy at different sequence positions. All

69

4. Preserving Structure in Symbolic Trajectories

of this carries over to the traffic domain as illustrated in Fig. 4.1.

Indeed, whereas traffic sequences are continuous in time and space, biological

sequences are composed of discrete symbols over discrete time. In turn, one may

argue that we cannot make use of biological sequences techniques for traffic data.

In this chapter, we make the somewhat surprising claim that this is not the case.

Actually, we demonstrate that standard discretization techniques for traffic data

together with biological sequences analysis can result in state-of-the-art performance.

Specifically, we

1. Revisit and strengthen the link [35] between analysis of trajectories and bio-

logical sequence analysis.

2. We use geodesic distance based alignment kernel in combination with ’black

box’ biological techniques, namely sequence alignments and profile hidden

Markov models, and demonstrate that state-of-the-art performance can be

achieved for two important analytical tasks: trajectory clustering and traffic

event detection.

3. Finally, again by exploiting the link established, we introduce ‘Traffic Logos’,

a novel visualization technique that provides a compact yet descriptive view

on the information content of traffic sequences.

However, in order to apply biological sequence analysis to trajectory data, we

have to be a little bit more careful. As the similarity scores used for biological

sequences do not carry over to the traffic domain, the invariances in both domains

are completely different. Consequently, we have to come up with our own similarity

scores. This is not an obvious step in many — if not most — tasks. For this purpose,

we can use the geodesic distanced based alignment kernel (introduced in Chap.3). In

short, using well-known discretization techniques such as stay-point detection and

map matching, we can turn most — if not all — traffic sequences into a ”biological”

sequence. Then, we apply the rich toolbox for biological sequence analysis to traffic

data. For instance, by just looking at complex traffic data through the biological

glasses of sequence logos we get a novel, easy-to-grasp visualization of the data,

called ”Traffic Logos”. Sequence alignment can be used for activity analysis, and

profile hidden Markov models are well suited for capturing event persistence during

event detection. Actually, our empirical evaluation on three real-world data sets

demonstrates that exploiting the link between traffic and DNA can result in state-

of-the-art performance.

70

4.1. Sequence Analysis for Trajectories

We proceed as follows. We start off by reviewing biological sequence analysis

in terms of traffic symbols. Then, we show how to actually convert traffic data

to symbol sequences. Afterwards, we demonstrate that the link established can

achieve state-of-the-art performance within our analytical tasks. Before concluding,

we briefly touch upon related work.

4.1. Sequence Analysis for Trajectories

Analysis of trajectories is a fascinating area of geo-analytics and geographical in-

formation systems that impacts the lives of millions of people every day. Another

well-known scientific field that impacts lives of millions is biological sequence analy-

sis. It has experienced an incredible evolution in the recent past, especially since the

Human Genome project. Similarly, both face a similar challenge, namely the iden-

tification of relevant patterns in massive sequential information. Indeed, whereas

biological sequence analysis has mainly focused on sequences of (few) symbols, anal-

ysis of symbolic trajectories often focus on sequences of continuous values. Thus, one

may argue that building bridges between them is insurmountable. In this following

example, we show that this is actually not the case.

Assume that we have turned a traffic data that is continuous in space and time

into a sequence of traffic symbols; we will show how to do this in the next section. We

start off by explaining traffic sequence alignment and then continue to profile hidden

Markov models, conserved regions and visualization techniques. Before we proceed,

let us introduce some notations and definitions required. An alphabet Σ with |Σ| = l

is a set of symbols in (traffic/biological) sequences. Consider for example a set of

labelled stay points from a user’s GPS traces: Home, Work, Shopping, Tennis,

Friends, Bank and City-Center. That is Σ = {H,W,S, T, F,B,C}. Let S denote

the set of all sequences in a dataset. A single sequence s ∈ S is a sequence of symbols

in Σ, say s = HWTHFH. Say now that we take actually one week of daily raw

GPS traces of a user:

S =



smon : “HWTHFH”

stue : “HWSH”

swed : “HWH”

sthu : “HWSFH”

sfri : “HWH”

ssat : “HBSCH”


. (4.1)

71

4. Preserving Structure in Symbolic Trajectories

CONSENSUS

- H A H H A H A H A H - H A A A A A A A A A A H A H H A A - H H A H H H C H C
1 10 20 30

Sequence 1

Sequence 2

Sequence 3

Sequence 4

Sequence 5

Sequence 6

Sequence 7

Sequence 8

Sequence 9

A A A A H A L A L - - - A A L L L A L L A A A A A H A A A - - H H A A H A H C

A A A A A A L A L L A A A A A A A L A A A A A A A A A A A L A - H H H C A C C

A H L H A H A A A H - - - A A A A A A A A A A A - - - - - H H H A H H H C H C

H A H H A A H A A A H A H H H A A A A A A A A A A A H A - - H H A A H C C H C

- H A A A A H H H A H H H A A A A H H A A L A H L H H - - H A H A H A A C H C

- - A A H A H A A - - - A A A A A A A A L A - - - A A A A - - H A H H A C H C

H H A A H A H A A A H - H A A A A A A A A L A H A L A A A - H C A H A A H H H

- A A H A H A A H A A A A A A A A A A A A A H A A A A H A - A A A A - H C C C

- - - - - - H A H A A A H - H H H A H A H H A H H H H H H - A H H H C H C C C

position

bi
ts

30 60 90 120 150 180
0

0.5

1

Figure 4.1.: Traffic data through the glasses of a biologist: traffic frequencies over
time for 9 baseball games at ‘Dodger’s stadium’. L denotes low, A
average, and H high densities; C denotes congestions. (Top) Consensus
sequence and 3 conserved regions. The histograms show the amount
of symbols’ conservation. As one can see, in the first region, traffic is
average but high near the start of the games. During the game, the
traffic is average. When the games is over, at 180 minutes, we have
congestions and high traffic densities. (Middle) The multiple sequence
alignment that yield the conserved regions. (Below) Traffic logo shows
the ’information content’ and in turn reveals trends.

Given two sequences s1 and s2 of length n and m respectively, an alignment πs1,s2

with |π| = p ≤ n + m defines a correspondence between the elements of s1 and s2

and additional gaps (if required). Gaps are essentially null elements (sometimes we

will also denoted them using ’-’ or ∅) meaning that we do not match an element of

the one sequence with an element of the other sequence. More formally

πs1,s2 =

{
(πs1(1), ..., πs1(p)) ∈ {s1 × ∅}
(πs2(1), ..., πs2(p)) ∈ {s2 × ∅}

s.t. |p| < n+m

The set of all possible alignments between two sequences s1, s2 is denoted as Πs1,s2 .

An alignment problem (sometimes called global alignment) is to find the alignment

72

4.1. Sequence Analysis for Trajectories

Biological Sequence Method Corresponding Tasks in Trajectory Analysis

Pairwise sequence alignment:
Dynamic programming based simi-
larity criteria for variable length se-
quences

- Similarity criteria between traffic
sequences
- Flexible Pattern matching [63]
- compression of traffic sequences [12]

Multiple Sequence alignment
(MSA): Makes all input sequences
of the same length by guessing the
missing details

- Performing vector like operations
- Core step for visualization and
probabilistic analysis

Conserved regions: Consecutive
areas of high support in data.

- T-Pattern mining [22]
- Tagging and compression of
sequences [12]
- Forming hypothesis about
functionality

Consensus sequence/ Profile
HMMs: Representative model of
a sequence family

- Probabilistic modelling of relevant
traffic sequences [29]

Sequence Logos: Information
theoretic visualization scheme

- Dense visualization for ’information
content’ in mobility patterns

Table 4.1.: Biological sequence methods with potential applications for
traffic data

π? which maximizes a score θ between s1 and s2 resulting from the matrix of pairwise

similarity scores ∆ between symbols:

π?s1,s2 = arg max
π∈ Πs1,s2

θ(π) (4.2)

To illustrate, we take two sequence from our running example, namely smon =

HWTHFH and sthu = HWSFH with

∆ =


πsi,sj (i) = +2← match, i.e. si = sj

πsi,sj (i) = −1← mistmatch, i.e. si 6= sj

πsi,sj (i) = −2← gap penality, i.e. si = ∅ or sj = ∅
(4.3)

On a more technical level, an alignment π is actually a path in a dynamic program-

ming matrix where the score of each individual cell is the maximum of three scores:

73

4. Preserving Structure in Symbolic Trajectories

 H W T H F H

0

2

-2 -4 -6 -8 -10 -12

-2

-4

-6

-8

-10

0 -2 -4 -6 -8

0

-2

-4

-6

4 0 -2 -4

2

0

-2

3

1

-1

-1 -3

2

3 51

1

2

3

1

H

W

S

F

H

(a)

Figure 4.2.: Dynamic programming matrix and Viterbi algorithm for pairwise Se-
quence Alignment. Directional arrows show the cell contributing to the
score of current cell. Red arrows and yellow squares describe the optimal
path. Blue arrows describe an alternative path with maximal score.

(i) diagonal above + match/mismatch between corresponding symbols; (ii) horizon-

tal above + gap; or (iii) vertical left + gap. The well-known Viterbi algorithm finds

the path that maximizes the score θ(π) in O(mn) time and outputs the alignment

π? along with similarity score. Fig. 4.2 illustrates applying Viterbi on our running

example. It results in the global alignment between s1 and s2:

π?s1,s2 =
H W T H F H

H W − S F H
(4.4)

with θ(π?) = (2 + 2− 2− 1 + 2 + 2) = 5.

More important than aligning two sequences is multiple sequence alignment (MSA),

i.e., to find the best alignment between multiple sequences under similarity matrix

∆, i.e., given k sequences, s1, s2, . . . , sk ∈ S. This is a fundamental step in many

analysis methods for biological sequences as it helps in learning profile HMMs, con-

served regions, and visualization, among others. Essentially it builds on top of the

pairwise alignment we just described. The exact details, however, are not important

for this chapter, and instead we present only a result for our running example in

Fig. 4.3. For more details we refer to [15].

Given a multiple sequence alignment, one can compute the so-called ‘consensus

sequence’. Fig. 4.3 shows the consensus sequence HW-S-H of our runnning example.

It describes the most frequent symbols at every position of the alignment (note that

74

4.1. Sequence Analysis for Trajectories

CONSENSUS

H W - S - H
1

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

H W T H F H

H W - S - H

H W - - - H

H W - S F H

H W - - - H

H - B S C H

(a)

Figure 4.3.: Multiple sequence alignment showing distribution of symbols. (Top)
Three conserved regions: (1) from home to work at the start of the day,
(2) shopping (after work), and (3) back home at the end of the day.
Conserved regions filter infrequent symbols like T and F. Histograms
show the amount of symbol’s conservation.

a gap is treated as a symbol here). Intuitively, it say the user goes from home to

work in the morning. Then, she goes shopping before coming back home again. An

alternative view is provided by so-called ‘conserved regions’. Instead of looking at

the most likely symbols only, it provides us with the regions (consecutive symbols)

with high support in a multiple alignment; the sequence of bars on top of Fig. 4.3.

A conserved region indicates that this region is performing a specific functionality

for the set of aligned sequences. In our case, H-W is more frequent than S. In other

words, she does not shop every day. However, being at home in the morning and

the evening is more likely than going to work due to the weekends where our user

is not working. Traffic logos provide a richer and more precise description of traffic

sequences than would consensus sequences. They are visualizations which show

the variability of symbols at specific positions. Specifically, they comprise stacks

of symbols placed next to each other. The over all height of one stack denotes the

sequence conservation for one particular position in the multiple sequence alignment,

whereas the height of a symbol in a stack shows the entropy of that traffic symbol

at the particular position. Fig. 4.1 is a traffic logo for a highway traffic densities

during baseball games in a nearby stadium.

However, even logos ignore correlations over time and instead treat the positions

independently of each other. To overcome this, one typically uses so-called profile

hidden Markov models (HMMs). A profile HMM turns a multiple alignment into a

75

4. Preserving Structure in Symbolic Trajectories

probabilistic model over the edit operations (match, add, delete) for the alignment.

In turn, if we want to check how likely a new sequence s matches a set F of sequences,

we compute how likely s is according to F ’s profile HMM; e.g., a traffic sensor reading

can be compared to the profile of an accident or a traffic jam to check whether it is

an accident or a traffic jam or none of them. Again, we refer to [15] for the details.

Our intention here is to investigate the usefulness of biological sequence analysis

method for traffic data. Specifically, we investigated the following questions:

• (Q1) Is it possible to solve Traffic problems with the help of out-of-the-box

biological sequence analysis methods?

• (Q2) If so, how do they perform compared to state-of-the-art methods?

• (Q3) Can we gain interesting insights into traffic data with the help of bio-

logical sequence methods?

To answer Q1, we choose two tasks being investigated by geo-analytics community,

namely traffic event detection and trajectory clustering. We apply out of the box bi-

ological sequence methods in combination with out alignment kernels , and compare

our results with state-of-the-art approaches to answer Q2. In order to provide an

answer to Q3, we show visualizations for the analysis performed using traffic logos.

4.2. Trajectory Clustering (for User Activity Analysis)

We followed two complementary approaches to analysing user routines at differ-

ent abstraction levels. In the first approach, we extracted daily sequences of the

user’s stay points, clustered them using alignments, and analysed the resulting clus-

ters using traffic logos. In the second one, we dig deeper and analysed the user’s

routines using ’map-matched’ trajectories. This helps in grouping functionally rel-

evant trajectories and in turn in identifying specific routes over the street network.

Specifically, we used DBscan [16] using the the pair-wise alignment score and then

visualized the resulting clusters. The second approach also helps us in comparing

the performance to state-of-the-art methods (as we will show). Both approaches

were applied to the same dataset of 112k recorded position within 363 trajectories.

4.2.1. Stay Points Discretization

A stay point is typically defined as a ball of radius r such that a trajectory stays

inside for at least time t. Our goal, however, is to extract more frequent stay points

76

4.2. Trajectory Clustering (for User Activity Analysis)

and prune less important ones. For this purpose, first we marked GPS positions

from raw trajectories, which stayed within a radius r = 100 meters for time t = 10

minutes. Then we clustered these marked points with the help of DBscan [16] to

find area which are more dense among these marked positions. In the end, we took

the convex hull of each cluster to get the shape of a stay point. To check whether

the user is inside a stay point, we took a threshold distance from the boundary (w.g.

30 meters) to deal with noise in GPS.

Our next step is stay point labelling. To do this, we first looked at the temporal

distributions of the stay points in order to label the most important stay points, in

our case ’home’ and ’work’. Stay points where the user stayed during the daytime

(9:00 Am–6:00 Pm) for ≥ 6 hours during weekdays were labelled as work and during

night as home. The rest of the stay points are labelled with the help of Google maps

(e.g., restaurants, post office, bank, shopping markets and Tennis courts). Finally,

we pruned stay points that correspond to very short stays with less significance, e.g.,

gas stations. To extract traffic sequences out of the trajectories, we took every daily

trajectory and extract the points where user stayed for significantly long time based

upon the temporal difference between points. If these points were within a threshold

(e.g., 30 meters) of a labelled stay point boundary, we added it as a suffix to our

traffic sequence and continue till the end of the user’s day. The extracted stay points

along with their labellings are shown in Fig. 4.4; for the sake of keeping privacy, we

are omitting the latitudes and longitudes. For the sake of visualization of activity

sequences based upon these stay points, we cluster and align these sequences with

the biological sequence analysis and visualize them using a biological routine called

’sequence logos’. The process is define below.

4.2.2. Visualization of Clustered Activity Sequences

After the extraction of stay points, we built the similarity matrix using the geodesic

distance based alignment kernel. These stay points served as the symbols for activ-

ities in our traffic sequences. We calculate distance matrix between daily activity

sequences from user with pairwise sequence alignment. Then, the sequences were

clustered based using DBscan [16]. The sequences of each clustering were addition-

ally aligned and we produced traffic logos for them shown in Fig. 4.5, Fig. 4.6 (a-d)

and Fig. 4.7 (a-b). For the sake of visualization of time information, we labelled

the time of stay points in every sequence with M-Morning (before 9:00 Am), D-Day

(9:00 am to 6:00 pm) and E-Evening (after 6:00 pm). In the traffic logos we used

different colours to indicate these time labels, namely green for morning, yellow for

77

4. Preserving Structure in Symbolic Trajectories

daytime, and red for evening. Furthermore, we have used two different formulas for

the hight calculation of each individual symbol in the logos, i.e., (a) relative entropy

of the symbol and (b)relative entropy divided by base frequency. (b) is also derived

from biological sequence analysis where the importance of a symbol at a a particu-

lar position is visualized by changing the entropy calculation (diving the entropy by

overall base ferquency). As a result, symbols which are rare in the whole sequence

and predominantly appear at a certain position are more pronounced. The same

logic applies to traffic sequences.

As one can see, traffic logos show a very dense and illustrative view of clusters

for user’s daily activities. Fig. 4.5 describes the logos for the whole data set: (a).

Traffic logos demonstrate the mixed patterns of activity for the whole data set. For

example, staying at home in the morning and evening is more certain than going

to work (presumably, due to non work days at the weekend. Similarly occasional

shopping in evening (red ‘A’ and ’R’ symbols) is alternatively done with still less

frequent Tennis in the evening (red ’T’ symbol). Occasional swings in the normal

routine, i.e., early and late work going routine (red and green ’W’s) can also be picked

up. Furthermore, a yellow ’B’ followed by ’A’ and ’R’ hints at a weekend routine

of going to ATM machines in banks and then shopping. These activity sequences

will be further segmented to enhance the visibility of each pattern. (b). The height

of a symbol is divided by its over all base frequency to know its relevance to a

certain position in the sequence, i.e., if a position only occurs at a specific sequence

most of the times, then its height will be increased. Consequently, this gives us an

activity-versus-position binding which in the context of analysing preferred order of

user routines can be very useful. For example, going to bank is mainly done as first

activity on the weekend during day time, Tennis comes out only as an evening hobby

and ’O’ (friends and city center) is mainly carried out in the night. Furthermore,

going to shopping is quite a routine in the evening and rare in daytime, therefore,

its affect is accentuated in day time and nullified in evening. Notice that ’Traffic

Logos’ a give a compact representation of user activity patterns after approx 99%

compression, i.e., almost all of the semantic information present in the detailed

activity analysis (see Fig. 4.10) of the raw data can be described through logos.

Fig. 4.6 describes the cluster wise logos after alignement of sequences in each

cluster, e.g., (a) Cluster 1 is the most frequent cluster in the data comprising around

40% of user’s routine days. This cluster is composed of one accentuated pattern of

Home (Morning)—Work (Day Time)—Home (Evening) with a occasional deviations

from the routine like Early or Late Office going and leaving routine. A small ’O’ at

78

4.2. Trajectory Clustering (for User Activity Analysis)

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8

x 104

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2
x 104

(a) Street Network Map

REAL(Shop2)

Home

Work

Tennis

ALDI(Shop1)

City Center

Bank

(b) Labelled Stay Points

Figure 4.4.: Convex hulls of labelled stay points (blue polygons over gray-edged
street network). The main stay points are Home, Office, Bank, Ten-
nis, Shopping-1 (ALDI), Shopping-2 (REAL) and City Center.

Position in Sequence

E
nt

ro
py

0

0.5

1

1.5

2

0

0.5

1

1.5

(a) Sequence logos for the whole data set

Position in Sequence

E
n

tr
o

p
y

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

(b) Sequence logos for the whole data set

Figure 4.5.: Traffic logos for stay-point based sequences. x-axis denotes sequence
positions and y-axis denotes ’information’ present in each column. The
symbols in the figure denote labels of activities based on stay points
i.e: H denotes staying at Home; W–Working; A–shopping at ALDI; R–
shopping at Real; B–getting cash from Bank, T–playing Tennis and O
denotes Other activities for leisure (i.e., city center roaming and visiting
friends). Colours of symbols denote the time of day, i.e., green denotes
Morning (before 9.am); yellow–daytime (9am-6pm) and red — evening
(after 6pm). The height of a symbol denotes the certainty of an activity
at the given day time and position in the data.

the end presents occasional tendency to go ’Out’ in the night. It becomes readily

clear that this cluster encodes the daily routine of staying at Home in the morning

with a higher certainty and then going to office early or staying at home with a very

79

4. Preserving Structure in Symbolic Trajectories

Position in Sequence

E
nt

ro
py

0

0.5

1

1.5

2

(a) Work Routine(87 objects)

Position in Sequence

E
nt

ro
py

0

0.5

1

1.5

2

(b) Work & Shopping(68 objects)

Position in Sequence

E
nt

ro
py

0

0.5

1

1.5

2

(c) Weekend Routine(34 objects)

Position in Sequence

E
nt

ro
py

0

0.5

1

1.5

2

(d) Work & Sports(26 objects)

Figure 4.6.: Traffic Logos for the after segmentation of daily activity sequences. Ev-
ery segment (or cluster) describes one of the possible routines that user
follows in her daily life. The symbols in the figure denote labels of activ-
ities based on stay points i.e: H denotes staying at Home; W–Working;
A–shopping at ALDI; R–shopping at Real; B–getting cash from Bank,
T–playing Tennis and O denotes Other activities for leisure (i.e., city
center roaming and visiting friends). Colours of symbols denote the
time of day, i.e., green denotes Morning (before 9.am); yellow–daytime
(9am-6pm) and blue-evening (after 6pm).

small possibility. In the daytime, the user goes to work with a very higher certainty

and comes back around 6pm with a small possibility of staying at work. The small

’O’ at the end of the logo describes a small possibility of going for other leisure

activities (city center roaming or visiting friends). (b). Cluster 2 comprises around

25% of user’s routine days. This cluster is composed of one accentuated pattern of

Home (Morning)—Work (Day Time)—Shopping (Evening)—Home (Evening). This

is a quite similar daily routine to (a). There is, however, an important difference.

The user shops at either of two shopping centres (ALDI, and REAL) after work. (c)

80

4.2. Trajectory Clustering (for User Activity Analysis)

Position in Sequence

E
nt

ro
py

0

0.5

1

1.5

2

(a) Work Routine(87 objects)

Position in Sequence

E
nt

ro
py

0

0.5

1

1.5

2

(b) Work & Shopping(68 objects)

Position in Sequence

E
nt

ro
py

0

0.5

1

1.5

2

0

(c) Weekend Routine(34 objects)

Position in Sequence

E
nt

ro
py

0

0.5

1

1.5

2

0

(d) Work & Sports(26 objects)

Figure 4.7.: Enhanced traffic logos for visualizing the importance of a user activity
w.r.t. a particular position in her activity routines. X-axis denotes
sequence positions and Y -axis denotes ’information’ present in each col-
umn. Every cluster describes one of the possible routines that user
follows in her daily life. The symbols in the figure denote labels of activ-
ities based on stay points i.e: H denotes staying at Home; W–Working;
A–shopping at ALDI; R–shopping at Real; B–getting cash from Bank,
T–playing Tennis and O denotes Other activities for leisure (i.e., city
center roaming and visiting friends). Colours of symbols denote the
time of day, i.e., green denotes Morning (before 9.am); yellow–daytime
(9am-6pm) and blue-evening (after 6pm).

describes a cluster which is possibly weekend-routine since there is not high W(ork)

symbol at all. So on the weekend, the user stays at home in the morning and then

gets cash from bank with a small probability. Afterwards the user shops from ALDI-

then-Real or only REAL during the day time. Then she comes back home and stays.

However, with a small possibility, instead of coming back to home after shopping,

she chooses to do describe an occasional tendency (yellow and red) ’O’s to do Other

81

4. Preserving Structure in Symbolic Trajectories

leisure activity like city center roaming or a visiting a friend at weekends (later in

the day or evening). (d). A small percentage of user days are composed of tennis

playing hobby along with regular routine, i.e., Home (Morning) — Work (Day)—

Tennis(evening) — Home (evening)

Fig. 4.7 describes the enhanced traffic logos for visualizing the importance of a

user activity w.r.t. a particular position in her activity routines. Roughly speaking,

this figure gives an activity-versus-position binding which in the context of analysing

user routines can be very useful. For example, the rare position specific routines of

going to bank early in the day on weekends, visiting friends in the evening and

playing tennis in the evening after some work days is pronounced in comparison to

Fig.4.6 and gives an idea about the preferences and order of specific activities in the

data.This is an affirmative answer to questions (Q1) and Q3).

4.2.3. Map Matching Discretization

To investigate whether our methods can perform comparably with state-of-the-art

methods, we focused on clustering trajectories [51]. Whereas the state-of-the-art

method clusters raw trajectories, we used the sequences of map matched street seg-

ments to cluster our data set. This helps us in analysing specific map routes that user

selects during her travels. For map matching we followed [30]. After clustering on the

map matched level, we projected the labelled trajectories back into Euclidean space

and visualized them over the street network in Fig. 4.10. We show the different clus-

ters in descending order according of their sizes, namely {119, 78, 28, 11, 7, 7, 6, 6}.
The clusters were labelled with already extracted stay points, cf. Fig. 4.4, for user

activity. As one can see, the largest cluster is the daily travel from ’Home to Work’.

The runner-up largest cluster is a direct route back home from office. However, as

the user may also take alternative routes back home from office, for instance through

shopping center ALDI (clusters 3) or REAL (cluster 4), the back home cluster 2 is

not as large as the home to work cluster. Cluster 5-8 indicate travelling to Work-

to-Tennis, casual shopping from ALDI, weekend shopping results, and city center

roaming. So again, we find meaningful clusters. However, are they also as good as

state-of-the-art?

4.2.4. Experimental Evaluation

To see this, i.e., for a quantitative comparison, we computed the Hausdorff distance

for both clustering solutions as well as the error. The error term RMSSTD is a

82

4.2. Trajectory Clustering (for User Activity Analysis)

measure of clustering compactness [40] which gives sum of average within cluster

variances. The distance measure used, Hausdorff distance or H(A,B), measures the

degree of mismatch between two trajectories A and B. More formally, let h(A,B)

define the maximum Euclidean distance of a point in trajectory A to the nearest

point in trajectory B i.e., h(A,B) = maxa∈A minb∈B d(a, b). Now, we define h(B,A)

in a similar fashion and in turn Hausdorff distance b/w A and B:

H(A,B) = max(h(A,B), h(B,A)) (4.5)

Intuitively, if the Hausdorff distance is d, then every point of A must be within a

distance d of some point of B and vice versa.

For clustering, our alignment-based method used again DBscan [16]. As state-of-

the-art baseline, we used OPTICS [3] route similarity search, see [51]. The data set

used is explained in detail in [1, 2]. As both clustering methods are density based

and filter outliers, this comparison is fair. Using K-means as baseline for example

is not a fair option as it does not filter outliers. In other words, it will produce

a-priori much higher error. The parameters of both density based algorithms are

ε (minimum similarity threshold to consider two points as neighbours) and minn

(minimum number of neighbours needed to define a point as a ‘core point’). We

used a grid search to determine the best parameters for the same number of clusters

as found by the baseline, namely 7.

Our method produced (using a grid search on ε ∈ [0.5 : 0.01 : 1.0] and minn =

[2 : 1 : 6]) an error of RMSSTD = 197 with parameter settings ε = 0.65 and

minn = 5 as compared to RMSSTD = 271 with ε = 1KM and minn = 5 for the

baseline. However, the number of trajectories clustered by our method was 232

whereas the baseline clustered 261 trajectories. The remaining ones of the in total

363 trajectories were filtered out. This, however, is only giving a ’point estimate’

of our performance. To see the general picture, i.e., performance over the range of

grid search, we provide the performance averaged per number of clusters As one

can see, pairwise traffic sequence alignment is able to capture similar number of

objects with a better mean of error than the baseline by filtering out the noise in a

better way. We believe that this happens because of high gap costs in the alignment

computation. They penalize to group together trajectories with dissimilar sub-

parts. Consequently, more compact clusters are found. Moreover, it finds a similar

number of clusters as the baseline, namely 7 − 8. Fig.4.10 shows the 8-distinct

patterns found by our algorithm. Here, the clusters in Figs. 4.10 (a-g) were also

83

4. Preserving Structure in Symbolic Trajectories

Figure 4.8.: Scatter plot of clustering experiments for number of clustered objects
(higher value is desirable) versus RMS error (higher value not desirable).
Every marker describes the outcome of one experiment and different
markers (in type and color) are used for different ’number of clusters’
found (see legend). Moreover, the size of a marker describes the density
of corresponding cluster numbers in the vicinity. This scatter plot helps
us in identifying the right number of clusters present in the data set.
As evident from the picture, 5 clusters has a high variance in both
dimensions, therefore, it is insufficient to capture the diversity in data.
Consequently, more appropriate values for the clustering are 6 and 7
where 7 is even better with more clustered objects and less variance in
error than 6. However, one can also try to come up with more more
patterns in data at the cost of a higher error (the case of 8 clusters)

found by the baseline. The additional cluster shown in Fig.4.10 (h) is Home to City

Center. Moreover, we contacted the owners of the dataset and they agreed with the

possibility of clusters found.

This is clearly an affirmative answer to question (Q1)- (Q3).

4.3. Traffic event Detection

To further investigate the performance of the biology view on traffic analysis, we

considered a classification setting, namely to detect traffic events from sensor data

as already described in the introduction. Specifically, we were interested in (a) event

84

4.3. Traffic event Detection

(a) Home to Office (b) Office to home (c) Office to home Via ALDI

(d) Office to home Via REAL (e) Office to Tennis (f) Casual Shopping from
ALDI

(g) Weekend Shopping Rou-
tine

Figure 4.9.: Clusters of raw trajectories (sets of blue points) from baseline solution
[51] over shaded street network. The similarity criteria used is route
similarity search along with clustering algorithm known as OPTICS [3]
(a density based clustering algorithm). As depicted, base line solution
outputs 7 clusters where each cluster describes a specific route in user’s
routine including office travel, shopping routine, sports and weekend
routine. The semantics of the clustering are extracted with the help
of labelled stay points in the stay point discretization process. Finally,
intra-cluster distance is low as all trajectories in a cluster are compact
and follow same route.

85

4. Preserving Structure in Symbolic Trajectories

1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

x 104

2.5

2.6

2.7

2.8

2.9

3

3.1

x 104

(a) Home to Office
1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

x 104

2.5

2.6

2.7

2.8

2.9

3

3.1

x 104

(b) Office to home
1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

x 104

2.5

2.6

2.7

2.8

2.9

3

3.1

x 104

(c) Office to home Via ALDI

1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

x 104

2.5

2.6

2.7

2.8

2.9

3

3.1

x 104

(d) Office to home Via REAL
1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

x 104

2.5

2.6

2.7

2.8

2.9

3

3.1

x 104

(e) Office to Tennis
1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

x 104

2.5

2.6

2.7

2.8

2.9

3

3.1

x 104

(f) Casual Shopping from
ALDI

1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

x 104

2.5

2.6

2.7

2.8

2.9

3

3.1

x 104

(g) Weekend Shopping Rou-
tine

1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

x 104

2.5

2.6

2.7

2.8

2.9

3

3.1

x 104

(h) Home to City Centre

Figure 4.10.: Clusters of raw trajectories (blue points) based on map-matched street
segments from street nework (gray edges). The trajectories are pro-
jected back into the original space. Furthermore, the similarity cri-
teria used is pairwise sequence alignment along with clustering algo-
rithm known as DBscan [16] (a density based clustering algorithm)
(with ε = 0.58 and minn = 3). The clustering process captures
262 objects —described in order of cluster labels from ‘a’ to ‘h’, i.e.,
{119, 78, 28, 11, 7, 7, 6, 6}. As depicted, these clusters indicate office
travel, shopping routine, sports, weekend routine and city center roam-
ing. Finally, (following the base line solution) the intra-cluster distance
is low as all trajectories in a cluster are compact and follow same route.

86

4.3. Traffic event Detection

Similarity method Clusters µRMS σRMS #objs(µ±σ) ε(µ± σ) minn(µ±σ)

Route Search 7 271.5 NA 261 NA NA

Pairwise
Traffic
Sequence
Alignment

7 249.24 36.4 255.6± 7 0.63±0.01 3± 2
5 211.78 112.43 221.2± 21 0.64±0.07 4± 1
6 236.58 75.74 243.6± 14 0.60±0.04 4± 1
≥ 8 313.98 20.13 275.1± 6 0.53±0.04 3± 1

Table 4.2.: Comparison of clustering results using the Hausdorff distance to compute
errors. The error is depicted in columns 3, and 4 as the the average
and standard deviation of root means squared Hausdorff distance, i.e,
µRMS , and σRMS for the corresponding rows. Similairly, the mean and
standard deviations for number of objects found per row are given by
the fifth column. Last two columns show the means and deviations for
parameters of the density based algorithms, i.e., ε, and minn. The first
row shows the result for the state-of-the-art baseline. As we can see, both
capture a similar number of trajectories and similarly good clusters, see
also Fig. 4.10 (a-g). Row 3,4 have a lower error but also capture a smaller
number of trajectories because of small ε and large minn. Row 5 shows
that the alignment-based method can capture more patterns than the
original method, cf. Fig. 4.10(h), at the cost of a higher error with large
ε and small minn.

persistence and (b) separation of normal traffic from event data. Since events are

very rare and usually composed of less than 1% of the dataset, the main step to

achieve (b) is subtracting the mean. However, after this normalization choosing

a threshold value for classification will not work well since it does not consider

a. Consequently, it would produce a lot of false positives (i.e., noise or unusually

high readings due to some temporary phenomena). Fig 4.11 (a—d) illustrates this

point with the help of sensor readings acquired over a publicly available event based

data set. The plot of all readings is composed of two different trends in auditorium

entrance, i.e., set of blue (non-event) points close to the axis and a normal-like curve

for blue and red points. On further inspection, it is revealed that these two trends

relate to entrances on work and non-work days. Consequently, we have built two

different models for the two different trends (b)Readings for non-event workdays,

i.e., normal movement data with low readings for night/morning times and normal

like curve for noon. Unusual spikes are mixture of noise and unreported events.

(c) Readings for non-event weekends, i.e., very low movement in and out out of

the auditorium. (d) Normalized date after subtracting the corresponding means

from weekends and work-days’ readings. This helps us in separating out the data

in two classes as most ‘event days’ have high value after normalization. However, a

87

4. Preserving Structure in Symbolic Trajectories

threshold over the normalized values cannot be used as a criteria for classification

because it will generate a lot of false positives (due to mixing of blue dots). In order

to improve the accuracy of classification, we need to build a probabilistic model that

captures the idea of ’event persistence’, i.e., structurally correlated high values of

readings.

To address a, we propose to learn a profile HMM from the event data. This is a

sensible idea for two reasons. (1) profile HMMs capture event dynamics probabilis-

tically and in turn can be used for soft comparison between event and non-event

sensor readings. (2) Most of the events are different in length, e.g., congestion at

the end of a concert can last 30-45 minutes. Comparing variable length sequences is

one of the strength of profile HMM. As our experimental results show, they actually

perform better (in terms of false positive rates) than state-of-the-art approaches.

4.3.1. Experimental Evaluation

We considered two real world data sets2 also used by [29]. The data sets’ description

(adopted from [29]) is as following :

The first data set is referred to as Caltech auditorium entrance data. It comprises

3 months of count data for entrances at the front door of the Cal-IT2 institute. The

data is accumulated on a 30 minute basis by optical detectors that register the number

of entrances through the main doors. The goal here is to predict the presence of a

conference on a particular day in the building.

The second data set is referred as the dodgers baseball game data. This loop sensor

data was collected for a free-way in Los Angeles. It is close enough to the stadium

to see unusual traffic after a Dodgers game, but not so close that the signal for the

extra traffic is overly obvious. The observations were taken over 25 weeks with 288

time slices per day in 5 minute counts. Here, the goal is to predict the presence of a

baseball game at Dodgers stadium on a particular time.

For comparison, we selected two baseline approaches. In baseline 1, we take a

small portion of event data as training set, i.e., max (20%,10 events). Then we mixed

it with the same proportions from non-event data. Now, we divided the training

data into two groups, i.e., weekend and weekdays. We do so because both of these

groups have different trends of traffic. We normalized both groups of training data

by subtracting their corresponding means. Finally, with the help of cross validation,

we chose a threshold value to classify events that captures all events (irrespective of

the number of false positives captured). In baseline 2, we took the state-of-the art

2http://archive.ics.uci.edu/ml/machine-learning-databases/event-detection/

88

4.3. Traffic event Detection

5 10 15 20 25 30 35 40 45

(a) Sensor readings

5 10 15 20 25 30 35 40 45

(b) Workdays

5 10 15 20 25 30 35 40 45

(c) Weekends

5 10 15 20 25 30 35 40 45

(d) Normalized

Figure 4.11.: Sensor readings from Caltech Auditorium Entrance. X-axis denotes
time and y-axis denotes sensor readings. ’Red dots’ denote readings
for event days and ’blue/gray dots’ — non-event days. (a)All readings.
The plot of all readings is composed of two different trends in audi-
torium entrance, i.e., set of blue (non-event) points close to the axis
and a normal-like curve for blue and red points. On further inspec-
tion, it is revealed that these two trends relate to entrances on work
and non-work days. Consequently, we have built two different models
for the two different trends (b)Readings for non-event workdays, i.e.,
normal movement data with low readings for night/morning times and
normal like curve for noon. Unusual spikes are mixture of noise and
unreported events. (c) Readings for non-event weekends, i.e., very low
movement in and out out of the auditorium. (d) Normalized date after
subtracting the corresponding means from weekends and work-days’
readings.

event detection algorithm by Ihler et al. [29], which uses adaptive Poisson processes

to identify events.

Our profile HMM approach was built upon the output of baseline 1. As there are

missing observations, the sequences are of different length. Therefore, we aligned all

of the event sequences together and set the length of the profile HMM (a parameter

89

4. Preserving Structure in Symbolic Trajectories

CONSENSUS

H A - - - - - - - - - - - - - H H C H C H H H H H C C C C C C H C C - H - A H H L L L L -
1 10 20 30 40

Sequence 1

Sequence 2

Sequence 3

Sequence 4

Sequence 5

Sequence 6

Sequence 7

Sequence 8

Sequence 9

Sequence 10

Sequence 11

Sequence 12

Sequence 13

Sequence 14

Sequence 15

Sequence 16

A L A A L - - - - - - - - A A H A H H C H H H A A A H C C C C H C H H H H H H H - - - - -

H A - - - - - - - H H A H A H H H C H C C C C C C C C C C C C H C C H H A A A H H - - - -

L A A A A - - - - - - - - - - H A A A L A H H H H A H A A A - - - - - - A L L L L L L L L

A A L L A - - - - - - - - - - A A A L L A A H A H A A H C C H H H A - - A A L L L L L L L

A A A L A - - - - - - - - - - L A L A A A H A A H H A A H H H H H L - - - A L L A A L L L

A - - - - - - - - - - - - A A H A H H H H H H A A C C C C C C H H H H H H H A A A L L L -

A L A - - - - - - - - - - - - - - - - A H H H C C H C H C C C H C C C C H C A A A A A A -

H A A A A H A A H H H H H H H H H H H A H H H H H H C C C C C H C C - - - - - - - - - - -

L L A L A - - - - - - - - - - A A A A H H A H H H A C H H H C H H A - - - - A L L L L L L

A A A A A - - - - - - - - - - A H H H H A H A L H H C C H C A H A L - - - - - - - L L L L

H - - - - - - - - H A A H H H A H C C C C H H H C C C C C C H H C C H H C H H H H A H C -

A H - - - - - - - - - - - - - - H A H A L H H H H C C C H H C H C H H A A A H H L A A A L

H A - - - - - - - - - H H H H A H A A H H H H C H C C C C C C H C C C H C C H A A H A A -

H - - - - - - - - A A H A H H A H C C C C - - - C C C C H C C H C C H H A A A H A - - - -

L A A L L - - - - - - - - - - A L A L L L L L L L L L L L L - - - - - - - L L L L L L L L

A L L A A - - - - - - - - - - A A L L A A A A L H A A A A L C H C C - A A L A A L L L L L

Time

bi
ts

0 30 60 90 120
0

1

2

3

Figure 4.12.: Traffic Logos for Baseballs games in training set for ’+-1 hour’ of game
endings. Symbols denote frequency of traffic, i.e., L-Low, A-Avg, H-
High and C-Congestion. (Top)5-conserved regions. (From left to right)
region 1 describes ‘low to average’ traffic during play. Regions 2–4 col-
lectively describe traffic frequency for game endings. These regions
show high density traffic with real congestion starting approx. 15 min-
utes after game endings. This trend declines approx. 45 minutes after
the games where conserved region region no.5 starts showing a ten-
dency towards normal traffic, i.e., average and low density.

Algorithm Training Events True Positives False Positives

Dodger’s Base ball Game Prediction - Total events= 76

Baseline 15 76 65

Poisson Proc. 76 75 23

HMM profile 15 74 18

Caltech Auditorium event prediction - Total events= 29

Baseline 10 29 43

Poisson Proc. 29 24 24

HMM profile 10 25 12

Table 4.3.: Comparison of event prediction on real world data sets. In both cases,
HMM profiles were able to predict almost the same number of events
with a better recall (lower number of false positives) and a low training
percentage of data. On average, 90 percent of original events are cap-
tured by all algorithms. However, out-of-the-box profile HMMs provide
a better recall (filtering of false alarms) by capturing event persistence.

of it) according to the average length of events in the training data. At classification

time, we got a complete sequence of sensor readings. To compare it with the much

smaller event profile, we used a sliding window equal in length of the event profiles,

i.e., profile HMM. Windows with a higher score than a threshold value ρ (chosen

through cross validation) were marked as event traffic. Tab. 4.3 shows the results.

90

4.3. Traffic event Detection

Note that all algorithms capture a high percentage of true positives. However, one

can clearly see that just by using out-of-the-box biological techniques, we can get

comparable (in one case even significantly lower) false positive rate than the state-of-

the-art technique. Having a better recall (low number of false positives) is important

in cases when there is a cost attached to a false positive. Consider, e.g., sending

a traffic inspector to control a traffic jam when there is no jam. The traffic logos

shown in Fig. 4.12 validate that the profile HMMs capture plausible event patterns.

Taking all of our event detection results together, they clearly provide an affirma-

tive answer to questions (Q1)-(Q3).

Running Time

We have performed our experiments on Intel Core(TM)2 Duo E6850 processor with

3.3GHz frequency and 3.24 GB RAM. Approx 2 GB memory at maximum is avail-

able for the process. The operating system is windows XP and language interpreter

is JAVA. For sequences of ‘street segments travelled’, the similarity matrix between

‘363 trajectories with 16616 street segments’ takes around 8 hours to compute and

rest of the analysis takes less than a minute; however, since shortest path graph

computations and map matching processes are involved along with dynamic pro-

gramming, therefore, we expect it to be a time-consuming process. In contrast, for

stay point based activity sequences, the time for analysis, i.e., stay point detection,

multiple alignment, clustering and traffic logos is very fast as it takes less than 10

minutes to finish. For traffic event detection, the whole process takes approx 10

minute to finish for 51840 sequences, i.e., 288 sequences/day (of length 40) for 6

months.

Summary

In this chapter, we have demonstrated that structural information can be used to

improve two fundamental tasks related to the analysis of symbolic trajectories, i.e.,

trajectory clustering and traffic event detection. In a nutshell, the process is de-

scribed as following: we first take the sampled raw trajectories and discretize them

using the standard discretization measures, e.g., map matching and stay point detec-

tion. The discretization process converts these trajectories into sequences which can

be analysed through the tool box of biological sequence analysis methods. The key

distinction, here, however, is that we use the geodesic distance based alignment ker-

91

4. Preserving Structure in Symbolic Trajectories

nel (outlined in Chap.3) as an input to the biological sequence analysis tool box. In

the end, we show that the biological sequence analysis in combination with geodesic

distance based alignment kernel shows state-of-the-art performance for the above

mentioned tasks.

92

5. Conclusions

“Nothing is more revealing than movement.” Martha Graham.

The analysis of trajectories has a broad range of applications, for example, in

urban planning, transportation systems, navigation and localized search methods.

Most of these applications share some underlying basic tasks. One of such basic

tasks is map matching —the process of aligning raw trajectories to street network

— which is used in navigation, planning and transportation systems. Another task is

the comparison of trajectories which is necessary for localized search methods, user

similarity search, and —in general— finding similar patterns. Finally, probabilistic

modelling of trajectories is required for classification/prediction related tasks. For

example, the traffic event detection is such an application where we build a model

of trajectories relating to traffic events, e.g., jams and congestions, so that a new

event can be identified.

While these tasks have different settings, a common and yet difficult problem in

solving them is coping up with the measurement error in the sampled trajectories.

This error occurs due to multiple issues , e.g., spatial and/or temporal distortion, low

and non-uniform sampling rate, heterogeneity of data (noisy label information) and

missing values. In order to cope with these problems, we look at the invariants in

the data, i.e., the spatio/temporal structures in trajectories that remain considerably

unharmed during the measurement process. In particular, we take a trajectory as a

walk over the underlying labelled graph, and embed the information in these graphs

into the Euclidean space in order to preserve the structural relationships between

sampled points. These distances then prove our connection to the fields of kernel

methods and biological sequence analysis which are used to improve the trajectory

analysis tasks.

One of the above mentioned connections,i.e., kernel methods is manifested in Map

Matching. Roughly speaking, the existing approaches for map matching can be cat-

egorized into four groups: geometric, topological,probabilistic, and other advanced

techniques. Surprisingly, the kernel methods such as support vector machine and

Gaussian processes [50] had not received attention yet although they are very popu-

93

5. Conclusions

lar in the machine learning community due to their solid mathematical foundation,

tendency toward easy geometric interpretation, and strong empirical performance in

a wide variety of domains. In a nutshell, kernel methods first process a dataset into

a kernel matrix that roughly expresses the idea of two data points are“equivalent

as far as some function f of the data can tell”. By representing the data in terms

of a kernel matrix, the data can be of various types, and also heterogeneous types

such as trees and graphs. This makes kernel approaches very flexible. In a second

step, a variety of kernel algorithms that have been developed can be used to analyse

the data, using only the information contained in the kernel matrix. Kernels are

also readily extendible, therefore, every kernel matrix provides an opportunity to

integrate its knowledge with the existing kernels in the field. An investigation of

using kernel methods for map matching motivated by their well-known strength was

the seed that grew into our proposal for kernelized map matching.

In this thesis, we have shown that kernelized learning schemes can be used to

reduce the problems associated with noise and sampling rate in map matching. To

illustrate, we have proposed a simple objective function based on minimizing the

difference between kernels in the output and input space. Our algorithm KMM has

very promising results. The significant contributions of this work can be listed as the

addition of kernel methods to the tools of Map Matching and the learning of road

networks from trajectories instead of matching it. We also investigate the possible

kernels in Map-Matching scenario, and come up with Geodesic distance kernel which

successfully encodes the priors of problem.

Furthermore, we have strengthened and revisited the link between ‘biological se-

quence analysis’ and ‘analysis of trajectories’. Up to now, both fields had met,

however, there was no concrete method to incorporate the invariances of traffic do-

main into biological domain. The main step to achieve this goal consisted of using

Geodesic distance based embedding in combination with discretization methods to

map the continuous in time and space traffic data in symbols over time. We have

exploited our methods to show that the state-of-the-art performance can be achieved

using off-the-shelf biological sequence analysis tools. Specifically, we demonstrated

that sequence alignment can be used for activity analysis, and the profile hidden

Markov models are well suited for capturing event persistence during event detec-

tion. In particular, the link allowed us to introduce a novel visualization scheme for

traffic data, called Traffic Logos. They provide a condensed, yet illustrative picture

of the patterns in traffic sequence data.

94

5.1. Lessons Learned

5.1. Lessons Learned

The analysis of trajectories (spatio-temporal data) and its related areas, for example,

mobility mining are application intensive, and, researchers/practitioners in these

area invariably grapple with the issues of following nature:

1. the large scale structured data sets,

2. the spatio-temporal nature of the data set and the interplay of spatial and

temporal dimensions,

3. the complexity of the underlying graphs upon which trajectories live,

4. preserving the privacy of users, and, the inability to get user datasets due to

privacy issues

In this thesis, we have made some advances towards (2), and (3). on the other

hand, recently machine learning has made fascinating advances to solve (1), i.e., the

scaling problem in structured datasets through, e.g., hashing [56], matrix factoriza-

tion [62], stochastic gradient descent, and lifted information retrieval [36]. Therefore,

it is very important for both fields to communicate and learn from each other’s expe-

rience. Furthermore, researchers in machine learning shall also remain attentive to

the rest of the problems mentioned and make tangible advances in these directions.

Another problem that we faced during the research was the nature of two different

fields. To illustrate, Geo-analytics research is application intensive, and, one Geo-

analytics research problem is usually composed of solving a real life situation, e.g.,

‘tourist route finding’ with different settings, i.e., time, cost, and path constraints.

On the other hand, machine learning research mainly focuses on the methods and

techniques to solve one fixed problem setting that can be used across a lot of applica-

tions, e.g., structured prediction, clustering, embedding, policy learning and graph

matching with quadratic constraints. In the above mentioned application, changing

from path constraints (a problem of graphical nature) to cost and time constraints

will change the settings of the problem and one has to apply a different machine

learning algorithm. Therefore, a machine learning researcher trying to analyse the

trajectories has to be careful that his approach covers all of the different situations

that can arise in the given scenario.

95

5. Conclusions

5.2. Future Work

In this thesis, we have tried to connect machine learning and Geo-analytics by

providing basic distances that are intuitive to understand and can be used as a black

box in a lot of applications. However, we advise the reader to look in depth in terms

of the problem constraints for the Geo-analytics application being considered and

how to combine these distances for a given model to solve Geo-analytics problem. As,

in our case, we also needed to come up with specific regularizations and optimization

techniques along with kernels to get state of the art performance.

In the following text, we will outline some of the new directions and future work

in three of the major areas that we have explored for connecting machine learning

and Geo-analytics.

In Map Matching

The link established between map matching and kernels provides many interesting

avenues for future work; we have only scratched the surface. Indeed, one should

study alternative kernels and map features, cost functions and hyper-parameter

optimization criteria. For instance, so-called Fisher kernels are kernels derived from

hidden Markov models. In turn, we may utilize any HMM based map matching

approach. Testing KMM within a real-world system tracking system is another

interesting avenue. Proving the hardness of map matching problems along with

guarantees on approximation are interesting venues of future work. Finally, KMM

directly generalize to the case of 3D trajectories.

In Clustering and Event Detection

The link between sequence analysis and traffic provides many attractive avenues

for future works . First of all, one should investigate the usage of label sequence

graph kernels and random walk kernels [18] for traffic data. Another direction could

be exploring the benefits of out-of-the-box biological sequence techniques for other

applications in the area of trajectory analysis. We are currently working on gener-

ating more complex profiles and diaries of user’s activities. One should also start

comparing such profiles against each other to get user similarity.

96

5.2. Future Work

In Structural Information

Geo-analytics represent many opportunities to learn from recent advances in the

analysis of structured data in machine learning [9]. Surprisingly, the usage of struc-

tural information, i.e., Geodesic distances, structural embeddings, graph distances

and assignment problems [45] for graph matching has not been considered in Geo-

analytics before. One of the reasons for this could be the implicit complexity of

graphs in Geo-analytics, e.g., Euclidean graphs. On the other hand, machine learn-

ing has gained a great momentum to solve the structured data problems on a large

scale. So far we have only explored classical machine learning techniques like HMMs,

kernels, embeddings and sequence analysis. And, a more in depth analysis of recent

machine learning progress, e.g., structured SVMs [5], graph kernels [20], stochastic

gradient based approaches [43], spectral and latent learning [37], and lifted infor-

mation retrieval [42] is needed to benefit Geo-analytics from machine learning in a

comprehensive manner. Another of the very interesting problems in Geo-analytics

is that of recommendation and Geo-Community extraction. As more and more evi-

dence pours out that social contacts depend upon geographic proximity and travel

routines [23], an inverse hypothesis is also shaping up, i.e., users having similar travel

routines and location proximity are more prone to be future friends [66]. Thus, an

investigation of structural information present in the tripartite graphs of users, lo-

cations and travel sequences is an interesting line of future work. In general, there

should be more traffic through the connections made, and Geo-analytics researchers

shall remain aware of advances in machine learning made for solving structured data

analysis.

97

98

Bibliography

[1] G. Andrienko, N. Andrienko, S. Rinzivillo, M. Nanni, D. Pedreschi, and F. Gi-

annotti. Interactive visual clustering of large collections of trajectories. In

Proceedings of IEEE Symposium on Visual Analytics Science and Technology

(VAST), pages 3 –10, 2009.

[2] G. Andrienko, N. Andrienko, and S. Wrobel. Visual analytics tools for analysis

of movement data. ACM SIGKDD Explorations Newsletter (Special Issue on

Visual Analytics), 9(2):38–46, 2007.

[3] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander. Optics: Ordering

points to identify the clustering structure. In Proceedings of ACM International

Conference on Management of Data (SIGMOD), pages 49–60, 1999.

[4] X. Bai and L. J. Latecki. Path similarity skeleton graph matching. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence (PAMI), 30(7):1282–

1292, 2008.

[5] G. H. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S. V. N.

Vishwanathan. Predicting Structured Data (Neural Information Processing).

The MIT Press, 2007.

[6] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle

tracking data. In Proceedings of International Conference on Very Large Data

Bases (VLDB), pages 853–864, 2005.

[7] T. Brinkhoff. Generating network-based moving objects. In Proceedings of

International Conference on Scientific and Statistical Database Management

(SSDBM), pages 253–255, 2000.

[8] K. Buchin, M. Buchin, M. van Kreveld, and J. Luo. Finding long and similar

parts of trajectories. In Proceedings of ACM International Conference on Ad-

vances in Geographic Information Systems (ACM GIS), pages 296–305, 2009.

99

Bibliography

[9] R. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola. Learning

graph matching. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (PAMI), 31(6):1048–1058, 2009.

[10] T. F. Cox and M. A. A. Cox. Multidimensional Scaling. Chapman and

Hall/CRC, 2nd edition, 2000.

[11] M. Cuturi, J. P. Vert, O. Birkenes, and T. Matsui. A kernel for time series

based on global alignments. In Proceedings of IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), volume 2, pages 413–

416, april 2007.

[12] G. de Vries and M. van Someren. Clustering vessel trajectories with alignment

kernels under trajectory compression. In Proceedings of European Conference

on Machine Learning and Principles and Practice of Knowledge Discovery in

Databases (ECML PKDD), pages 296–311, 2010.

[13] F. Demirci, A. Shokoufandeh, and S. J. Dickinson. Skeletal shape abstraction

from examples. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (PAMI), 31(5):944–952, 2009.

[14] R. O. Duda, D. G. Stork, and P. E. Hart. Pattern classification. Wiley, New

York; Chichester, 2nd edition, 2000.

[15] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Anal-

ysis. Cambridge University Press, 1998.

[16] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm

for discovering clusters in large spatial databases with noise. In Proceedings

of ACM International Conference on Knowledge Discovery and Data Mining

(SIGKDD), pages 226–231, 1996.

[17] T. Gärtner. A survey of kernels for structured data. ACM SIGKDD Explo-

rations Newsletter, 5(1):49–58, 2003.

[18] T. Gärtner. Kernels for structured data. World Scientific, Hackensack, N.J.,

2008.

[19] T. Gärtner, P. A. Flach, and S. Wrobel. On graph kernels: Hardness results

and efficient alternatives. In Proceedings of Conference on Learning Theory

(COLT), pages 129–143, 2003.

100

Bibliography

[20] T. Gärtner, T. Horváth, Q. V. Le, A. J. Smola, and S. Wrobel. Kernel methods

for graphs. In Mining Graph Data, pages 253–282. John Wiley and Sons, Inc,

2006.

[21] F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli. Mining sequences with

temporal annotations. In Proceedings of ACM Symposium on Applied Comput-

ing (SAC), pages 593–597, 2006.

[22] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajectory pattern mining.

In Proceedings of ACM International Conference on Knowledge discovery and

data mining (SIGKDD), pages 330–339, 2007.

[23] M. C. Gonzalez, C. A. Hidalgo, and A. L. Barabasi. Understanding individual

human mobility patterns. Nature, 453(7196):779–782, 2008.

[24] Y. Guo, J. Gao, and P. W. Kwan. Twin kernel embedding. IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI), 30(8):1490–1495, 2008.

[25] D. Haussler. Convolution kernels on discrete structures. Technical Report UCS-

CRL-99-10, University of California at Santa Cruz, Santa Cruz, CA, USA, 1999.

[26] L. He, C. Han, and W. Wee. Object recognition and recovery by skeleton graph

matching. In Proceedings of IEEE International Conference on Multimedia and

Expo (ICME), pages 993–996, 2006.

[27] T. Horváth, T. Gärtner, and S. Wrobel. Cyclic pattern kernels for predictive

graph mining. In Proceedings of the ACM International Conference on Knowl-

edge Discovery and Data Mining (SIGKDD), pages 158–167, 2004.

[28] D. W. Hubbard. How to Measure Anything: Finding the Value of Intangibles

in Business. Wiley, 2 edition, 2010.

[29] A. Ihler, J. Hutchins, and P. Smyth. Adaptive event detection with time-

varying poisson processes. In Proceedings of ACM International Conference on

Knowledge discovery and data mining (SIGKDD), pages 207–216, 2006.

[30] A. Jawad and K. Kersting. Kernelized map matching. In Proceedings of ACM

SIGSPATIAL International Conference on Advances in Geographic Information

Systems (ACM GIS), pages 454–457, 2010.

101

Bibliography

[31] A. Jawad and K. Kersting. Kernelized map matching for noisy trajectories.

In Working Notes of Knowledge Discovery and Machine Learning (KDML) at

LWA2010 - Learning, Knowledge & Adaptation, pages 1–10, 2010.

[32] A. Jawad, K. Kersting, and N. Andrienko. Biological sequence analysis meets

mobility mining. In Working Notes of Knowledge Discovery and Machine Learn-

ing (KDML) at LWA2011 - Learning, Knowledge & Adaptation, pages 73–80,

2011.

[33] A. Jawad, K. Kersting, and N. Andrienko. Building bridges between traffic

and biological sequence analysis. In International Workshop on Finding Pat-

terns of Human Behaviors in NEtwork and MObility Data – NEMO at ECML

PKDD (Europen Conference on Machine Learning and Principles and Practices

of Knowledge Discovery in Databases), pages 13–27. 2011.

[34] A. Jawad, K. Kersting, and N. Andrienko. Where traffic meets dna: Mobility

mining using biological sequence analysis revisited. In Proceedings of ACM

SIGSPATIAL International Conference on Advances in Geographic Information

Systems (ACM GIS), pages 357–360, 2011. Best Poster Award.

[35] C. H. Joh, T. A. Arentze, and H. J. Timmermans. Multidimensional sequence

alignment methods for activity-travel pattern analysis: A comparison of dy-

namic programming and genetic algorithms. Geographical Analysis, 33(3):247–

270, 2001.

[36] K. Kersting, Y. E. Massaoudi, B. Ahmadi, and F. Hadiji. Informed lifting for

message–passing. In Proceedings of the 10th Conference on Artificial Intelli-

gence (AAAI), pages 232–237, 2010.

[37] N. D. Lawrence. Spectral dimensionality reduction via maximum entropy. Jour-

nal of Machine Learning Research (JMLR), 15:51–59, 2011.

[38] J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer, New

York; London, 2007.

[39] L. Liao, D. Fox, and H. Kautz. Extracting places and activities from gps traces

using hierarchical conditional random fields. International Journal of Robotics

Research (IJRR), 26(1):119–134, 2007.

102

Bibliography

[40] Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu. Understanding of internal clus-

tering validation measures. In IEEE International Conference on Data Mining

(ICDM), pages 911–916, 2010.

[41] T. Mitchell. Mining our reality. Science, 326(5960):1644–1645, 2009.

[42] M. Mladenov, B. Ahmadi, and K. Kersting. Lifted linear programming. In

15th International Conference on Artificial Intelligence and Statistics (AIS-

TATS 2012), 2012. Volume 22 of JMLR: W&CP 22.

[43] S. Natarajan, T. Khot, K. Kersting, B. Gutmann, and J. Shavlik. Gradient–

based boosting for statistical relational learning: The relational dependency

network case. Machine Learning Journal, 86(1):25––56, 2012.

[44] P. Newson and J. Krumm. Hidden markov map matching through noise and

sparseness. In Proceedings of ACM International Conference on Advances in

Geographic Information Systems (ACM GIS), pages 336–343, 2009.

[45] P. M. Pardalos, F. Rendl, and H. Wolkowicz. The quadratic assignment prob-

lem: A survey and recent developments. In Proceedings of DIMACS Workshop

on Quadratic Assignment Problems, pages 1–42, 1994.

[46] S. Pemmaraju and S. Skiena. Computational Discrete Mathematics: Combi-

natorics and Graph Theory with Mathematica. Cambridge University Press,

2003.

[47] N. Quadrianto, A. J. Smola, L. Song, and T. Tuytelaars. Kernelized sort-

ing. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

32(10):1809–1821, 2010.

[48] N. Quadrianto, L. Song, and A. J. Smola. Kernelized sorting. In Proceedings of

Advances in Neural Information Processing Systems (NIPS), pages 1289–1296,

2009.

[49] M. A. Quddus, W. Y. Ochieng, and R. B. Noland. Current map-matching al-

gorithms for transport applications: State-of-the art and future research direc-

tions. Transportation Research Part C: Emerging Technologies, 15(5):312–328,

2007.

[50] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learn-

ing (Adaptive Computation and Machine Learning. MIT Press, 2005.

103

Bibliography

[51] S. Rinzivillo, D. Pedreschi, M. Nanni, F. Giannotti, N. Andrienko, and G. An-

drienko. Visually driven analysis of movement data by progressive clustering.

Information Visualization, 9(3-4):225–239, 2008.

[52] B. Schlkopf, K. Tsuda, and J. P. Vert. Kernel methods in computational biology.

MIT Press, MIT Massacheusets, Cambridge, 2004.

[53] A. Schmidt, M. Langheinrich, and K. Kersting. Perception beyond the here

and now. IEEE Computer, 44(2):86–88, 2011.

[54] B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA,

2001.

[55] J. R. Shewchuk. An introduction to the conjugate gradient method without the

agonizing pain. Technical report, Pittsburgh, PA, USA, 1994.

[56] Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and S. Vishwanathan.

Hash kernels for structured data. Journal of Machine Learning Research

(JMLR), 10:2615–2637, Dec. 2009.

[57] H. Sundar, D. Silver, N. Gagvani, and S. J. Dickinson. Skeleton based shape

matching and retrieval. In Proceedings of Shape Modeling International (SMI),

pages 130–139, 2003.

[58] E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates.

Journal of Machine Learning Research (JMLR), 4:773–818, 2003.

[59] J. Tangelder and R. Veltkamp. A survey of content based 3d shape retrieval

methods. Multimedia Tools and Applications, 39(3):441–471, 2008.

[60] J. S. Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-

bridge University Press, 2004.

[61] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework

for nonlinear dimensionality reduction. Science, 5500(390):2319–2323, 2000.

[62] C. Thurau, K. Kersting, M. Wahabzada, and C. Bauckhage. Descriptive matrix

factorization for sustainability adopting the principle of opposites. Data Mining

and Knowledge Discovery, 24(2):325–354, 2012.

104

Bibliography

[63] M. R. Vieira, P. Bakalov, and V. J. Tsotras. Querying trajectories using flexible

patterns. In Proceedings of International Conference on Extending Database

Technology (EDBT), pages 406–417, 2010.

[64] S. Vishwanathan and A. Smola. Fast kernels for string and tree matching.

In Proceedings of Advances in Neural Information Processing Systems (NIPS),

pages 113–130, 2003.

[65] S. V. N. Vishwanathan, K. M. Borgwardt, I. R. Kondor, and N. N. Schraudolph.

Graph kernels. Journal of Machine Learning Research (JMLR), 99:1201–1242,

August 2010.

[66] D. Wang, D. Pedreschi, C. Song, F. Giannotti, and A.-L. Barabási. Human

mobility, social ties, and link prediction. In Proceedings of the 17th International

Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 1100–

1108, 2011.

[67] J. Weston, O. Chapelle, A. Elisseeff, B. Scholkopf, and V. Vapnik. Kernel depen-

dency estimation. In Proceedings of Advances in Neural Information Processing

Systems (NIPS), pages 873–880, 2002.

[68] Y. Zheng, L. Zhang, X. Xie, and W. Y. Ma. Mining interesting locations

and travel sequences from gps trajectories. In Proceedings of International

Conference on World Wide Web (WWW), pages 791–800, 2009.

105

106

A. Discrete Variant of Kernelized Map

Matching

The problem describe in Eq. (3.1) can be clearly seen as a combination of discrete

and continuous optimization problem . We try to solve the problem in Alternate

steps for discrete and continuous parts. Solving the discrete part is about finding

the right assignment of V over P and continuous optimization part for the solution

contains moving these points along the edges to find best solution for Fo.

A.0.1. The Discrete Part

In the beginning we try to solve the discrete part by considering a subset E′s of

Edges in E′ according to some intelligent or random initialization scheme. Once we

have fixed this subset E′s, we start treating every edge as a straight line. we try to

solve the continuous optimization part by finding the best position of points along

these lines. Our approach here is to assume that the solution of this optimization

problem gives the best solution over all possible subsets of E′ unless it violates some

basic constraint of the problem. Notice that optimizing along lines is not same as

optimization along edges. If the solution contains a point which lies outside the edge

describing this line then we may no longer use this solution because one constraint

of the problem (the output points should lie along the edges) is violated. we discard

all such associations between points in V and edges of E′s. The we search for new

association of V in the spatial neighbourhood and apply continuous optimization

again. We continue to do so until we find a solution where no association between

points and edges is violating the constraint. Our approach is summarized as follows

1. initialize assigning points to output graph

2. fix assignments and optimize along lines

3. If the points remain on edges, keep them otherwise assign them to nearest edge

4. Repeat steps 1-2, until we can’t find improvement

107

A. Discrete Variant of Kernelized Map Matching

Algorithm 3: KMM-Discrete

Input : G, G′, KG,KG′ ,ΨG′ , λ1, λ2, to
Output: Φ(V) - The required mapping between V and G′

// G,G′- Euclidean Graphs

// KG,KG′ -Graph Kernels

// λ1, λ2 -Regularizers

// to- Threshold of convergence

forall the v in V (G) do
φ (v)= FindClosest(v,G′)

KG ← Rbf(G) // compute KG applying Rbf kernel on G

repeat
ΨG′ ←ShortestPath(Φ(V), G′) // shortest paths among Φ(V)
KG′ ← eΨG′ // get KG′ from distance measure ΨG′

r ←Parametrize(Φ(V)) // Parametrize Φ(V) into spherical

coordinates to fix points on straight lines

Co1 ← Co(r) r
′ ← 4Co

∂r
// compute derivative of Objective

function w.r.t r

r = r − αr′ // compute new value of r

Co2 ← Co(r)
Update(α)
t← Co2 − Co1 // compute threshold from previous two values

of objective function

until t ≥ to;
Φ(V)← DeParametrize(r) // Output deparametrized r

Note that our approach of finding the subset of edges E′s is similar to WalkSAT

and other greedy solutions for finding approximate solutions to SAT problem.

A.0.2. The Continuous Part

Once the scheme for solving the discrete part of Co is devised. We can dig into the

continuous part. Here we take two kernels KG′ and KG, respectively between the

output points and input points and try to come up with a solution which minimizes

the difference between these two kernels. We are using the matching scheme de-

scribed in ”twin kernel embedding” to match these two kernels. The kernel between

input points is an RBF kernel while the kernel between output points is an RBF

kernel over shortest path graph distance. Our decision to take kernel over shortest

path distances in output graph instead of taking direct euclidean coordinates changes

108

matters a bit. Lets have a look at the optimization equation and its derivation first.

4Co
∂Pi

= {−KG + 2 ∗ λ1.KG′}.
∂KG′

∂Pi
+ λ2.

∂tr(V.P2)

∂Pi
(A.1)

We denote the shortest path distance measure matrix over G’ by ΨG′ . We know

KG′ij
= e
−ΨG′

ij , Now

∂KG′ij

∂Pi
= −e

−ΨG′
ij .
∂ΨG′ij

∂Pi
(A.2)

Notice that ΨG′ij
is composed of a sum of euclidean distances over the edges com-

prising shortest path from Pi to Pj , because we are computing the derivative w.r.t

Pi, only the edge part counts which lies between Pi and the same edge node lying

on the the shortest path from Pi to Pj . We denote this node by Pi′ . The Derivative

of euclidean distance between Pi and Pi′ is straight forward. Once we are able to

calculate the derivative of individual terms of KG′ij
w.r.t Pi, the derivative of Co can

be caluclated by matrix chain rule as follows

4Co
∂Pi

= Tr{(∂Co
∂KG′

)T .
∂KG′

∂Pi
} (A.3)

Comparison of KMM Discrete Versus Base line

Figure A.1 shows the comparison of results of baseline algorithm with KMM-Discrete.

Y-axis shows the mean squared Error of Baseline minus mean squared Error of

KMM-Discrete in meters. Although with a smaller value of noise, the base line per-

forms better than KMM-Discrete however as noise grows KMM-Discrete is able to

improve 5-10 meters per point in the trajectory. We still think that our results with

the Discrete version are not satisfactory and we need to work more on the optimiza-

tion part of the algorithm. The reason seems to be the inability of our algorithm

to coup for route error. Notice that although the noise is Gaussian, the route error

tends to be exponential [44].

A.0.3. KMM-Discrete Limitation:

The results from KMM-Discrete show that it fails to achieve a significant advantage

over Baseline, instead in a few cases it under performs the very basic algorithm

suggested. While we need to work more on the optimization side of the algorithm,

we have a few ideas why this is happening.

109

A. Discrete Variant of Kernelized Map Matching

Figure A.1.: KMM-Discrete Vs.Base line over different values of λ

• One problem is the discrete nature of the search space where many local min-

ima may exist having distant values from Global minima.

• Another problem is that the route error tends to be very large and the task

of KMM-Discrete is to reduce this route error through the objective function.

It is quite possible that after initialization, the shortest path between two

neighbouring points is quite large because they lie on parallel roads. In this

case the algorithm will try to travel through this whole path to approach near

the neighbouring point but we have a regularization term in the objective

function which is adding a squared penalty as the point tries to go far from a

certain radius of the input location. Therefore it becomes a constant struggle

between the regularization term and the first term: The route error used in the

shortest path induced kernels reduces if the point tries to travel through the

shortest path but on the other hand penalty term is adding a squared error.

To overcome this deficiency, we might need to have a very small lambda as well

but in this case the points are not restricted to stay within a close radius of

the input point and therefore the solution can lie far from the original points.

110

