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Abstract

QCD is strongly coupled at long distances and therefore non-perturbative methods are required
to understand its low-energy properties, e.g. to answer such basic questions as of the origin of
the nucleon mass. In this thesis we study the interplay of effective field theories and dispersion
relations in the description of strong and electromagnetic interactions of pions and nucleons.

In the first part, we use chiral perturbation theory to calculate the π−–deuteron scattering
length to a few-percent accuracy including isospin-violating corrections. We apply the result to
perform a combined analysis of data on pionic deuterium and pionic hydrogen atoms that leads
to a precision determination of the isoscalar and isovector pion–nucleon scattering lengths, and
discuss the consequences for the πN coupling constant and the pion–nucleon σ term.

In the second part, we derive a system of Roy–Steiner equations for pion Compton scat-
tering that respects analyticity, unitarity, gauge invariance, and crossing symmetry, and thus
maintains all symmetries of the underlying quantum field theory. To suppress the dependence
on the high-energy input, we also consider subtracted versions of the equations, identifying the
subtraction constants with pion polarizabilities. Based on the assumption of Mandelstam an-
alyticity, we determine the kinematic range in which the equations are valid. We solve for the
γγ → ππ partial waves using a Muskhelishvili–Omnès representation and derive a correlation
between the two-photon coupling of the σ resonance and the isospin-zero pion polarizabilities,
which, in combination with chiral perturbation theory, provides new rigorous constraints on
the σ → γγ coupling.

In the final part, we construct a similar system of Roy–Steiner equations for pion–nucleon
scattering. We study the solution of the N̄N → ππ partial waves by Muskhelishvili–Omnès
techniques, taking into account coupled-channel effects in the case of the S-wave, and apply
the results to a two-channel dispersive calculation of the scalar form factor of the nucleon.
We develop a solution strategy for the pion–nucleon s-channel partial waves and determine
the corrections needed for the extraction of the pion–nucleon σ term from the extrapolation
of the πN amplitude to the Cheng–Dashen point by means of a low-energy theorem.
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Chapter 1

Introduction

Since its discovery nearly four decades ago, the Standard Model of particle physics has with-
stood innumerable challenges from experiment, both in direct searches at high-energy colliders
and at the intensity frontier, e.g. in the study of CP asymmetries, rare decays, and searches
for electric dipole moments. It is striking that despite this impressive success, quantum chro-
modynamics (QCD), the theory of strong interactions and one of the pillars of the Standard
Model, is still poorly understood in the low-energy regime.

First written down by Fritzsch, Gell-Mann, and Leutwyler to realize the color degree of
freedom of strong interactions in terms of a Yang–Mills gauge theory [1], it was subsequently
shown that the Lagrangian of QCD fulfills the property of asymptotic freedom [2], i.e. its
coupling constant αs decreases with increasing energy. Put another way, the β-function of
QCD

βQCD = −
(
11− 2nf

3

)
g3

16π2
+O

(
g5
)
, αs =

g2

4π
, (1.1)

is negative as long as the number of flavors nf is not too large, a discovery for which the Nobel
prize was awarded to Gross, Politzer, and Wilczek in 2004. Over the last forty years it has
become unequivocally clear that QCD is indeed the correct theory of strong interactions (for
a recent review, see [3]). In particular, the running coupling αs(µ) has been extracted from a
myriad of different processes, leading to the world average [4, 5]

αs(MZ) = 0.1184 ± 0.0007 , (1.2)

where the renormalization scale µ has been chosen as the mass of the Z boson µ = MZ.
Moreover, the scale dependence of the coupling agrees well with its expected QCD running,
as shown in Fig. 1.1 for the energy scale µ = Q varying over two orders of magnitude. In
this sense, QCD is well understood at energies where αs is sufficiently small to allow for a
meaningful perturbative expansion. In contrast, the negative sign of the β-function (1.1)
renders QCD strongly coupled at low energies, so that perturbation theory fails and non-
perturbative, model-independent methods are called for.

A particularly instructive example for the prominent role of non-perturbative phenomena
in low-energy QCD is provided by the origin of mass. In the limit of massless quarks, the
QCD Lagrangian exhibits a classical scale invariance with conserved Noether current

Jµscale = xνθ
µν . (1.3)

1
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QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]
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e+e–  Annihilation
Deep Inelastic Scattering

July 2009

Figure 1.1: Running of the strong coupling αs compared to determinations from deep in-
elastic scattering, e+e− annihilation, and heavy quarkonia. Figure taken from [4], with kind
permission from Springer Science and Business Media.

Since the energy-momentum tensor θµν itself is conserved, this implies immediately that the
trace θµµ and thus the masses of hadrons vanish as well. However, classical scale invariance
is broken at the quantum level and the associated trace anomaly causes hadrons to remain
massive even in the absence of quark masses. Indeed, switching on quark-mass effects again,
the mass of the nucleon m can be decomposed as [6]

m =
1

2m
〈N(p)|θµµ|N(p)〉 = 1

2m
〈N(p)|βQCD

2g
F aµνF

µν
a +muūu+mdd̄d+mss̄s+· · · |N(p)〉 , (1.4)

where N(p) denotes the nucleon states, u, d, s the light quark fields with masses mu, md, ms,
and the ellipsis contributions from the heavy quarks. The trace anomaly thus manifests itself
in the term involving the field strength tensor Fµνa and the QCD β-function. Although an
accurate determination of the individual terms in (1.4), especially of the strangeness content
due to mss̄s, is still an open problem, the overall hierarchy has been well established and
constitutes an integral result of QCD: the bulk of the nucleon mass is generated by gluonic
self-interactions, while strange and non-strange quarks vie for a distant second place.1 In
this way, the mass of matter surrounding us in our everyday life is not generated by the
Higgs mechanism, but by the trace anomaly of the QCD energy-momentum tensor and thus
non-perturbative QCD dynamics in form of the gluon field energy.

1At present, it is not possible to definitely settle the matter whether strange or non-strange contributions
prevail. We will return to this issue in the context of the pion–nucleon σ term in part III of this thesis.



1.1. Effective field theories 3

For lack of a perturbative expansion in the coupling constant, the loop expansion in αs has
to be substituted by systematic, non-perturbative methods to gain insights into the low-energy
realm of QCD. To this end, three complementary ansätze have been developed over the last
decades: effective field theories, which rely on symmetries and a separation of scales in the
system at hand, dispersion relations, which exploit analyticity and unitarity requirements of
the amplitude describing the system, and lattice QCD, an ab initio method aimed at solving
a discretized version of the theory on a computer. In recent years, substantial progress in our
knowledge of low-energy QCD has been achieved by realizing that frequently the applicability
and accuracy of these techniques can be improved significantly if combined with one another.
In this work, we concentrate on the interplay between effective field theories and dispersion
relations in the description of the dynamics in the pion–nucleon (πN) system and γγ → ππ to
pave the way towards a precise understanding of these fundamental processes in low-energy
hadron physics.

The structure of this thesis is as follows: in Sects. 1.1 and 1.2 we give a brief introduction
into effective field theories and dispersion relations. To illustrate the merits of combining
both techniques we discuss the matching of ππ Roy equations and chiral perturbation theory
(ChPT). Part I is devoted to a high-accuracy extraction of the S-wave πN scattering lengths
from hadronic-atom data that relies on ChPT to calculate the required corrections to the πN
and pion–deuteron (πd) amplitudes, as well as a determination of the πN coupling constant by
means of the Goldberger–Miyazawa–Oehme (GMO) sum rule. In Part II we derive a system
of Roy–Steiner (RS) equations for γγ → ππ. On the one hand, this process bears several
similarities to πN scattering and can thus be considered as a first step towards the construction
(and solution) of RS equations for the πN case. On the other hand, γγ → ππ is interesting
on its own, since RS equations in combination with ChPT can be used to derive rigorous
constraints on the two-photon coupling of the σ meson and provide a framework to extract
pion polarizabilities from forthcoming low-energy γγ → ππ cross-section data. In Part III we
write down a system of RS equations for πN scattering. We solve the t-channel equations
using one- and two-channel Muskhelishvili–Omnès (MO) methods and apply the results to
perform a full two-channel dispersive analysis of the scalar form factor of the nucleon. Finally,
we lay out a strategy to solve the s-channel equations involving sum rules for the πN threshold
parameters as well as the hadronic-atom values for the S-wave scattering lengths, and show
how the pion–nucleon σ term can be extracted from a full solution of the RS system.

1.1 Effective field theories

The starting point of any effective field theory (EFT) is Weinberg’s conjecture [7] that field
theory has no content besides analyticity, unitarity, cluster decomposition, and the assumed
symmetry principles.2 Accordingly, the Lagrangian of the EFT is constructed in terms of the
low-energy degrees of freedom as the most general Lagrangian compatible with the symme-
tries of the theory. The expansion parameter of the EFT will be determined by the ratio of
low- and high-energy scales, so that a good scale separation is crucial for the success of the
EFT. Formally, this follows from the power-counting argument: the effective Lagrangian is
organized as a series of operators suppressed by higher and higher powers in the expansion
parameter, accompanied by a priori unknown low-energy constants (LECs) that parameter-

2It has been proven for Lorentz-invariant, anomaly-free theories that the effective Lagrangian can indeed
be derived from the Ward identities of the theory [8].
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ize the influence of high-energy degrees of freedom not explicitly included in the theory and
have to be determined from experiment (or from lattice simulations). Evidently, the smaller
the expansion parameter, the smaller the number of free parameters required for the desired
accuracy, and thus the higher the predictive power. One particular strength of an EFT is
that it relates different physical processes, so that the LECs determined in one process can
subsequently be used to predict another. In addition, the EFT expansion is systematically
improvable by calculating the next order in the power counting, while the parametrical sup-
pression of the first order not included provides an accuracy estimate of the calculation. For
a detailed introduction to the concept of effective field theories we refer to [9].

1.1.1 Chiral symmetry

The Lagrangian of QCD reads

LQCD = q̄
(
i /D −M

)
q − 1

4
F aµνF

µν
a + θ

g2

32π2
F aµν F̃

µν
a , (1.5)

where q = (u, d, s, . . .)T contains the quark fields and M = diag (mu,md,ms, . . .) the quark
masses. The gauge bosons Aaµ (in the adjoint representation of SU(3), a = 1 . . . 8) enter
through the covariant derivative

Dµ = ∂µ − ig
λa
2
Aµa (1.6)

and the field strength tensor

Fµνa = ∂µAνa − ∂νAµa + gfabcA
µ
bA

ν
c ,

[
λa, λb

]
= 2ifabcλc , (1.7)

where λa are the Gell-Mann matrices and g denotes the coupling constant of QCD as in-
troduced in (1.1). For completeness, we have included in (1.5) also the QCD θ-term, which
involves the dual field strength tensor F̃µνa = 1

2ǫ
µναβF aαβ and is related to strong CP violation,

although in the following we will put θ = 0.
Written in terms of left- and right-handed fields

qR/L =
1± γ5

2
q , (1.8)

it becomes manifest that the QCD Lagrangian

LQCD = q̄Li /DqL + q̄Ri /DqR − q̄LMqR − q̄RMqL − 1

4
F aµνF

µν
a (1.9)

displays an additional symmetry, i.e. invariance under global rotations in flavor space

qR → URqR , qL → ULqL , UR/L ∈ U(nf)R/L , (1.10)

in the chiral limit where the mass term is switched off. More precisely, these transformations
factorize according to

U(nf)L × U(nf)R → SU(nf)L × SU(nf)R × U(1)V × U(1)A , (1.11)

where U(1)V corresponds to baryon number conservation and U(1)A is anomalously bro-
ken [10]. Finally, chiral symmetry is realized in the Goldstone rather than the Wigner–Weyl
mode, as the remaining symmetry group is spontaneously broken to its vectorial subgroup

SU(nf)L × SU(nf)R = SU(nf)V × SU(nf)A → SU(nf)V . (1.12)
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In practice, chiral symmetry is only meaningful for nf = 2 or nf = 3, while the heavy quarks
are integrated out at low energies. The Goldstone bosons [11] corresponding to the broken
generators of SU(nf)A can be identified with the pion triplet or the pseudoscalar octet of
pions, kaons, and η, respectively. Since chiral symmetry is only an approximate symmetry—
the masses of the light quarks are small compared to the typical scale of chiral symmetry
breaking Λχ ∼ 1GeV—chiral symmetry is also explicitly broken and these mesons actually
acquire a finite mass. In this thesis, we will mainly be concerned with the case nf = 2, where
the mass of the strange quark is fixed at its physical value and only up and down quarks are
retained as dynamical degrees of freedom.

1.1.2 Chiral perturbation theory

Chiral perturbation theory is the effective field theory of strong interactions. First developed
by Weinberg, Gasser, and Leutwyler [7, 12, 13], it exploits chiral symmetry and provides an
expansion of Green functions in terms of quark masses and soft particle momenta p.3 The
effective Lagrangian is constructed as the most general Lagrangian consistent with chiral
symmetry. Its basic building blocks in the SU(2) version of the theory are the pion fields

τ · π =

(
π0

√
2π+√

2π− −π0
)

(1.13)

represented by a unitary matrix U(π), e.g. in σ-model parameterization

U(π) =

√
1− π2

F 2
+ i

τ · π
F

, (1.14)

where τ are the Pauli matrices and F denotes the pion decay constant in the chiral limit. In
addition, scalar (s), pseudoscalar (p), vector (vµ), and axial-vector (aµ) external sources may
be introduced in the covariant derivative

dµU = ∂µU − irµU + iUlµ , rµ = vµ + aµ , lµ = vµ − aµ , (1.15)

the field strength tensors

Fµν
R = ∂µrν − ∂νrµ − i[rµ, rν ] , Fµν

L = ∂µlν − ∂ν lµ − i[lµ, lν ] , (1.16)

and in
χ = 2B(s+ ip) , s = M+ · · · . (1.17)

In this way, the leading-order Lagrangian takes the form

L(p2)
π =

F 2

4
〈dµU †dµU + χ†U + U †χ〉 , (1.18)

where 〈. . .〉 denotes the trace in flavor space. An immediate consequence of (1.18) is the
Gell-Mann–Oakes–Renner relation M2

π = B(mu+md) that relates the mass of the pion to the
quark masses and the scalar quark condensate via B = −〈q̄q〉/F 2. In particular, it suggests
that quark masses be counted as O(p2), resulting in a simultaneous expansion in momenta

3A detailed review of various aspects of ChPT can be found in [14].
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and quark masses.4 Counting meson propagators as O(p−2) and loop integrations as O(p4),
Lorentz invariance dictates that only even powers of p will occur in the series. A given diagram
with L loops and V2n vertices from the O(p2n) Lagrangian can then be assigned a well-defined
chiral dimension

ν = 2 + 2L+
∞∑

n=1

2(n − 1)V2n , (1.19)

so that only a finite number of diagrams will contribute at a given order in the chiral expansion,
as required for the power counting to make sense. Finally, the rate of convergence depends on
the expansion parameter p/Λχ, and thus on the scale of chiral symmetry breaking. Estimates
range from the mass of the lowest-lying resonance to the generic loop factor of a tadpole
diagram [17]

775MeV ≈Mρ . Λχ . 4πFπ ≈ 1160MeV , (1.20)

both consistent with Λχ ∼ 1GeV given above.
While originally formulated to describe the interactions of light pseudoscalar mesons, im-

portant generalizations of ChPT concern the single-baryon sector and the coupling to electro-
magnetic interactions. The latter can be achieved relatively straightforwardly by coupling vir-
tual photons to the vector currents in (1.15) and (1.16), and by supplementing the Lagrangian
with operators associated with hard photons [18] (which are required for the renormalization
of UV divergent photon loops). Thus, in particular isospin-violating effects, caused by dif-
ferences in the up- and down-quark mass and electromagnetic interactions, can be addressed
within the same framework in a consistent and systematic way.

In contrast, the extension to the single-baryon sector is hampered by the fact that the
inclusion of baryons adds a new heavy scale to the problem: as explained in the introduction,
the nucleon mass does not vanish in the chiral limit. In particular, no baryon–antibaryon
creation/annihilation will be permitted, so that the effective Lagrangian in the nucleon sector
takes the form

LN =
∑

i

Ψ̄OiΨ , Ψ =

(
p
n

)
, (1.21)

with operators Oi covering the space of all structures allowed by chiral symmetry at a given
chiral order. Due to the Dirac algebra associated with the spin of the nucleon also odd
powers in p are permitted, in particular the leading-order contribution enters at O(p). Most
importantly, though, it is no longer guaranteed that the loop graphs obey the naive power
counting rules, since the integrals may pick up momenta p ∼ m as well [19]. Several methods
have been proposed to circumvent this problem. In heavy-baryon ChPT [20], the nucleon
fields are subject to a Foldy–Wouthuysen transformation in order to eliminate the nucleon
mass from the leading Lagrangian. Taken together with the corresponding 1/m corrections,
this procedure leads to a two-fold expansion in p/Λχ and p/m. More recently, baryon ChPT
has also been formulated in a manifestly covariant way. The basic idea amounts to imposing a
different renormalization condition for loop integrals that separates and subtracts the power-
counting-violating part, which is regular in the quark masses, in favor of a redefinition of LECs
(for more details, see [21–24]). In all variants of this approach, certain higher-order terms are
resummed, however, the heavy-baryon result will always be reproduced in the limit of a strict
chiral expansion—up to a redefinition of LECs.

4The modifications necessary if the leading contribution to the pion mass were not generated by the quark
condensate are discussed in [15]. However, by now it has become apparent that the quark condensate is indeed
the leading order parameter of the spontaneous breaking of chiral symmetry, see e.g. [16].



1.1. Effective field theories 7

O ΨΨ

Figure 1.2: Schematic of the calculation of observables in the πd system in ChEFT.
Solid/dashed lines denote nucleons/pions, the blobs refer to the deuteron wave function, and
the box to the scattering operator O.

1.1.3 Chiral effective field theory

Chiral effective field theory (ChEFT) is an extension of ChPT to systems with more than one
nucleon, pioneered by Weinberg in [25,26] and further refined in [27–30]. The main challenge
in the few-nucleon system consists of accounting for the non-perturbative nature of nucleon–
nucleon (NN) interactions, which stands in marked contrast to the perturbative nature of
Goldstone-boson dynamics that underlies ChPT. The basic idea amounts to splitting a given
diagram into so-called NN reducible and irreducible pieces, where only the irreducible part
determines its contribution to the NN potential V . Over the last two decades, this idea
has enabled a systematic construction of high-precision NN potentials consistent with chiral
symmetry and thus a model-independent approach to nuclear forces, see [31] for recent reviews.

Furthermore, ChEFT is a powerful tool to describe the interaction of light nuclei with
pions and photons. As a first step, one solves the Lippmann–Schwinger equation for the wave
function Ψ

|Ψ〉 = G0V |Ψ〉 , G0 =
1

E + iǫ−H
, (1.22)

with Hamilton operator H and total energy E (shifted by a positive infinitesimal imaginary
part). An observable can then be calculated by convolving the chiral expansion of the cor-
responding operator O with the wave function as determined from the Lippmann–Schwinger
equation (cf. Fig. 1.2 for the example of πd scattering). While originally wave functions derived
from phenomenological potentials were employed (“hybrid approach”) [26], consistency of the
method requires that the chiral expansion of O and the potential underlying the calculation
of the wave functions be treated in exactly the same way, most notably that they be carried
out to the same chiral order.

Finally, the non-perturbative nature of the NN system renders renormalization a highly
contentious subject (see [32] for a sample of attitudes towards this issue). Nonetheless, the
coupling of electromagnetic interactions proceeds in close analogy to ChPT, which makes
ChEFT the ideal tool to study the π−d scattering length in a systematic manner including
isospin-violating effects, as required for a high-accuracy extraction of the πN scattering lengths
from hadronic atoms. As far as renormalization is concerned, we will take a pragmatic point
of view and quote the scatter of wave-function integrals evaluated with various chiral and
phenomenological wave functions as uncertainty estimate of the calculation.5

5The numerical evaluation of the wave-function averages is not part of this thesis. The corresponding
integrals will be taken from [33].



8 Chapter 1. Introduction

1.2 Dispersion relations

Since ChPT is an effective field theory, the chiral expansion of a given quantity can, in prin-
ciple, be systematically improved by including higher and higher orders in the calculation.
However, the effect of degrees of freedom not included in the theory is parameterized in terms
of LECs, whose number rapidly increases at subleading orders. Moreover, the strict chiral ex-
pansion is only valid at low energies, which, especially in the case of low-lying resonances, can
significantly limit the range of applicability of ChPT. In recent years, it has become apparent
that the predictive power of chiral symmetry can be vastly increased by combining ChPT
with dispersive techniques, which exploit analyticity to arrive at a representation that relates
the amplitude at an arbitrary point in the complex plane to an integral over its imaginary
part. While the latter can be constrained by the respective unitarity relation, convergence
of the dispersive integral often requires a certain number of a priori undetermined subtrac-
tion constants that, in turn, can frequently be pinned down by matching to ChPT. Once the
subtraction constants are fixed, a dispersive representation provides the ideal framework to
reliably perform an analytic continuation into the complex plane, which becomes of funda-
mental importance for broad resonances situated far away from the real axis. In the remainder
of this section, we will illustrate these ideas for the case of ππ scattering.

1.2.1 Fixed-t dispersion relations

For simplicity, we consider the process π(p1) + π(p2) → π(p3) + π(p4) (ignoring isospin labels
for the time being) with Mandelstam variables

s = (p1 + p2)
2 , t = (p1 − p3)

2 , u = (p1 − p4)
2 . (1.23)

On the mass shell, they fulfill the relation

s+ t+ u = 4M2
π , (1.24)

with the result that the scattering amplitude T (s, t) reduces to a function of only two inde-
pendent variables. The basic assumption in the construction of dispersion relations can be
summarized as the principle of maximal analyticity: the amplitude T (s, t) is represented by
a complex function that exhibits no further singularities except for those required by general
principles such as unitarity and crossing symmetry. The amplitude in the physical regions of
the Mandelstam plane (cf. Fig. 1.3) is given as a particular limit of T (s, t), e.g. for fixed t = t0
the physical s-channel amplitude on the right-hand cut is defined as the limit from the upper
half of the complex s-plane

T (s, t0) = lim
ǫ→0

T (s+ iǫ, t0) . (1.25)

These assumptions can be justified in the framework of perturbation theory, e.g. the definition
of the physical limit (1.25) corresponds to the iǫ prescription in Feynman propagators (see,
e.g., [34]). We will comment below on the issue to what extent analyticity can even be
vindicated from axiomatic field theory.

Once analyticity is established, the powerful machinery of complex analysis may be in-
voked, primarily by means of Cauchy’s integral formula. The corresponding integral equation
for the scattering amplitude, itself a function of the external kinematics (s, t, u), will involve
integrals over the internal kinematics (s′, t′, u′), which, a priori, can take arbitrary values in
the Mandelstam plane. However, in order to write down a single-variable integral equation
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Figure 1.3: Mandelstam plane for ππ scattering. The filled areas mark the s-, t-, and u-channel
physical regions, the red dashed line the subthreshold triangle, and the arrows the orientation
of the plane in t and ν = s− u.

the allowed range of these internal variables needs to be restricted appropriately. The stan-
dard choice that the on-shell condition (1.24) be valid for the internal kinematics as well is
universal to all dispersion relations, while the second condition, relating external and internal
kinematics, distinguishes different kinds thereof, e.g. the fixed-t version is characterized by
t′ = t (but, in principle, any path through the Mandelstam plane would be adequate). In this
case, Cauchy’s theorem yields

T (s, t) =
1

2πi

∮

C
ds′

T (s′, t)
s′ − s

, (1.26)

where the integration proceeds along the contour C as indicated in Fig. 1.4. If T (s′, t) vanishes
for |s′| → ∞, the contribution from the circle will vanish as well as soon as its radius is taken
to infinity. The remaining integration around the cuts can be expressed in terms of the
discontinuity

discT (s′, t) = lim
ǫ→0

[
T (s′ + iǫ, t)− T (s′ − iǫ, t)

]
, (1.27)

which, by virtue of hermitian analyticity [35], directly follows from unitarity. More precisely,
hermitian analyticity—itself a fundamental consequence of the CPT theorem of quantum
field theory—states that if the amplitude Tab for a process a → b is the boundary value
of an analytic function from above, cf. (1.25), the amplitude T ∗

ba will be given by the limit
of the same function from below. For time-invariant interactions this property permits the
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Re s
′

Im s
′

4M
2

π

Figure 1.4: Integration contour C in the complex s′-plane for fixed t = 0. The grey bands
denote left- and right-hand cuts, respectively, and the black dots the corresponding branch
points.

identification6

discT (s′, t) = 2i ImT (s′, t) , (1.28)

and thus leads to

T (s, t) =
1

π

∞∫

4M2
π

ds′
{

1

s′ − s
+

1

s′ − u

}
ImT (s′, t) . (1.29)

In practice, the asymptotic behavior of T (s′, t) for large |s′| does not allow for an un-
subtracted dispersion relation, since the contribution from the contour at infinity cannot be
discarded. Provided that T (s′, t) does not grow faster than a polynomial, this obstacle may
be overcome by introducing so-called subtractions, i.e. by considering dispersion relations not
for T (s′, t), but for T (s′, t)/Pn(s′) instead, where

Pn(s
′) =

n∏

i=1

(s′ − si) (1.30)

involves the subtraction points {si}, and n is chosen sufficiently large to ensure convergence
of the dispersive integral. In the application of Cauchy’s theorem, the poles introduced by
dividing by Pn(s

′) can be dealt with using the residue theorem. Eventually, n additional
powers of s′ appear in the denominator of (1.29), but at the same time one also incurs a
subtraction polynomial of degree n− 1 with a priori unknown coefficients, which, in the case

6We exclude the possibility that a particle in the initial or final state of the reaction is kinematically allowed
to decay into the other particles involved. In such a case, the discontinuity is not purely imaginary and cannot
be simply related to the imaginary part [36].
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of fixed-t dispersion relations, will actually depend on the value of t chosen. Therefore, we
will refer to these coefficients as subtraction functions in the following.

The maximal number of subtractions necessary for the dispersive integrals to converge and
the contour at infinity to be irrelevant is restricted by the Froissart–Martin bound [37, 38],
which requires the total cross section not to increase faster than log2 s for s → ∞, and, by
means of the optical theorem, implies that at most two subtractions are needed.7 However,
one may perform further subtractions to reduce the sensitivity of the integrals to the high-
energy regime, where the imaginary part is often poorly known, of course at the expense of
introducing additional undetermined parameters. Subtracting twice at s = 0, (1.29) becomes

T (s, t) = c(t) +
1

π

∞∫

4M2
π

ds′
[

s2

s′2(s′ − s)
+

u2

s′2(s′ − u)

]
ImT (s′, t) . (1.31)

Here, we have taken advantage of crossing symmetry to discard terms proportional to s − u
in the subtraction polynomial, while terms proportional to s+ u = 4M2

π − t can be absorbed
into c(t). Indeed, the validity of a twice-subtracted dispersion relation for |t| < 4M2

π has been
established from axiomatic field theory [39], which together with [38] for t < 0 rigorously
vindicates (1.31) for all t < 4M2

π .
Finally, one can try to go another step forward and drop the restriction of single-variable

dispersion relations (keeping the internal kinematics on-shell). The corresponding assumption
that T (s, t) can be expressed in terms of double-spectral density functions ρsu, ρtu, and ρst
by double dispersive integrals of the form

T (s, t) =
1

π2

∫∫
ds′du′

ρsu(s
′, u′)

(s′ − s)(u′ − u)
+

1

π2

∫∫
dt′du′

ρtu(t
′, u′)

(t′ − t)(u′ − u)

+
1

π2

∫∫
ds′dt′

ρst(s
′, t′)

(s′ − s)(t′ − t)
, (1.32)

where the integration ranges extend over those regions in the Mandelstam plane where the
corresponding double-spectral functions have support, is referred to as Mandelstam analytic-
ity [40]. In either case, this concept can be justified in perturbation theory [40,41], but while
for ππ scattering the validity of the Mandelstam representation can at least be derived rigor-
ously in a finite domain [42], for πN scattering only the uniqueness of amplitudes satisfying
Mandelstam analyticity has been proven [43].

1.2.2 Roy equations

Roy equations are a coupled system of partial-wave dispersion relations (PWDRs) that re-
spect analyticity, unitarity, and crossing symmetry of the scattering amplitude [44]. The
starting point in the construction of these equations is the twice-subtracted fixed-t dispersion

7The appearance of the logarithm may be understood intuitively from a classical example already given
in [37]: suppose, the scattering of two particles were described by a Yukawa-type interaction with probability
density function P (r) = P0e

−br and typical range b. Suppose further, that the energy dependence of the
interaction probability were limited by a polynomial in s, i.e. P (s, r) < P0(s/s0)

Ne−br. Then, the interaction
would be exponentially suppressed for r > r0 = N/b log s/s0 and the cross section bounded by σ < πr20 =
πN2/b2 log2 s/s0.
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Figure 1.5: Elastic unitarity for ππ scattering. Dashed lines denote pions and the spheres the
ππ scattering amplitude.

relation (1.31). First, Roy realized that the subtraction function c(t) may be determined by
means of s↔ t crossing symmetry

T (0, t) = c(t) +
1

π

∞∫

4M2
π

ds′
(4M2

π − t)2

s′2(s′ − 4M2
π + t)

ImT (s′, t)

= T (t, 0) = c(0) +
1

π

∞∫

4M2
π

ds′
[

t2

s′2(s′ − t)
+

(4M2
π − t)2

s′2(s′ − 4M2
π + t)

]
ImT (s′, 0) . (1.33)

Second, the remaining subtraction constant c(0) is intimately related to the amplitude at
threshold, and thus the scattering length, via

T (4M2
π , 0) = c(0) +

1

π

∞∫

4M2
π

ds′
16M4

π

s′2(s′ − 4M2
π)

ImT (s′, 0) . (1.34)

Third, the imaginary part of the amplitude that appears inside the dispersive integrals is
expanded in partial waves, and finally the partial-wave projection of the resulting equation
performed. Retrieving isospin indices again, one thus arrives at a system of integral equations
for the ππ amplitudes tIJ(s)

tIJ(s) = kIJ(s) +

2∑

I′=0

∞∑

J ′=0

∞∫

4M2
π

ds′KII′

JJ ′(s, s′)Im tI
′

J ′(s′) , (1.35)

that relates a partial wave of given angular momentum J and isospin I to all other partial
waves via analytically calculable kinematic kernel functions KII′

JJ ′(s, s′). These kernels are
composed of a singular Cauchy kernel and a regular remainder according to

KII′

JJ ′(s, s′) =
δJJ ′δII′

s′ − s− iǫ
+ K̄II′

JJ ′(s, s′) . (1.36)

In particular, the construction that led to (1.35) ensures that the tIJ(s) automatically fulfill the
analytic properties expected for the partial waves: while the Cauchy kernel implements the
right-hand cut, K̄II′

JJ ′(s, s′) will incorporate all analytic structure required from the left-hand
cut. The only free parameters of the approach are hidden in the subtraction term kIJ (s) that
depends on the S-wave scattering lengths a00 and a20. As long as elastic unitarity holds, i.e.
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(I) (II)

Figure 1.6: Box graphs constraining the boundaries of the double-spectral functions for ππ
scattering.

only ππ intermediate states enter the unitarity relation (see Fig. 1.5), the ππ partial waves
may be parameterized as

tIJ(s) =
e2iδ

I
J (s) − 1

2iσ(s)
, σ(s) =

√
1− 4M2

π

s
, (1.37)

with the result that the Roy equations (1.35) reduce to coupled integral equations for the
phase shifts δIJ (s).

An important issue is the range of validity of the Roy equations. While the convergence
of the fixed-t dispersion relations is guaranteed for all t < 4M2

π [37–39], the reduction to
partial waves imposes further constraints on the domain of validity of the system. As a
matter of fact, the partial-wave expansion of the imaginary part in the dispersive integral
converges only for scattering angles z′ that lie within the large Lehmann ellipse [45]. It has
been derived from axiomatic field theory that this condition is met for all s′ ∈ [4M2

π ,∞) if
−28M2

π ≤ t ≤ 4M2
π [42]. By virtue of Bose symmetry, the partial-wave projection of the

equations can be restricted onto 0 ≤ z ≤ 1, which translates into a range in t of

−s− 4M2
π

2
≤ t ≤ 0 . (1.38)

Consequently, the Roy equations can be established from axiomatic field theory up to [44]

smax = 60M2
π = (1.08GeV)2 . (1.39)

It is crucial to observe that the derivation of this result heavily relies on the fact that internal
and external kinematics are related by t′ = t, which allows for the translation of constraints
originating from the Lehmann ellipse into a range of convergence in s. This is the essential part
of the derivation that needs to be generalized in the analysis of different kinds of dispersion
relations.

Since rigorous results from axiomatic field theory are rarely available for processes other
than ππ scattering, we will assume that the analytic properties of the amplitude are correctly
reproduced by Mandelstam analyticity in Parts II and III of this thesis. Therefore, it is
instructive to compare the consequences of this relaxed assumption also for the ππ case to the
axiomatic-field-theory result (1.39). The central objects of the analysis are the boundaries of
the support of the double-spectral functions that determine the integration range in (1.32).
These boundaries can be inferred from the box diagrams depicted in Fig. 1.6, which are to
be understood as generalizations of four-propagator box diagrams (see, e.g., [46]), with one
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or more lines replaced by a particle whose mass is equal to the input mass of the lowest-lying
intermediate state accessible to the interacting particles.

Due to crossing symmetry, it suffices to investigate the boundary of ρst. From diagrams
(I) and (II) in Fig. 1.6 we find that this boundary is defined by

bI(s, t) = t(s− 4M2
π)− 16M2

πs = 0 ,

bII(s, t) = t(s− 16M2
π)− 4M2

πs = 0 , (1.40)

and thus obeys
t = Tst(s) = min

{
TI(s), TII(s)

}
, (1.41)

where TI and TII follow from solving (1.40) for t. The corresponding double-spectral regions,
defined as the portions of the Mandelstam plane that obey s+ t+u = 4M2

π and where any of
the functions ρst, ρsu, ρtu has support, are shown in the left panel of Fig. 1.7. By definition,
the line in the Mandelstam plane corresponding to a fixed value of t must not enter the double-
spectral regions if a single-variable dispersion relation with this value of t is supposed to hold.
Moreover, the maximally allowed value of z′ becomes

z′max = 1 +
2Tst(s

′)
s′ − 4M2

π

, (1.42)

and hence the Lehmann-ellipse constraint in the form −z′max ≤ z′ ≤ z′max restricts the allowed
values of t to

T ′
st(s

′) ≤ t ≤ Tst(s
′) ,

T ′
st(s

′) = 4M2
π − s′ − Tst(s

′) , ∀ s′ ∈
[
4M2

π ,∞
)
. (1.43)

As illustrated in Fig. 1.7, both constraints actually yield the same range −32M2
π ≤ t ≤ 4M2

π ,
and thus

smax = 68M2
π = (1.15GeV)2 , (1.44)

slightly larger than (1.39). Irrespective of the analyticity assumptions, the range of validity
of the Roy equations can be extended significantly, at least up to smax = 165M2

π , if dispersion
relations in the manifestly crossing-symmetric variables

x = st+ tu+ us , y = stu , (1.45)

instead of fixed-t dispersion relations are employed [47], however, at the expense of a substan-
tial increase in complexity of the equations.

Due to the finite domain of validity, the Roy equations cannot be used up to infinity.
Above a certain energy, referred to as the matching point sm, input from experiment for the
imaginary parts of the partial waves is required, so that in practice the equations are solved
between threshold and sm. Furthermore, the partial-wave expansion will be truncated at a
certain angular momentum J and higher partial waves treated on the same footing as the
lower partial waves above sm. In fact, the existence and uniqueness of a solution depends
on the value of the phases δi of the partial waves dynamically included in the calculation at
the matching point [48–50]. More precisely, the situation is characterized by the multiplicity
index m, which is given by

m =
∑

i

mi , mi =

{⌊
2δi(sm)

π

⌋
if δi(sm) > 0 ,

−1 if δi(sm) < 0 ,
(1.46)
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Figure 1.7: Double-spectral regions (left) and allowed range of t (right) for ππ scattering. The
red lines refer to t = 4M2

π and t = −32M2
π , respectively.

where ⌊x⌋ denotes the largest integer ≤ x and we have assumed that δi(sm) > −π/2 for all
partial waves. If m = 0, a unique solution exists, while for m > 0 the neighborhood of each
solution contains an m-parameter family of solutions and for m < 0 only for a specific choice
(constrained by |m| conditions) of the input, i.e. subtraction constants, imaginary parts above
sm, and higher partial waves, a solution can be found.

1.2.3 Matching to chiral perturbation theory

Shortly after Roy’s article [44], a comprehensive phenomenological analysis of the ππ data
available at that time was performed using the Roy-equation formalism [51]. Over the last
years, there has been renewed interest in the Roy equations [52–57], mainly triggered by
recognizing the full potential of the approach in combination with effective field theory, which
has led to a determination of the low-energy ππ scattering amplitude with unprecedented
accuracy. In the following, we will briefly summarize the strategy for the solution of the
equations, especially focusing on the interplay with ChPT.

A typical truncation scheme for the numerical solution of the Roy equations proceeds as
follows: in [53], the system was truncated at J = 1 and the matching point chosen as sm =
(0.8GeV)2, implying that m = 0. The effects of higher partial waves as well as higher energies,
i.e. the part of (1.35) with J ′ ≥ 2 and s′ ≥ sm, are accounted for in so-called driving terms,
which are determined from experimental input for the intermediate-energy regime and from
Regge theory for the high-energy behavior. A crucial result of [53] was that the amplitudes
in the low-energy regime are remarkably insensitive to the details of the contributions from
higher partial waves and higher energies, so that a very precise representation of the S- and
P -wave amplitudes at low energies in terms of the scattering lengths a00 and a20 was achieved.

The simplest matching procedure between Roy equations and ChPT, matching at thresh-
old, would amount to inserting the two-loop ChPT result for the scattering lengths into the
Roy equations. However, this approach is unfavorable, since the chiral expansion at threshold
converges rather slowly, caused by the onset of the unitarity cut, and further constraints in
the whole low-energy region, where both the Roy-equation and the chiral parameterization
are valid, would be ignored. Instead, the strategy put forward in [58] relies on the fact that
ultimately the subtraction constants in the dispersive calculation and the LECs in the chiral



16 Chapter 1. Introduction

expansion can be identified. To this end, both parameterizations are brought into a form that
proves that agreement at low energies is ensured if the polynomial parts match. In this way,
by requiring consistency of both representations in the full low-energy regime, the slow con-
vergence at threshold is avoided and the sensitivity to terms in the chiral expansion beyond
two-loop order diminished. Thus, since the Roy equations have elastic unitarity fully built
in—in contrast to ChPT that restores unitarity only perturbatively—they can be regarded as
a means to unitarize the chiral expansion. Retaining only the LECs l̄3 and l̄4 (the latter elim-
inated in favor of the scalar pion radius 〈r2〉Sπ), which measure the quark-mass dependence
and thus cannot be determined dynamically in the matching of the polynomials parts, the
scattering lengths can be expressed as [58]

a00 = 0.198 ± 0.001 + 0.0443 fm−2〈r2〉Sπ − 0.0017 l̄3 ,

a20 = −0.0392 ± 0.0003 − 0.0066 fm−2〈r2〉Sπ − 0.0004 l̄3 , (1.47)

which together with l̄3 = 2.9 ± 2.4, 〈r2〉Sπ = (0.61 ± 0.04) fm2 finally led to a very precise
prediction of the ππ scattering lengths [58]

a00 = 0.220 ± 0.005 , a20 = −0.0444 ± 0.0010 . (1.48)

Recently, these predictions have been tested in various high-precision experiments. First, the
decay width of pionium is sensitive to |a00 − a20|, and has been measured by the DIRAC col-
laboration [59]. Next, a measurement of Kl4 decays [60, 61] yields access to the phase-shift
difference δ00 − δ11 of ππ S- and P -waves, which, combined with a numerical solution of the
Roy equations, determines a00 and a20. Lastly, the scattering lengths may be extracted from a
high-statistics analysis of K → 3π decays [62], where the rescattering of pions in the final state
generates a cusp whose strength relates to the pertinent ππ scattering amplitude at thresh-
old [63]. Presently, the most stringent constraints on a00 and a20 originate from Kl4 and K → 3π
decays. The NA48/2 collaboration quotes for the combination of both measurements [61]

a00 = 0.2210 ± 0.0047stat ± 0.0040syst , a20 = −0.0429 ± 0.0044stat ± 0.0028syst , (1.49)

in beautiful agreement with (1.48). In fact, at this level of accuracy it is critical that isospin-
violating corrections specific to each experiment be properly taken into account [64].

The importance of an accurate knowledge of the ππ scattering lengths, and thus of the
low-energy phase shifts, is hard to overestimate. First of all, the scattering lengths are central
parameters of low-energy QCD themselves, intimately related to the pattern of chiral sym-
metry breaking. Indeed, their precise determination was essential to confirm the role of the
quark condensate as the leading order parameter of the spontaneous breaking of chiral symme-
try [16]. Moreover, once the subtraction constants are fixed, the Roy equations automatically
provide the analytic continuation of the ππ amplitude beyond the physical region. The domain
of validity of the equations reaches sufficiently far into the complex plane to encompass the
σ pole mσ = Mσ − iΓσ/2, with the result that the combination of Roy equations and ChPT
allowed for the first reliable determination of the pole parameters of the σ meson [65]

Mσ = 441+16
−8 MeV , Γσ = 544+18

−25 MeV . (1.50)

Finally, the ππ phase shifts are crucial ingredients to describe ππ rescattering in innumerable
processes in low-energy hadron physics. Examples are γγ → ππ and ππ → N̄N , as discussed
in Parts II and III of this thesis.
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1.2.4 Beyond ππ scattering

Evidently, it would be of high interest to extend the successful program of a combined frame-
work of Roy or Roy-like equations and ChPT to processes other than ππ scattering. An
important step forward in this direction was taken in [66, 67], where Roy–Steiner equations
for πK scattering were constructed. Unfortunately, the generalization beyond ππ scatter-
ing comes with plenty of complications, mainly rooted in unequal masses and more involved
crossing properties, as we will demonstrate in the following using the example of πK scatter-
ing [66, 67].

First of all, a full system of PWDRs will include dispersion relations for two distinct
physical processes, πK scattering (s-channel) and ππ → K̄K (t-channel). An immediate
consequence concerns the applicability of fixed-t dispersion relations and the use of crossing
symmetry to determine the subtraction function c(t) in (1.33): s ↔ t crossing symmetry
will intertwine s- and t-channel equations, so that the equations for the s-channel partial
waves will also involve t-channel dispersive integrals that extend over t′ ≥ 4M2

π . Accordingly,
the determination of the t-channel partial waves will require the partial-wave projection for
t > 4M2

π , which lies beyond the range of validity of fixed-t dispersion relations.
A convenient choice of dispersion relations that evade these limitations are so-called hy-

perbolic dispersion relations (HDRs) [68],8 defined by

(s− a)(u− a) = (s′ − a)(u′ − a) ≡ b . (1.51)

While b = b(s, t, a) is fixed by the external kinematics, the hyperbola parameter a can be freely
chosen. In particular, it can be used to optimize the range of validity of the resulting system
of RS equations. HDRs are particularly suitable for processes such as πK scattering, since
s ↔ u crossing is manifest, so that all constraints by crossing symmetry are automatically
fulfilled. The unsubtracted version of HDRs for a crossing-symmetric amplitude T+(s, t) reads

T+(s, t) =
1

π

∞∫

s+

ds′
[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImT+(s′, t′) +

1

π

∞∫

4M2
π

dt′
ImT+(s′, t′)

t′ − t
, (1.52)

where
s+ = (Mπ +MK)

2 , (1.53)

and MK denotes the mass of the kaon. The above integrals are understood in such a way
that the integrands shall be expressed in terms of the integration variable and the external
kinematics by virtue of (1.51) and

s′ + t′ + u′ = 2M2
π + 2M2

K . (1.54)

The first integral in (1.52) is reminiscent of fixed-t dispersion relations, but in that case
ImT+(s′, t′) → ImT+(s′, t) and the last term is removed. Thus, the key difference here is
that t′ depends not only on t, but on s and s′ as well. The dispersion relation for an amplitude

8Even more, HDRs are the unique choice if one demands that the curves pass through all kinematic channels,
avoid double-spectral regions, do not introduce ostensible kinematic cuts into the partial-wave amplitudes, and
still yield manageable kernel functions [68]. In view of the efforts [68,69] that led to s-channel PWDRs for πN
scattering and thus provided the first step towards the construction of a Roy-equation analog for processes with
πN crossing properties, the resulting full system of partial-wave hyperbolic dispersion relations (PWHDRs) is
referred to as Roy–Steiner equations.
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Figure 1.8: Elastic unitarity for πK scattering (left) and ππ → K̄K (right). Dashed/solid
lines denote pions/kaons, and the spheres refer to the pertinent scattering amplitudes.

T−(s, t) that is odd under crossing may be constructed by considering T−(s, t)/ν, ν = s− u,
yielding

T−(s, t) =
1

π

∞∫

s+

ds′
[

1

s′ − s
− 1

s′ − u

]
ImT−(s′, t′) +

1

π

∞∫

4M2
π

dt′
ν

ν ′
ImT−(s′, t′)

t′ − t
. (1.55)

In [67], a combination of fixed-t and hyperbolic dispersion relations (with a = 0) was used,
arguing that the range of validity of fixed-t dispersion relations in the s-channel is slightly
larger than for HDRs. We suspect that this advantage would dissolve if HDRs with general a
were allowed (as is true, e.g., for πN scattering). Hence, we will bypass the fixed-t step and
solely consider HDRs in this thesis.

The second major impediment concerns unitarity in the t-channel. While s-channel uni-
tarity corresponds exactly to unitarity in ππ scattering, the t-channel unitarity relation does
not. In particular, it is linear in the ππ → K̄K partial waves, and thus far less restrictive than
s-channel unitarity, cf. Fig. 1.8. The resulting equations for the t-channel partial waves take
the form of a Muskhelishvili–Omnès problem [70,71], whose solution will require input for the
ππ partial waves. However, once the t-channel equations are solved, the remaining s-channel
problem will be amenable to the same methods that can be used to solve ππ Roy equations.

Last, ππ scattering is also exceptional in the matching to ChPT, since the number of
LECs is small and neither potentially large SU(3) corrections nor the presence of baryons
threaten the rapid convergence of the chiral expansion. In contrast, the comparison of RS
equations and ChPT in πK scattering is indeed hampered by large uncertainties in the chiral
series [66, 67, 72].

Despite all drawbacks in the non-identical-particle case one should note that the important
feature of the Roy-equation approach that the kernel functions will correctly incorporate the
analytic properties of the partial waves prevails in the general case. As long as the dispersion
relations on the amplitude level hold, the correct analytic structure of the partial waves will
emerge automatically. Although the complications besetting the generalization of ππ Roy
equations to other processes lead to a considerable increase in complexity, a full solution of
the corresponding system of RS equations is highly rewarding nonetheless. After all, the
result will maintain analyticity, unitarity, crossing symmetry, and, by matching to ChPT,
chiral symmetry, and thus all symmetries of the underlying quantum field theory. In fact,
RS equations for πK scattering have provided invaluable information on the πK scattering
lengths, low-energy phase shifts, and the pole position of the κ meson [67,73].

The construction and numerical solution of RS equations for γγ → ππ and πN scattering
will be discussed in much more detail in Parts II and III of this thesis. In either case, the
strategy will closely follow the recipe laid out in this section.



Part I

Extraction of the πN scattering

lengths from hadronic atoms#1

#1The contents of this part have been published in [33].
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Chapter 2

Precision calculation of the π−d

scattering length

2.1 Introduction

Hadron–hadron scattering lengths are fundamental quantities characterizing strong interac-
tions, especially the import of a precise knowledge of the scattering lengths for the simplest
example, ππ scattering, for low-energy hadron physics cannot be overstated (see Sect. 1.2.3).
More generally, pion–hadron scattering lengths are of considerable interest, as chiral sym-
metry and the Goldstone-boson nature of the pions dictate that they are small [74], while
their non-vanishing size is linked to fundamental quantities such as the light quark masses
and condensates. However, while slowly becoming accessible to ab initio calculations in lat-
tice QCD [75], scattering lengths for reactions other than ππ scattering still defy a precision
determination.

In the case of pion–nucleon scattering, chiral symmetry predicts that the isoscalar scat-
tering length a+ is suppressed compared to its isovector counterpart a−.1 In particular, the
low-energy theorem for a− [74, 76]

a− =
Mπ

8π(1 +Mπ/mp)F 2
π

+O
(
M3
π

)
≈ 80 · 10−3M−1

π (2.1)

receives corrections only at third order in the pion mass and its prediction is numerically very
close to the full result. Meanwhile, the expansion of the isoscalar scattering length [76]

a+ = 0 +
M2
π

4π(1 +Mπ/mp)F 2
π

{
− g2A

4mp
+ 2(c2 + c3 − 2c1)

}
+O

(
M3
π

)
≈ 0 , (2.2)

with the pion decay constant Fπ, the axial charge of the nucleon gA, and LECs ci, stands in
marked contrast: the leading order vanishes—leaving a+ as a measure of the explicit breaking
of chiral symmetry—and at subleading orders poorly determined LECs and huge cancellations
between individual terms limit the predictive power of the expansion. Experimentally, a
measurement of a+ is complicated by the lack of π0 beams and neutron targets that makes
direct pion–nucleon scattering experiments impossible in some charge channels. The best

1For the sake of brevity, we suppress the angular-momentum labels for the S-wave scattering lengths, i.e.
a± = a±

0+ in the general notation introduced in Part III.
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hope for access to a+ therefore lies in future precision measurements of threshold neutral-pion
photoproduction [77]. In the meantime, extractions of a+ from πN scattering data suffer
from large uncertainties. Different phase-shift analyses yield values covering a wide range
from −10 · 10−3M−1

π to +5 · 10−3M−1
π [78]. For this reason, the combination of data and

theory has even failed to provide sufficient evidence to establish definitely that a+ 6= 0.
In view of the difficulties of the chiral expansion in the isoscalar sector (2.2), an indepen-

dent, precise determination of the πN scattering lengths would be highly desirable. Along the
lines of Sect. 1.2.3, this should prove valuable to help constraining subtraction constants in
RS equations for πN scattering (see Part III). Besides that, a+ and a− serve as vital input
parameters for dispersive analyses of the pion–nucleon σ term [79,80] and the determination
of the pion–nucleon coupling constant via the Goldberger–Miyazawa–Oehme sum rule [81],
respectively. While the uncertainty in a− is much smaller than that in a+, it still contributes
significantly to the overall error estimate in the sum-rule evaluation [82, 83], which renders a
more accurate determination also of a− highly welcome.

In recent years, data on hadronic atoms have become the primary source to gain infor-
mation on the πN scattering lengths [84]. In these systems, strong interactions modify the
spectrum compared to pure QED by shifting the energy levels and introducing a finite width
to the states, both effects being sensitive to threshold pion–nucleon scattering. In this way,
new information on pion–nucleon scattering lengths has become available due to recent high-
accuracy measurements of pionic hydrogen (πH) and pionic deuterium (πD). In the case of
πH, the latest experimental results [85] are

ǫ1s = (−7.120 ± 0.012) eV , Γ1s = (0.823 ± 0.019) eV , (2.3)

for the (attractive) shift of the 1s level of πH due to strong interactions and its width. The
shift of the ground state is related to the π−p scattering length aπ−p, while the width gives
access to the charge-exchange scattering length acexπ−p ≡ aπ−p→π0n [84]. More precisely, ǫ1s is
related to aπ−p through an improved Deser formula [86]

ǫ1s = −2α3µ2Haπ−p(1 +Kǫ + δvacǫ ) , (2.4)

where α = e2/4π denotes the fine-structure constant, µH refers to the reduced mass of πH,
Kǫ = 2α(1 − logα)µHaπ−p, and δvacǫ = 2δΨH(0)/ΨH (0) = 0.48% is the effect of vacuum
polarization on the wave function at the origin [87]. The width determines acexπ−p via [88]

Γ1s = 4α3µ2Hp1

(
1 +

1

P

)(
acexπ−p

)2(
1 +KΓ + δvacǫ

)
, (2.5)

with KΓ = 4α(1− log α)µHaπ−p+2µH(mp +Mπ−mn−Mπ0)(aπ0n)
2, mp, mn, Mπ, and Mπ0

the masses of proton, neutron, charged and neutral pions, respectively, p1 the momentum of
the outgoing nπ0 pair, and the Panofsky ratio [89]

P =
σ(π−p→ π0n)

σ(π−p→ nγ)
= 1.546 ± 0.009 . (2.6)

Similarly, the (repulsive) strong shift ǫD1s of the 1s level of πD yields the real part of the π−d
scattering length Reaπ−d via [90]

ǫD1s = −2α3µ2DRe aπ−d(1 +KǫD + δvacǫD ) , (2.7)
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with reduced mass µD, second-order correction KǫD = 2α(1− log α)µDRe aπ−d, and vacuum-
polarization effect δvac

ǫD
= 2δΨD(0)/ΨD(0) = 0.51% [87].

In the isospin limit, the level shift of πH is sensitive to a++a−, whereas the width is solely
determined by a−. In this way, data from πH alone permit, in principle, an extraction of the
πN scattering lengths. However, the chiral suppression of a+ makes it very sensitive to isospin-
violating corrections (see Sect. 2.2), with the result that additional experimental information—
in particular from isoscalar nuclei as they provide better access to a+—are essential to check
the systematics and potentially improve the accuracy of the scattering-length determination.
To this end, we split the π−d scattering length into its two-(πN) and three-(πNN) body
contributions

Re aπ−d = a
(2)
π−d

+ a
(3)
π−d

, (2.8)

where the former is related to a+ via

a
(2)
π−d

=
2ξp
ξd

(ã+ +∆ã+) . (2.9)

Here the difference between a+ and ã+ as well as ∆ã+ are determined by isospin-violating
corrections (Sect. 2.2) and

ξp = 1 +
Mπ

mp
, ξd = 1 +

Mπ

md
, (2.10)

with the deuteron mass md. Once isospin breaking in the two-body sector is under control,
we therefore have to develop a theoretical description of a(3)

π−d
that finally allows one to exploit

information on πD at the same level of accuracy as in πH, which requires a calculation of
a
(3)
π−d

to an accuracy of better than 10%. As we will discuss in this chapter, this proves to be
possible, and a combined analysis of the data (2.3) on πH and the recently remeasured level
shift in πD [91]

ǫD1s = (2.356 ± 0.031) eV (2.11)

then yields a determination of a+ and a− of unprecedented accuracy.2 In this chapter, we
present in detail the calculation of the three-body part of aπ−d, which we decompose as

a
(3)
π−d

= astr + adisp+∆ + aEM , (2.12)

where adisp+∆ involves two-nucleon or ∆-isobar intermediate states, aEM represents virtual-
photon corrections, and astr denotes “strong” diagrams, i.e. essentially all other contributions
in the chiral expansion (the definition of each class of diagrams can be found in Sects. 2.4–2.6).

The analysis will proceed as follows: we first briefly review isospin-violating corrections to
the πN scattering lengths in Sect. 2.2. Then, we summarize the hierarchy of diagrams con-
tributing to a(3)

π−d
in both the isospin-conserving and the isospin-violating sector in Sect. 2.3, be-

fore discussing strong, virtual-photon, and dispersive +∆ contributions in detail in Sects. 2.4,
2.5, and 2.6. Sect. 2.7 summarizes our main conclusions concerning three-body contributions
to the π−d scattering length. The consequences for the πN scattering lengths, the πN cou-
pling constant, as well as some brief comments on the pion–nucleon σ term will be presented
in Chapter 3.

2The width of πD is governed by π−d → nn (BR = 73.9%) and π−d → nnγ (BR = 26.1%) [92], so that
no additional information on threshold πN physics is provided.
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2.2 Isospin violation in the πN scattering lengths

Before turning to the calculation of a(3)
π−d

, we review isospin-violating corrections to the πN
scattering lengths, which provide an essential input to the present analysis. The scattering
lengths in the isospin limit for all eight channels can be written in terms of a+ and a− as

aπ−p ≡ aπ−p→π−p = aπ+n ≡ aπ+n→π+n = a+ + a− ,

aπ+p ≡ aπ+p→π+p = aπ−n ≡ aπ−n→π−n = a+ − a− ,

acexπ−p ≡ aπ−p→π0n = acexπ+n ≡ aπ+n→π0p = −
√
2 a− ,

aπ0p ≡ aπ0p→π0p = aπ0n ≡ aπ0n→π0n = a+ . (2.13)

To extract a+ and a− from hadronic-atom data, we need to relate the scattering lengths in
particular charge channels to those in the isospin limit, i.e. we need the corrections

∆aπ−p = aπ−p − (a+ + a−) , ∆aπ−n = aπ−n − (a+ − a−) , ∆acexπ−p = acexπ−p +
√
2 a− .
(2.14)

These corrections are generated by the quark mass difference md −mu and electromagnetic
interactions. They can be calculated systematically in ChPT, and have been worked out at
next-to-leading order (NLO) in the chiral expansion in [93, 94].

In those works, and throughout this thesis, the isospin limit is defined by the charged-
particle masses, in particular the nucleon mass is identified with the mass of the proton.
Moreover, the counting md −mu ∼ e2 is used, i.e. electromagnetic and quark-mass effects are
assumed to contribute at the same order. This counting is phenomenologically rather success-
ful. The prime example is the nucleon mass difference, to which—according to the evaluation
of the Cottingham sum rule [95] in [96, 97]—the quark mass difference and electromagnetic
interactions contribute (2.1± 0.3)MeV and (−0.8± 0.3)MeV, respectively.3 A similar picture
emerges from the kaon mass difference, where—depending on the assumptions about violation
of Dashen’s theorem [102–104]—quark-mass effects are a factor 2–3 larger than electromag-
netic ones. It is also instructive to look at tree-level contributions to isospin violation in πN
scattering [93]: aπ−p− aπ+n and aπ+p− aπ−n are purely electromagnetic, aπ0p− aπ0n is solely
due to md −mu, while both effects are of the same size in acexπ−p − acexπ+n. Similar conclusions
can be drawn from tree-level isospin breaking in the πK scattering lengths [105], where the
corrections for some channels are purely electromagnetic, for some purely quark-mass induced,
and for some due to both effects, sometimes the former being a factor of 2 larger, sometimes
the latter.

First of all, the major consequence of the leading-order (LO) isospin breaking in ChPT [106]

∆aLOπ−p =
1

4πξp

{
4∆π

F 2
π

c1 −
e2

2
(4f1 + f2)

}
, ∆acex LOπ−p =

√
2

4πξp

{
e2f2
2

+
g2A∆π

4F 2
πmp

}
,

∆aLOπ−n =
1

4πξp

{
4∆π

F 2
π

c1 −
e2

2
(4f1 − f2)

}
, ∆π =M2

π −M2
π0 , (2.15)

3This result was critically re-examined in [98], where it was argued that the Cottingham sum rule in its
unsubtracted form cannot be justified. Estimating the subtraction constant with nucleon polarizabilities as
extracted from Compton-scattering reactions [99], the subtracted analysis yields an electromagnetic contribu-
tion of (−1.3± 0.5)MeV instead. In either case, the result is compatible with recent determinations from the
lattice [100] and from charge symmetry breaking in pn → dπ0 [101].
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is that it is impossible to directly extract a+ from hadronic atoms. Only the combination

ã+ ≡ a+ +
1

4πξp

{
4∆π

F 2
π

c1 − 2e2f1

}
(2.16)

is accessible, and a+ itself cannot be obtained absent input on the LECs c1 and f1 from other
sources (the full list of LECs relevant for the present analysis is given in Appendix A.1). If
the standard single-nucleon-sector counting e ∼ p is employed, then these isospin-violating
effects are actually of the same size as the piece of ã+ that would be present in the isospin
limit. c1 enters as its contribution to a+ is proportional to M2

π0 , and f1 features in the
electromagnetic contributions to mp and mn. Estimates of these constants will be discussed
in Sect. 3.1.

Since only ã+ can directly be extracted, it is convenient to work with

∆ãπ−p = aπ−p − (ã+ + a−) , ∆ãπ−n = aπ−n − (ã+ − a−) , (2.17)

instead of ∆aπ−p and ∆aπ−n. The results relevant for the scattering-length extraction may
then be written as

∆ãπ−p = ∆ã+ +∆a− , ∆ãπ−n = ∆ã+ −∆a− ,

∆ã+ =
1

4πξp

{
e2Mπ

(
2gr6 + gr8

)
− g2AMπ

32πF 2
π

(
33∆π

4F 2
π

+ e2
)}

,

∆a− = − e2f2
8πξp

− Mπ

4πξp

{
∆π

32π2F 4
π

(
3 + log

M2
π

µ2

)
+

8∆π

F 2
π

dr5

+
e2g2A

16π2F 2
π

(
1 + 4 log 2 + 3 log

M2
π

µ2

)
− e2gr8 +

10

9

e2

F 2
π

(
kr1 + kr2

)}
,

∆acexπ−p =

√
2

4πξp

{
e2f2
2

+
g2A∆π

4F 2
πmp

− 3Mπ∆π

16F 2
πm

2
p

− Mπ∆N

4F 2
πmp

(
1 + 2g2A

)
+
Mπ∆π

8F 2
πm

2
p

(1 + 4mpc4)

+
Mπ∆π

192π2F 4
π

(
2− 7g2A +

(
2− 5g2A

)
log

M2
π

µ2

)
+

e2Mπ

32π2F 2
π

(
5 + 3 log

M2
π

µ2

)

+
8Mπ∆π

F 2
π

dr5 +
e2Mπ

2F 2
π

(
F 2
πg

r
7 − 2kr3 + kr4 +

20

9

(
kr1 + kr2

))}
, (2.18)

where
∆N = mn −mp . (2.19)

The apparent dependence on the renormalization scale µ is canceled by the scale dependence
of the LECs, whose definition is briefly reviewed in Appendix A.1 (for more details we refer
to [94]). Estimating the LECs as in [93] yields

∆ã+ = (−3.3± 0.3) · 10−3M−1
π , ∆a− = (1.4 ± 1.3) · 10−3M−1

π ,

∆ãπ−p = (−2.0± 1.3) · 10−3M−1
π , ∆acexπ−p = (0.4 ± 0.9) · 10−3M−1

π . (2.20)

In principle, one could also define an ã− that absorbs the LECs appearing in ∆a− and ∆acexπ−p

in the same way (namely f2, dr5, k
r
1, and kr2), similarly to the definition of ã+ with respect

to c1 and f1. In this way, the constraints of πH and πD on ã+ and ã− would be considered
and only in the end the estimates for the LECs inserted. The advantage of this alternative
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procedure is that the dependence on the LECs is more transparent and correlations between
the three constraints better under control. However, we have checked that the results obtained
in such an approach differ only marginally from what we present here. In order to keep the
discussion as simple as possible we work in terms of ã+, ∆ã+, a−, and ∆a−.

2.3 Hierarchy of three-body operators

2.3.1 Isospin-conserving operators

So far no counting scheme is known that permits consistent, realistic, and simultaneous consid-
eration of the two- and three-body operators that contribute to π−d scattering. For example,
in the original power counting by Weinberg [26, 107] the leading two-body operator (propor-
tional to a+) appears formally at one order lower than the leading three-body terms shown in
Table 2.1. However, it has been known for years (see e.g. [82,114]) that the double-scattering
diagram (the first diagram in the first row of Table 2.1) alone nearly saturates the experimen-
tal value of the scattering length, whereas the term proportional to a+ is significantly smaller,
in plain disagreement with Weinberg counting. On the other hand, practical calculations
demonstrate that Weinberg power counting still works quite well once applied to two- and
three-body operators separately—despite its difficulties in accounting for the relative size of
these two classes of contribution. In particular, it was shown in [109] that an application of the
Weinberg scheme allows for a systematic, high-accuracy calculation of the strong three-body
contributions to aπ−d. The aim of this chapter is to demonstrate that Weinberg counting can
be used to account for the isospin-violating three-body contributions as well.

For this reason, we consider a power counting within the class of three-body operators,
ordered in Weinberg counting relative to the leading, double-scattering term. The isospin-
conserving three-body diagrams are illustrated in Table 2.1, where we have indicated their
relative contribution according to the expansion parameter p. We note that the ordering in Ta-
ble 2.1 goes beyond naive dimensional analysis, since known enhancements and contributions
at fractional orders in the expansion parameter are already taken into account (see below).
The goal is to include all three-body operators up to one order lower than the contribution
of the leading unknown (N †N)2ππ contact term, which appears at next-to-next-to-leading
order (N2LO). Its contribution cannot easily be determined from data, and is a key source of
uncertainty in our result. Identifying Λχ ∼ mp, the expansion parameter O(p) ∼ χ =Mπ/mp

leads us to anticipate an accuracy of a few percent for threshold π−d scattering.
This expectation is substantiated by the sensitivity of our integrals to the choice of the

deuteron wave function (see Sect. 2.4.4). Convolving the operators of Table 2.1 with different
wave functions derived from chiral and phenomenological NN potentials we find a variation
in the results of about 5%, in agreement with the power-counting estimate of the contact
term. In fact, it has been demonstrated explicitly that, for deuteron wave functions based
on the one-pion-exchange interaction, the results for the individual diagrams at LO and NLO
become cutoff-independent in the limit of a large cutoff [115, 109].

Apart from the double-scattering diagram, there are also LO diagrams involving 3πN †N
and 4π vertices, which individually depend on the parameterization of the pion fields, while
only the sum is parameterization independent. Numerically, these diagrams are strongly
suppressed [26,108], which can be traced back to the spin-isospin matrix element that is more
than one order of magnitude smaller in these diagrams than that in double scattering, although
the momenta in the diagrams are in line with Weinberg counting [109].
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Chiral order Three-body operator Reference

LO = O(1) [26, 107]

NLO = O(p) [108]

[108,109]

Effect of nucleon recoil in LO diagrams [110,111]

N3/2LO = O
(
p3/2

)
[112]

[113]

Effect of nucleon recoil in LO diagrams [110,111]

N2LO = O
(
p2
)

+ · · ·

Table 2.1: Hierarchy of isospin-conserving three-body operators in Weinberg counting. Solid
(open) circles correspond to leading (subleading) vertices, grey blobs indicate the deuteron
wave functions, and the black ellipse corresponds to NN interactions in the intermediate
state. Solid single, solid double, and dashed lines correspond to nucleons, ∆(1232)-isobars,
and pions, respectively.
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The operators at NLO involve subleading vertices and were shown to cancel amongst
themselves in [108]. In addition, the triple-scattering term should be included at NLO, since
its contribution is enhanced due to its triangle topology. Indeed, it was shown in [109] that
the long-ranged (infrared) part of this diagram is enhanced numerically by a factor of π2,
whereas the rest behaves in accord with Weinberg counting. The origin of this enhancement
was associated in [109] with the special topology of the diagram consisting of two consecutive
pion exchanges with Coulombic pion propagators. Similar enhancements by factors of π were
already observed in triangle-type pion-loop contributions to the NN potential [116], the scalar
form factor of the nucleon [22], the π0 photoproduction amplitude [117], and even isospin
violation in πN scattering [94,93] itself, cf. (2.18). Evidently, this numerical (not parametric)
enhancement, which results from a dimensionless integral not being O(1), cannot be captured
by a power counting. For π−d scattering a similar effect may be expected from topologically
analogous diagrams that belong to the so-called multiple-scattering series, which leads to
concerns regarding the quadruple-scattering term: although it formally appears only at N4LO,
which is far beyond the edge of the theoretical accuracy, a potential numerical enhancement
needs to be carefully investigated. However, the whole class of multiple-scattering diagrams
can be summed up to all orders, and we find the effect from quadruple-scattering and higher
diagrams to be entirely negligible, see Sect. 2.4.3.

In addition, starting from NLO, nucleon-recoil corrections to the leading, double-scattering
operator have to be taken into account. The nucleon recoil has been extensively studied in
the literature both phenomenologically, see e.g. [118], and within effective field theory [110,
111,119]. While at leading order nucleons may be considered as infinitely heavy (fixed-center
approximation), at NLO the kinetic energy of the nucleon matters, with the result that the
static pion propagator needs to be replaced by the full propagator pertinent to the three-
body πNN intermediate state. In the regime where all momenta in the diagram are of order
of Mπ, the nucleon-recoil effect is purely perturbative, can be calculated by expanding the
nucleon kinetic energies using standard heavy-baryon techniques, and thus contributes at
integer powers in the expansion. In contrast, there is also a non-perturbative regime—the
regime of the three-body singularity—where the three-body propagator vanishes and the pion
kinetic energy is of the order of the nucleon recoil. Consequently, pion momenta appear to
be suppressed by

√
Mπ/mp compared to the typical momenta in the deuteron. Thus, the

recoil effect generates half-integer powers of Mπ/mp in the expansion of the double-scattering
diagram as well. Note that the potentially largest isovector recoil correction at order O(p1/2)
vanishes exactly as a consequence of the Pauli principle, which prohibits the NN intermediate
state to be in an S-wave in this case [110,111]. Numerically, it was demonstrated in [111] that
the recoil effect for π−d scattering is relevant only at orders O(p) and O(p3/2), in accordance
with the power counting.

Besides the nucleon-recoil effect, there are further diagrams that may contribute at frac-
tional orders due to the appearance of new scales. First, so-called dispersive corrections4 due
to the process πd → NN → πd are characterized by the large momentum p ∼

√
Mπmp ∼

360MeV between the NN pair that corresponds to the threshold for pion production in
NN collisions. Taking into account that the appropriate expansion parameter is

√
Mπ/mp,

one finds that these diagrams will enter at O(p3/2) in the calculation of the π−d scattering
length [112]. Second, the typical momentum scale p ∼

√
(m∆ −mp −Mπ)mp for diagrams

4The name refers to the fact that the NN and NNγ channels dominate the width of πD, which implies
that diagrams with these intermediate states will indeed generate the imaginary part of the scattering length.
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with explicit treatment of the ∆(1232) resonance (with mass m∆) is numerically very close to√
Mπmp, which indicates that these contributions will become relevant at O(p3/2) as well [113].

Indeed, both effects must be included for a full calculation at O(p3/2), which is necessary to
achieve the desired accuracy for the scattering-length extraction, see Sect. 2.6.

In the ∆-less theory the influence of the ∆-resonance is parameterized by the LECs ci of
πN scattering and contributes to π−d scattering through the so-called boost (Fermi motion)
correction,5 which was shown to be large but considerably model-dependent [108,109]. Once
the ∆ is included explicitly, the value of the relevant LEC c2 is significantly reduced [121], so
that the residual boost correction is negligible in the ∆-full theory [109].

2.3.2 Isospin-violating operators

The two-body isospin-violating corrections relevant for π−d scattering have already been sum-
marized in Sect. 2.2. Here, we delineate the hierarchy of isospin-violating three-body opera-
tors relative to each other, as well as their relative suppression compared to the leading-order
isospin-conserving operators.

There are three classes of isospin-violating three-body contributions: first, isospin-breaking
corrections appear in πNN propagators due to pion and nucleon mass differences. Second,
isospin-violating πN interactions can occur in the diagrams introduced in Sect. 2.3.1. The
operators corresponding to these two classes of isospin-violating mechanisms are marked as
crossed circles in Table 2.2. Since isospin violation in hadron masses and πN interactions can
occur due to both electromagnetic and quark-mass effects both these classes could be either
∼ md −mu or ∼ e2. The third class is a purely electromagnetic effect: a new set of diagrams
involving (low-energy) virtual photons (see Table 2.2 and Sect. 2.5 for more details).

At leading order in isospin violation, diagrams of this third class that involve a virtual
photon and one insertion of the isospin-conserving πN vertex occur. These are represented
by the first row of diagrams in Table 2.2. At the same order effects due to the pion mass
difference in the leading-order isospin-conserving diagrams enter (the second row of diagrams
in Table 2.2). These effects can be computed by working on the particle basis for the pion
intermediate states in the leading-order three-body diagrams (see first row of Table 2.1), and
explicitly keeping track of charged and neutral pion masses there. However, when this is done
the double-scattering diagram must be treated in a special way, as its πNN intermediate
state, and associated three-body cut, implies that the pion-mass-difference effect in this graph
generates contributions not only at O(e2), but at all subleading orders. The double-scattering
graph with one insertion of the pion mass difference is therefore shown in Table 2.2 at LO,
N1/2LO, and NLO. The piece of this graph which is LO in isospin violation is suppressed
by e2F 2

π/M
2
π compared to the corresponding isospin-conserving diagrams at LO, as are the

other diagrams listed in the first two rows of Table 2.2. Diagrams involving NNγ intermediate
states are also of this size (see third line of Table 2.2), but these are included in the calculation
of the dispersive corrections in [112], and so will be accounted for in Sect. 2.6.

The first contribution at subleading orders originates from the non-analytic terms due to
the inclusion of the pion mass difference in the πNN propagator of the double-scattering
diagram. These yield the N1/2LO contribution of Table 2.2, in full analogy with the effect

5Note that the LEC c1 and the linear combination of LECs c2 + c3 contribute to the πN scattering length
a+ and through that also to π−d scattering. However, neither c1 nor c2 + c3 are affected by the ∆-isobar up
to order O(p2) [120], although the values of c2 and c3 individually are strongly saturated by the ∆ and thus
change significantly when considering the ∆ as an explicit degree of freedom [120,121].
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Chiral order Three-body operator Reference

LO = O
(
e2
)

[112]

N1/2LO = O
(
e2p1/2

)

NLO = O
(
e2p
)

+ · · ·

N2LO = O
(
e2p2

)
+ · · ·

Table 2.2: Hierarchy of isospin-violating three-body operators in Weinberg counting. The
suppression of these operators is given with respect to the isospin-conserving diagrams at
LO (cf. Table 2.1). Isospin violation appears either due to the inclusion of virtual photons
(wiggly lines) or due to mass differences and electromagnetic effects (crossed circles). Note
that diagrams with intermediate NNγ states were already considered in [112] and are thus
included in the dispersive corrections, cf. Sect. 2.6.
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of nucleon recoil in the isospin-conserving case. Next, the operators at NLO are suppressed
by O(e2p) compared to the three-body isospin-conserving operators at LO, and, given the
smallness of the expansion parameter, are already irrelevant numerically.6 Therefore, we may,
in principle, restrict the analysis to all isospin-violating mechanisms up to N1/2LO.

However, due to the appearance of new scales in the three-body problem, certain higher-
order operators might be enhanced, even though formally they only appear beyond O(e2p1/2).
Therefore, we investigate several higher-order effects:

1) To account for all effects related to the three-body cut in the double-scattering diagram
we keep all terms proportional to the pion and nucleon mass differences in the πNN
propagator unexpanded (see Sect. 2.4). In particular, we include the nucleon mass
difference in the propagators to have the π0nn and π−pn thresholds at the proper places,
although this is formally an NLO effect.7

2) Due to the large size of the double-scattering diagram in the isospin-conserving case we
include isospin violation in the πN vertices in this diagram. This effect also starts at
NLO.

3) We study certain virtual-photon corrections to the double-scattering process (formally
appearing at N2LO). The presence of virtual photons enhances the region of small mo-
menta in these diagrams, so that the integrals become infrared divergent in the limit of
vanishing deuteron binding energy. The finite binding energy of the deuteron renders
these diagrams finite, but the resulting contribution is potentially enhanced. In view of
the fact that double scattering is numerically by far the dominant contribution to π−d
scattering, these virtual-photon corrections could become relevant despite their being
suppressed by yet another order in the power counting. This effect is discussed in detail
in Sect. 2.5.

Note that the isospin-violating three-body mechanisms up to N1/2LO are of purely elec-
tromagnetic origin, while isospin violation due to the quark mass difference appears only in
higher-order corrections, e.g. in 1) and 2). In particular, isospin violation in the pion mass
difference is predominantly an electromagnetic, not a quark-mass effect (there is no term
∼ md − mu at LO in isospin violation), while nucleon-mass-difference effects enter only at
O(e2p). In the case of 2), the isospin-violating πN interactions which appear there include
terms proportional to the quark mass difference—as reviewed in Sect. 2.2—but this whole
class of diagrams involving isospin-breaking pion–nucleon vertices does not start until NLO.
We demonstrate in the subsequent sections that it is indeed the case that the additional correc-
tions 1)–3) beyond N1/2LO are significantly smaller than the estimated theoretical uncertainty
of the full analysis. Hence, the explicit calculation of these higher-order corrections provides
an additional test of our counting scheme and uncertainty estimate.

6Furthermore, for full consistency with the power counting, the inclusion of NLO corrections to the three-
body isospin-violating operators would require the calculation of N2LO isospin-violating two-body corrections,
which have yet to be worked out.

7At first order in isospin breaking we have ∆N = −4Bc5(md − mu) + f2e
2F 2

π and ∆π = 2Ze2F 2
π , with

c5 ∼ f2 ∼ 1/mp and Z = O(1). These quantities then enter the πNN propagator in the combination
ρ = 2Mπ∆N − ∆π, cf. (2.21). Assuming that the electromagnetic and quark-mass-induced contributions to
∆N are of the same size, one finds Mπ∆N/∆π ∼ Mπ/mp ∼ O(p). Therefore, the nucleon-mass-difference
contribution to ρ is suppressed by one chiral order compared to that coming from ∆π. After accounting for
the modification of the chiral counting due to the presence of the πNN cut, we find that ∆N contributes to
acut at O(e2p), whereas ∆π affects the scattering length already at O(e2).
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Figure 2.1: Double-scattering contributions to π−d scattering.

2.4 Strong contributions to π−d scattering

2.4.1 Double scattering

We start our discussion with the double-scattering diagrams (d1) and (d2) (cf. Fig. 2.1). While
diagram (d1) enters already at LO and contributes to all higher orders due to the nucleon-
recoil effect, diagram (d2) gives rise to a three-body contribution only if nucleons are not
treated as static. Indeed, in the limit of infinitely heavy nucleons the pion loops in diagram
(d2) are already subsumed in the πN scattering lengths, since in this limit (d2) is nothing but
an ordinary loop correction in their chiral expansion. In this way, the contribution to π−d
scattering from the part of (d2) corresponding to static nucleons is always included in the
two-body term a

(2)
π−d

proportional to a+, see (2.8) and (2.9). Thus, to obtain an additional
three-body correction we need to investigate the effect of embedding the πN amplitude into
the πNN system. In this procedure, established for the isospin-conserving case in [110, 111],
the proper treatment of three-body dynamics demands that the contribution of the two-body
(πN) cut be replaced by that of the three-body (πNN) cut. The goal of this section is to
extend this formalism to the isospin-violating case.

First, we note that in the calculation of the double-scattering diagrams one can safely omit
all isoscalar terms, since the term proportional to (ã+)2 is tiny compared to (a−)2, while the
term proportional to the combination ã+a− cancels. Therefore, we calculate the diagrams of
Fig. 2.1 keeping only the isovector πN scattering amplitude, but retaining the isospin-violating
correction ∆a−. Following the procedure described in [110], we obtain

a(d1)+(d2) = astatic + astaticNLO + acut +∆a(2) ,

astatic = −ā2
〈

1

q2

〉
, astaticNLO = ā2

〈
1

q2

(
ωq

ωq +mp

)〉
,

acut =

∫
d3p d3q

(
Ψ†(p)−Ψ†(p− q)

)
Ψ(p)

×
{
ā2
[

1

q2 + δ
− 1

q2 + δ̃

]
− ā2cex

[
1

q2 + δ
− 1

q2 + δ + ρ

]}
,

∆a(2) = ā2cex

∫
d3q

[
1

q2 + δ̃
− 1

q2 + δ̃ + ρ

]
, (2.21)

where

δp1,p2 = 2ωp1−p2

(
ǫ+

p2
1 + p2

2

2mp

)
, δ = δp,p−q , δ̃ =

ωqq
2

mp
, ρ = 2Mπ∆N −∆π ,

ωq =
√
M2
π + q2 , 〈f(q)〉 =

∫
d3p d3qΨ†(p− q)f(q)Ψ(p) , (2.22)
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and ǫ is the deuteron binding energy. The πN scattering lengths in (2.21) are defined as

ā2 =
ξ2p
π2ξd

(
(a− +∆a−)2 +

1

2

(
acexπ−p

)2)
=

ξ2p
π2ξd

(
2(a−)2 + 2a−∆a− −

√
2 a−∆acexπ−p + · · ·

)
,

ā2cex =
ξ2p

2π2ξd

(
acexπ−p

)2
=

ξ2p
π2ξd

(
(a−)2 −

√
2 a−∆acexπ−p + · · ·

)
, (2.23)

where the ellipses contain higher orders in isospin violation. We use a normalization of the
deuteron wave functions Ψ(p) where

∫
d3pΨ†(p)Ψ(p) = 1 . (2.24)

The individual terms in (2.21) can be interpreted as follows: astatic corresponds to (d1)
evaluated with a static pion propagator, and is numerically by far the dominant contribu-
tion. Recoil corrections to the static pion propagator are incorporated in astaticNLO , while acut

comprises effects due to the three-body π0nn and π−pn cuts. ∆a(2) emerges as an isospin-
violating correction in this rearrangement, which in the end does not constitute a true three-
body effect—as indicated by the absence of the deuteron wave function. In the isospin limit
ρ = ∆π = ∆N = ∆a− = ∆acexπ−p = 0 (2.21) reduces to the result derived in [110].

As alluded to in Sect. 2.3.1, the power counting is complicated by the fact that the integrals
in (2.21) involve scales other than Mπ:

√
Mπǫ and

√
Mπ/mpMπ due to the three-body cut,

and √
mpǫ by means of the deuteron wave functions. Accordingly, it may seem at first glance

that the presence of a three-body cut renders the integral for acut enhanced compared to its
naive ChPT order by

√
mp/Mπ [119]. Indeed, it was shown in [111] that the full result for

the double-scattering diagrams can be expanded in half-integer powers of χ as

a(d1)+(d2) = astatic + a1 χ
1/2 + a2 χ+ a3 χ

3/2 + · · · , (2.25)

where non-integer powers appear due to the presence of the three-body cut. However, the
leading non-integer recoil correction at order χ1/2 vanishes, since the Pauli principle and
the isovector character of the leading πN scattering operator ensure that the intermediate
NN state is projected onto a P -wave [110]. Explicitly, the χ1/2 contribution to acut can be
derived by neglecting small pion momenta q with respect to p in the wave functions, which
immediately proves that a1 = 0 , see (2.21). In consequence, the scales

√
Mπǫ,

√
Mπ/mpMπ,

and √
mpǫ do not enter at this order: all potentially enhanced contributions cancel due to

a subtle interplay between the two diagrams (d1) and (d2) ultimately dictated by the Pauli
principle. Therefore, the combined integral is indeed dominated by momenta of order Mπ, as
assumed in the power counting. Half-integer corrections at order χ3/2 and above may contain
the additional scales as well, but still momenta of order of Mπ will have the largest impact on
a3 in (2.25).

In principle, there are also diagrams with P -wave interactions between nucleons in the
intermediate state. Examination of the integrand for aπ−d in this case shows that the size of
the effect can be estimated as [33]

χ3/2
∣∣δ3PJ

∣∣astatic ∼ 0.2 · 10−3M−1
π , (2.26)

where J ∈ {0, 1, 2}, and the NN phase shifts δ3PJ provide a further suppression beyond the
ChEFT counting that ensures that this class of diagrams does not have to be considered any
further.
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Figure 2.2: Isospin violation in (d3) and (d4).

2.4.2 Further leading-order diagrams

Although the diagrams (d3) and (d4) (cf. Fig. 2.2) are suppressed by accidentally small spin-
isospin factors [109], we have calculated the full isospin-violating corrections to this class of
diagrams, as required by the power counting

aππ =
g2AM

2
π0

128π4ξdF 4
π

{〈
q · σ1q · σ2

(q2 +M2
π0)2

〉
− 4∆π

M2
π0

〈
q · σ1q · σ2

(q2 +M2
π)

2

〉}
. (2.27)

We find that isospin breaking due to the pion mass difference amounts to 4∆π/M
2
π0 ≈ 28%.

This is a large isospin-violating effect, which is, however, of little practical relevance given
the overall suppression of this contribution. As was shown in [108], NLO contributions to the
leading-order diagrams vanish in the isospin limit. As isospin-breaking corrections to this are
suppressed by another two orders, subleading corrections to (d1)–(d4) may therefore be safely
ignored.

2.4.3 Triple scattering and the multiple-scattering series

Despite its nominal suppression by p2 relative to the double-scattering operator (see Table 2.1),
it was shown in [108,109] that the triple-scattering diagram is enhanced by a factor of π2 over
its power-counting estimate and hence has to be included in order to achieve the desired
accuracy. Neglecting isoscalar contributions as well as isospin-breaking corrections, one finds

atriple =
(ξpa

−)3

πξd

〈
1

|q|

〉
. (2.28)

The enhancement can be traced back to the occurrence of two Coulombic propagators, which
produces a dimensionless integral that is not O(1), as assumed in dimensional analysis, but in-
stead yields a factor π2. Similar enhancements occur at higher orders in the multiple-scattering
series as well, potentially jeopardizing the convergence of the perturbative expansion. How-
ever, an explicit numerical evaluation shows that the result for the full multiple-scattering
series resummed in configuration space [122]

ams = − 4

ξd

〈
(ξpa−)2

r − (ξpa−)3

r2

1 +
(ξpa−)2

r2 − 2
(ξpa−)3

r3

〉
= −4(ξpa

−)2

ξd

〈
r

r2 + rξpa− + 2(ξpa−)2

〉
(2.29)
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model Λ/Λ̃ 〈1/q2〉 INLO Icut 〈1/|q|〉 aππ IEM

AV 18 — 12.7 1.94 −2.68 7.4 −0.00050 9.92

CD-Bonn — 12.8 2.04 −2.47 8.7 −0.00037 9.85

ChEFT N2LO 450/500 13.0 2.12 −2.29 9.7 −0.00007 9.85

ChEFT N2LO 600/500 12.8 2.04 −2.43 8.8 −0.00025 9.94

ChEFT N2LO 550/600 12.9 2.09 −2.39 9.5 −0.00020 9.91

ChEFT N2LO 450/700 13.2 2.15 −2.30 9.9 −0.00007 9.95

ChEFT N2LO 600/700 12.9 2.09 −2.43 9.4 −0.00025 9.85

Table 2.3: Matrix elements for phenomenological as well as N2LO chiral wave functions in
appropriate powers of Mπ [33]. The cutoffs Λ/Λ̃ are given in MeV and specify the version of
the chiral interaction as given in [29]. IEM is defined in Sect. 2.4.4 and needed for diagrams
involving virtual photons.

differs from the first two terms (double and triple scattering) by only 0.1 · 10−3M−1
π [33],

significantly less than the estimated uncertainty due to the contact term of about 1·10−3M−1
π .

Hence, the multiple-scattering series converges sufficiently fast that quadruple scattering and
higher orders can be neglected in the calculation of aπ−d. For a more detailed discussion of
the multiple-scattering series in meson–nucleus scattering we refer to [123].

2.4.4 Numerical results

In Table 2.3 we quote the results given in [33] for the wave-function averages for two different
modern phenomenological interactions, AV18 [124] and CD-Bonn [125], as well as N2LO chiral
interactions [29]. As the isospin-breaking corrections to the πN scattering lengths in (2.23)
are relevant only for astatic, to which they contribute about 1%, we may write the integrals
for the contribution of acut and the NLO correction to the static πNN propagator as

acut =
2ξ2p
π2ξd

(a−)2Icut , astaticNLO =
2ξ2p
π2ξd

(a−)2INLO , (2.30)

with

Icut =

∫
d3p d3q

(
Ψ†(p)−Ψ†(p− q)

)
Ψ(p)

{
1

q2 + δ
− 1

q2 + δ̃
− 1

2

[
1

q2 + δ
− 1

q2 + δ + ρ

]}
,

INLO =

〈
1

q2

(
ωq

ωq +mp

)〉
, (2.31)

and δ, δ̃, and ρ defined in (2.22).
While the statistical uncertainties of the numerical results are not significant, an apprecia-

bly larger uncertainty is introduced by the different short-distance (r ≪ 1/Mπ) physics of the
NN wave functions used. To combine the results for the different deuteron wave functions, we
take the average of all seven potentials as our mean value, while the uncertainty is taken to be
the maximum deviation from this average. In this way, we obtain the individual contributions
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astatic −24.1 ± 0.7 astaticNLO 3.8 ± 0.2 acut −4.8± 0.5

atriple 2.6± 0.5 aππ −0.2± 0.3 ∆a(2) 0.2

Table 2.4: Strong contributions to a(3)
π−d

in units of 10−3M−1
π for a− = 86.1 · 10−3M−1

π .

to astr given in Table 2.4 (note that ∆a(2) is independent of the deuteron wave function).
Summing all contributions to astr, we find

astr = (−22.6 ± 1.1± 0.4) · 10−3M−1
π , (2.32)

where the first error refers to the model dependence of the matrix elements and the second to
the uncertainty in the isospin-breaking shifts in the πN scattering lengths.8

2.5 Virtual photons

The improved Deser formula (2.7) is derived in an EFT that resums the effects of the photon
ladder in pionic deuterium. In particular, this calculation already includes effects charac-
terized by virtual-photon momenta |k| ∼ r−1

B with the Bohr radius rB = (αMπ)
−1. The

virtual-photon corrections to aπ−d should therefore include all contributions above this scale,
a requirement that can in fact be regarded as a definition of the π−d scattering lengths in the
presence of electromagnetic interactions (see Sect. 3.2.1). In the chiral regime where momenta
are assumed to be of order Mπ, photons are perturbative and the leading contributions due to
the exchange of (Coulomb) photons between the π− and the proton are given by the diagrams
shown in Fig. 2.3: (d6), (d7), and (d8) (cf. Table 2.2).

However, diagrams (d6) and (d8)–(d10) involve πNN intermediate states with relative
momenta ∼

√
Mπǫ ≪ Mπ. Even more, these diagrams are “would-be infrared singular” in

the sense that in the limit ǫ → 0 (and for static nucleons) they entail the (singular) matrix
elements 〈1/q4〉. This leads to a potential enhancement ∼

√
Mπ/ǫ for physical values of ǫ.

Furthermore, the intermediate NN pair can be in an S-wave, so that NN interactions cannot
be ignored. In particular, in the isoscalar partial wave, where the intermediate NN Green
function includes the deuteron pole, the contribution of a point-like deuteron already accounted
for in the improved Deser formula needs to be carefully subtracted (see Appendix A.2).

In the remainder of this section, we will discuss all these effects in some detail. As the
appearance of additional scales might require modifications of the ChPT counting rules, we
will also consider the higher-order diagrams (d9) and (d10).

2.5.1 Diagrams without intermediate-state NN rescattering

As a first step, we consider the diagrams depicted in Fig. 2.3 without intermediate-state NN
interactions. For (d6) and (d8) we obtain

a(d6)+(d8) =
2αMπξp
π2ξd

∫
d3p d3q

aπ−nΨ
†(p− q)Ψ(p) + aπ−pΨ

†(p)Ψ(p)

|q|
(
|q|+ δ/2ωq

)(
q2 + δ

) , (2.33)

8These results are quoted for a− = 86.1 · 10−3M−1
π . However, for the final result in Fig. 3.1 the full a−

dependence of astr is taken into account.
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Figure 2.3: Virtual-photon diagrams in π−d scattering. Charged and neutral pions as well
as protons and neutrons are shown explicitly to illustrate how the photon couples to the
charged particles. The effect of mass differences between charged and neutral particles is not
considered, since it is higher order in isospin breaking.

where we have used time-ordered perturbation theory to include the nucleon recoil both in the
photon and the pion propagator. It is now convenient to split this expression into isovector
and isoscalar πN interactions. Dropping isospin violation in the scattering lengths, the isospin
T = 1 part becomes

a
(d6)+(d8)
T=1 =

2αMπξpa
−

π2ξd

∫
d3p d3q

(
Ψ†(p)−Ψ†(p− q)

)
Ψ(p)

|q|
(
|q|+ δ/2ωq

)(
q2 + δ

) . (2.34)

Similar to the double-scattering diagram the expansion of (d6) and (d8) in Mπ/mp induces
non-analytic terms due to nucleon recoil. However, contrary to acut in (2.21) the region of
small momenta in (2.34) is significantly enhanced due to the presence of the photon. As a
consequence, the expansion9 of (d6) and (d8) starts from χ−1/2

a(d6)+(d8) = b0 χ
−1/2 + bstatic + b1 χ

1/2 + · · · . (2.35)

Indeed, at leading order in Mπ/mp, which appears from the non-perturbative regime of the
three-body cut (|q| ∼

√
Mπ/mp|p| ≪ |p|), the contributions of (d6) and (d8) are equal and

9Note that this concerns only the aforementioned expansion in Mπ/mp, whereas the scale of the individual
contributions is hidden in the coefficients bi. For example, b0 ∼ Mπ/γ is dominated by momenta ∼ γ =

√
mpǫ,

which together with χ−1/2 from (2.35) produces
√

Mπ/ǫ in (2.38).
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both involve the integral
∫

d3p d3q
Ψ†(p)Ψ(p)

q2
(
q2 + 2Mπ(ǫ+ p2/mp)

) =

√
2π2√
χ

∫
d3p

Ψ†(p)Ψ(p)√
p2 + γ2

. (2.36)

If we use asymptotic deuteron wave functions

Ψ(p) =

√
γ

π(p2 + γ2)
(2.37)

to perform the integral, we find at leading order

a
(d8)
T=1 = −a(d6)T=1 =

2αMπξpa
−

π2ξd

8π

3
√
2

1√
Mπǫ

= a−
16αξp
3πξd

√
Mπ

2ǫ
. (2.38)

In this way, we see that indeed the individual diagrams are enhanced by
√
Mπ/ǫ, but these

contributions cancel in the sum of (d6) and (d8), with the result that b0 = 0 in (2.35) (in close
analogy to a1 = 0 in (2.25)). The physical explanation for this cancellation is again provided
by the Pauli principle: as the πN interaction does not change the spin, it implies that for the
isovector case the intermediate NN pair must be in a P -wave, which is reflected by the relative
sign between the wave functions in (2.34). As P -wave NN interactions are small, the only
non-vanishing isovector contribution is therefore generated by the residual effects in (2.34).

The calculation of the gauged Weinberg–Tomozawa diagram (d7) including the nucleon
recoil in the photon propagator proceeds along the same lines as the decomposition of (d1)
and (d2). Subtracting the appropriate two-body diagram, we obtain

a(d7) = − α

16π3F 2
πξd

〈
1

q2

〉
+

α

16π3F 2
πξd

〈
1

|q|(2mp + |q|)

〉
(2.39)

+
α

16π3F 2
π ξd

∫
d3p d3q

(
Ψ†(p)−Ψ†(p− q)

)
Ψ(p)

{
1

|q|(|q|+ δ/2ωq)
− 1

|q|(|q| + q2/2mp)

}
,

where the second and third terms are analogs of astaticNLO and acut, respectively. For momenta
∼ Mπ, the recoil correction in the photon propagator is, in principle, a higher-order effect.
Indeed, numerical evaluation [33] shows that the corrections to the static photon propagator
are very small, only about −0.045 · 10−3M−1

π , and may therefore be safely neglected.
In contrast, the Pauli principle allows for S-wave NN interactions in the isoscalar part

of (d6) and (d8). These will be discussed in Sect. 2.5.2, while the numerical results are
summarized in Sect. 2.5.4. However, if the T = 0 part of these diagrams were significant,
then one would also be concerned about virtual-photon exchange within the more sizeable
double-scattering diagram. For this reason, we also give the expressions for (d9) and (d10).
Neglecting the nucleon recoil in the photon propagator, the result reads

a(d9)+(d10) = −αMπ(ξpa
−)2

π4ξd

〈
3

q2

∫
d3l

l2
(
l2 + δp,p+l

) +
∫

d3l

(q+ l)2 l2
(
l2 + δp,p+l

)
〉
, (2.40)

which can be separated into its isoscalar and isovector pieces as follows

a
(d9)+(d10)
T=0 = −2αMπ(ξpa

−)2

π4ξd

〈
1

q2

∫
d3l

l2
(
l2 + δp,p+l

) +
∫

d3l

(q+ l)2 l2
(
l2 + δp,p+l

)
〉
,

a
(d9)+(d10)
T=1 = −αMπ(ξpa

−)2

π4ξd

〈
1

q2

∫
d3l

l2
(
l2 + δp,p+l

) −
∫

d3l

(q+ l)2 l2
(
l2 + δp,p+l

)
〉
. (2.41)
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Figure 2.4: Leading virtual-photon diagrams with the black blobs indicating intermediate-
state NN interactions. The time-reversed diagrams are not shown explicitly, but are included
in the calculation (time flows from left to right).

Again, the leading, potentially enhanced contribution in the isovector case cancels in accor-
dance with the Pauli principle. The isoscalar case, including intermediate-state NN interac-
tions, will be addressed in Sect. 2.5.3.

2.5.2 The role of rescattering I: single scattering with photon exchange

The isoscalar contribution of (d6) and (d8) including intermediate-state NN interactions (ISI)
(see Fig. 2.4) is given by

a
(d6)+(d8)
T=0 + a

(d6)+(d8)
T=0, ISI = −8παξpa

+

(2π)6ξd

∫
d3k

k2

∫
d3q d3q′Ψ†(q′)

×
{
Gs

(
q′ − k

2
,q− k

2
;−ǫ− k2

2Mπ
,−k

)
+Gs

(
q′ − k

2
,−q+

k

2
;−ǫ− k2

2Mπ
,−k

)

− 2(2π)3Ψ(q′)Ψ†(q)

−k2/2µD + iη

}
Ψ(q) , (2.42)

where Gs(p′,p;E,P) is the isoscalar NN Green function for initial (final) relative momentum
p (p′) and a state of total energy E and momentum P. Note that to obtain this result we
have neglected the nucleon recoil in the photon propagator and treated the pion as a non-
relativistic particle. In the regime relevant for this section, where the pion momentum is
much less than its mass, both approximations amount to perturbative corrections to the main
result. Therefore, we may neglect these effects for the time being, and focus on the infrared
enhancement of these graphs. The two Green functions may be interpreted as direct and
exchange contributions, i.e. the photon can couple either to the nucleon that undergoes the
πN interaction or to the other one. The last term subtracts the deuteron pole (η → 0+), as
this part is already accounted for in the modified Deser formula, cf. Fig. 2.5 for a graphical
illustration of this piece. The shift of the 1s level in pionic deuterium is proportional to the
convolution of the π−d scattering length with the Coulombic wave function of the atom, which
diagrammatically correspond to an infinite ladder of Coulomb photons. The simplest example
shown in Fig. 2.5 thus needs to be subtracted in (2.42) in order to avoid double counting. The
details of the derivation of (2.42) are relegated to Appendix A.2.1.

The isoscalar propagator Gs is real for energies below the NN threshold and constructed
out of continuum states normalized as10

∫
d3q

(2π)3
Ψs †

p (q)Ψs
p′(q) = (2π)3δ(3)(p′ − p) , (2.43)

10Note that this implies a different normalization of continuum and deuteron wave functions (merely owed
to the choice of conventions).
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Figure 2.5: Contribution to the modified Deser formula in the πD atom due to the part of
the Coulomb-photon ladder that is subtracted in (2.42) and (2.59). The double line labels the
deuteron, the box corresponds to π−d scattering, and the circle to the photon coupling of the
deuteron.

with Ψs
p(q) obeying

(
p2

mp
− q2

mp

)
Ψs

p(q) =

∫
d3q′

(2π)3
Vs(q,q

′)Ψs
p(q

′) , (2.44)

where Vs is the isoscalar projection of the NN potential. The free part of Gs is therefore

G(0)(q′,q;E,P) =
(2π)3δ(3)(q′ − q)

E + iη −P2/4mp − q2/mp
, (2.45)

while the total Green function can be related to the NN scattering T -matrix as

Gs(q
′,q;E,P) = G(0)(q′,q;E,P)

+
T (q′,q;E,P)

(E + iη −P2/4mp − q2/mp)(E + iη −P2/4mp − q′2/mp)
, (2.46)

where T is connected to the NN phase shifts via

T (k,k;E,P) = − 4π

mp

1

k cot δ(k) − ik
(2.47)

with k = |k| =
√
mp(E −P2/4mp). Alternatively, Gs can be rewritten in terms of the bound-

and continuum-state wave functions

Gs(q
′,q;E,P) =

(2π)3Ψ(q′)Ψ†(q)

E + iη + ǫ−P2/4mp
+

∫
d3p

(2π)3
Ψs

p(q
′)Ψs †

p (q)

E + iη − p2/mp −P2/4mp
. (2.48)

The additional factor (2π)3 for the deuteron-pole part is due to our conventions for the
deuteron wave functions (2.24). Inserting the free part of the Green function (2.45) into (2.42)
reproduces the expressions for the structureless diagrams discussed in Sect. 2.5.1 up to higher-
order terms neglected in the derivation of (2.42). Using the decomposition (2.48), the isoscalar
contributions can be cast into the form

a
(d6)+(d8)
T=0 + a

(d6)+(d8)
T=0, ISI =

16παξpa
+

ξd

∫
d3k

(2π)3
1

k2

{ |F (k)|2 − 1

k2/2µD − iη
(2.49)

+

∫
d3p

(2π)6
1

ǫ+ p2/mp + k2/2µD − iη
Gsp(k)

1

2

(
Gs †

p (k) +Gs †
p (−k)

)}
,

where

F (k) =

∫
d3qΨ†(q)Ψ(q − k/2) , Gsp(k) =

∫
d3qΨ†(q)Ψs

p(q− k/2) . (2.50)
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From the normalization condition of Ψ(q) and the orthogonality of Ψ(q) and Ψs
p(q) for van-

ishing momentum transfer, it follows that

|F (k)|2 − 1 = O
(
k2
)
, Gsp(k) = O(k) . (2.51)

In this way, we conclude that also in the isoscalar case no terms enhanced by
√
Mπ/ǫ remain.

Due to the chiral suppression of a+ the subleading corrections can simply be dropped. The
reasoning used here—based on exploiting orthogonality of bound state and continuum wave
functions—follows the calculation of recoil corrections to K̄d scattering in [111].

Alternatively, the cancellation can be derived within heavy-pion effective field theory
(HπEFT) [126]. In this case, it is also convenient to split the total effect into parts with-
out and parts with ISI. The portion without ISI gives (cf. (2.35) and (2.38))

a
(d8)
T=0 = a+

16α

3π

√
Mπ

2ǫ

(
1 +O

(
Mπ

mp

))
,

a
(d6)
T=0 = a+

16α

3π

√
Mπ

2ǫ

(
1− 3π

8
√
2

√
Mπ

mp
+O

(
Mπ

mp

))
. (2.52)

Again, these expressions show the anticipated infrared enhancement.
The diagrams with ISI can be evaluated using the leading-order form of the NN scattering

amplitude in pionless EFT [127]

Ts,NN (q
′,q;E,P) =

4π

mp

1

γ + i

√
mp

(
E − P2

4mp

) . (2.53)

Indeed, after removing the deuteron pole already accounted for in the Deser formula, one
finds [33]

a
(d6)+(d8)
T=0, ISI = −32α

3π
a+
√
Mπ

2ǫ
, (2.54)

which precisely cancels the leading piece of the free part of the diagrams in (2.52). Further-
more, any contributions from momenta |k| ∼

√
Mπǫ may only appear in the non-integer terms

in the expansion (2.35) and thus are suppressed by an additional power of Mπ/mp (i.e. they
correspond to the third term in (2.35)). These contributions thus have an overall size

32α

3π

Mπ

mp

√
Mπ

2ǫ
a+ ≈ 2.8αa+ , (2.55)

and are therefore well beyond the accuracy we claim for our calculation.
Nevertheless, there are still possible contributions from diagrams with ISI and momenta of

order γ. These would be enhanced by Mπ/γ compared to their naive ChPT order, and hence
could be relevant for the present analysis. Decomposing the Green function according to

Gs(q
′,q;E,P) = G(0)(q′,q;E,P) +

(2π)3Ψ(q′)Ψ†(q)

E + iη + ǫ−P2/4mp
(2.56)

+
1

E + iη −P2/4mp − q′2/mp
T np
s,NN(q

′,q;E,P)
1

E + iη −P2/4mp − q2/mp
,
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i.e. into its free part, the deuteron pole, and the non-pole isoscalar NN T -matrix T np
s,NN , the

additional contributions due to ISI are given by

a
(d6)+(d8)
T=0, ISI = −8παξpa

+

ξd

∫
d3k

(2π)3
1

k2

{∫
d3q d3q′

(2π)3
Ψ†(q′)

1

−ǫ− k2/2µD − (q′ − k/2)2/mp

× T np
s,NN

1

−ǫ− k2/2µD − (q− k/2)2/mp
Ψ(q) + 2

|F (k)|2 − 1

−k2/2µD + iη

}
, (2.57)

with

T np
s,NN = T np

s,NN

(
q′−k

2
,q−k

2
;−ǫ− k2

2Mπ
,−k

)
+T np

s,NN

(
q′−k

2
,−q+

k

2
;−ǫ− k2

2Mπ
,−k

)
. (2.58)

We will present the results of an explicit numerical evaluation of this equation in Sect. 2.5.4.
Finally, the part of the integral involving momenta |k| ∼ Mπ only contributes at the naive
chiral order of the pertinent diagrams. For that effect it suffices to evaluate (d6)–(d8) without
any ISI, keeping only the T = 1 pieces of the free parts of these graphs, cf. (2.34) and (2.39).

2.5.3 The role of rescattering II: double scattering with photon exchange

If only momenta |k| ∼ Mπ were important, there would be no need to consider (d9) and
(d10). However, the full isoscalar contribution to these diagrams reads (for the derivation see
Appendix A.2.2)

a
(d9)+(d10)
T=0 + a

(d9)+(d10)
T=0, ISI =

32π2α(ξpa
−)2

ξd

∫
d3k

(2π)3

∫
d3l

(2π)3
1

k2l2

∫
d3q d3q′

(2π)3
Ψ†(q′)

×
{
2Gs

(
q′ − k

2
,q− k

2
+ l;−ǫ− k2

2Mπ
,−k

)
+ 2Gs

(
q′ − k

2
,−q+

k

2
− l;−ǫ− k2

2Mπ
,−k

)

− 4(2π)3Ψ(q′)Ψ†(q− l)

−k2/2µD + iη

}
Ψ(q) . (2.59)

The same arguments as for single scattering yield that the leading contributions from momenta
|k| ∼

√
Mπǫ cancel, but again momenta of order γ could yield terms enhanced by Mπ/γ that

might compromise the accuracy of our calculation. To evaluate these contributions explicitly
we have checked that the free part of the Green function reproduces (2.41), while ISI lead to

a
(d9)+(d10)
T=0, ISI =

32π2α(ξpa
−)2

ξd

∫
d3k

(2π)3

∫
d3l

(2π)3
1

k2l2

{∫
d3q d3q′

(2π)3
Ψ†(q′)

× 1

−ǫ− k2/2µD − (q′ − k/2)2/mp
T̃ np
s,NN

1

−ǫ− k2/2µD − (q− k/2 + l)2/mp
Ψ(q)

+ 4
F (k)F (k − 2l) − F (2l)

−k2/2µD + iη

}
, (2.60)

with

T̃ np
s,NN = 2T np

s,NN

(
q′−k

2
,q−k

2
+l;−ǫ− k2

2Mπ
,−k

)
+2T np

s,NN

(
q′−k

2
,−q+

k

2
−l;−ǫ− k2

2Mπ
,−k

)
,

(2.61)
where we have used repeatedly that Ψ(p) = Ψ(−p).
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2.5.4 Numerical evaluations

In [33], the expressions for the isoscalar contributions to single and double scattering (2.42)
and (2.59) were evaluated using a separable NN potential (the integrals are dominated by
low-momentum modes, so that details of the potential do not matter)

V (p,p′) = λg(p)g(p′) , g(p) =
1

p2 + β2
, (2.62)

where λ is a constant tuned to reproduce the binding momentum γ =
√
mpǫ, and β = 1.4 fm−1

is introduced to parameterize the effective range of pn scattering, which enters into realistic
potentials through the one-pion exchange. Solving the Schrödinger equation (2.44) for the
bound state, one obtains the deuteron wave function of the Hulthén type [128]

Ψ(p) = N
g(p)

p2 + γ2
, N =

1

π

√
γβ(γ + β)3 . (2.63)

In this way, (2.42) with Gs from (2.46) leads to [33]

a
(d6)+(d8)
T=0 + a

(d6)+(d8)
T=0, ISI = −0.034 a+ . (2.64)

In fact, the individual contributions a(d6)+(d8)
T=0 and a

(d6)+(d8)
T=0, ISI are 5–6 times larger than their

sum, which attests to the cancellation derived in Sect. 2.5.2: at leading order both a(d6)+(d8)
T=0

and a(d6)+(d8)
T=0, ISI acquire large contributions from momenta of order

√
Mπǫ which, however, cancel

completely in the sum. If the dominant effect in the result (2.64) was indeed due to momenta
of order γ, it should also be accessible in HπEFT. From (2.52) we see that the free piece of
the isoscalar contribution to (d6) is

a
(d6)+(d8)
T=0 = −αa+Mπ

2γ

[
1 +O

(√
Mπ

mp

)]
≈ −0.022a+ . (2.65)

This number is actually quite close to (2.64), which suggests that indeed momenta of order γ
are largely responsible for this contribution.11

Similarly, the numerical evaluation of (2.59) with the pionful wave functions based on the
separable NN interaction described above yields [33]

a
(d9)+(d10)
T=0 + a

(d9)+(d10)
T=0, ISI = 0.3 · 10−3M−1

π . (2.66)

Again, this result is nearly saturated by residual contributions of the free diagrams from scales
above

√
Mπǫ. Contrary to (d6) and (d8), which are dominated by momenta of order γ, in this

case also momenta of order Mπ contribute significantly to the diagrams.
These evaluations show that despite their ostensible infrared enhancement the isoscalar

parts of (d6) and (d8)–(d10) receive contributions from momenta of order γ that result in
corrections to aπ−d which are still significantly smaller than the theoretical uncertainty of the
full calculation. We will therefore simply drop the isoscalar contributions in the following.

Finally, the numerical evaluation in [33] shows that—after the Pauli-principle-enforced
cancellation of terms of order

√
Mπ/ǫ—isovector contributions to (d9) and (d10) are very

11Taking into account the wave-function-renormalization factor Z = 1.690 from [129] changes (2.65) to
−0.037a+, which is even closer to (2.64).
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small, only about −0.1 · 10−3M−1
π . Thus, the same sort of cancellations that preclude the

existence of a χ1/2 contribution due to recoil in the double-scattering diagrams also enforces
the smallness of this T = 1 part of (d9) and (d10), which may therefore be omitted altogether.
Indeed, had we found that (d9) and (d10) were necessary for a precision evaluation of aπ−d,
we would have been forced to consider all photon diagrams at this order, since (d9) and (d10)
do not, on their own, form a gauge-invariant set of diagrams.

In fact, these results are very important, as the cancellations guarantee that the original
ChPT counting, which assesses the impact of momenta ∼ Mπ on the integrals, provides
a reasonable estimate of diagrams involving virtual photons, since the remaining infrared
enhancement is too weak to severely violate the ChPT estimates. In this way, we are left with
the diagrams (d6)–(d8)

aEM =
2αMπξpa

−

π2ξd
IEM − α

16π3F 2
πξd

〈
1

q2

〉
,

IEM =

∫
d3p d3q

(
Ψ†(p)−Ψ†(p− q)

)
Ψ(p)

|q|
(
|q|+ δ/2ωq

)(
q2 + δ

) . (2.67)

With the numerical results from Sect. 2.4.4 and a− = 86.1 · 10−3M−1
π , we obtain

aEM = (0.94 ± 0.01) · 10−3M−1
π , (2.68)

where the error again reflects the wave-function dependence as follows from Table 2.3. Thus,
virtual photons increase Re aπ−d by about 4%.

In summary, we may conclude that there are no infrared-enhanced photon contributions
from momenta ∼

√
ǫMπ—due to subtle cancellations both for isoscalar and isovector πN

interactions—and that the infrared enhancement provided by momenta ∼ γ is too weak to
generate effects that significantly exceed the estimates for momenta ∼ Mπ. The size of the
virtual-photon corrections is thus roughly in line with the original ChPT power counting.

2.6 Dispersive and ∆ corrections

There are two additional contributions to the π−d scattering length that have not been men-
tioned so far. First, diagrams with pure NN or NNγ intermediate states yield so-called
dispersive corrections. It is this class of diagrams that produces the imaginary part of aπ−d,
although here their leading contribution to the real part of aπ−d is suppressed by p3/2 rel-
ative to (d1) [112]. Second, diagrams with explicit ∆ degrees of freedom enter at the same
order [113]. The ∆(1232) contribution is a true three-body effect, since the nucleon recoil is
needed if this P -wave resonance is to contribute to S-wave π−d scattering. Typical examples
for each of these two effects are depicted in Table 2.1. Both classes were computed in [112,113]
using a calculation for NN → dπ up to NLO in ChEFT [130] in which all integrals were cut
off at 1GeV. However, varying this cutoff does not introduce additional uncertainty [33], so
that the combined effect in aπ−d amounts to [113]

adisp+∆ = (−0.6± 1.5) · 10−3M−1
π . (2.69)

Since this contribution is only O(p1/2) larger than the contact term, we need not include
isospin-violating corrections to adisp+∆, which, counting e ∼ p, would be suppressed by another
two orders.
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2.7 Summary of three-body contributions

In this section, we briefly summarize the results of Sects. 2.3–2.6, list the three-body cor-
rections that finally have to be included, and comment on the uncertainty estimate of the
calculation. First of all, we may conclude from the discussion in Sect. 2.3 that indeed all
isospin-conserving three-body corrections can be reliably calculated up to O(p3/2), i.e. up to
a relative accuracy of (Mπ/mp)

3/2, half an order below the leading (N †N)2ππ contact term.
Dimensional analysis for the contact term, the sensitivity of the integrals to the choice of the
deuteron wave function, and the investigation of higher-order terms in the multiple-scattering
series all point towards a final uncertainty of a few percent. However, at this accuracy it is
mandatory to account for three-body isospin-violating corrections, which are suppressed by e2

compared to the leading isospin-conserving terms. Therefore, we also performed a complete
calculation of the isospin-violating corrections up to O(e2p1/2). To this order, the three-body
isospin-violating corrections are of purely electromagnetic origin, while the quark mass differ-
ence starts to contribute only at O(e2p).

In Sect. 2.4 we have considered the diagrams of a multiple-scattering topology as well as
those that involve 3πN †N and 4π vertices (cf. Fig. 2.1). In particular, we have generalized
the decomposition of the leading, double-scattering diagram into the LO static term, its NLO
correction, and the contribution from the three-body cut to the isospin-violating case. While
nucleon recoil leads to important corrections in the calculation of double scattering, higher
diagrams with a multiple-scattering topology are sufficiently small that they may be evaluated
in the approximation of static nucleons, and terms beyond triple scattering can be discarded
altogether, cf. Sect. 2.4.3. Similarly, isospin-violating corrections are irrelevant for all terms
in the multiple-scattering series beyond double scattering.

The combination of all these effects defines the strong contribution to the π−d scattering
length astr. For the numerical evaluation we took the wave-function integrals from [33], which
gives (with a− = 86.1 · 10−3M−1

π )

astr = (−22.6 ± 1.1± 0.4) · 10−3M−1
π , (2.70)

where the first uncertainty arises from the different short-distance physics of the deuteron
wave functions, and the second from the isospin-breaking shifts in the πN scattering lengths.
The variation in the results due to the use of different wave functions is about 5%, completely
in line with the power-counting estimate for the contact term. The combined effect of the
dispersive and the ∆(1232) corrections that enter at O(p3/2) was discussed in Sect. 2.6 and
taken from [112,113]

adisp+∆ = (−0.6± 1.5) · 10−3M−1
π . (2.71)

Finally, Sect. 2.5 was devoted to a thorough investigation of the effects related to virtual
photons. Due to the presence of photon and pion propagators some of these diagrams are
infrared enhanced. Therefore, keeping the full dynamical structure of the πNN propagator
(including the nucleon recoil) is mandatory to avoid infrared-divergent integrals. To the order
we are working, it is sufficient to consider the diagrams (d6)–(d8), which form a gauge-invariant
set of diagrams at O(e2), leading to

aEM = (0.94 ± 0.01) · 10−3M−1
π , (2.72)

with only a ∼ 1% wave-function dependence. Despite the dominance of the double-scattering
term we found that associated virtual-photon corrections, cf. diagrams (d9) and (d10), do not
have to be included.
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The three pieces astr, adisp+∆, and aEM, when added together, constitute the three-body
contribution to the π−d scattering length. In fact, to a large extent, the novel three-body
effects accidentally cancel

∆a(2) + astaticNLO + acut + aEM = (0.1 ± 0.7) · 10−3M−1
π . (2.73)

This cancellation is, in itself, rather remarkable, since, e.g., astaticNLO is ∼ 40 times larger than
the final central value. The effect of the cancellation is that the main impact of our analysis
on the extraction of pion–nucleon scattering lengths is the consideration of NLO isospin-
breaking corrections—in particular the large shift ∆ã+ = (−3.3± 0.3) · 10−3M−1

π —in the πN
amplitude [131].



Chapter 3

πN scattering lengths and the

Goldberger–Miyazawa–Oehme

sum rule

3.1 Pion–nucleon scattering lengths

The detailed analysis of the π−d scattering length presented in Chapter 2 now permits a high-
accuracy extraction of the πN scattering lengths from a combined analysis of πH and πD.
The resulting constraints due to the dependence of the π−d scattering length on ã+ and a−

and the results for πH discussed in Sect. 2.1 are depicted in Fig. 3.1. The combined 1σ error
ellipse yields

ã+ = (1.9 ± 0.8) · 10−3M−1
π , a− = (86.1 ± 0.9) · 10−3M−1

π , (3.1)

with a correlation coefficient ρa−ã+ = −0.21. At this point, the merits of an additional
constraint besides πH data become apparent, as the inclusion of the πD energy shift reduces
the uncertainty of ã+ by more than a factor of 2 and the correlation between ã+ and a− by
more than a factor of 3. As far as the error analysis is concerned, we observe that in the case of
the πH level shift the width of the band is dominated by the theoretical uncertainty in ∆ãπ−p,
whereas for the πH width the experimental error is about 50% larger than the theoretical one.
Moreover, Table 3.1 shows the individual contributions to the πD error band: as with the πH
level shift, the experimental error is much smaller than the combined theoretical uncertainty,
whose largest individual contribution is produced by the uncertainty in adisp+∆. The wave-
function averages contribute about 0.5 · 10−3M−1

π to the overall uncertainty in ã+, which is
in line with the estimated impact on aπ−d of the O(p2) contact term. It is striking that—
apart from the πH width—any improvement of the experimental results would be in vain
without significant progress on the theoretical side, which, however, would require additional
information on LECs both in the πH and πD system.

To deduce a value for a+ itself, further input on c1 and f1 is needed according to (2.16).
c1 is related to the πN σ term: σπN = (45 ± 8)MeV as quoted in [80]1 corresponds to

1This value is consistent with recent determinations of σπN from the lattice, e.g. σπN = (50±10)MeV [132],
σπN = (59 ± 2 ± 17)MeV [133], σπN = (39 ± 4+18

−7 )MeV [134], σπN = (38 ± 12)MeV [135]. Note that all
these indirect extractions of σπN from the derivative of the nucleon mass by means of the Feynman–Hellmann
theorem [136] suffer from significant systematic uncertainties inherent in the chiral extrapolations, see e.g. [137].

47
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Figure 3.1: Combined constraints in the ã+–a− plane from data on the width and energy shift
of πH, as well as the πD energy shift.

c1 = (−0.9 ± 0.1)GeV−1 and c1 = (−1.0 ± 0.2)GeV−1 at third and fourth chiral order,
respectively [138]. Recent determinations based on πN threshold parameters yield c1 =
(−0.93 ± 0.07)GeV−1 [94] and c1 = (−1.2 ± 0.3)GeV−1 [84], while an investigation of πN
scattering inside the Mandelstam triangle led to c1 = (−0.81 ± 0.12)GeV−1 [139]. Finally, fits
of ChPT amplitudes to phase-shift analyses with and without explicit ∆ degrees of freedom
provide values in the range c1 = −(0.8 . . . 1.0)GeV−1 [140] and c1 = −(1.2 . . . 1.4)GeV−1 [78],
respectively.2 In conclusion, we consider

c1 = (−1.0± 0.3)GeV−1 (3.2)

as a reasonable average of the present knowledge on this LEC. Taken together with the rough
estimate |f1| ≤ 1.4GeV−1 [94, 141], this value for c1 and (3.1) yield a non-zero a+ at better
than the 95% confidence level

a+ = (7.6± 3.1) · 10−3M−1
π . (3.3)

The fact that the final result for a+ (or even more for ã+) is of the same order of magnitude as
several of the individual contributions considered in Chapter 2 emphasizes the necessity of a
systematic ordering scheme as well as a careful treatment of isospin violation and three-body
dynamics. A reduction of the theoretical uncertainty beyond that of the present analysis is
hard to conceive absent further QCD input that helps determine the unknown contact-term
contributions in both the πN and πNN sectors.

Finally, we can combine our values for the scattering lengths in the isospin limit with
the isospin-breaking corrections [93] to arrive at the πN scattering lengths for the physical

2Note that c1 is not saturated by the ∆ [120]. Therefore, the spread in the results reflects rather the
substantial uncertainties in the chiral expansion of the isoscalar amplitude, cf. (2.2) for the expansion of the
isoscalar S-wave scattering length.
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ǫD1s ∆a−,∆acexπ−p adisp+∆ ∆ã+ Wave-function averages

16% 21% 75% 30% 53%

Table 3.1: Individual contributions to the error on ã+, which, added in quadrature, yield the
total uncertainty depicted in the band for the πD level shift in Fig. 3.1. The impact of each
source of error is given as a percentage of the total (the second column gives the uncertainty
in the isospin-breaking shifts of πN scattering lengths that occur in astr, cf. (2.23)).

channels summarized in Table 3.2. Note that the difference between scattering lengths in the
same isospin channel is better known than their individual values, since the scattering lengths
in the isospin limit and the associated uncertainties drop out. For example, the difference
between aπ0p and aπ0n at NLO is given by [93]

aπ0p − aπ0n =
1

4πξp

{
4c5B(md −mu)

F 2
π

− M2
π

8πF 4
π

(√
∆π + 2Mπ∆N −

√
∆π − 2Mπ∆N

)}

= (−3.4 ± 0.4) · 10−3M−1
π , (3.4)

with c5 being related to the strong contribution to the proton–neutron mass difference. Al-
though it is formally of higher chiral order, here the contribution from the cusp due to π+n
and π−p intermediate states has been kept, since it is enhanced by half an order in the isospin-
breaking parameter δ = {e2,md −mu}. Indeed, it ultimately contributes about 30% to the
number quoted in (3.4).

3.2 Goldberger–Miyazawa–Oehme sum rule

The GMO sum rule [81] relates the charged-pion–nucleon coupling constant g2c/4π to the
scattering-length combination aπ−p − aπ+p and the integral over the cross-section difference
σtotπ−p − σtotπ+p measured in the laboratory frame for pion momenta |k| from zero to infinity

g2c
4π

=

((
mp +mn

Mπ

)2

− 1

){(
1 +

Mπ

mp

)
Mπ

4
(aπ−p − aπ+p)−

M2
π

2
J−
}
,

J− =
1

4π2

∞∫

0

d|k|
σtotπ−p(|k|) − σtotπ+p(|k|)√

M2
π + k2

. (3.5)

This result is derived by writing down dispersion relations for π±p → π±p for fixed t (see
Sect. 1.2.1), assuming that the amplitudes are analytic functions of s with a right-hand cut
starting at sthr = (mp +Mπ)

2 and a left-hand cut starting at s = (mp −Mπ)
2 − t. These

dispersion relations are then evaluated at threshold. The scattering lengths enter as the πN
amplitude at threshold, while the coupling constant gc is related to the residue of the nucleon
pole. Finally, one employs the optical theorem in the laboratory frame to replace the imaginary
part of the amplitude by the total cross section.

3.2.1 Isospin violation

There are two ways in which isospin violation affects the derivation of the GMO sum rule:
mass effects and virtual photons. The proton–neutron mass difference enters through the



50 Chapter 3. πN scattering lengths and the GMO sum rule

isospin limit channel scattering length channel scattering length

a+ + a− π−p→ π−p 86.1 ± 1.8 π+n→ π+n 85.2 ± 1.8

a+ − a− π+p→ π+p −88.1± 1.8 π−n→ π−n −89.0 ± 1.8

−
√
2 a− π−p→ π0n −121.4 ± 1.6 π+n→ π0p −119.5 ± 1.6

a+ π0p→ π0p 2.1± 3.1 π0n→ π0n 5.5 ± 3.1

Table 3.2: πN scattering lengths for the physical channels in units of 10−3M−1
π , including

isospin-breaking corrections both due to mass effects and virtual photons [93].

intermediate neutron in the nucleon-pole diagram, which is already taken into account in (3.5).
Additionally, the threshold for π−p→ π0n lies below sthr, with the result that the right-hand
cut for π−p already starts at (mn + Mπ0)2. Thus, the total cross section for π−p diverges
at threshold due to the lower threshold of π0n. However, this divergence corresponds just to
the right half of a principal-value integral: the dispersion integral for the reaction π−p really
starts at s = (mn +Mπ0)2, and the resulting pole at sthr can be taken care of in the usual
way by the principal-value prescription. To estimate the remaining effect, one may use the
fact that the imaginary part of the amplitude for s < (mp +Mπ)

2 can be well approximated
by the imaginary part of the π−p scattering length due to the π0n intermediate state [93]. In
this way, we find a shift in J− by about −0.005mb, which we will take into account in our
uncertainty estimate for J− below. In conclusion, mass effects do not invalidate the GMO
sum rule and the necessary modifications are quite well under control.

In contrast, we cannot write down the GMO sum rule in the presence of virtual photons,
as e.g. the nucleon pole is not separated any more from the γN cut. Therefore, (3.5) is only
applicable if all ingredients are purified from virtual-photon effects to ensure that the analytic
structure of the corresponding amplitude coincides with what was assumed in the original
derivation. For this reason, we will adopt the following point of view: we assume that the
removal of electromagnetic effects in the cross sections using the Tromborg procedure [142]
works sufficiently well that the resulting value for J− is compatible with the above analyticity
assumptions. Moreover, we subtract virtual-photon effects in the scattering lengths based
on [93], but keep isospin-violating effects due to the nucleon and pion mass difference (we will
dwell on this procedure in Sect. 3.2.3). In this way, our final result for gc consistently refers
to the scenario where all particle masses are fixed at their physical value, but virtual photons
are switched off.

Finally, we comment on the definition of scattering lengths and coupling constants in the
presence of electromagnetic interactions. Even in principle, the calculation of electromagnetic
corrections is a scale-dependent procedure [143], which, however, can only be systematically
addressed if the underlying theory is known. Within an effective theory, ChPT in our case,
a consistent treatment of electromagnetic corrections is possible, apart from the fact that
the ambiguities in the separation of photon effects present in full QCD should be reflected in
additional uncertainties in the LECs. To the best of our knowledge, the practical consequences
of [143] for ChPT calculations have yet to be explored. However, the study of the linear σ
model in [143] suggests that such effects are not relevant at the level of accuracy at which
the LECs can be usually pinned down. In addition, the definition of a scattering length for
charged particles is a subtle matter [144], and recent attempts to define a strong proton–
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proton scattering length yield only scale-dependent quantities [145]. An effect analogous to
that discussed in these works is also present in the calculation of the πN scattering lengths,
but, due to the perturbative nature of πN dynamics, this effect is negligible as we will show
in the following. Removing the Coulomb phase θC(|p|), the behavior of the π−p scattering
amplitude Tπ−p at threshold is given by [86]

e−2iαθC(|p|)Tπ−p =
B1

|p| +B2 log
|p|
µH

+ T thr
π−p +O(|p|) , (3.6)

where

4πξpaπ−p = T thr
π−p , B1 = 4π2αMπaπ−p , B2 = −8παMπ

(
aπ−p

)2
. (3.7)

The scale ambiguity represented by the presence of log µH is not induced by an ultraviolet
divergence, but by a kinematic singularity at threshold. While the 1/|p| term (the leading
approximation to the Gamow–Sommerfeld factor [146]) can be unambiguously separated, the
log |p| requires the choice of a scale in order to define the strong threshold amplitude T thr

π−p.
In (3.6) that scale has been chosen to be µH . However, B2 differs from zero only at two-loop
level, i.e. it is suppressed by two chiral orders compared to the accuracy at which the isospin-
breaking corrections [93] are known. Thus, choosing the mass of the ρ meson rather than the
reduced mass µH shifts aπ−p by

B2

4πξp
log

Mρ

µH
= −2αµH

(
aπ−p

)2
log

Mρ

µH
= −0.2 · 10−3M−1

π , (3.8)

an effect fully in line with its two-loop estimate that can therefore be safely neglected.
One might worry that our definition of gc is not exactly what is measured in experiment,

because, despite the application of electromagnetic corrections, the full range of virtual-photon
effects is not captured by present-day analyses. For this reason, one could try to add a certain
class of virtual-photon diagrams in order to obtain a quantity that corresponds better to
the experimentally accessible one. In fact, this is quite a difficult enterprise: to extract the
coupling constant, we need the amplitude at s = m2

n, where threshold ambiguities as in the
case of the scattering lengths do not occur. However, the cancellation of infrared divergences
that is ensured at threshold by phase-space arguments no longer works, which makes the
inclusion of bremsstrahlung inevitable. In order to estimate the size of such effects, one may
in a first rough approximation consider only the leading bremsstrahlung contribution that
involves logarithms of the detector resolution Emax. In this naive approach—described in
more detail in Appendix A.3.2—we find a shift of about 0.07 in g2c/4π for Emax = 10MeV,
which is significantly below the accuracy we claim for our final result (see Sect. 3.2.3) and
therefore does not alter the overall uncertainty estimate. We conclude that, in order to address
virtual-photon effects systematically, one is forced to perform the full radiative corrections for
a given process, which is beyond the scope of this work.

3.2.2 Evaluation of J−

The evaluation of J− has recently been discussed in great detail in [82] and [83], hereafter
referred to as ELT and AMS. The main difference between both analyses is that the former
relies on phase-shift solutions to determine the cross sections, while the latter uses data di-
rectly. Both investigations apply the Tromborg procedure [142] to remove electromagnetic
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effects.3 The quoted results

J−
ELT = (−1.083 ± 0.032)mb , J−

AMS = (−1.060 ± 0.030)mb , (3.9)

are consistent within the uncertainties and we take the discrepancy between the mean values
as an indication of the final accuracy one can hope to achieve in an evaluation of J−. In order
to obtain an average value of J− that combines ELT and AMS, we now compare both analyses
in the low-momentum (|k| ≤ 2GeV/c), the high-momentum (2GeV/c ≤ |k| ≤ 240GeV/c),
and the Regge regime (|k| ≥ 240GeV/c) separately. In general, we employ the uncertainties
quoted by ELT, whose error estimates tend to be more conservative than those of AMS.

In the low-momentum region, we average the mean of the results for the SM95 [82, 148],
SM99 [82,149], and FA02 [150,151] phase-shift solutions with AMS. In these determinations,
the threshold region constitutes an additional source of uncertainty due to the lack of very
low-energy data. Therefore, for the interval (0–80)MeV/c an interpolation between the cross
sections at threshold

∆σ(0) = σtotπ−p(0)− σtotπ+p(0) = 4π
(
(aπ−p)

2 + (acexπ−p)
2 − (aπ+p)

2
)

(3.10)

and the available scattering data is needed. To estimate the impact of the scattering lengths
on J−, we consider the S-wave part of this interpolation, which changes by about 0.009mb if
one varies ∆σ(0) by 30%. In view of the fact that the difference between our value for ∆σ(0)
and those of AMS and ELT lies below 20%, this should provide a conservative estimate of
the additional uncertainties to be expected in the threshold region. Adding in quadrature
this estimation, the uncertainty quoted by ELT, and the effect due to the lower π0n threshold
discussed in Sect. 3.2.1, yields the ±0.023 error given in Table 3.3. In the high-momentum
region we use the mean of AMS and ELT with the ELT error, while the contributions from
the Regge regime above 240GeV/c are determined as the average of the five models employed
in AMS and ELT with an error chosen generously to encompass all models (cf. Table 3.3). In
this way, we finally obtain for our average

J− = (−1.073 ± 0.034)mb . (3.11)

3.2.3 Results for the pion–nucleon coupling constant

Inspired by [82], we adopt the following strategy to determine aπ−p − aπ+p. Writing

aπ−p − aπ+p = 2aπ−p −
(
aπ−p + aπ−n

)
+ aπ−n − aπ+p

= 2aπ−p − 2
(
ã+ +∆ã+

)
+ aπ−n − aπ+p , (3.12)

we can take
aπ−p = (85.66 ± 0.14) · 10−3M−1

π (3.13)

directly from the level shift in πH, ã+ from (3.1), and

aπ−n − aπ+p =
e2

4πξp

{
f2 + 2Mπ

(
2gr6 + gr8

)}
(3.14)

3Above the energy range where the Tromborg corrections are available the effect due to the Coulomb barrier
is accounted for following the potential-model calculation [147].



3.2. Goldberger–Miyazawa–Oehme sum rule 53

|k| in GeV/c

0–2 SM95 [82,148] SM99 [82,149] FA02 [150,151]

−1.302 −1.314 −1.3043

AMS average

−1.3003 −1.304 ± 0.023

2–240 ELT [82] AMS [83] average

0.197 0.2149 0.206 ± 0.024

240–∞ Höhler [152] Donnachie–Landshoff [153] Gauron–Nicolescu [154]

0.0222 0.0294 0.0244

Regge94 [155] Regge98 [156] average

0.030 0.018 0.025 ± 0.007

Table 3.3: Contributions to J− from different momentum regions in mb. For the detailed
comparison, we use that the regions (2–2.03)GeV/c and (240–350)GeV/c yield a contribution
of 0.0027mb and 0.0043mb to J−, respectively [150].

from [93]. As the gri cancel between aπ−n−aπ+p and 2∆ã+ (cf. (2.18) and (3.14)), so that only
the rather well-determined LEC f2 remains, this procedure is particularly stable with respect
to unknown LECs. We find

aπ−p − aπ+p = (173.4 ± 1.6) · 10−3M−1
π . (3.15)

However, these scattering lengths still contain virtual-photon effects that should be removed
for the application in the sum rule. Subtracting the corresponding contribution (cf. Ap-
pendix A.3.1)

aγπ−p − aγπ+p = (2.1 ± 1.8) · 10−3M−1
π (3.16)

from (3.15), we obtain for the virtual-photon-subtracted scattering lengths

a
/γ

π−p
− a

/γ

π+p
= (171.3 ± 2.4) · 10−3M−1

π . (3.17)

Together with the input (3.11) for J−, the GMO sum rule (3.5) then yields

g2c
4π

= 13.69 ± 0.12 ± 0.15 , (3.18)

where the first error gives the uncertainty due to the scattering lengths and the second that due
to J−. This value is in agreement with determinations from NN (g2c/4π = 13.54± 0.05 [157])
and πN (g2c/4π = 13.75 ± 0.10 [151], g2c/4π = 13.76 ± 0.01 [158]) scattering data. We stress
that the errors quoted in [151,157,158] mainly reflect statistical uncertainties. The systematic
subtleties associated with isospin violation that have been discussed in Sect. 3.2.1 were not
quantified in these studies.4

4In the nucleon–nucleon case electromagnetic corrections to the one-pion-exchange potential were calculated
in [159,160]. The renormalization procedure chosen in [159] implies that electromagnetic corrections to gc are
small. However, it is unclear how these conventions could be translated to πN scattering.
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3.3 Implications for the pion–nucleon σ term

The isospin-symmetric part of the scalar form factor of the nucleon is defined as

σ(t) =
1

2m
〈N(p′)|m̂(ūu+ d̄d)|N(p)〉 , t = (p′ − p)2 , m̂ =

mu +md

2
. (3.19)

Its value at vanishing momentum transfer t = 0, the pion–nucleon σ term σπN , measures the
contribution from the light quarks to the mass of the nucleon. The standard procedure to
extract σπN from πN scattering data [79, 80] involves the venerable low-energy theorem that
relates the Born-term-subtracted isoscalar πN scattering amplitude D̄+ at the Cheng–Dashen
point to σ(2M2

π) [161,162]. Later on, it was shown that the correction ∆R to this low-energy
theorem is very small, in particular it is free of chiral logarithms at full one-loop order in
ChPT [163,138]. The extraction of σπN itself thus requires knowledge of the difference

∆σ = σ(2M2
π)− σπN , (3.20)

which can be determined by means of a dispersive representation of σ(t) [164]. Moreover, by
defining another correction ∆D as the difference between D̄+ evaluated at the Cheng–Dashen
point and the first two terms in the subthreshold expansion

∆D = F 2
π

(
D̄+ − d+00 − 2M2

πd
+
01

)
, (3.21)

the σ term may be written as

σπN = Σd +∆D −∆σ −∆R , Σd = F 2
π

(
d+00 + 2M2

πd
+
01

)
. (3.22)

In Part III, we will address the determination of ∆D and ∆σ in the framework of RS equations
in much more detail, but for the moment we merely mention the estimate [164]

∆D −∆σ = −(3.3± 0.2)MeV , (3.23)

where the error only includes the uncertainty in the parameterization of the ππ phase shift
that served as input for the dispersive calculation.

Finally, πN scattering lengths enter as subtraction constants in a dispersive representation
of the subthreshold parameters [79]. First, we have

d+00 = D̄+(0) , d+01 = Ē+(0) , (3.24)

where

D+(ω) =
[
A+ + ωB+

]
s=s(w),t=0

, s = m2 +M2
π + 2mω ,

E+(ω) =

[
∂

∂t

(
A+(s, t) + ωB+(s, t)

)]

s=s(w),t=0

, (3.25)

and the bar indicates the subtraction of the pseudovector Born terms (for the precise definition
of the πN invariant amplitudes A+, B+, and D+ see Sect. 6.2). Second, D+(ω) and E+(ω)
fulfill once-subtracted fixed-t dispersion relations that involve a+ and the P -wave scattering
length a+1+ as subtraction constants. In analogy to the evaluation of the GMO sum rule,
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KH80 [152,165] FA01 [166] this work [167] ChPT [78]

a+ −7 0 −0.7± 0.7 −7.3 . . . + 3.6

a+1+ 352 351 344 . . . 348

J+ −91 −88 −88.9 ± 0.3

J̃+ −72 −69

gc −133 −127 −125.2 ± 1.8

Σcd 50 67

Table 3.4: Individual contributions to the sum rule (3.27) for Σcd as indicated in the first
column (all in MeV). The values for KH80 are quoted as given in [166].

we identify the isoscalar quantities with the pertinent linear combination of π+p and π−p
amplitudes for the time being, i.e. we consider

Σcd = F 2
π

{
D̄c(0) + 2M2

πĒ
c(0)

}
, Dc =

1

2
(Dπ−p +Dπ+p) , Ec =

1

2
(Eπ−p + Eπ+p) .

(3.26)
The dispersive representation for Σcd in terms of S- and P -wave scattering lengths then reads

Σcd = F 2
π

{
2πξp(aπ−p + aπ+p) +

2g2cM
2
π

(mp +mn)
[
(mp +mn)2 −M2

π

] − J+

+ 2M2
π

[
3πξp(a

π−p
1+ + aπ

+p
1+ )− g2c

(Mπ +mn −mp)(mp +mn −Mπ)2
− J̃+

]}
,

J+ =
M2
π

π

∞∫

0

d|k′|
σtotπ−p(|k′|) + σtotπ+p(|k′|)

M2
π + k′2 , ω′ =

√
k′2 +M2

π ,

J̃+ =
2M2

π

π

∞∫

Mπ

dω′ ImEc(ω′)
ω′(ω′2 −M2

π)
+

1

2πmp

∞∫

Mπ

dω′ImDc(ω′)

(
1

ω′2 − 1

(ω′ +Mπ)2

)

− 1

2πmp

∞∫

Mπ

dω′ImBc(ω′)

(
1

ω′ −
1

ω′ +Mπ

)
. (3.27)

Although J+ could still be evaluated directly by means of cross-section data, the calculation
of J̃+ has to rely on phase-shift solutions. In either case, it seems more accurate to relate
the outcome of the sum rule to the π±p channels instead of the strict isospin limit, bearing in
mind that also the phase-shift analyses are largely based on elastic π±p scattering.

The individual contributions to (3.27) are summarized for the KH80 partial-wave solu-
tion [152,165] and the GWU FA01 solution [166] in the second and third column of Table 3.4,
illustrating the origin of the discrepancy in the resulting values for σπN . For comparison, we
also show the results using the hadronic-atom constraints for a/

γ

π−p
+a

/γ

π+p
from (A.28) as input

for the S-wave scattering lengths and (3.18) for the coupling constant, as well as the results
for J+ from [167] and for the scattering lengths from a fourth-order ChPT calculation [78].
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These results show that the dispersive approach [79,80] to the determination of Σd suffers
from the inherent difficulty that huge cancellations between individually sizeable terms occur.
In this way, all input quantities need to be known to a very good relative accuracy for the
final result to be accurate. While the uncertainty due to a+ is now essentially under control,
thanks to the precise hadronic-atom data, the accuracy in the evaluation of (3.27) is limited
by our knowledge of a+1+, which produces by far the largest individual contribution. Given
that already the moderate deviations between [166]

a+1+ = 133 · 10−3M−3
π (3.28)

and the ChPT result [78]

a+1+ = (130.4 . . . 131.8) · 10−3M−3
π (3.29)

impact the final result for Σd significantly, we conclude that the uncertainty in a+1+ presently
precludes an evaluation of (3.27) at the same level of accuracy as for the GMO sum rule.

Finally, we comment on the issue of isospin breaking in the pion–nucleon σ term, since—
as exemplified by the chiral expansion of a+—isospin-violating effects may play an important
role for isoscalar πN amplitudes. Starting from the chiral expansion of the nucleon mass in
the isospin limit [19]

m = m0 − 4c1M
2
π − 3g2AM

3
π

32πF 2
+O

(
M4
π

)
, (3.30)

the Feynman–Hellmann theorem [136] yields

σπN = m̂
∂m

∂m̂
= −4c1M

2
π − 9g2AM

3
π

64πF 2
+O

(
M4
π

)
. (3.31)

However, the full expansion of the proton and neutron mass [168,94]

mp = m0 − 4c1M
2
π0 + 2Bc5(md −mu)−

e2F 2
π

2
(f1 + f2 + f3)−

g2A(2M
3
π +M3

π0)

32πF 2
π

+O
(
M4
π

)
,

mn = m0 − 4c1M
2
π0 − 2Bc5(md −mu)−

e2F 2
π

2
(f1 − f2 + f3)−

g2A(2M
3
π +M3

π0)

32πF 2
π

+O
(
M4
π

)
,

(3.32)

leads to

σp = m̂
∂mp

∂m̂
= σn = m̂

∂mn

∂m̂
= −4c1M

2
π0 −

3g2A
64πF 2

π

M2
π0(2Mπ +Mπ0) +O

(
M4
π

)
, (3.33)

and thus

σp − σπN = σn − σπN = 4c1∆π +
21g2AMπ∆π

128πF 2
π

= (−3.3± 1.5)MeV . (3.34)

In fact, the same large correction alongside c1, which on its own shifts the σ term by −5MeV,
appears in the relation of (3.27) to its isospin limit

F 2
π4πξp

(
a
/γ

π−p
+ a

/γ

π+p

2
− a+

)
= 4c1∆π −

e2F 2
π

2
(4f1 + f2)−

33g2AMπ∆π

128πF 2
π

, (3.35)

which suggests that the σ term as determined from (3.27) should be identified with σp rather
than σπN . To clarify these relations as well as the potential impact of isospin-violating correc-
tions on a precise determination of the σ term, it might be worthwhile to revisit the derivation
of the underlying low-energy theorem in the presence of isospin violation.



Part II

Roy–Steiner equations for γγ → ππ#2

#2The contents of this part have been published in [169].
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Chapter 4

Partial-wave dispersion relations

4.1 Introduction

The reaction γγ → ππ is of particular interest in the realm of non-perturbative QCD, as it
probes the dynamics of strong interactions in the 0++ channel, which has the same quantum
numbers as the QCD vacuum. Nonetheless, a detailed theoretical understanding of this chan-
nel has proven to be a rather demanding endeavor. The rescattering of the pions produced
in two-photon collisions will dominate the reaction dynamics, with the result that a reliable
description of ππ scattering is a prerequisite for understanding γγ → ππ. As highlighted in
Sect. 1.2.3, a major step forward in this direction was taken by combining analyticity, unitarity,
and crossing symmetry in form of the Roy equations with chiral symmetry of QCD, culmi-
nating in a very precise prediction of the pole parameters of the σ resonance, the lowest-lying
resonance in QCD, cf. (1.50).

This resonance influences the cross sections in γγ → ππ, which therefore provides an
alternative to meson–meson scattering reactions for its excitation. Experimentally, γγ → ππ
is accessible in e+e− colliders via the reaction e+e− → e+e−ππ, where both the incoming
electron and positron radiate one photon [170–174]. However, due to its very large width, the
σ is either entirely overshadowed by the QED Born terms in the charged reaction γγ → π+π−

or manifests itself only as a broad bump in the γγ → π0π0 cross section, which makes it
difficult to directly extract information on the resonance from these data. In particular,
theoretical input is needed to perform the analytic continuation into the complex plane in
order to establish contact to the properties of the σ.

Moreover, the two-photon coupling of the σ enters the description of Compton scattering
off the proton by means of the exchange of degrees of freedom between the incoming photon
and the target proton that can be identified with the σ [175, 176]. Besides its relation to
nucleon polarizabilities, there has been particular interest in the two-photon width of the σ
in the context of elucidating the nature of this state. Apart from an interpretation as a qq̄
state, possibilities such as a tetraquark state, a meson–meson molecule, or a gluonic resonance
have been put forward in the literature. The coupling to two photons has been used to
discriminate between different scenarios (see e.g. [177–179] and references therein). A recent
K-matrix-based extraction of the σ width from γγ → ππ data can be found in [178, 180].
Alternatively, a model-independent approach using dispersion relations and Muskhelishvili–
Omnès techniques [70, 71] for describing this reaction was pursued in [176, 177, 181–188]. In
the most sophisticated such treatment [188], motivated by the fact that most of the Belle data
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lie above 1GeV, a MO representation was constructed that dynamically includes the K̄K
channel, in order to obtain a description of γγ → ππ valid up to 1.3GeV.

Here, we consider a more general approach, namely a complete system of Roy–Steiner
equations for γγ → ππ and the crossed reaction γπ → γπ that, in analogy to the ππ Roy
equations, fully respects analyticity, unitarity, and crossing symmetry of the scattering ampli-
tude. We find that—at a similar level of rigor at which the Roy equations for ππ scattering
hold—our γγ → ππ equations are valid up to 1GeV. We compare our equations for the
γγ → ππ partial waves to existing dispersive descriptions of this process, and find, in par-
ticular, that a numerically important coupling between S- and D-waves has been previously
neglected. Furthermore, our equations lead to sum rules for the isospin-two partial waves,
which we use to improve the ChPT prediction of the charged-pion quadrupole polarizability.

As an application of these results, we study the constraints of our equations on the two-
photon coupling of the σ. The subtraction constants necessary to ensure sufficiently fast
convergence of the dispersion integrals can be directly related to the pion polarizabilities,
which therefore play a similar role to that of the ππ scattering lengths in the case of ππ
Roy equations. As the tension between various experimental determinations of the dipole
polarizability of the charged pion (based on Primakov measurements [189] or radiative pion
production [190]) and ChPT predictions [191–193] is far from being resolved, we provide the
two-photon width of the σ as a function of the pertinent polarizabilities. We are confident
that the ongoing measurements at COMPASS [194], in combination with ChPT predictions,
will clarify the situation in the near future.

Finally, we stress that the construction of RS equations for γγ → ππ already displays
all the complications that emerge both due to more involved crossing properties and less
restrictive unitarity in the t-channel, see Sect. 1.2.4. Since the structure of the partial-wave
expansions is still considerably simpler, the investigation of γγ → ππ can be benefited from
to gain valuable insights for the construction and solution of RS equations for πN scattering.

The analysis is organized as follows: having specified our conventions in Sect. 4.2, we
present the detailed derivation of the RS system in Sect. 4.3. The domain of validity of these
equations is studied in Sect. 4.4. In Chapter 5, we then concentrate on the equations for the
γγ → ππ partial waves, whose solution in terms of Omnès functions is discussed in Sect. 5.1.
Establishing the connection to the two-photon width of the σ in Sect. 5.2, we then discuss the
input we use and present our numerical results in Sects. 5.3 and 5.4.

4.2 Formalism

4.2.1 Kinematics

We first consider the Compton-scattering process

γ(q1, λ1) + πa(p1) → γ(q2, λ2) + πb(p2) (4.1)

with momenta as indicated, photon helicities λ1, λ2, and pion isospin indices a, b. For on-shell
particles, the Mandelstam variables defined as

s = (p1 + q1)
2 , t = (q1 − q2)

2 , u = (q1 − p2)
2 , (4.2)

are subject to the constraint
s+ t+ u = 2M2

π . (4.3)
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In the center-of-mass frame (CMS), we have

t = −2q2(1− zs) , zs = cos θs , q2 =
(s−M2

π)
2

4s
. (4.4)

The S-matrix for the charged process can be written as

out〈γ(q2, λ2)π±(p2)|γ(q1, λ1)π±(p1)〉in = (2π)4δ4(q2 + p2 − q1 − p1)

×
{
δλ1λ2 + ie2F c

λ1λ2(s, t)e
i(λ1−λ2)ϕ

}
, (4.5)

with azimuthal angle ϕ, and similarly for the neutral amplitude F n
λ1λ2

. Separating the photon
polarization vectors,1

Fλ1λ2(s, t) = ǫµ(q1, λ1)ǫ
∗
ν(q2, λ2)W

µν(s, t) , (4.6)

we can use gauge and Lorentz invariance to decompose the amplitude as

Wµν(s, t) = A(s, t)
( t
2
gµν + q2µq1ν

)

+B(s, t)
(
2t∆µ∆ν − (s− u)2gµν + 2(s − u)(∆µq1ν +∆νq2µ)

)
, (4.7)

where ∆µ = p1µ+p2µ and we have dropped terms that vanish in Fλ1λ2 due to ǫ(qi, λi) · qi = 0.
In the conventions of [195] for the polarization vectors, one obtains

F++(s, t) = F−−(s, t) = 4(M4
π − su)B(s, t) , (4.8)

F+−(s, t) = F−+(s, t) = − t

2
A(s, t) + t(t− 4M2

π)B(s, t) .

The Born-term contributions are

ABorn(s, t) ≡ Ac,Born(s, t) =
1

M2
π − s

+
1

M2
π − u

= 2tBc,Born(s, t) ≡ 2tBBorn(s, t) . (4.9)

In these conventions, the differential cross section is given by

dσ
dΩ

=
α2

4s

(
|F++(s, t)|2 + |F+−(s, t)|2

)
. (4.10)

The analytic continuation of F+±(s, t) to the kinematical region where t ≥ 4M2
π describes

the crossed-channel process γγ → ππ, so that the cross section reads

dσ
dΩ

∣∣∣∣
γγ→π+π−

=
α2

8t
σ(t)

(
|F c

++(s, t)|2 + |F c
+−(s, t)|2

)
(4.11)

(σ(t) was defined in (1.37)). The same formula with an additional factor of 1/2 on the right-
hand side holds for the case of neutral pions. The kinematics for the crossed reaction

γ(q1, λ1) + γ(−q2, λ2) → πa(−p1) + πb(p2) (4.12)

1Here and throughout Chapters 4 and 5, we suppress isospin indices whenever possible.
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Figure 4.1: Mandelstam plane for γπ → γπ. The filled areas mark the s-, t-, and u-channel
physical regions, and the arrows the orientation of the plane in t and ν.

in terms of the Mandelstam variables (4.2) lead to different CMS momenta for initial and final
states

q2
t =

t

4
, p2

t =
t

4
−M2

π =
t− tπ
4

, tπ = 4M2
π , (4.13)

and to the CMS scattering angle

zt = cos θt =
ν

4ptqt
, ν = s− u , pt = |pt| , qt = |qt| . (4.14)

The physical regions for pion Compton scattering and γγ → ππ are depicted in Fig. 4.1.

4.2.2 Partial-wave expansion and pion polarizabilities

The partial-wave expansion of the amplitudes for pion Compton scattering reads [196]

F+±(s, t) =
∞∑

J=1

(2J + 1)fJ,±(s)d
J
1,±1(zs) , (4.15)

with the Wigner d-functions [197]2

dJ1,±1(z) =
1∓ z

J(J + 1)
P ′
J(z)± PJ(z) (4.16)

2For convenience, we write dJm,m′ (cos θ) instead of dJm,m′(θ). A comprehensive review on Wigner functions
may be found in [198].
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and the inversion

fJ,±(s) =
1

2

1∫

−1

dzsdJ1,±1(zs)F+±(s, t)
∣∣∣
t=−2q2(1−zs)

. (4.17)

The expansion (4.15) can be mapped onto the multipole expansion [199] via3

fJ,±(s) = ± 2
√
s

α(2J + 1)

(
EJ(ω)±MJ(ω)

)
, (4.18)

where ω denotes the energy of the photon. Defining the pion polarizabilities as the leading
terms of the Born-term-subtracted multipoles ÊJ(ω), M̂J(ω) in an expansion in ω [199],

αJ =
2J [(2J − 1)!!]2

J + 1

ÊJ(ω)

ω2J

∣∣∣∣
ω=0

, βJ =
2J [(2J − 1)!!]2

J + 1

M̂J(ω)

ω2J

∣∣∣∣
ω=0

, (4.19)

we can read off αJ and βJ from an expansion of the Born-term-subtracted amplitudes F̂+±(s, t)
in t at fixed s =M2

π

2α

Mπt
F̂++(s =M2

π , t) = α1 + β1 +
t

12
(α2 + β2) +O

(
t2
)
,

− 2α

Mπt
F̂+−(s =M2

π , t) = α1 − β1 +
t

12
(α2 − β2) +O

(
t2
)
. (4.20)

4.2.3 Relation to γγ → ππ

To establish connection to the notation of the crossed process [188, 192], which we will refer
to as the t-channel reaction, we briefly discuss

γ(q1, λ1) + γ(q2, λ2) → πa(p1) + πb(p2) (4.21)

in terms of the Mandelstam variables

s̃ = (q1 + q2)
2 , t̃ = (q1 − p1)

2 , ũ = (q1 − p2)
2 , (4.22)

and the amplitudes

out〈π(p1)π(p2)|γ(q1, λ1)γ(q2, λ2)〉in = ie2(2π)4δ4(q2+p2−q1−p1)Hλ1λ2(s̃, t̃)e
i(λ1−λ2)ϕ . (4.23)

They are related to the s-channel amplitudes by

H++(s, t) = −F+−(t, s) , H+−(s, t) = −F++(t, s) , (4.24)

and their polarizability expansion therefore reads

2α

Mπ s̃
Ĥ++(s̃, t̃ =M2

π) = α1 − β1 +
s̃

12
(α2 − β2) +O

(
s̃2
)
,

− 2α

Mπ s̃
Ĥ+−(s̃, t̃ =M2

π) = α1 + β1 +
s̃

12
(α2 + β2) +O

(
s̃2
)
. (4.25)

3The covariant amplitudes in [199] are related to ours by AGR = −e2A, BGR = 16e2B.
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Furthermore, the partial-wave amplitudes hJ± follow from F+± via

F++(s, t) = −
∑

J

(2J + 1)hJ,−(t)d
J
20(zt) ,

F+−(s, t) = −
∑

J

(2J + 1)hJ,+(t)d
J
00(zt) , (4.26)

where due to Bose symmetry the sum extends over even values of J only, and

dJ00(z) = PJ (z) , dJ20(z) =
2P ′

J−1(z) − J(J − 1)PJ (z)√
(J − 1)J(J + 1)(J + 2)

. (4.27)

In our conventions, the transition between isospin and particle basis is achieved by
(
Hc

Hn

)
=

( 1√
3

1√
6

1√
3

−
√

2
3

)(
H0

H2

)
. (4.28)

4.3 Roy–Steiner equations

4.3.1 Hyperbolic dispersion relations

We start the derivation of RS equations by writing down unsubtracted HDRs for the ampli-
tudes A and B, which can be constructed following [68]. The advantage of using dispersion
relations for A and B instead of F+± is that all constraints by gauge invariance that lead
to the decomposition (4.8) are automatically built in. In particular, the equations for F++

and F+− do not decouple, as gauge invariance dictates that the same invariant function B
contributes to both amplitudes. The dispersion relations for A and B read

A(s, t) = ĀB(s, t) +
1

π

∞∫

tπ

dt′
ImA(s′, t′)
t′ − t

+
1

π

∞∫

M2
π

ds′ImA(s′, t′)

[
1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
,

B(s, t) = B̄B(s, t) +
1

π

∞∫

tπ

dt′
ImB(s′, t′)
t′ − t

+
1

π

∞∫

M2
π

ds′ImB(s′, t′)

[
1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
,

(4.29)

with the Born terms

ĀB(s, t) = ABorn(s, t)− 1

M2
π − a

, B̄B(s, t) = BBorn(s, t) (4.30)

only contributing to the charged-pion process. As discussed in Sect. 1.2.4, the primed set of
Mandelstam variables is constrained to lie on the hyperbola

(s′ − a)(u′ − a) = (s− a)(u− a) ≡ b , (4.31)

where the hyperbola parameter a is tuned to maximize the range of validity of the RS system
(cf. Sect. 4.4) and b = b(s, t, a) is determined by a and the external variables. The integrands
are expressed in terms of the integration variable and the external kinematics using (4.31) and

s′ + t′ + u′ = 2M2
π . (4.32)

Although in the HDR setup t′ depends not only on t, but on s and s′ as well, the limit of fixed-t
may be recovered by sending a to infinity. This can be shown explicitly based on the relation
between zs and z′s in (B.5) (the primed variable always refers to the internal kinematics).
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4.3.2 Sum rules and subtracted dispersion relations

The most economical way to obtain a subtracted version of HDRs is to derive sum rules from
the original dispersion relation and then subtract them from it. We will choose the subtraction
point on-shell at s = M2

π , t = 0, with the result that the subtraction constants coincide with
the pion polarizabilities. With knowledge of the dipole pion polarizabilities α1 ± β1 we can
implement one subtraction, while for a second subtraction the quadrupole polarizabilities
α2 ± β2 are also needed. For example, choosing s = M2

π and taking the limit t → 0, we can
compare (4.29) with (4.8) and (4.20) in order to obtain4

Mπ

2α
(α1 + β1) =

4M2
π

π

∞∫

tπ

dt′
[ImB(s′, t′)]0

t′
+

4M2
π

π

∞∫

M2
π

ds′
[
ImB(s′, t′)

]
0

[
2

s′ −M2
π

− 1

s′ − a

]
,

which, together with similar sum rules, may be used to write down subtracted versions
of (4.29).

4.3.3 s-channel projection

The RS system is obtained by expanding the integrands into partial waves and subsequently
performing the s- and t-channel partial-wave projection of each equation. To this end, we
make use of (4.15) and (4.26) as well as their inversions. Moreover, it is useful to note that

4(M4
π − su) = 8sq2(1 + zs) = −t(t− tπ)(1 − z2t ) (4.33)

to identify the relevant kinematic dependencies.
We start with the projection onto γπ → γπ partial waves, which can be written as

fJ,+(s) = N+
J (s) +

1

π

∞∫

M2
π

ds′
∞∑

J ′=1

K++
JJ ′ (s, s

′)Im fJ ′,+(s
′)

+
1

π

∞∫

tπ

dt′
∑

J ′ even

G+−
JJ ′(s, t

′)ImhJ ′,−(t
′) ,

fJ,−(s) = N−
J (s) +

1

π

∞∫

M2
π

ds′
∞∑

J ′=1

(
K−+
JJ ′ (s, s

′)Im fJ ′,+(s
′) +K−−

JJ ′ (s, s
′)Im fJ ′,−(s

′)
)

+
1

π

∞∫

tπ

dt′
∑

J ′ even

(
G−+
JJ ′(s, t

′)Im hJ ′,+(t
′) +G−−

JJ ′(s, t
′)ImhJ ′,−(t

′)
)
, (4.34)

where N±
J (s) includes Born terms and—in case subtractions were performed—pion polariz-

abilities. The kernel functions for the unsubtracted case read

K++
JJ ′ (s, s

′) =
sq2

s′q′2
2J ′ + 1

2

1∫

−1

dzs(1 + zs)d
J
11(zs)

dJ
′

11(z
′
s)

1 + z′s

[
1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
,

4Note that s′ and t′, respectively, depend on the integration variable as well as on s and t. The subscript
0 indicates evaluation at s = M2

π and t = 0.
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G+−
JJ ′(s, t

′) =
8sq2

t′(t′ − tπ)

2J ′ + 1

2

1∫

−1

dzs(1 + zs)d
J
11(zs)

dJ
′

20(z
′
t)

1− z′2t

1

t′ − t
,

K−+
JJ ′ (s, s

′) =
q2

4s′q′2
2J ′ + 1

2

1∫

−1

dzs(1− zs)d
J
1,−1(zs)

dJ
′

11(z
′
s)

1 + z′s
(t′ − t)

[
1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
,

K−−
JJ ′ (s, s

′) =
q2

q′2
2J ′ + 1

2

1∫

−1

dzs(1− zs)d
J
1,−1(zs)

dJ
′

1,−1(z
′
s)

1− z′s

[
1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
,

G−+
JJ ′(s, t

′) = 2q2 2J
′ + 1

2

1∫

−1

dzs
1− zs
t′(t′ − t)

dJ1,−1(zs)PJ ′(z′t) ,

G−−
JJ ′(s, t

′) = 2q2 2J
′ + 1

2

1∫

−1

dzs
1− zs

t′(t′ − tπ)
dJ1,−1(zs)

dJ
′

20(z
′
t)

1− z′2t
. (4.35)

Explicit expressions for J, J ′ ≤ 2 as well as the modifications for the subtracted case are given
in Appendix B.1. It is important to note that while we have consistently suppressed isospin
indices for the partial-wave amplitudes, all kernel functions are independent of isospin.

4.3.4 t-channel projection

Similarly, the projection onto γγ → ππ amplitudes has the form

hJ,+(t) = Ñ+
J (t) +

1

π

∞∫

M2
π

ds′
∞∑

J ′=1

(
G̃++
JJ ′(t, s

′)Im fJ ′,+(s
′) + G̃+−

JJ ′(t, s
′)Im fJ ′,−(s

′)
)

+
1

π

∞∫

tπ

dt′
∑

J ′ even

(
K̃++
JJ ′ (t, t

′)Im hJ ′,+(t
′) + K̃+−

JJ ′ (t, t
′)Im hJ ′,−(t

′)
)
,

hJ,−(t) = Ñ−
J (t) +

1

π

∞∫

M2
π

ds′
∞∑

J ′=1

G̃−+
JJ ′(t, s

′)Im fJ ′,+(s
′)

+
1

π

∞∫

tπ

dt′
∑

J ′ even

K̃−−
JJ ′ (t, t

′)ImhJ ′,−(t
′) , (4.36)

where, in the unsubtracted case,

G̃++
JJ ′(t, s

′) =
t

8s′q′2
2J ′ + 1

2

1∫

−1

dzt(t′ − t)PJ(zt)
dJ

′

11(z
′
s)

1 + z′s

[
1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
,

G̃+−
JJ ′(t, s

′) =
t

2q′2
2J ′ + 1

2

1∫

−1

dztPJ(zt)
dJ

′

1,−1(z
′
s)

1− z′s

[
1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
,
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# subtractions 0 1 2

K++
11 (s, s′),K++

12 (s, s′) O
(
s′−3

)
O
(
s′−4

)
O
(
s′−5

)

K++
21 (s, s′),K++

22 (s, s′) O
(
s′−4

)
O
(
s′−4

)
O
(
s′−5

)

G+−
12 (s, t′) O

(
t′−3

)
O
(
t′−4

)
O
(
t′−5

)

G+−
22 (s, t′) O

(
t′−4

)
O
(
t′−4

)
O
(
t′−5

)

G̃−+
21 (t, s′), G̃−+

22 (t, s′) O
(
s′−3

)
O
(
s′−4

)
O
(
s′−5

)

K̃−−
22 (t, t′) O

(
t′−3

)
O
(
t′−4

)
O
(
t′−5

)

Table 4.1: Asymptotics of the kernel functions in the equations for fJ,+(s) and hJ,−(t).

K̃++
JJ ′ (t, t

′) =
t

t′(t′ − t)

2J ′ + 1

2

1∫

−1

dztPJ(zt)PJ ′(z′t) ,

K̃+−
JJ ′ (t, t

′) =
t

t′(t′ − tπ)

2J ′ + 1

2

1∫

−1

dztPJ (zt)
dJ

′

20(z
′
t)

1− z′2t
,

G̃−+
JJ ′(t, s

′) =
t(t− tπ)

8s′q′2
2J ′ + 1

2

1∫

−1

dzt(1− z2t )d
J
20(zt)

dJ
′

11(z
′
s)

1 + z′s

[
1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
,

K̃−−
JJ ′ (t, t

′) =
t(t− tπ)

t′(t′ − tπ)(t′ − t)

2J ′ + 1

2

1∫

−1

dzt(1− z2t )d
J
20(zt)

dJ
′

20(z
′
t)

1− z′2t
.

Explicit expressions for J, J ′ ≤ 2 are provided in Appendix B.2.

4.3.5 Threshold and asymptotic behavior of the kernel functions

In order to check our kernel functions and determine the convergence properties of the disper-
sive integrals, we study the behavior of the kernels at threshold and for s′, t′ → ∞.

Based on (4.26), one can show that for t→ 0

Ĥ++(t,M
2
π) = ĥ0,+(t)−

5

2
ĥ2,+(t) +O

(
t3
)
,

Ĥ+−(t,M
2
π) = −5

√
6M2

π

t− tπ
ĥ2,−(t) +O

(
t2
)
, (4.37)

where the hat indicates the subtraction of the Born terms. By comparing to (4.20) and (B.12),
(4.37) implies that

G̃+±
JJ ′

∣∣1-sub
(t, s′) = O

(
t2
)
, K̃+±

JJ ′

∣∣1-sub
(t, t′) = O

(
t2
)
,

G̃+±
0J ′

∣∣2-sub
(t, s′)− 5

2
G̃+±

2J ′

∣∣2-sub
(t, s′) = O

(
t3
)
, K̃+±

0J ′

∣∣2-sub
(t, t′)− 5

2
K̃+±

2J ′

∣∣2-sub
(t, t′) = O

(
t3
)
,

G̃−+
2J ′

∣∣1-sub
(t, s′) = O

(
t2
)
, K̃−−

2J ′

∣∣1-sub
(t, t′) = O

(
t2
)
,

G̃−+
2J ′

∣∣2-sub
(t, s′) = O

(
t2
)
, K̃−−

2J ′

∣∣2-sub
(t, t′) = O

(
t2
)
, (4.38)
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# subtractions 0 1 2

K−+
11 (s, s′),K−+

12 (s, s′) O
(
s′−2

)
O
(
s′−3

)
O
(
s′−4

)

K−+
21 (s, s′),K−+

22 (s, s′) O
(
s′−4

)
O
(
s′−3

)
O
(
s′−4

)

K−−
11 (s, s′),K−−

12 (s, s′) O
(
s′−2

)
O
(
s′−3

)
O
(
s′−4

)

K−−
21 (s, s′),K−−

22 (s, s′) O
(
s′−3

)
O
(
s′−3

)
O
(
s′−4

)

G−+
10 (s, t′), G−+

12 (s, t′) O
(
t′−2

)
O
(
t′−3

)
O
(
t′−4

)

G−+
20 (s, t′), G−+

22 (s, t′) O
(
t′−3

)
O
(
t′−3

)
O
(
t′−4

)

G−−
12 (s, t′) O

(
t′−2

)
O
(
t′−3

)
O
(
t′−4

)

G−−
22 (s, t′) O

(
t′−3

)
O
(
t′−4

)

G̃+±
01 (t, s′), G̃+±

02 (t, s′) O
(
s′−2

)
O
(
s′−3

)
O
(
s′−4

)

G̃+±
21 (t, s′), G̃+±

22 (t, s′) O
(
s′−4

)
O
(
s′−4

)
O
(
s′−4

)

K̃++
00 (t, t′), K̃++

02 (t, t′) O
(
t′−2

)
O
(
t′−3

)
O
(
t′−4

)

K̃++
22 (t, t′) O

(
t′−4

)
O
(
t′−4

)
O
(
t′−4

)

K̃+−
02 (t, t′) O

(
t′−2

)
O
(
t′−3

)
O
(
t′−4

)

Table 4.2: Asymptotics of the kernel functions in the equations for fJ,−(s) and hJ,+(t).

with the number of subtractions as indicated in the superscript. We have checked that the
explicit expressions in Appendix B.2 fulfill these relations.

Furthermore, is clear from (4.34) and (4.36) that the dependence of the kernel functions
on s and t must reproduce the correct threshold behavior of the partial-wave amplitudes

fJ,+(s) = O
(
q2J
)
, fJ,−(s) = O

(
q2J
)
,

ĥJ,+(t) = O
(
q2t (qtpt)

J
)
, ĥJ,−(t) = O

(
(qtpt)

J
)
. (4.39)

The additional factor of q2t in ĥJ,+(t) is a manifestation of Low’s theorem for low-energy
QED [200], which requires the full scattering amplitude to be equal to the Born terms at the
threshold for Compton scattering. We have checked explicitly that the expressions provided
in Appendices B.1 and B.2 indeed fulfill

K++
JJ ′ (s, s

′) = O
(
q2J
)
, G+−

JJ ′(s, t
′) = O

(
q2J
)
,

K−±
JJ ′ (s, s

′) = O
(
q2J
)
, G−±

JJ ′(s, t
′) = O

(
q2J
)
, (4.40)

G̃+±
JJ ′(t, s

′) = O
(
q2t (qtpt)

J
)
, K̃+±

JJ ′ (t, t
′) = O

(
q2t (qtpt)

J
)
,

G̃−+
JJ ′(t, s

′) = O
(
(qtpt)

J
)
, K̃−−

JJ ′ (t, t
′) = O

(
(qtpt)

J
)
.

Similarly, the asymptotic behavior of the kernel functions for s′ → ∞ and t′ → ∞, respec-
tively, determines the convergence properties of the dispersion integrals. In particular, one
can directly read off which rate of convergence can be achieved when working with a certain
number of subtractions. The corresponding behavior of the kernels for large values of the
respective integration variable is summarized in Tables 4.1 and 4.2. Although in some cases
the leading power vanishes, one can see that in general the kernels for fJ,−(s) and hJ,+(t) drop
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(I) (II) (III)

Figure 4.2: Box graphs constraining the boundaries of the double-spectral functions.
Dashed/wiggly lines denote pions/photons.

as the second, third, and fourth power in the integration variable, while the integrals related
to fJ,+(s) and hJ,−(t) will converge one order faster.

4.4 Domain of validity

In this section, we derive the limits on the domain of validity of the system of RS equations
constructed in Sect. 4.3 that follow from the assumption of Mandelstam analyticity [40]. For
more details of the derivation we refer to similar work on πK and πN scattering [68,67,73,152].

If we neglect the possibility of photons in intermediate states, the box diagrams that
determine the boundaries of the double-spectral functions5 involve one- and two-pion states,
cf. Fig. 4.2. Diagram (I) represents the mechanism that produces the boundary of the support
of ρst, while (II) and (III) are relevant for ρsu. From (I) we find that

bI(s, t) = t(s− 9M2
π)− 4M2

π(s−M2
π) = 0 (4.41)

defines the st boundary of support as well as, with s↔ u, the tu boundary. Likewise,

bII(s, t) = bIII(s, t) = su+M2
π(9t−M2

π) = 0 (4.42)

gives the boundary of ρsu. In particular, the boundary of ρst may be described by

t = Tst(s) = TI(s) , (4.43)

where t = TI(s) follows from solving bI(s, t) = 0 for t, and similarly for ρtu and ρsu.
These domains of support restrict the range of validity of the RS equations in two ways:

1) The partial-wave expansion of the imaginary parts in the dispersion integrals converges
only for scattering angles z that lie within the large Lehmann ellipse [45,42]. This ellipse
can be constructed as the largest ellipse in the complex z-plane which does not reach
into the double-spectral regions. Given a value of a, this constraint can be translated
into an allowed range for the parameter b, since (4.31) relates b to the angle z.

2) A specific value of b is only allowed if the hyperbola (s − a)(u − a) = b does not enter
the double-spectral regions.

5The double-spectral functions ρsu, ρtu, and ρst are defined as given in (1.32).
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The allowed values of b (for a given a) must respect both constraints in the integrals for both
the γπ → γπ and γγ → ππ amplitudes. Once the constraints on the allowed values of b are
derived, limits of the domain of validity of the full RS system follow from the partial-wave
projection of the dispersion relations. For example, in the s-channel we need −1 ≤ zs ≤ 1, so
that the maximally allowed smax is the largest value of s for which both

(s− a)(2M2
π − s− a) (4.44)

and

(s− a)

(
2M2

π − s− a+
(s−M2

π)
2

s

)
(4.45)

lie within the allowed range for b. In a similar fashion the requirement that 0 ≤ z2t ≤ 1
determines tmax in the t-channel projection.

We begin with the Lehmann-ellipse constraint in the s-channel. The partial-wave expan-
sion converges in an ellipse with foci at z′s = ±1

(Re z′s)
2

A2
s

+
(Im z′s)

2

B2
s

= 1 , (4.46)

so that the semimajor and semiminor axis As and Bs are related by

A2
s −B2

s = 1 . (4.47)

The maximal value of z′s that does not enter the region where ρst 6= 0 is given by

zmax
s′ = 1 +

2s′Tst(s′)
(s′ −M2

π)
2
, (4.48)

cf. (1.42), which results in
−zmax

s′ ≤ z′s ≤ zmax
s′ (4.49)

for the Lehmann-ellipse constraint of the st boundary. Translating this into a restriction on
t′, we find

T ′
st(s

′) ≤ t′ ≤ Tst(s
′) ,

T ′
st(s

′) = −(s′ −M2
π)

2

s′
− Tst(s

′) , ∀ s′ ∈
[
M2
π ,∞

)
, (4.50)

in the s-channel integral of the dispersion relations. As (4.31) defines a linear relation between
b and t′, (4.50) translates into a condition on b

b−s (s
′, a) ≤ b ≤ b+s (s

′, a) , (4.51)

where

b+s (s
′, a) = (s′ − a)(2M2

π − s′ − T ′
st(s

′)− a) ,

b−s (s
′, a) = (s′ − a)(2M2

π − s′ − Tst(s
′)− a) . (4.52)

We may then define

b+s (a) = min
s′∈[M2

π,∞)
b+s (s

′, a) , b−s (a) = max
s′∈[M2

π,∞)
b−s (s

′, a) (4.53)
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as the minimum/maximum of b±s (s
′, a) within the domain of integration. Similar restrictions

are provided by ρtu and ρsu, and the intersection of the resulting constraints on b defines the
limitations imposed by condition 1) due to the s-channel part of the dispersion relation.

The same argument in the case of the t-channel reaction is slightly more involved, since in
this case the relation between the CMS angle z′t and b is not linear

z′2t =
(t′ − 2M2

π + 2a)2 − 4b

16q′2t p
′2
t

. (4.54)

Consequently, we need to consider the Lehmann ellipse for z′2t

(
Re z′2t − 1

2

)2

Ã2
t

+

(
Im z′2t

)2

B̃2
t

= 1 , (4.55)

where the parameters are related to those of the ellipse for z′t by

Ãt = A2
t −

1

2
, B̃t = AtBt . (4.56)

Rewriting (4.41) in terms of ν and t and inserting the result in (4.14), we obtain the boundary
of the double-spectral region in terms of z′t

zmax
t′ =

N(t′)
4q′tp

′
t

, N(t′) =
t′(t′ + 12M2

π)

t′ − tπ
, (4.57)

so that ρst imposes the restriction

b−t (t
′, a) ≤ b ≤ b+t (t

′, a) , ∀ t′ ∈
[
tπ,∞

)
, (4.58)

with

b−t (t
′, a) =

1

4
(t′ − 2M2

π + 2a)2 − 1

4
N(t′)2 ,

b+t (t
′, a) =

1

4
(t′ − 2M2

π + 2a)2 +
1

4
N(t′)2 − 4q′2t p

′2
t , (4.59)

and similarly for ρtu and ρsu. Together with

b+t (a) = min
t′∈[tπ,∞)

b+t (t
′, a) , b−t (a) = max

t′∈[tπ ,∞)
b−t (t

′, a) , (4.60)

the constraints
b−s (a) ≤ b ≤ b+s (a) , b−t (a) ≤ b ≤ b+t (a) (4.61)

then provide, for a given a, the range of allowed values for b that satisfies the Lehmann-ellipse
constraint for both the s-channel and t-channel integrals. If the associated hyperbolae in
the external variables s and u do not cross the double-spectral regions either, as required by
condition 2), then this determines the kinematic regime in which the partial-wave projection
is valid.
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Figure 4.3: Allowed range of b for a = −9.8M2
π in the s-channel projection due to s-channel

(left) and t-channel (right) constraints. The red lines correspond to b+t (a) = 308.4M4
π and

b−t (a) = −298.1M4
π , respectively.

4.4.1 s-channel projection

As a first step, we consider the restrictions due to ρst in the s-channel part only. The strategy
to find the optimal value of a proceeds as follows: the Lehmann-ellipse constraint imposes the
condition that all allowed values of b must fulfill b−s (a) ≤ b ≤ b+s (a). As t varies only within

−(s−M2
π)

2

s
≤ t ≤ 0 , (4.62)

this limits the range of values of b that are needed for a given s. The maximal value of s
possible, smax, can be determined by the condition that the smallest b coincide with b−s (a),
and the largest b with b+s (a), i.e. smax will be given as the value of s that ensures that the
solutions of

(s − a)(2M2
π − s− a) = b−s (a) ,

(s− a)

(
2M2

π − s− a+
(s−M2

π)
2

s

)
= b+s (a) (4.63)

coincide. This procedure results in

a = −41.3M2
π , smax = 27.8M2

π ,

b+s (a) = 2852M4
π , b−s (a) = 1071M4

π . (4.64)

ρsu and ρtu do not yield additional constraints.
The investigation of the t-channel contribution proceeds along the same lines: demanding

that the solutions of the two equations

(s − a)(2M2
π − s− a) = b−t (a) ,

(s− a)

(
2M2

π − s− a+
(s−M2

π)
2

s

)
= b+t (a) (4.65)

coincide, we find

a = −9.8M2
π , smax = 21.4M2

π ,

b+t (a) = 308.4M4
π , b−t (a) = −298.1M4

π . (4.66)
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Figure 4.4: Double-spectral regions and hyperbolae for a = −9.8M2
π , b+t (a) = 308.4M4

π , and
b−t (a) = −298.1M4

π .

Thus, the s-channel constraint (4.64) is weaker than the t-channel restriction (4.66), as
can be deduced from Fig. 4.3, where the situation for a = −9.8M2

π is displayed: both b+t
and b−t also lie within the allowed region for the s-channel. Since the hyperbolae resulting
from (4.66) do not enter the double-spectral regions either (see Fig. 4.4), (4.66) constitutes
the final answer for the range of validity of the s-channel projection.

4.4.2 t-channel projection

As we may start from a different set of HDRs to project onto the t-channel partial waves (4.36),
it is not mandatory to use the same value of a as in the s-channel, so that the domain of validity
can be separately optimized. To perform the t-channel projection we need to consider

0 ≤ z2t =
(t− 2M2

π + 2a)2 − 4b

16q2t p
2
t

≤ 1 . (4.67)

Similarly to the s-channel case, the optimal choice of a is determined in such a way that the
solutions for t with z2t = 0 and z2t = 1 coincide, which yields

a = −7.5M2
π , −17.4M2

π ≤ t ≤ 51.6M2
π = 1GeV2 ,

b+t (a) = 298.4M4
π , b−t (a) = −316.8M4

π . (4.68)

Again, the most stringent restriction originates from the t-channel Lehmann ellipse, which
provides a stronger constraint than that involving b+s (a) and b−s (a). We will use the value
a = −7.5M2

π in the following.
As we eventually aim to investigate the properties of the σ, we also need to consider the

domain of convergence in the complex plane. We will restrict our analysis to the value of the
hyperbola parameter a = −7.5M2

π . Then, the constraints from both s-channel and t-channel
Lehmann ellipses yield ellipses of allowed values for b in the complex b-plane. As the ellipse
for the s-channel contains the ellipse for the t-channel, it suffices to consider the latter. The
resulting permitted region of the complex t-plane is depicted in Fig. 4.5. It safely encompasses
the position of the σ pole, and marginally that of the f0(980).

The result that the equations for the t-channel are rigorously valid up to tmax = 1GeV2

seems to shed doubt on recent dispersive fits [188] to high-statistics γγ → ππ data [173,174] in
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Figure 4.5: Domain of validity in the complex t-plane for a = −7.5 M2
π . The blue dots refer

to the position of the σ pole at t = (6.2 ± i12.3)M2
π and the red dots to that of the f0 at

t = (51.4 ± i1.4)M2
π [65].

the energy region up to 1.28GeV, where a lot of effort was put into building a good description
of K̄K dynamics above 1GeV. However, one possible way to obtain a higher upper limit
on the range of validity of the RS equations would be to relax the assumptions about the
boundaries of the double-spectral functions: if one assumed that the spectral strength of the
2π intermediate states depicted in Fig. 4.2 only set in at an effective mass larger than 2Mπ, the
domain of validity would be extended accordingly. For instance, a threshold of meff = 3Mπ

would produce tmax = 82.8M2
π = (1.27GeV)2 at a = −12.0M2

π . In any case, the validity of a
system of PWHDRs above 1GeV entails analyticity assumptions that go beyond Mandelstam
analyticity.



Chapter 5

Two-photon coupling of the σ

resonance

5.1 Muskhelishvili–Omnès problem for γγ → ππ

We now turn to the resolution of the equations for γγ → ππ. We truncate the system at
J = 2 both for s- and t-channel contributions (the generalization to higher partial waves is
straightforward). In this approximation, the equations can be brought into the form

h0,+(t) = ∆0,+

∣∣n-sub
(t) +

t1+n

π

∞∫

tπ

dt′
Imh0,+(t

′)

t′1+n(t′ − t)
,

h2,+(t) = ∆2,+(t) +
t2(t− tπ)

π

∞∫

tπ

dt′
Imh2,+(t

′)
t′2(t′ − tπ)(t′ − t)

,

h2,−(t) = ∆2,−
∣∣n-sub

(t) +
t1+n(t− tπ)

π

∞∫

tπ

dt′
Imh2,−(t′)

t′1+n(t′ − tπ)(t′ − t)
, (5.1)

where n ∈ {0, 1, 2} indicates the number of subtractions, and ∆J,±(t), also referred to as MO
inhomogeneity in the following, includes the Born terms, subtraction constants, and integrals
involving the imaginary parts of the other partial waves

∆0,+

∣∣n-sub
(t) =

1

π

∞∫

M2
π

ds′
∑

J ′=1,2

(
G̃++

0J ′

∣∣n-sub
(t, s′)Im fJ ′,+(s

′) + G̃+−
0J ′

∣∣n-sub
(t, s′)Im fJ ′,−(s

′)
)

+ Ñ+
0

∣∣n-sub
(t) +

1

π

∞∫

tπ

dt′
(
K̃++

02

∣∣n-sub
(t, t′)Imh2,+(t

′) + K̃+−
02

∣∣n-sub
(t, t′)Imh2,−(t

′)
)
,

∆2,+(t) = Ñ+
2 (t) +

1

π

∞∫

M2
π

ds′
∑

J ′=1,2

(
G̃++

2J ′ (t, s
′)Im fJ ′,+(s

′) + G̃+−
2J ′ (t, s

′)Im fJ ′,−(s
′)
)
,

∆2,−
∣∣n-sub

(t) = Ñ−
2

∣∣n-sub
(t) +

1

π

∞∫

M2
π

ds′
∑

J ′=1,2

G̃−+
2J ′

∣∣n-sub
(t, s′)Im fJ ′,+(s

′) . (5.2)

75
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hJ,± tJ

Figure 5.1: Elastic unitarity for γγ → ππ. Dashed/wiggly lines denote pions/photons.

Several comments are in order: first, the equation for h2,+(t) is not affected by subtractions.
Second, the equations for the D-waves decouple, as the corresponding kernel functions relating
them to the S-wave or to each other vanish. Conversely, the S-wave does not decouple from
the D-waves: both D-waves are needed as input to solve for h0,+(t). The consequence of
these observations for the numerical evaluation is obvious: we first solve the equations for the
D-waves separately, and then use these solutions as input for ∆0,+

∣∣n-sub
(t).

Assuming elastic unitarity (cf. Fig. 5.1),

ImhJ,±(t) = σ(t)
(
tJ(t)

)∗
hJ,±(t) , (5.3)

with ππ partial waves tJ(t) in the normalization (1.37), the phase of hJ,±(t) coincides with the
ππ phase δJ(t) (“Watson’s theorem” [201]), and (5.1) takes the form of a Muskhelishvili–Omnès
problem [70,71], whose resolution we will review in the following section.

5.1.1 Muskhelishvili–Omnès problem with finite matching point

As argued in Sect. 4.4, the domain of validity of (5.1) is restricted to the energy range below
1GeV. We will follow here the strategy of [53,67], namely to assume that the imaginary parts
of the amplitudes are known above a matching point tm, and solve the equations in the regime
between threshold and tm. The input that we will use both for the s-channel contributions
and the high-energy regime above tm will be discussed in detail in Sect. 5.3.

In this finite-matching-point setup, the solution in terms of Omnès functions reads

h0,+(t) = ∆0,+

∣∣n-sub
(t) +

t1+nΩ0(t)

π

×
{ tm∫

tπ

dt′
sin δ0(t

′)∆0,+

∣∣n-sub
(t′)

t′1+n(t′ − t)|Ω0(t′)|
+

∞∫

tm

dt′
Imh0,+(t

′)

t′1+n(t′ − t)|Ω0(t′)|

}
,

h2,+(t) = ∆2,+(t) +
t2(t− tπ)Ω2(t)

π

×
{ tm∫

tπ

dt′
sin δ2(t

′)∆2,+(t
′)

t′2(t′ − tπ)(t′ − t)|Ω2(t′)|
+

∞∫

tm

dt′
Imh2,+(t

′)

t′2(t′ − tπ)(t′ − t)|Ω2(t′)|

}
,

h2,−(t) = ∆2,−
∣∣n-sub

(t) +
t1+n(t− tπ)Ω2(t)

π

×
{ tm∫

tπ

dt′
sin δ2(t

′)∆2,−
∣∣n-sub

(t′)

t′1+n(t′ − tπ)(t′ − t)|Ω2(t′)|
+

∞∫

tm

dt′
Imh2,−(t′)

t′1+n(t′ − tπ)(t′ − t)|Ω2(t′)|

}
, (5.4)
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where

ΩJ(t) = exp

{
t

π

tm∫

tπ

dt′
δJ(t

′)
t′(t′ − t)

}
. (5.5)

Defining the physical amplitude by the limit t→ t+ iǫ, (5.4) can be rewritten as

|h0,+(t)| = ∆0,+

∣∣n-sub
(t) cos δ0(t) +

t1+n|Ω0(t)|
π

×
{

−
tm∫

tπ

dt′
sin δ0(t

′)∆0,+

∣∣n-sub
(t′)

t′1+n(t′ − t)|Ω0(t′)|
+

∞∫

tm

dt′
Imh0,+(t

′)
t′1+n(t′ − t)|Ω0(t′)|

}
, (5.6)

where the dash denotes the principal value of the integral, and similarly for the D-waves.
There are several subtleties related to the behavior of |ΩJ(t)| for t→ tm [67]

|ΩJ(t)| ∼ |tm − t|
δJ (tm)

π , (5.7)

in particular the integrals in (5.6) diverge for δJ (tm) > π. In such a case, there are non-
trivial homogeneous solutions whose coefficients can be used to absorb these divergences, but,
of course, the presence of such solutions introduces undetermined constants in the result for
hJ,±(t). For instance, the solution for h0,+(t) for π < δ0(tm) < 2π involves one free parameter
α,

|h0,+(t)| = ∆0,+

∣∣n-sub
(t) cos δ0(t) +

t1+n|Ω0(t)|
(tm − t)π

(5.8)

×
{
α+ t−

tm∫

tπ

dt′
(tm − t′) sin δ0(t′)∆0,+

∣∣n-sub
(t′)

t′2+n(t′ − t)|Ω0(t′)|
+ t

∞∫

tm

dt′
(tm − t′)Imh0,+(t

′)
t′2+n(t′ − t)|Ω0(t′)|

}
.

α can be fixed if one assumes, in addition, knowledge of the derivative of h0,+(t) at tm.
Conversely, the fact that the phases of the I = 2 partial waves are negative induces different
complications, which we will address in Sect. 5.1.2.

The part of the integrals in (5.4) involving the pion polarizabilities can be explicitly per-
formed based on the spectral representation of the Omnès functions

Ω−1
J (t) = − 1

π

tm∫

tπ

dt′
sin δJ(t

′)
(t′ − t)|ΩJ(t′)|

, Ω−1
J (t) = 1− t

π

tm∫

tπ

dt′
sin δJ(t

′)
t′(t′ − t)|ΩJ(t′)|

, (5.9)

Ω−1
J (t) = 1− t Ω̇J(0) −

t2

π

tm∫

tπ

dt′
sin δJ(t

′)
t′2(t′ − t)|ΩJ(t′)|

,

where the dot denotes the derivative with respect to t. The results of this modification, which,
in particular, only involve integrals over

∆̃J,±(t) = ∆J,±(t)−∆Ñ±
J (t) , (5.10)

are summarized in Appendix B.3.1 (with ∆Ñ±
J (t) defined in Appendix B.2).1

1In this procedure, e.g. the constant terms proportional to (M2
π − a)−1 in the unsubtracted version of the
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5.1.2 Sum rules for I = 2

If δ0(tm) < 0, Ω0(t) diverges at tm, so that (5.4) breaks down. However, we may rewrite the
solution as

h0,+(t) = ∆0,+

∣∣n-sub
(t) + α̃(n)

(
t

tm

)1+n

Ω0(t) +
t1+nΩ0(t)(tm − t)

π

×
{ tm∫

tπ

dt′
sin δ0(t

′)∆0,+

∣∣n-sub
(t′)

t′1+n(tm − t′)(t′ − t)|Ω0(t′)|
+

∞∫

tm

dt′
Imh0,+(t

′)
t′1+n(tm − t′)(t′ − t)|Ω0(t′)|

}
, (5.11)

where

α̃(n) =
t1+nm

π

tm∫

tπ

dt′
sin δ0(t

′)∆0,+

∣∣n-sub
(t′)

t′1+n(t′ − tm)|Ω0(t′)|
+
t1+nm

π

∞∫

tm

dt′
Imh0,+(t

′)
t′1+n(t′ − tm)|Ω0(t′)|

. (5.12)

Demanding continuity at the matching point implies that α̃(n) = 0, since otherwise h0,+(t)
would diverge at tm. Indeed, multiplying the first equation of (5.4) with Ω−1

0 (t) and subse-
quently evaluating the result at t = tm explicitly proves that α̃(n) = 0 must hold in order for
h0,+(tm) to be finite. The final solutions for all amplitudes as well as the explicit form of all
possible sum rules which could be obtained are given in Appendix B.3.2.

One case that is of particular interest is the I = 2 S-waves, where the ππ phase shift
is substantial, and negative, at the matching point. Thus, we obtain from the once- and
twice-subtracted versions of the MO representation

0 =
Mπ

2α
tm(α1 − β1)

I=2 + I(1) ,

0 =
Mπ

2α
tm(1− tm Ω̇0(0))(α1 − β1)

I=2 +
Mπ

24α
t2m(α2 − β2)

I=2 + I(2) , (5.13)

where

I(n) =
t1+nm

π

{ tm∫

tπ

dt′
sin δ0(t

′)∆̃0,+

∣∣n-sub
(t′)

t′1+n(t′ − tm)|Ω0(t′)|
+

∞∫

tm

dt′
Imh0,+(t

′)

t′1+n(t′ − tm)|Ω0(t′)|

}
, n ∈ {1, 2} .

(5.14)
As we shall see below, the second sum rule, in particular, provides a novel constraint on
(α2 − β2)

I=2.

5.1.3 Uniqueness and comparison to ππ Roy equations

The pattern in which free parameters emerge in the Omnès solutions is reminiscent of the
results concerning the uniqueness properties of the solutions of ππ Roy equations presented

Born terms (4.30) cancel. In fact, this has to be the case, as these (unphysical) contributions do not vanish
asymptotically and generate an unphysical behavior on a. Hence, the dispersive integrals for the unsubtracted
case both for the MO solution (5.4) and the spectral representation of the Omnès function are strictly speaking
not correct and should be supplemented by terms from the integration contour at infinity. In practice, this
problem can be circumvented most easily by removing the pertinent parts of the inhomogeneities by means
of (5.9), which ensures that all potential contributions from the contour at infinity vanish.
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in [48–50]. There, an additional free parameter occurs each time the phase at the matching
point crosses an integer multiple of π/2. Indeed, to derive this result the Roy equations are
linearized, and in the one-channel approximation one finds that the difference

φ(s) =
δ′(s)− δ(s)

σ(s)
(5.15)

between two solutions δ(s) and δ′(s) for the ππ phase shift must fulfill [49]

cos 2δ(s)φ(s) =
s− 4M2

π

π
−
sm∫

4M2
π

ds′
sin 2δ(s′)φ(s′)

(s′ − 4M2
π)(s

′ − s)
, (5.16)

where sm is the matching point. In the ππ case the phase shift is the quantity that is to be
determined, while in γγ → ππ that phase is input and the modulus of the amplitude |h(t)|
unknown, but the mathematical structure is the same up to a factor of 2.

As an example we consider the unsubtracted equation for the S-wave. In γγ → ππ the
difference

ψ0,+(t) = |h′0,+(t)| − |h0,+(t)| (5.17)

between two solutions of (5.1) obeys

cos δ0(t)ψ0,+(t) =
t

π
−
tm∫

tπ

dt′
sin δ0(t

′)ψ0,+(t
′)

t′(t′ − t)
. (5.18)

The presence of sin δ0(t′), rather than the sin 2δ(s′) of the ππ case, explains why the multi-
plicity of solutions in ππ scattering is ⌊2δ(sm)/π⌋ instead of ⌊δ0(tm)/π⌋ in γγ → ππ.

In addition, there is also an analog of the sum rules discussed in Sect. 5.1.2 in ππ Roy
equations. In the single-channel approximation φ(s) vanishes if δ(sm) < π/2. If the effects
of the coupling to other partial waves are taken into account, the phase-shift difference for a
channel i with δi(sm) < π/2 may be written as [50]

φi(s) = (s− 4M2
π)Gi(s)Hi(s) , Gi(s) = exp

{
2

π

sm∫

4M2
π

ds′
δi(s

′)
s′ − s

}
, (5.19)

where Hi(s) includes information on other partial waves. Once again, Gi(sm) diverges if
δi(sm) < 0, with the result that

Hi(sm) = 0 (5.20)

in this case. The difference as compared to γγ → ππ is that in ππ the MO representation
is only available for phase-shift differences and not for the phase shifts themselves. Thus,
the constraint manifests itself rather subtly by reducing the number of free parameters in the
manifold of solutions. However, the mathematical input that leads to this constraint, namely
continuity of the MO representation at the matching point, is the same.
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5.1.4 Comparison to previous work

One key result of the derivation of RS equations for γγ → ππ is the existence of a term that
couples S- andD-waves, cf. (5.2). In all previous dispersive treatments of γγ → ππ each partial
wave was considered separately. Moreover, to the best of our knowledge, this is the first time
that a finite-matching-point representation has been employed for γγ → ππ. The practical
consequences of both these developments will be discussed in Sects. 5.3 and 5.4. However,
we can consider the limit tm → ∞ in our equations in order to delineate the differences
between our formalism and the recent works [177,185,188], which are also based on dispersive
techniques.

In [177], a once-subtracted2 dispersion relation for the S-wave is considered. The subtrac-
tion constant is fixed by assuming h0,+(t) ∝ t0(t) and using ChPT information on the Adler
zero of the ππ amplitude. This representation depends quite strongly on the details of the
ππ phase above the K̄K threshold already at energies & 0.5GeV. For this reason, another
subtraction was performed in [185] at the energy t1 where the ππ phase crosses π, the sub-
traction constant being fixed by the requirement that the cross section at t1 does not become
outrageously large. The Born terms as well as vector and axial-vector resonances were used
to approximate the left-hand cut.

In [188], a MO representation for S- and D-waves is constructed that explicitly takes into
account the K̄K channel, and in addition includes tensor resonances in the description of the
left-hand cut. For the S-waves two subtractions are performed, while the D-waves are treated
differently for the two isospin channels: for I = 2, no subtraction constants for h2,+ and h2,−
are provided (in our conventions this corresponds to the unsubtracted case for h2,−), while for
I = 0 an additional subtraction in both partial waves is performed. Thus, the treatment of
I = 0 corresponds to our once-subtracted case for h2,−. However, the RS analysis shows that
the subtraction constant for h2,+ cannot be related to dipole and quadrupole polarizabilities,
as the equations for this partial wave are not affected by the corresponding subtractions.
For this reason, the subtraction constants in [188] determined by fits to data (together with
several chiral constraints) can be translated into pion polarizabilities, but in general not vice
versa, unless even higher terms in the polarizability expansion are included. We have checked
explicitly that our results agree with [188] in the limit tm → ∞, once the K̄K channel is
switched off and the additional subtraction in h2,+ dropped.

5.2 Photon coupling of the σ resonance

We define the σππ coupling constant gσππ in such a way that the full isospin I = 0 ππ
scattering amplitude on the second Riemann sheet T 0

II near the position of the σ pole

tσ =

(
Mσ − i

Γσ
2

)2

(5.21)

can be written as

T 0
II = 32π

∞∑

J=0

(2J + 1)t0J,II(t)PJ (zt) =
g2σππ
tσ − t

. (5.22)

2Here, we do not count powers of t′ or t′ − tπ that are present for kinematical reasons alone and thus do
not require any subtraction constants. This is not always the convention employed in the literature.
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fJ,± fJ,±

Figure 5.2: Elastic unitarity for γπ → γπ (left) and diagrams for 2- and 3-pion intermediate
states.

As the σ pole occurs in the S-wave, all other partial waves only contribute to the background.
Similarly, in γγ → ππ we take

e2H0
++,II =

e2gσππgσγγ
tσ − t

. (5.23)

In these conventions, the widths in the narrow-width approximation are

Γσππ =
|gσππ|2
32πMσ

√
1− 4M2

π

M2
σ

, Γσγγ =
πα2|gσγγ |2

Mσ
. (5.24)

Note that since the large strong width of the σ renders the applicability of these relations
questionable, we use gσππ as determined from the residue of the pole. Although the formula for
Γσγγ and gσγγ suffers from the same deficiency, it is conventionally employed in the literature
to illustrate the relation between the two quantities. As the direct determination of Γσγγ
from the position of the pole is not possible in view of the large strong width, we follow this
convention. The coupling constant itself can always be recovered by means of (5.24).

The analytic continuation of h00,+(t) into the complex plane is given by [185]3

h00,+,II(t) = (1− 2iσ(t)t00,II(t))h
0
0,+,I(t) , (5.25)

and thus
g2σγγ
g2σππ

= −
(
σ(tσ)

16π

)2

(h00,+(tσ))
2 , (5.26)

where h00,+ is evaluated on the first Riemann sheet. Assuming the position of the σ pole and
its coupling constant to two pions to be known, we can infer gσγγ (and hence Γσγγ) from the
value of the I = 0 S-wave of γγ → ππ evaluated at tσ.

5.3 Input

To solve the RS equations for the γγ → ππ partial waves we must specify the input for
Im fJ,±(s) in the whole energy range and for ImhJ,±(t) above the matching point. One
could, in the spirit of the RS analysis for πK scattering [67], consider the equations for s-
and t-channel partial waves simultaneously, and determine a solution of the whole system

3We neglect γγ intermediate states in the unitarity relation. This is the same approximation as used in [65],
where the σ pole is deduced from ππ scattering with electromagnetic interactions switched off. Since the width
corresponding to the γγ channel amounts only to a few keV, the ensuing shift of the pole is much smaller than
the uncertainty of its position as quoted in [65].
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Mσ Γσ gσππ/
√
2

CCL [65] 441+16
−8 MeV 544+18

−25 MeV 3.31+0.17
−0.08 GeV

GKPRY [202] 457+14
−13 MeV 558+22

−14 MeV 3.59+0.11
−0.13 GeV

Table 5.1: Mass, width, and ππ coupling constant of the σ. The coupling for CCL obtained
from [203] is quoted in [186].

by an iterative procedure. However, the RS equations for γπ → γπ are less powerful than
those for πK → πK, since the only contributions that can be obtained in the s-channel
without additional input are determined by elastic unitarity, cf. Fig. 5.2. In the γπ case, γπ
intermediate states are suppressed by e2 and thus expected to be numerically negligible. By
comparison, πK intermediate states dominate the unitarity relation in πK scattering at least
up to 1GeV [67].

For this reason, we will drop γπ intermediate states altogether and content ourselves
with the resonance description of the imaginary parts of the Compton-scattering amplitudes
constructed in [188], where the resonance contributions are eventually included in a spectral
representation with an integration cutoff of −5GeV2. In our framework, the effect of the
resonance description of Im fJ,±(s) on hJ,±(t) can be directly read off from (4.36) or (5.2),
cf. Sect. 5.3.1. Physically, one can understand this summation of resonances as an effective
description of multi-pion states in the s-channel for γπ → γπ, or, equivalently, in the t-
channel for γγ → ππ, which amounts to approximating the multi-pion cuts by a sum of poles.
As a future extension, this description could be improved upon at low energies by explicitly
incorporating the 2- and 3-pion intermediate states based on the pertinent ChPT amplitudes.4

We now turn to the input for ImhJ,±(t). We choose the matching point as
√
tm = 0.98GeV , (5.27)

which, on the one hand, ensures that δ0(tm) < π, avoiding a free parameter in the MO solution,
and, on the other hand, extends the energy range as far as possible. As the cross section above
1GeV is dominated by the f2(1270) resonance, we put hJ,±(t) = 0 above tm for all partial
waves except for hI=0

2,− (t), which we match to a Breit–Wigner ansatz for the f2(1270), cf.
Sect. 5.3.2. As we will show in Sect. 5.4, this approximation already allows for a reasonable
description of the cross section. Since we are ultimately interested in the properties of the σ,
a more detailed analysis of the high-energy region is not necessary for the present application.

As input for the ππ phases we use the results of an extended Roy-equation analysis of
ππ scattering [57], which in particular ensures that the phases and the pole position of the σ
are consistent, since [57] coincides perfectly with the older analysis [58] at low energies.5 To
estimate the uncertainties due to the ππ input, we also consider the ππ phases determined in
a recent study of Roy-like equations [55]. The parameters of the σ resonances corresponding
to both approaches, which we will refer to as CCL and GKPRY, respectively, are given in
Table 5.1, and are consistent within errors.

Finally, our results depend on the input chosen for the pion polarizabilities. For definite-
ness, we will consider the two sets of parameters compiled in Table 5.2, which we refer to

4These intermediate states enter the γπ amplitude at O(e2p6) and O(e2p4) in the chiral counting, respec-
tively, where the 2-pion case even requires two anomalous γπ → ππ vertices, see Fig. 5.2.

5The impact of the high-energy region on the σ pole position was shown to be negligible in [65].
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ChPT [192,193] GMM [188]

(α1 − β1)
π0 −1.9± 0.2 −1.25± 0.17

(α1 + β1)
π0

1.1± 0.3 1.22 ± 0.12

(α2 − β2)
π0

37.6 ± 3.3 32.1 ± 2.1

(α2 + β2)
π0

0.037 ± 0.003 −0.19± 0.02

(α1 − β1)
π±

5.7± 1.0 4.7

(α1 + β1)
π±

0.16 [0.16] 0.19 ± 0.09

(α2 − β2)
π±

16.2 [21.6] 14.7 ± 2.1

(α2 + β2)
π± −0.001 [−0.001] 0.11 ± 0.03

Table 5.2: Dipole and quadrupole pion polarizabilities in units of 10−4fm3 and 10−4fm5,
respectively. The numbers in brackets refer to the LECs from [103].

as ChPT and GMM, respectively. The polarizabilities in the isospin basis follow from (4.28).
Note that in [188] the dipole polarizability of the charged pion was only allowed to vary within
the range of the ChPT prediction. Unfortunately, the charged-pion quadrupole polarizability
α2 − β2 is rather sensitive to LECs: the first number, 16.2 · 10−4 fm5, corresponds to the
resonance-saturation model of [193], while taking the LECs from [103] yields 21.6 · 10−4 fm5.

5.3.1 Resonances in γπ → γπ

We use the resonance model constructed in [188], with the contribution of vector (V), axial-
vector (A), tensor (T), and axial-tensor (TA) resonances to the Compton-scattering partial
waves in the narrow-width approximation, to define the imaginary part of the γπ → γπ
amplitudes

Im fVJ,±(s) = ±2

3
πCV(m

2
V −M2

π)
2δ(s −m2

V)δJ1 ,

Im fAJ,±(s) =
2

3
πCA(m

2
A −M2

π)
2δ(s −m2

A)δJ1 ,

Im fTJ,±(s) = ±2

5
πCT

(m2
T −M2

π)
4

m2
T

δ(s −m2
T)δJ2 ,

Im fTA
J,±(s) =

2

5
πCTA

(m2
TA

−M2
π)

4

m2
TA

δ(s −m2
TA

)δJ2 , (5.28)

where mi, i ∈ {V,A,T,TA}, denotes the mass of the resonance, and the coupling constants
Ci are related to the widths Γi by

ΓV = αCV
(m2

V −M2
π)

3

3m3
V

, ΓA = αCA
(m2

A −M2
π)

3

3m3
A

,

ΓT = αCT
(m2

T −M2
π)

5

5m5
T

, ΓTA
= αCTA

(m2
TA

−M2
π)

5

5m5
TA

. (5.29)
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Inserting (5.28) into (4.36) yields

hVJ,+(t) =
2

3
CV(m

2
V −M2

π)
2
(
G̃++
J1 (t,m2

V)− G̃+−
J1 (t,m2

V)
)
,

hVJ,−(t) =
2

3
CV(m

2
V −M2

π)
2G̃−+

J1 (t,m2
V) ,

hAJ,+(t) =
2

3
CA(m

2
A −M2

π)
2
(
G̃++
J1 (t,m2

A) + G̃+−
J1 (t,m2

A)
)
,

hAJ,−(t) =
2

3
CA(m

2
A −M2

π)
2G̃−+

J1 (t,m2
A) ,

hTJ,+(t) =
2

5
CT

(m2
T −M2

π)
4

m2
T

(
G̃++
J2 (t,m2

T)− G̃+−
J2 (t,m2

T)
)
,

hTJ,−(t) =
2

5
CT

(m2
T −M2

π)
4

m2
T

G̃−+
J2 (t,m2

T) ,

hTA
J,+(t) =

2

5
CTA

(m2
TA

−M2
π)

4

m2
TA

(
G̃++
J2 (t,m2

TA
) + G̃+−

J2 (t,m2
TA

)
)
,

hTA
J,−(t) =

2

5
CTA

(m2
TA

−M2
π)

4

m2
TA

G̃−+
J2 (t,m2

TA
) . (5.30)

We include all resonances listed in [188]. Moreover, we have checked that (5.30) agrees with
the results quoted in [188]: once the ambiguous term linear in t in h0,+(t) in [188] is removed,
we recover that result by taking the limit a→ ∞ of our unsubtracted kernel functions.

5.3.2 Including the f2(1270)

To incorporate the D-wave resonance f2(1270) we follow [182]. Starting from

LTPP = CπTT
µν∂µP∂νP , LTγγ = e2CγTT

µνFµαF
α

ν (5.31)

to describe the coupling of a tensor resonance to pseudoscalars and photons, respectively, we
find

A = − CπTC
γ
T

6(t−m2
T)

{
4M2

π

(
4− t

m2
T

)
− t

(
5− 2t2

m4
T

)}
, B =

CπTC
γ
T

4(t−m2
T)

, (5.32)

and thus

H++ = −C
π
TC

γ
Tt

6m4
T

(
t(t+m2

T)− 2m2
TM

2
π

)
,

H+− =
CπTC

γ
T

4

t2σ(t)2

t−m2
T

(1− z2t ) . (5.33)

Accordingly, a resonant contribution only occurs in h2,−(t), while the non-resonant background
in h0,+(t) can be discarded. Taking the full width of the f2(1270) into account and dropping
the non-resonant background, we obtain

hf22,−(t) =
Cπf2C

γ
f2

5
√
6

m4
f2
σ(m2

f2
)2

t−m2
f2

+ imf2Γf2
. (5.34)
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full a→ ∞ no resonances

I(1), CCL −0.62 −1.15 0.61

I(1), GKPRY −0.63 −1.17 0.60

I(2), CCL 3.45 3.58 2.08

I(2), GKPRY 3.40 3.53 2.03

Table 5.3: Integrals in the I = 2 sum rule for the full left-hand cut, in the limit a → ∞, and
with resonances switched off.

α1 − β1 α2 − β2 total

ChPT 1.03 ± 0.14 −4.29± 0.78 0.18± 0.85

GMM 0.80 ± 0.14 −3.49± 0.60 0.76± 0.68

Table 5.4: Individual contribution to (5.13) from the polarizabilities (first two columns) and
total value of the right-hand side of the sum rule (third column).

In fact, in Sect. 5.4.2 we will restore the background in order to describe the cross section for
γγ → π+π− above the matching point. The coupling constants can be determined from the
partial widths

Γf2→ππ =

(
Cπf2
)2

960π

(
m2
f2

− 4M2
π

) 5
2

m2
f2

, Γf2→γγ =
π

5
α2
(
Cγf2
)2
m3
f2 . (5.35)

For the f2 parameters we use as input [3]

mf2 = 1275.1MeV , Γf2 = 185.1MeV ,

Γf2→ππ = 156.9MeV , Γf2→γγ = 3.03 keV , (5.36)

leading to
|Cπf2 | = 16.06GeV−1 , |Cγf2 | = 0.21GeV−1 . (5.37)

However, the relative sign of the couplings cannot be inferred and must be fitted to experiment.

5.4 Numerical results

5.4.1 Sum rules

First, we turn to the numerical evaluation of the sum rules for I = 2 derived in Sect. 5.1.2. As
the I = 2 D-wave ππ phase is very small, in practice no meaningful constraint results in these
partial waves and we therefore restrict the analysis to the S-wave. These sum rules are given
explicitly in (5.13) (see also Appendix B.3.2). The results for I(1) and I(2) and both input
ππ phases are shown in the first column of Table 5.3. The difference between using CCL and
GKPRY ππ phases is very small in both cases.

Evaluating the sum-rule integrals involves several approximations, in particular, we have
put Imh0,+(t) to zero above the matching point, neglected partial waves with J > 2, and
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used a resonance approximation for Im fJ,±(s). Therefore, we need to ascertain that the
dependence on the high-energy part of the integrals I(1) and I(2), higher partial waves, and
details of the resonance description of the left-hand cut is sufficiently small for the sum-rule
constraint to be meaningful. We can estimate the accuracy of these approximations by sending
the hyperbola parameter a→ ∞, as the original HDRs are valid independent of a. Thus, any
residual dependence on a provides a measure of the impact of the approximations made.
The corresponding results are shown in the second column of Table 5.3: the once-subtracted
integral depends strongly on the value of a, but the twice-subtracted version is already rather
stable under a → ∞. Doubling the effect of taking a → ∞ to get a conservative estimate of
the uncertainty in I(2), we conclude that

I(2) = 3.45 ± 0.30 . (5.38)

In order to further test the sensitivity of the sum rule to the modeling of the left-hand
cut by a set of resonances we can check the impact of switching off resonance contributions
completely. In the case of I(2) even this crude approximation entails a relatively modest shift
in the result. As shown in the third column of Table 5.3, the resonances contribute less than
50% to the full result, so that their contribution would have to be drastically wrong to exceed
the error estimate given in (5.38). The stability of I(2) under these changes in high-energy
input makes it worth taking (5.38) seriously as a constraint on a particular linear combination
of (α1 − β1)

I=2 and (α2 − β2)
I=2. Thus, we will now consider the resulting sum rule that

arises from the twice-subtracted MO representation in more detail.
First of all, we test if the parameter sets of Table 5.2 fulfill the sum rule. The error

analysis is complicated by the fact that in the GMM set no uncertainty estimate is given for
(α1 − β1)

π±

, while in the ChPT set the error induced by the LEC dependence of (α2 − β2)
π±

is difficult to assess. To obtain a rough estimate, we use the ChPT error for (α1 − β1)
π±

also for GMM, and vice versa for (α2 − β2)
π±

. This, together with the number (5.38), leads
to the results summarized in Table 5.4. We conclude that the sum rule is fulfilled for both
sets, although rather marginally in the case of GMM, which is mainly due to the fact that
(α2 − β2)

π0
differs quite substantially between ChPT and GMM. The largest uncertainty in

the sum rule is driven by lack of knowledge of the quadrupole polarizability.
Observing that both dipole polarizabilities as well as (α2 − β2)

π0
have an accurate ChPT

prediction, we can turn around the argument and use the sum rule to derive an improved value
for (α2−β2)π

±

. Using (5.38) and the ChPT prediction for the isospin-two dipole polarizability,
(5.13) leads to

(α2 − β2)
I=2 = (−18.2 ± 1.3) · 10−4fm5 . (5.39)

Resorting, in addition, to the ChPT prediction for (α2 − β2)
π0

, we find

(α2 − β2)
π±

= (15.3 ± 3.7) · 10−4fm5 ,

(α2 − β2)
I=0 = (39.4 ± 6.0) · 10−4fm5 , (5.40)

where the increase in uncertainty compared to (5.39) is due to the ChPT uncertainty in
(α2 − β2)

π0
. In the remainder of this chapter, we will make use of the improved value (5.40)

when referring to the ChPT predictions for pion polarizabilities. Note that, as expected given
the results of Table 5.4, the sum-rule value of (α2 − β2)

π±

is consistent with the first ChPT
number quoted in Table 5.2, but not with the larger number found when the LECs of [103]
are taken as input.
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Figure 5.3: Total cross section for γγ → π0π0 [170, 174] and γγ → π+π− [171–173] for
| cos θ| ≤ 0.8 and | cos θ| ≤ 0.6, respectively.

5.4.2 Total cross section

Before performing the analytic continuation to the σ pole, we need to demonstrate that the
amplitude on the real axis is reasonably well described—at least up to

√
t = 1GeV, which

we assess to be the region which will influence the analytic continuation to the σ pole. The
results for the cross section are depicted in Figs. 5.3 and 5.4. Below the matching point, the
results for the once- and twice-subtracted formulation are provided for both ChPT and GMM
polarizabilities. The uncertainty due to ππ input, represented by the grey band, is estimated
by the variation between CCL and GKPRY phases and proves to be very small. The low-
energy region is totally dominated by the Born terms in the charged process, but it is very
sensitive to the σ in the neutral reaction. The prediction of the twice-subtracted dispersion
relation is in especially good agreement with γγ → π0π0 data (see Fig. 5.4), with the level of
agreement comparable to that obtained in the coupled-channel fit of [188].

Above the matching point, we exploit the fact that the cross section is dominated by the
f2(1270), and thus can be well approximated by employing a Breit–Wigner description of this
resonance in hI=0

2,− (t) and putting all other partial waves to zero. In this way, (5.34) alone
yields a good description of the neutral cross section above the matching point. In contrast,
in the charged case an additional background is necessary. As observed in [182], this can
be most easily achieved by adding the Born terms and the off-shell contributions dropped
in the transition from (5.33) to (5.34) back into the charged-channel amplitude for h2,−(t).
Moreover, after the transition to the isospin basis, we add a constant background phase to
ensure matching with the ππ phase below the matching point. However, if Cπf2C

γ
f2

is chosen to
be negative, the mismatch of the phases is very small: we find a correction of δcorr = −0.09 and
δcorr = −0.04 in order to obtain agreement with the CCL and GKPRY phases, respectively.

Finally, we comment on the analyticity properties of the partial waves at the matching
point. As shown in the appendix of [67], the solutions in terms of Omnès functions auto-
matically fulfill continuity at the matching point, but the derivative at tm is not determined.
Therefore, in general, strong cusps can occur at the matching point. For example, if the back-
ground in the charged reaction is dropped, the neutral cross section above tm is still correctly
reproduced, but the input for the I = 0 component changes, which affects the neutral cross
section below tm: the result for |hI=0

2,− (t)| exhibits a strong cusp below tm, which translates
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Figure 5.4: Total cross section for γγ → π0π0 for | cos θ| ≤ 0.8 in the low-energy region.

into an (unphysical) sharp peak of about 15 nb in the neutral cross section directly below
tm. The fact that this effect is much smaller in the full solution provides evidence that our
model for the high-energy region is reasonably accurate, as only a specific input of ππ phases,
polarizabilities, and imaginary parts above tm will yield a smooth solution for hI=0

2− (t) around
t = tm. In the language of [49] such a solution corresponds to an “analytic input.” If the input
above the matching point were sufficiently well known, one could thus derive constraints on the
polarizabilities by requiring a no-cusp condition. These constraints would be similar to those
derived in [53, 67] for ππ and πK scattering lengths. However, the input above the matching
point is not very well known in γγ → ππ, and so we content ourselves with demanding that
the cusp at tm is not too large, which indicates that the input is reasonably close to being
“analytic.”

5.4.3 Two-photon coupling of the σ

Finally, we present our results for the two-photon width Γσγγ as a function of the pion polariz-
abilities. (α1+β1) and (α2+β2) only feature as subtraction constants in the D-waves, which,
in turn, influence Γσγγ only indirectly via the corresponding coupling to the S-wave in (5.2).
Moreover, the imaginary part of these D-waves is dominated to a large extent by the f2(1270),
and the dependence of |hI=0

2,− (t)| on the number of subtractions is very weak, see Fig. 5.5 for
the results using the ChPT polarizabilities. The variation between the |hI=0

2− (t)| solutions for
different numbers of subtractions is so small that the uncertainty in the ππ phases (estimated
as the difference between CCL and GKPRY) becomes of comparable size. Consequently, the
dependence of Γσγγ on (α1+β1)

I=0 and (α2+β2)
I=0 is entirely negligible, with the result that

we end up with the dipole polarizability (α1 − β1)
I=0 as the only free parameter that affects

Γσγγ in the once-subtracted version of the equations, while a second subtraction additionally
requires the quadrupole polarizability (α2−β2)I=0 as input. The resulting model-independent
correlation between Γσγγ and the pion polarizabilities depicted in Fig. 5.6 represents the main
result of this chapter.
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Figure 5.5: Dependence of |hI=0
2,− (t)| on the number of subtractions. The grey bands indicate

the difference between CCL and GKPRY phases.

Figure 5.6: Γσγγ as a function of the I = 0 pion polarizabilities. The black line refers to the
unsubtracted case and the colored lines to the twice-subtracted version with (α2 − β2)

I=0 as
indicated (in units of 10−4fm5). The grey band for the uncertainty in the ππ input is estimated
by the variation found when CCL and GKPRY phases and σ parameters are chosen. The cross
corresponds to the twice-subtracted case plus ChPT input.

The role of the different contributions to the left-hand cut is illustrated in Fig. 5.7: starting
from the Born-term approximation (black line), we add resonances in the limit a → ∞ (red
line), the additional terms for finite a = −7.5M2

π (blue line), and D-wave contributions (green
line). The twice-subtracted version (solid lines) is hardly affected by any of these changes.
In the once-subtracted case (dashed lines) we see that D-wave and resonance contributions
are of comparable size. We therefore expect that, as soon as resonances yield a significant
contribution to the left-hand cut, the coupling between S- and D-waves should also become
numerically important in any description of data that is based on a MO representation.
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Figure 5.7: Individual contributions to Γσγγ for CCL phases and σ parameters. The dashed
lines refer to the once-subtracted version, and the solid lines to the twice-subtracted version
with input for (α2 − β2)

I=0 from (5.40). The black lines denote the results for a left-hand cut
modeled solely by the Born terms, while the red, blue, and green lines are obtained by suc-
cessively adding resonances in the limit a→ ∞, terms for finite a, and D-wave contributions.

1 subtraction 2 subtractions

ChPT 1.3 ± 0.1 1.7± 0.4

GMM 1.4 ± 0.1 2.0± 0.2

Table 5.5: Prediction for Γσγγ in keV based on ChPT and GMM polarizabilities for CCL
phases and σ parameters.

The results for Γσγγ given ChPT and GMM choices for the polarizabilities are summarized
in Table 5.5, where the errors only include the uncertainties from the pion polarizabilities. We
have checked that these numbers are insensitive to the details of the input above the matching
point. While for the ChPT parameters the results from the once- and twice-subtracted equa-
tions are consistent, there is significant tension between these two results in the case of GMM.
This issue seems to be related to the relatively small value of (α2−β2)π

0
in that polarizability

set: increasing this polarizability and thus bringing it closer to the ChPT prediction would
both improve the fulfillment of the I = 2 sum rule (cf. Sect. 5.4.1) and bring Γσγγ down from
the (2.0± 0.2) keV result given in Table 5.5.

In view of Fig. 5.7, we consider the outcome for the twice-subtracted system of RS equa-
tions as the most reliable one, despite the fact that input for the quadrupole polarizability is
required. Although the result based on the GMM parameters is ostensibly more precise, the
MO representation used in [188] is, for the reasons explained in Sect. 5.1.4, not fully consistent
with the RS equations derived here. For this reason, we follow the philosophy of [58] and com-
bine the strict predictions of the RS equations with ChPT input for the pion polarizabilities
to obtain our final result

Γσγγ = (1.7± 0.4) keV , (5.41)
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Reference Γσγγ

Penn. 06 [177] 4.1± 0.3

MNO 08 [178] 3.9± 0.6

MNW 11 [180] 3.08 ± 0.82

FK 06 [183] 0.62

Penn. et al. 08 [184], sol B 2.4± 0.4

ORS 08 [185] 1.8± 0.4

OR 08 [186] 1.68 ± 0.15

BP 08 [176] 1.20 ± 0.40

Mao et al. 09 [187] 2.08

Mouss. 11 [56] 2.08 ± 0.20+0.07
−0.04

Table 5.6: Previous results for Γσγγ in keV.

which is depicted by the cross in Fig. 5.6. We note that the uncertainty here is broad enough
to encompass all the central values in Table 5.5. A comparison with previous results for Γσγγ
is shown in Table 5.6 and Fig. 5.8.

5.5 Summary and conclusion

In this part, we have constructed a complete set of Roy–Steiner equations for pion Compton
scattering and the crossed reaction γγ → ππ. In particular, we have worked out all necessary
integral kernels for zero, one, and two subtractions explicitly up to D-waves, and identified
the subtraction constants with pion polarizabilities. Assuming Mandelstam analyticity, we
studied the range of validity of the system, and found that the equations for the γγ → ππ
partial waves are rigorously valid up to 1GeV—a domain that comfortably includes the σ
pole. Truncating the system at J = 2, we then concentrated on the equations for γγ → ππ,
whose solution in terms of a Muskhelishvili–Omnès representation with a finite matching
point was discussed. Comparing our equations with existing approaches in the literature, we
found a coupling between S- and D-waves, which has previously been neglected in dispersive
calculations of γγ → ππ, but seems to be numerically comparable to the contributions of
resonances in γγ → ππ to the left-hand cut.

Demanding continuity of the Muskhelishvili–Omnès representation at the matching point,
we derived sum rules for the I = 2 partial waves that relate dipole and quadrupole polarizabil-
ities to integrals over the left-hand cut. We used the S-wave sum rule, together with ChPT
input for the neutral-pion quadrupole polarizability and the dipole polarizabilities, to obtain
a new, more accurate, prediction for the charged-pion quadrupole polarizability

(α2 − β2)
π±

= (15.3 ± 3.7) · 10−4fm5 . (5.42)

The central value is hardly shifted compared to [193], but the error estimate is difficult to
obtain in ChPT alone due to a strong dependence on poorly known LECs. In fact, the
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Figure 5.8: Previous results for Γσγγ with acronyms defined in Table 5.6. The red point
corresponds to our result. For [183, 187] we only show the central value, as no errors are
provided in these references.

outcome of the present calculation can be interpreted as support for the resonance-saturation
model of [193], while disfavoring the set of LECs from [103].

The main application of our formalism concerns the two-photon width of the σ resonance.
To this end, we first showed that the cross section for both the charged and neutral channel
can be accurately reproduced by approximating the high-energy region above 1GeV by a
Breit–Wigner ansatz for the f2(1270) resonance and employing a suitably chosen background
amplitude in the charged case. With this input, the Muskhelishvili–Omnès representation
yields a good description of the available data in the low-energy region.

Finally, we presented the results of the analytic continuation to the σ pole as a correlation
plot between the pertinent pion polarizabilities and Γσγγ . We stress that the corresponding
correlation between the I = 0 pion polarizabilities and Γσγγ results solely from analyticity,
unitarity, crossing symmetry, gauge invariance, and the accurately known ππ phases in the
region below 1GeV. We also provided a specific result for Γσγγ that corresponds to the
ChPT predictions for the pertinent pion polarizabilities. As a future application, Roy–Steiner
equations, once extended to include K̄K effects in a two-channel formalism, should provide a
valuable framework to extract pion polarizabilities from low-energy measurements of the cross
section for γγ → π0π0 currently analyzed by the KLOE collaboration [204], which would be
complementary to the more direct Primakoff approach at COMPASS [194]. In the future,
the results of these ongoing efforts to accurately determine the pion polarizabilities, will—as
shown here—directly translate into improved knowledge of Γσγγ .
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Chapter 6

Partial-wave dispersion relations#3

6.1 Introduction

Pion–nucleon scattering has been of primary interest in low-energy QCD for decades. Despite
the large data base and innumerable theoretical investigations based on a variety of different
methods, it is still the insufficient knowledge of low-energy πN physics that prevents progress
on our understanding of fundamental properties of strong interactions. Most notably, a precise
determination of the isoscalar πN amplitude would yield access to the pion–nucleon σ term
σπN , which measures the contribution from the light quarks to the nucleon mass and can, by
means of SU(3) ChPT, even be related to the strangeness content of the nucleon [206, 207].
In this respect, its value is intimately connected to the decomposition of the nucleon mass
into the fractions originating from gluonic self interactions and the different quark species,
cf. (1.4). Moreover, the σ term is an essential input quantity for the investigation of nuclear
matter, in particular the in-medium properties of the quark condensate [208], as well as for
dark matter searches, where it determines the scattering cross section of dark matter can-
didates off nuclei [209]. Eventually, σπN should be calculable from first principles in lattice
QCD, but while the direct approach still lacks the required accuracy due to the presence of
disconnected diagrams, the indirect extraction from the derivative of the nucleon mass by
means of the Feynman–Hellmann theorem [136] is afflicted with substantial uncertainties in
the chiral extrapolation, see [132–135, 137]. The goal of the final part of this thesis is to lay
out a path how the σ term can be extracted from a precise determination of the πN scattering
amplitude at low energies within the framework of Roy–Steiner equations. In the pursuit of
this program, the S-wave scattering lengths deserve special attention, as their precise values
inferred from hadronic-atom data provide powerful constraints on low-energy πN scattering.
In particular, their extraction from pionic hydrogen and deuterium (see Part I) indicates that
ultimately even isospin violation cannot be ignored in the isoscalar amplitude.

The construction of a complete system of RS equations will proceed in close analogy to the
derivation presented in Part II. With the starting point provided by HDRs for the invariant
πN amplitudes, the pertinent partial-wave expansions as well as unitarity relations are used
to derive a closed system of PWHDRs that fully respects analyticity, unitarity, and crossing
symmetry. Subtractions will be performed at the so-called subthreshold point, which proves
convenient for the extrapolation to the Cheng–Dashen point [161], and thus for establishing the
relation to σπN by means of a low-energy theorem [161–163,138]. In fact, it has been pointed

#3The contents of this chapter have been published in [205].
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Higher partial waves

Im f I

l±, l ≥ 2, s ≤ sm

Inelasticities

ηI
l±, l ≤ 1, s ≤ sm

s-channel partial waves

solve Roy–Steiner equations for s ≤ sm

f+
0+

f+
1+

f+
1−

f−
0+

f−
1+

f−
1−

High-energy region

Im f I

l±, s ≥ sm

Subtraction

constants

πN coupling

constant

ππ scattering

phases δIt
J

t-channel partial waves

solve Roy–Steiner equations for t ≤ tm

f0
+ f1

± f2
± f3

± f4
± · · ·

High-energy region

Im fJ
±, t ≥ tm

Figure 6.1: Solution strategy for Roy–Steiner equations in πN scattering.

out previously that a reliable extrapolation to the subthreshold region requires additional input
from the t-channel (ππ → N̄N) partial waves [210–212], a requirement that is straightforward
to comply with in the RS formalism, as HDRs by construction intertwine all physical regions.
The PWHDRs for the s-channel (πN) partial waves in their unsubtracted form were already
written down in [68], while the t-channel equations that are necessary to obtain a closed
system of equations were omitted, as was the issue of subtractions. In the end, both the s-
and t-channel equations will involve the subtraction constants and the πN coupling constant
as free parameters.

The strategy for the solution of the RS equations is outlined in Fig. 6.1: in the s-channel,
the six S- and P -waves f±0+, f±1+, f±1−, with superscript I = ± for isospin, l ∈ {0, 1} in
the subscript for orbital angular momentum, and the ± for the total angular momentum
j = |l±1/2|, are considered dynamically below the matching point sm, whereas the imaginary
parts of higher partial waves for all s, the imaginary parts of the S- and P -waves above
sm, and, potentially, inelasticities below sm are required as input. In contrast, there are
only three S- and P -waves in the t-channel, f0+ and f1±, with the superscript referring to
total angular momentum J and the subscript to parallel/antiparallel antinucleon–nucleon
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helicities. The equations for the t-channel partial waves take the form of a Muskhelishvili–
Omnès problem [70, 71], whose solution requires—in addition to higher partial waves and
the imaginary parts above the matching point tm—input for the ππ phase shifts. Once the
t-channel problem is solved, the resulting t-channel partial waves are used as input for the s-
channel problem, which then reduces to the form of conventional ππ Roy equations, rendering
known results on the existence and uniqueness of solutions [48–50] as well as known solution
techniques [53] applicable. Eventually, a full solution of the system is obtained by iterating
this procedure until all partial waves and parameters are determined self-consistently.

Next, we comment on the structure of the equations. Contrary to γπ → γπ, the s-channel
unitarity relation in πN scattering is indeed dominated by elastic unitarity at low energies, so
that new constraints on the low-energy πN phase shifts should ensue. However, inelasticities
due to ππN intermediate states set in rather early, especially in the partial wave corresponding
to the Roper resonance P11(1440) the inelasticity cannot be neglected and has to be taken
as input. While the s-channel partial waves are all mutually coupled, the t-channel problem
actually decouples to a certain degree, as the equation for an amplitude with even/odd J
only depends on partial waves with even/odd J ′ larger than J , cf. Fig. 6.1. Nonetheless, the
solution of the t-channel equations is subject to an additional complication as compared to
ππ → K̄K [66] that is related to the large pseudophysical region in ππ → N̄N . In either
case, intermediate states besides ππ become relevant in the unitarity relation around 1GeV,
most notably in the S-wave, where K̄K intermediate states account for the occurrence of the
f0(980) resonance. While in ππ → K̄K these effects can simply be included by choosing tm
around 1GeV and using phase-shift solutions above, physical input for ππ → N̄N becomes
only available at the two-nucleon threshold, which leaves a large fraction of the pseudophysical
region unconstrained by the single-channel approximation. Since for similar reasons no reliable
input information for higher partial waves is available, we also solve for D-waves in the t-
channel problem. In the end, we consider a full two-channel MO problem for the S-wave to
reproduce the f0(980) dynamics, a single-channel solution for P - and D-waves, and put higher
partial waves as well as the imaginary parts above tm to zero. Evidently, this implies that we
need to introduce a sufficient number of subtractions that ensure that the dispersive integrals
are already insensitive to the energy regime where the associated uncertainties set in.

Besides its coupling to the s-channel equations, the solution of the t-channel problem is
interesting on its own, since the S- and P -wave amplitudes constitute crucial input for a
dispersive analysis of the scalar and electromagnetic form factors of the nucleon, respectively.
Due to its impact on the σ-term extraction, we will discuss the case of the scalar form factor in
detail in Sect. 7.4. Presently, dispersive analyses of nucleon form factors still rely on the KH80
solution [152,165], or variants thereof [213], which, however, does not include more recent data
and contradicts modern determinations of the πN coupling constant. In addition, the KH80
solution has been reported to suffer from internal inconsistencies [211, 214, 215], and does
not provide estimates for the theoretical uncertainties of the calculation (apart from a vague
iteration uncertainty). For these reasons, a consistent set of partial waves and subtractions
constants that fulfills the complete system of RS equations would be immensely valuable.

The outline of the presentation is as follows: we first describe the complete system of
RS equations together with the corresponding unitarity relations in the remainder of this
chapter. Then, we discuss the solution of the t-channel equations using one- and two-channel
MO techniques in Chapter 7, which we apply to a dispersive calculation of the scalar form
factor of the nucleon. Finally, we comment on the solution of the s-channel problem and the
extraction of the pion–nucleon σ term in Chapter 8.
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6.2 Kinematics and conventions

We consider the reaction1

πa(q) +N(p) → πb(q′) +N(p′) , (6.1)

with pion isospin labels a, b, and Mandelstam variables

s = (p + q)2 , t = (q − q′)2 , u = (p− q′)2 , (6.2)

which fulfill
s+ t+ u = 2m2 + 2M2

π ≡ Σ . (6.3)

Again, the masses of the nucleon (m), the pion (Mπ), and, later, the kaon (MK) are identified
with the charged-particle masses [3]. Furthermore, we will need the definitions

s =W 2 , ν =
s− u

4m
, s± =W 2

± = (m±Mπ)
2 , s0 =

Σ

2
. (6.4)

The kinematics for the s-channel reaction may be described by the CMS momentum q, nucleon
energy E, and scattering angle zs = cos θs

q2 =
(s− s+)(s− s−)

4s
, E =

√
m2 + q2 =

s+m2 −M2
π

2W
, zs = 1 +

t

2q2
. (6.5)

Similarly, the t-channel reaction is determined by CMS momenta qt = |qt|, pt = |pt|, and
scattering angle zt = cos θt

qt =

√
t

4
−M2

π =

√
t− tπ
4

=

√
t

2
σπt = iq− , zt =

s− u

4ptqt
=
mν

ptqt
,

pt =

√
t

4
−m2 =

√
t− tN

4
=

√
t

2
σNt = ip− , (6.6)

where the phases between qt, pt, and

q− =

√
M2
π − t

4
, p− =

√
m2 − t

4
, (6.7)

have been fixed by convention. The physical regions for πN scattering, determined by the
requirement that the Kibble function Φ [216]

Φ = t
[
su− (m2 −M2

π)
2
]

(6.8)

be non-negative, are shown in Fig. 6.2. Points of special interest in the Mandelstam plane
are the Cheng–Dashen point at (s = u = m2, t = 2M2

π) for the relation to the σ term, the
subthreshold point at (s = u = s0, t = 0) as starting point for the subthreshold expansion,
and the s-channel threshold point (s = s+, t = 0, u = s−) for the definition of the threshold
expansion.

1For a comprehensive review of πN kinematics and conventions we refer to [152]. Most of the variables
defined here will appear in a primed version as well to denote the corresponding quantity in the internal
kinematics, e.g. z′s, q

′
t, ν

′, etc.
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Figure 6.2: Mandelstam plane for πN scattering. The filled areas mark the s-, t-, and u-
channel physical regions, the red dashed line the subthreshold triangle, and the arrows the
orientation of the plane in t and ν.

The scattering amplitude may be expressed in terms of Lorentz-invariant amplitudes A,
B, and D according to

T ba(s, t) = δbaT+(s, t) +
1

2
[τ b, τa]T−(s, t) ,

T I(s, t) = ū(p′)

{
AI(s, t) +

/q′ + /q

2
BI(s, t)

}
u(p) = ū(p′)

{
DI(s, t)−

[/q′, /q]

4m
BI(s, t)

}
u(p) ,

DI(s, t) = AI(s, t) + νBI(s, t) , (6.9)

where I = ±, τa denotes the Pauli matrices, and the spinors are normalized as ūu = 2m.
The pertinent crossing properties become most transparent when the amplitudes are written
as functions of ν and t

A±(ν, t) = ±A±(−ν, t) , B±(ν, t) = ∓B±(−ν, t) , D±(ν, t) = ±D±(−ν, t) . (6.10)

Moreover, isospin symmetry leaves only two independent amplitudes that are needed to de-
scribe all ten πN scattering reactions, characterized by total s-channel isospin Is ∈ {1/2, 3/2}.
In agreement with [152], we choose the isospin-doublets of nucleons and antinucleons according
to

|p〉 =
∣∣∣∣
1

2
,
1

2

〉
, |n〉 =

∣∣∣∣
1

2
,−1

2

〉
, |n̄〉 =

∣∣∣∣
1

2
,
1

2

〉
, |p̄〉 =

∣∣∣∣
1

2
,−1

2

〉
, (6.11)

and the isospin-triplet of the pions as

|π+〉 = |1, 1〉 , |π0〉 = |1, 0〉 , |π−〉 = |1,−1〉 . (6.12)
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These conventions imply for the relation between the spherical and the Cartesian components
of the pion-multiplet

|π±〉 = ∓ 1√
2

(
|π1〉 ± i|π2〉

)
, |π0〉 = |π3〉 , (6.13)

and for the crossing properties

C|p〉 = |p̄〉 , C|n〉 = −|n̄〉 , C|π±〉 = −|π∓〉 , C|π0〉 = |π0〉 . (6.14)

In this way, the physical πN amplitudes read

A(π+p→ π+p) = A(π−n→ π−n) = A+ −A− = A3/2 ,

A(π−p→ π−p) = A(π+n→ π+n) = A+ +A− =
1

3
(2A1/2 +A3/2) ,

A(π−p→ π0n) = A(π+n→ π0p) = −
√
2A− = −

√
2

3
(A1/2 −A3/2) ,

A(π0p→ π0p) = A(π0n→ π0n) = A+ =
1

3
(A1/2 + 2A3/2) , (6.15)

where A ∈ {A,B,D}. These relations can be summarized in matrix notation as
(
A+

A−

)
= Cνs

(
A1/2

A3/2

)
,

(
A1/2

A3/2

)
= Csν

(
A+

A−

)
, Cνs =

1

3
Csν =

1

3

(
1 2
1 −1

)
.

(6.16)
Similarly, the amplitudes with definite u-channel isospin Iu ∈ {1/2 = N, 3/2 = ∆} obey the
s↔ u crossing relations
(
A1/2

A3/2

)
= Csu

(
AN

A∆

)
,

(
AN

A∆

)
= Cus

(
A1/2

A3/2

)
, Csu = Cus =

1

3

(
−1 4
2 1

)
, (6.17)

and, in combination with (6.16),
(
A+

A−

)
= Cνu

(
AN

A∆

)
, Cνu = CνsCsu =

1

3

(
1 2
−1 1

)
, Cuν = C−1

νu =

(
1 −2
1 1

)
.

(6.18)
The t-channel |N̄N〉 isospin states may be decomposed into states with definite t-channel

isospin |It = 1, (It)3〉 and |It = 0, 0〉 according to

|n̄p〉 = |1, 1〉 , |n̄n〉 = 1√
2

(
|1, 0〉+|0, 0〉

)
, |p̄p〉 = 1√

2

(
|1, 0〉−|0, 0〉

)
, |p̄n〉 = |1,−1〉 ,

(6.19)
with the inversion

|1, 0〉 = 1√
2
(|n̄n〉+ |p̄p〉) , |0, 0〉 = 1√

2
(|n̄n〉 − |p̄p〉) . (6.20)

Using the decomposition of the physical |ππ〉 states

|π+π0〉 = 1√
2
(|2, 1〉 + |1, 1〉) , |π+π−〉 = 1√

6
|2, 0〉 + 1√

2
|1, 0〉 + 1√

3
|0, 0〉 ,

|π−π0〉 = 1√
2
(|2,−1〉 − |1,−1〉) , |π0π0〉 =

√
2

3
|2, 0〉 − 1√

3
|0, 0〉 , (6.21)
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we find

A(p̄p→ π+π−) = −A+ +A− = −A3/2 = − 1√
6
A0 +

1

2
A1 ,

A(p̄p→ π−π+) = −A+ −A− = −1

3
(2A1/2 +A3/2) = − 1√

6
A0 − 1

2
A1 ,

A(n̄p→ π+π0) =
√
2A− =

√
2

3
(A1/2 −A3/2) =

1√
2
A1 ,

A(p̄p→ π0π0) = A+ =
1

3
(A1/2 + 2A3/2) =

1√
6
A0 , (6.22)

which can be summarized in the s↔ t crossing relations
(
A1/2

A3/2

)
= Cst

(
A0

A1

)
,

(
A0

A1

)
= Cts

(
A1/2

A3/2

)
,

(
A+

A−

)
= Cνt

(
A0

A1

)
, (6.23)

with crossing matrices

Cst =

(
1√
6

1
1√
6

−1
2

)
, Cts =

2

3

(√
3
2

√
6

1 −1

)
, Cνt = CνsCst =

(
1√
6

0

0 1
2

)
. (6.24)

This result shows that the amplitudes A+ and A− have well-defined t-channel isospin It = 0
and It = 1, respectively. Since the G-parity of the pion is negative, the antinucleon–nucleon
initial state in N̄N → ππ has to have positive G-parity, so that this state can only couple to
an even number of pions. Moreover, since

G|N̄N〉 = (−1)J+It |N̄N〉 , (6.25)

only the combinations of even angular momentum J with It = 0 and odd J with It = 1
are permitted. The same selection rules follow from the ππ system, where Bose symmetry
gives rise to the same factor (−1)J+It due to the parity (−1)L for an orbital state with total
angular momentum J = L and the symmetry/antisymmetry of the pion isosinglet/isotriplet
state. These observations are crucial for the t-channel partial-wave expansion of AI=± or
AIt=0,1, which contains only partial waves with even/odd J . According to (6.24), the transition
between the I = ± or It = 0, 1 bases involves the isospin crossing coefficients cJ

cJ =

{
1√
6

for even J ,
1
2 for odd J .

(6.26)

6.3 Roy–Steiner equations

6.3.1 Hyperbolic dispersion relations

The unsubtracted set of HDRs for the πN amplitudes as derived in [68] reads

A+(s, t) =
1

π

∞∫

s+

ds′
[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImA+(s′, t′) +

1

π

∞∫

tπ

dt′
ImA+(s′, t′)

t′ − t
,
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(I) (II) (III) (IV)

Figure 6.3: Box graphs constraining the boundaries of the double-spectral regions for πN
scattering. Solid/dashed lines denote nucleons/pions.

A−(s, t) =
1

π

∞∫

s+

ds′
[

1

s′ − s
− 1

s′ − u

]
ImA−(s′, t′) +

1

π

∞∫

tπ

dt′
ν

ν ′
ImA−(s′, t′)

t′ − t
,

B+(s, t) = N+(s, t) +
1

π

∞∫

s+

ds′
[

1

s′ − s
− 1

s′ − u

]
ImB+(s′, t′) +

1

π

∞∫

tπ

dt′
ν

ν ′
ImB+(s′, t′)

t′ − t
,

B−(s, t) = N−(s, t) +
1

π

∞∫

s+

ds′
[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImB−(s′, t′)

+
1

π

∞∫

tπ

dt′
ImB−(s′, t′)

t′ − t
, (6.27)

cf. (1.52) and (1.55), with Born-term contributions

N+(s, t) = g2
[

1

m2 − s
− 1

m2 − u

]
, N−(s, t) = g2

[
1

m2 − s
+

1

m2 − u
− 1

m2 − a

]
.

(6.28)
We will take g2/4π = 13.7 as our central value, cf. (3.18), but adopt g2/4π = 14.28 [217]
when comparing our results to the KH80 solution. The derivation of a RS system for πN
scattering given the HDRs (6.27) proceeds in close analogy to the calculation in Part II, but is
considerably more involved due to the more complicated form of the partial-wave expansions
for πN scattering. Before we turn to the structure of these equations, we briefly comment on
the range of convergence of the final system. Assuming Mandelstam analyticity, the investi-
gation of the box diagrams depicted in Fig. 6.3 along the lines of Sect. 4.4 shows that for the
s-channel

a = −23.2M2
π ⇒ s ∈

[
s+ = (m+Mπ)

2, 97.3M2
π

]
=
[
59.6M2

π , 97.3M
2
π

]

⇔ W ∈ [W+ = 1.08GeV, 1.38GeV] , (6.29)

and for the t-channel

a = −2.7M2
π ⇒ t ∈ [tπ = 4M2

π , 205.5M
2
π ]

⇔
√
t ∈ [

√
tπ = 0.28GeV, 2.00GeV] , (6.30)

yield the largest domain of validity (for more details of the derivation we refer to [205]). In the
following, we will constrain a to the values given in (6.29) and (6.30) for the s- and t-channel
part of the system, respectively.
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6.3.2 Partial-wave projection

The s-channel partial-wave amplitudes f Il±(W ) with isospin index I = ±, orbital angular
momentum l, and total angular momentum j = |l ± 1/2| are defined as [218]

f Il±(W ) =
1

16πW

{
(E +m)

[
AIl (s) + (W −m)BI

l (s)
]

+ (E −m)
[
−AIl±1(s) + (W +m)BI

l±1(s)
]}

, (6.31)

where

XI
l (s) =

1∫

−1

dzs Pl(zs)XI(s, t)
∣∣∣
t=−2q2(1−zs)

, X ∈ {A,B} . (6.32)

They fulfill the MacDowell symmetry relation [219] in the complex W -plane

f Il+(W ) = −f I(l+1)−(−W ) , (6.33)

which allows us to restrict the analysis to f Il+(W ) for the time being. Performing the partial-
wave expansion of the integrands of (6.27) and subsequent projection onto the s-channel
partial waves yields [68]

f Il+(W ) = N I
l+(W ) +

1

π

∞∫

tπ

dt′
∑

J

{
GlJ(W, t

′) Im fJ+(t
′) +HlJ(W, t

′) Im fJ−(t
′)
}

(6.34)

+
1

π

∞∫

W+

dW ′
∞∑

l′=0

{
KI
ll′(W,W

′) Im f Il′+(W
′) +KI

ll′(W,−W ′) Im f I(l′+1)−(W
′)
}
,

where N I
l±(W ) corresponds to the projection of the nucleon pole terms. As mentioned in

Sect. 6.1, each partial wave f Il±(W ) is coupled to all other s-channel partial waves by means
of the kernel functions KI

ll′(W,W
′). Moreover, the equations involve the t-channel partial

waves fJ±(t), with subscript ± for parallel/antiparallel antinucleon–nucleon helicities and total
momentum J , via the kernels GlJ(W, t′) and HlJ(W, t

′). The summation is restricted to
even/odd values of J for I = ±. Explicit expressions for N I

l±(W ) and the kernel functions are
provided in Appendix C.1.

The t-channel partial-wave projection reads [220]

fJ+(t) = − 1

4π

1∫

0

dzt PJ(zt)
{

p2t
(ptqt)J

AI(s, t)
∣∣∣
s=s(t,zt)

− m

(ptqt)J−1
ztB

I(s, t)
∣∣∣
s=s(t,zt)

}
,

fJ−(t) =
1

4π

√
J(J + 1)

2J + 1

1

(ptqt)J−1

1∫

0

dzt
[
PJ−1(zt)− PJ+1(zt)

]
BI(s, t)

∣∣∣
s=s(t,zt)

, (6.35)

where the integration has been restricted to half the angular interval by virtue of Bose sym-
metry, and again I = ± corresponds to even/odd J . The result for the t-channel equations
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takes the form

fJ+(t) = ÑJ
+(t) +

1

π

∞∫

W+

dW ′
∞∑

l=0

{
G̃Jl(t,W

′) Im f Il+(W
′) + G̃Jl(t,−W ′) Im f I(l+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∑

J ′

{
K̃1
JJ ′(t, t′) Im fJ

′

+ (t′) + K̃2
JJ ′(t, t′) Im fJ

′

− (t′)
}
,

fJ−(t) = ÑJ
−(t) +

1

π

∞∫

W+

dW ′
∞∑

l=0

{
H̃Jl(t,W

′) Im f Il+(W
′) + H̃Jl(t,−W ′) Im f I(l+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∑

J ′

K̃3
JJ ′(t, t′) Im fJ

′

− (t′) , (6.36)

where the sum over J ′ runs over even/odd values of J ′ if J is even/odd. In contrast to the
s-channel equations, we have K̃1,2,3

JJ ′ (t, t′) = 0 for all J ′ < J , which implies that a given t-
channel partial wave only receives contributions from the absorptive parts of higher partial
waves. Explicit expressions for Born terms and kernel functions are relegated to Appendix C.2.

In order to combine analyticity with partial-wave unitarity, the equations have to be cast
into a form that permits diagonal s-channel partial-wave unitarity relations (see Sect. 6.4).
Therefore, we work in the s-channel isospin basis Is ∈ {1/2, 3/2} instead of the I = ± basis.
Using the definitions

(
X1/2

X3/2

)
= Csν

(
X+

X−

)
,

(
X+

X−

)
= Cνs

(
X1/2

X3/2

)
, X ∈ {fl±, Nl±,Kll′} , (6.37)

and

K
1/2+3/2
ll′ (W,W ′) = K

1/2
ll′ (W,W ′) +K

3/2
ll′ (W,W ′) = 2K+

ll′(W,W
′) +K−

ll′(W,W
′) , (6.38)

the complete system of RS equations becomes

f
1/2
l+ (W ) = N

1/2
l+ (W )

+
1

π

∞∫

W+

dW ′
∞∑

l′=0

1

3

{
K

1/2
ll′ (W,W ′) Im f

1/2
l′+ (W ′) + 2K

3/2
ll′ (W,W ′) Im f

3/2
l′+ (W ′)

+K
1/2
ll′ (W,−W ′) Im f

1/2
(l′+1)−(W

′) + 2K
3/2
ll′ (W,−W ′) Im f

3/2
(l′+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∞∑

J=0

(
3− (−1)J

)

2

{
GlJ(W, t

′) Im fJ+(t
′) +HlJ(W, t

′) Im fJ−(t
′)
}
,

f
3/2
l+ (W ) = N

3/2
l+ (W )

+
1

π

∞∫

W+

dW ′
∞∑

l′=0

1

3

{
K

3/2
ll′ (W,W ′) Im f

1/2
l′+ (W ′) +K

1/2+3/2
ll′ (W,W ′) Im f

3/2
l′+ (W ′)

+K
3/2
ll′ (W,−W ′) Im f

1/2
(l′+1)−(W

′) +K
1/2+3/2
ll′ (W,−W ′) Im f

3/2
(l′+1)−(W

′)
}
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+
1

π

∞∫

tπ

dt′
∞∑

J=0

(−1)J
{
GlJ(W, t

′) Im fJ+(t
′) +HlJ(W, t

′) Im fJ−(t
′)
}
,

f
1/2
(l+1)−(W ) = N

1/2
(l+1)−(W )

− 1

π

∞∫

W+

dW ′
∞∑

l′=0

1

3

{
K

1/2
ll′ (−W,W ′) Im f

1/2
l′+ (W ′) + 2K

3/2
ll′ (−W,W ′) Im f

3/2
l′+ (W ′)

+K
1/2
ll′ (−W,−W ′) Im f

1/2
(l′+1)−(W

′) + 2K
3/2
ll′ (−W,−W ′) Im f

3/2
(l′+1)−(W

′)
}

− 1

π

∞∫

tπ

dt′
∞∑

J=0

(
3− (−1)J

)

2

{
GlJ(−W, t′) Im fJ+(t

′) +HlJ(−W, t′) Im fJ−(t
′)
}
,

f
3/2
(l+1)−(W ) = N

3/2
(l+1)−(W )

− 1

π

∞∫

W+

dW ′
∞∑

l′=0

1

3

{
K

3/2
ll′ (−W,W ′) Im f

1/2
l′+ (W ′) +K

1/2+3/2
ll′ (−W,W ′) Im f

3/2
l′+ (W ′)

+K
3/2
ll′ (−W,−W ′) Im f

1/2
(l′+1)−(W

′) +K
1/2+3/2
ll′ (−W,−W ′) Im f

3/2
(l′+1)−(W

′)
}

− 1

π

∞∫

tπ

dt′
∞∑

J=0

(−1)J
{
GlJ(−W, t′) Im fJ+(t

′) +HlJ(−W, t′) Im fJ−(t
′)
}
, (6.39)

and

fJ+(t) = ÑJ
+(t) +

1

π

∞∫

W+

dW ′
∞∑

l=0

1

3

{
G̃Jl(t,W

′)
[
Im f

1/2
l+ (W ′) +

1 + 3(−1)J

2
Im f

3/2
l+ (W ′)

]

+ G̃Jl(t,−W ′)
[
Im f

1/2
(l+1)−(W

′) +
1 + 3(−1)J

2
Im f

3/2
(l+1)−(W

′)
]}

+
1

π

∞∫

tπ

dt′
∞∑

J ′=J

1 + (−1)J+J
′

2

{
K̃1
JJ ′(t, t′) Im fJ

′

+ (t′) + K̃2
JJ ′(t, t′) Im fJ

′

− (t′)
}
,

fJ−(t) = ÑJ
−(t) +

1

π

∞∫

W+

dW ′
∞∑

l=0

1

3

{
H̃Jl(t,W

′)
[
Im f

1/2
l+ (W ′) +

1 + 3(−1)J

2
Im f

3/2
l+ (W ′)

]

+ H̃Jl(t,−W ′)
[
Im f

1/2
(l+1)−(W

′) +
1 + 3(−1)J

2
Im f

3/2
(l+1)−(W

′)
]}

+
1

π

∞∫

tπ

dt′
∞∑

J ′=J

1 + (−1)J+J
′

2
K̃3
JJ ′(t, t′) Im fJ

′

− (t′) . (6.40)

In these equations, all sums run over both even and odd values, but those over J ′ in the
t-channel part (6.40) are restricted to J ′ ≥ J due to (C.39). The equations for f I(l+1)−(W )
are given here merely for convenience, as they could be obtained by means of MacDowell
symmetry (6.33).
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parameters 1-sub 2-sub 3-sub ex 3-sub

M−1
π a+00 = d+00 d+00 d+00 d+00 d+00

M−2
π a−00 = d−00 − b−00 b−00 b−00, a

−
00 b−00, a

−
00 b−00, a

−
00

M−3
π a+01 = d+01, a+10 = d+10 − b+00 d+01, b

+
00 d+01, b

+
00, a

+
10 d+01, b

+
00, a

+
10

M−4
π a−01 = d−01 − b−01, a−10 = d−10 − b−10 b−01 b−01, a

−
01 b−01, a

−
01, b

−
10, a

−
10

Table 6.1: Subthreshold parameters in the different subtraction schemes.

6.3.3 Subtractions

The introduction of subtractions is essential to suppress the high-energy regime and derive
constraints that solely involve low-energy physics. The most convenient choice for the sub-
traction point is provided by the subthreshold point at (ν = 0, t = 0), since the relation to
the Cheng–Dashen point and the pion–nucleon σ term can be established in a straightforward
manner, while the subtraction constants are given directly in terms of subthreshold parame-
ters. In addition, this choice of the subtraction point should prove favorable for matching to
ChPT, which is expected to be most reliable in the subthreshold region (for an application of
heavy-baryon ChPT to πN scattering inside the Mandelstam triangle see [139]).

The subthreshold expansion in πN scattering is conventionally applied to the pseudovector-
Born-term-subtracted amplitudes

Ā+(s, t) = A+(s, t)− g2

m
, B̄+(s, t) = B+(s, t)− g2

[
1

m2 − s
− 1

m2 − u

]
, (6.41)

Ā−(s, t) = A−(s, t) , B̄−(s, t) = B−(s, t)− g2
[

1

m2 − s
+

1

m2 − u

]
+

g2

2m2
.

Separating factors of ν that are required by crossing symmetry, these amplitudes allow for the
expansions

Ā+(ν, t) =

∞∑

m,n=0

a+mnν
2mtn , B̄+(ν, t) =

∞∑

m,n=0

b+mnν
2m+1tn ,

Ā−(ν, t) =
∞∑

m,n=0

a−mnν
2m+1tn , B̄−(ν, t) =

∞∑

m,n=0

b−mnν
2mtn , (6.42)

and similarly for D̄± = Ā± + νB̄±. The corresponding subthreshold parameters fulfill the
relations

d+mn = a+mn + b+m−1,n , d−mn = a−mn + b−mn , d+0n = a+0n . (6.43)

The implementation of subtractions into the RS system again proceeds in close analogy
to Part II. Expanding (6.27) around (s = s0, t = 0) and equating the coefficients to the
subthreshold expansion yields sum rules for the subthreshold parameters that, once subtracted
from (6.27), lead to a subtracted version of the RS equations. We will consider several variants
thereof: first, we perform a simultaneous expansion around s = s0 and t = 0 up to first and
second order in both variables, which we will refer to as “1-sub” and “2-sub”, respectively.
Moreover, we implement a partial third subtraction (“3-sub”) that involves two additional
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subthreshold parameters only affected at third order in the (s, t) expansion. For the s-channel
projection, we consider an extended version of this scenario including two further parameters
(“ex 3-sub”). Table 6.1 delineates which subthreshold parameters, ordered by their dimension
in inverse powers of Mπ, are required for a particular subtraction scheme.

The motivation to deviate from the strict expansion in s and t originates from the ob-
servation that this counting favors certain subthreshold parameters of higher dimension. For
instance, the twice-subtracted version includes the O(M−4

π ) parameter b−01, while the O(M−3
π )

parameter a+10 is not yet included. Furthermore, apart from a+0n all subthreshold parameters
can be canonically ordered in pairs, as shown in the second column of Table 6.1, which suggests
that if b−01 is incorporated, a−01 or, equivalently, d−01, should be as well. Both of these amend-
ments are reflected in the “3-sub” version. Indeed, we will see in Chapter 7 that this scenario
translates into PWDRs for the t-channel partial waves with the same number of subtractions
for a given angular momentum J . In contrast, for the once- and twice-subtracted versions, the
equations for fJ+(t) and fJ−(t) involve a different number of subtractions. Finally, counting the
multiplicity of solutions for the s-channel RS equations shows that if the hadronic-atom values
for the S-wave scattering lengths are imposed as constraints on the solution, two additional
parameters may be introduced, cf. Chapter 8. Table 6.1 suggests to choose these as b−10 and
a−10, since then all subthreshold parameters of dimension O(M−4

π ) are incorporated into the
system, which motivates to consider the “ex 3-sub” version for the s-channel problem.

The explicit form of the sum rules for the subthreshold parameters listed in Table 6.1, the
subtracted version of the HDRs (6.27), and the necessary modifications of the kernel functions
are summarized in Appendix C.3.

6.4 Partial-wave unitarity relations

Unitarity of the S-matrix S = 1+ i T demands that, evaluated between initial and final states
|i〉 and |f〉, the T -matrix must fulfill

〈f |T |i〉 − 〈f |T †|i〉 = i
∑

{j}

∫
dΠ(j)

nj 〈f |T
†|j〉〈j|T |i〉 , (6.44)

where the sum extends over all intermediate states |j〉, and dΠ(j)
nj denotes the nj-particle

phase space.2 For interactions invariant under time reversal, such as strong interactions,
(6.44) amounts to the following condition for the invariant amplitudes Tfi

ImTfi =
1

2

∑

{j}

∫
dΠ(j)

nj (2π)
4δ(4)(Σpj − Σpi)T

∗
fjTji , (6.45)

once energy-momentum conservation δ(4)(Σpf−Σpi) is separated (pi, pf , and pj denote initial-,
final-, and intermediate-state momenta, respectively). For a generic two-by-two scattering
process with two-particle intermediate state |j〉, (6.45) reduces to

ImTfi =
1

Sj

|pj |
8π

√
s

∫
dΩj
4π

T ∗
fjTji , (6.46)

2The phase space is understood to be implicitly supplemented with a symmetry factor 1/nj ! for each set
of nj identical intermediate-state particles.
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with CMS momentum pj and symmetry factor Sj = 2 or Sj = 1 in the case of identical/non-
identical particles. In these conventions, the differential cross section becomes

dσfi
dΩ

=
|pf |
|pi|

∣∣∣∣
Tfi

8π
√
s

∣∣∣∣
2

, (6.47)

where pi and pf are the CMS momenta for the initial and final state.
Unitarity in the form (6.46) still involves amplitudes Tfi(s, t) with the full kinematic de-

pendence of the scattering process and leaves the angular integration dΩj to be performed.
Therefore, the explicit restrictions from unitarity are most conveniently derived invoking a
partial-wave decomposition of Tfi, which leads to separate unitarity relations for the single-
variable partial-wave amplitudes corresponding to a given angular momentum J . In the
helicity formalism, the general partial-wave expansion for a process a+b→ c+d with particle
helicities λP reads [196]

T λc,λd;λa,λbfi (s, t) =
√
SfSi16π

∑

J

(2J + 1)T Jλc,λd;λa,λb(s)d
J
λa−λb,λc−λd(θ) , (6.48)

with CMS scattering angle θ, azimuthal angle ϕ set to zero, and final-/initial-state symmetry
factors Sf and Si defined in analogy to Sj . The ensuing partial-wave unitarity relations
become particularly simple if the matrix T J(s) in helicity space is diagonal, which e.g. for πN
scattering holds true for the s-channel isospin basis Is ∈ {1/2, 3/2}, but not for the I = ±
basis. Assuming further that |i〉 = |f〉, elastic unitarity in the form (6.46) yields for each
diagonal element T Jλ (s) of T J(s)

ImT Jλ (s) =
2|p|√
s

∣∣T Jλ (s)
∣∣2 (6.49)

(with CMS momentum p). In this normalization, T Jλ (s) may be expressed in terms of phase
shifts δJλ (s) according to

T Jλ (s) =

√
s

2|p| sin δ
J
λ (s)e

iδJλ (s) , (6.50)

and related to the S-matrix elements by

SJλ (s) = e2iδ
J
λ (s) = 1 + i

4|p|√
s
T Jλ (s) . (6.51)

Inelastic contributions are accounted for by introducing inelasticity parameters 0 ≤ ηJλ (s) ≤ 1
into these parameterizations.

The partial waves for s-channel πN scattering are conventionally parameterized in terms
of phase shifts δIsl± and inelasticities ηIsl± as

f Isl±(W ) =

[
SIsl±(W )

]
πN→πN

− 1

2i|q| =
ηIsl±(W )e2iδ

Is
l±(W ) − 1

2i|q|
W<Winel=

eiδ
Is
l±(W ) sin δIsl±(W )

|q| , (6.52)

where the first inelastic threshold due to ππN intermediate states occurs at Winel =W++Mπ.
In this normalization, the unitarity relation becomes

Im f Isl±(W ) = |q|
∣∣f Isl±(W )

∣∣2 θ
(
W −W+

)
+

1−
(
ηIsl±(W )

)2

4|q| θ
(
W −Winel

)
. (6.53)
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The derivation of the t-channel unitarity relations is complicated by the fact that the
the corresponding reaction is necessarily inelastic. For instance, the contribution from ππ
intermediate states alone yields

Im fJ±(t) = σπt
(
tItJ (t)

)∗
fJ±(t) θ

(
t− tπ

)
(6.54)

(with ππ partial waves tItJ (t)), which proves Watson’s theorem [201] for fJ±(t). However, (6.54)
is invariant under rescaling of fJ±(t) with arbitrary real factors, so that the correct normaliza-
tion and relation to the S-matrix element can only be inferred relative to the pertinent elastic
reactions. In the following, we will illustrate this procedure for a coupled system of ππ, K̄K,
and N̄N states.

First, we collect all the partial-wave amplitudes involved in the full system. The precise
definition of the ππ partial waves tItJ (t) is provided by

T It(s, t) = 32π

∞∑

J=0

(2J + 1)tItJ (t)PJ (cos θ
ππ) , (6.55)

with CMS scattering angle θππ and normalization

dσItππ→ππ

dΩ
=

∣∣∣∣
T It(s, t)

8π
√
t

∣∣∣∣
2

. (6.56)

Elastic unitarity then implies

Im tItJ (t) = σπt
∣∣tItJ (t)

∣∣2 θ
(
t− tπ

)
, tItJ (t) =

eiδ
It
J (t) sin δItJ (t)

σπt
. (6.57)

The t-channel partial waves fJ±(t) are related to the helicity amplitudes Fλ̄λ(s, t) by [220]

F++(s, t) = F−−(s, t) =
4π

√
t

qt

∞∑

J=0

(2J + 1)F J+(t)PJ (cos θt) ,

F+−(s, t) = −F−+(s, t) =
4π

√
t

qt

∞∑

J=1

2J + 1√
J(J + 1)

F J−(t) sin θtP
′
J (cos θt) ,

F J+(t) =
qt
pt
(ptqt)

J 2√
t
fJ+(t) , F J−(t) =

qt
pt
(ptqt)

JfJ−(t) , (6.58)

with normalization of the spin-averaged cross section

dσ̄ππ→N̄N

dΩ
=
pt
qt

∑

λ̄,λ

∣∣∣∣
Fλ̄λ(s, t)

8π
√
t

∣∣∣∣
2

=
2pt
qt

{∣∣∣∣
F++(s, t)

8π
√
t

∣∣∣∣
2

+

∣∣∣∣
F+−(s, t)

8π
√
t

∣∣∣∣
2
}
. (6.59)

The partial waves for ππ → K̄K are defined by

GIt(s, t) = 16π
√
2

∞∑

J=0

(2J + 1)(ktqt)
JgItJ (t)PJ (cos θ

πK
t ) , kt =

√
t

4
−M2

K =

√
t

2
σKt ,

(6.60)
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and
dσIt

ππ→K̄K

dΩ
=
kt
qt

∣∣∣∣
GIt(s, t)

8π
√
t

∣∣∣∣
2

. (6.61)

Finally, we need the K̄K partial waves rItJ (t)

RIt(s, t) = 16π
∞∑

J=0

(2J + 1)rItJ (t)PJ (cos θ
K̄K
t ) ,

dσIt
K̄K→K̄K

dΩ
=

∣∣∣∣
RIt(s, t)

8π
√
t

∣∣∣∣
2

, (6.62)

and the K̄K → N̄N amplitudes hJ±(t), the KN analogs of fJ±(t). Our conventions for these
partial waves are summarized in Appendix C.4.

With the T -matrix elements T11 = Tππ→ππ, T12 = TK̄K→ππ, T13 = TN̄N→ππ etc., unitarity
in the multi-channel case requires

S∗
fjSji = δfi , Sfi = δfi + iTfi = δif + iTif = Sif . (6.63)

In particular, one finds

|S11|2 + |S12|2 + |S13|2 = 1 ⇒ 2 ImT11 = |T11|2 + |T12|2 + |T13|2 , (6.64)

and

S∗
11S13 + S∗

12S23 + S∗
13S33 = 0 ⇒ 2 ImT13 = T ∗

11T13 + T ∗
12T23 + T ∗

13T33 . (6.65)

Taking into account the different helicity projections, (6.64) in the t-channel isospin basis
becomes
∣∣[SItJ (t)

]
ππ→ππ

∣∣2 +
∣∣[SItJ (t)

]
ππ→K̄K

∣∣2 + 2
{∣∣[SJ+(t)

]It
ππ→N̄N

∣∣2 +
∣∣[SJ−(t)

]It
ππ→N̄N

∣∣2
}
= 1 ,

(6.66)
while the explicit form of (6.46) for ππ scattering with ππ, K̄K, and N̄N intermediate states
leads to

Im tItJ (t) = σπt
∣∣tItJ (t)

∣∣2 θ
(
t− tπ

)
+ (ktqt)

2JσKt
∣∣gItJ (t)

∣∣2 θ
(
t− tK

)

+
t

16q2t

σNt
c2J

{∣∣F J+(t)
∣∣2 +

∣∣F J−(t)
∣∣2
}
θ
(
t− tN

)
. (6.67)

In this way, the comparison of (6.66) and (6.67), successively for t < tK , t < tN , and t > tN
determines the relation between S-matrix elements and partial waves

[
SItJ (t)

]
ππ→ππ

= 1 + i
4qt√
t
tItJ (t) θ

(
t− tπ

)
,

[
SItJ (t)

]
ππ→K̄K

= i
4(ktqt)

J+ 1
2

√
t

gItJ (t) θ
(
t− tK

)
,

[
SJ±(t)

]It
ππ→N̄N

=
i

cJ
√
2

√
pt
qt
F J±(t) θ

(
t− tN

)
. (6.68)

In fact, these relations already imply interesting constraints on the partial waves that follow
from the unitarity bound |Sij| ≤ 1, e.g. the asymptotic behavior of fJ±(t) for t → ∞ will be
restricted by

fJ+(t) = O
(
t−J+

1
2
)
, fJ−(t) = O

(
t−J
)
. (6.69)
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Similarly, unitarity for K̄K scattering

Im rItJ (t) = (ktqt)
2Jσπt

∣∣gItJ (t)
∣∣2 θ
(
t− tπ

)
+ σKt

∣∣rItJ (t)
∣∣2 θ
(
t− tK

)

+
t

8k2t

σNt
(cKNJ )2

{∣∣HJ
+(t)

∣∣2 +
∣∣HJ

−(t)
∣∣2
}
θ
(
t− tN

)
(6.70)

settles the normalization of the remaining partial waves

[
SItJ (t)

]
K̄K→K̄K

= 1+ i
4kt√
t
rItJ (t) θ

(
t− tK

)
,

[
SJ±(t)

]It
K̄K→N̄N

=
i

cKNJ

√
pt
kt
HJ

±(t) θ
(
t− tN

)
.

(6.71)
Once the relations between S-matrix elements and partial-wave amplitudes are established,
the unitarity relations for fJ±(t) and hJ±(t) including ππ and K̄K intermediate states follow
from (6.65) and its analog for ImT23

Im fJ±(t) = σπt
(
tItJ (t)

)∗
fJ±(t) θ

(
t− tπ

)
+

√
2 cJ

cKNJ
k2Jt σKt

(
gItJ (t)

)∗
hJ±(t) θ

(
t− tK

)
,

ImhJ±(t) = σKt
(
rItJ (t)

)∗
hJ±(t) θ

(
t− tK

)
+

cKNJ√
2 cJ

σπt q
2J
t

(
gItJ (t)

)∗
fJ±(t) θ

(
t− tπ

)
. (6.72)

The factors cJ and cKNJ originate from the transition between the It = 0, 1 and the I = ±
bases in πN and KN scattering, since the derivation of the unitarity relations proceeds in the
isospin basis, whereas the t-channel πN and KN partial waves are defined from the I = ±
amplitudes. Moreover, the additional factor

√
2 is a remnant from a symmetry factor in the

ππ system that occurs since this factor is not included in the conventional definition of the
ππ → N̄N partial waves (6.58). In contrast, these symmetry factors as required by the general
result (6.48) are included in the definition of the ππ and ππ → K̄K partial waves in (6.55)
and (6.60), otherwise they would occur in (6.72) as well.

The structure of (6.72) can be made more apparent by noting that by virtue of unitarity
in the ππ/K̄K system the pertinent T -matrix becomes

TJ(t) =




η
It
J (t)e

2iδ
It
J

(t)−1

2iσπt q
2J
t

∣∣gItJ (t)
∣∣eiψItJ (t)

∣∣gItJ (t)
∣∣eiψItJ (t) η

It
J (t)e

2i

(
ψ
It
J

(t)−δ
It
J

(t)

)
−1

2iσKt k
2J
t


 , (6.73)

where ψItJ (t) denotes the phase of gItJ (t), the inelasticity parameter is given by

ηItJ (t) =

√
1−

∣∣[SItJ (t)
]
ππ→K̄K

∣∣2 =
√

1− 4σπt σ
K
t (ktqt)2J

∣∣gItJ (t)
∣∣2 θ
(
t− tK

)
, (6.74)

and the K̄K partial waves may be identified as

rItJ (t) =
ηItJ (t)e

2i
(
ψ
It
J (t)−δItJ (t)

)
− 1

2iσKt
. (6.75)

Together with the phase-space factor

ΣJ(t) = diag
(
σπt q

2J
t θ
(
t− tπ

)
, σKt k

2J
t θ
(
t− tK

))
, (6.76)
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the t-channel unitarity relation (6.72) then takes the form

Im fJ±(t) = T ∗
J (t)ΣJ (t)f

J
±(t) , fJ±(t) =

(
fJ±(t)√

2 cJ
cKNJ

hJ±(t)

)
. (6.77)

This equation will serve as starting point for a full two-channel treatment of the coupled
system of f0+(t) and h0+(t) in Sect. 7.3.



Chapter 7

Solution of the t-channel equations#4

7.1 Muskhelishvili–Omnès problem for ππ → N̄N

7.1.1 Single-channel Muskhelishvili–Omnès solution

In the single-channel approximation where only ππ intermediate states are considered in the
unitarity relation the MO solution for fJ±(t) can be derived from the RS equations (6.40)
following the strategy laid out in Sect. 5.1 for γγ → ππ. However, it is advantageous to
rearrange the equations first in such a way that the behavior of fJ±(t) at the two-nucleon
threshold is properly taken into account.

Starting from the partial-wave expansion (6.35) one can show that the S-wave vanishes
for t→ tN according to

f0+(t) = O
(
p2t
)
. (7.1)

Although higher partial waves with J ≥ 1 individually take a finite value

fJ+(t) = O(1) , fJ−(t) = O(1) , (7.2)

the linear combination

ΓJ(t) = m

√
J

J + 1
fJ−(t)− fJ+(t) (7.3)

again vanishes at threshold [222]
ΓJ(t) = O(p2t ) . (7.4)

Indeed, the leading terms in the t-channel partial-wave expansion (C.16)

A+(ν, t)

4π
= −f

0
+(t)

p2t
+

15

2
m2ν2

Γ2(t)

p2t
+

5

2
q2t f

2
+(t) + . . . ,

A−(ν, t)
4π

= 3mν
Γ1(t)

p2t
+ . . . ,

B+(ν, t)

4π
=

15√
6
mνf2−(t) + . . . ,

B−(ν, t)
4π

=
3√
2
f1−(t) + . . . , (7.5)

already demonstrate that (7.1) and (7.4) are indispensable for the invariant amplitudes to
remain finite.

#4The contents of this chapter have been published in [205,221].
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In strict analogy to (5.1) the t-channel equations in their unsubtracted form read

f0+(t) = ∆0
+(t)−

1

π

∞∫

tπ

dt′
Im f0+(t

′)

t′ − tN
+

1

π

∞∫

tπ

dt′
Im f0+(t

′)

t′ − t
,

fJ+(t) = ∆J
+(t) +

1

π

∞∫

tπ

dt′
ImΓJ(t′)
t′ − tN

+
1

π

∞∫

tπ

dt′
Im fJ+(t

′)

t′ − t
,

fJ−(t) = ∆J
−(t) +

1

π

∞∫

tπ

dt′
Im fJ−(t

′)

t′ − t
, (7.6)

where

∆J
±(t) = ÑJ

±(t) + ∆̄J
±(t) ,

∆̄J
+(t) =
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π
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}

+
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{
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+
1
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1 + (−1)J+J
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2
K̃3
JJ ′(t, t′) Im fJ

′

− (t′) . (7.7)

Again, the convergence of the t-independent integrals in (7.6) is ensured by the threshold
behavior (7.1) and (7.4). In particular, the fact that the numerator in the case of fJ+(t)
coincides with ImΓJ(t′) is a manifestation of the general property of the kernel functions

Res
[
HlJ(W, t

′), t′ = tN

]
= −m

√
J

J + 1
Res

[
GlJ(W, t

′), t′ = tN

]
,
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JJ ′(t, t′), t′ = tN

]
= −m

√
J ′

J ′ + 1
Res

[
K̃1
JJ ′(t, t′), t′ = tN

]
, (7.8)

which induces the cancellation of ostensible p′−2
t divergences in the t-channel dispersive in-

tegrals in (6.39) and (6.40). In addition, the structure of (7.6) suggests to reformulate the
problem in terms of ΓJ(t) as

f0+(t) = ∆0
+(t) +

t− tN
π

∞∫

tπ

dt′
Im f0+(t

′)

(t′ − tN )(t′ − t)
, fJ−(t) = ∆J
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1

π

∞∫
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dt′
Im fJ−(t

′)
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,

ΓJ(t) = ∆J
Γ(t) +
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π
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dt′
ImΓJ(t′)

(t′ − tN )(t′ − t)
, ∆J

Γ(t) = m

√
J

J + 1
∆J

−(t)−∆J
+(t) .

(7.9)
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f0+(t) Γ1(t) f1−(t) Γ2(t) f2−(t)

1-sub 1 0 1 0 0

2-sub 2 1 2 0 1

3-sub 2 2 2 1 1

Table 7.1: Number of subtractions in the MO solution for the t-channel partial waves with
J ≤ 2 for once- and twice-subtracted HDRs as well as a partial third subtraction.

In this way, the equations decouple in the sense that the integral equation for a given partial-
wave amplitude only depends on the s-channel partial waves as well as t-channel partial
waves with higher angular momentum, and thus reduce to a form directly accessible to MO
techniques. Once the solutions for ΓJ(t) and fJ−(t) are obtained, the result for fJ+(t) can be
recovered by means of (7.3). With the Omnès function as defined in (5.5), N̂J

±(t) from (C.25),
and

∆̃J
±(t) = N̂J

±(t) + ∆̄J
±(t) , ∆̃J

Γ(t) = m

√
J

J + 1
∆̃J

−(t)− ∆̃J
+(t) , (7.10)

the solutions for the unsubtracted case become

f0+(t) = ∆̃0
+(t)

+
(t− tN )Ω0(t)

π
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dt′
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∞∫
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(t′ − tN )(t′ − t)|Ω0(t′)|

}
,

ΓJ(t) = ∆̃J
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+
(t− tN )ΩJ(t)

π

{ tm∫

tπ

dt′
∆̃J

Γ(t
′) sin δJ (t′)

(t′ − tN )(t′ − t)|ΩJ(t′)|
+

∞∫

tm

dt′
ImΓJ(t′)

(t′ − tN )(t′ − t)|ΩJ(t′)|

}
,

fJ−(t) = ∆̃J
−(t) +

ΩJ(t)

π

{ tm∫

tπ

dt′
∆̃J

−(t
′) sin δJ(t′)

(t′ − t)|ΩJ(t′)|
+

∞∫

tm

dt′
Im fJ−(t

′)

(t′ − t)|ΩJ(t′)|

}
, (7.11)

where in analogy to (5.6) the phase can be explicitly separated by virtue of Watson’s the-
orem [201] and the generalization for subtracted RS equations as introduced in Sect. 6.3.3
is deferred to Appendix C.5. The general pattern how subtractions in the original HDRs
affect (7.11) is summarized in Table 7.1. In the once- and twice-subtracted version the equa-
tion for Γ1(t) always involves one subtraction less than the one for f1−(t), while the equations
for the D-waves remain unchanged in the once-subtracted case, and in the twice-subtracted
version lack one subtraction compared to their P -wave analogs. The partial third subtraction
is constructed in such a way that the equations for Γ1(t) and Γ2(t) receive an additional sub-
traction, with the result that in this scheme all partial waves with the same J ≤ 2 are treated
on an equal footing.

7.1.2 Input

We now collect all the input quantities needed for an explicit evaluation of (7.11) and (C.77).
Most importantly, we will consider the results of the Karlsruhe–Helsinki partial-wave analysis
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KH80 [152,165] both as input for the s-channel partial waves and the subthreshold parameters,
in order to compare our results for the t-channel partial waves with KH80 and thereby demon-
strate the viability of our approach. Throughout this consistency check with KH80, we will
leave the πN coupling constant at g2/4π = 14.28. The KH80 partial-wave solution—based
on Pietarinen’s expansion method [223] and incorporating various analyticity constraints—is
still the only analysis that provides s- and t-channel partial waves as well as a complete set of
subthreshold parameters within a common framework.1 In this respect, available updates of
KH80, for instance the Karlsruhe KA84 solution [225] or, more recently, the analysis of for-
ward πN scattering in [167, 226], are incomplete. Similarly, the VPI/GWU(SAID) solution,
see e.g. [158,227–229], only pertains to the s-channel partial waves, the πN coupling constant,
and certain subthreshold parameters. Although the results for the t-channel partial waves
prove remarkably insensitive to the precise input for the s-channel amplitudes that is used
to evaluate the inhomogeneities ∆̃J

±(t), indicating that the iteration of the full system of RS
equations depicted in Fig. 6.1 should converge quickly, we will stick to the KH80 solution in
the present context. More precisely, we integrate all the s-channel partial waves up to l ≤ lmax

for W+ ≤ W ′ ≤ Wa = 2.5GeV, while for even higher energies we rely on a the Regge model
for backward πN scattering [230], which provides expressions for the full invariant amplitudes
in the limit

s′ → ∞ ⇒ t′ → −∞ , u′ → a . (7.12)

Summing the partial waves up to lmax = 4 encompasses all 4-star resonances quoted in [3] that
lie entirely within the relevant energy range W+ ≤ W ′ ≤ Wa and ensures a decent matching
to the Regge model [230] (for more details, see [205]).

As already mentioned in Sect. 6.1, the solution of the t-channel equations suffers from the
inherent difficulty that the single-channel approximation breaks down around 1GeV, most
distinctly in the S-wave due to the occurrence of the f0(980) resonance, while input from
partial-wave analyses [231] only becomes available starting at the two-nucleon threshold. In
principle, inelastic contributions from intermediate states other than ππ can be included in a
single-channel MO formalism [232], but only provided that these inelasticities are sufficiently
well known. Hence, this approach fails for f0+(t) absent reliable input for the K̄K → N̄N
S-wave. Alternatively, one might try to include the f0(980) using a Flatté-like parameteriza-
tion [233], similarly to the Breit–Wigner ansatz for the f2(1270) in Sect. 5.3.2. However, while
the f0ππ coupling is known rather accurately [202], the f0NN coupling ist not, with different
meson-exchange models dissenting substantially on the coupling and the continuation to the
physical pole [234]. For these reasons, we conclude that a reliable incorporation of the f0(980)
dynamics can only be achieved in a full two-channel ππ/K̄K MO description, which we will
address in Sect. 7.3. Even if the K̄K channel is included, the two-channel representation
will break down around

√
t0 = 1.3GeV, where inelasticities from 4π intermediate states are

expected to become important. Moreover, this strategy to extend the energy range by means
of a two-channel treatment is only applicable if the inelasticities can be attributed entirely
to one (effective) two-particle intermediate state and if the pertinent two-channel S-matrix is
sufficiently well known. As these requirements thwart an extension of the two-channel formal-
ism to other partial waves, P - and D-waves will be considered solely within the single-channel

1The t-channel partial waves are determined from an analytic continuation of the s-channel amplitude by
means of a discrepancy-function method [220,224,213]. The extrapolation is stabilized using Watson’s theorem
for the phases of the t-channel amplitudes, assuming that only ππ intermediate states enter in the unitarity
relation, and therefore becomes unreliable once significant inelastic contributions appear around

√
t = 1GeV.

For this reason, the results as quoted in [152] are given only up to t = 40M2
π = (0.88GeV)2.
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KH80 St(KA84) St(SP98) Oa(KH80) Oa(SP98) Fe(KA84)

d+00
[
M−1
π

]
−1.46(10) −1.39(2) −1.32(2) −1.46(4) −1.29(2) −1.58

b−00
[
M−2
π

]
10.36(10) 10.35(2) 10.45(1) 10.84(18) 10.37(8) 10.34

a−00
[
M−2
π

]
−8.83(10) −8.82(4) −8.97(1) −9.26(17) −8.92(7) −8.47

d+01
[
M−3
π

]
1.14(2) 1.14(1) 1.15(2) 1.15(11) 1.23(4) 1.36

b+00
[
M−3
π

]
−3.54(6) −3.49(3) −3.48(2) −3.56(10) −3.42(4) −7.90

a+10
[
M−3
π

]
4.66 4.63(3) 4.57(3) 4.84(20) 4.58(8) 9.14

b−01
[
M−4
π

]
0.24(1) 0.22(1) 0.24(1) 0.26(22) 0.26(10) 0.14

a−01
[
M−4
π

]
−0.37(2) −0.38(1) −0.38(1) −0.44(21) −0.38(9) −0.46

b−10
[
M−4
π

]
1.08(5) 1.05(1) 1.01(1) 0.89(5) 1.04(2) 0.81

a−10
[
M−4
π

]
−1.25(5) −1.24(4) −1.18(1) −1.09(6) −1.20(2) −1.46

Table 7.2: Subthreshold parameters as given by KH80/Höhler [152], Stahov [210], Oades [235],
and Fettes [236]. The numbers in brackets refer to the uncertainty in the last significant digit.

approximation and inelasticities in these partial waves, which e.g. in the P -wave slowly set
in starting around the πω threshold at

√
t = 0.92GeV due to 4π intermediate states, will be

completely ignored. In view of the uncertainties associated with inelastic contributions to the
unitarity relation in the pseudophysical region we simply put the t-channel imaginary parts
to zero above the matching point, which, in this section, will be chosen at

√
tm = 0.98GeV,

slightly below the opening of the K̄K channel.
The determination of subthreshold parameters from πN scattering data requires an ana-

lytic continuation to the subthreshold point (ν = 0, t = 0). The corresponding results within
the KH80 framework are compared to more recent determinations in Table 7.2. In [210], the
extrapolation is performed based on a combination of interior and fixed-t dispersion relations,
with input for the s-channel partial waves from KA84 and VPI/SP98 [149, 227] and for the
t-channel partial waves from KH80. Similarly, the subthreshold parameters are derived from
finite-contour dispersion relations in [235], using as s-channel input the KH80 and VPI/SP98
solutions. In particular for the case of [235], the results for the subthreshold parameters de-
pend critically on the input for the s-channel partial waves, in so far as KH80 s-channel input
yields values close to the KH80 subthreshold parameters and SP98 input values close to [227]

d+00 = −1.30M−1
π , d+01 = 1.27M−3

π . (7.13)

For [210] such a correlation is less distinct, which, however, may well be due to the fact
that the t-channel input required in this analysis stems solely from KH80. In all cases one
should note that the quoted uncertainties merely refer to statistical fit errors or consistency
considerations, they do not reflect the total systematic uncertainties.2 In the last column of
Table 7.2 we show for comparison the predictions from a third-order calculation in heavy-
baryon ChPT [236,237], where the LECs are fitted to reproduce the low-energy KA84 phase
shifts. As argued in [78,236], the discrepancies between the ChPT and the KH80 subthreshold

2According to [152], the error estimates for the KH80 subthreshold parameters are “based on deviations
from the internal consistency,” while the total uncertainty is “somewhat larger.”
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Figure 7.1: MO solutions for the S-wave.

parameters can be traced back to the fact that the ChPT amplitude does not sufficiently
respect the analytic structure of the πN amplitude to reliably perform the extrapolation into
the unphysical region. In particular, a fourth-order calculation does not improve the results
any more, and in some cases even deteriorates the agreement with KH80 [78,236].

Finally, we take the ππ phase shifts from the extended Roy-equation analysis of [57]. The
variation of the final results for fJ±(t) due to the uncertainty in the ππ phases is negligible
compared to the uncertainties introduced by the input for partial waves and subthreshold
parameters (see also Sect. 5.4).

7.1.3 Results

The results for the t-channel partial waves using the input discussed in Sect. 7.1.2, the optimal
hyperbola parameter a = −2.7M2

π , cf. (6.30), and the matching point
√
tm = 0.98GeV, for

the different subtraction schemes introduced in Sect. 6.3.3, are depicted in Figs. 7.1–7.3, while
Figs. 7.4 and 7.5 show the P - andD-wave results for the higher matching point

√
tm = 1.1GeV.

Apart from our central solutions, Figs. 7.1–7.3 also comprise the curves for the limit where the
hyperbola parameter is taken to infinity, which should give a rough estimate of the sensitivity
to the approximations concerning the high-energy input and higher partial waves (see also
Sect. 5.4.1).3 In these results, the coupling of the D-waves to the S-wave equation via the
kernel functions K̃1

02(t, t
′) and K̃2

02(t, t
′)—except for the a → ∞ limit in the unsubtracted

case, for which these kernels diverge, cf. (C.41)—as well as asymptotic contributions to the
s-channel integrals for energies W ′ ≥Wa by means of the Regge model [230] have been taken

3The first subtraction does not affect the equations for the D-waves, while the partial third subtraction
leaves f1

−(t) and f2
−(t) unchanged. Therefore, the corresponding curves are omitted in Figs. 7.2–7.5. More-

over, we actually take the limit a → −∞ to assess the a-dependence, as suggested by range-of-convergence
considerations [205].



7.1. Muskhelishvili–Omnès problem for ππ → N̄N 119

Figure 7.2: MO solutions for the P -waves.

into account, although both effects prove to be numerically irrelevant. In the vicinity of tπ
all amplitudes fJ±(t) with J ≥ 1 are dominated by the nucleon pole term and therefore agree
by construction with KH80 as the same πN coupling constant is used. For this reason, we
concentrate on the energy range where discrepancies are most significant in Figs. 7.1–7.5.

Figs. 7.1–7.3 demonstrate that the a-dependence decreases rapidly with increasing number
of subtractions. In particular, the small residual sensitivity of the results to the choice of a for
the curves with the respective highest number of subtractions provides evidence that for this
version of the RS system the uncertainties originating from the high-energy input are indeed
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Figure 7.3: MO solutions for the D-waves.

appreciably suppressed. In addition, we conclude that the KH80 solution is accurately repro-
duced provided that a sufficient number of subtractions is introduced. We do not consider
the deviations from KH80 that do emerge in the S-wave at higher energies as particularly
disturbing, since at some point effects of the K̄K dynamics will in any case invalidate the
single-channel approximation. For this partial wave, the partial third subtraction does not
further improve the solution (as expected from Table 7.1), so that the twice-subtracted ver-
sion proves already adequate and is actually favorable given the fact that fewer subthreshold
parameters enter the solution. Nonetheless, the S-wave is considerably more sensitive to the
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Figure 7.4: MO solutions for the P -waves with
√
tm = 1.1GeV.

input for the subthreshold parameters than higher partial waves as the nucleon-pole contri-
bution vanishes at tπ, with the result that not the Born terms, but subthreshold parameters
dominate the low-energy behavior. In the same way, the solutions for ΓJ(t), which occur in
an intermediate step in the calculation of fJ+(t), involve the combination of Born terms

m

√
J

J + 1
N̂J

−(t)− N̂J
+(t) , (7.14)

that vanishes at tπ as can be inferred from (C.28). For this reason, the solutions for fJ+(t) are
systematically more sensitive to the subthreshold-parameter input than those for fJ−(t).
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Figure 7.5: MO solutions for the D-waves with
√
tm = 1.1GeV.

It is striking that for all partial waves, at the respective highest level of subtractions
considered, the agreement with KH80 appears to be even better in the limit a → ∞. This
observation can be interpreted in such a way that this procedure implements the limit of
fixed-t dispersion relations on the level of the original HDRs, since (6.27) reduces to the fixed-
t limit once a is taken to infinity and the t-channel integrals are discarded. Although this
limit and the partial-wave projection may not be interchanged—there would be no equations
for the t-channel partial waves to begin with—it seems plausible that a treatment emulating
the fixed-t approach improves the agreement with the KH80 solution, as fixed-t analyticity
constitutes an integral part of the KH80 framework.
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Furthermore, we observe that especially for the P -waves the solutions in the higher-
matching-point scenario reproduce the high-energy tail of the KH80 results more accurately.
This behavior is due to the fact that the solutions for the partial waves are forced to vanish
at the matching point as a consequence of putting the imaginary parts above tm to zero (see
also the discussion in Sect. 5.4.2). Obviously, a higher matching point permits more freedom
to account for the finite values of the amplitudes at the highest KH80 point.

Finally, Fig. 7.5 shows the comparison of the D-wave solutions with the nucleon pole terms.
While the KH80 results for f2−(t) are almost perfectly described by the pertinent Born term,
f2+(t) is underestimated by roughly a factor of 2 at the boundary of the KH80 energy range. In
either case, the general form of the solution resembles closely the nucleon-pole contribution, in
marked contrast to the P -waves where the peak associated with the ρ(770) is clearly visible.

7.2 Two-channel Muskhelishvili–Omnès problem

Before turning to the calculation of f0+(t), we first consider the generic coupled-channel integral
equation

f(t) = ∆(t) +
1

π

tm∫

tπ

dt′
T ∗(t′)Σ(t′)f(t′)

t′ − t
+

1

π

∞∫

tm

dt′
Im f(t′)
t′ − t

, (7.15)

where bold-faced quantities are two-dimensional vectors in channel space, representing pion
and kaon intermediate states, and the imaginary part of f(t) is assumed to be known above the
matching point tm. In particular, f1(t) and f2(t) can be thought of as f0+(t) and h0+(t).

4 The
function ∆(t) contains at most left-hand cuts and is therefore real for t ≥ tπ. The unitarity
relation is written in the form

Im f(t) = T ∗(t)Σ(t)f(t) , (7.16)

cf. (6.77), with T -matrix T (t) and phase-space factor Σ(t) parameterized as

T (t) =



η(t)e2iδ(t)−1

2iσπt
|g(t)|eiψ(t)

|g(t)|eiψ(t) η(t)e2i(ψ(t)−δ(t))−1

2iσKt


 , Σ(t) = diag

(
σπt θ

(
t− tπ

)
, σKt θ

(
t− tK

))
.

(7.17)
The scattering phases δ(t) and ψ(t) are required as input for tπ ≤ t ≤ tm, where Watson’s
theorem demands ψ(t) = δ(t) for t ≤ tK . Moreover, the modulus of g(t) is needed in the full
range tπ ≤ t ≤ tm, and thus has to be analytically continued into the pseudophysical region
tπ ≤ t ≤ tK . Finally, the inleasticity parameter η(t) can be related to |g(t)| via

η(t) =
√
1− 4σπt σ

K
t |g(t)|2θ

(
t− tK

)
, (7.18)

and the relation between S- and T -matrix reads

S(t) = 1+ 2iΣ1/2(t)T (t)Σ1/2(t) . (7.19)

4Accordingly, we take J = 0 in the following. The general case can always be recovered by introducing the
correct phase-space factors according to σπt → σπt q

2J
t and σKt → σKt k2J

t .



124 Chapter 7. Solution of the t-channel equations

7.2.1 Formal solution

We define the Omnès matrix Ω(t) by

{
ImΩ(t) = T ∗(t)Σ(t)Ω(t)

ImΩ(t) = 0

}
for

{
tπ ≤ t ≤ tm
otherwise

}
(7.20)

and choose the normalization Ω(0) = 1. Writing

F(t) = f(t)−∆(t) = Ω(t)G(t) , (7.21)

it follows that for t ≥ tπ

(
1− 2i T ∗(t)Σ(t)

)
Ω(t+)

(
G(t+)−G(t−)

)
= 2i T ∗(t)Σ(t)∆(t) , (7.22)

where t± = t± iǫ and the physical limit is given by t+. Using unitarity in the form

(
1− 2i T ∗(t)Σ(t)

)−1
= 1+ 2i T (t)Σ(t) , (7.23)

which in particular holds for t ≤ tK by virtue of Watson’s theorem, we find

G(t+)−G(t−) = 2iΩ−1(t)T (t)Σ(t)∆(t) , (7.24)

and hence

f(t) = ∆(t) +
Ω(t)

π

tm∫

tπ

dt′
Ω−1(t′)T (t′)Σ(t′)∆(t′)

t′ − t
+

Ω(t)

π

∞∫

tm

dt′
Ω−1(t′)Im f(t′)

t′ − t

= ∆(t)− Ω(t)

π

tm∫

tπ

dt′
ImΩ−1(t′)∆(t′)

t′ − t
+

Ω(t)

π

∞∫

tm

dt′
Ω−1(t′)Im f(t′)

t′ − t
. (7.25)

The problem is thus reduced to finding a matrix Ω(t) that fulfills (7.20). For tπ ≤ t ≤ tK we
have

Ω(t+) =
(
1+ 2i T (t)Σ(t)

)
Ω(t−) . (7.26)

Taking the determinant on both sides yields, again using Watson’s theorem for t ≤ tK ,

detΩ(t+) = e2iψ(t) detΩ(t−) , (7.27)

and thus [238]

detΩ(t) = exp

{
t

π

tm∫

tπ

dt′
ψ(t′)

t′(t′ − t)

}
. (7.28)

Although the determinant allows for an analytic solution in the same way as in the single-
channel case [71], there is in general no analytic solution for the Omnès matrix itself even
for an infinite matching point, which therefore has to be calculated numerically, either by an
iterative procedure [239] or a discretization method, i.e. solving a matrix equation [238, 240]
(for a mathematician’s point of view see [70]). Similarly to the single-channel case, we expect
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a cusp at tm, which has to be taken into account in the numerical evaluation of the integrals
in (7.25) (see [67, 205]). Indeed, for t→ tm the determinant behaves as

detΩ(t) ∼ |tm − t|x , x =
ψ(tm)

π
. (7.29)

Accordingly, we write for t→ tm from below

detΩ(t) = det Ω̄(tm)eiπx|tm − t|x , Ωij(t) = Ω̄ij(tm)eiδij (tm)|tm − t|xij , (7.30)

and from above

detΩ(t) = det Ω̄(tm)|tm − t|x , Ωij(t) = Ω̄ij(tm)|tm − t|xij , (7.31)

since Ω(t) is real above tm. Here, we have assumed that the (real) functions Ω̄ij(t) are
continuous at tm. The strength of the cusp in each component Ωij(t) of the Omnès matrix is
determined by the numbers xij, whose relation to the S-matrix parameters will be established
in the following sections. Throughout this section we will consider the case 0 < xij < 1, which
is relevant for the coupled-channel S-wave system of ππ and K̄K intermediate states. The
extension to arbitrary values of xij can then be done along the lines described in [67] and
Sect. 5.1.

7.2.2 Dispersive representation of the Omnès matrix

For 0 < xij < 1 we may write down a dispersive representation

Ω(t) =
(
1− t

tm

)
1+

t(t− tm)

π

tm∫

tπ

dt′
T ∗(t′)Σ(t′)Ω(t′)
t′(t′ − tm)(t′ − t)

, (7.32)

where the subtraction constants have been fixed in such a way that Ω(0) = 1 and Ω(tm) = 0.
In particular, we can investigate the limit t → tm to obtain information on xij . Using the
asymptotic form of the integrals [67]

|tm − t|x
π

−
tm∫

tm−ǫ

dt′

(t′ − t)|tm − t′|x
ǫ→0, t→tm−→ 1

π
−
∞∫

0

dv
vx(1− v)

= − cot πx ,

|tm − t|x
π

tm+ǫ∫

tm

dt′

(t′ − t)|tm − t′|x
ǫ→0, t→tm−→ 1

π

∞∫

0

dv
vx(1 + v)

=
1

sinπx
, (7.33)

we obtain for t → tm from below

Ω̄11|tm − t|x11eiδ11 = Ω̄11|tm − t|x11eiδ11s11
1− ηe−2iδ

2i
+ Ω̄21|tm − t|x21eiδ21s21|g|σKtme−iψ ,

Ω̄12|tm − t|x12eiδ12 = Ω̄12|tm − t|x12eiδ12s12
1− ηe−2iδ

2i
+ Ω̄22|tm − t|x22eiδ22s22|g|σKtme−iψ ,

Ω̄21|tm − t|x21eiδ21 = Ω̄11|tm − t|x11eiδ11s11|g|σπtme−iψ + Ω̄21|tm − t|x21eiδ21s21
1− ηe−2i(ψ−δ)

2i
,

Ω̄22|tm − t|x22eiδ22 = Ω̄12|tm − t|x12eiδ12s12|g|σπtme−iψ + Ω̄22|tm − t|x22eiδ22s22
1− ηe−2i(ψ−δ)

2i
,

(7.34)
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where

sij =
eiπxij

sinπxij
, (7.35)

and for t→ tm from above

Ω̄11|tm − t|x11 = Ω̄11|tm − t|x11 eiδ11

sinπx11

1− ηe−2iδ

2i
+ Ω̄21|tm − t|x21 eiδ21

sinπx21
|g|σKtme−iψ ,

Ω̄12|tm − t|x12 = Ω̄12|tm − t|x12 eiδ12

sinπx12

1− ηe−2iδ

2i
+ Ω̄22|tm − t|x22 eiδ22

sinπx22
|g|σKtme−iψ ,

Ω̄21|tm − t|x21 = Ω̄11|tm − t|x11 eiδ11

sinπx11
|g|σπtme−iψ + Ω̄21|tm − t|x21 eiδ21

sinπx21

1− ηe−2i(ψ−δ)

2i
,

Ω̄22|tm − t|x22 = Ω̄12|tm − t|x12 eiδ12

sinπx12
|g|σπtme−iψ + Ω̄22|tm − t|x22 eiδ22

sinπx22

1− ηe−2i(ψ−δ)

2i
,

(7.36)

where we have suppressed the evaluation at tm wherever possible. If we assume that g(tm) 6= 0
and Ω̄ij(tm) 6= 0 (which can always be achieved by choosing the matching point appropriately),
we can conclude from the first line of (7.34) that x21 ≥ x11, since otherwise g or Ω̄21 would
have to vanish at tm. Conversely, the third line requires x21 ≤ x11 by the same argument,
and hence x11 = x21. Similarly, we find x12 = x22. Moreover, as the determinant behaves
according to (7.29), we can conclude that x11 + x12 = x, again provided that det Ω̄(tm) 6= 0.
Dividing the first line of (7.34) by the first line of (7.36), we find

eiδ11
(
1− eiπx11

sinπx11

1− ηe−2iδ

2i

)
= eiπx21

(
1− eiδ11

sinπx11

1− ηe−2iδ

2i

)
, (7.37)

which for x21 = x11 reduces to
eiδ11 = eiπx11 , (7.38)

and thus πx11 = δ11 up to integer multiples of 2π. Arguing analogously for x12, these results
can be summarized as

x11 = x21 , x12 = x22 , xij =
δij
π
, x11 + x12 = x . (7.39)

By virtue of (7.39), (7.34) and (7.36) take the form

(
eiπx11
sinπx11

1−ηe−2iδ

2i − 1 eiπx11
sinπx11

|g|σKtme−iψ
eiπx11
sinπx11

|g|σπtme−iψ eiπx11
sinπx11

1−ηe−2i(ψ−δ)

2i − 1

)(
Ω̄11

Ω̄21

)
= 0 ,

(
eiπx12
sinπx12

1−ηe−2iδ

2i − 1 eiπx12
sinπx12

|g|σKtme−iψ
eiπx12
sinπx12

|g|σπtme−iψ eiπx12
sinπx12

1−ηe−2i(ψ−δ)

2i − 1

)(
Ω̄12

Ω̄22

)
= 0 . (7.40)

To ensure the existence of non-trivial solutions the determinants of the coefficient matrices
must vanish. This leads to

cos π(2x11−x)−η cos π(2y−x) = 0 , cosπ(2x12−x)−η cos π(2y−x) = 0 , y =
δ(tm)

π
.

(7.41)
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These conditions are invariant under x11 → x − x11, i.e. there is an ambiguity between x11
and x12. However, demanding that x11 coincide with x in the single-channel limit yields

x11 =
1

2

{
x+

1

π
arccos(η cosπ(2y−x))

}
, x12 =

1

2

{
x− 1

π
arccos(η cos π(2y−x))

}
. (7.42)

Finally, (7.40) together with (7.42) and

sinπx11 = sin
πx

2

√
1 + z

2
+ cos

πx

2

√
1− z

2
, cos πx11 = cos

πx

2

√
1 + z

2
− sin

πx

2

√
1− z

2
,

sinπx12 = sin
πx

2

√
1 + z

2
− cos

πx

2

√
1− z

2
, cos πx12 = cos

πx

2

√
1 + z

2
+ sin

πx

2

√
1− z

2
,

z = η cos π(2y − x) , (7.43)

can be used to derive constraints on Ω̄ij. We find

Ω̄21

Ω̄11
=

N

2|g|σKtm
,

Ω̄12

Ω̄22
= − N

2|g|σπtm
, N =

√
1− η2 cos2 π(2y − x)− η sinπ(2y − x) .

(7.44)
In the single-channel case one can show that, using the integrals (7.33), the MO solution is
automatically continuous at tm [67]. In fact, the same statement holds true also in the two-
channel case. The relations (7.44) are essential in the proof, as demonstrated in Appendix C.6.

7.2.3 Construction of the Omnès matrix

Infinite matching point

Our construction of the two-channel Omnès matrix with finite matching point will heavily
rely on the solution for its infinite-matching-point analog Ω∞(t), whose defining property can
be stated as {

ImΩ∞(t) = T ∗(t)Σ(t)Ω∞(t)
ImΩ∞(t) = 0

}
for

{
t ≥ tπ

otherwise

}
. (7.45)

For its calculation we follow [238] and discretize the unsubtracted dispersion relation

ReΩ∞(t) =
1

π
−
∞∫

tπ

dt′
ImΩ∞(t′)
t′ − t

(7.46)

on a set of Gauß–Legendre integration points. Note that an unsubtracted dispersion relation
converges provided that the phase-shift at infinity is positive. In the one-channel case this can
be directly deduced from the explicit solution

Ω∞(t) = exp

{
t

π

∞∫

tπ

dt′
δ(t′)

t′(t′ − t)

}
, (7.47)

which behaves as
Ω∞(t) ∼ t−

δ(∞)
π (7.48)
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for large t. The unitarity condition (7.45) can be rewritten as

ImΩ∞
i =




η sin(2δ−ψ)+sinψ
η cos(2δ−ψ)+cos ψ

2|g|σKt θ(t−tK)
η cos(2δ−ψ)+cos ψ

2|g|σπt
η cos(2δ−ψ)+cos ψ − η sin(2δ−ψ)−sinψ

η cos(2δ−ψ)+cos ψ


ReΩ∞

i , i ∈ {1, 2} , (7.49)

with

Ω∞
1 =

(
Ω∞
11

Ω∞
21

)
, Ω∞

2 =

(
Ω∞
12

Ω∞
22

)
, (7.50)

which below the two-kaon threshold reduces to

ImΩ∞
i =

(
tan δ 0
|g|σπt
cos δ 0

)
ReΩ∞

i . (7.51)

The details of the numerical solution of the corresponding integral equation for ReΩ∞
i are

described in [238,240].

Finite matching point, single-channel case

An Omnès function with a finite matching point does not allow for an unsubtracted dispersion
relation, since the solution (7.28) tends to a constant for t → ∞, and consequently one picks
up contributions at infinity. Moreover, the cusp at the matching point renders both the
discretization method and an iterative procedure involving subtracted dispersion relations
inappropriate, as neither is able to accurately reproduce the analytic behavior around tm. For
this reason, the aim of this section is to establish a method that relies on the known solution
in the infinite-matching-point scenario.

We first observe that the function

ξ(t) =

(
tm − t

tm

)x(t)
=

∣∣∣∣
tm − t

tm

∣∣∣∣
x(t)

e−iπx(t)θ(t−tm) (7.52)

has the correct properties to cancel an imaginary part above tm. Indeed, the function

Ω(t) = Ω∞(t)ξ(t) , (7.53)

with Ω∞(t) from (7.47), fulfills
{

ImΩ(t) = T ∗(t)Σ(t)Ω(t)

ImΩ(t) = Ω∞(t)|ξ(t)|
(
ei(πx(t)−δ(t)) sin δ(t)− sinπx(t)

)
}

for
{
tπ ≤ t ≤ tm
t ≥ tm

}
,

(7.54)
and with the choice {

x(t) = δ(tm)
π

x(t) = δ(t)
π

}
for

{
t ≤ tm
t ≥ tm

}
(7.55)

the defining property (7.20) holds. Since we know the analytic solution, we can study the
properties of this construction in more detail

Ω(t) = exp

{
t

π

tm∫

tπ

dt′
δ(t′)

t′(t′ − t)

}
exp

{
t

π

∞∫

tm

dt′
δ(t′)− πx(t)

t′(t′ − t)

}
. (7.56)
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The first term coincides with the expected result for the single-channel case, while the second
factor is new. It is indeed real, and thus preserves all defining properties, in particular the
normalization Ω(0) = 1. This example shows that we would exactly recover the result (7.28)
if we did not know the solution for a finite matching point, constructed it according to (7.53),
and chose δ(t) = δ(tm) for t above the matching point. Obviously, (7.56) implies that “the”
Omnès function is not unique. The derivation of (7.25), however, only relies on the defining
properties and is therefore independent of such modifications.

Finite matching point, two-channel case

To generalize the preceding considerations to the two-channel case we define a matrix

ξij(t) = ξ̄ij(t)

(
tm − t

tm

)xij(t)
(7.57)

with real functions ξ̄ij(t). In view of the results of the previous section we take phases and
inelasticities constant above tm and thus can ignore the t-dependence of xij and ξ̄ij, which in
the following will always be understood to be evaluated at tm. It is straightforward to show
that {

Ω(t) = a(t)Ω∞(t)ξ(t)
Ω(t) = a(t)(Ω∞)T (t)ξ(t)

}
for

{
t ≤ tm
t ≥ tm

}
, (7.58)

with infinite-matching-point solution Ω∞(t) and a real matrix a(t), fulfills (7.20) provided that

Im ξT (t) + ξT (t)T (t)Σ(t) = 0 for t ≥ tm ,[
a(t), T ∗(t)Σ(t)

]
= 0 for t ≤ tm . (7.59)

Imposing x11 = x21 = x− x12 = x− x22, the first condition corresponds to

(
eiπx11
sinπx11

1−ηe−2iδ

2i − 1 eiπx11
sinπx11

|g|σπtme−iψ
eiπx11
sinπx11

|g|σKtme−iψ eiπx11
sinπx11

1−ηe−2i(ψ−δ)

2i − 1

)(
ξ̄11

ξ̄21

)
= 0 ,

(
eiπx12
sinπx12

1−ηe−2iδ

2i − 1 eiπx12
sinπx12

|g|σπtme−iψ
eiπx12
sinπx12

|g|σKtme−iψ eiπx12
sinπx12

1−ηe−2i(ψ−δ)

2i − 1

)(
ξ̄12

ξ̄22

)
= 0 . (7.60)

Non-trivial solutions of (7.60) again exist for x11 and x12 given by (7.42), while the components
of ξ(t) are related by

ξ̄21
ξ̄11

=
N

2|g|σπtm
,

ξ̄12
ξ̄22

= − N

2|g|σKtm
. (7.61)

For definiteness, we take

ξ̄11 = 1 , ξ̄22 =

(
1 +

N2

1− η2

)−1

, (7.62)

which ensures that

det ξ(t) =

(
tm − t

tm

)x
, (7.63)
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and thus, by the results of the previous section, would preserve the form (7.28) of the deter-
minant of the Omnès function if det a(t) = 1. The condition (7.59) on a(t) requires

a21 = a12
σπt
σKt

, a22 = a11 − a12
η sin(2δ − ψ)

|g|σKt
, (7.64)

while a11 and a12 can be chosen freely.
Finally, Ω(t) should fulfill the normalization Ω(0) = 1, which can be achieved by modi-

fying the normalization in the calculation of Ω∞(t) appropriately. Assuming a(0) = 1, the
corresponding condition

Ω∞(0)ξ(0) =

(
ξ̄11
(
Ω∞
11(0) +

N
2|g|σπtm

Ω∞
12(0)

)
ξ̄22
(
Ω∞
12(0)− N

2|g|σKtm
Ω∞
11(0)

)

ξ̄11
(
Ω∞
21(0) +

N
2|g|σπtm

Ω∞
22(0)

)
ξ̄22
(
Ω∞
22(0)− N

2|g|σKtm
Ω∞
21(0)

)
)

= 1 (7.65)

leads to

Ω∞(0) =

(
1 +

N2

1− η2

)−1
(

ξ̄−1
11 ξ̄−1

11
N

2|g|σKtm
−ξ̄−1

22
N

2|g|σπtm
ξ̄−1
22

)
. (7.66)

The above construction (7.58) ensures that Ωij(t) has the expected behavior for t→ tm, that
the factors of (1 − t/tm)xij factorize in (7.60) (which have therefore already been canceled
there), and that det Ω̄(t) is continuous at tm. However, in general, Ω̄ij(t) itself will not be
continuous at tm and the condition (7.44) will be violated.

In order to remove these shortcomings we make use of the freedom in choosing a(t). In
fact, a particular choice of a(t) can enforce continuity of either Ω̄1(t) or Ω̄2(t), but not of both
simultaneously. This impediment can be circumvented by noting that (7.58) may be regarded
as separate equations for Ω̄1(t) and Ω̄2(t). We can thus derive an Ω̄

(1)
1 (t) from a construction

with an a1(t) tailored for this component (discarding Ω̄
(1)
2 (t) in this case), Ω̄

(2)
2 (t) from a

different a2(t) (discarding Ω̄
(2)
1 (t)), and finally join these two vectors into the final Omnès

matrix Ω(t) =
{
Ω̄

(1)
1 (t), Ω̄

(2)
2 (t)

}
.

Below the two-kaon threshold we take a1(t) = a2(t) = 1, while for t ≥ tK

a1(t) =


 1 N(t)

2|g(t)|σπt
f(t)

N(t)

2|g(t)|σKt
f(t) 1− f(t) + N2(t)

1−η2(t)f(t)


 ,

a2(t) =


 1 −2|g(t)|σKt

N(t) f(t)

−2|g(t)|σπt
N(t) f(t) 1− f(t) + 1−η2(t)

N2(t)
f(t)


 , (7.67)

with
N(t) =

√
1− η(t)2 cos2(2δ(t) − ψ(t)) − η(t) sin(2δ(t) − ψ(t)) , (7.68)

cf. (7.44), and a function f(t) fulfilling f(tK) = 0, f(tm) = 1, proves adequate. This construc-
tion makes sure that Ω̄ij(t) is continuous at tm and that the relations (7.44) hold.

As we have seen in the previous section, the Omnès function is not unique, and therefore
there is a priori no reason why the determinant of the resulting Ω(t) should match the single-
channel expectation: we can always multiply Ω̄i(t) with a real function g(t) with g(0) = 1
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without vitiating the above construction. Since the unitarity condition in its form analogous
to (7.49) alone implies that

detΩ =
2eiψ

η cos(2δ − ψ) + cosψ

(
ReΩ11ReΩ22 − ReΩ12ReΩ21

)
, (7.69)

and thus ensures the correct phase, this could be used to make the modulus of the determinant
coincide with (7.28). We simply take

f(t) =

(
t− tK
tm − tK

)6

. (7.70)

This choice of the exponent ensures that f(t) decreases rapidly below tm, but not so fast as to
cause numerical problems in the matching-point region. In this way, the single-channel result
for the determinant is accurately reproduced except for the energy region close to tm.

7.3 Coupled-channel analysis of ππ → N̄N and K̄K → N̄N

The ππ → N̄N and K̄K → N̄N S-waves fulfill the unitarity relation

Im f(t) = T ∗(t)Σ(t)f(t) , f(t) =

(
f0+(t)
2√
3
h0+(t)

)
, (7.71)

cf. (6.77), while RS equations provide a dispersion relation of the form

f(t) = ∆(t) + (a+ b t)(t− tN ) +
t2(t− tN )

π

∞∫

tπ

dt′
Im f(t′)

t′2(t′ − tN )(t′ − t)
. (7.72)

In view of the results of Sect. 7.1.3, we only consider the twice-subtracted version of the RS
system. The corresponding inhomogeneity ∆1(t) for the πN part equals ∆̃0

+(t) as defined
in (7.10), although here we will neglect the contributions from higher t-channel partial waves,
which are numerically insignificant (see [205]). In fact, the corresponding equation for ∆2(t) is
very similar, as long as we restrict ourselves to combinations of isospin and angular momentum
that couple to ππ (cf. Appendix C.4): the nucleon pole terms need to be replaced by the
hyperon-pole contributions (C.72), Mπ by MK , and the Clebsch–Gordan coefficients in the
relation between the s-channel amplitudes in I = ± and Is = 0, 1 bases are different from
πN . In particular, the kernel functions G̃0l(t,W ) require no further modification besides
Mπ →MK . Finally, the subtraction constants a1 and b1 can be related to the πN subthreshold
parameters according to

a1 = − 1

16π

(
d+00 +

g2

m
+ b+00

M2
π

3

)
, b1 = − 1

16π

(
d+01 −

b+00
12

)
, (7.73)

cf. (C.56), and similarly for a2, b2, and KN subthreshold parameters.
Starting from the dispersion relation (7.72), the solution for f(t) can be derived along the

lines that led to (7.25). In addition, we may use the spectral representation of the inverse of
the Omnès matrix

Ω−1(t) = 1+
t

π

tm∫

tπ

dt′
ImΩ−1(t′)
t′(t′ − t)

= 1− t Ω̇(0) +
t2

π

tm∫

tπ

dt′
ImΩ−1(t′)
t′2(t′ − t)

(7.74)
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Figure 7.6: Results for real and imaginary part of the components of the Omnès matrix for
the input phases RS1 and RS2 as described in the main text.

to perform the integrals involving a and b, cf. (5.9). In this way, we arrive at

f(t) = ∆(t) + (t− tN )Ω(t)(1 − t Ω̇(0))a + t(t− tN )Ω(t)b (7.75)

− t2(t− tN )

π
Ω(t)

tm∫

tπ

dt′
ImΩ−1(t′)∆(t′)
t′2(t′ − tN )(t′ − t)

+
t2(t− tN )

π
Ω(t)

∞∫

tm

dt′
Ω−1(t′)Im f(t′)

t′2(t′ − tN )(t′ − t)
.

We now collect the additional input needed for the explicit evaluation of (7.75). We
take the ππ phase and inelasticity up to

√
t0 = 1.3GeV from the extended Roy-equation

analysis of [57] and the ππ → K̄K partial wave from [67], where, in the pseudophysical
region tπ ≤ t ≤ tK , the modulus |g(t)| is determined as the solution of RS equations for πK
scattering, while above the two-kaon threshold phase-shift solutions [241] are used.5 Putting
again Im f = 0 above tm, continuity of the MO solution at the matching point implies that
the solution for f will vanish at tm as well. We take advantage of the fact that for kinematic
reasons f0+(t) and h0+(t) have a zero at the physical threshold tN and choose the matching point
accordingly as tm = tN , which should allow for a reasonably smooth matching. To evaluate

5We are indebted to Bachir Moussallam for providing a version of the solution for g(t) consistent with the
ππ phase shift of [57].
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Figure 7.7: Comparison between numerical and analytical result for the determinant of the
Omnès matrix.

the inhomogeneity ∆2 we rely on the s-channel KN partial-wave solution from [229, 242],
integrating the partial waves with l ≤ 4 up to 2GeV, and use the conventions for the KN
Born terms given in Appendix C.4.

In the remainder of this chapter we will consider three variants of the input described
above. First, we take δ and ψ to be constant above t0 (“RS1”), second, we guide δ and ψ
smoothly to 2π above t0 by means of [238]

δ(t) = 2π + (δ(t0)− 2π)f̂
( t
t0

)
, f̂(x) =

2

1 + x3/2
, (7.76)

keeping the phase constant above tm (“RS2”), and third, we modify RS1 in such a way that
∆2 = 0 (“RS3”). In all three cases, |g(t)| is led smoothly to zero above tm by a prescription
similar to (7.76). The choice of these variants is motivated as follows. As indicated above,
the model for the ππ/K̄K S-matrix is only meaningful roughly up to t0, and ideally our
results should be insensitive to variations of this input above t0, the simplest choice of course
being to keep the phases constant. However, in the calculation of the scalar meson form
factors (see Sect. 7.4.1), the phase ψ must tend to an asymptotic value of 2π to ensure the
correct asymptotic behavior [238], which, phenomenologically, also suggests to guide δ to 2π.
Thus, RS1 and RS2 are convenient choices to assess the sensitivity to the high-energy input
for the phase shifts. The results for the Omnès matrix corresponding to these two scenarios
are depicted in Fig. 7.6. In addition, we compare the results for detΩ(t)/(1 − t/tm)x to the
analytically known results in Fig. 7.7. As expected, the only deviations occur in the proximity
of tm, where the modifications originating from f(t) according to (7.70) set in. Note that the
difference between RS1 and RS2 appears slightly exaggerated here, since x differing in both
cases leads to a different factor being divided out.

For the remaining πN input we take g2/4π = 14.28 and the KH80 subthreshold parameters
as reference point. In contrast, we are not aware of reliable input for the KN subthreshold
parameters, and simply put a2 = b2 = 0. In fact, this approximation gives reason to investigate
RS3, since the results from the πN sector show that the contributions from the corresponding
parameters will certainly not be larger than the sum ofKN Born terms and s-channel integrals.
The difference between RS1 and RS3 thus serves as an estimate of the uncertainty induced
by neglecting the KN subthreshold parameters.
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Figure 7.8: Results for real and imaginary part of f0+(t) and h0+(t). The solid, dashed, and
dot-dashed lines refer to the input RS1, RS2, and RS3 as described in the main text. For
f0+(t) the black crosses indicate the results of [152].

The results for f0+(t) and h0+(t) are shown in Fig. 7.8. In the case of f0+(t) the agreement
between the different parameter sets is very good up to 1GeV. It is striking that the difference
between RS1 and RS2 is much larger than between RS1 and RS3, which indicates that the
results are much more sensitive to the choice of the phases above t0 than to the details of the
KN amplitude. The real part of h0+(t) exhibits two distinct divergences below 1GeV that
correspond to the pole-term contributions from the Λ (large peak at 0.82GeV) and Σ (small
peak at 0.73GeV) hyperon, strictly analogous to the nucleon pole in f0+(t) that emerges slightly
below tπ, cf. Appendix C.2.1. These divergences, which disappear in RS3 by construction,
do not pose a problem in practice, e.g. in a dispersive analysis of the scalar form factor of
the nucleon (see Sect. 7.4.2), since h0+(t) only contributes to the spectral function above tK .
Apart from these poles below the two-kaon threshold the conclusion is very similar to f0+(t):
the uncertainty in the phase shifts outweighs the uncertainty in the KN input.

7.4 Dispersive analysis of the scalar form factor of the nucleon

The results of the previous section for f0+(t) and h0+(t) may be applied to write down a
dispersive representation for the scalar form factor of the nucleon that fully includes K̄K
intermediate states, and thereby to update the result from [164] for the correction ∆σ, which
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is needed for the extraction of the pion–nucleon σ term from πN scattering (cf. Sect. 3.3).
The leading contribution to the imaginary part of σ(t) originates from ππ intermediate states,
so that, upon neglecting higher terms in the spectral function, Im σ(t) can be expressed in
terms of the scalar pion form factor FSπ (t) and f0+(t). Relying on the results of [239] for FSπ (t)
and of [152] for f0+(t) led to the estimate [164]

∆σ = (15.2 ± 0.4)MeV , (7.77)

where the error only includes the uncertainty in the parameterization of the ππ phase available
at that time. In particular, one should note that the contributions from K̄K intermediate
states in the determination of f0+(t) and the unitarity relation for σ(t) were neglected, while
being included in the calculation of FSπ (t). Although the dominant effect may indeed be
expected in the pion form factor, such a treatment is strictly speaking inconsistent and leads to
an additional uncertainty in (7.77) that is difficult to quantify. Moreover, the results for f0+(t)
from [152] and thus for ∆σ from [164] correspond to a πN coupling constant g2/4π = 14.28
and KH80 subthreshold parameters, both of which will need to be updated in a full solution
of the RS system.

7.4.1 Scalar pion and kaon form factors

We define the scalar pion and kaon form factors as

FSπ (t) = 〈π(p′)|m̂(ūu+ d̄d)|π(p)〉 , FSK(t) = 〈K(p′)|m̂(ūu+ d̄d)|K(p)〉 , t = (p′ − p)2 .
(7.78)

In the two-channel approximation they fulfill the unitarity relation [239]

ImFS(t) = T ∗(t)Σ(t)FS(t) , FS(t) =

(
FSπ (t)
2√
3
FSK(t)

)
, (7.79)

and thus
FS(t) = αΩ∞

1 + βΩ∞
2 , (7.80)

with the infinite-matching-point Omnès solutions Ω∞
i defined in (7.50). The phases δ and ψ

are guided smoothly to their assumed asymptotic value of 2π according to (7.76). Using the
normalization Ω∞(0) = 1 of the Omnès matrix to pin down the coefficients α, β, we find

FSπ (t) = FSπ (0)Ω
∞
11(t) +

2√
3
FSK(0)Ω

∞
12(t) ,

FSK(t) =

√
3

2
FSπ (0)Ω

∞
21(t) + FSK(0)Ω

∞
22(t) . (7.81)

The form factors at t = 0 can be determined via the Feynman–Hellmann theorem [136]

FSπ (0) = m̂
∂

∂m̂
M2
π , FSK(0) = m̂

∂

∂m̂
M2
K , (7.82)

from the quark-mass dependence of the meson masses. For the pion form factor the result at
O(p4) in the chiral expansion reads [12]

FSπ (0) =M2
π − M4

π

32π2F 2
π

(l̄3 − 1) = (0.984 ± 0.006)M2
π , (7.83)
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Figure 7.9: Modulus (left) and phase (right) of the scalar pion and kaon form factors. The
solid, dashed, and dot-dashed lines refer to FSK(0) = M2

π/2, 0.4M
2
π , and 0.6M2

π . The phases
of FSπ (t) and FSK(t) are compared to δ and ψ, respectively, as indicated by the dotted lines.

where we have used l̄3 = 3.2± 0.8 [102]. The leading-order result for the kaon form factor

FSK(0) =
M2
π

2
(7.84)

is subject to potentially large SU(3) corrections, which in the isospin limit amount to [13]

FSK(0) =
M2
π

2

{
1 +

M2
η

32π2F 2
π

log
M2
η

µ2
+

M2
K

72π2F 2
π

(
log

M2
η

µ2
+ 1

)
− M2

π

32π2F 2
π

log
M2
π

µ2

+
8(2M2

K −M2
π)

F 2
π

(
2Lr

8 − Lr
5

)
+

32M2
K

F 2
π

(
2Lr

6 − Lr
4

)
}
, (7.85)

where Mη denotes the mass of the η. Varying the LECs in the range [102]

2Lr
8 − Lr

5 = (−0.35 . . . + 0.1) · 10−3 , 2Lr
6 − Lr

4 = (0 . . . + 0.2) · 10−3 , (7.86)

corresponds to FSK(0) = (0.4 . . . 0.6)M2
π . In the following, we will restrict FSK(0) to lie within

these boundaries, while adopting FSK(0) =M2
π/2 as our central solution.
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FSK(0) 0.4M2
π M2

π/2 0.6M2
π

〈r2〉Sπ [fm2] 0.575 0.584 0.592

〈r2〉SK [fm2] 0.835 0.710 0.626

Table 7.3: Dependence of the scalar pion and kaon radii on FSK(0).

The corresponding results for the form factors are depicted in Fig. 7.9. The phase of FSπ (t)
coincides with δ below tK , as required by unitarity, cf. (7.51) and (7.81). Above tK , the
behavior of the phase actually depends on the assumption for FSK(0), it either largely follows
δ or abruptly drops by π. The appearance of the first scenario is surprising in view of the
results of [243] (see also [244]), where only the second behavior is mentioned (the assumption
for FSK(0) agrees with our central solution). The reason for this discrepancy can be understood
as follows. The S-matrix used in [243] involves a phase δ that fulfills δ(tK) < π. In this
case, the phase δt of the full ππ partial wave t00 itself displays the characteristic drop above
tK , reflecting the fact that the phase arrives at the two-kaon threshold immediately before
completing a full circle in the Argand diagram. However, in recent years, it seems to have
become consensus that δ(tK) > π is more likely [55–57], which implies that δt by no means
exhibits a sharp drop above tK . We conclude that the behavior of the phase cannot simply
be deduced from the phase of t00, it crucially depends on the relative strength FSπ (0)/F

S
K (0)

in the superposition of the two terms involving different components of the Omnès matrix as
given in (7.81), thus attesting to the inherent two-channel nature of the problem.6 From this
point of view, it is not surprising that the phase may behave differently if FSK(0) is varied. In
contrast, the phase of FSK(t) roughly follows the shape of ψ for all three solutions. Note that
in this case (7.51) does not impose any additional constraints on the phase below tK .

Finally, we can express the scalar radii in terms of the form factors at t = 0 and the
derivative of the Omnès matrix

〈r2〉Sπ = 6

{
Ω̇∞
11(0) +

2√
3

FSK(0)

FSπ (0)
Ω̇∞
12(0)

}
,

〈r2〉SK = 6

{√
3

2

FSπ (0)

FSK(0)
Ω̇∞
21(0) + Ω̇∞

22(0)

}
. (7.87)

In this way, the derivative of the Omnès matrix, e.g. for our central solution

Ω̇∞(0) =

(
2.31 0.32
1.26 0.89

)
GeV−2 , (7.88)

leads to the results for the scalar radii summarized in Table 7.3. Our results for the scalar
pion radius are in good agreement with 〈r2〉Sπ = (0.61 ± 0.04) fm2 from [58] and the range
〈r2〉Sπ = (0.583 . . . 0.653) fm2 found in [238]. Albeit attached with a fairly large uncertainty,
the values for 〈r2〉SK lie systematically higher than its ChPT expectation 〈r2〉SK ∼ 0.3 fm2 [245]
(for a more detailed comparison of the dispersive and the ChPT result see [246]). In both
approaches the uncertainties are substantial, either due to the large sensitivity to the specific

6One immediate consequence is that an effective single-channel Omnès description of FSπ (t) in terms of the
phase of FSπ (t) will only be applicable for certain ranges in FSπ (0)/F

S
K(0), unless the phase is supplemented by

hand with an additional term −πθ(t− tK).
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Figure 7.10: Real and imaginary part of Imσ(t) for our full solution (top) and with h0+(t) set
to zero (bottom). The solid, dashed, and dot-dashed lines refer to the input RS1, RS2, and
RS3 as described in Sect. 7.3.

input in the dispersive calculation or due to insufficient knowledge of LECs. As the precise
value of the scalar kaon radius is irrelevant for the present study, we do not consider this issue
any further.

7.4.2 Scalar form factor of the nucleon

The scalar form factor of the nucleon fulfills the once-subtracted dispersion relation

σ(t) = σπN +
t

π

∞∫

tπ

dt′
Imσ(t′)
t′(t′ − t)

, (7.89)

where the pion–nucleon σ term σπN = σ(0) acts as subtraction constant. In this way, evalua-
tion at t = 2M2

π gives access to ∆σ as defined in (3.20), provided that the imaginary part is
sufficiently well constrained to perform the dispersive integral. Generalizing the result quoted
in [164] by including K̄K intermediate states, the spectral function becomes

Imσ(t) = − 1

p2t
√
t

{
3

4
qt
(
FSπ (t)

)∗
f0+(t) θ

(
t− tπ

)
+ kt

(
FSK(t)

)∗
h0+(t) θ

(
t− tK

)}
. (7.90)

The corresponding results using the input RS1, RS2, and RS3 as discussed in Sect. 7.3 as
well as our central solution for the scalar pion and kaon form factors are depicted in Fig. 7.10.
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Figure 7.11: ∆σ and σπN as a function of the integral cutoff Λ. Line code as in Fig. 7.10.

We also show a variant of the spectral function where the second term in the above unitarity
relation (7.90) due to K̄K intermediate states is neglected. While the impact on the real part
is moderate, we see that the spectral function develops an imaginary part starting at tK . In
contrast, our full solution stays real as long as the input for the phases is treated in the same
way in the calculation of the meson–nucleon partial waves and the scalar meson form factors.
For this reason, the results for RS1 and RS3 become complex around t0, while RS2 is real in the
full energy range (apart from some numerical noise at the two-kaon threshold). These findings
emphasize the importance of treating inelastic channels consistently in all contributions to the
unitarity relation, in particular the necessity to explicitly include the intermediate states that
are responsible for the inelasticities.

The dependence of ∆σ on the cutoff Λ of the dispersive integral is shown in Fig. 7.11.
We see that the dispersion relation converges quickly and the results hardly change above
1GeV. We quote the outcome for Λ =

√
t0 and input RS2 as our final result, estimating the

uncertainty by the variation induced by changing the cutoff to 2m and varying the input set
or the assumption for FSK(0) (cf. Table 7.4). Moreover, f0+(t) and h0+(t) depend linearly on the
πN coupling constant and the subthreshold parameters, so that the corresponding corrections
for changing them can be determined straightforwardly. Putting everything together, we find

∆σ = (13.9 ± 0.3)MeV

+ Z1

(
g2

4π
− 14.28

)
+ Z2

(
d+00Mπ + 1.46

)
+ Z3

(
d+01M

3
π − 1.14

)
+ Z4

(
b+00M

3
π + 3.54

)
,

Z1 = 0.36MeV , Z2 = 0.57MeV , Z3 = 12.0MeV , Z4 = −0.81MeV . (7.91)

These results are in reasonable agreement with [164], and remarkably close to the O(p4) ChPT
analysis of [22] (for earlier work in ChPT on ∆σ see [247,97, 19, 76])

∆σ = 14.0MeV + 2M4
π ē2 , (7.92)

where ē2 is an O(p4) low-energy constant. The potentially largest correction in (7.91) origi-
nates from d+01, e.g. taking d+01 = 1.27M−3

π from [227] increases ∆σ by 1.6MeV. In contrast,
adjusting the coupling constant to g2/4π = 13.7 [33] only leads to a correction of −0.2MeV.
Indeed, this result is not surprising, as it is d+01 that controls the slope of the scalar form factor
of the nucleon.
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(FSK(0), Λ) (0.4M2
π , 1.3GeV) (M2

π/2, 1.3GeV) (0.6M2
π , 1.3GeV) (M2

π/2, 2m)

RS1 13.81 13.86 13.91 13.65

RS2 13.75 13.89 14.04 13.56

RS3 13.92 14.00 14.09 13.80

Table 7.4: Results for ∆σ in MeV for various combinations of FSK(0), integral cutoff Λ, and
input.

Finally, it is of course tempting to evaluate the dispersive integral not only to determine
∆σ, but also in its unsubtracted form

σπN =
1

π

∞∫

tπ

dt′
Imσ(t′)

t′
(7.93)

to constrain the σ term itself. Unfortunately, it is clear from Fig. 7.11 that the integral does
not converge fast enough and is still sensitive to energies where the two-channel model for
the spectral function is not trustworthy anymore. Nevertheless, we may conclude that large
values of σπN seem to be possible.



Chapter 8

Solution strategy for the s-channel

problem

8.1 Parameterizations of the s-channel partial waves

Once the t-channel equations are solved, the structure of the s-channel problem resembles the
form of ππ Roy equations, and should be amenable to similar solution techniques. The basic
idea can be summarized in such a way that the phase shifts at low energies are represented in
a suitable parameterization whose free parameters, together with the subtraction constants,
are determined by minimizing the difference between the left- and right-hand side of (6.39).

The phase shifts δIsl± and inelasticities ηIsl± for the S- and P -waves as given by the SAID [229]
and KH80 [152] partial-wave solutions in the low-energy region, i.e. below the maximally
allowed matching point Wm = 1.38GeV, cf. (6.30), are depicted in Figs. 8.1 and 8.2, while
Fig. 8.3 shows the imaginary parts up to Wa = 2.5GeV. In particular, Fig. 8.2 suggests that
inelasticities may be ignored in the S31-, P13-, and P33-waves.1 Inspired by [57], we find that
in the remaining partial waves the inelasticity can be well described by a parameterization of
the form

ηIsl± =
1− αIsl±(s− sinel)

rIsl±(s− s+)
rIsl±

1 + αIsl±(s− sinel)
rIsl±(s− s+)

rIsl±
, sinel = (m+ 2Mπ)

2 , (8.1)

with r1/20+ = r
3/2
1− = 3/2, r1/21− = 5/2,2 and

α
1/2
0+ = 0.0412GeV−6 , α

3/2
1− = 0.066GeV−6 , α

1/2
1− = 3.716GeV−10 , (8.2)

which have been determined by fitting to the SAID inelasticities. The main advantage of
the parameterization (8.1) concerns the analytic continuation for s+ ≤ s ≤ sinel. In this
kinematic range ηIsl± becomes a complex number of magnitude 1 and can thus be regarded as
a modification of the phase shift δIsl±. Indeed, (8.1) below sinel gives rise to the phase

δ̂Isl± = ± arctan
{
αIsl±(sinel − s)r

Is
l±(s − s+)

rIsl±

}
, (8.3)

1In these figures, we have also introduced the spectroscopic notation L2Is2J to label the partial waves.
Several amplitudes of the KH80 solution exhibit peaks or oscillatory tendencies that should be considered an
artifact of the calculation. In particular, we will discard the presumptive outliers for the inelasticities that
appear in some partial waves between 1.3GeV and the matching point.

2These powers have been chosen on purely phenomenological grounds to accurately reproduce the experi-
mental inelasticities. However, the threshold behavior of the phase shifts demands that rIsl± ≥ l + 1/2.

141
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Figure 8.1: Phase shifts of the s-channel partial waves from the SAID [229] (solid line) and
KH80 [152] (dashed line) partial-wave solutions in the low-energy region. The short-dashed
line refers to Wm = 1.38GeV.

where the upper/lower sign applies to rIsl± = 3/2 and rIsl± = 5/2. In this way, (8.1) is applicable
in the whole low-energy region and hence respects manifestly the requirement that the S-
matrix be described by an analytic function. As indicated in Fig. 6.1, the inelasticities cannot
be determined from an iterative solution of the RS system, but have to be taken as input.
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Figure 8.2: Inelasticity parameters of the s-channel partial waves in the low-energy region.
Line code as in Fig. 8.1.

In view of Fig. 8.2 one would be inclined to consider the variation between αIsl± = 0 and the
values given in (8.2) as the uncertainty range for S11 and P31, while the inelasticity parameters
for the P11-wave from both partial-wave solutions agree reasonably well.

The obtain a parameterization for the full phase shifts we write

δIsl± = δ̄Isl± + δ̂Isl± , (8.4)
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Figure 8.3: Imaginary parts of the s-channel partial waves up to Wa = 2.5GeV. Line code as
in Fig. 8.1.

with δ̂Isl± = 0 above sinel. For the SAID low-energy phase shifts most of the partial waves may
be accurately described by a Schenk-like parameterization of the form [248]

tan δ̄Isl± = |q|2l+1
{
AIsl± +BIs

l±q
2 + CIsl±q

4 +DIs
l±q

6
}s+ − sIsl±
s− sIsl±

, (8.5)
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except for the P33-wave where a parameterization of the form [55]

cot δ̄Isl± =
1

|q|2l+1

s− sIsl±
s+ − sIsl±

{
1

ÃIsl±
+ B̃Is

l±
(
w(s)− w(s+)

)
+ C̃Isl±

(
w(s)− w(s+)

)2
}
,

w(s) =

√
s−

√
s̄Isl± − s

√
s+

√
s̄Isl± − s

, (8.6)

proves more adequate to reproduce the phase shift above the resonance. In contrast, we
conclude from Fig. 8.1 that the KH80 partial waves are not sufficiently smooth to allow for
similar low-energy parameterizations.

8.2 Sum rules for the πN threshold parameters

In order to exploit the constraints on the S-wave scattering lengths from hadronic atoms for
a solution of the RS system it is advantageous to first derive the relation to the threshold
expansion. The threshold parameters are defined as the expansion coefficients in

Re f Il±(s) = q2l
{
aIl± + bIl±q

2 + cIl±q
4 + dIl±q

6 +O
(
q8
)}

. (8.7)

The leading terms are the scattering lengths as introduced for the S-waves in Part I, while the
first correction is determined by the effective ranges bIl± and even higher terms are referred to
as shape parameters.

As a direct calculation of these parameters from derivatives of the partial waves is nu-
merically rather delicate, the most promising framework for a stable evaluation is based on
sum rules involving dispersive integrals over the pertinent amplitudes, see [53, 249] for the
case of ππ scattering. Such sum rules could be derived directly from (6.39) by taking deriva-
tives with respect to q2 and identifying the results with the coefficients in (8.7). However,
this procedure is unfavorable from a technical point of view since a substantial part of the
effort in calculating the derivatives is wasted on reproducing the kinematic structure of the
partial-wave expansion (6.31), i.e. its decomposition into invariant amplitudes AI and BI with
known, q-dependent prefactors.

For this reason, we will consider an approach that is directly based on the threshold
expansion of the projections (6.32). Suppressing isospin indices for the time being, we have

Xl(s) = X
(l)
l q2l +X

(l+1)
l q2l+2 +X

(l+2)
l q2l+4 +O

(
q2l+6

)
, X ∈ {A,B} , (8.8)

and the inversion
X

(n)
l =

1

n!

[
∂nq2Xl(s)

]
q2=0

. (8.9)

By means of the expansion

X(s, t) = X(s, 0) + t [∂tX(s, t)]t=0 +
t2

2

[
∂2tX(s, t)

]
t=0

+ · · · , (8.10)

the lowest coefficients in (8.8) are given by

X
(0)
0 = 2 [X(s, 0)]q2=0 , X

(1)
0 = 2

[
∂q2X(s, 0)

]
q2=0

− 4 [∂tX(s, t)]t=0,q2=0 , (8.11)

X
(1)
1 =

4

3
[∂tX(s, t)]t=0,q2=0 , X

(2)
1 =

4

3

[
∂q2∂tX(s, t)

]
t=0,q2=0

− 8

3

[
∂2tX(s, t)

]
t=0,q2=0

,
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and expanding (6.31) in q2 then shows

a0+ =
m

8πW+

(
A

(0)
0 +MπB

(0)
0

)
,

b0+ =
1

32πmMπW+

(
−A

(0)
0 (2m−Mπ) +B

(0)
0 (2m2 +M2

π)
)
+

m

8πW+

(
A

(1)
0 +MπB

(1)
0

)
,

a1+ =
m

8πW+

(
A

(1)
1 +MπB

(1)
1

)
,

b1+ =
1

32πmMπW+

(
−A

(1)
1 (2m−Mπ) +B

(1)
1 (2m2 +M2

π)
)
+

m

8πW+

(
A

(2)
1 +MπB

(2)
1

)
,

a1− = a1+ +
1

32πmW+

(
−A

(0)
0 +B

(0)
0 (2m+Mπ)

)
,

b1− = b1+ +
1

128πm3MπW+

(
A

(0)
0 (2m+Mπ)−B

(0)
0 (2m2 + 2mMπ +M2

π)
)

+
1

32πmW+

(
−A

(1)
0 +B

(1)
0 (2m+Mπ)

)
. (8.12)

In combination with the HDRs (6.27) as well as the subtracted versions thereof these equations
lead to sum rules for the threshold parameters, e.g. for the S- and P -wave scattering lengths

a±0+ =
m

4πW+

( [
A±(s, 0)

]
q2=0

+Mπ

[
B±(s, 0)

]
q2=0

)
,

a±1+ =
m

6πW+

( [
∂tA

±(s, t)
]
t=0,q2=0

+Mπ

[
∂tB

±(s, t)
]
t=0,q2=0

)
,

a±1− = a±1+ +
1

16πmW+

(
−
[
A±(s, 0)

]
q2=0

+ (2m+Mπ)
[
B±(s, 0)

]
q2=0

)
, (8.13)

and the S-wave effective ranges

b±0+ =
1

16πmMπW+

(
−
[
A±(s, 0)

]
q2=0

(2m−Mπ) +
[
B±(s, 0)

]
q2=0

(2m2 +M2
π)
)

+
m

4πW+

( [
∂q2A±(s, 0)

]
q2=0

− 2
[
∂tA

±(s, t)
]
t=0,q2=0

+Mπ

[ [
∂q2B±(s, 0)

]
q2=0

− 2
[
∂tB

±(s, t)
]
t=0,q2=0

])
. (8.14)

Thus, the equations for the effective ranges involve, in addition, the derivatives with respect
to q2. However, integration and differentiation may only be exchanged after the threshold
singularity has been removed, see e.g. [53], since otherwise the integral over

[
∂q2

Im f Is0+(W
′)

s′ − s

]

q2=0

∼ W+√
mMπ

(
aIs0+
)2

(s′ − s+)3/2
for s′ → s+ (8.15)

would diverge at threshold. This divergence can be removed by adding a suitable term pro-
portional to

−
∞∫

s+

ds′

(s′ − s)
√
s′ − s+

= 0 for s > s+ (8.16)

before taking the derivative.
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1-sub 2-sub 3-sub ex 3-sub KH80 SP98

S11 a
1/2
0+

[
10−3M−1

π

]
−40.9 146.0 175.0 175.9 173± 3 176.6

S31 a
3/2
0+

[
10−3M−1

π

]
−72.3 −132.4 −103.5 −103.9 −101± 4 −88.3

P13 a
1/2
1+

[
10−3M−3

π

]
−43.5 −30.9 −28.9 −29.2 −30± 2 −13.4

P33 a
3/2
1+

[
10−3M−3

π

]
200.7 207.7 208.8 208.9 214± 2 210.7

P11 a
1/2
1−
[
10−3M−3

π

]
−87.7 −74.3 −72.4 −71.5 −81± 2 −73.3

P31 a
3/2
1−
[
10−3M−3

π

]
−53.0 −43.8 −42.8 −43.3 −45± 2 −43.3

S11 b
1/2
0+

[
10−3M−3

π

]
−150.7 −65.1 −35.0 −33.5 −18± 12 −46.9

S31 b
3/2
0+

[
10−3M−3

π

]
−34.8 −78.3 −45.6 −46.3 −58± 9 −49.0

Table 8.1: Threshold parameters from the HDR sum rules compared to the results of the
KH80 and SP98 partial-wave solutions as quoted in [152] and [78], respectively.

The sum rules for the covariant amplitudes and their derivatives required for the explicit
evaluation of (8.13) and (8.14) are summarized in Appendix C.7. Using a = −23.2M2

π ,
cf. (6.29), KH80 subthreshold parameters, g2/4π = 13.7, and SAID s-channel partial waves, we
find for the threshold parameters in the different subtraction schemes, cf. Sect. 6.3.3, the results
summarized in Table 8.1. For the t-channel amplitudes we have employed the two-channel
result for the S-wave, with input RS2 as defined in Sect. 7.3, terminating the integration at√
t0 = 1.3GeV, and for the P - and D-waves the “3-sub” single-channel solution with matching

point
√
tm = 1.1GeV, using in both cases the same coupling constant and s-channel partial

waves as for the s-channel contributions.3 The convergence pattern of the threshold parameters
for an increasing number of subtractions as displayed in Table 8.1 indicates that the partial
third subtraction is crucial for a reliable determination of the S-wave parameters, whereas
for the P -wave scattering lengths also less subtractions might be sufficient. In any case,
these results demonstrate that both subtraction schemes that go beyond the twice-subtracted
version provide an appreciable suppression of the high-energy region in the integrals and ensure
reasonable agreement with the threshold parameters deduced from partial-wave analyses.

8.3 s-channel Roy equations

8.3.1 Multiplicity of solutions

The existence and uniqueness of solutions for a particular choice of the matching point Wm

depend on the value of the phase shifts at Wm and may be inferred from the multiplicity index
m as defined in (1.46). Using the phases of the SAID amplitudes to determine the indices

3Strictly speaking, this input is inconsistent, as the KH80 subthreshold parameters would call for a different
coupling constant and s-channel input, which e.g. manifests itself by the fact that the results for a

3/2
1+ and a

1/2
1−

are closer to the SAID than to the KH80 values. However, the implementation of the accordingly modified
input is hampered by the convergence of the s-channel integrals near threshold. Especially for the S-wave
effective ranges the cancellation of individually singular pieces required to render the integrals finite demands
that the integrands near threshold be given in a suitable parameterization that makes their threshold behavior
explicit. In view of the difficulties to cast the low-energy KH80 imaginary parts into such a parameterization,
see Sect. 8.1, we refrain from repeating the calculation for strict KH80 input.
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m
f
1/2
0+

m
f
3/2
0+

m
f
1/2
1+

m
f
3/2
1+

m
f
1/2
1−

m
f
3/2
1−

m

W+ ≤Wm ≤ 1.20GeV 0 −1 −1 0 −1 −1 −4

1.20GeV ≤Wm ≤ 1.23GeV 0 −1 −1 0 0 −1 −3

1.23GeV ≤Wm ≤ 1.52GeV 0 −1 −1 1 0 −1 −2

1.52GeV ≤Wm ≤ 1.69GeV 0 −1 −1 1 1 −1 −1

1.69GeV ≤Wm ≤ 1.80GeV 1 −1 −1 1 1 −1 0

Table 8.2: Multiplicity index m as a function of Wm.

mi for each partial wave leads to the pattern displayed in Table 8.2. The total multiplicity
index m for the system of S- and P -wave Roy equations is negative for Wm < 1.69GeV, i.e.
in general no solution exists unless the input satisfies |m| additional conditions. Moreover, a
physical solution is characterized by the requirement of a smooth matching. In this way, one
expects another constraint on the input due to the no-cusp condition in each partial wave,
which, altogether, amounts to 8 conditions for Wm = 1.38GeV. In fact, the partial third
subtraction introduced in Sect. 6.3.3 was constructed in such a way that this matches exactly
the number of degrees of freedom as reflected by the 8 subthreshold parameters involved in
this version of the RS equations. In this “3-sub” setup one should be able to find a unique
solution for the low-energy phase shifts and subthreshold parameters devoid of cusps at Wm.

In case the hadronic-atom values for the S-wave scattering lengths are imposed as further
constraints on the solution two additional degrees of freedom need to be provided to guarantee
the existence of a solution. For the reasons described in Sect. 6.3.3 we choose b−10 and a−10 and
thus arrive at the “ex 3-sub” scenario. Following the reasoning in Chapter 3 we identify the
scattering lengths with the virtual-photon subtracted versions of aπ±p, which leads to

a
1/2
0+ = (170.5 ± 2.0) · 10−3M−1

π , a
3/2
0+ = (−86.5± 1.8) · 10−3M−1

π , (8.17)

see Appendix A.3.1. For the potential issues regarding isospin violation that may ensue for
the extraction of the pion–nucleon σ term we refer to the discussion in Sect. 3.3.

8.3.2 Towards a solution of the s-channel equations

As a first step we decompose the s-channel RS system (6.39) into the equations for the real
and imaginary parts. Defining the physical limit by W →W + iǫ and collecting the imaginary
pieces that follow from the principal-value prescription for the Cauchy kernels shows that the
equations for the imaginary parts are trivially fulfilled, while those for the real parts are iden-
tical to (6.39) upon replacing f Isl±(W ) by Re f Isl±(W ) and the integrals by their principal-value
analogs. In order to investigate to what extent these equations are fulfilled for the SAID and
KH80 s-channel amplitudes we compare their left- and right-hand side in Fig. 8.4 both for the
“3-sub” and “ex 3-sub” versions of the RS equations, using a = −23.2M2

π , KH80 subthreshold
parameters, and g2/4π = 13.7 (14.28) for the SAID (KH80) partial waves, respectively, as
well as t-channel amplitudes as described in Sect. 8.2 calculated with the pertinent input for
the coupling constant and the s-channel partial waves. Fig. 8.4 shows that the equations are
fulfilled for KH80 in the threshold region, while deviations emerge at higher energies in nearly
all partial waves, most notably in the P13 and P31 phase shifts, while the discrepancy in the
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Figure 8.4: Left- (black) and right-hand side of the “3-sub” (red) and “ex 3-sub” (blue) versions
of the RS equations for Re f Isl±(W ). Solid/dashed lines refer to SAID/KH80 input as described
in the main text.

case of the “3-sub” P11-wave becomes cured in the “ex 3-sub” version. As far as the S-waves
are concerned, one may argue that within the uncertainties induced by the oscillatory behav-
ior of the KH80 phase shifts the combination of KH80 partial waves, coupling constant, and
subthreshold parameters can still be regarded as essentially consistent.
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d+00 b−00 a−00 d+01 b+00 a+10 b−01 a−01 b−10 a−10

3-sub −1.39 10.22 −8.71 1.20 −3.44 4.58 0.20 −0.34

ex 3-sub −1.33 10.12 −8.70 1.19 −3.43 4.56 0.26 −0.39 1.04 −1.20

KH80 −1.46 10.36 −8.83 1.14 −3.54 4.66 0.24 −0.37 1.08 −1.25

Table 8.3: Subthreshold parameters derived from RS equations in comparison with the KH80
values (units as in Table 7.2). See main text for details.

Whereas for the other partial waves the pattern follows roughly the KH80 precedent, we
find a significant deviation for the SAID S31-wave already in the threshold region. In fact,
this discrepancy is not surprising since the KH80 subthreshold parameters are tailored in such
a way as to reproduce the KH80 scattering lengths, and the KH80 and SAID values for a3/20+

differ substantially, cf. Table 8.1. These observations lead to the conclusion that the main task
in the solution of the s-channel RS equations will amount to reconciling a smoothed version of
the KH80 partial waves with modern input for the coupling constant and scattering lengths.

The basic idea for the solution of the s-channel problem involves the minimization of the
χ2 function

χ2 =
∑

l,Is,±

N∑

j=1

(
Re f Isl±(Wj)− F

[
f Isl±
]
(Wj)

)2
(8.18)

that sums the quadratic difference between Re f Isl± and the right-hand side of the corresponding
integral equation (6.39), denoted by F

[
f Isl±
]
, over all dynamically included amplitudes on a

grid of N points Wj between W+ and Wm, so that an exact solution of the RS equations
would fulfill χ2 = 0. An approximate solution may be found by casting the phase shifts
below Wm into suitable parameterizations, e.g. (8.5) and (8.6), and minimizing (8.18) with
respect to the parameters in these equations as well as the subtraction constants.4 In order to
illustrate this procedure we consider here a simplified approach that leaves the s-channel partial
waves unaltered (we will take the SAID amplitudes) and only performs the minimization with
respect to the subthreshold parameters. Distributing N = 25 grid points equidistantly between
W+ and Wm and using the KH80 subthreshold parameters as starting point, we obtain the
subthreshold parameters given in Table 8.3. As demanded by the discussion in Sect. 8.3.1,
the χ2 function is augmented by an additional term in the case of the “ex 3-sub” version that
enforces that the S-wave scattering lengths coincide with the values given in (8.17) by means
of the sum rule (8.13). Moreover, once the correct S-wave scattering lengths are imposed as
a global constraint, one should also adjust the first parameter in (8.5) in such a way that the
requirement AIs0+ = aIs0+ is exactly fulfilled. For this reason, we have used a slightly modified
version of the SAID S-wave phase shifts for the “ex 3-sub” fit.

The quality of the thus determined solution is illustrated in Fig. 8.5. The agreement
between the left- and right-hand side, especially for the “ex 3-sub” version, is already quite
good for the P33- and P11-waves, whereas the equations for the S-waves and also the repulsive
P -waves are not yet satisfactorily fulfilled. For further improvement in these partial waves the
parameterizations of the s-channel amplitudes will have to be explicitly included in the fit.

4In principle it should be possible to consider also the πN coupling constant as a free parameter that ought
to be determined self-consistently, although in the following we will keep the coupling fixed at g2/4π = 13.7.
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Figure 8.5: Left- (black) and right-hand side of the “3-sub” (red) and “ex 3-sub” (blue) versions
of the RS equations for Re f Isl±(W ). Solid/dashed lines refer to the fitted/original subthresh-
old parameters, while the dotted lines for the S-waves denote the scattering-length-adjusted
version of the SAID amplitudes, as explained in the main text.

Finally, we note that by construction the amended SAID S-wave (dotted line) and the
“ex 3-sub” right-hand side coincide at threshold, as in both cases the same constraints for the
scattering lengths have been imposed. This condition is expected to be of great value also
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a
1/2
0+ a

3/2
0+ a

1/2
1+ a

3/2
1+ a

1/2
1− a

3/2
1− b

1/2
0+ b

3/2
0+

3-sub 178.6 −95.1 −26.6 211.3 −71.2 −38.9 −41.0 −51.9

ex 3-sub 170.5 −86.5 −26.3 210.8 −71.2 −39.2 −45.0 −51.2

KH80 173 −101 −30 214 −81 −45 −18 −58

Table 8.4: Threshold parameters corresponding to the fit results displayed in Table 8.3 in
comparison with the KH80 values (units as in Table 8.1).

in a full solution of the s-channel equations, since in this way the notoriously fragile S-waves
are stabilized by precise experimental input. Similarly, one might consider synchronizing the
sum-rule values of higher threshold parameters, collected for the present results in Table 8.4,
with the appropriate terms in the phase-shift parameterizations.

8.4 Relation to the pion–nucleon σ term

In order to establish the relation of a solution of the s-channel equations to the pion–nucleon
σ term we first return to the determination of the various corrections introduced in Sect. 3.3.
The scalar form factor of the nucleon has already been investigated in some detail in Sect. 7.4.2,
leading to the result (7.91) for ∆σ. In a similar way we may use the solutions of the t-channel
equations to determine ∆D. Starting from the expansion

D̄+(ν = 0, t) = 4π

{
− 1

p2t
f̄0+(t) +

5

2
q2t f̄

2
+(t)−

27

8
p2t q

4
t f̄

4
+(t) +

65

16
p4t q

6
t f̄

6
+(t) + · · ·

}
, (8.19)

where f̄J+(t) denotes the Born-term-subtracted fraction of fJ+(t), and neglecting the imaginary
parts of fJ±(t) for J ≥ 4, the RS equations for fJ+(t) yield

D̄+(ν = 0, t) = d+00 + d+01t− 16t2
∞∫

tπ

dt′
Im f0+(t

′)

t′2(t′ − 4m2)(t′ − t)

− 4

p2t

(
It0(t) + Is0(t)

)
+ 10q2t

(
It2(t) + Is2(t)

)
− 27

2
p2t q

4
t I
s
4(t) +

65

4
p4t q

6
t I
s
6(t) + · · · ,

ItJ(t) =

∞∫

tπ

dt′
{
K̃1
J2

∣∣3-sub
(t, t′)Im f2+(t

′) + K̃2
J2

∣∣3-sub
(t, t′)Im f2−(t

′)

}
,

IsJ(t) =

∞∫

W+

dW ′
∞∑

l=0

1

3

{
G̃Jl
∣∣3-sub

(t,W ′)
(
Im f

1/2
l+ (W ′) + 2Im f

3/2
l+ (W ′)

)

+ G̃Jl
∣∣3-sub

(t,−W ′)
(
Im f

1/2
(l+1)−(W

′) + 2Im f
3/2
(l+1)−(W

′)
)}

, (8.20)

and evaluation of this formula at t = 2M2
π immediately provides an expression for ∆D. Using

the same input as for the calculation of ∆σ as well as the “3-sub” results for the t-channel
D-waves we find the individual contributions to ∆D summarized in Table 8.5. In particular,
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f0+ f2± Is0 Is2 Is4 Is6 full

14.74 0.10 1.02 −4.14 0.38 −0.01 12.08

Table 8.5: Individual contributions to ∆D as inferred from (8.20) in MeV.

the convergence with increasing J shows that higher terms neglected in (8.20) can indeed be
safely ignored. Estimating the sensitivity of the full result to the integral cutoff, the input for
the solution of the t-channel problem, and the πN parameters in close analogy to the error
analysis for ∆σ, we find5

∆D = (12.1 ± 0.3)MeV

+ Z̃1

(
g2

4π
− 14.28

)
+ Z̃2

(
d+00Mπ + 1.46

)
+ Z̃3

(
d+01M

3
π − 1.14

)
+ Z̃4

(
b+00M

3
π + 3.54

)
,

Z̃1 = 0.42MeV , Z̃2 = 0.67MeV , Z̃3 = 12.0MeV , Z̃4 = −0.77MeV . (8.21)

In fact, the coefficients Z̃i are very close to the Zi in (7.91), with the result that the dependence
on subthreshold parameters and the πN coupling constant cancels almost completely in the
difference ∆D−∆σ. Similarly, it was already pointed out in [164] that ∆σ and ∆D themselves
are considerably more sensitive to the details of the ππ phase shifts than their difference, which
was traced back to the fact that the physical effect that dominates the scalar form factor of
the nucleon is also largely responsible for the t-dependence of D̄+(0, t). Apparently, the same
mechanism suppresses the sensitivity to the πN parameters as well.

Last, we are left with the remainder ∆R = F 2
π D̄

+(0, 2M2
π)−σ(2M2

π) at the Cheng–Dashen
point. This correction was investigated in detail in the framework of heavy-baryon ChPT at
fourth chiral order in [163], where it was first proven that even at O(p4) chiral logarithms are
absent. Moreover, the size of the analytic pieces was estimated considering various mecha-
nisms, e.g. tree-level ∆(1232)-isobar exchange produces a contribution of 0.6MeV, leading to
a final estimate of

|∆R| . 2MeV . (8.22)

Using a covariant formulation of baryon ChPT, the conclusion regarding chiral logarithms was
confirmed more recently in [138], where ∆R is also given explicitly in terms of O(p2) and O(p4)
LECs, arguing that crude estimates for these constants indicate that ∆R is “of order 1MeV.”
Both values imply that the uncertainty in ∆R clearly outweighs any remaining uncertainties
in ∆D −∆σ, in particular the small residual dependence on subthreshold parameters and the
πN coupling constant. Adopting the more conservative estimate (8.22), we obtain

σπN = Σd +∆D −∆σ −∆R ,

Σd = F 2
π

(
d+00 + 2M2

πd
+
01

)
, ∆D −∆σ −∆R = (−1.8 ± 2.0)MeV , (8.23)

so that the subthreshold parameters from a solution of the s-channel RS equations may be
translated directly into an updated value of σπN . For completeness, the results for Σd that
follow from the fits in Sect. 8.3.2 are displayed in Table 8.6. Although both values are closer

5In principle, the result for ∆D also depends on a+
10 via the input for f2

+(t), but the corresponding contri-
bution is numerically entirely negligible.
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3-sub ex 3-sub KH80 [80] [166]

Σd [MeV] 61.2 63.8 50.0 48± 4± 4± 4 (sol. A) 67± 6

50± 3± 7± 4 (sol. B)

Table 8.6: Values for Σd corresponding to the subthreshold parameters from Table 8.3 in
comparison with the results from [80,166].

to the scenario of a large σ term [166], we stress that these results are by no means definitive.
It remains to be seen whether this inclination withstands a full solution of the RS system that
includes the s-channel partial waves in the Roy-equation fit as well as the iteration between
the s- and t-channel equations.

Finally, we comment on the relation between σπN and the strangeness content of the
nucleon y,

y =
2〈N(p)|s̄s|N(p)〉

〈N(p)|ūu+ d̄d|N(p)〉 ,
1

2m
〈N(p)|mss̄s|N(p)〉 = σπN

ms

2m̂
y . (8.24)

Rewriting the σ term as

σπN =
σ̂

1− y
, σ̂ =

m̂

2m
〈N(p)|ūu+ d̄d− 2s̄s|N(p)〉 , (8.25)

one may infer y from σπN provided that σ̂ can be determined from elsewhere. In the standard
procedure σ̂ would be taken from an analysis of baryon mass splittings in the framework of
SU(3) baryon ChPT, for instance σ̂ = (36 ± 7)MeV [207], so that e.g. σπN = (45 ± 8)MeV
from [80] would translate into a strangeness content of y = 0.2± 0.2, which already illustrates
the difficulty inherent in this approach: even if this value for σπN were exact, the uncertainty
in σ̂ would still cause an error of ∆y = ∆σ̂/σπN = 0.16 in the strangeness content. In this way,
a precise determination of y from πN scattering would require firm control over the SU(3)
expansion of the baryon masses.6

8.5 Summary and conclusion

We have derived a complete system of Roy–Steiner equations for pion–nucleon scattering as
well as the associated partial-wave unitarity relations. In order to arrive at a system of integral
equations that interrelates only low-energy degrees of freedom we have introduced various
subtractions by means of suitable sum rules for the πN subthreshold parameters. The solution
of the t-channel equations using Muskhelishvili–Omnès techniques was discussed in some detail
for the lowest partial waves, demonstrating that with a sufficient number of subtractions the
t-channel results of the old KH80 partial-wave analysis can be accurately reproduced. For the
S-wave we have also extended the formalism beyond the single-channel approximation and

6The difficulties concerning the chiral expansion have already been mentioned in Sect. 6.1 in the context
of lattice determinations of σπN . Lattice values for the strangeness content, e.g. y = 0.20 ± 0.07+0.13

−0.17 [134],
y < 0.14 [135], y = 0.050± 0.012± 0.034 [250], y = 0.082± 0.016± 0.002 [251], in general point towards small
strangeness effects. Recently, it has even been claimed that contributions from c̄c operators might be of equal
importance [252].
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included K̄K effects in the unitarity relation. To this end, we have developed a method to
construct a two-channel MO solution with a finite matching point. Subsequently, we have
applied the solutions of the t-channel partial waves to a two-channel dispersive calculation of
the scalar form factor of the nucleon and updated the values of several corrections required
for an extraction of the pion–nucleon σ term from the πN amplitude at the Cheng–Dashen
point. With the t-channel problem solved for a given input of s-channel amplitudes and πN
parameters, we have analyzed the structure of the resulting s-channel equations and developed
a strategy towards their solution, arguing how the hadronic-atom values for the πN scattering
lengths discussed in Part I can be used to stabilize the solution for the S-wave equations by
means of sum rules for the πN threshold parameters. Within a simplified scenario where the
s-channel partial waves are kept fixed we have illustrated how a solution of the s-channel
problem can be found by minimizing the difference between left- and right-hand side of the
s-channel equations with respect to the free parameters of the approach, and how an updated
value of the σ term follows immediately from the results for certain subthreshold parameters,
which, ultimately, are to be determined self-consistently from the full RS system.

Several results at intermediate steps of the calculation should prove valuable beyond their
role in the RS system, e.g. the P -wave t-channel partial waves are crucial input for a dispersive
analysis of the electromagnetic form factors of the nucleon, in a similar way as the S-wave
for the scalar form factor as described in Sect. 7.4.2. In addition, the formalism developed
here for including K̄K effects could be used to incorporate the f0(980) resonance into the RS
representation for γγ → ππ derived in Part II. Although a full solution of the coupled s-
and t-channel problem for pion–nucleon scattering is rather involved, already due to the mere
number of partial-wave amplitudes that need to be considered, we are confident that the RS
framework will lead to improved s-channel amplitudes at low energies and permit a reliable
extrapolation to the Cheng–Dashen point.
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Appendix A

Isospin violation in πN and π−d

scattering

A.1 Effective Lagrangians

For the sake of completeness, we review here the effective Lagrangian for nucleons, pions,
and virtual photons taken from [94] (see also [168]). The following terms are needed for the
analysis in Part I

Leff = L(p2)
π + L(e2)

π + L(e2p2)
π + L(p)

N + L(p2)
N + L(p3)

N + L(e2)
N + L(e2p)

N + Lγ ,

L(p2)
π =

F 2

4
〈dµU †dµU + χ†U + U †χ〉 ,

L(e2)
π = ZF 4〈QUQU †〉 , Lγ = −1

4
FµνF

µν − 1

2

(
∂µA

µ
)2
,

L(e2p2)
π = F 2

{
〈dµU †dµU〉

(
k1〈Q2〉+ k2〈QUQU †〉

)
+ k4〈dµU †QU〉〈dµUQU †〉

+ k3
(
〈dµU †QU〉〈dµU †QU〉+ 〈dµUQU †〉〈dµUQU †〉

)}
,

L(p)
N = Ψ̄

{
i /D −m0 +

1

2
g0/uγ5

}
Ψ ,

L(p2)
N = Ψ̄

{
c1〈χ+〉 −

c2
4m2

0

〈uµuν〉DµDν + h.c.+
c3
2
〈uµuµ〉+

i

4
c4σ

µν [uµ, uν ] + c5χ̂+

}
Ψ ,

L(p3)
N =

i

2m0
Ψ̄
{
d5[χ−, uµ]D

µ
}
Ψ+ h.c. ,

L(e2)
N = F 2Ψ̄

{
f1〈Q̂2

+ −Q2
−〉+ f2〈Q+〉Q̂+ + f3〈Q̂2

+ +Q2
−〉
}
Ψ ,

L(e2p)
N =

F 2

2
Ψ̄
{
g1〈Q2

+ −Q2
−〉γµγ5uµ + g2〈Q+〉2γµγ5uµ

}
Ψ

+
iF 2

2m0
Ψ̄
{
g6〈Q+〉〈Q−uµ〉Dµ + g7〈Q+uµ〉Q−D

µ + g8〈Q−uµ〉Q+D
µ
}
Ψ+ h.c. , (A.1)

where 〈A〉 denotes the trace of a matrix A, Â = A− 〈A〉/2 its traceless part, Ψ̄(O+h.c.)Ψ ≡
Ψ̄OΨ+ h.c. for an operator O and

dµU = ∂µU − iAµ[Q, U ] , χ = 2B diag(mu,md) , U = u2 , Q =
e

3
diag(2,−1) ,
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Fµν = ∂µAν − ∂νAµ , Q = ediag(1, 0) , Q± =
1

2
(uQu† ± u†Qu) ,

Dµ = ∂µ + Γµ , Γµ =
1

2

(
u†(∂µ − iQAµ)u+ u(∂µ − iQAµ)u

†
)
, χ± = u†χu† ± uχ†u ,

uµ = i
(
u†(∂µ − iQAµ)u− u(∂µ − iQAµ)u

†
)
, [Dµ, uν ] = ∂µuν + [Γµ, uν ] . (A.2)

Ψ and U collect nucleon and pion fields as discussed in Sect. 1.1.2. F , g0, and m0 are the pion
decay constant, the axial charge, and the mass of the nucleon in the chiral limit, respectively,
which in the main text are always eliminated in favor of the physical quantities Fπ, gA, and
the physical nucleon mass (identified with the mass of the proton). The renormalized LECs
are denoted by a superscript r.

A.2 Photon diagrams in chiral effective field theory

A.2.1 Single scattering with photon exchange

To begin with we discuss the case that the πNN → πNN operator contains only the nominally
leading isoscalar contribution. Writing the isoscalar threshold πN amplitude as T+ = 4πξpa

+,
we find

iM(d6)+(d8) = 2

∫
d4k

(2π)4

∫
d3q d3q′

(2π)3
Ψ†(q′)i2T+ i

(Mπv + k)2 −M2
π + iη

(−ie 2Mπ)
(
i
e

2

) i

k2

×
{
iGs

(
q′ − k

2
,q− k

2
;−ǫ− k0,−k

)
+ iGs

(
q′ − k

2
,−q+

k

2
;−ǫ− k0,−k

)}
Ψ(q) ,

(A.3)

where v = (1,0) and we have already used the fact that k0 ∼ k2/Mπ ≪ k and therefore can
be neglected in the photon propagator. The factor of 2 multiplying T+ is present as the pion
can interact with either the neutron or the proton, while the overall factor of 2 includes the
time-reversed diagram. The factor e/2 in the first line occurs since we include only one of the
two possible interactions of the nucleons inside the deuteron with the photon. The other is
accounted for via the exchange term, which is represented by the second Green function. In
that portion we have reversed the initial-state relative momentum as compared to the direct
piece of the amplitude. More specifically, we can rewrite M as

M = 〈Ψ|QG(E)
1

2
(1− P12)Tπ−N |Ψ〉 , (A.4)

where

Tπ−N =
(
T+

1
(1) + T−τ (1)3

)
⊗1(2)+(1 ↔ 2) , Q =

e

2

(
1
(1) + τ

(1)
3

)
⊗1(2)+(1 ↔ 2) , (A.5)

the superscript referring to nucleon 1 and 2, respectively. In (A.4) G(E) = 1/(E + iη −H)
denotes the Green function describing the propagation of the NN pair from the πNN interac-
tion to the photon coupling, and the projector (1−P12)/2 has been introduced to impose the
Pauli principle (P12 interchanges nucleons 1 and 2). Note that the operators in round brackets
in (A.5) are implicitly understood to be accompanied by shift operators S(i) indicating the
momentum shift induced by the pion–nucleon or photon–nucleon interaction, which has to
be taken into account when the symmetry properties of the individual terms are analyzed.
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Inserting (A.5) into (A.4), we obtain two distinct contributions (all terms with a single τ (i)3

involve 〈T = 0|τ (i)3 |T = 0〉 = 0 and may thus be dropped). First, the isoscalar piece reads

〈Ψ|e
2
G(1− P12)2T

+|Ψ〉 ≡ 〈Ψ|e
2
(Gs + G̃s)2T

+|Ψ〉 , (A.6)

and since the isospin wave function of the isospin-zero state is already antisymmetric under
particle exchange, this isoscalar “direct-minus-exchange” G(1 − P12) ≡ GD −GE prescription
(in (A.6) G̃s denotes the outcome for the exchange part) produces the sum of two Gs terms
in (A.3). Second, the “direct-minus-exchange” contribution to M that results from the isovec-
tor part of the pion’s interaction with the NN system discussed below only contributes for
odd partial waves due to the Pauli principle. This can already be inferred from the isospin
structure: τ (i)3 |T = 0〉 ∝ |T = 1, T3 = 0〉, and since spin is conserved, the Pauli principle in the
form (−1)L+S+T = −1 requires an odd partial wave.

In fact, the presence of the deuteron pole renders the expression (A.3) infrared divergent.
This divergence reflects our neglecting of effects due to the atomic binding energy Bat: if
we included these, the integral would be regulated at scale

√
MπBat ∼ αMπ. However,

the physics associated with this momentum scale was already included in the atomic-physics
calculation that led to the improved Deser formula (2.7). Put another way, we must subtract
the expression for the diagram evaluated in non-relativistic effective field theory (NREFT),
which corresponds to a structureless deuteron. Using the fact that the normalization of any
deuteron wave function equals 1, it may be written as

iMIR = 2

∫
d4k

(2π)4

∫
d3q d3q′Ψ†(q′)i2T+Ψ(q′)

i

−k0 − k2/2md + iη

i

k0 − k2/2Mπ + iη

×Ψ†(q)(−ie)(ie) i
k2

Ψ(q) . (A.7)

From the difference of (A.3) and (A.7), we can obtain an expression that is safe in the infrared
and includes only the effects not already accounted for in the NREFT computation

M(d6)+(d8)
IR safe = −2e2T+

∫
d3k

(2π)3
1

k2

∫
d3q d3q′

(2π)3
Ψ†(q′)

×
{∫

dk0
2π

[
iGs

(
q′ − k

2
,q− k

2
;−ǫ− k0,−k

)
+ iGs

(
q′ − k

2
,−q+

k

2
;−ǫ− k0,−k

)]

× 2Mπ

(Mπv + k)2 −M2
π + iη

− 2(2π)3Ψ(q′)Ψ†(q)

−k2/2µD + iη

}
Ψ(q) . (A.8)

Now, since we are prepared to ignore ππNN cuts (they only lead to higher-order effects), we
drop the “backward-going pion” contribution. The evaluation of the k0 integral in the first
term can then be done by picking up the pion pole. This yields

M(d6)+(d8)
IR safe = −2e2T+

∫
d3k

(2π)3
1

k2

∫
d3q d3q′

(2π)3
Ψ†(q′)

{
Gs

(
q′ − k

2
,q− k

2
;−ǫ− k2

2Mπ
,−k

)

+Gs

(
q′ − k

2
,−q+

k

2
;−ǫ− k2

2Mπ
,−k

)
− 2(2π)3Ψ(q′)Ψ†(q)

−k2/2µD + iη

}
Ψ(q) , (A.9)

where we have neglected terms that are higher order in k, and so replaced ωk by Mπ and
the kinetic energy of the pion by its non-relativistic form. From this result, we can now read
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off (2.42) via

a
(d6)+(d8)
NN =

M(d6)+(d8)
IR safe

4πξd
. (A.10)

Finally, the isovector P -wave part produces a contribution corresponding to

a
(d6)+(d8)
T=1 = −8παξpa

−

(2π)6ξd

∫
d3k

k2

∫
d3q d3q′Ψ†(q′) (A.11)

×
{
Gv

(
q′ − k

2
,q− k

2
;−ǫ− k2

2Mπ
,−k

)
−Gv

(
q′ − k

2
,−q+

k

2
;−ǫ− k2

2Mπ
,−k

)}
Ψ(q) ,

where the isovector Green function Gv is defined analogously to Gs with the deuteron pole
removed and T np

s,NN → T np
v,NN (the relative sign is due to the symmetry of the |T = 1, T3 = 0〉

state). Although we do not consider isovector NN interactions, it is a valuable check of the
calculation that the free part of the Green function reproduces the expressions of Sect. 2.5.1.

A.2.2 Double scattering with photon exchange

We now generalize the previous discussion to a πNN kernel given by double πN scattering.
Let us first consider the case where the photon is exchanged after the πNN interaction.
Two distinct processes contribute to the πNN interaction: the exchange of a π− corresponds
to double elastic π−N scattering, while an intermediate π0 requires two charge-exchange
reactions. The amplitudes can be written as

Mπ−

= 〈Ψ|QG1

2
(1− P12)Tπ−NTπ−N |Ψ〉 ,

Mπ0
= 〈Ψ|QG1

2
(1− P12)Tπ0N→π−NTπ−N→π0N |Ψ〉 , (A.12)

where

Tπ−N→π0N = (−
√
2T−)τ (1)− ⊗ 1

(2) + (1 ↔ 2) ,

Tπ0N→π−N = (−
√
2T−)τ (1)+ ⊗ 1

(2) + (1 ↔ 2) , (A.13)

with raising and lowering operators

τ
(i)
± =

1

2

(
τ
(i)
1 ± iτ

(i)
2

)
, (A.14)

and Tπ−N and Q are defined in (A.5). Again, the momentum shifts are understood to be
taken into account implicitly. The evaluation of Mπ−

proceeds in close analogy to (A.4), once
the contributions for which both πN interactions happen to the same nucleon are excluded.
Neglecting isoscalar πN scattering terms (which are of higher order), we obtain

Mπ−

= −2(T−)2〈Ψ|e
2
G
1

2
(1− P12)|Ψ〉 = −2(T−)2〈Ψ|e

2
(Gs + G̃s)|Ψ〉 . (A.15)

The expression for Mπ0
requires a bit more care, the crucial observation being that the

states τ (2)+ τ
(1)
− |T = 0〉, τ (1)+ τ

(2)
− |T = 0〉, (1 + τ

(1)
3 )|T = 0〉, and (1 + τ

(2)
3 )|T = 0〉 are actually a
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superposition of |T = 0, T3 = 0〉 and |T = 1, T3 = 0〉, with the result that both even and odd
partial waves contribute. We find that the former give rise to

Mπ0

T=0 = −(−
√
2T−)2〈Ψ|(Gs + G̃s)

e

2
|Ψ〉 , (A.16)

while the latter lead to

Mπ0

T=1 = −(−
√
2T−)2〈Ψ|(Gv − G̃v)

e

2
|Ψ〉 . (A.17)

Therefore, the analog of (A.3) becomes

iM(d9)+(d10) = 2
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+ 2

∫
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Ψ(q) , (A.18)

where again the overall factor of 2 accounts for the time-reversed diagram. Performing the l0

and k0 integrations yields

M(d9)+(d10) = 2e2(T−)2
∫

d3k

(2π)3

∫
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(2π)3

∫
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,−k

)}
Ψ(q) . (A.19)

To generalize (A.7) we must replace the isoscalar two-body contribution to the π−d scattering
length 2T+ by the double-scattering analog

−4(T−)2
∫

d3p d3q

(2π)3
Ψ†(p− q)

1

q2
Ψ(p) , (A.20)

so that the infrared-safe amplitude is given by

M(d9)+(d10)
IR safe = 2e2(T−)2

∫
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(2π)3

∫
d3l

(2π)3
1

k2l2

∫
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)
(A.21)

+ 2Gs

(
q′ − k

2
,−q+

k

2
− l;−ǫ− k2

2Mπ
,−k

)
− 4(2π)3Ψ(q′)Ψ†(q− l)

−k2/2µD + iη

}
Ψ(q) ,

which finally proves (2.59).
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A.3 Subtraction of virtual-photon effects

A.3.1 πN scattering lengths

The isospin-violating corrections to the π±p scattering lengths calculated in [93] involve con-
tributions due to the pion mass difference ∼ e2Z as well as virtual-photon corrections ∼ e2,
where Z = (M2

π −M2
π0)/2e

2F 2
π = 0.81. Retaining only the e2 part that we indicate by aγπ±p,

we obtain the following correction [93]

aγ
π−p

− aγ
π+p

= − Mπ

2πξp

{
e2g2A

16π2F 2
π

(
1 + 4 log 2 + 3 log

M2
π

µ2

)
− 2e2

(
g̃r6 + g̃r8 −

5

9F 2
π

k̃r1

)}
, (A.22)

where g̃ri and k̃ri denote the e2 piece of gri and kri , respectively. The relation between both sets
of LECs can be established by means of their β-functions σi and ηi. It is convenient to define
scale-independent LECs ḡi and k̄i by

kri =
σi

16π2

(
k̄i + log

Mπ

µ

)
, gri =

ηi
16π2F 2

π

(
ḡi + log

Mπ

µ

)
, (A.23)

and thus

k̃ri =
σi|Z=0

16π2

(
k̄i + log

Mπ

µ

)
, g̃ri =

ηi|Z=0

16π2F 2
π

(
ḡi + log

Mπ

µ

)
, (A.24)

which leads to

k̃ri =
σi|Z=0

σi
kri , g̃ri =

ηi|Z=0

ηi
gri . (A.25)

Estimating the LECs as in [93] yields the result quoted in (3.16).
Similarly, virtual photons contribute to the sum of aπ−p and aπ+p according to

aγ
π−p

+ aγ
π+p

= − 1

4πξp

{
e2g2AMπ

16πF 2
π

}
. (A.26)

Writing
aπ−p + aπ+p = 2

(
ã+ +∆ã+

)
− aπ−n + aπ+p , (A.27)

we find, together with (2.18) and (3.14), for the virtual-photon-subtracted combination

a
/γ

π−p
+ a

/γ

π+p
= 2ã+ − 1

4πξp

{
e2f2 +

33g2AMπ∆π

64πF 4
π

}
= (−1.6± 1.6) · 10−3M−1

π . (A.28)

Finally, the associated virtual-photon-subtracted scattering lengths in the isospin basis are

a
1/2
/γ = 2aπ−p − ã+ +

1

8πξp

{
e2f2 +

33g2AMπ∆π

64πF 4
π

+
e2g2AMπ

8πF 2
π

}

+
Mπ

2πξp

{
e2g2A

16π2F 2
π

(
1 + 4 log 2 + 3 log

M2
π

µ2

)
− 2e2

(
g̃r6 + g̃r8 −

5

9F 2
π

k̃r1

)}

= (170.5 ± 2.0) · 10−3M−1
π ,

a
3/2
/γ = −aπ−p + 2ã+ − 1

4πξp

{
e2f2 +

33g2AMπ∆π

64πF 4
π

+
e2g2AMπ

32πF 2
π

}

− Mπ

4πξp

{
e2g2A

16π2F 2
π

(
1 + 4 log 2 + 3 log

M2
π

µ2

)
− 2e2

(
g̃r6 + g̃r8 −

5

9F 2
π

k̃r1

)}

= (−86.5 ± 1.8) · 10−3M−1
π . (A.29)
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Figure A.1: Virtual-photon corrections to the nucleon-pole diagram in π−p scattering at
O(p3) [93].

A.3.2 πN coupling constant

The full set of virtual-photon corrections to the nucleon-pole diagram in π−p scattering at
third chiral order is depicted in Fig. A.1. Based on the discussion of these diagrams in [93], the
shift of gc due to virtual photons can be read off from the residue of the scattering amplitude
at s = m2

n. To obtain an idea how large these effects are, we consider here the diagrams
(a1), (a2), and (a5), which is motivated by the expectation that it ought to be possible to
absorb this subset of diagrams into a simple redefinition of gc. And indeed, we find that these
diagrams, together with the pertinent contact terms and the wave-function renormalization,
represent a scale-independent quantity: all ultraviolet divergences cancel between loops and
contact terms. In a strict chiral expansion, we find that (a1), (a2), and (a5) yield (after
renormalization) a shift in g2c of

∆g2c
4π

=
e2g2Am

2
p

4πF 2
π

{
2F 2

π

gA

(
g̃r1 + g̃r2

)
− 20

9
k̃r1 −

1

8π2

(
3 + log

M2
π

µ2

)
+

1

4π2
log

M2
π

4E2
max

}
. (A.30)

The last term is present since infrared divergences only cancel at threshold. To remove these
singularities (regulated by a finite photon mass mγ in the actual calculation of the diagrams),
we use the leading, logarithmically enhanced part of the bremsstrahlung calculated in [93],
which effectively eliminates mγ in favor of twice the detector resolution Emax. Numerically,
this amounts to

∆g2c
4π

= 0.07 ± 0.03 ± 0.04 , (A.31)

where we take Emax = 10MeV and the errors are, respectively, due to the LECs and a
variation of Emax by a factor of 2. Dropping the term due to bremsstrahlung, the shift in
g2c/4π is reduced to −0.01 ± 0.03. We stress that these estimates can by no means replace a
full analysis of radiative corrections, but should merely be taken as indicative of the size of
virtual-photon effects.
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Appendix B

Roy–Steiner equations for γγ → ππ

B.1 Kernel functions for the s-channel projection

The functions N±
J (s) for J ≤ 2 are given by

N+
1 (s) =

s

M2
π − s

− M2
π

q2

{
d111(y)Q0(y)−

1

2

}
+∆N+

1 (s) , y = −s+M2
π

s−M2
π

N+
2 (s) = −1

3

s

M2
π − s

− M2
π

q2

{
d211(y)Q0(y)−

1

2
− y
}
+∆N+

2 (s) ,

N−
1 (s) = − M2

π

M2
π − s

+
M2
π

q2

{
d11,−1(y)Q0(y) +

1

2

}
+∆N−

1 (s) ,

N−
2 (s) = −1

3

M2
π

M2
π − s

+
M2
π

q2

{
d21,−1(y)Q0(y)−

1

2
+ y
}
+∆N−

2 (s) , (B.1)

where

Q0(z) =
1

2

1∫

−1

dx
z − x

, Q0(z ± iǫ) =
1

2
log

∣∣∣∣
1 + z

1− z

∣∣∣∣∓ i
π

2
θ(1− z2) , (B.2)

denotes the lowest Legendre polynomial of the second kind. The remainders ∆N±
J (s)

∆N+
1

∣∣0-sub
(s) = 0 , ∆N+

1

∣∣1-sub
(s) =

2s

3Mπα
(α1 + β1)q

2 ,

∆N+
1

∣∣2-sub
(s) = ∆N+

1

∣∣1-sub
(s)− s

18Mπα
(α2 + β2)q

4 ,

∆N+
2

∣∣0-sub
(s) = ∆N+

2

∣∣1-sub
(s) = 0 , ∆N+

2

∣∣2-sub
(s) =

s

30Mπα
(α2 + β2)q

4 ,

∆N−
1

∣∣0-sub
(s) = − 2q2

3(M2
π − a)

, ∆N−
1

∣∣1-sub
(s) =

2Mπ

3α
(α1 − β1)q

2 +
1

2Mπα
(α1 + β1)q

4 ,

∆N−
1

∣∣2-sub
(s) =

2Mπ

3α
(α1 − β1)q

2 − Mπ

6α
(α2 − β2)q

4 − 2

15Mπα
(α2 + β2)q

6 ,

∆N−
2

∣∣0-sub
(s) = 0 , ∆N−

2

∣∣1-sub
(s) = − 1

10Mπα
(α1 + β1)q

4 ,

∆N−
2

∣∣2-sub
(s) =

Mπ

30α
(α2 − β2)q

4 +
2

45Mπα
(α2 + β2)q

6 , (B.3)
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contain the pion polarizabilities according to the number of subtractions indicated by the
superscript.

B.1.1 s-channel

The kernels for the unsubtracted case read

K++
11 (s, s′) =

sq2

s′q′2

{
1

s′ − s
− 1

s′ − a
− 3

2q2

[
(1 + xs)

2

4
Q0(xs)−

2 + xs
4

]}
,

K++
12 (s, s′) =

sq2

s′q′2

{[
1

s′ − s
− 1

s′ − a

]
5

3
(2β + α− 1)

− 5

2q2

[
(1 + xs)

2

4
(2x′s − 1)Q0(xs)−

(2
3
α+ β − 1

2

)
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(
α+

β

2
− 1

4

)
xs −

α

2
x2s

]}
,

K++
21 (s, s′) = − s

s′q′2
3

2

{
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2

4
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1

6
− 3xs

4
− x2s

2

}
,
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s′q′2
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1
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− 1
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]
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+
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3
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2
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,
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+

5

6

s′ − s

s′ − a
(1 + α− 2β)

}
,

K−+
21 (s, s′) = − q2

2s′q′2

[
1

s′ − s
− 1

s′ − a

]
3

10
(q2 − q′2α) ,

K−+
22 (s, s′) =

q2

2s′q′2

{[
1

s′ − s
− 1

s′ − a

]

×
((1

2
+
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+
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, (B.4)

where

α =
q2

q′2
s− a

s′ − a
, β = 1− α− s′ − s

s′ − a

s+ s′ − 2M2
π

2q′2 , z′s = αzs + β ,
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π

2q2
, x′s = αxs + β . (B.5)

The corresponding versions for the once- and twice- subtracted case can be obtained by adding

∆K++
JJ ′
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B.1.2 t-channel

The non-vanishing unsubtracted kernel functions are
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and the subtracted versions are obtained by adding
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B.2 Kernel functions for the t-channel projection

The contributions from Born terms and subtraction constants for J ≤ 2 are
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Mπ

2α
(α1 − β1)t+

Mπ

24α
(α2 − β2)t

2 − 1

96Mπα
(α2 + β2)t

3 ,

∆Ñ−
2

∣∣0-sub
(t) = 0 , ∆Ñ−

2

∣∣1-sub
(t) =

t(t− tπ)

5
√
6M2

π

Mπ

2α
(α1 + β1) ,

∆Ñ−
2

∣∣2-sub
(t) =

t(t− tπ)

5
√
6M2

π

Mπ

2α

(
α1 + β1 +

t

12
(α2 + β2)

)
. (B.12)

B.2.1 s-channel

The non-vanishing kernel functions for the unsubtracted case are

G̃++
01 (t, s′) =

3t

16s′q′2(s′ − a)

{
2q′2 3γ̃ + 3δ̃ − 1

3γ̃
− 2(s′ −M2

π)
}
,

G̃++
02 (t, s′) =

5t

16s′q′2(s′ − a)

{
2q′2

20δ̃ − 6− 15
(
γ̃(γ̃ − 1) + 3γ̃δ̃ + 2δ̃2

)

15γ̃2

+
2(s′ −M2

π)

γ̃

(
γ̃ + 2δ̃ − 2

3

)}
, G̃++

21 (t, s′) = − t

20s′(s′ − a)γ̃
,

G̃++
22 (t, s′) =

5t

16s′q′2(s′ − a)

{
2q′2 2(−12 + 21γ̃ + 28δ̃)

105γ̃2
− s′ −M2

π

15q′2(s′ − a)
t(t− tπ)

}
,

G̃+−
01 (t, s′) = − 3t

4q′2(s′ − a)
+

3t

4q′2ptqt
Q0(x̃t) ,

G̃+−
02 (t, s′) = − 5t

4q′2(s′ − a)

2 + 3γ̃ − 6δ̃

3γ̃
+

5t

4q′2ptqt

{(
2x̃′t + 1

)
Q0(x̃t)−

2x̃t
γ̃

}
,

G̃+−
21 (t, s′) =

3t

4q′2ptqt

{
P2(x̃t)Q0(x̃t)−

3

2
x̃t

}
,

G̃+−
22 (t, s′) = − t

3q′2(s′ − a)γ̃
+

5t

4q′2ptqt

{(
2x̃′t + 1

)
P2(x̃t)Q0(x̃t)−

(3
2
− 3δ̃

γ̃

)
x̃t −

3x̃3t
γ̃

}
,

G̃−+
21 (t, s′) = − t (t− tπ)

s′q′2(s′ − a)

3

20
√
6
+

3ptqt
s′q′2

{(
1− x̃2t

)
d220(x̃t)Q0(x̃t) +

x̃t

2
√
6

(
5− 3x̃2t

)}
,

G̃−+
22 (t, s′) =

t(t− tπ)

s′q′2(s′ − a)

7γ̃ + 14δ̃ − 2

28
√
6 γ̃

+
5ptqt
s′q′2

{(
1− x̃2t

)
d220(x̃t)

(
2x̃′t − 1

)
Q0(x̃t)

− x̃t√
6 γ̃

(
16 + 25γ̃ + 50δ̃

10
− (10 + 3γ̃ + 6δ̃)x̃2t

2
+ 3x̃4t

)}
, (B.13)
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where

γ̃ =
8q′2(s′ − a)

t(t− tπ)
, δ̃ =

(t− 2M2
π + 2a)2 − 4(s′ − a)(2q′2 + 2M2

π − s′ − a)

t(t− tπ)
,

z′s =
z2t − δ̃

γ̃
, x̃t =

t+ 2s′ − 2M2
π√

t(t− tπ)
, x̃′t =

x̃2t − δ̃

γ̃
= 1 +

t

2q′2 , (B.14)

and

∆G̃++
JJ ′

∣∣1-sub
(t, s′) =

t

8s′q′2 (2J
′ + 1)δJ0

(
2q′2(1−

[
z′s
]
0

)
+ t
)
h0(s

′)

[
dJ

′

11(z
′
s)

1 + z′s

]

0

,

∆G̃++
JJ ′

∣∣2-sub
(t, s′) = ∆G̃++

JJ ′

∣∣1-sub
+

t2

8s′q′2 (2J
′ + 1)δJ0

{
(t− tπ)

×
{
h0(s

′)

[
∂t
dJ

′

11(z
′
s)

1 + z′s

]

0

− 1

(s′ −M2
π)

2

[
dJ

′

11(z
′
s)

1 + z′s

]

0

}

− h0(s
′)

[
∂t(t

′ − tπ)
dJ

′

11(z
′
s)

1 + z′s

]

0

+
1

(s′ −M2
π)

2

[
(t′ − tπ)

dJ
′

11(z
′
s)

1 + z′s

]

0

}
,

∆G̃+−
JJ ′

∣∣1-sub
(t, s′) = − t

2q′2 (2J
′ + 1)δJ0h0(s

′)

[
dJ

′

1,−1(z
′
s)

1− z′s

]

0

,

∆G̃+−
JJ ′

∣∣2-sub
(t, s′) = ∆G̃+−

JJ ′

∣∣1-sub

− t2

2q′2 (2J
′ + 1)δJ0

{
h0(s

′)

[
∂t
dJ

′

1,−1(z
′
s)

1− z′s

]

0

− 1

(s′ −M2
π)

2

[
dJ

′

1,−1(z
′
s)

1− z′s

]

0

}
,

∆G̃−+
JJ ′

∣∣1-sub
(t, s′) = − t(t− tπ)

2s′q′2 (2J ′ + 1)
δJ2

5
√
6
h0(s

′)

[
dJ

′

11(z
′
s)

1 + z′s

]

0

,

∆G̃−+
JJ ′

∣∣2-sub
(t, s′) = ∆G̃−+

JJ ′

∣∣1-sub − t2(t− tπ)

2s′q′2
δJ2

5
√
6
(2J ′ + 1)

×
{
h0(s

′)

[
∂t
dJ

′

11(z
′
s)

1 + z′s

]

0

− 1

(s′ −M2
π)

2

[
dJ

′

11(z
′
s)

1 + z′s

]

0

}
. (B.15)

B.2.2 t-channel

The non-vanishing kernel functions for J, J ′ ≤ 2 are

K̃++
00

∣∣n-sub
(t, t′) =

t1+n

t′1+n(t′ − t)
, K̃++

22

∣∣n-sub
(t, t′) =

t2(t− tπ)

t′2(t′ − tπ)(t′ − t)
,

K̃++
02 (t, t′) =

5t(t+ t′ − tπ + 6a)

t′2(t′ − tπ)
, K̃++

02

∣∣1-sub
(t, t′) =

5t2

t′2(t′ − tπ)
,

K̃++
02

∣∣2-sub
(t, t′) = − 10M2

π t
2

t′3(t′ − tπ)
,

K̃+−
02

∣∣n-sub
(t, t′) =

5
√
6 t1+n

4t′1+n(t′ − tπ)
, K̃−−

22

∣∣n-sub
(t, t′) =

t1+n(t− tπ)

t′1+n(t′ − tπ)(t′ − t)
, (B.16)

where n ∈ {0, 1, 2}.
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B.3 Muskhelishvili–Omnès solutions for the γγ → ππ partial

waves

B.3.1 I = 0

For 0 < δ(tm) < π, which is satisfied by all I = 0 partial waves, the solutions are

h0,+(t) = ∆̃0,+

∣∣1-sub
(t) +

Mπ

2α
(α1 − β1)tΩ0(t)

+
t2Ω0(t)

π

{ tm∫

tπ

dt′
sin δ0(t

′)∆̃0,+

∣∣1-sub
(t′)

t′2(t′ − t)|Ω0(t′)|
+

∞∫

tm

dt′
Imh0,+(t

′)
t′2(t′ − t)|Ω0(t′)|

}
,

h0,+(t) = ∆̃0,+

∣∣2-sub
(t) +

Mπt

2α

[
(α1 − β1)(1 − t Ω̇0(0)) +

t

12
(α2 − β2)

]
Ω0(t)

+
t3Ω0(t)

π

{ tm∫

tπ

dt′
sin δ0(t

′)∆̃0,+

∣∣2-sub
(t′)

t′3(t′ − t)|Ω0(t′)|
+

∞∫

tm

dt′
Imh0,+(t

′)
t′3(t′ − t)|Ω0(t′)|

}
,

h2,+(t) = ∆̃2,+(t) +
t2(t− tπ)Ω2(t)

π

×
{ tm∫

tπ

dt′
sin δ2(t

′)∆̃2,+(t
′)

t′2(t′ − tπ)(t′ − t)|Ω2(t′)|
+

∞∫

tm

dt′
Imh2,+(t

′)
t′2(t′ − tπ)(t′ − t)|Ω2(t′)|

}
,

h2,−(t) = ∆̃2,−
∣∣1-sub

(t) +
t(t− tπ)

10
√
6Mπα

(α1 + β1)Ω2(t) +
t2(t− tπ)Ω2(t)

π

×
{ tm∫

tπ

dt′
sin δ2(t

′)∆̃2,−
∣∣1-sub

(t′)

t′2(t′ − tπ)(t′ − t)|Ω2(t′)|
+

∞∫

tm

dt′
Imh2,−(t′)

t′2(t′ − tπ)(t′ − t)|Ω2(t′)|

}
,

h2,−(t) = ∆̃2,−
∣∣2-sub

(t) +
t(t− tπ)

10
√
6Mπα

[
(α1 + β1)(1− t Ω̇2(0)) +

t

12
(α2 + β2)

]
Ω2(t) (B.17)

+
t3(t− tπ)Ω2(t)

π

{ tm∫

tπ

dt′
sin δ2(t

′)∆̃2,−
∣∣2-sub

(t′)

t′3(t′ − tπ)(t′ − t)|Ω2(t′)|
+

∞∫

tm

dt′
Imh2,−(t′)

t′3(t′ − tπ)(t′ − t)|Ω2(t′)|

}
.

The inhomogeneities ∆̃J,±
∣∣n-sub

(t) are defined in (5.2) and (5.10).

B.3.2 I = 2

The solutions for −π < δ(tm) < 0, which holds true for all I = 2 partial waves, read

h0,+(t) = ∆̃0,+

∣∣1-sub
(t) +

Mπ

2α
(α1 − β1)tΩ0(t)

tm − t

tm

+
t2Ω0(t)(tm − t)

π

{ tm∫

tπ

dt′
sin δ0(t

′)∆̃0,+

∣∣1-sub
(t′)

t′2(tm − t′)(t′ − t)|Ω0(t′)|
+

∞∫

tm

dt′
Imh0,+(t

′)

t′2(tm − t′)(t′ − t)|Ω0(t′)|

}
,

h0,+(t) = ∆̃0,+

∣∣2-sub
(t) +

Mπt

2α

{
(α1 − β1)

[
1 +

t

tm
(1− tm Ω̇0(0))

]
+

t

12
(α2 − β2)

}
Ω0(t)

tm − t

tm
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+
t3Ω0(t)(tm − t)

π

{ tm∫

tπ

dt′
sin δ0(t

′)∆̃0,+

∣∣2-sub
(t′)

t′3(tm − t′)(t′ − t)|Ω0(t′)|
+

∞∫

tm

dt′
Imh0,+(t

′)
t′3(tm − t′)(t′ − t)|Ω0(t′)|

}
,

h2,+(t) = ∆̃2,+(t) +
t2(t− tπ)Ω2(t)(tm − t)

π

×
{ tm∫

tπ

dt′
sin δ2(t

′)∆̃2,+(t
′)

t′2(t′ − tπ)(tm − t′)(t′ − t)|Ω2(t′)|
+

∞∫

tm

dt′
Imh2,+(t

′)

t′2(t′ − tπ)(tm − t′)(t′ − t)|Ω2(t′)|

}
,

h2,−(t) = ∆̃2,−
∣∣1-sub

(t) +
t(t− tπ)

10
√
6Mπα

(α1 + β1)Ω2(t)
tm − t

tm
+
t2(t− tπ)Ω2(t)(tm − t)

π

×
{ tm∫

tπ

dt′
sin δ2(t

′)∆̃2,−
∣∣1-sub

(t′)

t′2(t′ − tπ)(tm − t′)(t′ − t)|Ω2(t′)|
+

∞∫

tm

dt′
Imh2,−(t′)

t′2(t′ − tπ)(tm − t′)(t′ − t)|Ω2(t′)|

}
,

h2,−(t) = ∆̃2,−
∣∣2-sub

(t) +
t(t− tπ)

10
√
6Mπα

{
(α1 + β1)

[
1 +

t

tm
(1− tm Ω̇2(0))

]

+
t

12
(α2 + β2)

}
Ω2(t)

tm − t

tm
+
t3(t− tπ)Ω2(t)(tm − t)

π
(B.18)

×
{ tm∫

tπ

dt′
sin δ2(t

′)∆̃2,−
∣∣2-sub

(t′)

t′3(t′ − tπ)(tm − t′)(t′ − t)|Ω2(t′)|
+

∞∫

tm

dt′
Imh2,−(t′)

t′3(t′ − tπ)(tm − t′)(t′ − t)|Ω2(t′)|

}
.

The sum rules discussed in Sect. 5.1.2 are then

0 =
Mπ

2α
(α1 − β1)tm +

t2m
π

{ tm∫

tπ

dt′
sin δ0(t

′)∆̃0,+

∣∣1-sub
(t′)

t′2(t′ − tm)|Ω0(t′)|
+

∞∫

tm

dt′
Imh0,+(t

′)
t′2(t′ − tm)|Ω0(t′)|

}
,

0 =
Mπtm
2α

[
(α1 − β1)(1− tm Ω̇0(0)) +

tm
12

(α2 − β2)
]

+
t3m
π

{ tm∫

tπ

dt′
sin δ0(t

′)∆̃0,+

∣∣2-sub
(t′)

t′3(t′ − tm)|Ω0(t′)|
+

∞∫

tm

dt′
Imh0,+(t

′)

t′3(t′ − tm)|Ω0(t′)|

}
,

0 =
t2m(tm − tπ)

π

{ tm∫

tπ

dt′
sin δ2(t

′)∆̃2,+(t
′)

t′2(t′ − tπ)(t′ − tm)|Ω2(t′)|
+

∞∫

tm

dt′
Imh2,+(t

′)

t′2(t′ − tπ)(t′ − tm)|Ω2(t′)|

}
,

0 =
tm(tm − tπ)

10
√
6Mπα

(α1 + β1)

+
t2m(tm − tπ)

π

{ tm∫

tπ

dt′
sin δ2(t

′)∆̃2,−
∣∣1-sub

(t′)

t′2(t′ − tπ)(t′ − tm)|Ω2(t′)|
+

∞∫

tm

dt′
Imh2,−(t′)

t′2(t′ − tπ)(t′ − tm)|Ω2(t′)|

}
,

0 =
tm(tm − tπ)

10
√
6Mπα

[
(α1 + β1)(1− tm Ω̇2(0)) +

tm
12

(α2 + β2)
]
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+
t3m(tm − tπ)

π

{ tm∫

tπ

dt′
sin δ2(t

′)∆̃2,−
∣∣2-sub

(t′)

t′3(t′ − tπ)(t′ − tm)|Ω2(t′)|
+

∞∫

tm

dt′
Imh2,−(t′)

t′3(t′ − tπ)(t′ − tm)|Ω2(t′)|

}
.



Appendix C

Roy–Steiner equations for

pion–nucleon scattering

In Appendices C.1–C.3, we collect the various (subtracted) kernel functions and pole-term pro-
jections that contribute to the RS system in (6.39) and (6.40). For a more detail presentation
we refer to [205].

C.1 Kernel functions for the s-channel projection

C.1.1 Nucleon pole

The s-channel projection of the nucleon pole terms may be written as

N+
l+(W ) = N̄+

l+(W ) , N−
l+(W ) = N̄−

l+(W )− g2

4π

(E +m)(W −m)

2W

δl0
m2 − a

, (C.1)

where

N̄ I
l+(W ) =

g2

16πW

{
(E+m)(W−m)

[
ǫI
Ql(y)

q2
+

2δl0
m2 − s

]
+(E−m)(W+m)ǫI

Ql+1(y)

q2

}
, (C.2)

ǫI = ±1 for I = ±, and

y = 1− s+m2 − Σ

2q2
. (C.3)

The Legendre functions of the second kind Ql(z) can be expressed for general complex argu-
ment as (see e.g. [253])

Ql(z) =
1

2

1∫

−1

dx
Pl(x)

z − x
, (C.4)

which for l = 0 reduces to (B.2). In the pseudophysical region of the t-channel reaction we
also need the analytic continuation for purely imaginary argument. For z = iy, y > 1, we
have

Q0(iy) =
1

2
log

iy + 1

iy − 1
=

1

2
log

1 + iy

1− iy
− i

π

2
= i
(
arctan y − π

2

)
= −Q0(−iy) . (C.5)
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C.1.2 s-channel

The s-channel partial-wave expansion reads [254]

AI(s, t) =
∞∑

l=0

{
S1
l+1,l(W, zs)f

I
l+(W )− S1

l,l+1(W, zs)f
I
(l+1)−(W )

}
,

BI(s, t) =
∞∑

l=0

{
S2
l+1,l(W, zs)f

I
l+(W )− S2

l,l+1(W, zs)f
I
(l+1)−(W )

}
, (C.6)

with

S1
kn(W, zs) = 4π

{
W +m

E +m
P ′
k(zs) +

W −m

E −m
P ′
n(zs)

}
,

S2
kn(W, zs) = 4π

{
1

E +m
P ′
k(zs)−

1

E −m
P ′
n(zs)

}
. (C.7)

Taken together with the partial-wave projection (6.31), this ultimately leads to the kernel
functions [68]

KI
ll′(W,W

′) =
ϕ
[
Ull′
∣∣δ(W,W ′)

]

s′ − s
− ǫI

ϕ
[
Vll′
∣∣̺(W,W ′)

]

2q2
− ϕ

[
Ull′
∣∣
κ
I(W,W ′)

]

s′ − a
, (C.8)

where we have defined the following abbreviations: the structure

ϕ
[
akn
∣∣b(W,W ′)

]
=
W ′

W

{
b(W,−W ′)akn + b(W,W ′)ak,n+1

+ b(−W,−W ′)ak+1,n + b(−W,W ′)ak+1,n+1

}
, (C.9)

for an arbitrary function b(W,W ′), reflects MacDowell symmetry of KI
ll′(W,W

′) both with
respect to W and W ′ and acts on

δ(W,W ′) =
E +m

E′ +m

[
W ′ +W

]
, ̺(W,W ′) =

E +m

E′ +m

[
W ′ −W + 2m

]
,

κ
I(W,W ′) =

1

2

[
δ(W,W ′) + ǫI̺(W,W ′)

]
, (C.10)

as well as the angular kernels

Ull′ =
1

2

1∫

−1

dzs Pl(zs)P ′
l′(z

′
s) , Vll′ =

1

2

1∫

−1

dzs
Pl(zs)P

′
l′(z

′
s)

xs − zs
, (C.11)

with

z′s = αzs + β , α =
q2

q′2
s− a

s′ − a
, β = 1− α− s′ − s

s′ − a

s+ s′ − Σ

2q′2 ,

xs = 1− s+ s′ − Σ

2q2
, x′s = αxs + β = 1− s′ + s− Σ

2q′2 . (C.12)
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For the lowest kernel functions one finds

Ul1 = δl0 , Ul2 = αδl1 + 3βδl0 , Ul3 = α2δl2 + 5αβδl1 +
1

2

{
5[α2 + 3β2]− 3

}
δl0 ,

Vl1 = Ql(xs) , Vl2 = 3x′sQl(xs)− 3αδl0 ,

Vl3 = P ′
3(x

′
s)Ql(xs)−

5

2
α2δl1 −

15

2
α
{
αxs + 2β

}
δl0 , (C.13)

and the calculation of higher kernel functions by means of (C.11) is straightforward, but
tedious. For the numerical implementation of KI

ll′(W,W
′) it is advantageous to analytically

separate the Cauchy piece of the kernel functions according to

ϕ
[
Ull′
∣∣δ(W,W ′)

]

s′ − s
=
γll′(W,W

′)
W ′ −W

+
1

W ′ +W

W ′

W

{
E +m

E′ −m
Ull′ −

E −m

E′ +m
Ul+1,l′+1

}
,

γll′(W,W
′) =

W ′

W

{
E +m

E′ +m
Ul,l′+1 −

E −m

E′ −m
Ul+1,l′

}
, γll′(W,W ) = δll′ . (C.14)

Asymptotically, these kernel functions behave as

KI
ll′(W,W

′) = O
(
q2l
)
, KI

ll′(−W,W ′) = O
(
q2l+2

)
for |q| → 0 ,

KI
ll′(W,W

′) = O
(
q′−2l′

)
, KI

ll′(W,−W ′) = O
(
q−2l′−2

)
for |q′| → 0 ,

KI
ll′(W,W

′) = O
(
|q′|−2l−1

)
for |q′| → ∞ , (C.15)

in accordance with MacDowell symmetry and the asymptotic properties of f Il±(W ).

C.1.3 t-channel

The t-channel partial-wave expansion takes the form [220]

AI(s, t) = −4π

p2t

∑

J

(2J + 1)(ptqt)
J

{
PJ(zt)f

J
+(t)−

m√
J(J + 1)

ztP
′
J(zt)f

J
−(t)

}
,

BI(s, t) = 4π
∑

J

2J + 1√
J(J + 1)

(ptqt)
J−1P ′

J(zt)f
J
−(t) . (C.16)

Using the abbreviations

ψ
[
akn
∣∣d(W )

]
= d(W )akn + d(−W )ak+1,n , ηJ =

2J + 1

4Wq2

(p′tq
′
t)
J

p′2t
, (C.17)

for an arbitrary function d(W ), the corresponding kernels are [68]

GlJ(W, t
′) = −ηJψ

[
AlJ
∣∣E +m

]
,

HlJ(W, t
′) =

ηJ√
J(J + 1)

{
p′t
q′t
ψ
[
BlJ
∣∣(W −m)(E +m)

]
+mψ

[
ClJ
∣∣E +m

]}
, (C.18)

where ClJ = JAlJ +Bl,J−1, and the angular kernels for even J are defined as

AlJ =
1

2

1∫

−1

dzs
Pl(zs)PJ (z

′
t)

xt − zs
,

BlJ =
µ1
2

1∫

−1

dzs Pl(zs)
P ′
J (z

′
t)

z′t
+
µ2
2

1∫

−1

dzs
Pl(zs)P

′
J (z

′
t)/z

′
t

xt − zs
, (C.19)
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while one finds for odd J

AlJ =
µ1
2

1∫

−1

dzs Pl(zs)
PJ (z

′
t)

z′t
+
µ2
2

1∫

−1

dzs
Pl(zs)PJ (z

′
t)/z

′
t

xt − zs
,

BlJ =
1

2

1∫

−1

dzs
Pl(zs)P

′
J (z

′
t)

xt − zs
, (C.20)

with

z′t =
√
γzs + δ , γ =

q2(s− a)

2p′2t q
′2
t

, δ =
(t′ − Σ+ 2a)2 − 4(s− a)(2q2 +Σ− s− a)

16p′2t q
′2
t

,

µ1 = − q2

2p′tq
′
t

, µ2 =
2s + t′ − Σ

4p′tq
′
t

, xt = 1 +
t′

2q2
. (C.21)

It is important to note that the integrands in (C.19) and (C.20) only involve even powers of
z′t, so that no square roots of zs occur in the integrals. Explicitly, one finds for the lowest
kernels

Gl0(W, t
′) = − 1

4Wq2p′2t

{
(E +m)Ql(xt)− (E −m)Ql+1(xt)

}
,

Gl1(W, t
′) =

3

4

{
(2s+ t′ − Σ)Gl0(W, t

′) +
E +m

2Wp′2t
δl0

}
,

Hl1(W, t
′) =

1√
2

{
3

4
Zl(W, t

′)−mGl1(W, t
′)

}
,

Gl2(W, t
′) =

5

16

{[
6s(s+ t′ − Σ) + (t′ − Σ)2 + 2(m2 −M2

π)
2
]
Gl0(W, t

′)

+ 3
(E +m)(s − a)

Wp′2t
δl0

}
,

Hl2(W, t
′) =

15

16
√
6

{
(2s + t′ − Σ)Zl(W, t

′)−m
[
4s(s+ t′ − Σ) + (t′ − Σ)2

]
Gl0(W, t

′)

− 2
E +m

W

[
m(s− a)

p′2t
+W −m

]
δl0

}
, (C.22)

where

Zl(W, t
′) =

1

Wq2

{
(E +m)(W −m)Ql(xt) + (E −m)(W +m)Ql+1(xt)

}
. (C.23)

In particular, they behave asymptotically according to the general relations

GlJ(W, t
′) = O

(
q2l
)
, HlJ(W, t

′) = O
(
q2l
)

for |q| → 0 ,

GlJ(−W, t′) = O
(
q2l+2

)
, HlJ(−W, t′) = O

(
q2l+2

)
for |q| → 0 ,

GlJ(W, t
′) = O(1) , HlJ(W, t

′) = O(1) for q′t → 0 ,

GlJ(W, t
′) = O

(
p′−2
t

)
, HlJ(W, t

′) = O
(
p′−2
t

)
for p′t → 0 ,

GlJ(W, t
′) = O

(
t′J−l−2

)
, HlJ(W, t

′) = O
(
t′J−l−2

)
for t′ → ∞ . (C.24)



C.2. Kernel functions for the t-channel projection 177

C.2 Kernel functions for the t-channel projection

C.2.1 Nucleon pole

The t-channel projection of the nucleon pole terms reads

ÑJ
+(t) = N̂J

+(t)−
g2

4π

m

3

δJ1
m2 − a

, N̂J
+(t) =

g2

4π
m

{
ỹQJ(ỹ)

(ptqt)J
− δJ0

}
,

ÑJ
−(t) = N̂J

−(t)−
g2

4π

√
2

3

δJ1
m2 − a

, N̂J
−(t) =

g2

4π

√
J(J + 1)

2J + 1

QJ−1(ỹ)−QJ+1(ỹ)

(ptqt)J
, (C.25)

where

ỹ =
t− 2M2

π

4ptqt
. (C.26)

Although ỹ diverges at tπ and tN , ÑJ
±(t) itself remains finite. Expressions that allow for a

stable numerical evaluation can be obtained by invoking the asymptotic form of the Legendre
functions Ql(z) for |z| → ∞ [253]

Ql(z) ∼
2l(l!)2

(2l + 1)!
z−(l+1) , (C.27)

which leads to

ÑJ
+(t) =

g2

4π

J !

(2J + 1)!!
m

{(
4

t− 2M2
π

)J
− δJ0 −

δJ1
m2 − a

}
+O

(
p2t q

2
t

)
,

ÑJ
−(t) =

g2

4π

J !

(2J + 1)!!

√
J + 1

J

{(
4

t− 2M2
π

)J
− δJ1
m2 − a

}
+O

(
p2t q

2
t

)
. (C.28)

In contrast to the ostensible divergences for ptqt → 0, the pole terms do involve a branch-point
singularity at tπ − (M2

π/m)2 ≈ 3.98M2
π , where the branch cut of QJ(ỹ) starts.

C.2.2 s-channel

Introducing

ψ̃
[
akn
∣∣d(W ′)

]
= d(W ′)ak,n+1 + d(−W ′)akn , η̃J =

2W ′

(ptqt)J−1
, (C.29)

in analogy to (C.17), the s-channel kernel functions become

G̃Jl(t,W
′) = η̃J

{
−pt
qt
ψ̃

[
ÃJl

∣∣∣∣
W ′ +m

E′ +m

]
+mψ̃

[
B̃Jl

∣∣∣∣
1

E′ +m

]}
,

H̃Jl(t,W
′) = η̃J

√
J(J + 1)

2J + 1
ψ̃

[
C̃Jl

∣∣∣∣
1

E′ +m

]
, (C.30)

with angular kernel functions

ÃJl =
1

ptqt
P ′
l (z̃s)QJ(x̃t)− ĀJl , C̃Jl = ÃJ−1,l − ÃJ+1,l ,

B̃Jl =
1

ptqt
P ′
l (z̃s)x̃tQJ(x̃t)− B̄Jl , (C.31)
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their polynomial parts

ĀJl =
1

2

1∫

−1

dzt PJ(zt)
{

1

ptqt

P ′
l (z̃s)− P ′

l (z
′
s)

x̃t − zt
+

1± 1

2(s′ − a)
P ′
l (z

′
s)

}
,

B̄Jl =
1

2

1∫

−1

dzt PJ(zt)
{

1

ptqt

x̃tP
′
l (z̃s)− ztP

′
l (z

′
s)

x̃t − zt
+

1∓ 1

2(s′ − a)
ztP

′
l (z

′
s)

}
, (C.32)

where the upper/lower sign refers to even/odd J , and

z′s =
z2t − δ̃

γ̃
, γ̃ =

q′2(s′ − a)

2p2t q
2
t

, δ̃ =
(t− Σ+ 2a)2 − 4(s′ − a)(2q′2 +Σ− s′ − a)

16p2t q
2
t

,

x̃t =
t+ 2s′ − Σ

4ptqt
, z̃s =

x̃2t − δ̃

γ̃
= 1 +

t

2q′2 . (C.33)

These kernel functions fulfill the asymptotic relations

G̃Jl(t,W
′) = O(1) , H̃Jl(t,W

′) = O(1) for ptqt → 0 ,

G̃Jl(t,W
′) = O

(
q′−2l

)
, H̃Jl(t,W

′) = O
(
q′−2l

)
for |q′| → 0 ,

G̃Jl(t,−W ′) = O
(
q′−2l−2

)
, H̃Jl(t,−W ′) = O

(
q′−2l−2

)
for |q′| → 0 ,

G̃Jl(t,W
′) = O

(
q′−2J

)
, H̃Jl(t,W

′) = O
(
q′−2J

)
for |q′| → ∞ . (C.34)

In particular, the finite pieces for ptqt → 0 can be derived along the lines that led to (C.28).

C.2.3 t-channel

The t-channel kernel functions follow from

(
K̃1
JJ ′(t, t′) K̃2

JJ ′(t, t′)
0 K̃3

JJ ′(t, t′)

)
=

ζJJ ′

t′ − t

(
uJJ ′ vJJ ′

0 wJJ ′

)
, ζJJ ′ = (2J ′ + 1)

(p′tq
′
t)
J ′−1

(ptqt)J−1
, (C.35)

with angular kernels for even J and J ′

uJJ ′ =
ptq

′
t

qtp′t

1∫

0

dzt PJ(zt)PJ ′(z′t) ,

vJJ ′ =
m√

J ′(J ′ + 1)

pt
qtp′tq

′
t

1∫

0

dzt PJ(zt)
{
q2t z

2
t − q′2t z

′2
t

}P ′
J ′(z′t)

z′t
,

wJJ ′ =
1

2J + 1

√
J(J + 1)

J ′(J ′ + 1)

ptqt
p′tq

′
t

1∫

0

dzt
{
PJ−1(zt)− PJ+1(zt)

}
zt
P ′
J ′(z′t)

z′t
, (C.36)
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pt → 0 qt → 0 t→ ∞ p′t → 0 q′t → 0 t′ → ∞

K̃1
JJ ′(t, t′) O

(
p2t
)

O(1) O
(
tJ

′−J) O
(
p′−2
t

)
O(1) O

(
t′J

′−J−2
)

K̃2
JJ ′(t, t′) O(1) O(1) O

(
tJ

′−J) O
(
p′−2
t

)
O(1) O

(
t′J

′−J−1
)

K̃3
JJ ′(t, t′) O(1) O(1) O

(
tJ

′−J−1
)

O(1) O(1) O
(
t′J

′−J−1
)

Table C.1: Asymptotic properties of the t-channel kernel functions.

and for odd J and J ′

uJJ ′ =
p2t
p′2t

1∫

0

dzt PJ (zt)zt
PJ ′(z′t)
z′t

, vJJ ′ =
m√

J ′(J ′ + 1)

{
1− p2t

p′2t

} 1∫

0

dzt PJ(zt)ztP ′
J ′(z′t) ,

wJJ ′ =
1

2J + 1

√
J(J + 1)

J ′(J ′ + 1)

1∫

0

dzt
{
PJ−1(zt)− PJ+1(zt)

}
P ′
J ′(z′t) , (C.37)

where the angles are related by

z′t =
√
α̃z2t + β̃ , α̃ =

p2t q
2
t

p′2t q
′2
t

, β̃ =
t′ − t

16p′2t q
′2
t

(t+ t′ − 2Σ + 4a) . (C.38)

Again, only even powers of z′2t appear in the angular integrals (C.36) and (C.37). Starting
from these equations, one can show that for J ′ < J all kernel functions vanish

K̃1
JJ ′(t, t′) = K̃2

JJ ′(t, t′) = K̃3
JJ ′(t, t′) = 0 for J ′ < J , (C.39)

while the diagonal kernels fulfill the general relations

K̃1
JJ(t, t

′) =
p2t
p′2t

1

t′ − t
, K̃2

JJ(t, t
′) =

√
J

J + 1

m

4p′2t
, K̃3

JJ(t, t
′) =

1

t′ − t
. (C.40)

Finally, the non-vanishing, non-diagonal kernel functions with J ≤ 3 and J ′ ≤ 3 read

K̃1
02(t, t

′) =
5

16

p2t
p′2t

{
t+ t′ − 2Σ + 6a

}
, K̃2

02(t, t
′) =

5m

16
√
6

p2t
p′2t

{
4q2t − 3(t+ t′ − 2Σ + 4a)

}
,

K̃1
13(t, t

′) =
7

48

p2t
p′2t

{
t+ t′ − 2Σ + 10a

}
, K̃3

13(t, t
′) =

7

8
√
6

{
t+ t′ − 2Σ + 5a

}
,

K̃2
13(t, t

′) =
7m

64
√
3

1

p′2t

{
8p2t q

2
t + (t′ − t)(t+ t′ − 2Σ + 5a)

}
. (C.41)

The general asymptotic properties of the kernels are given in Table C.1. Note, however, that
exceptionally

K̃2
02(t, t

′) = O
(
p2t
)

for pt → 0 , K̃2
02(t, t

′) = O(1) for t′ → ∞ . (C.42)
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C.3 Subtractions

C.3.1 Subtracted hyperbolic dispersion relations

The sum rules for all subthreshold parameters that appear in Table 6.1 are

d+00 = −g
2

m
+

1

π

∞∫

s+

ds′ h0(s′)
[
ImA+

]
(0,0)

+
1

π

∞∫

tπ

dt′

t′
[
ImA+

]
(0,0)

,

b−00 =
g2

2m2
− g2

m2 − a
+

1

π

∞∫

s+

ds′ h0(s′)
[
ImB−]

(0,0)
+

1

π

∞∫

tπ

dt′

t′
[
ImB−]

(0,0)
,

d+01 =
1

π

∞∫

s+

ds′
{
h0(s

′)
[
∂tImA+

]
(0,0)

− h02(s
′)
[
ImA+

]
(0,0)

}

+
1

π

∞∫

tπ

dt′

t′

{[
∂tImA+

]
(0,0)

+
1

t′
[
ImA+

]
(0,0)

}
,

a−00 =
4m

π

∞∫

s+

ds′ h02(s
′)
[
ImA−]

(0,0)
+

1

π

∞∫

tπ

dt′

t′
[
ImA−/ν ′

]
(0,0)

,

b+00 =
4m

π

∞∫

s+

ds′ h02(s
′)
[
ImB+

]
(0,0)

+
1

π

∞∫

tπ

dt′

t′
[
ImB+/ν ′

]
(0,0)

,

b−01 =
1

π

∞∫

s+

ds′
{
h0(s

′)
[
∂tImB−]

(0,0)
− h02(s

′)
[
ImB−]

(0,0)

}

+
1

π

∞∫

tπ

dt′

t′

{[
∂tImB−]

(0,0)
+

1

t′
[
ImB−]

(0,0)

}
,

a+10 =
1

π

∞∫

s+

ds′
{
h0(s

′)
[
∂ν2ImA+

]
(0,0)

+ 8m2h03(s
′)
[
ImA+

]
(0,0)

}
+

1

π

∞∫

tπ

dt′

t′
[
∂ν2ImA+

]
(0,0)

,

a−01 =
4m

π

∞∫

s+

ds′
{
h02(s

′)
[
∂tImA−]

(0,0)
− h03(s

′)
[
ImA−]

(0,0)

}

+
1

π

∞∫

tπ

dt′

t′

{[
∂tImA−/ν ′

]
(0,0)

+
1

t′
[
ImA−/ν ′

]
(0,0)

}
,

a−10 =
4m

π

∞∫

s+

ds′
{
h02(s

′)
[
∂ν2ImA−]

(0,0)
+ 4m2h04(s

′)
[
ImA−]

(0,0)

}

+
1

π

∞∫

tπ

dt′

t′
[
∂ν2ImA−/ν ′

]
(0,0)

, (C.43)
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b−10 =
1

π

∞∫

s+

ds′
{
h0(s

′)
[
∂ν2ImB−]

(0,0)
+ 8m2h03(s

′)
[
ImB−]

(0,0)

}
+

1

π

∞∫

tπ

dt′

t′
[
∂ν2ImB−]

(0,0)
,

where we have introduced the notation

h0(s
′) =

2

s′ − s0
− 1

s′ − a
, h0n(s

′) =
1

(s′ − s0)n
. (C.44)

Here and in the following, the dependence of the amplitudes on the internal kinematics (s′, t′)
is suppressed and the subscript (0, 0) indicates evaluation at (ν = 0, t = 0). For that purpose,
one may use the relations

[
z′s
]
(0,0)

= 1− (s′ − s0)
2

2q′2(s′ − a)
,

[
∂tz

′
s

]
(0,0)

=
s0 − a

2q′2(s′ − a)
,
[
∂ν2z

′
s

]
(0,0)

=
2m2

q′2(s′ − a)
,

[
z′2t
]
(0,0)

= 1 +
at′ − 4m2M2

π

4p′2t q
′2
t

,
[
∂tz

′2
t

]
(0,0)

=
s0 − a

4p′2t q
′2
t

,
[
∂ν2z

′2
t

]
(0,0)

=
m2

p′2t q
′2
t

. (C.45)

We only quote the form of the subtracted HDRs that includes all subthreshold parameters
from (C.43)

A+(s, t) = d+00 +
g2

m
+ d+01t+ a+10ν

2 +
1

π

∞∫

tπ

dt′
{

ImA+

t′ − t
−
(
1

t′
+

t

t′2

)[
ImA+

]
(0,0)

− t

t′
[
∂tImA+

]
(0,0)

− ν2

t′
[
∂ν2ImA+

]
(0,0)

}

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImA+

− h0(s
′)
(
t
[
∂tImA+

]
(0,0)

+ ν2
[
∂ν2ImA+

]
(0,0)

)

−
(
h0(s

′)− t h02(s
′) + 8m2ν2h03(s

′)
) [

ImA+
]
(0,0)

}
,

A−(s, t) = a−00ν + a−01νt+ a−10ν
3 +

ν

π

∞∫

tπ

dt′
{

ImA−/ν ′

t′ − t
−
(
1

t′
+

t

t′2

)[
ImA−/ν ′

]
(0,0)

− t

t′
[
∂tImA−/ν ′

]
(0,0)

− ν2

t′
[
∂ν2ImA−/ν ′

]
(0,0)

}

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
− 1

s′ − u

]
ImA− − 4mν h02(s

′)
(
t
[
∂tImA−]

(0,0)
+ ν2

[
∂ν2ImA−]

(0,0)

)

− 4mν
(
h02(s

′)− t h03(s
′) + 4m2ν2h04(s

′)
) [

ImA−]
(0,0)

}
,

B+(s, t) = g2
[

1

m2 − s
− 1

m2 − u

]
+ b+00ν +

ν

π

∞∫

tπ

dt′
{

ImB+/ν ′

t′ − t
− 1

t′
[
ImB+/ν ′

]
(0,0)

}
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+
1

π

∞∫

s+

ds′
{[

1

s′ − s
− 1

s′ − u

]
ImB+ − 4mν h02(s

′)
[
ImB+

]
(0,0)

}
,

B−(s, t) = g2
[

1

m2 − s
+

1

m2 − u

]
+ b−00 −

g2

2m2
+ b−01t+ b−10ν

2 +
1

π

∞∫

tπ

dt′
{

ImB−

t′ − t

−
(
1

t′
+

t

t′2

)[
ImB−]

(0,0)
− t

t′
[
∂tImB−]

(0,0)
− ν2

t′
[
∂ν2ImB−]

(0,0)

}

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImB−

− h0(s
′)
(
t
[
∂tImB−]

(0,0)
+ ν2

[
∂ν2ImB−]

(0,0)

)

−
(
h0(s

′)− t h02(s
′) + 8m2ν2h03(s

′)
) [

ImB−]
(0,0)

}
. (C.46)

The reduction to the various subtraction schemes introduced in Sect. 6.3.3 may be achieved
by dropping the pertinent subthreshold parameters and the terms associated with their sum
rules according to (C.43).

C.3.2 s-channel projection

The presentation of the corrections for the various subtraction schemes will be organized in
such a way that we start from the once-subtracted version and successively add the neces-
sary amendments for the additional subtractions discussed in Sect. 6.3.3. First, we collect
the contributions to the partial waves that originate from the subthreshold parameters. For
convenience, we include these terms by modifying the pole terms according to

N I
l+

∣∣n-sub
(W ) = N̄ I

l+(W ) + ∆N I
l+

∣∣n-sub
(W ) , ∆N I

l+(W ) = ∆̂N
I

l (W )− ∆̂N
I

l+1(−W ) ,
(C.47)

and

∆̂N
+

l

∣∣1-sub
(W ) =

δl0
8πW

(E +m)

(
d+00 +

g2

m

)
,

∆̂N
+

l

∣∣2-sub
(W ) = ∆̂N

+

l

∣∣1-sub − d+01q
2χtl

4πW
(E +m) +

b+00χ
ν
l

16πWm
(E +m)(W −m) ,

∆̂N
+

l

∣∣3-sub
(W ) = ∆̂N

+

l

∣∣2-sub
+

a+10χ
ν2

l

32πWm2
(E +m) ,

∆̂N
−
l

∣∣1-sub
(W ) =

δl0
8πW

(E +m)(W −m)

(
b−00 −

g2

2m2

)
,

∆̂N
−
l

∣∣2-sub
(W ) = ∆̂N

−
l

∣∣1-sub
+

a−00χ
ν
l

16πWm
(E +m)− b−01q

2χtl
4πW

(E +m)(W −m) ,

∆̂N
−
l

∣∣3-sub
(W ) = ∆̂N

−
l

∣∣2-sub − a−01q
2χνtl

8πWm
(E +m) , (C.48)

∆̂N
−
l

∣∣ex 3-sub
(W ) = ∆̂N

−
l

∣∣3-sub
+

a−10χ
ν3

l

64πWm3
(E +m) +

b−10χ
ν2

l

32πWm2
(E +m)(W −m) ,
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with

χνl = (s− s0 − q2)δl0 +
q2

3
δl1 , χνtl =

(
s− s0 −

4

3
q2

)
δl0 + (2q2 − s+ s0)

δl1
3

− 2

15
q2δl2 ,

χν
2

l =

(
(s− s0 − q2)2 +

q4

3

)
δl0 +

2

3
q2(s− s0 − q2)δl1 +

2

15
q4δl2 , χtl = δl0 −

δl1
3
,

χν
3

l = (s− s0 − q2)
(
(s − s0 − q2)2 + q4

)
δl0 + q2

(
(s − s0 − q2)2 +

q4

5

)
δl1

+
2

5
q4(s− s0 − q2)δl2 +

2

35
q6δl3 . (C.49)

Next, the s-channel kernels become

KI
ll′
∣∣n-sub

(W,W ′) = KI
ll′(W,W

′) + ∆KI
ll′
∣∣n-sub

(W,W ′) ,

∆KI
ll′(W,W

′) = ∆̂K
I

ll′(W,W
′)− ∆̂K

I

l+1,l′(−W,W ′) , (C.50)

with

∆̂K
+

ll′
∣∣1-sub

(W,W ′) = − W ′

4πW
(E +m)h0(s

′)
[
S1
l′+1,l′(W

′, z′s)
]
(0,0)

δl0 ,

∆̂K
+

ll′
∣∣2-sub

(W,W ′) = ∆̂K
+

ll′
∣∣1-sub

+
q2W ′

2πW
χtl(E +m)

×
{
h0(s

′)
[
∂tS

1
l′+1,l′(W

′, z′s)
]
(0,0)

− h02(s
′)
[
S1
l′+1,l′(W

′, z′s)
]
(0,0)

}

− W ′

2πW
χνl (E +m)(W −m)h02(s

′)
[
S2
l′+1,l′(W

′, z′s)
]
(0,0)

,

∆̂K
+

ll′
∣∣3-sub

(W,W ′) = ∆̂K
+

ll′
∣∣2-sub − W ′

16πWm2
χν

2

l (E +m)

×
{
h0(s

′)
[
∂ν2S

1
l′+1,l′(W

′, z′s)
]
(0,0)

+ 8m2h03(s
′)
[
S1
l′+1,l′(W

′, z′s)
]
(0,0)

}
,

∆̂K
−
ll′
∣∣1-sub

(W,W ′) = − W ′

4πW
(E +m)(W −m)h0(s

′)
[
S2
l′+1,l′(W

′, z′s)
]
(0,0)

δl0 ,

∆̂K
−
ll′
∣∣2-sub

(W,W ′) = ∆̂K
−
ll′
∣∣1-sub

+
q2W ′

2πW
χtl(E +m)(W −m)

×
{
h0(s

′)
[
∂tS

2
l′+1,l′(W

′, z′s)
]
(0,0)

− h02(s
′)
[
S2
l′+1,l′(W

′, z′s)
]
(0,0)

}

− W ′

2πW
χνl (E +m)h02(s

′)
[
S1
l′+1,l′(W

′, z′s)
]
(0,0)

,

∆̂K
−
ll′
∣∣3-sub

(W,W ′) = ∆̂K
−
ll′
∣∣2-sub − q2W ′

πW
χνtl (E +m)

×
{
h03(s

′)
[
S1
l′+1,l′(W

′, z′s)
]
(0,0)

− h02(s
′)
[
∂tS

1
l′+1,l′(W

′, z′s)
]
(0,0)

}
,

∆̂K
−
ll′
∣∣ex 3-sub

(W,W ′) = ∆̂K
−
ll′
∣∣3-sub − W ′

8πWm2
χν

3

l (E +m)

×
{
h02(s

′)
[
∂ν2S

1
l′+1,l′(W

′, z′s)
]
(0,0)

+ 4m2h04(s
′)
[
S1
l′+1,l′(W

′, z′s)
]
(0,0)

}



184 Appendix C. Roy–Steiner equations for pion–nucleon scattering

− W ′

16πWm2
χν

2

l (E +m)(W −m) (C.51)

×
{
h0(s

′)
[
∂ν2S

2
l′+1,l′(W

′, z′s)
]
(0,0)

+ 8m2h03(s
′)
[
S2
l′+1,l′(W

′, z′s)
]
(0,0)

}
.

Similarly, we define

GlJ
∣∣n-sub

(W, t′) = GlJ (W, t
′) + ∆GlJ

∣∣n-sub
(W, t′) ,

∆GlJ(W, t
′) = ∆̂GlJ(W, t

′)− ∆̂Gl+1,J(−W, t′) , (C.52)

and accordingly for HlJ(W, t
′), which yields for even J

∆̂GlJ
∣∣1-sub

(W, t′) =
E +m

2W
(2J + 1)

(p′tq
′
t)
J

t′p′2t

[
PJ(z

′
t)
]
(0,0)

δl0 ,

∆̂H lJ

∣∣1-sub
(W, t′) = −E +m

2W

2J + 1√
J(J + 1)

(p′tq
′
t)
J

t′p′2t
m
[
z′tP

′
J(z

′
t)
]
(0,0)

δl0 ,

∆̂GlJ
∣∣2-sub

(W, t′) = ∆̂GlJ
∣∣1-sub − E +m

W
q2(2J + 1)

(p′tq
′
t)
J

t′p′2t

× χtl

{
1

t′
[
PJ (z

′
t)
]
(0,0)

+
[
∂tPJ(z

′
t)
]
(0,0)

}
,

∆̂H lJ

∣∣2-sub
(W, t′) = ∆̂H lJ

∣∣1-sub − E +m

2W

2J + 1√
J(J + 1)

(p′tq
′
t)
J

t′p′2t

×
{
W −m

2q′2t
χνl

[
P ′
J (z

′
t)

z′t

]

(0,0)

− 2mq2χtl

(
1

t′
[
z′tP

′
J(z

′
t)
]
(0,0)

+
[
∂t(z

′
tP

′
J(z

′
t))
]
(0,0)

)}
,

∆̂GlJ
∣∣3-sub

(W, t′) = ∆̂GlJ
∣∣2-sub

+
E +m

8Wm2
(2J + 1)

(p′tq
′
t)
J

t′p′2t
χν

2

l

[
∂ν2PJ (z

′
t)
]
(0,0)

,

∆̂H lJ

∣∣3-sub
(W, t′) = ∆̂H lJ

∣∣2-sub − E +m

8Wm

2J + 1√
J(J + 1)

(p′tq
′
t)
J

t′p′2t
χν

2

l

[
∂ν2z

′
tP

′
J (z

′
t)
]
(0,0)

, (C.53)

and for odd J

∆̂H lJ

∣∣1-sub
(W, t′) = −E +m

2W

2J + 1√
J(J + 1)

(p′tq
′
t)
J−1

t′
(W −m)

[
P ′
J(z

′
t)
]
(0,0)

δl0 ,

∆̂GlJ
∣∣2-sub

(W, t′) =
E +m

4W
(2J + 1)

(p′tq
′
t)
J−1

t′p′2t
χνl

[
PJ(z

′
t)

z′t

]

(0,0)

,

∆̂H lJ

∣∣2-sub
(W, t′) = ∆̂H lJ

∣∣1-sub − E +m

2W

2J + 1√
J(J + 1)

(p′tq
′
t)
J−1

t′p′2t

×
{
m

2
χνl
[
P ′
J(z

′
t)
]
(0,0)

− 2q2p′2t (W −m)χtl

(
1

t′
[
P ′
J (z

′
t)
]
(0,0)

+
[
∂tP

′
J(z

′
t)
]
(0,0)

)}
,

∆̂GlJ
∣∣3-sub

(W, t′) = ∆̂GlJ
∣∣2-sub − E +m

2W
(2J + 1)

(p′tq
′
t)
J−1

t′p′2t
q2χνtl

×
{
1

t′

[
PJ (z

′
t)

z′t

]

(0,0)

+

[
∂t
PJ (z

′
t)

z′t

]

(0,0)

}
,
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∆̂H lJ

∣∣3-sub
(W, t′) = ∆̂H lJ

∣∣2-sub
+
E +m

2W

2J + 1√
J(J + 1)

(p′tq
′
t)
J−1

t′p′2t
mq2χνtl

×
{
1

t′
[
P ′
J(z

′
t)
]
(0,0)

+
[
∂tP

′
J(z

′
t)
]
(0,0)

}
,

∆̂GlJ
∣∣ex 3-sub

(W, t′) = ∆̂GlJ
∣∣3-sub

+
E +m

16Wm2
(2J + 1)

(p′tq
′
t)
J−1

t′p′2t
χν

3

l

[
∂ν2

PJ (z
′
t)

z′t

]

(0,0)

,

∆̂H lJ

∣∣ex 3-sub
(W, t′) = ∆̂H lJ

∣∣3-sub − E +m

16Wm

2J + 1√
J(J + 1)

(p′tq
′
t)
J−1

t′p′2t

[
∂ν2P

′
J(z

′
t)
]
(0,0)

×
{
χν

3

l +
W −m

m
2p′2t χ

ν2

l

}
. (C.54)

C.3.3 t-channel projection

For the t-channel projection we consider only the once- and twice-subtracted versions as well
as the partial third subtraction. Since the latter affects solely A±, many kernel functions
remain unaltered compared to the twice-subtracted version. We only list those kernels that
actually receive further corrections.

The subthreshold-parameter contributions to the t-channel amplitudes are included by
modifying the nucleon pole terms according to

ÑJ
±
∣∣n-sub

(t) = N̂J
±(t) + ∆ÑJ

±
∣∣n-sub

(t) , (C.55)

and

∆ÑJ
+

∣∣1-sub
(t) = − p2t

4π

(
d+00 +

g2

m

)
δJ0 +

m

12π

(
b−00 −

g2

2m2

)
δJ1 ,

∆ÑJ
+

∣∣2-sub
(t) = ∆ÑJ

+

∣∣1-sub − p2t
4π

(
d+01t− b+00

q2t
3

)
δJ0 +

m

12π

(
b−01t− a−00

p2t
m2

)
δJ1 +

b+00
30π

δJ2 ,

∆ÑJ
+

∣∣3-sub
(t) = ∆ÑJ

+

∣∣2-sub − p2t
12πm

{
a−01t δJ1 +

a+10
m

(
p2t q

2
t δJ0 +

2

5
δJ2

)}
,

∆ÑJ
−
∣∣1-sub

(t) =

√
2

12π

(
b−00 −

g2

2m2

)
δJ1 ,

∆ÑJ
−
∣∣2-sub

(t) = ∆ÑJ
−
∣∣1-sub

+

√
2

12π
b−01t δJ1 +

b+00
30π

√
6

2m
δJ2 . (C.56)

The subtracted versions of G̃Jl(t,W ′) and H̃Jl(t,W
′) can be expressed by redefining the

polynomial parts of the pertinent angular kernels according to

ĀJl
∣∣n-sub

= ĀJl +∆Ā
∣∣n-sub

Jl
, (C.57)

and analogously for B̄Jl, C̄Jl. We find

∆ĀJl
∣∣1-sub

= h0(s
′)
[
P ′
l (z

′
s)
]
(0,0)

δJ0 ,

∆ĀJl
∣∣2-sub

= ∆ĀJl
∣∣1-sub
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{
h0(s

′)
[
∂tP

′
l (z

′
s)
]
(0,0)

− h02(s
′)
[
P ′
l (z

′
s)
]
(0,0)

}
δJ0

+
4

3
ptqth

0
2(s

′)
[
P ′
l (z

′
s)
]
(0,0)

δJ1 ,
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∆ĀJl
∣∣3-sub

= ∆ĀJl
∣∣2-sub

+
4

3
ptqt t

{
h02(s

′)
[
∂tP

′
l (z

′
s)
]
(0,0)

− h03(s
′)
[
P ′
l (z

′
s)
]
(0,0)

}
δJ1

+
p2t q

2
t
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{
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′)
[
∂ν2P

′
l (z

′
s)
]
(0,0)

+ 8m2h03(s
′)
[
P ′
l (z

′
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]
(0,0)

}(
δJ0 +

2

5
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)
,

∆B̄Jl
∣∣1-sub

=
1

3
h0(s

′)
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P ′
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′
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∣∣1-sub

+
t

3

{
h0(s

′)
[
∂tP

′
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]
(0,0)

− h02(s
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P ′
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δJ1

+
4
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0
2(s
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P ′
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2

5
δJ2

)
,

∆C̄Jl
∣∣1-sub

= h0(s
′)
[
P ′
l (z

′
s)
]
(0,0)

δJ1 ,

∆C̄Jl
∣∣2-sub
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∣∣1-sub
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[
∂tP

′
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]
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P ′
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0
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P ′
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δJ2 . (C.58)

Finally, the modified t-channel kernels are

K̃i
JJ ′

∣∣n-sub
(t, t′) = K̃i

JJ ′(t, t′) + ∆K̃i
JJ ′

∣∣n-sub
(t, t′) , i ∈ {1, 2, 3} , (C.59)

with the following corrections for even J and J ′

∆K̃1
JJ ′

∣∣1-sub
(t, t′) = −(2J ′ + 1)(p′tq

′
t)
J ′ p2t
p′2t

1

t′
[
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P ′
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√
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δJ2 , (C.60)
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and for odd J and J ′
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∣∣2-sub
(t, t′) = −2J ′ + 1

3
(p′tq

′
t)
J ′−1 p

2
t

p′2t

1

t′

[
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JJ ′

∣∣2-sub

− 2J ′ + 1

3
(p′tq

′
t)
J ′−1 p

2
t

p′2t

t

t′

{
1

t′

[
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,
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,
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− 2J ′ + 1√
J ′(J ′ + 1)

(p′tq
′
t)
J ′−1

√
2

3

t

t′

{
1

t′
[
P ′
J ′(z′t)

]
(0,0)

+
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}
δJ1 .

Explicitly, the lowest kernel functions become

K̃1
00

∣∣2-sub
(t, t′) =

t
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00
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,
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K̃2
13

∣∣2-sub
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√
3
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p′2t

[
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]
+

[(
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t
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)
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]}
,
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√
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3
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2
t

p′2t
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, (C.62)

K̃3
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t′2
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′) , K̃3
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∣∣2-sub
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t
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K̃3

22(t, t
′) ,

K̃3
13

∣∣1-sub
(t, t′) =

7

8
√
6

{
t+

tN tπ
4t′

}
, K̃3
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∣∣2-sub
(t, t′) =

7

8
√
6

{(
1 +

t

t′

)
tN tπ
4t′

− t

t′
s0

}
.

C.4 Conventions for kaon–nucleon scattering

We define the kaon states

|K+〉 =
∣∣∣∣
1

2
,
1

2

〉
, |K0〉 =

∣∣∣∣
1

2
,−1

2

〉
, |K̄0〉 =

∣∣∣∣
1

2
,
1

2

〉
, |K−〉 =

∣∣∣∣
1

2
,−1

2

〉
, (C.63)

with crossing properties

C|K+〉 = −|K−〉 , C|K0〉 = |K̄0〉 , (C.64)

and choose the isospin decomposition of the amplitude as

T = T+ − τN · τKT− = T+ − 2
(
Is(Is + 1)− 3

2

)
T− , (C.65)

where τN and τK are the Pauli matrices associated with the nucleon and kaon isospin oper-
ators. This leads to

T Is=0 = T+ + 3T− , T Is=1 = T+ − T− ,

T Iu=0 = T+ − 3T− , T Iu=1 = T+ + T− ,

T It=0 = 2T+ , T It=1 = 2T− , (C.66)

and
TK

±p = TK
±p→K±p = T+ ∓ T− . (C.67)

In particular, (C.66) shows that the conversion factor cKNJ = 1/2 between t-channel isospin
and I = ± bases is independent of angular momentum. In complete analogy to πN scattering,
the amplitude for the process K(q) +N(p) → K(q′) +N(p′) can be decomposed as

T I(s, t) = ū(p′)

{
AI(s, t) +

/q′ + /q

2
BI(s, t)

}
u(p) , I = ± . (C.68)

The Born-term contributions due to hyperon pole diagrams are1

AK
+p(s, t) =

∑

Y=Λ,Σ

g2KNY
mY −m

u−m2
Y

, BK+p(s, t) =
∑

Y=Λ,Σ

g2KNY
u−m2

Y

,

AK
−p(s, t) =

∑

Y=Λ,Σ

g2KNY
mY −m

s−m2
Y

, BK−p(s, t) =
∑

Y=Λ,Σ

g2KNY
s−m2

Y

, (C.69)

1We use mΛ = 1.116GeV, mΣ = 1.193GeV [3], and g2KNΛ/4π = 15.55, g2KNΣ/4π = 0.576 [255] for the
masses and couplings of the hyperons, respectively.
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and hence

A±(s, t) =
∑

Y=Λ,Σ

g2KNY
mY −m

2

(
1

s−m2
Y

± 1

u−m2
Y

)
,

B±(s, t) = −
∑

Y=Λ,Σ

g2KNY
2

(
1

s−m2
Y

∓ 1

u−m2
Y

)
. (C.70)

The K̄K → N̄N partial waves can be obtained from the invariant amplitudes by means of
the projection formula (with the t-channel scattering angle zt = cos θKNt )

hJ,It=0,1
+ (t) = − 1

8π

1∫

−1

dztPJ (zt)
{

p2t
(ptkt)J

A±(s, t)
∣∣∣
s=s(t,zt)

− m

(ptkt)J−1
ztB

±(s, t)
∣∣∣
s=s(t,zt)

}
,

hJ,It=0,1
− (t) =

1

8π

√
J(J + 1)

2J + 1

1

(ptkt)J−1

1∫

−1

dzt
(
PJ−1(zt)− PJ+1(zt)

)
B±(s, t)

∣∣∣
s=s(t,zt)

. (C.71)

The main difference to the πN t-channel partial-wave projection [220] originates from the fact
that due to the lack of Bose symmetry in the K̄K system a partial wave with given angular
momentum J couples to both It = 0 and It = 1 (corresponding to + and − on the right-hand
side of (C.71)). In the following, we are only interested in the combination where even/odd J
corresponds to It = 0, 1, respectively, since only these partial waves can occur as intermediate
states in ππ → N̄N , and will therefore suppress the isospin index.2 In these conventions, the
Born terms are given by

hJ+(t) =
∑

Y=Λ,Σ

g2KNY
8π

1

(ptkt)J

{(pt
kt
(mY −m) +mỹ

)
QJ(ỹ)−mδJ0

}
,

hJ−(t) =
∑

Y=Λ,Σ

g2KNY
8π

√
J(J + 1)

2J + 1

1

(ptkt)J
(
QJ−1(ỹ)−QJ+1(ỹ)

)
, (C.72)

with

ỹ =
t− 2M2

K + 2(m2
Y −m2)

4ptkt
. (C.73)

The helicity amplitudes

H++(s, t) = H−−(s, t) =
4π

√
t

kt

∞∑

J=0

(2J + 1)HJ
+(t)PJ (cos θ

KN
t ) ,

H+−(s, t) = −H−+(s, t) =
4π

√
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kt

∞∑

J=1

2J + 1√
J(J + 1)
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−(t) sin θ

KN
t P ′

J(cos θ
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t ) ,

HJ
+(t) =

kt
pt
(ptkt)

J 2√
t
hJ+(t) , HJ

−(t) =
kt
pt
(ptkt)

JhJ−(t) , (C.74)

are defined in accordance with the normalization

dσ̄KK̄→N̄N

dΩ
=
pt
kt

∑

λ̄,λ

∣∣∣∣
Hλ̄λ(s, t)

8π
√
t

∣∣∣∣
2

=
2pt
kt

{∣∣∣∣
H++(s, t)

8π
√
t

∣∣∣∣
2

+

∣∣∣∣
H+−(s, t)

8π
√
t

∣∣∣∣
2
}
. (C.75)

2The opposite combination features prominently in a dispersive calculation of the strangeness form factors
of the nucleon, cf. [256].
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C.5 Subtracted Muskhelishvili–Omnès solution

The subtracted versions of the single-channel MO solution (7.11) involve the subthreshold
parameters according to Table 6.1 and the inhomogeneities

∆̃J
±
∣∣n-sub

(t) = N̂J
±(t) + ∆̄J

±
∣∣n-sub

(t) , ∆̃J
Γ
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−
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(t)− ∆̃J
+

∣∣n-sub
(t) ,

(C.76)
where ∆̄J

±
∣∣n-sub

(t) is defined in analogy to (7.7) with the kernel functions replaced by the
respective subtracted versions. We obtain for J ≤ 2
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. (C.77)

C.6 Continuity at the matching point

To prove the continuity of f(t) at tm, we rewrite (7.25) in terms of a principal-value integral
as

f(t) =
(
1+ i T (t)Σ(t)

)
∆(t) +

Ω(t)

π
−
tm∫

tπ

dt′
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+
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π
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dt′
Ω−1(t′)Im f(t′)

t′ − t
.

(C.78)

We only consider the case t→ tm from below (continuity from above can be proven in a similar
way). In this limit, the whole mass of the integral is concentrated at tm. Using (7.30), (7.31),
(7.33), and (7.39), we find

f(tm) =
(
1+ i T (tm)Σ(tm)

)
∆(tm) +

e−iπx
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(
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ĨIII ĨIV

)
Im f(tm) , (C.79)

with

II = −
(
Ω̄11Ω̄22 cot πx11 − Ω̄12Ω̄21 cot πx12
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,
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(C.80)
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For the continuity condition (C.79) to be fulfilled, in particular all terms depending on ∆(tm)
must cancel amongst themselves. Putting the coefficients of ∆i(tm) in each component fi to
zero yields four constraints on II–IIV, which can be inverted to obtain

II = idet Ω̄ eiπx
A− e2iπxA∗

A+ e2iπxA∗ , IIV = idet Ω̄ eiπx
B − e2iπxB∗

A+ e2iπxA∗ ,

III =
σKtm
σπtm

IIII = 4det Ω̄ e2iπx
|g|σKtm

A+ e2iπxA∗ , (C.81)

where
A = ηe2iπ(x−y) − 1 , B = ηe2iπy − 1 . (C.82)

Similar considerations apply to ĨI–ĨIV. By means of Im f = T ∗Σf , the remaining pieces
of (C.79) can be expressed as linear combinations of f1 and f2, which altogether again amounts
to four constraints. The solutions are

ĨI = −2i det Ω̄ e2iπx
A∗

A+ e2iπxA∗ , ĨIV = −2i det Ω̄ e2iπx
B∗

A+ e2iπxA∗ ,

ĨII =
σKtm
σπtm

ĨIII = IIIe
−iπx . (C.83)

Based on (7.43) it is straightforward to show that (C.81) and (C.83) hold as long as the
following relations are fulfilled
√

1− z2
(
Ω̄11Ω̄22 + Ω̄12Ω̄21

)
= η sinπ(2y − x) det Ω̄ , (C.84)

√
1− z2Ω̄11Ω̄12 = −|g|σKtm det Ω̄ ,

√
1− z2Ω̄21Ω̄22 = |g|σπtm det Ω̄ .

In this way, the properties (7.44) of the Omnès matrix finally ensure continuity at the matching
point.

C.7 Sum rules for the threshold parameters

We only give the expressions that follow from (C.46). Together with (C.44) and

h+(s
′) =

1

s′ − s+
+

1

s′ − s−
− 1

s′ − a
, h−(s

′) =
1

s′ − s+
− 1

s′ − s−
, (C.85)

N± = g2
(

1

m2 − s+
± 1

m2 − s−

)
, N±

n =
g2

(m2 − s±)n
, h±n (s

′) =
1

(s′ − s±)n
,

we find

[
A+(s, 0)

]
q2=0

= d+00 +
g2

m
+ a+10M

2
π

+
1

π

∞∫

tπ

dt′

t′

{[
ImA+

]
(Mπ ,0)

−
[
ImA+

]
(0,0)

−M2
π

[
∂ν2ImA+

]
(0,0)

}

+
1

π

∞∫

s+

ds′
{
h+(s

′)
[
ImA+

]
(Mπ ,0)

−M2
πh0(s

′)
[
∂ν2ImA+

]
(0,0)
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−
(
h0(s

′) + 8m2M2
πh

0
3(s

′)
) [

ImA+
]
(0,0)

}
,

[
A−(s, 0)

]
q2=0

= a−00Mπ + a−10M
3
π +

Mπ

π

∞∫

tπ

dt′

t′

{
[
ImA−/ν ′

]
(Mπ,0)

−
[
ImA−/ν ′

]
(0,0)

−M2
π

[
∂ν2ImA−/ν ′

]
(0,0)

}

+
1

π

∞∫

s+

ds′
{
h−(s

′)
[
ImA−]

(Mπ ,0)
− 4mM3

πh
0
2(s

′)
[
∂ν2ImA−]

(0,0)

− 4mMπ

(
h02(s

′) + 4m2M2
πh

0
4(s

′)
) [

ImA−]
(0,0)

}
,

[
B+(s, 0)

]
q2=0

= N− + b+00Mπ +
Mπ

π

∞∫

tπ

dt′

t′

{[
ImB+/ν ′

]
(Mπ,0)

−
[
ImB+/ν ′

]
(0,0)

}

+
1

π

∞∫

s+

ds′
{
h−(s

′)
[
ImB+

]
(Mπ,0)

− 4mMπh
0
2(s

′)
[
ImB+

]
(0,0)

}
,

[
B−(s, 0)

]
q2=0

= N+ + b−00 −
g2

2m2
+ b−10M

2
π

+
1

π

∞∫

tπ

dt′

t′

{[
ImB−]

(Mπ,0)
−
[
ImB−]

(0,0)
−M2

π

[
∂ν2ImB−]

(0,0)

}

+
1

π

∞∫

s+

ds′
{
h+(s

′)
[
ImB−]

(Mπ,0)
−M2

πh0(s
′)
[
∂ν2ImB−]

(0,0)

−
(
h0(s

′) + 8m2M2
πh

0
3(s

′)
) [

ImB−]
(0,0)

}
, (C.86)

[
∂tA

+(s, t)
]
t=0,q2=0

= d+01 + a+10ζν2,t +
1

π

∞∫

tπ

dt′

t′

{
1

t′
[
ImA+

]
(Mπ,0)

+
[
∂tImA+

]
(Mπ,0)

− 1

t′
[
ImA+

]
(0,0)

−
[
∂tImA+

]
(0,0)

− ζν2,t
[
∂ν2ImA+

]
(0,0)

}

+
1

π

∞∫

s+

ds′
{

− h−2 (s
′)
[
ImA+

]
(Mπ,0)

+ h+(s
′)
[
∂tImA+

]
(Mπ,0)

+ h02(s
′)
[
ImA+

]
(0,0)

− h0(s
′)
[
∂tImA+

]
(0,0)

− ζν2,t

(
8m2h03(s

′)
[
ImA+

]
(0,0)

+ h0(s
′)
[
∂ν2ImA+

]
(0,0)

)}
,
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[
∂tA

−(s, t)
]
t=0,q2=0

=
a−00
4m

+ a−01Mπ + a−10ζν3,t +
1

π

∞∫

tπ

dt′

t′

{(
1

4m
+
Mπ

t′

)[
ImA−/ν ′

]
(Mπ,0)

+Mπ

[
∂tImA−/ν ′

]
(Mπ ,0)

−Mπ

[
∂tImA−/ν ′

]
(0,0)

−
(

1

4m
+
Mπ

t′

)[
ImA−/ν ′

]
(0,0)

− ζν3,t
[
∂ν2ImA−/ν ′

]
(0,0)

}

+
1

π

∞∫

s+

ds′
{
h−2 (s

′)
[
ImA−]

(Mπ,0)
+ h−(s

′)
[
∂tImA−]

(Mπ,0)
− h02(s

′)
[
ImA−]

(0,0)

+ 4mMπ

(
h03(s

′)
[
ImA−]

(0,0)
− h02(s

′)
[
∂tImA−]

(0,0)

)

− 4mζν3,t

(
4m2h04(s

′)
[
ImA−]

(0,0)
+ h02(s

′)
[
∂ν2ImA−]

(0,0)

)}
,

[
∂tB

+(s, t)
]
t=0,q2=0

= N−
2 +

b+00
4m

+
1

π

∞∫

tπ

dt′

t′

{(
1

4m
+
Mπ

t′

)[
ImB+/ν ′

]
(Mπ ,0)

+Mπ

[
∂tImB+/ν ′

]
(Mπ,0)

− 1

4m

[
ImB+/ν ′

]
(0,0)

}

+
1

π

∞∫

s+

ds′
{
h−2 (s

′)
[
ImB+

]
(Mπ ,0)

+ h−(s
′)
[
∂tImB+

]
(Mπ,0)

− h02(s
′)
[
ImB+

]
(0,0)

}
,

[
∂tB

−(s, t)
]
t=0,q2=0

= −N−
2 + b−01 + b−10ζν2,t +

1

π

∞∫

tπ

dt′

t′

{
1

t′
[
ImB−]

(Mπ ,0)
+
[
∂tImB−]

(Mπ,0)

− 1

t′
[
ImB−]

(0,0)
−
[
∂tImB−]

(0,0)
− ζν2,t

[
∂ν2ImB−]

(0,0)

}

+
1

π

∞∫

s+

ds′
{

− h−2 (s
′)
[
ImB−]

(Mπ,0)
+ h+(s

′)
[
∂tImB−]

(Mπ,0)

+ h02(s
′)
[
ImB−]

(0,0)
− h0(s

′)
[
∂tImB−]

(0,0)

− ζν2,t

(
8m2h03(s

′)
[
ImB−]

(0,0)
+ h0(s

′)
[
∂ν2ImB−]

(0,0)

)}
, (C.87)

[
∂q2A+(s, 0)

]
q2=0

= a+10ζν2,q2 +
1

π

∞∫

tπ

dt′

t′

{[
∂q2ImA+

]
(Mπ,0)

− ζν2,q2

[
∂ν2ImA+

]
(0,0)

}

+
1

π

∞∫

s+

ds′
{
ζs(h

+
2 (s

′)− h−2 (s
′))
[
ImA+

]
(Mπ,0)

+ h+(s
′)
[
∂q2ImA+

]
(Mπ,0)

− ζν2,q2

(
8m2h03(s

′)
[
ImA+

]
(0,0)

+ h0(s
′)
[
∂ν2ImA+

]
(0,0)

)
− ζA+

(s′ − s+)3/2

}
,
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[
∂q2A−(s, 0)

]
q2=0

= a−00
ζs
2m

+ a−10ζν3,q2 +
1

π

∞∫

tπ

dt′

t′

{
Mπ

[
∂q2ImA−/ν ′

]
(Mπ,0)

+
ζs
2m

( [
ImA−/ν ′

]
(Mπ,0)

−
[
ImA−/ν ′

]
(0,0)

)
− ζν3,q2

[
∂ν2ImA−/ν ′

]
(0,0)

}

+
1

π

∞∫

s+

ds′
{
ζs(h

+
2 (s

′) + h−2 (s
′))
[
ImA−]

(Mπ,0)
+ h−(s

′)
[
∂q2ImA−]

(Mπ,0)

− 4mζν3,q2

(
4m2h04(s

′)
[
ImA−]

(0,0)
+ h02(s

′)
[
∂ν2ImA−]

(0,0)

)

− 2ζsh
0
2(s

′)
[
ImA−]

(0,0)
− ζA−

(s′ − s+)3/2

}
,

[
∂q2B+(s, 0)

]
q2=0

= ζs(N
+
2 +N−

2 ) + b+00
ζs
2m

+
1

π

∞∫

tπ

dt′

t′

{
Mπ

[
∂q2ImB+/ν ′

]
(Mπ,0)

+
ζs
2m

( [
ImB+/ν ′

]
(Mπ ,0)

−
[
ImB+/ν ′

]
(0,0)

)}

+
1

π

∞∫

s+

ds′
{
ζs(h

+
2 (s

′) + h−2 (s
′))
[
ImB+

]
(Mπ,0)

+ h−(s
′)
[
∂q2ImB+

]
(Mπ ,0)

− 2ζsh
0
2(s

′)
[
ImB+

]
(0,0)

− ζB+

(s′ − s+)3/2

}
,

[
∂q2B−(s, 0)

]
q2=0

= ζs(N
+
2 −N−

2 ) + b−10ζν2,q2

+
1

π

∞∫

tπ

dt′

t′

{[
∂q2ImB−]

(Mπ,0)
− ζν2,q2

[
∂ν2ImB−]

(0,0)

}
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+
1

π

∞∫

s+

ds′
{
ζs(h

+
2 (s

′)− h−2 (s
′))
[
ImB−]

(Mπ,0)
+ h+(s

′)
[
∂q2ImB−]

(Mπ ,0)

− ζν2,q2

(
8m2h03(s

′)
[
ImB−]

(0,0)
+ h0(s

′)
[
∂ν2ImB−]

(0,0)

)
− ζB−

(s′ − s+)3/2

}
.

In these equations the subscript (Mπ, 0) denotes evaluation at threshold (ν = Mπ, t = 0).
The amplitudes may be calculated by summing the pertinent partial waves using

[
z′s
]
(Mπ,0)

= −s
′ + a

s′ − a
,

[
∂tz

′
s

]
(Mπ,0)

=
s+ − a

2q′2(s′ − a)
,
[
∂q2z′s

]
(Mπ ,0)

=
2s+

q′2(s′ − a)
,

[
z′2t
]
(Mπ,0)

= 1 +
at′

4p′2t q
′2
t

,
[
∂tz

′2
t

]
(Mπ,0)

=
s+ − a

4p′2t q
′2
t

,
[
∂q2z′2t

]
(Mπ ,0)

=
s+
p′2t q

′2
t

. (C.89)

Finally, we have defined the derivatives

ζs =
[
∂q2s

]
(Mπ,0)

=
4s+

s+ − s−
=

s+
mMπ

,
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ζν2,t =
[
∂tν

2
]
(Mπ ,0)

=
Mπ

2m
, ζν2,q2 =

[
∂q2ν2

]
(Mπ ,0)

=
s+
m2

,

ζν3,t =
[
∂tν

3
]
(Mπ ,0)

=
3M2

π

4m
, ζν3,q2 =

[
∂q2ν3

]
(Mπ ,0)

=
3Mπs+
2m2

, (C.90)

and removed the threshold divergence by subtracting the terms involving

ζA+ = (2m+Mπ)ζB+ =
2πW+(2m+Mπ)

3m
√
mMπ

[(
a
1/2
0+

)2
+ 2
(
a
3/2
0+

)2]
,

ζA− = (2m+Mπ)ζB− =
2πW+(2m+Mπ)

3m
√
mMπ

[(
a
1/2
0+

)2 −
(
a
3/2
0+

)2]
. (C.91)
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