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Abstract

QCD is strongly coupled at long distances and therefore non-perturbative methods are required
to understand its low-energy properties, e.g. to answer such basic questions as of the origin of
the nucleon mass. In this thesis we study the interplay of effective field theories and dispersion
relations in the description of strong and electromagnetic interactions of pions and nucleons.

In the first part, we use chiral perturbation theory to calculate the m~—deuteron scattering
length to a few-percent accuracy including isospin-violating corrections. We apply the result to
perform a combined analysis of data on pionic deuterium and pionic hydrogen atoms that leads
to a precision determination of the isoscalar and isovector pion—nucleon scattering lengths, and
discuss the consequences for the 7N coupling constant and the pion—nucleon o term.

In the second part, we derive a system of Roy—Steiner equations for pion Compton scat-
tering that respects analyticity, unitarity, gauge invariance, and crossing symmetry, and thus
maintains all symmetries of the underlying quantum field theory. To suppress the dependence
on the high-energy input, we also consider subtracted versions of the equations, identifying the
subtraction constants with pion polarizabilities. Based on the assumption of Mandelstam an-
alyticity, we determine the kinematic range in which the equations are valid. We solve for the
vy — 7m partial waves using a Muskhelishvili-Omnés representation and derive a correlation
between the two-photon coupling of the o resonance and the isospin-zero pion polarizabilities,
which, in combination with chiral perturbation theory, provides new rigorous constraints on
the 0 — v coupling.

In the final part, we construct a similar system of Roy—Steiner equations for pion—nucleon
scattering. We study the solution of the NN — 77 partial waves by Muskhelishvili-Omnés
techniques, taking into account coupled-channel effects in the case of the S-wave, and apply
the results to a two-channel dispersive calculation of the scalar form factor of the nucleon.
We develop a solution strategy for the pion—nucleon s-channel partial waves and determine
the corrections needed for the extraction of the pion—nucleon ¢ term from the extrapolation
of the 7N amplitude to the Cheng-Dashen point by means of a low-energy theorem.
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Chapter 1

Introduction

Since its discovery nearly four decades ago, the Standard Model of particle physics has with-
stood innumerable challenges from experiment, both in direct searches at high-energy colliders
and at the intensity frontier, e.g. in the study of CP asymmetries, rare decays, and searches
for electric dipole moments. It is striking that despite this impressive success, quantum chro-
modynamics (QCD), the theory of strong interactions and one of the pillars of the Standard
Model, is still poorly understood in the low-energy regime.

First written down by Fritzsch, Gell-Mann, and Leutwyler to realize the color degree of
freedom of strong interactions in terms of a Yang—Mills gauge theory [1], it was subsequently
shown that the Lagrangian of QCD fulfills the property of asymptotic freedom [2], i.e. its
coupling constant «g decreases with increasing energy. Put another way, the g-function of

QCD

2n 3 2
5QCD = _<11 - ?f> 157‘(‘2 + 0(95) s Qg = i_ﬂ' s (11)
is negative as long as the number of flavors n¢ is not too large, a discovery for which the Nobel
prize was awarded to Gross, Politzer, and Wilczek in 2004. Over the last forty years it has
become unequivocally clear that QCD is indeed the correct theory of strong interactions (for
a recent review, see [3|). In particular, the running coupling as(r) has been extracted from a
myriad of different processes, leading to the world average [4, 5]

as(Mz) = 0.1184 = 0.0007 , (1.2)

where the renormalization scale p has been chosen as the mass of the Z boson p = Mjy.
Moreover, the scale dependence of the coupling agrees well with its expected QCD running,
as shown in Fig. 1.1 for the energy scale y = @ varying over two orders of magnitude. In
this sense, QCD is well understood at energies where ag is sufficiently small to allow for a
meaningful perturbative expansion. In contrast, the negative sign of the S-function (1.1)
renders QCD strongly coupled at low energies, so that perturbation theory fails and non-
perturbative, model-independent methods are called for.

A particularly instructive example for the prominent role of non-perturbative phenomena
in low-energy QCD is provided by the origin of mass. In the limit of massless quarks, the
QCD Lagrangian exhibits a classical scale invariance with conserved Noether current

JE =, 00 (1.3)

scale
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Figure 1.1: Running of the strong coupling ag compared to determinations from deep in-
elastic scattering, e™e™ annihilation, and heavy quarkonia. Figure taken from [4], with kind
permission from Springer Science and Business Media.

Since the energy-momentum tensor 6#” itself is conserved, this implies immediately that the
trace 6, and thus the masses of hadrons vanish as well. However, classical scale invariance
is broken at the quantum level and the associated trace anomaly causes hadrons to remain
massive even in the absence of quark masses. Indeed, switching on quark-mass effects again,
the mass of the nucleon m can be decomposed as [6]

m= imw(p)yagw(p» = ﬁ(N(p)]ﬁng Fji FiY +mytu+madd+mgss+--- [N(p)) , (1.4)
where N (p) denotes the nucleon states, u, d, s the light quark fields with masses my, mq, ms,
and the ellipsis contributions from the heavy quarks. The trace anomaly thus manifests itself
in the term involving the field strength tensor F4"” and the QCD S-function. Although an
accurate determination of the individual terms in (1.4), especially of the strangeness content
due to mgSs, is still an open problem, the overall hierarchy has been well established and
constitutes an integral result of QCD: the bulk of the nucleon mass is generated by gluonic
self-interactions, while strange and non-strange quarks vie for a distant second place.! In
this way, the mass of matter surrounding us in our everyday life is not generated by the
Higgs mechanism, but by the trace anomaly of the QCD energy-momentum tensor and thus
non-perturbative QCD dynamics in form of the gluon field energy.

1 At present, it is not possible to definitely settle the matter whether strange or non-strange contributions
prevail. We will return to this issue in the context of the pion—nucleon o term in part III of this thesis.
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For lack of a perturbative expansion in the coupling constant, the loop expansion in ayg has
to be substituted by systematic, non-perturbative methods to gain insights into the low-energy
realm of QCD. To this end, three complementary ansétze have been developed over the last
decades: effective field theories, which rely on symmetries and a separation of scales in the
system at hand, dispersion relations, which exploit analyticity and unitarity requirements of
the amplitude describing the system, and lattice QCD, an ab initio method aimed at solving
a discretized version of the theory on a computer. In recent years, substantial progress in our
knowledge of low-energy QCD has been achieved by realizing that frequently the applicability
and accuracy of these techniques can be improved significantly if combined with one another.
In this work, we concentrate on the interplay between effective field theories and dispersion
relations in the description of the dynamics in the pion—nucleon (7N) system and vy — 77 to
pave the way towards a precise understanding of these fundamental processes in low-energy
hadron physics.

The structure of this thesis is as follows: in Sects. 1.1 and 1.2 we give a brief introduction
into effective field theories and dispersion relations. To illustrate the merits of combining
both techniques we discuss the matching of 77 Roy equations and chiral perturbation theory
(ChPT). Part I is devoted to a high-accuracy extraction of the S-wave wN scattering lengths
from hadronic-atom data that relies on ChPT to calculate the required corrections to the 7NV
and pion—deuteron (7d) amplitudes, as well as a determination of the 7N coupling constant by
means of the Goldberger-Miyazawa—Oehme (GMO) sum rule. In Part II we derive a system
of Roy—Steiner (RS) equations for vy — 7w. On the one hand, this process bears several
similarities to 7V scattering and can thus be considered as a first step towards the construction
(and solution) of RS equations for the 7N case. On the other hand, vy — 77 is interesting
on its own, since RS equations in combination with ChPT can be used to derive rigorous
constraints on the two-photon coupling of the ¢ meson and provide a framework to extract
pion polarizabilities from forthcoming low-energy ~v+ — w7 cross-section data. In Part III we
write down a system of RS equations for wIN scattering. We solve the t-channel equations
using one- and two-channel Muskhelishvili-Omnés (MO) methods and apply the results to
perform a full two-channel dispersive analysis of the scalar form factor of the nucleon. Finally,
we lay out a strategy to solve the s-channel equations involving sum rules for the 7N threshold
parameters as well as the hadronic-atom values for the S-wave scattering lengths, and show
how the pion—nucleon ¢ term can be extracted from a full solution of the RS system.

1.1 Effective field theories

The starting point of any effective field theory (EFT) is Weinberg’s conjecture [7] that field
theory has no content besides analyticity, unitarity, cluster decomposition, and the assumed
symmetry principles.? Accordingly, the Lagrangian of the EFT is constructed in terms of the
low-energy degrees of freedom as the most general Lagrangian compatible with the symme-
tries of the theory. The expansion parameter of the EFT will be determined by the ratio of
low- and high-energy scales, so that a good scale separation is crucial for the success of the
EFT. Formally, this follows from the power-counting argument: the effective Lagrangian is
organized as a series of operators suppressed by higher and higher powers in the expansion
parameter, accompanied by a priori unknown low-energy constants (LECs) that parameter-

2Tt has been proven for Lorentz-invariant, anomaly-free theories that the effective Lagrangian can indeed
be derived from the Ward identities of the theory [8].
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ize the influence of high-energy degrees of freedom not explicitly included in the theory and
have to be determined from experiment (or from lattice simulations). Evidently, the smaller
the expansion parameter, the smaller the number of free parameters required for the desired
accuracy, and thus the higher the predictive power. One particular strength of an EFT is
that it relates different physical processes, so that the LECs determined in one process can
subsequently be used to predict another. In addition, the EFT expansion is systematically
improvable by calculating the next order in the power counting, while the parametrical sup-
pression of the first order not included provides an accuracy estimate of the calculation. For
a detailed introduction to the concept of effective field theories we refer to [9].

1.1.1 Chiral symmetry
The Lagrangian of QCD reads

—f - 1 v 92 T
ﬁQCD =q (le - M) q— ZngFy +0327‘r2 Fgch;LL ) (15)

where ¢ = (u,d,s,...)T contains the quark fields and M = diag (my, mq, ms, ...) the quark

masses. The gauge bosons Af (in the adjoint representation of SU(3), a = 1...8) enter
through the covariant derivative

Dt =" — z'g%Ag (1.6)

and the field strength tensor
Fatw = 3“145 - 81}’45 + gfabcAgAZ ) [)‘m )\b] = 22‘fatbc)\c ) (1-7)

where A, are the Gell-Mann matrices and g denotes the coupling constant of QCD as in-
troduced in (1.1). For completeness, we have included in (1.5) also the QCD 6-term, which
involves the dual field strength tensor F4” = %e"”o‘ﬁ Fas and is related to strong CP violation,
although in the following we will put 8 = 0.

Written in terms of left- and right-handed fields

L£7s
dr/L = B q, (1.8)

it becomes manifest that the QCD Lagrangian
_ . _ . _ _ 1 a ppy
Lqgcp = qrildqr + qrilPqr — G Mar — grMaqr — ZFMVFa (1.9)
displays an additional symmetry, i.e. invariance under global rotations in flavor space

qr = Urqr,  qr—Urqr,  Ugpi € U(ng)p/L (1.10)

in the chiral limit where the mass term is switched off. More precisely, these transformations
factorize according to

U(nf)L X U(nf)R — SU(nf)L X SU(nf)R X U(l)v X U(l)A s (1.11)

where U(1)y corresponds to baryon number conservation and U(1)4 is anomalously bro-
ken [10]. Finally, chiral symmetry is realized in the Goldstone rather than the Wigner—Weyl
mode, as the remaining symmetry group is spontaneously broken to its vectorial subgroup

SU(n¢)r, x SU(ng)g = SU(ng)y x SU(ng)a — SU(ng)y . (1.12)
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In practice, chiral symmetry is only meaningful for ny = 2 or ny = 3, while the heavy quarks
are integrated out at low energies. The Goldstone bosons [11] corresponding to the broken
generators of SU(ng)4 can be identified with the pion triplet or the pseudoscalar octet of
pions, kaons, and 7, respectively. Since chiral symmetry is only an approximate symmetry—
the masses of the light quarks are small compared to the typical scale of chiral symmetry
breaking A, ~ 1GeV-—chiral symmetry is also explicitly broken and these mesons actually
acquire a finite mass. In this thesis, we will mainly be concerned with the case ny = 2, where
the mass of the strange quark is fixed at its physical value and only up and down quarks are
retained as dynamical degrees of freedom.

1.1.2 Chiral perturbation theory

Chiral perturbation theory is the effective field theory of strong interactions. First developed
by Weinberg, Gasser, and Leutwyler [7,12,13], it exploits chiral symmetry and provides an
expansion of Green functions in terms of quark masses and soft particle momenta p.> The
effective Lagrangian is constructed as the most general Lagrangian consistent with chiral
symmetry. Its basic building blocks in the SU(2) version of the theory are the pion fields

e (\/7;;_ V?;f) (1.13)

represented by a unitary matrix U(7), e.g. in o-model parameterization

2 .
U(r) = 1—%”%, (1.14)

where 7 are the Pauli matrices and F' denotes the pion decay constant in the chiral limit. In
addition, scalar (s), pseudoscalar (p), vector (v,), and axial-vector (a,) external sources may
be introduced in the covariant derivative

d,U =0,U —ir,U+iUl, , Ty =V, +a,, ly=v,—ay, (1.15)
the field strength tensors
FE = oY — rt —ilr# "], FE =My — 9Vt — 1", 1v] (1.16)

and in
X =2B(s+1ip), s=M-+---. (1.17)

In this way, the leading-order Lagrangian takes the form
oy F?
£ = I(d“UTd“U +x'U+Uty), (1.18)

where (...) denotes the trace in flavor space. An immediate consequence of (1.18) is the
Gell-Mann-Oakes-Renner relation M2 = B(m, +mq) that relates the mass of the pion to the
quark masses and the scalar quark condensate via B = —(gq)/F?. In particular, it suggests
that quark masses be counted as O(p?), resulting in a simultaneous expansion in momenta

3A detailed review of various aspects of ChPT can be found in [14].
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and quark masses.* Counting meson propagators as O(p~2) and loop integrations as O(p?*),
Lorentz invariance dictates that only even powers of p will occur in the series. A given diagram
with L loops and Va,, vertices from the O(p?") Lagrangian can then be assigned a well-defined
chiral dimension

o
v=2+42L+Y 2(n—1)Van, (1.19)

n=1
so that only a finite number of diagrams will contribute at a given order in the chiral expansion,
as required for the power counting to make sense. Finally, the rate of convergence depends on
the expansion parameter p/A,, and thus on the scale of chiral symmetry breaking. Estimates
range from the mass of the lowest-lying resonance to the generic loop factor of a tadpole

diagram [17]

TT5MeV ~ M, S A, S 4nF; ~ 1160 MeV (1.20)

both consistent with A, ~ 1GeV given above.

While originally formulated to describe the interactions of light pseudoscalar mesons, im-
portant generalizations of ChPT concern the single-baryon sector and the coupling to electro-
magnetic interactions. The latter can be achieved relatively straightforwardly by coupling vir-
tual photons to the vector currents in (1.15) and (1.16), and by supplementing the Lagrangian
with operators associated with hard photons [18] (which are required for the renormalization
of UV divergent photon loops). Thus, in particular isospin-violating effects, caused by dif-
ferences in the up- and down-quark mass and electromagnetic interactions, can be addressed
within the same framework in a consistent and systematic way.

In contrast, the extension to the single-baryon sector is hampered by the fact that the
inclusion of baryons adds a new heavy scale to the problem: as explained in the introduction,
the nucleon mass does not vanish in the chiral limit. In particular, no baryon—antibaryon
creation/annihilation will be permitted, so that the effective Lagrangian in the nucleon sector

takes the form
-390, _(p
LN = A vo,v , g <n> , (1.21)

with operators O; covering the space of all structures allowed by chiral symmetry at a given
chiral order. Due to the Dirac algebra associated with the spin of the nucleon also odd
powers in p are permitted, in particular the leading-order contribution enters at O(p). Most
importantly, though, it is no longer guaranteed that the loop graphs obey the naive power
counting rules, since the integrals may pick up momenta p ~ m as well [19]. Several methods
have been proposed to circumvent this problem. In heavy-baryon ChPT [20], the nucleon
fields are subject to a Foldy—Wouthuysen transformation in order to eliminate the nucleon
mass from the leading Lagrangian. Taken together with the corresponding 1/m corrections,
this procedure leads to a two-fold expansion in p/A, and p/m. More recently, baryon ChPT
has also been formulated in a manifestly covariant way. The basic idea amounts to imposing a
different renormalization condition for loop integrals that separates and subtracts the power-
counting-violating part, which is regular in the quark masses, in favor of a redefinition of LECs
(for more details, see [21-24]). In all variants of this approach, certain higher-order terms are
resummed, however, the heavy-baryon result will always be reproduced in the limit of a strict
chiral expansion—up to a redefinition of LECs.

4The modifications necessary if the leading contribution to the pion mass were not generated by the quark
condensate are discussed in [15]. However, by now it has become apparent that the quark condensate is indeed
the leading order parameter of the spontaneous breaking of chiral symmetry, see e.g. [16].
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O

Figure 1.2: Schematic of the calculation of observables in the wd system in ChEFT.
Solid /dashed lines denote nucleons/pions, the blobs refer to the deuteron wave function, and
the box to the scattering operator O.

1.1.3 Chiral effective field theory

Chiral effective field theory (ChEFT) is an extension of ChPT to systems with more than one
nucleon, pioneered by Weinberg in [25,26] and further refined in [27-30]. The main challenge
in the few-nucleon system consists of accounting for the non-perturbative nature of nucleon—
nucleon (NN) interactions, which stands in marked contrast to the perturbative nature of
Goldstone-boson dynamics that underlies ChPT. The basic idea amounts to splitting a given
diagram into so-called NN reducible and irreducible pieces, where only the irreducible part
determines its contribution to the NN potential V. Over the last two decades, this idea
has enabled a systematic construction of high-precision NN potentials consistent with chiral
symmetry and thus a model-independent approach to nuclear forces, see [31] for recent reviews.

Furthermore, ChEFT is a powerful tool to describe the interaction of light nuclei with
pions and photons. As a first step, one solves the Lippmann—Schwinger equation for the wave

function ¥
1

V) = GoV|¥ Gyo= —F—
W) =GoVIY) . Go=

(1.22)
with Hamilton operator H and total energy E (shifted by a positive infinitesimal imaginary
part). An observable can then be calculated by convolving the chiral expansion of the cor-
responding operator O with the wave function as determined from the Lippmann—Schwinger
equation (cf. Fig. 1.2 for the example of wd scattering). While originally wave functions derived
from phenomenological potentials were employed (“hybrid approach”) [26], consistency of the
method requires that the chiral expansion of O and the potential underlying the calculation
of the wave functions be treated in exactly the same way, most notably that they be carried
out to the same chiral order.

Finally, the non-perturbative nature of the NN system renders renormalization a highly
contentious subject (see [32] for a sample of attitudes towards this issue). Nonetheless, the
coupling of electromagnetic interactions proceeds in close analogy to ChPT, which makes
ChEFT the ideal tool to study the m~d scattering length in a systematic manner including
isospin-violating effects, as required for a high-accuracy extraction of the 7N scattering lengths
from hadronic atoms. As far as renormalization is concerned, we will take a pragmatic point
of view and quote the scatter of wave-function integrals evaluated with various chiral and
phenomenological wave functions as uncertainty estimate of the calculation.’

5The numerical evaluation of the wave-function averages is not part of this thesis. The corresponding
integrals will be taken from [33].



8 Chapter 1. Introduction

1.2 Dispersion relations

Since ChPT is an effective field theory, the chiral expansion of a given quantity can, in prin-
ciple, be systematically improved by including higher and higher orders in the calculation.
However, the effect of degrees of freedom not included in the theory is parameterized in terms
of LECs, whose number rapidly increases at subleading orders. Moreover, the strict chiral ex-
pansion is only valid at low energies, which, especially in the case of low-lying resonances, can
significantly limit the range of applicability of ChPT. In recent years, it has become apparent
that the predictive power of chiral symmetry can be vastly increased by combining ChPT
with dispersive techniques, which exploit analyticity to arrive at a representation that relates
the amplitude at an arbitrary point in the complex plane to an integral over its imaginary
part. While the latter can be constrained by the respective unitarity relation, convergence
of the dispersive integral often requires a certain number of a priori undetermined subtrac-
tion constants that, in turn, can frequently be pinned down by matching to ChPT. Once the
subtraction constants are fixed, a dispersive representation provides the ideal framework to
reliably perform an analytic continuation into the complex plane, which becomes of funda-
mental importance for broad resonances situated far away from the real axis. In the remainder
of this section, we will illustrate these ideas for the case of wm scattering.

1.2.1 Fixed-t dispersion relations

For simplicity, we consider the process m(p1) + m(p2) — m(p3) + m(p4) (ignoring isospin labels
for the time being) with Mandelstam variables

s=@+p2)?, t=@i—p3)?, u=(p—p). (1.23)
On the mass shell, they fulfill the relation
s+t4+u=4M?, (1.24)

with the result that the scattering amplitude T'(s,t) reduces to a function of only two inde-
pendent variables. The basic assumption in the construction of dispersion relations can be
summarized as the principle of maximal analyticity: the amplitude T'(s,t) is represented by
a complex function that exhibits no further singularities except for those required by general
principles such as unitarity and crossing symmetry. The amplitude in the physical regions of
the Mandelstam plane (cf. Fig. 1.3) is given as a particular limit of T'(s,t), e.g. for fixed t = tg
the physical s-channel amplitude on the right-hand cut is defined as the limit from the upper
half of the complex s-plane

T(S, to) = 11_I)I(1) T(S + i€, to) . (1.25)

These assumptions can be justified in the framework of perturbation theory, e.g. the definition
of the physical limit (1.25) corresponds to the ie prescription in Feynman propagators (see,
e.g., [34]). We will comment below on the issue to what extent analyticity can even be
vindicated from axiomatic field theory.

Once analyticity is established, the powerful machinery of complex analysis may be in-
voked, primarily by means of Cauchy’s integral formula. The corresponding integral equation
for the scattering amplitude, itself a function of the external kinematics (s,t,u), will involve
integrals over the internal kinematics (s',t',u’), which, a priori, can take arbitrary values in
the Mandelstam plane. However, in order to write down a single-variable integral equation
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Figure 1.3: Mandelstam plane for 77 scattering. The filled areas mark the s-, ¢-, and u-channel
physical regions, the red dashed line the subthreshold triangle, and the arrows the orientation
of the plane in t and v = s — u.

the allowed range of these internal variables needs to be restricted appropriately. The stan-
dard choice that the on-shell condition (1.24) be valid for the internal kinematics as well is
universal to all dispersion relations, while the second condition, relating external and internal
kinematics, distinguishes different kinds thereof, e.g. the fixed-t version is characterized by
t' =t (but, in principle, any path through the Mandelstam plane would be adequate). In this
case, Cauchy’s theorem yields

T(s,t) = — %:ds’T(s/’t), (1.26)

271 s'—s

where the integration proceeds along the contour C as indicated in Fig. 1.4. If T'(s’,t) vanishes
for |s'| — oo, the contribution from the circle will vanish as well as soon as its radius is taken
to infinity. The remaining integration around the cuts can be expressed in terms of the
discontinuity

discT(s',t) = lim [T(s" + i€, t) — T(s' —ie, t)] , (1.27)

e—0

which, by virtue of hermitian analyticity [35], directly follows from unitarity. More precisely,
hermitian analyticity—itself a fundamental consequence of the CPT theorem of quantum
field theory—states that if the amplitude Ty, for a process a — b is the boundary value
of an analytic function from above, cf. (1.25), the amplitude 7}, will be given by the limit
of the same function from below. For time-invariant interactions this property permits the
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Figure 1.4: Integration contour C in the complex s'-plane for fixed ¢ = 0. The grey bands
denote left- and right-hand cuts, respectively, and the black dots the corresponding branch
points.

identification®
discT(s',t) = 2iIm T'(s',t) , (1.28)

and thus leads to

T(s,t):l/oods'{ ! + ! }ImT(s',t). (1.29)

7r s'—s s—u
M2
In practice, the asymptotic behavior of T'(s,t) for large |s'| does not allow for an un-
subtracted dispersion relation, since the contribution from the contour at infinity cannot be
discarded. Provided that T'(s',t) does not grow faster than a polynomial, this obstacle may

be overcome by introducing so-called subtractions, i.e. by considering dispersion relations not
for T'(s',t), but for T'(s',t)/P,(s") instead, where

Po(s) =[](s' = s1) (1.30)

i=1

involves the subtraction points {s;}, and n is chosen sufficiently large to ensure convergence
of the dispersive integral. In the application of Cauchy’s theorem, the poles introduced by
dividing by P,(s’) can be dealt with using the residue theorem. Eventually, n additional
powers of s appear in the denominator of (1.29), but at the same time one also incurs a
subtraction polynomial of degree n — 1 with a priori unknown coefficients, which, in the case

5We exclude the possibility that a particle in the initial or final state of the reaction is kinematically allowed
to decay into the other particles involved. In such a case, the discontinuity is not purely imaginary and cannot
be simply related to the imaginary part [36].
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of fixed-t dispersion relations, will actually depend on the value of ¢ chosen. Therefore, we
will refer to these coefficients as subtraction functions in the following.

The maximal number of subtractions necessary for the dispersive integrals to converge and
the contour at infinity to be irrelevant is restricted by the Froissart-Martin bound |37, 38|,
which requires the total cross section not to increase faster than log?s for s — oo, and, by
means of the optical theorem, implies that at most two subtractions are needed.” However,
one may perform further subtractions to reduce the sensitivity of the integrals to the high-
energy regime, where the imaginary part is often poorly known, of course at the expense of
introducing additional undetermined parameters. Subtracting twice at s = 0, (1.29) becomes

T s u?
T(s,t) = c(t) —i—% / d8/|:8/2(8/ —5) + (5 —u) ImT(s',t) . (1.31)
aM2

Here, we have taken advantage of crossing symmetry to discard terms proportional to s — u
in the subtraction polynomial, while terms proportional to s +u = 4M?2 — ¢ can be absorbed
into c(t). Indeed, the validity of a twice-subtracted dispersion relation for |t| < 4M2 has been
established from axiomatic field theory [39], which together with [38] for ¢ < 0 rigorously
vindicates (1.31) for all t < 4M?2.

Finally, one can try to go another step forward and drop the restriction of single-variable
dispersion relations (keeping the internal kinematics on-shell). The corresponding assumption
that T'(s,t) can be expressed in terms of double-spectral density functions pgy, pr, and pst
by double dispersive integrals of the form

- e a2

pst(s t)
+7‘r //dsdtm, (1.32)

where the integration ranges extend over those regions in the Mandelstam plane where the
corresponding double-spectral functions have support, is referred to as Mandelstam analytic-
ity [40]. In either case, this concept can be justified in perturbation theory [40,41], but while
for w7 scattering the validity of the Mandelstam representation can at least be derived rigor-
ously in a finite domain [42], for 7N scattering only the uniqueness of amplitudes satisfying
Mandelstam analyticity has been proven [43].

1.2.2 Roy equations

Roy equations are a coupled system of partial-wave dispersion relations (PWDRs) that re-
spect analyticity, unitarity, and crossing symmetry of the scattering amplitude [44]. The
starting point in the construction of these equations is the twice-subtracted fixed-¢ dispersion

"The appearance of the logarithm may be understood intuitively from a classical example already given
in [37]: suppose, the scattering of two particles were described by a Yukawa-type interaction with probability
density function P(r) = Poe™"" and typical range b. Suppose further, that the energy dependence of the
interaction probability were limited by a polynomial in s, i.e. P(s,7) < Py(s/s0)" e™®". Then, the interaction
would be exponentially suppressed for r > 1o = N/blogs/so and the cross section bounded by ¢ < 7rg =
7N?/b% log? s/s0.



12 Chapter 1. Introduction

N '
N - - '

N s ~ e
\:/ \:/
7 N 7 N

e ~ - N

~ -
7 N

Figure 1.5: Elastic unitarity for m7 scattering. Dashed lines denote pions and the spheres the
w7 scattering amplitude.

relation (1.31). First, Roy realized that the subtraction function ¢(t) may be determined by
means of s <> t crossing symmetry

o0
1 (4M?2 —t)?
T(0,t) = c(t) + = ds’ ut ImT(s',t
(7) C()+7T/ 8512(51_4M7%+t)m (87)
4M2
% 2 (4M2 — 1)?
1 t 4 —t
=T(t,0) = ¢(0 — ds’ T Im7(s',0) . 1.33
(t,0) C()+7r/ S[3'2(3'—t)+s'2(s’—4M§+t) m (s, 0) ( )
4M2

Second, the remaining subtraction constant ¢(0) is intimately related to the amplitude at
threshold, and thus the scattering length, via

o0
1 16M2
2 _ / /
T(AMZ,0) = c(0) + — / ds eIy — g)ImT(s ,0) . (1.34)

42

Third, the imaginary part of the amplitude that appears inside the dispersive integrals is
expanded in partial waves, and finally the partial-wave projection of the resulting equation
performed. Retrieving isospin indices again, one thus arrives at a system of integral equations
for the 77 amplitudes t1(s)

th(s) ) + Z Z / ds' K10, (s, ") Im ¢4, (s') (1.35)

=0J'= 04M72r

that relates a partial wave of given angular momentum J and isospin I to all other partial
waves via analytically calculable kinematic kernel functions K f,/,(s,s’ ). These kernels are
composed of a singular Cauchy kernel and a regular remainder according to

' 0y 011 -
Ki[]'( /):7- KJJ’( ) (1.36)

s’ — s —1e

In particular, the construction that led to (1.35) ensures that the t}(s) automatically fulfill the
analytic properties expected for the partial waves: while the Cauchy kernel implements the
right-hand cut, K 7 J/(s s’) will incorporate all analytic structure required from the left-hand
cut. The only free parameters of the approach are hidden in the subtraction term k{,(s) that
depends on the S-wave scattering lengths a8 and ag. As long as elastic unitarity holds, i.e.
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Figure 1.6: Box graphs constraining the boundaries of the double-spectral functions for mm
scattering.

only w7 intermediate states enter the unitarity relation (see Fig. 1.5), the mm partial waves
may be parameterized as

26%(s) _ 1 AM2
er =1 o(s) =/1— —Z | (1.37)

ty(s) = 2io(s) s

with the result that the Roy equations (1.35) reduce to coupled integral equations for the
phase shifts 07 (s).

An important issue is the range of validity of the Roy equations. While the convergence
of the fixed-t dispersion relations is guaranteed for all ¢+ < 4M2 [37-39], the reduction to
partial waves imposes further constraints on the domain of validity of the system. As a
matter of fact, the partial-wave expansion of the imaginary part in the dispersive integral
converges only for scattering angles 2’ that lie within the large Lehmann ellipse [45]. It has
been derived from axiomatic field theory that this condition is met for all s’ € [4M2,00) if
—28M2 < t < 4M? [42]. By virtue of Bose symmetry, the partial-wave projection of the
equations can be restricted onto 0 < z < 1, which translates into a range in ¢ of

— 4M?
_ETRM o4 <. (1.38)

Consequently, the Roy equations can be established from axiomatic field theory up to [44]
Smax = 60M2 = (1.08 GeV)? . (1.39)

It is crucial to observe that the derivation of this result heavily relies on the fact that internal
and external kinematics are related by ¢’ = ¢, which allows for the translation of constraints
originating from the Lehmann ellipse into a range of convergence in s. This is the essential part
of the derivation that needs to be generalized in the analysis of different kinds of dispersion
relations.

Since rigorous results from axiomatic field theory are rarely available for processes other
than 77 scattering, we will assume that the analytic properties of the amplitude are correctly
reproduced by Mandelstam analyticity in Parts II and III of this thesis. Therefore, it is
instructive to compare the consequences of this relaxed assumption also for the 77 case to the
axiomatic-field-theory result (1.39). The central objects of the analysis are the boundaries of
the support of the double-spectral functions that determine the integration range in (1.32).
These boundaries can be inferred from the box diagrams depicted in Fig. 1.6, which are to
be understood as generalizations of four-propagator box diagrams (see, e.g., [46]), with one
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or more lines replaced by a particle whose mass is equal to the input mass of the lowest-lying
intermediate state accessible to the interacting particles.

Due to crossing symmetry, it suffices to investigate the boundary of pg. From diagrams
(I) and (II) in Fig. 1.6 we find that this boundary is defined by

bi(s,t) = t(s —4M?) —16M?2s =0,
bii(s,t) = t(s — 16M2) — 4M?*s =0 , (1.40)

and thus obeys
t = Ty(s) = min {Ti(s), Tu(s) } , (1.41)

where T1 and Ty; follow from solving (1.40) for ¢. The corresponding double-spectral regions,
defined as the portions of the Mandelstam plane that obey s+t +u = 4M? and where any of
the functions pst, psu, Pt has support, are shown in the left panel of Fig. 1.7. By definition,
the line in the Mandelstam plane corresponding to a fixed value of ¢ must not enter the double-
spectral regions if a single-variable dispersion relation with this value of ¢ is supposed to hold.
Moreover, the maximally allowed value of 2’ becomes

QTSt(S/)

1.42
s’ —4AM2’ (142)

Zmax = 1+
and hence the Lehmann-ellipse constraint in the form —z/ , < 2’ < z] . restricts the allowed
values of ¢ to

To(s') <t < Tu(s),
TL(s) =4M2 — ' —Tyu(s'), Vs €[4M2 c0) . (1.43)

As illustrated in Fig. 1.7, both constraints actually yield the same range —32M2 <t < 4M2,
and thus
Smax = 68M2 = (1.15GeV)? | (1.44)

slightly larger than (1.39). Irrespective of the analyticity assumptions, the range of validity
of the Roy equations can be extended significantly, at least up to smayx = 165M2, if dispersion
relations in the manifestly crossing-symmetric variables

T = st+tu-+us, y = stu, (1.45)

instead of fixed-t dispersion relations are employed [47], however, at the expense of a substan-
tial increase in complexity of the equations.

Due to the finite domain of validity, the Roy equations cannot be used up to infinity.
Above a certain energy, referred to as the matching point s, input from experiment for the
imaginary parts of the partial waves is required, so that in practice the equations are solved
between threshold and s,,. Furthermore, the partial-wave expansion will be truncated at a
certain angular momentum J and higher partial waves treated on the same footing as the
lower partial waves above s;,. In fact, the existence and uniqueness of a solution depends
on the value of the phases §; of the partial waves dynamically included in the calculation at
the matching point [48-50]. More precisely, the situation is characterized by the multiplicity
index m, which is given by

ngmm mi:{
i

[MJ if 6;(sm) > 0,

s

(1.46)
-1 if 52‘(8m) <0,
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Figure 1.7: Double-spectral regions (left) and allowed range of ¢ (right) for w7 scattering. The
red lines refer to t = 4M?2 and t = —32M?2, respectively.

where |z]| denotes the largest integer < x and we have assumed that 6;(sy,) > —m/2 for all
partial waves. If m = 0, a unique solution exists, while for m > 0 the neighborhood of each
solution contains an m-parameter family of solutions and for m < 0 only for a specific choice
(constrained by |m/| conditions) of the input, i.e. subtraction constants, imaginary parts above
Sm, and higher partial waves, a solution can be found.

1.2.3 Matching to chiral perturbation theory

Shortly after Roy’s article [44], a comprehensive phenomenological analysis of the nm data
available at that time was performed using the Roy-equation formalism [