Studien zur Biosynthese des Hormaomycins

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Max Crüsemann

aus Bielefeld

Universität Bonn

2012

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn.

Gutachter:

1. Prof. Dr. Jörn Piel

2. Prof. Dr. Gabriele König

3. Prof. Dr. Hans-Georg Sahl

4. Prof. Dr. Gabriele Bierbaum

Tag der Promotion: 20.07.2012

Erscheinungsjahr: 2012

Danksagung

Zuerst möchte ich Prof. Jörn Piel sehr herzlich danken, dass er mich mit diesem sehr interessanten und abwechslungsreichen Projekt betraut und in seine Arbeitsgruppe aufgenommen hat. Besonders gefallen hat mir die vertrauensvolle, konstruktive Atmosphäre, und dass er immer ein offenes Ohr und Zeit für Fragen und Diskussionen hatte.

Prof. Gabriele König, Prof. Hans-Georg Sahl und Prof. Gabriele Bierbaum danke ich für die Übernahme der weiteren Gutachten dieser Arbeit. Ihnen möchte ich stellvertretend für die gute Atmosphäre in der Forschergruppe FOR 854 und für wertvolle Anregungen und Diskussionen in den Seminaren danken.

Ich danke Dr. Michael Freeman, Christoph Kohlhaas, Max Helf und Katja Jensen für Korrekturen von Teilen dieser Arbeit und wichtige Tipps.

Besonders möchte ich der gesamten Arbeitsgruppe Piel und genauso der von Dr. Tobias Gulder für die großartige Zeit im und vor allem außerhalb des Labors bedanken, ihr seid einfach die besten Kollegen, die man sich vorstellen kann!!!

Extra erwähnen möchte ich Christoph Kohlhaas, Frank Eggert, Sarah Frank, Petra Pöplau, Annette Kampa, Ursula Steffens, Katja Jensen, Fritzi Schaefers und René Richarz, die nicht nur Arbeitskollegen, sondern richtig gute Freunde geworden sind, und die ich hoffentlich alle immer mal wieder treffen und ein Bier (oder zwei?) mit ihnen trinken werde.

Ich möchte Xiaofeng Cai für die großartige Zusammenarbeit am Hormaomycinprojekt danken, wir sind ein super Team! Dr. Michael Freeman danke ich für die sehr vielen guten praktischen Tipps zur Proteinexpression.

Ein rieseiger Dank geht an die gesamte Massenspektrometrieabteilung des chemischen Instituts unter Dr. Marianne Engeser. Frau Sondag, Frau Schocher und Frau Peters-Pflaumbaum haben unzählige Proben für mich gemessen, ohne sie wäre diese Arbeit nicht möglich gewesen.

Ich möchte Christoph Kohlhaas und Nik Schwarz herzlich für die Synthesen von Propenylprolin und Ethinylprolin und die Bereitstellung für meine Assays danken.

Vielen Dank auch an meine Praktikanten während der letzten Jahre: Shane Heim, Desirée Schubert, Elias Shaaya und Zijian Wu für die große Hilfe bei den Experimenten und viel Spaß bei der Arbeit.

Weiterhin danke ich Dr. Harald Groß und Dr. Till Schaeberle für die guten Kooperationen, für die Hilfe beim Fermentieren und für viele Diskussionen und Anregungen.

Prof. Alfonso Mangoni und Dr. Roberta Teta danke ich sehr herzlich für die Möglichkeit, nach Neapel zu gehen, für das Beibringen von vielen NMR-Kenntnissen, für die sehr gute Zusammenarbeit und für die tolle Zeit am Institut in Neapel. Mille Grazie!

Vielen Dank an Roberto Langella, Concetta Ambrosino und Maria Marrazzo für die große Hilfe bei den HPLC-Isolierungen in Neapel und die nette Atmosphäre im Labor. Ciao a tutti!

Ich danke meiner Katrin für die Unterstützung während der Arbeit, die schönste Zeit meines Lebens (bis jetzt) und dafür, dass wir weiter alles zusammen machen!

Zuletzt möchte ich meinen Eltern für die Unterstützung und alles andere danken. Diese Arbeit ist für euch.

<u>Inhalt</u>

1 Zusammenfassung	1
2 Abstract	3
3 Einleitung	5
3.1 Biologie und Signalstoffe der Streptomyceten	5
3.2 Nichtribosomale Peptidsynthetasen (NRPS)	10
3.2.1 Adenylierungsdomänen (A-Domänen)	12
3.2.2 Andere Domänen der NRPS	15
3.2.3 Strukturelle Einsichten in NRPS	18
3.2.4 MbtH-artige Proteine	20
3.3 Prinzipien zur Erzeugung neuer Naturstoffe	23
3.3.1 Vorläufer-dirigierte Biosynthese und Mutasynthese an NRPS	23
3.3.2 Kombinatorische Biosynthese an NRPS	25
3.4 Cyclopropyl- und Nitrogruppen in der Natur	28
3.5 Hormaomycin und der hrm-Gencluster	29
4 Zielsetzung der Arbeit	36
5 Ergebnisse und Diskussion	39
5.1 Studien zur Biosynthese von Nitrocyclopropylalanin[(3-Ncp)Ala]	39
5.1.1 Fütterung von (3-Ncp)Ala zu einer knock-out Mutante von hrmI	40
5.1.2 Bioinformatische Einordnung von HrmI und HrmJ	41
5.1.3 In vivo-Experimente zur (3-Ncp)Ala-Biosynthese	43
5.1.4 Heterologe Expression und Charakterisierung von HrmJ	43
5.2 Studien zur Biosynthese von Propenylprolin[(4-Pe)Pro]	47
5.2.1 Heterologe Expression und kinetische Charakterisierung von HrmF	49
5.2.2 In vivo Experimente zur Untersuchung der Funktion von HrmC	52
5.2.3 Suche nach einem <i>lmbX</i> -Homolog in <i>Streptomyces griseoflavus</i> W-384	53
5.3 Studien zur Biosynthese von Chlorhydroxypyrrolcarbonsäure (Chpca)	56
5.3.1 Heterologe Expression und Charakterisierung von HrmK	57
5.3.2 Heterologe Expression und Charakterisierung von HrmL	60
5.3.3 Beladung von HrmL mit Prolin	63
5.3.4 In vivo-Experimente zur Untersuchung der Funktion von HrmN	64
5.4 In vitro-Studien an der Hormaomycin-NRPS	68
5.4.1 Heterologe Expression der Hormaomycin A-Domänen und Coexpression mit HrmR	69
5.4.2 Konstruktion und heterologe Expression fusionierter A-Domänen	73
5.4.3 Modellierung der fusionierten A-Domänen nach PheA	78
5.4.4 Massenspektrometrische Charakterisierung der nativen und fusionierten A-Domänen	80

5.5 Biologische Studien an Hormaomycin	100
5.5.1 Fermentation von Hormaomycin	100
5.5.2 Isolierung und Strukturaufklärung natürlicher Hormaomycinanaloga	101
5.6 Zusammenfassung der Ergebnisse und Ausblick	119
6 Material und Methoden	124
6.1 Vektoren und Organismen	124
6.1.1. Vektoren und Plasmide	124
6.1.2 Organismen	125
6.2 Medien und Puffer	125
6.2.1 Medien	125
6.2.2 Puffer	127
6.3 Mikrobiologische Techniken	128
6.3.1 Stammhaltung in Kryokulturen	128
6.3.2 Kultivierung von Bakterien	128
6.3.3 Konzentrationsbestimmung von Bakterienkulturen	129
6.3.4 Transformation	129
6.3.4.1 Herstellung elektrisch kompetenter Zellen	129
6.3.4.2 Elektroporation	129
6.3.4.3 Herstellung chemisch kompetenter Zellen	130
6.3.4.4 Chemische Transformation	130
6.3.5 Blau/Weiß-Selektion auf transformierte positive Klone	130
6.4 MolekularbiologischeTechniken	131
6.4.1 Polymerase-Kettenreaktion (PCR)	131
6.4.1.1 Kolonie-PCR	132
6.4.1.2 Fusions-PCR	132
6.4.1.3 Verwendete Oligonucleotide (Primer)	133
6.4.1.4 Reinigung von PCR-Produkten	135
6.4.2 DNA-Isolierung	135
6.4.2.1 Isolierung von Plasmid-DNA aus E. coli	135
6.4.2.2 Isolierung von genomischer DNA aus Pseudomonas fluorescens	136
6.4.2.3 Isolierung von genomischer DNA aus Streptomyces	136
6.4.3 Agarose-Gelelektrophorese	136
6.4.4 DNA-Isolierung aus Agarosegelen	137
6.4.5 Sequenzierung	137
6.4.6 Restriktionspaltung von DNA	138
6.4.7 Dephosphorylierung von Vektoren	138
6.4.8 Ligation	138

6.4.9 Klonierung von Plasmiden	138
6.4.9.1 T/A-Klonierung von PCR-Fragmenten ²⁷⁸	138
6.4.9.1.1 Konstruktion eines T/A-Klonierungsvektors	139
6.4.9.1.2 T/A-Klonierung	139
6.4.9.2 Klonierung von in vitro-Expressionskonstrukten in E. coli	140
6.4.9.3 Konstruktion von Coexpressionsstämmen in E. coli	141
6.4.9.4 Klonierung von in vivo-Expressionskonstrukten in Pseudomonas fluorescens	142
6.5 Proteinexpression, Proteinreinigung und Proteinanalytik	142
6.5.1 Alignments zur Festlegung des Leserahmens	142
6.5.2 Proteinexpression	143
6.5.3 Zellaufschluss	143
6.5.4 Aufreinigung von His-Tag-Fusionsproteinen	143
6.5.5 Entsalzung und Aufkonzentrierung	144
6.5.6 TCA-Präzipitation	144
6.5.7 SDS-Polyacrylamidgelelektrophorese (SDS-PAGE)	144
6.5.8 Proteinkonzentrationsbestimmung	145
6.5.8.1 Bradford-Assay	145
6.5.8.2 SDS-PAGE-Absorptionsmessungen	146
6.5.9 Massenspektrometrische Untersuchung von Proteinen	147
6.5.9.1 Probenvorbereitung	147
6.5.9.2 MALDI-TOF-TOF-MS	147
6.5.10 Proteinaufreinigung mit FPLC	147
6.5.11 Lagerung von Proteinen	147
6.6 In vitro-Enzymassays	148
6.6.1 [γ- ¹⁸ O ₄]-ATP-Assay	148
6.6.1.1 Durchführung des Assays	148
6.6.1.2 Massenspektrometrische Analytik des Assays	148
6.6.2 Assays zur Bildung von (3-Ncp)Ala aus Lysin	149
6.6.2.1 Assay von HrmJ	149
6.6.2.2 Derivatisierung der Aminosäuren	149
6.6.2.3 HPLC-Analytik der Assays	149
6.6.3 Kinetische Charakterisierung von HrmF	150
6.6.4 PCP-Beladungsassay von HrmK/HrmL	150
6.7 In vivo-Proteinexpression und Analytik	150
6.7.1 In vivo-Proteinexpression von Biosynthesegenen	150
6.7.2 Aufarbeitung der Zellen und Extraktion	150
6.7.3 HPLC-Analytik von Enzymexpressionen	151

6.7.4 HPLC-HRMS von Enzymexpressionen	151
6.8 Fermentation von Streptomyces griseoflavus W-384	151
6.9 Analytik des HrmB-Überexpressionsextraktes	152
6.9.1 Analytische und präparative Auftrennung des Extraktes	152
6.9.2 Massenspektrometrie von Hormaomycin und Analoga	153
6.9.3 NMR-Spektroskopie von Hormaomycin und Analoga	153
6.10 Verwendete Chemikalien	153
6.11 Verwendete Geräte und Materialien	156
7 Abkürzungsverzeichnis	159
8 Literatur	162
9 Anhang	181
9.1 Plasmidkarten	181
9.2 Alignments und Proteinmodelle	184
9.3 Massenspektren und zusammenfassende Tabellen	189
9.4 HPLC- und FPLC-Chromatogramme	196
9.5 NMR-Spektren	199
10 Publikationen	215
11 Lebenslauf	216
12 Selbstständigkeitserklärung	217

Abbildungsverzeichnis

Abb. 3-1:	Einige medizinisch verwendete Stoffwechselprodukte von Streptomyceten	5
Abb. 3-2:	Der Lebenszyklus von Streptomyceten	6
Abb. 3-3:	Die Regulation der Streptomycinbiosynthese und der morphologischen Differenzierung durch den A-Faktor	7
Abb. 3-4:	Niedermolekulare Signalstoffe in Streptomyceten	9
Abb 3-5:	Einige medizinisch eingesetzte nichtribosomale Peptide	10
Abb. 3-6:	Die Biosynthese des Tyrocidins (18) an der Tyrocidinsynthetase	11
Abb. 3-7:	Aktivierung (a) und Übertragung (b) der einzubauenden Aminosäure durch die A-Domäne.	13
Abb. 3-8:	Posttranslationale Modifizierung eines PCP durch die PPTase	15
Abb. 3-9:	Peptidbildung durch die Kondensationsdomäne (C)	16
Abb. 3-10:	(a) Epimerisierung durch die Epimerasedomäne (E), (b) Zyklisierung zweier Aminosäuren durch die Zyklisierungsdomäne (Cy) am Beispiel der Thiazolinbildung	17
Abb. 3-11:	Die Übertragung des Peptids auf die Thioesterasedomäne und Ablösung durch a) Hydrolyse oder b) intramolekularen Angriff	17
Abb. 3-12:	Reaktionszyklus der PCP- und A-Domänen	19
Abb. 3-13:	Das Terminationsmodul der Surfactin-NRPS	19
Abb. 3-14:	Tertiärstruktur des MbtH-artigen Proteins aus Pseudomonas aeruginosa	21
Abb. 3-15:	Schematische Dastellung der Mutasynthese	24
Abb. 3-16:	Die Familie der calcium-dependent antibiotics (CDAs) (20)	25
Abb. 3-17:	Daptomycin (14)	27
Abb. 3-18:	Ausgewählte Naturstoffe mit Cyclopropylgruppen: 2-(1-Methylcyclopropyl)- glycin (21), Ptaquilosid (22), U-106305 (23)	29
Abb. 3-19:	Ausgewählte Naturstoffe mit Nitrogruppen: Chloramphenicol (24), Pyrrolnitrin (25), Aureothin (26)	29
Abb. 3-20:	Hormaomycin (13) und seine Bausteine	30
Abb. 3-21:	Durch Vorläufer-dirigierte Biosynthese inkorporierte Analoga der Vorstufen von Hormaomycin (13)	31
Abb. 3-22:	Der hrm-Gencluster	32
Abb. 3-23:	Die Assemblierung von Hormaomycin an der Hormaomycin-NRPS	33
Abb. 5-1:	2S-(49); 2R-(50) 3-(trans-2'-Nitrocyclopropyl)alanin, Belactosin A (51)	39
Abb. 5-2:	Postulierte (3-Ncp)Ala-Biosynthese	39
Abb. 5-3:	Agarplatte von Arthrobacter crystallopoietes mit Extrakten von ∆hrmI, ∆hrmI+(3-Ncp)Ala (27), Wildtyp (Hrm) und (3-Ncp)Ala (27)	40
Abb. 5-4:	Katalysierte Reaktion der Isoleucin-4-Hydroxylase	41
Abb. 5-5:	Katalysierte Reaktionen (a) und aktives Zentrum (b) von Fe(II)/α- Ketoglutarat-abhängigen Oxygenasen	42

Abb. 5-6:	Katalysierte Reaktion von PqqC	42
Abb. 5-7:	SDS-PAGE-Gel (15%) von HrmJ	44
Abb. 5-8:	Die Derivatisierung von Lysin (58) mit Dansylchlorid (67)	44
Abb. 5-9:	Vergleich der HPLC-Chromatogramme des HrmJ-Assays nach Derivatisierung, Methode 1	45
Abb. 5-10:	Vergleich der HPLC-Chromatogramme des HrmJ-Assays nach Derivatisierung, Methode 2	45
Abb. 5-11:	Oben: Ausschnitt aus dem HR-ESI Massenspektrum (Positiv-Modus) des aufgefangenen neu enstandenen Peaks aus Abb. 5-11. Unten:theoretisches Massenspektrum des postulierten Oxim-Intermediates 40 aus der (3-Ncp)Ala- Biosynthese.	46
Abb. 5-12:	Übersicht über die postulierte Biosynthese von (4-Pe)Pro (69) und dessen Homologe aus den Biosynthesen von Anthramycin, Sibiromycin, Tomaymycin und Lincomycin.	48
Abb. 5-13:	Reaktionsmechanismus von HrmF	48
Abb. 5-14:	Coenzym $F_{420}(76)$	49
Abb. 5-15:	SDS-PAGE-Gel (12%) von HrmF	50
Abb. 5-16:	Michaelis-Menten-Kurve von HrmF mit L-DOPA (71)	51
Abb. 5-17:	Hanes-Woolf-Kurve der Reaktionskinetik von HrmF	51
Abb. 5-18:	Akzeptierte alternative Substrate von HrmF	52
Abb. 5-19:	Methylübertragung durch S-Adenosylmethionin (87) auf a) Hydroxygruppe b) Aminogruppe c) nukleophilen Kohlenstoff	53
Abb. 5-20	Ausschnitt aus dem HPLC-HRMS-Chromatogramm der Umsetzungen von HrmF und der Coexpression von HrmC und HrmF mit L-DOPA (71).	54
Abb. 5-21:	Ausschnitt aus dem Massenspektrum des Peaks bei a): 11,8 min (HrmF) bzw. b): 11,3 min (HrmC+HrmF) aus Abb. 5-20.	55
Abb. 5-22:	Die putative Chpca-Biosynthese	57
Abb. 5-23:	Generierung eines neuen Clorobiocinanalogs durch HrmQ	57
Abb. 5-24:	SDS-PAGE-Gel (15%) von der Coexpression von HrmK/HrmR	58
Abb. 5-25:	MALDI-TOF-Messung von isoliertem His8-HrmK	58
Abb. 5-26:	Getestete Substrate von HrmK: Prolin und Analoga	59
Abb. 5-27:	Vergleich der Massenspuren der Umsetzung von HrmK mit verschiedenen Substraten im $[\gamma^{-18}O_4]$ -ATP-Assay (vgl. Tab. 9-1)	60
Abb. 5-28:	Aktivierung verschiedener Substrate durch HrmK im $[\gamma^{-18}O_4]$ -ATP-Assay.	60
Abb. 5-29:	Phosphopanthetheinylierung durch PPTasen	61
Abb. 5-30:	Heterologe Expression und Aufreinigung von HrmL aus pHIS8 (a) und pHIS8 <i>svp</i> (b)	61
Abb. 5-31:	MALDI-TOF-Messung von 8His-HrmL aus pHIS8svp	62
Abb. 5-32:	MALDI-TOF-Ergebnisse des Beladungsassays von HrmL mit Prolin	63
Abb. 5-33:	Naturstoffe mit N-Hydroxypyrroleinheiten	64
Abb. 5-34:	Pyoluteorin (115)	65
Abb. 5-35:	Analogien in der Hormaomycin- und Pyoluteorinbiosynthese	65

Abb. 5-36:	Kombinatorische Biosynthese in Pseudomonas fluorescens Pf-5	65
Abb. 5-37:	Klonierungsschema für pMC15.	67
Abb. 5-38:	Vergleich der HPLC-Spuren (308 nm) der Extrakte von pMC15 nach 43 h (1), 51 h (2), 66 h (3), 76 h (4).	67
Abb. 5-39:	a): Vergleich der UV-Spuren eines HPLC-MS-Experiments einer Expression von pMC15 in <i>Pseudomonas fluorescens</i> Pf-5 nach 76 h mit pME6041 in <i>Pseudomonas fluorescens</i> Pf-5 b): Ausschnitt aus dem Massenspektrum der Peaks bei 33,3 min.	68
Abb. 5-40:	SDS-PAGE-Gel (12%) einer Expression von HrmP1 _A in1 L LB	70
Abb. 5-41:	MALDI-TOF-Analyse von His ₈ -HrmO3 _A	70
Abb. 5-42:	SDS-PAGE-Gel (12%) einer Expression von $HrmO3_A$ in 1 L LB, Elutionsfraktion in 6 verschiedenen Puffern nach dem Stabilitätstest	71
Abb. 5-43:	SDS-PAGE-Gel (15%, Tricin) einer heterologen Coexpression und Aufreinigung von $HrmO2_A/HrmR$ (a) $HrmP3_A/HrmR$ (b)	73
Abb. 5-44:	Ähnlichkeitsplot von Hrm $O1_A, O3_A, O4_A$ und $P1_A$ erstellt mit dem Programm Vector NTI.	74
Abb. 5-45:	Aminosäurenalignment von $HrmO3_A$ (obere Reihe) und $HrmO4_A$ (untere Reihe) erstellt mit dem Programm Bioedit.	74
Abb. 5-46:	Schema der Konstruktion der fusionierten A-Domänen	75
Abb. 5-47:	Agarosegel (1%) der mit Fusion-PCR erzeugten, künstlichen A-Domänen $O2f_A$, $O4f_A$, $P2f_A$, $A5f_A$, $H6f_A$.	75
Abb. 5-48:	Übersicht über die exprimierten nativen und fusionierten A-Domänen HrmK, HrmO1 _A , HrmO3 _A , HrmO4 _A , HrmP1 _A , HrmP2 _A , O2f _A , O4f _A , P2f _A , A5f _A , H6f _A , jeweils coeluiert mit HrmR. A5f _x zeigt eine Coelution von A5f _A mit CdaX.	77
Abb. 5-49:	SDS-PAGE-Gel (15%, Tricin) einer Expression von His_6HrmR (a) und His_6CdaX (b)	78
Abb. 5-50:	Ausschnitt aus der von I-TASSER ²⁶² vorhergesagten Sekundärstruktur von $O2f_A$.	79
Abb. 5-51:	Mit I-TASSER ²⁶² durch Homologiemodellierung nach PheA erzeugte 3-D Struktur von $O2f_{A_{-}}$	79
Abb. 5-52:	Der Austausch von γ - ¹⁸ O ₄ -ATP (120) in ATP (123) in Gegenwart eines Überschusses von Pyrophosphat (121) durch die A-Domäne. ¹⁰⁹	81
Abb. 5-53:	MALDI-TOF-Ergebnisse der Umsatz von HrmP1 _A mit verschiedenen Aminosäuren im $[\gamma^{-18}O_4]$ -ATP-Assay (vgl. Abb. 5-55, Tab. 9-2)	81
Abb. 5-54:	Aktivierung von verschiedenen Aminosäuren durch $HrmP1_A$ im $[\gamma^{-18}O_4]$ -ATP-Assay.	82
Abb. 5-55:	$(\beta$ -Me)Phe (31), (4-Cl)Phe (124) und (α -Me)Phe (125)	82
Abb. 5-56:	MALDI-TOF-Ergebnisse der Umsatz von HrmP1 _A /HrmR mit verschiedenen Aminosäuren im $[\gamma^{-18}O_4]$ -ATP-Assay (vgl. Abb. 5-59, Tab. 9-3)	83
Abb. 5-57:	Aktivierung verschiedener Aminosäuren durch HrmP1 _A (schwarz) und HrmP1 _A (rot) mit HrmR nach FPLC mit HrmR im $[\gamma^{-18}O_4]$ -ATP-Assay.	84
Abb. 5-58:	Aktivierung verschiedener Aminosäuren durch HrmO3 _A mit HrmR im $[\gamma^{-18}O_4]$ -ATP-Assay.	85
Abb. 5-59:	(3-Ncp)Ala (27), 5-Nitro-2-aminobenzoesäure (126) und Cyclopropylglycin (127)	85

Abb. 5-60:	Aktivierung verschiedener Aminosäuren durch HrmO4 _A (schwarz) und O4f _A (rot) mit HrmR im $[\gamma^{-18}O_4]$ -ATP-Assay.	86
Abb. 5-61:	Chromatogramm der FPLC-Aufreinigung der Elution von HrmO1 _A /HrmR.	87
Abb. 5-62:	Aktivierung verschiedener Aminosäuren durch HrmO1 _A (schwarz) und HrmO1 _A nach FPLC (rot) mit HrmR im [γ - ¹⁸ O ₄]-ATP-Assay.	88
Abb. 5-63:	Aktivierung verschiedener Aminosäuren durch $HrmO2_A$ (schwarz) und $O2f_A$ (rot) mit HrmR im [γ - ¹⁸ O ₄]-ATP-Assay.	89
Abb. 5-64:	Chromatogramm der FPLC-Aufreinigung der Elution von HrmO2 _A /HrmR	90
Abb. 5-65:	Dokumentation der FPLC Aufreinigung von a) $HrmO2_A$ (siehe Abb. 5-66) und b) $O2f_A$ (siehe Abb. 9-19) jeweils mit HrmR.	90
Abb. 5-66:	Aktivierung verschiedener Aminosäuren durch $HrmO2_A(schwarz)$ und $O2f_A$ (rot) mit HrmR nach FPLC im [γ - ¹⁸ O ₄]-ATP-Assay.	91
Abb. 5-67:	Aktivierung verschiedener Aminosäuren durch $HrmP2_A$ (schwarz) und $P2f_A$ (rot) mit HrmR im [γ - ¹⁸ O ₄]-ATP-Assay.	92
Abb. 5-68	4-Z-Propenylprolin (69) und 4-Z-Ethinylprolin (128)	93
Abb. 5-69:	hypothetische Reaktion eines Azidobiotins (129) mit Ethinylhormaomycin (130) über "Klick-Chemie"	94
Abb. 5-70:	Aktivierung verschiedener Aminosäuren durch HrmP3 _A mit HrmR vor (schwarz) und nach (rot) FPLC-Aufreinigung im $[\gamma^{-18}O_4]$ -ATP-Assay.	94
Abb. 5-71:	a): Chromatogramm einer FPLC-Aufreinigung der Elutionsfraktion von HrmP3 _A . b): Dokumentation von 5-71- a): SDS-PAGE-Gel (15%, Tricin).	95
Abb. 5-72:	HPLC-Chromatogramm (230 nm) des Ethylacetat-Rohextraktes einer Fermentation von <i>Streptomyces griseoflavus</i> W-384	101
Abb. 5-73:	HPLC-Chromatogramm des Rohextraktes der hrmB-Überexpression (273 nm)	102
Abb. 5-74:	Ausschnitt aus dem MS/MS-Fragmentierungsspektrum von Hormaomycin (13)	104
Abb. 5-75:	Strukturen der in Abbildung 5-76 erhaltenen MS/MS-Fragmente von Hormaomycin (13)	104
Abb. 5-76:	Ausschnitt aus dem MS/MS-Fragmentierungsspektrum von Hormaomycin A1 (136)	105
Abb. 5-77:	Ausschnitt aus dem ¹ H-NMR-Spektrum von Hormaomycin A1 (136)	106
Abb. 5-78:	Hormaomycin A1 (136).	106
Abb. 5-79:	Ausschnitt aus dem MS/MS-Fragmentierungsspektrum von Hormaomycin A2 (137)	107
Abb. 5-80:	Ausschnitt aus dem ¹ H-NMR-Spektrum von Hormaomycin A2 (137).	108
Abb. 5-81:	Hormaomycin A2 (137).	108
Abb. 5-82:	Ausschnitt aus dem MS/MS-Fragmentierungsspektrum von Hormaomycin A3 (138)	109
Abb. 5-83:	Ausschnitt aus dem ¹ H-NMR-Spektrum von Hormaomycin A3 (138)	109
Abb. 5-84:	Hormaomycin A3 (138)	110
Abb. 5-85:	Ausschnitt aus dem MS/MS-Fragmentierungsspektrum von Hormaomycin A4 (139)	110
Abb. 5-86:	Ausschnitt aus dem ¹ H-NMR-Spektrum von Hormaomycin A4 (139)	111

Abb. 5-87:	Hormaomycin A4 (139).	111
Abb. 5-88:	Ausschnitt aus dem MS/MS-Fragmentierungspektrum von Hormaomycin A5 (140)	112
Abb. 5-89:	Ausschnitt aus dem ¹ H-NMR-Spektrum von Hormaomycin A5 (140)	113
Abb. 5-90:	Hormaomycin A5 (140).	113
Abb. 5-91:	Ausschnitt aus dem MS/MS-Spektrum von Hormaomycin A6 (141)	114
Abb. 5-92:	Ausschnitt aus dem ¹ H-NMR-Spektrum von Hormaomycin A6 (141)	115
Abb. 5-93:	Ausschnitt aus dem ¹ H- ¹ H-COSY-NMR-Spektrum von Hormaomycin A6 (141)	115
Abb. 5-94:	Hormaomycin A6 (141).	116
Abb. 5-95:	Ausschnitt aus dem MS/MS-Fragmentierungsspektrum für Hormaomycin E1/E2 (40/41)	117
Abb. 5-96:	Im Massenspektrum von Fraktion 3 detektiertes Fragment 142 , mögliche Vorstufen 30 , 143 und 144 .	117
Abb. 5-97:	hypothetische Strukturen des isolierten Substanzgemisches Hormaomycin E1 (40) und E2 (41).	118
Abb. 5-98:	Übersicht über die isolierten Hormaomycinderivate A1-A5	122
Abb. 6-1:	BSA-Kalibriergerade für den Bradford-Test	146
Abb. 6-2:	Kalibriergerade zur Messung der Konzentration unbekannter Proteinproben am Geldokumentationssytem Genius	146
Abb. 9-1:	Plasmidkarte und MCS von pBluescript SK(+)	181
Abb. 9-2:	Plasmidkarte mit MCS von pGEM-T Easy	181
Abb. 9-3:	Plasmidkarte und MCS für den Proteinexpressionsvektor pHIS8-svp bzw. pHIS8	182
Abb. 9-4:	Plasmidkarte und MCS für den Proteinexpressionsvektor pCDFDuet-1	183
Abb. 9-5:	Plasmidkarte und MCS für den Proteinexpressionsvektor pET28a.	183
Abb. 9-6:	MCS für den Proteinexpressionsvektor pME6041	184
Abb. 9-7:	Alignment von HrmJ (obere Sequenz) und der Isoleucin-4-Oxygenase (IDO) aus <i>Bacillus thuringiensis</i> (untere Sequenz), erstellt mit dem Programm Bioedit.	184
Abb. 9-8:	Alignment der putativen C-C-Hydrolasen SibS. LmbX, TomK und ORF15.	184
Abb. 9-9:	Sequenzalignment für vier A-Domänen aus der NRPS des Antibiotikums CDA mit allen Hormaomycin A-Domänen HrmO1 _A -HrmP3 _A , erstellt mit dem Programm Bioedit	186
Abb. 9-10:	Ausschnitt aus der von I-TASSER ²⁶² vorhergesagten Sekundärstruktur von $O4f_A$.	187
Abb. 9-11:	Mit I-TASSER ²⁶² durch Homologiemodellierung nach PheA erzeugte 3-D Struktur von $O4f_{A_{\perp}}$	187
Abb. 9-12:	Ausschnitt aus der von I-TASSER ²⁶² vorhergesagten Sekundärstruktur von His ₈ P2f.	187
Abb. 9-13:	Mit I-TASSER ²⁶² durch Homologiemodellierung nach PheA erzeugte 3-D Struktur von P2 $f_{A_{\rm c}}$	187

Abb. 9-14:	Ausschnitt aus der von I-TASSER ²⁶² vorhergesagten Sekundärstruktur von $A5f_A$.	188
Abb. 9-15:	Mit I-TASSER ²⁶² durch Homologiemodellierung nach PheA erzeugte 3-D Struktur von $A5f_A$	188
Abb. 9-16:	Ausschnitt aus der von I-TASSER ²⁶² vorhergesagten Sekundärstruktur von H6 f_A .	188
Abb. 9-17:	Mit I-TASSER ²⁶² durch Homologiemodellierung nach PheA erzeugte 3-D Struktur von $H6f_{A_{\perp}}$	188
Abb. 9-18:	Chromatogramm einer FPLC-Aufreinigung der Elutionsfraktion von HrmP1 _A .	196
Abb. 9-19:	Chromatogramm einer FPLC-Aufreinigung der Elutionsfraktion von $O2f_A$	196
Abb. 9-20:	HPLC-Chromatogramm der Fraktion 15 aus Tabelle 5-16; Methanol/H ₂ O 85:15, 273 nm	197
Abb. 9-21:	HPLC-Chromatogramm der Fraktionen 16 und 17 aus Tabelle 5-16; Methanol/H ₂ O 85:15, 273 nm	197
Abb. 9-22:	HPLC-Chromatogramm der Fraktion 23 aus Tabelle 5-16; Methanol/H ₂ O 8:2, 273 nm	198
Abb. 9-23:	HPLC-Chromatogramm der Fraktion 30 aus Tabelle 5-16; Methanol/H ₂ O 8:2, 273 nm	198
Abb. 9-24:	Nummerierung der C-Atome der Bausteine des Hormaomycins (13).	199
Abb. 9-25:	¹ H-NMR-Spektrum von Hormaomycin (13) in CDCl ₃	199
Abb. 9-26:	¹ H-NMR-Spektrum von Hormaomycin (13) in CD ₃ OD	200
Abb. 9-27:	¹ H-NMR-Spektrum von Hormaomycin A1(136) in CD ₃ OD	200
Abb. 9-28:	¹ H-NMR-Spektrum von Hormaomycin A2 (137) in CD ₃ OD	202
Abb. 9-29:	¹ H- ¹ H-COSY-NMR-Spektrum von Hormaomycin A2 (137) in CD ₃ OD	203
Abb. 9-30:	¹ H-NMR-Spektrum von Hormaomycin A3 (138) in CD ₃ OD	204
Abb. 9-31:	¹ H- ¹ H-COSY-NMR-Spektrum von Hormaomycin A3 (138) in CD ₃ OD	205
Abb. 9-32:	¹ H-NMR-Spektrum von Hormaomycin A4 (139) in CD ₃ OD	207
Abb. 9-33:	¹ H-NMR-Spektrum von Hormaomycin A5 (140) in CD ₃ OD	209
Abb. 9-34:	¹ H- ¹ H-COSY-NMR-Spektrum von Hormaomycin A5 (140) in CD ₃ OD	209
Abb. 9-35:	¹ H-NMR-Spektrum von Hormaomycin A6 (141) in CD ₃ OD	211
Abb. 9-36:	¹ H- ¹ H-COSY-NMR-Spektrum von Hormaomycin A6 (141) in CD ₃ OD	212
Abb. 9-37:	¹ H-NMR-Spektrum von Hormaomycin E1/E2 (40/41) in CD ₃ OD	214

Tabellenverzeichnis

Tab. 3-1:	Durch Fütterung von Substanzen aus Abb. 3-19 erzeugte Hormaomycinanaloga	31
Tab. 3-2:	Kodierte Proteine in der <i>hrm</i> -Region, ihre putativen Funktionen und nächsten Verwandten (Stand 2/2012)	33
Tab. 3-3:	Nichtribosomale Codes der Hormaomycin A-Domänen und vorausgesagte Spezifitäten	34
Tab. 5-1:	Vergleich der Darstellung der aus dem Alignment (Anhang, Abb. 9-7) extrahierten hypothetischen Metall-Liganden und α-Ketoglutarat (63) stabilisierende Aminosäuren für IDO und HrmJ	42
Tab. 5-2:	Vergleich der kinetischen Daten von HrmF und LmbB1	51
Tab. 5-3:	Konservierte Aminosäuremotive der degenerierten Primer für das LmbX- Homolog	53
Tab. 5-4:	Detektierte Massen in den HPLC-MS-Chromatogrammen von HrmF und HrmC/HrmF (siehe Abb. 5-22) und deren mögliche Strukturformeln	55
Tab. 5-5:	Vergleich der gemessenen Massen für His ₈ -HrmL und His ₈ -HrmL+Svp mit der berechneten Masse für das 4´-phospopanthetheinylierte Protein.	62
Tab. 5-6:	Übersicht über die in $pHIS_8$ exprimierten Hormaomycin-A-Domänen	71
Tab. 5-7:	Proteinkonzentrationen von $HrmO3_A(1 L)$ in 6 verschiedenen Puffern nach dem Stabilitätstest	72
Tab. 5-8:	Übersicht über die mit PCR erzeugten Fragmente für die fusionierten A- Domänen	75
Tab. 5-9:	Übersicht über die konstruierten fusionierten A-Domänen	76
Tab. 5-10:	Übersicht über die in Abbildung 5-50 durch SDS-PAGE-Absorptionsmessung ermittelten Proteinkonzentrationen und –verhältnisse.	77
Tab. 5-11:	Mit I-TASSER ²⁶² erstellte C-Scores und TM-Scores für HrmO3 _A und die fusionierten A-Domänen.	80
Tab. 5-12:	Vergleich der Aktivitäten von HrmO3 _A und HrmP1 _A mit HrmR	84
Tab. 5-13:	Vergleich der Aktivitäten von HrmO4 _A und O4f _A mit HrmR	86
Tab. 5-14:	Vergleich der Aktivitäten der aufgereinigten A-Domänen $HrmO2_A$ und $O2f_A$ mit $HrmR$	91
Tab. 5-15:	Aminosäuren 330 und 331 (relativ zu PheA) in den miteinander kombinierten A-Domänen.	96
Tab. 5-16:	Übersicht über die isolierten Fraktionen aus dem Rohextrakt des <i>hrmB</i> - Überexpressionsstammes	103
Tab. 5-17:	Übersicht über die in der analytischen HPLC der Fraktionen aus Abb. 5-75 erhaltenen Reinsubstanzen	103
Tab. 6-1:	Vektoren zur Lagerung, Subklonierung und Sequenzierung	124
Tab. 6-2:	Vektoren zur Proteinexpression	124
Tab. 6-3:	Verwendete Ausgangsvektoren zur Expression von hrmC, hrmF und hrmJ	124
Tab. 6-4:	Übersicht über die eingesetzten Organismen	125
Tab. 6-5:	Kultivierungsbedingungen der verwendeten Bakterien	129
Tab. 6-6:	Lösungen zur Herstellung von chemisch kompetenten Zellen	130

Tab. 6-7:	Reaktionsansatz für die Polymerasekettenreaktion	131
Tab. 6-8:	Temperaturprogramm für die PCR	132
Tab. 6-9:	Temperaturprogramm für die Fusions-PCR	133
Tab. 6-10:	Primer zur heterologen Expression von Hormaomycin-Biosynthesegenen in <i>E. coli</i>	133
Tab. 6-11:	Primer zur heterologen Expression der Hormaomycin A-Domänen in E. coli	134
Tab. 6.12:	Primer zur Konstruktion der fusionierten A-Domänen	134
Tab. 6-13:	Primer zur heterologen Expression in Pseudomonas fluorescens Pf-5	135
Tab. 6-14:	Primer zur Sequenzierung im Expressionsvektor	135
Tab. 6-15:	Primer zur Suche nach einem ImbX-Homolog in S. griseoflavus W-384	135
Tab. 6-16:	Verwendete Puffer zur Plasmidisolierung	136
Tab. 6-17:	Übersicht über die verwendeten Sequenzierprimer	137
Tab. 6-18:	Übersicht über die in dieser Arbeit verwendeten T/A-Konstrukte	140
Tab. 6-19:	Übersicht über die in dieser Arbeit klonierten Expressionskonstrukte	141
Tab. 6-20:	Übersicht über die in dieser Arbeit konstruierten Coexpressionsstämme	142
Tab. 9-1:	Aktivierung verschiedener Substrate durch HrmK im $[\gamma^{-18}O_4]$ -ATP-Assay	189
Tab. 9-2:	Aktivierung von verschiedenen Aminosäuren durch HrmP1 _A im $[\gamma$ - ¹⁸ O ₄]-ATP-Assay.	189
Tab. 9-3:	Aktivierung verschiedener Aminosäuren durch HrmP1 _A mit HrmR vor und nach FPLC im [γ - ¹⁸ O ₄]-ATP-Assay.	190
Tab. 9-4:	Aktivierung verschiedener Aminosäuren durch HrmO3 _A mit HrmR im $[\gamma^{-18}O_4]$ -ATP-Assay.	191
Tab. 9-5:	Aktivierung verschiedener Aminosäuren durch $HrmO4_A$ und $O4f_A$ mit $HrmR$ im $[\gamma$ - ¹⁸ O ₄]-ATP-Assay.	191
Tab. 9-6:	Aktivierung verschiedener Aminosäuren durch $HrmO1_A$ mit $HrmR$ vor und nach FPLC-Aufreinigung im [γ - ¹⁸ O ₄]-ATP-Assay.	192
Tab. 9-7:	Aktivierung verschiedener Aminosäuren durch $HrmO2_A$ und $O2f_A$ mit $HrmR$ im $[\gamma$ - ¹⁸ O ₄]-ATP-Assay.	193
Tab. 9-8:	Aktivierung verschiedener Aminosäuren durch $HrmO2_A$ und $O2f_A$ mit $HrmR$ nach FPLC im [γ - ¹⁸ O ₄]-ATP-Assay.	193
Tab. 9-9:	Aktivierung verschiedener Aminosäuren durch $HrmP2_A$ und $P2f_A$ mit $HrmR$ im $[\gamma^{-18}O_4]$ -ATP-Assay.	194
Tab. 9-10:	Aktivierung verschiedener Aminosäuren durch HrmP3 _A mit HrmR vor und nach FPLC-Aufreinigung im $[\gamma^{-18}O_4]$ -ATP-Assay.	195
Tab. 9-11:	Zusammenfassung der NMR-Ergebnisse von Hormaomycin A1 (136)	201
Tab. 9-12:	Zusammenfassung der NMR-Ergebnisse von Hormaomycin A2 (137)	202
Tab. 9-13:	Zusammenfassung der NMR-Ergebnisse von Hormaomycin A3 (138)	205
Tab. 9-14:	Zusammenfassung der NMR-Ergebnisse von Hormaomycin A4 (139)	207
Tab. 9-15:	Zusammenfassung der NMR-Ergebnisse von Hormaomycin A5 (140)	210
Tab. 9-16:	Zusammenfassung der NMR-Ergebnisse von Hormaomycin A6 (141)	212

1 Zusammenfassung

In der vorliegenden Arbeit werden Experimente zur Aufklärung der Biosynthese, Untersuchungen zum evolutionären Ursprung der Adenylierungsdomänen und Studien zur Flexibilität der Biosyntheseenzyme des bakteriellen Peptids Hormaomycin präsentiert. Hormaomycin wird von *Streptomyces griseoflavus* W-384 synthetisiert und besitzt mehrere interessante biologische Aktivitäten. Einzigartig ist die Struktur des Hormaomycins; es ist ein zyklisches Peptidlacton mit acht Bausteinen, von denen sieben nicht-proteinogenen Ursprungs sind. Einige dieser Bausteine, wie (3-Nitrocyclopropyl)alanin [(3-Ncp)Ala], *4*-(*Z*-Propenyl)prolin [(4-Pe)Pro] und 5-Chlor-N-hydroxy-pyrrol-2-carbonsäure [Chpca] sind in der Natur bisher einzigartig. Vorläufer-dirigierte Biosynthese-experimente haben gezeigt, dass die Biosynthesemaschinerie von Hormaomycin ungewöhnlich flexibel ist. In der Arbeitsgruppe Piel konnte in Vorarbeiten der Biosynthesegencluster des Hormaomycins isoliert und sequenziert werden. Die Analyse der Sequenz zeigte, dass Hormaomycin von einer nichtribosomalen Peptidsynthetase (NRPS) synthetisiert wird.

Im ersten Teil der vorliegenden Arbeit wurden die Biosynthesen der Vorstufen durch heterologe Expressionen von Biosynthesegenen teilweise aufgeklärt. Durch bioinformatische Analysen wurden zwei Gene mit unbekannter Funktion, hrmI und hrmJ, dem postulierten Biosyntheseweg von (3-Ncp)Ala zugeordnet. Beide Enzyme haben keine eng verwandten Homologe. Eine Fütterung von (3-Ncp)Ala zu einer Knock-Out-Mutante von hrml führte zu einer Komplementierung der Hormaomycinproduktion, was die Zugehörigkeit des Enzyms zu diesem Biosyntheseweg beweist. HrmJ, eine a-Ketoglutarat-abhängige Oxygenase, katalysiert vermutlich den ersten Schritt des Biosyntheseweges. Das Enzym konnte in hohen Ausbeuten in E. coli exprimiert und isoliert werden und bildete in Enzymassays aus Lysin ein neues Produkt. Massenspektrometrische Messungen geben erste Hinweise darauf, dass es sich hierbei um ein hydroxyliertes Lysin mit terminaler Oximfunktion handelt. HrmI ist putativ eine Oxidase und könnte zu einer neuen Enzymfamilie gehören. (4-Pe)Pro wird, analog zur Biosynthese des Lincomycins, über Tyrosin und L-Dihydroxyphenylalanin (L-DOPA) synthetisiert. HrmF, eine L-DOPA-Dioxygenase, katalysiert die Öffnung des Catecholrings zu einem instabilen, gelb gefärbten Pyrrolinintermediat. HrmF wurde in dieser Arbeit kinetisch charakterisiert. Die Ergebnisse zeigen, dass das Enzym eine fast 160-fach höhere katalytische Aktivität als sein Homolog aus der Lincomycinbiosynthese, LmbB1, besitzt. Das Enzym ist aufgrund seiner hohen Aktivität, der sehr losen Substratspezifität und hohen Expressionsausbeuten ein guter Kandidat für chemoenzymatische Syntheseverfahren. Die Startereinheit der Hormaomycinbiosynthese, Chpca, wird aufgrund von bioinformatischen Voraussagen aus Prolin, kovalent gebunden an HrmL, ein freistehendes Peptidylcarrierprotein (PCP), synthetisiert. Im Rahmen dieser Arbeit wurden die Acyl-CoA-Synthetase HrmK und HrmL heterolog exprimiert und charakterisiert. Es konnte gezeigt Prolin vom Enzym sehr selektiv adenyliert wird. Für HrmL wurde werden, dass massenspektrometrisch die 4'-Phosphopanthetheinylierung nachgewiesen.

Der zweite Teil der Arbeit beschäftigt sich mit der Charakterisierung der Adenylierungsdomänen (A-Domänen) der Hormaomycin-NRPS. Alle sieben A-Domänen wurden mit dem MbtH-artigen Protein HrmR coexprimiert und isoliert. Für den Komplex wurde ein stöchiometrisches Verhältnis von 1:1 bestimmt. Die Proteine wurden in einem massenspektrometrisch basierten Assay umfassend charakterisiert und zur Eliminierung von falsch positiven Resultaten mit FPLC weiter aufgereinigt. Für HrmO3_A und HrmP1_A wurde eine selektive Aktivierung von (β -Me)Phe nachgewiesen. HrmO1_A und HrmO4_A aktivieren (3-Ncp)Ala fast quantitativ und Leucin am zweithäufigsten [jeweils etwa 10% im Vergleich zu (3-Ncp)Ala]. HrmO2_A adenyliert L-Threonin sehr selektiv, und HrmP3_A zeigt eine fast quantitative Umsetzung für (4-Pe)Pro. HrmP3_A kann zusätzlich ein Prolinderivat mit einer Ethinylkette aktivieren. Dieses Ergebnis ist sehr vielversprechend im Hinblick auf die Mutasynthese eines Hormaomycinderivates mit Alkinylseitenkette. Dieses Derivat könnte in Pull-down-Experimenten zur Auffindung des molekularen Targets für Hormaomycin eingesetzt werden. HrmP2A aktiviert in vitro bevorzugt Valin, was der bioinformatischen Voraussage entspricht. Allerdings wird in vivo Isoleucin von der NRPS inkorporiert. Die Gründe für diese Diskrepanz sind nicht bekannt. Die Sequenzen der Hormaomycin A-Domänen zeigen in einigen Fällen eine weitgehende Übereinstimmung am N- und C-Terminus (jeweils etwa 200 Aminosäuren). Das legt einen möglichen Austausch der zentralen DNA-Abschnitte, und damit der Substratspezifität, durch Rekombination während der Evolution nahe. Um diese Hypothese experimentell zu überprüfen, wurden fünf rekombinante A-Domänen konstruiert, die alle die N-und C-terminale Sequenz von HrmO3_A trugen. Die zentralen Abschnitte wurden einerseits drei A-Domänen aus der Hormaomycin-NRPS andererseits zwei A-Domänen der NRPS des calcium dependent antibiotic (CDA) aus Streptomyces coelicolor A3(2), entnommen. Alle rekombinanten Enzyme wurden stabil in E. coli mit HrmR coexprimiert. Die Hormaomycinfusionen waren aktiv und zeigten in etwa die gleiche Substratspezifität und Aktivität wie die nativen, die zentralen Abschnitte enthaltenden, A-Domänen. Die Ergebnisse dieser Experimente geben Einblicke in die Evolution der Hormaomycin-A-Domänen und zeigen neue Strategien für die kombinatorische Biosynthese von nichtribosomalen Peptiden auf.

Im dritten Teil wurden die ersten bekannten, natürlich gebildeten Analoga des Hormaomycins aus einem Extrakt eines Hormaomycin-Überproduktionsstammes isoliert und deren Strukturen anschließend aufgeklärt. Hormaomycin A1 ist ein Deschlorohormaomycin, wogegen in Hormaomycin A2 Valin statt Isoleucin in das Peptid eingebaut wurde. Hormaomycin A3 und A4 tragen jeweils ein Leucin, Hormaomycin A5 zwei Leucine statt (3-Ncp)Ala im Molekül. Der Einbau der proteinogenen Aminosäuren in Hormaomycin A2-5 korrespondiert sehr gut mit den Ergebnissen der A-Domänentests und demonstriert die Anwendbarkeit dieser Tests für zukünftige Mutasyntheseexperimente. Die Aktivitäten der isolierten Analoga werden weitere Einblicke in die Struktur-Wirkungsbeziehungen von Hormaomycin geben.

2 Abstract

Presented here are the results carried out on the elucidation of the biosynthesis, evolutionary investigations on the adenylation domains and studies on the flexibility of the biosynthetic machinery of the bacterial peptide hormaomycin. Hormaomycin, produced by *Streptomyces griseoflavus* W-384, bears several interesting biological activities. In addition, hormaomycin has a unique and interesting structure; it is a cyclic peptide lactone with eight building blocks, seven of which are non-proteinogenic. Some of these building blocks are unprecedented, such as (3-nitrocyclopropyl)alanine [(3-Ncp)Ala], *4*-(*Z*-propenyl)proline [(4-Pe)Pro] and 5-chloro-N-hydroxypyrrole-2-carboxylic acid [Chpca]. Previous precursor-directed biosynthetic experiments showed an unusually flexible biosynthetic machinery. In the Piel group, the putative biosynthetic gene cluster of hormaomycin was isolated and sequenced. Analysis of the sequence revealed that hormaomycin is assembled by a nonribosomal peptide synthetase (NRPS).

In the first part of this work, the biosyntheses of the unique building blocks were partially elucidated with heterologous expressions of various biosynthetic genes in E. coli. Bioinformatic analyses could assign two gene candidates with unknown function, hrmI and hrmJ, to the (3-Ncp)Ala biosynthetic pathway. For both enzymes no close homologs are known. Feeding of (3-Ncp)Ala to a knock-out mutant of hrmI could complement hormaomycin production, proving that HrmI belongs to this precursor pathway. HrmJ, a α -ketoglutarate-dependent oxygenase, is hypothezised to catalyze the first step of the (3-Ncp)Ala pathway. The enzyme was heterologously expressed in E. coli and purified in high yields. Enzymatic assays with HrmJ and lysine produced a new product that was detected by mass spectrometry. The results provide evidence for a hydroxylated lysine with a terminal oxime moiety. HrmI is a putative oxidase that could belong to a new enzyme family. (4-Pe)Pro was shown to be synthesized from tyrosine and dihydroxypenylalanine (L-DOPA), analogous to the lincomycin pathway. HrmF, a L-DOPA dioxygenase, catalyzes ring opening of the catechol leading to formation of a unstable, yellow pyrroline intermediate. In this work, HrmF was kinetically characterized and shown that the enzyme has catalytic efficiency of around 160 times higher than its homolog from the lincomycin pathway, LmbB1. The high activity, very relaxed substrate specificity and high protein yields make HrmF a good candidate for chemoenzymatic synthetic utility. The starter unit of hormaomycin biosynthesis, Chpca, was proposed to be synthezised from proline covalently bound to HrmL, a peptidyl carrier protein (PCP) through bioinformatic analyses. In this work, HrmK and HrmL were heterologously expressed and purified. The Acyl-CoA synthetase HrmK was characterized in a mass spectrometry based assay. Proline was shown to be activated very selectively and quantitatively in the assay. Analogs of proline could be activated only in trace amounts. For HrmL, 4'phosphopanthetheinylation was observed by mass spectrometry.

The second part of this work deals with the characterization of the adenylation domains (A domains) of the hormaomycin NRPS. All seven A domains could be heterologously expressed and isolated. It was shown that all A domains need HrmR, a MbtH-like protein, for their catalytic activities. Hence, HrmR was coexpressed with the adenylation domains. For the protein complex, a stochiometric ratio of 1:1 was determined. The proteins were comprehensively characterized in a mass spectrometrybased assay and further purified by FPLC to remove false positive activities. For HrmO3_A and $HrmP1_A$, (β -Me)Phe was shown to be the native substrates. $HrmO1_A$ and $HrmO4_A$ activate (3-Ncp)Ala to a great extent; the second preferred substrate was shown to be leucine [around 10% compared to (3-Ncp)Ala]. HrmO2_A adenylates threonine very selectively and HrmP3_A shows a high turnover for (4-Pe)Pro. HrmP3_A can additionally activate a proline derivative with an ethinyl side chain. This result is very promising in terms of mutasynthetic experiments, to yield a hormaomycin derivative with an alkinyl side chain. This hormaomycin could then be used in pull-down experiments for the identification of the molecular target of hormaomycin. HrmP2_A was shown to activate valine *in vitro*, which fits to the bioinformatic prediction. However, in vivo, isoleucine is incorporated into hormaomycin. This discrepancy has yet to be elucidated. Multiple hormaomycin A domains exhibit high sequence identity at their N- and C-termini (around 200 amino acids in each case). This suggested an exchange of the central DNA stretches of the domains might have occurred during evolution, and thus an exchange of substrate specificity via recombinatoric events. To test this hypothesis experimentally, five recombinant A domains were constructed, all of them having the same sequence of HrmO3_A at their N- and C-termini. Three central DNA stretches originated from hormaomycin A domains on the one hand while the other two were taken from adenylation domains of the NRPS of the "calcium-dependent antibiotic" (CDA) from Streptomyces coelicolor A3(2). All five recombinant enzymes were coexpressed with HrmR in E. coli. The hormaomycin fusions were active and showed virtually the same substrate specificity and enzymatic turnover as the native centraldomain containing enzymes. The results of this study give new insights into the evolution of the hormaomycin adenylation domains and point to a combinatorial exchange of substrate specificities. This study could lead to new, evolution-based strategies for nonribosomal peptide combinatorial biosynthesis.

In the third part, the first known natural hormaomycin analogs were isolated from an extract of a hormaomycin overproducing strain and their structures were subsequently elucidated. Hormaomycin A1 is a dechlorohormaomycin, while in hormaomycin A2, valine was shown to be incorporated instead of isoleucine. Hormaomycin A3 and A4 have one leucine each and Hormaomycin A5 harbors two leucines instead of (3-Ncp)Ala. The incorporation of the proteinogenic amino acids into hormaomycin A2-5 corresponded well with the the results of the A domain assays and demonstrates the applicability of these tests for mutasynthetic experiments in the future. Furthermore, the bioactivities of the isolated analogs will give further insights into the structure-activity relationships of hormaomycin.

3 Einleitung

3.1 Biologie und Signalstoffe der Streptomyceten

Bakterien bilden die größte Gruppe von Organismen und haben für den Menschen in vielerlei Hinsicht wichtige Bedeutungen: Unter anderem haben sie großen Einfluss als Krankheitserreger, als symbiotische Organismen sowie in der Lebensmittel- und Biotechnologie. Bedeutend ist auch der ausgeprägte sekundäre Metabolismus der Bakterien. Die Menschheit hat sich die vielfältigen biologischen Aktivitäten bakterieller Stoffwechselprodukte zunutze gemacht. Eine besonders wichtige Bakteriengruppe für den Menschen ist die Ordnung der Actinomycetales, da deren Vertreter extrem viele biologisch aktive Substanzen produzieren, von denen viele als Therapeutika aus der heutigen Medizin nicht mehr wegzudenken sind.^{1,2} Von den mehr als 5000 bekannten Antibiotika werden mehr als zwei Drittel von Actinomyceten synthetisiert.³ Naturstoffe aus Actinomyceten machen heute ein Milliardenvolumen auf dem Arzneimittelmarkt aus.⁴

Streptomycin (6) (*Streptomyces griseus*)

Abb. 3-1: Einige medizinisch verwendete Stoffwechselprodukte von Streptomyceten

Als herausragende Beispiele sind Zytostatika wie Actinomycin $(1)^5$ und Immunsuppressiva wie Rapamycin $(2)^6$ zu nennen. Besonders zahlreich sind die Antibiotika aus den verschiedensten Stoffklassen, wie die β -Lactame [Beispiel Clavulansäure (3)],⁷ Makrolide [Beispiel Rifamycin B (4)],⁸ Tetracycline (5),⁹ oder Aminoglykoside [Beispiel Streptomycin (6)].¹⁰ Abbildung 3-1 zeigt die Strukturen dieser Substanzen. Actinomycin (1) und Streptomycin (6) waren die ersten Antibiotika, die

Selman A. Waksman, einer der Pioniere der Antibiotikaforschung, in den 1940er Jahren aus der Fermentationsbrühe von *Streptomyces griseus* isolieren und charakterisieren konnte.^{11,12}

Die Gattung *Streptomyces* ist die artenreichste der Actinomyceten. Streptomyceten sind an extreme Lebensbedingungen angepaßt, sie sind vor allem im Erdboden und in marinen Habitaten zu finden. Die Streptomyceten sind Einzeller, haben aber als eine der wenigen Prokaryoten die Fähigkeit zu Mycelienbildung entwickelt. Außerdem können sie, ähnlich wie *Bacillus*-Arten, Sporen bilden, die lange Perioden auch bei Trockenheit überdauern können. Der Lebenszyklus von Streptomyceten ist komplex¹³⁻¹⁶ und ähnelt dem von Pilzen. Sie formen bei ausreichendem Nahrungsangebot aus einer Spore ein vegetatives Mycelium, das aus sich verzweigenden Hyphen besteht (vergleiche Abb. 3-2). Wenn das Nahrungsangebot wieder knapper wird, werden weitere morphologische Veränderungen eingeleitet. Es bildet sich ein sogenanntes Luftmycel aus langen, gestreckten Hyphen aus, das aus der wässrigen Umgebung in die Luft wachsen kann. Dort bildet es durch eine kontrollierte Form der Zellteilung wieder Kompartimente aus, die sich durch Verdickung der Zellwände und Bildung eines grauen Pigmentes wieder in Ketten von Sporen differenzieren. Diesen Vorgang nennt man Sporulation.

Abb. 3-2: Der Lebenszyklus von Streptomyceten (aus http://openwetware.org/wiki/ Streptomyces:Other_Bits/ An_Introduction_to_Streptomyces, © Jim Hunter, Goss Laboratory).

Der sekundäre Metabolismus von Streptomyceten ist, wie oben erwähnt, äußerst vielfältig. Durch die Sequenzierung des Genoms von *Streptomyces coelicolor* A3(2)¹⁷ und weiterer Streptomycetengenome zeigte sich, dass *Streptomyces*-Arten eine Vielzahl von Biosynthesegenclustern für bioaktive Metaboliten besitzen.¹⁸ Viele Produkte dieser Gencluster sind bis heute nicht bekannt. Die Vielfalt an Genclustern zeigt, dass diese Bakterien für den Kampf gegen diverse Umwelteinflüsse und Feinde mit

einem Arsenal aus Substanzen mit verschiedenen Wirkungen ausgestattet sind. Im Laufe der Evolution haben zum Beispiel horizontaler Gentransfer, Mutationen und Rekombination von DNA-Abschnitten zu dieser außergewöhnlichen Vielfalt an sekundären Metaboliten geführt.¹⁹⁻²² Gerade die sehr komplexe Umgebung des Erdbodens, die Tatsache, dass Streptomyceten unbeweglich sind und der hohe Stress (chemischer, biologischer, physikalischer), haben laut Bentley et al. die Evolution der Metabolitenproduktion beschleunigt.¹⁷ Challis und Hopwood heben außerdem Synergieeffekte, wie sie zum Beispiel bei Clavulansäure und anderen β-Lactamen²³ oder bei dem Zweikomponenten-antibiotikum Streptogramin²⁴ auftreten, als Antrieb für die Evolution von Genclustern hervor.³

Es gibt starke Evidenz dafür, dass die Produktion von sekundären Metaboliten mit der Bildung von Luftmycel assoziiert ist.^{14,25} Das wird auch aus der Beobachtung deutlich, dass Streptomyceten in ihrer natürlichen Lebenswelt dann Antibiotika produzieren, wenn die unmittelbare Umgebung nährstoffarm ist, und die Phase der Luftmycelbildung beginnt.²⁶ Wie wird nun die Produktion von Sekundärmetaboliten und Luftmycelbildung koordiniert? Zum Beispiel ist in den Genclustern von Actinorhodin in *Streptomyces coelicolor* und Streptomycin (**6**) in *Streptomyces griseus* nur ein einziges Regulatorgen kodiert.²⁵ Dieser Wachstumsfaktor, im Falle von **6** *strR*, ist von einem direkten Signalaktivator, AdpA, kontrolliert.²⁷ Die Transkription dieses Aktivators wird von einem γ -Butryrolacton, genannt A-Faktor (**7**) (vgl. Abb. 3-3), aktiviert.

Abb. 3-3: Die Regulation der Streptomycinbiosynthese und der morphologischen Differenzierung durch den A-Faktor (nach ²⁵). Pfeilspitzen indizieren Aktivierung, wohingegen Ovale am Ende des Pfeils eine Repression indizieren.

Dieser A-Faktor (7) bindet an ArpA, einen Repressor der Transkription von adpA. Die Biosynthese von Streptomycin ist aber außerdem noch durch andere Faktoren, wie z.B. den Transkriptionsfaktor AtrA²⁸ über StrR reguliert. AdpA bindet nicht nur an das Aktivatorgen der Streptomycinbiosynthese, sondern kann auch das Wachstum von Luftmycel und Sporen induzieren. Es sind bis heute mehrere Targets von AdpA identifiziert worden: ssgA, das für die Ausformung von Septen bei der Sporenbildung notwendig ist,²⁹ und einige Gene die für essentielle Proteine in der Luftmycelbildung kodieren. Dazu gehören unter anderem ein extracytoplasmatischer σ-Faktor,³⁰ die Metalloendopeptidase SgmA,³¹ und AmfR, ein Regulator des *amf*-Operons. Dieses ist für die Expression eines lanthioninartigen Peptides, SapB, verantwortlich.³² SapB besitzt aber keine antibiotischen Eigenschaften, sondern kann als hydrophobes Peptid tensidartig die Oberflächenspannung senken, und erleichtert so die Aufrichtung der Zelloberfläche aus wässriger Umgebung in die Luft, die Initiation der Luftmycelbildung.^{33,34} SapB wurde erstmals im anderen Modellorganismus der Streptomyceten, Streptomyces coelicolor, entdeckt. In diesem Organismus scheint die Regulation der Luftmycelbildung komplexer zu sein als in S. griseus, einige Elemente sind aber konserviert. Es gibt Orthologe zu den dargestellten Aktivatoren. Das amf-Operon für die Produktion von SapB heißt hier ram-Operon,³⁵ *bldH* ähnelt $adpA^{36}$ und der σ -Faktor BldN ist das Ortholog des AdpA- σ -Faktors.³⁷ Die essentiellen Gene für die Luftmycelbildung in S. coelicolor wurden bld genannt, nach dem englischen Wort bald (kahl), da die Mutanten dieser Gene kein Mycel bilden können. bldH enthält ein in Streptomyceten äußerst seltenes TTA-Codon, dessen Translation durch die Expression der Leucyl-tRNA BldA reguliert wird.³⁸ Außerdem existiert in S. coelicolor noch ein weiterer, zum gerade beschriebenen Mechanismus komplementärer Weg zur Luftmycelbildung. Er wird auf nährstoffarmem Medium induziert und führt zur Bildung von sogenannten Chaplins.^{39,40} Diese kleinen Proteine formen fibrillenartige Strukturen aus, die ihrerseits wie SapB hydrophobe Oberflächen haben, und ebenso zur Ausbildung von Luftmycelium führen.⁴¹⁻⁴³ Die Regulation der Luftmycelbildung ist in diesem Organismus sehr komplex und noch nicht vollständig verstanden. Es scheint in S. coelicolor mehrere aktivierende, hemmende und verstärkende Querverbindungen zwischen diesen beiden Aktivierungskaskaden zu geben. Für tiefergehende Informationen sei auf die Literatur verwiesen.^{14,44,45}

Der sekundäre Metabolismus in Streptomyceten ist außerdem durch andere Faktoren, wie zum Beispiel das Kohlenstoff-, Phosphat- und Stickstoffangebot und die Produktion von N-Acetylglucosamin reguliert.^{25,46} Es gibt aber auch immer mehr Evidenz für weitere, artspezifische Effektoren von Wachstum und Sekundärmetabolismus.⁴⁷ Neben dem oben erwähnten A-Faktor (7) sind bis zum heutigen Tage 13 weitere γ -Butyrolactone aus verschiedenen *Streptomyces*-Arten isoliert worden.^{47,48} Den γ -Butyrolactonen chemisch und von der Wirkweise recht ähnlich sind die Methylenomycinfurane (8),⁴⁹ Furancarbonsäuren, die zuerst aus *Streptomyces violaceoruber* isoliert wurden.⁵⁰ Sie erhöhen die Produktion des Antibiotikums Methylenomycin. Autoinduzierend wirken auch das AMP-Analogon B-Faktor (9)⁵¹ oder das Diaminotetrol PI-Faktor (10) aus *Streptomyces natalensis.*⁵² Für die Pamamycine (11), Polyketide aus *Streptomyces alboniger*,⁵³ wurde dagegen

gezeigt, dass sie in geringen Konzentrationen Wachstum und Antibiotikaproduktion auch in verschiedenen anderen *Streptomyces*-Arten induzieren können.^{54,55}

Neben Proteinen wie dem C-Faktor⁵⁶ gibt es außerdem niedermolekulare Peptide wie das Goadsporin (**12**) oder das Hormaomycin (**13**) (siehe Abb. 3-4), die ebenso in nanomolaren Konzentrationen die Antibiotikaproduktion und das Wachstum von vielen verschiedenen Streptomyceten fördern.^{56,57} Da sie ein sehr breites Wirkspektrum besitzen, wird angenommen, dass sie in die oben beschriebenen Signalketten, die zur Mycelbildung und Antibiotikaproduktion führen, eingreifen. Goadsporin (**12**), ein lineares Peptid aus *Streptomyces* sp. TP-A0584,⁵⁸ konnte ebenfalls ein breites Spektrum von Streptomyceten anregen. Es besitzt eine Reihe von Oxazolen und Thiazolen, die aus Serin- Threonin-und Cysteinresten posttranslational gebildet werden.^{59,60} Hormaomycin (**13**), der Gegenstand dieser Arbeit,^{57,61} ist das strukturell außergewöhnlichste der genannten bakteriellen Hormone und zeigt eine ganz ähnliche Wirkung wie Goadsporin. Im Gegensatz zu Goadsporin (**12**) wird Hormaomycin (**13**) aber nichtribosomal synthetisiert (siehe Abschnitt 3.2).⁶² Weitere Informationen über **13** befinden sich im Abschnitt 3.4. Vergleichende Untersuchungen zum Wirkmechanismus von Hormaomycin und Goadsporin sind derzeit Forschungsgegenstand in den Arbeitsgruppen Piel (Universität Bonn) und Onaka (Toyama University).

Abb. 3-4: Niedermolekulare Signalstoffe in Streptomyceten

3.2 Nichtribosomale Peptidsynthetasen (NRPS)

Wie seit den 1950er Jahren bekannt ist, werden Peptide und Proteine in Organismen grundsätzlich am Ribosom synthetisiert.⁶³ Es existieren aber auch vom Ribosom unabhängige Mechanismen, Peptide als Produkte des Sekundärstoffwechsels zu synthetisieren. Einige dieser nichtribosomalen Peptide (NRP) haben auch für den Menschen als Arzneistoffe eine wichtige Bedeutung.⁶⁴ Nichtribosomale Peptide, die in der heutigen Medizin eine wichtige Rolle spielen, sind unter anderem das Lipopeptid Daptomycin (14)⁶⁵ und das Glycopeptid Vancomycin (15),⁶⁶ die als Antibiotika eingesetzt werden. Außerdem sind das immunsuppressiv wirkende Ciclosporin (16)⁶⁷ und das antitumoral wirkende Bleomycin A₂ (17) als Hauptkomponente des Zytostatikums Bleomycin⁶⁸ (siehe Abb. 3-5) zu nennen. Ein wichtiges Merkmal nichtribosomal synthetisierter Peptide ist, dass sie oft eine beträchtliche Anzahl an nicht-proteinogenen Aminosäuren enthalten. Mehr als 300 verschiedene Bausteine wurden in nichtribosomalen Peptiden identifiziert.⁶⁴

Daptomycin (14) (Streptomyces roseosporus)

Ciclosporin (16) (Tolypocladium inflatum)

Vancomycin (15) (Amycolatopsis orientalis)

Bleomycin A₂ (17)(Streptomyces verticillus)

Abb. 3-5: Einige medizinisch eingesetzte nichtribosomale Peptide

Die Geschichte der Erforschung der NRP beginnt im Jahr 1963, als Tatum und Mitarbeiter bewiesen, dass die Biosynthese des Antibiotikums Tyrocidin (**18**), produziert von *Bacillus brevis*, durch einen vom Ribosom unabhängigen Mechanismus stattfindet.⁶⁹ Dies wurde dadurch belegt, dass die

Proteinbiosynthese durch Antibiotika wie Chloramphenicol gehemmt wurde, nicht aber die Biosynthese von **18**. In den folgenden Jahren konnten immer mehr Einsichten in die Biosynthese dieser nichtribosomalen Peptide gewonnen werden. Besonders Fritz Lipmann und Mitarbeiter konnten entscheidende Erkenntnisse über die Mechanismen der Aktivierung, Bindung und Kondensation der Aminosäuren gewinnen.⁷⁰⁻⁷²

Die NRP werden nach einem sogenannten Thiotemplatmechanismus synthetisiert. Das bedeutet, dass jede Aminosäure durch über eine Thioesterbindung an eine SH-Gruppe im Enzym gebunden wird. Diese SH-Gruppe gehört, wie unten beschrieben, zu einem 4'-Phosphopanthetheinylrest, der mit dem Enzym verknüpft ist (siehe Abb. 3-8). An diesen Thioestern wird durch Transpeptidierungen und Transthiolierungen die Peptidkette generiert. Mit der Isolierung und Sequenzierung der Biosynthesegene von Tyrocidin (18) konnten entscheidende Einsichten in den Aufbau der Biosyntheseenzyme dieser Peptide gewonnen werden.⁷³ Nichtribosomale Peptide werden an riesigen Enzymkomplexen, den nichtribosomalen Peptidsynthetasen (NRPS) hergestellt.⁷⁴⁻⁷⁸ Deren Aufbau ist modular, das bedeutet, dass die Megaenzyme baukastenartig aus Enzymmodulen zusammengesetzt sind. Die Module setzen sich ihrerseits wiederum aus definierten Domänen zusammen, von denen jede eine bestimmte Funktion im Zusammenbau des nichtribosomalen Peptids hat. Eine NRPS kann aber, wie auch im Falle des Hormaomycins,⁶² (siehe Abschnitt 3.4) aus mehreren "open reading frames" (ORF) bestehen. Ein Modul ist im Normalfall aus einer Abfolge von Kondensationsdomäne (C-Domäne), Adenylierungsdomäne (A-Domäne) und Peptidyl-carrierprotein (PCP oder T-Domäne) aufgebaut. Am Ende des letzten Moduls befindet sich meistens eine Thioesterasedomäne (TE-Domäne), die das fertige Peptid vom Enzym ablöst. Es gibt aber auch andere Domänen in der NRPS, die die Struktur des gebundenen Peptids verändern, wie Epimerase-(E), Zyklisierungs-(Cy) und Methyltransferase-(MT)-Domänen. Diese einzelnen Domänen sollen in den Kapiteln 3.2.1 und 3.2.2 näher erläutert werden. Schematisch ist eine NRPS am Beispiel der Tyrocidinsynthetase in Abbildung 3-6 dargestellt.

Abb. 3-6: Die Biosynthese des Tyrocidins (18) an der Tyrocidinsynthetase. A=Adenylierungsdomäne; E=Epimerasedomäne; C=Kondensationsdomäne; TE=Thioesterasedomäne

Die meisten bakteriellen NRPS folgen der sogenanten Kolinearitätsregel, das heißt, jedes Modul ist für die Aktivierung und den Einbau von genau einer Aminosäure verantwortlich. Da die wachsende Peptidkette von Modul zu Modul weitergereicht wird, kann man aus der Abfolge der Module auf das Produkt und umgekehrt vom NRP auf die Struktur der NRPS schließen. Dazu sind bioinformatische Methoden zur Entschlüsselung der Substratspezifität der Module notwendig. Diese Substratspezifität wird hauptsächlich durch das aktive Zentrum der Adenylierungsdomänen (A-Domänen) (siehe 3.2.1) determiniert. Die Entschlüsselung des "nichtribosomalen Codes" durch zwei unabhängige Arbeitsgruppen⁷⁹⁻⁸¹ hat es ermöglicht, einerseits Gencluster für viele bekannte nichtribosomale Peptide zu finden, aber auch durch "genomic mining" aufgrund vorhandener Gensequenzen neue Naturstoffe vorherzusagen und zu isolieren.^{82,83} Darüber hinaus sind in Bakterien Hybride aus NRPS und Polyketidsynthasen (PKS) weit verbreitet: Die Polyketidbiosynthese funktioniert nach einem ähnlichen Thiotemplatmechanismus, in der Natur was die Kombination von Modulen aus beiden Biosynthesewegen erlaubt.⁸⁴ Prominente Beispiele für natürlich vorkommende NRPS/PKS-Hybride sind z.B. das Immunsuppressivum Rapamycin (**2**) (Abb. 3-1) und das antiproliferativ wirkende Bleomycin (**17**) (Abb. 3-5).

Es gibt aber auch Ausnahmen von der Kolinearitätsregel. Bei Dimeren, wie dem marinen Chinoxalin Echinomycin, werden alle Module zweimal durchlaufen, bevor an der Thioesterase über zwei Esterifizierungen die Monomere zum Dimer verknüpft werden.⁸⁵ Auch die Thioesterasen von Gramicidin S⁸⁶ und Enterobactin⁸⁷ arbeiten iterativ und katalysieren die Di- bzw. Trimerisierung der assemblierten Peptidketten. In der Nocardicin-NRPS befinden sich fünf Module statt aufgrund des Moleküls zu erwartenden drei Modulen.⁸⁸ Eine kürzlich erschienene Studie zeigt aber, dass alle fünf Module in der Biosynthese des Tripeptids involviert sind.⁸⁹ Die Inaktivierung jeder einzelnen PCP-Domäne führte zu einer nichtproduzierenden Mutante. Ein Vergleich der Biosynthesegencluster der drei antitumoralen Substanzen Bleomycin (**17**), Tallysomycin und Zorbamycin zeigte, dass alle drei NRPS eine unterschiedliche Anzahl von Modulen besitzen, obwohl die Produkte von der Aminosäurenanzahl identisch sind.⁹⁰

Neben den oben dargestellten NRPS gibt aber auch iterative NRPS. Hier werden einzelne Module für die Synthese eines Moleküls mehrfach benutzt. Diese NRPS kommen hauptsächlich in Eukaryoten vor,^{91,92} aber es gibt auch bakterielle Beispiele. Das Oligopyrrolantibiotikum Congocidin aus *Streptomyces ambofaciens* wird an einer NRPS mit einer einzigen A-Domäne assembliert.⁹³

3.2.1 A-Domänen

Die Adenylierungsdomäne (A-Domäne) katalysiert die sogenannte Adenylierung der einzubauenden Aminosäure, d.h. die Aktivierung durch Bildung eines Aminoacyl-intermediates aus Aminosäure und Adenosintriphosphat (ATP) (siehe Abb. 3-7 a). Anschließend wird diese aktivierte Aminosäure unter Abspaltung von Adenosinmonophosphat (AMP) auf eine terminale Sulfhydrylgruppe im aktiven Zentrum der PCP-Domäne übertragen (Abb. 3-7 b).

Abb. 3-7: Aktivierung (a) und Übertragung auf das Peptidylcarrierprotein (PCP) (b) von Aminosäuren durch die A-Domäne.

Durch die 1997 publizierte Aufklärung der Kristallstruktur von PheA, dem Phenylalanin aktivierenden ersten Modul der Gramicidinsynthetase,⁹⁴ konnten wichtige Einsichten in die Struktur und den Aktivierungsmechanismus einer A-Domäne gewonnen werden. Demnach ist die A-Domäne aus einer kleineren, etwa 100 Aminosäuren (AS) umfassenden C-terminalen Subdomäne und einer größeren, ungefähr 400 Aminosäuren langen, N-terminalen Subdomäne aufgebaut.⁹⁵ Das aktive Zentrum ist an der Verbindungsfläche zwischen diesen Subdomänen lokalisiert, wobei fast alle für die Substraterkennung wichtigen Aminosäure-Positionen Teil der C-terminalen Domäne sind. Weitere gewonnene Kristallstrukturen zeigen, dass die Struktur von vielen Acyl-Adenylat generierenden Enzymen sehr ähnlich ist, wie z.B. bei der freistehenden, 2,3-Dihydroxybenzoat-aktivierenden Domäne EntB aus der Bacillibactin-Biosynthese,⁹⁶ aber auch bei der Acetyl-CoA-Synthase⁹⁷ oder der Luciferase der Leuchtkäfer.⁹⁸ Deshalb wurde für diese Superfamilie der Name "ANL" (<u>A</u>cyl-CoA-Synthetasen, <u>N</u>RPS-Adenylierungsdomänen, <u>L</u>uciferasen) vorgeschlagen.⁹⁵

In der Bindetasche von PheA wurden zehn Aminosäurereste ausgemacht, die mit der aktivierten Aminosäure interagieren. Eine bioinformatische Analyse aller bis dahin publizierten Sequenzen von A-Domänen ergab, dass sich diese Aminosäurereste je nach Substrat unterscheiden, und dass man in den meisten Fällen aus der Sequenz dieser zehn Aminosäuren auf das aktivierte Substrat schließen kann. Diese Aminosäuresequenz wird als nichtribosomaler Code ("nonribosomal code") bezeichnet und erlaubt in vielen Fällen eine funktionelle Vorhersage der A-Domänen.^{79,80} Der nichtribosomale Code wurde später noch auf acht Aminosäuren reduziert (Position 236, 239, 278, 299, 301, 322, 330, 331 von PheA) da die Positionen 235 (Asp) bzw. 517 (Leu) bei allen sequenzierten A-Domänen nahezu invariant sind. Erstere ist in die Bindung der α -Aminogruppe der gebundenen Aminosäure involviert, letztere in die Bindung der α -Carboxygruppe.

Die Bestimmung des nichtribosomalen Codes hat viele Forscher herausgefordert, durch Mutationen der involvierten Aminosäuren die Substratspezifität der A-Domäne zu verändern. In der Studie von Stachelhaus et al. änderte sich die Spezifität der A-Domäne AspA aus der Surfactinsynthetase durch

Austausch einer einzigen Aminosäure (His322Glu) von Asparaginsäure zu Asparagin.⁷⁹ Anschließend konnten Eppelmann et al. durch Austausch einer einzigen Aminosäure (Lys239Gln) der A-Domäne GluA aus der Surfactinsynthetase die Substratspezifität des Enzyms von Glutaminsäure zu Glutamin verändern.⁹⁹ In einem strukturbasierten, bioinformatischen Ansatz gelang es Chen et al. die Substratspezifität der kristallisierten A-Domäne PheA⁹⁴ durch einen eigens entwickelten Algorithmus und dann nachfolgenden einzelnen Mutationen im aktiven Zentrum die Substratspezifität von Phenylalanin zu ändern. So ließ sich das bevorzugte Substrat von Phenylalanin zur ungeladenen Aminosäure Leucin, aber auch zu den geladenen Aminosäuren Arg, Glu, Lys, und Asp ändern. Die mutierten Enzyme hatten aber durchweg eine geringere katalytische Aktivität als der Wildtyp (maximal 16%).¹⁰⁰

In vielen Fällen besitzen die A-Domänen eine gewisse Flexibilität hinsichtlich der Substraterkennung. Das ist besonders bei hydrophoben Aminosäureresten der Fall.⁸⁰ Somit kommt es oft zu natürlichen Strukturvarianten von nichtribosomalen Peptiden. Das cyclische Dekapeptid Tyrocidin (**18**) besteht beispielsweise aus vier verschiedenen Verbindungen, die sich untereinander in zwei Aminosäure-Positionen (Phe und Tyr) unterscheiden.¹⁰¹ Von den "calcium-dependent antibiotics" (CDA) (**20**) sind insgesamt sechs verschiedene natürliche Varianten isoliert worden, die sich an drei Aminosäureresten unterscheiden (vgl. Abb. 3-16).¹⁰² Vom Immunsuppressivum Ciclosporin (**16**) (Abb. 3-5) sind sogar ca. 30 Strukturvarianten bekannt.¹⁰³

Die Evolution von A-Domänen und damit von NRPS-Genclustern ist in den Microcystinen, die von yerschiedenen Cyanobakterienarten synthetisiert werden, untersucht worden. Christiansen et al. konnten interessante Erkenntnisse über die Evolution von A-Domänen der Anabaenopeptine aus *Planktothrix*-Arten gewinnen. Durch phylogenetische Analysen konnten Einsichten in die Evolution dieser A-Domänen und ihrer Spezifitäten aus gemeinsamen Vorläufern gewonnen werden.¹⁰⁴ Die Spezifitäten homologer A-Domänen haben sich durch Punktmutationen in Aminosäureresten in der Bindetasche verändert. Bei den Microcystinen und den Aeruginosinen haben rekombinatorischer Austausch von A-Domänen zur Bildung von neuen NRPS, und damit neuen Peptiden geführt.^{105,106} Das konnte durch Sequenzanalysen gezeigt werden. Tooming-Klunderud et al. konnten nicht nur Austausch von ganzen A-Domänen, aber auch Rekombinationspunkte in A-Domänen im Microcystin-Operon ausmachen, die zu einer zusätzlichen Varietät der Microcystine geführt haben.¹⁰⁷

Klassischerweise wird die Substratspezifität der A-Domänen *in vitro*, das heißt isoliert im Reaktionsgefäß, mit dem ATP/Pyrophosphat-Austauschassay ermittelt.¹⁰⁸ In diesem Assay wird der Austausch von natürlichem Pyrophosphat und markiertem, im Überschuss zugesetzten ³²P-Pyrophosphat gemessen. Aus der Rate des Austauschs lassen sich Rückschlüsse auf das Ausmaße der Aminosäurenaktivierung schließen. Einen modifizierten, massenspektrometrisch basierten Assay mit einem stabilen Sauerstoffisotop (¹⁸O), das nicht radioaktiv ist, haben Phelan et al. entwickelt.¹⁰⁹ Dieser Assay wird auch in dieser Arbeit verwendet (siehe Abschnitt 5.4.4, Abb. 5-54). Dorrestein et al. haben

einen ebenfalls massenspektrometrisch basierten Assay publiziert, in dem der AT-Didomäne ein Pool von Aminosäuren angeboten wird, und nur das präferierte, gebundene Substrat detektiert wird.¹¹⁰

3.2.2 Andere Domänen der NRPS

Peptidylcarrierproteine (PCP) sind kleine, 80-100 Aminosäuren lange Proteine, die entweder freistehend, aber auch als Teil von NRPS vorkommen können.¹¹¹ Um Aminosäuren von der A-Domäne aufnehmen zu können, müssen die PCP phosphopanthetheinyliert werden. Bei dieser Reaktion wird ein Phosphopanthetheinylrest (4'-Ppant) aus Coenzym A (**19**) an ein Serin, das in einem konservierten GGXS-Motiv liegt, im aktiven Zentrum des Proteins angehängt. Dies geschieht durch die Aktivität einer Phosphopanthetheinyltransferase (PPTase).¹¹² 3',5'-ADP wird freigesetzt und das Serin besitzt nun einen etwa 20 Å langen, beweglichen Rest mit einer terminalen Sulfhydrylgruppe (-SH) (vgl. Abb. 3-8). Dieser ist gut zugänglich für nucleophile Substitutionsreaktionen. Die unmodizierte Form der PCPs wird als *apo*-Form, der phosphopanthetheinylierte Zustand als *holo*-Form bezeichnet. Das PCP selber scheint kaum Substratspezifität zu besitzen.¹¹³

Abb. 3-8: Phosphopanthetheinylierung durch Phosphopanthetheinyltransferasen (PPTasen). Die PPTase überträgt eine 4'-Phosphopanthetheinylgruppe aus Coenzym A (**19**) auf ein Serin eines *apo*-Peptidylcarrierproteins (PCP). Es entsteht ein *holo*-PCP mit einer terminalen –SH-Gruppe.

Die Kondensationsdomänen (C-Domänen) sind für die Verlängerung der Peptidkette verantwortlich. Sie katalysieren die Kondensationsreaktion zwischen der Peptidylkette, die an das 4'-Ppant des in der Enzymkette stromaufwärts gelegenen PCP gebunden ist, und der Aminosäure, die an das stromabwärts gelegene PCP gebunden ist (vgl. Abb. 3-9). Kristallisationsstudien der freistehenden C-Domäne VibH aus der Vibriobactinbiosynthese zeigen die Existenz eines Lösungsmittelkanals, der von beiden Seiten der C-Domäne zugänglich ist.¹¹⁴ Es wird postuliert, dass sowohl der 4'-Ppant-Arm der stromaufwärts

(Donor), als auch der stromabwärts (Akzeptor) liegenden PCP-Domäne durch diesen Tunnel das aktive Zentrun, in dem die Kondensation stattfindet, erreichen können.

Das aktive Zentrum enthält ein charakteristisches Motiv mit konservierten Histidinen (HHxxxxDG),¹¹⁵ das sich als essentiell für die katalytische Aktivität herausstellte.¹¹⁶ Die Substratspezifität der C-Domäne wird als eher breit angesehen,¹¹⁷ wobei durch Fütterungsexperimente mit Aminoacyl- oder Peptidyl-N-acetylcysteaminthioestern (SNACs) gezeigt wurde, dass es Unterschiede zwischen Donorund Akzeptorseite gibt.⁷⁷ So gibt es an der Donorseite eine breite Erkennung unbekannter Substrate, wie z.B. Aminoacyl- statt Peptidresten oder Peptidketten mit unterschiedlicher Aminosäurenanzahl und –zusammensetzung.^{113,118-120} Die Tatsache, dass gegenüber den Domänen im selben Modul eine größere Selektivität vorherrscht als gegenüber den im vorherigen, zeigt, dass bei kombinatorischen Experimenten die Rekombination von ganzen Modulen erfolgsversprechender als die Rekombination einzelner Domänen ist.

Abb. 3-9: Peptidknüpfung durch die Kondensationsdomäne (C). T=Thiolierungsdomäne (PCP); A=Adenylierungsdomäne

Zusätzliche katalytische Domänen, die in NRPS-Module inkorporiert sein können, sind Epimerase-(Cy)-Zyklisierungsund Methyltransferase (MT-)-Domänen. Epimerase-(E), und Zyklisierungsdomänen sind phylogenetisch¹²¹ und strukturell¹¹⁴ mit den Kondensationsdomänen verwandt. Epimerasedomänen katalysieren die Epimerisierung von Aminosäureresten von der L- zur D-Konfiguration, wahrscheinlich über eine Keto-Enol-Tautomerie (vgl. Abb. 3-10 a).¹²² Marahiel und Mitarbeiter konnten zeigen, dass Epimerasen eine breite Substratspezifität besitzen, und für biokombinatorische Experimente eingesetzt werden können.¹²³ Allerdings sind Epimerasedomänen aus Initiationsmodulen, also den ersten Modulen der NRPS, weit schlechter für die kombinatorische Biosynthese geeignet.¹²⁴ Zyklisierungsdomänen kondensieren den intramolekularen nukleophilen Angriff eines Heteroatoms (O oder N) aus Cystein, Serin oder Threonin auf den benachbarten Ketokohlenstoff. Durch Dehydratisierung bildet sich ein Thiazolin- oder Oxazolin-Heterozyklus. Abbildung 3-10 b) zeigt diesen Mechanismus am Beispiel der Thiazolinbildung. Dieser kann durch eine Oxidationsdomäne (Ox) noch weiter zum Oxazol oder Thiazol oxidiert werden, wie z.B. im Bleomycin (Abb. 3-5).¹²⁵ Durch Mutationen von konservierten Aminosäuren in der Bacitracin-Zyklisierungsdomäne und dem anschließenden Verlust der Zyklisierung konnten essentielle Aminosäurereste im aktiven Zentrum dieses Enzyms bestimmt werden. Außerdem konnten mit kombinatorischer Biosynthese durch Austausch von NRPS-Modulen neue Heterozyklen erzeugt werden.¹²⁶

Abb. 3-10: a): Epimerisierung durch die Epimerasedomäne (E), b): Zyklisierung zweier Aminosäuren durch die Zyklisierungsdomäne (Cy) am Beispiel der Thiazolinbildung aus Cystein. T=Thiolierungsdomänen (PCP).

Methyltransferasedomänen (MT) katalysieren die Übertragung eines Methylrestes aus S-Adenosylmethionin (SAM) (**87**), (siehe Abb. 5-21) meist auf den Peptidstickstoff. Die Thioesterasedomäne (TE) ist normalerweise die letzte Domäne in der NRPS. Sie katalysiert die Ablösung des assemblierten Peptides von der letzten PCP-Domäne. Dabei kann das Produkt durch Hydrolyse in linearer Form einfach abgelöst werden oder intramolekular cyclisiert werden (vgl. Abb. 3-11).¹²⁷ So können neben linearen Peptiden auch zyklische Peptide, Makrolactone, Makrolactame oder Makrothiolactone mit oder ohne Seitenkette entstehen.¹²⁸ 2002 wurde die erste Kristallstruktur einer NRPS-Thioesterasedomäne, SrfTE aus der Surfactinsynthetase, aufgeklärt.¹²⁹ Sie zeigte, dass Thioesterasen zu Familie der α/β -Hydrolasen gehören. Sie besitzen eine katalytische Triade aus Serin, Histidin und Aspartat, die die Spaltung der Thioesterbindung zwischen dem 4^e-Ppant des letzten PCP und dem Peptid und die darauf folgende Bildung eines Peptidyl-TE-Intermediates katalysieren. Dieses Intermediat kann entweder durch den Angriff von H₂O hydrolytisch als lineares Peptid freigesetzt werden, oder durch den Angriff eines intramolekularen Nukleophils zyklisieren und als zyklisches Peptid freigesetzt werden.

Abb. 3-11: Die Übertragung des Peptids auf die Thioesterasedomäne (TE) und Ablösung durch a) Hydrolyse oder b) intramolekularen Angriff. T=Thiolierungsdomäne (PCP).

Experimente zur Substratspezifität der TE-Domänen haben gezeigt, dass das Enzym besonders selektiv ist für die Seitenketten der Aminosäuren, die das Peptidyl-O-TE-Intermediat formen.¹³⁰ Auch benötigt das Substrat eine bestimmte strukturelle Organisation, um erkannt zu werden.¹³¹

Thioesterasen scheinen eine unterschiedlich breite Substratspezifität zu besitzen. Während die Surfactin-TE relativ spezifisch für ihr natürliches Substrat ist,¹³¹ hat die Tyrocidin-TE eine sehr breite Substratspezifität, die es in Kombination mit Festphasenpeptidsynthese erlaubte, chemoenzymatisch eine ganze Bibliothek von zyklischen Peptiden zu erstellen.¹³²

3.2.3 Strukturelle Einsichten in NRPS

In den letzten Jahren wurden zunehmend Erkenntnisse über die Struktur und den Mechanismus der NRPS-Enzyme gewonnen.¹³³⁻¹³⁵ Lange standen nur die einzelnen Domänen der NRPS im Fokus, doch durch Kristallisation von Didomänen^{136,137} oder ganzen Modulen¹³⁸ konnten weitreichende neue Einsichten sowohl in strukturelle Modi von NRPS-Domänen als auch in Lokalisationen und Interaktionen von Domänen gewonnen werden. NMR-Strukturanalysen der TyrocidinC3-PCP-Domäne haben gezeigt, dass PCPs in drei verschiedenen Konformationen vorliegen können, in der A-, H- und der A/H-Konformation.¹³⁹ *Apo*-PCPs können in der A oder A/H-Konformation, *holo*-PCPs dagegen in der A/H oder H-Konformation vorliegen. Die Phosphopanthetheinyltransferase Sfp interagiert während der Phosphopanthetheinylierung nur mit der A-Konformation des PCP. Da Coenzym A (**19**) zu einem großen Teil innerhalb der Zelle acetyliert als Acetyl-CoA vorliegt, kommt es oft zu Fehlbeladungen (mispriming) des PCP, und somit zum Abbruch der Kettenverlängerung des Peptids. Diese Fehlbeladungen können durch ein Reparaturenzym, die sogenannte Thioesterase Typ II (TEII) korrigiert werden, indem die TEII mit dem fehlbeladenen PCP in der H-Konformation interagiert und kleine Moleküle, wie z.B. die Acetylgruppe wieder abspaltet.¹⁴⁰ In der H-Konformation kann das *holo*-PCP dann mit der A-Domäne interagieren.

Auch für die A-Domänen wurden durch die Kristallstruktur und ausführliche Modellierungsstudien von DltA, einem D-Alanin aktivierenden Enzym, verschiedene Konformationen nachgewiesen.¹⁴¹ Diese Konformationen können ebenfalls in einem Zyklus dargestellt werden. In der offenen Konformation weist die C-terminale Subdomäne von der A-Domäne weg. In dieser Konformation können die Aminosäure und ATP gebunden werden. Das Aminoacyl-AMP-Intermediat wird gebildet, und die Abspaltung von Pyrophosphat führt zu einer geschlossenen Konformation, in der das Aminoacyl-AMP vor der Umgebung geschützt ist. Der anschließende Schritt ist die Übertragung der Aminosäure und Generierung einer Thioesterbindung am *holo*-PCP. Die A-Domäne kehrt wieder in die offene Konformation zurück. Die beschriebenen Zyklen für PCP- und A-Domäne sind in Abb.3-12 bildlich dargestellt. Die Röntgenkristallstruktur einer PCP-C-Didomäne aus der Tyrocidin-Synthetase hat weitere Einblicke in die Umgebung der PCP gegeben.¹³⁷

Abb. 3-12: Reaktionszyklus der PCP- und A-Domänen (aus ¹³⁵). Die *apo*-PCP-Domäne (links, grün) wird in die *holo*-Form von einer PPTase (blau) konvertiert. Falsche Beladungen werden von einer TE, Typ II repariert (orange). Die korrekt beladene *holo*-PCP-Domäne interagiert mit dem A-Domänen-Zyklus, und wird mit einer Aminosäure (AS) beladen. Nach Translokation der AS durch Kondensation kann die *holo*-PCP-Domäne neu beladen werden. Im A-Domänenzyklus (rechts) durchläuft die kleine C-terminale Subdomäne (braun) der A-Domäne (rot) mehrere Konformationen. In der offenen Konformation kann die A-Domäne die Aminosäure und ATP binden. Während der Adenylierung wird Aminoacyl-AMP generiert und Pyrophosphat abgespalten. Das Aminoacyl-AMP ist von der Umgebung durch eine geschlossene Konformation geschützt, was den Transfer auf die PCP-Domäne (Thiolierung) erleichtert.

Abb. 3-13: Das Terminationsmodul der Surfactin-NRPS (aus ¹³⁵). Der 20 Å -Radius, der vom 4'-Ppant-Arm des PCP erreichbar ist (S1003A), ist grau markiert. Linkerregionen sind blau markiert; die Domänen sind korrespondierend zu der schematischen Übersicht in der oberen linken Ecke angeordnet und gefärbt.

Es ist für die korrekte Assemblierung notwendig, dass die PCP-Domäne mit ihrem 4'-Ppant-Arm alle umliegenden Domänen, wie die stromaufwärts liegende A-Domäne, aber auch die aufwärts und die abwärts liegende C-Domäne erreichen kann. Die C-Domänen besitzen eine V-artige Struktur aus 2 gleich großen Subdomänen, die durch eine kurze Verbindungs-(hinge)-Region und durch eine Schlaufe in der Mitte des Proteins verbunden sind. Die Form des Enzyms erlaubt den PCP-Domänen stromaufwärts und -abwärts, von beiden Seiten des Enzyms die Substrate für die Kondensation zu positionieren. Die Länge des 4´-Ppant-Arms beträgt in etwa 20 Å. Eine NMR-Struktur einer apo-PCP-TE-Didomäne aus der Enterobactin-Synthetase zeigt, dass das aktive Zentrum der TE 18 Å, also in Reichweite des 4'-Ppant-Arms, vom aktiven Zentrum der PCP entfernt ist.¹³⁶ Beide Domänen haben eine recht große hydrophobe Kontaktfläche (etwa 1300 Å). Das könnte die Notwendigkeit erklären, in kombinatorischen Biosyntheseansätzen PCP und TE zusammen zu rekombinieren.¹⁴² Im Jahr 2008 wurde die Kristallstruktur eines vollständigen NRPS-Terminationsmoduls aus der Surfactinsynthetase erhalten und analysiert (siehe Abb. 3-13).¹³⁸ Es wurde ersichtlich, dass A- und C-Domäne sehr stark miteinander interagieren und eine gemeinsame Oberfläche von mehr als 1600 Å bilden. Diese starke Interaktion scheint auch hier der Grund zu sein, warum in kombinatorischen Biosynthesen von NRPS-Enzymen C- und A-Domäne miteinander kombiniert werden mussten, um eine funktionierende neue NRPS zu erhalten.¹⁴² Interessanterweise ist zwar das aktive Zentrum der Thioesterase in Reichweite des aktives Zentrums des PCP (16 Å), aber das aktive Zentrum der A-Domäne ist ungefähr 60 Å entfernt. Es scheinen also größere strukturelle Änderungen im Bereich der NRPS-Enzyme während der Peptidsynthese stattzufinden.

3.2.4 MbtH-artige Proteine

Im Gencluster für die Biosynthese des Siderophors Mycobactin in *Mycobacterium tuberculosis* befindet sich ein Gen, *mbtH*, das für ein kleines, etwa 80 Aminosäuren großes Protein kodiert.¹⁴³ Nach diesem Protein wurde eine neue Superfamilie, die MbtH-artigen Proteine (MbtH-like Proteins) benannt. Es stellte sich heraus, dass *mbtH*-Homologe in vielen NRPS-Genclustern auftreten. Richard Baltz stellte eine systematische Analyse der bisher sequenzierten *mbtH*-Homologe auf, und notierte, dass diese Proteine am häufigsten in Actinobakterien auftreten (1,1 Homologe/Genom).¹⁴⁴ Besonders hoch ist die Prävalenz in Streptomyceten und Mycobakterien (2,6 bzw. 2,1 Homologe/Genom). Aber auch in den Bacillales und in den Proteobakterien (0,4 bzw. 0,3 Homologe/Genom) sind diese Proteine durchaus anzutreffen. In Eukaryoten gibt es bisher keine Evidenz von *mbtH*-ähnlichen Genen. Die MbtH-artigen Proteine in Actinomyceten sind 62 bis 80 Aminosäuren groß und normalerweise einzeln in NRPS-Genclustern kodiert. Eine Ausnahme bildet das Gencluster des Antibiotikums Teicoplanin, in dem zwei *mbtH*-artige Gene lokalisiert sind.¹⁴⁵ In Streptomyceten zeigen MbtH-artige Proteine eine hohe Sequenzidentität (durchschnittlich 64,3% zu DptG).¹⁴⁴ MbtH-artige Proteine sind also mit NRPS assoziiert, in *Streptomyces roseosporus* ist am N-Terminus einer NRPS sogar eine MbtH-artige Domäne mit der NRPS fusioniert.¹⁴⁴
Lyngbyatoxingencluster, wo ein MbtH-Protein mit einer P450-Monooxygenase fusioniert ist.¹⁴⁶ Transkriptionsanalysen an NRPS zeigten, dass in Überproduktionsstämmen nicht nur die NRPS-Transkription, sondern auch die Transkription der *mbtH*-Homologe hochreguliert ist.¹⁴⁷ Die Inaktivierung von *cchK*, dem *mbtH*-Homolog aus dem Coelichelin-Gencluster verringerte die Coelichelin-Produktion, die Inaktivierung von *cdaX*, dem *mbtH*-Homolog aus dem CDA-Gencluster stoppte die Produktion von CDA (**20**) sogar vollständig.¹⁴⁸ Auch die Deletion von *cloY* aus dem Clorobiocingencluster verminderte die Clorobiocinproduktion dramatisch.¹⁴⁹ In beiden Studien konnte aber die Metabolitenproduktion durch Kreuzkomplementierung mit nicht-nativen MbtH-Proteinen *in vivo* wieder hergestellt werden. Eine Expression von *cdaX* unter einem konstitutiven statt dem nativen Promotor führte sogar zu einer erhöhten Coelichelinproduktion. Die Ergebnisse dieser *in vivo*-Studien zeigen, dass MbtH-artige Proteine in vielen Biosynthesewegen wichtig, in einigen Fällen essentiell für die NRP-Produktion sind. Das Expressionslevel der MbtH-artigen Proteine korreliert mit der Metabolitenproduktion. MbtH-artige Proteine scheinen aber oft recht unspezifisch zu wirken, auch heterologe MbtH-Proteine können die NRPS aktivieren.

Die MbtH-artigen Proteine haben, wie schon erwähnt, eine hohe Konservierung ihrer Sequenzen, ein Sequenzvergleich zeigt zum Beispiel drei über alle Proteine konservierte Tryptophane (W 25, 35 und 55 in DptG). Die Kristallstruktur eines MbtH-Proteins aus dem Pyoverdincluster aus *Pseudomonas aeruginosa* zeigt, dass diese Tryptophane auf der hydrophoben Außenfläche des Proteins, das eine Pfeilspitzenstruktur besitzt (Abb. 3-14), lokalisiert sind.¹⁵⁰ Auch andere invariante Aminosäuren, wie Asparagin (N) 17, Serin (S) 23 und die Proline (P) 26 und 32 sind zur Außenseite exponiert.

Abb. 3-14.: Tertiärstruktur des MbtH-artigen Proteins aus *Pseudomonas aeruginosa* (oben) (aus ¹⁴⁴). Die invarianten Tryptophane (grün) und andere Aminosäuren (gelb) sind zu einer hydrophoben Außenfläche (unten) exponiert.

Mit NMR-Spektroskopie und Circulardichroismus-(CD)-Spektroskopie wurde 2010 die Struktur eines MbtH-artigen Proteins in Lösung aufgeklärt.¹⁵¹ Die β -Faltblattstrukturen im Zentrum des Proteins zeigen dynamische Bewegungen, die mit Interaktionen mit anderen Proteinen in Verbindung gebracht werden können. Die Aminosäurereste dieser Strukturen sind unter anderem die oben erwähnten W25 und 35 und P26 und 32. Der C-Terminus, der auch hoch konserviert ist (W55, P60) zeigt dagegen ungeordnete Bewegungen. Die Autoren vermuten, dass dieser Teil mit verschiedenen Bindungspartnern interagieren kann. Die andere Außenseite der "Pfeilspitze" ist sequenziell variabel. Auch diese könnte mit verschiedenen Bindungspartnern interagieren.

Wichtige neue Einblicke in die Funktion von MbtH-Proteinen lieferten Felnagle et al. 2010.¹⁵² Sie zeigten, dass die heterolog exprimierten AT-Didomänen CmnO und VioO aus der Capreomycin- bzw. Viomycinbiosynthese *in vitro* nur aktiv waren, wenn das zugehörige MbtH-Protein CmnN bzw. VioN coexprimiert wurde. MbtH-Protein und AT-Didomäne koeluierten während der Nickel-NTA-Aufreinigung und Konzentrationsmessungen in einem 1:1-Verhältnis aus AT-Didomäne und MbtH-Protein. Auch separat exprimiertes und für den Assay hinzugegebenes MbtH-Protein aktivierte die A-Domäne, allerdings nicht so stark wie das coexprimierte. Ein Austausch von W55 gegen Alanin verhinderte die Coelution von CmnO und CmnN. Dieser ausgetauschte Aminosäurerest scheint also essentiell für die Interaktion zu sein. Felnagle et al. zeigten auch, dass nicht alle AT-Didomänen MbtH-Proteine benötigen: CmnF und CmnG waren auch ohne CmnN aktiv.

Eine ähnliche Studie von Zhang et al zeigte analoge Ergebnisse.¹⁵³ Drei heterolog exprimierte CAT-Tridomänen aus der Pacidamycinbiosynthese waren ohne MbtH-Protein PacJ aktiv, während das Protein PacL nur mit gereinigtem PacJ Aktivität zeigte. Auch hier wurden Mutagenesestudien durchgeführt. Eine W25A-Mutante zeigte etwa nur 50% *in vitro*-Aktivität, während eine W25A/W35A-Mutante die Aktivität komplett verloren hatte. Die drei konservierten Tryptophane in den MbtH-Proteinen scheinen also Schlüsselrollen in der Interaktion mit anderen NRPS-Domänen zu spielen. Auch in dieser Studie konnten heterologe MbtH-Proteine die NRPS-Proteine aktivieren. KtzJ und GlbE aus der aus der Kutznerid- bzw. Glidobactinbiosynthese konnten PacJ gleichwertig ersetzen. Imker et al. beobachteten, dass eine monomodulare (C-A-T) NRPS, GlbF aus der Glidobactinbiosynthese, sich erst durch die Coexpression mit GlbE, dem im Gencluster angrenzenden MbtH-Protein, exprimieren ließ.¹⁵⁴ Hier wurde also eine stabilisierende oder Chaperon-artige Funktion des MbtH-artigen Proteins deutlich.

Boll et al. konnten in ihrer kürzlich erschienenen Studie weitere Erkenntnisse über die Interaktionen von MbtH-artigem Protein und NRPS gewinnen.¹⁵⁵ Erstmals wurde eine freistehende A-Domäne (CloH) mit MbtH-Protein (CloY) inkubiert, und aktivierte diese. Es konnte gezeigt werden, dass auch das MbtH-Protein aus *E. coli*, YbdZ, mit heterolog exprimierten A-Domänen interagiert. Ein *ybdZ*-defizienter Stamm verringerte die Rate an löslicher A-Domäne signifikant. Auch hier lagen A-Domäne und MbtH in einem molaren 1:1-Verhältnis vor. Interessanterweise wurde nach

Größenausschlußchromatographie ein 2:2-Komplex aus der Didomäne SimH und dem MbtH-artigen Protein SimY isoliert. Ein Sequenzvergleich der adenylierenden Enzyme CloH und NovH zeigt eine Übereinstimmung von 83%. Im Gegensatz zu CloH ist NovH aber auch ohne MbtH-Protein aktiv.¹⁵⁶ Modellierungsstudien nach der Kristallstruktur von PheA⁹⁴ zeigten im Vergleich von CloH und NovH bei nur einer Aminosäure nahe des aktiven Zentrums einen Austausch: Leu396Met (Position relativ zu PheA). Dieses Leucin wurde in CloH nun durch Mutagenese gegen Methionin ausgetauscht. Diese Mutante benötigte in vitro kein MbtH-Protein mehr für Aktivität, hatte aber nur noch etwa 1/3 der Aktivität der nativen A-Domäne. A-Domänen sind also ein wichtiger Bindungspartner von MbtH-Proteinen, obwohl es noch andere Interaktionspartner zu geben scheint. Es ist immer noch nicht vollständig geklärt, warum manche A-Domänen MbtH-Proteine benötigen, und andere nicht, aber die Natur des Aminosäurerestes 396 (in PheA Lysin) scheint einen Einfluß auf die Interaktion zu haben.¹⁵⁵ Es wird postuliert, dass die Interaktion zwischen einer A-Domäne und einen MbtH-artigen Protein Konformationsänderungen hervorruft, die zu einer Erhöhung der Aktivität führen. Eine dreidimensionale Struktur eines Komplexes aus A-Domäne und MbtH-artigem Protein würde entscheidende neue Einsichten in die Interaktions- und Aktivierungsmechanismen durch MbtH-artige Proteine geben.

3.3 Prinzipien zur Erzeugung neuer Naturstoffe

Die Suche nach neuen Arzneistoffen ist für den Menschen aufgrund von ständig neu auftretenden Resistenzen, neuen Krankheiten oder wegen unzureichender Therapie fortwährend nötig. Klassische Methoden sind Synthese neuer Kandidaten, oder semisynthetische Veränderungen zur Optimierung bereits bekannter Therapeutika. Im Bereich der Naturstoffe, die oft synthetisch schwer zugänglich sind, wurde Methoden entwickelt, in die Biosynthese einzugreifen, und die Produzenten sogenannte "unnatürliche Naturstoffe" synthetisieren zu lassen.¹⁵⁷ Einige klassische und aktuelle Beispiele im Bereich der NRPS sollen hier kurz vorgestellt werden.

3.3.1 Vorläufer-dirigierte Biosynthese und Mutasynthese an NRPS

Eine Methode, um Analoga von Naturstoffen zu erhalten, ist die Vorläufer-dirigierte Biosynthese.¹⁵⁸ Durch Zufütterung von Analoga der Vorstufen werden diese statt der "Originale" in das Produkt eingebaut, und neue Stoffe mit den gewünschten Modifikationen entstehen. Die Vorläufer-dirigierte Biosynthese beruht auf der losen Substratspezifität einiger biosynthetischer Enzyme, die zu einem nicht unerheblichen Teil chemisch unterschiedliche Substrate erkennen und prozessieren können. Die Ausbeute des neuen Naturstoffs kann gesteigert werden, wenn der Stoffwechselweg, der zum zu ersetzenden Baustein führt, durch gezielte Mutation blockiert wird. Dieses Verfahren wird als Mutasynthese bezeichnet.¹⁵⁹ Schematisch ist die Mutasynthese am Beispiel eines nichtribosomalen Peptides (NRP) in Abbildung 3-15 dargestellt.

Abb. 3-15: Schematische Dastellung der Mutasynthese. Die Enzyme E1 und E2 katalysieren die Synthese einer nicht-proteinogenen Aminosäure, die dann von der A-Domäne (A) erkannt und in das nichtribosomale Peptid (NRP) eingebaut wird.

Allerdings führt die Mutasynthese nicht in allen Fällen zum Erfolg. Die gesamte Biosynthesemaschinerie muss, wie oben erwähnt, ab dem zugefütterten Produkt eine relaxierte Substratspezifität besitzen, um das neue Stoffwechselprodukt weiter zu prozessieren und freizulassen. Außerdem sollte das natürliche Produkt in hohen Ausbeuten isoliert werden können, da die mutasynthetischen Analoga oft in weit geringerem Maße als das Original produziert werden.

Ein sehr erfolgreiches Besipiel ist die Vorläufer-dirigierte Biosynthese und Mutasynthese der "Calcium-dependent antibiotics" (20) (CDAs), Lipopeptide aus Streptomyces coelicolor, in der Gruppe von Jason Micklefield. Hier wurde in mehreren Studien die Fähigkeit, Analoga der Vorstufen einzubauen, ausgenutzt und verschiedenste Varianten generiert. Die Fütterung von Phenylglycinen (Phenylglycin, 4-F-Phenylglycin) zu einem Stamm, in dem die Hydroxyphenylglycin-(Hpg)-Biosynthese [Aminosäure(AS) 6, vergleiche Abb. 3-16] unterbrochen ist, resultierte in der Biosynthese von neuen CDAs.¹⁰² Zu einem Stamm, der durch gerichtete Mutation die Fähigkeit zur Biosynthese von 3-Methylglutaminsäure (AS 10) verloren hatte, wurden 3-Fluoromethyl- und 3-Ethylglutaminsäure gefüttert. Auch hier wurden diese Analoga eingebaut und resultierten in der Produktion neuer CDAs.¹⁶⁰ Eine Mutation des aktiven Zentrums des ersten PCP in der CDA-Synthase verhinderte die 4'-Phosphopanthetheinylierung dieser Domäne und somit die Aufnahme der Epoxyhexanoylseitenkette. Fütterung mit N-Acetylcysteaminthioestern (SNAC) mit verschiedenenen Fettsäureresten führte zu CDAs mit Pentanoyl- und Hexanoylseitenketten.¹⁶¹ Zu einem Trvptophanauxotrophen Stamm von Streptomyces coelicolor wurden 5-Hydroxy- und 5-Fluorotryptophan gefüttert. In diesem Fall konnten mehrere neue CDAs mit unterschiedlichen Tryptophanresten (AS 3,11) isoliert werden.¹⁶²

Abb. 3-16: Die Familie der "Calcium-dependent antibiotics" (CDAs) (**20**). Die Zahlen neben den Aminosäureresten geben die Abfolge der NRPS-Module wieder. Die nebenstehende Tabelle zeigt die Unterschiede der einzelnen CDAs in den entsperechenden Aminosäureresten.

3.3.2 Kombinatorische Biosynthese

Die kombinatorische Biosynthese zielt darauf, durch Austausch von ORFs, Modulen, Domänen oder Aminosäuren die Substratspezifität der biosynthetischen Enzyme zu verändern und neue Produkte produzieren zu lassen.^{142,163} Prinzipiell sind der kombinatorischen Biosynthese kaum Grenzen gesetzt, Rekombination allerdings haben die meisten Studien gezeigt, dass mit einer der Biosynthesemaschinerie sehr oft ein dramatischer Verlust der Produktausbeute einhergeht. Gründe dafür sind, wie in der Mutasynthese, in der Substratspezifität der stromabwärts liegenden Enzyme, aber auch in der veränderten Enzymarchitektur und möglichen Problemen in der Protein-Protein-Interaktion zu suchen. In diesem Abschnitt sollen einige Beispiele aus dem Bereich der NRPS vorgestellt werden.

Eppelmann et al. konnten in Erweiterung der Studie von Stachelhaus⁷⁹ nicht nur *in vitro*, sondern auch *in vivo* die Substratspezifität der A-Domäne AspA aus der Surfactinsynthetase ändern.⁹⁹ Durch Austausch einer einzigen Aminosäure (His322Glu) änderte sich die Spezifität von Asparaginsäure zu Asparagin, und der resultierende Stamm produzierte ein bis dahin nicht isoliertes Asparaginylsurfactin. Mootz et al. konnten durch Deletion eines Leucin integrierenden Moduls in der Surfactinsynthetase ein Surfactin mit verminderter Ringgröße isolieren.¹⁶⁴ Butz et al. konnten dagegen durch Erweiterung der Balhimycin-NRPS durch ein künstlich erzeugtes Modul eine verlängertes Peptid mit einem zusätzlichen Hydroxyphenylglycin isolieren.¹⁶⁵ Allerdings wurde das neue Produkt nicht von den hochspezifischen Oxygenasen, die die Quervernetzungen in der Seitenkette herstellen (vgl. Vancomycin (**15**); Abb. 3-5), erkannt. Auch fanden keine Glycosylierungen statt. In einer mutagenetischen Studie wurde versucht, durch zwei Punktmutationen (Ala322Glu, Asn331Gly) in der A-Domäne des Moduls 7 der CDA-NRPS (vgl. Abb. 3-16) die Spezifität von Aspararaginsäure zu Asparagin zu ändern.¹⁶⁶ Das enstprechende Produkt konnte auch isoliert werden, allerdings in weitaus geringeren Mengen als das natürliche Produkt. Stattdessen wurde in großen Mengen ein Hexapeptidintermediat detektiert, das offensichtlich während der Biosynthese von der NRPS freigesetzt wurde. Das Asparagin-Thioesterintermediat scheint also von der stromaufwärts liegenden C-Domäne nur in geringen Maße erkannt und prozessiert worden zu sein. Für höhere Effizienz in der kombinatorischen Biosynthese ist also auch das aktive Zentrum der zugehörigen C-Domänen von großer Bedeutung. Hahn und Stachelhaus konnten die Existenz von sogenannten Kommunikationsdomänen (COM-Domains), kurzen Strukturmotiven am Ende und Anfang von einigen NRPS, nachweisen.¹⁶⁷ Diese Domänen sind notwendig für die Interaktion und Organisation von mehreren NRPS und die korrekte Abfolge der Biosynthese eines NRP, wenn es von mehreren NRPS-Enzymen synthetisiert wird. Die meisten NRPS-Systeme sind, wie oben erwähnt, auf mehreren ORFs codiert. Es konnte anschließend durch Manipulation der aktiven Zentren dieser COM-Domains in vitro ein Tripeptid von drei verschiedenen NRPS-Modulen aus der Tyrocidin- Surfactin- und Bacitracinsynthetase, die nun miteinander interagierten, synthetisiert werden.¹⁶⁸ Dieser vielversprechende Ansatz konnte dann in einer in vivo-Studie erfolgreich angewendet werden. In heterologen Expressionen konnten neue Produkte aus unterschiedlich neu programmierten Teilen der Surfactin- und Tyrocidinsynthetase isoliert werden.¹⁶⁹

Am medizinisch relevanten Lipopeptid Daptomycin (**14**) aus *Streptomyces roseosporus* (Abb.3-17) wurden bisher die meisten erfolgreichen kombinatorischen Experimente durchgeführt.¹⁷⁰ Eine Studie von 2006 zeigt das enorme Potential, das die kombinatorische Biosynthese beinhaltet: Es wurden Module innerhalb der Daptomycin-NRPS ausgetauscht (11Ser gegen 8Ala, vergleiche Abb. 3-17), ausserdem wurden Module aus der NRPS der verwandten Lipopeptide A54145 [11Ser und 8Ala gegen 11Asn, 8Ala gegen 8Lys, 13Kynurenin (Kyn) gegen 13Ile] und CDA (13Kyn gegen 13Trp, vgl. Abb. 3-16) in der Daptomycin-NRPS ausgetauscht. Zusammen mit der Deletion einer Methyltransferase (12Glu statt 12MeGlu) konnten so ingesamt 60 neue Peptide massenspektrometrisch detektiert werden, von denen allein in dieser Studie zwölf isoliert und getestet wurden. Einige waren **14** in der Aktivität gegen grampositive Bakterien zumindest gleichwertig, in manchen Tests sogar verbessert.¹⁷¹ Die Produktionsrate der neuen Peptide war allerdings signifikant erniedrigt. Die Bibliothek der kombinatorisch erzeugten Daptomycine konnte 2010 noch erweitert werden. Durch zusätzlichen Austausch des Moduls 2 (2Asn gegen 2Glu) und Variationen in der Lipidseitenkette standen nun insgesamt 25 Daptomycine dem antibakteriellen Testsystem zur Verfügung.^{172,173}

Abb. 3-17: Daptomycin (14). Die Zahlen neben den Aminosäureresten geben die Abfolge der NRPS-Module wieder.

In der Evolution ist es wiederholt zu Rekombination von DNA-Abschnitten gekommen. Viele neue Gencluster sind durch den Austausch von Aminosäuren, Domänen Modulen und ganzen Genen entstanden.²¹ Ein Beispiel sind die drei Lipopeptide Bacillomycin D, Iturin A und Mycosubtilin, die alle eine identische "nördliche" Molekülhälfte besitzen. Ein Vergleich der Gencluster der drei Metaboliten zeigt, dass es in der zweiten Hälfte der NRPS durch Rekombination zu einer Umordnung der Module und damit zu drei verschiedenen Naturstoffclustern gekommen sein muss. Ausserdem sind die A-Domänen-Paare Glu/Gln und Ser/Thr strukturell sehr eng miteinander verwandt und könnten aus einem gemeinsamen Vorläufer durch Mutationen enstanden sein.¹⁷⁴ Ein ähnliches Phänomen wurde in der Gruppe von Müller bei den Myxochromiden ebenso erkannt: Punktmutationen und der Austausch bzw. das Überspringen von Modulen sind bei zwei Genclustern direkt für strukturelle Unterschiede in den resultierenden Verbindungen verantwortlich. Diese Hypothese wurde durch kombinatorische Experimente bewiesen.¹⁷⁵ Gerichtete Evolution im Labor wurde in einer anderen Studie von Fischbach et al. dafür ausgenutzt, die Aktivität einer kombinatorisch erzeugten, chimären NPRS zu steigern.¹⁷⁶ Der Austausch der EntF-A-Domäne (spezifisch für Serin) gegen SyrE-A1, die die gleiche Spezifität besitzt, resultierte in einer 30-fach verschlechterten Aktivität der Enterobactinsynthetase. Es wurden durch mutagene PCR zufällige Mutationen eingebracht. Durch Selektion der am schnellsten wachsenden Klone, neue Mutationen dieser Klone und erneute Selektion wurde evolutiv auf die Wiederherstellung der Aktivität selektioniert. Nach zwei Selektionsrunden war ein Viertel der ursprünglichen Aktivität wieder hergestellt. Dieses Konzept wurde durch den Austausch einer Valin-aktivierenden Domäne aus der Andrimid-Biosynthese gegen eine 2-Aminobutyrat-aktivierende Domäne aus der Cytotrienin-PKS/NRPS angewendet. Hier konnte nach drei Selektionsrunden immerhin ein Drittel der Aktivität, die nach dem Austausch der Domänen auf 3% gesunken war, wiederhergestellt werden. Villiers und Hollfelder wendeten ebenfalls das Prinzip der gerichteten Evolution an: Sie führten zufallsgerichtete Mutationen in die erste A-Domäne der Tyrocidinsynthetase (Spezifität: Phe) ein und testeten zunächst alle Klone in einem A-Domänen-Hochdurchsatzscreening¹⁰⁸ auf Aktivität für kleinere Aminosäuren. Erfolgversprechende Mutationen wurden kombiniert und neuen Mutationen ausgesetzt. Durch insgesamt vier Mutationen konnte die Substratspezifität hin zu kleineren Aminosäuren wie Alanin geändert werden. Interessanterweise betraf nur eine dieser vier Mutationen eine Aminosäure des nichtribosomalen Codes.¹⁷⁷ Für die A-Domäne AdmK in der Andrimidbiosynthese wurden von Evans et al. ebenfalls gerichtete Evolution angewendet: Hier wurden allerdings drei kritische Aminosäurereste im nichtribosomalen Code der Domäne ausgemacht, durch deren Mutationen sich die Substratspezifität der Domäne von Valin zu Alanin, Leucin, Isoleucin oder Phenylalanin ändern könnte. In einer *in vivo*-Studie wurde eine Bibliothek an mutierten Klonen erstellt und in einem Screeningansatz wurden 14000 Klone mit LC/MS/MS auf neue Andrimide analysiert und im Erfolgsfall anschließend getestet. So konnten vier neue Andrimide isoliert werden.¹⁷⁸

Insgesamt wurden in den letzten 15 Jahren viele Ansätze ausprobiert, durch kombinatorische Biosynthese neue nichtribosomale Peptide zu erzeugen. Dabei wurden Austausche auf Aminosäuren-, Domänen-, Modul- oder NRPS-Ebene vorgenommen. Mit Mutationen in aktiven Zentren von A-Domänen lassen sich zumeist nur konservative Änderungen der Struktur erreichen. Computerbasierte Ansätze können für dramatischere Änderungen der Spezifität eine Lösung sein. Austausch von Domänen oder ganzen Modulen gibt größere Freiheiten in der Kombination, allerdings sind diesem Verfahren durch zumeist deutlich geringere Produktausbeuten Grenzen gesetzt. Rekombination von ganzen NRPS durch Austausch der Kommunikationsdomänen oder Deletion von einzelnen Modulen hat in einigen ersten Ansätzen vielversprechend funktioniert, allerdings wurden diese Ansätze bisher nicht weiter verfolgt. Kritisch bleibt die geringe Ausbeute der kombinatorischen Produkte, da die Substratspezifität vieler NRPS-Enzyme zwar relaxiert ist, aber die nachfolgenden Enzyme nicht alle Substratänderungen tolerieren. Evolutionär basierte Ansätze der Rekombination können diese Probleme wie dargestellt signifikant verringern. Die Substratspezifität hat sich evolutionär entwickelt und die Verständnis und Ausnutzen dieser Entwicklungen kann in zukünftigen rekombinatorischen Experimenten zu neuen Strategien und besseren Ergebnissen bei der kombinatorischen Biosynthese führen.

3.4 Cyclopropyl- und Nitrogruppen in der Natur

Cyclopropane kommen in der Natur selten vor,^{122,179} sie sind aber in verschiedensten Stoffklassen wie z.B. Fettsäuren, Terpenen und Aminosäuren zu finden (siehe Abb. 3-18).^{180,181} Die Aminosäure 2-(1-Methylcyclopropyl)glycin (**21**) zum Beispiel ist Bestandteil der Kutzneride, zyklischer Peptide aus einem Actinomyceten, die ebenso wie Hormaomycin (**13**) nichtribosomal synthetisiert werden.^{182,183} Ptaquilosid (**22**) ist ein Sesquiterpenglykosid aus dem Adlerfarn *Ptedirium aquilinum* mit karzinogenen Eigenschaften.¹⁸⁴ Meist ist nur ein Cyclopropanring in ein Molekül integriert, Fettsäuren können aber durchaus mehrere Cyclopropane beinhalten. Den Rekord an Cyclopropanen peschieht die Fettsäure U-106305 (**23**) aus *Streptomyces*-Arten.¹⁸⁵ Die Biosynthese von Cyclopropanen geschieht

zumeist SAM-vermittelt über ein kationisches Intermediat oder durch eine interne nucleophile Substitution. ^{179,186}

Abb. 3-18: Ausgewählte Naturstoffe mit Cyclopropylgruppen: 2-(1-Methylcyclopropyl)glycin (**21**), Ptaquilosid (**22**), U-106305 (**23**)

Auch Nitrogruppen sind in Naturstoffen selten anzutreffen. Prominente Beispiele sind das bekannte Antibiotikum Chloramphenicol (24),¹⁸⁷ das fungizid wirkende Pyrrolnitrin (25)¹⁸⁸ und das antiproliferativ wirkende Polyketid Aureothin (26) (siehe Abb. 3-19).^{189,190} Die Nitrofunktion ist zumeist an einen Aromaten gebunden.¹⁹¹ In der Biosynthese von Nitrogruppen kann ein Aromat direkt mit einer Nitrosylspezies nitriert werden,¹⁹² meistens aber wird eine Nitrogruppe durch Oxidation einer Aminofunktion gebildet. Im Jahr 2008 konnte die Kristallstruktur von AurF, einer *p*-Aminobenzoat-N-Oxygenase aufgeklärt werden.¹⁹³ Es ist eine Monooxygenase, die kein Häm benötigt, und die Aminofunktion in Schritten über Hydroxylamin- und Nitrosofunktion zur Nitrogruppe oxidiert. Im Hormaomycin (13) sind beide genannten Strukturmerkmale in einer einzigen Aminosäure, 3-Nitrocyclopropylalanin (27) zweimal enthalten (siehe Abschnitt 3.5).

Abb. 3-19: Ausgewählte Naturstoffe mit Nitrogruppen: Chloramphenicol (24), Pyrrolnitrin (25), Aureothin (26)

3.5 Hormaomycin und der hrm-Gencluster

Im Jahr 1984 wurde aus einer bei Toyama (Japan) genommenen Bodenprobe ein *Streptomyces* sp. AC-1978 isoliert und kultiviert. Die Fermentation ergab ein neuartiges, antibakteriell aktives Peptid, das Threonin, Isoleucin und drei unbekannte Aminosäuren enthielt und Takaokamycin genannt wurde.¹⁹⁴ Die Strukturaufklärung gelang allerdings nicht vollständig. Fünf Jahre später wurde in der Gruppe von Hans Zähner ein morphogenes Peptid namens Hormaomycin (**13**) aus einer bei Anuradhapura (Sri Lanka) genommenen Bodenprobe isoliert. Dabei handelte es sich um die gleiche Substanz wie Takaokamycin.⁵⁷ Im Jahr 1990 konnte die Struktur von **13** vollständig aufgeklärt werden,⁶¹ wobei die absolute Konfiguration erst im Jahre 2004 bestätigt wurde: Es liegt ein zyklisches Lacton über sechs Aminosäuren vor, wobei die 3-Hydroxyfunktion eines (*R*)-allo-Threonins [*a*-Thr] mit der Carboxyfunktion eines (*2S*,*4R*)-4-(Z-Propenyl)prolins verknüpft ist.¹⁹⁵ Weitere Bestandteile

des Ringes sind L-Isoleucin [Ile], zwei Einheiten (2*S*,3*R*)-3-Methylphenylalanin [(β -Me)Phe] und ein (2*S*)-Diastereomer von 3-(trans-2-Nitrocyclopropyl)alanin [(3-Ncp)Ala]. Die Seitenkette besteht aus dem (2*R*)-Diastereomer von (3-Ncp)Ala und 5-Chloro-N-hydroxypyrrol-2-carbonsäure [Chpca] (siehe Abb. 3-20). In NMR-Studien konnte gezeigt werden, dass sich die Konformationen des Moleküls in verschiedenen Lösungsmitteln signifikant voneinander unterscheiden, was sich in unterschiedlichen NMR-Spektren widerspiegelt.¹⁹⁶ Im Jahre 2004 wurde die erste Totalsynthese von **13** beschrieben.¹⁹⁷

Abb. 3-20: Hormaomycin (13) und seine Bausteine

Hormaomycin (**13**) besitzt neben seiner einzigartigen Struktur interessante biologische Eigenschaften: Es regt in nanomolaren Konzentration die Bildung von Luftmycel und die Produktion von sekundären Metaboliten in vielen anderen Streptomyceten an (siehe auch Abschnitt 3.1).⁵⁷ Dieser Eigenschaft verdankt das Hormaomycin (**13**) seinen Namen (Griechisch: hormao = ich rege an). Außerdem besitzt Hormaomycin (**13**) eine starke antibiotische Aktivität gegen einige coryneforme Actinomyceten (MIC *Arthrobacter pascens*: 88 pM)⁵⁷ und gegen den Erreger der Malaria tropica, *Plasmodium falciparum* (IC50 für den K1-Stamm: 587 nM, für den FCR3-Stamm: 1,207 nM).¹⁹⁸

Die molekularen Wirkmechanismen von **13** sind bisher nicht bekannt. Der Einfluß auf das Mycelienwachstum und die Produktion von Sekundärmetaboliten legt eine Interaktion in der *bld*-Signalkette bei *Streptomyces coelicolor*, bzw. der Butryrolactonkaskade bei *Streptomyces griseus* (siehe Abb. 3-3) nahe. Die Aufklärung des Wirkmechanismus von Hormaomycin (**13**) ist derzeit Forschungsgegenstand in der Arbeitsgruppe Piel.

Die Hormaomycin-NRPS besitzt eine relativ breite Substratspezifität; in Vorläufer-dirigierten Biosynthesestudien konnte eine ganze Reihe von Analoga der Aminosäurebausteine eingebaut werden, was zu einer Vielfalt von neuen Hormaomycinderivaten **36-54** führte.^{62,199,200} Anstelle von (3-Ncp)Ala (**27**) konnten die zugefütterten Nitronorvalin (NO₂Nva) (**29**) und Nitronorleucin (NO₂Nle) (30) offenkettige Analoga, in Hormaomycin (13) inkorporiert werden. Es war ebenso möglich, Methoxycyclopropylalanin [(3-Mcp)Ala] (28) zuzufüttern (siehe Abb. 3-21).

Abb. 3-21: Durch Vorläufer-dirigierte Biosynthese inkorporierte Analoga der Vorstufen (3-Ncp)Ala (27), (β -Me)Phe (31) von Hormaomycin: (3-Mcp)Ala] (27), (NO₂Nva) (29), (NO₂Nle) (30), (*o*-F)Phe (32), (*m*-F)Phe (33), (*p*-F)Phe (34), Phe (35), vergleiche Tab. 3-1. ^{62,199,200}

Tab. 3-1: Durch Fütterung von Substanzen aus Abb. 3-19 erzeugte Hormaomycinanaloga (vergleiche Abb. 3-20 und 3-21). 62,199,200

Hormaomycin	Eingebaute	Ersetzte Aminosäure
	Aminosäure	
C (36)	(3-Mcp)Ala (28)	(3-Ncp)Ala (27) I+II
D1 (37)	(NO ₂)Nva (29)	(3-Ncp)Ala (27) I
D2 (38)	(NO ₂)Nva (29)	(3-Ncp)Ala (27) II
D3 (39)	(NO ₂)Nva (29)	(3-Ncp)Ala (27) I+II
E1 (40)	(NO ₂)Nle (30)	(3-Ncp)Ala (27) I
E2 (41)	(NO ₂)Nle (30)	(3-Ncp)Ala (27) II
E3 (42)	(NO ₂)Nle (30)	(3-Ncp)Ala (27) I+II
F1 (43)	<i>o</i> -F-Phe (32)	(β-Me)Phe (31) Ι
F2 (44)	<i>o</i> -F-Phe (32)	$(\beta$ -Me)Phe (31) II
F3 (45)	<i>o</i> -F-Phe (32)	$(\beta$ -Me)Phe (31) I+II
G1 (46)	<i>m</i> -F-Phe (33)	(β-Me)Phe (31) Ι
G2 (47)	<i>m</i> -F-Phe (33)	$(\beta$ -Me)Phe (31) II
G3 (48)	<i>m</i> -F-Phe (33)	$(\beta$ -Me)Phe (31) I+II
H1 (49)	<i>p</i> -F-Phe (34)	(β-Me)Phe (31) Ι
H2 (50)	<i>p</i> -F-Phe (34)	$(\beta$ -Me)Phe (31) II
H3 (51)	<i>p</i> -F-Phe (34)	$(\beta$ -Me)Phe (31) I+II
J1 (52)	Phe (35)	(β-Me)Phe (31) Ι
J2 (53)	Phe (35)	$(\beta$ -Me)Phe (31) II
J3 (54)	Phe (35)	$(\beta$ -Me)Phe (31) I+II

Auch an den Positionen des β -Methylphenylalanins (**31**) ist eine strukturelle Vielfalt möglich: Phenylalanin (**35**) und jeweils in *ortho- meta-* und *para*-Position mit Fluor substituierte Phenylalanine [(*o*-F)Phe (**32**) (*m*-F)Phe (**33**) (*p*-F)Phe (**34**)] konnten eingebaut werden. Eine Substitution konnte sowohl an Position I oder II (vergleiche Abb. 3-20) einzeln, als auch an beiden Positionen gleichzeitig nachgewiesen werden. Eine Übersicht über die durch Fütterungen erzeugten Hormaomycinanaloga gibt Tabelle 3-1. Hormaomycin D2 (**38**) zeigt eine völlig neue antibiotische Aktivität gegen den Pilz *Candida albicans* in der gleichen Größenordnung wie das etablierte Nystatin, was äußerst ungewöhnlich ist, da **13** nicht gegen Pilze aktiv ist.²⁰⁰ Synthetisch konnte durch die Verwendung von Diaminopropionsäure statt D-Thr ein Hormaomycinlactam dargestellt werden.²⁰¹ Die Bioaktivitäten der isolierten Analoga und weiterer synthetischer Hormaomycinderivate geben Einblick in Struktur-Wirkungsbeziehungen. Das erfolgreich angewendete Prinzip der Vorläufer-dirigierten Biosynthese gibt Anlaß zur Hoffnung, dass weitere Hormaomycinanaloga durch Zufütterung von Vorstufen erzeugt werden können.

In der Arbeitsgruppe Piel wurde aus einer Cosmidbibliothek der Biosynthesegencluster des Hormaomycins (**13**) isoliert.⁶² Es besteht aus 23 open reading frames (ORF) *hrmA-W* und hat eine Größe von 48,409 Basenpaaren (bp) (siehe Abb. 3-22). Eine Übersicht über die ORFs, ihre putativen Funktionen und die nächsten Verwandten befindet sich in Tabelle 3-3. Der zentrale Bestandteil des Cluster kodiert für die Hormaomycin-NRPS, die aus 2 ORFs (*hrmO*, *hrmP*) besteht und insgesamt sieben Module umfaßt. Sie katalysiert die Synthese des Peptids aus seinen biosynthetischen Vorstufen (siehe Abschnitt 3.2). Mit Hilfe des nichtribosomalen Codes^{79,80} kann bioinformatisch mit der Software NRPSpredictor 2²⁰² zumindest für einige A-Domänen das Substrat vorausgesagt werden. Die Reihenfolge der Module passt genau zur Architektur des Peptids. So zeigt HrmO2_A eine Präferenz für die Aufnahme und den Einbau von Threonin, während für die vorletzte A-Domäne, HrmP2_A, eine Spezifität für Isoleucin oder Valin vorausgesagt wird, wobei interessanterweise laut Datenbank ein Einbau von Valin präferiert wird (90%).²⁰² Für die anderen A-Domänen, die den Einbau der ungewöhnlichen Einheiten (3-Ncp)Ala (**27**). (*β*-Me)Phe (**31**) und (4-Pe)Pro (**69**) katalysieren, ist kein Homolog in den Datenbanken bekannt (siehe Tabelle 3-2).

Abb. 3-22: Der *hrm*-Gencluster (*hrmA-W*). Die Farben der ORFs weisen auf die putative Beteiligung in der Biosynthese der einzelnen Hormaomycinvorstufen (vergleiche Abb. 3-20) hin. Putative Regulator- und Transportgene sind schwarz markiert. Graue Pfeile symbolisieren die flankierenden Gene des *hrm*-genclusters. R=Regulatorgen; MT=Methyltransferase; OR=Oxidoreduktase; γ-Glu=γ-Glutramyltranspeptidase; ACS=Acyl-CoA-Synthetase; ACD=Acyl-CoA-Dehydrogenase; C=Kondensationsdomäne, A=Adenylierungsdomäne, T=Thiolierungsdomäne; E=Epimerasedomäne; TE=Thioesterasedomäne; Hal=Halogenase; DAPE=Diamino-pimelatepimerase; EFF=Effluxprotein.

Auch die Existenz von Epimerasedomänen in HrmO4 und HrmP2 passt zu den stereochemisch veränderten (3-Ncp)Ala I und *a*-Thr. Abbildung 3-23 zeigt schematisch die hypothetische Assemblierung von Hormaomycin an der Hormaomycin-NRPS. Die Biosynthese der Chlorhydroxy-pyrrolcarbonsäure (**93**), des äußeren Gliedes der Seitenkette, wird nach bioinformatischen Voraussagen an den freistehenden HrmK (Acyl-CoA-Synthetase) und HrmL (Peptidylcarrierprotein Typ II) katalysiert. Analog zu der Biosynthese von Pyoluteorin (**115**) und Clorobiocin (**99**)^{203,204} wird putativ zunächst Prolin (**69**) durch HrmK an HrmL gebunden, und dann zum Pyrrol dehydriert. Weitere Details zur Biosynthese der Vorstufen sind in den Kapiteln 5.1-5.3 nachzulesen.

Tab	3-2:	Nichtrib	osomale	Codes de	er Hormaon	vcin A-E	Domänen u	ind voraus	gesagte S	pezifitäten.	52
1 uo	. 5 4.	1 violitile	osonnaic	Coues a	/ Hormuon			ina voraus	geougie D	pezimutem.	

A-Domäne	Nicht-ribosomaler Code	Nächstverwandter Code (A- Domäne)	Spezifität der verwandten Domäne
HrmK	DLFYAAKVCK	DLLYAALVCK (PltF)	Pro
Hrm O1/O4	DPIVVGGVAK		
Hrm O2	DFWNIGMVHK	DFWNIGMVHK (SypC5)	Thr
Hrm O3/P1	DAWTTAVAAK		
Hrm P2	DGYFWGVTFK	DAYFWGVTFK (AcmB2)	Val
		DGFFFGVVFK (BacC1)	Ile
Hrm P3	DVQFSAHGAK		

Abb. 3-23: Die hypothetische Assemblierung von Hormaomycin an der Hormaomycin-NRPS.⁶² C=Kondensationsdomäne; A=Adenylierungsdomäne; TE=Thioesterasedomäne. Die Zahlen geben die Bezeichnung für die NRPS-Module wieder.

Protein	AS	vorhergesagte Funktion	Sequenzähnlichkeit	Ähnlich-	Zugangs-
			(Protein, Herkunft)	keit/	nummer
				Identität	
HrmA	321	AraC-artiger	SCO0287, Streptomyces	84/75	CAB54172
		transkriptioneller	coelicolor		
U D	107	Regulator		72/50	
HrmB	197	Putativer Regulator	NovE, Streptomyces caeruleus	73/60	AAF67498
HrmC	358	Methyltransferase	LmbW, Streptomyces lincolnensis	72/57	CAA55769
HrmD	298	F420-abhängige Oxidoreductase	SCO3591, S.coelicolor	63/52	CAA22223
HrmE	326	Tyrosinhydroxylase	LmbB2, S. lincolnensis	55/47	CAA55748
HrmF	185	DOPA-spaltende	TomH, Streptomyces	69/61	ACN39014
		Oxidoreductase	achromogenes		
HrmG	599	γ-Glutamyl- Transpeptidase	LmbA, S. lincolnensis	73/64	CAA55746
HrmH	132	Endoribonuclease	YjgH, Kinetococcus	80/60	YP_001362405
HrmI	350	Unbekannt	PSPTOT1_5436, Pseudomonas syringae	72/57	ZP_03398361
HrmJ	227	Unbekannt	PSPTOT1_5541, <i>P</i> .	70/51	ZP_03398362
HrmK	527	Acyl-CoA-Synthetase	CaiC, Oscillatoria sp. PCC 6506	50/34	ZP_07113995
HrmL	91	Typ II Peptidyl-Carrier - Protein	VinL, Streptomyces halstedtii	59/40	BAD08369
HrmM	388	Acyl-CoA-Dehydrogenase	MoeH5, <i>Streptomyces</i>	51/33	YP_002190358
HrmN	389	Acyl-CoA-Dehydrogenase	Strop_4265, Salinispora tropica	49/36	YP_001161071
HrmO	5252	NRPS (C A PCP C A PCP	RHA1 ro00141,	40-60%	YP 700135
		E C A PCP C A PCP E)	Rhodococcus sp. RHA	Domänen- identität	
HrmP	3471	NRPS (C A PCP C A PCP	PstC, Streptomyces	40-60%	ZP_06575792
		C A PCP TE)	ghanaensis	Domänen- identität	
HrmQ	448	Halogenase	ChlB4 Streptomyces antibioticus	79/64	AAZ77674
HrmR	72	MbtH-Homolog	Tcur1889, <i>Thermomono</i> -	82/66	YP_003299497
HrmS	329	Methyltransferase	MppJ, Streptomyces	67/52	AAU34201
HrmT	301	Diaminopimelat-	DAPF2 (SAV3161), S.	63/47	BAB69347
Umal	407	Epimerase	averminis	60/56	CAD45040
пшU	427	Antitransporter	LAJO2.20, Amucolatonsis orientalis	00/30	UAD43047
HrmV	156	ARC-Transporter ATP	ABC-transporter	78/66	AFW99195
TTTTT V	150	bindendes Protein	Streptomyces cattleya DSM 46488	10,00	1111/1/1/5

Tab. 3-3: Kodierte Proteine in der hrm-Region, ihre putativen Funktionen und nächsten Verwandten (Stand 2/2012)

HrmW	563	ABC transporter, ATP	KM-6054 Kitasatospora	52/41	YP_004902137
		bindendes protein	setae		

4 Zielsetzung der Arbeit

Aus den vielen ungewöhnlichen und teilweise einzigartigen Eigenschaften des Hormaomycins (13) und seines Biosynthesegenclusters ergeben sich folgende wissenschaftliche Fragestellungen, die in dieser Arbeit bearbeitet werden sollten. Erste Einblicke in die Biosynthese des Hormaomycins (13) wurden durch Fütterungsexperimente und durch die Isolierung des Hormaomycinbiosynthese-genclusters erhalten.⁶² So konnten durch Sequenzvergleiche viele putative Kandidaten für einzelne Biosyntheseschritte ermittelt werden.

Im Rahmen dieser Arbeit sollten nun weitere Einblicke in die komplexe Biosynthese der einzigartigen Hormaomycinvorstufen 3-Nitrocyclopropylalanin [(3-Ncp)Ala] (27), 4-Propenylprolin [(4-Pe)Pro] (69) und Chlorhydroxypyrrolcarbonsäure (Chpca) (93) gewonnen werden. Heterologe Expressionen und *in vitro* und *in vivo*-Charakterisierungen diverser Enzyme des Hormaomycingenclusters in *E. coli* sollten neue Einsichten in die Funktionsweise dieser Enzyme liefern.

Die Biosynthese von 3-Nitrocyclopropylalanin (27) verläuft ausgehend von Lysin (58) über einen in der Natur neuartigen Mechanismus, der nach Fütterungsstudien postuliert wurde.²⁰⁶ Demzufolge wird 58 zunächst an einer nicht aktivierten Position hydroxyliert, es kommt dann über Lactonisierung und N-Oxidation zur Cyclopropanbildung. Die bioinformatische Analyse des Hormaomycingenclusters deutet durch Ausschlussverfahren auf zwei Enzymkandidaten (HrmI und HrmJ) hin, die für die oxidativen Modifizierungen von Lysin (58) zu (3-Ncp)Ala (27) verantwortlich sein könnten. Diese Enzyme haben keine bisher bekannten charakterisierten näheren Verwandten, gehören also zu neuartigen Enzymfamilien. In dieser Arbeit sollten diese Enzyme durch Fütterungsstudien der (3-Ncp)Ala-Biosynthese zugeordnet werden, die Enzyme dann heterolog exprimiert und ihre Funktionen charakterisiert werden.

Für 4-Propenylprolin (**69**) wurde als biogenetische Vorstufe das Tyrosin (**70**) identifiziert. Über L-Dihydroxyphenylalanin (L-DOPA) (**71**) erfolgt dann durch HrmF, eine L-DOPA-2,3-Dioxygenase, die Öffnung des Catecholringes und eine Neuordnung des Kohlenstoffskeletts zu einem gelb gefärbten Pyrrolinylintermediat **72**.⁶² Diese Reaktion sollte im Rahmen dieser Arbeit kinetisch charakterisiert werden. Die weiteren Schritte zum Propenylprolin (**69**) sind unklar. Im Hormaomycingencluster befindet sich, im Gegensatz zu ähnlichen Biosynthesewegen,²²²⁻²²⁵ kein Enzym mit Homologien zu einer C-C-Hydrolase. Mit Hilfe von degenerierten Primern sollte im Genom von *Streptomyces griseoflavus* W-384 nach einem Homolog gesucht werden. HrmC, eine putative SAM-abhängige Methyltransferase sollte zusammen mit HrmF heterolog exprimiert werden, um eine eventuelle Methylierung des L-DOPA-Spaltproduktes **72** zu detektieren.

Die Biosynthese von Chlorhydroxypyrrolcarbonsäure (Chpca) (93) findet nach bioinformatischen Voraussagen wahrscheinlich ähnlich wie bei anderen Pyrrolen^{203,204} ausgehend von Prolin an einem

freistehenden Peptidylcarrierprotein (PCP) statt. Im Rahmen dieser Arbeit sollten die Acyl-CoA-Synthetase HrmK und das PCP HrmL heterolog exprimiert werden. HrmK sollte auf seine Substratspezifität hin untersucht werden. Für HrmL sollte zunächst eine posttranslationale Modifizierung (Phosphopanthetheinylierung) nachgewiesen werden, da diese für weitere Reaktionen unerläßlich ist. Im Anschluß sollte dann die Beladung von HrmL mit Prolin durch HrmK nachgewiesen werden.

N-Hydroxypyrrole wie Chpca (**93**) sind äußerst selten in der Natur anzufinden. Aus dem Hormaomycingencluster kommt am ehesten HrmN, eine Acyl-CoA-Dehydrogenase, für die N-Hydroxylierung des Pyrrols in Frage. Dieses Enzym sollte nun in *Pseudomonas fluorescens* Pf-5, dem Produzenten des Antibiotikums Pyoluteorin (**115**), exprimiert werden. Die Biosynthese des Pyrrolteils von Pyoluteorin verläuft ähnlich zur putativen Biosynthese von Chpca. Wenn HrmN während der Pyoluteorinproduktion exprimiert wird, könnte es das Pyoluteorin (**115**) hydroxylieren. Damit wäre die Funktion von HrmN bewiesen und ein neuer Naturstoff durch kombinatorische Biosynthese generiert. Diese Strategie hat bereits im Fall von HrmQ, einer Halogenase, funktioniert und zur Isolierung von chlorierten Clorobiocinderivaten geführt.²³⁹

Der Zusammenbau der Vorstufen zum Hormaomycin erfolgt an einem Megaenzymkomplex, einer nichtribosomalen Peptidsynthetase (NRPS). Der Einbau von verfütterten Analoga der Vorläufer (Mutasynthese) in Hormaomycin impliziert eine lose Substratspezifität der Hormaomycin-NRPS. Die Adenylierungsdomänen (A-Domänen) der NRPS spielen durch Auswahl des Substrates eine zentrale Rolle bei der Biosynthese von nicht-ribosomalen Peptiden. Die Interaktion und Aktivierung von verschiedenen A-Domänen mit sogenannten MbtH-artigen Proteinen (MbtH-like proteins) wurde 2010 nachgewiesen. Da im Hormaomycin-Gencluster ein solches Protein (HrmR) kodiert ist, ist eine solche Interaktion für eine oder mehrere Hormaomycin-A-Domänen wahrscheinlich. Die Hormaomycin A-Domänen sollten im Rahmen dieser Arbeit heterolog in *E. coli* exprimiert und rekonstituiert werden. Über Coexpression mit HrmR sollte ihre Interaktion mit diesem Protein untersucht werden. Anschließend sollten die A-Domänen massenspektrometrisch charakterisiert werden. Informationen über die Substratspezifitäten der A-Domänen geben wichtige Hinweise über die Möglichkeit, Hormaomycinanaloga durch Mutasynthese zu erzeugen.

Eine Sequenzanalyse der Hormaomycin-A-Domänen lässt Hypothesen zum evolutiven Ursprung dieser Domänen zu. So zeigen große Abschnitte am 5'- und 3'-Terminus der A-Domänen, die für den Einbau von chemisch stark unterschiedlichen Aminosäuren verantwortlich sind, eine äußerst hohe Übereinstimmung. Dieses Phänomen legt eine Rekombination der zentralen DNA-Abschnitte der Domänen, die in ihrer Sequenz stark divergieren, und damit folgend den Austausch der Substratspezifität dieser A-Domänen während der Evolution nahe. Um diese Hypothese zu unterstützen, sollten im Rahmen dieser Arbeit kombinatorisch erzeugte A-Domänen mit ausgetauschten zentralen DNA-Abschnitten aus dem Hormaomycin-NRPS und dem CDA-NRPS aus

Streptomyces coelicolor A3(2) konstruiert und in *E. coli* heterolog exprimiert werden. Diese Proteine sollten anschließend massenspektrometrisch auf ihre Substratspezifität untersucht werden. Die Ergebnisse dieser Studien können neue Einblicke in die Evolution von A-Domänen geben und Strategien zur kombinatorischen Biosynthese von nichtribosomalen Peptiden aufzeigen.

Im Rahmen dieser Arbeit sollten außerdem natürliche Hormaomycinanaloga, die von einem Hormaomycin-Überexpressionsstamm gebildet wurden, isoliert und deren Struktur aufgeklärt werden. Bisher wurden noch keine natürlichen Hormaomycinanaloga beschrieben. Die Strukturen können einen Einblick in die Biosynthese der Hormaomycinvorstufen, aber auch in die Substratspezifität der Hormaomycin-NRPS geben. Die anschließende biologische Testung der neuen Substanzen kann dann weitere Einsichten in die Struktur-Wirkungs-Beziehungen von Hormaomycin liefern.

5 Ergebnisse und Diskussion

5.1 Studien zur Biosynthese von (3-Ncp)Ala

3-(*trans*-2'-Nitrocyclopropyl)alanin [(3-Ncp)Ala] (27) ist eine nicht-proteinogene Aminosäure mit mehreren außergewöhnlichen Strukturmerkmalen (siehe Abschnitt 3.4), die in Hormaomycin (13) in zwei verschiedenen diastereomeren Formen [2*S* (55) und 2*R* (56)] eingebaut ist (Abb. 5-1). Die Änderung der Stereoinformation wird vermutlich durch die Epimerasedomäne in HrmO4 eingeführt (vergleiche Abb. 3-23). Die ähnlichste in der Natur vorkommende Aminosäure ist das Aminocyclopropylalanin, der zentrale Bestandteil des Proteasominhibitors Belactosin A (57) (Abb. 5-1), das ebenfalls aus einem Bakterium der Gattung *Streptomyces* isoliert wurde.²⁰⁵ Über die Biosynthese von 57 ist bisher nichts bekannt.

Abb. 5-1: 2S-(55); 2R-(56) 3-(trans-2'-Nitrocyclopropyl)alanin, Belactosin A (57)

Aufgrund von Fütterungsexperimenten mit markierten Aminosäuren konnte für (3-Ncp)Ala (27) ein biosynthetischer Ursprung aus Lysin (58) nachgewiesen werden.²⁰⁶ Anschließend wurden mit Deuterium an verschiedenen Positionen isotopenmarkierte Lysine verfüttert, um den Ort der initialen Modifikation von Lysin (58) zu bestimmen. Aufgrund der Ergebnisse dieser Studie wurde ein Modell der (3-Ncp)Ala-Biosynthese postuliert. Hiernach wird Lysin (58) an C4 hydroxyliert, es kommt zu einer spontanen Lactonisierung zu 59. Dann wird die Aminfunktion oxidiert und es bildet sich ein Oxim 60 durch Tautomerisierung.

Abb. 5-2: Postulierte (3-Ncp)Ala-Biosynthese.²⁰⁶ Lysin (**58**) wird an C4 oxidiert, es kommt zu einer spontanen Lactonisierung zu **59**. Es folgen N-Oxidation zum Oxim (**60**), Cyclopropanbildung und Oxidation der Nitrogruppe zum (3-Ncp)Ala (**27**).

Der letzte Schritt ist die Cyclopropanbildung durch intramolekularen nucleophilen Angriff und die Oxidation zur Nitrofunktion. Es entsteht (3-Ncp)Ala (27). Abbildung 5-2 zeigt den erläuterten

Mechanismus. Dieser Mechanismus der Cyclopropanbiosynthese ist in der Literatur bisher nicht beschrieben worden.

Durch einfache bioinformatische Analysen konnte den meisten Genen des Hormaomycingenclusters eine mögliche Rolle in der Hormaomycinbiosynthese zugewiesen werden. Für die Biosynthese von (3-Ncp)Ala (27) gab es keine offensichtlichen Kandidaten. Die einzigen Gene, denen sonst keine Funktion zugewiesen konnte, sind *hrmI* und *hrmJ*. Durch Ausschlussverfahren wurde diesen Genen daher eine mögliche Rolle in der (3-Ncp)Ala-Biosynthese zugewiesen. Im Rahmen dieser Arbeit sollten die Funktionen von HrmI und HrmJ ebenso wie die Biosynthese dieser ungewöhnlichen Aminosäure so weit wie möglich aufgeklärt werden.

5.1.1 Fütterung von (3-Ncp)Ala zu einer Deletionsmutante von hrmI

Um die Funktion von HrmI zu untersuchen, wurde von Xiaofeng Cai durch homologe Rekombination eine $\Delta hrmI$ -Mutante von *Streptomyces griseoflavus* W-384 konstruiert (Daten hier nicht aufgeführt). Dieser Stamm verlor dadurch die Fähigkeit, Hormaomycin zu produzieren. Durch Zufüttern des Biosynthesebausteins, dessen Produktion unterbrochen ist, kann die Produktion des Metaboliten wiederhergestellt werden. Um die Hypothese, dass HrmI an der (3-Ncp)Ala-Biosynthese beteiligt ist, zu bestätigen, wurde diese Aminosäure daher dem Stamm $\Delta hrmI$ während der Fermentation zugefüttert. Die starke antibiotische Wirkung von Hormaomycin (**13**) gegen *Arthrobacter crystallopoietes* wurde für die Analytik der Komplementierung ausgenutzt. Abbildung 5-3 zeigt den Vergleich einer Kultivierung von *Streptomyces griseoflavus* W-384, des Stammes $\Delta hrmI$ und des mit (3-Ncp)Ala (**27**) gefütterten $\Delta hrmI$. Als zusätzliche Negativkontrollen wurden Lösungen von (3-Ncp)Ala (**27**) in verschiedenen Konzentrationen aufgebracht.

Abb. 5-3: Agarplatte von Arthrobacter crystallopoietes mit Hormaomycin (13) (Hrm) und (3-Ncp)Ala (27), Extrakten von $\Delta hrmI$, und $\Delta hrmI$, gefüttert mit (3-Ncp)Ala (27).

Es ist zu erkennen, dass durch die Zufütterung von (3-Ncp)Ala (27) die Hormaomycinbiosynthese wiederhergestellt worden ist, was durch den antibiotischen Effekt des Hormaomycins (13) gezeigt wird. Die Negativkontrollen zeigen, dass der antibiotische Effekt nicht von 27 herrührt. Ein analoges Experiment wurde von Xiaofeng Cai mit einer Deletionsmutante von *hrmJ* durchgeführt, auch hier konnte das zugefügte (3-Ncp)Ala (27) die Hormaomycinbiosynthese komplementieren (Daten hier nicht aufgeführt). HrmI und HrmJ sind also tatsächlich an der Biosynthese von 27 beteiligt. Um Informationen über die möglichen Reaktionen von HrmI und HrmJ zu gewinnen, wurde in Abschnitt 5.1.2 eine intensivierte bioinformatische Analyse durchgeführt.

5.1.2 Bioinformatische Einordnung von HrmI und HrmJ

Eine BLAST-(Basic Local Alignment Search Tool)-Suche ergab kein charakterisiertes homologes biosynthetisches Protein für HrmI. Für HrmJ gab es ein ähnliches Ergebnis, allerdings scheinen mehrere Homologe von HrmJ zu einer bisher uncharakterisierten Proteinsuperfamilie DUF 2257 zu gehören. Um entferntere Verwandte für HrmI und HrmJ zu finden, wurde eine "position specific iterative BLAST" (PSI-BLAST)-Analyse für beide Proteine durchgeführt. Bei dieser Analyse wird zunächst eine Liste aller sehr ähnlichen Proteine erstellt. Aus dieser Liste wird eine sogenannte Profilsequenz erstellt, die konservierte Regionen der Proteine zusammenfaßt. Mit dieser Profilsequenz wird wieder eine BLAST-Suche durchgeführt. Dieser Prozess läßt sich beliebig oft wiederholen. Dadurch, dass verwandte Proteine in die Suche miteinbezogen werden, ist PSI-BLAST viel empfindlicher bei der Ermittlung weit entfernter Verwandtschaften als das gewöhnliche BLAST.²⁰⁷ Eine iterative PSI-Blast-Suche für HrmJ ergab eine entfernte Verwandtschaft (Sequenzähnlichkeit 37%) zu einer L-Isoleucin-4-Hydroxylase aus *Bacillus thuringiensis*.²⁰⁸ Dieses Enzym hydroxyliert die Aminosäure Isoleucin (**61**) in der unaktivierten 4-Position zu Hydroxylsoleucin (**62**) (siehe Abb. 5-4). Analog könnte HrmJ den ersten Schritt der (3-Ncp)Ala-Biosynthese, die oxidative Modifizierung von Lysin (**58**) an der 4-Position katalysieren (vergleiche Abb. 5-2).

Abb. 5-4: Katalysierte Reaktion der Isoleucin-4-hydroxylase aus *Bacillus thuringiensis*. Isoleucin (61) wird an C4 zu 62 hydroxyliert.

In biochemischen Studien gab es Hinweise, dass die Isoleucin-4-Hydroxylase (IDO) eine Fe(II)/ α -Ketoglutaratabhängige Oxygenase ist.^{208,209} Diese Enzyme katalysieren den Einbau eines Atoms molekularen Sauerstoffs in ein Zielmolekül mit Hilfe der Cofaktoren Fe(II) und α -Ketoglutarsäure (**63**) (siehe Abb. 5-5 a). Dabei wird der Cofaktor Fe(II) chelatisiert und es kommt zur oxidativen Decarboxylierung von α -Ketoglutarat zu Succinat (**64**) und Bildung einer reaktiven Sauerstoffspezies, die das Substrat hydroxyliert.²¹⁰

Abb. 5-5: a): Katalysierte Reaktionen von Fe(II)/ α -Ketoglutaratabhängigen Oxygenasen. Das Substrat wird hydroxyliert und α -Ketoglutarat (63) zu Succinat (64) decarboxyliert. b): Aktives Zentrum von Fe(II)/ α -Ketoglutaratabhängigen Oxygenasen: Fe(II) wird von α -Ketoglutarat (63) und einer katalytischen Triade aus Aspartat und zwei Histidinen chelatisiert.

Strukturelle Einsichten in den Wirkmechanismus Fe(II)/ α -Ketoglutaratabhängiger Oxygenasen haben gezeigt, dass als katalytische Triade im Enzym ein His¹-X-Asp/Glu-X_n-His²-Motiv vorliegt. Diese drei Aminosäuren spielen eine wichtige Rolle bei der Chelatisierung des Eisens und der Koordination des Substrates (siehe Abb. 5-5 b). Eine weitere charakteristische Aminosäure (Arg/Lys) ist elf bis zwölf Aminosäuren C-terminal von His² lokalisiert. Diese übernimmt eine Stabilisierung des α -Ketoglutarat (**63**) an C-5.²¹⁰ Ein Sequenzvergleich von HrmJ und IDO zeigt, dass beide Enzyme das beschriebene Motiv besitzen (siehe Tab. 5-1). HrmJ ist also sehr wahrscheinlich eine α -Ketoglutaratabhängige Oxygenase aus einer neuen Enzymfamilie.

Tab. 5-1: Vergleich der Darstellung der aus dem Alignment (Anhang, Abb. 9-7) extrahierten hypothetischen Metall-Liganden und α -Ketoglutarat (63) stabilisierende Aminosäuren für IDO und HrmJ

Enzym	Ligand 1	Ligand 2	Spacing	Ligand 3	Spacing	α-KG C-5 Stabilisierung
IDO	His 159	Asp 161	51	His 212	15	Arg 227
HrmJ	His 132	Asp 134	52	His 186	14	Arg 200

Eine iterative PSI-Blast-Suche für HrmI ergab eine entfernte Verwandtschaft zu PqqC und Homologen aus der Biosynthese des Pyrrolochinolinchinons (**66**), eines Cofaktors von vielen bakteriellen Dehydrogenasen.²¹¹ PqqC ist eine kofaktorlose Oxidase, die den letzten Schritt in diesem Biosyntheseweg katalysiert.²¹² Die 2-Amino-2-Carboxyethylseitenkette von **65** wird zu einem Carboxypyrrol zyklisiert. Gleichzeitig wird das komplette Hexahydrochinolinsystem oxidiert. Die Gesamtreaktion benötigt drei Moleküle Sauerstoff, es wird H₂O₂ freigesetzt (siehe Abb. 5-6).

Abb. 5-6: Katalysierte Reaktion von PqqC. Die Seitenkette von **65** wird zu einem Carboxypyrrol zyklisiert. Oxidation des Hexyhydrochinolinsystems führt zu Pyrrolochinolinchinon (**66**).

Biochemische Studien haben allerdings gezeigt, dass das Enzym für volle *in vitro*-Aktivität Nikotinamiddinukleotidphosphat (NADPH) und eine nicht näher definierte cytosolische Fraktion ("activating factor") benötigt.^{213,214}

Die bioinformatisch gesammelten Informationen über HrmI und HrmJ unterstützen die Hypothese von Brandl,²⁰⁶ dass (3-Ncp)Ala (27) aus über eine mehrfache Oxidation aus Lysin (58) gebildet wird. Demnach würde HrmJ Lysin (58) an Position 4 hydroxylieren und es zur Bildung eines Lactons 59 kommen, das an der ε -Aminoposition weiter zu 60 oxidiert wird. HrmJ könnte dann den zweiten Teil der Biosynthese, den Ringschluss zum Cyclopropan und die Oxidation zur Nitrogruppe katalysieren (vergleiche Abb. 5-2). Die Oxidationsstufe am ε -N für das Substrat von HrmI ist unbekannt.

5.1.3 in vivo-Experimente zur (3-Ncp)Ala-Biosynthese

Die Reaktion von HrmJ mit Lysin (58) sollte zunächst mit einem *in vivo*-Experiment untersucht werden. Das HrmJ enthaltende Expressionsplasmid pDF011 (siehe Tab. 6-3) wurde in *E. coli* BL21 (DE3) transformiert und in 500 mL 2xYT-Medium (siehe 6.2.1) kultiviert. Während der Kultivierung wurden 2 mmol Lysin (58) gefüttert. Als Negativkontrolle wurde eine Kultur des Stammes MC7, der HrmL überexprimierte, verwendet. Die Kultur wurde wie in 6.7.2 beschrieben aufgearbeitet, mit Dansylchlorid derivatisiert (6.6.2.3) und mit HPLC analysiert (siehe 6.6.2.4). Es konnte in mehreren Expressionsversuchen kein neues Produkt detektiert werden (Daten nicht aufgeführt). Daher wurde die Strategie geändert und HrmJ als Protein mit N-terminalem Histidinyltag exprimiert. Dies erlaubt die selektive Aufreinigung des Proteins über Ni-NTA-Affinitätschromatographie (siehe 6.5.4) Die postulierte Reaktion sollte dann in Abschnitt 5.1.4 mit dem isolierten Protein *in vitro* untersucht werden.

5.1.4 heterologe Expression und Charakterisierung von HrmJ

HrmJ wurde mit spezifischen Primern (siehe Tab. 6-10) mittels PCR aus genomischer DNA von *Streptomyces griseoflavus* W-384 amplifiziert und über die Schnittstellen *Sac*I und *Hin*dIII in den Expressionsvektor pET28b kloniert. Das resultierende Konstrukt wurde pMC44 genannt. Anschließend wurde das Protein in *E. coli* BL21(DE3) überexprimiert (siehe 6.2.1) und über Ni-NTA-Chromatographie (siehe 6.5.4) aufgereinigt. Ein Natriumdodecylfulfat-Polyacrylamidgelektrophorese-(SDS-PAGE)-Gel einer Expression in 200 mL 2xYT-Medium zeigt Abbildung 5-7. Das Protein (berechnete Größe: 27,1 kDa) konnte in hohen Konzentrationen (13 μ M) in der Elutionsfraktion erhalten und isoliert werden. Anschließend sollte das Protein in einem Assay charakterisiert werden. Dafür wurde die Elutionsfraktion einer Überexpression (500 mL 2xYT) mit PD10-Säulen in Assaypuffer (siehe 6.2.2) überführt und über Vivaspin-Zentrifugatoren [molecular weight cut-off (MWCO): 10 kDA] aufkonzentriert (siehe 6.5.5).

Abb. 5-7: SDS-PAGE-Gel (15%) von HrmJ (200 mL 2xYT, 1 mM IPTG, 16 °C): L=Lysat; D=Durchfluß; W1,W2=Waschfraktionen mit Lysispuffer,Waschpuffer; E=Elution; M=Proteinmarker.

Mit dem konzentrierten und entsalzten HrmJ wurden Enzymassays mit verschiedenen Temperaturen und pH-Werten durchgeführt. Essentielle Bestandteile für die Charakterisierung von Fe(II)/ α -Ketoglutaratabhängigen Oxygenasen sind die Cofaktoren Fe(II) und α -Ketoglutarsäure (**63**) sowie Ascorbinsäure.^{215,216} Der Assay wurde wie in 6.6.2.1 beschrieben durchgeführt und dann mit HPLC analysiert (siehe Abschnitt 6.6.2.3). Die HPLC-Analytik von Aminosäuren ist nicht trivial; aufgrund der meist nicht vorhandenen Chromophore können die meisten Aminosäuren nicht durch UV-Absorption detektiert werden. Für die Detektion werden Aminosäuren mit UV-aktiven oder fluoreszierenden Reagenzien wie Dansylchlorid (**67**), 9-Fluorenylmethyloxycarbonylchlorid (FMOC), oder *o*-Phthaldialdehyd (OPA) derivatisiert.²¹⁷ Bei der Analytik des HrmJ-Assays erwiesen sich nach Vorversuchen die Derivatisierung mit Dansylchlorid (**67**) als geeignet. Zunächst wurden 50 µL des Assays mit **67** in einer einstündigen Reaktion unter Lichtausschluß²¹⁵ derivatisiert (siehe Abschnitt 6.6.2.2). Abbildung 5-8 zeigt diese Reaktion am Beispiel des Substrates für HrmJ, Lysin (**58**). Es entsteht α -Aminodansyllysin (**68**). Im Falle von Lysin kann die Derivatisieriung auch an der ϵ -Aminogruppe erfolgen; es sind also zusammen mit dem doppelt dansylierten Lysin insgegesamt drei derivatisierte Lysine vorstellbar.

Abb. 5-8: Die Derivatisierung von Lysin (58) mit Dansylchlorid (67)

Wegen des zwitterionischen Verhaltens müssen oft Puffer in der HPLC-Analytik von Aminosäuren eingesetzt werden. Es wurden nach diversen Vorversuchen zwei isokratische HPLC-Methoden mit verschiedenen Puffersystemen ausgewählt, die eine stabile Analytik des Assays erlaubten. HPLC-Methode 1²¹⁸ benutzt ein Puffersystem mit Ammoniumformiat (9,0 mM) und Ameisensäure (pH 3,40) gemischt mit Acetonitril (59:41). Methode 2²¹⁵ basiert auf einem Phosphatpuffersystem (pH 7,5, 0,1 mM) und Acetonitril (80:20). In den Abbildungen 5-9 und 5-10 sind erfolgreiche HrmJ–Assays mit Methode 1 (Abb. 5-9) und Methode 2 (Abb. 5-10) gezeigt.. Für das dansylierte Lysin sind die erwarteten drei Peaks detektiert worden (Methode 1: 9 min, 10 min und 15 min; Methode 2: 10, 11 und 16 min; jeweils Spur a). Beide Chromatogramme zeigen, daß die Lysinkonzentration im Assay [Peak bei 9 min (1) bzw. 11 min (2)] im Vergleich zur Negativkontrolle ohne HrmJ (Spur c) abgenommen hat, und dafür ein neuer Peak mit kürzerer Retentionszeit entstanden ist (jeweils etwa 8 min, Spur b).

Abb. 5-10: Vergleich der HPLC-Chromatogramme des HrmJ-Assays nach Derivatisierung, Methode 2, 218 nm: a = Lysin (58) (0,1 mM); b = HrmJ-Assay, pH 7,5, 30 °C, 3h; c = Negativkontrolle ohne HrmJ

Eine massenspektrometrische Charakterisierung des Assays mit HPLC-MS war an diesem Institut mit den angewendeten Methoden nicht möglich. Es wurde deswegen in mehreren Experimenten der neu entstandene Peak in der HPLC isoliert und massenspektrometrisch untersucht. Die Analyse eines Peaks aus Methode 1 lieferte ein Ion, das zu einem hypothetischen Intermediat der (3-Ncp)Ala-Biosynthese paßt (siehe Abb. 5-11).

Abb. 5-11: oben: Ausschnitt aus dem HR-ESI Massenspektrum (Positiv-Modus) des aufgefangenen neu enstandenen Peaks aus Abbildung 5-9. Unten: theoretisches Massenspektrum des postulierten Oxim-Intermediates **60** aus der (3-Ncp)Ala-Biosynthese.

Das Massenspektrum der aufgefangenen Fraktion zeigt ein Ion bei m/z: 181,058. Diese Masse korrelliert mit dem theoretischen Massenspektrum für das Oxim-Intermediat aus der postulierten Biosynthese **60** [(M+Na)⁺_{calc.}: 181,058]. Somit konnte erste Evidenz für ein Intermediat in der (3-Ncp)Ala-Biosynthese gefunden werden. Die Masse des dansylierten Oxims konnte nicht detektiert werden. Möglicherweise war das instabile Dansylderivat von **60** wieder zerfallen.

Aufgrund der Signalunterdrückung in der Massenspektrometrie hängt der Messerfolg der Probe stark von der Matrix des Analyten ab.²¹⁹ Daher ist es möglich, dass erst nach Entsalzung der Probe oder Elution in Methanol das gewünschte Molekül im Massenspektrometer detektiert werden kann. Es wurde in mehreren Experimenten versucht, die isolierte Fraktion zu entsalzen, oder sie zu trocknen und in Methanol zu überführen, um ein aussagekräftiges MS/MS-Spektrum für die detektierte Masse aufzunehmen. Weitere Versuche zur Charakterisierung dieser Substanz schlugen aber fehl.

Auch die Charakterisierung dieses Intermediates mit NMR-Spektroskopie würde sich unter den dargestellten Bedingungen als schwierig gestalten. Die Mengen der produzierten Substanz sind in diesem Maßstab zu gering, um ein aussagekräftiges Spektrum aufzunehmen. Eine Möglichkeit, die Hydroxylierung der ε-Aminogruppe nachzuweisen, wäre, ein ¹⁵N-NMR-Spektrum der Substanz aufzunehmen. Ein hydroxyliertes Amin würde eine signifikante Differenz in der chemischen Verschiebung im Gegensatz zur Aminogruppe ergeben. Hierzu werden aber große Produktmengen benötigt, die mit dem dargestellten Assay bisher nicht erreicht werden konnten.

Trotz vielfachen Wiederholungen ist es nur in einem Assay gelungen, ein neues Produkt zu detektieren und teilweise zu charakterisieren. Alle anderen Versuche HrmJ mit Lysin (**58**) umzusetzen, blieben bisher erfolglos. Die Inaktivität des Enzyms könnte an der bekannten Instabilität und Oxidationsempfindlichekeit α -Ketoglutarat-abhängiger Oxygenasen liegen.^{220,221} Eine Möglichkeit wäre, das Enzym unter Sauerstoffausschluss aufzuarbeiten, was sehr aufwendig ist. Auch das wurde mit einer Expression analog zu Abbildung 5-7 versucht; es konnte aber unter Laborbedingungen kein vollständiger Sauerstoffausschluss gewährleistet werden. Auch in diesem Experiment wurde Lysin nicht von HrmJ umgesetzt.

Dieser Teil der Arbeit wurde erst gegen Ende der Dissertation begonnen, daher waren aus Zeitgründen weitere Experimente für diese Arbeit nicht mehr durchführbar. Zurzeit wird in der Arbeitsgruppe Piel das putative Oxim-Intermediat **60** auf chemischem Wege synthetisiert. Nach erfolgter Fertigstellung kann das Molekül als Standard für den Assay von HrmJ in HPLC-Experimenten eingesetzt werden und wird durch den Vergleich von Retentionszeit und UV-Spektrum weitere Klarheit über die Identität des detektierten Intermediates bringen. HrmI konnte von Xiaofeng Cai ebenso wie HrmJ in großen Mengen exprimiert und isoliert werden (unveröffentlichte Ergebnisse). In ersten Versuchen zur direkten Bildung von (3-Ncp)Ala (**27**) aus Lysin (**58**) wurde das aufgereinigte HrmI dem HrmJ-Assay zugegeben. Zusätzlich wurde 0,5 mM NADPH dem Assay zugefügt (siehe 5.1.2). Es konnte kein neues Produkt in der HPLC detektiert werden (Daten hier nicht aufgeführt). Wahrscheinlich liegt das negative Ergebnis auch hier an der Instabilität von HrmJ. Mit dem synthetisierten postulierten Intermediat können in Zukunft ausführliche Studien zur Funktion von HrmI durchgeführt werden und die Biosynthese von (3-Ncp)Ala (**27**) weiter aufgeklärt werden.

5.2 Studien zur Biosynthese von 4-Propenylprolin

4-Z-Propenylprolin (4-Pe)Pro (**69**) ist ein weiterer einzigartiger Baustein des Hormaomycins. Sein biosynthetischer Ursprung liegt nicht, wie man zunächst vermuten könnte, im Prolin (**94**), sondern in der aromatischen Aminosäure Tyrosin (**70**). Dies belegen Fütterungsexperimente von Markus Radzom.⁶² Die bioinformatische Analyse des Hormaomycingenclusters erlaubt aufgrund von Sequenzvergleichen mit den Genclustern von Lincomycin²²² und den den Pyrrolo[1,4]benzodiazepinen Anthramycin,²²³ Sibiromycin²²⁴ und Tomaymycin,²²⁵ die ähnliche Bausteine besitzen, eine Hypothese für den Biosyntheseweg des 4-Propenylprolins (**69**) (siehe Abb. 5-12). Hiernach sollte die Genkassette *hrmCDEFG* für die (4-Pe)Pro-Biosynthese verantwortlich sein.

Die einzigen charakterisierten enzymatischen Homologe aus diesem Biosyntheseweg sind LmbB2 und LmbB1 aus dem Lincomycingencluster.^{226,227} Während LmbB1 die Bildung eines Pyrrolinderivates **72** aus L-Dihydroxyphenylalanin (L-DOPA) (**71**) katalysiert, konnte die Bildung desselben Produktes aus **70** durch das Zusammenwirken von LmbB2 und LmbB1 gezeigt werden.²²⁶

Abb. 5-12: Übersicht über die postulierte Biosynthese von (4-Pe)Pro (**69**) und dessen Homologe aus den Biosynthesen von Anthramycin (ORFxy), Sibiromycin (Sib), Tomaymycin (Tom) und Lincomycin (Lmb).⁶²

Das LmbB2-Homolog HrmE ist also sehr wahrscheinlich eine Tyrosin-Hydroxylase. Die 2,3 L-DOPA-Dioxygenase HrmF katalysiert analog zu LmbB1 die Addition von molekularem Sauerstoff an eine Hydroxygruppe des Catecholringes und führt so zu dessen Öffnung (Abb. 5-13). Das Enzym benötigt Fe(III) als Koordinator für die benachbarten Hydroxylgruppen.²²⁸ Die anschließende spontane Kondensation des entstandenen Aldehyds mit der Aminfunktion führt zur Bildung eines Pyrrolins und somit zur kompletten Reorganisation des Kohlenstoffgerüstes. Das instabile Reaktionsprodukt **72** ist leuchtend gelb gefärbt ($\lambda_{max} = 414$ nm). Die Bildung von **72** konnte bereits massenspektrometrisch in einer *in vivo*-Studie von Daniel Flachshaar nachgewiesen werden.⁶²

Abb. 5-13: Reaktionsmechanismus von HrmF. Der Catecholring von L-DOPA (71) wird oxidativ geöffnet; es kommt zur spontanen Rezyklisierung zum Pyrrolinderivat 72.

Die weiteren Schritte bis zum Propenylprolin sind weniger eindeutig: In den homologen Genclustern ist jeweils ein Gen für eine Hydrolase kodiert, die hypothetisch die Spaltung einer C-C Bindung katalysiert und die Seitenkette bis zum Vinyl **73** abbaut (vergleiche Abb. 5-12).²²⁹ Für *lmbX* aus dem

Lincomycingencluster wurde gezeigt, dass dieses Gen essentiell für die Lincomycinproduktion ist.²³⁰ Im Hormaomycin-Gencluster ist solch ein Homologes nicht vorhanden. HrmC hat Homologien zu SAM-abhängigen Methyltransferasen, es könnte die Vinylkette von **73** um ein C-Atom zu **74** verlängern. HrmD ähnelt LmbY, einer putativen Coenzym F_{420} -abhängigen Oxidoreduktase, die unter anderem die Reduktion des Pyrrolinringes von **75** zum (4-Pe)Pro (**69**) katalysieren könnte. Ein Lincomycinproduzent, dem die Oxidoreduktase LmbY durch Mutation fehlte, akkumulierte das Dien **75**,²³¹ was diese Funktion nahelegt. HrmG, eine putative γ -Glutamyltranspeptidase, ist wahrscheinlich an der Biosynthese des F_{420} -Chromophors beteiligt. Das Coenzym F_{420} (**76**) ist hauptsächlich in Archaeen verbreitet. Es ähnelt strukturell dem Flavinmononukleotid (FMN), besitzt aber ein höheres Reduktionspotential und eine Seitenkette aus einem bis sieben Glutamatresten (siehe Abb. 5-14).²³²

Abb. 5-14: Coenzym F₄₂₀ (76)

Im Rahmen dieser Arbeit sollte die L-DOPA-Dioxygenase HrmF kinetisch charakterisiert werden. Mit Hilfe von degenerierten Primern sollte im Genom von *S. griseoflavus* W-384 nach Homologen von *lmbX* gesucht werden. Außerdem sollte ein Stamm konstruiert werden, der HrmF und die putative Methyltransferase HrmC exprimiert, um den Zeitpunkt der Methylierung in der (4-Pe)Pro-Biosynthese zu untersuchen.

5.2.1 Heterologe Expression und kinetische Charakterisierung von HrmF

HrmF konnte in vorherigen Arbeiten von Daniel Flachshaar bereits heterolog exprimiert und das Spaltungsprodukt von L-DOPA (**71**) massenspektrometrisch charakterisiert werden.⁶² Das Enzym, eine L-DOPA-2,3-Dioxygenase, spaltet den Catecholring oxidativ zwischen den beiden Hydroxygruppen. Es kommt zu Bildung eines instabilen, gelb gefärbten Intermediates (vergleiche Abb. 5-13). Um diese Reaktion kinetisch zu charakterisieren, wurde HrmF aus dem Konstrukt pDF010 (siehe Tab. 6-3) mit *Ase*I und *Nde*I ausgeschnitten und in pHIS8 kloniert. Das Konstrukt wurde pMC6

genannt. Die Expression und Aufreinigung des Proteins über Ni-NTA-Chromatographie ist in Abbildung 5-15 dargestellt.

Abb. 5-15: SDS-PAGE-Gel (12%) von HrmF: M=Proteinmarker; L=Lysat; 1-4=Elutionsfraktionen mit 50,100,150 und 200 mM Imidazol

Die Reaktion von HrmF mit L-DOPA (51) wurde kinetisch untersucht. Analoge kinetische Untersuchungen wurden bereits an LmbB1, der L-DOPA-Dioxygenase aus der Lincomycinbiosynthese durchgeführt.²²⁷ Zur Analyse von His₈-HrmF wurden die Elutionsfraktionen einer Überexpression von pMC6 gesammelt, mit PD-10-Säulen in 100 mM Phosphatpuffer pH 8 überführt und mit Vivaspin (MWCO 10 kDA) (siehe 6.5.5) aufkonzentriert. Dem Enzym wurden nun verschiedene Mengen an 51 zugefüttert und die Reaktionen über 30 Minuten photometrisch bei 413 nm vermessen. Es wurden sieben verschiedene Substratmengen zugegeben (0,918 µmol, 2,753 µmol, 4,59 µmol, 6,426 µmol, 9,18 µmol, 11,934 µmol, 18,36 µmol). Die linearen Anfangsraten der Reaktionen wurden bestimmt und gegen die Substratkonzentrationen aufgetragen. Alle Umsetzungen wurden dreifach durchgeführt. In Abbildung 5-16 ist die Michaelis-Menten-Kurve der Reaktion dargestellt. Hieraus lassen sich die kinetischen Parameter für das Enzym bestimmen. Die Kurve wurde linearisiert, indem die Quotienten aus Substratkonzentration und Reaktionsgeschwindigkeit gegen die Substratkonzentrationen aufgetragen wurden (Hanes/Woolf-Plot, Abb. 5-17). Aus dem Schnittpunkt der Hanes/Woolf-Gerade mit der x-Achse läßt sich der K_M-Wert (Substratkonzentration bei halbmaximaler Geschwindigkeit) ablesen. Weiterhin läßt sich aus der Steigung der Geraden die katalytische Konstante, k_{cat,} bestimmen. Die erhobenen kinetischen Parameter sind in Tabelle 5-2 aufgeführt und werden dort mit denen des charakterisierten Homologs, LmbB1, verglichen.

Abb. 5-16: Michaelis-Menten-Kurve von HrmF mit L-DOPA (**71**). Aufgetragen sind die linearen Steigungsraten der Absorption (λ =413 nm) nach Zugabe von 0,918 µmol, 2,753 µmol, 4,59 µmol, 6,426 µmol, 9,18 µmol, 11,934 µmol, 18,36 µmol L-DOPA (**71**). Die Kurve wurde mit dem Programm GraphPad Prism durch den Nullpunkt normiert. Die Balken geben das 95%-Konfidenzintervall für die Mittelwerte der Meßwerte wieder.

Abb. 5-17: Hanes/Woolf-Gerade der Reaktionskinetik von HrmF (siehe Abb. 5-16). Der Quotient aus Substratkonzentration und Reaktionsgeschwindigkeit wurde gegen die Substratkonzentration aufgetragen.

Tab. 5-2: Vergleich der erhobenen kinetischen Parameter für HrmF und LmbB1²²⁷

Protein	K_{M} [μM]	K _{cat} [min ⁻¹]	$k_{\rm cat}/K_{\rm M}$ [mM x min ⁻¹]
HrmF	3,348	57,8	17264
LmbB1	38	4.2	108

Der Vergleich von HrmF und LmbB1 zeigt, dass HrmF eine durchweg höhere katalytische Effizienz als sein Homologes besitzt. Der etwa 10-fach kleinere K_M -Wert und die etwa 15-fach höhere katalytische Konstante (K_{cat}) ergeben zusammen eine fast 160-fach höhere Effektivität für HrmF gegenüber LmbB1. HrmF zeigt darüber hinaus eine sehr relaxierte Substratspezifität. In einer anschließenden Studie von Elisabeth Rüthlein²³³ konnten zehn verschiedene Analoga von L-DOPA (**71**), **77-86**, umgesetzt werden, wobei starke Variationen in der Seitenkette möglich sind und sie sogar schrittweise bis zum Catechol (**77**) abgebaut werden kann (siehe Abb. 5-20). Die 3,4-Hydroxysubstitution des Phenylrestes hat sich in dieser Studie aber als essentiell für die Substraterkennung erwiesen.²³³

Abb. 5-18: Akzeptierte alternative Substrate von HrmF:²³³ Catechol (77), 4-Methylcatechol (88), 3,4-Dihydroxybenzaldehyd (79), 3,4-Dihydroxybenzoesäure (80), 3,4-Dihydroxy-phenylessigsäure (81), Kaffeesäure (82), 3,4-Dihydroxyphenylpropansäure (83), Dopamin (84), L-Dihydroxyphenylserin (85), 3-(3,4-Dihydroxyphenyl)-2-hydroxypropansäure (86).

Die kinetischen Daten, zusammengenommen mit der relaxierten Substratspezifität und der Möglichkeit, das Enzym einfach und in großen Mengen zu exprimieren, machen HrmF somit zu einem aussichtsreichen Kandidaten für biotechnologische Produktionen oder chemoenzymatische Synthesen.

5.2.2 Suche nach einem *lmbX*-Homolog in *Streptomyces griseoflavus* W-384

Wie oben erwähnt, fehlt im Biosynthesegencluster des Hormaomycins ein Kandidat für die C-C-Hydrolyse des Spaltungsproduktes von L-DOPA, **72** (siehe Abb. 5-12). Um im Genom des Hormaomycinproduzenten ein Homologes des für eine C-C-Hydrolase kodierenden *lmbX* zu finden, wurden in einem Aminosäurealignment von LmbX, TomK, SibS und dem Produkt von ORF15 konservierte Regionen ausgemacht. Auf Basis dieser konservierten Regionen wurden degenerierte Primer entworfen, mit denen im Genom von *Streptomyces griseoflavus* W-384 mittels PCR versucht wurde, ein Homologes dieser Gene zu detektieren. Bei der Analyse des Alignments (siehe Abb. 9-8) fiel auf, dass ORF15 aus der Anthramycinbiosynthese eine geringere Verwandtschaft mit den anderen drei Enzymen zeigt; dieses Enzym wurde bei der Erstellung der degenerierten Primer daher nicht berücksichtigt. Tabelle 5-3 zeigt die für die Erstellung der Primer verwendeten Aminosäuremotive.

Primername	Aminosäuremotiv	Position (LmbX)
Unknown1f	QEGC G/S R	99-104
Unknown1r	PACAS	213-218
Unknown2f	ET A/V FV	45-49
Unknown2r	PEDPAC	210-215

Tab. 5-3: Konservierte Aminosäuremotive der degenerierten Primer für das LmbX-Homolog

Die erwartete Größe für ein Amplikon der Primer Unknown1f mit 1r oder 2r betrug ca. 300 bp, die erwartete Größe eines Amplikons der Primer Unknown2f mit 1r oder 2r war etwa 500 bp. Für alle Primerkombinationen wurden mehrere PCRs mit unterschiedlichen Annealingtemperaturen der Primer durchgeführt, aber es wurde kein korresponierendes Produkt amplifiziert. In anschließenden Studien wurde von Xiaofeng Cai versucht, über Hybridisierung mit *lmbX* ein Homolog im Genom zu detektieren.⁶² Auch dieser spezifischere Ansatz führte zu keinem Ergebnis. Die anschließende Veröffentlichung des Genoms von *Streptomyces griseoflavus* W-384 (in der Studie als *S. griseoflavus* Tu-4000 bezeichnet)²³⁴ bestätigte die durchgeführten Experimente: Es ist kein Homologes von *lmbX* im Genom von *Streptomyces griseoflavus* W-384 enthalten. Wie die C-C-Bindung im Falle des 4-Propenylprolins (**69**) gespalten wird, bleibt also weiter unklar. Entweder übernimmt ein anderes, bisher unbekanntes Enzym aus einer anderen Enzymfamilie diese ungewöhnliche Reaktion, oder ein Enzym aus dem Hormaomycingencluster katalysiert unerwarteterweise diesen Umwandlungsschritt.

5.2.3 In vivo-Experimente zur Untersuchung der Funktion von HrmC

Eine bioinformatische Analyse von *hrmC* ergab, dass es für eine SAM (**87**)-abhängige Methyltransferase kodiert. Nächster Verwandter ist LmbW aus der Lincomycinbiosynthese (57% Identität). SAM-abhängige Methyltransferasen katalysieren die Übertragung einer CH₃-Gruppe durch eine nukleophile Substitution an Hydroxy-, Amino-, Thiol-, und nucleophilen Kohlenstoffatomen (siehe Abb. 5-19).²³⁵ Nach der Übertragung des Methylrestes und Abspaltung eines Protons entsteht S-Adenosylhomocystein (SAH) (**88**), aus dem Methionin wieder regeneriert werden kann

Abb. 5-19: Methylübertragung durch S-Adenosylmethionin (87) auf a) Hydroxygruppe b) Aminogruppe c) nukleophilen Kohlenstoff (nach 122)

Die Biosynthesewege von Propenylprolin und analogen Aminosäuren aus Tyrosin sind ab der L-DOPA-Spaltung bisher wenig untersucht, an einem Punkt der Biosynthese wird aber eine Methylgruppe an die Seitenkette angehängt (vergleiche Abb. 5-12). Homologe zu HrmC sind in allen anderen Biosynthesewegen, deren Seitenkette aus 3 C-Atomen besteht, enthalten (LmbW, SibZ, ORF5). Um nun zu untersuchen, ob HrmC die Übertragung einer Methylgruppe auf das Produkt der Reaktion von HrmF (72) katalysiert, sollten HrmF und HrmC in E. coli coexprimiert werden. Da das Redaktionsprodukt von HrmF instabil ist, ist dies der einfachste Weg, die putative Methylierung nachzuweisen. HrmC wurde aus pDF008 (siehe Tab. 6-3) per Restriktionsverdau mit AseI und NdeI ausgeschnitten, und in den Coexpressionsvektor pCDF-Duet, der mit NdeI geschnitten und dephosphoryliert war, kloniert. pMC2 wurde erhalten. pMC2 wurde dann mit pMC6 (hrmF in pHIS8) in E. coli BL21(DE3) cotransformiert. Der resultierende Stamm wurde MC3 genannt. MC6 und MC3 wurden parallel in 300 ml 2xYT-Medium bei 37 °C und 250 rpm kultiviert, und die Proteine nach der Induktion mit 1 mM IPTG bei 16 °C über Nacht überexprimiert. Die Umsetzung mit L-DOPA (71) und Aufarbeitung der Kultur erfolgte nach Rüthlein²³³ (siehe Abschnitt 6.7.2). Der erhaltene Extrakt wurde dann mit HPLC-MS analysiert (Methode CF; siehe 6.7.3). Das Ergebnis zeigt Abbildung 5-20. Im Maximum des Peaks bei 11,8 min (HrmF) bzw. 11,2 min (HrmC+HrmF) erscheint die Masse $[M+H]^+$ des Reaktionsprodukts 72 (siehe Abb. 5-21).

Abb. 5-20: Ausschnitt aus dem HPLC-HRMS-Chromatogramm der Umsetzungen von HrmF (schwarze Linie) und der Coexpression von HrmC und HrmF (gestrichelte Linie) mit L-DOPA (71)

Abb. 5-21: Ausschnitt aus dem Massenspektrum des Peaks bei a): 11,8 min (HrmF) bzw. b): 11,3 min (HrmC+HrmF) aus Abb. 5-20. Spektrum c) zeigt das theoretische Massenspektrum des Spaltproduktes von L-DOPA, **72** $[M+H]^+$.

In beiden HPLC-MS-Läufen konnten außerdem weitere Massen, die putativ zu Intermediaten der (4-Pe)Pro-Biosynthese, oder zu Zerfallsprodukten von **72** gehören, detektiert werden. Eine Masse mit m/z=198,08 und eine Masse m/z=152,08 besitzen die gleiche Retentionszeit. Der Unterschied von 46,0 Da beträgt eine HCOOH-Gruppe.

Tab. 5-4: Detektierte Massen in den HPLC-MS-Chromatogrammen von HrmF und HrmC/HrmF (siehe Abb. 5-20) und deren mögliche Strukturformeln

Detektierte Masse [<i>m</i> /z]	Retentionszeit [min]	Mögliche Summen- formel [M+H] ⁺	Mögliche Strukturformel
212,05	11,8 (F) 11,2 (C+F)	C ₉ H ₉ NO ₂	ноос 0 Ц -соон 1 72
198,07	15,2 (F) 14,8 (C+F)	$C_9H_{11}NO_4$	ноос
152,08	15,2 (F) 14,8 (C+F)	C ₈ H ₇ NO ₂	соон 90
226,07	12,7 (F) 12,2 (C+F)	$C_{10}H_{11}NO_5$	ноос соон
166,05	12,7 (F) 12,2 (C+F)	C ₈ H ₉ NO ₃	Соон N 92

b)

Diese könnte aus einem instabilen Intermediat eliminiert worden sein. Es konnte zwar die Masse des putativen methylierten Intermediates (m/z=226,08) in beiden Extrakten detektiert werden, ebenso wie eine Masse von m/z=166,05, ebenfalls mit gleicher Retentionszeit (Massendifferenz einer Acetyleinheit). Unterschiede in den Massenspuren der beiden Extrakte konnten aber nicht festgestellt werden. Die Moleküle **89-92** sind mögliche Strukturen dieser Intermediate. Die Ergebnisse zeigen, dass die Intermediate tatsächlich eine große Instabilität besitzen. Die detektierten Massen könnten aber auch zu ganz anderen Substanzen gehören. Die erhaltenen Ergebnisse deuten darauf hin, dass HrmC nicht den direkt an HrmF anschließenden Schritt in der Biosynthese des 4-Propenylprolins (**69**) katalysiert. Möglicherweise können Deletionsmutanten einzelner Gene (hrmC, hrmD, hrmG) im Hormaomycinproduzenten die (4-Pe)Pro-Biosynthese weiter aufklären. Wenn Zwischenprodukte oder neue Hormaomycine mit veränderter Struktur entstehen, würde das Einsichten in die Funktion dieser Proteine geben. In *S. griseoflavus* W-384 steht bereits ein solches Mutationssystem zur Verfügung; erste Deletionsmutanten von Biosynthesegenen des Hormaomycins (**13**) sind von Xiaofeng Cai beim Stand dieser Arbeit bereits konstruiert worden (Ergebnisse unveröffentlicht).

5.3 Studien zur Biosynthese von Chpca

Die 5-Chlor-N-hydroxypyrrol-2-carbonsäure (Chpca) (93) (Abb. 5-24 a) ist die Startereinheit für die Biosynthese des Hormaomycins. Auch sie ist bisher einzigartig in der Natur. Für die biologische Aktivität des Hormaomycins ist die N-Hydroxylgruppe essentiell, das haben Struktur-Wirkungs-Experimente gezeigt.¹⁹⁵ Durch Fütterungen von markierten Vorstufen konnte ein biogenetischer Ursprung aus L-Prolin (94) bewiesen werden.⁶² Die Biosynthese von Pyrrolen aus Prolin (94) ist in einigen Systemen, wie Clorobiocin (99) oder Pyoluteorin (115) gut untersucht; nach der kovalenten Bindung von Prolin (94) über eine Thioesterbindung an ein PCP, katalysiert durch eine freistehende A-Domäne, wird der Pyrrolidinring durch eine oder mehrere Acyl-CoA-Dehydrogenasen zum Pyrrol-PCP oxidiert.²³⁶ Diese Reaktionsschritte konnten für mehrere Biosynthesesyteme in vitro rekonstituiert werden.^{203,204,237} Das Pyrrolyl-PCP kann nun durch andere Enzyme noch weiter modifiziert werden, im Falle des Pyoluteorins konnte nach Konstitution des Pyrrolyl-PCP in vitro eine Dichlorierung des Pyrrols durch ein einziges Enzym nachgewiesen werden.²³⁸ Aus dem Gencluster des Hormaomycins sind hrmKLMN und hrmQ Kandidaten für die Biosynthese von Chpca (93). Abbildung 5-22 b) zeigt die putative Biosynthese: hrmK kodiert für eine Acyl-CoA-Synthetase, die, nach Analyse des nonribosomalen Codes (siehe Tab. 3-3), Prolin (94) auf das Typ-II-Peptidylcarrierprotein HrmL überträgt. HrmM hat hohe Homologien zu einer Acyl-CoA-Dehydrogenase, die Prolyl-PCP (95) zu Pyrrolyl-PCP (96) oxidieren könnte.

Abb. 5-22: a): 5-Chlor-N-hydroxypyrrol-2-carbonsäure (Chpca) (93). b): Die putative Chpca-Biosynthese. Prolin (94) wird von HrmK aktiviert und kovalent an. HrmL kovalent gebunden. Es entsteht Prolyl-HrmL (95). Nach Oxidation zum Pyrrolyl-HrmL (96) durch HrmM wird durch HrmQ ein Chloratom an das Pyrrolyl-HrmL (96) addiert. Es entsteht 97. HrmN katalysiert dann putativ die *N*-Hydroxylierung von 97 zu 98.

HrmQ konnte bereits charakterisiert werden; in einem kombinatorischen Experiment chlorierte das Enzym das Antibiotikum Clorobiocin (**99**), das auch über eine Pyrrolcarbonsäureeinheit verfügt (siehe Abb. 5.23).²³⁹ Das Experiment fand in einem Stamm statt, in dem die Methyltransferase CloN6 nicht mehr funktionsfähig war, somit konnte HrmQ die nun freie 2-Position chlorieren. Als Hauptprodukt entstand Novclobiocin 124 (**100**). Das Enzym besitzt hohe Sequenzähnlichkeit (60%) zu den FADH₂- abhängigen Halogenasen PltA und Pyr29 aus der Pyoluteorin- und Pyrrolomycinbiosynthese.^{238,240} Für die N-Hydroxylierung zum Chpca-HrmL (**98**) konnte kein eindeutiger Kandidat identifiziert werden. Auch die Reihenfolge der Modifikationsschritte Chlorierung und Hydroxylierung ist unbekannt.

Abb. 5-23: Generierung eines neuen Clorobiocinanalogs **100** durch HrmQ aus einem Clorobiocin-(**99**)-Produzenten, dem die Methyltransferase CloN6 fehlt.²³⁹

Im Rahmen dieser Arbeit sollten die ersten Enzyme der Chpca-Biosynthese, HrmK und HrmL rekonstituiert werden, die Substratspezifität der Adenylierungsenzyms HrmK getestet werden, und versucht werden, verschiedene Substrate auf HrmL zu übertragen. Außerdem sollte die *N*-Hydroxylierung untersucht werden: Der mögliche Kandidat HrmN sollte zusammen mit einer Promotorsequenz der Pyoluteorinbiosynthese heterolog in *Pseudomonas fluorescens* Pf-5 exprimiert werden. Die Pyrroleinheit im Pyoluteorin und dessen Biosynthese ähneln der von Chpca (94) im Hormaomycin (13). Daher ist eine Hydroxylierung des Pyoluteorins (115) durch eine Pyrrol-N-Hydroxylase des Hormaomycingenclusters möglich.

5.3.1 heterologe Expression und Charakterisierung von HrmK

Das Gen für die Acyl-CoA-Synthetase *hrmK* wurde über spezifische Primer (siehe Tab. 6-10) mittels PCR amplifiziert und mit TA-Klonierung (siehe 6.4.9.1) in pBluescript SK+ eingefügt. Es entstand pMC3.

Nach erfolgter Sequenzierung wurde pMC3 mit *Bam*HI und *Hin*dIII geschnitten und *hrmK* in den Expressionsvektor pHIS8 kloniert (6.4.9.2). Das Konstrukt wurde pMC4 genannt. Um zu testen, ob HrmK für seine Aktivität ein MbtH-ähnliches Protein benötigt, wurde pMC4 zusammen mit pMC10, das *hrmR* im Coexpressionsvektor pCDF-DUET enthielt (siehe Kapitel 5.4.1), in *E. coli* BL21(DE3) cotransformiert und coexprimiert. Der Stamm wurde MC11 genannt. Die Aufreinigung des His₈-Fusionsproteins erfolgte mit Ni-NTA-Affinitätschromatographie (siehe 6.5.4). Abbildung 5-24 zeigt, dass HrmK in hoher Reinheit isoliert wurde. Aus dem Vergleich des Zelllysates und der Elutionsfraktion ist zu erkennen, dass HrmR (unterste Bande) exprimiert wurde, jedoch nicht coeluiert wurde. HrmK scheint also eine geringe Affinität zum MbtH-Homologen HrmR zu besitzen.

Abb. 5-24: SDS-PAGE-Gel (Tricin, 15%) von der Coexpression von HrmK/HrmR (500 mL TB; 16 °C; 1 mM IPTG: M=Proteinmarker; L=Lysat; W1/W2=Waschfraktionen mit Lysispuffer/Waschpuffer; E=Elutionsfraktion mit 250 mM Imidazol.

Um die erfolgreiche Expression von HrmK zu überprüfen, wurde das Enzym mit MALDI-TOF-MS (siehe Abschnitt 6.5.9) analysiert. Das Ergebnis der Messung zeigt Abbildung 5-25.

Es wurde ein Ion bei 59443 Da gemessen, dessen Masse der berechneten von His_8 -HrmK entspricht. Um nun die Substratspezifität von HrmK zu bestimmen, wurde eine 500 mL-Überexpressionskultur von MC11 in TB-Medium (siehe 6.2.1) kultiviert, mit 0,5 mM IPTG induziert, bei 16 °C überexprimiert (siehe 6.5.2) und über Ni-NTA-Affinitätschromatographie aufgereinigt (siehe Abschnitt 6.5.4). Die Proteinelutionsfraktion wurde über eine PD10-Säule entsalzt und mit Vivaspin 500 30K wieder aufkonzentriert (siehe 6.5.5). Das frische Protein wurde dann im [γ -¹⁸O₄]-ATP-Assay (siehe 6.6.1, vergleiche Abb. 5-52, Kapitel 5.4.3) mit verschiedenen Aminosäuren und Carbonsäuren getestet. Ein Großteil der Substrate bestand aus strukturellen Analoga des Prolins **101-110** (siehe Abb. 5-26).

Abb. 5-26: getestete Substrate von HrmK: Prolin (94) und Analoga: Benzoesäure (101), Pyrrol-2-carbonsäure (102), Picolinsäure (103), Nikotinsäure (104), Cyclohexancarbonsäure (105), Cyclopentancarbonsäure (106), Thiophen-2-carbonsäure (107), Furan-2-carbonsäure (108), Tetrahydrofuran-2-carbonsäure (109), Pipecolinsäure (110).

Das Ergebnis der Messung (Abb. 5-27, 5-28) zeigt, dass Prolin (94) sehr selektiv vom Enzym präferiert wird. Die Umsetzung von 94 im Assay verlief nahezu quantitativ. Das ist an der Generierung eines neuen Ions bei m/z=506 aus dem Ion bei m/z=514 zu erkennen (vgl. Abb. 5-52, Abschnitte 5.4.4 und 6.6.1) Dieses Resultat konnte in einem wiederholten Experiment bestätigt werden. Die anderen gestesten Substrate wurden nur in Spuren aktiviert (<3%). HrmK scheint also, wie auch schon in Arbeiten von Radzom postuliert,²⁰⁰ eine sehr enge Substratspezifität zu besitzen. Diese Ergebnisse erschweren die Möglichkeit, durch Fütterungen von Prolinanaloga zum Produzenten Variationen der Startereinheit zu erzeugen. Außerdem kann in folgenden *in vitro*-Assays zur Chpca-Biosynthese mit hoher Wahrscheinlichkeit nicht das Oxidationsprodukt von Prolin, die Pyrrol-2-carbonsäure (102), als Substrat von HrmK und HrmL eingesetzt werden. Für weitergehende *in vitro*-Untersuchungen, wie z.B. die *N*-Hydroxylierung (siehe Kapitel 5.3.4), müßte also HrmM ebenfalls heterolog exprimiert und isoliert werden und das Prolyl-PCP (95) anschließend oxidieren, bevor weitere Enzymreaktionen untersucht werden könnten (vgl. Abb. 5-22).

Abb. 5-27: Vergleich der Massenspuren der Umsetzung von HrmK mit verschiedenen Substraten im im $[\gamma^{-18}O_4]$ -ATP-Assay (vgl. Tab. 9-1)

Abb. 5-28: Aktivierung verschiedener Substrate durch HrmK im $[\gamma^{-18}O_4]$ -ATP-Assay (schwarz) und Wiederholung der Reaktion mit Prolin (rot). Die höchste Aktivität wurde als 100% normiert (vgl. Abb. 5-27, Tab. 9-1).

5.3.2 Heterologe Expression und Charakterisierung von HrmL

Nach bioinformatischen Voraussagen ist HrmL ein freistehendes PCP Typ II. PCPs akzeptieren aktivierte Aminosäuren von Acyl-CoA-Transferasen und A-Domänen über eine Thioesterbindung. Um eine aktivierte Aminosäure von einer A-Domäne aufnehmen zu können, muss ein Serinrest in Peptidyl-Carrierproteinen durch eine PPTase posttranslational mit einem 4'-Ppant aus Coenzym A

Coenzym A (19) $H_{h}N + H_{0, -1} + H_{$

(**19**) modifiziert werden (siehe Abb. 5-29).¹¹² Somit wird eine terminale Sulfhydrylgruppe gebildet, die als Akzeptor für die übertragene Aminosäure dient (siehe hierzu auch Kapitel 3.2.2).

Abb. 5-29: Phosphopanthetheinylierung durch Phosphopanthetheinyltransferasen (PPTasen). Die PPTase überträgt eine 4'-Phosphopanthetheinylgruppe aus Coenzym A (**19**) auf ein Serin eines *apo*-Peptidylcarrierproteins (PCP). Es entsteht ein *holo*-PCP mit einer terminalen –SH-Gruppe.

hrmL wurde mittels PCR amplifiziert und über die Restriktionsschnittstellen *Bam*HI und *Hin*dIII sowohl in den Expressionsvektor pHIS8 (pMC7) als auch in pHIS8-*svp* (pMC5) kloniert (siehe Kapitel 6.4.9.2). und in *E. coli* BL21(DE3) überexprimiert (siehe 6.5.2). In pHIS8-*svp* ist zusätzlich das Gen für die Phosphopanthetheinyltransferase Svp aus *Streptomyces verticillus*²⁴¹ durch die Schnittstelle *Not*I insertiert.²⁴² Zwar besitzt *E. coli* auch PPtasen, jedoch erhöht eine Phosphopanthetheinyltranferase aus einem verwandten Organismus die Wahrscheinlichkeit einer erfolgreichen Modifikation. Die Ergebnisse der Expressionen und Aufreinigungen sind in Abbildung 5-30 a) und b) zu sehen.

Abb. 5-30: Heterologe Expression und Aufreinigung von HrmL aus a) pHIS8 und b) pHIS8*svp* (500 mL LB; 1 mM IPTG). P=Pellet; D=Durchfluß; L=Lysat; M=Marker; W=Waschfraktion; 30, 50, 100, 150, 200, 250, 300=Elutionsfraktionen mit x mM Imidazol.

Wenn eine posttranslationale Phosphopanthetheinylierung stattfindet, erhöht sich die Masse des PCP um 339 Da. Dieser Betrag muß also zur Masse des Octahistidinyl-PCP addiert werden. Für das phosphopanthetheinylierte His₈-HrmL ergibt sich somit insgesamt eine Proteinmasse von 12685 Da. Zur Massenbestimmung von Proteinen eignen sich mehrere massenspektrometrische Methoden. Die bevorzugte Methode ist ESI-FT-MS aufgrund der hohen Auflösung und Genauigkeit der Massen. Eine Alternative zur Detektion von Proteinen bietet die Ionisation per MALDI, die gewöhnlicherweise mit der "time of flight"-Detektion kombiniert wird. Für kleine Proteine war die Detektion von Phosphopantetheinylierungen bereits möglich.^{243,244} Auch wurde dieses Messprinzip in der Arbeitsgruppe Piel durch Holger Niederkrüger bei der Detektion der Phosphopanthetheinylierung von Acylcarrierproteinen (ACPs) angewendet.²⁴⁵

Aus einer 500 mL-Kultur wurden die aufgereinigten Proteine aus pHIS8 und pHIS8*svp* für eine MALDI-TOF-Messung (siehe 6.5.9) vorbereitet. Hierbei wurde vom Protokoll abgewichen und jeweils 20-30 min bei 6000 rpm zentrifugiert, da eine höhere Geschwindigkeit in diesem Schritt zu gemessenen Proteinmassen um 10 kDa führte (Daten nicht aufgeführt). Um eine Proteinfragmentierung zu vermeiden, wurde daher die Zentrifugationsgeschwindigkeit erniedrigt. Die MALDI-TOF-Ergebnisse in den Abbildungen 5-31 und 5-32 zeigen, dass sowohl HrmL aus pHIS8 als auch HrmL aus pHIS8*svp* phosphopanthetheinyliert vorliegen.

Protein (+4'-Ppant)	Berechnete Masse	Gemessene Masse [m/z]	Abweichung
His ₈ -HrmL	12685 Da	12681	-4 Da
His8-HrmL+Svp	12685 Da	12677	-8 Da
Intens			

Tab. 5-5: Vergleich der gemessenen Massen für His $_8$ -HrmL und His $_8$ -HrmL+Svp mit der berechneten Masse für das 4'-phospopanthetheinylierte Protein.

Abb. 5-31: MALDI-TOF-Messung von His8-HrmL aus pHIS8svp

Die geringen Abweichungen von 4 bzw. 8 Da (siehe Tab. 5-5) sind bei dieser Messmethode und der Größe des Moleküls zu vernachlässigen. HrmL wird also offenbar von 4'-Phosphopanthetheinyltransferasen aus *E. coli* BL21(DE3) modifiziert. Die Coexpression von Svp ist für ein aktives HrmL in diesem Stamm nicht notwendig. Insgesamt konnte HrmL stabil heterolog exprimiert und isoliert werden. Die Beladung mit einem Phosphopanthetheinylrest, und damit die Aktivierung für Beladungsreaktionen (siehe Kapitel 5.3.3) konnte massenspektrometrisch nachgewiesen werden.

5.3.3 Beladung von HrmL mit Prolin

Mit den exprimierten Enzymen HrmK (5.3.1) und dem 4'-phosphopanthetheinylierten HrmL (5.3.2) wurde nun versucht, die Generierung von Prolyl-HrmL (**95**) nachzuweisen. Solche Beladungsassays sind für mehrere Systeme, unter anderem Pyoluteorin (**115**) und Clorobiocin (**99**) erfolgreich durchgeführt worden.^{203,204}

Aus 500 mL-Expressionen von HrmK und HrmL wurden die Elutionsfraktionen mit PD10-Säulen in 50 mM Phosphatpuffer umgepuffert und aufkonzentriert (siehe 6.5.5). Der Beladungsassay wurde, wie in Abschnitt 6.6.4 beschrieben, durchgeführt. Anschließend wurden die Proteine entsalzt und mit MALDI-TOF-Massenspektrometrie (siehe 6.5.9) analysiert (Abb. 5-32). Es ist zu erkennen, dass sowohl der Assay (obere Spur) als auch die Negativkontrolle ohne HrmK (untere Spur) ein Maximum bei m/z= 12681,0 bzw. 12681,5 besitzen, Diese Masse entspricht dem 4^c-phosphopanthetheinylierten His₈-HrmL (12685 Da, vergleiche Tab. 5-5). Eine Masse von m/z= 12781, die dem Prolyl-HrmL (**95**) entspricht, konnte nicht detektiert werden.

Die Beladung von HrmL mit Prolin hat also in diesem Assay nicht funktioniert. Mögliche Gründe hierfür sind in nicht optimalem pH-Wert, Temperatur oder Reaktionszeit oder in einer zu geringen Konzentration von HrmK zu suchen. Auch ist es möglich, dass HrmK während der Aufarbeitung seine Aktivität verloren hatte. Frühere *in-vitro*-Studien an Enzymen der Anatoxinbiosynthese haben gezeigt, dass das dort erzeugte Prolyl-PCP recht instabil ist, und eine Halbwertszeit von etwa 2 h bei 28 °C hat.²³⁷ Die massenspektrometrischen Messungen sollten also direkt im Anschluß an den Assay erfolgen. Außerdem kann bei der Aufkonzentrierung und Entsalzung in den Vivaspin-Zentrifugatoren der instabile Komplex möglicherweise zerfallen.

5.3.4 In vivo-Experimente zur Untersuchung der Funktion von HrmN

N-hydroxylierte Pyrrole sind äußerst selten in der Natur anzufinden. Einige rare Beispiele sind das aus *Streptomyces libani* No. 6362 isolierte Anthrachinonpyronantibiotikum Chromoxymycin (**111**),²⁴⁶⁻²⁴⁸ die Sugapyrrole A (**112**) und B (**113**), aus *Streptomyces sp.* USF-6280²⁴⁹ und das Glycerinopyrin (**114**) aus *Streptomyces violaceus* (siehe Abb. 5-33).²⁵⁰ Über die Biosynthese der N-Hydroxygruppen ist nichts bekannt. Interessanterweise wird die Carboxypyrroleinheit nicht, wie zu erwarten wäre, aus Prolin (**94**) gebildet, sondern, wie Fütterungsstudien zeigten, aus Leucin.²⁵¹

Abb. 5-33: Naturstoffe mit N-Hydroxypyrroleinheiten: Chromoxymycin (111), Sugapyrrol A (112) und B (113), Glycerinopyrin (114)

Für das Thiopeptid Nocathiacin I, das eine N-Hydroxyindolyleinheit besitzt, wurde 2010 der Biosynthesegencluster isoliert.²⁵² Es wurde postuliert, dass die *N*-Hydroxylierung hier durch ein P-450-abhängiges Enzym katalysiert wird. Da im Hormaomycingencluster ein solches Enzym nicht kodiert ist, ist es sehr wahrscheinlich, dass die *N*-Hydroxylierung auf anderem Wege stattfindet. Ein möglicher Kandidat hierfür ist HrmN. Bioinformatische Analysen für HrmN sagen eine Acyl-CoA-Dehydrogenase Typ 2 voraus, die allerdings eine geringe Verwandtschaft zu den meisten charakterisierten Acyl-CoA-Dehydrogenasen Typ 2 besitzt. Ein etwas entfernterer Verwandter (50% Sequenzähnlichkeit) ist eine Alkylresorcinolhydroxylase aus *Actinoplanes missouriensis*. Es scheint also möglich, dass HrmN diese *N*-Hydroxylierung, eine für diese Enzymfamilie bisher nicht

charakterisierte Reaktion, katalysiert. Um diese Hypothese zu überprüfen, wurde *hrmN* zusammen mit einer Promotorsequenz der Pyoluteorinbiosynthese exprimiert. Pyoluteorin (**115**) (Abb. 5-34) ist eine antifungal wirkende Substanz, die von einigen *Pseudomonas*-Arten produziert wird. Es besitzt unter anderem eine Dichlorpyrroleinheit, die der Chpca (**93**) im Hormaomycin (**13**) ähnelt.

Abb. 5-34: Pyoluteorin (115)

Die Biosynthese von **115** ist gut untersucht; 1999 wurde sein Biosynthesegencluster aus *Pseudomonas fluorescens* Pf-5 isoliert.²⁵³ Eine Vorstufe ist Prolin (**94**), das von der Acyl-CoA-Synthetase PltF aktiviert und an PltL, ein PCP gebunden wird.²⁰³ Am Prolyl-PltL (**116**) wird nun die weitere Biosynthese katalysiert. PltE, eine Acyl-CoA-Dehydrogenase dehydriert **116** zu Pyrrolyl-PltL (**117**)²⁰³ und die FADH₂-abhängige Halogenase PltA führt beide Chlorierungen durch.²³⁸ Die Biosynthese von **117** im Hormaomycin ist aufgrund der bioinformatischen Zuordnung analog zur Pyoluteorin-Biosynthese, nur katalysiert HrmQ im Gegensatz zu PltA nur eine Chlorierung.²³⁹ Abbildung 5-35 verdeutlicht diese Analogien.

Abb. 5-35: Analogien in der Hormaomycin- und Pyoluteorinbiosynthese. Prolin (94) wird von PltF bzw. HrmK aktiviert und an PltL bzw. HrmL kovalent gebunden (116 bzw. 95). Nach Oxidation zum Pyrrolyl-PltE (117) bzw. Pyrrolyl-HrmL (96) durch PltE bzw. HrmM (putativ) werden durch PltA zwei bzw. durch HrmQ ein Chlor an das Pyrrol addiert (118 bzw. 97). HrmN katalysiert dann putativ die N-Hydroxylierung von 97 zu 98.

hrmN sollte nun heterolog im Pyoluterorinproduzenten *Pseudomonas fluorescens* Pf-5 exprimiert werden. Besitzt HrmN eine Hydroxylasefunktion, so könnte ein hydroxyliertes *N*-Hydroxy-dichloropyrrolyl-PltL (**119**), und damit ein hydroxyliertes Pyoluteorin generiert werden, wie in Abbildung 5-36 dargestellt.

Abb. 5-36: Kombinatorische Biosynthese in *Pseudomonas fluorescens* Pf-5. Nach der Biosynthese von Dichloropyrrolyl-PltA (**118**) (siehe Abb. 5-35) kommt es hypothetisch durch N-Hydroxylierung durch HrmN und zur Bildung von **119**.

Um eine zeitgleiche Transkription von *hrmN* mit den Biosynthesegenen des Pyoluteorins (**115**) zu gewährleisten, sollte eine Promotorsequenz aus dem Biosynthesegencluster des Pyoluteorins (**115**) vor *hrmN* kloniert werden. Es handelt sich hierbei um eine inverse Wiederholungssequenz TGTAA-N₇-TTACA, die eine Variante eines sogenannten Ebright-Box-Motiv darstellt (TNTNA-N₇-TNANA).²⁵³ Diese Promotersequenz ist 45 Basenpaare stromaufwärts vom positiven Regulatorgen *pltR*²⁵⁴ entfernt, das für einen transkriptionellen Aktivator der Familie der LysR-artigen Proteine kodiert.²⁵⁵

Aus der genomischen DNA von Pseudomonas fluorescens Pf-5 (siehe 6.4.2.2) wurde mittels spezifischer Primer (Promotor F/R) (Tab. 6-13) eine 462 bp große Region amplifiziert, die die Promotorsequenz in 3'-5'-Richtung enthielt. Dieses Fragment wurde mittels TA-Klonierung (siehe Abschnitt 6.4.9.1) in pBluescript SK(+) eingefügt und ergab pMC12. hrmN wurde ebenso mit PCR amplifiziert und mittels TA-Klonierung in pGEM-Teasy eingefügt und ergab pMC9. Beide Fragmente sollten nun in den Expressionsvektor pME6041,²⁵⁶ der eine Kanamycinresistenzkassette besitzt, eingefügt werden. Wichtig für die Wahl des Expressionsplasmids war, dass es keinen konstitutiven Promotor enthält und für die heterologe Expression in Pseudomonaden geeignet ist. Das Expressionskonstrukt sollte den Promoter und hrmN in einer bestimmten Anordnung enthalten, da die Pyoluteorinpromotorsequenz im Gencluster in 3'-5'-Richtung kodiert ist, hrmN aber in 5'-3'-Richtung. Die Plasmide pMC9 und pMC12 wurden sequenziert, um zu detektieren, in welcher Richtung das Insert eingebaut wurde, da sich dies beim T/A-Klonieren nicht voraussagen lässt. Die Promotersequenz wurde aus pMC12 mit EcoRI und SalI ausgeschnitten, hrmN aus pMC9 mit SalI und SphI. Beide Fragmente wurden gleichzeitig mit dem Expressionsplasmid pME6041 ligiert, das mit EcoRI und SphI linearisiert und dephosphoryliert war. Die Klonierung ergab pMC15 (siehe Abb. 5-37). pMC15 wurde mittels Elektroporation in elektrokompetente Pseudomonas fluorescens Pf-5 transformiert (siehe 6.3.4). Bei der Analyse der Transformation stellte sich heraus, dass Pseudomonas fluorescens Pf-5 eine natürliche Resistenz gegen Kanamycin besitzt. Vertreter der Art Pseudomonas fluorescens können einen Biofilm bilden können, der eine natürliche Antibiotikaresistenz hervoruft.²⁵⁷ Trotz Selektion auf Kanamycin mußte daher die erfolgreiche Transformation des Plamids mit Kolonie-PCR (siehe 6.4.1.1) überprüft werden. Anschließend wurde Pseudomonas fluorescens Pf-5 mit pMC15 (genannt MC15) bei 30 °C in KB-Medium (siehe 6.2.1) kultiviert. Als Negativkontrolle wurde Pseudomonas fluorescens Pf-5 mit dem leeren pME6041 verwendet. Das Kulturvolumen betrug 50 mL. Nach vier verschiedenen Zeitpunkten (43 h, 51 h, 66 h und 76 h) wurden die Kulturen nach Sarniguet et al.²⁵⁸ (siehe 6.7.2) aufgearbeitet. Die erhaltenen Extrakte wurden mit HPLC (siehe 6.7.3) und HPLC-MS (siehe 6.7.4) analysiert.

Abb. 5-37: Klonierungsschema für pMC15. Aus pMC9 wurde *hrmN* mit *Sall* und *Sph*I ausgeschnitten, so wie der Pyoluteorinpromotor aus pMC12 mit *Eco*RI und *Sal*I. Die ausgeschnittenen Fragmente wurden dann in pME6041, der mit *Eco*RI und *Sph*I geschnitten war, ligiert und ergaben pMC15.

Die Ergebnisse zeigen, dass nach 66 Stunden die Produktion von Pyoluteorin begonnen hat (siehe Abb. 5-48). In der HPLC-MS ist im Hauptpeak das charakteristische Massenspektrum von Pyoluteorin $[M+H]^+$ zu sehen (Abb. 5-39 a, b). Ein hydroxyliertes Pyoluteorin (*m/z*: Pyoluteorin+16) konnte in diesen Experimenten nicht detektiert werden.

Abb. 5-38: Vergleich der HPLC-Spuren (308 nm) der Extrakte von pMC15 nach 43 h (1), 51 h (2), 66 h (3), 76 h (4). Die Produktion von Pyoluteorin (**115**) (T_R = 21 min) beginnt nach 66 h.

Abb. 5-39: a): Vergleich der UV-Spuren eines HPLC-MS-Experiments einer Expression von pMC15 in *Pseudomonas fluorescens* Pf-5 nach 76 h (gestrichelte Linie) mit pME6041 in *Pseudomonas fluorescens* Pf-5 (durchgezogene Linie). b): Ausschnitt aus dem Massenspektrum der Peaks bei 33,3 min [Pyoluteorin (**115**)].

Eine mögliche Erklärung für das Scheitern der Experimente könnte in der fehlenden Expression von HrmN in pMC15 liegen. Die korrekte Transkription von *hrmN* könnte mit reverser Transkriptions-PCR (RT-PCR) nachgewiesen werden, ebenso wie die notwendige Synchronisation der Transkription von *hrmN* und Pyoluteorinbiosynthesegenen. Außerdem kann das exprimierte HrmN eventuell das Dichloropyrrolyl-PCP (**118**) nicht hydroxylieren, da das zusätzliche Chloratom am Substrat das aktive Zentrum behindert. Es ist auch denkbar, dass ein ganz anderes Enzym aus dem Hormaomycin-Gencluster oder aus dem Genom von *Streptomyces griseoflavus* W-384 die *N*-Hydroxylierung katalysiert. Eine andere Möglichkeit, die Funktion von HrmN nachzuweisen, wäre die Erzeugung einer *hrmN*-Deletionsmutante in *Streptomyces griseoflavus* W-384. Wenn HrmN eine *N*-Hydroxylase ist, würde möglicherweise nicht mehr Hormaomycin (**13**), sondern nur ein Dehydroxyhormaomycin gebildet werden.

5.4 in vitro-Studien an der Hormaomycin-NRPS

Die nichtribosomale Peptidsynthetase (NRPS) katalysiert die Kondensation von Aminosäuren zu Peptiden. Wie oben erwähnt, sind die Adenylierungsdomänen (A-Domänen) hauptsächlich verantwortlich für die Erkennung und den Einbau des richtigen Substrats (siehe Abschnitt 3.2.1). Im Rahmen dieser Studie sollten nun alle A-Domänen des Hormaomycins heterolog exprimiert und auf ihre Substratspezifität getestet werden. Die Messung dieser Spezifitäten sollte in dieser Studie mit einem nicht-radioaktiven Assay¹⁰⁹ (siehe Abb. 5-52 und Abschnitt 6.6.1) mit Hilfe von [γ -¹⁸O₄]-ATP (**120**) untersucht werden. Mit diesen Messungen kann die Genauigkeit bioinformatischer Voraussagen über die Substratpromiskuität überprüft werden. Darüber hinaus können die Ergebnisse Aufschluss über weitere mögliche Substrate geben, die von der NRPS akzeptiert und anstelle der nativen Substrate in Hormaomycin eingebaut werden können. Es ist auch möglich, dass die A-Domänen nicht die fertigen Peptidbausteine einbauen, sondern deren biogenetische Vorstufen. In diesem Fall würden diese dann an das PCP gebunden und dort durch weitere Biosyntheseenzyme zu den finalen Peptidbausteinen prozessiert. Das ist zum Beispiel bei der β -Hydroxylierung von Tyrosyl-NovH der Fall.²⁵⁹

Die heterologe Expression der A-Domänen und Versuche zur Stabilität der Proteine sind in Abschnitt 5.4.1 gezeigt. Außerdem wird die Coexpression der A-Domänen mit dem MbtH-artigen Protein HrmR beschrieben. Weiterhin sollten auf Basis von Sequenzvergleichen der A-Domänen rekombinante A-Domänen konstruiert, exprimiert und charakterisiert werden. Dies ist in den Kapiteln 5.4.2 und 5.4.3 dargestellt. Die finale Aufreinigung mit FPLC und die massenspektrometrische Charakterisierung aller exprimierten A-Domänen ist in Abschnitt 5.4.4 dargestellt.

5.4.1 Heterologe Expression der Hormaomycin-A-Domänen und Coexpression mit HrmR

Die Hormaomycin-NRPS besteht aus 2 open reading frames (ORFs) *hrmO und hrmP*, die sich aus sieben Modulen zusammensetzen (*hrmO1-hrmO4, hrmP1-hrmP3*) (vgl. Abb. 3-22). Zunächst wurde ein Sequenzvergleich (Alignment) mit anderen funktionellen Adenylierungsdomänen durchgeführt, um Anfang und Ende der Domäne bestimmen zu können (siehe Abb. 9-9). Die codierenden Sequenzen aller sieben A-Domänen der einzelnen Module wurden in Vorarbeiten von Denise Hissa und Katrin Zimmermann mit PCR (siehe 6.4.1) amplifiziert und über TA-Klonierung (6.4.9.1) in pBluescript SK(+) (*hrmO1_A-O4_A*) bzw. pGEM-T easy (*hrmP1_A-P3_A*) eingefügt. Die Konstrukte wurden als pDC1-pDC7 bezeichnet (siehe Tab. 6-18).

Die A-Domänen wurden über die Restriktionsschnittstellen *Eco*R1 und *Hin*dIII in den Expressionsvektor pHIS8 kloniert. Bei der A-Domäne von *hrmP2* befand sich eine Schnittstelle für *Eco*R1 im Genabschnitt. Deswegen wurde für das Insert stattdessen *Mfe*I als Restriktionsenzym ausgewählt. Es entstanden pMC17-pMC23 (siehe Tab. 6-19). Die Proteine wurden in *E. coli* BL21(DE3) überexprimiert (siehe 6.5.2) und über den N-terminalen Octahistidinyltag mit Ni-NTA-Affinitätschromatographie aufgereinigt (siehe Abschnitt 6.5.4). Alle A-Domänen konnten in Testexpressionen als lösliche Proteine isoliert werden. Beispielhaft ist in Abb. 5-40 ein SDS-PAGE-Gelbild der heterologen Expression und Aufreinigung von HrmP1_A gezeigt.

Abb. 5-40: SDS-PAGE-Gel (12%) einer Expression von HrmP1_A in1 L LB (16 °C, 1 mM IPTG). M=Marker; W=Waschfraktion in Lysispuffer; 30-300: Elutionfraktionen in x mM Imidazol

Um sicherzustellen, dass die isolierten Proteine auch tatsächlich die His₈-A-Domänen sind, wurde die HrmO3_A massenspektrometrisch mit MALDI-TOF-MS untersucht (siehe 6.5.9). Abbildung 5-41 zeigt das Ergebnis (59190 Da). Die theoretische Masse von His₈-O3_A beträgt 59323 Da. Eine Abweichung von 162 Da (0,3%) ist bei diesem Messverfahren und bei dieser Molekülgröße als vernachlässigbar anzusehen. Es ist also davon auszugehen, dass das richtige Protein exprimiert und isoliert wurde. Eine Übersicht über die exprimierten His₈-Adenylierungsdomänen gibt Tabelle 5-6.

Abb. 5-41: MALDI-TOF-Analyse von His₈-HrmO3_A

A-Domäne	Länge der Aminosäuresequenz [AS]	Größe des His ₈ -Proteins
HrmO1 _A	540	59231 Da
HrmO2 _A	559	62401 Da
HrmO3 _A	542	59323 Da
HrmO4 _A	540	59700 Da
HrmP1 _A	542	59445 Da
HrmP2 _A	546	61264 Da
HrmP3 _A	565	62813 Da

Tab. 5-6: Übersicht über die in pHIS₈ exprimierten Hormaomycin-A-Domänen

Um einen geeigneten Puffer für die Lagerung und den Aktivitätsassay zu finden, wurde ein Puffer-Stabilitätstest durchgeführt. Dazu wurde die Elutionsfraktion einer 1 L-Expression von HrmO3_A in sechs gleiche Volumenanteile geteilt und über PD-10-Säulen (siehe 6.5.5) in unterschiedliche Puffer überführt. Die Proteine wurden über Nacht bei Raumtemperatur stehen gelassen und am nächsten Tag wurde 10 min bei 15000 g zentrifugiert, um das präzipitierte Protein abzutrennen. Der Überstand wurde vorsichtig in ein neues Reaktionsgefäß überführt und TCA-präzipitiert (siehe 6.5.6). Das Präzipitat wurde mit SDS-PAGE (siehe 6.5.7) analysiert. In Abbildung 5-42 ist zu erkennen, dass die Bande des Zielproteins (ca. 60 kDa) in 100 mM Phosphat-Puffer pH 8 (Puffer 6) am stärksten ist. Die Ergebnisse des Bradfordtests (6.5.8.1) stimmen damit überein (vgl. Tabelle 5-7). Auch hier ist die Proteinkonzentration in Puffer 6 am höchsten. Das Protein zeigte also in Puffer 6 die größte Stabilität. Die A-Domänen wurden für alle folgenden Assays und Lagerungen in diesen Puffer überführt. Zusätzlich wurden dem Puffer noch 100 mM NaCl hinzugefügt. Dies steigert die Stabilität des Proteins in Lösung.²⁶⁰

Abb. 5-42: SDS-PAGE-Gel (12%) einer Expression von $HrmO3_A$ in 1 L LB, (16 °C, 1 mM IPTG) Elutionsfraktion in 6 verschiedenen Puffern nach dem Stabilitätstest (1: 100 mM Tris pH 7; 2: 100 mM Tris pH 7,5; 3: 100 mM Tris pH 8; 4: 100 mM Phosphat pH 7; 5, 5d: 100 mM Phosphat pH 7,5; 6: 100 mM Phosphat pH 8; M:Marker).

Puffer	Proteinkonzentration
1: 100 mM Tris pH 7	282 µg/mL
2: 100 mM Tris pH 7,5	91 μg/mL
3: 100 mM Tris pH 8	243 µg/mL
4: 100 mM Phosphat pH 7	215 µg/mL
5: 100 mM Phosphat pH 7,5	446 µg/mL
6: 100 mM Phosphat pH 8	353 μg/mL

Tab. 5-7: Proteinkonzentrationen von HrmO3_A(1 L) in 6 verschiedenen Puffern nach dem Stabilitätstest

Für die präparative Expression der A-Domänen wurden standardmäßig Kulturen in 500 mL TB-Medium (6.2.1) angesetzt und die Proteinexpression mit 0.5 mM IPTG induziert. Dieses Medium lieferte eine höhere Ausbeute an löslichem Zielprotein (Daten nicht aufgeführt). Das geringere Kulturvolumen reduzierte die Anzahl der coeluierten Hintergrundproteine aus *E. coli*. Die Proteinexpression fand dann bei 16 °C über Nacht statt. Nach Aufreinigung der Expression über Ni-NTA-Affinitätschromatographie (siehe Abschnitt 6.5.4) wurde die Elutionsfraktion mit dem höchsten Proteingehalt über PD10-Säulen in den Assaypuffer eluiert und mit Vivaspin-Zentrifugatoren (30K MWCO) (siehe 6.5.5) konzentriert. Das Volumen der Waschschritte mit Lysepuffer und Waschpuffer (siehe 6.2.2) wurde auf 20 mL erhöht. Dies reduzierte die Konzentration an unspezifisch an die Ni-NTA-Agarose gebundenen Kontaminationsproteinen (vergleiche die Abbildungen 5-43 a und b). Das konzentrierte, entsalzte Protein wurde mit 1 mM Dithiothreitol (DTT) versetzt, um die Ausbildung unerwünschter Disulfidbrücken und Dimerisierung zu verhindern.

Seit kurzem ist bekannt, dass Coexpressionen von MbtH-artigen Proteinen mit Teilen von NRPS (A-T, C-A-T) letztere Enzyme in vitro aktivieren können.^{152,153} Diese kleinen Proteine befinden sich in vielen Genclustern von nichtribosomalen Peptiden. Eine ausführliche Darstellung hierzu befindet sich in Kapitel 3.2.4. Auch im Hormaomycingencluster ist ein solches MbtH-artiges Protein, HrmR, kodiert. Es umfasst 72 Aminosäuren und ist nur durch einen ORF, HrmQ, von der NRPS getrennt. Das Gen hrmR wurde mit spezifischen Primern (siehe Tab. 6-10) mit PCR amplifiziert. Über die Schnittstellen NdeI und XhoI wurde das gereinigte PCR-Produkt dann in den Coexpressionvektor pCDF-DUET kloniert und ergab pMC10. pMC10 wurde dann mit allen Hormaomycin-A-Domänen (und HrmK; siehe Kapitel 5.3.1) in E. coli BL21(DE3) cotransformiert. Über die doppelte Selektion mit Kanamycin (pMC17-pMC23) und Streptomycin (pMC10) wurden Stämme erhalten (MC26-MC32, siehe Tab. 6-20), die A-Domäne und HrmR enthielten. Diese Coexpression fand auch hier bei 16 °C und mit einer Induktion durch 0,5 mM IPTG statt. Anschließend wurden die Proteine ebenso über Ni-NTA-Affinitätschromatographie (siehe 6.5.4) aufgereinigt. In publizierten Coexpressionsstudien von A-Domänen und anderen MbtH-artigen Proteinen^{152,153} wurde das MbtH-artige Protein mit der A-Domäne coeluiert, was auf eine Interaktion mit der A-Domäne hindeutet. Für die A-Domänen dieser Komplexe konnte in vitro Aktivität nachgewiesen werden. In Abbildung 5-43 a) und b) sind zwei Beispiele einer heterologen Coexpression dargestellt. 5-43 a) zeigt die Coexpression von MC30 (HrmO2_A und HrmR). Es sind in der Elutionsfraktion Hintergrundbanden zu erkennen, die Fraktion ist nicht rein. 5-43 b) zeigt die Coexpression von MC28 (HrmP3_A und HrmR). Auch hier ist HrmR in der Elutionsfraktion zu sehen. Hier wurden die Zielproteine in größerer Reinheit erhalten.

Abb. 5-43: SDS-PAGE-Gel (15%, Tricin) einer Coexpression und Aufreinigung von a) HrmO2_A/HrmR b) HrmP3_A/HrmR in *E. coli* BL21(DE3) (jeweils 500 mL TB, 0,5 mM IPTG, 16 °C). M=Marker; P=Pellet; L=Lysat; D=Durchfluß; W1/W2=Waschfraktionen mit 10 mM bzw. 40 mM Imidazol; E=Elution mit 250 mM Imidazol; EK=Konzentration der Elution mit Vivaspin 30K MWCO.

Die massenspektrometrische Charakterisierung und weitere Aufreinigung der exprimierten A-Domänen mit HrmR wird in Abschnitt 5.4.4 beschrieben.

5.4.2 Konstruktion, Expression und Charakterisierung fusionierter A-Domänen

Während der Evolution ist es in vielen Fällen zur horizontalem Transfer und Rekombination von DNA-Abschnitten gekommen. Diese Ereignisse haben im Bereich der Biosynthese von Sekundärmetaboliten zu neuen Genclustern geführt. Einige Austausche lassen sich beim direkten Vergleich von Genclustern für Metaboliten mit ähnlichen Strukturen beobachten.^{105,107,174,175} Einige Beispiele sind in den Abschnitten 3.2.1 und 3.3.2 bereits erläutert worden. Ein ähnliches Phänomen konnte auch in der Hormaomycin-NRPS beobachtet werden.

Ein Sequenzvergleich (Alignment) der A-Domänen der Hormaomycin-NRPS zeigt, dass viele A-Domänen, obwohl sie sehr unterschiedliche Aminosäuren aktivieren, eine erstaunliche Sequenzähnlichkeit besitzen. Die A-Domänen der Module HrmO1, HrmO4 [Spezifität jeweils (3-Ncp)Ala (**27**)] und der Module HrmO3, HrmP1 [Spezifität jeweils (β -Me)Phe (**31**)] besitzen am N-Terminus und am C-Terminus große Abschnitte mit Sequenzübereinstimmung (Aminosäuren 1-200 und 320-550). In der Mitte der Proteinsequenz unterscheiden sich die A-Domänen dagegen signifikant. Abbildung 5-44 visualisiert diese Beobachtung durch einen Ähnlichkeitsplot der A-Domänen von HrmO1, O3, O4 und P1. Die A-Domänen HrmO3_A und HrmO4_A haben eine Sequenzübereinstimmung von 77% (Abb. 5-45). Während der N-terminale Teil (Aminosäuren 1-200) zu 96% übereinstimmt, hat der C-terminale Teil (Aminosäuren 320-542 in O3_A) eine Sequenzübereinstimmung von immerhin 80%. Im zentralen Teil stimmen die Aminosäuren dagegen nur zu 36% überein. Diese Beobachtung legt die Hypothese nahe, dass dieser zentrale Abschnitt des

Proteins allein für die Substratauswahl verantwortlich ist und es im Laufe der Evolution zu einem rekombinatorischen Austausch der zentralen, kodierenden DNA-Abschnitte gekommen ist.

Abb. 5-44: Ähnlichkeitsplot von Hrm $O1_A, O3_A, O4_A$ und $P1_A$ erstellt mit dem Programm Vector NTI. Die Höhe der blauen Fläche gibt den Grad der Sequenzähnlichkeit an.

Abb. 5-45: Aminosäurenalignment von $HrmO3_A$ (obere Reihe) und $HrmO4_A$ (untere Reihe) erstellt mit dem Programm Bioedit. Übereinstimmende Aminosäuren sind rot markiert. Der gelb markierte Bereich markiert den in dieser Studie ausgetauschten Sequenzbereich.

Um diese Hypothese experimentell zu überprüfen, wurden rekombinante A-Domänen erzeugt. Alle sollten die gleichen Randabschnitte (Aminosäuren 1-199 und 320-542) von HrmO3_A besitzen. Die Fusion sollte nach dem Motiv VVVSH (AS 195-199) und vor dem Motiv YGATE (AS 320-324) in HrmO3_A stattfinden (vergleiche Abb. 5-45). Aus fünf verschiedenen A-Domänen wurden auf Basis eines Sequenzalignments (Abb. 9-9) die zentralen Abschnitte eingebaut. Aus der Hormaomycin-NRPS wurde HrmO4_A als am nächsten verwandte Domäne [Spezifität (3-Ncp)Ala (**27**)], und zwei etwas weiter enternt verwandte A-Domänen, HrmO2_A (Spezifität Threonin) und HrmP2_A (Spezifität Isoleucin/Valin) ausgewählt. Außerdem wurden A-Domänen aus der NRPS des Antibiotikums CDA (**20**), CdaPSIA5_A (Spezifität Asparaginsäure) und CdaPSIH6_A (Spezifität Hydroxyphenylglycin) aus *Streptomyces coelicolor* A3(2) ausgewählt (vgl. Abb. 3-16). Mit spezifischen Primern (siehe Tab. 6-12) wurden zunächst die DNA-Abschnitte der A-Domänen, die fusioniert werden sollten, amplifiziert (Tab. 5-8).

Mit PCR erzeugte	Lage in der jeweiligen	Größe des DNA-
DNA-Fragmente	A-Domäne [AS]	Fragments
O3L	HrmO3 _A 1-199	597 bp
O3R	HrmO3 _A 320-542	666 bp
O2 Insert	HrmO2 _A 199-329	430 bp
O4 Insert	HrmO4 _A 200-316	388 bp
P2 Insert	HrmP2 _A 198-319	409 bp
A5 Insert	CdaO5 _A 182-291	367 bp
H6 Insert	CdaO6 _A 214-334	400 bp

Tab. 5-8: Übersicht über die mit PCR erzeugten Fragmente für die fusionierten A-Domänen

Die Fragmente wurden mit einem PCR-Kit aufgereinigt (siehe 6.4.1.4). Anschließend wurden immer drei DNA-Fragmente mit einer nach Szewczyk et al.²⁶¹ abgewandelten Methode der Fusions-PCR (siehe 6.4.1.2) zu einem neuen A-Domänen-Fragment fusioniert und amplifiziert (vgl. Abb. 5-46).

Abb. 5-46: Schema der Konstruktion der fusionierten A-Domänen. Zentrale Teile aus verschiedenen A-Domänen (O4, O2, P2, A5, H6) wurden mit einem N-terminalen (O3L) und einem C-terminalen Teil (O3R) aus HrmO3_A über Fusions-PCR (Abschnitt 6.4.1.2) zu rekombinanten A-Domänen fusioniert.

 $O2f_A O4f_A P2f_A A5f_A H6f_A M$

Abb. 5-47: Agarosegel (1%) der mit Fusions-PCR erzeugten, künstlichen A-Domänen-DNA-Abschnitte $O2f_A$, $O4f_A$, $P2f_A$, $A5f_A$, $H6f_A$. M=Marker

Dabei wurde für jede neue Domäne immer der 5'-und der 3'-Abschnitt von HrmO3_A (O3L/O3R) mit einem Insert, dem zentralen DNA-Abschnitt einer anderen A-Domäne, kombiniert. Wichtig für die spezifische Amplifikation waren sogenannte "nested primer", die identisch mit einem DNA-Abschnitt am 5'-Ende (O3L) und am 3'-Ende (O3R) des zu fusionierenden DNA-Abschnitts sind. Diese wurden dem PCR-Ansatz hinzugefügt. Die fusionierten Fragmente konnten ohne nennenswerte PCR-Nebenprodukte erzeugt werden (siehe Abb. 5-47).

Die fusionierten PCR-Produkte wurden wieder und über TA-Klonierung in pGEM-Teasy subkloniert. Nach Sequenzierung und positivem Sequenzabgleich wurden die fusionierten A-Domänen über *Eco*RI und *Hin*dIII in den Expressionsverktor pHIS₈ kloniert und ergaben die Plasmide pMC 34-37 und pMC41 (siehe Tab. 6-19). Diese Plasmide wurden wiederum zusammen mit pMC10, das das MbtHartige Protein HrmR beinhaltete (siehe Abschnitt 5.4.1), in *E. coli* BL21(DE3) transformiert und doppelt selektioniert. Es entstanden die Stämme MC38-40 und 42-43 (siehe Tab. 6-20). In diesen Stämmen fand die Coexpression von fusionierter A-Domäne und HrmR analog zu den nativen Domänen statt (siehe Abschnitt 5.4.1). Eine Übersicht über die exprimierten Fusionsproteine zeigt Tabelle 5-9.

Tab. 5-9: Übersicht über die konstruierten fusionierten A-Domänen

Neu erzeugte Proteine	Abkürzung	Vorausgesagte Spezifität ²⁰²	Größe des His ₈ - Proteins
O2fused	O2f _A	Thr	61661 Da
O4 fused	O4f _A	(3-Ncp)Ala	59169 Da
P2 fused	P2f _A	Ile/Val	60539 Da
A5 fused	A5f _A	Asp	58918 Da
H6 fused	H6f _A	Hpg	60102 Da

Abbildung 5-48 gibt eine Übersicht über alle exprimierten A-Domänen mit HrmR. Bis auf die freistehende A-Domäne HrmK (siehe Abschnitt 5.3.1) wurde überall HrmR coeluiert. Um das Verhältnis der Komponenten des eluierten Komplexes zu bestimmen, wurden im Geldokumentationssystem die Flächen der Proteinbanden bestimmt. Mit Hilfe der auf dem gleichen Gel erstellten Eichgerade (siehe Abb. 6-2) konnten die Konzentrationen der eluierten und aufkonzentrierten A-Domänen bestimmt werden (Tab. 5-10). Die A-Domänen liegen in einem Bereich von ca. 8-17 μ M. Das ist ausreichend, um den [γ -¹⁸O₄]-ATP-Assay durchzuführen. Die fusionierten A-Domänen ließen sich stabil exprimieren und in ähnlichen Ausbeuten erhalten wie die nativen. Eine direkte Konzentrationsbestimmung für HrmR war mit der gewählten Methode nicht möglich. Über das Verhältnis der Peakflächen von A-Domäne und HrmR ließ sich im Zusammenhang mit dem Massenverhältnis der Proteine ein stöchiometrisches Verhältnis der eluierten Proteine bestimmen. Das Verhältnis liegt in allen Fällen ungefähr bei 1:1. Dieses Ergebnis stimmt mit den in der Literatur beschriebenen Verhältnissen bei Coelutionen von A-Domänen und MbtH-artigen Proteinen überein.^{152,155} Es ist außerdem zu erkennen, dass in den Elutionsfraktionen neben den eluierten A-Domänen und HrmR weitere Proteine aus E. coli durch unspezifische Bindungen coeluiert wurden. Diese können das Messergebnis beeinflussen (siehe 5.4.3). Die A-Domänen mit den zentralen Teilen aus *S. coelicolor*, A5f_A und H6f_A, wurden zusätzlich mit dem MbtH-artigen Protein aus dem CDA-Gencluster, CdaX coexprimiert. Dieses wurde, analog zu HrmR (siehe oben) amplifiziert und in pCDF-DUET kloniert (pMC66). Dieses Konstrukt wurde dann mit pMC37 und pMC41 cotransformiert, um die Coexpressionsstämme MC68 und MC69 (siehe Tab. 6-20) zu erhalten. Mit diesen Stämmen wurden ebenso Coexpressionen durchgeführt. Bei der Coelution mit A5f_A und CdaX kommt es ebenfalls zu einer Coelution im Verhältnis von ungefähr 1:1 (Bande A5_x in Abb. 5-48).

Abb. 5-48: Übersicht über die isolierten nativen und fusionierten A-Domänen HrmK, HrmO1_A, HrmO3_A, HrmO4_A, HrmP1_A, HrmP2_A, O2f_A, O4f_A, P2f_A, A5f_A, H6f_A, jeweils coeluiert mit HrmR. A5f_x zeigt eine Coelution von A5f_A mit CdaX. M=Marker

Tab. 5-10: Übersicht über die in Abbildung 5-50 durch SDS-PAGE-Absorptionsmessung ermittelten Proteinkonzentrationen und –verhältnisse. Diese wurden über die Eichgerade in Tabelle 6-2 ermittelt.

Proteine	Fläche A-Domäne	Fläche MbtH	Konzentration A-Domäne	Verhältnis A-Domäne/ MbtH Peakfläche	Verhältnis A-Domäne/ MbtH Masse	Verhältnis A-Domäne / MbtH Molarität
K/R	14069	_	8,5 μM			-
O1/R	16641	3180	10,3 µM	5,23:1	6,23:1	0,83:1
O3/R	14574	2232	8,8 µM	6,53:1	6,35:1	1,03:1
O4/R	15923	1614	9,7 μM	9,86:1	6,39:1	1,54:1
P1/R	14155	2148	8,5 μΜ	6,59:1	6,36:1	1,04:1
P2/R	27367	3107	17,3 μM	8,81:1	6,55:1	1,35:1
O2f/R	27318	4215	17,1 μM	6,48:1	6,60:1	0,98:1
O4f/R	18885	2016	11,8 µM	9,37:1	6,32:1	1,48:1
P2f/R	13403	1700	7,7 μΜ	7,88:1	6,47:1	1,22:1
A5f/R	15650	2597	9,6 µM	6,02:1	6,30:1	0,96:1
H6f/R	15825	2277	9,5 μΜ	6,95:1	6,43:1	1,08:1
A5f/X	14596	2752	8,8 µM	5,30:1	7,20:1	0,73:1

In-vitro-Studien von MbtH-artigen Proteinen haben gezeigt, dass auch separat exprimiertes MbtH-Protein in der Lage ist, *in vitro* A-Domänen zu aktivieren, wenn auch in schwächerem Maße, als wenn es coexprimiert wird (siehe auch 3.2.4).^{152,155} Um die Wahrscheinlichkeit der Aktivität der fusionierten A-Domänen zu erhöhen, wurden *hrmR* und *cdaX* zur separaten heterologen Expression über die Schnittstellen *Nde*I und *Xho*I in den Expressionsvektor pET28b kloniert und ergaben pMC46 und pMC65. Die Proteine wurden in *E. coli* BL21(DE3) exprimiert und über einen N-terminalen Hexahistidinyltag aufgereinigt (siehe Abb. 5-49). Die Protein wurden entsalzt (siehe 6.5.5) und in flüssigem Stickstoff gefroren und bei -80 °C gelagert. (siehe 6.5.11). Bei Bedarf konnten die Proteine dem A-Domänen-Assay zugegeben werden.

Abb. 5-49: SDS-PAGE-Gel (15%, Tricin) einer Expression von a) His₆HrmR und b) His₆CdaX (jeweils 500 mL 2xYT, 16 °C, 1 mM IPTG). Fraktionen: P=Pellet, L=Lysat; D=Durchlauf; W1/W2= Waschfraktionen mit 10 mM/40 mM Imidazol; M=Marker; E=Elutionsfraktionen mit 250 mM Imidazol.

5.4.3 Modellierung der fusionierten A-Domänen nach PheA

Um die neu erzeugten Enzyme weiter zu charakterisieren, wurden Modellierungsstudien mit dem Programm I-TASSER^{262,263} durchgeführt. Dieser Algorithmus modelliert Proteinsequenzen mit unbekannter Struktur nach ihren nächsten Homologen, deren Struktur aufgeklärt ist. Für A-Domänen ist diese Berechnung recht zuverlässig, da gezeigt wurde, dass alle bisher kristallisierten A-Domänen eine ähnliche Tertiärstruktur besitzen.⁹⁵ Die erzeugten A-Domänen wurden nach der Kristallstruktur von PheA⁹⁴ (siehe Abschnitt 3.2.1) modelliert. Ein Ausschnitt aus der modellierten Sekundärstruktur von O2f_A ist in Abbildung 5-50 aufgeführt. Es ist zu erkennen, dass an den Fusionsstellen (200, 330) keine organisierte Sekundärstruktur (β-Faltblatt=S; α-Helix=H) vorliegt. Das unterstützt die Möglichkeit eines funktionsfähigen, aktiven Fusionsproteins.

Abb. 5-50: Ausschnitt aus der von I-TASSER²⁶² vorhergesagten Sekundärstruktur von O2f_A. Obere Reihe: die Position der Aminosäuren (mittlere Reihe) im Protein. Die fett markierten und gelb hinterlegten Aminosäuren sind Teil von HrmO2_A, die nicht markierten Teil von HrmO3_A. Untere Reihe: C=ungeordnete Struktur (coil), S= β -Faltblatt (sheet), H= α -Helix.

Für die anderen neu erzeugten Proteine wurden analoge Sekundärstrukturen vorhergesagt. Auch hier lag an den Fusionsstellen keine organisierte Sekundärstruktur vor. Auch die Tertiärstukturen der neu erzeugten Proteine wurden mit I-TASSER nach PheA modelliert. Das generierte Modell einer Tertiärstruktur von $O2f_A$ ist in Abbildung 5-51 gezeigt (vergleiche für die anderen A-Domänen Abb. 9-10 - 9-17).

Abb. 5-51: Mit I-TASSER²⁶² durch Homologiemodellierung nach PheA erzeugte 3-D Struktur von $O2f_A$. Teile von $O2_A$ sind gelb markiert, Teile von $O3_A$ weiß markiert.

In der modellierten Struktur ist zu sehen, dass der ausgetauschte Teil der Domäne (gelb markiert) in der Tertiärstruktur einen zentralen, kompakten Teil des Proteins ausmacht. Im Zentrum der modellierten Struktur ist das aktive Zentrum zu sehen; es ist der Tunnel zu erkennen, in dem das Substrat gebunden wird. Der ausgetauschte Teil macht einen Großteil der Bindetasche aus. Die Modellierung lieferte außerdem noch sogenannte C-Scores und TM-Scores, Qualitätsparameter für die modellierten Proteine. Beide sind ein Maß für die Qualität der Vorhersage und korrelieren stark miteinander.²⁶² Der C-Score sagt etwas über die Strukturdichte des erzeugten Modells aus, und sollte in den erzeugten Modellen über -1,5 liegen. Der TM-Score ist ein ist ein Gesamtparameter für die

Qualität des Modells und liegt bei guten Korrelationen mit dem Homolog über 0,5. In Tabelle 5-11 sind die von I-TASSER errechneten Scores aufgeführt. Alle Werte für die fusionierten Domänen liegen in einem ähnlichen Bereich, der von I-TASSER als sehr gute Qualität des Modells eingeschätzt wird.²⁶² Der Vergleich der Modelle mit dem der nativen A-Domäne HrmO3_A zeigt, dass C-Score und TM-Score fast die gleichen Werte besitzen. C-Score und TM-Score für His₈P2f_A liegen signifikant höher als die der anderen Domänen, das ist aus der Tatsache zu begründen, dass hier als einziges die Proteinsequenz mit Histidinyltag modelliert wurde. Diese ist naturgemäß ähnlicher als die nativen Proteine zu PheA, das auch mit Histidinyltag kristallisiert wurde.⁹⁴

Protein	C-score	TM-Score
HrmO3 _A	0,96	0,84
O2f _A	0,81	0,82
O4f _A	0,54	0,79
His_8P2f_A	1,62	0,94
A5f _A	0,77	0,82
H6f _A	0,81	0,82

Tab. 5-11: Mit I-TASSER^{262,263} erstellte C-Scores und TM-Scores für HrmO3_A und die fusionierten A-Domänen.

Die Ergebnisse der Modellierungen liefern somit weitere Anhaltspunkte, dass durch den Austausch des zentralen Teils von $HrmO3_A$ die Ausbildung der Tertiärstruktur der A-Domänen nicht beeinträchtigt wird.

5.4.4 Massenspektrometrische Charakterisierung der nativen und fusionierten A-Domänen

Alle isolierten A-Domänen aus den Abschnitten 5.4.1 und 5.4.2 sollten nun in einem massenspektrometrisch basierten Aktivitätsassay¹⁰⁹ (siehe 6.6.1) auf ihre Aktivität und Selektivität getestet werden. Dieser Assay basiert auf dem Austausch von ATP, das am terminalen Phosphat mit schwerem Sauerstoff (¹⁸O) markiert ist ([γ -¹⁸O₄]-ATP [**120**]) und ¹⁶O₄-Pyrophosphat (**121**), das im Überschuss hinzugegeben wird. Wenn nun ein Austausch durch die A-Domäne stattfindet, ensteht ein Gleichgewicht zwischen dem [γ -¹⁸O₄]-ATP (**120**) (*m*/*z*=514), des Aminoacyl-AMP (**122**) und ATP (**123**) (*m*/*z*=506) durch einen Austausch des ¹⁶O₄-Pyrophosphat (**121**) (vgl. Abb. 5-52). Je mehr von der zugegebenen Aminosäure aktiviert wurde, desto stärker liegt das Reaktionsgleichgewicht auf der Seite des ATP, d.h. umso größer ist der Peak bei *m*/*z*=506 relativ zum Peak bei *m*/*z*=514 im Massenspektrum. Der Grad des Austauschs, und damit die Präferenz für verschiedene Substrate, lässt sich so massenspektrometrisch für die A-Domänen bestimmen.

Abb. 5-52: Der Austausch von $\gamma^{-18}O_4$ -ATP (**120**) in ATP (**123**) in Gegenwart eines Überschusses von Pyrophosphat (**121**) durch die A-Domäne.¹⁰⁹ Dieses Reaktionsgleichgewicht wird beim in dieser Arbeit verwendeten [$\gamma^{-18}O_4$]-ATP-Assay ausgenutzt.

Das Ergebnis eines erfolgreichen $[\gamma^{-18}O_4]$ -ATP-Assays zeigen die Abbildungen 5-53 und 5-54. HrmP1_A wurde mit verschiedenen Aminosäuren inkubiert. β -Methylphenylalanin (**31**) wird von der A-Domäne am stärksten adenyliert, allerdings ist der Umsatz in diesem Falle eher als moderat einzuschätzen (12,4% Aktivierung). Auch scheinen die anderen Aktivitäten keinem bestimmten Muster zu folgen. Alle weiteren Versuche, die Aktivität der NRPS-A-Domänen zu bestimmen, schlugen fehl. Es wurde keine Aminosäure in signifikanten Maße (>4%) umgesetzt (Daten hier nicht aufgeführt).

Abb. 5-53: MALDI-TOF-Ergebnisse der Umsetzung von HrmP1_A mit verschiedenen Aminosäuren im $[\gamma^{-18}O_4]$ -ATP-Assay (vgl. Abb. 5-54, Tab. 9-2)

Abb. 5-54: Aktivierung von verschiedenen Aminosäuren durch HrmP1_A im $[\gamma^{-18}O_4]$ -ATP-Assay (vgl. Abb. 5-53, Tab. 9-2)

Die Coexpression mit HrmR führte dagegen *in vitro* zu aktiven A-Domänen. Hier konnte für alle Hormaomycin-A-Domänen eine Aminosäurenaktivierung für das präferierte Substrat von mehr als 20% detektiert werden. Als essentiell für die Aktivität der Enzyme erwies sich die Zugabe von 1 mM Dithiothreitol (DTT) zum Assay. Die Messergebnisse der Hormaomycin-A-Domänen mir HrmR und der fusionierten A-Domänen mit HrmR werden in den folgenden Abschnitten dargestellt und diskutiert.

(*β*-Me)Phe-aktivierende A-Domänen

Die A-Domänen HrmO3_A und HrmP1_A ähneln sich auf sequenzieller Ebene sehr stark (95% Identität der Aminosäuren). Der nichtribosomale Code für beide Domänen ist der gleiche (siehe Tab. 3-3). HrmP1_A ist die einzige A-Domäne der Hormaomycin-NRPS, die *in vitro* auch ohne coexprimiertes HrmR, wenn auch verringert, eine Aktivität besitzt (siehe Abb. 5-54). Mit HrmR wurden für HrmP1 dagegen fast quantitative Umsetzungen (bis zu 96%) des erwarteten Substrats (β -Me)Phe (**31**) detektiert (siehe Tab. 9-3, vergleiche Abb. 5-53 und 5-56). Es wurden außerdem strukturelle Analoga des Substrates getestet: 4-Chlorophenylalanin [(4-Cl)Phe] (**124**), dessen Fluoranalogon **34** bereits in Fütterungsexperimenten in Hormaomycin (**13**) eingebaut worden war (vergleiche Abb. 3-19)²⁰⁰ und α -Methylphenylalanin [(α -Me)Phe] (**125**), bei dem die Methylgruppe am Aminokohlenstoff liegt (Abb. 5-55).

Abb. 5-55: (β-Me)Phe (31), (4-Cl)Phe (124) und (α-Me)Phe (125)

Diese beiden Substrate wurden in vitro allerdings nur in sehr geringem Maße von den beiden A-Domänen akzeptiert. Die Bindetasche scheint für den raumgreifenden Substituent Chlor nicht ausreichend groß genug zu sein. Auch am α -C ist den Ergebnissen nach sehr wenig Platz für strukturelle Variationen. Das nach (β -Me)Phe (31) präferierte Substrat war Phenylalanin (35), mit Aktivierungswerten um die 10% von 31. Auch diese Aminosäure war bereits durch Fütterungen von Radzom in Hormaomycin inkorporiert worden.²⁰⁰ Für HrmP1_A wurden FPLC-Aufreinigungsexperimente (siehe Abschnitt 6.5.10) durchgeführt. Es konnte eine Trennung der Fraktion erreicht werden (siehe Abb. 9-18, Anhang). Die Fraktionen B11-B9 wurden vereinigt, konzentriert und in Assaypuffer überführt. Allerdings zeigt die geringe Peakgröße des Chromatogramms, dass nur noch eine geringe Menge Enzym für den Assay vorlag. (β -Me)Phe (31) wurde zwar selektiv aktiviert, allerdings wurden hier nur insgesamt 6,7% umgesetzt (siehe Tab. 9-2). Das Aktivierungsmuster blieb allerdings weitgehend erhalten, da alle anderen getesteten Aminosäuren unter 0,7% umgesetzt wurden. Diese Ergebnisse zeigen, dass der Assay auch bei geringen Umsätzen valide Ergebnisse liefern kann, wenn das Protein in großer Reinheit vorliegt. Die Abbildungen 5-56 und 5-57 fassen die dargestellten Ergebnisse grafisch zusammen. Zur einheitlichen Darstellung wurde das am stärksten aktivierte Substrat als 100% gesetzt. Aus Platzgründen werden die Ergebnisse für die folgenden A-Domänen nur graphisch zusammengefaßt, die einzelnen Ergebnisse der Messungen befinden sich im Anhang.

Abb. 5-56: MALDI-TOF-Ergebnisse der Umsatz von HrmP1_A/HrmR mit verschiedenen Aminosäuren im $[\gamma^{-18}O_4]$ -ATP-Assay (vgl. Abb. 5-57, Tab. 9-3)

Abb. 5-57: Aktivierung verschiedener Aminosäuren durch HrmP1_A (schwarz) und HrmP1_A nach FPLC (rot) mit HrmR im [γ -¹⁸O₄]-ATP-Assay (vgl. Abb. 5-56, Tab. 9-3). Die höchste Aktivität wurde als 100% normiert.

Tab. 5-12: Vergleich der Aktivitäten von HrmO3_A und HrmP1_A mit HrmR

Enzym	Umsatz (ß-Me)Phe[%] (Tab. 9-2, 9-4)	Konzentration [mM] (Tab. 5-10)	Relativer Umsatz [% Umsatz/mM]
HrmO3 _A	42,3	8,8	4,81
HrmP1 _A	96,1	8,5	11,31

Für HrmO3_A wurden die gleichen Substrate getestet wie für HrmP1_A. (β -Me)Phe (**31**) ist hier ebenso das bevorzugt umgesetzte Substrat. Allerdings ist die Umsetzung von **31** *in vitro* bei etwa gleicher Konzentration (8,8 µM vs. 8,5 µM, siehe Tab. 5-10) weniger als halb so hoch, durchschnittlich 42,3%. Da beide Assays jeweils die gleiche Zeit (2 h) inkubiert wurden, lässt sich der Umsatz des Substrates über Gleichsetzung der Enzymmenge miteinander vergleichen.

In dieser Elutionsfraktion wurden ungewöhnlich hohe Aktivitäten für Leucin und Threonin (Aktivierung über 20%) observiert, die in HrmP1_A nicht gemessen wurden (vergleiche Abb. 5-57 und Abb. 5-58). Allerdings waren diese Aktivitäten nicht reproduzierbar. In einer zweiten Messung lagen die Aktivierungsraten für Leucin und Threonin viel niedriger (siehe Tab. 9-4). Auch Erol et al. konnten in einer Messung der A-Domäne des Corallopyronins unerwartet hohe Aktivitäten für Threonin beobachten.²⁶⁴ Das deutet darauf hin, dass diese Aktivitäten falsch positiv sind, und aus *E. coli* stammen könnten. Für HrmO3_A würde eine Aufreinigung über FPLC genauere Einsichten in die wahre Aktivität der Domäne geben; dieses Experiment konnte allerdings aus Zeitmangel nicht mehr durchgeführt werden.

Abb. 5-58: Aktivierung verschiedener Aminosäuren durch $HrmO3_A$ mit HrmR im [γ -¹⁸O₄]-ATP-Assay (vgl. Tab. 9-4). Die höchste Aktivität wurde als 100% normiert.

(3-Ncp)Ala-aktivierende A-Domänen

Aufgrund der relativen Lage in der NRPS sollten die Module HrmO1 und HrmO4 die ungewöhnliche Aminosäure (3-Ncp)Ala (**27**) einbauen. Der nichtribosomale Code für deren A-Domänen ist neuartig und für beide A-Domänen exakt gleich, in den Datenbanken läßt sich kein Homologes finden (siehe Tab. 3-3). Die A-Domänen HrmO1_A, HrmO4_A und die konstruierte A-Domäne O4f_A, die den zentralen Teil der HrmO4 A-Domäne besitzt und die äußeren Teile von HrmO3_A (siehe 5.4.2), wurden mit verschiedenen proteinogenen und nicht-proteinogenen Aminosäuren getestet. Als entfernte Analoga des (3-Ncp)Ala (**27**) wurden 5-Nitro-2-aminobenzoesäure (**126**) und Cyclopropylglycin (**127**) (siehe Abb. 5-59) getestet. Die Ergebnisse der Messungen der Enzyme HrmO4_A und O4f_A sind in Abbildung 5-60 aufgeführt.

Abb. 5-59: (3-Ncp)Ala (27), 5-Nitro-2-aminobenzoesäure (126) und Cyclopropylglycin (127)

Natives und fusioniertes $HrmO4_A$ besitzen in etwa die gleiche Aktivität und Substratspezifität. Das Substrat (3-Ncp)Ala (27) wurde im Assay von beiden Enzymen fast quantitativ umgesetzt (84,1% bzw. 96,1%). Von den anderen getesteten Aminosäuren werden Leucin und Valin, hydrophobe

Aminosäuren mit aliphatischer Seitenkette noch am ehesten toleriert [um 10% der Aktivität von 27, siehe Tab. 9-5].

Abb. 5-60: Aktivierung verschiedener Aminosäuren durch HrmO4_A (schwarz) und O4f_A (grün) mit HrmR im [γ -¹⁸O₄]-ATP-Assay (vgl. Tab. 9-5). Die höchste Aktivität wurde als 100% normiert.

Die gestesteten Nitro- bzw. Cyclopropylaminosäuren **126** und **127** wurden sehr schlecht aktiviert. Wahrscheinlich sind die Abweichungen in der Seitenkette zu groß, um vom aktiven Zentrum erkannt zu werden. Bemerkenswerterweise ist das künstlich erzeugte Enzym O4f_A fast genauso aktiv wie das native (siehe Tab. 5-13). Auch zeigt das fusionierte Enzym keinerlei Präferenz für (β -Me)Phe (**31**), das bevorzugte Substrat von HrmO3_A. Die Sequenzänderungen am N- und C-Terminus (insgesamt 10% der Aminosäuren des Proteins) haben also nur minimalen Einfluß auf das aktive Zentrum und die Konformation der A-Domäne.. Durch den Austausch des zentralen Teils der A-Domäne konnte somit die Substratspezifität von HrmO3_A von (β -Me)Phe (**31**) zu (3-Ncp)Ala (**27**) verändert werden. In Tabelle 5-13 wird der Umsatz beider Enzyme miteinander verglichen. HrmO4_A zeigt nur geringfügig mehr Umsatz als das rekombinante Enzym O4f_A, die Aktivität beider Enzyme ist also fast gleichzusetzen.

Tab. 5-13: Vergleid	h der Aktivitäter	n für (3-Ncp)Ala (27)	von HrmO4 _A /HrmR	und O4f _A /HrmR
---------------------	-------------------	-----------------------	------------------------------	----------------------------

Enzym	Umsatz (3-Ncp)Ala (Tab. 9-5)	[%]	Konzentration [mM] (Tab. 5-10)	Relativer Umsatz [% Umsatz/mM]
HrmO4 _A	84,1		9,7	8,67
O4f _A	96,1		11,8	8,14

Die A-Domäne HrmO1_A wurde ebenfalls mit einer Reihe von Substraten getestet. Die Ergebnisse ähneln sehr den der Domäne HrmO4_A. Auch hier wird (3-Ncp)Ala (**27**) fast quantitativ umgesetzt (97% bzw. 78,5%); Leucin,Valin und Alanin liegen bei etwa 5-10% der Aktivierung von (3-Ncp)Ala (**27**) (siehe Tab. 9-6). Diese Analogie war zu erwarten, da beide A-Domänen eine Sequenzidentität von 95% besitzen. Ungewöhnlich ist auch hier der hohe Umsatz von Threonin. In der ersten Messung lag die Aktivierung bei fast einem Viertel von **27**. Diese Promiskuität war auch hier unerwartet, da sich die Strukturen der beiden Aminosäure nicht sehr ähneln. In einer zweiten Messung war die Aktivität aus der selben, gefrorenen Charge sogar noch viel höher, der absolute Umsatz lag bei 61,4% [fast 80% von (3-Ncp)Ala (**27**)]. Um HrmO1_A von eventuellen Hintergrundproteinen, die diese nicht reproduzierbare Aktivität verursachen können, zu befreien, wurde 1 mL des gefrorenen Enzyms weiter über ein FPLC-System mit einer Ionenaustauschsäule aufgereinigt (siehe Abschnitt 6.5.10). Es wurde ein stufenweiser Gradient zu einer höheren Salzkonzentration (NaCl) angelegt und die Enzyme so schrittweise von der Säule eluiert (siehe Abb. 5-61). Die Fraktionen, in denen sich Peaks befanden, wurden TCA-präzipitiert (siehe 6.5.6) und mit SDS-PAGE analysiert.

Abb. 5-61: Chromatogramm der FPLC-Aufreinigung der Elution von $HrmO1_A$. Blaue Spur: UV-Absorption; grüne Spur: NaCl-Konzentration, Rote Zahlen: für den Assay gesammelte Fraktionen. Ein SDS-PAGE-Gel der für die Wiederholung des Assays gepoolten Fraktionen AB12 ist eingefügt.

Auf dem FPLC-Chromatogramm ist zu erkennen, daß eine starke Verunreinigung der A-Domäne vorlag. Eine vollständige Trennung der Peaks wurde nicht erreicht. Die Fraktionen A12 und B12 die den größten Peak in möglichst hoher Reinheit besaßen, wurden vereinigt. Die erneute Testung dieser Fraktionen im A-Domänenassay ergab, dass die relative Aktivierung für Threonin zu (3-Ncp)Ala (**27**)

um mehr als 50% reduziert werden konnte (von durchschnittlich 50,8% auf 19,7%), und außerdem andere Aktivitäten wie z.B. für Tryptophan, Glycin und Alanin gegen 0 reduziert werden konnten. Einzig der relative Umsatz für Leucin blieb nahezu konstant. Abbildung 5-62 und Tabelle 9-6 fassen die erhaltenen Ergebnisse zusammen. Die Aktivität für Threonin konnte durch die FPLC-Trennung reduziert werden. Im Falle von HrmO1_A müsste die FPLC-Trennung weiter optimiert werden, um eine vollständige Isolierung des Proteins zu gewährleisten. Das würde mit hoher Wahrscheinlichkeit alle falsch positiven Aktivitäten beseitigen.

Abb. 5-62: Aktivierung verschiedener Aminosäuren durch HrmO1_A (schwarz) und HrmO1_A nach FPLC (rot) mit HrmR im $[\gamma^{-18}O_4]$ -ATP-Assay (vgl. Tab. 9-6). Die höchste Aktivität wurde als 100% normiert.

Wenn man alle erhaltenen Ergebnisse für HrmO1_A, HrmO4_A und O4f_A vergleicht, so läßt sich zusammenfassen, dass alle drei Enzyme (3-Ncp)Ala (**27**) von den angebotenen Substraten bevorzugt auswählen und im Assay fast quantitativ umsetzen. (3-Ncp)Ala (**27**) ist somit das natürliche Substrat der NRPS, und wird vor der Assemblierung des Hormaomycins synthetisiert (siehe Abschnitt 5.1). Von den getesteten proteinogenen Aminosäuren besitzen die Domänen am ehesten eine gewisse Präferenz für Leucin [jeweils um 10% Umsatz von (3-Ncp)Ala (**27**)] Diese Aminosäure könnte also durchaus von der NRPS anstelle von **27** in Hormaomycin eingebaut werden (siehe hierzu auch Abschnitt 5.5). Da Threonin nur von HrmO1_A auffallend stark umgesetzt wird, jedoch nicht von HrmO4_A und außerdem der Threonin-Umsatz durch FPLC stark reduziert werden konnte, ist es wahrscheinlich, dass diese Aktivität nicht von der A-Domäne herrührt. Eine Optimierung der FPLC-Methode und damit endgültige Isolierung von HrmO1_A wird diesen Punkt weiter klären können.

L-Threonin aktivierende A-Domänen

Die Coexpression mit HrmR aktiviert auch die A-Domäne des Moduls HrmO2. Wie vorausgesagt, ist L-Threonin das bevorzugte Substrat (bis zu 75% Umsatz). D-Threonin wird von der A-Domäne nur in Spuren aktiviert. L-Threonin wird also während der Biosynthese des Hormaomycins von der A-Domäne adenyliert, auf das PCP übertragen und dann von der Epimerasedomäne in D-*allo*-Threonin umgewandelt (vergleiche Abb. 3-23).

Auch die konstruierte A-Domäne O2f_A, die zu einem Großteil der Sequenz aus HrmO3_A besteht (siehe Abschnitt 5.4.2) coeluiert mit HrmR und aktiviert L-Threonin, wie bioinformatisch vorausgesagt (bis zu 63% Umsatz). Das ist bemerkenswert, da O2f_A große Teile der (β -Me)Phe (**31**)-aktivierenden Domäne HrmO3_A trägt. Abzüglich des zentralen Teils stimmen die Teile AS 1-199 und 320-542 von O2f_A nur zu 52% bzw. 63% mit der korrespondierenden Sequenz von HrmO2_A überein. (β -Me)Phe (**31**) wird von der kombinatorisch erzeugten A-Domäne auch hier nicht aktiviert. Das Enzym ist also, wie auch O4f_A, offensichtlich korrekt gefaltet. Aufallend an den Messungen mit der Elution aus der Ni-NTA-Aufreinigung war, dass das Enzym offenbar eine geringe Substratspezifität besitzt; Valin wurde zu fast 80% von L-Threonin umgesetzt. Dagegen scheint O2f_A im Allgemeinen selektiver zu sein. Die Ergebnisse sind in Abbildung 5-63 und Tabelle 9-7 zusammengefaßt.

Abb. 5-63: Aktivierung verschiedener Aminosäuren durch $HrmO2_A$ (schwarz) und $O2f_A$ (grün) mit HrmR im [γ -¹⁸O₄]-ATP-Assay (vgl. Tab. 9-7). Die höchste Aktivität wurde als 100% normiert.

Um auch hier eine eventuelle falsch positive Aktivität zu entfernen, wurde eine FPLC-Aufreinigung der Fraktionen von HrmO2_A und O2f_A, analog zu HrmO1_A, durchgeführt (siehe 6.5.10). Die sehr ähnlichen Chromatogramme (Abb. 5-64, Abb. 9-19) zeigen, dass in beiden Fällen eine Isolierung eines Peaks (jeweils Fraktionen B11-B8) möglich war. Diese Fraktionen wurden wieder vereinigt, aufkonzentriert und in den Assaypuffer überführt. Abbildung 5-65 zeigt SDS-PAGE-Gele der

aufgereinigten Fraktionen. Es war eine erneute Messung der gereinigten A-Domänen im $[\gamma^{-18}O_4]$ -ATP-Assay möglich.

Abb. 5-64: Chromatogramm der FPLC-Aufreinigung der Elution von HrmO2_A/HrmR. Blaue Spur: UV-Absorption; grüne Spur: Konzentration Puffer B (50 mM Tris, pH 8; 1M NaCl); Rote Zahlen: gesammelte Fraktionen

Abb. 5-65: Dokumentation der FPLC Aufreinigung von a) $HrmO2_A$ (siehe Abb. 5-64) und b) $O2f_A$ (siehe Abb. 9-19) jeweils mit HrmR. M= Marker; B9/10, B5/4; B6; A6=TCA-Präzipitate von nicht verwendeten Fraktionen; B 11-8=Assayfraktion von $HrmO2_A/O2f_A$; C=konzentriert

Abb. 5-66: Aktivierung verschiedener Aminosäuren durch $HrmO2_A$ (schwarz) und $O2f_A$ (grün) mit HrmR nach FPLC im [γ -¹⁸O₄]-ATP-Assay (vgl. Tab. 9-8). Die höchste Aktivität wurde als 100% normiert.

Die Selektivitäten beider Domänen nach der FPLC zeigen eine dramatische Veränderung zu vorher (vergleiche Abb. 5-63 und 5-66): Die Enzyme sind nun äußerst selektiv für L-Threonin als Substrat. Die Aktivität für Valin (vorher 77,5% von L-Thr für HrmO2_A) ist fast komplett verschwunden, auch die anderen Aktivitäten (z. B. Ile, Leu, Phe) scheinen nicht von der A-Domäne selbst, sondern von falsch positiven Aktivitäten durch andere, aktivierende Proteine aus *E. coli* verursacht worden zu sein. Durch die endgültige Isolierung der A-Domäne konnten diese Aktivitäten beseitigt werden. Ein direkter Vergleich der Umsätze beider Domänen läßt sich über die Peakflächen in den FPLC-Chromatogrammen ziehen. Tabelle 5-14 zeigt das Ergebnis: Die kombinatorisch erzeugte Domäne, die in großen Teilen nur noch 52% (O3L) bzw. 63% (O3R) Sequenzidentität mit der nativen Domäne HrmO2_A besitzt, hat immerhin noch über die Hälfte ihrer Aktivität (57,6%). Das ist, verglichen mit anderen kombinatorischen Ansätzen (vgl. Abschnitte 3.2.1 und 3.2.3), ein sehr guter Wert. Die starken Änderungen in den äußeren Sequenzabschnitten haben also neben der Tatsache, daß sie keinerlei Einfluß auf die Substratspezifität besitzen, auch geringen Einfluß auf die Konformation des Enzyms.

Tab. 5-14: Vergleich der Umsätze der aufgereinigten A-Domänen HrmO2_A und O2f_A mit HrmR

Protein	Peakfläche (Abb. 5-66, 9-19)	Umsetzung von L-Thr (Tab. 9-8)	Relative Aktivität
HrmO2 _A	87,6774	52,0%	100%
O2f _A	120,7705	41,3%	57,6%

Valin/Isoleucin aktivierende Domänen

Die bioinformatische Voraussage für die A-Domäne $HrmP2_A$ ist nicht eindeutig: Das Programm NRPSPredictor2²⁰² sagt sowohl Valin als auch Isoleucin als mögliches Substrat des Enzyms voraus. Bemerkenswert ist, dass sich der nächste Verwandte, eine Valin-aktivierende Domäne, im nichtribosomalen Code durch nur eine Aminosäure von $HrmP2_A$ unterscheidet, wohingegen die nächste Isoleucin-aktivierende Domäne dort in drei Aminosäuren abweicht (vgl. Tab. 3-3). Indes wird *in vivo* Isoleucin in die Peptidkette eingebaut, was aus der Struktur des Hormaomycins (**13**) offensichtlich ist.

Abb. 5-67: Aktivierung verschiedener Aminosäuren durch HrmP2_A (schwarz) und P2f_A (grün) mit HrmR im $[\gamma^{-18}O_4]$ -ATP-Assay (vgl. Tab. 9-9). Die höchste Aktivität wurde als 100% normiert.

HrmP2_A zeigt coeluiert mit HrmR tatsächlich eine Präferenz für das Substrat Valin (siehe Abb. 5-67). Auch die konstruierte A-Domäne P2f_A, bei der ein Großteil der Sequenz aus HrmO3_A stammt (siehe 5.4.2), aktiviert Valin bevorzugt, allerdings ist hier die Streuung bei anderen Aminosäuren auch größer. Das mag an der geringen Gesamtaktivität [maximal 19% bzw. 13% Aktivierung für Valin (Tab. 9-9)] trotz einer ausreichenden Proteinkonzentration im Assay (17,3 μ M bzw. 7,7 mM siehe Tab. 5-11) liegen. Weitere Aufreinigungsversuche mit FPLC wurden analog zu den vorherigen Enzymen durchgeführt, aber die konzentrierten Proteine konnten im anschließenden [γ -¹⁸O₄]-ATP-Assay keine Aminosäure selektiv (>4%) aktivieren (Daten hier nicht aufgeführt). HrmP2_A besitzt *in vitro* die geringste Aktivität der Hormaomycin A-Domänen. Das ist dadurch zu erklären, daß das Enzym *in vivo* ein anderes Substrat aktiviert und möglicherweise nicht in seiner optimalen Konformation vorliegt. Dieses Phänomen ist bereits durch Mootz und Marahiel an A-Domänen des Tyrocidins (**18**) beobachtet und interpretiert worden.²⁶⁵ Möglicherweise zwingt die natürliche Umgebung des Enzyms in der NRPS das Enzym in eine andere Konformation. Eine Möglichkeit,
diese Hypothese zu untersuchen, wäre die heterologe Expression des ganzen Moduls HrmP2 (C-A-T) und dann die Untersuchung der Substratspezifität *in vitro*. Es besteht die Möglichkeit, dass diese A-Domäne in der Evolution aus einem Vorläufer entstanden ist, der bevorzugt Valin oder beide Aminosäuren aktivierte. Durch Selektionsdruck könnte es dann durch Mutationen eine Änderung der Substratspezifität zu Isoleucin gekommen sein. Eine andere Möglichkeit für diese Diskrepanz ist, dass die C-Domäne des nächsten Moduls eine stärkere Korrekturfunktion besitzt, indem sie das Isoleucyl-Peptidintermediat bevorzugt prozessiert. Solch eine Funktion ist für C-Domänen beobachtet worden (siehe Kapitel 3.2.2).¹¹⁷ Diese Funktion könnte in einer Expression der Hrm P3 C-Domäne und der Synthese des Heptapeptidintermediates der Biosynthese von Hormaomycin (**13**) (vergleiche Abb. 3-21), das an das HrmP2-PCP gebunden wird, nachgewiesen werden.

(4-Pe)Pro aktivierende Domäne

Die A-Domäne des Moduls HrmP3 sollte laut bioinformatischer Voraussage spezifisch für 4-Z-Propenylprolin [(4-Pe)Pro] (**69**) sein. Dieses Substrat lag zu Beginn der Studien nicht für *in vitro*-Assays vor; es wurde in der Arbeitsgruppe Piel von Christoph Kohlhaas nach Zlatopolskiy¹⁹⁷ synthetisiert (Daten hier nicht aufgeführt). Besonders interessant ist es, ob die A-Domäne flexibel hinsichtlich Änderungen in der Alkylseitenkette des 4-Z-Propenylprolins (**69**) reagiert. Hierzu wurde von Nik Schwarz in der Arbeitsgruppe Piel 4-Z-Ethinylprolin (**128**) (siehe Abb. 5-68) synthetisiert (Daten nicht aufgeführt), das ein mögliches Reagenz für "Klick-Chemie" ist.

Eine mögliche Strategie zur Aufklärung des Wirkmechanismus von bioaktiven Stoffen ist es, Pulldown-Experimente zur Auffindung des molekularen Targets im Zielorganismus durchzuführen.^{266,267} Über "Klick-Chemie^{4,268,269} kann dann das bioaktive Molekül über eine Alkinylgruppe zum Beispiel an ein Biotin, das eine Azidogruppe trägt, gebunden werden. Durch eine 1,3-dipolare Cycloaddition entsteht *in situ* ein Triazol, eine kovalente Verbindung. Das Biotin kann dann wiederum über Avidinbeads immobilisiert werden. Anschließend kann das Proteintarget des bioaktiven Moleküls dann über massenspektrometrische Experimente identifiziert werden. Im Hormaomycin (**13**) eignet sich besagte Propenylseitenkette des (4-Pe)Pro (**69**) gut für die Derivatisierung in ein terminales Alkin. Das kann durch Totalsynthese oder aber durch Mutasynthese (siehe Abschnitt 3.3.1) über Fütterung von Ethinylprolin (**128**) geschehen. Abbildung 5-69 zeigt die kovalente Bindung eines hypothetischen Alkinylhormaomycins (**130**) an ein Biotinazid (**129**). Um zu evaluieren, ob HrmP3_A ein solches Ethinylprolin (**128**) akzeptiert, wurde das synthetisierte Molekül im [γ -¹⁸O₄]-ATP-Assay eingesetzt.

Abb. 5-68: 4-Z-Propenylprolin (69) und 4-Z-Ethinylprolin (128)

Abb. 5-69: hypothetische Reaktion eines Azidobiotins (**129**) mit Ethinylhormaomycin (**130**) über "Klick-Chemie"

Abbildung 5-70 zeigt, dass HrmP3_A das natürliche Substrat (4-Pe)Pro (**69**) fast quantitativ (89,6%) umsetzen konnte. Das Analogon 4-Z-Ethinylprolin (**128**) wird zu 26% von **69** aktiviert. Dieser hohe Wert ist sehr vielversprechend für mutasynthetische Experimente.

Abb. 5-70: Aktivierung verschiedener Aminosäuren durch HrmP3_A mit HrmR vor (schwarz) und nach (rot) FPLC-Aufreinigung im $[\gamma^{-18}O_4]$ -ATP-Assay (siehe Tab. 9-10). Die höchste Aktivität wurde als 100% normiert.

Ein ungewöhnliches Ergebnis ist in dieser Messung die äußerst hohe Aktivität für Valin [26,4% von (4-Pe)Pro (69); gleichwertig mit Ethinylprolin (128)]. Möglicherweise lag auch hier eine Aktivität einer coeluierten Kontamination vor, wie in einigen obigen Ergebnissen (vgl. HrmO1_A). Um die falsch positive Aktivität zu reduzieren, wurde auch diese Fraktion mit FPLC weiter aufgereinigt. Mit der

entwickelten FPLC-Methode konnte ein Großteil der Hintergrundproteine aus der Elutionsfraktion entfernt werden. Allerdings ist auch diese Fraktion durch eine Kontamination verunreinigt (siehe Abb. 5-71). Die gesammelten und konzentrierten Fraktionen A 10-12 zeigen die höchste Reinheit. Mit diesen Fraktionen wurde der A-Domain-Assay wiederholt. In der Wiederholung des Assays konnte die (4-Pe)Pro-Aktivierung bestätigt werden (87,8% Umsatz). Die Aktierungsrate vom Analogon, 4-Ethinylprolin (**128**), wurde zwar von 29% auf 13% des 4-Propenylprolins (**69**) verringert, jedoch war die Aktivität weiterhin die zweithöchste der getesteten Substrate. Die außerordentlich hohe Aktivierung von Valin wurde von fast 30% auf nur noch 5% reduziert. Auch diese Aktivität war also zumindest zu einem gewissen Maße als falsch positiv anzusehen.

a)

Abb. 5-71: a): Chromatogramm einer FPLC-Aufreinigung der Elutionsfraktion von HrmP3_A. Blaue Spur: UV-Absorption grüne Spur: Konzentration NaCl; Rote Zahlen: gesammelte Fraktionen. A10-12 wurden für die Wiederholung des Assays eingesetzt. b): Dokumentation von 5-71 a): SDS-PAGE-Gel (15%, Tricin). A1-A9 = TCA-Präzipitate der Fraktionen; A10-12 = Konzentrat (500 μ L) der gesammelten Fraktionen A10-12; M = Marker (Roth); A10-12V = Konzentrat (50 μ L) der gesammelten Fraktionen A10-12.

Fusionsdomänen mit Teilen aus Streptomyces coelicolor A3(2)

Nach erfolgreicher Expression der A-Domänen A5f_A und H6f_A mit Inserts aus S. coelicolor A3(2) und anschließender Coelution mit HrmR wurden auch diese Enzymkomplexe im $[\gamma^{-18}O_4]$ -ATP-Assay getestet. Allerdings konnte in mehreren Experimenten keine signifikante Umsetzung (>4% Austausch) der vorhergesagten Substrate Asparaginsäure und Hydroxyphenylglycin detektiert werden. (β -Me)Phe (31) wurde ebenfalls nicht aktiviert (Daten nicht aufgeführt). Auch die Zugabe von heterolog exprimiertem HrmR oder CdaX (siehe Abb. 5-48 a,b) führte nicht zur Verbesserung der Aktivität. Bei einer eingehenderen Analyse der ausgetauschten Fragmente wurde ersichtlich, dass in dem in dieser Arbeit vorgestellten Rekombinationsansatz nicht alle Aminosäurereste des aktiven Zentrums von HrmO3_A auf Basis des nichtribosomalen Codes^{79,80} ausgetauscht worden waren. Position 330 und 331 (relativ zu PheA) blieben in allen rekombinanten A-Domänen gleich. An beiden Positionen ist hier ein Alanin mit einer kleinen Aminosäureseitenkette (siehe Tab. 5-15). Der nicht erfolgte Austausch dieser Aminosäuren in den Kombinationen mit den Hormaomycin-A-Domänen (O2f_A, O4f_A, P2f_A) scheint keinen oder nur geringen Einfluß auf die korrekte Bindung des Substrates zu haben. Position 330 hat in PheA direkten Kontakt mit dem Substrat⁹⁴ und wird von hydrophoben Aminosäuren dominiert.⁷⁹ CdaPSI-A5_A trägt an dieser Position einen relativgroßen Leucylrest. Die Mutation dieses Restes zu einem Alanylrest wie in HrmO3_A könnte Einfluß auf die Substratbindung haben. Position 331 wird von Challis et al.⁸⁰ zwar aus dem nichtribosomalen Code ausgeklammert, da die Seitenkette der Aminosäure in PheA von der Bindetasche wegweist, aber diese Position ist hochvariant unter A-Domänen mit verschiedenen Substraten und hat möglicherweise ebenfalls Einfluß auf die Substratbindung.⁷⁹ In CdaPSI-A5_A/H6_A ist an dieser Position ein Cystein bzw. Asparagin; Aminosäuren, die sich insbesondere durch ihre Polarität deutlich von Alanin unterscheiden.

Tab. 5	-15: A	minosäuren	330 und 331	(relativ	zu P	heA)	in den miteir	nander	r kombinie	rten A-l	Domä	inen. A	lle in
dieser	Arbei	t fusionierte	n Domänen	besitzen	hier	die	Aminosäuren	von	HrmO3 _A ,	Alanin	und	Alanin	(fett
markie	ert).												

Peptid	A-Domäne	Position 330 (PheA)	Position 331 (PheA)
Hormaomycin	HrmO3	Ala	Ala
	HrmO2	Val	Ala
	HrmO4	Val	His
	HrmP2	Thr	Phe
CDA	CdaPSI-A5	Leu	Cys
	CdaPSI-H6	Val	Asn

Mutationen der fusionierten A-Domänen $A5_A$ und $H6_A$ an diesen Positionen zu den nativen Aminosäuren (Leu/Cys bzw. Val/Asn) könnten die bisher nicht aktiven Fusionsproteine möglicherweise aktivieren. Eine andere Strategie wäre die Konstruktion von neuen, fusionierten A-Domänen, wo ein etwas größerer Teil der zentralen Sequenz, und damit diese beiden Aminosäuren mit ausgetauscht werden.

Zusammenfassung und Diskussion der Ergebnisse

In diesem Teil der Arbeit wurden umfassende Studien an den Adenylierungsdomänen der Hormaomycin-NRPS durchgeführt. Es konnten alle sieben A-Domänen in E. coli mit einem Nterminalen Octahistidinyltag exprimiert und isoliert werden. Die Enzyme wurden mit einem massenpektrometrisch basierten ATP-Austausch-Assay¹⁰⁹ charakterisiert. Es konnte gezeigt werden, dass alle NRPS-A-Domänen für ihre volle in vitro-Aktivität das MbtH-artige Protein HrmR benötigen. HrmR konnte mit allen A-Domänen coexprimiert und coeluiert werden. Die Proteine interagieren miteinander und wurden in einem Komplex im stöchiometrischen Verhältnis von 1:1 eluiert. Die bioinformatisch vorhergesagten Substrate wurden selektiv aktiviert. Eine Ausnahme bildet HrmP2_A, das statt der nativ inkorporierten Aminosäure Isoleucin Valin bevorzugt aktivierte. Gründe dafür könnten eine Korrekturfunktion der folgenden C-Domäne oder eine andere Proteinkonformation in der NRPS-Umgebung in vivo sein. Die (3-Ncp)Ala-aktivierenden Domänen HrmO1_A und HrmO4_A haben eine gewisse Präferenz für die proteinogene Aminosäure Leucin (etwa 10% von (3-Ncp)Ala) (27). HrmO3_A und HrmP1_A können Phenylalanin zu etwas 10% von (β -Me)Phe (**31**), dem bevorzugten Substrat, aktivieren. Ein Chloratom in para-Position des Phenylrings wurde nicht toleriert, ebensowenig wie eine Methylgruppe in der α-Position. Für die (4-Pe)Pro-aktivierende Domäne HrmP3_A wurde ein Ethinylprolin (128) getestet, das zu etwa 20% von (4-Pe)Pro (69) umgesetzt werden konnte. Diese Aminosäure soll in mutasynthetischen Experimenten einer Deletionsmutante des Hormaoycinproduzenten, in dem die (4-Pe)Pro-Biosynthese unterbrochen ist, zugefüttert werden. Ein entstehendes Ethinylhormaomycin (130) könnte, falls es aktiv ist, in Pull-down-Experimenten über "Klick-Chemie" kovalent an einen fluoreszierenden Marker gebunden werden, um Informationen über das molekulare Target von Hormaomycin zu erhalten.

Einige der über Ni-NTA-Affinitätschromatographie isolierten Proteinfraktionen wurden über FPLC weiter aufgereinigt und erneut getestet. In diesem Reinigungsschritt konnten unspezifische, falsch positive Aktivitäten von coeluierten Proteinen aus *E. coli* BL21(DE3), die hauptsächlich Threonin und Valin aktivierten, reduziert und teilweise ganz entfernt werden. An HrmO2_A und O2f_A konnte eindrucksvoll gezeigt werden, dass bei vollständiger Isolierung des Proteins durch FPLC alle falsch positiven Aktivitäten eliminiert werden konnten (vgl. Abb. 5-63 und 5-66). Das Phänomen einer unerwarteten Aktivierung von Threonin aus einer A-Domänen-Aufreinigung aus *E. coli* BL21(DE3) wurde auch von Erol et al. an den Corallopyonin-A-Domänen beobachtet.²⁶⁴ Phelan et al., die den [γ-¹⁸O₄]-ATP-Assay entwickelten, beobachteten in ihrem Labor falsch positive Umsetzungen von Tryptophan für einige A-Domänen (Brian Bachmann, persönliche Mitteilung). Diese falsch positiven Aktivitäten scheinen also öfter in A-Domänen-Assays aufzutreten, werden aber selten publiziert. Interessanterweise waren die Aktivitäten durch diese Kontaminationen für Threonin und Valin in den Assays nicht immer reproduzierbar, wohingegegen "wahre" Substrate vom Enzym immer wieder, auch aus gefrorenen Enzymchargen, umgesetzt wurden. Auch wurde immer das gleiche Protokoll für

die Ni-NTA-Aufreinigung benutzt; daher ist es erstaunlich, dass einerseits manche Aufreinigungen keine falsch positiven Aktivitäten zeigen, und andererseits die Aktivität zwischen Valin, Threonin und Leucin schwankt. Für einen Ausschluß von solchen falsch positiven Aktivitäten sollten A-Domänen in diesem Assay daher grundsätzlich in einem weiteren Reinigungsschritt anschließend an die Ni-NTA-Chromatographie isoliert werden.

Weiterhin wurden fünf A-Domänen mit Fusions-PCR erzeugt, in denen ein zentraler Part der Sequenz von HrmO3_A (etwa 120 Aminosäuren) gegen Teile aus anderen A-Domänen ausgetauscht wurde. Es wurden drei A-Domänen der Hormaomycin für diese Fusionen ausgesucht, HrmO2_A, HrmO4_A und HrmP2_A. Außerdem wurden zwei Teile von A-Domänen der NRPS des Antibiotikums CDA aus Streptomyces coelicolor A3(2), die Aspartat und Hydroxyphenylglycin aktivieren, mit HrmO3_A fusioniert. Homologiemodelle der fünf rekombinanten Proteine sagen eine große Wahrscheinlichkeit für eine Funktionalität der neuen Proteine voraus. Alle fünf Fusionsproteine konnten in E. coli in gleichen Ausbeuten wie die nativen A-Domänen mit HrmR coexprimiert und coeluiert werden (siehe Abb. 5-48, Tab. 5-10). Die drei Fusionsdomänen aus der Hormaomycin-NRPS zeigen im Assay die gleiche Substratspezifität und die gleiche, oder nur eine leicht verringerte Aktivität wie die nativen A-Domänen der kleinen, zentralen Teile der Domäne. Das zeigt, dass hier die Substratspezifität der Enzyme nur durch diesen Teil determiniert wird. Die Substratspezifität von HrmO3_A konnte also durch den Austausch dieses Teiles von (β -Me)Phe (31) mit geringen Aktivitätseinbußen dramatisch zu (3-Ncp)Ala (27), Threonin und Valin geändert werden. Außerdem scheint ein Austausch einer so großen Aminosäuresequenz die intakte Tertiärstruktur des Enzym nur gering zu beeinflussen. Dies unterstützt die Hypothese, dass diese Sequenzen während der Evolution rekombiniert worden sind. Interessant wäre es, Reaktionskinetiken der A-Domänen aufzunehmen, um die Umsetzungen der Substrate noch besser miteinander vergleichen zu können.

Die Fusionen mit den zentralen Teilen der CDA-A-Domänen zeigten keine Aktivität. Um zu testen, ob das MbtH-artige Protein einen Einfluß auf die Aktivität besitzt, wurde das MbtH-artige Protein aus dem CDA-Gencluster, CdaX mit den beiden Enyzmen coexprimiert. Aber auch diese coexprimierten Proteinkomplexe waren nicht aktiv, auch nicht, wenn separat exprimiertes MbtH-artiges Protein (HrmR oder CdaX) dem Assay hinzugegeben wurde. Der Grund für die fehlende Aktivität könnte in zwei Aminosäuren im aktiven Zentrum liegen, die in den Fusionen nicht mit ausgetauscht wurden. In CdaPSIA5_A und H6_A liegen hier Leucyl- und Valylreste, die mit dem gebundenen Substrat interagieren. Der in HrmO3_A an dieser Position liegende Alanylrest ist hier möglicherweise sterisch nicht groß genug für die Interaktion. Die Aminosäurereste an Position 331 sind variabel und werden möglicherweise auch für die Substratbindung benötigt. Um diese Hypothese zu untersuchen, müssten die genannten Aminosäuren zu den in der nativen A-Domäne vorliegenden mutiert werden, oder ein etwas größerer Teil der Sequenz von CdaPSIA5_A und H6_A mit HrmO3_A fusioniert werden. Diese beiden Aminosäuren sind auch in den Hormaomycin-A-Domänen variabel, haben aber offensichtlich keinen oder nur geringen Einfluss auf die Substratbindung. Möglicherweise sind die fusionierten Proteine aber auch nicht korrekt gefaltet, um eine Substrat korrekt binden und umsetzen zu können. Das könnte durch Circulardichroismus-(CD)-Spektroskopie untersucht werden.

Die hier präsentierten Ergebnisse unterstützen die Hypothese, dass ein Austausch dieser zentralen Teile der A-Domäne durch Rekombination während der Evolution vorgefallen sein könnte. Rekombination von DNA-Fragmenten ist eine treibende Kraft in der Evolution der Gencluster von Sekundärmetaboliten, wie in Abschnitt 3.3.2 dargelegt. Rekombinationen von NRPS-Clustern sind bisher hauptsächlich in strukturell sehr ähnlichen NRPS in Cyanobakterien observiert worden. Hier wurden in silico Rekombinationen von ganzen A-Domänen,^{105,106} multiplen Regionen¹⁰⁷ oder Modulen¹⁷⁴ postuliert und mit der beobachteten Produktvielfalt korreliert. In der Hormaomycin-NRPS scheint es dagegen innerhalb des Genclusters zu Rekombinationen von zentralen Teilen der A-Domänen gekommen zu sein. In dieser Arbeit wurden Beobachtungen, die in silico gemacht wurden, experimentell durch in vitro erzeugte, rekombinante A-Domänen verifiziert. Die Ergebnisse der Experimente zeigen, dass es zumindest im Hormaomycinsystem möglich ist, durch einfachen Austausch von Regionen, die die Substratspezifität beinhalten, diese im Labor nach Wunsch zu ändern. Die Substrate der rekombinierten A-Domänen sind teilweise chemisch sehr verschieden [vergleiche (β -Me)Phe (**31**) und (3-Ncp)Ala (**27**)]. Mit der vorgestellten Methode sind in dieser Studie an der A-Domäne dramatischere Änderungen der Substratspezifität möglich, als mit bisher publizierten.^{79,99} Außerdem haben die *in vitro* erzeugten Enzyme in dieser evolutionsbasierten Studie eine weitaus höhere Aktivität als in einer computerbasierten, wo es ähnlich dramatische Spezifitätsänderungen gab.¹⁵⁶ Auf die resultierende Aktivität der mutierten A-Domäne ist dieser evolutionäre Ansatz also dem informatischen überlegen.

Die Ergebnisse dieser Studie zeigen neue, auf der Evolution basierende Strategien für die kombinatorische Biosynthese von nichtribosomalen Peptiden auf. Eine rationale Rekombination von diesen zentralen Teilen der Enzyme könnte zumeist auftretende dramatische Verluste in der Produktion dieser kombinatorisch erzeugten Peptide durch Austausch von ganzen Domänen signifikant verringern und gleichzeitig größere strukturelle Veränderungen in den kombinatorisch erzeugten Peptiden ermöglichen. Allerdings bleibt abzuwarten, ob sich die *in vitro*-Ergebnisse auch auf andere Spezifitäten aus fremden Systemen ausweiten lassen, wie anhand der Rekombination mit den *S. coelicolor*-A-Domänen diskutiert wurde. Außerdem ist diese Besonderheit der Hormaomycin-A-Domänen nicht einfach auf andere Systeme übertragbar. Auch ist nicht klar, ob sich die *in vitro*-Ergebnisse auf *in vivo*-Experimente übertragen lassen können. Hier sind außerdem die anderen Biosyntheseenzyme, wie die C-Domänen der NRPS zu berücksichtigen. In der Hormaomycin-NRPS wäre außerdem eine selektive Rekombination von A-Domänenabschnitten *in vivo* aufgrund der hohen Sequenzähnlichkeit über weite Teile der A-Domänen schwer durchzuführen.

5.5 Biologische Studien an Hormaomycin

5.5.1 Fermentation von Hormaomycin

Um eine möglichst hohe Menge Hormaomycin (13) für biologische Studien zu isolieren, wurde Streptomyces griseoflavus W-384 analog zu vorangehenden Arbeiten fermentiert.²⁰⁰ Es wurde eine Vorkultur in 50 ml NM6 (siehe 6.2.1) angesetzt und bei 180 rpm und 27 °C für 48 h inkubiert. Die Vorkultur wurde dann in einem sterilen Labfors 10 l Fermenter mit 1,5 l NM10 (siehe 6.2.1) versetzt und für 72 h bei 27 °C, einem pH von 6,5 und einer Luftzufuhr von 1,6 vvm fermentiert. Zur Erhöhung der Ausbeute wurden nach 24 h über 10 Stunden eine Lösung von 3 mmol Pyrrol-2carbonsäure (102) in 75 ml sterilem Wasser zur Kulturbrühe gepumpt. Diese Zugabe hat in früheren Studien zu einer Erhöhung der Hormaomycinausbeuten geführt.²⁰⁰ Durch Zentrifugation wurde das Mycel vom Medium getrennt, letzteres wurde, da es kein Hormaomycin (13) enthielt, verworfen. Das Mycel wurde nach Lyophilisation und Mörsern mit 3x 450 ml Ethylacetat extrahiert. Nach Entfernen des Lösungsmittels unter vermindertem Druck wurde mit kaltem Pentan gewaschen. Der trockene Rohxtrakt wurde in Methanol/Acetonitril gelöst und an einem präparativen HPLC-System (siehe Abschnitt 6.8) aufgetrennt. Ein Bild der Trennung des Rohextraktes ist in Abbildung 5-72 zu sehen. Der Peak bei $t_R=26,2$ min ist Hormaomycin (13). Die Identität wurde durch ein hochauflösendes Massenspektrum der Fraktion und durch ¹H-NMR bestätigt (Abb. 9-25, Anhang). Es wurden 2 mg Hormaomycin isoliert. Die Substanz wurde für Aktivitätsassays und Studien zum Wirkmechanismus Arbeitsgruppen Sahl und Hörauf (Universität Bonn) eingesetzt. In weiteren in den Fermentationsansätzen, die alle mit den gleichen Parametern durchgeführt wurden, konnte Hormaomycin nur in Spuren detektiert werden (Daten hier nicht aufgeführt). Insgesamt hat sich trotz exakter Befolgung des Protokolls von Radzom²⁰⁰ die Hormaomycinproduktion des Stammes von 40 mg/L auf 1,3 mg/L reduziert. Das gleiche Phänomen wurde parallel in der Arbeitsgruppe Zeeck in Göttingen (persönliche Mitteilung von Axel Zeeck) beobachtet. S. griseoflavus W-384 scheint also mit der Zeit unter Laborbedingungen die Fähigkeit zur Biosynthese von Hormaomycin (13) zu verlieren. Die Gründe hierfür sind unbekannt.

Abb. 5-72: HPLC-Chromatogramm (230 nm) des Ethylacetat-Rohextraktes einer Fermentation von S. griseoflavus W-384.

5.5.2 Isolierung und Strukturaufklärung natürlicher Hormaomycinanaloga

Da der Hormaomycinproduzent im Laufe der Zeit Hormaomycin (13) nur noch in eingeschränkten Mengen produzierte (siehe 5.5.1), wurde nach einem Weg gesucht, die Hormaomycintiter in der Fermentation zu erhöhen. Die Biosynthese von Sekundärmetaboliten ist in Streptomyceten komplex reguliert.²⁵ Einige Aspekte sind in Kapitel 3.1 diskutiert worden. Eine Möglichkeit, die Produktion von Sekundärmetaboliten zu erhöhen, ist die Überexpression von positiven Regulatorgenen im Gencluster des Metaboliten.²⁷⁰ Im Hormaomycingencluster ließen sich durch Sequenzvergleiche gleich drei putative Regulatorgene, hrmA, hrmB und hrmH detektieren. hrmA und hrmB wurden aufgrund von Sequenzvergleichen (siehe Tab. 3-2) als putative positive Regulatoren der SARP-Familie (Streptomyces antibiotic regulatory proteins) identifiziert. Nach der Konstruktion eines Überexpressionsstammes des Regulatorgens hrmB durch Xiaofeng Cai zeigte sich in der HPLC-Analyse einer Fermentation, dass nicht nur die Produktion von Hormaomycin dramatisch gesteigert wurde (135-fach), sondern auch neue Peaks in der Analyse erschienen. Diese Peaks stimmten mit dem UV-Spektrum des Hormaomycins (13) weitgehend überein. Zusätzlich wurden in der HPLC-ESI-MS für diese Peaks ähnliche Massen zu 13 detektiert. Diese Substanzen wurden also als natürliche Analoga des Hormaomycins vermutet, die während der Biosynthese durch eine relaxierte Substratspezifität der biosynthetischen Enzyme entstehen. Eine Isolierung und Strukturaufklärung dieser Analoga gibt einerseits Einblicke in die Biosynthese des Hormaomycins (13). Außerdem können durch Testung der Analoga und Vergleich der Aktivitäten zu 13 neue Struktur-Wirkungsbeziehungen erhalten werden.

Die Isolierung und Strukturaufklärung der Analoga wurde in der Universität Neapel im Labor von Prof. Alfonso Mangoni durchgeführt. Eine Fermentation eines Überexpressionsstammes von *hrmB*, XC13, in 900 mL Production medium (siehe 6.2.1) in Kulturgrößen von jeweils 50 mL ergab nach zweimaliger Extraktion mit Ethylacetat 624 mg Trockenextrakt. Dieser wurde mittels HPLC unter isokratischen Bedingungen auf einer semipräparativen C18-Säule aufgetrennt (siehe Kapitel 6.11.1). Es wurde eine HPLC-Methode entwickelt, die für eine Auftrennung von Hormaomycin (**13**) und Derivaten optimiert wurde. Das Laufmittel war ein Gemisch aus 75% Acetonitril und 25% Wasser, mit 0,1% TFA versetzt. Der Extrakt wurde im Laufmittel mit einer Konzentration von 18,75 mg/mL gelöst. Pro Injektion konnten für eine gute Trennung nur etwa 16 mg Extrakt (800 µl) injiziert werden, daher wurde diese Injektion zehn Mal wiederholt. Es wurden 30 Fraktionen gesammelt. Abbildung 5-73 zeigt ein Chromatogramm des Rohextraktes.

Abb. 5-73: HPLC-Chromatogramm des Rohextraktes der *hrmB*-Überexpressionsmutanten XC13 (273 nm). Isolierte Fraktionen sind numeriert

Hormaomycin (HRM) (**13**) wurde mittels HR-ESI-MS in Fraktion 17, der größten im Chromatogramm, nachgewiesen. Die Ausbeuten der Fraktionen 15, 16, 23, 24 und 30 (siehe Tab. 5-16) erlaubten im Folgenden eine NMR-spektroskopische Untersuchung. Eine ¹H-NMR-Analyse der Fraktionen gab erste Hinweise auf die neuen Strukturen, allerdings war für eine vollständige Strukturaufklärung die Reinheit der Fraktionen unzureichend.

Fraktion	Retentionszeit [min]	Ausbeute [mg]
15	12,5	2,8
16	15,3	1,1
17	16,2	11,8
23	26,0	4,8
24	30,0	1,5
30	50,0	3,4

Tab. 5-16: Übersicht über die isolierten Fraktionen aus dem Rohextrakt des hrmB-Überexpressionsstammes

Daher wurden im Folgenden die Fraktionen auf einer analytischen HPLC-Säule weiter gereinigt und die größten Peaks gesammelt. Da pro Injektion nur 1 mg (100 µl) aufgetragen werden konnte, wurden auch diese Injektionen wiederholt und die zusammengehörenden Fraktionen vereinigt. Die analytische HPLC wurde mit einem Methanol-Wasser-Gemisch durchgeführt, die Polarität des Gemisches wurde, um die HPLC-Läufe nicht unnötig zu verlängern, bei den höheren Fraktionen erniedrigt (siehe Tab. 5-17). Die Chromatogramme zeigten, dass die Fraktionen 15, 16 und 23 aus mehreren Komponenten bestanden, die Fraktionen 17, 24 und 30 aus nur einer (siehe Abb. 9-20 - 9-23, Anhang). Auf der analytischen Säule und in dem veränderten Fließmittel (Methanol/Wasser statt Acetonitril/Wasser) konnte eine höhere Trennschärfe erreicht werden, was zur vollständigen Auftrennung der Peaks führte. Die sieben so erhaltenen Reinsubstanzen wurden nun massenspektrometrisch und NMR-spektroskopisch analysiert.

Substanz	Fraktion	Fließmittel	Retentions-	Exakte	Ausbeute
		[MeOH:H ₂ O]	zeit [min]	Masse [M+Na] ⁺	[mg]
1	15	85:15	7,8	1117,4930	0,9
2	15	85.15	8,5	1137,4392	1,0
3	16	85:15	9,5	1153,4699	1,1
Hormaomycin (13)	17	85:15	10	1151,4575	6,5
4	23	9:1	7,8	1237,4900	1,5
5	23	9:1	9,0	1108,4833	1,5
6	24	9:1	10,5	1108,4833	0,6
7	30	9:1	16,0	1065,5163	1,2

Tab. 5-17: Übersicht über die in der analytischen HPLC der Fraktionen aus Abb. 5-75 erhaltenen Reinsubstanzen

Von den Verbindungen wurden hochaufgelöste Massenspektren und Fragmentierungsspektren des Molekülpeaks (MS/MS) aufgenommen. Außerdem wurden ¹H-NMR-Experimente und, wenn nötig, zweidimensionale ¹H-¹H-COSY- und zTOCSY-NMR-Experimente durchgeführt. Die Messungen wurden, anders als zu vorhergehenden Studien^{61,200} in deuteriertem Methanol (CD₃OD) vorgenommen. Hier addierte sich nämlich das sonst verwendete CDCl₃ vermutlich radikalisch an die Substanzen und führte zu nicht analysierbaren Spektren (Daten nicht aufgeführt). In den folgenden Abschnitten wird die Strukturauflärung der Hormaomycinanaloga beschrieben. Dabei wurde sich an den ebenso aufgenommenen Spektren für Hormaomycin (**13**) orientiert. Anhand der Unterschiede der Massen-

und NMR-Spektren ließen sich die Differenzen in den Strukturen aufklären. Abbildung 5-74 zeigt das aufgenommene MS/MS-Fragmentierungsspektrum von 13. Den erhaltenen Massen ließen sich Molekülfragmente zuordnen. Die Seitenkette wurde über das Isocyanat 132 und 133 zuerst fragmentiert; über den Sechsring 134 kam es dann zur Abspaltung des *a*-Threonins und zum linearen Fragment 135 (vergleiche Abb. 5-74). Über Vergleiche der MS/MS-Fragmentierungsspektren der Analoga ließen sich die Positionen der Veränderungen gegenüber 13 bestimmen.

Abb. 5-74: Ausschnitt aus dem MS/MS-Fragmentierungsspektrum von Hormaomycin (13)

Abb. 5-75: Strukturen der in Abbildung 5-74 erhaltenen MS/MS-Fragmente von Hormaomycin (13)

Strukturaufklärung der Hormaomycinanaloga

Hormaomycin A1 (136)

Das Massenspektrum von Substanz 1 aus Tabelle 5-17 weist einen Molekülpeak von m/z=1117,4930 auf, was auf ein Hormaomycin-Na-Addukt ohne Chlor, dafür mit einem zusätzlichen Wasserstoff hindeutet ($C_{55}H_{70}N_{10}O_{14}Na_{calc}=1117,4971$). Die Analyse der MS/MS-Fragmentierung in Abbildung 5-76 zeigt, dass die Veränderung zum Hormaomycin (**13**) am terminalen Baustein der Seitenkette (Chcpa) erfolgt ist, da das Fragment mit der Masse m/z=1034 (**132**) wie im Hormaomycin (**13**) vorhanden ist (vgl. Abb. 5-75).

Abb. 5-76: Ausschnitt aus dem MS/MS-Fragmentierungsspektrum von Hormaomycin A1 (136).

Das vermutete Fehlen eines Chloratoms im Molekül lässt sich auch durch das veränderte Isotopenmuster zeigen, da das für Chlor charakteristische stark vertretene M+2-Isotop hier nicht detektiert wurde. Die Analyse des ¹H-NMR-Spektrums (siehe Tab. 9-11) zeigt ein weitgehend identisches Signalmuster zu Hormaomycin, allerdings zeigen die Signale bei δ =6,79 ppm (Chpca 3) und δ =6,04 ppm (Chpca 4) eine Dublett-Dublett-Aufpaltung, statt eines Dubletts beim Hormaomycin (**13**), was auf ein zusätzliches Wasserstoffatom in der nächsten Umgebung (Chpca 5) hindeutet. Außerdem ist bei einer Verschiebung von etwa 6,85 ppm schwach ein zusätzliches Signal zu erkennen (siehe Abb. 5-77). Dieses ist dem neuen Wasserstoff an Chpca 5 zuzuordnen. Hormaomycin A1 (**136**) (Abb. 5-78) ist also ein Hormaomycinderivat ohne das im Verlauf der Biosynthese durch HrmQ angefügte Chlor. Die Tatsache, dass nur das Chlor fehlt, unterstützt die Hypothese, dass HrmQ eine singuläre Funktion in der Biosynthese der Chlorhydroxypyrrolcarbonsäure (**93**) besitzt, und nicht für weitere Biosyntheseschritte, wie etwa die *N*-Hydroxylierung verantwortlich ist.

Abb. 5-77: Ausschnitt aus dem ¹H-NMR-Spektrum von Hormaomycin A1 (136) in CD₃OD, 700 MHz.

Abb. 5-78: Hormaomycin A1 (136). Die Kohlenstoffatome der Startereinheit sind nummeriert.

Hormaomycin A2 (137)

Das Massenspektrum von Substanz 2 aus Tabelle 5-17 zeigt einen Molekülpeak von m/z=1137,4392. Dies impliziert das Fehlen einer Methylgruppe im Vergleich zu Hormaomycin (**13**) (C₅₄H₆₇N₁₀O₁₄ClNa_{calc}=1137,4424). Die MS/MS-Fragmentierung der Substanz (siehe Abb. 5-79) zeigt, dass diese Methylgruppe in einer der Aminosäure im Ringsystem fehlen muss, da die Massendifferenz von 14 zu Hormaomycin (13) auch nach Abspaltung der ersten drei Aminosäuren erhalten bleibt [(m/z=755 vs. m/z=769 (135)] (vergleiche Abb. 5-75).

Abb. 5-79: Ausschnitt aus dem MS/MS-Fragmentierungsspektrum von Hormaomycin A2 (137).

Das ¹H-NMR-Spektrum der Verbindung (siehe Abb. 9-28, Tab. 9-12) lässt durch Zuordnung der Signale einen Austausch einer der beiden β -Methylphenylalanine (**31**) gegen Phenylalanin (**35**) ausschließen, da die charakteristischen Dubletts bei δ =1,36 ppm [(β -Me)Phe II] bzw. δ =1,20 ppm [(β -Me)Phe II] im Spektrum weiterhin vorhanden sind. Bei genauerer Betrachtung des ¹H-¹H-COSY-NMR-Spektrums (Abb. 9-29) lassen sich im Spinsystem des Isoleucins Verschiebungen bzw. Fehlen von Signalen ausmachen. Während die Signale der Wasserstoffe an C2 eine weitgehend ähnliche Verschiebung zum Hormaomycin aufweist, zeigt H3 eine Kopplung zu zwei Dubletts bei δ =1,01 ppm bzw. δ =0,99 ppm (siehe Abb. 5-80). Das bedeutet, dass C3 mit zwei terminalen Methylgruppen verknüpft ist, anstatt mit einer Methylengruppe und einer Methylgruppe wie beim Hormaomycin (**13**). Statt Isoleucin wurde in der Biosynthese die um 1 Methylgruppe kleinere Aminosäure Valin in die wachsende Peptidkette eingebaut. Abbildung 5-81 zeigt die Struktur der aufgeklärten Substanz **137**.

Abb. 5-80: Ausschnitt aus dem ¹H-NMR-Spektrum von Hormaomycin A2 (**137**) in CD₃OD, 700 MHz.

Abb. 5-81: Hormaomycin A2 (137). Die Kohlenstoffatome des eingebauten Valins sind nummeriert.

Hormaomycin A3 (138)

Für Substanz 5 aus Tabelle 5-17 wurde eine Molekülmasse von m/z=1108,4833 [M+Na]⁺ detektiert, das entspricht einer berechneten Masse eines um 43 Da kleineren Hormaomycins (C₅₅H₇₂N₉O₁₂ClNa_{calc}=1108,4887). Eine MS/MS-Fragment von m/z=726,417 bestätigt, dass die Veränderung am Ringsystem des Hormaomycins (**13**) vonstatten gegangen sein muß (siehe Abb. 5-82, vergleiche Abb. 5-75).

Abb. 5-82: Ausschnitt aus dem MS/MS-Fragmentierungsspektrum von Hormaomycin A3 (138)

Die Analyse des ¹H-NMR-Spektrums (Abb. 5-83 und 9-30, Tab. 9-13) zeigt, dass charakteristische Signale im Hochfeldbereich, wie H3'b des (3-Ncp)Ala (27) I fehlen, und stattdessen Dubletts bei δ =0,53 ppm und δ =0,62 ppm im Spektrum erschienen sind. Die beiden Dubletts koppeln mit einem Multiplett bei δ =0,48 ppm, dieses Spinsystem stellt also ein Propylensystem mit zwei terminalen Methylgruppen dar. Im ¹H-¹H-COSY koppelt das Multiplett mit 2 Signalen bei δ =0,72 ppm und δ =0,90 ppm, von denen das erstere eine ddd-Aufspaltung hat, also mit 3 chemisch ungleichen H-Atomen koppelt (siehe Abb. 9-30). Ein Signal bei δ =3,66 ppm und δ =7,80 ppm komplettieren das Spinsystem, das zusammengefasst die Seitenkette der Aminosäure Leucin darstellt. Diese hat in diesem Analogon also das (3-Ncp)Ala (27) I ersetzt. Abbildung 5-84 zeigt die aufgeklärte Struktur.

Abb. 5-84: Hormaomycin A3 (138). Die Kohlenstoffatome des eingebauten Leucins sind nummeriert.

Hormaomycin A4 (139)

Diese Verbindung zeigt einen Molekülpeak von m/z=1108,4833 [M+Na]⁺, was der gemessenen Masse von Hormaomycin A3 (138) (vgl. Abb. 5-82, Tab. 5-17) entspricht. Im Gegensatz zu Hormaomycin A3 (138) zeigt die MS/MS-Fragmentierung aber eine gleiche Fragmentgröße des Ringsystems wie Hormaomycin (13) [m/z=769,387 (135)] wie ein Vergleich von Abbildung 5-85 mit Abbildung 5-75 zeigt. Das legt die Vermutung nahe, dass hier (3-Ncp)Ala (27) II gegen Leucin ausgetauscht sein könnte.

Abb. 5-85: Ausschnitt aus dem MS/MS-Fragmentierungsspektrum von Hormaomycin A4 (139) in CD₃OD, 700 MHz.

Eine Analyse des ¹H-NMR-Spektrums bestätigt dies (vgl. Abb. 9-32, Tab. 9-14). Die Signale von (3-Ncp)Ala (27) I sind im Spektrum erhalten geblieben, während charakteristische Dupletts bei δ =0,97

ppm und δ =1,01 ppm, ein Multiplett bei δ =1,71 ppm (siehe Abb. 5-86) und drei weitere Signale analog zu Hormaomycin A3 (**138**) auf einen Leucylrest hindeuten. In dieser Verbindung ist also das (3-Ncp)Ala (**27**) in der Seitenkette durch Leucin ersetzt worden. Abbildung 5-87 zeigt die aufgeklärte Struktur.

Abb. 5-86: Ausschnitt aus dem ¹H-NMR-Spektrum von Hormaomycin A4 (139) in CD₃OD, 700 MHz.

Abb. 5-87: Hormaomycin A4 (139). Die Kohlenstoffatome des eingebauten Leucins sind nummeriert.

Hormaomycin A5 (140)

Diese Verbindung hat mit Abstand die größte Retentionszeit des Extraktes (siehe Tab. 5-16), und besitzt eine Masse von m/z=1065,5163 [M+Na]⁺. Das bedeutet eine berechnete Massendifferenz von 43 im Vergleich zu Hormaomycin A3 (**138**) und A4 (**139**) und 86 im Vergleich zu Hormaomycin (**13**) (vgl. Tab. 5-17). Die naheliegende Hypothese, dass hier beide Nitrocyclopropylalanine (**27**) gegen Leucin ausgetauscht sind, lässt sich aus einer Analyse der MS/MS- und NMR-Spektren bestätigen ([C₅₅H₇₅N₈O₁₀ClNa]⁺_{calc}=1065,5192). Das Fragment mit der Masse von m/z=726,4175 (Abb. 5-88) zeigt, daß das Ringsystem die gleiche Masse wie Hormaomycin A3 (**138**) besitzt (vgl. Abb. 5-82).

Abb. 5-88: Ausschnitt aus dem MS/MS-Fragmentierungspektrum von Hormaomycin A5 (140) in CD₃OD, 700 MHz.

Außerdem sind beide Spinsysteme des Leu I aus Hormaomycin A3 (**138**) und Leu II aus Hormaomycin A4 (**139**) vorhanden (siehe die Abbildungen 5-89 und 9-33, Tabelle 9-15). Hormaomycin A5 (**140**) ist also ein Hormaomycinderivat mit zwei Leucinen anstellen von (3-Ncp)Ala (**27**). Die Struktur der neu aufgeklärten Substanz zeigt Abbildung 5-90.

Abb. 5-89: Ausschnitt aus dem ¹H-NMR-Spektrum von Hormaomycin A5 (140) in CD₃OD, 700 MHz.

Abb. 5-90: Hormaomycin A5 (140). Die Kohlenstoffatome der eingebauten Leucine sind nummeriert.

Hormaomycin A6 (141)

Substanz 4 aus Tabelle 5-17 besitzt eine Masse von m/z=1237,4894 [M+Na]⁺. Das ist eine berechnete positive Massendifferenz von 76 im Vergleich zu Hormaomycin (**13**). Eine Analyse des Massenspektrums ergibt eine mögliche Summenformel von C₅₉H₇₅ClN₁₀NaO₁₆ (C₅₉H₇₅ClN₁₀O₁₆ Na_{calc}=1237,4949). Es könnte also eine C₄H₆O₂-Einheit an Hormaomycin (**13**) addiert worden sein.

Eine MS/MS-Analyse (Abb. 5-91) zeigt Fragmente von m/z=1008 (133), und 1034 (132), wie bei Hormaomycin (13) (vgl. Abb. 5-75). Der Lactonring hat also eine unveränderte Größe. Daher sollte die Veränderung an der Seitenkette vorliegen. Ein Fragment hat die Masse 1150,4454. [. Das Addukt ist also unter Mitnahme eines Wasserstoffes aus 13 abgespalten worden ([M_{HRM} +Na-1]⁺_{calc}=1150,4503).

Abb. 5-91: Ausschnitt aus dem MS/MS-Fragmentationsspektrum von Hormaomycin A6 (141).

Das ¹H-NMR-Spektrum der Verbindung zeigt weitgehend eine ähnliche Signalaufspaltung zum Hormaomycin (**13**). Zusätzlich sind einige neue Signale zu erkennen: zwei Dubletts bei δ =5,03 ppm und δ =5,13 ppm, die im ¹H-¹H-COSY-NMR-Spektrum eine Kopplung miteinander zeigen (Abb. 5-92). Zudem weist die große Kopplungskonstante (²J = 15 Hz) der Signale auf eine geminale Kopplung der beiden Wasserstoffe hin. Zusammen mit der hohen Tieffeldverschiebung läßt sich auf eine isolierte Methylengruppe in elektronenziehender Umgebung schließen. Zwei weitere neue Signale im ¹H-Spektrum weisen auf eine endständige Ethoxygruppe hin: Das Quartett bei δ =4,29 ppm und das charakteristische Triplett bei δ =1,32 ppm koppeln nur miteinander (siehe Abb. 5-92 und Abb. 5-93). All diese Informationen zusammengenommen lassen nur eine einzig mögliche Struktur für Hormaomycin A6 zu: eine Ethylacetylgruppe ist an das *N*-Hydroxyl addiert worden. Abbildung 5-94 zeigt die aufgeklärte Struktur.

Abb. 5-92: Ausschnitt aus dem ¹H-NMR-Spektrum von Hormaomycin A6 (141) in CD₃OD, 700 MHz.

Abb. 5-93: Ausschnitt aus dem 1 H- 1 H-COSY-NMR-Spektrum von Hormaomycin A6 (141) in CD₃OD, 700 MHz.

Abb. 5-94: Hormaomycin A6 (141). Die Kohlenstoffe des neuen Ethylacetylrestes sind nummeriert.

Die Frage ist hier, ob dieses Derivat ein natürlich produziertes Molekül ist, oder ein Aufarbeitungsartefakt. Die Natur des Restes am *N*-OH lässt auf eine Addition des Extraktionsmittels Ethylacetat schließen. Allerdings ist diese äußerst ungewöhnlich, da hier das weniger elektrophile α -C des Ethylacetat angegriffen wurde. Ein möglicher Mechanismus wäre eine Reaktion mit einem entstandenen N-O-Radikal, das über den Pyrrolring stabilisiert werden könnte. Eine Detektion dieses Moleküls *in vivo*, z.B. durch MALDI-Imaging Massenspektrometrie einer Bakterienkolonie,²⁷¹ würde die Identität als Naturstoff bestätigen.

Hormaomycin E1/E2 (40/41)

Als Molekülmasse der isolierten Substanz 3 aus dem Extrakt wurde m/z=1153,4699 bestimmt (siehe Tab. 5-28). Das deutet auf ein hydriertes Hormaomycin (13) hin (C₅₅H₇₁ClN₁₀O₁₄Na_{calc}=1153,4737). Das MS/MS-Fragmentierungsspektrum (Abb. 5-95) zeigt, dass sowohl die Fragmente bei m/z=852 (134) und m/z=769 (135) aus 13 (siehe Abb. 5-72) als auch Fragmente bei m/z=771 (Abb. 5-96) und m/z=854 vorliegen. Das bedeutet, dass hier ein Gemisch aus zwei Substanzen vorliegt, bei denen einerseits in der Seitenkette, andererseits im Ring eine Hydrierung erfolgt ist. Dass hier ein durch die angewendeten Methoden nicht trennbares Gemisch vorliegt, bestätigt das ¹H-NMR-Spektrum. Es sind viele Signalüberlagerungen zu sehen (siehe Abb. 9-36, Anhang). Am wahrscheinlichsten ist also, dass in dieser Fraktion jeweils eines der Nitrocyclopropylalanine hydriert vorliegt.

Abb. 5-95: Ausschnitt aus dem MS/MS-Fragmentierungsspektrum für Hormaomycin E1/E2 (40,41)

Die Natur des Restes ist nicht eindeutig zu belegen. Die Analyse des ¹H-NMR-Spektrums (Abb. 9-37) schließt allerdings einen Einbau von **143** aus, einem postulierten Intermediat der (3-Ncp)Ala-Biosynthese²⁰⁶ (vergleiche Abschnitt 5.1, Abb. 5-2), da im Spektrum kein Signal für das Methin des Oxims (um δ =2-3 ppm) zu detektieren ist. Auch kommt eine eingebaute Vorstufe wie **144** nicht in Frage, da ebensowenig ein Signal für den tertiären Wasserstoff (um δ =2 ppm) zu detektieren ist. Die wahrscheinlichste Struktur wäre der geöffnete Cyclopropanring, wie er im Nitronorleucin (**30**) vorliegt, das in Fütterungen bereits in **13** eingebaut wurde (vgl. Abb. 3-21, Tab. 3-1).²⁰⁰ Daher ist das vorliegende Gemisch am ehesten eines aus Hormaomycin E1/E2 (**40/41**) (Abb. 5-97). Auch diese Moleküle könnten Aufarbeitungsartefakte sein.

Abb. 5-96: Im Massenspektrum von Fraktion 3 detektiertes Fragment 142 (m/z=771,403) (hypothetisch), mögliche Vorstufen 30, 143 und 144.

Abb. 5-97: hypothetische Strukturen des isolierten Substanzgemisches Hormaomycin E1 (40) und E2 (41).

Insgesamt wurden also sechs neue Hormaomycinanaloga isoliert und deren Struktur aufgeklärt. Außerdem wurden mit hoher Wahrscheinlichkeit die bereits durch Vorläufer-dirigierte Biosynthese erzeugten Hormaomycinderivate E1 und E2 (40,41)²⁰⁰ isoliert (siehe Tab. 3-1). Bei letzteren, sowie Hormaomycin A6 (141) ist es nicht klar, ob es sich hierbei um natürlich produzierte Substanzen oder Artefakte bei der Aufarbeitung handelt. Die biologische Aktivität der isolierten Substanzen sollte anschließend von Xiaofeng Cai gegen Arthrobacter crystallopoietes und Streptomyces coelicolor A3(2) getestet werden. Die Anzahl und strukturelle Varietät der isolierten Analoga zeigt, dass die Hormaomycin-NRPS flexibel auf verschiedene Substrate reagiert. Nicht nur die A-Domänen, aber auch die Kondensations- und Thioesterasedomänen des Megaenzyms scheinen eine geringe Substratspezifität zu besitzen. Anstelle von (3-Ncp)Ala (27) wird Leucin zu einem gewissen Maß in Hormaomycin eingebaut. Genau diese Erkenntnis kann auch aus den Ergebnissen der A-Domänenassays (siehe Kapitel 5.4.4) abgeleitet werden. Valin, das in Hormaomycin A2 (137) eingebaut wird, wird von HrmP2_A in vitro sogar bevozugt aktiviert. Die A-Domänenassays sind somit sehr gut als Voraussage für zukünftige Mutasynthesestudien geeignet. Fütterungsexperimente von Xiaofeng Cai zeigen, dass sich die Ausbeute von Hormaomycin A3-5 (138-140) durch Fütterung des Überexpressionsstammes mit Leucin weiter steigern läßt (Ergebnisse unveröffentlicht). Diese Ergebnisse weisen darauf hin, dass die NRPS flexibel auf unterschiedliche Substratangebote reagiert.

Somit sind zur Bibliothek der Hormaomycine den bereits durch Vorläufer-dirigierte Biosynthese gebildeteten Hormaomycinderivaten **36-54** (Tab. 3-1)^{62,199,200} die ersten natürlichen Derivate hinzugefügt worden. Die Detektion weiterer putativer Hormaomycine im Überexpressionsextrakt durch HPLC und HPLC-MS zeigt, dass es mit einer etwas größeren Fermentationsmenge und sensitiven Instrumenten leicht möglich sein wird, weitere neue natürliche Hormaomycine zu isolieren und zu testen.

5.6 Zusammenfassung der Ergebnisse und Ausblick

Im ersten Teil dieser Arbeit (Abschnitte 5.1-5.3) konnten durch heterologe Expressionen von Biosynthesegenen des Hormaomycins (13) neue Einsichten in die Biosynthese der Vorstufen gewonnen werden. Die Biosynthese der einzigartigen Aminosäure 3-Nitrocyclopropylalanin [(3-Ncp)Ala] (27) wird hypothetisch aus Lysin (58) durch 4-Hydroxylierung, N-Oxidation und Cyclopropylbildung synthetisiert (siehe Abschnitt 5.1).²⁰⁶ Im Rahmen dieser Arbeit wurde hrml durch Komplementierung einer knock-out-Mutante der (3-Ncp)Ala-Biosynthese zugewiesen. Mit HrmJ wurde durch Xiaofeng Cai ein analoges Ergebnis erzielt. HrmI und HrmJ sind neuartige Enzyme, die keine charakterisierten Homologe besitzen. Durch intensive bioinformatische Analysen (PSI-BLAST) konnten für HrmI und HrmJ mögliche Funktionen und eine Reaktion in der (3-Ncp)Ala-Biosynthese postuliert werden. HrmJ, das putativ den ersten Schritt in der Biosynthese katalysiert, zeigt entfernte Homologie zu einer Isoleucinhdyroxylase, einer Fe(II)/ α -Ketoglutaratabhängigen Oxygenase. Das Enzym wurde in hohen Ausbeuten in E. coli exprimiert und isoliert und wurde in vitro in einem Hydroxylierungsassay mit Fe(II), α -Ketoglutarat und Ascorbat eingesetzt. In der HPLC-Analyse des Assays konnte ein neuer Peak detektiert werden, der massenspektrometrisch charakterisiert wurde. Die gemessene exakte Masse weist auf ein putatives Intermediat in der (3-Ncp)Ala-Biosynthese, ein hydroxyliertes Lysin mit terminaler Oximfunktion 60 hin. Weitere Einsichten in die Biosynthese konnten bisher nicht erzielt werden. Das Ergebnis des Assays ließ sich, vermutlich aufgrund der Oxidationsempfindlichkeit des Enzyms, nicht reproduzieren. Ein nächster Schritt könnte die Wiederholung des Assays unter strikt anaeroben Bedingungen sein. Zur Zeit wird das postulierte detektierte Produkt in der Arbeitsgruppe Piel chemisch synthetisiert. Nach erfolgter Fertigstellung kann diese Substanz als Standard und Vergleichssubstanz dienen und weitere Aufschlüsse über die Identität des detektierten Intermediates liefern. Außerdem kann diese Substanz als Substrat für die putative Oxidase HrmI eingesetzt werden, die, laut Hypothese, den anschließenden Schritt zur Bildung von (3-Ncp)Ala (27) katalysiert.

Die Biosynthese des 4-Propenylprolins [(4-Pe)Pro] (69) (Abschnitt 5.2) verläuft über die proteinogene Aminosäure Tyrosin (70) und L-DOPA (71).^{62,226} Die L-DOPA-Dioxygenase HrmF, die den Schlüsselschritt, die Ringöffnung von 71, katalysiert, wurde in dieser Arbeit kinetisch charakterisiert. Das Enzym besitzt einen etwa 10-fach kleineren K_M-Wert und eine etwa 15-fach höhere katalytische Konstante (K_{cat}) gegenüber dem einzigen charakterisierten Homolog LmbB1 aus der Biosynthese des Lincomycins. Hieraus ergibt sich eine fast 160-fach höhere Effektivität für HrmF. Das Enzym ist, zusammen mit seiner robusten Expression und der bemerkenswert relaxierten Substratspezifität ein guter Kandidat für chemoenzymatische Syntheseansätze.⁶² Mit degenerierten Primern wurde im Genom von *Streptomyces griseoflavus* W-384 nach Homologen zu LmbX, einer putativen C-C-Hydrolase gesucht, die essentiell für die Biosynthese des (4-Pe)Pro-Analogs im Lincomycin ist. Solch ein Enzym ist im *hrm*-Gencluster nicht kodiert. Allerdings konnte kein korrespondierendes PCR- Produkt amplifiziert werden.⁶² Außerdem wurde die putative SAM-abhängige Methyltransferase HrmC mit HrmF coexprimiert. Es konnte aber kein neues Produkt im Extrakt detektiert werden. Das Ergebnis zeigt, dass HrmC während der Biosynthese von (4-Pe)Pro (**69**) wahrscheinlich nicht den Reaktionsschritt nach HrmF katalysiert. Die weitere Biosynthese des Propenylprolins (**69**) bleibt also weiterhin ungeklärt. Im zukünftigen Experimenten sollten auch die weiteren putativen Biosynthesegene für **69** in verschiedenen Kombinationen mit HrmF coexprimiert werden, um den an HrmF anschließenden Schritt in der (4-Pe)Pro-Biosynthese zu bestimmen. Ein weiterer Ansatz ist die Deletion von putativen Biosynthesegenen des Hormaomycins *in vivo*. Erste Deletionsmutanten wurden bereits von Xiaofeng Cai konstruiert, mögliche akkumulierte Zwischenprodukte können Aufschluß über die Funktion dieser Gene geben.

Die biosynthetische Startereinheit des Hormaomycins, Chlorhydroxypyrrolcarbonsäure (Chpca) (93), wird am freistehenden Peptidylcarrierprotein HrmL ausgehend von Prolin (94) synthetisiert (siehe Abschnitt 5.3). Im Rahmen dieser Arbeit wurden die Acyl-CoA-Synthetase HrmK und HrmL in E. coli exprimiert und isoliert. Für HrmL wurde eine für die Aktivität notwendige posttranslationale Modifizierung, die 4'-Phosphopanthetheinvlierung, massenpektrometrisch nachgewiesen. Die Substratspezifität von HrmK wurde in vitro in einem massenspektrometrisch basierten Adenylierungsassay charakterisiert. Dabei zeigte sich, dass das Enzym sehr selektiv Prolin (94) adenyliert und strukturelle Analoga von 94 nicht aktiviert werden. Eine Beladung von HrmL mit Prolin durch HrmK in vitro konnte bisher nicht nachgewiesen werden. Für die N-Hydroxylierung des Pyrrols ist HrmN ein guter Kandidat. Das Enzym wurde in einem kombinatorischen Biosyntheseexperiment in Pseudomonas fluorescens Pf-5, dem Produzenten der Substanz Pyoluteorin (115), exprimiert. Eine N-Hydroxylierung der Pyrroleinheit des Pyoluteorins (115) konnte massenspektrometrisch aber nicht detektiert werden. Somit bleibt die N-Hydroxylierung, eine in der Natur äußerst seltene Modifikation, weiter unaufgeklärt. Um die Biosynthese von Chpca (93) in vitro weiter zu untersuchen, müssten, nach erfolgreicher Generierung von Prolyl-HrmL (95), die Acyl-CoA-Dehydrogenase HrmM, die Halogenase HrmQ und HrmN exprimiert, isoliert, und 95 zugesetzt werden. Eine hrmN-Deletionsmutante im Hormaomycinproduzenten wird momentan in der Arbeitsgruppe Piel durch Xiaofeng Cai konstruiert, nach erfolgreicher Generierung können eventuell akkumulierende Intermediate Aufschluss über die Funktion von HrmN geben.

Im zweiten Teil der Arbeit (Abschnitt 5.4) wurden die Adenylierungsdomänen (A-Domänen) der Hormaomycin-NRPS untersucht, um Einsichten in Substratspezifität der Hormaomycin-NRPS im Hinblick auf mutasynthetische Experimente zu gewinnen. Alle A-Domänen wurden heterolog stabil exprimiert und isoliert. Nachdem nur eine A-Domäne, HrmP1_A, im massenpektrometrisch basierten Adenylierungsassay¹⁰⁹ moderate Aktivität zeigte,⁶² wurden alle A-Domänen mit dem MbtH-artigen Protein HrmR coexprimiert. Alle A-Domänen wurden mit HrmR in einem molekularen 1:1-Verhältnis eluiert und zeigten *in vitro* hohe adenylierende Aktivität. Die A-Domänen HrmO1_A und HrmO4_A aktivieren (3-Ncp)Ala (27) fast quantitativ. Leucin wurde von den getesteten Aminosäuren am zweitstärksten aktiviert [etwa 10% von (3-Ncp)Ala (27)]. Die Domänen HrmO3_A und HrmP1_A aktivieren bevorzugt (β -Methyl)phenylalanin [(β -Me)Phe] (**31**), gefolgt von Phenylalanin (**35**) [etwa 10% von 31]. Die Analoga α -Methylphenylalanin (125) und 4-Chlorophenylalanin (124) konnten nicht umgesetzt werden. HrmP3_A aktiviert bevorzugt das natürliche Substrat (4-Pe)Pro (69), der relativ hohe Umsatz von 4-Z-Ethinylprolin (128) (etwa 20% von 69) ist sehr vielversprechend im Hinblick auf die erfolgreiche Mutasynthese eines Hormaomycinderivates, das über "Klick-Chemie" das molekulare Target von Hormaomycin (13) binden und aufklären könnte. HrmP2_A adenyliert in vitro hauptsächlich das bioinformatisch vorausgesagte Substrat Valin, obwohl an dieser Stelle Isoleucin in Hormaomycin eingebaut wird. Diese Diskrepanz könnte durch andere Proteinkonformationen in vivo oder durch Korrekturfunktionen anderer Enzyme der Hormaomycin-NRPS entstehen. Die Enzymfraktionen wurden nach der Isolierung über Ni-NTA-Chromatographie teilweise mit FPLC weiter aufgereinigt und erneut getestet. Ungewöhnlich hohe Aktivitäten für einzelne Aminosäuren und breitere Hintergrundaktivitäten, mutmaßlich durch Verunreinigungen aus E. coli verursacht, konnten durch diesen zusätzlichen Reinigungsschritt reduziert und falsch positive Ergebnisse somit eliminiert werden. Die Ergebnisse der A-Domänentests können somit wertvolle Informationen für zukünftige Mutasyntheseexperimente am Hormaomycin liefern. In der Arbeitsgruppe Piel ist bereits ein Knock-Out-System für einzelne Biosynthesegene durch Xiaofeng Cai etabliert. Zukünftig können weitere Analoga der Hormaomycinvorstufen synthetisiert und nach erfolgreicher Testung im A-Domänenassay den jeweiligen Stämmen zugefüttert werden, um neue Hormaomycinanaloga zu generieren.

Die Sequenzen der Hormaomycin A-Domänen zeigen in einigen Fällen eine weitgehende Übereinstimmung am N- und C-Terminus (jeweils etwa 200 Aminosäuren). Das legt einen möglichen Austausch der zentralen DNA-Abschnitte, und damit der Substratspezifität, durch Rekombination während der Evolution nahe. Um diese Hypothese experimentell zu überprüfen, wurden mit Fusions-PCR fünf rekombinante A-Domänen konstruiert, die alle die N-und C-terminale Sequenz von HrmO3_A trugen (siehe Abschnitt 5.4.2). Die zentralen Abschnitte wurden einerseits HrmO2_A, HrmO4_A und HrmP2_A, (O2f_A, O4f_A und P2f_A), andererseits zwei A-Domänen der NRPS des "calcium-dependent antibiotic" (CDA) aus Streptomyces coelicolor A3(2), entnommen. Alle rekombinanten Enzyme ließen sich stabil in E. coli mit HrmR coexprimieren. O2f_A, O4f_A und P2f_A waren aktiv und zeigten die gleiche Substratspezifität wie die nativen, die zentralen Abschnitte enthaltenden, A-Domänen. Die enzymatische Aktivität war gleich $(O4f_A)$ oder nur leicht verringert $(O2f_A, P2f_A)$. Die Fusionen mit den A-Domänenabschnitten von S. coelicolor waren nicht aktiv. Allerdings wurden während der Fusion zwei essentielle Aminosäurereste für die Substratbindung nicht ausgetauscht. Eine Mutation dieser Aminosäuren oder ein Austausch eines etwas größeren DNA-Abschnitts könnte auch hier zu aktiven Enzymen führen. Die erfolgreiche Konstruktion, Expression und Testung von neuen A-Domänen, die aus verschiedenen Abschnitten von Hormaomycin-A-Domänen zusammengesetzt wurden, unterstützt die Hypothese, dass die Substratspezifität der NRPS in der Evolution durch Rekombination von DNA-Abschnitten, die die Information für Substratspezifität beinhalten, generiert wurde. Solch ein Phänomen ist für Streptomyceten bisher nicht beschrieben worden. Allerdings dürfte die Generierung einer rekombinierten Hormaomycin-NRPS mit neuen A-Domänenspezifitäten nicht einfach sein, da viele Abschnitte der Module sehr hohe Homologien zeigen, was die gezielte homologe Rekombination von Genabschnitten erschwert. Die erfolgreiche Übertragung dieses Konzeptes auf andere NRPS-Systeme bleibt abzuwarten, da ähnliche Rekombinationen von Spezifitäten bisher fast nur in NRPS von Cyanobakterien beobachtet wurden.

Im dritten Teil der vorliegenden Arbeit (Kapitel 5.5) wurden die ersten bekannten, natürlich gebildeten Analoga des Hormaomycins aus einem Extrakt eines Hormaomycin-Überproduktionsstammes isoliert und deren Strukturen mit massenspektrometrischen Methoden und NMR-Experimenten anschließend aufgeklärt. Hormaomycin A1 (136) ist ein Deschlorohormaomycin, wogegen in Hormaomycin A2 (137) Valin statt Isoleucin in das Peptid eingebaut wurde. Hormaomycin A3 (138) und A4 (139) tragen jeweils ein Leucin, Hormaomycin A5 (140) zwei Leucine statt (3-Ncp)Ala (27) im Molekül. Abbildung 5-98 fasst die Strukturen der Analoga zusammen. Der Einbau der proteinogenen Aminosäuren in Hormaomycin A2-5 korrespondierte sehr gut mit den Ergebnissen der A-Domänentests (vgl. Abschnitt 5.4.4) und demonstriert eindrucksvoll die Anwendbarkeit dieser Tests für zukünftige Mutasyntheseexperimente.

	ormao-	R ₁	R ₂	R ₅	R ₇
	RM (13)	Cl	Nitrocyclopropyl	Nitrocyclopropyl	CH ₃
$N \rightarrow 0$ $O \rightarrow 0$ $A1$	(136)	Н	Nitrocyclopropyl	Nitrocyclopropyl	CH_3
-On AS	(137)	Cl	Nitrocyclopropyl	Nitrocyclopropyl	Н
A3	(138)	Cl	Nitrocyclopropyl	Isopropyl	CH_3
A4	(139)	Cl	Isopropyl	Nitrocyclopropyl	CH_3
R_2 A5	(140)	Cl	Isopropyl	Isopropyl	CH_3

Abb. 5-98: Übersicht über die isolierten Hormaomycinderivate A1-A5

Außerdem wurde ein Gemisch aus zwei Hormaomycinen mit vermutlich offenem Cyclopropanring **40/41** und ein zusätzliches Addukt mit einer Ethylacetyleinheit am N-Hydroxyl **141** isoliert. Hierbei ist nicht geklärt, ob es sich um Naturstoffe oder Artefakte bei der Aufarbeitung handelt. Die biologischen Aktivitäten der isolierten Analoga werden weitere Einblicke in die Struktur-Wirkungsbeziehungen von Hormaomycin (**13**) geben. Die Detektion weiterer putativer

Hormaomycine im Überexpressionsextrakt durch HPLC-MS zeigt, dass es mit geeigneten Methoden und einer großen Fermentationsmenge möglich sein wird, mehr neue natürliche Hormaomycinanaloga zu isolieren und die Substanzbibliothek der Hormaomycine zu erweitern.

Insgesamt konnten in dieser Arbeit neue Einsichten in die Biosynthese und die Substratspezifitäten der NRPS des strukturell komplexen bakteriellen Hormons Hormaomycin (13) gewonnen werden. Die bioinformatische Analyse des Genclusters und die teilweise Aufklärung der Biosynthese der Vorstufen zeigt interessante und neuartige Biosynthesewege der einzigartigen Vorstufen des Hormaomycins. Die weitere biochemische Charakterisierung der Enzyme wird tiefere Einblicke in die katalysierten Reaktionen und ihre Mechanismen bringen. Durch die Charakterisierung der A-Domänen wurden umfassende Einblicke in die Spezifitäten der Hormaomycin-NRPS gewonnen. Mit dem vorhandenen Testsystem können zukünftig zielgerichtete Mutasyntheseexperimente durchgeführt werden, um neuartige Hormaomycinderivate zu generieren. Diese könnten verbesserte oder breitere antibiotische Eigenschaften oder bessere hormonale Wirkungen besitzen. Unter anderem kann in Zukunft Mutasynthese mit einem Alkinylderivat von 69 dazu beitragen, über ein Pull-down-Experiment das zelluläre Target und damit den hormonellen Wirkmechanismus von Hormaomycin (13) aufzuklären, einer Schnittstelle von morphologischer Differenzierung der an und Produktion von Sekundärmetaboliten in Streptomyceten liegt. Die Ergebnisse der Arbeit zeigen außerdem, dass das MbtH-artige Protein HrmR mit allen A-Domänen der NRPS interagiert und für die Aktivität benötigt wird. Weitere Studien zu den Interaktionsstellen von A-Domänen und weiteren NRPS-Domänen mit MbtH-artigen Proteinen wären wünschenswert und würden die Kenntnisse über NRPS und kombinatorische Biosynthese weiter vergrößern. Die Hormaomycin-NRPS kann aufgrund der flexiblen Austauschbarkeit von Substratpromiskuitäten und der generell relaxierten Substratspezifität ein gutes System für zukünftige kombinatorische Biosyntheseexperimente sein. HrmF, aber auch HrmI und HrmJ, die Enzyme der (3-Ncp)Ala-Biosynthese, könnten in Zukunft für chemoenzymatische Synthesen eingesetzt werden. HrmI und HrmJ sind hier besonders interessant, da sie einen neuen enzymatischen Zugang zu chiralen Cyclopropylderivaten liefern könnten.

6 Material und Methoden

6.1 Vektoren und Organismen

6.1 Vektoren

Zur Lagerung, Subklonierung und Sequenzierung der PCR-Produkte (Tab. 6-1) und zur heterologen Expression in *E. coli* und *Pseudomonas fluorescens* Pf-5 (Tab. 6-2) wurden verschiedene Vektoren eingesetzt.

m 1 .	< 1	T T 1 /	т		0 1 1 1		1.0		(D1	• 11 .		A1 1 .	0 1
1 ab. 6)-I	Vektoren	zur L	Lagerung	Subkl	onierung	und See	Juenzierung	(Plas	smidkarten	unter	Abschnitt	(9.I)
						· · · · · ·		1					,

Vektor	Resistenz	Herkunft	
	(verwendete Konzentrationen)		
pBluescript II SK(+)	Ampicillin (100 μ g x mL ⁻¹)	Fa. Stratagene	
pGEM-T easy	Ampicillin (100 μ g x mL ⁻¹)	Fa. Promega	

Tab. 6-2 Vektoren zur Proteinexpression (Plasmidkarten unter 9.1)

Vektor	Expressionsspezifikationen	Resistenz (verwendete	Herkunft
		Konzentrationen)	
pHIS8 ²⁷²	Tag: N-terminaler His-Tag	Kanamycin	Prof. Bradley
	Promoter:T7	$(50 \ \mu g \ x \ mL^{-1})$	Moore
	Induktion: IPTG 0,1-1 mM		
pHIS8-svp ²⁴²	Tag: N-terminaler His-Tag	Kanamycin	Prof. Bradley
	Promoter:T7	$(50 \ \mu g \ x \ mL^{-1})$	Moore
	Induktion: IPTG 0,1-1 mM		
pET 28b	Tag: N-terminaler His-Tag	Kanamycin	Fa. Novagen
	Promoter:T7	$(50 \ \mu g \ x \ mL^{-1})$	
	Induktion: IPTG 0,1-1 mM		
pCDF-DUET	Promoter:T7	Streptomycin	Prof. Craig
	Induktion: IPTG 0,1-1 mM	$(50 \ \mu g \ x \ mL^{-1})$	Townsend
pME 6041 ²⁵⁶		Kanamycin	
		$(200 \ \mu g \ x \ mL^{-1})$	

Tab. 6-3: Verwendete Ausgangsvektoren zur Expression von hrmC, F, J

Vektor	Bestandteile	Resistenz(verwendete	Herkunft	
		Konzentrationen)		
pDF008	pBluescript II SK(+), hrmC	Ampicillin (100 μg x mL ⁻¹)	Daniel Flachshaar	
pDF010	pBluescript II SK(+), hrmF	Ampicillin (100 µg x mL ⁻¹)	Daniel Flachshaar	
pDF012	pBluescript II SK(+), hrmJ	Ampicillin (100 µg x mL ⁻¹)	Daniel Flachshaar	

6.1.2 Organismen

Zur Lagerung von Ligationen, Plasmiden und Konstrukten wurde *E. coli* XL-1 blue, zur heterologen Proteinexpression *E. coli* BL21 (DE3) verwendet. Zur heterologen Expression von *hrmN* diente *Pseudomonas fluorescens* Pf-5. *Streptomyces griseoflavus* W-384 wurde für die Isolierung von Hormaomycin fermentiert, als Testorganismus für die Komplementierung von Hormaomycin diente *Arthrobacter crystallopoietes*. Für die Amplifizierung von Teilen der CDA-A-Domänen wurde *Streptomyces coelicolor* A3(2) kultiviert. Eine Übersicht ist in Tabelle 6-3 aufgeführt.

		••				
T 1	C 1.	T T1 1		11		\mathbf{O}
Lan	h_4.	Linersicht	liner	die.	eingesetzten	i irganismen
I ao.	υ τ.	Oberstein	uou	uic	UnigesetZten	organismen
						- 0

Stamm	Genotyp	Herkunft
E. coli XL-1 Blue	recA1, endA1, gyrA96, thi-1, hsdR17, supE44,	Fa. Stratagene
	relA1, lac [F,proAB lacIq ZAM15 Tn10	
E. coli BL21 (DE3)	$(Tet^{R})]F$, <i>ompT</i> , <i>hsdSB</i> ($r_{B}m_{B}$), <i>gal</i> , <i>dcm</i> , DE3	Fa. Invitrogen
Pseudomonas fluorescens Pf-5	Wildtyp	Harald Gross
Streptomyces griseoflavus W-384	Wildtyp	Axel Zeeck
Streptomyces griseoflavus W-384 ∆ hrmI	$\Delta hrm I$	Xiaofeng Cai
Arthrobacter crystallopoietes	Wildtyp	DSMZ 20117
Streptomyces coelicolor A3(2)	Wildtyp	DSMZ 40782

6.2 Medien und Puffer

6.2.1 Nährmedien

Die folgenden Medien wurden für die feste und flüssige Kultivierung von Bakterien eingesetzt. Für alle Nährmedien außer dem Production Medium wurde demineralisiertes Wasser (dH₂O) verwendet. Die Nährmedien wurden durch Autoklavieren sterilisiert. Trugen die zu kultivierenden Bakterien ein Plasmid, so wurde das entsprechende Antibiotikum für die Selektion hinzugegeben (Tab. 6-1, 6-2).

LB-Medium (Luria Bertani):²⁷³

10 g x L ⁻¹	NaCl
$5 g x L^{-1}$	Hefeextrakt
10 g x L ⁻¹	Trypton
15 g x L^{-1}	Agar

pH = 7,4 (NaOH)

Das Flüssigmedium wurde ohne Agar angesetzt.

2xYT-Medium (Kieser):¹⁵

5 g x L ⁻¹	NaCl
10 g x L^{-1}	Hefeextrakt
16 g x L ⁻¹	Trypton

TB-Medium (Terrific broth):²⁷⁴

12 g Trypton

- 24 g Hefeextrakt
- 4 mL Glycerin

ad 900 mL dH₂O

Nach dem Autoklavieren wurden 100 mL einer sterilen Lösung mit 0.17 M KH2PO4 und 0.72 M K_2 HPO4 (pH=7,2) zugegeben.

KB-Medium (King`s broth B):²⁷⁵

20 g x L ⁻¹ 1,5 g x L ⁻¹ 1,5 g x L ⁻¹ 10 mL x L ⁻¹	Pepton K ₂ SO ₄ MgCl ₂ Glycerin
<u>NM6:²⁰⁰</u>	
20 g x L ⁻¹ 20 g x L ⁻¹ 20 g x L ⁻¹ 2 g x L ⁻¹ 0.3 g x L ⁻¹ 0.5 g x L ⁻¹	D-(-)-Mannitol Sojamehl Fleischextrakt NaCl L-Valin ZnSO ₄ x 6 H ₂ O
pH = 7,3	
<u>NM10:²⁰⁰</u>	
$50 g x L^{-1}$ $3 g x L^{-1}$ $1 g x L^{-1}$ $25 g x L^{-1}$ $50 mg x L^{-1}$ $50 mg x L^{-1}$ $420 mg x L^{-1}$ $100 mg x L^{-1}$ $10 mL x L^{-1}$ $1 mL x L^{-1}$	D-(-)-Mannitol L-Asparagin K ₂ HPO ₄ NaCl MgSO ₄ x 7 H ₂ O CaCl ₂ x 2 H ₂ O CH ₃ COONa <i>meso</i> -Inosit Spurenelementelösung (siehe untern) Vitaminlösung (siehe unten)
Spurenelementelösung: ²⁰⁰	
8 g x L ⁻¹	CaCl ₂ x 2 H ₂ O

$CaCl_2 \ge 2 H_2O$
$MnCl_2 x \ 2 \ H_2O$
ZnCl ₂
$CuCl_2 \ge 2 H_2O$
FeCl ₃ x 6 H ₂ O

Vitaminlösung:200

1 g x L ⁻¹	Thiamin-HCl
1,2 g x L ⁻¹	Calcium-D-(+)-Panthotenat
$1 \text{ g x } \text{L}^{-1}$	Flavin-Mononucleotid
$2,3 \text{ g x L}^{-1}$	Nicotinsäure
12 g x L^{-1}	Pyridoxin-HCl

 $\begin{array}{ll} 200 \mbox{ mg x } L^{-1} & p\mbox{-}Aminobenzoat \\ 100 \mbox{ mg x } L^{-1} & Vitamin \mbox{ B}_{12} \\ 10 \mbox{ mg x } L^{-1} & Folsäure \\ 6 \mbox{ mg x } L^{-1} & Biotin \end{array}$

GYM medium:²⁷⁶

$4 g x L^{-1}$	Glucose
$4 g x L^{-1}$	Hefeextrakt
$10 \text{ g x } \text{L}^{-1}$	Malzextrakt
$2 g x L^{-1}$	CaCO ₃
12 g x L^{-1}	Agar

pH = 7,4

Production medium:⁵⁷

D-Mannitol
Fleischextrakt
Sojamehl
$ZnSO_4 x \ 6 \ H_2O$

1 L Leitungswasser, pH = 7,2

TSB medium:15

 $30 \text{ g x } \text{L}^{-1}$ Tryptic Soy Broth

6.2.2 Puffer

In den Experimenten fanden folgende Puffer Verwendung. Lösungsmittel war in allen Fällen demineralisiertes Wasser. Weitere verwendete Puffer sind bei den jeweiligen Methoden verzeichnet.

TE-Puffer:277

10 mM 1 mM	Tris EDTA
pH = 8,0 (HCl)	
STE-Puffer: ²⁷⁷	
1 mM 10 mM 100 mM	EDTA Tris NaCl
pH = 8,0 (HCl)	
TAE-Puffer (50x): ²⁷⁷	
0,12 % (v/v) 0,48 % (w/v) 1 mM	Eisessig Tris EDTA
pH = 8,0 (HCl)	

Der Puffer wurde vor Gebrauch mit demineralisiertem Wasser zum 1 x TAE Puffer verdünnt.

Lysepuffer:²⁶⁰

25 mM 500 mM 10 mM 10% (v/v)	NaHPO₄ NaCl Imidazol Glycerin
pH = 8,0 (HCl)	
Waschpuffer: ²⁶⁰	
25 mM 500 mM 40 mM 10% (v/v)	NaHPO₄ NaCl Imidazol Glycerin
pH = 8,0 (HCl)	
Elutionspuffer: ²⁶⁰	
25 mM 500 mM 50 mM - 250 mM 10% (v/v) pH = 8,0 (HCl)	NaHPO₄ NaCl Imidazol Glycerin
Assaypuffer:	
25 mM 100 mM 10% (v/v)	NaHPO ₄ NaCl Glycerin
pH = 8,0 (HCl)	

6.3 Mikrobiologische Techniken

6.3.1 Stammhaltung in Kryokulturen

Zur Lagerung von Bakterienstämmen bei -80 °C wurden Gefrierkulturen angelegt. Hierfür wurde die unter geeigneten Bedingungen (siehe 6.3.2) aufgezogene Bakterienkultur unter sterilen Bedingungen mit dem gleichen Volumenanteil einer sterilen 30% (v/v) Glycerinlösung versetzt. Die entstandene Glycerinkultur wurde in ein Kryoröhrchen gefüllt und bei -80 °C gelagert.

6.3.2 Kultivierung von Bakterien

Die verwendeten Bakterien wurden unter folgenden Bedingungen (in Flüssigkultur oder auf Agarplatten mit dem entsprechenden Medium) kultiviert. Zusätzliche Parameter sind direkt zu den jeweiligen Experimenten aufgeführt.
Stamm	Medium (siehe Kapitel 6.2.1)	Tempe- ratur [°C]	Schüttler- geschwindigkeit [min ⁻¹]
E.coli XL-1 Blue	LB	37	200-250
E.coli BL21(DE3)	LB, 2xYT, TB	37	200-250
Pseudomonas fluorescens Pf 5	KB	30	200
Streptomyces griseoflavus W-384	NM6 (Vorkultur),	27	200 (Vorkultur)
	NM10 (Fermentation)		
Streptomyces griseoflavus W-384 ∆hrmI	Production medium	27	200
Streptomyces coelicolor A3(2)	TSB	30	200

Tab. 6-5: Kultivierungsbedingungen der verwendeten Bakterien

6.3.3 Konzentrationsbestimmung von Bakterienkulturen

Das Wachstum einer Bakterienkultur lässt sich durch die Erhöhung der optischen Dichte bei 600 nm (OD_{600}) verfolgen. Kulturen wurden photometrisch gegen das jeweilige sterile Medium als Referenz vermessen.

6.3.4 Transformation

Transformation ist das Einbringen von DNA in einen Organismus. In dieser Arbeit wurden chemische (Hitzeschocktransformation) und elektrische Transformation (Elektroporation) angewendet. Vor der Transformation mussten elektrisch bzw. chemisch kompetente Zellen hergestellt werden (siehe Kap. 6.3.4.1 und 6.3.4.3), um DNA aufnehmen zu können.

6.3.4.1 Herstellung elektrisch kompetenter Zellen

Es wurde eine Übernachtkultur (5 mL) hergestellt und mit einem Zahnstocher, der in die Bakterienkultur gehalten wurde, beimpft. Am nächsten Morgen wurde die Übernachtkultur in 200 mL LB-Medium überführt. Die Zellen wurden bei 37 °C und 200 rpm kultiviert. Wenn die OD₆₀₀ von 0,4 erreicht war, wurden die Zellen abzentrifugiert (4 °C, 5000 rpm, 5 min) und der Überstand verworfen. Von nun an wurde auf Eis weitergearbeitet. Die Zellen wurden nun aufeinanderfolgend in steriler Umgebung mit 200 mL, 100 mL und 50 mL kaltem 10% (v/v) Glycerin gewaschen. Zwischen den Waschschritten wurde bei 4 °C, 5000 rpm für 5 min zentrifugiert und der Überstand verworfen. Die Zellen wurden im letzten Schritt in 1 mL 10% (v/v) Glycerin resuspendiert und in vorgekühlte 1,5 mL Reaktionsgefäße zu 70 µl ausaliquotiert. Die Zellen wurden in flüssigem N₂ schockgefroren und bis zur weiteren Verwendung bei -80 °C gelagert.

6.3.4.2 Elektroporation

Zu 70 μ l auf Eis aufgetauten, elektrokompetenten Zellen (siehe 6.3.4.1) wurden 1-3 μ l eines Ligationsansatzes bzw. 0.1-1 μ l eines oder mehrerer Plasmide hinzugegeben und in eine eisgekühlte, sterile Elektroporationsküvette (Schichtdicke 2 mm) überführt. Das Gemisch wurde in einem

Elektroporator (Programm Ec 2) einer kurzzeitigen Spannung von 2,5 kV ausgesetzt. Danach wurde 1 mL LB-Medium zugegeben, das Gemisch wieder in ein 1,5 mL Reaktionsgefäß überführt und 1 h bei 37 °C und 200 rpm inkubiert. Die Zellsuspension wurde auf Selektivagar ausplattiert und über Nacht bei 37 °C kultiviert.

6.3.4.3 Herstellung chemisch kompetenter Zellen

Es wurde eine Übernachtkultur (5 mL) (siehe 6.3.4.1) hergestellt und am nächsten Morgen in 200 mL LB-Medium überführt. Die Zellen wurden bei 37 °C und 200 min⁻¹ kultiviert. Wenn die OD₆₀₀ von 0,4 erreicht war, wurden die Zellen abzentrifugiert (4 °C, 5000 rpm, 5 min) und der Überstand verworfen. Von nun an wurde auf Eis weitergearbeitet. Das Pellet wurde in 25 mL eiskaltem TFB I (Tab. 6-6) resuspendiert. Die Zellen wurden erneut abzentrifugiert (4 °C, 5000 rpm, 5 min) und in 4 mL TFB II (Tab. 6-6) resuspendiert. Die Zellsuspension wurde zu 100 μ L aliquotiert und nach dem Schockfrieren in flüssigem N₂ bei -80 °C gelagert.

Lösung	Zusammensetzung
TFBI	30 mM Kaliumacetat
	10 mM CaCl ₂
	100 mM KCl
	50 mM MnCl ₂
	15% (v/v) Glycerin
TFBII	10 mM MOPS (steril filtriert)
	75 mM CaCl ₂
	10 mM KCl
	15% (v/v) Glycerin

Tab. 6-6: Lösungen zur Herstellung von chemisch kompetenten Zellen

6.3.4.4 Chemische Transformation

Zu einem Aliquot auf Eis aufgetauten, chemisch kompetenten Zellen wurden bis zu 10 µl der Ligation oder der Plasmide gegeben und 20 min inkubiert. Die Zellen wurden für 90 s bei 42 °C einem Hitzeschock ausgesetzt. Anschließend wurde 1 mL LB-Medium hinzugefügt und und das Gemisch wurde erneute 2 min auf Eis gelagert. Nach einer Schüttelinkubation für 1 h bei 37 °C und 250 rpm wurde die Zellsuspension auf Selektivagar ausplattiert und über Nacht bei 37 °C inkubiert.

6.3.5 Blau/Weiß-Selektion auf transformierte positive Klone

Die Plasmide zur Lagerung und Sequenzierung von PCR-Fragmenten (Tab. 6-1) geben die Möglichkeit, nach der Transformation nicht nur transformierte von nicht transformierten Klonen zu unterscheiden, sondern auch die Klone zu erkennen, die im transformierten Plasmid DNA aufgenommen haben. Dies geschieht über die Lokalisation der MCS im Reportergen lacZ (IPTG-induzierbar). Eine Ligation von DNA in dieses Gen bedeutet eine Destruktion des Gens, welches die β -Galactosidase kodiert. β -Galactosidase hydrolysiert X-Gal zu Galactose und einem blauen, wasserunlöslichen Indigo-Farbstoff. Eine positive Insertion in die MCS kann daher durch die Färbung der Zellen sichtbar gemacht werden. Hierzu wurden die Transformanden aus Kapitel 6.3.3 wie beschrieben auf Selektivagar ausplattiert. Die Agarplatten wurden zuvor mit 40 µL einer 20 mg/mL X-Gal-Lösung in Dimethylformamid sowie mit 40 µL einer 20 mg/mL Isopropyl- β -D-1-thiogalacto-pyranosid-(IPTG)-Lösung imprägniert. Nach der Inkubation färbten sich transformierte Zellen, deren Plasmide Fremd-DNA aufgenommen haben, weiß und transformierte Zellen, deren Plasmid kein Insert tragen, blau.

6.4 Molekularbiologische Techniken

6.4.1 Polymerase-Kettenreaktion (PCR)

Die PCR ist eine Methode zur selektiven Amplifikation von DNA. Als Template wurden die genomische DNA von *Streptomyces griseoflavus* W-384, *Streptomyces coelicolor* A3(2) und *Pseudomomas fluorescens* Pf-5, zur Kontrolle der Klonierung aber auch Expressionsplasmide wie pCDF DUET, pHIS-8 oder pME6041 verwendet. In Tabelle 6-7 ist ein üblicher Reaktionsansatz dargestellt. Die verwendeten Primer sind in den Tabellen 6-10 - 6-15 aufgelistet.

Volumen	Substanz
1 µl	dNTP (10 mM)
0,5 µl	Templat-DNA
0,25 bzw. 0,5 µl	DNA-Polymerase (5 U/µL)
0,75 µl	Vorwärtsprimer (50 µM)
0,75 µl	Rückwärtsprimer (50 µM)
2,5 µl	DMSO
5 bzw. 10 µl	Puffer (10x bzw. 5x)
ad 50 µl	ddH ₂ O

Tab. 6-7: Reaktionsansatz für die Polymerasekettenreaktion

Für unterschiedliche Amplifizierungsexperimente wurden verschiedene DNA-Polymerasen verwendet. Zur Überprüfung von Plasmiden und zur Kolonie-PCR diente die *Taq*-DNA-Polymerase (0,25 μ l), als Puffer wurde der mitgelieferte 10x-Reaktionspuffer verwendet. Für die Amplifikation von DNA für Klonierungen wurde die Expand High Fidelity PLUS DNA-Polymerase (0,5 μ l, 5 U/ μ L) eingesetzt. Diese besitzt eine 3[°]-5[°]-Exonucleaseaktivität, wodurch die Fehlerrate minimiert wird. Als Puffer wurde der mitgelieferte 5x-Reaktionspuffer verwendet. Die Reaktionsansätze wurden zur Amplifikation in einem Thermocycler (Biometra) plaziert und einem Temperaturprogramm ausgesetzt (Tab. 6-8).

	Temperatur [°C]	Zeit [s]	Wiederholung
Heizdeckel			
Initiation Denaturierung	96	120	•
Denaturierung	96	30	
Annealing	Primerabhängig	30	30-35 x
Elongation	72	$60 \text{ x} (1000 \text{ bp})^{-1}$)
Abschließende Elongation	72	300	
Abkühlung	4		

Tab. 6-8: Temperaturprogramm für die PCR

6.4.1.1 Kolonie-PCR

Die Kolonie-PCR diente zur Überprüfung von Bakterienkolonien auf Agarplatten auf enthaltenes Insert. Hier dienten ganze Zellen als Templat enthaltende Matrix. Diese Prozedur war mit einer erheblichen Zeitersparnis verbunden, da die Schritte der Übernachtkultur und Plasmidisolation entfielen. Allerdings waren die Störanfälligkeit und die Möglichkeit, falsch positive Ergebnisse zu erzielen, aufgrund von Verunreinigunen stark erhöht. Daher wurde diese Methode nur in speziellen Fällen zur Überprüfung von Klonierungen eingesetzt. Anstatt von genomischer DNA wurden mit einem Zahnstocher Bakterienzellen von einer Agarplatte zum Reaktionsansatz gegeben. Der einzige Unterschied zur PCR (Kap. 6.4.1) bestand in einer Erhöhung der anfänglichen Denaturierungszeit von 2 auf 10 Minuten. Dadurch wurden die Zellen aufgeschlossen und die enthaltene DNA als Templat freigesetzt.

6.4.1.2 Fusions-PCR

Zur Konstruktion von neuartigen A-Domänen wurde die Methode der Fusions-PCR verwendet. Hierzu wurden zunächst PCR-Produkte mit DNA-Überhängen von 20 bp zum für die Fusion vorgesehenen DNA-Fragment generiert (Tab. 6-8). Es wurden jeweils 0,5 μ L der zu fusionierenden, aufgereinigten (siehe 6.4.1.4) DNA-Abschnitte hinzugegeben. Ansonsten war der PCR-Ansatz wie in Tab. 6-7 zusammengesetzt. Als Polymerase wurde die Expand High Fidelity PLUS DNA-Polymerase (0,5 μ l, 5 U/ μ L) verwendet. Die eingesetzten Primer waren sogenannte "nested primer" (O3nested F+R, siehe Tab. 6-12). Die DNA-Fragmente mit komplementären Überhangen wurden dann mit einer speziell optimierten PCR-Methode nach Szewczyk et al.²⁶¹ fusioniert. Dabei wurde die Elongationszeit schrittweise verlängert. Das Temperaturprogramm ist in Tabelle 6-9 aufgeführt.

	Temperatur [°C]	Zeit [s]	Wiederholung
Heizdeckel			
Initiation Denaturierung	94	120	
Denaturierung	94	20	
Ramping	70	1	
Annealing	55	60	10x
Elongation	72	180	3
Denaturierung	94	120)
Ramping	70	1	ļ
Annealing	55	60	5x
Elongation	72	240	2
Denaturierung	94	120	1
Ramping	70	1	
Annealing	55	60	10x
Elongation	72	300	
Abkühlung	4		

Tab.6-9: Temperaturprogramm für die Fusions-PCR

6.4.1.3 verwendete Oligonucleotide (Primer)

Für die Amplifikation, Klonierung, und Sequenzierung wurden spezifische Primer konstruiert. Für die Suche nach dem *lmbX*-Homolog wurden dagegen degenerierte Primer entworfen. Bei Primern, die zur einfachen Klonierung in einen Expressionsvektor verwendet wurden, wurden Restriktionsschnittstellen zur *In Frame*-Klonierung angefügt. Als Templat diente genomische DNA von Bakterien oder Plasmide. Die Primer wurden in lyophilisierter Form von der Fa. Invitrogen bezogen. Die Oligonucleotide wurden in TE-Puffer (siehe 6.2.2)gelöst, um eine 500 μM Stammlösung zu erhalten. Aliquots wurden dann für die PCR mit dd-H₂O 1:10 verdünnt. In den Tabellen 6-10 - 6-15 sind alle in dieser Arbeit verwendeten Primer und ihre Funktion aufgeführt.

Primer-	Primersequenz (5' \rightarrow 3')	Templat
name		
hrmJ	F: AAAAAA <u>GAGCTC</u> ATGCCGCTCAACGACCGTG	Streptomyces
	R: AAAAAA <u>AAGCTT</u> TCAGCCCTCGGCCAGGG	griseoflavus
		W-384
hrmK	F: <u>GGATCC</u> AGCAGCACCCCCGGAAC	
	R: <u>AAGCTT</u> TCATTCGGTTACCTCG	
hrmL	F: <u>GGATCC</u> AACTCCGTAGAAGACCTCTG	
	R: <u>AAGCTT</u> TCAGGAAACCTGTGTC	
hrmR	F: AAAAAA <u>CATATG</u> CGAGATCGAGAAAAGAATGGA	
	R: AAAAAA <u>GAGCTC</u> TCATGCCGCGCTCCCTTC	
cdaX	F: AAAAAA <u>CATATG</u> AGTAATCCCTTCGACGAC	Streptomyces
	R: AAA AAA CTCGAGTCCGGTCAGTTGCCGGTG	coelicolor A3(2)

Tab. 6-10: Primer zur heterologen Expression von Hormaomycin-Biosynthesegenen in *E. coli*. Eingeführte Restriktionsschnittstellen sind unterstrichen.

Primername	Primersequenz $(5' \rightarrow 3')$	Templat
01	F: AAA <u>GAATTC</u> AGCCGGCTGGACGTGGTTA	Streptomyces
	R: AAA <u>AAGCTT</u> TCACTCCTCCTGCGGCGTACG	griseoflavus
		W-384
O2	F: AAA <u>GAATTC</u> GGCGACGTCGACGTCCTG	
	R: AAA <u>AAGCTT</u> TCATTCCTCGCGGGCGTCGCG	
O3	F: AAAGAATTCGGCCGGCTGGACGTCGTC	
	R: AAA <u>AAGCTT</u> TCACTCCTCCCGCGGTGTGCG	
O4	F: AAA <u>GAATTC</u> CTGAATCTTGACATCGTCACTG	
	R: AAA <u>AAGCTT</u> TCACTCCTCTGCGGCGTACG	
P1	F: AAA <u>GAATTC</u> GGCCGGCTGGACGTCGT	
	R: AAA <u>AAGCTT</u> TCACTCCTCCTGCGCGGTACGCG	
D2		
P2		
	K: AAA <u>AAUUII</u> ILAUIUUUUUUUUUUUUIAUG	
P3	F· AAAGAATTCGGTTCCGTCGGGCTGTTGT	
15	$\mathbf{R} \cdot \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{G} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{G} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G}$	
	K. The model is the feature of the f	

Tab. 6-11: Primer zur heterologen Expression der Hormaomycin A-Domänen in *E. coli*. Eingeführte Restriktionsschnittstellen sind unterstrichen.

Tab. 6-12: Primer zur Konstruktion der fusionierten A-Domänen. Eingeführte Restriktionsschnittstellen sind unterstrichen. Komplementäre Überhänge sind kursiv markiert.

Primer-	Primersequenz $(5' \rightarrow 3')$	Templat
name		
O3 nested	F: CTGGACGTCGTCACGGCG	Streptomyces
	R: CTCCTCCCGCGGTGTGCG	griseoflavus
		W-384
O3 left	F: AAA <u>GAATTC</u> GCTTTCGCGGCCGATCCG	
	R: ATGCGAAACCACCACACCT	
O3 right	F: TACGGGGCGACGGAGGTG	
	R: AAA <u>AAGCTT</u> ACACCGACCCGCTCCAGC	
0.4.1		
O4 insert	F: AAGGTGTGGTGGTTTCGCATGCGGGGTCTGGGGGAATTTGG	
	R: CGTCACCTCCGTCGCCCCGTACCCGTTCAGCAACCGCCG	
02 incort	E. AACCCTCTCCTCCTTTCCCATCCCAACCTCCTCCCCCCTCT	
02 liisent		
	R. COTCACCTCCOTCOCCCCOTACATOTTOACCAGOOTCOOA	
P2 insert	F· AAGGGTGTGGTGGTTTCGCATAGGGCCGTCTGCGCGTTG	
12 moore	R: CGTCACCTCCGTCGCCCCGTAGACGTGCACCACCAGCGT	
Asp insert	F: AAGGGTGTGGTGGTTTCGCATCACGCCCTGGCCACCTAC	Streptomyces
1	R: CGTCACCTCCGTCGCCCCGTAGGCGTTGATGATCTGGGCG	coelicolor A3(2)
HPG insert	F: AAGGGTGTGGTGGTTTCGCATCGCGGGGGTCGTGGACCTG	
	R: CGTCACCTCCGTCGCCCCGTACAGGTGACGCAGTACGATCC	

Primername	Primersequenz $(5' \rightarrow 3')$	Templat
Promotor	F: <u>GGATCC</u> TTTTAGAATTTTTAGTGTCTTATTTT	Pseudomonas
FIOIDOLOI	R: <u>ATTAAT</u> TGCATTCGACAATCGTGGG	fluorescens Pf-5
hrmN	F: <u>ATTAAT</u> CGCCGACACACCGAGGGG R: <u>AAGCTT</u> TCAGTCGAAGTTGCGCAC	Streptomyces griseoflavus W-384

Tab. 6-13: Primer zur heterologen Expression in *Pseudomonas fluorescens* Pf-5. Eingefügte Restriktionsschnittstellen sind unterstrichen.

Tab. 6-14: Primer zur Sequenzierung im Expressionsvektor

Primername	Primersequenz (5' \rightarrow 3')	Templat
DUET for	TTGTACACGGCCGCATAATC	pCDF DUET
pME for	GTAACATCAAGGCCCGATC	pME 6041
pHIS rev	GTGGGCGGCCGCCGCGGGGA	pHIS8

Tab. 6-15: Primer zur Suche nach einem ImbX-Homolog in S. griseoflavus W-384

Primername	Primersequenz $(5' \rightarrow 3')$	Templat
hrmunknown1	F: CARGARTGYGGNDSNMGN	Streptomyces
	R: NGWNGCRCANGCRTC	griseoflavus W-384
hrmunknown2	F: GAYACNGYNTTYGTN	
	R: CANGCNGGRTCYTCNGG	

6.4.1.4 Reinigung von PCR-Produkten

Die PCR-Produkte wurden vor ihrer weiteren Verwendung mit dem PCR-Purification Kit der Firma Fermentas aufgereinigt. Die Aufreinigung wurde entsprechend den Herstellerangaben durchgeführt.

6.4.2 DNA-Isolierung

6.4.2.1 Isolierung von Plasmid-DNA

Zur Isolierung von Plasmiden aus Bakterien wurde eine Übernachtkultur (5 mL) angesetzt. Am nächsten Tag wurden 1,5 mL der Kultur in ein Reaktionsgefäß überführt und die Zellen für 30 s bei 10000 x g abzentrifugiert. Der Überstand wurde verworfen und die Zellen in 200 μ l Puffer 1 (Tab. 6-16) resuspendiert. Nachdem ca. 5 min bei Raumtemperatur inkubiert wurde, wurden möglichst schnell hintereinander 200 μ l Puffer 2 (Tab. 6-16) und 200 μ l Puffer 3 (Tab. 6-16) hinzugefügt, wobei zwischendurch kräftig geschüttelt wurde. Anschließend wurde 3 min bei 18000 x g zentrifugiert. Der Überstand wurde in ein neues Reaktionsgefäß überführt, in dem 500 μ l Chloroform vorgelegt war. Das Gemisch wurde kräftig in ein neues Reaktionsgefäß überführt, in dem 350 μ l Isopropanol vorgelegt war. Das Gemisch wurde in einer Kühlzentrifuge bei 4 °C (18000 x g) für 20-30 min zentrifugiert.

Anschließend wurde der Überstand vorsichtig verworfen und das Pellet für 5 min mit eiskaltem 70% Ethanol gewaschen (4 °C, 18000 x g). Der Überstand wurde abgenommen und das Pellet in der Speedvac getrocknet. Anschließend wurde die Plasmid-DNA in 50 μ l TE-Puffer oder dH₂O gelöst und bei -20 °C gelagert.

Puffer	Zusammensetzung	
Puffer 1	50 mM Tris	
	10 mM EDTA	
	pH=8,0 (HCl)	
	100 μ g x mL ⁻¹ RNase A, gelöst in	
	TE-Puffer*	
Puffer 2	200 mM NaOH	
	1 % (w/v) SDS	
Puffer 3	3 M Kaliumacetat	
	pH=5,5 (KOH)	

Tab. 6-16: Verwendete Puffer zur Plasmidisolierung

*10 mg RNase A wurden in 1 mL TE-Puffer gelöst, 1 min bei 99 °C gekocht und zu 99 mL der autoklavierten Lösung gegeben

6.4.2.2 Isolierung von genomischer DNA aus Pseudomonas

Eine Übernachtkultur (5 mL) wurde zentrifugiert (10000 x g, 5 min) und in 500 μ l STE-Puffer und 5 mg/mL Lysozym resuspendiert. Der Ansatz wurde bei 37 °C 3 h geschüttelt. Es wurden 250 μ l 2% Natriumdodecylsulfat (SDS) zugegeben und gründlich gemischt. Es wurde bei 37 °C 30 min geschüttelt. Anschließend wurden 250 μ l Phenol-Chloroform-Lösung hinzugegeben und 30 s gründlich gemischt. Diese Mixtur wurde 10 min bei 18000 x g zentrifugiert. 600 μ l des Überstands wurden vorsichtig in ein Reaktionsgefäß überführt, in dem eine Mischung aus 600 μ l Isopropanol und 60 μ l 3M Natriumacetat pH 5,5 vorgelegt war. Das Gemisch wurde 2 min bei 10000 x g zentrifugiert und der Überstand verworfen. Das Pellet wurde mit 500 μ l eiskaltem 70% Ethanol gewaschen und etwa 1 h getrocknet. Das trockene Pellet wurde in 50 μ l TE-Puffer gelöst und bei -20 °C gelagert.

6.4.2.3 Isolierung von genomischer DNA aus Streptomyces

Es wurde wie in Kapitel 6.4.2.2 verfahren, nur dass anstelle von 250 µl 2% SDS 500 µl 10% SDS und gleichzeitig 100 µl 3M Natriumacetat zugegeben wurden. Das Natriumacetat wurde im weiteren Verlauf nicht mehr hinzugegeben.

6.4.3 Agarose-Gelelektrophorese

Die Agarose-Gelelektrophorese diente einerseits zur Analytik von PCR, Plasmiden und Restriktionsspaltungen, außerdem wurde sie zur Isolierung von DNA-Fragmenten eingesetzt. Üblicherweise wurde 1% (w/v) Agarose in 1x TAE-Puffer (siehe 6.2.2) durch Erhitzen in der Mikrowelle gelöst. Nach Abkühlen auf etwa 70 °C wurde 0,1 μ g x mL⁻¹ Ethidiumbromid hinzugegeben. Die Agaroselösung wurde in einen Träger gegossen, ein Probenkamm eingesetzt und

nach dem Aushärten in eine Elektrophoresekammer plaziert. Als Laufrmittel diente 1x TAE-Puffer. Vor der Probenauftragung wurde die DNA mit 10x Färbelösung (0,5 mg x mL⁻¹ Bromphenolblau, 0,5 mg x mL⁻¹ Xylencyanol, 0,5 mg x mL⁻¹ Orange G, 400 mg x mL⁻¹ Sucrose) versetzt. Nach dem Auftragen in die Probentaschen wurde eine Spannung von 100-120 V angelegt. Als Referenz zur Größen- und Konzentrationsbestimmung dienten 2 μ l eines DNA-Markers der Firma Roth (100 bp extended oder 1 kB) oder 6 μ l des 1 kBplus Markers der Firma Fermentas. Eine Auswertung der Banden erfolgte unter UV-Licht.

6.4.4 DNA-Isolierung aus Agarosegelen

Für die präparative Isolierung von DNA-Fragmenten aus Agarosegelen wurde eine 1% Agaroselösung hergestellt (siehe 6.4.3). Anstelle von Ethidiumbromid wurden 1 μ l x 50 mL⁻¹ Gel Green (Biotium) zugegeben, um eine Interkalation in die DNA zu vermeiden. Die Gelelektrophorese wurde analog zu 6.4.3 durchgeführt. Die Auswertung und das Ausschneiden der Banden mit einem Skalpell geschah unter blauem Licht, um Mutationen durch UV-Licht zu vermeiden. Die Agarosestücke mit den gewünschten DNA-Banden wurden in ein 2 mL Reaktionsgefäß überführt und mit einem DNA-Extraction-Kit der Firma Fermentas entsprechend den Herstellerangaben aufgereinigt. Eine Elution der DNA erfolgte je nach gewünschter Konzentration mit 30-50 μ l Elutionspuffer, die Isolierung wurde durch Auftragen von 1-4 μ l der Probe auf ein Agarosegel kontrolliert. Die isolierten Fragmente wurden bei -20 °C gelagert.

6.4.5 Sequenzierung

Um die Richtigkeit der amplifizierten und klonierten DNA zu überprüfen, wurden die entstandenen Konstrukte von der Firma GATC Biotech sequenziert. Bei Subklonierungen wurde das T/A-Konstrukt (siehe Kap. 6.4.9.1) sequenziert, sonst wurde im Expressionsvektor sequenziert. Tab. 6-17 zeigt, welche Sequenzierprimer im jeweiligen Vektor verwendet wurden.

Vektor	Bezeichnung	Primersequenz $(5' \rightarrow 3')$
pBluescript SK(+)	T7	TAATACGACTCACTATAGGG
	T3	ATTAACCCTCACTAAAGGGA
	T7	TAATACGACTCACTATAGGG
pGEM-T Easy	SP6	ATTTAGGTGACACTATAGAA
	Τ7	TAATACGACTCACTATAGGG
pHIS8/pET28b	pET reverse	CTAGTTATTGCTCAGCGG

Tab. 6-17: Übersicht über die verwendeten Sequenzierprimer

6.4.6 Restriktionspaltung von DNA

Zur Restriktion von DNA wurden verschiedene Restriktionsendonukleasen vom Typ II verwendet. Die Enzyme wurden von den Firmen New England Biolabs und Jena Bioscience bezogen und nach Herstellerangaben verwendet. Restriktionsspaltungen wurden zur Analytik von Klonierungen, Plasmiden und Fusionen durchgeführt, hierfür wurden 1-2 μ l DNA verwendet. Hier war eine Inkubationszeit von 0,5-2 h ausreichend. Die gespaltene DNA konnte mittels Agarosegelelektrophorese (siehe 6.4.3) analysiert werden. Für die präparative Vorbereitung von Klonierungsfragmenten wurden 15-40 μ l DNA eingesetzt. Um die DNA möglichst vollständig zu spalten, wurde für mindestens 3 h inkubiert und bei 65 °C für 10 min inaktiviert. Nach eventueller Dephosphorylierung (siehe 6.4.7) wurde die DNA dann aus Agarosegelen isoliert (siehe 6.4.4).

6.4.7 Dephosphorylierung von Vektoren

Vor der Klonierung wurden die mit Restriktionsenzymen linearisierten Plasmide an ihrem 5'-Ende dephosphoryliert, um eine Religation zu vermeiden. Hierfür wurde das Enzym Antarctic Phosphatase (NEB) benutzt. Zu 40-50 µl eines präparativen inaktivierten Restrinktionsansatzes wurden 5-6 µl des mitgelieferten Reaktionspuffers und 1-2 µl der Phosphatase gegeben. Der Ansatz wurde 30 min bei 37°C inkubiert und danach bei 65 °C für 10 min inaktiviert. Das Plasmid wurde dann mit einem PCR-Aufreinigungs-Kit (siehe 6.4.1.4) oder über ein Agarosegel (siehe 6.4.4) aufgereinigt und bei -20 °C gelagert.

6.4.8 Ligation

Ligation von kompatiblen DNA-Enden wurde mit dem Enzym T4-Ligase von der Firma Jenapharm durchgeführt. Üblicherweise wurde ein 10 µl-Ansatz vorbereitet. 1 µl Ligase und 1 µl Reaktionspuffer wurden vorgelegt. Es wurden insgesamt 8 µl Vektor und zu klonierendes Insert hinzugegeben, wobei die Verhältnisse variieren konnten. Es wurde darauf geachtet, dass das Konzentrationsverhältnis Insert:Vektor in etwa 5:1 betrug. Es wurde über Nacht (mindestens 5 h) bei 16 °C oder 4 °C inkubiert. Anschließend wurde die Reaktion für 10 min bei 65 °C inaktiviert und in den die gewünschten kompetenten Bakterienzellen transfomiert (siehe 6.3.3).

6.4.9 Klonierung von Plasmiden

6.4.9.1 T/A-Klonierung von PCR-Fragmenten

Das T/A-Klonieren von DNA erlaubt einen einfachen Einbau in ein Plasmid und anschließende Detektion der positiven Kolonien durch Blau/Weiß-Selektion (siehe 6.3.4). Hierfür muss zunächst ein 3'dTTP-Überhang nach Restriktion des Vektors kreiert werden. Dieser wird dann mit dem PCR-Produkt, welches durch die Aktivität der verwendeten DNA-Polymerasen 3`dATP-Überhänge besitzt, ligiert. Als Vektoren zur Aufnahme der PCR-Produkte wurden die Vektoren pGEM-T Easy und pBluescript SK(+) verwendet. pGEM-T Easy war bereits geschnitten und besaß an den 3'-Enden dTTP-Überhänge, so daß die Ligation direkt erfolgen konnte. Der Vektor pBluescript SK(+) musste für die T/A-Klonierung vorbereitet werden (siehe 6.4.9.1.1).

6.4.9.1.1 Konstruktion eines T/A-Klonierungsvektors²⁷⁸

Für die Generierung von glatten Enden in pBluescript SK(+) wurde das Enzym *Eco*RV ausgewählt, da die Schnittstelle in der multiple cloning site (MCS) liegt, und das System somit für Blau/Weiß-Selektion auf positive Klone geeignet ist (siehe 6.3.4).

Der Vektor pBluescript II SK(+) wurde in einem präparativen Ansatz mit *Eco*RV geschnitten, die Inkubation erfolgte 2 h bei 37 °C (siehe 6.4.6). Anschließend wurde das Enzym bei 80 °C für 20 min inaktiviert. Es wurden 1 U/µg Plasmid/20 µl Volumen Taq-Polymerase und dTTP in einer Endkonzentration von 2 mM hinzugegeben und bei 70 °C für 2 h inkubiert. Nach der Zugabe von 100 µl Chloroform würde kräftig geschüttelt und bei 18000 x g für 5 min zentrifugiert. Der Überstand wurde in ein Reaktionsgefäß überführt, in dem 70 µl Isopropanol vorgelegt waren. Es wurde wieder kräftig geschüttelt und anschließend bei 18000 x g für 20 min bei 4 °C zentrifugiert. Der Überstand wurde vorsichtig abgenommen und das Pellet mit 200 µl eiskaltem Ethanol für 5 min bei 18000 x g gewaschen. Der Überstand wurde vorsichtig abpipettiert und das Pellet in einer Speedvac getrocknet. Das Pellet wurde dann in 10 µl dH₂O gelöst. Der fertige T/A-Vektor wurde bei -20 °C gelagert.

6.4.9.1.2 T/A-Klonierung

Für die T/A-Klonierung mit pGEM-T Easy wurde nach den Angaben des Herstellers verfahren. Für die T/A-Klonierung in pBluescript II SK(+) wurde das aufgereinigte PCR-Fragment und der T/A-Vektor mit der T4-Ligase ligiert (siehe 6.4.8), transformiert (siehe 6.3.3), positive Kolonien mit Blau/Weiß-Selektion detektiert (siehe 6.3.4) und sequenziert (siehe 6.4.5). Eine Übersicht über die entstandenen und in dieser Arbeit verwendeten T/A-Konstrukte gibt Tabelle 6-18.

Konstrukt	Herkunft	Vektor	Insert	Genflankierende Schnittstellen
pMC3	diese Arbeit	pBluescript SK(-)	hrmK	BamHI/HindIII
pMC12	diese Arbeit	pBluescript SK(-)	Pyoluteorin Promoter	BamHI/AseI
pMC9	diese Arbeit	pBluescript SK(-)	hrmN	AseI/HindIII
pDC1	Denise Hissa	pGEM-T Easy	hrmP1 A-Domäne	EcoRI/HindIII
pDC2	Denise Hissa	pGEM-T Easy	hrmP2 A-Domäne	<i>MfeI/Hin</i> dIII
pDC3	Denise Hissa	pGEM-T Easy	hrmP3 A-Domäne	EcoRI/HindIII
pDC4	Denise Hissa	pBluescript SK(-)	hrmO1 A-Domäne	EcoRI/HindIII
pDC5	Denise Hissa	pBluescript SK(-)	hrmO2 A-Domäne	EcoRI/HindIII
pDC6	Denise Hissa	pBluescript SK(-)	hrmO3 A-Domäne	EcoRI/HindIII
pDC7	Denise Hissa	pBluescript SK(-)	hrmO4 A-Domäne	<i>Eco</i> RI/ <i>Hin</i> dIII

Tab. 6-18: Übersicht über die in dieser Arbeit verwendeten T/A-Konstrukte

6.4.9.2 Klonierung von in vitro-Expressionskonstrukten in E. coli

Für die heterologe Expression in *E. coli* wurden A-Domänen und Biosynthesegene in die Expressionsvektoren pHIS8 und pET28 kloniert (siehe Tab. 6-2). Die Plasmide tragen einen N-terminalen His-Tag aus 6-8 Histidinen, der bei der Expression endständig an das Protein angefügt wird, und die selektive Aufreinigung mittels Ni-NTA-Affinitätschromatographie ermöglicht (siehe 6.5.4). Es ergab sich folgendes Klonierungsschema: Die gewünschten Proteine oder Domänen wurden mit spezifischen Primern amplifiziert (siehe 6.4.1), aufgereinigt (siehe 6.4.1.4) und entweder mit einem TA-Vektor subkloniert (siehe 6.4.9.1) und sequenziert (siehe 6.4.5) oder direkt in den Expressionsvektor kloniert. Für die einfache Klonierung in den Expressionsvektor wurden das zu klonierende Gen und der Expressionsvektor mit den gleichen Restriktionsenzymen geschnitten (siehe 6.4.6), das Plasmid wurde danach noch dephosphoryliert (siehe 6.4.7). Es erfolgte die Ligation (siehe 6.4.8), Transformation in *E. coli* XL-1 blue (siehe 6.3.3), Screening auf positive Kolonien und eventuelle Sequenzierung. Von positiven Klonen wurde eine Gefrierkultur angelegt (siehe 6.3.1), die Plasmide wurden für die Proteinexpression in *E. coli* BL21 (DE3) transformiert. Eine Übersicht der klonierten Expressionskonstrukte ist in Tabelle 6-19 aufgeführt.

Konstrukt	Vektor	Insert	Genflankierende	Größe des
			Schnittstellen	Inserts
pMC4	pHIS8	hrmK	BamHI/HindIII	1584 bp
pMC5	pHIS8-svp	hrmL	BamHI/HindIII	276 bp
pMC6	pHIS8	hrmF	BamHI/HindIII	555 bp
pMC7	pHIS8	hrmL	BamHI/HindIII	276 bp
pMC10	pCDF-DUET	hrmR	NdeI/XhoI	219 bp
pMC17	pHIS8	hrmP1 A-Domäne	EcoRI/HindIII	1629 bp
pMC18	pHIS8	hrmP2 A-Domäne	MfeI/HindIII	1641 bp
pMC19	pHIS8	hrmP3 A-Domäne	EcoRI/HindIII	1698 bp
pMC20	pHIS8	hrmO1 A-Domäne	EcoRI/HindIII	1623 bp
pMC21	pHIS8	hrmO2 A-Domäne	EcoRI/HindIII	1680 bp
pMC22	pHIS8	hrmO3 A-Domäne	EcoRI/HindIII	1629 bp
pMC23	pHIS8	hrmO4 A-Domäne	EcoRI/HindIII	1623 bp
pMC34	pHIS8	O2fused A-Domäne	EcoRI/HindIII	1659 bp
pMC35	pHIS8	O4fused A-Domäne	EcoRI/HindIII	1617 bp
pMC36	pHIS8	P2fused A-Domäne	EcoRI/HindIII	1632 bp
pMC37	pHIS8	A5fused A-Domäne	EcoRI/HindIII	1599 bp
pMC41	pHIS8	H6 fused A-Domäne	EcoRI/HindIII	1629 bp
pMC44	pET28b	hrmJ	SacI/HindIII	684 bp
pMC46	pET28b	hrmR	NdeI/XhoI	219 bp
pMC65	pET28b	cdaX	NdeI/XhoI	221 bp
pMC66	pCDF-DUET	cdaX	NdeI/XhoI	221 bp

Tab. 6-19: Übersicht über die in dieser Arbeit klonierten Expressionskonstrukte

6.4.9.3 Konstruktion von Coexpressionsstämmen in E. coli

Um mehrere Proteine gleichzeitig in *E. coli* zu exprimieren, wurden Coexpressionsstämme durch Elektroporation hergestellt. Jeweils 1 μ l einer Plasmidpräparation der beiden zusammen zu exprimierenden Konstrukte wurden in E. *coli* BL21 (DE3) transformiert und auf Doppelselektivagar ausplattiert. Gewachsene Kolonien trugen beide Plasmide in sich, sie wurden flüssig kultiviert und eingefroren (siehe 6.3.1). Eine Übersicht über die konstruierten Coexpressionsstämme zeigt Tabelle 6-20.

Stamm	Konstrukt 1	Konstrukt 2	Resistenzen
MC3	pMC6	pMC2	Kan ⁵⁰ , Sm ⁵⁰
MC11	pMC4	pMC10	Kan ⁵⁰ , Sm ⁵⁰
MC26	pMC17	pMC10	Kan ⁵⁰ , Sm ⁵⁰
MC27	pMC18	pMC10	Kan ⁵⁰ , Sm ⁵⁰
MC28	pMC19	pMC10	Kan ⁵⁰ , Sm ⁵⁰
MC29	pMC20	pMC10	Kan ⁵⁰ , Sm ⁵⁰
MC30	pMC21	pMC10	Kan ⁵⁰ , Sm ⁵⁰
MC31	pMC22	pMC10	Kan ⁵⁰ , Sm ⁵⁰
MC32	pMC23	pMC10	Kan ⁵⁰ , Sm ⁵⁰
MC38	pMC34	pMC10	Kan ⁵⁰ , Sm ⁵⁰
MC39	pMC36	pMC10	Kan ⁵⁰ , Sm ⁵⁰
MC40	pMC35	pMC10	Kan ⁵⁰ , Sm ⁵⁰
MC42	pMC37	pMC10	Kan ⁵⁰ , Sm ⁵⁰
MC43	pMC41	pMC10	Kan ⁵⁰ , Sm ⁵⁰
MC 68	pMC37	pMC66	Kan ⁵⁰ , Sm ⁵⁰
MC 69	pMC41	pMC66	Kan ⁵⁰ , Sm ⁵⁰

Tab. 6-20: Übersicht über die in dieser Arbeit konstruierten Coexpressionsstämme

6.4.9.4 Klonierung von in vivo-Expressionskonstrukten in Pseudomonas fluorescens Pf-5

hrmN wurde zusammen mit einem Promoter der Pyoluteorinbiosynthese im Plasmid pME 6041 (Tab. 6-2) exprimiert. Der Promoter wurde aus pMC12 (Tab. 6-18) mit *Kpn*I und *Eco*RI ausgeschnitten. *hrmN* wurde aus pMC9 mit *Kpn*I und *Sac*I ausgeschnitten. Beide Fragmente wurden mit Dreipunktligation in pME6041, das mit *Eco*RI und *Sac*I linearisiert war, eingefügt. Das Konstrukt wurde pMC15 genannt. Ein Klonierungsschema befindet sich in Abbildung 5-37.

6.5 Proteinexpression, Proteinreinigung und Proteinanalytik

6.5.1 Alignments zur Festlegung des Leserahmens

Die Adenylierungsdomänen der NRPS enthalten als katalytische Untereinheiten eines Megaenzyms weder Start- noch Stopcodon. Zur korrekten Proteinexpression wurden daher Alignments mit anderen NRPS-A-Domänen mit dem Programm Bioedit durchgeführt. Generell musste bei der Klonierung in den Expressionsvektor (siehe 6.4.9.2) darauf geachtet werden, dass das zu exprimierende Protein bzw. Domäne im Leserahmen zum Histidintag eingefügt wurde.

6.5.2 Proteinexpression

Dieses Kapitel stellt die allgemeine Vorgehensweise bei einer heterologen Proteinüberexpression dar, etwaige Änderungen vom Protokoll sind im Ergebnisteil in den jeweiligen Kapiteln nachzulesen. Von einer Agarplatte oder einer Gefrierkultur wurde eine Übernachtkultur des jeweiligen Expressionsstammes angesetzt. Am nächsten Morgen wurde die Kultur in 100-200 mL Medium (Testexpression) bzw. 500 mL - 1 L Medium überführt. Der Kolben hatte mindesten das doppelte Volumen wie die Kultur. Wenn möglich wurde ein Erlenmeyerkolben mit Schikane benutzt, um die Sauerstoffzufuhr für die Zellen zu erhöhen. Als Expressionsmedien wurden hauptsächlich 2xYT und TB verwendet (siehe 6.2.1). Die Bakterienkultur wurde bei 37 °C, 250 rpm bis zu einer OD₆₀₀ von 0,6-0,8 (2xYT), bzw. 1,2-1,5 (TB) wachsen gelassen. Die Kultur wurde auf ca. 16 °C abgekühlt und die Proteinexpression mit 0,5-1 mM IPTG (Endkonzentration) induziert. Nach der Induktion wurde die Kultur für 16-20 h bei 16 °C und 250 rpm inkubiert. Danach wurde die Kultur bei 5000 x g und 4 °C pelletiert. Der Überstand wurde aufgrund der intrazellulären Konzentration der Proteine verworfen, die Zellen wurden bei -20 °C bis zur weiteren Verwendung gelagert.

6.5.3 Zellaufschluss

Für die *in vitro*-Untersuchungen von überexprimierten Proteinen wurde das Zellpellet aus Kapitel 6.5.2 im Lysepuffer für die His-Tag-Aufreinigung (siehe 6.2.2) resuspendiert (ca. 2,5 mL pro g Zellpellet) und bei allen folgenden Schritten möglichst auf Eis oder bei 4 °C weiterbehandelt. Die Zellen wurden dann im Ultraschallhomogenisator einem Leistungseintrag von 50 W und einer Frequenz von 40 Hz für 10 s ausgesetzt. Die Beschallung wurde je nach Zellzahl 5 bis 10 Mal wiederholt, wobei zwischen jeder Wiederholung für 10 s auf Eis gekühlt wurde. Daraufhin wurden die unlöslichen von den gelösten Bestandteilen durch Zentrifugation bei 15000 g für 30 min voneinander getrennt.

6.5.4 Aufreinigung von His-Tag-Fusionsproteinen

Zur selektiven Aufreinigung von überexprimierten His-Tag-Fusionsproteinen wurde Ni-NTA-Agarose verwendet. Der Überstand der aufgeschlossenen und zentrifugierten Expressionskulturen (6.5.3) wurde mit 200-1000 µl Ni-NTA-Agarose versetzt und auf Eis für 1 h bei 100 min⁻¹ inkubiert. Die Suspension wurde auf eine Polyprepsäule gegeben und mit 2-25 mL Lysepuffer und 2-25 mL Waschpuffer (siehe 6.2.2) gewaschen. Die Elution erfolgte entweder fraktioniert über eine ansteigende Imidazolkonzentration im Elutionspuffer (50-300 mM) oder stoßweise mit 300 mM Imidazol im Elutionspuffer. Das Volumen der Elutionsfraktionen betrug zwischen 250 µl und 2,5 mL und wurde der zu erwartenden Proteinkonzentration und dem anschließenden Experiment angepaßt. Allen Fraktionen (Überstand, Durchlauf, Waschen und Elutionen) wurde 20 µl Lösung entnommen und für die anschließende SDS-PAGE-Analytik (siehe 6.5.7) gelagert.

6.5.5 Entsalzung und Aufkonzentrierung von Proteinen

Zur Entsalzung und Umpufferung von Proteinfraktionen wurden PD10-desalting-Columns der Firma GE verwendet. Es wurde nach den "gravity protocol" entsprechend den Herstellerangaben gearbeitet. Zur Aufkonzentrierung von Proteinfraktionen wurden Vivaspin 500 Zentrifugationskonzentratoren der Firma Sartorius benutzt und entsprechend den Herstellerangaben verwendet. Diese enthalten eine vertikale Membran verschiedener spezifischer Molekulargewichtsausschlussgrößen (MWCO). Die jeweils gewählte MWCO war dabei maximal halb so groß wie die entsprechende Proteingröße.

6.5.6 TCA-Präzipitation

Bei sehr schwach konzentrierten Proteinfraktionen, die per SDS-PAGE (6.5.7) analysiert werden sollten, wurde eine Fällung des Gesamtproteins mit Trichloressigsäure (TCA) vorgenommen. Die Probe wurde mit 1/10 (v/v) 72% (w/v) TCA versetzt und 10 min bei RT stehen gelassen. Danach wurde 10 min bei 18000 x g zentrifugiert. Der Überstand wurde vorsichtig abgeenommen und der Rückstand in 10 µL 1M Tris-HCl pH 8,5 aufgenommen.

6.5.7 SDS-Polyacrylamidgelelektrophorese (SDS-PAGE)

Zur Analytik von Proteinexpressionen und –aufreinigungen wurde die SDS-PAGE verwendet. Dabei wurden Proben aus den Abschnitten 6.5.4, 6.5.5 und 6.5.6 in einem Volumen von 1:1 mit 2xSDS-Probenpuffer (100 mM Tris; 200 mM DTT; 4% (w/v) SDS; 0,2% (w/v) Bromphenolblau; 20% (v/v) Glycerin) versetzt, gemischt und bei 95 °C für 5 min denaturiert.Danach wurde wieder gemischt und die Proben für 1 min zentrifugiert (10000 x g). Bei Proteinexpressionen wurde auch das Zellpellet aus Kap. 6.5.3 mit Lysepuffer versetzt, 30 s gemischt, und analog behandelt, um unlösliches Protein zu detektieren.

Die Trennung der Proteine wurde in einem vertikalen Multigel Elektrophoresesystem durchgeführt. Es kamen Gele in Konzentrationen von 12 bis 20% (v/v) Polyacrylamid:Bisacrylamid zum Einsatz und wurden nach der Literatur hergestellt.²⁸⁵ Zuerst wurde das Trenngel angesetzt und zwischen zwei Glasplatten gegossen, die mit Klammern fixiert und durch ein Gummi dreiseitig abgedichtet waren. Damit an der Grenzschicht zum späteren Sammelgel eine horizontale, gerade Fläche entstand, wurde das Trenngel mit Isopropanol überschichtet. Nach der Polymerisation wurde das Isopropanol entfernt und das 5% (v/v) Polyacrylamid:Bisacrylamid-Sammelgel auf das Trenngel gegossen und der Kamm eingesetzt. Das fertige Gel wurde in einer Elektrophoresekammer befestigt und mit SDS-Laufpuffer (25 mM Tris; 250 mM Glycin; 0,1% (w/v) SDS) überschichtet. Bei der Dokumentation von Expressionen von MbtH-artigen Proteinen wurde in der SDS-PAGE statt dem gängigen Laemmli-Laufpuffer mit Glycin ein Puffersystem aus Tris/Tricin²⁷⁹ verwendet werden. Tricin besitzt einen anderen pKs-Wert als Glycin und ändert die Auflösung von kleinen Proteinen in der Elektrophorese. Die kleinen Proteine laufen nicht mehr mit der Färbemittelfront aus dem Gel mit. Das Gel wurde hier

von oben mit Kathodenpuffer (100 mM Tris pH 8,25, 100 mM Tricin, 0,1% SDS) überschichtet, in die untere Pufferkammer wurde Anodenpuffer (200 mM Tris pH 8,9) gegeben.

Die Proben wurden in die Taschen überführt. Bei der Verwendung von kleinen Taschen wurde ein Volumen von 10 bis 12 µL und bei der Verwendung von großen Taschen ein Volumen von 20 bis 30 µL der Probe eingefüllt. Zur späteren Analyse kamen Proteinmarker zum Einsatz, die Proteine definierter Größe beinhalten. Verwendet wurden dabei der Roti-Mark-Standard (Firma Roth), wovon 3 μL aufgetragen wurden, sowie der Broad-Range-Marker (Firma NEB), wovon 8 bis 10 μL aufgetragen wurden. Die Proteine wurden durch das Anlegen einer Spannung von 90-120 V nach ihrer Größe getrennt. Nach Beendingung der Elektrophorese konnten die Proteinbanden durch Färbung mit Coomassie-Blau sichtbar gemacht werden. Das Gel der SDS-PAGE wurde nach der elektrophoretischen Trennung in die Coomassie Färbelösung (10% (v/v) Eisessig; 30% (v/v) Methanol; 0,25% (w/v) Brilliant-Blau R250) gegeben und für 30 min auf einem Schüttler bei Raumtemperatur gefärbt. Als Alternative wurde in einigen Fällen die Färbung in der Mikrowelle vorgenommen. Dabei wurde die Färbelösung kurz aufgekocht und für weitere 5 min auf dem Schüttler platziert. Nach der Färbung wurde kurz mit destilliertem Wasser gespült und die Entfärber-Lösung (10% (v/v) Eisessig; 30% (v/v) Methanol) auf das Gel gegeben. Das Gel wurde auf dem Schüttler mit einem Zellstofftuch enttfärbt, bis die Proteinbanden gut sichtbar waren. Zur Dokumentation schloss sich eine Trocknung in Cellophan-Folie mit 1 mL Glycerin an.

6.5.8 Proteinkonzentrationsbestimmung

6.5.8.1 Bradford-Test

Die Konzentration von Proteinfraktionen wurde mit dem modifizierten Bradfordassay²⁸⁰ bestimmt. Der Test beruht auf dem klassischen Bradford-Verfahren zur Proteinbestimmung. Die Methode basiert auf einer Komplexbildung zwischen dem Farbstoff Coomassie-Brilliant-Blue G 250 und dem Protein, wobei sich die Farbe des Farbstoffs von rot nach blau ändert. Die proteingebundene, blaue Form besitzt ein Absorptionsmaximum bei 595 nm, während die ungebundene, rote Form bei 450 nm ein Absorptionsmaximum aufweist. Die photometrische Messung der Absorption bei 595 nm lieferte eine Standardkurve, die keine Linearität aufweist. Die Linearität ergibt sich, wenn jede Probe bei 590 und bei 450 nm vermessen wird und der Quotient OD^{590nm} und OD^{450nm} gegen die Konzentration aufgetragen wird. Hierzu wurden 2 mL 5 x Roti-Nanoquant (Fa. Roth) mit 8 mL destilliertem Wasser verdünnt. 100 µL dieser Arbeitslösung wurden mit 25 µl der Proteinlösung in Mikroküvetten gut vermischt und eine Bestimmung der Absorption bei 590 und 450 nm vorgenommen. Die Proteinmenge wurde anhand einer Kalibriergeraden bestimmt, die mit BSA als Standardprotein erstellt wurde (Abb. 6-1). Die Messung erfolgte gegen Wasser als Referenzwert. Für die Erstellung der BSA-Kalibriergeraden und der Probemessung wurde eine Dreifachbestimmung durchgeführt. Die

Proben wurden vor der Messung verdünnt, sodass die resultierenden Messwerte im linearen Bereich der Kalibriergeraden liegen.

Abb. 6-1: BSA-Kalibriergerade für den Bradford-Test

6.5.8.2 SDS-PAGE-Absorptionsmessungen

Für die Konzentrationsmessungen von Proteinkomplexen (A-Domäne und MbtH-Protein) wurde die Proteinkonzentration über eine Absorptionsmessung der Proteinbanden auf den SDS-PAGE Gelen verifiziert. Hierzu wurden SDS-PAGE Gele angefertigt, die neben den unbekannten Proben BSA-Proteinproben bekannter Konzentration enthielten. Die Software des Geldokumentationssystems Genius (Syngene) wandelte die Absorptionsmessungen der Banden in Peaks um. Aus den Flächen unter den Peaks konnte dann über eine Kalibrierkurve der bekannten BSA-Proben die Konzentration der unbekannten Proben errechnet werden (Abb. 6-2).

Abb. 6-2: Kalibriergerade zur Messung der Konzentration unbekannter Proteinproben am Geldokumentationssytem Genius

6.5.9 Massenspektrometrische Untersuchung von Proteinen

Einige Proteine wurden massenspektrometrisch per MALDI-TOF-TOF-MS untersucht. Dazu mußte die Probe entsalzt und konzentriert vorliegen.

6.5.9.1 Probenvorbereitung

Die Proteinprobe wurde zunächst in das Vivaspin-Röhrchen (siehe 6.5.5) überführt und bei 15000 x g für 15 min zentrifugiert. Für die Entsalzung der Probe wurde zum Retentat 300 μ L 50% Acetonitril hinzugefügt und bei 15000 x g für 15 min zentrifugiert. Dieser Waschschritt wurde 5-10 Mal wiederholt. Das entsalzte Retentat wurde in den Messungen eingesetzt.

6.5.9.2 Massenspektrometrie von Proteinen

Mit den konzentrierten Proteinproben wurden matrix-assisted laser desorption/ionization – time of flight-Massenspektrometrie-(MALDI-TOF-MS)Messungen durchgeführt Die Proben wurden mit einem Bruker autoflex II TOF/TOF analysiert, wobei es sich bei der verwendeten Matrix um HCCA (α -Cyano-4-hydroxyzimtsäure) oder DHAP (2,5-Dihydroxyacetophenon) handelte. Die Probe wurde auf die Matrix gegeben, mit konzentrierter TFA gewaschen und anschließend vermessen.

6.5.10 Proteinaufreinigung mit FPLC

Die weitere Aufreinigung von Elutionsfraktionen der Ni-NTA-Aufreinigung (siehe 6.5.4) wurde an einer Äkta-FPLC (GE-Healthcare) vorgenommen. Es wurde eine SepharoseQ-FF-Säule (1 mL) und eine 2 mL-Probenschleife verwendet. Es wurde ein Stufengradient mit Puffer A (50 mM Tris-HCl, pH 8,0) und Puffer B (50 mM Tris-HCl, pH 8,0, 1M NaCl) benutzt. Nach der Probenaufgabe (ca. 1 mL einer Proteinelution in Assaypuffer) wurde mit 5 Säulenvolumen 10% B gewaschen, und schrittweise mit 5 Säulenvolumen 20% B, 5 Säulenvolumen 30% B, 5 Säulenvolumen 40% B und 5 Säulenvolumen 80% B eluiert. Die Fraktionsgröße betrug 1 mL. Nach Analyse der Fraktionen der größten Peaks mit Bradford-Test (siehe 6.5.8.1) wurden die Fraktionen, die das Zielprotein enthielten, gesammelt und mit Vivaspin-Röhrchen entsalzt und aufkonzentriert (siehe 6.5.5). Die übrigen Fraktionen mit Proteingehalt wurden TCA-präzipitiert (6.5.6) und zusammen mit den Fraktionen mit Zielprotein per SDS-PAGE (siehe 6.5.7) analysiert.

6.5.11 Lagerung von Proteinen

Proteine wurden, um die Aktivität über längere Zeit zu erhalten, mit einer Tropfpipette vorsichtig in flüssiges N_2 getropft. Dabei musste der Proteinpuffer mindestens 10% Glycerin enthalten. Die gefrorenen Kügelchen wurden bei -80°C gelagert und bei Bedarf auf Eis aufgetaut.

6.6 Enzymassays

6.6.1 [γ-¹⁸O₄]-ATP-Assay

6.6.1.1 Durchführung des Assays

Pro getesteter Aminosäure wurde ein Ansatz angefertigt. Die Versuche wurden in 200 µL-Reaktionsgefäßen durchgeführt. Ein Ansatz umfasste folgende Komponenten:

- 2 µl Lösung 1: 3 mM $\gamma^{18}\text{O}_4\text{-}\text{ATP},$ 15 mM MgCl_2 in 20 mM Tris-HCl pH 7,5

- 2 μl Lösung 2: 3 mM einer Test-Aminosäure, 15 mM Na-Pyrophosphat (PPi) in 20 mM Tris-HCl pH
 7,5

- 2 µl des konzentrierten Enzyms in Assaypuffer

Die Positivkontrolle für die Messung enthielt 2 μ l Lösung 2 der aktivierten Aminosäure, 2 μ l 3 mM $\gamma^{16}O_4$ -ATP, 15 mM MgCl₂ in 20 mM Tris-HCl pH 7,5 und 2 μ l der des Enzyms. Die Negativkontrolle enthielt 2 μ l Lösung 2 der aktivierten Aminosäure, 2 μ l der Lösung 1 und 2 μ l des Assaypuffers. Nach 2 h Inkubation bei RT wurde der Assay durch die Zugabe von 6 μ l einer Lösung von 9-Aminoacridin in Aceton (10 mg x mL⁻¹) gestoppt.

6.6.1.2 Massenspektrometrische Analytik des Assays

Für die Analytik des $[\gamma^{-18}O_4]$ -ATP-Assays wurden MALDI-TOF-MS-Messungen (siehe 6.5.9.2) durchgeführt. Alle Messungen wurden mit einem Bruker autoflex II TOF/TOF durchgeführt. Vor der Analyse wurde 1 µl der Proben/Matrix-Mischung auf ein Edelstahl-MALDI-Target aufgetragen. Die Massenspektren wurden im Negativmodus im Bereich von 450 bis 1200 *m/z* aufgenommen. Die Massenspektren für die ATP-PPi-Austauschanalyse wurden aufgenommen, indem 100 aufeinanderfolgende Laserstöße gemittelt wurden. Die Spektren wurden mit Hilfe der Bruker Compass Data Analysis Software der Firma Bruker Daltonic GmbH ausgewertet. Um den prozentualen Austausch zu errechnen, wurde folgende Formel angewendet:

Prozent Austausch: —— x 100

 $(^{18}\text{O} + ^{16}\text{O})$ bezeichnet die Summe der Integrale der Peaks bei *m*/z: 506, 508, 510, 512, 514, 528, 530, 532, 534, 536 und ¹⁶O das Integral des Peaks bei *m*/z: 506. Die Aktivierung wurde dann wie folgt berechnet:

Prozent Aktivierung: — x 100

Da die molare Gleichgewichtsrate von unmarkiertem PPi zu γ -¹⁸O₄-ATP unter Assay-Bedingungen 5:1 ist, entsprechen 83,33 % gemessener Austausch 100 % Aktivierung.

6.6.2 Assays zur Bildung von (3-Ncp)Ala aus Lysin

6.6.2.1 Assay von HrmJ

Es wurden 100 mM Stammlösungen von α -Ketoglutarsäure, Ascorbinsäure, DTT, FeSO₄, und Lysin (alle gelöst in dH₂O) hergestellt. Eine typische Assaymixtur bestand aus 1 mM Lysin, 1 mM DTT, 1 mM α -Ketoglutarsäure, 1 mM Ascorbinsäure, 0,5 mM FeSO₄ und 1 mM HrmJ in 100 mM Phosphatpuffer, pH 7,5, oder pH 8. Das Reaktionsvolumen betrug 500 µL. Der Assay wurde 3 h bei RT inkubiert. Die Reaktion wurde durch Zugabe von 500 µL eiskaltem Ethanol gestoppt.

6.6.2.2 Derivatisierung der Aminosäuren

Es wurden 50 μ L der zu derivatisierenden Aminosäure oder der Assaylösung aus Abschnitt 6.6.2 mit 50 μ L Dansylchlorid (1,5 mg x mL⁻¹ in Acetonitril) und 50 μ L Li₂CO₃ (80 mM, pH 10) vermischt und unter Lichtausschluß 1 h bei RT inkubiert.²¹⁵ Die Reaktion wurde durch Zugabe von 20 μ L einer 2% Ethylaminlösung gestoppt und 1 min bei 10000 x g zentrifugiert. Der Überstand wurde mit HPLC (siehe 6.6.2.3) analysiert.

6.6.2.3 HPLC-Analytik der Assays

Es wurden zwei Methoden zur HPLC-Analytik der derivatisierten Aminosäuren (siehe 6.6.2.2) angewendet.

Methode 1:²¹⁸

30 min 59% Ammoniumformiat (9 mM, pH 3,4), 41 % Acetonitril, 1 mL x min⁻¹.

Die Ammoniumformiatläsung wurde mit Ameisensäure auf pH 3.40 eingestellt. Der Fluß betrug 1 mL x min⁻¹.

Säule: C18 250x4 mm Knauer 5 μm

Methode 2:²¹⁵

30 min 80 % KH₂PO₄ (0,1 mM, pH 7,5), 20 % Acetonitril.

Der Fluß betrug 1 mL x min⁻¹.

Säule: C18 250x4 mm Knauer 5 µm

Die Proben wurden auf einer analytischen HPLC von Jasco (siehe 6.7.3) analysiert.

6.6.3 Kinetische Charakterisierung von HrmF

Isoliertes HrmF aus der Überexpression von pMC6 wurde in 100 mM Phosphatpuffer überführt (siehe 6.5.5) und mit L-DOPA in verschiedenen Konzentrationen inkubiert. Ein typischer Assay nach Colabroy et al.²²⁷ bestand aus 25 μ L Enzym (1,3 μ M, 10 μ M L-DOPA und 10 μ M Ascorbinsäure in 500 μ L Phosphatpuffer (100 μ M, pH 8). Die Enzymaktivität wurde 30 min durch die Änderung der Absorption bei 413 nm an einem BioMate 3 Photometer (Thermo) verfolgt. Es bildete sich ein gelb gefärbtes Reaktionsprodukt (ϵ =20.300±890 M⁻¹ cm⁻¹). Die kinetischen Parameter wurden ermittelt, indem die linearen Änderungsraten der Absorptionen gegen die Substratkonzentration aufgetragen wurden und mit dem Hanes-Woolf-Diagramm linearisiert wurden. Die Michaelis-Menten-Kurve wurde mit dem Programm GraphPad Prism 4 errechnet.

6.6.4 PCP-Beladungsassay von HrmK/HrmL

Eine typische Assay-Mixtur bestand aus 5 mM Prolin, 5 mM ATP, 10 mM MgCl₂, 5 mM Tris(2-carboxyethyl)phosphonhydrochlorid (TCEP), 2,4 mM HrmL und 0,2 mM HrmK in 20 mM Tris, pH 7,5. Das Reaktionsvolumen betrug 500 μ L. Die Reaktion wurde 1 h bei RT inkubiert. Anschließend wurde mit Vivapin 5K MWCO aufkonzentriert (siehe 6.5.9.1) und mit dH₂O gewaschen, um die Probe für die Massenspektrometrie vorzubereiten. Die entsalzten Proteine wurden mit MALDI-TOF-Massenspektrometrie (siehe 6.5.9.2) analysiert.

6.7 In vivo-Proteinexpression und Analytik

6.7.1 In vivo-Proteinexpression von Biosynthesegenen

Für Expressionen in *E. coli* wurde analog zu Abschnitt 6.5.2 verfahren. Die Größe der Expressionskulturen betrug 300 mL. *Pseudomonas fluorescens* Pf-5 wurde bei 30 °C kultiviert (siehe 6.3.2). Die Größe der Kulturen betrug 50 mL. Eine Induktion der Proteinexpression war hier nicht nötig, da der Pyoluteorinpromoter während der Pyoluteorinbiosynthese induziert werden sollte. Es wurden vier verschiedene Kulturen (und Negativkontrollen) parallel angesetzt und nach verschiedenen Zeitpunkten (43 h, 51 h, 66 h, 76 h) aufgearbeitet.

6.7.2 Aufarbeitung der Zellen und Extraktion

Die Aufarbeitung der Überexpessionen von HrmF und HrmC in *E. coli* erfolgte nach Rüthlein.²³³ Die Zellen wurden nach der Expression zentrifugiert (4 °C, 3600 rpm, 30 min), mit 50 mL steriler NaCl-Lösung gewaschen und in 150 mL KH₂PO₄/K₂HPO₄-Puffer (100 mM, pH 8.0) resuspendiert. Von nun an wurde unter Lichtausschluß gearbeitet. Es wurde 11 mM (Endkonzentration) L-Dihydroxyphenylalanin (L-DOPA) hinzugegeben, und 1 h. bei 16 °C inkubiert. Anschließend wurden die Zellen wieder abzentrifugiert (3600 rpm, 10 min) und der gelb gefärbte Überstand abgenommen und gefriergetrocknet. Der Extrakt wurde in Methanol gelöst und mit HPLC-MS (Methode CF, siehe 6.7.3) analysiert.

Die Zellkultur der Überexpression von HrmJ in *E. coli* wurde zunächst auf Eis und unter Rühren 5 Minuten per Ultraschall aufgeschlossen. Die Zelltrümmer wurden dann bei 3600 rpm 30 Minuten abzentrifugiert und der Überstand gefriergetrocknet. Der trockene Extrakt wurde in 10 mL dH₂O gelöst, mit Dansylchlorid derivatisiert (siehe 6.6.2.3) und mit HPLC analysiert (siehe 6.6.2.4).

Die Aufarbeitung der Expressionen in *Pseudomonas fluorescens* Pf-5 erfolgte nach Sarniguet et al.²⁵⁸ Die Zellen wurden zentrifugiert (5000 x g, 5 min) und das Zellpellet wurde in 10 mL Aceton resuspendiert. Die Zellsuspension wurde zentrifugiert (10000 x g, 10 min) und der Überstand wurde gesammelt. Der Kulturüberstand wurde mit 1 M HCl auf pH 2.0 eingestellt und 3 mal mit 50 mL Ethylacetat extrahiert. Alle organischen Phasen wurden vereint und das Lösungsmittel unter vermindertem Druck entfernt. Der Rückstand wurde in 4 mL Methanol aufgenommen und mit HPLC (siehe 6.7.3) und HPLC, gekoppelt mit hochauflösender Massenspektrometrie [HPLC-HRMS (siehe 6.7.4) (Methode N)], analysiert.

6.7.3 HPLC-Analytik von Enzymexpressionen

Die Analyse von Enzymassays mittels HPLC wurde auf einer computergesteuerten Anlage der Firma Jasco (Darmstadt) mit einem zugehörigen MD-2015 Multiwavelength Detektor von Jasco durchgeführt. Zur Auswertung der Messergebnisse wurde das Programm ChromPass (Jasco) verwendet.

Minute	%Acetonitril (+0,1% TFA)	% H ₂ O (+0,1% TFA)
0	5	95
30	45	55
31	100	0
40	100	0
45	5	95

6.7.4 HPLC-HRMS von Enzymexpressionen

Für die HPLC-massenspektrometrischen Untersuchungen (HPLC-MS) war ein micrOQ-TOF-Flugzeitspektrometer der Fa. Bruker Daltonik GmbH (Bremen) mit Apollo-ESI-Quelle mit einer HPLC-Anlage Agilent-1200-Serie gekoppelt. Das System wurde mit der HyStar Software (Bruker) gesteuert. Die Kalibrierung erfolgte intern mit Natriumformiat. Die Genauigkeit der Massenbestimmung lag bei 5 ppm (exakte Masse). Die Auswertung der Ergebnisse erfolgte mit der Software Data Analysis der Firma Bruker. Als HPLC-Methoden wurden die Methoden aus 6.7.3 verwendet.

6.8 Fermentation von Streptomyces griseoflavus W-384

Es wurde eine Vorkultur in 50 mL NM6 (siehe 6.2.1) angesetzt und bei 180 rpm und 27 °C für 48 h kultiviert. Die Vorkultur wurde dann in einem sterilen Labfors 10 L Fermenter mit 1,5 L NM10 (siehe 6.2.1) versetzt und für 72 h bei 27 °C, einem pH von 6.5 und einer Luftzufuhr von 1.6 vvm fermentiert. Zur Erhöhung der Ausbeute wurden nach 24 h über 10 Stunden 3 mmol Pyrrol-2-carbonsäure, gelöst in 75 mL sterilem Wasser, zur Kulturbrühe gepumpt. Durch Zentrifugation wurde das Mycel vom Medium getrennt, letzteres wurde, da es kein Hormaomycin enthielt, verworfen. Das Mycel wurde nach Lyophilisation und Mörsern mit 3x 450 mL Ethylacetat extrahiert. Nach Abrotieren des Lösungsmittels wurde mit kaltem Pentan gewaschen. Der trockene Rohxtrakt wurde in Methanol/Acetonitril (1:1, 6,75 mg x mL⁻¹) gelöst und über eine präparative HPLC-Anlage der Firma Knauer aufgetrennt. Als Säule wurde eine Knauer Eurospher 100 C-18, 7 μ m, 250 x 16 mm verwendet. Die Flußrate betrug 14 mL x min⁻¹. Pro Lauf wurden 750 μ L injiziert.

Minute	% Acetonitril (+0,1% TFA)	% H ₂ O (+0,1% TFA)
0	45	55
3	45	55
20	60	40
22	75	25
35	85	15
37	100	0
50	100	0
60	45	55

HPLC-Methode Streptomyces:

6.9 Analytik des hrmB-Überexpressionsextraktes

6.9.1 Analytische und präparative Auftrennung des Extraktes

Der Extrakt der *hrmB*-Überexpression wurde in Neapel/Italien auf einer Varian Prostar 210 HPLC, ausgesattet mit einem Varian Prostar 325 UV-Vis-Detektor (273 nm) zunächst mit einer semipräparativen Säule (C18, 25x10 cm, 5 μ m) aufgetrennt. Die Trennung war isokratisch (Acetonitril/H₂O 75:25+ 0,1% TFA; 4 mL/min). Der Extrakt wurde im Laufmittel mit einer Konzentration von 18,75 mg/mL gelöst. Pro Lauf wurden 800 μ L injiziert. Alle Fraktionen wurden gesammelt und das Lösungsmittel unter vermindertem Druck entfernt. Die Fraktionen 15,16,17,23,24 und 30 wurden dann mit einer analytischen Säule (C18, 250x4 mm, 5 μ m) erneut aufgetrennt. Es wurde ein Methanol/H₂O-Gemisch (Fraktion 15: 8:2, Fraktionen 16 und 17: 85:15, Fraktionen 23,24 und 30: 9:1) als Fließmittel

eingesetzt. Die Fraktionen wurden im Laufmittel mit einer Konzentration von 10 mg/mL gelöst. Flussrate betrug 1 mL x min⁻¹. Pro Lauf wurden 100 μ L injiziert. Die Peaks wurden gesammelt und die Injektionen wiederholt, bis die Fraktionen komplett aufgetrennt waren.

6.9.2 Massenspektrometrie von Hormaomycin und Analoga

Hormaomycin und die isolierten Analoga (siehe 5.5.2) wurden in 100% Methanol (MeOH) gelöst und auf einem Thermo LTQ Orbitrap Massenspektrometer an der Universität Neapel/Italien vermessen.

6.9.3 NMR-Spektroskopie von Hormaomycin und Analoga

Hormaomycin und Analoga (siehe 5.5.2) wurden in deuteriertem Methanol (CD_3OD) gelöst, und in einem Varian UnityInova NMR-Spektrometer mit Kryokopf mit 700 MHz an der Universität Neapel/Italien vermessen.

6.10 Verwendete Chemikalien

Gewöhnliche Chemikalien sowie Lösungsmittel wie Aceton, Acetonitril, Chloroform, Dichlormethan, Isopropanol, Ethylacetat, Methanol etc. wurden von den Firmen Fluka/Riedel-de-Haën (Seelze), Merck (Darmstadt), Fisher Scientific (Schwerte), Sigma-Aldrich (Seelze) und J.T. Baker/Mallinckrodt Baker (Deventer, NL) mit dem Reinheitsgrad p.A. verwendet. In HPLC-Anwendungen wurden HPLC-grade-Lösungsmittel verwendet.

Acrylamid-bisacrylamid 37,5:1 (Rotiphoresegel 40)	Roth, Karlsruhe
Agar	Roth, Karlsruhe
Agarose NEEO Qualität	Roth, Karlsruhe
1-Aminocyclopropancarbonsäure	Sigma-Aldrich, Seelze
2-Amino-5-nitrobenzoesäure	Acros Organics, Geel (B)
L-Alanin	Fluka / Riedel-de-Haën, Seelze
L-Arginin	AppliChem, Darmstadt
L-Asparagin,	AppliChem, Darmstadt
L-Asparaginsäure	Acros Organics, Geel (B)
Ameisensäure	Riedel-de-Haën, Seelze
Ammoniumperoxodisulfat (APS)	Merck, Darmstadt
Antarctic Phosphatase + 10x Puffer	NEB, Frankfurt/Main
Benzoesäure	Sigma-Aldrich, Seelze
Bovin Serum Albumin (BSA-Lösung 10 mg x mL ⁻¹)	NEB, Frankfurt/Main
Brilliant-Blau R250	Roth, Karlsruhe
5-Brom-4-chlor-3-indoxyl-β-D-galactopyranosid (X-Gal)	AppliChem, Darmstadt

Bromphenolblau-Natriumsalz Calciumchlorid Calcium-D-Panthothenat Carbenicillin-Dinatriumsalz L-4-Chlorophenylalanin Cyclohexancarbonsäure Cyclopentancarbonsäure L-Cystein Desoxyadenosin-5'-triphosphat (dATP) Desoxythymidin-5'-triphosphat (dTTP) Desoxynukleotide (dNTPs) L-Diydroxyphenylalanin (L-DOPA) N, N-Dimethylformamid (DMF) Dimethylsulfoxid (DMSO) Dinatriumhydrogenphosphat-Dihydrat 1,4-Dithiothreitol (DTT) 100bp DNA ladder extended 1kb DNA ladder 1kbplus DNA ladder Eisen(II)sulfat-Heptahydrat Eisessig Ethidiumbromid Ethylendiamintetraessigsäure (EDTA) Expand High FidelityPLUS PCR System Fleischextrakt Furan-2-carbonsäure Gel green D(+)-Glucose Monohydrat L-Glutamin L-Glutaminsäure-Mononatriumsalz Glycerin Glycin Hefeextrakt 2-(4-(2-Hydroxyethyl)-1-piperazinyl)ethansulfonsäure (HEPES) Roth, Karlsruhe L-Histidin Imidazol

AppliChem, Darmstadt KMF, Lohmar Roth, Karlsruhe Roth, Karlsruhe Acros Organics, Geel (B) Sigma-Aldrich, Seelze Sigma-Aldrich, Seelze Roth, Karlsruhe Invitrogen, Karlsruhe Invitrogen, Karlsruhe Invitrogen, Karlsruhe Alfa Aesar, Karlsruhe Fisher-Scientific, Schwerte Roth. Karlsruhe Fluka / Riedel-de-Haën, Seelze Roth, Karlsruhe Roth, Karlsruhe Roth, Karlsruhe Fermentas, St. Leon-Rot Merck, Darmstadt Merck, Darmstadt Roth, Karlsruhe KMF, Lohmar Roche, Grenzach-Wyhlen Fluka / Riedel-de-Haën, Seelze Sigma-Aldrich, Seelze Biotium, Hayward (USA) Fluka / Riedel-de-Haën, Seelze AppliChem, Darmstadt AppliChem, Darmstadt Merck, Darmstadt Fisher-Scientific, Schwerte Becton Dickinson, Heidelberg AppliChem, Darmstadt Roth. Karlsruhe

L-Isoleucin Isopropylthiogalactosid (IPTG) Kaliumacetat Kaliumcarbonat Kaliumchlorid Kanamycin-Sulfat α-Ketoglutarsäure L-Leucin L-Lysin-HCl Magnesiumchlorid-Hexahydrat Magnesiumsulfat-Heptahydrat Manganchlorid-Dihydrat α -Methylphenylalanin β -Methylphenylalanin Morpholinpropansulfonsäure (MOPS) Natriumacetat Natriumcarbonat Natriumchlorid Natriumdihydrogenphosphat-Dihydrat Natriumdodecylsulfat (SDS) Natriumhydroxid Natriumthiosulfat Nicotinamidadenindinukleotid (NAD+) Nicotinsäure Ni-NTA Agarose Ni-NTA Agarose Orange G PCR Purification Kit pGEM-Teasy Kit L-Phenylalanin Picolinsäure Pipecolinsäure Primer (DNA-Oligonucleotide) L-Prolin Proteinmarker Broad-Range Proteinmarker RotiMark Standard Pyrrol-2-carbonsäure

Roth, Karlsruhe Roth. Karlsruhe ABCR; Karlsruhe AppliChem, Darmstadt Acros Organics, Geel (B) Roth. Karlsruhe Roth, Karlsruhe Sigma-Aldrich, Seelze Sigma-Aldrich, Seelze Fluka / Riedel-de-Haën, Seelze Roth, Karlsruhe Merck, Darmstadt Fluka / Riedel-de-Haën, Seelze Sigma-Aldrich, Seelze Sigma-Aldrich, Seelze Acros Organics, Geel (B) KMF, Lohmar Roth, Karlsruhe Roth, Karlsruhe Roth, Karlsruhe KMF, Lohmar Sigma-Aldrich, Seelze Roth, Karlsruhe Roth, Karlsruhe Qiagen, Hilden Macherey/Nagel, Duisburg Sigma-Aldrich, Seelze Fermentas, St. Leon-Rot Promega, Mannheim AppliChem, Darmstadt Sigma-Aldrich, Seelze Alfa Aesar, Karlsruhe Invitrogen, Karlsruhe Acros Organics, Geel (B) NEB. Frankfurt/Main Roth, Karlsruhe Alfa Aesar, Karlsruhe

Restriktionsenzyme + 10x Puffer + 100x BSA Riboflavin Ribonuklease A (RNase A) Saccharose Salzsäure Schwefelsäure L-Serin Sojamehl Streptomycin T4 DNA Ligase + 10x Puffer *Taq* DNA Polymerase + 10x Puffer Tetrahydrofuran-2-Carbonsäure N,N,N',N'-Tetramethylethylendiamin (TEMED) Thiophen-2-carbonsäure **D**-Threonin L-Threonin Trifluoressigsäure (TFA) Tris(2-carboxyethyl)phosphon-hydrochlorid (TCEP) Tris-(hydroxymethyl)-aminomethan (Tris) Triphenylmethylchlorid Trypton L-Tryptophan L-Tyrosin L-Valin Xylencyanol Zinksulfat-Hexahydrat

NEB, Frankfurt/Main AppliChem, Darmstadt Roth, Karlsruhe Riedel-de-Haën, Seelze Fluka / Riedel-de-Haën, Seelze Fluka / Riedel-de-Haën, Seelze Roth, Karlsruhe Sigma-Aldrich, Seelze Sigma-Aldrich, Seelze Jena Bioscience, Jena NEB, Frankfurt/Main Sigma-Aldrich, Seelze Merck, Darmstadt Sigma-Aldrich, Seelze Alfa Aesar, Karlsruhe Roth, Karlsruhe Roth, Karlsruhe AppliChem, Darmstadt Roth, Karlsruhe Sigma-Aldrich, Seelze Becton Dickinson, Heidelberg Acros Organics, Geel (B) Roth, Karlsruhe AppliChem, Darmstadt Merck, Darmstadt Merck, Darmstadt

6.11 Verwendete Geräte und Materialien

Agarosegelelektrophorese-Kammer + Spannungsquelle	
Standard Power Pack P25	Biometra, Göttingen
Analysenwaage CP225D	Sartorius, Göttingen
Autoklav V65	Systec, Wettenberg
Cellophan-Folien + Geltrocknungsrahmen	Roth, Karlsruhe
DC-Alufolie Kieselgel 60 F254	Merck, Darmstadt
Drehschiebervakuumpumpe RZ6	Vacuubrand, Wertheim

Elektroporationsküvette 2mm Elektroporator MicroPulser Geldokumentation Genius Halb-Mikroküvette (1,6 mL) Inkubationsschüttler Certomat BS-1 Inkubator B12 Kieselgel 60 (0,040- 0,063 mm) Membranvakuumpumpe Mikroküvette UltraVette (70-850 µl) Mikrowelle Mikrozentrifuge ungekühlt Mikro200 Mikrozentrifuge, gekühlt 5417R Mikrozentrifuge, gekühlt Mikro200R Multigel (Gelelektrophoresesystem vertikal), Multigel Long + Spannungsquelle Standard PowerPack P25 Photometer (Biofotometer) Photometer BioMate 3 Pipetten Pipetman P2 - P10 mL Poly-Prep Säule (leer) Probenfläschchen für Autosampler (HPLC-Gefäße mit Deckel und Septum) ProteanII xi cell (Gelelektrophoresesystem vertikal) Rotationsverdampfer VV2000 Schüttler Rotamax 120 Speedvac / Concentrator 5301 Sterilbank Biowizard Sterilfilter (0,2 µm, Celluloseacetat, FP 30/0,2), Thermocycler T-Gradient Thermomixer comfort Tischzentrifuge Rotina Tischzentrifuge Z513K Ultraschallhomogenisator Sonopuls HD2070 UV-Crosslinker CL1000 UVP Vortex-Mixer VTX-3000L Waage 440-47N Waage BP110

Bio-Rad, München
Bio-Rad, München
Syngene, Cambridge (UK)
Sarstedt, Nümbrecht
Sartorius, Göttingen
Thermo, Langenselbold
Merck, Darmstadt
Vacuubrand, Wertheim
Roth, Karlsruhe
Lifetec Medion, Essen
Hettich, Tuttlingen
Eppendorf, Hamburg
Hettich, Tuttlingen
Biometra, Göttingen

Eppendorf, Hamburg Thermo Electron, Cambridge(UK) Gilson, Middleton (USA) Bio-Rad, München

Roth, Karlsruhe Bio-Rad, München Heidolph, Kelheim Heidolph, Kelheim Eppendorf, Hamburg Kojair, Vilppula (FIN) Whatman, Dassel Biometra, Göttingen Eppendorf, Hamburg 35R Hettich, Tuttlingen Hermle, Wehingen Bandelin, Berlin Cambridge (UK) LMS, Tokio (J) Kern, Balingen-Frommern Sartorius, Göttingen

Wasserbad

Zentrifugaleinheiten Vivaspin 500 (versch. MWCO)

GFL, Burgwedel Sartorius, Göttingen

7 Abkürzungsverzeichnis

Å=Ångström
A=Adenosin
Ala=Alanin
AMP=Adenosinmonophosphat
Arg=Arginin
AS=Aminosäure
Asn=Asparagin
Asp=Asparaginsäure
ATP=Adenosintriphosphat
BLAST= basic local alignment search tool
bp=Basenpaare
CDA=calcium-dependent antibiotic
COSY=Korrelationsspektroskopie
C=Cytosin
Cys=Cystein
dATP=Desoxyadenosintriphosphat
DNA=Desoxyribonucleinsäure
dNTP=Desoxynukleotidtriphosphat
DOPA=Dihydroxyphenylalanin
dTTP=Desoxythymidintriphosphat
ESI= Elektrosprayionization
EtOAc=Ethylacetat
FAD=Flavinadenindinukleotid
FPLC=fast protein liquid chromatography
G=Guanosin
Gln=Glutamin
Glu=Glutaminsäure
Gly=Glycin
Hpg=Hydroxyphenylglycin
HPLC=high performance liquid chromatography

HRMS=high resolution mass spectrometry
IC=inhibition concentration
Ile=Isoleucin
IPTG=Isopropyl-β-D-1-thiogalactopyranosid
LC=liquid chromatography
Leu=Leucin
Lys=Lysin
MALDI=matrix-assisted laser desorption/ionization
MeOH=Methanol
Met=Methionin
MCS=multiple cloning site
MS=Massenspektrometrie
MWCO=molecular weight cut-off
NMR=nukleare Magnetresonanz
NADPH=Nikotinamiddinukleotidphosphat
NRPS=nicht-ribosomale Peptidsynthetase
NTA=Nitrilotriessigsäure
OD=optische Dichte
Orn=Ornithin
PCP=peptidyl carrier protein
PCR=polymerase chain reaction
Phe=Phenylalanin
PKS=Polyketidsynthase
ppm=parts per million
Ppant=Phosphopanthetheinyl-
PPi=Pyrophosphat
PPTase=Phosphopanthetheinyltransferase
PSI-BLAST=position specific iterative BLAST
RT=Raumtemperatur
SAM=S-Adenosylmethionin
SDS-PAGE=sodium dodecylsulfate polyacrylamide gelelectrophoresis

Ser=Serin

T=Thymidin

TE=Thioesterase

TFA=Trifluoressigsäure

Thr=Threonin

TOCSY=total correlation spectroscopy

TOF=time of flight

Trp=Tryptophan

Tyr=Tyrosin

Val=Valin

8 Literatur

- 1. Demain, A.L., Sanchez, S.: Microbial drug discovery: 80 years of progress. *J Antibiot* 2009, 62, 5–16.
- 2. Zhu, F., Qin, C., Tao, L., Liu, X., Shi, Z., Ma, X., Jia, J., Tan, Y., Cui, C., Lin, J., Tan, C., Jiang, Y., Chen, Y.: Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. *Proc Natl Acad Sci U S A* **2011**, 108, (31), 12943-12948.
- 3. Challis, G.L., Hopwood, D.A.: Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. *Proc Natl Acad Sci U S A* **2003**, 100, Suppl 2, 14555-14561.
- 4. Hopwood, D.A.: Streptomyces in Nature and Medicine: The Antibiotic Makers. Oxford University Press, **2007**.
- 5. Keller, U., Lang, M., Crnovcic, I., Pfennig, F., Schauwecker, F.: The actinomycin biosynthetic gene cluster of *Streptomyces chrysomallus*: a genetic hall of mirrors for synthesis of a molecule with mirror symmetry. *J Bacteriol* **2010**, 192, (10), 2583-2595.
- 6. Park, S.R., Yoo, Y.J., Ban, Y.H., Yoon, Y.J.: Biosynthesis of rapamycin and its regulation: past achievements and recent progress. *J Antibiot (Tokyo)* **2010,** 63, (8), 434-441.
- 7. Song, J.Y., Jensen, S.E., Lee, K.J.: Clavulanic acid biosynthesis and genetic manipulation for its overproduction. *Appl Microbiol Biotechnol* **2010**, 88, (3), 659-669.
- 8. Floss, H.G., Yu, T.W.: Rifamycin-mode of action, resistance, and biosynthesis. *Chem Rev* **2005**, 105, (2), 621-632.
- 9. Zakeri, B., Wright, G.D.: Chemical biology of tetracycline antibiotics. *Biochem Cell Biol* **2008**, 86, (2), 124-136.
- 10. Houghton, J.L., Green, K.D., Chen, W., Garneau-Tsodikova, S.: The future of aminoglycosides: the end or renaissance? *Chembiochem* **2010**, 11, (7), 880-902.
- 11. Waksman SA, Geiger WB, Reynolds DM.: Strain specificity and production of antibiotic substances: VII. Production of actinomycin by different actinomycetes. *Proc Natl Acad Sci U S A* **1946**, 32, (5), 117-120.
- 12. Waksman, S.A., Reilly, H.C., Schatz, A.: Strain specificity and production of antibiotic substances: V. Strain resistance of bacteria to antibiotic substances, especially to streptomycin. *Proc Natl Acad Sci U S A* **1945**, 31, (6), 157-164.
- 13. McGregor, J.F.: Nuclear division and the life cycle in a *Streptomyces* sp. *J Gen Microbiol* **1954**, 11, (1), 52-56.
- 14. Flärdh, K., Buttner, M.J.: *Streptomyces* morphogenetics: dissecting differentiation in a filamentous bacterium. *Nat Rev Microbiol* **2009**, 7, (1), 36-49.
- 15. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., Hopwood, D. A.: Practical *streptomyces* genetics. The John Innes Foundation: Norwich, **2000**.

- 16. Chater K.F.: Genetics of differentiation in *Streptomyces. Annu Rev Microbiol* **1993**, 47, 685-713.
- Bentley, S.D., Chater, K.F., Cerdeño-Tárraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C.W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C.H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., Rajandream, M.A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B.G., Parkhill, J., Hopwood, D.A.: Complete genome sequence of the model actinomycete *Streptomyces coelicolor* A3(2). *Nature* 2002, 417, (6885), 141-147.
- 18. Nett, M., Ikeda, H., Moore, B.S.: Genomic basis for natural product biosynthetic diversity in the actinomycetes. *Nat Prod Rep* **2009**, 26, (11), 1362-1384.
- 19. Jenke-Kodama, H., Dittmann, E.: Evolution of metabolic diversity: insights from microbial polyketide synthases. *Phytochemistry* **2009**, 70, (15-16), 1858-1866.
- 20. Blodgett, J.A., Oh, D.C., Cao, S., Currie, C.R., Kolter, R., Clardy, J.: Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. *Proc Natl Acad Sci U S A* **2010**, 107, (26), 11692-11697.
- 21. Fischbach, M.A., Walsh, C.T., Clardy, J.: The evolution of gene collectives: How natural selection drives chemical innovation. *Proc Natl Acad Sci U S A* **2008**, 105, (12), 4601-4608. Erratum in: *Proc Natl Acad Sci U S A* **2009**, 106, (5), 1679.
- 22. Kinashi, H.: Giant linear plasmids in *Streptomyces*: a treasure trove of antibiotic biosynthetic clusters. *J Antibiot (Tokyo)* **2011**, 64, (1), 19-25.
- 23. Liras, P., Martín, J.F.: Gene clusters for beta-lactam antibiotics and control of their expression: why have clusters evolved, and from where did they originate? *Int Microbiol* **2006**, 9, (1), 9-19.
- 24. Johnston, N.J., Mukhtar, T.A., Wright, G.D.: Streptogramin antibiotics: mode of action and resistance. *Curr Drug Targets* **2002**, *3*, (4), 335-344.
- 25. van Wezel, G.P., McDowall, K.J.: The regulation of the secondary metabolism of *Streptomyces*: new links and experimental advances. *Nat Prod Rep* **2011**, 28, (7), 1311-1333.
- 26. Chater, K. F., Merrick, M. J.: **1979** in *Developmental Biology of Prokaryotes*, ed. Parish, J. H. (Blackwell, Oxford), pp. 93-114.
- 27. Tomono, A., Tsai, Y., Yamazaki, H., Ohnishi, Y., Horinouchi, S.: Transcriptional control by A-factor of *strR*, the pathway-specific transcriptional activator for streptomycin biosynthesis in *Streptomyces griseus*. *J Bacteriol* **2005**, 187, (16), 5595-5604.
- 28. Hirano, S., Tanaka, K., Ohnishi, Y., Horinouchi, S.: Conditionally positive effect of the TetRfamily transcriptional regulator AtrA on streptomycin production by *Streptomyces griseus*. *Microbiology* **2008**, 154, (3), 905-914.
- 29. Yamazaki, H., Ohnishi, Y., Horinouchi, S.: Transcriptional switch on of ssgA by A-factor, which is essential for spore septum formation in *Streptomyces griseus*. *J Bacteriol* **2003**, 185, (4), 1273-1283.

- 30. Yamazaki, H., Ohnishi, Y., Horinouchi, S.: An A-factor-dependent extracytoplasmic function sigma factor (sigma(AdsA)) that is essential for morphological development in *Streptomyces griseus*. *J Bacteriol* **2000**, 182, (16), 4596-4605.
- 31. Kato, J.Y., Suzuki, A., Yamazaki, H., Ohnishi, Y., Horinouchi, S.: Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in *Streptomyces griseus*. *J Bacteriol* **2002**, 184, (21), 6016-6025.
- 32. Yamazaki, H., Takano, Y., Ohnishi, Y., Horinouchi, S.: amfR, an essential gene for aerial mycelium formation, is a member of the AdpA regulon in the A-factor regulatory cascade in *Streptomyces griseus. Mol Microbiol* **2003**, 50, (4), 1173-1187.
- 33. Willey, J.M., Willems, A., Kodani, S., Nodwell, J.R.: Morphogenetic surfactants and their role in the formation of aerial hyphae in *Streptomyces coelicolor*. *Mol Microbiol* **2006**, 59, (3), 731-742.
- 34. Kodani, S., Hudson, M.E., Durrant, M.C., Buttner, M.J., Nodwell, J.R., Willey, J.M.: The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene *ramS* in *Streptomyces coelicolor*. *Proc Natl Acad Sci U S A* **2004**, 101, (31), 11448-11453.
- 35. Keijser, B.J., van Wezel, G.P., Canters, G.W., Vijgenboom, E.: Developmental regulation of the *Streptomyces lividans ram* genes: involvement of RamR in regulation of the ramCSAB operon. *J Bacteriol* **2002**, 184, (16), 4420-4429.
- 36. Xu, D., Kim, T.J., Park, Z.Y., Lee, S.K., Yang, S.H., Kwon, H.J., Suh, J.W.: *Biochem Biophys Res Commun* **2009**, 379, (2), 319-323. A DNA-binding factor, ArfA, interacts with the *bldH* promoter and affects undecylprodigiosin production in *Streptomyces lividans*.
- 37. Bibb, M.J., Molle, V., Buttner, M.J.: sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in *Streptomyces coelicolor* A3(2). *J Bacteriol* **2000**, 182, (16), 4606-4616.
- 38. Kim, D.W., Chater, K., Lee, K.J., Hesketh, A.: Changes in the extracellular proteome caused by the absence of the *bldA* gene product, a developmentally significant tRNA, reveal a new target for the pleiotropic regulator AdpA in *Streptomyces coelicolor*. *J Bacteriol* **2005**, 187, (9), 2957-2966.
- 39. Claessen, D., Stokroos, I., Deelstra, H.J., Penninga, N.A., Bormann, C., Salas, J.A., Dijkhuizen, L., Wösten, H.A.: The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. *Mol Microbiol* **2004**, 53, (2), 433-443.
- 40. Elliot, M.A., Karoonuthaisiri, N., Huang, J., Bibb, M.J., Cohen, S.N., Kao, C.M., Buttner, M.J.: The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in *Streptomyces coelicolor*. *Genes Dev* **2003**, 17, (14), 1727-1740.
- 41. Sawyer, E.B., Claessen, D., Haas, M., Hurgobin, B., Gras, S.L.: The assembly of individual chaplin peptides from *Streptomyces coelicolor* into functional amyloid fibrils. *PLoS One* **2011**, 6, (4), e18839.
- 42. Capstick, D.S., Willey, J.M., Buttner, M.J., Elliot, M.A.: SapB and the chaplins: connections between morphogenetic proteins in *Streptomyces coelicolor*. *Mol Microbiol* **2007**, 64, (3), 602-613.
- 43. Di Berardo, C., Capstick, D.S., Bibb, M.J., Findlay, K.C., Buttner, M.J., Elliot, M.A.: Function and redundancy of the chaplin cell surface proteins in aerial hypha formation, rodlet assembly, and viability in *Streptomyces coelicolor*. *J Bacteriol* **2008**, 190, (17), 5879-5889.
- 44. Chater, K.F., Chandra, G.: The evolution of development in *Streptomyces* analysed by genome comparisons. *FEMS Microbiol Rev* **2006**, 30, (5), 651-672.
- 45. Claessen, D., de Jong, W., Dijkhuizen, L., Wösten, H.A.: Regulation of *Streptomyces* development: reach for the sky! *Trends Microbiol* **2006**, 14, (7), 313-319.
- 46. Rokem, J.S., Lantz, A.E., Nielsen, J.: Systems biology of antibiotic production by microorganisms. *Nat Prod Rep* **2007** *24*, 1262-1287.
- 47. Willey, J.M., Gaskell, A.A.: Morphogenetic signaling molecules of the streptomycetes. *Chem Rev* **2011**, 111, (1), 174-187.
- 48. Takano, E.: Gamma-butyrolactones: *Streptomyces* signalling molecules regulating antibiotic production and differentiation. *Curr Opin Microbiol* **2006**, 9, (3), 287-294.
- 49. Corre, C., Song, L., O'Rourke, S., Chater, K.F., Challis, G.L.: 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by *Streptomyces coelicolor* genome mining. *Proc Natl Acad Sci U S A* **2008**, 105, (45), 17510-17515.
- Haneishi, T., Terahara, A., Hamano, K., Arai, M.: New antibiotics, methylenomycins A and B.
 Chemical modifications of methylenomycin A and structure-activity correlations in methylenomycins. *J Antibiot (Tokyo)* 1974, 27, (6), 400-407.
- 51. Kawaguchi, T., Asahi, T., Satoh, T., Uozumi, T., Beppu, T.: B-factor, an essential regulatory substance inducing the production of rifamycin in a *Nocardia sp.*. *J Antibiot (Tokyo)* **1984**, 37, (12), 1587-1595.
- 52: Recio, E., Colinas, A. Rumbero, A., Aparicio, J.F., Martin, J.F.: PI factor, a novel type quorum-sensing inducer elicits pimaricin production in *Streptomyces natalensis*. *J Biol Chem* **2004** 279, (40), 41586-41593.
- 53. McCann, P.A., Pogell, B.M.: Pamamycin: a new antibiotic and stimulator of aerial mycelia formation. *J Antibiot (Tokyo)* **1979**, 32, (7), 673-678.
- 54. Hashimoto, M., Kondo, T., Kozone, I., Kawaide, H., Abe, H., Natsume, M.: Relationship between response to and production of the aerial mycelium-inducing substances pamamycin-607 and A-factor. *Biosci Biotechnol Biochem* **2003**, 67, (4), 803-808.
- 55. Hashimoto, M., Katsura, H., Kato, R., Kawaide, H., Natsume, M.: Effect of pamamycin-607 on secondary metabolite production by *Streptomyces* spp. *Biosci Biotechnol Biochem* **2011**, 75, (9), 1722-1726.
- 56. Biró, S., Békési, I., Vitális, S., Szabó, G.: A substance effecting differentiation in *Streptomyces griseus*. Purification and properties. *Eur J Biochem* **1980**, 103, (2), 359-363.
- 57. Andres, N., Wolf, H., Zähner, H., Rössner, E., Zeeck, A., König, W.A., Sinnwell, V.: Hormaomycin, ein neues Peptid-lacton mit morphogener Aktivität auf Streptomyceten. *Helv Chim Acta* **1989**, 72, 426-437.
- 58. Onaka, H., Tabata, H., Igarashi, Y., Sato, Y., Furumai, T.: Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. I. Purification and characterization. *J Antibiot (Tokyo)* **2001**, 54, (12), 1036-44.

- 59. Onaka, H., Nakaho, M., Hayashi, K., Igarashi, Y., Furumai, T.: Cloning and characterization of the goadsporin biosynthetic gene cluster from *Streptomyces* sp. TP-A0584. *Microbiology* **2005**, 151, (12), 3923-3933.
- 60. Onaka, H.: Biosynthesis of indolocarbazole and goadsporin, two different heterocyclic antibiotics produced by actinomycetes. *Biosci Biotechnol Biochem* **2009**, 73, (10), 2149-2155.
- 61. Rössner, E., Zeeck, A., König, W.A.: Elucidation of the structure of hormaomycin. *Angew Chem Int Edit Engl* **1990**, 29, 64-65
- 62. Höfer, I., Crüsemann, M., Radzom, M., Geers, B., Flachshaar, D., Cai, X., Zeeck, A., Piel, J.: Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. *Chem Biol* **2011**, 18, (3), 381-391.
- 63. McQuillen, K., Roberts, R.B., Britten, R.J.: Synthesis of nascent protein by ribosomes in *Escherichia coli. Proc Natl Acad Sci U S A* **1959**, 45, (9), 1437-1447.
- 64. Felnagle, E.A., Jackson, E.E., Chan, Y.A., Podevels, A.M., Berti, A.D., McMahon, M.D., Thomas, M.G.: Nonribosomal Peptide Synthetases Involved in the Production of Medically Relevant Natural Products. *Mol Pharmaceutics* **2008**, *5*, (2), 191–211.
- 65. Robbel, L., Marahiel M,A.: Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. *J Biol Chem* **2010**, (36), 27501-27508.
- 66. Donadio, S., Sosio, M.: Biosynthesis of glycopeptides: prospects for improved antibacterials. *Curr Top Med Chem* **2008**, 8, (8), 654-666.
- 67. Velkov, T., Lawen, A.: Non-ribosomal peptide synthetases as technological platforms for the synthesis of highly modified peptide bioeffectors-Cyclosporin synthetase as a complex example. *Biotechnol Annu Rev* 2003, 9, 151-197.
- 68. Galm, U., Hager, M.H., Van Lanen, S.G., Ju, J., Thorson, J.S., Shen, B.: Antitumor Antibiotics: Bleomycin, Enediynes, and Mitomycin. *Chem. Rev* **2005**, 105, 739-758.
- 69. Mach, B., Reich, E., Tatum, E.L.: Separation of the biosynthesis of the antibiotic polypeptide tyrocidine from protein biosynthesis. *Proc Natl Acad Sci U S A* **1963**, 50, (1), 175-181.
- 70. Gevers, W., Kleinkauf, H., Lipmann, F.: Peptidyl transfers in gramicidin S bisoynthesis from enzyme-bound thioester intermediates. *Proc Natl Acad Sci U S A* **1969**, 63,(4), 1335-1342.
- 71. Gevers, W., Kleinkauf, H., Lipmann, F.: The activation of amino acids for biosynthesis of gramicidin S. *Proc Natl Acad Sci U S A* **1968**, 60, (1), 269-276.
- 72. Kleinkauf, H., Gevers, W., Lipmann, F.: Interrelation between activation and polymerization in gramicidin S biosynthesis. *Proc Natl Acad Sci U S A* **1969**, 62, (1), 226-233.
- 73. Weckermann, R., Fürbass, R., Marahiel, M.A.: Complete nucleotide sequence of the tycA gene coding the tyrocidine synthetase 1 from *Bacillus brevis*. *Nucleic Acids Res* **1988**, 16, (24), 11841.
- 74. Sieber, S.A., Marahiel, M.A.: Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. *Chem Rev* **2005**, 105, (2),715-738.
- 75. Finking, R., Marahiel, M.A.: Biosynthesis of nonribosomal peptides. *Annu Rev Microbiol* **2004**, 58, 453-488.

- 76. Schwarzer, D., Finking, R., Marahiel, M.A.: Nonribosomal peptides: from genes to products. *Nat Prod Rep* **2003**, 20, (3), 275-287.
- 77. Meier, J.L., Burkart, M.D.: The chemical biology of modular biosynthetic enzymes. *Chem Soc Rev* **2009**, 38, (7), 2012-2045.
- 78. Walsh, C.T.: Polyketide and nonribosomal peptide antibiotics: modularity and versatility. *Science* **2004**, 303, (5665), 1805-1810.
- 79. Stachelhaus, T., Mootz, H.D., Marahiel, M.A.: The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. *Chem Biol* **1999**, (8), 493-505.
- 80. Challis, G.L., Ravel, J., Townsend, C.A.: Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. *Chem Biol* **2000**, (3), 211-24.
- 81. von Döhren, H., Dieckmann, R., Pavela-Vrancic, M.: The nonribosomal code. *Chem Biol* **1999**, 6, (10), R273-279.
- 82. Lautru, S., Deeth, R.J., Bailey, L.M., Challis, G.L.: Discovery of a new peptide natural product by *Streptomyces coelicolor* genome mining *Nat Chem Biol* **2005**, (5), 265-269.
- Kaysser, L., Tang, X., Wemakor, E., Sedding, K., Hennig, S., Siebenberg, S., Gust, B.: Identification of a Napsamycin Biosynthesis Gene Cluster by Genome Mining. *Chembiochem* 2011, 12, (3), 477-487.
- 84. Du, L., Sánchez, C., Shen, B.: Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. *Metab Eng* **2001**, 3, (1), 78-95.
- 85. Watanabe, K., Hotta, K., Praseuth, A.P., Koketsu, K., Migita, A., Boddy, C.N., Wang, C.C., Oguri, H., Oikawa, H.: Total biosynthesis of antitumor nonribosomal peptides in *Escherichia coli*. *Nat Chem Biol* **2006**, *2*, (8), 423-428.
- 86. Hoyer, K.M., Mahlert, C., Marahiel, M.A.: The iterative gramicidin s thioesterase catalyzes peptide ligation and cyclization. *Chem Biol* **2007**, 14, (1), 13-22.
- 87. Shaw-Reid, C.A., Kelleher, N.L., Losey, H.C., Gehring, A.M., Berg, C., Walsh, C.T.: Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of *E. coli* EntF catalyzes both elongation and cyclolactonization. *Chem Biol* **1999**, 6, (6), 385-400.
- 88. Gunsior, M., Breazeale, S.D., Lind, A.J., Ravel, J., Janc, J.W., Townsend, C.A.: The biosynthetic gene cluster for a monocyclic beta-lactam antibiotic, nocardicin A. *Chem Biol* **2004**, (7), 927-938.
- 89. Davidsen, J.M., Townsend, C.A.: In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A. *Chem Biol* **2012**, 19, (2), 297-306.
- 90. Galm, U., Wendt-Pienkowski, E., Wang, L., Huang, S.X., Unsin, C., Tao, M., Coughlin, J.M., Shen, B.: Comparative analysis of the biosynthetic gene clusters and pathways for three structurally related antitumor antibiotics: bleomycin, tallysomycin, and zorbamycin. *J Nat Prod* **2011**, 74, (3), 526-536.

- 91. Xu, W., Cai, X., Jung, M.E., Tang, Y.: Analysis of intact and dissected fungal polyketide synthase-nonribosomal peptide synthetase in vitro and in *Saccharomyces cerevisiae*. *J Am Chem Soc* **2010**, 132, (39), 13604-13607.
- 92. Schwecke, T., Göttling, K., Durek, P., Dueñas, I., Käufer, NF., Zock-Emmenthal, S., Staub, E., Neuhof, T., Dieckmann, R., von Döhren, H.: Nonribosomal peptide synthesis in Schizosaccharomyces pombe and the architectures of ferrichrome-type siderophore synthetases in fungi. *Chembiochem* **2006**, (4), 612-622.
- 93. Juguet, M., Lautru, S., Francou, F.X., Nezbedová, S., Leblond, P., Gondry, M., Pernodet, J.L.: An iterative nonribosomal peptide synthetase assembles the pyrrole-amide antibiotic congocidine in *Streptomyces ambofaciens*. *Chem Biol* **2009**, 16, (4), 421-431.
- 94. Conti, E., Stachelhaus, T., Marahiel, M.A., Brick, P.: Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. *EMBO J* **1997**, 16, (14), 4174-83.
- 95. Gulick A.M.: Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. *ACS Chem Biol* **2009**, 4, (10), 811-827.
- 96. May, J.J., Kessler, N., Marahiel, M.A., Stubbs, M.T.: Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. *Proc Natl Acad Sci U S A* **2002**, 99, (19), 12120-12125.
- 97. Jogl, G., Tong, L.: Crystal structure of yeast acetylcoenzyme A synthetase in complex with AMP. *Biochemistry* **2004**, 43, 1425–1431.
- 98. Nakatsu, T., Ichiyama, S., Hiratake, J., Saldanha, A., Kobashi, N., Sakata, K., Kato, H.: Structural basis for the spectral difference in luciferase bioluminescence. *Nature* **2006**, 440, 372–376.
- 99. Eppelmann, K., Stachelhaus, T., Marahiel, M.A.: Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. *Biochemistry* **2002**, 41, (30), 9718-9726.
- 100. Chen, C.Y., Georgiev, I., Anderson, A.C., Donald, B.R.: Computational structure-based redesign of enzyme activity. *Proc Natl Acad Sci U S A* **2009**, (10), 3764-3769. Erratum in: *Proc Natl Acad Sci U S A* **2009**, 106, (18), 7678.
- 101. Ruttenberg, M. A., Mach, B.. Studies on amino acid substitution in the biosynthesis of the antibiotic polypeptide tyrocidine. *Biochemistry* **1966**, 5, 2864-2869.
- 102. Hojati, Z., Milne, C., Harvey, B., Gordon, L., Borg, M., Flett, F., Wilkinson, B., Sidebottom, P.J., Rudd, B.A., Hayes, M.A., Smith, C.P., Micklefield, J.: Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from *Streptomyces coelicolor*. *Chem Biol* 2002 (11), 1175-1187.
- 103. Weber, G, Schörgendorfer, K., Schneider-Scherzer, E., Leitner, E.: The peptide synthetase catalyzing cyclosporine production in *Tolypocladium niveum* is encoded by a giant 45.8-kilobase open reading frame. *Curr Genet* **1994**, (2), 120-125.
- 104. Christiansen, G., Philmus, B., Hemscheidt, T., Kurmayer, R.: Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of substrate promiscuity. *J Bacteriol* **2011**, 193, (15), 3822-3831.

- 105. Fewer, D.P., Rouhiainen, L., Jokela, J., Wahlsten, M., Laakso, K., Wang, H., Sivonen, K. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. *BMC Evol Biol* **2007**,*7*, 11.
- 106. Ishida, K., Welker, M., Christiansen, G., Cadel-Six, S., Bouchier, C., Dittmann, E., Hertweck, C., de Marsac, N.T. Plasticity and Evolution of Aeruginosin Biosynthesis in Cyanobacteria. *Appl Environ Microbiol* **2009** 75, 2017-2026.
- 107. Tooming-Klunderud, A., Mikalsen, B., Kristensen, T., Jakobsen, K.S. The mosaic structure of the mcyABC operon in *Microcystis*. *Microbiology (UK)* **2008**, 154, 1886-1899.
- 108. Otten, L.G., Schaffer, M.L., Villiers, B.R., Stachelhaus, T., Hollfelder, F.: An optimized ATP/PP(i)-exchange assay in 96-well format for screening of adenylation domains for applications in combinatorial biosynthesis. *Biotechnol J* **2007**, 2, (2), 232-240.
- 109. Phelan, V.V., Du, Y., McLean, J.A., Bachmann, B.O.: Adenylation enzyme characterization using gamma-(18)O(4)-ATP pyrophosphate exchange. *Chem Biol* **2009**, 16, (5), 473-478.
- 110. Dorrestein, P.C., Blackhall, J., Straight, P.D., Fischbach, M.A., Garneau-Tsodikova, S., Edwards, D.J., McLaughlin, S., Lin, M., Gerwick, W.H., Kolter, R., Walsh, C.T., Kelleher, N.L.: Activity screening of carrier domains within nonribosomal peptide synthetases using complex substrate mixtures and large molecule mass spectrometry. *Biochemistry* 2006, 14, 45, (6), 1537-1546.
- 111. Lai, J.R., Koglin, A., Walsh, C.T.: Carrier protein structure and recognition in polyketide and nonribosomal peptide biosynthesis. *Biochemistry* **2006**, 45, (50), 14869-14879.
- 112. Lambalot, R.H., Gehring, A.M., Flugel, R.S., Zuber, P., LaCelle, M., Marahiel, M.A., Reid, R., Khosla, C., Walsh, C.T.: A new enzyme superfamily the phosphopantetheinyl transferases. *Chem Biol* **1996**, (11), 923-936.
- 113. Doekel, S., Marahiel, M.A.: Dipeptide formation on engineered hybrid peptide synthetases. *Chem Biol* **2000**, *7*, (6), 373-384.
- 114. Keating, T.A., Marshall, C.G., Walsh, C.T., Keating, A.E.: The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. *Nat Struct Biol* **2002**, 9, (7), 522-526.
- 115. De Crécy-Lagard, V., Marlière, P., Saurin, W.: Multienzymatic non ribosomal peptide biosynthesis: identification of the functional domains catalysing peptide elongation and epimerisation. *C R Acad Sci III.* **1995**, 318, (9), 927-936.
- Stachelhaus, T., Mootz, H.D., Bergendahl, V., Marahiel, M.A.: Peptide bond formation in nonribosomal peptide biosynthesis. Catalytic role of the condensation domain. *J Biol Chem* 1998, 273, (35), 22773-22781
- 117. Lautru, S., Challis, G.L.: Substrate recognition by nonribosomal peptide synthetase multienzymes. *Microbiology* **2004**, 150, (6), 1629-1636.
- 118. Belshaw, P.J., Walsh, C.T., Stachelhaus, T.: Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. *Science* **1999**, 284, (5413), 486-489.
- Linne, U., Marahiel, M.A.: Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. *Biochemistry* 2000 39, (34), 10439-10447.

- 120. Marshall, C.G., Burkart, M.D., Meray, R.K., Walsh, C.T.: Carrier protein recognition in siderophore-producing nonribosomal peptide synthetases. *Biochemistry* **2002**, 41, (26), 8429-8437.
- 121. Rausch, C., Hoof, I., Weber, T., Wohlleben, W., Huson, D.H.: Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. *BMC Evol Biol* **2007**, 16, (7), 78.
- 122. Dewick, P.M.; Medicinal natural products. A biosynthetic approach. Third edition, Wiley, 2009
- 123. Stein, D.B., Linne, U., Marahiel, M.A.: Utility of epimerization domains for the redesign of nonribosomal peptide synthetases. *FEBS J* **2005**, 272, (17), 4506-4520.
- 124. Stein, D.B., Linne, U., Hahn, M., Marahiel, M.A.: Impact of epimerization domains on the intermodular transfer of enzyme-bound intermediates in nonribosomal peptide synthesis. *Chembiochem* **2006**, 7, (11), 1807-1814.
- 125. Schneider, T.L., Shen, B., Walsh, C.T.: Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation. *Biochemistry* **2003**, 42, (32), 9722-9730.
- 126. Duerfahrt, T., Eppelmann, K., Müller, R., Marahiel, M.A.: Rational design of a bimodular model system for the investigation of heterocyclization in nonribosomal peptide biosynthesis. *Chem Biol* **2004**, 11, (2), 261-271.
- 127. Du, L., Lou, L.: PKS and NRPS release mechanisms. *Nat Prod Rep* **2010**, 27, (2), 255-278.
- 128. Kopp, F., Marahiel, M.A.: Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. *Nat Prod Rep* **2007**, 24, (4), 735-749.
- 129. Bruner, S.D., Weber, T., Kohli, R.M., Schwarzer, D., Marahiel, M.A., Walsh, C.T., Stubbs, M.T.: Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. *Structure* **2002**, 10, (3), 301-310.
- 130. Kohli, R.M., Takagi, J., Walsh, C.T.: The thioesterase domain from a nonribosomal peptide synthetase as a cyclization catalyst for integrin binding peptides. *Proc Natl Acad Sci U S A* **2002**, 99, (3), 1247-1252.
- 131. Tseng, C.C., Bruner, S.D., Kohli, R.M., Marahiel, M.A., Walsh, C.T., Sieber, S.A.: Characterization of the surfactin synthetase C-terminal thioesterase domain as a cyclic depsipeptide synthase. *Biochemistry* **2002**, 41, (45), 13350-13359.
- 132. Kohli, R.M., Walsh, C.T., Burkart, M.D.: Biomimetic synthesis and optimization of cyclic peptide antibiotics. *Nature* **2002**, 418, (6898), 658-661.
- 133. Challis, G.L., Naismith, J.H.: Structural aspects of non-ribosomal peptide biosynthesis. *Curr Opin Struct Biol* **2004**, 14, (6), 748-756.
- 134. Koglin, A., Walsh, C.T.: Structural insights into nonribosomal peptide enzymatic assembly lines. *Nat Prod Rep* **2009**, (8), 987-1000.
- 135. Strieker, M., Tanović, A., Marahiel, M.A.: Nonribosomal peptide synthetases: structures and dynamics. *Curr Opin Struct Biol* **2010**, (2), 234-240.

- Frueh, D.P., Arthanari, H., Koglin, A., Vosburg, D.A., Bennett, A.E., Walsh, C.T., Wagner, G.: Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. *Nature* 2008, 454, (7206), 903-906.
- 137. Samel, S.A., Schoenafinger, G., Knappe, T.A., Marahiel, M.A., Essen, L.O.: Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. *Structure* **2007**, 15, (7), 781-792.
- 138. Tanovic, A., Samel, S.A., Essen, L.O., Marahiel, M.A.: Crystal structure of the termination module of a nonribosomal peptide synthetase. *Science* **2008**, 321, (5889), 659-663.
- 139. Koglin, A., Mofid, M.R., Löhr, F., Schäfer, B., Rogov, V.V., Blum, M.M., Mittag, T., Marahiel, M.A., Bernhard, F., Dötsch, V.: Conformational switches modulate protein interactions in peptide antibiotic synthetases. *Science* **2006**, 312, (5771), 273-276.
- 140. Guo, Z.F., Sun, Y., Zheng, S., Guo, Z.: Preferential hydrolysis of aberrant intermediates by the type II thioesterase in *Escherichia coli* nonribosomal enterobactin synthesis: substrate specificities and mutagenic studies on the active-site residues. *Biochemistry* **2009**, 48, (8), 1712-1722.
- 141. Yonus, H., Neumann, P., Zimmermann, S., May, J.J., Marahiel, M.A., Stubbs, M.T.: Crystal structure of DltA. Implications for the reaction mechanism of non-ribosomal peptide synthetase adenylation domains. *J Biol Chem* **2008**, 283, (47), 32484-32491.
- 142. Baltz, R.H.: Molecular engineering approaches to peptide, polyketide and other antibiotics. *Nat Biotechnol* **2006**, (12), 1533-1540.
- 143. Quadri, L.E., Sello, J., Keating, T.A., Weinreb, P.H., Walsh, C.T.: Identification of a *Mycobacterium tuberculosis* gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. *Chem Biol* **1998**, 5, (11), 631-645.
- 144. Baltz, R.H.: Function of MbtH homologs in nonribosomal peptide biosynthesis and applications in secondary metabolite discovery. *J Ind Microbiol Biotechnol* **2011**, 38, (11), 1747-1760.
- 145. Sosio, M., Kloosterman, H., Bianchi, A., de Vreugd, P., Dijkhuizen, L., Donadio, S.: Organization of the teicoplanin gene cluster in *Actinoplanes teichomyceticus*. *Microbiology* **2004**, 150, 95-102.
- 146. Edwards, D.J., Gerwick, W.H.: Lyngbyatoxin biosynthesis: sequence of biosynthetic gene cluster and identification of a novel aromatic prenyltransferase. *J Am Chem Soc* **2004**, 126, (37), 11432-11433.
- 147. Rhee, K.H., Davies, J.: Transcrition analysis of daptomycin biosynthesis genes in *Streptomyces roseosporus. J Microbiol Biotechnol* **2006**, 16, 1841-1848.
- 148. Lautru, S., Oves-Costales, D., Pernodet, J.L., Challis, G.L.: MbtH-like protein-mediated crosstalk between non-ribosomal peptide antibiotic and siderophore biosynthetic pathways in *Streptomyces coelicolor* M145. *Microbiology* **2007**, 153, (5), 1405-1412.
- 149. Wolpert, M., Gust, B., Kammerer, B., Heide, L.: Effects of deletions of mbtH-like genes on clorobiocin biosynthesis in *Streptomyces coelicolor*. *Microbiology* **2007**, 153, (5), 1413-1423.
- 150. Drake, E.J., Cao, J., Qu, J., Shah, M.B., Straubinger, R.M., Gulick, A.M.: The 1.8 A crystal structure of PA2412, an MbtH-like protein from the pyoverdine cluster of *Pseudomonas aeruginosa*. J Biol Chem **2007**, 282, (28), 20425-20434.

- 151. Buchko, G.W., Kim, C.Y., Terwilliger, T.C., Myler, P.J.: Solution structure of Rv2377cfounding member of the MbtH-like protein family. *Tuberculosis (Edinb)* **2010**, 90, (4), 245-51.
- 152. Felnagle, E.A., Barkei, J.J., Park, H., Podevels, A.M., McMahon, M.D., Drott, D.W., Thomas, M.G.: MbtH-like proteins as integral components of bacterial nonribosomal peptide synthetases. *Biochemistry* **2010**, 49, (41), 8815-8817.
- 153. Zhang, W., Heemstra, J.R. Jr, Walsh, C.T., Imker, H.J.: Activation of the pacidamycin PacL adenylation domain by MbtH-like proteins. *Biochemistry* **2010** 49,(46), 9946-9947.
- 154. Imker, H.J., Krahn, D., Clerc, J., Kaiser, M., Walsh, C.T.: N-acylation during glidobactin biosynthesis by the tridomain nonribosomal peptide synthetase module GlbF. *Chem Biol* **2010** 17, (10), 1077-1083.
- 155. Boll, B., Taubitz, T., Heide, L.: Role of MbtH-like proteins in the adenylation of tyrosine during aminocoumarin and vancomycin biosynthesis. *J Biol Chem* **2011**, 286, (42), 36281-36290.
- 156. Chen, H., Walsh, C.T.: Coumarin formation in novobiocin biosynthesis: beta-hydroxylation of the aminoacyl enzyme tyrosyl-S-NovH by a cytochrome P450 NovI. *Chem Biol* **2001**, 8, 301–312.
- 157. Keasling, J.D.: Manufacturing molecules through metabolic engineering. *Science* **2010**, 330, (6009), 1355-1358.
- 158. Thiericke, R., Rohr, J.: Biological variation of microbial metabolites by precursor-directed biosynthesis. *Nat Prod Rep* **1993**, 10, (3), 265-289.
- 159. Weist, S., Süssmuth, R.D.: Mutational biosynthesis--a tool for the generation of structural diversity in the biosynthesis of antibiotics. *Appl Microbiol Biotechnol* **2005**, 68, (2), 141-150.
- Powell, A., Al Nakeeb, M., Wilkinson, B., Micklefield, J.: Precursor-directed biosynthesis of nonribosomal lipopeptides with modified glutamate residues. *Chem Commun (Camb)* 2007, (26), 2683-2685.
- 161. Powell, A., Borg, M., Amir-Heidari, B., Neary, J.M., Thirlway, J., Wilkinson, B., Smith, C.P., Micklefield, J.: Engineered biosynthesis of nonribosomal lipopeptides with modified fatty acid side chains. *J Am Chem Soc* **2007** 129, (49), 15182-15191.
- 162. Amir-Heidari, B., Thirlway, J., Micklefield, J.: Auxotrophic-precursor directed biosynthesis of nonribosomal lipopeptides with modified tryptophan residues. *Org Biomol Chem* **2008**, 6, (6), 975-978.
- 163. Zhang, W., Tang, Y.: Combinatorial biosynthesis of natural products. *J Med Chem* 2008, 51, (9), 2629-2633.
- 164. Mootz, H.D., Kessler, N., Linne, U., Eppelmann, K., Schwarzer, D., Marahiel, M.A.: Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. *J Am Chem Soc* **2002**, 124, (37), 10980-10981.
- 165. Butz, D., Schmiederer, T., Hadatsch, B., Wohlleben, W., Weber, T., Süssmuth, R.D.: Module extension of a non-ribosomal peptide synthetase of the glycopeptide antibiotic balhimycin produced by *Amycolatopsis balhimycina*. *Chembiochem* **2008**, 9, (8), 1195-1200.

- 166. Uguru, G.C., Milne, C., Borg, M., Flett, F., Smith, C.P., Micklefield, J.: Active-site modifications of adenylation domains lead to hydrolysis of upstream nonribosomal peptidyl thioester intermediates. *J Am Chem Soc* **2004**, 126, (16), 5032-5033.
- Hahn, M., Stachelhaus, T.: Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. *Proc Natl Acad Sci U S A* 2004, 101, (44), 15585-15590.
- 168. Hahn, M., Stachelhaus, T.: Harnessing the potential of communication-mediating domains for the biocombinatorial synthesis of nonribosomal peptides. *Proc Natl Acad Sci U S A* **2006**, 103, (2), 275-280.
- Chiocchini, C., Linne, U., Stachelhaus, T.: In vivo biocombinatorial synthesis of lipopeptides by COM domain-mediated reprogramming of the surfactin biosynthetic complex. *Chem Biol* 2006, 13, (8), 899-908.
- 170. Baltz, R.H.: Biosynthesis and genetic engineering of lipopeptide antibiotics related to daptomycin. *Curr Top Med Chem* **2008**, 8, (8), 618-638.
- 171. Nguyen, K.T., Ritz, D., Gu, J.Q., Alexander, D., Chu, M., Miao, V., Brian, P., Baltz, R.H.: Combinatorial biosynthesis of novel antibiotics related to daptomycin. *Proc Natl Acad Sci U S A* **2006** 103, (46), 17462-17467.
- 172. Nguyen, K.T., He, X., Alexander, D.C., Li, C., Gu, J.Q., Mascio, C., Van Praagh, A., Mortin, L., Chu, M., Silverman, J.A., Brian, P., Baltz, R.H.: Genetically engineered lipopeptide antibiotics related to A54145 and daptomycin with improved properties. *Antimicrob Agents Chemother* **2010**, 54, (4), 1404-1413.
- 173. Doekel, S., Coëffet-Le Gal, M.F., Gu, J.Q., Chu, M., Baltz, R.H., Brian, P.: Non-ribosomal peptide synthetase module fusions to produce derivatives of daptomycin in *Streptomyces roseosporus*. *Microbiology* **2008**, 154, (9), 2872-2880.
- 174. Moyne, A.L., Cleveland, T.E., Tuzun, S.: Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. *FEMS Microbiol Lett* **2004**, 234, (1), 43-49.
- 175. Wenzel, S.C., Meiser, P., Binz, T.M., Mahmud, T., Müller, R.: Nonribosomal peptide biosynthesis: point mutations and module skipping lead to chemical diversity. *Angew Chem Int Ed Engl* **2006** 45, (14), 2296-2301.
- 176. Fischbach, M.A., Lai, J.R., Roche, E.D., Walsh, C.T., Liu, D.R.: Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. *Proc Natl Acad Sci U S A* **2007**, 104, (29), 11951-11956.
- 177. Villiers, B., Hollfelder, F.: Directed evolution of a gatekeeper domain in nonribosomal peptide synthesis. *Chem Biol* **2011**, 28, 18, (10), 1290-1299.
- 178. Evans, B.S., Chen, Y., Metcalf, W.W., Zhao, H., Kelleher, N.L.: Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. *Chem Biol* **2011**, 27, 18, (5), 601-607.
- 179. Wessjohann, L.A., Brandt, W., Thiemann, T., Biosynthesis and metabolism of cyclopropane rings in natural compounds. *Chem Rev* **2003**, 103, (4), 1625-1648.

- 180. Brackmann, F. de Meijere, A.: Natural Occurrence, Syntheses, and Applications of Cyclopropyl-Group-Containing r-Amino Acids. 1. 1-Aminocyclopropanecarboxylic Acid and Other 2,3-Methanoamino Acids. *Chem. Rev* **2007**, 107, 4493-4537.
- 181. Brackmann, F., de Meijere, A.: Natural Occurrence, Syntheses, and Applications of Cyclopropyl-Group-Containing r-Amino Acids. 2. 3,4- and 4,5-Methanoamino Acids. *Chem Rev* 2007, 107, 4538-4583.
- 182. Broberg, A., Menkis, A., Vasiliauskas, R.: Kutznerides 1-4, depsipeptides from the actinomycete *Kutzneria sp.* 744 inhabiting mycorrhizal roots of *Picea abies* seedlings. *J Nat Prod* **2006**, 69, (1), 97-102.
- 183. Fujimori, D.G., Hrvatin, S., Neumann, C.S., Strieker, M., Marahiel, M.A., Walsh, C.T.: Cloning and characterization of the biosynthetic gene cluster for kutznerides. *Proc Natl Acad Sci U S A* **2007**, 104, (42), 16498-16503.
- 184. Yamada, K., Ojika, M., Kigoshi, H.: Ptaquiloside, the major toxin of bracken, and related terpene glycosides: chemistry, biology and ecology. *Nat Prod Rep* **2007**, (47), 98-813.
- 185. Pietruszka, J.: Synthesis and properties of oligocyclopropyl-containing natural products and model compounds. *Chem Rev* **2003**, 103, (4), 1051-1070.
- 186. Grogan, D.W., Cronan, J.E. Jr.: Cyclopropane ring formation in membrane lipids of bacteria. *Microbiol Mol Biol Rev* **1997**, 61, (4), 429-441.
- 187. He, J., Magarvey, N., Piraee, M., Vining, L.C.: The gene cluster for chloramphenicol biosynthesis in *Streptomyces venezuelae* ISP5230 includes novel shikimate pathway homologues and a monomodular non-ribosomal peptide synthetase gene. *Microbiology* **2001**, 147(10), 2817-2829.
- 188. van Pée, K.H., Ligon, J.M.: Biosynthesis of pyrrolnitrin and other phenylpyrrole derivatives by bacteria. *Nat Prod Rep* **2000**, 17, (2), 157-164.
- 189. He, J., Hertweck, C.: Iteration as programmed event during polyketide assembly; molecular analysis of the aureothin biosynthesis gene cluster. *Chem Biol* **2003**, 10, (12), 1225-1232.
- 190. He, J., Hertweck, C.: Biosynthetic origin of the rare nitroaryl moiety of the polyketide antibiotic aureothin: involvement of an unprecedented N-oxygenase. *J Am Chem Soc* 2004, 126, (12), 3694-3695.
- 191. Winkler, R., Hertweck, C.: Biosynthesis of nitro compounds. *ChemBioChem* 2007, 8, 973-977.
- 192. Loria, R., Bignell, D.R., Moll, S., Huguet-Tapia, J.C., Joshi, M.V., Johnson, E.G., Seipke, R.F., Gibson, D.M.: Thaxtomin biosynthesis: the path to plant pathogenicity in the genus *Streptomyces. Antonie Van Leeuwenhoek* **2008**, 94, (1), 3-10.
- 193. Choi, Y.S., Zhang, H., Brunzelle, J.S., Nair, S.K., Zhao, H.: In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis. *Proc Natl Acad Sci U S A.* **2008**, 105, (19), 6858-6563.
- 194. Omura, S., Mamda, H., Wang, N.-J., Imamura, N., Oiwa, R., Iwai, Y.: Takaokamycin, a new peptide antibiotic produced *by Streptomyces sp. J Antibiot (Tokyo)* **1984**, 37, (7), 700-705.

- 195. Zlatopolskiy, B.D., Loscha, K., Alvermann, P., Kozhushkov, S.I., Nikolaev, S.V., Zeeck, A., de Meijere, A.: Final elucidation of the absolute configuration of the signal metabolite hormaomycin. *Chem Eur J* **2004**, 10, 4708-4717.
- 196. Reinscheid, U.M., Farjon, J., Radzom, M., Haberz, P., Zeeck, A., Blackledge, M., Griesinger, C.: Effect of the solvent on the conformation of a depsipeptide: NMR-derived solution structure of Hormaomycin in DMSO from residual dipolar couplings in a novel DMSO-compatible alignment medium. *ChemBioChem* **2006**, 7, 287-296.
- 197. Zlatopolskiy, B.D., de Meijere, A.: First total synthesis of hormaomycin, a naturally occurring depsipeptide with interesting biological activities. *Chem Eur J* **2004**, 10, 4718-4727.
- 198. Otoguro, K., Ui, H., Ishiyama, A., Arai, N., Kobayashi, M., Takahashi, Y., Masuma, R., Shiomi, K., Yamada, H., Omura, S.: In vitro antimalarial activities of the microbial metabolites. *J. Antibiot (Tokyo)* **2003**, 56, 322–324.
- 199. Zlatopolskiy, B.D., Radzom, M., Zeeck, A., de Meijere, A.: Synthesis and precursor-directed biosynthesis of new hormaomycin analogues. *Eur J Org Chem*, **2006**, 6, 1525-1534.
- 200. Radzom, M.: Beiträge zur Biosynthese der antiparasitären Naturstoffe Hormaomycin und Borrelidin sowie Strukturaufklärung von Sekundärmetaboliten aus Actinomyceten. Dissertation, Universität Göttingen **2006**.
- 201. Reinscheid, U.M., Zlatopolskiy, B.D., Griesinger, C., Zeeck, A., de Meijere, A.: The structure of hormaomycin and one of ist all-peptide aza-analogues in solution: Syntheses and biological activities of new hormaomycin analogues. *Chem Eur J* **2005**, 11, 2929-2945.
- 202. Röttig, M., Medema, M.H., Blin, K., Weber, T., Rausch, C., Kohlbacher, O.: NRPSpredictor2--a web server for predicting NRPS adenylation domain specificity. *Nucleic Acids Res* 2011, 39(Web Server issue):W362-367.
- 203. Thomas, M.G., Burkart, M.D., Walsh, C.T.: Conversion of L-proline to pyrrolyl-2-carboxyl-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. *Chem Biol* **2002**, 9, 171-184.
- 204. Garneau, S., Dorrestein, P.C., Kelleher, N.L., Walsh, C.T.: Characterization of the formation of the pyrrole moiety during clorobiocin and coumermycin A₁ biosynthesis. *Biochemistry* **2005**, 44, 2770-2880.
- 205. Asai, A., Hasegawa, A., Ochiai, K., Yamashita, Y., Mizukami, T.: Belactosin A, a novel antitumor antibiotic acting on cyclin/CDK mediated cell cycle regulation, produced by *Streptomyces* sp. *J Antibiot* **2000**, 53, (1), 81-83.
- 206. Brandl, M., Kozhushkov, S.I., Zlatopolskiy, B.D., Alvermann, P., Geers, B., Zeeck, A., de Meijere, A.: The biosynthesis of 3-(trans-2-nitrocyclopropyl)alanine, a constituent of the signal metabolite hormaomycin. *Eur J Org Chem* **2004**, 123-135.
- 207. Altschul S.F., Koonin E.V.: Iterated profile searches with PSI-BLAST- a tool for discovery in protein databases. *Trends Biochem Sci* **1998**, 23, (11), 444-447.
- 208. Kodera T., Smirnov S.V., Samsonova N.N., Kozlov Y.I., Koyama R., Hibi M., Ogawa J., Yokozeki K., Shimizu S.: A novel 1-isoleucine hydroxylating enzyme, 1-isoleucine dioxygenase from *Bacillus thuringiensis*, produces (2S,3R,4S)-4-hydroxylsoleucine. *Biochem Biophys Res Commun* **2009**, 390, (3), 506-510.
- 209. Haefelé, C., Bonfils, C., Sauvaire, Y.: Characterization of a dioxygenase from *Trigonella foenum-graecum* involved in 4-hydroxyisoleucine biosynthesis. *Phytochemistry* **1997**, 44, (4), 563-566.

- 210. Hausinger, R.P.: Fe(II)/α-Ketoglutarate-dependent hydroxylases and related enzymes. *Crit Rev Biochem Mol Bio* **2004**, 39, 21-68..
- 211. Goodwin, P.M., Anthony, C.: The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. *Adv Microb Physiol* **1998**, 40, 1-80.
- 212. Magnusson, O.T., Toyama, H., Saeki, M., Rojas, A., Reed, J.C., Liddington, R.C., Klinman, J.P., Schwarzenbacher, R.: Quinone biogenesis: Structure and mechanism of PqqC, the final catalyst in the production of pyrroloquinoline quinone. *Proc Natl Acad Sci U S A* **2004**, 101, (21), 7913-7918.
- 213. Toyama, H., Fukumoto, H., Saeki, M., Matsushita, K., Adachi, O., Lidstrom, M.E.: PqqC/D, which converts a biosynthetic intermediate to pyrroloquinoline quinone. *Biochem Biophys Res Commun* **2002**, 299, (2), 268-272.
- 214. Toyama, H., Nishibayashi, E., Saeki, M., Adachi, O., Matsushita, K.: Factors required for the catalytic reaction of PqqC/D which produces pyrroloquinoline quinone. *Biochem Biophys Res Commun* **2007**, 354, (1), 290-295.
- 215. Yin, X., Zabriskie, T.M.: VioC is a non-heme iron, alpha-ketoglutarate-dependent oxygenase that catalyzes the formation of 3S-hydroxy-L-arginine during viomycin biosynthesis. *Chembiochem* **2004**, 5, (9), 1274-1277.
- 216. Mori, H., Shibasaki, T., Yano, K., Ozaki, A.: Purification and cloning of a proline 3hydroxylase, a novel enzyme which hydroxylates free L-proline to cis-3-hydroxy-L-proline. *J Bacteriol* **1997**, 179, (18), 5677-5683.
- 217. Molnár-Perl, I.: Advancement in the derivatizations of the amino groups with the ophthaldehyde-thiol and with the 9-fluorenylmethyloxycarbonyl chloride reagents. *J Chromatogr B Analyt Technol Biomed Life Sci* **2011**, 879, (17-18), 1241-1269.
- 218. Mazzucco, E., Gosetti, F., Bobba, M., Marengo, E., Robotti, E., Gennaro, M.C.: Highperformance liquid chromatography-ultraviolet detection method for the simultaneous determination of typical biogenic amines and precursor amino acids. Applications in food chemistry. *J Agric Food Chem* **2010**, 58, (1), 127-134.
- 219. Gosetti, F., Mazzucco, E., Zampieri, D., Gennaro, M.C.: Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. *J Chromatogr A* **2010**, 1217, (25), 3929-3937.
- 220. Saito, K., Kobayashi, M., Gong, Z., Tanaka, Y., Yamazaki, M.: Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of *Perilla frutescens*. *Plant J* **1999**, 17, (2), 181-189.
- 221. Minami, H., Dubouzet, E., Iwasa, K., Sato, F.: Functional analysis of norcoclaurine synthase in *Coptis japonica*. *J Biol Chem* **2007**, 282, (9), 6274-6282.
- 222. Peschke, U., Schmidt, H., Zhang, H.Z., Piepersberg, W.: Molecular characterizazion of the lincomycin production gene cluster of *Streptomyces lincolnensis* 78-11. *Mol Microbiol* **1995**, 16, 1137-1156.
- 223. Hu, Y., Phelan, V., Ntai, I., Farnet, C.M., Zazopoulos, E., Bachmann, B.O.: Benzodiazepine biosynthesis in *Streptomyces refuineus*. *Chem Biol* **2007**, 14, 691-701.
- 224. Li, W., Khullar, A., Chou, S., Sacramo, A., Gerratana, B.: Biosynthesis of sibiromycin, a potent antitumor agent. *Appl Environ Microb* **2009**, 75, 2869-2878.

- 225. Li, W., Chou, S., Khullar, A., Gerratana, B.: Cloning and characterization of the biosynthetic gene cluster for tomaymycin, an SJG-136 monomeric analog. *Appl Environ Microb* 2009, 75, 2958-2963.
- 226. Neusser, D., Schmidt, H., Spizek, J., Novotna, J., Peschke, U., Kaschabeck, S., Tichy, P., Piepersberg, W.: The genes lmbB1 and lmbB2 of *Streptomyces lincolnensis* encode enzymes involved in the conversion of L-tyrosine to propylproline during the biosynthesis of the antibiotic lincomycin A. *Arch Microbiol* 1998, 169, 322-332.
- 227. Colabroy K.L., Hackett, W.T., Markham, A.J., Rosenberg, J., Cohen, D.E., Jacobson, A.: Biochemical characterization of L-DOPA 2,3 dioxygenase, a single domain type I extradiol dioxygenase from lincomycin biosynthesis. *Arch Biochem Biophys* **2008**, 479, 131-138.
- 228. Costas, M., Mehn, M.P., Jensen, M.J., Que Jr., L.: Dioxygen activation at mononuclear nonheme iron active sites: Enzymes, models and intermediates. *Chem Rev* 2004, 104, 939-986.
- 229. Horsman, G.P., Bhowmik, S., Seah, Y.K., Kumar, P., Bolin, J.T., Eltis, I.D.: The tautomeric half-raction of BphD, a C-C bond hydrolase: kinetic and structural evidence supporting a key role for histidine 265 of the catalytic triad. *J Biol Chem* **2007**, 282, 19894-19904.
- 230. Ulanova D., Novotná J., Smutná Y., Kameník Z., Gazák R., Sulc M., Sedmera P., Kadlcík S., Plhácková K., Janata J.: Mutasynthesis of lincomycin derivatives with activity against drug-resistant staphylococci. *Antimicrob Agents Chemother* **2010**, 54, (2), 927-930.
- 231. Kuo, M.S., Yurek, D.A., Coats, J.H., Chung, S.T., Li, G.P.: Isolation and identification of 3propylidene-1-pyrroline-5-carboxylic acid, a biosynthetic precursor of lincomycin. *J. Antibiot* **1992**, 37 (45), 1773-1777.
- 232. Forouhar, F., Abashidze, M., Xu, H., Grochowski, L.L., Seetharaman, J., Hussain ,M., Kuzin, A., Chen, Y., Zhou, W., Xiao, R., Acton, T.B., Montelione, G.T., Galinier, A., White, R.H., Tong, L.: Molecular insights into the biosynthesis of the F420 coenzyme. *J Biol Chem* **2008**, 283, (17), 11832-11840.
- 233. Rüthlein, E.: In vivo- und in vitro-Analyse von HrmF, eines ungewöhnlichen Enzyms aus der Biosynthese des Peptidantibiotikums Hormaomycin. Diplomarbeit, Universität Bonn **2011.**
- 234. Fischbach, M. et al. *Streptomyces griseoflavus* Tu4000 genomic scaffold supercont1.1, whole genome shotgun sequence. NCBI Accession number: NZ_GG657758 The Broad Institute Genome Sequencing Platform, Broad Institute Microbial Sequencing Center **2010**.
- 235. Loenen, W.A.: S-adenosylmethionine: jack of all trades and master of everything? *Biochem Soc Trans* **2006**, 34, (2), 330-333.
- 236. Walsh, C.T., Garneau-Tsodikova, S., Howard-Jones, A.R.: Biological formation of pyrroles: Nature's logic and enzymatic machinery. *Nat Prod Rep* **2006**, *23*, 517-531.
- 237. Méjean, A., Mann, S., Vassiliadis, G., Lombard, B., Loew, D., Ploux, O.: In vitro reconstitution of the first steps of anatoxin-a biosynthesis in *Oscillatoria* PCC 6506: From free L-proline to acyl carrier protein bound dehydroproline. *Biochemistry* **2010**, 49, 103-113.
- 238. Dorrestein, P.C., Yeh, E., Garneau-Tsodikova, S., Kelleher, N.L., Walsh, C.T.: Dichlorination of a pyrrolyl-*S*-carrier protein by FADH(2)-dependent halogenase PltA during pyoluteorin biosynthesis. *Proc Natl Acad Sci USA* **2005**, *102*, 13843-13848.
- 239. Heide, L., Westrich, L., Anderle, C., Gust, B., Kammerer, B., Piel, J.: Use of a halogenase of hormaomycin biosynthesis for formation of new clorobiocin analogues with 5-chloropyrrole moieties. *Chembiochem* **2008**, 9, 1992-1999.

- 240. Zhang, X.J., Parry, R.J.: Cloning and characterization of the pyrrolomycin biosynthetic gene clusters from *Actinosporangium vitaminophilum* ATCC 31673 and *Streptomyces sp* strain UC 11065. *Antimicrob Agents Chemother* **2007**, 51, 946-957.
- 241. Sánchez, C., Du, L., Edwards, D.J., Toney, M.D., Shen, B.: Cloning and characterization of a phosphopantetheinyl transferase from *Streptomyces verticillus* ATCC15003, the producer of the hybrid peptide-polyketide antitumor drug bleomycin. *Chem Biol* **2001**, *8*,(7), 725-738.
- 242. Izumikawa, W., Cheng, Q., Moore, B.S.: Priming type II polyketide synthases via a type II nonribosomal peptide synthetase mechanism. *J Am Chem Soc* **2006**, 128, 1428.
- 243. Neville, C., Murphy, A., Kavanagh, K., Doyle, S.: A 4'-phosphopantetheinyl transferase mediates non-ribosomal peptide synthetase activation in *Aspergillus fumigatus*. *Chembiochem* **2005**, 6, 679-685.
- 244. Seidle, H.F., Couch, R.D., Parry, R.J.: Characterization of a nonspecific phosphopantetheinyl transferase from *Pseudomonas syringae* pv. *syringae* FF5. *Arch Biochem Biophys* **2006**, 446, 167-174.
- 245. Niederkrüger, H.: Expressionssysteme zur Untersuchung der Pederin- und Psymberin-Biosynthese aus nicht kultivierten bakteriellen Symbionten. Dissertation, Universität Bonn, **2010**
- 246. Iwami, M., Kawai, Y., Kiyoto, S., Terano, H., Kohsaka, M., Aoki, H., Imanaka, H.: A new antitumor antibiotic, chromoxymycin. I. Taxonomic studies on the producing strain: a new subspecies of the genus Streptomyces. *J Antibiot (Tokyo)* **1986**, 39, (1), 6-11.
- 247. Hori, Y., Hino, M., Kawai, Y., Kiyoto, S., Terano, H., Kohsaka, M., Aoki, H., Hashimoto, M., Imanaka, H.: A new antitumor antibiotic, chromoxymycin. II. Production, isolation, characterization and antitumor activity. *J Antibiot (Tokyo)* **1986**, 39, (1), 12-16.
- 248. Kawai, Y., Furihatah, K., Seto, K., Otake, N.: The structure of a new antibiotic, chromoxymycin. *Tetrahedron Lett* **1985**, 26, 3273–3276.
- 249. Sugiyama, Y., Watanabe, K., Hirota, A.: Surugapyrroles A and B, Two New *N*-Hydroxypyrroles, as DPPH Radical-Scavengers from *Streptomyces* sp. USF-6280 Strain *Biosci Biotech Biochem* **2009**, 73, (1) 230-232.
- 250. Schönewolf, M., Grabley, S., Hütter, K., Machinek, R., Wink, J., Zeeck, A., Rohr, J.: Secondary metabolites by chemical screening, 10. Glycerinopyrin, a novel metabolite from *Streptomyces violaceus*. *Liebigs Ann Chem* **1991**, 77-80.
- 251. Schönewolf, M., Rohr , J.: Biogenesis of the Carbon Skeleton of Glycerinopyrin: A New Biosynthetic Pathway for Pyrroles. *Angew Chem Int Ed Engl* **1991**, 30, (2), 183-184.
- 252. Ding, Y., Yu, Y., Pan, H., Guo, H., Li, Y., Liu, W.: Moving posttranslational modifications forward to biosynthesize the glycosylated thiopeptide nocathiacin I in *Nocardia sp.* ATCC202099. *Mol Biosyst* **2010**, 6, 1180-1185.
- 253. Nowak-Thompson, B., Chaney, N., Wing, J.S., Gould, S.J., Loper, J.E.: Characterization of the pyoluteorin biosynthetis gene cluster *of Pseudomonas fluorescens* Pf-5. *J Bacteriol* **1999**, 181, (7), 2166-2174.
- 254. Yan, A., Wang, X., Zhang, X., Xu, Y.: LysR family factor PltR positively regulates Pyoluteorin production in a pathway-specific manner in *Pseudomonas sp.* M18. *Sci China C Life Sci* **2007**, 50, (4), 518-524.

- 255. Maddocks, S.E., Oyston, P.C.: Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. *Microbiology* **2008**, 154(12), 3609-3623.
- 256. Heeb, S., Itoh, Y., Nishijyo, T., Schnider, U., Keel, C., Wade, J., Walsh, U., O'Gara, F., Haas, D.: Small, stable shuttle vectors based on the minimal pVS1 replicon in gram-negative, plant-associated bacteria. *Mol Plant Microbe In* **2000**, 13, (2), 232-237.
- 257. O'Toole, G.A., Kolter, R.: Initiation of biofilm formation in *Pseudomonas fluorescens* WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. *Molecular Microbiology* **1998**, 28, 3, 449–461.
- 258. Sarniguet, A., Kraus, J., Henkels, M.D., Muehlchen, A.M., Loper, J.E.: The sigma factor σ^s affects antibiotic production and biological control activity of *Pseudomonas florescens* Pf-5. *Proc Natl Acad Sci USA* **1995**, 92, 12255-12259.
- 259. Walsh, C.T., Chen, H., Keating, T.A., Hubbard, B.K., Losey, H.C., Luo, L., Marshall, C.G., Miller, D.A., Patel, H.M.: Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. *Curr Opin Chem Biol* **2001**, (5), 525-534.
- 260. Qiagen, The Qiaexpressionist, June **2003**, <u>http://kirschner.med.harvard.edu/files/protocols/</u> QIAGEN QIAexpressionist EN.pdf
- Szewczyk, E., Nayak, T., Oakley, C.E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., Osmani, S.A., Oakley, B.R.: Fusion PCR and gene targeting in Aspergillus nidulans. *Nat Protoc* 2006, 1, (6), 3111-3120.
- 262. Zhang, Y.: I-TASSER server for protein 3D structure prediction. *BMC Bioinformatics* **2008**, 9, 40.
- 263. Roy, A, Kucukural, A. ,Zhang Y.: I-TASSER: a unified platform for automated protein structure and function prediction. *Nature Protocols* **2010**, *5*, 725-738.
- 264. Erol, O., Schäberle, T.F., Schmitz, A., Rachid, S., Gurgui, C., El Omari, M., Lohr, F., Kehraus, S., Piel, J., Müller, R., König, G.M.: Biosynthesis of the myxobacterial antibiotic corallopyronin A. *Chembiochem* **2010**, 11, (9), 1253-1265.
- 265. Mootz, H.D., Marahiel, M.A.: The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. *J Bacteriol* **1997**, 179, (21), 6843-6850.
- 266. Brymora, A., Valova, V.A., Robinson, P.J.: Protein-protein interactions identified by pulldown experiments and mass spectrometry. *Curr Protoc Cell Biol* **2004** Chapter 17: Unit 17.5.
- 267. Titov, D.V., Liu, J.O.: Identification and validation of protein targets of bioactive small molecules. *Bioorg Med Chem* **2012**, 20, (6), 1902-1909.
- 268. Jewett, J.C., Bertozzi, C.R.: Cu-free click cycloaddition reactions in chemical biology. *Chem Soc Rev* **2010**, 39, (4), 1272-1279.
- 269. Mamidyala, S.K., Finn, M.G.: In situ click chemistry: probing the binding landscapes of biological molecules. *Chem Soc Rev* 2010, 39, (4), 1252-1261.
- 270. Baltz, R.H.: Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol 2011, 38, (6), 657-666.

- 271. Esquenazi, E., Yang, Y.L., Watrous, J., Gerwick, W.H, Dorrestein, P.C.: Imaging mass spectrometry of natural products. *Nat Prod Rep* **2009**, (12), 1521-1534.
- 272. Jez, J.M., Ferrer, J.-L., Bowman, M.E., Dixon, R.A., Noel, J.P.: Dissection of malonylcoenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. *Biochemistry* **2000**, 39, 890-902.
- 273. Bertani, G.: Studies on lysogenesis. I. The mode of phage liberation by lysogenic *Escherichia coli*. *J Bacteriol* **1951**, 62, 293-300.
- 274. Tartoff, K.D., Hobbs, C.A.: Improved media for growing plasmid and cosmid clones. *Bethesda Res Labs Focus* **1987**, 9:12.
- 275. King, E.O., Ward, M.K., Raney, D.E. Two simple media for the demonstration of pyocyanin and fluorescin. *J Lab Clin Med* **1954**, 44, 301–307.
- 276. Novella I.S., Barbes, C., Sanchez, J.: Sporulation of *Streptomyces antibioticus* ETH 7451 in submerged culture. *Can J Microbiol* **1992**, 38, 769–773.
- 277. Sambrook, J.; Russell, D. W.: Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press: New York, **2001.**
- 278. Marchuk, D., Drumm, M., Saulino, A., Collins, F. S.: Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. *Nucleic Acids Res* **1991**, 19, (5), 1154.
- 279. Schägger, H.: Tricine-SDS-PAGE. Nat Protoc 2006, 1, (1), 16-22.
- 280. Zor, T., Selinger, Z.: Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. *Anal Biochem* **1996**, 236, 302-308.

9 Anhang

9.1 Plasmidkarten

Die folgenden Plasmidkarten zeigen die verwendeten Vektoren zur Lagerung und Sequenzierung von PCR-Fragmenten. Die Beschreibung der jeweiligen Vektoren erfolgt unter 6.1.1.

Abb. 9-1: Plasmidkarte und MCS von pBluescript SK(+)

Abb. 9-2: Plasmidkarte mit MCS von pGEM-T Easy.

Abb. 9-3: Plasmidkarte und MCS für den Proteinexpressionsvektor pHIS8*svp* bzw. pHIS8. Der für die PPTase Svp kodierende Abschnitt befindet sich in der *Not*I-Seite.

Abb. 9-4: Plasmidkarte und MCS für den Proteinexpressionsvektor pCDFDuet-1

Abb. 9-5: Plasmidkarte und MCS für den Proteinexpressionsvektor pET28a. pET28b unterscheidet sich von pET28a nur durch eine deletierte Nucleobase vor der *Bam*HI-Schnittstelle.

Abb. 9-6: MCS für den Proteinexpressionsvektor pME6041.²⁵⁶

9.2 Alignments und Proteinmodelle

10	20	30	40	50	60	70	80	90	100	
HrmJ		-MPLNDRGY	SIIDLPE	VTPEVRESFO	DLKFDE	MGDNRYRRF	AQFRMHWSG	ESWELERLEHF	RPYVTFSKFNPVAGGIRRHY	
IDO	MKMSGFSIEEKV	VHEFESKGF	LEISNEIFLQE	EENHSLLTO	OLDYYNLEDD	AYGECRARSY	SRYIKYVDS	PDYILDNSN	DYFOSKEYNYDDGGKVROF	
110	120	130	140	150	160	170	180	190	200	
HrmJ	EPILADESP	H	TRAGAEGVPLD	TARDWOVNVE	OFRITAKROE	SGVIVPEGP	SDGRDEVL	IAVESR-HOIT	GAEMTLMPHGGEGEPFFRA	
TDO	NSTNDSFLCNPI	TONTVRED	TEFAFKTNITD	KSKDLTTGLE	OVRYKATKER	PS-FSSPTWL	HKDDEPVVF	HT.MNT.SNTAT	GGDNI, TANSPRETNOFTSI.	
100		argent fills			2					
210	220	230	240	250						
210		2.50	240	2.50						
	• • • • • • • • • • • • • • • • • • • •	· · I · · <u>·</u> · I ·		••••••		• •				
HrmJ	TVPAGQGALLA	DREMF	EIEPVG-DYGH	RDTLIVTWVE	WEDKWHGDDFI	EQRALAEG				
IDO	KEPLETLVF	OKVELAVT.	PLGTECSTEAF	DILLVTFSY	KETK					
		20-								

Abb. 9-7: Alignment von HrmJ (obere Sequenz) und der Isoleucin-4-Oxygenase (IDO) aus *Bacillus thuringiensis* (untere Sequenz), erstellt mit dem Programm Bioedit. Die markierten Aminosäuren sind konservierte Reste im aktiven Zentum (siehe Tab. 5-1).

	10	20	30	40	50	60	70	80	90	100
cibe										
LmbX	MIVVPFEMVDMFA	EPFSGSQLTVV	PDADGLTI	DAAMEALAREV	NTP ETAFV I	PPADPGATYR	RVFTLAGE	PFGGHSSLGT	AVTLVRLGRV	PGAV
tomK	MIAYEIVDMFT	TPYGGCALGVV	PDAAALS	TADMLAVARET	ALT <mark>ETAFV</mark>	PPALPGSTYG	RVMTPDGES	PYGGHSAVGT	ASALVRAGRL	AGEA
ORF15	MRVTTVDMFG	APGRGSALDVI	VPDGPCGEAA	AEEAAAHARRS	AADESVLV	ECRRAORTFAS	RVFNAGGE1	PFATHSLAGA	AACLVGAGHL	PPGEV
	110	120	130	140	150	160	170	180	190	200
	• • • • • • • • • • • •	.		.						
SibS	VOECGGROLTLRAG	GADRAEFAATGT	PRVESLP-AD	PVLDAIGLAAA	DLAGEP-VI	AGFGPLFRMVI	VRQEALGRA	RPDFPAMTRH	ELPEIFLFAWI	
tomK	VQECGGRQLAVTA	CADGSTLSVAGE	PLLRPEWDPGI	PLLTACGLTDT	DLTGTP-RI	TGFGPAFHVLI	VGAKALTRA	AADLTDPVWA	DCPDAVLVAWI	QAGR
ORF15	GRTAESGSQWLWTI	OGHEVRVPFDGE	VVHRGIPHDP	ALFGPY	AGTP-YA	GGVGRAFNLL	RVAEDPRTLE	PAPDPGRMREL	GFTDLTVFRWI	DPDRG
	210	220	230	240	250	260	270	280	290	300
		. .		.						
SibS	SAEARLFAPGWAI	RDPACASVALA	FGAWLADROGI	RPDAPRPFL	TROGVGSP	PALLSGTLGAC	SGDAEITVI	VGGPAPGELA	GOITASPPDAS	SQPNV
tomK	TARVRVFAPGYGM	EDPACASAALG	LGAWLAEEKA	LPGADGRHAYQ	VRQGEGLGI	PATLSCTVDL	GG-RATAAT	VHGRVTLTAS	GRMTP-PGRP-	
ORF15	EVLARVFAPGFGI	PEDAGCLPAAAA	LGVAALR	-LAADDRTSVT	VRQVTVRG	ESVFRCTGSAL	RGGSANVI	ITGRVWTGGT	AGREVGGS	
SibS	LRTSSAA									
LINDA	V									

Abb. 9-8: Alignment der putativen C-C-Hydrolasen SibS. LmbX, TomK und ORF15. Konservierte Motive, die für degenerierte Primer genutzt wurden, sind grün bzw. gelb markiert, Überschneidungen von genutzten Motiven grau hinterlegt (siehe Tab. 5-3).

	10	20	30	40	50	60	70	80	90	100
CDAHpg6										
CDAAsp5										
CDASer1										
CDATrp11										
HrmO3	GGCCGG	CTGGACGTCG	TCACGGCGGC	TGAGCGGTCT	TTGGTGTTG	GAGCGGTGGA	TGACTCGGCT	GCGGTGGTGG	AGGGGCTGAC	GTTTC
HrmO4	CTGAAT	CTTGACATCG	TCACTGCGGC	AGAGCGGTCT	TTGGTGTTG	GAGCGGTGGA	TGACTCGGCT	GCGGTGGTGG	AGGGGCTGAC	TTTTC
HrmO2		GGCGACGT	CGACGTCCTG	TCGCCCGAGO	AGCGGCGCC	TGATGCTCG	CGGCAACGAG	GTCGCGGCCC	CCGATGCCAC	CCTCA
HrmP2	GGCCGCA-	TCGACCTGG	TCACCGGAAC	CGAACGCCGC	CGGATGCTG	AGGAGTGGA	CGGCACCGGA	GCGGGAGCCG	GCGACGAGAC	GCTGG
HrmO1	AGCCGG	CTGGACGTGG	TTACCGAGGC	TGAGCGGTCT	TTGGTGTTG	ACCCCTCCA	CGACTCGGCT	CCCTCCTCC	ACCCCTCAC	TTTTC
HrmO2		GGCGACGT	CGACGTCCTG	TCCCCCAG	AGCGGCGCC	TGATGCTCG	CGGCAACGAG	GTCGCGGCCC	CCGATGCCAC	CTCA
HrmD1		CTCCACCTCC	TCACCCCCCC	TCACCCCTCT	TTCCTCTTC	TGATGCICG	CCACTCCCCT	CCCCTCCTCC	ACCCCCTCAC	2mmmC
111111111111111	GGCCGG		1CACGGCGGC		110010110				NGGGGGCIGAC	
HLINP 5	GGIICCGICGGGCIG	FIGICCCCCG	AGGAGCGGGGA	CUICGCCCIG	GGCGGCGCC	1CGGCGGCCA	GGACGGIGCG	ICCGICCICG	ACGAGACGCC	30190
	110	120	130	140	150	160	170	180	190	200
CDAHpg6							GTCG	TACGCCGAAC	TCGACCTGCG	CACCA
CDAAsp5							GACC	TACGCCGAGC	TGGACCGGCG	CGCCA
CDASer1							GACG	TACGCCGAAC	TGGACGCCCG	CGCCG
CD3/mm11										
CDAILDII							GAGC	TACGCGGAGC	TGAACGCGCG	CGCCA
HrmO3	CGGAGTTGTTCGAGG	AGTGGGTGGC	TCGGGCGCCG	GAGTCGGTGG	CGGTGGTGT	CGGTGACAT	G-AGTTGTCG	TACGCGGAGC	TGAACGCGCG TGAACGCGCG	CGCCA CGCCA
HrmO3 HrmO4	CGGAGTTGTTCGAGG	AGTGGGTGGC	TCGGGCGCCG	GAGTCGGTGG	CGGTGGTGT	CGGTGACAT	G-AGTTGTCG	TACGCGGAGC TATGCGGAGT TATGCGGAGT	TGAACGCGCG TGAACGCGCG TGAATGCGCG	GCCA GGCGA GGCGA
HrmO3 HrmO4 HrmO2	CGGAGTTGTTCGAGG	AGTGGGTGGC	TCGGGCGCCG	GAGTCGGTGG	CGGTGGTGT	CGGTGACAT	GAGC CG-AGTTGTCG CG-AGTTGTCG	TACGCGGAGC TATGCGGAGT TATGCGGAGT	TGAACGCGCG TGAACGCGCG TGAATGCGCG	GCCA GGCGA GGCGA
HrmO3 HrmO4 HrmO2 HrmP2	CGGAGTTGTTCGAGG CGGAGTTGTTCGAGG CCGCCCTGTTCGAGG	AGTGGGTGGC GGTGGGTGGC AGCAGGCAGC	TCGGGCGCCG TCGGGCGCCG CCGTACCCCC	GAGTCGGTGG		CGGTGACAT CGGTGACAT CGGCCACGA	G-AGTTGTCG	TACGCGGAGC TATGCGGAGT TATGCGGAGT TACGCCGAGC	TGAACGCGCG TGAACGCGCG TGAATGCGCG TCAACGCCCG	GCCA GGCGA GGCGA GGCCA

184

tomK ORF15 -----

	CCGCCCTGTTCGAG	CAGCAGGCAGC	CCGTACCCCO	GAGTCGGTGG GGGAACAGTG GAGTCCATTG	CGCTCGTGT CCCTCGTGT	GCGGTGACATC GCGGCCACGAC GTGGCGATGTG	G-AGTTGTCG	TATGCGGAG TACGCCGAG	TTGAATGCGCGG CTCAACGCCCGG	GCGI GCCI
IrmP3	CGGTCCGGTTCGAG	AGGCAGGCATCO	CGTGACCCCG	GACGCCCTCG	CCGTCCTGT	-CGGACGGGGG	GCAGCTCACG	TACCGGGAG	CTGAACGACCG	GCC2
	210 	220	230 	240 	250 	260	270 	280 	290	30
DAHpg6 DAAsp5	ACCGGCTGGCCCGGG ACCAGCTCGCCCGGG	CTGCTGCGGCA(CACCTGCTGGG/	GCAGGGGGTG AGAAGGCCTC	CGGCCGGGCF GGTGCGGAGG	CGCCGGTGG	TCATGCTGATG CGATCGCCCTG	GAGCGGTCGC	CCGCCCATG	TCGTGGCGACGC TGATCAGCATGC	TGG
ASer1 ATrp11	AGCGGCTGGCCGGT ACCGGCTGGCCCGG	GCGCTGACGGC	CCGGGGCCGCG CCGGGGCCCCG	GGCCCGGAGC GGCCCCGAGC	GGTTCGTCG GGCTGGTGG	CGGTCGCCGTG CGCTGGCGCTG	GAGCGGTCCG	CGGAGCTGG	TGGTGGCGCTGC CCGTCGCCGTCC	
mO3	ATCGGCTGGCGCGGG	TTGTTGGTGGG	TCGTGGGGGTG	GGGCCGGAG	CGGTGGTGG	CTCTGGTGTTG		IGGATTTCG	TGGTCGGGATG	TGG
m02	ACCGACTCGCGCAC	CTCCTCATGGA	GCAGGGAGCG	GGCCCGGAG	AGTTCGTCG	CCCTGCTCCTT	CCCCGCGGCG	ICGACCTGG	TCGTCGCGGTT	TCG
mP2 mO1	ACGCACTCGCGCACG ATCGGCTGGCGCGCGG	TTGTTGGTGGG	CCTGGGCGTG TCGTGGGGGTG	GGGCCGGACA GGGCCGGAGI	CGTTGGTGG	CACTCTTCATG CTTTGGTGTTG	CCGCGGTCGG	IGGAGTTCG	TGGTCGCCATCO	TGG
mO2 mP1	ACCGACTCGCGCACC ATCGGCTGGCGCGCG	CTCCTCATGGAG TTGTTGGTGGG	GCAGGGAGCG TCGTGGGGGTG	GGCCCGGAG GGGCCGGAG	CGGTGGTGG	CCCTGCTCCTT CTTTGGTGTTG		ICGACCTGG	TCGTCGCGGTTC TGGTCGGGATG	TCG
mP3	ACCGGCTGGCCCGGC	320	TCGCGGAGCC	ACCCCGGAG	CGTTCATCG	CGTTGGTCATG	GAGCGGTCCT	380	TGGTCGCCCTG/	TGG
AHpg6		GCGGCGCCTAC	 GTGCCCCTGC	 ACGACACGTA		 CCGGATGCGGC	 -ACGTGGTGG		CCGCGACGCTG	TCC
DAAsp5 DASer1	CGTGCTCAAGACCGG GGTGCTCAAGTCGGG	3CGCGGCCTACC GCGCGGCGTACC	CTGCCCATCG. GTACCCGTGG.	ACCCGGACTA ACCCCGGCTA		ACGCATCACCI CCGCATCGCGC	-ACATGCT		CGAC GGGACGCG	
ATrp11 mO3	GGTGGCCAAGGCGGG GGTGTTGAAGGCCGG	GCGCCGCCTAC	CTGCCGCTGG	ACCCGGCCCZ ATCCGGAGTA	CCCGGCGGA	GCGGATCGCGG GCGGGTGGCGT	-GCACCCTCG		ACGACGCGG	
mO4 mO2	GGTTTTGAAGGCCGG	GTGGTGCGTAT	GTGCCGGTGG	ATCCTGAGTA		GCGGGTGGCGT	-TCATGTTCG		GTGACGCG	
mP2	CGTGCTCAAGGCCGG	GCGCGTACTAC	CTCCCGCTCG.	ACGGCCGCCA	TCC-CGTGG	CCCGCCTGCGG	ATGATGACGG		AGCAGGCGG-	
mO2	CGTACTCAAGACGG	GGGCGGCCTAC	CTGCCCGTCG	ACCCCTCCT	CCCGGAGGA	CCGCATCGCCC	TGATGCTGA		GCGAC	
mP1 mP3	GGTTTTGAAGGCCGG GGTCTTCAAGACGGG	GCGCCGCTTGT	GTGCCGGTGG. CTGCCCATCG.	ATCCGGAGTA ACCCCGCCCA	TCCGCGTGA TCCGAAGGA	GCGGGTGGCGT GCGCATCGCGC	-TCATGTTCG -TCATCGTCC		GTGACGCG- AGGACGCCC	TCC
	410	420	430	440	450	460	470	480	490	5
AHpq6		AGGCGGCGCGGG	 GCCGGGCAGC		GGTGA-TGG	 TGGTCGACGAG	TTCGGCGCCG		. GCTCGGZ	GGC
AAsp5 ASer1	GACGCCCAG	CCGGC	CCCTGACCCT		A CCCCACCCC	CCGCGCCCATA		TT-CGTA-C	GACAGC	
ATrp11	CACCGGTCGCGCTG	CTGAC	CCACGGCCGC	GGTGGCCGCC	GGCCTC	CCGGACACGGA	CGTGCCCAGG	CTGCTCCTT	GACGAG	GA
mO3 mO4	CGGCCGGTGTG-	CGCGG	TCACGACCAC TCACGACCAC	GCAGTACGCG GGAGTACGCG	GATGTCG GATGTCG	TGCCCGAAGG1 TGCCCGACGG1	GTCGACGCAC GTCGACGCAC	IGACGCTTG IGGCGCTTG	ACG1 ACG1	rGCC rGCC
mO2 mP2	GCCGAGCCGG	3TCCGTG CTCAT-CGCCG	TCCTGACGAC ACGCGGCCAC	CTCCGAGGCA CCGGCACGCG	GCCGT-CGG GAATTCG	CGGCGCACTGG TCAAGGTGT	C-CG-ACAGC	GGACTGC-T GGGCGTCGG	GCTGAGGC1 CGTGCTC	CGA GTC
m01 m02	CGGCCGGTGTG-	CGCGG	TCACGACCAC	GGAGTACGCG	GATGTCG	TGCCGGATGGC CGGCGCACTGG	GTGGATGTTC	TGACCCTGG	ACGC GCTGAGGC	CTTC CGA
mP1 mP3	CGGCCGGTGTG	CACCGAGG	TCACGACCAC	GGAGTACGCC	GATGTCG	TGCCCGACGGT	GGCGACGCAC	IGACGTTTG	ACG	
	510	520	520	540	550	5.60	570	590	500	c
									.	
AHpg6 AAsp5	GACGCGGCCCCCGGC CCACCAGC	-GAGATCACCG	GCACCGGCAC ATGTGGAG	CGGCTCGCGC	CCCCGGGTAC	-GTCGACGATG -GTAGCCCCTG	CTCCGGAGGT GTCGGCAC	GGGCCT	GCGCCCGCAGG/	ATCT ATGC
ASer1 ATrp11	GAGCCGGCCGCGGCG CCCGCGGCCGGCGGCGG	GGGGACCACCG		ACCCGC	CCCCGCCCG-	-GCACCCTCCC	GCGGGCGCT-	GCC	CGCTCCCGGCC/ GCTGCCGGGGC/	
mO3 mO4	GAGACGGTGTC-GG	CGCTTTCGCGG	ATGTCGGAGO	GGGACG	CTCTGATG	-GTGAGCGGCT	TTCTGT	TCT	GTCGTTGGGGGT	TCC
mO2	GCGCCCGACACGCT	GCACGCGCTCG/	ACGCCTGCCC	GGACCA-CGA	CCCGGACG-	-ACGCCGACCG	CGTCGCACCT	3C	ATCGCCCGGCC	ACGC
mP2 mO1	TCGGCGAGGAC-GG GAGACGGTGGC-GG	TGCACCCGCCGC CACTGG-ATGG(CCACCGCGGC GTGCTCTGCC	GAGCGC TCGAATGI	CCCGGACA-	-GTGAGCGGGT	TGGTGG	GCT	CCCGACCGG TGCGTTGGGGGT	TCC
mO2 mP1	GCGCCCGACACGCTC GAGACGGTGTC-GG	GCACGCGCTCG	ACGCCTGCCC ATGTCGGGGG	GGACCA-CGA GGGACG	CCCGGACG-	-ACGCCGACCG	CGTCGCACCT	GCi	ATCGCCCGGCC/	
ATrp11 mO3	CCCTACGICATCIA	CACCTCCGGCA(TACGTCGGGGT(CCACCGGCCG CCACCGGCCG CGACGGGGGCG	CCCCAAGGGG	GTCACCGTG	ACGCACCGGGC	CCTGCCCGCC	CTGCTG-GA	IGGAIGCAGGA	A-C
mO4 mO2 mP2 mO1 mO2 mP1	GCGTATGTGATTTA GCGTATGTGATTTA GCATACGTCATCTA GCGTACGTGATGTA GCGTATGTGATTTA GCGTATGTGATTTA GCGTATGTGATTTA	CACGTCGGGGT CACGTCCGGGT CACCTCCGGGT CACGTCGGGGT CACGTCCGGGT FACGTCGGGGT	CGACGGGGCG CGACCGGCGC CGTCCGGCAC CGACGGGGCG CGACCGGCGC CGACGGGGCG	GCCGAAGGG CCCCAAGGG GCCCAAGGG GCCGAAGGG GCCCAAGGG GCCCAAGGG	GTGGTGGTGGTT GTGGTGGTGGT GTCGTCGTA GTGGTGGTGGT GTCGTCGTA GTCGTCGTGTT	TCGCATTCCGG TCGCACGCGGG CCGCACCGGAA ACCCACAGGGG TCGCACGCGGG CCGCACCGGAA TCGCATTCCGG	TGTGGCGAGT TCTGGGGAAT CGTCGTGCGCG CGTCTGCGCG TCTGGGGAAT CGTCGTGCGCG TGTGGCCGAGT	CTGGTG-GC TTGGTG-GC C-TCTTCGC TTGGCCGCG TTGGTG-GC C-TCTTCGC CTGGTG-GC	CATCTTCACCTC CACGTTCGGTGG GTCGG-CGGTGC CGCCACCGCACC GACCGCTGCTGC GTCGG-CGGTGG CGCCACCGCACC CACGTTCGGTGG	GCA GGT GACO GACO GACO GACO GACO GTC GGT
rmO4 rmO2 rmP2 rmO1 rmO2 rmP1 rmP3	GCGTACGTCATCTA GCGTATGTGATTTA GCGTATGTGATTTA GCGTACGTCATCTA GCGTACGTGATGTA GCGTATGTGATTTA GCGTATGTGATTTA GCCTACGCCGTCAC	CACGTCGGGGT CACGTCCGGGT CACGTCCGGGT CACGTCGGGGT CACGTCCGGGT TACGTCGGGGT CACCTCCGGCT	CGACGGGGCG CGACCGGCGC CGTCCGGCAC CGACGGGGCG CGACGGGGCG CCACGGGAAC	GCCGAAGGG CCCCAAGGGG GCCCAAGGGG GCCGAAGGGG GCCGAAGGGG GCCCAAGGGG	GTGGTGGTGGTT GTGGTGGTGGTT GTCGTCGTA GTGGTGGTGGTT GTCGTCGTA GTCGTGGTGGTT GTCGTGGTGGTT	TCGCATTCCGG TCGCACGCGGG CCGCACCGGAA ACCCACAGGGG TCGCACGCGGA TCGCATTCCGG ACCTGCGCGGGG	TGTGGCGAGT TCTGGGGAAT CGTCGTGCGCG CGTCTGCGGGAAT CGTCGGGGAAT CGTCGTGCGGC TGTGGCGAGT GCTGACCAAC	CTGGTG-GC0 TTGGTG-GC0 C-TCTTCGC0 TTGGCCGCGG TTGGTG-GC0 CTGGTG-GC0 CTGGTCGCT 700	CATCTTCACCT CACGTTCGGTGG GTCGG-CGGTGC CGCCACCGCACC GACCGCTGCTGG GTCGG-CGGTGC CGCCACCGCACC CACGTCGGTGG TGGCATCACGCC	GCA GGT GGT GGT GGT GGT GGT GGT
mO4 mO2 mP2 mO1 mO2 mP1 mP3	GCGTATGTGATTTA GCGTATGTGATTTA GCATACGTCATCTAC GCGTACGTGATGTAC GCGTATGTGATTTAC GCGTATGTGATTTAC GCGTATGTGATTTAC GCCTACGCCGTCTAC 710	CACGTCGGGGT CACGTCCGGGT CACCTCCGGGT CACCTCCGGGT CACGTCCGGGGT CACGTCCGGGGT CACCTCCGGGT 720	CGACGGGGCG CGACCGGCGC CGACGGGGCG CGACCGGGGCG CGACCGGGGCG CCACGGGGAAC 730	GCCGAAGGG GCCCAAGGGG GCCCAAGGGG GCCGAAGGGG GCCGAAGGGG GCCCAAGGGG 740	CTGGTGGTGTT CTGGTGGTCGTA CTGATCACG CTGGTGGTGGTT CTCGTCGTA CTGGTGGTGGTT CTCGTGGTGGTT CTCGTGATG 750	TCGCATTCCGG TCGCACCGCGGG CCGCACCGGAA ACCCACAGGGG TCGCACCGGGA TCGCACCGGAA TCGCATTCCGG ACCTGCGCGGGG 760	TGTGGCGAGT TCTGGGGAAT CGTCGTGCGCG TCTGGGGAAT CGTCGTGCGCGAGT TGTGGCGAGT CGTGACCAAC 770	TGGTG-GC TTGGTG-GC TTGGCCGCGG TTGGCCGCGG TTGGTG-GC CTGGTG-GC CTGGTCGCT 780	CATCTTCACCT CACGTTCGGTGG GTCGG-CGGTGC GGCCACCGCACC GACCGCTGCTGC GGCCACCGCACC CACGTTCGGTGC TGGCATCACGCC 790	GCA GGT GGT GGT GGT GGT GGT GGT GGT GGA SAGG GAC
mO4 mO2 mP2 mO1 mP3 mP3 AHpg6 AAsp5	GCGTATGTAGTTAA GCGTATGTAGTTAA GCGTATGTAGTTAA GCGTACGTCATCTAA GCGTACGTCATCTAA GCGTATGTCATCTAA GCGTATGTCATCTAA GCCTACGCCGTCAA T10 	CACETCEGGGT CACETCEGGGT CACETCEGGGT CACETCEGGGT CACETCEGGGT CACETCEGGGT CACETCEGGGT 720	CCACCGCGCC CCACCGCCCC CCACCGCCCC CCACCGCCCC CCACCGCCCC CCACCGCGCCC CCACCGCGCAC 730 	CCCAAGGG CCCAAGGG GCCCAAGGG GCCCAAGGG GCCCAAGGG GCCCAAGGG GCCCAAGGG GCCCAAGGG GCCCAAGGC T40 	GTGGTGGTT GTGGTGGTGGTG GTGGTGTGTG GTGGTGGTGGTG GTGGTGGTGGTG 750 	TCGCATTCCGG TCGCACCGGG ACCCACAGGG TCGCACCGGAR TCGCATCCGG ACCTGCGCGGG 760 GACGTGTCCTG GACCTCACCAT	TGTGGCGAGT TCTGGGGAAT CGTCGTGGCGC CGTCTGCGCG TCTGGGGAAT CGTCGTCGCC GCTGACCAAC 770 770 	TGGTG-GCI TTGGTG-GCI 2-TCTTCGCi TTGGCCGCGG 2-TCTTCGCi CTGGTG-GCi CTGGTG-GCi CTGGTG-GCi CTGGTCGCT 780 	CATCITICACTT CACGITICGETGC CACGITICGETGC CGCCACCGCAC CGCCACCGCAC CGCCACCGCAC CACGITICGETGC TGGCATCACGCC 790 	GCA GGT GACC GTC GAC GGC GGC CGTC GGC CGAC
mO4 mO2 mP2 mO1 mP1 mP3 AHpg6 AAsp5 ASer1 ATrp11	GCGTATGTAGTTAA GCGTATGTAGTTAA GCGTATGTAGTATGA GCGTATGTAGTGATGA GCGTATGTAGTGATGA GCGTATGTGATGATTAA GCGTATGCGCGCGCGTAA T10 	CACGTICGGGTT CACGTICGGGTT CACGTICGGGTT CACGTICGGGTT TACGTICGGGTT 720 	CAACGGGCG CGACGGGCGC CGACGGGGCG CGACGGGGCG CGACGGGGCG CCACGGGGGC CCACGGGGGC CCACGGGGCC CGACGGGGCGCC 730 	GCCGAAGGGT CCCCAAGGGG GCCCAAGGGG GCCCAAGGGG GCCCAAGGGG GCCCAAGGGG GCCCAAGGGC 740 	GTGGTGGT GTGTGTGTGT GTCGTCGTA GTCGTCGTA GTCGTCGTA GTCGTCGTA GTCGTGTGTT GTCGGGTGTC GCCGGTTC GCCCGCTTC	TCGCATTCCGG TCGCACCCGGAA ACCCACAGGGC TCGCACCCGGAA TCGCATTCCGG ACCTGCGCGGC 760 	TCTGGCGAGT TCTGGGGAGT TCTGGGGAGT TCTGGGGAGT TCTGGGGAGT TGTGGCGAGT TGTGGCGAGT TTTGGGAGAGT CTACGAGAGT GTGGGAGTTC CTGGGAGCTG	TGGTG-GC TTGGTG-GC -TCTTCGC TTGGTG-GC CTGGTG-GC CTGGTG-GC TGGTGCC TGGTGCCC TGGTGCCC TGGGTGCCC TGGTGCCC	CATCTTCACTT CACGTTCGCTGC GTCGC CGGTGC CGCCACCGCAC GTCGC CGGTGC CGCCACCGCAC 790 11	GCA GGT GGT GACC GTC GACC GGT GGC GGC GGC GGC GGC GGC GCC
mO4 mD2 mD1 mD2 mD1 mP3 AHpg6 AAsp5 ASer1 ATrp11 mO3 mO4	GCGTATGTAGTTAA GCGTATGTAGTTAA GCGTATGGTATG	CACGTCGGGCT CACGTCGGGCT CACGTCGGGCT TACGTCGGGCT TACGTCGGGCT TACGTCGGGCT TACGTCGGGCT CGCCC-GACC CGCCC-GACC CGGCA-GCC- CGGCA-GCC- CGGAT-GTCGC	CAACGGGCG CGACGGGCG CGACGGGCG CGACGGGGCG CGACGGGGCG CCACGGGAAC 730 	GCCGAAGGGT CCCCAAGGGG GCCGAAGGGG GCCGAAGGGG GCCGAAGGGG GCCCAAGGGC CCCCCCCC	GTGGTGGTG GTGGTGGTGGTG GTGGTGGTGGTG GTGGTG	TCGCATTCCGG TCGCACCCGGA ACCCACAGGG TCGCACCGGA CCGCACCGGA TCGCATTCCGG ACCTGCGCGC 760 	TCTGGCGAGT TCTGGGGAAT CCGTCGTGCGCG CGTCGTGCGCG TCTGGGGAAT GCTGGCACAC 770 	TGGTG-GC TTGGTG-GC -TCTTCGC TTGGCCGCG TTGGTG-GC CTGGTG-GC TGGTGCGCT 780 TGGGTGCCC TGGACGCCT TTTTGGCCG SCGATGGGG TGTATGGCC	CATCTTCACCT CACGTTCGCTCG GTCGC-CGGTCG CGCCACCCCAC GTCGC-CGTCG CGCCACCGCAC CGCCACCGCAC 790 TGGCTCCGGC CTCACCGCCGC CTCGTCCACCGC TTCCCGCCCCCCGC	CGCA GGGT GACC GTC GACC CGTC GGCC CGTC CGCC CGC
mO4 mD2 mP1 mD1 mP3 AHpg6 AAsp5 AAser1 mO3 mO4 mD2	GCGTATGTAGTTA GCGTATGTAGTTA GCGTATGTAGTTAG GCGTATGTAGTAGTA GCGTATGTAGTAGTA GCGTATGTAGTATTA GCGTATGTAGTATTA GCGTATGCGCCGTGA T10 	CACGTCGGGCTT CACCTCCGGGCT CACGTCGGGCTT TACGTCGGGCTT TACGTCGGGCT TACGTCGGGCT TACGTCGGGCT TACGTCGGGCT CGCC-CGACGT CGGCC-CGACGC CGGCC-GACCC CGGCA-GCC-CT CGGAC-GTC CGGACGGCT CACGACGGCGT CACGACGGCGT	CAACGGGCGC CGACGGGCGC CGACGGGGCG CGACGGGGCG CCACGGGGCG CCACGGGAC 730 	GCCGAAGGGT CCCCAAGGGG GCCCAAGGGG GCCGAAGGGT CCCCAAGGGG GCCGAAGGGC 740 	GTGGTGGTG GTGGTGGTGTG GTGGTGGTGTG GTGGTG	TCGCATCCGG TCGCACCGGAA ACCCACAGGGC TCGCACCGGAA ACCTGCACCGGGC 760 	TGTGGGGAGT TCTGGGGAAT CGTGTGGCGC CGTGTGCGCG CGTGTGCGCGAT CGTGGCACAC TGTGGGGAGTG CTGGGAGTGC CTGGGAGTGC CTGGGAGTGC CTGGGAGTGC CTGGGAGTGC CTGGGAGTGC CTGGGAGTGC CTGGGAGTGC	TGGTG-GC TTGGTG-GC TTGGTG-GC TTGGTG-GC TGGTG-GC TGGTG-GC TGGTG-GC TGGTGCC TGGTGCCC TGGTGCCC TGGTGCCC TGGTGCCC TGGTGCGC TGGTGCGC TGGGCCCG		CGCA GGGT GGCC GGCC GGCC CGCC CGCC CGCC
mO4 mD2 mP1 mO1 mO2 mP1 mP3 AHpg6 AAsp5 ASer1 AAsp5 ASer1 mO3 mO4 mO2 mD2 mO2		CACGTCGGGCT CACGTCCGGGCT CACGTCGGGCT CACGTCGGGCT TACGTCGGGCT TACGTCGGGCT TCC CGTCCACGGCC CGTCCCCGGCC CGTCCCCGGCC CGGCC - CGACC CGGCC - CGACC CGGCC - GTCCC CGGCC - TCCC CGGCT - TCCC CGGCT - TCCC CGGCT - CGCC CGGCT - CGCC CGGCT - CGCC CGGCT - CGCC CGGCT - CGCC CGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CAACGGGCCC CGACCGGCAC CGACCGGCAC CGACCGGCGC CCACGGGGCG CCACGGGAC 730 	GCCGAAGGGT CCCCAAGGGG GCCGAAGGGT GCCGAAGGGG GCCGAAGGGG GCCGAAGGGG GCCCAAGGGG TCGCCCCGCTC GCCCCCGCTC GTCCGCCCGCTC GTTCCGCCG GTTCCGCCG GTTCCGCCG GTTCCGCCG	GTGGTGGTT GTGGTGGTT GTGGTGGTT GTGGTGGTT GTGGTG	TCGCATCCGG TCGCACCGGAA ACCCACAGGGC TCGCACCGGAA ACCCACCGGAG ACCTGCGCGGC 760 GACGTGTCCTG GACGTGCTCGGT GACGCGCGGTGGT GACGCCGGTGGT GACGCCGGTGGT GACGCCGGTGGT	TGTGGGGAGT TGTGGGGGAT CGTCGTGGCG CGTCTGGGGGA TGTGGGGGGAGT GCTGACGAGT CTACGAGCGC CTGGGAGCTC CTGGGAGCTC CTGGGAGCTC CTGGGAGCTC CTGGGAGCTC CTGGGAGCTC CTGGGAGCTC CTGGGAGCTC CTGGGAGCTC CTGGGAGCTC	TEGTE-GC TTEGTE-GC - TTTEGTE-GC - TTTEGTE-GC - TTTEGTE-GC - TTTEGTE-GC - TTTEGTE-GC - TTTEGTE-GC - TTTEGTCG - TTTEGTCGC - TTTTEGTCG - TTTTEGTCG - TTTTEGTCG - TTTTEGTCG - TTTTEGTCG - TTTTEGTCG - TTTTEGTCG - TTTTEGTCG - TTTTEGTCG - TTTTGG - GC - TTTGG - GC - GC - TTTGG - GC - TTGG - GC - TTTGG - GC - TTGG - GC - TTGG - GC - TTGG - GC - TTGG - GC - TTGG - GC - TTGG - GC - TGG - GC - GC - TGG - GC - GC - GC - TGG - GC - GC - GC - GC - GC - GC - GC -		CGCA GGGT GACC CGTC GACC CGTC GGGT CGAC CGGC CGG
m04 m02 mP2 m01 m02 mP1 mP3 AHpg6 AAsp5 AAser1 ATrp11 m03 m04 m02 mP2 m01 m02 mP2 m01 m02		CACGTCGGGCT CACGTCGGGCT CACGTCGGGCT CACGTCGGGCT TACGTCGGGCT TACGTCGGGCT T20 []]] CGTCCACGAGC CGTCCCGGAC CGGCA -GCC-C GGGCT -GCC-C GGGCT -GCC-C CGGAT -TCGC CGGAT -TCGC CACGACGTCT CACGACGTCT	CAACGGGCGC CAACGGGCGC CGACGGGGGC CGACGGGGGG CGACGGGGGC CGACGGGGGC CCACGGGGAAC 730 730 730 730 730 730 730 730 730 730	CCCAAGGA CCCAAGGA GCCAAGGA GCCAAGGA GCCAAGGA GCCAAGGA GCCAAGGA GCCAAGGA CCCAAGGA CCCAAGGA CCCACGA CCCACGAC CCACCCAC	Groeficert Groeficert	TCGCATCCGG TCGCACCGGAA ACCCACAGGGC TCGCACCGGAA ACCCACCGGAG ACCTGCGCGGC 760 	TTCTGCCACT TCTGCGCATT CCTCGTCGCC CCTCTCGCCC TCTGCGCAT TCTGCGCAT TCTGCGCAT TCTGCCCAT TCTGCCCAT TCTGCCCAT TCTGCCACT TCTGCGCACT TCGCGCCT TCGCGCCT TCGCGCCT TCGCGCCT TCGCGCCT TCGCGCCT TCGCGCCT TCGCGCCT	TEGTE-GC TTEGEG-GC TTEGEG-GC TTEGEG-GC TTEGEG-GC TTEGEG-GC TTEGEG-GC TTEGEG-GC TTEGEGCC TEGEGCCCG TEGEGCCCG TETATGEGC TEGEGCCCG TEGEGCCCG TEGEGCCCG TEGEGCCCG TEGEGCCCG		CGCA GGGT SACC CGTC SAGG CGTC CGAC CGCC CGCC CGCC CGCC CGCC C
mO4 mO2 mP2 mO1 mO2 mP1 mP3 AHpg6 AAsp5 ASer1 ATrp11 mO3 mO4 mO2 mP2 mD1 mO2 mP1 mP3		CACGTCGGGCT CACGTCGGGCT CACGTCGGGCT CACGTCGGGCT TACGTCGGGCT T20 []] CGTCCACGGCT CGTCCACGGCT CGGCG-TGACG CGGCA-GCC- GGGCA-GCC- GGGCA-GCC- CGCCACGGCT TCGCC CGCACGGCT CGCCACGGCT CGCGACGGCT CGCGC-GGCG CGCGT-GGCG -GGCGT-GGCG		CCCAAGGA CCCAAGGA CCCAAGGA CCCAAGGA CCCAAGGA CCCCAAGGA CCCCAAGGA CCCCAAGGA CCCCAAGGA CCCCAAGGA CCCCACGAC CCCCCCCC	GTGGTGGTT GTGGTGGTT GTGGTGGTT GTGGTGGTTGGTA GTGGTGGTTGGT	TOGATTCOG TOGACGGG TOGACGGA ACCCACAGGA ACCCACAGGA CCGCACCGGA ACCTGCCGGG ACCTGCCGGG ACCTGCCGTGGT GACGTGTCGA GACGTCCGTGGT GACGCTCCGT GACGCTCCGT GACGTCCCGT GACGTCCCGT GACGTCCCGT GACGTCCCGT		TTGGTG-GC TTGGTC-GC C-TCTTGGC-GC TTGGTC-GC C-TCTTGGC-GC CTGGTC-GC TGGTC-GC TGGTC-GC TGGTC-GC TGGTC-GC C-TCTTGCC-GC C-TCTTGCC-GC TGGTC-GC TGGTC-GC TGGTC-GC TGGTC-GC TGGTC-GC TTCTGCC-GC TTCTGCC-GC TTCTGCC-GC TTCTGCC-GC TTCTGCC-GC TTCTGCC-GC		CGCA SGGT CGTC SAGG CGTC CGGC CGGC CGGC CGGC CGGC CGGC C
mO4 mO2 mP1 mP3 mP3 mP3 mP3 mP3 mP3 mP3 mP4 mO3 mP2 mP1 mP3 mP3	GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATCGTAT			CCCAAGGS CCCCAAGGC GCCAAGGC GCCAAGGC GCCAAGGC GCCAAGGC GCCAAGGC GCCAAGGC GCCCAGGC TCCCCCCC TCCCCCCC GCCCCCCCC GTCCCCCCCC	Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Gr	TOGATTCOG TOGATOGGA TOGATOGGA COCOCCOGAN ACCCACAGGA CCCCCCGGA ACCTCCCCGCG ACCTCCCCC GACGTCCCC GACGTCCCC GACGCCCCGTGGT GACGCCCGTGGT GACGCCCCGTGGT GACGCCCCGTGGT GACGCCCCGTGGT GACGCCCCCGTGGT GACGCCCCCGTGGT GACGCCCCCGTGGT GACGCCCCCGTGGT GACGCCCCCGTGGT GACGCCCCCGTGGT GACGCCCCCGTGGT GACGCCCCCGTGGT GACGCCCCCCT GACGCCCCCGTGGT GACGCCCCCCGTGGT GACGCCCCCCGTGGT GACGCCCCCCGTGGT GACGCCCCCGTGGT GACGCCCCCCGTGGT GACGCCCCCCCCGTGGT GACGCCCCCCGTGGT GACGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TTCTGCCAFT TTCTGCCAFT CGTCGTCGCC CGTCTGCGCC TTCTGCGCAFT CGTCGTCCC TTCTGCCACAT TTGTGCCAFT TTGTGCCAFT CGTCGCCCCCC CGCGCACCCCCC CGCGCACCCCCCC CGCGGCACCCC CGCGGCACCCCCCCC	TTGGTG-GCI TTGGCC-GCI TTGGCC-GCI TTGGCC-GCI TTGGCC-GCI TTGGCC-GCI TGGCCGCCI TGGCCGCCI TGGCCGCCC TGGCCGCCCCI TGCCGCCCCCCI TGGCCCCCCCCCC		CCCA GGTC SACC CGTC SAGG CGTC CGTC CGGC CGGC CGGC CGGC CGGC C
n04 m02 m22 m01 m22 m01 m02 mP1 mP3 AHpg6 AAsp5 ASer1 m03 m04 m02 m01 m02 m11 m03 m04 m02 m11 m03 m04 m02 m2 m11 m2 m04 m04 m04 m04 m04 m04 m04 m04 m05 m05 m01 m05 m01 m05 m01 m05 m01 m02 m01 m02 m01 m02 m01 m02 m01 m02 m01 m02 m01 m02 m01 m02 m01 m02 m01 m02 m01 m02 m01 m02 m01 m02 m01 m05 m05 m01 m05 m05 m05 m05 m05 m05 m05 m05 m05 m05	GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGGCGCGCGTGTA TCGGGGCGCGCGGGGGCC TCGGGGGCACGGGTC TTCGGGGCGGGG				Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Gr	TCGCATCCGG TCGCACCGGAA ACCCACAGGG TCGCACCGGAA ACCTGCACGGGG TCGCATCGGGGG ACCTGCCGGGG ACCTGCCGTGGT GACGGCGGCGGT GACGGCGGGTGGT GACGGCGGGGG GACGTCTCCAT 860 	TTTTGGCCAGT TTTGGCCAGT CGTCCGTCCGC TTTGGCGAAT CGTCGTCGCCG TTGGCGCAGT TTGGCGCAGT TTGGCGCAGT TTGGCGCAGT TTGGCGCAGT TTGGCGAGT CTGGGAGCGC CTGGGAGCGC CTGGGAGCGC CTGGGAGCGC CTGGGAGCGC CTGGGAGCGC CTGGGAGCGC CTGGGAGCGC CTGGGAGCGC CTGGGAGCGC CTGGGAGCGC CTGGGAGCGC CTGGGAGCGC CTGGGAGCGC CTGGGAGCCC CTGGGAGCCC CTGGGAGCCC CTGGGAGCCCC CGCGGAGCCC CTGGGGCCCCCC CGCCGCCCCCC CCCCCCCCCC	TTGGTG-GCI TTGGTG-GCI TTGGTG-GCI TTGGTG-GCI TTGGTG-GCI TTGGTG-GCI TTGGTG-GCI TGGTGGCCGT TGGTGGCCGT TGGTGGCCCG TGTTGGGCCGG TGTTGGGCCCG TGTTGGGCCCG TGTTGGGCCCG TGTTGGGCCCG TGTTGGGCCCG TGTTGGGCCCG TGTTGGGCCCG TGTTGGGCCCG TGTTGGGCCCG TGTTGGGCCCG TGTTGGGCCCG TGTTGGGCCCG		CCCA SACC CGTC SACC CGTC SACC CGTC SACC CGTC SACC CGTC SACC CGCC CGCC CGCC CGCC CGCC CGCC CGC
mO4 mD2 mP2 mD1 mP3 AHpg6 AAsp1 AAsp1 AAsp1 AAsp1 mO3 mD2 mD1 mD2 mP1 mP3 AHpg6 AAsp5 AAsp5 AAsp5 AAsp5 AAsp5 AAsp5	GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGGCGCGCGTGTA TTCGGGGCGCGGGGCCC TTCGGGGCGGGG	CACGTCGGGCT CACGTCGGGCT CACGTCGGGCT TACGTCGGGCT TACGTCGGGCT T220 []] CGTCCACGGCT CGCCA-CGACC CGGCA-GGCC CGGCA-GGCC CGGCA-GGCC CGGAT-TCGC CGGAT-TCGC CGGAT-TCGC CGGAT-TCGC CGCACGCGCT GGGCT-GTG-G GGCT-GTG-C SCCGCACGTCA S20 []] STCGTGGCACC SACGTGGCCCCA STCGTGGCCCCA		CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGC CCCCACTCC CCCCCCCC CCCCCCCCC CCCCCCCCC	Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigeri Coccecette Coccette Coccett	TCGCATCCGG TCGCACCGGAA ACCCACAGGG TCGCACCGGAA ACCTGCACGGGG TCGCATCGGGGGC 760 	TTTGGGCAGT TTTGGGCAGT CGTCGTCGCC TCTGGGGAAT CGTCGTCGCC TTGGGCAGT TTGGGCAGT TTGGGCAGT TTGGGCAGT CGTGACCAAC TTGGGCAGT CTGGGACGT CTGGGACGT CTGGGACGT CTGGGACGT CTGGGACGT CTGGGACGT CTGGGACGT CTGGGACGT CTGGGACGT CTGGGACGT CTGGGACGT CTGGGACGCC CGCCGACCCC STO	TTGGTG-GC TTGGTC-GC TTTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TGGTC-GC TGGTC-GC TGGTC-GC TGGTC-GC TTCTGGCC-GC TGTTCTGGCCG TGTTTGGCCCG TGTTCGGCCCG TGTTGGGCCCG TGTTGGGCCCG TCTCGGCCCG S80 AGGCCACCA		CGCA GGC GTC GTC GTC GTC GTC GGC GGC GGC GGC
no4 no2 np2 no1 np3 np4 np3 AHpg6 AAsp5 ASer1 ATrp11 no3 no4 no2 np1 np3 AHpg6 AAsp5 ASer1 ATrp11 no3	GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTATTAA GCGTATGTGATTTAA GCGTATGTGATTTAA GCGTATGTGGCGCGCGTGTA TTCGGGCGCGCGTGGGGGCCC TTCGGGGCGGGG	CACGTCGGGCT CACGTCGGGCT CACGTCGGGCT TACGTCGGGCT TACGTCGGGCT T220 []] CGTCCACGGCT CGCCA-CGACC CGGCA-GGCC CGGCA-GGCC CGGAT-GTG-C CGGAT-TCGC CGGAT-TCGC CGGAT-TCGC CGGAT-TCGC CGGAT-TCGC CGCACGGCTG CGCCACGTCAGA S20 [] STCGTCGCACC STCGTCGCCCG STCGTCGCCCG STCGTCGCCCG		CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGC CCCCACTCC CCCCCCCC CCCCCCCCC CCCCCCCCC	Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigeri Coccecetti Cocce	TCGCATCCGG TCGCACCGGAA ACCCACAGGG TCGCACCGGAA ACCTGCACGGGG TCGCATCGGCGGC TCGCATCCGG ACCTGCCGGGGC GACGTGCCGG GACGTGCGGG GACGTGCGGG GACGTCCGTGGT GACGGGTCCGT GACGGGTCCGT GACGGGTCCGT GACGGGTCCGT GACGGGTCCGT GACGGGTCCGT GACGGGTCCGT GACGGGCGCGG GACGTCCCAT 860 1	TTTGGGCAGT TTTGGGCAGT TTGGGGAAT CGTCGTCGCC TTGGGCAGT TTGGGCAGT TTGGGCAGT TTGGGCAGT TTGGGCAGT TTGGGCAGT TTGGGCAGT TTGGGAGT TTGGGAGT TTGGGAGT TTGGGAGT TTGGGAGT TTGGGAGT TTGGGAGT TTGGGAGT TTGGGAGT TTGGGAGT TTGGGAGT TTGGGAGT TTGGGGAGT TTGGGGAGT TTGGGGAGT TTGGGGAGT TTGGGGAGT TTGGGGAGT TTGGGGAGT TTGGGGAGT TTGGGGAGT TTGGGGAGT TTGGGGC TTGGGGC TTGGGGAGT TTGGGGAGT TTGGGGGC TTGGGGC TTGGGGC TTGGGGGC TTGGGGC TTGGGGC TTGGGGC TTGGGGC TTGGGGC TTGGGC TTGGGC TTGGGGC TTGGGGC TTGGGC TTGGGGC TTGGGC TTGGGC TTGGGC TTGGGC TTGGGGC TTGGGGC TTGGGGC TTGGGC TTGGGC TTGGGGC TTGGGGC TTGGGGC TTGGGC TTGGGGC TTGGGGC TTGGGC TTGGGC TTGGGC TTGGGGC TTGGGC TTGGGC TTGGGC TTGGGC TTGGGC TTGGGC TTGGGC TTGGGC TTGGGC TTGGGC TTGGGC TTGGGC TTGGC TTGGC TTGGGC TTGC TTGGC TTGGC TTGC TTGGC TTGC TTGGC TTGC TTGC TTGC TTGGC TTGC T			
m04 m02 m22 m01 m27 m21 m23 m24 m23 m24 m23 m24 m23 m24 m24 m24 m24 m24 m24 m24 m24 m24 m24	GCGTATGTATTTA GCGTATGTATTTA GCGTATGTATTTA GCGTATGTATTTA GCGTATGTATTTA GCGTATGTATTTA GCGTATGTATTTA GCGTATGTATTTA GCGTATGTATTTA GCGTATGTATTTA GCGTATGTGATTTA GCGTATGTGATTTA GCGTATGTGGCGCGCGGGGC TGGGGGCGCGGGGCG GTGGGGGCGGGGCGC TCCGGGGGGGG	CACGTCGGGCT CACGTCGGGCT CACGTCGGGCT TACGTCGGGCT TACGTCGGGCT TACGTCGGGCT TCCTCCACGGCT CGCCACGGCC CGCCACGGCC CGCCACGGCC CGCCACGCGCC CGCCACGCCC CGCCACGCGCC CGCCACGCGCC CGCCACGCGCC CGCCACGCGCC CGCCACGCGCC CGCCACGCGCC CGCCACGCGCC CGCCACGCCC CGCCACGCCC CGCCACGCCCC CGCCACGCCCC CGCCACGCCCC CGCCACGCCCC CGCCCCCCCC		CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGC CCCCACTCC CCCCCCCC CCCCCCCCC CCCCCCCCC	Grigerigeri grigerigeri grigerigeri grigerigeri grigerigeri grigerigeri grigerigeri grigerigeri grigerigeri grigerigeri grigerigeri grigerigeri griger					2008 3007
m04 m02 m02 m01 m03 mP1 mP3 AHp96 AAsp5 ASer1 m03 m04 m02 m01 m23 AAsp5 ASer1 ATrp10 AAsp5 ASer1 M07 m04 m07 m07 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m04 m04 m04 m04 m04 m04 m04 m04 m04	GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTACGGGCCCGGGCCC GTGGGGACGGGGCC GTGGGGGACGGGTCC GTGGGGGCGGGGGGGGGG	CACGTCGGGCT CACGTCGGGCT CACGTCGGGCT TACGTCGGGCT TACGTCGGGCT TACGTCGGGCT TACGTCGGGCT TCCTCCACGGCT CGCCCCGGGC CGCCCCGGCC CGCCCCGGCC CGCCCCGGCC CGCCCCGGCC CGCCCCGGCC CGCCCCGCGCC CGCCCCGCCCC CGCCCCCGCCCC CGCCCCCGCCCCC CGCCCCCC	CGACGGGGC CGACGGGGC CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGCA CGACGGCA CGACGGCA CGACGGCA CGACGGCA CGACGGCA CGACGGCA CGACGGGCA CGCCGGGGC CCCCCGGGC CCCCCGGGC CCCCCGGGC CCCCCGGGC CCCCCGGGC CCCCCGGGC CCCCCGGGC CCCCCGGGC CCCCCGGCGC CCCCCGGC CCCCCGGCGC CCCCCGGC CCCCCGGCGC CCCCCGGCGC CCCCCGC CCCCCGGCC CCCCCGGCC CCCCCGGCC CCCCCGCC CCCCCGC CCCCCGCC CCCCCGCC CCCCCGCC CCCCCGCCCCCC		Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Constanti Co		TTGGGCAGT CGTCGTCGCC TGGGCAGTCGCC TGGGCAGTCGCC TGGGCAGTCGCC TGGGCAGTCGCC TGGGCAGTCGCC TGGGCAGTCGCC TGGGCAGTCGC TGGGCAGTCGC TGGGCAGTCGC TGGGCAGTCGC TGGGCAGTCGC TGGGCAGTCGC TGGGCAGTCGC TGGCGGCCCC CGCCGGCCC CGCCGGCCCC CGCGGGCCTC CGCGGGCCCC CGCGGGCCCC CGCGGGCCCC CGCGGGCCCC CGCGGGCCCC CGCGGGCCCC CGCGGGCCCC CGCGGGCCCC CGCGGGCCCC CGCGGGCCCC CGCGGGCCCC CGCGGGCCCC CGCGGGCCCC CGCGGCCCCC CGCGCCCCCC CGCGGCCCCC CGCGGCCCCC CGCGGCCCCC CGCGGCCCCC CGCGGCCCCC CGCGCCCCCC CGCGGCCCCC CGCGCCCCCCC CGCGGCCCCC CGCGCCCCCC CGCGCCCCCCC CGCGCCCCCCCC			2002 A 30 GT 0 30 G
m04 m02 m02 m01 m03 m01 m03 m11 m03 m04 m01 m04 m01 m03 m04 m01 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m04 m04 m04 m04 m04 m04 m04 m05 m04 m05 m05 m04 m04 m04 m04 m04 m04 m04 m04 m04 m04	GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL TCGGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		Cancedece Canced	CCCGAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCACGC CCCCCCCC	Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Schemen Construction Con		TTGGGCAGT TGGGGCAGT TGGGGAGAT TGGGGCAGT TGGGCAGT TGGGCAGT TGGGCAGT TGGGCAGT TGGGCAGT TGGGCAGT TGGGAGAGT TGGGAGAGT TGGGAGAGT TGGGAGAGT TGGGAGAGT TGGGAGAGT TGGGAGAGT TGGGGAGCT TGGGGGGT TGGGGGGCT TGGGGGGT TGCGGGGCC TGCGGGGCT TGCGGGGT TGCGGGGCC TGCGGGGCT TGCGGGCC TGCGGGCC TGCGGGT TGCGGGCC TGCGGGCC TGCGGGCC TGCGGGCC TGCGGGCC TGCGGGCC TGCGGGCC TGCGGGCC TGCGGCC TGCGGC TGCGGCC TGCGGC TGCGGCC TGCGGC TGCGGC TGCGGC TGCGGC TGCGGC TGCGGC TGCGGC TGCGGC TGCGGC TGCGGC TGCGGC TGCGGC TGCG TGCGGC TGCG TGCGGC TGCG TGCGGC TGCG TGC TGC			CGCA GGGT SACCO GGC GGC GGC GGC CGCO CGCO CGCO CGCO
m04 m02 m02 m01 m03 m11 m03 m23 m23 m23 m23 m23 m23 m23 m23 m23 m2	GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATA TACGGCCGGGGC GTGGGGACGGGGC GTGGGGGACGGGGC GTGGGGGACGGGGC TTCCGGTGCGGGGC GTGGGGGCGGGGGG GTGGGGGCGGGGGG TCCGGGCGGG	CACGTCGGGCT CACGTCGGGCT CACGTCGGGGT CACGTCGGGGT CACGTCCGGGCT CACGTCCGGGGT CACGTCCGGGGT CGCGTC-CGGCC CGGCGT-CGGC CGGCGT-CGGC CGGCGT-CGGC CGGCGT-CGGC CGCGCT-CGGC CGCGCT-CGGC CGCGCT-CGGC CGCGCT-CGGC CGCGCT-CGGC CGCGCT-CGGC CGCGTC-CGGC CGCGTCGGCGC CGCGTCGGCGC CGCGTCGGCGC CGCGTCGGCGC CGCGTCGGCGC CGCGTCGGCGC CGCGTCGGCGC CGCGTCGGCGC CGCGTCGGCGC CGCGTCGGCGC CGCGTCGGCCC CGCGTCGGCCC CGCGTCGGCCC CGCGTCGGCCC CGCGTCGGCCC CGCGTCGCCCC CGCGTCGCCCC CGCGTCGCCCC CGCGTCGCCCCC CGCGTCCGCCCCCC CGCGTCCGCCC CGCGTCCGCCCC CGCGTCCGCCCCCCCCCC	CGACGGGGC CGACCGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGCA CGACGGCA CGACGGCA CGACGCACA CGACGCACA CGACGCACA CGACGCACA CGACGCACA CGACGCACA CGACGCACA CGACGCACA CGACGCACA CGACGACA CCCCGGCA CGACCACACA CCCCCGGCA CCCCCGCACA CCCCCGCACA CCCCCGCACA CCCCCGCACA CCCCCGCACA CCCCCGCACA CCCCCGCACA CCCCCGCACA CCCCCGCACA CCCCCGCACA CCCCCGCACA CCCCCGCACA CCCCCGCACA CCCCCCGCACA CCCCCCGCACA CCCCCCGCACA CCCCCGCACA CCCCCCGCACA CCCCCCGCACA CCCCCCGCACA CCCCCCGCACA CCCCCCGCACA CCCCCCGCACA CCCCCCGCACA CCCCCCGCACA CCCCCCCC	CCCGAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCACGGC CCCCACGGC CCCCCCCC	Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Topologi Construction Co		TTGGGCAGT TGGGGCAGT TGGGGAAT TGGGGAAT TGGGGAAT TGGGGAAT TGGGGAAT TGGGGAAT TGGGGAAT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGGCT TGGGGACT TGGGGGCT TGGGGACT TGGGGGCT TGGGGACT TGGGGGCT TGGGGACT TGGGGGCT TGGGGACT TGGGGGCT TGGGGACT TGGGGGCT TGGGGCC TGGGCC TGGGGCC TGGGGCC TGGGGCC TGGGCC TGGGGCC TGGGGCC TGGGGCC TGGGGCC TGGGGCC TGGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGGC TGGGGC T		CATCTCACCT CACGTCGCGCC GCCACCGCAC GACGCCGCCGCAC GACGCCGCCGCAC CGCACCCCGCAC CGCACCCCGCGC TCGCCCCGCGCC CCGCCCCGGCCCC CTCGCCCACGGCGCT TTCCGGGCGCT TTCCGGGCGCT TTCCGGGCGCGC TTCCGGGCGCGC CCGCCCCACGG B90 LL.L.L. CCGCCATCCACG CCCCCCGGGCAC CCCCCCCGGCCAC CCCCCCGGCCAC CCCCGGGCGCT CCCCGGGCGCT CCCGCGCCCCCCCC	CGCA GGGT GGGT GGGC GGGC GGGC GGGC CGGC C
m04 m02 m02 m01 m03 mP1 mP3 AHp96 AAsp5 ASer1 m03 m04 m02 m01 m02 AMsp5 ASer1 ATrp10 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m04 m04 m04 m04 m04 m04 m04 m04 m04	GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL GCGTANGTCALTTAL TCGGCGGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	CACGTCGGGCT CACGTCGGGCT CACGTCGGGGT CACGTCGGGGT CACGTCCGGGCT CACGTCCGGGGT CACGTCCGGGGT CGCGTC-CGGCC CGGCGT-GTCGC CGGCGT-GTCG CGGCGT-GTCG CGGCGT-GTCG CGGCGT-GTCG CGGCGT-GTCG CGCGCTCAGAC S20 IIII STCGTGGGCCCG STCGTCGTCGCC STCGTCGCCCCG STCGTCGCCCCC STCGTCGCCCCC STCGTCGCCCCCC STCGTCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CGACGGGGC CGACCGGGCA CGACGGGCA CCACGGGCA CCACGGGCA CCACGGGCA CCACGGGCA CCACGGGCA CCACGGGCA CCACGGCA CCACGGCA CCACGGCA CCACGGCA CCACGCACG	CCCGAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCACGC CCCCCCCC	Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Grigerigeri Constanti Co		TTGGGCAGT TGGGGCAGT TGGGGAAT CGTCGTCGCC TGGGCGACT TGGGCGACT TGGGCGACT TGGGCGCGT TGGGGACGT TGGGGACGT TGGGGACGT TGGGGACGT TGGGGACGT TGGGGACGT TGGGGACGT CTGGGACGT TGGGGACGT CTGGGACGT CTGGGGCG TGGGGACGT CTGGGGCG CGCGGGCG CGCGGGCG CGCGGGCG CGCGGGCCG CGCGCCG CGCGCC CGCGCC CGCGCC CGCGCC CGCGCC CGCGC CGCGCC CGCGCC CGCGC CGCGCC CGCGCC CGCG CGCGCC CGCGC CGCGCC CGC CGCGC CGCGCC CGC CGCGC CGC			CGCA GGGT GGGC GGCC GGCC GGCC CGCC CGCC
m04 m02 m12 m01 m02 m11 m2 m13 m4 m4 m33 m2 m13 m04 m02 m21 m01 m02 m21 m2 m3 m04 m2 m2 m2 m3 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2	GCGTATGTAGTTAL GCGTATGTAGTTAL GCGTATGTAGTTAL GCGTATGTAGTTAL GCGTATGTAGTTAL GCGTATGTAGTTAL GCGTATGTAGTAGTATTAL GCGTATGTAGTAGTAGTA TLO CTGGCGGCC-GGGG TGGGGGACGGGTCG GTGGGGGACGGGTCC GTGGGGGACGGGGCC GTGGGGGACGGGGCC TTCCGGTCTCCGGAL CTGGGGGCGGGGGGGG TCCCGGGCGGGGGGGGGG CTCCGGGCGGG	CACGTCGGGCT CACGTCGGGCT CACGTCGGGGT CACGTCGGGGT CACGTCCGGGGT CACGTCCGGGGT CACGTCCGGGGT CGCGTC-CGGCT CGGCGT-CGGC CGGCGT-GTGC CGGCGT-GTGC CGGCGT-GTGC CGGCGT-GTGC CGGCGT-GTGC CGGCGTCGTGGA B20 III STCGTGGCGCCG STCGTGGCCCG STCGTGGCCCG STCGTGGCCCG STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCGGA STCGTGCCCCGGA STCGTGCCCCGGA STCGTGCCCCGGA STCGTGCCCCGGA STCGTGCCCCGGA STCGTGCCCCGGA STCGTGCCCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCCCCGGA STCGTGCCCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTGCTCCGGA STCGTCCCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGCA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCCGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGGA STCGTCCTCCGA STCGTCCTCCGA STCGTCCTCCGA STCGTCCTCCGA STCGTCCTCCCCGA STCGTCCTCCGA STCGTCCTCCCCGA STCGTCCTCCCCGA STCGTCCTCCCCGA STCGTCCTCCCCCA STCGTCCTCCCCCA STCGTCCTCCCGA STCGTCCTCCCCCA STCGTCCTCCCCCA STCGTCCTCCCCCA STCGTCCTCCCCCA STCGTCCTCCCCCA STCGTCCTCCCCCA STCGTCCTCCCCCA STCGTCCTCCCCCA STCGTCCTCCCCCA STCGTCCTCCCCCA STCGTCCTCCCCCA STCCTCCCCCCA STCCTCCCCCCA STCCTCCCCCCA STCCTCCCCCCA STCCTCCCCCCA STCCTCCCCCCA STCCTCCCCCCA STCCTCCCCCCA STCCTCCCCCCA STCCTCCCCCCA STCCTCCCCCCA STCCTCCCCCA STCCTCCCCCCA STCCTCCCCCCA STCCTCCCCCCA STCCTCCCCCCA STCCTCCCCCCCA STCCTCCCCCCCA STCCTCCCCCCCCA STCCTCCCCCCCCCA STCCTCCCCCCCCA STCCTCCCCCCCA STCCTCCCCCCCA	CGACGGGCC CGACCGGCC CGACGGGCC CCACGGCAC CCACGGCAC CCACGGCAC CCACGGCAC CCACGGCAC CCACGGCAC CCACGGCAC CGACGACCAC CGACGACCAC CGACGACCAC CCCCCACGCAC CCCCCCACCAC CCCCCCACGC CCCCCCCC	CCCGAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCACGC CCCCCCCC	Groencert Groenc		TTCTGGCAGT TCTGGCAGT TCTGGCAGT TCTGGCAGT TCTGGCAGT TCTGGCGAGT TCTGCGCAGT TCTGCGCAGT TCTGCGCAGT TCTGCGCAGT TCTGCGCAGT TCTGCGCAGT TCTGCGCAGT TCTGCGAGT TCTGCGAGT TCTGCGAGT TCTGCGAGT TCTGCGAGT TCTGCGAGT TCTGCGAGT TCTGCGAGT TCTGCGAGT TCTGCGAGT TCTCGCGACC TCTGCGACC TCTGCGACC TCTGCGACC TCTCGCACC TCTGCGACC TCTCGCACC TCTCCCACC TCTCCGCACC TCTCCCACCC TCTCCCACCC TCTCCCACCC TCTCCCACCC TCTCCCACCCC TCTCCCACCCC TCTCCCACCCCC TCTCCCACCCCCCCCCC			CGCA GGGT GGGT GGGC GGGC GGGC CGGG CGGG
m04 m02 m02 m01 m02 m01 m02 m01 m03 m4 m03 m04 m04 m04 m04 m04 m04 m04 m04 m04 m04	GCG7ATGCATTAL GCG7ATGCATTAL GCG7ATGCATTAL GCG7ACGCATCTAL GCG7ACGCATCTAL GCG7ACGCATCTAL GCG7ACGCATCTAL GCG7ATGCATCTAL GCG7ATGCATCATTAL GCG7ATGCATCATTAL GCG7ATGCATCATCAT TCGGCGCC-GGGCC TGGGGGACGGGGCC TGGGGGACGGGGCC TGGGGGGCGGGGC	CACGTCGGGCT CACGTCGGGCT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CGTCCACGAGC CGGCC - CGACC CGGCT - CGGC CGGCT - CGGC CGGCT - CGGC CACGACGGTGT ACCA GC CGACT - TCGC CGCAT - TCGC CACGACGTGT ACCA GC CGCAT - TCGC CACGACGTGT ACCA GC CACGACGTGT CGCATCAGAC S20 	CGACGGGGC CGACCGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGACA CGACGGACA CGACGCA CGACGACA CGACGACA CGACGACA CGACGACA CGACGACA CGACGACA CGACGACA CCACGACA CCACGACA CCACGACA CCACGACA CCACGACA CCACGACACA CCACGACACA CCACGACACA CCACGACACA CCACGACACA CCACGACACA CCACGACACA CCACGACACA CCACGACACA CCACGACACA CCACGACACACA CCACGACACA CCACGACACACA CCACGACACACAC	CCCAAGGG CCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCACGCC CCCCCCCC	Grigorigeri Grigorigeri Grigorigeri Grigorigeri Grigorigeri Sincercera Topologi Construction Con		TTGGGCAGT TGGGGCAGT TGGGGAAT CGTCGTCGCCG TGGGCGACT TGGGCGACT TGGGCGACT TGGGCGACT TGGGCGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGACT TGGGGCC TGGGCC TGGGGCC TGGGACC TGGGGCC TGGGACC TGGGGCC TGGGCC TGGGACC TGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGGCC TGGCC TGGGCC TGGGCC TGGGCC TGCC TGGCC TGCCC TGCC TGCC TGCCC TGCC TGCC TGCCC TGCCC TGCCC TGCC TGCCC TGCCC T			2002 2007 2007 2007 2007 2007 2007 2007
m04 m02 m02 m12 m01 m01 m04 m13 m14 m13 m14 m13 m14 m13 m04 m03 m01 m04 m01 m02 m11 m03 m02 m11 m03 m21 m13 m24 m01 m23 m21 m23 m21 m23 m21 m23 m21 m23 m21 m23 m21 m23 m21 m23 m21 m23 m21 m23 m21 m23 m21 m23 m21 m23 m21 m23 m21 m23 m23 m21 m23 m23 m23 m23 m23 m23 m23 m23 m23 m23	GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATTA GCGTANGTGATTA GCGTANGGCGGGGCG GGGGGGACGGGTC TGGCGGGCGGGGGC GTGGGGGACGGGTC TTCGGGGGGGGGG	CACGTCGGGCT CACGTCGGGCT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CGTCCACGAGC CGGCG-TGACC CGGCG-TGACC CGGCA-GCC CGGAT-TCGC CGGAT-GTG CACGACGTGT AGCA	CGACGGGGC CGACGGGGC CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGCA CGACGGCA CGACGGCA CGACGCA CGACGCA CGACGCA CGACGCA CGACGCA CGACGCA CGACGCA CGACGCA CCACGGCA CCCCGCA CGACGCA CCCCGCA CGACGACA CCCCGCA CGACGACA CCCCGCA CGACGACA CCCCGCACA CCCCCACACA CCCCACACACA	CCCGAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCACGGC CCCCACGGC CCCCCCCC	Groencert Groenc		TTTGGCCAFT TTGGCCAFT CGTCGTCGCC CGTCGCCGC CGTCGCCGC CGTCGCCGC CGTCGCCACC 770 		CATCTTCACCTT CACGTTCACCTC GCCCACCGCAC GCCCACCGCAC GACCGCCGCCAC CACGTCGCGCC CACGTCGCGCC CACGTCGCGCCAC CTCGCCCCACGCCAC CTCGCCCCACGCC CTCGCCCACGCC CTCGCCCACGCGC CTCGCCCACGCGC CTCGCCCACGCGC CTCGCCCACGGC CTCGCCCACGGC CTCGCCCACGGC CCGCCGCCACGCC CCGCCGCCCCAC CCGCGCGCCGCAC CCGCGCGCG	CCCA CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCC
m04 m02 m02 m12 m11 m21 m21 m21 m21 m23 m24 m23 m24 m23 m24 m01 m02 m21 m02 m21 m02 m21 m23 m24 m23 m24 m23 m24 m23 m24 m23 m24 m23 m24 m23 m24 m23 m24 m23 m24 m23 m24 m23 m24 m23 m24 m25 m24 m25 m25 m25 m25 m25 m25 m25 m25 m25 m25		CACGTCGGGCT CACGTCGGGCT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CGCGC-CGACC CGCGC-CGACC CGCGT-CGACC CGCGT-CGCG CGCGT-CGCG CGCGT-CGCG CGCGTCGTGGACC CACGACGGTGTGCCGC CGCGTCGTGGCC CGCGTCGTGGCCC STCGTGGCGCGC STCGTGGCGCC STCGTGCCGCG STCGTGCCGCG STCGTGCCGCG STCGTGCCGCG STCGTGCCGCG STCGTGCCGCG STCGTGCCGCC STCGTGCCGCG STCGTGCCGCC STCGTGCCGCG STCGTGCCGCC STCGTGCCGCC STCGTGCCCCC STCGTGCCCCC STCGTGCCCCC STCGTGCCCCCCCCC STCGTGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CGACGGGGC CGACGGGGC CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGCA CGACGGCA CGACGACA CCACGACACA CCACGACA CCACGACA CCACGACACA CCACGACACACA CCACGACACACAC	CCCGAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCACGC CCCCCACG GCCCCACGC GCCCCCCCC	Groencer: Groencer:		TTGGGCAGT TGGGGCAGT TGGGGAGT TGGGGCAGT TGGGGCAGT TGGGGCAGT TGGGGCAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGGC TGGGGC TGGGGGC TGGGGGC TGGGGGC TGGGGGC TGGGGGC TGGGGGC TGGGC TGGGGC TGGGGC TGGGGC TGGGGC TGGGGC TGGGGC TGGGGC TGGGGC TGGGGC TGGGGC TGGGC TGGGGC TGGGGC TGGGGC TGGGGC TGGGGC TGGGC TGGGGC TGGGC TGGGGC TGGGGC TGGGGC TGGGGC TGGGGC TGGGGC TGGGC TGGGC TGGGC TGGGGC TGGGGC TGGGGC TGGGC TGGGGC TGGGC TGGGC TGGGGC	TTGGTG-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGC-GC TTGGCGCC TTGTC-GCC TGGGCCCCG S80 	CATCTTCACCTT CACGTTCACCTC GCCCACCGCAC GCCCACCGCAC GACCGCCGCAC GACCGCCGCAC GACCGCCGCAC CACGTTCGGAC TTGCCACACGCCGC CTCGTCCACGC CTCGTCCACGGC CTCGTCACGGC CTCGTCACGGC CTGCTCACGGC CTGCTCACGGC CTGCTCACGGC CTGCTCACGGC CTGCTCACGGC CCGCCACCTCAC GCCCCCCCACGGCCAC CCGCCGCACCTC CCGCGCACCTCAC GGCCCGGCTTC CCGCGCGCCACC CACGGGGCGCAC 90 111. GGCCGCGCCACC CCGCGCCCACC CCGCGCCCACC CCGCGCCCCC- CGCGCGCCCC- CGCGCGCCACCCC- CGCGCTCACCC- CCGCGCCCCC- CGCGCTCACCC- CCGCGCTCACCC- CCGCGCCCCC- CGCGCTCACCC- CCGCGCTCACCC-	CGCA GGGT GGGC CGTC CGCC CGCC CGCC CGGC CGG
m04 m02 m02 m12 m12 m12 m12 m12 m12 m12 m12 m13 m13 m03 m04 m02 m11 m03 m12 m01 m03 m12 m01 m03 m12 m03 m12 m03 m12 m03 m12 m03 m12 m03 m12 m12 m12 m12 m13 m12 m13 m12 m13 m13 m13 m13 m13 m13 m13 m13 m13 m13		CACGTCGGGCT CACGTCGGGCT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CACGTCGGGGT CGCCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGCCC CGCCCCCC CGCCCCCCC CGCCCCCCCC CGCCCCCCCC	CGACGGGGC CGACCGGGC CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGGCA CGACGGCA CGACGGCA CGACGCCA CGACGCCA CGACGCA CCACGACGAC CGACGACGAC CGACGACGAC CGACGACGAC CGCCACGACGAC CGCCCACGAC CGCCCCACGAC CGCCCCCACGAC CGCCCCCCC CGCCCCCCCC	CCGALAGGG CCCCALAGGG CCCCCALGGC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Groencert Groenc	TCGCATCCGG TCGCACCGGAA ACCCACAGGG CCGCACCGGAA ACCCACAGGG CCGCACCGGAA ACCCACCGGG ACCTGCCGCGGC ACCTGCCCGG GACGTGTCCCT GACGTGTCCGT GACGCGTCGT GACCGCGGGGTCGAA GACCTGCCGT GACGCGTCGT GACGCGCGGCGCC TCGCCGGCGCCCC GTGGAGGTGTG GTGGAGGTGTG GTGGAGGTGTG GTGGCGGCACC GTGGTCGACCTG GTGGTCGACCTG GTGGTCGACCTG GTGGTCGACCTG GTGGTCGACCTG GTGGTCGACCTG GTGGTCGACCTG GTGGTCGACCTG GTGGTCGACCTG GTGGTCGACCTG CCGCCCACGC CCGCCACGCCCCTG CCGCCACGCCCCCCCCG CCGCCCCCCCCCCCCCCC				CGCA GGGT SACC CGTC CGTC CGTC CGTC CGCG CGCG CGCG C
m04 m02 m02 m12 m12 m12 m12 m12 m12 m12 m12 m12 m1	GCGTATGTACTTAL GCGTATGTACTTAL GCGTATGTACTTAL GCGTATGTACTTACTA GCGTATGTACTTATAG GCGTATGTACTTATAG GCGTATGTACTACTATTA GCGTATGTACTACTATTA GCGTATGTACGTACTATTA GCGTATGTACGTACGTACG TACG-GCGCGGCCC GTGGGGACGGGCCC GTGGGGACGGGCCC GTGGGGGACGGGGCC GTGGGGGACGGGGCC GTGGGGGACGGGGCC GTGGGGGACGGGGCC GTGGGGGACGGGCC GTGGGGGACGGGCC GTGGGGGACGGGCC GCGCGCGTCACGGGC GCGCCGTCACGCG GCGCCGCTCCACCC GCGCCGCTCCACCCC GCGCCGCTCCACCCC GCGCCGCTCCACCCCCCCCCC	CACGTCGGGCT CACGTCGGGCT CACGTCGGGCT TACGTCGGGCT TACGTCGGGCT TACGTCGGGCT TACGTCGGGCT CGCCC-CGGCC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCC-CGACC CGCCT-CGC CGCCTCACCA S20 III STCGTCGCCGCG STCGTCGCCGAC STCGTCGCCGCC STCGTCGCCGCC STCGTCGCCGCC STCGTCGCCGCC STCGTCGCCGCC STCGTCGCCGCC STCGTCGCCGCC STCGTCGCCGCC STCGTCGCCGCCCC STCGTCGCCGCC STCGTCGCCGCCCC STCGTCGCCGCC STCGTCGCCGCCCCC STCGTCGCCGCCCCC STCGTCGCCGCCCCC STCGTCGCCGCCCCC STCGTCGCCGCCCCC STCGTCGCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CGACGGGCC CGACCGGCC CGACGGGCC CGACGGGCC CGACGGGCC CGACGGGCC CGACGGCC CGACGGCC CGACGGCC CGACGGCC CGACGGCC CGACGCC CGCCC CGACGCC CGCCC CGACGCC CGCCCC CGCCCCC CGCCCCC CGCCCCCC CCCCCC	CCCAAAGGA CCCCAAGGA CCCAAAGGA CCCCAAGGA CCCCAAGGA CCCCAAGGA CCCCAAGGA CCCCAAGGA CCCCAAGGA CCCCAAGGA CCCCAAGGA CCCCACGCCA CCCCCCCC	Groencert Groenc	TCGCATCCGG TCGCACGGATCCGGA ACCCACAGGGC CCGCACCGGAA ACCCACAGGGC CCGCACCGGAA ACCTGCCGCGGC TCGCACGCGGC ACCTGCCCGG GACGTGTCCCT GACGTGTCCGT GACGCGCGGGTCGAC GACCGCGGGGTCGAC GACGTCCCCG GACGTCCCCG GACGGCCGCGCC TCGCCGGCGCCCCC GTGGTGGACGTCTG GTGGTGGACGTCTG GTGGTGGACGTCTG GTGGTGGACGTCTG GTGGTGGACGTCTG GTGGTGGACGCCCC 960 1		TGGTG-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TTGGTC-GC TGGTC-GC TGGTC-GC TGGTC-GC TGTTC-GCCC TGTTC-GC TGGC-GC TGTC-GC TGTC-GC TGTC-GC TGTC-GC TGTC-GC TGTC-GC TGTC-GC TGTC-GC TTGCC-GC TGC TGCC-GC TTGCC-GC TGCC-GC TTGCC-GC TGCC-GC TGC TGCC TGC		CGCA GGGT SACC CGTC CGTC CGTC CGCC CGCG CGCG CGCG C
m04 m02 m02 m12 m12 m12 m12 m12 m12 m12 m12 m12 m1		CACGTCGGGCT T20 1	CGACGGGCC CGACCGGCC CGACGGGCC CGACGGGCC CGACGGGCC CGACGGGCC CGACGGGCC CGACGGCC CGACGGCC CGACGGCC CGCCCCCC CGCCCCCCC CGCCCCCCCC	CCCARGGC CCCARGGC CCCARGGC CCCARGGC CCCCARGGC CCCCARGGC CCCCARGGC CCCCARGGC CCCCARGGC CCCCCACGC CCCCCCCCC CCCCCCCCC CCCCCCCCCC	Groencer: Groencer:	TCGCAATCCGG TCGCACGGAATCCGG TCGCACGGGAA ACCCACAGGGG CCGCACCGGAA ACCCACCGGGA ACCTGCCGCGGG ACCTGCCGCGGG ACCTGCCCGG ACCTGCCGGG ACCCGCGGGTCGAA ACCCGGCGGCACC CCGCCACGAC 960 1	TTGGGCAGT TGGGGCAGT TGGGGCAGT TGGGGCAGT TGGGGCAGT TGGGGCAGT TGGGGCAGT TGGGGCAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGAGT TGGGGGCG TGGGGGCG TGGGGGGCG TGGGGGCG TGGGGGCG TGGGGGCG TGGGGGCG TGGGGGCG TGGGGGCG TGGGGGCG TGGGGGCG TGGGGGCG TTGGGGAC TTGGGGAC TTGGGGAC TTGGGGGGC TTGGGGGC TTGGGGGGC TTGGGGGC TTGGGGGC TTGGGGGC TTGGGGGC TTGGGGGGC TTGGGGGC TTGGGGGGC TTGGGGGGC TTGGGGGGC TTGGGGGGC TTGGGGGGC TTGGGGGGG			CGCA CGCA
m04 m02 m02 m12 m01 m02 m11 m13 m13 m13 m13 m13 m13 m03 m01 m13 m03 m04 m01 m12 m01 m03 m04 m02 m14 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m03 m04 m04 m04 m04 m04 m04 m04 m04 m04 m04	GCGTANGTGATTAA GCGTANGTGATTAA GCGTANGTGATTAA GCGTANGTGATTAA GCGTANGTGATTAA GCGTANGTGATTAA GCGTANGTGATTAA GCGTANGTGATTAA GCGTANGTGATTAA GCGTANGTGATTAA GCGTANGTGATTAA GCGTANGTGATTAA GCGTANGTGATTAA GCGTANGTGGGGCGGGGCC GTGGGGGGGGGGGCCC GTGGGGGGGG		CGACGGGCC CGACCGGCC CGACGGGCC CGACGGGCC CGACGGGCC CGACGGGCC CGACGGCGC CGACGGCC CGACGGCC CGACGGCC CGCCCGCC	CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCAAGGG CCCCACGC CCCCCCCC	Groender Groend	TCGCATTCOG TCGCACCGGAA ACCCACAGGG CCGCACCGGAA ACCCACAGGG CCGCACCGGAA ACCTGCCGCGGC ACCTGCCGCGGC GACGTGTCCTG GACGTGTCCGT GACGTGTCCGT GACGTGTCCGT GACGTCGTCCGT GACGTCGTCCGT GACGTCGTCCGT GACGTCGTCCGT GACGTCGACCCC CCGCGGACCCCCCC 960 1	TTCGCCCAFT TTCGCCAFT CGTCGTCGCC CGTCTGCCGC TTCGCGCAFT CGTCGTCGCC TTGGCGCAFT CGTCGTCGCCA TTGGCGCAFT CGTCGCACGC CGGGACGCC CGGGACGCC CGGGACGCC CGGGACGCC CGCGGACGC CGCGGACGC CGCGGCCGCC CGCGGCCGCC CGCGGCGCC CGCGGCCGCCC CGCGGCCGCC CGCGGCCGCC CGCGGCCGCC CGCGGCCGCC CGCGCCGCCC CGCGCCGCCC CGCGCCGCCC CGCGCCGCCC CGCGCCGCCC CGCGCCGCCC CGCGCCGCCC CGCGCCGCCC CGCGCCCCCCC CGCGCCCCCCCC	TGGTG-GC TTGGT-GC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTTGGC C-TCTCCCCC C-TCTTGGC C-TCTCCCCCC C-TCTCCCCCC C-TCTCCCCCC C-TCTCCCCCCC C-TCTCCCCCCC C-TCTCCCCCCC C-TCTCCCCCCC C-TCTCCCCCCCC		CGCA CGCCC CGCC CGCC CGCC CGCC CGCC CGCC CGCC CGCC CGCC CGCCC

c			G-GTCCGCG	GGACGCCTG-		CCCTGCAC	ACCTGTACGO ATTCCTACGO	GCCCACCGA(GCCGACGGA(GG <mark>CCGCC</mark> G GACCACGG
CAC	GCCGGAGGTGA	PCGGGCGG	TGGG	CGCGGGGGTCG	GCGT	TTGCTG		GGCGACGGA	GGTGACGG
CG	ACCTCGGTCGG	TGCGCCCTT	G-GTACGAG	CACCTCACCCGG	ACGGCGCTCC	GACCCTGGTC	ACATGTACG	GATCACCGA	SACCACCG
CAC	GGTGGATGTGC	IGCGGCGG	TGGG	CTCCGGGCCG	GCGG	TTGCTG	ACGGGTATG	GCCGACCGA	GGTGACGG
G	-ACCTCGGTCGGG -GCCGGAGGTGA	TGCGCCCTT CGGGCCGG	G-GTACGAG	CGTCACCCGG	ACGGCGCTCC GCGT	GACCCTGGTC	ACATGTACGO	GATCACCGA	GACCACCG GGTGACGG
GTG	CTTTCCGCCGGC	ATCCGGCAGT	TCTTCGCGG	BAACGGCCCGG	AGTACGG	CTGCAC	AACCACTACGO	GCCCGTCCGA	GACGCACG
	1110	1120	1130	1140	1150	1160	1170	1180	1190
GTG	ACGCAGCACGA	GGTCACCGCG	CCGTAC	GAGGCCCGCG	GCAGCCTGCC	GGTCGGGCGGG	CGACGGGGA		CTACGTGC
CGTG	ACGTACTGGC	CGTGCGCCG-	AGGAC	ACCGGCGACG	GGCCGGTGCC	GATCGGACGG	CGGTGTGGA	CACCCAGGT	STACGTCC
CGTG	-ACCATGAGCGG CACGGTGGGCGG	GCCGATGA-		GAGGT	GCATCC-GTC	GGTGGGCCGTC	CGATCGCCGA CGATGGTCAA	CACCGCCGGG CGCGCGTGTG	GTACGTCC GTATGTGC
CCTG TGTC	TGTGACCAGTGO	GGCCGGCGGA GCTGGACAGT	TCCGGGG	GAGGG GACCGGCACA	GTTGCC-GCC	GATCGGGCGTC	CCGTTCTTCA#		G <mark>TACATCC</mark> STATGTGC
CATG	TACCACCCG-G	rgcggacggc ggccggcgga	TCCGGAG	GAGGG	GGTCGATCCC	CATCGGCCGG	CCATGGACGA		CTACGTCC GTACATCC
TGTC		GCTGGACAGT	GCCGTCGCC	GACCGGCACA	CCTCCAGCCT	GATCGGCGAG	CCCTGCCGG		STATGTGC
GAC	GCCTTCACGCT	GCCGGCCGG-	CACGGAA	GCATGGCCCG	CTGCCGCGCC	GATCGGCCGCC	CCATCCCCC	GGTACGCGT	3TACGTGC
	1210	1220	1230	1240	1250	1260	1270	1280	1290
GTAC	TCCAGCCGGTG		TGCCGGGCG	AGCTGTTCAT	CTCCGGCTCC	GGTCTGGCGCG	CGGCTACCT	GACCGTCCC	GACCTGAC
CCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TGCGGCCCGTC		TGCCCGGAG	AGCTGTACCT	CGCCGGTGAA	CAGCTCGCCCC	CGGCTACCT	GGCCGCCCC	GCCCTCAC GCGCTGAG
	TCCAGCCGGTG	CGCCGGGCG CGCCGGGTG	TGCCCGGGG TGGCCGGGG	AGCTGTACGT	CGCGCGGGCCC	GGACTCGCCCC	CGGCTACCT	GGCCGCCCG!	TCGCTGAC
IGCG	TGCGGTTGGTG	CGCCGGGTG	TTGCGGGTG	AGTTGTATGT	GGCTGGTGTG	GGTGTGGCGCG	GGGGTATCT	GGCCGGGCG	GGTTTGAC
GCG	TGCGGCTGGCG	CGCCGGGTG	TGGCAGGGG	AGATCTATGT	CGCGGGGTTCC	GGGCTGGCGC	TGGGTATCT	GACCGTCCG	GGGCTGAC
	TGCGGCCGGTGC CTGCGGCTGCTGC		TTGCGGGTG TCCCCGGTG	AGCTGTATGT AGCTGTACGT	CGCCGGTGTG	GGACTCGCAC	JGGGGTATCT(JCGGCTACCT(GGCCGGGCGG GGCCGGCCGG	GGTCTGAC GGGCTGAC
	TGCGGCCGGTG	CCCCCGGGTG	TCGCGGGGGG TGCCGGGAG	AGATCTATGI AGCTCTGCAI	CGCGGGTCC1	GGTCTGGCGCC	GGGGGTATCTC GGGGCTACCTC	GGCCGGGCG(GGCCGCCCG	GGG <mark>TT</mark> GAC 3G <mark>CACGAC</mark>
	1310	1320	1330	1340	1350	1360	1370	1380	1390
GCT	CACCGCCAACC	CCACAGCAG	CACCCCCGG	CGCCCGCATG	TACCGCACCG	GCGACCTCGC	CACTGGAACO	ACGACGGCC	ACCTCACC
GCT	CACCGCCGACCO	CGCACGG CGTTCGG	CGCGCCCGG GCCGGCGGG	CAGCCGGATG	TACCGCACCG	GCGACCTGGCC GCGACCTGGT	CGCTGGAACO		GCCTCGAC ACCTGGAG
GGT	CGTGGCCGATCO	CGTTCGG	TGCGGCGGG	TGAGCGCATG	TACCGGACGG	GTGACCGTGGG		CGGACGGTG	AGCTCGAC
GCT	CGTGCCCGACCO	CCTTCGG	CGCGCCCGG	CGCCCGCATG	TACCGCACCG	GGGACGTCGT	CGCCTGCGG	ACCGACGGCG	AACTGGAG
GGT	CGTGGCGGATCO	CGTTCGG	TGCGGCTGG TGCGGCTGG	TGAGCGGATG	TACCGGACGG TACCGCACGG	GTGACCGTGGG	CGGTGGAGT	GGGACGGGCi GGGACGGGCi	AGATCGAG AGA <mark>TC</mark> GAG
GCT	CGTGCCCGACC	CTTCGG		CGCCCGCATG	TACCGCACCG	GGGACGTCGT			AACTGGAG
GGT	CGTCGCGGACCO	CGTTCGG	GCCGTCCGG	CGCCCGGATG	TACCGCACCG	GTGACCGCGCG	CGTCTGCGGG	CGGACGGGA	ACCTGGAG
	1410	1420	1430	1440	1450	1460	1470	1480	1490
		GG <mark>TCAAGATC</mark>	CGCGGCTTC	CGGGTGGAAC	TGGGCGAGAT	CGAGGCGGTCC	TGGCCACGC	CCCGGAGCT	∣ 3G <mark>CCC</mark> AGG
	Jeceancencen	<u> </u>	CGCGGCCAC	CGCATCGAAC	CCGGCGAGAT		TTCACCCCACZ	AGACCGGCAT	CACCCAAA
JACG	GCCGACCACCA	GTCAAGCTC	CGCGGCTTC		TCCCCCACAT	CGAGGCCGCG	TCGTACGGC	CCCCCACAT(0040000
GACGO GACGO GCCGO	CGCCGACCACCAC CGCCGACCACCAC CACCGACACCCAC	GTCAAGCTG GGTCAAGCTG GGTCAAGCTG	CGCGGCTTC	CGCGTAGAGC	CGGCCGAGAT	CGAGGCCGCGC CGAGGCGGTG		GCCGGAGAT	CGCCCAGG CGCGCAGG
GACGO GGCGO GCCGO GCCGO GCCGO	CGCCGACCACCAC CGCCGACCACCAC CACCGACACCAC CACCGACACCCAC CGTGGATGGACAC CGTGGATGAGCAC	GTCAAGCTG GTCAAGCTG GTCAAGCTG GTGAAGATC GGTGAAGATC	CGCGGCTTC CGCGGGCATG CGGGGGGTTC CGGGGGGTTC	CGCGTAGAGC CGGATCGAGC CGGATCGAGC	CCGGCCGAGAT CCGGCCGAGAT CCGGGTGAGGT CCGGTGAGGT	CGAGGCCGCGC CGAGGCCGCTGZ CGAGGGGGGTGC CGAAGAGGTGC	TCGTACGGC/ ACGGCGGGCCT TGGCCGGGC/ TGGCCGGGC/	IGCCGGAGAT(IGCCCGGCGT(ATCCGTCGGT(ATGAGGCCGT(CGCCCAGG GGCGCAGG GGCCCGGG GGCCCGGG
GCCGC GCCGC GCCGC GCCGC GCCGC GCCGC GCCGC	CGCCGACCACCAC CGCCGACCACCAC CACCGACACCAC CACCGACACCAC CGTGGATGGACAC AGCCGACGACCAC CGTGGATGGGCAC	GTCAAGCTC GGTCAAGCTG GGTGAAGATC GGTGAAGATC GGTCAAGATC GGTGAAGATC	CGCGGCTTC CGCGGGGTTC CGGGGGGTTC CGCGGGGTTC CGGGGGGTTC	CGCGTAGAGC CGGATCGAGC CGGATCGAGC CGGATCGAGC CGGATCGAGC	CCGGCGAGAT CCGGCCGAGAT CCGGGTGAGGT CCCGGTGAGGT CCCGGTGAGAT CCGGGTGAGGT	CGAGGCCGCGC CGAGGCGGTGZ CGAGGGGGGTGC CGAAGAGGGGGGGG AGGCAGCGCGCGC CGGAGGGGGGTGC	TCGTACGGCI ACGGCGGGCC1 TGGCCGGGCI TGGCCGGGCI TCGGCAGACI TGGCGGGGGCI	IGCCGGAGAT(IGCCCGGCGT(ITCCGTCGGT(ATGAGGCCGT(ACCCCGCCGT(ATCCGTCGGT(CCCCAGG CCCCAGG CCCCGGG CCCCGGG CCCCACA CCCCCGGG
	GCCGACCACCAC GCCGACCACCAC CACCGACACCAC GGTGGATGGACAC GGTGGATGGACAC AGCCGACGACCAC GGTGGATGGCAC GGTGGATGGCACAC	GATCAAACTC GGTCAAGCTG GGTCAAGCTG GGTGAAGATC GGTCAAGATC GGTGAAGATC GGTGAAGATC GGTCAAGATC	CGCGGGCTTC CGCGGGGGTTC CGCGGGGGTTC CGCGGGGGTTC CGGGGGGTTC CGCGGGGGTTC	CGGATCGAAC CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG	TCGGCGAGAT CCGGCCGAGAT CCGGTGAGGT CCCGGTGAGGT CCCGGTGAGGAT CCCGGTGAGGT CCCGGTGAGGAT	CGAGGCCGCGG CGAGGCGGTG2 CGAGGGGGTGC CGAGGGGGTGC CGAGGGGGTGC CGAGGGGGGTGC CGAAGAGGGGTGC CGAAGAGGGGTGC CGAAGAGGGGCGCGC	TCGTACGGC LCGGCGGGCC TGGCCGGGC2 TGGCCGGGC2 TCGGCAGAC2 TGGCCGGGC2 TGGCCGGGC2 TCGGCAGAC2	IGCCGGAGAT IGCCCGGCGT ITCCGTCGGT ITGAGGCCGT ACCCCGCCGT ATCCGTCGGT ACCCCGCCGT	CCCCAGG CCCCGGG CCCCGGG CCCCGGG CCCCGGG CCCCGGG CCCCGGG CCCCCC
	CCCGACCACCA CGCCGACCACCA CGCCGACCACCA CGCCGACACCAC CGTGGATGGACA CGTGGATGGACA CGTGGATGGACA CGTGGATGACCA CGTCGACGACCACCA CGTCGACGACCACCACCACCACCACCACCACCACCACCACCAC	GTCAAGCTG GGTCAAGCTG GGTGAAGATC GGTGAAGATC GGTCAAGATC GGTGAAGATC GGTCAAGATC GGTCAAGATC GGTGAAGATC	CGCGGGTTC CGGGGGGTTC CGGGGGGTTC CGGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC	CGCATCGAAG CGGATCGAGC CGGATCGAGC CGGATCGAGC CGGATCGAGC CGGATCGAGC CGGATCGAGC CGGATCGAGC	TCGGCGAGAT CGGCCGAGAT CGGGCGAGGT CCGGTGAGGT CCGGTGAGGT CCGGTGAGGT CCGGTGAGGT CCGGTGAGGT CCGGTGAGGT	CGAGGCGCGCG (CGAGGCGGTG/ (CGAGGGGGTG/ (CGAGGGGGTG/ (GGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TCGTACGGC LCGGCGGGCCT TGGCCGGGCZ TGGCCGGGCZ TCGGCAGACZ TGGCGGGGCZ TGGCGGGGCZ TGGCGGGGCZ TGGCGGGGCZ	IGCCGGAGAT GCCCGGCGT ITCCGTCGGT ITCCGTCGGT ICCCCGCCGT ATCCGCCGT ATCCGCCGT ATCCGTCGGT ACCCCGCTGGT	CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG
SACGO GCCGO GCCGO GCCGO GCCGO GCCGO GCCGO GCCGO GCCGO GCCGO GCAGO	CECCGACCACCAC CECCGACCACCAC CACCGACCACCAC CACCGACGACCACCAC GGTGGATGACCAC GGTGGATGGCACGACCAC GGTGGATGACCAC GGTGGATGGACAC GGTGGATGGACACAC 1510	ATCAAACTC GGTCAAGCTG GGTCAAGCTG GGTGAAGATC GGTGAAGATC GGTGAAGATC GGTGAAGATC GGTGAAGATC GGTGAAGATC GGTGAAGATC GGTGAAGATC	CGCGCGCTTC CCCGCGCGTTC CCGCGCGTTC CCCGCGCTTC CCCGCGCGTTC CCCGCGCGTTC CCCGCGCGTTC CCCGCGCGTTC CCCGCGCGTTC CCCGCGCGTTC CCCGCGCTTC	CGCATCGAAC CCGGATCGAG CCGGATCGAG CCGGATCGAG CCGGATCGAG CCGGATCGAG CCGGATCGAG CCGGATCGAG CCGGATCGAG CCGCATCGAG	TCGGCGAGAT CCGGCGAGAT CCGGCTGAGGT CCGGTGAGGT CCGGTGAGGAT CCGGTGAGGAT CCGGTGAGGAT CCGGCGAGAT	CGAGGCGCGCG CGAGGCGGTG/ CGAGGGGGTG/ GGAAGAGGGGG GGAGGGGGGGGG GGAGGGGGGGGG	TCGTACGGC CGGCGGGCC TGGCCGGGC TGGCCGGGC TGGCGGGGC TGGCGGGGC TGGCGGGGC TCGCGGGC TGGCGGGC TGCAGCGTC 1570	IGCCGGAGAT GCCCGGCGTC ITCCGTCGGT ICCCCCGCCGTC ICCCCCGCCGTC ITCCGTCGGT ACCCCGCCGTC ACCCGCGTGGT ISSO	CCCCAGG CCCCAGG CCCCGGG CCCCGGG CCCCAGG CCCCGGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG
SACGO SACGO SCCGO SCCGO SCCGO STCGI SCCGO STCGI SCCGO STCGI SCCGO STCGI	GCCGACCACCA GCCGACCACCA CACCGACACCAC CACCGACACCAC SGTGGATGGACA GGTGGATGGACA GGCGACGACCAC GGCGACGACCAC GGCGACGACCAC GGTGGATGGACA GACCGACGACCAC 1510	STCAAGCTG SGTCAAGCTG SGTCAAGCTG SGTGAAGATC SGTGAAGATC SGTGAAGATC SGTGAAGATC SGTGAAGATC SGTGAAGATC SGTGAAGATC 1520	CGCGGCTTC CGCGGGCTTC CGCGGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGCTTC CGCGGGCTTC CGCGGGCTTC CGCGGGCTTC CGCGGGCTTC CGCGGGGTTC CGCGGGCTTC CGCGGGGGTTC CGCGGGGTTC CGCGGGGTTC CGCGGGGTTC CGCGGGGTTC CGCGGGGTTC CGCGGGGTTC CGCGGGGTTC CGCGGGGTTC CGCGGGGTTC CGCGGGGTTC CGCGGGGTTC CGCGGGGTTC CGCGGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTTC CGCGGGTC CGCGGTC CGCGGTC CGCGGGTC CGCGGGTC CGCGGTC CGCGGGTC CGCGGGTC CGCGGGTC CGCGGGTC CGCGGGTC CGCGGC CGCGGGTC CGCGGGTC CGCGGGGTC CGCGGGTC CGCGGC CGCGGGTC CGCGGGT	CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGATCGAG CGATCGAG CGATCGAG CGATCGAG	TCGGCGAGAT CCGGCCGAGAT CCGGTGAGGT CCCGGTGAGGT CCCGGTGAGGT CCCGGTGAGGT CCCGGTGAGGT CCCGGTGAGGT CCCGGCGAGAT 1550	CGAGCCCCCCC CGAGCCCGCG CGAGGCGGCG CGAGGGGGCG (GGAGGGGCGCG (GGAGGGGGCGCG (GGAGGCGCGCGCG (GGAGGCGCGCGCG (GGAGCCGCGCGCG 1560 .	TCGTACGGCI ICGCCGGCCT TGGCCGGGCI TCGCCGGCCI TCGCCGGCCI TCGCCGGCCI TCGCCGGCCI TCGCCGGCCI TCGCCGGCCI TCGCCGGCCI TCAACCGTCI	IGCCGGAGAT IGCCGGGGGT ITCCGTCGGT ITCCGTCGCT ITCCGTCGCT ITCCGTCGCT ACCCCCCCCGT ACCCCCCCCGT ACCCCCCCGT ACCCCCCCGT I580	260002466 360002666 36000666 36000666 36000666 36000666 36000666 36000666 36000666 37000666 1590
SCCG SCCG SCCG SCCG SCCG SCCG SCCG SCCG	GCCGACCACCA GCCGACCACCA CACCGACCACCA GCCGACGATCGACA GGTGGATGACAA GGTGGATGACAA GGTGGATGGACA GGTGGATGGCAA GGCGACGACCAA GGTGGATGGACAA GGCGACGACCAA 1510	SATCAAACTA GATCAAAGCTG GGTCAAAGATC GGTGAAGATC GGTGAAGATC GGTGAAGATC GGTGAAGATC GGTGAAGATC GGTGAAGATC 1520	CGCGGCTTC CGCGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC	CGCATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CCGCATCGAG 1540	TCGGCGAGAT CCGGCTGAGGT CCGGTGAGGT CCCGGTGAGGT CCCGGTGAGGT CCCGGTGAGGT CCCGGTGAGGT CCCGGTGAGGT CCCGGCGAGAT	CGAGCCCGCG (CGAGCGCGCGCG (GCAGCGCGCGCG (GGAGGAGCGCGCG (GGAGGGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG	TCGTACGGC ICGCCGGCC TGGCCGGCC TCGCCGGCC TCGCCGGCC TCGCCGGCC TCGCCGGCC TCGCCGGCC TCGCCGGCC TCAACCGTC 1570	GCCGGAGAT GCCCGGCGTC TCCGTCGGTC TCCGTCGCTCGTC TCCGTCGCCCGTC CCCCCCCC	CCCCAGE CCCCGGG CCCCGGG CCCCGGG CCCCGGG CCCCGGG CCCCGGG CCCCGGG CCCCGGG CCCCGGG CCCCAGG CCCCGGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCGGG CCCCAGG CCCCGGG CCCCGGG CCCCGGG CCCGGG CCCGGG CCCGGG CCCGGG CCCGGG CCCGGG CCCGGG CCCGGG CCCGGG CCCGGG CCCGGG CCCGGGG CCCGGGG CCCGGGGG CCCGGGG CCCGGGGGG
	GCCGACCACCA GCCGACCACCA JACCGACACCAC GCCGACGATCGACA GGTGGATGACAA GGTGGATGACAA GGTGGATGGACA GGTGGATGGACAA GGTGGATGGACAA GGTGGATGGACAA J510	STCAAGCTG SGTCAAGCTG SGTGAAGATC SGTGAAGATC SGTGAAGATC SGTGAAGATC SGTGAAGATC SGTGAAGATC SGTGAAGATC 1520	CGCGGCTTC CGCGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC	CGCATCGAGC CGGATCGAGC CGGATCGAGC CGGATCGAGC CGGATCGAGC CGGATCGAGC CGGATCGAGC CGGATCGAGC CGGATCGAGC CGGATCGAGC	TCGGCGAGAT CCGGCTGAGGT CCGGTGAGGT CCCGGTGAGAT CCCGGTGAGAT CCCGGTGAGAT CCCGGTGAGAT CCCGGTGAGGT CCCGGCGAGAT	CGAGCCCGCG (CGAGCGCGCGCC (CGAGCGCGCGC (GGAGGGCGCCGC (GGAGGGCGCGCC (GGAGGGCGCGCC (CGAGGCGCGCCC (CGAGGCGCGCCC (1560	TCGTACGGC/ CCGCCGCC7 TGGCCGGC2 TGGCCGGC2 TGGCCGGC2 TGGCCGGC2 TGGCCGGC2 TCGGCCGGC2 TCGGCCGGC2 TCGACGGC2 1570	GCCGGGAGAT GCCCGGCGT TCCGTCGTCGTC TCCGTCGTCGTC TCCGTCGTCGTC TCCGTCGTCGTC TCCGTCGCCGT TCCGTCGCTCGTC 1580	26CCCA6G 36C6CA6G 36CCC6G 36CCC6G 36CCC6G 36CCC6G 36CCC6G 36CCC6G 36CCC4CA 1590
SACG(SACG(GCCG) GCCG(GCCG(GCCG) GCCG(GCCG(GCCG) GCCG(GCCG) GCCG(GCCG) GCCG(GCCG) GCCG(GCCG) GCCG(GCCG) GCCG(GCCG) GCCG(GCCG) GCCG(GCCG) GCCG(GCCG) GCCG(GCCG) GCCG(GCCG) GCCG) GCCG(GCCG) GCCG) GCCG(GCCG) GCCG) GCCG(GCCG) GCCG) GCCG(GCCG) GCCG) GCCG(GCCG) GCCG) GCCG(GCCG) GCCG) GCCG(GCCG) GCCGCG) GCCGCG) GCCGCG(GCCG) GCCG) GCCGCG) GCCGCG) GCCGCG GCCGCG) GCCGCGCG) GCCGCGCGCG	GCCGACCACCA GCCGACCACCA ACCGACACCAC SGTGGATGACCA SGTGGATGACCA SGTGGATGACCA SGTGGATGGCA SGTGGATGGCA SGTGGATGGACA SGTGGATGGACA SGTGGATGGACA SGTGGATGGACA SGTGGATGGACA SGTGGATGGACA SGTGGATGGACA SGTGGATGGACACA	GTCAAGCTG GTCAAGCTG GTCAAGCTG GTGAAGATC GTGAAGATC GTGAAGATC GTGAAGATC GTGAAGATC GTGAAGATC GTGAAGATC GTGAAGATC 1520	CCCGCCTTC CCCGCGCCTTC CCCGCGCGTTC CCCGCGCGTTC CCCGCGCCTTC CCCCGCGCTTC CCCCGCGCTTC CCCCGCGCTTC 1530	CGCGTATGAAG CGCGTATCGAAG CGGATCGAAG CGGATCGAAG CGGATCGAAG CGGATCGAAG CGGATCGAAG CGGATCGAAG 1540	TCGGCGAGAT CCGGCTGAGGT CCGGCTGAGGT CCCGGTGAGGT CCCGGTGAGGT CCCGGTGAGGT CCCGGTGAGGT CCCGGCGAGAT 1550 	CGAGGCCGCGC CGAGGCGGCGC GGAGGGGGGC GGAGGGGGCG GGAGGGGGCG GGAGGGGGCG GGAGGGGGCG (CGAGGCGGCGCG 1560 	TCGTACGGC ICGCCGCCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCGGCGCC TGGCGGCGCC TGGCGGCGAGGC 1570	GCCGGGGAGAT GCCCGGCGTC ITCCGTCGTCGTC ITCCGTCGTCGTC ITCCGTCGTCGTC ITCCGTCGTCGTC ITCCGTCGTCGTC ITCCGTCGTCGTC ITCCGTCGTCGTC IS80 IS80 	CCCCAGG CCCCAGG CCCCCGG CCCCCGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG
GACGG GGCGG GCCGG GCCGG GCCGG GCCGG 3TCGJ 3CCGGC	GCCGACCACCA GCCGACCACCA ACCGACACCAC GCCGACACCCA GTCGATGACCA GTCGATGACTA GTCGATGACTA GTCGATGACTA GTCGATGACTA GCCGACGACCA 1510 	ATCANACTO SGTCAAGCTO SGTCAAGCTO SGTCAAGCTO SGTCAAGCTO SGTCAAGATO SGTCAAGATO SGTCAAGATO SGTCAAGATO SGTCAAGATO SGTCAAGATO SGTCAAGATO SGTCAAGATO SGCCAGGGO SGCCCGGGGO SGCCCGGGGO	ICCGGCGTT ICCGGGGTT ICCGGGGTT ICCGGGGTT ICCGGGGTT ICCGGGGTT ICGGGGTT ICGGGGTT IS30 	CGGATAGAG CGGATAGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG TGGTGGCGT TGGTGGCGCTA	TCGGCGAGAT CCGGTGAGT CCGGTGAGT CCGGTGAGT CCGGTGAGT CCGGTGAGT CCGGTGAGT CCGGTGAGT CCGGTGAGT CCGGCGAGAT	CGAGGCCGACGGCG CGAGGGGGGCG GGAGGGGGTG GGAGGGGGCG GGAGGGGGCG GGAGGGGGCG CGAGGCGGCG 1560 	TCGTACGGC ICGCCGGCC TCGCCGGCC TCGCCGGCC TCGCCGGCC TCGCCGGCC TCGCCGGCC TCAAGCGT 1570 1570	GCCGGGAGAT SGCCGGCGT TGCGGCGT TGAGGCCGT TGCGTCGGT TGCGTCGGT LCCCCCCGCGT LCCCGCGGT L580 	ICCCAGE SCCCCGG SCCCCGG SCCCCGG SCCCCGG SCCCCGG SCCCCGG SCCCCACA SCCCCGG SCCCCACA SCCCCGG SCCCCACA SCCCCGG SCCCCACA SCCCCGGG TACGTGGC
CCCCC GACGC GGCCG GCCCG GCCCG GCCCG GCCCG GCCCG GCCCG GCCCG GCCCG GCCCG GCCG GCCG GCCG GCCG GGCG GGCG GCCG GCCC GCCC GCCC CCCCC CCCCC GCCCG CCCCG GCCG GCCCG GCCCG GCCG GCCG GCCG GCCG GCCG GCCCG GCCCG GCCCG GCCGCG GCCG GCCG GCCG GCCG GCCG GCCG	GCCGACCACCA GCCGACACCACA GCCGACACCCA GCCGACACCCA GTCGATGACCA GTCGATGACCA GTCGATGACCA GTCGATGACACA GTCGATGACACA GTCGACGACGACCA 1510 	ATCANACTO SOTCANACOTO SOTCANAC	CCGCGCTTC CCGCGCGTC CCGCGCGTC CCGCGCGTC CCGCGCGTC CCGCGCGTC CCGCGCGTC CCGCGCGTC ACCGCCGCC ACCGCCGCCC ACCGCCGCCC	CGCATAGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG CGGATCGAG TGGTGGCGT TGGTGGCCT TGGTGGCCT	TCCGCGAGAT CCGCCGAGAT CCGCCGAGAGT CCCGCGAGAGT CCCGCGAGAGT CCCGCGAGAGT CCCGCGAGAGT CCCGCGAGAGT CCCGCGAGAGT 1550	CGAGGCCGCGCG CGAGGCGCGCG GGAGGGGGTG GGAGGGGGTG (GGAGGGGGCG (GGAGGGGGCGCG (GGAGGGGGCGCGC (GGAGGCGGCGCGC (GGAGGCGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	TCGTACGGC (CGCCGGCC) TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGGCC TGGCCGGGCC TGGCCGGGCC TGGCCGGGCC TGGCCGCGCC CGGCCGCCGC CGGCCGCCGC CGGCACCGC CGGCACCGC CGGCACCGC	GCCGGAGAT SCCCGGCGT UTCGTCGT UTCGTCGT UTCGTCGT UTCGTCGT UTCGTCGT 1580 	ICCCCAGE ICCCCAGE ICCCCAGE ICCCCAGE ICCCCAGE ICCCCAGE ICCCCAGE ICCCCAGE ICCCAG
GCTGG GCTGG GCTGG GCCGG GCCGG GCCGG GCCGG GCCGG GCCGG GCCGG GCTGG GGTGG GGTGG CCTC2 TGTCC GGTGG CCTC2	GCCGACCACCA GCCGACACCACA GCCGACACCCA GCCGACACCCA GTGGATGACACA GTGGATGACACA GTGGATGACACA GTGGATGACACA GTGGATGACACA 1510 	ATCANACTO SOTCANACOTO SOTCANAG	CCGCGCTTC CCGCGCGTC CCGCGCGTC CCGCGCGTC CCGCGCGTC CCGCGCGTC CCGCGCGTC CCGCGCGTC ACCGCCGCCTC ACCGCCGCCGC ACCGCCGCCGC ACCGCCGCCGC	CCCCCCARACT CCCCCCCCCCCCCCCCCCCCCCCCCCCC		CGAGGCGCGCG CGAGGGCGCGCG GGAGGGGGTG GGAGGGGGTG GGAGGGGGGCG GGAGGGGGGCG (GGAGGGGGCGCG (GGAGGGGGGCGCG (CGAGGCGGCGCGCG) 1560 	TCGFAGGCC (CGCCGGCC) TGGCCGGCC) TGGCCGGCC) TGGCCGGCC) TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC CGGCCGAGGCC CGGCCGAGGCC CGGCCGACGCCC CGGCCGACGCC CGGCC CGGCCC CGGCCC CGGCCC CGGCC CGCC	GCCGGAGAT GCCCGGCCGT UTCCGTCGT UTCAGCCCCGT UTCAGCCCCGT UTCCGTCGT UTCCGTCGT UTCCGTCGT 1580 	CCCCAGE SCCCCAGE SCCCCAGE SCCCCAGE SCCCCAGE SCCCCAGE SCCCCAGE SCCCCAGE TS90
GGTGG GGTGG GGTGG GCCGG GCCGG GCCGG GCCGG GCCGG GCCGG GCCGG GCCGG GCCGG GCTGG GCTGG GGTGG GGTGG GGTGG GCTC2 GGTGG GCTC2 GGTGG GCTC2 GCTC2 GCTC2 GCTC3 GCTC3 GCTC3 GCTC3 GCCGG GCCG GCCGG GCCGG GCCGG GCCG GCCG GCCG GCCG GCCG GCCG GCCG GCCG CCCG CCCG GCCG GCCG GCCG GCCG GCCG GCCG GCCG GCCG GCCG GCCG GCCG GCCG GCCG GCCG GCCG GCCCC GCCG GCCCC CCCC CCCC CCCC CCCC CCCCC CCCCC CCCC	GCCGACCACCA GCCGACACCACA GCCGACACCCA GCCGACACCCA GTGGATGACCA GTGGATGACGACA GCCGACGACCAC GGTGGATGACGACA GGTGGATGACACA 1510 	STCAAGCTO SGTCAAGCTO SGTCAAGCTO SGTCAAGACTO SGTCAAGACTO SGTCAAGACTO SGTCAAGACTO SGTCAAGACTO SGTCAAGACTO SGTCAAGACTO SGTCAAGACTO SGTCAAGACTO SGTCAAGACTO SGTCAAGACTO SGCCAGGGG SGCCCGGGGCO SGCCCAGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG	CCGGCGTT CCGGCGGTT CCGGGGTT CCGGGGTT CCGGGGTT CCGCGGCTT CCCGGGGTT CCCGGGGTT CCCGGGGTT CCCGGGGTT CCCGGCGT ACCGGCGT ACCGGCGT ACCGGCGT	CCCCCCARCAGE CCCCCARCAGE CCCCARCCARC CCCCARCCARC CCCCARCCARC CCCCARCCAR	TCGCGGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT T550 TGGGGGGCGC CCGGCGAGAT T550 TGGGGGGCC CCGGCGAGAT CCGGCGAGAT CCGGCGCGCC CGGCGGCCC CGGCGGCCC CGGCGGCCC CGGCGG	CGAGGCGCGCGC CGAGGCGGCGC GGAGGGGGGTG GGAGGAGGGGG GGAGGGGGGC (GGAGGGGGGCGC (CGAGGGGGGCGC (CGAGGGCGGCGCGC (CGAGGCGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	TCGFAGGCC CGGCGGGCC TGGCCGGGCC TGGCCGGGCC TGGGCGGGCC TGGGCGGGCC TGGGCGGGCC TGGGCGGGCC TGGGCGGGCC TGGCGGGGCC TGGCGGGGCC TGGCGGGGC TGGCGGGGCGG	GCCGGAGAT GCCCGGCCGT UTCGTCGTCGT UTCGTCGTCGT UTCGTCGTCGT UTCGTCGTCGT UTCGTCGTCGT 1580 	CCCCAGE SGCCCAGE SGCCCGGG SGCCCGGG SGCCCAGE SGCCCAGE SGCCCAGE SGCCCGGG SGCCCAGE TACGTGGC TACGTGGC GACCAGGT
Second Se	GCCGACCACCA GCCGACACCACA GCCGACACCCA GCCGACACCCA GTCGATGACCA GTCGATGACCA GTCGATGACCA GGTGGATGACA GGTGGATGACA GGTGGATGACA ISI0 ISI0 ISIC TCC- TGCCGGAGGACA TGCCGGAGGACA TGCCGGAGGACA TGCCGGAGGACA TGCCGGAGGACA TGCCGGAGGACA TGCCGGAGGACA TGCCGGAGGACA TGCCGGAGGACA TGCCGGAGGACA TGCCGGAGGACA TGCCGGAGGACA TGCCGGAGGACA	ARCANACTO SOTCAACOR SOTCAACOR SOTCAACOR SOTCAACOR SOTCAACOR SOTCAACOR SOTCAACOR SOTCAACOR IS20 		CCCCCCACAGE CCCCCCCCCCCCCCCCCCCCCCCCCCCC	TCGCCGAGAT TCGGCGAGAT TCGGCGAGAT TCGGCGAGAT TCGGCGAGAT TCGGGCGAGAT TCGGGCGAGAT TS50 TCCGGCGAGAT TS50 TCGGGCGAGAT TS50 TCGGGCGCGCC TCGGCGCGCCC TCGGCGCCCCCCCCC	CGAGGCGCGCG CGAGGGGGGCGC GGAGGGGGGG GGAGGGGGGG (GGAGGGGGGCGG (GGAGGGGGGCGGC (GGAGGGGGGGCGGC (GGAGGGGGGGGGG	TCGFAGGCC CGGCGGGC TGGCCGGGC TGGCCGGGC TGGCCGGGC TGGCCGGGC TGGCCGGGC TGGCCGGGC TGGCCGGGC TGGCCGGCC TGGCGGGCC TGGCGGGCC TGGCGGGCC TGGCGGGCC TGGCGGGCC TGGCGGCGC TGGCGGCGC TGGCGGCGC TGGCGGCGC TGGCGCGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGC TGGCCGCC TGGCCGCC TGGCCGC TGGCCGC TGGCCGCC TGGCCGCC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCC TGGCCGC TGGCC TGGCC TGGCCGC TGGCC TGG	LGCCGAGAAT GCCGGAGAAT GCCGGCGC UTCAGCCCGCT UTCAGCCCGC UTCAGCCCGCT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGCCGGT UTCCGCCGGC UTCGAGAGAA UTCCACAGCGG UTCGACGGG UTCGACGGG UTCGACGGCCG UTCGACGGCG UTCGACGGCG UTCGACGGCG UTCGACGGCG UTCGACGGCG UTCGACCGGC UTCGACCGGC UTCGACCGGC UTCGACCGGC UTCGACCGGC UTCGACCGGC UTCGACCGGC UTCGACCGGC UTCGACCGGC UTCCGCCGGC UTCCGCCGGC UTCCGCCGGC UTCCGCCGGC UTCCGCCGGC UTCCGCCGGC UTCCGCCGGC UTCCGCCGGC UTCCGCCGGC UTCCGCCGGC UTCCGCCGGC UTCCGCCGGC UTCGACGGC UTCCGCCGGC UTCGACGCGGC UTCGACGCGGC UTCGACGGC UTCGACGCG UTCGACGCGGC UTCGACGCGGC UTCGACGGC UTCGACGGC UTCGACGCGGC UTCGACGCGGC UTCGACGGC UTCGACGGC UTCGACGCGCG UTCGACGCGGC UTCGACGCGCG UTCGACCGCCGC UTCGACGGC UTCGACCGGC UTCGACCGGC UTCGACCGGC UTCGACCGGC UTCGACCGGC UTCGACCGGC UTCGACCGCCGC UTCGACCGCCG UTCGACCGCCG UTCGACCGCCG UTCGACCGCCG UTCGACCGCC UTCGACCGC UTCGACCGC UTCGACCGC UTCGACCGCC UTCGACCGC UTCGACCGC UTCGACCGC UTCGACCGCC UTCGACCGCC UTCGACCGCC UTCGACCGCC UTCGACCGCC UTCGACCGCCCG UTCGACCGCC UTCGACCGCCCC UTCGACCGCC UTCGACCGCC UTCGACCGCCCC UTCGACCGCCCC UTCGACCGCCCCC UTCGACCGCCCCC UTCGACCGCCCCC UTCGACCGCCCCCC UTCGACCGCCCCCC UTCGACCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	200002A66 200002A66 2000006 2000006 2000006 2000006 2000006 2000006 2000006 2000006 2000006 2000000 200000000
22000 33AC6(33AC6(32C6(3CC6(37C6) 37C6) 37C6(37C6	GCCGACAACAA GCCGAACAACAA GCCGAACAACAA GCCGAACAACAA GCCGAACAACAA GGCGAACGACAA GGCGAACGACAA ISI0 ISI0 ISICCAACGAACGAACAA TGCCGACGAACAACAACAACAACAACAACAACAACAACAAC	STCAAGCTO SGTCAAGCTO SGTCAAGCTO SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGCCAGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG		CCCCCCACAGE CCCGATCGAC CCCGATCGAC CCCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGCATCGAC CCGCATCGAC CCGCATCGAC TCGTCGCCCA	TCGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGGGAGAT CCGGGGAGAT 1550 TCGGGGGAGAT T550 TCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	CGAGGCGCGCG CGAGGGGGGCG GGAGGAGGGGG GGAGGGGGGG GGAGGGGGGCG (CGAGGGGGGCGC (CGAGGGGGGGCGC (CGAGGGGGGGCGCGC (CGAGGGCGGCGCGC) (CGACGGCGCGCGCGC) (CGCGGCCACCGC) (CGCGGCCACCGC) (CGCGGCCACCGC) (CGCGCCACCGCC) (CGCGCCACCGC) (CGCCCACCGCC) (CGCCACCGCC) (CGCCCACCGCC) (CGCCCACCGCC) (CGCCCACCGCC) (CGCCCACCGC) (CGCCCCCCCCCCCC) (CGCCCACCGC) (CGCCCCCCCCCCC) (CGCCCCCCCCCCCCCC) (CGCCCCCCCCCC	TCGFAGGCC CGGCGGGCC TGGCCGGGCC TGGCCGGGCC TGGCCGGGCC TGGCCGGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCGGCGCC TGGCGGCGCC TGGCGGCGCC TGGCCGGCC TGGCCGGCC TGGCCGCCCC TGGCCGCCCC TGGCCGCCCC TGGCCGCCCC TGGCCGCCCC TGGCCGCCCC TGGCCGCCCC TGGCCGCCCC TGGCCGCCCC TGGCCGCCCC TGGCCGCCCC TGGCCGCCCC TGGCCGCCCC TGGCCGCCCC TGGCCGCCCC TGGCCGCCCCC TGGCCGCCCCC TGGCCGCCCCC TGGCCGCCCCCC TGGCCGCCCCCCC TGGCCGCCCCCCCCC TGGCCGCCCCCCCCCC	GCCGGAGAAT GCCCGGCCGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCGAGGGG UTCGAGGGGG UTCGAGGGGG UTCGAGCGG UTCGACGGCCG UTCGACGGCG UTCGACGGCG UTCGACGGCG UTCGACGGCGC UTCGACGGCCG UTCGACGGCCG UTCGACGGCCG UTCGACGGCCG UTCGACGGCCG UTCGACGGCCG UTCGACGGCG UTCGACGGCG UTCGACGGCG UTCGACGGCG UTCGACGGCG UTCGACGGCG UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGT UTCCGTCGGG UTCGACGGG UTCGACGGG UTCGACGGCG UTCGACGCG UTCGACGCGCG UTCGACGCGCG UTCGACGCGCG UTCGACGGCG UTCGACGGCCG UTCGACGGCCG UTCGACGCGCG UTCGACGGCCG UTCGACGGCCG UTCGACGGCCG UTCGACGGCCG UTCGACGGCCG UTCGACGGCCG UTCGACGGCCG UTCGACGCCGC UTCGACGCCGC UTCGACGCCGC UTCGACGCCGC UTCGACGCCGCC UTCGACGGCCG UTCGACGGCCG UTCGACGCCGCC UTCGACGCCGCC UTCGACGCCCGCC UTCGACGCCGCCG UTCGACGCCGCC UTCGACGGCCGCC UTCGACGCCCGCC UTCGACGCCGCC UTCGACGCCCGCC UTCGACGCCCCGCC UTCGACGCCCCGCC UTCGACGCCCGCC UTCGACGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	20002A6 200020000000000
Secological Secolo	GCCGACCACCA GCCGACACCACA GCCGACACCCA GCCGACACCCA GTGGATGACCA GTGGATGACCA GGTGGATGACCA GGTGGATGACCA GGTGGATGACCA GGTGGATGACCA ISI0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ATCANACTO SOTCAACOTO SOTCAACOTO SOTCAACATO S	CCGGCGTT CCGGGGGTT CCGGGGGTT CCGGGGGTT CCGGGGGTT CCGGGGGTT CCGCGGCTT CCGCGGCTT CCGCGGCTT CCGCGGCTT ACCGGCGT ACCGGCGT ACCGGCGT ACCGGCGT ACCGGCGT ACCGCCGGGT ACCGCCGGGT ACCGCCGGGT	CCCCCCACAGE CCCGATCGAC CCCGATCGAC CCCGATCGAC CCCGATCGAC CCCGATCGAC CCCGATCGAC CCCGATCGAC CCCGATCGAC CCCGATCGAC CCCGATCGAC CCCGATCGAC TCCTCCCCC TCCTCCCCC TCCTCCCCC TCCTCCCCC TCCTCC	TCGGCGAGAT CGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT 1550 	CGAGGCGCGCG CGAGGGGGGGGG GGAGGAGGGGGG GGAGGAGGGGGG (GGAGGGGGCGG (GGAGGGGGGGGGG	TCGTACGGCC CCGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGCCC TGGCCGC TGGCCGC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGCC TGGCCGC TGGCCGCC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGCC TGGCCGCC TGGCCGC TGGCCGCC TGGCCGC TGGCCGCC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCCGCC TGGCC TGCC TGGCC TGCC TGCC TGCC TGCC TGCC TGCC TGCC TGCC TGCC TGCC TGCC TGCC TGCC TGCC TGCC TGCC TGCC TGCCC TGCC	GCCGGAGAAT GCCCGGCGT UTCCTTCGT UTCACGTCGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGT UTCCGTCGGGG UTGGAGGAG UTGGCGGGG UTGGAGCAG SACCGGGCCGI 1680	20002A6 200020000000000
20000000000000000000000000000000000000	GCCGACCACCA GCCGACACCACA GCCGACACCAC GCCGACACCCA GTCGATGACAC GTCGATGACACA GTCGATGACACA GTCGATGACACA GTCGATGACACA GTCGATGACACA ISI0 JTCC TGCCGGCGACGACA TGCCGACGACACA TGCCGACGACGACA TGCCGCGAGGACA TGCCGCGAGGACACA TGCCGCGAGGACACA TGCCGCGAGGACACA TGCCGCGAGGACACA TGCCGCGAGGACACA TGCCCGGGAGGACACACACACACACACACACACACACACA	ATCANACTO SOTCAAGCOS SOTCAAGACOS SOTCAAGCOS SO	CCGGCGTT CCGGGGGTT CCGGGGGTT CCGGGGGTT CCGGGGGTT CCGGGGGTT CCGCGGCTT CCGCGGCGTT CCGCGGCGTT CCGCGGCGT ACCGGCGT ACCGGCGT ACCGGCGGT ACCGGCGGT ACCGGCGGT ACCGGCGGT ACCGGCGGT ACCGGCGGT ACCGGCGGT ACCGGCGGT	CCCCCCACAGE CCCCCCCCCCCCCCCCCCCCCCCCCCCC	TCCGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCCGGCGAGAT 1550 	CGAGGCGCGCG CGAGGGGGGGG GGAGAGGGGGG GGAGGAGGGGG GGAGGA	TCGTACGGC: CCGCCGGC: TGGCCGGC: TGGCCGGC: TGGCCGGC: TGGCCGGC: TGGCCGGC: TGGCCGGC: TGGCCGGCC: TGGCCGGCC TGGCCGGCC TGGCCGCGCC TGGCCGCCCGC TGGCCGCCCCGC TGGCCACCCCC TGGCCACCCCC TGGCCACCCCC TGGCCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GCCGGAGAT GCCGGCGT UTCGTCGT UTCGCGCGGT UTCGTCGTCGT UTCGTCGTCGT UTCGTCGTCGT 1580 	Secchag Seccha
CCGC CCGC CCGC CCGC CCGC CCGC CCGC CCG	GCCGACCACCA GCCGACACCACA GCCGACACCAC GCCGACACCAC GTCGATGACA GTCGATGACA GTCGATGACA GTCGATGACA GTCGATGACACACACACACACACACACACACACACACACA	STCAAGCTO SGTCAAGCTO SGTCAAGCTO SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAGGGC SGCCGGGGG SGCCGGGGG SGCCCGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGG SGCCCGGGGC SGCCCGGGGC SGCCCGGGGC SGCCCGGGGC SGCCCGGGGC SGCCCGGGGC SGCCCGGGGC SGCCCGGGGC SGCCCGGGGC SGCCCGGGGC SGCCCGGGGC SGCCCGGGGC SGCCCGGGGC SGCCCGGGGC SGCCCGGGGC SGCCGGGGC SGCCGGGGC SGCCGGGGC SGCCGGGGGC SGCCGGGGC SGCCGGGGC SGCCGGGGC SGCCGGGGC SGCCGGGGC SGCCGGGGC SGCCGGGGC SGCCGGGGC SGCCGGGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGCGC SGCCGGC SGCCGGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGGC SGCCGGGCG SGCCGGGC SGCCGGC SGCCGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGC SGCCGGGC SGCCGGGC SGCCGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGCCGGC SGC SG	CGATTACA	CCCATCGARC CCCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC TCGTCGCCA 1540 TCGTCGCCA		CGAGGCGCGCGCG CGAGGGGGGGGG GGAGAGGGGGG GGAGGGGGGG GGAGGGGGG			
CGGGG CCGC CCGC CCGC CCGC CCGC CCGC CC	GCCGACCACCA GCCGACACCACA GCCGACACCACA GCCGACACCACA GTCGATGACA GTCGATGACA GTCGATGACA GTCGATGACA GTCGATGACA GTCGACACACA GTCGACACACA GTCGACACACA GTCGACACACA TSTC TCC TCCC TCCCGCAGACAC TCCCGAGAGACA TCCCCAGAGACA TCCCCAGAGACA TCCCCAGAGACACA TCCCCAGAGACACA TCCCCAGAGACACACACACACACACACACACACACACACA	ATCANACTO SGTCAAGCTO SGTCAAGCTO SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGCCAGGG SGCCGGGGG SGCCCGGGGG SGCCCGGGG SGCCCGGGG SGCCCGGGG SGCCCGGGG SGCCGGGG SGCCCGGGG SGCCCGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGGG SGCCGGGGG SGCCGGGG SGCCGGGGG SGC SGC	CCGCCCTT CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCTCCGATCCAGC CCGATCCAGC CCGATCCAGC CCGATCCAGC CCGATCCAGC CCGATCCAGC CCGATCCAGC CCGATCCAGC CCGATCCAGC TCGTCGCCAT TCGTCGCCT TCGTCGCCT TCGTCGCCT TCGTCGCCT 1640		CGAGGCCGCGCG CGAGGGGGGGG GGAGAGGGGGG GGAGGGGGGG GGAGGGGGG	TCGTACGGCC TCGCCGGCC TCGCCGGCC TCGCCGGCC TCGCCGGCC TCGCCGGCC TCGCCGGCC TCGCCGCGC TCGCCGCCGC TCGCCGCCGTCG TCGCCGCCGCCGTCG TCGCCGCCGCCGTCG TCGCCGCCGTCG TCGCCGCCGTCG TCGCCGCCGCCGTCG TCGCCGCCGCCGTCG TCGCCGCGCCG	GCCGGAGART GCCCGGCCGT GCCCGGCCGT UTCAGCCCCGT UTCAGCCCCGT UTCAGCCCGT UTCCGTCGGT ITCCGTCGGT ITCCGTCGGT CCCCGCCGT CCCGCCGCGGT CCCCGCAGGG CCCCAACGGC CCCCCAACG IG80	Secchag Secchag Secced
CGCCG GCCGG GCCGG GCCGG GCCGG GCCGG GCCGG GCCGG GCCGG GCCGG GCCGG GCCGG GCCGG CCCCG GCCGG CCCCG GCCGG CCCCG GCCGG CCCCG GCCGG CCCCG GCCGG CCCCG CCCCG CCCCG CCCGG CCCGG CCCGG CCCGG CCCGG CCCGG CCCGG CCCGG CCCGG CCCGG CCCGG CCCGG CCCGG CCCGG CCCGG CCCG CCGG CCGG CCGG CCCG CCGG CCG CCGG CCCG CCGG CCCG C	GCCGACCACCACA GCCGACACCACA GCCGACACCACA GCCGACACCCA GTCGATGACCA GTCGATGACCA GTCGATGACCA GTCGATGACA GTCGATGACACA GTCGATGACACACA GTCGACACACACA GTCGACACACACA GTCGACACACACA GTCGACAGACACA GTCGCGACACACACACA GTCCCGCGACACACACACACACACACACACACACACACAC	STCAAGCTO SGTCAAGCTO SGTCAAGCTO SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAAGATC SGTCAGGGC SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCCGGGGG SGCTGCGC SGGTCGCGC SGGTCGCGC	CGGCGCTT CGGCGGCTT CGGGGGTT CGGGGGTT CGGGGGTT CGGGGGTT CGGGGGTT CGGGGGTT CGGGGGTT CGGGGGTT CGGGGGT ACCGGCGT ACCGGCGT ACCGGCGGT ACCGGCGGT ACCGGCGGT ACCGGCGGT ACCGGCGGC ACCGCGGGGT ACCGGCGGC ACCGCGGGG ACCGCGGGGGT ACCGGCGGGGGGT ACCGGCGGGGGGGGGG	CCCTCCAGC CCCGTTCCAGC CCCGTTCCAGC CCCGTTCCAGC CCCGTTCCAGC CCCGTTCCAGC CCCGTTCCAGC CCCGTCCAGC CCCGTCCAGC CCCGTCCCAGC TCGTCCCCGC TCGTCCCCGC 1540 	TCGGCGAGAT CGGCGAGAT CGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT 1550 TGGGGGCGCG CGGCGGGGAGAT TGGGGGCCC CGCCGTCGCC CGCCGTCGCC CGCCGCCCCC CGCCGCCCCC CGCCGCCCCCC CGCCGCCCCCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCGTCGCC CGCCTCCCC CGCCGTCGCC CGCCGTCCCC CGCCGTCCCC CGCCGTCCCC CGCCGTCCCC CGCCGTCCCC CGCCGTCCCC CGCCGTCCCC CGCCCCCC CGCCCCCC CGCCCCC CGCCCCC CGCCCCCCC CGCCCCCCC CGCCCCCC CGCCCCCC CGCCCCCC CGCCCCCCCC	CGAGGCCGCGC CGAGGCGGCGCG GGAGGAGGGGCG GGAGGAGGGCG GGAGGAGGCGCG GGAGGGGGCG (GGAGGCGCGCG (GGAGGCGGCG) (GGGGGAACCGGG (GCGACCGGGC) (GCCGACCGGGC) (GCCGACCGGGC) (GCCGACCGGC) (GCCGACCGGC) (GCCGACCGGC) (GCCGACCGGC) (GCCGACCGGC) (GCCGACCGGC) (GCCGGCCACC) (GCCGCCACC) (GCCGCCCCC) (GCCGCCCCC) (GCCGCCCCC) (GCCGCCCCC) (GCCGCCCCCC) (GCCGCCCCCC) (GCCGCCCCCC) (GCCGCCCCCC) (GCCGCCCCCC) (GCCGCCCCCC) (GCCGCCCCC) (GCCGCCCCCC) (GCCGCCCCCC) (GCCGCCCCC) (GCCGCCCCCC) (GCCCCCCCCCC	TCGTACGCC TGGCCGGCC TGGCCGGGCC TGGCCGGGCC TGGCCGGGCC TGGCCGGGCC TCGGCGGCC TCGGCGGCC TCGGCGGCC TCGGCGGCC TCGGCGGCC TCGGCGGCC TGGCGGCGCC TGGCGCGCC TGGCCGCGCC TGGCCGCCGC TGCCCCCCTG TGCCCCCCGTGC TGCCCCCCGCTGC	GCCGGAGAT GCCGGCGCT GCCCGCCGT GCCCGCCGT UCAGCCCGCCGT UCAGCCCGCGT UCCGTCGGT IS80 	20002A6 200020000000000
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GCCGACCACCACA GCCGACACCACACA GCCGACACCACACACA	STCAAGCTO STCAAGCTO STCAAGCTO STCAAGCTO STCAAGCTO STCAAGCTO STCAAGCTO STCAAGCTO STCAAGCTO STCAAGCTO STCAAGCTO STCAAGCTO STCAAGCTO STCAAGCTO STCAAGCTO STCAAGCTO SCCCOGGCO SCCCCOGGCO SCCCCOGGCO SCCCCOGGCO SCCCCOGGCO SCCCCOGGCO SCCCCOGGCO SCCCCOGGCO SCCCCOGGCO SCCCCOGGCO SCCCCOGGCO SCCCCOGGCO SCCCCOGCO SCCCCCOCCO SCCCCCOCCO SCCCCCOCCO SCCCCCCOCCO SCCCCCCCOCCO SCCCCCCCC	CGGGGCTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTTC CGGGGGTC 1530 	CCCCCCARACT CCCCCCARCACC CCCCARCCACC CCCCARCCACC CCCCARCCACC CCCCARCCACC CCCCARCCACC CCCCARCCACC CCCCARCCACC CCCCARCCACC CCCCARCCACC TCCCCCCCCCC		CGAGGCCGCGCG CGAGGGGGGGG GGAGGGGGGGG GGAGGGGGGGG	TCGTAGGCCGCGTG	GCCGGAGAAT GCCCGGCCGT GCCCGGCCGT UCCGCCGCCGT UCCGCCGCCGT UCCGCCGCGT LCCCCCCGCTGGT LCCCCCGCTGGT LCCCCCGCTGGT LCCCCCCACGCCG LCCCCACACCG LCCCCCACGCCG LCCCCCACGCCG LCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
	GCCGACCACCACCA GCCGACACCACCA GCCGACACCACCA GCCGACACCACCA GTCGATGACTACCAC GTCGATGACTACCAC GTCGATGACTACCAC GTCGATGACTACCAC GTCGACGACGACCAC GTCGACGACGACCAC ISI0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	STCAAGCTG STCAAGCTG STCAAGCTG STCAAGACT STCAAGACT STCAAGACT STCAAGACT STCAAGACT STCAAGACT STCAAGACT STCAAGACT STCAAGACT STCAAGACT STCAAGACT SCCCAGGG SCCCAGGG SCCCAGGG SCCCAGGG SCCCAGGG SCCCAGGG SCCCAGGG SCCCAGGG SCCCCGGC SCCCCGGC SCCCCGCG SCCCCGCG SCCCCGCC SCCCCGCG SCCCCGCC SCCCCGCC SCCCCGCC SCCCCGCC SCCCCCGCC SCCCCCGCC SCCCCCCCC		CCCCCCCAACC CCCCCTACACC CCCCTATCCAAC CCCCTATCCAAC CCCCTATCCAAC CCCCATCCAAC CCCCATCCAAC CCCCATCCAAC CCCCATCCAAC CCCCATCCAAC CCCCATCCAAC TCGTCGCCCTA TCGTCGCCCTA TCGTCGCCCTA TCGTCGCCCCTA TCGTCGCCCCTA TCGTCGCCCCTA TCGTCGCCCCTA TCGTCGCCCCCCCCCC		CGAGGCCGCGCG CGAGGGGGGCG GGAGGGGGGGG GGAGGGGGGGG	TCGFAGGCCGTGG	GCCGGAGAT GCCCGGCCGT UTCACGTCGGT UTCACGTCGGT UTCACGCCGCGT UTCCGTCGGT UTCCGTCGGT IS80 	CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG CCCCAGG TCCCAGG TCCCAGG TACGTGGC CAGCTG CCAGCC
	GCCGACCACCACA GCCGACACCACACA GCCGACACCACACACA	ATCANACTO SOTCAAGCO SOTCAAGACO SOTCAAGACO SOTCAAGACO SOTCAAGACO SOTCAAGACO SOTCAAGACO SOTCAAGACO SOTCAAGACO SOTCAAGACO SOTCAAGACO SOTCAAGACO SOTCAAGACO SOTCAAGACO SOCCAGOGO SOCCCAGOGO SOCCCAGOGO SOCCCAGOGO SOCCCAGOGO SOCCCAGOGO SOCCCAGOGO SOCCCAGOGO SOCCCAGOGO SOCCCAGOGO SOCCCAGOCO SOCCCACO				CGAGGCGCGCG CGAGGGGGGGG GGAGGGGGGG GGAGGGGGGG (GGAGGGGGGG (GGAGGGGGGGG	TCGFAGGCCGCGGC TGGCCGGGC TGGCCGGGC TGGCCGGGC TGGCCGGGC TGGCCGGGC TGGCCGGGC TGGCCGGGC TGGCCGGCGC TGGCCGGCGC TGGCCGCGCG TGGCCGCGCG TGGCCGCGCG TGGCCGCGCG TGGCCGCGCGC TGGCCGCGCG TGGCCGCGCGC TGGCCGCCGC TGCCGCCGCG TGCCGCCGCG TGCCCGCCGCG TGCCCGCCGC TGCCCGCCGCG TGCCCGCCGC TGCCCGCCGCG TGCCCGCCGCG TGCCCGCCGCG TGCCCGCCGCG TGCCCGCCGCG TGCCCCCCGCG TGCCCCCCCGCG TGCCCCCCCGCG TGCCCCCCCGCG TGCCCCCCCGCG TGCCCCCCCGCG TGCCCCCCCGCG TGCCCCCCCGCG TGCCCCCCCGCG TGCCCCCCCGCG TGCCCCCCCGCG TGCCCCCCCGCG TGCCCCCCCGCG TGCCCCCCCCCC	GCCGGAGAAT GCCCGGCCGT GCCCGGCCGT UTCAGCCCGCGT UTCAGCCCGCGT UTCAGCCCGT UTCGGCGGGT UTCGGCGGGG UTCGGCGGGG UTCGGAGGAA UTCGGCGGGG UTCGAACGGCCGA 1680 UTCGGCGAGCG UTCGGAGGGAACG UTCGGCGGGG UTCGGCGGGG UTCGGCGGGG UTCGGCGGGCGAACG UTCGGCGGAACG UTCGGCGAACG UTCGGCAACG UTCGGCAACG UTCGGCAACG UTCGGCAACG UTCGGCAACG UTCGCCAACG UTCGCCCAACG UTCGCCCAACG UTCGCCCAACG UTCGCCCAACG	20000000000000000000000000000000000000
	GCCGACACACAACAA GCCGACACCAACAACAACAACAACAACAACAACAACAACA	ATCANACTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOCCOGOCO SOCCCOGOCO SOCCCOGOCO SOCCCOCOCOCO	CGGGGCTTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC 1530 	CCCCCCCAACC CCCCCCCCCCCCCCCCCCCCCCCCCC	TCGCGGAGAT TCGGCGAGAT TCGGCGAGAT TCGGCGAGAT TCGGCGAGAT TCGGCGAGAT TCGGCGAGAT 1550 TGGGCGCGAGAT T550 TGGGCGCGCGAGAT TGGGCGCCC TGGGCGCCC TGGGCGCCC TGGGCGCCC TGGGCGCCC TGGGCGCCC TGGGCGCCC TGGGCGCCC TGGGCGCCC TGGGCGCCC TGGGCGCCC TGGCGCCCC TGGCGCCCC TGGCGCCCC TGGCGCCCC TGGCGCCCC TGGCGCCCCC TGGCGCCCCC TGGCGCCCCC TGGCGCCCCCC TGGCGCCCCCC TGGCGCCCCCCCC TGGCGCCCCCCCCCC	CGAGGCGCGCG CGAGGGGGGGG GGAGGGGGGG GGAGGGGGGG GGAGGGGGG	TCGFAGGCC CGGCGGGC TGGCCGGGC TGGCCGGGC TGGGCGGGC TGGGCGGGC TGGGCGGGC TGGGCGGGC TGGGCGGGC TGGGCGGCG TGGGCGGCG TGGCGGCGC TGGCGGCGC TGGCGGCGC TGGCGGCGC TGGCGGCGC TGGCGGCGC TGGCGCGCGC TGGCGCGCGC TGGCGCGCGC TGGCGCGCGC TGGCGCGCGC TGGCGCGCGC TGGCCGCCGC TGGCCGCCGC TGGCCGCCGC TGGCCGCCGC TGGCCGCCGC TGGCCGCCGC TGGCCGCCGC TGGCCGCCGC TGGCCGCCGC TGGCCGCCGC TGGCCGCCGCC TGGCCGCCGCC TGGCCGCCGCC TGGCCGCCGCC TGGCCGCCGCC TGGCCGCCGCC TGGCCGCCGCC TGGCCGCCGCC TGGCCGCCGCC TGGCCGCCGCC TGGCCGCCCCCC TGGCCGCCCCCCC TGGCCGCCCCCCCCCC	GCCGGAGAT GCCGGCGC GCCCGGCCG GCCCGCCGC UCCCGCGCG UCCGCGCGC UCCGCGCGC UCCGCGCGC IS80 	20000000000000000000000000000000000000
2000 2000 2000 2000 2000 2000 2000 200	GCCGACCACCACA GCCGACACCACA GCCGACACCCA GCCGACACCCA GTCGATGACCA GTCGATGACCAC GTCGATGACCA GTCGATGACCAC GTCGATGACACA GTCGATGACACACA GTCGATGACACACAC ISI0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ATCANACTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOTCAACOTO SOCCOGOCO SOCCCOCOCO SOCCCOCOCO SOCCCOCOCO SOCCCOCOCO SOCCCOCOCO SOCCCOCOCO SOCCCOCOCO SOCTOCO SOCTCOCOCO SOCTCOCOCO SOCTCOCOCOCO SOCTCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	CCGCGCTTC CCGCGCGTTC CCGCGCGTTC CCGCGCGTTC CCGCGCGTTC CCCGCGCGTTC CCCGCGCGTTC CCCGCGCGTTC CCCCGCGCGTTC CCCCGCGCGC ACCGCCGCTC ACCGCCGCCGCGC ACCGCCGCCGC ACCGCCGCCGCC ACCGCCGCCGC ACCGCCGCCGC ACCGCCGCCGC ACCGCCGCCGC ACCGCCGCCGC ACCGCCGCCGC ACCGCCGCCGC ACCGCCGCCGC ACCGCCGCCCGC	CCCCCCCAACCACCCCCCCCCCCCCCCCCCCCCCCCCC	TCGGCGAGAT TCGGCGAGAT TCGGCGAGAT TCGGCGAGAT TCGGCGAGAT TCGGGGAGAT TCGGGGAGAT TCGGGGGAGAT TS50 TGGGGGCGCGGAGAT TS50 TGGGGGCGCGCG TGGGGGCGCGC TGGGGGCGCGC TGGGGGCGCGC TGGGGGCGCGC TGGGGGCGCGC TGGGGGCGCGC TGGGGGCGCGC TGGGGGCGCGC TGGGGGCGCGCGC	CGAGGCGCGCG CGAGGGGGGGG GGAGGGGGGG GGAGGGGGGG GGAGGGGGG	TCGFAGGCCCGGC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGCGCC TGGCCGCGCC TGGCCGCGCC TGGCCGCGCC TGGCCGCGCC TGGCCGCGCC TGGCCGCGCC TGGCCGCCCC TGGCCGCCCCC TGCCCCCCCC TGCCCCCCCCC TGCCCCCCCCC TGCCCCCCCCCC	GCCGGAGAT GCCGGCGC GCCGGCGT (CCCCGCGCGT (CCCCGCGCGT (CCCCGCGCGT (CCCCGCGGT (CCCCGCGGT (CCCGCGGG (CCCCGCGGG (CCCCAACGG (CCCCAACGG (CCCCAACGG (CCCCAACGC (CCCCACCACGC (CCCCACCACGC (CCCCACCACGC (CCCCACCACGC (CCCCACCACGC (CCCCACCACGC (CCCCACCACGC (CCCCACCACGC (CCCCACCACGC (CCCCACCACGC (CCCCACCACGC (CCCCACCACGC (CCCCACCACGC (CCCCACCCACGC (CCCCACCCCACCCACGC (CCCCACCCCACCCCACCCCCACGC (CCCCCCACCCCACCCCACCCCACCCCAC	20000000000000000000000000000000000000
2000 3AC66 3AC66 3C066 3C066 3C066 3C066 3C066 3C066 3C066 3C066 3C166 3	GCCGACACACAACAA GCCGACACAACAA GCCGACACCAACAACAACAACAACAACAACAACAACAACA	ATCANACTO STCAAGCTO	CGGGCTTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC ACGGGGC ACGGGGC ACGGGGC ACGGGGGC ACGGGGGC ACGGGGGC ACGGGGGC ACGGGGGC ACGGGGGC ACGGGGGC ACGGGGC ACGGGGC ACGGGGC ACGGGGC ACGGGGC ACGGGGC ACGGCGC ACGGGGC ACGGGGC ACGGGGC ACGGCC ACGGCGC ACGGC ACGGC ACGGCGC ACGGCGC ACGGCGC ACGGCGC ACGGCGC ACG ACG	CCCCCCAACCACCCCCCCCCCCCCCCCCCCCCCCCCCC	TCGGCGAGAT CGGCGAGAT CGGCGGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT 1550 TGTGGTGCCC CGGCGAGAT 1550 TGTGGTGCCC CGGCGGGGGCGCC CGTCGTCCCC CGTCGTCCCC CGTCGTCCCC CGTCGTCCCC CGTCGTCCCC CGTCGTCCCC CGTCGTCCCC CGTCGTCCCC CGCCGTCGTCCCC CGCCGTCGTCCCC CGCCGTCGTCCCC CGCCGTCGTCCCCCCCCCC	CGAGGCGCGCG CGAGGGGGGGG GGAGGGGGGG GGAGGGGGGG (GGAGGGGGGG (GGAGGGGGGGG	Trogecogec Trogec Trogec	GCCGGAGAT GCCGGCGC GCCCGGCC GCCCGCCC ITGAGGCCGC ITGAGGCCGC ITGAGGCCGC ITGAGGCGC ICCCCGCCGC IS80 	CCCCAGG CCCCAGG CCCCCGG CCCCCGG CCCCGG CCCCCGG CCCCGG CCCCGG CCCCCGG CCCCCGG CCCCCGG CCCCCGG CCCCCGG CCCCCGG CCCCCGG CCCCCGG CCCCCGG CCCCCGG CCCCCGG CCCCCGG CCCCCGG CCCCCGG CCCCCGG CCCCCGG CCCCGG CCCCCGG CCCCG CCCG CCCCG CCCCG CCCCG CCCCG CCCG CCCCG CCCCG CCCCG CCCCG CCCCG CCCCG CCCCG CCCCG CCCCG CCCCG CCCCCG CCCCCG CCCCCG CCCCCG CCCCCG CCCCCG CCCCCG CCCCCG CCCCCG CCCCCC
	GCCGACCACCACCA GCCGACACCACCA GCCGACACCACCA GCCGACACCCAC GTCGATGACGACAC GTCGATGACCACCAC GTCGATGACCACCAC GTCGATGACCACCAC GTCGACGACCACCAC ISI0 JTCC TCCCGCGGACGACCA ISI0 JTCC TCCCGGCGGACGACAC TCCCGCGGACGACAC TCCCCACGACGACAC ISI0 JTCC TCCCGGACGACACCACCACCACCACCACCACCACCACCACC	ATCANACTO SOTCAACOTO SOTCAACOTO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCACACO SOCCACOCO SOCCCCCCCCCCCCCCCCCCCCC	CGGGGCTTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC CGGGGGTC ACCGGGGGC ACCGGCGGC ACCGGCGGG ACCGGCGGC ACCGGCGGG ACCGGCGGC ACCGGCGGG ACCGGCGGC ACCGGCGGG ACCGGCGGC ACCGGCGGC ACCGGCGGC ACCGGCGGC ACCGGCGCGC ACCGGCGGC ACCGGCGCGC ACCGGCGCGC ACCGGCGCGC ACCGGCGCGC ACCGGCGCGC ACCGGCGCGC ACCGGCGCGC ACCGGCGCGC ACCGGCGCGC ACCGGCGCGC ACCGCCGCG ACCGCCGCG ACCGCCGCC ACCGCCGCGC ACCGCCGCC ACCGCCGCC ACCGCCGCC ACCGCCGCC ACCGCCGCC ACCGCCGCC ACCGCCGCC ACCGCCGCC ACCGCCGCC ACCGCCGCC ACCGCCGCC ACCGCCGCC ACCGCCGCC ACCGCCGCC ACCGCCGCC ACCGCCCCC ACCGCCCCC ACCGCCCCCC ACCGCCCCCC ACCGCCCCCCC ACCGCCCCCCC ACCGCCCCCCCC	CCCCCCCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TCGGCGAGAT CGGCGAGAT CGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT CCGGCGAGAT 1550 	CGAGGCGCGCGCG CGAGGGGGGGGG GGAGGGGGGGG GGAGGGGGGGG	TCGFCAGGCC CCGCCGGGCC TGGCCGGGCC TGGCCGGGCC TGGCCGGGCC TGGCCGGGCC TGGCCGGGCC TGGCCGGGCC TGGCCGGGCC TGGCCGGCGC TGGCCGGCGC TGGCCGCGCC TGGCCGCGCC TGGCCGCGCC TGGCCGCGCC TGGCCGCGCC TGGCCGCCGCC TGGCCGCCCC TGGCCGCCCCC TGGCCGCCCCCC TGGCCGCCCCCCC TGGCCGCCCCCCC TGGCCGCCCCCCCCC TGGCCGCCCCCCCCCC	GCCGGAGAT GCCGGAGAT GCCCGCCGT (CCCCCGCCGT (CCCCCGCCGT (CCCCCGCCGT (CCCCCGCCGT (CCCCCGCCGT (CCCCCGCCGCT (CCCCCGCCGGC (CCCCACGCGG (CCCCACGCGGG (CCCCAACG (CCCCAACG (CCCCAACG (CCCCAACG (CCCCAACG (CCCCAACG (CCCCAACG (CCCCAACG (CCCCAACG (CCCCAACG (CCCCAACG (CCCCAACG	CCCCAGE SCCCCAGE SCCCCAGE SCCCCAGE SCCCCAGE SCCCCAGE SCCCCAGE SCCCCAGE SCCCCAGE TCCCAGE TCCCAGE TACGTGGC TACGTGGC SACCAGET SCAAGCTG
	GCCGACCACCACCA GCCGACACCACCA GCCGACACCACCA GCCGACACCACCA GTCGATGACAC GTCGATGACAC GTCGATGACCA GTCGATGACCA GTCGATGACACA GTCGATGACACA GTCGATGACACA GTCCGACGACGACA GTCCGACGACGACACA TSTCC TGCCGGGAGGACA TGCCGACGACGACAC TGCCGCGGGGAGACA TGCGGCGGGGGACACAC CCCCAGGAGGACA CCCCAGGAGGACACACCCCGGGGCACACCCCGGGGCACACCCCGGCGCC ACCACCCCCGGCCCCCGCGCCCCCCCC	ATCANACTO SOTCAACOTO SOTCAACOTO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCAACATO SOTCACOTO SOCCOGOCO SOCCCCGOCO SOCCCCCGOCO SOCCCCCGOCO SOCCCCCCCCCC	CCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCCCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC CCGATCGAC TGGTGCCCCA TGGTGCCCCA TGGTGCCCCA TGGTGCCCCA CCGCCCCCCCC CGGTCCCGCC CGGTCCCGCCC CGGTCCCGCCC CGGTCCCGCCC CGGTCCCGCCC CGGTCCCGCCC CGGTCCCGCCC CGGTCCCGCCC CGGTCCCGCCC CGGTCCCGCCC CGGTCCCGCCC CGGTCCCGCCCCCCCC		CGAGGCCGCGAGG CGAGGCGCGCGCGAGGGCGCCGAGGGGGCGCGAGGGGGGG	TCGTACGGCC CCGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGGCC TGGCCGCGCGC TGGCCGCGCC TGGCCGCCCCGC TGGCCGCCCCC TGGCCGCCCCCC TGGCCGCCCCCCCCCC	GCCGGAGAT GCCCGGCCG TCCGTCGGT TCCGTCGGT TCCGTCGGT TCCGTCGGT TCCGTCGGT TCCGTCGGT TCCGTCGGT TCCGTCGGT TCCGTCGGT TCCGTCGGT TCGGAGCA	20000000000000000000000000000000000000

Abb. 9-9: Sequenzalignment für vier A-Domänen aus der NRPS des Antibiotikums CDA mit allen Hormaomycin A-Domänen $HrmO1_A$ - $HrmP3_A$, erstellt mit dem Programm Bioedit.

Abb. 9-10: Ausschnitt aus der von I-TASSER²⁶² vorhergesagten Sekundärstruktur von O4f_A. Obere Reihe: die Position der Aminosäuren (mittlere Reihe) im Protein. Die fett markierten Aminosäuren sind Teil von HrmO4_A, die nicht markierten Teil von HrmO3_A. Untere Reihe: C= ungeordnete Struktur (coil), S= α -Faltblatt (sheet), H= β -Helix.

Abb. 9-11: Mit I-TASSER²⁶² durch Homologiemodellierung nach PheA erzeugte 3-D Struktur von $O4f_A$. Teile von HrmO4_A sind gelb markiert, Teile von HrmO3_A weiß markiert.

Abb. 9-12: Ausschnitt aus der von I-TASSER²⁶² vorhergesagten Sekundärstruktur von His₈P2f. Obere Reihe: die Position der Aminosäuren (mittlere Reihe) im Protein. Die fett markierten Aminosäuren sind Teil von HrmP2_A, die nicht markierten Teil von HrmO3_A. Untere Reihe: C= ungeordnete Struktur (coil), S= α -Faltblatt (sheet), H= β -Helix.

Abb. 9-13: Mit I-TASSER²⁶² durch Homologiemodellierung nach PheA erzeugte 3-D Struktur von P2 f_A . Teile von HrmP2_A sind gelb markiert, Teile von HrmO3_A weiß markiert.

Abb. 9-14: Ausschnitt aus der von I-TASSER²⁶² vorhergesagten Sekundärstruktur von A5f_A. Obere Reihe: die Position der Aminosäuren (mittlere Reihe) im Protein. Die fett markierten Aminosäuren sind Teil von CdaPSIA5_A, die nicht markierten Teil von HrmO3_A. Untere Reihe: C=ungeordnete Struktur (coil), S= α -Faltblatt (sheet), H= β -Helix.

Abb. 9-15: Mit I-TASSER²⁶² durch Homologiemodellierung nach PheA erzeugte 3-D Struktur von $A5f_A$ Teile von CdaPSIA5_A sind gelb markiert, Teile von HrmO3_A weiß markiert.

180	200		320	
	I		I	
SLGSPAYVIYTSG	STGRPKGVVVSH <mark>RGVVDLVRDHC</mark> I	WRPGVHE ARVLAH	I <mark>HPRIVLRHL</mark> YGATEV	TAACTVGGPMTGE
CCCCCSSSSSCCC	CCCCCCSSSSCC <mark>ННННННННННН</mark>	нсссссснннннн	CCCCSSSSCCCCCCC	SSSSSSSSCCCCC

Abb. 9-16: Ausschnitt aus der von I-TASSER²⁶² vorhergesagten Sekundärstruktur von H6f_A. Obere Reihe: die Position der Aminosäuren (mittlere Reihe) im Protein. Die fett markierten Aminosäuren sind Teil von CdaPSIH6_A, die nicht markierten Teil von HrmO3_A. Untere Reihe: C= ungeordnete Struktur (coil), S= α -Faltblatt (sheet), H= β -Helix.

Abb. 9-17: Mit I-TASSER²⁶² durch Homologiemodellierung nach PheA erzeugte 3-D Struktur von H6 f_A Teile von CdaPSIH 6_A sind gelb markiert, Teile von HrmO3_A weiß markiert.

	Substrat	Aktivierun
Tab. 9-1: Aktivieru	ng verschiedener Substrate durch HrmK im $[\gamma^{-18}O_4]$ -	ATP-Assay
9.3 Massensp	ektren und zusammenfassende Tabelle	en

Substrat	Aktivierung [%]
Prolin (94)	95,8
Glycin	1,8
Leucin	3,7
Alanin	1,3
Benzoesäure (101)	1,4
Pyrrol-2-carbonsäure (102)	0,7
Picolinsäure (103)	0,8
Nikotinsäure (104)	0,8
Cyclohexancarbonsäure (105)	1,2
Cyclopentancarbonsäure (106)	0,8
Thiophen-2-carbonsäure (107)	1,6
Furan-2-carbonsäure (108)	2,9
Tetrahydrofuran-2-carbonsäure (109)	1,3
Pipecolinsäure (110)	0,5

Tab. 9-2: Aktivierung von verschiedenen Aminosäuren durch HrmP1_A im [γ -¹⁸O₄]-ATP-Assay.

Substrat	Aktivierung[%]
(ß-Me)Phe (31)	12,4
(4-Cl)Phe (126)	2,2
(a-Me)Phe (127)	4,2
Ala	4,0
Arg	1,1
Cys	2,6
L-DOPA (72)	1,3
Gly	1,5
His	2,7
Ile	5,5
Lys	1,8
Phe	2,0
Pro	1,9
Ser	3,1
Thr	6,1
Trp	5,3
Tyr	3,8
Val	5,0

Substrat	absolute Aktivierung durch HrmP1 _A /HrmR [%]	Mittelwert [%]	relative Aktivierung durch HrmP1 _A /HrmR [%]	absolute Aktivierung durch HrmP1 _A /HrmR nach FPLC [%]	relative Aktivierung durch HrmP1 _A / HrmR nach FPLC [%]
(β-Me)Phe (31)	93,1 ; 90,7 ; 104,4	96,1	100	6,7	100
(<i>a</i>-Me)Phe (107)	1,4		1,5	0,2	3,5
(3-Ncp)Ala (27)	2,3		2,4		
(4-Cl)Phe (106)	2,9		3,0	0,4	5,4
Ala	2,6		2,7		
Arg	0,6		0,6		
Asn	0,5		0,4		
Asp	1		1,0		
Cys	0		0		
Gln	1,9		1,9		
Glu	1,2		1,2		
Gly	1,7		1,8		
His	2,4		2,5		
Hpg	1,2		1,2		
Ile	5		5,2	0,4	5,4
Leu	2,9		3,0		
Lys	16,3 ; 1,3	8,8	9,2	0,4	5,4
Orn	1,2		1,2		
Phe	10,9 ; 12,4	11,6	12,1	0,7	10,7
Pro	1,6		1,6		
Ser	0,6		0,6		
Thr	4,2		4,3		
Тгр	1,7		1,8	0,6	8,9
Tyr	4,1 ; 4,8	4,6	4,6	0,5	7,1
Val	8,0;1,0	4,5	4,7	0,6	8,9

Tab. 9-3: Aktivierung verschiedener Aminosäuren durch HrmP1_A mit HrmR vor und nach FPLC im $[\gamma^{-18}O_4]$ -ATP-Assay. Die höchste Aktivität wurde als 100% normiert

Substrat	absolute Aktivierung durch HrmO3 _A /HrmR[%]	Mittelwert [%]	relative Aktivierung durch HrmO3 _A /HrmR[%]
(β-Me)Phe (31)	32,6 ; 52,0	42,3	100,0
(3-Ncp)Ala (27)	1,8		5,1
(4-Cl)Phe (126)	2,0		5,7
(a-Me)Phe (127)	1,0		2,7
Ala	4,4		12,5
Arg	1,6		4,4
Asn	0,2		0,7
Asp	1,4		4,1
Cys	1,4		4,1
Gln	3,1		8,8
Glu	1,4		4,1
Gly	2,5		7,1
His	1,7		4,7
Ile	1,9		5,4
Leu	6,2;21,7	14,0	33,0
Lys	1,9		5,4
Phe	3,7		10,5
Pro	2,3		6,4
Ser	2,4		6,8
Thr	24,0;0,7;0,6	8,4	19,7
Тгр	5,0;8,7	6,7	15,8
Tyr	3,5 ; 5,3	4,4	10,4
Val	3,6		10,1

Tab. 9-4: Aktivierung verschiedener Aminosäuren durch HrmO3_A mit HrmR im $[\gamma^{-18}O_4]$ -ATP-Assay. Die höchste Aktivität wurde als 100% normiert.

Tab. 9-5: Aktivierung verschiedener Aminosäuren durch HrmO4_A und O4f_A mit HrmR im [γ -¹⁸O₄]-ATP-Assay. Die höchste Aktivität wurde als 100% normiert.

Substrat	Absolute Aktivierung durch HrmO4 _A /HrmR [%]	Relative Aktivierung durch HrmO4 _A /HrmR [%]	Absolute Aktivierung durch HrmO4f _A /HrmR [%]	Relative Aktivierung durch HrmO4f _A /HrmR [%]
(3-Ncp)Ala (27)	84,1	100	96,1	100
Ala	1,2	1,4	5,3	5,5
Asp	1,1	1,3	2,0	2,1
Cys	1,2	1,4	2,5	2,6
Gln	1,7	2,0	8,0	8,3
Gly	1,4	1,7	3,7	3,9
His	1,6	1,9	1,2	1,2
Ile	2,5	3,0	3,5	3,6
Leu	7,6	9,0	9,7	10,1
Lys	1,7	2,0	1,7	1,7

Phe	1,9	2,3	2,8	2,9
Pro	0,8	1,0	2,4	2,5
Ser	1,4	1,7	1,4	1,5
(β-Me)Phe (31)	1,1	1,3	1,1	1,1
Thr	5,9	7,0	6,5	6,7
Тгр	6,2	7,4	5,2	5,4
Tyr	3,4	4,0	5,3	3,0
Val	10,9	12,8	7,1	7,4
5-Nitro-2-aminobenzoesäure (124)	1,0	1,1	1,4	1,5
Cyclopropylglycin (125)	0,7	0,9	2,5	2,6

Tab. 9-6: Aktivierung verschiedener Aminosäuren durch HrmO1_A mit HrmR vor und nach FPLC-Aufreinigung im [γ -¹⁸O₄]-ATP-Assay. Die höchste Aktivität wurde als 100% normiert.

Substrat	absolute Aktivierung durch HrmO1 _A /HrmR [%]	Mittel- wert [%]	relative Aktivierung durch HrmO1 /HrmR [%]	absolute Aktivierung durch HrmO1 _A /HrmR nach FPLC [%]	relative Aktivierung durch HrmO1 _A / HrmR nach FPLC [%]
(3-Ncp)Ala (27)	97,0 ; 78,5	84,0	100	78,0	100
Ala	6,5 ; 7,9	7,2	8,6	0,4	0,5
Arg	4,3		5,1		
Asn	1,3		1,5	0,5	0,6
Asp	1,6		1,9	0,4	0,5
Cys	3,4		4,0	2,2	2,8
Gln	1,8		2,1		
Glu	1,3		1,5		
Gly	4,7		5,6	0,2	0,3
His	3,8		4,5		
Ile	2,6		5,5	0,5	0,6
Leu	9,1 ; 8,9	9,0	10,7	5,8	7,4
Lys	4,2		5,0	1,7	2,2
Phe	5,5		6,5		
Pro	3,6		4,3	0,1	0,1
Ser	3,5		4,2		
(β-Me)Phe (31)	1,4		1,7	0,2	0,3
Thr	23,9 ; 61,4	42,7	50,8	15,4	19,7
Тгр	11,2 ; 5,9	8,6	10,2	0,2	0,6
Tyr	6,0		7,1	0,6	0,8
Val	5,6		6,7	1,0	1,3
5-Nitro-2-aminobenzoesäure (124)	1,0		1,2	0,2	0,3
Cyclopropylglycin (125)	1,6		1,9	0,4	0,5

Substrat	absolute Aktivierung durch HrmO2 _A /HrmR [%]	Mittel- wert [%]	relative Aktivierung durch HrmO2 _A /HrmR [%]	absolute Aktivierung durch O2f _A /HrmR [%]	Mittelwert [%]	relative Aktivierung durch O2f _A /HrmR [%]
Thr	62,0 ; 55,3 ; 75,6	64,3	100	29,6 ; 62,3	46	100
Ala	16,9 ; 12,4	14,6	21,9	4,8		10,4
Arg	5,2		7,7	1,8		3,9
Asn	9,4		14,0	3,5		7,6
Asp	7,6		11,3	2,5		5,5
Cys	3,1		4,7	1,1		2,3
D-Thr	4,9 ; 6,1	5,5	8,3	1,4		3,1
Gln				1,3		2,9
Glu	6,8		10,3	1,0		2,1
Gly	5,9 ; 10,7	8,3	12,4	1,9		4,2
His	14,2		21,2	4,2		9,1
Hpg	5,6		8,5			
Ile	22,7 ; 14,6 ; 28,2	21,8	32,7	3,6		7,8
Leu	22,0		32,9	8,0 ; 6,7	7,4	16,2
Lys				1,3		2,9
Phe	26,9 ; 17,8	22,3	33,5	0,2		0,5
Pro	8,9		13,3	4,8		10,4
Ser	15,2 ; 8,6	11,9	18,0	7,2;3,1	5,2	11,2
(ß-Me)Phe (31)	0,4		12,8	0,2		0,5
Trp	10,0		14,9	0,7		1,6
Tyr	11,5		17,3	1,0		2,1
Val	50,4 ; 53,0	51,7	77,5	12,8 ; 10,4	11,6	25,3

Tab. 9-7: Aktivierung verschiedener Aminosäuren durch HrmO2_A und O2f_A mit HrmR im $[\gamma^{-18}O_4]$ -ATP-Assay. Die höchste Aktivität wurde als 100% normiert.

Tab. 9-8: Aktivierung verschiedener Aminosäuren durch HrmO2_A und O2f_A mit HrmR nach FPLC im $[\gamma^{-18}O_4]$ -ATP-Assay. Die höchste Aktivität wurde als 100% normiert.

Substrat	Absolute Aktivierung durch HrmO2 _A /HrmR nach FPLC [%]	Relative Aktivierung durch HrmO2 _A /HrmR nach FPLC [%]	Absolute Aktivierung durch O2f _A /HrmR nach FPLC [%]	Relative Aktivierung durch O2f _A /HrmR nach FPLC[%]
Thr	62,4	100	49,6	100
Ala	0,6	1,0	1,7	3,4
Asn	0,6	1,0	0,6	1,2
Cys			0,7	1,5
D-Thr	1,0	1,5	0,6	1,2
Gly	0,7	1,2	0,5	1,0
His	0,4	0,6	0,4	0,7
Ile	0,4	0,6	0,6	1,2
Leu	1,4	2,3	1,4	2,9
Lys	0,5	0,8	0,4	0,7
Phe	0,2	0,4	0,6	1,2

Ser	1,4	2,3	2,6	5,3
(β-Me)Phe (31)	0,4	0,6	0,6	1,2
Trp	0,5	0,8	0,5	1,0
Tyr	0,2	0,4	0,6	1,2
Val	1,1	1,7	2,4	4,8

Tab. 9-9: Aktivierung verschiedener Aminosäuren durch HrmP2_A und P2f_A mit HrmR im [γ -¹⁸O₄]-ATP-Assay. Die höchste Aktivität wurde als 100% normiert.

Substrat	absolute Aktivierung durch HrmP2 _/ /HrmR [%]	relative Aktivierung durch HrmP2f _A /HrmR [%]	Mittel- wert [%]	absolute Aktivierung durch P2f _A /HrmR [%]	relative Aktivierung durch P2f _A /HrmR [%]	Mittelwert [%]
Val	22,8 ; 5,8	100	100	15,8 ; 5,1	100	100
Ala	2,4 ; 1,1	10,5 ; 16,7	13,6	14,3 ; 2,8	90,2 ; 54,9	72,5
Arg	1,6	6,8	6,8	1,7	10,6	10,6
Asn	1,6	6,8	6,8	1,6	9,8	9,8
Asp	5,3	23,2	23,2	5,3	33,3	33,3
Cys	2,5	11,1	11,1	1,9	12,1	12,1
Gln	6,1	26,8	26,8	6,1	38,6	38,6
Glu	2,5	11,1	11,2	2,5	15,9	15,9
Gly	0,6	2,6	2,6	3,1;1,7	19,7 ; 33,3	26,5
His	3,2	14,2	14,2	3,2	20,5	20,5
Ile	2,8;2,5	12,1	12,1	5,3 ; 1,5	33,3 ; 29,4	31,4
Leu	3,6;1,7	15,8 ; 33,3	24,6	6,7 ; 3,9	42,4 ; 76,5	59,5
Lys	1,9	8,4	8,4	1,6	9,8	9,8
Phe	2,5	11,1	11,1	4,7	29,5	29,5
Pro	2,2;1	9,5 ; 14,8	12,1	1,6	9,8	9,8
Ser	0,6	2,6	2,6	1,9	12,1	12,1
(ß-Me)Phe	1,3	5,8	5,8	1,8;1,7	11,4 ; 33,3	22,3
Thr	4,9;0,8	21,6 ; 42,6	32,1	10,1	63,6	63,6
Тгр	0,7	3,2	3,2	5,4	34,1	34,1
Tyr	3,4	14,7	14,7	3,7	23,5	23,5

Substrat	Absolute Aktivierung durch HrmP3 _A /HrmR [%]	relative Aktivierung durch HrmP3 _A /HrmR [%]	Absolute Aktivierung durch HrmP3 _A /HrmR nach FPLC [%]	relative Aktivierung durch HrmP3 _A /HrmR nach FPLC[%]
(4-Pe)Pro (69)	89,6	100,0	87,8	100,0
(4-Ethinyl)Pro (128)	26,0	29,1	11,4	13,0
Ala	3,7	4,2	1,7	1,9
Arg	1,3	1,5	0,7	0,8
Asn	1,1	1,2		
Asp	1,9	2,1		
Cyclopentancarbonsäure (86)	1,9	2,1	0,7	0,8
Cys	1,3	1,5	0,5	0,5
Gln	1,4	1,6		
Glu	0,0	0,0	0,5	0,5
Gly	6,7	7,5	0,5	0,5
His	1,6	1,7	0,5	0,5
Ile	5,3	5,9	1,0	1,1
Leu	9,2	10,3	1,9	2,2
Lys	2,3	2,5	1,1	1,2
Phe	4,7	5,2	1,0	1,1
Picolinsäure (83)	2,8	3,1		
Pro	2,8	3,1	1,1	1,2
Pyrrolcarbonsäure (82)	2,5	2,8	0,4	0,4
Ser	1,2	1,3	0,7	0,8
Tetrahydrofuran-	3,4	3,7		
carbonsäure (89)				
Thr	12,0	13,4	10,9	12,4
Trp	2,9	3,2	0,5	0,5
Tyr	4,1	4,6	0,7	0,8
Val	26.4	29.5	5.0	5.7

Tab. 9-10: Aktivierung verschiedener Aminosäuren durch HrmP3_A mit HrmR vor und nach FPLC-Aufreinigung im [γ -¹⁸O₄]-ATP-Assay. Die höchste Aktivität wurde als 100% normiert.

9.4 HPLC- und FPLC-Läufe

Abb. 9-18: Chromatogramm einer FPLC-Aufreinigung der Elutionsfraktion von HrmP1_A. Blaue Spur: UV-Absorption, grüne Spur: Konzentration NaCl; Rote Zahlen: gesammelte Fraktionen. Die Fraktionen B11-9 wurden für den $[\gamma^{-18}O_4]$ -ATP-Assay verwendet.

Abb. 9-19: Chromatogramm einer FPLC-Aufreinigung der Elutionsfraktion von $O2f_A$. Blaue Spur: UV-Absorption, grüne Spur: Konzentration NaCl; Rote Zahlen: gesammelte Fraktionen. Die Fraktionen B11-9 wurden für den [γ -¹⁸O₄]-ATP-Assay verwendet.

Abb. 9-20: HPLC-Chromatogramm der Fraktion 15 aus Tabelle 5-16; Methanol/H₂O 85:15, 273 nm.

Abb. 9-21: HPLC-Chromatogramm der Fraktionen 16 und 17 aus Tabelle 5-16; Methanol/H₂O 85:15, 273 nm.

Abb. 9-22: HPLC-Chromatogramm der Fraktion 23 aus Tabelle 5-16; Methanol/H $_2O$ 8:2, 273 nm.

Abb. 9-23: HPLC-Chromatogramm der Fraktion 30 aus Tabelle 5-16; Methanol/H₂O 8:2, 273 nm.

9.5 NMR-Spektren

Abb. 9-24: Nummerierung der C-Atome der Bausteine des Hormaomycins (13). Die Tabellen 9-11 – 9-16 beziehen sich auf diese Nomenklatur.

Abb. 9-25: ¹H-NMR-Spektrum von Hormaomycin (13) in CDCl₃, 500 MHz.

Abb. 9-26: ¹H-NMR-Spektrum von Hormaomycin (13) in CD₃OD, 700 MHz.

Abb. 9-27: ¹H-NMR-Spektrum von Hormaomycin A1(**136**) in CD₃OD, 700 MHz.
Baustein und Position	Δ ¹ H [ppm]	Multiplizität	<i>J</i> [Hz]
Chpca			
3	6,79	dd	4,5 , 2,5
4	6,04	dd	4,5 , 3,0
5	7,02	m	
(3-Ncp)Ala II			
2	4,61	m	
3a	1,71	m	
3b	2,05	m	
1'	2,03	m	
2'	4,37	ddd	7,0 , 7,0 , 3,0
3'a	1,83	ddd	7,0 , 6,0 , 4,0
3'b	1,14	m	
<i>a</i> -Thr			
2	4,78	m	
3	5,47	dq	7,0,2,0
4	1,59	d	7,0
(β-Me)Phe II			
2	4,47	m	
3	3,08	dq	8,0 , 6,0
4	1,22	d	7,0
Ar	6,99-7,30		
(3-Ncp)Ala I			
2	3,90	dd	7,0,3,5
3a	0,87	ddd	14,0 , 7,0 , 7,0
3b	1,02	m	
1'	1,30	m	
2'	3,85	m	
3'a	1,51	ddd	10,0 , 5,0 , 4,
3'b	0,70	m	
(β-Me)Phe I			
2	4,44	dd	6,0 , 4,0
3	3,57	m	
4	1,38	d	8,0
Ar	6,99-7,30		
Ile			
2	4,60	m	
3	2,22	m	
4a	1,35	m	
4b	1,59	m	
5	0,900	t	6,5
1'	0,97	d	6,5
(4-Pe)Pro			
1'	5,33	m	
2'	5,63	m	

Tab. 9-11: Zusammenfassung der NMR-Ergebnisse von Hormaomycin A1 (136) in CD₃OD, 700 MHz.

Abb. 9-28: ¹H-NMR-Spektrum von Hormaomycin A2 (137) in CD₃OD, 700 MHz.

Abb. 9-29: ¹H-¹H-COSY-NMR-Spektrum von Hormaomycin A2 (**137**) in CD₃OD, 700 MHz.

Bausteine und Position	⊿¹H [ppm]	Multiplizität	J (Hz)	¹ H- ¹ H-COSY
Chpca			÷	
3	6,82	d	5,0	4
4	6,08	d	5,0	3
(3-Ncp)Ala II				
2	4,53	ddd	9,0 , 6,5	3a,b
3a	1,69	m		2, 3b
3b	2,07	m		2, 3a, 1'
1'	2,02	m		3a, 2', 3'a,b
2'	4,37	ddd	7,0,3,0,3,0	3'a,b
3'a	1,82	ddd	9,0 , 5,0 , 4,0	3'b, 2', 1'
3'b	1,15	ddd	8,0 , 6,0 , 6,0	3'a, 2'
<i>a</i> -Thr				
2	4,78	m		3
3	5,48	dq	9,0 , 7,0	4
4	1,53	d	6,5	3
(β-Me)Phe II				
2	4,60	dd	8,5, 8,0	3
3	3,08	dq	7,5,7,0	2, 4
4	1,20		7,5	3
Ar	6,95-7,31			
(3-Ncp)Ala I				
2	3,9	m		3a,b

Tab. 9-12: Zusammenfassung der NMR-Ergebnisse von Hormaomycin A2 (137) in CD₃OD, 700 MHz.

3a	0,91	ddd	7,5 , 7,0, 5,0	3b, 2, 1'
3b	1,13	ddd	14,0 , 8,0 , 7,0	3a, 2
1'	1,30	m		3a, 3'a,b
2'	3,91	m		3'a,b
3'a	1,51	ddd	6,0 , 6,0 , 6,0	3'b, 2', 1'
3'b	0,67		7,0 , 7,0 , 7,0	3'b, 2'
(ß-Me)Phe I				
2	4,48	dd	5,0 , 5,0	3
3	3,66	m		2, 4
4	1,36	d	7,3	3
Ar	6,95-7,31			
Val				
2	4,53	m		3
3	2,28	m		1', 4, 2
4	1,01	d	6,5	3
1'	0,99	d	6,5	3
(4-Pe)Pro				
1'	5,34	dd	11,0 , 11,0	2', 3'
2'	5,63	dq	10,5 , 7,0	1', 3'
3'	1,70	d	7,2	1', 2'
2	4,04	dd	11,0 , 6,0	3a, 3b
3a	2,28	m		2, 3b
3b	1,71	m		2, 3a
4	2,78	m		1`
5a	4,16	dd	10,0 , 8,5	5b
5b	3,27	m		5a

Abb. 9-31: ¹H-¹H-COSY-NMR-Spektrum von Hormaomycin A3 (**138**) in CD₃OD, 700 MHz.

Bausteine und Position	⊿¹H [ppm]	Multiplizität	J (Hz)	¹ H- ¹ H-COSY
Chpca				
3	6,82	d	5,0	4
4	6,06	d	5,0	3
(3-Ncp)Ala II				
2	4,43	m		3a,b
3a	2,05	ddd	7,5, 3,0 , 3,0	2, 3b
3b	1,76	m		2, 3a
1'	2,03	m	7,5 , 6,0 , 6,0	3a, 2', 3'a,b
2'	4,38	ddd	7,0,3,03,0	3'a,b
3'a	1,83	ddd	6,0 , 4,0 , 3,5	3'b, 2', 1'
3'b	1,15			3'a, 2', 1'
a-Thr				
2	4,79	dd	5,0,5,0	3, NH
3	5,51	dq	7,5 , 6,5	4
4	1,59	d	7,0	3
NH	8,09			2
(β-Me)Phe II				
2	4,61	dd	9,0 , 9,0	3
3	3,04	dq	7,5 , 7,5	2,4
4	1,22	d	7,0	3

Tab. 9-13: Zusammenfassung der NMR-Ergebnisse von Hormaomycin A3 (138) in CD₃OD, 700 MHz.

Ar	7,04-7,29			
Leu I	· ·			
NH	7,80	d	4,5	2
2	3,66	dd		NH, 3a,b
3a	0,72	ddd	7,0 , 7,0 , 7,0	2, 3b
3b	0,90	m		2, 3a
4	0,48	m		5, 1'
5	0,53	d	6,0	4
1`	0,62	d	6,0	4
(β-Me)Phe I				
2	4,55	dd	5,0 , 2,5	NH, 3
3	3,74	dq	7,5 , 5,0 , 5,0	2,4
4	1,35	d	7,2	3
Ar	7,04-7,29			
NH	8,35	d	9,0	2
Ile				
2	4,65	dd	11, 0 , 11,0	NH, 3
3	2,26	m		2, 1'
4a	1,22	m		4b, 5
4b	1,67	m		4a, 5
5	0,89	m		4a,b
1'	0,97	d	6,5	3
NH	7,54	d	9,5	2
(4-Pe)Pro				
1'	5,34	dd	10,5 , 10,5	2', 3'
2'	5,63	dq	10,5 , 7,0	1', 3`'
3'	1,70	dd	7,0	1', 2'
2	4,02	dd	8,0 , 8,0	3a, 3b
3a	2,27	ddd	6,5 , 6,5	2, 3b
3b	1,71	m		2, 3a
4	3,41	m		3a
5a	4,46	dd	9,0 , 9,0	5b
5b	3,26	m		5a

Abb. 9-32: ¹H-NMR-Spektrum von Hormaomycin A4 (139) in CD₃OD, 700 MHz.

Γab. 9-14: Zusammenfassung der	NMR-Ergebnisse von Hor	rmaomycin A4 (139) in CD ₃ OI), 700 MHz
--------------------------------	------------------------	--	------------

Baustein und Position	Δ ¹ H [ppm]	Multiplizität	<i>J</i> [Hz]
Chpca			
3	6,67	d	4,0
4	6,00	d	4,5
Leu II			
2	4,07	m	
3a	1,65	m	
3b	1,78	m	
4	1,71	m	
5	1,01	d	6,5
1'	0,97	d	6,5
<i>a</i> -Thr			
2	4,64	dd	7,0 , 5,0
3	5,48	m	
4	1,54	m	
(ß-Me)Phe II			
2	4,53	dd	8,5 , 8,5
3	3,05	m	
4	1,13	d	7,0
Ar	7,04-7,30		
(3-Ncp)Ala I			

2	3,90	m	
3a	0,90	m	
3b	1,03	m	
1'	1,29	m	
2'	3,75	m	
3'a	1,44	m	
3'b	0,63	m	
NH	8,02	d	5,0
(ß-Me)Phe I			
2	4,42	m	
3	3,59	m	
4	1,33	d	7,2
Ar	7,04-7,30		
Ile			
2	4,58	m	
3	2,15	m	
4a	1,24	m	
4b	1,65	m	
5	0,85	m	
1'	0,94	d	7,0
(4-Pe)Pro			
1'	5,31	dd	8,5 , 8,5
2'	5,62	dq	11,0 , 7,5
3'	1,69	d	6,5
2	4,07	dd	8,0 , 6,0
3a	2,29	m	
3b	1,70	m	
4	3,34	m	
5a	4,07	m	9,0,9,0
5h	3.22	m	

Abb. 9-33: ¹H-NMR-Spektrum von Hormaomycin A5 (140) in CD₃OD, 700 MHz.

Abb. 9-34: ¹H-¹H-COSY-NMR-Spektrum von Hormaomycin A5 (140) in CD₃OD, 700 MHz.

Bausteine und Position	⊿ ¹ H [ppm]	Multiplizität	J (Hz)	¹ H- ¹ H-COSY
Chpca				
3	6,85	d	4,0	4
4	6,02	d	4,5	3
Leu II				
2	4,22	m		3a,b
3a	1,67	ddd	12,0 , 8,0 , 8,0	2, 3b, 4
3b	1,83	ddd	12,0 , 8,0 , 7,0	3a, 2
4	1,75	m		3b, 5, 1'
5	1,03	d	6,5	4
1'	1,00	d	6,5	4
<i>a</i> -Thr				
2	4,69	m		3
3	5,39	dq	7,5 , 6,5	2,4
4	1,58	dq	7,0	3
(β-Me)Phe II				
2	4,65	m		3
3	2,96	dq	7,0 , 6,5	2,4
4	1,14	d	7,0	3
Ar	7,12-7,29			
Leu I				
2	3,51	m		3a,b
3a	0,53	m		2, 3b
3b	0,90	m		2, 3a
4	0,33	sp	7,0	3b, 5, 1'
5	0,56	d	6,5	4
1'	0,46	d	6,5	4
(β-Me)Phe I				
2	4,54	dd	5,0 , 5,0	3
3	3,75	dq	4,0 , 4,0 , 3,5	2,4
4	1,35	d	7,2	3
Ar	7,12-7,29			
Ile				
2	4,60	m		3
3	2,44	m		2, 1'
4a	1,17	dq	7,0 , 6,0 , 5,0	4b, 5
4b	1,63	m		4a, 5
5	0,81	m		4a, 4b
1'	0,94	d	6,5	3
NH	7,54	d	9,5	2
(4-Pe)-Pro				
1'	5,34	dd	10,5 , 9,0	2', 3'
2'	5,62	dq	7,0,4,0	1', 3`'
3'	1,71	d	6,5	1', 2'
2	4.01	dd	6.0.5.0	3a, 3b

Tab. 9-15: Zusammenfassung der NMR-Ergebnisse von Hormaomycin A5 (140) in CD₃OD, 700 MHz.

Abb. 9-35: ¹H-NMR-Spektrum von Hormaomycin A6 (141) in CD₃OD, 700 MHz.

Abb. 9-36: ¹H-¹H-COSY-NMR-Spektrum von Hormaomycin A6 (141) in CD₃OD, 700 MHz.

Bausteine und Position	⊿ ¹ H [ppm]	Multiplizität	J (Hz)	¹ H- ¹ H-COSY
EtOAc				
2a	5,03	d	15,0	2b
2b	5,13	d	15,0	2a
1′	4,29	q	14,0 , 8,0	2'
2	1,32	t	7,5	1'
Chpca				
3	6,82	d	5,0	4, NH [(3-Ncp)Ala II]
4	6,15	d	5,0	3
(3-Ncp)Ala II				
2	4,65	m		3a,b
3a	1,67	m		2, 3b
3b	2,07	m		2, 3a
1'	2,05	m		3a, 2', 3'a,b
2'	4,37	ddd	7,0 3,0,3,0	1', 3'a,b
3'a	1,82	ddd		3'b, 2', 1'
3'b	1,14	m		3'a,2', 1'
NH	7,54	d	9,5	
<i>a</i> -Thr				
2	4,75	dd	9,5	3, NH
3	5,45	dq	7,0,2,0	4

Tab.	9-16:	Zusammenfas	ssung der NM	IR-Ergebnisse	von Hormaomycin A	A6 (141) in	1 CD ₃ OD, 700 MHz.
			0	U	2	· · · ·	5 ,

4	1 53	d	6.5	3
NH	8.25	d	12.0	2
(B-Me)Phe II	0,20	ŭ	,0	-
2	4,59	m		NH,3
3	3,10	dq	7,5	2,4
4	1,20	d	7,0	3
Ar	7,00-7,30			
NH	7,70	d	8,0	2
(3-Ncp)Ala I				
2	3,93	dd	6,5 , 6,5	NH, 3a,b
3a	0,93	ddd	13,5 , 8,0 , 7,5	3b, 2, 1'
3b	1,02	ddd	14,0 , 9,0 , 4,5	3a, 2
1'	1,30	m		3a,b
2'	3,86	m		1', 3'a,b
3'a	1,48	m		3'b,2', 1'
3'b	0,64	ddd	6,0 6,0 , 6,0	3'b, 2', 1'
NH	8,02	d	5,0	2
(β-Me)Phe I				
2	4,49	dd	5,5	NH, 3
3	3,63	dq	7,5 , 7,0	2,4
4	1,35	d	7,2	3
Ar	7,00-7,30			
NH	8,28	d	9,0	2
Ile				
2	4,6	m		NH, 3
3	2,13	m		2, 1'
4a	1,19	m		4b, 5
4b	1,61	m		4a, 5
5	0,92	t	7,5	4a, 4b
1'	0,99	d	6,5	3
NH	7,54	d	9,5	2
(4-Pe)Pro				
1'	5,33	dd	10,5 , 10,5	2', 3'
2'	5,63	dq	10,5 , 7,0	1', 3`'
3'	1,70	dd	7,2	1', 2'
2	4,07	dd	10,5 , 10,5	3a, 3b
3a	2,29	ddd	12,0 , 7,5 , 6,5	2, 3b
3b	1,71	m		2, 3a
4	3,41	m		
5a	4,20	dd	9,0 , 9,0	5b
5b	3,28	m		5a

Abb. 9-37: ¹H -NMR-Spektrum von Hormaomycin E1/E2 (**40/41**) in CD₃OD, 700 MHz.

10 Publikationen

Veröffentlichungen:

Höfer, I., <u>Crüsemann, M.</u>, Radzom, M., Geers, B., Flachshaar, D., Cai, X., Zeeck, A., Piel, J.: Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. *Chem Biol* **2011**, 18, (3), 381-391.

<u>Crüsemann, M.</u>, Piel, J.: Characterization and evolution-guided engineering of the hormaomycin adenylation domains. *In Präparation*.

Cai, X., <u>Crüsemann, M.</u>, Teta, R., Mangoni, A., Piel, J.: Overexpression of regulatory genes improves hormaomycin production dramatically and yields novel hormaomycin analogs. *In Präparation*.

Vorträge:

<u>Max Crüsemann</u>: Insights into the Biosynthesis of Hormaomycin, an Exceptionally Complex Bacterial Signal Metabolite. 41. Doktorandenworkshop Naturstoffe: Chemie, Biologie, Ökologie. 13. 05. 2011, Bonn

Poster:

<u>Max Crüsemann</u>, Xiaofeng Cai, Elisabeth Rüthlein, Axel Zeeck and Jörn Piel: Insights into Biosynthesis and Regulation of Hormaomycin, an Exceptionally Complex Bacterial Signaling Metabolite. FOR854 - International Symposium 2010: International Symposium of the DFG Research Unit 854 On the Current Trends in Antibacterial Research, 4. 10. - 6. 10. 2010, Königswinter

Xiaofeng Cai, <u>Max Crüsemann</u>, Elisabeth Rüthlein, Axel Zeeck and Jörn Piel: Insights into the Biosynthesis and Regulation of Hormaomycin, an Exceptionally Complex Bacterial Signaling Metabolite. 23. Irseer Naturstofftage 23.02. - 25.02.2011, Kloster Irsee.

<u>Max Crüsemann</u>, Xiaofeng Cai, Elisabeth Rüthlein, Axel Zeeck and Jörn Piel: Insights into the Biosynthesis and Regulation of Hormaomycin, an Exceptionally Complex Bacterial Signaling Metabolite. DPhG-Doktorandentagung 30.03. - 02.04.2011, Heringsdorf (Insel Usedom)

Xiaofeng Cai, <u>Max Crüsemann</u>, Axel Zeeck and Jörn Piel: New Insights into the Biosynthesis and Regulation of the Nonribosomal Peptide Hormaomycin. VAAM meeting "Biology of Bacteria Producing Natural Compounds". 28.09 - 30.09.2011, Bonn.

Max Crüsemann, Xiaofeng Cai, Roberta Teta, Alfonso Mangoni and Jörn Piel: New Insights into the Biosynthesis and Regulation of the Nonribosomal Peptide Hormaomycin. 12th Leibniz-Symposium on Chemical Biology"Artwork from bits and pieces: Strategies to build up molecular complexity" 03.02.2012, Hannover

12 Selbstständigkeitserklärung

Hiermit erkläre ich, die eingereichte Arbeit selbstständig verfasst und keine anderen Hilfsmittel und Quellen als die angegebenen benutzt zu haben.

Diese Arbeit ist weder identisch noch teilidentisch mit einer Arbeit, die an der Rheinischen Friedrich-Wilhelms-Universität Bonn oder einer anderen Hochschule zur Erlangung eines akademischen Grades oder als Prüfungsleistung vorgelegt worden ist.

Die Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn ist mir bekannt.

Max Crüsemann

Bonn, den 11. 05. 2012